]>
Commit | Line | Data |
---|---|---|
9a64fbe4 | 1 | /* |
3fc6c082 | 2 | * PowerPC emulation helpers for qemu. |
5fafdf24 | 3 | * |
76a66253 | 4 | * Copyright (c) 2003-2007 Jocelyn Mayer |
9a64fbe4 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
9a64fbe4 | 20 | #include "exec.h" |
603fccce | 21 | #include "host-utils.h" |
9a64fbe4 | 22 | |
0411a972 | 23 | #include "helper_regs.h" |
0487d6a8 JM |
24 | #include "op_helper.h" |
25 | ||
9a64fbe4 | 26 | #define MEMSUFFIX _raw |
0487d6a8 | 27 | #include "op_helper.h" |
9a64fbe4 | 28 | #include "op_helper_mem.h" |
a541f297 | 29 | #if !defined(CONFIG_USER_ONLY) |
9a64fbe4 | 30 | #define MEMSUFFIX _user |
0487d6a8 | 31 | #include "op_helper.h" |
9a64fbe4 FB |
32 | #include "op_helper_mem.h" |
33 | #define MEMSUFFIX _kernel | |
0487d6a8 | 34 | #include "op_helper.h" |
9a64fbe4 | 35 | #include "op_helper_mem.h" |
1e42b8f0 JM |
36 | #if defined(TARGET_PPC64H) |
37 | #define MEMSUFFIX _hypv | |
38 | #include "op_helper.h" | |
39 | #include "op_helper_mem.h" | |
40 | #endif | |
9a64fbe4 FB |
41 | #endif |
42 | ||
fdabc366 FB |
43 | //#define DEBUG_OP |
44 | //#define DEBUG_EXCEPTIONS | |
76a66253 | 45 | //#define DEBUG_SOFTWARE_TLB |
fdabc366 | 46 | |
9a64fbe4 FB |
47 | /*****************************************************************************/ |
48 | /* Exceptions processing helpers */ | |
9a64fbe4 | 49 | |
9fddaa0c | 50 | void do_raise_exception_err (uint32_t exception, int error_code) |
9a64fbe4 | 51 | { |
9fddaa0c FB |
52 | #if 0 |
53 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
54 | #endif | |
9fddaa0c FB |
55 | env->exception_index = exception; |
56 | env->error_code = error_code; | |
76a66253 JM |
57 | cpu_loop_exit(); |
58 | } | |
9fddaa0c FB |
59 | |
60 | void do_raise_exception (uint32_t exception) | |
61 | { | |
62 | do_raise_exception_err(exception, 0); | |
9a64fbe4 FB |
63 | } |
64 | ||
a496775f JM |
65 | void cpu_dump_EA (target_ulong EA); |
66 | void do_print_mem_EA (target_ulong EA) | |
67 | { | |
68 | cpu_dump_EA(EA); | |
69 | } | |
70 | ||
76a66253 JM |
71 | /*****************************************************************************/ |
72 | /* Registers load and stores */ | |
73 | void do_load_cr (void) | |
74 | { | |
75 | T0 = (env->crf[0] << 28) | | |
76 | (env->crf[1] << 24) | | |
77 | (env->crf[2] << 20) | | |
78 | (env->crf[3] << 16) | | |
79 | (env->crf[4] << 12) | | |
80 | (env->crf[5] << 8) | | |
81 | (env->crf[6] << 4) | | |
82 | (env->crf[7] << 0); | |
83 | } | |
84 | ||
85 | void do_store_cr (uint32_t mask) | |
86 | { | |
87 | int i, sh; | |
88 | ||
36081602 | 89 | for (i = 0, sh = 7; i < 8; i++, sh--) { |
76a66253 JM |
90 | if (mask & (1 << sh)) |
91 | env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; | |
92 | } | |
93 | } | |
94 | ||
c80f84e3 JM |
95 | #if defined(TARGET_PPC64) |
96 | void do_store_pri (int prio) | |
97 | { | |
98 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
99 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
100 | } | |
101 | #endif | |
102 | ||
a496775f JM |
103 | target_ulong ppc_load_dump_spr (int sprn) |
104 | { | |
6b80055d | 105 | if (loglevel != 0) { |
a496775f JM |
106 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
107 | sprn, sprn, env->spr[sprn]); | |
108 | } | |
109 | ||
110 | return env->spr[sprn]; | |
111 | } | |
112 | ||
113 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
114 | { | |
6b80055d | 115 | if (loglevel != 0) { |
a496775f JM |
116 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
117 | sprn, sprn, env->spr[sprn], val); | |
118 | } | |
119 | env->spr[sprn] = val; | |
120 | } | |
121 | ||
9a64fbe4 | 122 | /*****************************************************************************/ |
fdabc366 | 123 | /* Fixed point operations helpers */ |
fdabc366 FB |
124 | void do_adde (void) |
125 | { | |
126 | T2 = T0; | |
127 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
128 | if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
129 | (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { | |
fdabc366 FB |
130 | xer_ca = 0; |
131 | } else { | |
132 | xer_ca = 1; | |
133 | } | |
134 | } | |
135 | ||
d9bce9d9 JM |
136 | #if defined(TARGET_PPC64) |
137 | void do_adde_64 (void) | |
fdabc366 FB |
138 | { |
139 | T2 = T0; | |
140 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
141 | if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
142 | (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { | |
fdabc366 FB |
143 | xer_ca = 0; |
144 | } else { | |
145 | xer_ca = 1; | |
146 | } | |
fdabc366 | 147 | } |
d9bce9d9 | 148 | #endif |
fdabc366 FB |
149 | |
150 | void do_addmeo (void) | |
151 | { | |
152 | T1 = T0; | |
153 | T0 += xer_ca + (-1); | |
c3e10c7b JM |
154 | xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31; |
155 | xer_so |= xer_ov; | |
fdabc366 FB |
156 | if (likely(T1 != 0)) |
157 | xer_ca = 1; | |
c3e10c7b JM |
158 | else |
159 | xer_ca = 0; | |
fdabc366 FB |
160 | } |
161 | ||
d9bce9d9 JM |
162 | #if defined(TARGET_PPC64) |
163 | void do_addmeo_64 (void) | |
fdabc366 FB |
164 | { |
165 | T1 = T0; | |
d9bce9d9 | 166 | T0 += xer_ca + (-1); |
c3e10c7b JM |
167 | xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63; |
168 | xer_so |= xer_ov; | |
d9bce9d9 | 169 | if (likely(T1 != 0)) |
fdabc366 | 170 | xer_ca = 1; |
c3e10c7b JM |
171 | else |
172 | xer_ca = 0; | |
fdabc366 | 173 | } |
d9bce9d9 | 174 | #endif |
fdabc366 FB |
175 | |
176 | void do_divwo (void) | |
177 | { | |
d9bce9d9 JM |
178 | if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || |
179 | (int32_t)T1 == 0))) { | |
fdabc366 | 180 | xer_ov = 0; |
d9bce9d9 | 181 | T0 = (int32_t)T0 / (int32_t)T1; |
fdabc366 | 182 | } else { |
fdabc366 | 183 | xer_ov = 1; |
966439a6 | 184 | xer_so = 1; |
fdabc366 FB |
185 | T0 = (-1) * ((uint32_t)T0 >> 31); |
186 | } | |
187 | } | |
188 | ||
d9bce9d9 JM |
189 | #if defined(TARGET_PPC64) |
190 | void do_divdo (void) | |
191 | { | |
192 | if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) || | |
193 | (int64_t)T1 == 0))) { | |
194 | xer_ov = 0; | |
195 | T0 = (int64_t)T0 / (int64_t)T1; | |
196 | } else { | |
d9bce9d9 | 197 | xer_ov = 1; |
966439a6 | 198 | xer_so = 1; |
d9bce9d9 JM |
199 | T0 = (-1ULL) * ((uint64_t)T0 >> 63); |
200 | } | |
201 | } | |
202 | #endif | |
203 | ||
fdabc366 FB |
204 | void do_divwuo (void) |
205 | { | |
206 | if (likely((uint32_t)T1 != 0)) { | |
207 | xer_ov = 0; | |
208 | T0 = (uint32_t)T0 / (uint32_t)T1; | |
209 | } else { | |
fdabc366 | 210 | xer_ov = 1; |
966439a6 | 211 | xer_so = 1; |
fdabc366 FB |
212 | T0 = 0; |
213 | } | |
214 | } | |
215 | ||
d9bce9d9 JM |
216 | #if defined(TARGET_PPC64) |
217 | void do_divduo (void) | |
218 | { | |
219 | if (likely((uint64_t)T1 != 0)) { | |
220 | xer_ov = 0; | |
221 | T0 = (uint64_t)T0 / (uint64_t)T1; | |
222 | } else { | |
d9bce9d9 | 223 | xer_ov = 1; |
966439a6 | 224 | xer_so = 1; |
d9bce9d9 JM |
225 | T0 = 0; |
226 | } | |
227 | } | |
228 | #endif | |
229 | ||
fdabc366 FB |
230 | void do_mullwo (void) |
231 | { | |
d9bce9d9 | 232 | int64_t res = (int64_t)T0 * (int64_t)T1; |
fdabc366 FB |
233 | |
234 | if (likely((int32_t)res == res)) { | |
235 | xer_ov = 0; | |
236 | } else { | |
237 | xer_ov = 1; | |
238 | xer_so = 1; | |
239 | } | |
240 | T0 = (int32_t)res; | |
241 | } | |
242 | ||
d9bce9d9 JM |
243 | #if defined(TARGET_PPC64) |
244 | void do_mulldo (void) | |
fdabc366 | 245 | { |
d9bce9d9 JM |
246 | int64_t th; |
247 | uint64_t tl; | |
248 | ||
9d901a20 | 249 | muls64(&tl, &th, T0, T1); |
88ad920b JM |
250 | /* If th != 0 && th != -1, then we had an overflow */ |
251 | if (likely((th + 1) <= 1)) { | |
fdabc366 | 252 | xer_ov = 0; |
fdabc366 FB |
253 | } else { |
254 | xer_ov = 1; | |
255 | xer_so = 1; | |
256 | } | |
d9bce9d9 | 257 | T0 = (int64_t)tl; |
fdabc366 | 258 | } |
d9bce9d9 | 259 | #endif |
fdabc366 | 260 | |
d9bce9d9 | 261 | void do_nego (void) |
fdabc366 | 262 | { |
d9bce9d9 | 263 | if (likely((int32_t)T0 != INT32_MIN)) { |
fdabc366 | 264 | xer_ov = 0; |
d9bce9d9 | 265 | T0 = -(int32_t)T0; |
fdabc366 | 266 | } else { |
fdabc366 | 267 | xer_ov = 1; |
d9bce9d9 | 268 | xer_so = 1; |
fdabc366 | 269 | } |
fdabc366 FB |
270 | } |
271 | ||
d9bce9d9 JM |
272 | #if defined(TARGET_PPC64) |
273 | void do_nego_64 (void) | |
fdabc366 | 274 | { |
d9bce9d9 | 275 | if (likely((int64_t)T0 != INT64_MIN)) { |
fdabc366 | 276 | xer_ov = 0; |
d9bce9d9 | 277 | T0 = -(int64_t)T0; |
fdabc366 | 278 | } else { |
fdabc366 | 279 | xer_ov = 1; |
d9bce9d9 | 280 | xer_so = 1; |
fdabc366 FB |
281 | } |
282 | } | |
d9bce9d9 | 283 | #endif |
fdabc366 FB |
284 | |
285 | void do_subfe (void) | |
286 | { | |
287 | T0 = T1 + ~T0 + xer_ca; | |
d9bce9d9 JM |
288 | if (likely((uint32_t)T0 >= (uint32_t)T1 && |
289 | (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { | |
fdabc366 FB |
290 | xer_ca = 0; |
291 | } else { | |
292 | xer_ca = 1; | |
293 | } | |
294 | } | |
295 | ||
d9bce9d9 JM |
296 | #if defined(TARGET_PPC64) |
297 | void do_subfe_64 (void) | |
fdabc366 | 298 | { |
fdabc366 | 299 | T0 = T1 + ~T0 + xer_ca; |
d9bce9d9 JM |
300 | if (likely((uint64_t)T0 >= (uint64_t)T1 && |
301 | (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { | |
302 | xer_ca = 0; | |
303 | } else { | |
304 | xer_ca = 1; | |
305 | } | |
306 | } | |
307 | #endif | |
308 | ||
309 | void do_subfmeo (void) | |
310 | { | |
311 | T1 = T0; | |
312 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
313 | xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31; |
314 | xer_so |= xer_ov; | |
d9bce9d9 | 315 | if (likely((uint32_t)T1 != UINT32_MAX)) |
fdabc366 | 316 | xer_ca = 1; |
c3e10c7b JM |
317 | else |
318 | xer_ca = 0; | |
fdabc366 FB |
319 | } |
320 | ||
d9bce9d9 JM |
321 | #if defined(TARGET_PPC64) |
322 | void do_subfmeo_64 (void) | |
fdabc366 FB |
323 | { |
324 | T1 = T0; | |
325 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
326 | xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63; |
327 | xer_so |= xer_ov; | |
d9bce9d9 | 328 | if (likely((uint64_t)T1 != UINT64_MAX)) |
fdabc366 | 329 | xer_ca = 1; |
c3e10c7b JM |
330 | else |
331 | xer_ca = 0; | |
fdabc366 | 332 | } |
d9bce9d9 | 333 | #endif |
fdabc366 FB |
334 | |
335 | void do_subfzeo (void) | |
336 | { | |
337 | T1 = T0; | |
338 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
339 | xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) & |
340 | ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31; | |
341 | xer_so |= xer_ov; | |
d9bce9d9 | 342 | if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
fdabc366 FB |
343 | xer_ca = 0; |
344 | } else { | |
345 | xer_ca = 1; | |
346 | } | |
347 | } | |
348 | ||
d9bce9d9 JM |
349 | #if defined(TARGET_PPC64) |
350 | void do_subfzeo_64 (void) | |
351 | { | |
352 | T1 = T0; | |
353 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
354 | xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) & |
355 | ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63; | |
356 | xer_so |= xer_ov; | |
d9bce9d9 JM |
357 | if (likely((uint64_t)T0 >= (uint64_t)~T1)) { |
358 | xer_ca = 0; | |
359 | } else { | |
360 | xer_ca = 1; | |
361 | } | |
362 | } | |
363 | #endif | |
364 | ||
603fccce JM |
365 | void do_cntlzw (void) |
366 | { | |
367 | T0 = clz32(T0); | |
368 | } | |
369 | ||
370 | #if defined(TARGET_PPC64) | |
371 | void do_cntlzd (void) | |
372 | { | |
373 | T0 = clz64(T0); | |
374 | } | |
375 | #endif | |
376 | ||
9a64fbe4 FB |
377 | /* shift right arithmetic helper */ |
378 | void do_sraw (void) | |
379 | { | |
380 | int32_t ret; | |
381 | ||
fdabc366 | 382 | if (likely(!(T1 & 0x20UL))) { |
d9bce9d9 | 383 | if (likely((uint32_t)T1 != 0)) { |
fdabc366 FB |
384 | ret = (int32_t)T0 >> (T1 & 0x1fUL); |
385 | if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { | |
76a66253 | 386 | xer_ca = 0; |
fdabc366 | 387 | } else { |
76a66253 | 388 | xer_ca = 1; |
fdabc366 FB |
389 | } |
390 | } else { | |
76a66253 | 391 | ret = T0; |
fdabc366 FB |
392 | xer_ca = 0; |
393 | } | |
394 | } else { | |
395 | ret = (-1) * ((uint32_t)T0 >> 31); | |
396 | if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { | |
397 | xer_ca = 0; | |
76a66253 | 398 | } else { |
9a64fbe4 | 399 | xer_ca = 1; |
76a66253 | 400 | } |
fdabc366 | 401 | } |
4b3686fa | 402 | T0 = ret; |
9a64fbe4 FB |
403 | } |
404 | ||
d9bce9d9 JM |
405 | #if defined(TARGET_PPC64) |
406 | void do_srad (void) | |
407 | { | |
408 | int64_t ret; | |
409 | ||
410 | if (likely(!(T1 & 0x40UL))) { | |
411 | if (likely((uint64_t)T1 != 0)) { | |
412 | ret = (int64_t)T0 >> (T1 & 0x3FUL); | |
413 | if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { | |
414 | xer_ca = 0; | |
415 | } else { | |
416 | xer_ca = 1; | |
417 | } | |
418 | } else { | |
419 | ret = T0; | |
420 | xer_ca = 0; | |
421 | } | |
422 | } else { | |
423 | ret = (-1) * ((uint64_t)T0 >> 63); | |
424 | if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { | |
425 | xer_ca = 0; | |
426 | } else { | |
427 | xer_ca = 1; | |
428 | } | |
429 | } | |
430 | T0 = ret; | |
431 | } | |
432 | #endif | |
433 | ||
d9bce9d9 JM |
434 | void do_popcntb (void) |
435 | { | |
436 | uint32_t ret; | |
437 | int i; | |
438 | ||
439 | ret = 0; | |
440 | for (i = 0; i < 32; i += 8) | |
603fccce | 441 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
442 | T0 = ret; |
443 | } | |
444 | ||
445 | #if defined(TARGET_PPC64) | |
446 | void do_popcntb_64 (void) | |
447 | { | |
448 | uint64_t ret; | |
449 | int i; | |
450 | ||
451 | ret = 0; | |
452 | for (i = 0; i < 64; i += 8) | |
603fccce | 453 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
454 | T0 = ret; |
455 | } | |
456 | #endif | |
457 | ||
fdabc366 | 458 | /*****************************************************************************/ |
9a64fbe4 | 459 | /* Floating point operations helpers */ |
a11b8151 | 460 | static always_inline int fpisneg (float64 f) |
7c58044c JM |
461 | { |
462 | union { | |
463 | float64 f; | |
464 | uint64_t u; | |
465 | } u; | |
466 | ||
467 | u.f = f; | |
468 | ||
469 | return u.u >> 63 != 0; | |
470 | } | |
471 | ||
a11b8151 | 472 | static always_inline int isden (float f) |
7c58044c JM |
473 | { |
474 | union { | |
475 | float64 f; | |
476 | uint64_t u; | |
477 | } u; | |
478 | ||
479 | u.f = f; | |
480 | ||
481 | return ((u.u >> 52) & 0x7FF) == 0; | |
482 | } | |
483 | ||
a11b8151 | 484 | static always_inline int iszero (float64 f) |
7c58044c JM |
485 | { |
486 | union { | |
487 | float64 f; | |
488 | uint64_t u; | |
489 | } u; | |
490 | ||
491 | u.f = f; | |
492 | ||
493 | return (u.u & ~0x8000000000000000ULL) == 0; | |
494 | } | |
495 | ||
a11b8151 | 496 | static always_inline int isinfinity (float64 f) |
7c58044c JM |
497 | { |
498 | union { | |
499 | float64 f; | |
500 | uint64_t u; | |
501 | } u; | |
502 | ||
503 | u.f = f; | |
504 | ||
86c4a9f5 | 505 | return ((u.u >> 52) & 0x7FF) == 0x7FF && |
7c58044c JM |
506 | (u.u & 0x000FFFFFFFFFFFFFULL) == 0; |
507 | } | |
508 | ||
509 | void do_compute_fprf (int set_fprf) | |
510 | { | |
511 | int isneg; | |
512 | ||
513 | isneg = fpisneg(FT0); | |
514 | if (unlikely(float64_is_nan(FT0))) { | |
515 | if (float64_is_signaling_nan(FT0)) { | |
516 | /* Signaling NaN: flags are undefined */ | |
517 | T0 = 0x00; | |
518 | } else { | |
519 | /* Quiet NaN */ | |
520 | T0 = 0x11; | |
521 | } | |
522 | } else if (unlikely(isinfinity(FT0))) { | |
523 | /* +/- infinity */ | |
524 | if (isneg) | |
525 | T0 = 0x09; | |
526 | else | |
527 | T0 = 0x05; | |
528 | } else { | |
529 | if (iszero(FT0)) { | |
530 | /* +/- zero */ | |
531 | if (isneg) | |
532 | T0 = 0x12; | |
533 | else | |
534 | T0 = 0x02; | |
535 | } else { | |
536 | if (isden(FT0)) { | |
537 | /* Denormalized numbers */ | |
538 | T0 = 0x10; | |
539 | } else { | |
540 | /* Normalized numbers */ | |
541 | T0 = 0x00; | |
542 | } | |
543 | if (isneg) { | |
544 | T0 |= 0x08; | |
545 | } else { | |
546 | T0 |= 0x04; | |
547 | } | |
548 | } | |
549 | } | |
550 | if (set_fprf) { | |
551 | /* We update FPSCR_FPRF */ | |
552 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
553 | env->fpscr |= T0 << FPSCR_FPRF; | |
554 | } | |
555 | /* We just need fpcc to update Rc1 */ | |
556 | T0 &= 0xF; | |
557 | } | |
558 | ||
559 | /* Floating-point invalid operations exception */ | |
560 | static always_inline void fload_invalid_op_excp (int op) | |
561 | { | |
562 | int ve; | |
563 | ||
564 | ve = fpscr_ve; | |
565 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
566 | /* Operation on signaling NaN */ | |
567 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
568 | } | |
569 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
570 | /* Software-defined condition */ | |
571 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
572 | } | |
573 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
574 | case POWERPC_EXCP_FP_VXISI: | |
575 | /* Magnitude subtraction of infinities */ | |
576 | env->fpscr |= 1 << FPSCR_VXISI; | |
577 | goto update_arith; | |
578 | case POWERPC_EXCP_FP_VXIDI: | |
579 | /* Division of infinity by infinity */ | |
580 | env->fpscr |= 1 << FPSCR_VXIDI; | |
581 | goto update_arith; | |
582 | case POWERPC_EXCP_FP_VXZDZ: | |
583 | /* Division of zero by zero */ | |
584 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
585 | goto update_arith; | |
586 | case POWERPC_EXCP_FP_VXIMZ: | |
587 | /* Multiplication of zero by infinity */ | |
588 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
589 | goto update_arith; | |
590 | case POWERPC_EXCP_FP_VXVC: | |
591 | /* Ordered comparison of NaN */ | |
592 | env->fpscr |= 1 << FPSCR_VXVC; | |
593 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
594 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
595 | /* We must update the target FPR before raising the exception */ | |
596 | if (ve != 0) { | |
597 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
598 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
599 | /* Update the floating-point enabled exception summary */ | |
600 | env->fpscr |= 1 << FPSCR_FEX; | |
601 | /* Exception is differed */ | |
602 | ve = 0; | |
603 | } | |
604 | break; | |
605 | case POWERPC_EXCP_FP_VXSQRT: | |
606 | /* Square root of a negative number */ | |
607 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
608 | update_arith: | |
609 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
610 | if (ve == 0) { | |
611 | /* Set the result to quiet NaN */ | |
612 | FT0 = (uint64_t)-1; | |
613 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
614 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
615 | } | |
616 | break; | |
617 | case POWERPC_EXCP_FP_VXCVI: | |
618 | /* Invalid conversion */ | |
619 | env->fpscr |= 1 << FPSCR_VXCVI; | |
620 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
621 | if (ve == 0) { | |
622 | /* Set the result to quiet NaN */ | |
623 | FT0 = (uint64_t)-1; | |
624 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
625 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
626 | } | |
627 | break; | |
628 | } | |
629 | /* Update the floating-point invalid operation summary */ | |
630 | env->fpscr |= 1 << FPSCR_VX; | |
631 | /* Update the floating-point exception summary */ | |
632 | env->fpscr |= 1 << FPSCR_FX; | |
633 | if (ve != 0) { | |
634 | /* Update the floating-point enabled exception summary */ | |
635 | env->fpscr |= 1 << FPSCR_FEX; | |
636 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
637 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
638 | } | |
639 | } | |
640 | ||
641 | static always_inline void float_zero_divide_excp (void) | |
642 | { | |
643 | union { | |
644 | float64 f; | |
645 | uint64_t u; | |
646 | } u0, u1; | |
7c58044c JM |
647 | |
648 | env->fpscr |= 1 << FPSCR_ZX; | |
649 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
650 | /* Update the floating-point exception summary */ | |
651 | env->fpscr |= 1 << FPSCR_FX; | |
652 | if (fpscr_ze != 0) { | |
653 | /* Update the floating-point enabled exception summary */ | |
654 | env->fpscr |= 1 << FPSCR_FEX; | |
655 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
656 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
657 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
658 | } | |
659 | } else { | |
660 | /* Set the result to infinity */ | |
661 | u0.f = FT0; | |
662 | u1.f = FT1; | |
663 | u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL); | |
86c4a9f5 | 664 | u0.u |= 0x7FFULL << 52; |
7c58044c JM |
665 | FT0 = u0.f; |
666 | } | |
667 | } | |
668 | ||
669 | static always_inline void float_overflow_excp (void) | |
670 | { | |
671 | env->fpscr |= 1 << FPSCR_OX; | |
672 | /* Update the floating-point exception summary */ | |
673 | env->fpscr |= 1 << FPSCR_FX; | |
674 | if (fpscr_oe != 0) { | |
675 | /* XXX: should adjust the result */ | |
676 | /* Update the floating-point enabled exception summary */ | |
677 | env->fpscr |= 1 << FPSCR_FEX; | |
678 | /* We must update the target FPR before raising the exception */ | |
679 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
680 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
681 | } else { | |
682 | env->fpscr |= 1 << FPSCR_XX; | |
683 | env->fpscr |= 1 << FPSCR_FI; | |
684 | } | |
685 | } | |
686 | ||
687 | static always_inline void float_underflow_excp (void) | |
688 | { | |
689 | env->fpscr |= 1 << FPSCR_UX; | |
690 | /* Update the floating-point exception summary */ | |
691 | env->fpscr |= 1 << FPSCR_FX; | |
692 | if (fpscr_ue != 0) { | |
693 | /* XXX: should adjust the result */ | |
694 | /* Update the floating-point enabled exception summary */ | |
695 | env->fpscr |= 1 << FPSCR_FEX; | |
696 | /* We must update the target FPR before raising the exception */ | |
697 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
698 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
699 | } | |
700 | } | |
701 | ||
702 | static always_inline void float_inexact_excp (void) | |
703 | { | |
704 | env->fpscr |= 1 << FPSCR_XX; | |
705 | /* Update the floating-point exception summary */ | |
706 | env->fpscr |= 1 << FPSCR_FX; | |
707 | if (fpscr_xe != 0) { | |
708 | /* Update the floating-point enabled exception summary */ | |
709 | env->fpscr |= 1 << FPSCR_FEX; | |
710 | /* We must update the target FPR before raising the exception */ | |
711 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
712 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
713 | } | |
714 | } | |
715 | ||
716 | static always_inline void fpscr_set_rounding_mode (void) | |
717 | { | |
718 | int rnd_type; | |
719 | ||
720 | /* Set rounding mode */ | |
721 | switch (fpscr_rn) { | |
722 | case 0: | |
723 | /* Best approximation (round to nearest) */ | |
724 | rnd_type = float_round_nearest_even; | |
725 | break; | |
726 | case 1: | |
727 | /* Smaller magnitude (round toward zero) */ | |
728 | rnd_type = float_round_to_zero; | |
729 | break; | |
730 | case 2: | |
731 | /* Round toward +infinite */ | |
732 | rnd_type = float_round_up; | |
733 | break; | |
734 | default: | |
735 | case 3: | |
736 | /* Round toward -infinite */ | |
737 | rnd_type = float_round_down; | |
738 | break; | |
739 | } | |
740 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
741 | } | |
742 | ||
743 | void do_fpscr_setbit (int bit) | |
744 | { | |
745 | int prev; | |
746 | ||
747 | prev = (env->fpscr >> bit) & 1; | |
748 | env->fpscr |= 1 << bit; | |
749 | if (prev == 0) { | |
750 | switch (bit) { | |
751 | case FPSCR_VX: | |
752 | env->fpscr |= 1 << FPSCR_FX; | |
753 | if (fpscr_ve) | |
754 | goto raise_ve; | |
755 | case FPSCR_OX: | |
756 | env->fpscr |= 1 << FPSCR_FX; | |
757 | if (fpscr_oe) | |
758 | goto raise_oe; | |
759 | break; | |
760 | case FPSCR_UX: | |
761 | env->fpscr |= 1 << FPSCR_FX; | |
762 | if (fpscr_ue) | |
763 | goto raise_ue; | |
764 | break; | |
765 | case FPSCR_ZX: | |
766 | env->fpscr |= 1 << FPSCR_FX; | |
767 | if (fpscr_ze) | |
768 | goto raise_ze; | |
769 | break; | |
770 | case FPSCR_XX: | |
771 | env->fpscr |= 1 << FPSCR_FX; | |
772 | if (fpscr_xe) | |
773 | goto raise_xe; | |
774 | break; | |
775 | case FPSCR_VXSNAN: | |
776 | case FPSCR_VXISI: | |
777 | case FPSCR_VXIDI: | |
778 | case FPSCR_VXZDZ: | |
779 | case FPSCR_VXIMZ: | |
780 | case FPSCR_VXVC: | |
781 | case FPSCR_VXSOFT: | |
782 | case FPSCR_VXSQRT: | |
783 | case FPSCR_VXCVI: | |
784 | env->fpscr |= 1 << FPSCR_VX; | |
785 | env->fpscr |= 1 << FPSCR_FX; | |
786 | if (fpscr_ve != 0) | |
787 | goto raise_ve; | |
788 | break; | |
789 | case FPSCR_VE: | |
790 | if (fpscr_vx != 0) { | |
791 | raise_ve: | |
792 | env->error_code = POWERPC_EXCP_FP; | |
793 | if (fpscr_vxsnan) | |
794 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
795 | if (fpscr_vxisi) | |
796 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
797 | if (fpscr_vxidi) | |
798 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
799 | if (fpscr_vxzdz) | |
800 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
801 | if (fpscr_vximz) | |
802 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
803 | if (fpscr_vxvc) | |
804 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
805 | if (fpscr_vxsoft) | |
806 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
807 | if (fpscr_vxsqrt) | |
808 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
809 | if (fpscr_vxcvi) | |
810 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
811 | goto raise_excp; | |
812 | } | |
813 | break; | |
814 | case FPSCR_OE: | |
815 | if (fpscr_ox != 0) { | |
816 | raise_oe: | |
817 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
818 | goto raise_excp; | |
819 | } | |
820 | break; | |
821 | case FPSCR_UE: | |
822 | if (fpscr_ux != 0) { | |
823 | raise_ue: | |
824 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
825 | goto raise_excp; | |
826 | } | |
827 | break; | |
828 | case FPSCR_ZE: | |
829 | if (fpscr_zx != 0) { | |
830 | raise_ze: | |
831 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
832 | goto raise_excp; | |
833 | } | |
834 | break; | |
835 | case FPSCR_XE: | |
836 | if (fpscr_xx != 0) { | |
837 | raise_xe: | |
838 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
839 | goto raise_excp; | |
840 | } | |
841 | break; | |
842 | case FPSCR_RN1: | |
843 | case FPSCR_RN: | |
844 | fpscr_set_rounding_mode(); | |
845 | break; | |
846 | default: | |
847 | break; | |
848 | raise_excp: | |
849 | /* Update the floating-point enabled exception summary */ | |
850 | env->fpscr |= 1 << FPSCR_FEX; | |
851 | /* We have to update Rc1 before raising the exception */ | |
852 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
853 | break; | |
854 | } | |
855 | } | |
856 | } | |
857 | ||
858 | #if defined(WORDS_BIGENDIAN) | |
859 | #define WORD0 0 | |
860 | #define WORD1 1 | |
861 | #else | |
862 | #define WORD0 1 | |
863 | #define WORD1 0 | |
864 | #endif | |
865 | void do_store_fpscr (uint32_t mask) | |
866 | { | |
867 | /* | |
868 | * We use only the 32 LSB of the incoming fpr | |
869 | */ | |
870 | union { | |
871 | double d; | |
872 | struct { | |
873 | uint32_t u[2]; | |
874 | } s; | |
875 | } u; | |
876 | uint32_t prev, new; | |
877 | int i; | |
878 | ||
879 | u.d = FT0; | |
880 | prev = env->fpscr; | |
881 | new = u.s.u[WORD1]; | |
882 | new &= ~0x90000000; | |
883 | new |= prev & 0x90000000; | |
884 | for (i = 0; i < 7; i++) { | |
885 | if (mask & (1 << i)) { | |
886 | env->fpscr &= ~(0xF << (4 * i)); | |
887 | env->fpscr |= new & (0xF << (4 * i)); | |
888 | } | |
889 | } | |
890 | /* Update VX and FEX */ | |
891 | if (fpscr_ix != 0) | |
892 | env->fpscr |= 1 << FPSCR_VX; | |
893 | if ((fpscr_ex & fpscr_eex) != 0) { | |
894 | env->fpscr |= 1 << FPSCR_FEX; | |
895 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
896 | /* XXX: we should compute it properly */ | |
897 | env->error_code = POWERPC_EXCP_FP; | |
898 | } | |
899 | fpscr_set_rounding_mode(); | |
900 | } | |
901 | #undef WORD0 | |
902 | #undef WORD1 | |
903 | ||
904 | #ifdef CONFIG_SOFTFLOAT | |
905 | void do_float_check_status (void) | |
906 | { | |
907 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
908 | (env->error_code & POWERPC_EXCP_FP)) { | |
909 | /* Differred floating-point exception after target FPR update */ | |
910 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
911 | do_raise_exception_err(env->exception_index, env->error_code); | |
912 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
913 | float_overflow_excp(); | |
914 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
915 | float_underflow_excp(); | |
916 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
917 | float_inexact_excp(); | |
918 | } | |
919 | } | |
920 | #endif | |
921 | ||
922 | #if USE_PRECISE_EMULATION | |
923 | void do_fadd (void) | |
924 | { | |
925 | if (unlikely(float64_is_signaling_nan(FT0) || | |
926 | float64_is_signaling_nan(FT1))) { | |
927 | /* sNaN addition */ | |
928 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
929 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
930 | fpisneg(FT0) == fpisneg(FT1))) { | |
931 | FT0 = float64_add(FT0, FT1, &env->fp_status); | |
932 | } else { | |
933 | /* Magnitude subtraction of infinities */ | |
934 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
935 | } | |
936 | } | |
937 | ||
938 | void do_fsub (void) | |
939 | { | |
940 | if (unlikely(float64_is_signaling_nan(FT0) || | |
941 | float64_is_signaling_nan(FT1))) { | |
942 | /* sNaN subtraction */ | |
943 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
944 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
945 | fpisneg(FT0) != fpisneg(FT1))) { | |
946 | FT0 = float64_sub(FT0, FT1, &env->fp_status); | |
947 | } else { | |
948 | /* Magnitude subtraction of infinities */ | |
949 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
950 | } | |
951 | } | |
952 | ||
953 | void do_fmul (void) | |
954 | { | |
955 | if (unlikely(float64_is_signaling_nan(FT0) || | |
956 | float64_is_signaling_nan(FT1))) { | |
957 | /* sNaN multiplication */ | |
958 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
5bda2843 JM |
959 | } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
960 | (iszero(FT0) && isinfinity(FT1)))) { | |
7c58044c JM |
961 | /* Multiplication of zero by infinity */ |
962 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
963 | } else { | |
964 | FT0 = float64_mul(FT0, FT1, &env->fp_status); | |
965 | } | |
966 | } | |
967 | ||
968 | void do_fdiv (void) | |
969 | { | |
970 | if (unlikely(float64_is_signaling_nan(FT0) || | |
971 | float64_is_signaling_nan(FT1))) { | |
972 | /* sNaN division */ | |
973 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
974 | } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { | |
975 | /* Division of infinity by infinity */ | |
976 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
977 | } else if (unlikely(iszero(FT1))) { | |
978 | if (iszero(FT0)) { | |
979 | /* Division of zero by zero */ | |
980 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
981 | } else { | |
982 | /* Division by zero */ | |
983 | float_zero_divide_excp(); | |
984 | } | |
985 | } else { | |
986 | FT0 = float64_div(FT0, FT1, &env->fp_status); | |
987 | } | |
988 | } | |
989 | #endif /* USE_PRECISE_EMULATION */ | |
990 | ||
9a64fbe4 FB |
991 | void do_fctiw (void) |
992 | { | |
993 | union { | |
994 | double d; | |
995 | uint64_t i; | |
4ecc3190 | 996 | } p; |
9a64fbe4 | 997 | |
7c58044c JM |
998 | if (unlikely(float64_is_signaling_nan(FT0))) { |
999 | /* sNaN conversion */ | |
1000 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1001 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1002 | /* qNan / infinity conversion */ | |
1003 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1004 | } else { | |
1005 | p.i = float64_to_int32(FT0, &env->fp_status); | |
e864cabd | 1006 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1007 | /* XXX: higher bits are not supposed to be significant. |
1008 | * to make tests easier, return the same as a real PowerPC 750 | |
1009 | */ | |
1010 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1011 | #endif |
7c58044c JM |
1012 | FT0 = p.d; |
1013 | } | |
9a64fbe4 FB |
1014 | } |
1015 | ||
1016 | void do_fctiwz (void) | |
1017 | { | |
1018 | union { | |
1019 | double d; | |
1020 | uint64_t i; | |
4ecc3190 FB |
1021 | } p; |
1022 | ||
7c58044c JM |
1023 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1024 | /* sNaN conversion */ | |
1025 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1026 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1027 | /* qNan / infinity conversion */ | |
1028 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1029 | } else { | |
1030 | p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); | |
e864cabd | 1031 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1032 | /* XXX: higher bits are not supposed to be significant. |
1033 | * to make tests easier, return the same as a real PowerPC 750 | |
1034 | */ | |
1035 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1036 | #endif |
7c58044c JM |
1037 | FT0 = p.d; |
1038 | } | |
9a64fbe4 FB |
1039 | } |
1040 | ||
426613db JM |
1041 | #if defined(TARGET_PPC64) |
1042 | void do_fcfid (void) | |
1043 | { | |
1044 | union { | |
1045 | double d; | |
1046 | uint64_t i; | |
1047 | } p; | |
1048 | ||
1049 | p.d = FT0; | |
1050 | FT0 = int64_to_float64(p.i, &env->fp_status); | |
1051 | } | |
1052 | ||
1053 | void do_fctid (void) | |
1054 | { | |
1055 | union { | |
1056 | double d; | |
1057 | uint64_t i; | |
1058 | } p; | |
1059 | ||
7c58044c JM |
1060 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1061 | /* sNaN conversion */ | |
1062 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1063 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1064 | /* qNan / infinity conversion */ | |
1065 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1066 | } else { | |
1067 | p.i = float64_to_int64(FT0, &env->fp_status); | |
1068 | FT0 = p.d; | |
1069 | } | |
426613db JM |
1070 | } |
1071 | ||
1072 | void do_fctidz (void) | |
1073 | { | |
1074 | union { | |
1075 | double d; | |
1076 | uint64_t i; | |
1077 | } p; | |
1078 | ||
7c58044c JM |
1079 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1080 | /* sNaN conversion */ | |
1081 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1082 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1083 | /* qNan / infinity conversion */ | |
1084 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1085 | } else { | |
1086 | p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status); | |
1087 | FT0 = p.d; | |
1088 | } | |
426613db JM |
1089 | } |
1090 | ||
1091 | #endif | |
1092 | ||
b068d6a7 | 1093 | static always_inline void do_fri (int rounding_mode) |
d7e4b87e | 1094 | { |
7c58044c JM |
1095 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1096 | /* sNaN round */ | |
1097 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1098 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1099 | /* qNan / infinity round */ | |
1100 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1101 | } else { | |
1102 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1103 | FT0 = float64_round_to_int(FT0, &env->fp_status); | |
1104 | /* Restore rounding mode from FPSCR */ | |
1105 | fpscr_set_rounding_mode(); | |
1106 | } | |
d7e4b87e JM |
1107 | } |
1108 | ||
1109 | void do_frin (void) | |
1110 | { | |
1111 | do_fri(float_round_nearest_even); | |
1112 | } | |
1113 | ||
1114 | void do_friz (void) | |
1115 | { | |
1116 | do_fri(float_round_to_zero); | |
1117 | } | |
1118 | ||
1119 | void do_frip (void) | |
1120 | { | |
1121 | do_fri(float_round_up); | |
1122 | } | |
1123 | ||
1124 | void do_frim (void) | |
1125 | { | |
1126 | do_fri(float_round_down); | |
1127 | } | |
1128 | ||
e864cabd JM |
1129 | #if USE_PRECISE_EMULATION |
1130 | void do_fmadd (void) | |
1131 | { | |
7c58044c JM |
1132 | if (unlikely(float64_is_signaling_nan(FT0) || |
1133 | float64_is_signaling_nan(FT1) || | |
1134 | float64_is_signaling_nan(FT2))) { | |
1135 | /* sNaN operation */ | |
1136 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1137 | } else { | |
e864cabd | 1138 | #ifdef FLOAT128 |
7c58044c JM |
1139 | /* This is the way the PowerPC specification defines it */ |
1140 | float128 ft0_128, ft1_128; | |
1141 | ||
1142 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1143 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1144 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1145 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1146 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1147 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1148 | #else |
7c58044c JM |
1149 | /* This is OK on x86 hosts */ |
1150 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd | 1151 | #endif |
7c58044c | 1152 | } |
e864cabd JM |
1153 | } |
1154 | ||
1155 | void do_fmsub (void) | |
1156 | { | |
7c58044c JM |
1157 | if (unlikely(float64_is_signaling_nan(FT0) || |
1158 | float64_is_signaling_nan(FT1) || | |
1159 | float64_is_signaling_nan(FT2))) { | |
1160 | /* sNaN operation */ | |
1161 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1162 | } else { | |
e864cabd | 1163 | #ifdef FLOAT128 |
7c58044c JM |
1164 | /* This is the way the PowerPC specification defines it */ |
1165 | float128 ft0_128, ft1_128; | |
1166 | ||
1167 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1168 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1169 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1170 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1171 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1172 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1173 | #else |
7c58044c JM |
1174 | /* This is OK on x86 hosts */ |
1175 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd | 1176 | #endif |
7c58044c | 1177 | } |
e864cabd JM |
1178 | } |
1179 | #endif /* USE_PRECISE_EMULATION */ | |
1180 | ||
4b3686fa FB |
1181 | void do_fnmadd (void) |
1182 | { | |
7c58044c JM |
1183 | if (unlikely(float64_is_signaling_nan(FT0) || |
1184 | float64_is_signaling_nan(FT1) || | |
1185 | float64_is_signaling_nan(FT2))) { | |
1186 | /* sNaN operation */ | |
1187 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1188 | } else { | |
e864cabd JM |
1189 | #if USE_PRECISE_EMULATION |
1190 | #ifdef FLOAT128 | |
7c58044c JM |
1191 | /* This is the way the PowerPC specification defines it */ |
1192 | float128 ft0_128, ft1_128; | |
1193 | ||
1194 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1195 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1196 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1197 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1198 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1199 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1200 | #else |
7c58044c JM |
1201 | /* This is OK on x86 hosts */ |
1202 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd JM |
1203 | #endif |
1204 | #else | |
7c58044c JM |
1205 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1206 | FT0 = float64_add(FT0, FT2, &env->fp_status); | |
e864cabd | 1207 | #endif |
7c58044c JM |
1208 | if (likely(!isnan(FT0))) |
1209 | FT0 = float64_chs(FT0); | |
1210 | } | |
4b3686fa FB |
1211 | } |
1212 | ||
1213 | void do_fnmsub (void) | |
1214 | { | |
7c58044c JM |
1215 | if (unlikely(float64_is_signaling_nan(FT0) || |
1216 | float64_is_signaling_nan(FT1) || | |
1217 | float64_is_signaling_nan(FT2))) { | |
1218 | /* sNaN operation */ | |
1219 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1220 | } else { | |
e864cabd JM |
1221 | #if USE_PRECISE_EMULATION |
1222 | #ifdef FLOAT128 | |
7c58044c JM |
1223 | /* This is the way the PowerPC specification defines it */ |
1224 | float128 ft0_128, ft1_128; | |
1225 | ||
1226 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1227 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1228 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1229 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1230 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1231 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1232 | #else |
7c58044c JM |
1233 | /* This is OK on x86 hosts */ |
1234 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd JM |
1235 | #endif |
1236 | #else | |
7c58044c JM |
1237 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1238 | FT0 = float64_sub(FT0, FT2, &env->fp_status); | |
e864cabd | 1239 | #endif |
7c58044c JM |
1240 | if (likely(!isnan(FT0))) |
1241 | FT0 = float64_chs(FT0); | |
1242 | } | |
1ef59d0a FB |
1243 | } |
1244 | ||
7c58044c JM |
1245 | #if USE_PRECISE_EMULATION |
1246 | void do_frsp (void) | |
1247 | { | |
1248 | if (unlikely(float64_is_signaling_nan(FT0))) { | |
1249 | /* sNaN square root */ | |
1250 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1251 | } else { | |
1252 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1253 | } | |
1254 | } | |
1255 | #endif /* USE_PRECISE_EMULATION */ | |
1256 | ||
9a64fbe4 FB |
1257 | void do_fsqrt (void) |
1258 | { | |
7c58044c JM |
1259 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1260 | /* sNaN square root */ | |
1261 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1262 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1263 | /* Square root of a negative nonzero number */ | |
1264 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1265 | } else { | |
1266 | FT0 = float64_sqrt(FT0, &env->fp_status); | |
1267 | } | |
9a64fbe4 FB |
1268 | } |
1269 | ||
d7e4b87e JM |
1270 | void do_fre (void) |
1271 | { | |
1272 | union { | |
1273 | double d; | |
1274 | uint64_t i; | |
1275 | } p; | |
1276 | ||
7c58044c JM |
1277 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1278 | /* sNaN reciprocal */ | |
1279 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1280 | } else if (unlikely(iszero(FT0))) { | |
1281 | /* Zero reciprocal */ | |
1282 | float_zero_divide_excp(); | |
1283 | } else if (likely(isnormal(FT0))) { | |
d7e4b87e JM |
1284 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1285 | } else { | |
1286 | p.d = FT0; | |
1287 | if (p.i == 0x8000000000000000ULL) { | |
1288 | p.i = 0xFFF0000000000000ULL; | |
1289 | } else if (p.i == 0x0000000000000000ULL) { | |
1290 | p.i = 0x7FF0000000000000ULL; | |
1291 | } else if (isnan(FT0)) { | |
1292 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1293 | } else if (fpisneg(FT0)) { |
d7e4b87e JM |
1294 | p.i = 0x8000000000000000ULL; |
1295 | } else { | |
1296 | p.i = 0x0000000000000000ULL; | |
1297 | } | |
1298 | FT0 = p.d; | |
1299 | } | |
1300 | } | |
1301 | ||
9a64fbe4 FB |
1302 | void do_fres (void) |
1303 | { | |
4ecc3190 FB |
1304 | union { |
1305 | double d; | |
1306 | uint64_t i; | |
1307 | } p; | |
1308 | ||
7c58044c JM |
1309 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1310 | /* sNaN reciprocal */ | |
1311 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1312 | } else if (unlikely(iszero(FT0))) { | |
1313 | /* Zero reciprocal */ | |
1314 | float_zero_divide_excp(); | |
1315 | } else if (likely(isnormal(FT0))) { | |
e864cabd JM |
1316 | #if USE_PRECISE_EMULATION |
1317 | FT0 = float64_div(1.0, FT0, &env->fp_status); | |
1318 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1319 | #else | |
76a66253 | 1320 | FT0 = float32_div(1.0, FT0, &env->fp_status); |
e864cabd | 1321 | #endif |
4ecc3190 FB |
1322 | } else { |
1323 | p.d = FT0; | |
1324 | if (p.i == 0x8000000000000000ULL) { | |
1325 | p.i = 0xFFF0000000000000ULL; | |
1326 | } else if (p.i == 0x0000000000000000ULL) { | |
1327 | p.i = 0x7FF0000000000000ULL; | |
1328 | } else if (isnan(FT0)) { | |
1329 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1330 | } else if (fpisneg(FT0)) { |
4ecc3190 FB |
1331 | p.i = 0x8000000000000000ULL; |
1332 | } else { | |
1333 | p.i = 0x0000000000000000ULL; | |
1334 | } | |
1335 | FT0 = p.d; | |
1336 | } | |
9a64fbe4 FB |
1337 | } |
1338 | ||
4ecc3190 | 1339 | void do_frsqrte (void) |
9a64fbe4 | 1340 | { |
4ecc3190 FB |
1341 | union { |
1342 | double d; | |
1343 | uint64_t i; | |
1344 | } p; | |
1345 | ||
7c58044c JM |
1346 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1347 | /* sNaN reciprocal square root */ | |
1348 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1349 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1350 | /* Reciprocal square root of a negative nonzero number */ | |
1351 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1352 | } else if (likely(isnormal(FT0))) { | |
fdabc366 FB |
1353 | FT0 = float64_sqrt(FT0, &env->fp_status); |
1354 | FT0 = float32_div(1.0, FT0, &env->fp_status); | |
4ecc3190 FB |
1355 | } else { |
1356 | p.d = FT0; | |
1357 | if (p.i == 0x8000000000000000ULL) { | |
1358 | p.i = 0xFFF0000000000000ULL; | |
1359 | } else if (p.i == 0x0000000000000000ULL) { | |
1360 | p.i = 0x7FF0000000000000ULL; | |
1361 | } else if (isnan(FT0)) { | |
7c58044c JM |
1362 | p.i |= 0x000FFFFFFFFFFFFFULL; |
1363 | } else if (fpisneg(FT0)) { | |
4ecc3190 FB |
1364 | p.i = 0x7FF8000000000000ULL; |
1365 | } else { | |
1366 | p.i = 0x0000000000000000ULL; | |
1367 | } | |
1368 | FT0 = p.d; | |
1369 | } | |
9a64fbe4 FB |
1370 | } |
1371 | ||
1372 | void do_fsel (void) | |
1373 | { | |
7c58044c | 1374 | if (!fpisneg(FT0) || iszero(FT0)) |
9a64fbe4 | 1375 | FT0 = FT1; |
4ecc3190 FB |
1376 | else |
1377 | FT0 = FT2; | |
9a64fbe4 FB |
1378 | } |
1379 | ||
1380 | void do_fcmpu (void) | |
1381 | { | |
7c58044c JM |
1382 | if (unlikely(float64_is_signaling_nan(FT0) || |
1383 | float64_is_signaling_nan(FT1))) { | |
1384 | /* sNaN comparison */ | |
1385 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1386 | } else { | |
fdabc366 FB |
1387 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1388 | T0 = 0x08UL; | |
1389 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1390 | T0 = 0x04UL; | |
1391 | } else { | |
1392 | T0 = 0x02UL; | |
1393 | } | |
9a64fbe4 | 1394 | } |
7c58044c JM |
1395 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1396 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1397 | } |
1398 | ||
1399 | void do_fcmpo (void) | |
1400 | { | |
7c58044c JM |
1401 | if (unlikely(float64_is_nan(FT0) || |
1402 | float64_is_nan(FT1))) { | |
1403 | if (float64_is_signaling_nan(FT0) || | |
1404 | float64_is_signaling_nan(FT1)) { | |
1405 | /* sNaN comparison */ | |
1406 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1407 | POWERPC_EXCP_FP_VXVC); | |
1408 | } else { | |
1409 | /* qNaN comparison */ | |
1410 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1411 | } | |
1412 | } else { | |
fdabc366 FB |
1413 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1414 | T0 = 0x08UL; | |
1415 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1416 | T0 = 0x04UL; | |
1417 | } else { | |
1418 | T0 = 0x02UL; | |
1419 | } | |
9a64fbe4 | 1420 | } |
7c58044c JM |
1421 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1422 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1423 | } |
1424 | ||
76a66253 | 1425 | #if !defined (CONFIG_USER_ONLY) |
6b80055d | 1426 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
0411a972 JM |
1427 | |
1428 | void do_store_msr (void) | |
1429 | { | |
1430 | T0 = hreg_store_msr(env, T0); | |
1431 | if (T0 != 0) { | |
1432 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1433 | do_raise_exception(T0); | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, | |
1438 | target_ulong msrm, int keep_msrh) | |
9a64fbe4 | 1439 | { |
426613db | 1440 | #if defined(TARGET_PPC64) |
0411a972 JM |
1441 | if (msr & (1ULL << MSR_SF)) { |
1442 | nip = (uint64_t)nip; | |
1443 | msr &= (uint64_t)msrm; | |
a42bd6cc | 1444 | } else { |
0411a972 JM |
1445 | nip = (uint32_t)nip; |
1446 | msr = (uint32_t)(msr & msrm); | |
1447 | if (keep_msrh) | |
1448 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
a42bd6cc | 1449 | } |
426613db | 1450 | #else |
0411a972 JM |
1451 | nip = (uint32_t)nip; |
1452 | msr &= (uint32_t)msrm; | |
426613db | 1453 | #endif |
0411a972 JM |
1454 | /* XXX: beware: this is false if VLE is supported */ |
1455 | env->nip = nip & ~((target_ulong)0x00000003); | |
1456 | hreg_store_msr(env, msr); | |
fdabc366 | 1457 | #if defined (DEBUG_OP) |
0411a972 | 1458 | cpu_dump_rfi(env->nip, env->msr); |
fdabc366 | 1459 | #endif |
0411a972 JM |
1460 | /* No need to raise an exception here, |
1461 | * as rfi is always the last insn of a TB | |
1462 | */ | |
fdabc366 | 1463 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
9a64fbe4 | 1464 | } |
d9bce9d9 | 1465 | |
0411a972 JM |
1466 | void do_rfi (void) |
1467 | { | |
1468 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1469 | ~((target_ulong)0xFFFF0000), 1); | |
1470 | } | |
1471 | ||
d9bce9d9 | 1472 | #if defined(TARGET_PPC64) |
426613db JM |
1473 | void do_rfid (void) |
1474 | { | |
0411a972 JM |
1475 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1476 | ~((target_ulong)0xFFFF0000), 0); | |
d9bce9d9 JM |
1477 | } |
1478 | #endif | |
be147d08 JM |
1479 | #if defined(TARGET_PPC64H) |
1480 | void do_hrfid (void) | |
1481 | { | |
0411a972 JM |
1482 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1483 | ~((target_ulong)0xFFFF0000), 0); | |
be147d08 JM |
1484 | } |
1485 | #endif | |
76a66253 | 1486 | #endif |
9a64fbe4 | 1487 | |
76a66253 | 1488 | void do_tw (int flags) |
9a64fbe4 | 1489 | { |
d9bce9d9 JM |
1490 | if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1491 | ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || | |
1492 | ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || | |
1493 | ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || | |
a42bd6cc | 1494 | ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
e1833e1f | 1495 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
a42bd6cc | 1496 | } |
9a64fbe4 FB |
1497 | } |
1498 | ||
d9bce9d9 JM |
1499 | #if defined(TARGET_PPC64) |
1500 | void do_td (int flags) | |
1501 | { | |
1502 | if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || | |
1503 | ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || | |
1504 | ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || | |
1505 | ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || | |
1506 | ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) | |
e1833e1f | 1507 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
d9bce9d9 JM |
1508 | } |
1509 | #endif | |
1510 | ||
fdabc366 | 1511 | /*****************************************************************************/ |
76a66253 JM |
1512 | /* PowerPC 601 specific instructions (POWER bridge) */ |
1513 | void do_POWER_abso (void) | |
9a64fbe4 | 1514 | { |
d9bce9d9 | 1515 | if ((uint32_t)T0 == INT32_MIN) { |
76a66253 JM |
1516 | T0 = INT32_MAX; |
1517 | xer_ov = 1; | |
1518 | xer_so = 1; | |
1519 | } else { | |
1520 | T0 = -T0; | |
1521 | xer_ov = 0; | |
1522 | } | |
9a64fbe4 FB |
1523 | } |
1524 | ||
76a66253 | 1525 | void do_POWER_clcs (void) |
9a64fbe4 | 1526 | { |
76a66253 JM |
1527 | switch (T0) { |
1528 | case 0x0CUL: | |
1529 | /* Instruction cache line size */ | |
d63001d1 | 1530 | T0 = env->icache_line_size; |
76a66253 JM |
1531 | break; |
1532 | case 0x0DUL: | |
1533 | /* Data cache line size */ | |
d63001d1 | 1534 | T0 = env->dcache_line_size; |
76a66253 JM |
1535 | break; |
1536 | case 0x0EUL: | |
1537 | /* Minimum cache line size */ | |
d63001d1 JM |
1538 | T0 = env->icache_line_size < env->dcache_line_size ? |
1539 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1540 | break; |
1541 | case 0x0FUL: | |
1542 | /* Maximum cache line size */ | |
d63001d1 JM |
1543 | T0 = env->icache_line_size > env->dcache_line_size ? |
1544 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1545 | break; |
1546 | default: | |
1547 | /* Undefined */ | |
1548 | break; | |
1549 | } | |
1550 | } | |
1551 | ||
1552 | void do_POWER_div (void) | |
1553 | { | |
1554 | uint64_t tmp; | |
1555 | ||
d9bce9d9 | 1556 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1557 | T0 = (long)((-1) * (T0 >> 31)); |
1558 | env->spr[SPR_MQ] = 0; | |
1559 | } else { | |
1560 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1561 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1562 | T0 = tmp / (int32_t)T1; |
76a66253 JM |
1563 | } |
1564 | } | |
1565 | ||
1566 | void do_POWER_divo (void) | |
1567 | { | |
1568 | int64_t tmp; | |
1569 | ||
d9bce9d9 | 1570 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1571 | T0 = (long)((-1) * (T0 >> 31)); |
1572 | env->spr[SPR_MQ] = 0; | |
1573 | xer_ov = 1; | |
1574 | xer_so = 1; | |
1575 | } else { | |
1576 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1577 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1578 | tmp /= (int32_t)T1; |
76a66253 JM |
1579 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
1580 | xer_ov = 1; | |
1581 | xer_so = 1; | |
1582 | } else { | |
1583 | xer_ov = 0; | |
1584 | } | |
1585 | T0 = tmp; | |
1586 | } | |
1587 | } | |
1588 | ||
1589 | void do_POWER_divs (void) | |
1590 | { | |
d9bce9d9 | 1591 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1592 | T0 = (long)((-1) * (T0 >> 31)); |
1593 | env->spr[SPR_MQ] = 0; | |
1594 | } else { | |
1595 | env->spr[SPR_MQ] = T0 % T1; | |
d9bce9d9 | 1596 | T0 = (int32_t)T0 / (int32_t)T1; |
76a66253 JM |
1597 | } |
1598 | } | |
1599 | ||
1600 | void do_POWER_divso (void) | |
1601 | { | |
d9bce9d9 | 1602 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1603 | T0 = (long)((-1) * (T0 >> 31)); |
1604 | env->spr[SPR_MQ] = 0; | |
1605 | xer_ov = 1; | |
1606 | xer_so = 1; | |
1607 | } else { | |
d9bce9d9 JM |
1608 | T0 = (int32_t)T0 / (int32_t)T1; |
1609 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
76a66253 JM |
1610 | xer_ov = 0; |
1611 | } | |
1612 | } | |
1613 | ||
1614 | void do_POWER_dozo (void) | |
1615 | { | |
d9bce9d9 | 1616 | if ((int32_t)T1 > (int32_t)T0) { |
76a66253 JM |
1617 | T2 = T0; |
1618 | T0 = T1 - T0; | |
d9bce9d9 JM |
1619 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
1620 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
76a66253 | 1621 | xer_ov = 1; |
966439a6 | 1622 | xer_so = 1; |
76a66253 JM |
1623 | } else { |
1624 | xer_ov = 0; | |
1625 | } | |
1626 | } else { | |
1627 | T0 = 0; | |
1628 | xer_ov = 0; | |
1629 | } | |
1630 | } | |
1631 | ||
1632 | void do_POWER_maskg (void) | |
1633 | { | |
1634 | uint32_t ret; | |
1635 | ||
d9bce9d9 | 1636 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
76a66253 JM |
1637 | ret = -1; |
1638 | } else { | |
d9bce9d9 JM |
1639 | ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^ |
1640 | (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1); | |
1641 | if ((uint32_t)T0 > (uint32_t)T1) | |
76a66253 JM |
1642 | ret = ~ret; |
1643 | } | |
1644 | T0 = ret; | |
1645 | } | |
1646 | ||
1647 | void do_POWER_mulo (void) | |
1648 | { | |
1649 | uint64_t tmp; | |
1650 | ||
1651 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1652 | env->spr[SPR_MQ] = tmp >> 32; | |
1653 | T0 = tmp; | |
1654 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1655 | xer_ov = 1; | |
1656 | xer_so = 1; | |
1657 | } else { | |
1658 | xer_ov = 0; | |
1659 | } | |
1660 | } | |
1661 | ||
1662 | #if !defined (CONFIG_USER_ONLY) | |
1663 | void do_POWER_rac (void) | |
1664 | { | |
76a66253 | 1665 | mmu_ctx_t ctx; |
faadf50e | 1666 | int nb_BATs; |
76a66253 JM |
1667 | |
1668 | /* We don't have to generate many instances of this instruction, | |
1669 | * as rac is supervisor only. | |
1670 | */ | |
faadf50e JM |
1671 | /* XXX: FIX THIS: Pretend we have no BAT */ |
1672 | nb_BATs = env->nb_BATs; | |
1673 | env->nb_BATs = 0; | |
1674 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
76a66253 | 1675 | T0 = ctx.raddr; |
faadf50e | 1676 | env->nb_BATs = nb_BATs; |
76a66253 JM |
1677 | } |
1678 | ||
1679 | void do_POWER_rfsvc (void) | |
1680 | { | |
0411a972 | 1681 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
76a66253 JM |
1682 | } |
1683 | ||
056401ea JM |
1684 | void do_store_hid0_601 (void) |
1685 | { | |
1686 | uint32_t hid0; | |
1687 | ||
1688 | hid0 = env->spr[SPR_HID0]; | |
1689 | if ((T0 ^ hid0) & 0x00000008) { | |
1690 | /* Change current endianness */ | |
1691 | env->hflags &= ~(1 << MSR_LE); | |
1692 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
1693 | env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); | |
1694 | env->hflags |= env->hflags_nmsr; | |
1695 | if (loglevel != 0) { | |
1696 | fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", | |
1697 | __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); | |
1698 | } | |
1699 | } | |
1700 | env->spr[SPR_HID0] = T0; | |
76a66253 JM |
1701 | } |
1702 | #endif | |
1703 | ||
1704 | /*****************************************************************************/ | |
1705 | /* 602 specific instructions */ | |
1706 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1707 | /* Real implementation uses a ROM table. Do the same */ | |
1708 | #define USE_MFROM_ROM_TABLE | |
1709 | void do_op_602_mfrom (void) | |
1710 | { | |
1711 | if (likely(T0 < 602)) { | |
d9bce9d9 | 1712 | #if defined(USE_MFROM_ROM_TABLE) |
76a66253 JM |
1713 | #include "mfrom_table.c" |
1714 | T0 = mfrom_ROM_table[T0]; | |
fdabc366 | 1715 | #else |
76a66253 JM |
1716 | double d; |
1717 | /* Extremly decomposed: | |
1718 | * -T0 / 256 | |
1719 | * T0 = 256 * log10(10 + 1.0) + 0.5 | |
1720 | */ | |
1721 | d = T0; | |
1722 | d = float64_div(d, 256, &env->fp_status); | |
1723 | d = float64_chs(d); | |
1724 | d = exp10(d); // XXX: use float emulation function | |
1725 | d = float64_add(d, 1.0, &env->fp_status); | |
1726 | d = log10(d); // XXX: use float emulation function | |
1727 | d = float64_mul(d, 256, &env->fp_status); | |
1728 | d = float64_add(d, 0.5, &env->fp_status); | |
1729 | T0 = float64_round_to_int(d, &env->fp_status); | |
fdabc366 | 1730 | #endif |
76a66253 JM |
1731 | } else { |
1732 | T0 = 0; | |
1733 | } | |
1734 | } | |
1735 | ||
1736 | /*****************************************************************************/ | |
1737 | /* Embedded PowerPC specific helpers */ | |
76a66253 JM |
1738 | void do_405_check_sat (void) |
1739 | { | |
d9bce9d9 JM |
1740 | if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1741 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1742 | /* Saturate result */ |
1743 | if (T2 >> 31) { | |
1744 | T0 = INT32_MIN; | |
1745 | } else { | |
1746 | T0 = INT32_MAX; | |
1747 | } | |
1748 | } | |
1749 | } | |
1750 | ||
a750fc0b JM |
1751 | /* XXX: to be improved to check access rights when in user-mode */ |
1752 | void do_load_dcr (void) | |
1753 | { | |
1754 | target_ulong val; | |
1755 | ||
1756 | if (unlikely(env->dcr_env == NULL)) { | |
1757 | if (loglevel != 0) { | |
1758 | fprintf(logfile, "No DCR environment\n"); | |
1759 | } | |
e1833e1f JM |
1760 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1761 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1762 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1763 | if (loglevel != 0) { | |
1764 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1765 | } | |
e1833e1f JM |
1766 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1767 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1768 | } else { |
1769 | T0 = val; | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | void do_store_dcr (void) | |
1774 | { | |
1775 | if (unlikely(env->dcr_env == NULL)) { | |
1776 | if (loglevel != 0) { | |
1777 | fprintf(logfile, "No DCR environment\n"); | |
1778 | } | |
e1833e1f JM |
1779 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1780 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1781 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1782 | if (loglevel != 0) { | |
1783 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1784 | } | |
e1833e1f JM |
1785 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1786 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1787 | } |
1788 | } | |
1789 | ||
76a66253 | 1790 | #if !defined(CONFIG_USER_ONLY) |
a42bd6cc | 1791 | void do_40x_rfci (void) |
76a66253 | 1792 | { |
0411a972 JM |
1793 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1794 | ~((target_ulong)0xFFFF0000), 0); | |
a42bd6cc JM |
1795 | } |
1796 | ||
1797 | void do_rfci (void) | |
1798 | { | |
0411a972 JM |
1799 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1800 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1801 | } |
1802 | ||
1803 | void do_rfdi (void) | |
1804 | { | |
0411a972 JM |
1805 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1806 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1807 | } |
1808 | ||
1809 | void do_rfmci (void) | |
1810 | { | |
0411a972 JM |
1811 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1812 | ~((target_ulong)0x3FFF0000), 0); | |
76a66253 JM |
1813 | } |
1814 | ||
76a66253 JM |
1815 | void do_load_403_pb (int num) |
1816 | { | |
1817 | T0 = env->pb[num]; | |
1818 | } | |
1819 | ||
1820 | void do_store_403_pb (int num) | |
1821 | { | |
1822 | if (likely(env->pb[num] != T0)) { | |
1823 | env->pb[num] = T0; | |
1824 | /* Should be optimized */ | |
1825 | tlb_flush(env, 1); | |
1826 | } | |
1827 | } | |
1828 | #endif | |
1829 | ||
1830 | /* 440 specific */ | |
1831 | void do_440_dlmzb (void) | |
1832 | { | |
1833 | target_ulong mask; | |
1834 | int i; | |
1835 | ||
1836 | i = 1; | |
1837 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1838 | if ((T0 & mask) == 0) | |
1839 | goto done; | |
1840 | i++; | |
1841 | } | |
1842 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1843 | if ((T1 & mask) == 0) | |
1844 | break; | |
1845 | i++; | |
1846 | } | |
1847 | done: | |
1848 | T0 = i; | |
fdabc366 FB |
1849 | } |
1850 | ||
35cdaad6 | 1851 | #if defined(TARGET_PPCEMB) |
0487d6a8 JM |
1852 | /* SPE extension helpers */ |
1853 | /* Use a table to make this quicker */ | |
1854 | static uint8_t hbrev[16] = { | |
1855 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1856 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1857 | }; | |
1858 | ||
b068d6a7 | 1859 | static always_inline uint8_t byte_reverse (uint8_t val) |
0487d6a8 JM |
1860 | { |
1861 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1862 | } | |
1863 | ||
b068d6a7 | 1864 | static always_inline uint32_t word_reverse (uint32_t val) |
0487d6a8 JM |
1865 | { |
1866 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1867 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1868 | } | |
1869 | ||
1870 | #define MASKBITS 16 // Random value - to be fixed | |
1871 | void do_brinc (void) | |
1872 | { | |
1873 | uint32_t a, b, d, mask; | |
1874 | ||
1875 | mask = (uint32_t)(-1UL) >> MASKBITS; | |
1876 | b = T1_64 & mask; | |
1877 | a = T0_64 & mask; | |
1878 | d = word_reverse(1 + word_reverse(a | ~mask)); | |
1879 | T0_64 = (T0_64 & ~mask) | (d & mask); | |
1880 | } | |
1881 | ||
1882 | #define DO_SPE_OP2(name) \ | |
1883 | void do_ev##name (void) \ | |
1884 | { \ | |
1885 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ | |
1886 | (uint64_t)_do_e##name(T0_64, T1_64); \ | |
1887 | } | |
1888 | ||
1889 | #define DO_SPE_OP1(name) \ | |
1890 | void do_ev##name (void) \ | |
1891 | { \ | |
1892 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ | |
1893 | (uint64_t)_do_e##name(T0_64); \ | |
1894 | } | |
1895 | ||
1896 | /* Fixed-point vector arithmetic */ | |
b068d6a7 | 1897 | static always_inline uint32_t _do_eabs (uint32_t val) |
0487d6a8 JM |
1898 | { |
1899 | if (val != 0x80000000) | |
1900 | val &= ~0x80000000; | |
1901 | ||
1902 | return val; | |
1903 | } | |
1904 | ||
b068d6a7 | 1905 | static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1906 | { |
1907 | return op1 + op2; | |
1908 | } | |
1909 | ||
b068d6a7 | 1910 | static always_inline int _do_ecntlsw (uint32_t val) |
0487d6a8 JM |
1911 | { |
1912 | if (val & 0x80000000) | |
603fccce | 1913 | return clz32(~val); |
0487d6a8 | 1914 | else |
603fccce | 1915 | return clz32(val); |
0487d6a8 JM |
1916 | } |
1917 | ||
b068d6a7 | 1918 | static always_inline int _do_ecntlzw (uint32_t val) |
0487d6a8 | 1919 | { |
603fccce | 1920 | return clz32(val); |
0487d6a8 JM |
1921 | } |
1922 | ||
b068d6a7 | 1923 | static always_inline uint32_t _do_eneg (uint32_t val) |
0487d6a8 JM |
1924 | { |
1925 | if (val != 0x80000000) | |
1926 | val ^= 0x80000000; | |
1927 | ||
1928 | return val; | |
1929 | } | |
1930 | ||
b068d6a7 | 1931 | static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1932 | { |
1933 | return rotl32(op1, op2); | |
1934 | } | |
1935 | ||
b068d6a7 | 1936 | static always_inline uint32_t _do_erndw (uint32_t val) |
0487d6a8 JM |
1937 | { |
1938 | return (val + 0x000080000000) & 0xFFFF0000; | |
1939 | } | |
1940 | ||
b068d6a7 | 1941 | static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1942 | { |
1943 | /* No error here: 6 bits are used */ | |
1944 | return op1 << (op2 & 0x3F); | |
1945 | } | |
1946 | ||
b068d6a7 | 1947 | static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
0487d6a8 JM |
1948 | { |
1949 | /* No error here: 6 bits are used */ | |
1950 | return op1 >> (op2 & 0x3F); | |
1951 | } | |
1952 | ||
b068d6a7 | 1953 | static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1954 | { |
1955 | /* No error here: 6 bits are used */ | |
1956 | return op1 >> (op2 & 0x3F); | |
1957 | } | |
1958 | ||
b068d6a7 | 1959 | static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1960 | { |
1961 | return op2 - op1; | |
1962 | } | |
1963 | ||
1964 | /* evabs */ | |
1965 | DO_SPE_OP1(abs); | |
1966 | /* evaddw */ | |
1967 | DO_SPE_OP2(addw); | |
1968 | /* evcntlsw */ | |
1969 | DO_SPE_OP1(cntlsw); | |
1970 | /* evcntlzw */ | |
1971 | DO_SPE_OP1(cntlzw); | |
1972 | /* evneg */ | |
1973 | DO_SPE_OP1(neg); | |
1974 | /* evrlw */ | |
1975 | DO_SPE_OP2(rlw); | |
1976 | /* evrnd */ | |
1977 | DO_SPE_OP1(rndw); | |
1978 | /* evslw */ | |
1979 | DO_SPE_OP2(slw); | |
1980 | /* evsrws */ | |
1981 | DO_SPE_OP2(srws); | |
1982 | /* evsrwu */ | |
1983 | DO_SPE_OP2(srwu); | |
1984 | /* evsubfw */ | |
1985 | DO_SPE_OP2(subfw); | |
1986 | ||
1987 | /* evsel is a little bit more complicated... */ | |
b068d6a7 | 1988 | static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
0487d6a8 JM |
1989 | { |
1990 | if (n) | |
1991 | return op1; | |
1992 | else | |
1993 | return op2; | |
1994 | } | |
1995 | ||
1996 | void do_evsel (void) | |
1997 | { | |
1998 | T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | | |
1999 | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); | |
2000 | } | |
2001 | ||
2002 | /* Fixed-point vector comparisons */ | |
2003 | #define DO_SPE_CMP(name) \ | |
2004 | void do_ev##name (void) \ | |
2005 | { \ | |
2006 | T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ | |
2007 | T1_64 >> 32) << 32, \ | |
2008 | _do_e##name(T0_64, T1_64)); \ | |
2009 | } | |
2010 | ||
b068d6a7 | 2011 | static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
0487d6a8 JM |
2012 | { |
2013 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
2014 | } | |
b068d6a7 | 2015 | static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2016 | { |
2017 | return op1 == op2 ? 1 : 0; | |
2018 | } | |
2019 | ||
b068d6a7 | 2020 | static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2021 | { |
2022 | return op1 > op2 ? 1 : 0; | |
2023 | } | |
2024 | ||
b068d6a7 | 2025 | static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2026 | { |
2027 | return op1 > op2 ? 1 : 0; | |
2028 | } | |
2029 | ||
b068d6a7 | 2030 | static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2031 | { |
2032 | return op1 < op2 ? 1 : 0; | |
2033 | } | |
2034 | ||
b068d6a7 | 2035 | static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2036 | { |
2037 | return op1 < op2 ? 1 : 0; | |
2038 | } | |
2039 | ||
2040 | /* evcmpeq */ | |
2041 | DO_SPE_CMP(cmpeq); | |
2042 | /* evcmpgts */ | |
2043 | DO_SPE_CMP(cmpgts); | |
2044 | /* evcmpgtu */ | |
2045 | DO_SPE_CMP(cmpgtu); | |
2046 | /* evcmplts */ | |
2047 | DO_SPE_CMP(cmplts); | |
2048 | /* evcmpltu */ | |
2049 | DO_SPE_CMP(cmpltu); | |
2050 | ||
2051 | /* Single precision floating-point conversions from/to integer */ | |
b068d6a7 | 2052 | static always_inline uint32_t _do_efscfsi (int32_t val) |
0487d6a8 JM |
2053 | { |
2054 | union { | |
2055 | uint32_t u; | |
2056 | float32 f; | |
2057 | } u; | |
2058 | ||
2059 | u.f = int32_to_float32(val, &env->spe_status); | |
2060 | ||
2061 | return u.u; | |
2062 | } | |
2063 | ||
b068d6a7 | 2064 | static always_inline uint32_t _do_efscfui (uint32_t val) |
0487d6a8 JM |
2065 | { |
2066 | union { | |
2067 | uint32_t u; | |
2068 | float32 f; | |
2069 | } u; | |
2070 | ||
2071 | u.f = uint32_to_float32(val, &env->spe_status); | |
2072 | ||
2073 | return u.u; | |
2074 | } | |
2075 | ||
b068d6a7 | 2076 | static always_inline int32_t _do_efsctsi (uint32_t val) |
0487d6a8 JM |
2077 | { |
2078 | union { | |
2079 | int32_t u; | |
2080 | float32 f; | |
2081 | } u; | |
2082 | ||
2083 | u.u = val; | |
2084 | /* NaN are not treated the same way IEEE 754 does */ | |
2085 | if (unlikely(isnan(u.f))) | |
2086 | return 0; | |
2087 | ||
2088 | return float32_to_int32(u.f, &env->spe_status); | |
2089 | } | |
2090 | ||
b068d6a7 | 2091 | static always_inline uint32_t _do_efsctui (uint32_t val) |
0487d6a8 JM |
2092 | { |
2093 | union { | |
2094 | int32_t u; | |
2095 | float32 f; | |
2096 | } u; | |
2097 | ||
2098 | u.u = val; | |
2099 | /* NaN are not treated the same way IEEE 754 does */ | |
2100 | if (unlikely(isnan(u.f))) | |
2101 | return 0; | |
2102 | ||
2103 | return float32_to_uint32(u.f, &env->spe_status); | |
2104 | } | |
2105 | ||
b068d6a7 | 2106 | static always_inline int32_t _do_efsctsiz (uint32_t val) |
0487d6a8 JM |
2107 | { |
2108 | union { | |
2109 | int32_t u; | |
2110 | float32 f; | |
2111 | } u; | |
2112 | ||
2113 | u.u = val; | |
2114 | /* NaN are not treated the same way IEEE 754 does */ | |
2115 | if (unlikely(isnan(u.f))) | |
2116 | return 0; | |
2117 | ||
2118 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2119 | } | |
2120 | ||
b068d6a7 | 2121 | static always_inline uint32_t _do_efsctuiz (uint32_t val) |
0487d6a8 JM |
2122 | { |
2123 | union { | |
2124 | int32_t u; | |
2125 | float32 f; | |
2126 | } u; | |
2127 | ||
2128 | u.u = val; | |
2129 | /* NaN are not treated the same way IEEE 754 does */ | |
2130 | if (unlikely(isnan(u.f))) | |
2131 | return 0; | |
2132 | ||
2133 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2134 | } | |
2135 | ||
2136 | void do_efscfsi (void) | |
2137 | { | |
2138 | T0_64 = _do_efscfsi(T0_64); | |
2139 | } | |
2140 | ||
2141 | void do_efscfui (void) | |
2142 | { | |
2143 | T0_64 = _do_efscfui(T0_64); | |
2144 | } | |
2145 | ||
2146 | void do_efsctsi (void) | |
2147 | { | |
2148 | T0_64 = _do_efsctsi(T0_64); | |
2149 | } | |
2150 | ||
2151 | void do_efsctui (void) | |
2152 | { | |
2153 | T0_64 = _do_efsctui(T0_64); | |
2154 | } | |
2155 | ||
2156 | void do_efsctsiz (void) | |
2157 | { | |
2158 | T0_64 = _do_efsctsiz(T0_64); | |
2159 | } | |
2160 | ||
2161 | void do_efsctuiz (void) | |
2162 | { | |
2163 | T0_64 = _do_efsctuiz(T0_64); | |
2164 | } | |
2165 | ||
2166 | /* Single precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2167 | static always_inline uint32_t _do_efscfsf (uint32_t val) |
0487d6a8 JM |
2168 | { |
2169 | union { | |
2170 | uint32_t u; | |
2171 | float32 f; | |
2172 | } u; | |
2173 | float32 tmp; | |
2174 | ||
2175 | u.f = int32_to_float32(val, &env->spe_status); | |
2176 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
2177 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2178 | ||
2179 | return u.u; | |
2180 | } | |
2181 | ||
b068d6a7 | 2182 | static always_inline uint32_t _do_efscfuf (uint32_t val) |
0487d6a8 JM |
2183 | { |
2184 | union { | |
2185 | uint32_t u; | |
2186 | float32 f; | |
2187 | } u; | |
2188 | float32 tmp; | |
2189 | ||
2190 | u.f = uint32_to_float32(val, &env->spe_status); | |
2191 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2192 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2193 | ||
2194 | return u.u; | |
2195 | } | |
2196 | ||
b068d6a7 | 2197 | static always_inline int32_t _do_efsctsf (uint32_t val) |
0487d6a8 JM |
2198 | { |
2199 | union { | |
2200 | int32_t u; | |
2201 | float32 f; | |
2202 | } u; | |
2203 | float32 tmp; | |
2204 | ||
2205 | u.u = val; | |
2206 | /* NaN are not treated the same way IEEE 754 does */ | |
2207 | if (unlikely(isnan(u.f))) | |
2208 | return 0; | |
2209 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2210 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2211 | ||
2212 | return float32_to_int32(u.f, &env->spe_status); | |
2213 | } | |
2214 | ||
b068d6a7 | 2215 | static always_inline uint32_t _do_efsctuf (uint32_t val) |
0487d6a8 JM |
2216 | { |
2217 | union { | |
2218 | int32_t u; | |
2219 | float32 f; | |
2220 | } u; | |
2221 | float32 tmp; | |
2222 | ||
2223 | u.u = val; | |
2224 | /* NaN are not treated the same way IEEE 754 does */ | |
2225 | if (unlikely(isnan(u.f))) | |
2226 | return 0; | |
2227 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2228 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2229 | ||
2230 | return float32_to_uint32(u.f, &env->spe_status); | |
2231 | } | |
2232 | ||
b068d6a7 | 2233 | static always_inline int32_t _do_efsctsfz (uint32_t val) |
0487d6a8 JM |
2234 | { |
2235 | union { | |
2236 | int32_t u; | |
2237 | float32 f; | |
2238 | } u; | |
2239 | float32 tmp; | |
2240 | ||
2241 | u.u = val; | |
2242 | /* NaN are not treated the same way IEEE 754 does */ | |
2243 | if (unlikely(isnan(u.f))) | |
2244 | return 0; | |
2245 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2246 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2247 | ||
2248 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2249 | } | |
2250 | ||
b068d6a7 | 2251 | static always_inline uint32_t _do_efsctufz (uint32_t val) |
0487d6a8 JM |
2252 | { |
2253 | union { | |
2254 | int32_t u; | |
2255 | float32 f; | |
2256 | } u; | |
2257 | float32 tmp; | |
2258 | ||
2259 | u.u = val; | |
2260 | /* NaN are not treated the same way IEEE 754 does */ | |
2261 | if (unlikely(isnan(u.f))) | |
2262 | return 0; | |
2263 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2264 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2265 | ||
2266 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2267 | } | |
2268 | ||
2269 | void do_efscfsf (void) | |
2270 | { | |
2271 | T0_64 = _do_efscfsf(T0_64); | |
2272 | } | |
2273 | ||
2274 | void do_efscfuf (void) | |
2275 | { | |
2276 | T0_64 = _do_efscfuf(T0_64); | |
2277 | } | |
2278 | ||
2279 | void do_efsctsf (void) | |
2280 | { | |
2281 | T0_64 = _do_efsctsf(T0_64); | |
2282 | } | |
2283 | ||
2284 | void do_efsctuf (void) | |
2285 | { | |
2286 | T0_64 = _do_efsctuf(T0_64); | |
2287 | } | |
2288 | ||
2289 | void do_efsctsfz (void) | |
2290 | { | |
2291 | T0_64 = _do_efsctsfz(T0_64); | |
2292 | } | |
2293 | ||
2294 | void do_efsctufz (void) | |
2295 | { | |
2296 | T0_64 = _do_efsctufz(T0_64); | |
2297 | } | |
2298 | ||
2299 | /* Double precision floating point helpers */ | |
b068d6a7 | 2300 | static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2301 | { |
2302 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2303 | return _do_efdtstlt(op1, op2); | |
2304 | } | |
2305 | ||
b068d6a7 | 2306 | static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2307 | { |
2308 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2309 | return _do_efdtstgt(op1, op2); | |
2310 | } | |
2311 | ||
b068d6a7 | 2312 | static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2313 | { |
2314 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2315 | return _do_efdtsteq(op1, op2); | |
2316 | } | |
2317 | ||
2318 | void do_efdcmplt (void) | |
2319 | { | |
2320 | T0 = _do_efdcmplt(T0_64, T1_64); | |
2321 | } | |
2322 | ||
2323 | void do_efdcmpgt (void) | |
2324 | { | |
2325 | T0 = _do_efdcmpgt(T0_64, T1_64); | |
2326 | } | |
2327 | ||
2328 | void do_efdcmpeq (void) | |
2329 | { | |
2330 | T0 = _do_efdcmpeq(T0_64, T1_64); | |
2331 | } | |
2332 | ||
2333 | /* Double precision floating-point conversion to/from integer */ | |
b068d6a7 | 2334 | static always_inline uint64_t _do_efdcfsi (int64_t val) |
0487d6a8 JM |
2335 | { |
2336 | union { | |
2337 | uint64_t u; | |
2338 | float64 f; | |
2339 | } u; | |
2340 | ||
2341 | u.f = int64_to_float64(val, &env->spe_status); | |
2342 | ||
2343 | return u.u; | |
2344 | } | |
2345 | ||
b068d6a7 | 2346 | static always_inline uint64_t _do_efdcfui (uint64_t val) |
0487d6a8 JM |
2347 | { |
2348 | union { | |
2349 | uint64_t u; | |
2350 | float64 f; | |
2351 | } u; | |
2352 | ||
2353 | u.f = uint64_to_float64(val, &env->spe_status); | |
2354 | ||
2355 | return u.u; | |
2356 | } | |
2357 | ||
b068d6a7 | 2358 | static always_inline int64_t _do_efdctsi (uint64_t val) |
0487d6a8 JM |
2359 | { |
2360 | union { | |
2361 | int64_t u; | |
2362 | float64 f; | |
2363 | } u; | |
2364 | ||
2365 | u.u = val; | |
2366 | /* NaN are not treated the same way IEEE 754 does */ | |
2367 | if (unlikely(isnan(u.f))) | |
2368 | return 0; | |
2369 | ||
2370 | return float64_to_int64(u.f, &env->spe_status); | |
2371 | } | |
2372 | ||
b068d6a7 | 2373 | static always_inline uint64_t _do_efdctui (uint64_t val) |
0487d6a8 JM |
2374 | { |
2375 | union { | |
2376 | int64_t u; | |
2377 | float64 f; | |
2378 | } u; | |
2379 | ||
2380 | u.u = val; | |
2381 | /* NaN are not treated the same way IEEE 754 does */ | |
2382 | if (unlikely(isnan(u.f))) | |
2383 | return 0; | |
2384 | ||
2385 | return float64_to_uint64(u.f, &env->spe_status); | |
2386 | } | |
2387 | ||
b068d6a7 | 2388 | static always_inline int64_t _do_efdctsiz (uint64_t val) |
0487d6a8 JM |
2389 | { |
2390 | union { | |
2391 | int64_t u; | |
2392 | float64 f; | |
2393 | } u; | |
2394 | ||
2395 | u.u = val; | |
2396 | /* NaN are not treated the same way IEEE 754 does */ | |
2397 | if (unlikely(isnan(u.f))) | |
2398 | return 0; | |
2399 | ||
2400 | return float64_to_int64_round_to_zero(u.f, &env->spe_status); | |
2401 | } | |
2402 | ||
b068d6a7 | 2403 | static always_inline uint64_t _do_efdctuiz (uint64_t val) |
0487d6a8 JM |
2404 | { |
2405 | union { | |
2406 | int64_t u; | |
2407 | float64 f; | |
2408 | } u; | |
2409 | ||
2410 | u.u = val; | |
2411 | /* NaN are not treated the same way IEEE 754 does */ | |
2412 | if (unlikely(isnan(u.f))) | |
2413 | return 0; | |
2414 | ||
2415 | return float64_to_uint64_round_to_zero(u.f, &env->spe_status); | |
2416 | } | |
2417 | ||
2418 | void do_efdcfsi (void) | |
2419 | { | |
2420 | T0_64 = _do_efdcfsi(T0_64); | |
2421 | } | |
2422 | ||
2423 | void do_efdcfui (void) | |
2424 | { | |
2425 | T0_64 = _do_efdcfui(T0_64); | |
2426 | } | |
2427 | ||
2428 | void do_efdctsi (void) | |
2429 | { | |
2430 | T0_64 = _do_efdctsi(T0_64); | |
2431 | } | |
2432 | ||
2433 | void do_efdctui (void) | |
2434 | { | |
2435 | T0_64 = _do_efdctui(T0_64); | |
2436 | } | |
2437 | ||
2438 | void do_efdctsiz (void) | |
2439 | { | |
2440 | T0_64 = _do_efdctsiz(T0_64); | |
2441 | } | |
2442 | ||
2443 | void do_efdctuiz (void) | |
2444 | { | |
2445 | T0_64 = _do_efdctuiz(T0_64); | |
2446 | } | |
2447 | ||
2448 | /* Double precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2449 | static always_inline uint64_t _do_efdcfsf (int64_t val) |
0487d6a8 JM |
2450 | { |
2451 | union { | |
2452 | uint64_t u; | |
2453 | float64 f; | |
2454 | } u; | |
2455 | float64 tmp; | |
2456 | ||
2457 | u.f = int32_to_float64(val, &env->spe_status); | |
2458 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2459 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2460 | ||
2461 | return u.u; | |
2462 | } | |
2463 | ||
b068d6a7 | 2464 | static always_inline uint64_t _do_efdcfuf (uint64_t val) |
0487d6a8 JM |
2465 | { |
2466 | union { | |
2467 | uint64_t u; | |
2468 | float64 f; | |
2469 | } u; | |
2470 | float64 tmp; | |
2471 | ||
2472 | u.f = uint32_to_float64(val, &env->spe_status); | |
2473 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2474 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2475 | ||
2476 | return u.u; | |
2477 | } | |
2478 | ||
b068d6a7 | 2479 | static always_inline int64_t _do_efdctsf (uint64_t val) |
0487d6a8 JM |
2480 | { |
2481 | union { | |
2482 | int64_t u; | |
2483 | float64 f; | |
2484 | } u; | |
2485 | float64 tmp; | |
2486 | ||
2487 | u.u = val; | |
2488 | /* NaN are not treated the same way IEEE 754 does */ | |
2489 | if (unlikely(isnan(u.f))) | |
2490 | return 0; | |
2491 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2492 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2493 | ||
2494 | return float64_to_int32(u.f, &env->spe_status); | |
2495 | } | |
2496 | ||
b068d6a7 | 2497 | static always_inline uint64_t _do_efdctuf (uint64_t val) |
0487d6a8 JM |
2498 | { |
2499 | union { | |
2500 | int64_t u; | |
2501 | float64 f; | |
2502 | } u; | |
2503 | float64 tmp; | |
2504 | ||
2505 | u.u = val; | |
2506 | /* NaN are not treated the same way IEEE 754 does */ | |
2507 | if (unlikely(isnan(u.f))) | |
2508 | return 0; | |
2509 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2510 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2511 | ||
2512 | return float64_to_uint32(u.f, &env->spe_status); | |
2513 | } | |
2514 | ||
b068d6a7 | 2515 | static always_inline int64_t _do_efdctsfz (uint64_t val) |
0487d6a8 JM |
2516 | { |
2517 | union { | |
2518 | int64_t u; | |
2519 | float64 f; | |
2520 | } u; | |
2521 | float64 tmp; | |
2522 | ||
2523 | u.u = val; | |
2524 | /* NaN are not treated the same way IEEE 754 does */ | |
2525 | if (unlikely(isnan(u.f))) | |
2526 | return 0; | |
2527 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2528 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2529 | ||
2530 | return float64_to_int32_round_to_zero(u.f, &env->spe_status); | |
2531 | } | |
2532 | ||
b068d6a7 | 2533 | static always_inline uint64_t _do_efdctufz (uint64_t val) |
0487d6a8 JM |
2534 | { |
2535 | union { | |
2536 | int64_t u; | |
2537 | float64 f; | |
2538 | } u; | |
2539 | float64 tmp; | |
2540 | ||
2541 | u.u = val; | |
2542 | /* NaN are not treated the same way IEEE 754 does */ | |
2543 | if (unlikely(isnan(u.f))) | |
2544 | return 0; | |
2545 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2546 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2547 | ||
2548 | return float64_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2549 | } | |
2550 | ||
2551 | void do_efdcfsf (void) | |
2552 | { | |
2553 | T0_64 = _do_efdcfsf(T0_64); | |
2554 | } | |
2555 | ||
2556 | void do_efdcfuf (void) | |
2557 | { | |
2558 | T0_64 = _do_efdcfuf(T0_64); | |
2559 | } | |
2560 | ||
2561 | void do_efdctsf (void) | |
2562 | { | |
2563 | T0_64 = _do_efdctsf(T0_64); | |
2564 | } | |
2565 | ||
2566 | void do_efdctuf (void) | |
2567 | { | |
2568 | T0_64 = _do_efdctuf(T0_64); | |
2569 | } | |
2570 | ||
2571 | void do_efdctsfz (void) | |
2572 | { | |
2573 | T0_64 = _do_efdctsfz(T0_64); | |
2574 | } | |
2575 | ||
2576 | void do_efdctufz (void) | |
2577 | { | |
2578 | T0_64 = _do_efdctufz(T0_64); | |
2579 | } | |
2580 | ||
2581 | /* Floating point conversion between single and double precision */ | |
b068d6a7 | 2582 | static always_inline uint32_t _do_efscfd (uint64_t val) |
0487d6a8 JM |
2583 | { |
2584 | union { | |
2585 | uint64_t u; | |
2586 | float64 f; | |
2587 | } u1; | |
2588 | union { | |
2589 | uint32_t u; | |
2590 | float32 f; | |
2591 | } u2; | |
2592 | ||
2593 | u1.u = val; | |
2594 | u2.f = float64_to_float32(u1.f, &env->spe_status); | |
2595 | ||
2596 | return u2.u; | |
2597 | } | |
2598 | ||
b068d6a7 | 2599 | static always_inline uint64_t _do_efdcfs (uint32_t val) |
0487d6a8 JM |
2600 | { |
2601 | union { | |
2602 | uint64_t u; | |
2603 | float64 f; | |
2604 | } u2; | |
2605 | union { | |
2606 | uint32_t u; | |
2607 | float32 f; | |
2608 | } u1; | |
2609 | ||
2610 | u1.u = val; | |
2611 | u2.f = float32_to_float64(u1.f, &env->spe_status); | |
2612 | ||
2613 | return u2.u; | |
2614 | } | |
2615 | ||
2616 | void do_efscfd (void) | |
2617 | { | |
2618 | T0_64 = _do_efscfd(T0_64); | |
2619 | } | |
2620 | ||
2621 | void do_efdcfs (void) | |
2622 | { | |
2623 | T0_64 = _do_efdcfs(T0_64); | |
2624 | } | |
2625 | ||
2626 | /* Single precision fixed-point vector arithmetic */ | |
2627 | /* evfsabs */ | |
2628 | DO_SPE_OP1(fsabs); | |
2629 | /* evfsnabs */ | |
2630 | DO_SPE_OP1(fsnabs); | |
2631 | /* evfsneg */ | |
2632 | DO_SPE_OP1(fsneg); | |
2633 | /* evfsadd */ | |
2634 | DO_SPE_OP2(fsadd); | |
2635 | /* evfssub */ | |
2636 | DO_SPE_OP2(fssub); | |
2637 | /* evfsmul */ | |
2638 | DO_SPE_OP2(fsmul); | |
2639 | /* evfsdiv */ | |
2640 | DO_SPE_OP2(fsdiv); | |
2641 | ||
2642 | /* Single-precision floating-point comparisons */ | |
b068d6a7 | 2643 | static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2644 | { |
2645 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2646 | return _do_efststlt(op1, op2); | |
2647 | } | |
2648 | ||
b068d6a7 | 2649 | static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2650 | { |
2651 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2652 | return _do_efststgt(op1, op2); | |
2653 | } | |
2654 | ||
b068d6a7 | 2655 | static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2656 | { |
2657 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2658 | return _do_efststeq(op1, op2); | |
2659 | } | |
2660 | ||
2661 | void do_efscmplt (void) | |
2662 | { | |
2663 | T0 = _do_efscmplt(T0_64, T1_64); | |
2664 | } | |
2665 | ||
2666 | void do_efscmpgt (void) | |
2667 | { | |
2668 | T0 = _do_efscmpgt(T0_64, T1_64); | |
2669 | } | |
2670 | ||
2671 | void do_efscmpeq (void) | |
2672 | { | |
2673 | T0 = _do_efscmpeq(T0_64, T1_64); | |
2674 | } | |
2675 | ||
2676 | /* Single-precision floating-point vector comparisons */ | |
2677 | /* evfscmplt */ | |
2678 | DO_SPE_CMP(fscmplt); | |
2679 | /* evfscmpgt */ | |
2680 | DO_SPE_CMP(fscmpgt); | |
2681 | /* evfscmpeq */ | |
2682 | DO_SPE_CMP(fscmpeq); | |
2683 | /* evfststlt */ | |
2684 | DO_SPE_CMP(fststlt); | |
2685 | /* evfststgt */ | |
2686 | DO_SPE_CMP(fststgt); | |
2687 | /* evfststeq */ | |
2688 | DO_SPE_CMP(fststeq); | |
2689 | ||
2690 | /* Single-precision floating-point vector conversions */ | |
2691 | /* evfscfsi */ | |
2692 | DO_SPE_OP1(fscfsi); | |
2693 | /* evfscfui */ | |
2694 | DO_SPE_OP1(fscfui); | |
2695 | /* evfscfuf */ | |
2696 | DO_SPE_OP1(fscfuf); | |
2697 | /* evfscfsf */ | |
2698 | DO_SPE_OP1(fscfsf); | |
2699 | /* evfsctsi */ | |
2700 | DO_SPE_OP1(fsctsi); | |
2701 | /* evfsctui */ | |
2702 | DO_SPE_OP1(fsctui); | |
2703 | /* evfsctsiz */ | |
2704 | DO_SPE_OP1(fsctsiz); | |
2705 | /* evfsctuiz */ | |
2706 | DO_SPE_OP1(fsctuiz); | |
2707 | /* evfsctsf */ | |
2708 | DO_SPE_OP1(fsctsf); | |
2709 | /* evfsctuf */ | |
2710 | DO_SPE_OP1(fsctuf); | |
35cdaad6 | 2711 | #endif /* defined(TARGET_PPCEMB) */ |
0487d6a8 | 2712 | |
fdabc366 FB |
2713 | /*****************************************************************************/ |
2714 | /* Softmmu support */ | |
2715 | #if !defined (CONFIG_USER_ONLY) | |
2716 | ||
2717 | #define MMUSUFFIX _mmu | |
273af660 TS |
2718 | #ifdef __s390__ |
2719 | # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) | |
2720 | #else | |
2721 | # define GETPC() (__builtin_return_address(0)) | |
2722 | #endif | |
fdabc366 FB |
2723 | |
2724 | #define SHIFT 0 | |
2725 | #include "softmmu_template.h" | |
2726 | ||
2727 | #define SHIFT 1 | |
2728 | #include "softmmu_template.h" | |
2729 | ||
2730 | #define SHIFT 2 | |
2731 | #include "softmmu_template.h" | |
2732 | ||
2733 | #define SHIFT 3 | |
2734 | #include "softmmu_template.h" | |
2735 | ||
2736 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2737 | NULL, it means that the function was called in C code (i.e. not | |
2738 | from generated code or from helper.c) */ | |
2739 | /* XXX: fix it to restore all registers */ | |
6ebbf390 | 2740 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
fdabc366 FB |
2741 | { |
2742 | TranslationBlock *tb; | |
2743 | CPUState *saved_env; | |
2744 | target_phys_addr_t pc; | |
2745 | int ret; | |
2746 | ||
2747 | /* XXX: hack to restore env in all cases, even if not called from | |
2748 | generated code */ | |
2749 | saved_env = env; | |
2750 | env = cpu_single_env; | |
6ebbf390 | 2751 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
76a66253 | 2752 | if (unlikely(ret != 0)) { |
fdabc366 FB |
2753 | if (likely(retaddr)) { |
2754 | /* now we have a real cpu fault */ | |
a750fc0b | 2755 | pc = (target_phys_addr_t)(unsigned long)retaddr; |
fdabc366 FB |
2756 | tb = tb_find_pc(pc); |
2757 | if (likely(tb)) { | |
2758 | /* the PC is inside the translated code. It means that we have | |
2759 | a virtual CPU fault */ | |
2760 | cpu_restore_state(tb, env, pc, NULL); | |
76a66253 | 2761 | } |
fdabc366 FB |
2762 | } |
2763 | do_raise_exception_err(env->exception_index, env->error_code); | |
2764 | } | |
2765 | env = saved_env; | |
9a64fbe4 FB |
2766 | } |
2767 | ||
76a66253 JM |
2768 | /* Software driven TLBs management */ |
2769 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2770 | void do_load_6xx_tlb (int is_code) | |
2771 | { | |
2772 | target_ulong RPN, CMP, EPN; | |
2773 | int way; | |
d9bce9d9 | 2774 | |
76a66253 JM |
2775 | RPN = env->spr[SPR_RPA]; |
2776 | if (is_code) { | |
2777 | CMP = env->spr[SPR_ICMP]; | |
2778 | EPN = env->spr[SPR_IMISS]; | |
2779 | } else { | |
2780 | CMP = env->spr[SPR_DCMP]; | |
2781 | EPN = env->spr[SPR_DMISS]; | |
2782 | } | |
2783 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2784 | #if defined (DEBUG_SOFTWARE_TLB) | |
2785 | if (loglevel != 0) { | |
2786 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2787 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2788 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2789 | } | |
2790 | #endif | |
2791 | /* Store this TLB */ | |
d9bce9d9 JM |
2792 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2793 | way, is_code, CMP, RPN); | |
76a66253 JM |
2794 | } |
2795 | ||
7dbe11ac JM |
2796 | void do_load_74xx_tlb (int is_code) |
2797 | { | |
2798 | target_ulong RPN, CMP, EPN; | |
2799 | int way; | |
2800 | ||
2801 | RPN = env->spr[SPR_PTELO]; | |
2802 | CMP = env->spr[SPR_PTEHI]; | |
2803 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2804 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2805 | #if defined (DEBUG_SOFTWARE_TLB) | |
2806 | if (loglevel != 0) { | |
2807 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2808 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2809 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2810 | } | |
2811 | #endif | |
2812 | /* Store this TLB */ | |
2813 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), | |
2814 | way, is_code, CMP, RPN); | |
2815 | } | |
2816 | ||
a11b8151 | 2817 | static always_inline target_ulong booke_tlb_to_page_size (int size) |
a8dea12f JM |
2818 | { |
2819 | return 1024 << (2 * size); | |
2820 | } | |
2821 | ||
a11b8151 | 2822 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
a8dea12f JM |
2823 | { |
2824 | int size; | |
2825 | ||
2826 | switch (page_size) { | |
2827 | case 0x00000400UL: | |
2828 | size = 0x0; | |
2829 | break; | |
2830 | case 0x00001000UL: | |
2831 | size = 0x1; | |
2832 | break; | |
2833 | case 0x00004000UL: | |
2834 | size = 0x2; | |
2835 | break; | |
2836 | case 0x00010000UL: | |
2837 | size = 0x3; | |
2838 | break; | |
2839 | case 0x00040000UL: | |
2840 | size = 0x4; | |
2841 | break; | |
2842 | case 0x00100000UL: | |
2843 | size = 0x5; | |
2844 | break; | |
2845 | case 0x00400000UL: | |
2846 | size = 0x6; | |
2847 | break; | |
2848 | case 0x01000000UL: | |
2849 | size = 0x7; | |
2850 | break; | |
2851 | case 0x04000000UL: | |
2852 | size = 0x8; | |
2853 | break; | |
2854 | case 0x10000000UL: | |
2855 | size = 0x9; | |
2856 | break; | |
2857 | case 0x40000000UL: | |
2858 | size = 0xA; | |
2859 | break; | |
2860 | #if defined (TARGET_PPC64) | |
2861 | case 0x000100000000ULL: | |
2862 | size = 0xB; | |
2863 | break; | |
2864 | case 0x000400000000ULL: | |
2865 | size = 0xC; | |
2866 | break; | |
2867 | case 0x001000000000ULL: | |
2868 | size = 0xD; | |
2869 | break; | |
2870 | case 0x004000000000ULL: | |
2871 | size = 0xE; | |
2872 | break; | |
2873 | case 0x010000000000ULL: | |
2874 | size = 0xF; | |
2875 | break; | |
2876 | #endif | |
2877 | default: | |
2878 | size = -1; | |
2879 | break; | |
2880 | } | |
2881 | ||
2882 | return size; | |
2883 | } | |
2884 | ||
76a66253 | 2885 | /* Helpers for 4xx TLB management */ |
76a66253 JM |
2886 | void do_4xx_tlbre_lo (void) |
2887 | { | |
a8dea12f JM |
2888 | ppcemb_tlb_t *tlb; |
2889 | int size; | |
76a66253 JM |
2890 | |
2891 | T0 &= 0x3F; | |
a8dea12f JM |
2892 | tlb = &env->tlb[T0].tlbe; |
2893 | T0 = tlb->EPN; | |
2894 | if (tlb->prot & PAGE_VALID) | |
2895 | T0 |= 0x400; | |
2896 | size = booke_page_size_to_tlb(tlb->size); | |
2897 | if (size < 0 || size > 0x7) | |
2898 | size = 1; | |
2899 | T0 |= size << 7; | |
2900 | env->spr[SPR_40x_PID] = tlb->PID; | |
76a66253 JM |
2901 | } |
2902 | ||
2903 | void do_4xx_tlbre_hi (void) | |
2904 | { | |
a8dea12f | 2905 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2906 | |
2907 | T0 &= 0x3F; | |
a8dea12f JM |
2908 | tlb = &env->tlb[T0].tlbe; |
2909 | T0 = tlb->RPN; | |
2910 | if (tlb->prot & PAGE_EXEC) | |
2911 | T0 |= 0x200; | |
2912 | if (tlb->prot & PAGE_WRITE) | |
2913 | T0 |= 0x100; | |
76a66253 JM |
2914 | } |
2915 | ||
c55e9aef | 2916 | void do_4xx_tlbwe_hi (void) |
76a66253 | 2917 | { |
a8dea12f | 2918 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2919 | target_ulong page, end; |
2920 | ||
c55e9aef | 2921 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2922 | if (loglevel != 0) { |
c55e9aef JM |
2923 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
2924 | } | |
2925 | #endif | |
76a66253 | 2926 | T0 &= 0x3F; |
a8dea12f | 2927 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2928 | /* Invalidate previous TLB (if it's valid) */ |
2929 | if (tlb->prot & PAGE_VALID) { | |
2930 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2931 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2932 | if (loglevel != 0) { |
c55e9aef JM |
2933 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
2934 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2935 | } | |
2936 | #endif | |
76a66253 JM |
2937 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2938 | tlb_flush_page(env, page); | |
2939 | } | |
a8dea12f | 2940 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
c294fc58 JM |
2941 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
2942 | * If this ever occurs, one should use the ppcemb target instead | |
2943 | * of the ppc or ppc64 one | |
2944 | */ | |
2945 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
71c8b8fd JM |
2946 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2947 | "are not supported (%d)\n", | |
c294fc58 JM |
2948 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2949 | } | |
a750fc0b | 2950 | tlb->EPN = T1 & ~(tlb->size - 1); |
c55e9aef | 2951 | if (T1 & 0x40) |
76a66253 JM |
2952 | tlb->prot |= PAGE_VALID; |
2953 | else | |
2954 | tlb->prot &= ~PAGE_VALID; | |
c294fc58 JM |
2955 | if (T1 & 0x20) { |
2956 | /* XXX: TO BE FIXED */ | |
2957 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2958 | } | |
c55e9aef | 2959 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
a8dea12f | 2960 | tlb->attr = T1 & 0xFF; |
c55e9aef | 2961 | #if defined (DEBUG_SOFTWARE_TLB) |
c294fc58 JM |
2962 | if (loglevel != 0) { |
2963 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2964 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2965 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2966 | tlb->prot & PAGE_READ ? 'r' : '-', |
2967 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2968 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2969 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2970 | } | |
2971 | #endif | |
76a66253 JM |
2972 | /* Invalidate new TLB (if valid) */ |
2973 | if (tlb->prot & PAGE_VALID) { | |
2974 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2975 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2976 | if (loglevel != 0) { |
c55e9aef JM |
2977 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
2978 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2979 | } | |
2980 | #endif | |
76a66253 JM |
2981 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2982 | tlb_flush_page(env, page); | |
2983 | } | |
76a66253 JM |
2984 | } |
2985 | ||
c55e9aef | 2986 | void do_4xx_tlbwe_lo (void) |
76a66253 | 2987 | { |
a8dea12f | 2988 | ppcemb_tlb_t *tlb; |
76a66253 | 2989 | |
c55e9aef | 2990 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2991 | if (loglevel != 0) { |
c55e9aef JM |
2992 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
2993 | } | |
2994 | #endif | |
76a66253 | 2995 | T0 &= 0x3F; |
a8dea12f | 2996 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2997 | tlb->RPN = T1 & 0xFFFFFC00; |
2998 | tlb->prot = PAGE_READ; | |
2999 | if (T1 & 0x200) | |
3000 | tlb->prot |= PAGE_EXEC; | |
3001 | if (T1 & 0x100) | |
3002 | tlb->prot |= PAGE_WRITE; | |
c55e9aef | 3003 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d JM |
3004 | if (loglevel != 0) { |
3005 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 3006 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 3007 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
3008 | tlb->prot & PAGE_READ ? 'r' : '-', |
3009 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
3010 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
3011 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
3012 | } | |
3013 | #endif | |
76a66253 | 3014 | } |
5eb7995e | 3015 | |
a4bb6c3e JM |
3016 | /* PowerPC 440 TLB management */ |
3017 | void do_440_tlbwe (int word) | |
5eb7995e JM |
3018 | { |
3019 | ppcemb_tlb_t *tlb; | |
a4bb6c3e | 3020 | target_ulong EPN, RPN, size; |
5eb7995e JM |
3021 | int do_flush_tlbs; |
3022 | ||
3023 | #if defined (DEBUG_SOFTWARE_TLB) | |
3024 | if (loglevel != 0) { | |
a4bb6c3e JM |
3025 | fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n", |
3026 | __func__, word, T0, T1); | |
5eb7995e JM |
3027 | } |
3028 | #endif | |
3029 | do_flush_tlbs = 0; | |
3030 | T0 &= 0x3F; | |
3031 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3032 | switch (word) { |
3033 | default: | |
3034 | /* Just here to please gcc */ | |
3035 | case 0: | |
3036 | EPN = T1 & 0xFFFFFC00; | |
3037 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
5eb7995e | 3038 | do_flush_tlbs = 1; |
a4bb6c3e JM |
3039 | tlb->EPN = EPN; |
3040 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
3041 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
3042 | do_flush_tlbs = 1; | |
3043 | tlb->size = size; | |
3044 | tlb->attr &= ~0x1; | |
3045 | tlb->attr |= (T1 >> 8) & 1; | |
3046 | if (T1 & 0x200) { | |
3047 | tlb->prot |= PAGE_VALID; | |
3048 | } else { | |
3049 | if (tlb->prot & PAGE_VALID) { | |
3050 | tlb->prot &= ~PAGE_VALID; | |
3051 | do_flush_tlbs = 1; | |
3052 | } | |
5eb7995e | 3053 | } |
a4bb6c3e JM |
3054 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
3055 | if (do_flush_tlbs) | |
3056 | tlb_flush(env, 1); | |
3057 | break; | |
3058 | case 1: | |
3059 | RPN = T1 & 0xFFFFFC0F; | |
3060 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
3061 | tlb_flush(env, 1); | |
3062 | tlb->RPN = RPN; | |
3063 | break; | |
3064 | case 2: | |
3065 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
3066 | tlb->prot = tlb->prot & PAGE_VALID; | |
3067 | if (T1 & 0x1) | |
3068 | tlb->prot |= PAGE_READ << 4; | |
3069 | if (T1 & 0x2) | |
3070 | tlb->prot |= PAGE_WRITE << 4; | |
3071 | if (T1 & 0x4) | |
3072 | tlb->prot |= PAGE_EXEC << 4; | |
3073 | if (T1 & 0x8) | |
3074 | tlb->prot |= PAGE_READ; | |
3075 | if (T1 & 0x10) | |
3076 | tlb->prot |= PAGE_WRITE; | |
3077 | if (T1 & 0x20) | |
3078 | tlb->prot |= PAGE_EXEC; | |
3079 | break; | |
5eb7995e | 3080 | } |
5eb7995e JM |
3081 | } |
3082 | ||
a4bb6c3e | 3083 | void do_440_tlbre (int word) |
5eb7995e JM |
3084 | { |
3085 | ppcemb_tlb_t *tlb; | |
3086 | int size; | |
3087 | ||
3088 | T0 &= 0x3F; | |
3089 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3090 | switch (word) { |
3091 | default: | |
3092 | /* Just here to please gcc */ | |
3093 | case 0: | |
3094 | T0 = tlb->EPN; | |
3095 | size = booke_page_size_to_tlb(tlb->size); | |
3096 | if (size < 0 || size > 0xF) | |
3097 | size = 1; | |
3098 | T0 |= size << 4; | |
3099 | if (tlb->attr & 0x1) | |
3100 | T0 |= 0x100; | |
3101 | if (tlb->prot & PAGE_VALID) | |
3102 | T0 |= 0x200; | |
3103 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
3104 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
3105 | break; | |
3106 | case 1: | |
3107 | T0 = tlb->RPN; | |
3108 | break; | |
3109 | case 2: | |
3110 | T0 = tlb->attr & ~0x1; | |
3111 | if (tlb->prot & (PAGE_READ << 4)) | |
3112 | T0 |= 0x1; | |
3113 | if (tlb->prot & (PAGE_WRITE << 4)) | |
3114 | T0 |= 0x2; | |
3115 | if (tlb->prot & (PAGE_EXEC << 4)) | |
3116 | T0 |= 0x4; | |
3117 | if (tlb->prot & PAGE_READ) | |
3118 | T0 |= 0x8; | |
3119 | if (tlb->prot & PAGE_WRITE) | |
3120 | T0 |= 0x10; | |
3121 | if (tlb->prot & PAGE_EXEC) | |
3122 | T0 |= 0x20; | |
3123 | break; | |
3124 | } | |
5eb7995e | 3125 | } |
76a66253 | 3126 | #endif /* !CONFIG_USER_ONLY */ |