]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b8c73fc2 | 27 | #include <linux/kasan.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> | |
37 | #include <linux/sysctl.h> | |
38 | #include <linux/cpu.h> | |
39 | #include <linux/cpuset.h> | |
bdc8cb98 | 40 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> | |
a6cccdc3 | 43 | #include <linux/vmstat.h> |
4be38e35 | 44 | #include <linux/mempolicy.h> |
4b94ffdc | 45 | #include <linux/memremap.h> |
6811378e | 46 | #include <linux/stop_machine.h> |
c713216d MG |
47 | #include <linux/sort.h> |
48 | #include <linux/pfn.h> | |
3fcfab16 | 49 | #include <linux/backing-dev.h> |
933e312e | 50 | #include <linux/fault-inject.h> |
a5d76b54 | 51 | #include <linux/page-isolation.h> |
eefa864b | 52 | #include <linux/page_ext.h> |
3ac7fe5a | 53 | #include <linux/debugobjects.h> |
dbb1f81c | 54 | #include <linux/kmemleak.h> |
56de7263 | 55 | #include <linux/compaction.h> |
0d3d062a | 56 | #include <trace/events/kmem.h> |
d379f01d | 57 | #include <trace/events/oom.h> |
268bb0ce | 58 | #include <linux/prefetch.h> |
6e543d57 | 59 | #include <linux/mm_inline.h> |
041d3a8c | 60 | #include <linux/migrate.h> |
949f7ec5 | 61 | #include <linux/hugetlb.h> |
8bd75c77 | 62 | #include <linux/sched/rt.h> |
5b3cc15a | 63 | #include <linux/sched/mm.h> |
48c96a36 | 64 | #include <linux/page_owner.h> |
0e1cc95b | 65 | #include <linux/kthread.h> |
4949148a | 66 | #include <linux/memcontrol.h> |
42c269c8 | 67 | #include <linux/ftrace.h> |
d92a8cfc | 68 | #include <linux/lockdep.h> |
556b969a | 69 | #include <linux/nmi.h> |
1da177e4 | 70 | |
7ee3d4e8 | 71 | #include <asm/sections.h> |
1da177e4 | 72 | #include <asm/tlbflush.h> |
ac924c60 | 73 | #include <asm/div64.h> |
1da177e4 LT |
74 | #include "internal.h" |
75 | ||
c8e251fa CS |
76 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
77 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 78 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 79 | |
72812019 LS |
80 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
81 | DEFINE_PER_CPU(int, numa_node); | |
82 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
83 | #endif | |
84 | ||
4518085e KW |
85 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
86 | ||
7aac7898 LS |
87 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
88 | /* | |
89 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
90 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
91 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
92 | * defined in <linux/topology.h>. | |
93 | */ | |
94 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
95 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 96 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
97 | #endif |
98 | ||
bd233f53 MG |
99 | /* work_structs for global per-cpu drains */ |
100 | DEFINE_MUTEX(pcpu_drain_mutex); | |
101 | DEFINE_PER_CPU(struct work_struct, pcpu_drain); | |
102 | ||
38addce8 | 103 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
58bea414 | 104 | volatile unsigned long latent_entropy __latent_entropy; |
38addce8 ER |
105 | EXPORT_SYMBOL(latent_entropy); |
106 | #endif | |
107 | ||
1da177e4 | 108 | /* |
13808910 | 109 | * Array of node states. |
1da177e4 | 110 | */ |
13808910 CL |
111 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
112 | [N_POSSIBLE] = NODE_MASK_ALL, | |
113 | [N_ONLINE] = { { [0] = 1UL } }, | |
114 | #ifndef CONFIG_NUMA | |
115 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
116 | #ifdef CONFIG_HIGHMEM | |
117 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b | 118 | #endif |
20b2f52b | 119 | [N_MEMORY] = { { [0] = 1UL } }, |
13808910 CL |
120 | [N_CPU] = { { [0] = 1UL } }, |
121 | #endif /* NUMA */ | |
122 | }; | |
123 | EXPORT_SYMBOL(node_states); | |
124 | ||
c3d5f5f0 JL |
125 | /* Protect totalram_pages and zone->managed_pages */ |
126 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
127 | ||
6c231b7b | 128 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 129 | unsigned long totalreserve_pages __read_mostly; |
e48322ab | 130 | unsigned long totalcma_pages __read_mostly; |
ab8fabd4 | 131 | |
1b76b02f | 132 | int percpu_pagelist_fraction; |
dcce284a | 133 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 134 | |
bb14c2c7 VB |
135 | /* |
136 | * A cached value of the page's pageblock's migratetype, used when the page is | |
137 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | |
138 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | |
139 | * Also the migratetype set in the page does not necessarily match the pcplist | |
140 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | |
141 | * other index - this ensures that it will be put on the correct CMA freelist. | |
142 | */ | |
143 | static inline int get_pcppage_migratetype(struct page *page) | |
144 | { | |
145 | return page->index; | |
146 | } | |
147 | ||
148 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | |
149 | { | |
150 | page->index = migratetype; | |
151 | } | |
152 | ||
452aa699 RW |
153 | #ifdef CONFIG_PM_SLEEP |
154 | /* | |
155 | * The following functions are used by the suspend/hibernate code to temporarily | |
156 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
157 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
158 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
159 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
160 | * guaranteed not to run in parallel with that modification). | |
161 | */ | |
c9e664f1 RW |
162 | |
163 | static gfp_t saved_gfp_mask; | |
164 | ||
165 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
166 | { |
167 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
168 | if (saved_gfp_mask) { |
169 | gfp_allowed_mask = saved_gfp_mask; | |
170 | saved_gfp_mask = 0; | |
171 | } | |
452aa699 RW |
172 | } |
173 | ||
c9e664f1 | 174 | void pm_restrict_gfp_mask(void) |
452aa699 | 175 | { |
452aa699 | 176 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
177 | WARN_ON(saved_gfp_mask); |
178 | saved_gfp_mask = gfp_allowed_mask; | |
d0164adc | 179 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
452aa699 | 180 | } |
f90ac398 MG |
181 | |
182 | bool pm_suspended_storage(void) | |
183 | { | |
d0164adc | 184 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
f90ac398 MG |
185 | return false; |
186 | return true; | |
187 | } | |
452aa699 RW |
188 | #endif /* CONFIG_PM_SLEEP */ |
189 | ||
d9c23400 | 190 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 191 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
192 | #endif |
193 | ||
d98c7a09 | 194 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 195 | |
1da177e4 LT |
196 | /* |
197 | * results with 256, 32 in the lowmem_reserve sysctl: | |
198 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
199 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
200 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
201 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 202 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
203 | * |
204 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
205 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 206 | */ |
2f1b6248 | 207 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 208 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 209 | 256, |
4b51d669 | 210 | #endif |
fb0e7942 | 211 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 212 | 256, |
fb0e7942 | 213 | #endif |
e53ef38d | 214 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 215 | 32, |
e53ef38d | 216 | #endif |
2a1e274a | 217 | 32, |
2f1b6248 | 218 | }; |
1da177e4 LT |
219 | |
220 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 221 | |
15ad7cdc | 222 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 223 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 224 | "DMA", |
4b51d669 | 225 | #endif |
fb0e7942 | 226 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 227 | "DMA32", |
fb0e7942 | 228 | #endif |
2f1b6248 | 229 | "Normal", |
e53ef38d | 230 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 231 | "HighMem", |
e53ef38d | 232 | #endif |
2a1e274a | 233 | "Movable", |
033fbae9 DW |
234 | #ifdef CONFIG_ZONE_DEVICE |
235 | "Device", | |
236 | #endif | |
2f1b6248 CL |
237 | }; |
238 | ||
60f30350 VB |
239 | char * const migratetype_names[MIGRATE_TYPES] = { |
240 | "Unmovable", | |
241 | "Movable", | |
242 | "Reclaimable", | |
243 | "HighAtomic", | |
244 | #ifdef CONFIG_CMA | |
245 | "CMA", | |
246 | #endif | |
247 | #ifdef CONFIG_MEMORY_ISOLATION | |
248 | "Isolate", | |
249 | #endif | |
250 | }; | |
251 | ||
f1e61557 KS |
252 | compound_page_dtor * const compound_page_dtors[] = { |
253 | NULL, | |
254 | free_compound_page, | |
255 | #ifdef CONFIG_HUGETLB_PAGE | |
256 | free_huge_page, | |
257 | #endif | |
9a982250 KS |
258 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
259 | free_transhuge_page, | |
260 | #endif | |
f1e61557 KS |
261 | }; |
262 | ||
1da177e4 | 263 | int min_free_kbytes = 1024; |
42aa83cb | 264 | int user_min_free_kbytes = -1; |
795ae7a0 | 265 | int watermark_scale_factor = 10; |
1da177e4 | 266 | |
2c85f51d JB |
267 | static unsigned long __meminitdata nr_kernel_pages; |
268 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 269 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 270 | |
0ee332c1 TH |
271 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
272 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
273 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
274 | static unsigned long __initdata required_kernelcore; | |
275 | static unsigned long __initdata required_movablecore; | |
276 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
342332e6 | 277 | static bool mirrored_kernelcore; |
0ee332c1 TH |
278 | |
279 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
280 | int movable_zone; | |
281 | EXPORT_SYMBOL(movable_zone); | |
282 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 283 | |
418508c1 MS |
284 | #if MAX_NUMNODES > 1 |
285 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 286 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 287 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 288 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
289 | #endif |
290 | ||
9ef9acb0 MG |
291 | int page_group_by_mobility_disabled __read_mostly; |
292 | ||
3a80a7fa | 293 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
d135e575 PT |
294 | |
295 | /* | |
3c2c6488 | 296 | * Determine how many pages need to be initialized during early boot |
d135e575 PT |
297 | * (non-deferred initialization). |
298 | * The value of first_deferred_pfn will be set later, once non-deferred pages | |
299 | * are initialized, but for now set it ULONG_MAX. | |
300 | */ | |
3a80a7fa MG |
301 | static inline void reset_deferred_meminit(pg_data_t *pgdat) |
302 | { | |
d135e575 PT |
303 | phys_addr_t start_addr, end_addr; |
304 | unsigned long max_pgcnt; | |
305 | unsigned long reserved; | |
864b9a39 MH |
306 | |
307 | /* | |
308 | * Initialise at least 2G of a node but also take into account that | |
309 | * two large system hashes that can take up 1GB for 0.25TB/node. | |
310 | */ | |
d135e575 PT |
311 | max_pgcnt = max(2UL << (30 - PAGE_SHIFT), |
312 | (pgdat->node_spanned_pages >> 8)); | |
864b9a39 MH |
313 | |
314 | /* | |
315 | * Compensate the all the memblock reservations (e.g. crash kernel) | |
316 | * from the initial estimation to make sure we will initialize enough | |
317 | * memory to boot. | |
318 | */ | |
d135e575 PT |
319 | start_addr = PFN_PHYS(pgdat->node_start_pfn); |
320 | end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); | |
321 | reserved = memblock_reserved_memory_within(start_addr, end_addr); | |
322 | max_pgcnt += PHYS_PFN(reserved); | |
864b9a39 | 323 | |
d135e575 | 324 | pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); |
3a80a7fa MG |
325 | pgdat->first_deferred_pfn = ULONG_MAX; |
326 | } | |
327 | ||
328 | /* Returns true if the struct page for the pfn is uninitialised */ | |
0e1cc95b | 329 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
3a80a7fa | 330 | { |
ef70b6f4 MG |
331 | int nid = early_pfn_to_nid(pfn); |
332 | ||
333 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | |
3a80a7fa MG |
334 | return true; |
335 | ||
336 | return false; | |
337 | } | |
338 | ||
339 | /* | |
340 | * Returns false when the remaining initialisation should be deferred until | |
341 | * later in the boot cycle when it can be parallelised. | |
342 | */ | |
343 | static inline bool update_defer_init(pg_data_t *pgdat, | |
344 | unsigned long pfn, unsigned long zone_end, | |
345 | unsigned long *nr_initialised) | |
346 | { | |
3c2c6488 | 347 | /* Always populate low zones for address-constrained allocations */ |
3a80a7fa MG |
348 | if (zone_end < pgdat_end_pfn(pgdat)) |
349 | return true; | |
3a80a7fa | 350 | (*nr_initialised)++; |
d135e575 | 351 | if ((*nr_initialised > pgdat->static_init_pgcnt) && |
3a80a7fa MG |
352 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { |
353 | pgdat->first_deferred_pfn = pfn; | |
354 | return false; | |
355 | } | |
356 | ||
357 | return true; | |
358 | } | |
359 | #else | |
360 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
361 | { | |
362 | } | |
363 | ||
364 | static inline bool early_page_uninitialised(unsigned long pfn) | |
365 | { | |
366 | return false; | |
367 | } | |
368 | ||
369 | static inline bool update_defer_init(pg_data_t *pgdat, | |
370 | unsigned long pfn, unsigned long zone_end, | |
371 | unsigned long *nr_initialised) | |
372 | { | |
373 | return true; | |
374 | } | |
375 | #endif | |
376 | ||
0b423ca2 MG |
377 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
378 | static inline unsigned long *get_pageblock_bitmap(struct page *page, | |
379 | unsigned long pfn) | |
380 | { | |
381 | #ifdef CONFIG_SPARSEMEM | |
382 | return __pfn_to_section(pfn)->pageblock_flags; | |
383 | #else | |
384 | return page_zone(page)->pageblock_flags; | |
385 | #endif /* CONFIG_SPARSEMEM */ | |
386 | } | |
387 | ||
388 | static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) | |
389 | { | |
390 | #ifdef CONFIG_SPARSEMEM | |
391 | pfn &= (PAGES_PER_SECTION-1); | |
392 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
393 | #else | |
394 | pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); | |
395 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
396 | #endif /* CONFIG_SPARSEMEM */ | |
397 | } | |
398 | ||
399 | /** | |
400 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | |
401 | * @page: The page within the block of interest | |
402 | * @pfn: The target page frame number | |
403 | * @end_bitidx: The last bit of interest to retrieve | |
404 | * @mask: mask of bits that the caller is interested in | |
405 | * | |
406 | * Return: pageblock_bits flags | |
407 | */ | |
408 | static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, | |
409 | unsigned long pfn, | |
410 | unsigned long end_bitidx, | |
411 | unsigned long mask) | |
412 | { | |
413 | unsigned long *bitmap; | |
414 | unsigned long bitidx, word_bitidx; | |
415 | unsigned long word; | |
416 | ||
417 | bitmap = get_pageblock_bitmap(page, pfn); | |
418 | bitidx = pfn_to_bitidx(page, pfn); | |
419 | word_bitidx = bitidx / BITS_PER_LONG; | |
420 | bitidx &= (BITS_PER_LONG-1); | |
421 | ||
422 | word = bitmap[word_bitidx]; | |
423 | bitidx += end_bitidx; | |
424 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
425 | } | |
426 | ||
427 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | |
428 | unsigned long end_bitidx, | |
429 | unsigned long mask) | |
430 | { | |
431 | return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); | |
432 | } | |
433 | ||
434 | static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) | |
435 | { | |
436 | return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); | |
437 | } | |
438 | ||
439 | /** | |
440 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | |
441 | * @page: The page within the block of interest | |
442 | * @flags: The flags to set | |
443 | * @pfn: The target page frame number | |
444 | * @end_bitidx: The last bit of interest | |
445 | * @mask: mask of bits that the caller is interested in | |
446 | */ | |
447 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | |
448 | unsigned long pfn, | |
449 | unsigned long end_bitidx, | |
450 | unsigned long mask) | |
451 | { | |
452 | unsigned long *bitmap; | |
453 | unsigned long bitidx, word_bitidx; | |
454 | unsigned long old_word, word; | |
455 | ||
456 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
457 | ||
458 | bitmap = get_pageblock_bitmap(page, pfn); | |
459 | bitidx = pfn_to_bitidx(page, pfn); | |
460 | word_bitidx = bitidx / BITS_PER_LONG; | |
461 | bitidx &= (BITS_PER_LONG-1); | |
462 | ||
463 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | |
464 | ||
465 | bitidx += end_bitidx; | |
466 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
467 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
468 | ||
469 | word = READ_ONCE(bitmap[word_bitidx]); | |
470 | for (;;) { | |
471 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
472 | if (word == old_word) | |
473 | break; | |
474 | word = old_word; | |
475 | } | |
476 | } | |
3a80a7fa | 477 | |
ee6f509c | 478 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 479 | { |
5d0f3f72 KM |
480 | if (unlikely(page_group_by_mobility_disabled && |
481 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
482 | migratetype = MIGRATE_UNMOVABLE; |
483 | ||
b2a0ac88 MG |
484 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
485 | PB_migrate, PB_migrate_end); | |
486 | } | |
487 | ||
13e7444b | 488 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 489 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 490 | { |
bdc8cb98 DH |
491 | int ret = 0; |
492 | unsigned seq; | |
493 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 494 | unsigned long sp, start_pfn; |
c6a57e19 | 495 | |
bdc8cb98 DH |
496 | do { |
497 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
498 | start_pfn = zone->zone_start_pfn; |
499 | sp = zone->spanned_pages; | |
108bcc96 | 500 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
501 | ret = 1; |
502 | } while (zone_span_seqretry(zone, seq)); | |
503 | ||
b5e6a5a2 | 504 | if (ret) |
613813e8 DH |
505 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
506 | pfn, zone_to_nid(zone), zone->name, | |
507 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 508 | |
bdc8cb98 | 509 | return ret; |
c6a57e19 DH |
510 | } |
511 | ||
512 | static int page_is_consistent(struct zone *zone, struct page *page) | |
513 | { | |
14e07298 | 514 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 515 | return 0; |
1da177e4 | 516 | if (zone != page_zone(page)) |
c6a57e19 DH |
517 | return 0; |
518 | ||
519 | return 1; | |
520 | } | |
521 | /* | |
522 | * Temporary debugging check for pages not lying within a given zone. | |
523 | */ | |
d73d3c9f | 524 | static int __maybe_unused bad_range(struct zone *zone, struct page *page) |
c6a57e19 DH |
525 | { |
526 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 527 | return 1; |
c6a57e19 DH |
528 | if (!page_is_consistent(zone, page)) |
529 | return 1; | |
530 | ||
1da177e4 LT |
531 | return 0; |
532 | } | |
13e7444b | 533 | #else |
d73d3c9f | 534 | static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) |
13e7444b NP |
535 | { |
536 | return 0; | |
537 | } | |
538 | #endif | |
539 | ||
d230dec1 KS |
540 | static void bad_page(struct page *page, const char *reason, |
541 | unsigned long bad_flags) | |
1da177e4 | 542 | { |
d936cf9b HD |
543 | static unsigned long resume; |
544 | static unsigned long nr_shown; | |
545 | static unsigned long nr_unshown; | |
546 | ||
547 | /* | |
548 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
549 | * or allow a steady drip of one report per second. | |
550 | */ | |
551 | if (nr_shown == 60) { | |
552 | if (time_before(jiffies, resume)) { | |
553 | nr_unshown++; | |
554 | goto out; | |
555 | } | |
556 | if (nr_unshown) { | |
ff8e8116 | 557 | pr_alert( |
1e9e6365 | 558 | "BUG: Bad page state: %lu messages suppressed\n", |
d936cf9b HD |
559 | nr_unshown); |
560 | nr_unshown = 0; | |
561 | } | |
562 | nr_shown = 0; | |
563 | } | |
564 | if (nr_shown++ == 0) | |
565 | resume = jiffies + 60 * HZ; | |
566 | ||
ff8e8116 | 567 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 568 | current->comm, page_to_pfn(page)); |
ff8e8116 VB |
569 | __dump_page(page, reason); |
570 | bad_flags &= page->flags; | |
571 | if (bad_flags) | |
572 | pr_alert("bad because of flags: %#lx(%pGp)\n", | |
573 | bad_flags, &bad_flags); | |
4e462112 | 574 | dump_page_owner(page); |
3dc14741 | 575 | |
4f31888c | 576 | print_modules(); |
1da177e4 | 577 | dump_stack(); |
d936cf9b | 578 | out: |
8cc3b392 | 579 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 580 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 581 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
582 | } |
583 | ||
1da177e4 LT |
584 | /* |
585 | * Higher-order pages are called "compound pages". They are structured thusly: | |
586 | * | |
1d798ca3 | 587 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 588 | * |
1d798ca3 KS |
589 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
590 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 591 | * |
1d798ca3 KS |
592 | * The first tail page's ->compound_dtor holds the offset in array of compound |
593 | * page destructors. See compound_page_dtors. | |
1da177e4 | 594 | * |
1d798ca3 | 595 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 596 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 597 | */ |
d98c7a09 | 598 | |
9a982250 | 599 | void free_compound_page(struct page *page) |
d98c7a09 | 600 | { |
d85f3385 | 601 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
602 | } |
603 | ||
d00181b9 | 604 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
605 | { |
606 | int i; | |
607 | int nr_pages = 1 << order; | |
608 | ||
f1e61557 | 609 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
18229df5 AW |
610 | set_compound_order(page, order); |
611 | __SetPageHead(page); | |
612 | for (i = 1; i < nr_pages; i++) { | |
613 | struct page *p = page + i; | |
58a84aa9 | 614 | set_page_count(p, 0); |
1c290f64 | 615 | p->mapping = TAIL_MAPPING; |
1d798ca3 | 616 | set_compound_head(p, page); |
18229df5 | 617 | } |
53f9263b | 618 | atomic_set(compound_mapcount_ptr(page), -1); |
18229df5 AW |
619 | } |
620 | ||
c0a32fc5 SG |
621 | #ifdef CONFIG_DEBUG_PAGEALLOC |
622 | unsigned int _debug_guardpage_minorder; | |
ea6eabb0 CB |
623 | bool _debug_pagealloc_enabled __read_mostly |
624 | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | |
505f6d22 | 625 | EXPORT_SYMBOL(_debug_pagealloc_enabled); |
e30825f1 JK |
626 | bool _debug_guardpage_enabled __read_mostly; |
627 | ||
031bc574 JK |
628 | static int __init early_debug_pagealloc(char *buf) |
629 | { | |
630 | if (!buf) | |
631 | return -EINVAL; | |
2a138dc7 | 632 | return kstrtobool(buf, &_debug_pagealloc_enabled); |
031bc574 JK |
633 | } |
634 | early_param("debug_pagealloc", early_debug_pagealloc); | |
635 | ||
e30825f1 JK |
636 | static bool need_debug_guardpage(void) |
637 | { | |
031bc574 JK |
638 | /* If we don't use debug_pagealloc, we don't need guard page */ |
639 | if (!debug_pagealloc_enabled()) | |
640 | return false; | |
641 | ||
f1c1e9f7 JK |
642 | if (!debug_guardpage_minorder()) |
643 | return false; | |
644 | ||
e30825f1 JK |
645 | return true; |
646 | } | |
647 | ||
648 | static void init_debug_guardpage(void) | |
649 | { | |
031bc574 JK |
650 | if (!debug_pagealloc_enabled()) |
651 | return; | |
652 | ||
f1c1e9f7 JK |
653 | if (!debug_guardpage_minorder()) |
654 | return; | |
655 | ||
e30825f1 JK |
656 | _debug_guardpage_enabled = true; |
657 | } | |
658 | ||
659 | struct page_ext_operations debug_guardpage_ops = { | |
660 | .need = need_debug_guardpage, | |
661 | .init = init_debug_guardpage, | |
662 | }; | |
c0a32fc5 SG |
663 | |
664 | static int __init debug_guardpage_minorder_setup(char *buf) | |
665 | { | |
666 | unsigned long res; | |
667 | ||
668 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
1170532b | 669 | pr_err("Bad debug_guardpage_minorder value\n"); |
c0a32fc5 SG |
670 | return 0; |
671 | } | |
672 | _debug_guardpage_minorder = res; | |
1170532b | 673 | pr_info("Setting debug_guardpage_minorder to %lu\n", res); |
c0a32fc5 SG |
674 | return 0; |
675 | } | |
f1c1e9f7 | 676 | early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); |
c0a32fc5 | 677 | |
acbc15a4 | 678 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
2847cf95 | 679 | unsigned int order, int migratetype) |
c0a32fc5 | 680 | { |
e30825f1 JK |
681 | struct page_ext *page_ext; |
682 | ||
683 | if (!debug_guardpage_enabled()) | |
acbc15a4 JK |
684 | return false; |
685 | ||
686 | if (order >= debug_guardpage_minorder()) | |
687 | return false; | |
e30825f1 JK |
688 | |
689 | page_ext = lookup_page_ext(page); | |
f86e4271 | 690 | if (unlikely(!page_ext)) |
acbc15a4 | 691 | return false; |
f86e4271 | 692 | |
e30825f1 JK |
693 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
694 | ||
2847cf95 JK |
695 | INIT_LIST_HEAD(&page->lru); |
696 | set_page_private(page, order); | |
697 | /* Guard pages are not available for any usage */ | |
698 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | |
acbc15a4 JK |
699 | |
700 | return true; | |
c0a32fc5 SG |
701 | } |
702 | ||
2847cf95 JK |
703 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
704 | unsigned int order, int migratetype) | |
c0a32fc5 | 705 | { |
e30825f1 JK |
706 | struct page_ext *page_ext; |
707 | ||
708 | if (!debug_guardpage_enabled()) | |
709 | return; | |
710 | ||
711 | page_ext = lookup_page_ext(page); | |
f86e4271 YS |
712 | if (unlikely(!page_ext)) |
713 | return; | |
714 | ||
e30825f1 JK |
715 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
716 | ||
2847cf95 JK |
717 | set_page_private(page, 0); |
718 | if (!is_migrate_isolate(migratetype)) | |
719 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | |
c0a32fc5 SG |
720 | } |
721 | #else | |
980ac167 | 722 | struct page_ext_operations debug_guardpage_ops; |
acbc15a4 JK |
723 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
724 | unsigned int order, int migratetype) { return false; } | |
2847cf95 JK |
725 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
726 | unsigned int order, int migratetype) {} | |
c0a32fc5 SG |
727 | #endif |
728 | ||
7aeb09f9 | 729 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 730 | { |
4c21e2f2 | 731 | set_page_private(page, order); |
676165a8 | 732 | __SetPageBuddy(page); |
1da177e4 LT |
733 | } |
734 | ||
735 | static inline void rmv_page_order(struct page *page) | |
736 | { | |
676165a8 | 737 | __ClearPageBuddy(page); |
4c21e2f2 | 738 | set_page_private(page, 0); |
1da177e4 LT |
739 | } |
740 | ||
1da177e4 LT |
741 | /* |
742 | * This function checks whether a page is free && is the buddy | |
743 | * we can do coalesce a page and its buddy if | |
13ad59df | 744 | * (a) the buddy is not in a hole (check before calling!) && |
676165a8 | 745 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
746 | * (c) a page and its buddy have the same order && |
747 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 748 | * |
cf6fe945 WSH |
749 | * For recording whether a page is in the buddy system, we set ->_mapcount |
750 | * PAGE_BUDDY_MAPCOUNT_VALUE. | |
751 | * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | |
752 | * serialized by zone->lock. | |
1da177e4 | 753 | * |
676165a8 | 754 | * For recording page's order, we use page_private(page). |
1da177e4 | 755 | */ |
cb2b95e1 | 756 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 757 | unsigned int order) |
1da177e4 | 758 | { |
c0a32fc5 | 759 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
760 | if (page_zone_id(page) != page_zone_id(buddy)) |
761 | return 0; | |
762 | ||
4c5018ce WY |
763 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
764 | ||
c0a32fc5 SG |
765 | return 1; |
766 | } | |
767 | ||
cb2b95e1 | 768 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
769 | /* |
770 | * zone check is done late to avoid uselessly | |
771 | * calculating zone/node ids for pages that could | |
772 | * never merge. | |
773 | */ | |
774 | if (page_zone_id(page) != page_zone_id(buddy)) | |
775 | return 0; | |
776 | ||
4c5018ce WY |
777 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
778 | ||
6aa3001b | 779 | return 1; |
676165a8 | 780 | } |
6aa3001b | 781 | return 0; |
1da177e4 LT |
782 | } |
783 | ||
784 | /* | |
785 | * Freeing function for a buddy system allocator. | |
786 | * | |
787 | * The concept of a buddy system is to maintain direct-mapped table | |
788 | * (containing bit values) for memory blocks of various "orders". | |
789 | * The bottom level table contains the map for the smallest allocatable | |
790 | * units of memory (here, pages), and each level above it describes | |
791 | * pairs of units from the levels below, hence, "buddies". | |
792 | * At a high level, all that happens here is marking the table entry | |
793 | * at the bottom level available, and propagating the changes upward | |
794 | * as necessary, plus some accounting needed to play nicely with other | |
795 | * parts of the VM system. | |
796 | * At each level, we keep a list of pages, which are heads of continuous | |
cf6fe945 WSH |
797 | * free pages of length of (1 << order) and marked with _mapcount |
798 | * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | |
799 | * field. | |
1da177e4 | 800 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
801 | * other. That is, if we allocate a small block, and both were |
802 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 803 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 804 | * triggers coalescing into a block of larger size. |
1da177e4 | 805 | * |
6d49e352 | 806 | * -- nyc |
1da177e4 LT |
807 | */ |
808 | ||
48db57f8 | 809 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 810 | unsigned long pfn, |
ed0ae21d MG |
811 | struct zone *zone, unsigned int order, |
812 | int migratetype) | |
1da177e4 | 813 | { |
76741e77 VB |
814 | unsigned long combined_pfn; |
815 | unsigned long uninitialized_var(buddy_pfn); | |
6dda9d55 | 816 | struct page *buddy; |
d9dddbf5 VB |
817 | unsigned int max_order; |
818 | ||
819 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); | |
1da177e4 | 820 | |
d29bb978 | 821 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 822 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 823 | |
ed0ae21d | 824 | VM_BUG_ON(migratetype == -1); |
d9dddbf5 | 825 | if (likely(!is_migrate_isolate(migratetype))) |
8f82b55d | 826 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
ed0ae21d | 827 | |
76741e77 | 828 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
309381fe | 829 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 830 | |
d9dddbf5 | 831 | continue_merging: |
3c605096 | 832 | while (order < max_order - 1) { |
76741e77 VB |
833 | buddy_pfn = __find_buddy_pfn(pfn, order); |
834 | buddy = page + (buddy_pfn - pfn); | |
13ad59df VB |
835 | |
836 | if (!pfn_valid_within(buddy_pfn)) | |
837 | goto done_merging; | |
cb2b95e1 | 838 | if (!page_is_buddy(page, buddy, order)) |
d9dddbf5 | 839 | goto done_merging; |
c0a32fc5 SG |
840 | /* |
841 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
842 | * merge with it and move up one order. | |
843 | */ | |
844 | if (page_is_guard(buddy)) { | |
2847cf95 | 845 | clear_page_guard(zone, buddy, order, migratetype); |
c0a32fc5 SG |
846 | } else { |
847 | list_del(&buddy->lru); | |
848 | zone->free_area[order].nr_free--; | |
849 | rmv_page_order(buddy); | |
850 | } | |
76741e77 VB |
851 | combined_pfn = buddy_pfn & pfn; |
852 | page = page + (combined_pfn - pfn); | |
853 | pfn = combined_pfn; | |
1da177e4 LT |
854 | order++; |
855 | } | |
d9dddbf5 VB |
856 | if (max_order < MAX_ORDER) { |
857 | /* If we are here, it means order is >= pageblock_order. | |
858 | * We want to prevent merge between freepages on isolate | |
859 | * pageblock and normal pageblock. Without this, pageblock | |
860 | * isolation could cause incorrect freepage or CMA accounting. | |
861 | * | |
862 | * We don't want to hit this code for the more frequent | |
863 | * low-order merging. | |
864 | */ | |
865 | if (unlikely(has_isolate_pageblock(zone))) { | |
866 | int buddy_mt; | |
867 | ||
76741e77 VB |
868 | buddy_pfn = __find_buddy_pfn(pfn, order); |
869 | buddy = page + (buddy_pfn - pfn); | |
d9dddbf5 VB |
870 | buddy_mt = get_pageblock_migratetype(buddy); |
871 | ||
872 | if (migratetype != buddy_mt | |
873 | && (is_migrate_isolate(migratetype) || | |
874 | is_migrate_isolate(buddy_mt))) | |
875 | goto done_merging; | |
876 | } | |
877 | max_order++; | |
878 | goto continue_merging; | |
879 | } | |
880 | ||
881 | done_merging: | |
1da177e4 | 882 | set_page_order(page, order); |
6dda9d55 CZ |
883 | |
884 | /* | |
885 | * If this is not the largest possible page, check if the buddy | |
886 | * of the next-highest order is free. If it is, it's possible | |
887 | * that pages are being freed that will coalesce soon. In case, | |
888 | * that is happening, add the free page to the tail of the list | |
889 | * so it's less likely to be used soon and more likely to be merged | |
890 | * as a higher order page | |
891 | */ | |
13ad59df | 892 | if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { |
6dda9d55 | 893 | struct page *higher_page, *higher_buddy; |
76741e77 VB |
894 | combined_pfn = buddy_pfn & pfn; |
895 | higher_page = page + (combined_pfn - pfn); | |
896 | buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); | |
897 | higher_buddy = higher_page + (buddy_pfn - combined_pfn); | |
b4fb8f66 TL |
898 | if (pfn_valid_within(buddy_pfn) && |
899 | page_is_buddy(higher_page, higher_buddy, order + 1)) { | |
6dda9d55 CZ |
900 | list_add_tail(&page->lru, |
901 | &zone->free_area[order].free_list[migratetype]); | |
902 | goto out; | |
903 | } | |
904 | } | |
905 | ||
906 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
907 | out: | |
1da177e4 LT |
908 | zone->free_area[order].nr_free++; |
909 | } | |
910 | ||
7bfec6f4 MG |
911 | /* |
912 | * A bad page could be due to a number of fields. Instead of multiple branches, | |
913 | * try and check multiple fields with one check. The caller must do a detailed | |
914 | * check if necessary. | |
915 | */ | |
916 | static inline bool page_expected_state(struct page *page, | |
917 | unsigned long check_flags) | |
918 | { | |
919 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
920 | return false; | |
921 | ||
922 | if (unlikely((unsigned long)page->mapping | | |
923 | page_ref_count(page) | | |
924 | #ifdef CONFIG_MEMCG | |
925 | (unsigned long)page->mem_cgroup | | |
926 | #endif | |
927 | (page->flags & check_flags))) | |
928 | return false; | |
929 | ||
930 | return true; | |
931 | } | |
932 | ||
bb552ac6 | 933 | static void free_pages_check_bad(struct page *page) |
1da177e4 | 934 | { |
7bfec6f4 MG |
935 | const char *bad_reason; |
936 | unsigned long bad_flags; | |
937 | ||
7bfec6f4 MG |
938 | bad_reason = NULL; |
939 | bad_flags = 0; | |
f0b791a3 | 940 | |
53f9263b | 941 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
942 | bad_reason = "nonzero mapcount"; |
943 | if (unlikely(page->mapping != NULL)) | |
944 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 945 | if (unlikely(page_ref_count(page) != 0)) |
0139aa7b | 946 | bad_reason = "nonzero _refcount"; |
f0b791a3 DH |
947 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { |
948 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
949 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
950 | } | |
9edad6ea JW |
951 | #ifdef CONFIG_MEMCG |
952 | if (unlikely(page->mem_cgroup)) | |
953 | bad_reason = "page still charged to cgroup"; | |
954 | #endif | |
7bfec6f4 | 955 | bad_page(page, bad_reason, bad_flags); |
bb552ac6 MG |
956 | } |
957 | ||
958 | static inline int free_pages_check(struct page *page) | |
959 | { | |
da838d4f | 960 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
bb552ac6 | 961 | return 0; |
bb552ac6 MG |
962 | |
963 | /* Something has gone sideways, find it */ | |
964 | free_pages_check_bad(page); | |
7bfec6f4 | 965 | return 1; |
1da177e4 LT |
966 | } |
967 | ||
4db7548c MG |
968 | static int free_tail_pages_check(struct page *head_page, struct page *page) |
969 | { | |
970 | int ret = 1; | |
971 | ||
972 | /* | |
973 | * We rely page->lru.next never has bit 0 set, unless the page | |
974 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
975 | */ | |
976 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
977 | ||
978 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | |
979 | ret = 0; | |
980 | goto out; | |
981 | } | |
982 | switch (page - head_page) { | |
983 | case 1: | |
984 | /* the first tail page: ->mapping is compound_mapcount() */ | |
985 | if (unlikely(compound_mapcount(page))) { | |
986 | bad_page(page, "nonzero compound_mapcount", 0); | |
987 | goto out; | |
988 | } | |
989 | break; | |
990 | case 2: | |
991 | /* | |
992 | * the second tail page: ->mapping is | |
993 | * page_deferred_list().next -- ignore value. | |
994 | */ | |
995 | break; | |
996 | default: | |
997 | if (page->mapping != TAIL_MAPPING) { | |
998 | bad_page(page, "corrupted mapping in tail page", 0); | |
999 | goto out; | |
1000 | } | |
1001 | break; | |
1002 | } | |
1003 | if (unlikely(!PageTail(page))) { | |
1004 | bad_page(page, "PageTail not set", 0); | |
1005 | goto out; | |
1006 | } | |
1007 | if (unlikely(compound_head(page) != head_page)) { | |
1008 | bad_page(page, "compound_head not consistent", 0); | |
1009 | goto out; | |
1010 | } | |
1011 | ret = 0; | |
1012 | out: | |
1013 | page->mapping = NULL; | |
1014 | clear_compound_head(page); | |
1015 | return ret; | |
1016 | } | |
1017 | ||
e2769dbd MG |
1018 | static __always_inline bool free_pages_prepare(struct page *page, |
1019 | unsigned int order, bool check_free) | |
4db7548c | 1020 | { |
e2769dbd | 1021 | int bad = 0; |
4db7548c | 1022 | |
4db7548c MG |
1023 | VM_BUG_ON_PAGE(PageTail(page), page); |
1024 | ||
e2769dbd | 1025 | trace_mm_page_free(page, order); |
e2769dbd MG |
1026 | |
1027 | /* | |
1028 | * Check tail pages before head page information is cleared to | |
1029 | * avoid checking PageCompound for order-0 pages. | |
1030 | */ | |
1031 | if (unlikely(order)) { | |
1032 | bool compound = PageCompound(page); | |
1033 | int i; | |
1034 | ||
1035 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | |
4db7548c | 1036 | |
9a73f61b KS |
1037 | if (compound) |
1038 | ClearPageDoubleMap(page); | |
e2769dbd MG |
1039 | for (i = 1; i < (1 << order); i++) { |
1040 | if (compound) | |
1041 | bad += free_tail_pages_check(page, page + i); | |
1042 | if (unlikely(free_pages_check(page + i))) { | |
1043 | bad++; | |
1044 | continue; | |
1045 | } | |
1046 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1047 | } | |
1048 | } | |
bda807d4 | 1049 | if (PageMappingFlags(page)) |
4db7548c | 1050 | page->mapping = NULL; |
c4159a75 | 1051 | if (memcg_kmem_enabled() && PageKmemcg(page)) |
4949148a | 1052 | memcg_kmem_uncharge(page, order); |
e2769dbd MG |
1053 | if (check_free) |
1054 | bad += free_pages_check(page); | |
1055 | if (bad) | |
1056 | return false; | |
4db7548c | 1057 | |
e2769dbd MG |
1058 | page_cpupid_reset_last(page); |
1059 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1060 | reset_page_owner(page, order); | |
4db7548c MG |
1061 | |
1062 | if (!PageHighMem(page)) { | |
1063 | debug_check_no_locks_freed(page_address(page), | |
e2769dbd | 1064 | PAGE_SIZE << order); |
4db7548c | 1065 | debug_check_no_obj_freed(page_address(page), |
e2769dbd | 1066 | PAGE_SIZE << order); |
4db7548c | 1067 | } |
e2769dbd MG |
1068 | arch_free_page(page, order); |
1069 | kernel_poison_pages(page, 1 << order, 0); | |
1070 | kernel_map_pages(page, 1 << order, 0); | |
29b52de1 | 1071 | kasan_free_pages(page, order); |
4db7548c | 1072 | |
4db7548c MG |
1073 | return true; |
1074 | } | |
1075 | ||
e2769dbd MG |
1076 | #ifdef CONFIG_DEBUG_VM |
1077 | static inline bool free_pcp_prepare(struct page *page) | |
1078 | { | |
1079 | return free_pages_prepare(page, 0, true); | |
1080 | } | |
1081 | ||
1082 | static inline bool bulkfree_pcp_prepare(struct page *page) | |
1083 | { | |
1084 | return false; | |
1085 | } | |
1086 | #else | |
1087 | static bool free_pcp_prepare(struct page *page) | |
1088 | { | |
1089 | return free_pages_prepare(page, 0, false); | |
1090 | } | |
1091 | ||
4db7548c MG |
1092 | static bool bulkfree_pcp_prepare(struct page *page) |
1093 | { | |
1094 | return free_pages_check(page); | |
1095 | } | |
1096 | #endif /* CONFIG_DEBUG_VM */ | |
1097 | ||
1da177e4 | 1098 | /* |
5f8dcc21 | 1099 | * Frees a number of pages from the PCP lists |
1da177e4 | 1100 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 1101 | * count is the number of pages to free. |
1da177e4 LT |
1102 | * |
1103 | * If the zone was previously in an "all pages pinned" state then look to | |
1104 | * see if this freeing clears that state. | |
1105 | * | |
1106 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
1107 | * pinned" detection logic. | |
1108 | */ | |
5f8dcc21 MG |
1109 | static void free_pcppages_bulk(struct zone *zone, int count, |
1110 | struct per_cpu_pages *pcp) | |
1da177e4 | 1111 | { |
5f8dcc21 | 1112 | int migratetype = 0; |
a6f9edd6 | 1113 | int batch_free = 0; |
3777999d | 1114 | bool isolated_pageblocks; |
5f8dcc21 | 1115 | |
d34b0733 | 1116 | spin_lock(&zone->lock); |
3777999d | 1117 | isolated_pageblocks = has_isolate_pageblock(zone); |
f2260e6b | 1118 | |
e5b31ac2 | 1119 | while (count) { |
48db57f8 | 1120 | struct page *page; |
5f8dcc21 MG |
1121 | struct list_head *list; |
1122 | ||
1123 | /* | |
a6f9edd6 MG |
1124 | * Remove pages from lists in a round-robin fashion. A |
1125 | * batch_free count is maintained that is incremented when an | |
1126 | * empty list is encountered. This is so more pages are freed | |
1127 | * off fuller lists instead of spinning excessively around empty | |
1128 | * lists | |
5f8dcc21 MG |
1129 | */ |
1130 | do { | |
a6f9edd6 | 1131 | batch_free++; |
5f8dcc21 MG |
1132 | if (++migratetype == MIGRATE_PCPTYPES) |
1133 | migratetype = 0; | |
1134 | list = &pcp->lists[migratetype]; | |
1135 | } while (list_empty(list)); | |
48db57f8 | 1136 | |
1d16871d NK |
1137 | /* This is the only non-empty list. Free them all. */ |
1138 | if (batch_free == MIGRATE_PCPTYPES) | |
e5b31ac2 | 1139 | batch_free = count; |
1d16871d | 1140 | |
a6f9edd6 | 1141 | do { |
770c8aaa BZ |
1142 | int mt; /* migratetype of the to-be-freed page */ |
1143 | ||
a16601c5 | 1144 | page = list_last_entry(list, struct page, lru); |
a6f9edd6 MG |
1145 | /* must delete as __free_one_page list manipulates */ |
1146 | list_del(&page->lru); | |
aa016d14 | 1147 | |
bb14c2c7 | 1148 | mt = get_pcppage_migratetype(page); |
aa016d14 VB |
1149 | /* MIGRATE_ISOLATE page should not go to pcplists */ |
1150 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | |
1151 | /* Pageblock could have been isolated meanwhile */ | |
3777999d | 1152 | if (unlikely(isolated_pageblocks)) |
51bb1a40 | 1153 | mt = get_pageblock_migratetype(page); |
51bb1a40 | 1154 | |
4db7548c MG |
1155 | if (bulkfree_pcp_prepare(page)) |
1156 | continue; | |
1157 | ||
dc4b0caf | 1158 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); |
770c8aaa | 1159 | trace_mm_page_pcpu_drain(page, 0, mt); |
e5b31ac2 | 1160 | } while (--count && --batch_free && !list_empty(list)); |
1da177e4 | 1161 | } |
d34b0733 | 1162 | spin_unlock(&zone->lock); |
1da177e4 LT |
1163 | } |
1164 | ||
dc4b0caf MG |
1165 | static void free_one_page(struct zone *zone, |
1166 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 1167 | unsigned int order, |
ed0ae21d | 1168 | int migratetype) |
1da177e4 | 1169 | { |
d34b0733 | 1170 | spin_lock(&zone->lock); |
ad53f92e JK |
1171 | if (unlikely(has_isolate_pageblock(zone) || |
1172 | is_migrate_isolate(migratetype))) { | |
1173 | migratetype = get_pfnblock_migratetype(page, pfn); | |
ad53f92e | 1174 | } |
dc4b0caf | 1175 | __free_one_page(page, pfn, zone, order, migratetype); |
d34b0733 | 1176 | spin_unlock(&zone->lock); |
48db57f8 NP |
1177 | } |
1178 | ||
1e8ce83c | 1179 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
9bb5a391 | 1180 | unsigned long zone, int nid, bool zero) |
1e8ce83c | 1181 | { |
9bb5a391 MH |
1182 | if (zero) |
1183 | mm_zero_struct_page(page); | |
1e8ce83c | 1184 | set_page_links(page, zone, nid, pfn); |
1e8ce83c RH |
1185 | init_page_count(page); |
1186 | page_mapcount_reset(page); | |
1187 | page_cpupid_reset_last(page); | |
1e8ce83c | 1188 | |
1e8ce83c RH |
1189 | INIT_LIST_HEAD(&page->lru); |
1190 | #ifdef WANT_PAGE_VIRTUAL | |
1191 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
1192 | if (!is_highmem_idx(zone)) | |
1193 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
1194 | #endif | |
1195 | } | |
1196 | ||
1197 | static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, | |
9bb5a391 | 1198 | int nid, bool zero) |
1e8ce83c | 1199 | { |
9bb5a391 | 1200 | return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero); |
1e8ce83c RH |
1201 | } |
1202 | ||
7e18adb4 | 1203 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
57148a64 | 1204 | static void __meminit init_reserved_page(unsigned long pfn) |
7e18adb4 MG |
1205 | { |
1206 | pg_data_t *pgdat; | |
1207 | int nid, zid; | |
1208 | ||
1209 | if (!early_page_uninitialised(pfn)) | |
1210 | return; | |
1211 | ||
1212 | nid = early_pfn_to_nid(pfn); | |
1213 | pgdat = NODE_DATA(nid); | |
1214 | ||
1215 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1216 | struct zone *zone = &pgdat->node_zones[zid]; | |
1217 | ||
1218 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | |
1219 | break; | |
1220 | } | |
9bb5a391 | 1221 | __init_single_pfn(pfn, zid, nid, true); |
7e18adb4 MG |
1222 | } |
1223 | #else | |
1224 | static inline void init_reserved_page(unsigned long pfn) | |
1225 | { | |
1226 | } | |
1227 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
1228 | ||
92923ca3 NZ |
1229 | /* |
1230 | * Initialised pages do not have PageReserved set. This function is | |
1231 | * called for each range allocated by the bootmem allocator and | |
1232 | * marks the pages PageReserved. The remaining valid pages are later | |
1233 | * sent to the buddy page allocator. | |
1234 | */ | |
4b50bcc7 | 1235 | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) |
92923ca3 NZ |
1236 | { |
1237 | unsigned long start_pfn = PFN_DOWN(start); | |
1238 | unsigned long end_pfn = PFN_UP(end); | |
1239 | ||
7e18adb4 MG |
1240 | for (; start_pfn < end_pfn; start_pfn++) { |
1241 | if (pfn_valid(start_pfn)) { | |
1242 | struct page *page = pfn_to_page(start_pfn); | |
1243 | ||
1244 | init_reserved_page(start_pfn); | |
1d798ca3 KS |
1245 | |
1246 | /* Avoid false-positive PageTail() */ | |
1247 | INIT_LIST_HEAD(&page->lru); | |
1248 | ||
7e18adb4 MG |
1249 | SetPageReserved(page); |
1250 | } | |
1251 | } | |
92923ca3 NZ |
1252 | } |
1253 | ||
ec95f53a KM |
1254 | static void __free_pages_ok(struct page *page, unsigned int order) |
1255 | { | |
d34b0733 | 1256 | unsigned long flags; |
95e34412 | 1257 | int migratetype; |
dc4b0caf | 1258 | unsigned long pfn = page_to_pfn(page); |
ec95f53a | 1259 | |
e2769dbd | 1260 | if (!free_pages_prepare(page, order, true)) |
ec95f53a KM |
1261 | return; |
1262 | ||
cfc47a28 | 1263 | migratetype = get_pfnblock_migratetype(page, pfn); |
d34b0733 MG |
1264 | local_irq_save(flags); |
1265 | __count_vm_events(PGFREE, 1 << order); | |
dc4b0caf | 1266 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
d34b0733 | 1267 | local_irq_restore(flags); |
1da177e4 LT |
1268 | } |
1269 | ||
949698a3 | 1270 | static void __init __free_pages_boot_core(struct page *page, unsigned int order) |
a226f6c8 | 1271 | { |
c3993076 | 1272 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1273 | struct page *p = page; |
c3993076 | 1274 | unsigned int loop; |
a226f6c8 | 1275 | |
e2d0bd2b YL |
1276 | prefetchw(p); |
1277 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1278 | prefetchw(p + 1); | |
c3993076 JW |
1279 | __ClearPageReserved(p); |
1280 | set_page_count(p, 0); | |
a226f6c8 | 1281 | } |
e2d0bd2b YL |
1282 | __ClearPageReserved(p); |
1283 | set_page_count(p, 0); | |
c3993076 | 1284 | |
e2d0bd2b | 1285 | page_zone(page)->managed_pages += nr_pages; |
c3993076 JW |
1286 | set_page_refcounted(page); |
1287 | __free_pages(page, order); | |
a226f6c8 DH |
1288 | } |
1289 | ||
75a592a4 MG |
1290 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ |
1291 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | |
7ace9917 | 1292 | |
75a592a4 MG |
1293 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
1294 | ||
1295 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
1296 | { | |
7ace9917 | 1297 | static DEFINE_SPINLOCK(early_pfn_lock); |
75a592a4 MG |
1298 | int nid; |
1299 | ||
7ace9917 | 1300 | spin_lock(&early_pfn_lock); |
75a592a4 | 1301 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
7ace9917 | 1302 | if (nid < 0) |
e4568d38 | 1303 | nid = first_online_node; |
7ace9917 MG |
1304 | spin_unlock(&early_pfn_lock); |
1305 | ||
1306 | return nid; | |
75a592a4 MG |
1307 | } |
1308 | #endif | |
1309 | ||
1310 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | |
d73d3c9f MK |
1311 | static inline bool __meminit __maybe_unused |
1312 | meminit_pfn_in_nid(unsigned long pfn, int node, | |
1313 | struct mminit_pfnnid_cache *state) | |
75a592a4 MG |
1314 | { |
1315 | int nid; | |
1316 | ||
1317 | nid = __early_pfn_to_nid(pfn, state); | |
1318 | if (nid >= 0 && nid != node) | |
1319 | return false; | |
1320 | return true; | |
1321 | } | |
1322 | ||
1323 | /* Only safe to use early in boot when initialisation is single-threaded */ | |
1324 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1325 | { | |
1326 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | |
1327 | } | |
1328 | ||
1329 | #else | |
1330 | ||
1331 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1332 | { | |
1333 | return true; | |
1334 | } | |
d73d3c9f MK |
1335 | static inline bool __meminit __maybe_unused |
1336 | meminit_pfn_in_nid(unsigned long pfn, int node, | |
1337 | struct mminit_pfnnid_cache *state) | |
75a592a4 MG |
1338 | { |
1339 | return true; | |
1340 | } | |
1341 | #endif | |
1342 | ||
1343 | ||
0e1cc95b | 1344 | void __init __free_pages_bootmem(struct page *page, unsigned long pfn, |
3a80a7fa MG |
1345 | unsigned int order) |
1346 | { | |
1347 | if (early_page_uninitialised(pfn)) | |
1348 | return; | |
949698a3 | 1349 | return __free_pages_boot_core(page, order); |
3a80a7fa MG |
1350 | } |
1351 | ||
7cf91a98 JK |
1352 | /* |
1353 | * Check that the whole (or subset of) a pageblock given by the interval of | |
1354 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | |
1355 | * with the migration of free compaction scanner. The scanners then need to | |
1356 | * use only pfn_valid_within() check for arches that allow holes within | |
1357 | * pageblocks. | |
1358 | * | |
1359 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | |
1360 | * | |
1361 | * It's possible on some configurations to have a setup like node0 node1 node0 | |
1362 | * i.e. it's possible that all pages within a zones range of pages do not | |
1363 | * belong to a single zone. We assume that a border between node0 and node1 | |
1364 | * can occur within a single pageblock, but not a node0 node1 node0 | |
1365 | * interleaving within a single pageblock. It is therefore sufficient to check | |
1366 | * the first and last page of a pageblock and avoid checking each individual | |
1367 | * page in a pageblock. | |
1368 | */ | |
1369 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | |
1370 | unsigned long end_pfn, struct zone *zone) | |
1371 | { | |
1372 | struct page *start_page; | |
1373 | struct page *end_page; | |
1374 | ||
1375 | /* end_pfn is one past the range we are checking */ | |
1376 | end_pfn--; | |
1377 | ||
1378 | if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | |
1379 | return NULL; | |
1380 | ||
2d070eab MH |
1381 | start_page = pfn_to_online_page(start_pfn); |
1382 | if (!start_page) | |
1383 | return NULL; | |
7cf91a98 JK |
1384 | |
1385 | if (page_zone(start_page) != zone) | |
1386 | return NULL; | |
1387 | ||
1388 | end_page = pfn_to_page(end_pfn); | |
1389 | ||
1390 | /* This gives a shorter code than deriving page_zone(end_page) */ | |
1391 | if (page_zone_id(start_page) != page_zone_id(end_page)) | |
1392 | return NULL; | |
1393 | ||
1394 | return start_page; | |
1395 | } | |
1396 | ||
1397 | void set_zone_contiguous(struct zone *zone) | |
1398 | { | |
1399 | unsigned long block_start_pfn = zone->zone_start_pfn; | |
1400 | unsigned long block_end_pfn; | |
1401 | ||
1402 | block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); | |
1403 | for (; block_start_pfn < zone_end_pfn(zone); | |
1404 | block_start_pfn = block_end_pfn, | |
1405 | block_end_pfn += pageblock_nr_pages) { | |
1406 | ||
1407 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | |
1408 | ||
1409 | if (!__pageblock_pfn_to_page(block_start_pfn, | |
1410 | block_end_pfn, zone)) | |
1411 | return; | |
1412 | } | |
1413 | ||
1414 | /* We confirm that there is no hole */ | |
1415 | zone->contiguous = true; | |
1416 | } | |
1417 | ||
1418 | void clear_zone_contiguous(struct zone *zone) | |
1419 | { | |
1420 | zone->contiguous = false; | |
1421 | } | |
1422 | ||
7e18adb4 | 1423 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
2f47a91f PT |
1424 | static void __init deferred_free_range(unsigned long pfn, |
1425 | unsigned long nr_pages) | |
a4de83dd | 1426 | { |
2f47a91f PT |
1427 | struct page *page; |
1428 | unsigned long i; | |
a4de83dd | 1429 | |
2f47a91f | 1430 | if (!nr_pages) |
a4de83dd MG |
1431 | return; |
1432 | ||
2f47a91f PT |
1433 | page = pfn_to_page(pfn); |
1434 | ||
a4de83dd | 1435 | /* Free a large naturally-aligned chunk if possible */ |
e780149b XQ |
1436 | if (nr_pages == pageblock_nr_pages && |
1437 | (pfn & (pageblock_nr_pages - 1)) == 0) { | |
ac5d2539 | 1438 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
e780149b | 1439 | __free_pages_boot_core(page, pageblock_order); |
a4de83dd MG |
1440 | return; |
1441 | } | |
1442 | ||
e780149b XQ |
1443 | for (i = 0; i < nr_pages; i++, page++, pfn++) { |
1444 | if ((pfn & (pageblock_nr_pages - 1)) == 0) | |
1445 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
949698a3 | 1446 | __free_pages_boot_core(page, 0); |
e780149b | 1447 | } |
a4de83dd MG |
1448 | } |
1449 | ||
d3cd131d NS |
1450 | /* Completion tracking for deferred_init_memmap() threads */ |
1451 | static atomic_t pgdat_init_n_undone __initdata; | |
1452 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1453 | ||
1454 | static inline void __init pgdat_init_report_one_done(void) | |
1455 | { | |
1456 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1457 | complete(&pgdat_init_all_done_comp); | |
1458 | } | |
0e1cc95b | 1459 | |
2f47a91f | 1460 | /* |
80b1f41c PT |
1461 | * Returns true if page needs to be initialized or freed to buddy allocator. |
1462 | * | |
1463 | * First we check if pfn is valid on architectures where it is possible to have | |
1464 | * holes within pageblock_nr_pages. On systems where it is not possible, this | |
1465 | * function is optimized out. | |
1466 | * | |
1467 | * Then, we check if a current large page is valid by only checking the validity | |
1468 | * of the head pfn. | |
1469 | * | |
1470 | * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave | |
1471 | * within a node: a pfn is between start and end of a node, but does not belong | |
1472 | * to this memory node. | |
2f47a91f | 1473 | */ |
80b1f41c PT |
1474 | static inline bool __init |
1475 | deferred_pfn_valid(int nid, unsigned long pfn, | |
1476 | struct mminit_pfnnid_cache *nid_init_state) | |
2f47a91f | 1477 | { |
80b1f41c PT |
1478 | if (!pfn_valid_within(pfn)) |
1479 | return false; | |
1480 | if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) | |
1481 | return false; | |
1482 | if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) | |
1483 | return false; | |
1484 | return true; | |
1485 | } | |
2f47a91f | 1486 | |
80b1f41c PT |
1487 | /* |
1488 | * Free pages to buddy allocator. Try to free aligned pages in | |
1489 | * pageblock_nr_pages sizes. | |
1490 | */ | |
1491 | static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, | |
1492 | unsigned long end_pfn) | |
1493 | { | |
1494 | struct mminit_pfnnid_cache nid_init_state = { }; | |
1495 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | |
1496 | unsigned long nr_free = 0; | |
2f47a91f | 1497 | |
80b1f41c PT |
1498 | for (; pfn < end_pfn; pfn++) { |
1499 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | |
1500 | deferred_free_range(pfn - nr_free, nr_free); | |
1501 | nr_free = 0; | |
1502 | } else if (!(pfn & nr_pgmask)) { | |
1503 | deferred_free_range(pfn - nr_free, nr_free); | |
1504 | nr_free = 1; | |
1505 | cond_resched(); | |
1506 | } else { | |
1507 | nr_free++; | |
1508 | } | |
1509 | } | |
1510 | /* Free the last block of pages to allocator */ | |
1511 | deferred_free_range(pfn - nr_free, nr_free); | |
2f47a91f PT |
1512 | } |
1513 | ||
80b1f41c PT |
1514 | /* |
1515 | * Initialize struct pages. We minimize pfn page lookups and scheduler checks | |
1516 | * by performing it only once every pageblock_nr_pages. | |
1517 | * Return number of pages initialized. | |
1518 | */ | |
1519 | static unsigned long __init deferred_init_pages(int nid, int zid, | |
1520 | unsigned long pfn, | |
1521 | unsigned long end_pfn) | |
2f47a91f PT |
1522 | { |
1523 | struct mminit_pfnnid_cache nid_init_state = { }; | |
1524 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | |
2f47a91f | 1525 | unsigned long nr_pages = 0; |
2f47a91f | 1526 | struct page *page = NULL; |
2f47a91f | 1527 | |
80b1f41c PT |
1528 | for (; pfn < end_pfn; pfn++) { |
1529 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | |
1530 | page = NULL; | |
2f47a91f | 1531 | continue; |
80b1f41c | 1532 | } else if (!page || !(pfn & nr_pgmask)) { |
2f47a91f | 1533 | page = pfn_to_page(pfn); |
2f47a91f | 1534 | cond_resched(); |
80b1f41c PT |
1535 | } else { |
1536 | page++; | |
2f47a91f | 1537 | } |
9bb5a391 | 1538 | __init_single_page(page, pfn, zid, nid, true); |
80b1f41c | 1539 | nr_pages++; |
2f47a91f | 1540 | } |
80b1f41c | 1541 | return (nr_pages); |
2f47a91f PT |
1542 | } |
1543 | ||
7e18adb4 | 1544 | /* Initialise remaining memory on a node */ |
0e1cc95b | 1545 | static int __init deferred_init_memmap(void *data) |
7e18adb4 | 1546 | { |
0e1cc95b MG |
1547 | pg_data_t *pgdat = data; |
1548 | int nid = pgdat->node_id; | |
7e18adb4 MG |
1549 | unsigned long start = jiffies; |
1550 | unsigned long nr_pages = 0; | |
2f47a91f PT |
1551 | unsigned long spfn, epfn; |
1552 | phys_addr_t spa, epa; | |
1553 | int zid; | |
7e18adb4 | 1554 | struct zone *zone; |
7e18adb4 | 1555 | unsigned long first_init_pfn = pgdat->first_deferred_pfn; |
0e1cc95b | 1556 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
2f47a91f | 1557 | u64 i; |
7e18adb4 | 1558 | |
0e1cc95b | 1559 | if (first_init_pfn == ULONG_MAX) { |
d3cd131d | 1560 | pgdat_init_report_one_done(); |
0e1cc95b MG |
1561 | return 0; |
1562 | } | |
1563 | ||
1564 | /* Bind memory initialisation thread to a local node if possible */ | |
1565 | if (!cpumask_empty(cpumask)) | |
1566 | set_cpus_allowed_ptr(current, cpumask); | |
7e18adb4 MG |
1567 | |
1568 | /* Sanity check boundaries */ | |
1569 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
1570 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
1571 | pgdat->first_deferred_pfn = ULONG_MAX; | |
1572 | ||
1573 | /* Only the highest zone is deferred so find it */ | |
1574 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1575 | zone = pgdat->node_zones + zid; | |
1576 | if (first_init_pfn < zone_end_pfn(zone)) | |
1577 | break; | |
1578 | } | |
2f47a91f | 1579 | first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); |
7e18adb4 | 1580 | |
80b1f41c PT |
1581 | /* |
1582 | * Initialize and free pages. We do it in two loops: first we initialize | |
1583 | * struct page, than free to buddy allocator, because while we are | |
1584 | * freeing pages we can access pages that are ahead (computing buddy | |
1585 | * page in __free_one_page()). | |
1586 | */ | |
1587 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | |
1588 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1589 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | |
1590 | nr_pages += deferred_init_pages(nid, zid, spfn, epfn); | |
1591 | } | |
2f47a91f PT |
1592 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { |
1593 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1594 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | |
80b1f41c | 1595 | deferred_free_pages(nid, zid, spfn, epfn); |
7e18adb4 MG |
1596 | } |
1597 | ||
1598 | /* Sanity check that the next zone really is unpopulated */ | |
1599 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
1600 | ||
0e1cc95b | 1601 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, |
7e18adb4 | 1602 | jiffies_to_msecs(jiffies - start)); |
d3cd131d NS |
1603 | |
1604 | pgdat_init_report_one_done(); | |
0e1cc95b MG |
1605 | return 0; |
1606 | } | |
7cf91a98 | 1607 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
0e1cc95b MG |
1608 | |
1609 | void __init page_alloc_init_late(void) | |
1610 | { | |
7cf91a98 JK |
1611 | struct zone *zone; |
1612 | ||
1613 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
0e1cc95b MG |
1614 | int nid; |
1615 | ||
d3cd131d NS |
1616 | /* There will be num_node_state(N_MEMORY) threads */ |
1617 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
0e1cc95b | 1618 | for_each_node_state(nid, N_MEMORY) { |
0e1cc95b MG |
1619 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
1620 | } | |
1621 | ||
1622 | /* Block until all are initialised */ | |
d3cd131d | 1623 | wait_for_completion(&pgdat_init_all_done_comp); |
4248b0da MG |
1624 | |
1625 | /* Reinit limits that are based on free pages after the kernel is up */ | |
1626 | files_maxfiles_init(); | |
7cf91a98 | 1627 | #endif |
3010f876 PT |
1628 | #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK |
1629 | /* Discard memblock private memory */ | |
1630 | memblock_discard(); | |
1631 | #endif | |
7cf91a98 JK |
1632 | |
1633 | for_each_populated_zone(zone) | |
1634 | set_zone_contiguous(zone); | |
7e18adb4 | 1635 | } |
7e18adb4 | 1636 | |
47118af0 | 1637 | #ifdef CONFIG_CMA |
9cf510a5 | 1638 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
1639 | void __init init_cma_reserved_pageblock(struct page *page) |
1640 | { | |
1641 | unsigned i = pageblock_nr_pages; | |
1642 | struct page *p = page; | |
1643 | ||
1644 | do { | |
1645 | __ClearPageReserved(p); | |
1646 | set_page_count(p, 0); | |
1647 | } while (++p, --i); | |
1648 | ||
47118af0 | 1649 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
1650 | |
1651 | if (pageblock_order >= MAX_ORDER) { | |
1652 | i = pageblock_nr_pages; | |
1653 | p = page; | |
1654 | do { | |
1655 | set_page_refcounted(p); | |
1656 | __free_pages(p, MAX_ORDER - 1); | |
1657 | p += MAX_ORDER_NR_PAGES; | |
1658 | } while (i -= MAX_ORDER_NR_PAGES); | |
1659 | } else { | |
1660 | set_page_refcounted(page); | |
1661 | __free_pages(page, pageblock_order); | |
1662 | } | |
1663 | ||
3dcc0571 | 1664 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
1665 | } |
1666 | #endif | |
1da177e4 LT |
1667 | |
1668 | /* | |
1669 | * The order of subdivision here is critical for the IO subsystem. | |
1670 | * Please do not alter this order without good reasons and regression | |
1671 | * testing. Specifically, as large blocks of memory are subdivided, | |
1672 | * the order in which smaller blocks are delivered depends on the order | |
1673 | * they're subdivided in this function. This is the primary factor | |
1674 | * influencing the order in which pages are delivered to the IO | |
1675 | * subsystem according to empirical testing, and this is also justified | |
1676 | * by considering the behavior of a buddy system containing a single | |
1677 | * large block of memory acted on by a series of small allocations. | |
1678 | * This behavior is a critical factor in sglist merging's success. | |
1679 | * | |
6d49e352 | 1680 | * -- nyc |
1da177e4 | 1681 | */ |
085cc7d5 | 1682 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
1683 | int low, int high, struct free_area *area, |
1684 | int migratetype) | |
1da177e4 LT |
1685 | { |
1686 | unsigned long size = 1 << high; | |
1687 | ||
1688 | while (high > low) { | |
1689 | area--; | |
1690 | high--; | |
1691 | size >>= 1; | |
309381fe | 1692 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 | 1693 | |
acbc15a4 JK |
1694 | /* |
1695 | * Mark as guard pages (or page), that will allow to | |
1696 | * merge back to allocator when buddy will be freed. | |
1697 | * Corresponding page table entries will not be touched, | |
1698 | * pages will stay not present in virtual address space | |
1699 | */ | |
1700 | if (set_page_guard(zone, &page[size], high, migratetype)) | |
c0a32fc5 | 1701 | continue; |
acbc15a4 | 1702 | |
b2a0ac88 | 1703 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
1704 | area->nr_free++; |
1705 | set_page_order(&page[size], high); | |
1706 | } | |
1da177e4 LT |
1707 | } |
1708 | ||
4e611801 | 1709 | static void check_new_page_bad(struct page *page) |
1da177e4 | 1710 | { |
4e611801 VB |
1711 | const char *bad_reason = NULL; |
1712 | unsigned long bad_flags = 0; | |
7bfec6f4 | 1713 | |
53f9263b | 1714 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
1715 | bad_reason = "nonzero mapcount"; |
1716 | if (unlikely(page->mapping != NULL)) | |
1717 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 1718 | if (unlikely(page_ref_count(page) != 0)) |
f0b791a3 | 1719 | bad_reason = "nonzero _count"; |
f4c18e6f NH |
1720 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1721 | bad_reason = "HWPoisoned (hardware-corrupted)"; | |
1722 | bad_flags = __PG_HWPOISON; | |
e570f56c NH |
1723 | /* Don't complain about hwpoisoned pages */ |
1724 | page_mapcount_reset(page); /* remove PageBuddy */ | |
1725 | return; | |
f4c18e6f | 1726 | } |
f0b791a3 DH |
1727 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { |
1728 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
1729 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
1730 | } | |
9edad6ea JW |
1731 | #ifdef CONFIG_MEMCG |
1732 | if (unlikely(page->mem_cgroup)) | |
1733 | bad_reason = "page still charged to cgroup"; | |
1734 | #endif | |
4e611801 VB |
1735 | bad_page(page, bad_reason, bad_flags); |
1736 | } | |
1737 | ||
1738 | /* | |
1739 | * This page is about to be returned from the page allocator | |
1740 | */ | |
1741 | static inline int check_new_page(struct page *page) | |
1742 | { | |
1743 | if (likely(page_expected_state(page, | |
1744 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | |
1745 | return 0; | |
1746 | ||
1747 | check_new_page_bad(page); | |
1748 | return 1; | |
2a7684a2 WF |
1749 | } |
1750 | ||
bd33ef36 | 1751 | static inline bool free_pages_prezeroed(void) |
1414c7f4 LA |
1752 | { |
1753 | return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && | |
bd33ef36 | 1754 | page_poisoning_enabled(); |
1414c7f4 LA |
1755 | } |
1756 | ||
479f854a MG |
1757 | #ifdef CONFIG_DEBUG_VM |
1758 | static bool check_pcp_refill(struct page *page) | |
1759 | { | |
1760 | return false; | |
1761 | } | |
1762 | ||
1763 | static bool check_new_pcp(struct page *page) | |
1764 | { | |
1765 | return check_new_page(page); | |
1766 | } | |
1767 | #else | |
1768 | static bool check_pcp_refill(struct page *page) | |
1769 | { | |
1770 | return check_new_page(page); | |
1771 | } | |
1772 | static bool check_new_pcp(struct page *page) | |
1773 | { | |
1774 | return false; | |
1775 | } | |
1776 | #endif /* CONFIG_DEBUG_VM */ | |
1777 | ||
1778 | static bool check_new_pages(struct page *page, unsigned int order) | |
1779 | { | |
1780 | int i; | |
1781 | for (i = 0; i < (1 << order); i++) { | |
1782 | struct page *p = page + i; | |
1783 | ||
1784 | if (unlikely(check_new_page(p))) | |
1785 | return true; | |
1786 | } | |
1787 | ||
1788 | return false; | |
1789 | } | |
1790 | ||
46f24fd8 JK |
1791 | inline void post_alloc_hook(struct page *page, unsigned int order, |
1792 | gfp_t gfp_flags) | |
1793 | { | |
1794 | set_page_private(page, 0); | |
1795 | set_page_refcounted(page); | |
1796 | ||
1797 | arch_alloc_page(page, order); | |
1798 | kernel_map_pages(page, 1 << order, 1); | |
1799 | kernel_poison_pages(page, 1 << order, 1); | |
1800 | kasan_alloc_pages(page, order); | |
1801 | set_page_owner(page, order, gfp_flags); | |
1802 | } | |
1803 | ||
479f854a | 1804 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
c603844b | 1805 | unsigned int alloc_flags) |
2a7684a2 WF |
1806 | { |
1807 | int i; | |
689bcebf | 1808 | |
46f24fd8 | 1809 | post_alloc_hook(page, order, gfp_flags); |
17cf4406 | 1810 | |
bd33ef36 | 1811 | if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) |
f4d2897b AA |
1812 | for (i = 0; i < (1 << order); i++) |
1813 | clear_highpage(page + i); | |
17cf4406 NP |
1814 | |
1815 | if (order && (gfp_flags & __GFP_COMP)) | |
1816 | prep_compound_page(page, order); | |
1817 | ||
75379191 | 1818 | /* |
2f064f34 | 1819 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1820 | * allocate the page. The expectation is that the caller is taking |
1821 | * steps that will free more memory. The caller should avoid the page | |
1822 | * being used for !PFMEMALLOC purposes. | |
1823 | */ | |
2f064f34 MH |
1824 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1825 | set_page_pfmemalloc(page); | |
1826 | else | |
1827 | clear_page_pfmemalloc(page); | |
1da177e4 LT |
1828 | } |
1829 | ||
56fd56b8 MG |
1830 | /* |
1831 | * Go through the free lists for the given migratetype and remove | |
1832 | * the smallest available page from the freelists | |
1833 | */ | |
85ccc8fa | 1834 | static __always_inline |
728ec980 | 1835 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
56fd56b8 MG |
1836 | int migratetype) |
1837 | { | |
1838 | unsigned int current_order; | |
b8af2941 | 1839 | struct free_area *area; |
56fd56b8 MG |
1840 | struct page *page; |
1841 | ||
1842 | /* Find a page of the appropriate size in the preferred list */ | |
1843 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
1844 | area = &(zone->free_area[current_order]); | |
a16601c5 | 1845 | page = list_first_entry_or_null(&area->free_list[migratetype], |
56fd56b8 | 1846 | struct page, lru); |
a16601c5 GT |
1847 | if (!page) |
1848 | continue; | |
56fd56b8 MG |
1849 | list_del(&page->lru); |
1850 | rmv_page_order(page); | |
1851 | area->nr_free--; | |
56fd56b8 | 1852 | expand(zone, page, order, current_order, area, migratetype); |
bb14c2c7 | 1853 | set_pcppage_migratetype(page, migratetype); |
56fd56b8 MG |
1854 | return page; |
1855 | } | |
1856 | ||
1857 | return NULL; | |
1858 | } | |
1859 | ||
1860 | ||
b2a0ac88 MG |
1861 | /* |
1862 | * This array describes the order lists are fallen back to when | |
1863 | * the free lists for the desirable migrate type are depleted | |
1864 | */ | |
47118af0 | 1865 | static int fallbacks[MIGRATE_TYPES][4] = { |
974a786e MG |
1866 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
1867 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, | |
1868 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | |
47118af0 | 1869 | #ifdef CONFIG_CMA |
974a786e | 1870 | [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ |
47118af0 | 1871 | #endif |
194159fb | 1872 | #ifdef CONFIG_MEMORY_ISOLATION |
974a786e | 1873 | [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ |
194159fb | 1874 | #endif |
b2a0ac88 MG |
1875 | }; |
1876 | ||
dc67647b | 1877 | #ifdef CONFIG_CMA |
85ccc8fa | 1878 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
dc67647b JK |
1879 | unsigned int order) |
1880 | { | |
1881 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1882 | } | |
1883 | #else | |
1884 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1885 | unsigned int order) { return NULL; } | |
1886 | #endif | |
1887 | ||
c361be55 MG |
1888 | /* |
1889 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 1890 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
1891 | * boundary. If alignment is required, use move_freepages_block() |
1892 | */ | |
02aa0cdd | 1893 | static int move_freepages(struct zone *zone, |
b69a7288 | 1894 | struct page *start_page, struct page *end_page, |
02aa0cdd | 1895 | int migratetype, int *num_movable) |
c361be55 MG |
1896 | { |
1897 | struct page *page; | |
d00181b9 | 1898 | unsigned int order; |
d100313f | 1899 | int pages_moved = 0; |
c361be55 MG |
1900 | |
1901 | #ifndef CONFIG_HOLES_IN_ZONE | |
1902 | /* | |
1903 | * page_zone is not safe to call in this context when | |
1904 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
1905 | * anyway as we check zone boundaries in move_freepages_block(). | |
1906 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 1907 | * grouping pages by mobility |
c361be55 | 1908 | */ |
97ee4ba7 | 1909 | VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); |
c361be55 MG |
1910 | #endif |
1911 | ||
02aa0cdd VB |
1912 | if (num_movable) |
1913 | *num_movable = 0; | |
1914 | ||
c361be55 MG |
1915 | for (page = start_page; page <= end_page;) { |
1916 | if (!pfn_valid_within(page_to_pfn(page))) { | |
1917 | page++; | |
1918 | continue; | |
1919 | } | |
1920 | ||
f073bdc5 AB |
1921 | /* Make sure we are not inadvertently changing nodes */ |
1922 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | |
1923 | ||
c361be55 | 1924 | if (!PageBuddy(page)) { |
02aa0cdd VB |
1925 | /* |
1926 | * We assume that pages that could be isolated for | |
1927 | * migration are movable. But we don't actually try | |
1928 | * isolating, as that would be expensive. | |
1929 | */ | |
1930 | if (num_movable && | |
1931 | (PageLRU(page) || __PageMovable(page))) | |
1932 | (*num_movable)++; | |
1933 | ||
c361be55 MG |
1934 | page++; |
1935 | continue; | |
1936 | } | |
1937 | ||
1938 | order = page_order(page); | |
84be48d8 KS |
1939 | list_move(&page->lru, |
1940 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 1941 | page += 1 << order; |
d100313f | 1942 | pages_moved += 1 << order; |
c361be55 MG |
1943 | } |
1944 | ||
d100313f | 1945 | return pages_moved; |
c361be55 MG |
1946 | } |
1947 | ||
ee6f509c | 1948 | int move_freepages_block(struct zone *zone, struct page *page, |
02aa0cdd | 1949 | int migratetype, int *num_movable) |
c361be55 MG |
1950 | { |
1951 | unsigned long start_pfn, end_pfn; | |
1952 | struct page *start_page, *end_page; | |
1953 | ||
1954 | start_pfn = page_to_pfn(page); | |
d9c23400 | 1955 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 1956 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
1957 | end_page = start_page + pageblock_nr_pages - 1; |
1958 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
1959 | |
1960 | /* Do not cross zone boundaries */ | |
108bcc96 | 1961 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 1962 | start_page = page; |
108bcc96 | 1963 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
1964 | return 0; |
1965 | ||
02aa0cdd VB |
1966 | return move_freepages(zone, start_page, end_page, migratetype, |
1967 | num_movable); | |
c361be55 MG |
1968 | } |
1969 | ||
2f66a68f MG |
1970 | static void change_pageblock_range(struct page *pageblock_page, |
1971 | int start_order, int migratetype) | |
1972 | { | |
1973 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1974 | ||
1975 | while (nr_pageblocks--) { | |
1976 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1977 | pageblock_page += pageblock_nr_pages; | |
1978 | } | |
1979 | } | |
1980 | ||
fef903ef | 1981 | /* |
9c0415eb VB |
1982 | * When we are falling back to another migratetype during allocation, try to |
1983 | * steal extra free pages from the same pageblocks to satisfy further | |
1984 | * allocations, instead of polluting multiple pageblocks. | |
1985 | * | |
1986 | * If we are stealing a relatively large buddy page, it is likely there will | |
1987 | * be more free pages in the pageblock, so try to steal them all. For | |
1988 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
1989 | * as fragmentation caused by those allocations polluting movable pageblocks | |
1990 | * is worse than movable allocations stealing from unmovable and reclaimable | |
1991 | * pageblocks. | |
fef903ef | 1992 | */ |
4eb7dce6 JK |
1993 | static bool can_steal_fallback(unsigned int order, int start_mt) |
1994 | { | |
1995 | /* | |
1996 | * Leaving this order check is intended, although there is | |
1997 | * relaxed order check in next check. The reason is that | |
1998 | * we can actually steal whole pageblock if this condition met, | |
1999 | * but, below check doesn't guarantee it and that is just heuristic | |
2000 | * so could be changed anytime. | |
2001 | */ | |
2002 | if (order >= pageblock_order) | |
2003 | return true; | |
2004 | ||
2005 | if (order >= pageblock_order / 2 || | |
2006 | start_mt == MIGRATE_RECLAIMABLE || | |
2007 | start_mt == MIGRATE_UNMOVABLE || | |
2008 | page_group_by_mobility_disabled) | |
2009 | return true; | |
2010 | ||
2011 | return false; | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | * This function implements actual steal behaviour. If order is large enough, | |
2016 | * we can steal whole pageblock. If not, we first move freepages in this | |
02aa0cdd VB |
2017 | * pageblock to our migratetype and determine how many already-allocated pages |
2018 | * are there in the pageblock with a compatible migratetype. If at least half | |
2019 | * of pages are free or compatible, we can change migratetype of the pageblock | |
2020 | * itself, so pages freed in the future will be put on the correct free list. | |
4eb7dce6 JK |
2021 | */ |
2022 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | |
3bc48f96 | 2023 | int start_type, bool whole_block) |
fef903ef | 2024 | { |
d00181b9 | 2025 | unsigned int current_order = page_order(page); |
3bc48f96 | 2026 | struct free_area *area; |
02aa0cdd VB |
2027 | int free_pages, movable_pages, alike_pages; |
2028 | int old_block_type; | |
2029 | ||
2030 | old_block_type = get_pageblock_migratetype(page); | |
fef903ef | 2031 | |
3bc48f96 VB |
2032 | /* |
2033 | * This can happen due to races and we want to prevent broken | |
2034 | * highatomic accounting. | |
2035 | */ | |
02aa0cdd | 2036 | if (is_migrate_highatomic(old_block_type)) |
3bc48f96 VB |
2037 | goto single_page; |
2038 | ||
fef903ef SB |
2039 | /* Take ownership for orders >= pageblock_order */ |
2040 | if (current_order >= pageblock_order) { | |
2041 | change_pageblock_range(page, current_order, start_type); | |
3bc48f96 | 2042 | goto single_page; |
fef903ef SB |
2043 | } |
2044 | ||
3bc48f96 VB |
2045 | /* We are not allowed to try stealing from the whole block */ |
2046 | if (!whole_block) | |
2047 | goto single_page; | |
2048 | ||
02aa0cdd VB |
2049 | free_pages = move_freepages_block(zone, page, start_type, |
2050 | &movable_pages); | |
2051 | /* | |
2052 | * Determine how many pages are compatible with our allocation. | |
2053 | * For movable allocation, it's the number of movable pages which | |
2054 | * we just obtained. For other types it's a bit more tricky. | |
2055 | */ | |
2056 | if (start_type == MIGRATE_MOVABLE) { | |
2057 | alike_pages = movable_pages; | |
2058 | } else { | |
2059 | /* | |
2060 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | |
2061 | * to MOVABLE pageblock, consider all non-movable pages as | |
2062 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | |
2063 | * vice versa, be conservative since we can't distinguish the | |
2064 | * exact migratetype of non-movable pages. | |
2065 | */ | |
2066 | if (old_block_type == MIGRATE_MOVABLE) | |
2067 | alike_pages = pageblock_nr_pages | |
2068 | - (free_pages + movable_pages); | |
2069 | else | |
2070 | alike_pages = 0; | |
2071 | } | |
2072 | ||
3bc48f96 | 2073 | /* moving whole block can fail due to zone boundary conditions */ |
02aa0cdd | 2074 | if (!free_pages) |
3bc48f96 | 2075 | goto single_page; |
fef903ef | 2076 | |
02aa0cdd VB |
2077 | /* |
2078 | * If a sufficient number of pages in the block are either free or of | |
2079 | * comparable migratability as our allocation, claim the whole block. | |
2080 | */ | |
2081 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | |
4eb7dce6 JK |
2082 | page_group_by_mobility_disabled) |
2083 | set_pageblock_migratetype(page, start_type); | |
3bc48f96 VB |
2084 | |
2085 | return; | |
2086 | ||
2087 | single_page: | |
2088 | area = &zone->free_area[current_order]; | |
2089 | list_move(&page->lru, &area->free_list[start_type]); | |
4eb7dce6 JK |
2090 | } |
2091 | ||
2149cdae JK |
2092 | /* |
2093 | * Check whether there is a suitable fallback freepage with requested order. | |
2094 | * If only_stealable is true, this function returns fallback_mt only if | |
2095 | * we can steal other freepages all together. This would help to reduce | |
2096 | * fragmentation due to mixed migratetype pages in one pageblock. | |
2097 | */ | |
2098 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
2099 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
2100 | { |
2101 | int i; | |
2102 | int fallback_mt; | |
2103 | ||
2104 | if (area->nr_free == 0) | |
2105 | return -1; | |
2106 | ||
2107 | *can_steal = false; | |
2108 | for (i = 0;; i++) { | |
2109 | fallback_mt = fallbacks[migratetype][i]; | |
974a786e | 2110 | if (fallback_mt == MIGRATE_TYPES) |
4eb7dce6 JK |
2111 | break; |
2112 | ||
2113 | if (list_empty(&area->free_list[fallback_mt])) | |
2114 | continue; | |
fef903ef | 2115 | |
4eb7dce6 JK |
2116 | if (can_steal_fallback(order, migratetype)) |
2117 | *can_steal = true; | |
2118 | ||
2149cdae JK |
2119 | if (!only_stealable) |
2120 | return fallback_mt; | |
2121 | ||
2122 | if (*can_steal) | |
2123 | return fallback_mt; | |
fef903ef | 2124 | } |
4eb7dce6 JK |
2125 | |
2126 | return -1; | |
fef903ef SB |
2127 | } |
2128 | ||
0aaa29a5 MG |
2129 | /* |
2130 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | |
2131 | * there are no empty page blocks that contain a page with a suitable order | |
2132 | */ | |
2133 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | |
2134 | unsigned int alloc_order) | |
2135 | { | |
2136 | int mt; | |
2137 | unsigned long max_managed, flags; | |
2138 | ||
2139 | /* | |
2140 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | |
2141 | * Check is race-prone but harmless. | |
2142 | */ | |
2143 | max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; | |
2144 | if (zone->nr_reserved_highatomic >= max_managed) | |
2145 | return; | |
2146 | ||
2147 | spin_lock_irqsave(&zone->lock, flags); | |
2148 | ||
2149 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
2150 | if (zone->nr_reserved_highatomic >= max_managed) | |
2151 | goto out_unlock; | |
2152 | ||
2153 | /* Yoink! */ | |
2154 | mt = get_pageblock_migratetype(page); | |
a6ffdc07 XQ |
2155 | if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) |
2156 | && !is_migrate_cma(mt)) { | |
0aaa29a5 MG |
2157 | zone->nr_reserved_highatomic += pageblock_nr_pages; |
2158 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | |
02aa0cdd | 2159 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); |
0aaa29a5 MG |
2160 | } |
2161 | ||
2162 | out_unlock: | |
2163 | spin_unlock_irqrestore(&zone->lock, flags); | |
2164 | } | |
2165 | ||
2166 | /* | |
2167 | * Used when an allocation is about to fail under memory pressure. This | |
2168 | * potentially hurts the reliability of high-order allocations when under | |
2169 | * intense memory pressure but failed atomic allocations should be easier | |
2170 | * to recover from than an OOM. | |
29fac03b MK |
2171 | * |
2172 | * If @force is true, try to unreserve a pageblock even though highatomic | |
2173 | * pageblock is exhausted. | |
0aaa29a5 | 2174 | */ |
29fac03b MK |
2175 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
2176 | bool force) | |
0aaa29a5 MG |
2177 | { |
2178 | struct zonelist *zonelist = ac->zonelist; | |
2179 | unsigned long flags; | |
2180 | struct zoneref *z; | |
2181 | struct zone *zone; | |
2182 | struct page *page; | |
2183 | int order; | |
04c8716f | 2184 | bool ret; |
0aaa29a5 MG |
2185 | |
2186 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | |
2187 | ac->nodemask) { | |
29fac03b MK |
2188 | /* |
2189 | * Preserve at least one pageblock unless memory pressure | |
2190 | * is really high. | |
2191 | */ | |
2192 | if (!force && zone->nr_reserved_highatomic <= | |
2193 | pageblock_nr_pages) | |
0aaa29a5 MG |
2194 | continue; |
2195 | ||
2196 | spin_lock_irqsave(&zone->lock, flags); | |
2197 | for (order = 0; order < MAX_ORDER; order++) { | |
2198 | struct free_area *area = &(zone->free_area[order]); | |
2199 | ||
a16601c5 GT |
2200 | page = list_first_entry_or_null( |
2201 | &area->free_list[MIGRATE_HIGHATOMIC], | |
2202 | struct page, lru); | |
2203 | if (!page) | |
0aaa29a5 MG |
2204 | continue; |
2205 | ||
0aaa29a5 | 2206 | /* |
4855e4a7 MK |
2207 | * In page freeing path, migratetype change is racy so |
2208 | * we can counter several free pages in a pageblock | |
2209 | * in this loop althoug we changed the pageblock type | |
2210 | * from highatomic to ac->migratetype. So we should | |
2211 | * adjust the count once. | |
0aaa29a5 | 2212 | */ |
a6ffdc07 | 2213 | if (is_migrate_highatomic_page(page)) { |
4855e4a7 MK |
2214 | /* |
2215 | * It should never happen but changes to | |
2216 | * locking could inadvertently allow a per-cpu | |
2217 | * drain to add pages to MIGRATE_HIGHATOMIC | |
2218 | * while unreserving so be safe and watch for | |
2219 | * underflows. | |
2220 | */ | |
2221 | zone->nr_reserved_highatomic -= min( | |
2222 | pageblock_nr_pages, | |
2223 | zone->nr_reserved_highatomic); | |
2224 | } | |
0aaa29a5 MG |
2225 | |
2226 | /* | |
2227 | * Convert to ac->migratetype and avoid the normal | |
2228 | * pageblock stealing heuristics. Minimally, the caller | |
2229 | * is doing the work and needs the pages. More | |
2230 | * importantly, if the block was always converted to | |
2231 | * MIGRATE_UNMOVABLE or another type then the number | |
2232 | * of pageblocks that cannot be completely freed | |
2233 | * may increase. | |
2234 | */ | |
2235 | set_pageblock_migratetype(page, ac->migratetype); | |
02aa0cdd VB |
2236 | ret = move_freepages_block(zone, page, ac->migratetype, |
2237 | NULL); | |
29fac03b MK |
2238 | if (ret) { |
2239 | spin_unlock_irqrestore(&zone->lock, flags); | |
2240 | return ret; | |
2241 | } | |
0aaa29a5 MG |
2242 | } |
2243 | spin_unlock_irqrestore(&zone->lock, flags); | |
2244 | } | |
04c8716f MK |
2245 | |
2246 | return false; | |
0aaa29a5 MG |
2247 | } |
2248 | ||
3bc48f96 VB |
2249 | /* |
2250 | * Try finding a free buddy page on the fallback list and put it on the free | |
2251 | * list of requested migratetype, possibly along with other pages from the same | |
2252 | * block, depending on fragmentation avoidance heuristics. Returns true if | |
2253 | * fallback was found so that __rmqueue_smallest() can grab it. | |
b002529d RV |
2254 | * |
2255 | * The use of signed ints for order and current_order is a deliberate | |
2256 | * deviation from the rest of this file, to make the for loop | |
2257 | * condition simpler. | |
3bc48f96 | 2258 | */ |
85ccc8fa | 2259 | static __always_inline bool |
b002529d | 2260 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) |
b2a0ac88 | 2261 | { |
b8af2941 | 2262 | struct free_area *area; |
b002529d | 2263 | int current_order; |
b2a0ac88 | 2264 | struct page *page; |
4eb7dce6 JK |
2265 | int fallback_mt; |
2266 | bool can_steal; | |
b2a0ac88 | 2267 | |
7a8f58f3 VB |
2268 | /* |
2269 | * Find the largest available free page in the other list. This roughly | |
2270 | * approximates finding the pageblock with the most free pages, which | |
2271 | * would be too costly to do exactly. | |
2272 | */ | |
b002529d | 2273 | for (current_order = MAX_ORDER - 1; current_order >= order; |
7aeb09f9 | 2274 | --current_order) { |
4eb7dce6 JK |
2275 | area = &(zone->free_area[current_order]); |
2276 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 2277 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
2278 | if (fallback_mt == -1) |
2279 | continue; | |
b2a0ac88 | 2280 | |
7a8f58f3 VB |
2281 | /* |
2282 | * We cannot steal all free pages from the pageblock and the | |
2283 | * requested migratetype is movable. In that case it's better to | |
2284 | * steal and split the smallest available page instead of the | |
2285 | * largest available page, because even if the next movable | |
2286 | * allocation falls back into a different pageblock than this | |
2287 | * one, it won't cause permanent fragmentation. | |
2288 | */ | |
2289 | if (!can_steal && start_migratetype == MIGRATE_MOVABLE | |
2290 | && current_order > order) | |
2291 | goto find_smallest; | |
b2a0ac88 | 2292 | |
7a8f58f3 VB |
2293 | goto do_steal; |
2294 | } | |
e0fff1bd | 2295 | |
7a8f58f3 | 2296 | return false; |
e0fff1bd | 2297 | |
7a8f58f3 VB |
2298 | find_smallest: |
2299 | for (current_order = order; current_order < MAX_ORDER; | |
2300 | current_order++) { | |
2301 | area = &(zone->free_area[current_order]); | |
2302 | fallback_mt = find_suitable_fallback(area, current_order, | |
2303 | start_migratetype, false, &can_steal); | |
2304 | if (fallback_mt != -1) | |
2305 | break; | |
b2a0ac88 MG |
2306 | } |
2307 | ||
7a8f58f3 VB |
2308 | /* |
2309 | * This should not happen - we already found a suitable fallback | |
2310 | * when looking for the largest page. | |
2311 | */ | |
2312 | VM_BUG_ON(current_order == MAX_ORDER); | |
2313 | ||
2314 | do_steal: | |
2315 | page = list_first_entry(&area->free_list[fallback_mt], | |
2316 | struct page, lru); | |
2317 | ||
2318 | steal_suitable_fallback(zone, page, start_migratetype, can_steal); | |
2319 | ||
2320 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
2321 | start_migratetype, fallback_mt); | |
2322 | ||
2323 | return true; | |
2324 | ||
b2a0ac88 MG |
2325 | } |
2326 | ||
56fd56b8 | 2327 | /* |
1da177e4 LT |
2328 | * Do the hard work of removing an element from the buddy allocator. |
2329 | * Call me with the zone->lock already held. | |
2330 | */ | |
85ccc8fa AL |
2331 | static __always_inline struct page * |
2332 | __rmqueue(struct zone *zone, unsigned int order, int migratetype) | |
1da177e4 | 2333 | { |
1da177e4 LT |
2334 | struct page *page; |
2335 | ||
3bc48f96 | 2336 | retry: |
56fd56b8 | 2337 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 2338 | if (unlikely(!page)) { |
dc67647b JK |
2339 | if (migratetype == MIGRATE_MOVABLE) |
2340 | page = __rmqueue_cma_fallback(zone, order); | |
2341 | ||
3bc48f96 VB |
2342 | if (!page && __rmqueue_fallback(zone, order, migratetype)) |
2343 | goto retry; | |
728ec980 MG |
2344 | } |
2345 | ||
0d3d062a | 2346 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 2347 | return page; |
1da177e4 LT |
2348 | } |
2349 | ||
5f63b720 | 2350 | /* |
1da177e4 LT |
2351 | * Obtain a specified number of elements from the buddy allocator, all under |
2352 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
2353 | * Returns the number of new pages which were placed at *list. | |
2354 | */ | |
5f63b720 | 2355 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 2356 | unsigned long count, struct list_head *list, |
453f85d4 | 2357 | int migratetype) |
1da177e4 | 2358 | { |
a6de734b | 2359 | int i, alloced = 0; |
5f63b720 | 2360 | |
d34b0733 | 2361 | spin_lock(&zone->lock); |
1da177e4 | 2362 | for (i = 0; i < count; ++i) { |
6ac0206b | 2363 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 2364 | if (unlikely(page == NULL)) |
1da177e4 | 2365 | break; |
81eabcbe | 2366 | |
479f854a MG |
2367 | if (unlikely(check_pcp_refill(page))) |
2368 | continue; | |
2369 | ||
81eabcbe | 2370 | /* |
0fac3ba5 VB |
2371 | * Split buddy pages returned by expand() are received here in |
2372 | * physical page order. The page is added to the tail of | |
2373 | * caller's list. From the callers perspective, the linked list | |
2374 | * is ordered by page number under some conditions. This is | |
2375 | * useful for IO devices that can forward direction from the | |
2376 | * head, thus also in the physical page order. This is useful | |
2377 | * for IO devices that can merge IO requests if the physical | |
2378 | * pages are ordered properly. | |
81eabcbe | 2379 | */ |
0fac3ba5 | 2380 | list_add_tail(&page->lru, list); |
a6de734b | 2381 | alloced++; |
bb14c2c7 | 2382 | if (is_migrate_cma(get_pcppage_migratetype(page))) |
d1ce749a BZ |
2383 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
2384 | -(1 << order)); | |
1da177e4 | 2385 | } |
a6de734b MG |
2386 | |
2387 | /* | |
2388 | * i pages were removed from the buddy list even if some leak due | |
2389 | * to check_pcp_refill failing so adjust NR_FREE_PAGES based | |
2390 | * on i. Do not confuse with 'alloced' which is the number of | |
2391 | * pages added to the pcp list. | |
2392 | */ | |
f2260e6b | 2393 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
d34b0733 | 2394 | spin_unlock(&zone->lock); |
a6de734b | 2395 | return alloced; |
1da177e4 LT |
2396 | } |
2397 | ||
4ae7c039 | 2398 | #ifdef CONFIG_NUMA |
8fce4d8e | 2399 | /* |
4037d452 CL |
2400 | * Called from the vmstat counter updater to drain pagesets of this |
2401 | * currently executing processor on remote nodes after they have | |
2402 | * expired. | |
2403 | * | |
879336c3 CL |
2404 | * Note that this function must be called with the thread pinned to |
2405 | * a single processor. | |
8fce4d8e | 2406 | */ |
4037d452 | 2407 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 2408 | { |
4ae7c039 | 2409 | unsigned long flags; |
7be12fc9 | 2410 | int to_drain, batch; |
4ae7c039 | 2411 | |
4037d452 | 2412 | local_irq_save(flags); |
4db0c3c2 | 2413 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 2414 | to_drain = min(pcp->count, batch); |
2a13515c KM |
2415 | if (to_drain > 0) { |
2416 | free_pcppages_bulk(zone, to_drain, pcp); | |
2417 | pcp->count -= to_drain; | |
2418 | } | |
4037d452 | 2419 | local_irq_restore(flags); |
4ae7c039 CL |
2420 | } |
2421 | #endif | |
2422 | ||
9f8f2172 | 2423 | /* |
93481ff0 | 2424 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 CL |
2425 | * |
2426 | * The processor must either be the current processor and the | |
2427 | * thread pinned to the current processor or a processor that | |
2428 | * is not online. | |
2429 | */ | |
93481ff0 | 2430 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 2431 | { |
c54ad30c | 2432 | unsigned long flags; |
93481ff0 VB |
2433 | struct per_cpu_pageset *pset; |
2434 | struct per_cpu_pages *pcp; | |
1da177e4 | 2435 | |
93481ff0 VB |
2436 | local_irq_save(flags); |
2437 | pset = per_cpu_ptr(zone->pageset, cpu); | |
1da177e4 | 2438 | |
93481ff0 VB |
2439 | pcp = &pset->pcp; |
2440 | if (pcp->count) { | |
2441 | free_pcppages_bulk(zone, pcp->count, pcp); | |
2442 | pcp->count = 0; | |
2443 | } | |
2444 | local_irq_restore(flags); | |
2445 | } | |
3dfa5721 | 2446 | |
93481ff0 VB |
2447 | /* |
2448 | * Drain pcplists of all zones on the indicated processor. | |
2449 | * | |
2450 | * The processor must either be the current processor and the | |
2451 | * thread pinned to the current processor or a processor that | |
2452 | * is not online. | |
2453 | */ | |
2454 | static void drain_pages(unsigned int cpu) | |
2455 | { | |
2456 | struct zone *zone; | |
2457 | ||
2458 | for_each_populated_zone(zone) { | |
2459 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
2460 | } |
2461 | } | |
1da177e4 | 2462 | |
9f8f2172 CL |
2463 | /* |
2464 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
93481ff0 VB |
2465 | * |
2466 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | |
2467 | * the single zone's pages. | |
9f8f2172 | 2468 | */ |
93481ff0 | 2469 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 2470 | { |
93481ff0 VB |
2471 | int cpu = smp_processor_id(); |
2472 | ||
2473 | if (zone) | |
2474 | drain_pages_zone(cpu, zone); | |
2475 | else | |
2476 | drain_pages(cpu); | |
9f8f2172 CL |
2477 | } |
2478 | ||
0ccce3b9 MG |
2479 | static void drain_local_pages_wq(struct work_struct *work) |
2480 | { | |
a459eeb7 MH |
2481 | /* |
2482 | * drain_all_pages doesn't use proper cpu hotplug protection so | |
2483 | * we can race with cpu offline when the WQ can move this from | |
2484 | * a cpu pinned worker to an unbound one. We can operate on a different | |
2485 | * cpu which is allright but we also have to make sure to not move to | |
2486 | * a different one. | |
2487 | */ | |
2488 | preempt_disable(); | |
0ccce3b9 | 2489 | drain_local_pages(NULL); |
a459eeb7 | 2490 | preempt_enable(); |
0ccce3b9 MG |
2491 | } |
2492 | ||
9f8f2172 | 2493 | /* |
74046494 GBY |
2494 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
2495 | * | |
93481ff0 VB |
2496 | * When zone parameter is non-NULL, spill just the single zone's pages. |
2497 | * | |
0ccce3b9 | 2498 | * Note that this can be extremely slow as the draining happens in a workqueue. |
9f8f2172 | 2499 | */ |
93481ff0 | 2500 | void drain_all_pages(struct zone *zone) |
9f8f2172 | 2501 | { |
74046494 | 2502 | int cpu; |
74046494 GBY |
2503 | |
2504 | /* | |
2505 | * Allocate in the BSS so we wont require allocation in | |
2506 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
2507 | */ | |
2508 | static cpumask_t cpus_with_pcps; | |
2509 | ||
ce612879 MH |
2510 | /* |
2511 | * Make sure nobody triggers this path before mm_percpu_wq is fully | |
2512 | * initialized. | |
2513 | */ | |
2514 | if (WARN_ON_ONCE(!mm_percpu_wq)) | |
2515 | return; | |
2516 | ||
bd233f53 MG |
2517 | /* |
2518 | * Do not drain if one is already in progress unless it's specific to | |
2519 | * a zone. Such callers are primarily CMA and memory hotplug and need | |
2520 | * the drain to be complete when the call returns. | |
2521 | */ | |
2522 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | |
2523 | if (!zone) | |
2524 | return; | |
2525 | mutex_lock(&pcpu_drain_mutex); | |
2526 | } | |
0ccce3b9 | 2527 | |
74046494 GBY |
2528 | /* |
2529 | * We don't care about racing with CPU hotplug event | |
2530 | * as offline notification will cause the notified | |
2531 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
2532 | * disables preemption as part of its processing | |
2533 | */ | |
2534 | for_each_online_cpu(cpu) { | |
93481ff0 VB |
2535 | struct per_cpu_pageset *pcp; |
2536 | struct zone *z; | |
74046494 | 2537 | bool has_pcps = false; |
93481ff0 VB |
2538 | |
2539 | if (zone) { | |
74046494 | 2540 | pcp = per_cpu_ptr(zone->pageset, cpu); |
93481ff0 | 2541 | if (pcp->pcp.count) |
74046494 | 2542 | has_pcps = true; |
93481ff0 VB |
2543 | } else { |
2544 | for_each_populated_zone(z) { | |
2545 | pcp = per_cpu_ptr(z->pageset, cpu); | |
2546 | if (pcp->pcp.count) { | |
2547 | has_pcps = true; | |
2548 | break; | |
2549 | } | |
74046494 GBY |
2550 | } |
2551 | } | |
93481ff0 | 2552 | |
74046494 GBY |
2553 | if (has_pcps) |
2554 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2555 | else | |
2556 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2557 | } | |
0ccce3b9 | 2558 | |
bd233f53 MG |
2559 | for_each_cpu(cpu, &cpus_with_pcps) { |
2560 | struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); | |
2561 | INIT_WORK(work, drain_local_pages_wq); | |
ce612879 | 2562 | queue_work_on(cpu, mm_percpu_wq, work); |
0ccce3b9 | 2563 | } |
bd233f53 MG |
2564 | for_each_cpu(cpu, &cpus_with_pcps) |
2565 | flush_work(per_cpu_ptr(&pcpu_drain, cpu)); | |
2566 | ||
2567 | mutex_unlock(&pcpu_drain_mutex); | |
9f8f2172 CL |
2568 | } |
2569 | ||
296699de | 2570 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 2571 | |
556b969a CY |
2572 | /* |
2573 | * Touch the watchdog for every WD_PAGE_COUNT pages. | |
2574 | */ | |
2575 | #define WD_PAGE_COUNT (128*1024) | |
2576 | ||
1da177e4 LT |
2577 | void mark_free_pages(struct zone *zone) |
2578 | { | |
556b969a | 2579 | unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; |
f623f0db | 2580 | unsigned long flags; |
7aeb09f9 | 2581 | unsigned int order, t; |
86760a2c | 2582 | struct page *page; |
1da177e4 | 2583 | |
8080fc03 | 2584 | if (zone_is_empty(zone)) |
1da177e4 LT |
2585 | return; |
2586 | ||
2587 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 2588 | |
108bcc96 | 2589 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
2590 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
2591 | if (pfn_valid(pfn)) { | |
86760a2c | 2592 | page = pfn_to_page(pfn); |
ba6b0979 | 2593 | |
556b969a CY |
2594 | if (!--page_count) { |
2595 | touch_nmi_watchdog(); | |
2596 | page_count = WD_PAGE_COUNT; | |
2597 | } | |
2598 | ||
ba6b0979 JK |
2599 | if (page_zone(page) != zone) |
2600 | continue; | |
2601 | ||
7be98234 RW |
2602 | if (!swsusp_page_is_forbidden(page)) |
2603 | swsusp_unset_page_free(page); | |
f623f0db | 2604 | } |
1da177e4 | 2605 | |
b2a0ac88 | 2606 | for_each_migratetype_order(order, t) { |
86760a2c GT |
2607 | list_for_each_entry(page, |
2608 | &zone->free_area[order].free_list[t], lru) { | |
f623f0db | 2609 | unsigned long i; |
1da177e4 | 2610 | |
86760a2c | 2611 | pfn = page_to_pfn(page); |
556b969a CY |
2612 | for (i = 0; i < (1UL << order); i++) { |
2613 | if (!--page_count) { | |
2614 | touch_nmi_watchdog(); | |
2615 | page_count = WD_PAGE_COUNT; | |
2616 | } | |
7be98234 | 2617 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
556b969a | 2618 | } |
f623f0db | 2619 | } |
b2a0ac88 | 2620 | } |
1da177e4 LT |
2621 | spin_unlock_irqrestore(&zone->lock, flags); |
2622 | } | |
e2c55dc8 | 2623 | #endif /* CONFIG_PM */ |
1da177e4 | 2624 | |
2d4894b5 | 2625 | static bool free_unref_page_prepare(struct page *page, unsigned long pfn) |
1da177e4 | 2626 | { |
5f8dcc21 | 2627 | int migratetype; |
1da177e4 | 2628 | |
4db7548c | 2629 | if (!free_pcp_prepare(page)) |
9cca35d4 | 2630 | return false; |
689bcebf | 2631 | |
dc4b0caf | 2632 | migratetype = get_pfnblock_migratetype(page, pfn); |
bb14c2c7 | 2633 | set_pcppage_migratetype(page, migratetype); |
9cca35d4 MG |
2634 | return true; |
2635 | } | |
2636 | ||
2d4894b5 | 2637 | static void free_unref_page_commit(struct page *page, unsigned long pfn) |
9cca35d4 MG |
2638 | { |
2639 | struct zone *zone = page_zone(page); | |
2640 | struct per_cpu_pages *pcp; | |
2641 | int migratetype; | |
2642 | ||
2643 | migratetype = get_pcppage_migratetype(page); | |
d34b0733 | 2644 | __count_vm_event(PGFREE); |
da456f14 | 2645 | |
5f8dcc21 MG |
2646 | /* |
2647 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2648 | * Free ISOLATE pages back to the allocator because they are being | |
a6ffdc07 | 2649 | * offlined but treat HIGHATOMIC as movable pages so we can get those |
5f8dcc21 MG |
2650 | * areas back if necessary. Otherwise, we may have to free |
2651 | * excessively into the page allocator | |
2652 | */ | |
2653 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 2654 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 2655 | free_one_page(zone, page, pfn, 0, migratetype); |
9cca35d4 | 2656 | return; |
5f8dcc21 MG |
2657 | } |
2658 | migratetype = MIGRATE_MOVABLE; | |
2659 | } | |
2660 | ||
99dcc3e5 | 2661 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
2d4894b5 | 2662 | list_add(&page->lru, &pcp->lists[migratetype]); |
1da177e4 | 2663 | pcp->count++; |
48db57f8 | 2664 | if (pcp->count >= pcp->high) { |
4db0c3c2 | 2665 | unsigned long batch = READ_ONCE(pcp->batch); |
998d39cb CS |
2666 | free_pcppages_bulk(zone, batch, pcp); |
2667 | pcp->count -= batch; | |
48db57f8 | 2668 | } |
9cca35d4 | 2669 | } |
5f8dcc21 | 2670 | |
9cca35d4 MG |
2671 | /* |
2672 | * Free a 0-order page | |
9cca35d4 | 2673 | */ |
2d4894b5 | 2674 | void free_unref_page(struct page *page) |
9cca35d4 MG |
2675 | { |
2676 | unsigned long flags; | |
2677 | unsigned long pfn = page_to_pfn(page); | |
2678 | ||
2d4894b5 | 2679 | if (!free_unref_page_prepare(page, pfn)) |
9cca35d4 MG |
2680 | return; |
2681 | ||
2682 | local_irq_save(flags); | |
2d4894b5 | 2683 | free_unref_page_commit(page, pfn); |
d34b0733 | 2684 | local_irq_restore(flags); |
1da177e4 LT |
2685 | } |
2686 | ||
cc59850e KK |
2687 | /* |
2688 | * Free a list of 0-order pages | |
2689 | */ | |
2d4894b5 | 2690 | void free_unref_page_list(struct list_head *list) |
cc59850e KK |
2691 | { |
2692 | struct page *page, *next; | |
9cca35d4 | 2693 | unsigned long flags, pfn; |
c24ad77d | 2694 | int batch_count = 0; |
9cca35d4 MG |
2695 | |
2696 | /* Prepare pages for freeing */ | |
2697 | list_for_each_entry_safe(page, next, list, lru) { | |
2698 | pfn = page_to_pfn(page); | |
2d4894b5 | 2699 | if (!free_unref_page_prepare(page, pfn)) |
9cca35d4 MG |
2700 | list_del(&page->lru); |
2701 | set_page_private(page, pfn); | |
2702 | } | |
cc59850e | 2703 | |
9cca35d4 | 2704 | local_irq_save(flags); |
cc59850e | 2705 | list_for_each_entry_safe(page, next, list, lru) { |
9cca35d4 MG |
2706 | unsigned long pfn = page_private(page); |
2707 | ||
2708 | set_page_private(page, 0); | |
2d4894b5 MG |
2709 | trace_mm_page_free_batched(page); |
2710 | free_unref_page_commit(page, pfn); | |
c24ad77d LS |
2711 | |
2712 | /* | |
2713 | * Guard against excessive IRQ disabled times when we get | |
2714 | * a large list of pages to free. | |
2715 | */ | |
2716 | if (++batch_count == SWAP_CLUSTER_MAX) { | |
2717 | local_irq_restore(flags); | |
2718 | batch_count = 0; | |
2719 | local_irq_save(flags); | |
2720 | } | |
cc59850e | 2721 | } |
9cca35d4 | 2722 | local_irq_restore(flags); |
cc59850e KK |
2723 | } |
2724 | ||
8dfcc9ba NP |
2725 | /* |
2726 | * split_page takes a non-compound higher-order page, and splits it into | |
2727 | * n (1<<order) sub-pages: page[0..n] | |
2728 | * Each sub-page must be freed individually. | |
2729 | * | |
2730 | * Note: this is probably too low level an operation for use in drivers. | |
2731 | * Please consult with lkml before using this in your driver. | |
2732 | */ | |
2733 | void split_page(struct page *page, unsigned int order) | |
2734 | { | |
2735 | int i; | |
2736 | ||
309381fe SL |
2737 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2738 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 | 2739 | |
a9627bc5 | 2740 | for (i = 1; i < (1 << order); i++) |
7835e98b | 2741 | set_page_refcounted(page + i); |
a9627bc5 | 2742 | split_page_owner(page, order); |
8dfcc9ba | 2743 | } |
5853ff23 | 2744 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2745 | |
3c605096 | 2746 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2747 | { |
748446bb MG |
2748 | unsigned long watermark; |
2749 | struct zone *zone; | |
2139cbe6 | 2750 | int mt; |
748446bb MG |
2751 | |
2752 | BUG_ON(!PageBuddy(page)); | |
2753 | ||
2754 | zone = page_zone(page); | |
2e30abd1 | 2755 | mt = get_pageblock_migratetype(page); |
748446bb | 2756 | |
194159fb | 2757 | if (!is_migrate_isolate(mt)) { |
8348faf9 VB |
2758 | /* |
2759 | * Obey watermarks as if the page was being allocated. We can | |
2760 | * emulate a high-order watermark check with a raised order-0 | |
2761 | * watermark, because we already know our high-order page | |
2762 | * exists. | |
2763 | */ | |
2764 | watermark = min_wmark_pages(zone) + (1UL << order); | |
984fdba6 | 2765 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
2e30abd1 MS |
2766 | return 0; |
2767 | ||
8fb74b9f | 2768 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 2769 | } |
748446bb MG |
2770 | |
2771 | /* Remove page from free list */ | |
2772 | list_del(&page->lru); | |
2773 | zone->free_area[order].nr_free--; | |
2774 | rmv_page_order(page); | |
2139cbe6 | 2775 | |
400bc7fd | 2776 | /* |
2777 | * Set the pageblock if the isolated page is at least half of a | |
2778 | * pageblock | |
2779 | */ | |
748446bb MG |
2780 | if (order >= pageblock_order - 1) { |
2781 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2782 | for (; page < endpage; page += pageblock_nr_pages) { |
2783 | int mt = get_pageblock_migratetype(page); | |
88ed365e | 2784 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) |
a6ffdc07 | 2785 | && !is_migrate_highatomic(mt)) |
47118af0 MN |
2786 | set_pageblock_migratetype(page, |
2787 | MIGRATE_MOVABLE); | |
2788 | } | |
748446bb MG |
2789 | } |
2790 | ||
f3a14ced | 2791 | |
8fb74b9f | 2792 | return 1UL << order; |
1fb3f8ca MG |
2793 | } |
2794 | ||
060e7417 MG |
2795 | /* |
2796 | * Update NUMA hit/miss statistics | |
2797 | * | |
2798 | * Must be called with interrupts disabled. | |
060e7417 | 2799 | */ |
41b6167e | 2800 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) |
060e7417 MG |
2801 | { |
2802 | #ifdef CONFIG_NUMA | |
3a321d2a | 2803 | enum numa_stat_item local_stat = NUMA_LOCAL; |
060e7417 | 2804 | |
4518085e KW |
2805 | /* skip numa counters update if numa stats is disabled */ |
2806 | if (!static_branch_likely(&vm_numa_stat_key)) | |
2807 | return; | |
2808 | ||
2df26639 | 2809 | if (z->node != numa_node_id()) |
060e7417 | 2810 | local_stat = NUMA_OTHER; |
060e7417 | 2811 | |
2df26639 | 2812 | if (z->node == preferred_zone->node) |
3a321d2a | 2813 | __inc_numa_state(z, NUMA_HIT); |
2df26639 | 2814 | else { |
3a321d2a KW |
2815 | __inc_numa_state(z, NUMA_MISS); |
2816 | __inc_numa_state(preferred_zone, NUMA_FOREIGN); | |
060e7417 | 2817 | } |
3a321d2a | 2818 | __inc_numa_state(z, local_stat); |
060e7417 MG |
2819 | #endif |
2820 | } | |
2821 | ||
066b2393 MG |
2822 | /* Remove page from the per-cpu list, caller must protect the list */ |
2823 | static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, | |
453f85d4 | 2824 | struct per_cpu_pages *pcp, |
066b2393 MG |
2825 | struct list_head *list) |
2826 | { | |
2827 | struct page *page; | |
2828 | ||
2829 | do { | |
2830 | if (list_empty(list)) { | |
2831 | pcp->count += rmqueue_bulk(zone, 0, | |
2832 | pcp->batch, list, | |
453f85d4 | 2833 | migratetype); |
066b2393 MG |
2834 | if (unlikely(list_empty(list))) |
2835 | return NULL; | |
2836 | } | |
2837 | ||
453f85d4 | 2838 | page = list_first_entry(list, struct page, lru); |
066b2393 MG |
2839 | list_del(&page->lru); |
2840 | pcp->count--; | |
2841 | } while (check_new_pcp(page)); | |
2842 | ||
2843 | return page; | |
2844 | } | |
2845 | ||
2846 | /* Lock and remove page from the per-cpu list */ | |
2847 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | |
2848 | struct zone *zone, unsigned int order, | |
2849 | gfp_t gfp_flags, int migratetype) | |
2850 | { | |
2851 | struct per_cpu_pages *pcp; | |
2852 | struct list_head *list; | |
066b2393 | 2853 | struct page *page; |
d34b0733 | 2854 | unsigned long flags; |
066b2393 | 2855 | |
d34b0733 | 2856 | local_irq_save(flags); |
066b2393 MG |
2857 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
2858 | list = &pcp->lists[migratetype]; | |
453f85d4 | 2859 | page = __rmqueue_pcplist(zone, migratetype, pcp, list); |
066b2393 MG |
2860 | if (page) { |
2861 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | |
2862 | zone_statistics(preferred_zone, zone); | |
2863 | } | |
d34b0733 | 2864 | local_irq_restore(flags); |
066b2393 MG |
2865 | return page; |
2866 | } | |
2867 | ||
1da177e4 | 2868 | /* |
75379191 | 2869 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
1da177e4 | 2870 | */ |
0a15c3e9 | 2871 | static inline |
066b2393 | 2872 | struct page *rmqueue(struct zone *preferred_zone, |
7aeb09f9 | 2873 | struct zone *zone, unsigned int order, |
c603844b MG |
2874 | gfp_t gfp_flags, unsigned int alloc_flags, |
2875 | int migratetype) | |
1da177e4 LT |
2876 | { |
2877 | unsigned long flags; | |
689bcebf | 2878 | struct page *page; |
1da177e4 | 2879 | |
d34b0733 | 2880 | if (likely(order == 0)) { |
066b2393 MG |
2881 | page = rmqueue_pcplist(preferred_zone, zone, order, |
2882 | gfp_flags, migratetype); | |
2883 | goto out; | |
2884 | } | |
83b9355b | 2885 | |
066b2393 MG |
2886 | /* |
2887 | * We most definitely don't want callers attempting to | |
2888 | * allocate greater than order-1 page units with __GFP_NOFAIL. | |
2889 | */ | |
2890 | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | |
2891 | spin_lock_irqsave(&zone->lock, flags); | |
0aaa29a5 | 2892 | |
066b2393 MG |
2893 | do { |
2894 | page = NULL; | |
2895 | if (alloc_flags & ALLOC_HARDER) { | |
2896 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2897 | if (page) | |
2898 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | |
2899 | } | |
a74609fa | 2900 | if (!page) |
066b2393 MG |
2901 | page = __rmqueue(zone, order, migratetype); |
2902 | } while (page && check_new_pages(page, order)); | |
2903 | spin_unlock(&zone->lock); | |
2904 | if (!page) | |
2905 | goto failed; | |
2906 | __mod_zone_freepage_state(zone, -(1 << order), | |
2907 | get_pcppage_migratetype(page)); | |
1da177e4 | 2908 | |
16709d1d | 2909 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
41b6167e | 2910 | zone_statistics(preferred_zone, zone); |
a74609fa | 2911 | local_irq_restore(flags); |
1da177e4 | 2912 | |
066b2393 MG |
2913 | out: |
2914 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); | |
1da177e4 | 2915 | return page; |
a74609fa NP |
2916 | |
2917 | failed: | |
2918 | local_irq_restore(flags); | |
a74609fa | 2919 | return NULL; |
1da177e4 LT |
2920 | } |
2921 | ||
933e312e AM |
2922 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
2923 | ||
b2588c4b | 2924 | static struct { |
933e312e AM |
2925 | struct fault_attr attr; |
2926 | ||
621a5f7a | 2927 | bool ignore_gfp_highmem; |
71baba4b | 2928 | bool ignore_gfp_reclaim; |
54114994 | 2929 | u32 min_order; |
933e312e AM |
2930 | } fail_page_alloc = { |
2931 | .attr = FAULT_ATTR_INITIALIZER, | |
71baba4b | 2932 | .ignore_gfp_reclaim = true, |
621a5f7a | 2933 | .ignore_gfp_highmem = true, |
54114994 | 2934 | .min_order = 1, |
933e312e AM |
2935 | }; |
2936 | ||
2937 | static int __init setup_fail_page_alloc(char *str) | |
2938 | { | |
2939 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
2940 | } | |
2941 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
2942 | ||
deaf386e | 2943 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2944 | { |
54114994 | 2945 | if (order < fail_page_alloc.min_order) |
deaf386e | 2946 | return false; |
933e312e | 2947 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 2948 | return false; |
933e312e | 2949 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 2950 | return false; |
71baba4b MG |
2951 | if (fail_page_alloc.ignore_gfp_reclaim && |
2952 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | |
deaf386e | 2953 | return false; |
933e312e AM |
2954 | |
2955 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
2956 | } | |
2957 | ||
2958 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
2959 | ||
2960 | static int __init fail_page_alloc_debugfs(void) | |
2961 | { | |
f4ae40a6 | 2962 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 2963 | struct dentry *dir; |
933e312e | 2964 | |
dd48c085 AM |
2965 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
2966 | &fail_page_alloc.attr); | |
2967 | if (IS_ERR(dir)) | |
2968 | return PTR_ERR(dir); | |
933e312e | 2969 | |
b2588c4b | 2970 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
71baba4b | 2971 | &fail_page_alloc.ignore_gfp_reclaim)) |
b2588c4b AM |
2972 | goto fail; |
2973 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
2974 | &fail_page_alloc.ignore_gfp_highmem)) | |
2975 | goto fail; | |
2976 | if (!debugfs_create_u32("min-order", mode, dir, | |
2977 | &fail_page_alloc.min_order)) | |
2978 | goto fail; | |
2979 | ||
2980 | return 0; | |
2981 | fail: | |
dd48c085 | 2982 | debugfs_remove_recursive(dir); |
933e312e | 2983 | |
b2588c4b | 2984 | return -ENOMEM; |
933e312e AM |
2985 | } |
2986 | ||
2987 | late_initcall(fail_page_alloc_debugfs); | |
2988 | ||
2989 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
2990 | ||
2991 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
2992 | ||
deaf386e | 2993 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2994 | { |
deaf386e | 2995 | return false; |
933e312e AM |
2996 | } |
2997 | ||
2998 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
2999 | ||
1da177e4 | 3000 | /* |
97a16fc8 MG |
3001 | * Return true if free base pages are above 'mark'. For high-order checks it |
3002 | * will return true of the order-0 watermark is reached and there is at least | |
3003 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
3004 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 3005 | */ |
86a294a8 MH |
3006 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
3007 | int classzone_idx, unsigned int alloc_flags, | |
3008 | long free_pages) | |
1da177e4 | 3009 | { |
d23ad423 | 3010 | long min = mark; |
1da177e4 | 3011 | int o; |
cd04ae1e | 3012 | const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); |
1da177e4 | 3013 | |
0aaa29a5 | 3014 | /* free_pages may go negative - that's OK */ |
df0a6daa | 3015 | free_pages -= (1 << order) - 1; |
0aaa29a5 | 3016 | |
7fb1d9fc | 3017 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 3018 | min -= min / 2; |
0aaa29a5 MG |
3019 | |
3020 | /* | |
3021 | * If the caller does not have rights to ALLOC_HARDER then subtract | |
3022 | * the high-atomic reserves. This will over-estimate the size of the | |
3023 | * atomic reserve but it avoids a search. | |
3024 | */ | |
cd04ae1e | 3025 | if (likely(!alloc_harder)) { |
0aaa29a5 | 3026 | free_pages -= z->nr_reserved_highatomic; |
cd04ae1e MH |
3027 | } else { |
3028 | /* | |
3029 | * OOM victims can try even harder than normal ALLOC_HARDER | |
3030 | * users on the grounds that it's definitely going to be in | |
3031 | * the exit path shortly and free memory. Any allocation it | |
3032 | * makes during the free path will be small and short-lived. | |
3033 | */ | |
3034 | if (alloc_flags & ALLOC_OOM) | |
3035 | min -= min / 2; | |
3036 | else | |
3037 | min -= min / 4; | |
3038 | } | |
3039 | ||
e2b19197 | 3040 | |
d95ea5d1 BZ |
3041 | #ifdef CONFIG_CMA |
3042 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3043 | if (!(alloc_flags & ALLOC_CMA)) | |
97a16fc8 | 3044 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 3045 | #endif |
026b0814 | 3046 | |
97a16fc8 MG |
3047 | /* |
3048 | * Check watermarks for an order-0 allocation request. If these | |
3049 | * are not met, then a high-order request also cannot go ahead | |
3050 | * even if a suitable page happened to be free. | |
3051 | */ | |
3052 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 3053 | return false; |
1da177e4 | 3054 | |
97a16fc8 MG |
3055 | /* If this is an order-0 request then the watermark is fine */ |
3056 | if (!order) | |
3057 | return true; | |
3058 | ||
3059 | /* For a high-order request, check at least one suitable page is free */ | |
3060 | for (o = order; o < MAX_ORDER; o++) { | |
3061 | struct free_area *area = &z->free_area[o]; | |
3062 | int mt; | |
3063 | ||
3064 | if (!area->nr_free) | |
3065 | continue; | |
3066 | ||
97a16fc8 MG |
3067 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
3068 | if (!list_empty(&area->free_list[mt])) | |
3069 | return true; | |
3070 | } | |
3071 | ||
3072 | #ifdef CONFIG_CMA | |
3073 | if ((alloc_flags & ALLOC_CMA) && | |
3074 | !list_empty(&area->free_list[MIGRATE_CMA])) { | |
3075 | return true; | |
3076 | } | |
3077 | #endif | |
b050e376 VB |
3078 | if (alloc_harder && |
3079 | !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) | |
3080 | return true; | |
1da177e4 | 3081 | } |
97a16fc8 | 3082 | return false; |
88f5acf8 MG |
3083 | } |
3084 | ||
7aeb09f9 | 3085 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
c603844b | 3086 | int classzone_idx, unsigned int alloc_flags) |
88f5acf8 MG |
3087 | { |
3088 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
3089 | zone_page_state(z, NR_FREE_PAGES)); | |
3090 | } | |
3091 | ||
48ee5f36 MG |
3092 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
3093 | unsigned long mark, int classzone_idx, unsigned int alloc_flags) | |
3094 | { | |
3095 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
3096 | long cma_pages = 0; | |
3097 | ||
3098 | #ifdef CONFIG_CMA | |
3099 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3100 | if (!(alloc_flags & ALLOC_CMA)) | |
3101 | cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); | |
3102 | #endif | |
3103 | ||
3104 | /* | |
3105 | * Fast check for order-0 only. If this fails then the reserves | |
3106 | * need to be calculated. There is a corner case where the check | |
3107 | * passes but only the high-order atomic reserve are free. If | |
3108 | * the caller is !atomic then it'll uselessly search the free | |
3109 | * list. That corner case is then slower but it is harmless. | |
3110 | */ | |
3111 | if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) | |
3112 | return true; | |
3113 | ||
3114 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
3115 | free_pages); | |
3116 | } | |
3117 | ||
7aeb09f9 | 3118 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
e2b19197 | 3119 | unsigned long mark, int classzone_idx) |
88f5acf8 MG |
3120 | { |
3121 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
3122 | ||
3123 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
3124 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
3125 | ||
e2b19197 | 3126 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, |
88f5acf8 | 3127 | free_pages); |
1da177e4 LT |
3128 | } |
3129 | ||
9276b1bc | 3130 | #ifdef CONFIG_NUMA |
957f822a DR |
3131 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3132 | { | |
e02dc017 | 3133 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
5f7a75ac | 3134 | RECLAIM_DISTANCE; |
957f822a | 3135 | } |
9276b1bc | 3136 | #else /* CONFIG_NUMA */ |
957f822a DR |
3137 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3138 | { | |
3139 | return true; | |
3140 | } | |
9276b1bc PJ |
3141 | #endif /* CONFIG_NUMA */ |
3142 | ||
7fb1d9fc | 3143 | /* |
0798e519 | 3144 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
3145 | * a page. |
3146 | */ | |
3147 | static struct page * | |
a9263751 VB |
3148 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
3149 | const struct alloc_context *ac) | |
753ee728 | 3150 | { |
c33d6c06 | 3151 | struct zoneref *z = ac->preferred_zoneref; |
5117f45d | 3152 | struct zone *zone; |
3b8c0be4 MG |
3153 | struct pglist_data *last_pgdat_dirty_limit = NULL; |
3154 | ||
7fb1d9fc | 3155 | /* |
9276b1bc | 3156 | * Scan zonelist, looking for a zone with enough free. |
344736f2 | 3157 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. |
7fb1d9fc | 3158 | */ |
c33d6c06 | 3159 | for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, |
a9263751 | 3160 | ac->nodemask) { |
be06af00 | 3161 | struct page *page; |
e085dbc5 JW |
3162 | unsigned long mark; |
3163 | ||
664eedde MG |
3164 | if (cpusets_enabled() && |
3165 | (alloc_flags & ALLOC_CPUSET) && | |
002f2906 | 3166 | !__cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 3167 | continue; |
a756cf59 JW |
3168 | /* |
3169 | * When allocating a page cache page for writing, we | |
281e3726 MG |
3170 | * want to get it from a node that is within its dirty |
3171 | * limit, such that no single node holds more than its | |
a756cf59 | 3172 | * proportional share of globally allowed dirty pages. |
281e3726 | 3173 | * The dirty limits take into account the node's |
a756cf59 JW |
3174 | * lowmem reserves and high watermark so that kswapd |
3175 | * should be able to balance it without having to | |
3176 | * write pages from its LRU list. | |
3177 | * | |
a756cf59 | 3178 | * XXX: For now, allow allocations to potentially |
281e3726 | 3179 | * exceed the per-node dirty limit in the slowpath |
c9ab0c4f | 3180 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 | 3181 | * which is important when on a NUMA setup the allowed |
281e3726 | 3182 | * nodes are together not big enough to reach the |
a756cf59 | 3183 | * global limit. The proper fix for these situations |
281e3726 | 3184 | * will require awareness of nodes in the |
a756cf59 JW |
3185 | * dirty-throttling and the flusher threads. |
3186 | */ | |
3b8c0be4 MG |
3187 | if (ac->spread_dirty_pages) { |
3188 | if (last_pgdat_dirty_limit == zone->zone_pgdat) | |
3189 | continue; | |
3190 | ||
3191 | if (!node_dirty_ok(zone->zone_pgdat)) { | |
3192 | last_pgdat_dirty_limit = zone->zone_pgdat; | |
3193 | continue; | |
3194 | } | |
3195 | } | |
7fb1d9fc | 3196 | |
e085dbc5 | 3197 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
48ee5f36 | 3198 | if (!zone_watermark_fast(zone, order, mark, |
93ea9964 | 3199 | ac_classzone_idx(ac), alloc_flags)) { |
fa5e084e MG |
3200 | int ret; |
3201 | ||
5dab2911 MG |
3202 | /* Checked here to keep the fast path fast */ |
3203 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
3204 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
3205 | goto try_this_zone; | |
3206 | ||
a5f5f91d | 3207 | if (node_reclaim_mode == 0 || |
c33d6c06 | 3208 | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
cd38b115 MG |
3209 | continue; |
3210 | ||
a5f5f91d | 3211 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
fa5e084e | 3212 | switch (ret) { |
a5f5f91d | 3213 | case NODE_RECLAIM_NOSCAN: |
fa5e084e | 3214 | /* did not scan */ |
cd38b115 | 3215 | continue; |
a5f5f91d | 3216 | case NODE_RECLAIM_FULL: |
fa5e084e | 3217 | /* scanned but unreclaimable */ |
cd38b115 | 3218 | continue; |
fa5e084e MG |
3219 | default: |
3220 | /* did we reclaim enough */ | |
fed2719e | 3221 | if (zone_watermark_ok(zone, order, mark, |
93ea9964 | 3222 | ac_classzone_idx(ac), alloc_flags)) |
fed2719e MG |
3223 | goto try_this_zone; |
3224 | ||
fed2719e | 3225 | continue; |
0798e519 | 3226 | } |
7fb1d9fc RS |
3227 | } |
3228 | ||
fa5e084e | 3229 | try_this_zone: |
066b2393 | 3230 | page = rmqueue(ac->preferred_zoneref->zone, zone, order, |
0aaa29a5 | 3231 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 | 3232 | if (page) { |
479f854a | 3233 | prep_new_page(page, order, gfp_mask, alloc_flags); |
0aaa29a5 MG |
3234 | |
3235 | /* | |
3236 | * If this is a high-order atomic allocation then check | |
3237 | * if the pageblock should be reserved for the future | |
3238 | */ | |
3239 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | |
3240 | reserve_highatomic_pageblock(page, zone, order); | |
3241 | ||
75379191 VB |
3242 | return page; |
3243 | } | |
54a6eb5c | 3244 | } |
9276b1bc | 3245 | |
4ffeaf35 | 3246 | return NULL; |
753ee728 MH |
3247 | } |
3248 | ||
29423e77 DR |
3249 | /* |
3250 | * Large machines with many possible nodes should not always dump per-node | |
3251 | * meminfo in irq context. | |
3252 | */ | |
3253 | static inline bool should_suppress_show_mem(void) | |
3254 | { | |
3255 | bool ret = false; | |
3256 | ||
3257 | #if NODES_SHIFT > 8 | |
3258 | ret = in_interrupt(); | |
3259 | #endif | |
3260 | return ret; | |
3261 | } | |
3262 | ||
9af744d7 | 3263 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
a238ab5b | 3264 | { |
a238ab5b | 3265 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
aa187507 | 3266 | static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); |
a238ab5b | 3267 | |
aa187507 | 3268 | if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) |
a238ab5b DH |
3269 | return; |
3270 | ||
3271 | /* | |
3272 | * This documents exceptions given to allocations in certain | |
3273 | * contexts that are allowed to allocate outside current's set | |
3274 | * of allowed nodes. | |
3275 | */ | |
3276 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
cd04ae1e | 3277 | if (tsk_is_oom_victim(current) || |
a238ab5b DH |
3278 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
3279 | filter &= ~SHOW_MEM_FILTER_NODES; | |
d0164adc | 3280 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
3281 | filter &= ~SHOW_MEM_FILTER_NODES; |
3282 | ||
9af744d7 | 3283 | show_mem(filter, nodemask); |
aa187507 MH |
3284 | } |
3285 | ||
a8e99259 | 3286 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
aa187507 MH |
3287 | { |
3288 | struct va_format vaf; | |
3289 | va_list args; | |
3290 | static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, | |
3291 | DEFAULT_RATELIMIT_BURST); | |
3292 | ||
0f7896f1 | 3293 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) |
aa187507 MH |
3294 | return; |
3295 | ||
7877cdcc MH |
3296 | va_start(args, fmt); |
3297 | vaf.fmt = fmt; | |
3298 | vaf.va = &args; | |
0205f755 MH |
3299 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", |
3300 | current->comm, &vaf, gfp_mask, &gfp_mask, | |
3301 | nodemask_pr_args(nodemask)); | |
7877cdcc | 3302 | va_end(args); |
3ee9a4f0 | 3303 | |
a8e99259 | 3304 | cpuset_print_current_mems_allowed(); |
3ee9a4f0 | 3305 | |
a238ab5b | 3306 | dump_stack(); |
685dbf6f | 3307 | warn_alloc_show_mem(gfp_mask, nodemask); |
a238ab5b DH |
3308 | } |
3309 | ||
6c18ba7a MH |
3310 | static inline struct page * |
3311 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | |
3312 | unsigned int alloc_flags, | |
3313 | const struct alloc_context *ac) | |
3314 | { | |
3315 | struct page *page; | |
3316 | ||
3317 | page = get_page_from_freelist(gfp_mask, order, | |
3318 | alloc_flags|ALLOC_CPUSET, ac); | |
3319 | /* | |
3320 | * fallback to ignore cpuset restriction if our nodes | |
3321 | * are depleted | |
3322 | */ | |
3323 | if (!page) | |
3324 | page = get_page_from_freelist(gfp_mask, order, | |
3325 | alloc_flags, ac); | |
3326 | ||
3327 | return page; | |
3328 | } | |
3329 | ||
11e33f6a MG |
3330 | static inline struct page * |
3331 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3332 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 3333 | { |
6e0fc46d DR |
3334 | struct oom_control oc = { |
3335 | .zonelist = ac->zonelist, | |
3336 | .nodemask = ac->nodemask, | |
2a966b77 | 3337 | .memcg = NULL, |
6e0fc46d DR |
3338 | .gfp_mask = gfp_mask, |
3339 | .order = order, | |
6e0fc46d | 3340 | }; |
11e33f6a MG |
3341 | struct page *page; |
3342 | ||
9879de73 JW |
3343 | *did_some_progress = 0; |
3344 | ||
9879de73 | 3345 | /* |
dc56401f JW |
3346 | * Acquire the oom lock. If that fails, somebody else is |
3347 | * making progress for us. | |
9879de73 | 3348 | */ |
dc56401f | 3349 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 3350 | *did_some_progress = 1; |
11e33f6a | 3351 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
3352 | return NULL; |
3353 | } | |
6b1de916 | 3354 | |
11e33f6a MG |
3355 | /* |
3356 | * Go through the zonelist yet one more time, keep very high watermark | |
3357 | * here, this is only to catch a parallel oom killing, we must fail if | |
e746bf73 TH |
3358 | * we're still under heavy pressure. But make sure that this reclaim |
3359 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | |
3360 | * allocation which will never fail due to oom_lock already held. | |
11e33f6a | 3361 | */ |
e746bf73 TH |
3362 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
3363 | ~__GFP_DIRECT_RECLAIM, order, | |
3364 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 3365 | if (page) |
11e33f6a MG |
3366 | goto out; |
3367 | ||
06ad276a MH |
3368 | /* Coredumps can quickly deplete all memory reserves */ |
3369 | if (current->flags & PF_DUMPCORE) | |
3370 | goto out; | |
3371 | /* The OOM killer will not help higher order allocs */ | |
3372 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3373 | goto out; | |
dcda9b04 MH |
3374 | /* |
3375 | * We have already exhausted all our reclaim opportunities without any | |
3376 | * success so it is time to admit defeat. We will skip the OOM killer | |
3377 | * because it is very likely that the caller has a more reasonable | |
3378 | * fallback than shooting a random task. | |
3379 | */ | |
3380 | if (gfp_mask & __GFP_RETRY_MAYFAIL) | |
3381 | goto out; | |
06ad276a MH |
3382 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
3383 | if (ac->high_zoneidx < ZONE_NORMAL) | |
3384 | goto out; | |
3385 | if (pm_suspended_storage()) | |
3386 | goto out; | |
3387 | /* | |
3388 | * XXX: GFP_NOFS allocations should rather fail than rely on | |
3389 | * other request to make a forward progress. | |
3390 | * We are in an unfortunate situation where out_of_memory cannot | |
3391 | * do much for this context but let's try it to at least get | |
3392 | * access to memory reserved if the current task is killed (see | |
3393 | * out_of_memory). Once filesystems are ready to handle allocation | |
3394 | * failures more gracefully we should just bail out here. | |
3395 | */ | |
3396 | ||
3397 | /* The OOM killer may not free memory on a specific node */ | |
3398 | if (gfp_mask & __GFP_THISNODE) | |
3399 | goto out; | |
3da88fb3 | 3400 | |
3c2c6488 | 3401 | /* Exhausted what can be done so it's blame time */ |
5020e285 | 3402 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { |
c32b3cbe | 3403 | *did_some_progress = 1; |
5020e285 | 3404 | |
6c18ba7a MH |
3405 | /* |
3406 | * Help non-failing allocations by giving them access to memory | |
3407 | * reserves | |
3408 | */ | |
3409 | if (gfp_mask & __GFP_NOFAIL) | |
3410 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | |
5020e285 | 3411 | ALLOC_NO_WATERMARKS, ac); |
5020e285 | 3412 | } |
11e33f6a | 3413 | out: |
dc56401f | 3414 | mutex_unlock(&oom_lock); |
11e33f6a MG |
3415 | return page; |
3416 | } | |
3417 | ||
33c2d214 MH |
3418 | /* |
3419 | * Maximum number of compaction retries wit a progress before OOM | |
3420 | * killer is consider as the only way to move forward. | |
3421 | */ | |
3422 | #define MAX_COMPACT_RETRIES 16 | |
3423 | ||
56de7263 MG |
3424 | #ifdef CONFIG_COMPACTION |
3425 | /* Try memory compaction for high-order allocations before reclaim */ | |
3426 | static struct page * | |
3427 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3428 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3429 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3430 | { |
98dd3b48 | 3431 | struct page *page; |
499118e9 | 3432 | unsigned int noreclaim_flag; |
53853e2d VB |
3433 | |
3434 | if (!order) | |
66199712 | 3435 | return NULL; |
66199712 | 3436 | |
499118e9 | 3437 | noreclaim_flag = memalloc_noreclaim_save(); |
c5d01d0d | 3438 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
c3486f53 | 3439 | prio); |
499118e9 | 3440 | memalloc_noreclaim_restore(noreclaim_flag); |
56de7263 | 3441 | |
c5d01d0d | 3442 | if (*compact_result <= COMPACT_INACTIVE) |
98dd3b48 | 3443 | return NULL; |
53853e2d | 3444 | |
98dd3b48 VB |
3445 | /* |
3446 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
3447 | * count a compaction stall | |
3448 | */ | |
3449 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 3450 | |
31a6c190 | 3451 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
53853e2d | 3452 | |
98dd3b48 VB |
3453 | if (page) { |
3454 | struct zone *zone = page_zone(page); | |
53853e2d | 3455 | |
98dd3b48 VB |
3456 | zone->compact_blockskip_flush = false; |
3457 | compaction_defer_reset(zone, order, true); | |
3458 | count_vm_event(COMPACTSUCCESS); | |
3459 | return page; | |
3460 | } | |
56de7263 | 3461 | |
98dd3b48 VB |
3462 | /* |
3463 | * It's bad if compaction run occurs and fails. The most likely reason | |
3464 | * is that pages exist, but not enough to satisfy watermarks. | |
3465 | */ | |
3466 | count_vm_event(COMPACTFAIL); | |
66199712 | 3467 | |
98dd3b48 | 3468 | cond_resched(); |
56de7263 MG |
3469 | |
3470 | return NULL; | |
3471 | } | |
33c2d214 | 3472 | |
3250845d VB |
3473 | static inline bool |
3474 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | |
3475 | enum compact_result compact_result, | |
3476 | enum compact_priority *compact_priority, | |
d9436498 | 3477 | int *compaction_retries) |
3250845d VB |
3478 | { |
3479 | int max_retries = MAX_COMPACT_RETRIES; | |
c2033b00 | 3480 | int min_priority; |
65190cff MH |
3481 | bool ret = false; |
3482 | int retries = *compaction_retries; | |
3483 | enum compact_priority priority = *compact_priority; | |
3250845d VB |
3484 | |
3485 | if (!order) | |
3486 | return false; | |
3487 | ||
d9436498 VB |
3488 | if (compaction_made_progress(compact_result)) |
3489 | (*compaction_retries)++; | |
3490 | ||
3250845d VB |
3491 | /* |
3492 | * compaction considers all the zone as desperately out of memory | |
3493 | * so it doesn't really make much sense to retry except when the | |
3494 | * failure could be caused by insufficient priority | |
3495 | */ | |
d9436498 VB |
3496 | if (compaction_failed(compact_result)) |
3497 | goto check_priority; | |
3250845d VB |
3498 | |
3499 | /* | |
3500 | * make sure the compaction wasn't deferred or didn't bail out early | |
3501 | * due to locks contention before we declare that we should give up. | |
3502 | * But do not retry if the given zonelist is not suitable for | |
3503 | * compaction. | |
3504 | */ | |
65190cff MH |
3505 | if (compaction_withdrawn(compact_result)) { |
3506 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); | |
3507 | goto out; | |
3508 | } | |
3250845d VB |
3509 | |
3510 | /* | |
dcda9b04 | 3511 | * !costly requests are much more important than __GFP_RETRY_MAYFAIL |
3250845d VB |
3512 | * costly ones because they are de facto nofail and invoke OOM |
3513 | * killer to move on while costly can fail and users are ready | |
3514 | * to cope with that. 1/4 retries is rather arbitrary but we | |
3515 | * would need much more detailed feedback from compaction to | |
3516 | * make a better decision. | |
3517 | */ | |
3518 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3519 | max_retries /= 4; | |
65190cff MH |
3520 | if (*compaction_retries <= max_retries) { |
3521 | ret = true; | |
3522 | goto out; | |
3523 | } | |
3250845d | 3524 | |
d9436498 VB |
3525 | /* |
3526 | * Make sure there are attempts at the highest priority if we exhausted | |
3527 | * all retries or failed at the lower priorities. | |
3528 | */ | |
3529 | check_priority: | |
c2033b00 VB |
3530 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
3531 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | |
65190cff | 3532 | |
c2033b00 | 3533 | if (*compact_priority > min_priority) { |
d9436498 VB |
3534 | (*compact_priority)--; |
3535 | *compaction_retries = 0; | |
65190cff | 3536 | ret = true; |
d9436498 | 3537 | } |
65190cff MH |
3538 | out: |
3539 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | |
3540 | return ret; | |
3250845d | 3541 | } |
56de7263 MG |
3542 | #else |
3543 | static inline struct page * | |
3544 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3545 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3546 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3547 | { |
33c2d214 | 3548 | *compact_result = COMPACT_SKIPPED; |
56de7263 MG |
3549 | return NULL; |
3550 | } | |
33c2d214 MH |
3551 | |
3552 | static inline bool | |
86a294a8 MH |
3553 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
3554 | enum compact_result compact_result, | |
a5508cd8 | 3555 | enum compact_priority *compact_priority, |
d9436498 | 3556 | int *compaction_retries) |
33c2d214 | 3557 | { |
31e49bfd MH |
3558 | struct zone *zone; |
3559 | struct zoneref *z; | |
3560 | ||
3561 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | |
3562 | return false; | |
3563 | ||
3564 | /* | |
3565 | * There are setups with compaction disabled which would prefer to loop | |
3566 | * inside the allocator rather than hit the oom killer prematurely. | |
3567 | * Let's give them a good hope and keep retrying while the order-0 | |
3568 | * watermarks are OK. | |
3569 | */ | |
3570 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
3571 | ac->nodemask) { | |
3572 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | |
3573 | ac_classzone_idx(ac), alloc_flags)) | |
3574 | return true; | |
3575 | } | |
33c2d214 MH |
3576 | return false; |
3577 | } | |
3250845d | 3578 | #endif /* CONFIG_COMPACTION */ |
56de7263 | 3579 | |
d92a8cfc PZ |
3580 | #ifdef CONFIG_LOCKDEP |
3581 | struct lockdep_map __fs_reclaim_map = | |
3582 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); | |
3583 | ||
3584 | static bool __need_fs_reclaim(gfp_t gfp_mask) | |
3585 | { | |
3586 | gfp_mask = current_gfp_context(gfp_mask); | |
3587 | ||
3588 | /* no reclaim without waiting on it */ | |
3589 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | |
3590 | return false; | |
3591 | ||
3592 | /* this guy won't enter reclaim */ | |
3593 | if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) | |
3594 | return false; | |
3595 | ||
3596 | /* We're only interested __GFP_FS allocations for now */ | |
3597 | if (!(gfp_mask & __GFP_FS)) | |
3598 | return false; | |
3599 | ||
3600 | if (gfp_mask & __GFP_NOLOCKDEP) | |
3601 | return false; | |
3602 | ||
3603 | return true; | |
3604 | } | |
3605 | ||
3606 | void fs_reclaim_acquire(gfp_t gfp_mask) | |
3607 | { | |
3608 | if (__need_fs_reclaim(gfp_mask)) | |
3609 | lock_map_acquire(&__fs_reclaim_map); | |
3610 | } | |
3611 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | |
3612 | ||
3613 | void fs_reclaim_release(gfp_t gfp_mask) | |
3614 | { | |
3615 | if (__need_fs_reclaim(gfp_mask)) | |
3616 | lock_map_release(&__fs_reclaim_map); | |
3617 | } | |
3618 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | |
3619 | #endif | |
3620 | ||
bba90710 MS |
3621 | /* Perform direct synchronous page reclaim */ |
3622 | static int | |
a9263751 VB |
3623 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
3624 | const struct alloc_context *ac) | |
11e33f6a | 3625 | { |
11e33f6a | 3626 | struct reclaim_state reclaim_state; |
bba90710 | 3627 | int progress; |
499118e9 | 3628 | unsigned int noreclaim_flag; |
11e33f6a MG |
3629 | |
3630 | cond_resched(); | |
3631 | ||
3632 | /* We now go into synchronous reclaim */ | |
3633 | cpuset_memory_pressure_bump(); | |
499118e9 | 3634 | noreclaim_flag = memalloc_noreclaim_save(); |
d92a8cfc | 3635 | fs_reclaim_acquire(gfp_mask); |
11e33f6a | 3636 | reclaim_state.reclaimed_slab = 0; |
c06b1fca | 3637 | current->reclaim_state = &reclaim_state; |
11e33f6a | 3638 | |
a9263751 VB |
3639 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
3640 | ac->nodemask); | |
11e33f6a | 3641 | |
c06b1fca | 3642 | current->reclaim_state = NULL; |
d92a8cfc | 3643 | fs_reclaim_release(gfp_mask); |
499118e9 | 3644 | memalloc_noreclaim_restore(noreclaim_flag); |
11e33f6a MG |
3645 | |
3646 | cond_resched(); | |
3647 | ||
bba90710 MS |
3648 | return progress; |
3649 | } | |
3650 | ||
3651 | /* The really slow allocator path where we enter direct reclaim */ | |
3652 | static inline struct page * | |
3653 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3654 | unsigned int alloc_flags, const struct alloc_context *ac, |
a9263751 | 3655 | unsigned long *did_some_progress) |
bba90710 MS |
3656 | { |
3657 | struct page *page = NULL; | |
3658 | bool drained = false; | |
3659 | ||
a9263751 | 3660 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce MG |
3661 | if (unlikely(!(*did_some_progress))) |
3662 | return NULL; | |
11e33f6a | 3663 | |
9ee493ce | 3664 | retry: |
31a6c190 | 3665 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
9ee493ce MG |
3666 | |
3667 | /* | |
3668 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 MG |
3669 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
3670 | * Shrink them them and try again | |
9ee493ce MG |
3671 | */ |
3672 | if (!page && !drained) { | |
29fac03b | 3673 | unreserve_highatomic_pageblock(ac, false); |
93481ff0 | 3674 | drain_all_pages(NULL); |
9ee493ce MG |
3675 | drained = true; |
3676 | goto retry; | |
3677 | } | |
3678 | ||
11e33f6a MG |
3679 | return page; |
3680 | } | |
3681 | ||
a9263751 | 3682 | static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) |
3a025760 JW |
3683 | { |
3684 | struct zoneref *z; | |
3685 | struct zone *zone; | |
e1a55637 | 3686 | pg_data_t *last_pgdat = NULL; |
3a025760 | 3687 | |
a9263751 | 3688 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
e1a55637 MG |
3689 | ac->high_zoneidx, ac->nodemask) { |
3690 | if (last_pgdat != zone->zone_pgdat) | |
52e9f87a | 3691 | wakeup_kswapd(zone, order, ac->high_zoneidx); |
e1a55637 MG |
3692 | last_pgdat = zone->zone_pgdat; |
3693 | } | |
3a025760 JW |
3694 | } |
3695 | ||
c603844b | 3696 | static inline unsigned int |
341ce06f PZ |
3697 | gfp_to_alloc_flags(gfp_t gfp_mask) |
3698 | { | |
c603844b | 3699 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 3700 | |
a56f57ff | 3701 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 3702 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 3703 | |
341ce06f PZ |
3704 | /* |
3705 | * The caller may dip into page reserves a bit more if the caller | |
3706 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
3707 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
d0164adc | 3708 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 3709 | */ |
e6223a3b | 3710 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 3711 | |
d0164adc | 3712 | if (gfp_mask & __GFP_ATOMIC) { |
5c3240d9 | 3713 | /* |
b104a35d DR |
3714 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
3715 | * if it can't schedule. | |
5c3240d9 | 3716 | */ |
b104a35d | 3717 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 3718 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 3719 | /* |
b104a35d | 3720 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
344736f2 | 3721 | * comment for __cpuset_node_allowed(). |
523b9458 | 3722 | */ |
341ce06f | 3723 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 3724 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
3725 | alloc_flags |= ALLOC_HARDER; |
3726 | ||
d95ea5d1 | 3727 | #ifdef CONFIG_CMA |
43e7a34d | 3728 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
d95ea5d1 BZ |
3729 | alloc_flags |= ALLOC_CMA; |
3730 | #endif | |
341ce06f PZ |
3731 | return alloc_flags; |
3732 | } | |
3733 | ||
cd04ae1e | 3734 | static bool oom_reserves_allowed(struct task_struct *tsk) |
072bb0aa | 3735 | { |
cd04ae1e MH |
3736 | if (!tsk_is_oom_victim(tsk)) |
3737 | return false; | |
3738 | ||
3739 | /* | |
3740 | * !MMU doesn't have oom reaper so give access to memory reserves | |
3741 | * only to the thread with TIF_MEMDIE set | |
3742 | */ | |
3743 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | |
31a6c190 VB |
3744 | return false; |
3745 | ||
cd04ae1e MH |
3746 | return true; |
3747 | } | |
3748 | ||
3749 | /* | |
3750 | * Distinguish requests which really need access to full memory | |
3751 | * reserves from oom victims which can live with a portion of it | |
3752 | */ | |
3753 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | |
3754 | { | |
3755 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | |
3756 | return 0; | |
31a6c190 | 3757 | if (gfp_mask & __GFP_MEMALLOC) |
cd04ae1e | 3758 | return ALLOC_NO_WATERMARKS; |
31a6c190 | 3759 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
cd04ae1e MH |
3760 | return ALLOC_NO_WATERMARKS; |
3761 | if (!in_interrupt()) { | |
3762 | if (current->flags & PF_MEMALLOC) | |
3763 | return ALLOC_NO_WATERMARKS; | |
3764 | else if (oom_reserves_allowed(current)) | |
3765 | return ALLOC_OOM; | |
3766 | } | |
31a6c190 | 3767 | |
cd04ae1e MH |
3768 | return 0; |
3769 | } | |
3770 | ||
3771 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | |
3772 | { | |
3773 | return !!__gfp_pfmemalloc_flags(gfp_mask); | |
072bb0aa MG |
3774 | } |
3775 | ||
0a0337e0 MH |
3776 | /* |
3777 | * Checks whether it makes sense to retry the reclaim to make a forward progress | |
3778 | * for the given allocation request. | |
491d79ae JW |
3779 | * |
3780 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | |
3781 | * without success, or when we couldn't even meet the watermark if we | |
3782 | * reclaimed all remaining pages on the LRU lists. | |
0a0337e0 MH |
3783 | * |
3784 | * Returns true if a retry is viable or false to enter the oom path. | |
3785 | */ | |
3786 | static inline bool | |
3787 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | |
3788 | struct alloc_context *ac, int alloc_flags, | |
423b452e | 3789 | bool did_some_progress, int *no_progress_loops) |
0a0337e0 MH |
3790 | { |
3791 | struct zone *zone; | |
3792 | struct zoneref *z; | |
3793 | ||
423b452e VB |
3794 | /* |
3795 | * Costly allocations might have made a progress but this doesn't mean | |
3796 | * their order will become available due to high fragmentation so | |
3797 | * always increment the no progress counter for them | |
3798 | */ | |
3799 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | |
3800 | *no_progress_loops = 0; | |
3801 | else | |
3802 | (*no_progress_loops)++; | |
3803 | ||
0a0337e0 MH |
3804 | /* |
3805 | * Make sure we converge to OOM if we cannot make any progress | |
3806 | * several times in the row. | |
3807 | */ | |
04c8716f MK |
3808 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) { |
3809 | /* Before OOM, exhaust highatomic_reserve */ | |
29fac03b | 3810 | return unreserve_highatomic_pageblock(ac, true); |
04c8716f | 3811 | } |
0a0337e0 | 3812 | |
bca67592 MG |
3813 | /* |
3814 | * Keep reclaiming pages while there is a chance this will lead | |
3815 | * somewhere. If none of the target zones can satisfy our allocation | |
3816 | * request even if all reclaimable pages are considered then we are | |
3817 | * screwed and have to go OOM. | |
0a0337e0 MH |
3818 | */ |
3819 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
3820 | ac->nodemask) { | |
3821 | unsigned long available; | |
ede37713 | 3822 | unsigned long reclaimable; |
d379f01d MH |
3823 | unsigned long min_wmark = min_wmark_pages(zone); |
3824 | bool wmark; | |
0a0337e0 | 3825 | |
5a1c84b4 | 3826 | available = reclaimable = zone_reclaimable_pages(zone); |
5a1c84b4 | 3827 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
0a0337e0 MH |
3828 | |
3829 | /* | |
491d79ae JW |
3830 | * Would the allocation succeed if we reclaimed all |
3831 | * reclaimable pages? | |
0a0337e0 | 3832 | */ |
d379f01d MH |
3833 | wmark = __zone_watermark_ok(zone, order, min_wmark, |
3834 | ac_classzone_idx(ac), alloc_flags, available); | |
3835 | trace_reclaim_retry_zone(z, order, reclaimable, | |
3836 | available, min_wmark, *no_progress_loops, wmark); | |
3837 | if (wmark) { | |
ede37713 MH |
3838 | /* |
3839 | * If we didn't make any progress and have a lot of | |
3840 | * dirty + writeback pages then we should wait for | |
3841 | * an IO to complete to slow down the reclaim and | |
3842 | * prevent from pre mature OOM | |
3843 | */ | |
3844 | if (!did_some_progress) { | |
11fb9989 | 3845 | unsigned long write_pending; |
ede37713 | 3846 | |
5a1c84b4 MG |
3847 | write_pending = zone_page_state_snapshot(zone, |
3848 | NR_ZONE_WRITE_PENDING); | |
ede37713 | 3849 | |
11fb9989 | 3850 | if (2 * write_pending > reclaimable) { |
ede37713 MH |
3851 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
3852 | return true; | |
3853 | } | |
3854 | } | |
5a1c84b4 | 3855 | |
ede37713 MH |
3856 | /* |
3857 | * Memory allocation/reclaim might be called from a WQ | |
3858 | * context and the current implementation of the WQ | |
3859 | * concurrency control doesn't recognize that | |
3860 | * a particular WQ is congested if the worker thread is | |
3861 | * looping without ever sleeping. Therefore we have to | |
3862 | * do a short sleep here rather than calling | |
3863 | * cond_resched(). | |
3864 | */ | |
3865 | if (current->flags & PF_WQ_WORKER) | |
3866 | schedule_timeout_uninterruptible(1); | |
3867 | else | |
3868 | cond_resched(); | |
3869 | ||
0a0337e0 MH |
3870 | return true; |
3871 | } | |
3872 | } | |
3873 | ||
3874 | return false; | |
3875 | } | |
3876 | ||
902b6281 VB |
3877 | static inline bool |
3878 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | |
3879 | { | |
3880 | /* | |
3881 | * It's possible that cpuset's mems_allowed and the nodemask from | |
3882 | * mempolicy don't intersect. This should be normally dealt with by | |
3883 | * policy_nodemask(), but it's possible to race with cpuset update in | |
3884 | * such a way the check therein was true, and then it became false | |
3885 | * before we got our cpuset_mems_cookie here. | |
3886 | * This assumes that for all allocations, ac->nodemask can come only | |
3887 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | |
3888 | * when it does not intersect with the cpuset restrictions) or the | |
3889 | * caller can deal with a violated nodemask. | |
3890 | */ | |
3891 | if (cpusets_enabled() && ac->nodemask && | |
3892 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | |
3893 | ac->nodemask = NULL; | |
3894 | return true; | |
3895 | } | |
3896 | ||
3897 | /* | |
3898 | * When updating a task's mems_allowed or mempolicy nodemask, it is | |
3899 | * possible to race with parallel threads in such a way that our | |
3900 | * allocation can fail while the mask is being updated. If we are about | |
3901 | * to fail, check if the cpuset changed during allocation and if so, | |
3902 | * retry. | |
3903 | */ | |
3904 | if (read_mems_allowed_retry(cpuset_mems_cookie)) | |
3905 | return true; | |
3906 | ||
3907 | return false; | |
3908 | } | |
3909 | ||
11e33f6a MG |
3910 | static inline struct page * |
3911 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3912 | struct alloc_context *ac) |
11e33f6a | 3913 | { |
d0164adc | 3914 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
282722b0 | 3915 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
11e33f6a | 3916 | struct page *page = NULL; |
c603844b | 3917 | unsigned int alloc_flags; |
11e33f6a | 3918 | unsigned long did_some_progress; |
5ce9bfef | 3919 | enum compact_priority compact_priority; |
c5d01d0d | 3920 | enum compact_result compact_result; |
5ce9bfef VB |
3921 | int compaction_retries; |
3922 | int no_progress_loops; | |
5ce9bfef | 3923 | unsigned int cpuset_mems_cookie; |
cd04ae1e | 3924 | int reserve_flags; |
1da177e4 | 3925 | |
72807a74 MG |
3926 | /* |
3927 | * In the slowpath, we sanity check order to avoid ever trying to | |
3928 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
3929 | * be using allocators in order of preference for an area that is | |
3930 | * too large. | |
3931 | */ | |
1fc28b70 MG |
3932 | if (order >= MAX_ORDER) { |
3933 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 3934 | return NULL; |
1fc28b70 | 3935 | } |
1da177e4 | 3936 | |
d0164adc MG |
3937 | /* |
3938 | * We also sanity check to catch abuse of atomic reserves being used by | |
3939 | * callers that are not in atomic context. | |
3940 | */ | |
3941 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | |
3942 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | |
3943 | gfp_mask &= ~__GFP_ATOMIC; | |
3944 | ||
5ce9bfef VB |
3945 | retry_cpuset: |
3946 | compaction_retries = 0; | |
3947 | no_progress_loops = 0; | |
3948 | compact_priority = DEF_COMPACT_PRIORITY; | |
3949 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
9a67f648 MH |
3950 | |
3951 | /* | |
3952 | * The fast path uses conservative alloc_flags to succeed only until | |
3953 | * kswapd needs to be woken up, and to avoid the cost of setting up | |
3954 | * alloc_flags precisely. So we do that now. | |
3955 | */ | |
3956 | alloc_flags = gfp_to_alloc_flags(gfp_mask); | |
3957 | ||
e47483bc VB |
3958 | /* |
3959 | * We need to recalculate the starting point for the zonelist iterator | |
3960 | * because we might have used different nodemask in the fast path, or | |
3961 | * there was a cpuset modification and we are retrying - otherwise we | |
3962 | * could end up iterating over non-eligible zones endlessly. | |
3963 | */ | |
3964 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
3965 | ac->high_zoneidx, ac->nodemask); | |
3966 | if (!ac->preferred_zoneref->zone) | |
3967 | goto nopage; | |
3968 | ||
23771235 VB |
3969 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
3970 | wake_all_kswapds(order, ac); | |
3971 | ||
3972 | /* | |
3973 | * The adjusted alloc_flags might result in immediate success, so try | |
3974 | * that first | |
3975 | */ | |
3976 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
3977 | if (page) | |
3978 | goto got_pg; | |
3979 | ||
a8161d1e VB |
3980 | /* |
3981 | * For costly allocations, try direct compaction first, as it's likely | |
282722b0 VB |
3982 | * that we have enough base pages and don't need to reclaim. For non- |
3983 | * movable high-order allocations, do that as well, as compaction will | |
3984 | * try prevent permanent fragmentation by migrating from blocks of the | |
3985 | * same migratetype. | |
3986 | * Don't try this for allocations that are allowed to ignore | |
3987 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | |
a8161d1e | 3988 | */ |
282722b0 VB |
3989 | if (can_direct_reclaim && |
3990 | (costly_order || | |
3991 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | |
3992 | && !gfp_pfmemalloc_allowed(gfp_mask)) { | |
a8161d1e VB |
3993 | page = __alloc_pages_direct_compact(gfp_mask, order, |
3994 | alloc_flags, ac, | |
a5508cd8 | 3995 | INIT_COMPACT_PRIORITY, |
a8161d1e VB |
3996 | &compact_result); |
3997 | if (page) | |
3998 | goto got_pg; | |
3999 | ||
3eb2771b VB |
4000 | /* |
4001 | * Checks for costly allocations with __GFP_NORETRY, which | |
4002 | * includes THP page fault allocations | |
4003 | */ | |
282722b0 | 4004 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { |
a8161d1e VB |
4005 | /* |
4006 | * If compaction is deferred for high-order allocations, | |
4007 | * it is because sync compaction recently failed. If | |
4008 | * this is the case and the caller requested a THP | |
4009 | * allocation, we do not want to heavily disrupt the | |
4010 | * system, so we fail the allocation instead of entering | |
4011 | * direct reclaim. | |
4012 | */ | |
4013 | if (compact_result == COMPACT_DEFERRED) | |
4014 | goto nopage; | |
4015 | ||
a8161d1e | 4016 | /* |
3eb2771b VB |
4017 | * Looks like reclaim/compaction is worth trying, but |
4018 | * sync compaction could be very expensive, so keep | |
25160354 | 4019 | * using async compaction. |
a8161d1e | 4020 | */ |
a5508cd8 | 4021 | compact_priority = INIT_COMPACT_PRIORITY; |
a8161d1e VB |
4022 | } |
4023 | } | |
23771235 | 4024 | |
31a6c190 | 4025 | retry: |
23771235 | 4026 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
31a6c190 VB |
4027 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
4028 | wake_all_kswapds(order, ac); | |
4029 | ||
cd04ae1e MH |
4030 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
4031 | if (reserve_flags) | |
4032 | alloc_flags = reserve_flags; | |
23771235 | 4033 | |
e46e7b77 MG |
4034 | /* |
4035 | * Reset the zonelist iterators if memory policies can be ignored. | |
4036 | * These allocations are high priority and system rather than user | |
4037 | * orientated. | |
4038 | */ | |
cd04ae1e | 4039 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
e46e7b77 MG |
4040 | ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); |
4041 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
4042 | ac->high_zoneidx, ac->nodemask); | |
4043 | } | |
4044 | ||
23771235 | 4045 | /* Attempt with potentially adjusted zonelist and alloc_flags */ |
31a6c190 | 4046 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
7fb1d9fc RS |
4047 | if (page) |
4048 | goto got_pg; | |
1da177e4 | 4049 | |
d0164adc | 4050 | /* Caller is not willing to reclaim, we can't balance anything */ |
9a67f648 | 4051 | if (!can_direct_reclaim) |
1da177e4 LT |
4052 | goto nopage; |
4053 | ||
9a67f648 MH |
4054 | /* Avoid recursion of direct reclaim */ |
4055 | if (current->flags & PF_MEMALLOC) | |
6583bb64 DR |
4056 | goto nopage; |
4057 | ||
a8161d1e VB |
4058 | /* Try direct reclaim and then allocating */ |
4059 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | |
4060 | &did_some_progress); | |
4061 | if (page) | |
4062 | goto got_pg; | |
4063 | ||
4064 | /* Try direct compaction and then allocating */ | |
a9263751 | 4065 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
a5508cd8 | 4066 | compact_priority, &compact_result); |
56de7263 MG |
4067 | if (page) |
4068 | goto got_pg; | |
75f30861 | 4069 | |
9083905a JW |
4070 | /* Do not loop if specifically requested */ |
4071 | if (gfp_mask & __GFP_NORETRY) | |
a8161d1e | 4072 | goto nopage; |
9083905a | 4073 | |
0a0337e0 MH |
4074 | /* |
4075 | * Do not retry costly high order allocations unless they are | |
dcda9b04 | 4076 | * __GFP_RETRY_MAYFAIL |
0a0337e0 | 4077 | */ |
dcda9b04 | 4078 | if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) |
a8161d1e | 4079 | goto nopage; |
0a0337e0 | 4080 | |
0a0337e0 | 4081 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
423b452e | 4082 | did_some_progress > 0, &no_progress_loops)) |
0a0337e0 MH |
4083 | goto retry; |
4084 | ||
33c2d214 MH |
4085 | /* |
4086 | * It doesn't make any sense to retry for the compaction if the order-0 | |
4087 | * reclaim is not able to make any progress because the current | |
4088 | * implementation of the compaction depends on the sufficient amount | |
4089 | * of free memory (see __compaction_suitable) | |
4090 | */ | |
4091 | if (did_some_progress > 0 && | |
86a294a8 | 4092 | should_compact_retry(ac, order, alloc_flags, |
a5508cd8 | 4093 | compact_result, &compact_priority, |
d9436498 | 4094 | &compaction_retries)) |
33c2d214 MH |
4095 | goto retry; |
4096 | ||
902b6281 VB |
4097 | |
4098 | /* Deal with possible cpuset update races before we start OOM killing */ | |
4099 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | |
e47483bc VB |
4100 | goto retry_cpuset; |
4101 | ||
9083905a JW |
4102 | /* Reclaim has failed us, start killing things */ |
4103 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
4104 | if (page) | |
4105 | goto got_pg; | |
4106 | ||
9a67f648 | 4107 | /* Avoid allocations with no watermarks from looping endlessly */ |
cd04ae1e MH |
4108 | if (tsk_is_oom_victim(current) && |
4109 | (alloc_flags == ALLOC_OOM || | |
c288983d | 4110 | (gfp_mask & __GFP_NOMEMALLOC))) |
9a67f648 MH |
4111 | goto nopage; |
4112 | ||
9083905a | 4113 | /* Retry as long as the OOM killer is making progress */ |
0a0337e0 MH |
4114 | if (did_some_progress) { |
4115 | no_progress_loops = 0; | |
9083905a | 4116 | goto retry; |
0a0337e0 | 4117 | } |
9083905a | 4118 | |
1da177e4 | 4119 | nopage: |
902b6281 VB |
4120 | /* Deal with possible cpuset update races before we fail */ |
4121 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | |
5ce9bfef VB |
4122 | goto retry_cpuset; |
4123 | ||
9a67f648 MH |
4124 | /* |
4125 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | |
4126 | * we always retry | |
4127 | */ | |
4128 | if (gfp_mask & __GFP_NOFAIL) { | |
4129 | /* | |
4130 | * All existing users of the __GFP_NOFAIL are blockable, so warn | |
4131 | * of any new users that actually require GFP_NOWAIT | |
4132 | */ | |
4133 | if (WARN_ON_ONCE(!can_direct_reclaim)) | |
4134 | goto fail; | |
4135 | ||
4136 | /* | |
4137 | * PF_MEMALLOC request from this context is rather bizarre | |
4138 | * because we cannot reclaim anything and only can loop waiting | |
4139 | * for somebody to do a work for us | |
4140 | */ | |
4141 | WARN_ON_ONCE(current->flags & PF_MEMALLOC); | |
4142 | ||
4143 | /* | |
4144 | * non failing costly orders are a hard requirement which we | |
4145 | * are not prepared for much so let's warn about these users | |
4146 | * so that we can identify them and convert them to something | |
4147 | * else. | |
4148 | */ | |
4149 | WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); | |
4150 | ||
6c18ba7a MH |
4151 | /* |
4152 | * Help non-failing allocations by giving them access to memory | |
4153 | * reserves but do not use ALLOC_NO_WATERMARKS because this | |
4154 | * could deplete whole memory reserves which would just make | |
4155 | * the situation worse | |
4156 | */ | |
4157 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); | |
4158 | if (page) | |
4159 | goto got_pg; | |
4160 | ||
9a67f648 MH |
4161 | cond_resched(); |
4162 | goto retry; | |
4163 | } | |
4164 | fail: | |
a8e99259 | 4165 | warn_alloc(gfp_mask, ac->nodemask, |
7877cdcc | 4166 | "page allocation failure: order:%u", order); |
1da177e4 | 4167 | got_pg: |
072bb0aa | 4168 | return page; |
1da177e4 | 4169 | } |
11e33f6a | 4170 | |
9cd75558 | 4171 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
04ec6264 | 4172 | int preferred_nid, nodemask_t *nodemask, |
9cd75558 MG |
4173 | struct alloc_context *ac, gfp_t *alloc_mask, |
4174 | unsigned int *alloc_flags) | |
11e33f6a | 4175 | { |
9cd75558 | 4176 | ac->high_zoneidx = gfp_zone(gfp_mask); |
04ec6264 | 4177 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
9cd75558 MG |
4178 | ac->nodemask = nodemask; |
4179 | ac->migratetype = gfpflags_to_migratetype(gfp_mask); | |
11e33f6a | 4180 | |
682a3385 | 4181 | if (cpusets_enabled()) { |
9cd75558 | 4182 | *alloc_mask |= __GFP_HARDWALL; |
9cd75558 MG |
4183 | if (!ac->nodemask) |
4184 | ac->nodemask = &cpuset_current_mems_allowed; | |
51047820 VB |
4185 | else |
4186 | *alloc_flags |= ALLOC_CPUSET; | |
682a3385 MG |
4187 | } |
4188 | ||
d92a8cfc PZ |
4189 | fs_reclaim_acquire(gfp_mask); |
4190 | fs_reclaim_release(gfp_mask); | |
11e33f6a | 4191 | |
d0164adc | 4192 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
11e33f6a MG |
4193 | |
4194 | if (should_fail_alloc_page(gfp_mask, order)) | |
9cd75558 | 4195 | return false; |
11e33f6a | 4196 | |
9cd75558 MG |
4197 | if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) |
4198 | *alloc_flags |= ALLOC_CMA; | |
4199 | ||
4200 | return true; | |
4201 | } | |
21bb9bd1 | 4202 | |
9cd75558 MG |
4203 | /* Determine whether to spread dirty pages and what the first usable zone */ |
4204 | static inline void finalise_ac(gfp_t gfp_mask, | |
4205 | unsigned int order, struct alloc_context *ac) | |
4206 | { | |
c9ab0c4f | 4207 | /* Dirty zone balancing only done in the fast path */ |
9cd75558 | 4208 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
c9ab0c4f | 4209 | |
e46e7b77 MG |
4210 | /* |
4211 | * The preferred zone is used for statistics but crucially it is | |
4212 | * also used as the starting point for the zonelist iterator. It | |
4213 | * may get reset for allocations that ignore memory policies. | |
4214 | */ | |
9cd75558 MG |
4215 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
4216 | ac->high_zoneidx, ac->nodemask); | |
4217 | } | |
4218 | ||
4219 | /* | |
4220 | * This is the 'heart' of the zoned buddy allocator. | |
4221 | */ | |
4222 | struct page * | |
04ec6264 VB |
4223 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, |
4224 | nodemask_t *nodemask) | |
9cd75558 MG |
4225 | { |
4226 | struct page *page; | |
4227 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
f19360f0 | 4228 | gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ |
9cd75558 MG |
4229 | struct alloc_context ac = { }; |
4230 | ||
4231 | gfp_mask &= gfp_allowed_mask; | |
f19360f0 | 4232 | alloc_mask = gfp_mask; |
04ec6264 | 4233 | if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) |
9cd75558 MG |
4234 | return NULL; |
4235 | ||
4236 | finalise_ac(gfp_mask, order, &ac); | |
5bb1b169 | 4237 | |
5117f45d | 4238 | /* First allocation attempt */ |
a9263751 | 4239 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); |
4fcb0971 MG |
4240 | if (likely(page)) |
4241 | goto out; | |
11e33f6a | 4242 | |
4fcb0971 | 4243 | /* |
7dea19f9 MH |
4244 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS |
4245 | * resp. GFP_NOIO which has to be inherited for all allocation requests | |
4246 | * from a particular context which has been marked by | |
4247 | * memalloc_no{fs,io}_{save,restore}. | |
4fcb0971 | 4248 | */ |
7dea19f9 | 4249 | alloc_mask = current_gfp_context(gfp_mask); |
4fcb0971 | 4250 | ac.spread_dirty_pages = false; |
23f086f9 | 4251 | |
4741526b MG |
4252 | /* |
4253 | * Restore the original nodemask if it was potentially replaced with | |
4254 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | |
4255 | */ | |
e47483bc | 4256 | if (unlikely(ac.nodemask != nodemask)) |
4741526b | 4257 | ac.nodemask = nodemask; |
16096c25 | 4258 | |
4fcb0971 | 4259 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); |
cc9a6c87 | 4260 | |
4fcb0971 | 4261 | out: |
c4159a75 VD |
4262 | if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && |
4263 | unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { | |
4264 | __free_pages(page, order); | |
4265 | page = NULL; | |
4949148a VD |
4266 | } |
4267 | ||
4fcb0971 MG |
4268 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); |
4269 | ||
11e33f6a | 4270 | return page; |
1da177e4 | 4271 | } |
d239171e | 4272 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
4273 | |
4274 | /* | |
4275 | * Common helper functions. | |
4276 | */ | |
920c7a5d | 4277 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 4278 | { |
945a1113 AM |
4279 | struct page *page; |
4280 | ||
4281 | /* | |
48128397 | 4282 | * __get_free_pages() returns a virtual address, which cannot represent |
945a1113 AM |
4283 | * a highmem page |
4284 | */ | |
4285 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
4286 | ||
1da177e4 LT |
4287 | page = alloc_pages(gfp_mask, order); |
4288 | if (!page) | |
4289 | return 0; | |
4290 | return (unsigned long) page_address(page); | |
4291 | } | |
1da177e4 LT |
4292 | EXPORT_SYMBOL(__get_free_pages); |
4293 | ||
920c7a5d | 4294 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 4295 | { |
945a1113 | 4296 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 4297 | } |
1da177e4 LT |
4298 | EXPORT_SYMBOL(get_zeroed_page); |
4299 | ||
920c7a5d | 4300 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 4301 | { |
b5810039 | 4302 | if (put_page_testzero(page)) { |
1da177e4 | 4303 | if (order == 0) |
2d4894b5 | 4304 | free_unref_page(page); |
1da177e4 LT |
4305 | else |
4306 | __free_pages_ok(page, order); | |
4307 | } | |
4308 | } | |
4309 | ||
4310 | EXPORT_SYMBOL(__free_pages); | |
4311 | ||
920c7a5d | 4312 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
4313 | { |
4314 | if (addr != 0) { | |
725d704e | 4315 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
4316 | __free_pages(virt_to_page((void *)addr), order); |
4317 | } | |
4318 | } | |
4319 | ||
4320 | EXPORT_SYMBOL(free_pages); | |
4321 | ||
b63ae8ca AD |
4322 | /* |
4323 | * Page Fragment: | |
4324 | * An arbitrary-length arbitrary-offset area of memory which resides | |
4325 | * within a 0 or higher order page. Multiple fragments within that page | |
4326 | * are individually refcounted, in the page's reference counter. | |
4327 | * | |
4328 | * The page_frag functions below provide a simple allocation framework for | |
4329 | * page fragments. This is used by the network stack and network device | |
4330 | * drivers to provide a backing region of memory for use as either an | |
4331 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
4332 | */ | |
2976db80 AD |
4333 | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, |
4334 | gfp_t gfp_mask) | |
b63ae8ca AD |
4335 | { |
4336 | struct page *page = NULL; | |
4337 | gfp_t gfp = gfp_mask; | |
4338 | ||
4339 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4340 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | |
4341 | __GFP_NOMEMALLOC; | |
4342 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | |
4343 | PAGE_FRAG_CACHE_MAX_ORDER); | |
4344 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
4345 | #endif | |
4346 | if (unlikely(!page)) | |
4347 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
4348 | ||
4349 | nc->va = page ? page_address(page) : NULL; | |
4350 | ||
4351 | return page; | |
4352 | } | |
4353 | ||
2976db80 | 4354 | void __page_frag_cache_drain(struct page *page, unsigned int count) |
44fdffd7 AD |
4355 | { |
4356 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | |
4357 | ||
4358 | if (page_ref_sub_and_test(page, count)) { | |
2976db80 AD |
4359 | unsigned int order = compound_order(page); |
4360 | ||
44fdffd7 | 4361 | if (order == 0) |
2d4894b5 | 4362 | free_unref_page(page); |
44fdffd7 AD |
4363 | else |
4364 | __free_pages_ok(page, order); | |
4365 | } | |
4366 | } | |
2976db80 | 4367 | EXPORT_SYMBOL(__page_frag_cache_drain); |
44fdffd7 | 4368 | |
8c2dd3e4 AD |
4369 | void *page_frag_alloc(struct page_frag_cache *nc, |
4370 | unsigned int fragsz, gfp_t gfp_mask) | |
b63ae8ca AD |
4371 | { |
4372 | unsigned int size = PAGE_SIZE; | |
4373 | struct page *page; | |
4374 | int offset; | |
4375 | ||
4376 | if (unlikely(!nc->va)) { | |
4377 | refill: | |
2976db80 | 4378 | page = __page_frag_cache_refill(nc, gfp_mask); |
b63ae8ca AD |
4379 | if (!page) |
4380 | return NULL; | |
4381 | ||
4382 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4383 | /* if size can vary use size else just use PAGE_SIZE */ | |
4384 | size = nc->size; | |
4385 | #endif | |
4386 | /* Even if we own the page, we do not use atomic_set(). | |
4387 | * This would break get_page_unless_zero() users. | |
4388 | */ | |
fe896d18 | 4389 | page_ref_add(page, size - 1); |
b63ae8ca AD |
4390 | |
4391 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 4392 | nc->pfmemalloc = page_is_pfmemalloc(page); |
b63ae8ca AD |
4393 | nc->pagecnt_bias = size; |
4394 | nc->offset = size; | |
4395 | } | |
4396 | ||
4397 | offset = nc->offset - fragsz; | |
4398 | if (unlikely(offset < 0)) { | |
4399 | page = virt_to_page(nc->va); | |
4400 | ||
fe896d18 | 4401 | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
b63ae8ca AD |
4402 | goto refill; |
4403 | ||
4404 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4405 | /* if size can vary use size else just use PAGE_SIZE */ | |
4406 | size = nc->size; | |
4407 | #endif | |
4408 | /* OK, page count is 0, we can safely set it */ | |
fe896d18 | 4409 | set_page_count(page, size); |
b63ae8ca AD |
4410 | |
4411 | /* reset page count bias and offset to start of new frag */ | |
4412 | nc->pagecnt_bias = size; | |
4413 | offset = size - fragsz; | |
4414 | } | |
4415 | ||
4416 | nc->pagecnt_bias--; | |
4417 | nc->offset = offset; | |
4418 | ||
4419 | return nc->va + offset; | |
4420 | } | |
8c2dd3e4 | 4421 | EXPORT_SYMBOL(page_frag_alloc); |
b63ae8ca AD |
4422 | |
4423 | /* | |
4424 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
4425 | */ | |
8c2dd3e4 | 4426 | void page_frag_free(void *addr) |
b63ae8ca AD |
4427 | { |
4428 | struct page *page = virt_to_head_page(addr); | |
4429 | ||
4430 | if (unlikely(put_page_testzero(page))) | |
4431 | __free_pages_ok(page, compound_order(page)); | |
4432 | } | |
8c2dd3e4 | 4433 | EXPORT_SYMBOL(page_frag_free); |
b63ae8ca | 4434 | |
d00181b9 KS |
4435 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
4436 | size_t size) | |
ee85c2e1 AK |
4437 | { |
4438 | if (addr) { | |
4439 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
4440 | unsigned long used = addr + PAGE_ALIGN(size); | |
4441 | ||
4442 | split_page(virt_to_page((void *)addr), order); | |
4443 | while (used < alloc_end) { | |
4444 | free_page(used); | |
4445 | used += PAGE_SIZE; | |
4446 | } | |
4447 | } | |
4448 | return (void *)addr; | |
4449 | } | |
4450 | ||
2be0ffe2 TT |
4451 | /** |
4452 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
4453 | * @size: the number of bytes to allocate | |
4454 | * @gfp_mask: GFP flags for the allocation | |
4455 | * | |
4456 | * This function is similar to alloc_pages(), except that it allocates the | |
4457 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
4458 | * allocate memory in power-of-two pages. | |
4459 | * | |
4460 | * This function is also limited by MAX_ORDER. | |
4461 | * | |
4462 | * Memory allocated by this function must be released by free_pages_exact(). | |
4463 | */ | |
4464 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
4465 | { | |
4466 | unsigned int order = get_order(size); | |
4467 | unsigned long addr; | |
4468 | ||
4469 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 4470 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
4471 | } |
4472 | EXPORT_SYMBOL(alloc_pages_exact); | |
4473 | ||
ee85c2e1 AK |
4474 | /** |
4475 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
4476 | * pages on a node. | |
b5e6ab58 | 4477 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
4478 | * @size: the number of bytes to allocate |
4479 | * @gfp_mask: GFP flags for the allocation | |
4480 | * | |
4481 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
4482 | * back. | |
ee85c2e1 | 4483 | */ |
e1931811 | 4484 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 4485 | { |
d00181b9 | 4486 | unsigned int order = get_order(size); |
ee85c2e1 AK |
4487 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
4488 | if (!p) | |
4489 | return NULL; | |
4490 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
4491 | } | |
ee85c2e1 | 4492 | |
2be0ffe2 TT |
4493 | /** |
4494 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
4495 | * @virt: the value returned by alloc_pages_exact. | |
4496 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
4497 | * | |
4498 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
4499 | */ | |
4500 | void free_pages_exact(void *virt, size_t size) | |
4501 | { | |
4502 | unsigned long addr = (unsigned long)virt; | |
4503 | unsigned long end = addr + PAGE_ALIGN(size); | |
4504 | ||
4505 | while (addr < end) { | |
4506 | free_page(addr); | |
4507 | addr += PAGE_SIZE; | |
4508 | } | |
4509 | } | |
4510 | EXPORT_SYMBOL(free_pages_exact); | |
4511 | ||
e0fb5815 ZY |
4512 | /** |
4513 | * nr_free_zone_pages - count number of pages beyond high watermark | |
4514 | * @offset: The zone index of the highest zone | |
4515 | * | |
4516 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
4517 | * high watermark within all zones at or below a given zone index. For each | |
4518 | * zone, the number of pages is calculated as: | |
0e056eb5 MCC |
4519 | * |
4520 | * nr_free_zone_pages = managed_pages - high_pages | |
e0fb5815 | 4521 | */ |
ebec3862 | 4522 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 4523 | { |
dd1a239f | 4524 | struct zoneref *z; |
54a6eb5c MG |
4525 | struct zone *zone; |
4526 | ||
e310fd43 | 4527 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 4528 | unsigned long sum = 0; |
1da177e4 | 4529 | |
0e88460d | 4530 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 4531 | |
54a6eb5c | 4532 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 4533 | unsigned long size = zone->managed_pages; |
41858966 | 4534 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
4535 | if (size > high) |
4536 | sum += size - high; | |
1da177e4 LT |
4537 | } |
4538 | ||
4539 | return sum; | |
4540 | } | |
4541 | ||
e0fb5815 ZY |
4542 | /** |
4543 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
4544 | * | |
4545 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
4546 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 4547 | */ |
ebec3862 | 4548 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 4549 | { |
af4ca457 | 4550 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 4551 | } |
c2f1a551 | 4552 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 4553 | |
e0fb5815 ZY |
4554 | /** |
4555 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
4556 | * | |
4557 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
4558 | * high watermark within all zones. | |
1da177e4 | 4559 | */ |
ebec3862 | 4560 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 4561 | { |
2a1e274a | 4562 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 4563 | } |
08e0f6a9 CL |
4564 | |
4565 | static inline void show_node(struct zone *zone) | |
1da177e4 | 4566 | { |
e5adfffc | 4567 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 4568 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 4569 | } |
1da177e4 | 4570 | |
d02bd27b IR |
4571 | long si_mem_available(void) |
4572 | { | |
4573 | long available; | |
4574 | unsigned long pagecache; | |
4575 | unsigned long wmark_low = 0; | |
4576 | unsigned long pages[NR_LRU_LISTS]; | |
4577 | struct zone *zone; | |
4578 | int lru; | |
4579 | ||
4580 | for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | |
2f95ff90 | 4581 | pages[lru] = global_node_page_state(NR_LRU_BASE + lru); |
d02bd27b IR |
4582 | |
4583 | for_each_zone(zone) | |
4584 | wmark_low += zone->watermark[WMARK_LOW]; | |
4585 | ||
4586 | /* | |
4587 | * Estimate the amount of memory available for userspace allocations, | |
4588 | * without causing swapping. | |
4589 | */ | |
c41f012a | 4590 | available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; |
d02bd27b IR |
4591 | |
4592 | /* | |
4593 | * Not all the page cache can be freed, otherwise the system will | |
4594 | * start swapping. Assume at least half of the page cache, or the | |
4595 | * low watermark worth of cache, needs to stay. | |
4596 | */ | |
4597 | pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | |
4598 | pagecache -= min(pagecache / 2, wmark_low); | |
4599 | available += pagecache; | |
4600 | ||
4601 | /* | |
4602 | * Part of the reclaimable slab consists of items that are in use, | |
4603 | * and cannot be freed. Cap this estimate at the low watermark. | |
4604 | */ | |
d507e2eb JW |
4605 | available += global_node_page_state(NR_SLAB_RECLAIMABLE) - |
4606 | min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, | |
4607 | wmark_low); | |
d02bd27b IR |
4608 | |
4609 | if (available < 0) | |
4610 | available = 0; | |
4611 | return available; | |
4612 | } | |
4613 | EXPORT_SYMBOL_GPL(si_mem_available); | |
4614 | ||
1da177e4 LT |
4615 | void si_meminfo(struct sysinfo *val) |
4616 | { | |
4617 | val->totalram = totalram_pages; | |
11fb9989 | 4618 | val->sharedram = global_node_page_state(NR_SHMEM); |
c41f012a | 4619 | val->freeram = global_zone_page_state(NR_FREE_PAGES); |
1da177e4 | 4620 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
4621 | val->totalhigh = totalhigh_pages; |
4622 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
4623 | val->mem_unit = PAGE_SIZE; |
4624 | } | |
4625 | ||
4626 | EXPORT_SYMBOL(si_meminfo); | |
4627 | ||
4628 | #ifdef CONFIG_NUMA | |
4629 | void si_meminfo_node(struct sysinfo *val, int nid) | |
4630 | { | |
cdd91a77 JL |
4631 | int zone_type; /* needs to be signed */ |
4632 | unsigned long managed_pages = 0; | |
fc2bd799 JK |
4633 | unsigned long managed_highpages = 0; |
4634 | unsigned long free_highpages = 0; | |
1da177e4 LT |
4635 | pg_data_t *pgdat = NODE_DATA(nid); |
4636 | ||
cdd91a77 JL |
4637 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
4638 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
4639 | val->totalram = managed_pages; | |
11fb9989 | 4640 | val->sharedram = node_page_state(pgdat, NR_SHMEM); |
75ef7184 | 4641 | val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 4642 | #ifdef CONFIG_HIGHMEM |
fc2bd799 JK |
4643 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
4644 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
4645 | ||
4646 | if (is_highmem(zone)) { | |
4647 | managed_highpages += zone->managed_pages; | |
4648 | free_highpages += zone_page_state(zone, NR_FREE_PAGES); | |
4649 | } | |
4650 | } | |
4651 | val->totalhigh = managed_highpages; | |
4652 | val->freehigh = free_highpages; | |
98d2b0eb | 4653 | #else |
fc2bd799 JK |
4654 | val->totalhigh = managed_highpages; |
4655 | val->freehigh = free_highpages; | |
98d2b0eb | 4656 | #endif |
1da177e4 LT |
4657 | val->mem_unit = PAGE_SIZE; |
4658 | } | |
4659 | #endif | |
4660 | ||
ddd588b5 | 4661 | /* |
7bf02ea2 DR |
4662 | * Determine whether the node should be displayed or not, depending on whether |
4663 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 4664 | */ |
9af744d7 | 4665 | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) |
ddd588b5 | 4666 | { |
ddd588b5 | 4667 | if (!(flags & SHOW_MEM_FILTER_NODES)) |
9af744d7 | 4668 | return false; |
ddd588b5 | 4669 | |
9af744d7 MH |
4670 | /* |
4671 | * no node mask - aka implicit memory numa policy. Do not bother with | |
4672 | * the synchronization - read_mems_allowed_begin - because we do not | |
4673 | * have to be precise here. | |
4674 | */ | |
4675 | if (!nodemask) | |
4676 | nodemask = &cpuset_current_mems_allowed; | |
4677 | ||
4678 | return !node_isset(nid, *nodemask); | |
ddd588b5 DR |
4679 | } |
4680 | ||
1da177e4 LT |
4681 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
4682 | ||
377e4f16 RV |
4683 | static void show_migration_types(unsigned char type) |
4684 | { | |
4685 | static const char types[MIGRATE_TYPES] = { | |
4686 | [MIGRATE_UNMOVABLE] = 'U', | |
377e4f16 | 4687 | [MIGRATE_MOVABLE] = 'M', |
475a2f90 VB |
4688 | [MIGRATE_RECLAIMABLE] = 'E', |
4689 | [MIGRATE_HIGHATOMIC] = 'H', | |
377e4f16 RV |
4690 | #ifdef CONFIG_CMA |
4691 | [MIGRATE_CMA] = 'C', | |
4692 | #endif | |
194159fb | 4693 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 4694 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 4695 | #endif |
377e4f16 RV |
4696 | }; |
4697 | char tmp[MIGRATE_TYPES + 1]; | |
4698 | char *p = tmp; | |
4699 | int i; | |
4700 | ||
4701 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
4702 | if (type & (1 << i)) | |
4703 | *p++ = types[i]; | |
4704 | } | |
4705 | ||
4706 | *p = '\0'; | |
1f84a18f | 4707 | printk(KERN_CONT "(%s) ", tmp); |
377e4f16 RV |
4708 | } |
4709 | ||
1da177e4 LT |
4710 | /* |
4711 | * Show free area list (used inside shift_scroll-lock stuff) | |
4712 | * We also calculate the percentage fragmentation. We do this by counting the | |
4713 | * memory on each free list with the exception of the first item on the list. | |
d1bfcdb8 KK |
4714 | * |
4715 | * Bits in @filter: | |
4716 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | |
4717 | * cpuset. | |
1da177e4 | 4718 | */ |
9af744d7 | 4719 | void show_free_areas(unsigned int filter, nodemask_t *nodemask) |
1da177e4 | 4720 | { |
d1bfcdb8 | 4721 | unsigned long free_pcp = 0; |
c7241913 | 4722 | int cpu; |
1da177e4 | 4723 | struct zone *zone; |
599d0c95 | 4724 | pg_data_t *pgdat; |
1da177e4 | 4725 | |
ee99c71c | 4726 | for_each_populated_zone(zone) { |
9af744d7 | 4727 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 4728 | continue; |
d1bfcdb8 | 4729 | |
761b0677 KK |
4730 | for_each_online_cpu(cpu) |
4731 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
1da177e4 LT |
4732 | } |
4733 | ||
a731286d KM |
4734 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
4735 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
d1bfcdb8 KK |
4736 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" |
4737 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | |
d1ce749a | 4738 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
d1bfcdb8 | 4739 | " free:%lu free_pcp:%lu free_cma:%lu\n", |
599d0c95 MG |
4740 | global_node_page_state(NR_ACTIVE_ANON), |
4741 | global_node_page_state(NR_INACTIVE_ANON), | |
4742 | global_node_page_state(NR_ISOLATED_ANON), | |
4743 | global_node_page_state(NR_ACTIVE_FILE), | |
4744 | global_node_page_state(NR_INACTIVE_FILE), | |
4745 | global_node_page_state(NR_ISOLATED_FILE), | |
4746 | global_node_page_state(NR_UNEVICTABLE), | |
11fb9989 MG |
4747 | global_node_page_state(NR_FILE_DIRTY), |
4748 | global_node_page_state(NR_WRITEBACK), | |
4749 | global_node_page_state(NR_UNSTABLE_NFS), | |
d507e2eb JW |
4750 | global_node_page_state(NR_SLAB_RECLAIMABLE), |
4751 | global_node_page_state(NR_SLAB_UNRECLAIMABLE), | |
50658e2e | 4752 | global_node_page_state(NR_FILE_MAPPED), |
11fb9989 | 4753 | global_node_page_state(NR_SHMEM), |
c41f012a MH |
4754 | global_zone_page_state(NR_PAGETABLE), |
4755 | global_zone_page_state(NR_BOUNCE), | |
4756 | global_zone_page_state(NR_FREE_PAGES), | |
d1bfcdb8 | 4757 | free_pcp, |
c41f012a | 4758 | global_zone_page_state(NR_FREE_CMA_PAGES)); |
1da177e4 | 4759 | |
599d0c95 | 4760 | for_each_online_pgdat(pgdat) { |
9af744d7 | 4761 | if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) |
c02e50bb MH |
4762 | continue; |
4763 | ||
599d0c95 MG |
4764 | printk("Node %d" |
4765 | " active_anon:%lukB" | |
4766 | " inactive_anon:%lukB" | |
4767 | " active_file:%lukB" | |
4768 | " inactive_file:%lukB" | |
4769 | " unevictable:%lukB" | |
4770 | " isolated(anon):%lukB" | |
4771 | " isolated(file):%lukB" | |
50658e2e | 4772 | " mapped:%lukB" |
11fb9989 MG |
4773 | " dirty:%lukB" |
4774 | " writeback:%lukB" | |
4775 | " shmem:%lukB" | |
4776 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4777 | " shmem_thp: %lukB" | |
4778 | " shmem_pmdmapped: %lukB" | |
4779 | " anon_thp: %lukB" | |
4780 | #endif | |
4781 | " writeback_tmp:%lukB" | |
4782 | " unstable:%lukB" | |
599d0c95 MG |
4783 | " all_unreclaimable? %s" |
4784 | "\n", | |
4785 | pgdat->node_id, | |
4786 | K(node_page_state(pgdat, NR_ACTIVE_ANON)), | |
4787 | K(node_page_state(pgdat, NR_INACTIVE_ANON)), | |
4788 | K(node_page_state(pgdat, NR_ACTIVE_FILE)), | |
4789 | K(node_page_state(pgdat, NR_INACTIVE_FILE)), | |
4790 | K(node_page_state(pgdat, NR_UNEVICTABLE)), | |
4791 | K(node_page_state(pgdat, NR_ISOLATED_ANON)), | |
4792 | K(node_page_state(pgdat, NR_ISOLATED_FILE)), | |
50658e2e | 4793 | K(node_page_state(pgdat, NR_FILE_MAPPED)), |
11fb9989 MG |
4794 | K(node_page_state(pgdat, NR_FILE_DIRTY)), |
4795 | K(node_page_state(pgdat, NR_WRITEBACK)), | |
1f06b81a | 4796 | K(node_page_state(pgdat, NR_SHMEM)), |
11fb9989 MG |
4797 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
4798 | K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), | |
4799 | K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) | |
4800 | * HPAGE_PMD_NR), | |
4801 | K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), | |
4802 | #endif | |
11fb9989 MG |
4803 | K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), |
4804 | K(node_page_state(pgdat, NR_UNSTABLE_NFS)), | |
c73322d0 JW |
4805 | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? |
4806 | "yes" : "no"); | |
599d0c95 MG |
4807 | } |
4808 | ||
ee99c71c | 4809 | for_each_populated_zone(zone) { |
1da177e4 LT |
4810 | int i; |
4811 | ||
9af744d7 | 4812 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 4813 | continue; |
d1bfcdb8 KK |
4814 | |
4815 | free_pcp = 0; | |
4816 | for_each_online_cpu(cpu) | |
4817 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
4818 | ||
1da177e4 | 4819 | show_node(zone); |
1f84a18f JP |
4820 | printk(KERN_CONT |
4821 | "%s" | |
1da177e4 LT |
4822 | " free:%lukB" |
4823 | " min:%lukB" | |
4824 | " low:%lukB" | |
4825 | " high:%lukB" | |
71c799f4 MK |
4826 | " active_anon:%lukB" |
4827 | " inactive_anon:%lukB" | |
4828 | " active_file:%lukB" | |
4829 | " inactive_file:%lukB" | |
4830 | " unevictable:%lukB" | |
5a1c84b4 | 4831 | " writepending:%lukB" |
1da177e4 | 4832 | " present:%lukB" |
9feedc9d | 4833 | " managed:%lukB" |
4a0aa73f | 4834 | " mlocked:%lukB" |
c6a7f572 | 4835 | " kernel_stack:%lukB" |
4a0aa73f | 4836 | " pagetables:%lukB" |
4a0aa73f | 4837 | " bounce:%lukB" |
d1bfcdb8 KK |
4838 | " free_pcp:%lukB" |
4839 | " local_pcp:%ukB" | |
d1ce749a | 4840 | " free_cma:%lukB" |
1da177e4 LT |
4841 | "\n", |
4842 | zone->name, | |
88f5acf8 | 4843 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
4844 | K(min_wmark_pages(zone)), |
4845 | K(low_wmark_pages(zone)), | |
4846 | K(high_wmark_pages(zone)), | |
71c799f4 MK |
4847 | K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), |
4848 | K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | |
4849 | K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | |
4850 | K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | |
4851 | K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | |
5a1c84b4 | 4852 | K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), |
1da177e4 | 4853 | K(zone->present_pages), |
9feedc9d | 4854 | K(zone->managed_pages), |
4a0aa73f | 4855 | K(zone_page_state(zone, NR_MLOCK)), |
d30dd8be | 4856 | zone_page_state(zone, NR_KERNEL_STACK_KB), |
4a0aa73f | 4857 | K(zone_page_state(zone, NR_PAGETABLE)), |
4a0aa73f | 4858 | K(zone_page_state(zone, NR_BOUNCE)), |
d1bfcdb8 KK |
4859 | K(free_pcp), |
4860 | K(this_cpu_read(zone->pageset->pcp.count)), | |
33e077bd | 4861 | K(zone_page_state(zone, NR_FREE_CMA_PAGES))); |
1da177e4 LT |
4862 | printk("lowmem_reserve[]:"); |
4863 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1f84a18f JP |
4864 | printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); |
4865 | printk(KERN_CONT "\n"); | |
1da177e4 LT |
4866 | } |
4867 | ||
ee99c71c | 4868 | for_each_populated_zone(zone) { |
d00181b9 KS |
4869 | unsigned int order; |
4870 | unsigned long nr[MAX_ORDER], flags, total = 0; | |
377e4f16 | 4871 | unsigned char types[MAX_ORDER]; |
1da177e4 | 4872 | |
9af744d7 | 4873 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 4874 | continue; |
1da177e4 | 4875 | show_node(zone); |
1f84a18f | 4876 | printk(KERN_CONT "%s: ", zone->name); |
1da177e4 LT |
4877 | |
4878 | spin_lock_irqsave(&zone->lock, flags); | |
4879 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
4880 | struct free_area *area = &zone->free_area[order]; |
4881 | int type; | |
4882 | ||
4883 | nr[order] = area->nr_free; | |
8f9de51a | 4884 | total += nr[order] << order; |
377e4f16 RV |
4885 | |
4886 | types[order] = 0; | |
4887 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
4888 | if (!list_empty(&area->free_list[type])) | |
4889 | types[order] |= 1 << type; | |
4890 | } | |
1da177e4 LT |
4891 | } |
4892 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 4893 | for (order = 0; order < MAX_ORDER; order++) { |
1f84a18f JP |
4894 | printk(KERN_CONT "%lu*%lukB ", |
4895 | nr[order], K(1UL) << order); | |
377e4f16 RV |
4896 | if (nr[order]) |
4897 | show_migration_types(types[order]); | |
4898 | } | |
1f84a18f | 4899 | printk(KERN_CONT "= %lukB\n", K(total)); |
1da177e4 LT |
4900 | } |
4901 | ||
949f7ec5 DR |
4902 | hugetlb_show_meminfo(); |
4903 | ||
11fb9989 | 4904 | printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); |
e6f3602d | 4905 | |
1da177e4 LT |
4906 | show_swap_cache_info(); |
4907 | } | |
4908 | ||
19770b32 MG |
4909 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
4910 | { | |
4911 | zoneref->zone = zone; | |
4912 | zoneref->zone_idx = zone_idx(zone); | |
4913 | } | |
4914 | ||
1da177e4 LT |
4915 | /* |
4916 | * Builds allocation fallback zone lists. | |
1a93205b CL |
4917 | * |
4918 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 4919 | */ |
9d3be21b | 4920 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
1da177e4 | 4921 | { |
1a93205b | 4922 | struct zone *zone; |
bc732f1d | 4923 | enum zone_type zone_type = MAX_NR_ZONES; |
9d3be21b | 4924 | int nr_zones = 0; |
02a68a5e CL |
4925 | |
4926 | do { | |
2f6726e5 | 4927 | zone_type--; |
070f8032 | 4928 | zone = pgdat->node_zones + zone_type; |
6aa303de | 4929 | if (managed_zone(zone)) { |
9d3be21b | 4930 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
070f8032 | 4931 | check_highest_zone(zone_type); |
1da177e4 | 4932 | } |
2f6726e5 | 4933 | } while (zone_type); |
bc732f1d | 4934 | |
070f8032 | 4935 | return nr_zones; |
1da177e4 LT |
4936 | } |
4937 | ||
4938 | #ifdef CONFIG_NUMA | |
f0c0b2b8 KH |
4939 | |
4940 | static int __parse_numa_zonelist_order(char *s) | |
4941 | { | |
c9bff3ee MH |
4942 | /* |
4943 | * We used to support different zonlists modes but they turned | |
4944 | * out to be just not useful. Let's keep the warning in place | |
4945 | * if somebody still use the cmd line parameter so that we do | |
4946 | * not fail it silently | |
4947 | */ | |
4948 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | |
4949 | pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); | |
f0c0b2b8 KH |
4950 | return -EINVAL; |
4951 | } | |
4952 | return 0; | |
4953 | } | |
4954 | ||
4955 | static __init int setup_numa_zonelist_order(char *s) | |
4956 | { | |
ecb256f8 VL |
4957 | if (!s) |
4958 | return 0; | |
4959 | ||
c9bff3ee | 4960 | return __parse_numa_zonelist_order(s); |
f0c0b2b8 KH |
4961 | } |
4962 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
4963 | ||
c9bff3ee MH |
4964 | char numa_zonelist_order[] = "Node"; |
4965 | ||
f0c0b2b8 KH |
4966 | /* |
4967 | * sysctl handler for numa_zonelist_order | |
4968 | */ | |
cccad5b9 | 4969 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 4970 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
4971 | loff_t *ppos) |
4972 | { | |
c9bff3ee | 4973 | char *str; |
f0c0b2b8 KH |
4974 | int ret; |
4975 | ||
c9bff3ee MH |
4976 | if (!write) |
4977 | return proc_dostring(table, write, buffer, length, ppos); | |
4978 | str = memdup_user_nul(buffer, 16); | |
4979 | if (IS_ERR(str)) | |
4980 | return PTR_ERR(str); | |
dacbde09 | 4981 | |
c9bff3ee MH |
4982 | ret = __parse_numa_zonelist_order(str); |
4983 | kfree(str); | |
443c6f14 | 4984 | return ret; |
f0c0b2b8 KH |
4985 | } |
4986 | ||
4987 | ||
62bc62a8 | 4988 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
4989 | static int node_load[MAX_NUMNODES]; |
4990 | ||
1da177e4 | 4991 | /** |
4dc3b16b | 4992 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
4993 | * @node: node whose fallback list we're appending |
4994 | * @used_node_mask: nodemask_t of already used nodes | |
4995 | * | |
4996 | * We use a number of factors to determine which is the next node that should | |
4997 | * appear on a given node's fallback list. The node should not have appeared | |
4998 | * already in @node's fallback list, and it should be the next closest node | |
4999 | * according to the distance array (which contains arbitrary distance values | |
5000 | * from each node to each node in the system), and should also prefer nodes | |
5001 | * with no CPUs, since presumably they'll have very little allocation pressure | |
5002 | * on them otherwise. | |
5003 | * It returns -1 if no node is found. | |
5004 | */ | |
f0c0b2b8 | 5005 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 5006 | { |
4cf808eb | 5007 | int n, val; |
1da177e4 | 5008 | int min_val = INT_MAX; |
00ef2d2f | 5009 | int best_node = NUMA_NO_NODE; |
a70f7302 | 5010 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 5011 | |
4cf808eb LT |
5012 | /* Use the local node if we haven't already */ |
5013 | if (!node_isset(node, *used_node_mask)) { | |
5014 | node_set(node, *used_node_mask); | |
5015 | return node; | |
5016 | } | |
1da177e4 | 5017 | |
4b0ef1fe | 5018 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
5019 | |
5020 | /* Don't want a node to appear more than once */ | |
5021 | if (node_isset(n, *used_node_mask)) | |
5022 | continue; | |
5023 | ||
1da177e4 LT |
5024 | /* Use the distance array to find the distance */ |
5025 | val = node_distance(node, n); | |
5026 | ||
4cf808eb LT |
5027 | /* Penalize nodes under us ("prefer the next node") */ |
5028 | val += (n < node); | |
5029 | ||
1da177e4 | 5030 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
5031 | tmp = cpumask_of_node(n); |
5032 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
5033 | val += PENALTY_FOR_NODE_WITH_CPUS; |
5034 | ||
5035 | /* Slight preference for less loaded node */ | |
5036 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
5037 | val += node_load[n]; | |
5038 | ||
5039 | if (val < min_val) { | |
5040 | min_val = val; | |
5041 | best_node = n; | |
5042 | } | |
5043 | } | |
5044 | ||
5045 | if (best_node >= 0) | |
5046 | node_set(best_node, *used_node_mask); | |
5047 | ||
5048 | return best_node; | |
5049 | } | |
5050 | ||
f0c0b2b8 KH |
5051 | |
5052 | /* | |
5053 | * Build zonelists ordered by node and zones within node. | |
5054 | * This results in maximum locality--normal zone overflows into local | |
5055 | * DMA zone, if any--but risks exhausting DMA zone. | |
5056 | */ | |
9d3be21b MH |
5057 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
5058 | unsigned nr_nodes) | |
1da177e4 | 5059 | { |
9d3be21b MH |
5060 | struct zoneref *zonerefs; |
5061 | int i; | |
5062 | ||
5063 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | |
5064 | ||
5065 | for (i = 0; i < nr_nodes; i++) { | |
5066 | int nr_zones; | |
5067 | ||
5068 | pg_data_t *node = NODE_DATA(node_order[i]); | |
f0c0b2b8 | 5069 | |
9d3be21b MH |
5070 | nr_zones = build_zonerefs_node(node, zonerefs); |
5071 | zonerefs += nr_zones; | |
5072 | } | |
5073 | zonerefs->zone = NULL; | |
5074 | zonerefs->zone_idx = 0; | |
f0c0b2b8 KH |
5075 | } |
5076 | ||
523b9458 CL |
5077 | /* |
5078 | * Build gfp_thisnode zonelists | |
5079 | */ | |
5080 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
5081 | { | |
9d3be21b MH |
5082 | struct zoneref *zonerefs; |
5083 | int nr_zones; | |
523b9458 | 5084 | |
9d3be21b MH |
5085 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
5086 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5087 | zonerefs += nr_zones; | |
5088 | zonerefs->zone = NULL; | |
5089 | zonerefs->zone_idx = 0; | |
523b9458 CL |
5090 | } |
5091 | ||
f0c0b2b8 KH |
5092 | /* |
5093 | * Build zonelists ordered by zone and nodes within zones. | |
5094 | * This results in conserving DMA zone[s] until all Normal memory is | |
5095 | * exhausted, but results in overflowing to remote node while memory | |
5096 | * may still exist in local DMA zone. | |
5097 | */ | |
f0c0b2b8 | 5098 | |
f0c0b2b8 KH |
5099 | static void build_zonelists(pg_data_t *pgdat) |
5100 | { | |
9d3be21b MH |
5101 | static int node_order[MAX_NUMNODES]; |
5102 | int node, load, nr_nodes = 0; | |
1da177e4 | 5103 | nodemask_t used_mask; |
f0c0b2b8 | 5104 | int local_node, prev_node; |
1da177e4 LT |
5105 | |
5106 | /* NUMA-aware ordering of nodes */ | |
5107 | local_node = pgdat->node_id; | |
62bc62a8 | 5108 | load = nr_online_nodes; |
1da177e4 LT |
5109 | prev_node = local_node; |
5110 | nodes_clear(used_mask); | |
f0c0b2b8 | 5111 | |
f0c0b2b8 | 5112 | memset(node_order, 0, sizeof(node_order)); |
1da177e4 LT |
5113 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
5114 | /* | |
5115 | * We don't want to pressure a particular node. | |
5116 | * So adding penalty to the first node in same | |
5117 | * distance group to make it round-robin. | |
5118 | */ | |
957f822a DR |
5119 | if (node_distance(local_node, node) != |
5120 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
5121 | node_load[node] = load; |
5122 | ||
9d3be21b | 5123 | node_order[nr_nodes++] = node; |
1da177e4 LT |
5124 | prev_node = node; |
5125 | load--; | |
1da177e4 | 5126 | } |
523b9458 | 5127 | |
9d3be21b | 5128 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
523b9458 | 5129 | build_thisnode_zonelists(pgdat); |
1da177e4 LT |
5130 | } |
5131 | ||
7aac7898 LS |
5132 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5133 | /* | |
5134 | * Return node id of node used for "local" allocations. | |
5135 | * I.e., first node id of first zone in arg node's generic zonelist. | |
5136 | * Used for initializing percpu 'numa_mem', which is used primarily | |
5137 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
5138 | */ | |
5139 | int local_memory_node(int node) | |
5140 | { | |
c33d6c06 | 5141 | struct zoneref *z; |
7aac7898 | 5142 | |
c33d6c06 | 5143 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
7aac7898 | 5144 | gfp_zone(GFP_KERNEL), |
c33d6c06 MG |
5145 | NULL); |
5146 | return z->zone->node; | |
7aac7898 LS |
5147 | } |
5148 | #endif | |
f0c0b2b8 | 5149 | |
6423aa81 JK |
5150 | static void setup_min_unmapped_ratio(void); |
5151 | static void setup_min_slab_ratio(void); | |
1da177e4 LT |
5152 | #else /* CONFIG_NUMA */ |
5153 | ||
f0c0b2b8 | 5154 | static void build_zonelists(pg_data_t *pgdat) |
1da177e4 | 5155 | { |
19655d34 | 5156 | int node, local_node; |
9d3be21b MH |
5157 | struct zoneref *zonerefs; |
5158 | int nr_zones; | |
1da177e4 LT |
5159 | |
5160 | local_node = pgdat->node_id; | |
1da177e4 | 5161 | |
9d3be21b MH |
5162 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
5163 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5164 | zonerefs += nr_zones; | |
1da177e4 | 5165 | |
54a6eb5c MG |
5166 | /* |
5167 | * Now we build the zonelist so that it contains the zones | |
5168 | * of all the other nodes. | |
5169 | * We don't want to pressure a particular node, so when | |
5170 | * building the zones for node N, we make sure that the | |
5171 | * zones coming right after the local ones are those from | |
5172 | * node N+1 (modulo N) | |
5173 | */ | |
5174 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
5175 | if (!node_online(node)) | |
5176 | continue; | |
9d3be21b MH |
5177 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
5178 | zonerefs += nr_zones; | |
1da177e4 | 5179 | } |
54a6eb5c MG |
5180 | for (node = 0; node < local_node; node++) { |
5181 | if (!node_online(node)) | |
5182 | continue; | |
9d3be21b MH |
5183 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
5184 | zonerefs += nr_zones; | |
54a6eb5c MG |
5185 | } |
5186 | ||
9d3be21b MH |
5187 | zonerefs->zone = NULL; |
5188 | zonerefs->zone_idx = 0; | |
1da177e4 LT |
5189 | } |
5190 | ||
5191 | #endif /* CONFIG_NUMA */ | |
5192 | ||
99dcc3e5 CL |
5193 | /* |
5194 | * Boot pageset table. One per cpu which is going to be used for all | |
5195 | * zones and all nodes. The parameters will be set in such a way | |
5196 | * that an item put on a list will immediately be handed over to | |
5197 | * the buddy list. This is safe since pageset manipulation is done | |
5198 | * with interrupts disabled. | |
5199 | * | |
5200 | * The boot_pagesets must be kept even after bootup is complete for | |
5201 | * unused processors and/or zones. They do play a role for bootstrapping | |
5202 | * hotplugged processors. | |
5203 | * | |
5204 | * zoneinfo_show() and maybe other functions do | |
5205 | * not check if the processor is online before following the pageset pointer. | |
5206 | * Other parts of the kernel may not check if the zone is available. | |
5207 | */ | |
5208 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
5209 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
385386cf | 5210 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); |
99dcc3e5 | 5211 | |
11cd8638 | 5212 | static void __build_all_zonelists(void *data) |
1da177e4 | 5213 | { |
6811378e | 5214 | int nid; |
afb6ebb3 | 5215 | int __maybe_unused cpu; |
9adb62a5 | 5216 | pg_data_t *self = data; |
b93e0f32 MH |
5217 | static DEFINE_SPINLOCK(lock); |
5218 | ||
5219 | spin_lock(&lock); | |
9276b1bc | 5220 | |
7f9cfb31 BL |
5221 | #ifdef CONFIG_NUMA |
5222 | memset(node_load, 0, sizeof(node_load)); | |
5223 | #endif | |
9adb62a5 | 5224 | |
c1152583 WY |
5225 | /* |
5226 | * This node is hotadded and no memory is yet present. So just | |
5227 | * building zonelists is fine - no need to touch other nodes. | |
5228 | */ | |
9adb62a5 JL |
5229 | if (self && !node_online(self->node_id)) { |
5230 | build_zonelists(self); | |
c1152583 WY |
5231 | } else { |
5232 | for_each_online_node(nid) { | |
5233 | pg_data_t *pgdat = NODE_DATA(nid); | |
7ea1530a | 5234 | |
c1152583 WY |
5235 | build_zonelists(pgdat); |
5236 | } | |
99dcc3e5 | 5237 | |
7aac7898 LS |
5238 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5239 | /* | |
5240 | * We now know the "local memory node" for each node-- | |
5241 | * i.e., the node of the first zone in the generic zonelist. | |
5242 | * Set up numa_mem percpu variable for on-line cpus. During | |
5243 | * boot, only the boot cpu should be on-line; we'll init the | |
5244 | * secondary cpus' numa_mem as they come on-line. During | |
5245 | * node/memory hotplug, we'll fixup all on-line cpus. | |
5246 | */ | |
d9c9a0b9 | 5247 | for_each_online_cpu(cpu) |
7aac7898 | 5248 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
afb6ebb3 | 5249 | #endif |
d9c9a0b9 | 5250 | } |
b93e0f32 MH |
5251 | |
5252 | spin_unlock(&lock); | |
6811378e YG |
5253 | } |
5254 | ||
061f67bc RV |
5255 | static noinline void __init |
5256 | build_all_zonelists_init(void) | |
5257 | { | |
afb6ebb3 MH |
5258 | int cpu; |
5259 | ||
061f67bc | 5260 | __build_all_zonelists(NULL); |
afb6ebb3 MH |
5261 | |
5262 | /* | |
5263 | * Initialize the boot_pagesets that are going to be used | |
5264 | * for bootstrapping processors. The real pagesets for | |
5265 | * each zone will be allocated later when the per cpu | |
5266 | * allocator is available. | |
5267 | * | |
5268 | * boot_pagesets are used also for bootstrapping offline | |
5269 | * cpus if the system is already booted because the pagesets | |
5270 | * are needed to initialize allocators on a specific cpu too. | |
5271 | * F.e. the percpu allocator needs the page allocator which | |
5272 | * needs the percpu allocator in order to allocate its pagesets | |
5273 | * (a chicken-egg dilemma). | |
5274 | */ | |
5275 | for_each_possible_cpu(cpu) | |
5276 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); | |
5277 | ||
061f67bc RV |
5278 | mminit_verify_zonelist(); |
5279 | cpuset_init_current_mems_allowed(); | |
5280 | } | |
5281 | ||
4eaf3f64 | 5282 | /* |
4eaf3f64 | 5283 | * unless system_state == SYSTEM_BOOTING. |
061f67bc | 5284 | * |
72675e13 | 5285 | * __ref due to call of __init annotated helper build_all_zonelists_init |
061f67bc | 5286 | * [protected by SYSTEM_BOOTING]. |
4eaf3f64 | 5287 | */ |
72675e13 | 5288 | void __ref build_all_zonelists(pg_data_t *pgdat) |
6811378e YG |
5289 | { |
5290 | if (system_state == SYSTEM_BOOTING) { | |
061f67bc | 5291 | build_all_zonelists_init(); |
6811378e | 5292 | } else { |
11cd8638 | 5293 | __build_all_zonelists(pgdat); |
6811378e YG |
5294 | /* cpuset refresh routine should be here */ |
5295 | } | |
bd1e22b8 | 5296 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
5297 | /* |
5298 | * Disable grouping by mobility if the number of pages in the | |
5299 | * system is too low to allow the mechanism to work. It would be | |
5300 | * more accurate, but expensive to check per-zone. This check is | |
5301 | * made on memory-hotadd so a system can start with mobility | |
5302 | * disabled and enable it later | |
5303 | */ | |
d9c23400 | 5304 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
5305 | page_group_by_mobility_disabled = 1; |
5306 | else | |
5307 | page_group_by_mobility_disabled = 0; | |
5308 | ||
c9bff3ee | 5309 | pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", |
756a025f | 5310 | nr_online_nodes, |
756a025f JP |
5311 | page_group_by_mobility_disabled ? "off" : "on", |
5312 | vm_total_pages); | |
f0c0b2b8 | 5313 | #ifdef CONFIG_NUMA |
f88dfff5 | 5314 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 5315 | #endif |
1da177e4 LT |
5316 | } |
5317 | ||
1da177e4 LT |
5318 | /* |
5319 | * Initially all pages are reserved - free ones are freed | |
5320 | * up by free_all_bootmem() once the early boot process is | |
5321 | * done. Non-atomic initialization, single-pass. | |
5322 | */ | |
c09b4240 | 5323 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a99583e7 CH |
5324 | unsigned long start_pfn, enum memmap_context context, |
5325 | struct vmem_altmap *altmap) | |
1da177e4 | 5326 | { |
29751f69 | 5327 | unsigned long end_pfn = start_pfn + size; |
4b94ffdc | 5328 | pg_data_t *pgdat = NODE_DATA(nid); |
29751f69 | 5329 | unsigned long pfn; |
3a80a7fa | 5330 | unsigned long nr_initialised = 0; |
342332e6 TI |
5331 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
5332 | struct memblock_region *r = NULL, *tmp; | |
5333 | #endif | |
1da177e4 | 5334 | |
22b31eec HD |
5335 | if (highest_memmap_pfn < end_pfn - 1) |
5336 | highest_memmap_pfn = end_pfn - 1; | |
5337 | ||
4b94ffdc DW |
5338 | /* |
5339 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
5340 | * memory | |
5341 | */ | |
5342 | if (altmap && start_pfn == altmap->base_pfn) | |
5343 | start_pfn += altmap->reserve; | |
5344 | ||
cbe8dd4a | 5345 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 | 5346 | /* |
b72d0ffb AM |
5347 | * There can be holes in boot-time mem_map[]s handed to this |
5348 | * function. They do not exist on hotplugged memory. | |
a2f3aa02 | 5349 | */ |
b72d0ffb AM |
5350 | if (context != MEMMAP_EARLY) |
5351 | goto not_early; | |
5352 | ||
b92df1de PB |
5353 | if (!early_pfn_valid(pfn)) { |
5354 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | |
5355 | /* | |
5356 | * Skip to the pfn preceding the next valid one (or | |
5357 | * end_pfn), such that we hit a valid pfn (or end_pfn) | |
5358 | * on our next iteration of the loop. | |
5359 | */ | |
5360 | pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; | |
5361 | #endif | |
b72d0ffb | 5362 | continue; |
b92df1de | 5363 | } |
b72d0ffb AM |
5364 | if (!early_pfn_in_nid(pfn, nid)) |
5365 | continue; | |
5366 | if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) | |
5367 | break; | |
342332e6 TI |
5368 | |
5369 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | |
b72d0ffb AM |
5370 | /* |
5371 | * Check given memblock attribute by firmware which can affect | |
5372 | * kernel memory layout. If zone==ZONE_MOVABLE but memory is | |
5373 | * mirrored, it's an overlapped memmap init. skip it. | |
5374 | */ | |
5375 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
5376 | if (!r || pfn >= memblock_region_memory_end_pfn(r)) { | |
5377 | for_each_memblock(memory, tmp) | |
5378 | if (pfn < memblock_region_memory_end_pfn(tmp)) | |
5379 | break; | |
5380 | r = tmp; | |
5381 | } | |
5382 | if (pfn >= memblock_region_memory_base_pfn(r) && | |
5383 | memblock_is_mirror(r)) { | |
5384 | /* already initialized as NORMAL */ | |
5385 | pfn = memblock_region_memory_end_pfn(r); | |
5386 | continue; | |
342332e6 | 5387 | } |
a2f3aa02 | 5388 | } |
b72d0ffb | 5389 | #endif |
ac5d2539 | 5390 | |
b72d0ffb | 5391 | not_early: |
ac5d2539 MG |
5392 | /* |
5393 | * Mark the block movable so that blocks are reserved for | |
5394 | * movable at startup. This will force kernel allocations | |
5395 | * to reserve their blocks rather than leaking throughout | |
5396 | * the address space during boot when many long-lived | |
974a786e | 5397 | * kernel allocations are made. |
ac5d2539 MG |
5398 | * |
5399 | * bitmap is created for zone's valid pfn range. but memmap | |
5400 | * can be created for invalid pages (for alignment) | |
5401 | * check here not to call set_pageblock_migratetype() against | |
5402 | * pfn out of zone. | |
9bb5a391 MH |
5403 | * |
5404 | * Please note that MEMMAP_HOTPLUG path doesn't clear memmap | |
5405 | * because this is done early in sparse_add_one_section | |
ac5d2539 MG |
5406 | */ |
5407 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
5408 | struct page *page = pfn_to_page(pfn); | |
5409 | ||
9bb5a391 MH |
5410 | __init_single_page(page, pfn, zone, nid, |
5411 | context != MEMMAP_HOTPLUG); | |
ac5d2539 | 5412 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
9b6e63cb | 5413 | cond_resched(); |
ac5d2539 | 5414 | } else { |
9bb5a391 MH |
5415 | __init_single_pfn(pfn, zone, nid, |
5416 | context != MEMMAP_HOTPLUG); | |
ac5d2539 | 5417 | } |
1da177e4 LT |
5418 | } |
5419 | } | |
5420 | ||
1e548deb | 5421 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 5422 | { |
7aeb09f9 | 5423 | unsigned int order, t; |
b2a0ac88 MG |
5424 | for_each_migratetype_order(order, t) { |
5425 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
5426 | zone->free_area[order].nr_free = 0; |
5427 | } | |
5428 | } | |
5429 | ||
5430 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
5431 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a99583e7 | 5432 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) |
1da177e4 LT |
5433 | #endif |
5434 | ||
7cd2b0a3 | 5435 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 5436 | { |
3a6be87f | 5437 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
5438 | int batch; |
5439 | ||
5440 | /* | |
5441 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 5442 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
5443 | * |
5444 | * OK, so we don't know how big the cache is. So guess. | |
5445 | */ | |
b40da049 | 5446 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
5447 | if (batch * PAGE_SIZE > 512 * 1024) |
5448 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
5449 | batch /= 4; /* We effectively *= 4 below */ |
5450 | if (batch < 1) | |
5451 | batch = 1; | |
5452 | ||
5453 | /* | |
0ceaacc9 NP |
5454 | * Clamp the batch to a 2^n - 1 value. Having a power |
5455 | * of 2 value was found to be more likely to have | |
5456 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 5457 | * |
0ceaacc9 NP |
5458 | * For example if 2 tasks are alternately allocating |
5459 | * batches of pages, one task can end up with a lot | |
5460 | * of pages of one half of the possible page colors | |
5461 | * and the other with pages of the other colors. | |
e7c8d5c9 | 5462 | */ |
9155203a | 5463 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 5464 | |
e7c8d5c9 | 5465 | return batch; |
3a6be87f DH |
5466 | |
5467 | #else | |
5468 | /* The deferral and batching of frees should be suppressed under NOMMU | |
5469 | * conditions. | |
5470 | * | |
5471 | * The problem is that NOMMU needs to be able to allocate large chunks | |
5472 | * of contiguous memory as there's no hardware page translation to | |
5473 | * assemble apparent contiguous memory from discontiguous pages. | |
5474 | * | |
5475 | * Queueing large contiguous runs of pages for batching, however, | |
5476 | * causes the pages to actually be freed in smaller chunks. As there | |
5477 | * can be a significant delay between the individual batches being | |
5478 | * recycled, this leads to the once large chunks of space being | |
5479 | * fragmented and becoming unavailable for high-order allocations. | |
5480 | */ | |
5481 | return 0; | |
5482 | #endif | |
e7c8d5c9 CL |
5483 | } |
5484 | ||
8d7a8fa9 CS |
5485 | /* |
5486 | * pcp->high and pcp->batch values are related and dependent on one another: | |
5487 | * ->batch must never be higher then ->high. | |
5488 | * The following function updates them in a safe manner without read side | |
5489 | * locking. | |
5490 | * | |
5491 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
5492 | * those fields changing asynchronously (acording the the above rule). | |
5493 | * | |
5494 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
5495 | * outside of boot time (or some other assurance that no concurrent updaters | |
5496 | * exist). | |
5497 | */ | |
5498 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
5499 | unsigned long batch) | |
5500 | { | |
5501 | /* start with a fail safe value for batch */ | |
5502 | pcp->batch = 1; | |
5503 | smp_wmb(); | |
5504 | ||
5505 | /* Update high, then batch, in order */ | |
5506 | pcp->high = high; | |
5507 | smp_wmb(); | |
5508 | ||
5509 | pcp->batch = batch; | |
5510 | } | |
5511 | ||
3664033c | 5512 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
5513 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
5514 | { | |
8d7a8fa9 | 5515 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
5516 | } |
5517 | ||
88c90dbc | 5518 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
5519 | { |
5520 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 5521 | int migratetype; |
2caaad41 | 5522 | |
1c6fe946 MD |
5523 | memset(p, 0, sizeof(*p)); |
5524 | ||
3dfa5721 | 5525 | pcp = &p->pcp; |
2caaad41 | 5526 | pcp->count = 0; |
5f8dcc21 MG |
5527 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
5528 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
5529 | } |
5530 | ||
88c90dbc CS |
5531 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
5532 | { | |
5533 | pageset_init(p); | |
5534 | pageset_set_batch(p, batch); | |
5535 | } | |
5536 | ||
8ad4b1fb | 5537 | /* |
3664033c | 5538 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
5539 | * to the value high for the pageset p. |
5540 | */ | |
3664033c | 5541 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
5542 | unsigned long high) |
5543 | { | |
8d7a8fa9 CS |
5544 | unsigned long batch = max(1UL, high / 4); |
5545 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
5546 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 5547 | |
8d7a8fa9 | 5548 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
5549 | } |
5550 | ||
7cd2b0a3 DR |
5551 | static void pageset_set_high_and_batch(struct zone *zone, |
5552 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 5553 | { |
56cef2b8 | 5554 | if (percpu_pagelist_fraction) |
3664033c | 5555 | pageset_set_high(pcp, |
56cef2b8 CS |
5556 | (zone->managed_pages / |
5557 | percpu_pagelist_fraction)); | |
5558 | else | |
5559 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
5560 | } | |
5561 | ||
169f6c19 CS |
5562 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
5563 | { | |
5564 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
5565 | ||
5566 | pageset_init(pcp); | |
5567 | pageset_set_high_and_batch(zone, pcp); | |
5568 | } | |
5569 | ||
72675e13 | 5570 | void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
5571 | { |
5572 | int cpu; | |
319774e2 | 5573 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
5574 | for_each_possible_cpu(cpu) |
5575 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
5576 | } |
5577 | ||
2caaad41 | 5578 | /* |
99dcc3e5 CL |
5579 | * Allocate per cpu pagesets and initialize them. |
5580 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 5581 | */ |
99dcc3e5 | 5582 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 5583 | { |
b4911ea2 | 5584 | struct pglist_data *pgdat; |
99dcc3e5 | 5585 | struct zone *zone; |
e7c8d5c9 | 5586 | |
319774e2 WF |
5587 | for_each_populated_zone(zone) |
5588 | setup_zone_pageset(zone); | |
b4911ea2 MG |
5589 | |
5590 | for_each_online_pgdat(pgdat) | |
5591 | pgdat->per_cpu_nodestats = | |
5592 | alloc_percpu(struct per_cpu_nodestat); | |
e7c8d5c9 CL |
5593 | } |
5594 | ||
c09b4240 | 5595 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 5596 | { |
99dcc3e5 CL |
5597 | /* |
5598 | * per cpu subsystem is not up at this point. The following code | |
5599 | * relies on the ability of the linker to provide the | |
5600 | * offset of a (static) per cpu variable into the per cpu area. | |
5601 | */ | |
5602 | zone->pageset = &boot_pageset; | |
ed8ece2e | 5603 | |
b38a8725 | 5604 | if (populated_zone(zone)) |
99dcc3e5 CL |
5605 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
5606 | zone->name, zone->present_pages, | |
5607 | zone_batchsize(zone)); | |
ed8ece2e DH |
5608 | } |
5609 | ||
dc0bbf3b | 5610 | void __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 5611 | unsigned long zone_start_pfn, |
b171e409 | 5612 | unsigned long size) |
ed8ece2e DH |
5613 | { |
5614 | struct pglist_data *pgdat = zone->zone_pgdat; | |
9dcb8b68 | 5615 | |
ed8ece2e DH |
5616 | pgdat->nr_zones = zone_idx(zone) + 1; |
5617 | ||
ed8ece2e DH |
5618 | zone->zone_start_pfn = zone_start_pfn; |
5619 | ||
708614e6 MG |
5620 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
5621 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
5622 | pgdat->node_id, | |
5623 | (unsigned long)zone_idx(zone), | |
5624 | zone_start_pfn, (zone_start_pfn + size)); | |
5625 | ||
1e548deb | 5626 | zone_init_free_lists(zone); |
9dcb8b68 | 5627 | zone->initialized = 1; |
ed8ece2e DH |
5628 | } |
5629 | ||
0ee332c1 | 5630 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 5631 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
8a942fde | 5632 | |
c713216d MG |
5633 | /* |
5634 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 5635 | */ |
8a942fde MG |
5636 | int __meminit __early_pfn_to_nid(unsigned long pfn, |
5637 | struct mminit_pfnnid_cache *state) | |
c713216d | 5638 | { |
c13291a5 | 5639 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 5640 | int nid; |
7c243c71 | 5641 | |
8a942fde MG |
5642 | if (state->last_start <= pfn && pfn < state->last_end) |
5643 | return state->last_nid; | |
c713216d | 5644 | |
e76b63f8 YL |
5645 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
5646 | if (nid != -1) { | |
8a942fde MG |
5647 | state->last_start = start_pfn; |
5648 | state->last_end = end_pfn; | |
5649 | state->last_nid = nid; | |
e76b63f8 YL |
5650 | } |
5651 | ||
5652 | return nid; | |
c713216d MG |
5653 | } |
5654 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
5655 | ||
c713216d | 5656 | /** |
6782832e | 5657 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 5658 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 5659 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 5660 | * |
7d018176 ZZ |
5661 | * If an architecture guarantees that all ranges registered contain no holes |
5662 | * and may be freed, this this function may be used instead of calling | |
5663 | * memblock_free_early_nid() manually. | |
c713216d | 5664 | */ |
c13291a5 | 5665 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 5666 | { |
c13291a5 TH |
5667 | unsigned long start_pfn, end_pfn; |
5668 | int i, this_nid; | |
edbe7d23 | 5669 | |
c13291a5 TH |
5670 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
5671 | start_pfn = min(start_pfn, max_low_pfn); | |
5672 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 5673 | |
c13291a5 | 5674 | if (start_pfn < end_pfn) |
6782832e SS |
5675 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
5676 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
5677 | this_nid); | |
edbe7d23 | 5678 | } |
edbe7d23 | 5679 | } |
edbe7d23 | 5680 | |
c713216d MG |
5681 | /** |
5682 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 5683 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 5684 | * |
7d018176 ZZ |
5685 | * If an architecture guarantees that all ranges registered contain no holes and may |
5686 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
5687 | */ |
5688 | void __init sparse_memory_present_with_active_regions(int nid) | |
5689 | { | |
c13291a5 TH |
5690 | unsigned long start_pfn, end_pfn; |
5691 | int i, this_nid; | |
c713216d | 5692 | |
c13291a5 TH |
5693 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
5694 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
5695 | } |
5696 | ||
5697 | /** | |
5698 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
5699 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
5700 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
5701 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
5702 | * |
5703 | * It returns the start and end page frame of a node based on information | |
7d018176 | 5704 | * provided by memblock_set_node(). If called for a node |
c713216d | 5705 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 5706 | * PFNs will be 0. |
c713216d | 5707 | */ |
a3142c8e | 5708 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
5709 | unsigned long *start_pfn, unsigned long *end_pfn) |
5710 | { | |
c13291a5 | 5711 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 5712 | int i; |
c13291a5 | 5713 | |
c713216d MG |
5714 | *start_pfn = -1UL; |
5715 | *end_pfn = 0; | |
5716 | ||
c13291a5 TH |
5717 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
5718 | *start_pfn = min(*start_pfn, this_start_pfn); | |
5719 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
5720 | } |
5721 | ||
633c0666 | 5722 | if (*start_pfn == -1UL) |
c713216d | 5723 | *start_pfn = 0; |
c713216d MG |
5724 | } |
5725 | ||
2a1e274a MG |
5726 | /* |
5727 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
5728 | * assumption is made that zones within a node are ordered in monotonic | |
5729 | * increasing memory addresses so that the "highest" populated zone is used | |
5730 | */ | |
b69a7288 | 5731 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
5732 | { |
5733 | int zone_index; | |
5734 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
5735 | if (zone_index == ZONE_MOVABLE) | |
5736 | continue; | |
5737 | ||
5738 | if (arch_zone_highest_possible_pfn[zone_index] > | |
5739 | arch_zone_lowest_possible_pfn[zone_index]) | |
5740 | break; | |
5741 | } | |
5742 | ||
5743 | VM_BUG_ON(zone_index == -1); | |
5744 | movable_zone = zone_index; | |
5745 | } | |
5746 | ||
5747 | /* | |
5748 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 5749 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
5750 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
5751 | * in each node depending on the size of each node and how evenly kernelcore | |
5752 | * is distributed. This helper function adjusts the zone ranges | |
5753 | * provided by the architecture for a given node by using the end of the | |
5754 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
5755 | * zones within a node are in order of monotonic increases memory addresses | |
5756 | */ | |
b69a7288 | 5757 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
5758 | unsigned long zone_type, |
5759 | unsigned long node_start_pfn, | |
5760 | unsigned long node_end_pfn, | |
5761 | unsigned long *zone_start_pfn, | |
5762 | unsigned long *zone_end_pfn) | |
5763 | { | |
5764 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
5765 | if (zone_movable_pfn[nid]) { | |
5766 | /* Size ZONE_MOVABLE */ | |
5767 | if (zone_type == ZONE_MOVABLE) { | |
5768 | *zone_start_pfn = zone_movable_pfn[nid]; | |
5769 | *zone_end_pfn = min(node_end_pfn, | |
5770 | arch_zone_highest_possible_pfn[movable_zone]); | |
5771 | ||
e506b996 XQ |
5772 | /* Adjust for ZONE_MOVABLE starting within this range */ |
5773 | } else if (!mirrored_kernelcore && | |
5774 | *zone_start_pfn < zone_movable_pfn[nid] && | |
5775 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
5776 | *zone_end_pfn = zone_movable_pfn[nid]; | |
5777 | ||
2a1e274a MG |
5778 | /* Check if this whole range is within ZONE_MOVABLE */ |
5779 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
5780 | *zone_start_pfn = *zone_end_pfn; | |
5781 | } | |
5782 | } | |
5783 | ||
c713216d MG |
5784 | /* |
5785 | * Return the number of pages a zone spans in a node, including holes | |
5786 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
5787 | */ | |
6ea6e688 | 5788 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 5789 | unsigned long zone_type, |
7960aedd ZY |
5790 | unsigned long node_start_pfn, |
5791 | unsigned long node_end_pfn, | |
d91749c1 TI |
5792 | unsigned long *zone_start_pfn, |
5793 | unsigned long *zone_end_pfn, | |
c713216d MG |
5794 | unsigned long *ignored) |
5795 | { | |
b5685e92 | 5796 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5797 | if (!node_start_pfn && !node_end_pfn) |
5798 | return 0; | |
5799 | ||
7960aedd | 5800 | /* Get the start and end of the zone */ |
d91749c1 TI |
5801 | *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
5802 | *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
5803 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5804 | node_start_pfn, node_end_pfn, | |
d91749c1 | 5805 | zone_start_pfn, zone_end_pfn); |
c713216d MG |
5806 | |
5807 | /* Check that this node has pages within the zone's required range */ | |
d91749c1 | 5808 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
c713216d MG |
5809 | return 0; |
5810 | ||
5811 | /* Move the zone boundaries inside the node if necessary */ | |
d91749c1 TI |
5812 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
5813 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
c713216d MG |
5814 | |
5815 | /* Return the spanned pages */ | |
d91749c1 | 5816 | return *zone_end_pfn - *zone_start_pfn; |
c713216d MG |
5817 | } |
5818 | ||
5819 | /* | |
5820 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 5821 | * then all holes in the requested range will be accounted for. |
c713216d | 5822 | */ |
32996250 | 5823 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
5824 | unsigned long range_start_pfn, |
5825 | unsigned long range_end_pfn) | |
5826 | { | |
96e907d1 TH |
5827 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
5828 | unsigned long start_pfn, end_pfn; | |
5829 | int i; | |
c713216d | 5830 | |
96e907d1 TH |
5831 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
5832 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
5833 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
5834 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 5835 | } |
96e907d1 | 5836 | return nr_absent; |
c713216d MG |
5837 | } |
5838 | ||
5839 | /** | |
5840 | * absent_pages_in_range - Return number of page frames in holes within a range | |
5841 | * @start_pfn: The start PFN to start searching for holes | |
5842 | * @end_pfn: The end PFN to stop searching for holes | |
5843 | * | |
88ca3b94 | 5844 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
5845 | */ |
5846 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
5847 | unsigned long end_pfn) | |
5848 | { | |
5849 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
5850 | } | |
5851 | ||
5852 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 5853 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5854 | unsigned long zone_type, |
7960aedd ZY |
5855 | unsigned long node_start_pfn, |
5856 | unsigned long node_end_pfn, | |
c713216d MG |
5857 | unsigned long *ignored) |
5858 | { | |
96e907d1 TH |
5859 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
5860 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 | 5861 | unsigned long zone_start_pfn, zone_end_pfn; |
342332e6 | 5862 | unsigned long nr_absent; |
9c7cd687 | 5863 | |
b5685e92 | 5864 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5865 | if (!node_start_pfn && !node_end_pfn) |
5866 | return 0; | |
5867 | ||
96e907d1 TH |
5868 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
5869 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 5870 | |
2a1e274a MG |
5871 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5872 | node_start_pfn, node_end_pfn, | |
5873 | &zone_start_pfn, &zone_end_pfn); | |
342332e6 TI |
5874 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
5875 | ||
5876 | /* | |
5877 | * ZONE_MOVABLE handling. | |
5878 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
5879 | * and vice versa. | |
5880 | */ | |
e506b996 XQ |
5881 | if (mirrored_kernelcore && zone_movable_pfn[nid]) { |
5882 | unsigned long start_pfn, end_pfn; | |
5883 | struct memblock_region *r; | |
5884 | ||
5885 | for_each_memblock(memory, r) { | |
5886 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
5887 | zone_start_pfn, zone_end_pfn); | |
5888 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
5889 | zone_start_pfn, zone_end_pfn); | |
5890 | ||
5891 | if (zone_type == ZONE_MOVABLE && | |
5892 | memblock_is_mirror(r)) | |
5893 | nr_absent += end_pfn - start_pfn; | |
5894 | ||
5895 | if (zone_type == ZONE_NORMAL && | |
5896 | !memblock_is_mirror(r)) | |
5897 | nr_absent += end_pfn - start_pfn; | |
342332e6 TI |
5898 | } |
5899 | } | |
5900 | ||
5901 | return nr_absent; | |
c713216d | 5902 | } |
0e0b864e | 5903 | |
0ee332c1 | 5904 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 5905 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 5906 | unsigned long zone_type, |
7960aedd ZY |
5907 | unsigned long node_start_pfn, |
5908 | unsigned long node_end_pfn, | |
d91749c1 TI |
5909 | unsigned long *zone_start_pfn, |
5910 | unsigned long *zone_end_pfn, | |
c713216d MG |
5911 | unsigned long *zones_size) |
5912 | { | |
d91749c1 TI |
5913 | unsigned int zone; |
5914 | ||
5915 | *zone_start_pfn = node_start_pfn; | |
5916 | for (zone = 0; zone < zone_type; zone++) | |
5917 | *zone_start_pfn += zones_size[zone]; | |
5918 | ||
5919 | *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; | |
5920 | ||
c713216d MG |
5921 | return zones_size[zone_type]; |
5922 | } | |
5923 | ||
6ea6e688 | 5924 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5925 | unsigned long zone_type, |
7960aedd ZY |
5926 | unsigned long node_start_pfn, |
5927 | unsigned long node_end_pfn, | |
c713216d MG |
5928 | unsigned long *zholes_size) |
5929 | { | |
5930 | if (!zholes_size) | |
5931 | return 0; | |
5932 | ||
5933 | return zholes_size[zone_type]; | |
5934 | } | |
20e6926d | 5935 | |
0ee332c1 | 5936 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5937 | |
a3142c8e | 5938 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
5939 | unsigned long node_start_pfn, |
5940 | unsigned long node_end_pfn, | |
5941 | unsigned long *zones_size, | |
5942 | unsigned long *zholes_size) | |
c713216d | 5943 | { |
febd5949 | 5944 | unsigned long realtotalpages = 0, totalpages = 0; |
c713216d MG |
5945 | enum zone_type i; |
5946 | ||
febd5949 GZ |
5947 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5948 | struct zone *zone = pgdat->node_zones + i; | |
d91749c1 | 5949 | unsigned long zone_start_pfn, zone_end_pfn; |
febd5949 | 5950 | unsigned long size, real_size; |
c713216d | 5951 | |
febd5949 GZ |
5952 | size = zone_spanned_pages_in_node(pgdat->node_id, i, |
5953 | node_start_pfn, | |
5954 | node_end_pfn, | |
d91749c1 TI |
5955 | &zone_start_pfn, |
5956 | &zone_end_pfn, | |
febd5949 GZ |
5957 | zones_size); |
5958 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
5959 | node_start_pfn, node_end_pfn, |
5960 | zholes_size); | |
d91749c1 TI |
5961 | if (size) |
5962 | zone->zone_start_pfn = zone_start_pfn; | |
5963 | else | |
5964 | zone->zone_start_pfn = 0; | |
febd5949 GZ |
5965 | zone->spanned_pages = size; |
5966 | zone->present_pages = real_size; | |
5967 | ||
5968 | totalpages += size; | |
5969 | realtotalpages += real_size; | |
5970 | } | |
5971 | ||
5972 | pgdat->node_spanned_pages = totalpages; | |
c713216d MG |
5973 | pgdat->node_present_pages = realtotalpages; |
5974 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
5975 | realtotalpages); | |
5976 | } | |
5977 | ||
835c134e MG |
5978 | #ifndef CONFIG_SPARSEMEM |
5979 | /* | |
5980 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
5981 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
5982 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
5983 | * round what is now in bits to nearest long in bits, then return it in |
5984 | * bytes. | |
5985 | */ | |
7c45512d | 5986 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
5987 | { |
5988 | unsigned long usemapsize; | |
5989 | ||
7c45512d | 5990 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
5991 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
5992 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
5993 | usemapsize *= NR_PAGEBLOCK_BITS; |
5994 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
5995 | ||
5996 | return usemapsize / 8; | |
5997 | } | |
5998 | ||
5999 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
6000 | struct zone *zone, |
6001 | unsigned long zone_start_pfn, | |
6002 | unsigned long zonesize) | |
835c134e | 6003 | { |
7c45512d | 6004 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 6005 | zone->pageblock_flags = NULL; |
58a01a45 | 6006 | if (usemapsize) |
6782832e SS |
6007 | zone->pageblock_flags = |
6008 | memblock_virt_alloc_node_nopanic(usemapsize, | |
6009 | pgdat->node_id); | |
835c134e MG |
6010 | } |
6011 | #else | |
7c45512d LT |
6012 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
6013 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
6014 | #endif /* CONFIG_SPARSEMEM */ |
6015 | ||
d9c23400 | 6016 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 6017 | |
d9c23400 | 6018 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
15ca220e | 6019 | void __paginginit set_pageblock_order(void) |
d9c23400 | 6020 | { |
955c1cd7 AM |
6021 | unsigned int order; |
6022 | ||
d9c23400 MG |
6023 | /* Check that pageblock_nr_pages has not already been setup */ |
6024 | if (pageblock_order) | |
6025 | return; | |
6026 | ||
955c1cd7 AM |
6027 | if (HPAGE_SHIFT > PAGE_SHIFT) |
6028 | order = HUGETLB_PAGE_ORDER; | |
6029 | else | |
6030 | order = MAX_ORDER - 1; | |
6031 | ||
d9c23400 MG |
6032 | /* |
6033 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
6034 | * This value may be variable depending on boot parameters on IA64 and |
6035 | * powerpc. | |
d9c23400 MG |
6036 | */ |
6037 | pageblock_order = order; | |
6038 | } | |
6039 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
6040 | ||
ba72cb8c MG |
6041 | /* |
6042 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
6043 | * is unused as pageblock_order is set at compile-time. See |
6044 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
6045 | * the kernel config | |
ba72cb8c | 6046 | */ |
15ca220e | 6047 | void __paginginit set_pageblock_order(void) |
ba72cb8c | 6048 | { |
ba72cb8c | 6049 | } |
d9c23400 MG |
6050 | |
6051 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
6052 | ||
01cefaef JL |
6053 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
6054 | unsigned long present_pages) | |
6055 | { | |
6056 | unsigned long pages = spanned_pages; | |
6057 | ||
6058 | /* | |
6059 | * Provide a more accurate estimation if there are holes within | |
6060 | * the zone and SPARSEMEM is in use. If there are holes within the | |
6061 | * zone, each populated memory region may cost us one or two extra | |
6062 | * memmap pages due to alignment because memmap pages for each | |
89d790ab | 6063 | * populated regions may not be naturally aligned on page boundary. |
01cefaef JL |
6064 | * So the (present_pages >> 4) heuristic is a tradeoff for that. |
6065 | */ | |
6066 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
6067 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
6068 | pages = present_pages; | |
6069 | ||
6070 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
6071 | } | |
6072 | ||
1da177e4 LT |
6073 | /* |
6074 | * Set up the zone data structures: | |
6075 | * - mark all pages reserved | |
6076 | * - mark all memory queues empty | |
6077 | * - clear the memory bitmaps | |
6527af5d MK |
6078 | * |
6079 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 6080 | */ |
7f3eb55b | 6081 | static void __paginginit free_area_init_core(struct pglist_data *pgdat) |
1da177e4 | 6082 | { |
2f1b6248 | 6083 | enum zone_type j; |
ed8ece2e | 6084 | int nid = pgdat->node_id; |
1da177e4 | 6085 | |
208d54e5 | 6086 | pgdat_resize_init(pgdat); |
8177a420 AA |
6087 | #ifdef CONFIG_NUMA_BALANCING |
6088 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
6089 | pgdat->numabalancing_migrate_nr_pages = 0; | |
6090 | pgdat->numabalancing_migrate_next_window = jiffies; | |
a3d0a918 KS |
6091 | #endif |
6092 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
6093 | spin_lock_init(&pgdat->split_queue_lock); | |
6094 | INIT_LIST_HEAD(&pgdat->split_queue); | |
6095 | pgdat->split_queue_len = 0; | |
8177a420 | 6096 | #endif |
1da177e4 | 6097 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 6098 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
698b1b30 VB |
6099 | #ifdef CONFIG_COMPACTION |
6100 | init_waitqueue_head(&pgdat->kcompactd_wait); | |
6101 | #endif | |
eefa864b | 6102 | pgdat_page_ext_init(pgdat); |
a52633d8 | 6103 | spin_lock_init(&pgdat->lru_lock); |
a9dd0a83 | 6104 | lruvec_init(node_lruvec(pgdat)); |
5f63b720 | 6105 | |
385386cf JW |
6106 | pgdat->per_cpu_nodestats = &boot_nodestats; |
6107 | ||
1da177e4 LT |
6108 | for (j = 0; j < MAX_NR_ZONES; j++) { |
6109 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 6110 | unsigned long size, realsize, freesize, memmap_pages; |
d91749c1 | 6111 | unsigned long zone_start_pfn = zone->zone_start_pfn; |
1da177e4 | 6112 | |
febd5949 GZ |
6113 | size = zone->spanned_pages; |
6114 | realsize = freesize = zone->present_pages; | |
1da177e4 | 6115 | |
0e0b864e | 6116 | /* |
9feedc9d | 6117 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
6118 | * is used by this zone for memmap. This affects the watermark |
6119 | * and per-cpu initialisations | |
6120 | */ | |
01cefaef | 6121 | memmap_pages = calc_memmap_size(size, realsize); |
ba914f48 ZH |
6122 | if (!is_highmem_idx(j)) { |
6123 | if (freesize >= memmap_pages) { | |
6124 | freesize -= memmap_pages; | |
6125 | if (memmap_pages) | |
6126 | printk(KERN_DEBUG | |
6127 | " %s zone: %lu pages used for memmap\n", | |
6128 | zone_names[j], memmap_pages); | |
6129 | } else | |
1170532b | 6130 | pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", |
ba914f48 ZH |
6131 | zone_names[j], memmap_pages, freesize); |
6132 | } | |
0e0b864e | 6133 | |
6267276f | 6134 | /* Account for reserved pages */ |
9feedc9d JL |
6135 | if (j == 0 && freesize > dma_reserve) { |
6136 | freesize -= dma_reserve; | |
d903ef9f | 6137 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 6138 | zone_names[0], dma_reserve); |
0e0b864e MG |
6139 | } |
6140 | ||
98d2b0eb | 6141 | if (!is_highmem_idx(j)) |
9feedc9d | 6142 | nr_kernel_pages += freesize; |
01cefaef JL |
6143 | /* Charge for highmem memmap if there are enough kernel pages */ |
6144 | else if (nr_kernel_pages > memmap_pages * 2) | |
6145 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 6146 | nr_all_pages += freesize; |
1da177e4 | 6147 | |
9feedc9d JL |
6148 | /* |
6149 | * Set an approximate value for lowmem here, it will be adjusted | |
6150 | * when the bootmem allocator frees pages into the buddy system. | |
6151 | * And all highmem pages will be managed by the buddy system. | |
6152 | */ | |
6153 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 6154 | #ifdef CONFIG_NUMA |
d5f541ed | 6155 | zone->node = nid; |
9614634f | 6156 | #endif |
1da177e4 | 6157 | zone->name = zone_names[j]; |
a52633d8 | 6158 | zone->zone_pgdat = pgdat; |
1da177e4 | 6159 | spin_lock_init(&zone->lock); |
bdc8cb98 | 6160 | zone_seqlock_init(zone); |
ed8ece2e | 6161 | zone_pcp_init(zone); |
81c0a2bb | 6162 | |
1da177e4 LT |
6163 | if (!size) |
6164 | continue; | |
6165 | ||
955c1cd7 | 6166 | set_pageblock_order(); |
7c45512d | 6167 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
dc0bbf3b | 6168 | init_currently_empty_zone(zone, zone_start_pfn, size); |
76cdd58e | 6169 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 LT |
6170 | } |
6171 | } | |
6172 | ||
0cd842f9 | 6173 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bd721ea7 | 6174 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 6175 | { |
b0aeba74 | 6176 | unsigned long __maybe_unused start = 0; |
a1c34a3b LA |
6177 | unsigned long __maybe_unused offset = 0; |
6178 | ||
1da177e4 LT |
6179 | /* Skip empty nodes */ |
6180 | if (!pgdat->node_spanned_pages) | |
6181 | return; | |
6182 | ||
b0aeba74 TL |
6183 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
6184 | offset = pgdat->node_start_pfn - start; | |
1da177e4 LT |
6185 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
6186 | if (!pgdat->node_mem_map) { | |
b0aeba74 | 6187 | unsigned long size, end; |
d41dee36 AW |
6188 | struct page *map; |
6189 | ||
e984bb43 BP |
6190 | /* |
6191 | * The zone's endpoints aren't required to be MAX_ORDER | |
6192 | * aligned but the node_mem_map endpoints must be in order | |
6193 | * for the buddy allocator to function correctly. | |
6194 | */ | |
108bcc96 | 6195 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
6196 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
6197 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
6198 | map = alloc_remap(pgdat->node_id, size); |
6199 | if (!map) | |
6782832e SS |
6200 | map = memblock_virt_alloc_node_nopanic(size, |
6201 | pgdat->node_id); | |
a1c34a3b | 6202 | pgdat->node_mem_map = map + offset; |
1da177e4 | 6203 | } |
0cd842f9 OS |
6204 | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", |
6205 | __func__, pgdat->node_id, (unsigned long)pgdat, | |
6206 | (unsigned long)pgdat->node_mem_map); | |
12d810c1 | 6207 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
6208 | /* |
6209 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
6210 | */ | |
c713216d | 6211 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 6212 | mem_map = NODE_DATA(0)->node_mem_map; |
a1c34a3b | 6213 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) |
c713216d | 6214 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
a1c34a3b | 6215 | mem_map -= offset; |
0ee332c1 | 6216 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 6217 | } |
1da177e4 LT |
6218 | #endif |
6219 | } | |
0cd842f9 OS |
6220 | #else |
6221 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } | |
6222 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | |
1da177e4 | 6223 | |
9109fb7b JW |
6224 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
6225 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 6226 | { |
9109fb7b | 6227 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
6228 | unsigned long start_pfn = 0; |
6229 | unsigned long end_pfn = 0; | |
9109fb7b | 6230 | |
88fdf75d | 6231 | /* pg_data_t should be reset to zero when it's allocated */ |
38087d9b | 6232 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); |
88fdf75d | 6233 | |
1da177e4 LT |
6234 | pgdat->node_id = nid; |
6235 | pgdat->node_start_pfn = node_start_pfn; | |
75ef7184 | 6236 | pgdat->per_cpu_nodestats = NULL; |
7960aedd ZY |
6237 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
6238 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8d29e18a | 6239 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
4ada0c5a ZL |
6240 | (u64)start_pfn << PAGE_SHIFT, |
6241 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
d91749c1 TI |
6242 | #else |
6243 | start_pfn = node_start_pfn; | |
7960aedd ZY |
6244 | #endif |
6245 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
6246 | zones_size, zholes_size); | |
1da177e4 LT |
6247 | |
6248 | alloc_node_mem_map(pgdat); | |
6249 | ||
864b9a39 | 6250 | reset_deferred_meminit(pgdat); |
7f3eb55b | 6251 | free_area_init_core(pgdat); |
1da177e4 LT |
6252 | } |
6253 | ||
a4a3ede2 PT |
6254 | #ifdef CONFIG_HAVE_MEMBLOCK |
6255 | /* | |
6256 | * Only struct pages that are backed by physical memory are zeroed and | |
6257 | * initialized by going through __init_single_page(). But, there are some | |
6258 | * struct pages which are reserved in memblock allocator and their fields | |
6259 | * may be accessed (for example page_to_pfn() on some configuration accesses | |
6260 | * flags). We must explicitly zero those struct pages. | |
6261 | */ | |
6262 | void __paginginit zero_resv_unavail(void) | |
6263 | { | |
6264 | phys_addr_t start, end; | |
6265 | unsigned long pfn; | |
6266 | u64 i, pgcnt; | |
6267 | ||
6268 | /* | |
6269 | * Loop through ranges that are reserved, but do not have reported | |
6270 | * physical memory backing. | |
6271 | */ | |
6272 | pgcnt = 0; | |
6273 | for_each_resv_unavail_range(i, &start, &end) { | |
6274 | for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { | |
e8c24773 DY |
6275 | if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) |
6276 | continue; | |
a4a3ede2 PT |
6277 | mm_zero_struct_page(pfn_to_page(pfn)); |
6278 | pgcnt++; | |
6279 | } | |
6280 | } | |
6281 | ||
6282 | /* | |
6283 | * Struct pages that do not have backing memory. This could be because | |
6284 | * firmware is using some of this memory, or for some other reasons. | |
6285 | * Once memblock is changed so such behaviour is not allowed: i.e. | |
6286 | * list of "reserved" memory must be a subset of list of "memory", then | |
6287 | * this code can be removed. | |
6288 | */ | |
6289 | if (pgcnt) | |
6290 | pr_info("Reserved but unavailable: %lld pages", pgcnt); | |
6291 | } | |
6292 | #endif /* CONFIG_HAVE_MEMBLOCK */ | |
6293 | ||
0ee332c1 | 6294 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
6295 | |
6296 | #if MAX_NUMNODES > 1 | |
6297 | /* | |
6298 | * Figure out the number of possible node ids. | |
6299 | */ | |
f9872caf | 6300 | void __init setup_nr_node_ids(void) |
418508c1 | 6301 | { |
904a9553 | 6302 | unsigned int highest; |
418508c1 | 6303 | |
904a9553 | 6304 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
418508c1 MS |
6305 | nr_node_ids = highest + 1; |
6306 | } | |
418508c1 MS |
6307 | #endif |
6308 | ||
1e01979c TH |
6309 | /** |
6310 | * node_map_pfn_alignment - determine the maximum internode alignment | |
6311 | * | |
6312 | * This function should be called after node map is populated and sorted. | |
6313 | * It calculates the maximum power of two alignment which can distinguish | |
6314 | * all the nodes. | |
6315 | * | |
6316 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
6317 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
6318 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
6319 | * shifted, 1GiB is enough and this function will indicate so. | |
6320 | * | |
6321 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
6322 | * model has fine enough granularity to avoid incorrect mapping for the | |
6323 | * populated node map. | |
6324 | * | |
6325 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
6326 | * requirement (single node). | |
6327 | */ | |
6328 | unsigned long __init node_map_pfn_alignment(void) | |
6329 | { | |
6330 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 6331 | unsigned long start, end, mask; |
1e01979c | 6332 | int last_nid = -1; |
c13291a5 | 6333 | int i, nid; |
1e01979c | 6334 | |
c13291a5 | 6335 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
6336 | if (!start || last_nid < 0 || last_nid == nid) { |
6337 | last_nid = nid; | |
6338 | last_end = end; | |
6339 | continue; | |
6340 | } | |
6341 | ||
6342 | /* | |
6343 | * Start with a mask granular enough to pin-point to the | |
6344 | * start pfn and tick off bits one-by-one until it becomes | |
6345 | * too coarse to separate the current node from the last. | |
6346 | */ | |
6347 | mask = ~((1 << __ffs(start)) - 1); | |
6348 | while (mask && last_end <= (start & (mask << 1))) | |
6349 | mask <<= 1; | |
6350 | ||
6351 | /* accumulate all internode masks */ | |
6352 | accl_mask |= mask; | |
6353 | } | |
6354 | ||
6355 | /* convert mask to number of pages */ | |
6356 | return ~accl_mask + 1; | |
6357 | } | |
6358 | ||
a6af2bc3 | 6359 | /* Find the lowest pfn for a node */ |
b69a7288 | 6360 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 6361 | { |
a6af2bc3 | 6362 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
6363 | unsigned long start_pfn; |
6364 | int i; | |
1abbfb41 | 6365 | |
c13291a5 TH |
6366 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
6367 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 6368 | |
a6af2bc3 | 6369 | if (min_pfn == ULONG_MAX) { |
1170532b | 6370 | pr_warn("Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
6371 | return 0; |
6372 | } | |
6373 | ||
6374 | return min_pfn; | |
c713216d MG |
6375 | } |
6376 | ||
6377 | /** | |
6378 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
6379 | * | |
6380 | * It returns the minimum PFN based on information provided via | |
7d018176 | 6381 | * memblock_set_node(). |
c713216d MG |
6382 | */ |
6383 | unsigned long __init find_min_pfn_with_active_regions(void) | |
6384 | { | |
6385 | return find_min_pfn_for_node(MAX_NUMNODES); | |
6386 | } | |
6387 | ||
37b07e41 LS |
6388 | /* |
6389 | * early_calculate_totalpages() | |
6390 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 6391 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 6392 | */ |
484f51f8 | 6393 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 6394 | { |
7e63efef | 6395 | unsigned long totalpages = 0; |
c13291a5 TH |
6396 | unsigned long start_pfn, end_pfn; |
6397 | int i, nid; | |
6398 | ||
6399 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
6400 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 6401 | |
37b07e41 LS |
6402 | totalpages += pages; |
6403 | if (pages) | |
4b0ef1fe | 6404 | node_set_state(nid, N_MEMORY); |
37b07e41 | 6405 | } |
b8af2941 | 6406 | return totalpages; |
7e63efef MG |
6407 | } |
6408 | ||
2a1e274a MG |
6409 | /* |
6410 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
6411 | * is spread evenly between nodes as long as the nodes have enough | |
6412 | * memory. When they don't, some nodes will have more kernelcore than | |
6413 | * others | |
6414 | */ | |
b224ef85 | 6415 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
6416 | { |
6417 | int i, nid; | |
6418 | unsigned long usable_startpfn; | |
6419 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 6420 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 6421 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 6422 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 6423 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 6424 | struct memblock_region *r; |
b2f3eebe TC |
6425 | |
6426 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
6427 | find_usable_zone_for_movable(); | |
6428 | ||
6429 | /* | |
6430 | * If movable_node is specified, ignore kernelcore and movablecore | |
6431 | * options. | |
6432 | */ | |
6433 | if (movable_node_is_enabled()) { | |
136199f0 EM |
6434 | for_each_memblock(memory, r) { |
6435 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
6436 | continue; |
6437 | ||
136199f0 | 6438 | nid = r->nid; |
b2f3eebe | 6439 | |
136199f0 | 6440 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
6441 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
6442 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6443 | usable_startpfn; | |
6444 | } | |
6445 | ||
6446 | goto out2; | |
6447 | } | |
2a1e274a | 6448 | |
342332e6 TI |
6449 | /* |
6450 | * If kernelcore=mirror is specified, ignore movablecore option | |
6451 | */ | |
6452 | if (mirrored_kernelcore) { | |
6453 | bool mem_below_4gb_not_mirrored = false; | |
6454 | ||
6455 | for_each_memblock(memory, r) { | |
6456 | if (memblock_is_mirror(r)) | |
6457 | continue; | |
6458 | ||
6459 | nid = r->nid; | |
6460 | ||
6461 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
6462 | ||
6463 | if (usable_startpfn < 0x100000) { | |
6464 | mem_below_4gb_not_mirrored = true; | |
6465 | continue; | |
6466 | } | |
6467 | ||
6468 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
6469 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6470 | usable_startpfn; | |
6471 | } | |
6472 | ||
6473 | if (mem_below_4gb_not_mirrored) | |
6474 | pr_warn("This configuration results in unmirrored kernel memory."); | |
6475 | ||
6476 | goto out2; | |
6477 | } | |
6478 | ||
7e63efef | 6479 | /* |
b2f3eebe | 6480 | * If movablecore=nn[KMG] was specified, calculate what size of |
7e63efef MG |
6481 | * kernelcore that corresponds so that memory usable for |
6482 | * any allocation type is evenly spread. If both kernelcore | |
6483 | * and movablecore are specified, then the value of kernelcore | |
6484 | * will be used for required_kernelcore if it's greater than | |
6485 | * what movablecore would have allowed. | |
6486 | */ | |
6487 | if (required_movablecore) { | |
7e63efef MG |
6488 | unsigned long corepages; |
6489 | ||
6490 | /* | |
6491 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
6492 | * was requested by the user | |
6493 | */ | |
6494 | required_movablecore = | |
6495 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
9fd745d4 | 6496 | required_movablecore = min(totalpages, required_movablecore); |
7e63efef MG |
6497 | corepages = totalpages - required_movablecore; |
6498 | ||
6499 | required_kernelcore = max(required_kernelcore, corepages); | |
6500 | } | |
6501 | ||
bde304bd XQ |
6502 | /* |
6503 | * If kernelcore was not specified or kernelcore size is larger | |
6504 | * than totalpages, there is no ZONE_MOVABLE. | |
6505 | */ | |
6506 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
66918dcd | 6507 | goto out; |
2a1e274a MG |
6508 | |
6509 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
6510 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
6511 | ||
6512 | restart: | |
6513 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
6514 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 6515 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
6516 | unsigned long start_pfn, end_pfn; |
6517 | ||
2a1e274a MG |
6518 | /* |
6519 | * Recalculate kernelcore_node if the division per node | |
6520 | * now exceeds what is necessary to satisfy the requested | |
6521 | * amount of memory for the kernel | |
6522 | */ | |
6523 | if (required_kernelcore < kernelcore_node) | |
6524 | kernelcore_node = required_kernelcore / usable_nodes; | |
6525 | ||
6526 | /* | |
6527 | * As the map is walked, we track how much memory is usable | |
6528 | * by the kernel using kernelcore_remaining. When it is | |
6529 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
6530 | */ | |
6531 | kernelcore_remaining = kernelcore_node; | |
6532 | ||
6533 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 6534 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
6535 | unsigned long size_pages; |
6536 | ||
c13291a5 | 6537 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
6538 | if (start_pfn >= end_pfn) |
6539 | continue; | |
6540 | ||
6541 | /* Account for what is only usable for kernelcore */ | |
6542 | if (start_pfn < usable_startpfn) { | |
6543 | unsigned long kernel_pages; | |
6544 | kernel_pages = min(end_pfn, usable_startpfn) | |
6545 | - start_pfn; | |
6546 | ||
6547 | kernelcore_remaining -= min(kernel_pages, | |
6548 | kernelcore_remaining); | |
6549 | required_kernelcore -= min(kernel_pages, | |
6550 | required_kernelcore); | |
6551 | ||
6552 | /* Continue if range is now fully accounted */ | |
6553 | if (end_pfn <= usable_startpfn) { | |
6554 | ||
6555 | /* | |
6556 | * Push zone_movable_pfn to the end so | |
6557 | * that if we have to rebalance | |
6558 | * kernelcore across nodes, we will | |
6559 | * not double account here | |
6560 | */ | |
6561 | zone_movable_pfn[nid] = end_pfn; | |
6562 | continue; | |
6563 | } | |
6564 | start_pfn = usable_startpfn; | |
6565 | } | |
6566 | ||
6567 | /* | |
6568 | * The usable PFN range for ZONE_MOVABLE is from | |
6569 | * start_pfn->end_pfn. Calculate size_pages as the | |
6570 | * number of pages used as kernelcore | |
6571 | */ | |
6572 | size_pages = end_pfn - start_pfn; | |
6573 | if (size_pages > kernelcore_remaining) | |
6574 | size_pages = kernelcore_remaining; | |
6575 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
6576 | ||
6577 | /* | |
6578 | * Some kernelcore has been met, update counts and | |
6579 | * break if the kernelcore for this node has been | |
b8af2941 | 6580 | * satisfied |
2a1e274a MG |
6581 | */ |
6582 | required_kernelcore -= min(required_kernelcore, | |
6583 | size_pages); | |
6584 | kernelcore_remaining -= size_pages; | |
6585 | if (!kernelcore_remaining) | |
6586 | break; | |
6587 | } | |
6588 | } | |
6589 | ||
6590 | /* | |
6591 | * If there is still required_kernelcore, we do another pass with one | |
6592 | * less node in the count. This will push zone_movable_pfn[nid] further | |
6593 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 6594 | * satisfied |
2a1e274a MG |
6595 | */ |
6596 | usable_nodes--; | |
6597 | if (usable_nodes && required_kernelcore > usable_nodes) | |
6598 | goto restart; | |
6599 | ||
b2f3eebe | 6600 | out2: |
2a1e274a MG |
6601 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
6602 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
6603 | zone_movable_pfn[nid] = | |
6604 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 6605 | |
20e6926d | 6606 | out: |
66918dcd | 6607 | /* restore the node_state */ |
4b0ef1fe | 6608 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
6609 | } |
6610 | ||
4b0ef1fe LJ |
6611 | /* Any regular or high memory on that node ? */ |
6612 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 6613 | { |
37b07e41 LS |
6614 | enum zone_type zone_type; |
6615 | ||
4b0ef1fe LJ |
6616 | if (N_MEMORY == N_NORMAL_MEMORY) |
6617 | return; | |
6618 | ||
6619 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 6620 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 6621 | if (populated_zone(zone)) { |
4b0ef1fe LJ |
6622 | node_set_state(nid, N_HIGH_MEMORY); |
6623 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
6624 | zone_type <= ZONE_NORMAL) | |
6625 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
6626 | break; |
6627 | } | |
37b07e41 | 6628 | } |
37b07e41 LS |
6629 | } |
6630 | ||
c713216d MG |
6631 | /** |
6632 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 6633 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
6634 | * |
6635 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 6636 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
6637 | * zone in each node and their holes is calculated. If the maximum PFN |
6638 | * between two adjacent zones match, it is assumed that the zone is empty. | |
6639 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
6640 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
6641 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
6642 | * at arch_max_dma_pfn. | |
6643 | */ | |
6644 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
6645 | { | |
c13291a5 TH |
6646 | unsigned long start_pfn, end_pfn; |
6647 | int i, nid; | |
a6af2bc3 | 6648 | |
c713216d MG |
6649 | /* Record where the zone boundaries are */ |
6650 | memset(arch_zone_lowest_possible_pfn, 0, | |
6651 | sizeof(arch_zone_lowest_possible_pfn)); | |
6652 | memset(arch_zone_highest_possible_pfn, 0, | |
6653 | sizeof(arch_zone_highest_possible_pfn)); | |
90cae1fe OH |
6654 | |
6655 | start_pfn = find_min_pfn_with_active_regions(); | |
6656 | ||
6657 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
6658 | if (i == ZONE_MOVABLE) |
6659 | continue; | |
90cae1fe OH |
6660 | |
6661 | end_pfn = max(max_zone_pfn[i], start_pfn); | |
6662 | arch_zone_lowest_possible_pfn[i] = start_pfn; | |
6663 | arch_zone_highest_possible_pfn[i] = end_pfn; | |
6664 | ||
6665 | start_pfn = end_pfn; | |
c713216d | 6666 | } |
2a1e274a MG |
6667 | |
6668 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
6669 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 6670 | find_zone_movable_pfns_for_nodes(); |
c713216d | 6671 | |
c713216d | 6672 | /* Print out the zone ranges */ |
f88dfff5 | 6673 | pr_info("Zone ranges:\n"); |
2a1e274a MG |
6674 | for (i = 0; i < MAX_NR_ZONES; i++) { |
6675 | if (i == ZONE_MOVABLE) | |
6676 | continue; | |
f88dfff5 | 6677 | pr_info(" %-8s ", zone_names[i]); |
72f0ba02 DR |
6678 | if (arch_zone_lowest_possible_pfn[i] == |
6679 | arch_zone_highest_possible_pfn[i]) | |
f88dfff5 | 6680 | pr_cont("empty\n"); |
72f0ba02 | 6681 | else |
8d29e18a JG |
6682 | pr_cont("[mem %#018Lx-%#018Lx]\n", |
6683 | (u64)arch_zone_lowest_possible_pfn[i] | |
6684 | << PAGE_SHIFT, | |
6685 | ((u64)arch_zone_highest_possible_pfn[i] | |
a62e2f4f | 6686 | << PAGE_SHIFT) - 1); |
2a1e274a MG |
6687 | } |
6688 | ||
6689 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
f88dfff5 | 6690 | pr_info("Movable zone start for each node\n"); |
2a1e274a MG |
6691 | for (i = 0; i < MAX_NUMNODES; i++) { |
6692 | if (zone_movable_pfn[i]) | |
8d29e18a JG |
6693 | pr_info(" Node %d: %#018Lx\n", i, |
6694 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 6695 | } |
c713216d | 6696 | |
f2d52fe5 | 6697 | /* Print out the early node map */ |
f88dfff5 | 6698 | pr_info("Early memory node ranges\n"); |
c13291a5 | 6699 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
8d29e18a JG |
6700 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
6701 | (u64)start_pfn << PAGE_SHIFT, | |
6702 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
6703 | |
6704 | /* Initialise every node */ | |
708614e6 | 6705 | mminit_verify_pageflags_layout(); |
8ef82866 | 6706 | setup_nr_node_ids(); |
c713216d MG |
6707 | for_each_online_node(nid) { |
6708 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 6709 | free_area_init_node(nid, NULL, |
c713216d | 6710 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
6711 | |
6712 | /* Any memory on that node */ | |
6713 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
6714 | node_set_state(nid, N_MEMORY); |
6715 | check_for_memory(pgdat, nid); | |
c713216d | 6716 | } |
a4a3ede2 | 6717 | zero_resv_unavail(); |
c713216d | 6718 | } |
2a1e274a | 6719 | |
7e63efef | 6720 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
6721 | { |
6722 | unsigned long long coremem; | |
6723 | if (!p) | |
6724 | return -EINVAL; | |
6725 | ||
6726 | coremem = memparse(p, &p); | |
7e63efef | 6727 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 6728 | |
7e63efef | 6729 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
6730 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
6731 | ||
6732 | return 0; | |
6733 | } | |
ed7ed365 | 6734 | |
7e63efef MG |
6735 | /* |
6736 | * kernelcore=size sets the amount of memory for use for allocations that | |
6737 | * cannot be reclaimed or migrated. | |
6738 | */ | |
6739 | static int __init cmdline_parse_kernelcore(char *p) | |
6740 | { | |
342332e6 TI |
6741 | /* parse kernelcore=mirror */ |
6742 | if (parse_option_str(p, "mirror")) { | |
6743 | mirrored_kernelcore = true; | |
6744 | return 0; | |
6745 | } | |
6746 | ||
7e63efef MG |
6747 | return cmdline_parse_core(p, &required_kernelcore); |
6748 | } | |
6749 | ||
6750 | /* | |
6751 | * movablecore=size sets the amount of memory for use for allocations that | |
6752 | * can be reclaimed or migrated. | |
6753 | */ | |
6754 | static int __init cmdline_parse_movablecore(char *p) | |
6755 | { | |
6756 | return cmdline_parse_core(p, &required_movablecore); | |
6757 | } | |
6758 | ||
ed7ed365 | 6759 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 6760 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 6761 | |
0ee332c1 | 6762 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 6763 | |
c3d5f5f0 JL |
6764 | void adjust_managed_page_count(struct page *page, long count) |
6765 | { | |
6766 | spin_lock(&managed_page_count_lock); | |
6767 | page_zone(page)->managed_pages += count; | |
6768 | totalram_pages += count; | |
3dcc0571 JL |
6769 | #ifdef CONFIG_HIGHMEM |
6770 | if (PageHighMem(page)) | |
6771 | totalhigh_pages += count; | |
6772 | #endif | |
c3d5f5f0 JL |
6773 | spin_unlock(&managed_page_count_lock); |
6774 | } | |
3dcc0571 | 6775 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 6776 | |
11199692 | 6777 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 6778 | { |
11199692 JL |
6779 | void *pos; |
6780 | unsigned long pages = 0; | |
69afade7 | 6781 | |
11199692 JL |
6782 | start = (void *)PAGE_ALIGN((unsigned long)start); |
6783 | end = (void *)((unsigned long)end & PAGE_MASK); | |
6784 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 6785 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
6786 | memset(pos, poison, PAGE_SIZE); |
6787 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
6788 | } |
6789 | ||
6790 | if (pages && s) | |
adb1fe9a JP |
6791 | pr_info("Freeing %s memory: %ldK\n", |
6792 | s, pages << (PAGE_SHIFT - 10)); | |
69afade7 JL |
6793 | |
6794 | return pages; | |
6795 | } | |
11199692 | 6796 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 6797 | |
cfa11e08 JL |
6798 | #ifdef CONFIG_HIGHMEM |
6799 | void free_highmem_page(struct page *page) | |
6800 | { | |
6801 | __free_reserved_page(page); | |
6802 | totalram_pages++; | |
7b4b2a0d | 6803 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
6804 | totalhigh_pages++; |
6805 | } | |
6806 | #endif | |
6807 | ||
7ee3d4e8 JL |
6808 | |
6809 | void __init mem_init_print_info(const char *str) | |
6810 | { | |
6811 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
6812 | unsigned long init_code_size, init_data_size; | |
6813 | ||
6814 | physpages = get_num_physpages(); | |
6815 | codesize = _etext - _stext; | |
6816 | datasize = _edata - _sdata; | |
6817 | rosize = __end_rodata - __start_rodata; | |
6818 | bss_size = __bss_stop - __bss_start; | |
6819 | init_data_size = __init_end - __init_begin; | |
6820 | init_code_size = _einittext - _sinittext; | |
6821 | ||
6822 | /* | |
6823 | * Detect special cases and adjust section sizes accordingly: | |
6824 | * 1) .init.* may be embedded into .data sections | |
6825 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
6826 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
6827 | * 3) .rodata.* may be embedded into .text or .data sections. | |
6828 | */ | |
6829 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
6830 | do { \ |
6831 | if (start <= pos && pos < end && size > adj) \ | |
6832 | size -= adj; \ | |
6833 | } while (0) | |
7ee3d4e8 JL |
6834 | |
6835 | adj_init_size(__init_begin, __init_end, init_data_size, | |
6836 | _sinittext, init_code_size); | |
6837 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
6838 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
6839 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
6840 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
6841 | ||
6842 | #undef adj_init_size | |
6843 | ||
756a025f | 6844 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" |
7ee3d4e8 | 6845 | #ifdef CONFIG_HIGHMEM |
756a025f | 6846 | ", %luK highmem" |
7ee3d4e8 | 6847 | #endif |
756a025f JP |
6848 | "%s%s)\n", |
6849 | nr_free_pages() << (PAGE_SHIFT - 10), | |
6850 | physpages << (PAGE_SHIFT - 10), | |
6851 | codesize >> 10, datasize >> 10, rosize >> 10, | |
6852 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
6853 | (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), | |
6854 | totalcma_pages << (PAGE_SHIFT - 10), | |
7ee3d4e8 | 6855 | #ifdef CONFIG_HIGHMEM |
756a025f | 6856 | totalhigh_pages << (PAGE_SHIFT - 10), |
7ee3d4e8 | 6857 | #endif |
756a025f | 6858 | str ? ", " : "", str ? str : ""); |
7ee3d4e8 JL |
6859 | } |
6860 | ||
0e0b864e | 6861 | /** |
88ca3b94 RD |
6862 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
6863 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e | 6864 | * |
013110a7 | 6865 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
0e0b864e MG |
6866 | * In the DMA zone, a significant percentage may be consumed by kernel image |
6867 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
6868 | * function may optionally be used to account for unfreeable pages in the |
6869 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
6870 | * smaller per-cpu batchsize. | |
0e0b864e MG |
6871 | */ |
6872 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
6873 | { | |
6874 | dma_reserve = new_dma_reserve; | |
6875 | } | |
6876 | ||
1da177e4 LT |
6877 | void __init free_area_init(unsigned long *zones_size) |
6878 | { | |
9109fb7b | 6879 | free_area_init_node(0, zones_size, |
1da177e4 | 6880 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
a4a3ede2 | 6881 | zero_resv_unavail(); |
1da177e4 | 6882 | } |
1da177e4 | 6883 | |
005fd4bb | 6884 | static int page_alloc_cpu_dead(unsigned int cpu) |
1da177e4 | 6885 | { |
1da177e4 | 6886 | |
005fd4bb SAS |
6887 | lru_add_drain_cpu(cpu); |
6888 | drain_pages(cpu); | |
9f8f2172 | 6889 | |
005fd4bb SAS |
6890 | /* |
6891 | * Spill the event counters of the dead processor | |
6892 | * into the current processors event counters. | |
6893 | * This artificially elevates the count of the current | |
6894 | * processor. | |
6895 | */ | |
6896 | vm_events_fold_cpu(cpu); | |
9f8f2172 | 6897 | |
005fd4bb SAS |
6898 | /* |
6899 | * Zero the differential counters of the dead processor | |
6900 | * so that the vm statistics are consistent. | |
6901 | * | |
6902 | * This is only okay since the processor is dead and cannot | |
6903 | * race with what we are doing. | |
6904 | */ | |
6905 | cpu_vm_stats_fold(cpu); | |
6906 | return 0; | |
1da177e4 | 6907 | } |
1da177e4 LT |
6908 | |
6909 | void __init page_alloc_init(void) | |
6910 | { | |
005fd4bb SAS |
6911 | int ret; |
6912 | ||
6913 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, | |
6914 | "mm/page_alloc:dead", NULL, | |
6915 | page_alloc_cpu_dead); | |
6916 | WARN_ON(ret < 0); | |
1da177e4 LT |
6917 | } |
6918 | ||
cb45b0e9 | 6919 | /* |
34b10060 | 6920 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
6921 | * or min_free_kbytes changes. |
6922 | */ | |
6923 | static void calculate_totalreserve_pages(void) | |
6924 | { | |
6925 | struct pglist_data *pgdat; | |
6926 | unsigned long reserve_pages = 0; | |
2f6726e5 | 6927 | enum zone_type i, j; |
cb45b0e9 HA |
6928 | |
6929 | for_each_online_pgdat(pgdat) { | |
281e3726 MG |
6930 | |
6931 | pgdat->totalreserve_pages = 0; | |
6932 | ||
cb45b0e9 HA |
6933 | for (i = 0; i < MAX_NR_ZONES; i++) { |
6934 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 6935 | long max = 0; |
cb45b0e9 HA |
6936 | |
6937 | /* Find valid and maximum lowmem_reserve in the zone */ | |
6938 | for (j = i; j < MAX_NR_ZONES; j++) { | |
6939 | if (zone->lowmem_reserve[j] > max) | |
6940 | max = zone->lowmem_reserve[j]; | |
6941 | } | |
6942 | ||
41858966 MG |
6943 | /* we treat the high watermark as reserved pages. */ |
6944 | max += high_wmark_pages(zone); | |
cb45b0e9 | 6945 | |
b40da049 JL |
6946 | if (max > zone->managed_pages) |
6947 | max = zone->managed_pages; | |
a8d01437 | 6948 | |
281e3726 | 6949 | pgdat->totalreserve_pages += max; |
a8d01437 | 6950 | |
cb45b0e9 HA |
6951 | reserve_pages += max; |
6952 | } | |
6953 | } | |
6954 | totalreserve_pages = reserve_pages; | |
6955 | } | |
6956 | ||
1da177e4 LT |
6957 | /* |
6958 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 6959 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
6960 | * has a correct pages reserved value, so an adequate number of |
6961 | * pages are left in the zone after a successful __alloc_pages(). | |
6962 | */ | |
6963 | static void setup_per_zone_lowmem_reserve(void) | |
6964 | { | |
6965 | struct pglist_data *pgdat; | |
2f6726e5 | 6966 | enum zone_type j, idx; |
1da177e4 | 6967 | |
ec936fc5 | 6968 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
6969 | for (j = 0; j < MAX_NR_ZONES; j++) { |
6970 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 6971 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
6972 | |
6973 | zone->lowmem_reserve[j] = 0; | |
6974 | ||
2f6726e5 CL |
6975 | idx = j; |
6976 | while (idx) { | |
1da177e4 LT |
6977 | struct zone *lower_zone; |
6978 | ||
2f6726e5 CL |
6979 | idx--; |
6980 | ||
1da177e4 LT |
6981 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
6982 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
6983 | ||
6984 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 6985 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 6986 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 6987 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
6988 | } |
6989 | } | |
6990 | } | |
cb45b0e9 HA |
6991 | |
6992 | /* update totalreserve_pages */ | |
6993 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6994 | } |
6995 | ||
cfd3da1e | 6996 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
6997 | { |
6998 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
6999 | unsigned long lowmem_pages = 0; | |
7000 | struct zone *zone; | |
7001 | unsigned long flags; | |
7002 | ||
7003 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
7004 | for_each_zone(zone) { | |
7005 | if (!is_highmem(zone)) | |
b40da049 | 7006 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
7007 | } |
7008 | ||
7009 | for_each_zone(zone) { | |
ac924c60 AM |
7010 | u64 tmp; |
7011 | ||
1125b4e3 | 7012 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 7013 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 7014 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
7015 | if (is_highmem(zone)) { |
7016 | /* | |
669ed175 NP |
7017 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
7018 | * need highmem pages, so cap pages_min to a small | |
7019 | * value here. | |
7020 | * | |
41858966 | 7021 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
42ff2703 | 7022 | * deltas control asynch page reclaim, and so should |
669ed175 | 7023 | * not be capped for highmem. |
1da177e4 | 7024 | */ |
90ae8d67 | 7025 | unsigned long min_pages; |
1da177e4 | 7026 | |
b40da049 | 7027 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 7028 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 7029 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 7030 | } else { |
669ed175 NP |
7031 | /* |
7032 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
7033 | * proportionate to the zone's size. |
7034 | */ | |
41858966 | 7035 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
7036 | } |
7037 | ||
795ae7a0 JW |
7038 | /* |
7039 | * Set the kswapd watermarks distance according to the | |
7040 | * scale factor in proportion to available memory, but | |
7041 | * ensure a minimum size on small systems. | |
7042 | */ | |
7043 | tmp = max_t(u64, tmp >> 2, | |
7044 | mult_frac(zone->managed_pages, | |
7045 | watermark_scale_factor, 10000)); | |
7046 | ||
7047 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; | |
7048 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; | |
49f223a9 | 7049 | |
1125b4e3 | 7050 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 7051 | } |
cb45b0e9 HA |
7052 | |
7053 | /* update totalreserve_pages */ | |
7054 | calculate_totalreserve_pages(); | |
1da177e4 LT |
7055 | } |
7056 | ||
cfd3da1e MG |
7057 | /** |
7058 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
7059 | * or when memory is hot-{added|removed} | |
7060 | * | |
7061 | * Ensures that the watermark[min,low,high] values for each zone are set | |
7062 | * correctly with respect to min_free_kbytes. | |
7063 | */ | |
7064 | void setup_per_zone_wmarks(void) | |
7065 | { | |
b93e0f32 MH |
7066 | static DEFINE_SPINLOCK(lock); |
7067 | ||
7068 | spin_lock(&lock); | |
cfd3da1e | 7069 | __setup_per_zone_wmarks(); |
b93e0f32 | 7070 | spin_unlock(&lock); |
cfd3da1e MG |
7071 | } |
7072 | ||
1da177e4 LT |
7073 | /* |
7074 | * Initialise min_free_kbytes. | |
7075 | * | |
7076 | * For small machines we want it small (128k min). For large machines | |
7077 | * we want it large (64MB max). But it is not linear, because network | |
7078 | * bandwidth does not increase linearly with machine size. We use | |
7079 | * | |
b8af2941 | 7080 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
7081 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
7082 | * | |
7083 | * which yields | |
7084 | * | |
7085 | * 16MB: 512k | |
7086 | * 32MB: 724k | |
7087 | * 64MB: 1024k | |
7088 | * 128MB: 1448k | |
7089 | * 256MB: 2048k | |
7090 | * 512MB: 2896k | |
7091 | * 1024MB: 4096k | |
7092 | * 2048MB: 5792k | |
7093 | * 4096MB: 8192k | |
7094 | * 8192MB: 11584k | |
7095 | * 16384MB: 16384k | |
7096 | */ | |
1b79acc9 | 7097 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
7098 | { |
7099 | unsigned long lowmem_kbytes; | |
5f12733e | 7100 | int new_min_free_kbytes; |
1da177e4 LT |
7101 | |
7102 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
7103 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
7104 | ||
7105 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
7106 | min_free_kbytes = new_min_free_kbytes; | |
7107 | if (min_free_kbytes < 128) | |
7108 | min_free_kbytes = 128; | |
7109 | if (min_free_kbytes > 65536) | |
7110 | min_free_kbytes = 65536; | |
7111 | } else { | |
7112 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
7113 | new_min_free_kbytes, user_min_free_kbytes); | |
7114 | } | |
bc75d33f | 7115 | setup_per_zone_wmarks(); |
a6cccdc3 | 7116 | refresh_zone_stat_thresholds(); |
1da177e4 | 7117 | setup_per_zone_lowmem_reserve(); |
6423aa81 JK |
7118 | |
7119 | #ifdef CONFIG_NUMA | |
7120 | setup_min_unmapped_ratio(); | |
7121 | setup_min_slab_ratio(); | |
7122 | #endif | |
7123 | ||
1da177e4 LT |
7124 | return 0; |
7125 | } | |
bc22af74 | 7126 | core_initcall(init_per_zone_wmark_min) |
1da177e4 LT |
7127 | |
7128 | /* | |
b8af2941 | 7129 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
7130 | * that we can call two helper functions whenever min_free_kbytes |
7131 | * changes. | |
7132 | */ | |
cccad5b9 | 7133 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7134 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 7135 | { |
da8c757b HP |
7136 | int rc; |
7137 | ||
7138 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7139 | if (rc) | |
7140 | return rc; | |
7141 | ||
5f12733e MH |
7142 | if (write) { |
7143 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 7144 | setup_per_zone_wmarks(); |
5f12733e | 7145 | } |
1da177e4 LT |
7146 | return 0; |
7147 | } | |
7148 | ||
795ae7a0 JW |
7149 | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
7150 | void __user *buffer, size_t *length, loff_t *ppos) | |
7151 | { | |
7152 | int rc; | |
7153 | ||
7154 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7155 | if (rc) | |
7156 | return rc; | |
7157 | ||
7158 | if (write) | |
7159 | setup_per_zone_wmarks(); | |
7160 | ||
7161 | return 0; | |
7162 | } | |
7163 | ||
9614634f | 7164 | #ifdef CONFIG_NUMA |
6423aa81 | 7165 | static void setup_min_unmapped_ratio(void) |
9614634f | 7166 | { |
6423aa81 | 7167 | pg_data_t *pgdat; |
9614634f | 7168 | struct zone *zone; |
9614634f | 7169 | |
a5f5f91d | 7170 | for_each_online_pgdat(pgdat) |
81cbcbc2 | 7171 | pgdat->min_unmapped_pages = 0; |
a5f5f91d | 7172 | |
9614634f | 7173 | for_each_zone(zone) |
a5f5f91d | 7174 | zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * |
9614634f | 7175 | sysctl_min_unmapped_ratio) / 100; |
9614634f | 7176 | } |
0ff38490 | 7177 | |
6423aa81 JK |
7178 | |
7179 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | |
8d65af78 | 7180 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 | 7181 | { |
0ff38490 CL |
7182 | int rc; |
7183 | ||
8d65af78 | 7184 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
7185 | if (rc) |
7186 | return rc; | |
7187 | ||
6423aa81 JK |
7188 | setup_min_unmapped_ratio(); |
7189 | ||
7190 | return 0; | |
7191 | } | |
7192 | ||
7193 | static void setup_min_slab_ratio(void) | |
7194 | { | |
7195 | pg_data_t *pgdat; | |
7196 | struct zone *zone; | |
7197 | ||
a5f5f91d MG |
7198 | for_each_online_pgdat(pgdat) |
7199 | pgdat->min_slab_pages = 0; | |
7200 | ||
0ff38490 | 7201 | for_each_zone(zone) |
a5f5f91d | 7202 | zone->zone_pgdat->min_slab_pages += (zone->managed_pages * |
0ff38490 | 7203 | sysctl_min_slab_ratio) / 100; |
6423aa81 JK |
7204 | } |
7205 | ||
7206 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | |
7207 | void __user *buffer, size_t *length, loff_t *ppos) | |
7208 | { | |
7209 | int rc; | |
7210 | ||
7211 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7212 | if (rc) | |
7213 | return rc; | |
7214 | ||
7215 | setup_min_slab_ratio(); | |
7216 | ||
0ff38490 CL |
7217 | return 0; |
7218 | } | |
9614634f CL |
7219 | #endif |
7220 | ||
1da177e4 LT |
7221 | /* |
7222 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
7223 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
7224 | * whenever sysctl_lowmem_reserve_ratio changes. | |
7225 | * | |
7226 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 7227 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
7228 | * if in function of the boot time zone sizes. |
7229 | */ | |
cccad5b9 | 7230 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7231 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 7232 | { |
8d65af78 | 7233 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
7234 | setup_per_zone_lowmem_reserve(); |
7235 | return 0; | |
7236 | } | |
7237 | ||
8ad4b1fb RS |
7238 | /* |
7239 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
7240 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
7241 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 7242 | */ |
cccad5b9 | 7243 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7244 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
7245 | { |
7246 | struct zone *zone; | |
7cd2b0a3 | 7247 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
7248 | int ret; |
7249 | ||
7cd2b0a3 DR |
7250 | mutex_lock(&pcp_batch_high_lock); |
7251 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
7252 | ||
8d65af78 | 7253 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
7254 | if (!write || ret < 0) |
7255 | goto out; | |
7256 | ||
7257 | /* Sanity checking to avoid pcp imbalance */ | |
7258 | if (percpu_pagelist_fraction && | |
7259 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
7260 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
7261 | ret = -EINVAL; | |
7262 | goto out; | |
7263 | } | |
7264 | ||
7265 | /* No change? */ | |
7266 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
7267 | goto out; | |
c8e251fa | 7268 | |
364df0eb | 7269 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
7270 | unsigned int cpu; |
7271 | ||
22a7f12b | 7272 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
7273 | pageset_set_high_and_batch(zone, |
7274 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 7275 | } |
7cd2b0a3 | 7276 | out: |
c8e251fa | 7277 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 7278 | return ret; |
8ad4b1fb RS |
7279 | } |
7280 | ||
a9919c79 | 7281 | #ifdef CONFIG_NUMA |
f034b5d4 | 7282 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 | 7283 | |
1da177e4 LT |
7284 | static int __init set_hashdist(char *str) |
7285 | { | |
7286 | if (!str) | |
7287 | return 0; | |
7288 | hashdist = simple_strtoul(str, &str, 0); | |
7289 | return 1; | |
7290 | } | |
7291 | __setup("hashdist=", set_hashdist); | |
7292 | #endif | |
7293 | ||
f6f34b43 SD |
7294 | #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES |
7295 | /* | |
7296 | * Returns the number of pages that arch has reserved but | |
7297 | * is not known to alloc_large_system_hash(). | |
7298 | */ | |
7299 | static unsigned long __init arch_reserved_kernel_pages(void) | |
7300 | { | |
7301 | return 0; | |
7302 | } | |
7303 | #endif | |
7304 | ||
9017217b PT |
7305 | /* |
7306 | * Adaptive scale is meant to reduce sizes of hash tables on large memory | |
7307 | * machines. As memory size is increased the scale is also increased but at | |
7308 | * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory | |
7309 | * quadruples the scale is increased by one, which means the size of hash table | |
7310 | * only doubles, instead of quadrupling as well. | |
7311 | * Because 32-bit systems cannot have large physical memory, where this scaling | |
7312 | * makes sense, it is disabled on such platforms. | |
7313 | */ | |
7314 | #if __BITS_PER_LONG > 32 | |
7315 | #define ADAPT_SCALE_BASE (64ul << 30) | |
7316 | #define ADAPT_SCALE_SHIFT 2 | |
7317 | #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) | |
7318 | #endif | |
7319 | ||
1da177e4 LT |
7320 | /* |
7321 | * allocate a large system hash table from bootmem | |
7322 | * - it is assumed that the hash table must contain an exact power-of-2 | |
7323 | * quantity of entries | |
7324 | * - limit is the number of hash buckets, not the total allocation size | |
7325 | */ | |
7326 | void *__init alloc_large_system_hash(const char *tablename, | |
7327 | unsigned long bucketsize, | |
7328 | unsigned long numentries, | |
7329 | int scale, | |
7330 | int flags, | |
7331 | unsigned int *_hash_shift, | |
7332 | unsigned int *_hash_mask, | |
31fe62b9 TB |
7333 | unsigned long low_limit, |
7334 | unsigned long high_limit) | |
1da177e4 | 7335 | { |
31fe62b9 | 7336 | unsigned long long max = high_limit; |
1da177e4 LT |
7337 | unsigned long log2qty, size; |
7338 | void *table = NULL; | |
3749a8f0 | 7339 | gfp_t gfp_flags; |
1da177e4 LT |
7340 | |
7341 | /* allow the kernel cmdline to have a say */ | |
7342 | if (!numentries) { | |
7343 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 7344 | numentries = nr_kernel_pages; |
f6f34b43 | 7345 | numentries -= arch_reserved_kernel_pages(); |
a7e83318 JZ |
7346 | |
7347 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
7348 | if (PAGE_SHIFT < 20) | |
7349 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 | 7350 | |
9017217b PT |
7351 | #if __BITS_PER_LONG > 32 |
7352 | if (!high_limit) { | |
7353 | unsigned long adapt; | |
7354 | ||
7355 | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | |
7356 | adapt <<= ADAPT_SCALE_SHIFT) | |
7357 | scale++; | |
7358 | } | |
7359 | #endif | |
7360 | ||
1da177e4 LT |
7361 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
7362 | if (scale > PAGE_SHIFT) | |
7363 | numentries >>= (scale - PAGE_SHIFT); | |
7364 | else | |
7365 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
7366 | |
7367 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
7368 | if (unlikely(flags & HASH_SMALL)) { |
7369 | /* Makes no sense without HASH_EARLY */ | |
7370 | WARN_ON(!(flags & HASH_EARLY)); | |
7371 | if (!(numentries >> *_hash_shift)) { | |
7372 | numentries = 1UL << *_hash_shift; | |
7373 | BUG_ON(!numentries); | |
7374 | } | |
7375 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 7376 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 7377 | } |
6e692ed3 | 7378 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
7379 | |
7380 | /* limit allocation size to 1/16 total memory by default */ | |
7381 | if (max == 0) { | |
7382 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
7383 | do_div(max, bucketsize); | |
7384 | } | |
074b8517 | 7385 | max = min(max, 0x80000000ULL); |
1da177e4 | 7386 | |
31fe62b9 TB |
7387 | if (numentries < low_limit) |
7388 | numentries = low_limit; | |
1da177e4 LT |
7389 | if (numentries > max) |
7390 | numentries = max; | |
7391 | ||
f0d1b0b3 | 7392 | log2qty = ilog2(numentries); |
1da177e4 | 7393 | |
3749a8f0 | 7394 | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; |
1da177e4 LT |
7395 | do { |
7396 | size = bucketsize << log2qty; | |
ea1f5f37 PT |
7397 | if (flags & HASH_EARLY) { |
7398 | if (flags & HASH_ZERO) | |
7399 | table = memblock_virt_alloc_nopanic(size, 0); | |
7400 | else | |
7401 | table = memblock_virt_alloc_raw(size, 0); | |
7402 | } else if (hashdist) { | |
3749a8f0 | 7403 | table = __vmalloc(size, gfp_flags, PAGE_KERNEL); |
ea1f5f37 | 7404 | } else { |
1037b83b ED |
7405 | /* |
7406 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
7407 | * some pages at the end of hash table which |
7408 | * alloc_pages_exact() automatically does | |
1037b83b | 7409 | */ |
264ef8a9 | 7410 | if (get_order(size) < MAX_ORDER) { |
3749a8f0 PT |
7411 | table = alloc_pages_exact(size, gfp_flags); |
7412 | kmemleak_alloc(table, size, 1, gfp_flags); | |
264ef8a9 | 7413 | } |
1da177e4 LT |
7414 | } |
7415 | } while (!table && size > PAGE_SIZE && --log2qty); | |
7416 | ||
7417 | if (!table) | |
7418 | panic("Failed to allocate %s hash table\n", tablename); | |
7419 | ||
1170532b JP |
7420 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", |
7421 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); | |
1da177e4 LT |
7422 | |
7423 | if (_hash_shift) | |
7424 | *_hash_shift = log2qty; | |
7425 | if (_hash_mask) | |
7426 | *_hash_mask = (1 << log2qty) - 1; | |
7427 | ||
7428 | return table; | |
7429 | } | |
a117e66e | 7430 | |
a5d76b54 | 7431 | /* |
80934513 MK |
7432 | * This function checks whether pageblock includes unmovable pages or not. |
7433 | * If @count is not zero, it is okay to include less @count unmovable pages | |
7434 | * | |
b8af2941 | 7435 | * PageLRU check without isolation or lru_lock could race so that |
0efadf48 YX |
7436 | * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable |
7437 | * check without lock_page also may miss some movable non-lru pages at | |
7438 | * race condition. So you can't expect this function should be exact. | |
a5d76b54 | 7439 | */ |
b023f468 | 7440 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
4da2ce25 | 7441 | int migratetype, |
b023f468 | 7442 | bool skip_hwpoisoned_pages) |
49ac8255 KH |
7443 | { |
7444 | unsigned long pfn, iter, found; | |
47118af0 | 7445 | |
49ac8255 KH |
7446 | /* |
7447 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 7448 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
7449 | */ |
7450 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 7451 | return false; |
49ac8255 | 7452 | |
4da2ce25 MH |
7453 | /* |
7454 | * CMA allocations (alloc_contig_range) really need to mark isolate | |
7455 | * CMA pageblocks even when they are not movable in fact so consider | |
7456 | * them movable here. | |
7457 | */ | |
7458 | if (is_migrate_cma(migratetype) && | |
7459 | is_migrate_cma(get_pageblock_migratetype(page))) | |
7460 | return false; | |
7461 | ||
49ac8255 KH |
7462 | pfn = page_to_pfn(page); |
7463 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
7464 | unsigned long check = pfn + iter; | |
7465 | ||
29723fcc | 7466 | if (!pfn_valid_within(check)) |
49ac8255 | 7467 | continue; |
29723fcc | 7468 | |
49ac8255 | 7469 | page = pfn_to_page(check); |
c8721bbb | 7470 | |
d7ab3672 MH |
7471 | if (PageReserved(page)) |
7472 | return true; | |
7473 | ||
c8721bbb NH |
7474 | /* |
7475 | * Hugepages are not in LRU lists, but they're movable. | |
7476 | * We need not scan over tail pages bacause we don't | |
7477 | * handle each tail page individually in migration. | |
7478 | */ | |
7479 | if (PageHuge(page)) { | |
7480 | iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | |
7481 | continue; | |
7482 | } | |
7483 | ||
97d255c8 MK |
7484 | /* |
7485 | * We can't use page_count without pin a page | |
7486 | * because another CPU can free compound page. | |
7487 | * This check already skips compound tails of THP | |
0139aa7b | 7488 | * because their page->_refcount is zero at all time. |
97d255c8 | 7489 | */ |
fe896d18 | 7490 | if (!page_ref_count(page)) { |
49ac8255 KH |
7491 | if (PageBuddy(page)) |
7492 | iter += (1 << page_order(page)) - 1; | |
7493 | continue; | |
7494 | } | |
97d255c8 | 7495 | |
b023f468 WC |
7496 | /* |
7497 | * The HWPoisoned page may be not in buddy system, and | |
7498 | * page_count() is not 0. | |
7499 | */ | |
7500 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
7501 | continue; | |
7502 | ||
0efadf48 YX |
7503 | if (__PageMovable(page)) |
7504 | continue; | |
7505 | ||
49ac8255 KH |
7506 | if (!PageLRU(page)) |
7507 | found++; | |
7508 | /* | |
6b4f7799 JW |
7509 | * If there are RECLAIMABLE pages, we need to check |
7510 | * it. But now, memory offline itself doesn't call | |
7511 | * shrink_node_slabs() and it still to be fixed. | |
49ac8255 KH |
7512 | */ |
7513 | /* | |
7514 | * If the page is not RAM, page_count()should be 0. | |
7515 | * we don't need more check. This is an _used_ not-movable page. | |
7516 | * | |
7517 | * The problematic thing here is PG_reserved pages. PG_reserved | |
7518 | * is set to both of a memory hole page and a _used_ kernel | |
7519 | * page at boot. | |
7520 | */ | |
7521 | if (found > count) | |
80934513 | 7522 | return true; |
49ac8255 | 7523 | } |
80934513 | 7524 | return false; |
49ac8255 KH |
7525 | } |
7526 | ||
7527 | bool is_pageblock_removable_nolock(struct page *page) | |
7528 | { | |
656a0706 MH |
7529 | struct zone *zone; |
7530 | unsigned long pfn; | |
687875fb MH |
7531 | |
7532 | /* | |
7533 | * We have to be careful here because we are iterating over memory | |
7534 | * sections which are not zone aware so we might end up outside of | |
7535 | * the zone but still within the section. | |
656a0706 MH |
7536 | * We have to take care about the node as well. If the node is offline |
7537 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 7538 | */ |
656a0706 MH |
7539 | if (!node_online(page_to_nid(page))) |
7540 | return false; | |
7541 | ||
7542 | zone = page_zone(page); | |
7543 | pfn = page_to_pfn(page); | |
108bcc96 | 7544 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
7545 | return false; |
7546 | ||
4da2ce25 | 7547 | return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); |
a5d76b54 | 7548 | } |
0c0e6195 | 7549 | |
080fe206 | 7550 | #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) |
041d3a8c MN |
7551 | |
7552 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
7553 | { | |
7554 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
7555 | pageblock_nr_pages) - 1); | |
7556 | } | |
7557 | ||
7558 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
7559 | { | |
7560 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
7561 | pageblock_nr_pages)); | |
7562 | } | |
7563 | ||
041d3a8c | 7564 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
7565 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
7566 | unsigned long start, unsigned long end) | |
041d3a8c MN |
7567 | { |
7568 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 7569 | unsigned long nr_reclaimed; |
041d3a8c MN |
7570 | unsigned long pfn = start; |
7571 | unsigned int tries = 0; | |
7572 | int ret = 0; | |
7573 | ||
be49a6e1 | 7574 | migrate_prep(); |
041d3a8c | 7575 | |
bb13ffeb | 7576 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
7577 | if (fatal_signal_pending(current)) { |
7578 | ret = -EINTR; | |
7579 | break; | |
7580 | } | |
7581 | ||
bb13ffeb MG |
7582 | if (list_empty(&cc->migratepages)) { |
7583 | cc->nr_migratepages = 0; | |
edc2ca61 | 7584 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
7585 | if (!pfn) { |
7586 | ret = -EINTR; | |
7587 | break; | |
7588 | } | |
7589 | tries = 0; | |
7590 | } else if (++tries == 5) { | |
7591 | ret = ret < 0 ? ret : -EBUSY; | |
7592 | break; | |
7593 | } | |
7594 | ||
beb51eaa MK |
7595 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
7596 | &cc->migratepages); | |
7597 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 7598 | |
9c620e2b | 7599 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
e0b9daeb | 7600 | NULL, 0, cc->mode, MR_CMA); |
041d3a8c | 7601 | } |
2a6f5124 SP |
7602 | if (ret < 0) { |
7603 | putback_movable_pages(&cc->migratepages); | |
7604 | return ret; | |
7605 | } | |
7606 | return 0; | |
041d3a8c MN |
7607 | } |
7608 | ||
7609 | /** | |
7610 | * alloc_contig_range() -- tries to allocate given range of pages | |
7611 | * @start: start PFN to allocate | |
7612 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
7613 | * @migratetype: migratetype of the underlaying pageblocks (either |
7614 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
7615 | * in range must have the same migratetype and it must | |
7616 | * be either of the two. | |
ca96b625 | 7617 | * @gfp_mask: GFP mask to use during compaction |
041d3a8c MN |
7618 | * |
7619 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
7620 | * aligned, however it's the caller's responsibility to guarantee that | |
7621 | * we are the only thread that changes migrate type of pageblocks the | |
7622 | * pages fall in. | |
7623 | * | |
7624 | * The PFN range must belong to a single zone. | |
7625 | * | |
7626 | * Returns zero on success or negative error code. On success all | |
7627 | * pages which PFN is in [start, end) are allocated for the caller and | |
7628 | * need to be freed with free_contig_range(). | |
7629 | */ | |
0815f3d8 | 7630 | int alloc_contig_range(unsigned long start, unsigned long end, |
ca96b625 | 7631 | unsigned migratetype, gfp_t gfp_mask) |
041d3a8c | 7632 | { |
041d3a8c | 7633 | unsigned long outer_start, outer_end; |
d00181b9 KS |
7634 | unsigned int order; |
7635 | int ret = 0; | |
041d3a8c | 7636 | |
bb13ffeb MG |
7637 | struct compact_control cc = { |
7638 | .nr_migratepages = 0, | |
7639 | .order = -1, | |
7640 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 7641 | .mode = MIGRATE_SYNC, |
bb13ffeb | 7642 | .ignore_skip_hint = true, |
2583d671 | 7643 | .no_set_skip_hint = true, |
7dea19f9 | 7644 | .gfp_mask = current_gfp_context(gfp_mask), |
bb13ffeb MG |
7645 | }; |
7646 | INIT_LIST_HEAD(&cc.migratepages); | |
7647 | ||
041d3a8c MN |
7648 | /* |
7649 | * What we do here is we mark all pageblocks in range as | |
7650 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
7651 | * have different sizes, and due to the way page allocator | |
7652 | * work, we align the range to biggest of the two pages so | |
7653 | * that page allocator won't try to merge buddies from | |
7654 | * different pageblocks and change MIGRATE_ISOLATE to some | |
7655 | * other migration type. | |
7656 | * | |
7657 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
7658 | * migrate the pages from an unaligned range (ie. pages that | |
7659 | * we are interested in). This will put all the pages in | |
7660 | * range back to page allocator as MIGRATE_ISOLATE. | |
7661 | * | |
7662 | * When this is done, we take the pages in range from page | |
7663 | * allocator removing them from the buddy system. This way | |
7664 | * page allocator will never consider using them. | |
7665 | * | |
7666 | * This lets us mark the pageblocks back as | |
7667 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
7668 | * aligned range but not in the unaligned, original range are | |
7669 | * put back to page allocator so that buddy can use them. | |
7670 | */ | |
7671 | ||
7672 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
7673 | pfn_max_align_up(end), migratetype, |
7674 | false); | |
041d3a8c | 7675 | if (ret) |
86a595f9 | 7676 | return ret; |
041d3a8c | 7677 | |
8ef5849f JK |
7678 | /* |
7679 | * In case of -EBUSY, we'd like to know which page causes problem. | |
63cd4489 MK |
7680 | * So, just fall through. test_pages_isolated() has a tracepoint |
7681 | * which will report the busy page. | |
7682 | * | |
7683 | * It is possible that busy pages could become available before | |
7684 | * the call to test_pages_isolated, and the range will actually be | |
7685 | * allocated. So, if we fall through be sure to clear ret so that | |
7686 | * -EBUSY is not accidentally used or returned to caller. | |
8ef5849f | 7687 | */ |
bb13ffeb | 7688 | ret = __alloc_contig_migrate_range(&cc, start, end); |
8ef5849f | 7689 | if (ret && ret != -EBUSY) |
041d3a8c | 7690 | goto done; |
63cd4489 | 7691 | ret =0; |
041d3a8c MN |
7692 | |
7693 | /* | |
7694 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
7695 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
7696 | * more, all pages in [start, end) are free in page allocator. | |
7697 | * What we are going to do is to allocate all pages from | |
7698 | * [start, end) (that is remove them from page allocator). | |
7699 | * | |
7700 | * The only problem is that pages at the beginning and at the | |
7701 | * end of interesting range may be not aligned with pages that | |
7702 | * page allocator holds, ie. they can be part of higher order | |
7703 | * pages. Because of this, we reserve the bigger range and | |
7704 | * once this is done free the pages we are not interested in. | |
7705 | * | |
7706 | * We don't have to hold zone->lock here because the pages are | |
7707 | * isolated thus they won't get removed from buddy. | |
7708 | */ | |
7709 | ||
7710 | lru_add_drain_all(); | |
510f5507 | 7711 | drain_all_pages(cc.zone); |
041d3a8c MN |
7712 | |
7713 | order = 0; | |
7714 | outer_start = start; | |
7715 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
7716 | if (++order >= MAX_ORDER) { | |
8ef5849f JK |
7717 | outer_start = start; |
7718 | break; | |
041d3a8c MN |
7719 | } |
7720 | outer_start &= ~0UL << order; | |
7721 | } | |
7722 | ||
8ef5849f JK |
7723 | if (outer_start != start) { |
7724 | order = page_order(pfn_to_page(outer_start)); | |
7725 | ||
7726 | /* | |
7727 | * outer_start page could be small order buddy page and | |
7728 | * it doesn't include start page. Adjust outer_start | |
7729 | * in this case to report failed page properly | |
7730 | * on tracepoint in test_pages_isolated() | |
7731 | */ | |
7732 | if (outer_start + (1UL << order) <= start) | |
7733 | outer_start = start; | |
7734 | } | |
7735 | ||
041d3a8c | 7736 | /* Make sure the range is really isolated. */ |
b023f468 | 7737 | if (test_pages_isolated(outer_start, end, false)) { |
75dddef3 | 7738 | pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", |
dae803e1 | 7739 | __func__, outer_start, end); |
041d3a8c MN |
7740 | ret = -EBUSY; |
7741 | goto done; | |
7742 | } | |
7743 | ||
49f223a9 | 7744 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 7745 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
7746 | if (!outer_end) { |
7747 | ret = -EBUSY; | |
7748 | goto done; | |
7749 | } | |
7750 | ||
7751 | /* Free head and tail (if any) */ | |
7752 | if (start != outer_start) | |
7753 | free_contig_range(outer_start, start - outer_start); | |
7754 | if (end != outer_end) | |
7755 | free_contig_range(end, outer_end - end); | |
7756 | ||
7757 | done: | |
7758 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 7759 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
7760 | return ret; |
7761 | } | |
7762 | ||
7763 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
7764 | { | |
bcc2b02f MS |
7765 | unsigned int count = 0; |
7766 | ||
7767 | for (; nr_pages--; pfn++) { | |
7768 | struct page *page = pfn_to_page(pfn); | |
7769 | ||
7770 | count += page_count(page) != 1; | |
7771 | __free_page(page); | |
7772 | } | |
7773 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
7774 | } |
7775 | #endif | |
7776 | ||
4ed7e022 | 7777 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
7778 | /* |
7779 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
7780 | * page high values need to be recalulated. | |
7781 | */ | |
4ed7e022 JL |
7782 | void __meminit zone_pcp_update(struct zone *zone) |
7783 | { | |
0a647f38 | 7784 | unsigned cpu; |
c8e251fa | 7785 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 7786 | for_each_possible_cpu(cpu) |
169f6c19 CS |
7787 | pageset_set_high_and_batch(zone, |
7788 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 7789 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
7790 | } |
7791 | #endif | |
7792 | ||
340175b7 JL |
7793 | void zone_pcp_reset(struct zone *zone) |
7794 | { | |
7795 | unsigned long flags; | |
5a883813 MK |
7796 | int cpu; |
7797 | struct per_cpu_pageset *pset; | |
340175b7 JL |
7798 | |
7799 | /* avoid races with drain_pages() */ | |
7800 | local_irq_save(flags); | |
7801 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
7802 | for_each_online_cpu(cpu) { |
7803 | pset = per_cpu_ptr(zone->pageset, cpu); | |
7804 | drain_zonestat(zone, pset); | |
7805 | } | |
340175b7 JL |
7806 | free_percpu(zone->pageset); |
7807 | zone->pageset = &boot_pageset; | |
7808 | } | |
7809 | local_irq_restore(flags); | |
7810 | } | |
7811 | ||
6dcd73d7 | 7812 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 | 7813 | /* |
b9eb6319 JK |
7814 | * All pages in the range must be in a single zone and isolated |
7815 | * before calling this. | |
0c0e6195 KH |
7816 | */ |
7817 | void | |
7818 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
7819 | { | |
7820 | struct page *page; | |
7821 | struct zone *zone; | |
7aeb09f9 | 7822 | unsigned int order, i; |
0c0e6195 KH |
7823 | unsigned long pfn; |
7824 | unsigned long flags; | |
7825 | /* find the first valid pfn */ | |
7826 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
7827 | if (pfn_valid(pfn)) | |
7828 | break; | |
7829 | if (pfn == end_pfn) | |
7830 | return; | |
2d070eab | 7831 | offline_mem_sections(pfn, end_pfn); |
0c0e6195 KH |
7832 | zone = page_zone(pfn_to_page(pfn)); |
7833 | spin_lock_irqsave(&zone->lock, flags); | |
7834 | pfn = start_pfn; | |
7835 | while (pfn < end_pfn) { | |
7836 | if (!pfn_valid(pfn)) { | |
7837 | pfn++; | |
7838 | continue; | |
7839 | } | |
7840 | page = pfn_to_page(pfn); | |
b023f468 WC |
7841 | /* |
7842 | * The HWPoisoned page may be not in buddy system, and | |
7843 | * page_count() is not 0. | |
7844 | */ | |
7845 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
7846 | pfn++; | |
7847 | SetPageReserved(page); | |
7848 | continue; | |
7849 | } | |
7850 | ||
0c0e6195 KH |
7851 | BUG_ON(page_count(page)); |
7852 | BUG_ON(!PageBuddy(page)); | |
7853 | order = page_order(page); | |
7854 | #ifdef CONFIG_DEBUG_VM | |
1170532b JP |
7855 | pr_info("remove from free list %lx %d %lx\n", |
7856 | pfn, 1 << order, end_pfn); | |
0c0e6195 KH |
7857 | #endif |
7858 | list_del(&page->lru); | |
7859 | rmv_page_order(page); | |
7860 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
7861 | for (i = 0; i < (1 << order); i++) |
7862 | SetPageReserved((page+i)); | |
7863 | pfn += (1 << order); | |
7864 | } | |
7865 | spin_unlock_irqrestore(&zone->lock, flags); | |
7866 | } | |
7867 | #endif | |
8d22ba1b | 7868 | |
8d22ba1b WF |
7869 | bool is_free_buddy_page(struct page *page) |
7870 | { | |
7871 | struct zone *zone = page_zone(page); | |
7872 | unsigned long pfn = page_to_pfn(page); | |
7873 | unsigned long flags; | |
7aeb09f9 | 7874 | unsigned int order; |
8d22ba1b WF |
7875 | |
7876 | spin_lock_irqsave(&zone->lock, flags); | |
7877 | for (order = 0; order < MAX_ORDER; order++) { | |
7878 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
7879 | ||
7880 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
7881 | break; | |
7882 | } | |
7883 | spin_unlock_irqrestore(&zone->lock, flags); | |
7884 | ||
7885 | return order < MAX_ORDER; | |
7886 | } |