]>
Commit | Line | Data |
---|---|---|
9a64fbe4 | 1 | /* |
3fc6c082 | 2 | * PowerPC emulation helpers for qemu. |
5fafdf24 | 3 | * |
76a66253 | 4 | * Copyright (c) 2003-2007 Jocelyn Mayer |
9a64fbe4 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
9a64fbe4 | 20 | #include "exec.h" |
603fccce | 21 | #include "host-utils.h" |
9a64fbe4 | 22 | |
0411a972 | 23 | #include "helper_regs.h" |
0487d6a8 JM |
24 | #include "op_helper.h" |
25 | ||
9a64fbe4 | 26 | #define MEMSUFFIX _raw |
0487d6a8 | 27 | #include "op_helper.h" |
9a64fbe4 | 28 | #include "op_helper_mem.h" |
a541f297 | 29 | #if !defined(CONFIG_USER_ONLY) |
9a64fbe4 | 30 | #define MEMSUFFIX _user |
0487d6a8 | 31 | #include "op_helper.h" |
9a64fbe4 FB |
32 | #include "op_helper_mem.h" |
33 | #define MEMSUFFIX _kernel | |
0487d6a8 | 34 | #include "op_helper.h" |
9a64fbe4 | 35 | #include "op_helper_mem.h" |
1e42b8f0 JM |
36 | #define MEMSUFFIX _hypv |
37 | #include "op_helper.h" | |
38 | #include "op_helper_mem.h" | |
39 | #endif | |
9a64fbe4 | 40 | |
fdabc366 FB |
41 | //#define DEBUG_OP |
42 | //#define DEBUG_EXCEPTIONS | |
76a66253 | 43 | //#define DEBUG_SOFTWARE_TLB |
fdabc366 | 44 | |
9a64fbe4 FB |
45 | /*****************************************************************************/ |
46 | /* Exceptions processing helpers */ | |
9a64fbe4 | 47 | |
9fddaa0c | 48 | void do_raise_exception_err (uint32_t exception, int error_code) |
9a64fbe4 | 49 | { |
9fddaa0c FB |
50 | #if 0 |
51 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
52 | #endif | |
9fddaa0c FB |
53 | env->exception_index = exception; |
54 | env->error_code = error_code; | |
76a66253 JM |
55 | cpu_loop_exit(); |
56 | } | |
9fddaa0c FB |
57 | |
58 | void do_raise_exception (uint32_t exception) | |
59 | { | |
60 | do_raise_exception_err(exception, 0); | |
9a64fbe4 FB |
61 | } |
62 | ||
a496775f JM |
63 | void cpu_dump_EA (target_ulong EA); |
64 | void do_print_mem_EA (target_ulong EA) | |
65 | { | |
66 | cpu_dump_EA(EA); | |
67 | } | |
68 | ||
76a66253 JM |
69 | /*****************************************************************************/ |
70 | /* Registers load and stores */ | |
71 | void do_load_cr (void) | |
72 | { | |
73 | T0 = (env->crf[0] << 28) | | |
74 | (env->crf[1] << 24) | | |
75 | (env->crf[2] << 20) | | |
76 | (env->crf[3] << 16) | | |
77 | (env->crf[4] << 12) | | |
78 | (env->crf[5] << 8) | | |
79 | (env->crf[6] << 4) | | |
80 | (env->crf[7] << 0); | |
81 | } | |
82 | ||
83 | void do_store_cr (uint32_t mask) | |
84 | { | |
85 | int i, sh; | |
86 | ||
36081602 | 87 | for (i = 0, sh = 7; i < 8; i++, sh--) { |
76a66253 JM |
88 | if (mask & (1 << sh)) |
89 | env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; | |
90 | } | |
91 | } | |
92 | ||
c80f84e3 JM |
93 | #if defined(TARGET_PPC64) |
94 | void do_store_pri (int prio) | |
95 | { | |
96 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
97 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
98 | } | |
99 | #endif | |
100 | ||
a496775f JM |
101 | target_ulong ppc_load_dump_spr (int sprn) |
102 | { | |
6b80055d | 103 | if (loglevel != 0) { |
a496775f JM |
104 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
105 | sprn, sprn, env->spr[sprn]); | |
106 | } | |
107 | ||
108 | return env->spr[sprn]; | |
109 | } | |
110 | ||
111 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
112 | { | |
6b80055d | 113 | if (loglevel != 0) { |
a496775f JM |
114 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
115 | sprn, sprn, env->spr[sprn], val); | |
116 | } | |
117 | env->spr[sprn] = val; | |
118 | } | |
119 | ||
9a64fbe4 | 120 | /*****************************************************************************/ |
fdabc366 | 121 | /* Fixed point operations helpers */ |
fdabc366 FB |
122 | void do_adde (void) |
123 | { | |
124 | T2 = T0; | |
125 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
126 | if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
127 | (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { | |
fdabc366 FB |
128 | xer_ca = 0; |
129 | } else { | |
130 | xer_ca = 1; | |
131 | } | |
132 | } | |
133 | ||
d9bce9d9 JM |
134 | #if defined(TARGET_PPC64) |
135 | void do_adde_64 (void) | |
fdabc366 FB |
136 | { |
137 | T2 = T0; | |
138 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
139 | if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
140 | (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { | |
fdabc366 FB |
141 | xer_ca = 0; |
142 | } else { | |
143 | xer_ca = 1; | |
144 | } | |
fdabc366 | 145 | } |
d9bce9d9 | 146 | #endif |
fdabc366 FB |
147 | |
148 | void do_addmeo (void) | |
149 | { | |
150 | T1 = T0; | |
151 | T0 += xer_ca + (-1); | |
c3e10c7b JM |
152 | xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31; |
153 | xer_so |= xer_ov; | |
fdabc366 FB |
154 | if (likely(T1 != 0)) |
155 | xer_ca = 1; | |
c3e10c7b JM |
156 | else |
157 | xer_ca = 0; | |
fdabc366 FB |
158 | } |
159 | ||
d9bce9d9 JM |
160 | #if defined(TARGET_PPC64) |
161 | void do_addmeo_64 (void) | |
fdabc366 FB |
162 | { |
163 | T1 = T0; | |
d9bce9d9 | 164 | T0 += xer_ca + (-1); |
c3e10c7b JM |
165 | xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63; |
166 | xer_so |= xer_ov; | |
d9bce9d9 | 167 | if (likely(T1 != 0)) |
fdabc366 | 168 | xer_ca = 1; |
c3e10c7b JM |
169 | else |
170 | xer_ca = 0; | |
fdabc366 | 171 | } |
d9bce9d9 | 172 | #endif |
fdabc366 FB |
173 | |
174 | void do_divwo (void) | |
175 | { | |
6f2d8978 | 176 | if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
d9bce9d9 | 177 | (int32_t)T1 == 0))) { |
fdabc366 | 178 | xer_ov = 0; |
d9bce9d9 | 179 | T0 = (int32_t)T0 / (int32_t)T1; |
fdabc366 | 180 | } else { |
fdabc366 | 181 | xer_ov = 1; |
6f2d8978 | 182 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 | 183 | } |
6f2d8978 | 184 | xer_so |= xer_ov; |
fdabc366 FB |
185 | } |
186 | ||
d9bce9d9 JM |
187 | #if defined(TARGET_PPC64) |
188 | void do_divdo (void) | |
189 | { | |
6f2d8978 | 190 | if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) || |
d9bce9d9 JM |
191 | (int64_t)T1 == 0))) { |
192 | xer_ov = 0; | |
193 | T0 = (int64_t)T0 / (int64_t)T1; | |
194 | } else { | |
d9bce9d9 | 195 | xer_ov = 1; |
6f2d8978 | 196 | T0 = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 | 197 | } |
6f2d8978 | 198 | xer_so |= xer_ov; |
d9bce9d9 JM |
199 | } |
200 | #endif | |
201 | ||
fdabc366 FB |
202 | void do_divwuo (void) |
203 | { | |
204 | if (likely((uint32_t)T1 != 0)) { | |
205 | xer_ov = 0; | |
206 | T0 = (uint32_t)T0 / (uint32_t)T1; | |
207 | } else { | |
fdabc366 | 208 | xer_ov = 1; |
966439a6 | 209 | xer_so = 1; |
fdabc366 FB |
210 | T0 = 0; |
211 | } | |
212 | } | |
213 | ||
d9bce9d9 JM |
214 | #if defined(TARGET_PPC64) |
215 | void do_divduo (void) | |
216 | { | |
217 | if (likely((uint64_t)T1 != 0)) { | |
218 | xer_ov = 0; | |
219 | T0 = (uint64_t)T0 / (uint64_t)T1; | |
220 | } else { | |
d9bce9d9 | 221 | xer_ov = 1; |
966439a6 | 222 | xer_so = 1; |
d9bce9d9 JM |
223 | T0 = 0; |
224 | } | |
225 | } | |
226 | #endif | |
227 | ||
fdabc366 FB |
228 | void do_mullwo (void) |
229 | { | |
d9bce9d9 | 230 | int64_t res = (int64_t)T0 * (int64_t)T1; |
fdabc366 FB |
231 | |
232 | if (likely((int32_t)res == res)) { | |
233 | xer_ov = 0; | |
234 | } else { | |
235 | xer_ov = 1; | |
236 | xer_so = 1; | |
237 | } | |
238 | T0 = (int32_t)res; | |
239 | } | |
240 | ||
d9bce9d9 JM |
241 | #if defined(TARGET_PPC64) |
242 | void do_mulldo (void) | |
fdabc366 | 243 | { |
d9bce9d9 JM |
244 | int64_t th; |
245 | uint64_t tl; | |
246 | ||
9d901a20 | 247 | muls64(&tl, &th, T0, T1); |
6f2d8978 | 248 | T0 = (int64_t)tl; |
88ad920b | 249 | /* If th != 0 && th != -1, then we had an overflow */ |
6f2d8978 | 250 | if (likely((uint64_t)(th + 1) <= 1)) { |
fdabc366 | 251 | xer_ov = 0; |
fdabc366 FB |
252 | } else { |
253 | xer_ov = 1; | |
fdabc366 | 254 | } |
6f2d8978 | 255 | xer_so |= xer_ov; |
fdabc366 | 256 | } |
d9bce9d9 | 257 | #endif |
fdabc366 | 258 | |
d9bce9d9 | 259 | void do_nego (void) |
fdabc366 | 260 | { |
d9bce9d9 | 261 | if (likely((int32_t)T0 != INT32_MIN)) { |
fdabc366 | 262 | xer_ov = 0; |
d9bce9d9 | 263 | T0 = -(int32_t)T0; |
fdabc366 | 264 | } else { |
fdabc366 | 265 | xer_ov = 1; |
d9bce9d9 | 266 | xer_so = 1; |
fdabc366 | 267 | } |
fdabc366 FB |
268 | } |
269 | ||
d9bce9d9 JM |
270 | #if defined(TARGET_PPC64) |
271 | void do_nego_64 (void) | |
fdabc366 | 272 | { |
d9bce9d9 | 273 | if (likely((int64_t)T0 != INT64_MIN)) { |
fdabc366 | 274 | xer_ov = 0; |
d9bce9d9 | 275 | T0 = -(int64_t)T0; |
fdabc366 | 276 | } else { |
fdabc366 | 277 | xer_ov = 1; |
d9bce9d9 | 278 | xer_so = 1; |
fdabc366 FB |
279 | } |
280 | } | |
d9bce9d9 | 281 | #endif |
fdabc366 FB |
282 | |
283 | void do_subfe (void) | |
284 | { | |
285 | T0 = T1 + ~T0 + xer_ca; | |
d9bce9d9 JM |
286 | if (likely((uint32_t)T0 >= (uint32_t)T1 && |
287 | (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { | |
fdabc366 FB |
288 | xer_ca = 0; |
289 | } else { | |
290 | xer_ca = 1; | |
291 | } | |
292 | } | |
293 | ||
d9bce9d9 JM |
294 | #if defined(TARGET_PPC64) |
295 | void do_subfe_64 (void) | |
fdabc366 | 296 | { |
fdabc366 | 297 | T0 = T1 + ~T0 + xer_ca; |
d9bce9d9 JM |
298 | if (likely((uint64_t)T0 >= (uint64_t)T1 && |
299 | (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { | |
300 | xer_ca = 0; | |
301 | } else { | |
302 | xer_ca = 1; | |
303 | } | |
304 | } | |
305 | #endif | |
306 | ||
307 | void do_subfmeo (void) | |
308 | { | |
309 | T1 = T0; | |
310 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
311 | xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31; |
312 | xer_so |= xer_ov; | |
d9bce9d9 | 313 | if (likely((uint32_t)T1 != UINT32_MAX)) |
fdabc366 | 314 | xer_ca = 1; |
c3e10c7b JM |
315 | else |
316 | xer_ca = 0; | |
fdabc366 FB |
317 | } |
318 | ||
d9bce9d9 JM |
319 | #if defined(TARGET_PPC64) |
320 | void do_subfmeo_64 (void) | |
fdabc366 FB |
321 | { |
322 | T1 = T0; | |
323 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
324 | xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63; |
325 | xer_so |= xer_ov; | |
d9bce9d9 | 326 | if (likely((uint64_t)T1 != UINT64_MAX)) |
fdabc366 | 327 | xer_ca = 1; |
c3e10c7b JM |
328 | else |
329 | xer_ca = 0; | |
fdabc366 | 330 | } |
d9bce9d9 | 331 | #endif |
fdabc366 FB |
332 | |
333 | void do_subfzeo (void) | |
334 | { | |
335 | T1 = T0; | |
336 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
337 | xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) & |
338 | ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31; | |
339 | xer_so |= xer_ov; | |
d9bce9d9 | 340 | if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
fdabc366 FB |
341 | xer_ca = 0; |
342 | } else { | |
343 | xer_ca = 1; | |
344 | } | |
345 | } | |
346 | ||
d9bce9d9 JM |
347 | #if defined(TARGET_PPC64) |
348 | void do_subfzeo_64 (void) | |
349 | { | |
350 | T1 = T0; | |
351 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
352 | xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) & |
353 | ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63; | |
354 | xer_so |= xer_ov; | |
d9bce9d9 JM |
355 | if (likely((uint64_t)T0 >= (uint64_t)~T1)) { |
356 | xer_ca = 0; | |
357 | } else { | |
358 | xer_ca = 1; | |
359 | } | |
360 | } | |
361 | #endif | |
362 | ||
603fccce JM |
363 | void do_cntlzw (void) |
364 | { | |
365 | T0 = clz32(T0); | |
366 | } | |
367 | ||
368 | #if defined(TARGET_PPC64) | |
369 | void do_cntlzd (void) | |
370 | { | |
371 | T0 = clz64(T0); | |
372 | } | |
373 | #endif | |
374 | ||
9a64fbe4 FB |
375 | /* shift right arithmetic helper */ |
376 | void do_sraw (void) | |
377 | { | |
378 | int32_t ret; | |
379 | ||
fdabc366 | 380 | if (likely(!(T1 & 0x20UL))) { |
d9bce9d9 | 381 | if (likely((uint32_t)T1 != 0)) { |
fdabc366 FB |
382 | ret = (int32_t)T0 >> (T1 & 0x1fUL); |
383 | if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { | |
76a66253 | 384 | xer_ca = 0; |
fdabc366 | 385 | } else { |
76a66253 | 386 | xer_ca = 1; |
fdabc366 FB |
387 | } |
388 | } else { | |
76a66253 | 389 | ret = T0; |
fdabc366 FB |
390 | xer_ca = 0; |
391 | } | |
392 | } else { | |
6f2d8978 | 393 | ret = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 FB |
394 | if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { |
395 | xer_ca = 0; | |
76a66253 | 396 | } else { |
9a64fbe4 | 397 | xer_ca = 1; |
76a66253 | 398 | } |
fdabc366 | 399 | } |
4b3686fa | 400 | T0 = ret; |
9a64fbe4 FB |
401 | } |
402 | ||
d9bce9d9 JM |
403 | #if defined(TARGET_PPC64) |
404 | void do_srad (void) | |
405 | { | |
406 | int64_t ret; | |
407 | ||
408 | if (likely(!(T1 & 0x40UL))) { | |
409 | if (likely((uint64_t)T1 != 0)) { | |
410 | ret = (int64_t)T0 >> (T1 & 0x3FUL); | |
411 | if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { | |
412 | xer_ca = 0; | |
413 | } else { | |
414 | xer_ca = 1; | |
415 | } | |
416 | } else { | |
417 | ret = T0; | |
418 | xer_ca = 0; | |
419 | } | |
420 | } else { | |
6f2d8978 | 421 | ret = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 JM |
422 | if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { |
423 | xer_ca = 0; | |
424 | } else { | |
425 | xer_ca = 1; | |
426 | } | |
427 | } | |
428 | T0 = ret; | |
429 | } | |
430 | #endif | |
431 | ||
d9bce9d9 JM |
432 | void do_popcntb (void) |
433 | { | |
434 | uint32_t ret; | |
435 | int i; | |
436 | ||
437 | ret = 0; | |
438 | for (i = 0; i < 32; i += 8) | |
603fccce | 439 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
440 | T0 = ret; |
441 | } | |
442 | ||
443 | #if defined(TARGET_PPC64) | |
444 | void do_popcntb_64 (void) | |
445 | { | |
446 | uint64_t ret; | |
447 | int i; | |
448 | ||
449 | ret = 0; | |
450 | for (i = 0; i < 64; i += 8) | |
603fccce | 451 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
452 | T0 = ret; |
453 | } | |
454 | #endif | |
455 | ||
fdabc366 | 456 | /*****************************************************************************/ |
9a64fbe4 | 457 | /* Floating point operations helpers */ |
a11b8151 | 458 | static always_inline int fpisneg (float64 f) |
7c58044c JM |
459 | { |
460 | union { | |
461 | float64 f; | |
462 | uint64_t u; | |
463 | } u; | |
464 | ||
465 | u.f = f; | |
466 | ||
467 | return u.u >> 63 != 0; | |
468 | } | |
469 | ||
a11b8151 | 470 | static always_inline int isden (float f) |
7c58044c JM |
471 | { |
472 | union { | |
473 | float64 f; | |
474 | uint64_t u; | |
475 | } u; | |
476 | ||
477 | u.f = f; | |
478 | ||
479 | return ((u.u >> 52) & 0x7FF) == 0; | |
480 | } | |
481 | ||
a11b8151 | 482 | static always_inline int iszero (float64 f) |
7c58044c JM |
483 | { |
484 | union { | |
485 | float64 f; | |
486 | uint64_t u; | |
487 | } u; | |
488 | ||
489 | u.f = f; | |
490 | ||
491 | return (u.u & ~0x8000000000000000ULL) == 0; | |
492 | } | |
493 | ||
a11b8151 | 494 | static always_inline int isinfinity (float64 f) |
7c58044c JM |
495 | { |
496 | union { | |
497 | float64 f; | |
498 | uint64_t u; | |
499 | } u; | |
500 | ||
501 | u.f = f; | |
502 | ||
86c4a9f5 | 503 | return ((u.u >> 52) & 0x7FF) == 0x7FF && |
7c58044c JM |
504 | (u.u & 0x000FFFFFFFFFFFFFULL) == 0; |
505 | } | |
506 | ||
507 | void do_compute_fprf (int set_fprf) | |
508 | { | |
509 | int isneg; | |
510 | ||
511 | isneg = fpisneg(FT0); | |
512 | if (unlikely(float64_is_nan(FT0))) { | |
513 | if (float64_is_signaling_nan(FT0)) { | |
514 | /* Signaling NaN: flags are undefined */ | |
515 | T0 = 0x00; | |
516 | } else { | |
517 | /* Quiet NaN */ | |
518 | T0 = 0x11; | |
519 | } | |
520 | } else if (unlikely(isinfinity(FT0))) { | |
521 | /* +/- infinity */ | |
522 | if (isneg) | |
523 | T0 = 0x09; | |
524 | else | |
525 | T0 = 0x05; | |
526 | } else { | |
527 | if (iszero(FT0)) { | |
528 | /* +/- zero */ | |
529 | if (isneg) | |
530 | T0 = 0x12; | |
531 | else | |
532 | T0 = 0x02; | |
533 | } else { | |
534 | if (isden(FT0)) { | |
535 | /* Denormalized numbers */ | |
536 | T0 = 0x10; | |
537 | } else { | |
538 | /* Normalized numbers */ | |
539 | T0 = 0x00; | |
540 | } | |
541 | if (isneg) { | |
542 | T0 |= 0x08; | |
543 | } else { | |
544 | T0 |= 0x04; | |
545 | } | |
546 | } | |
547 | } | |
548 | if (set_fprf) { | |
549 | /* We update FPSCR_FPRF */ | |
550 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
551 | env->fpscr |= T0 << FPSCR_FPRF; | |
552 | } | |
553 | /* We just need fpcc to update Rc1 */ | |
554 | T0 &= 0xF; | |
555 | } | |
556 | ||
557 | /* Floating-point invalid operations exception */ | |
558 | static always_inline void fload_invalid_op_excp (int op) | |
559 | { | |
560 | int ve; | |
561 | ||
562 | ve = fpscr_ve; | |
563 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
564 | /* Operation on signaling NaN */ | |
565 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
566 | } | |
567 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
568 | /* Software-defined condition */ | |
569 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
570 | } | |
571 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
572 | case POWERPC_EXCP_FP_VXISI: | |
573 | /* Magnitude subtraction of infinities */ | |
574 | env->fpscr |= 1 << FPSCR_VXISI; | |
575 | goto update_arith; | |
576 | case POWERPC_EXCP_FP_VXIDI: | |
577 | /* Division of infinity by infinity */ | |
578 | env->fpscr |= 1 << FPSCR_VXIDI; | |
579 | goto update_arith; | |
580 | case POWERPC_EXCP_FP_VXZDZ: | |
581 | /* Division of zero by zero */ | |
582 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
583 | goto update_arith; | |
584 | case POWERPC_EXCP_FP_VXIMZ: | |
585 | /* Multiplication of zero by infinity */ | |
586 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
587 | goto update_arith; | |
588 | case POWERPC_EXCP_FP_VXVC: | |
589 | /* Ordered comparison of NaN */ | |
590 | env->fpscr |= 1 << FPSCR_VXVC; | |
591 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
592 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
593 | /* We must update the target FPR before raising the exception */ | |
594 | if (ve != 0) { | |
595 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
596 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
597 | /* Update the floating-point enabled exception summary */ | |
598 | env->fpscr |= 1 << FPSCR_FEX; | |
599 | /* Exception is differed */ | |
600 | ve = 0; | |
601 | } | |
602 | break; | |
603 | case POWERPC_EXCP_FP_VXSQRT: | |
604 | /* Square root of a negative number */ | |
605 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
606 | update_arith: | |
607 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
608 | if (ve == 0) { | |
609 | /* Set the result to quiet NaN */ | |
6f2d8978 | 610 | FT0 = UINT64_MAX; |
7c58044c JM |
611 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
612 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
613 | } | |
614 | break; | |
615 | case POWERPC_EXCP_FP_VXCVI: | |
616 | /* Invalid conversion */ | |
617 | env->fpscr |= 1 << FPSCR_VXCVI; | |
618 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
619 | if (ve == 0) { | |
620 | /* Set the result to quiet NaN */ | |
6f2d8978 | 621 | FT0 = UINT64_MAX; |
7c58044c JM |
622 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
623 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
624 | } | |
625 | break; | |
626 | } | |
627 | /* Update the floating-point invalid operation summary */ | |
628 | env->fpscr |= 1 << FPSCR_VX; | |
629 | /* Update the floating-point exception summary */ | |
630 | env->fpscr |= 1 << FPSCR_FX; | |
631 | if (ve != 0) { | |
632 | /* Update the floating-point enabled exception summary */ | |
633 | env->fpscr |= 1 << FPSCR_FEX; | |
634 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
635 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
636 | } | |
637 | } | |
638 | ||
639 | static always_inline void float_zero_divide_excp (void) | |
640 | { | |
641 | union { | |
642 | float64 f; | |
643 | uint64_t u; | |
644 | } u0, u1; | |
7c58044c JM |
645 | |
646 | env->fpscr |= 1 << FPSCR_ZX; | |
647 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
648 | /* Update the floating-point exception summary */ | |
649 | env->fpscr |= 1 << FPSCR_FX; | |
650 | if (fpscr_ze != 0) { | |
651 | /* Update the floating-point enabled exception summary */ | |
652 | env->fpscr |= 1 << FPSCR_FEX; | |
653 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
654 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
655 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
656 | } | |
657 | } else { | |
658 | /* Set the result to infinity */ | |
659 | u0.f = FT0; | |
660 | u1.f = FT1; | |
661 | u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL); | |
86c4a9f5 | 662 | u0.u |= 0x7FFULL << 52; |
7c58044c JM |
663 | FT0 = u0.f; |
664 | } | |
665 | } | |
666 | ||
667 | static always_inline void float_overflow_excp (void) | |
668 | { | |
669 | env->fpscr |= 1 << FPSCR_OX; | |
670 | /* Update the floating-point exception summary */ | |
671 | env->fpscr |= 1 << FPSCR_FX; | |
672 | if (fpscr_oe != 0) { | |
673 | /* XXX: should adjust the result */ | |
674 | /* Update the floating-point enabled exception summary */ | |
675 | env->fpscr |= 1 << FPSCR_FEX; | |
676 | /* We must update the target FPR before raising the exception */ | |
677 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
678 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
679 | } else { | |
680 | env->fpscr |= 1 << FPSCR_XX; | |
681 | env->fpscr |= 1 << FPSCR_FI; | |
682 | } | |
683 | } | |
684 | ||
685 | static always_inline void float_underflow_excp (void) | |
686 | { | |
687 | env->fpscr |= 1 << FPSCR_UX; | |
688 | /* Update the floating-point exception summary */ | |
689 | env->fpscr |= 1 << FPSCR_FX; | |
690 | if (fpscr_ue != 0) { | |
691 | /* XXX: should adjust the result */ | |
692 | /* Update the floating-point enabled exception summary */ | |
693 | env->fpscr |= 1 << FPSCR_FEX; | |
694 | /* We must update the target FPR before raising the exception */ | |
695 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
696 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
697 | } | |
698 | } | |
699 | ||
700 | static always_inline void float_inexact_excp (void) | |
701 | { | |
702 | env->fpscr |= 1 << FPSCR_XX; | |
703 | /* Update the floating-point exception summary */ | |
704 | env->fpscr |= 1 << FPSCR_FX; | |
705 | if (fpscr_xe != 0) { | |
706 | /* Update the floating-point enabled exception summary */ | |
707 | env->fpscr |= 1 << FPSCR_FEX; | |
708 | /* We must update the target FPR before raising the exception */ | |
709 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
710 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
711 | } | |
712 | } | |
713 | ||
714 | static always_inline void fpscr_set_rounding_mode (void) | |
715 | { | |
716 | int rnd_type; | |
717 | ||
718 | /* Set rounding mode */ | |
719 | switch (fpscr_rn) { | |
720 | case 0: | |
721 | /* Best approximation (round to nearest) */ | |
722 | rnd_type = float_round_nearest_even; | |
723 | break; | |
724 | case 1: | |
725 | /* Smaller magnitude (round toward zero) */ | |
726 | rnd_type = float_round_to_zero; | |
727 | break; | |
728 | case 2: | |
729 | /* Round toward +infinite */ | |
730 | rnd_type = float_round_up; | |
731 | break; | |
732 | default: | |
733 | case 3: | |
734 | /* Round toward -infinite */ | |
735 | rnd_type = float_round_down; | |
736 | break; | |
737 | } | |
738 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
739 | } | |
740 | ||
741 | void do_fpscr_setbit (int bit) | |
742 | { | |
743 | int prev; | |
744 | ||
745 | prev = (env->fpscr >> bit) & 1; | |
746 | env->fpscr |= 1 << bit; | |
747 | if (prev == 0) { | |
748 | switch (bit) { | |
749 | case FPSCR_VX: | |
750 | env->fpscr |= 1 << FPSCR_FX; | |
751 | if (fpscr_ve) | |
752 | goto raise_ve; | |
753 | case FPSCR_OX: | |
754 | env->fpscr |= 1 << FPSCR_FX; | |
755 | if (fpscr_oe) | |
756 | goto raise_oe; | |
757 | break; | |
758 | case FPSCR_UX: | |
759 | env->fpscr |= 1 << FPSCR_FX; | |
760 | if (fpscr_ue) | |
761 | goto raise_ue; | |
762 | break; | |
763 | case FPSCR_ZX: | |
764 | env->fpscr |= 1 << FPSCR_FX; | |
765 | if (fpscr_ze) | |
766 | goto raise_ze; | |
767 | break; | |
768 | case FPSCR_XX: | |
769 | env->fpscr |= 1 << FPSCR_FX; | |
770 | if (fpscr_xe) | |
771 | goto raise_xe; | |
772 | break; | |
773 | case FPSCR_VXSNAN: | |
774 | case FPSCR_VXISI: | |
775 | case FPSCR_VXIDI: | |
776 | case FPSCR_VXZDZ: | |
777 | case FPSCR_VXIMZ: | |
778 | case FPSCR_VXVC: | |
779 | case FPSCR_VXSOFT: | |
780 | case FPSCR_VXSQRT: | |
781 | case FPSCR_VXCVI: | |
782 | env->fpscr |= 1 << FPSCR_VX; | |
783 | env->fpscr |= 1 << FPSCR_FX; | |
784 | if (fpscr_ve != 0) | |
785 | goto raise_ve; | |
786 | break; | |
787 | case FPSCR_VE: | |
788 | if (fpscr_vx != 0) { | |
789 | raise_ve: | |
790 | env->error_code = POWERPC_EXCP_FP; | |
791 | if (fpscr_vxsnan) | |
792 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
793 | if (fpscr_vxisi) | |
794 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
795 | if (fpscr_vxidi) | |
796 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
797 | if (fpscr_vxzdz) | |
798 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
799 | if (fpscr_vximz) | |
800 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
801 | if (fpscr_vxvc) | |
802 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
803 | if (fpscr_vxsoft) | |
804 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
805 | if (fpscr_vxsqrt) | |
806 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
807 | if (fpscr_vxcvi) | |
808 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
809 | goto raise_excp; | |
810 | } | |
811 | break; | |
812 | case FPSCR_OE: | |
813 | if (fpscr_ox != 0) { | |
814 | raise_oe: | |
815 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
816 | goto raise_excp; | |
817 | } | |
818 | break; | |
819 | case FPSCR_UE: | |
820 | if (fpscr_ux != 0) { | |
821 | raise_ue: | |
822 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
823 | goto raise_excp; | |
824 | } | |
825 | break; | |
826 | case FPSCR_ZE: | |
827 | if (fpscr_zx != 0) { | |
828 | raise_ze: | |
829 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
830 | goto raise_excp; | |
831 | } | |
832 | break; | |
833 | case FPSCR_XE: | |
834 | if (fpscr_xx != 0) { | |
835 | raise_xe: | |
836 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
837 | goto raise_excp; | |
838 | } | |
839 | break; | |
840 | case FPSCR_RN1: | |
841 | case FPSCR_RN: | |
842 | fpscr_set_rounding_mode(); | |
843 | break; | |
844 | default: | |
845 | break; | |
846 | raise_excp: | |
847 | /* Update the floating-point enabled exception summary */ | |
848 | env->fpscr |= 1 << FPSCR_FEX; | |
849 | /* We have to update Rc1 before raising the exception */ | |
850 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
851 | break; | |
852 | } | |
853 | } | |
854 | } | |
855 | ||
856 | #if defined(WORDS_BIGENDIAN) | |
857 | #define WORD0 0 | |
858 | #define WORD1 1 | |
859 | #else | |
860 | #define WORD0 1 | |
861 | #define WORD1 0 | |
862 | #endif | |
863 | void do_store_fpscr (uint32_t mask) | |
864 | { | |
865 | /* | |
866 | * We use only the 32 LSB of the incoming fpr | |
867 | */ | |
868 | union { | |
869 | double d; | |
870 | struct { | |
871 | uint32_t u[2]; | |
872 | } s; | |
873 | } u; | |
874 | uint32_t prev, new; | |
875 | int i; | |
876 | ||
877 | u.d = FT0; | |
878 | prev = env->fpscr; | |
879 | new = u.s.u[WORD1]; | |
880 | new &= ~0x90000000; | |
881 | new |= prev & 0x90000000; | |
882 | for (i = 0; i < 7; i++) { | |
883 | if (mask & (1 << i)) { | |
884 | env->fpscr &= ~(0xF << (4 * i)); | |
885 | env->fpscr |= new & (0xF << (4 * i)); | |
886 | } | |
887 | } | |
888 | /* Update VX and FEX */ | |
889 | if (fpscr_ix != 0) | |
890 | env->fpscr |= 1 << FPSCR_VX; | |
891 | if ((fpscr_ex & fpscr_eex) != 0) { | |
892 | env->fpscr |= 1 << FPSCR_FEX; | |
893 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
894 | /* XXX: we should compute it properly */ | |
895 | env->error_code = POWERPC_EXCP_FP; | |
896 | } | |
897 | fpscr_set_rounding_mode(); | |
898 | } | |
899 | #undef WORD0 | |
900 | #undef WORD1 | |
901 | ||
902 | #ifdef CONFIG_SOFTFLOAT | |
903 | void do_float_check_status (void) | |
904 | { | |
905 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
906 | (env->error_code & POWERPC_EXCP_FP)) { | |
907 | /* Differred floating-point exception after target FPR update */ | |
908 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
909 | do_raise_exception_err(env->exception_index, env->error_code); | |
910 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
911 | float_overflow_excp(); | |
912 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
913 | float_underflow_excp(); | |
914 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
915 | float_inexact_excp(); | |
916 | } | |
917 | } | |
918 | #endif | |
919 | ||
920 | #if USE_PRECISE_EMULATION | |
921 | void do_fadd (void) | |
922 | { | |
923 | if (unlikely(float64_is_signaling_nan(FT0) || | |
924 | float64_is_signaling_nan(FT1))) { | |
925 | /* sNaN addition */ | |
926 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
927 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
928 | fpisneg(FT0) == fpisneg(FT1))) { | |
929 | FT0 = float64_add(FT0, FT1, &env->fp_status); | |
930 | } else { | |
931 | /* Magnitude subtraction of infinities */ | |
932 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
933 | } | |
934 | } | |
935 | ||
936 | void do_fsub (void) | |
937 | { | |
938 | if (unlikely(float64_is_signaling_nan(FT0) || | |
939 | float64_is_signaling_nan(FT1))) { | |
940 | /* sNaN subtraction */ | |
941 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
942 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
943 | fpisneg(FT0) != fpisneg(FT1))) { | |
944 | FT0 = float64_sub(FT0, FT1, &env->fp_status); | |
945 | } else { | |
946 | /* Magnitude subtraction of infinities */ | |
947 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
948 | } | |
949 | } | |
950 | ||
951 | void do_fmul (void) | |
952 | { | |
953 | if (unlikely(float64_is_signaling_nan(FT0) || | |
954 | float64_is_signaling_nan(FT1))) { | |
955 | /* sNaN multiplication */ | |
956 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
5bda2843 JM |
957 | } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
958 | (iszero(FT0) && isinfinity(FT1)))) { | |
7c58044c JM |
959 | /* Multiplication of zero by infinity */ |
960 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
961 | } else { | |
962 | FT0 = float64_mul(FT0, FT1, &env->fp_status); | |
963 | } | |
964 | } | |
965 | ||
966 | void do_fdiv (void) | |
967 | { | |
968 | if (unlikely(float64_is_signaling_nan(FT0) || | |
969 | float64_is_signaling_nan(FT1))) { | |
970 | /* sNaN division */ | |
971 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
972 | } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { | |
973 | /* Division of infinity by infinity */ | |
974 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
975 | } else if (unlikely(iszero(FT1))) { | |
976 | if (iszero(FT0)) { | |
977 | /* Division of zero by zero */ | |
978 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
979 | } else { | |
980 | /* Division by zero */ | |
981 | float_zero_divide_excp(); | |
982 | } | |
983 | } else { | |
984 | FT0 = float64_div(FT0, FT1, &env->fp_status); | |
985 | } | |
986 | } | |
987 | #endif /* USE_PRECISE_EMULATION */ | |
988 | ||
9a64fbe4 FB |
989 | void do_fctiw (void) |
990 | { | |
991 | union { | |
992 | double d; | |
993 | uint64_t i; | |
4ecc3190 | 994 | } p; |
9a64fbe4 | 995 | |
7c58044c JM |
996 | if (unlikely(float64_is_signaling_nan(FT0))) { |
997 | /* sNaN conversion */ | |
998 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
999 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1000 | /* qNan / infinity conversion */ | |
1001 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1002 | } else { | |
1003 | p.i = float64_to_int32(FT0, &env->fp_status); | |
e864cabd | 1004 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1005 | /* XXX: higher bits are not supposed to be significant. |
1006 | * to make tests easier, return the same as a real PowerPC 750 | |
1007 | */ | |
1008 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1009 | #endif |
7c58044c JM |
1010 | FT0 = p.d; |
1011 | } | |
9a64fbe4 FB |
1012 | } |
1013 | ||
1014 | void do_fctiwz (void) | |
1015 | { | |
1016 | union { | |
1017 | double d; | |
1018 | uint64_t i; | |
4ecc3190 FB |
1019 | } p; |
1020 | ||
7c58044c JM |
1021 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1022 | /* sNaN conversion */ | |
1023 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1024 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1025 | /* qNan / infinity conversion */ | |
1026 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1027 | } else { | |
1028 | p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); | |
e864cabd | 1029 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1030 | /* XXX: higher bits are not supposed to be significant. |
1031 | * to make tests easier, return the same as a real PowerPC 750 | |
1032 | */ | |
1033 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1034 | #endif |
7c58044c JM |
1035 | FT0 = p.d; |
1036 | } | |
9a64fbe4 FB |
1037 | } |
1038 | ||
426613db JM |
1039 | #if defined(TARGET_PPC64) |
1040 | void do_fcfid (void) | |
1041 | { | |
1042 | union { | |
1043 | double d; | |
1044 | uint64_t i; | |
1045 | } p; | |
1046 | ||
1047 | p.d = FT0; | |
1048 | FT0 = int64_to_float64(p.i, &env->fp_status); | |
1049 | } | |
1050 | ||
1051 | void do_fctid (void) | |
1052 | { | |
1053 | union { | |
1054 | double d; | |
1055 | uint64_t i; | |
1056 | } p; | |
1057 | ||
7c58044c JM |
1058 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1059 | /* sNaN conversion */ | |
1060 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1061 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1062 | /* qNan / infinity conversion */ | |
1063 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1064 | } else { | |
1065 | p.i = float64_to_int64(FT0, &env->fp_status); | |
1066 | FT0 = p.d; | |
1067 | } | |
426613db JM |
1068 | } |
1069 | ||
1070 | void do_fctidz (void) | |
1071 | { | |
1072 | union { | |
1073 | double d; | |
1074 | uint64_t i; | |
1075 | } p; | |
1076 | ||
7c58044c JM |
1077 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1078 | /* sNaN conversion */ | |
1079 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1080 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1081 | /* qNan / infinity conversion */ | |
1082 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1083 | } else { | |
1084 | p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status); | |
1085 | FT0 = p.d; | |
1086 | } | |
426613db JM |
1087 | } |
1088 | ||
1089 | #endif | |
1090 | ||
b068d6a7 | 1091 | static always_inline void do_fri (int rounding_mode) |
d7e4b87e | 1092 | { |
7c58044c JM |
1093 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1094 | /* sNaN round */ | |
1095 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1096 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1097 | /* qNan / infinity round */ | |
1098 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1099 | } else { | |
1100 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1101 | FT0 = float64_round_to_int(FT0, &env->fp_status); | |
1102 | /* Restore rounding mode from FPSCR */ | |
1103 | fpscr_set_rounding_mode(); | |
1104 | } | |
d7e4b87e JM |
1105 | } |
1106 | ||
1107 | void do_frin (void) | |
1108 | { | |
1109 | do_fri(float_round_nearest_even); | |
1110 | } | |
1111 | ||
1112 | void do_friz (void) | |
1113 | { | |
1114 | do_fri(float_round_to_zero); | |
1115 | } | |
1116 | ||
1117 | void do_frip (void) | |
1118 | { | |
1119 | do_fri(float_round_up); | |
1120 | } | |
1121 | ||
1122 | void do_frim (void) | |
1123 | { | |
1124 | do_fri(float_round_down); | |
1125 | } | |
1126 | ||
e864cabd JM |
1127 | #if USE_PRECISE_EMULATION |
1128 | void do_fmadd (void) | |
1129 | { | |
7c58044c JM |
1130 | if (unlikely(float64_is_signaling_nan(FT0) || |
1131 | float64_is_signaling_nan(FT1) || | |
1132 | float64_is_signaling_nan(FT2))) { | |
1133 | /* sNaN operation */ | |
1134 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1135 | } else { | |
e864cabd | 1136 | #ifdef FLOAT128 |
7c58044c JM |
1137 | /* This is the way the PowerPC specification defines it */ |
1138 | float128 ft0_128, ft1_128; | |
1139 | ||
1140 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1141 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1142 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1143 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1144 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1145 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1146 | #else |
7c58044c JM |
1147 | /* This is OK on x86 hosts */ |
1148 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd | 1149 | #endif |
7c58044c | 1150 | } |
e864cabd JM |
1151 | } |
1152 | ||
1153 | void do_fmsub (void) | |
1154 | { | |
7c58044c JM |
1155 | if (unlikely(float64_is_signaling_nan(FT0) || |
1156 | float64_is_signaling_nan(FT1) || | |
1157 | float64_is_signaling_nan(FT2))) { | |
1158 | /* sNaN operation */ | |
1159 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1160 | } else { | |
e864cabd | 1161 | #ifdef FLOAT128 |
7c58044c JM |
1162 | /* This is the way the PowerPC specification defines it */ |
1163 | float128 ft0_128, ft1_128; | |
1164 | ||
1165 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1166 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1167 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1168 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1169 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1170 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1171 | #else |
7c58044c JM |
1172 | /* This is OK on x86 hosts */ |
1173 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd | 1174 | #endif |
7c58044c | 1175 | } |
e864cabd JM |
1176 | } |
1177 | #endif /* USE_PRECISE_EMULATION */ | |
1178 | ||
4b3686fa FB |
1179 | void do_fnmadd (void) |
1180 | { | |
7c58044c JM |
1181 | if (unlikely(float64_is_signaling_nan(FT0) || |
1182 | float64_is_signaling_nan(FT1) || | |
1183 | float64_is_signaling_nan(FT2))) { | |
1184 | /* sNaN operation */ | |
1185 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1186 | } else { | |
e864cabd JM |
1187 | #if USE_PRECISE_EMULATION |
1188 | #ifdef FLOAT128 | |
7c58044c JM |
1189 | /* This is the way the PowerPC specification defines it */ |
1190 | float128 ft0_128, ft1_128; | |
1191 | ||
1192 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1193 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1194 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1195 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1196 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1197 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1198 | #else |
7c58044c JM |
1199 | /* This is OK on x86 hosts */ |
1200 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd JM |
1201 | #endif |
1202 | #else | |
7c58044c JM |
1203 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1204 | FT0 = float64_add(FT0, FT2, &env->fp_status); | |
e864cabd | 1205 | #endif |
7c58044c JM |
1206 | if (likely(!isnan(FT0))) |
1207 | FT0 = float64_chs(FT0); | |
1208 | } | |
4b3686fa FB |
1209 | } |
1210 | ||
1211 | void do_fnmsub (void) | |
1212 | { | |
7c58044c JM |
1213 | if (unlikely(float64_is_signaling_nan(FT0) || |
1214 | float64_is_signaling_nan(FT1) || | |
1215 | float64_is_signaling_nan(FT2))) { | |
1216 | /* sNaN operation */ | |
1217 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1218 | } else { | |
e864cabd JM |
1219 | #if USE_PRECISE_EMULATION |
1220 | #ifdef FLOAT128 | |
7c58044c JM |
1221 | /* This is the way the PowerPC specification defines it */ |
1222 | float128 ft0_128, ft1_128; | |
1223 | ||
1224 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1225 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1226 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1227 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1228 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1229 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1230 | #else |
7c58044c JM |
1231 | /* This is OK on x86 hosts */ |
1232 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd JM |
1233 | #endif |
1234 | #else | |
7c58044c JM |
1235 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1236 | FT0 = float64_sub(FT0, FT2, &env->fp_status); | |
e864cabd | 1237 | #endif |
7c58044c JM |
1238 | if (likely(!isnan(FT0))) |
1239 | FT0 = float64_chs(FT0); | |
1240 | } | |
1ef59d0a FB |
1241 | } |
1242 | ||
7c58044c JM |
1243 | #if USE_PRECISE_EMULATION |
1244 | void do_frsp (void) | |
1245 | { | |
1246 | if (unlikely(float64_is_signaling_nan(FT0))) { | |
1247 | /* sNaN square root */ | |
1248 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1249 | } else { | |
1250 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1251 | } | |
1252 | } | |
1253 | #endif /* USE_PRECISE_EMULATION */ | |
1254 | ||
9a64fbe4 FB |
1255 | void do_fsqrt (void) |
1256 | { | |
7c58044c JM |
1257 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1258 | /* sNaN square root */ | |
1259 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1260 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1261 | /* Square root of a negative nonzero number */ | |
1262 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1263 | } else { | |
1264 | FT0 = float64_sqrt(FT0, &env->fp_status); | |
1265 | } | |
9a64fbe4 FB |
1266 | } |
1267 | ||
d7e4b87e JM |
1268 | void do_fre (void) |
1269 | { | |
1270 | union { | |
1271 | double d; | |
1272 | uint64_t i; | |
1273 | } p; | |
1274 | ||
7c58044c JM |
1275 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1276 | /* sNaN reciprocal */ | |
1277 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1278 | } else if (unlikely(iszero(FT0))) { | |
1279 | /* Zero reciprocal */ | |
1280 | float_zero_divide_excp(); | |
1281 | } else if (likely(isnormal(FT0))) { | |
d7e4b87e JM |
1282 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1283 | } else { | |
1284 | p.d = FT0; | |
1285 | if (p.i == 0x8000000000000000ULL) { | |
1286 | p.i = 0xFFF0000000000000ULL; | |
1287 | } else if (p.i == 0x0000000000000000ULL) { | |
1288 | p.i = 0x7FF0000000000000ULL; | |
1289 | } else if (isnan(FT0)) { | |
1290 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1291 | } else if (fpisneg(FT0)) { |
d7e4b87e JM |
1292 | p.i = 0x8000000000000000ULL; |
1293 | } else { | |
1294 | p.i = 0x0000000000000000ULL; | |
1295 | } | |
1296 | FT0 = p.d; | |
1297 | } | |
1298 | } | |
1299 | ||
9a64fbe4 FB |
1300 | void do_fres (void) |
1301 | { | |
4ecc3190 FB |
1302 | union { |
1303 | double d; | |
1304 | uint64_t i; | |
1305 | } p; | |
1306 | ||
7c58044c JM |
1307 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1308 | /* sNaN reciprocal */ | |
1309 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1310 | } else if (unlikely(iszero(FT0))) { | |
1311 | /* Zero reciprocal */ | |
1312 | float_zero_divide_excp(); | |
1313 | } else if (likely(isnormal(FT0))) { | |
e864cabd JM |
1314 | #if USE_PRECISE_EMULATION |
1315 | FT0 = float64_div(1.0, FT0, &env->fp_status); | |
1316 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1317 | #else | |
76a66253 | 1318 | FT0 = float32_div(1.0, FT0, &env->fp_status); |
e864cabd | 1319 | #endif |
4ecc3190 FB |
1320 | } else { |
1321 | p.d = FT0; | |
1322 | if (p.i == 0x8000000000000000ULL) { | |
1323 | p.i = 0xFFF0000000000000ULL; | |
1324 | } else if (p.i == 0x0000000000000000ULL) { | |
1325 | p.i = 0x7FF0000000000000ULL; | |
1326 | } else if (isnan(FT0)) { | |
1327 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1328 | } else if (fpisneg(FT0)) { |
4ecc3190 FB |
1329 | p.i = 0x8000000000000000ULL; |
1330 | } else { | |
1331 | p.i = 0x0000000000000000ULL; | |
1332 | } | |
1333 | FT0 = p.d; | |
1334 | } | |
9a64fbe4 FB |
1335 | } |
1336 | ||
4ecc3190 | 1337 | void do_frsqrte (void) |
9a64fbe4 | 1338 | { |
4ecc3190 FB |
1339 | union { |
1340 | double d; | |
1341 | uint64_t i; | |
1342 | } p; | |
1343 | ||
7c58044c JM |
1344 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1345 | /* sNaN reciprocal square root */ | |
1346 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1347 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1348 | /* Reciprocal square root of a negative nonzero number */ | |
1349 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1350 | } else if (likely(isnormal(FT0))) { | |
fdabc366 FB |
1351 | FT0 = float64_sqrt(FT0, &env->fp_status); |
1352 | FT0 = float32_div(1.0, FT0, &env->fp_status); | |
4ecc3190 FB |
1353 | } else { |
1354 | p.d = FT0; | |
1355 | if (p.i == 0x8000000000000000ULL) { | |
1356 | p.i = 0xFFF0000000000000ULL; | |
1357 | } else if (p.i == 0x0000000000000000ULL) { | |
1358 | p.i = 0x7FF0000000000000ULL; | |
1359 | } else if (isnan(FT0)) { | |
7c58044c JM |
1360 | p.i |= 0x000FFFFFFFFFFFFFULL; |
1361 | } else if (fpisneg(FT0)) { | |
4ecc3190 FB |
1362 | p.i = 0x7FF8000000000000ULL; |
1363 | } else { | |
1364 | p.i = 0x0000000000000000ULL; | |
1365 | } | |
1366 | FT0 = p.d; | |
1367 | } | |
9a64fbe4 FB |
1368 | } |
1369 | ||
1370 | void do_fsel (void) | |
1371 | { | |
7c58044c | 1372 | if (!fpisneg(FT0) || iszero(FT0)) |
9a64fbe4 | 1373 | FT0 = FT1; |
4ecc3190 FB |
1374 | else |
1375 | FT0 = FT2; | |
9a64fbe4 FB |
1376 | } |
1377 | ||
1378 | void do_fcmpu (void) | |
1379 | { | |
7c58044c JM |
1380 | if (unlikely(float64_is_signaling_nan(FT0) || |
1381 | float64_is_signaling_nan(FT1))) { | |
1382 | /* sNaN comparison */ | |
1383 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1384 | } else { | |
fdabc366 FB |
1385 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1386 | T0 = 0x08UL; | |
1387 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1388 | T0 = 0x04UL; | |
1389 | } else { | |
1390 | T0 = 0x02UL; | |
1391 | } | |
9a64fbe4 | 1392 | } |
7c58044c JM |
1393 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1394 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1395 | } |
1396 | ||
1397 | void do_fcmpo (void) | |
1398 | { | |
7c58044c JM |
1399 | if (unlikely(float64_is_nan(FT0) || |
1400 | float64_is_nan(FT1))) { | |
1401 | if (float64_is_signaling_nan(FT0) || | |
1402 | float64_is_signaling_nan(FT1)) { | |
1403 | /* sNaN comparison */ | |
1404 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1405 | POWERPC_EXCP_FP_VXVC); | |
1406 | } else { | |
1407 | /* qNaN comparison */ | |
1408 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1409 | } | |
1410 | } else { | |
fdabc366 FB |
1411 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1412 | T0 = 0x08UL; | |
1413 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1414 | T0 = 0x04UL; | |
1415 | } else { | |
1416 | T0 = 0x02UL; | |
1417 | } | |
9a64fbe4 | 1418 | } |
7c58044c JM |
1419 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1420 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1421 | } |
1422 | ||
76a66253 | 1423 | #if !defined (CONFIG_USER_ONLY) |
6b80055d | 1424 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
0411a972 JM |
1425 | |
1426 | void do_store_msr (void) | |
1427 | { | |
a4f30719 | 1428 | T0 = hreg_store_msr(env, T0, 0); |
0411a972 JM |
1429 | if (T0 != 0) { |
1430 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1431 | do_raise_exception(T0); | |
1432 | } | |
1433 | } | |
1434 | ||
1435 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, | |
1436 | target_ulong msrm, int keep_msrh) | |
9a64fbe4 | 1437 | { |
426613db | 1438 | #if defined(TARGET_PPC64) |
0411a972 JM |
1439 | if (msr & (1ULL << MSR_SF)) { |
1440 | nip = (uint64_t)nip; | |
1441 | msr &= (uint64_t)msrm; | |
a42bd6cc | 1442 | } else { |
0411a972 JM |
1443 | nip = (uint32_t)nip; |
1444 | msr = (uint32_t)(msr & msrm); | |
1445 | if (keep_msrh) | |
1446 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
a42bd6cc | 1447 | } |
426613db | 1448 | #else |
0411a972 JM |
1449 | nip = (uint32_t)nip; |
1450 | msr &= (uint32_t)msrm; | |
426613db | 1451 | #endif |
0411a972 JM |
1452 | /* XXX: beware: this is false if VLE is supported */ |
1453 | env->nip = nip & ~((target_ulong)0x00000003); | |
a4f30719 | 1454 | hreg_store_msr(env, msr, 1); |
fdabc366 | 1455 | #if defined (DEBUG_OP) |
0411a972 | 1456 | cpu_dump_rfi(env->nip, env->msr); |
fdabc366 | 1457 | #endif |
0411a972 JM |
1458 | /* No need to raise an exception here, |
1459 | * as rfi is always the last insn of a TB | |
1460 | */ | |
fdabc366 | 1461 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
9a64fbe4 | 1462 | } |
d9bce9d9 | 1463 | |
0411a972 JM |
1464 | void do_rfi (void) |
1465 | { | |
1466 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1467 | ~((target_ulong)0xFFFF0000), 1); | |
1468 | } | |
1469 | ||
d9bce9d9 | 1470 | #if defined(TARGET_PPC64) |
426613db JM |
1471 | void do_rfid (void) |
1472 | { | |
0411a972 JM |
1473 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1474 | ~((target_ulong)0xFFFF0000), 0); | |
d9bce9d9 | 1475 | } |
7863667f | 1476 | |
be147d08 JM |
1477 | void do_hrfid (void) |
1478 | { | |
0411a972 JM |
1479 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1480 | ~((target_ulong)0xFFFF0000), 0); | |
be147d08 JM |
1481 | } |
1482 | #endif | |
76a66253 | 1483 | #endif |
9a64fbe4 | 1484 | |
76a66253 | 1485 | void do_tw (int flags) |
9a64fbe4 | 1486 | { |
d9bce9d9 JM |
1487 | if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1488 | ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || | |
1489 | ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || | |
1490 | ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || | |
a42bd6cc | 1491 | ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
e1833e1f | 1492 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
a42bd6cc | 1493 | } |
9a64fbe4 FB |
1494 | } |
1495 | ||
d9bce9d9 JM |
1496 | #if defined(TARGET_PPC64) |
1497 | void do_td (int flags) | |
1498 | { | |
1499 | if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || | |
1500 | ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || | |
1501 | ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || | |
1502 | ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || | |
1503 | ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) | |
e1833e1f | 1504 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
d9bce9d9 JM |
1505 | } |
1506 | #endif | |
1507 | ||
fdabc366 | 1508 | /*****************************************************************************/ |
76a66253 JM |
1509 | /* PowerPC 601 specific instructions (POWER bridge) */ |
1510 | void do_POWER_abso (void) | |
9a64fbe4 | 1511 | { |
9c7e37e7 | 1512 | if ((int32_t)T0 == INT32_MIN) { |
76a66253 JM |
1513 | T0 = INT32_MAX; |
1514 | xer_ov = 1; | |
9c7e37e7 | 1515 | } else if ((int32_t)T0 < 0) { |
76a66253 JM |
1516 | T0 = -T0; |
1517 | xer_ov = 0; | |
9c7e37e7 JM |
1518 | } else { |
1519 | xer_ov = 0; | |
76a66253 | 1520 | } |
9c7e37e7 | 1521 | xer_so |= xer_ov; |
9a64fbe4 FB |
1522 | } |
1523 | ||
76a66253 | 1524 | void do_POWER_clcs (void) |
9a64fbe4 | 1525 | { |
76a66253 JM |
1526 | switch (T0) { |
1527 | case 0x0CUL: | |
1528 | /* Instruction cache line size */ | |
d63001d1 | 1529 | T0 = env->icache_line_size; |
76a66253 JM |
1530 | break; |
1531 | case 0x0DUL: | |
1532 | /* Data cache line size */ | |
d63001d1 | 1533 | T0 = env->dcache_line_size; |
76a66253 JM |
1534 | break; |
1535 | case 0x0EUL: | |
1536 | /* Minimum cache line size */ | |
d63001d1 JM |
1537 | T0 = env->icache_line_size < env->dcache_line_size ? |
1538 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1539 | break; |
1540 | case 0x0FUL: | |
1541 | /* Maximum cache line size */ | |
d63001d1 JM |
1542 | T0 = env->icache_line_size > env->dcache_line_size ? |
1543 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1544 | break; |
1545 | default: | |
1546 | /* Undefined */ | |
1547 | break; | |
1548 | } | |
1549 | } | |
1550 | ||
1551 | void do_POWER_div (void) | |
1552 | { | |
1553 | uint64_t tmp; | |
1554 | ||
6f2d8978 JM |
1555 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1556 | (int32_t)T1 == 0) { | |
1557 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1558 | env->spr[SPR_MQ] = 0; |
1559 | } else { | |
1560 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1561 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1562 | T0 = tmp / (int32_t)T1; |
76a66253 JM |
1563 | } |
1564 | } | |
1565 | ||
1566 | void do_POWER_divo (void) | |
1567 | { | |
1568 | int64_t tmp; | |
1569 | ||
6f2d8978 JM |
1570 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1571 | (int32_t)T1 == 0) { | |
1572 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1573 | env->spr[SPR_MQ] = 0; |
1574 | xer_ov = 1; | |
76a66253 JM |
1575 | } else { |
1576 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1577 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1578 | tmp /= (int32_t)T1; |
76a66253 JM |
1579 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
1580 | xer_ov = 1; | |
76a66253 JM |
1581 | } else { |
1582 | xer_ov = 0; | |
1583 | } | |
1584 | T0 = tmp; | |
1585 | } | |
6f2d8978 | 1586 | xer_so |= xer_ov; |
76a66253 JM |
1587 | } |
1588 | ||
1589 | void do_POWER_divs (void) | |
1590 | { | |
6f2d8978 JM |
1591 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1592 | (int32_t)T1 == 0) { | |
1593 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1594 | env->spr[SPR_MQ] = 0; |
1595 | } else { | |
1596 | env->spr[SPR_MQ] = T0 % T1; | |
d9bce9d9 | 1597 | T0 = (int32_t)T0 / (int32_t)T1; |
76a66253 JM |
1598 | } |
1599 | } | |
1600 | ||
1601 | void do_POWER_divso (void) | |
1602 | { | |
6f2d8978 JM |
1603 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1604 | (int32_t)T1 == 0) { | |
1605 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1606 | env->spr[SPR_MQ] = 0; |
1607 | xer_ov = 1; | |
76a66253 | 1608 | } else { |
d9bce9d9 JM |
1609 | T0 = (int32_t)T0 / (int32_t)T1; |
1610 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
76a66253 JM |
1611 | xer_ov = 0; |
1612 | } | |
6f2d8978 | 1613 | xer_so |= xer_ov; |
76a66253 JM |
1614 | } |
1615 | ||
1616 | void do_POWER_dozo (void) | |
1617 | { | |
d9bce9d9 | 1618 | if ((int32_t)T1 > (int32_t)T0) { |
76a66253 JM |
1619 | T2 = T0; |
1620 | T0 = T1 - T0; | |
d9bce9d9 JM |
1621 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
1622 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
76a66253 | 1623 | xer_ov = 1; |
966439a6 | 1624 | xer_so = 1; |
76a66253 JM |
1625 | } else { |
1626 | xer_ov = 0; | |
1627 | } | |
1628 | } else { | |
1629 | T0 = 0; | |
1630 | xer_ov = 0; | |
1631 | } | |
1632 | } | |
1633 | ||
1634 | void do_POWER_maskg (void) | |
1635 | { | |
1636 | uint32_t ret; | |
1637 | ||
d9bce9d9 | 1638 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
6f2d8978 | 1639 | ret = UINT32_MAX; |
76a66253 | 1640 | } else { |
6f2d8978 JM |
1641 | ret = (UINT32_MAX >> ((uint32_t)T0)) ^ |
1642 | ((UINT32_MAX >> ((uint32_t)T1)) >> 1); | |
d9bce9d9 | 1643 | if ((uint32_t)T0 > (uint32_t)T1) |
76a66253 JM |
1644 | ret = ~ret; |
1645 | } | |
1646 | T0 = ret; | |
1647 | } | |
1648 | ||
1649 | void do_POWER_mulo (void) | |
1650 | { | |
1651 | uint64_t tmp; | |
1652 | ||
1653 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1654 | env->spr[SPR_MQ] = tmp >> 32; | |
1655 | T0 = tmp; | |
1656 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1657 | xer_ov = 1; | |
1658 | xer_so = 1; | |
1659 | } else { | |
1660 | xer_ov = 0; | |
1661 | } | |
1662 | } | |
1663 | ||
1664 | #if !defined (CONFIG_USER_ONLY) | |
1665 | void do_POWER_rac (void) | |
1666 | { | |
76a66253 | 1667 | mmu_ctx_t ctx; |
faadf50e | 1668 | int nb_BATs; |
76a66253 JM |
1669 | |
1670 | /* We don't have to generate many instances of this instruction, | |
1671 | * as rac is supervisor only. | |
1672 | */ | |
faadf50e JM |
1673 | /* XXX: FIX THIS: Pretend we have no BAT */ |
1674 | nb_BATs = env->nb_BATs; | |
1675 | env->nb_BATs = 0; | |
1676 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
76a66253 | 1677 | T0 = ctx.raddr; |
faadf50e | 1678 | env->nb_BATs = nb_BATs; |
76a66253 JM |
1679 | } |
1680 | ||
1681 | void do_POWER_rfsvc (void) | |
1682 | { | |
0411a972 | 1683 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
76a66253 JM |
1684 | } |
1685 | ||
056401ea JM |
1686 | void do_store_hid0_601 (void) |
1687 | { | |
1688 | uint32_t hid0; | |
1689 | ||
1690 | hid0 = env->spr[SPR_HID0]; | |
1691 | if ((T0 ^ hid0) & 0x00000008) { | |
1692 | /* Change current endianness */ | |
1693 | env->hflags &= ~(1 << MSR_LE); | |
1694 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
1695 | env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); | |
1696 | env->hflags |= env->hflags_nmsr; | |
1697 | if (loglevel != 0) { | |
1698 | fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", | |
1699 | __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); | |
1700 | } | |
1701 | } | |
1702 | env->spr[SPR_HID0] = T0; | |
76a66253 JM |
1703 | } |
1704 | #endif | |
1705 | ||
1706 | /*****************************************************************************/ | |
1707 | /* 602 specific instructions */ | |
1708 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1709 | /* Real implementation uses a ROM table. Do the same */ | |
1710 | #define USE_MFROM_ROM_TABLE | |
1711 | void do_op_602_mfrom (void) | |
1712 | { | |
1713 | if (likely(T0 < 602)) { | |
d9bce9d9 | 1714 | #if defined(USE_MFROM_ROM_TABLE) |
76a66253 JM |
1715 | #include "mfrom_table.c" |
1716 | T0 = mfrom_ROM_table[T0]; | |
fdabc366 | 1717 | #else |
76a66253 JM |
1718 | double d; |
1719 | /* Extremly decomposed: | |
1720 | * -T0 / 256 | |
1721 | * T0 = 256 * log10(10 + 1.0) + 0.5 | |
1722 | */ | |
1723 | d = T0; | |
1724 | d = float64_div(d, 256, &env->fp_status); | |
1725 | d = float64_chs(d); | |
1726 | d = exp10(d); // XXX: use float emulation function | |
1727 | d = float64_add(d, 1.0, &env->fp_status); | |
1728 | d = log10(d); // XXX: use float emulation function | |
1729 | d = float64_mul(d, 256, &env->fp_status); | |
1730 | d = float64_add(d, 0.5, &env->fp_status); | |
1731 | T0 = float64_round_to_int(d, &env->fp_status); | |
fdabc366 | 1732 | #endif |
76a66253 JM |
1733 | } else { |
1734 | T0 = 0; | |
1735 | } | |
1736 | } | |
1737 | ||
1738 | /*****************************************************************************/ | |
1739 | /* Embedded PowerPC specific helpers */ | |
76a66253 JM |
1740 | void do_405_check_sat (void) |
1741 | { | |
d9bce9d9 JM |
1742 | if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1743 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1744 | /* Saturate result */ |
1745 | if (T2 >> 31) { | |
1746 | T0 = INT32_MIN; | |
1747 | } else { | |
1748 | T0 = INT32_MAX; | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | ||
a750fc0b JM |
1753 | /* XXX: to be improved to check access rights when in user-mode */ |
1754 | void do_load_dcr (void) | |
1755 | { | |
1756 | target_ulong val; | |
1757 | ||
1758 | if (unlikely(env->dcr_env == NULL)) { | |
1759 | if (loglevel != 0) { | |
1760 | fprintf(logfile, "No DCR environment\n"); | |
1761 | } | |
e1833e1f JM |
1762 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1763 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1764 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1765 | if (loglevel != 0) { | |
1766 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1767 | } | |
e1833e1f JM |
1768 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1769 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1770 | } else { |
1771 | T0 = val; | |
1772 | } | |
1773 | } | |
1774 | ||
1775 | void do_store_dcr (void) | |
1776 | { | |
1777 | if (unlikely(env->dcr_env == NULL)) { | |
1778 | if (loglevel != 0) { | |
1779 | fprintf(logfile, "No DCR environment\n"); | |
1780 | } | |
e1833e1f JM |
1781 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1782 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1783 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1784 | if (loglevel != 0) { | |
1785 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1786 | } | |
e1833e1f JM |
1787 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1788 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1789 | } |
1790 | } | |
1791 | ||
76a66253 | 1792 | #if !defined(CONFIG_USER_ONLY) |
a42bd6cc | 1793 | void do_40x_rfci (void) |
76a66253 | 1794 | { |
0411a972 JM |
1795 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1796 | ~((target_ulong)0xFFFF0000), 0); | |
a42bd6cc JM |
1797 | } |
1798 | ||
1799 | void do_rfci (void) | |
1800 | { | |
0411a972 JM |
1801 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1802 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1803 | } |
1804 | ||
1805 | void do_rfdi (void) | |
1806 | { | |
0411a972 JM |
1807 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1808 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1809 | } |
1810 | ||
1811 | void do_rfmci (void) | |
1812 | { | |
0411a972 JM |
1813 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1814 | ~((target_ulong)0x3FFF0000), 0); | |
76a66253 JM |
1815 | } |
1816 | ||
76a66253 JM |
1817 | void do_load_403_pb (int num) |
1818 | { | |
1819 | T0 = env->pb[num]; | |
1820 | } | |
1821 | ||
1822 | void do_store_403_pb (int num) | |
1823 | { | |
1824 | if (likely(env->pb[num] != T0)) { | |
1825 | env->pb[num] = T0; | |
1826 | /* Should be optimized */ | |
1827 | tlb_flush(env, 1); | |
1828 | } | |
1829 | } | |
1830 | #endif | |
1831 | ||
1832 | /* 440 specific */ | |
1833 | void do_440_dlmzb (void) | |
1834 | { | |
1835 | target_ulong mask; | |
1836 | int i; | |
1837 | ||
1838 | i = 1; | |
1839 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1840 | if ((T0 & mask) == 0) | |
1841 | goto done; | |
1842 | i++; | |
1843 | } | |
1844 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1845 | if ((T1 & mask) == 0) | |
1846 | break; | |
1847 | i++; | |
1848 | } | |
1849 | done: | |
1850 | T0 = i; | |
fdabc366 FB |
1851 | } |
1852 | ||
0487d6a8 JM |
1853 | /* SPE extension helpers */ |
1854 | /* Use a table to make this quicker */ | |
1855 | static uint8_t hbrev[16] = { | |
1856 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1857 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1858 | }; | |
1859 | ||
b068d6a7 | 1860 | static always_inline uint8_t byte_reverse (uint8_t val) |
0487d6a8 JM |
1861 | { |
1862 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1863 | } | |
1864 | ||
b068d6a7 | 1865 | static always_inline uint32_t word_reverse (uint32_t val) |
0487d6a8 JM |
1866 | { |
1867 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1868 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1869 | } | |
1870 | ||
3cd7d1dd | 1871 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
0487d6a8 JM |
1872 | void do_brinc (void) |
1873 | { | |
1874 | uint32_t a, b, d, mask; | |
1875 | ||
3cd7d1dd JM |
1876 | mask = UINT32_MAX >> (32 - MASKBITS); |
1877 | a = T0 & mask; | |
1878 | b = T1 & mask; | |
1879 | d = word_reverse(1 + word_reverse(a | ~b)); | |
1880 | T0 = (T0 & ~mask) | (d & b); | |
0487d6a8 JM |
1881 | } |
1882 | ||
1883 | #define DO_SPE_OP2(name) \ | |
1884 | void do_ev##name (void) \ | |
1885 | { \ | |
1886 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ | |
1887 | (uint64_t)_do_e##name(T0_64, T1_64); \ | |
1888 | } | |
1889 | ||
1890 | #define DO_SPE_OP1(name) \ | |
1891 | void do_ev##name (void) \ | |
1892 | { \ | |
1893 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ | |
1894 | (uint64_t)_do_e##name(T0_64); \ | |
1895 | } | |
1896 | ||
1897 | /* Fixed-point vector arithmetic */ | |
b068d6a7 | 1898 | static always_inline uint32_t _do_eabs (uint32_t val) |
0487d6a8 | 1899 | { |
9c7e37e7 JM |
1900 | if ((val & 0x80000000) && val != 0x80000000) |
1901 | val -= val; | |
0487d6a8 JM |
1902 | |
1903 | return val; | |
1904 | } | |
1905 | ||
b068d6a7 | 1906 | static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1907 | { |
1908 | return op1 + op2; | |
1909 | } | |
1910 | ||
b068d6a7 | 1911 | static always_inline int _do_ecntlsw (uint32_t val) |
0487d6a8 JM |
1912 | { |
1913 | if (val & 0x80000000) | |
603fccce | 1914 | return clz32(~val); |
0487d6a8 | 1915 | else |
603fccce | 1916 | return clz32(val); |
0487d6a8 JM |
1917 | } |
1918 | ||
b068d6a7 | 1919 | static always_inline int _do_ecntlzw (uint32_t val) |
0487d6a8 | 1920 | { |
603fccce | 1921 | return clz32(val); |
0487d6a8 JM |
1922 | } |
1923 | ||
b068d6a7 | 1924 | static always_inline uint32_t _do_eneg (uint32_t val) |
0487d6a8 JM |
1925 | { |
1926 | if (val != 0x80000000) | |
9c7e37e7 | 1927 | val -= val; |
0487d6a8 JM |
1928 | |
1929 | return val; | |
1930 | } | |
1931 | ||
b068d6a7 | 1932 | static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1933 | { |
1934 | return rotl32(op1, op2); | |
1935 | } | |
1936 | ||
b068d6a7 | 1937 | static always_inline uint32_t _do_erndw (uint32_t val) |
0487d6a8 JM |
1938 | { |
1939 | return (val + 0x000080000000) & 0xFFFF0000; | |
1940 | } | |
1941 | ||
b068d6a7 | 1942 | static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1943 | { |
1944 | /* No error here: 6 bits are used */ | |
1945 | return op1 << (op2 & 0x3F); | |
1946 | } | |
1947 | ||
b068d6a7 | 1948 | static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
0487d6a8 JM |
1949 | { |
1950 | /* No error here: 6 bits are used */ | |
1951 | return op1 >> (op2 & 0x3F); | |
1952 | } | |
1953 | ||
b068d6a7 | 1954 | static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1955 | { |
1956 | /* No error here: 6 bits are used */ | |
1957 | return op1 >> (op2 & 0x3F); | |
1958 | } | |
1959 | ||
b068d6a7 | 1960 | static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1961 | { |
1962 | return op2 - op1; | |
1963 | } | |
1964 | ||
1965 | /* evabs */ | |
1966 | DO_SPE_OP1(abs); | |
1967 | /* evaddw */ | |
1968 | DO_SPE_OP2(addw); | |
1969 | /* evcntlsw */ | |
1970 | DO_SPE_OP1(cntlsw); | |
1971 | /* evcntlzw */ | |
1972 | DO_SPE_OP1(cntlzw); | |
1973 | /* evneg */ | |
1974 | DO_SPE_OP1(neg); | |
1975 | /* evrlw */ | |
1976 | DO_SPE_OP2(rlw); | |
1977 | /* evrnd */ | |
1978 | DO_SPE_OP1(rndw); | |
1979 | /* evslw */ | |
1980 | DO_SPE_OP2(slw); | |
1981 | /* evsrws */ | |
1982 | DO_SPE_OP2(srws); | |
1983 | /* evsrwu */ | |
1984 | DO_SPE_OP2(srwu); | |
1985 | /* evsubfw */ | |
1986 | DO_SPE_OP2(subfw); | |
1987 | ||
1988 | /* evsel is a little bit more complicated... */ | |
b068d6a7 | 1989 | static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
0487d6a8 JM |
1990 | { |
1991 | if (n) | |
1992 | return op1; | |
1993 | else | |
1994 | return op2; | |
1995 | } | |
1996 | ||
1997 | void do_evsel (void) | |
1998 | { | |
1999 | T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | | |
2000 | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); | |
2001 | } | |
2002 | ||
2003 | /* Fixed-point vector comparisons */ | |
2004 | #define DO_SPE_CMP(name) \ | |
2005 | void do_ev##name (void) \ | |
2006 | { \ | |
2007 | T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ | |
2008 | T1_64 >> 32) << 32, \ | |
2009 | _do_e##name(T0_64, T1_64)); \ | |
2010 | } | |
2011 | ||
b068d6a7 | 2012 | static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
0487d6a8 JM |
2013 | { |
2014 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
2015 | } | |
b068d6a7 | 2016 | static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2017 | { |
2018 | return op1 == op2 ? 1 : 0; | |
2019 | } | |
2020 | ||
b068d6a7 | 2021 | static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2022 | { |
2023 | return op1 > op2 ? 1 : 0; | |
2024 | } | |
2025 | ||
b068d6a7 | 2026 | static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2027 | { |
2028 | return op1 > op2 ? 1 : 0; | |
2029 | } | |
2030 | ||
b068d6a7 | 2031 | static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2032 | { |
2033 | return op1 < op2 ? 1 : 0; | |
2034 | } | |
2035 | ||
b068d6a7 | 2036 | static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2037 | { |
2038 | return op1 < op2 ? 1 : 0; | |
2039 | } | |
2040 | ||
2041 | /* evcmpeq */ | |
2042 | DO_SPE_CMP(cmpeq); | |
2043 | /* evcmpgts */ | |
2044 | DO_SPE_CMP(cmpgts); | |
2045 | /* evcmpgtu */ | |
2046 | DO_SPE_CMP(cmpgtu); | |
2047 | /* evcmplts */ | |
2048 | DO_SPE_CMP(cmplts); | |
2049 | /* evcmpltu */ | |
2050 | DO_SPE_CMP(cmpltu); | |
2051 | ||
2052 | /* Single precision floating-point conversions from/to integer */ | |
b068d6a7 | 2053 | static always_inline uint32_t _do_efscfsi (int32_t val) |
0487d6a8 JM |
2054 | { |
2055 | union { | |
2056 | uint32_t u; | |
2057 | float32 f; | |
2058 | } u; | |
2059 | ||
2060 | u.f = int32_to_float32(val, &env->spe_status); | |
2061 | ||
2062 | return u.u; | |
2063 | } | |
2064 | ||
b068d6a7 | 2065 | static always_inline uint32_t _do_efscfui (uint32_t val) |
0487d6a8 JM |
2066 | { |
2067 | union { | |
2068 | uint32_t u; | |
2069 | float32 f; | |
2070 | } u; | |
2071 | ||
2072 | u.f = uint32_to_float32(val, &env->spe_status); | |
2073 | ||
2074 | return u.u; | |
2075 | } | |
2076 | ||
b068d6a7 | 2077 | static always_inline int32_t _do_efsctsi (uint32_t val) |
0487d6a8 JM |
2078 | { |
2079 | union { | |
2080 | int32_t u; | |
2081 | float32 f; | |
2082 | } u; | |
2083 | ||
2084 | u.u = val; | |
2085 | /* NaN are not treated the same way IEEE 754 does */ | |
2086 | if (unlikely(isnan(u.f))) | |
2087 | return 0; | |
2088 | ||
2089 | return float32_to_int32(u.f, &env->spe_status); | |
2090 | } | |
2091 | ||
b068d6a7 | 2092 | static always_inline uint32_t _do_efsctui (uint32_t val) |
0487d6a8 JM |
2093 | { |
2094 | union { | |
2095 | int32_t u; | |
2096 | float32 f; | |
2097 | } u; | |
2098 | ||
2099 | u.u = val; | |
2100 | /* NaN are not treated the same way IEEE 754 does */ | |
2101 | if (unlikely(isnan(u.f))) | |
2102 | return 0; | |
2103 | ||
2104 | return float32_to_uint32(u.f, &env->spe_status); | |
2105 | } | |
2106 | ||
b068d6a7 | 2107 | static always_inline int32_t _do_efsctsiz (uint32_t val) |
0487d6a8 JM |
2108 | { |
2109 | union { | |
2110 | int32_t u; | |
2111 | float32 f; | |
2112 | } u; | |
2113 | ||
2114 | u.u = val; | |
2115 | /* NaN are not treated the same way IEEE 754 does */ | |
2116 | if (unlikely(isnan(u.f))) | |
2117 | return 0; | |
2118 | ||
2119 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2120 | } | |
2121 | ||
b068d6a7 | 2122 | static always_inline uint32_t _do_efsctuiz (uint32_t val) |
0487d6a8 JM |
2123 | { |
2124 | union { | |
2125 | int32_t u; | |
2126 | float32 f; | |
2127 | } u; | |
2128 | ||
2129 | u.u = val; | |
2130 | /* NaN are not treated the same way IEEE 754 does */ | |
2131 | if (unlikely(isnan(u.f))) | |
2132 | return 0; | |
2133 | ||
2134 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2135 | } | |
2136 | ||
2137 | void do_efscfsi (void) | |
2138 | { | |
2139 | T0_64 = _do_efscfsi(T0_64); | |
2140 | } | |
2141 | ||
2142 | void do_efscfui (void) | |
2143 | { | |
2144 | T0_64 = _do_efscfui(T0_64); | |
2145 | } | |
2146 | ||
2147 | void do_efsctsi (void) | |
2148 | { | |
2149 | T0_64 = _do_efsctsi(T0_64); | |
2150 | } | |
2151 | ||
2152 | void do_efsctui (void) | |
2153 | { | |
2154 | T0_64 = _do_efsctui(T0_64); | |
2155 | } | |
2156 | ||
2157 | void do_efsctsiz (void) | |
2158 | { | |
2159 | T0_64 = _do_efsctsiz(T0_64); | |
2160 | } | |
2161 | ||
2162 | void do_efsctuiz (void) | |
2163 | { | |
2164 | T0_64 = _do_efsctuiz(T0_64); | |
2165 | } | |
2166 | ||
2167 | /* Single precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2168 | static always_inline uint32_t _do_efscfsf (uint32_t val) |
0487d6a8 JM |
2169 | { |
2170 | union { | |
2171 | uint32_t u; | |
2172 | float32 f; | |
2173 | } u; | |
2174 | float32 tmp; | |
2175 | ||
2176 | u.f = int32_to_float32(val, &env->spe_status); | |
2177 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
2178 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2179 | ||
2180 | return u.u; | |
2181 | } | |
2182 | ||
b068d6a7 | 2183 | static always_inline uint32_t _do_efscfuf (uint32_t val) |
0487d6a8 JM |
2184 | { |
2185 | union { | |
2186 | uint32_t u; | |
2187 | float32 f; | |
2188 | } u; | |
2189 | float32 tmp; | |
2190 | ||
2191 | u.f = uint32_to_float32(val, &env->spe_status); | |
2192 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2193 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2194 | ||
2195 | return u.u; | |
2196 | } | |
2197 | ||
b068d6a7 | 2198 | static always_inline int32_t _do_efsctsf (uint32_t val) |
0487d6a8 JM |
2199 | { |
2200 | union { | |
2201 | int32_t u; | |
2202 | float32 f; | |
2203 | } u; | |
2204 | float32 tmp; | |
2205 | ||
2206 | u.u = val; | |
2207 | /* NaN are not treated the same way IEEE 754 does */ | |
2208 | if (unlikely(isnan(u.f))) | |
2209 | return 0; | |
2210 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2211 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2212 | ||
2213 | return float32_to_int32(u.f, &env->spe_status); | |
2214 | } | |
2215 | ||
b068d6a7 | 2216 | static always_inline uint32_t _do_efsctuf (uint32_t val) |
0487d6a8 JM |
2217 | { |
2218 | union { | |
2219 | int32_t u; | |
2220 | float32 f; | |
2221 | } u; | |
2222 | float32 tmp; | |
2223 | ||
2224 | u.u = val; | |
2225 | /* NaN are not treated the same way IEEE 754 does */ | |
2226 | if (unlikely(isnan(u.f))) | |
2227 | return 0; | |
2228 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2229 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2230 | ||
2231 | return float32_to_uint32(u.f, &env->spe_status); | |
2232 | } | |
2233 | ||
b068d6a7 | 2234 | static always_inline int32_t _do_efsctsfz (uint32_t val) |
0487d6a8 JM |
2235 | { |
2236 | union { | |
2237 | int32_t u; | |
2238 | float32 f; | |
2239 | } u; | |
2240 | float32 tmp; | |
2241 | ||
2242 | u.u = val; | |
2243 | /* NaN are not treated the same way IEEE 754 does */ | |
2244 | if (unlikely(isnan(u.f))) | |
2245 | return 0; | |
2246 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2247 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2248 | ||
2249 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2250 | } | |
2251 | ||
b068d6a7 | 2252 | static always_inline uint32_t _do_efsctufz (uint32_t val) |
0487d6a8 JM |
2253 | { |
2254 | union { | |
2255 | int32_t u; | |
2256 | float32 f; | |
2257 | } u; | |
2258 | float32 tmp; | |
2259 | ||
2260 | u.u = val; | |
2261 | /* NaN are not treated the same way IEEE 754 does */ | |
2262 | if (unlikely(isnan(u.f))) | |
2263 | return 0; | |
2264 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2265 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2266 | ||
2267 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2268 | } | |
2269 | ||
2270 | void do_efscfsf (void) | |
2271 | { | |
2272 | T0_64 = _do_efscfsf(T0_64); | |
2273 | } | |
2274 | ||
2275 | void do_efscfuf (void) | |
2276 | { | |
2277 | T0_64 = _do_efscfuf(T0_64); | |
2278 | } | |
2279 | ||
2280 | void do_efsctsf (void) | |
2281 | { | |
2282 | T0_64 = _do_efsctsf(T0_64); | |
2283 | } | |
2284 | ||
2285 | void do_efsctuf (void) | |
2286 | { | |
2287 | T0_64 = _do_efsctuf(T0_64); | |
2288 | } | |
2289 | ||
2290 | void do_efsctsfz (void) | |
2291 | { | |
2292 | T0_64 = _do_efsctsfz(T0_64); | |
2293 | } | |
2294 | ||
2295 | void do_efsctufz (void) | |
2296 | { | |
2297 | T0_64 = _do_efsctufz(T0_64); | |
2298 | } | |
2299 | ||
2300 | /* Double precision floating point helpers */ | |
b068d6a7 | 2301 | static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2302 | { |
2303 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2304 | return _do_efdtstlt(op1, op2); | |
2305 | } | |
2306 | ||
b068d6a7 | 2307 | static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2308 | { |
2309 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2310 | return _do_efdtstgt(op1, op2); | |
2311 | } | |
2312 | ||
b068d6a7 | 2313 | static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2314 | { |
2315 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2316 | return _do_efdtsteq(op1, op2); | |
2317 | } | |
2318 | ||
2319 | void do_efdcmplt (void) | |
2320 | { | |
2321 | T0 = _do_efdcmplt(T0_64, T1_64); | |
2322 | } | |
2323 | ||
2324 | void do_efdcmpgt (void) | |
2325 | { | |
2326 | T0 = _do_efdcmpgt(T0_64, T1_64); | |
2327 | } | |
2328 | ||
2329 | void do_efdcmpeq (void) | |
2330 | { | |
2331 | T0 = _do_efdcmpeq(T0_64, T1_64); | |
2332 | } | |
2333 | ||
2334 | /* Double precision floating-point conversion to/from integer */ | |
b068d6a7 | 2335 | static always_inline uint64_t _do_efdcfsi (int64_t val) |
0487d6a8 JM |
2336 | { |
2337 | union { | |
2338 | uint64_t u; | |
2339 | float64 f; | |
2340 | } u; | |
2341 | ||
2342 | u.f = int64_to_float64(val, &env->spe_status); | |
2343 | ||
2344 | return u.u; | |
2345 | } | |
2346 | ||
b068d6a7 | 2347 | static always_inline uint64_t _do_efdcfui (uint64_t val) |
0487d6a8 JM |
2348 | { |
2349 | union { | |
2350 | uint64_t u; | |
2351 | float64 f; | |
2352 | } u; | |
2353 | ||
2354 | u.f = uint64_to_float64(val, &env->spe_status); | |
2355 | ||
2356 | return u.u; | |
2357 | } | |
2358 | ||
b068d6a7 | 2359 | static always_inline int64_t _do_efdctsi (uint64_t val) |
0487d6a8 JM |
2360 | { |
2361 | union { | |
2362 | int64_t u; | |
2363 | float64 f; | |
2364 | } u; | |
2365 | ||
2366 | u.u = val; | |
2367 | /* NaN are not treated the same way IEEE 754 does */ | |
2368 | if (unlikely(isnan(u.f))) | |
2369 | return 0; | |
2370 | ||
2371 | return float64_to_int64(u.f, &env->spe_status); | |
2372 | } | |
2373 | ||
b068d6a7 | 2374 | static always_inline uint64_t _do_efdctui (uint64_t val) |
0487d6a8 JM |
2375 | { |
2376 | union { | |
2377 | int64_t u; | |
2378 | float64 f; | |
2379 | } u; | |
2380 | ||
2381 | u.u = val; | |
2382 | /* NaN are not treated the same way IEEE 754 does */ | |
2383 | if (unlikely(isnan(u.f))) | |
2384 | return 0; | |
2385 | ||
2386 | return float64_to_uint64(u.f, &env->spe_status); | |
2387 | } | |
2388 | ||
b068d6a7 | 2389 | static always_inline int64_t _do_efdctsiz (uint64_t val) |
0487d6a8 JM |
2390 | { |
2391 | union { | |
2392 | int64_t u; | |
2393 | float64 f; | |
2394 | } u; | |
2395 | ||
2396 | u.u = val; | |
2397 | /* NaN are not treated the same way IEEE 754 does */ | |
2398 | if (unlikely(isnan(u.f))) | |
2399 | return 0; | |
2400 | ||
2401 | return float64_to_int64_round_to_zero(u.f, &env->spe_status); | |
2402 | } | |
2403 | ||
b068d6a7 | 2404 | static always_inline uint64_t _do_efdctuiz (uint64_t val) |
0487d6a8 JM |
2405 | { |
2406 | union { | |
2407 | int64_t u; | |
2408 | float64 f; | |
2409 | } u; | |
2410 | ||
2411 | u.u = val; | |
2412 | /* NaN are not treated the same way IEEE 754 does */ | |
2413 | if (unlikely(isnan(u.f))) | |
2414 | return 0; | |
2415 | ||
2416 | return float64_to_uint64_round_to_zero(u.f, &env->spe_status); | |
2417 | } | |
2418 | ||
2419 | void do_efdcfsi (void) | |
2420 | { | |
2421 | T0_64 = _do_efdcfsi(T0_64); | |
2422 | } | |
2423 | ||
2424 | void do_efdcfui (void) | |
2425 | { | |
2426 | T0_64 = _do_efdcfui(T0_64); | |
2427 | } | |
2428 | ||
2429 | void do_efdctsi (void) | |
2430 | { | |
2431 | T0_64 = _do_efdctsi(T0_64); | |
2432 | } | |
2433 | ||
2434 | void do_efdctui (void) | |
2435 | { | |
2436 | T0_64 = _do_efdctui(T0_64); | |
2437 | } | |
2438 | ||
2439 | void do_efdctsiz (void) | |
2440 | { | |
2441 | T0_64 = _do_efdctsiz(T0_64); | |
2442 | } | |
2443 | ||
2444 | void do_efdctuiz (void) | |
2445 | { | |
2446 | T0_64 = _do_efdctuiz(T0_64); | |
2447 | } | |
2448 | ||
2449 | /* Double precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2450 | static always_inline uint64_t _do_efdcfsf (int64_t val) |
0487d6a8 JM |
2451 | { |
2452 | union { | |
2453 | uint64_t u; | |
2454 | float64 f; | |
2455 | } u; | |
2456 | float64 tmp; | |
2457 | ||
2458 | u.f = int32_to_float64(val, &env->spe_status); | |
2459 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2460 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2461 | ||
2462 | return u.u; | |
2463 | } | |
2464 | ||
b068d6a7 | 2465 | static always_inline uint64_t _do_efdcfuf (uint64_t val) |
0487d6a8 JM |
2466 | { |
2467 | union { | |
2468 | uint64_t u; | |
2469 | float64 f; | |
2470 | } u; | |
2471 | float64 tmp; | |
2472 | ||
2473 | u.f = uint32_to_float64(val, &env->spe_status); | |
2474 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2475 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2476 | ||
2477 | return u.u; | |
2478 | } | |
2479 | ||
b068d6a7 | 2480 | static always_inline int64_t _do_efdctsf (uint64_t val) |
0487d6a8 JM |
2481 | { |
2482 | union { | |
2483 | int64_t u; | |
2484 | float64 f; | |
2485 | } u; | |
2486 | float64 tmp; | |
2487 | ||
2488 | u.u = val; | |
2489 | /* NaN are not treated the same way IEEE 754 does */ | |
2490 | if (unlikely(isnan(u.f))) | |
2491 | return 0; | |
2492 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2493 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2494 | ||
2495 | return float64_to_int32(u.f, &env->spe_status); | |
2496 | } | |
2497 | ||
b068d6a7 | 2498 | static always_inline uint64_t _do_efdctuf (uint64_t val) |
0487d6a8 JM |
2499 | { |
2500 | union { | |
2501 | int64_t u; | |
2502 | float64 f; | |
2503 | } u; | |
2504 | float64 tmp; | |
2505 | ||
2506 | u.u = val; | |
2507 | /* NaN are not treated the same way IEEE 754 does */ | |
2508 | if (unlikely(isnan(u.f))) | |
2509 | return 0; | |
2510 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2511 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2512 | ||
2513 | return float64_to_uint32(u.f, &env->spe_status); | |
2514 | } | |
2515 | ||
b068d6a7 | 2516 | static always_inline int64_t _do_efdctsfz (uint64_t val) |
0487d6a8 JM |
2517 | { |
2518 | union { | |
2519 | int64_t u; | |
2520 | float64 f; | |
2521 | } u; | |
2522 | float64 tmp; | |
2523 | ||
2524 | u.u = val; | |
2525 | /* NaN are not treated the same way IEEE 754 does */ | |
2526 | if (unlikely(isnan(u.f))) | |
2527 | return 0; | |
2528 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2529 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2530 | ||
2531 | return float64_to_int32_round_to_zero(u.f, &env->spe_status); | |
2532 | } | |
2533 | ||
b068d6a7 | 2534 | static always_inline uint64_t _do_efdctufz (uint64_t val) |
0487d6a8 JM |
2535 | { |
2536 | union { | |
2537 | int64_t u; | |
2538 | float64 f; | |
2539 | } u; | |
2540 | float64 tmp; | |
2541 | ||
2542 | u.u = val; | |
2543 | /* NaN are not treated the same way IEEE 754 does */ | |
2544 | if (unlikely(isnan(u.f))) | |
2545 | return 0; | |
2546 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2547 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2548 | ||
2549 | return float64_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2550 | } | |
2551 | ||
2552 | void do_efdcfsf (void) | |
2553 | { | |
2554 | T0_64 = _do_efdcfsf(T0_64); | |
2555 | } | |
2556 | ||
2557 | void do_efdcfuf (void) | |
2558 | { | |
2559 | T0_64 = _do_efdcfuf(T0_64); | |
2560 | } | |
2561 | ||
2562 | void do_efdctsf (void) | |
2563 | { | |
2564 | T0_64 = _do_efdctsf(T0_64); | |
2565 | } | |
2566 | ||
2567 | void do_efdctuf (void) | |
2568 | { | |
2569 | T0_64 = _do_efdctuf(T0_64); | |
2570 | } | |
2571 | ||
2572 | void do_efdctsfz (void) | |
2573 | { | |
2574 | T0_64 = _do_efdctsfz(T0_64); | |
2575 | } | |
2576 | ||
2577 | void do_efdctufz (void) | |
2578 | { | |
2579 | T0_64 = _do_efdctufz(T0_64); | |
2580 | } | |
2581 | ||
2582 | /* Floating point conversion between single and double precision */ | |
b068d6a7 | 2583 | static always_inline uint32_t _do_efscfd (uint64_t val) |
0487d6a8 JM |
2584 | { |
2585 | union { | |
2586 | uint64_t u; | |
2587 | float64 f; | |
2588 | } u1; | |
2589 | union { | |
2590 | uint32_t u; | |
2591 | float32 f; | |
2592 | } u2; | |
2593 | ||
2594 | u1.u = val; | |
2595 | u2.f = float64_to_float32(u1.f, &env->spe_status); | |
2596 | ||
2597 | return u2.u; | |
2598 | } | |
2599 | ||
b068d6a7 | 2600 | static always_inline uint64_t _do_efdcfs (uint32_t val) |
0487d6a8 JM |
2601 | { |
2602 | union { | |
2603 | uint64_t u; | |
2604 | float64 f; | |
2605 | } u2; | |
2606 | union { | |
2607 | uint32_t u; | |
2608 | float32 f; | |
2609 | } u1; | |
2610 | ||
2611 | u1.u = val; | |
2612 | u2.f = float32_to_float64(u1.f, &env->spe_status); | |
2613 | ||
2614 | return u2.u; | |
2615 | } | |
2616 | ||
2617 | void do_efscfd (void) | |
2618 | { | |
2619 | T0_64 = _do_efscfd(T0_64); | |
2620 | } | |
2621 | ||
2622 | void do_efdcfs (void) | |
2623 | { | |
2624 | T0_64 = _do_efdcfs(T0_64); | |
2625 | } | |
2626 | ||
2627 | /* Single precision fixed-point vector arithmetic */ | |
2628 | /* evfsabs */ | |
2629 | DO_SPE_OP1(fsabs); | |
2630 | /* evfsnabs */ | |
2631 | DO_SPE_OP1(fsnabs); | |
2632 | /* evfsneg */ | |
2633 | DO_SPE_OP1(fsneg); | |
2634 | /* evfsadd */ | |
2635 | DO_SPE_OP2(fsadd); | |
2636 | /* evfssub */ | |
2637 | DO_SPE_OP2(fssub); | |
2638 | /* evfsmul */ | |
2639 | DO_SPE_OP2(fsmul); | |
2640 | /* evfsdiv */ | |
2641 | DO_SPE_OP2(fsdiv); | |
2642 | ||
2643 | /* Single-precision floating-point comparisons */ | |
b068d6a7 | 2644 | static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2645 | { |
2646 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2647 | return _do_efststlt(op1, op2); | |
2648 | } | |
2649 | ||
b068d6a7 | 2650 | static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2651 | { |
2652 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2653 | return _do_efststgt(op1, op2); | |
2654 | } | |
2655 | ||
b068d6a7 | 2656 | static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2657 | { |
2658 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2659 | return _do_efststeq(op1, op2); | |
2660 | } | |
2661 | ||
2662 | void do_efscmplt (void) | |
2663 | { | |
2664 | T0 = _do_efscmplt(T0_64, T1_64); | |
2665 | } | |
2666 | ||
2667 | void do_efscmpgt (void) | |
2668 | { | |
2669 | T0 = _do_efscmpgt(T0_64, T1_64); | |
2670 | } | |
2671 | ||
2672 | void do_efscmpeq (void) | |
2673 | { | |
2674 | T0 = _do_efscmpeq(T0_64, T1_64); | |
2675 | } | |
2676 | ||
2677 | /* Single-precision floating-point vector comparisons */ | |
2678 | /* evfscmplt */ | |
2679 | DO_SPE_CMP(fscmplt); | |
2680 | /* evfscmpgt */ | |
2681 | DO_SPE_CMP(fscmpgt); | |
2682 | /* evfscmpeq */ | |
2683 | DO_SPE_CMP(fscmpeq); | |
2684 | /* evfststlt */ | |
2685 | DO_SPE_CMP(fststlt); | |
2686 | /* evfststgt */ | |
2687 | DO_SPE_CMP(fststgt); | |
2688 | /* evfststeq */ | |
2689 | DO_SPE_CMP(fststeq); | |
2690 | ||
2691 | /* Single-precision floating-point vector conversions */ | |
2692 | /* evfscfsi */ | |
2693 | DO_SPE_OP1(fscfsi); | |
2694 | /* evfscfui */ | |
2695 | DO_SPE_OP1(fscfui); | |
2696 | /* evfscfuf */ | |
2697 | DO_SPE_OP1(fscfuf); | |
2698 | /* evfscfsf */ | |
2699 | DO_SPE_OP1(fscfsf); | |
2700 | /* evfsctsi */ | |
2701 | DO_SPE_OP1(fsctsi); | |
2702 | /* evfsctui */ | |
2703 | DO_SPE_OP1(fsctui); | |
2704 | /* evfsctsiz */ | |
2705 | DO_SPE_OP1(fsctsiz); | |
2706 | /* evfsctuiz */ | |
2707 | DO_SPE_OP1(fsctuiz); | |
2708 | /* evfsctsf */ | |
2709 | DO_SPE_OP1(fsctsf); | |
2710 | /* evfsctuf */ | |
2711 | DO_SPE_OP1(fsctuf); | |
0487d6a8 | 2712 | |
fdabc366 FB |
2713 | /*****************************************************************************/ |
2714 | /* Softmmu support */ | |
2715 | #if !defined (CONFIG_USER_ONLY) | |
2716 | ||
2717 | #define MMUSUFFIX _mmu | |
273af660 TS |
2718 | #ifdef __s390__ |
2719 | # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) | |
2720 | #else | |
2721 | # define GETPC() (__builtin_return_address(0)) | |
2722 | #endif | |
fdabc366 FB |
2723 | |
2724 | #define SHIFT 0 | |
2725 | #include "softmmu_template.h" | |
2726 | ||
2727 | #define SHIFT 1 | |
2728 | #include "softmmu_template.h" | |
2729 | ||
2730 | #define SHIFT 2 | |
2731 | #include "softmmu_template.h" | |
2732 | ||
2733 | #define SHIFT 3 | |
2734 | #include "softmmu_template.h" | |
2735 | ||
2736 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2737 | NULL, it means that the function was called in C code (i.e. not | |
2738 | from generated code or from helper.c) */ | |
2739 | /* XXX: fix it to restore all registers */ | |
6ebbf390 | 2740 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
fdabc366 FB |
2741 | { |
2742 | TranslationBlock *tb; | |
2743 | CPUState *saved_env; | |
44f8625d | 2744 | unsigned long pc; |
fdabc366 FB |
2745 | int ret; |
2746 | ||
2747 | /* XXX: hack to restore env in all cases, even if not called from | |
2748 | generated code */ | |
2749 | saved_env = env; | |
2750 | env = cpu_single_env; | |
6ebbf390 | 2751 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
76a66253 | 2752 | if (unlikely(ret != 0)) { |
fdabc366 FB |
2753 | if (likely(retaddr)) { |
2754 | /* now we have a real cpu fault */ | |
44f8625d | 2755 | pc = (unsigned long)retaddr; |
fdabc366 FB |
2756 | tb = tb_find_pc(pc); |
2757 | if (likely(tb)) { | |
2758 | /* the PC is inside the translated code. It means that we have | |
2759 | a virtual CPU fault */ | |
2760 | cpu_restore_state(tb, env, pc, NULL); | |
76a66253 | 2761 | } |
fdabc366 FB |
2762 | } |
2763 | do_raise_exception_err(env->exception_index, env->error_code); | |
2764 | } | |
2765 | env = saved_env; | |
9a64fbe4 FB |
2766 | } |
2767 | ||
76a66253 JM |
2768 | /* Software driven TLBs management */ |
2769 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2770 | void do_load_6xx_tlb (int is_code) | |
2771 | { | |
2772 | target_ulong RPN, CMP, EPN; | |
2773 | int way; | |
d9bce9d9 | 2774 | |
76a66253 JM |
2775 | RPN = env->spr[SPR_RPA]; |
2776 | if (is_code) { | |
2777 | CMP = env->spr[SPR_ICMP]; | |
2778 | EPN = env->spr[SPR_IMISS]; | |
2779 | } else { | |
2780 | CMP = env->spr[SPR_DCMP]; | |
2781 | EPN = env->spr[SPR_DMISS]; | |
2782 | } | |
2783 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2784 | #if defined (DEBUG_SOFTWARE_TLB) | |
2785 | if (loglevel != 0) { | |
2786 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2787 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2788 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2789 | } | |
2790 | #endif | |
2791 | /* Store this TLB */ | |
d9bce9d9 JM |
2792 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2793 | way, is_code, CMP, RPN); | |
76a66253 JM |
2794 | } |
2795 | ||
7dbe11ac JM |
2796 | void do_load_74xx_tlb (int is_code) |
2797 | { | |
2798 | target_ulong RPN, CMP, EPN; | |
2799 | int way; | |
2800 | ||
2801 | RPN = env->spr[SPR_PTELO]; | |
2802 | CMP = env->spr[SPR_PTEHI]; | |
2803 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2804 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2805 | #if defined (DEBUG_SOFTWARE_TLB) | |
2806 | if (loglevel != 0) { | |
2807 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2808 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2809 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2810 | } | |
2811 | #endif | |
2812 | /* Store this TLB */ | |
2813 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), | |
2814 | way, is_code, CMP, RPN); | |
2815 | } | |
2816 | ||
a11b8151 | 2817 | static always_inline target_ulong booke_tlb_to_page_size (int size) |
a8dea12f JM |
2818 | { |
2819 | return 1024 << (2 * size); | |
2820 | } | |
2821 | ||
a11b8151 | 2822 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
a8dea12f JM |
2823 | { |
2824 | int size; | |
2825 | ||
2826 | switch (page_size) { | |
2827 | case 0x00000400UL: | |
2828 | size = 0x0; | |
2829 | break; | |
2830 | case 0x00001000UL: | |
2831 | size = 0x1; | |
2832 | break; | |
2833 | case 0x00004000UL: | |
2834 | size = 0x2; | |
2835 | break; | |
2836 | case 0x00010000UL: | |
2837 | size = 0x3; | |
2838 | break; | |
2839 | case 0x00040000UL: | |
2840 | size = 0x4; | |
2841 | break; | |
2842 | case 0x00100000UL: | |
2843 | size = 0x5; | |
2844 | break; | |
2845 | case 0x00400000UL: | |
2846 | size = 0x6; | |
2847 | break; | |
2848 | case 0x01000000UL: | |
2849 | size = 0x7; | |
2850 | break; | |
2851 | case 0x04000000UL: | |
2852 | size = 0x8; | |
2853 | break; | |
2854 | case 0x10000000UL: | |
2855 | size = 0x9; | |
2856 | break; | |
2857 | case 0x40000000UL: | |
2858 | size = 0xA; | |
2859 | break; | |
2860 | #if defined (TARGET_PPC64) | |
2861 | case 0x000100000000ULL: | |
2862 | size = 0xB; | |
2863 | break; | |
2864 | case 0x000400000000ULL: | |
2865 | size = 0xC; | |
2866 | break; | |
2867 | case 0x001000000000ULL: | |
2868 | size = 0xD; | |
2869 | break; | |
2870 | case 0x004000000000ULL: | |
2871 | size = 0xE; | |
2872 | break; | |
2873 | case 0x010000000000ULL: | |
2874 | size = 0xF; | |
2875 | break; | |
2876 | #endif | |
2877 | default: | |
2878 | size = -1; | |
2879 | break; | |
2880 | } | |
2881 | ||
2882 | return size; | |
2883 | } | |
2884 | ||
76a66253 | 2885 | /* Helpers for 4xx TLB management */ |
76a66253 JM |
2886 | void do_4xx_tlbre_lo (void) |
2887 | { | |
a8dea12f JM |
2888 | ppcemb_tlb_t *tlb; |
2889 | int size; | |
76a66253 JM |
2890 | |
2891 | T0 &= 0x3F; | |
a8dea12f JM |
2892 | tlb = &env->tlb[T0].tlbe; |
2893 | T0 = tlb->EPN; | |
2894 | if (tlb->prot & PAGE_VALID) | |
2895 | T0 |= 0x400; | |
2896 | size = booke_page_size_to_tlb(tlb->size); | |
2897 | if (size < 0 || size > 0x7) | |
2898 | size = 1; | |
2899 | T0 |= size << 7; | |
2900 | env->spr[SPR_40x_PID] = tlb->PID; | |
76a66253 JM |
2901 | } |
2902 | ||
2903 | void do_4xx_tlbre_hi (void) | |
2904 | { | |
a8dea12f | 2905 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2906 | |
2907 | T0 &= 0x3F; | |
a8dea12f JM |
2908 | tlb = &env->tlb[T0].tlbe; |
2909 | T0 = tlb->RPN; | |
2910 | if (tlb->prot & PAGE_EXEC) | |
2911 | T0 |= 0x200; | |
2912 | if (tlb->prot & PAGE_WRITE) | |
2913 | T0 |= 0x100; | |
76a66253 JM |
2914 | } |
2915 | ||
c55e9aef | 2916 | void do_4xx_tlbwe_hi (void) |
76a66253 | 2917 | { |
a8dea12f | 2918 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2919 | target_ulong page, end; |
2920 | ||
c55e9aef | 2921 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2922 | if (loglevel != 0) { |
9b605b9e PB |
2923 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, |
2924 | (target_ulong)T0, (target_ulong)T1); | |
c55e9aef JM |
2925 | } |
2926 | #endif | |
76a66253 | 2927 | T0 &= 0x3F; |
a8dea12f | 2928 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2929 | /* Invalidate previous TLB (if it's valid) */ |
2930 | if (tlb->prot & PAGE_VALID) { | |
2931 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2932 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2933 | if (loglevel != 0) { |
c55e9aef JM |
2934 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
2935 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2936 | } | |
2937 | #endif | |
76a66253 JM |
2938 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2939 | tlb_flush_page(env, page); | |
2940 | } | |
a8dea12f | 2941 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
c294fc58 JM |
2942 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
2943 | * If this ever occurs, one should use the ppcemb target instead | |
2944 | * of the ppc or ppc64 one | |
2945 | */ | |
2946 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
71c8b8fd JM |
2947 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2948 | "are not supported (%d)\n", | |
c294fc58 JM |
2949 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2950 | } | |
a750fc0b | 2951 | tlb->EPN = T1 & ~(tlb->size - 1); |
c55e9aef | 2952 | if (T1 & 0x40) |
76a66253 JM |
2953 | tlb->prot |= PAGE_VALID; |
2954 | else | |
2955 | tlb->prot &= ~PAGE_VALID; | |
c294fc58 JM |
2956 | if (T1 & 0x20) { |
2957 | /* XXX: TO BE FIXED */ | |
2958 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2959 | } | |
c55e9aef | 2960 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
a8dea12f | 2961 | tlb->attr = T1 & 0xFF; |
c55e9aef | 2962 | #if defined (DEBUG_SOFTWARE_TLB) |
c294fc58 JM |
2963 | if (loglevel != 0) { |
2964 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2965 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2966 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2967 | tlb->prot & PAGE_READ ? 'r' : '-', |
2968 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2969 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2970 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2971 | } | |
2972 | #endif | |
76a66253 JM |
2973 | /* Invalidate new TLB (if valid) */ |
2974 | if (tlb->prot & PAGE_VALID) { | |
2975 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2976 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2977 | if (loglevel != 0) { |
c55e9aef JM |
2978 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
2979 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2980 | } | |
2981 | #endif | |
76a66253 JM |
2982 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2983 | tlb_flush_page(env, page); | |
2984 | } | |
76a66253 JM |
2985 | } |
2986 | ||
c55e9aef | 2987 | void do_4xx_tlbwe_lo (void) |
76a66253 | 2988 | { |
a8dea12f | 2989 | ppcemb_tlb_t *tlb; |
76a66253 | 2990 | |
c55e9aef | 2991 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2992 | if (loglevel != 0) { |
9b605b9e PB |
2993 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, |
2994 | (targt_ulong)T0, (target_ulong)T1); | |
c55e9aef JM |
2995 | } |
2996 | #endif | |
76a66253 | 2997 | T0 &= 0x3F; |
a8dea12f | 2998 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2999 | tlb->RPN = T1 & 0xFFFFFC00; |
3000 | tlb->prot = PAGE_READ; | |
3001 | if (T1 & 0x200) | |
3002 | tlb->prot |= PAGE_EXEC; | |
3003 | if (T1 & 0x100) | |
3004 | tlb->prot |= PAGE_WRITE; | |
c55e9aef | 3005 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d JM |
3006 | if (loglevel != 0) { |
3007 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 3008 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 3009 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
3010 | tlb->prot & PAGE_READ ? 'r' : '-', |
3011 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
3012 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
3013 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
3014 | } | |
3015 | #endif | |
76a66253 | 3016 | } |
5eb7995e | 3017 | |
a4bb6c3e JM |
3018 | /* PowerPC 440 TLB management */ |
3019 | void do_440_tlbwe (int word) | |
5eb7995e JM |
3020 | { |
3021 | ppcemb_tlb_t *tlb; | |
a4bb6c3e | 3022 | target_ulong EPN, RPN, size; |
5eb7995e JM |
3023 | int do_flush_tlbs; |
3024 | ||
3025 | #if defined (DEBUG_SOFTWARE_TLB) | |
3026 | if (loglevel != 0) { | |
a4bb6c3e | 3027 | fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n", |
9b605b9e | 3028 | __func__, word, (target_ulong)T0, (target_ulong)T1); |
5eb7995e JM |
3029 | } |
3030 | #endif | |
3031 | do_flush_tlbs = 0; | |
3032 | T0 &= 0x3F; | |
3033 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3034 | switch (word) { |
3035 | default: | |
3036 | /* Just here to please gcc */ | |
3037 | case 0: | |
3038 | EPN = T1 & 0xFFFFFC00; | |
3039 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
5eb7995e | 3040 | do_flush_tlbs = 1; |
a4bb6c3e JM |
3041 | tlb->EPN = EPN; |
3042 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
3043 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
3044 | do_flush_tlbs = 1; | |
3045 | tlb->size = size; | |
3046 | tlb->attr &= ~0x1; | |
3047 | tlb->attr |= (T1 >> 8) & 1; | |
3048 | if (T1 & 0x200) { | |
3049 | tlb->prot |= PAGE_VALID; | |
3050 | } else { | |
3051 | if (tlb->prot & PAGE_VALID) { | |
3052 | tlb->prot &= ~PAGE_VALID; | |
3053 | do_flush_tlbs = 1; | |
3054 | } | |
5eb7995e | 3055 | } |
a4bb6c3e JM |
3056 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
3057 | if (do_flush_tlbs) | |
3058 | tlb_flush(env, 1); | |
3059 | break; | |
3060 | case 1: | |
3061 | RPN = T1 & 0xFFFFFC0F; | |
3062 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
3063 | tlb_flush(env, 1); | |
3064 | tlb->RPN = RPN; | |
3065 | break; | |
3066 | case 2: | |
3067 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
3068 | tlb->prot = tlb->prot & PAGE_VALID; | |
3069 | if (T1 & 0x1) | |
3070 | tlb->prot |= PAGE_READ << 4; | |
3071 | if (T1 & 0x2) | |
3072 | tlb->prot |= PAGE_WRITE << 4; | |
3073 | if (T1 & 0x4) | |
3074 | tlb->prot |= PAGE_EXEC << 4; | |
3075 | if (T1 & 0x8) | |
3076 | tlb->prot |= PAGE_READ; | |
3077 | if (T1 & 0x10) | |
3078 | tlb->prot |= PAGE_WRITE; | |
3079 | if (T1 & 0x20) | |
3080 | tlb->prot |= PAGE_EXEC; | |
3081 | break; | |
5eb7995e | 3082 | } |
5eb7995e JM |
3083 | } |
3084 | ||
a4bb6c3e | 3085 | void do_440_tlbre (int word) |
5eb7995e JM |
3086 | { |
3087 | ppcemb_tlb_t *tlb; | |
3088 | int size; | |
3089 | ||
3090 | T0 &= 0x3F; | |
3091 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3092 | switch (word) { |
3093 | default: | |
3094 | /* Just here to please gcc */ | |
3095 | case 0: | |
3096 | T0 = tlb->EPN; | |
3097 | size = booke_page_size_to_tlb(tlb->size); | |
3098 | if (size < 0 || size > 0xF) | |
3099 | size = 1; | |
3100 | T0 |= size << 4; | |
3101 | if (tlb->attr & 0x1) | |
3102 | T0 |= 0x100; | |
3103 | if (tlb->prot & PAGE_VALID) | |
3104 | T0 |= 0x200; | |
3105 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
3106 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
3107 | break; | |
3108 | case 1: | |
3109 | T0 = tlb->RPN; | |
3110 | break; | |
3111 | case 2: | |
3112 | T0 = tlb->attr & ~0x1; | |
3113 | if (tlb->prot & (PAGE_READ << 4)) | |
3114 | T0 |= 0x1; | |
3115 | if (tlb->prot & (PAGE_WRITE << 4)) | |
3116 | T0 |= 0x2; | |
3117 | if (tlb->prot & (PAGE_EXEC << 4)) | |
3118 | T0 |= 0x4; | |
3119 | if (tlb->prot & PAGE_READ) | |
3120 | T0 |= 0x8; | |
3121 | if (tlb->prot & PAGE_WRITE) | |
3122 | T0 |= 0x10; | |
3123 | if (tlb->prot & PAGE_EXEC) | |
3124 | T0 |= 0x20; | |
3125 | break; | |
3126 | } | |
5eb7995e | 3127 | } |
76a66253 | 3128 | #endif /* !CONFIG_USER_ONLY */ |