]> Git Repo - qemu.git/blame - target/arm/cpu.h
target/alpha: Use env_cpu, env_archcpu
[qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "qemu-common.h"
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
9042c0e2 28
ca759f9e
AB
29/* ARM processors have a weak memory model */
30#define TCG_GUEST_DEFAULT_MO (0)
31
b8a9e8f1
FB
32#define EXCP_UDEF 1 /* undefined instruction */
33#define EXCP_SWI 2 /* software interrupt */
34#define EXCP_PREFETCH_ABORT 3
35#define EXCP_DATA_ABORT 4
b5ff1b31
FB
36#define EXCP_IRQ 5
37#define EXCP_FIQ 6
06c949e6 38#define EXCP_BKPT 7
9ee6e8bb 39#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 40#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 41#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 42#define EXCP_HYP_TRAP 12
e0d6e6a5 43#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
44#define EXCP_VIRQ 14
45#define EXCP_VFIQ 15
19a6e31c 46#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 47#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 48#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 49#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 50#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
51#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
52#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 53/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
1e577cc7 61#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
62#define ARMV7M_EXCP_SVC 11
63#define ARMV7M_EXCP_DEBUG 12
64#define ARMV7M_EXCP_PENDSV 14
65#define ARMV7M_EXCP_SYSTICK 15
2c0262af 66
acf94941
PM
67/* For M profile, some registers are banked secure vs non-secure;
68 * these are represented as a 2-element array where the first element
69 * is the non-secure copy and the second is the secure copy.
70 * When the CPU does not have implement the security extension then
71 * only the first element is used.
72 * This means that the copy for the current security state can be
73 * accessed via env->registerfield[env->v7m.secure] (whether the security
74 * extension is implemented or not).
75 */
4a16724f
PM
76enum {
77 M_REG_NS = 0,
78 M_REG_S = 1,
79 M_REG_NUM_BANKS = 2,
80};
acf94941 81
403946c0
RH
82/* ARM-specific interrupt pending bits. */
83#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
84#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
85#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 86
e4fe830b
PM
87/* The usual mapping for an AArch64 system register to its AArch32
88 * counterpart is for the 32 bit world to have access to the lower
89 * half only (with writes leaving the upper half untouched). It's
90 * therefore useful to be able to pass TCG the offset of the least
91 * significant half of a uint64_t struct member.
92 */
93#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 94#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 95#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
96#else
97#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 98#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
99#endif
100
136e67e9 101/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
102#define ARM_CPU_IRQ 0
103#define ARM_CPU_FIQ 1
136e67e9
EI
104#define ARM_CPU_VIRQ 2
105#define ARM_CPU_VFIQ 3
403946c0 106
aaa1f954
EI
107/* ARM-specific extra insn start words:
108 * 1: Conditional execution bits
109 * 2: Partial exception syndrome for data aborts
110 */
111#define TARGET_INSN_START_EXTRA_WORDS 2
112
113/* The 2nd extra word holding syndrome info for data aborts does not use
114 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
115 * help the sleb128 encoder do a better job.
116 * When restoring the CPU state, we shift it back up.
117 */
118#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
119#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 120
b7bcbe95
FB
121/* We currently assume float and double are IEEE single and double
122 precision respectively.
123 Doing runtime conversions is tricky because VFP registers may contain
124 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
125 s<2n> maps to the least significant half of d<n>
126 s<2n+1> maps to the most significant half of d<n>
127 */
b7bcbe95 128
200bf5b7
AB
129/**
130 * DynamicGDBXMLInfo:
131 * @desc: Contains the XML descriptions.
132 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
133 * @cpregs_keys: Array that contains the corresponding Key of
134 * a given cpreg with the same order of the cpreg in the XML description.
135 */
136typedef struct DynamicGDBXMLInfo {
137 char *desc;
138 int num_cpregs;
139 uint32_t *cpregs_keys;
140} DynamicGDBXMLInfo;
141
55d284af
PM
142/* CPU state for each instance of a generic timer (in cp15 c14) */
143typedef struct ARMGenericTimer {
144 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 145 uint64_t ctl; /* Timer Control register */
55d284af
PM
146} ARMGenericTimer;
147
148#define GTIMER_PHYS 0
149#define GTIMER_VIRT 1
b0e66d95 150#define GTIMER_HYP 2
b4d3978c
PM
151#define GTIMER_SEC 3
152#define NUM_GTIMERS 4
55d284af 153
11f136ee
FA
154typedef struct {
155 uint64_t raw_tcr;
156 uint32_t mask;
157 uint32_t base_mask;
158} TCR;
159
c39c2b90
RH
160/* Define a maximum sized vector register.
161 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162 * For 64-bit, this is a 2048-bit SVE register.
163 *
164 * Note that the mapping between S, D, and Q views of the register bank
165 * differs between AArch64 and AArch32.
166 * In AArch32:
167 * Qn = regs[n].d[1]:regs[n].d[0]
168 * Dn = regs[n / 2].d[n & 1]
169 * Sn = regs[n / 4].d[n % 4 / 2],
170 * bits 31..0 for even n, and bits 63..32 for odd n
171 * (and regs[16] to regs[31] are inaccessible)
172 * In AArch64:
173 * Zn = regs[n].d[*]
174 * Qn = regs[n].d[1]:regs[n].d[0]
175 * Dn = regs[n].d[0]
176 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 177 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
178 *
179 * This corresponds to the architecturally defined mapping between
180 * the two execution states, and means we do not need to explicitly
181 * map these registers when changing states.
182 *
183 * Align the data for use with TCG host vector operations.
184 */
185
186#ifdef TARGET_AARCH64
187# define ARM_MAX_VQ 16
188#else
189# define ARM_MAX_VQ 1
190#endif
191
192typedef struct ARMVectorReg {
193 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
194} ARMVectorReg;
195
3c7d3086 196#ifdef TARGET_AARCH64
991ad91b 197/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
198typedef struct ARMPredicateReg {
199 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
200} ARMPredicateReg;
991ad91b
RH
201
202/* In AArch32 mode, PAC keys do not exist at all. */
203typedef struct ARMPACKey {
204 uint64_t lo, hi;
205} ARMPACKey;
3c7d3086
RH
206#endif
207
c39c2b90 208
2c0262af 209typedef struct CPUARMState {
b5ff1b31 210 /* Regs for current mode. */
2c0262af 211 uint32_t regs[16];
3926cc84
AG
212
213 /* 32/64 switch only happens when taking and returning from
214 * exceptions so the overlap semantics are taken care of then
215 * instead of having a complicated union.
216 */
217 /* Regs for A64 mode. */
218 uint64_t xregs[32];
219 uint64_t pc;
d356312f
PM
220 /* PSTATE isn't an architectural register for ARMv8. However, it is
221 * convenient for us to assemble the underlying state into a 32 bit format
222 * identical to the architectural format used for the SPSR. (This is also
223 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
224 * 'pstate' register are.) Of the PSTATE bits:
225 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
226 * semantics as for AArch32, as described in the comments on each field)
227 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 228 * DAIF (exception masks) are kept in env->daif
f6e52eaa 229 * BTYPE is kept in env->btype
d356312f 230 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
231 */
232 uint32_t pstate;
233 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
234
b90372ad 235 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 236 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
237 the whole CPSR. */
238 uint32_t uncached_cpsr;
239 uint32_t spsr;
240
241 /* Banked registers. */
28c9457d 242 uint64_t banked_spsr[8];
0b7d409d
FA
243 uint32_t banked_r13[8];
244 uint32_t banked_r14[8];
3b46e624 245
b5ff1b31
FB
246 /* These hold r8-r12. */
247 uint32_t usr_regs[5];
248 uint32_t fiq_regs[5];
3b46e624 249
2c0262af
FB
250 /* cpsr flag cache for faster execution */
251 uint32_t CF; /* 0 or 1 */
252 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
253 uint32_t NF; /* N is bit 31. All other bits are undefined. */
254 uint32_t ZF; /* Z set if zero. */
99c475ab 255 uint32_t QF; /* 0 or 1 */
9ee6e8bb 256 uint32_t GE; /* cpsr[19:16] */
b26eefb6 257 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 258 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 259 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 260 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 261
1b174238 262 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 263 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 264
b5ff1b31
FB
265 /* System control coprocessor (cp15) */
266 struct {
40f137e1 267 uint32_t c0_cpuid;
b85a1fd6
FA
268 union { /* Cache size selection */
269 struct {
270 uint64_t _unused_csselr0;
271 uint64_t csselr_ns;
272 uint64_t _unused_csselr1;
273 uint64_t csselr_s;
274 };
275 uint64_t csselr_el[4];
276 };
137feaa9
FA
277 union { /* System control register. */
278 struct {
279 uint64_t _unused_sctlr;
280 uint64_t sctlr_ns;
281 uint64_t hsctlr;
282 uint64_t sctlr_s;
283 };
284 uint64_t sctlr_el[4];
285 };
7ebd5f2e 286 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 287 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 288 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 289 uint64_t sder; /* Secure debug enable register. */
77022576 290 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
291 union { /* MMU translation table base 0. */
292 struct {
293 uint64_t _unused_ttbr0_0;
294 uint64_t ttbr0_ns;
295 uint64_t _unused_ttbr0_1;
296 uint64_t ttbr0_s;
297 };
298 uint64_t ttbr0_el[4];
299 };
300 union { /* MMU translation table base 1. */
301 struct {
302 uint64_t _unused_ttbr1_0;
303 uint64_t ttbr1_ns;
304 uint64_t _unused_ttbr1_1;
305 uint64_t ttbr1_s;
306 };
307 uint64_t ttbr1_el[4];
308 };
b698e9cf 309 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
310 /* MMU translation table base control. */
311 TCR tcr_el[4];
68e9c2fe 312 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
313 uint32_t c2_data; /* MPU data cacheable bits. */
314 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
315 union { /* MMU domain access control register
316 * MPU write buffer control.
317 */
318 struct {
319 uint64_t dacr_ns;
320 uint64_t dacr_s;
321 };
322 struct {
323 uint64_t dacr32_el2;
324 };
325 };
7e09797c
PM
326 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 328 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 329 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
330 union { /* Fault status registers. */
331 struct {
332 uint64_t ifsr_ns;
333 uint64_t ifsr_s;
334 };
335 struct {
336 uint64_t ifsr32_el2;
337 };
338 };
4a7e2d73
FA
339 union {
340 struct {
341 uint64_t _unused_dfsr;
342 uint64_t dfsr_ns;
343 uint64_t hsr;
344 uint64_t dfsr_s;
345 };
346 uint64_t esr_el[4];
347 };
ce819861 348 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
349 union { /* Fault address registers. */
350 struct {
351 uint64_t _unused_far0;
352#ifdef HOST_WORDS_BIGENDIAN
353 uint32_t ifar_ns;
354 uint32_t dfar_ns;
355 uint32_t ifar_s;
356 uint32_t dfar_s;
357#else
358 uint32_t dfar_ns;
359 uint32_t ifar_ns;
360 uint32_t dfar_s;
361 uint32_t ifar_s;
362#endif
363 uint64_t _unused_far3;
364 };
365 uint64_t far_el[4];
366 };
59e05530 367 uint64_t hpfar_el2;
2a5a9abd 368 uint64_t hstr_el2;
01c097f7
FA
369 union { /* Translation result. */
370 struct {
371 uint64_t _unused_par_0;
372 uint64_t par_ns;
373 uint64_t _unused_par_1;
374 uint64_t par_s;
375 };
376 uint64_t par_el[4];
377 };
6cb0b013 378
b5ff1b31
FB
379 uint32_t c9_insn; /* Cache lockdown registers. */
380 uint32_t c9_data;
8521466b
AF
381 uint64_t c9_pmcr; /* performance monitor control register */
382 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
383 uint64_t c9_pmovsr; /* perf monitor overflow status */
384 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 385 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 386 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
387 union { /* Memory attribute redirection */
388 struct {
389#ifdef HOST_WORDS_BIGENDIAN
390 uint64_t _unused_mair_0;
391 uint32_t mair1_ns;
392 uint32_t mair0_ns;
393 uint64_t _unused_mair_1;
394 uint32_t mair1_s;
395 uint32_t mair0_s;
396#else
397 uint64_t _unused_mair_0;
398 uint32_t mair0_ns;
399 uint32_t mair1_ns;
400 uint64_t _unused_mair_1;
401 uint32_t mair0_s;
402 uint32_t mair1_s;
403#endif
404 };
405 uint64_t mair_el[4];
406 };
fb6c91ba
GB
407 union { /* vector base address register */
408 struct {
409 uint64_t _unused_vbar;
410 uint64_t vbar_ns;
411 uint64_t hvbar;
412 uint64_t vbar_s;
413 };
414 uint64_t vbar_el[4];
415 };
e89e51a1 416 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
417 struct { /* FCSE PID. */
418 uint32_t fcseidr_ns;
419 uint32_t fcseidr_s;
420 };
421 union { /* Context ID. */
422 struct {
423 uint64_t _unused_contextidr_0;
424 uint64_t contextidr_ns;
425 uint64_t _unused_contextidr_1;
426 uint64_t contextidr_s;
427 };
428 uint64_t contextidr_el[4];
429 };
430 union { /* User RW Thread register. */
431 struct {
432 uint64_t tpidrurw_ns;
433 uint64_t tpidrprw_ns;
434 uint64_t htpidr;
435 uint64_t _tpidr_el3;
436 };
437 uint64_t tpidr_el[4];
438 };
439 /* The secure banks of these registers don't map anywhere */
440 uint64_t tpidrurw_s;
441 uint64_t tpidrprw_s;
442 uint64_t tpidruro_s;
443
444 union { /* User RO Thread register. */
445 uint64_t tpidruro_ns;
446 uint64_t tpidrro_el[1];
447 };
a7adc4b7
PM
448 uint64_t c14_cntfrq; /* Counter Frequency register */
449 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 450 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 451 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 452 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 453 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
454 uint32_t c15_ticonfig; /* TI925T configuration byte. */
455 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
456 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
457 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
458 uint32_t c15_config_base_address; /* SCU base address. */
459 uint32_t c15_diagnostic; /* diagnostic register */
460 uint32_t c15_power_diagnostic;
461 uint32_t c15_power_control; /* power control */
0b45451e
PM
462 uint64_t dbgbvr[16]; /* breakpoint value registers */
463 uint64_t dbgbcr[16]; /* breakpoint control registers */
464 uint64_t dbgwvr[16]; /* watchpoint value registers */
465 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 466 uint64_t mdscr_el1;
1424ca8d 467 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 468 uint64_t mdcr_el2;
5513c3ab 469 uint64_t mdcr_el3;
5d05b9d4
AL
470 /* Stores the architectural value of the counter *the last time it was
471 * updated* by pmccntr_op_start. Accesses should always be surrounded
472 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
473 * architecturally-correct value is being read/set.
7c2cb42b 474 */
c92c0687 475 uint64_t c15_ccnt;
5d05b9d4
AL
476 /* Stores the delta between the architectural value and the underlying
477 * cycle count during normal operation. It is used to update c15_ccnt
478 * to be the correct architectural value before accesses. During
479 * accesses, c15_ccnt_delta contains the underlying count being used
480 * for the access, after which it reverts to the delta value in
481 * pmccntr_op_finish.
482 */
483 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
484 uint64_t c14_pmevcntr[31];
485 uint64_t c14_pmevcntr_delta[31];
486 uint64_t c14_pmevtyper[31];
8521466b 487 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 488 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 489 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 490 } cp15;
40f137e1 491
9ee6e8bb 492 struct {
fb602cb7
PM
493 /* M profile has up to 4 stack pointers:
494 * a Main Stack Pointer and a Process Stack Pointer for each
495 * of the Secure and Non-Secure states. (If the CPU doesn't support
496 * the security extension then it has only two SPs.)
497 * In QEMU we always store the currently active SP in regs[13],
498 * and the non-active SP for the current security state in
499 * v7m.other_sp. The stack pointers for the inactive security state
500 * are stored in other_ss_msp and other_ss_psp.
501 * switch_v7m_security_state() is responsible for rearranging them
502 * when we change security state.
503 */
9ee6e8bb 504 uint32_t other_sp;
fb602cb7
PM
505 uint32_t other_ss_msp;
506 uint32_t other_ss_psp;
4a16724f
PM
507 uint32_t vecbase[M_REG_NUM_BANKS];
508 uint32_t basepri[M_REG_NUM_BANKS];
509 uint32_t control[M_REG_NUM_BANKS];
510 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
511 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
512 uint32_t hfsr; /* HardFault Status */
513 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 514 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 515 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 516 uint32_t bfar; /* BusFault Address */
bed079da 517 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 518 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 519 int exception;
4a16724f
PM
520 uint32_t primask[M_REG_NUM_BANKS];
521 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 522 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 523 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 524 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 525 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
526 uint32_t msplim[M_REG_NUM_BANKS];
527 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
528 uint32_t fpcar[M_REG_NUM_BANKS];
529 uint32_t fpccr[M_REG_NUM_BANKS];
530 uint32_t fpdscr[M_REG_NUM_BANKS];
531 uint32_t cpacr[M_REG_NUM_BANKS];
532 uint32_t nsacr;
9ee6e8bb
PB
533 } v7m;
534
abf1172f
PM
535 /* Information associated with an exception about to be taken:
536 * code which raises an exception must set cs->exception_index and
537 * the relevant parts of this structure; the cpu_do_interrupt function
538 * will then set the guest-visible registers as part of the exception
539 * entry process.
540 */
541 struct {
542 uint32_t syndrome; /* AArch64 format syndrome register */
543 uint32_t fsr; /* AArch32 format fault status register info */
544 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 545 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
546 /* If we implement EL2 we will also need to store information
547 * about the intermediate physical address for stage 2 faults.
548 */
549 } exception;
550
202ccb6b
DG
551 /* Information associated with an SError */
552 struct {
553 uint8_t pending;
554 uint8_t has_esr;
555 uint64_t esr;
556 } serror;
557
ed89f078
PM
558 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
559 uint32_t irq_line_state;
560
fe1479c3
PB
561 /* Thumb-2 EE state. */
562 uint32_t teecr;
563 uint32_t teehbr;
564
b7bcbe95
FB
565 /* VFP coprocessor state. */
566 struct {
c39c2b90 567 ARMVectorReg zregs[32];
b7bcbe95 568
3c7d3086
RH
569#ifdef TARGET_AARCH64
570 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 571#define FFR_PRED_NUM 16
3c7d3086 572 ARMPredicateReg pregs[17];
516e246a
RH
573 /* Scratch space for aa64 sve predicate temporary. */
574 ARMPredicateReg preg_tmp;
3c7d3086
RH
575#endif
576
b7bcbe95 577 /* We store these fpcsr fields separately for convenience. */
a4d58462 578 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
579 int vec_len;
580 int vec_stride;
581
a4d58462
RH
582 uint32_t xregs[16];
583
516e246a 584 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 585 uint32_t scratch[8];
3b46e624 586
d81ce0ef
AB
587 /* There are a number of distinct float control structures:
588 *
589 * fp_status: is the "normal" fp status.
590 * fp_status_fp16: used for half-precision calculations
591 * standard_fp_status : the ARM "Standard FPSCR Value"
592 *
593 * Half-precision operations are governed by a separate
594 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
595 * status structure to control this.
596 *
597 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
598 * round-to-nearest and is used by any operations (generally
599 * Neon) which the architecture defines as controlled by the
600 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
601 *
602 * To avoid having to transfer exception bits around, we simply
603 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 604 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
605 * only thing which needs to read the exception flags being
606 * an explicit FPSCR read.
607 */
53cd6637 608 float_status fp_status;
d81ce0ef 609 float_status fp_status_f16;
3a492f3a 610 float_status standard_fp_status;
5be5e8ed
RH
611
612 /* ZCR_EL[1-3] */
613 uint64_t zcr_el[4];
b7bcbe95 614 } vfp;
03d05e2d
PM
615 uint64_t exclusive_addr;
616 uint64_t exclusive_val;
617 uint64_t exclusive_high;
b7bcbe95 618
18c9b560
AZ
619 /* iwMMXt coprocessor state. */
620 struct {
621 uint64_t regs[16];
622 uint64_t val;
623
624 uint32_t cregs[16];
625 } iwmmxt;
626
991ad91b 627#ifdef TARGET_AARCH64
108b3ba8
RH
628 struct {
629 ARMPACKey apia;
630 ARMPACKey apib;
631 ARMPACKey apda;
632 ARMPACKey apdb;
633 ARMPACKey apga;
634 } keys;
991ad91b
RH
635#endif
636
ce4defa0
PB
637#if defined(CONFIG_USER_ONLY)
638 /* For usermode syscall translation. */
639 int eabi;
640#endif
641
46747d15 642 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
643 struct CPUWatchpoint *cpu_watchpoint[16];
644
1f5c00cf
AB
645 /* Fields up to this point are cleared by a CPU reset */
646 struct {} end_reset_fields;
647
a316d335
FB
648 CPU_COMMON
649
1f5c00cf 650 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 651
581be094 652 /* Internal CPU feature flags. */
918f5dca 653 uint64_t features;
581be094 654
6cb0b013
PC
655 /* PMSAv7 MPU */
656 struct {
657 uint32_t *drbar;
658 uint32_t *drsr;
659 uint32_t *dracr;
4a16724f 660 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
661 } pmsav7;
662
0e1a46bb
PM
663 /* PMSAv8 MPU */
664 struct {
665 /* The PMSAv8 implementation also shares some PMSAv7 config
666 * and state:
667 * pmsav7.rnr (region number register)
668 * pmsav7_dregion (number of configured regions)
669 */
4a16724f
PM
670 uint32_t *rbar[M_REG_NUM_BANKS];
671 uint32_t *rlar[M_REG_NUM_BANKS];
672 uint32_t mair0[M_REG_NUM_BANKS];
673 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
674 } pmsav8;
675
9901c576
PM
676 /* v8M SAU */
677 struct {
678 uint32_t *rbar;
679 uint32_t *rlar;
680 uint32_t rnr;
681 uint32_t ctrl;
682 } sau;
683
983fe826 684 void *nvic;
462a8bc6 685 const struct arm_boot_info *boot_info;
d3a3e529
VK
686 /* Store GICv3CPUState to access from this struct */
687 void *gicv3state;
2c0262af
FB
688} CPUARMState;
689
bd7d00fc 690/**
08267487 691 * ARMELChangeHookFn:
bd7d00fc
PM
692 * type of a function which can be registered via arm_register_el_change_hook()
693 * to get callbacks when the CPU changes its exception level or mode.
694 */
08267487
AL
695typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
696typedef struct ARMELChangeHook ARMELChangeHook;
697struct ARMELChangeHook {
698 ARMELChangeHookFn *hook;
699 void *opaque;
700 QLIST_ENTRY(ARMELChangeHook) node;
701};
062ba099
AB
702
703/* These values map onto the return values for
704 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
705typedef enum ARMPSCIState {
d5affb0d
AJ
706 PSCI_ON = 0,
707 PSCI_OFF = 1,
062ba099
AB
708 PSCI_ON_PENDING = 2
709} ARMPSCIState;
710
962fcbf2
RH
711typedef struct ARMISARegisters ARMISARegisters;
712
74e75564
PB
713/**
714 * ARMCPU:
715 * @env: #CPUARMState
716 *
717 * An ARM CPU core.
718 */
719struct ARMCPU {
720 /*< private >*/
721 CPUState parent_obj;
722 /*< public >*/
723
724 CPUARMState env;
725
726 /* Coprocessor information */
727 GHashTable *cp_regs;
728 /* For marshalling (mostly coprocessor) register state between the
729 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
730 * we use these arrays.
731 */
732 /* List of register indexes managed via these arrays; (full KVM style
733 * 64 bit indexes, not CPRegInfo 32 bit indexes)
734 */
735 uint64_t *cpreg_indexes;
736 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
737 uint64_t *cpreg_values;
738 /* Length of the indexes, values, reset_values arrays */
739 int32_t cpreg_array_len;
740 /* These are used only for migration: incoming data arrives in
741 * these fields and is sanity checked in post_load before copying
742 * to the working data structures above.
743 */
744 uint64_t *cpreg_vmstate_indexes;
745 uint64_t *cpreg_vmstate_values;
746 int32_t cpreg_vmstate_array_len;
747
200bf5b7
AB
748 DynamicGDBXMLInfo dyn_xml;
749
74e75564
PB
750 /* Timers used by the generic (architected) timer */
751 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
752 /*
753 * Timer used by the PMU. Its state is restored after migration by
754 * pmu_op_finish() - it does not need other handling during migration
755 */
756 QEMUTimer *pmu_timer;
74e75564
PB
757 /* GPIO outputs for generic timer */
758 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
759 /* GPIO output for GICv3 maintenance interrupt signal */
760 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
761 /* GPIO output for the PMU interrupt */
762 qemu_irq pmu_interrupt;
74e75564
PB
763
764 /* MemoryRegion to use for secure physical accesses */
765 MemoryRegion *secure_memory;
766
181962fd
PM
767 /* For v8M, pointer to the IDAU interface provided by board/SoC */
768 Object *idau;
769
74e75564
PB
770 /* 'compatible' string for this CPU for Linux device trees */
771 const char *dtb_compatible;
772
773 /* PSCI version for this CPU
774 * Bits[31:16] = Major Version
775 * Bits[15:0] = Minor Version
776 */
777 uint32_t psci_version;
778
779 /* Should CPU start in PSCI powered-off state? */
780 bool start_powered_off;
062ba099
AB
781
782 /* Current power state, access guarded by BQL */
783 ARMPSCIState power_state;
784
c25bd18a
PM
785 /* CPU has virtualization extension */
786 bool has_el2;
74e75564
PB
787 /* CPU has security extension */
788 bool has_el3;
5c0a3819
SZ
789 /* CPU has PMU (Performance Monitor Unit) */
790 bool has_pmu;
74e75564
PB
791
792 /* CPU has memory protection unit */
793 bool has_mpu;
794 /* PMSAv7 MPU number of supported regions */
795 uint32_t pmsav7_dregion;
9901c576
PM
796 /* v8M SAU number of supported regions */
797 uint32_t sau_sregion;
74e75564
PB
798
799 /* PSCI conduit used to invoke PSCI methods
800 * 0 - disabled, 1 - smc, 2 - hvc
801 */
802 uint32_t psci_conduit;
803
38e2a77c
PM
804 /* For v8M, initial value of the Secure VTOR */
805 uint32_t init_svtor;
806
74e75564
PB
807 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
808 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
809 */
810 uint32_t kvm_target;
811
812 /* KVM init features for this CPU */
813 uint32_t kvm_init_features[7];
814
815 /* Uniprocessor system with MP extensions */
816 bool mp_is_up;
817
c4487d76
PM
818 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
819 * and the probe failed (so we need to report the error in realize)
820 */
821 bool host_cpu_probe_failed;
822
f9a69711
AF
823 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
824 * register.
825 */
826 int32_t core_count;
827
74e75564
PB
828 /* The instance init functions for implementation-specific subclasses
829 * set these fields to specify the implementation-dependent values of
830 * various constant registers and reset values of non-constant
831 * registers.
832 * Some of these might become QOM properties eventually.
833 * Field names match the official register names as defined in the
834 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
835 * is used for reset values of non-constant registers; no reset_
836 * prefix means a constant register.
47576b94
RH
837 * Some of these registers are split out into a substructure that
838 * is shared with the translators to control the ISA.
74e75564 839 */
47576b94
RH
840 struct ARMISARegisters {
841 uint32_t id_isar0;
842 uint32_t id_isar1;
843 uint32_t id_isar2;
844 uint32_t id_isar3;
845 uint32_t id_isar4;
846 uint32_t id_isar5;
847 uint32_t id_isar6;
848 uint32_t mvfr0;
849 uint32_t mvfr1;
850 uint32_t mvfr2;
851 uint64_t id_aa64isar0;
852 uint64_t id_aa64isar1;
853 uint64_t id_aa64pfr0;
854 uint64_t id_aa64pfr1;
3dc91ddb
PM
855 uint64_t id_aa64mmfr0;
856 uint64_t id_aa64mmfr1;
47576b94 857 } isar;
74e75564
PB
858 uint32_t midr;
859 uint32_t revidr;
860 uint32_t reset_fpsid;
74e75564
PB
861 uint32_t ctr;
862 uint32_t reset_sctlr;
863 uint32_t id_pfr0;
864 uint32_t id_pfr1;
865 uint32_t id_dfr0;
cad86737
AL
866 uint64_t pmceid0;
867 uint64_t pmceid1;
74e75564
PB
868 uint32_t id_afr0;
869 uint32_t id_mmfr0;
870 uint32_t id_mmfr1;
871 uint32_t id_mmfr2;
872 uint32_t id_mmfr3;
873 uint32_t id_mmfr4;
74e75564
PB
874 uint64_t id_aa64dfr0;
875 uint64_t id_aa64dfr1;
876 uint64_t id_aa64afr0;
877 uint64_t id_aa64afr1;
74e75564
PB
878 uint32_t dbgdidr;
879 uint32_t clidr;
880 uint64_t mp_affinity; /* MP ID without feature bits */
881 /* The elements of this array are the CCSIDR values for each cache,
882 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
883 */
884 uint32_t ccsidr[16];
885 uint64_t reset_cbar;
886 uint32_t reset_auxcr;
887 bool reset_hivecs;
888 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
889 uint32_t dcz_blocksize;
890 uint64_t rvbar;
bd7d00fc 891
e45868a3
PM
892 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
893 int gic_num_lrs; /* number of list registers */
894 int gic_vpribits; /* number of virtual priority bits */
895 int gic_vprebits; /* number of virtual preemption bits */
896
3a062d57
JB
897 /* Whether the cfgend input is high (i.e. this CPU should reset into
898 * big-endian mode). This setting isn't used directly: instead it modifies
899 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
900 * architecture version.
901 */
902 bool cfgend;
903
b5c53d1b 904 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 905 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
906
907 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
908
909 /* Used to synchronize KVM and QEMU in-kernel device levels */
910 uint8_t device_irq_level;
adf92eab
RH
911
912 /* Used to set the maximum vector length the cpu will support. */
913 uint32_t sve_max_vq;
74e75564
PB
914};
915
916static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
917{
918 return container_of(env, ARMCPU, env);
919}
920
51e5ef45
MAL
921void arm_cpu_post_init(Object *obj);
922
46de5913
IM
923uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
924
74e75564
PB
925#define ENV_OFFSET offsetof(ARMCPU, env)
926
927#ifndef CONFIG_USER_ONLY
928extern const struct VMStateDescription vmstate_arm_cpu;
929#endif
930
931void arm_cpu_do_interrupt(CPUState *cpu);
932void arm_v7m_cpu_do_interrupt(CPUState *cpu);
933bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
934
90c84c56 935void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
74e75564
PB
936
937hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
938 MemTxAttrs *attrs);
939
940int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
941int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
942
200bf5b7
AB
943/* Dynamically generates for gdb stub an XML description of the sysregs from
944 * the cp_regs hashtable. Returns the registered sysregs number.
945 */
946int arm_gen_dynamic_xml(CPUState *cpu);
947
948/* Returns the dynamically generated XML for the gdb stub.
949 * Returns a pointer to the XML contents for the specified XML file or NULL
950 * if the XML name doesn't match the predefined one.
951 */
952const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
953
74e75564
PB
954int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
955 int cpuid, void *opaque);
956int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
957 int cpuid, void *opaque);
958
959#ifdef TARGET_AARCH64
960int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
961int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 962void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
963void aarch64_sve_change_el(CPUARMState *env, int old_el,
964 int new_el, bool el0_a64);
0ab5953b
RH
965#else
966static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
967static inline void aarch64_sve_change_el(CPUARMState *env, int o,
968 int n, bool a)
969{ }
74e75564 970#endif
778c3a06 971
faacc041 972target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
973void aarch64_sync_32_to_64(CPUARMState *env);
974void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 975
ced31551
RH
976int fp_exception_el(CPUARMState *env, int cur_el);
977int sve_exception_el(CPUARMState *env, int cur_el);
978uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
979
3926cc84
AG
980static inline bool is_a64(CPUARMState *env)
981{
982 return env->aarch64;
983}
984
2c0262af
FB
985/* you can call this signal handler from your SIGBUS and SIGSEGV
986 signal handlers to inform the virtual CPU of exceptions. non zero
987 is returned if the signal was handled by the virtual CPU. */
5fafdf24 988int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
989 void *puc);
990
5d05b9d4
AL
991/**
992 * pmu_op_start/finish
ec7b4ce4
AF
993 * @env: CPUARMState
994 *
5d05b9d4
AL
995 * Convert all PMU counters between their delta form (the typical mode when
996 * they are enabled) and the guest-visible values. These two calls must
997 * surround any action which might affect the counters.
ec7b4ce4 998 */
5d05b9d4
AL
999void pmu_op_start(CPUARMState *env);
1000void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1001
4e7beb0c
AL
1002/*
1003 * Called when a PMU counter is due to overflow
1004 */
1005void arm_pmu_timer_cb(void *opaque);
1006
033614c4
AL
1007/**
1008 * Functions to register as EL change hooks for PMU mode filtering
1009 */
1010void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1011void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1012
57a4a11b 1013/*
bf8d0969
AL
1014 * pmu_init
1015 * @cpu: ARMCPU
57a4a11b 1016 *
bf8d0969
AL
1017 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1018 * for the current configuration
57a4a11b 1019 */
bf8d0969 1020void pmu_init(ARMCPU *cpu);
57a4a11b 1021
76e3e1bc
PM
1022/* SCTLR bit meanings. Several bits have been reused in newer
1023 * versions of the architecture; in that case we define constants
1024 * for both old and new bit meanings. Code which tests against those
1025 * bits should probably check or otherwise arrange that the CPU
1026 * is the architectural version it expects.
1027 */
1028#define SCTLR_M (1U << 0)
1029#define SCTLR_A (1U << 1)
1030#define SCTLR_C (1U << 2)
1031#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1032#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1033#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1034#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1035#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1036#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1037#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1038#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1039#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1040#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1041#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1042#define SCTLR_ITD (1U << 7) /* v8 onward */
1043#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1044#define SCTLR_SED (1U << 8) /* v8 onward */
1045#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1046#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1047#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1048#define SCTLR_SW (1U << 10) /* v7 */
1049#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1050#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1051#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1052#define SCTLR_I (1U << 12)
b2af69d0
RH
1053#define SCTLR_V (1U << 13) /* AArch32 only */
1054#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1055#define SCTLR_RR (1U << 14) /* up to v7 */
1056#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1057#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1058#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1059#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1060#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1061#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1062#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1063#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1064#define SCTLR_nTWE (1U << 18) /* v8 onward */
1065#define SCTLR_WXN (1U << 19)
1066#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1067#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1068#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1069#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1070#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1071#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1072#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1073#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1074#define SCTLR_VE (1U << 24) /* up to v7 */
1075#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1076#define SCTLR_EE (1U << 25)
1077#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1078#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1079#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1080#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1081#define SCTLR_TRE (1U << 28) /* AArch32 only */
1082#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1083#define SCTLR_AFE (1U << 29) /* AArch32 only */
1084#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1085#define SCTLR_TE (1U << 30) /* AArch32 only */
1086#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1087#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1088#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1089#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1090#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1091#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1092#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1093#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1094#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1095#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1096
c6f19164
GB
1097#define CPTR_TCPAC (1U << 31)
1098#define CPTR_TTA (1U << 20)
1099#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1100#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1101#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1102
187f678d
PM
1103#define MDCR_EPMAD (1U << 21)
1104#define MDCR_EDAD (1U << 20)
033614c4
AL
1105#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1106#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1107#define MDCR_SDD (1U << 16)
a8d64e73 1108#define MDCR_SPD (3U << 14)
187f678d
PM
1109#define MDCR_TDRA (1U << 11)
1110#define MDCR_TDOSA (1U << 10)
1111#define MDCR_TDA (1U << 9)
1112#define MDCR_TDE (1U << 8)
1113#define MDCR_HPME (1U << 7)
1114#define MDCR_TPM (1U << 6)
1115#define MDCR_TPMCR (1U << 5)
033614c4 1116#define MDCR_HPMN (0x1fU)
187f678d 1117
a8d64e73
PM
1118/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1119#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1120
78dbbbe4
PM
1121#define CPSR_M (0x1fU)
1122#define CPSR_T (1U << 5)
1123#define CPSR_F (1U << 6)
1124#define CPSR_I (1U << 7)
1125#define CPSR_A (1U << 8)
1126#define CPSR_E (1U << 9)
1127#define CPSR_IT_2_7 (0xfc00U)
1128#define CPSR_GE (0xfU << 16)
4051e12c
PM
1129#define CPSR_IL (1U << 20)
1130/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1131 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1132 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1133 * where it is live state but not accessible to the AArch32 code.
1134 */
1135#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1136#define CPSR_J (1U << 24)
1137#define CPSR_IT_0_1 (3U << 25)
1138#define CPSR_Q (1U << 27)
1139#define CPSR_V (1U << 28)
1140#define CPSR_C (1U << 29)
1141#define CPSR_Z (1U << 30)
1142#define CPSR_N (1U << 31)
9ee6e8bb 1143#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1144#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1145
1146#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1147#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1148 | CPSR_NZCV)
9ee6e8bb
PB
1149/* Bits writable in user mode. */
1150#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1151/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1152#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1153/* Mask of bits which may be set by exception return copying them from SPSR */
1154#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1155
987ab45e
PM
1156/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1157#define XPSR_EXCP 0x1ffU
1158#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1159#define XPSR_IT_2_7 CPSR_IT_2_7
1160#define XPSR_GE CPSR_GE
1161#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1162#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1163#define XPSR_IT_0_1 CPSR_IT_0_1
1164#define XPSR_Q CPSR_Q
1165#define XPSR_V CPSR_V
1166#define XPSR_C CPSR_C
1167#define XPSR_Z CPSR_Z
1168#define XPSR_N CPSR_N
1169#define XPSR_NZCV CPSR_NZCV
1170#define XPSR_IT CPSR_IT
1171
e389be16
FA
1172#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1173#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1174#define TTBCR_PD0 (1U << 4)
1175#define TTBCR_PD1 (1U << 5)
1176#define TTBCR_EPD0 (1U << 7)
1177#define TTBCR_IRGN0 (3U << 8)
1178#define TTBCR_ORGN0 (3U << 10)
1179#define TTBCR_SH0 (3U << 12)
1180#define TTBCR_T1SZ (3U << 16)
1181#define TTBCR_A1 (1U << 22)
1182#define TTBCR_EPD1 (1U << 23)
1183#define TTBCR_IRGN1 (3U << 24)
1184#define TTBCR_ORGN1 (3U << 26)
1185#define TTBCR_SH1 (1U << 28)
1186#define TTBCR_EAE (1U << 31)
1187
d356312f
PM
1188/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1189 * Only these are valid when in AArch64 mode; in
1190 * AArch32 mode SPSRs are basically CPSR-format.
1191 */
f502cfc2 1192#define PSTATE_SP (1U)
d356312f
PM
1193#define PSTATE_M (0xFU)
1194#define PSTATE_nRW (1U << 4)
1195#define PSTATE_F (1U << 6)
1196#define PSTATE_I (1U << 7)
1197#define PSTATE_A (1U << 8)
1198#define PSTATE_D (1U << 9)
f6e52eaa 1199#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1200#define PSTATE_IL (1U << 20)
1201#define PSTATE_SS (1U << 21)
1202#define PSTATE_V (1U << 28)
1203#define PSTATE_C (1U << 29)
1204#define PSTATE_Z (1U << 30)
1205#define PSTATE_N (1U << 31)
1206#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1207#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1208#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1209/* Mode values for AArch64 */
1210#define PSTATE_MODE_EL3h 13
1211#define PSTATE_MODE_EL3t 12
1212#define PSTATE_MODE_EL2h 9
1213#define PSTATE_MODE_EL2t 8
1214#define PSTATE_MODE_EL1h 5
1215#define PSTATE_MODE_EL1t 4
1216#define PSTATE_MODE_EL0t 0
1217
de2db7ec
PM
1218/* Write a new value to v7m.exception, thus transitioning into or out
1219 * of Handler mode; this may result in a change of active stack pointer.
1220 */
1221void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1222
9e729b57
EI
1223/* Map EL and handler into a PSTATE_MODE. */
1224static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1225{
1226 return (el << 2) | handler;
1227}
1228
d356312f
PM
1229/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1230 * interprocessing, so we don't attempt to sync with the cpsr state used by
1231 * the 32 bit decoder.
1232 */
1233static inline uint32_t pstate_read(CPUARMState *env)
1234{
1235 int ZF;
1236
1237 ZF = (env->ZF == 0);
1238 return (env->NF & 0x80000000) | (ZF << 30)
1239 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1240 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1241}
1242
1243static inline void pstate_write(CPUARMState *env, uint32_t val)
1244{
1245 env->ZF = (~val) & PSTATE_Z;
1246 env->NF = val;
1247 env->CF = (val >> 29) & 1;
1248 env->VF = (val << 3) & 0x80000000;
4cc35614 1249 env->daif = val & PSTATE_DAIF;
f6e52eaa 1250 env->btype = (val >> 10) & 3;
d356312f
PM
1251 env->pstate = val & ~CACHED_PSTATE_BITS;
1252}
1253
b5ff1b31 1254/* Return the current CPSR value. */
2f4a40e5 1255uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1256
1257typedef enum CPSRWriteType {
1258 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1259 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1260 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1261 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1262} CPSRWriteType;
1263
1264/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1265void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1266 CPSRWriteType write_type);
9ee6e8bb
PB
1267
1268/* Return the current xPSR value. */
1269static inline uint32_t xpsr_read(CPUARMState *env)
1270{
1271 int ZF;
6fbe23d5
PB
1272 ZF = (env->ZF == 0);
1273 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1274 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1275 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1276 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1277 | (env->GE << 16)
9ee6e8bb 1278 | env->v7m.exception;
b5ff1b31
FB
1279}
1280
9ee6e8bb
PB
1281/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1282static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1283{
987ab45e
PM
1284 if (mask & XPSR_NZCV) {
1285 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1286 env->NF = val;
9ee6e8bb
PB
1287 env->CF = (val >> 29) & 1;
1288 env->VF = (val << 3) & 0x80000000;
1289 }
987ab45e
PM
1290 if (mask & XPSR_Q) {
1291 env->QF = ((val & XPSR_Q) != 0);
1292 }
f1e2598c
PM
1293 if (mask & XPSR_GE) {
1294 env->GE = (val & XPSR_GE) >> 16;
1295 }
987ab45e
PM
1296 if (mask & XPSR_T) {
1297 env->thumb = ((val & XPSR_T) != 0);
1298 }
1299 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1300 env->condexec_bits &= ~3;
1301 env->condexec_bits |= (val >> 25) & 3;
1302 }
987ab45e 1303 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1304 env->condexec_bits &= 3;
1305 env->condexec_bits |= (val >> 8) & 0xfc;
1306 }
987ab45e 1307 if (mask & XPSR_EXCP) {
de2db7ec
PM
1308 /* Note that this only happens on exception exit */
1309 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1310 }
1311}
1312
f149e3e8
EI
1313#define HCR_VM (1ULL << 0)
1314#define HCR_SWIO (1ULL << 1)
1315#define HCR_PTW (1ULL << 2)
1316#define HCR_FMO (1ULL << 3)
1317#define HCR_IMO (1ULL << 4)
1318#define HCR_AMO (1ULL << 5)
1319#define HCR_VF (1ULL << 6)
1320#define HCR_VI (1ULL << 7)
1321#define HCR_VSE (1ULL << 8)
1322#define HCR_FB (1ULL << 9)
1323#define HCR_BSU_MASK (3ULL << 10)
1324#define HCR_DC (1ULL << 12)
1325#define HCR_TWI (1ULL << 13)
1326#define HCR_TWE (1ULL << 14)
1327#define HCR_TID0 (1ULL << 15)
1328#define HCR_TID1 (1ULL << 16)
1329#define HCR_TID2 (1ULL << 17)
1330#define HCR_TID3 (1ULL << 18)
1331#define HCR_TSC (1ULL << 19)
1332#define HCR_TIDCP (1ULL << 20)
1333#define HCR_TACR (1ULL << 21)
1334#define HCR_TSW (1ULL << 22)
099bf53b 1335#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1336#define HCR_TPU (1ULL << 24)
1337#define HCR_TTLB (1ULL << 25)
1338#define HCR_TVM (1ULL << 26)
1339#define HCR_TGE (1ULL << 27)
1340#define HCR_TDZ (1ULL << 28)
1341#define HCR_HCD (1ULL << 29)
1342#define HCR_TRVM (1ULL << 30)
1343#define HCR_RW (1ULL << 31)
1344#define HCR_CD (1ULL << 32)
1345#define HCR_ID (1ULL << 33)
ac656b16 1346#define HCR_E2H (1ULL << 34)
099bf53b
RH
1347#define HCR_TLOR (1ULL << 35)
1348#define HCR_TERR (1ULL << 36)
1349#define HCR_TEA (1ULL << 37)
1350#define HCR_MIOCNCE (1ULL << 38)
1351#define HCR_APK (1ULL << 40)
1352#define HCR_API (1ULL << 41)
1353#define HCR_NV (1ULL << 42)
1354#define HCR_NV1 (1ULL << 43)
1355#define HCR_AT (1ULL << 44)
1356#define HCR_NV2 (1ULL << 45)
1357#define HCR_FWB (1ULL << 46)
1358#define HCR_FIEN (1ULL << 47)
1359#define HCR_TID4 (1ULL << 49)
1360#define HCR_TICAB (1ULL << 50)
1361#define HCR_TOCU (1ULL << 52)
1362#define HCR_TTLBIS (1ULL << 54)
1363#define HCR_TTLBOS (1ULL << 55)
1364#define HCR_ATA (1ULL << 56)
1365#define HCR_DCT (1ULL << 57)
1366
ac656b16
PM
1367/*
1368 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1369 * HCR_MASK and then clear it again if the feature bit is not set in
1370 * hcr_write().
1371 */
f149e3e8
EI
1372#define HCR_MASK ((1ULL << 34) - 1)
1373
64e0e2de
EI
1374#define SCR_NS (1U << 0)
1375#define SCR_IRQ (1U << 1)
1376#define SCR_FIQ (1U << 2)
1377#define SCR_EA (1U << 3)
1378#define SCR_FW (1U << 4)
1379#define SCR_AW (1U << 5)
1380#define SCR_NET (1U << 6)
1381#define SCR_SMD (1U << 7)
1382#define SCR_HCE (1U << 8)
1383#define SCR_SIF (1U << 9)
1384#define SCR_RW (1U << 10)
1385#define SCR_ST (1U << 11)
1386#define SCR_TWI (1U << 12)
1387#define SCR_TWE (1U << 13)
99f8f86d
RH
1388#define SCR_TLOR (1U << 14)
1389#define SCR_TERR (1U << 15)
1390#define SCR_APK (1U << 16)
1391#define SCR_API (1U << 17)
1392#define SCR_EEL2 (1U << 18)
1393#define SCR_EASE (1U << 19)
1394#define SCR_NMEA (1U << 20)
1395#define SCR_FIEN (1U << 21)
1396#define SCR_ENSCXT (1U << 25)
1397#define SCR_ATA (1U << 26)
64e0e2de 1398
01653295
PM
1399/* Return the current FPSCR value. */
1400uint32_t vfp_get_fpscr(CPUARMState *env);
1401void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1402
d81ce0ef
AB
1403/* FPCR, Floating Point Control Register
1404 * FPSR, Floating Poiht Status Register
1405 *
1406 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1407 * FPCR and FPSR. However since they still use non-overlapping bits
1408 * we store the underlying state in fpscr and just mask on read/write.
1409 */
1410#define FPSR_MASK 0xf800009f
0b62159b 1411#define FPCR_MASK 0x07ff9f00
d81ce0ef 1412
a15945d9
PM
1413#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1414#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1415#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1416#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1417#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1418#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1419#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1420#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1421#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1422#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1423
f903fa22
PM
1424static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1425{
1426 return vfp_get_fpscr(env) & FPSR_MASK;
1427}
1428
1429static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1430{
1431 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1432 vfp_set_fpscr(env, new_fpscr);
1433}
1434
1435static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1436{
1437 return vfp_get_fpscr(env) & FPCR_MASK;
1438}
1439
1440static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1441{
1442 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1443 vfp_set_fpscr(env, new_fpscr);
1444}
1445
b5ff1b31
FB
1446enum arm_cpu_mode {
1447 ARM_CPU_MODE_USR = 0x10,
1448 ARM_CPU_MODE_FIQ = 0x11,
1449 ARM_CPU_MODE_IRQ = 0x12,
1450 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1451 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1452 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1453 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1454 ARM_CPU_MODE_UND = 0x1b,
1455 ARM_CPU_MODE_SYS = 0x1f
1456};
1457
40f137e1
PB
1458/* VFP system registers. */
1459#define ARM_VFP_FPSID 0
1460#define ARM_VFP_FPSCR 1
a50c0f51 1461#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1462#define ARM_VFP_MVFR1 6
1463#define ARM_VFP_MVFR0 7
40f137e1
PB
1464#define ARM_VFP_FPEXC 8
1465#define ARM_VFP_FPINST 9
1466#define ARM_VFP_FPINST2 10
1467
18c9b560 1468/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1469#define ARM_IWMMXT_wCID 0
1470#define ARM_IWMMXT_wCon 1
1471#define ARM_IWMMXT_wCSSF 2
1472#define ARM_IWMMXT_wCASF 3
1473#define ARM_IWMMXT_wCGR0 8
1474#define ARM_IWMMXT_wCGR1 9
1475#define ARM_IWMMXT_wCGR2 10
1476#define ARM_IWMMXT_wCGR3 11
18c9b560 1477
2c4da50d
PM
1478/* V7M CCR bits */
1479FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1480FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1481FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1482FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1483FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1484FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1485FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1486FIELD(V7M_CCR, DC, 16, 1)
1487FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1488FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1489
24ac0fb1
PM
1490/* V7M SCR bits */
1491FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1492FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1493FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1494FIELD(V7M_SCR, SEVONPEND, 4, 1)
1495
3b2e9344
PM
1496/* V7M AIRCR bits */
1497FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1498FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1499FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1500FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1501FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1502FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1503FIELD(V7M_AIRCR, PRIS, 14, 1)
1504FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1505FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1506
2c4da50d
PM
1507/* V7M CFSR bits for MMFSR */
1508FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1509FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1510FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1511FIELD(V7M_CFSR, MSTKERR, 4, 1)
1512FIELD(V7M_CFSR, MLSPERR, 5, 1)
1513FIELD(V7M_CFSR, MMARVALID, 7, 1)
1514
1515/* V7M CFSR bits for BFSR */
1516FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1517FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1518FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1519FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1520FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1521FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1522FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1523
1524/* V7M CFSR bits for UFSR */
1525FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1526FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1527FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1528FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1529FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1530FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1531FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1532
334e8dad
PM
1533/* V7M CFSR bit masks covering all of the subregister bits */
1534FIELD(V7M_CFSR, MMFSR, 0, 8)
1535FIELD(V7M_CFSR, BFSR, 8, 8)
1536FIELD(V7M_CFSR, UFSR, 16, 16)
1537
2c4da50d
PM
1538/* V7M HFSR bits */
1539FIELD(V7M_HFSR, VECTTBL, 1, 1)
1540FIELD(V7M_HFSR, FORCED, 30, 1)
1541FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1542
1543/* V7M DFSR bits */
1544FIELD(V7M_DFSR, HALTED, 0, 1)
1545FIELD(V7M_DFSR, BKPT, 1, 1)
1546FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1547FIELD(V7M_DFSR, VCATCH, 3, 1)
1548FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1549
bed079da
PM
1550/* V7M SFSR bits */
1551FIELD(V7M_SFSR, INVEP, 0, 1)
1552FIELD(V7M_SFSR, INVIS, 1, 1)
1553FIELD(V7M_SFSR, INVER, 2, 1)
1554FIELD(V7M_SFSR, AUVIOL, 3, 1)
1555FIELD(V7M_SFSR, INVTRAN, 4, 1)
1556FIELD(V7M_SFSR, LSPERR, 5, 1)
1557FIELD(V7M_SFSR, SFARVALID, 6, 1)
1558FIELD(V7M_SFSR, LSERR, 7, 1)
1559
29c483a5
MD
1560/* v7M MPU_CTRL bits */
1561FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1562FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1563FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1564
43bbce7f
PM
1565/* v7M CLIDR bits */
1566FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1567FIELD(V7M_CLIDR, LOUIS, 21, 3)
1568FIELD(V7M_CLIDR, LOC, 24, 3)
1569FIELD(V7M_CLIDR, LOUU, 27, 3)
1570FIELD(V7M_CLIDR, ICB, 30, 2)
1571
1572FIELD(V7M_CSSELR, IND, 0, 1)
1573FIELD(V7M_CSSELR, LEVEL, 1, 3)
1574/* We use the combination of InD and Level to index into cpu->ccsidr[];
1575 * define a mask for this and check that it doesn't permit running off
1576 * the end of the array.
1577 */
1578FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1579
1580/* v7M FPCCR bits */
1581FIELD(V7M_FPCCR, LSPACT, 0, 1)
1582FIELD(V7M_FPCCR, USER, 1, 1)
1583FIELD(V7M_FPCCR, S, 2, 1)
1584FIELD(V7M_FPCCR, THREAD, 3, 1)
1585FIELD(V7M_FPCCR, HFRDY, 4, 1)
1586FIELD(V7M_FPCCR, MMRDY, 5, 1)
1587FIELD(V7M_FPCCR, BFRDY, 6, 1)
1588FIELD(V7M_FPCCR, SFRDY, 7, 1)
1589FIELD(V7M_FPCCR, MONRDY, 8, 1)
1590FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1591FIELD(V7M_FPCCR, UFRDY, 10, 1)
1592FIELD(V7M_FPCCR, RES0, 11, 15)
1593FIELD(V7M_FPCCR, TS, 26, 1)
1594FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1595FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1596FIELD(V7M_FPCCR, LSPENS, 29, 1)
1597FIELD(V7M_FPCCR, LSPEN, 30, 1)
1598FIELD(V7M_FPCCR, ASPEN, 31, 1)
1599/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1600#define R_V7M_FPCCR_BANKED_MASK \
1601 (R_V7M_FPCCR_LSPACT_MASK | \
1602 R_V7M_FPCCR_USER_MASK | \
1603 R_V7M_FPCCR_THREAD_MASK | \
1604 R_V7M_FPCCR_MMRDY_MASK | \
1605 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1606 R_V7M_FPCCR_UFRDY_MASK | \
1607 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1608
a62e62af
RH
1609/*
1610 * System register ID fields.
1611 */
1612FIELD(ID_ISAR0, SWAP, 0, 4)
1613FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1614FIELD(ID_ISAR0, BITFIELD, 8, 4)
1615FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1616FIELD(ID_ISAR0, COPROC, 16, 4)
1617FIELD(ID_ISAR0, DEBUG, 20, 4)
1618FIELD(ID_ISAR0, DIVIDE, 24, 4)
1619
1620FIELD(ID_ISAR1, ENDIAN, 0, 4)
1621FIELD(ID_ISAR1, EXCEPT, 4, 4)
1622FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1623FIELD(ID_ISAR1, EXTEND, 12, 4)
1624FIELD(ID_ISAR1, IFTHEN, 16, 4)
1625FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1626FIELD(ID_ISAR1, INTERWORK, 24, 4)
1627FIELD(ID_ISAR1, JAZELLE, 28, 4)
1628
1629FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1630FIELD(ID_ISAR2, MEMHINT, 4, 4)
1631FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1632FIELD(ID_ISAR2, MULT, 12, 4)
1633FIELD(ID_ISAR2, MULTS, 16, 4)
1634FIELD(ID_ISAR2, MULTU, 20, 4)
1635FIELD(ID_ISAR2, PSR_AR, 24, 4)
1636FIELD(ID_ISAR2, REVERSAL, 28, 4)
1637
1638FIELD(ID_ISAR3, SATURATE, 0, 4)
1639FIELD(ID_ISAR3, SIMD, 4, 4)
1640FIELD(ID_ISAR3, SVC, 8, 4)
1641FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1642FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1643FIELD(ID_ISAR3, T32COPY, 20, 4)
1644FIELD(ID_ISAR3, TRUENOP, 24, 4)
1645FIELD(ID_ISAR3, T32EE, 28, 4)
1646
1647FIELD(ID_ISAR4, UNPRIV, 0, 4)
1648FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1649FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1650FIELD(ID_ISAR4, SMC, 12, 4)
1651FIELD(ID_ISAR4, BARRIER, 16, 4)
1652FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1653FIELD(ID_ISAR4, PSR_M, 24, 4)
1654FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1655
1656FIELD(ID_ISAR5, SEVL, 0, 4)
1657FIELD(ID_ISAR5, AES, 4, 4)
1658FIELD(ID_ISAR5, SHA1, 8, 4)
1659FIELD(ID_ISAR5, SHA2, 12, 4)
1660FIELD(ID_ISAR5, CRC32, 16, 4)
1661FIELD(ID_ISAR5, RDM, 24, 4)
1662FIELD(ID_ISAR5, VCMA, 28, 4)
1663
1664FIELD(ID_ISAR6, JSCVT, 0, 4)
1665FIELD(ID_ISAR6, DP, 4, 4)
1666FIELD(ID_ISAR6, FHM, 8, 4)
1667FIELD(ID_ISAR6, SB, 12, 4)
1668FIELD(ID_ISAR6, SPECRES, 16, 4)
1669
ab638a32
RH
1670FIELD(ID_MMFR4, SPECSEI, 0, 4)
1671FIELD(ID_MMFR4, AC2, 4, 4)
1672FIELD(ID_MMFR4, XNX, 8, 4)
1673FIELD(ID_MMFR4, CNP, 12, 4)
1674FIELD(ID_MMFR4, HPDS, 16, 4)
1675FIELD(ID_MMFR4, LSM, 20, 4)
1676FIELD(ID_MMFR4, CCIDX, 24, 4)
1677FIELD(ID_MMFR4, EVT, 28, 4)
1678
a62e62af
RH
1679FIELD(ID_AA64ISAR0, AES, 4, 4)
1680FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1681FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1682FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1683FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1684FIELD(ID_AA64ISAR0, RDM, 28, 4)
1685FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1686FIELD(ID_AA64ISAR0, SM3, 36, 4)
1687FIELD(ID_AA64ISAR0, SM4, 40, 4)
1688FIELD(ID_AA64ISAR0, DP, 44, 4)
1689FIELD(ID_AA64ISAR0, FHM, 48, 4)
1690FIELD(ID_AA64ISAR0, TS, 52, 4)
1691FIELD(ID_AA64ISAR0, TLB, 56, 4)
1692FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1693
1694FIELD(ID_AA64ISAR1, DPB, 0, 4)
1695FIELD(ID_AA64ISAR1, APA, 4, 4)
1696FIELD(ID_AA64ISAR1, API, 8, 4)
1697FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1698FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1699FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1700FIELD(ID_AA64ISAR1, GPA, 24, 4)
1701FIELD(ID_AA64ISAR1, GPI, 28, 4)
1702FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1703FIELD(ID_AA64ISAR1, SB, 36, 4)
1704FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1705
cd208a1c
RH
1706FIELD(ID_AA64PFR0, EL0, 0, 4)
1707FIELD(ID_AA64PFR0, EL1, 4, 4)
1708FIELD(ID_AA64PFR0, EL2, 8, 4)
1709FIELD(ID_AA64PFR0, EL3, 12, 4)
1710FIELD(ID_AA64PFR0, FP, 16, 4)
1711FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1712FIELD(ID_AA64PFR0, GIC, 24, 4)
1713FIELD(ID_AA64PFR0, RAS, 28, 4)
1714FIELD(ID_AA64PFR0, SVE, 32, 4)
1715
be53b6f4
RH
1716FIELD(ID_AA64PFR1, BT, 0, 4)
1717FIELD(ID_AA64PFR1, SBSS, 4, 4)
1718FIELD(ID_AA64PFR1, MTE, 8, 4)
1719FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1720
3dc91ddb
PM
1721FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1722FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1723FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1724FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1725FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1726FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1727FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1728FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1729FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1730FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1731FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1732FIELD(ID_AA64MMFR0, EXS, 44, 4)
1733
1734FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1735FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1736FIELD(ID_AA64MMFR1, VH, 8, 4)
1737FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1738FIELD(ID_AA64MMFR1, LO, 16, 4)
1739FIELD(ID_AA64MMFR1, PAN, 20, 4)
1740FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1741FIELD(ID_AA64MMFR1, XNX, 28, 4)
1742
beceb99c
AL
1743FIELD(ID_DFR0, COPDBG, 0, 4)
1744FIELD(ID_DFR0, COPSDBG, 4, 4)
1745FIELD(ID_DFR0, MMAPDBG, 8, 4)
1746FIELD(ID_DFR0, COPTRC, 12, 4)
1747FIELD(ID_DFR0, MMAPTRC, 16, 4)
1748FIELD(ID_DFR0, MPROFDBG, 20, 4)
1749FIELD(ID_DFR0, PERFMON, 24, 4)
1750FIELD(ID_DFR0, TRACEFILT, 28, 4)
1751
602f6e42
PM
1752FIELD(MVFR0, SIMDREG, 0, 4)
1753FIELD(MVFR0, FPSP, 4, 4)
1754FIELD(MVFR0, FPDP, 8, 4)
1755FIELD(MVFR0, FPTRAP, 12, 4)
1756FIELD(MVFR0, FPDIVIDE, 16, 4)
1757FIELD(MVFR0, FPSQRT, 20, 4)
1758FIELD(MVFR0, FPSHVEC, 24, 4)
1759FIELD(MVFR0, FPROUND, 28, 4)
1760
1761FIELD(MVFR1, FPFTZ, 0, 4)
1762FIELD(MVFR1, FPDNAN, 4, 4)
1763FIELD(MVFR1, SIMDLS, 8, 4)
1764FIELD(MVFR1, SIMDINT, 12, 4)
1765FIELD(MVFR1, SIMDSP, 16, 4)
1766FIELD(MVFR1, SIMDHP, 20, 4)
1767FIELD(MVFR1, FPHP, 24, 4)
1768FIELD(MVFR1, SIMDFMAC, 28, 4)
1769
1770FIELD(MVFR2, SIMDMISC, 0, 4)
1771FIELD(MVFR2, FPMISC, 4, 4)
1772
43bbce7f
PM
1773QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1774
ce854d7c
BC
1775/* If adding a feature bit which corresponds to a Linux ELF
1776 * HWCAP bit, remember to update the feature-bit-to-hwcap
1777 * mapping in linux-user/elfload.c:get_elf_hwcap().
1778 */
40f137e1
PB
1779enum arm_features {
1780 ARM_FEATURE_VFP,
c1713132
AZ
1781 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1782 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1783 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1784 ARM_FEATURE_V6,
1785 ARM_FEATURE_V6K,
1786 ARM_FEATURE_V7,
1787 ARM_FEATURE_THUMB2,
452a0955 1788 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1789 ARM_FEATURE_VFP3,
1790 ARM_FEATURE_NEON,
9ee6e8bb 1791 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1792 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1793 ARM_FEATURE_THUMB2EE,
be5e7a76 1794 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1795 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1796 ARM_FEATURE_V4T,
1797 ARM_FEATURE_V5,
5bc95aa2 1798 ARM_FEATURE_STRONGARM,
906879a9 1799 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1800 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1801 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1802 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1803 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1804 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1805 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1806 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1807 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1808 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1809 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1810 ARM_FEATURE_V8,
3926cc84 1811 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1812 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1813 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1814 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1815 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1816 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1817 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1818 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1819 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1820 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1821 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1822};
1823
1824static inline int arm_feature(CPUARMState *env, int feature)
1825{
918f5dca 1826 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1827}
1828
19e0fefa
FA
1829#if !defined(CONFIG_USER_ONLY)
1830/* Return true if exception levels below EL3 are in secure state,
1831 * or would be following an exception return to that level.
1832 * Unlike arm_is_secure() (which is always a question about the
1833 * _current_ state of the CPU) this doesn't care about the current
1834 * EL or mode.
1835 */
1836static inline bool arm_is_secure_below_el3(CPUARMState *env)
1837{
1838 if (arm_feature(env, ARM_FEATURE_EL3)) {
1839 return !(env->cp15.scr_el3 & SCR_NS);
1840 } else {
6b7f0b61 1841 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1842 * defined, in which case QEMU defaults to non-secure.
1843 */
1844 return false;
1845 }
1846}
1847
71205876
PM
1848/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1849static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1850{
1851 if (arm_feature(env, ARM_FEATURE_EL3)) {
1852 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1853 /* CPU currently in AArch64 state and EL3 */
1854 return true;
1855 } else if (!is_a64(env) &&
1856 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1857 /* CPU currently in AArch32 state and monitor mode */
1858 return true;
1859 }
1860 }
71205876
PM
1861 return false;
1862}
1863
1864/* Return true if the processor is in secure state */
1865static inline bool arm_is_secure(CPUARMState *env)
1866{
1867 if (arm_is_el3_or_mon(env)) {
1868 return true;
1869 }
19e0fefa
FA
1870 return arm_is_secure_below_el3(env);
1871}
1872
1873#else
1874static inline bool arm_is_secure_below_el3(CPUARMState *env)
1875{
1876 return false;
1877}
1878
1879static inline bool arm_is_secure(CPUARMState *env)
1880{
1881 return false;
1882}
1883#endif
1884
f7778444
RH
1885/**
1886 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1887 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1888 * "for all purposes other than a direct read or write access of HCR_EL2."
1889 * Not included here is HCR_RW.
1890 */
1891uint64_t arm_hcr_el2_eff(CPUARMState *env);
1892
1f79ee32
PM
1893/* Return true if the specified exception level is running in AArch64 state. */
1894static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1895{
446c81ab
PM
1896 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1897 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1898 */
446c81ab
PM
1899 assert(el >= 1 && el <= 3);
1900 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1901
446c81ab
PM
1902 /* The highest exception level is always at the maximum supported
1903 * register width, and then lower levels have a register width controlled
1904 * by bits in the SCR or HCR registers.
1f79ee32 1905 */
446c81ab
PM
1906 if (el == 3) {
1907 return aa64;
1908 }
1909
1910 if (arm_feature(env, ARM_FEATURE_EL3)) {
1911 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1912 }
1913
1914 if (el == 2) {
1915 return aa64;
1916 }
1917
1918 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1919 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1920 }
1921
1922 return aa64;
1f79ee32
PM
1923}
1924
3f342b9e
SF
1925/* Function for determing whether guest cp register reads and writes should
1926 * access the secure or non-secure bank of a cp register. When EL3 is
1927 * operating in AArch32 state, the NS-bit determines whether the secure
1928 * instance of a cp register should be used. When EL3 is AArch64 (or if
1929 * it doesn't exist at all) then there is no register banking, and all
1930 * accesses are to the non-secure version.
1931 */
1932static inline bool access_secure_reg(CPUARMState *env)
1933{
1934 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1935 !arm_el_is_aa64(env, 3) &&
1936 !(env->cp15.scr_el3 & SCR_NS));
1937
1938 return ret;
1939}
1940
ea30a4b8
FA
1941/* Macros for accessing a specified CP register bank */
1942#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1943 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1944
1945#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1946 do { \
1947 if (_secure) { \
1948 (_env)->cp15._regname##_s = (_val); \
1949 } else { \
1950 (_env)->cp15._regname##_ns = (_val); \
1951 } \
1952 } while (0)
1953
1954/* Macros for automatically accessing a specific CP register bank depending on
1955 * the current secure state of the system. These macros are not intended for
1956 * supporting instruction translation reads/writes as these are dependent
1957 * solely on the SCR.NS bit and not the mode.
1958 */
1959#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1960 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1961 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1962
1963#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1964 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1965 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1966 (_val))
1967
0442428a 1968void arm_cpu_list(void);
012a906b
GB
1969uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1970 uint32_t cur_el, bool secure);
40f137e1 1971
9ee6e8bb 1972/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1973#ifndef CONFIG_USER_ONLY
1974bool armv7m_nvic_can_take_pending_exception(void *opaque);
1975#else
1976static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1977{
1978 return true;
1979}
1980#endif
2fb50a33
PM
1981/**
1982 * armv7m_nvic_set_pending: mark the specified exception as pending
1983 * @opaque: the NVIC
1984 * @irq: the exception number to mark pending
1985 * @secure: false for non-banked exceptions or for the nonsecure
1986 * version of a banked exception, true for the secure version of a banked
1987 * exception.
1988 *
1989 * Marks the specified exception as pending. Note that we will assert()
1990 * if @secure is true and @irq does not specify one of the fixed set
1991 * of architecturally banked exceptions.
1992 */
1993void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1994/**
1995 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1996 * @opaque: the NVIC
1997 * @irq: the exception number to mark pending
1998 * @secure: false for non-banked exceptions or for the nonsecure
1999 * version of a banked exception, true for the secure version of a banked
2000 * exception.
2001 *
2002 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2003 * exceptions (exceptions generated in the course of trying to take
2004 * a different exception).
2005 */
2006void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2007/**
2008 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2009 * @opaque: the NVIC
2010 * @irq: the exception number to mark pending
2011 * @secure: false for non-banked exceptions or for the nonsecure
2012 * version of a banked exception, true for the secure version of a banked
2013 * exception.
2014 *
2015 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2016 * generated in the course of lazy stacking of FP registers.
2017 */
2018void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2019/**
2020 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2021 * exception, and whether it targets Secure state
2022 * @opaque: the NVIC
2023 * @pirq: set to pending exception number
2024 * @ptargets_secure: set to whether pending exception targets Secure
2025 *
2026 * This function writes the number of the highest priority pending
2027 * exception (the one which would be made active by
2028 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2029 * to true if the current highest priority pending exception should
2030 * be taken to Secure state, false for NS.
2031 */
2032void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2033 bool *ptargets_secure);
5cb18069
PM
2034/**
2035 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2036 * @opaque: the NVIC
2037 *
2038 * Move the current highest priority pending exception from the pending
2039 * state to the active state, and update v7m.exception to indicate that
2040 * it is the exception currently being handled.
5cb18069 2041 */
6c948518 2042void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2043/**
2044 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2045 * @opaque: the NVIC
2046 * @irq: the exception number to complete
5cb18069 2047 * @secure: true if this exception was secure
aa488fe3
PM
2048 *
2049 * Returns: -1 if the irq was not active
2050 * 1 if completing this irq brought us back to base (no active irqs)
2051 * 0 if there is still an irq active after this one was completed
2052 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2053 */
5cb18069 2054int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2055/**
2056 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2057 * @opaque: the NVIC
2058 * @irq: the exception number to mark pending
2059 * @secure: false for non-banked exceptions or for the nonsecure
2060 * version of a banked exception, true for the secure version of a banked
2061 * exception.
2062 *
2063 * Return whether an exception is "ready", i.e. whether the exception is
2064 * enabled and is configured at a priority which would allow it to
2065 * interrupt the current execution priority. This controls whether the
2066 * RDY bit for it in the FPCCR is set.
2067 */
2068bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2069/**
2070 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2071 * @opaque: the NVIC
2072 *
2073 * Returns: the raw execution priority as defined by the v8M architecture.
2074 * This is the execution priority minus the effects of AIRCR.PRIS,
2075 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2076 * (v8M ARM ARM I_PKLD.)
2077 */
2078int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2079/**
2080 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2081 * priority is negative for the specified security state.
2082 * @opaque: the NVIC
2083 * @secure: the security state to test
2084 * This corresponds to the pseudocode IsReqExecPriNeg().
2085 */
2086#ifndef CONFIG_USER_ONLY
2087bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2088#else
2089static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2090{
2091 return false;
2092}
2093#endif
9ee6e8bb 2094
4b6a83fb
PM
2095/* Interface for defining coprocessor registers.
2096 * Registers are defined in tables of arm_cp_reginfo structs
2097 * which are passed to define_arm_cp_regs().
2098 */
2099
2100/* When looking up a coprocessor register we look for it
2101 * via an integer which encodes all of:
2102 * coprocessor number
2103 * Crn, Crm, opc1, opc2 fields
2104 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2105 * or via MRRC/MCRR?)
51a79b03 2106 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2107 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2108 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2109 * For AArch64, there is no 32/64 bit size distinction;
2110 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2111 * and 4 bit CRn and CRm. The encoding patterns are chosen
2112 * to be easy to convert to and from the KVM encodings, and also
2113 * so that the hashtable can contain both AArch32 and AArch64
2114 * registers (to allow for interprocessing where we might run
2115 * 32 bit code on a 64 bit core).
4b6a83fb 2116 */
f5a0a5a5
PM
2117/* This bit is private to our hashtable cpreg; in KVM register
2118 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2119 * in the upper bits of the 64 bit ID.
2120 */
2121#define CP_REG_AA64_SHIFT 28
2122#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2123
51a79b03
PM
2124/* To enable banking of coprocessor registers depending on ns-bit we
2125 * add a bit to distinguish between secure and non-secure cpregs in the
2126 * hashtable.
2127 */
2128#define CP_REG_NS_SHIFT 29
2129#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2130
2131#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2132 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2133 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2134
f5a0a5a5
PM
2135#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2136 (CP_REG_AA64_MASK | \
2137 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2138 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2139 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2140 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2141 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2142 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2143
721fae12
PM
2144/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2145 * version used as a key for the coprocessor register hashtable
2146 */
2147static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2148{
2149 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2150 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2151 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2152 } else {
2153 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2154 cpregid |= (1 << 15);
2155 }
2156
2157 /* KVM is always non-secure so add the NS flag on AArch32 register
2158 * entries.
2159 */
2160 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2161 }
2162 return cpregid;
2163}
2164
2165/* Convert a truncated 32 bit hashtable key into the full
2166 * 64 bit KVM register ID.
2167 */
2168static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2169{
f5a0a5a5
PM
2170 uint64_t kvmid;
2171
2172 if (cpregid & CP_REG_AA64_MASK) {
2173 kvmid = cpregid & ~CP_REG_AA64_MASK;
2174 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2175 } else {
f5a0a5a5
PM
2176 kvmid = cpregid & ~(1 << 15);
2177 if (cpregid & (1 << 15)) {
2178 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2179 } else {
2180 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2181 }
721fae12
PM
2182 }
2183 return kvmid;
2184}
2185
4b6a83fb 2186/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2187 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2188 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2189 * TCG can assume the value to be constant (ie load at translate time)
2190 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2191 * indicates that the TB should not be ended after a write to this register
2192 * (the default is that the TB ends after cp writes). OVERRIDE permits
2193 * a register definition to override a previous definition for the
2194 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2195 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2196 * ALIAS indicates that this register is an alias view of some underlying
2197 * state which is also visible via another register, and that the other
b061a82b
SF
2198 * register is handling migration and reset; registers marked ALIAS will not be
2199 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2200 * NO_RAW indicates that this register has no underlying state and does not
2201 * support raw access for state saving/loading; it will not be used for either
2202 * migration or KVM state synchronization. (Typically this is for "registers"
2203 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2204 * IO indicates that this register does I/O and therefore its accesses
2205 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2206 * registers which implement clocks or timers require this.
4b6a83fb 2207 */
fe03d45f
RH
2208#define ARM_CP_SPECIAL 0x0001
2209#define ARM_CP_CONST 0x0002
2210#define ARM_CP_64BIT 0x0004
2211#define ARM_CP_SUPPRESS_TB_END 0x0008
2212#define ARM_CP_OVERRIDE 0x0010
2213#define ARM_CP_ALIAS 0x0020
2214#define ARM_CP_IO 0x0040
2215#define ARM_CP_NO_RAW 0x0080
2216#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2217#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2218#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2219#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2220#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2221#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2222#define ARM_CP_FPU 0x1000
490aa7f1 2223#define ARM_CP_SVE 0x2000
1f163787 2224#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2225/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2226#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2227/* Mask of only the flag bits in a type field */
1f163787 2228#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2229
f5a0a5a5
PM
2230/* Valid values for ARMCPRegInfo state field, indicating which of
2231 * the AArch32 and AArch64 execution states this register is visible in.
2232 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2233 * If the reginfo is declared to be visible in both states then a second
2234 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2235 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2236 * Note that we rely on the values of these enums as we iterate through
2237 * the various states in some places.
2238 */
2239enum {
2240 ARM_CP_STATE_AA32 = 0,
2241 ARM_CP_STATE_AA64 = 1,
2242 ARM_CP_STATE_BOTH = 2,
2243};
2244
c3e30260
FA
2245/* ARM CP register secure state flags. These flags identify security state
2246 * attributes for a given CP register entry.
2247 * The existence of both or neither secure and non-secure flags indicates that
2248 * the register has both a secure and non-secure hash entry. A single one of
2249 * these flags causes the register to only be hashed for the specified
2250 * security state.
2251 * Although definitions may have any combination of the S/NS bits, each
2252 * registered entry will only have one to identify whether the entry is secure
2253 * or non-secure.
2254 */
2255enum {
2256 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2257 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2258};
2259
4b6a83fb
PM
2260/* Return true if cptype is a valid type field. This is used to try to
2261 * catch errors where the sentinel has been accidentally left off the end
2262 * of a list of registers.
2263 */
2264static inline bool cptype_valid(int cptype)
2265{
2266 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2267 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2268 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2269}
2270
2271/* Access rights:
2272 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2273 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2274 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2275 * (ie any of the privileged modes in Secure state, or Monitor mode).
2276 * If a register is accessible in one privilege level it's always accessible
2277 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2278 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2279 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2280 * terminology a little and call this PL3.
f5a0a5a5
PM
2281 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2282 * with the ELx exception levels.
4b6a83fb
PM
2283 *
2284 * If access permissions for a register are more complex than can be
2285 * described with these bits, then use a laxer set of restrictions, and
2286 * do the more restrictive/complex check inside a helper function.
2287 */
2288#define PL3_R 0x80
2289#define PL3_W 0x40
2290#define PL2_R (0x20 | PL3_R)
2291#define PL2_W (0x10 | PL3_W)
2292#define PL1_R (0x08 | PL2_R)
2293#define PL1_W (0x04 | PL2_W)
2294#define PL0_R (0x02 | PL1_R)
2295#define PL0_W (0x01 | PL1_W)
2296
b5bd7440
AB
2297/*
2298 * For user-mode some registers are accessible to EL0 via a kernel
2299 * trap-and-emulate ABI. In this case we define the read permissions
2300 * as actually being PL0_R. However some bits of any given register
2301 * may still be masked.
2302 */
2303#ifdef CONFIG_USER_ONLY
2304#define PL0U_R PL0_R
2305#else
2306#define PL0U_R PL1_R
2307#endif
2308
4b6a83fb
PM
2309#define PL3_RW (PL3_R | PL3_W)
2310#define PL2_RW (PL2_R | PL2_W)
2311#define PL1_RW (PL1_R | PL1_W)
2312#define PL0_RW (PL0_R | PL0_W)
2313
75502672
PM
2314/* Return the highest implemented Exception Level */
2315static inline int arm_highest_el(CPUARMState *env)
2316{
2317 if (arm_feature(env, ARM_FEATURE_EL3)) {
2318 return 3;
2319 }
2320 if (arm_feature(env, ARM_FEATURE_EL2)) {
2321 return 2;
2322 }
2323 return 1;
2324}
2325
15b3f556
PM
2326/* Return true if a v7M CPU is in Handler mode */
2327static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2328{
2329 return env->v7m.exception != 0;
2330}
2331
dcbff19b
GB
2332/* Return the current Exception Level (as per ARMv8; note that this differs
2333 * from the ARMv7 Privilege Level).
2334 */
2335static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2336{
6d54ed3c 2337 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2338 return arm_v7m_is_handler_mode(env) ||
2339 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2340 }
2341
592125f8 2342 if (is_a64(env)) {
f5a0a5a5
PM
2343 return extract32(env->pstate, 2, 2);
2344 }
2345
592125f8
FA
2346 switch (env->uncached_cpsr & 0x1f) {
2347 case ARM_CPU_MODE_USR:
4b6a83fb 2348 return 0;
592125f8
FA
2349 case ARM_CPU_MODE_HYP:
2350 return 2;
2351 case ARM_CPU_MODE_MON:
2352 return 3;
2353 default:
2354 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2355 /* If EL3 is 32-bit then all secure privileged modes run in
2356 * EL3
2357 */
2358 return 3;
2359 }
2360
2361 return 1;
4b6a83fb 2362 }
4b6a83fb
PM
2363}
2364
2365typedef struct ARMCPRegInfo ARMCPRegInfo;
2366
f59df3f2
PM
2367typedef enum CPAccessResult {
2368 /* Access is permitted */
2369 CP_ACCESS_OK = 0,
2370 /* Access fails due to a configurable trap or enable which would
2371 * result in a categorized exception syndrome giving information about
2372 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2373 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2374 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2375 */
2376 CP_ACCESS_TRAP = 1,
2377 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2378 * Note that this is not a catch-all case -- the set of cases which may
2379 * result in this failure is specifically defined by the architecture.
2380 */
2381 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2382 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2383 CP_ACCESS_TRAP_EL2 = 3,
2384 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2385 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2386 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2387 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2388 /* Access fails and results in an exception syndrome for an FP access,
2389 * trapped directly to EL2 or EL3
2390 */
2391 CP_ACCESS_TRAP_FP_EL2 = 7,
2392 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2393} CPAccessResult;
2394
c4241c7d
PM
2395/* Access functions for coprocessor registers. These cannot fail and
2396 * may not raise exceptions.
2397 */
2398typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2399typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2400 uint64_t value);
f59df3f2 2401/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2402typedef CPAccessResult CPAccessFn(CPUARMState *env,
2403 const ARMCPRegInfo *opaque,
2404 bool isread);
4b6a83fb
PM
2405/* Hook function for register reset */
2406typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2407
2408#define CP_ANY 0xff
2409
2410/* Definition of an ARM coprocessor register */
2411struct ARMCPRegInfo {
2412 /* Name of register (useful mainly for debugging, need not be unique) */
2413 const char *name;
2414 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2415 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2416 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2417 * will be decoded to this register. The register read and write
2418 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2419 * used by the program, so it is possible to register a wildcard and
2420 * then behave differently on read/write if necessary.
2421 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2422 * must both be zero.
f5a0a5a5
PM
2423 * For AArch64-visible registers, opc0 is also used.
2424 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2425 * way to distinguish (for KVM's benefit) guest-visible system registers
2426 * from demuxed ones provided to preserve the "no side effects on
2427 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2428 * visible (to match KVM's encoding); cp==0 will be converted to
2429 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2430 */
2431 uint8_t cp;
2432 uint8_t crn;
2433 uint8_t crm;
f5a0a5a5 2434 uint8_t opc0;
4b6a83fb
PM
2435 uint8_t opc1;
2436 uint8_t opc2;
f5a0a5a5
PM
2437 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2438 int state;
4b6a83fb
PM
2439 /* Register type: ARM_CP_* bits/values */
2440 int type;
2441 /* Access rights: PL*_[RW] */
2442 int access;
c3e30260
FA
2443 /* Security state: ARM_CP_SECSTATE_* bits/values */
2444 int secure;
4b6a83fb
PM
2445 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2446 * this register was defined: can be used to hand data through to the
2447 * register read/write functions, since they are passed the ARMCPRegInfo*.
2448 */
2449 void *opaque;
2450 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2451 * fieldoffset is non-zero, the reset value of the register.
2452 */
2453 uint64_t resetvalue;
c3e30260
FA
2454 /* Offset of the field in CPUARMState for this register.
2455 *
2456 * This is not needed if either:
4b6a83fb
PM
2457 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2458 * 2. both readfn and writefn are specified
2459 */
2460 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2461
2462 /* Offsets of the secure and non-secure fields in CPUARMState for the
2463 * register if it is banked. These fields are only used during the static
2464 * registration of a register. During hashing the bank associated
2465 * with a given security state is copied to fieldoffset which is used from
2466 * there on out.
2467 *
2468 * It is expected that register definitions use either fieldoffset or
2469 * bank_fieldoffsets in the definition but not both. It is also expected
2470 * that both bank offsets are set when defining a banked register. This
2471 * use indicates that a register is banked.
2472 */
2473 ptrdiff_t bank_fieldoffsets[2];
2474
f59df3f2
PM
2475 /* Function for making any access checks for this register in addition to
2476 * those specified by the 'access' permissions bits. If NULL, no extra
2477 * checks required. The access check is performed at runtime, not at
2478 * translate time.
2479 */
2480 CPAccessFn *accessfn;
4b6a83fb
PM
2481 /* Function for handling reads of this register. If NULL, then reads
2482 * will be done by loading from the offset into CPUARMState specified
2483 * by fieldoffset.
2484 */
2485 CPReadFn *readfn;
2486 /* Function for handling writes of this register. If NULL, then writes
2487 * will be done by writing to the offset into CPUARMState specified
2488 * by fieldoffset.
2489 */
2490 CPWriteFn *writefn;
7023ec7e
PM
2491 /* Function for doing a "raw" read; used when we need to copy
2492 * coprocessor state to the kernel for KVM or out for
2493 * migration. This only needs to be provided if there is also a
c4241c7d 2494 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2495 */
2496 CPReadFn *raw_readfn;
2497 /* Function for doing a "raw" write; used when we need to copy KVM
2498 * kernel coprocessor state into userspace, or for inbound
2499 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2500 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2501 * or similar behaviour.
7023ec7e
PM
2502 */
2503 CPWriteFn *raw_writefn;
4b6a83fb
PM
2504 /* Function for resetting the register. If NULL, then reset will be done
2505 * by writing resetvalue to the field specified in fieldoffset. If
2506 * fieldoffset is 0 then no reset will be done.
2507 */
2508 CPResetFn *resetfn;
2509};
2510
2511/* Macros which are lvalues for the field in CPUARMState for the
2512 * ARMCPRegInfo *ri.
2513 */
2514#define CPREG_FIELD32(env, ri) \
2515 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2516#define CPREG_FIELD64(env, ri) \
2517 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2518
2519#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2520
2521void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2522 const ARMCPRegInfo *regs, void *opaque);
2523void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2524 const ARMCPRegInfo *regs, void *opaque);
2525static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2526{
2527 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2528}
2529static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2530{
2531 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2532}
60322b39 2533const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2534
6c5c0fec
AB
2535/*
2536 * Definition of an ARM co-processor register as viewed from
2537 * userspace. This is used for presenting sanitised versions of
2538 * registers to userspace when emulating the Linux AArch64 CPU
2539 * ID/feature ABI (advertised as HWCAP_CPUID).
2540 */
2541typedef struct ARMCPRegUserSpaceInfo {
2542 /* Name of register */
2543 const char *name;
2544
d040242e
AB
2545 /* Is the name actually a glob pattern */
2546 bool is_glob;
2547
6c5c0fec
AB
2548 /* Only some bits are exported to user space */
2549 uint64_t exported_bits;
2550
2551 /* Fixed bits are applied after the mask */
2552 uint64_t fixed_bits;
2553} ARMCPRegUserSpaceInfo;
2554
2555#define REGUSERINFO_SENTINEL { .name = NULL }
2556
2557void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2558
4b6a83fb 2559/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2560void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2561 uint64_t value);
4b6a83fb 2562/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2563uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2564
f5a0a5a5
PM
2565/* CPResetFn that does nothing, for use if no reset is required even
2566 * if fieldoffset is non zero.
2567 */
2568void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2569
67ed771d
PM
2570/* Return true if this reginfo struct's field in the cpu state struct
2571 * is 64 bits wide.
2572 */
2573static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2574{
2575 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2576}
2577
dcbff19b 2578static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2579 const ARMCPRegInfo *ri, int isread)
2580{
dcbff19b 2581 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2582}
2583
49a66191
PM
2584/* Raw read of a coprocessor register (as needed for migration, etc) */
2585uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2586
721fae12
PM
2587/**
2588 * write_list_to_cpustate
2589 * @cpu: ARMCPU
2590 *
2591 * For each register listed in the ARMCPU cpreg_indexes list, write
2592 * its value from the cpreg_values list into the ARMCPUState structure.
2593 * This updates TCG's working data structures from KVM data or
2594 * from incoming migration state.
2595 *
2596 * Returns: true if all register values were updated correctly,
2597 * false if some register was unknown or could not be written.
2598 * Note that we do not stop early on failure -- we will attempt
2599 * writing all registers in the list.
2600 */
2601bool write_list_to_cpustate(ARMCPU *cpu);
2602
2603/**
2604 * write_cpustate_to_list:
2605 * @cpu: ARMCPU
b698e4ee 2606 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2607 *
2608 * For each register listed in the ARMCPU cpreg_indexes list, write
2609 * its value from the ARMCPUState structure into the cpreg_values list.
2610 * This is used to copy info from TCG's working data structures into
2611 * KVM or for outbound migration.
2612 *
b698e4ee
PM
2613 * @kvm_sync is true if we are doing this in order to sync the
2614 * register state back to KVM. In this case we will only update
2615 * values in the list if the previous list->cpustate sync actually
2616 * successfully wrote the CPU state. Otherwise we will keep the value
2617 * that is in the list.
2618 *
721fae12
PM
2619 * Returns: true if all register values were read correctly,
2620 * false if some register was unknown or could not be read.
2621 * Note that we do not stop early on failure -- we will attempt
2622 * reading all registers in the list.
2623 */
b698e4ee 2624bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2625
9ee6e8bb
PB
2626#define ARM_CPUID_TI915T 0x54029152
2627#define ARM_CPUID_TI925T 0x54029252
40f137e1 2628
012a906b
GB
2629static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2630 unsigned int target_el)
043b7f8d
EI
2631{
2632 CPUARMState *env = cs->env_ptr;
dcbff19b 2633 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2634 bool secure = arm_is_secure(env);
57e3a0c7
GB
2635 bool pstate_unmasked;
2636 int8_t unmasked = 0;
f7778444 2637 uint64_t hcr_el2;
57e3a0c7
GB
2638
2639 /* Don't take exceptions if they target a lower EL.
2640 * This check should catch any exceptions that would not be taken but left
2641 * pending.
2642 */
dfafd090
EI
2643 if (cur_el > target_el) {
2644 return false;
2645 }
043b7f8d 2646
f7778444
RH
2647 hcr_el2 = arm_hcr_el2_eff(env);
2648
043b7f8d
EI
2649 switch (excp_idx) {
2650 case EXCP_FIQ:
57e3a0c7
GB
2651 pstate_unmasked = !(env->daif & PSTATE_F);
2652 break;
2653
043b7f8d 2654 case EXCP_IRQ:
57e3a0c7
GB
2655 pstate_unmasked = !(env->daif & PSTATE_I);
2656 break;
2657
136e67e9 2658 case EXCP_VFIQ:
f7778444 2659 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2660 /* VFIQs are only taken when hypervized and non-secure. */
2661 return false;
2662 }
2663 return !(env->daif & PSTATE_F);
2664 case EXCP_VIRQ:
f7778444 2665 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2666 /* VIRQs are only taken when hypervized and non-secure. */
2667 return false;
2668 }
b5c633c5 2669 return !(env->daif & PSTATE_I);
043b7f8d
EI
2670 default:
2671 g_assert_not_reached();
2672 }
57e3a0c7
GB
2673
2674 /* Use the target EL, current execution state and SCR/HCR settings to
2675 * determine whether the corresponding CPSR bit is used to mask the
2676 * interrupt.
2677 */
2678 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2679 /* Exceptions targeting a higher EL may not be maskable */
2680 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2681 /* 64-bit masking rules are simple: exceptions to EL3
2682 * can't be masked, and exceptions to EL2 can only be
2683 * masked from Secure state. The HCR and SCR settings
2684 * don't affect the masking logic, only the interrupt routing.
2685 */
2686 if (target_el == 3 || !secure) {
2687 unmasked = 1;
2688 }
2689 } else {
2690 /* The old 32-bit-only environment has a more complicated
2691 * masking setup. HCR and SCR bits not only affect interrupt
2692 * routing but also change the behaviour of masking.
2693 */
2694 bool hcr, scr;
2695
2696 switch (excp_idx) {
2697 case EXCP_FIQ:
2698 /* If FIQs are routed to EL3 or EL2 then there are cases where
2699 * we override the CPSR.F in determining if the exception is
2700 * masked or not. If neither of these are set then we fall back
2701 * to the CPSR.F setting otherwise we further assess the state
2702 * below.
2703 */
f7778444 2704 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2705 scr = (env->cp15.scr_el3 & SCR_FIQ);
2706
2707 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2708 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2709 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2710 * when non-secure but only when FIQs are only routed to EL3.
2711 */
2712 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2713 break;
2714 case EXCP_IRQ:
2715 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2716 * we may override the CPSR.I masking when in non-secure state.
2717 * The SCR.IRQ setting has already been taken into consideration
2718 * when setting the target EL, so it does not have a further
2719 * affect here.
2720 */
f7778444 2721 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2722 scr = false;
2723 break;
2724 default:
2725 g_assert_not_reached();
2726 }
2727
2728 if ((scr || hcr) && !secure) {
2729 unmasked = 1;
2730 }
57e3a0c7
GB
2731 }
2732 }
2733
2734 /* The PSTATE bits only mask the interrupt if we have not overriden the
2735 * ability above.
2736 */
2737 return unmasked || pstate_unmasked;
043b7f8d
EI
2738}
2739
ba1ba5cc
IM
2740#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2741#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2742#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2743
9467d44c 2744#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2745#define cpu_list arm_cpu_list
9467d44c 2746
c1e37810
PM
2747/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2748 *
2749 * If EL3 is 64-bit:
2750 * + NonSecure EL1 & 0 stage 1
2751 * + NonSecure EL1 & 0 stage 2
2752 * + NonSecure EL2
2753 * + Secure EL1 & EL0
2754 * + Secure EL3
2755 * If EL3 is 32-bit:
2756 * + NonSecure PL1 & 0 stage 1
2757 * + NonSecure PL1 & 0 stage 2
2758 * + NonSecure PL2
2759 * + Secure PL0 & PL1
2760 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2761 *
2762 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2763 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2764 * may differ in access permissions even if the VA->PA map is the same
2765 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2766 * translation, which means that we have one mmu_idx that deals with two
2767 * concatenated translation regimes [this sort of combined s1+2 TLB is
2768 * architecturally permitted]
2769 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2770 * handling via the TLB. The only way to do a stage 1 translation without
2771 * the immediate stage 2 translation is via the ATS or AT system insns,
2772 * which can be slow-pathed and always do a page table walk.
2773 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2774 * translation regimes, because they map reasonably well to each other
2775 * and they can't both be active at the same time.
2776 * This gives us the following list of mmu_idx values:
2777 *
2778 * NS EL0 (aka NS PL0) stage 1+2
2779 * NS EL1 (aka NS PL1) stage 1+2
2780 * NS EL2 (aka NS PL2)
2781 * S EL3 (aka S PL1)
2782 * S EL0 (aka S PL0)
2783 * S EL1 (not used if EL3 is 32 bit)
2784 * NS EL0+1 stage 2
2785 *
2786 * (The last of these is an mmu_idx because we want to be able to use the TLB
2787 * for the accesses done as part of a stage 1 page table walk, rather than
2788 * having to walk the stage 2 page table over and over.)
2789 *
3bef7012
PM
2790 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2791 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2792 * NS EL2 if we ever model a Cortex-R52).
2793 *
2794 * M profile CPUs are rather different as they do not have a true MMU.
2795 * They have the following different MMU indexes:
2796 * User
2797 * Privileged
62593718
PM
2798 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2799 * Privileged, execution priority negative (ditto)
66787c78
PM
2800 * If the CPU supports the v8M Security Extension then there are also:
2801 * Secure User
2802 * Secure Privileged
62593718
PM
2803 * Secure User, execution priority negative
2804 * Secure Privileged, execution priority negative
3bef7012 2805 *
8bd5c820
PM
2806 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2807 * are not quite the same -- different CPU types (most notably M profile
2808 * vs A/R profile) would like to use MMU indexes with different semantics,
2809 * but since we don't ever need to use all of those in a single CPU we
2810 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2811 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2812 * the same for any particular CPU.
2813 * Variables of type ARMMUIdx are always full values, and the core
2814 * index values are in variables of type 'int'.
2815 *
c1e37810
PM
2816 * Our enumeration includes at the end some entries which are not "true"
2817 * mmu_idx values in that they don't have corresponding TLBs and are only
2818 * valid for doing slow path page table walks.
2819 *
2820 * The constant names here are patterned after the general style of the names
2821 * of the AT/ATS operations.
2822 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2823 * For M profile we arrange them to have a bit for priv, a bit for negpri
2824 * and a bit for secure.
c1e37810 2825 */
e7b921c2 2826#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2827#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2828#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2829
62593718
PM
2830/* meanings of the bits for M profile mmu idx values */
2831#define ARM_MMU_IDX_M_PRIV 0x1
2832#define ARM_MMU_IDX_M_NEGPRI 0x2
2833#define ARM_MMU_IDX_M_S 0x4
2834
8bd5c820
PM
2835#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2836#define ARM_MMU_IDX_COREIDX_MASK 0x7
2837
c1e37810 2838typedef enum ARMMMUIdx {
8bd5c820
PM
2839 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2840 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2841 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2842 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2843 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2844 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2845 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2846 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2847 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2848 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2849 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2850 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2851 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2852 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2853 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2854 /* Indexes below here don't have TLBs and are used only for AT system
2855 * instructions or for the first stage of an S12 page table walk.
2856 */
8bd5c820
PM
2857 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2858 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2859} ARMMMUIdx;
2860
8bd5c820
PM
2861/* Bit macros for the core-mmu-index values for each index,
2862 * for use when calling tlb_flush_by_mmuidx() and friends.
2863 */
2864typedef enum ARMMMUIdxBit {
2865 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2866 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2867 ARMMMUIdxBit_S1E2 = 1 << 2,
2868 ARMMMUIdxBit_S1E3 = 1 << 3,
2869 ARMMMUIdxBit_S1SE0 = 1 << 4,
2870 ARMMMUIdxBit_S1SE1 = 1 << 5,
2871 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2872 ARMMMUIdxBit_MUser = 1 << 0,
2873 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2874 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2875 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2876 ARMMMUIdxBit_MSUser = 1 << 4,
2877 ARMMMUIdxBit_MSPriv = 1 << 5,
2878 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2879 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2880} ARMMMUIdxBit;
2881
f79fbf39 2882#define MMU_USER_IDX 0
c1e37810 2883
8bd5c820
PM
2884static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2885{
2886 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2887}
2888
2889static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2890{
e7b921c2
PM
2891 if (arm_feature(env, ARM_FEATURE_M)) {
2892 return mmu_idx | ARM_MMU_IDX_M;
2893 } else {
2894 return mmu_idx | ARM_MMU_IDX_A;
2895 }
8bd5c820
PM
2896}
2897
c1e37810
PM
2898/* Return the exception level we're running at if this is our mmu_idx */
2899static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2900{
8bd5c820
PM
2901 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2902 case ARM_MMU_IDX_A:
2903 return mmu_idx & 3;
e7b921c2 2904 case ARM_MMU_IDX_M:
62593718 2905 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2906 default:
2907 g_assert_not_reached();
2908 }
c1e37810
PM
2909}
2910
fa6252a9
PM
2911/*
2912 * Return the MMU index for a v7M CPU with all relevant information
2913 * manually specified.
2914 */
2915ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2916 bool secstate, bool priv, bool negpri);
2917
ec8e3340 2918/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2919 * privilege state.
ec8e3340 2920 */
65e4655c
RH
2921ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2922 bool secstate, bool priv);
b81ac0eb 2923
ec8e3340 2924/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2925ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2926
50494a27
RH
2927/**
2928 * cpu_mmu_index:
2929 * @env: The cpu environment
2930 * @ifetch: True for code access, false for data access.
2931 *
2932 * Return the core mmu index for the current translation regime.
2933 * This function is used by generic TCG code paths.
2934 */
65e4655c 2935int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2936
9e273ef2
PM
2937/* Indexes used when registering address spaces with cpu_address_space_init */
2938typedef enum ARMASIdx {
2939 ARMASIdx_NS = 0,
2940 ARMASIdx_S = 1,
2941} ARMASIdx;
2942
533e93f1 2943/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2944static inline int arm_debug_target_el(CPUARMState *env)
2945{
81669b8b
SF
2946 bool secure = arm_is_secure(env);
2947 bool route_to_el2 = false;
2948
2949 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2950 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2951 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2952 }
2953
2954 if (route_to_el2) {
2955 return 2;
2956 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2957 !arm_el_is_aa64(env, 3) && secure) {
2958 return 3;
2959 } else {
2960 return 1;
2961 }
3a298203
PM
2962}
2963
43bbce7f
PM
2964static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2965{
2966 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2967 * CSSELR is RAZ/WI.
2968 */
2969 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2970}
2971
22af9025 2972/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2973static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2974{
22af9025
AB
2975 int cur_el = arm_current_el(env);
2976 int debug_el;
2977
2978 if (cur_el == 3) {
2979 return false;
533e93f1
PM
2980 }
2981
22af9025
AB
2982 /* MDCR_EL3.SDD disables debug events from Secure state */
2983 if (arm_is_secure_below_el3(env)
2984 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2985 return false;
3a298203 2986 }
22af9025
AB
2987
2988 /*
2989 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2990 * while not masking the (D)ebug bit in DAIF.
2991 */
2992 debug_el = arm_debug_target_el(env);
2993
2994 if (cur_el == debug_el) {
2995 return extract32(env->cp15.mdscr_el1, 13, 1)
2996 && !(env->daif & PSTATE_D);
2997 }
2998
2999 /* Otherwise the debug target needs to be a higher EL */
3000 return debug_el > cur_el;
3a298203
PM
3001}
3002
3003static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3004{
533e93f1
PM
3005 int el = arm_current_el(env);
3006
3007 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3008 return aa64_generate_debug_exceptions(env);
3009 }
533e93f1
PM
3010
3011 if (arm_is_secure(env)) {
3012 int spd;
3013
3014 if (el == 0 && (env->cp15.sder & 1)) {
3015 /* SDER.SUIDEN means debug exceptions from Secure EL0
3016 * are always enabled. Otherwise they are controlled by
3017 * SDCR.SPD like those from other Secure ELs.
3018 */
3019 return true;
3020 }
3021
3022 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3023 switch (spd) {
3024 case 1:
3025 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3026 case 0:
3027 /* For 0b00 we return true if external secure invasive debug
3028 * is enabled. On real hardware this is controlled by external
3029 * signals to the core. QEMU always permits debug, and behaves
3030 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3031 */
3032 return true;
3033 case 2:
3034 return false;
3035 case 3:
3036 return true;
3037 }
3038 }
3039
3040 return el != 2;
3a298203
PM
3041}
3042
3043/* Return true if debugging exceptions are currently enabled.
3044 * This corresponds to what in ARM ARM pseudocode would be
3045 * if UsingAArch32() then
3046 * return AArch32.GenerateDebugExceptions()
3047 * else
3048 * return AArch64.GenerateDebugExceptions()
3049 * We choose to push the if() down into this function for clarity,
3050 * since the pseudocode has it at all callsites except for the one in
3051 * CheckSoftwareStep(), where it is elided because both branches would
3052 * always return the same value.
3a298203
PM
3053 */
3054static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3055{
3056 if (env->aarch64) {
3057 return aa64_generate_debug_exceptions(env);
3058 } else {
3059 return aa32_generate_debug_exceptions(env);
3060 }
3061}
3062
3063/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3064 * implicitly means this always returns false in pre-v8 CPUs.)
3065 */
3066static inline bool arm_singlestep_active(CPUARMState *env)
3067{
3068 return extract32(env->cp15.mdscr_el1, 0, 1)
3069 && arm_el_is_aa64(env, arm_debug_target_el(env))
3070 && arm_generate_debug_exceptions(env);
3071}
3072
f9fd40eb
PB
3073static inline bool arm_sctlr_b(CPUARMState *env)
3074{
3075 return
3076 /* We need not implement SCTLR.ITD in user-mode emulation, so
3077 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3078 * This lets people run BE32 binaries with "-cpu any".
3079 */
3080#ifndef CONFIG_USER_ONLY
3081 !arm_feature(env, ARM_FEATURE_V7) &&
3082#endif
3083 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3084}
3085
64e40755
RH
3086static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3087{
3088 if (el == 0) {
3089 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3090 return env->cp15.sctlr_el[1];
3091 } else {
3092 return env->cp15.sctlr_el[el];
3093 }
3094}
3095
3096
ed50ff78
PC
3097/* Return true if the processor is in big-endian mode. */
3098static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3099{
ed50ff78
PC
3100 /* In 32bit endianness is determined by looking at CPSR's E bit */
3101 if (!is_a64(env)) {
b2e62d9a
PC
3102 return
3103#ifdef CONFIG_USER_ONLY
3104 /* In system mode, BE32 is modelled in line with the
3105 * architecture (as word-invariant big-endianness), where loads
3106 * and stores are done little endian but from addresses which
3107 * are adjusted by XORing with the appropriate constant. So the
3108 * endianness to use for the raw data access is not affected by
3109 * SCTLR.B.
3110 * In user mode, however, we model BE32 as byte-invariant
3111 * big-endianness (because user-only code cannot tell the
3112 * difference), and so we need to use a data access endianness
3113 * that depends on SCTLR.B.
3114 */
3115 arm_sctlr_b(env) ||
3116#endif
3117 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3118 } else {
3119 int cur_el = arm_current_el(env);
3120 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3121
64e40755 3122 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3123 }
ed50ff78
PC
3124}
3125
4f7c64b3 3126typedef CPUARMState CPUArchState;
2161a612 3127typedef ARMCPU ArchCPU;
4f7c64b3 3128
022c62cb 3129#include "exec/cpu-all.h"
622ed360 3130
3926cc84
AG
3131/* Bit usage in the TB flags field: bit 31 indicates whether we are
3132 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3133 * We put flags which are shared between 32 and 64 bit mode at the top
3134 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3135 */
aad821ac
RH
3136FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3137FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3138FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3139FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3140/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3141FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3142FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3143
3144/* Bit usage when in AArch32 state: */
aad821ac
RH
3145FIELD(TBFLAG_A32, THUMB, 0, 1)
3146FIELD(TBFLAG_A32, VECLEN, 1, 3)
3147FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
ea7ac69d
PM
3148/*
3149 * We store the bottom two bits of the CPAR as TB flags and handle
3150 * checks on the other bits at runtime. This shares the same bits as
3151 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3152 */
3153FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3154/*
3155 * Indicates whether cp register reads and writes by guest code should access
3156 * the secure or nonsecure bank of banked registers; note that this is not
3157 * the same thing as the current security state of the processor!
3158 */
3159FIELD(TBFLAG_A32, NS, 6, 1)
aad821ac
RH
3160FIELD(TBFLAG_A32, VFPEN, 7, 1)
3161FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3162FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
e33cf0f8
PM
3163/* For M profile only, set if FPCCR.LSPACT is set */
3164FIELD(TBFLAG_A32, LSPACT, 18, 1)
6000531e
PM
3165/* For M profile only, set if we must create a new FP context */
3166FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
6d60c67a
PM
3167/* For M profile only, set if FPCCR.S does not match current security state */
3168FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
064c379c 3169/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3170FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3171/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3172FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3173
86fb3fa4 3174/* Bit usage when in AArch64 state */
476a4692 3175FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3176FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3177FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3178FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3179FIELD(TBFLAG_A64, BT, 9, 1)
3180FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3181FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3182
f9fd40eb
PB
3183static inline bool bswap_code(bool sctlr_b)
3184{
3185#ifdef CONFIG_USER_ONLY
3186 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3187 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3188 * would also end up as a mixed-endian mode with BE code, LE data.
3189 */
3190 return
3191#ifdef TARGET_WORDS_BIGENDIAN
3192 1 ^
3193#endif
3194 sctlr_b;
3195#else
e334bd31
PB
3196 /* All code access in ARM is little endian, and there are no loaders
3197 * doing swaps that need to be reversed
f9fd40eb
PB
3198 */
3199 return 0;
3200#endif
3201}
3202
c3ae85fc
PB
3203#ifdef CONFIG_USER_ONLY
3204static inline bool arm_cpu_bswap_data(CPUARMState *env)
3205{
3206 return
3207#ifdef TARGET_WORDS_BIGENDIAN
3208 1 ^
3209#endif
3210 arm_cpu_data_is_big_endian(env);
3211}
3212#endif
3213
a9e01311
RH
3214void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3215 target_ulong *cs_base, uint32_t *flags);
6b917547 3216
98128601
RH
3217enum {
3218 QEMU_PSCI_CONDUIT_DISABLED = 0,
3219 QEMU_PSCI_CONDUIT_SMC = 1,
3220 QEMU_PSCI_CONDUIT_HVC = 2,
3221};
3222
017518c1
PM
3223#ifndef CONFIG_USER_ONLY
3224/* Return the address space index to use for a memory access */
3225static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3226{
3227 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3228}
5ce4ff65
PM
3229
3230/* Return the AddressSpace to use for a memory access
3231 * (which depends on whether the access is S or NS, and whether
3232 * the board gave us a separate AddressSpace for S accesses).
3233 */
3234static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3235{
3236 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3237}
017518c1
PM
3238#endif
3239
bd7d00fc 3240/**
b5c53d1b
AL
3241 * arm_register_pre_el_change_hook:
3242 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3243 * CPU changes exception level or mode. The hook function will be
3244 * passed a pointer to the ARMCPU and the opaque data pointer passed
3245 * to this function when the hook was registered.
b5c53d1b
AL
3246 *
3247 * Note that if a pre-change hook is called, any registered post-change hooks
3248 * are guaranteed to subsequently be called.
bd7d00fc 3249 */
b5c53d1b 3250void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3251 void *opaque);
b5c53d1b
AL
3252/**
3253 * arm_register_el_change_hook:
3254 * Register a hook function which will be called immediately after this
3255 * CPU changes exception level or mode. The hook function will be
3256 * passed a pointer to the ARMCPU and the opaque data pointer passed
3257 * to this function when the hook was registered.
3258 *
3259 * Note that any registered hooks registered here are guaranteed to be called
3260 * if pre-change hooks have been.
3261 */
3262void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3263 *opaque);
bd7d00fc 3264
9a2b5256
RH
3265/**
3266 * aa32_vfp_dreg:
3267 * Return a pointer to the Dn register within env in 32-bit mode.
3268 */
3269static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3270{
c39c2b90 3271 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3272}
3273
3274/**
3275 * aa32_vfp_qreg:
3276 * Return a pointer to the Qn register within env in 32-bit mode.
3277 */
3278static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3279{
c39c2b90 3280 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3281}
3282
3283/**
3284 * aa64_vfp_qreg:
3285 * Return a pointer to the Qn register within env in 64-bit mode.
3286 */
3287static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3288{
c39c2b90 3289 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3290}
3291
028e2a7b
RH
3292/* Shared between translate-sve.c and sve_helper.c. */
3293extern const uint64_t pred_esz_masks[4];
3294
962fcbf2
RH
3295/*
3296 * 32-bit feature tests via id registers.
3297 */
7e0cf8b4
RH
3298static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3299{
3300 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3301}
3302
3303static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3304{
3305 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3306}
3307
09cbd501
RH
3308static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3309{
3310 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3311}
3312
962fcbf2
RH
3313static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3314{
3315 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3316}
3317
3318static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3319{
3320 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3321}
3322
3323static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3324{
3325 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3326}
3327
3328static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3329{
3330 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3331}
3332
3333static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3334{
3335 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3336}
3337
3338static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3339{
3340 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3341}
3342
3343static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3344{
3345 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3346}
3347
6c1f6f27
RH
3348static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3349{
3350 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3351}
3352
962fcbf2
RH
3353static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3354{
3355 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3356}
3357
87732318
RH
3358static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3359{
3360 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3361}
3362
9888bd1e
RH
3363static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3364{
3365 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3366}
3367
cb570bd3
RH
3368static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3369{
3370 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3371}
3372
5763190f
RH
3373static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3374{
3375 /*
3376 * This is a placeholder for use by VCMA until the rest of
3377 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3378 * At which point we can properly set and check MVFR1.FPHP.
3379 */
3380 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3381}
3382
602f6e42
PM
3383/*
3384 * We always set the FP and SIMD FP16 fields to indicate identical
3385 * levels of support (assuming SIMD is implemented at all), so
3386 * we only need one set of accessors.
3387 */
3388static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3389{
3390 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3391}
3392
3393static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3394{
3395 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3396}
3397
c0c760af
PM
3398static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3399{
3400 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3401}
3402
3403static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3404{
3405 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3406}
3407
3408static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3409{
3410 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3411}
3412
3413static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3414{
3415 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3416}
3417
962fcbf2
RH
3418/*
3419 * 64-bit feature tests via id registers.
3420 */
3421static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3422{
3423 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3424}
3425
3426static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3427{
3428 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3429}
3430
3431static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3432{
3433 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3434}
3435
3436static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3437{
3438 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3439}
3440
3441static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3442{
3443 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3444}
3445
3446static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3447{
3448 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3449}
3450
3451static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3452{
3453 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3454}
3455
3456static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3457{
3458 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3459}
3460
3461static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3462{
3463 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3464}
3465
3466static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3467{
3468 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3469}
3470
3471static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3472{
3473 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3474}
3475
3476static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3477{
3478 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3479}
3480
0caa5af8
RH
3481static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3482{
3483 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3484}
3485
b89d9c98
RH
3486static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3487{
3488 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3489}
3490
5ef84f11
RH
3491static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3492{
3493 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3494}
3495
de390645
RH
3496static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3497{
3498 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3499}
3500
6c1f6f27
RH
3501static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3502{
3503 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3504}
3505
962fcbf2
RH
3506static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3507{
3508 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3509}
3510
991ad91b
RH
3511static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3512{
3513 /*
3514 * Note that while QEMU will only implement the architected algorithm
3515 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3516 * defined algorithms, and thus API+GPI, and this predicate controls
3517 * migration of the 128-bit keys.
3518 */
3519 return (id->id_aa64isar1 &
3520 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3521 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3522 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3523 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3524}
3525
9888bd1e
RH
3526static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3527{
3528 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3529}
3530
cb570bd3
RH
3531static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3532{
3533 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3534}
3535
6bea2563
RH
3536static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3537{
3538 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3539}
3540
5763190f
RH
3541static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3542{
3543 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3544 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3545}
3546
0f8d06f1
RH
3547static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3548{
3549 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3550}
3551
cd208a1c
RH
3552static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3553{
3554 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3555}
3556
2d7137c1
RH
3557static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3558{
3559 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3560}
3561
be53b6f4
RH
3562static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3563{
3564 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3565}
3566
962fcbf2
RH
3567/*
3568 * Forward to the above feature tests given an ARMCPU pointer.
3569 */
3570#define cpu_isar_feature(name, cpu) \
3571 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3572
2c0262af 3573#endif
This page took 1.639679 seconds and 4 git commands to generate.