]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
8 | * (C) 2007 SGI, Christoph Lameter <[email protected]> | |
9 | */ | |
10 | ||
11 | #include <linux/mm.h> | |
12 | #include <linux/module.h> | |
13 | #include <linux/bit_spinlock.h> | |
14 | #include <linux/interrupt.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/seq_file.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/cpuset.h> | |
20 | #include <linux/mempolicy.h> | |
21 | #include <linux/ctype.h> | |
22 | #include <linux/kallsyms.h> | |
23 | ||
24 | /* | |
25 | * Lock order: | |
26 | * 1. slab_lock(page) | |
27 | * 2. slab->list_lock | |
28 | * | |
29 | * The slab_lock protects operations on the object of a particular | |
30 | * slab and its metadata in the page struct. If the slab lock | |
31 | * has been taken then no allocations nor frees can be performed | |
32 | * on the objects in the slab nor can the slab be added or removed | |
33 | * from the partial or full lists since this would mean modifying | |
34 | * the page_struct of the slab. | |
35 | * | |
36 | * The list_lock protects the partial and full list on each node and | |
37 | * the partial slab counter. If taken then no new slabs may be added or | |
38 | * removed from the lists nor make the number of partial slabs be modified. | |
39 | * (Note that the total number of slabs is an atomic value that may be | |
40 | * modified without taking the list lock). | |
41 | * | |
42 | * The list_lock is a centralized lock and thus we avoid taking it as | |
43 | * much as possible. As long as SLUB does not have to handle partial | |
44 | * slabs, operations can continue without any centralized lock. F.e. | |
45 | * allocating a long series of objects that fill up slabs does not require | |
46 | * the list lock. | |
47 | * | |
48 | * The lock order is sometimes inverted when we are trying to get a slab | |
49 | * off a list. We take the list_lock and then look for a page on the list | |
50 | * to use. While we do that objects in the slabs may be freed. We can | |
51 | * only operate on the slab if we have also taken the slab_lock. So we use | |
52 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
53 | * can occur anymore and we can use the slab for allocations etc. If the | |
54 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
55 | * we must stay away from it for a while since we may cause a bouncing | |
56 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
57 | * If all pages are busy then we may allocate a new slab instead of reusing | |
58 | * a partial slab. A new slab has noone operating on it and thus there is | |
59 | * no danger of cacheline contention. | |
60 | * | |
61 | * Interrupts are disabled during allocation and deallocation in order to | |
62 | * make the slab allocator safe to use in the context of an irq. In addition | |
63 | * interrupts are disabled to ensure that the processor does not change | |
64 | * while handling per_cpu slabs, due to kernel preemption. | |
65 | * | |
66 | * SLUB assigns one slab for allocation to each processor. | |
67 | * Allocations only occur from these slabs called cpu slabs. | |
68 | * | |
672bba3a CL |
69 | * Slabs with free elements are kept on a partial list and during regular |
70 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 71 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
72 | * We track full slabs for debugging purposes though because otherwise we |
73 | * cannot scan all objects. | |
81819f0f CL |
74 | * |
75 | * Slabs are freed when they become empty. Teardown and setup is | |
76 | * minimal so we rely on the page allocators per cpu caches for | |
77 | * fast frees and allocs. | |
78 | * | |
79 | * Overloading of page flags that are otherwise used for LRU management. | |
80 | * | |
4b6f0750 CL |
81 | * PageActive The slab is frozen and exempt from list processing. |
82 | * This means that the slab is dedicated to a purpose | |
83 | * such as satisfying allocations for a specific | |
84 | * processor. Objects may be freed in the slab while | |
85 | * it is frozen but slab_free will then skip the usual | |
86 | * list operations. It is up to the processor holding | |
87 | * the slab to integrate the slab into the slab lists | |
88 | * when the slab is no longer needed. | |
89 | * | |
90 | * One use of this flag is to mark slabs that are | |
91 | * used for allocations. Then such a slab becomes a cpu | |
92 | * slab. The cpu slab may be equipped with an additional | |
894b8788 CL |
93 | * lockless_freelist that allows lockless access to |
94 | * free objects in addition to the regular freelist | |
95 | * that requires the slab lock. | |
81819f0f CL |
96 | * |
97 | * PageError Slab requires special handling due to debug | |
98 | * options set. This moves slab handling out of | |
894b8788 | 99 | * the fast path and disables lockless freelists. |
81819f0f CL |
100 | */ |
101 | ||
5577bd8a CL |
102 | #define FROZEN (1 << PG_active) |
103 | ||
104 | #ifdef CONFIG_SLUB_DEBUG | |
105 | #define SLABDEBUG (1 << PG_error) | |
106 | #else | |
107 | #define SLABDEBUG 0 | |
108 | #endif | |
109 | ||
4b6f0750 CL |
110 | static inline int SlabFrozen(struct page *page) |
111 | { | |
5577bd8a | 112 | return page->flags & FROZEN; |
4b6f0750 CL |
113 | } |
114 | ||
115 | static inline void SetSlabFrozen(struct page *page) | |
116 | { | |
5577bd8a | 117 | page->flags |= FROZEN; |
4b6f0750 CL |
118 | } |
119 | ||
120 | static inline void ClearSlabFrozen(struct page *page) | |
121 | { | |
5577bd8a | 122 | page->flags &= ~FROZEN; |
4b6f0750 CL |
123 | } |
124 | ||
35e5d7ee CL |
125 | static inline int SlabDebug(struct page *page) |
126 | { | |
5577bd8a | 127 | return page->flags & SLABDEBUG; |
35e5d7ee CL |
128 | } |
129 | ||
130 | static inline void SetSlabDebug(struct page *page) | |
131 | { | |
5577bd8a | 132 | page->flags |= SLABDEBUG; |
35e5d7ee CL |
133 | } |
134 | ||
135 | static inline void ClearSlabDebug(struct page *page) | |
136 | { | |
5577bd8a | 137 | page->flags &= ~SLABDEBUG; |
35e5d7ee CL |
138 | } |
139 | ||
81819f0f CL |
140 | /* |
141 | * Issues still to be resolved: | |
142 | * | |
143 | * - The per cpu array is updated for each new slab and and is a remote | |
144 | * cacheline for most nodes. This could become a bouncing cacheline given | |
672bba3a CL |
145 | * enough frequent updates. There are 16 pointers in a cacheline, so at |
146 | * max 16 cpus could compete for the cacheline which may be okay. | |
81819f0f CL |
147 | * |
148 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | |
149 | * | |
81819f0f CL |
150 | * - Variable sizing of the per node arrays |
151 | */ | |
152 | ||
153 | /* Enable to test recovery from slab corruption on boot */ | |
154 | #undef SLUB_RESILIENCY_TEST | |
155 | ||
156 | #if PAGE_SHIFT <= 12 | |
157 | ||
158 | /* | |
159 | * Small page size. Make sure that we do not fragment memory | |
160 | */ | |
161 | #define DEFAULT_MAX_ORDER 1 | |
162 | #define DEFAULT_MIN_OBJECTS 4 | |
163 | ||
164 | #else | |
165 | ||
166 | /* | |
167 | * Large page machines are customarily able to handle larger | |
168 | * page orders. | |
169 | */ | |
170 | #define DEFAULT_MAX_ORDER 2 | |
171 | #define DEFAULT_MIN_OBJECTS 8 | |
172 | ||
173 | #endif | |
174 | ||
2086d26a CL |
175 | /* |
176 | * Mininum number of partial slabs. These will be left on the partial | |
177 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
178 | */ | |
e95eed57 CL |
179 | #define MIN_PARTIAL 2 |
180 | ||
2086d26a CL |
181 | /* |
182 | * Maximum number of desirable partial slabs. | |
183 | * The existence of more partial slabs makes kmem_cache_shrink | |
184 | * sort the partial list by the number of objects in the. | |
185 | */ | |
186 | #define MAX_PARTIAL 10 | |
187 | ||
81819f0f CL |
188 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
189 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 190 | |
81819f0f CL |
191 | /* |
192 | * Set of flags that will prevent slab merging | |
193 | */ | |
194 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
195 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | |
196 | ||
197 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
198 | SLAB_CACHE_DMA) | |
199 | ||
200 | #ifndef ARCH_KMALLOC_MINALIGN | |
47bfdc0d | 201 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
202 | #endif |
203 | ||
204 | #ifndef ARCH_SLAB_MINALIGN | |
47bfdc0d | 205 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
206 | #endif |
207 | ||
6300ea75 CL |
208 | /* |
209 | * The page->inuse field is 16 bit thus we have this limitation | |
210 | */ | |
211 | #define MAX_OBJECTS_PER_SLAB 65535 | |
212 | ||
81819f0f CL |
213 | /* Internal SLUB flags */ |
214 | #define __OBJECT_POISON 0x80000000 /* Poison object */ | |
215 | ||
65c02d4c CL |
216 | /* Not all arches define cache_line_size */ |
217 | #ifndef cache_line_size | |
218 | #define cache_line_size() L1_CACHE_BYTES | |
219 | #endif | |
220 | ||
81819f0f CL |
221 | static int kmem_size = sizeof(struct kmem_cache); |
222 | ||
223 | #ifdef CONFIG_SMP | |
224 | static struct notifier_block slab_notifier; | |
225 | #endif | |
226 | ||
227 | static enum { | |
228 | DOWN, /* No slab functionality available */ | |
229 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | |
672bba3a | 230 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
231 | SYSFS /* Sysfs up */ |
232 | } slab_state = DOWN; | |
233 | ||
234 | /* A list of all slab caches on the system */ | |
235 | static DECLARE_RWSEM(slub_lock); | |
236 | LIST_HEAD(slab_caches); | |
237 | ||
02cbc874 CL |
238 | /* |
239 | * Tracking user of a slab. | |
240 | */ | |
241 | struct track { | |
242 | void *addr; /* Called from address */ | |
243 | int cpu; /* Was running on cpu */ | |
244 | int pid; /* Pid context */ | |
245 | unsigned long when; /* When did the operation occur */ | |
246 | }; | |
247 | ||
248 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
249 | ||
41ecc55b | 250 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
81819f0f CL |
251 | static int sysfs_slab_add(struct kmem_cache *); |
252 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
253 | static void sysfs_slab_remove(struct kmem_cache *); | |
254 | #else | |
255 | static int sysfs_slab_add(struct kmem_cache *s) { return 0; } | |
256 | static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; } | |
257 | static void sysfs_slab_remove(struct kmem_cache *s) {} | |
258 | #endif | |
259 | ||
260 | /******************************************************************** | |
261 | * Core slab cache functions | |
262 | *******************************************************************/ | |
263 | ||
264 | int slab_is_available(void) | |
265 | { | |
266 | return slab_state >= UP; | |
267 | } | |
268 | ||
269 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
270 | { | |
271 | #ifdef CONFIG_NUMA | |
272 | return s->node[node]; | |
273 | #else | |
274 | return &s->local_node; | |
275 | #endif | |
276 | } | |
277 | ||
02cbc874 CL |
278 | static inline int check_valid_pointer(struct kmem_cache *s, |
279 | struct page *page, const void *object) | |
280 | { | |
281 | void *base; | |
282 | ||
283 | if (!object) | |
284 | return 1; | |
285 | ||
286 | base = page_address(page); | |
287 | if (object < base || object >= base + s->objects * s->size || | |
288 | (object - base) % s->size) { | |
289 | return 0; | |
290 | } | |
291 | ||
292 | return 1; | |
293 | } | |
294 | ||
7656c72b CL |
295 | /* |
296 | * Slow version of get and set free pointer. | |
297 | * | |
298 | * This version requires touching the cache lines of kmem_cache which | |
299 | * we avoid to do in the fast alloc free paths. There we obtain the offset | |
300 | * from the page struct. | |
301 | */ | |
302 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | |
303 | { | |
304 | return *(void **)(object + s->offset); | |
305 | } | |
306 | ||
307 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
308 | { | |
309 | *(void **)(object + s->offset) = fp; | |
310 | } | |
311 | ||
312 | /* Loop over all objects in a slab */ | |
313 | #define for_each_object(__p, __s, __addr) \ | |
314 | for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ | |
315 | __p += (__s)->size) | |
316 | ||
317 | /* Scan freelist */ | |
318 | #define for_each_free_object(__p, __s, __free) \ | |
319 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | |
320 | ||
321 | /* Determine object index from a given position */ | |
322 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
323 | { | |
324 | return (p - addr) / s->size; | |
325 | } | |
326 | ||
41ecc55b CL |
327 | #ifdef CONFIG_SLUB_DEBUG |
328 | /* | |
329 | * Debug settings: | |
330 | */ | |
f0630fff CL |
331 | #ifdef CONFIG_SLUB_DEBUG_ON |
332 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
333 | #else | |
41ecc55b | 334 | static int slub_debug; |
f0630fff | 335 | #endif |
41ecc55b CL |
336 | |
337 | static char *slub_debug_slabs; | |
338 | ||
81819f0f CL |
339 | /* |
340 | * Object debugging | |
341 | */ | |
342 | static void print_section(char *text, u8 *addr, unsigned int length) | |
343 | { | |
344 | int i, offset; | |
345 | int newline = 1; | |
346 | char ascii[17]; | |
347 | ||
348 | ascii[16] = 0; | |
349 | ||
350 | for (i = 0; i < length; i++) { | |
351 | if (newline) { | |
24922684 | 352 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
353 | newline = 0; |
354 | } | |
355 | printk(" %02x", addr[i]); | |
356 | offset = i % 16; | |
357 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
358 | if (offset == 15) { | |
359 | printk(" %s\n",ascii); | |
360 | newline = 1; | |
361 | } | |
362 | } | |
363 | if (!newline) { | |
364 | i %= 16; | |
365 | while (i < 16) { | |
366 | printk(" "); | |
367 | ascii[i] = ' '; | |
368 | i++; | |
369 | } | |
370 | printk(" %s\n", ascii); | |
371 | } | |
372 | } | |
373 | ||
81819f0f CL |
374 | static struct track *get_track(struct kmem_cache *s, void *object, |
375 | enum track_item alloc) | |
376 | { | |
377 | struct track *p; | |
378 | ||
379 | if (s->offset) | |
380 | p = object + s->offset + sizeof(void *); | |
381 | else | |
382 | p = object + s->inuse; | |
383 | ||
384 | return p + alloc; | |
385 | } | |
386 | ||
387 | static void set_track(struct kmem_cache *s, void *object, | |
388 | enum track_item alloc, void *addr) | |
389 | { | |
390 | struct track *p; | |
391 | ||
392 | if (s->offset) | |
393 | p = object + s->offset + sizeof(void *); | |
394 | else | |
395 | p = object + s->inuse; | |
396 | ||
397 | p += alloc; | |
398 | if (addr) { | |
399 | p->addr = addr; | |
400 | p->cpu = smp_processor_id(); | |
401 | p->pid = current ? current->pid : -1; | |
402 | p->when = jiffies; | |
403 | } else | |
404 | memset(p, 0, sizeof(struct track)); | |
405 | } | |
406 | ||
81819f0f CL |
407 | static void init_tracking(struct kmem_cache *s, void *object) |
408 | { | |
24922684 CL |
409 | if (!(s->flags & SLAB_STORE_USER)) |
410 | return; | |
411 | ||
412 | set_track(s, object, TRACK_FREE, NULL); | |
413 | set_track(s, object, TRACK_ALLOC, NULL); | |
81819f0f CL |
414 | } |
415 | ||
416 | static void print_track(const char *s, struct track *t) | |
417 | { | |
418 | if (!t->addr) | |
419 | return; | |
420 | ||
24922684 | 421 | printk(KERN_ERR "INFO: %s in ", s); |
81819f0f | 422 | __print_symbol("%s", (unsigned long)t->addr); |
24922684 CL |
423 | printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); |
424 | } | |
425 | ||
426 | static void print_tracking(struct kmem_cache *s, void *object) | |
427 | { | |
428 | if (!(s->flags & SLAB_STORE_USER)) | |
429 | return; | |
430 | ||
431 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
432 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
433 | } | |
434 | ||
435 | static void print_page_info(struct page *page) | |
436 | { | |
437 | printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", | |
438 | page, page->inuse, page->freelist, page->flags); | |
439 | ||
440 | } | |
441 | ||
442 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
443 | { | |
444 | va_list args; | |
445 | char buf[100]; | |
446 | ||
447 | va_start(args, fmt); | |
448 | vsnprintf(buf, sizeof(buf), fmt, args); | |
449 | va_end(args); | |
450 | printk(KERN_ERR "========================================" | |
451 | "=====================================\n"); | |
452 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
453 | printk(KERN_ERR "----------------------------------------" | |
454 | "-------------------------------------\n\n"); | |
81819f0f CL |
455 | } |
456 | ||
24922684 CL |
457 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
458 | { | |
459 | va_list args; | |
460 | char buf[100]; | |
461 | ||
462 | va_start(args, fmt); | |
463 | vsnprintf(buf, sizeof(buf), fmt, args); | |
464 | va_end(args); | |
465 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
466 | } | |
467 | ||
468 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
469 | { |
470 | unsigned int off; /* Offset of last byte */ | |
24922684 CL |
471 | u8 *addr = page_address(page); |
472 | ||
473 | print_tracking(s, p); | |
474 | ||
475 | print_page_info(page); | |
476 | ||
477 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
478 | p, p - addr, get_freepointer(s, p)); | |
479 | ||
480 | if (p > addr + 16) | |
481 | print_section("Bytes b4", p - 16, 16); | |
482 | ||
483 | print_section("Object", p, min(s->objsize, 128)); | |
81819f0f CL |
484 | |
485 | if (s->flags & SLAB_RED_ZONE) | |
486 | print_section("Redzone", p + s->objsize, | |
487 | s->inuse - s->objsize); | |
488 | ||
81819f0f CL |
489 | if (s->offset) |
490 | off = s->offset + sizeof(void *); | |
491 | else | |
492 | off = s->inuse; | |
493 | ||
24922684 | 494 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 495 | off += 2 * sizeof(struct track); |
81819f0f CL |
496 | |
497 | if (off != s->size) | |
498 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
499 | print_section("Padding", p + off, s->size - off); |
500 | ||
501 | dump_stack(); | |
81819f0f CL |
502 | } |
503 | ||
504 | static void object_err(struct kmem_cache *s, struct page *page, | |
505 | u8 *object, char *reason) | |
506 | { | |
24922684 CL |
507 | slab_bug(s, reason); |
508 | print_trailer(s, page, object); | |
81819f0f CL |
509 | } |
510 | ||
24922684 | 511 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
512 | { |
513 | va_list args; | |
514 | char buf[100]; | |
515 | ||
24922684 CL |
516 | va_start(args, fmt); |
517 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 518 | va_end(args); |
24922684 CL |
519 | slab_bug(s, fmt); |
520 | print_page_info(page); | |
81819f0f CL |
521 | dump_stack(); |
522 | } | |
523 | ||
524 | static void init_object(struct kmem_cache *s, void *object, int active) | |
525 | { | |
526 | u8 *p = object; | |
527 | ||
528 | if (s->flags & __OBJECT_POISON) { | |
529 | memset(p, POISON_FREE, s->objsize - 1); | |
530 | p[s->objsize -1] = POISON_END; | |
531 | } | |
532 | ||
533 | if (s->flags & SLAB_RED_ZONE) | |
534 | memset(p + s->objsize, | |
535 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | |
536 | s->inuse - s->objsize); | |
537 | } | |
538 | ||
24922684 | 539 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
540 | { |
541 | while (bytes) { | |
542 | if (*start != (u8)value) | |
24922684 | 543 | return start; |
81819f0f CL |
544 | start++; |
545 | bytes--; | |
546 | } | |
24922684 CL |
547 | return NULL; |
548 | } | |
549 | ||
550 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
551 | void *from, void *to) | |
552 | { | |
553 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
554 | memset(from, data, to - from); | |
555 | } | |
556 | ||
557 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
558 | u8 *object, char *what, | |
559 | u8* start, unsigned int value, unsigned int bytes) | |
560 | { | |
561 | u8 *fault; | |
562 | u8 *end; | |
563 | ||
564 | fault = check_bytes(start, value, bytes); | |
565 | if (!fault) | |
566 | return 1; | |
567 | ||
568 | end = start + bytes; | |
569 | while (end > fault && end[-1] == value) | |
570 | end--; | |
571 | ||
572 | slab_bug(s, "%s overwritten", what); | |
573 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
574 | fault, end - 1, fault[0], value); | |
575 | print_trailer(s, page, object); | |
576 | ||
577 | restore_bytes(s, what, value, fault, end); | |
578 | return 0; | |
81819f0f CL |
579 | } |
580 | ||
81819f0f CL |
581 | /* |
582 | * Object layout: | |
583 | * | |
584 | * object address | |
585 | * Bytes of the object to be managed. | |
586 | * If the freepointer may overlay the object then the free | |
587 | * pointer is the first word of the object. | |
672bba3a | 588 | * |
81819f0f CL |
589 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
590 | * 0xa5 (POISON_END) | |
591 | * | |
592 | * object + s->objsize | |
593 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
594 | * Padding is extended by another word if Redzoning is enabled and |
595 | * objsize == inuse. | |
596 | * | |
81819f0f CL |
597 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
598 | * 0xcc (RED_ACTIVE) for objects in use. | |
599 | * | |
600 | * object + s->inuse | |
672bba3a CL |
601 | * Meta data starts here. |
602 | * | |
81819f0f CL |
603 | * A. Free pointer (if we cannot overwrite object on free) |
604 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a CL |
605 | * C. Padding to reach required alignment boundary or at mininum |
606 | * one word if debuggin is on to be able to detect writes | |
607 | * before the word boundary. | |
608 | * | |
609 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
610 | * |
611 | * object + s->size | |
672bba3a | 612 | * Nothing is used beyond s->size. |
81819f0f | 613 | * |
672bba3a CL |
614 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
615 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
616 | * may be used with merged slabcaches. |
617 | */ | |
618 | ||
81819f0f CL |
619 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
620 | { | |
621 | unsigned long off = s->inuse; /* The end of info */ | |
622 | ||
623 | if (s->offset) | |
624 | /* Freepointer is placed after the object. */ | |
625 | off += sizeof(void *); | |
626 | ||
627 | if (s->flags & SLAB_STORE_USER) | |
628 | /* We also have user information there */ | |
629 | off += 2 * sizeof(struct track); | |
630 | ||
631 | if (s->size == off) | |
632 | return 1; | |
633 | ||
24922684 CL |
634 | return check_bytes_and_report(s, page, p, "Object padding", |
635 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
636 | } |
637 | ||
638 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | |
639 | { | |
24922684 CL |
640 | u8 *start; |
641 | u8 *fault; | |
642 | u8 *end; | |
643 | int length; | |
644 | int remainder; | |
81819f0f CL |
645 | |
646 | if (!(s->flags & SLAB_POISON)) | |
647 | return 1; | |
648 | ||
24922684 CL |
649 | start = page_address(page); |
650 | end = start + (PAGE_SIZE << s->order); | |
81819f0f | 651 | length = s->objects * s->size; |
24922684 | 652 | remainder = end - (start + length); |
81819f0f CL |
653 | if (!remainder) |
654 | return 1; | |
655 | ||
24922684 CL |
656 | fault = check_bytes(start + length, POISON_INUSE, remainder); |
657 | if (!fault) | |
658 | return 1; | |
659 | while (end > fault && end[-1] == POISON_INUSE) | |
660 | end--; | |
661 | ||
662 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
663 | print_section("Padding", start, length); | |
664 | ||
665 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | |
666 | return 0; | |
81819f0f CL |
667 | } |
668 | ||
669 | static int check_object(struct kmem_cache *s, struct page *page, | |
670 | void *object, int active) | |
671 | { | |
672 | u8 *p = object; | |
673 | u8 *endobject = object + s->objsize; | |
674 | ||
675 | if (s->flags & SLAB_RED_ZONE) { | |
676 | unsigned int red = | |
677 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | |
678 | ||
24922684 CL |
679 | if (!check_bytes_and_report(s, page, object, "Redzone", |
680 | endobject, red, s->inuse - s->objsize)) | |
81819f0f | 681 | return 0; |
81819f0f | 682 | } else { |
24922684 CL |
683 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) |
684 | check_bytes_and_report(s, page, p, "Alignment padding", endobject, | |
685 | POISON_INUSE, s->inuse - s->objsize); | |
81819f0f CL |
686 | } |
687 | ||
688 | if (s->flags & SLAB_POISON) { | |
689 | if (!active && (s->flags & __OBJECT_POISON) && | |
24922684 CL |
690 | (!check_bytes_and_report(s, page, p, "Poison", p, |
691 | POISON_FREE, s->objsize - 1) || | |
692 | !check_bytes_and_report(s, page, p, "Poison", | |
693 | p + s->objsize -1, POISON_END, 1))) | |
81819f0f | 694 | return 0; |
81819f0f CL |
695 | /* |
696 | * check_pad_bytes cleans up on its own. | |
697 | */ | |
698 | check_pad_bytes(s, page, p); | |
699 | } | |
700 | ||
701 | if (!s->offset && active) | |
702 | /* | |
703 | * Object and freepointer overlap. Cannot check | |
704 | * freepointer while object is allocated. | |
705 | */ | |
706 | return 1; | |
707 | ||
708 | /* Check free pointer validity */ | |
709 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
710 | object_err(s, page, p, "Freepointer corrupt"); | |
711 | /* | |
712 | * No choice but to zap it and thus loose the remainder | |
713 | * of the free objects in this slab. May cause | |
672bba3a | 714 | * another error because the object count is now wrong. |
81819f0f CL |
715 | */ |
716 | set_freepointer(s, p, NULL); | |
717 | return 0; | |
718 | } | |
719 | return 1; | |
720 | } | |
721 | ||
722 | static int check_slab(struct kmem_cache *s, struct page *page) | |
723 | { | |
724 | VM_BUG_ON(!irqs_disabled()); | |
725 | ||
726 | if (!PageSlab(page)) { | |
24922684 | 727 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
728 | return 0; |
729 | } | |
730 | if (page->offset * sizeof(void *) != s->offset) { | |
24922684 CL |
731 | slab_err(s, page, "Corrupted offset %lu", |
732 | (unsigned long)(page->offset * sizeof(void *))); | |
81819f0f CL |
733 | return 0; |
734 | } | |
735 | if (page->inuse > s->objects) { | |
24922684 CL |
736 | slab_err(s, page, "inuse %u > max %u", |
737 | s->name, page->inuse, s->objects); | |
81819f0f CL |
738 | return 0; |
739 | } | |
740 | /* Slab_pad_check fixes things up after itself */ | |
741 | slab_pad_check(s, page); | |
742 | return 1; | |
743 | } | |
744 | ||
745 | /* | |
672bba3a CL |
746 | * Determine if a certain object on a page is on the freelist. Must hold the |
747 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
748 | */ |
749 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
750 | { | |
751 | int nr = 0; | |
752 | void *fp = page->freelist; | |
753 | void *object = NULL; | |
754 | ||
755 | while (fp && nr <= s->objects) { | |
756 | if (fp == search) | |
757 | return 1; | |
758 | if (!check_valid_pointer(s, page, fp)) { | |
759 | if (object) { | |
760 | object_err(s, page, object, | |
761 | "Freechain corrupt"); | |
762 | set_freepointer(s, object, NULL); | |
763 | break; | |
764 | } else { | |
24922684 | 765 | slab_err(s, page, "Freepointer corrupt"); |
81819f0f CL |
766 | page->freelist = NULL; |
767 | page->inuse = s->objects; | |
24922684 | 768 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
769 | return 0; |
770 | } | |
771 | break; | |
772 | } | |
773 | object = fp; | |
774 | fp = get_freepointer(s, object); | |
775 | nr++; | |
776 | } | |
777 | ||
778 | if (page->inuse != s->objects - nr) { | |
70d71228 | 779 | slab_err(s, page, "Wrong object count. Counter is %d but " |
24922684 | 780 | "counted were %d", page->inuse, s->objects - nr); |
81819f0f | 781 | page->inuse = s->objects - nr; |
24922684 | 782 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
783 | } |
784 | return search == NULL; | |
785 | } | |
786 | ||
3ec09742 CL |
787 | static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) |
788 | { | |
789 | if (s->flags & SLAB_TRACE) { | |
790 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
791 | s->name, | |
792 | alloc ? "alloc" : "free", | |
793 | object, page->inuse, | |
794 | page->freelist); | |
795 | ||
796 | if (!alloc) | |
797 | print_section("Object", (void *)object, s->objsize); | |
798 | ||
799 | dump_stack(); | |
800 | } | |
801 | } | |
802 | ||
643b1138 | 803 | /* |
672bba3a | 804 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 805 | */ |
e95eed57 | 806 | static void add_full(struct kmem_cache_node *n, struct page *page) |
643b1138 | 807 | { |
643b1138 CL |
808 | spin_lock(&n->list_lock); |
809 | list_add(&page->lru, &n->full); | |
810 | spin_unlock(&n->list_lock); | |
811 | } | |
812 | ||
813 | static void remove_full(struct kmem_cache *s, struct page *page) | |
814 | { | |
815 | struct kmem_cache_node *n; | |
816 | ||
817 | if (!(s->flags & SLAB_STORE_USER)) | |
818 | return; | |
819 | ||
820 | n = get_node(s, page_to_nid(page)); | |
821 | ||
822 | spin_lock(&n->list_lock); | |
823 | list_del(&page->lru); | |
824 | spin_unlock(&n->list_lock); | |
825 | } | |
826 | ||
3ec09742 CL |
827 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
828 | void *object) | |
829 | { | |
830 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
831 | return; | |
832 | ||
833 | init_object(s, object, 0); | |
834 | init_tracking(s, object); | |
835 | } | |
836 | ||
837 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | |
838 | void *object, void *addr) | |
81819f0f CL |
839 | { |
840 | if (!check_slab(s, page)) | |
841 | goto bad; | |
842 | ||
843 | if (object && !on_freelist(s, page, object)) { | |
24922684 | 844 | object_err(s, page, object, "Object already allocated"); |
70d71228 | 845 | goto bad; |
81819f0f CL |
846 | } |
847 | ||
848 | if (!check_valid_pointer(s, page, object)) { | |
849 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 850 | goto bad; |
81819f0f CL |
851 | } |
852 | ||
3ec09742 | 853 | if (object && !check_object(s, page, object, 0)) |
81819f0f | 854 | goto bad; |
81819f0f | 855 | |
3ec09742 CL |
856 | /* Success perform special debug activities for allocs */ |
857 | if (s->flags & SLAB_STORE_USER) | |
858 | set_track(s, object, TRACK_ALLOC, addr); | |
859 | trace(s, page, object, 1); | |
860 | init_object(s, object, 1); | |
81819f0f | 861 | return 1; |
3ec09742 | 862 | |
81819f0f CL |
863 | bad: |
864 | if (PageSlab(page)) { | |
865 | /* | |
866 | * If this is a slab page then lets do the best we can | |
867 | * to avoid issues in the future. Marking all objects | |
672bba3a | 868 | * as used avoids touching the remaining objects. |
81819f0f | 869 | */ |
24922684 | 870 | slab_fix(s, "Marking all objects used"); |
81819f0f CL |
871 | page->inuse = s->objects; |
872 | page->freelist = NULL; | |
873 | /* Fix up fields that may be corrupted */ | |
874 | page->offset = s->offset / sizeof(void *); | |
875 | } | |
876 | return 0; | |
877 | } | |
878 | ||
3ec09742 CL |
879 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
880 | void *object, void *addr) | |
81819f0f CL |
881 | { |
882 | if (!check_slab(s, page)) | |
883 | goto fail; | |
884 | ||
885 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 886 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
887 | goto fail; |
888 | } | |
889 | ||
890 | if (on_freelist(s, page, object)) { | |
24922684 | 891 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
892 | goto fail; |
893 | } | |
894 | ||
895 | if (!check_object(s, page, object, 1)) | |
896 | return 0; | |
897 | ||
898 | if (unlikely(s != page->slab)) { | |
899 | if (!PageSlab(page)) | |
70d71228 CL |
900 | slab_err(s, page, "Attempt to free object(0x%p) " |
901 | "outside of slab", object); | |
81819f0f | 902 | else |
70d71228 | 903 | if (!page->slab) { |
81819f0f | 904 | printk(KERN_ERR |
70d71228 | 905 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 906 | object); |
70d71228 CL |
907 | dump_stack(); |
908 | } | |
81819f0f | 909 | else |
24922684 CL |
910 | object_err(s, page, object, |
911 | "page slab pointer corrupt."); | |
81819f0f CL |
912 | goto fail; |
913 | } | |
3ec09742 CL |
914 | |
915 | /* Special debug activities for freeing objects */ | |
916 | if (!SlabFrozen(page) && !page->freelist) | |
917 | remove_full(s, page); | |
918 | if (s->flags & SLAB_STORE_USER) | |
919 | set_track(s, object, TRACK_FREE, addr); | |
920 | trace(s, page, object, 0); | |
921 | init_object(s, object, 0); | |
81819f0f | 922 | return 1; |
3ec09742 | 923 | |
81819f0f | 924 | fail: |
24922684 | 925 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
926 | return 0; |
927 | } | |
928 | ||
41ecc55b CL |
929 | static int __init setup_slub_debug(char *str) |
930 | { | |
f0630fff CL |
931 | slub_debug = DEBUG_DEFAULT_FLAGS; |
932 | if (*str++ != '=' || !*str) | |
933 | /* | |
934 | * No options specified. Switch on full debugging. | |
935 | */ | |
936 | goto out; | |
937 | ||
938 | if (*str == ',') | |
939 | /* | |
940 | * No options but restriction on slabs. This means full | |
941 | * debugging for slabs matching a pattern. | |
942 | */ | |
943 | goto check_slabs; | |
944 | ||
945 | slub_debug = 0; | |
946 | if (*str == '-') | |
947 | /* | |
948 | * Switch off all debugging measures. | |
949 | */ | |
950 | goto out; | |
951 | ||
952 | /* | |
953 | * Determine which debug features should be switched on | |
954 | */ | |
955 | for ( ;*str && *str != ','; str++) { | |
956 | switch (tolower(*str)) { | |
957 | case 'f': | |
958 | slub_debug |= SLAB_DEBUG_FREE; | |
959 | break; | |
960 | case 'z': | |
961 | slub_debug |= SLAB_RED_ZONE; | |
962 | break; | |
963 | case 'p': | |
964 | slub_debug |= SLAB_POISON; | |
965 | break; | |
966 | case 'u': | |
967 | slub_debug |= SLAB_STORE_USER; | |
968 | break; | |
969 | case 't': | |
970 | slub_debug |= SLAB_TRACE; | |
971 | break; | |
972 | default: | |
973 | printk(KERN_ERR "slub_debug option '%c' " | |
974 | "unknown. skipped\n",*str); | |
975 | } | |
41ecc55b CL |
976 | } |
977 | ||
f0630fff | 978 | check_slabs: |
41ecc55b CL |
979 | if (*str == ',') |
980 | slub_debug_slabs = str + 1; | |
f0630fff | 981 | out: |
41ecc55b CL |
982 | return 1; |
983 | } | |
984 | ||
985 | __setup("slub_debug", setup_slub_debug); | |
986 | ||
987 | static void kmem_cache_open_debug_check(struct kmem_cache *s) | |
988 | { | |
989 | /* | |
990 | * The page->offset field is only 16 bit wide. This is an offset | |
991 | * in units of words from the beginning of an object. If the slab | |
992 | * size is bigger then we cannot move the free pointer behind the | |
993 | * object anymore. | |
994 | * | |
995 | * On 32 bit platforms the limit is 256k. On 64bit platforms | |
996 | * the limit is 512k. | |
997 | * | |
c59def9f | 998 | * Debugging or ctor may create a need to move the free |
41ecc55b CL |
999 | * pointer. Fail if this happens. |
1000 | */ | |
33e9e241 | 1001 | if (s->objsize >= 65535 * sizeof(void *)) { |
41ecc55b CL |
1002 | BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON | |
1003 | SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); | |
c59def9f | 1004 | BUG_ON(s->ctor); |
41ecc55b CL |
1005 | } |
1006 | else | |
1007 | /* | |
1008 | * Enable debugging if selected on the kernel commandline. | |
1009 | */ | |
1010 | if (slub_debug && (!slub_debug_slabs || | |
1011 | strncmp(slub_debug_slabs, s->name, | |
1012 | strlen(slub_debug_slabs)) == 0)) | |
1013 | s->flags |= slub_debug; | |
1014 | } | |
1015 | #else | |
3ec09742 CL |
1016 | static inline void setup_object_debug(struct kmem_cache *s, |
1017 | struct page *page, void *object) {} | |
41ecc55b | 1018 | |
3ec09742 CL |
1019 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1020 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1021 | |
3ec09742 CL |
1022 | static inline int free_debug_processing(struct kmem_cache *s, |
1023 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1024 | |
41ecc55b CL |
1025 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1026 | { return 1; } | |
1027 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
1028 | void *object, int active) { return 1; } | |
3ec09742 | 1029 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
41ecc55b CL |
1030 | static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {} |
1031 | #define slub_debug 0 | |
1032 | #endif | |
81819f0f CL |
1033 | /* |
1034 | * Slab allocation and freeing | |
1035 | */ | |
1036 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1037 | { | |
1038 | struct page * page; | |
1039 | int pages = 1 << s->order; | |
1040 | ||
1041 | if (s->order) | |
1042 | flags |= __GFP_COMP; | |
1043 | ||
1044 | if (s->flags & SLAB_CACHE_DMA) | |
1045 | flags |= SLUB_DMA; | |
1046 | ||
1047 | if (node == -1) | |
1048 | page = alloc_pages(flags, s->order); | |
1049 | else | |
1050 | page = alloc_pages_node(node, flags, s->order); | |
1051 | ||
1052 | if (!page) | |
1053 | return NULL; | |
1054 | ||
1055 | mod_zone_page_state(page_zone(page), | |
1056 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1057 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1058 | pages); | |
1059 | ||
1060 | return page; | |
1061 | } | |
1062 | ||
1063 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1064 | void *object) | |
1065 | { | |
3ec09742 | 1066 | setup_object_debug(s, page, object); |
4f104934 | 1067 | if (unlikely(s->ctor)) |
a35afb83 | 1068 | s->ctor(object, s, 0); |
81819f0f CL |
1069 | } |
1070 | ||
1071 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1072 | { | |
1073 | struct page *page; | |
1074 | struct kmem_cache_node *n; | |
1075 | void *start; | |
1076 | void *end; | |
1077 | void *last; | |
1078 | void *p; | |
1079 | ||
81819f0f CL |
1080 | BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK)); |
1081 | ||
1082 | if (flags & __GFP_WAIT) | |
1083 | local_irq_enable(); | |
1084 | ||
1085 | page = allocate_slab(s, flags & GFP_LEVEL_MASK, node); | |
1086 | if (!page) | |
1087 | goto out; | |
1088 | ||
1089 | n = get_node(s, page_to_nid(page)); | |
1090 | if (n) | |
1091 | atomic_long_inc(&n->nr_slabs); | |
1092 | page->offset = s->offset / sizeof(void *); | |
1093 | page->slab = s; | |
1094 | page->flags |= 1 << PG_slab; | |
1095 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | |
1096 | SLAB_STORE_USER | SLAB_TRACE)) | |
35e5d7ee | 1097 | SetSlabDebug(page); |
81819f0f CL |
1098 | |
1099 | start = page_address(page); | |
1100 | end = start + s->objects * s->size; | |
1101 | ||
1102 | if (unlikely(s->flags & SLAB_POISON)) | |
1103 | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | |
1104 | ||
1105 | last = start; | |
7656c72b | 1106 | for_each_object(p, s, start) { |
81819f0f CL |
1107 | setup_object(s, page, last); |
1108 | set_freepointer(s, last, p); | |
1109 | last = p; | |
1110 | } | |
1111 | setup_object(s, page, last); | |
1112 | set_freepointer(s, last, NULL); | |
1113 | ||
1114 | page->freelist = start; | |
894b8788 | 1115 | page->lockless_freelist = NULL; |
81819f0f CL |
1116 | page->inuse = 0; |
1117 | out: | |
1118 | if (flags & __GFP_WAIT) | |
1119 | local_irq_disable(); | |
1120 | return page; | |
1121 | } | |
1122 | ||
1123 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1124 | { | |
1125 | int pages = 1 << s->order; | |
1126 | ||
c59def9f | 1127 | if (unlikely(SlabDebug(page))) { |
81819f0f CL |
1128 | void *p; |
1129 | ||
1130 | slab_pad_check(s, page); | |
c59def9f | 1131 | for_each_object(p, s, page_address(page)) |
81819f0f | 1132 | check_object(s, page, p, 0); |
81819f0f CL |
1133 | } |
1134 | ||
1135 | mod_zone_page_state(page_zone(page), | |
1136 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1137 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1138 | - pages); | |
1139 | ||
1140 | page->mapping = NULL; | |
1141 | __free_pages(page, s->order); | |
1142 | } | |
1143 | ||
1144 | static void rcu_free_slab(struct rcu_head *h) | |
1145 | { | |
1146 | struct page *page; | |
1147 | ||
1148 | page = container_of((struct list_head *)h, struct page, lru); | |
1149 | __free_slab(page->slab, page); | |
1150 | } | |
1151 | ||
1152 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1153 | { | |
1154 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
1155 | /* | |
1156 | * RCU free overloads the RCU head over the LRU | |
1157 | */ | |
1158 | struct rcu_head *head = (void *)&page->lru; | |
1159 | ||
1160 | call_rcu(head, rcu_free_slab); | |
1161 | } else | |
1162 | __free_slab(s, page); | |
1163 | } | |
1164 | ||
1165 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1166 | { | |
1167 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1168 | ||
1169 | atomic_long_dec(&n->nr_slabs); | |
1170 | reset_page_mapcount(page); | |
35e5d7ee CL |
1171 | ClearSlabDebug(page); |
1172 | __ClearPageSlab(page); | |
81819f0f CL |
1173 | free_slab(s, page); |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * Per slab locking using the pagelock | |
1178 | */ | |
1179 | static __always_inline void slab_lock(struct page *page) | |
1180 | { | |
1181 | bit_spin_lock(PG_locked, &page->flags); | |
1182 | } | |
1183 | ||
1184 | static __always_inline void slab_unlock(struct page *page) | |
1185 | { | |
1186 | bit_spin_unlock(PG_locked, &page->flags); | |
1187 | } | |
1188 | ||
1189 | static __always_inline int slab_trylock(struct page *page) | |
1190 | { | |
1191 | int rc = 1; | |
1192 | ||
1193 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1194 | return rc; | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * Management of partially allocated slabs | |
1199 | */ | |
e95eed57 | 1200 | static void add_partial_tail(struct kmem_cache_node *n, struct page *page) |
81819f0f | 1201 | { |
e95eed57 CL |
1202 | spin_lock(&n->list_lock); |
1203 | n->nr_partial++; | |
1204 | list_add_tail(&page->lru, &n->partial); | |
1205 | spin_unlock(&n->list_lock); | |
1206 | } | |
81819f0f | 1207 | |
e95eed57 CL |
1208 | static void add_partial(struct kmem_cache_node *n, struct page *page) |
1209 | { | |
81819f0f CL |
1210 | spin_lock(&n->list_lock); |
1211 | n->nr_partial++; | |
1212 | list_add(&page->lru, &n->partial); | |
1213 | spin_unlock(&n->list_lock); | |
1214 | } | |
1215 | ||
1216 | static void remove_partial(struct kmem_cache *s, | |
1217 | struct page *page) | |
1218 | { | |
1219 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1220 | ||
1221 | spin_lock(&n->list_lock); | |
1222 | list_del(&page->lru); | |
1223 | n->nr_partial--; | |
1224 | spin_unlock(&n->list_lock); | |
1225 | } | |
1226 | ||
1227 | /* | |
672bba3a | 1228 | * Lock slab and remove from the partial list. |
81819f0f | 1229 | * |
672bba3a | 1230 | * Must hold list_lock. |
81819f0f | 1231 | */ |
4b6f0750 | 1232 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) |
81819f0f CL |
1233 | { |
1234 | if (slab_trylock(page)) { | |
1235 | list_del(&page->lru); | |
1236 | n->nr_partial--; | |
4b6f0750 | 1237 | SetSlabFrozen(page); |
81819f0f CL |
1238 | return 1; |
1239 | } | |
1240 | return 0; | |
1241 | } | |
1242 | ||
1243 | /* | |
672bba3a | 1244 | * Try to allocate a partial slab from a specific node. |
81819f0f CL |
1245 | */ |
1246 | static struct page *get_partial_node(struct kmem_cache_node *n) | |
1247 | { | |
1248 | struct page *page; | |
1249 | ||
1250 | /* | |
1251 | * Racy check. If we mistakenly see no partial slabs then we | |
1252 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1253 | * partial slab and there is none available then get_partials() |
1254 | * will return NULL. | |
81819f0f CL |
1255 | */ |
1256 | if (!n || !n->nr_partial) | |
1257 | return NULL; | |
1258 | ||
1259 | spin_lock(&n->list_lock); | |
1260 | list_for_each_entry(page, &n->partial, lru) | |
4b6f0750 | 1261 | if (lock_and_freeze_slab(n, page)) |
81819f0f CL |
1262 | goto out; |
1263 | page = NULL; | |
1264 | out: | |
1265 | spin_unlock(&n->list_lock); | |
1266 | return page; | |
1267 | } | |
1268 | ||
1269 | /* | |
672bba3a | 1270 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1271 | */ |
1272 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1273 | { | |
1274 | #ifdef CONFIG_NUMA | |
1275 | struct zonelist *zonelist; | |
1276 | struct zone **z; | |
1277 | struct page *page; | |
1278 | ||
1279 | /* | |
672bba3a CL |
1280 | * The defrag ratio allows a configuration of the tradeoffs between |
1281 | * inter node defragmentation and node local allocations. A lower | |
1282 | * defrag_ratio increases the tendency to do local allocations | |
1283 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1284 | * |
672bba3a CL |
1285 | * If the defrag_ratio is set to 0 then kmalloc() always |
1286 | * returns node local objects. If the ratio is higher then kmalloc() | |
1287 | * may return off node objects because partial slabs are obtained | |
1288 | * from other nodes and filled up. | |
81819f0f CL |
1289 | * |
1290 | * If /sys/slab/xx/defrag_ratio is set to 100 (which makes | |
672bba3a CL |
1291 | * defrag_ratio = 1000) then every (well almost) allocation will |
1292 | * first attempt to defrag slab caches on other nodes. This means | |
1293 | * scanning over all nodes to look for partial slabs which may be | |
1294 | * expensive if we do it every time we are trying to find a slab | |
1295 | * with available objects. | |
81819f0f CL |
1296 | */ |
1297 | if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) | |
1298 | return NULL; | |
1299 | ||
1300 | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | |
1301 | ->node_zonelists[gfp_zone(flags)]; | |
1302 | for (z = zonelist->zones; *z; z++) { | |
1303 | struct kmem_cache_node *n; | |
1304 | ||
1305 | n = get_node(s, zone_to_nid(*z)); | |
1306 | ||
1307 | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | |
e95eed57 | 1308 | n->nr_partial > MIN_PARTIAL) { |
81819f0f CL |
1309 | page = get_partial_node(n); |
1310 | if (page) | |
1311 | return page; | |
1312 | } | |
1313 | } | |
1314 | #endif | |
1315 | return NULL; | |
1316 | } | |
1317 | ||
1318 | /* | |
1319 | * Get a partial page, lock it and return it. | |
1320 | */ | |
1321 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1322 | { | |
1323 | struct page *page; | |
1324 | int searchnode = (node == -1) ? numa_node_id() : node; | |
1325 | ||
1326 | page = get_partial_node(get_node(s, searchnode)); | |
1327 | if (page || (flags & __GFP_THISNODE)) | |
1328 | return page; | |
1329 | ||
1330 | return get_any_partial(s, flags); | |
1331 | } | |
1332 | ||
1333 | /* | |
1334 | * Move a page back to the lists. | |
1335 | * | |
1336 | * Must be called with the slab lock held. | |
1337 | * | |
1338 | * On exit the slab lock will have been dropped. | |
1339 | */ | |
4b6f0750 | 1340 | static void unfreeze_slab(struct kmem_cache *s, struct page *page) |
81819f0f | 1341 | { |
e95eed57 CL |
1342 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1343 | ||
4b6f0750 | 1344 | ClearSlabFrozen(page); |
81819f0f | 1345 | if (page->inuse) { |
e95eed57 | 1346 | |
81819f0f | 1347 | if (page->freelist) |
e95eed57 | 1348 | add_partial(n, page); |
35e5d7ee | 1349 | else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) |
e95eed57 | 1350 | add_full(n, page); |
81819f0f | 1351 | slab_unlock(page); |
e95eed57 | 1352 | |
81819f0f | 1353 | } else { |
e95eed57 CL |
1354 | if (n->nr_partial < MIN_PARTIAL) { |
1355 | /* | |
672bba3a CL |
1356 | * Adding an empty slab to the partial slabs in order |
1357 | * to avoid page allocator overhead. This slab needs | |
1358 | * to come after the other slabs with objects in | |
1359 | * order to fill them up. That way the size of the | |
1360 | * partial list stays small. kmem_cache_shrink can | |
1361 | * reclaim empty slabs from the partial list. | |
e95eed57 CL |
1362 | */ |
1363 | add_partial_tail(n, page); | |
1364 | slab_unlock(page); | |
1365 | } else { | |
1366 | slab_unlock(page); | |
1367 | discard_slab(s, page); | |
1368 | } | |
81819f0f CL |
1369 | } |
1370 | } | |
1371 | ||
1372 | /* | |
1373 | * Remove the cpu slab | |
1374 | */ | |
1375 | static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu) | |
1376 | { | |
894b8788 CL |
1377 | /* |
1378 | * Merge cpu freelist into freelist. Typically we get here | |
1379 | * because both freelists are empty. So this is unlikely | |
1380 | * to occur. | |
1381 | */ | |
1382 | while (unlikely(page->lockless_freelist)) { | |
1383 | void **object; | |
1384 | ||
1385 | /* Retrieve object from cpu_freelist */ | |
1386 | object = page->lockless_freelist; | |
1387 | page->lockless_freelist = page->lockless_freelist[page->offset]; | |
1388 | ||
1389 | /* And put onto the regular freelist */ | |
1390 | object[page->offset] = page->freelist; | |
1391 | page->freelist = object; | |
1392 | page->inuse--; | |
1393 | } | |
81819f0f | 1394 | s->cpu_slab[cpu] = NULL; |
4b6f0750 | 1395 | unfreeze_slab(s, page); |
81819f0f CL |
1396 | } |
1397 | ||
1398 | static void flush_slab(struct kmem_cache *s, struct page *page, int cpu) | |
1399 | { | |
1400 | slab_lock(page); | |
1401 | deactivate_slab(s, page, cpu); | |
1402 | } | |
1403 | ||
1404 | /* | |
1405 | * Flush cpu slab. | |
1406 | * Called from IPI handler with interrupts disabled. | |
1407 | */ | |
1408 | static void __flush_cpu_slab(struct kmem_cache *s, int cpu) | |
1409 | { | |
1410 | struct page *page = s->cpu_slab[cpu]; | |
1411 | ||
1412 | if (likely(page)) | |
1413 | flush_slab(s, page, cpu); | |
1414 | } | |
1415 | ||
1416 | static void flush_cpu_slab(void *d) | |
1417 | { | |
1418 | struct kmem_cache *s = d; | |
1419 | int cpu = smp_processor_id(); | |
1420 | ||
1421 | __flush_cpu_slab(s, cpu); | |
1422 | } | |
1423 | ||
1424 | static void flush_all(struct kmem_cache *s) | |
1425 | { | |
1426 | #ifdef CONFIG_SMP | |
1427 | on_each_cpu(flush_cpu_slab, s, 1, 1); | |
1428 | #else | |
1429 | unsigned long flags; | |
1430 | ||
1431 | local_irq_save(flags); | |
1432 | flush_cpu_slab(s); | |
1433 | local_irq_restore(flags); | |
1434 | #endif | |
1435 | } | |
1436 | ||
1437 | /* | |
894b8788 CL |
1438 | * Slow path. The lockless freelist is empty or we need to perform |
1439 | * debugging duties. | |
1440 | * | |
1441 | * Interrupts are disabled. | |
81819f0f | 1442 | * |
894b8788 CL |
1443 | * Processing is still very fast if new objects have been freed to the |
1444 | * regular freelist. In that case we simply take over the regular freelist | |
1445 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1446 | * |
894b8788 CL |
1447 | * If that is not working then we fall back to the partial lists. We take the |
1448 | * first element of the freelist as the object to allocate now and move the | |
1449 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1450 | * |
894b8788 CL |
1451 | * And if we were unable to get a new slab from the partial slab lists then |
1452 | * we need to allocate a new slab. This is slowest path since we may sleep. | |
81819f0f | 1453 | */ |
894b8788 CL |
1454 | static void *__slab_alloc(struct kmem_cache *s, |
1455 | gfp_t gfpflags, int node, void *addr, struct page *page) | |
81819f0f | 1456 | { |
81819f0f | 1457 | void **object; |
894b8788 | 1458 | int cpu = smp_processor_id(); |
81819f0f | 1459 | |
81819f0f CL |
1460 | if (!page) |
1461 | goto new_slab; | |
1462 | ||
1463 | slab_lock(page); | |
1464 | if (unlikely(node != -1 && page_to_nid(page) != node)) | |
1465 | goto another_slab; | |
894b8788 | 1466 | load_freelist: |
81819f0f CL |
1467 | object = page->freelist; |
1468 | if (unlikely(!object)) | |
1469 | goto another_slab; | |
35e5d7ee | 1470 | if (unlikely(SlabDebug(page))) |
81819f0f CL |
1471 | goto debug; |
1472 | ||
894b8788 CL |
1473 | object = page->freelist; |
1474 | page->lockless_freelist = object[page->offset]; | |
1475 | page->inuse = s->objects; | |
1476 | page->freelist = NULL; | |
81819f0f | 1477 | slab_unlock(page); |
81819f0f CL |
1478 | return object; |
1479 | ||
1480 | another_slab: | |
1481 | deactivate_slab(s, page, cpu); | |
1482 | ||
1483 | new_slab: | |
1484 | page = get_partial(s, gfpflags, node); | |
894b8788 | 1485 | if (page) { |
81819f0f | 1486 | s->cpu_slab[cpu] = page; |
894b8788 | 1487 | goto load_freelist; |
81819f0f CL |
1488 | } |
1489 | ||
1490 | page = new_slab(s, gfpflags, node); | |
1491 | if (page) { | |
1492 | cpu = smp_processor_id(); | |
1493 | if (s->cpu_slab[cpu]) { | |
1494 | /* | |
672bba3a CL |
1495 | * Someone else populated the cpu_slab while we |
1496 | * enabled interrupts, or we have gotten scheduled | |
1497 | * on another cpu. The page may not be on the | |
1498 | * requested node even if __GFP_THISNODE was | |
1499 | * specified. So we need to recheck. | |
81819f0f CL |
1500 | */ |
1501 | if (node == -1 || | |
1502 | page_to_nid(s->cpu_slab[cpu]) == node) { | |
1503 | /* | |
1504 | * Current cpuslab is acceptable and we | |
1505 | * want the current one since its cache hot | |
1506 | */ | |
1507 | discard_slab(s, page); | |
1508 | page = s->cpu_slab[cpu]; | |
1509 | slab_lock(page); | |
894b8788 | 1510 | goto load_freelist; |
81819f0f | 1511 | } |
672bba3a | 1512 | /* New slab does not fit our expectations */ |
81819f0f CL |
1513 | flush_slab(s, s->cpu_slab[cpu], cpu); |
1514 | } | |
1515 | slab_lock(page); | |
4b6f0750 CL |
1516 | SetSlabFrozen(page); |
1517 | s->cpu_slab[cpu] = page; | |
1518 | goto load_freelist; | |
81819f0f | 1519 | } |
81819f0f CL |
1520 | return NULL; |
1521 | debug: | |
894b8788 | 1522 | object = page->freelist; |
3ec09742 | 1523 | if (!alloc_debug_processing(s, page, object, addr)) |
81819f0f | 1524 | goto another_slab; |
894b8788 CL |
1525 | |
1526 | page->inuse++; | |
1527 | page->freelist = object[page->offset]; | |
1528 | slab_unlock(page); | |
1529 | return object; | |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
1534 | * have the fastpath folded into their functions. So no function call | |
1535 | * overhead for requests that can be satisfied on the fastpath. | |
1536 | * | |
1537 | * The fastpath works by first checking if the lockless freelist can be used. | |
1538 | * If not then __slab_alloc is called for slow processing. | |
1539 | * | |
1540 | * Otherwise we can simply pick the next object from the lockless free list. | |
1541 | */ | |
1542 | static void __always_inline *slab_alloc(struct kmem_cache *s, | |
1543 | gfp_t gfpflags, int node, void *addr) | |
1544 | { | |
1545 | struct page *page; | |
1546 | void **object; | |
1547 | unsigned long flags; | |
1548 | ||
1549 | local_irq_save(flags); | |
1550 | page = s->cpu_slab[smp_processor_id()]; | |
1551 | if (unlikely(!page || !page->lockless_freelist || | |
1552 | (node != -1 && page_to_nid(page) != node))) | |
1553 | ||
1554 | object = __slab_alloc(s, gfpflags, node, addr, page); | |
1555 | ||
1556 | else { | |
1557 | object = page->lockless_freelist; | |
1558 | page->lockless_freelist = object[page->offset]; | |
1559 | } | |
1560 | local_irq_restore(flags); | |
1561 | return object; | |
81819f0f CL |
1562 | } |
1563 | ||
1564 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
1565 | { | |
77c5e2d0 | 1566 | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); |
81819f0f CL |
1567 | } |
1568 | EXPORT_SYMBOL(kmem_cache_alloc); | |
1569 | ||
1570 | #ifdef CONFIG_NUMA | |
1571 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
1572 | { | |
77c5e2d0 | 1573 | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); |
81819f0f CL |
1574 | } |
1575 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
1576 | #endif | |
1577 | ||
1578 | /* | |
894b8788 CL |
1579 | * Slow patch handling. This may still be called frequently since objects |
1580 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 1581 | * |
894b8788 CL |
1582 | * So we still attempt to reduce cache line usage. Just take the slab |
1583 | * lock and free the item. If there is no additional partial page | |
1584 | * handling required then we can return immediately. | |
81819f0f | 1585 | */ |
894b8788 | 1586 | static void __slab_free(struct kmem_cache *s, struct page *page, |
77c5e2d0 | 1587 | void *x, void *addr) |
81819f0f CL |
1588 | { |
1589 | void *prior; | |
1590 | void **object = (void *)x; | |
81819f0f | 1591 | |
81819f0f CL |
1592 | slab_lock(page); |
1593 | ||
35e5d7ee | 1594 | if (unlikely(SlabDebug(page))) |
81819f0f CL |
1595 | goto debug; |
1596 | checks_ok: | |
1597 | prior = object[page->offset] = page->freelist; | |
1598 | page->freelist = object; | |
1599 | page->inuse--; | |
1600 | ||
4b6f0750 | 1601 | if (unlikely(SlabFrozen(page))) |
81819f0f CL |
1602 | goto out_unlock; |
1603 | ||
1604 | if (unlikely(!page->inuse)) | |
1605 | goto slab_empty; | |
1606 | ||
1607 | /* | |
1608 | * Objects left in the slab. If it | |
1609 | * was not on the partial list before | |
1610 | * then add it. | |
1611 | */ | |
1612 | if (unlikely(!prior)) | |
e95eed57 | 1613 | add_partial(get_node(s, page_to_nid(page)), page); |
81819f0f CL |
1614 | |
1615 | out_unlock: | |
1616 | slab_unlock(page); | |
81819f0f CL |
1617 | return; |
1618 | ||
1619 | slab_empty: | |
1620 | if (prior) | |
1621 | /* | |
672bba3a | 1622 | * Slab still on the partial list. |
81819f0f CL |
1623 | */ |
1624 | remove_partial(s, page); | |
1625 | ||
1626 | slab_unlock(page); | |
1627 | discard_slab(s, page); | |
81819f0f CL |
1628 | return; |
1629 | ||
1630 | debug: | |
3ec09742 | 1631 | if (!free_debug_processing(s, page, x, addr)) |
77c5e2d0 | 1632 | goto out_unlock; |
77c5e2d0 | 1633 | goto checks_ok; |
81819f0f CL |
1634 | } |
1635 | ||
894b8788 CL |
1636 | /* |
1637 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
1638 | * can perform fastpath freeing without additional function calls. | |
1639 | * | |
1640 | * The fastpath is only possible if we are freeing to the current cpu slab | |
1641 | * of this processor. This typically the case if we have just allocated | |
1642 | * the item before. | |
1643 | * | |
1644 | * If fastpath is not possible then fall back to __slab_free where we deal | |
1645 | * with all sorts of special processing. | |
1646 | */ | |
1647 | static void __always_inline slab_free(struct kmem_cache *s, | |
1648 | struct page *page, void *x, void *addr) | |
1649 | { | |
1650 | void **object = (void *)x; | |
1651 | unsigned long flags; | |
1652 | ||
1653 | local_irq_save(flags); | |
1654 | if (likely(page == s->cpu_slab[smp_processor_id()] && | |
1655 | !SlabDebug(page))) { | |
1656 | object[page->offset] = page->lockless_freelist; | |
1657 | page->lockless_freelist = object; | |
1658 | } else | |
1659 | __slab_free(s, page, x, addr); | |
1660 | ||
1661 | local_irq_restore(flags); | |
1662 | } | |
1663 | ||
81819f0f CL |
1664 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1665 | { | |
77c5e2d0 | 1666 | struct page *page; |
81819f0f | 1667 | |
b49af68f | 1668 | page = virt_to_head_page(x); |
81819f0f | 1669 | |
77c5e2d0 | 1670 | slab_free(s, page, x, __builtin_return_address(0)); |
81819f0f CL |
1671 | } |
1672 | EXPORT_SYMBOL(kmem_cache_free); | |
1673 | ||
1674 | /* Figure out on which slab object the object resides */ | |
1675 | static struct page *get_object_page(const void *x) | |
1676 | { | |
b49af68f | 1677 | struct page *page = virt_to_head_page(x); |
81819f0f CL |
1678 | |
1679 | if (!PageSlab(page)) | |
1680 | return NULL; | |
1681 | ||
1682 | return page; | |
1683 | } | |
1684 | ||
1685 | /* | |
672bba3a CL |
1686 | * Object placement in a slab is made very easy because we always start at |
1687 | * offset 0. If we tune the size of the object to the alignment then we can | |
1688 | * get the required alignment by putting one properly sized object after | |
1689 | * another. | |
81819f0f CL |
1690 | * |
1691 | * Notice that the allocation order determines the sizes of the per cpu | |
1692 | * caches. Each processor has always one slab available for allocations. | |
1693 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 1694 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 1695 | * locking overhead. |
81819f0f CL |
1696 | */ |
1697 | ||
1698 | /* | |
1699 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
1700 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
1701 | * and increases the number of allocations possible without having to | |
1702 | * take the list_lock. | |
1703 | */ | |
1704 | static int slub_min_order; | |
1705 | static int slub_max_order = DEFAULT_MAX_ORDER; | |
81819f0f CL |
1706 | static int slub_min_objects = DEFAULT_MIN_OBJECTS; |
1707 | ||
1708 | /* | |
1709 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 1710 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
1711 | */ |
1712 | static int slub_nomerge; | |
1713 | ||
81819f0f CL |
1714 | /* |
1715 | * Calculate the order of allocation given an slab object size. | |
1716 | * | |
672bba3a CL |
1717 | * The order of allocation has significant impact on performance and other |
1718 | * system components. Generally order 0 allocations should be preferred since | |
1719 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
1720 | * be problematic to put into order 0 slabs because there may be too much | |
1721 | * unused space left. We go to a higher order if more than 1/8th of the slab | |
1722 | * would be wasted. | |
1723 | * | |
1724 | * In order to reach satisfactory performance we must ensure that a minimum | |
1725 | * number of objects is in one slab. Otherwise we may generate too much | |
1726 | * activity on the partial lists which requires taking the list_lock. This is | |
1727 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 1728 | * |
672bba3a CL |
1729 | * slub_max_order specifies the order where we begin to stop considering the |
1730 | * number of objects in a slab as critical. If we reach slub_max_order then | |
1731 | * we try to keep the page order as low as possible. So we accept more waste | |
1732 | * of space in favor of a small page order. | |
81819f0f | 1733 | * |
672bba3a CL |
1734 | * Higher order allocations also allow the placement of more objects in a |
1735 | * slab and thereby reduce object handling overhead. If the user has | |
1736 | * requested a higher mininum order then we start with that one instead of | |
1737 | * the smallest order which will fit the object. | |
81819f0f | 1738 | */ |
5e6d444e CL |
1739 | static inline int slab_order(int size, int min_objects, |
1740 | int max_order, int fract_leftover) | |
81819f0f CL |
1741 | { |
1742 | int order; | |
1743 | int rem; | |
6300ea75 | 1744 | int min_order = slub_min_order; |
81819f0f | 1745 | |
6300ea75 CL |
1746 | /* |
1747 | * If we would create too many object per slab then reduce | |
1748 | * the slab order even if it goes below slub_min_order. | |
1749 | */ | |
1750 | while (min_order > 0 && | |
1751 | (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size) | |
1752 | min_order--; | |
1753 | ||
1754 | for (order = max(min_order, | |
5e6d444e CL |
1755 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1756 | order <= max_order; order++) { | |
81819f0f | 1757 | |
5e6d444e | 1758 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 1759 | |
5e6d444e | 1760 | if (slab_size < min_objects * size) |
81819f0f CL |
1761 | continue; |
1762 | ||
1763 | rem = slab_size % size; | |
1764 | ||
5e6d444e | 1765 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
1766 | break; |
1767 | ||
6300ea75 CL |
1768 | /* If the next size is too high then exit now */ |
1769 | if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size) | |
1770 | break; | |
81819f0f | 1771 | } |
672bba3a | 1772 | |
81819f0f CL |
1773 | return order; |
1774 | } | |
1775 | ||
5e6d444e CL |
1776 | static inline int calculate_order(int size) |
1777 | { | |
1778 | int order; | |
1779 | int min_objects; | |
1780 | int fraction; | |
1781 | ||
1782 | /* | |
1783 | * Attempt to find best configuration for a slab. This | |
1784 | * works by first attempting to generate a layout with | |
1785 | * the best configuration and backing off gradually. | |
1786 | * | |
1787 | * First we reduce the acceptable waste in a slab. Then | |
1788 | * we reduce the minimum objects required in a slab. | |
1789 | */ | |
1790 | min_objects = slub_min_objects; | |
1791 | while (min_objects > 1) { | |
1792 | fraction = 8; | |
1793 | while (fraction >= 4) { | |
1794 | order = slab_order(size, min_objects, | |
1795 | slub_max_order, fraction); | |
1796 | if (order <= slub_max_order) | |
1797 | return order; | |
1798 | fraction /= 2; | |
1799 | } | |
1800 | min_objects /= 2; | |
1801 | } | |
1802 | ||
1803 | /* | |
1804 | * We were unable to place multiple objects in a slab. Now | |
1805 | * lets see if we can place a single object there. | |
1806 | */ | |
1807 | order = slab_order(size, 1, slub_max_order, 1); | |
1808 | if (order <= slub_max_order) | |
1809 | return order; | |
1810 | ||
1811 | /* | |
1812 | * Doh this slab cannot be placed using slub_max_order. | |
1813 | */ | |
1814 | order = slab_order(size, 1, MAX_ORDER, 1); | |
1815 | if (order <= MAX_ORDER) | |
1816 | return order; | |
1817 | return -ENOSYS; | |
1818 | } | |
1819 | ||
81819f0f | 1820 | /* |
672bba3a | 1821 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
1822 | */ |
1823 | static unsigned long calculate_alignment(unsigned long flags, | |
1824 | unsigned long align, unsigned long size) | |
1825 | { | |
1826 | /* | |
1827 | * If the user wants hardware cache aligned objects then | |
1828 | * follow that suggestion if the object is sufficiently | |
1829 | * large. | |
1830 | * | |
1831 | * The hardware cache alignment cannot override the | |
1832 | * specified alignment though. If that is greater | |
1833 | * then use it. | |
1834 | */ | |
5af60839 | 1835 | if ((flags & SLAB_HWCACHE_ALIGN) && |
65c02d4c CL |
1836 | size > cache_line_size() / 2) |
1837 | return max_t(unsigned long, align, cache_line_size()); | |
81819f0f CL |
1838 | |
1839 | if (align < ARCH_SLAB_MINALIGN) | |
1840 | return ARCH_SLAB_MINALIGN; | |
1841 | ||
1842 | return ALIGN(align, sizeof(void *)); | |
1843 | } | |
1844 | ||
1845 | static void init_kmem_cache_node(struct kmem_cache_node *n) | |
1846 | { | |
1847 | n->nr_partial = 0; | |
1848 | atomic_long_set(&n->nr_slabs, 0); | |
1849 | spin_lock_init(&n->list_lock); | |
1850 | INIT_LIST_HEAD(&n->partial); | |
643b1138 | 1851 | INIT_LIST_HEAD(&n->full); |
81819f0f CL |
1852 | } |
1853 | ||
1854 | #ifdef CONFIG_NUMA | |
1855 | /* | |
1856 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
1857 | * slab on the node for this slabcache. There are no concurrent accesses | |
1858 | * possible. | |
1859 | * | |
1860 | * Note that this function only works on the kmalloc_node_cache | |
1861 | * when allocating for the kmalloc_node_cache. | |
1862 | */ | |
1863 | static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags, | |
1864 | int node) | |
1865 | { | |
1866 | struct page *page; | |
1867 | struct kmem_cache_node *n; | |
1868 | ||
1869 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | |
1870 | ||
1871 | page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node); | |
81819f0f CL |
1872 | |
1873 | BUG_ON(!page); | |
1874 | n = page->freelist; | |
1875 | BUG_ON(!n); | |
1876 | page->freelist = get_freepointer(kmalloc_caches, n); | |
1877 | page->inuse++; | |
1878 | kmalloc_caches->node[node] = n; | |
d45f39cb CL |
1879 | init_object(kmalloc_caches, n, 1); |
1880 | init_tracking(kmalloc_caches, n); | |
81819f0f CL |
1881 | init_kmem_cache_node(n); |
1882 | atomic_long_inc(&n->nr_slabs); | |
e95eed57 | 1883 | add_partial(n, page); |
dbc55faa CL |
1884 | |
1885 | /* | |
1886 | * new_slab() disables interupts. If we do not reenable interrupts here | |
1887 | * then bootup would continue with interrupts disabled. | |
1888 | */ | |
1889 | local_irq_enable(); | |
81819f0f CL |
1890 | return n; |
1891 | } | |
1892 | ||
1893 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
1894 | { | |
1895 | int node; | |
1896 | ||
1897 | for_each_online_node(node) { | |
1898 | struct kmem_cache_node *n = s->node[node]; | |
1899 | if (n && n != &s->local_node) | |
1900 | kmem_cache_free(kmalloc_caches, n); | |
1901 | s->node[node] = NULL; | |
1902 | } | |
1903 | } | |
1904 | ||
1905 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
1906 | { | |
1907 | int node; | |
1908 | int local_node; | |
1909 | ||
1910 | if (slab_state >= UP) | |
1911 | local_node = page_to_nid(virt_to_page(s)); | |
1912 | else | |
1913 | local_node = 0; | |
1914 | ||
1915 | for_each_online_node(node) { | |
1916 | struct kmem_cache_node *n; | |
1917 | ||
1918 | if (local_node == node) | |
1919 | n = &s->local_node; | |
1920 | else { | |
1921 | if (slab_state == DOWN) { | |
1922 | n = early_kmem_cache_node_alloc(gfpflags, | |
1923 | node); | |
1924 | continue; | |
1925 | } | |
1926 | n = kmem_cache_alloc_node(kmalloc_caches, | |
1927 | gfpflags, node); | |
1928 | ||
1929 | if (!n) { | |
1930 | free_kmem_cache_nodes(s); | |
1931 | return 0; | |
1932 | } | |
1933 | ||
1934 | } | |
1935 | s->node[node] = n; | |
1936 | init_kmem_cache_node(n); | |
1937 | } | |
1938 | return 1; | |
1939 | } | |
1940 | #else | |
1941 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
1942 | { | |
1943 | } | |
1944 | ||
1945 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
1946 | { | |
1947 | init_kmem_cache_node(&s->local_node); | |
1948 | return 1; | |
1949 | } | |
1950 | #endif | |
1951 | ||
1952 | /* | |
1953 | * calculate_sizes() determines the order and the distribution of data within | |
1954 | * a slab object. | |
1955 | */ | |
1956 | static int calculate_sizes(struct kmem_cache *s) | |
1957 | { | |
1958 | unsigned long flags = s->flags; | |
1959 | unsigned long size = s->objsize; | |
1960 | unsigned long align = s->align; | |
1961 | ||
1962 | /* | |
1963 | * Determine if we can poison the object itself. If the user of | |
1964 | * the slab may touch the object after free or before allocation | |
1965 | * then we should never poison the object itself. | |
1966 | */ | |
1967 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 1968 | !s->ctor) |
81819f0f CL |
1969 | s->flags |= __OBJECT_POISON; |
1970 | else | |
1971 | s->flags &= ~__OBJECT_POISON; | |
1972 | ||
1973 | /* | |
1974 | * Round up object size to the next word boundary. We can only | |
1975 | * place the free pointer at word boundaries and this determines | |
1976 | * the possible location of the free pointer. | |
1977 | */ | |
1978 | size = ALIGN(size, sizeof(void *)); | |
1979 | ||
41ecc55b | 1980 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f | 1981 | /* |
672bba3a | 1982 | * If we are Redzoning then check if there is some space between the |
81819f0f | 1983 | * end of the object and the free pointer. If not then add an |
672bba3a | 1984 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
1985 | */ |
1986 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
1987 | size += sizeof(void *); | |
41ecc55b | 1988 | #endif |
81819f0f CL |
1989 | |
1990 | /* | |
672bba3a CL |
1991 | * With that we have determined the number of bytes in actual use |
1992 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
1993 | */ |
1994 | s->inuse = size; | |
1995 | ||
1996 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 1997 | s->ctor)) { |
81819f0f CL |
1998 | /* |
1999 | * Relocate free pointer after the object if it is not | |
2000 | * permitted to overwrite the first word of the object on | |
2001 | * kmem_cache_free. | |
2002 | * | |
2003 | * This is the case if we do RCU, have a constructor or | |
2004 | * destructor or are poisoning the objects. | |
2005 | */ | |
2006 | s->offset = size; | |
2007 | size += sizeof(void *); | |
2008 | } | |
2009 | ||
c12b3c62 | 2010 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2011 | if (flags & SLAB_STORE_USER) |
2012 | /* | |
2013 | * Need to store information about allocs and frees after | |
2014 | * the object. | |
2015 | */ | |
2016 | size += 2 * sizeof(struct track); | |
2017 | ||
be7b3fbc | 2018 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2019 | /* |
2020 | * Add some empty padding so that we can catch | |
2021 | * overwrites from earlier objects rather than let | |
2022 | * tracking information or the free pointer be | |
2023 | * corrupted if an user writes before the start | |
2024 | * of the object. | |
2025 | */ | |
2026 | size += sizeof(void *); | |
41ecc55b | 2027 | #endif |
672bba3a | 2028 | |
81819f0f CL |
2029 | /* |
2030 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2031 | * user specified and the dynamic determination of cache line size |
2032 | * on bootup. | |
81819f0f CL |
2033 | */ |
2034 | align = calculate_alignment(flags, align, s->objsize); | |
2035 | ||
2036 | /* | |
2037 | * SLUB stores one object immediately after another beginning from | |
2038 | * offset 0. In order to align the objects we have to simply size | |
2039 | * each object to conform to the alignment. | |
2040 | */ | |
2041 | size = ALIGN(size, align); | |
2042 | s->size = size; | |
2043 | ||
2044 | s->order = calculate_order(size); | |
2045 | if (s->order < 0) | |
2046 | return 0; | |
2047 | ||
2048 | /* | |
2049 | * Determine the number of objects per slab | |
2050 | */ | |
2051 | s->objects = (PAGE_SIZE << s->order) / size; | |
2052 | ||
2053 | /* | |
2054 | * Verify that the number of objects is within permitted limits. | |
2055 | * The page->inuse field is only 16 bit wide! So we cannot have | |
2056 | * more than 64k objects per slab. | |
2057 | */ | |
6300ea75 | 2058 | if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB) |
81819f0f CL |
2059 | return 0; |
2060 | return 1; | |
2061 | ||
2062 | } | |
2063 | ||
81819f0f CL |
2064 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2065 | const char *name, size_t size, | |
2066 | size_t align, unsigned long flags, | |
c59def9f | 2067 | void (*ctor)(void *, struct kmem_cache *, unsigned long)) |
81819f0f CL |
2068 | { |
2069 | memset(s, 0, kmem_size); | |
2070 | s->name = name; | |
2071 | s->ctor = ctor; | |
81819f0f CL |
2072 | s->objsize = size; |
2073 | s->flags = flags; | |
2074 | s->align = align; | |
41ecc55b | 2075 | kmem_cache_open_debug_check(s); |
81819f0f CL |
2076 | |
2077 | if (!calculate_sizes(s)) | |
2078 | goto error; | |
2079 | ||
2080 | s->refcount = 1; | |
2081 | #ifdef CONFIG_NUMA | |
2082 | s->defrag_ratio = 100; | |
2083 | #endif | |
2084 | ||
2085 | if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | |
2086 | return 1; | |
2087 | error: | |
2088 | if (flags & SLAB_PANIC) | |
2089 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2090 | "order=%u offset=%u flags=%lx\n", | |
2091 | s->name, (unsigned long)size, s->size, s->order, | |
2092 | s->offset, flags); | |
2093 | return 0; | |
2094 | } | |
81819f0f CL |
2095 | |
2096 | /* | |
2097 | * Check if a given pointer is valid | |
2098 | */ | |
2099 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | |
2100 | { | |
2101 | struct page * page; | |
81819f0f CL |
2102 | |
2103 | page = get_object_page(object); | |
2104 | ||
2105 | if (!page || s != page->slab) | |
2106 | /* No slab or wrong slab */ | |
2107 | return 0; | |
2108 | ||
abcd08a6 | 2109 | if (!check_valid_pointer(s, page, object)) |
81819f0f CL |
2110 | return 0; |
2111 | ||
2112 | /* | |
2113 | * We could also check if the object is on the slabs freelist. | |
2114 | * But this would be too expensive and it seems that the main | |
2115 | * purpose of kmem_ptr_valid is to check if the object belongs | |
2116 | * to a certain slab. | |
2117 | */ | |
2118 | return 1; | |
2119 | } | |
2120 | EXPORT_SYMBOL(kmem_ptr_validate); | |
2121 | ||
2122 | /* | |
2123 | * Determine the size of a slab object | |
2124 | */ | |
2125 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2126 | { | |
2127 | return s->objsize; | |
2128 | } | |
2129 | EXPORT_SYMBOL(kmem_cache_size); | |
2130 | ||
2131 | const char *kmem_cache_name(struct kmem_cache *s) | |
2132 | { | |
2133 | return s->name; | |
2134 | } | |
2135 | EXPORT_SYMBOL(kmem_cache_name); | |
2136 | ||
2137 | /* | |
672bba3a CL |
2138 | * Attempt to free all slabs on a node. Return the number of slabs we |
2139 | * were unable to free. | |
81819f0f CL |
2140 | */ |
2141 | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | |
2142 | struct list_head *list) | |
2143 | { | |
2144 | int slabs_inuse = 0; | |
2145 | unsigned long flags; | |
2146 | struct page *page, *h; | |
2147 | ||
2148 | spin_lock_irqsave(&n->list_lock, flags); | |
2149 | list_for_each_entry_safe(page, h, list, lru) | |
2150 | if (!page->inuse) { | |
2151 | list_del(&page->lru); | |
2152 | discard_slab(s, page); | |
2153 | } else | |
2154 | slabs_inuse++; | |
2155 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2156 | return slabs_inuse; | |
2157 | } | |
2158 | ||
2159 | /* | |
672bba3a | 2160 | * Release all resources used by a slab cache. |
81819f0f CL |
2161 | */ |
2162 | static int kmem_cache_close(struct kmem_cache *s) | |
2163 | { | |
2164 | int node; | |
2165 | ||
2166 | flush_all(s); | |
2167 | ||
2168 | /* Attempt to free all objects */ | |
2169 | for_each_online_node(node) { | |
2170 | struct kmem_cache_node *n = get_node(s, node); | |
2171 | ||
2086d26a | 2172 | n->nr_partial -= free_list(s, n, &n->partial); |
81819f0f CL |
2173 | if (atomic_long_read(&n->nr_slabs)) |
2174 | return 1; | |
2175 | } | |
2176 | free_kmem_cache_nodes(s); | |
2177 | return 0; | |
2178 | } | |
2179 | ||
2180 | /* | |
2181 | * Close a cache and release the kmem_cache structure | |
2182 | * (must be used for caches created using kmem_cache_create) | |
2183 | */ | |
2184 | void kmem_cache_destroy(struct kmem_cache *s) | |
2185 | { | |
2186 | down_write(&slub_lock); | |
2187 | s->refcount--; | |
2188 | if (!s->refcount) { | |
2189 | list_del(&s->list); | |
2190 | if (kmem_cache_close(s)) | |
2191 | WARN_ON(1); | |
2192 | sysfs_slab_remove(s); | |
2193 | kfree(s); | |
2194 | } | |
2195 | up_write(&slub_lock); | |
2196 | } | |
2197 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2198 | ||
2199 | /******************************************************************** | |
2200 | * Kmalloc subsystem | |
2201 | *******************************************************************/ | |
2202 | ||
2203 | struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned; | |
2204 | EXPORT_SYMBOL(kmalloc_caches); | |
2205 | ||
2206 | #ifdef CONFIG_ZONE_DMA | |
2207 | static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1]; | |
2208 | #endif | |
2209 | ||
2210 | static int __init setup_slub_min_order(char *str) | |
2211 | { | |
2212 | get_option (&str, &slub_min_order); | |
2213 | ||
2214 | return 1; | |
2215 | } | |
2216 | ||
2217 | __setup("slub_min_order=", setup_slub_min_order); | |
2218 | ||
2219 | static int __init setup_slub_max_order(char *str) | |
2220 | { | |
2221 | get_option (&str, &slub_max_order); | |
2222 | ||
2223 | return 1; | |
2224 | } | |
2225 | ||
2226 | __setup("slub_max_order=", setup_slub_max_order); | |
2227 | ||
2228 | static int __init setup_slub_min_objects(char *str) | |
2229 | { | |
2230 | get_option (&str, &slub_min_objects); | |
2231 | ||
2232 | return 1; | |
2233 | } | |
2234 | ||
2235 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2236 | ||
2237 | static int __init setup_slub_nomerge(char *str) | |
2238 | { | |
2239 | slub_nomerge = 1; | |
2240 | return 1; | |
2241 | } | |
2242 | ||
2243 | __setup("slub_nomerge", setup_slub_nomerge); | |
2244 | ||
81819f0f CL |
2245 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2246 | const char *name, int size, gfp_t gfp_flags) | |
2247 | { | |
2248 | unsigned int flags = 0; | |
2249 | ||
2250 | if (gfp_flags & SLUB_DMA) | |
2251 | flags = SLAB_CACHE_DMA; | |
2252 | ||
2253 | down_write(&slub_lock); | |
2254 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | |
c59def9f | 2255 | flags, NULL)) |
81819f0f CL |
2256 | goto panic; |
2257 | ||
2258 | list_add(&s->list, &slab_caches); | |
2259 | up_write(&slub_lock); | |
2260 | if (sysfs_slab_add(s)) | |
2261 | goto panic; | |
2262 | return s; | |
2263 | ||
2264 | panic: | |
2265 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
2266 | } | |
2267 | ||
2268 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | |
2269 | { | |
2270 | int index = kmalloc_index(size); | |
2271 | ||
614410d5 | 2272 | if (!index) |
6cb8f913 | 2273 | return ZERO_SIZE_PTR; |
81819f0f CL |
2274 | |
2275 | /* Allocation too large? */ | |
6cb8f913 CL |
2276 | if (index < 0) |
2277 | return NULL; | |
81819f0f CL |
2278 | |
2279 | #ifdef CONFIG_ZONE_DMA | |
2280 | if ((flags & SLUB_DMA)) { | |
2281 | struct kmem_cache *s; | |
2282 | struct kmem_cache *x; | |
2283 | char *text; | |
2284 | size_t realsize; | |
2285 | ||
2286 | s = kmalloc_caches_dma[index]; | |
2287 | if (s) | |
2288 | return s; | |
2289 | ||
2290 | /* Dynamically create dma cache */ | |
2291 | x = kmalloc(kmem_size, flags & ~SLUB_DMA); | |
2292 | if (!x) | |
2293 | panic("Unable to allocate memory for dma cache\n"); | |
2294 | ||
2295 | if (index <= KMALLOC_SHIFT_HIGH) | |
2296 | realsize = 1 << index; | |
2297 | else { | |
2298 | if (index == 1) | |
2299 | realsize = 96; | |
2300 | else | |
2301 | realsize = 192; | |
2302 | } | |
2303 | ||
2304 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", | |
2305 | (unsigned int)realsize); | |
2306 | s = create_kmalloc_cache(x, text, realsize, flags); | |
2307 | kmalloc_caches_dma[index] = s; | |
2308 | return s; | |
2309 | } | |
2310 | #endif | |
2311 | return &kmalloc_caches[index]; | |
2312 | } | |
2313 | ||
2314 | void *__kmalloc(size_t size, gfp_t flags) | |
2315 | { | |
2316 | struct kmem_cache *s = get_slab(size, flags); | |
2317 | ||
6cb8f913 CL |
2318 | if (ZERO_OR_NULL_PTR(s)) |
2319 | return s; | |
2320 | ||
2321 | return slab_alloc(s, flags, -1, __builtin_return_address(0)); | |
81819f0f CL |
2322 | } |
2323 | EXPORT_SYMBOL(__kmalloc); | |
2324 | ||
2325 | #ifdef CONFIG_NUMA | |
2326 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
2327 | { | |
2328 | struct kmem_cache *s = get_slab(size, flags); | |
2329 | ||
6cb8f913 CL |
2330 | if (ZERO_OR_NULL_PTR(s)) |
2331 | return s; | |
2332 | ||
2333 | return slab_alloc(s, flags, node, __builtin_return_address(0)); | |
81819f0f CL |
2334 | } |
2335 | EXPORT_SYMBOL(__kmalloc_node); | |
2336 | #endif | |
2337 | ||
2338 | size_t ksize(const void *object) | |
2339 | { | |
272c1d21 | 2340 | struct page *page; |
81819f0f CL |
2341 | struct kmem_cache *s; |
2342 | ||
272c1d21 CL |
2343 | if (object == ZERO_SIZE_PTR) |
2344 | return 0; | |
2345 | ||
2346 | page = get_object_page(object); | |
81819f0f CL |
2347 | BUG_ON(!page); |
2348 | s = page->slab; | |
2349 | BUG_ON(!s); | |
2350 | ||
2351 | /* | |
2352 | * Debugging requires use of the padding between object | |
2353 | * and whatever may come after it. | |
2354 | */ | |
2355 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
2356 | return s->objsize; | |
2357 | ||
2358 | /* | |
2359 | * If we have the need to store the freelist pointer | |
2360 | * back there or track user information then we can | |
2361 | * only use the space before that information. | |
2362 | */ | |
2363 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
2364 | return s->inuse; | |
2365 | ||
2366 | /* | |
2367 | * Else we can use all the padding etc for the allocation | |
2368 | */ | |
2369 | return s->size; | |
2370 | } | |
2371 | EXPORT_SYMBOL(ksize); | |
2372 | ||
2373 | void kfree(const void *x) | |
2374 | { | |
2375 | struct kmem_cache *s; | |
2376 | struct page *page; | |
2377 | ||
272c1d21 CL |
2378 | /* |
2379 | * This has to be an unsigned comparison. According to Linus | |
2380 | * some gcc version treat a pointer as a signed entity. Then | |
2381 | * this comparison would be true for all "negative" pointers | |
2382 | * (which would cover the whole upper half of the address space). | |
2383 | */ | |
6cb8f913 | 2384 | if (ZERO_OR_NULL_PTR(x)) |
81819f0f CL |
2385 | return; |
2386 | ||
b49af68f | 2387 | page = virt_to_head_page(x); |
81819f0f CL |
2388 | s = page->slab; |
2389 | ||
77c5e2d0 | 2390 | slab_free(s, page, (void *)x, __builtin_return_address(0)); |
81819f0f CL |
2391 | } |
2392 | EXPORT_SYMBOL(kfree); | |
2393 | ||
2086d26a | 2394 | /* |
672bba3a CL |
2395 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2396 | * the remaining slabs by the number of items in use. The slabs with the | |
2397 | * most items in use come first. New allocations will then fill those up | |
2398 | * and thus they can be removed from the partial lists. | |
2399 | * | |
2400 | * The slabs with the least items are placed last. This results in them | |
2401 | * being allocated from last increasing the chance that the last objects | |
2402 | * are freed in them. | |
2086d26a CL |
2403 | */ |
2404 | int kmem_cache_shrink(struct kmem_cache *s) | |
2405 | { | |
2406 | int node; | |
2407 | int i; | |
2408 | struct kmem_cache_node *n; | |
2409 | struct page *page; | |
2410 | struct page *t; | |
2411 | struct list_head *slabs_by_inuse = | |
2412 | kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); | |
2413 | unsigned long flags; | |
2414 | ||
2415 | if (!slabs_by_inuse) | |
2416 | return -ENOMEM; | |
2417 | ||
2418 | flush_all(s); | |
2419 | for_each_online_node(node) { | |
2420 | n = get_node(s, node); | |
2421 | ||
2422 | if (!n->nr_partial) | |
2423 | continue; | |
2424 | ||
2425 | for (i = 0; i < s->objects; i++) | |
2426 | INIT_LIST_HEAD(slabs_by_inuse + i); | |
2427 | ||
2428 | spin_lock_irqsave(&n->list_lock, flags); | |
2429 | ||
2430 | /* | |
672bba3a | 2431 | * Build lists indexed by the items in use in each slab. |
2086d26a | 2432 | * |
672bba3a CL |
2433 | * Note that concurrent frees may occur while we hold the |
2434 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
2435 | */ |
2436 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
2437 | if (!page->inuse && slab_trylock(page)) { | |
2438 | /* | |
2439 | * Must hold slab lock here because slab_free | |
2440 | * may have freed the last object and be | |
2441 | * waiting to release the slab. | |
2442 | */ | |
2443 | list_del(&page->lru); | |
2444 | n->nr_partial--; | |
2445 | slab_unlock(page); | |
2446 | discard_slab(s, page); | |
2447 | } else { | |
2448 | if (n->nr_partial > MAX_PARTIAL) | |
2449 | list_move(&page->lru, | |
2450 | slabs_by_inuse + page->inuse); | |
2451 | } | |
2452 | } | |
2453 | ||
2454 | if (n->nr_partial <= MAX_PARTIAL) | |
2455 | goto out; | |
2456 | ||
2457 | /* | |
672bba3a CL |
2458 | * Rebuild the partial list with the slabs filled up most |
2459 | * first and the least used slabs at the end. | |
2086d26a CL |
2460 | */ |
2461 | for (i = s->objects - 1; i >= 0; i--) | |
2462 | list_splice(slabs_by_inuse + i, n->partial.prev); | |
2463 | ||
2464 | out: | |
2465 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2466 | } | |
2467 | ||
2468 | kfree(slabs_by_inuse); | |
2469 | return 0; | |
2470 | } | |
2471 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2472 | ||
81819f0f CL |
2473 | /******************************************************************** |
2474 | * Basic setup of slabs | |
2475 | *******************************************************************/ | |
2476 | ||
2477 | void __init kmem_cache_init(void) | |
2478 | { | |
2479 | int i; | |
4b356be0 | 2480 | int caches = 0; |
81819f0f CL |
2481 | |
2482 | #ifdef CONFIG_NUMA | |
2483 | /* | |
2484 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 2485 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
2486 | * kmem_cache_open for slab_state == DOWN. |
2487 | */ | |
2488 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | |
2489 | sizeof(struct kmem_cache_node), GFP_KERNEL); | |
8ffa6875 | 2490 | kmalloc_caches[0].refcount = -1; |
4b356be0 | 2491 | caches++; |
81819f0f CL |
2492 | #endif |
2493 | ||
2494 | /* Able to allocate the per node structures */ | |
2495 | slab_state = PARTIAL; | |
2496 | ||
2497 | /* Caches that are not of the two-to-the-power-of size */ | |
4b356be0 CL |
2498 | if (KMALLOC_MIN_SIZE <= 64) { |
2499 | create_kmalloc_cache(&kmalloc_caches[1], | |
81819f0f | 2500 | "kmalloc-96", 96, GFP_KERNEL); |
4b356be0 CL |
2501 | caches++; |
2502 | } | |
2503 | if (KMALLOC_MIN_SIZE <= 128) { | |
2504 | create_kmalloc_cache(&kmalloc_caches[2], | |
81819f0f | 2505 | "kmalloc-192", 192, GFP_KERNEL); |
4b356be0 CL |
2506 | caches++; |
2507 | } | |
81819f0f | 2508 | |
4b356be0 | 2509 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
81819f0f CL |
2510 | create_kmalloc_cache(&kmalloc_caches[i], |
2511 | "kmalloc", 1 << i, GFP_KERNEL); | |
4b356be0 CL |
2512 | caches++; |
2513 | } | |
81819f0f CL |
2514 | |
2515 | slab_state = UP; | |
2516 | ||
2517 | /* Provide the correct kmalloc names now that the caches are up */ | |
2518 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | |
2519 | kmalloc_caches[i]. name = | |
2520 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | |
2521 | ||
2522 | #ifdef CONFIG_SMP | |
2523 | register_cpu_notifier(&slab_notifier); | |
2524 | #endif | |
2525 | ||
bcf889f9 CL |
2526 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + |
2527 | nr_cpu_ids * sizeof(struct page *); | |
81819f0f CL |
2528 | |
2529 | printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
2530 | " CPUs=%d, Nodes=%d\n", |
2531 | caches, cache_line_size(), | |
81819f0f CL |
2532 | slub_min_order, slub_max_order, slub_min_objects, |
2533 | nr_cpu_ids, nr_node_ids); | |
2534 | } | |
2535 | ||
2536 | /* | |
2537 | * Find a mergeable slab cache | |
2538 | */ | |
2539 | static int slab_unmergeable(struct kmem_cache *s) | |
2540 | { | |
2541 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
2542 | return 1; | |
2543 | ||
c59def9f | 2544 | if (s->ctor) |
81819f0f CL |
2545 | return 1; |
2546 | ||
8ffa6875 CL |
2547 | /* |
2548 | * We may have set a slab to be unmergeable during bootstrap. | |
2549 | */ | |
2550 | if (s->refcount < 0) | |
2551 | return 1; | |
2552 | ||
81819f0f CL |
2553 | return 0; |
2554 | } | |
2555 | ||
2556 | static struct kmem_cache *find_mergeable(size_t size, | |
2557 | size_t align, unsigned long flags, | |
c59def9f | 2558 | void (*ctor)(void *, struct kmem_cache *, unsigned long)) |
81819f0f | 2559 | { |
5b95a4ac | 2560 | struct kmem_cache *s; |
81819f0f CL |
2561 | |
2562 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
2563 | return NULL; | |
2564 | ||
c59def9f | 2565 | if (ctor) |
81819f0f CL |
2566 | return NULL; |
2567 | ||
2568 | size = ALIGN(size, sizeof(void *)); | |
2569 | align = calculate_alignment(flags, align, size); | |
2570 | size = ALIGN(size, align); | |
2571 | ||
5b95a4ac | 2572 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
2573 | if (slab_unmergeable(s)) |
2574 | continue; | |
2575 | ||
2576 | if (size > s->size) | |
2577 | continue; | |
2578 | ||
2579 | if (((flags | slub_debug) & SLUB_MERGE_SAME) != | |
2580 | (s->flags & SLUB_MERGE_SAME)) | |
2581 | continue; | |
2582 | /* | |
2583 | * Check if alignment is compatible. | |
2584 | * Courtesy of Adrian Drzewiecki | |
2585 | */ | |
2586 | if ((s->size & ~(align -1)) != s->size) | |
2587 | continue; | |
2588 | ||
2589 | if (s->size - size >= sizeof(void *)) | |
2590 | continue; | |
2591 | ||
2592 | return s; | |
2593 | } | |
2594 | return NULL; | |
2595 | } | |
2596 | ||
2597 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
2598 | size_t align, unsigned long flags, | |
2599 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | |
2600 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | |
2601 | { | |
2602 | struct kmem_cache *s; | |
2603 | ||
c59def9f | 2604 | BUG_ON(dtor); |
81819f0f | 2605 | down_write(&slub_lock); |
c59def9f | 2606 | s = find_mergeable(size, align, flags, ctor); |
81819f0f CL |
2607 | if (s) { |
2608 | s->refcount++; | |
2609 | /* | |
2610 | * Adjust the object sizes so that we clear | |
2611 | * the complete object on kzalloc. | |
2612 | */ | |
2613 | s->objsize = max(s->objsize, (int)size); | |
2614 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | |
2615 | if (sysfs_slab_alias(s, name)) | |
2616 | goto err; | |
2617 | } else { | |
2618 | s = kmalloc(kmem_size, GFP_KERNEL); | |
2619 | if (s && kmem_cache_open(s, GFP_KERNEL, name, | |
c59def9f | 2620 | size, align, flags, ctor)) { |
81819f0f CL |
2621 | if (sysfs_slab_add(s)) { |
2622 | kfree(s); | |
2623 | goto err; | |
2624 | } | |
2625 | list_add(&s->list, &slab_caches); | |
2626 | } else | |
2627 | kfree(s); | |
2628 | } | |
2629 | up_write(&slub_lock); | |
2630 | return s; | |
2631 | ||
2632 | err: | |
2633 | up_write(&slub_lock); | |
2634 | if (flags & SLAB_PANIC) | |
2635 | panic("Cannot create slabcache %s\n", name); | |
2636 | else | |
2637 | s = NULL; | |
2638 | return s; | |
2639 | } | |
2640 | EXPORT_SYMBOL(kmem_cache_create); | |
2641 | ||
2642 | void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags) | |
2643 | { | |
2644 | void *x; | |
2645 | ||
77c5e2d0 | 2646 | x = slab_alloc(s, flags, -1, __builtin_return_address(0)); |
81819f0f CL |
2647 | if (x) |
2648 | memset(x, 0, s->objsize); | |
2649 | return x; | |
2650 | } | |
2651 | EXPORT_SYMBOL(kmem_cache_zalloc); | |
2652 | ||
2653 | #ifdef CONFIG_SMP | |
81819f0f | 2654 | /* |
672bba3a CL |
2655 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
2656 | * necessary. | |
81819f0f CL |
2657 | */ |
2658 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
2659 | unsigned long action, void *hcpu) | |
2660 | { | |
2661 | long cpu = (long)hcpu; | |
5b95a4ac CL |
2662 | struct kmem_cache *s; |
2663 | unsigned long flags; | |
81819f0f CL |
2664 | |
2665 | switch (action) { | |
2666 | case CPU_UP_CANCELED: | |
8bb78442 | 2667 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 2668 | case CPU_DEAD: |
8bb78442 | 2669 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
2670 | down_read(&slub_lock); |
2671 | list_for_each_entry(s, &slab_caches, list) { | |
2672 | local_irq_save(flags); | |
2673 | __flush_cpu_slab(s, cpu); | |
2674 | local_irq_restore(flags); | |
2675 | } | |
2676 | up_read(&slub_lock); | |
81819f0f CL |
2677 | break; |
2678 | default: | |
2679 | break; | |
2680 | } | |
2681 | return NOTIFY_OK; | |
2682 | } | |
2683 | ||
2684 | static struct notifier_block __cpuinitdata slab_notifier = | |
2685 | { &slab_cpuup_callback, NULL, 0 }; | |
2686 | ||
2687 | #endif | |
2688 | ||
81819f0f CL |
2689 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) |
2690 | { | |
2691 | struct kmem_cache *s = get_slab(size, gfpflags); | |
81819f0f | 2692 | |
6cb8f913 CL |
2693 | if (ZERO_OR_NULL_PTR(s)) |
2694 | return s; | |
81819f0f | 2695 | |
77c5e2d0 | 2696 | return slab_alloc(s, gfpflags, -1, caller); |
81819f0f CL |
2697 | } |
2698 | ||
2699 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |
2700 | int node, void *caller) | |
2701 | { | |
2702 | struct kmem_cache *s = get_slab(size, gfpflags); | |
81819f0f | 2703 | |
6cb8f913 CL |
2704 | if (ZERO_OR_NULL_PTR(s)) |
2705 | return s; | |
81819f0f | 2706 | |
77c5e2d0 | 2707 | return slab_alloc(s, gfpflags, node, caller); |
81819f0f CL |
2708 | } |
2709 | ||
41ecc55b | 2710 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
53e15af0 CL |
2711 | static int validate_slab(struct kmem_cache *s, struct page *page) |
2712 | { | |
2713 | void *p; | |
2714 | void *addr = page_address(page); | |
7656c72b | 2715 | DECLARE_BITMAP(map, s->objects); |
53e15af0 CL |
2716 | |
2717 | if (!check_slab(s, page) || | |
2718 | !on_freelist(s, page, NULL)) | |
2719 | return 0; | |
2720 | ||
2721 | /* Now we know that a valid freelist exists */ | |
2722 | bitmap_zero(map, s->objects); | |
2723 | ||
7656c72b CL |
2724 | for_each_free_object(p, s, page->freelist) { |
2725 | set_bit(slab_index(p, s, addr), map); | |
53e15af0 CL |
2726 | if (!check_object(s, page, p, 0)) |
2727 | return 0; | |
2728 | } | |
2729 | ||
7656c72b CL |
2730 | for_each_object(p, s, addr) |
2731 | if (!test_bit(slab_index(p, s, addr), map)) | |
53e15af0 CL |
2732 | if (!check_object(s, page, p, 1)) |
2733 | return 0; | |
2734 | return 1; | |
2735 | } | |
2736 | ||
2737 | static void validate_slab_slab(struct kmem_cache *s, struct page *page) | |
2738 | { | |
2739 | if (slab_trylock(page)) { | |
2740 | validate_slab(s, page); | |
2741 | slab_unlock(page); | |
2742 | } else | |
2743 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
2744 | s->name, page); | |
2745 | ||
2746 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | |
35e5d7ee CL |
2747 | if (!SlabDebug(page)) |
2748 | printk(KERN_ERR "SLUB %s: SlabDebug not set " | |
53e15af0 CL |
2749 | "on slab 0x%p\n", s->name, page); |
2750 | } else { | |
35e5d7ee CL |
2751 | if (SlabDebug(page)) |
2752 | printk(KERN_ERR "SLUB %s: SlabDebug set on " | |
53e15af0 CL |
2753 | "slab 0x%p\n", s->name, page); |
2754 | } | |
2755 | } | |
2756 | ||
2757 | static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n) | |
2758 | { | |
2759 | unsigned long count = 0; | |
2760 | struct page *page; | |
2761 | unsigned long flags; | |
2762 | ||
2763 | spin_lock_irqsave(&n->list_lock, flags); | |
2764 | ||
2765 | list_for_each_entry(page, &n->partial, lru) { | |
2766 | validate_slab_slab(s, page); | |
2767 | count++; | |
2768 | } | |
2769 | if (count != n->nr_partial) | |
2770 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
2771 | "counter=%ld\n", s->name, count, n->nr_partial); | |
2772 | ||
2773 | if (!(s->flags & SLAB_STORE_USER)) | |
2774 | goto out; | |
2775 | ||
2776 | list_for_each_entry(page, &n->full, lru) { | |
2777 | validate_slab_slab(s, page); | |
2778 | count++; | |
2779 | } | |
2780 | if (count != atomic_long_read(&n->nr_slabs)) | |
2781 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
2782 | "counter=%ld\n", s->name, count, | |
2783 | atomic_long_read(&n->nr_slabs)); | |
2784 | ||
2785 | out: | |
2786 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2787 | return count; | |
2788 | } | |
2789 | ||
2790 | static unsigned long validate_slab_cache(struct kmem_cache *s) | |
2791 | { | |
2792 | int node; | |
2793 | unsigned long count = 0; | |
2794 | ||
2795 | flush_all(s); | |
2796 | for_each_online_node(node) { | |
2797 | struct kmem_cache_node *n = get_node(s, node); | |
2798 | ||
2799 | count += validate_slab_node(s, n); | |
2800 | } | |
2801 | return count; | |
2802 | } | |
2803 | ||
b3459709 CL |
2804 | #ifdef SLUB_RESILIENCY_TEST |
2805 | static void resiliency_test(void) | |
2806 | { | |
2807 | u8 *p; | |
2808 | ||
2809 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
2810 | printk(KERN_ERR "-----------------------\n"); | |
2811 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
2812 | ||
2813 | p = kzalloc(16, GFP_KERNEL); | |
2814 | p[16] = 0x12; | |
2815 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
2816 | " 0x12->0x%p\n\n", p + 16); | |
2817 | ||
2818 | validate_slab_cache(kmalloc_caches + 4); | |
2819 | ||
2820 | /* Hmmm... The next two are dangerous */ | |
2821 | p = kzalloc(32, GFP_KERNEL); | |
2822 | p[32 + sizeof(void *)] = 0x34; | |
2823 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
2824 | " 0x34 -> -0x%p\n", p); | |
2825 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | |
2826 | ||
2827 | validate_slab_cache(kmalloc_caches + 5); | |
2828 | p = kzalloc(64, GFP_KERNEL); | |
2829 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
2830 | *p = 0x56; | |
2831 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
2832 | p); | |
2833 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | |
2834 | validate_slab_cache(kmalloc_caches + 6); | |
2835 | ||
2836 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
2837 | p = kzalloc(128, GFP_KERNEL); | |
2838 | kfree(p); | |
2839 | *p = 0x78; | |
2840 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
2841 | validate_slab_cache(kmalloc_caches + 7); | |
2842 | ||
2843 | p = kzalloc(256, GFP_KERNEL); | |
2844 | kfree(p); | |
2845 | p[50] = 0x9a; | |
2846 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | |
2847 | validate_slab_cache(kmalloc_caches + 8); | |
2848 | ||
2849 | p = kzalloc(512, GFP_KERNEL); | |
2850 | kfree(p); | |
2851 | p[512] = 0xab; | |
2852 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
2853 | validate_slab_cache(kmalloc_caches + 9); | |
2854 | } | |
2855 | #else | |
2856 | static void resiliency_test(void) {}; | |
2857 | #endif | |
2858 | ||
88a420e4 | 2859 | /* |
672bba3a | 2860 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
2861 | * and freed. |
2862 | */ | |
2863 | ||
2864 | struct location { | |
2865 | unsigned long count; | |
2866 | void *addr; | |
45edfa58 CL |
2867 | long long sum_time; |
2868 | long min_time; | |
2869 | long max_time; | |
2870 | long min_pid; | |
2871 | long max_pid; | |
2872 | cpumask_t cpus; | |
2873 | nodemask_t nodes; | |
88a420e4 CL |
2874 | }; |
2875 | ||
2876 | struct loc_track { | |
2877 | unsigned long max; | |
2878 | unsigned long count; | |
2879 | struct location *loc; | |
2880 | }; | |
2881 | ||
2882 | static void free_loc_track(struct loc_track *t) | |
2883 | { | |
2884 | if (t->max) | |
2885 | free_pages((unsigned long)t->loc, | |
2886 | get_order(sizeof(struct location) * t->max)); | |
2887 | } | |
2888 | ||
68dff6a9 | 2889 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
2890 | { |
2891 | struct location *l; | |
2892 | int order; | |
2893 | ||
88a420e4 CL |
2894 | order = get_order(sizeof(struct location) * max); |
2895 | ||
68dff6a9 | 2896 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
2897 | if (!l) |
2898 | return 0; | |
2899 | ||
2900 | if (t->count) { | |
2901 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
2902 | free_loc_track(t); | |
2903 | } | |
2904 | t->max = max; | |
2905 | t->loc = l; | |
2906 | return 1; | |
2907 | } | |
2908 | ||
2909 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 2910 | const struct track *track) |
88a420e4 CL |
2911 | { |
2912 | long start, end, pos; | |
2913 | struct location *l; | |
2914 | void *caddr; | |
45edfa58 | 2915 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
2916 | |
2917 | start = -1; | |
2918 | end = t->count; | |
2919 | ||
2920 | for ( ; ; ) { | |
2921 | pos = start + (end - start + 1) / 2; | |
2922 | ||
2923 | /* | |
2924 | * There is nothing at "end". If we end up there | |
2925 | * we need to add something to before end. | |
2926 | */ | |
2927 | if (pos == end) | |
2928 | break; | |
2929 | ||
2930 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
2931 | if (track->addr == caddr) { |
2932 | ||
2933 | l = &t->loc[pos]; | |
2934 | l->count++; | |
2935 | if (track->when) { | |
2936 | l->sum_time += age; | |
2937 | if (age < l->min_time) | |
2938 | l->min_time = age; | |
2939 | if (age > l->max_time) | |
2940 | l->max_time = age; | |
2941 | ||
2942 | if (track->pid < l->min_pid) | |
2943 | l->min_pid = track->pid; | |
2944 | if (track->pid > l->max_pid) | |
2945 | l->max_pid = track->pid; | |
2946 | ||
2947 | cpu_set(track->cpu, l->cpus); | |
2948 | } | |
2949 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
2950 | return 1; |
2951 | } | |
2952 | ||
45edfa58 | 2953 | if (track->addr < caddr) |
88a420e4 CL |
2954 | end = pos; |
2955 | else | |
2956 | start = pos; | |
2957 | } | |
2958 | ||
2959 | /* | |
672bba3a | 2960 | * Not found. Insert new tracking element. |
88a420e4 | 2961 | */ |
68dff6a9 | 2962 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
2963 | return 0; |
2964 | ||
2965 | l = t->loc + pos; | |
2966 | if (pos < t->count) | |
2967 | memmove(l + 1, l, | |
2968 | (t->count - pos) * sizeof(struct location)); | |
2969 | t->count++; | |
2970 | l->count = 1; | |
45edfa58 CL |
2971 | l->addr = track->addr; |
2972 | l->sum_time = age; | |
2973 | l->min_time = age; | |
2974 | l->max_time = age; | |
2975 | l->min_pid = track->pid; | |
2976 | l->max_pid = track->pid; | |
2977 | cpus_clear(l->cpus); | |
2978 | cpu_set(track->cpu, l->cpus); | |
2979 | nodes_clear(l->nodes); | |
2980 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
2981 | return 1; |
2982 | } | |
2983 | ||
2984 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
2985 | struct page *page, enum track_item alloc) | |
2986 | { | |
2987 | void *addr = page_address(page); | |
7656c72b | 2988 | DECLARE_BITMAP(map, s->objects); |
88a420e4 CL |
2989 | void *p; |
2990 | ||
2991 | bitmap_zero(map, s->objects); | |
7656c72b CL |
2992 | for_each_free_object(p, s, page->freelist) |
2993 | set_bit(slab_index(p, s, addr), map); | |
88a420e4 | 2994 | |
7656c72b | 2995 | for_each_object(p, s, addr) |
45edfa58 CL |
2996 | if (!test_bit(slab_index(p, s, addr), map)) |
2997 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
2998 | } |
2999 | ||
3000 | static int list_locations(struct kmem_cache *s, char *buf, | |
3001 | enum track_item alloc) | |
3002 | { | |
3003 | int n = 0; | |
3004 | unsigned long i; | |
68dff6a9 | 3005 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 CL |
3006 | int node; |
3007 | ||
68dff6a9 CL |
3008 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
3009 | GFP_KERNEL)) | |
3010 | return sprintf(buf, "Out of memory\n"); | |
88a420e4 CL |
3011 | |
3012 | /* Push back cpu slabs */ | |
3013 | flush_all(s); | |
3014 | ||
3015 | for_each_online_node(node) { | |
3016 | struct kmem_cache_node *n = get_node(s, node); | |
3017 | unsigned long flags; | |
3018 | struct page *page; | |
3019 | ||
3020 | if (!atomic_read(&n->nr_slabs)) | |
3021 | continue; | |
3022 | ||
3023 | spin_lock_irqsave(&n->list_lock, flags); | |
3024 | list_for_each_entry(page, &n->partial, lru) | |
3025 | process_slab(&t, s, page, alloc); | |
3026 | list_for_each_entry(page, &n->full, lru) | |
3027 | process_slab(&t, s, page, alloc); | |
3028 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3029 | } | |
3030 | ||
3031 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 3032 | struct location *l = &t.loc[i]; |
88a420e4 CL |
3033 | |
3034 | if (n > PAGE_SIZE - 100) | |
3035 | break; | |
45edfa58 CL |
3036 | n += sprintf(buf + n, "%7ld ", l->count); |
3037 | ||
3038 | if (l->addr) | |
3039 | n += sprint_symbol(buf + n, (unsigned long)l->addr); | |
88a420e4 CL |
3040 | else |
3041 | n += sprintf(buf + n, "<not-available>"); | |
45edfa58 CL |
3042 | |
3043 | if (l->sum_time != l->min_time) { | |
3044 | unsigned long remainder; | |
3045 | ||
3046 | n += sprintf(buf + n, " age=%ld/%ld/%ld", | |
3047 | l->min_time, | |
3048 | div_long_long_rem(l->sum_time, l->count, &remainder), | |
3049 | l->max_time); | |
3050 | } else | |
3051 | n += sprintf(buf + n, " age=%ld", | |
3052 | l->min_time); | |
3053 | ||
3054 | if (l->min_pid != l->max_pid) | |
3055 | n += sprintf(buf + n, " pid=%ld-%ld", | |
3056 | l->min_pid, l->max_pid); | |
3057 | else | |
3058 | n += sprintf(buf + n, " pid=%ld", | |
3059 | l->min_pid); | |
3060 | ||
84966343 CL |
3061 | if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && |
3062 | n < PAGE_SIZE - 60) { | |
45edfa58 CL |
3063 | n += sprintf(buf + n, " cpus="); |
3064 | n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, | |
3065 | l->cpus); | |
3066 | } | |
3067 | ||
84966343 CL |
3068 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && |
3069 | n < PAGE_SIZE - 60) { | |
45edfa58 CL |
3070 | n += sprintf(buf + n, " nodes="); |
3071 | n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, | |
3072 | l->nodes); | |
3073 | } | |
3074 | ||
88a420e4 CL |
3075 | n += sprintf(buf + n, "\n"); |
3076 | } | |
3077 | ||
3078 | free_loc_track(&t); | |
3079 | if (!t.count) | |
3080 | n += sprintf(buf, "No data\n"); | |
3081 | return n; | |
3082 | } | |
3083 | ||
81819f0f CL |
3084 | static unsigned long count_partial(struct kmem_cache_node *n) |
3085 | { | |
3086 | unsigned long flags; | |
3087 | unsigned long x = 0; | |
3088 | struct page *page; | |
3089 | ||
3090 | spin_lock_irqsave(&n->list_lock, flags); | |
3091 | list_for_each_entry(page, &n->partial, lru) | |
3092 | x += page->inuse; | |
3093 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3094 | return x; | |
3095 | } | |
3096 | ||
3097 | enum slab_stat_type { | |
3098 | SL_FULL, | |
3099 | SL_PARTIAL, | |
3100 | SL_CPU, | |
3101 | SL_OBJECTS | |
3102 | }; | |
3103 | ||
3104 | #define SO_FULL (1 << SL_FULL) | |
3105 | #define SO_PARTIAL (1 << SL_PARTIAL) | |
3106 | #define SO_CPU (1 << SL_CPU) | |
3107 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
3108 | ||
3109 | static unsigned long slab_objects(struct kmem_cache *s, | |
3110 | char *buf, unsigned long flags) | |
3111 | { | |
3112 | unsigned long total = 0; | |
3113 | int cpu; | |
3114 | int node; | |
3115 | int x; | |
3116 | unsigned long *nodes; | |
3117 | unsigned long *per_cpu; | |
3118 | ||
3119 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
3120 | per_cpu = nodes + nr_node_ids; | |
3121 | ||
3122 | for_each_possible_cpu(cpu) { | |
3123 | struct page *page = s->cpu_slab[cpu]; | |
3124 | int node; | |
3125 | ||
3126 | if (page) { | |
3127 | node = page_to_nid(page); | |
3128 | if (flags & SO_CPU) { | |
3129 | int x = 0; | |
3130 | ||
3131 | if (flags & SO_OBJECTS) | |
3132 | x = page->inuse; | |
3133 | else | |
3134 | x = 1; | |
3135 | total += x; | |
3136 | nodes[node] += x; | |
3137 | } | |
3138 | per_cpu[node]++; | |
3139 | } | |
3140 | } | |
3141 | ||
3142 | for_each_online_node(node) { | |
3143 | struct kmem_cache_node *n = get_node(s, node); | |
3144 | ||
3145 | if (flags & SO_PARTIAL) { | |
3146 | if (flags & SO_OBJECTS) | |
3147 | x = count_partial(n); | |
3148 | else | |
3149 | x = n->nr_partial; | |
3150 | total += x; | |
3151 | nodes[node] += x; | |
3152 | } | |
3153 | ||
3154 | if (flags & SO_FULL) { | |
3155 | int full_slabs = atomic_read(&n->nr_slabs) | |
3156 | - per_cpu[node] | |
3157 | - n->nr_partial; | |
3158 | ||
3159 | if (flags & SO_OBJECTS) | |
3160 | x = full_slabs * s->objects; | |
3161 | else | |
3162 | x = full_slabs; | |
3163 | total += x; | |
3164 | nodes[node] += x; | |
3165 | } | |
3166 | } | |
3167 | ||
3168 | x = sprintf(buf, "%lu", total); | |
3169 | #ifdef CONFIG_NUMA | |
3170 | for_each_online_node(node) | |
3171 | if (nodes[node]) | |
3172 | x += sprintf(buf + x, " N%d=%lu", | |
3173 | node, nodes[node]); | |
3174 | #endif | |
3175 | kfree(nodes); | |
3176 | return x + sprintf(buf + x, "\n"); | |
3177 | } | |
3178 | ||
3179 | static int any_slab_objects(struct kmem_cache *s) | |
3180 | { | |
3181 | int node; | |
3182 | int cpu; | |
3183 | ||
3184 | for_each_possible_cpu(cpu) | |
3185 | if (s->cpu_slab[cpu]) | |
3186 | return 1; | |
3187 | ||
3188 | for_each_node(node) { | |
3189 | struct kmem_cache_node *n = get_node(s, node); | |
3190 | ||
3191 | if (n->nr_partial || atomic_read(&n->nr_slabs)) | |
3192 | return 1; | |
3193 | } | |
3194 | return 0; | |
3195 | } | |
3196 | ||
3197 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
3198 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
3199 | ||
3200 | struct slab_attribute { | |
3201 | struct attribute attr; | |
3202 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
3203 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
3204 | }; | |
3205 | ||
3206 | #define SLAB_ATTR_RO(_name) \ | |
3207 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
3208 | ||
3209 | #define SLAB_ATTR(_name) \ | |
3210 | static struct slab_attribute _name##_attr = \ | |
3211 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
3212 | ||
81819f0f CL |
3213 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3214 | { | |
3215 | return sprintf(buf, "%d\n", s->size); | |
3216 | } | |
3217 | SLAB_ATTR_RO(slab_size); | |
3218 | ||
3219 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
3220 | { | |
3221 | return sprintf(buf, "%d\n", s->align); | |
3222 | } | |
3223 | SLAB_ATTR_RO(align); | |
3224 | ||
3225 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
3226 | { | |
3227 | return sprintf(buf, "%d\n", s->objsize); | |
3228 | } | |
3229 | SLAB_ATTR_RO(object_size); | |
3230 | ||
3231 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
3232 | { | |
3233 | return sprintf(buf, "%d\n", s->objects); | |
3234 | } | |
3235 | SLAB_ATTR_RO(objs_per_slab); | |
3236 | ||
3237 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
3238 | { | |
3239 | return sprintf(buf, "%d\n", s->order); | |
3240 | } | |
3241 | SLAB_ATTR_RO(order); | |
3242 | ||
3243 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | |
3244 | { | |
3245 | if (s->ctor) { | |
3246 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | |
3247 | ||
3248 | return n + sprintf(buf + n, "\n"); | |
3249 | } | |
3250 | return 0; | |
3251 | } | |
3252 | SLAB_ATTR_RO(ctor); | |
3253 | ||
81819f0f CL |
3254 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3255 | { | |
3256 | return sprintf(buf, "%d\n", s->refcount - 1); | |
3257 | } | |
3258 | SLAB_ATTR_RO(aliases); | |
3259 | ||
3260 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
3261 | { | |
3262 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); | |
3263 | } | |
3264 | SLAB_ATTR_RO(slabs); | |
3265 | ||
3266 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
3267 | { | |
3268 | return slab_objects(s, buf, SO_PARTIAL); | |
3269 | } | |
3270 | SLAB_ATTR_RO(partial); | |
3271 | ||
3272 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
3273 | { | |
3274 | return slab_objects(s, buf, SO_CPU); | |
3275 | } | |
3276 | SLAB_ATTR_RO(cpu_slabs); | |
3277 | ||
3278 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
3279 | { | |
3280 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); | |
3281 | } | |
3282 | SLAB_ATTR_RO(objects); | |
3283 | ||
3284 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | |
3285 | { | |
3286 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
3287 | } | |
3288 | ||
3289 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
3290 | const char *buf, size_t length) | |
3291 | { | |
3292 | s->flags &= ~SLAB_DEBUG_FREE; | |
3293 | if (buf[0] == '1') | |
3294 | s->flags |= SLAB_DEBUG_FREE; | |
3295 | return length; | |
3296 | } | |
3297 | SLAB_ATTR(sanity_checks); | |
3298 | ||
3299 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
3300 | { | |
3301 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
3302 | } | |
3303 | ||
3304 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
3305 | size_t length) | |
3306 | { | |
3307 | s->flags &= ~SLAB_TRACE; | |
3308 | if (buf[0] == '1') | |
3309 | s->flags |= SLAB_TRACE; | |
3310 | return length; | |
3311 | } | |
3312 | SLAB_ATTR(trace); | |
3313 | ||
3314 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | |
3315 | { | |
3316 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
3317 | } | |
3318 | ||
3319 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
3320 | const char *buf, size_t length) | |
3321 | { | |
3322 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
3323 | if (buf[0] == '1') | |
3324 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
3325 | return length; | |
3326 | } | |
3327 | SLAB_ATTR(reclaim_account); | |
3328 | ||
3329 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
3330 | { | |
5af60839 | 3331 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
81819f0f CL |
3332 | } |
3333 | SLAB_ATTR_RO(hwcache_align); | |
3334 | ||
3335 | #ifdef CONFIG_ZONE_DMA | |
3336 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
3337 | { | |
3338 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
3339 | } | |
3340 | SLAB_ATTR_RO(cache_dma); | |
3341 | #endif | |
3342 | ||
3343 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
3344 | { | |
3345 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
3346 | } | |
3347 | SLAB_ATTR_RO(destroy_by_rcu); | |
3348 | ||
3349 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
3350 | { | |
3351 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
3352 | } | |
3353 | ||
3354 | static ssize_t red_zone_store(struct kmem_cache *s, | |
3355 | const char *buf, size_t length) | |
3356 | { | |
3357 | if (any_slab_objects(s)) | |
3358 | return -EBUSY; | |
3359 | ||
3360 | s->flags &= ~SLAB_RED_ZONE; | |
3361 | if (buf[0] == '1') | |
3362 | s->flags |= SLAB_RED_ZONE; | |
3363 | calculate_sizes(s); | |
3364 | return length; | |
3365 | } | |
3366 | SLAB_ATTR(red_zone); | |
3367 | ||
3368 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
3369 | { | |
3370 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
3371 | } | |
3372 | ||
3373 | static ssize_t poison_store(struct kmem_cache *s, | |
3374 | const char *buf, size_t length) | |
3375 | { | |
3376 | if (any_slab_objects(s)) | |
3377 | return -EBUSY; | |
3378 | ||
3379 | s->flags &= ~SLAB_POISON; | |
3380 | if (buf[0] == '1') | |
3381 | s->flags |= SLAB_POISON; | |
3382 | calculate_sizes(s); | |
3383 | return length; | |
3384 | } | |
3385 | SLAB_ATTR(poison); | |
3386 | ||
3387 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
3388 | { | |
3389 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
3390 | } | |
3391 | ||
3392 | static ssize_t store_user_store(struct kmem_cache *s, | |
3393 | const char *buf, size_t length) | |
3394 | { | |
3395 | if (any_slab_objects(s)) | |
3396 | return -EBUSY; | |
3397 | ||
3398 | s->flags &= ~SLAB_STORE_USER; | |
3399 | if (buf[0] == '1') | |
3400 | s->flags |= SLAB_STORE_USER; | |
3401 | calculate_sizes(s); | |
3402 | return length; | |
3403 | } | |
3404 | SLAB_ATTR(store_user); | |
3405 | ||
53e15af0 CL |
3406 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
3407 | { | |
3408 | return 0; | |
3409 | } | |
3410 | ||
3411 | static ssize_t validate_store(struct kmem_cache *s, | |
3412 | const char *buf, size_t length) | |
3413 | { | |
3414 | if (buf[0] == '1') | |
3415 | validate_slab_cache(s); | |
3416 | else | |
3417 | return -EINVAL; | |
3418 | return length; | |
3419 | } | |
3420 | SLAB_ATTR(validate); | |
3421 | ||
2086d26a CL |
3422 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
3423 | { | |
3424 | return 0; | |
3425 | } | |
3426 | ||
3427 | static ssize_t shrink_store(struct kmem_cache *s, | |
3428 | const char *buf, size_t length) | |
3429 | { | |
3430 | if (buf[0] == '1') { | |
3431 | int rc = kmem_cache_shrink(s); | |
3432 | ||
3433 | if (rc) | |
3434 | return rc; | |
3435 | } else | |
3436 | return -EINVAL; | |
3437 | return length; | |
3438 | } | |
3439 | SLAB_ATTR(shrink); | |
3440 | ||
88a420e4 CL |
3441 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
3442 | { | |
3443 | if (!(s->flags & SLAB_STORE_USER)) | |
3444 | return -ENOSYS; | |
3445 | return list_locations(s, buf, TRACK_ALLOC); | |
3446 | } | |
3447 | SLAB_ATTR_RO(alloc_calls); | |
3448 | ||
3449 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
3450 | { | |
3451 | if (!(s->flags & SLAB_STORE_USER)) | |
3452 | return -ENOSYS; | |
3453 | return list_locations(s, buf, TRACK_FREE); | |
3454 | } | |
3455 | SLAB_ATTR_RO(free_calls); | |
3456 | ||
81819f0f CL |
3457 | #ifdef CONFIG_NUMA |
3458 | static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) | |
3459 | { | |
3460 | return sprintf(buf, "%d\n", s->defrag_ratio / 10); | |
3461 | } | |
3462 | ||
3463 | static ssize_t defrag_ratio_store(struct kmem_cache *s, | |
3464 | const char *buf, size_t length) | |
3465 | { | |
3466 | int n = simple_strtoul(buf, NULL, 10); | |
3467 | ||
3468 | if (n < 100) | |
3469 | s->defrag_ratio = n * 10; | |
3470 | return length; | |
3471 | } | |
3472 | SLAB_ATTR(defrag_ratio); | |
3473 | #endif | |
3474 | ||
3475 | static struct attribute * slab_attrs[] = { | |
3476 | &slab_size_attr.attr, | |
3477 | &object_size_attr.attr, | |
3478 | &objs_per_slab_attr.attr, | |
3479 | &order_attr.attr, | |
3480 | &objects_attr.attr, | |
3481 | &slabs_attr.attr, | |
3482 | &partial_attr.attr, | |
3483 | &cpu_slabs_attr.attr, | |
3484 | &ctor_attr.attr, | |
81819f0f CL |
3485 | &aliases_attr.attr, |
3486 | &align_attr.attr, | |
3487 | &sanity_checks_attr.attr, | |
3488 | &trace_attr.attr, | |
3489 | &hwcache_align_attr.attr, | |
3490 | &reclaim_account_attr.attr, | |
3491 | &destroy_by_rcu_attr.attr, | |
3492 | &red_zone_attr.attr, | |
3493 | &poison_attr.attr, | |
3494 | &store_user_attr.attr, | |
53e15af0 | 3495 | &validate_attr.attr, |
2086d26a | 3496 | &shrink_attr.attr, |
88a420e4 CL |
3497 | &alloc_calls_attr.attr, |
3498 | &free_calls_attr.attr, | |
81819f0f CL |
3499 | #ifdef CONFIG_ZONE_DMA |
3500 | &cache_dma_attr.attr, | |
3501 | #endif | |
3502 | #ifdef CONFIG_NUMA | |
3503 | &defrag_ratio_attr.attr, | |
3504 | #endif | |
3505 | NULL | |
3506 | }; | |
3507 | ||
3508 | static struct attribute_group slab_attr_group = { | |
3509 | .attrs = slab_attrs, | |
3510 | }; | |
3511 | ||
3512 | static ssize_t slab_attr_show(struct kobject *kobj, | |
3513 | struct attribute *attr, | |
3514 | char *buf) | |
3515 | { | |
3516 | struct slab_attribute *attribute; | |
3517 | struct kmem_cache *s; | |
3518 | int err; | |
3519 | ||
3520 | attribute = to_slab_attr(attr); | |
3521 | s = to_slab(kobj); | |
3522 | ||
3523 | if (!attribute->show) | |
3524 | return -EIO; | |
3525 | ||
3526 | err = attribute->show(s, buf); | |
3527 | ||
3528 | return err; | |
3529 | } | |
3530 | ||
3531 | static ssize_t slab_attr_store(struct kobject *kobj, | |
3532 | struct attribute *attr, | |
3533 | const char *buf, size_t len) | |
3534 | { | |
3535 | struct slab_attribute *attribute; | |
3536 | struct kmem_cache *s; | |
3537 | int err; | |
3538 | ||
3539 | attribute = to_slab_attr(attr); | |
3540 | s = to_slab(kobj); | |
3541 | ||
3542 | if (!attribute->store) | |
3543 | return -EIO; | |
3544 | ||
3545 | err = attribute->store(s, buf, len); | |
3546 | ||
3547 | return err; | |
3548 | } | |
3549 | ||
3550 | static struct sysfs_ops slab_sysfs_ops = { | |
3551 | .show = slab_attr_show, | |
3552 | .store = slab_attr_store, | |
3553 | }; | |
3554 | ||
3555 | static struct kobj_type slab_ktype = { | |
3556 | .sysfs_ops = &slab_sysfs_ops, | |
3557 | }; | |
3558 | ||
3559 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
3560 | { | |
3561 | struct kobj_type *ktype = get_ktype(kobj); | |
3562 | ||
3563 | if (ktype == &slab_ktype) | |
3564 | return 1; | |
3565 | return 0; | |
3566 | } | |
3567 | ||
3568 | static struct kset_uevent_ops slab_uevent_ops = { | |
3569 | .filter = uevent_filter, | |
3570 | }; | |
3571 | ||
3572 | decl_subsys(slab, &slab_ktype, &slab_uevent_ops); | |
3573 | ||
3574 | #define ID_STR_LENGTH 64 | |
3575 | ||
3576 | /* Create a unique string id for a slab cache: | |
3577 | * format | |
3578 | * :[flags-]size:[memory address of kmemcache] | |
3579 | */ | |
3580 | static char *create_unique_id(struct kmem_cache *s) | |
3581 | { | |
3582 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
3583 | char *p = name; | |
3584 | ||
3585 | BUG_ON(!name); | |
3586 | ||
3587 | *p++ = ':'; | |
3588 | /* | |
3589 | * First flags affecting slabcache operations. We will only | |
3590 | * get here for aliasable slabs so we do not need to support | |
3591 | * too many flags. The flags here must cover all flags that | |
3592 | * are matched during merging to guarantee that the id is | |
3593 | * unique. | |
3594 | */ | |
3595 | if (s->flags & SLAB_CACHE_DMA) | |
3596 | *p++ = 'd'; | |
3597 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3598 | *p++ = 'a'; | |
3599 | if (s->flags & SLAB_DEBUG_FREE) | |
3600 | *p++ = 'F'; | |
3601 | if (p != name + 1) | |
3602 | *p++ = '-'; | |
3603 | p += sprintf(p, "%07d", s->size); | |
3604 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
3605 | return name; | |
3606 | } | |
3607 | ||
3608 | static int sysfs_slab_add(struct kmem_cache *s) | |
3609 | { | |
3610 | int err; | |
3611 | const char *name; | |
3612 | int unmergeable; | |
3613 | ||
3614 | if (slab_state < SYSFS) | |
3615 | /* Defer until later */ | |
3616 | return 0; | |
3617 | ||
3618 | unmergeable = slab_unmergeable(s); | |
3619 | if (unmergeable) { | |
3620 | /* | |
3621 | * Slabcache can never be merged so we can use the name proper. | |
3622 | * This is typically the case for debug situations. In that | |
3623 | * case we can catch duplicate names easily. | |
3624 | */ | |
0f9008ef | 3625 | sysfs_remove_link(&slab_subsys.kobj, s->name); |
81819f0f CL |
3626 | name = s->name; |
3627 | } else { | |
3628 | /* | |
3629 | * Create a unique name for the slab as a target | |
3630 | * for the symlinks. | |
3631 | */ | |
3632 | name = create_unique_id(s); | |
3633 | } | |
3634 | ||
3635 | kobj_set_kset_s(s, slab_subsys); | |
3636 | kobject_set_name(&s->kobj, name); | |
3637 | kobject_init(&s->kobj); | |
3638 | err = kobject_add(&s->kobj); | |
3639 | if (err) | |
3640 | return err; | |
3641 | ||
3642 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
3643 | if (err) | |
3644 | return err; | |
3645 | kobject_uevent(&s->kobj, KOBJ_ADD); | |
3646 | if (!unmergeable) { | |
3647 | /* Setup first alias */ | |
3648 | sysfs_slab_alias(s, s->name); | |
3649 | kfree(name); | |
3650 | } | |
3651 | return 0; | |
3652 | } | |
3653 | ||
3654 | static void sysfs_slab_remove(struct kmem_cache *s) | |
3655 | { | |
3656 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
3657 | kobject_del(&s->kobj); | |
3658 | } | |
3659 | ||
3660 | /* | |
3661 | * Need to buffer aliases during bootup until sysfs becomes | |
3662 | * available lest we loose that information. | |
3663 | */ | |
3664 | struct saved_alias { | |
3665 | struct kmem_cache *s; | |
3666 | const char *name; | |
3667 | struct saved_alias *next; | |
3668 | }; | |
3669 | ||
3670 | struct saved_alias *alias_list; | |
3671 | ||
3672 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
3673 | { | |
3674 | struct saved_alias *al; | |
3675 | ||
3676 | if (slab_state == SYSFS) { | |
3677 | /* | |
3678 | * If we have a leftover link then remove it. | |
3679 | */ | |
0f9008ef LT |
3680 | sysfs_remove_link(&slab_subsys.kobj, name); |
3681 | return sysfs_create_link(&slab_subsys.kobj, | |
81819f0f CL |
3682 | &s->kobj, name); |
3683 | } | |
3684 | ||
3685 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
3686 | if (!al) | |
3687 | return -ENOMEM; | |
3688 | ||
3689 | al->s = s; | |
3690 | al->name = name; | |
3691 | al->next = alias_list; | |
3692 | alias_list = al; | |
3693 | return 0; | |
3694 | } | |
3695 | ||
3696 | static int __init slab_sysfs_init(void) | |
3697 | { | |
5b95a4ac | 3698 | struct kmem_cache *s; |
81819f0f CL |
3699 | int err; |
3700 | ||
3701 | err = subsystem_register(&slab_subsys); | |
3702 | if (err) { | |
3703 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | |
3704 | return -ENOSYS; | |
3705 | } | |
3706 | ||
26a7bd03 CL |
3707 | slab_state = SYSFS; |
3708 | ||
5b95a4ac | 3709 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 CL |
3710 | err = sysfs_slab_add(s); |
3711 | BUG_ON(err); | |
3712 | } | |
81819f0f CL |
3713 | |
3714 | while (alias_list) { | |
3715 | struct saved_alias *al = alias_list; | |
3716 | ||
3717 | alias_list = alias_list->next; | |
3718 | err = sysfs_slab_alias(al->s, al->name); | |
3719 | BUG_ON(err); | |
3720 | kfree(al); | |
3721 | } | |
3722 | ||
3723 | resiliency_test(); | |
3724 | return 0; | |
3725 | } | |
3726 | ||
3727 | __initcall(slab_sysfs_init); | |
81819f0f | 3728 | #endif |