]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
e0723c45 PB |
33 | #include "hw/i386/apic_internal.h" |
34 | #include "hw/i386/apic-msidef.h" | |
022c62cb | 35 | #include "exec/ioport.h" |
92067bf4 | 36 | #include <asm/hyperv.h> |
a2cb15b0 | 37 | #include "hw/pci/pci.h" |
05330448 AL |
38 | |
39 | //#define DEBUG_KVM | |
40 | ||
41 | #ifdef DEBUG_KVM | |
8c0d577e | 42 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
43 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
44 | #else | |
8c0d577e | 45 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
46 | do { } while (0) |
47 | #endif | |
48 | ||
1a03675d GC |
49 | #define MSR_KVM_WALL_CLOCK 0x11 |
50 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
51 | ||
c0532a76 MT |
52 | #ifndef BUS_MCEERR_AR |
53 | #define BUS_MCEERR_AR 4 | |
54 | #endif | |
55 | #ifndef BUS_MCEERR_AO | |
56 | #define BUS_MCEERR_AO 5 | |
57 | #endif | |
58 | ||
94a8d39a JK |
59 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
60 | KVM_CAP_INFO(SET_TSS_ADDR), | |
61 | KVM_CAP_INFO(EXT_CPUID), | |
62 | KVM_CAP_INFO(MP_STATE), | |
63 | KVM_CAP_LAST_INFO | |
64 | }; | |
25d2e361 | 65 | |
c3a3a7d3 JK |
66 | static bool has_msr_star; |
67 | static bool has_msr_hsave_pa; | |
f28558d3 | 68 | static bool has_msr_tsc_adjust; |
aa82ba54 | 69 | static bool has_msr_tsc_deadline; |
df67696e | 70 | static bool has_msr_feature_control; |
c5999bfc | 71 | static bool has_msr_async_pf_en; |
bc9a839d | 72 | static bool has_msr_pv_eoi_en; |
21e87c46 | 73 | static bool has_msr_misc_enable; |
79e9ebeb | 74 | static bool has_msr_bndcfgs; |
917367aa | 75 | static bool has_msr_kvm_steal_time; |
25d2e361 | 76 | static int lm_capable_kernel; |
7bc3d711 PB |
77 | static bool has_msr_hv_hypercall; |
78 | static bool has_msr_hv_vapic; | |
48a5f3bc | 79 | static bool has_msr_hv_tsc; |
b827df58 | 80 | |
0d894367 PB |
81 | static bool has_msr_architectural_pmu; |
82 | static uint32_t num_architectural_pmu_counters; | |
83 | ||
1d31f66b PM |
84 | bool kvm_allows_irq0_override(void) |
85 | { | |
86 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
87 | } | |
88 | ||
b827df58 AK |
89 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
90 | { | |
91 | struct kvm_cpuid2 *cpuid; | |
92 | int r, size; | |
93 | ||
94 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
7267c094 | 95 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); |
b827df58 AK |
96 | cpuid->nent = max; |
97 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
98 | if (r == 0 && cpuid->nent >= max) { |
99 | r = -E2BIG; | |
100 | } | |
b827df58 AK |
101 | if (r < 0) { |
102 | if (r == -E2BIG) { | |
7267c094 | 103 | g_free(cpuid); |
b827df58 AK |
104 | return NULL; |
105 | } else { | |
106 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
107 | strerror(-r)); | |
108 | exit(1); | |
109 | } | |
110 | } | |
111 | return cpuid; | |
112 | } | |
113 | ||
dd87f8a6 EH |
114 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
115 | * for all entries. | |
116 | */ | |
117 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
118 | { | |
119 | struct kvm_cpuid2 *cpuid; | |
120 | int max = 1; | |
121 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
122 | max *= 2; | |
123 | } | |
124 | return cpuid; | |
125 | } | |
126 | ||
a443bc34 | 127 | static const struct kvm_para_features { |
0c31b744 GC |
128 | int cap; |
129 | int feature; | |
130 | } para_features[] = { | |
131 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
132 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
133 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 134 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
135 | }; |
136 | ||
ba9bc59e | 137 | static int get_para_features(KVMState *s) |
0c31b744 GC |
138 | { |
139 | int i, features = 0; | |
140 | ||
8e03c100 | 141 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 142 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
143 | features |= (1 << para_features[i].feature); |
144 | } | |
145 | } | |
146 | ||
147 | return features; | |
148 | } | |
0c31b744 GC |
149 | |
150 | ||
829ae2f9 EH |
151 | /* Returns the value for a specific register on the cpuid entry |
152 | */ | |
153 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
154 | { | |
155 | uint32_t ret = 0; | |
156 | switch (reg) { | |
157 | case R_EAX: | |
158 | ret = entry->eax; | |
159 | break; | |
160 | case R_EBX: | |
161 | ret = entry->ebx; | |
162 | break; | |
163 | case R_ECX: | |
164 | ret = entry->ecx; | |
165 | break; | |
166 | case R_EDX: | |
167 | ret = entry->edx; | |
168 | break; | |
169 | } | |
170 | return ret; | |
171 | } | |
172 | ||
4fb73f1d EH |
173 | /* Find matching entry for function/index on kvm_cpuid2 struct |
174 | */ | |
175 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
176 | uint32_t function, | |
177 | uint32_t index) | |
178 | { | |
179 | int i; | |
180 | for (i = 0; i < cpuid->nent; ++i) { | |
181 | if (cpuid->entries[i].function == function && | |
182 | cpuid->entries[i].index == index) { | |
183 | return &cpuid->entries[i]; | |
184 | } | |
185 | } | |
186 | /* not found: */ | |
187 | return NULL; | |
188 | } | |
189 | ||
ba9bc59e | 190 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 191 | uint32_t index, int reg) |
b827df58 AK |
192 | { |
193 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
194 | uint32_t ret = 0; |
195 | uint32_t cpuid_1_edx; | |
8c723b79 | 196 | bool found = false; |
b827df58 | 197 | |
dd87f8a6 | 198 | cpuid = get_supported_cpuid(s); |
b827df58 | 199 | |
4fb73f1d EH |
200 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
201 | if (entry) { | |
202 | found = true; | |
203 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
204 | } |
205 | ||
7b46e5ce EH |
206 | /* Fixups for the data returned by KVM, below */ |
207 | ||
c2acb022 EH |
208 | if (function == 1 && reg == R_EDX) { |
209 | /* KVM before 2.6.30 misreports the following features */ | |
210 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
211 | } else if (function == 1 && reg == R_ECX) { |
212 | /* We can set the hypervisor flag, even if KVM does not return it on | |
213 | * GET_SUPPORTED_CPUID | |
214 | */ | |
215 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
216 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
217 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
218 | * and the irqchip is in the kernel. | |
219 | */ | |
220 | if (kvm_irqchip_in_kernel() && | |
221 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
222 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
223 | } | |
41e5e76d EH |
224 | |
225 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
226 | * without the in-kernel irqchip | |
227 | */ | |
228 | if (!kvm_irqchip_in_kernel()) { | |
229 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 230 | } |
c2acb022 EH |
231 | } else if (function == 0x80000001 && reg == R_EDX) { |
232 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
233 | * so add missing bits according to the AMD spec: | |
234 | */ | |
235 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
236 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
237 | } |
238 | ||
7267c094 | 239 | g_free(cpuid); |
b827df58 | 240 | |
0c31b744 | 241 | /* fallback for older kernels */ |
8c723b79 | 242 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 243 | ret = get_para_features(s); |
b9bec74b | 244 | } |
0c31b744 GC |
245 | |
246 | return ret; | |
bb0300dc | 247 | } |
bb0300dc | 248 | |
3c85e74f HY |
249 | typedef struct HWPoisonPage { |
250 | ram_addr_t ram_addr; | |
251 | QLIST_ENTRY(HWPoisonPage) list; | |
252 | } HWPoisonPage; | |
253 | ||
254 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
255 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
256 | ||
257 | static void kvm_unpoison_all(void *param) | |
258 | { | |
259 | HWPoisonPage *page, *next_page; | |
260 | ||
261 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
262 | QLIST_REMOVE(page, list); | |
263 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 264 | g_free(page); |
3c85e74f HY |
265 | } |
266 | } | |
267 | ||
3c85e74f HY |
268 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
269 | { | |
270 | HWPoisonPage *page; | |
271 | ||
272 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
273 | if (page->ram_addr == ram_addr) { | |
274 | return; | |
275 | } | |
276 | } | |
7267c094 | 277 | page = g_malloc(sizeof(HWPoisonPage)); |
3c85e74f HY |
278 | page->ram_addr = ram_addr; |
279 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
280 | } | |
281 | ||
e7701825 MT |
282 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
283 | int *max_banks) | |
284 | { | |
285 | int r; | |
286 | ||
14a09518 | 287 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
288 | if (r > 0) { |
289 | *max_banks = r; | |
290 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
291 | } | |
292 | return -ENOSYS; | |
293 | } | |
294 | ||
bee615d4 | 295 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 296 | { |
bee615d4 | 297 | CPUX86State *env = &cpu->env; |
c34d440a JK |
298 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
299 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
300 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 301 | |
c34d440a JK |
302 | if (code == BUS_MCEERR_AR) { |
303 | status |= MCI_STATUS_AR | 0x134; | |
304 | mcg_status |= MCG_STATUS_EIPV; | |
305 | } else { | |
306 | status |= 0xc0; | |
307 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 308 | } |
8c5cf3b6 | 309 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
310 | (MCM_ADDR_PHYS << 6) | 0xc, |
311 | cpu_x86_support_mca_broadcast(env) ? | |
312 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 313 | } |
419fb20a JK |
314 | |
315 | static void hardware_memory_error(void) | |
316 | { | |
317 | fprintf(stderr, "Hardware memory error!\n"); | |
318 | exit(1); | |
319 | } | |
320 | ||
20d695a9 | 321 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 322 | { |
20d695a9 AF |
323 | X86CPU *cpu = X86_CPU(c); |
324 | CPUX86State *env = &cpu->env; | |
419fb20a | 325 | ram_addr_t ram_addr; |
a8170e5e | 326 | hwaddr paddr; |
419fb20a JK |
327 | |
328 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 329 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 330 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 331 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
332 | fprintf(stderr, "Hardware memory error for memory used by " |
333 | "QEMU itself instead of guest system!\n"); | |
334 | /* Hope we are lucky for AO MCE */ | |
335 | if (code == BUS_MCEERR_AO) { | |
336 | return 0; | |
337 | } else { | |
338 | hardware_memory_error(); | |
339 | } | |
340 | } | |
3c85e74f | 341 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 342 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 343 | } else { |
419fb20a JK |
344 | if (code == BUS_MCEERR_AO) { |
345 | return 0; | |
346 | } else if (code == BUS_MCEERR_AR) { | |
347 | hardware_memory_error(); | |
348 | } else { | |
349 | return 1; | |
350 | } | |
351 | } | |
352 | return 0; | |
353 | } | |
354 | ||
355 | int kvm_arch_on_sigbus(int code, void *addr) | |
356 | { | |
182735ef AF |
357 | X86CPU *cpu = X86_CPU(first_cpu); |
358 | ||
359 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 360 | ram_addr_t ram_addr; |
a8170e5e | 361 | hwaddr paddr; |
419fb20a JK |
362 | |
363 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 364 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 365 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 366 | addr, &paddr)) { |
419fb20a JK |
367 | fprintf(stderr, "Hardware memory error for memory used by " |
368 | "QEMU itself instead of guest system!: %p\n", addr); | |
369 | return 0; | |
370 | } | |
3c85e74f | 371 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 372 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 373 | } else { |
419fb20a JK |
374 | if (code == BUS_MCEERR_AO) { |
375 | return 0; | |
376 | } else if (code == BUS_MCEERR_AR) { | |
377 | hardware_memory_error(); | |
378 | } else { | |
379 | return 1; | |
380 | } | |
381 | } | |
382 | return 0; | |
383 | } | |
e7701825 | 384 | |
1bc22652 | 385 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 386 | { |
1bc22652 AF |
387 | CPUX86State *env = &cpu->env; |
388 | ||
ab443475 JK |
389 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
390 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
391 | struct kvm_x86_mce mce; | |
392 | ||
393 | env->exception_injected = -1; | |
394 | ||
395 | /* | |
396 | * There must be at least one bank in use if an MCE is pending. | |
397 | * Find it and use its values for the event injection. | |
398 | */ | |
399 | for (bank = 0; bank < bank_num; bank++) { | |
400 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
401 | break; | |
402 | } | |
403 | } | |
404 | assert(bank < bank_num); | |
405 | ||
406 | mce.bank = bank; | |
407 | mce.status = env->mce_banks[bank * 4 + 1]; | |
408 | mce.mcg_status = env->mcg_status; | |
409 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
410 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
411 | ||
1bc22652 | 412 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 413 | } |
ab443475 JK |
414 | return 0; |
415 | } | |
416 | ||
1dfb4dd9 | 417 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 418 | { |
317ac620 | 419 | CPUX86State *env = opaque; |
b8cc45d6 GC |
420 | |
421 | if (running) { | |
422 | env->tsc_valid = false; | |
423 | } | |
424 | } | |
425 | ||
83b17af5 | 426 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 427 | { |
83b17af5 EH |
428 | X86CPU *cpu = X86_CPU(cs); |
429 | return cpu->env.cpuid_apic_id; | |
b164e48e EH |
430 | } |
431 | ||
92067bf4 IM |
432 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
433 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
434 | #endif | |
435 | ||
436 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
437 | { | |
438 | return cpu->hyperv_vapic || | |
439 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
440 | } | |
441 | ||
442 | static bool hyperv_enabled(X86CPU *cpu) | |
443 | { | |
7bc3d711 PB |
444 | CPUState *cs = CPU(cpu); |
445 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
446 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 447 | cpu->hyperv_time || |
7bc3d711 | 448 | cpu->hyperv_relaxed_timing); |
92067bf4 IM |
449 | } |
450 | ||
f8bb0565 | 451 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 452 | |
20d695a9 | 453 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
454 | { |
455 | struct { | |
486bd5a2 | 456 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 457 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 458 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
459 | X86CPU *cpu = X86_CPU(cs); |
460 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 461 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 462 | uint32_t unused; |
bb0300dc | 463 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 464 | uint32_t signature[3]; |
234cc647 | 465 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 466 | int r; |
05330448 | 467 | |
ef4cbe14 SW |
468 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
469 | ||
05330448 AL |
470 | cpuid_i = 0; |
471 | ||
bb0300dc | 472 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
473 | if (hyperv_enabled(cpu)) { |
474 | c = &cpuid_data.entries[cpuid_i++]; | |
475 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
eab70139 VR |
476 | memcpy(signature, "Microsoft Hv", 12); |
477 | c->eax = HYPERV_CPUID_MIN; | |
234cc647 PB |
478 | c->ebx = signature[0]; |
479 | c->ecx = signature[1]; | |
480 | c->edx = signature[2]; | |
0c31b744 | 481 | |
234cc647 PB |
482 | c = &cpuid_data.entries[cpuid_i++]; |
483 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
484 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
485 | c->eax = signature[0]; | |
234cc647 PB |
486 | c->ebx = 0; |
487 | c->ecx = 0; | |
488 | c->edx = 0; | |
eab70139 VR |
489 | |
490 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
491 | c->function = HYPERV_CPUID_VERSION; |
492 | c->eax = 0x00001bbc; | |
493 | c->ebx = 0x00060001; | |
494 | ||
495 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 496 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 497 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
498 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
499 | } | |
92067bf4 | 500 | if (cpu->hyperv_vapic) { |
eab70139 VR |
501 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
502 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 503 | has_msr_hv_vapic = true; |
eab70139 | 504 | } |
48a5f3bc VR |
505 | if (cpu->hyperv_time && |
506 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
507 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
508 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
509 | c->eax |= 0x200; | |
510 | has_msr_hv_tsc = true; | |
511 | } | |
eab70139 | 512 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 513 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 514 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
515 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
516 | } | |
7bc3d711 | 517 | if (has_msr_hv_vapic) { |
eab70139 VR |
518 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
519 | } | |
92067bf4 | 520 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
521 | |
522 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
523 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
524 | c->eax = 0x40; | |
525 | c->ebx = 0x40; | |
526 | ||
234cc647 | 527 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 528 | has_msr_hv_hypercall = true; |
eab70139 VR |
529 | } |
530 | ||
f522d2ac AW |
531 | if (cpu->expose_kvm) { |
532 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
533 | c = &cpuid_data.entries[cpuid_i++]; | |
534 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 535 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
536 | c->ebx = signature[0]; |
537 | c->ecx = signature[1]; | |
538 | c->edx = signature[2]; | |
234cc647 | 539 | |
f522d2ac AW |
540 | c = &cpuid_data.entries[cpuid_i++]; |
541 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
542 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 543 | |
f522d2ac | 544 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 545 | |
f522d2ac | 546 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 547 | |
f522d2ac AW |
548 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
549 | } | |
917367aa | 550 | |
a33609ca | 551 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
552 | |
553 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
554 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
555 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
556 | abort(); | |
557 | } | |
bb0300dc | 558 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
559 | |
560 | switch (i) { | |
a36b1029 AL |
561 | case 2: { |
562 | /* Keep reading function 2 till all the input is received */ | |
563 | int times; | |
564 | ||
a36b1029 | 565 | c->function = i; |
a33609ca AL |
566 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
567 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
568 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
569 | times = c->eax & 0xff; | |
a36b1029 AL |
570 | |
571 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
572 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
573 | fprintf(stderr, "cpuid_data is full, no space for " | |
574 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
575 | abort(); | |
576 | } | |
a33609ca | 577 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 578 | c->function = i; |
a33609ca AL |
579 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
580 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
581 | } |
582 | break; | |
583 | } | |
486bd5a2 AL |
584 | case 4: |
585 | case 0xb: | |
586 | case 0xd: | |
587 | for (j = 0; ; j++) { | |
31e8c696 AP |
588 | if (i == 0xd && j == 64) { |
589 | break; | |
590 | } | |
486bd5a2 AL |
591 | c->function = i; |
592 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
593 | c->index = j; | |
a33609ca | 594 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 595 | |
b9bec74b | 596 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 597 | break; |
b9bec74b JK |
598 | } |
599 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 600 | break; |
b9bec74b JK |
601 | } |
602 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 603 | continue; |
b9bec74b | 604 | } |
f8bb0565 IM |
605 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
606 | fprintf(stderr, "cpuid_data is full, no space for " | |
607 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
608 | abort(); | |
609 | } | |
a33609ca | 610 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
611 | } |
612 | break; | |
613 | default: | |
486bd5a2 | 614 | c->function = i; |
a33609ca AL |
615 | c->flags = 0; |
616 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
617 | break; |
618 | } | |
05330448 | 619 | } |
0d894367 PB |
620 | |
621 | if (limit >= 0x0a) { | |
622 | uint32_t ver; | |
623 | ||
624 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
625 | if ((ver & 0xff) > 0) { | |
626 | has_msr_architectural_pmu = true; | |
627 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
628 | ||
629 | /* Shouldn't be more than 32, since that's the number of bits | |
630 | * available in EBX to tell us _which_ counters are available. | |
631 | * Play it safe. | |
632 | */ | |
633 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
634 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
635 | } | |
636 | } | |
637 | } | |
638 | ||
a33609ca | 639 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
640 | |
641 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
642 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
643 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
644 | abort(); | |
645 | } | |
bb0300dc | 646 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 647 | |
05330448 | 648 | c->function = i; |
a33609ca AL |
649 | c->flags = 0; |
650 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
651 | } |
652 | ||
b3baa152 BW |
653 | /* Call Centaur's CPUID instructions they are supported. */ |
654 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
655 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
656 | ||
657 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
658 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
659 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
660 | abort(); | |
661 | } | |
b3baa152 BW |
662 | c = &cpuid_data.entries[cpuid_i++]; |
663 | ||
664 | c->function = i; | |
665 | c->flags = 0; | |
666 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
667 | } | |
668 | } | |
669 | ||
05330448 AL |
670 | cpuid_data.cpuid.nent = cpuid_i; |
671 | ||
e7701825 | 672 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 673 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 674 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 675 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
676 | uint64_t mcg_cap; |
677 | int banks; | |
32a42024 | 678 | int ret; |
e7701825 | 679 | |
a60f24b5 | 680 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
681 | if (ret < 0) { |
682 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
683 | return ret; | |
e7701825 | 684 | } |
75d49497 JK |
685 | |
686 | if (banks > MCE_BANKS_DEF) { | |
687 | banks = MCE_BANKS_DEF; | |
688 | } | |
689 | mcg_cap &= MCE_CAP_DEF; | |
690 | mcg_cap |= banks; | |
1bc22652 | 691 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
692 | if (ret < 0) { |
693 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
694 | return ret; | |
695 | } | |
696 | ||
697 | env->mcg_cap = mcg_cap; | |
e7701825 | 698 | } |
e7701825 | 699 | |
b8cc45d6 GC |
700 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
701 | ||
df67696e LJ |
702 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
703 | if (c) { | |
704 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
705 | !!(c->ecx & CPUID_EXT_SMX); | |
706 | } | |
707 | ||
7e680753 | 708 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 709 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
710 | if (r) { |
711 | return r; | |
712 | } | |
e7429073 | 713 | |
a60f24b5 | 714 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 715 | if (r && env->tsc_khz) { |
1bc22652 | 716 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
717 | if (r < 0) { |
718 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
719 | return r; | |
720 | } | |
721 | } | |
e7429073 | 722 | |
fabacc0f JK |
723 | if (kvm_has_xsave()) { |
724 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
725 | } | |
726 | ||
e7429073 | 727 | return 0; |
05330448 AL |
728 | } |
729 | ||
50a2c6e5 | 730 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 731 | { |
20d695a9 | 732 | CPUX86State *env = &cpu->env; |
dd673288 | 733 | |
e73223a5 | 734 | env->exception_injected = -1; |
0e607a80 | 735 | env->interrupt_injected = -1; |
1a5e9d2f | 736 | env->xcr0 = 1; |
ddced198 | 737 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 738 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
739 | KVM_MP_STATE_UNINITIALIZED; |
740 | } else { | |
741 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
742 | } | |
caa5af0f JK |
743 | } |
744 | ||
e0723c45 PB |
745 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
746 | { | |
747 | CPUX86State *env = &cpu->env; | |
748 | ||
749 | /* APs get directly into wait-for-SIPI state. */ | |
750 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
751 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
752 | } | |
753 | } | |
754 | ||
c3a3a7d3 | 755 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 756 | { |
75b10c43 | 757 | static int kvm_supported_msrs; |
c3a3a7d3 | 758 | int ret = 0; |
05330448 AL |
759 | |
760 | /* first time */ | |
75b10c43 | 761 | if (kvm_supported_msrs == 0) { |
05330448 AL |
762 | struct kvm_msr_list msr_list, *kvm_msr_list; |
763 | ||
75b10c43 | 764 | kvm_supported_msrs = -1; |
05330448 AL |
765 | |
766 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
767 | * save/restore */ | |
4c9f7372 | 768 | msr_list.nmsrs = 0; |
c3a3a7d3 | 769 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 770 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 771 | return ret; |
6fb6d245 | 772 | } |
d9db889f JK |
773 | /* Old kernel modules had a bug and could write beyond the provided |
774 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 775 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
776 | msr_list.nmsrs * |
777 | sizeof(msr_list.indices[0]))); | |
05330448 | 778 | |
55308450 | 779 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 780 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
781 | if (ret >= 0) { |
782 | int i; | |
783 | ||
784 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
785 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 786 | has_msr_star = true; |
75b10c43 MT |
787 | continue; |
788 | } | |
789 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 790 | has_msr_hsave_pa = true; |
75b10c43 | 791 | continue; |
05330448 | 792 | } |
f28558d3 WA |
793 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
794 | has_msr_tsc_adjust = true; | |
795 | continue; | |
796 | } | |
aa82ba54 LJ |
797 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
798 | has_msr_tsc_deadline = true; | |
799 | continue; | |
800 | } | |
21e87c46 AK |
801 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
802 | has_msr_misc_enable = true; | |
803 | continue; | |
804 | } | |
79e9ebeb LJ |
805 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
806 | has_msr_bndcfgs = true; | |
807 | continue; | |
808 | } | |
05330448 AL |
809 | } |
810 | } | |
811 | ||
7267c094 | 812 | g_free(kvm_msr_list); |
05330448 AL |
813 | } |
814 | ||
c3a3a7d3 | 815 | return ret; |
05330448 AL |
816 | } |
817 | ||
cad1e282 | 818 | int kvm_arch_init(KVMState *s) |
20420430 | 819 | { |
11076198 | 820 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 821 | uint64_t shadow_mem; |
20420430 | 822 | int ret; |
25d2e361 | 823 | struct utsname utsname; |
20420430 | 824 | |
c3a3a7d3 | 825 | ret = kvm_get_supported_msrs(s); |
20420430 | 826 | if (ret < 0) { |
20420430 SY |
827 | return ret; |
828 | } | |
25d2e361 MT |
829 | |
830 | uname(&utsname); | |
831 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
832 | ||
4c5b10b7 | 833 | /* |
11076198 JK |
834 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
835 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
836 | * Since these must be part of guest physical memory, we need to allocate | |
837 | * them, both by setting their start addresses in the kernel and by | |
838 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
839 | * | |
840 | * Older KVM versions may not support setting the identity map base. In | |
841 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
842 | * size. | |
4c5b10b7 | 843 | */ |
11076198 JK |
844 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
845 | /* Allows up to 16M BIOSes. */ | |
846 | identity_base = 0xfeffc000; | |
847 | ||
848 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
849 | if (ret < 0) { | |
850 | return ret; | |
851 | } | |
4c5b10b7 | 852 | } |
e56ff191 | 853 | |
11076198 JK |
854 | /* Set TSS base one page after EPT identity map. */ |
855 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
856 | if (ret < 0) { |
857 | return ret; | |
858 | } | |
859 | ||
11076198 JK |
860 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
861 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 862 | if (ret < 0) { |
11076198 | 863 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
864 | return ret; |
865 | } | |
3c85e74f | 866 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 867 | |
36ad0e94 MA |
868 | shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(), |
869 | "kvm_shadow_mem", -1); | |
870 | if (shadow_mem != -1) { | |
871 | shadow_mem /= 4096; | |
872 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
873 | if (ret < 0) { | |
874 | return ret; | |
39d6960a JK |
875 | } |
876 | } | |
11076198 | 877 | return 0; |
05330448 | 878 | } |
b9bec74b | 879 | |
05330448 AL |
880 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
881 | { | |
882 | lhs->selector = rhs->selector; | |
883 | lhs->base = rhs->base; | |
884 | lhs->limit = rhs->limit; | |
885 | lhs->type = 3; | |
886 | lhs->present = 1; | |
887 | lhs->dpl = 3; | |
888 | lhs->db = 0; | |
889 | lhs->s = 1; | |
890 | lhs->l = 0; | |
891 | lhs->g = 0; | |
892 | lhs->avl = 0; | |
893 | lhs->unusable = 0; | |
894 | } | |
895 | ||
896 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
897 | { | |
898 | unsigned flags = rhs->flags; | |
899 | lhs->selector = rhs->selector; | |
900 | lhs->base = rhs->base; | |
901 | lhs->limit = rhs->limit; | |
902 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
903 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 904 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
905 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
906 | lhs->s = (flags & DESC_S_MASK) != 0; | |
907 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
908 | lhs->g = (flags & DESC_G_MASK) != 0; | |
909 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
910 | lhs->unusable = 0; | |
7e680753 | 911 | lhs->padding = 0; |
05330448 AL |
912 | } |
913 | ||
914 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
915 | { | |
916 | lhs->selector = rhs->selector; | |
917 | lhs->base = rhs->base; | |
918 | lhs->limit = rhs->limit; | |
b9bec74b JK |
919 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
920 | (rhs->present * DESC_P_MASK) | | |
921 | (rhs->dpl << DESC_DPL_SHIFT) | | |
922 | (rhs->db << DESC_B_SHIFT) | | |
923 | (rhs->s * DESC_S_MASK) | | |
924 | (rhs->l << DESC_L_SHIFT) | | |
925 | (rhs->g * DESC_G_MASK) | | |
926 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
927 | } |
928 | ||
929 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
930 | { | |
b9bec74b | 931 | if (set) { |
05330448 | 932 | *kvm_reg = *qemu_reg; |
b9bec74b | 933 | } else { |
05330448 | 934 | *qemu_reg = *kvm_reg; |
b9bec74b | 935 | } |
05330448 AL |
936 | } |
937 | ||
1bc22652 | 938 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 939 | { |
1bc22652 | 940 | CPUX86State *env = &cpu->env; |
05330448 AL |
941 | struct kvm_regs regs; |
942 | int ret = 0; | |
943 | ||
944 | if (!set) { | |
1bc22652 | 945 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 946 | if (ret < 0) { |
05330448 | 947 | return ret; |
b9bec74b | 948 | } |
05330448 AL |
949 | } |
950 | ||
951 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
952 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
953 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
954 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
955 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
956 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
957 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
958 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
959 | #ifdef TARGET_X86_64 | |
960 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
961 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
962 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
963 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
964 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
965 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
966 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
967 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
968 | #endif | |
969 | ||
970 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
971 | kvm_getput_reg(®s.rip, &env->eip, set); | |
972 | ||
b9bec74b | 973 | if (set) { |
1bc22652 | 974 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 975 | } |
05330448 AL |
976 | |
977 | return ret; | |
978 | } | |
979 | ||
1bc22652 | 980 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 981 | { |
1bc22652 | 982 | CPUX86State *env = &cpu->env; |
05330448 AL |
983 | struct kvm_fpu fpu; |
984 | int i; | |
985 | ||
986 | memset(&fpu, 0, sizeof fpu); | |
987 | fpu.fsw = env->fpus & ~(7 << 11); | |
988 | fpu.fsw |= (env->fpstt & 7) << 11; | |
989 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
990 | fpu.last_opcode = env->fpop; |
991 | fpu.last_ip = env->fpip; | |
992 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
993 | for (i = 0; i < 8; ++i) { |
994 | fpu.ftwx |= (!env->fptags[i]) << i; | |
995 | } | |
05330448 AL |
996 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
997 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
998 | fpu.mxcsr = env->mxcsr; | |
999 | ||
1bc22652 | 1000 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1001 | } |
1002 | ||
6b42494b JK |
1003 | #define XSAVE_FCW_FSW 0 |
1004 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1005 | #define XSAVE_CWD_RIP 2 |
1006 | #define XSAVE_CWD_RDP 4 | |
1007 | #define XSAVE_MXCSR 6 | |
1008 | #define XSAVE_ST_SPACE 8 | |
1009 | #define XSAVE_XMM_SPACE 40 | |
1010 | #define XSAVE_XSTATE_BV 128 | |
1011 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1012 | #define XSAVE_BNDREGS 240 |
1013 | #define XSAVE_BNDCSR 256 | |
f1665b21 | 1014 | |
1bc22652 | 1015 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1016 | { |
1bc22652 | 1017 | CPUX86State *env = &cpu->env; |
fabacc0f | 1018 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1019 | uint16_t cwd, swd, twd; |
fabacc0f | 1020 | int i, r; |
f1665b21 | 1021 | |
b9bec74b | 1022 | if (!kvm_has_xsave()) { |
1bc22652 | 1023 | return kvm_put_fpu(cpu); |
b9bec74b | 1024 | } |
f1665b21 | 1025 | |
f1665b21 | 1026 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1027 | twd = 0; |
f1665b21 SY |
1028 | swd = env->fpus & ~(7 << 11); |
1029 | swd |= (env->fpstt & 7) << 11; | |
1030 | cwd = env->fpuc; | |
b9bec74b | 1031 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1032 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1033 | } |
6b42494b JK |
1034 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1035 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1036 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1037 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1038 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1039 | sizeof env->fpregs); | |
1040 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
1041 | sizeof env->xmm_regs); | |
1042 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
1043 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
1044 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
1045 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1046 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1047 | sizeof env->bnd_regs); | |
1048 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1049 | sizeof(env->bndcs_regs)); | |
1bc22652 | 1050 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1051 | return r; |
f1665b21 SY |
1052 | } |
1053 | ||
1bc22652 | 1054 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1055 | { |
1bc22652 | 1056 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1057 | struct kvm_xcrs xcrs; |
1058 | ||
b9bec74b | 1059 | if (!kvm_has_xcrs()) { |
f1665b21 | 1060 | return 0; |
b9bec74b | 1061 | } |
f1665b21 SY |
1062 | |
1063 | xcrs.nr_xcrs = 1; | |
1064 | xcrs.flags = 0; | |
1065 | xcrs.xcrs[0].xcr = 0; | |
1066 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1067 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1068 | } |
1069 | ||
1bc22652 | 1070 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1071 | { |
1bc22652 | 1072 | CPUX86State *env = &cpu->env; |
05330448 AL |
1073 | struct kvm_sregs sregs; |
1074 | ||
0e607a80 JK |
1075 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1076 | if (env->interrupt_injected >= 0) { | |
1077 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1078 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1079 | } | |
05330448 AL |
1080 | |
1081 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1082 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1083 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1084 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1085 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1086 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1087 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1088 | } else { |
b9bec74b JK |
1089 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1090 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1091 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1092 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1093 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1094 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1095 | } |
1096 | ||
1097 | set_seg(&sregs.tr, &env->tr); | |
1098 | set_seg(&sregs.ldt, &env->ldt); | |
1099 | ||
1100 | sregs.idt.limit = env->idt.limit; | |
1101 | sregs.idt.base = env->idt.base; | |
7e680753 | 1102 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1103 | sregs.gdt.limit = env->gdt.limit; |
1104 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1105 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1106 | |
1107 | sregs.cr0 = env->cr[0]; | |
1108 | sregs.cr2 = env->cr[2]; | |
1109 | sregs.cr3 = env->cr[3]; | |
1110 | sregs.cr4 = env->cr[4]; | |
1111 | ||
02e51483 CF |
1112 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1113 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1114 | |
1115 | sregs.efer = env->efer; | |
1116 | ||
1bc22652 | 1117 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1118 | } |
1119 | ||
1120 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1121 | uint32_t index, uint64_t value) | |
1122 | { | |
1123 | entry->index = index; | |
1124 | entry->data = value; | |
1125 | } | |
1126 | ||
7477cd38 MT |
1127 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1128 | { | |
1129 | CPUX86State *env = &cpu->env; | |
1130 | struct { | |
1131 | struct kvm_msrs info; | |
1132 | struct kvm_msr_entry entries[1]; | |
1133 | } msr_data; | |
1134 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1135 | ||
1136 | if (!has_msr_tsc_deadline) { | |
1137 | return 0; | |
1138 | } | |
1139 | ||
1140 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1141 | ||
1142 | msr_data.info.nmsrs = 1; | |
1143 | ||
1144 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1145 | } | |
1146 | ||
6bdf863d JK |
1147 | /* |
1148 | * Provide a separate write service for the feature control MSR in order to | |
1149 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1150 | * before writing any other state because forcibly leaving nested mode | |
1151 | * invalidates the VCPU state. | |
1152 | */ | |
1153 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1154 | { | |
1155 | struct { | |
1156 | struct kvm_msrs info; | |
1157 | struct kvm_msr_entry entry; | |
1158 | } msr_data; | |
1159 | ||
1160 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1161 | cpu->env.msr_ia32_feature_control); | |
1162 | msr_data.info.nmsrs = 1; | |
1163 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1164 | } | |
1165 | ||
1bc22652 | 1166 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1167 | { |
1bc22652 | 1168 | CPUX86State *env = &cpu->env; |
05330448 AL |
1169 | struct { |
1170 | struct kvm_msrs info; | |
1171 | struct kvm_msr_entry entries[100]; | |
1172 | } msr_data; | |
1173 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1174 | int n = 0, i; |
05330448 AL |
1175 | |
1176 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1177 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1178 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1179 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1180 | if (has_msr_star) { |
b9bec74b JK |
1181 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1182 | } | |
c3a3a7d3 | 1183 | if (has_msr_hsave_pa) { |
75b10c43 | 1184 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1185 | } |
f28558d3 WA |
1186 | if (has_msr_tsc_adjust) { |
1187 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1188 | } | |
21e87c46 AK |
1189 | if (has_msr_misc_enable) { |
1190 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1191 | env->msr_ia32_misc_enable); | |
1192 | } | |
439d19f2 PB |
1193 | if (has_msr_bndcfgs) { |
1194 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1195 | } | |
05330448 | 1196 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1197 | if (lm_capable_kernel) { |
1198 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1199 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1200 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1201 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1202 | } | |
05330448 | 1203 | #endif |
ff5c186b | 1204 | /* |
0d894367 PB |
1205 | * The following MSRs have side effects on the guest or are too heavy |
1206 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1207 | */ |
1208 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1209 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1210 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1211 | env->system_time_msr); | |
1212 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1213 | if (has_msr_async_pf_en) { |
1214 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1215 | env->async_pf_en_msr); | |
1216 | } | |
bc9a839d MT |
1217 | if (has_msr_pv_eoi_en) { |
1218 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1219 | env->pv_eoi_en_msr); | |
1220 | } | |
917367aa MT |
1221 | if (has_msr_kvm_steal_time) { |
1222 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1223 | env->steal_time_msr); | |
1224 | } | |
0d894367 PB |
1225 | if (has_msr_architectural_pmu) { |
1226 | /* Stop the counter. */ | |
1227 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1228 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1229 | ||
1230 | /* Set the counter values. */ | |
1231 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1232 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1233 | env->msr_fixed_counters[i]); | |
1234 | } | |
1235 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1236 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1237 | env->msr_gp_counters[i]); | |
1238 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1239 | env->msr_gp_evtsel[i]); | |
1240 | } | |
1241 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1242 | env->msr_global_status); | |
1243 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1244 | env->msr_global_ovf_ctrl); | |
1245 | ||
1246 | /* Now start the PMU. */ | |
1247 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1248 | env->msr_fixed_ctr_ctrl); | |
1249 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1250 | env->msr_global_ctrl); | |
1251 | } | |
7bc3d711 | 1252 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1253 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1254 | env->msr_hv_guest_os_id); | |
1255 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1256 | env->msr_hv_hypercall); | |
eab70139 | 1257 | } |
7bc3d711 | 1258 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1259 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1260 | env->msr_hv_vapic); | |
eab70139 | 1261 | } |
48a5f3bc VR |
1262 | if (has_msr_hv_tsc) { |
1263 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1264 | env->msr_hv_tsc); | |
1265 | } | |
6bdf863d JK |
1266 | |
1267 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1268 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1269 | } |
57780495 | 1270 | if (env->mcg_cap) { |
d8da8574 | 1271 | int i; |
b9bec74b | 1272 | |
c34d440a JK |
1273 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1274 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1275 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1276 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1277 | } |
1278 | } | |
1a03675d | 1279 | |
05330448 AL |
1280 | msr_data.info.nmsrs = n; |
1281 | ||
1bc22652 | 1282 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1283 | |
1284 | } | |
1285 | ||
1286 | ||
1bc22652 | 1287 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1288 | { |
1bc22652 | 1289 | CPUX86State *env = &cpu->env; |
05330448 AL |
1290 | struct kvm_fpu fpu; |
1291 | int i, ret; | |
1292 | ||
1bc22652 | 1293 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1294 | if (ret < 0) { |
05330448 | 1295 | return ret; |
b9bec74b | 1296 | } |
05330448 AL |
1297 | |
1298 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1299 | env->fpus = fpu.fsw; | |
1300 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1301 | env->fpop = fpu.last_opcode; |
1302 | env->fpip = fpu.last_ip; | |
1303 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1304 | for (i = 0; i < 8; ++i) { |
1305 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1306 | } | |
05330448 AL |
1307 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
1308 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1309 | env->mxcsr = fpu.mxcsr; | |
1310 | ||
1311 | return 0; | |
1312 | } | |
1313 | ||
1bc22652 | 1314 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1315 | { |
1bc22652 | 1316 | CPUX86State *env = &cpu->env; |
fabacc0f | 1317 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1318 | int ret, i; |
42cc8fa6 | 1319 | uint16_t cwd, swd, twd; |
f1665b21 | 1320 | |
b9bec74b | 1321 | if (!kvm_has_xsave()) { |
1bc22652 | 1322 | return kvm_get_fpu(cpu); |
b9bec74b | 1323 | } |
f1665b21 | 1324 | |
1bc22652 | 1325 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1326 | if (ret < 0) { |
f1665b21 | 1327 | return ret; |
0f53994f | 1328 | } |
f1665b21 | 1329 | |
6b42494b JK |
1330 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1331 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1332 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1333 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1334 | env->fpstt = (swd >> 11) & 7; |
1335 | env->fpus = swd; | |
1336 | env->fpuc = cwd; | |
b9bec74b | 1337 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1338 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1339 | } |
42cc8fa6 JK |
1340 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1341 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1342 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1343 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1344 | sizeof env->fpregs); | |
1345 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1346 | sizeof env->xmm_regs); | |
1347 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1348 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1349 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1350 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1351 | sizeof env->bnd_regs); | |
1352 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1353 | sizeof(env->bndcs_regs)); | |
f1665b21 | 1354 | return 0; |
f1665b21 SY |
1355 | } |
1356 | ||
1bc22652 | 1357 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1358 | { |
1bc22652 | 1359 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1360 | int i, ret; |
1361 | struct kvm_xcrs xcrs; | |
1362 | ||
b9bec74b | 1363 | if (!kvm_has_xcrs()) { |
f1665b21 | 1364 | return 0; |
b9bec74b | 1365 | } |
f1665b21 | 1366 | |
1bc22652 | 1367 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1368 | if (ret < 0) { |
f1665b21 | 1369 | return ret; |
b9bec74b | 1370 | } |
f1665b21 | 1371 | |
b9bec74b | 1372 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1373 | /* Only support xcr0 now */ |
0fd53fec PB |
1374 | if (xcrs.xcrs[i].xcr == 0) { |
1375 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1376 | break; |
1377 | } | |
b9bec74b | 1378 | } |
f1665b21 | 1379 | return 0; |
f1665b21 SY |
1380 | } |
1381 | ||
1bc22652 | 1382 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1383 | { |
1bc22652 | 1384 | CPUX86State *env = &cpu->env; |
05330448 AL |
1385 | struct kvm_sregs sregs; |
1386 | uint32_t hflags; | |
0e607a80 | 1387 | int bit, i, ret; |
05330448 | 1388 | |
1bc22652 | 1389 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1390 | if (ret < 0) { |
05330448 | 1391 | return ret; |
b9bec74b | 1392 | } |
05330448 | 1393 | |
0e607a80 JK |
1394 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1395 | to find it and save its number instead (-1 for none). */ | |
1396 | env->interrupt_injected = -1; | |
1397 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1398 | if (sregs.interrupt_bitmap[i]) { | |
1399 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1400 | env->interrupt_injected = i * 64 + bit; | |
1401 | break; | |
1402 | } | |
1403 | } | |
05330448 AL |
1404 | |
1405 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1406 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1407 | get_seg(&env->segs[R_ES], &sregs.es); | |
1408 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1409 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1410 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1411 | ||
1412 | get_seg(&env->tr, &sregs.tr); | |
1413 | get_seg(&env->ldt, &sregs.ldt); | |
1414 | ||
1415 | env->idt.limit = sregs.idt.limit; | |
1416 | env->idt.base = sregs.idt.base; | |
1417 | env->gdt.limit = sregs.gdt.limit; | |
1418 | env->gdt.base = sregs.gdt.base; | |
1419 | ||
1420 | env->cr[0] = sregs.cr0; | |
1421 | env->cr[2] = sregs.cr2; | |
1422 | env->cr[3] = sregs.cr3; | |
1423 | env->cr[4] = sregs.cr4; | |
1424 | ||
05330448 | 1425 | env->efer = sregs.efer; |
cce47516 JK |
1426 | |
1427 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1428 | |
b9bec74b JK |
1429 | #define HFLAG_COPY_MASK \ |
1430 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1431 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1432 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1433 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1434 | |
7125c937 | 1435 | hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
05330448 AL |
1436 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1437 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1438 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1439 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1440 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1441 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1442 | |
1443 | if (env->efer & MSR_EFER_LMA) { | |
1444 | hflags |= HF_LMA_MASK; | |
1445 | } | |
1446 | ||
1447 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1448 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1449 | } else { | |
1450 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1451 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1452 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1453 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1454 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1455 | !(hflags & HF_CS32_MASK)) { | |
1456 | hflags |= HF_ADDSEG_MASK; | |
1457 | } else { | |
1458 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1459 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1460 | } | |
05330448 AL |
1461 | } |
1462 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1463 | |
1464 | return 0; | |
1465 | } | |
1466 | ||
1bc22652 | 1467 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1468 | { |
1bc22652 | 1469 | CPUX86State *env = &cpu->env; |
05330448 AL |
1470 | struct { |
1471 | struct kvm_msrs info; | |
1472 | struct kvm_msr_entry entries[100]; | |
1473 | } msr_data; | |
1474 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1475 | int ret, i, n; | |
1476 | ||
1477 | n = 0; | |
1478 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1479 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1480 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1481 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1482 | if (has_msr_star) { |
b9bec74b JK |
1483 | msrs[n++].index = MSR_STAR; |
1484 | } | |
c3a3a7d3 | 1485 | if (has_msr_hsave_pa) { |
75b10c43 | 1486 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1487 | } |
f28558d3 WA |
1488 | if (has_msr_tsc_adjust) { |
1489 | msrs[n++].index = MSR_TSC_ADJUST; | |
1490 | } | |
aa82ba54 LJ |
1491 | if (has_msr_tsc_deadline) { |
1492 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1493 | } | |
21e87c46 AK |
1494 | if (has_msr_misc_enable) { |
1495 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1496 | } | |
df67696e LJ |
1497 | if (has_msr_feature_control) { |
1498 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1499 | } | |
79e9ebeb LJ |
1500 | if (has_msr_bndcfgs) { |
1501 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1502 | } | |
b8cc45d6 GC |
1503 | |
1504 | if (!env->tsc_valid) { | |
1505 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1506 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1507 | } |
1508 | ||
05330448 | 1509 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1510 | if (lm_capable_kernel) { |
1511 | msrs[n++].index = MSR_CSTAR; | |
1512 | msrs[n++].index = MSR_KERNELGSBASE; | |
1513 | msrs[n++].index = MSR_FMASK; | |
1514 | msrs[n++].index = MSR_LSTAR; | |
1515 | } | |
05330448 | 1516 | #endif |
1a03675d GC |
1517 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1518 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1519 | if (has_msr_async_pf_en) { |
1520 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1521 | } | |
bc9a839d MT |
1522 | if (has_msr_pv_eoi_en) { |
1523 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1524 | } | |
917367aa MT |
1525 | if (has_msr_kvm_steal_time) { |
1526 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1527 | } | |
0d894367 PB |
1528 | if (has_msr_architectural_pmu) { |
1529 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1530 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1531 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1532 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1533 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1534 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1535 | } | |
1536 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1537 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1538 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1539 | } | |
1540 | } | |
1a03675d | 1541 | |
57780495 MT |
1542 | if (env->mcg_cap) { |
1543 | msrs[n++].index = MSR_MCG_STATUS; | |
1544 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1545 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1546 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1547 | } |
57780495 | 1548 | } |
57780495 | 1549 | |
1c90ef26 VR |
1550 | if (has_msr_hv_hypercall) { |
1551 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1552 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1553 | } | |
5ef68987 VR |
1554 | if (has_msr_hv_vapic) { |
1555 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1556 | } | |
48a5f3bc VR |
1557 | if (has_msr_hv_tsc) { |
1558 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1559 | } | |
5ef68987 | 1560 | |
05330448 | 1561 | msr_data.info.nmsrs = n; |
1bc22652 | 1562 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1563 | if (ret < 0) { |
05330448 | 1564 | return ret; |
b9bec74b | 1565 | } |
05330448 AL |
1566 | |
1567 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1568 | uint32_t index = msrs[i].index; |
1569 | switch (index) { | |
05330448 AL |
1570 | case MSR_IA32_SYSENTER_CS: |
1571 | env->sysenter_cs = msrs[i].data; | |
1572 | break; | |
1573 | case MSR_IA32_SYSENTER_ESP: | |
1574 | env->sysenter_esp = msrs[i].data; | |
1575 | break; | |
1576 | case MSR_IA32_SYSENTER_EIP: | |
1577 | env->sysenter_eip = msrs[i].data; | |
1578 | break; | |
0c03266a JK |
1579 | case MSR_PAT: |
1580 | env->pat = msrs[i].data; | |
1581 | break; | |
05330448 AL |
1582 | case MSR_STAR: |
1583 | env->star = msrs[i].data; | |
1584 | break; | |
1585 | #ifdef TARGET_X86_64 | |
1586 | case MSR_CSTAR: | |
1587 | env->cstar = msrs[i].data; | |
1588 | break; | |
1589 | case MSR_KERNELGSBASE: | |
1590 | env->kernelgsbase = msrs[i].data; | |
1591 | break; | |
1592 | case MSR_FMASK: | |
1593 | env->fmask = msrs[i].data; | |
1594 | break; | |
1595 | case MSR_LSTAR: | |
1596 | env->lstar = msrs[i].data; | |
1597 | break; | |
1598 | #endif | |
1599 | case MSR_IA32_TSC: | |
1600 | env->tsc = msrs[i].data; | |
1601 | break; | |
f28558d3 WA |
1602 | case MSR_TSC_ADJUST: |
1603 | env->tsc_adjust = msrs[i].data; | |
1604 | break; | |
aa82ba54 LJ |
1605 | case MSR_IA32_TSCDEADLINE: |
1606 | env->tsc_deadline = msrs[i].data; | |
1607 | break; | |
aa851e36 MT |
1608 | case MSR_VM_HSAVE_PA: |
1609 | env->vm_hsave = msrs[i].data; | |
1610 | break; | |
1a03675d GC |
1611 | case MSR_KVM_SYSTEM_TIME: |
1612 | env->system_time_msr = msrs[i].data; | |
1613 | break; | |
1614 | case MSR_KVM_WALL_CLOCK: | |
1615 | env->wall_clock_msr = msrs[i].data; | |
1616 | break; | |
57780495 MT |
1617 | case MSR_MCG_STATUS: |
1618 | env->mcg_status = msrs[i].data; | |
1619 | break; | |
1620 | case MSR_MCG_CTL: | |
1621 | env->mcg_ctl = msrs[i].data; | |
1622 | break; | |
21e87c46 AK |
1623 | case MSR_IA32_MISC_ENABLE: |
1624 | env->msr_ia32_misc_enable = msrs[i].data; | |
1625 | break; | |
0779caeb ACL |
1626 | case MSR_IA32_FEATURE_CONTROL: |
1627 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1628 | break; |
79e9ebeb LJ |
1629 | case MSR_IA32_BNDCFGS: |
1630 | env->msr_bndcfgs = msrs[i].data; | |
1631 | break; | |
57780495 | 1632 | default: |
57780495 MT |
1633 | if (msrs[i].index >= MSR_MC0_CTL && |
1634 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1635 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1636 | } |
d8da8574 | 1637 | break; |
f6584ee2 GN |
1638 | case MSR_KVM_ASYNC_PF_EN: |
1639 | env->async_pf_en_msr = msrs[i].data; | |
1640 | break; | |
bc9a839d MT |
1641 | case MSR_KVM_PV_EOI_EN: |
1642 | env->pv_eoi_en_msr = msrs[i].data; | |
1643 | break; | |
917367aa MT |
1644 | case MSR_KVM_STEAL_TIME: |
1645 | env->steal_time_msr = msrs[i].data; | |
1646 | break; | |
0d894367 PB |
1647 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1648 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1649 | break; | |
1650 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1651 | env->msr_global_ctrl = msrs[i].data; | |
1652 | break; | |
1653 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1654 | env->msr_global_status = msrs[i].data; | |
1655 | break; | |
1656 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1657 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1658 | break; | |
1659 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1660 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1661 | break; | |
1662 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1663 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1664 | break; | |
1665 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1666 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1667 | break; | |
1c90ef26 VR |
1668 | case HV_X64_MSR_HYPERCALL: |
1669 | env->msr_hv_hypercall = msrs[i].data; | |
1670 | break; | |
1671 | case HV_X64_MSR_GUEST_OS_ID: | |
1672 | env->msr_hv_guest_os_id = msrs[i].data; | |
1673 | break; | |
5ef68987 VR |
1674 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
1675 | env->msr_hv_vapic = msrs[i].data; | |
1676 | break; | |
48a5f3bc VR |
1677 | case HV_X64_MSR_REFERENCE_TSC: |
1678 | env->msr_hv_tsc = msrs[i].data; | |
1679 | break; | |
05330448 AL |
1680 | } |
1681 | } | |
1682 | ||
1683 | return 0; | |
1684 | } | |
1685 | ||
1bc22652 | 1686 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1687 | { |
1bc22652 | 1688 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1689 | |
1bc22652 | 1690 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1691 | } |
1692 | ||
23d02d9b | 1693 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1694 | { |
259186a7 | 1695 | CPUState *cs = CPU(cpu); |
23d02d9b | 1696 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1697 | struct kvm_mp_state mp_state; |
1698 | int ret; | |
1699 | ||
259186a7 | 1700 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1701 | if (ret < 0) { |
1702 | return ret; | |
1703 | } | |
1704 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1705 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1706 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1707 | } |
9bdbe550 HB |
1708 | return 0; |
1709 | } | |
1710 | ||
1bc22652 | 1711 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1712 | { |
02e51483 | 1713 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1714 | struct kvm_lapic_state kapic; |
1715 | int ret; | |
1716 | ||
3d4b2649 | 1717 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1718 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1719 | if (ret < 0) { |
1720 | return ret; | |
1721 | } | |
1722 | ||
1723 | kvm_get_apic_state(apic, &kapic); | |
1724 | } | |
1725 | return 0; | |
1726 | } | |
1727 | ||
1bc22652 | 1728 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1729 | { |
02e51483 | 1730 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1731 | struct kvm_lapic_state kapic; |
1732 | ||
3d4b2649 | 1733 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1734 | kvm_put_apic_state(apic, &kapic); |
1735 | ||
1bc22652 | 1736 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1737 | } |
1738 | return 0; | |
1739 | } | |
1740 | ||
1bc22652 | 1741 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1742 | { |
1bc22652 | 1743 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1744 | struct kvm_vcpu_events events; |
1745 | ||
1746 | if (!kvm_has_vcpu_events()) { | |
1747 | return 0; | |
1748 | } | |
1749 | ||
31827373 JK |
1750 | events.exception.injected = (env->exception_injected >= 0); |
1751 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1752 | events.exception.has_error_code = env->has_error_code; |
1753 | events.exception.error_code = env->error_code; | |
7e680753 | 1754 | events.exception.pad = 0; |
a0fb002c JK |
1755 | |
1756 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1757 | events.interrupt.nr = env->interrupt_injected; | |
1758 | events.interrupt.soft = env->soft_interrupt; | |
1759 | ||
1760 | events.nmi.injected = env->nmi_injected; | |
1761 | events.nmi.pending = env->nmi_pending; | |
1762 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1763 | events.nmi.pad = 0; |
a0fb002c JK |
1764 | |
1765 | events.sipi_vector = env->sipi_vector; | |
1766 | ||
ea643051 JK |
1767 | events.flags = 0; |
1768 | if (level >= KVM_PUT_RESET_STATE) { | |
1769 | events.flags |= | |
1770 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1771 | } | |
aee028b9 | 1772 | |
1bc22652 | 1773 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1774 | } |
1775 | ||
1bc22652 | 1776 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1777 | { |
1bc22652 | 1778 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1779 | struct kvm_vcpu_events events; |
1780 | int ret; | |
1781 | ||
1782 | if (!kvm_has_vcpu_events()) { | |
1783 | return 0; | |
1784 | } | |
1785 | ||
1bc22652 | 1786 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1787 | if (ret < 0) { |
1788 | return ret; | |
1789 | } | |
31827373 | 1790 | env->exception_injected = |
a0fb002c JK |
1791 | events.exception.injected ? events.exception.nr : -1; |
1792 | env->has_error_code = events.exception.has_error_code; | |
1793 | env->error_code = events.exception.error_code; | |
1794 | ||
1795 | env->interrupt_injected = | |
1796 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1797 | env->soft_interrupt = events.interrupt.soft; | |
1798 | ||
1799 | env->nmi_injected = events.nmi.injected; | |
1800 | env->nmi_pending = events.nmi.pending; | |
1801 | if (events.nmi.masked) { | |
1802 | env->hflags2 |= HF2_NMI_MASK; | |
1803 | } else { | |
1804 | env->hflags2 &= ~HF2_NMI_MASK; | |
1805 | } | |
1806 | ||
1807 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1808 | |
1809 | return 0; | |
1810 | } | |
1811 | ||
1bc22652 | 1812 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1813 | { |
ed2803da | 1814 | CPUState *cs = CPU(cpu); |
1bc22652 | 1815 | CPUX86State *env = &cpu->env; |
b0b1d690 | 1816 | int ret = 0; |
b0b1d690 JK |
1817 | unsigned long reinject_trap = 0; |
1818 | ||
1819 | if (!kvm_has_vcpu_events()) { | |
1820 | if (env->exception_injected == 1) { | |
1821 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1822 | } else if (env->exception_injected == 3) { | |
1823 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1824 | } | |
1825 | env->exception_injected = -1; | |
1826 | } | |
1827 | ||
1828 | /* | |
1829 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1830 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1831 | * by updating the debug state once again if single-stepping is on. | |
1832 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1833 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1834 | * reinject them via SET_GUEST_DEBUG. | |
1835 | */ | |
1836 | if (reinject_trap || | |
ed2803da | 1837 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 1838 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 1839 | } |
b0b1d690 JK |
1840 | return ret; |
1841 | } | |
1842 | ||
1bc22652 | 1843 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 1844 | { |
1bc22652 | 1845 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1846 | struct kvm_debugregs dbgregs; |
1847 | int i; | |
1848 | ||
1849 | if (!kvm_has_debugregs()) { | |
1850 | return 0; | |
1851 | } | |
1852 | ||
1853 | for (i = 0; i < 4; i++) { | |
1854 | dbgregs.db[i] = env->dr[i]; | |
1855 | } | |
1856 | dbgregs.dr6 = env->dr[6]; | |
1857 | dbgregs.dr7 = env->dr[7]; | |
1858 | dbgregs.flags = 0; | |
1859 | ||
1bc22652 | 1860 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
1861 | } |
1862 | ||
1bc22652 | 1863 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 1864 | { |
1bc22652 | 1865 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1866 | struct kvm_debugregs dbgregs; |
1867 | int i, ret; | |
1868 | ||
1869 | if (!kvm_has_debugregs()) { | |
1870 | return 0; | |
1871 | } | |
1872 | ||
1bc22652 | 1873 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 1874 | if (ret < 0) { |
b9bec74b | 1875 | return ret; |
ff44f1a3 JK |
1876 | } |
1877 | for (i = 0; i < 4; i++) { | |
1878 | env->dr[i] = dbgregs.db[i]; | |
1879 | } | |
1880 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1881 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
1882 | |
1883 | return 0; | |
1884 | } | |
1885 | ||
20d695a9 | 1886 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 1887 | { |
20d695a9 | 1888 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
1889 | int ret; |
1890 | ||
2fa45344 | 1891 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 1892 | |
6bdf863d JK |
1893 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
1894 | ret = kvm_put_msr_feature_control(x86_cpu); | |
1895 | if (ret < 0) { | |
1896 | return ret; | |
1897 | } | |
1898 | } | |
1899 | ||
1bc22652 | 1900 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 1901 | if (ret < 0) { |
05330448 | 1902 | return ret; |
b9bec74b | 1903 | } |
1bc22652 | 1904 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 1905 | if (ret < 0) { |
f1665b21 | 1906 | return ret; |
b9bec74b | 1907 | } |
1bc22652 | 1908 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 1909 | if (ret < 0) { |
05330448 | 1910 | return ret; |
b9bec74b | 1911 | } |
1bc22652 | 1912 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 1913 | if (ret < 0) { |
05330448 | 1914 | return ret; |
b9bec74b | 1915 | } |
ab443475 | 1916 | /* must be before kvm_put_msrs */ |
1bc22652 | 1917 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
1918 | if (ret < 0) { |
1919 | return ret; | |
1920 | } | |
1bc22652 | 1921 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 1922 | if (ret < 0) { |
05330448 | 1923 | return ret; |
b9bec74b | 1924 | } |
ea643051 | 1925 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 1926 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 1927 | if (ret < 0) { |
ea643051 | 1928 | return ret; |
b9bec74b | 1929 | } |
1bc22652 | 1930 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
1931 | if (ret < 0) { |
1932 | return ret; | |
1933 | } | |
ea643051 | 1934 | } |
7477cd38 MT |
1935 | |
1936 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
1937 | if (ret < 0) { | |
1938 | return ret; | |
1939 | } | |
1940 | ||
1bc22652 | 1941 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 1942 | if (ret < 0) { |
a0fb002c | 1943 | return ret; |
b9bec74b | 1944 | } |
1bc22652 | 1945 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 1946 | if (ret < 0) { |
b0b1d690 | 1947 | return ret; |
b9bec74b | 1948 | } |
b0b1d690 | 1949 | /* must be last */ |
1bc22652 | 1950 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 1951 | if (ret < 0) { |
ff44f1a3 | 1952 | return ret; |
b9bec74b | 1953 | } |
05330448 AL |
1954 | return 0; |
1955 | } | |
1956 | ||
20d695a9 | 1957 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 1958 | { |
20d695a9 | 1959 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
1960 | int ret; |
1961 | ||
20d695a9 | 1962 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 1963 | |
1bc22652 | 1964 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 1965 | if (ret < 0) { |
05330448 | 1966 | return ret; |
b9bec74b | 1967 | } |
1bc22652 | 1968 | ret = kvm_get_xsave(cpu); |
b9bec74b | 1969 | if (ret < 0) { |
f1665b21 | 1970 | return ret; |
b9bec74b | 1971 | } |
1bc22652 | 1972 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 1973 | if (ret < 0) { |
05330448 | 1974 | return ret; |
b9bec74b | 1975 | } |
1bc22652 | 1976 | ret = kvm_get_sregs(cpu); |
b9bec74b | 1977 | if (ret < 0) { |
05330448 | 1978 | return ret; |
b9bec74b | 1979 | } |
1bc22652 | 1980 | ret = kvm_get_msrs(cpu); |
b9bec74b | 1981 | if (ret < 0) { |
05330448 | 1982 | return ret; |
b9bec74b | 1983 | } |
23d02d9b | 1984 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 1985 | if (ret < 0) { |
5a2e3c2e | 1986 | return ret; |
b9bec74b | 1987 | } |
1bc22652 | 1988 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
1989 | if (ret < 0) { |
1990 | return ret; | |
1991 | } | |
1bc22652 | 1992 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 1993 | if (ret < 0) { |
a0fb002c | 1994 | return ret; |
b9bec74b | 1995 | } |
1bc22652 | 1996 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 1997 | if (ret < 0) { |
ff44f1a3 | 1998 | return ret; |
b9bec74b | 1999 | } |
05330448 AL |
2000 | return 0; |
2001 | } | |
2002 | ||
20d695a9 | 2003 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2004 | { |
20d695a9 AF |
2005 | X86CPU *x86_cpu = X86_CPU(cpu); |
2006 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2007 | int ret; |
2008 | ||
276ce815 | 2009 | /* Inject NMI */ |
259186a7 AF |
2010 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
2011 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 2012 | DPRINTF("injected NMI\n"); |
1bc22652 | 2013 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
2014 | if (ret < 0) { |
2015 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2016 | strerror(-ret)); | |
2017 | } | |
276ce815 LJ |
2018 | } |
2019 | ||
e0723c45 PB |
2020 | /* Force the VCPU out of its inner loop to process any INIT requests |
2021 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2022 | * pending TPR access reports. | |
2023 | */ | |
2024 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
2025 | cpu->exit_request = 1; | |
2026 | } | |
05330448 | 2027 | |
e0723c45 | 2028 | if (!kvm_irqchip_in_kernel()) { |
db1669bc JK |
2029 | /* Try to inject an interrupt if the guest can accept it */ |
2030 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2031 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2032 | (env->eflags & IF_MASK)) { |
2033 | int irq; | |
2034 | ||
259186a7 | 2035 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2036 | irq = cpu_get_pic_interrupt(env); |
2037 | if (irq >= 0) { | |
2038 | struct kvm_interrupt intr; | |
2039 | ||
2040 | intr.irq = irq; | |
db1669bc | 2041 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2042 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2043 | if (ret < 0) { |
2044 | fprintf(stderr, | |
2045 | "KVM: injection failed, interrupt lost (%s)\n", | |
2046 | strerror(-ret)); | |
2047 | } | |
db1669bc JK |
2048 | } |
2049 | } | |
05330448 | 2050 | |
db1669bc JK |
2051 | /* If we have an interrupt but the guest is not ready to receive an |
2052 | * interrupt, request an interrupt window exit. This will | |
2053 | * cause a return to userspace as soon as the guest is ready to | |
2054 | * receive interrupts. */ | |
259186a7 | 2055 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2056 | run->request_interrupt_window = 1; |
2057 | } else { | |
2058 | run->request_interrupt_window = 0; | |
2059 | } | |
2060 | ||
2061 | DPRINTF("setting tpr\n"); | |
02e51483 | 2062 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
db1669bc | 2063 | } |
05330448 AL |
2064 | } |
2065 | ||
20d695a9 | 2066 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2067 | { |
20d695a9 AF |
2068 | X86CPU *x86_cpu = X86_CPU(cpu); |
2069 | CPUX86State *env = &x86_cpu->env; | |
2070 | ||
b9bec74b | 2071 | if (run->if_flag) { |
05330448 | 2072 | env->eflags |= IF_MASK; |
b9bec74b | 2073 | } else { |
05330448 | 2074 | env->eflags &= ~IF_MASK; |
b9bec74b | 2075 | } |
02e51483 CF |
2076 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2077 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
05330448 AL |
2078 | } |
2079 | ||
20d695a9 | 2080 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2081 | { |
20d695a9 AF |
2082 | X86CPU *cpu = X86_CPU(cs); |
2083 | CPUX86State *env = &cpu->env; | |
232fc23b | 2084 | |
259186a7 | 2085 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2086 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2087 | assert(env->mcg_cap); | |
2088 | ||
259186a7 | 2089 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2090 | |
dd1750d7 | 2091 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2092 | |
2093 | if (env->exception_injected == EXCP08_DBLE) { | |
2094 | /* this means triple fault */ | |
2095 | qemu_system_reset_request(); | |
fcd7d003 | 2096 | cs->exit_request = 1; |
ab443475 JK |
2097 | return 0; |
2098 | } | |
2099 | env->exception_injected = EXCP12_MCHK; | |
2100 | env->has_error_code = 0; | |
2101 | ||
259186a7 | 2102 | cs->halted = 0; |
ab443475 JK |
2103 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2104 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2105 | } | |
2106 | } | |
2107 | ||
e0723c45 PB |
2108 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
2109 | kvm_cpu_synchronize_state(cs); | |
2110 | do_cpu_init(cpu); | |
2111 | } | |
2112 | ||
db1669bc JK |
2113 | if (kvm_irqchip_in_kernel()) { |
2114 | return 0; | |
2115 | } | |
2116 | ||
259186a7 AF |
2117 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2118 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2119 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2120 | } |
259186a7 | 2121 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2122 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2123 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2124 | cs->halted = 0; | |
6792a57b | 2125 | } |
259186a7 | 2126 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2127 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2128 | do_cpu_sipi(cpu); |
0af691d7 | 2129 | } |
259186a7 AF |
2130 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2131 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2132 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2133 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2134 | env->tpr_access_type); |
2135 | } | |
0af691d7 | 2136 | |
259186a7 | 2137 | return cs->halted; |
0af691d7 MT |
2138 | } |
2139 | ||
839b5630 | 2140 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2141 | { |
259186a7 | 2142 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2143 | CPUX86State *env = &cpu->env; |
2144 | ||
259186a7 | 2145 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2146 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2147 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2148 | cs->halted = 1; | |
bb4ea393 | 2149 | return EXCP_HLT; |
05330448 AL |
2150 | } |
2151 | ||
bb4ea393 | 2152 | return 0; |
05330448 AL |
2153 | } |
2154 | ||
f7575c96 | 2155 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2156 | { |
f7575c96 AF |
2157 | CPUState *cs = CPU(cpu); |
2158 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2159 | |
02e51483 | 2160 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2161 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2162 | : TPR_ACCESS_READ); | |
2163 | return 1; | |
2164 | } | |
2165 | ||
f17ec444 | 2166 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2167 | { |
38972938 | 2168 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2169 | |
f17ec444 AF |
2170 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2171 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2172 | return -EINVAL; |
b9bec74b | 2173 | } |
e22a25c9 AL |
2174 | return 0; |
2175 | } | |
2176 | ||
f17ec444 | 2177 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2178 | { |
2179 | uint8_t int3; | |
2180 | ||
f17ec444 AF |
2181 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2182 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2183 | return -EINVAL; |
b9bec74b | 2184 | } |
e22a25c9 AL |
2185 | return 0; |
2186 | } | |
2187 | ||
2188 | static struct { | |
2189 | target_ulong addr; | |
2190 | int len; | |
2191 | int type; | |
2192 | } hw_breakpoint[4]; | |
2193 | ||
2194 | static int nb_hw_breakpoint; | |
2195 | ||
2196 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2197 | { | |
2198 | int n; | |
2199 | ||
b9bec74b | 2200 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2201 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2202 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2203 | return n; |
b9bec74b JK |
2204 | } |
2205 | } | |
e22a25c9 AL |
2206 | return -1; |
2207 | } | |
2208 | ||
2209 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2210 | target_ulong len, int type) | |
2211 | { | |
2212 | switch (type) { | |
2213 | case GDB_BREAKPOINT_HW: | |
2214 | len = 1; | |
2215 | break; | |
2216 | case GDB_WATCHPOINT_WRITE: | |
2217 | case GDB_WATCHPOINT_ACCESS: | |
2218 | switch (len) { | |
2219 | case 1: | |
2220 | break; | |
2221 | case 2: | |
2222 | case 4: | |
2223 | case 8: | |
b9bec74b | 2224 | if (addr & (len - 1)) { |
e22a25c9 | 2225 | return -EINVAL; |
b9bec74b | 2226 | } |
e22a25c9 AL |
2227 | break; |
2228 | default: | |
2229 | return -EINVAL; | |
2230 | } | |
2231 | break; | |
2232 | default: | |
2233 | return -ENOSYS; | |
2234 | } | |
2235 | ||
b9bec74b | 2236 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2237 | return -ENOBUFS; |
b9bec74b JK |
2238 | } |
2239 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2240 | return -EEXIST; |
b9bec74b | 2241 | } |
e22a25c9 AL |
2242 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2243 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2244 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2245 | nb_hw_breakpoint++; | |
2246 | ||
2247 | return 0; | |
2248 | } | |
2249 | ||
2250 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2251 | target_ulong len, int type) | |
2252 | { | |
2253 | int n; | |
2254 | ||
2255 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2256 | if (n < 0) { |
e22a25c9 | 2257 | return -ENOENT; |
b9bec74b | 2258 | } |
e22a25c9 AL |
2259 | nb_hw_breakpoint--; |
2260 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2261 | ||
2262 | return 0; | |
2263 | } | |
2264 | ||
2265 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2266 | { | |
2267 | nb_hw_breakpoint = 0; | |
2268 | } | |
2269 | ||
2270 | static CPUWatchpoint hw_watchpoint; | |
2271 | ||
a60f24b5 | 2272 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2273 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2274 | { |
ed2803da | 2275 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2276 | CPUX86State *env = &cpu->env; |
f2574737 | 2277 | int ret = 0; |
e22a25c9 AL |
2278 | int n; |
2279 | ||
2280 | if (arch_info->exception == 1) { | |
2281 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2282 | if (cs->singlestep_enabled) { |
f2574737 | 2283 | ret = EXCP_DEBUG; |
b9bec74b | 2284 | } |
e22a25c9 | 2285 | } else { |
b9bec74b JK |
2286 | for (n = 0; n < 4; n++) { |
2287 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2288 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2289 | case 0x0: | |
f2574737 | 2290 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2291 | break; |
2292 | case 0x1: | |
f2574737 | 2293 | ret = EXCP_DEBUG; |
ff4700b0 | 2294 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2295 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2296 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2297 | break; | |
2298 | case 0x3: | |
f2574737 | 2299 | ret = EXCP_DEBUG; |
ff4700b0 | 2300 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2301 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2302 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2303 | break; | |
2304 | } | |
b9bec74b JK |
2305 | } |
2306 | } | |
e22a25c9 | 2307 | } |
ff4700b0 | 2308 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2309 | ret = EXCP_DEBUG; |
b9bec74b | 2310 | } |
f2574737 | 2311 | if (ret == 0) { |
ff4700b0 | 2312 | cpu_synchronize_state(cs); |
48405526 | 2313 | assert(env->exception_injected == -1); |
b0b1d690 | 2314 | |
f2574737 | 2315 | /* pass to guest */ |
48405526 BS |
2316 | env->exception_injected = arch_info->exception; |
2317 | env->has_error_code = 0; | |
b0b1d690 | 2318 | } |
e22a25c9 | 2319 | |
f2574737 | 2320 | return ret; |
e22a25c9 AL |
2321 | } |
2322 | ||
20d695a9 | 2323 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2324 | { |
2325 | const uint8_t type_code[] = { | |
2326 | [GDB_BREAKPOINT_HW] = 0x0, | |
2327 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2328 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2329 | }; | |
2330 | const uint8_t len_code[] = { | |
2331 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2332 | }; | |
2333 | int n; | |
2334 | ||
a60f24b5 | 2335 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2336 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2337 | } |
e22a25c9 AL |
2338 | if (nb_hw_breakpoint > 0) { |
2339 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2340 | dbg->arch.debugreg[7] = 0x0600; | |
2341 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2342 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2343 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2344 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2345 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2346 | } |
2347 | } | |
2348 | } | |
4513d923 | 2349 | |
2a4dac83 JK |
2350 | static bool host_supports_vmx(void) |
2351 | { | |
2352 | uint32_t ecx, unused; | |
2353 | ||
2354 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2355 | return ecx & CPUID_EXT_VMX; | |
2356 | } | |
2357 | ||
2358 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2359 | ||
20d695a9 | 2360 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2361 | { |
20d695a9 | 2362 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2363 | uint64_t code; |
2364 | int ret; | |
2365 | ||
2366 | switch (run->exit_reason) { | |
2367 | case KVM_EXIT_HLT: | |
2368 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2369 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2370 | break; |
2371 | case KVM_EXIT_SET_TPR: | |
2372 | ret = 0; | |
2373 | break; | |
d362e757 | 2374 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2375 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2376 | break; |
2a4dac83 JK |
2377 | case KVM_EXIT_FAIL_ENTRY: |
2378 | code = run->fail_entry.hardware_entry_failure_reason; | |
2379 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2380 | code); | |
2381 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2382 | fprintf(stderr, | |
12619721 | 2383 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2384 | "unrestricted mode\n" |
2385 | "support, the failure can be most likely due to the guest " | |
2386 | "entering an invalid\n" | |
2387 | "state for Intel VT. For example, the guest maybe running " | |
2388 | "in big real mode\n" | |
2389 | "which is not supported on less recent Intel processors." | |
2390 | "\n\n"); | |
2391 | } | |
2392 | ret = -1; | |
2393 | break; | |
2394 | case KVM_EXIT_EXCEPTION: | |
2395 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2396 | run->ex.exception, run->ex.error_code); | |
2397 | ret = -1; | |
2398 | break; | |
f2574737 JK |
2399 | case KVM_EXIT_DEBUG: |
2400 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2401 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2402 | break; |
2a4dac83 JK |
2403 | default: |
2404 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2405 | ret = -1; | |
2406 | break; | |
2407 | } | |
2408 | ||
2409 | return ret; | |
2410 | } | |
2411 | ||
20d695a9 | 2412 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2413 | { |
20d695a9 AF |
2414 | X86CPU *cpu = X86_CPU(cs); |
2415 | CPUX86State *env = &cpu->env; | |
2416 | ||
dd1750d7 | 2417 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2418 | return !(env->cr[0] & CR0_PE_MASK) || |
2419 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2420 | } |
84b058d7 JK |
2421 | |
2422 | void kvm_arch_init_irq_routing(KVMState *s) | |
2423 | { | |
2424 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2425 | /* If kernel can't do irq routing, interrupt source | |
2426 | * override 0->2 cannot be set up as required by HPET. | |
2427 | * So we have to disable it. | |
2428 | */ | |
2429 | no_hpet = 1; | |
2430 | } | |
cc7e0ddf | 2431 | /* We know at this point that we're using the in-kernel |
614e41bc | 2432 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2433 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf PM |
2434 | */ |
2435 | kvm_irqfds_allowed = true; | |
614e41bc | 2436 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2437 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2438 | } |
b139bd30 JK |
2439 | |
2440 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2441 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2442 | uint32_t flags, uint32_t *dev_id) | |
2443 | { | |
2444 | struct kvm_assigned_pci_dev dev_data = { | |
2445 | .segnr = dev_addr->domain, | |
2446 | .busnr = dev_addr->bus, | |
2447 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2448 | .flags = flags, | |
2449 | }; | |
2450 | int ret; | |
2451 | ||
2452 | dev_data.assigned_dev_id = | |
2453 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2454 | ||
2455 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2456 | if (ret < 0) { | |
2457 | return ret; | |
2458 | } | |
2459 | ||
2460 | *dev_id = dev_data.assigned_dev_id; | |
2461 | ||
2462 | return 0; | |
2463 | } | |
2464 | ||
2465 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2466 | { | |
2467 | struct kvm_assigned_pci_dev dev_data = { | |
2468 | .assigned_dev_id = dev_id, | |
2469 | }; | |
2470 | ||
2471 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2472 | } | |
2473 | ||
2474 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2475 | uint32_t irq_type, uint32_t guest_irq) | |
2476 | { | |
2477 | struct kvm_assigned_irq assigned_irq = { | |
2478 | .assigned_dev_id = dev_id, | |
2479 | .guest_irq = guest_irq, | |
2480 | .flags = irq_type, | |
2481 | }; | |
2482 | ||
2483 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2484 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2485 | } else { | |
2486 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2487 | } | |
2488 | } | |
2489 | ||
2490 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2491 | uint32_t guest_irq) | |
2492 | { | |
2493 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2494 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2495 | ||
2496 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2497 | } | |
2498 | ||
2499 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2500 | { | |
2501 | struct kvm_assigned_pci_dev dev_data = { | |
2502 | .assigned_dev_id = dev_id, | |
2503 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2504 | }; | |
2505 | ||
2506 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2507 | } | |
2508 | ||
2509 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2510 | uint32_t type) | |
2511 | { | |
2512 | struct kvm_assigned_irq assigned_irq = { | |
2513 | .assigned_dev_id = dev_id, | |
2514 | .flags = type, | |
2515 | }; | |
2516 | ||
2517 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2518 | } | |
2519 | ||
2520 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2521 | { | |
2522 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2523 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2524 | } | |
2525 | ||
2526 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2527 | { | |
2528 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2529 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2530 | } | |
2531 | ||
2532 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2533 | { | |
2534 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2535 | KVM_DEV_IRQ_HOST_MSI); | |
2536 | } | |
2537 | ||
2538 | bool kvm_device_msix_supported(KVMState *s) | |
2539 | { | |
2540 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2541 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2542 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2543 | } | |
2544 | ||
2545 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2546 | uint32_t nr_vectors) | |
2547 | { | |
2548 | struct kvm_assigned_msix_nr msix_nr = { | |
2549 | .assigned_dev_id = dev_id, | |
2550 | .entry_nr = nr_vectors, | |
2551 | }; | |
2552 | ||
2553 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2554 | } | |
2555 | ||
2556 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2557 | int virq) | |
2558 | { | |
2559 | struct kvm_assigned_msix_entry msix_entry = { | |
2560 | .assigned_dev_id = dev_id, | |
2561 | .gsi = virq, | |
2562 | .entry = vector, | |
2563 | }; | |
2564 | ||
2565 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2566 | } | |
2567 | ||
2568 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2569 | { | |
2570 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2571 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2572 | } | |
2573 | ||
2574 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2575 | { | |
2576 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2577 | KVM_DEV_IRQ_HOST_MSIX); | |
2578 | } |