]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
8 | * (C) 2007 SGI, Christoph Lameter <[email protected]> | |
9 | */ | |
10 | ||
11 | #include <linux/mm.h> | |
12 | #include <linux/module.h> | |
13 | #include <linux/bit_spinlock.h> | |
14 | #include <linux/interrupt.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/seq_file.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/cpuset.h> | |
20 | #include <linux/mempolicy.h> | |
21 | #include <linux/ctype.h> | |
22 | #include <linux/kallsyms.h> | |
b9049e23 | 23 | #include <linux/memory.h> |
81819f0f CL |
24 | |
25 | /* | |
26 | * Lock order: | |
27 | * 1. slab_lock(page) | |
28 | * 2. slab->list_lock | |
29 | * | |
30 | * The slab_lock protects operations on the object of a particular | |
31 | * slab and its metadata in the page struct. If the slab lock | |
32 | * has been taken then no allocations nor frees can be performed | |
33 | * on the objects in the slab nor can the slab be added or removed | |
34 | * from the partial or full lists since this would mean modifying | |
35 | * the page_struct of the slab. | |
36 | * | |
37 | * The list_lock protects the partial and full list on each node and | |
38 | * the partial slab counter. If taken then no new slabs may be added or | |
39 | * removed from the lists nor make the number of partial slabs be modified. | |
40 | * (Note that the total number of slabs is an atomic value that may be | |
41 | * modified without taking the list lock). | |
42 | * | |
43 | * The list_lock is a centralized lock and thus we avoid taking it as | |
44 | * much as possible. As long as SLUB does not have to handle partial | |
45 | * slabs, operations can continue without any centralized lock. F.e. | |
46 | * allocating a long series of objects that fill up slabs does not require | |
47 | * the list lock. | |
48 | * | |
49 | * The lock order is sometimes inverted when we are trying to get a slab | |
50 | * off a list. We take the list_lock and then look for a page on the list | |
51 | * to use. While we do that objects in the slabs may be freed. We can | |
52 | * only operate on the slab if we have also taken the slab_lock. So we use | |
53 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
54 | * can occur anymore and we can use the slab for allocations etc. If the | |
55 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
56 | * we must stay away from it for a while since we may cause a bouncing | |
57 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
58 | * If all pages are busy then we may allocate a new slab instead of reusing | |
59 | * a partial slab. A new slab has noone operating on it and thus there is | |
60 | * no danger of cacheline contention. | |
61 | * | |
62 | * Interrupts are disabled during allocation and deallocation in order to | |
63 | * make the slab allocator safe to use in the context of an irq. In addition | |
64 | * interrupts are disabled to ensure that the processor does not change | |
65 | * while handling per_cpu slabs, due to kernel preemption. | |
66 | * | |
67 | * SLUB assigns one slab for allocation to each processor. | |
68 | * Allocations only occur from these slabs called cpu slabs. | |
69 | * | |
672bba3a CL |
70 | * Slabs with free elements are kept on a partial list and during regular |
71 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 72 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
73 | * We track full slabs for debugging purposes though because otherwise we |
74 | * cannot scan all objects. | |
81819f0f CL |
75 | * |
76 | * Slabs are freed when they become empty. Teardown and setup is | |
77 | * minimal so we rely on the page allocators per cpu caches for | |
78 | * fast frees and allocs. | |
79 | * | |
80 | * Overloading of page flags that are otherwise used for LRU management. | |
81 | * | |
4b6f0750 CL |
82 | * PageActive The slab is frozen and exempt from list processing. |
83 | * This means that the slab is dedicated to a purpose | |
84 | * such as satisfying allocations for a specific | |
85 | * processor. Objects may be freed in the slab while | |
86 | * it is frozen but slab_free will then skip the usual | |
87 | * list operations. It is up to the processor holding | |
88 | * the slab to integrate the slab into the slab lists | |
89 | * when the slab is no longer needed. | |
90 | * | |
91 | * One use of this flag is to mark slabs that are | |
92 | * used for allocations. Then such a slab becomes a cpu | |
93 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 94 | * freelist that allows lockless access to |
894b8788 CL |
95 | * free objects in addition to the regular freelist |
96 | * that requires the slab lock. | |
81819f0f CL |
97 | * |
98 | * PageError Slab requires special handling due to debug | |
99 | * options set. This moves slab handling out of | |
894b8788 | 100 | * the fast path and disables lockless freelists. |
81819f0f CL |
101 | */ |
102 | ||
5577bd8a CL |
103 | #define FROZEN (1 << PG_active) |
104 | ||
105 | #ifdef CONFIG_SLUB_DEBUG | |
106 | #define SLABDEBUG (1 << PG_error) | |
107 | #else | |
108 | #define SLABDEBUG 0 | |
109 | #endif | |
110 | ||
4b6f0750 CL |
111 | static inline int SlabFrozen(struct page *page) |
112 | { | |
5577bd8a | 113 | return page->flags & FROZEN; |
4b6f0750 CL |
114 | } |
115 | ||
116 | static inline void SetSlabFrozen(struct page *page) | |
117 | { | |
5577bd8a | 118 | page->flags |= FROZEN; |
4b6f0750 CL |
119 | } |
120 | ||
121 | static inline void ClearSlabFrozen(struct page *page) | |
122 | { | |
5577bd8a | 123 | page->flags &= ~FROZEN; |
4b6f0750 CL |
124 | } |
125 | ||
35e5d7ee CL |
126 | static inline int SlabDebug(struct page *page) |
127 | { | |
5577bd8a | 128 | return page->flags & SLABDEBUG; |
35e5d7ee CL |
129 | } |
130 | ||
131 | static inline void SetSlabDebug(struct page *page) | |
132 | { | |
5577bd8a | 133 | page->flags |= SLABDEBUG; |
35e5d7ee CL |
134 | } |
135 | ||
136 | static inline void ClearSlabDebug(struct page *page) | |
137 | { | |
5577bd8a | 138 | page->flags &= ~SLABDEBUG; |
35e5d7ee CL |
139 | } |
140 | ||
81819f0f CL |
141 | /* |
142 | * Issues still to be resolved: | |
143 | * | |
81819f0f CL |
144 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
145 | * | |
81819f0f CL |
146 | * - Variable sizing of the per node arrays |
147 | */ | |
148 | ||
149 | /* Enable to test recovery from slab corruption on boot */ | |
150 | #undef SLUB_RESILIENCY_TEST | |
151 | ||
152 | #if PAGE_SHIFT <= 12 | |
153 | ||
154 | /* | |
155 | * Small page size. Make sure that we do not fragment memory | |
156 | */ | |
157 | #define DEFAULT_MAX_ORDER 1 | |
158 | #define DEFAULT_MIN_OBJECTS 4 | |
159 | ||
160 | #else | |
161 | ||
162 | /* | |
163 | * Large page machines are customarily able to handle larger | |
164 | * page orders. | |
165 | */ | |
166 | #define DEFAULT_MAX_ORDER 2 | |
167 | #define DEFAULT_MIN_OBJECTS 8 | |
168 | ||
169 | #endif | |
170 | ||
2086d26a CL |
171 | /* |
172 | * Mininum number of partial slabs. These will be left on the partial | |
173 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
174 | */ | |
76be8950 | 175 | #define MIN_PARTIAL 5 |
e95eed57 | 176 | |
2086d26a CL |
177 | /* |
178 | * Maximum number of desirable partial slabs. | |
179 | * The existence of more partial slabs makes kmem_cache_shrink | |
180 | * sort the partial list by the number of objects in the. | |
181 | */ | |
182 | #define MAX_PARTIAL 10 | |
183 | ||
81819f0f CL |
184 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
185 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 186 | |
81819f0f CL |
187 | /* |
188 | * Set of flags that will prevent slab merging | |
189 | */ | |
190 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
191 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | |
192 | ||
193 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
194 | SLAB_CACHE_DMA) | |
195 | ||
196 | #ifndef ARCH_KMALLOC_MINALIGN | |
47bfdc0d | 197 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
198 | #endif |
199 | ||
200 | #ifndef ARCH_SLAB_MINALIGN | |
47bfdc0d | 201 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
202 | #endif |
203 | ||
204 | /* Internal SLUB flags */ | |
1ceef402 CL |
205 | #define __OBJECT_POISON 0x80000000 /* Poison object */ |
206 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | |
71c7a06f CL |
207 | #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */ |
208 | #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */ | |
81819f0f | 209 | |
65c02d4c CL |
210 | /* Not all arches define cache_line_size */ |
211 | #ifndef cache_line_size | |
212 | #define cache_line_size() L1_CACHE_BYTES | |
213 | #endif | |
214 | ||
81819f0f CL |
215 | static int kmem_size = sizeof(struct kmem_cache); |
216 | ||
217 | #ifdef CONFIG_SMP | |
218 | static struct notifier_block slab_notifier; | |
219 | #endif | |
220 | ||
221 | static enum { | |
222 | DOWN, /* No slab functionality available */ | |
223 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | |
672bba3a | 224 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
225 | SYSFS /* Sysfs up */ |
226 | } slab_state = DOWN; | |
227 | ||
228 | /* A list of all slab caches on the system */ | |
229 | static DECLARE_RWSEM(slub_lock); | |
5af328a5 | 230 | static LIST_HEAD(slab_caches); |
81819f0f | 231 | |
02cbc874 CL |
232 | /* |
233 | * Tracking user of a slab. | |
234 | */ | |
235 | struct track { | |
236 | void *addr; /* Called from address */ | |
237 | int cpu; /* Was running on cpu */ | |
238 | int pid; /* Pid context */ | |
239 | unsigned long when; /* When did the operation occur */ | |
240 | }; | |
241 | ||
242 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
243 | ||
41ecc55b | 244 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
81819f0f CL |
245 | static int sysfs_slab_add(struct kmem_cache *); |
246 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
247 | static void sysfs_slab_remove(struct kmem_cache *); | |
8ff12cfc | 248 | |
81819f0f | 249 | #else |
0c710013 CL |
250 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
251 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
252 | { return 0; } | |
151c602f CL |
253 | static inline void sysfs_slab_remove(struct kmem_cache *s) |
254 | { | |
255 | kfree(s); | |
256 | } | |
8ff12cfc | 257 | |
81819f0f CL |
258 | #endif |
259 | ||
8ff12cfc CL |
260 | static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) |
261 | { | |
262 | #ifdef CONFIG_SLUB_STATS | |
263 | c->stat[si]++; | |
264 | #endif | |
265 | } | |
266 | ||
81819f0f CL |
267 | /******************************************************************** |
268 | * Core slab cache functions | |
269 | *******************************************************************/ | |
270 | ||
271 | int slab_is_available(void) | |
272 | { | |
273 | return slab_state >= UP; | |
274 | } | |
275 | ||
276 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
277 | { | |
278 | #ifdef CONFIG_NUMA | |
279 | return s->node[node]; | |
280 | #else | |
281 | return &s->local_node; | |
282 | #endif | |
283 | } | |
284 | ||
dfb4f096 CL |
285 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) |
286 | { | |
4c93c355 CL |
287 | #ifdef CONFIG_SMP |
288 | return s->cpu_slab[cpu]; | |
289 | #else | |
290 | return &s->cpu_slab; | |
291 | #endif | |
dfb4f096 CL |
292 | } |
293 | ||
6446faa2 | 294 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
295 | static inline int check_valid_pointer(struct kmem_cache *s, |
296 | struct page *page, const void *object) | |
297 | { | |
298 | void *base; | |
299 | ||
a973e9dd | 300 | if (!object) |
02cbc874 CL |
301 | return 1; |
302 | ||
a973e9dd | 303 | base = page_address(page); |
02cbc874 CL |
304 | if (object < base || object >= base + s->objects * s->size || |
305 | (object - base) % s->size) { | |
306 | return 0; | |
307 | } | |
308 | ||
309 | return 1; | |
310 | } | |
311 | ||
7656c72b CL |
312 | /* |
313 | * Slow version of get and set free pointer. | |
314 | * | |
315 | * This version requires touching the cache lines of kmem_cache which | |
316 | * we avoid to do in the fast alloc free paths. There we obtain the offset | |
317 | * from the page struct. | |
318 | */ | |
319 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | |
320 | { | |
321 | return *(void **)(object + s->offset); | |
322 | } | |
323 | ||
324 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
325 | { | |
326 | *(void **)(object + s->offset) = fp; | |
327 | } | |
328 | ||
329 | /* Loop over all objects in a slab */ | |
330 | #define for_each_object(__p, __s, __addr) \ | |
331 | for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ | |
332 | __p += (__s)->size) | |
333 | ||
334 | /* Scan freelist */ | |
335 | #define for_each_free_object(__p, __s, __free) \ | |
a973e9dd | 336 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) |
7656c72b CL |
337 | |
338 | /* Determine object index from a given position */ | |
339 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
340 | { | |
341 | return (p - addr) / s->size; | |
342 | } | |
343 | ||
41ecc55b CL |
344 | #ifdef CONFIG_SLUB_DEBUG |
345 | /* | |
346 | * Debug settings: | |
347 | */ | |
f0630fff CL |
348 | #ifdef CONFIG_SLUB_DEBUG_ON |
349 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
350 | #else | |
41ecc55b | 351 | static int slub_debug; |
f0630fff | 352 | #endif |
41ecc55b CL |
353 | |
354 | static char *slub_debug_slabs; | |
355 | ||
81819f0f CL |
356 | /* |
357 | * Object debugging | |
358 | */ | |
359 | static void print_section(char *text, u8 *addr, unsigned int length) | |
360 | { | |
361 | int i, offset; | |
362 | int newline = 1; | |
363 | char ascii[17]; | |
364 | ||
365 | ascii[16] = 0; | |
366 | ||
367 | for (i = 0; i < length; i++) { | |
368 | if (newline) { | |
24922684 | 369 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
370 | newline = 0; |
371 | } | |
06428780 | 372 | printk(KERN_CONT " %02x", addr[i]); |
81819f0f CL |
373 | offset = i % 16; |
374 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
375 | if (offset == 15) { | |
06428780 | 376 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
377 | newline = 1; |
378 | } | |
379 | } | |
380 | if (!newline) { | |
381 | i %= 16; | |
382 | while (i < 16) { | |
06428780 | 383 | printk(KERN_CONT " "); |
81819f0f CL |
384 | ascii[i] = ' '; |
385 | i++; | |
386 | } | |
06428780 | 387 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
388 | } |
389 | } | |
390 | ||
81819f0f CL |
391 | static struct track *get_track(struct kmem_cache *s, void *object, |
392 | enum track_item alloc) | |
393 | { | |
394 | struct track *p; | |
395 | ||
396 | if (s->offset) | |
397 | p = object + s->offset + sizeof(void *); | |
398 | else | |
399 | p = object + s->inuse; | |
400 | ||
401 | return p + alloc; | |
402 | } | |
403 | ||
404 | static void set_track(struct kmem_cache *s, void *object, | |
405 | enum track_item alloc, void *addr) | |
406 | { | |
407 | struct track *p; | |
408 | ||
409 | if (s->offset) | |
410 | p = object + s->offset + sizeof(void *); | |
411 | else | |
412 | p = object + s->inuse; | |
413 | ||
414 | p += alloc; | |
415 | if (addr) { | |
416 | p->addr = addr; | |
417 | p->cpu = smp_processor_id(); | |
418 | p->pid = current ? current->pid : -1; | |
419 | p->when = jiffies; | |
420 | } else | |
421 | memset(p, 0, sizeof(struct track)); | |
422 | } | |
423 | ||
81819f0f CL |
424 | static void init_tracking(struct kmem_cache *s, void *object) |
425 | { | |
24922684 CL |
426 | if (!(s->flags & SLAB_STORE_USER)) |
427 | return; | |
428 | ||
429 | set_track(s, object, TRACK_FREE, NULL); | |
430 | set_track(s, object, TRACK_ALLOC, NULL); | |
81819f0f CL |
431 | } |
432 | ||
433 | static void print_track(const char *s, struct track *t) | |
434 | { | |
435 | if (!t->addr) | |
436 | return; | |
437 | ||
24922684 | 438 | printk(KERN_ERR "INFO: %s in ", s); |
81819f0f | 439 | __print_symbol("%s", (unsigned long)t->addr); |
24922684 CL |
440 | printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); |
441 | } | |
442 | ||
443 | static void print_tracking(struct kmem_cache *s, void *object) | |
444 | { | |
445 | if (!(s->flags & SLAB_STORE_USER)) | |
446 | return; | |
447 | ||
448 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
449 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
450 | } | |
451 | ||
452 | static void print_page_info(struct page *page) | |
453 | { | |
454 | printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", | |
455 | page, page->inuse, page->freelist, page->flags); | |
456 | ||
457 | } | |
458 | ||
459 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
460 | { | |
461 | va_list args; | |
462 | char buf[100]; | |
463 | ||
464 | va_start(args, fmt); | |
465 | vsnprintf(buf, sizeof(buf), fmt, args); | |
466 | va_end(args); | |
467 | printk(KERN_ERR "========================================" | |
468 | "=====================================\n"); | |
469 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
470 | printk(KERN_ERR "----------------------------------------" | |
471 | "-------------------------------------\n\n"); | |
81819f0f CL |
472 | } |
473 | ||
24922684 CL |
474 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
475 | { | |
476 | va_list args; | |
477 | char buf[100]; | |
478 | ||
479 | va_start(args, fmt); | |
480 | vsnprintf(buf, sizeof(buf), fmt, args); | |
481 | va_end(args); | |
482 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
483 | } | |
484 | ||
485 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
486 | { |
487 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 488 | u8 *addr = page_address(page); |
24922684 CL |
489 | |
490 | print_tracking(s, p); | |
491 | ||
492 | print_page_info(page); | |
493 | ||
494 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
495 | p, p - addr, get_freepointer(s, p)); | |
496 | ||
497 | if (p > addr + 16) | |
498 | print_section("Bytes b4", p - 16, 16); | |
499 | ||
500 | print_section("Object", p, min(s->objsize, 128)); | |
81819f0f CL |
501 | |
502 | if (s->flags & SLAB_RED_ZONE) | |
503 | print_section("Redzone", p + s->objsize, | |
504 | s->inuse - s->objsize); | |
505 | ||
81819f0f CL |
506 | if (s->offset) |
507 | off = s->offset + sizeof(void *); | |
508 | else | |
509 | off = s->inuse; | |
510 | ||
24922684 | 511 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 512 | off += 2 * sizeof(struct track); |
81819f0f CL |
513 | |
514 | if (off != s->size) | |
515 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
516 | print_section("Padding", p + off, s->size - off); |
517 | ||
518 | dump_stack(); | |
81819f0f CL |
519 | } |
520 | ||
521 | static void object_err(struct kmem_cache *s, struct page *page, | |
522 | u8 *object, char *reason) | |
523 | { | |
24922684 CL |
524 | slab_bug(s, reason); |
525 | print_trailer(s, page, object); | |
81819f0f CL |
526 | } |
527 | ||
24922684 | 528 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
529 | { |
530 | va_list args; | |
531 | char buf[100]; | |
532 | ||
24922684 CL |
533 | va_start(args, fmt); |
534 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 535 | va_end(args); |
24922684 CL |
536 | slab_bug(s, fmt); |
537 | print_page_info(page); | |
81819f0f CL |
538 | dump_stack(); |
539 | } | |
540 | ||
541 | static void init_object(struct kmem_cache *s, void *object, int active) | |
542 | { | |
543 | u8 *p = object; | |
544 | ||
545 | if (s->flags & __OBJECT_POISON) { | |
546 | memset(p, POISON_FREE, s->objsize - 1); | |
06428780 | 547 | p[s->objsize - 1] = POISON_END; |
81819f0f CL |
548 | } |
549 | ||
550 | if (s->flags & SLAB_RED_ZONE) | |
551 | memset(p + s->objsize, | |
552 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | |
553 | s->inuse - s->objsize); | |
554 | } | |
555 | ||
24922684 | 556 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
557 | { |
558 | while (bytes) { | |
559 | if (*start != (u8)value) | |
24922684 | 560 | return start; |
81819f0f CL |
561 | start++; |
562 | bytes--; | |
563 | } | |
24922684 CL |
564 | return NULL; |
565 | } | |
566 | ||
567 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
568 | void *from, void *to) | |
569 | { | |
570 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
571 | memset(from, data, to - from); | |
572 | } | |
573 | ||
574 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
575 | u8 *object, char *what, | |
06428780 | 576 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
577 | { |
578 | u8 *fault; | |
579 | u8 *end; | |
580 | ||
581 | fault = check_bytes(start, value, bytes); | |
582 | if (!fault) | |
583 | return 1; | |
584 | ||
585 | end = start + bytes; | |
586 | while (end > fault && end[-1] == value) | |
587 | end--; | |
588 | ||
589 | slab_bug(s, "%s overwritten", what); | |
590 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
591 | fault, end - 1, fault[0], value); | |
592 | print_trailer(s, page, object); | |
593 | ||
594 | restore_bytes(s, what, value, fault, end); | |
595 | return 0; | |
81819f0f CL |
596 | } |
597 | ||
81819f0f CL |
598 | /* |
599 | * Object layout: | |
600 | * | |
601 | * object address | |
602 | * Bytes of the object to be managed. | |
603 | * If the freepointer may overlay the object then the free | |
604 | * pointer is the first word of the object. | |
672bba3a | 605 | * |
81819f0f CL |
606 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
607 | * 0xa5 (POISON_END) | |
608 | * | |
609 | * object + s->objsize | |
610 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
611 | * Padding is extended by another word if Redzoning is enabled and |
612 | * objsize == inuse. | |
613 | * | |
81819f0f CL |
614 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
615 | * 0xcc (RED_ACTIVE) for objects in use. | |
616 | * | |
617 | * object + s->inuse | |
672bba3a CL |
618 | * Meta data starts here. |
619 | * | |
81819f0f CL |
620 | * A. Free pointer (if we cannot overwrite object on free) |
621 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 622 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 623 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
624 | * before the word boundary. |
625 | * | |
626 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
627 | * |
628 | * object + s->size | |
672bba3a | 629 | * Nothing is used beyond s->size. |
81819f0f | 630 | * |
672bba3a CL |
631 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
632 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
633 | * may be used with merged slabcaches. |
634 | */ | |
635 | ||
81819f0f CL |
636 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
637 | { | |
638 | unsigned long off = s->inuse; /* The end of info */ | |
639 | ||
640 | if (s->offset) | |
641 | /* Freepointer is placed after the object. */ | |
642 | off += sizeof(void *); | |
643 | ||
644 | if (s->flags & SLAB_STORE_USER) | |
645 | /* We also have user information there */ | |
646 | off += 2 * sizeof(struct track); | |
647 | ||
648 | if (s->size == off) | |
649 | return 1; | |
650 | ||
24922684 CL |
651 | return check_bytes_and_report(s, page, p, "Object padding", |
652 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
653 | } |
654 | ||
655 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | |
656 | { | |
24922684 CL |
657 | u8 *start; |
658 | u8 *fault; | |
659 | u8 *end; | |
660 | int length; | |
661 | int remainder; | |
81819f0f CL |
662 | |
663 | if (!(s->flags & SLAB_POISON)) | |
664 | return 1; | |
665 | ||
a973e9dd | 666 | start = page_address(page); |
24922684 | 667 | end = start + (PAGE_SIZE << s->order); |
81819f0f | 668 | length = s->objects * s->size; |
24922684 | 669 | remainder = end - (start + length); |
81819f0f CL |
670 | if (!remainder) |
671 | return 1; | |
672 | ||
24922684 CL |
673 | fault = check_bytes(start + length, POISON_INUSE, remainder); |
674 | if (!fault) | |
675 | return 1; | |
676 | while (end > fault && end[-1] == POISON_INUSE) | |
677 | end--; | |
678 | ||
679 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
680 | print_section("Padding", start, length); | |
681 | ||
682 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | |
683 | return 0; | |
81819f0f CL |
684 | } |
685 | ||
686 | static int check_object(struct kmem_cache *s, struct page *page, | |
687 | void *object, int active) | |
688 | { | |
689 | u8 *p = object; | |
690 | u8 *endobject = object + s->objsize; | |
691 | ||
692 | if (s->flags & SLAB_RED_ZONE) { | |
693 | unsigned int red = | |
694 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | |
695 | ||
24922684 CL |
696 | if (!check_bytes_and_report(s, page, object, "Redzone", |
697 | endobject, red, s->inuse - s->objsize)) | |
81819f0f | 698 | return 0; |
81819f0f | 699 | } else { |
3adbefee IM |
700 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { |
701 | check_bytes_and_report(s, page, p, "Alignment padding", | |
702 | endobject, POISON_INUSE, s->inuse - s->objsize); | |
703 | } | |
81819f0f CL |
704 | } |
705 | ||
706 | if (s->flags & SLAB_POISON) { | |
707 | if (!active && (s->flags & __OBJECT_POISON) && | |
24922684 CL |
708 | (!check_bytes_and_report(s, page, p, "Poison", p, |
709 | POISON_FREE, s->objsize - 1) || | |
710 | !check_bytes_and_report(s, page, p, "Poison", | |
06428780 | 711 | p + s->objsize - 1, POISON_END, 1))) |
81819f0f | 712 | return 0; |
81819f0f CL |
713 | /* |
714 | * check_pad_bytes cleans up on its own. | |
715 | */ | |
716 | check_pad_bytes(s, page, p); | |
717 | } | |
718 | ||
719 | if (!s->offset && active) | |
720 | /* | |
721 | * Object and freepointer overlap. Cannot check | |
722 | * freepointer while object is allocated. | |
723 | */ | |
724 | return 1; | |
725 | ||
726 | /* Check free pointer validity */ | |
727 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
728 | object_err(s, page, p, "Freepointer corrupt"); | |
729 | /* | |
730 | * No choice but to zap it and thus loose the remainder | |
731 | * of the free objects in this slab. May cause | |
672bba3a | 732 | * another error because the object count is now wrong. |
81819f0f | 733 | */ |
a973e9dd | 734 | set_freepointer(s, p, NULL); |
81819f0f CL |
735 | return 0; |
736 | } | |
737 | return 1; | |
738 | } | |
739 | ||
740 | static int check_slab(struct kmem_cache *s, struct page *page) | |
741 | { | |
742 | VM_BUG_ON(!irqs_disabled()); | |
743 | ||
744 | if (!PageSlab(page)) { | |
24922684 | 745 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
746 | return 0; |
747 | } | |
81819f0f | 748 | if (page->inuse > s->objects) { |
24922684 CL |
749 | slab_err(s, page, "inuse %u > max %u", |
750 | s->name, page->inuse, s->objects); | |
81819f0f CL |
751 | return 0; |
752 | } | |
753 | /* Slab_pad_check fixes things up after itself */ | |
754 | slab_pad_check(s, page); | |
755 | return 1; | |
756 | } | |
757 | ||
758 | /* | |
672bba3a CL |
759 | * Determine if a certain object on a page is on the freelist. Must hold the |
760 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
761 | */ |
762 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
763 | { | |
764 | int nr = 0; | |
765 | void *fp = page->freelist; | |
766 | void *object = NULL; | |
767 | ||
a973e9dd | 768 | while (fp && nr <= s->objects) { |
81819f0f CL |
769 | if (fp == search) |
770 | return 1; | |
771 | if (!check_valid_pointer(s, page, fp)) { | |
772 | if (object) { | |
773 | object_err(s, page, object, | |
774 | "Freechain corrupt"); | |
a973e9dd | 775 | set_freepointer(s, object, NULL); |
81819f0f CL |
776 | break; |
777 | } else { | |
24922684 | 778 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 779 | page->freelist = NULL; |
81819f0f | 780 | page->inuse = s->objects; |
24922684 | 781 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
782 | return 0; |
783 | } | |
784 | break; | |
785 | } | |
786 | object = fp; | |
787 | fp = get_freepointer(s, object); | |
788 | nr++; | |
789 | } | |
790 | ||
791 | if (page->inuse != s->objects - nr) { | |
70d71228 | 792 | slab_err(s, page, "Wrong object count. Counter is %d but " |
24922684 | 793 | "counted were %d", page->inuse, s->objects - nr); |
81819f0f | 794 | page->inuse = s->objects - nr; |
24922684 | 795 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
796 | } |
797 | return search == NULL; | |
798 | } | |
799 | ||
3ec09742 CL |
800 | static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) |
801 | { | |
802 | if (s->flags & SLAB_TRACE) { | |
803 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
804 | s->name, | |
805 | alloc ? "alloc" : "free", | |
806 | object, page->inuse, | |
807 | page->freelist); | |
808 | ||
809 | if (!alloc) | |
810 | print_section("Object", (void *)object, s->objsize); | |
811 | ||
812 | dump_stack(); | |
813 | } | |
814 | } | |
815 | ||
643b1138 | 816 | /* |
672bba3a | 817 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 818 | */ |
e95eed57 | 819 | static void add_full(struct kmem_cache_node *n, struct page *page) |
643b1138 | 820 | { |
643b1138 CL |
821 | spin_lock(&n->list_lock); |
822 | list_add(&page->lru, &n->full); | |
823 | spin_unlock(&n->list_lock); | |
824 | } | |
825 | ||
826 | static void remove_full(struct kmem_cache *s, struct page *page) | |
827 | { | |
828 | struct kmem_cache_node *n; | |
829 | ||
830 | if (!(s->flags & SLAB_STORE_USER)) | |
831 | return; | |
832 | ||
833 | n = get_node(s, page_to_nid(page)); | |
834 | ||
835 | spin_lock(&n->list_lock); | |
836 | list_del(&page->lru); | |
837 | spin_unlock(&n->list_lock); | |
838 | } | |
839 | ||
3ec09742 CL |
840 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
841 | void *object) | |
842 | { | |
843 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
844 | return; | |
845 | ||
846 | init_object(s, object, 0); | |
847 | init_tracking(s, object); | |
848 | } | |
849 | ||
850 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | |
851 | void *object, void *addr) | |
81819f0f CL |
852 | { |
853 | if (!check_slab(s, page)) | |
854 | goto bad; | |
855 | ||
d692ef6d | 856 | if (!on_freelist(s, page, object)) { |
24922684 | 857 | object_err(s, page, object, "Object already allocated"); |
70d71228 | 858 | goto bad; |
81819f0f CL |
859 | } |
860 | ||
861 | if (!check_valid_pointer(s, page, object)) { | |
862 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 863 | goto bad; |
81819f0f CL |
864 | } |
865 | ||
d692ef6d | 866 | if (!check_object(s, page, object, 0)) |
81819f0f | 867 | goto bad; |
81819f0f | 868 | |
3ec09742 CL |
869 | /* Success perform special debug activities for allocs */ |
870 | if (s->flags & SLAB_STORE_USER) | |
871 | set_track(s, object, TRACK_ALLOC, addr); | |
872 | trace(s, page, object, 1); | |
873 | init_object(s, object, 1); | |
81819f0f | 874 | return 1; |
3ec09742 | 875 | |
81819f0f CL |
876 | bad: |
877 | if (PageSlab(page)) { | |
878 | /* | |
879 | * If this is a slab page then lets do the best we can | |
880 | * to avoid issues in the future. Marking all objects | |
672bba3a | 881 | * as used avoids touching the remaining objects. |
81819f0f | 882 | */ |
24922684 | 883 | slab_fix(s, "Marking all objects used"); |
81819f0f | 884 | page->inuse = s->objects; |
a973e9dd | 885 | page->freelist = NULL; |
81819f0f CL |
886 | } |
887 | return 0; | |
888 | } | |
889 | ||
3ec09742 CL |
890 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
891 | void *object, void *addr) | |
81819f0f CL |
892 | { |
893 | if (!check_slab(s, page)) | |
894 | goto fail; | |
895 | ||
896 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 897 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
898 | goto fail; |
899 | } | |
900 | ||
901 | if (on_freelist(s, page, object)) { | |
24922684 | 902 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
903 | goto fail; |
904 | } | |
905 | ||
906 | if (!check_object(s, page, object, 1)) | |
907 | return 0; | |
908 | ||
909 | if (unlikely(s != page->slab)) { | |
3adbefee | 910 | if (!PageSlab(page)) { |
70d71228 CL |
911 | slab_err(s, page, "Attempt to free object(0x%p) " |
912 | "outside of slab", object); | |
3adbefee | 913 | } else if (!page->slab) { |
81819f0f | 914 | printk(KERN_ERR |
70d71228 | 915 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 916 | object); |
70d71228 | 917 | dump_stack(); |
06428780 | 918 | } else |
24922684 CL |
919 | object_err(s, page, object, |
920 | "page slab pointer corrupt."); | |
81819f0f CL |
921 | goto fail; |
922 | } | |
3ec09742 CL |
923 | |
924 | /* Special debug activities for freeing objects */ | |
a973e9dd | 925 | if (!SlabFrozen(page) && !page->freelist) |
3ec09742 CL |
926 | remove_full(s, page); |
927 | if (s->flags & SLAB_STORE_USER) | |
928 | set_track(s, object, TRACK_FREE, addr); | |
929 | trace(s, page, object, 0); | |
930 | init_object(s, object, 0); | |
81819f0f | 931 | return 1; |
3ec09742 | 932 | |
81819f0f | 933 | fail: |
24922684 | 934 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
935 | return 0; |
936 | } | |
937 | ||
41ecc55b CL |
938 | static int __init setup_slub_debug(char *str) |
939 | { | |
f0630fff CL |
940 | slub_debug = DEBUG_DEFAULT_FLAGS; |
941 | if (*str++ != '=' || !*str) | |
942 | /* | |
943 | * No options specified. Switch on full debugging. | |
944 | */ | |
945 | goto out; | |
946 | ||
947 | if (*str == ',') | |
948 | /* | |
949 | * No options but restriction on slabs. This means full | |
950 | * debugging for slabs matching a pattern. | |
951 | */ | |
952 | goto check_slabs; | |
953 | ||
954 | slub_debug = 0; | |
955 | if (*str == '-') | |
956 | /* | |
957 | * Switch off all debugging measures. | |
958 | */ | |
959 | goto out; | |
960 | ||
961 | /* | |
962 | * Determine which debug features should be switched on | |
963 | */ | |
06428780 | 964 | for (; *str && *str != ','; str++) { |
f0630fff CL |
965 | switch (tolower(*str)) { |
966 | case 'f': | |
967 | slub_debug |= SLAB_DEBUG_FREE; | |
968 | break; | |
969 | case 'z': | |
970 | slub_debug |= SLAB_RED_ZONE; | |
971 | break; | |
972 | case 'p': | |
973 | slub_debug |= SLAB_POISON; | |
974 | break; | |
975 | case 'u': | |
976 | slub_debug |= SLAB_STORE_USER; | |
977 | break; | |
978 | case 't': | |
979 | slub_debug |= SLAB_TRACE; | |
980 | break; | |
981 | default: | |
982 | printk(KERN_ERR "slub_debug option '%c' " | |
06428780 | 983 | "unknown. skipped\n", *str); |
f0630fff | 984 | } |
41ecc55b CL |
985 | } |
986 | ||
f0630fff | 987 | check_slabs: |
41ecc55b CL |
988 | if (*str == ',') |
989 | slub_debug_slabs = str + 1; | |
f0630fff | 990 | out: |
41ecc55b CL |
991 | return 1; |
992 | } | |
993 | ||
994 | __setup("slub_debug", setup_slub_debug); | |
995 | ||
ba0268a8 CL |
996 | static unsigned long kmem_cache_flags(unsigned long objsize, |
997 | unsigned long flags, const char *name, | |
4ba9b9d0 | 998 | void (*ctor)(struct kmem_cache *, void *)) |
41ecc55b CL |
999 | { |
1000 | /* | |
e153362a | 1001 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1002 | */ |
e153362a CL |
1003 | if (slub_debug && (!slub_debug_slabs || |
1004 | strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) | |
1005 | flags |= slub_debug; | |
ba0268a8 CL |
1006 | |
1007 | return flags; | |
41ecc55b CL |
1008 | } |
1009 | #else | |
3ec09742 CL |
1010 | static inline void setup_object_debug(struct kmem_cache *s, |
1011 | struct page *page, void *object) {} | |
41ecc55b | 1012 | |
3ec09742 CL |
1013 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1014 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1015 | |
3ec09742 CL |
1016 | static inline int free_debug_processing(struct kmem_cache *s, |
1017 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1018 | |
41ecc55b CL |
1019 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1020 | { return 1; } | |
1021 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
1022 | void *object, int active) { return 1; } | |
3ec09742 | 1023 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
ba0268a8 CL |
1024 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1025 | unsigned long flags, const char *name, | |
4ba9b9d0 | 1026 | void (*ctor)(struct kmem_cache *, void *)) |
ba0268a8 CL |
1027 | { |
1028 | return flags; | |
1029 | } | |
41ecc55b CL |
1030 | #define slub_debug 0 |
1031 | #endif | |
81819f0f CL |
1032 | /* |
1033 | * Slab allocation and freeing | |
1034 | */ | |
1035 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1036 | { | |
06428780 | 1037 | struct page *page; |
81819f0f CL |
1038 | int pages = 1 << s->order; |
1039 | ||
b7a49f0d | 1040 | flags |= s->allocflags; |
e12ba74d | 1041 | |
81819f0f CL |
1042 | if (node == -1) |
1043 | page = alloc_pages(flags, s->order); | |
1044 | else | |
1045 | page = alloc_pages_node(node, flags, s->order); | |
1046 | ||
1047 | if (!page) | |
1048 | return NULL; | |
1049 | ||
1050 | mod_zone_page_state(page_zone(page), | |
1051 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1052 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1053 | pages); | |
1054 | ||
1055 | return page; | |
1056 | } | |
1057 | ||
1058 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1059 | void *object) | |
1060 | { | |
3ec09742 | 1061 | setup_object_debug(s, page, object); |
4f104934 | 1062 | if (unlikely(s->ctor)) |
4ba9b9d0 | 1063 | s->ctor(s, object); |
81819f0f CL |
1064 | } |
1065 | ||
1066 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1067 | { | |
1068 | struct page *page; | |
1069 | struct kmem_cache_node *n; | |
1070 | void *start; | |
81819f0f CL |
1071 | void *last; |
1072 | void *p; | |
1073 | ||
6cb06229 | 1074 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1075 | |
6cb06229 CL |
1076 | page = allocate_slab(s, |
1077 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1078 | if (!page) |
1079 | goto out; | |
1080 | ||
1081 | n = get_node(s, page_to_nid(page)); | |
1082 | if (n) | |
1083 | atomic_long_inc(&n->nr_slabs); | |
81819f0f CL |
1084 | page->slab = s; |
1085 | page->flags |= 1 << PG_slab; | |
1086 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | |
1087 | SLAB_STORE_USER | SLAB_TRACE)) | |
35e5d7ee | 1088 | SetSlabDebug(page); |
81819f0f CL |
1089 | |
1090 | start = page_address(page); | |
81819f0f CL |
1091 | |
1092 | if (unlikely(s->flags & SLAB_POISON)) | |
1093 | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | |
1094 | ||
1095 | last = start; | |
7656c72b | 1096 | for_each_object(p, s, start) { |
81819f0f CL |
1097 | setup_object(s, page, last); |
1098 | set_freepointer(s, last, p); | |
1099 | last = p; | |
1100 | } | |
1101 | setup_object(s, page, last); | |
a973e9dd | 1102 | set_freepointer(s, last, NULL); |
81819f0f CL |
1103 | |
1104 | page->freelist = start; | |
1105 | page->inuse = 0; | |
1106 | out: | |
81819f0f CL |
1107 | return page; |
1108 | } | |
1109 | ||
1110 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1111 | { | |
1112 | int pages = 1 << s->order; | |
1113 | ||
c59def9f | 1114 | if (unlikely(SlabDebug(page))) { |
81819f0f CL |
1115 | void *p; |
1116 | ||
1117 | slab_pad_check(s, page); | |
a973e9dd | 1118 | for_each_object(p, s, page_address(page)) |
81819f0f | 1119 | check_object(s, page, p, 0); |
2208b764 | 1120 | ClearSlabDebug(page); |
81819f0f CL |
1121 | } |
1122 | ||
1123 | mod_zone_page_state(page_zone(page), | |
1124 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1125 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1126 | -pages); |
81819f0f | 1127 | |
81819f0f CL |
1128 | __free_pages(page, s->order); |
1129 | } | |
1130 | ||
1131 | static void rcu_free_slab(struct rcu_head *h) | |
1132 | { | |
1133 | struct page *page; | |
1134 | ||
1135 | page = container_of((struct list_head *)h, struct page, lru); | |
1136 | __free_slab(page->slab, page); | |
1137 | } | |
1138 | ||
1139 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1140 | { | |
1141 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
1142 | /* | |
1143 | * RCU free overloads the RCU head over the LRU | |
1144 | */ | |
1145 | struct rcu_head *head = (void *)&page->lru; | |
1146 | ||
1147 | call_rcu(head, rcu_free_slab); | |
1148 | } else | |
1149 | __free_slab(s, page); | |
1150 | } | |
1151 | ||
1152 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1153 | { | |
1154 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1155 | ||
1156 | atomic_long_dec(&n->nr_slabs); | |
1157 | reset_page_mapcount(page); | |
35e5d7ee | 1158 | __ClearPageSlab(page); |
81819f0f CL |
1159 | free_slab(s, page); |
1160 | } | |
1161 | ||
1162 | /* | |
1163 | * Per slab locking using the pagelock | |
1164 | */ | |
1165 | static __always_inline void slab_lock(struct page *page) | |
1166 | { | |
1167 | bit_spin_lock(PG_locked, &page->flags); | |
1168 | } | |
1169 | ||
1170 | static __always_inline void slab_unlock(struct page *page) | |
1171 | { | |
a76d3546 | 1172 | __bit_spin_unlock(PG_locked, &page->flags); |
81819f0f CL |
1173 | } |
1174 | ||
1175 | static __always_inline int slab_trylock(struct page *page) | |
1176 | { | |
1177 | int rc = 1; | |
1178 | ||
1179 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1180 | return rc; | |
1181 | } | |
1182 | ||
1183 | /* | |
1184 | * Management of partially allocated slabs | |
1185 | */ | |
7c2e132c CL |
1186 | static void add_partial(struct kmem_cache_node *n, |
1187 | struct page *page, int tail) | |
81819f0f | 1188 | { |
e95eed57 CL |
1189 | spin_lock(&n->list_lock); |
1190 | n->nr_partial++; | |
7c2e132c CL |
1191 | if (tail) |
1192 | list_add_tail(&page->lru, &n->partial); | |
1193 | else | |
1194 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1195 | spin_unlock(&n->list_lock); |
1196 | } | |
1197 | ||
1198 | static void remove_partial(struct kmem_cache *s, | |
1199 | struct page *page) | |
1200 | { | |
1201 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1202 | ||
1203 | spin_lock(&n->list_lock); | |
1204 | list_del(&page->lru); | |
1205 | n->nr_partial--; | |
1206 | spin_unlock(&n->list_lock); | |
1207 | } | |
1208 | ||
1209 | /* | |
672bba3a | 1210 | * Lock slab and remove from the partial list. |
81819f0f | 1211 | * |
672bba3a | 1212 | * Must hold list_lock. |
81819f0f | 1213 | */ |
4b6f0750 | 1214 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) |
81819f0f CL |
1215 | { |
1216 | if (slab_trylock(page)) { | |
1217 | list_del(&page->lru); | |
1218 | n->nr_partial--; | |
4b6f0750 | 1219 | SetSlabFrozen(page); |
81819f0f CL |
1220 | return 1; |
1221 | } | |
1222 | return 0; | |
1223 | } | |
1224 | ||
1225 | /* | |
672bba3a | 1226 | * Try to allocate a partial slab from a specific node. |
81819f0f CL |
1227 | */ |
1228 | static struct page *get_partial_node(struct kmem_cache_node *n) | |
1229 | { | |
1230 | struct page *page; | |
1231 | ||
1232 | /* | |
1233 | * Racy check. If we mistakenly see no partial slabs then we | |
1234 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1235 | * partial slab and there is none available then get_partials() |
1236 | * will return NULL. | |
81819f0f CL |
1237 | */ |
1238 | if (!n || !n->nr_partial) | |
1239 | return NULL; | |
1240 | ||
1241 | spin_lock(&n->list_lock); | |
1242 | list_for_each_entry(page, &n->partial, lru) | |
4b6f0750 | 1243 | if (lock_and_freeze_slab(n, page)) |
81819f0f CL |
1244 | goto out; |
1245 | page = NULL; | |
1246 | out: | |
1247 | spin_unlock(&n->list_lock); | |
1248 | return page; | |
1249 | } | |
1250 | ||
1251 | /* | |
672bba3a | 1252 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1253 | */ |
1254 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1255 | { | |
1256 | #ifdef CONFIG_NUMA | |
1257 | struct zonelist *zonelist; | |
1258 | struct zone **z; | |
1259 | struct page *page; | |
1260 | ||
1261 | /* | |
672bba3a CL |
1262 | * The defrag ratio allows a configuration of the tradeoffs between |
1263 | * inter node defragmentation and node local allocations. A lower | |
1264 | * defrag_ratio increases the tendency to do local allocations | |
1265 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1266 | * |
672bba3a CL |
1267 | * If the defrag_ratio is set to 0 then kmalloc() always |
1268 | * returns node local objects. If the ratio is higher then kmalloc() | |
1269 | * may return off node objects because partial slabs are obtained | |
1270 | * from other nodes and filled up. | |
81819f0f | 1271 | * |
6446faa2 | 1272 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1273 | * defrag_ratio = 1000) then every (well almost) allocation will |
1274 | * first attempt to defrag slab caches on other nodes. This means | |
1275 | * scanning over all nodes to look for partial slabs which may be | |
1276 | * expensive if we do it every time we are trying to find a slab | |
1277 | * with available objects. | |
81819f0f | 1278 | */ |
9824601e CL |
1279 | if (!s->remote_node_defrag_ratio || |
1280 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1281 | return NULL; |
1282 | ||
3adbefee IM |
1283 | zonelist = &NODE_DATA( |
1284 | slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)]; | |
81819f0f CL |
1285 | for (z = zonelist->zones; *z; z++) { |
1286 | struct kmem_cache_node *n; | |
1287 | ||
1288 | n = get_node(s, zone_to_nid(*z)); | |
1289 | ||
1290 | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | |
e95eed57 | 1291 | n->nr_partial > MIN_PARTIAL) { |
81819f0f CL |
1292 | page = get_partial_node(n); |
1293 | if (page) | |
1294 | return page; | |
1295 | } | |
1296 | } | |
1297 | #endif | |
1298 | return NULL; | |
1299 | } | |
1300 | ||
1301 | /* | |
1302 | * Get a partial page, lock it and return it. | |
1303 | */ | |
1304 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1305 | { | |
1306 | struct page *page; | |
1307 | int searchnode = (node == -1) ? numa_node_id() : node; | |
1308 | ||
1309 | page = get_partial_node(get_node(s, searchnode)); | |
1310 | if (page || (flags & __GFP_THISNODE)) | |
1311 | return page; | |
1312 | ||
1313 | return get_any_partial(s, flags); | |
1314 | } | |
1315 | ||
1316 | /* | |
1317 | * Move a page back to the lists. | |
1318 | * | |
1319 | * Must be called with the slab lock held. | |
1320 | * | |
1321 | * On exit the slab lock will have been dropped. | |
1322 | */ | |
7c2e132c | 1323 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) |
81819f0f | 1324 | { |
e95eed57 | 1325 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
8ff12cfc | 1326 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); |
e95eed57 | 1327 | |
4b6f0750 | 1328 | ClearSlabFrozen(page); |
81819f0f | 1329 | if (page->inuse) { |
e95eed57 | 1330 | |
a973e9dd | 1331 | if (page->freelist) { |
7c2e132c | 1332 | add_partial(n, page, tail); |
8ff12cfc CL |
1333 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1334 | } else { | |
1335 | stat(c, DEACTIVATE_FULL); | |
1336 | if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) | |
1337 | add_full(n, page); | |
1338 | } | |
81819f0f CL |
1339 | slab_unlock(page); |
1340 | } else { | |
8ff12cfc | 1341 | stat(c, DEACTIVATE_EMPTY); |
e95eed57 CL |
1342 | if (n->nr_partial < MIN_PARTIAL) { |
1343 | /* | |
672bba3a CL |
1344 | * Adding an empty slab to the partial slabs in order |
1345 | * to avoid page allocator overhead. This slab needs | |
1346 | * to come after the other slabs with objects in | |
6446faa2 CL |
1347 | * so that the others get filled first. That way the |
1348 | * size of the partial list stays small. | |
1349 | * | |
1350 | * kmem_cache_shrink can reclaim any empty slabs from the | |
1351 | * partial list. | |
e95eed57 | 1352 | */ |
7c2e132c | 1353 | add_partial(n, page, 1); |
e95eed57 CL |
1354 | slab_unlock(page); |
1355 | } else { | |
1356 | slab_unlock(page); | |
8ff12cfc | 1357 | stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); |
e95eed57 CL |
1358 | discard_slab(s, page); |
1359 | } | |
81819f0f CL |
1360 | } |
1361 | } | |
1362 | ||
1363 | /* | |
1364 | * Remove the cpu slab | |
1365 | */ | |
dfb4f096 | 1366 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1367 | { |
dfb4f096 | 1368 | struct page *page = c->page; |
7c2e132c | 1369 | int tail = 1; |
8ff12cfc CL |
1370 | |
1371 | if (c->freelist) | |
1372 | stat(c, DEACTIVATE_REMOTE_FREES); | |
894b8788 | 1373 | /* |
6446faa2 | 1374 | * Merge cpu freelist into slab freelist. Typically we get here |
894b8788 CL |
1375 | * because both freelists are empty. So this is unlikely |
1376 | * to occur. | |
1377 | */ | |
a973e9dd | 1378 | while (unlikely(c->freelist)) { |
894b8788 CL |
1379 | void **object; |
1380 | ||
7c2e132c CL |
1381 | tail = 0; /* Hot objects. Put the slab first */ |
1382 | ||
894b8788 | 1383 | /* Retrieve object from cpu_freelist */ |
dfb4f096 | 1384 | object = c->freelist; |
b3fba8da | 1385 | c->freelist = c->freelist[c->offset]; |
894b8788 CL |
1386 | |
1387 | /* And put onto the regular freelist */ | |
b3fba8da | 1388 | object[c->offset] = page->freelist; |
894b8788 CL |
1389 | page->freelist = object; |
1390 | page->inuse--; | |
1391 | } | |
dfb4f096 | 1392 | c->page = NULL; |
7c2e132c | 1393 | unfreeze_slab(s, page, tail); |
81819f0f CL |
1394 | } |
1395 | ||
dfb4f096 | 1396 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1397 | { |
8ff12cfc | 1398 | stat(c, CPUSLAB_FLUSH); |
dfb4f096 CL |
1399 | slab_lock(c->page); |
1400 | deactivate_slab(s, c); | |
81819f0f CL |
1401 | } |
1402 | ||
1403 | /* | |
1404 | * Flush cpu slab. | |
6446faa2 | 1405 | * |
81819f0f CL |
1406 | * Called from IPI handler with interrupts disabled. |
1407 | */ | |
0c710013 | 1408 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 1409 | { |
dfb4f096 | 1410 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
81819f0f | 1411 | |
dfb4f096 CL |
1412 | if (likely(c && c->page)) |
1413 | flush_slab(s, c); | |
81819f0f CL |
1414 | } |
1415 | ||
1416 | static void flush_cpu_slab(void *d) | |
1417 | { | |
1418 | struct kmem_cache *s = d; | |
81819f0f | 1419 | |
dfb4f096 | 1420 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
1421 | } |
1422 | ||
1423 | static void flush_all(struct kmem_cache *s) | |
1424 | { | |
1425 | #ifdef CONFIG_SMP | |
1426 | on_each_cpu(flush_cpu_slab, s, 1, 1); | |
1427 | #else | |
1428 | unsigned long flags; | |
1429 | ||
1430 | local_irq_save(flags); | |
1431 | flush_cpu_slab(s); | |
1432 | local_irq_restore(flags); | |
1433 | #endif | |
1434 | } | |
1435 | ||
dfb4f096 CL |
1436 | /* |
1437 | * Check if the objects in a per cpu structure fit numa | |
1438 | * locality expectations. | |
1439 | */ | |
1440 | static inline int node_match(struct kmem_cache_cpu *c, int node) | |
1441 | { | |
1442 | #ifdef CONFIG_NUMA | |
1443 | if (node != -1 && c->node != node) | |
1444 | return 0; | |
1445 | #endif | |
1446 | return 1; | |
1447 | } | |
1448 | ||
81819f0f | 1449 | /* |
894b8788 CL |
1450 | * Slow path. The lockless freelist is empty or we need to perform |
1451 | * debugging duties. | |
1452 | * | |
1453 | * Interrupts are disabled. | |
81819f0f | 1454 | * |
894b8788 CL |
1455 | * Processing is still very fast if new objects have been freed to the |
1456 | * regular freelist. In that case we simply take over the regular freelist | |
1457 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1458 | * |
894b8788 CL |
1459 | * If that is not working then we fall back to the partial lists. We take the |
1460 | * first element of the freelist as the object to allocate now and move the | |
1461 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1462 | * |
894b8788 | 1463 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
1464 | * we need to allocate a new slab. This is the slowest path since it involves |
1465 | * a call to the page allocator and the setup of a new slab. | |
81819f0f | 1466 | */ |
894b8788 | 1467 | static void *__slab_alloc(struct kmem_cache *s, |
dfb4f096 | 1468 | gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) |
81819f0f | 1469 | { |
81819f0f | 1470 | void **object; |
dfb4f096 | 1471 | struct page *new; |
81819f0f | 1472 | |
dfb4f096 | 1473 | if (!c->page) |
81819f0f CL |
1474 | goto new_slab; |
1475 | ||
dfb4f096 CL |
1476 | slab_lock(c->page); |
1477 | if (unlikely(!node_match(c, node))) | |
81819f0f | 1478 | goto another_slab; |
6446faa2 | 1479 | |
8ff12cfc | 1480 | stat(c, ALLOC_REFILL); |
6446faa2 | 1481 | |
894b8788 | 1482 | load_freelist: |
dfb4f096 | 1483 | object = c->page->freelist; |
a973e9dd | 1484 | if (unlikely(!object)) |
81819f0f | 1485 | goto another_slab; |
dfb4f096 | 1486 | if (unlikely(SlabDebug(c->page))) |
81819f0f CL |
1487 | goto debug; |
1488 | ||
b3fba8da | 1489 | c->freelist = object[c->offset]; |
dfb4f096 | 1490 | c->page->inuse = s->objects; |
a973e9dd | 1491 | c->page->freelist = NULL; |
dfb4f096 | 1492 | c->node = page_to_nid(c->page); |
1f84260c | 1493 | unlock_out: |
dfb4f096 | 1494 | slab_unlock(c->page); |
8ff12cfc | 1495 | stat(c, ALLOC_SLOWPATH); |
81819f0f CL |
1496 | return object; |
1497 | ||
1498 | another_slab: | |
dfb4f096 | 1499 | deactivate_slab(s, c); |
81819f0f CL |
1500 | |
1501 | new_slab: | |
dfb4f096 CL |
1502 | new = get_partial(s, gfpflags, node); |
1503 | if (new) { | |
1504 | c->page = new; | |
8ff12cfc | 1505 | stat(c, ALLOC_FROM_PARTIAL); |
894b8788 | 1506 | goto load_freelist; |
81819f0f CL |
1507 | } |
1508 | ||
b811c202 CL |
1509 | if (gfpflags & __GFP_WAIT) |
1510 | local_irq_enable(); | |
1511 | ||
dfb4f096 | 1512 | new = new_slab(s, gfpflags, node); |
b811c202 CL |
1513 | |
1514 | if (gfpflags & __GFP_WAIT) | |
1515 | local_irq_disable(); | |
1516 | ||
dfb4f096 CL |
1517 | if (new) { |
1518 | c = get_cpu_slab(s, smp_processor_id()); | |
8ff12cfc | 1519 | stat(c, ALLOC_SLAB); |
05aa3450 | 1520 | if (c->page) |
dfb4f096 | 1521 | flush_slab(s, c); |
dfb4f096 CL |
1522 | slab_lock(new); |
1523 | SetSlabFrozen(new); | |
1524 | c->page = new; | |
4b6f0750 | 1525 | goto load_freelist; |
81819f0f | 1526 | } |
00e962c5 | 1527 | |
71c7a06f CL |
1528 | /* |
1529 | * No memory available. | |
1530 | * | |
1531 | * If the slab uses higher order allocs but the object is | |
1532 | * smaller than a page size then we can fallback in emergencies | |
1533 | * to the page allocator via kmalloc_large. The page allocator may | |
1534 | * have failed to obtain a higher order page and we can try to | |
1535 | * allocate a single page if the object fits into a single page. | |
1536 | * That is only possible if certain conditions are met that are being | |
1537 | * checked when a slab is created. | |
1538 | */ | |
1539 | if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK)) | |
1540 | return kmalloc_large(s->objsize, gfpflags); | |
1541 | ||
1542 | return NULL; | |
81819f0f | 1543 | debug: |
dfb4f096 | 1544 | if (!alloc_debug_processing(s, c->page, object, addr)) |
81819f0f | 1545 | goto another_slab; |
894b8788 | 1546 | |
dfb4f096 | 1547 | c->page->inuse++; |
b3fba8da | 1548 | c->page->freelist = object[c->offset]; |
ee3c72a1 | 1549 | c->node = -1; |
1f84260c | 1550 | goto unlock_out; |
894b8788 CL |
1551 | } |
1552 | ||
1553 | /* | |
1554 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
1555 | * have the fastpath folded into their functions. So no function call | |
1556 | * overhead for requests that can be satisfied on the fastpath. | |
1557 | * | |
1558 | * The fastpath works by first checking if the lockless freelist can be used. | |
1559 | * If not then __slab_alloc is called for slow processing. | |
1560 | * | |
1561 | * Otherwise we can simply pick the next object from the lockless free list. | |
1562 | */ | |
06428780 | 1563 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
ce15fea8 | 1564 | gfp_t gfpflags, int node, void *addr) |
894b8788 | 1565 | { |
894b8788 | 1566 | void **object; |
dfb4f096 | 1567 | struct kmem_cache_cpu *c; |
1f84260c CL |
1568 | unsigned long flags; |
1569 | ||
894b8788 | 1570 | local_irq_save(flags); |
dfb4f096 | 1571 | c = get_cpu_slab(s, smp_processor_id()); |
a973e9dd | 1572 | if (unlikely(!c->freelist || !node_match(c, node))) |
894b8788 | 1573 | |
dfb4f096 | 1574 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
1575 | |
1576 | else { | |
dfb4f096 | 1577 | object = c->freelist; |
b3fba8da | 1578 | c->freelist = object[c->offset]; |
8ff12cfc | 1579 | stat(c, ALLOC_FASTPATH); |
894b8788 CL |
1580 | } |
1581 | local_irq_restore(flags); | |
d07dbea4 CL |
1582 | |
1583 | if (unlikely((gfpflags & __GFP_ZERO) && object)) | |
42a9fdbb | 1584 | memset(object, 0, c->objsize); |
d07dbea4 | 1585 | |
894b8788 | 1586 | return object; |
81819f0f CL |
1587 | } |
1588 | ||
1589 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
1590 | { | |
ce15fea8 | 1591 | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); |
81819f0f CL |
1592 | } |
1593 | EXPORT_SYMBOL(kmem_cache_alloc); | |
1594 | ||
1595 | #ifdef CONFIG_NUMA | |
1596 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
1597 | { | |
ce15fea8 | 1598 | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); |
81819f0f CL |
1599 | } |
1600 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
1601 | #endif | |
1602 | ||
1603 | /* | |
894b8788 CL |
1604 | * Slow patch handling. This may still be called frequently since objects |
1605 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 1606 | * |
894b8788 CL |
1607 | * So we still attempt to reduce cache line usage. Just take the slab |
1608 | * lock and free the item. If there is no additional partial page | |
1609 | * handling required then we can return immediately. | |
81819f0f | 1610 | */ |
894b8788 | 1611 | static void __slab_free(struct kmem_cache *s, struct page *page, |
b3fba8da | 1612 | void *x, void *addr, unsigned int offset) |
81819f0f CL |
1613 | { |
1614 | void *prior; | |
1615 | void **object = (void *)x; | |
8ff12cfc | 1616 | struct kmem_cache_cpu *c; |
81819f0f | 1617 | |
8ff12cfc CL |
1618 | c = get_cpu_slab(s, raw_smp_processor_id()); |
1619 | stat(c, FREE_SLOWPATH); | |
81819f0f CL |
1620 | slab_lock(page); |
1621 | ||
35e5d7ee | 1622 | if (unlikely(SlabDebug(page))) |
81819f0f | 1623 | goto debug; |
6446faa2 | 1624 | |
81819f0f | 1625 | checks_ok: |
b3fba8da | 1626 | prior = object[offset] = page->freelist; |
81819f0f CL |
1627 | page->freelist = object; |
1628 | page->inuse--; | |
1629 | ||
8ff12cfc CL |
1630 | if (unlikely(SlabFrozen(page))) { |
1631 | stat(c, FREE_FROZEN); | |
81819f0f | 1632 | goto out_unlock; |
8ff12cfc | 1633 | } |
81819f0f CL |
1634 | |
1635 | if (unlikely(!page->inuse)) | |
1636 | goto slab_empty; | |
1637 | ||
1638 | /* | |
6446faa2 | 1639 | * Objects left in the slab. If it was not on the partial list before |
81819f0f CL |
1640 | * then add it. |
1641 | */ | |
a973e9dd | 1642 | if (unlikely(!prior)) { |
7c2e132c | 1643 | add_partial(get_node(s, page_to_nid(page)), page, 1); |
8ff12cfc CL |
1644 | stat(c, FREE_ADD_PARTIAL); |
1645 | } | |
81819f0f CL |
1646 | |
1647 | out_unlock: | |
1648 | slab_unlock(page); | |
81819f0f CL |
1649 | return; |
1650 | ||
1651 | slab_empty: | |
a973e9dd | 1652 | if (prior) { |
81819f0f | 1653 | /* |
672bba3a | 1654 | * Slab still on the partial list. |
81819f0f CL |
1655 | */ |
1656 | remove_partial(s, page); | |
8ff12cfc CL |
1657 | stat(c, FREE_REMOVE_PARTIAL); |
1658 | } | |
81819f0f | 1659 | slab_unlock(page); |
8ff12cfc | 1660 | stat(c, FREE_SLAB); |
81819f0f | 1661 | discard_slab(s, page); |
81819f0f CL |
1662 | return; |
1663 | ||
1664 | debug: | |
3ec09742 | 1665 | if (!free_debug_processing(s, page, x, addr)) |
77c5e2d0 | 1666 | goto out_unlock; |
77c5e2d0 | 1667 | goto checks_ok; |
81819f0f CL |
1668 | } |
1669 | ||
894b8788 CL |
1670 | /* |
1671 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
1672 | * can perform fastpath freeing without additional function calls. | |
1673 | * | |
1674 | * The fastpath is only possible if we are freeing to the current cpu slab | |
1675 | * of this processor. This typically the case if we have just allocated | |
1676 | * the item before. | |
1677 | * | |
1678 | * If fastpath is not possible then fall back to __slab_free where we deal | |
1679 | * with all sorts of special processing. | |
1680 | */ | |
06428780 | 1681 | static __always_inline void slab_free(struct kmem_cache *s, |
894b8788 CL |
1682 | struct page *page, void *x, void *addr) |
1683 | { | |
1684 | void **object = (void *)x; | |
dfb4f096 | 1685 | struct kmem_cache_cpu *c; |
1f84260c CL |
1686 | unsigned long flags; |
1687 | ||
894b8788 | 1688 | local_irq_save(flags); |
dfb4f096 | 1689 | c = get_cpu_slab(s, smp_processor_id()); |
27d9e4e9 | 1690 | debug_check_no_locks_freed(object, c->objsize); |
ee3c72a1 | 1691 | if (likely(page == c->page && c->node >= 0)) { |
b3fba8da | 1692 | object[c->offset] = c->freelist; |
dfb4f096 | 1693 | c->freelist = object; |
8ff12cfc | 1694 | stat(c, FREE_FASTPATH); |
894b8788 | 1695 | } else |
b3fba8da | 1696 | __slab_free(s, page, x, addr, c->offset); |
894b8788 CL |
1697 | |
1698 | local_irq_restore(flags); | |
1699 | } | |
1700 | ||
81819f0f CL |
1701 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1702 | { | |
77c5e2d0 | 1703 | struct page *page; |
81819f0f | 1704 | |
b49af68f | 1705 | page = virt_to_head_page(x); |
81819f0f | 1706 | |
77c5e2d0 | 1707 | slab_free(s, page, x, __builtin_return_address(0)); |
81819f0f CL |
1708 | } |
1709 | EXPORT_SYMBOL(kmem_cache_free); | |
1710 | ||
1711 | /* Figure out on which slab object the object resides */ | |
1712 | static struct page *get_object_page(const void *x) | |
1713 | { | |
b49af68f | 1714 | struct page *page = virt_to_head_page(x); |
81819f0f CL |
1715 | |
1716 | if (!PageSlab(page)) | |
1717 | return NULL; | |
1718 | ||
1719 | return page; | |
1720 | } | |
1721 | ||
1722 | /* | |
672bba3a CL |
1723 | * Object placement in a slab is made very easy because we always start at |
1724 | * offset 0. If we tune the size of the object to the alignment then we can | |
1725 | * get the required alignment by putting one properly sized object after | |
1726 | * another. | |
81819f0f CL |
1727 | * |
1728 | * Notice that the allocation order determines the sizes of the per cpu | |
1729 | * caches. Each processor has always one slab available for allocations. | |
1730 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 1731 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 1732 | * locking overhead. |
81819f0f CL |
1733 | */ |
1734 | ||
1735 | /* | |
1736 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
1737 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
1738 | * and increases the number of allocations possible without having to | |
1739 | * take the list_lock. | |
1740 | */ | |
1741 | static int slub_min_order; | |
1742 | static int slub_max_order = DEFAULT_MAX_ORDER; | |
81819f0f CL |
1743 | static int slub_min_objects = DEFAULT_MIN_OBJECTS; |
1744 | ||
1745 | /* | |
1746 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 1747 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
1748 | */ |
1749 | static int slub_nomerge; | |
1750 | ||
81819f0f CL |
1751 | /* |
1752 | * Calculate the order of allocation given an slab object size. | |
1753 | * | |
672bba3a CL |
1754 | * The order of allocation has significant impact on performance and other |
1755 | * system components. Generally order 0 allocations should be preferred since | |
1756 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
1757 | * be problematic to put into order 0 slabs because there may be too much | |
1758 | * unused space left. We go to a higher order if more than 1/8th of the slab | |
1759 | * would be wasted. | |
1760 | * | |
1761 | * In order to reach satisfactory performance we must ensure that a minimum | |
1762 | * number of objects is in one slab. Otherwise we may generate too much | |
1763 | * activity on the partial lists which requires taking the list_lock. This is | |
1764 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 1765 | * |
672bba3a CL |
1766 | * slub_max_order specifies the order where we begin to stop considering the |
1767 | * number of objects in a slab as critical. If we reach slub_max_order then | |
1768 | * we try to keep the page order as low as possible. So we accept more waste | |
1769 | * of space in favor of a small page order. | |
81819f0f | 1770 | * |
672bba3a CL |
1771 | * Higher order allocations also allow the placement of more objects in a |
1772 | * slab and thereby reduce object handling overhead. If the user has | |
1773 | * requested a higher mininum order then we start with that one instead of | |
1774 | * the smallest order which will fit the object. | |
81819f0f | 1775 | */ |
5e6d444e CL |
1776 | static inline int slab_order(int size, int min_objects, |
1777 | int max_order, int fract_leftover) | |
81819f0f CL |
1778 | { |
1779 | int order; | |
1780 | int rem; | |
6300ea75 | 1781 | int min_order = slub_min_order; |
81819f0f | 1782 | |
6300ea75 | 1783 | for (order = max(min_order, |
5e6d444e CL |
1784 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1785 | order <= max_order; order++) { | |
81819f0f | 1786 | |
5e6d444e | 1787 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 1788 | |
5e6d444e | 1789 | if (slab_size < min_objects * size) |
81819f0f CL |
1790 | continue; |
1791 | ||
1792 | rem = slab_size % size; | |
1793 | ||
5e6d444e | 1794 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
1795 | break; |
1796 | ||
1797 | } | |
672bba3a | 1798 | |
81819f0f CL |
1799 | return order; |
1800 | } | |
1801 | ||
5e6d444e CL |
1802 | static inline int calculate_order(int size) |
1803 | { | |
1804 | int order; | |
1805 | int min_objects; | |
1806 | int fraction; | |
1807 | ||
1808 | /* | |
1809 | * Attempt to find best configuration for a slab. This | |
1810 | * works by first attempting to generate a layout with | |
1811 | * the best configuration and backing off gradually. | |
1812 | * | |
1813 | * First we reduce the acceptable waste in a slab. Then | |
1814 | * we reduce the minimum objects required in a slab. | |
1815 | */ | |
1816 | min_objects = slub_min_objects; | |
1817 | while (min_objects > 1) { | |
1818 | fraction = 8; | |
1819 | while (fraction >= 4) { | |
1820 | order = slab_order(size, min_objects, | |
1821 | slub_max_order, fraction); | |
1822 | if (order <= slub_max_order) | |
1823 | return order; | |
1824 | fraction /= 2; | |
1825 | } | |
1826 | min_objects /= 2; | |
1827 | } | |
1828 | ||
1829 | /* | |
1830 | * We were unable to place multiple objects in a slab. Now | |
1831 | * lets see if we can place a single object there. | |
1832 | */ | |
1833 | order = slab_order(size, 1, slub_max_order, 1); | |
1834 | if (order <= slub_max_order) | |
1835 | return order; | |
1836 | ||
1837 | /* | |
1838 | * Doh this slab cannot be placed using slub_max_order. | |
1839 | */ | |
1840 | order = slab_order(size, 1, MAX_ORDER, 1); | |
1841 | if (order <= MAX_ORDER) | |
1842 | return order; | |
1843 | return -ENOSYS; | |
1844 | } | |
1845 | ||
81819f0f | 1846 | /* |
672bba3a | 1847 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
1848 | */ |
1849 | static unsigned long calculate_alignment(unsigned long flags, | |
1850 | unsigned long align, unsigned long size) | |
1851 | { | |
1852 | /* | |
6446faa2 CL |
1853 | * If the user wants hardware cache aligned objects then follow that |
1854 | * suggestion if the object is sufficiently large. | |
81819f0f | 1855 | * |
6446faa2 CL |
1856 | * The hardware cache alignment cannot override the specified |
1857 | * alignment though. If that is greater then use it. | |
81819f0f | 1858 | */ |
5af60839 | 1859 | if ((flags & SLAB_HWCACHE_ALIGN) && |
65c02d4c CL |
1860 | size > cache_line_size() / 2) |
1861 | return max_t(unsigned long, align, cache_line_size()); | |
81819f0f CL |
1862 | |
1863 | if (align < ARCH_SLAB_MINALIGN) | |
1864 | return ARCH_SLAB_MINALIGN; | |
1865 | ||
1866 | return ALIGN(align, sizeof(void *)); | |
1867 | } | |
1868 | ||
dfb4f096 CL |
1869 | static void init_kmem_cache_cpu(struct kmem_cache *s, |
1870 | struct kmem_cache_cpu *c) | |
1871 | { | |
1872 | c->page = NULL; | |
a973e9dd | 1873 | c->freelist = NULL; |
dfb4f096 | 1874 | c->node = 0; |
42a9fdbb CL |
1875 | c->offset = s->offset / sizeof(void *); |
1876 | c->objsize = s->objsize; | |
dfb4f096 CL |
1877 | } |
1878 | ||
81819f0f CL |
1879 | static void init_kmem_cache_node(struct kmem_cache_node *n) |
1880 | { | |
1881 | n->nr_partial = 0; | |
1882 | atomic_long_set(&n->nr_slabs, 0); | |
1883 | spin_lock_init(&n->list_lock); | |
1884 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 1885 | #ifdef CONFIG_SLUB_DEBUG |
643b1138 | 1886 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 1887 | #endif |
81819f0f CL |
1888 | } |
1889 | ||
4c93c355 CL |
1890 | #ifdef CONFIG_SMP |
1891 | /* | |
1892 | * Per cpu array for per cpu structures. | |
1893 | * | |
1894 | * The per cpu array places all kmem_cache_cpu structures from one processor | |
1895 | * close together meaning that it becomes possible that multiple per cpu | |
1896 | * structures are contained in one cacheline. This may be particularly | |
1897 | * beneficial for the kmalloc caches. | |
1898 | * | |
1899 | * A desktop system typically has around 60-80 slabs. With 100 here we are | |
1900 | * likely able to get per cpu structures for all caches from the array defined | |
1901 | * here. We must be able to cover all kmalloc caches during bootstrap. | |
1902 | * | |
1903 | * If the per cpu array is exhausted then fall back to kmalloc | |
1904 | * of individual cachelines. No sharing is possible then. | |
1905 | */ | |
1906 | #define NR_KMEM_CACHE_CPU 100 | |
1907 | ||
1908 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | |
1909 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | |
1910 | ||
1911 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | |
1912 | static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; | |
1913 | ||
1914 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | |
1915 | int cpu, gfp_t flags) | |
1916 | { | |
1917 | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | |
1918 | ||
1919 | if (c) | |
1920 | per_cpu(kmem_cache_cpu_free, cpu) = | |
1921 | (void *)c->freelist; | |
1922 | else { | |
1923 | /* Table overflow: So allocate ourselves */ | |
1924 | c = kmalloc_node( | |
1925 | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | |
1926 | flags, cpu_to_node(cpu)); | |
1927 | if (!c) | |
1928 | return NULL; | |
1929 | } | |
1930 | ||
1931 | init_kmem_cache_cpu(s, c); | |
1932 | return c; | |
1933 | } | |
1934 | ||
1935 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | |
1936 | { | |
1937 | if (c < per_cpu(kmem_cache_cpu, cpu) || | |
1938 | c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | |
1939 | kfree(c); | |
1940 | return; | |
1941 | } | |
1942 | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | |
1943 | per_cpu(kmem_cache_cpu_free, cpu) = c; | |
1944 | } | |
1945 | ||
1946 | static void free_kmem_cache_cpus(struct kmem_cache *s) | |
1947 | { | |
1948 | int cpu; | |
1949 | ||
1950 | for_each_online_cpu(cpu) { | |
1951 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
1952 | ||
1953 | if (c) { | |
1954 | s->cpu_slab[cpu] = NULL; | |
1955 | free_kmem_cache_cpu(c, cpu); | |
1956 | } | |
1957 | } | |
1958 | } | |
1959 | ||
1960 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
1961 | { | |
1962 | int cpu; | |
1963 | ||
1964 | for_each_online_cpu(cpu) { | |
1965 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
1966 | ||
1967 | if (c) | |
1968 | continue; | |
1969 | ||
1970 | c = alloc_kmem_cache_cpu(s, cpu, flags); | |
1971 | if (!c) { | |
1972 | free_kmem_cache_cpus(s); | |
1973 | return 0; | |
1974 | } | |
1975 | s->cpu_slab[cpu] = c; | |
1976 | } | |
1977 | return 1; | |
1978 | } | |
1979 | ||
1980 | /* | |
1981 | * Initialize the per cpu array. | |
1982 | */ | |
1983 | static void init_alloc_cpu_cpu(int cpu) | |
1984 | { | |
1985 | int i; | |
1986 | ||
1987 | if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) | |
1988 | return; | |
1989 | ||
1990 | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | |
1991 | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | |
1992 | ||
1993 | cpu_set(cpu, kmem_cach_cpu_free_init_once); | |
1994 | } | |
1995 | ||
1996 | static void __init init_alloc_cpu(void) | |
1997 | { | |
1998 | int cpu; | |
1999 | ||
2000 | for_each_online_cpu(cpu) | |
2001 | init_alloc_cpu_cpu(cpu); | |
2002 | } | |
2003 | ||
2004 | #else | |
2005 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | |
2006 | static inline void init_alloc_cpu(void) {} | |
2007 | ||
2008 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
2009 | { | |
2010 | init_kmem_cache_cpu(s, &s->cpu_slab); | |
2011 | return 1; | |
2012 | } | |
2013 | #endif | |
2014 | ||
81819f0f CL |
2015 | #ifdef CONFIG_NUMA |
2016 | /* | |
2017 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2018 | * slab on the node for this slabcache. There are no concurrent accesses | |
2019 | * possible. | |
2020 | * | |
2021 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2022 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2023 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2024 | */ |
1cd7daa5 AB |
2025 | static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, |
2026 | int node) | |
81819f0f CL |
2027 | { |
2028 | struct page *page; | |
2029 | struct kmem_cache_node *n; | |
ba84c73c | 2030 | unsigned long flags; |
81819f0f CL |
2031 | |
2032 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | |
2033 | ||
a2f92ee7 | 2034 | page = new_slab(kmalloc_caches, gfpflags, node); |
81819f0f CL |
2035 | |
2036 | BUG_ON(!page); | |
a2f92ee7 CL |
2037 | if (page_to_nid(page) != node) { |
2038 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2039 | "node %d\n", node); | |
2040 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2041 | "in order to be able to continue\n"); | |
2042 | } | |
2043 | ||
81819f0f CL |
2044 | n = page->freelist; |
2045 | BUG_ON(!n); | |
2046 | page->freelist = get_freepointer(kmalloc_caches, n); | |
2047 | page->inuse++; | |
2048 | kmalloc_caches->node[node] = n; | |
8ab1372f | 2049 | #ifdef CONFIG_SLUB_DEBUG |
d45f39cb CL |
2050 | init_object(kmalloc_caches, n, 1); |
2051 | init_tracking(kmalloc_caches, n); | |
8ab1372f | 2052 | #endif |
81819f0f CL |
2053 | init_kmem_cache_node(n); |
2054 | atomic_long_inc(&n->nr_slabs); | |
6446faa2 | 2055 | |
ba84c73c | 2056 | /* |
2057 | * lockdep requires consistent irq usage for each lock | |
2058 | * so even though there cannot be a race this early in | |
2059 | * the boot sequence, we still disable irqs. | |
2060 | */ | |
2061 | local_irq_save(flags); | |
7c2e132c | 2062 | add_partial(n, page, 0); |
ba84c73c | 2063 | local_irq_restore(flags); |
81819f0f CL |
2064 | return n; |
2065 | } | |
2066 | ||
2067 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2068 | { | |
2069 | int node; | |
2070 | ||
f64dc58c | 2071 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2072 | struct kmem_cache_node *n = s->node[node]; |
2073 | if (n && n != &s->local_node) | |
2074 | kmem_cache_free(kmalloc_caches, n); | |
2075 | s->node[node] = NULL; | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2080 | { | |
2081 | int node; | |
2082 | int local_node; | |
2083 | ||
2084 | if (slab_state >= UP) | |
2085 | local_node = page_to_nid(virt_to_page(s)); | |
2086 | else | |
2087 | local_node = 0; | |
2088 | ||
f64dc58c | 2089 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2090 | struct kmem_cache_node *n; |
2091 | ||
2092 | if (local_node == node) | |
2093 | n = &s->local_node; | |
2094 | else { | |
2095 | if (slab_state == DOWN) { | |
2096 | n = early_kmem_cache_node_alloc(gfpflags, | |
2097 | node); | |
2098 | continue; | |
2099 | } | |
2100 | n = kmem_cache_alloc_node(kmalloc_caches, | |
2101 | gfpflags, node); | |
2102 | ||
2103 | if (!n) { | |
2104 | free_kmem_cache_nodes(s); | |
2105 | return 0; | |
2106 | } | |
2107 | ||
2108 | } | |
2109 | s->node[node] = n; | |
2110 | init_kmem_cache_node(n); | |
2111 | } | |
2112 | return 1; | |
2113 | } | |
2114 | #else | |
2115 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2116 | { | |
2117 | } | |
2118 | ||
2119 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2120 | { | |
2121 | init_kmem_cache_node(&s->local_node); | |
2122 | return 1; | |
2123 | } | |
2124 | #endif | |
2125 | ||
2126 | /* | |
2127 | * calculate_sizes() determines the order and the distribution of data within | |
2128 | * a slab object. | |
2129 | */ | |
2130 | static int calculate_sizes(struct kmem_cache *s) | |
2131 | { | |
2132 | unsigned long flags = s->flags; | |
2133 | unsigned long size = s->objsize; | |
2134 | unsigned long align = s->align; | |
2135 | ||
d8b42bf5 CL |
2136 | /* |
2137 | * Round up object size to the next word boundary. We can only | |
2138 | * place the free pointer at word boundaries and this determines | |
2139 | * the possible location of the free pointer. | |
2140 | */ | |
2141 | size = ALIGN(size, sizeof(void *)); | |
2142 | ||
2143 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
2144 | /* |
2145 | * Determine if we can poison the object itself. If the user of | |
2146 | * the slab may touch the object after free or before allocation | |
2147 | * then we should never poison the object itself. | |
2148 | */ | |
2149 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2150 | !s->ctor) |
81819f0f CL |
2151 | s->flags |= __OBJECT_POISON; |
2152 | else | |
2153 | s->flags &= ~__OBJECT_POISON; | |
2154 | ||
81819f0f CL |
2155 | |
2156 | /* | |
672bba3a | 2157 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2158 | * end of the object and the free pointer. If not then add an |
672bba3a | 2159 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
2160 | */ |
2161 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
2162 | size += sizeof(void *); | |
41ecc55b | 2163 | #endif |
81819f0f CL |
2164 | |
2165 | /* | |
672bba3a CL |
2166 | * With that we have determined the number of bytes in actual use |
2167 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2168 | */ |
2169 | s->inuse = size; | |
2170 | ||
2171 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2172 | s->ctor)) { |
81819f0f CL |
2173 | /* |
2174 | * Relocate free pointer after the object if it is not | |
2175 | * permitted to overwrite the first word of the object on | |
2176 | * kmem_cache_free. | |
2177 | * | |
2178 | * This is the case if we do RCU, have a constructor or | |
2179 | * destructor or are poisoning the objects. | |
2180 | */ | |
2181 | s->offset = size; | |
2182 | size += sizeof(void *); | |
2183 | } | |
2184 | ||
c12b3c62 | 2185 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2186 | if (flags & SLAB_STORE_USER) |
2187 | /* | |
2188 | * Need to store information about allocs and frees after | |
2189 | * the object. | |
2190 | */ | |
2191 | size += 2 * sizeof(struct track); | |
2192 | ||
be7b3fbc | 2193 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2194 | /* |
2195 | * Add some empty padding so that we can catch | |
2196 | * overwrites from earlier objects rather than let | |
2197 | * tracking information or the free pointer be | |
2198 | * corrupted if an user writes before the start | |
2199 | * of the object. | |
2200 | */ | |
2201 | size += sizeof(void *); | |
41ecc55b | 2202 | #endif |
672bba3a | 2203 | |
81819f0f CL |
2204 | /* |
2205 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2206 | * user specified and the dynamic determination of cache line size |
2207 | * on bootup. | |
81819f0f CL |
2208 | */ |
2209 | align = calculate_alignment(flags, align, s->objsize); | |
2210 | ||
2211 | /* | |
2212 | * SLUB stores one object immediately after another beginning from | |
2213 | * offset 0. In order to align the objects we have to simply size | |
2214 | * each object to conform to the alignment. | |
2215 | */ | |
2216 | size = ALIGN(size, align); | |
2217 | s->size = size; | |
2218 | ||
71c7a06f CL |
2219 | if ((flags & __KMALLOC_CACHE) && |
2220 | PAGE_SIZE / size < slub_min_objects) { | |
2221 | /* | |
2222 | * Kmalloc cache that would not have enough objects in | |
2223 | * an order 0 page. Kmalloc slabs can fallback to | |
2224 | * page allocator order 0 allocs so take a reasonably large | |
2225 | * order that will allows us a good number of objects. | |
2226 | */ | |
2227 | s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER); | |
2228 | s->flags |= __PAGE_ALLOC_FALLBACK; | |
2229 | s->allocflags |= __GFP_NOWARN; | |
2230 | } else | |
2231 | s->order = calculate_order(size); | |
2232 | ||
81819f0f CL |
2233 | if (s->order < 0) |
2234 | return 0; | |
2235 | ||
b7a49f0d CL |
2236 | s->allocflags = 0; |
2237 | if (s->order) | |
2238 | s->allocflags |= __GFP_COMP; | |
2239 | ||
2240 | if (s->flags & SLAB_CACHE_DMA) | |
2241 | s->allocflags |= SLUB_DMA; | |
2242 | ||
2243 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
2244 | s->allocflags |= __GFP_RECLAIMABLE; | |
2245 | ||
81819f0f CL |
2246 | /* |
2247 | * Determine the number of objects per slab | |
2248 | */ | |
2249 | s->objects = (PAGE_SIZE << s->order) / size; | |
2250 | ||
b3fba8da | 2251 | return !!s->objects; |
81819f0f CL |
2252 | |
2253 | } | |
2254 | ||
81819f0f CL |
2255 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2256 | const char *name, size_t size, | |
2257 | size_t align, unsigned long flags, | |
4ba9b9d0 | 2258 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f CL |
2259 | { |
2260 | memset(s, 0, kmem_size); | |
2261 | s->name = name; | |
2262 | s->ctor = ctor; | |
81819f0f | 2263 | s->objsize = size; |
81819f0f | 2264 | s->align = align; |
ba0268a8 | 2265 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
81819f0f CL |
2266 | |
2267 | if (!calculate_sizes(s)) | |
2268 | goto error; | |
2269 | ||
2270 | s->refcount = 1; | |
2271 | #ifdef CONFIG_NUMA | |
9824601e | 2272 | s->remote_node_defrag_ratio = 100; |
81819f0f | 2273 | #endif |
dfb4f096 CL |
2274 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2275 | goto error; | |
81819f0f | 2276 | |
dfb4f096 | 2277 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) |
81819f0f | 2278 | return 1; |
4c93c355 | 2279 | free_kmem_cache_nodes(s); |
81819f0f CL |
2280 | error: |
2281 | if (flags & SLAB_PANIC) | |
2282 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2283 | "order=%u offset=%u flags=%lx\n", | |
2284 | s->name, (unsigned long)size, s->size, s->order, | |
2285 | s->offset, flags); | |
2286 | return 0; | |
2287 | } | |
81819f0f CL |
2288 | |
2289 | /* | |
2290 | * Check if a given pointer is valid | |
2291 | */ | |
2292 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | |
2293 | { | |
06428780 | 2294 | struct page *page; |
81819f0f CL |
2295 | |
2296 | page = get_object_page(object); | |
2297 | ||
2298 | if (!page || s != page->slab) | |
2299 | /* No slab or wrong slab */ | |
2300 | return 0; | |
2301 | ||
abcd08a6 | 2302 | if (!check_valid_pointer(s, page, object)) |
81819f0f CL |
2303 | return 0; |
2304 | ||
2305 | /* | |
2306 | * We could also check if the object is on the slabs freelist. | |
2307 | * But this would be too expensive and it seems that the main | |
6446faa2 | 2308 | * purpose of kmem_ptr_valid() is to check if the object belongs |
81819f0f CL |
2309 | * to a certain slab. |
2310 | */ | |
2311 | return 1; | |
2312 | } | |
2313 | EXPORT_SYMBOL(kmem_ptr_validate); | |
2314 | ||
2315 | /* | |
2316 | * Determine the size of a slab object | |
2317 | */ | |
2318 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2319 | { | |
2320 | return s->objsize; | |
2321 | } | |
2322 | EXPORT_SYMBOL(kmem_cache_size); | |
2323 | ||
2324 | const char *kmem_cache_name(struct kmem_cache *s) | |
2325 | { | |
2326 | return s->name; | |
2327 | } | |
2328 | EXPORT_SYMBOL(kmem_cache_name); | |
2329 | ||
2330 | /* | |
672bba3a CL |
2331 | * Attempt to free all slabs on a node. Return the number of slabs we |
2332 | * were unable to free. | |
81819f0f CL |
2333 | */ |
2334 | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | |
2335 | struct list_head *list) | |
2336 | { | |
2337 | int slabs_inuse = 0; | |
2338 | unsigned long flags; | |
2339 | struct page *page, *h; | |
2340 | ||
2341 | spin_lock_irqsave(&n->list_lock, flags); | |
2342 | list_for_each_entry_safe(page, h, list, lru) | |
2343 | if (!page->inuse) { | |
2344 | list_del(&page->lru); | |
2345 | discard_slab(s, page); | |
2346 | } else | |
2347 | slabs_inuse++; | |
2348 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2349 | return slabs_inuse; | |
2350 | } | |
2351 | ||
2352 | /* | |
672bba3a | 2353 | * Release all resources used by a slab cache. |
81819f0f | 2354 | */ |
0c710013 | 2355 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
2356 | { |
2357 | int node; | |
2358 | ||
2359 | flush_all(s); | |
2360 | ||
2361 | /* Attempt to free all objects */ | |
4c93c355 | 2362 | free_kmem_cache_cpus(s); |
f64dc58c | 2363 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2364 | struct kmem_cache_node *n = get_node(s, node); |
2365 | ||
2086d26a | 2366 | n->nr_partial -= free_list(s, n, &n->partial); |
81819f0f CL |
2367 | if (atomic_long_read(&n->nr_slabs)) |
2368 | return 1; | |
2369 | } | |
2370 | free_kmem_cache_nodes(s); | |
2371 | return 0; | |
2372 | } | |
2373 | ||
2374 | /* | |
2375 | * Close a cache and release the kmem_cache structure | |
2376 | * (must be used for caches created using kmem_cache_create) | |
2377 | */ | |
2378 | void kmem_cache_destroy(struct kmem_cache *s) | |
2379 | { | |
2380 | down_write(&slub_lock); | |
2381 | s->refcount--; | |
2382 | if (!s->refcount) { | |
2383 | list_del(&s->list); | |
a0e1d1be | 2384 | up_write(&slub_lock); |
81819f0f CL |
2385 | if (kmem_cache_close(s)) |
2386 | WARN_ON(1); | |
2387 | sysfs_slab_remove(s); | |
a0e1d1be CL |
2388 | } else |
2389 | up_write(&slub_lock); | |
81819f0f CL |
2390 | } |
2391 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2392 | ||
2393 | /******************************************************************** | |
2394 | * Kmalloc subsystem | |
2395 | *******************************************************************/ | |
2396 | ||
331dc558 | 2397 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; |
81819f0f CL |
2398 | EXPORT_SYMBOL(kmalloc_caches); |
2399 | ||
2400 | #ifdef CONFIG_ZONE_DMA | |
331dc558 | 2401 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; |
81819f0f CL |
2402 | #endif |
2403 | ||
2404 | static int __init setup_slub_min_order(char *str) | |
2405 | { | |
06428780 | 2406 | get_option(&str, &slub_min_order); |
81819f0f CL |
2407 | |
2408 | return 1; | |
2409 | } | |
2410 | ||
2411 | __setup("slub_min_order=", setup_slub_min_order); | |
2412 | ||
2413 | static int __init setup_slub_max_order(char *str) | |
2414 | { | |
06428780 | 2415 | get_option(&str, &slub_max_order); |
81819f0f CL |
2416 | |
2417 | return 1; | |
2418 | } | |
2419 | ||
2420 | __setup("slub_max_order=", setup_slub_max_order); | |
2421 | ||
2422 | static int __init setup_slub_min_objects(char *str) | |
2423 | { | |
06428780 | 2424 | get_option(&str, &slub_min_objects); |
81819f0f CL |
2425 | |
2426 | return 1; | |
2427 | } | |
2428 | ||
2429 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2430 | ||
2431 | static int __init setup_slub_nomerge(char *str) | |
2432 | { | |
2433 | slub_nomerge = 1; | |
2434 | return 1; | |
2435 | } | |
2436 | ||
2437 | __setup("slub_nomerge", setup_slub_nomerge); | |
2438 | ||
81819f0f CL |
2439 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2440 | const char *name, int size, gfp_t gfp_flags) | |
2441 | { | |
2442 | unsigned int flags = 0; | |
2443 | ||
2444 | if (gfp_flags & SLUB_DMA) | |
2445 | flags = SLAB_CACHE_DMA; | |
2446 | ||
2447 | down_write(&slub_lock); | |
2448 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | |
71c7a06f | 2449 | flags | __KMALLOC_CACHE, NULL)) |
81819f0f CL |
2450 | goto panic; |
2451 | ||
2452 | list_add(&s->list, &slab_caches); | |
2453 | up_write(&slub_lock); | |
2454 | if (sysfs_slab_add(s)) | |
2455 | goto panic; | |
2456 | return s; | |
2457 | ||
2458 | panic: | |
2459 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
2460 | } | |
2461 | ||
2e443fd0 | 2462 | #ifdef CONFIG_ZONE_DMA |
1ceef402 CL |
2463 | |
2464 | static void sysfs_add_func(struct work_struct *w) | |
2465 | { | |
2466 | struct kmem_cache *s; | |
2467 | ||
2468 | down_write(&slub_lock); | |
2469 | list_for_each_entry(s, &slab_caches, list) { | |
2470 | if (s->flags & __SYSFS_ADD_DEFERRED) { | |
2471 | s->flags &= ~__SYSFS_ADD_DEFERRED; | |
2472 | sysfs_slab_add(s); | |
2473 | } | |
2474 | } | |
2475 | up_write(&slub_lock); | |
2476 | } | |
2477 | ||
2478 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | |
2479 | ||
2e443fd0 CL |
2480 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) |
2481 | { | |
2482 | struct kmem_cache *s; | |
2e443fd0 CL |
2483 | char *text; |
2484 | size_t realsize; | |
2485 | ||
2486 | s = kmalloc_caches_dma[index]; | |
2487 | if (s) | |
2488 | return s; | |
2489 | ||
2490 | /* Dynamically create dma cache */ | |
1ceef402 CL |
2491 | if (flags & __GFP_WAIT) |
2492 | down_write(&slub_lock); | |
2493 | else { | |
2494 | if (!down_write_trylock(&slub_lock)) | |
2495 | goto out; | |
2496 | } | |
2497 | ||
2498 | if (kmalloc_caches_dma[index]) | |
2499 | goto unlock_out; | |
2e443fd0 | 2500 | |
7b55f620 | 2501 | realsize = kmalloc_caches[index].objsize; |
3adbefee IM |
2502 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", |
2503 | (unsigned int)realsize); | |
1ceef402 CL |
2504 | s = kmalloc(kmem_size, flags & ~SLUB_DMA); |
2505 | ||
2506 | if (!s || !text || !kmem_cache_open(s, flags, text, | |
2507 | realsize, ARCH_KMALLOC_MINALIGN, | |
2508 | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | |
2509 | kfree(s); | |
2510 | kfree(text); | |
2511 | goto unlock_out; | |
dfce8648 | 2512 | } |
1ceef402 CL |
2513 | |
2514 | list_add(&s->list, &slab_caches); | |
2515 | kmalloc_caches_dma[index] = s; | |
2516 | ||
2517 | schedule_work(&sysfs_add_work); | |
2518 | ||
2519 | unlock_out: | |
dfce8648 | 2520 | up_write(&slub_lock); |
1ceef402 | 2521 | out: |
dfce8648 | 2522 | return kmalloc_caches_dma[index]; |
2e443fd0 CL |
2523 | } |
2524 | #endif | |
2525 | ||
f1b26339 CL |
2526 | /* |
2527 | * Conversion table for small slabs sizes / 8 to the index in the | |
2528 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
2529 | * of two cache sizes there. The size of larger slabs can be determined using | |
2530 | * fls. | |
2531 | */ | |
2532 | static s8 size_index[24] = { | |
2533 | 3, /* 8 */ | |
2534 | 4, /* 16 */ | |
2535 | 5, /* 24 */ | |
2536 | 5, /* 32 */ | |
2537 | 6, /* 40 */ | |
2538 | 6, /* 48 */ | |
2539 | 6, /* 56 */ | |
2540 | 6, /* 64 */ | |
2541 | 1, /* 72 */ | |
2542 | 1, /* 80 */ | |
2543 | 1, /* 88 */ | |
2544 | 1, /* 96 */ | |
2545 | 7, /* 104 */ | |
2546 | 7, /* 112 */ | |
2547 | 7, /* 120 */ | |
2548 | 7, /* 128 */ | |
2549 | 2, /* 136 */ | |
2550 | 2, /* 144 */ | |
2551 | 2, /* 152 */ | |
2552 | 2, /* 160 */ | |
2553 | 2, /* 168 */ | |
2554 | 2, /* 176 */ | |
2555 | 2, /* 184 */ | |
2556 | 2 /* 192 */ | |
2557 | }; | |
2558 | ||
81819f0f CL |
2559 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
2560 | { | |
f1b26339 | 2561 | int index; |
81819f0f | 2562 | |
f1b26339 CL |
2563 | if (size <= 192) { |
2564 | if (!size) | |
2565 | return ZERO_SIZE_PTR; | |
81819f0f | 2566 | |
f1b26339 | 2567 | index = size_index[(size - 1) / 8]; |
aadb4bc4 | 2568 | } else |
f1b26339 | 2569 | index = fls(size - 1); |
81819f0f CL |
2570 | |
2571 | #ifdef CONFIG_ZONE_DMA | |
f1b26339 | 2572 | if (unlikely((flags & SLUB_DMA))) |
2e443fd0 | 2573 | return dma_kmalloc_cache(index, flags); |
f1b26339 | 2574 | |
81819f0f CL |
2575 | #endif |
2576 | return &kmalloc_caches[index]; | |
2577 | } | |
2578 | ||
2579 | void *__kmalloc(size_t size, gfp_t flags) | |
2580 | { | |
aadb4bc4 | 2581 | struct kmem_cache *s; |
81819f0f | 2582 | |
331dc558 | 2583 | if (unlikely(size > PAGE_SIZE)) |
eada35ef | 2584 | return kmalloc_large(size, flags); |
aadb4bc4 CL |
2585 | |
2586 | s = get_slab(size, flags); | |
2587 | ||
2588 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2589 | return s; |
2590 | ||
ce15fea8 | 2591 | return slab_alloc(s, flags, -1, __builtin_return_address(0)); |
81819f0f CL |
2592 | } |
2593 | EXPORT_SYMBOL(__kmalloc); | |
2594 | ||
f619cfe1 CL |
2595 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
2596 | { | |
2597 | struct page *page = alloc_pages_node(node, flags | __GFP_COMP, | |
2598 | get_order(size)); | |
2599 | ||
2600 | if (page) | |
2601 | return page_address(page); | |
2602 | else | |
2603 | return NULL; | |
2604 | } | |
2605 | ||
81819f0f CL |
2606 | #ifdef CONFIG_NUMA |
2607 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
2608 | { | |
aadb4bc4 | 2609 | struct kmem_cache *s; |
81819f0f | 2610 | |
331dc558 | 2611 | if (unlikely(size > PAGE_SIZE)) |
f619cfe1 | 2612 | return kmalloc_large_node(size, flags, node); |
aadb4bc4 CL |
2613 | |
2614 | s = get_slab(size, flags); | |
2615 | ||
2616 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2617 | return s; |
2618 | ||
ce15fea8 | 2619 | return slab_alloc(s, flags, node, __builtin_return_address(0)); |
81819f0f CL |
2620 | } |
2621 | EXPORT_SYMBOL(__kmalloc_node); | |
2622 | #endif | |
2623 | ||
2624 | size_t ksize(const void *object) | |
2625 | { | |
272c1d21 | 2626 | struct page *page; |
81819f0f CL |
2627 | struct kmem_cache *s; |
2628 | ||
ef8b4520 | 2629 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
2630 | return 0; |
2631 | ||
294a80a8 | 2632 | page = virt_to_head_page(object); |
294a80a8 VN |
2633 | |
2634 | if (unlikely(!PageSlab(page))) | |
2635 | return PAGE_SIZE << compound_order(page); | |
2636 | ||
81819f0f | 2637 | s = page->slab; |
81819f0f | 2638 | |
ae20bfda | 2639 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2640 | /* |
2641 | * Debugging requires use of the padding between object | |
2642 | * and whatever may come after it. | |
2643 | */ | |
2644 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
2645 | return s->objsize; | |
2646 | ||
ae20bfda | 2647 | #endif |
81819f0f CL |
2648 | /* |
2649 | * If we have the need to store the freelist pointer | |
2650 | * back there or track user information then we can | |
2651 | * only use the space before that information. | |
2652 | */ | |
2653 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
2654 | return s->inuse; | |
81819f0f CL |
2655 | /* |
2656 | * Else we can use all the padding etc for the allocation | |
2657 | */ | |
2658 | return s->size; | |
2659 | } | |
2660 | EXPORT_SYMBOL(ksize); | |
2661 | ||
2662 | void kfree(const void *x) | |
2663 | { | |
81819f0f | 2664 | struct page *page; |
5bb983b0 | 2665 | void *object = (void *)x; |
81819f0f | 2666 | |
2408c550 | 2667 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
2668 | return; |
2669 | ||
b49af68f | 2670 | page = virt_to_head_page(x); |
aadb4bc4 CL |
2671 | if (unlikely(!PageSlab(page))) { |
2672 | put_page(page); | |
2673 | return; | |
2674 | } | |
5bb983b0 | 2675 | slab_free(page->slab, page, object, __builtin_return_address(0)); |
81819f0f CL |
2676 | } |
2677 | EXPORT_SYMBOL(kfree); | |
2678 | ||
f61396ae CL |
2679 | static unsigned long count_partial(struct kmem_cache_node *n) |
2680 | { | |
2681 | unsigned long flags; | |
2682 | unsigned long x = 0; | |
2683 | struct page *page; | |
2684 | ||
2685 | spin_lock_irqsave(&n->list_lock, flags); | |
2686 | list_for_each_entry(page, &n->partial, lru) | |
2687 | x += page->inuse; | |
2688 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2689 | return x; | |
2690 | } | |
2691 | ||
2086d26a | 2692 | /* |
672bba3a CL |
2693 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2694 | * the remaining slabs by the number of items in use. The slabs with the | |
2695 | * most items in use come first. New allocations will then fill those up | |
2696 | * and thus they can be removed from the partial lists. | |
2697 | * | |
2698 | * The slabs with the least items are placed last. This results in them | |
2699 | * being allocated from last increasing the chance that the last objects | |
2700 | * are freed in them. | |
2086d26a CL |
2701 | */ |
2702 | int kmem_cache_shrink(struct kmem_cache *s) | |
2703 | { | |
2704 | int node; | |
2705 | int i; | |
2706 | struct kmem_cache_node *n; | |
2707 | struct page *page; | |
2708 | struct page *t; | |
2709 | struct list_head *slabs_by_inuse = | |
2710 | kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); | |
2711 | unsigned long flags; | |
2712 | ||
2713 | if (!slabs_by_inuse) | |
2714 | return -ENOMEM; | |
2715 | ||
2716 | flush_all(s); | |
f64dc58c | 2717 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
2718 | n = get_node(s, node); |
2719 | ||
2720 | if (!n->nr_partial) | |
2721 | continue; | |
2722 | ||
2723 | for (i = 0; i < s->objects; i++) | |
2724 | INIT_LIST_HEAD(slabs_by_inuse + i); | |
2725 | ||
2726 | spin_lock_irqsave(&n->list_lock, flags); | |
2727 | ||
2728 | /* | |
672bba3a | 2729 | * Build lists indexed by the items in use in each slab. |
2086d26a | 2730 | * |
672bba3a CL |
2731 | * Note that concurrent frees may occur while we hold the |
2732 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
2733 | */ |
2734 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
2735 | if (!page->inuse && slab_trylock(page)) { | |
2736 | /* | |
2737 | * Must hold slab lock here because slab_free | |
2738 | * may have freed the last object and be | |
2739 | * waiting to release the slab. | |
2740 | */ | |
2741 | list_del(&page->lru); | |
2742 | n->nr_partial--; | |
2743 | slab_unlock(page); | |
2744 | discard_slab(s, page); | |
2745 | } else { | |
fcda3d89 CL |
2746 | list_move(&page->lru, |
2747 | slabs_by_inuse + page->inuse); | |
2086d26a CL |
2748 | } |
2749 | } | |
2750 | ||
2086d26a | 2751 | /* |
672bba3a CL |
2752 | * Rebuild the partial list with the slabs filled up most |
2753 | * first and the least used slabs at the end. | |
2086d26a CL |
2754 | */ |
2755 | for (i = s->objects - 1; i >= 0; i--) | |
2756 | list_splice(slabs_by_inuse + i, n->partial.prev); | |
2757 | ||
2086d26a CL |
2758 | spin_unlock_irqrestore(&n->list_lock, flags); |
2759 | } | |
2760 | ||
2761 | kfree(slabs_by_inuse); | |
2762 | return 0; | |
2763 | } | |
2764 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2765 | ||
b9049e23 YG |
2766 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
2767 | static int slab_mem_going_offline_callback(void *arg) | |
2768 | { | |
2769 | struct kmem_cache *s; | |
2770 | ||
2771 | down_read(&slub_lock); | |
2772 | list_for_each_entry(s, &slab_caches, list) | |
2773 | kmem_cache_shrink(s); | |
2774 | up_read(&slub_lock); | |
2775 | ||
2776 | return 0; | |
2777 | } | |
2778 | ||
2779 | static void slab_mem_offline_callback(void *arg) | |
2780 | { | |
2781 | struct kmem_cache_node *n; | |
2782 | struct kmem_cache *s; | |
2783 | struct memory_notify *marg = arg; | |
2784 | int offline_node; | |
2785 | ||
2786 | offline_node = marg->status_change_nid; | |
2787 | ||
2788 | /* | |
2789 | * If the node still has available memory. we need kmem_cache_node | |
2790 | * for it yet. | |
2791 | */ | |
2792 | if (offline_node < 0) | |
2793 | return; | |
2794 | ||
2795 | down_read(&slub_lock); | |
2796 | list_for_each_entry(s, &slab_caches, list) { | |
2797 | n = get_node(s, offline_node); | |
2798 | if (n) { | |
2799 | /* | |
2800 | * if n->nr_slabs > 0, slabs still exist on the node | |
2801 | * that is going down. We were unable to free them, | |
2802 | * and offline_pages() function shoudn't call this | |
2803 | * callback. So, we must fail. | |
2804 | */ | |
27bb628a | 2805 | BUG_ON(atomic_long_read(&n->nr_slabs)); |
b9049e23 YG |
2806 | |
2807 | s->node[offline_node] = NULL; | |
2808 | kmem_cache_free(kmalloc_caches, n); | |
2809 | } | |
2810 | } | |
2811 | up_read(&slub_lock); | |
2812 | } | |
2813 | ||
2814 | static int slab_mem_going_online_callback(void *arg) | |
2815 | { | |
2816 | struct kmem_cache_node *n; | |
2817 | struct kmem_cache *s; | |
2818 | struct memory_notify *marg = arg; | |
2819 | int nid = marg->status_change_nid; | |
2820 | int ret = 0; | |
2821 | ||
2822 | /* | |
2823 | * If the node's memory is already available, then kmem_cache_node is | |
2824 | * already created. Nothing to do. | |
2825 | */ | |
2826 | if (nid < 0) | |
2827 | return 0; | |
2828 | ||
2829 | /* | |
2830 | * We are bringing a node online. No memory is availabe yet. We must | |
2831 | * allocate a kmem_cache_node structure in order to bring the node | |
2832 | * online. | |
2833 | */ | |
2834 | down_read(&slub_lock); | |
2835 | list_for_each_entry(s, &slab_caches, list) { | |
2836 | /* | |
2837 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
2838 | * since memory is not yet available from the node that | |
2839 | * is brought up. | |
2840 | */ | |
2841 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | |
2842 | if (!n) { | |
2843 | ret = -ENOMEM; | |
2844 | goto out; | |
2845 | } | |
2846 | init_kmem_cache_node(n); | |
2847 | s->node[nid] = n; | |
2848 | } | |
2849 | out: | |
2850 | up_read(&slub_lock); | |
2851 | return ret; | |
2852 | } | |
2853 | ||
2854 | static int slab_memory_callback(struct notifier_block *self, | |
2855 | unsigned long action, void *arg) | |
2856 | { | |
2857 | int ret = 0; | |
2858 | ||
2859 | switch (action) { | |
2860 | case MEM_GOING_ONLINE: | |
2861 | ret = slab_mem_going_online_callback(arg); | |
2862 | break; | |
2863 | case MEM_GOING_OFFLINE: | |
2864 | ret = slab_mem_going_offline_callback(arg); | |
2865 | break; | |
2866 | case MEM_OFFLINE: | |
2867 | case MEM_CANCEL_ONLINE: | |
2868 | slab_mem_offline_callback(arg); | |
2869 | break; | |
2870 | case MEM_ONLINE: | |
2871 | case MEM_CANCEL_OFFLINE: | |
2872 | break; | |
2873 | } | |
2874 | ||
2875 | ret = notifier_from_errno(ret); | |
2876 | return ret; | |
2877 | } | |
2878 | ||
2879 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
2880 | ||
81819f0f CL |
2881 | /******************************************************************** |
2882 | * Basic setup of slabs | |
2883 | *******************************************************************/ | |
2884 | ||
2885 | void __init kmem_cache_init(void) | |
2886 | { | |
2887 | int i; | |
4b356be0 | 2888 | int caches = 0; |
81819f0f | 2889 | |
4c93c355 CL |
2890 | init_alloc_cpu(); |
2891 | ||
81819f0f CL |
2892 | #ifdef CONFIG_NUMA |
2893 | /* | |
2894 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 2895 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
2896 | * kmem_cache_open for slab_state == DOWN. |
2897 | */ | |
2898 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | |
2899 | sizeof(struct kmem_cache_node), GFP_KERNEL); | |
8ffa6875 | 2900 | kmalloc_caches[0].refcount = -1; |
4b356be0 | 2901 | caches++; |
b9049e23 YG |
2902 | |
2903 | hotplug_memory_notifier(slab_memory_callback, 1); | |
81819f0f CL |
2904 | #endif |
2905 | ||
2906 | /* Able to allocate the per node structures */ | |
2907 | slab_state = PARTIAL; | |
2908 | ||
2909 | /* Caches that are not of the two-to-the-power-of size */ | |
4b356be0 CL |
2910 | if (KMALLOC_MIN_SIZE <= 64) { |
2911 | create_kmalloc_cache(&kmalloc_caches[1], | |
81819f0f | 2912 | "kmalloc-96", 96, GFP_KERNEL); |
4b356be0 CL |
2913 | caches++; |
2914 | } | |
2915 | if (KMALLOC_MIN_SIZE <= 128) { | |
2916 | create_kmalloc_cache(&kmalloc_caches[2], | |
81819f0f | 2917 | "kmalloc-192", 192, GFP_KERNEL); |
4b356be0 CL |
2918 | caches++; |
2919 | } | |
81819f0f | 2920 | |
331dc558 | 2921 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { |
81819f0f CL |
2922 | create_kmalloc_cache(&kmalloc_caches[i], |
2923 | "kmalloc", 1 << i, GFP_KERNEL); | |
4b356be0 CL |
2924 | caches++; |
2925 | } | |
81819f0f | 2926 | |
f1b26339 CL |
2927 | |
2928 | /* | |
2929 | * Patch up the size_index table if we have strange large alignment | |
2930 | * requirements for the kmalloc array. This is only the case for | |
6446faa2 | 2931 | * MIPS it seems. The standard arches will not generate any code here. |
f1b26339 CL |
2932 | * |
2933 | * Largest permitted alignment is 256 bytes due to the way we | |
2934 | * handle the index determination for the smaller caches. | |
2935 | * | |
2936 | * Make sure that nothing crazy happens if someone starts tinkering | |
2937 | * around with ARCH_KMALLOC_MINALIGN | |
2938 | */ | |
2939 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | |
2940 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
2941 | ||
12ad6843 | 2942 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) |
f1b26339 CL |
2943 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; |
2944 | ||
81819f0f CL |
2945 | slab_state = UP; |
2946 | ||
2947 | /* Provide the correct kmalloc names now that the caches are up */ | |
331dc558 | 2948 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) |
81819f0f CL |
2949 | kmalloc_caches[i]. name = |
2950 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | |
2951 | ||
2952 | #ifdef CONFIG_SMP | |
2953 | register_cpu_notifier(&slab_notifier); | |
4c93c355 CL |
2954 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + |
2955 | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | |
2956 | #else | |
2957 | kmem_size = sizeof(struct kmem_cache); | |
81819f0f CL |
2958 | #endif |
2959 | ||
3adbefee IM |
2960 | printk(KERN_INFO |
2961 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
2962 | " CPUs=%d, Nodes=%d\n", |
2963 | caches, cache_line_size(), | |
81819f0f CL |
2964 | slub_min_order, slub_max_order, slub_min_objects, |
2965 | nr_cpu_ids, nr_node_ids); | |
2966 | } | |
2967 | ||
2968 | /* | |
2969 | * Find a mergeable slab cache | |
2970 | */ | |
2971 | static int slab_unmergeable(struct kmem_cache *s) | |
2972 | { | |
2973 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
2974 | return 1; | |
2975 | ||
331dc558 | 2976 | if ((s->flags & __PAGE_ALLOC_FALLBACK)) |
71c7a06f CL |
2977 | return 1; |
2978 | ||
c59def9f | 2979 | if (s->ctor) |
81819f0f CL |
2980 | return 1; |
2981 | ||
8ffa6875 CL |
2982 | /* |
2983 | * We may have set a slab to be unmergeable during bootstrap. | |
2984 | */ | |
2985 | if (s->refcount < 0) | |
2986 | return 1; | |
2987 | ||
81819f0f CL |
2988 | return 0; |
2989 | } | |
2990 | ||
2991 | static struct kmem_cache *find_mergeable(size_t size, | |
ba0268a8 | 2992 | size_t align, unsigned long flags, const char *name, |
4ba9b9d0 | 2993 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f | 2994 | { |
5b95a4ac | 2995 | struct kmem_cache *s; |
81819f0f CL |
2996 | |
2997 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
2998 | return NULL; | |
2999 | ||
c59def9f | 3000 | if (ctor) |
81819f0f CL |
3001 | return NULL; |
3002 | ||
3003 | size = ALIGN(size, sizeof(void *)); | |
3004 | align = calculate_alignment(flags, align, size); | |
3005 | size = ALIGN(size, align); | |
ba0268a8 | 3006 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 3007 | |
5b95a4ac | 3008 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
3009 | if (slab_unmergeable(s)) |
3010 | continue; | |
3011 | ||
3012 | if (size > s->size) | |
3013 | continue; | |
3014 | ||
ba0268a8 | 3015 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
3016 | continue; |
3017 | /* | |
3018 | * Check if alignment is compatible. | |
3019 | * Courtesy of Adrian Drzewiecki | |
3020 | */ | |
06428780 | 3021 | if ((s->size & ~(align - 1)) != s->size) |
81819f0f CL |
3022 | continue; |
3023 | ||
3024 | if (s->size - size >= sizeof(void *)) | |
3025 | continue; | |
3026 | ||
3027 | return s; | |
3028 | } | |
3029 | return NULL; | |
3030 | } | |
3031 | ||
3032 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
3033 | size_t align, unsigned long flags, | |
4ba9b9d0 | 3034 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f CL |
3035 | { |
3036 | struct kmem_cache *s; | |
3037 | ||
3038 | down_write(&slub_lock); | |
ba0268a8 | 3039 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 3040 | if (s) { |
42a9fdbb CL |
3041 | int cpu; |
3042 | ||
81819f0f CL |
3043 | s->refcount++; |
3044 | /* | |
3045 | * Adjust the object sizes so that we clear | |
3046 | * the complete object on kzalloc. | |
3047 | */ | |
3048 | s->objsize = max(s->objsize, (int)size); | |
42a9fdbb CL |
3049 | |
3050 | /* | |
3051 | * And then we need to update the object size in the | |
3052 | * per cpu structures | |
3053 | */ | |
3054 | for_each_online_cpu(cpu) | |
3055 | get_cpu_slab(s, cpu)->objsize = s->objsize; | |
6446faa2 | 3056 | |
81819f0f | 3057 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 3058 | up_write(&slub_lock); |
6446faa2 | 3059 | |
81819f0f CL |
3060 | if (sysfs_slab_alias(s, name)) |
3061 | goto err; | |
a0e1d1be CL |
3062 | return s; |
3063 | } | |
6446faa2 | 3064 | |
a0e1d1be CL |
3065 | s = kmalloc(kmem_size, GFP_KERNEL); |
3066 | if (s) { | |
3067 | if (kmem_cache_open(s, GFP_KERNEL, name, | |
c59def9f | 3068 | size, align, flags, ctor)) { |
81819f0f | 3069 | list_add(&s->list, &slab_caches); |
a0e1d1be CL |
3070 | up_write(&slub_lock); |
3071 | if (sysfs_slab_add(s)) | |
3072 | goto err; | |
3073 | return s; | |
3074 | } | |
3075 | kfree(s); | |
81819f0f CL |
3076 | } |
3077 | up_write(&slub_lock); | |
81819f0f CL |
3078 | |
3079 | err: | |
81819f0f CL |
3080 | if (flags & SLAB_PANIC) |
3081 | panic("Cannot create slabcache %s\n", name); | |
3082 | else | |
3083 | s = NULL; | |
3084 | return s; | |
3085 | } | |
3086 | EXPORT_SYMBOL(kmem_cache_create); | |
3087 | ||
81819f0f | 3088 | #ifdef CONFIG_SMP |
81819f0f | 3089 | /* |
672bba3a CL |
3090 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3091 | * necessary. | |
81819f0f CL |
3092 | */ |
3093 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
3094 | unsigned long action, void *hcpu) | |
3095 | { | |
3096 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3097 | struct kmem_cache *s; |
3098 | unsigned long flags; | |
81819f0f CL |
3099 | |
3100 | switch (action) { | |
4c93c355 CL |
3101 | case CPU_UP_PREPARE: |
3102 | case CPU_UP_PREPARE_FROZEN: | |
3103 | init_alloc_cpu_cpu(cpu); | |
3104 | down_read(&slub_lock); | |
3105 | list_for_each_entry(s, &slab_caches, list) | |
3106 | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | |
3107 | GFP_KERNEL); | |
3108 | up_read(&slub_lock); | |
3109 | break; | |
3110 | ||
81819f0f | 3111 | case CPU_UP_CANCELED: |
8bb78442 | 3112 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3113 | case CPU_DEAD: |
8bb78442 | 3114 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
3115 | down_read(&slub_lock); |
3116 | list_for_each_entry(s, &slab_caches, list) { | |
4c93c355 CL |
3117 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
3118 | ||
5b95a4ac CL |
3119 | local_irq_save(flags); |
3120 | __flush_cpu_slab(s, cpu); | |
3121 | local_irq_restore(flags); | |
4c93c355 CL |
3122 | free_kmem_cache_cpu(c, cpu); |
3123 | s->cpu_slab[cpu] = NULL; | |
5b95a4ac CL |
3124 | } |
3125 | up_read(&slub_lock); | |
81819f0f CL |
3126 | break; |
3127 | default: | |
3128 | break; | |
3129 | } | |
3130 | return NOTIFY_OK; | |
3131 | } | |
3132 | ||
06428780 | 3133 | static struct notifier_block __cpuinitdata slab_notifier = { |
3adbefee | 3134 | .notifier_call = slab_cpuup_callback |
06428780 | 3135 | }; |
81819f0f CL |
3136 | |
3137 | #endif | |
3138 | ||
81819f0f CL |
3139 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) |
3140 | { | |
aadb4bc4 CL |
3141 | struct kmem_cache *s; |
3142 | ||
331dc558 | 3143 | if (unlikely(size > PAGE_SIZE)) |
eada35ef PE |
3144 | return kmalloc_large(size, gfpflags); |
3145 | ||
aadb4bc4 | 3146 | s = get_slab(size, gfpflags); |
81819f0f | 3147 | |
2408c550 | 3148 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3149 | return s; |
81819f0f | 3150 | |
ce15fea8 | 3151 | return slab_alloc(s, gfpflags, -1, caller); |
81819f0f CL |
3152 | } |
3153 | ||
3154 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |
3155 | int node, void *caller) | |
3156 | { | |
aadb4bc4 CL |
3157 | struct kmem_cache *s; |
3158 | ||
331dc558 | 3159 | if (unlikely(size > PAGE_SIZE)) |
f619cfe1 | 3160 | return kmalloc_large_node(size, gfpflags, node); |
eada35ef | 3161 | |
aadb4bc4 | 3162 | s = get_slab(size, gfpflags); |
81819f0f | 3163 | |
2408c550 | 3164 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3165 | return s; |
81819f0f | 3166 | |
ce15fea8 | 3167 | return slab_alloc(s, gfpflags, node, caller); |
81819f0f CL |
3168 | } |
3169 | ||
41ecc55b | 3170 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
434e245d CL |
3171 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3172 | unsigned long *map) | |
53e15af0 CL |
3173 | { |
3174 | void *p; | |
a973e9dd | 3175 | void *addr = page_address(page); |
53e15af0 CL |
3176 | |
3177 | if (!check_slab(s, page) || | |
3178 | !on_freelist(s, page, NULL)) | |
3179 | return 0; | |
3180 | ||
3181 | /* Now we know that a valid freelist exists */ | |
3182 | bitmap_zero(map, s->objects); | |
3183 | ||
7656c72b CL |
3184 | for_each_free_object(p, s, page->freelist) { |
3185 | set_bit(slab_index(p, s, addr), map); | |
53e15af0 CL |
3186 | if (!check_object(s, page, p, 0)) |
3187 | return 0; | |
3188 | } | |
3189 | ||
7656c72b CL |
3190 | for_each_object(p, s, addr) |
3191 | if (!test_bit(slab_index(p, s, addr), map)) | |
53e15af0 CL |
3192 | if (!check_object(s, page, p, 1)) |
3193 | return 0; | |
3194 | return 1; | |
3195 | } | |
3196 | ||
434e245d CL |
3197 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3198 | unsigned long *map) | |
53e15af0 CL |
3199 | { |
3200 | if (slab_trylock(page)) { | |
434e245d | 3201 | validate_slab(s, page, map); |
53e15af0 CL |
3202 | slab_unlock(page); |
3203 | } else | |
3204 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
3205 | s->name, page); | |
3206 | ||
3207 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | |
35e5d7ee CL |
3208 | if (!SlabDebug(page)) |
3209 | printk(KERN_ERR "SLUB %s: SlabDebug not set " | |
53e15af0 CL |
3210 | "on slab 0x%p\n", s->name, page); |
3211 | } else { | |
35e5d7ee CL |
3212 | if (SlabDebug(page)) |
3213 | printk(KERN_ERR "SLUB %s: SlabDebug set on " | |
53e15af0 CL |
3214 | "slab 0x%p\n", s->name, page); |
3215 | } | |
3216 | } | |
3217 | ||
434e245d CL |
3218 | static int validate_slab_node(struct kmem_cache *s, |
3219 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3220 | { |
3221 | unsigned long count = 0; | |
3222 | struct page *page; | |
3223 | unsigned long flags; | |
3224 | ||
3225 | spin_lock_irqsave(&n->list_lock, flags); | |
3226 | ||
3227 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3228 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3229 | count++; |
3230 | } | |
3231 | if (count != n->nr_partial) | |
3232 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3233 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3234 | ||
3235 | if (!(s->flags & SLAB_STORE_USER)) | |
3236 | goto out; | |
3237 | ||
3238 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3239 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3240 | count++; |
3241 | } | |
3242 | if (count != atomic_long_read(&n->nr_slabs)) | |
3243 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3244 | "counter=%ld\n", s->name, count, | |
3245 | atomic_long_read(&n->nr_slabs)); | |
3246 | ||
3247 | out: | |
3248 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3249 | return count; | |
3250 | } | |
3251 | ||
434e245d | 3252 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3253 | { |
3254 | int node; | |
3255 | unsigned long count = 0; | |
434e245d CL |
3256 | unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * |
3257 | sizeof(unsigned long), GFP_KERNEL); | |
3258 | ||
3259 | if (!map) | |
3260 | return -ENOMEM; | |
53e15af0 CL |
3261 | |
3262 | flush_all(s); | |
f64dc58c | 3263 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3264 | struct kmem_cache_node *n = get_node(s, node); |
3265 | ||
434e245d | 3266 | count += validate_slab_node(s, n, map); |
53e15af0 | 3267 | } |
434e245d | 3268 | kfree(map); |
53e15af0 CL |
3269 | return count; |
3270 | } | |
3271 | ||
b3459709 CL |
3272 | #ifdef SLUB_RESILIENCY_TEST |
3273 | static void resiliency_test(void) | |
3274 | { | |
3275 | u8 *p; | |
3276 | ||
3277 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
3278 | printk(KERN_ERR "-----------------------\n"); | |
3279 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
3280 | ||
3281 | p = kzalloc(16, GFP_KERNEL); | |
3282 | p[16] = 0x12; | |
3283 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
3284 | " 0x12->0x%p\n\n", p + 16); | |
3285 | ||
3286 | validate_slab_cache(kmalloc_caches + 4); | |
3287 | ||
3288 | /* Hmmm... The next two are dangerous */ | |
3289 | p = kzalloc(32, GFP_KERNEL); | |
3290 | p[32 + sizeof(void *)] = 0x34; | |
3291 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
3adbefee IM |
3292 | " 0x34 -> -0x%p\n", p); |
3293 | printk(KERN_ERR | |
3294 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3295 | |
3296 | validate_slab_cache(kmalloc_caches + 5); | |
3297 | p = kzalloc(64, GFP_KERNEL); | |
3298 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
3299 | *p = 0x56; | |
3300 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
3301 | p); | |
3adbefee IM |
3302 | printk(KERN_ERR |
3303 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3304 | validate_slab_cache(kmalloc_caches + 6); |
3305 | ||
3306 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
3307 | p = kzalloc(128, GFP_KERNEL); | |
3308 | kfree(p); | |
3309 | *p = 0x78; | |
3310 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
3311 | validate_slab_cache(kmalloc_caches + 7); | |
3312 | ||
3313 | p = kzalloc(256, GFP_KERNEL); | |
3314 | kfree(p); | |
3315 | p[50] = 0x9a; | |
3adbefee IM |
3316 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", |
3317 | p); | |
b3459709 CL |
3318 | validate_slab_cache(kmalloc_caches + 8); |
3319 | ||
3320 | p = kzalloc(512, GFP_KERNEL); | |
3321 | kfree(p); | |
3322 | p[512] = 0xab; | |
3323 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
3324 | validate_slab_cache(kmalloc_caches + 9); | |
3325 | } | |
3326 | #else | |
3327 | static void resiliency_test(void) {}; | |
3328 | #endif | |
3329 | ||
88a420e4 | 3330 | /* |
672bba3a | 3331 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3332 | * and freed. |
3333 | */ | |
3334 | ||
3335 | struct location { | |
3336 | unsigned long count; | |
3337 | void *addr; | |
45edfa58 CL |
3338 | long long sum_time; |
3339 | long min_time; | |
3340 | long max_time; | |
3341 | long min_pid; | |
3342 | long max_pid; | |
3343 | cpumask_t cpus; | |
3344 | nodemask_t nodes; | |
88a420e4 CL |
3345 | }; |
3346 | ||
3347 | struct loc_track { | |
3348 | unsigned long max; | |
3349 | unsigned long count; | |
3350 | struct location *loc; | |
3351 | }; | |
3352 | ||
3353 | static void free_loc_track(struct loc_track *t) | |
3354 | { | |
3355 | if (t->max) | |
3356 | free_pages((unsigned long)t->loc, | |
3357 | get_order(sizeof(struct location) * t->max)); | |
3358 | } | |
3359 | ||
68dff6a9 | 3360 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3361 | { |
3362 | struct location *l; | |
3363 | int order; | |
3364 | ||
88a420e4 CL |
3365 | order = get_order(sizeof(struct location) * max); |
3366 | ||
68dff6a9 | 3367 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3368 | if (!l) |
3369 | return 0; | |
3370 | ||
3371 | if (t->count) { | |
3372 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
3373 | free_loc_track(t); | |
3374 | } | |
3375 | t->max = max; | |
3376 | t->loc = l; | |
3377 | return 1; | |
3378 | } | |
3379 | ||
3380 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 3381 | const struct track *track) |
88a420e4 CL |
3382 | { |
3383 | long start, end, pos; | |
3384 | struct location *l; | |
3385 | void *caddr; | |
45edfa58 | 3386 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
3387 | |
3388 | start = -1; | |
3389 | end = t->count; | |
3390 | ||
3391 | for ( ; ; ) { | |
3392 | pos = start + (end - start + 1) / 2; | |
3393 | ||
3394 | /* | |
3395 | * There is nothing at "end". If we end up there | |
3396 | * we need to add something to before end. | |
3397 | */ | |
3398 | if (pos == end) | |
3399 | break; | |
3400 | ||
3401 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
3402 | if (track->addr == caddr) { |
3403 | ||
3404 | l = &t->loc[pos]; | |
3405 | l->count++; | |
3406 | if (track->when) { | |
3407 | l->sum_time += age; | |
3408 | if (age < l->min_time) | |
3409 | l->min_time = age; | |
3410 | if (age > l->max_time) | |
3411 | l->max_time = age; | |
3412 | ||
3413 | if (track->pid < l->min_pid) | |
3414 | l->min_pid = track->pid; | |
3415 | if (track->pid > l->max_pid) | |
3416 | l->max_pid = track->pid; | |
3417 | ||
3418 | cpu_set(track->cpu, l->cpus); | |
3419 | } | |
3420 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3421 | return 1; |
3422 | } | |
3423 | ||
45edfa58 | 3424 | if (track->addr < caddr) |
88a420e4 CL |
3425 | end = pos; |
3426 | else | |
3427 | start = pos; | |
3428 | } | |
3429 | ||
3430 | /* | |
672bba3a | 3431 | * Not found. Insert new tracking element. |
88a420e4 | 3432 | */ |
68dff6a9 | 3433 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
3434 | return 0; |
3435 | ||
3436 | l = t->loc + pos; | |
3437 | if (pos < t->count) | |
3438 | memmove(l + 1, l, | |
3439 | (t->count - pos) * sizeof(struct location)); | |
3440 | t->count++; | |
3441 | l->count = 1; | |
45edfa58 CL |
3442 | l->addr = track->addr; |
3443 | l->sum_time = age; | |
3444 | l->min_time = age; | |
3445 | l->max_time = age; | |
3446 | l->min_pid = track->pid; | |
3447 | l->max_pid = track->pid; | |
3448 | cpus_clear(l->cpus); | |
3449 | cpu_set(track->cpu, l->cpus); | |
3450 | nodes_clear(l->nodes); | |
3451 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3452 | return 1; |
3453 | } | |
3454 | ||
3455 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
3456 | struct page *page, enum track_item alloc) | |
3457 | { | |
a973e9dd | 3458 | void *addr = page_address(page); |
7656c72b | 3459 | DECLARE_BITMAP(map, s->objects); |
88a420e4 CL |
3460 | void *p; |
3461 | ||
3462 | bitmap_zero(map, s->objects); | |
7656c72b CL |
3463 | for_each_free_object(p, s, page->freelist) |
3464 | set_bit(slab_index(p, s, addr), map); | |
88a420e4 | 3465 | |
7656c72b | 3466 | for_each_object(p, s, addr) |
45edfa58 CL |
3467 | if (!test_bit(slab_index(p, s, addr), map)) |
3468 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
3469 | } |
3470 | ||
3471 | static int list_locations(struct kmem_cache *s, char *buf, | |
3472 | enum track_item alloc) | |
3473 | { | |
e374d483 | 3474 | int len = 0; |
88a420e4 | 3475 | unsigned long i; |
68dff6a9 | 3476 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 CL |
3477 | int node; |
3478 | ||
68dff6a9 | 3479 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
ea3061d2 | 3480 | GFP_TEMPORARY)) |
68dff6a9 | 3481 | return sprintf(buf, "Out of memory\n"); |
88a420e4 CL |
3482 | |
3483 | /* Push back cpu slabs */ | |
3484 | flush_all(s); | |
3485 | ||
f64dc58c | 3486 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
3487 | struct kmem_cache_node *n = get_node(s, node); |
3488 | unsigned long flags; | |
3489 | struct page *page; | |
3490 | ||
9e86943b | 3491 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
3492 | continue; |
3493 | ||
3494 | spin_lock_irqsave(&n->list_lock, flags); | |
3495 | list_for_each_entry(page, &n->partial, lru) | |
3496 | process_slab(&t, s, page, alloc); | |
3497 | list_for_each_entry(page, &n->full, lru) | |
3498 | process_slab(&t, s, page, alloc); | |
3499 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3500 | } | |
3501 | ||
3502 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 3503 | struct location *l = &t.loc[i]; |
88a420e4 | 3504 | |
e374d483 | 3505 | if (len > PAGE_SIZE - 100) |
88a420e4 | 3506 | break; |
e374d483 | 3507 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
3508 | |
3509 | if (l->addr) | |
e374d483 | 3510 | len += sprint_symbol(buf + len, (unsigned long)l->addr); |
88a420e4 | 3511 | else |
e374d483 | 3512 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
3513 | |
3514 | if (l->sum_time != l->min_time) { | |
3515 | unsigned long remainder; | |
3516 | ||
e374d483 | 3517 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
45edfa58 CL |
3518 | l->min_time, |
3519 | div_long_long_rem(l->sum_time, l->count, &remainder), | |
3520 | l->max_time); | |
3521 | } else | |
e374d483 | 3522 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
3523 | l->min_time); |
3524 | ||
3525 | if (l->min_pid != l->max_pid) | |
e374d483 | 3526 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
3527 | l->min_pid, l->max_pid); |
3528 | else | |
e374d483 | 3529 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
3530 | l->min_pid); |
3531 | ||
84966343 | 3532 | if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && |
e374d483 HH |
3533 | len < PAGE_SIZE - 60) { |
3534 | len += sprintf(buf + len, " cpus="); | |
3535 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
3536 | l->cpus); |
3537 | } | |
3538 | ||
84966343 | 3539 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && |
e374d483 HH |
3540 | len < PAGE_SIZE - 60) { |
3541 | len += sprintf(buf + len, " nodes="); | |
3542 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
3543 | l->nodes); |
3544 | } | |
3545 | ||
e374d483 | 3546 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
3547 | } |
3548 | ||
3549 | free_loc_track(&t); | |
3550 | if (!t.count) | |
e374d483 HH |
3551 | len += sprintf(buf, "No data\n"); |
3552 | return len; | |
88a420e4 CL |
3553 | } |
3554 | ||
81819f0f CL |
3555 | enum slab_stat_type { |
3556 | SL_FULL, | |
3557 | SL_PARTIAL, | |
3558 | SL_CPU, | |
3559 | SL_OBJECTS | |
3560 | }; | |
3561 | ||
3562 | #define SO_FULL (1 << SL_FULL) | |
3563 | #define SO_PARTIAL (1 << SL_PARTIAL) | |
3564 | #define SO_CPU (1 << SL_CPU) | |
3565 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
3566 | ||
d9acf4b7 | 3567 | static unsigned long show_slab_objects(struct kmem_cache *s, |
81819f0f CL |
3568 | char *buf, unsigned long flags) |
3569 | { | |
3570 | unsigned long total = 0; | |
3571 | int cpu; | |
3572 | int node; | |
3573 | int x; | |
3574 | unsigned long *nodes; | |
3575 | unsigned long *per_cpu; | |
3576 | ||
3577 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
3578 | per_cpu = nodes + nr_node_ids; | |
3579 | ||
3580 | for_each_possible_cpu(cpu) { | |
dfb4f096 CL |
3581 | struct page *page; |
3582 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
81819f0f | 3583 | |
dfb4f096 CL |
3584 | if (!c) |
3585 | continue; | |
3586 | ||
3587 | page = c->page; | |
ee3c72a1 CL |
3588 | node = c->node; |
3589 | if (node < 0) | |
3590 | continue; | |
81819f0f | 3591 | if (page) { |
81819f0f | 3592 | if (flags & SO_CPU) { |
81819f0f CL |
3593 | if (flags & SO_OBJECTS) |
3594 | x = page->inuse; | |
3595 | else | |
3596 | x = 1; | |
3597 | total += x; | |
ee3c72a1 | 3598 | nodes[node] += x; |
81819f0f | 3599 | } |
ee3c72a1 | 3600 | per_cpu[node]++; |
81819f0f CL |
3601 | } |
3602 | } | |
3603 | ||
f64dc58c | 3604 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3605 | struct kmem_cache_node *n = get_node(s, node); |
3606 | ||
3607 | if (flags & SO_PARTIAL) { | |
3608 | if (flags & SO_OBJECTS) | |
3609 | x = count_partial(n); | |
3610 | else | |
3611 | x = n->nr_partial; | |
3612 | total += x; | |
3613 | nodes[node] += x; | |
3614 | } | |
3615 | ||
3616 | if (flags & SO_FULL) { | |
9e86943b | 3617 | int full_slabs = atomic_long_read(&n->nr_slabs) |
81819f0f CL |
3618 | - per_cpu[node] |
3619 | - n->nr_partial; | |
3620 | ||
3621 | if (flags & SO_OBJECTS) | |
3622 | x = full_slabs * s->objects; | |
3623 | else | |
3624 | x = full_slabs; | |
3625 | total += x; | |
3626 | nodes[node] += x; | |
3627 | } | |
3628 | } | |
3629 | ||
3630 | x = sprintf(buf, "%lu", total); | |
3631 | #ifdef CONFIG_NUMA | |
f64dc58c | 3632 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
3633 | if (nodes[node]) |
3634 | x += sprintf(buf + x, " N%d=%lu", | |
3635 | node, nodes[node]); | |
3636 | #endif | |
3637 | kfree(nodes); | |
3638 | return x + sprintf(buf + x, "\n"); | |
3639 | } | |
3640 | ||
3641 | static int any_slab_objects(struct kmem_cache *s) | |
3642 | { | |
3643 | int node; | |
3644 | int cpu; | |
3645 | ||
dfb4f096 CL |
3646 | for_each_possible_cpu(cpu) { |
3647 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
3648 | ||
3649 | if (c && c->page) | |
81819f0f | 3650 | return 1; |
dfb4f096 | 3651 | } |
81819f0f | 3652 | |
dfb4f096 | 3653 | for_each_online_node(node) { |
81819f0f CL |
3654 | struct kmem_cache_node *n = get_node(s, node); |
3655 | ||
dfb4f096 CL |
3656 | if (!n) |
3657 | continue; | |
3658 | ||
9e86943b | 3659 | if (n->nr_partial || atomic_long_read(&n->nr_slabs)) |
81819f0f CL |
3660 | return 1; |
3661 | } | |
3662 | return 0; | |
3663 | } | |
3664 | ||
3665 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
3666 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
3667 | ||
3668 | struct slab_attribute { | |
3669 | struct attribute attr; | |
3670 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
3671 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
3672 | }; | |
3673 | ||
3674 | #define SLAB_ATTR_RO(_name) \ | |
3675 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
3676 | ||
3677 | #define SLAB_ATTR(_name) \ | |
3678 | static struct slab_attribute _name##_attr = \ | |
3679 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
3680 | ||
81819f0f CL |
3681 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3682 | { | |
3683 | return sprintf(buf, "%d\n", s->size); | |
3684 | } | |
3685 | SLAB_ATTR_RO(slab_size); | |
3686 | ||
3687 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
3688 | { | |
3689 | return sprintf(buf, "%d\n", s->align); | |
3690 | } | |
3691 | SLAB_ATTR_RO(align); | |
3692 | ||
3693 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
3694 | { | |
3695 | return sprintf(buf, "%d\n", s->objsize); | |
3696 | } | |
3697 | SLAB_ATTR_RO(object_size); | |
3698 | ||
3699 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
3700 | { | |
3701 | return sprintf(buf, "%d\n", s->objects); | |
3702 | } | |
3703 | SLAB_ATTR_RO(objs_per_slab); | |
3704 | ||
3705 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
3706 | { | |
3707 | return sprintf(buf, "%d\n", s->order); | |
3708 | } | |
3709 | SLAB_ATTR_RO(order); | |
3710 | ||
3711 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | |
3712 | { | |
3713 | if (s->ctor) { | |
3714 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | |
3715 | ||
3716 | return n + sprintf(buf + n, "\n"); | |
3717 | } | |
3718 | return 0; | |
3719 | } | |
3720 | SLAB_ATTR_RO(ctor); | |
3721 | ||
81819f0f CL |
3722 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3723 | { | |
3724 | return sprintf(buf, "%d\n", s->refcount - 1); | |
3725 | } | |
3726 | SLAB_ATTR_RO(aliases); | |
3727 | ||
3728 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
3729 | { | |
d9acf4b7 | 3730 | return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); |
81819f0f CL |
3731 | } |
3732 | SLAB_ATTR_RO(slabs); | |
3733 | ||
3734 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
3735 | { | |
d9acf4b7 | 3736 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
3737 | } |
3738 | SLAB_ATTR_RO(partial); | |
3739 | ||
3740 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
3741 | { | |
d9acf4b7 | 3742 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
3743 | } |
3744 | SLAB_ATTR_RO(cpu_slabs); | |
3745 | ||
3746 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
3747 | { | |
d9acf4b7 | 3748 | return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); |
81819f0f CL |
3749 | } |
3750 | SLAB_ATTR_RO(objects); | |
3751 | ||
3752 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | |
3753 | { | |
3754 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
3755 | } | |
3756 | ||
3757 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
3758 | const char *buf, size_t length) | |
3759 | { | |
3760 | s->flags &= ~SLAB_DEBUG_FREE; | |
3761 | if (buf[0] == '1') | |
3762 | s->flags |= SLAB_DEBUG_FREE; | |
3763 | return length; | |
3764 | } | |
3765 | SLAB_ATTR(sanity_checks); | |
3766 | ||
3767 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
3768 | { | |
3769 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
3770 | } | |
3771 | ||
3772 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
3773 | size_t length) | |
3774 | { | |
3775 | s->flags &= ~SLAB_TRACE; | |
3776 | if (buf[0] == '1') | |
3777 | s->flags |= SLAB_TRACE; | |
3778 | return length; | |
3779 | } | |
3780 | SLAB_ATTR(trace); | |
3781 | ||
3782 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | |
3783 | { | |
3784 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
3785 | } | |
3786 | ||
3787 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
3788 | const char *buf, size_t length) | |
3789 | { | |
3790 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
3791 | if (buf[0] == '1') | |
3792 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
3793 | return length; | |
3794 | } | |
3795 | SLAB_ATTR(reclaim_account); | |
3796 | ||
3797 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
3798 | { | |
5af60839 | 3799 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
81819f0f CL |
3800 | } |
3801 | SLAB_ATTR_RO(hwcache_align); | |
3802 | ||
3803 | #ifdef CONFIG_ZONE_DMA | |
3804 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
3805 | { | |
3806 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
3807 | } | |
3808 | SLAB_ATTR_RO(cache_dma); | |
3809 | #endif | |
3810 | ||
3811 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
3812 | { | |
3813 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
3814 | } | |
3815 | SLAB_ATTR_RO(destroy_by_rcu); | |
3816 | ||
3817 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
3818 | { | |
3819 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
3820 | } | |
3821 | ||
3822 | static ssize_t red_zone_store(struct kmem_cache *s, | |
3823 | const char *buf, size_t length) | |
3824 | { | |
3825 | if (any_slab_objects(s)) | |
3826 | return -EBUSY; | |
3827 | ||
3828 | s->flags &= ~SLAB_RED_ZONE; | |
3829 | if (buf[0] == '1') | |
3830 | s->flags |= SLAB_RED_ZONE; | |
3831 | calculate_sizes(s); | |
3832 | return length; | |
3833 | } | |
3834 | SLAB_ATTR(red_zone); | |
3835 | ||
3836 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
3837 | { | |
3838 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
3839 | } | |
3840 | ||
3841 | static ssize_t poison_store(struct kmem_cache *s, | |
3842 | const char *buf, size_t length) | |
3843 | { | |
3844 | if (any_slab_objects(s)) | |
3845 | return -EBUSY; | |
3846 | ||
3847 | s->flags &= ~SLAB_POISON; | |
3848 | if (buf[0] == '1') | |
3849 | s->flags |= SLAB_POISON; | |
3850 | calculate_sizes(s); | |
3851 | return length; | |
3852 | } | |
3853 | SLAB_ATTR(poison); | |
3854 | ||
3855 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
3856 | { | |
3857 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
3858 | } | |
3859 | ||
3860 | static ssize_t store_user_store(struct kmem_cache *s, | |
3861 | const char *buf, size_t length) | |
3862 | { | |
3863 | if (any_slab_objects(s)) | |
3864 | return -EBUSY; | |
3865 | ||
3866 | s->flags &= ~SLAB_STORE_USER; | |
3867 | if (buf[0] == '1') | |
3868 | s->flags |= SLAB_STORE_USER; | |
3869 | calculate_sizes(s); | |
3870 | return length; | |
3871 | } | |
3872 | SLAB_ATTR(store_user); | |
3873 | ||
53e15af0 CL |
3874 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
3875 | { | |
3876 | return 0; | |
3877 | } | |
3878 | ||
3879 | static ssize_t validate_store(struct kmem_cache *s, | |
3880 | const char *buf, size_t length) | |
3881 | { | |
434e245d CL |
3882 | int ret = -EINVAL; |
3883 | ||
3884 | if (buf[0] == '1') { | |
3885 | ret = validate_slab_cache(s); | |
3886 | if (ret >= 0) | |
3887 | ret = length; | |
3888 | } | |
3889 | return ret; | |
53e15af0 CL |
3890 | } |
3891 | SLAB_ATTR(validate); | |
3892 | ||
2086d26a CL |
3893 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
3894 | { | |
3895 | return 0; | |
3896 | } | |
3897 | ||
3898 | static ssize_t shrink_store(struct kmem_cache *s, | |
3899 | const char *buf, size_t length) | |
3900 | { | |
3901 | if (buf[0] == '1') { | |
3902 | int rc = kmem_cache_shrink(s); | |
3903 | ||
3904 | if (rc) | |
3905 | return rc; | |
3906 | } else | |
3907 | return -EINVAL; | |
3908 | return length; | |
3909 | } | |
3910 | SLAB_ATTR(shrink); | |
3911 | ||
88a420e4 CL |
3912 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
3913 | { | |
3914 | if (!(s->flags & SLAB_STORE_USER)) | |
3915 | return -ENOSYS; | |
3916 | return list_locations(s, buf, TRACK_ALLOC); | |
3917 | } | |
3918 | SLAB_ATTR_RO(alloc_calls); | |
3919 | ||
3920 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
3921 | { | |
3922 | if (!(s->flags & SLAB_STORE_USER)) | |
3923 | return -ENOSYS; | |
3924 | return list_locations(s, buf, TRACK_FREE); | |
3925 | } | |
3926 | SLAB_ATTR_RO(free_calls); | |
3927 | ||
81819f0f | 3928 | #ifdef CONFIG_NUMA |
9824601e | 3929 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 3930 | { |
9824601e | 3931 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
3932 | } |
3933 | ||
9824601e | 3934 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
3935 | const char *buf, size_t length) |
3936 | { | |
3937 | int n = simple_strtoul(buf, NULL, 10); | |
3938 | ||
3939 | if (n < 100) | |
9824601e | 3940 | s->remote_node_defrag_ratio = n * 10; |
81819f0f CL |
3941 | return length; |
3942 | } | |
9824601e | 3943 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
3944 | #endif |
3945 | ||
8ff12cfc | 3946 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
3947 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
3948 | { | |
3949 | unsigned long sum = 0; | |
3950 | int cpu; | |
3951 | int len; | |
3952 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
3953 | ||
3954 | if (!data) | |
3955 | return -ENOMEM; | |
3956 | ||
3957 | for_each_online_cpu(cpu) { | |
3958 | unsigned x = get_cpu_slab(s, cpu)->stat[si]; | |
3959 | ||
3960 | data[cpu] = x; | |
3961 | sum += x; | |
3962 | } | |
3963 | ||
3964 | len = sprintf(buf, "%lu", sum); | |
3965 | ||
3966 | for_each_online_cpu(cpu) { | |
3967 | if (data[cpu] && len < PAGE_SIZE - 20) | |
3968 | len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]); | |
3969 | } | |
3970 | kfree(data); | |
3971 | return len + sprintf(buf + len, "\n"); | |
3972 | } | |
3973 | ||
3974 | #define STAT_ATTR(si, text) \ | |
3975 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
3976 | { \ | |
3977 | return show_stat(s, buf, si); \ | |
3978 | } \ | |
3979 | SLAB_ATTR_RO(text); \ | |
3980 | ||
3981 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
3982 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
3983 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
3984 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
3985 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
3986 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
3987 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
3988 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
3989 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
3990 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
3991 | STAT_ATTR(FREE_SLAB, free_slab); | |
3992 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
3993 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
3994 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
3995 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
3996 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
3997 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
3998 | ||
3999 | #endif | |
4000 | ||
06428780 | 4001 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
4002 | &slab_size_attr.attr, |
4003 | &object_size_attr.attr, | |
4004 | &objs_per_slab_attr.attr, | |
4005 | &order_attr.attr, | |
4006 | &objects_attr.attr, | |
4007 | &slabs_attr.attr, | |
4008 | &partial_attr.attr, | |
4009 | &cpu_slabs_attr.attr, | |
4010 | &ctor_attr.attr, | |
81819f0f CL |
4011 | &aliases_attr.attr, |
4012 | &align_attr.attr, | |
4013 | &sanity_checks_attr.attr, | |
4014 | &trace_attr.attr, | |
4015 | &hwcache_align_attr.attr, | |
4016 | &reclaim_account_attr.attr, | |
4017 | &destroy_by_rcu_attr.attr, | |
4018 | &red_zone_attr.attr, | |
4019 | &poison_attr.attr, | |
4020 | &store_user_attr.attr, | |
53e15af0 | 4021 | &validate_attr.attr, |
2086d26a | 4022 | &shrink_attr.attr, |
88a420e4 CL |
4023 | &alloc_calls_attr.attr, |
4024 | &free_calls_attr.attr, | |
81819f0f CL |
4025 | #ifdef CONFIG_ZONE_DMA |
4026 | &cache_dma_attr.attr, | |
4027 | #endif | |
4028 | #ifdef CONFIG_NUMA | |
9824601e | 4029 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
4030 | #endif |
4031 | #ifdef CONFIG_SLUB_STATS | |
4032 | &alloc_fastpath_attr.attr, | |
4033 | &alloc_slowpath_attr.attr, | |
4034 | &free_fastpath_attr.attr, | |
4035 | &free_slowpath_attr.attr, | |
4036 | &free_frozen_attr.attr, | |
4037 | &free_add_partial_attr.attr, | |
4038 | &free_remove_partial_attr.attr, | |
4039 | &alloc_from_partial_attr.attr, | |
4040 | &alloc_slab_attr.attr, | |
4041 | &alloc_refill_attr.attr, | |
4042 | &free_slab_attr.attr, | |
4043 | &cpuslab_flush_attr.attr, | |
4044 | &deactivate_full_attr.attr, | |
4045 | &deactivate_empty_attr.attr, | |
4046 | &deactivate_to_head_attr.attr, | |
4047 | &deactivate_to_tail_attr.attr, | |
4048 | &deactivate_remote_frees_attr.attr, | |
81819f0f CL |
4049 | #endif |
4050 | NULL | |
4051 | }; | |
4052 | ||
4053 | static struct attribute_group slab_attr_group = { | |
4054 | .attrs = slab_attrs, | |
4055 | }; | |
4056 | ||
4057 | static ssize_t slab_attr_show(struct kobject *kobj, | |
4058 | struct attribute *attr, | |
4059 | char *buf) | |
4060 | { | |
4061 | struct slab_attribute *attribute; | |
4062 | struct kmem_cache *s; | |
4063 | int err; | |
4064 | ||
4065 | attribute = to_slab_attr(attr); | |
4066 | s = to_slab(kobj); | |
4067 | ||
4068 | if (!attribute->show) | |
4069 | return -EIO; | |
4070 | ||
4071 | err = attribute->show(s, buf); | |
4072 | ||
4073 | return err; | |
4074 | } | |
4075 | ||
4076 | static ssize_t slab_attr_store(struct kobject *kobj, | |
4077 | struct attribute *attr, | |
4078 | const char *buf, size_t len) | |
4079 | { | |
4080 | struct slab_attribute *attribute; | |
4081 | struct kmem_cache *s; | |
4082 | int err; | |
4083 | ||
4084 | attribute = to_slab_attr(attr); | |
4085 | s = to_slab(kobj); | |
4086 | ||
4087 | if (!attribute->store) | |
4088 | return -EIO; | |
4089 | ||
4090 | err = attribute->store(s, buf, len); | |
4091 | ||
4092 | return err; | |
4093 | } | |
4094 | ||
151c602f CL |
4095 | static void kmem_cache_release(struct kobject *kobj) |
4096 | { | |
4097 | struct kmem_cache *s = to_slab(kobj); | |
4098 | ||
4099 | kfree(s); | |
4100 | } | |
4101 | ||
81819f0f CL |
4102 | static struct sysfs_ops slab_sysfs_ops = { |
4103 | .show = slab_attr_show, | |
4104 | .store = slab_attr_store, | |
4105 | }; | |
4106 | ||
4107 | static struct kobj_type slab_ktype = { | |
4108 | .sysfs_ops = &slab_sysfs_ops, | |
151c602f | 4109 | .release = kmem_cache_release |
81819f0f CL |
4110 | }; |
4111 | ||
4112 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
4113 | { | |
4114 | struct kobj_type *ktype = get_ktype(kobj); | |
4115 | ||
4116 | if (ktype == &slab_ktype) | |
4117 | return 1; | |
4118 | return 0; | |
4119 | } | |
4120 | ||
4121 | static struct kset_uevent_ops slab_uevent_ops = { | |
4122 | .filter = uevent_filter, | |
4123 | }; | |
4124 | ||
27c3a314 | 4125 | static struct kset *slab_kset; |
81819f0f CL |
4126 | |
4127 | #define ID_STR_LENGTH 64 | |
4128 | ||
4129 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
4130 | * |
4131 | * Format :[flags-]size | |
81819f0f CL |
4132 | */ |
4133 | static char *create_unique_id(struct kmem_cache *s) | |
4134 | { | |
4135 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
4136 | char *p = name; | |
4137 | ||
4138 | BUG_ON(!name); | |
4139 | ||
4140 | *p++ = ':'; | |
4141 | /* | |
4142 | * First flags affecting slabcache operations. We will only | |
4143 | * get here for aliasable slabs so we do not need to support | |
4144 | * too many flags. The flags here must cover all flags that | |
4145 | * are matched during merging to guarantee that the id is | |
4146 | * unique. | |
4147 | */ | |
4148 | if (s->flags & SLAB_CACHE_DMA) | |
4149 | *p++ = 'd'; | |
4150 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
4151 | *p++ = 'a'; | |
4152 | if (s->flags & SLAB_DEBUG_FREE) | |
4153 | *p++ = 'F'; | |
4154 | if (p != name + 1) | |
4155 | *p++ = '-'; | |
4156 | p += sprintf(p, "%07d", s->size); | |
4157 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
4158 | return name; | |
4159 | } | |
4160 | ||
4161 | static int sysfs_slab_add(struct kmem_cache *s) | |
4162 | { | |
4163 | int err; | |
4164 | const char *name; | |
4165 | int unmergeable; | |
4166 | ||
4167 | if (slab_state < SYSFS) | |
4168 | /* Defer until later */ | |
4169 | return 0; | |
4170 | ||
4171 | unmergeable = slab_unmergeable(s); | |
4172 | if (unmergeable) { | |
4173 | /* | |
4174 | * Slabcache can never be merged so we can use the name proper. | |
4175 | * This is typically the case for debug situations. In that | |
4176 | * case we can catch duplicate names easily. | |
4177 | */ | |
27c3a314 | 4178 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
4179 | name = s->name; |
4180 | } else { | |
4181 | /* | |
4182 | * Create a unique name for the slab as a target | |
4183 | * for the symlinks. | |
4184 | */ | |
4185 | name = create_unique_id(s); | |
4186 | } | |
4187 | ||
27c3a314 | 4188 | s->kobj.kset = slab_kset; |
1eada11c GKH |
4189 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
4190 | if (err) { | |
4191 | kobject_put(&s->kobj); | |
81819f0f | 4192 | return err; |
1eada11c | 4193 | } |
81819f0f CL |
4194 | |
4195 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
4196 | if (err) | |
4197 | return err; | |
4198 | kobject_uevent(&s->kobj, KOBJ_ADD); | |
4199 | if (!unmergeable) { | |
4200 | /* Setup first alias */ | |
4201 | sysfs_slab_alias(s, s->name); | |
4202 | kfree(name); | |
4203 | } | |
4204 | return 0; | |
4205 | } | |
4206 | ||
4207 | static void sysfs_slab_remove(struct kmem_cache *s) | |
4208 | { | |
4209 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
4210 | kobject_del(&s->kobj); | |
151c602f | 4211 | kobject_put(&s->kobj); |
81819f0f CL |
4212 | } |
4213 | ||
4214 | /* | |
4215 | * Need to buffer aliases during bootup until sysfs becomes | |
4216 | * available lest we loose that information. | |
4217 | */ | |
4218 | struct saved_alias { | |
4219 | struct kmem_cache *s; | |
4220 | const char *name; | |
4221 | struct saved_alias *next; | |
4222 | }; | |
4223 | ||
5af328a5 | 4224 | static struct saved_alias *alias_list; |
81819f0f CL |
4225 | |
4226 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
4227 | { | |
4228 | struct saved_alias *al; | |
4229 | ||
4230 | if (slab_state == SYSFS) { | |
4231 | /* | |
4232 | * If we have a leftover link then remove it. | |
4233 | */ | |
27c3a314 GKH |
4234 | sysfs_remove_link(&slab_kset->kobj, name); |
4235 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
4236 | } |
4237 | ||
4238 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
4239 | if (!al) | |
4240 | return -ENOMEM; | |
4241 | ||
4242 | al->s = s; | |
4243 | al->name = name; | |
4244 | al->next = alias_list; | |
4245 | alias_list = al; | |
4246 | return 0; | |
4247 | } | |
4248 | ||
4249 | static int __init slab_sysfs_init(void) | |
4250 | { | |
5b95a4ac | 4251 | struct kmem_cache *s; |
81819f0f CL |
4252 | int err; |
4253 | ||
0ff21e46 | 4254 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 4255 | if (!slab_kset) { |
81819f0f CL |
4256 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4257 | return -ENOSYS; | |
4258 | } | |
4259 | ||
26a7bd03 CL |
4260 | slab_state = SYSFS; |
4261 | ||
5b95a4ac | 4262 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 4263 | err = sysfs_slab_add(s); |
5d540fb7 CL |
4264 | if (err) |
4265 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
4266 | " to sysfs\n", s->name); | |
26a7bd03 | 4267 | } |
81819f0f CL |
4268 | |
4269 | while (alias_list) { | |
4270 | struct saved_alias *al = alias_list; | |
4271 | ||
4272 | alias_list = alias_list->next; | |
4273 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
4274 | if (err) |
4275 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
4276 | " %s to sysfs\n", s->name); | |
81819f0f CL |
4277 | kfree(al); |
4278 | } | |
4279 | ||
4280 | resiliency_test(); | |
4281 | return 0; | |
4282 | } | |
4283 | ||
4284 | __initcall(slab_sysfs_init); | |
81819f0f | 4285 | #endif |
57ed3eda PE |
4286 | |
4287 | /* | |
4288 | * The /proc/slabinfo ABI | |
4289 | */ | |
158a9624 LT |
4290 | #ifdef CONFIG_SLABINFO |
4291 | ||
4292 | ssize_t slabinfo_write(struct file *file, const char __user * buffer, | |
4293 | size_t count, loff_t *ppos) | |
4294 | { | |
4295 | return -EINVAL; | |
4296 | } | |
4297 | ||
57ed3eda PE |
4298 | |
4299 | static void print_slabinfo_header(struct seq_file *m) | |
4300 | { | |
4301 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
4302 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
4303 | "<objperslab> <pagesperslab>"); | |
4304 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4305 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
4306 | seq_putc(m, '\n'); | |
4307 | } | |
4308 | ||
4309 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4310 | { | |
4311 | loff_t n = *pos; | |
4312 | ||
4313 | down_read(&slub_lock); | |
4314 | if (!n) | |
4315 | print_slabinfo_header(m); | |
4316 | ||
4317 | return seq_list_start(&slab_caches, *pos); | |
4318 | } | |
4319 | ||
4320 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4321 | { | |
4322 | return seq_list_next(p, &slab_caches, pos); | |
4323 | } | |
4324 | ||
4325 | static void s_stop(struct seq_file *m, void *p) | |
4326 | { | |
4327 | up_read(&slub_lock); | |
4328 | } | |
4329 | ||
4330 | static int s_show(struct seq_file *m, void *p) | |
4331 | { | |
4332 | unsigned long nr_partials = 0; | |
4333 | unsigned long nr_slabs = 0; | |
4334 | unsigned long nr_inuse = 0; | |
4335 | unsigned long nr_objs; | |
4336 | struct kmem_cache *s; | |
4337 | int node; | |
4338 | ||
4339 | s = list_entry(p, struct kmem_cache, list); | |
4340 | ||
4341 | for_each_online_node(node) { | |
4342 | struct kmem_cache_node *n = get_node(s, node); | |
4343 | ||
4344 | if (!n) | |
4345 | continue; | |
4346 | ||
4347 | nr_partials += n->nr_partial; | |
4348 | nr_slabs += atomic_long_read(&n->nr_slabs); | |
4349 | nr_inuse += count_partial(n); | |
4350 | } | |
4351 | ||
4352 | nr_objs = nr_slabs * s->objects; | |
4353 | nr_inuse += (nr_slabs - nr_partials) * s->objects; | |
4354 | ||
4355 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | |
4356 | nr_objs, s->size, s->objects, (1 << s->order)); | |
4357 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); | |
4358 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | |
4359 | 0UL); | |
4360 | seq_putc(m, '\n'); | |
4361 | return 0; | |
4362 | } | |
4363 | ||
4364 | const struct seq_operations slabinfo_op = { | |
4365 | .start = s_start, | |
4366 | .next = s_next, | |
4367 | .stop = s_stop, | |
4368 | .show = s_show, | |
4369 | }; | |
4370 | ||
158a9624 | 4371 | #endif /* CONFIG_SLABINFO */ |