]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
881db7fb CL |
5 | * The allocator synchronizes using per slab locks or atomic operatios |
6 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 7 | * |
cde53535 | 8 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 9 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
10 | */ |
11 | ||
12 | #include <linux/mm.h> | |
1eb5ac64 | 13 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
14 | #include <linux/module.h> |
15 | #include <linux/bit_spinlock.h> | |
16 | #include <linux/interrupt.h> | |
17 | #include <linux/bitops.h> | |
18 | #include <linux/slab.h> | |
97d06609 | 19 | #include "slab.h" |
7b3c3a50 | 20 | #include <linux/proc_fs.h> |
3ac38faa | 21 | #include <linux/notifier.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
5a896d9e | 24 | #include <linux/kmemcheck.h> |
81819f0f CL |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpuset.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ctype.h> | |
3ac7fe5a | 29 | #include <linux/debugobjects.h> |
81819f0f | 30 | #include <linux/kallsyms.h> |
b9049e23 | 31 | #include <linux/memory.h> |
f8bd2258 | 32 | #include <linux/math64.h> |
773ff60e | 33 | #include <linux/fault-inject.h> |
bfa71457 | 34 | #include <linux/stacktrace.h> |
4de900b4 | 35 | #include <linux/prefetch.h> |
2633d7a0 | 36 | #include <linux/memcontrol.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
54 | * have the ability to do a cmpxchg_double. It only protects the second | |
55 | * double word in the page struct. Meaning | |
56 | * A. page->freelist -> List of object free in a page | |
57 | * B. page->counters -> Counters of objects | |
58 | * C. page->frozen -> frozen state | |
59 | * | |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
61 | * on any list. The processor that froze the slab is the one who can | |
62 | * perform list operations on the page. Other processors may put objects | |
63 | * onto the freelist but the processor that froze the slab is the only | |
64 | * one that can retrieve the objects from the page's freelist. | |
81819f0f CL |
65 | * |
66 | * The list_lock protects the partial and full list on each node and | |
67 | * the partial slab counter. If taken then no new slabs may be added or | |
68 | * removed from the lists nor make the number of partial slabs be modified. | |
69 | * (Note that the total number of slabs is an atomic value that may be | |
70 | * modified without taking the list lock). | |
71 | * | |
72 | * The list_lock is a centralized lock and thus we avoid taking it as | |
73 | * much as possible. As long as SLUB does not have to handle partial | |
74 | * slabs, operations can continue without any centralized lock. F.e. | |
75 | * allocating a long series of objects that fill up slabs does not require | |
76 | * the list lock. | |
81819f0f CL |
77 | * Interrupts are disabled during allocation and deallocation in order to |
78 | * make the slab allocator safe to use in the context of an irq. In addition | |
79 | * interrupts are disabled to ensure that the processor does not change | |
80 | * while handling per_cpu slabs, due to kernel preemption. | |
81 | * | |
82 | * SLUB assigns one slab for allocation to each processor. | |
83 | * Allocations only occur from these slabs called cpu slabs. | |
84 | * | |
672bba3a CL |
85 | * Slabs with free elements are kept on a partial list and during regular |
86 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 87 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
88 | * We track full slabs for debugging purposes though because otherwise we |
89 | * cannot scan all objects. | |
81819f0f CL |
90 | * |
91 | * Slabs are freed when they become empty. Teardown and setup is | |
92 | * minimal so we rely on the page allocators per cpu caches for | |
93 | * fast frees and allocs. | |
94 | * | |
95 | * Overloading of page flags that are otherwise used for LRU management. | |
96 | * | |
4b6f0750 CL |
97 | * PageActive The slab is frozen and exempt from list processing. |
98 | * This means that the slab is dedicated to a purpose | |
99 | * such as satisfying allocations for a specific | |
100 | * processor. Objects may be freed in the slab while | |
101 | * it is frozen but slab_free will then skip the usual | |
102 | * list operations. It is up to the processor holding | |
103 | * the slab to integrate the slab into the slab lists | |
104 | * when the slab is no longer needed. | |
105 | * | |
106 | * One use of this flag is to mark slabs that are | |
107 | * used for allocations. Then such a slab becomes a cpu | |
108 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 109 | * freelist that allows lockless access to |
894b8788 CL |
110 | * free objects in addition to the regular freelist |
111 | * that requires the slab lock. | |
81819f0f CL |
112 | * |
113 | * PageError Slab requires special handling due to debug | |
114 | * options set. This moves slab handling out of | |
894b8788 | 115 | * the fast path and disables lockless freelists. |
81819f0f CL |
116 | */ |
117 | ||
af537b0a CL |
118 | static inline int kmem_cache_debug(struct kmem_cache *s) |
119 | { | |
5577bd8a | 120 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 121 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 122 | #else |
af537b0a | 123 | return 0; |
5577bd8a | 124 | #endif |
af537b0a | 125 | } |
5577bd8a | 126 | |
345c905d JK |
127 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
128 | { | |
129 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
130 | return !kmem_cache_debug(s); | |
131 | #else | |
132 | return false; | |
133 | #endif | |
134 | } | |
135 | ||
81819f0f CL |
136 | /* |
137 | * Issues still to be resolved: | |
138 | * | |
81819f0f CL |
139 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
140 | * | |
81819f0f CL |
141 | * - Variable sizing of the per node arrays |
142 | */ | |
143 | ||
144 | /* Enable to test recovery from slab corruption on boot */ | |
145 | #undef SLUB_RESILIENCY_TEST | |
146 | ||
b789ef51 CL |
147 | /* Enable to log cmpxchg failures */ |
148 | #undef SLUB_DEBUG_CMPXCHG | |
149 | ||
2086d26a CL |
150 | /* |
151 | * Mininum number of partial slabs. These will be left on the partial | |
152 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
153 | */ | |
76be8950 | 154 | #define MIN_PARTIAL 5 |
e95eed57 | 155 | |
2086d26a CL |
156 | /* |
157 | * Maximum number of desirable partial slabs. | |
158 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 159 | * sort the partial list by the number of objects in use. |
2086d26a CL |
160 | */ |
161 | #define MAX_PARTIAL 10 | |
162 | ||
becfda68 | 163 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 164 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 165 | |
fa5ec8a1 | 166 | /* |
3de47213 DR |
167 | * Debugging flags that require metadata to be stored in the slab. These get |
168 | * disabled when slub_debug=O is used and a cache's min order increases with | |
169 | * metadata. | |
fa5ec8a1 | 170 | */ |
3de47213 | 171 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 172 | |
210b5c06 CG |
173 | #define OO_SHIFT 16 |
174 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 175 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 176 | |
81819f0f | 177 | /* Internal SLUB flags */ |
f90ec390 | 178 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
b789ef51 | 179 | #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
81819f0f | 180 | |
81819f0f CL |
181 | #ifdef CONFIG_SMP |
182 | static struct notifier_block slab_notifier; | |
183 | #endif | |
184 | ||
02cbc874 CL |
185 | /* |
186 | * Tracking user of a slab. | |
187 | */ | |
d6543e39 | 188 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 189 | struct track { |
ce71e27c | 190 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
191 | #ifdef CONFIG_STACKTRACE |
192 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
193 | #endif | |
02cbc874 CL |
194 | int cpu; /* Was running on cpu */ |
195 | int pid; /* Pid context */ | |
196 | unsigned long when; /* When did the operation occur */ | |
197 | }; | |
198 | ||
199 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
200 | ||
ab4d5ed5 | 201 | #ifdef CONFIG_SYSFS |
81819f0f CL |
202 | static int sysfs_slab_add(struct kmem_cache *); |
203 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 204 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
81819f0f | 205 | #else |
0c710013 CL |
206 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
207 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
208 | { return 0; } | |
107dab5c | 209 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
81819f0f CL |
210 | #endif |
211 | ||
4fdccdfb | 212 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
213 | { |
214 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
215 | /* |
216 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
217 | * avoid this_cpu_add()'s irq-disable overhead. | |
218 | */ | |
219 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
220 | #endif |
221 | } | |
222 | ||
81819f0f CL |
223 | /******************************************************************** |
224 | * Core slab cache functions | |
225 | *******************************************************************/ | |
226 | ||
6446faa2 | 227 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
228 | static inline int check_valid_pointer(struct kmem_cache *s, |
229 | struct page *page, const void *object) | |
230 | { | |
231 | void *base; | |
232 | ||
a973e9dd | 233 | if (!object) |
02cbc874 CL |
234 | return 1; |
235 | ||
a973e9dd | 236 | base = page_address(page); |
39b26464 | 237 | if (object < base || object >= base + page->objects * s->size || |
02cbc874 CL |
238 | (object - base) % s->size) { |
239 | return 0; | |
240 | } | |
241 | ||
242 | return 1; | |
243 | } | |
244 | ||
7656c72b CL |
245 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
246 | { | |
247 | return *(void **)(object + s->offset); | |
248 | } | |
249 | ||
0ad9500e ED |
250 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
251 | { | |
252 | prefetch(object + s->offset); | |
253 | } | |
254 | ||
1393d9a1 CL |
255 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
256 | { | |
257 | void *p; | |
258 | ||
259 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
260 | probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); | |
261 | #else | |
262 | p = get_freepointer(s, object); | |
263 | #endif | |
264 | return p; | |
265 | } | |
266 | ||
7656c72b CL |
267 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
268 | { | |
269 | *(void **)(object + s->offset) = fp; | |
270 | } | |
271 | ||
272 | /* Loop over all objects in a slab */ | |
224a88be CL |
273 | #define for_each_object(__p, __s, __addr, __objects) \ |
274 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | |
7656c72b CL |
275 | __p += (__s)->size) |
276 | ||
54266640 WY |
277 | #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ |
278 | for (__p = (__addr), __idx = 1; __idx <= __objects;\ | |
279 | __p += (__s)->size, __idx++) | |
280 | ||
7656c72b CL |
281 | /* Determine object index from a given position */ |
282 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
283 | { | |
284 | return (p - addr) / s->size; | |
285 | } | |
286 | ||
ab9a0f19 LJ |
287 | static inline int order_objects(int order, unsigned long size, int reserved) |
288 | { | |
289 | return ((PAGE_SIZE << order) - reserved) / size; | |
290 | } | |
291 | ||
834f3d11 | 292 | static inline struct kmem_cache_order_objects oo_make(int order, |
ab9a0f19 | 293 | unsigned long size, int reserved) |
834f3d11 CL |
294 | { |
295 | struct kmem_cache_order_objects x = { | |
ab9a0f19 | 296 | (order << OO_SHIFT) + order_objects(order, size, reserved) |
834f3d11 CL |
297 | }; |
298 | ||
299 | return x; | |
300 | } | |
301 | ||
302 | static inline int oo_order(struct kmem_cache_order_objects x) | |
303 | { | |
210b5c06 | 304 | return x.x >> OO_SHIFT; |
834f3d11 CL |
305 | } |
306 | ||
307 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
308 | { | |
210b5c06 | 309 | return x.x & OO_MASK; |
834f3d11 CL |
310 | } |
311 | ||
881db7fb CL |
312 | /* |
313 | * Per slab locking using the pagelock | |
314 | */ | |
315 | static __always_inline void slab_lock(struct page *page) | |
316 | { | |
48c935ad | 317 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
318 | bit_spin_lock(PG_locked, &page->flags); |
319 | } | |
320 | ||
321 | static __always_inline void slab_unlock(struct page *page) | |
322 | { | |
48c935ad | 323 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
324 | __bit_spin_unlock(PG_locked, &page->flags); |
325 | } | |
326 | ||
a0320865 DH |
327 | static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) |
328 | { | |
329 | struct page tmp; | |
330 | tmp.counters = counters_new; | |
331 | /* | |
332 | * page->counters can cover frozen/inuse/objects as well | |
333 | * as page->_count. If we assign to ->counters directly | |
334 | * we run the risk of losing updates to page->_count, so | |
335 | * be careful and only assign to the fields we need. | |
336 | */ | |
337 | page->frozen = tmp.frozen; | |
338 | page->inuse = tmp.inuse; | |
339 | page->objects = tmp.objects; | |
340 | } | |
341 | ||
1d07171c CL |
342 | /* Interrupts must be disabled (for the fallback code to work right) */ |
343 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
344 | void *freelist_old, unsigned long counters_old, | |
345 | void *freelist_new, unsigned long counters_new, | |
346 | const char *n) | |
347 | { | |
348 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
349 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
350 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 351 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 352 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
353 | freelist_old, counters_old, |
354 | freelist_new, counters_new)) | |
6f6528a1 | 355 | return true; |
1d07171c CL |
356 | } else |
357 | #endif | |
358 | { | |
359 | slab_lock(page); | |
d0e0ac97 CG |
360 | if (page->freelist == freelist_old && |
361 | page->counters == counters_old) { | |
1d07171c | 362 | page->freelist = freelist_new; |
a0320865 | 363 | set_page_slub_counters(page, counters_new); |
1d07171c | 364 | slab_unlock(page); |
6f6528a1 | 365 | return true; |
1d07171c CL |
366 | } |
367 | slab_unlock(page); | |
368 | } | |
369 | ||
370 | cpu_relax(); | |
371 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
372 | ||
373 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 374 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
375 | #endif |
376 | ||
6f6528a1 | 377 | return false; |
1d07171c CL |
378 | } |
379 | ||
b789ef51 CL |
380 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
381 | void *freelist_old, unsigned long counters_old, | |
382 | void *freelist_new, unsigned long counters_new, | |
383 | const char *n) | |
384 | { | |
2565409f HC |
385 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
386 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 387 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 388 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
389 | freelist_old, counters_old, |
390 | freelist_new, counters_new)) | |
6f6528a1 | 391 | return true; |
b789ef51 CL |
392 | } else |
393 | #endif | |
394 | { | |
1d07171c CL |
395 | unsigned long flags; |
396 | ||
397 | local_irq_save(flags); | |
881db7fb | 398 | slab_lock(page); |
d0e0ac97 CG |
399 | if (page->freelist == freelist_old && |
400 | page->counters == counters_old) { | |
b789ef51 | 401 | page->freelist = freelist_new; |
a0320865 | 402 | set_page_slub_counters(page, counters_new); |
881db7fb | 403 | slab_unlock(page); |
1d07171c | 404 | local_irq_restore(flags); |
6f6528a1 | 405 | return true; |
b789ef51 | 406 | } |
881db7fb | 407 | slab_unlock(page); |
1d07171c | 408 | local_irq_restore(flags); |
b789ef51 CL |
409 | } |
410 | ||
411 | cpu_relax(); | |
412 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
413 | ||
414 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 415 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
416 | #endif |
417 | ||
6f6528a1 | 418 | return false; |
b789ef51 CL |
419 | } |
420 | ||
41ecc55b | 421 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
422 | /* |
423 | * Determine a map of object in use on a page. | |
424 | * | |
881db7fb | 425 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
426 | * not vanish from under us. |
427 | */ | |
428 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
429 | { | |
430 | void *p; | |
431 | void *addr = page_address(page); | |
432 | ||
433 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
434 | set_bit(slab_index(p, s, addr), map); | |
435 | } | |
436 | ||
41ecc55b CL |
437 | /* |
438 | * Debug settings: | |
439 | */ | |
89d3c87e | 440 | #if defined(CONFIG_SLUB_DEBUG_ON) |
f0630fff | 441 | static int slub_debug = DEBUG_DEFAULT_FLAGS; |
89d3c87e AR |
442 | #elif defined(CONFIG_KASAN) |
443 | static int slub_debug = SLAB_STORE_USER; | |
f0630fff | 444 | #else |
41ecc55b | 445 | static int slub_debug; |
f0630fff | 446 | #endif |
41ecc55b CL |
447 | |
448 | static char *slub_debug_slabs; | |
fa5ec8a1 | 449 | static int disable_higher_order_debug; |
41ecc55b | 450 | |
a79316c6 AR |
451 | /* |
452 | * slub is about to manipulate internal object metadata. This memory lies | |
453 | * outside the range of the allocated object, so accessing it would normally | |
454 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
455 | * to tell kasan that these accesses are OK. | |
456 | */ | |
457 | static inline void metadata_access_enable(void) | |
458 | { | |
459 | kasan_disable_current(); | |
460 | } | |
461 | ||
462 | static inline void metadata_access_disable(void) | |
463 | { | |
464 | kasan_enable_current(); | |
465 | } | |
466 | ||
81819f0f CL |
467 | /* |
468 | * Object debugging | |
469 | */ | |
470 | static void print_section(char *text, u8 *addr, unsigned int length) | |
471 | { | |
a79316c6 | 472 | metadata_access_enable(); |
ffc79d28 SAS |
473 | print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
474 | length, 1); | |
a79316c6 | 475 | metadata_access_disable(); |
81819f0f CL |
476 | } |
477 | ||
81819f0f CL |
478 | static struct track *get_track(struct kmem_cache *s, void *object, |
479 | enum track_item alloc) | |
480 | { | |
481 | struct track *p; | |
482 | ||
483 | if (s->offset) | |
484 | p = object + s->offset + sizeof(void *); | |
485 | else | |
486 | p = object + s->inuse; | |
487 | ||
488 | return p + alloc; | |
489 | } | |
490 | ||
491 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 492 | enum track_item alloc, unsigned long addr) |
81819f0f | 493 | { |
1a00df4a | 494 | struct track *p = get_track(s, object, alloc); |
81819f0f | 495 | |
81819f0f | 496 | if (addr) { |
d6543e39 BG |
497 | #ifdef CONFIG_STACKTRACE |
498 | struct stack_trace trace; | |
499 | int i; | |
500 | ||
501 | trace.nr_entries = 0; | |
502 | trace.max_entries = TRACK_ADDRS_COUNT; | |
503 | trace.entries = p->addrs; | |
504 | trace.skip = 3; | |
a79316c6 | 505 | metadata_access_enable(); |
d6543e39 | 506 | save_stack_trace(&trace); |
a79316c6 | 507 | metadata_access_disable(); |
d6543e39 BG |
508 | |
509 | /* See rant in lockdep.c */ | |
510 | if (trace.nr_entries != 0 && | |
511 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | |
512 | trace.nr_entries--; | |
513 | ||
514 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | |
515 | p->addrs[i] = 0; | |
516 | #endif | |
81819f0f CL |
517 | p->addr = addr; |
518 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 519 | p->pid = current->pid; |
81819f0f CL |
520 | p->when = jiffies; |
521 | } else | |
522 | memset(p, 0, sizeof(struct track)); | |
523 | } | |
524 | ||
81819f0f CL |
525 | static void init_tracking(struct kmem_cache *s, void *object) |
526 | { | |
24922684 CL |
527 | if (!(s->flags & SLAB_STORE_USER)) |
528 | return; | |
529 | ||
ce71e27c EGM |
530 | set_track(s, object, TRACK_FREE, 0UL); |
531 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
532 | } |
533 | ||
534 | static void print_track(const char *s, struct track *t) | |
535 | { | |
536 | if (!t->addr) | |
537 | return; | |
538 | ||
f9f58285 FF |
539 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
540 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); | |
d6543e39 BG |
541 | #ifdef CONFIG_STACKTRACE |
542 | { | |
543 | int i; | |
544 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
545 | if (t->addrs[i]) | |
f9f58285 | 546 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
547 | else |
548 | break; | |
549 | } | |
550 | #endif | |
24922684 CL |
551 | } |
552 | ||
553 | static void print_tracking(struct kmem_cache *s, void *object) | |
554 | { | |
555 | if (!(s->flags & SLAB_STORE_USER)) | |
556 | return; | |
557 | ||
558 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
559 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
560 | } | |
561 | ||
562 | static void print_page_info(struct page *page) | |
563 | { | |
f9f58285 | 564 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 565 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
566 | |
567 | } | |
568 | ||
569 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
570 | { | |
ecc42fbe | 571 | struct va_format vaf; |
24922684 | 572 | va_list args; |
24922684 CL |
573 | |
574 | va_start(args, fmt); | |
ecc42fbe FF |
575 | vaf.fmt = fmt; |
576 | vaf.va = &args; | |
f9f58285 | 577 | pr_err("=============================================================================\n"); |
ecc42fbe | 578 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 579 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 580 | |
373d4d09 | 581 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 582 | va_end(args); |
81819f0f CL |
583 | } |
584 | ||
24922684 CL |
585 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
586 | { | |
ecc42fbe | 587 | struct va_format vaf; |
24922684 | 588 | va_list args; |
24922684 CL |
589 | |
590 | va_start(args, fmt); | |
ecc42fbe FF |
591 | vaf.fmt = fmt; |
592 | vaf.va = &args; | |
593 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 594 | va_end(args); |
24922684 CL |
595 | } |
596 | ||
597 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
598 | { |
599 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 600 | u8 *addr = page_address(page); |
24922684 CL |
601 | |
602 | print_tracking(s, p); | |
603 | ||
604 | print_page_info(page); | |
605 | ||
f9f58285 FF |
606 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
607 | p, p - addr, get_freepointer(s, p)); | |
24922684 CL |
608 | |
609 | if (p > addr + 16) | |
ffc79d28 | 610 | print_section("Bytes b4 ", p - 16, 16); |
81819f0f | 611 | |
3b0efdfa | 612 | print_section("Object ", p, min_t(unsigned long, s->object_size, |
ffc79d28 | 613 | PAGE_SIZE)); |
81819f0f | 614 | if (s->flags & SLAB_RED_ZONE) |
3b0efdfa CL |
615 | print_section("Redzone ", p + s->object_size, |
616 | s->inuse - s->object_size); | |
81819f0f | 617 | |
81819f0f CL |
618 | if (s->offset) |
619 | off = s->offset + sizeof(void *); | |
620 | else | |
621 | off = s->inuse; | |
622 | ||
24922684 | 623 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 624 | off += 2 * sizeof(struct track); |
81819f0f CL |
625 | |
626 | if (off != s->size) | |
627 | /* Beginning of the filler is the free pointer */ | |
ffc79d28 | 628 | print_section("Padding ", p + off, s->size - off); |
24922684 CL |
629 | |
630 | dump_stack(); | |
81819f0f CL |
631 | } |
632 | ||
75c66def | 633 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
634 | u8 *object, char *reason) |
635 | { | |
3dc50637 | 636 | slab_bug(s, "%s", reason); |
24922684 | 637 | print_trailer(s, page, object); |
81819f0f CL |
638 | } |
639 | ||
d0e0ac97 CG |
640 | static void slab_err(struct kmem_cache *s, struct page *page, |
641 | const char *fmt, ...) | |
81819f0f CL |
642 | { |
643 | va_list args; | |
644 | char buf[100]; | |
645 | ||
24922684 CL |
646 | va_start(args, fmt); |
647 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 648 | va_end(args); |
3dc50637 | 649 | slab_bug(s, "%s", buf); |
24922684 | 650 | print_page_info(page); |
81819f0f CL |
651 | dump_stack(); |
652 | } | |
653 | ||
f7cb1933 | 654 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
655 | { |
656 | u8 *p = object; | |
657 | ||
658 | if (s->flags & __OBJECT_POISON) { | |
3b0efdfa CL |
659 | memset(p, POISON_FREE, s->object_size - 1); |
660 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
661 | } |
662 | ||
663 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 664 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
665 | } |
666 | ||
24922684 CL |
667 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
668 | void *from, void *to) | |
669 | { | |
670 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
671 | memset(from, data, to - from); | |
672 | } | |
673 | ||
674 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
675 | u8 *object, char *what, | |
06428780 | 676 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
677 | { |
678 | u8 *fault; | |
679 | u8 *end; | |
680 | ||
a79316c6 | 681 | metadata_access_enable(); |
79824820 | 682 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 683 | metadata_access_disable(); |
24922684 CL |
684 | if (!fault) |
685 | return 1; | |
686 | ||
687 | end = start + bytes; | |
688 | while (end > fault && end[-1] == value) | |
689 | end--; | |
690 | ||
691 | slab_bug(s, "%s overwritten", what); | |
f9f58285 | 692 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
24922684 CL |
693 | fault, end - 1, fault[0], value); |
694 | print_trailer(s, page, object); | |
695 | ||
696 | restore_bytes(s, what, value, fault, end); | |
697 | return 0; | |
81819f0f CL |
698 | } |
699 | ||
81819f0f CL |
700 | /* |
701 | * Object layout: | |
702 | * | |
703 | * object address | |
704 | * Bytes of the object to be managed. | |
705 | * If the freepointer may overlay the object then the free | |
706 | * pointer is the first word of the object. | |
672bba3a | 707 | * |
81819f0f CL |
708 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
709 | * 0xa5 (POISON_END) | |
710 | * | |
3b0efdfa | 711 | * object + s->object_size |
81819f0f | 712 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 713 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 714 | * object_size == inuse. |
672bba3a | 715 | * |
81819f0f CL |
716 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
717 | * 0xcc (RED_ACTIVE) for objects in use. | |
718 | * | |
719 | * object + s->inuse | |
672bba3a CL |
720 | * Meta data starts here. |
721 | * | |
81819f0f CL |
722 | * A. Free pointer (if we cannot overwrite object on free) |
723 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 724 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 725 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
726 | * before the word boundary. |
727 | * | |
728 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
729 | * |
730 | * object + s->size | |
672bba3a | 731 | * Nothing is used beyond s->size. |
81819f0f | 732 | * |
3b0efdfa | 733 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 734 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
735 | * may be used with merged slabcaches. |
736 | */ | |
737 | ||
81819f0f CL |
738 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
739 | { | |
740 | unsigned long off = s->inuse; /* The end of info */ | |
741 | ||
742 | if (s->offset) | |
743 | /* Freepointer is placed after the object. */ | |
744 | off += sizeof(void *); | |
745 | ||
746 | if (s->flags & SLAB_STORE_USER) | |
747 | /* We also have user information there */ | |
748 | off += 2 * sizeof(struct track); | |
749 | ||
750 | if (s->size == off) | |
751 | return 1; | |
752 | ||
24922684 CL |
753 | return check_bytes_and_report(s, page, p, "Object padding", |
754 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
755 | } |
756 | ||
39b26464 | 757 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
758 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
759 | { | |
24922684 CL |
760 | u8 *start; |
761 | u8 *fault; | |
762 | u8 *end; | |
763 | int length; | |
764 | int remainder; | |
81819f0f CL |
765 | |
766 | if (!(s->flags & SLAB_POISON)) | |
767 | return 1; | |
768 | ||
a973e9dd | 769 | start = page_address(page); |
ab9a0f19 | 770 | length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
39b26464 CL |
771 | end = start + length; |
772 | remainder = length % s->size; | |
81819f0f CL |
773 | if (!remainder) |
774 | return 1; | |
775 | ||
a79316c6 | 776 | metadata_access_enable(); |
79824820 | 777 | fault = memchr_inv(end - remainder, POISON_INUSE, remainder); |
a79316c6 | 778 | metadata_access_disable(); |
24922684 CL |
779 | if (!fault) |
780 | return 1; | |
781 | while (end > fault && end[-1] == POISON_INUSE) | |
782 | end--; | |
783 | ||
784 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
ffc79d28 | 785 | print_section("Padding ", end - remainder, remainder); |
24922684 | 786 | |
8a3d271d | 787 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
24922684 | 788 | return 0; |
81819f0f CL |
789 | } |
790 | ||
791 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 792 | void *object, u8 val) |
81819f0f CL |
793 | { |
794 | u8 *p = object; | |
3b0efdfa | 795 | u8 *endobject = object + s->object_size; |
81819f0f CL |
796 | |
797 | if (s->flags & SLAB_RED_ZONE) { | |
24922684 | 798 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 799 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 800 | return 0; |
81819f0f | 801 | } else { |
3b0efdfa | 802 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 803 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
804 | endobject, POISON_INUSE, |
805 | s->inuse - s->object_size); | |
3adbefee | 806 | } |
81819f0f CL |
807 | } |
808 | ||
809 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 810 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 811 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 812 | POISON_FREE, s->object_size - 1) || |
24922684 | 813 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 814 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 815 | return 0; |
81819f0f CL |
816 | /* |
817 | * check_pad_bytes cleans up on its own. | |
818 | */ | |
819 | check_pad_bytes(s, page, p); | |
820 | } | |
821 | ||
f7cb1933 | 822 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
823 | /* |
824 | * Object and freepointer overlap. Cannot check | |
825 | * freepointer while object is allocated. | |
826 | */ | |
827 | return 1; | |
828 | ||
829 | /* Check free pointer validity */ | |
830 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
831 | object_err(s, page, p, "Freepointer corrupt"); | |
832 | /* | |
9f6c708e | 833 | * No choice but to zap it and thus lose the remainder |
81819f0f | 834 | * of the free objects in this slab. May cause |
672bba3a | 835 | * another error because the object count is now wrong. |
81819f0f | 836 | */ |
a973e9dd | 837 | set_freepointer(s, p, NULL); |
81819f0f CL |
838 | return 0; |
839 | } | |
840 | return 1; | |
841 | } | |
842 | ||
843 | static int check_slab(struct kmem_cache *s, struct page *page) | |
844 | { | |
39b26464 CL |
845 | int maxobj; |
846 | ||
81819f0f CL |
847 | VM_BUG_ON(!irqs_disabled()); |
848 | ||
849 | if (!PageSlab(page)) { | |
24922684 | 850 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
851 | return 0; |
852 | } | |
39b26464 | 853 | |
ab9a0f19 | 854 | maxobj = order_objects(compound_order(page), s->size, s->reserved); |
39b26464 CL |
855 | if (page->objects > maxobj) { |
856 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 857 | page->objects, maxobj); |
39b26464 CL |
858 | return 0; |
859 | } | |
860 | if (page->inuse > page->objects) { | |
24922684 | 861 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 862 | page->inuse, page->objects); |
81819f0f CL |
863 | return 0; |
864 | } | |
865 | /* Slab_pad_check fixes things up after itself */ | |
866 | slab_pad_check(s, page); | |
867 | return 1; | |
868 | } | |
869 | ||
870 | /* | |
672bba3a CL |
871 | * Determine if a certain object on a page is on the freelist. Must hold the |
872 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
873 | */ |
874 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
875 | { | |
876 | int nr = 0; | |
881db7fb | 877 | void *fp; |
81819f0f | 878 | void *object = NULL; |
f6edde9c | 879 | int max_objects; |
81819f0f | 880 | |
881db7fb | 881 | fp = page->freelist; |
39b26464 | 882 | while (fp && nr <= page->objects) { |
81819f0f CL |
883 | if (fp == search) |
884 | return 1; | |
885 | if (!check_valid_pointer(s, page, fp)) { | |
886 | if (object) { | |
887 | object_err(s, page, object, | |
888 | "Freechain corrupt"); | |
a973e9dd | 889 | set_freepointer(s, object, NULL); |
81819f0f | 890 | } else { |
24922684 | 891 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 892 | page->freelist = NULL; |
39b26464 | 893 | page->inuse = page->objects; |
24922684 | 894 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
895 | return 0; |
896 | } | |
897 | break; | |
898 | } | |
899 | object = fp; | |
900 | fp = get_freepointer(s, object); | |
901 | nr++; | |
902 | } | |
903 | ||
ab9a0f19 | 904 | max_objects = order_objects(compound_order(page), s->size, s->reserved); |
210b5c06 CG |
905 | if (max_objects > MAX_OBJS_PER_PAGE) |
906 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
907 | |
908 | if (page->objects != max_objects) { | |
909 | slab_err(s, page, "Wrong number of objects. Found %d but " | |
910 | "should be %d", page->objects, max_objects); | |
911 | page->objects = max_objects; | |
912 | slab_fix(s, "Number of objects adjusted."); | |
913 | } | |
39b26464 | 914 | if (page->inuse != page->objects - nr) { |
70d71228 | 915 | slab_err(s, page, "Wrong object count. Counter is %d but " |
39b26464 CL |
916 | "counted were %d", page->inuse, page->objects - nr); |
917 | page->inuse = page->objects - nr; | |
24922684 | 918 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
919 | } |
920 | return search == NULL; | |
921 | } | |
922 | ||
0121c619 CL |
923 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
924 | int alloc) | |
3ec09742 CL |
925 | { |
926 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 927 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
928 | s->name, |
929 | alloc ? "alloc" : "free", | |
930 | object, page->inuse, | |
931 | page->freelist); | |
932 | ||
933 | if (!alloc) | |
d0e0ac97 CG |
934 | print_section("Object ", (void *)object, |
935 | s->object_size); | |
3ec09742 CL |
936 | |
937 | dump_stack(); | |
938 | } | |
939 | } | |
940 | ||
643b1138 | 941 | /* |
672bba3a | 942 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 943 | */ |
5cc6eee8 CL |
944 | static void add_full(struct kmem_cache *s, |
945 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 946 | { |
5cc6eee8 CL |
947 | if (!(s->flags & SLAB_STORE_USER)) |
948 | return; | |
949 | ||
255d0884 | 950 | lockdep_assert_held(&n->list_lock); |
643b1138 | 951 | list_add(&page->lru, &n->full); |
643b1138 CL |
952 | } |
953 | ||
c65c1877 | 954 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 955 | { |
643b1138 CL |
956 | if (!(s->flags & SLAB_STORE_USER)) |
957 | return; | |
958 | ||
255d0884 | 959 | lockdep_assert_held(&n->list_lock); |
643b1138 | 960 | list_del(&page->lru); |
643b1138 CL |
961 | } |
962 | ||
0f389ec6 CL |
963 | /* Tracking of the number of slabs for debugging purposes */ |
964 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
965 | { | |
966 | struct kmem_cache_node *n = get_node(s, node); | |
967 | ||
968 | return atomic_long_read(&n->nr_slabs); | |
969 | } | |
970 | ||
26c02cf0 AB |
971 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
972 | { | |
973 | return atomic_long_read(&n->nr_slabs); | |
974 | } | |
975 | ||
205ab99d | 976 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
977 | { |
978 | struct kmem_cache_node *n = get_node(s, node); | |
979 | ||
980 | /* | |
981 | * May be called early in order to allocate a slab for the | |
982 | * kmem_cache_node structure. Solve the chicken-egg | |
983 | * dilemma by deferring the increment of the count during | |
984 | * bootstrap (see early_kmem_cache_node_alloc). | |
985 | */ | |
338b2642 | 986 | if (likely(n)) { |
0f389ec6 | 987 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
988 | atomic_long_add(objects, &n->total_objects); |
989 | } | |
0f389ec6 | 990 | } |
205ab99d | 991 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
992 | { |
993 | struct kmem_cache_node *n = get_node(s, node); | |
994 | ||
995 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 996 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
997 | } |
998 | ||
999 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1000 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1001 | void *object) | |
1002 | { | |
1003 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1004 | return; | |
1005 | ||
f7cb1933 | 1006 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1007 | init_tracking(s, object); |
1008 | } | |
1009 | ||
becfda68 | 1010 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
d0e0ac97 | 1011 | struct page *page, |
ce71e27c | 1012 | void *object, unsigned long addr) |
81819f0f CL |
1013 | { |
1014 | if (!check_slab(s, page)) | |
becfda68 | 1015 | return 0; |
81819f0f | 1016 | |
81819f0f CL |
1017 | if (!check_valid_pointer(s, page, object)) { |
1018 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1019 | return 0; |
81819f0f CL |
1020 | } |
1021 | ||
f7cb1933 | 1022 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1023 | return 0; |
1024 | ||
1025 | return 1; | |
1026 | } | |
1027 | ||
1028 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1029 | struct page *page, | |
1030 | void *object, unsigned long addr) | |
1031 | { | |
1032 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1033 | if (!alloc_consistency_checks(s, page, object, addr)) | |
1034 | goto bad; | |
1035 | } | |
81819f0f | 1036 | |
3ec09742 CL |
1037 | /* Success perform special debug activities for allocs */ |
1038 | if (s->flags & SLAB_STORE_USER) | |
1039 | set_track(s, object, TRACK_ALLOC, addr); | |
1040 | trace(s, page, object, 1); | |
f7cb1933 | 1041 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1042 | return 1; |
3ec09742 | 1043 | |
81819f0f CL |
1044 | bad: |
1045 | if (PageSlab(page)) { | |
1046 | /* | |
1047 | * If this is a slab page then lets do the best we can | |
1048 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1049 | * as used avoids touching the remaining objects. |
81819f0f | 1050 | */ |
24922684 | 1051 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1052 | page->inuse = page->objects; |
a973e9dd | 1053 | page->freelist = NULL; |
81819f0f CL |
1054 | } |
1055 | return 0; | |
1056 | } | |
1057 | ||
becfda68 LA |
1058 | static inline int free_consistency_checks(struct kmem_cache *s, |
1059 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1060 | { |
81819f0f | 1061 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1062 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1063 | return 0; |
81819f0f CL |
1064 | } |
1065 | ||
1066 | if (on_freelist(s, page, object)) { | |
24922684 | 1067 | object_err(s, page, object, "Object already free"); |
becfda68 | 1068 | return 0; |
81819f0f CL |
1069 | } |
1070 | ||
f7cb1933 | 1071 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1072 | return 0; |
81819f0f | 1073 | |
1b4f59e3 | 1074 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1075 | if (!PageSlab(page)) { |
70d71228 CL |
1076 | slab_err(s, page, "Attempt to free object(0x%p) " |
1077 | "outside of slab", object); | |
1b4f59e3 | 1078 | } else if (!page->slab_cache) { |
f9f58285 FF |
1079 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1080 | object); | |
70d71228 | 1081 | dump_stack(); |
06428780 | 1082 | } else |
24922684 CL |
1083 | object_err(s, page, object, |
1084 | "page slab pointer corrupt."); | |
becfda68 LA |
1085 | return 0; |
1086 | } | |
1087 | return 1; | |
1088 | } | |
1089 | ||
1090 | /* Supports checking bulk free of a constructed freelist */ | |
1091 | static noinline int free_debug_processing( | |
1092 | struct kmem_cache *s, struct page *page, | |
1093 | void *head, void *tail, int bulk_cnt, | |
1094 | unsigned long addr) | |
1095 | { | |
1096 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1097 | void *object = head; | |
1098 | int cnt = 0; | |
1099 | unsigned long uninitialized_var(flags); | |
1100 | int ret = 0; | |
1101 | ||
1102 | spin_lock_irqsave(&n->list_lock, flags); | |
1103 | slab_lock(page); | |
1104 | ||
1105 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1106 | if (!check_slab(s, page)) | |
1107 | goto out; | |
1108 | } | |
1109 | ||
1110 | next_object: | |
1111 | cnt++; | |
1112 | ||
1113 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1114 | if (!free_consistency_checks(s, page, object, addr)) | |
1115 | goto out; | |
81819f0f | 1116 | } |
3ec09742 | 1117 | |
3ec09742 CL |
1118 | if (s->flags & SLAB_STORE_USER) |
1119 | set_track(s, object, TRACK_FREE, addr); | |
1120 | trace(s, page, object, 0); | |
81084651 | 1121 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1122 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1123 | |
1124 | /* Reached end of constructed freelist yet? */ | |
1125 | if (object != tail) { | |
1126 | object = get_freepointer(s, object); | |
1127 | goto next_object; | |
1128 | } | |
804aa132 LA |
1129 | ret = 1; |
1130 | ||
5c2e4bbb | 1131 | out: |
81084651 JDB |
1132 | if (cnt != bulk_cnt) |
1133 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1134 | bulk_cnt, cnt); | |
1135 | ||
881db7fb | 1136 | slab_unlock(page); |
282acb43 | 1137 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1138 | if (!ret) |
1139 | slab_fix(s, "Object at 0x%p not freed", object); | |
1140 | return ret; | |
81819f0f CL |
1141 | } |
1142 | ||
41ecc55b CL |
1143 | static int __init setup_slub_debug(char *str) |
1144 | { | |
f0630fff CL |
1145 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1146 | if (*str++ != '=' || !*str) | |
1147 | /* | |
1148 | * No options specified. Switch on full debugging. | |
1149 | */ | |
1150 | goto out; | |
1151 | ||
1152 | if (*str == ',') | |
1153 | /* | |
1154 | * No options but restriction on slabs. This means full | |
1155 | * debugging for slabs matching a pattern. | |
1156 | */ | |
1157 | goto check_slabs; | |
1158 | ||
1159 | slub_debug = 0; | |
1160 | if (*str == '-') | |
1161 | /* | |
1162 | * Switch off all debugging measures. | |
1163 | */ | |
1164 | goto out; | |
1165 | ||
1166 | /* | |
1167 | * Determine which debug features should be switched on | |
1168 | */ | |
06428780 | 1169 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1170 | switch (tolower(*str)) { |
1171 | case 'f': | |
becfda68 | 1172 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1173 | break; |
1174 | case 'z': | |
1175 | slub_debug |= SLAB_RED_ZONE; | |
1176 | break; | |
1177 | case 'p': | |
1178 | slub_debug |= SLAB_POISON; | |
1179 | break; | |
1180 | case 'u': | |
1181 | slub_debug |= SLAB_STORE_USER; | |
1182 | break; | |
1183 | case 't': | |
1184 | slub_debug |= SLAB_TRACE; | |
1185 | break; | |
4c13dd3b DM |
1186 | case 'a': |
1187 | slub_debug |= SLAB_FAILSLAB; | |
1188 | break; | |
08303a73 CA |
1189 | case 'o': |
1190 | /* | |
1191 | * Avoid enabling debugging on caches if its minimum | |
1192 | * order would increase as a result. | |
1193 | */ | |
1194 | disable_higher_order_debug = 1; | |
1195 | break; | |
f0630fff | 1196 | default: |
f9f58285 FF |
1197 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1198 | *str); | |
f0630fff | 1199 | } |
41ecc55b CL |
1200 | } |
1201 | ||
f0630fff | 1202 | check_slabs: |
41ecc55b CL |
1203 | if (*str == ',') |
1204 | slub_debug_slabs = str + 1; | |
f0630fff | 1205 | out: |
41ecc55b CL |
1206 | return 1; |
1207 | } | |
1208 | ||
1209 | __setup("slub_debug", setup_slub_debug); | |
1210 | ||
423c929c | 1211 | unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1212 | unsigned long flags, const char *name, |
51cc5068 | 1213 | void (*ctor)(void *)) |
41ecc55b CL |
1214 | { |
1215 | /* | |
e153362a | 1216 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1217 | */ |
c6f58d9b CL |
1218 | if (slub_debug && (!slub_debug_slabs || (name && |
1219 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | |
3de47213 | 1220 | flags |= slub_debug; |
ba0268a8 CL |
1221 | |
1222 | return flags; | |
41ecc55b | 1223 | } |
b4a64718 | 1224 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1225 | static inline void setup_object_debug(struct kmem_cache *s, |
1226 | struct page *page, void *object) {} | |
41ecc55b | 1227 | |
3ec09742 | 1228 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1229 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1230 | |
282acb43 | 1231 | static inline int free_debug_processing( |
81084651 JDB |
1232 | struct kmem_cache *s, struct page *page, |
1233 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1234 | unsigned long addr) { return 0; } |
41ecc55b | 1235 | |
41ecc55b CL |
1236 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1237 | { return 1; } | |
1238 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1239 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1240 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1241 | struct page *page) {} | |
c65c1877 PZ |
1242 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1243 | struct page *page) {} | |
423c929c | 1244 | unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1245 | unsigned long flags, const char *name, |
51cc5068 | 1246 | void (*ctor)(void *)) |
ba0268a8 CL |
1247 | { |
1248 | return flags; | |
1249 | } | |
41ecc55b | 1250 | #define slub_debug 0 |
0f389ec6 | 1251 | |
fdaa45e9 IM |
1252 | #define disable_higher_order_debug 0 |
1253 | ||
0f389ec6 CL |
1254 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1255 | { return 0; } | |
26c02cf0 AB |
1256 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1257 | { return 0; } | |
205ab99d CL |
1258 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1259 | int objects) {} | |
1260 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1261 | int objects) {} | |
7d550c56 | 1262 | |
02e72cc6 AR |
1263 | #endif /* CONFIG_SLUB_DEBUG */ |
1264 | ||
1265 | /* | |
1266 | * Hooks for other subsystems that check memory allocations. In a typical | |
1267 | * production configuration these hooks all should produce no code at all. | |
1268 | */ | |
d56791b3 RB |
1269 | static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
1270 | { | |
1271 | kmemleak_alloc(ptr, size, 1, flags); | |
0316bec2 | 1272 | kasan_kmalloc_large(ptr, size); |
d56791b3 RB |
1273 | } |
1274 | ||
1275 | static inline void kfree_hook(const void *x) | |
1276 | { | |
1277 | kmemleak_free(x); | |
0316bec2 | 1278 | kasan_kfree_large(x); |
d56791b3 RB |
1279 | } |
1280 | ||
d56791b3 RB |
1281 | static inline void slab_free_hook(struct kmem_cache *s, void *x) |
1282 | { | |
1283 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1284 | |
02e72cc6 AR |
1285 | /* |
1286 | * Trouble is that we may no longer disable interrupts in the fast path | |
1287 | * So in order to make the debug calls that expect irqs to be | |
1288 | * disabled we need to disable interrupts temporarily. | |
1289 | */ | |
1290 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | |
1291 | { | |
1292 | unsigned long flags; | |
1293 | ||
1294 | local_irq_save(flags); | |
1295 | kmemcheck_slab_free(s, x, s->object_size); | |
1296 | debug_check_no_locks_freed(x, s->object_size); | |
1297 | local_irq_restore(flags); | |
1298 | } | |
1299 | #endif | |
1300 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1301 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 AR |
1302 | |
1303 | kasan_slab_free(s, x); | |
02e72cc6 | 1304 | } |
205ab99d | 1305 | |
81084651 JDB |
1306 | static inline void slab_free_freelist_hook(struct kmem_cache *s, |
1307 | void *head, void *tail) | |
1308 | { | |
1309 | /* | |
1310 | * Compiler cannot detect this function can be removed if slab_free_hook() | |
1311 | * evaluates to nothing. Thus, catch all relevant config debug options here. | |
1312 | */ | |
1313 | #if defined(CONFIG_KMEMCHECK) || \ | |
1314 | defined(CONFIG_LOCKDEP) || \ | |
1315 | defined(CONFIG_DEBUG_KMEMLEAK) || \ | |
1316 | defined(CONFIG_DEBUG_OBJECTS_FREE) || \ | |
1317 | defined(CONFIG_KASAN) | |
1318 | ||
1319 | void *object = head; | |
1320 | void *tail_obj = tail ? : head; | |
1321 | ||
1322 | do { | |
1323 | slab_free_hook(s, object); | |
1324 | } while ((object != tail_obj) && | |
1325 | (object = get_freepointer(s, object))); | |
1326 | #endif | |
1327 | } | |
1328 | ||
588f8ba9 TG |
1329 | static void setup_object(struct kmem_cache *s, struct page *page, |
1330 | void *object) | |
1331 | { | |
1332 | setup_object_debug(s, page, object); | |
1333 | if (unlikely(s->ctor)) { | |
1334 | kasan_unpoison_object_data(s, object); | |
1335 | s->ctor(object); | |
1336 | kasan_poison_object_data(s, object); | |
1337 | } | |
1338 | } | |
1339 | ||
81819f0f CL |
1340 | /* |
1341 | * Slab allocation and freeing | |
1342 | */ | |
5dfb4175 VD |
1343 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1344 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1345 | { |
5dfb4175 | 1346 | struct page *page; |
65c3376a CL |
1347 | int order = oo_order(oo); |
1348 | ||
b1eeab67 VN |
1349 | flags |= __GFP_NOTRACK; |
1350 | ||
2154a336 | 1351 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1352 | page = alloc_pages(flags, order); |
65c3376a | 1353 | else |
96db800f | 1354 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1355 | |
f3ccb2c4 VD |
1356 | if (page && memcg_charge_slab(page, flags, order, s)) { |
1357 | __free_pages(page, order); | |
1358 | page = NULL; | |
1359 | } | |
5dfb4175 VD |
1360 | |
1361 | return page; | |
65c3376a CL |
1362 | } |
1363 | ||
81819f0f CL |
1364 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1365 | { | |
06428780 | 1366 | struct page *page; |
834f3d11 | 1367 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1368 | gfp_t alloc_gfp; |
588f8ba9 TG |
1369 | void *start, *p; |
1370 | int idx, order; | |
81819f0f | 1371 | |
7e0528da CL |
1372 | flags &= gfp_allowed_mask; |
1373 | ||
d0164adc | 1374 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1375 | local_irq_enable(); |
1376 | ||
b7a49f0d | 1377 | flags |= s->allocflags; |
e12ba74d | 1378 | |
ba52270d PE |
1379 | /* |
1380 | * Let the initial higher-order allocation fail under memory pressure | |
1381 | * so we fall-back to the minimum order allocation. | |
1382 | */ | |
1383 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc MG |
1384 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
1385 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM; | |
ba52270d | 1386 | |
5dfb4175 | 1387 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1388 | if (unlikely(!page)) { |
1389 | oo = s->min; | |
80c3a998 | 1390 | alloc_gfp = flags; |
65c3376a CL |
1391 | /* |
1392 | * Allocation may have failed due to fragmentation. | |
1393 | * Try a lower order alloc if possible | |
1394 | */ | |
5dfb4175 | 1395 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1396 | if (unlikely(!page)) |
1397 | goto out; | |
1398 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1399 | } |
5a896d9e | 1400 | |
588f8ba9 TG |
1401 | if (kmemcheck_enabled && |
1402 | !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { | |
b1eeab67 VN |
1403 | int pages = 1 << oo_order(oo); |
1404 | ||
80c3a998 | 1405 | kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); |
b1eeab67 VN |
1406 | |
1407 | /* | |
1408 | * Objects from caches that have a constructor don't get | |
1409 | * cleared when they're allocated, so we need to do it here. | |
1410 | */ | |
1411 | if (s->ctor) | |
1412 | kmemcheck_mark_uninitialized_pages(page, pages); | |
1413 | else | |
1414 | kmemcheck_mark_unallocated_pages(page, pages); | |
5a896d9e VN |
1415 | } |
1416 | ||
834f3d11 | 1417 | page->objects = oo_objects(oo); |
81819f0f | 1418 | |
1f458cbf | 1419 | order = compound_order(page); |
1b4f59e3 | 1420 | page->slab_cache = s; |
c03f94cc | 1421 | __SetPageSlab(page); |
2f064f34 | 1422 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1423 | SetPageSlabPfmemalloc(page); |
81819f0f CL |
1424 | |
1425 | start = page_address(page); | |
81819f0f CL |
1426 | |
1427 | if (unlikely(s->flags & SLAB_POISON)) | |
1f458cbf | 1428 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
81819f0f | 1429 | |
0316bec2 AR |
1430 | kasan_poison_slab(page); |
1431 | ||
54266640 WY |
1432 | for_each_object_idx(p, idx, s, start, page->objects) { |
1433 | setup_object(s, page, p); | |
1434 | if (likely(idx < page->objects)) | |
1435 | set_freepointer(s, p, p + s->size); | |
1436 | else | |
1437 | set_freepointer(s, p, NULL); | |
81819f0f | 1438 | } |
81819f0f CL |
1439 | |
1440 | page->freelist = start; | |
e6e82ea1 | 1441 | page->inuse = page->objects; |
8cb0a506 | 1442 | page->frozen = 1; |
588f8ba9 | 1443 | |
81819f0f | 1444 | out: |
d0164adc | 1445 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1446 | local_irq_disable(); |
1447 | if (!page) | |
1448 | return NULL; | |
1449 | ||
1450 | mod_zone_page_state(page_zone(page), | |
1451 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1452 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1453 | 1 << oo_order(oo)); | |
1454 | ||
1455 | inc_slabs_node(s, page_to_nid(page), page->objects); | |
1456 | ||
81819f0f CL |
1457 | return page; |
1458 | } | |
1459 | ||
588f8ba9 TG |
1460 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1461 | { | |
1462 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
1463 | pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); | |
1464 | BUG(); | |
1465 | } | |
1466 | ||
1467 | return allocate_slab(s, | |
1468 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1469 | } | |
1470 | ||
81819f0f CL |
1471 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1472 | { | |
834f3d11 CL |
1473 | int order = compound_order(page); |
1474 | int pages = 1 << order; | |
81819f0f | 1475 | |
becfda68 | 1476 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1477 | void *p; |
1478 | ||
1479 | slab_pad_check(s, page); | |
224a88be CL |
1480 | for_each_object(p, s, page_address(page), |
1481 | page->objects) | |
f7cb1933 | 1482 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1483 | } |
1484 | ||
b1eeab67 | 1485 | kmemcheck_free_shadow(page, compound_order(page)); |
5a896d9e | 1486 | |
81819f0f CL |
1487 | mod_zone_page_state(page_zone(page), |
1488 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1489 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1490 | -pages); |
81819f0f | 1491 | |
072bb0aa | 1492 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1493 | __ClearPageSlab(page); |
1f458cbf | 1494 | |
22b751c3 | 1495 | page_mapcount_reset(page); |
1eb5ac64 NP |
1496 | if (current->reclaim_state) |
1497 | current->reclaim_state->reclaimed_slab += pages; | |
f3ccb2c4 | 1498 | __free_kmem_pages(page, order); |
81819f0f CL |
1499 | } |
1500 | ||
da9a638c LJ |
1501 | #define need_reserve_slab_rcu \ |
1502 | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | |
1503 | ||
81819f0f CL |
1504 | static void rcu_free_slab(struct rcu_head *h) |
1505 | { | |
1506 | struct page *page; | |
1507 | ||
da9a638c LJ |
1508 | if (need_reserve_slab_rcu) |
1509 | page = virt_to_head_page(h); | |
1510 | else | |
1511 | page = container_of((struct list_head *)h, struct page, lru); | |
1512 | ||
1b4f59e3 | 1513 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1514 | } |
1515 | ||
1516 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1517 | { | |
1518 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
da9a638c LJ |
1519 | struct rcu_head *head; |
1520 | ||
1521 | if (need_reserve_slab_rcu) { | |
1522 | int order = compound_order(page); | |
1523 | int offset = (PAGE_SIZE << order) - s->reserved; | |
1524 | ||
1525 | VM_BUG_ON(s->reserved != sizeof(*head)); | |
1526 | head = page_address(page) + offset; | |
1527 | } else { | |
bc4f610d | 1528 | head = &page->rcu_head; |
da9a638c | 1529 | } |
81819f0f CL |
1530 | |
1531 | call_rcu(head, rcu_free_slab); | |
1532 | } else | |
1533 | __free_slab(s, page); | |
1534 | } | |
1535 | ||
1536 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1537 | { | |
205ab99d | 1538 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1539 | free_slab(s, page); |
1540 | } | |
1541 | ||
1542 | /* | |
5cc6eee8 | 1543 | * Management of partially allocated slabs. |
81819f0f | 1544 | */ |
1e4dd946 SR |
1545 | static inline void |
1546 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1547 | { |
e95eed57 | 1548 | n->nr_partial++; |
136333d1 | 1549 | if (tail == DEACTIVATE_TO_TAIL) |
7c2e132c CL |
1550 | list_add_tail(&page->lru, &n->partial); |
1551 | else | |
1552 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1553 | } |
1554 | ||
1e4dd946 SR |
1555 | static inline void add_partial(struct kmem_cache_node *n, |
1556 | struct page *page, int tail) | |
62e346a8 | 1557 | { |
c65c1877 | 1558 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1559 | __add_partial(n, page, tail); |
1560 | } | |
c65c1877 | 1561 | |
1e4dd946 SR |
1562 | static inline void remove_partial(struct kmem_cache_node *n, |
1563 | struct page *page) | |
1564 | { | |
1565 | lockdep_assert_held(&n->list_lock); | |
52b4b950 DS |
1566 | list_del(&page->lru); |
1567 | n->nr_partial--; | |
1e4dd946 SR |
1568 | } |
1569 | ||
81819f0f | 1570 | /* |
7ced3719 CL |
1571 | * Remove slab from the partial list, freeze it and |
1572 | * return the pointer to the freelist. | |
81819f0f | 1573 | * |
497b66f2 | 1574 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1575 | */ |
497b66f2 | 1576 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1577 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1578 | int mode, int *objects) |
81819f0f | 1579 | { |
2cfb7455 CL |
1580 | void *freelist; |
1581 | unsigned long counters; | |
1582 | struct page new; | |
1583 | ||
c65c1877 PZ |
1584 | lockdep_assert_held(&n->list_lock); |
1585 | ||
2cfb7455 CL |
1586 | /* |
1587 | * Zap the freelist and set the frozen bit. | |
1588 | * The old freelist is the list of objects for the | |
1589 | * per cpu allocation list. | |
1590 | */ | |
7ced3719 CL |
1591 | freelist = page->freelist; |
1592 | counters = page->counters; | |
1593 | new.counters = counters; | |
633b0764 | 1594 | *objects = new.objects - new.inuse; |
23910c50 | 1595 | if (mode) { |
7ced3719 | 1596 | new.inuse = page->objects; |
23910c50 PE |
1597 | new.freelist = NULL; |
1598 | } else { | |
1599 | new.freelist = freelist; | |
1600 | } | |
2cfb7455 | 1601 | |
a0132ac0 | 1602 | VM_BUG_ON(new.frozen); |
7ced3719 | 1603 | new.frozen = 1; |
2cfb7455 | 1604 | |
7ced3719 | 1605 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1606 | freelist, counters, |
02d7633f | 1607 | new.freelist, new.counters, |
7ced3719 | 1608 | "acquire_slab")) |
7ced3719 | 1609 | return NULL; |
2cfb7455 CL |
1610 | |
1611 | remove_partial(n, page); | |
7ced3719 | 1612 | WARN_ON(!freelist); |
49e22585 | 1613 | return freelist; |
81819f0f CL |
1614 | } |
1615 | ||
633b0764 | 1616 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1617 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1618 | |
81819f0f | 1619 | /* |
672bba3a | 1620 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1621 | */ |
8ba00bb6 JK |
1622 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1623 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1624 | { |
49e22585 CL |
1625 | struct page *page, *page2; |
1626 | void *object = NULL; | |
633b0764 JK |
1627 | int available = 0; |
1628 | int objects; | |
81819f0f CL |
1629 | |
1630 | /* | |
1631 | * Racy check. If we mistakenly see no partial slabs then we | |
1632 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1633 | * partial slab and there is none available then get_partials() |
1634 | * will return NULL. | |
81819f0f CL |
1635 | */ |
1636 | if (!n || !n->nr_partial) | |
1637 | return NULL; | |
1638 | ||
1639 | spin_lock(&n->list_lock); | |
49e22585 | 1640 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
8ba00bb6 | 1641 | void *t; |
49e22585 | 1642 | |
8ba00bb6 JK |
1643 | if (!pfmemalloc_match(page, flags)) |
1644 | continue; | |
1645 | ||
633b0764 | 1646 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1647 | if (!t) |
1648 | break; | |
1649 | ||
633b0764 | 1650 | available += objects; |
12d79634 | 1651 | if (!object) { |
49e22585 | 1652 | c->page = page; |
49e22585 | 1653 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1654 | object = t; |
49e22585 | 1655 | } else { |
633b0764 | 1656 | put_cpu_partial(s, page, 0); |
8028dcea | 1657 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1658 | } |
345c905d JK |
1659 | if (!kmem_cache_has_cpu_partial(s) |
1660 | || available > s->cpu_partial / 2) | |
49e22585 CL |
1661 | break; |
1662 | ||
497b66f2 | 1663 | } |
81819f0f | 1664 | spin_unlock(&n->list_lock); |
497b66f2 | 1665 | return object; |
81819f0f CL |
1666 | } |
1667 | ||
1668 | /* | |
672bba3a | 1669 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1670 | */ |
de3ec035 | 1671 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1672 | struct kmem_cache_cpu *c) |
81819f0f CL |
1673 | { |
1674 | #ifdef CONFIG_NUMA | |
1675 | struct zonelist *zonelist; | |
dd1a239f | 1676 | struct zoneref *z; |
54a6eb5c MG |
1677 | struct zone *zone; |
1678 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1679 | void *object; |
cc9a6c87 | 1680 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1681 | |
1682 | /* | |
672bba3a CL |
1683 | * The defrag ratio allows a configuration of the tradeoffs between |
1684 | * inter node defragmentation and node local allocations. A lower | |
1685 | * defrag_ratio increases the tendency to do local allocations | |
1686 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1687 | * |
672bba3a CL |
1688 | * If the defrag_ratio is set to 0 then kmalloc() always |
1689 | * returns node local objects. If the ratio is higher then kmalloc() | |
1690 | * may return off node objects because partial slabs are obtained | |
1691 | * from other nodes and filled up. | |
81819f0f | 1692 | * |
6446faa2 | 1693 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1694 | * defrag_ratio = 1000) then every (well almost) allocation will |
1695 | * first attempt to defrag slab caches on other nodes. This means | |
1696 | * scanning over all nodes to look for partial slabs which may be | |
1697 | * expensive if we do it every time we are trying to find a slab | |
1698 | * with available objects. | |
81819f0f | 1699 | */ |
9824601e CL |
1700 | if (!s->remote_node_defrag_ratio || |
1701 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1702 | return NULL; |
1703 | ||
cc9a6c87 | 1704 | do { |
d26914d1 | 1705 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1706 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1707 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1708 | struct kmem_cache_node *n; | |
1709 | ||
1710 | n = get_node(s, zone_to_nid(zone)); | |
1711 | ||
dee2f8aa | 1712 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1713 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1714 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1715 | if (object) { |
1716 | /* | |
d26914d1 MG |
1717 | * Don't check read_mems_allowed_retry() |
1718 | * here - if mems_allowed was updated in | |
1719 | * parallel, that was a harmless race | |
1720 | * between allocation and the cpuset | |
1721 | * update | |
cc9a6c87 | 1722 | */ |
cc9a6c87 MG |
1723 | return object; |
1724 | } | |
c0ff7453 | 1725 | } |
81819f0f | 1726 | } |
d26914d1 | 1727 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
81819f0f CL |
1728 | #endif |
1729 | return NULL; | |
1730 | } | |
1731 | ||
1732 | /* | |
1733 | * Get a partial page, lock it and return it. | |
1734 | */ | |
497b66f2 | 1735 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1736 | struct kmem_cache_cpu *c) |
81819f0f | 1737 | { |
497b66f2 | 1738 | void *object; |
a561ce00 JK |
1739 | int searchnode = node; |
1740 | ||
1741 | if (node == NUMA_NO_NODE) | |
1742 | searchnode = numa_mem_id(); | |
1743 | else if (!node_present_pages(node)) | |
1744 | searchnode = node_to_mem_node(node); | |
81819f0f | 1745 | |
8ba00bb6 | 1746 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1747 | if (object || node != NUMA_NO_NODE) |
1748 | return object; | |
81819f0f | 1749 | |
acd19fd1 | 1750 | return get_any_partial(s, flags, c); |
81819f0f CL |
1751 | } |
1752 | ||
8a5ec0ba CL |
1753 | #ifdef CONFIG_PREEMPT |
1754 | /* | |
1755 | * Calculate the next globally unique transaction for disambiguiation | |
1756 | * during cmpxchg. The transactions start with the cpu number and are then | |
1757 | * incremented by CONFIG_NR_CPUS. | |
1758 | */ | |
1759 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1760 | #else | |
1761 | /* | |
1762 | * No preemption supported therefore also no need to check for | |
1763 | * different cpus. | |
1764 | */ | |
1765 | #define TID_STEP 1 | |
1766 | #endif | |
1767 | ||
1768 | static inline unsigned long next_tid(unsigned long tid) | |
1769 | { | |
1770 | return tid + TID_STEP; | |
1771 | } | |
1772 | ||
1773 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1774 | { | |
1775 | return tid % TID_STEP; | |
1776 | } | |
1777 | ||
1778 | static inline unsigned long tid_to_event(unsigned long tid) | |
1779 | { | |
1780 | return tid / TID_STEP; | |
1781 | } | |
1782 | ||
1783 | static inline unsigned int init_tid(int cpu) | |
1784 | { | |
1785 | return cpu; | |
1786 | } | |
1787 | ||
1788 | static inline void note_cmpxchg_failure(const char *n, | |
1789 | const struct kmem_cache *s, unsigned long tid) | |
1790 | { | |
1791 | #ifdef SLUB_DEBUG_CMPXCHG | |
1792 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
1793 | ||
f9f58285 | 1794 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba CL |
1795 | |
1796 | #ifdef CONFIG_PREEMPT | |
1797 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
f9f58285 | 1798 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
1799 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
1800 | else | |
1801 | #endif | |
1802 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 1803 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
1804 | tid_to_event(tid), tid_to_event(actual_tid)); |
1805 | else | |
f9f58285 | 1806 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
1807 | actual_tid, tid, next_tid(tid)); |
1808 | #endif | |
4fdccdfb | 1809 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
1810 | } |
1811 | ||
788e1aad | 1812 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 1813 | { |
8a5ec0ba CL |
1814 | int cpu; |
1815 | ||
1816 | for_each_possible_cpu(cpu) | |
1817 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 1818 | } |
2cfb7455 | 1819 | |
81819f0f CL |
1820 | /* |
1821 | * Remove the cpu slab | |
1822 | */ | |
d0e0ac97 CG |
1823 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
1824 | void *freelist) | |
81819f0f | 1825 | { |
2cfb7455 | 1826 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
1827 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1828 | int lock = 0; | |
1829 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 1830 | void *nextfree; |
136333d1 | 1831 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
1832 | struct page new; |
1833 | struct page old; | |
1834 | ||
1835 | if (page->freelist) { | |
84e554e6 | 1836 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 1837 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
1838 | } |
1839 | ||
894b8788 | 1840 | /* |
2cfb7455 CL |
1841 | * Stage one: Free all available per cpu objects back |
1842 | * to the page freelist while it is still frozen. Leave the | |
1843 | * last one. | |
1844 | * | |
1845 | * There is no need to take the list->lock because the page | |
1846 | * is still frozen. | |
1847 | */ | |
1848 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
1849 | void *prior; | |
1850 | unsigned long counters; | |
1851 | ||
1852 | do { | |
1853 | prior = page->freelist; | |
1854 | counters = page->counters; | |
1855 | set_freepointer(s, freelist, prior); | |
1856 | new.counters = counters; | |
1857 | new.inuse--; | |
a0132ac0 | 1858 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 1859 | |
1d07171c | 1860 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
1861 | prior, counters, |
1862 | freelist, new.counters, | |
1863 | "drain percpu freelist")); | |
1864 | ||
1865 | freelist = nextfree; | |
1866 | } | |
1867 | ||
894b8788 | 1868 | /* |
2cfb7455 CL |
1869 | * Stage two: Ensure that the page is unfrozen while the |
1870 | * list presence reflects the actual number of objects | |
1871 | * during unfreeze. | |
1872 | * | |
1873 | * We setup the list membership and then perform a cmpxchg | |
1874 | * with the count. If there is a mismatch then the page | |
1875 | * is not unfrozen but the page is on the wrong list. | |
1876 | * | |
1877 | * Then we restart the process which may have to remove | |
1878 | * the page from the list that we just put it on again | |
1879 | * because the number of objects in the slab may have | |
1880 | * changed. | |
894b8788 | 1881 | */ |
2cfb7455 | 1882 | redo: |
894b8788 | 1883 | |
2cfb7455 CL |
1884 | old.freelist = page->freelist; |
1885 | old.counters = page->counters; | |
a0132ac0 | 1886 | VM_BUG_ON(!old.frozen); |
7c2e132c | 1887 | |
2cfb7455 CL |
1888 | /* Determine target state of the slab */ |
1889 | new.counters = old.counters; | |
1890 | if (freelist) { | |
1891 | new.inuse--; | |
1892 | set_freepointer(s, freelist, old.freelist); | |
1893 | new.freelist = freelist; | |
1894 | } else | |
1895 | new.freelist = old.freelist; | |
1896 | ||
1897 | new.frozen = 0; | |
1898 | ||
8a5b20ae | 1899 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
1900 | m = M_FREE; |
1901 | else if (new.freelist) { | |
1902 | m = M_PARTIAL; | |
1903 | if (!lock) { | |
1904 | lock = 1; | |
1905 | /* | |
1906 | * Taking the spinlock removes the possiblity | |
1907 | * that acquire_slab() will see a slab page that | |
1908 | * is frozen | |
1909 | */ | |
1910 | spin_lock(&n->list_lock); | |
1911 | } | |
1912 | } else { | |
1913 | m = M_FULL; | |
1914 | if (kmem_cache_debug(s) && !lock) { | |
1915 | lock = 1; | |
1916 | /* | |
1917 | * This also ensures that the scanning of full | |
1918 | * slabs from diagnostic functions will not see | |
1919 | * any frozen slabs. | |
1920 | */ | |
1921 | spin_lock(&n->list_lock); | |
1922 | } | |
1923 | } | |
1924 | ||
1925 | if (l != m) { | |
1926 | ||
1927 | if (l == M_PARTIAL) | |
1928 | ||
1929 | remove_partial(n, page); | |
1930 | ||
1931 | else if (l == M_FULL) | |
894b8788 | 1932 | |
c65c1877 | 1933 | remove_full(s, n, page); |
2cfb7455 CL |
1934 | |
1935 | if (m == M_PARTIAL) { | |
1936 | ||
1937 | add_partial(n, page, tail); | |
136333d1 | 1938 | stat(s, tail); |
2cfb7455 CL |
1939 | |
1940 | } else if (m == M_FULL) { | |
894b8788 | 1941 | |
2cfb7455 CL |
1942 | stat(s, DEACTIVATE_FULL); |
1943 | add_full(s, n, page); | |
1944 | ||
1945 | } | |
1946 | } | |
1947 | ||
1948 | l = m; | |
1d07171c | 1949 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
1950 | old.freelist, old.counters, |
1951 | new.freelist, new.counters, | |
1952 | "unfreezing slab")) | |
1953 | goto redo; | |
1954 | ||
2cfb7455 CL |
1955 | if (lock) |
1956 | spin_unlock(&n->list_lock); | |
1957 | ||
1958 | if (m == M_FREE) { | |
1959 | stat(s, DEACTIVATE_EMPTY); | |
1960 | discard_slab(s, page); | |
1961 | stat(s, FREE_SLAB); | |
894b8788 | 1962 | } |
81819f0f CL |
1963 | } |
1964 | ||
d24ac77f JK |
1965 | /* |
1966 | * Unfreeze all the cpu partial slabs. | |
1967 | * | |
59a09917 CL |
1968 | * This function must be called with interrupts disabled |
1969 | * for the cpu using c (or some other guarantee must be there | |
1970 | * to guarantee no concurrent accesses). | |
d24ac77f | 1971 | */ |
59a09917 CL |
1972 | static void unfreeze_partials(struct kmem_cache *s, |
1973 | struct kmem_cache_cpu *c) | |
49e22585 | 1974 | { |
345c905d | 1975 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 1976 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 1977 | struct page *page, *discard_page = NULL; |
49e22585 CL |
1978 | |
1979 | while ((page = c->partial)) { | |
49e22585 CL |
1980 | struct page new; |
1981 | struct page old; | |
1982 | ||
1983 | c->partial = page->next; | |
43d77867 JK |
1984 | |
1985 | n2 = get_node(s, page_to_nid(page)); | |
1986 | if (n != n2) { | |
1987 | if (n) | |
1988 | spin_unlock(&n->list_lock); | |
1989 | ||
1990 | n = n2; | |
1991 | spin_lock(&n->list_lock); | |
1992 | } | |
49e22585 CL |
1993 | |
1994 | do { | |
1995 | ||
1996 | old.freelist = page->freelist; | |
1997 | old.counters = page->counters; | |
a0132ac0 | 1998 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
1999 | |
2000 | new.counters = old.counters; | |
2001 | new.freelist = old.freelist; | |
2002 | ||
2003 | new.frozen = 0; | |
2004 | ||
d24ac77f | 2005 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2006 | old.freelist, old.counters, |
2007 | new.freelist, new.counters, | |
2008 | "unfreezing slab")); | |
2009 | ||
8a5b20ae | 2010 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2011 | page->next = discard_page; |
2012 | discard_page = page; | |
43d77867 JK |
2013 | } else { |
2014 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2015 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2016 | } |
2017 | } | |
2018 | ||
2019 | if (n) | |
2020 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2021 | |
2022 | while (discard_page) { | |
2023 | page = discard_page; | |
2024 | discard_page = discard_page->next; | |
2025 | ||
2026 | stat(s, DEACTIVATE_EMPTY); | |
2027 | discard_slab(s, page); | |
2028 | stat(s, FREE_SLAB); | |
2029 | } | |
345c905d | 2030 | #endif |
49e22585 CL |
2031 | } |
2032 | ||
2033 | /* | |
2034 | * Put a page that was just frozen (in __slab_free) into a partial page | |
2035 | * slot if available. This is done without interrupts disabled and without | |
2036 | * preemption disabled. The cmpxchg is racy and may put the partial page | |
2037 | * onto a random cpus partial slot. | |
2038 | * | |
2039 | * If we did not find a slot then simply move all the partials to the | |
2040 | * per node partial list. | |
2041 | */ | |
633b0764 | 2042 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2043 | { |
345c905d | 2044 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2045 | struct page *oldpage; |
2046 | int pages; | |
2047 | int pobjects; | |
2048 | ||
d6e0b7fa | 2049 | preempt_disable(); |
49e22585 CL |
2050 | do { |
2051 | pages = 0; | |
2052 | pobjects = 0; | |
2053 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2054 | ||
2055 | if (oldpage) { | |
2056 | pobjects = oldpage->pobjects; | |
2057 | pages = oldpage->pages; | |
2058 | if (drain && pobjects > s->cpu_partial) { | |
2059 | unsigned long flags; | |
2060 | /* | |
2061 | * partial array is full. Move the existing | |
2062 | * set to the per node partial list. | |
2063 | */ | |
2064 | local_irq_save(flags); | |
59a09917 | 2065 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2066 | local_irq_restore(flags); |
e24fc410 | 2067 | oldpage = NULL; |
49e22585 CL |
2068 | pobjects = 0; |
2069 | pages = 0; | |
8028dcea | 2070 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2071 | } |
2072 | } | |
2073 | ||
2074 | pages++; | |
2075 | pobjects += page->objects - page->inuse; | |
2076 | ||
2077 | page->pages = pages; | |
2078 | page->pobjects = pobjects; | |
2079 | page->next = oldpage; | |
2080 | ||
d0e0ac97 CG |
2081 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2082 | != oldpage); | |
d6e0b7fa VD |
2083 | if (unlikely(!s->cpu_partial)) { |
2084 | unsigned long flags; | |
2085 | ||
2086 | local_irq_save(flags); | |
2087 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2088 | local_irq_restore(flags); | |
2089 | } | |
2090 | preempt_enable(); | |
345c905d | 2091 | #endif |
49e22585 CL |
2092 | } |
2093 | ||
dfb4f096 | 2094 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2095 | { |
84e554e6 | 2096 | stat(s, CPUSLAB_FLUSH); |
c17dda40 CL |
2097 | deactivate_slab(s, c->page, c->freelist); |
2098 | ||
2099 | c->tid = next_tid(c->tid); | |
2100 | c->page = NULL; | |
2101 | c->freelist = NULL; | |
81819f0f CL |
2102 | } |
2103 | ||
2104 | /* | |
2105 | * Flush cpu slab. | |
6446faa2 | 2106 | * |
81819f0f CL |
2107 | * Called from IPI handler with interrupts disabled. |
2108 | */ | |
0c710013 | 2109 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2110 | { |
9dfc6e68 | 2111 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2112 | |
49e22585 CL |
2113 | if (likely(c)) { |
2114 | if (c->page) | |
2115 | flush_slab(s, c); | |
2116 | ||
59a09917 | 2117 | unfreeze_partials(s, c); |
49e22585 | 2118 | } |
81819f0f CL |
2119 | } |
2120 | ||
2121 | static void flush_cpu_slab(void *d) | |
2122 | { | |
2123 | struct kmem_cache *s = d; | |
81819f0f | 2124 | |
dfb4f096 | 2125 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2126 | } |
2127 | ||
a8364d55 GBY |
2128 | static bool has_cpu_slab(int cpu, void *info) |
2129 | { | |
2130 | struct kmem_cache *s = info; | |
2131 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2132 | ||
02e1a9cd | 2133 | return c->page || c->partial; |
a8364d55 GBY |
2134 | } |
2135 | ||
81819f0f CL |
2136 | static void flush_all(struct kmem_cache *s) |
2137 | { | |
a8364d55 | 2138 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2139 | } |
2140 | ||
dfb4f096 CL |
2141 | /* |
2142 | * Check if the objects in a per cpu structure fit numa | |
2143 | * locality expectations. | |
2144 | */ | |
57d437d2 | 2145 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2146 | { |
2147 | #ifdef CONFIG_NUMA | |
4d7868e6 | 2148 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
dfb4f096 CL |
2149 | return 0; |
2150 | #endif | |
2151 | return 1; | |
2152 | } | |
2153 | ||
9a02d699 | 2154 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2155 | static int count_free(struct page *page) |
2156 | { | |
2157 | return page->objects - page->inuse; | |
2158 | } | |
2159 | ||
9a02d699 DR |
2160 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2161 | { | |
2162 | return atomic_long_read(&n->total_objects); | |
2163 | } | |
2164 | #endif /* CONFIG_SLUB_DEBUG */ | |
2165 | ||
2166 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2167 | static unsigned long count_partial(struct kmem_cache_node *n, |
2168 | int (*get_count)(struct page *)) | |
2169 | { | |
2170 | unsigned long flags; | |
2171 | unsigned long x = 0; | |
2172 | struct page *page; | |
2173 | ||
2174 | spin_lock_irqsave(&n->list_lock, flags); | |
2175 | list_for_each_entry(page, &n->partial, lru) | |
2176 | x += get_count(page); | |
2177 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2178 | return x; | |
2179 | } | |
9a02d699 | 2180 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2181 | |
781b2ba6 PE |
2182 | static noinline void |
2183 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2184 | { | |
9a02d699 DR |
2185 | #ifdef CONFIG_SLUB_DEBUG |
2186 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2187 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2188 | int node; |
fa45dc25 | 2189 | struct kmem_cache_node *n; |
781b2ba6 | 2190 | |
9a02d699 DR |
2191 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2192 | return; | |
2193 | ||
f9f58285 | 2194 | pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", |
781b2ba6 | 2195 | nid, gfpflags); |
f9f58285 FF |
2196 | pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", |
2197 | s->name, s->object_size, s->size, oo_order(s->oo), | |
2198 | oo_order(s->min)); | |
781b2ba6 | 2199 | |
3b0efdfa | 2200 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2201 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2202 | s->name); | |
fa5ec8a1 | 2203 | |
fa45dc25 | 2204 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2205 | unsigned long nr_slabs; |
2206 | unsigned long nr_objs; | |
2207 | unsigned long nr_free; | |
2208 | ||
26c02cf0 AB |
2209 | nr_free = count_partial(n, count_free); |
2210 | nr_slabs = node_nr_slabs(n); | |
2211 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2212 | |
f9f58285 | 2213 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2214 | node, nr_slabs, nr_objs, nr_free); |
2215 | } | |
9a02d699 | 2216 | #endif |
781b2ba6 PE |
2217 | } |
2218 | ||
497b66f2 CL |
2219 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2220 | int node, struct kmem_cache_cpu **pc) | |
2221 | { | |
6faa6833 | 2222 | void *freelist; |
188fd063 CL |
2223 | struct kmem_cache_cpu *c = *pc; |
2224 | struct page *page; | |
497b66f2 | 2225 | |
188fd063 | 2226 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2227 | |
188fd063 CL |
2228 | if (freelist) |
2229 | return freelist; | |
2230 | ||
2231 | page = new_slab(s, flags, node); | |
497b66f2 | 2232 | if (page) { |
7c8e0181 | 2233 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2234 | if (c->page) |
2235 | flush_slab(s, c); | |
2236 | ||
2237 | /* | |
2238 | * No other reference to the page yet so we can | |
2239 | * muck around with it freely without cmpxchg | |
2240 | */ | |
6faa6833 | 2241 | freelist = page->freelist; |
497b66f2 CL |
2242 | page->freelist = NULL; |
2243 | ||
2244 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2245 | c->page = page; |
2246 | *pc = c; | |
2247 | } else | |
6faa6833 | 2248 | freelist = NULL; |
497b66f2 | 2249 | |
6faa6833 | 2250 | return freelist; |
497b66f2 CL |
2251 | } |
2252 | ||
072bb0aa MG |
2253 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2254 | { | |
2255 | if (unlikely(PageSlabPfmemalloc(page))) | |
2256 | return gfp_pfmemalloc_allowed(gfpflags); | |
2257 | ||
2258 | return true; | |
2259 | } | |
2260 | ||
213eeb9f | 2261 | /* |
d0e0ac97 CG |
2262 | * Check the page->freelist of a page and either transfer the freelist to the |
2263 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2264 | * |
2265 | * The page is still frozen if the return value is not NULL. | |
2266 | * | |
2267 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2268 | * |
2269 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2270 | */ |
2271 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2272 | { | |
2273 | struct page new; | |
2274 | unsigned long counters; | |
2275 | void *freelist; | |
2276 | ||
2277 | do { | |
2278 | freelist = page->freelist; | |
2279 | counters = page->counters; | |
6faa6833 | 2280 | |
213eeb9f | 2281 | new.counters = counters; |
a0132ac0 | 2282 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2283 | |
2284 | new.inuse = page->objects; | |
2285 | new.frozen = freelist != NULL; | |
2286 | ||
d24ac77f | 2287 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2288 | freelist, counters, |
2289 | NULL, new.counters, | |
2290 | "get_freelist")); | |
2291 | ||
2292 | return freelist; | |
2293 | } | |
2294 | ||
81819f0f | 2295 | /* |
894b8788 CL |
2296 | * Slow path. The lockless freelist is empty or we need to perform |
2297 | * debugging duties. | |
2298 | * | |
894b8788 CL |
2299 | * Processing is still very fast if new objects have been freed to the |
2300 | * regular freelist. In that case we simply take over the regular freelist | |
2301 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2302 | * |
894b8788 CL |
2303 | * If that is not working then we fall back to the partial lists. We take the |
2304 | * first element of the freelist as the object to allocate now and move the | |
2305 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2306 | * |
894b8788 | 2307 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2308 | * we need to allocate a new slab. This is the slowest path since it involves |
2309 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2310 | * |
2311 | * Version of __slab_alloc to use when we know that interrupts are | |
2312 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2313 | */ |
a380a3c7 | 2314 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2315 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2316 | { |
6faa6833 | 2317 | void *freelist; |
f6e7def7 | 2318 | struct page *page; |
81819f0f | 2319 | |
f6e7def7 CL |
2320 | page = c->page; |
2321 | if (!page) | |
81819f0f | 2322 | goto new_slab; |
49e22585 | 2323 | redo: |
6faa6833 | 2324 | |
57d437d2 | 2325 | if (unlikely(!node_match(page, node))) { |
a561ce00 JK |
2326 | int searchnode = node; |
2327 | ||
2328 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | |
2329 | searchnode = node_to_mem_node(node); | |
2330 | ||
2331 | if (unlikely(!node_match(page, searchnode))) { | |
2332 | stat(s, ALLOC_NODE_MISMATCH); | |
2333 | deactivate_slab(s, page, c->freelist); | |
2334 | c->page = NULL; | |
2335 | c->freelist = NULL; | |
2336 | goto new_slab; | |
2337 | } | |
fc59c053 | 2338 | } |
6446faa2 | 2339 | |
072bb0aa MG |
2340 | /* |
2341 | * By rights, we should be searching for a slab page that was | |
2342 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2343 | * information when the page leaves the per-cpu allocator | |
2344 | */ | |
2345 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
2346 | deactivate_slab(s, page, c->freelist); | |
2347 | c->page = NULL; | |
2348 | c->freelist = NULL; | |
2349 | goto new_slab; | |
2350 | } | |
2351 | ||
73736e03 | 2352 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2353 | freelist = c->freelist; |
2354 | if (freelist) | |
73736e03 | 2355 | goto load_freelist; |
03e404af | 2356 | |
f6e7def7 | 2357 | freelist = get_freelist(s, page); |
6446faa2 | 2358 | |
6faa6833 | 2359 | if (!freelist) { |
03e404af CL |
2360 | c->page = NULL; |
2361 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2362 | goto new_slab; |
03e404af | 2363 | } |
6446faa2 | 2364 | |
84e554e6 | 2365 | stat(s, ALLOC_REFILL); |
6446faa2 | 2366 | |
894b8788 | 2367 | load_freelist: |
507effea CL |
2368 | /* |
2369 | * freelist is pointing to the list of objects to be used. | |
2370 | * page is pointing to the page from which the objects are obtained. | |
2371 | * That page must be frozen for per cpu allocations to work. | |
2372 | */ | |
a0132ac0 | 2373 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2374 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2375 | c->tid = next_tid(c->tid); |
6faa6833 | 2376 | return freelist; |
81819f0f | 2377 | |
81819f0f | 2378 | new_slab: |
2cfb7455 | 2379 | |
49e22585 | 2380 | if (c->partial) { |
f6e7def7 CL |
2381 | page = c->page = c->partial; |
2382 | c->partial = page->next; | |
49e22585 CL |
2383 | stat(s, CPU_PARTIAL_ALLOC); |
2384 | c->freelist = NULL; | |
2385 | goto redo; | |
81819f0f CL |
2386 | } |
2387 | ||
188fd063 | 2388 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2389 | |
f4697436 | 2390 | if (unlikely(!freelist)) { |
9a02d699 | 2391 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2392 | return NULL; |
81819f0f | 2393 | } |
2cfb7455 | 2394 | |
f6e7def7 | 2395 | page = c->page; |
5091b74a | 2396 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2397 | goto load_freelist; |
2cfb7455 | 2398 | |
497b66f2 | 2399 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2400 | if (kmem_cache_debug(s) && |
2401 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2402 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2403 | |
f6e7def7 | 2404 | deactivate_slab(s, page, get_freepointer(s, freelist)); |
c17dda40 CL |
2405 | c->page = NULL; |
2406 | c->freelist = NULL; | |
6faa6833 | 2407 | return freelist; |
894b8788 CL |
2408 | } |
2409 | ||
a380a3c7 CL |
2410 | /* |
2411 | * Another one that disabled interrupt and compensates for possible | |
2412 | * cpu changes by refetching the per cpu area pointer. | |
2413 | */ | |
2414 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2415 | unsigned long addr, struct kmem_cache_cpu *c) | |
2416 | { | |
2417 | void *p; | |
2418 | unsigned long flags; | |
2419 | ||
2420 | local_irq_save(flags); | |
2421 | #ifdef CONFIG_PREEMPT | |
2422 | /* | |
2423 | * We may have been preempted and rescheduled on a different | |
2424 | * cpu before disabling interrupts. Need to reload cpu area | |
2425 | * pointer. | |
2426 | */ | |
2427 | c = this_cpu_ptr(s->cpu_slab); | |
2428 | #endif | |
2429 | ||
2430 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2431 | local_irq_restore(flags); | |
2432 | return p; | |
2433 | } | |
2434 | ||
894b8788 CL |
2435 | /* |
2436 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2437 | * have the fastpath folded into their functions. So no function call | |
2438 | * overhead for requests that can be satisfied on the fastpath. | |
2439 | * | |
2440 | * The fastpath works by first checking if the lockless freelist can be used. | |
2441 | * If not then __slab_alloc is called for slow processing. | |
2442 | * | |
2443 | * Otherwise we can simply pick the next object from the lockless free list. | |
2444 | */ | |
2b847c3c | 2445 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2446 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2447 | { |
03ec0ed5 | 2448 | void *object; |
dfb4f096 | 2449 | struct kmem_cache_cpu *c; |
57d437d2 | 2450 | struct page *page; |
8a5ec0ba | 2451 | unsigned long tid; |
1f84260c | 2452 | |
8135be5a VD |
2453 | s = slab_pre_alloc_hook(s, gfpflags); |
2454 | if (!s) | |
773ff60e | 2455 | return NULL; |
8a5ec0ba | 2456 | redo: |
8a5ec0ba CL |
2457 | /* |
2458 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2459 | * enabled. We may switch back and forth between cpus while | |
2460 | * reading from one cpu area. That does not matter as long | |
2461 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2462 | * |
9aabf810 JK |
2463 | * We should guarantee that tid and kmem_cache are retrieved on |
2464 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | |
2465 | * to check if it is matched or not. | |
8a5ec0ba | 2466 | */ |
9aabf810 JK |
2467 | do { |
2468 | tid = this_cpu_read(s->cpu_slab->tid); | |
2469 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2470 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2471 | unlikely(tid != READ_ONCE(c->tid))); | |
9aabf810 JK |
2472 | |
2473 | /* | |
2474 | * Irqless object alloc/free algorithm used here depends on sequence | |
2475 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2476 | * on c to guarantee that object and page associated with previous tid | |
2477 | * won't be used with current tid. If we fetch tid first, object and | |
2478 | * page could be one associated with next tid and our alloc/free | |
2479 | * request will be failed. In this case, we will retry. So, no problem. | |
2480 | */ | |
2481 | barrier(); | |
8a5ec0ba | 2482 | |
8a5ec0ba CL |
2483 | /* |
2484 | * The transaction ids are globally unique per cpu and per operation on | |
2485 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2486 | * occurs on the right processor and that there was no operation on the | |
2487 | * linked list in between. | |
2488 | */ | |
8a5ec0ba | 2489 | |
9dfc6e68 | 2490 | object = c->freelist; |
57d437d2 | 2491 | page = c->page; |
8eae1492 | 2492 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2493 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2494 | stat(s, ALLOC_SLOWPATH); |
2495 | } else { | |
0ad9500e ED |
2496 | void *next_object = get_freepointer_safe(s, object); |
2497 | ||
8a5ec0ba | 2498 | /* |
25985edc | 2499 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2500 | * operation and if we are on the right processor. |
2501 | * | |
d0e0ac97 CG |
2502 | * The cmpxchg does the following atomically (without lock |
2503 | * semantics!) | |
8a5ec0ba CL |
2504 | * 1. Relocate first pointer to the current per cpu area. |
2505 | * 2. Verify that tid and freelist have not been changed | |
2506 | * 3. If they were not changed replace tid and freelist | |
2507 | * | |
d0e0ac97 CG |
2508 | * Since this is without lock semantics the protection is only |
2509 | * against code executing on this cpu *not* from access by | |
2510 | * other cpus. | |
8a5ec0ba | 2511 | */ |
933393f5 | 2512 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2513 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2514 | object, tid, | |
0ad9500e | 2515 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2516 | |
2517 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2518 | goto redo; | |
2519 | } | |
0ad9500e | 2520 | prefetch_freepointer(s, next_object); |
84e554e6 | 2521 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2522 | } |
8a5ec0ba | 2523 | |
74e2134f | 2524 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2525 | memset(object, 0, s->object_size); |
d07dbea4 | 2526 | |
03ec0ed5 | 2527 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2528 | |
894b8788 | 2529 | return object; |
81819f0f CL |
2530 | } |
2531 | ||
2b847c3c EG |
2532 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2533 | gfp_t gfpflags, unsigned long addr) | |
2534 | { | |
2535 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2536 | } | |
2537 | ||
81819f0f CL |
2538 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2539 | { | |
2b847c3c | 2540 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2541 | |
d0e0ac97 CG |
2542 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2543 | s->size, gfpflags); | |
5b882be4 EGM |
2544 | |
2545 | return ret; | |
81819f0f CL |
2546 | } |
2547 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2548 | ||
0f24f128 | 2549 | #ifdef CONFIG_TRACING |
4a92379b RK |
2550 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2551 | { | |
2b847c3c | 2552 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2553 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0316bec2 | 2554 | kasan_kmalloc(s, ret, size); |
4a92379b RK |
2555 | return ret; |
2556 | } | |
2557 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2558 | #endif |
2559 | ||
81819f0f CL |
2560 | #ifdef CONFIG_NUMA |
2561 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2562 | { | |
2b847c3c | 2563 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2564 | |
ca2b84cb | 2565 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2566 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2567 | |
2568 | return ret; | |
81819f0f CL |
2569 | } |
2570 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2571 | |
0f24f128 | 2572 | #ifdef CONFIG_TRACING |
4a92379b | 2573 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2574 | gfp_t gfpflags, |
4a92379b | 2575 | int node, size_t size) |
5b882be4 | 2576 | { |
2b847c3c | 2577 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2578 | |
2579 | trace_kmalloc_node(_RET_IP_, ret, | |
2580 | size, s->size, gfpflags, node); | |
0316bec2 AR |
2581 | |
2582 | kasan_kmalloc(s, ret, size); | |
4a92379b | 2583 | return ret; |
5b882be4 | 2584 | } |
4a92379b | 2585 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2586 | #endif |
5d1f57e4 | 2587 | #endif |
5b882be4 | 2588 | |
81819f0f | 2589 | /* |
94e4d712 | 2590 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2591 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2592 | * |
894b8788 CL |
2593 | * So we still attempt to reduce cache line usage. Just take the slab |
2594 | * lock and free the item. If there is no additional partial page | |
2595 | * handling required then we can return immediately. | |
81819f0f | 2596 | */ |
894b8788 | 2597 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2598 | void *head, void *tail, int cnt, |
2599 | unsigned long addr) | |
2600 | ||
81819f0f CL |
2601 | { |
2602 | void *prior; | |
2cfb7455 | 2603 | int was_frozen; |
2cfb7455 CL |
2604 | struct page new; |
2605 | unsigned long counters; | |
2606 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2607 | unsigned long uninitialized_var(flags); |
81819f0f | 2608 | |
8a5ec0ba | 2609 | stat(s, FREE_SLOWPATH); |
81819f0f | 2610 | |
19c7ff9e | 2611 | if (kmem_cache_debug(s) && |
282acb43 | 2612 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2613 | return; |
6446faa2 | 2614 | |
2cfb7455 | 2615 | do { |
837d678d JK |
2616 | if (unlikely(n)) { |
2617 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2618 | n = NULL; | |
2619 | } | |
2cfb7455 CL |
2620 | prior = page->freelist; |
2621 | counters = page->counters; | |
81084651 | 2622 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2623 | new.counters = counters; |
2624 | was_frozen = new.frozen; | |
81084651 | 2625 | new.inuse -= cnt; |
837d678d | 2626 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2627 | |
c65c1877 | 2628 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2629 | |
2630 | /* | |
d0e0ac97 CG |
2631 | * Slab was on no list before and will be |
2632 | * partially empty | |
2633 | * We can defer the list move and instead | |
2634 | * freeze it. | |
49e22585 CL |
2635 | */ |
2636 | new.frozen = 1; | |
2637 | ||
c65c1877 | 2638 | } else { /* Needs to be taken off a list */ |
49e22585 | 2639 | |
b455def2 | 2640 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2641 | /* |
2642 | * Speculatively acquire the list_lock. | |
2643 | * If the cmpxchg does not succeed then we may | |
2644 | * drop the list_lock without any processing. | |
2645 | * | |
2646 | * Otherwise the list_lock will synchronize with | |
2647 | * other processors updating the list of slabs. | |
2648 | */ | |
2649 | spin_lock_irqsave(&n->list_lock, flags); | |
2650 | ||
2651 | } | |
2cfb7455 | 2652 | } |
81819f0f | 2653 | |
2cfb7455 CL |
2654 | } while (!cmpxchg_double_slab(s, page, |
2655 | prior, counters, | |
81084651 | 2656 | head, new.counters, |
2cfb7455 | 2657 | "__slab_free")); |
81819f0f | 2658 | |
2cfb7455 | 2659 | if (likely(!n)) { |
49e22585 CL |
2660 | |
2661 | /* | |
2662 | * If we just froze the page then put it onto the | |
2663 | * per cpu partial list. | |
2664 | */ | |
8028dcea | 2665 | if (new.frozen && !was_frozen) { |
49e22585 | 2666 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2667 | stat(s, CPU_PARTIAL_FREE); |
2668 | } | |
49e22585 | 2669 | /* |
2cfb7455 CL |
2670 | * The list lock was not taken therefore no list |
2671 | * activity can be necessary. | |
2672 | */ | |
b455def2 L |
2673 | if (was_frozen) |
2674 | stat(s, FREE_FROZEN); | |
2675 | return; | |
2676 | } | |
81819f0f | 2677 | |
8a5b20ae | 2678 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2679 | goto slab_empty; |
2680 | ||
81819f0f | 2681 | /* |
837d678d JK |
2682 | * Objects left in the slab. If it was not on the partial list before |
2683 | * then add it. | |
81819f0f | 2684 | */ |
345c905d JK |
2685 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
2686 | if (kmem_cache_debug(s)) | |
c65c1877 | 2687 | remove_full(s, n, page); |
837d678d JK |
2688 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2689 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2690 | } |
80f08c19 | 2691 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2692 | return; |
2693 | ||
2694 | slab_empty: | |
a973e9dd | 2695 | if (prior) { |
81819f0f | 2696 | /* |
6fbabb20 | 2697 | * Slab on the partial list. |
81819f0f | 2698 | */ |
5cc6eee8 | 2699 | remove_partial(n, page); |
84e554e6 | 2700 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2701 | } else { |
6fbabb20 | 2702 | /* Slab must be on the full list */ |
c65c1877 PZ |
2703 | remove_full(s, n, page); |
2704 | } | |
2cfb7455 | 2705 | |
80f08c19 | 2706 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2707 | stat(s, FREE_SLAB); |
81819f0f | 2708 | discard_slab(s, page); |
81819f0f CL |
2709 | } |
2710 | ||
894b8788 CL |
2711 | /* |
2712 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2713 | * can perform fastpath freeing without additional function calls. | |
2714 | * | |
2715 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2716 | * of this processor. This typically the case if we have just allocated | |
2717 | * the item before. | |
2718 | * | |
2719 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2720 | * with all sorts of special processing. | |
81084651 JDB |
2721 | * |
2722 | * Bulk free of a freelist with several objects (all pointing to the | |
2723 | * same page) possible by specifying head and tail ptr, plus objects | |
2724 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2725 | */ |
81084651 JDB |
2726 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
2727 | void *head, void *tail, int cnt, | |
2728 | unsigned long addr) | |
894b8788 | 2729 | { |
81084651 | 2730 | void *tail_obj = tail ? : head; |
dfb4f096 | 2731 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2732 | unsigned long tid; |
1f84260c | 2733 | |
81084651 | 2734 | slab_free_freelist_hook(s, head, tail); |
c016b0bd | 2735 | |
8a5ec0ba CL |
2736 | redo: |
2737 | /* | |
2738 | * Determine the currently cpus per cpu slab. | |
2739 | * The cpu may change afterward. However that does not matter since | |
2740 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2741 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2742 | */ |
9aabf810 JK |
2743 | do { |
2744 | tid = this_cpu_read(s->cpu_slab->tid); | |
2745 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2746 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2747 | unlikely(tid != READ_ONCE(c->tid))); | |
c016b0bd | 2748 | |
9aabf810 JK |
2749 | /* Same with comment on barrier() in slab_alloc_node() */ |
2750 | barrier(); | |
c016b0bd | 2751 | |
442b06bc | 2752 | if (likely(page == c->page)) { |
81084651 | 2753 | set_freepointer(s, tail_obj, c->freelist); |
8a5ec0ba | 2754 | |
933393f5 | 2755 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2756 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2757 | c->freelist, tid, | |
81084651 | 2758 | head, next_tid(tid)))) { |
8a5ec0ba CL |
2759 | |
2760 | note_cmpxchg_failure("slab_free", s, tid); | |
2761 | goto redo; | |
2762 | } | |
84e554e6 | 2763 | stat(s, FREE_FASTPATH); |
894b8788 | 2764 | } else |
81084651 | 2765 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 2766 | |
894b8788 CL |
2767 | } |
2768 | ||
81819f0f CL |
2769 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2770 | { | |
b9ce5ef4 GC |
2771 | s = cache_from_obj(s, x); |
2772 | if (!s) | |
79576102 | 2773 | return; |
81084651 | 2774 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 2775 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
2776 | } |
2777 | EXPORT_SYMBOL(kmem_cache_free); | |
2778 | ||
d0ecd894 | 2779 | struct detached_freelist { |
fbd02630 | 2780 | struct page *page; |
d0ecd894 JDB |
2781 | void *tail; |
2782 | void *freelist; | |
2783 | int cnt; | |
376bf125 | 2784 | struct kmem_cache *s; |
d0ecd894 | 2785 | }; |
fbd02630 | 2786 | |
d0ecd894 JDB |
2787 | /* |
2788 | * This function progressively scans the array with free objects (with | |
2789 | * a limited look ahead) and extract objects belonging to the same | |
2790 | * page. It builds a detached freelist directly within the given | |
2791 | * page/objects. This can happen without any need for | |
2792 | * synchronization, because the objects are owned by running process. | |
2793 | * The freelist is build up as a single linked list in the objects. | |
2794 | * The idea is, that this detached freelist can then be bulk | |
2795 | * transferred to the real freelist(s), but only requiring a single | |
2796 | * synchronization primitive. Look ahead in the array is limited due | |
2797 | * to performance reasons. | |
2798 | */ | |
376bf125 JDB |
2799 | static inline |
2800 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
2801 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
2802 | { |
2803 | size_t first_skipped_index = 0; | |
2804 | int lookahead = 3; | |
2805 | void *object; | |
ca257195 | 2806 | struct page *page; |
fbd02630 | 2807 | |
d0ecd894 JDB |
2808 | /* Always re-init detached_freelist */ |
2809 | df->page = NULL; | |
fbd02630 | 2810 | |
d0ecd894 JDB |
2811 | do { |
2812 | object = p[--size]; | |
ca257195 | 2813 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 2814 | } while (!object && size); |
3eed034d | 2815 | |
d0ecd894 JDB |
2816 | if (!object) |
2817 | return 0; | |
fbd02630 | 2818 | |
ca257195 JDB |
2819 | page = virt_to_head_page(object); |
2820 | if (!s) { | |
2821 | /* Handle kalloc'ed objects */ | |
2822 | if (unlikely(!PageSlab(page))) { | |
2823 | BUG_ON(!PageCompound(page)); | |
2824 | kfree_hook(object); | |
2825 | __free_kmem_pages(page, compound_order(page)); | |
2826 | p[size] = NULL; /* mark object processed */ | |
2827 | return size; | |
2828 | } | |
2829 | /* Derive kmem_cache from object */ | |
2830 | df->s = page->slab_cache; | |
2831 | } else { | |
2832 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
2833 | } | |
376bf125 | 2834 | |
d0ecd894 | 2835 | /* Start new detached freelist */ |
ca257195 | 2836 | df->page = page; |
376bf125 | 2837 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
2838 | df->tail = object; |
2839 | df->freelist = object; | |
2840 | p[size] = NULL; /* mark object processed */ | |
2841 | df->cnt = 1; | |
2842 | ||
2843 | while (size) { | |
2844 | object = p[--size]; | |
2845 | if (!object) | |
2846 | continue; /* Skip processed objects */ | |
2847 | ||
2848 | /* df->page is always set at this point */ | |
2849 | if (df->page == virt_to_head_page(object)) { | |
2850 | /* Opportunity build freelist */ | |
376bf125 | 2851 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
2852 | df->freelist = object; |
2853 | df->cnt++; | |
2854 | p[size] = NULL; /* mark object processed */ | |
2855 | ||
2856 | continue; | |
fbd02630 | 2857 | } |
d0ecd894 JDB |
2858 | |
2859 | /* Limit look ahead search */ | |
2860 | if (!--lookahead) | |
2861 | break; | |
2862 | ||
2863 | if (!first_skipped_index) | |
2864 | first_skipped_index = size + 1; | |
fbd02630 | 2865 | } |
d0ecd894 JDB |
2866 | |
2867 | return first_skipped_index; | |
2868 | } | |
2869 | ||
d0ecd894 | 2870 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 2871 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
2872 | { |
2873 | if (WARN_ON(!size)) | |
2874 | return; | |
2875 | ||
2876 | do { | |
2877 | struct detached_freelist df; | |
2878 | ||
2879 | size = build_detached_freelist(s, size, p, &df); | |
2880 | if (unlikely(!df.page)) | |
2881 | continue; | |
2882 | ||
376bf125 | 2883 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 2884 | } while (likely(size)); |
484748f0 CL |
2885 | } |
2886 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
2887 | ||
994eb764 | 2888 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
2889 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2890 | void **p) | |
484748f0 | 2891 | { |
994eb764 JDB |
2892 | struct kmem_cache_cpu *c; |
2893 | int i; | |
2894 | ||
03ec0ed5 JDB |
2895 | /* memcg and kmem_cache debug support */ |
2896 | s = slab_pre_alloc_hook(s, flags); | |
2897 | if (unlikely(!s)) | |
2898 | return false; | |
994eb764 JDB |
2899 | /* |
2900 | * Drain objects in the per cpu slab, while disabling local | |
2901 | * IRQs, which protects against PREEMPT and interrupts | |
2902 | * handlers invoking normal fastpath. | |
2903 | */ | |
2904 | local_irq_disable(); | |
2905 | c = this_cpu_ptr(s->cpu_slab); | |
2906 | ||
2907 | for (i = 0; i < size; i++) { | |
2908 | void *object = c->freelist; | |
2909 | ||
ebe909e0 | 2910 | if (unlikely(!object)) { |
ebe909e0 JDB |
2911 | /* |
2912 | * Invoking slow path likely have side-effect | |
2913 | * of re-populating per CPU c->freelist | |
2914 | */ | |
87098373 | 2915 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 2916 | _RET_IP_, c); |
87098373 CL |
2917 | if (unlikely(!p[i])) |
2918 | goto error; | |
2919 | ||
ebe909e0 JDB |
2920 | c = this_cpu_ptr(s->cpu_slab); |
2921 | continue; /* goto for-loop */ | |
2922 | } | |
994eb764 JDB |
2923 | c->freelist = get_freepointer(s, object); |
2924 | p[i] = object; | |
2925 | } | |
2926 | c->tid = next_tid(c->tid); | |
2927 | local_irq_enable(); | |
2928 | ||
2929 | /* Clear memory outside IRQ disabled fastpath loop */ | |
2930 | if (unlikely(flags & __GFP_ZERO)) { | |
2931 | int j; | |
2932 | ||
2933 | for (j = 0; j < i; j++) | |
2934 | memset(p[j], 0, s->object_size); | |
2935 | } | |
2936 | ||
03ec0ed5 JDB |
2937 | /* memcg and kmem_cache debug support */ |
2938 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 2939 | return i; |
87098373 | 2940 | error: |
87098373 | 2941 | local_irq_enable(); |
03ec0ed5 JDB |
2942 | slab_post_alloc_hook(s, flags, i, p); |
2943 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 2944 | return 0; |
484748f0 CL |
2945 | } |
2946 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
2947 | ||
2948 | ||
81819f0f | 2949 | /* |
672bba3a CL |
2950 | * Object placement in a slab is made very easy because we always start at |
2951 | * offset 0. If we tune the size of the object to the alignment then we can | |
2952 | * get the required alignment by putting one properly sized object after | |
2953 | * another. | |
81819f0f CL |
2954 | * |
2955 | * Notice that the allocation order determines the sizes of the per cpu | |
2956 | * caches. Each processor has always one slab available for allocations. | |
2957 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 2958 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 2959 | * locking overhead. |
81819f0f CL |
2960 | */ |
2961 | ||
2962 | /* | |
2963 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
2964 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
2965 | * and increases the number of allocations possible without having to | |
2966 | * take the list_lock. | |
2967 | */ | |
2968 | static int slub_min_order; | |
114e9e89 | 2969 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 2970 | static int slub_min_objects; |
81819f0f | 2971 | |
81819f0f CL |
2972 | /* |
2973 | * Calculate the order of allocation given an slab object size. | |
2974 | * | |
672bba3a CL |
2975 | * The order of allocation has significant impact on performance and other |
2976 | * system components. Generally order 0 allocations should be preferred since | |
2977 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
2978 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 2979 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
2980 | * would be wasted. |
2981 | * | |
2982 | * In order to reach satisfactory performance we must ensure that a minimum | |
2983 | * number of objects is in one slab. Otherwise we may generate too much | |
2984 | * activity on the partial lists which requires taking the list_lock. This is | |
2985 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 2986 | * |
672bba3a CL |
2987 | * slub_max_order specifies the order where we begin to stop considering the |
2988 | * number of objects in a slab as critical. If we reach slub_max_order then | |
2989 | * we try to keep the page order as low as possible. So we accept more waste | |
2990 | * of space in favor of a small page order. | |
81819f0f | 2991 | * |
672bba3a CL |
2992 | * Higher order allocations also allow the placement of more objects in a |
2993 | * slab and thereby reduce object handling overhead. If the user has | |
2994 | * requested a higher mininum order then we start with that one instead of | |
2995 | * the smallest order which will fit the object. | |
81819f0f | 2996 | */ |
5e6d444e | 2997 | static inline int slab_order(int size, int min_objects, |
ab9a0f19 | 2998 | int max_order, int fract_leftover, int reserved) |
81819f0f CL |
2999 | { |
3000 | int order; | |
3001 | int rem; | |
6300ea75 | 3002 | int min_order = slub_min_order; |
81819f0f | 3003 | |
ab9a0f19 | 3004 | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3005 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3006 | |
9f835703 | 3007 | for (order = max(min_order, get_order(min_objects * size + reserved)); |
5e6d444e | 3008 | order <= max_order; order++) { |
81819f0f | 3009 | |
5e6d444e | 3010 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 3011 | |
ab9a0f19 | 3012 | rem = (slab_size - reserved) % size; |
81819f0f | 3013 | |
5e6d444e | 3014 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3015 | break; |
81819f0f | 3016 | } |
672bba3a | 3017 | |
81819f0f CL |
3018 | return order; |
3019 | } | |
3020 | ||
ab9a0f19 | 3021 | static inline int calculate_order(int size, int reserved) |
5e6d444e CL |
3022 | { |
3023 | int order; | |
3024 | int min_objects; | |
3025 | int fraction; | |
e8120ff1 | 3026 | int max_objects; |
5e6d444e CL |
3027 | |
3028 | /* | |
3029 | * Attempt to find best configuration for a slab. This | |
3030 | * works by first attempting to generate a layout with | |
3031 | * the best configuration and backing off gradually. | |
3032 | * | |
422ff4d7 | 3033 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3034 | * we reduce the minimum objects required in a slab. |
3035 | */ | |
3036 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3037 | if (!min_objects) |
3038 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
ab9a0f19 | 3039 | max_objects = order_objects(slub_max_order, size, reserved); |
e8120ff1 ZY |
3040 | min_objects = min(min_objects, max_objects); |
3041 | ||
5e6d444e | 3042 | while (min_objects > 1) { |
c124f5b5 | 3043 | fraction = 16; |
5e6d444e CL |
3044 | while (fraction >= 4) { |
3045 | order = slab_order(size, min_objects, | |
ab9a0f19 | 3046 | slub_max_order, fraction, reserved); |
5e6d444e CL |
3047 | if (order <= slub_max_order) |
3048 | return order; | |
3049 | fraction /= 2; | |
3050 | } | |
5086c389 | 3051 | min_objects--; |
5e6d444e CL |
3052 | } |
3053 | ||
3054 | /* | |
3055 | * We were unable to place multiple objects in a slab. Now | |
3056 | * lets see if we can place a single object there. | |
3057 | */ | |
ab9a0f19 | 3058 | order = slab_order(size, 1, slub_max_order, 1, reserved); |
5e6d444e CL |
3059 | if (order <= slub_max_order) |
3060 | return order; | |
3061 | ||
3062 | /* | |
3063 | * Doh this slab cannot be placed using slub_max_order. | |
3064 | */ | |
ab9a0f19 | 3065 | order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
818cf590 | 3066 | if (order < MAX_ORDER) |
5e6d444e CL |
3067 | return order; |
3068 | return -ENOSYS; | |
3069 | } | |
3070 | ||
5595cffc | 3071 | static void |
4053497d | 3072 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3073 | { |
3074 | n->nr_partial = 0; | |
81819f0f CL |
3075 | spin_lock_init(&n->list_lock); |
3076 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3077 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3078 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3079 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3080 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3081 | #endif |
81819f0f CL |
3082 | } |
3083 | ||
55136592 | 3084 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3085 | { |
6c182dc0 | 3086 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3087 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3088 | |
8a5ec0ba | 3089 | /* |
d4d84fef CM |
3090 | * Must align to double word boundary for the double cmpxchg |
3091 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3092 | */ |
d4d84fef CM |
3093 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3094 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3095 | |
3096 | if (!s->cpu_slab) | |
3097 | return 0; | |
3098 | ||
3099 | init_kmem_cache_cpus(s); | |
4c93c355 | 3100 | |
8a5ec0ba | 3101 | return 1; |
4c93c355 | 3102 | } |
4c93c355 | 3103 | |
51df1142 CL |
3104 | static struct kmem_cache *kmem_cache_node; |
3105 | ||
81819f0f CL |
3106 | /* |
3107 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3108 | * slab on the node for this slabcache. There are no concurrent accesses | |
3109 | * possible. | |
3110 | * | |
721ae22a ZYW |
3111 | * Note that this function only works on the kmem_cache_node |
3112 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3113 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3114 | */ |
55136592 | 3115 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3116 | { |
3117 | struct page *page; | |
3118 | struct kmem_cache_node *n; | |
3119 | ||
51df1142 | 3120 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3121 | |
51df1142 | 3122 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3123 | |
3124 | BUG_ON(!page); | |
a2f92ee7 | 3125 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3126 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3127 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3128 | } |
3129 | ||
81819f0f CL |
3130 | n = page->freelist; |
3131 | BUG_ON(!n); | |
51df1142 | 3132 | page->freelist = get_freepointer(kmem_cache_node, n); |
e6e82ea1 | 3133 | page->inuse = 1; |
8cb0a506 | 3134 | page->frozen = 0; |
51df1142 | 3135 | kmem_cache_node->node[node] = n; |
8ab1372f | 3136 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3137 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3138 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3139 | #endif |
0316bec2 | 3140 | kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); |
4053497d | 3141 | init_kmem_cache_node(n); |
51df1142 | 3142 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3143 | |
67b6c900 | 3144 | /* |
1e4dd946 SR |
3145 | * No locks need to be taken here as it has just been |
3146 | * initialized and there is no concurrent access. | |
67b6c900 | 3147 | */ |
1e4dd946 | 3148 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3149 | } |
3150 | ||
3151 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3152 | { | |
3153 | int node; | |
fa45dc25 | 3154 | struct kmem_cache_node *n; |
81819f0f | 3155 | |
fa45dc25 CL |
3156 | for_each_kmem_cache_node(s, node, n) { |
3157 | kmem_cache_free(kmem_cache_node, n); | |
81819f0f CL |
3158 | s->node[node] = NULL; |
3159 | } | |
3160 | } | |
3161 | ||
52b4b950 DS |
3162 | void __kmem_cache_release(struct kmem_cache *s) |
3163 | { | |
3164 | free_percpu(s->cpu_slab); | |
3165 | free_kmem_cache_nodes(s); | |
3166 | } | |
3167 | ||
55136592 | 3168 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3169 | { |
3170 | int node; | |
81819f0f | 3171 | |
f64dc58c | 3172 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3173 | struct kmem_cache_node *n; |
3174 | ||
73367bd8 | 3175 | if (slab_state == DOWN) { |
55136592 | 3176 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3177 | continue; |
3178 | } | |
51df1142 | 3179 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3180 | GFP_KERNEL, node); |
81819f0f | 3181 | |
73367bd8 AD |
3182 | if (!n) { |
3183 | free_kmem_cache_nodes(s); | |
3184 | return 0; | |
81819f0f | 3185 | } |
73367bd8 | 3186 | |
81819f0f | 3187 | s->node[node] = n; |
4053497d | 3188 | init_kmem_cache_node(n); |
81819f0f CL |
3189 | } |
3190 | return 1; | |
3191 | } | |
81819f0f | 3192 | |
c0bdb232 | 3193 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3194 | { |
3195 | if (min < MIN_PARTIAL) | |
3196 | min = MIN_PARTIAL; | |
3197 | else if (min > MAX_PARTIAL) | |
3198 | min = MAX_PARTIAL; | |
3199 | s->min_partial = min; | |
3200 | } | |
3201 | ||
81819f0f CL |
3202 | /* |
3203 | * calculate_sizes() determines the order and the distribution of data within | |
3204 | * a slab object. | |
3205 | */ | |
06b285dc | 3206 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
3207 | { |
3208 | unsigned long flags = s->flags; | |
3b0efdfa | 3209 | unsigned long size = s->object_size; |
834f3d11 | 3210 | int order; |
81819f0f | 3211 | |
d8b42bf5 CL |
3212 | /* |
3213 | * Round up object size to the next word boundary. We can only | |
3214 | * place the free pointer at word boundaries and this determines | |
3215 | * the possible location of the free pointer. | |
3216 | */ | |
3217 | size = ALIGN(size, sizeof(void *)); | |
3218 | ||
3219 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3220 | /* |
3221 | * Determine if we can poison the object itself. If the user of | |
3222 | * the slab may touch the object after free or before allocation | |
3223 | * then we should never poison the object itself. | |
3224 | */ | |
3225 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 3226 | !s->ctor) |
81819f0f CL |
3227 | s->flags |= __OBJECT_POISON; |
3228 | else | |
3229 | s->flags &= ~__OBJECT_POISON; | |
3230 | ||
81819f0f CL |
3231 | |
3232 | /* | |
672bba3a | 3233 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3234 | * end of the object and the free pointer. If not then add an |
672bba3a | 3235 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3236 | */ |
3b0efdfa | 3237 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3238 | size += sizeof(void *); |
41ecc55b | 3239 | #endif |
81819f0f CL |
3240 | |
3241 | /* | |
672bba3a CL |
3242 | * With that we have determined the number of bytes in actual use |
3243 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3244 | */ |
3245 | s->inuse = size; | |
3246 | ||
3247 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 3248 | s->ctor)) { |
81819f0f CL |
3249 | /* |
3250 | * Relocate free pointer after the object if it is not | |
3251 | * permitted to overwrite the first word of the object on | |
3252 | * kmem_cache_free. | |
3253 | * | |
3254 | * This is the case if we do RCU, have a constructor or | |
3255 | * destructor or are poisoning the objects. | |
3256 | */ | |
3257 | s->offset = size; | |
3258 | size += sizeof(void *); | |
3259 | } | |
3260 | ||
c12b3c62 | 3261 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3262 | if (flags & SLAB_STORE_USER) |
3263 | /* | |
3264 | * Need to store information about allocs and frees after | |
3265 | * the object. | |
3266 | */ | |
3267 | size += 2 * sizeof(struct track); | |
3268 | ||
be7b3fbc | 3269 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
3270 | /* |
3271 | * Add some empty padding so that we can catch | |
3272 | * overwrites from earlier objects rather than let | |
3273 | * tracking information or the free pointer be | |
0211a9c8 | 3274 | * corrupted if a user writes before the start |
81819f0f CL |
3275 | * of the object. |
3276 | */ | |
3277 | size += sizeof(void *); | |
41ecc55b | 3278 | #endif |
672bba3a | 3279 | |
81819f0f CL |
3280 | /* |
3281 | * SLUB stores one object immediately after another beginning from | |
3282 | * offset 0. In order to align the objects we have to simply size | |
3283 | * each object to conform to the alignment. | |
3284 | */ | |
45906855 | 3285 | size = ALIGN(size, s->align); |
81819f0f | 3286 | s->size = size; |
06b285dc CL |
3287 | if (forced_order >= 0) |
3288 | order = forced_order; | |
3289 | else | |
ab9a0f19 | 3290 | order = calculate_order(size, s->reserved); |
81819f0f | 3291 | |
834f3d11 | 3292 | if (order < 0) |
81819f0f CL |
3293 | return 0; |
3294 | ||
b7a49f0d | 3295 | s->allocflags = 0; |
834f3d11 | 3296 | if (order) |
b7a49f0d CL |
3297 | s->allocflags |= __GFP_COMP; |
3298 | ||
3299 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3300 | s->allocflags |= GFP_DMA; |
b7a49f0d CL |
3301 | |
3302 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3303 | s->allocflags |= __GFP_RECLAIMABLE; | |
3304 | ||
81819f0f CL |
3305 | /* |
3306 | * Determine the number of objects per slab | |
3307 | */ | |
ab9a0f19 LJ |
3308 | s->oo = oo_make(order, size, s->reserved); |
3309 | s->min = oo_make(get_order(size), size, s->reserved); | |
205ab99d CL |
3310 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3311 | s->max = s->oo; | |
81819f0f | 3312 | |
834f3d11 | 3313 | return !!oo_objects(s->oo); |
81819f0f CL |
3314 | } |
3315 | ||
8a13a4cc | 3316 | static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) |
81819f0f | 3317 | { |
8a13a4cc | 3318 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
ab9a0f19 | 3319 | s->reserved = 0; |
81819f0f | 3320 | |
da9a638c LJ |
3321 | if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) |
3322 | s->reserved = sizeof(struct rcu_head); | |
81819f0f | 3323 | |
06b285dc | 3324 | if (!calculate_sizes(s, -1)) |
81819f0f | 3325 | goto error; |
3de47213 DR |
3326 | if (disable_higher_order_debug) { |
3327 | /* | |
3328 | * Disable debugging flags that store metadata if the min slab | |
3329 | * order increased. | |
3330 | */ | |
3b0efdfa | 3331 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3332 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3333 | s->offset = 0; | |
3334 | if (!calculate_sizes(s, -1)) | |
3335 | goto error; | |
3336 | } | |
3337 | } | |
81819f0f | 3338 | |
2565409f HC |
3339 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3340 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 CL |
3341 | if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) |
3342 | /* Enable fast mode */ | |
3343 | s->flags |= __CMPXCHG_DOUBLE; | |
3344 | #endif | |
3345 | ||
3b89d7d8 DR |
3346 | /* |
3347 | * The larger the object size is, the more pages we want on the partial | |
3348 | * list to avoid pounding the page allocator excessively. | |
3349 | */ | |
49e22585 CL |
3350 | set_min_partial(s, ilog2(s->size) / 2); |
3351 | ||
3352 | /* | |
3353 | * cpu_partial determined the maximum number of objects kept in the | |
3354 | * per cpu partial lists of a processor. | |
3355 | * | |
3356 | * Per cpu partial lists mainly contain slabs that just have one | |
3357 | * object freed. If they are used for allocation then they can be | |
3358 | * filled up again with minimal effort. The slab will never hit the | |
3359 | * per node partial lists and therefore no locking will be required. | |
3360 | * | |
3361 | * This setting also determines | |
3362 | * | |
3363 | * A) The number of objects from per cpu partial slabs dumped to the | |
3364 | * per node list when we reach the limit. | |
9f264904 | 3365 | * B) The number of objects in cpu partial slabs to extract from the |
d0e0ac97 CG |
3366 | * per node list when we run out of per cpu objects. We only fetch |
3367 | * 50% to keep some capacity around for frees. | |
49e22585 | 3368 | */ |
345c905d | 3369 | if (!kmem_cache_has_cpu_partial(s)) |
8f1e33da CL |
3370 | s->cpu_partial = 0; |
3371 | else if (s->size >= PAGE_SIZE) | |
49e22585 CL |
3372 | s->cpu_partial = 2; |
3373 | else if (s->size >= 1024) | |
3374 | s->cpu_partial = 6; | |
3375 | else if (s->size >= 256) | |
3376 | s->cpu_partial = 13; | |
3377 | else | |
3378 | s->cpu_partial = 30; | |
3379 | ||
81819f0f | 3380 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3381 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3382 | #endif |
55136592 | 3383 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3384 | goto error; |
81819f0f | 3385 | |
55136592 | 3386 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3387 | return 0; |
ff12059e | 3388 | |
4c93c355 | 3389 | free_kmem_cache_nodes(s); |
81819f0f CL |
3390 | error: |
3391 | if (flags & SLAB_PANIC) | |
3392 | panic("Cannot create slab %s size=%lu realsize=%u " | |
3393 | "order=%u offset=%u flags=%lx\n", | |
d0e0ac97 CG |
3394 | s->name, (unsigned long)s->size, s->size, |
3395 | oo_order(s->oo), s->offset, flags); | |
278b1bb1 | 3396 | return -EINVAL; |
81819f0f | 3397 | } |
81819f0f | 3398 | |
33b12c38 CL |
3399 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3400 | const char *text) | |
3401 | { | |
3402 | #ifdef CONFIG_SLUB_DEBUG | |
3403 | void *addr = page_address(page); | |
3404 | void *p; | |
a5dd5c11 NK |
3405 | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
3406 | sizeof(long), GFP_ATOMIC); | |
bbd7d57b ED |
3407 | if (!map) |
3408 | return; | |
945cf2b6 | 3409 | slab_err(s, page, text, s->name); |
33b12c38 | 3410 | slab_lock(page); |
33b12c38 | 3411 | |
5f80b13a | 3412 | get_map(s, page, map); |
33b12c38 CL |
3413 | for_each_object(p, s, addr, page->objects) { |
3414 | ||
3415 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3416 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3417 | print_tracking(s, p); |
3418 | } | |
3419 | } | |
3420 | slab_unlock(page); | |
bbd7d57b | 3421 | kfree(map); |
33b12c38 CL |
3422 | #endif |
3423 | } | |
3424 | ||
81819f0f | 3425 | /* |
599870b1 | 3426 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3427 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3428 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3429 | */ |
599870b1 | 3430 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3431 | { |
81819f0f CL |
3432 | struct page *page, *h; |
3433 | ||
52b4b950 DS |
3434 | BUG_ON(irqs_disabled()); |
3435 | spin_lock_irq(&n->list_lock); | |
33b12c38 | 3436 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 3437 | if (!page->inuse) { |
52b4b950 | 3438 | remove_partial(n, page); |
81819f0f | 3439 | discard_slab(s, page); |
33b12c38 CL |
3440 | } else { |
3441 | list_slab_objects(s, page, | |
52b4b950 | 3442 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3443 | } |
33b12c38 | 3444 | } |
52b4b950 | 3445 | spin_unlock_irq(&n->list_lock); |
81819f0f CL |
3446 | } |
3447 | ||
3448 | /* | |
672bba3a | 3449 | * Release all resources used by a slab cache. |
81819f0f | 3450 | */ |
52b4b950 | 3451 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3452 | { |
3453 | int node; | |
fa45dc25 | 3454 | struct kmem_cache_node *n; |
81819f0f CL |
3455 | |
3456 | flush_all(s); | |
81819f0f | 3457 | /* Attempt to free all objects */ |
fa45dc25 | 3458 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3459 | free_partial(s, n); |
3460 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3461 | return 1; |
3462 | } | |
81819f0f CL |
3463 | return 0; |
3464 | } | |
3465 | ||
81819f0f CL |
3466 | /******************************************************************** |
3467 | * Kmalloc subsystem | |
3468 | *******************************************************************/ | |
3469 | ||
81819f0f CL |
3470 | static int __init setup_slub_min_order(char *str) |
3471 | { | |
06428780 | 3472 | get_option(&str, &slub_min_order); |
81819f0f CL |
3473 | |
3474 | return 1; | |
3475 | } | |
3476 | ||
3477 | __setup("slub_min_order=", setup_slub_min_order); | |
3478 | ||
3479 | static int __init setup_slub_max_order(char *str) | |
3480 | { | |
06428780 | 3481 | get_option(&str, &slub_max_order); |
818cf590 | 3482 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
81819f0f CL |
3483 | |
3484 | return 1; | |
3485 | } | |
3486 | ||
3487 | __setup("slub_max_order=", setup_slub_max_order); | |
3488 | ||
3489 | static int __init setup_slub_min_objects(char *str) | |
3490 | { | |
06428780 | 3491 | get_option(&str, &slub_min_objects); |
81819f0f CL |
3492 | |
3493 | return 1; | |
3494 | } | |
3495 | ||
3496 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3497 | ||
81819f0f CL |
3498 | void *__kmalloc(size_t size, gfp_t flags) |
3499 | { | |
aadb4bc4 | 3500 | struct kmem_cache *s; |
5b882be4 | 3501 | void *ret; |
81819f0f | 3502 | |
95a05b42 | 3503 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3504 | return kmalloc_large(size, flags); |
aadb4bc4 | 3505 | |
2c59dd65 | 3506 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3507 | |
3508 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3509 | return s; |
3510 | ||
2b847c3c | 3511 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3512 | |
ca2b84cb | 3513 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3514 | |
0316bec2 AR |
3515 | kasan_kmalloc(s, ret, size); |
3516 | ||
5b882be4 | 3517 | return ret; |
81819f0f CL |
3518 | } |
3519 | EXPORT_SYMBOL(__kmalloc); | |
3520 | ||
5d1f57e4 | 3521 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3522 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3523 | { | |
b1eeab67 | 3524 | struct page *page; |
e4f7c0b4 | 3525 | void *ptr = NULL; |
f619cfe1 | 3526 | |
52383431 VD |
3527 | flags |= __GFP_COMP | __GFP_NOTRACK; |
3528 | page = alloc_kmem_pages_node(node, flags, get_order(size)); | |
f619cfe1 | 3529 | if (page) |
e4f7c0b4 CM |
3530 | ptr = page_address(page); |
3531 | ||
d56791b3 | 3532 | kmalloc_large_node_hook(ptr, size, flags); |
e4f7c0b4 | 3533 | return ptr; |
f619cfe1 CL |
3534 | } |
3535 | ||
81819f0f CL |
3536 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3537 | { | |
aadb4bc4 | 3538 | struct kmem_cache *s; |
5b882be4 | 3539 | void *ret; |
81819f0f | 3540 | |
95a05b42 | 3541 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3542 | ret = kmalloc_large_node(size, flags, node); |
3543 | ||
ca2b84cb EGM |
3544 | trace_kmalloc_node(_RET_IP_, ret, |
3545 | size, PAGE_SIZE << get_order(size), | |
3546 | flags, node); | |
5b882be4 EGM |
3547 | |
3548 | return ret; | |
3549 | } | |
aadb4bc4 | 3550 | |
2c59dd65 | 3551 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3552 | |
3553 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3554 | return s; |
3555 | ||
2b847c3c | 3556 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3557 | |
ca2b84cb | 3558 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3559 | |
0316bec2 AR |
3560 | kasan_kmalloc(s, ret, size); |
3561 | ||
5b882be4 | 3562 | return ret; |
81819f0f CL |
3563 | } |
3564 | EXPORT_SYMBOL(__kmalloc_node); | |
3565 | #endif | |
3566 | ||
0316bec2 | 3567 | static size_t __ksize(const void *object) |
81819f0f | 3568 | { |
272c1d21 | 3569 | struct page *page; |
81819f0f | 3570 | |
ef8b4520 | 3571 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3572 | return 0; |
3573 | ||
294a80a8 | 3574 | page = virt_to_head_page(object); |
294a80a8 | 3575 | |
76994412 PE |
3576 | if (unlikely(!PageSlab(page))) { |
3577 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3578 | return PAGE_SIZE << compound_order(page); |
76994412 | 3579 | } |
81819f0f | 3580 | |
1b4f59e3 | 3581 | return slab_ksize(page->slab_cache); |
81819f0f | 3582 | } |
0316bec2 AR |
3583 | |
3584 | size_t ksize(const void *object) | |
3585 | { | |
3586 | size_t size = __ksize(object); | |
3587 | /* We assume that ksize callers could use whole allocated area, | |
3588 | so we need unpoison this area. */ | |
3589 | kasan_krealloc(object, size); | |
3590 | return size; | |
3591 | } | |
b1aabecd | 3592 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
3593 | |
3594 | void kfree(const void *x) | |
3595 | { | |
81819f0f | 3596 | struct page *page; |
5bb983b0 | 3597 | void *object = (void *)x; |
81819f0f | 3598 | |
2121db74 PE |
3599 | trace_kfree(_RET_IP_, x); |
3600 | ||
2408c550 | 3601 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3602 | return; |
3603 | ||
b49af68f | 3604 | page = virt_to_head_page(x); |
aadb4bc4 | 3605 | if (unlikely(!PageSlab(page))) { |
0937502a | 3606 | BUG_ON(!PageCompound(page)); |
d56791b3 | 3607 | kfree_hook(x); |
52383431 | 3608 | __free_kmem_pages(page, compound_order(page)); |
aadb4bc4 CL |
3609 | return; |
3610 | } | |
81084651 | 3611 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3612 | } |
3613 | EXPORT_SYMBOL(kfree); | |
3614 | ||
832f37f5 VD |
3615 | #define SHRINK_PROMOTE_MAX 32 |
3616 | ||
2086d26a | 3617 | /* |
832f37f5 VD |
3618 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
3619 | * up most to the head of the partial lists. New allocations will then | |
3620 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
3621 | * |
3622 | * The slabs with the least items are placed last. This results in them | |
3623 | * being allocated from last increasing the chance that the last objects | |
3624 | * are freed in them. | |
2086d26a | 3625 | */ |
d6e0b7fa | 3626 | int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) |
2086d26a CL |
3627 | { |
3628 | int node; | |
3629 | int i; | |
3630 | struct kmem_cache_node *n; | |
3631 | struct page *page; | |
3632 | struct page *t; | |
832f37f5 VD |
3633 | struct list_head discard; |
3634 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 3635 | unsigned long flags; |
ce3712d7 | 3636 | int ret = 0; |
2086d26a | 3637 | |
d6e0b7fa VD |
3638 | if (deactivate) { |
3639 | /* | |
3640 | * Disable empty slabs caching. Used to avoid pinning offline | |
3641 | * memory cgroups by kmem pages that can be freed. | |
3642 | */ | |
3643 | s->cpu_partial = 0; | |
3644 | s->min_partial = 0; | |
3645 | ||
3646 | /* | |
3647 | * s->cpu_partial is checked locklessly (see put_cpu_partial), | |
3648 | * so we have to make sure the change is visible. | |
3649 | */ | |
3650 | kick_all_cpus_sync(); | |
3651 | } | |
3652 | ||
2086d26a | 3653 | flush_all(s); |
fa45dc25 | 3654 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
3655 | INIT_LIST_HEAD(&discard); |
3656 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
3657 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
3658 | |
3659 | spin_lock_irqsave(&n->list_lock, flags); | |
3660 | ||
3661 | /* | |
832f37f5 | 3662 | * Build lists of slabs to discard or promote. |
2086d26a | 3663 | * |
672bba3a CL |
3664 | * Note that concurrent frees may occur while we hold the |
3665 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3666 | */ |
3667 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
832f37f5 VD |
3668 | int free = page->objects - page->inuse; |
3669 | ||
3670 | /* Do not reread page->inuse */ | |
3671 | barrier(); | |
3672 | ||
3673 | /* We do not keep full slabs on the list */ | |
3674 | BUG_ON(free <= 0); | |
3675 | ||
3676 | if (free == page->objects) { | |
3677 | list_move(&page->lru, &discard); | |
69cb8e6b | 3678 | n->nr_partial--; |
832f37f5 VD |
3679 | } else if (free <= SHRINK_PROMOTE_MAX) |
3680 | list_move(&page->lru, promote + free - 1); | |
2086d26a CL |
3681 | } |
3682 | ||
2086d26a | 3683 | /* |
832f37f5 VD |
3684 | * Promote the slabs filled up most to the head of the |
3685 | * partial list. | |
2086d26a | 3686 | */ |
832f37f5 VD |
3687 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
3688 | list_splice(promote + i, &n->partial); | |
2086d26a | 3689 | |
2086d26a | 3690 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
3691 | |
3692 | /* Release empty slabs */ | |
832f37f5 | 3693 | list_for_each_entry_safe(page, t, &discard, lru) |
69cb8e6b | 3694 | discard_slab(s, page); |
ce3712d7 VD |
3695 | |
3696 | if (slabs_node(s, node)) | |
3697 | ret = 1; | |
2086d26a CL |
3698 | } |
3699 | ||
ce3712d7 | 3700 | return ret; |
2086d26a | 3701 | } |
2086d26a | 3702 | |
b9049e23 YG |
3703 | static int slab_mem_going_offline_callback(void *arg) |
3704 | { | |
3705 | struct kmem_cache *s; | |
3706 | ||
18004c5d | 3707 | mutex_lock(&slab_mutex); |
b9049e23 | 3708 | list_for_each_entry(s, &slab_caches, list) |
d6e0b7fa | 3709 | __kmem_cache_shrink(s, false); |
18004c5d | 3710 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3711 | |
3712 | return 0; | |
3713 | } | |
3714 | ||
3715 | static void slab_mem_offline_callback(void *arg) | |
3716 | { | |
3717 | struct kmem_cache_node *n; | |
3718 | struct kmem_cache *s; | |
3719 | struct memory_notify *marg = arg; | |
3720 | int offline_node; | |
3721 | ||
b9d5ab25 | 3722 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
3723 | |
3724 | /* | |
3725 | * If the node still has available memory. we need kmem_cache_node | |
3726 | * for it yet. | |
3727 | */ | |
3728 | if (offline_node < 0) | |
3729 | return; | |
3730 | ||
18004c5d | 3731 | mutex_lock(&slab_mutex); |
b9049e23 YG |
3732 | list_for_each_entry(s, &slab_caches, list) { |
3733 | n = get_node(s, offline_node); | |
3734 | if (n) { | |
3735 | /* | |
3736 | * if n->nr_slabs > 0, slabs still exist on the node | |
3737 | * that is going down. We were unable to free them, | |
c9404c9c | 3738 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
3739 | * callback. So, we must fail. |
3740 | */ | |
0f389ec6 | 3741 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
3742 | |
3743 | s->node[offline_node] = NULL; | |
8de66a0c | 3744 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
3745 | } |
3746 | } | |
18004c5d | 3747 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3748 | } |
3749 | ||
3750 | static int slab_mem_going_online_callback(void *arg) | |
3751 | { | |
3752 | struct kmem_cache_node *n; | |
3753 | struct kmem_cache *s; | |
3754 | struct memory_notify *marg = arg; | |
b9d5ab25 | 3755 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
3756 | int ret = 0; |
3757 | ||
3758 | /* | |
3759 | * If the node's memory is already available, then kmem_cache_node is | |
3760 | * already created. Nothing to do. | |
3761 | */ | |
3762 | if (nid < 0) | |
3763 | return 0; | |
3764 | ||
3765 | /* | |
0121c619 | 3766 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
3767 | * allocate a kmem_cache_node structure in order to bring the node |
3768 | * online. | |
3769 | */ | |
18004c5d | 3770 | mutex_lock(&slab_mutex); |
b9049e23 YG |
3771 | list_for_each_entry(s, &slab_caches, list) { |
3772 | /* | |
3773 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
3774 | * since memory is not yet available from the node that | |
3775 | * is brought up. | |
3776 | */ | |
8de66a0c | 3777 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
3778 | if (!n) { |
3779 | ret = -ENOMEM; | |
3780 | goto out; | |
3781 | } | |
4053497d | 3782 | init_kmem_cache_node(n); |
b9049e23 YG |
3783 | s->node[nid] = n; |
3784 | } | |
3785 | out: | |
18004c5d | 3786 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3787 | return ret; |
3788 | } | |
3789 | ||
3790 | static int slab_memory_callback(struct notifier_block *self, | |
3791 | unsigned long action, void *arg) | |
3792 | { | |
3793 | int ret = 0; | |
3794 | ||
3795 | switch (action) { | |
3796 | case MEM_GOING_ONLINE: | |
3797 | ret = slab_mem_going_online_callback(arg); | |
3798 | break; | |
3799 | case MEM_GOING_OFFLINE: | |
3800 | ret = slab_mem_going_offline_callback(arg); | |
3801 | break; | |
3802 | case MEM_OFFLINE: | |
3803 | case MEM_CANCEL_ONLINE: | |
3804 | slab_mem_offline_callback(arg); | |
3805 | break; | |
3806 | case MEM_ONLINE: | |
3807 | case MEM_CANCEL_OFFLINE: | |
3808 | break; | |
3809 | } | |
dc19f9db KH |
3810 | if (ret) |
3811 | ret = notifier_from_errno(ret); | |
3812 | else | |
3813 | ret = NOTIFY_OK; | |
b9049e23 YG |
3814 | return ret; |
3815 | } | |
3816 | ||
3ac38faa AM |
3817 | static struct notifier_block slab_memory_callback_nb = { |
3818 | .notifier_call = slab_memory_callback, | |
3819 | .priority = SLAB_CALLBACK_PRI, | |
3820 | }; | |
b9049e23 | 3821 | |
81819f0f CL |
3822 | /******************************************************************** |
3823 | * Basic setup of slabs | |
3824 | *******************************************************************/ | |
3825 | ||
51df1142 CL |
3826 | /* |
3827 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
3828 | * the page allocator. Allocate them properly then fix up the pointers |
3829 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
3830 | */ |
3831 | ||
dffb4d60 | 3832 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
3833 | { |
3834 | int node; | |
dffb4d60 | 3835 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 3836 | struct kmem_cache_node *n; |
51df1142 | 3837 | |
dffb4d60 | 3838 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 3839 | |
7d557b3c GC |
3840 | /* |
3841 | * This runs very early, and only the boot processor is supposed to be | |
3842 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
3843 | * IPIs around. | |
3844 | */ | |
3845 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 3846 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
3847 | struct page *p; |
3848 | ||
fa45dc25 CL |
3849 | list_for_each_entry(p, &n->partial, lru) |
3850 | p->slab_cache = s; | |
51df1142 | 3851 | |
607bf324 | 3852 | #ifdef CONFIG_SLUB_DEBUG |
fa45dc25 CL |
3853 | list_for_each_entry(p, &n->full, lru) |
3854 | p->slab_cache = s; | |
51df1142 | 3855 | #endif |
51df1142 | 3856 | } |
f7ce3190 | 3857 | slab_init_memcg_params(s); |
dffb4d60 CL |
3858 | list_add(&s->list, &slab_caches); |
3859 | return s; | |
51df1142 CL |
3860 | } |
3861 | ||
81819f0f CL |
3862 | void __init kmem_cache_init(void) |
3863 | { | |
dffb4d60 CL |
3864 | static __initdata struct kmem_cache boot_kmem_cache, |
3865 | boot_kmem_cache_node; | |
51df1142 | 3866 | |
fc8d8620 SG |
3867 | if (debug_guardpage_minorder()) |
3868 | slub_max_order = 0; | |
3869 | ||
dffb4d60 CL |
3870 | kmem_cache_node = &boot_kmem_cache_node; |
3871 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 3872 | |
dffb4d60 CL |
3873 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
3874 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); | |
b9049e23 | 3875 | |
3ac38faa | 3876 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
3877 | |
3878 | /* Able to allocate the per node structures */ | |
3879 | slab_state = PARTIAL; | |
3880 | ||
dffb4d60 CL |
3881 | create_boot_cache(kmem_cache, "kmem_cache", |
3882 | offsetof(struct kmem_cache, node) + | |
3883 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
3884 | SLAB_HWCACHE_ALIGN); | |
8a13a4cc | 3885 | |
dffb4d60 | 3886 | kmem_cache = bootstrap(&boot_kmem_cache); |
81819f0f | 3887 | |
51df1142 CL |
3888 | /* |
3889 | * Allocate kmem_cache_node properly from the kmem_cache slab. | |
3890 | * kmem_cache_node is separately allocated so no need to | |
3891 | * update any list pointers. | |
3892 | */ | |
dffb4d60 | 3893 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
3894 | |
3895 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 3896 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 3897 | create_kmalloc_caches(0); |
81819f0f CL |
3898 | |
3899 | #ifdef CONFIG_SMP | |
3900 | register_cpu_notifier(&slab_notifier); | |
9dfc6e68 | 3901 | #endif |
81819f0f | 3902 | |
f9f58285 | 3903 | pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", |
f97d5f63 | 3904 | cache_line_size(), |
81819f0f CL |
3905 | slub_min_order, slub_max_order, slub_min_objects, |
3906 | nr_cpu_ids, nr_node_ids); | |
3907 | } | |
3908 | ||
7e85ee0c PE |
3909 | void __init kmem_cache_init_late(void) |
3910 | { | |
7e85ee0c PE |
3911 | } |
3912 | ||
2633d7a0 | 3913 | struct kmem_cache * |
a44cb944 VD |
3914 | __kmem_cache_alias(const char *name, size_t size, size_t align, |
3915 | unsigned long flags, void (*ctor)(void *)) | |
81819f0f | 3916 | { |
426589f5 | 3917 | struct kmem_cache *s, *c; |
81819f0f | 3918 | |
a44cb944 | 3919 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
3920 | if (s) { |
3921 | s->refcount++; | |
84d0ddd6 | 3922 | |
81819f0f CL |
3923 | /* |
3924 | * Adjust the object sizes so that we clear | |
3925 | * the complete object on kzalloc. | |
3926 | */ | |
3b0efdfa | 3927 | s->object_size = max(s->object_size, (int)size); |
81819f0f | 3928 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 3929 | |
426589f5 | 3930 | for_each_memcg_cache(c, s) { |
84d0ddd6 VD |
3931 | c->object_size = s->object_size; |
3932 | c->inuse = max_t(int, c->inuse, | |
3933 | ALIGN(size, sizeof(void *))); | |
3934 | } | |
3935 | ||
7b8f3b66 | 3936 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 3937 | s->refcount--; |
cbb79694 | 3938 | s = NULL; |
7b8f3b66 | 3939 | } |
a0e1d1be | 3940 | } |
6446faa2 | 3941 | |
cbb79694 CL |
3942 | return s; |
3943 | } | |
84c1cf62 | 3944 | |
8a13a4cc | 3945 | int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) |
cbb79694 | 3946 | { |
aac3a166 PE |
3947 | int err; |
3948 | ||
3949 | err = kmem_cache_open(s, flags); | |
3950 | if (err) | |
3951 | return err; | |
20cea968 | 3952 | |
45530c44 CL |
3953 | /* Mutex is not taken during early boot */ |
3954 | if (slab_state <= UP) | |
3955 | return 0; | |
3956 | ||
107dab5c | 3957 | memcg_propagate_slab_attrs(s); |
aac3a166 | 3958 | err = sysfs_slab_add(s); |
aac3a166 | 3959 | if (err) |
52b4b950 | 3960 | __kmem_cache_release(s); |
20cea968 | 3961 | |
aac3a166 | 3962 | return err; |
81819f0f | 3963 | } |
81819f0f | 3964 | |
81819f0f | 3965 | #ifdef CONFIG_SMP |
81819f0f | 3966 | /* |
672bba3a CL |
3967 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3968 | * necessary. | |
81819f0f | 3969 | */ |
0db0628d | 3970 | static int slab_cpuup_callback(struct notifier_block *nfb, |
81819f0f CL |
3971 | unsigned long action, void *hcpu) |
3972 | { | |
3973 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3974 | struct kmem_cache *s; |
3975 | unsigned long flags; | |
81819f0f CL |
3976 | |
3977 | switch (action) { | |
3978 | case CPU_UP_CANCELED: | |
8bb78442 | 3979 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3980 | case CPU_DEAD: |
8bb78442 | 3981 | case CPU_DEAD_FROZEN: |
18004c5d | 3982 | mutex_lock(&slab_mutex); |
5b95a4ac CL |
3983 | list_for_each_entry(s, &slab_caches, list) { |
3984 | local_irq_save(flags); | |
3985 | __flush_cpu_slab(s, cpu); | |
3986 | local_irq_restore(flags); | |
3987 | } | |
18004c5d | 3988 | mutex_unlock(&slab_mutex); |
81819f0f CL |
3989 | break; |
3990 | default: | |
3991 | break; | |
3992 | } | |
3993 | return NOTIFY_OK; | |
3994 | } | |
3995 | ||
0db0628d | 3996 | static struct notifier_block slab_notifier = { |
3adbefee | 3997 | .notifier_call = slab_cpuup_callback |
06428780 | 3998 | }; |
81819f0f CL |
3999 | |
4000 | #endif | |
4001 | ||
ce71e27c | 4002 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4003 | { |
aadb4bc4 | 4004 | struct kmem_cache *s; |
94b528d0 | 4005 | void *ret; |
aadb4bc4 | 4006 | |
95a05b42 | 4007 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4008 | return kmalloc_large(size, gfpflags); |
4009 | ||
2c59dd65 | 4010 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4011 | |
2408c550 | 4012 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4013 | return s; |
81819f0f | 4014 | |
2b847c3c | 4015 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4016 | |
25985edc | 4017 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4018 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4019 | |
4020 | return ret; | |
81819f0f CL |
4021 | } |
4022 | ||
5d1f57e4 | 4023 | #ifdef CONFIG_NUMA |
81819f0f | 4024 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4025 | int node, unsigned long caller) |
81819f0f | 4026 | { |
aadb4bc4 | 4027 | struct kmem_cache *s; |
94b528d0 | 4028 | void *ret; |
aadb4bc4 | 4029 | |
95a05b42 | 4030 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4031 | ret = kmalloc_large_node(size, gfpflags, node); |
4032 | ||
4033 | trace_kmalloc_node(caller, ret, | |
4034 | size, PAGE_SIZE << get_order(size), | |
4035 | gfpflags, node); | |
4036 | ||
4037 | return ret; | |
4038 | } | |
eada35ef | 4039 | |
2c59dd65 | 4040 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4041 | |
2408c550 | 4042 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4043 | return s; |
81819f0f | 4044 | |
2b847c3c | 4045 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4046 | |
25985edc | 4047 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4048 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4049 | |
4050 | return ret; | |
81819f0f | 4051 | } |
5d1f57e4 | 4052 | #endif |
81819f0f | 4053 | |
ab4d5ed5 | 4054 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4055 | static int count_inuse(struct page *page) |
4056 | { | |
4057 | return page->inuse; | |
4058 | } | |
4059 | ||
4060 | static int count_total(struct page *page) | |
4061 | { | |
4062 | return page->objects; | |
4063 | } | |
ab4d5ed5 | 4064 | #endif |
205ab99d | 4065 | |
ab4d5ed5 | 4066 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
4067 | static int validate_slab(struct kmem_cache *s, struct page *page, |
4068 | unsigned long *map) | |
53e15af0 CL |
4069 | { |
4070 | void *p; | |
a973e9dd | 4071 | void *addr = page_address(page); |
53e15af0 CL |
4072 | |
4073 | if (!check_slab(s, page) || | |
4074 | !on_freelist(s, page, NULL)) | |
4075 | return 0; | |
4076 | ||
4077 | /* Now we know that a valid freelist exists */ | |
39b26464 | 4078 | bitmap_zero(map, page->objects); |
53e15af0 | 4079 | |
5f80b13a CL |
4080 | get_map(s, page, map); |
4081 | for_each_object(p, s, addr, page->objects) { | |
4082 | if (test_bit(slab_index(p, s, addr), map)) | |
4083 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
4084 | return 0; | |
53e15af0 CL |
4085 | } |
4086 | ||
224a88be | 4087 | for_each_object(p, s, addr, page->objects) |
7656c72b | 4088 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 4089 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
4090 | return 0; |
4091 | return 1; | |
4092 | } | |
4093 | ||
434e245d CL |
4094 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4095 | unsigned long *map) | |
53e15af0 | 4096 | { |
881db7fb CL |
4097 | slab_lock(page); |
4098 | validate_slab(s, page, map); | |
4099 | slab_unlock(page); | |
53e15af0 CL |
4100 | } |
4101 | ||
434e245d CL |
4102 | static int validate_slab_node(struct kmem_cache *s, |
4103 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
4104 | { |
4105 | unsigned long count = 0; | |
4106 | struct page *page; | |
4107 | unsigned long flags; | |
4108 | ||
4109 | spin_lock_irqsave(&n->list_lock, flags); | |
4110 | ||
4111 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 4112 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4113 | count++; |
4114 | } | |
4115 | if (count != n->nr_partial) | |
f9f58285 FF |
4116 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4117 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4118 | |
4119 | if (!(s->flags & SLAB_STORE_USER)) | |
4120 | goto out; | |
4121 | ||
4122 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 4123 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4124 | count++; |
4125 | } | |
4126 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4127 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4128 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4129 | |
4130 | out: | |
4131 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4132 | return count; | |
4133 | } | |
4134 | ||
434e245d | 4135 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4136 | { |
4137 | int node; | |
4138 | unsigned long count = 0; | |
205ab99d | 4139 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d | 4140 | sizeof(unsigned long), GFP_KERNEL); |
fa45dc25 | 4141 | struct kmem_cache_node *n; |
434e245d CL |
4142 | |
4143 | if (!map) | |
4144 | return -ENOMEM; | |
53e15af0 CL |
4145 | |
4146 | flush_all(s); | |
fa45dc25 | 4147 | for_each_kmem_cache_node(s, node, n) |
434e245d | 4148 | count += validate_slab_node(s, n, map); |
434e245d | 4149 | kfree(map); |
53e15af0 CL |
4150 | return count; |
4151 | } | |
88a420e4 | 4152 | /* |
672bba3a | 4153 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4154 | * and freed. |
4155 | */ | |
4156 | ||
4157 | struct location { | |
4158 | unsigned long count; | |
ce71e27c | 4159 | unsigned long addr; |
45edfa58 CL |
4160 | long long sum_time; |
4161 | long min_time; | |
4162 | long max_time; | |
4163 | long min_pid; | |
4164 | long max_pid; | |
174596a0 | 4165 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4166 | nodemask_t nodes; |
88a420e4 CL |
4167 | }; |
4168 | ||
4169 | struct loc_track { | |
4170 | unsigned long max; | |
4171 | unsigned long count; | |
4172 | struct location *loc; | |
4173 | }; | |
4174 | ||
4175 | static void free_loc_track(struct loc_track *t) | |
4176 | { | |
4177 | if (t->max) | |
4178 | free_pages((unsigned long)t->loc, | |
4179 | get_order(sizeof(struct location) * t->max)); | |
4180 | } | |
4181 | ||
68dff6a9 | 4182 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4183 | { |
4184 | struct location *l; | |
4185 | int order; | |
4186 | ||
88a420e4 CL |
4187 | order = get_order(sizeof(struct location) * max); |
4188 | ||
68dff6a9 | 4189 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4190 | if (!l) |
4191 | return 0; | |
4192 | ||
4193 | if (t->count) { | |
4194 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4195 | free_loc_track(t); | |
4196 | } | |
4197 | t->max = max; | |
4198 | t->loc = l; | |
4199 | return 1; | |
4200 | } | |
4201 | ||
4202 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4203 | const struct track *track) |
88a420e4 CL |
4204 | { |
4205 | long start, end, pos; | |
4206 | struct location *l; | |
ce71e27c | 4207 | unsigned long caddr; |
45edfa58 | 4208 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4209 | |
4210 | start = -1; | |
4211 | end = t->count; | |
4212 | ||
4213 | for ( ; ; ) { | |
4214 | pos = start + (end - start + 1) / 2; | |
4215 | ||
4216 | /* | |
4217 | * There is nothing at "end". If we end up there | |
4218 | * we need to add something to before end. | |
4219 | */ | |
4220 | if (pos == end) | |
4221 | break; | |
4222 | ||
4223 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4224 | if (track->addr == caddr) { |
4225 | ||
4226 | l = &t->loc[pos]; | |
4227 | l->count++; | |
4228 | if (track->when) { | |
4229 | l->sum_time += age; | |
4230 | if (age < l->min_time) | |
4231 | l->min_time = age; | |
4232 | if (age > l->max_time) | |
4233 | l->max_time = age; | |
4234 | ||
4235 | if (track->pid < l->min_pid) | |
4236 | l->min_pid = track->pid; | |
4237 | if (track->pid > l->max_pid) | |
4238 | l->max_pid = track->pid; | |
4239 | ||
174596a0 RR |
4240 | cpumask_set_cpu(track->cpu, |
4241 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4242 | } |
4243 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4244 | return 1; |
4245 | } | |
4246 | ||
45edfa58 | 4247 | if (track->addr < caddr) |
88a420e4 CL |
4248 | end = pos; |
4249 | else | |
4250 | start = pos; | |
4251 | } | |
4252 | ||
4253 | /* | |
672bba3a | 4254 | * Not found. Insert new tracking element. |
88a420e4 | 4255 | */ |
68dff6a9 | 4256 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4257 | return 0; |
4258 | ||
4259 | l = t->loc + pos; | |
4260 | if (pos < t->count) | |
4261 | memmove(l + 1, l, | |
4262 | (t->count - pos) * sizeof(struct location)); | |
4263 | t->count++; | |
4264 | l->count = 1; | |
45edfa58 CL |
4265 | l->addr = track->addr; |
4266 | l->sum_time = age; | |
4267 | l->min_time = age; | |
4268 | l->max_time = age; | |
4269 | l->min_pid = track->pid; | |
4270 | l->max_pid = track->pid; | |
174596a0 RR |
4271 | cpumask_clear(to_cpumask(l->cpus)); |
4272 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4273 | nodes_clear(l->nodes); |
4274 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4275 | return 1; |
4276 | } | |
4277 | ||
4278 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4279 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4280 | unsigned long *map) |
88a420e4 | 4281 | { |
a973e9dd | 4282 | void *addr = page_address(page); |
88a420e4 CL |
4283 | void *p; |
4284 | ||
39b26464 | 4285 | bitmap_zero(map, page->objects); |
5f80b13a | 4286 | get_map(s, page, map); |
88a420e4 | 4287 | |
224a88be | 4288 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4289 | if (!test_bit(slab_index(p, s, addr), map)) |
4290 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4291 | } |
4292 | ||
4293 | static int list_locations(struct kmem_cache *s, char *buf, | |
4294 | enum track_item alloc) | |
4295 | { | |
e374d483 | 4296 | int len = 0; |
88a420e4 | 4297 | unsigned long i; |
68dff6a9 | 4298 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4299 | int node; |
bbd7d57b ED |
4300 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4301 | sizeof(unsigned long), GFP_KERNEL); | |
fa45dc25 | 4302 | struct kmem_cache_node *n; |
88a420e4 | 4303 | |
bbd7d57b ED |
4304 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4305 | GFP_TEMPORARY)) { | |
4306 | kfree(map); | |
68dff6a9 | 4307 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4308 | } |
88a420e4 CL |
4309 | /* Push back cpu slabs */ |
4310 | flush_all(s); | |
4311 | ||
fa45dc25 | 4312 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4313 | unsigned long flags; |
4314 | struct page *page; | |
4315 | ||
9e86943b | 4316 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4317 | continue; |
4318 | ||
4319 | spin_lock_irqsave(&n->list_lock, flags); | |
4320 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4321 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4322 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4323 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4324 | spin_unlock_irqrestore(&n->list_lock, flags); |
4325 | } | |
4326 | ||
4327 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4328 | struct location *l = &t.loc[i]; |
88a420e4 | 4329 | |
9c246247 | 4330 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4331 | break; |
e374d483 | 4332 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4333 | |
4334 | if (l->addr) | |
62c70bce | 4335 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4336 | else |
e374d483 | 4337 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4338 | |
4339 | if (l->sum_time != l->min_time) { | |
e374d483 | 4340 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4341 | l->min_time, |
4342 | (long)div_u64(l->sum_time, l->count), | |
4343 | l->max_time); | |
45edfa58 | 4344 | } else |
e374d483 | 4345 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4346 | l->min_time); |
4347 | ||
4348 | if (l->min_pid != l->max_pid) | |
e374d483 | 4349 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4350 | l->min_pid, l->max_pid); |
4351 | else | |
e374d483 | 4352 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4353 | l->min_pid); |
4354 | ||
174596a0 RR |
4355 | if (num_online_cpus() > 1 && |
4356 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4357 | len < PAGE_SIZE - 60) |
4358 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4359 | " cpus=%*pbl", | |
4360 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4361 | |
62bc62a8 | 4362 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4363 | len < PAGE_SIZE - 60) |
4364 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4365 | " nodes=%*pbl", | |
4366 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4367 | |
e374d483 | 4368 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4369 | } |
4370 | ||
4371 | free_loc_track(&t); | |
bbd7d57b | 4372 | kfree(map); |
88a420e4 | 4373 | if (!t.count) |
e374d483 HH |
4374 | len += sprintf(buf, "No data\n"); |
4375 | return len; | |
88a420e4 | 4376 | } |
ab4d5ed5 | 4377 | #endif |
88a420e4 | 4378 | |
a5a84755 | 4379 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4380 | static void __init resiliency_test(void) |
a5a84755 CL |
4381 | { |
4382 | u8 *p; | |
4383 | ||
95a05b42 | 4384 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4385 | |
f9f58285 FF |
4386 | pr_err("SLUB resiliency testing\n"); |
4387 | pr_err("-----------------------\n"); | |
4388 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4389 | |
4390 | p = kzalloc(16, GFP_KERNEL); | |
4391 | p[16] = 0x12; | |
f9f58285 FF |
4392 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4393 | p + 16); | |
a5a84755 CL |
4394 | |
4395 | validate_slab_cache(kmalloc_caches[4]); | |
4396 | ||
4397 | /* Hmmm... The next two are dangerous */ | |
4398 | p = kzalloc(32, GFP_KERNEL); | |
4399 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4400 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4401 | p); | |
4402 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4403 | |
4404 | validate_slab_cache(kmalloc_caches[5]); | |
4405 | p = kzalloc(64, GFP_KERNEL); | |
4406 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4407 | *p = 0x56; | |
f9f58285 FF |
4408 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4409 | p); | |
4410 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4411 | validate_slab_cache(kmalloc_caches[6]); |
4412 | ||
f9f58285 | 4413 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4414 | p = kzalloc(128, GFP_KERNEL); |
4415 | kfree(p); | |
4416 | *p = 0x78; | |
f9f58285 | 4417 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
a5a84755 CL |
4418 | validate_slab_cache(kmalloc_caches[7]); |
4419 | ||
4420 | p = kzalloc(256, GFP_KERNEL); | |
4421 | kfree(p); | |
4422 | p[50] = 0x9a; | |
f9f58285 | 4423 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
a5a84755 CL |
4424 | validate_slab_cache(kmalloc_caches[8]); |
4425 | ||
4426 | p = kzalloc(512, GFP_KERNEL); | |
4427 | kfree(p); | |
4428 | p[512] = 0xab; | |
f9f58285 | 4429 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
a5a84755 CL |
4430 | validate_slab_cache(kmalloc_caches[9]); |
4431 | } | |
4432 | #else | |
4433 | #ifdef CONFIG_SYSFS | |
4434 | static void resiliency_test(void) {}; | |
4435 | #endif | |
4436 | #endif | |
4437 | ||
ab4d5ed5 | 4438 | #ifdef CONFIG_SYSFS |
81819f0f | 4439 | enum slab_stat_type { |
205ab99d CL |
4440 | SL_ALL, /* All slabs */ |
4441 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4442 | SL_CPU, /* Only slabs used for cpu caches */ | |
4443 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4444 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4445 | }; |
4446 | ||
205ab99d | 4447 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4448 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4449 | #define SO_CPU (1 << SL_CPU) | |
4450 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4451 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4452 | |
62e5c4b4 CG |
4453 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4454 | char *buf, unsigned long flags) | |
81819f0f CL |
4455 | { |
4456 | unsigned long total = 0; | |
81819f0f CL |
4457 | int node; |
4458 | int x; | |
4459 | unsigned long *nodes; | |
81819f0f | 4460 | |
e35e1a97 | 4461 | nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); |
62e5c4b4 CG |
4462 | if (!nodes) |
4463 | return -ENOMEM; | |
81819f0f | 4464 | |
205ab99d CL |
4465 | if (flags & SO_CPU) { |
4466 | int cpu; | |
81819f0f | 4467 | |
205ab99d | 4468 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4469 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4470 | cpu); | |
ec3ab083 | 4471 | int node; |
49e22585 | 4472 | struct page *page; |
dfb4f096 | 4473 | |
4db0c3c2 | 4474 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4475 | if (!page) |
4476 | continue; | |
205ab99d | 4477 | |
ec3ab083 CL |
4478 | node = page_to_nid(page); |
4479 | if (flags & SO_TOTAL) | |
4480 | x = page->objects; | |
4481 | else if (flags & SO_OBJECTS) | |
4482 | x = page->inuse; | |
4483 | else | |
4484 | x = 1; | |
49e22585 | 4485 | |
ec3ab083 CL |
4486 | total += x; |
4487 | nodes[node] += x; | |
4488 | ||
4db0c3c2 | 4489 | page = READ_ONCE(c->partial); |
49e22585 | 4490 | if (page) { |
8afb1474 LZ |
4491 | node = page_to_nid(page); |
4492 | if (flags & SO_TOTAL) | |
4493 | WARN_ON_ONCE(1); | |
4494 | else if (flags & SO_OBJECTS) | |
4495 | WARN_ON_ONCE(1); | |
4496 | else | |
4497 | x = page->pages; | |
bc6697d8 ED |
4498 | total += x; |
4499 | nodes[node] += x; | |
49e22585 | 4500 | } |
81819f0f CL |
4501 | } |
4502 | } | |
4503 | ||
bfc8c901 | 4504 | get_online_mems(); |
ab4d5ed5 | 4505 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4506 | if (flags & SO_ALL) { |
fa45dc25 CL |
4507 | struct kmem_cache_node *n; |
4508 | ||
4509 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4510 | |
d0e0ac97 CG |
4511 | if (flags & SO_TOTAL) |
4512 | x = atomic_long_read(&n->total_objects); | |
4513 | else if (flags & SO_OBJECTS) | |
4514 | x = atomic_long_read(&n->total_objects) - | |
4515 | count_partial(n, count_free); | |
81819f0f | 4516 | else |
205ab99d | 4517 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4518 | total += x; |
4519 | nodes[node] += x; | |
4520 | } | |
4521 | ||
ab4d5ed5 CL |
4522 | } else |
4523 | #endif | |
4524 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4525 | struct kmem_cache_node *n; |
81819f0f | 4526 | |
fa45dc25 | 4527 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4528 | if (flags & SO_TOTAL) |
4529 | x = count_partial(n, count_total); | |
4530 | else if (flags & SO_OBJECTS) | |
4531 | x = count_partial(n, count_inuse); | |
81819f0f | 4532 | else |
205ab99d | 4533 | x = n->nr_partial; |
81819f0f CL |
4534 | total += x; |
4535 | nodes[node] += x; | |
4536 | } | |
4537 | } | |
81819f0f CL |
4538 | x = sprintf(buf, "%lu", total); |
4539 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4540 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4541 | if (nodes[node]) |
4542 | x += sprintf(buf + x, " N%d=%lu", | |
4543 | node, nodes[node]); | |
4544 | #endif | |
bfc8c901 | 4545 | put_online_mems(); |
81819f0f CL |
4546 | kfree(nodes); |
4547 | return x + sprintf(buf + x, "\n"); | |
4548 | } | |
4549 | ||
ab4d5ed5 | 4550 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4551 | static int any_slab_objects(struct kmem_cache *s) |
4552 | { | |
4553 | int node; | |
fa45dc25 | 4554 | struct kmem_cache_node *n; |
81819f0f | 4555 | |
fa45dc25 | 4556 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4557 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4558 | return 1; |
fa45dc25 | 4559 | |
81819f0f CL |
4560 | return 0; |
4561 | } | |
ab4d5ed5 | 4562 | #endif |
81819f0f CL |
4563 | |
4564 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4565 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4566 | |
4567 | struct slab_attribute { | |
4568 | struct attribute attr; | |
4569 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4570 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4571 | }; | |
4572 | ||
4573 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4574 | static struct slab_attribute _name##_attr = \ |
4575 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4576 | |
4577 | #define SLAB_ATTR(_name) \ | |
4578 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4579 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4580 | |
81819f0f CL |
4581 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4582 | { | |
4583 | return sprintf(buf, "%d\n", s->size); | |
4584 | } | |
4585 | SLAB_ATTR_RO(slab_size); | |
4586 | ||
4587 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4588 | { | |
4589 | return sprintf(buf, "%d\n", s->align); | |
4590 | } | |
4591 | SLAB_ATTR_RO(align); | |
4592 | ||
4593 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4594 | { | |
3b0efdfa | 4595 | return sprintf(buf, "%d\n", s->object_size); |
81819f0f CL |
4596 | } |
4597 | SLAB_ATTR_RO(object_size); | |
4598 | ||
4599 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4600 | { | |
834f3d11 | 4601 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
4602 | } |
4603 | SLAB_ATTR_RO(objs_per_slab); | |
4604 | ||
06b285dc CL |
4605 | static ssize_t order_store(struct kmem_cache *s, |
4606 | const char *buf, size_t length) | |
4607 | { | |
0121c619 CL |
4608 | unsigned long order; |
4609 | int err; | |
4610 | ||
3dbb95f7 | 4611 | err = kstrtoul(buf, 10, &order); |
0121c619 CL |
4612 | if (err) |
4613 | return err; | |
06b285dc CL |
4614 | |
4615 | if (order > slub_max_order || order < slub_min_order) | |
4616 | return -EINVAL; | |
4617 | ||
4618 | calculate_sizes(s, order); | |
4619 | return length; | |
4620 | } | |
4621 | ||
81819f0f CL |
4622 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4623 | { | |
834f3d11 | 4624 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 4625 | } |
06b285dc | 4626 | SLAB_ATTR(order); |
81819f0f | 4627 | |
73d342b1 DR |
4628 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4629 | { | |
4630 | return sprintf(buf, "%lu\n", s->min_partial); | |
4631 | } | |
4632 | ||
4633 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4634 | size_t length) | |
4635 | { | |
4636 | unsigned long min; | |
4637 | int err; | |
4638 | ||
3dbb95f7 | 4639 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
4640 | if (err) |
4641 | return err; | |
4642 | ||
c0bdb232 | 4643 | set_min_partial(s, min); |
73d342b1 DR |
4644 | return length; |
4645 | } | |
4646 | SLAB_ATTR(min_partial); | |
4647 | ||
49e22585 CL |
4648 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4649 | { | |
4650 | return sprintf(buf, "%u\n", s->cpu_partial); | |
4651 | } | |
4652 | ||
4653 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4654 | size_t length) | |
4655 | { | |
4656 | unsigned long objects; | |
4657 | int err; | |
4658 | ||
3dbb95f7 | 4659 | err = kstrtoul(buf, 10, &objects); |
49e22585 CL |
4660 | if (err) |
4661 | return err; | |
345c905d | 4662 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4663 | return -EINVAL; |
49e22585 CL |
4664 | |
4665 | s->cpu_partial = objects; | |
4666 | flush_all(s); | |
4667 | return length; | |
4668 | } | |
4669 | SLAB_ATTR(cpu_partial); | |
4670 | ||
81819f0f CL |
4671 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4672 | { | |
62c70bce JP |
4673 | if (!s->ctor) |
4674 | return 0; | |
4675 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4676 | } |
4677 | SLAB_ATTR_RO(ctor); | |
4678 | ||
81819f0f CL |
4679 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4680 | { | |
4307c14f | 4681 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
4682 | } |
4683 | SLAB_ATTR_RO(aliases); | |
4684 | ||
81819f0f CL |
4685 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4686 | { | |
d9acf4b7 | 4687 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
4688 | } |
4689 | SLAB_ATTR_RO(partial); | |
4690 | ||
4691 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
4692 | { | |
d9acf4b7 | 4693 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
4694 | } |
4695 | SLAB_ATTR_RO(cpu_slabs); | |
4696 | ||
4697 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
4698 | { | |
205ab99d | 4699 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
4700 | } |
4701 | SLAB_ATTR_RO(objects); | |
4702 | ||
205ab99d CL |
4703 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
4704 | { | |
4705 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
4706 | } | |
4707 | SLAB_ATTR_RO(objects_partial); | |
4708 | ||
49e22585 CL |
4709 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
4710 | { | |
4711 | int objects = 0; | |
4712 | int pages = 0; | |
4713 | int cpu; | |
4714 | int len; | |
4715 | ||
4716 | for_each_online_cpu(cpu) { | |
4717 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; | |
4718 | ||
4719 | if (page) { | |
4720 | pages += page->pages; | |
4721 | objects += page->pobjects; | |
4722 | } | |
4723 | } | |
4724 | ||
4725 | len = sprintf(buf, "%d(%d)", objects, pages); | |
4726 | ||
4727 | #ifdef CONFIG_SMP | |
4728 | for_each_online_cpu(cpu) { | |
4729 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; | |
4730 | ||
4731 | if (page && len < PAGE_SIZE - 20) | |
4732 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
4733 | page->pobjects, page->pages); | |
4734 | } | |
4735 | #endif | |
4736 | return len + sprintf(buf + len, "\n"); | |
4737 | } | |
4738 | SLAB_ATTR_RO(slabs_cpu_partial); | |
4739 | ||
a5a84755 CL |
4740 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4741 | { | |
4742 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
4743 | } | |
4744 | ||
4745 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
4746 | const char *buf, size_t length) | |
4747 | { | |
4748 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
4749 | if (buf[0] == '1') | |
4750 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
4751 | return length; | |
4752 | } | |
4753 | SLAB_ATTR(reclaim_account); | |
4754 | ||
4755 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
4756 | { | |
4757 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
4758 | } | |
4759 | SLAB_ATTR_RO(hwcache_align); | |
4760 | ||
4761 | #ifdef CONFIG_ZONE_DMA | |
4762 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
4763 | { | |
4764 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
4765 | } | |
4766 | SLAB_ATTR_RO(cache_dma); | |
4767 | #endif | |
4768 | ||
4769 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
4770 | { | |
4771 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
4772 | } | |
4773 | SLAB_ATTR_RO(destroy_by_rcu); | |
4774 | ||
ab9a0f19 LJ |
4775 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
4776 | { | |
4777 | return sprintf(buf, "%d\n", s->reserved); | |
4778 | } | |
4779 | SLAB_ATTR_RO(reserved); | |
4780 | ||
ab4d5ed5 | 4781 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
4782 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
4783 | { | |
4784 | return show_slab_objects(s, buf, SO_ALL); | |
4785 | } | |
4786 | SLAB_ATTR_RO(slabs); | |
4787 | ||
205ab99d CL |
4788 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
4789 | { | |
4790 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
4791 | } | |
4792 | SLAB_ATTR_RO(total_objects); | |
4793 | ||
81819f0f CL |
4794 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
4795 | { | |
becfda68 | 4796 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
4797 | } |
4798 | ||
4799 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
4800 | const char *buf, size_t length) | |
4801 | { | |
becfda68 | 4802 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
4803 | if (buf[0] == '1') { |
4804 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 4805 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 4806 | } |
81819f0f CL |
4807 | return length; |
4808 | } | |
4809 | SLAB_ATTR(sanity_checks); | |
4810 | ||
4811 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
4812 | { | |
4813 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
4814 | } | |
4815 | ||
4816 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
4817 | size_t length) | |
4818 | { | |
c9e16131 CL |
4819 | /* |
4820 | * Tracing a merged cache is going to give confusing results | |
4821 | * as well as cause other issues like converting a mergeable | |
4822 | * cache into an umergeable one. | |
4823 | */ | |
4824 | if (s->refcount > 1) | |
4825 | return -EINVAL; | |
4826 | ||
81819f0f | 4827 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
4828 | if (buf[0] == '1') { |
4829 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4830 | s->flags |= SLAB_TRACE; |
b789ef51 | 4831 | } |
81819f0f CL |
4832 | return length; |
4833 | } | |
4834 | SLAB_ATTR(trace); | |
4835 | ||
81819f0f CL |
4836 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
4837 | { | |
4838 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
4839 | } | |
4840 | ||
4841 | static ssize_t red_zone_store(struct kmem_cache *s, | |
4842 | const char *buf, size_t length) | |
4843 | { | |
4844 | if (any_slab_objects(s)) | |
4845 | return -EBUSY; | |
4846 | ||
4847 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 CL |
4848 | if (buf[0] == '1') { |
4849 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4850 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 4851 | } |
06b285dc | 4852 | calculate_sizes(s, -1); |
81819f0f CL |
4853 | return length; |
4854 | } | |
4855 | SLAB_ATTR(red_zone); | |
4856 | ||
4857 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
4858 | { | |
4859 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
4860 | } | |
4861 | ||
4862 | static ssize_t poison_store(struct kmem_cache *s, | |
4863 | const char *buf, size_t length) | |
4864 | { | |
4865 | if (any_slab_objects(s)) | |
4866 | return -EBUSY; | |
4867 | ||
4868 | s->flags &= ~SLAB_POISON; | |
b789ef51 CL |
4869 | if (buf[0] == '1') { |
4870 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4871 | s->flags |= SLAB_POISON; |
b789ef51 | 4872 | } |
06b285dc | 4873 | calculate_sizes(s, -1); |
81819f0f CL |
4874 | return length; |
4875 | } | |
4876 | SLAB_ATTR(poison); | |
4877 | ||
4878 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
4879 | { | |
4880 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
4881 | } | |
4882 | ||
4883 | static ssize_t store_user_store(struct kmem_cache *s, | |
4884 | const char *buf, size_t length) | |
4885 | { | |
4886 | if (any_slab_objects(s)) | |
4887 | return -EBUSY; | |
4888 | ||
4889 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
4890 | if (buf[0] == '1') { |
4891 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4892 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 4893 | } |
06b285dc | 4894 | calculate_sizes(s, -1); |
81819f0f CL |
4895 | return length; |
4896 | } | |
4897 | SLAB_ATTR(store_user); | |
4898 | ||
53e15af0 CL |
4899 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4900 | { | |
4901 | return 0; | |
4902 | } | |
4903 | ||
4904 | static ssize_t validate_store(struct kmem_cache *s, | |
4905 | const char *buf, size_t length) | |
4906 | { | |
434e245d CL |
4907 | int ret = -EINVAL; |
4908 | ||
4909 | if (buf[0] == '1') { | |
4910 | ret = validate_slab_cache(s); | |
4911 | if (ret >= 0) | |
4912 | ret = length; | |
4913 | } | |
4914 | return ret; | |
53e15af0 CL |
4915 | } |
4916 | SLAB_ATTR(validate); | |
a5a84755 CL |
4917 | |
4918 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
4919 | { | |
4920 | if (!(s->flags & SLAB_STORE_USER)) | |
4921 | return -ENOSYS; | |
4922 | return list_locations(s, buf, TRACK_ALLOC); | |
4923 | } | |
4924 | SLAB_ATTR_RO(alloc_calls); | |
4925 | ||
4926 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
4927 | { | |
4928 | if (!(s->flags & SLAB_STORE_USER)) | |
4929 | return -ENOSYS; | |
4930 | return list_locations(s, buf, TRACK_FREE); | |
4931 | } | |
4932 | SLAB_ATTR_RO(free_calls); | |
4933 | #endif /* CONFIG_SLUB_DEBUG */ | |
4934 | ||
4935 | #ifdef CONFIG_FAILSLAB | |
4936 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
4937 | { | |
4938 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
4939 | } | |
4940 | ||
4941 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
4942 | size_t length) | |
4943 | { | |
c9e16131 CL |
4944 | if (s->refcount > 1) |
4945 | return -EINVAL; | |
4946 | ||
a5a84755 CL |
4947 | s->flags &= ~SLAB_FAILSLAB; |
4948 | if (buf[0] == '1') | |
4949 | s->flags |= SLAB_FAILSLAB; | |
4950 | return length; | |
4951 | } | |
4952 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 4953 | #endif |
53e15af0 | 4954 | |
2086d26a CL |
4955 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4956 | { | |
4957 | return 0; | |
4958 | } | |
4959 | ||
4960 | static ssize_t shrink_store(struct kmem_cache *s, | |
4961 | const char *buf, size_t length) | |
4962 | { | |
832f37f5 VD |
4963 | if (buf[0] == '1') |
4964 | kmem_cache_shrink(s); | |
4965 | else | |
2086d26a CL |
4966 | return -EINVAL; |
4967 | return length; | |
4968 | } | |
4969 | SLAB_ATTR(shrink); | |
4970 | ||
81819f0f | 4971 | #ifdef CONFIG_NUMA |
9824601e | 4972 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 4973 | { |
9824601e | 4974 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
4975 | } |
4976 | ||
9824601e | 4977 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
4978 | const char *buf, size_t length) |
4979 | { | |
0121c619 CL |
4980 | unsigned long ratio; |
4981 | int err; | |
4982 | ||
3dbb95f7 | 4983 | err = kstrtoul(buf, 10, &ratio); |
0121c619 CL |
4984 | if (err) |
4985 | return err; | |
4986 | ||
e2cb96b7 | 4987 | if (ratio <= 100) |
0121c619 | 4988 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 4989 | |
81819f0f CL |
4990 | return length; |
4991 | } | |
9824601e | 4992 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
4993 | #endif |
4994 | ||
8ff12cfc | 4995 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
4996 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4997 | { | |
4998 | unsigned long sum = 0; | |
4999 | int cpu; | |
5000 | int len; | |
5001 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
5002 | ||
5003 | if (!data) | |
5004 | return -ENOMEM; | |
5005 | ||
5006 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5007 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5008 | |
5009 | data[cpu] = x; | |
5010 | sum += x; | |
5011 | } | |
5012 | ||
5013 | len = sprintf(buf, "%lu", sum); | |
5014 | ||
50ef37b9 | 5015 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5016 | for_each_online_cpu(cpu) { |
5017 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5018 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5019 | } |
50ef37b9 | 5020 | #endif |
8ff12cfc CL |
5021 | kfree(data); |
5022 | return len + sprintf(buf + len, "\n"); | |
5023 | } | |
5024 | ||
78eb00cc DR |
5025 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5026 | { | |
5027 | int cpu; | |
5028 | ||
5029 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5030 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5031 | } |
5032 | ||
8ff12cfc CL |
5033 | #define STAT_ATTR(si, text) \ |
5034 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5035 | { \ | |
5036 | return show_stat(s, buf, si); \ | |
5037 | } \ | |
78eb00cc DR |
5038 | static ssize_t text##_store(struct kmem_cache *s, \ |
5039 | const char *buf, size_t length) \ | |
5040 | { \ | |
5041 | if (buf[0] != '0') \ | |
5042 | return -EINVAL; \ | |
5043 | clear_stat(s, si); \ | |
5044 | return length; \ | |
5045 | } \ | |
5046 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5047 | |
5048 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5049 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5050 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5051 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5052 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5053 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5054 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5055 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5056 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5057 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5058 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5059 | STAT_ATTR(FREE_SLAB, free_slab); |
5060 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5061 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5062 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5063 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5064 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5065 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5066 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5067 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5068 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5069 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5070 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5071 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5072 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5073 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
8ff12cfc CL |
5074 | #endif |
5075 | ||
06428780 | 5076 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5077 | &slab_size_attr.attr, |
5078 | &object_size_attr.attr, | |
5079 | &objs_per_slab_attr.attr, | |
5080 | &order_attr.attr, | |
73d342b1 | 5081 | &min_partial_attr.attr, |
49e22585 | 5082 | &cpu_partial_attr.attr, |
81819f0f | 5083 | &objects_attr.attr, |
205ab99d | 5084 | &objects_partial_attr.attr, |
81819f0f CL |
5085 | &partial_attr.attr, |
5086 | &cpu_slabs_attr.attr, | |
5087 | &ctor_attr.attr, | |
81819f0f CL |
5088 | &aliases_attr.attr, |
5089 | &align_attr.attr, | |
81819f0f CL |
5090 | &hwcache_align_attr.attr, |
5091 | &reclaim_account_attr.attr, | |
5092 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5093 | &shrink_attr.attr, |
ab9a0f19 | 5094 | &reserved_attr.attr, |
49e22585 | 5095 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5096 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5097 | &total_objects_attr.attr, |
5098 | &slabs_attr.attr, | |
5099 | &sanity_checks_attr.attr, | |
5100 | &trace_attr.attr, | |
81819f0f CL |
5101 | &red_zone_attr.attr, |
5102 | &poison_attr.attr, | |
5103 | &store_user_attr.attr, | |
53e15af0 | 5104 | &validate_attr.attr, |
88a420e4 CL |
5105 | &alloc_calls_attr.attr, |
5106 | &free_calls_attr.attr, | |
ab4d5ed5 | 5107 | #endif |
81819f0f CL |
5108 | #ifdef CONFIG_ZONE_DMA |
5109 | &cache_dma_attr.attr, | |
5110 | #endif | |
5111 | #ifdef CONFIG_NUMA | |
9824601e | 5112 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5113 | #endif |
5114 | #ifdef CONFIG_SLUB_STATS | |
5115 | &alloc_fastpath_attr.attr, | |
5116 | &alloc_slowpath_attr.attr, | |
5117 | &free_fastpath_attr.attr, | |
5118 | &free_slowpath_attr.attr, | |
5119 | &free_frozen_attr.attr, | |
5120 | &free_add_partial_attr.attr, | |
5121 | &free_remove_partial_attr.attr, | |
5122 | &alloc_from_partial_attr.attr, | |
5123 | &alloc_slab_attr.attr, | |
5124 | &alloc_refill_attr.attr, | |
e36a2652 | 5125 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5126 | &free_slab_attr.attr, |
5127 | &cpuslab_flush_attr.attr, | |
5128 | &deactivate_full_attr.attr, | |
5129 | &deactivate_empty_attr.attr, | |
5130 | &deactivate_to_head_attr.attr, | |
5131 | &deactivate_to_tail_attr.attr, | |
5132 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5133 | &deactivate_bypass_attr.attr, |
65c3376a | 5134 | &order_fallback_attr.attr, |
b789ef51 CL |
5135 | &cmpxchg_double_fail_attr.attr, |
5136 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5137 | &cpu_partial_alloc_attr.attr, |
5138 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5139 | &cpu_partial_node_attr.attr, |
5140 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5141 | #endif |
4c13dd3b DM |
5142 | #ifdef CONFIG_FAILSLAB |
5143 | &failslab_attr.attr, | |
5144 | #endif | |
5145 | ||
81819f0f CL |
5146 | NULL |
5147 | }; | |
5148 | ||
5149 | static struct attribute_group slab_attr_group = { | |
5150 | .attrs = slab_attrs, | |
5151 | }; | |
5152 | ||
5153 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5154 | struct attribute *attr, | |
5155 | char *buf) | |
5156 | { | |
5157 | struct slab_attribute *attribute; | |
5158 | struct kmem_cache *s; | |
5159 | int err; | |
5160 | ||
5161 | attribute = to_slab_attr(attr); | |
5162 | s = to_slab(kobj); | |
5163 | ||
5164 | if (!attribute->show) | |
5165 | return -EIO; | |
5166 | ||
5167 | err = attribute->show(s, buf); | |
5168 | ||
5169 | return err; | |
5170 | } | |
5171 | ||
5172 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5173 | struct attribute *attr, | |
5174 | const char *buf, size_t len) | |
5175 | { | |
5176 | struct slab_attribute *attribute; | |
5177 | struct kmem_cache *s; | |
5178 | int err; | |
5179 | ||
5180 | attribute = to_slab_attr(attr); | |
5181 | s = to_slab(kobj); | |
5182 | ||
5183 | if (!attribute->store) | |
5184 | return -EIO; | |
5185 | ||
5186 | err = attribute->store(s, buf, len); | |
127424c8 | 5187 | #ifdef CONFIG_MEMCG |
107dab5c | 5188 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5189 | struct kmem_cache *c; |
81819f0f | 5190 | |
107dab5c GC |
5191 | mutex_lock(&slab_mutex); |
5192 | if (s->max_attr_size < len) | |
5193 | s->max_attr_size = len; | |
5194 | ||
ebe945c2 GC |
5195 | /* |
5196 | * This is a best effort propagation, so this function's return | |
5197 | * value will be determined by the parent cache only. This is | |
5198 | * basically because not all attributes will have a well | |
5199 | * defined semantics for rollbacks - most of the actions will | |
5200 | * have permanent effects. | |
5201 | * | |
5202 | * Returning the error value of any of the children that fail | |
5203 | * is not 100 % defined, in the sense that users seeing the | |
5204 | * error code won't be able to know anything about the state of | |
5205 | * the cache. | |
5206 | * | |
5207 | * Only returning the error code for the parent cache at least | |
5208 | * has well defined semantics. The cache being written to | |
5209 | * directly either failed or succeeded, in which case we loop | |
5210 | * through the descendants with best-effort propagation. | |
5211 | */ | |
426589f5 VD |
5212 | for_each_memcg_cache(c, s) |
5213 | attribute->store(c, buf, len); | |
107dab5c GC |
5214 | mutex_unlock(&slab_mutex); |
5215 | } | |
5216 | #endif | |
81819f0f CL |
5217 | return err; |
5218 | } | |
5219 | ||
107dab5c GC |
5220 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5221 | { | |
127424c8 | 5222 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5223 | int i; |
5224 | char *buffer = NULL; | |
93030d83 | 5225 | struct kmem_cache *root_cache; |
107dab5c | 5226 | |
93030d83 | 5227 | if (is_root_cache(s)) |
107dab5c GC |
5228 | return; |
5229 | ||
f7ce3190 | 5230 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5231 | |
107dab5c GC |
5232 | /* |
5233 | * This mean this cache had no attribute written. Therefore, no point | |
5234 | * in copying default values around | |
5235 | */ | |
93030d83 | 5236 | if (!root_cache->max_attr_size) |
107dab5c GC |
5237 | return; |
5238 | ||
5239 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5240 | char mbuf[64]; | |
5241 | char *buf; | |
5242 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
5243 | ||
5244 | if (!attr || !attr->store || !attr->show) | |
5245 | continue; | |
5246 | ||
5247 | /* | |
5248 | * It is really bad that we have to allocate here, so we will | |
5249 | * do it only as a fallback. If we actually allocate, though, | |
5250 | * we can just use the allocated buffer until the end. | |
5251 | * | |
5252 | * Most of the slub attributes will tend to be very small in | |
5253 | * size, but sysfs allows buffers up to a page, so they can | |
5254 | * theoretically happen. | |
5255 | */ | |
5256 | if (buffer) | |
5257 | buf = buffer; | |
93030d83 | 5258 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5259 | buf = mbuf; |
5260 | else { | |
5261 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5262 | if (WARN_ON(!buffer)) | |
5263 | continue; | |
5264 | buf = buffer; | |
5265 | } | |
5266 | ||
93030d83 | 5267 | attr->show(root_cache, buf); |
107dab5c GC |
5268 | attr->store(s, buf, strlen(buf)); |
5269 | } | |
5270 | ||
5271 | if (buffer) | |
5272 | free_page((unsigned long)buffer); | |
5273 | #endif | |
5274 | } | |
5275 | ||
41a21285 CL |
5276 | static void kmem_cache_release(struct kobject *k) |
5277 | { | |
5278 | slab_kmem_cache_release(to_slab(k)); | |
5279 | } | |
5280 | ||
52cf25d0 | 5281 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5282 | .show = slab_attr_show, |
5283 | .store = slab_attr_store, | |
5284 | }; | |
5285 | ||
5286 | static struct kobj_type slab_ktype = { | |
5287 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5288 | .release = kmem_cache_release, |
81819f0f CL |
5289 | }; |
5290 | ||
5291 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5292 | { | |
5293 | struct kobj_type *ktype = get_ktype(kobj); | |
5294 | ||
5295 | if (ktype == &slab_ktype) | |
5296 | return 1; | |
5297 | return 0; | |
5298 | } | |
5299 | ||
9cd43611 | 5300 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5301 | .filter = uevent_filter, |
5302 | }; | |
5303 | ||
27c3a314 | 5304 | static struct kset *slab_kset; |
81819f0f | 5305 | |
9a41707b VD |
5306 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5307 | { | |
127424c8 | 5308 | #ifdef CONFIG_MEMCG |
9a41707b | 5309 | if (!is_root_cache(s)) |
f7ce3190 | 5310 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5311 | #endif |
5312 | return slab_kset; | |
5313 | } | |
5314 | ||
81819f0f CL |
5315 | #define ID_STR_LENGTH 64 |
5316 | ||
5317 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5318 | * |
5319 | * Format :[flags-]size | |
81819f0f CL |
5320 | */ |
5321 | static char *create_unique_id(struct kmem_cache *s) | |
5322 | { | |
5323 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5324 | char *p = name; | |
5325 | ||
5326 | BUG_ON(!name); | |
5327 | ||
5328 | *p++ = ':'; | |
5329 | /* | |
5330 | * First flags affecting slabcache operations. We will only | |
5331 | * get here for aliasable slabs so we do not need to support | |
5332 | * too many flags. The flags here must cover all flags that | |
5333 | * are matched during merging to guarantee that the id is | |
5334 | * unique. | |
5335 | */ | |
5336 | if (s->flags & SLAB_CACHE_DMA) | |
5337 | *p++ = 'd'; | |
5338 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5339 | *p++ = 'a'; | |
becfda68 | 5340 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5341 | *p++ = 'F'; |
5a896d9e VN |
5342 | if (!(s->flags & SLAB_NOTRACK)) |
5343 | *p++ = 't'; | |
230e9fc2 VD |
5344 | if (s->flags & SLAB_ACCOUNT) |
5345 | *p++ = 'A'; | |
81819f0f CL |
5346 | if (p != name + 1) |
5347 | *p++ = '-'; | |
5348 | p += sprintf(p, "%07d", s->size); | |
2633d7a0 | 5349 | |
81819f0f CL |
5350 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5351 | return name; | |
5352 | } | |
5353 | ||
5354 | static int sysfs_slab_add(struct kmem_cache *s) | |
5355 | { | |
5356 | int err; | |
5357 | const char *name; | |
45530c44 | 5358 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5359 | |
81819f0f CL |
5360 | if (unmergeable) { |
5361 | /* | |
5362 | * Slabcache can never be merged so we can use the name proper. | |
5363 | * This is typically the case for debug situations. In that | |
5364 | * case we can catch duplicate names easily. | |
5365 | */ | |
27c3a314 | 5366 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5367 | name = s->name; |
5368 | } else { | |
5369 | /* | |
5370 | * Create a unique name for the slab as a target | |
5371 | * for the symlinks. | |
5372 | */ | |
5373 | name = create_unique_id(s); | |
5374 | } | |
5375 | ||
9a41707b | 5376 | s->kobj.kset = cache_kset(s); |
26e4f205 | 5377 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5378 | if (err) |
80da026a | 5379 | goto out; |
81819f0f CL |
5380 | |
5381 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5382 | if (err) |
5383 | goto out_del_kobj; | |
9a41707b | 5384 | |
127424c8 | 5385 | #ifdef CONFIG_MEMCG |
9a41707b VD |
5386 | if (is_root_cache(s)) { |
5387 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); | |
5388 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5389 | err = -ENOMEM; |
5390 | goto out_del_kobj; | |
9a41707b VD |
5391 | } |
5392 | } | |
5393 | #endif | |
5394 | ||
81819f0f CL |
5395 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5396 | if (!unmergeable) { | |
5397 | /* Setup first alias */ | |
5398 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5399 | } |
54b6a731 DJ |
5400 | out: |
5401 | if (!unmergeable) | |
5402 | kfree(name); | |
5403 | return err; | |
5404 | out_del_kobj: | |
5405 | kobject_del(&s->kobj); | |
54b6a731 | 5406 | goto out; |
81819f0f CL |
5407 | } |
5408 | ||
41a21285 | 5409 | void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5410 | { |
97d06609 | 5411 | if (slab_state < FULL) |
2bce6485 CL |
5412 | /* |
5413 | * Sysfs has not been setup yet so no need to remove the | |
5414 | * cache from sysfs. | |
5415 | */ | |
5416 | return; | |
5417 | ||
127424c8 | 5418 | #ifdef CONFIG_MEMCG |
9a41707b VD |
5419 | kset_unregister(s->memcg_kset); |
5420 | #endif | |
81819f0f CL |
5421 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
5422 | kobject_del(&s->kobj); | |
151c602f | 5423 | kobject_put(&s->kobj); |
81819f0f CL |
5424 | } |
5425 | ||
5426 | /* | |
5427 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5428 | * available lest we lose that information. |
81819f0f CL |
5429 | */ |
5430 | struct saved_alias { | |
5431 | struct kmem_cache *s; | |
5432 | const char *name; | |
5433 | struct saved_alias *next; | |
5434 | }; | |
5435 | ||
5af328a5 | 5436 | static struct saved_alias *alias_list; |
81819f0f CL |
5437 | |
5438 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5439 | { | |
5440 | struct saved_alias *al; | |
5441 | ||
97d06609 | 5442 | if (slab_state == FULL) { |
81819f0f CL |
5443 | /* |
5444 | * If we have a leftover link then remove it. | |
5445 | */ | |
27c3a314 GKH |
5446 | sysfs_remove_link(&slab_kset->kobj, name); |
5447 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5448 | } |
5449 | ||
5450 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5451 | if (!al) | |
5452 | return -ENOMEM; | |
5453 | ||
5454 | al->s = s; | |
5455 | al->name = name; | |
5456 | al->next = alias_list; | |
5457 | alias_list = al; | |
5458 | return 0; | |
5459 | } | |
5460 | ||
5461 | static int __init slab_sysfs_init(void) | |
5462 | { | |
5b95a4ac | 5463 | struct kmem_cache *s; |
81819f0f CL |
5464 | int err; |
5465 | ||
18004c5d | 5466 | mutex_lock(&slab_mutex); |
2bce6485 | 5467 | |
0ff21e46 | 5468 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5469 | if (!slab_kset) { |
18004c5d | 5470 | mutex_unlock(&slab_mutex); |
f9f58285 | 5471 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5472 | return -ENOSYS; |
5473 | } | |
5474 | ||
97d06609 | 5475 | slab_state = FULL; |
26a7bd03 | 5476 | |
5b95a4ac | 5477 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5478 | err = sysfs_slab_add(s); |
5d540fb7 | 5479 | if (err) |
f9f58285 FF |
5480 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5481 | s->name); | |
26a7bd03 | 5482 | } |
81819f0f CL |
5483 | |
5484 | while (alias_list) { | |
5485 | struct saved_alias *al = alias_list; | |
5486 | ||
5487 | alias_list = alias_list->next; | |
5488 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5489 | if (err) |
f9f58285 FF |
5490 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5491 | al->name); | |
81819f0f CL |
5492 | kfree(al); |
5493 | } | |
5494 | ||
18004c5d | 5495 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5496 | resiliency_test(); |
5497 | return 0; | |
5498 | } | |
5499 | ||
5500 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5501 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5502 | |
5503 | /* | |
5504 | * The /proc/slabinfo ABI | |
5505 | */ | |
158a9624 | 5506 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 5507 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5508 | { |
57ed3eda | 5509 | unsigned long nr_slabs = 0; |
205ab99d CL |
5510 | unsigned long nr_objs = 0; |
5511 | unsigned long nr_free = 0; | |
57ed3eda | 5512 | int node; |
fa45dc25 | 5513 | struct kmem_cache_node *n; |
57ed3eda | 5514 | |
fa45dc25 | 5515 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5516 | nr_slabs += node_nr_slabs(n); |
5517 | nr_objs += node_nr_objs(n); | |
205ab99d | 5518 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5519 | } |
5520 | ||
0d7561c6 GC |
5521 | sinfo->active_objs = nr_objs - nr_free; |
5522 | sinfo->num_objs = nr_objs; | |
5523 | sinfo->active_slabs = nr_slabs; | |
5524 | sinfo->num_slabs = nr_slabs; | |
5525 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5526 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5527 | } |
5528 | ||
0d7561c6 | 5529 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5530 | { |
7b3c3a50 AD |
5531 | } |
5532 | ||
b7454ad3 GC |
5533 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5534 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5535 | { |
b7454ad3 | 5536 | return -EIO; |
7b3c3a50 | 5537 | } |
158a9624 | 5538 | #endif /* CONFIG_SLABINFO */ |