]> Git Repo - linux.git/blame - mm/slub.c
mm: slub: add missing TID bump in kmem_cache_alloc_bulk()
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
5f80b13a
CL
452{
453 void *p;
454 void *addr = page_address(page);
455
90e9f6a6
YZ
456 VM_BUG_ON(!irqs_disabled());
457
458 spin_lock(&object_map_lock);
459
460 bitmap_zero(object_map, page->objects);
461
5f80b13a 462 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
463 set_bit(slab_index(p, s, addr), object_map);
464
465 return object_map;
466}
467
468static void put_map(unsigned long *map)
469{
470 VM_BUG_ON(map != object_map);
471 lockdep_assert_held(&object_map_lock);
472
473 spin_unlock(&object_map_lock);
5f80b13a
CL
474}
475
870b1fbb 476static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
477{
478 if (s->flags & SLAB_RED_ZONE)
479 return s->size - s->red_left_pad;
480
481 return s->size;
482}
483
484static inline void *restore_red_left(struct kmem_cache *s, void *p)
485{
486 if (s->flags & SLAB_RED_ZONE)
487 p -= s->red_left_pad;
488
489 return p;
490}
491
41ecc55b
CL
492/*
493 * Debug settings:
494 */
89d3c87e 495#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 496static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 497#else
d50112ed 498static slab_flags_t slub_debug;
f0630fff 499#endif
41ecc55b
CL
500
501static char *slub_debug_slabs;
fa5ec8a1 502static int disable_higher_order_debug;
41ecc55b 503
a79316c6
AR
504/*
505 * slub is about to manipulate internal object metadata. This memory lies
506 * outside the range of the allocated object, so accessing it would normally
507 * be reported by kasan as a bounds error. metadata_access_enable() is used
508 * to tell kasan that these accesses are OK.
509 */
510static inline void metadata_access_enable(void)
511{
512 kasan_disable_current();
513}
514
515static inline void metadata_access_disable(void)
516{
517 kasan_enable_current();
518}
519
81819f0f
CL
520/*
521 * Object debugging
522 */
d86bd1be
JK
523
524/* Verify that a pointer has an address that is valid within a slab page */
525static inline int check_valid_pointer(struct kmem_cache *s,
526 struct page *page, void *object)
527{
528 void *base;
529
530 if (!object)
531 return 1;
532
533 base = page_address(page);
338cfaad 534 object = kasan_reset_tag(object);
d86bd1be
JK
535 object = restore_red_left(s, object);
536 if (object < base || object >= base + page->objects * s->size ||
537 (object - base) % s->size) {
538 return 0;
539 }
540
541 return 1;
542}
543
aa2efd5e
DT
544static void print_section(char *level, char *text, u8 *addr,
545 unsigned int length)
81819f0f 546{
a79316c6 547 metadata_access_enable();
aa2efd5e 548 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 549 length, 1);
a79316c6 550 metadata_access_disable();
81819f0f
CL
551}
552
81819f0f
CL
553static struct track *get_track(struct kmem_cache *s, void *object,
554 enum track_item alloc)
555{
556 struct track *p;
557
558 if (s->offset)
559 p = object + s->offset + sizeof(void *);
560 else
561 p = object + s->inuse;
562
563 return p + alloc;
564}
565
566static void set_track(struct kmem_cache *s, void *object,
ce71e27c 567 enum track_item alloc, unsigned long addr)
81819f0f 568{
1a00df4a 569 struct track *p = get_track(s, object, alloc);
81819f0f 570
81819f0f 571 if (addr) {
d6543e39 572#ifdef CONFIG_STACKTRACE
79716799 573 unsigned int nr_entries;
d6543e39 574
a79316c6 575 metadata_access_enable();
79716799 576 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 577 metadata_access_disable();
d6543e39 578
79716799
TG
579 if (nr_entries < TRACK_ADDRS_COUNT)
580 p->addrs[nr_entries] = 0;
d6543e39 581#endif
81819f0f
CL
582 p->addr = addr;
583 p->cpu = smp_processor_id();
88e4ccf2 584 p->pid = current->pid;
81819f0f 585 p->when = jiffies;
b8ca7ff7 586 } else {
81819f0f 587 memset(p, 0, sizeof(struct track));
b8ca7ff7 588 }
81819f0f
CL
589}
590
81819f0f
CL
591static void init_tracking(struct kmem_cache *s, void *object)
592{
24922684
CL
593 if (!(s->flags & SLAB_STORE_USER))
594 return;
595
ce71e27c
EGM
596 set_track(s, object, TRACK_FREE, 0UL);
597 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
598}
599
86609d33 600static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
601{
602 if (!t->addr)
603 return;
604
f9f58285 605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 606 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
607#ifdef CONFIG_STACKTRACE
608 {
609 int i;
610 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 if (t->addrs[i])
f9f58285 612 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
613 else
614 break;
615 }
616#endif
24922684
CL
617}
618
619static void print_tracking(struct kmem_cache *s, void *object)
620{
86609d33 621 unsigned long pr_time = jiffies;
24922684
CL
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
86609d33
CP
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
626 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
627}
628
629static void print_page_info(struct page *page)
630{
f9f58285 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 632 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
633
634}
635
636static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637{
ecc42fbe 638 struct va_format vaf;
24922684 639 va_list args;
24922684
CL
640
641 va_start(args, fmt);
ecc42fbe
FF
642 vaf.fmt = fmt;
643 vaf.va = &args;
f9f58285 644 pr_err("=============================================================================\n");
ecc42fbe 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 646 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 647
373d4d09 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 649 va_end(args);
81819f0f
CL
650}
651
24922684
CL
652static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653{
ecc42fbe 654 struct va_format vaf;
24922684 655 va_list args;
24922684
CL
656
657 va_start(args, fmt);
ecc42fbe
FF
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 661 va_end(args);
24922684
CL
662}
663
664static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
665{
666 unsigned int off; /* Offset of last byte */
a973e9dd 667 u8 *addr = page_address(page);
24922684
CL
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
f9f58285
FF
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
24922684 675
d86bd1be 676 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
d86bd1be 679 else if (p > addr + 16)
aa2efd5e 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 681
aa2efd5e 682 print_section(KERN_ERR, "Object ", p,
1b473f29 683 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 684 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 686 s->inuse - s->object_size);
81819f0f 687
81819f0f
CL
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
24922684 693 if (s->flags & SLAB_STORE_USER)
81819f0f 694 off += 2 * sizeof(struct track);
81819f0f 695
80a9201a
AP
696 off += kasan_metadata_size(s);
697
d86bd1be 698 if (off != size_from_object(s))
81819f0f 699 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
24922684
CL
702
703 dump_stack();
81819f0f
CL
704}
705
75c66def 706void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
707 u8 *object, char *reason)
708{
3dc50637 709 slab_bug(s, "%s", reason);
24922684 710 print_trailer(s, page, object);
81819f0f
CL
711}
712
a38965bf 713static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 714 const char *fmt, ...)
81819f0f
CL
715{
716 va_list args;
717 char buf[100];
718
24922684
CL
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 721 va_end(args);
3dc50637 722 slab_bug(s, "%s", buf);
24922684 723 print_page_info(page);
81819f0f
CL
724 dump_stack();
725}
726
f7cb1933 727static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
728{
729 u8 *p = object;
730
d86bd1be
JK
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
81819f0f 734 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
81819f0f
CL
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 740 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
741}
742
24922684
CL
743static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745{
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748}
749
750static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
06428780 752 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
753{
754 u8 *fault;
755 u8 *end;
e1b70dd1 756 u8 *addr = page_address(page);
24922684 757
a79316c6 758 metadata_access_enable();
79824820 759 fault = memchr_inv(start, value, bytes);
a79316c6 760 metadata_access_disable();
24922684
CL
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault - addr,
771 fault[0], value);
24922684
CL
772 print_trailer(s, page, object);
773
774 restore_bytes(s, what, value, fault, end);
775 return 0;
81819f0f
CL
776}
777
81819f0f
CL
778/*
779 * Object layout:
780 *
781 * object address
782 * Bytes of the object to be managed.
783 * If the freepointer may overlay the object then the free
784 * pointer is the first word of the object.
672bba3a 785 *
81819f0f
CL
786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
787 * 0xa5 (POISON_END)
788 *
3b0efdfa 789 * object + s->object_size
81819f0f 790 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 791 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 792 * object_size == inuse.
672bba3a 793 *
81819f0f
CL
794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795 * 0xcc (RED_ACTIVE) for objects in use.
796 *
797 * object + s->inuse
672bba3a
CL
798 * Meta data starts here.
799 *
81819f0f
CL
800 * A. Free pointer (if we cannot overwrite object on free)
801 * B. Tracking data for SLAB_STORE_USER
672bba3a 802 * C. Padding to reach required alignment boundary or at mininum
6446faa2 803 * one word if debugging is on to be able to detect writes
672bba3a
CL
804 * before the word boundary.
805 *
806 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
807 *
808 * object + s->size
672bba3a 809 * Nothing is used beyond s->size.
81819f0f 810 *
3b0efdfa 811 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 812 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
813 * may be used with merged slabcaches.
814 */
815
81819f0f
CL
816static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817{
818 unsigned long off = s->inuse; /* The end of info */
819
820 if (s->offset)
821 /* Freepointer is placed after the object. */
822 off += sizeof(void *);
823
824 if (s->flags & SLAB_STORE_USER)
825 /* We also have user information there */
826 off += 2 * sizeof(struct track);
827
80a9201a
AP
828 off += kasan_metadata_size(s);
829
d86bd1be 830 if (size_from_object(s) == off)
81819f0f
CL
831 return 1;
832
24922684 833 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 834 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
835}
836
39b26464 837/* Check the pad bytes at the end of a slab page */
81819f0f
CL
838static int slab_pad_check(struct kmem_cache *s, struct page *page)
839{
24922684
CL
840 u8 *start;
841 u8 *fault;
842 u8 *end;
5d682681 843 u8 *pad;
24922684
CL
844 int length;
845 int remainder;
81819f0f
CL
846
847 if (!(s->flags & SLAB_POISON))
848 return 1;
849
a973e9dd 850 start = page_address(page);
a50b854e 851 length = page_size(page);
39b26464
CL
852 end = start + length;
853 remainder = length % s->size;
81819f0f
CL
854 if (!remainder)
855 return 1;
856
5d682681 857 pad = end - remainder;
a79316c6 858 metadata_access_enable();
5d682681 859 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 860 metadata_access_disable();
24922684
CL
861 if (!fault)
862 return 1;
863 while (end > fault && end[-1] == POISON_INUSE)
864 end--;
865
e1b70dd1
MC
866 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 fault, end - 1, fault - start);
5d682681 868 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 869
5d682681 870 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 871 return 0;
81819f0f
CL
872}
873
874static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 875 void *object, u8 val)
81819f0f
CL
876{
877 u8 *p = object;
3b0efdfa 878 u8 *endobject = object + s->object_size;
81819f0f
CL
879
880 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
881 if (!check_bytes_and_report(s, page, object, "Redzone",
882 object - s->red_left_pad, val, s->red_left_pad))
883 return 0;
884
24922684 885 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 886 endobject, val, s->inuse - s->object_size))
81819f0f 887 return 0;
81819f0f 888 } else {
3b0efdfa 889 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 890 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
891 endobject, POISON_INUSE,
892 s->inuse - s->object_size);
3adbefee 893 }
81819f0f
CL
894 }
895
896 if (s->flags & SLAB_POISON) {
f7cb1933 897 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 898 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 899 POISON_FREE, s->object_size - 1) ||
24922684 900 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 901 p + s->object_size - 1, POISON_END, 1)))
81819f0f 902 return 0;
81819f0f
CL
903 /*
904 * check_pad_bytes cleans up on its own.
905 */
906 check_pad_bytes(s, page, p);
907 }
908
f7cb1933 909 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
910 /*
911 * Object and freepointer overlap. Cannot check
912 * freepointer while object is allocated.
913 */
914 return 1;
915
916 /* Check free pointer validity */
917 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
918 object_err(s, page, p, "Freepointer corrupt");
919 /*
9f6c708e 920 * No choice but to zap it and thus lose the remainder
81819f0f 921 * of the free objects in this slab. May cause
672bba3a 922 * another error because the object count is now wrong.
81819f0f 923 */
a973e9dd 924 set_freepointer(s, p, NULL);
81819f0f
CL
925 return 0;
926 }
927 return 1;
928}
929
930static int check_slab(struct kmem_cache *s, struct page *page)
931{
39b26464
CL
932 int maxobj;
933
81819f0f
CL
934 VM_BUG_ON(!irqs_disabled());
935
936 if (!PageSlab(page)) {
24922684 937 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
938 return 0;
939 }
39b26464 940
9736d2a9 941 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
942 if (page->objects > maxobj) {
943 slab_err(s, page, "objects %u > max %u",
f6edde9c 944 page->objects, maxobj);
39b26464
CL
945 return 0;
946 }
947 if (page->inuse > page->objects) {
24922684 948 slab_err(s, page, "inuse %u > max %u",
f6edde9c 949 page->inuse, page->objects);
81819f0f
CL
950 return 0;
951 }
952 /* Slab_pad_check fixes things up after itself */
953 slab_pad_check(s, page);
954 return 1;
955}
956
957/*
672bba3a
CL
958 * Determine if a certain object on a page is on the freelist. Must hold the
959 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
960 */
961static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
962{
963 int nr = 0;
881db7fb 964 void *fp;
81819f0f 965 void *object = NULL;
f6edde9c 966 int max_objects;
81819f0f 967
881db7fb 968 fp = page->freelist;
39b26464 969 while (fp && nr <= page->objects) {
81819f0f
CL
970 if (fp == search)
971 return 1;
972 if (!check_valid_pointer(s, page, fp)) {
973 if (object) {
974 object_err(s, page, object,
975 "Freechain corrupt");
a973e9dd 976 set_freepointer(s, object, NULL);
81819f0f 977 } else {
24922684 978 slab_err(s, page, "Freepointer corrupt");
a973e9dd 979 page->freelist = NULL;
39b26464 980 page->inuse = page->objects;
24922684 981 slab_fix(s, "Freelist cleared");
81819f0f
CL
982 return 0;
983 }
984 break;
985 }
986 object = fp;
987 fp = get_freepointer(s, object);
988 nr++;
989 }
990
9736d2a9 991 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
992 if (max_objects > MAX_OBJS_PER_PAGE)
993 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
994
995 if (page->objects != max_objects) {
756a025f
JP
996 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
997 page->objects, max_objects);
224a88be
CL
998 page->objects = max_objects;
999 slab_fix(s, "Number of objects adjusted.");
1000 }
39b26464 1001 if (page->inuse != page->objects - nr) {
756a025f
JP
1002 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1003 page->inuse, page->objects - nr);
39b26464 1004 page->inuse = page->objects - nr;
24922684 1005 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1006 }
1007 return search == NULL;
1008}
1009
0121c619
CL
1010static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 int alloc)
3ec09742
CL
1012{
1013 if (s->flags & SLAB_TRACE) {
f9f58285 1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1015 s->name,
1016 alloc ? "alloc" : "free",
1017 object, page->inuse,
1018 page->freelist);
1019
1020 if (!alloc)
aa2efd5e 1021 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1022 s->object_size);
3ec09742
CL
1023
1024 dump_stack();
1025 }
1026}
1027
643b1138 1028/*
672bba3a 1029 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1030 */
5cc6eee8
CL
1031static void add_full(struct kmem_cache *s,
1032 struct kmem_cache_node *n, struct page *page)
643b1138 1033{
5cc6eee8
CL
1034 if (!(s->flags & SLAB_STORE_USER))
1035 return;
1036
255d0884 1037 lockdep_assert_held(&n->list_lock);
916ac052 1038 list_add(&page->slab_list, &n->full);
643b1138
CL
1039}
1040
c65c1877 1041static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1042{
643b1138
CL
1043 if (!(s->flags & SLAB_STORE_USER))
1044 return;
1045
255d0884 1046 lockdep_assert_held(&n->list_lock);
916ac052 1047 list_del(&page->slab_list);
643b1138
CL
1048}
1049
0f389ec6
CL
1050/* Tracking of the number of slabs for debugging purposes */
1051static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 return atomic_long_read(&n->nr_slabs);
1056}
1057
26c02cf0
AB
1058static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059{
1060 return atomic_long_read(&n->nr_slabs);
1061}
1062
205ab99d 1063static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1064{
1065 struct kmem_cache_node *n = get_node(s, node);
1066
1067 /*
1068 * May be called early in order to allocate a slab for the
1069 * kmem_cache_node structure. Solve the chicken-egg
1070 * dilemma by deferring the increment of the count during
1071 * bootstrap (see early_kmem_cache_node_alloc).
1072 */
338b2642 1073 if (likely(n)) {
0f389ec6 1074 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1075 atomic_long_add(objects, &n->total_objects);
1076 }
0f389ec6 1077}
205ab99d 1078static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1079{
1080 struct kmem_cache_node *n = get_node(s, node);
1081
1082 atomic_long_dec(&n->nr_slabs);
205ab99d 1083 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1084}
1085
1086/* Object debug checks for alloc/free paths */
3ec09742
CL
1087static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 void *object)
1089{
1090 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 return;
1092
f7cb1933 1093 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1094 init_tracking(s, object);
1095}
1096
a50b854e
MWO
1097static
1098void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1099{
1100 if (!(s->flags & SLAB_POISON))
1101 return;
1102
1103 metadata_access_enable();
a50b854e 1104 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1105 metadata_access_disable();
1106}
1107
becfda68 1108static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1109 struct page *page, void *object)
81819f0f
CL
1110{
1111 if (!check_slab(s, page))
becfda68 1112 return 0;
81819f0f 1113
81819f0f
CL
1114 if (!check_valid_pointer(s, page, object)) {
1115 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1116 return 0;
81819f0f
CL
1117 }
1118
f7cb1933 1119 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1120 return 0;
1121
1122 return 1;
1123}
1124
1125static noinline int alloc_debug_processing(struct kmem_cache *s,
1126 struct page *page,
1127 void *object, unsigned long addr)
1128{
1129 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1130 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1131 goto bad;
1132 }
81819f0f 1133
3ec09742
CL
1134 /* Success perform special debug activities for allocs */
1135 if (s->flags & SLAB_STORE_USER)
1136 set_track(s, object, TRACK_ALLOC, addr);
1137 trace(s, page, object, 1);
f7cb1933 1138 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1139 return 1;
3ec09742 1140
81819f0f
CL
1141bad:
1142 if (PageSlab(page)) {
1143 /*
1144 * If this is a slab page then lets do the best we can
1145 * to avoid issues in the future. Marking all objects
672bba3a 1146 * as used avoids touching the remaining objects.
81819f0f 1147 */
24922684 1148 slab_fix(s, "Marking all objects used");
39b26464 1149 page->inuse = page->objects;
a973e9dd 1150 page->freelist = NULL;
81819f0f
CL
1151 }
1152 return 0;
1153}
1154
becfda68
LA
1155static inline int free_consistency_checks(struct kmem_cache *s,
1156 struct page *page, void *object, unsigned long addr)
81819f0f 1157{
81819f0f 1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1160 return 0;
81819f0f
CL
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
becfda68 1165 return 0;
81819f0f
CL
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1169 return 0;
81819f0f 1170
1b4f59e3 1171 if (unlikely(s != page->slab_cache)) {
3adbefee 1172 if (!PageSlab(page)) {
756a025f
JP
1173 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1174 object);
1b4f59e3 1175 } else if (!page->slab_cache) {
f9f58285
FF
1176 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1177 object);
70d71228 1178 dump_stack();
06428780 1179 } else
24922684
CL
1180 object_err(s, page, object,
1181 "page slab pointer corrupt.");
becfda68
LA
1182 return 0;
1183 }
1184 return 1;
1185}
1186
1187/* Supports checking bulk free of a constructed freelist */
1188static noinline int free_debug_processing(
1189 struct kmem_cache *s, struct page *page,
1190 void *head, void *tail, int bulk_cnt,
1191 unsigned long addr)
1192{
1193 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 void *object = head;
1195 int cnt = 0;
1196 unsigned long uninitialized_var(flags);
1197 int ret = 0;
1198
1199 spin_lock_irqsave(&n->list_lock, flags);
1200 slab_lock(page);
1201
1202 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1203 if (!check_slab(s, page))
1204 goto out;
1205 }
1206
1207next_object:
1208 cnt++;
1209
1210 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1211 if (!free_consistency_checks(s, page, object, addr))
1212 goto out;
81819f0f 1213 }
3ec09742 1214
3ec09742
CL
1215 if (s->flags & SLAB_STORE_USER)
1216 set_track(s, object, TRACK_FREE, addr);
1217 trace(s, page, object, 0);
81084651 1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1219 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1220
1221 /* Reached end of constructed freelist yet? */
1222 if (object != tail) {
1223 object = get_freepointer(s, object);
1224 goto next_object;
1225 }
804aa132
LA
1226 ret = 1;
1227
5c2e4bbb 1228out:
81084651
JDB
1229 if (cnt != bulk_cnt)
1230 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1231 bulk_cnt, cnt);
1232
881db7fb 1233 slab_unlock(page);
282acb43 1234 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1235 if (!ret)
1236 slab_fix(s, "Object at 0x%p not freed", object);
1237 return ret;
81819f0f
CL
1238}
1239
41ecc55b
CL
1240static int __init setup_slub_debug(char *str)
1241{
f0630fff
CL
1242 slub_debug = DEBUG_DEFAULT_FLAGS;
1243 if (*str++ != '=' || !*str)
1244 /*
1245 * No options specified. Switch on full debugging.
1246 */
1247 goto out;
1248
1249 if (*str == ',')
1250 /*
1251 * No options but restriction on slabs. This means full
1252 * debugging for slabs matching a pattern.
1253 */
1254 goto check_slabs;
1255
1256 slub_debug = 0;
1257 if (*str == '-')
1258 /*
1259 * Switch off all debugging measures.
1260 */
1261 goto out;
1262
1263 /*
1264 * Determine which debug features should be switched on
1265 */
06428780 1266 for (; *str && *str != ','; str++) {
f0630fff
CL
1267 switch (tolower(*str)) {
1268 case 'f':
becfda68 1269 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1270 break;
1271 case 'z':
1272 slub_debug |= SLAB_RED_ZONE;
1273 break;
1274 case 'p':
1275 slub_debug |= SLAB_POISON;
1276 break;
1277 case 'u':
1278 slub_debug |= SLAB_STORE_USER;
1279 break;
1280 case 't':
1281 slub_debug |= SLAB_TRACE;
1282 break;
4c13dd3b
DM
1283 case 'a':
1284 slub_debug |= SLAB_FAILSLAB;
1285 break;
08303a73
CA
1286 case 'o':
1287 /*
1288 * Avoid enabling debugging on caches if its minimum
1289 * order would increase as a result.
1290 */
1291 disable_higher_order_debug = 1;
1292 break;
f0630fff 1293 default:
f9f58285
FF
1294 pr_err("slub_debug option '%c' unknown. skipped\n",
1295 *str);
f0630fff 1296 }
41ecc55b
CL
1297 }
1298
f0630fff 1299check_slabs:
41ecc55b
CL
1300 if (*str == ',')
1301 slub_debug_slabs = str + 1;
f0630fff 1302out:
6471384a
AP
1303 if ((static_branch_unlikely(&init_on_alloc) ||
1304 static_branch_unlikely(&init_on_free)) &&
1305 (slub_debug & SLAB_POISON))
1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1307 return 1;
1308}
1309
1310__setup("slub_debug", setup_slub_debug);
1311
c5fd3ca0
AT
1312/*
1313 * kmem_cache_flags - apply debugging options to the cache
1314 * @object_size: the size of an object without meta data
1315 * @flags: flags to set
1316 * @name: name of the cache
1317 * @ctor: constructor function
1318 *
1319 * Debug option(s) are applied to @flags. In addition to the debug
1320 * option(s), if a slab name (or multiple) is specified i.e.
1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322 * then only the select slabs will receive the debug option(s).
1323 */
0293d1fd 1324slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1325 slab_flags_t flags, const char *name,
51cc5068 1326 void (*ctor)(void *))
41ecc55b 1327{
c5fd3ca0
AT
1328 char *iter;
1329 size_t len;
1330
1331 /* If slub_debug = 0, it folds into the if conditional. */
1332 if (!slub_debug_slabs)
1333 return flags | slub_debug;
1334
1335 len = strlen(name);
1336 iter = slub_debug_slabs;
1337 while (*iter) {
1338 char *end, *glob;
1339 size_t cmplen;
1340
9cf3a8d8 1341 end = strchrnul(iter, ',');
c5fd3ca0
AT
1342
1343 glob = strnchr(iter, end - iter, '*');
1344 if (glob)
1345 cmplen = glob - iter;
1346 else
1347 cmplen = max_t(size_t, len, (end - iter));
1348
1349 if (!strncmp(name, iter, cmplen)) {
1350 flags |= slub_debug;
1351 break;
1352 }
1353
1354 if (!*end)
1355 break;
1356 iter = end + 1;
1357 }
ba0268a8
CL
1358
1359 return flags;
41ecc55b 1360}
b4a64718 1361#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1362static inline void setup_object_debug(struct kmem_cache *s,
1363 struct page *page, void *object) {}
a50b854e
MWO
1364static inline
1365void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1366
3ec09742 1367static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1368 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1369
282acb43 1370static inline int free_debug_processing(
81084651
JDB
1371 struct kmem_cache *s, struct page *page,
1372 void *head, void *tail, int bulk_cnt,
282acb43 1373 unsigned long addr) { return 0; }
41ecc55b 1374
41ecc55b
CL
1375static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1376 { return 1; }
1377static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1378 void *object, u8 val) { return 1; }
5cc6eee8
CL
1379static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1380 struct page *page) {}
c65c1877
PZ
1381static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1382 struct page *page) {}
0293d1fd 1383slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1384 slab_flags_t flags, const char *name,
51cc5068 1385 void (*ctor)(void *))
ba0268a8
CL
1386{
1387 return flags;
1388}
41ecc55b 1389#define slub_debug 0
0f389ec6 1390
fdaa45e9
IM
1391#define disable_higher_order_debug 0
1392
0f389ec6
CL
1393static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1394 { return 0; }
26c02cf0
AB
1395static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1396 { return 0; }
205ab99d
CL
1397static inline void inc_slabs_node(struct kmem_cache *s, int node,
1398 int objects) {}
1399static inline void dec_slabs_node(struct kmem_cache *s, int node,
1400 int objects) {}
7d550c56 1401
02e72cc6
AR
1402#endif /* CONFIG_SLUB_DEBUG */
1403
1404/*
1405 * Hooks for other subsystems that check memory allocations. In a typical
1406 * production configuration these hooks all should produce no code at all.
1407 */
0116523c 1408static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1409{
53128245 1410 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1412 kmemleak_alloc(ptr, size, 1, flags);
53128245 1413 return ptr;
d56791b3
RB
1414}
1415
ee3ce779 1416static __always_inline void kfree_hook(void *x)
d56791b3
RB
1417{
1418 kmemleak_free(x);
ee3ce779 1419 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1420}
1421
c3895391 1422static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1423{
1424 kmemleak_free_recursive(x, s->flags);
7d550c56 1425
02e72cc6
AR
1426 /*
1427 * Trouble is that we may no longer disable interrupts in the fast path
1428 * So in order to make the debug calls that expect irqs to be
1429 * disabled we need to disable interrupts temporarily.
1430 */
4675ff05 1431#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1432 {
1433 unsigned long flags;
1434
1435 local_irq_save(flags);
02e72cc6
AR
1436 debug_check_no_locks_freed(x, s->object_size);
1437 local_irq_restore(flags);
1438 }
1439#endif
1440 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1441 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1442
c3895391
AK
1443 /* KASAN might put x into memory quarantine, delaying its reuse */
1444 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1445}
205ab99d 1446
c3895391
AK
1447static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1448 void **head, void **tail)
81084651 1449{
6471384a
AP
1450
1451 void *object;
1452 void *next = *head;
1453 void *old_tail = *tail ? *tail : *head;
1454 int rsize;
1455
aea4df4c
LA
1456 /* Head and tail of the reconstructed freelist */
1457 *head = NULL;
1458 *tail = NULL;
1b7e816f 1459
aea4df4c
LA
1460 do {
1461 object = next;
1462 next = get_freepointer(s, object);
1463
1464 if (slab_want_init_on_free(s)) {
6471384a
AP
1465 /*
1466 * Clear the object and the metadata, but don't touch
1467 * the redzone.
1468 */
1469 memset(object, 0, s->object_size);
1470 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1471 : 0;
1472 memset((char *)object + s->inuse, 0,
1473 s->size - s->inuse - rsize);
81084651 1474
aea4df4c 1475 }
c3895391
AK
1476 /* If object's reuse doesn't have to be delayed */
1477 if (!slab_free_hook(s, object)) {
1478 /* Move object to the new freelist */
1479 set_freepointer(s, object, *head);
1480 *head = object;
1481 if (!*tail)
1482 *tail = object;
1483 }
1484 } while (object != old_tail);
1485
1486 if (*head == *tail)
1487 *tail = NULL;
1488
1489 return *head != NULL;
81084651
JDB
1490}
1491
4d176711 1492static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1493 void *object)
1494{
1495 setup_object_debug(s, page, object);
4d176711 1496 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1497 if (unlikely(s->ctor)) {
1498 kasan_unpoison_object_data(s, object);
1499 s->ctor(object);
1500 kasan_poison_object_data(s, object);
1501 }
4d176711 1502 return object;
588f8ba9
TG
1503}
1504
81819f0f
CL
1505/*
1506 * Slab allocation and freeing
1507 */
5dfb4175
VD
1508static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1510{
5dfb4175 1511 struct page *page;
19af27af 1512 unsigned int order = oo_order(oo);
65c3376a 1513
2154a336 1514 if (node == NUMA_NO_NODE)
5dfb4175 1515 page = alloc_pages(flags, order);
65c3376a 1516 else
96db800f 1517 page = __alloc_pages_node(node, flags, order);
5dfb4175 1518
6cea1d56 1519 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1520 __free_pages(page, order);
1521 page = NULL;
1522 }
5dfb4175
VD
1523
1524 return page;
65c3376a
CL
1525}
1526
210e7a43
TG
1527#ifdef CONFIG_SLAB_FREELIST_RANDOM
1528/* Pre-initialize the random sequence cache */
1529static int init_cache_random_seq(struct kmem_cache *s)
1530{
19af27af 1531 unsigned int count = oo_objects(s->oo);
210e7a43 1532 int err;
210e7a43 1533
a810007a
SR
1534 /* Bailout if already initialised */
1535 if (s->random_seq)
1536 return 0;
1537
210e7a43
TG
1538 err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 if (err) {
1540 pr_err("SLUB: Unable to initialize free list for %s\n",
1541 s->name);
1542 return err;
1543 }
1544
1545 /* Transform to an offset on the set of pages */
1546 if (s->random_seq) {
19af27af
AD
1547 unsigned int i;
1548
210e7a43
TG
1549 for (i = 0; i < count; i++)
1550 s->random_seq[i] *= s->size;
1551 }
1552 return 0;
1553}
1554
1555/* Initialize each random sequence freelist per cache */
1556static void __init init_freelist_randomization(void)
1557{
1558 struct kmem_cache *s;
1559
1560 mutex_lock(&slab_mutex);
1561
1562 list_for_each_entry(s, &slab_caches, list)
1563 init_cache_random_seq(s);
1564
1565 mutex_unlock(&slab_mutex);
1566}
1567
1568/* Get the next entry on the pre-computed freelist randomized */
1569static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 unsigned long *pos, void *start,
1571 unsigned long page_limit,
1572 unsigned long freelist_count)
1573{
1574 unsigned int idx;
1575
1576 /*
1577 * If the target page allocation failed, the number of objects on the
1578 * page might be smaller than the usual size defined by the cache.
1579 */
1580 do {
1581 idx = s->random_seq[*pos];
1582 *pos += 1;
1583 if (*pos >= freelist_count)
1584 *pos = 0;
1585 } while (unlikely(idx >= page_limit));
1586
1587 return (char *)start + idx;
1588}
1589
1590/* Shuffle the single linked freelist based on a random pre-computed sequence */
1591static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592{
1593 void *start;
1594 void *cur;
1595 void *next;
1596 unsigned long idx, pos, page_limit, freelist_count;
1597
1598 if (page->objects < 2 || !s->random_seq)
1599 return false;
1600
1601 freelist_count = oo_objects(s->oo);
1602 pos = get_random_int() % freelist_count;
1603
1604 page_limit = page->objects * s->size;
1605 start = fixup_red_left(s, page_address(page));
1606
1607 /* First entry is used as the base of the freelist */
1608 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 freelist_count);
4d176711 1610 cur = setup_object(s, page, cur);
210e7a43
TG
1611 page->freelist = cur;
1612
1613 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1614 next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 freelist_count);
4d176711 1616 next = setup_object(s, page, next);
210e7a43
TG
1617 set_freepointer(s, cur, next);
1618 cur = next;
1619 }
210e7a43
TG
1620 set_freepointer(s, cur, NULL);
1621
1622 return true;
1623}
1624#else
1625static inline int init_cache_random_seq(struct kmem_cache *s)
1626{
1627 return 0;
1628}
1629static inline void init_freelist_randomization(void) { }
1630static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631{
1632 return false;
1633}
1634#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635
81819f0f
CL
1636static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637{
06428780 1638 struct page *page;
834f3d11 1639 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1640 gfp_t alloc_gfp;
4d176711 1641 void *start, *p, *next;
a50b854e 1642 int idx;
210e7a43 1643 bool shuffle;
81819f0f 1644
7e0528da
CL
1645 flags &= gfp_allowed_mask;
1646
d0164adc 1647 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1648 local_irq_enable();
1649
b7a49f0d 1650 flags |= s->allocflags;
e12ba74d 1651
ba52270d
PE
1652 /*
1653 * Let the initial higher-order allocation fail under memory pressure
1654 * so we fall-back to the minimum order allocation.
1655 */
1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1659
5dfb4175 1660 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1661 if (unlikely(!page)) {
1662 oo = s->min;
80c3a998 1663 alloc_gfp = flags;
65c3376a
CL
1664 /*
1665 * Allocation may have failed due to fragmentation.
1666 * Try a lower order alloc if possible
1667 */
5dfb4175 1668 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1669 if (unlikely(!page))
1670 goto out;
1671 stat(s, ORDER_FALLBACK);
65c3376a 1672 }
5a896d9e 1673
834f3d11 1674 page->objects = oo_objects(oo);
81819f0f 1675
1b4f59e3 1676 page->slab_cache = s;
c03f94cc 1677 __SetPageSlab(page);
2f064f34 1678 if (page_is_pfmemalloc(page))
072bb0aa 1679 SetPageSlabPfmemalloc(page);
81819f0f 1680
a7101224 1681 kasan_poison_slab(page);
81819f0f 1682
a7101224 1683 start = page_address(page);
81819f0f 1684
a50b854e 1685 setup_page_debug(s, page, start);
0316bec2 1686
210e7a43
TG
1687 shuffle = shuffle_freelist(s, page);
1688
1689 if (!shuffle) {
4d176711
AK
1690 start = fixup_red_left(s, start);
1691 start = setup_object(s, page, start);
1692 page->freelist = start;
18e50661
AK
1693 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1694 next = p + s->size;
1695 next = setup_object(s, page, next);
1696 set_freepointer(s, p, next);
1697 p = next;
1698 }
1699 set_freepointer(s, p, NULL);
81819f0f 1700 }
81819f0f 1701
e6e82ea1 1702 page->inuse = page->objects;
8cb0a506 1703 page->frozen = 1;
588f8ba9 1704
81819f0f 1705out:
d0164adc 1706 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1707 local_irq_disable();
1708 if (!page)
1709 return NULL;
1710
588f8ba9
TG
1711 inc_slabs_node(s, page_to_nid(page), page->objects);
1712
81819f0f
CL
1713 return page;
1714}
1715
588f8ba9
TG
1716static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1717{
1718 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1719 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1720 flags &= ~GFP_SLAB_BUG_MASK;
1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1723 dump_stack();
588f8ba9
TG
1724 }
1725
1726 return allocate_slab(s,
1727 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1728}
1729
81819f0f
CL
1730static void __free_slab(struct kmem_cache *s, struct page *page)
1731{
834f3d11
CL
1732 int order = compound_order(page);
1733 int pages = 1 << order;
81819f0f 1734
becfda68 1735 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1736 void *p;
1737
1738 slab_pad_check(s, page);
224a88be
CL
1739 for_each_object(p, s, page_address(page),
1740 page->objects)
f7cb1933 1741 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1742 }
1743
072bb0aa 1744 __ClearPageSlabPfmemalloc(page);
49bd5221 1745 __ClearPageSlab(page);
1f458cbf 1746
d4fc5069 1747 page->mapping = NULL;
1eb5ac64
NP
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1750 uncharge_slab_page(page, order, s);
27ee57c9 1751 __free_pages(page, order);
81819f0f
CL
1752}
1753
1754static void rcu_free_slab(struct rcu_head *h)
1755{
bf68c214 1756 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1757
1b4f59e3 1758 __free_slab(page->slab_cache, page);
81819f0f
CL
1759}
1760
1761static void free_slab(struct kmem_cache *s, struct page *page)
1762{
5f0d5a3a 1763 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1764 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1765 } else
1766 __free_slab(s, page);
1767}
1768
1769static void discard_slab(struct kmem_cache *s, struct page *page)
1770{
205ab99d 1771 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1772 free_slab(s, page);
1773}
1774
1775/*
5cc6eee8 1776 * Management of partially allocated slabs.
81819f0f 1777 */
1e4dd946
SR
1778static inline void
1779__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1780{
e95eed57 1781 n->nr_partial++;
136333d1 1782 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1783 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1784 else
916ac052 1785 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1786}
1787
1e4dd946
SR
1788static inline void add_partial(struct kmem_cache_node *n,
1789 struct page *page, int tail)
62e346a8 1790{
c65c1877 1791 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1792 __add_partial(n, page, tail);
1793}
c65c1877 1794
1e4dd946
SR
1795static inline void remove_partial(struct kmem_cache_node *n,
1796 struct page *page)
1797{
1798 lockdep_assert_held(&n->list_lock);
916ac052 1799 list_del(&page->slab_list);
52b4b950 1800 n->nr_partial--;
1e4dd946
SR
1801}
1802
81819f0f 1803/*
7ced3719
CL
1804 * Remove slab from the partial list, freeze it and
1805 * return the pointer to the freelist.
81819f0f 1806 *
497b66f2 1807 * Returns a list of objects or NULL if it fails.
81819f0f 1808 */
497b66f2 1809static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1810 struct kmem_cache_node *n, struct page *page,
633b0764 1811 int mode, int *objects)
81819f0f 1812{
2cfb7455
CL
1813 void *freelist;
1814 unsigned long counters;
1815 struct page new;
1816
c65c1877
PZ
1817 lockdep_assert_held(&n->list_lock);
1818
2cfb7455
CL
1819 /*
1820 * Zap the freelist and set the frozen bit.
1821 * The old freelist is the list of objects for the
1822 * per cpu allocation list.
1823 */
7ced3719
CL
1824 freelist = page->freelist;
1825 counters = page->counters;
1826 new.counters = counters;
633b0764 1827 *objects = new.objects - new.inuse;
23910c50 1828 if (mode) {
7ced3719 1829 new.inuse = page->objects;
23910c50
PE
1830 new.freelist = NULL;
1831 } else {
1832 new.freelist = freelist;
1833 }
2cfb7455 1834
a0132ac0 1835 VM_BUG_ON(new.frozen);
7ced3719 1836 new.frozen = 1;
2cfb7455 1837
7ced3719 1838 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1839 freelist, counters,
02d7633f 1840 new.freelist, new.counters,
7ced3719 1841 "acquire_slab"))
7ced3719 1842 return NULL;
2cfb7455
CL
1843
1844 remove_partial(n, page);
7ced3719 1845 WARN_ON(!freelist);
49e22585 1846 return freelist;
81819f0f
CL
1847}
1848
633b0764 1849static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1850static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1851
81819f0f 1852/*
672bba3a 1853 * Try to allocate a partial slab from a specific node.
81819f0f 1854 */
8ba00bb6
JK
1855static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1856 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1857{
49e22585
CL
1858 struct page *page, *page2;
1859 void *object = NULL;
e5d9998f 1860 unsigned int available = 0;
633b0764 1861 int objects;
81819f0f
CL
1862
1863 /*
1864 * Racy check. If we mistakenly see no partial slabs then we
1865 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1866 * partial slab and there is none available then get_partials()
1867 * will return NULL.
81819f0f
CL
1868 */
1869 if (!n || !n->nr_partial)
1870 return NULL;
1871
1872 spin_lock(&n->list_lock);
916ac052 1873 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1874 void *t;
49e22585 1875
8ba00bb6
JK
1876 if (!pfmemalloc_match(page, flags))
1877 continue;
1878
633b0764 1879 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1880 if (!t)
1881 break;
1882
633b0764 1883 available += objects;
12d79634 1884 if (!object) {
49e22585 1885 c->page = page;
49e22585 1886 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1887 object = t;
49e22585 1888 } else {
633b0764 1889 put_cpu_partial(s, page, 0);
8028dcea 1890 stat(s, CPU_PARTIAL_NODE);
49e22585 1891 }
345c905d 1892 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1893 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1894 break;
1895
497b66f2 1896 }
81819f0f 1897 spin_unlock(&n->list_lock);
497b66f2 1898 return object;
81819f0f
CL
1899}
1900
1901/*
672bba3a 1902 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1903 */
de3ec035 1904static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1905 struct kmem_cache_cpu *c)
81819f0f
CL
1906{
1907#ifdef CONFIG_NUMA
1908 struct zonelist *zonelist;
dd1a239f 1909 struct zoneref *z;
54a6eb5c
MG
1910 struct zone *zone;
1911 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1912 void *object;
cc9a6c87 1913 unsigned int cpuset_mems_cookie;
81819f0f
CL
1914
1915 /*
672bba3a
CL
1916 * The defrag ratio allows a configuration of the tradeoffs between
1917 * inter node defragmentation and node local allocations. A lower
1918 * defrag_ratio increases the tendency to do local allocations
1919 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1920 *
672bba3a
CL
1921 * If the defrag_ratio is set to 0 then kmalloc() always
1922 * returns node local objects. If the ratio is higher then kmalloc()
1923 * may return off node objects because partial slabs are obtained
1924 * from other nodes and filled up.
81819f0f 1925 *
43efd3ea
LP
1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 * (which makes defrag_ratio = 1000) then every (well almost)
1928 * allocation will first attempt to defrag slab caches on other nodes.
1929 * This means scanning over all nodes to look for partial slabs which
1930 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1931 * with available objects.
81819f0f 1932 */
9824601e
CL
1933 if (!s->remote_node_defrag_ratio ||
1934 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1935 return NULL;
1936
cc9a6c87 1937 do {
d26914d1 1938 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1939 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1940 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1941 struct kmem_cache_node *n;
1942
1943 n = get_node(s, zone_to_nid(zone));
1944
dee2f8aa 1945 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1946 n->nr_partial > s->min_partial) {
8ba00bb6 1947 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1948 if (object) {
1949 /*
d26914d1
MG
1950 * Don't check read_mems_allowed_retry()
1951 * here - if mems_allowed was updated in
1952 * parallel, that was a harmless race
1953 * between allocation and the cpuset
1954 * update
cc9a6c87 1955 */
cc9a6c87
MG
1956 return object;
1957 }
c0ff7453 1958 }
81819f0f 1959 }
d26914d1 1960 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1961#endif /* CONFIG_NUMA */
81819f0f
CL
1962 return NULL;
1963}
1964
1965/*
1966 * Get a partial page, lock it and return it.
1967 */
497b66f2 1968static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1969 struct kmem_cache_cpu *c)
81819f0f 1970{
497b66f2 1971 void *object;
a561ce00
JK
1972 int searchnode = node;
1973
1974 if (node == NUMA_NO_NODE)
1975 searchnode = numa_mem_id();
1976 else if (!node_present_pages(node))
1977 searchnode = node_to_mem_node(node);
81819f0f 1978
8ba00bb6 1979 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1980 if (object || node != NUMA_NO_NODE)
1981 return object;
81819f0f 1982
acd19fd1 1983 return get_any_partial(s, flags, c);
81819f0f
CL
1984}
1985
923717cb 1986#ifdef CONFIG_PREEMPTION
8a5ec0ba
CL
1987/*
1988 * Calculate the next globally unique transaction for disambiguiation
1989 * during cmpxchg. The transactions start with the cpu number and are then
1990 * incremented by CONFIG_NR_CPUS.
1991 */
1992#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1993#else
1994/*
1995 * No preemption supported therefore also no need to check for
1996 * different cpus.
1997 */
1998#define TID_STEP 1
1999#endif
2000
2001static inline unsigned long next_tid(unsigned long tid)
2002{
2003 return tid + TID_STEP;
2004}
2005
9d5f0be0 2006#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2007static inline unsigned int tid_to_cpu(unsigned long tid)
2008{
2009 return tid % TID_STEP;
2010}
2011
2012static inline unsigned long tid_to_event(unsigned long tid)
2013{
2014 return tid / TID_STEP;
2015}
9d5f0be0 2016#endif
8a5ec0ba
CL
2017
2018static inline unsigned int init_tid(int cpu)
2019{
2020 return cpu;
2021}
2022
2023static inline void note_cmpxchg_failure(const char *n,
2024 const struct kmem_cache *s, unsigned long tid)
2025{
2026#ifdef SLUB_DEBUG_CMPXCHG
2027 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2028
f9f58285 2029 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2030
923717cb 2031#ifdef CONFIG_PREEMPTION
8a5ec0ba 2032 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2033 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2034 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2035 else
2036#endif
2037 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2038 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2039 tid_to_event(tid), tid_to_event(actual_tid));
2040 else
f9f58285 2041 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2042 actual_tid, tid, next_tid(tid));
2043#endif
4fdccdfb 2044 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2045}
2046
788e1aad 2047static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2048{
8a5ec0ba
CL
2049 int cpu;
2050
2051 for_each_possible_cpu(cpu)
2052 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2053}
2cfb7455 2054
81819f0f
CL
2055/*
2056 * Remove the cpu slab
2057 */
d0e0ac97 2058static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2059 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2060{
2cfb7455 2061 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2062 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2063 int lock = 0;
2064 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2065 void *nextfree;
136333d1 2066 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2067 struct page new;
2068 struct page old;
2069
2070 if (page->freelist) {
84e554e6 2071 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2072 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2073 }
2074
894b8788 2075 /*
2cfb7455
CL
2076 * Stage one: Free all available per cpu objects back
2077 * to the page freelist while it is still frozen. Leave the
2078 * last one.
2079 *
2080 * There is no need to take the list->lock because the page
2081 * is still frozen.
2082 */
2083 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2084 void *prior;
2085 unsigned long counters;
2086
2087 do {
2088 prior = page->freelist;
2089 counters = page->counters;
2090 set_freepointer(s, freelist, prior);
2091 new.counters = counters;
2092 new.inuse--;
a0132ac0 2093 VM_BUG_ON(!new.frozen);
2cfb7455 2094
1d07171c 2095 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2096 prior, counters,
2097 freelist, new.counters,
2098 "drain percpu freelist"));
2099
2100 freelist = nextfree;
2101 }
2102
894b8788 2103 /*
2cfb7455
CL
2104 * Stage two: Ensure that the page is unfrozen while the
2105 * list presence reflects the actual number of objects
2106 * during unfreeze.
2107 *
2108 * We setup the list membership and then perform a cmpxchg
2109 * with the count. If there is a mismatch then the page
2110 * is not unfrozen but the page is on the wrong list.
2111 *
2112 * Then we restart the process which may have to remove
2113 * the page from the list that we just put it on again
2114 * because the number of objects in the slab may have
2115 * changed.
894b8788 2116 */
2cfb7455 2117redo:
894b8788 2118
2cfb7455
CL
2119 old.freelist = page->freelist;
2120 old.counters = page->counters;
a0132ac0 2121 VM_BUG_ON(!old.frozen);
7c2e132c 2122
2cfb7455
CL
2123 /* Determine target state of the slab */
2124 new.counters = old.counters;
2125 if (freelist) {
2126 new.inuse--;
2127 set_freepointer(s, freelist, old.freelist);
2128 new.freelist = freelist;
2129 } else
2130 new.freelist = old.freelist;
2131
2132 new.frozen = 0;
2133
8a5b20ae 2134 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2135 m = M_FREE;
2136 else if (new.freelist) {
2137 m = M_PARTIAL;
2138 if (!lock) {
2139 lock = 1;
2140 /*
8bb4e7a2 2141 * Taking the spinlock removes the possibility
2cfb7455
CL
2142 * that acquire_slab() will see a slab page that
2143 * is frozen
2144 */
2145 spin_lock(&n->list_lock);
2146 }
2147 } else {
2148 m = M_FULL;
2149 if (kmem_cache_debug(s) && !lock) {
2150 lock = 1;
2151 /*
2152 * This also ensures that the scanning of full
2153 * slabs from diagnostic functions will not see
2154 * any frozen slabs.
2155 */
2156 spin_lock(&n->list_lock);
2157 }
2158 }
2159
2160 if (l != m) {
2cfb7455 2161 if (l == M_PARTIAL)
2cfb7455 2162 remove_partial(n, page);
2cfb7455 2163 else if (l == M_FULL)
c65c1877 2164 remove_full(s, n, page);
2cfb7455 2165
88349a28 2166 if (m == M_PARTIAL)
2cfb7455 2167 add_partial(n, page, tail);
88349a28 2168 else if (m == M_FULL)
2cfb7455 2169 add_full(s, n, page);
2cfb7455
CL
2170 }
2171
2172 l = m;
1d07171c 2173 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2174 old.freelist, old.counters,
2175 new.freelist, new.counters,
2176 "unfreezing slab"))
2177 goto redo;
2178
2cfb7455
CL
2179 if (lock)
2180 spin_unlock(&n->list_lock);
2181
88349a28
WY
2182 if (m == M_PARTIAL)
2183 stat(s, tail);
2184 else if (m == M_FULL)
2185 stat(s, DEACTIVATE_FULL);
2186 else if (m == M_FREE) {
2cfb7455
CL
2187 stat(s, DEACTIVATE_EMPTY);
2188 discard_slab(s, page);
2189 stat(s, FREE_SLAB);
894b8788 2190 }
d4ff6d35
WY
2191
2192 c->page = NULL;
2193 c->freelist = NULL;
81819f0f
CL
2194}
2195
d24ac77f
JK
2196/*
2197 * Unfreeze all the cpu partial slabs.
2198 *
59a09917
CL
2199 * This function must be called with interrupts disabled
2200 * for the cpu using c (or some other guarantee must be there
2201 * to guarantee no concurrent accesses).
d24ac77f 2202 */
59a09917
CL
2203static void unfreeze_partials(struct kmem_cache *s,
2204 struct kmem_cache_cpu *c)
49e22585 2205{
345c905d 2206#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2207 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2208 struct page *page, *discard_page = NULL;
49e22585
CL
2209
2210 while ((page = c->partial)) {
49e22585
CL
2211 struct page new;
2212 struct page old;
2213
2214 c->partial = page->next;
43d77867
JK
2215
2216 n2 = get_node(s, page_to_nid(page));
2217 if (n != n2) {
2218 if (n)
2219 spin_unlock(&n->list_lock);
2220
2221 n = n2;
2222 spin_lock(&n->list_lock);
2223 }
49e22585
CL
2224
2225 do {
2226
2227 old.freelist = page->freelist;
2228 old.counters = page->counters;
a0132ac0 2229 VM_BUG_ON(!old.frozen);
49e22585
CL
2230
2231 new.counters = old.counters;
2232 new.freelist = old.freelist;
2233
2234 new.frozen = 0;
2235
d24ac77f 2236 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2237 old.freelist, old.counters,
2238 new.freelist, new.counters,
2239 "unfreezing slab"));
2240
8a5b20ae 2241 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2242 page->next = discard_page;
2243 discard_page = page;
43d77867
JK
2244 } else {
2245 add_partial(n, page, DEACTIVATE_TO_TAIL);
2246 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2247 }
2248 }
2249
2250 if (n)
2251 spin_unlock(&n->list_lock);
9ada1934
SL
2252
2253 while (discard_page) {
2254 page = discard_page;
2255 discard_page = discard_page->next;
2256
2257 stat(s, DEACTIVATE_EMPTY);
2258 discard_slab(s, page);
2259 stat(s, FREE_SLAB);
2260 }
6dfd1b65 2261#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2262}
2263
2264/*
9234bae9
WY
2265 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2266 * partial page slot if available.
49e22585
CL
2267 *
2268 * If we did not find a slot then simply move all the partials to the
2269 * per node partial list.
2270 */
633b0764 2271static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2272{
345c905d 2273#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2274 struct page *oldpage;
2275 int pages;
2276 int pobjects;
2277
d6e0b7fa 2278 preempt_disable();
49e22585
CL
2279 do {
2280 pages = 0;
2281 pobjects = 0;
2282 oldpage = this_cpu_read(s->cpu_slab->partial);
2283
2284 if (oldpage) {
2285 pobjects = oldpage->pobjects;
2286 pages = oldpage->pages;
2287 if (drain && pobjects > s->cpu_partial) {
2288 unsigned long flags;
2289 /*
2290 * partial array is full. Move the existing
2291 * set to the per node partial list.
2292 */
2293 local_irq_save(flags);
59a09917 2294 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2295 local_irq_restore(flags);
e24fc410 2296 oldpage = NULL;
49e22585
CL
2297 pobjects = 0;
2298 pages = 0;
8028dcea 2299 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2300 }
2301 }
2302
2303 pages++;
2304 pobjects += page->objects - page->inuse;
2305
2306 page->pages = pages;
2307 page->pobjects = pobjects;
2308 page->next = oldpage;
2309
d0e0ac97
CG
2310 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2311 != oldpage);
d6e0b7fa
VD
2312 if (unlikely(!s->cpu_partial)) {
2313 unsigned long flags;
2314
2315 local_irq_save(flags);
2316 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2317 local_irq_restore(flags);
2318 }
2319 preempt_enable();
6dfd1b65 2320#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2321}
2322
dfb4f096 2323static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2324{
84e554e6 2325 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2326 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2327
2328 c->tid = next_tid(c->tid);
81819f0f
CL
2329}
2330
2331/*
2332 * Flush cpu slab.
6446faa2 2333 *
81819f0f
CL
2334 * Called from IPI handler with interrupts disabled.
2335 */
0c710013 2336static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2337{
9dfc6e68 2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2339
1265ef2d
WY
2340 if (c->page)
2341 flush_slab(s, c);
49e22585 2342
1265ef2d 2343 unfreeze_partials(s, c);
81819f0f
CL
2344}
2345
2346static void flush_cpu_slab(void *d)
2347{
2348 struct kmem_cache *s = d;
81819f0f 2349
dfb4f096 2350 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2351}
2352
a8364d55
GBY
2353static bool has_cpu_slab(int cpu, void *info)
2354{
2355 struct kmem_cache *s = info;
2356 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2357
a93cf07b 2358 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2359}
2360
81819f0f
CL
2361static void flush_all(struct kmem_cache *s)
2362{
cb923159 2363 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2364}
2365
a96a87bf
SAS
2366/*
2367 * Use the cpu notifier to insure that the cpu slabs are flushed when
2368 * necessary.
2369 */
2370static int slub_cpu_dead(unsigned int cpu)
2371{
2372 struct kmem_cache *s;
2373 unsigned long flags;
2374
2375 mutex_lock(&slab_mutex);
2376 list_for_each_entry(s, &slab_caches, list) {
2377 local_irq_save(flags);
2378 __flush_cpu_slab(s, cpu);
2379 local_irq_restore(flags);
2380 }
2381 mutex_unlock(&slab_mutex);
2382 return 0;
2383}
2384
dfb4f096
CL
2385/*
2386 * Check if the objects in a per cpu structure fit numa
2387 * locality expectations.
2388 */
57d437d2 2389static inline int node_match(struct page *page, int node)
dfb4f096
CL
2390{
2391#ifdef CONFIG_NUMA
6159d0f5 2392 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2393 return 0;
2394#endif
2395 return 1;
2396}
2397
9a02d699 2398#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2399static int count_free(struct page *page)
2400{
2401 return page->objects - page->inuse;
2402}
2403
9a02d699
DR
2404static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2405{
2406 return atomic_long_read(&n->total_objects);
2407}
2408#endif /* CONFIG_SLUB_DEBUG */
2409
2410#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2411static unsigned long count_partial(struct kmem_cache_node *n,
2412 int (*get_count)(struct page *))
2413{
2414 unsigned long flags;
2415 unsigned long x = 0;
2416 struct page *page;
2417
2418 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2419 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2420 x += get_count(page);
2421 spin_unlock_irqrestore(&n->list_lock, flags);
2422 return x;
2423}
9a02d699 2424#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2425
781b2ba6
PE
2426static noinline void
2427slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2428{
9a02d699
DR
2429#ifdef CONFIG_SLUB_DEBUG
2430 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2431 DEFAULT_RATELIMIT_BURST);
781b2ba6 2432 int node;
fa45dc25 2433 struct kmem_cache_node *n;
781b2ba6 2434
9a02d699
DR
2435 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2436 return;
2437
5b3810e5
VB
2438 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2439 nid, gfpflags, &gfpflags);
19af27af 2440 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2441 s->name, s->object_size, s->size, oo_order(s->oo),
2442 oo_order(s->min));
781b2ba6 2443
3b0efdfa 2444 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2445 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2446 s->name);
fa5ec8a1 2447
fa45dc25 2448 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2449 unsigned long nr_slabs;
2450 unsigned long nr_objs;
2451 unsigned long nr_free;
2452
26c02cf0
AB
2453 nr_free = count_partial(n, count_free);
2454 nr_slabs = node_nr_slabs(n);
2455 nr_objs = node_nr_objs(n);
781b2ba6 2456
f9f58285 2457 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2458 node, nr_slabs, nr_objs, nr_free);
2459 }
9a02d699 2460#endif
781b2ba6
PE
2461}
2462
497b66f2
CL
2463static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2464 int node, struct kmem_cache_cpu **pc)
2465{
6faa6833 2466 void *freelist;
188fd063
CL
2467 struct kmem_cache_cpu *c = *pc;
2468 struct page *page;
497b66f2 2469
128227e7
MW
2470 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2471
188fd063 2472 freelist = get_partial(s, flags, node, c);
497b66f2 2473
188fd063
CL
2474 if (freelist)
2475 return freelist;
2476
2477 page = new_slab(s, flags, node);
497b66f2 2478 if (page) {
7c8e0181 2479 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2480 if (c->page)
2481 flush_slab(s, c);
2482
2483 /*
2484 * No other reference to the page yet so we can
2485 * muck around with it freely without cmpxchg
2486 */
6faa6833 2487 freelist = page->freelist;
497b66f2
CL
2488 page->freelist = NULL;
2489
2490 stat(s, ALLOC_SLAB);
497b66f2
CL
2491 c->page = page;
2492 *pc = c;
edde82b6 2493 }
497b66f2 2494
6faa6833 2495 return freelist;
497b66f2
CL
2496}
2497
072bb0aa
MG
2498static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2499{
2500 if (unlikely(PageSlabPfmemalloc(page)))
2501 return gfp_pfmemalloc_allowed(gfpflags);
2502
2503 return true;
2504}
2505
213eeb9f 2506/*
d0e0ac97
CG
2507 * Check the page->freelist of a page and either transfer the freelist to the
2508 * per cpu freelist or deactivate the page.
213eeb9f
CL
2509 *
2510 * The page is still frozen if the return value is not NULL.
2511 *
2512 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2513 *
2514 * This function must be called with interrupt disabled.
213eeb9f
CL
2515 */
2516static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2517{
2518 struct page new;
2519 unsigned long counters;
2520 void *freelist;
2521
2522 do {
2523 freelist = page->freelist;
2524 counters = page->counters;
6faa6833 2525
213eeb9f 2526 new.counters = counters;
a0132ac0 2527 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2528
2529 new.inuse = page->objects;
2530 new.frozen = freelist != NULL;
2531
d24ac77f 2532 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2533 freelist, counters,
2534 NULL, new.counters,
2535 "get_freelist"));
2536
2537 return freelist;
2538}
2539
81819f0f 2540/*
894b8788
CL
2541 * Slow path. The lockless freelist is empty or we need to perform
2542 * debugging duties.
2543 *
894b8788
CL
2544 * Processing is still very fast if new objects have been freed to the
2545 * regular freelist. In that case we simply take over the regular freelist
2546 * as the lockless freelist and zap the regular freelist.
81819f0f 2547 *
894b8788
CL
2548 * If that is not working then we fall back to the partial lists. We take the
2549 * first element of the freelist as the object to allocate now and move the
2550 * rest of the freelist to the lockless freelist.
81819f0f 2551 *
894b8788 2552 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2553 * we need to allocate a new slab. This is the slowest path since it involves
2554 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2555 *
2556 * Version of __slab_alloc to use when we know that interrupts are
2557 * already disabled (which is the case for bulk allocation).
81819f0f 2558 */
a380a3c7 2559static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2560 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2561{
6faa6833 2562 void *freelist;
f6e7def7 2563 struct page *page;
81819f0f 2564
f6e7def7
CL
2565 page = c->page;
2566 if (!page)
81819f0f 2567 goto new_slab;
49e22585 2568redo:
6faa6833 2569
57d437d2 2570 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2571 int searchnode = node;
2572
2573 if (node != NUMA_NO_NODE && !node_present_pages(node))
2574 searchnode = node_to_mem_node(node);
2575
2576 if (unlikely(!node_match(page, searchnode))) {
2577 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2578 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2579 goto new_slab;
2580 }
fc59c053 2581 }
6446faa2 2582
072bb0aa
MG
2583 /*
2584 * By rights, we should be searching for a slab page that was
2585 * PFMEMALLOC but right now, we are losing the pfmemalloc
2586 * information when the page leaves the per-cpu allocator
2587 */
2588 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2589 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2590 goto new_slab;
2591 }
2592
73736e03 2593 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2594 freelist = c->freelist;
2595 if (freelist)
73736e03 2596 goto load_freelist;
03e404af 2597
f6e7def7 2598 freelist = get_freelist(s, page);
6446faa2 2599
6faa6833 2600 if (!freelist) {
03e404af
CL
2601 c->page = NULL;
2602 stat(s, DEACTIVATE_BYPASS);
fc59c053 2603 goto new_slab;
03e404af 2604 }
6446faa2 2605
84e554e6 2606 stat(s, ALLOC_REFILL);
6446faa2 2607
894b8788 2608load_freelist:
507effea
CL
2609 /*
2610 * freelist is pointing to the list of objects to be used.
2611 * page is pointing to the page from which the objects are obtained.
2612 * That page must be frozen for per cpu allocations to work.
2613 */
a0132ac0 2614 VM_BUG_ON(!c->page->frozen);
6faa6833 2615 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2616 c->tid = next_tid(c->tid);
6faa6833 2617 return freelist;
81819f0f 2618
81819f0f 2619new_slab:
2cfb7455 2620
a93cf07b
WY
2621 if (slub_percpu_partial(c)) {
2622 page = c->page = slub_percpu_partial(c);
2623 slub_set_percpu_partial(c, page);
49e22585 2624 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2625 goto redo;
81819f0f
CL
2626 }
2627
188fd063 2628 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2629
f4697436 2630 if (unlikely(!freelist)) {
9a02d699 2631 slab_out_of_memory(s, gfpflags, node);
f4697436 2632 return NULL;
81819f0f 2633 }
2cfb7455 2634
f6e7def7 2635 page = c->page;
5091b74a 2636 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2637 goto load_freelist;
2cfb7455 2638
497b66f2 2639 /* Only entered in the debug case */
d0e0ac97
CG
2640 if (kmem_cache_debug(s) &&
2641 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2642 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2643
d4ff6d35 2644 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2645 return freelist;
894b8788
CL
2646}
2647
a380a3c7
CL
2648/*
2649 * Another one that disabled interrupt and compensates for possible
2650 * cpu changes by refetching the per cpu area pointer.
2651 */
2652static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2653 unsigned long addr, struct kmem_cache_cpu *c)
2654{
2655 void *p;
2656 unsigned long flags;
2657
2658 local_irq_save(flags);
923717cb 2659#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2660 /*
2661 * We may have been preempted and rescheduled on a different
2662 * cpu before disabling interrupts. Need to reload cpu area
2663 * pointer.
2664 */
2665 c = this_cpu_ptr(s->cpu_slab);
2666#endif
2667
2668 p = ___slab_alloc(s, gfpflags, node, addr, c);
2669 local_irq_restore(flags);
2670 return p;
2671}
2672
0f181f9f
AP
2673/*
2674 * If the object has been wiped upon free, make sure it's fully initialized by
2675 * zeroing out freelist pointer.
2676 */
2677static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2678 void *obj)
2679{
2680 if (unlikely(slab_want_init_on_free(s)) && obj)
2681 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2682}
2683
894b8788
CL
2684/*
2685 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2686 * have the fastpath folded into their functions. So no function call
2687 * overhead for requests that can be satisfied on the fastpath.
2688 *
2689 * The fastpath works by first checking if the lockless freelist can be used.
2690 * If not then __slab_alloc is called for slow processing.
2691 *
2692 * Otherwise we can simply pick the next object from the lockless free list.
2693 */
2b847c3c 2694static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2695 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2696{
03ec0ed5 2697 void *object;
dfb4f096 2698 struct kmem_cache_cpu *c;
57d437d2 2699 struct page *page;
8a5ec0ba 2700 unsigned long tid;
1f84260c 2701
8135be5a
VD
2702 s = slab_pre_alloc_hook(s, gfpflags);
2703 if (!s)
773ff60e 2704 return NULL;
8a5ec0ba 2705redo:
8a5ec0ba
CL
2706 /*
2707 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2708 * enabled. We may switch back and forth between cpus while
2709 * reading from one cpu area. That does not matter as long
2710 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2711 *
9aabf810 2712 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2713 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2714 * to check if it is matched or not.
8a5ec0ba 2715 */
9aabf810
JK
2716 do {
2717 tid = this_cpu_read(s->cpu_slab->tid);
2718 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2719 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2720 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2721
2722 /*
2723 * Irqless object alloc/free algorithm used here depends on sequence
2724 * of fetching cpu_slab's data. tid should be fetched before anything
2725 * on c to guarantee that object and page associated with previous tid
2726 * won't be used with current tid. If we fetch tid first, object and
2727 * page could be one associated with next tid and our alloc/free
2728 * request will be failed. In this case, we will retry. So, no problem.
2729 */
2730 barrier();
8a5ec0ba 2731
8a5ec0ba
CL
2732 /*
2733 * The transaction ids are globally unique per cpu and per operation on
2734 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2735 * occurs on the right processor and that there was no operation on the
2736 * linked list in between.
2737 */
8a5ec0ba 2738
9dfc6e68 2739 object = c->freelist;
57d437d2 2740 page = c->page;
8eae1492 2741 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2742 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2743 stat(s, ALLOC_SLOWPATH);
2744 } else {
0ad9500e
ED
2745 void *next_object = get_freepointer_safe(s, object);
2746
8a5ec0ba 2747 /*
25985edc 2748 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2749 * operation and if we are on the right processor.
2750 *
d0e0ac97
CG
2751 * The cmpxchg does the following atomically (without lock
2752 * semantics!)
8a5ec0ba
CL
2753 * 1. Relocate first pointer to the current per cpu area.
2754 * 2. Verify that tid and freelist have not been changed
2755 * 3. If they were not changed replace tid and freelist
2756 *
d0e0ac97
CG
2757 * Since this is without lock semantics the protection is only
2758 * against code executing on this cpu *not* from access by
2759 * other cpus.
8a5ec0ba 2760 */
933393f5 2761 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2762 s->cpu_slab->freelist, s->cpu_slab->tid,
2763 object, tid,
0ad9500e 2764 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2765
2766 note_cmpxchg_failure("slab_alloc", s, tid);
2767 goto redo;
2768 }
0ad9500e 2769 prefetch_freepointer(s, next_object);
84e554e6 2770 stat(s, ALLOC_FASTPATH);
894b8788 2771 }
0f181f9f
AP
2772
2773 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2774
6471384a 2775 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2776 memset(object, 0, s->object_size);
d07dbea4 2777
03ec0ed5 2778 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2779
894b8788 2780 return object;
81819f0f
CL
2781}
2782
2b847c3c
EG
2783static __always_inline void *slab_alloc(struct kmem_cache *s,
2784 gfp_t gfpflags, unsigned long addr)
2785{
2786 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2787}
2788
81819f0f
CL
2789void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2790{
2b847c3c 2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2792
d0e0ac97
CG
2793 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2794 s->size, gfpflags);
5b882be4
EGM
2795
2796 return ret;
81819f0f
CL
2797}
2798EXPORT_SYMBOL(kmem_cache_alloc);
2799
0f24f128 2800#ifdef CONFIG_TRACING
4a92379b
RK
2801void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2802{
2b847c3c 2803 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2804 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2805 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2806 return ret;
2807}
2808EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2809#endif
2810
81819f0f
CL
2811#ifdef CONFIG_NUMA
2812void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2813{
2b847c3c 2814 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2815
ca2b84cb 2816 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2817 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2818
2819 return ret;
81819f0f
CL
2820}
2821EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2822
0f24f128 2823#ifdef CONFIG_TRACING
4a92379b 2824void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2825 gfp_t gfpflags,
4a92379b 2826 int node, size_t size)
5b882be4 2827{
2b847c3c 2828 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2829
2830 trace_kmalloc_node(_RET_IP_, ret,
2831 size, s->size, gfpflags, node);
0316bec2 2832
0116523c 2833 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2834 return ret;
5b882be4 2835}
4a92379b 2836EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2837#endif
6dfd1b65 2838#endif /* CONFIG_NUMA */
5b882be4 2839
81819f0f 2840/*
94e4d712 2841 * Slow path handling. This may still be called frequently since objects
894b8788 2842 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2843 *
894b8788
CL
2844 * So we still attempt to reduce cache line usage. Just take the slab
2845 * lock and free the item. If there is no additional partial page
2846 * handling required then we can return immediately.
81819f0f 2847 */
894b8788 2848static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2849 void *head, void *tail, int cnt,
2850 unsigned long addr)
2851
81819f0f
CL
2852{
2853 void *prior;
2cfb7455 2854 int was_frozen;
2cfb7455
CL
2855 struct page new;
2856 unsigned long counters;
2857 struct kmem_cache_node *n = NULL;
61728d1e 2858 unsigned long uninitialized_var(flags);
81819f0f 2859
8a5ec0ba 2860 stat(s, FREE_SLOWPATH);
81819f0f 2861
19c7ff9e 2862 if (kmem_cache_debug(s) &&
282acb43 2863 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2864 return;
6446faa2 2865
2cfb7455 2866 do {
837d678d
JK
2867 if (unlikely(n)) {
2868 spin_unlock_irqrestore(&n->list_lock, flags);
2869 n = NULL;
2870 }
2cfb7455
CL
2871 prior = page->freelist;
2872 counters = page->counters;
81084651 2873 set_freepointer(s, tail, prior);
2cfb7455
CL
2874 new.counters = counters;
2875 was_frozen = new.frozen;
81084651 2876 new.inuse -= cnt;
837d678d 2877 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2878
c65c1877 2879 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2880
2881 /*
d0e0ac97
CG
2882 * Slab was on no list before and will be
2883 * partially empty
2884 * We can defer the list move and instead
2885 * freeze it.
49e22585
CL
2886 */
2887 new.frozen = 1;
2888
c65c1877 2889 } else { /* Needs to be taken off a list */
49e22585 2890
b455def2 2891 n = get_node(s, page_to_nid(page));
49e22585
CL
2892 /*
2893 * Speculatively acquire the list_lock.
2894 * If the cmpxchg does not succeed then we may
2895 * drop the list_lock without any processing.
2896 *
2897 * Otherwise the list_lock will synchronize with
2898 * other processors updating the list of slabs.
2899 */
2900 spin_lock_irqsave(&n->list_lock, flags);
2901
2902 }
2cfb7455 2903 }
81819f0f 2904
2cfb7455
CL
2905 } while (!cmpxchg_double_slab(s, page,
2906 prior, counters,
81084651 2907 head, new.counters,
2cfb7455 2908 "__slab_free"));
81819f0f 2909
2cfb7455 2910 if (likely(!n)) {
49e22585
CL
2911
2912 /*
2913 * If we just froze the page then put it onto the
2914 * per cpu partial list.
2915 */
8028dcea 2916 if (new.frozen && !was_frozen) {
49e22585 2917 put_cpu_partial(s, page, 1);
8028dcea
AS
2918 stat(s, CPU_PARTIAL_FREE);
2919 }
49e22585 2920 /*
2cfb7455
CL
2921 * The list lock was not taken therefore no list
2922 * activity can be necessary.
2923 */
b455def2
L
2924 if (was_frozen)
2925 stat(s, FREE_FROZEN);
2926 return;
2927 }
81819f0f 2928
8a5b20ae 2929 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2930 goto slab_empty;
2931
81819f0f 2932 /*
837d678d
JK
2933 * Objects left in the slab. If it was not on the partial list before
2934 * then add it.
81819f0f 2935 */
345c905d 2936 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2937 remove_full(s, n, page);
837d678d
JK
2938 add_partial(n, page, DEACTIVATE_TO_TAIL);
2939 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2940 }
80f08c19 2941 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2942 return;
2943
2944slab_empty:
a973e9dd 2945 if (prior) {
81819f0f 2946 /*
6fbabb20 2947 * Slab on the partial list.
81819f0f 2948 */
5cc6eee8 2949 remove_partial(n, page);
84e554e6 2950 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2951 } else {
6fbabb20 2952 /* Slab must be on the full list */
c65c1877
PZ
2953 remove_full(s, n, page);
2954 }
2cfb7455 2955
80f08c19 2956 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2957 stat(s, FREE_SLAB);
81819f0f 2958 discard_slab(s, page);
81819f0f
CL
2959}
2960
894b8788
CL
2961/*
2962 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2963 * can perform fastpath freeing without additional function calls.
2964 *
2965 * The fastpath is only possible if we are freeing to the current cpu slab
2966 * of this processor. This typically the case if we have just allocated
2967 * the item before.
2968 *
2969 * If fastpath is not possible then fall back to __slab_free where we deal
2970 * with all sorts of special processing.
81084651
JDB
2971 *
2972 * Bulk free of a freelist with several objects (all pointing to the
2973 * same page) possible by specifying head and tail ptr, plus objects
2974 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2975 */
80a9201a
AP
2976static __always_inline void do_slab_free(struct kmem_cache *s,
2977 struct page *page, void *head, void *tail,
2978 int cnt, unsigned long addr)
894b8788 2979{
81084651 2980 void *tail_obj = tail ? : head;
dfb4f096 2981 struct kmem_cache_cpu *c;
8a5ec0ba 2982 unsigned long tid;
8a5ec0ba
CL
2983redo:
2984 /*
2985 * Determine the currently cpus per cpu slab.
2986 * The cpu may change afterward. However that does not matter since
2987 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2988 * during the cmpxchg then the free will succeed.
8a5ec0ba 2989 */
9aabf810
JK
2990 do {
2991 tid = this_cpu_read(s->cpu_slab->tid);
2992 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2993 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2994 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2995
9aabf810
JK
2996 /* Same with comment on barrier() in slab_alloc_node() */
2997 barrier();
c016b0bd 2998
442b06bc 2999 if (likely(page == c->page)) {
81084651 3000 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 3001
933393f5 3002 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3003 s->cpu_slab->freelist, s->cpu_slab->tid,
3004 c->freelist, tid,
81084651 3005 head, next_tid(tid)))) {
8a5ec0ba
CL
3006
3007 note_cmpxchg_failure("slab_free", s, tid);
3008 goto redo;
3009 }
84e554e6 3010 stat(s, FREE_FASTPATH);
894b8788 3011 } else
81084651 3012 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3013
894b8788
CL
3014}
3015
80a9201a
AP
3016static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3017 void *head, void *tail, int cnt,
3018 unsigned long addr)
3019{
80a9201a 3020 /*
c3895391
AK
3021 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3022 * to remove objects, whose reuse must be delayed.
80a9201a 3023 */
c3895391
AK
3024 if (slab_free_freelist_hook(s, &head, &tail))
3025 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3026}
3027
2bd926b4 3028#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3029void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3030{
3031 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3032}
3033#endif
3034
81819f0f
CL
3035void kmem_cache_free(struct kmem_cache *s, void *x)
3036{
b9ce5ef4
GC
3037 s = cache_from_obj(s, x);
3038 if (!s)
79576102 3039 return;
81084651 3040 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3041 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3042}
3043EXPORT_SYMBOL(kmem_cache_free);
3044
d0ecd894 3045struct detached_freelist {
fbd02630 3046 struct page *page;
d0ecd894
JDB
3047 void *tail;
3048 void *freelist;
3049 int cnt;
376bf125 3050 struct kmem_cache *s;
d0ecd894 3051};
fbd02630 3052
d0ecd894
JDB
3053/*
3054 * This function progressively scans the array with free objects (with
3055 * a limited look ahead) and extract objects belonging to the same
3056 * page. It builds a detached freelist directly within the given
3057 * page/objects. This can happen without any need for
3058 * synchronization, because the objects are owned by running process.
3059 * The freelist is build up as a single linked list in the objects.
3060 * The idea is, that this detached freelist can then be bulk
3061 * transferred to the real freelist(s), but only requiring a single
3062 * synchronization primitive. Look ahead in the array is limited due
3063 * to performance reasons.
3064 */
376bf125
JDB
3065static inline
3066int build_detached_freelist(struct kmem_cache *s, size_t size,
3067 void **p, struct detached_freelist *df)
d0ecd894
JDB
3068{
3069 size_t first_skipped_index = 0;
3070 int lookahead = 3;
3071 void *object;
ca257195 3072 struct page *page;
fbd02630 3073
d0ecd894
JDB
3074 /* Always re-init detached_freelist */
3075 df->page = NULL;
fbd02630 3076
d0ecd894
JDB
3077 do {
3078 object = p[--size];
ca257195 3079 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3080 } while (!object && size);
3eed034d 3081
d0ecd894
JDB
3082 if (!object)
3083 return 0;
fbd02630 3084
ca257195
JDB
3085 page = virt_to_head_page(object);
3086 if (!s) {
3087 /* Handle kalloc'ed objects */
3088 if (unlikely(!PageSlab(page))) {
3089 BUG_ON(!PageCompound(page));
3090 kfree_hook(object);
4949148a 3091 __free_pages(page, compound_order(page));
ca257195
JDB
3092 p[size] = NULL; /* mark object processed */
3093 return size;
3094 }
3095 /* Derive kmem_cache from object */
3096 df->s = page->slab_cache;
3097 } else {
3098 df->s = cache_from_obj(s, object); /* Support for memcg */
3099 }
376bf125 3100
d0ecd894 3101 /* Start new detached freelist */
ca257195 3102 df->page = page;
376bf125 3103 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3104 df->tail = object;
3105 df->freelist = object;
3106 p[size] = NULL; /* mark object processed */
3107 df->cnt = 1;
3108
3109 while (size) {
3110 object = p[--size];
3111 if (!object)
3112 continue; /* Skip processed objects */
3113
3114 /* df->page is always set at this point */
3115 if (df->page == virt_to_head_page(object)) {
3116 /* Opportunity build freelist */
376bf125 3117 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3118 df->freelist = object;
3119 df->cnt++;
3120 p[size] = NULL; /* mark object processed */
3121
3122 continue;
fbd02630 3123 }
d0ecd894
JDB
3124
3125 /* Limit look ahead search */
3126 if (!--lookahead)
3127 break;
3128
3129 if (!first_skipped_index)
3130 first_skipped_index = size + 1;
fbd02630 3131 }
d0ecd894
JDB
3132
3133 return first_skipped_index;
3134}
3135
d0ecd894 3136/* Note that interrupts must be enabled when calling this function. */
376bf125 3137void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3138{
3139 if (WARN_ON(!size))
3140 return;
3141
3142 do {
3143 struct detached_freelist df;
3144
3145 size = build_detached_freelist(s, size, p, &df);
84582c8a 3146 if (!df.page)
d0ecd894
JDB
3147 continue;
3148
376bf125 3149 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3150 } while (likely(size));
484748f0
CL
3151}
3152EXPORT_SYMBOL(kmem_cache_free_bulk);
3153
994eb764 3154/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3155int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3156 void **p)
484748f0 3157{
994eb764
JDB
3158 struct kmem_cache_cpu *c;
3159 int i;
3160
03ec0ed5
JDB
3161 /* memcg and kmem_cache debug support */
3162 s = slab_pre_alloc_hook(s, flags);
3163 if (unlikely(!s))
3164 return false;
994eb764
JDB
3165 /*
3166 * Drain objects in the per cpu slab, while disabling local
3167 * IRQs, which protects against PREEMPT and interrupts
3168 * handlers invoking normal fastpath.
3169 */
3170 local_irq_disable();
3171 c = this_cpu_ptr(s->cpu_slab);
3172
3173 for (i = 0; i < size; i++) {
3174 void *object = c->freelist;
3175
ebe909e0 3176 if (unlikely(!object)) {
fd4d9c7d
JH
3177 /*
3178 * We may have removed an object from c->freelist using
3179 * the fastpath in the previous iteration; in that case,
3180 * c->tid has not been bumped yet.
3181 * Since ___slab_alloc() may reenable interrupts while
3182 * allocating memory, we should bump c->tid now.
3183 */
3184 c->tid = next_tid(c->tid);
3185
ebe909e0
JDB
3186 /*
3187 * Invoking slow path likely have side-effect
3188 * of re-populating per CPU c->freelist
3189 */
87098373 3190 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3191 _RET_IP_, c);
87098373
CL
3192 if (unlikely(!p[i]))
3193 goto error;
3194
ebe909e0 3195 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3196 maybe_wipe_obj_freeptr(s, p[i]);
3197
ebe909e0
JDB
3198 continue; /* goto for-loop */
3199 }
994eb764
JDB
3200 c->freelist = get_freepointer(s, object);
3201 p[i] = object;
0f181f9f 3202 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3203 }
3204 c->tid = next_tid(c->tid);
3205 local_irq_enable();
3206
3207 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3208 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3209 int j;
3210
3211 for (j = 0; j < i; j++)
3212 memset(p[j], 0, s->object_size);
3213 }
3214
03ec0ed5
JDB
3215 /* memcg and kmem_cache debug support */
3216 slab_post_alloc_hook(s, flags, size, p);
865762a8 3217 return i;
87098373 3218error:
87098373 3219 local_irq_enable();
03ec0ed5
JDB
3220 slab_post_alloc_hook(s, flags, i, p);
3221 __kmem_cache_free_bulk(s, i, p);
865762a8 3222 return 0;
484748f0
CL
3223}
3224EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3225
3226
81819f0f 3227/*
672bba3a
CL
3228 * Object placement in a slab is made very easy because we always start at
3229 * offset 0. If we tune the size of the object to the alignment then we can
3230 * get the required alignment by putting one properly sized object after
3231 * another.
81819f0f
CL
3232 *
3233 * Notice that the allocation order determines the sizes of the per cpu
3234 * caches. Each processor has always one slab available for allocations.
3235 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3236 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3237 * locking overhead.
81819f0f
CL
3238 */
3239
3240/*
3241 * Mininum / Maximum order of slab pages. This influences locking overhead
3242 * and slab fragmentation. A higher order reduces the number of partial slabs
3243 * and increases the number of allocations possible without having to
3244 * take the list_lock.
3245 */
19af27af
AD
3246static unsigned int slub_min_order;
3247static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3248static unsigned int slub_min_objects;
81819f0f 3249
81819f0f
CL
3250/*
3251 * Calculate the order of allocation given an slab object size.
3252 *
672bba3a
CL
3253 * The order of allocation has significant impact on performance and other
3254 * system components. Generally order 0 allocations should be preferred since
3255 * order 0 does not cause fragmentation in the page allocator. Larger objects
3256 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3257 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3258 * would be wasted.
3259 *
3260 * In order to reach satisfactory performance we must ensure that a minimum
3261 * number of objects is in one slab. Otherwise we may generate too much
3262 * activity on the partial lists which requires taking the list_lock. This is
3263 * less a concern for large slabs though which are rarely used.
81819f0f 3264 *
672bba3a
CL
3265 * slub_max_order specifies the order where we begin to stop considering the
3266 * number of objects in a slab as critical. If we reach slub_max_order then
3267 * we try to keep the page order as low as possible. So we accept more waste
3268 * of space in favor of a small page order.
81819f0f 3269 *
672bba3a
CL
3270 * Higher order allocations also allow the placement of more objects in a
3271 * slab and thereby reduce object handling overhead. If the user has
3272 * requested a higher mininum order then we start with that one instead of
3273 * the smallest order which will fit the object.
81819f0f 3274 */
19af27af
AD
3275static inline unsigned int slab_order(unsigned int size,
3276 unsigned int min_objects, unsigned int max_order,
9736d2a9 3277 unsigned int fract_leftover)
81819f0f 3278{
19af27af
AD
3279 unsigned int min_order = slub_min_order;
3280 unsigned int order;
81819f0f 3281
9736d2a9 3282 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3283 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3284
9736d2a9 3285 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3286 order <= max_order; order++) {
81819f0f 3287
19af27af
AD
3288 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3289 unsigned int rem;
81819f0f 3290
9736d2a9 3291 rem = slab_size % size;
81819f0f 3292
5e6d444e 3293 if (rem <= slab_size / fract_leftover)
81819f0f 3294 break;
81819f0f 3295 }
672bba3a 3296
81819f0f
CL
3297 return order;
3298}
3299
9736d2a9 3300static inline int calculate_order(unsigned int size)
5e6d444e 3301{
19af27af
AD
3302 unsigned int order;
3303 unsigned int min_objects;
3304 unsigned int max_objects;
5e6d444e
CL
3305
3306 /*
3307 * Attempt to find best configuration for a slab. This
3308 * works by first attempting to generate a layout with
3309 * the best configuration and backing off gradually.
3310 *
422ff4d7 3311 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3312 * we reduce the minimum objects required in a slab.
3313 */
3314 min_objects = slub_min_objects;
9b2cd506
CL
3315 if (!min_objects)
3316 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3317 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3318 min_objects = min(min_objects, max_objects);
3319
5e6d444e 3320 while (min_objects > 1) {
19af27af
AD
3321 unsigned int fraction;
3322
c124f5b5 3323 fraction = 16;
5e6d444e
CL
3324 while (fraction >= 4) {
3325 order = slab_order(size, min_objects,
9736d2a9 3326 slub_max_order, fraction);
5e6d444e
CL
3327 if (order <= slub_max_order)
3328 return order;
3329 fraction /= 2;
3330 }
5086c389 3331 min_objects--;
5e6d444e
CL
3332 }
3333
3334 /*
3335 * We were unable to place multiple objects in a slab. Now
3336 * lets see if we can place a single object there.
3337 */
9736d2a9 3338 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3339 if (order <= slub_max_order)
3340 return order;
3341
3342 /*
3343 * Doh this slab cannot be placed using slub_max_order.
3344 */
9736d2a9 3345 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3346 if (order < MAX_ORDER)
5e6d444e
CL
3347 return order;
3348 return -ENOSYS;
3349}
3350
5595cffc 3351static void
4053497d 3352init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3353{
3354 n->nr_partial = 0;
81819f0f
CL
3355 spin_lock_init(&n->list_lock);
3356 INIT_LIST_HEAD(&n->partial);
8ab1372f 3357#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3358 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3359 atomic_long_set(&n->total_objects, 0);
643b1138 3360 INIT_LIST_HEAD(&n->full);
8ab1372f 3361#endif
81819f0f
CL
3362}
3363
55136592 3364static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3365{
6c182dc0 3366 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3367 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3368
8a5ec0ba 3369 /*
d4d84fef
CM
3370 * Must align to double word boundary for the double cmpxchg
3371 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3372 */
d4d84fef
CM
3373 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3374 2 * sizeof(void *));
8a5ec0ba
CL
3375
3376 if (!s->cpu_slab)
3377 return 0;
3378
3379 init_kmem_cache_cpus(s);
4c93c355 3380
8a5ec0ba 3381 return 1;
4c93c355 3382}
4c93c355 3383
51df1142
CL
3384static struct kmem_cache *kmem_cache_node;
3385
81819f0f
CL
3386/*
3387 * No kmalloc_node yet so do it by hand. We know that this is the first
3388 * slab on the node for this slabcache. There are no concurrent accesses
3389 * possible.
3390 *
721ae22a
ZYW
3391 * Note that this function only works on the kmem_cache_node
3392 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3393 * memory on a fresh node that has no slab structures yet.
81819f0f 3394 */
55136592 3395static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3396{
3397 struct page *page;
3398 struct kmem_cache_node *n;
3399
51df1142 3400 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3401
51df1142 3402 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3403
3404 BUG_ON(!page);
a2f92ee7 3405 if (page_to_nid(page) != node) {
f9f58285
FF
3406 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3407 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3408 }
3409
81819f0f
CL
3410 n = page->freelist;
3411 BUG_ON(!n);
8ab1372f 3412#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3413 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3414 init_tracking(kmem_cache_node, n);
8ab1372f 3415#endif
12b22386 3416 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3417 GFP_KERNEL);
12b22386
AK
3418 page->freelist = get_freepointer(kmem_cache_node, n);
3419 page->inuse = 1;
3420 page->frozen = 0;
3421 kmem_cache_node->node[node] = n;
4053497d 3422 init_kmem_cache_node(n);
51df1142 3423 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3424
67b6c900 3425 /*
1e4dd946
SR
3426 * No locks need to be taken here as it has just been
3427 * initialized and there is no concurrent access.
67b6c900 3428 */
1e4dd946 3429 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3430}
3431
3432static void free_kmem_cache_nodes(struct kmem_cache *s)
3433{
3434 int node;
fa45dc25 3435 struct kmem_cache_node *n;
81819f0f 3436
fa45dc25 3437 for_each_kmem_cache_node(s, node, n) {
81819f0f 3438 s->node[node] = NULL;
ea37df54 3439 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3440 }
3441}
3442
52b4b950
DS
3443void __kmem_cache_release(struct kmem_cache *s)
3444{
210e7a43 3445 cache_random_seq_destroy(s);
52b4b950
DS
3446 free_percpu(s->cpu_slab);
3447 free_kmem_cache_nodes(s);
3448}
3449
55136592 3450static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3451{
3452 int node;
81819f0f 3453
f64dc58c 3454 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3455 struct kmem_cache_node *n;
3456
73367bd8 3457 if (slab_state == DOWN) {
55136592 3458 early_kmem_cache_node_alloc(node);
73367bd8
AD
3459 continue;
3460 }
51df1142 3461 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3462 GFP_KERNEL, node);
81819f0f 3463
73367bd8
AD
3464 if (!n) {
3465 free_kmem_cache_nodes(s);
3466 return 0;
81819f0f 3467 }
73367bd8 3468
4053497d 3469 init_kmem_cache_node(n);
ea37df54 3470 s->node[node] = n;
81819f0f
CL
3471 }
3472 return 1;
3473}
81819f0f 3474
c0bdb232 3475static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3476{
3477 if (min < MIN_PARTIAL)
3478 min = MIN_PARTIAL;
3479 else if (min > MAX_PARTIAL)
3480 min = MAX_PARTIAL;
3481 s->min_partial = min;
3482}
3483
e6d0e1dc
WY
3484static void set_cpu_partial(struct kmem_cache *s)
3485{
3486#ifdef CONFIG_SLUB_CPU_PARTIAL
3487 /*
3488 * cpu_partial determined the maximum number of objects kept in the
3489 * per cpu partial lists of a processor.
3490 *
3491 * Per cpu partial lists mainly contain slabs that just have one
3492 * object freed. If they are used for allocation then they can be
3493 * filled up again with minimal effort. The slab will never hit the
3494 * per node partial lists and therefore no locking will be required.
3495 *
3496 * This setting also determines
3497 *
3498 * A) The number of objects from per cpu partial slabs dumped to the
3499 * per node list when we reach the limit.
3500 * B) The number of objects in cpu partial slabs to extract from the
3501 * per node list when we run out of per cpu objects. We only fetch
3502 * 50% to keep some capacity around for frees.
3503 */
3504 if (!kmem_cache_has_cpu_partial(s))
3505 s->cpu_partial = 0;
3506 else if (s->size >= PAGE_SIZE)
3507 s->cpu_partial = 2;
3508 else if (s->size >= 1024)
3509 s->cpu_partial = 6;
3510 else if (s->size >= 256)
3511 s->cpu_partial = 13;
3512 else
3513 s->cpu_partial = 30;
3514#endif
3515}
3516
81819f0f
CL
3517/*
3518 * calculate_sizes() determines the order and the distribution of data within
3519 * a slab object.
3520 */
06b285dc 3521static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3522{
d50112ed 3523 slab_flags_t flags = s->flags;
be4a7988 3524 unsigned int size = s->object_size;
19af27af 3525 unsigned int order;
81819f0f 3526
d8b42bf5
CL
3527 /*
3528 * Round up object size to the next word boundary. We can only
3529 * place the free pointer at word boundaries and this determines
3530 * the possible location of the free pointer.
3531 */
3532 size = ALIGN(size, sizeof(void *));
3533
3534#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3535 /*
3536 * Determine if we can poison the object itself. If the user of
3537 * the slab may touch the object after free or before allocation
3538 * then we should never poison the object itself.
3539 */
5f0d5a3a 3540 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3541 !s->ctor)
81819f0f
CL
3542 s->flags |= __OBJECT_POISON;
3543 else
3544 s->flags &= ~__OBJECT_POISON;
3545
81819f0f
CL
3546
3547 /*
672bba3a 3548 * If we are Redzoning then check if there is some space between the
81819f0f 3549 * end of the object and the free pointer. If not then add an
672bba3a 3550 * additional word to have some bytes to store Redzone information.
81819f0f 3551 */
3b0efdfa 3552 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3553 size += sizeof(void *);
41ecc55b 3554#endif
81819f0f
CL
3555
3556 /*
672bba3a
CL
3557 * With that we have determined the number of bytes in actual use
3558 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3559 */
3560 s->inuse = size;
3561
5f0d5a3a 3562 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3563 s->ctor)) {
81819f0f
CL
3564 /*
3565 * Relocate free pointer after the object if it is not
3566 * permitted to overwrite the first word of the object on
3567 * kmem_cache_free.
3568 *
3569 * This is the case if we do RCU, have a constructor or
3570 * destructor or are poisoning the objects.
3571 */
3572 s->offset = size;
3573 size += sizeof(void *);
3574 }
3575
c12b3c62 3576#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3577 if (flags & SLAB_STORE_USER)
3578 /*
3579 * Need to store information about allocs and frees after
3580 * the object.
3581 */
3582 size += 2 * sizeof(struct track);
80a9201a 3583#endif
81819f0f 3584
80a9201a
AP
3585 kasan_cache_create(s, &size, &s->flags);
3586#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3587 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3588 /*
3589 * Add some empty padding so that we can catch
3590 * overwrites from earlier objects rather than let
3591 * tracking information or the free pointer be
0211a9c8 3592 * corrupted if a user writes before the start
81819f0f
CL
3593 * of the object.
3594 */
3595 size += sizeof(void *);
d86bd1be
JK
3596
3597 s->red_left_pad = sizeof(void *);
3598 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3599 size += s->red_left_pad;
3600 }
41ecc55b 3601#endif
672bba3a 3602
81819f0f
CL
3603 /*
3604 * SLUB stores one object immediately after another beginning from
3605 * offset 0. In order to align the objects we have to simply size
3606 * each object to conform to the alignment.
3607 */
45906855 3608 size = ALIGN(size, s->align);
81819f0f 3609 s->size = size;
06b285dc
CL
3610 if (forced_order >= 0)
3611 order = forced_order;
3612 else
9736d2a9 3613 order = calculate_order(size);
81819f0f 3614
19af27af 3615 if ((int)order < 0)
81819f0f
CL
3616 return 0;
3617
b7a49f0d 3618 s->allocflags = 0;
834f3d11 3619 if (order)
b7a49f0d
CL
3620 s->allocflags |= __GFP_COMP;
3621
3622 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3623 s->allocflags |= GFP_DMA;
b7a49f0d 3624
6d6ea1e9
NB
3625 if (s->flags & SLAB_CACHE_DMA32)
3626 s->allocflags |= GFP_DMA32;
3627
b7a49f0d
CL
3628 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3629 s->allocflags |= __GFP_RECLAIMABLE;
3630
81819f0f
CL
3631 /*
3632 * Determine the number of objects per slab
3633 */
9736d2a9
MW
3634 s->oo = oo_make(order, size);
3635 s->min = oo_make(get_order(size), size);
205ab99d
CL
3636 if (oo_objects(s->oo) > oo_objects(s->max))
3637 s->max = s->oo;
81819f0f 3638
834f3d11 3639 return !!oo_objects(s->oo);
81819f0f
CL
3640}
3641
d50112ed 3642static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3643{
8a13a4cc 3644 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3645#ifdef CONFIG_SLAB_FREELIST_HARDENED
3646 s->random = get_random_long();
3647#endif
81819f0f 3648
06b285dc 3649 if (!calculate_sizes(s, -1))
81819f0f 3650 goto error;
3de47213
DR
3651 if (disable_higher_order_debug) {
3652 /*
3653 * Disable debugging flags that store metadata if the min slab
3654 * order increased.
3655 */
3b0efdfa 3656 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3657 s->flags &= ~DEBUG_METADATA_FLAGS;
3658 s->offset = 0;
3659 if (!calculate_sizes(s, -1))
3660 goto error;
3661 }
3662 }
81819f0f 3663
2565409f
HC
3664#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3665 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3666 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3667 /* Enable fast mode */
3668 s->flags |= __CMPXCHG_DOUBLE;
3669#endif
3670
3b89d7d8
DR
3671 /*
3672 * The larger the object size is, the more pages we want on the partial
3673 * list to avoid pounding the page allocator excessively.
3674 */
49e22585
CL
3675 set_min_partial(s, ilog2(s->size) / 2);
3676
e6d0e1dc 3677 set_cpu_partial(s);
49e22585 3678
81819f0f 3679#ifdef CONFIG_NUMA
e2cb96b7 3680 s->remote_node_defrag_ratio = 1000;
81819f0f 3681#endif
210e7a43
TG
3682
3683 /* Initialize the pre-computed randomized freelist if slab is up */
3684 if (slab_state >= UP) {
3685 if (init_cache_random_seq(s))
3686 goto error;
3687 }
3688
55136592 3689 if (!init_kmem_cache_nodes(s))
dfb4f096 3690 goto error;
81819f0f 3691
55136592 3692 if (alloc_kmem_cache_cpus(s))
278b1bb1 3693 return 0;
ff12059e 3694
4c93c355 3695 free_kmem_cache_nodes(s);
81819f0f 3696error:
278b1bb1 3697 return -EINVAL;
81819f0f 3698}
81819f0f 3699
33b12c38
CL
3700static void list_slab_objects(struct kmem_cache *s, struct page *page,
3701 const char *text)
3702{
3703#ifdef CONFIG_SLUB_DEBUG
3704 void *addr = page_address(page);
3705 void *p;
90e9f6a6
YZ
3706 unsigned long *map;
3707
945cf2b6 3708 slab_err(s, page, text, s->name);
33b12c38 3709 slab_lock(page);
33b12c38 3710
90e9f6a6 3711 map = get_map(s, page);
33b12c38
CL
3712 for_each_object(p, s, addr, page->objects) {
3713
3714 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3715 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3716 print_tracking(s, p);
3717 }
3718 }
90e9f6a6
YZ
3719 put_map(map);
3720
33b12c38
CL
3721 slab_unlock(page);
3722#endif
3723}
3724
81819f0f 3725/*
599870b1 3726 * Attempt to free all partial slabs on a node.
52b4b950
DS
3727 * This is called from __kmem_cache_shutdown(). We must take list_lock
3728 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3729 */
599870b1 3730static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3731{
60398923 3732 LIST_HEAD(discard);
81819f0f
CL
3733 struct page *page, *h;
3734
52b4b950
DS
3735 BUG_ON(irqs_disabled());
3736 spin_lock_irq(&n->list_lock);
916ac052 3737 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3738 if (!page->inuse) {
52b4b950 3739 remove_partial(n, page);
916ac052 3740 list_add(&page->slab_list, &discard);
33b12c38
CL
3741 } else {
3742 list_slab_objects(s, page,
52b4b950 3743 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3744 }
33b12c38 3745 }
52b4b950 3746 spin_unlock_irq(&n->list_lock);
60398923 3747
916ac052 3748 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3749 discard_slab(s, page);
81819f0f
CL
3750}
3751
f9e13c0a
SB
3752bool __kmem_cache_empty(struct kmem_cache *s)
3753{
3754 int node;
3755 struct kmem_cache_node *n;
3756
3757 for_each_kmem_cache_node(s, node, n)
3758 if (n->nr_partial || slabs_node(s, node))
3759 return false;
3760 return true;
3761}
3762
81819f0f 3763/*
672bba3a 3764 * Release all resources used by a slab cache.
81819f0f 3765 */
52b4b950 3766int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3767{
3768 int node;
fa45dc25 3769 struct kmem_cache_node *n;
81819f0f
CL
3770
3771 flush_all(s);
81819f0f 3772 /* Attempt to free all objects */
fa45dc25 3773 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3774 free_partial(s, n);
3775 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3776 return 1;
3777 }
bf5eb3de 3778 sysfs_slab_remove(s);
81819f0f
CL
3779 return 0;
3780}
3781
81819f0f
CL
3782/********************************************************************
3783 * Kmalloc subsystem
3784 *******************************************************************/
3785
81819f0f
CL
3786static int __init setup_slub_min_order(char *str)
3787{
19af27af 3788 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3789
3790 return 1;
3791}
3792
3793__setup("slub_min_order=", setup_slub_min_order);
3794
3795static int __init setup_slub_max_order(char *str)
3796{
19af27af
AD
3797 get_option(&str, (int *)&slub_max_order);
3798 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3799
3800 return 1;
3801}
3802
3803__setup("slub_max_order=", setup_slub_max_order);
3804
3805static int __init setup_slub_min_objects(char *str)
3806{
19af27af 3807 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3808
3809 return 1;
3810}
3811
3812__setup("slub_min_objects=", setup_slub_min_objects);
3813
81819f0f
CL
3814void *__kmalloc(size_t size, gfp_t flags)
3815{
aadb4bc4 3816 struct kmem_cache *s;
5b882be4 3817 void *ret;
81819f0f 3818
95a05b42 3819 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3820 return kmalloc_large(size, flags);
aadb4bc4 3821
2c59dd65 3822 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3823
3824 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3825 return s;
3826
2b847c3c 3827 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3828
ca2b84cb 3829 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3830
0116523c 3831 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3832
5b882be4 3833 return ret;
81819f0f
CL
3834}
3835EXPORT_SYMBOL(__kmalloc);
3836
5d1f57e4 3837#ifdef CONFIG_NUMA
f619cfe1
CL
3838static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3839{
b1eeab67 3840 struct page *page;
e4f7c0b4 3841 void *ptr = NULL;
6a486c0a 3842 unsigned int order = get_order(size);
f619cfe1 3843
75f296d9 3844 flags |= __GFP_COMP;
6a486c0a
VB
3845 page = alloc_pages_node(node, flags, order);
3846 if (page) {
e4f7c0b4 3847 ptr = page_address(page);
6a486c0a
VB
3848 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3849 1 << order);
3850 }
e4f7c0b4 3851
0116523c 3852 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3853}
3854
81819f0f
CL
3855void *__kmalloc_node(size_t size, gfp_t flags, int node)
3856{
aadb4bc4 3857 struct kmem_cache *s;
5b882be4 3858 void *ret;
81819f0f 3859
95a05b42 3860 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3861 ret = kmalloc_large_node(size, flags, node);
3862
ca2b84cb
EGM
3863 trace_kmalloc_node(_RET_IP_, ret,
3864 size, PAGE_SIZE << get_order(size),
3865 flags, node);
5b882be4
EGM
3866
3867 return ret;
3868 }
aadb4bc4 3869
2c59dd65 3870 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3871
3872 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3873 return s;
3874
2b847c3c 3875 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3876
ca2b84cb 3877 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3878
0116523c 3879 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3880
5b882be4 3881 return ret;
81819f0f
CL
3882}
3883EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3884#endif /* CONFIG_NUMA */
81819f0f 3885
ed18adc1
KC
3886#ifdef CONFIG_HARDENED_USERCOPY
3887/*
afcc90f8
KC
3888 * Rejects incorrectly sized objects and objects that are to be copied
3889 * to/from userspace but do not fall entirely within the containing slab
3890 * cache's usercopy region.
ed18adc1
KC
3891 *
3892 * Returns NULL if check passes, otherwise const char * to name of cache
3893 * to indicate an error.
3894 */
f4e6e289
KC
3895void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3896 bool to_user)
ed18adc1
KC
3897{
3898 struct kmem_cache *s;
44065b2e 3899 unsigned int offset;
ed18adc1
KC
3900 size_t object_size;
3901
96fedce2
AK
3902 ptr = kasan_reset_tag(ptr);
3903
ed18adc1
KC
3904 /* Find object and usable object size. */
3905 s = page->slab_cache;
ed18adc1
KC
3906
3907 /* Reject impossible pointers. */
3908 if (ptr < page_address(page))
f4e6e289
KC
3909 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3910 to_user, 0, n);
ed18adc1
KC
3911
3912 /* Find offset within object. */
3913 offset = (ptr - page_address(page)) % s->size;
3914
3915 /* Adjust for redzone and reject if within the redzone. */
3916 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3917 if (offset < s->red_left_pad)
f4e6e289
KC
3918 usercopy_abort("SLUB object in left red zone",
3919 s->name, to_user, offset, n);
ed18adc1
KC
3920 offset -= s->red_left_pad;
3921 }
3922
afcc90f8
KC
3923 /* Allow address range falling entirely within usercopy region. */
3924 if (offset >= s->useroffset &&
3925 offset - s->useroffset <= s->usersize &&
3926 n <= s->useroffset - offset + s->usersize)
f4e6e289 3927 return;
ed18adc1 3928
afcc90f8
KC
3929 /*
3930 * If the copy is still within the allocated object, produce
3931 * a warning instead of rejecting the copy. This is intended
3932 * to be a temporary method to find any missing usercopy
3933 * whitelists.
3934 */
3935 object_size = slab_ksize(s);
2d891fbc
KC
3936 if (usercopy_fallback &&
3937 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3938 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3939 return;
3940 }
ed18adc1 3941
f4e6e289 3942 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3943}
3944#endif /* CONFIG_HARDENED_USERCOPY */
3945
10d1f8cb 3946size_t __ksize(const void *object)
81819f0f 3947{
272c1d21 3948 struct page *page;
81819f0f 3949
ef8b4520 3950 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3951 return 0;
3952
294a80a8 3953 page = virt_to_head_page(object);
294a80a8 3954
76994412
PE
3955 if (unlikely(!PageSlab(page))) {
3956 WARN_ON(!PageCompound(page));
a50b854e 3957 return page_size(page);
76994412 3958 }
81819f0f 3959
1b4f59e3 3960 return slab_ksize(page->slab_cache);
81819f0f 3961}
10d1f8cb 3962EXPORT_SYMBOL(__ksize);
81819f0f
CL
3963
3964void kfree(const void *x)
3965{
81819f0f 3966 struct page *page;
5bb983b0 3967 void *object = (void *)x;
81819f0f 3968
2121db74
PE
3969 trace_kfree(_RET_IP_, x);
3970
2408c550 3971 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3972 return;
3973
b49af68f 3974 page = virt_to_head_page(x);
aadb4bc4 3975 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
3976 unsigned int order = compound_order(page);
3977
0937502a 3978 BUG_ON(!PageCompound(page));
47adccce 3979 kfree_hook(object);
6a486c0a
VB
3980 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3981 -(1 << order));
3982 __free_pages(page, order);
aadb4bc4
CL
3983 return;
3984 }
81084651 3985 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3986}
3987EXPORT_SYMBOL(kfree);
3988
832f37f5
VD
3989#define SHRINK_PROMOTE_MAX 32
3990
2086d26a 3991/*
832f37f5
VD
3992 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3993 * up most to the head of the partial lists. New allocations will then
3994 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3995 *
3996 * The slabs with the least items are placed last. This results in them
3997 * being allocated from last increasing the chance that the last objects
3998 * are freed in them.
2086d26a 3999 */
c9fc5864 4000int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4001{
4002 int node;
4003 int i;
4004 struct kmem_cache_node *n;
4005 struct page *page;
4006 struct page *t;
832f37f5
VD
4007 struct list_head discard;
4008 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4009 unsigned long flags;
ce3712d7 4010 int ret = 0;
2086d26a 4011
2086d26a 4012 flush_all(s);
fa45dc25 4013 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4014 INIT_LIST_HEAD(&discard);
4015 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4016 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4017
4018 spin_lock_irqsave(&n->list_lock, flags);
4019
4020 /*
832f37f5 4021 * Build lists of slabs to discard or promote.
2086d26a 4022 *
672bba3a
CL
4023 * Note that concurrent frees may occur while we hold the
4024 * list_lock. page->inuse here is the upper limit.
2086d26a 4025 */
916ac052 4026 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4027 int free = page->objects - page->inuse;
4028
4029 /* Do not reread page->inuse */
4030 barrier();
4031
4032 /* We do not keep full slabs on the list */
4033 BUG_ON(free <= 0);
4034
4035 if (free == page->objects) {
916ac052 4036 list_move(&page->slab_list, &discard);
69cb8e6b 4037 n->nr_partial--;
832f37f5 4038 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4039 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4040 }
4041
2086d26a 4042 /*
832f37f5
VD
4043 * Promote the slabs filled up most to the head of the
4044 * partial list.
2086d26a 4045 */
832f37f5
VD
4046 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4047 list_splice(promote + i, &n->partial);
2086d26a 4048
2086d26a 4049 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4050
4051 /* Release empty slabs */
916ac052 4052 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4053 discard_slab(s, page);
ce3712d7
VD
4054
4055 if (slabs_node(s, node))
4056 ret = 1;
2086d26a
CL
4057 }
4058
ce3712d7 4059 return ret;
2086d26a 4060}
2086d26a 4061
c9fc5864 4062#ifdef CONFIG_MEMCG
43486694 4063void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4064{
50862ce7
TH
4065 /*
4066 * Called with all the locks held after a sched RCU grace period.
4067 * Even if @s becomes empty after shrinking, we can't know that @s
4068 * doesn't have allocations already in-flight and thus can't
4069 * destroy @s until the associated memcg is released.
4070 *
4071 * However, let's remove the sysfs files for empty caches here.
4072 * Each cache has a lot of interface files which aren't
4073 * particularly useful for empty draining caches; otherwise, we can
4074 * easily end up with millions of unnecessary sysfs files on
4075 * systems which have a lot of memory and transient cgroups.
4076 */
4077 if (!__kmem_cache_shrink(s))
4078 sysfs_slab_remove(s);
01fb58bc
TH
4079}
4080
c9fc5864
TH
4081void __kmemcg_cache_deactivate(struct kmem_cache *s)
4082{
4083 /*
4084 * Disable empty slabs caching. Used to avoid pinning offline
4085 * memory cgroups by kmem pages that can be freed.
4086 */
e6d0e1dc 4087 slub_set_cpu_partial(s, 0);
c9fc5864 4088 s->min_partial = 0;
c9fc5864 4089}
6dfd1b65 4090#endif /* CONFIG_MEMCG */
c9fc5864 4091
b9049e23
YG
4092static int slab_mem_going_offline_callback(void *arg)
4093{
4094 struct kmem_cache *s;
4095
18004c5d 4096 mutex_lock(&slab_mutex);
b9049e23 4097 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4098 __kmem_cache_shrink(s);
18004c5d 4099 mutex_unlock(&slab_mutex);
b9049e23
YG
4100
4101 return 0;
4102}
4103
4104static void slab_mem_offline_callback(void *arg)
4105{
4106 struct kmem_cache_node *n;
4107 struct kmem_cache *s;
4108 struct memory_notify *marg = arg;
4109 int offline_node;
4110
b9d5ab25 4111 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4112
4113 /*
4114 * If the node still has available memory. we need kmem_cache_node
4115 * for it yet.
4116 */
4117 if (offline_node < 0)
4118 return;
4119
18004c5d 4120 mutex_lock(&slab_mutex);
b9049e23
YG
4121 list_for_each_entry(s, &slab_caches, list) {
4122 n = get_node(s, offline_node);
4123 if (n) {
4124 /*
4125 * if n->nr_slabs > 0, slabs still exist on the node
4126 * that is going down. We were unable to free them,
c9404c9c 4127 * and offline_pages() function shouldn't call this
b9049e23
YG
4128 * callback. So, we must fail.
4129 */
0f389ec6 4130 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4131
4132 s->node[offline_node] = NULL;
8de66a0c 4133 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4134 }
4135 }
18004c5d 4136 mutex_unlock(&slab_mutex);
b9049e23
YG
4137}
4138
4139static int slab_mem_going_online_callback(void *arg)
4140{
4141 struct kmem_cache_node *n;
4142 struct kmem_cache *s;
4143 struct memory_notify *marg = arg;
b9d5ab25 4144 int nid = marg->status_change_nid_normal;
b9049e23
YG
4145 int ret = 0;
4146
4147 /*
4148 * If the node's memory is already available, then kmem_cache_node is
4149 * already created. Nothing to do.
4150 */
4151 if (nid < 0)
4152 return 0;
4153
4154 /*
0121c619 4155 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4156 * allocate a kmem_cache_node structure in order to bring the node
4157 * online.
4158 */
18004c5d 4159 mutex_lock(&slab_mutex);
b9049e23
YG
4160 list_for_each_entry(s, &slab_caches, list) {
4161 /*
4162 * XXX: kmem_cache_alloc_node will fallback to other nodes
4163 * since memory is not yet available from the node that
4164 * is brought up.
4165 */
8de66a0c 4166 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4167 if (!n) {
4168 ret = -ENOMEM;
4169 goto out;
4170 }
4053497d 4171 init_kmem_cache_node(n);
b9049e23
YG
4172 s->node[nid] = n;
4173 }
4174out:
18004c5d 4175 mutex_unlock(&slab_mutex);
b9049e23
YG
4176 return ret;
4177}
4178
4179static int slab_memory_callback(struct notifier_block *self,
4180 unsigned long action, void *arg)
4181{
4182 int ret = 0;
4183
4184 switch (action) {
4185 case MEM_GOING_ONLINE:
4186 ret = slab_mem_going_online_callback(arg);
4187 break;
4188 case MEM_GOING_OFFLINE:
4189 ret = slab_mem_going_offline_callback(arg);
4190 break;
4191 case MEM_OFFLINE:
4192 case MEM_CANCEL_ONLINE:
4193 slab_mem_offline_callback(arg);
4194 break;
4195 case MEM_ONLINE:
4196 case MEM_CANCEL_OFFLINE:
4197 break;
4198 }
dc19f9db
KH
4199 if (ret)
4200 ret = notifier_from_errno(ret);
4201 else
4202 ret = NOTIFY_OK;
b9049e23
YG
4203 return ret;
4204}
4205
3ac38faa
AM
4206static struct notifier_block slab_memory_callback_nb = {
4207 .notifier_call = slab_memory_callback,
4208 .priority = SLAB_CALLBACK_PRI,
4209};
b9049e23 4210
81819f0f
CL
4211/********************************************************************
4212 * Basic setup of slabs
4213 *******************************************************************/
4214
51df1142
CL
4215/*
4216 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4217 * the page allocator. Allocate them properly then fix up the pointers
4218 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4219 */
4220
dffb4d60 4221static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4222{
4223 int node;
dffb4d60 4224 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4225 struct kmem_cache_node *n;
51df1142 4226
dffb4d60 4227 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4228
7d557b3c
GC
4229 /*
4230 * This runs very early, and only the boot processor is supposed to be
4231 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4232 * IPIs around.
4233 */
4234 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4235 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4236 struct page *p;
4237
916ac052 4238 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4239 p->slab_cache = s;
51df1142 4240
607bf324 4241#ifdef CONFIG_SLUB_DEBUG
916ac052 4242 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4243 p->slab_cache = s;
51df1142 4244#endif
51df1142 4245 }
f7ce3190 4246 slab_init_memcg_params(s);
dffb4d60 4247 list_add(&s->list, &slab_caches);
c03914b7 4248 memcg_link_cache(s, NULL);
dffb4d60 4249 return s;
51df1142
CL
4250}
4251
81819f0f
CL
4252void __init kmem_cache_init(void)
4253{
dffb4d60
CL
4254 static __initdata struct kmem_cache boot_kmem_cache,
4255 boot_kmem_cache_node;
51df1142 4256
fc8d8620
SG
4257 if (debug_guardpage_minorder())
4258 slub_max_order = 0;
4259
dffb4d60
CL
4260 kmem_cache_node = &boot_kmem_cache_node;
4261 kmem_cache = &boot_kmem_cache;
51df1142 4262
dffb4d60 4263 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4264 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4265
3ac38faa 4266 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4267
4268 /* Able to allocate the per node structures */
4269 slab_state = PARTIAL;
4270
dffb4d60
CL
4271 create_boot_cache(kmem_cache, "kmem_cache",
4272 offsetof(struct kmem_cache, node) +
4273 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4274 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4275
dffb4d60 4276 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4277 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4278
4279 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4280 setup_kmalloc_cache_index_table();
f97d5f63 4281 create_kmalloc_caches(0);
81819f0f 4282
210e7a43
TG
4283 /* Setup random freelists for each cache */
4284 init_freelist_randomization();
4285
a96a87bf
SAS
4286 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4287 slub_cpu_dead);
81819f0f 4288
b9726c26 4289 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4290 cache_line_size(),
81819f0f
CL
4291 slub_min_order, slub_max_order, slub_min_objects,
4292 nr_cpu_ids, nr_node_ids);
4293}
4294
7e85ee0c
PE
4295void __init kmem_cache_init_late(void)
4296{
7e85ee0c
PE
4297}
4298
2633d7a0 4299struct kmem_cache *
f4957d5b 4300__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4301 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4302{
426589f5 4303 struct kmem_cache *s, *c;
81819f0f 4304
a44cb944 4305 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4306 if (s) {
4307 s->refcount++;
84d0ddd6 4308
81819f0f
CL
4309 /*
4310 * Adjust the object sizes so that we clear
4311 * the complete object on kzalloc.
4312 */
1b473f29 4313 s->object_size = max(s->object_size, size);
52ee6d74 4314 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4315
426589f5 4316 for_each_memcg_cache(c, s) {
84d0ddd6 4317 c->object_size = s->object_size;
52ee6d74 4318 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4319 }
4320
7b8f3b66 4321 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4322 s->refcount--;
cbb79694 4323 s = NULL;
7b8f3b66 4324 }
a0e1d1be 4325 }
6446faa2 4326
cbb79694
CL
4327 return s;
4328}
84c1cf62 4329
d50112ed 4330int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4331{
aac3a166
PE
4332 int err;
4333
4334 err = kmem_cache_open(s, flags);
4335 if (err)
4336 return err;
20cea968 4337
45530c44
CL
4338 /* Mutex is not taken during early boot */
4339 if (slab_state <= UP)
4340 return 0;
4341
107dab5c 4342 memcg_propagate_slab_attrs(s);
aac3a166 4343 err = sysfs_slab_add(s);
aac3a166 4344 if (err)
52b4b950 4345 __kmem_cache_release(s);
20cea968 4346
aac3a166 4347 return err;
81819f0f 4348}
81819f0f 4349
ce71e27c 4350void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4351{
aadb4bc4 4352 struct kmem_cache *s;
94b528d0 4353 void *ret;
aadb4bc4 4354
95a05b42 4355 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4356 return kmalloc_large(size, gfpflags);
4357
2c59dd65 4358 s = kmalloc_slab(size, gfpflags);
81819f0f 4359
2408c550 4360 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4361 return s;
81819f0f 4362
2b847c3c 4363 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4364
25985edc 4365 /* Honor the call site pointer we received. */
ca2b84cb 4366 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4367
4368 return ret;
81819f0f
CL
4369}
4370
5d1f57e4 4371#ifdef CONFIG_NUMA
81819f0f 4372void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4373 int node, unsigned long caller)
81819f0f 4374{
aadb4bc4 4375 struct kmem_cache *s;
94b528d0 4376 void *ret;
aadb4bc4 4377
95a05b42 4378 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4379 ret = kmalloc_large_node(size, gfpflags, node);
4380
4381 trace_kmalloc_node(caller, ret,
4382 size, PAGE_SIZE << get_order(size),
4383 gfpflags, node);
4384
4385 return ret;
4386 }
eada35ef 4387
2c59dd65 4388 s = kmalloc_slab(size, gfpflags);
81819f0f 4389
2408c550 4390 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4391 return s;
81819f0f 4392
2b847c3c 4393 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4394
25985edc 4395 /* Honor the call site pointer we received. */
ca2b84cb 4396 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4397
4398 return ret;
81819f0f 4399}
5d1f57e4 4400#endif
81819f0f 4401
ab4d5ed5 4402#ifdef CONFIG_SYSFS
205ab99d
CL
4403static int count_inuse(struct page *page)
4404{
4405 return page->inuse;
4406}
4407
4408static int count_total(struct page *page)
4409{
4410 return page->objects;
4411}
ab4d5ed5 4412#endif
205ab99d 4413
ab4d5ed5 4414#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4415static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4416{
4417 void *p;
a973e9dd 4418 void *addr = page_address(page);
90e9f6a6
YZ
4419 unsigned long *map;
4420
4421 slab_lock(page);
53e15af0 4422
dd98afd4 4423 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4424 goto unlock;
53e15af0
CL
4425
4426 /* Now we know that a valid freelist exists */
90e9f6a6 4427 map = get_map(s, page);
5f80b13a 4428 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4429 u8 val = test_bit(slab_index(p, s, addr), map) ?
4430 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4431
dd98afd4
YZ
4432 if (!check_object(s, page, p, val))
4433 break;
4434 }
90e9f6a6
YZ
4435 put_map(map);
4436unlock:
881db7fb 4437 slab_unlock(page);
53e15af0
CL
4438}
4439
434e245d 4440static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4441 struct kmem_cache_node *n)
53e15af0
CL
4442{
4443 unsigned long count = 0;
4444 struct page *page;
4445 unsigned long flags;
4446
4447 spin_lock_irqsave(&n->list_lock, flags);
4448
916ac052 4449 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4450 validate_slab(s, page);
53e15af0
CL
4451 count++;
4452 }
4453 if (count != n->nr_partial)
f9f58285
FF
4454 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4455 s->name, count, n->nr_partial);
53e15af0
CL
4456
4457 if (!(s->flags & SLAB_STORE_USER))
4458 goto out;
4459
916ac052 4460 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4461 validate_slab(s, page);
53e15af0
CL
4462 count++;
4463 }
4464 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4465 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4466 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4467
4468out:
4469 spin_unlock_irqrestore(&n->list_lock, flags);
4470 return count;
4471}
4472
434e245d 4473static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4474{
4475 int node;
4476 unsigned long count = 0;
fa45dc25 4477 struct kmem_cache_node *n;
53e15af0
CL
4478
4479 flush_all(s);
fa45dc25 4480 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4481 count += validate_slab_node(s, n);
4482
53e15af0
CL
4483 return count;
4484}
88a420e4 4485/*
672bba3a 4486 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4487 * and freed.
4488 */
4489
4490struct location {
4491 unsigned long count;
ce71e27c 4492 unsigned long addr;
45edfa58
CL
4493 long long sum_time;
4494 long min_time;
4495 long max_time;
4496 long min_pid;
4497 long max_pid;
174596a0 4498 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4499 nodemask_t nodes;
88a420e4
CL
4500};
4501
4502struct loc_track {
4503 unsigned long max;
4504 unsigned long count;
4505 struct location *loc;
4506};
4507
4508static void free_loc_track(struct loc_track *t)
4509{
4510 if (t->max)
4511 free_pages((unsigned long)t->loc,
4512 get_order(sizeof(struct location) * t->max));
4513}
4514
68dff6a9 4515static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4516{
4517 struct location *l;
4518 int order;
4519
88a420e4
CL
4520 order = get_order(sizeof(struct location) * max);
4521
68dff6a9 4522 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4523 if (!l)
4524 return 0;
4525
4526 if (t->count) {
4527 memcpy(l, t->loc, sizeof(struct location) * t->count);
4528 free_loc_track(t);
4529 }
4530 t->max = max;
4531 t->loc = l;
4532 return 1;
4533}
4534
4535static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4536 const struct track *track)
88a420e4
CL
4537{
4538 long start, end, pos;
4539 struct location *l;
ce71e27c 4540 unsigned long caddr;
45edfa58 4541 unsigned long age = jiffies - track->when;
88a420e4
CL
4542
4543 start = -1;
4544 end = t->count;
4545
4546 for ( ; ; ) {
4547 pos = start + (end - start + 1) / 2;
4548
4549 /*
4550 * There is nothing at "end". If we end up there
4551 * we need to add something to before end.
4552 */
4553 if (pos == end)
4554 break;
4555
4556 caddr = t->loc[pos].addr;
45edfa58
CL
4557 if (track->addr == caddr) {
4558
4559 l = &t->loc[pos];
4560 l->count++;
4561 if (track->when) {
4562 l->sum_time += age;
4563 if (age < l->min_time)
4564 l->min_time = age;
4565 if (age > l->max_time)
4566 l->max_time = age;
4567
4568 if (track->pid < l->min_pid)
4569 l->min_pid = track->pid;
4570 if (track->pid > l->max_pid)
4571 l->max_pid = track->pid;
4572
174596a0
RR
4573 cpumask_set_cpu(track->cpu,
4574 to_cpumask(l->cpus));
45edfa58
CL
4575 }
4576 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4577 return 1;
4578 }
4579
45edfa58 4580 if (track->addr < caddr)
88a420e4
CL
4581 end = pos;
4582 else
4583 start = pos;
4584 }
4585
4586 /*
672bba3a 4587 * Not found. Insert new tracking element.
88a420e4 4588 */
68dff6a9 4589 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4590 return 0;
4591
4592 l = t->loc + pos;
4593 if (pos < t->count)
4594 memmove(l + 1, l,
4595 (t->count - pos) * sizeof(struct location));
4596 t->count++;
4597 l->count = 1;
45edfa58
CL
4598 l->addr = track->addr;
4599 l->sum_time = age;
4600 l->min_time = age;
4601 l->max_time = age;
4602 l->min_pid = track->pid;
4603 l->max_pid = track->pid;
174596a0
RR
4604 cpumask_clear(to_cpumask(l->cpus));
4605 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4606 nodes_clear(l->nodes);
4607 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4608 return 1;
4609}
4610
4611static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4612 struct page *page, enum track_item alloc)
88a420e4 4613{
a973e9dd 4614 void *addr = page_address(page);
88a420e4 4615 void *p;
90e9f6a6 4616 unsigned long *map;
88a420e4 4617
90e9f6a6 4618 map = get_map(s, page);
224a88be 4619 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4620 if (!test_bit(slab_index(p, s, addr), map))
4621 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4622 put_map(map);
88a420e4
CL
4623}
4624
4625static int list_locations(struct kmem_cache *s, char *buf,
4626 enum track_item alloc)
4627{
e374d483 4628 int len = 0;
88a420e4 4629 unsigned long i;
68dff6a9 4630 struct loc_track t = { 0, 0, NULL };
88a420e4 4631 int node;
fa45dc25 4632 struct kmem_cache_node *n;
88a420e4 4633
90e9f6a6
YZ
4634 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4635 GFP_KERNEL)) {
68dff6a9 4636 return sprintf(buf, "Out of memory\n");
bbd7d57b 4637 }
88a420e4
CL
4638 /* Push back cpu slabs */
4639 flush_all(s);
4640
fa45dc25 4641 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4642 unsigned long flags;
4643 struct page *page;
4644
9e86943b 4645 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4646 continue;
4647
4648 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4649 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4650 process_slab(&t, s, page, alloc);
916ac052 4651 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4652 process_slab(&t, s, page, alloc);
88a420e4
CL
4653 spin_unlock_irqrestore(&n->list_lock, flags);
4654 }
4655
4656 for (i = 0; i < t.count; i++) {
45edfa58 4657 struct location *l = &t.loc[i];
88a420e4 4658
9c246247 4659 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4660 break;
e374d483 4661 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4662
4663 if (l->addr)
62c70bce 4664 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4665 else
e374d483 4666 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4667
4668 if (l->sum_time != l->min_time) {
e374d483 4669 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4670 l->min_time,
4671 (long)div_u64(l->sum_time, l->count),
4672 l->max_time);
45edfa58 4673 } else
e374d483 4674 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4675 l->min_time);
4676
4677 if (l->min_pid != l->max_pid)
e374d483 4678 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4679 l->min_pid, l->max_pid);
4680 else
e374d483 4681 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4682 l->min_pid);
4683
174596a0
RR
4684 if (num_online_cpus() > 1 &&
4685 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4686 len < PAGE_SIZE - 60)
4687 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4688 " cpus=%*pbl",
4689 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4690
62bc62a8 4691 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4692 len < PAGE_SIZE - 60)
4693 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4694 " nodes=%*pbl",
4695 nodemask_pr_args(&l->nodes));
45edfa58 4696
e374d483 4697 len += sprintf(buf + len, "\n");
88a420e4
CL
4698 }
4699
4700 free_loc_track(&t);
4701 if (!t.count)
e374d483
HH
4702 len += sprintf(buf, "No data\n");
4703 return len;
88a420e4 4704}
6dfd1b65 4705#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4706
a5a84755 4707#ifdef SLUB_RESILIENCY_TEST
c07b8183 4708static void __init resiliency_test(void)
a5a84755
CL
4709{
4710 u8 *p;
cc252eae 4711 int type = KMALLOC_NORMAL;
a5a84755 4712
95a05b42 4713 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4714
f9f58285
FF
4715 pr_err("SLUB resiliency testing\n");
4716 pr_err("-----------------------\n");
4717 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4718
4719 p = kzalloc(16, GFP_KERNEL);
4720 p[16] = 0x12;
f9f58285
FF
4721 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4722 p + 16);
a5a84755 4723
cc252eae 4724 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4725
4726 /* Hmmm... The next two are dangerous */
4727 p = kzalloc(32, GFP_KERNEL);
4728 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4729 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4730 p);
4731 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4732
cc252eae 4733 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4734 p = kzalloc(64, GFP_KERNEL);
4735 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4736 *p = 0x56;
f9f58285
FF
4737 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4738 p);
4739 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4740 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4741
f9f58285 4742 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4743 p = kzalloc(128, GFP_KERNEL);
4744 kfree(p);
4745 *p = 0x78;
f9f58285 4746 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4747 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4748
4749 p = kzalloc(256, GFP_KERNEL);
4750 kfree(p);
4751 p[50] = 0x9a;
f9f58285 4752 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4753 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4754
4755 p = kzalloc(512, GFP_KERNEL);
4756 kfree(p);
4757 p[512] = 0xab;
f9f58285 4758 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4759 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4760}
4761#else
4762#ifdef CONFIG_SYSFS
4763static void resiliency_test(void) {};
4764#endif
6dfd1b65 4765#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4766
ab4d5ed5 4767#ifdef CONFIG_SYSFS
81819f0f 4768enum slab_stat_type {
205ab99d
CL
4769 SL_ALL, /* All slabs */
4770 SL_PARTIAL, /* Only partially allocated slabs */
4771 SL_CPU, /* Only slabs used for cpu caches */
4772 SL_OBJECTS, /* Determine allocated objects not slabs */
4773 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4774};
4775
205ab99d 4776#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4777#define SO_PARTIAL (1 << SL_PARTIAL)
4778#define SO_CPU (1 << SL_CPU)
4779#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4780#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4781
1663f26d
TH
4782#ifdef CONFIG_MEMCG
4783static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4784
4785static int __init setup_slub_memcg_sysfs(char *str)
4786{
4787 int v;
4788
4789 if (get_option(&str, &v) > 0)
4790 memcg_sysfs_enabled = v;
4791
4792 return 1;
4793}
4794
4795__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4796#endif
4797
62e5c4b4
CG
4798static ssize_t show_slab_objects(struct kmem_cache *s,
4799 char *buf, unsigned long flags)
81819f0f
CL
4800{
4801 unsigned long total = 0;
81819f0f
CL
4802 int node;
4803 int x;
4804 unsigned long *nodes;
81819f0f 4805
6396bb22 4806 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4807 if (!nodes)
4808 return -ENOMEM;
81819f0f 4809
205ab99d
CL
4810 if (flags & SO_CPU) {
4811 int cpu;
81819f0f 4812
205ab99d 4813 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4814 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4815 cpu);
ec3ab083 4816 int node;
49e22585 4817 struct page *page;
dfb4f096 4818
4db0c3c2 4819 page = READ_ONCE(c->page);
ec3ab083
CL
4820 if (!page)
4821 continue;
205ab99d 4822
ec3ab083
CL
4823 node = page_to_nid(page);
4824 if (flags & SO_TOTAL)
4825 x = page->objects;
4826 else if (flags & SO_OBJECTS)
4827 x = page->inuse;
4828 else
4829 x = 1;
49e22585 4830
ec3ab083
CL
4831 total += x;
4832 nodes[node] += x;
4833
a93cf07b 4834 page = slub_percpu_partial_read_once(c);
49e22585 4835 if (page) {
8afb1474
LZ
4836 node = page_to_nid(page);
4837 if (flags & SO_TOTAL)
4838 WARN_ON_ONCE(1);
4839 else if (flags & SO_OBJECTS)
4840 WARN_ON_ONCE(1);
4841 else
4842 x = page->pages;
bc6697d8
ED
4843 total += x;
4844 nodes[node] += x;
49e22585 4845 }
81819f0f
CL
4846 }
4847 }
4848
e4f8e513
QC
4849 /*
4850 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4851 * already held which will conflict with an existing lock order:
4852 *
4853 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4854 *
4855 * We don't really need mem_hotplug_lock (to hold off
4856 * slab_mem_going_offline_callback) here because slab's memory hot
4857 * unplug code doesn't destroy the kmem_cache->node[] data.
4858 */
4859
ab4d5ed5 4860#ifdef CONFIG_SLUB_DEBUG
205ab99d 4861 if (flags & SO_ALL) {
fa45dc25
CL
4862 struct kmem_cache_node *n;
4863
4864 for_each_kmem_cache_node(s, node, n) {
205ab99d 4865
d0e0ac97
CG
4866 if (flags & SO_TOTAL)
4867 x = atomic_long_read(&n->total_objects);
4868 else if (flags & SO_OBJECTS)
4869 x = atomic_long_read(&n->total_objects) -
4870 count_partial(n, count_free);
81819f0f 4871 else
205ab99d 4872 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4873 total += x;
4874 nodes[node] += x;
4875 }
4876
ab4d5ed5
CL
4877 } else
4878#endif
4879 if (flags & SO_PARTIAL) {
fa45dc25 4880 struct kmem_cache_node *n;
81819f0f 4881
fa45dc25 4882 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4883 if (flags & SO_TOTAL)
4884 x = count_partial(n, count_total);
4885 else if (flags & SO_OBJECTS)
4886 x = count_partial(n, count_inuse);
81819f0f 4887 else
205ab99d 4888 x = n->nr_partial;
81819f0f
CL
4889 total += x;
4890 nodes[node] += x;
4891 }
4892 }
81819f0f
CL
4893 x = sprintf(buf, "%lu", total);
4894#ifdef CONFIG_NUMA
fa45dc25 4895 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4896 if (nodes[node])
4897 x += sprintf(buf + x, " N%d=%lu",
4898 node, nodes[node]);
4899#endif
4900 kfree(nodes);
4901 return x + sprintf(buf + x, "\n");
4902}
4903
ab4d5ed5 4904#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4905static int any_slab_objects(struct kmem_cache *s)
4906{
4907 int node;
fa45dc25 4908 struct kmem_cache_node *n;
81819f0f 4909
fa45dc25 4910 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4911 if (atomic_long_read(&n->total_objects))
81819f0f 4912 return 1;
fa45dc25 4913
81819f0f
CL
4914 return 0;
4915}
ab4d5ed5 4916#endif
81819f0f
CL
4917
4918#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4919#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4920
4921struct slab_attribute {
4922 struct attribute attr;
4923 ssize_t (*show)(struct kmem_cache *s, char *buf);
4924 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4925};
4926
4927#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4928 static struct slab_attribute _name##_attr = \
4929 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4930
4931#define SLAB_ATTR(_name) \
4932 static struct slab_attribute _name##_attr = \
ab067e99 4933 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4934
81819f0f
CL
4935static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4936{
44065b2e 4937 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4938}
4939SLAB_ATTR_RO(slab_size);
4940
4941static ssize_t align_show(struct kmem_cache *s, char *buf)
4942{
3a3791ec 4943 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4944}
4945SLAB_ATTR_RO(align);
4946
4947static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4948{
1b473f29 4949 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4950}
4951SLAB_ATTR_RO(object_size);
4952
4953static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4954{
19af27af 4955 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4956}
4957SLAB_ATTR_RO(objs_per_slab);
4958
06b285dc
CL
4959static ssize_t order_store(struct kmem_cache *s,
4960 const char *buf, size_t length)
4961{
19af27af 4962 unsigned int order;
0121c619
CL
4963 int err;
4964
19af27af 4965 err = kstrtouint(buf, 10, &order);
0121c619
CL
4966 if (err)
4967 return err;
06b285dc
CL
4968
4969 if (order > slub_max_order || order < slub_min_order)
4970 return -EINVAL;
4971
4972 calculate_sizes(s, order);
4973 return length;
4974}
4975
81819f0f
CL
4976static ssize_t order_show(struct kmem_cache *s, char *buf)
4977{
19af27af 4978 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4979}
06b285dc 4980SLAB_ATTR(order);
81819f0f 4981
73d342b1
DR
4982static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4983{
4984 return sprintf(buf, "%lu\n", s->min_partial);
4985}
4986
4987static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4988 size_t length)
4989{
4990 unsigned long min;
4991 int err;
4992
3dbb95f7 4993 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4994 if (err)
4995 return err;
4996
c0bdb232 4997 set_min_partial(s, min);
73d342b1
DR
4998 return length;
4999}
5000SLAB_ATTR(min_partial);
5001
49e22585
CL
5002static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5003{
e6d0e1dc 5004 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5005}
5006
5007static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5008 size_t length)
5009{
e5d9998f 5010 unsigned int objects;
49e22585
CL
5011 int err;
5012
e5d9998f 5013 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5014 if (err)
5015 return err;
345c905d 5016 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5017 return -EINVAL;
49e22585 5018
e6d0e1dc 5019 slub_set_cpu_partial(s, objects);
49e22585
CL
5020 flush_all(s);
5021 return length;
5022}
5023SLAB_ATTR(cpu_partial);
5024
81819f0f
CL
5025static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5026{
62c70bce
JP
5027 if (!s->ctor)
5028 return 0;
5029 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5030}
5031SLAB_ATTR_RO(ctor);
5032
81819f0f
CL
5033static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5034{
4307c14f 5035 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5036}
5037SLAB_ATTR_RO(aliases);
5038
81819f0f
CL
5039static ssize_t partial_show(struct kmem_cache *s, char *buf)
5040{
d9acf4b7 5041 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5042}
5043SLAB_ATTR_RO(partial);
5044
5045static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5046{
d9acf4b7 5047 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5048}
5049SLAB_ATTR_RO(cpu_slabs);
5050
5051static ssize_t objects_show(struct kmem_cache *s, char *buf)
5052{
205ab99d 5053 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5054}
5055SLAB_ATTR_RO(objects);
5056
205ab99d
CL
5057static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5058{
5059 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5060}
5061SLAB_ATTR_RO(objects_partial);
5062
49e22585
CL
5063static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5064{
5065 int objects = 0;
5066 int pages = 0;
5067 int cpu;
5068 int len;
5069
5070 for_each_online_cpu(cpu) {
a93cf07b
WY
5071 struct page *page;
5072
5073 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5074
5075 if (page) {
5076 pages += page->pages;
5077 objects += page->pobjects;
5078 }
5079 }
5080
5081 len = sprintf(buf, "%d(%d)", objects, pages);
5082
5083#ifdef CONFIG_SMP
5084 for_each_online_cpu(cpu) {
a93cf07b
WY
5085 struct page *page;
5086
5087 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5088
5089 if (page && len < PAGE_SIZE - 20)
5090 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5091 page->pobjects, page->pages);
5092 }
5093#endif
5094 return len + sprintf(buf + len, "\n");
5095}
5096SLAB_ATTR_RO(slabs_cpu_partial);
5097
a5a84755
CL
5098static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5099{
5100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5101}
5102
5103static ssize_t reclaim_account_store(struct kmem_cache *s,
5104 const char *buf, size_t length)
5105{
5106 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5107 if (buf[0] == '1')
5108 s->flags |= SLAB_RECLAIM_ACCOUNT;
5109 return length;
5110}
5111SLAB_ATTR(reclaim_account);
5112
5113static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5114{
5115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5116}
5117SLAB_ATTR_RO(hwcache_align);
5118
5119#ifdef CONFIG_ZONE_DMA
5120static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5121{
5122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5123}
5124SLAB_ATTR_RO(cache_dma);
5125#endif
5126
8eb8284b
DW
5127static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5128{
7bbdb81e 5129 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5130}
5131SLAB_ATTR_RO(usersize);
5132
a5a84755
CL
5133static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5134{
5f0d5a3a 5135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5136}
5137SLAB_ATTR_RO(destroy_by_rcu);
5138
ab4d5ed5 5139#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5140static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5141{
5142 return show_slab_objects(s, buf, SO_ALL);
5143}
5144SLAB_ATTR_RO(slabs);
5145
205ab99d
CL
5146static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5147{
5148 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5149}
5150SLAB_ATTR_RO(total_objects);
5151
81819f0f
CL
5152static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5153{
becfda68 5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5155}
5156
5157static ssize_t sanity_checks_store(struct kmem_cache *s,
5158 const char *buf, size_t length)
5159{
becfda68 5160 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5161 if (buf[0] == '1') {
5162 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5163 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5164 }
81819f0f
CL
5165 return length;
5166}
5167SLAB_ATTR(sanity_checks);
5168
5169static ssize_t trace_show(struct kmem_cache *s, char *buf)
5170{
5171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5172}
5173
5174static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5175 size_t length)
5176{
c9e16131
CL
5177 /*
5178 * Tracing a merged cache is going to give confusing results
5179 * as well as cause other issues like converting a mergeable
5180 * cache into an umergeable one.
5181 */
5182 if (s->refcount > 1)
5183 return -EINVAL;
5184
81819f0f 5185 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5186 if (buf[0] == '1') {
5187 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5188 s->flags |= SLAB_TRACE;
b789ef51 5189 }
81819f0f
CL
5190 return length;
5191}
5192SLAB_ATTR(trace);
5193
81819f0f
CL
5194static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5195{
5196 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5197}
5198
5199static ssize_t red_zone_store(struct kmem_cache *s,
5200 const char *buf, size_t length)
5201{
5202 if (any_slab_objects(s))
5203 return -EBUSY;
5204
5205 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5206 if (buf[0] == '1') {
81819f0f 5207 s->flags |= SLAB_RED_ZONE;
b789ef51 5208 }
06b285dc 5209 calculate_sizes(s, -1);
81819f0f
CL
5210 return length;
5211}
5212SLAB_ATTR(red_zone);
5213
5214static ssize_t poison_show(struct kmem_cache *s, char *buf)
5215{
5216 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5217}
5218
5219static ssize_t poison_store(struct kmem_cache *s,
5220 const char *buf, size_t length)
5221{
5222 if (any_slab_objects(s))
5223 return -EBUSY;
5224
5225 s->flags &= ~SLAB_POISON;
b789ef51 5226 if (buf[0] == '1') {
81819f0f 5227 s->flags |= SLAB_POISON;
b789ef51 5228 }
06b285dc 5229 calculate_sizes(s, -1);
81819f0f
CL
5230 return length;
5231}
5232SLAB_ATTR(poison);
5233
5234static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5235{
5236 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5237}
5238
5239static ssize_t store_user_store(struct kmem_cache *s,
5240 const char *buf, size_t length)
5241{
5242 if (any_slab_objects(s))
5243 return -EBUSY;
5244
5245 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5246 if (buf[0] == '1') {
5247 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5248 s->flags |= SLAB_STORE_USER;
b789ef51 5249 }
06b285dc 5250 calculate_sizes(s, -1);
81819f0f
CL
5251 return length;
5252}
5253SLAB_ATTR(store_user);
5254
53e15af0
CL
5255static ssize_t validate_show(struct kmem_cache *s, char *buf)
5256{
5257 return 0;
5258}
5259
5260static ssize_t validate_store(struct kmem_cache *s,
5261 const char *buf, size_t length)
5262{
434e245d
CL
5263 int ret = -EINVAL;
5264
5265 if (buf[0] == '1') {
5266 ret = validate_slab_cache(s);
5267 if (ret >= 0)
5268 ret = length;
5269 }
5270 return ret;
53e15af0
CL
5271}
5272SLAB_ATTR(validate);
a5a84755
CL
5273
5274static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5275{
5276 if (!(s->flags & SLAB_STORE_USER))
5277 return -ENOSYS;
5278 return list_locations(s, buf, TRACK_ALLOC);
5279}
5280SLAB_ATTR_RO(alloc_calls);
5281
5282static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5283{
5284 if (!(s->flags & SLAB_STORE_USER))
5285 return -ENOSYS;
5286 return list_locations(s, buf, TRACK_FREE);
5287}
5288SLAB_ATTR_RO(free_calls);
5289#endif /* CONFIG_SLUB_DEBUG */
5290
5291#ifdef CONFIG_FAILSLAB
5292static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5293{
5294 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5295}
5296
5297static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5298 size_t length)
5299{
c9e16131
CL
5300 if (s->refcount > 1)
5301 return -EINVAL;
5302
a5a84755
CL
5303 s->flags &= ~SLAB_FAILSLAB;
5304 if (buf[0] == '1')
5305 s->flags |= SLAB_FAILSLAB;
5306 return length;
5307}
5308SLAB_ATTR(failslab);
ab4d5ed5 5309#endif
53e15af0 5310
2086d26a
CL
5311static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5312{
5313 return 0;
5314}
5315
5316static ssize_t shrink_store(struct kmem_cache *s,
5317 const char *buf, size_t length)
5318{
832f37f5 5319 if (buf[0] == '1')
04f768a3 5320 kmem_cache_shrink_all(s);
832f37f5 5321 else
2086d26a
CL
5322 return -EINVAL;
5323 return length;
5324}
5325SLAB_ATTR(shrink);
5326
81819f0f 5327#ifdef CONFIG_NUMA
9824601e 5328static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5329{
eb7235eb 5330 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5331}
5332
9824601e 5333static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5334 const char *buf, size_t length)
5335{
eb7235eb 5336 unsigned int ratio;
0121c619
CL
5337 int err;
5338
eb7235eb 5339 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5340 if (err)
5341 return err;
eb7235eb
AD
5342 if (ratio > 100)
5343 return -ERANGE;
0121c619 5344
eb7235eb 5345 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5346
81819f0f
CL
5347 return length;
5348}
9824601e 5349SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5350#endif
5351
8ff12cfc 5352#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5353static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5354{
5355 unsigned long sum = 0;
5356 int cpu;
5357 int len;
6da2ec56 5358 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5359
5360 if (!data)
5361 return -ENOMEM;
5362
5363 for_each_online_cpu(cpu) {
9dfc6e68 5364 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5365
5366 data[cpu] = x;
5367 sum += x;
5368 }
5369
5370 len = sprintf(buf, "%lu", sum);
5371
50ef37b9 5372#ifdef CONFIG_SMP
8ff12cfc
CL
5373 for_each_online_cpu(cpu) {
5374 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5375 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5376 }
50ef37b9 5377#endif
8ff12cfc
CL
5378 kfree(data);
5379 return len + sprintf(buf + len, "\n");
5380}
5381
78eb00cc
DR
5382static void clear_stat(struct kmem_cache *s, enum stat_item si)
5383{
5384 int cpu;
5385
5386 for_each_online_cpu(cpu)
9dfc6e68 5387 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5388}
5389
8ff12cfc
CL
5390#define STAT_ATTR(si, text) \
5391static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5392{ \
5393 return show_stat(s, buf, si); \
5394} \
78eb00cc
DR
5395static ssize_t text##_store(struct kmem_cache *s, \
5396 const char *buf, size_t length) \
5397{ \
5398 if (buf[0] != '0') \
5399 return -EINVAL; \
5400 clear_stat(s, si); \
5401 return length; \
5402} \
5403SLAB_ATTR(text); \
8ff12cfc
CL
5404
5405STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5406STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5407STAT_ATTR(FREE_FASTPATH, free_fastpath);
5408STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5409STAT_ATTR(FREE_FROZEN, free_frozen);
5410STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5411STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5412STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5413STAT_ATTR(ALLOC_SLAB, alloc_slab);
5414STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5415STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5416STAT_ATTR(FREE_SLAB, free_slab);
5417STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5418STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5419STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5420STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5421STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5422STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5423STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5424STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5425STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5426STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5427STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5428STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5429STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5430STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5431#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5432
06428780 5433static struct attribute *slab_attrs[] = {
81819f0f
CL
5434 &slab_size_attr.attr,
5435 &object_size_attr.attr,
5436 &objs_per_slab_attr.attr,
5437 &order_attr.attr,
73d342b1 5438 &min_partial_attr.attr,
49e22585 5439 &cpu_partial_attr.attr,
81819f0f 5440 &objects_attr.attr,
205ab99d 5441 &objects_partial_attr.attr,
81819f0f
CL
5442 &partial_attr.attr,
5443 &cpu_slabs_attr.attr,
5444 &ctor_attr.attr,
81819f0f
CL
5445 &aliases_attr.attr,
5446 &align_attr.attr,
81819f0f
CL
5447 &hwcache_align_attr.attr,
5448 &reclaim_account_attr.attr,
5449 &destroy_by_rcu_attr.attr,
a5a84755 5450 &shrink_attr.attr,
49e22585 5451 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5452#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5453 &total_objects_attr.attr,
5454 &slabs_attr.attr,
5455 &sanity_checks_attr.attr,
5456 &trace_attr.attr,
81819f0f
CL
5457 &red_zone_attr.attr,
5458 &poison_attr.attr,
5459 &store_user_attr.attr,
53e15af0 5460 &validate_attr.attr,
88a420e4
CL
5461 &alloc_calls_attr.attr,
5462 &free_calls_attr.attr,
ab4d5ed5 5463#endif
81819f0f
CL
5464#ifdef CONFIG_ZONE_DMA
5465 &cache_dma_attr.attr,
5466#endif
5467#ifdef CONFIG_NUMA
9824601e 5468 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5469#endif
5470#ifdef CONFIG_SLUB_STATS
5471 &alloc_fastpath_attr.attr,
5472 &alloc_slowpath_attr.attr,
5473 &free_fastpath_attr.attr,
5474 &free_slowpath_attr.attr,
5475 &free_frozen_attr.attr,
5476 &free_add_partial_attr.attr,
5477 &free_remove_partial_attr.attr,
5478 &alloc_from_partial_attr.attr,
5479 &alloc_slab_attr.attr,
5480 &alloc_refill_attr.attr,
e36a2652 5481 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5482 &free_slab_attr.attr,
5483 &cpuslab_flush_attr.attr,
5484 &deactivate_full_attr.attr,
5485 &deactivate_empty_attr.attr,
5486 &deactivate_to_head_attr.attr,
5487 &deactivate_to_tail_attr.attr,
5488 &deactivate_remote_frees_attr.attr,
03e404af 5489 &deactivate_bypass_attr.attr,
65c3376a 5490 &order_fallback_attr.attr,
b789ef51
CL
5491 &cmpxchg_double_fail_attr.attr,
5492 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5493 &cpu_partial_alloc_attr.attr,
5494 &cpu_partial_free_attr.attr,
8028dcea
AS
5495 &cpu_partial_node_attr.attr,
5496 &cpu_partial_drain_attr.attr,
81819f0f 5497#endif
4c13dd3b
DM
5498#ifdef CONFIG_FAILSLAB
5499 &failslab_attr.attr,
5500#endif
8eb8284b 5501 &usersize_attr.attr,
4c13dd3b 5502
81819f0f
CL
5503 NULL
5504};
5505
1fdaaa23 5506static const struct attribute_group slab_attr_group = {
81819f0f
CL
5507 .attrs = slab_attrs,
5508};
5509
5510static ssize_t slab_attr_show(struct kobject *kobj,
5511 struct attribute *attr,
5512 char *buf)
5513{
5514 struct slab_attribute *attribute;
5515 struct kmem_cache *s;
5516 int err;
5517
5518 attribute = to_slab_attr(attr);
5519 s = to_slab(kobj);
5520
5521 if (!attribute->show)
5522 return -EIO;
5523
5524 err = attribute->show(s, buf);
5525
5526 return err;
5527}
5528
5529static ssize_t slab_attr_store(struct kobject *kobj,
5530 struct attribute *attr,
5531 const char *buf, size_t len)
5532{
5533 struct slab_attribute *attribute;
5534 struct kmem_cache *s;
5535 int err;
5536
5537 attribute = to_slab_attr(attr);
5538 s = to_slab(kobj);
5539
5540 if (!attribute->store)
5541 return -EIO;
5542
5543 err = attribute->store(s, buf, len);
127424c8 5544#ifdef CONFIG_MEMCG
107dab5c 5545 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5546 struct kmem_cache *c;
81819f0f 5547
107dab5c
GC
5548 mutex_lock(&slab_mutex);
5549 if (s->max_attr_size < len)
5550 s->max_attr_size = len;
5551
ebe945c2
GC
5552 /*
5553 * This is a best effort propagation, so this function's return
5554 * value will be determined by the parent cache only. This is
5555 * basically because not all attributes will have a well
5556 * defined semantics for rollbacks - most of the actions will
5557 * have permanent effects.
5558 *
5559 * Returning the error value of any of the children that fail
5560 * is not 100 % defined, in the sense that users seeing the
5561 * error code won't be able to know anything about the state of
5562 * the cache.
5563 *
5564 * Only returning the error code for the parent cache at least
5565 * has well defined semantics. The cache being written to
5566 * directly either failed or succeeded, in which case we loop
5567 * through the descendants with best-effort propagation.
5568 */
426589f5
VD
5569 for_each_memcg_cache(c, s)
5570 attribute->store(c, buf, len);
107dab5c
GC
5571 mutex_unlock(&slab_mutex);
5572 }
5573#endif
81819f0f
CL
5574 return err;
5575}
5576
107dab5c
GC
5577static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5578{
127424c8 5579#ifdef CONFIG_MEMCG
107dab5c
GC
5580 int i;
5581 char *buffer = NULL;
93030d83 5582 struct kmem_cache *root_cache;
107dab5c 5583
93030d83 5584 if (is_root_cache(s))
107dab5c
GC
5585 return;
5586
f7ce3190 5587 root_cache = s->memcg_params.root_cache;
93030d83 5588
107dab5c
GC
5589 /*
5590 * This mean this cache had no attribute written. Therefore, no point
5591 * in copying default values around
5592 */
93030d83 5593 if (!root_cache->max_attr_size)
107dab5c
GC
5594 return;
5595
5596 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5597 char mbuf[64];
5598 char *buf;
5599 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5600 ssize_t len;
107dab5c
GC
5601
5602 if (!attr || !attr->store || !attr->show)
5603 continue;
5604
5605 /*
5606 * It is really bad that we have to allocate here, so we will
5607 * do it only as a fallback. If we actually allocate, though,
5608 * we can just use the allocated buffer until the end.
5609 *
5610 * Most of the slub attributes will tend to be very small in
5611 * size, but sysfs allows buffers up to a page, so they can
5612 * theoretically happen.
5613 */
5614 if (buffer)
5615 buf = buffer;
93030d83 5616 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5617 buf = mbuf;
5618 else {
5619 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5620 if (WARN_ON(!buffer))
5621 continue;
5622 buf = buffer;
5623 }
5624
478fe303
TG
5625 len = attr->show(root_cache, buf);
5626 if (len > 0)
5627 attr->store(s, buf, len);
107dab5c
GC
5628 }
5629
5630 if (buffer)
5631 free_page((unsigned long)buffer);
6dfd1b65 5632#endif /* CONFIG_MEMCG */
107dab5c
GC
5633}
5634
41a21285
CL
5635static void kmem_cache_release(struct kobject *k)
5636{
5637 slab_kmem_cache_release(to_slab(k));
5638}
5639
52cf25d0 5640static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5641 .show = slab_attr_show,
5642 .store = slab_attr_store,
5643};
5644
5645static struct kobj_type slab_ktype = {
5646 .sysfs_ops = &slab_sysfs_ops,
41a21285 5647 .release = kmem_cache_release,
81819f0f
CL
5648};
5649
5650static int uevent_filter(struct kset *kset, struct kobject *kobj)
5651{
5652 struct kobj_type *ktype = get_ktype(kobj);
5653
5654 if (ktype == &slab_ktype)
5655 return 1;
5656 return 0;
5657}
5658
9cd43611 5659static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5660 .filter = uevent_filter,
5661};
5662
27c3a314 5663static struct kset *slab_kset;
81819f0f 5664
9a41707b
VD
5665static inline struct kset *cache_kset(struct kmem_cache *s)
5666{
127424c8 5667#ifdef CONFIG_MEMCG
9a41707b 5668 if (!is_root_cache(s))
f7ce3190 5669 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5670#endif
5671 return slab_kset;
5672}
5673
81819f0f
CL
5674#define ID_STR_LENGTH 64
5675
5676/* Create a unique string id for a slab cache:
6446faa2
CL
5677 *
5678 * Format :[flags-]size
81819f0f
CL
5679 */
5680static char *create_unique_id(struct kmem_cache *s)
5681{
5682 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5683 char *p = name;
5684
5685 BUG_ON(!name);
5686
5687 *p++ = ':';
5688 /*
5689 * First flags affecting slabcache operations. We will only
5690 * get here for aliasable slabs so we do not need to support
5691 * too many flags. The flags here must cover all flags that
5692 * are matched during merging to guarantee that the id is
5693 * unique.
5694 */
5695 if (s->flags & SLAB_CACHE_DMA)
5696 *p++ = 'd';
6d6ea1e9
NB
5697 if (s->flags & SLAB_CACHE_DMA32)
5698 *p++ = 'D';
81819f0f
CL
5699 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5700 *p++ = 'a';
becfda68 5701 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5702 *p++ = 'F';
230e9fc2
VD
5703 if (s->flags & SLAB_ACCOUNT)
5704 *p++ = 'A';
81819f0f
CL
5705 if (p != name + 1)
5706 *p++ = '-';
44065b2e 5707 p += sprintf(p, "%07u", s->size);
2633d7a0 5708
81819f0f
CL
5709 BUG_ON(p > name + ID_STR_LENGTH - 1);
5710 return name;
5711}
5712
3b7b3140
TH
5713static void sysfs_slab_remove_workfn(struct work_struct *work)
5714{
5715 struct kmem_cache *s =
5716 container_of(work, struct kmem_cache, kobj_remove_work);
5717
5718 if (!s->kobj.state_in_sysfs)
5719 /*
5720 * For a memcg cache, this may be called during
5721 * deactivation and again on shutdown. Remove only once.
5722 * A cache is never shut down before deactivation is
5723 * complete, so no need to worry about synchronization.
5724 */
f6ba4880 5725 goto out;
3b7b3140
TH
5726
5727#ifdef CONFIG_MEMCG
5728 kset_unregister(s->memcg_kset);
5729#endif
5730 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5731out:
3b7b3140
TH
5732 kobject_put(&s->kobj);
5733}
5734
81819f0f
CL
5735static int sysfs_slab_add(struct kmem_cache *s)
5736{
5737 int err;
5738 const char *name;
1663f26d 5739 struct kset *kset = cache_kset(s);
45530c44 5740 int unmergeable = slab_unmergeable(s);
81819f0f 5741
3b7b3140
TH
5742 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5743
1663f26d
TH
5744 if (!kset) {
5745 kobject_init(&s->kobj, &slab_ktype);
5746 return 0;
5747 }
5748
11066386
MC
5749 if (!unmergeable && disable_higher_order_debug &&
5750 (slub_debug & DEBUG_METADATA_FLAGS))
5751 unmergeable = 1;
5752
81819f0f
CL
5753 if (unmergeable) {
5754 /*
5755 * Slabcache can never be merged so we can use the name proper.
5756 * This is typically the case for debug situations. In that
5757 * case we can catch duplicate names easily.
5758 */
27c3a314 5759 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5760 name = s->name;
5761 } else {
5762 /*
5763 * Create a unique name for the slab as a target
5764 * for the symlinks.
5765 */
5766 name = create_unique_id(s);
5767 }
5768
1663f26d 5769 s->kobj.kset = kset;
26e4f205 5770 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5771 if (err)
80da026a 5772 goto out;
81819f0f
CL
5773
5774 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5775 if (err)
5776 goto out_del_kobj;
9a41707b 5777
127424c8 5778#ifdef CONFIG_MEMCG
1663f26d 5779 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5780 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5781 if (!s->memcg_kset) {
54b6a731
DJ
5782 err = -ENOMEM;
5783 goto out_del_kobj;
9a41707b
VD
5784 }
5785 }
5786#endif
5787
81819f0f
CL
5788 kobject_uevent(&s->kobj, KOBJ_ADD);
5789 if (!unmergeable) {
5790 /* Setup first alias */
5791 sysfs_slab_alias(s, s->name);
81819f0f 5792 }
54b6a731
DJ
5793out:
5794 if (!unmergeable)
5795 kfree(name);
5796 return err;
5797out_del_kobj:
5798 kobject_del(&s->kobj);
54b6a731 5799 goto out;
81819f0f
CL
5800}
5801
bf5eb3de 5802static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5803{
97d06609 5804 if (slab_state < FULL)
2bce6485
CL
5805 /*
5806 * Sysfs has not been setup yet so no need to remove the
5807 * cache from sysfs.
5808 */
5809 return;
5810
3b7b3140
TH
5811 kobject_get(&s->kobj);
5812 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5813}
5814
d50d82fa
MP
5815void sysfs_slab_unlink(struct kmem_cache *s)
5816{
5817 if (slab_state >= FULL)
5818 kobject_del(&s->kobj);
5819}
5820
bf5eb3de
TH
5821void sysfs_slab_release(struct kmem_cache *s)
5822{
5823 if (slab_state >= FULL)
5824 kobject_put(&s->kobj);
81819f0f
CL
5825}
5826
5827/*
5828 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5829 * available lest we lose that information.
81819f0f
CL
5830 */
5831struct saved_alias {
5832 struct kmem_cache *s;
5833 const char *name;
5834 struct saved_alias *next;
5835};
5836
5af328a5 5837static struct saved_alias *alias_list;
81819f0f
CL
5838
5839static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5840{
5841 struct saved_alias *al;
5842
97d06609 5843 if (slab_state == FULL) {
81819f0f
CL
5844 /*
5845 * If we have a leftover link then remove it.
5846 */
27c3a314
GKH
5847 sysfs_remove_link(&slab_kset->kobj, name);
5848 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5849 }
5850
5851 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5852 if (!al)
5853 return -ENOMEM;
5854
5855 al->s = s;
5856 al->name = name;
5857 al->next = alias_list;
5858 alias_list = al;
5859 return 0;
5860}
5861
5862static int __init slab_sysfs_init(void)
5863{
5b95a4ac 5864 struct kmem_cache *s;
81819f0f
CL
5865 int err;
5866
18004c5d 5867 mutex_lock(&slab_mutex);
2bce6485 5868
0ff21e46 5869 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5870 if (!slab_kset) {
18004c5d 5871 mutex_unlock(&slab_mutex);
f9f58285 5872 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5873 return -ENOSYS;
5874 }
5875
97d06609 5876 slab_state = FULL;
26a7bd03 5877
5b95a4ac 5878 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5879 err = sysfs_slab_add(s);
5d540fb7 5880 if (err)
f9f58285
FF
5881 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5882 s->name);
26a7bd03 5883 }
81819f0f
CL
5884
5885 while (alias_list) {
5886 struct saved_alias *al = alias_list;
5887
5888 alias_list = alias_list->next;
5889 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5890 if (err)
f9f58285
FF
5891 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5892 al->name);
81819f0f
CL
5893 kfree(al);
5894 }
5895
18004c5d 5896 mutex_unlock(&slab_mutex);
81819f0f
CL
5897 resiliency_test();
5898 return 0;
5899}
5900
5901__initcall(slab_sysfs_init);
ab4d5ed5 5902#endif /* CONFIG_SYSFS */
57ed3eda
PE
5903
5904/*
5905 * The /proc/slabinfo ABI
5906 */
5b365771 5907#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5908void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5909{
57ed3eda 5910 unsigned long nr_slabs = 0;
205ab99d
CL
5911 unsigned long nr_objs = 0;
5912 unsigned long nr_free = 0;
57ed3eda 5913 int node;
fa45dc25 5914 struct kmem_cache_node *n;
57ed3eda 5915
fa45dc25 5916 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5917 nr_slabs += node_nr_slabs(n);
5918 nr_objs += node_nr_objs(n);
205ab99d 5919 nr_free += count_partial(n, count_free);
57ed3eda
PE
5920 }
5921
0d7561c6
GC
5922 sinfo->active_objs = nr_objs - nr_free;
5923 sinfo->num_objs = nr_objs;
5924 sinfo->active_slabs = nr_slabs;
5925 sinfo->num_slabs = nr_slabs;
5926 sinfo->objects_per_slab = oo_objects(s->oo);
5927 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5928}
5929
0d7561c6 5930void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5931{
7b3c3a50
AD
5932}
5933
b7454ad3
GC
5934ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5935 size_t count, loff_t *ppos)
7b3c3a50 5936{
b7454ad3 5937 return -EIO;
7b3c3a50 5938}
5b365771 5939#endif /* CONFIG_SLUB_DEBUG */
This page took 2.442372 seconds and 4 git commands to generate.