]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
cde53535 | 8 | * (C) 2007 SGI, Christoph Lameter |
81819f0f CL |
9 | */ |
10 | ||
11 | #include <linux/mm.h> | |
1eb5ac64 | 12 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
13 | #include <linux/module.h> |
14 | #include <linux/bit_spinlock.h> | |
15 | #include <linux/interrupt.h> | |
16 | #include <linux/bitops.h> | |
17 | #include <linux/slab.h> | |
7b3c3a50 | 18 | #include <linux/proc_fs.h> |
81819f0f | 19 | #include <linux/seq_file.h> |
02af61bb | 20 | #include <linux/kmemtrace.h> |
5a896d9e | 21 | #include <linux/kmemcheck.h> |
81819f0f CL |
22 | #include <linux/cpu.h> |
23 | #include <linux/cpuset.h> | |
24 | #include <linux/mempolicy.h> | |
25 | #include <linux/ctype.h> | |
3ac7fe5a | 26 | #include <linux/debugobjects.h> |
81819f0f | 27 | #include <linux/kallsyms.h> |
b9049e23 | 28 | #include <linux/memory.h> |
f8bd2258 | 29 | #include <linux/math64.h> |
773ff60e | 30 | #include <linux/fault-inject.h> |
81819f0f CL |
31 | |
32 | /* | |
33 | * Lock order: | |
34 | * 1. slab_lock(page) | |
35 | * 2. slab->list_lock | |
36 | * | |
37 | * The slab_lock protects operations on the object of a particular | |
38 | * slab and its metadata in the page struct. If the slab lock | |
39 | * has been taken then no allocations nor frees can be performed | |
40 | * on the objects in the slab nor can the slab be added or removed | |
41 | * from the partial or full lists since this would mean modifying | |
42 | * the page_struct of the slab. | |
43 | * | |
44 | * The list_lock protects the partial and full list on each node and | |
45 | * the partial slab counter. If taken then no new slabs may be added or | |
46 | * removed from the lists nor make the number of partial slabs be modified. | |
47 | * (Note that the total number of slabs is an atomic value that may be | |
48 | * modified without taking the list lock). | |
49 | * | |
50 | * The list_lock is a centralized lock and thus we avoid taking it as | |
51 | * much as possible. As long as SLUB does not have to handle partial | |
52 | * slabs, operations can continue without any centralized lock. F.e. | |
53 | * allocating a long series of objects that fill up slabs does not require | |
54 | * the list lock. | |
55 | * | |
56 | * The lock order is sometimes inverted when we are trying to get a slab | |
57 | * off a list. We take the list_lock and then look for a page on the list | |
58 | * to use. While we do that objects in the slabs may be freed. We can | |
59 | * only operate on the slab if we have also taken the slab_lock. So we use | |
60 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
61 | * can occur anymore and we can use the slab for allocations etc. If the | |
62 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
63 | * we must stay away from it for a while since we may cause a bouncing | |
64 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
65 | * If all pages are busy then we may allocate a new slab instead of reusing | |
66 | * a partial slab. A new slab has noone operating on it and thus there is | |
67 | * no danger of cacheline contention. | |
68 | * | |
69 | * Interrupts are disabled during allocation and deallocation in order to | |
70 | * make the slab allocator safe to use in the context of an irq. In addition | |
71 | * interrupts are disabled to ensure that the processor does not change | |
72 | * while handling per_cpu slabs, due to kernel preemption. | |
73 | * | |
74 | * SLUB assigns one slab for allocation to each processor. | |
75 | * Allocations only occur from these slabs called cpu slabs. | |
76 | * | |
672bba3a CL |
77 | * Slabs with free elements are kept on a partial list and during regular |
78 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 79 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
80 | * We track full slabs for debugging purposes though because otherwise we |
81 | * cannot scan all objects. | |
81819f0f CL |
82 | * |
83 | * Slabs are freed when they become empty. Teardown and setup is | |
84 | * minimal so we rely on the page allocators per cpu caches for | |
85 | * fast frees and allocs. | |
86 | * | |
87 | * Overloading of page flags that are otherwise used for LRU management. | |
88 | * | |
4b6f0750 CL |
89 | * PageActive The slab is frozen and exempt from list processing. |
90 | * This means that the slab is dedicated to a purpose | |
91 | * such as satisfying allocations for a specific | |
92 | * processor. Objects may be freed in the slab while | |
93 | * it is frozen but slab_free will then skip the usual | |
94 | * list operations. It is up to the processor holding | |
95 | * the slab to integrate the slab into the slab lists | |
96 | * when the slab is no longer needed. | |
97 | * | |
98 | * One use of this flag is to mark slabs that are | |
99 | * used for allocations. Then such a slab becomes a cpu | |
100 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 101 | * freelist that allows lockless access to |
894b8788 CL |
102 | * free objects in addition to the regular freelist |
103 | * that requires the slab lock. | |
81819f0f CL |
104 | * |
105 | * PageError Slab requires special handling due to debug | |
106 | * options set. This moves slab handling out of | |
894b8788 | 107 | * the fast path and disables lockless freelists. |
81819f0f CL |
108 | */ |
109 | ||
5577bd8a | 110 | #ifdef CONFIG_SLUB_DEBUG |
8a38082d | 111 | #define SLABDEBUG 1 |
5577bd8a CL |
112 | #else |
113 | #define SLABDEBUG 0 | |
114 | #endif | |
115 | ||
81819f0f CL |
116 | /* |
117 | * Issues still to be resolved: | |
118 | * | |
81819f0f CL |
119 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
120 | * | |
81819f0f CL |
121 | * - Variable sizing of the per node arrays |
122 | */ | |
123 | ||
124 | /* Enable to test recovery from slab corruption on boot */ | |
125 | #undef SLUB_RESILIENCY_TEST | |
126 | ||
2086d26a CL |
127 | /* |
128 | * Mininum number of partial slabs. These will be left on the partial | |
129 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
130 | */ | |
76be8950 | 131 | #define MIN_PARTIAL 5 |
e95eed57 | 132 | |
2086d26a CL |
133 | /* |
134 | * Maximum number of desirable partial slabs. | |
135 | * The existence of more partial slabs makes kmem_cache_shrink | |
136 | * sort the partial list by the number of objects in the. | |
137 | */ | |
138 | #define MAX_PARTIAL 10 | |
139 | ||
81819f0f CL |
140 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
141 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 142 | |
fa5ec8a1 | 143 | /* |
3de47213 DR |
144 | * Debugging flags that require metadata to be stored in the slab. These get |
145 | * disabled when slub_debug=O is used and a cache's min order increases with | |
146 | * metadata. | |
fa5ec8a1 | 147 | */ |
3de47213 | 148 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 149 | |
81819f0f CL |
150 | /* |
151 | * Set of flags that will prevent slab merging | |
152 | */ | |
153 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
4c13dd3b DM |
154 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ |
155 | SLAB_FAILSLAB) | |
81819f0f CL |
156 | |
157 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
5a896d9e | 158 | SLAB_CACHE_DMA | SLAB_NOTRACK) |
81819f0f CL |
159 | |
160 | #ifndef ARCH_KMALLOC_MINALIGN | |
47bfdc0d | 161 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
162 | #endif |
163 | ||
164 | #ifndef ARCH_SLAB_MINALIGN | |
47bfdc0d | 165 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
166 | #endif |
167 | ||
210b5c06 CG |
168 | #define OO_SHIFT 16 |
169 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
170 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ | |
171 | ||
81819f0f | 172 | /* Internal SLUB flags */ |
1ceef402 CL |
173 | #define __OBJECT_POISON 0x80000000 /* Poison object */ |
174 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | |
81819f0f CL |
175 | |
176 | static int kmem_size = sizeof(struct kmem_cache); | |
177 | ||
178 | #ifdef CONFIG_SMP | |
179 | static struct notifier_block slab_notifier; | |
180 | #endif | |
181 | ||
182 | static enum { | |
183 | DOWN, /* No slab functionality available */ | |
184 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | |
672bba3a | 185 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
186 | SYSFS /* Sysfs up */ |
187 | } slab_state = DOWN; | |
188 | ||
189 | /* A list of all slab caches on the system */ | |
190 | static DECLARE_RWSEM(slub_lock); | |
5af328a5 | 191 | static LIST_HEAD(slab_caches); |
81819f0f | 192 | |
02cbc874 CL |
193 | /* |
194 | * Tracking user of a slab. | |
195 | */ | |
196 | struct track { | |
ce71e27c | 197 | unsigned long addr; /* Called from address */ |
02cbc874 CL |
198 | int cpu; /* Was running on cpu */ |
199 | int pid; /* Pid context */ | |
200 | unsigned long when; /* When did the operation occur */ | |
201 | }; | |
202 | ||
203 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
204 | ||
f6acb635 | 205 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
206 | static int sysfs_slab_add(struct kmem_cache *); |
207 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
208 | static void sysfs_slab_remove(struct kmem_cache *); | |
8ff12cfc | 209 | |
81819f0f | 210 | #else |
0c710013 CL |
211 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
212 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
213 | { return 0; } | |
151c602f CL |
214 | static inline void sysfs_slab_remove(struct kmem_cache *s) |
215 | { | |
216 | kfree(s); | |
217 | } | |
8ff12cfc | 218 | |
81819f0f CL |
219 | #endif |
220 | ||
84e554e6 | 221 | static inline void stat(struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
222 | { |
223 | #ifdef CONFIG_SLUB_STATS | |
84e554e6 | 224 | __this_cpu_inc(s->cpu_slab->stat[si]); |
8ff12cfc CL |
225 | #endif |
226 | } | |
227 | ||
81819f0f CL |
228 | /******************************************************************** |
229 | * Core slab cache functions | |
230 | *******************************************************************/ | |
231 | ||
232 | int slab_is_available(void) | |
233 | { | |
234 | return slab_state >= UP; | |
235 | } | |
236 | ||
237 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
238 | { | |
239 | #ifdef CONFIG_NUMA | |
240 | return s->node[node]; | |
241 | #else | |
242 | return &s->local_node; | |
243 | #endif | |
244 | } | |
245 | ||
6446faa2 | 246 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
247 | static inline int check_valid_pointer(struct kmem_cache *s, |
248 | struct page *page, const void *object) | |
249 | { | |
250 | void *base; | |
251 | ||
a973e9dd | 252 | if (!object) |
02cbc874 CL |
253 | return 1; |
254 | ||
a973e9dd | 255 | base = page_address(page); |
39b26464 | 256 | if (object < base || object >= base + page->objects * s->size || |
02cbc874 CL |
257 | (object - base) % s->size) { |
258 | return 0; | |
259 | } | |
260 | ||
261 | return 1; | |
262 | } | |
263 | ||
7656c72b CL |
264 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
265 | { | |
266 | return *(void **)(object + s->offset); | |
267 | } | |
268 | ||
269 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
270 | { | |
271 | *(void **)(object + s->offset) = fp; | |
272 | } | |
273 | ||
274 | /* Loop over all objects in a slab */ | |
224a88be CL |
275 | #define for_each_object(__p, __s, __addr, __objects) \ |
276 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | |
7656c72b CL |
277 | __p += (__s)->size) |
278 | ||
279 | /* Scan freelist */ | |
280 | #define for_each_free_object(__p, __s, __free) \ | |
a973e9dd | 281 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) |
7656c72b CL |
282 | |
283 | /* Determine object index from a given position */ | |
284 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
285 | { | |
286 | return (p - addr) / s->size; | |
287 | } | |
288 | ||
834f3d11 CL |
289 | static inline struct kmem_cache_order_objects oo_make(int order, |
290 | unsigned long size) | |
291 | { | |
292 | struct kmem_cache_order_objects x = { | |
210b5c06 | 293 | (order << OO_SHIFT) + (PAGE_SIZE << order) / size |
834f3d11 CL |
294 | }; |
295 | ||
296 | return x; | |
297 | } | |
298 | ||
299 | static inline int oo_order(struct kmem_cache_order_objects x) | |
300 | { | |
210b5c06 | 301 | return x.x >> OO_SHIFT; |
834f3d11 CL |
302 | } |
303 | ||
304 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
305 | { | |
210b5c06 | 306 | return x.x & OO_MASK; |
834f3d11 CL |
307 | } |
308 | ||
41ecc55b CL |
309 | #ifdef CONFIG_SLUB_DEBUG |
310 | /* | |
311 | * Debug settings: | |
312 | */ | |
f0630fff CL |
313 | #ifdef CONFIG_SLUB_DEBUG_ON |
314 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
315 | #else | |
41ecc55b | 316 | static int slub_debug; |
f0630fff | 317 | #endif |
41ecc55b CL |
318 | |
319 | static char *slub_debug_slabs; | |
fa5ec8a1 | 320 | static int disable_higher_order_debug; |
41ecc55b | 321 | |
81819f0f CL |
322 | /* |
323 | * Object debugging | |
324 | */ | |
325 | static void print_section(char *text, u8 *addr, unsigned int length) | |
326 | { | |
327 | int i, offset; | |
328 | int newline = 1; | |
329 | char ascii[17]; | |
330 | ||
331 | ascii[16] = 0; | |
332 | ||
333 | for (i = 0; i < length; i++) { | |
334 | if (newline) { | |
24922684 | 335 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
336 | newline = 0; |
337 | } | |
06428780 | 338 | printk(KERN_CONT " %02x", addr[i]); |
81819f0f CL |
339 | offset = i % 16; |
340 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
341 | if (offset == 15) { | |
06428780 | 342 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
343 | newline = 1; |
344 | } | |
345 | } | |
346 | if (!newline) { | |
347 | i %= 16; | |
348 | while (i < 16) { | |
06428780 | 349 | printk(KERN_CONT " "); |
81819f0f CL |
350 | ascii[i] = ' '; |
351 | i++; | |
352 | } | |
06428780 | 353 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
354 | } |
355 | } | |
356 | ||
81819f0f CL |
357 | static struct track *get_track(struct kmem_cache *s, void *object, |
358 | enum track_item alloc) | |
359 | { | |
360 | struct track *p; | |
361 | ||
362 | if (s->offset) | |
363 | p = object + s->offset + sizeof(void *); | |
364 | else | |
365 | p = object + s->inuse; | |
366 | ||
367 | return p + alloc; | |
368 | } | |
369 | ||
370 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 371 | enum track_item alloc, unsigned long addr) |
81819f0f | 372 | { |
1a00df4a | 373 | struct track *p = get_track(s, object, alloc); |
81819f0f | 374 | |
81819f0f CL |
375 | if (addr) { |
376 | p->addr = addr; | |
377 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 378 | p->pid = current->pid; |
81819f0f CL |
379 | p->when = jiffies; |
380 | } else | |
381 | memset(p, 0, sizeof(struct track)); | |
382 | } | |
383 | ||
81819f0f CL |
384 | static void init_tracking(struct kmem_cache *s, void *object) |
385 | { | |
24922684 CL |
386 | if (!(s->flags & SLAB_STORE_USER)) |
387 | return; | |
388 | ||
ce71e27c EGM |
389 | set_track(s, object, TRACK_FREE, 0UL); |
390 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
391 | } |
392 | ||
393 | static void print_track(const char *s, struct track *t) | |
394 | { | |
395 | if (!t->addr) | |
396 | return; | |
397 | ||
7daf705f | 398 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
ce71e27c | 399 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
24922684 CL |
400 | } |
401 | ||
402 | static void print_tracking(struct kmem_cache *s, void *object) | |
403 | { | |
404 | if (!(s->flags & SLAB_STORE_USER)) | |
405 | return; | |
406 | ||
407 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
408 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
409 | } | |
410 | ||
411 | static void print_page_info(struct page *page) | |
412 | { | |
39b26464 CL |
413 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
414 | page, page->objects, page->inuse, page->freelist, page->flags); | |
24922684 CL |
415 | |
416 | } | |
417 | ||
418 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
419 | { | |
420 | va_list args; | |
421 | char buf[100]; | |
422 | ||
423 | va_start(args, fmt); | |
424 | vsnprintf(buf, sizeof(buf), fmt, args); | |
425 | va_end(args); | |
426 | printk(KERN_ERR "========================================" | |
427 | "=====================================\n"); | |
428 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
429 | printk(KERN_ERR "----------------------------------------" | |
430 | "-------------------------------------\n\n"); | |
81819f0f CL |
431 | } |
432 | ||
24922684 CL |
433 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
434 | { | |
435 | va_list args; | |
436 | char buf[100]; | |
437 | ||
438 | va_start(args, fmt); | |
439 | vsnprintf(buf, sizeof(buf), fmt, args); | |
440 | va_end(args); | |
441 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
442 | } | |
443 | ||
444 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
445 | { |
446 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 447 | u8 *addr = page_address(page); |
24922684 CL |
448 | |
449 | print_tracking(s, p); | |
450 | ||
451 | print_page_info(page); | |
452 | ||
453 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
454 | p, p - addr, get_freepointer(s, p)); | |
455 | ||
456 | if (p > addr + 16) | |
457 | print_section("Bytes b4", p - 16, 16); | |
458 | ||
0ebd652b | 459 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); |
81819f0f CL |
460 | |
461 | if (s->flags & SLAB_RED_ZONE) | |
462 | print_section("Redzone", p + s->objsize, | |
463 | s->inuse - s->objsize); | |
464 | ||
81819f0f CL |
465 | if (s->offset) |
466 | off = s->offset + sizeof(void *); | |
467 | else | |
468 | off = s->inuse; | |
469 | ||
24922684 | 470 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 471 | off += 2 * sizeof(struct track); |
81819f0f CL |
472 | |
473 | if (off != s->size) | |
474 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
475 | print_section("Padding", p + off, s->size - off); |
476 | ||
477 | dump_stack(); | |
81819f0f CL |
478 | } |
479 | ||
480 | static void object_err(struct kmem_cache *s, struct page *page, | |
481 | u8 *object, char *reason) | |
482 | { | |
3dc50637 | 483 | slab_bug(s, "%s", reason); |
24922684 | 484 | print_trailer(s, page, object); |
81819f0f CL |
485 | } |
486 | ||
24922684 | 487 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
488 | { |
489 | va_list args; | |
490 | char buf[100]; | |
491 | ||
24922684 CL |
492 | va_start(args, fmt); |
493 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 494 | va_end(args); |
3dc50637 | 495 | slab_bug(s, "%s", buf); |
24922684 | 496 | print_page_info(page); |
81819f0f CL |
497 | dump_stack(); |
498 | } | |
499 | ||
500 | static void init_object(struct kmem_cache *s, void *object, int active) | |
501 | { | |
502 | u8 *p = object; | |
503 | ||
504 | if (s->flags & __OBJECT_POISON) { | |
505 | memset(p, POISON_FREE, s->objsize - 1); | |
06428780 | 506 | p[s->objsize - 1] = POISON_END; |
81819f0f CL |
507 | } |
508 | ||
509 | if (s->flags & SLAB_RED_ZONE) | |
510 | memset(p + s->objsize, | |
511 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | |
512 | s->inuse - s->objsize); | |
513 | } | |
514 | ||
24922684 | 515 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
516 | { |
517 | while (bytes) { | |
518 | if (*start != (u8)value) | |
24922684 | 519 | return start; |
81819f0f CL |
520 | start++; |
521 | bytes--; | |
522 | } | |
24922684 CL |
523 | return NULL; |
524 | } | |
525 | ||
526 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
527 | void *from, void *to) | |
528 | { | |
529 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
530 | memset(from, data, to - from); | |
531 | } | |
532 | ||
533 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
534 | u8 *object, char *what, | |
06428780 | 535 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
536 | { |
537 | u8 *fault; | |
538 | u8 *end; | |
539 | ||
540 | fault = check_bytes(start, value, bytes); | |
541 | if (!fault) | |
542 | return 1; | |
543 | ||
544 | end = start + bytes; | |
545 | while (end > fault && end[-1] == value) | |
546 | end--; | |
547 | ||
548 | slab_bug(s, "%s overwritten", what); | |
549 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
550 | fault, end - 1, fault[0], value); | |
551 | print_trailer(s, page, object); | |
552 | ||
553 | restore_bytes(s, what, value, fault, end); | |
554 | return 0; | |
81819f0f CL |
555 | } |
556 | ||
81819f0f CL |
557 | /* |
558 | * Object layout: | |
559 | * | |
560 | * object address | |
561 | * Bytes of the object to be managed. | |
562 | * If the freepointer may overlay the object then the free | |
563 | * pointer is the first word of the object. | |
672bba3a | 564 | * |
81819f0f CL |
565 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
566 | * 0xa5 (POISON_END) | |
567 | * | |
568 | * object + s->objsize | |
569 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
570 | * Padding is extended by another word if Redzoning is enabled and |
571 | * objsize == inuse. | |
572 | * | |
81819f0f CL |
573 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
574 | * 0xcc (RED_ACTIVE) for objects in use. | |
575 | * | |
576 | * object + s->inuse | |
672bba3a CL |
577 | * Meta data starts here. |
578 | * | |
81819f0f CL |
579 | * A. Free pointer (if we cannot overwrite object on free) |
580 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 581 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 582 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
583 | * before the word boundary. |
584 | * | |
585 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
586 | * |
587 | * object + s->size | |
672bba3a | 588 | * Nothing is used beyond s->size. |
81819f0f | 589 | * |
672bba3a CL |
590 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
591 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
592 | * may be used with merged slabcaches. |
593 | */ | |
594 | ||
81819f0f CL |
595 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
596 | { | |
597 | unsigned long off = s->inuse; /* The end of info */ | |
598 | ||
599 | if (s->offset) | |
600 | /* Freepointer is placed after the object. */ | |
601 | off += sizeof(void *); | |
602 | ||
603 | if (s->flags & SLAB_STORE_USER) | |
604 | /* We also have user information there */ | |
605 | off += 2 * sizeof(struct track); | |
606 | ||
607 | if (s->size == off) | |
608 | return 1; | |
609 | ||
24922684 CL |
610 | return check_bytes_and_report(s, page, p, "Object padding", |
611 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
612 | } |
613 | ||
39b26464 | 614 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
615 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
616 | { | |
24922684 CL |
617 | u8 *start; |
618 | u8 *fault; | |
619 | u8 *end; | |
620 | int length; | |
621 | int remainder; | |
81819f0f CL |
622 | |
623 | if (!(s->flags & SLAB_POISON)) | |
624 | return 1; | |
625 | ||
a973e9dd | 626 | start = page_address(page); |
834f3d11 | 627 | length = (PAGE_SIZE << compound_order(page)); |
39b26464 CL |
628 | end = start + length; |
629 | remainder = length % s->size; | |
81819f0f CL |
630 | if (!remainder) |
631 | return 1; | |
632 | ||
39b26464 | 633 | fault = check_bytes(end - remainder, POISON_INUSE, remainder); |
24922684 CL |
634 | if (!fault) |
635 | return 1; | |
636 | while (end > fault && end[-1] == POISON_INUSE) | |
637 | end--; | |
638 | ||
639 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
39b26464 | 640 | print_section("Padding", end - remainder, remainder); |
24922684 | 641 | |
8a3d271d | 642 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
24922684 | 643 | return 0; |
81819f0f CL |
644 | } |
645 | ||
646 | static int check_object(struct kmem_cache *s, struct page *page, | |
647 | void *object, int active) | |
648 | { | |
649 | u8 *p = object; | |
650 | u8 *endobject = object + s->objsize; | |
651 | ||
652 | if (s->flags & SLAB_RED_ZONE) { | |
653 | unsigned int red = | |
654 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | |
655 | ||
24922684 CL |
656 | if (!check_bytes_and_report(s, page, object, "Redzone", |
657 | endobject, red, s->inuse - s->objsize)) | |
81819f0f | 658 | return 0; |
81819f0f | 659 | } else { |
3adbefee IM |
660 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { |
661 | check_bytes_and_report(s, page, p, "Alignment padding", | |
662 | endobject, POISON_INUSE, s->inuse - s->objsize); | |
663 | } | |
81819f0f CL |
664 | } |
665 | ||
666 | if (s->flags & SLAB_POISON) { | |
667 | if (!active && (s->flags & __OBJECT_POISON) && | |
24922684 CL |
668 | (!check_bytes_and_report(s, page, p, "Poison", p, |
669 | POISON_FREE, s->objsize - 1) || | |
670 | !check_bytes_and_report(s, page, p, "Poison", | |
06428780 | 671 | p + s->objsize - 1, POISON_END, 1))) |
81819f0f | 672 | return 0; |
81819f0f CL |
673 | /* |
674 | * check_pad_bytes cleans up on its own. | |
675 | */ | |
676 | check_pad_bytes(s, page, p); | |
677 | } | |
678 | ||
679 | if (!s->offset && active) | |
680 | /* | |
681 | * Object and freepointer overlap. Cannot check | |
682 | * freepointer while object is allocated. | |
683 | */ | |
684 | return 1; | |
685 | ||
686 | /* Check free pointer validity */ | |
687 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
688 | object_err(s, page, p, "Freepointer corrupt"); | |
689 | /* | |
9f6c708e | 690 | * No choice but to zap it and thus lose the remainder |
81819f0f | 691 | * of the free objects in this slab. May cause |
672bba3a | 692 | * another error because the object count is now wrong. |
81819f0f | 693 | */ |
a973e9dd | 694 | set_freepointer(s, p, NULL); |
81819f0f CL |
695 | return 0; |
696 | } | |
697 | return 1; | |
698 | } | |
699 | ||
700 | static int check_slab(struct kmem_cache *s, struct page *page) | |
701 | { | |
39b26464 CL |
702 | int maxobj; |
703 | ||
81819f0f CL |
704 | VM_BUG_ON(!irqs_disabled()); |
705 | ||
706 | if (!PageSlab(page)) { | |
24922684 | 707 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
708 | return 0; |
709 | } | |
39b26464 CL |
710 | |
711 | maxobj = (PAGE_SIZE << compound_order(page)) / s->size; | |
712 | if (page->objects > maxobj) { | |
713 | slab_err(s, page, "objects %u > max %u", | |
714 | s->name, page->objects, maxobj); | |
715 | return 0; | |
716 | } | |
717 | if (page->inuse > page->objects) { | |
24922684 | 718 | slab_err(s, page, "inuse %u > max %u", |
39b26464 | 719 | s->name, page->inuse, page->objects); |
81819f0f CL |
720 | return 0; |
721 | } | |
722 | /* Slab_pad_check fixes things up after itself */ | |
723 | slab_pad_check(s, page); | |
724 | return 1; | |
725 | } | |
726 | ||
727 | /* | |
672bba3a CL |
728 | * Determine if a certain object on a page is on the freelist. Must hold the |
729 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
730 | */ |
731 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
732 | { | |
733 | int nr = 0; | |
734 | void *fp = page->freelist; | |
735 | void *object = NULL; | |
224a88be | 736 | unsigned long max_objects; |
81819f0f | 737 | |
39b26464 | 738 | while (fp && nr <= page->objects) { |
81819f0f CL |
739 | if (fp == search) |
740 | return 1; | |
741 | if (!check_valid_pointer(s, page, fp)) { | |
742 | if (object) { | |
743 | object_err(s, page, object, | |
744 | "Freechain corrupt"); | |
a973e9dd | 745 | set_freepointer(s, object, NULL); |
81819f0f CL |
746 | break; |
747 | } else { | |
24922684 | 748 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 749 | page->freelist = NULL; |
39b26464 | 750 | page->inuse = page->objects; |
24922684 | 751 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
752 | return 0; |
753 | } | |
754 | break; | |
755 | } | |
756 | object = fp; | |
757 | fp = get_freepointer(s, object); | |
758 | nr++; | |
759 | } | |
760 | ||
224a88be | 761 | max_objects = (PAGE_SIZE << compound_order(page)) / s->size; |
210b5c06 CG |
762 | if (max_objects > MAX_OBJS_PER_PAGE) |
763 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
764 | |
765 | if (page->objects != max_objects) { | |
766 | slab_err(s, page, "Wrong number of objects. Found %d but " | |
767 | "should be %d", page->objects, max_objects); | |
768 | page->objects = max_objects; | |
769 | slab_fix(s, "Number of objects adjusted."); | |
770 | } | |
39b26464 | 771 | if (page->inuse != page->objects - nr) { |
70d71228 | 772 | slab_err(s, page, "Wrong object count. Counter is %d but " |
39b26464 CL |
773 | "counted were %d", page->inuse, page->objects - nr); |
774 | page->inuse = page->objects - nr; | |
24922684 | 775 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
776 | } |
777 | return search == NULL; | |
778 | } | |
779 | ||
0121c619 CL |
780 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
781 | int alloc) | |
3ec09742 CL |
782 | { |
783 | if (s->flags & SLAB_TRACE) { | |
784 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
785 | s->name, | |
786 | alloc ? "alloc" : "free", | |
787 | object, page->inuse, | |
788 | page->freelist); | |
789 | ||
790 | if (!alloc) | |
791 | print_section("Object", (void *)object, s->objsize); | |
792 | ||
793 | dump_stack(); | |
794 | } | |
795 | } | |
796 | ||
643b1138 | 797 | /* |
672bba3a | 798 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 799 | */ |
e95eed57 | 800 | static void add_full(struct kmem_cache_node *n, struct page *page) |
643b1138 | 801 | { |
643b1138 CL |
802 | spin_lock(&n->list_lock); |
803 | list_add(&page->lru, &n->full); | |
804 | spin_unlock(&n->list_lock); | |
805 | } | |
806 | ||
807 | static void remove_full(struct kmem_cache *s, struct page *page) | |
808 | { | |
809 | struct kmem_cache_node *n; | |
810 | ||
811 | if (!(s->flags & SLAB_STORE_USER)) | |
812 | return; | |
813 | ||
814 | n = get_node(s, page_to_nid(page)); | |
815 | ||
816 | spin_lock(&n->list_lock); | |
817 | list_del(&page->lru); | |
818 | spin_unlock(&n->list_lock); | |
819 | } | |
820 | ||
0f389ec6 CL |
821 | /* Tracking of the number of slabs for debugging purposes */ |
822 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
823 | { | |
824 | struct kmem_cache_node *n = get_node(s, node); | |
825 | ||
826 | return atomic_long_read(&n->nr_slabs); | |
827 | } | |
828 | ||
26c02cf0 AB |
829 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
830 | { | |
831 | return atomic_long_read(&n->nr_slabs); | |
832 | } | |
833 | ||
205ab99d | 834 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
835 | { |
836 | struct kmem_cache_node *n = get_node(s, node); | |
837 | ||
838 | /* | |
839 | * May be called early in order to allocate a slab for the | |
840 | * kmem_cache_node structure. Solve the chicken-egg | |
841 | * dilemma by deferring the increment of the count during | |
842 | * bootstrap (see early_kmem_cache_node_alloc). | |
843 | */ | |
205ab99d | 844 | if (!NUMA_BUILD || n) { |
0f389ec6 | 845 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
846 | atomic_long_add(objects, &n->total_objects); |
847 | } | |
0f389ec6 | 848 | } |
205ab99d | 849 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
850 | { |
851 | struct kmem_cache_node *n = get_node(s, node); | |
852 | ||
853 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 854 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
855 | } |
856 | ||
857 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
858 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
859 | void *object) | |
860 | { | |
861 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
862 | return; | |
863 | ||
864 | init_object(s, object, 0); | |
865 | init_tracking(s, object); | |
866 | } | |
867 | ||
868 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | |
ce71e27c | 869 | void *object, unsigned long addr) |
81819f0f CL |
870 | { |
871 | if (!check_slab(s, page)) | |
872 | goto bad; | |
873 | ||
d692ef6d | 874 | if (!on_freelist(s, page, object)) { |
24922684 | 875 | object_err(s, page, object, "Object already allocated"); |
70d71228 | 876 | goto bad; |
81819f0f CL |
877 | } |
878 | ||
879 | if (!check_valid_pointer(s, page, object)) { | |
880 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 881 | goto bad; |
81819f0f CL |
882 | } |
883 | ||
d692ef6d | 884 | if (!check_object(s, page, object, 0)) |
81819f0f | 885 | goto bad; |
81819f0f | 886 | |
3ec09742 CL |
887 | /* Success perform special debug activities for allocs */ |
888 | if (s->flags & SLAB_STORE_USER) | |
889 | set_track(s, object, TRACK_ALLOC, addr); | |
890 | trace(s, page, object, 1); | |
891 | init_object(s, object, 1); | |
81819f0f | 892 | return 1; |
3ec09742 | 893 | |
81819f0f CL |
894 | bad: |
895 | if (PageSlab(page)) { | |
896 | /* | |
897 | * If this is a slab page then lets do the best we can | |
898 | * to avoid issues in the future. Marking all objects | |
672bba3a | 899 | * as used avoids touching the remaining objects. |
81819f0f | 900 | */ |
24922684 | 901 | slab_fix(s, "Marking all objects used"); |
39b26464 | 902 | page->inuse = page->objects; |
a973e9dd | 903 | page->freelist = NULL; |
81819f0f CL |
904 | } |
905 | return 0; | |
906 | } | |
907 | ||
3ec09742 | 908 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
ce71e27c | 909 | void *object, unsigned long addr) |
81819f0f CL |
910 | { |
911 | if (!check_slab(s, page)) | |
912 | goto fail; | |
913 | ||
914 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 915 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
916 | goto fail; |
917 | } | |
918 | ||
919 | if (on_freelist(s, page, object)) { | |
24922684 | 920 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
921 | goto fail; |
922 | } | |
923 | ||
924 | if (!check_object(s, page, object, 1)) | |
925 | return 0; | |
926 | ||
927 | if (unlikely(s != page->slab)) { | |
3adbefee | 928 | if (!PageSlab(page)) { |
70d71228 CL |
929 | slab_err(s, page, "Attempt to free object(0x%p) " |
930 | "outside of slab", object); | |
3adbefee | 931 | } else if (!page->slab) { |
81819f0f | 932 | printk(KERN_ERR |
70d71228 | 933 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 934 | object); |
70d71228 | 935 | dump_stack(); |
06428780 | 936 | } else |
24922684 CL |
937 | object_err(s, page, object, |
938 | "page slab pointer corrupt."); | |
81819f0f CL |
939 | goto fail; |
940 | } | |
3ec09742 CL |
941 | |
942 | /* Special debug activities for freeing objects */ | |
8a38082d | 943 | if (!PageSlubFrozen(page) && !page->freelist) |
3ec09742 CL |
944 | remove_full(s, page); |
945 | if (s->flags & SLAB_STORE_USER) | |
946 | set_track(s, object, TRACK_FREE, addr); | |
947 | trace(s, page, object, 0); | |
948 | init_object(s, object, 0); | |
81819f0f | 949 | return 1; |
3ec09742 | 950 | |
81819f0f | 951 | fail: |
24922684 | 952 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
953 | return 0; |
954 | } | |
955 | ||
41ecc55b CL |
956 | static int __init setup_slub_debug(char *str) |
957 | { | |
f0630fff CL |
958 | slub_debug = DEBUG_DEFAULT_FLAGS; |
959 | if (*str++ != '=' || !*str) | |
960 | /* | |
961 | * No options specified. Switch on full debugging. | |
962 | */ | |
963 | goto out; | |
964 | ||
965 | if (*str == ',') | |
966 | /* | |
967 | * No options but restriction on slabs. This means full | |
968 | * debugging for slabs matching a pattern. | |
969 | */ | |
970 | goto check_slabs; | |
971 | ||
fa5ec8a1 DR |
972 | if (tolower(*str) == 'o') { |
973 | /* | |
974 | * Avoid enabling debugging on caches if its minimum order | |
975 | * would increase as a result. | |
976 | */ | |
977 | disable_higher_order_debug = 1; | |
978 | goto out; | |
979 | } | |
980 | ||
f0630fff CL |
981 | slub_debug = 0; |
982 | if (*str == '-') | |
983 | /* | |
984 | * Switch off all debugging measures. | |
985 | */ | |
986 | goto out; | |
987 | ||
988 | /* | |
989 | * Determine which debug features should be switched on | |
990 | */ | |
06428780 | 991 | for (; *str && *str != ','; str++) { |
f0630fff CL |
992 | switch (tolower(*str)) { |
993 | case 'f': | |
994 | slub_debug |= SLAB_DEBUG_FREE; | |
995 | break; | |
996 | case 'z': | |
997 | slub_debug |= SLAB_RED_ZONE; | |
998 | break; | |
999 | case 'p': | |
1000 | slub_debug |= SLAB_POISON; | |
1001 | break; | |
1002 | case 'u': | |
1003 | slub_debug |= SLAB_STORE_USER; | |
1004 | break; | |
1005 | case 't': | |
1006 | slub_debug |= SLAB_TRACE; | |
1007 | break; | |
4c13dd3b DM |
1008 | case 'a': |
1009 | slub_debug |= SLAB_FAILSLAB; | |
1010 | break; | |
f0630fff CL |
1011 | default: |
1012 | printk(KERN_ERR "slub_debug option '%c' " | |
06428780 | 1013 | "unknown. skipped\n", *str); |
f0630fff | 1014 | } |
41ecc55b CL |
1015 | } |
1016 | ||
f0630fff | 1017 | check_slabs: |
41ecc55b CL |
1018 | if (*str == ',') |
1019 | slub_debug_slabs = str + 1; | |
f0630fff | 1020 | out: |
41ecc55b CL |
1021 | return 1; |
1022 | } | |
1023 | ||
1024 | __setup("slub_debug", setup_slub_debug); | |
1025 | ||
ba0268a8 CL |
1026 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1027 | unsigned long flags, const char *name, | |
51cc5068 | 1028 | void (*ctor)(void *)) |
41ecc55b CL |
1029 | { |
1030 | /* | |
e153362a | 1031 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1032 | */ |
e153362a | 1033 | if (slub_debug && (!slub_debug_slabs || |
3de47213 DR |
1034 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) |
1035 | flags |= slub_debug; | |
ba0268a8 CL |
1036 | |
1037 | return flags; | |
41ecc55b CL |
1038 | } |
1039 | #else | |
3ec09742 CL |
1040 | static inline void setup_object_debug(struct kmem_cache *s, |
1041 | struct page *page, void *object) {} | |
41ecc55b | 1042 | |
3ec09742 | 1043 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1044 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1045 | |
3ec09742 | 1046 | static inline int free_debug_processing(struct kmem_cache *s, |
ce71e27c | 1047 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1048 | |
41ecc55b CL |
1049 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1050 | { return 1; } | |
1051 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
1052 | void *object, int active) { return 1; } | |
3ec09742 | 1053 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
ba0268a8 CL |
1054 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1055 | unsigned long flags, const char *name, | |
51cc5068 | 1056 | void (*ctor)(void *)) |
ba0268a8 CL |
1057 | { |
1058 | return flags; | |
1059 | } | |
41ecc55b | 1060 | #define slub_debug 0 |
0f389ec6 | 1061 | |
fdaa45e9 IM |
1062 | #define disable_higher_order_debug 0 |
1063 | ||
0f389ec6 CL |
1064 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1065 | { return 0; } | |
26c02cf0 AB |
1066 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1067 | { return 0; } | |
205ab99d CL |
1068 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1069 | int objects) {} | |
1070 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1071 | int objects) {} | |
41ecc55b | 1072 | #endif |
205ab99d | 1073 | |
81819f0f CL |
1074 | /* |
1075 | * Slab allocation and freeing | |
1076 | */ | |
65c3376a CL |
1077 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1078 | struct kmem_cache_order_objects oo) | |
1079 | { | |
1080 | int order = oo_order(oo); | |
1081 | ||
b1eeab67 VN |
1082 | flags |= __GFP_NOTRACK; |
1083 | ||
65c3376a CL |
1084 | if (node == -1) |
1085 | return alloc_pages(flags, order); | |
1086 | else | |
1087 | return alloc_pages_node(node, flags, order); | |
1088 | } | |
1089 | ||
81819f0f CL |
1090 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1091 | { | |
06428780 | 1092 | struct page *page; |
834f3d11 | 1093 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1094 | gfp_t alloc_gfp; |
81819f0f | 1095 | |
b7a49f0d | 1096 | flags |= s->allocflags; |
e12ba74d | 1097 | |
ba52270d PE |
1098 | /* |
1099 | * Let the initial higher-order allocation fail under memory pressure | |
1100 | * so we fall-back to the minimum order allocation. | |
1101 | */ | |
1102 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
1103 | ||
1104 | page = alloc_slab_page(alloc_gfp, node, oo); | |
65c3376a CL |
1105 | if (unlikely(!page)) { |
1106 | oo = s->min; | |
1107 | /* | |
1108 | * Allocation may have failed due to fragmentation. | |
1109 | * Try a lower order alloc if possible | |
1110 | */ | |
1111 | page = alloc_slab_page(flags, node, oo); | |
1112 | if (!page) | |
1113 | return NULL; | |
81819f0f | 1114 | |
84e554e6 | 1115 | stat(s, ORDER_FALLBACK); |
65c3376a | 1116 | } |
5a896d9e VN |
1117 | |
1118 | if (kmemcheck_enabled | |
5086c389 | 1119 | && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { |
b1eeab67 VN |
1120 | int pages = 1 << oo_order(oo); |
1121 | ||
1122 | kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); | |
1123 | ||
1124 | /* | |
1125 | * Objects from caches that have a constructor don't get | |
1126 | * cleared when they're allocated, so we need to do it here. | |
1127 | */ | |
1128 | if (s->ctor) | |
1129 | kmemcheck_mark_uninitialized_pages(page, pages); | |
1130 | else | |
1131 | kmemcheck_mark_unallocated_pages(page, pages); | |
5a896d9e VN |
1132 | } |
1133 | ||
834f3d11 | 1134 | page->objects = oo_objects(oo); |
81819f0f CL |
1135 | mod_zone_page_state(page_zone(page), |
1136 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1137 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
65c3376a | 1138 | 1 << oo_order(oo)); |
81819f0f CL |
1139 | |
1140 | return page; | |
1141 | } | |
1142 | ||
1143 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1144 | void *object) | |
1145 | { | |
3ec09742 | 1146 | setup_object_debug(s, page, object); |
4f104934 | 1147 | if (unlikely(s->ctor)) |
51cc5068 | 1148 | s->ctor(object); |
81819f0f CL |
1149 | } |
1150 | ||
1151 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1152 | { | |
1153 | struct page *page; | |
81819f0f | 1154 | void *start; |
81819f0f CL |
1155 | void *last; |
1156 | void *p; | |
1157 | ||
6cb06229 | 1158 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1159 | |
6cb06229 CL |
1160 | page = allocate_slab(s, |
1161 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1162 | if (!page) |
1163 | goto out; | |
1164 | ||
205ab99d | 1165 | inc_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1166 | page->slab = s; |
1167 | page->flags |= 1 << PG_slab; | |
1168 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | |
1169 | SLAB_STORE_USER | SLAB_TRACE)) | |
8a38082d | 1170 | __SetPageSlubDebug(page); |
81819f0f CL |
1171 | |
1172 | start = page_address(page); | |
81819f0f CL |
1173 | |
1174 | if (unlikely(s->flags & SLAB_POISON)) | |
834f3d11 | 1175 | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); |
81819f0f CL |
1176 | |
1177 | last = start; | |
224a88be | 1178 | for_each_object(p, s, start, page->objects) { |
81819f0f CL |
1179 | setup_object(s, page, last); |
1180 | set_freepointer(s, last, p); | |
1181 | last = p; | |
1182 | } | |
1183 | setup_object(s, page, last); | |
a973e9dd | 1184 | set_freepointer(s, last, NULL); |
81819f0f CL |
1185 | |
1186 | page->freelist = start; | |
1187 | page->inuse = 0; | |
1188 | out: | |
81819f0f CL |
1189 | return page; |
1190 | } | |
1191 | ||
1192 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1193 | { | |
834f3d11 CL |
1194 | int order = compound_order(page); |
1195 | int pages = 1 << order; | |
81819f0f | 1196 | |
8a38082d | 1197 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { |
81819f0f CL |
1198 | void *p; |
1199 | ||
1200 | slab_pad_check(s, page); | |
224a88be CL |
1201 | for_each_object(p, s, page_address(page), |
1202 | page->objects) | |
81819f0f | 1203 | check_object(s, page, p, 0); |
8a38082d | 1204 | __ClearPageSlubDebug(page); |
81819f0f CL |
1205 | } |
1206 | ||
b1eeab67 | 1207 | kmemcheck_free_shadow(page, compound_order(page)); |
5a896d9e | 1208 | |
81819f0f CL |
1209 | mod_zone_page_state(page_zone(page), |
1210 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1211 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1212 | -pages); |
81819f0f | 1213 | |
49bd5221 CL |
1214 | __ClearPageSlab(page); |
1215 | reset_page_mapcount(page); | |
1eb5ac64 NP |
1216 | if (current->reclaim_state) |
1217 | current->reclaim_state->reclaimed_slab += pages; | |
834f3d11 | 1218 | __free_pages(page, order); |
81819f0f CL |
1219 | } |
1220 | ||
1221 | static void rcu_free_slab(struct rcu_head *h) | |
1222 | { | |
1223 | struct page *page; | |
1224 | ||
1225 | page = container_of((struct list_head *)h, struct page, lru); | |
1226 | __free_slab(page->slab, page); | |
1227 | } | |
1228 | ||
1229 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1230 | { | |
1231 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
1232 | /* | |
1233 | * RCU free overloads the RCU head over the LRU | |
1234 | */ | |
1235 | struct rcu_head *head = (void *)&page->lru; | |
1236 | ||
1237 | call_rcu(head, rcu_free_slab); | |
1238 | } else | |
1239 | __free_slab(s, page); | |
1240 | } | |
1241 | ||
1242 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1243 | { | |
205ab99d | 1244 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1245 | free_slab(s, page); |
1246 | } | |
1247 | ||
1248 | /* | |
1249 | * Per slab locking using the pagelock | |
1250 | */ | |
1251 | static __always_inline void slab_lock(struct page *page) | |
1252 | { | |
1253 | bit_spin_lock(PG_locked, &page->flags); | |
1254 | } | |
1255 | ||
1256 | static __always_inline void slab_unlock(struct page *page) | |
1257 | { | |
a76d3546 | 1258 | __bit_spin_unlock(PG_locked, &page->flags); |
81819f0f CL |
1259 | } |
1260 | ||
1261 | static __always_inline int slab_trylock(struct page *page) | |
1262 | { | |
1263 | int rc = 1; | |
1264 | ||
1265 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1266 | return rc; | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * Management of partially allocated slabs | |
1271 | */ | |
7c2e132c CL |
1272 | static void add_partial(struct kmem_cache_node *n, |
1273 | struct page *page, int tail) | |
81819f0f | 1274 | { |
e95eed57 CL |
1275 | spin_lock(&n->list_lock); |
1276 | n->nr_partial++; | |
7c2e132c CL |
1277 | if (tail) |
1278 | list_add_tail(&page->lru, &n->partial); | |
1279 | else | |
1280 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1281 | spin_unlock(&n->list_lock); |
1282 | } | |
1283 | ||
0121c619 | 1284 | static void remove_partial(struct kmem_cache *s, struct page *page) |
81819f0f CL |
1285 | { |
1286 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1287 | ||
1288 | spin_lock(&n->list_lock); | |
1289 | list_del(&page->lru); | |
1290 | n->nr_partial--; | |
1291 | spin_unlock(&n->list_lock); | |
1292 | } | |
1293 | ||
1294 | /* | |
672bba3a | 1295 | * Lock slab and remove from the partial list. |
81819f0f | 1296 | * |
672bba3a | 1297 | * Must hold list_lock. |
81819f0f | 1298 | */ |
0121c619 CL |
1299 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, |
1300 | struct page *page) | |
81819f0f CL |
1301 | { |
1302 | if (slab_trylock(page)) { | |
1303 | list_del(&page->lru); | |
1304 | n->nr_partial--; | |
8a38082d | 1305 | __SetPageSlubFrozen(page); |
81819f0f CL |
1306 | return 1; |
1307 | } | |
1308 | return 0; | |
1309 | } | |
1310 | ||
1311 | /* | |
672bba3a | 1312 | * Try to allocate a partial slab from a specific node. |
81819f0f CL |
1313 | */ |
1314 | static struct page *get_partial_node(struct kmem_cache_node *n) | |
1315 | { | |
1316 | struct page *page; | |
1317 | ||
1318 | /* | |
1319 | * Racy check. If we mistakenly see no partial slabs then we | |
1320 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1321 | * partial slab and there is none available then get_partials() |
1322 | * will return NULL. | |
81819f0f CL |
1323 | */ |
1324 | if (!n || !n->nr_partial) | |
1325 | return NULL; | |
1326 | ||
1327 | spin_lock(&n->list_lock); | |
1328 | list_for_each_entry(page, &n->partial, lru) | |
4b6f0750 | 1329 | if (lock_and_freeze_slab(n, page)) |
81819f0f CL |
1330 | goto out; |
1331 | page = NULL; | |
1332 | out: | |
1333 | spin_unlock(&n->list_lock); | |
1334 | return page; | |
1335 | } | |
1336 | ||
1337 | /* | |
672bba3a | 1338 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1339 | */ |
1340 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1341 | { | |
1342 | #ifdef CONFIG_NUMA | |
1343 | struct zonelist *zonelist; | |
dd1a239f | 1344 | struct zoneref *z; |
54a6eb5c MG |
1345 | struct zone *zone; |
1346 | enum zone_type high_zoneidx = gfp_zone(flags); | |
81819f0f CL |
1347 | struct page *page; |
1348 | ||
1349 | /* | |
672bba3a CL |
1350 | * The defrag ratio allows a configuration of the tradeoffs between |
1351 | * inter node defragmentation and node local allocations. A lower | |
1352 | * defrag_ratio increases the tendency to do local allocations | |
1353 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1354 | * |
672bba3a CL |
1355 | * If the defrag_ratio is set to 0 then kmalloc() always |
1356 | * returns node local objects. If the ratio is higher then kmalloc() | |
1357 | * may return off node objects because partial slabs are obtained | |
1358 | * from other nodes and filled up. | |
81819f0f | 1359 | * |
6446faa2 | 1360 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1361 | * defrag_ratio = 1000) then every (well almost) allocation will |
1362 | * first attempt to defrag slab caches on other nodes. This means | |
1363 | * scanning over all nodes to look for partial slabs which may be | |
1364 | * expensive if we do it every time we are trying to find a slab | |
1365 | * with available objects. | |
81819f0f | 1366 | */ |
9824601e CL |
1367 | if (!s->remote_node_defrag_ratio || |
1368 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1369 | return NULL; |
1370 | ||
0e88460d | 1371 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
54a6eb5c | 1372 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
81819f0f CL |
1373 | struct kmem_cache_node *n; |
1374 | ||
54a6eb5c | 1375 | n = get_node(s, zone_to_nid(zone)); |
81819f0f | 1376 | |
54a6eb5c | 1377 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
3b89d7d8 | 1378 | n->nr_partial > s->min_partial) { |
81819f0f CL |
1379 | page = get_partial_node(n); |
1380 | if (page) | |
1381 | return page; | |
1382 | } | |
1383 | } | |
1384 | #endif | |
1385 | return NULL; | |
1386 | } | |
1387 | ||
1388 | /* | |
1389 | * Get a partial page, lock it and return it. | |
1390 | */ | |
1391 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1392 | { | |
1393 | struct page *page; | |
1394 | int searchnode = (node == -1) ? numa_node_id() : node; | |
1395 | ||
1396 | page = get_partial_node(get_node(s, searchnode)); | |
1397 | if (page || (flags & __GFP_THISNODE)) | |
1398 | return page; | |
1399 | ||
1400 | return get_any_partial(s, flags); | |
1401 | } | |
1402 | ||
1403 | /* | |
1404 | * Move a page back to the lists. | |
1405 | * | |
1406 | * Must be called with the slab lock held. | |
1407 | * | |
1408 | * On exit the slab lock will have been dropped. | |
1409 | */ | |
7c2e132c | 1410 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) |
81819f0f | 1411 | { |
e95eed57 CL |
1412 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1413 | ||
8a38082d | 1414 | __ClearPageSlubFrozen(page); |
81819f0f | 1415 | if (page->inuse) { |
e95eed57 | 1416 | |
a973e9dd | 1417 | if (page->freelist) { |
7c2e132c | 1418 | add_partial(n, page, tail); |
84e554e6 | 1419 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
8ff12cfc | 1420 | } else { |
84e554e6 | 1421 | stat(s, DEACTIVATE_FULL); |
8a38082d AW |
1422 | if (SLABDEBUG && PageSlubDebug(page) && |
1423 | (s->flags & SLAB_STORE_USER)) | |
8ff12cfc CL |
1424 | add_full(n, page); |
1425 | } | |
81819f0f CL |
1426 | slab_unlock(page); |
1427 | } else { | |
84e554e6 | 1428 | stat(s, DEACTIVATE_EMPTY); |
3b89d7d8 | 1429 | if (n->nr_partial < s->min_partial) { |
e95eed57 | 1430 | /* |
672bba3a CL |
1431 | * Adding an empty slab to the partial slabs in order |
1432 | * to avoid page allocator overhead. This slab needs | |
1433 | * to come after the other slabs with objects in | |
6446faa2 CL |
1434 | * so that the others get filled first. That way the |
1435 | * size of the partial list stays small. | |
1436 | * | |
0121c619 CL |
1437 | * kmem_cache_shrink can reclaim any empty slabs from |
1438 | * the partial list. | |
e95eed57 | 1439 | */ |
7c2e132c | 1440 | add_partial(n, page, 1); |
e95eed57 CL |
1441 | slab_unlock(page); |
1442 | } else { | |
1443 | slab_unlock(page); | |
84e554e6 | 1444 | stat(s, FREE_SLAB); |
e95eed57 CL |
1445 | discard_slab(s, page); |
1446 | } | |
81819f0f CL |
1447 | } |
1448 | } | |
1449 | ||
1450 | /* | |
1451 | * Remove the cpu slab | |
1452 | */ | |
dfb4f096 | 1453 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1454 | { |
dfb4f096 | 1455 | struct page *page = c->page; |
7c2e132c | 1456 | int tail = 1; |
8ff12cfc | 1457 | |
b773ad73 | 1458 | if (page->freelist) |
84e554e6 | 1459 | stat(s, DEACTIVATE_REMOTE_FREES); |
894b8788 | 1460 | /* |
6446faa2 | 1461 | * Merge cpu freelist into slab freelist. Typically we get here |
894b8788 CL |
1462 | * because both freelists are empty. So this is unlikely |
1463 | * to occur. | |
1464 | */ | |
a973e9dd | 1465 | while (unlikely(c->freelist)) { |
894b8788 CL |
1466 | void **object; |
1467 | ||
7c2e132c CL |
1468 | tail = 0; /* Hot objects. Put the slab first */ |
1469 | ||
894b8788 | 1470 | /* Retrieve object from cpu_freelist */ |
dfb4f096 | 1471 | object = c->freelist; |
ff12059e | 1472 | c->freelist = get_freepointer(s, c->freelist); |
894b8788 CL |
1473 | |
1474 | /* And put onto the regular freelist */ | |
ff12059e | 1475 | set_freepointer(s, object, page->freelist); |
894b8788 CL |
1476 | page->freelist = object; |
1477 | page->inuse--; | |
1478 | } | |
dfb4f096 | 1479 | c->page = NULL; |
7c2e132c | 1480 | unfreeze_slab(s, page, tail); |
81819f0f CL |
1481 | } |
1482 | ||
dfb4f096 | 1483 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1484 | { |
84e554e6 | 1485 | stat(s, CPUSLAB_FLUSH); |
dfb4f096 CL |
1486 | slab_lock(c->page); |
1487 | deactivate_slab(s, c); | |
81819f0f CL |
1488 | } |
1489 | ||
1490 | /* | |
1491 | * Flush cpu slab. | |
6446faa2 | 1492 | * |
81819f0f CL |
1493 | * Called from IPI handler with interrupts disabled. |
1494 | */ | |
0c710013 | 1495 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 1496 | { |
9dfc6e68 | 1497 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 1498 | |
dfb4f096 CL |
1499 | if (likely(c && c->page)) |
1500 | flush_slab(s, c); | |
81819f0f CL |
1501 | } |
1502 | ||
1503 | static void flush_cpu_slab(void *d) | |
1504 | { | |
1505 | struct kmem_cache *s = d; | |
81819f0f | 1506 | |
dfb4f096 | 1507 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
1508 | } |
1509 | ||
1510 | static void flush_all(struct kmem_cache *s) | |
1511 | { | |
15c8b6c1 | 1512 | on_each_cpu(flush_cpu_slab, s, 1); |
81819f0f CL |
1513 | } |
1514 | ||
dfb4f096 CL |
1515 | /* |
1516 | * Check if the objects in a per cpu structure fit numa | |
1517 | * locality expectations. | |
1518 | */ | |
1519 | static inline int node_match(struct kmem_cache_cpu *c, int node) | |
1520 | { | |
1521 | #ifdef CONFIG_NUMA | |
1522 | if (node != -1 && c->node != node) | |
1523 | return 0; | |
1524 | #endif | |
1525 | return 1; | |
1526 | } | |
1527 | ||
781b2ba6 PE |
1528 | static int count_free(struct page *page) |
1529 | { | |
1530 | return page->objects - page->inuse; | |
1531 | } | |
1532 | ||
1533 | static unsigned long count_partial(struct kmem_cache_node *n, | |
1534 | int (*get_count)(struct page *)) | |
1535 | { | |
1536 | unsigned long flags; | |
1537 | unsigned long x = 0; | |
1538 | struct page *page; | |
1539 | ||
1540 | spin_lock_irqsave(&n->list_lock, flags); | |
1541 | list_for_each_entry(page, &n->partial, lru) | |
1542 | x += get_count(page); | |
1543 | spin_unlock_irqrestore(&n->list_lock, flags); | |
1544 | return x; | |
1545 | } | |
1546 | ||
26c02cf0 AB |
1547 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
1548 | { | |
1549 | #ifdef CONFIG_SLUB_DEBUG | |
1550 | return atomic_long_read(&n->total_objects); | |
1551 | #else | |
1552 | return 0; | |
1553 | #endif | |
1554 | } | |
1555 | ||
781b2ba6 PE |
1556 | static noinline void |
1557 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
1558 | { | |
1559 | int node; | |
1560 | ||
1561 | printk(KERN_WARNING | |
1562 | "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1563 | nid, gfpflags); | |
1564 | printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " | |
1565 | "default order: %d, min order: %d\n", s->name, s->objsize, | |
1566 | s->size, oo_order(s->oo), oo_order(s->min)); | |
1567 | ||
fa5ec8a1 DR |
1568 | if (oo_order(s->min) > get_order(s->objsize)) |
1569 | printk(KERN_WARNING " %s debugging increased min order, use " | |
1570 | "slub_debug=O to disable.\n", s->name); | |
1571 | ||
781b2ba6 PE |
1572 | for_each_online_node(node) { |
1573 | struct kmem_cache_node *n = get_node(s, node); | |
1574 | unsigned long nr_slabs; | |
1575 | unsigned long nr_objs; | |
1576 | unsigned long nr_free; | |
1577 | ||
1578 | if (!n) | |
1579 | continue; | |
1580 | ||
26c02cf0 AB |
1581 | nr_free = count_partial(n, count_free); |
1582 | nr_slabs = node_nr_slabs(n); | |
1583 | nr_objs = node_nr_objs(n); | |
781b2ba6 PE |
1584 | |
1585 | printk(KERN_WARNING | |
1586 | " node %d: slabs: %ld, objs: %ld, free: %ld\n", | |
1587 | node, nr_slabs, nr_objs, nr_free); | |
1588 | } | |
1589 | } | |
1590 | ||
81819f0f | 1591 | /* |
894b8788 CL |
1592 | * Slow path. The lockless freelist is empty or we need to perform |
1593 | * debugging duties. | |
1594 | * | |
1595 | * Interrupts are disabled. | |
81819f0f | 1596 | * |
894b8788 CL |
1597 | * Processing is still very fast if new objects have been freed to the |
1598 | * regular freelist. In that case we simply take over the regular freelist | |
1599 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1600 | * |
894b8788 CL |
1601 | * If that is not working then we fall back to the partial lists. We take the |
1602 | * first element of the freelist as the object to allocate now and move the | |
1603 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1604 | * |
894b8788 | 1605 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
1606 | * we need to allocate a new slab. This is the slowest path since it involves |
1607 | * a call to the page allocator and the setup of a new slab. | |
81819f0f | 1608 | */ |
ce71e27c EGM |
1609 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
1610 | unsigned long addr, struct kmem_cache_cpu *c) | |
81819f0f | 1611 | { |
81819f0f | 1612 | void **object; |
dfb4f096 | 1613 | struct page *new; |
81819f0f | 1614 | |
e72e9c23 LT |
1615 | /* We handle __GFP_ZERO in the caller */ |
1616 | gfpflags &= ~__GFP_ZERO; | |
1617 | ||
dfb4f096 | 1618 | if (!c->page) |
81819f0f CL |
1619 | goto new_slab; |
1620 | ||
dfb4f096 CL |
1621 | slab_lock(c->page); |
1622 | if (unlikely(!node_match(c, node))) | |
81819f0f | 1623 | goto another_slab; |
6446faa2 | 1624 | |
84e554e6 | 1625 | stat(s, ALLOC_REFILL); |
6446faa2 | 1626 | |
894b8788 | 1627 | load_freelist: |
dfb4f096 | 1628 | object = c->page->freelist; |
a973e9dd | 1629 | if (unlikely(!object)) |
81819f0f | 1630 | goto another_slab; |
8a38082d | 1631 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) |
81819f0f CL |
1632 | goto debug; |
1633 | ||
ff12059e | 1634 | c->freelist = get_freepointer(s, object); |
39b26464 | 1635 | c->page->inuse = c->page->objects; |
a973e9dd | 1636 | c->page->freelist = NULL; |
dfb4f096 | 1637 | c->node = page_to_nid(c->page); |
1f84260c | 1638 | unlock_out: |
dfb4f096 | 1639 | slab_unlock(c->page); |
84e554e6 | 1640 | stat(s, ALLOC_SLOWPATH); |
81819f0f CL |
1641 | return object; |
1642 | ||
1643 | another_slab: | |
dfb4f096 | 1644 | deactivate_slab(s, c); |
81819f0f CL |
1645 | |
1646 | new_slab: | |
dfb4f096 CL |
1647 | new = get_partial(s, gfpflags, node); |
1648 | if (new) { | |
1649 | c->page = new; | |
84e554e6 | 1650 | stat(s, ALLOC_FROM_PARTIAL); |
894b8788 | 1651 | goto load_freelist; |
81819f0f CL |
1652 | } |
1653 | ||
b811c202 CL |
1654 | if (gfpflags & __GFP_WAIT) |
1655 | local_irq_enable(); | |
1656 | ||
dfb4f096 | 1657 | new = new_slab(s, gfpflags, node); |
b811c202 CL |
1658 | |
1659 | if (gfpflags & __GFP_WAIT) | |
1660 | local_irq_disable(); | |
1661 | ||
dfb4f096 | 1662 | if (new) { |
9dfc6e68 | 1663 | c = __this_cpu_ptr(s->cpu_slab); |
84e554e6 | 1664 | stat(s, ALLOC_SLAB); |
05aa3450 | 1665 | if (c->page) |
dfb4f096 | 1666 | flush_slab(s, c); |
dfb4f096 | 1667 | slab_lock(new); |
8a38082d | 1668 | __SetPageSlubFrozen(new); |
dfb4f096 | 1669 | c->page = new; |
4b6f0750 | 1670 | goto load_freelist; |
81819f0f | 1671 | } |
95f85989 PE |
1672 | if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) |
1673 | slab_out_of_memory(s, gfpflags, node); | |
71c7a06f | 1674 | return NULL; |
81819f0f | 1675 | debug: |
dfb4f096 | 1676 | if (!alloc_debug_processing(s, c->page, object, addr)) |
81819f0f | 1677 | goto another_slab; |
894b8788 | 1678 | |
dfb4f096 | 1679 | c->page->inuse++; |
ff12059e | 1680 | c->page->freelist = get_freepointer(s, object); |
ee3c72a1 | 1681 | c->node = -1; |
1f84260c | 1682 | goto unlock_out; |
894b8788 CL |
1683 | } |
1684 | ||
1685 | /* | |
1686 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
1687 | * have the fastpath folded into their functions. So no function call | |
1688 | * overhead for requests that can be satisfied on the fastpath. | |
1689 | * | |
1690 | * The fastpath works by first checking if the lockless freelist can be used. | |
1691 | * If not then __slab_alloc is called for slow processing. | |
1692 | * | |
1693 | * Otherwise we can simply pick the next object from the lockless free list. | |
1694 | */ | |
06428780 | 1695 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
ce71e27c | 1696 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 1697 | { |
894b8788 | 1698 | void **object; |
dfb4f096 | 1699 | struct kmem_cache_cpu *c; |
1f84260c CL |
1700 | unsigned long flags; |
1701 | ||
dcce284a | 1702 | gfpflags &= gfp_allowed_mask; |
7e85ee0c | 1703 | |
cf40bd16 | 1704 | lockdep_trace_alloc(gfpflags); |
89124d70 | 1705 | might_sleep_if(gfpflags & __GFP_WAIT); |
3c506efd | 1706 | |
4c13dd3b | 1707 | if (should_failslab(s->objsize, gfpflags, s->flags)) |
773ff60e | 1708 | return NULL; |
1f84260c | 1709 | |
894b8788 | 1710 | local_irq_save(flags); |
9dfc6e68 CL |
1711 | c = __this_cpu_ptr(s->cpu_slab); |
1712 | object = c->freelist; | |
9dfc6e68 | 1713 | if (unlikely(!object || !node_match(c, node))) |
894b8788 | 1714 | |
dfb4f096 | 1715 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
1716 | |
1717 | else { | |
ff12059e | 1718 | c->freelist = get_freepointer(s, object); |
84e554e6 | 1719 | stat(s, ALLOC_FASTPATH); |
894b8788 CL |
1720 | } |
1721 | local_irq_restore(flags); | |
d07dbea4 | 1722 | |
74e2134f | 1723 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
ff12059e | 1724 | memset(object, 0, s->objsize); |
d07dbea4 | 1725 | |
ff12059e CL |
1726 | kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); |
1727 | kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); | |
5a896d9e | 1728 | |
894b8788 | 1729 | return object; |
81819f0f CL |
1730 | } |
1731 | ||
1732 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
1733 | { | |
5b882be4 EGM |
1734 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); |
1735 | ||
ca2b84cb | 1736 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); |
5b882be4 EGM |
1737 | |
1738 | return ret; | |
81819f0f CL |
1739 | } |
1740 | EXPORT_SYMBOL(kmem_cache_alloc); | |
1741 | ||
0f24f128 | 1742 | #ifdef CONFIG_TRACING |
5b882be4 EGM |
1743 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) |
1744 | { | |
1745 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | |
1746 | } | |
1747 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | |
1748 | #endif | |
1749 | ||
81819f0f CL |
1750 | #ifdef CONFIG_NUMA |
1751 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
1752 | { | |
5b882be4 EGM |
1753 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
1754 | ||
ca2b84cb EGM |
1755 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
1756 | s->objsize, s->size, gfpflags, node); | |
5b882be4 EGM |
1757 | |
1758 | return ret; | |
81819f0f CL |
1759 | } |
1760 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
1761 | #endif | |
1762 | ||
0f24f128 | 1763 | #ifdef CONFIG_TRACING |
5b882be4 EGM |
1764 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, |
1765 | gfp_t gfpflags, | |
1766 | int node) | |
1767 | { | |
1768 | return slab_alloc(s, gfpflags, node, _RET_IP_); | |
1769 | } | |
1770 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | |
1771 | #endif | |
1772 | ||
81819f0f | 1773 | /* |
894b8788 CL |
1774 | * Slow patch handling. This may still be called frequently since objects |
1775 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 1776 | * |
894b8788 CL |
1777 | * So we still attempt to reduce cache line usage. Just take the slab |
1778 | * lock and free the item. If there is no additional partial page | |
1779 | * handling required then we can return immediately. | |
81819f0f | 1780 | */ |
894b8788 | 1781 | static void __slab_free(struct kmem_cache *s, struct page *page, |
ff12059e | 1782 | void *x, unsigned long addr) |
81819f0f CL |
1783 | { |
1784 | void *prior; | |
1785 | void **object = (void *)x; | |
81819f0f | 1786 | |
84e554e6 | 1787 | stat(s, FREE_SLOWPATH); |
81819f0f CL |
1788 | slab_lock(page); |
1789 | ||
8a38082d | 1790 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) |
81819f0f | 1791 | goto debug; |
6446faa2 | 1792 | |
81819f0f | 1793 | checks_ok: |
ff12059e CL |
1794 | prior = page->freelist; |
1795 | set_freepointer(s, object, prior); | |
81819f0f CL |
1796 | page->freelist = object; |
1797 | page->inuse--; | |
1798 | ||
8a38082d | 1799 | if (unlikely(PageSlubFrozen(page))) { |
84e554e6 | 1800 | stat(s, FREE_FROZEN); |
81819f0f | 1801 | goto out_unlock; |
8ff12cfc | 1802 | } |
81819f0f CL |
1803 | |
1804 | if (unlikely(!page->inuse)) | |
1805 | goto slab_empty; | |
1806 | ||
1807 | /* | |
6446faa2 | 1808 | * Objects left in the slab. If it was not on the partial list before |
81819f0f CL |
1809 | * then add it. |
1810 | */ | |
a973e9dd | 1811 | if (unlikely(!prior)) { |
7c2e132c | 1812 | add_partial(get_node(s, page_to_nid(page)), page, 1); |
84e554e6 | 1813 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 1814 | } |
81819f0f CL |
1815 | |
1816 | out_unlock: | |
1817 | slab_unlock(page); | |
81819f0f CL |
1818 | return; |
1819 | ||
1820 | slab_empty: | |
a973e9dd | 1821 | if (prior) { |
81819f0f | 1822 | /* |
672bba3a | 1823 | * Slab still on the partial list. |
81819f0f CL |
1824 | */ |
1825 | remove_partial(s, page); | |
84e554e6 | 1826 | stat(s, FREE_REMOVE_PARTIAL); |
8ff12cfc | 1827 | } |
81819f0f | 1828 | slab_unlock(page); |
84e554e6 | 1829 | stat(s, FREE_SLAB); |
81819f0f | 1830 | discard_slab(s, page); |
81819f0f CL |
1831 | return; |
1832 | ||
1833 | debug: | |
3ec09742 | 1834 | if (!free_debug_processing(s, page, x, addr)) |
77c5e2d0 | 1835 | goto out_unlock; |
77c5e2d0 | 1836 | goto checks_ok; |
81819f0f CL |
1837 | } |
1838 | ||
894b8788 CL |
1839 | /* |
1840 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
1841 | * can perform fastpath freeing without additional function calls. | |
1842 | * | |
1843 | * The fastpath is only possible if we are freeing to the current cpu slab | |
1844 | * of this processor. This typically the case if we have just allocated | |
1845 | * the item before. | |
1846 | * | |
1847 | * If fastpath is not possible then fall back to __slab_free where we deal | |
1848 | * with all sorts of special processing. | |
1849 | */ | |
06428780 | 1850 | static __always_inline void slab_free(struct kmem_cache *s, |
ce71e27c | 1851 | struct page *page, void *x, unsigned long addr) |
894b8788 CL |
1852 | { |
1853 | void **object = (void *)x; | |
dfb4f096 | 1854 | struct kmem_cache_cpu *c; |
1f84260c CL |
1855 | unsigned long flags; |
1856 | ||
06f22f13 | 1857 | kmemleak_free_recursive(x, s->flags); |
894b8788 | 1858 | local_irq_save(flags); |
9dfc6e68 | 1859 | c = __this_cpu_ptr(s->cpu_slab); |
ff12059e CL |
1860 | kmemcheck_slab_free(s, object, s->objsize); |
1861 | debug_check_no_locks_freed(object, s->objsize); | |
3ac7fe5a | 1862 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
ff12059e | 1863 | debug_check_no_obj_freed(object, s->objsize); |
ee3c72a1 | 1864 | if (likely(page == c->page && c->node >= 0)) { |
ff12059e | 1865 | set_freepointer(s, object, c->freelist); |
dfb4f096 | 1866 | c->freelist = object; |
84e554e6 | 1867 | stat(s, FREE_FASTPATH); |
894b8788 | 1868 | } else |
ff12059e | 1869 | __slab_free(s, page, x, addr); |
894b8788 CL |
1870 | |
1871 | local_irq_restore(flags); | |
1872 | } | |
1873 | ||
81819f0f CL |
1874 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1875 | { | |
77c5e2d0 | 1876 | struct page *page; |
81819f0f | 1877 | |
b49af68f | 1878 | page = virt_to_head_page(x); |
81819f0f | 1879 | |
ce71e27c | 1880 | slab_free(s, page, x, _RET_IP_); |
5b882be4 | 1881 | |
ca2b84cb | 1882 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
1883 | } |
1884 | EXPORT_SYMBOL(kmem_cache_free); | |
1885 | ||
e9beef18 | 1886 | /* Figure out on which slab page the object resides */ |
81819f0f CL |
1887 | static struct page *get_object_page(const void *x) |
1888 | { | |
b49af68f | 1889 | struct page *page = virt_to_head_page(x); |
81819f0f CL |
1890 | |
1891 | if (!PageSlab(page)) | |
1892 | return NULL; | |
1893 | ||
1894 | return page; | |
1895 | } | |
1896 | ||
1897 | /* | |
672bba3a CL |
1898 | * Object placement in a slab is made very easy because we always start at |
1899 | * offset 0. If we tune the size of the object to the alignment then we can | |
1900 | * get the required alignment by putting one properly sized object after | |
1901 | * another. | |
81819f0f CL |
1902 | * |
1903 | * Notice that the allocation order determines the sizes of the per cpu | |
1904 | * caches. Each processor has always one slab available for allocations. | |
1905 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 1906 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 1907 | * locking overhead. |
81819f0f CL |
1908 | */ |
1909 | ||
1910 | /* | |
1911 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
1912 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
1913 | * and increases the number of allocations possible without having to | |
1914 | * take the list_lock. | |
1915 | */ | |
1916 | static int slub_min_order; | |
114e9e89 | 1917 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 1918 | static int slub_min_objects; |
81819f0f CL |
1919 | |
1920 | /* | |
1921 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 1922 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
1923 | */ |
1924 | static int slub_nomerge; | |
1925 | ||
81819f0f CL |
1926 | /* |
1927 | * Calculate the order of allocation given an slab object size. | |
1928 | * | |
672bba3a CL |
1929 | * The order of allocation has significant impact on performance and other |
1930 | * system components. Generally order 0 allocations should be preferred since | |
1931 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
1932 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 1933 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
1934 | * would be wasted. |
1935 | * | |
1936 | * In order to reach satisfactory performance we must ensure that a minimum | |
1937 | * number of objects is in one slab. Otherwise we may generate too much | |
1938 | * activity on the partial lists which requires taking the list_lock. This is | |
1939 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 1940 | * |
672bba3a CL |
1941 | * slub_max_order specifies the order where we begin to stop considering the |
1942 | * number of objects in a slab as critical. If we reach slub_max_order then | |
1943 | * we try to keep the page order as low as possible. So we accept more waste | |
1944 | * of space in favor of a small page order. | |
81819f0f | 1945 | * |
672bba3a CL |
1946 | * Higher order allocations also allow the placement of more objects in a |
1947 | * slab and thereby reduce object handling overhead. If the user has | |
1948 | * requested a higher mininum order then we start with that one instead of | |
1949 | * the smallest order which will fit the object. | |
81819f0f | 1950 | */ |
5e6d444e CL |
1951 | static inline int slab_order(int size, int min_objects, |
1952 | int max_order, int fract_leftover) | |
81819f0f CL |
1953 | { |
1954 | int order; | |
1955 | int rem; | |
6300ea75 | 1956 | int min_order = slub_min_order; |
81819f0f | 1957 | |
210b5c06 CG |
1958 | if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) |
1959 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | |
39b26464 | 1960 | |
6300ea75 | 1961 | for (order = max(min_order, |
5e6d444e CL |
1962 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1963 | order <= max_order; order++) { | |
81819f0f | 1964 | |
5e6d444e | 1965 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 1966 | |
5e6d444e | 1967 | if (slab_size < min_objects * size) |
81819f0f CL |
1968 | continue; |
1969 | ||
1970 | rem = slab_size % size; | |
1971 | ||
5e6d444e | 1972 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
1973 | break; |
1974 | ||
1975 | } | |
672bba3a | 1976 | |
81819f0f CL |
1977 | return order; |
1978 | } | |
1979 | ||
5e6d444e CL |
1980 | static inline int calculate_order(int size) |
1981 | { | |
1982 | int order; | |
1983 | int min_objects; | |
1984 | int fraction; | |
e8120ff1 | 1985 | int max_objects; |
5e6d444e CL |
1986 | |
1987 | /* | |
1988 | * Attempt to find best configuration for a slab. This | |
1989 | * works by first attempting to generate a layout with | |
1990 | * the best configuration and backing off gradually. | |
1991 | * | |
1992 | * First we reduce the acceptable waste in a slab. Then | |
1993 | * we reduce the minimum objects required in a slab. | |
1994 | */ | |
1995 | min_objects = slub_min_objects; | |
9b2cd506 CL |
1996 | if (!min_objects) |
1997 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
e8120ff1 ZY |
1998 | max_objects = (PAGE_SIZE << slub_max_order)/size; |
1999 | min_objects = min(min_objects, max_objects); | |
2000 | ||
5e6d444e | 2001 | while (min_objects > 1) { |
c124f5b5 | 2002 | fraction = 16; |
5e6d444e CL |
2003 | while (fraction >= 4) { |
2004 | order = slab_order(size, min_objects, | |
2005 | slub_max_order, fraction); | |
2006 | if (order <= slub_max_order) | |
2007 | return order; | |
2008 | fraction /= 2; | |
2009 | } | |
5086c389 | 2010 | min_objects--; |
5e6d444e CL |
2011 | } |
2012 | ||
2013 | /* | |
2014 | * We were unable to place multiple objects in a slab. Now | |
2015 | * lets see if we can place a single object there. | |
2016 | */ | |
2017 | order = slab_order(size, 1, slub_max_order, 1); | |
2018 | if (order <= slub_max_order) | |
2019 | return order; | |
2020 | ||
2021 | /* | |
2022 | * Doh this slab cannot be placed using slub_max_order. | |
2023 | */ | |
2024 | order = slab_order(size, 1, MAX_ORDER, 1); | |
818cf590 | 2025 | if (order < MAX_ORDER) |
5e6d444e CL |
2026 | return order; |
2027 | return -ENOSYS; | |
2028 | } | |
2029 | ||
81819f0f | 2030 | /* |
672bba3a | 2031 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
2032 | */ |
2033 | static unsigned long calculate_alignment(unsigned long flags, | |
2034 | unsigned long align, unsigned long size) | |
2035 | { | |
2036 | /* | |
6446faa2 CL |
2037 | * If the user wants hardware cache aligned objects then follow that |
2038 | * suggestion if the object is sufficiently large. | |
81819f0f | 2039 | * |
6446faa2 CL |
2040 | * The hardware cache alignment cannot override the specified |
2041 | * alignment though. If that is greater then use it. | |
81819f0f | 2042 | */ |
b6210386 NP |
2043 | if (flags & SLAB_HWCACHE_ALIGN) { |
2044 | unsigned long ralign = cache_line_size(); | |
2045 | while (size <= ralign / 2) | |
2046 | ralign /= 2; | |
2047 | align = max(align, ralign); | |
2048 | } | |
81819f0f CL |
2049 | |
2050 | if (align < ARCH_SLAB_MINALIGN) | |
b6210386 | 2051 | align = ARCH_SLAB_MINALIGN; |
81819f0f CL |
2052 | |
2053 | return ALIGN(align, sizeof(void *)); | |
2054 | } | |
2055 | ||
5595cffc PE |
2056 | static void |
2057 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | |
81819f0f CL |
2058 | { |
2059 | n->nr_partial = 0; | |
81819f0f CL |
2060 | spin_lock_init(&n->list_lock); |
2061 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 2062 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 2063 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 2064 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 2065 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 2066 | #endif |
81819f0f CL |
2067 | } |
2068 | ||
91efd773 | 2069 | static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); |
4c93c355 | 2070 | |
9dfc6e68 | 2071 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) |
4c93c355 | 2072 | { |
756dee75 | 2073 | if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) |
9dfc6e68 CL |
2074 | /* |
2075 | * Boot time creation of the kmalloc array. Use static per cpu data | |
2076 | * since the per cpu allocator is not available yet. | |
2077 | */ | |
1154fab7 | 2078 | s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); |
9dfc6e68 CL |
2079 | else |
2080 | s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); | |
4c93c355 | 2081 | |
9dfc6e68 CL |
2082 | if (!s->cpu_slab) |
2083 | return 0; | |
4c93c355 | 2084 | |
4c93c355 CL |
2085 | return 1; |
2086 | } | |
4c93c355 | 2087 | |
81819f0f CL |
2088 | #ifdef CONFIG_NUMA |
2089 | /* | |
2090 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2091 | * slab on the node for this slabcache. There are no concurrent accesses | |
2092 | * possible. | |
2093 | * | |
2094 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2095 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2096 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2097 | */ |
0094de92 | 2098 | static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) |
81819f0f CL |
2099 | { |
2100 | struct page *page; | |
2101 | struct kmem_cache_node *n; | |
ba84c73c | 2102 | unsigned long flags; |
81819f0f CL |
2103 | |
2104 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | |
2105 | ||
a2f92ee7 | 2106 | page = new_slab(kmalloc_caches, gfpflags, node); |
81819f0f CL |
2107 | |
2108 | BUG_ON(!page); | |
a2f92ee7 CL |
2109 | if (page_to_nid(page) != node) { |
2110 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2111 | "node %d\n", node); | |
2112 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2113 | "in order to be able to continue\n"); | |
2114 | } | |
2115 | ||
81819f0f CL |
2116 | n = page->freelist; |
2117 | BUG_ON(!n); | |
2118 | page->freelist = get_freepointer(kmalloc_caches, n); | |
2119 | page->inuse++; | |
2120 | kmalloc_caches->node[node] = n; | |
8ab1372f | 2121 | #ifdef CONFIG_SLUB_DEBUG |
d45f39cb CL |
2122 | init_object(kmalloc_caches, n, 1); |
2123 | init_tracking(kmalloc_caches, n); | |
8ab1372f | 2124 | #endif |
5595cffc | 2125 | init_kmem_cache_node(n, kmalloc_caches); |
205ab99d | 2126 | inc_slabs_node(kmalloc_caches, node, page->objects); |
6446faa2 | 2127 | |
ba84c73c | 2128 | /* |
2129 | * lockdep requires consistent irq usage for each lock | |
2130 | * so even though there cannot be a race this early in | |
2131 | * the boot sequence, we still disable irqs. | |
2132 | */ | |
2133 | local_irq_save(flags); | |
7c2e132c | 2134 | add_partial(n, page, 0); |
ba84c73c | 2135 | local_irq_restore(flags); |
81819f0f CL |
2136 | } |
2137 | ||
2138 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2139 | { | |
2140 | int node; | |
2141 | ||
f64dc58c | 2142 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2143 | struct kmem_cache_node *n = s->node[node]; |
2144 | if (n && n != &s->local_node) | |
2145 | kmem_cache_free(kmalloc_caches, n); | |
2146 | s->node[node] = NULL; | |
2147 | } | |
2148 | } | |
2149 | ||
2150 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2151 | { | |
2152 | int node; | |
2153 | int local_node; | |
2154 | ||
91efd773 CL |
2155 | if (slab_state >= UP && (s < kmalloc_caches || |
2156 | s > kmalloc_caches + KMALLOC_CACHES)) | |
81819f0f CL |
2157 | local_node = page_to_nid(virt_to_page(s)); |
2158 | else | |
2159 | local_node = 0; | |
2160 | ||
f64dc58c | 2161 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2162 | struct kmem_cache_node *n; |
2163 | ||
2164 | if (local_node == node) | |
2165 | n = &s->local_node; | |
2166 | else { | |
2167 | if (slab_state == DOWN) { | |
0094de92 | 2168 | early_kmem_cache_node_alloc(gfpflags, node); |
81819f0f CL |
2169 | continue; |
2170 | } | |
2171 | n = kmem_cache_alloc_node(kmalloc_caches, | |
2172 | gfpflags, node); | |
2173 | ||
2174 | if (!n) { | |
2175 | free_kmem_cache_nodes(s); | |
2176 | return 0; | |
2177 | } | |
2178 | ||
2179 | } | |
2180 | s->node[node] = n; | |
5595cffc | 2181 | init_kmem_cache_node(n, s); |
81819f0f CL |
2182 | } |
2183 | return 1; | |
2184 | } | |
2185 | #else | |
2186 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2187 | { | |
2188 | } | |
2189 | ||
2190 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2191 | { | |
5595cffc | 2192 | init_kmem_cache_node(&s->local_node, s); |
81819f0f CL |
2193 | return 1; |
2194 | } | |
2195 | #endif | |
2196 | ||
c0bdb232 | 2197 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
2198 | { |
2199 | if (min < MIN_PARTIAL) | |
2200 | min = MIN_PARTIAL; | |
2201 | else if (min > MAX_PARTIAL) | |
2202 | min = MAX_PARTIAL; | |
2203 | s->min_partial = min; | |
2204 | } | |
2205 | ||
81819f0f CL |
2206 | /* |
2207 | * calculate_sizes() determines the order and the distribution of data within | |
2208 | * a slab object. | |
2209 | */ | |
06b285dc | 2210 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
2211 | { |
2212 | unsigned long flags = s->flags; | |
2213 | unsigned long size = s->objsize; | |
2214 | unsigned long align = s->align; | |
834f3d11 | 2215 | int order; |
81819f0f | 2216 | |
d8b42bf5 CL |
2217 | /* |
2218 | * Round up object size to the next word boundary. We can only | |
2219 | * place the free pointer at word boundaries and this determines | |
2220 | * the possible location of the free pointer. | |
2221 | */ | |
2222 | size = ALIGN(size, sizeof(void *)); | |
2223 | ||
2224 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
2225 | /* |
2226 | * Determine if we can poison the object itself. If the user of | |
2227 | * the slab may touch the object after free or before allocation | |
2228 | * then we should never poison the object itself. | |
2229 | */ | |
2230 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2231 | !s->ctor) |
81819f0f CL |
2232 | s->flags |= __OBJECT_POISON; |
2233 | else | |
2234 | s->flags &= ~__OBJECT_POISON; | |
2235 | ||
81819f0f CL |
2236 | |
2237 | /* | |
672bba3a | 2238 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2239 | * end of the object and the free pointer. If not then add an |
672bba3a | 2240 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
2241 | */ |
2242 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
2243 | size += sizeof(void *); | |
41ecc55b | 2244 | #endif |
81819f0f CL |
2245 | |
2246 | /* | |
672bba3a CL |
2247 | * With that we have determined the number of bytes in actual use |
2248 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2249 | */ |
2250 | s->inuse = size; | |
2251 | ||
2252 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2253 | s->ctor)) { |
81819f0f CL |
2254 | /* |
2255 | * Relocate free pointer after the object if it is not | |
2256 | * permitted to overwrite the first word of the object on | |
2257 | * kmem_cache_free. | |
2258 | * | |
2259 | * This is the case if we do RCU, have a constructor or | |
2260 | * destructor or are poisoning the objects. | |
2261 | */ | |
2262 | s->offset = size; | |
2263 | size += sizeof(void *); | |
2264 | } | |
2265 | ||
c12b3c62 | 2266 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2267 | if (flags & SLAB_STORE_USER) |
2268 | /* | |
2269 | * Need to store information about allocs and frees after | |
2270 | * the object. | |
2271 | */ | |
2272 | size += 2 * sizeof(struct track); | |
2273 | ||
be7b3fbc | 2274 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2275 | /* |
2276 | * Add some empty padding so that we can catch | |
2277 | * overwrites from earlier objects rather than let | |
2278 | * tracking information or the free pointer be | |
0211a9c8 | 2279 | * corrupted if a user writes before the start |
81819f0f CL |
2280 | * of the object. |
2281 | */ | |
2282 | size += sizeof(void *); | |
41ecc55b | 2283 | #endif |
672bba3a | 2284 | |
81819f0f CL |
2285 | /* |
2286 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2287 | * user specified and the dynamic determination of cache line size |
2288 | * on bootup. | |
81819f0f CL |
2289 | */ |
2290 | align = calculate_alignment(flags, align, s->objsize); | |
dcb0ce1b | 2291 | s->align = align; |
81819f0f CL |
2292 | |
2293 | /* | |
2294 | * SLUB stores one object immediately after another beginning from | |
2295 | * offset 0. In order to align the objects we have to simply size | |
2296 | * each object to conform to the alignment. | |
2297 | */ | |
2298 | size = ALIGN(size, align); | |
2299 | s->size = size; | |
06b285dc CL |
2300 | if (forced_order >= 0) |
2301 | order = forced_order; | |
2302 | else | |
2303 | order = calculate_order(size); | |
81819f0f | 2304 | |
834f3d11 | 2305 | if (order < 0) |
81819f0f CL |
2306 | return 0; |
2307 | ||
b7a49f0d | 2308 | s->allocflags = 0; |
834f3d11 | 2309 | if (order) |
b7a49f0d CL |
2310 | s->allocflags |= __GFP_COMP; |
2311 | ||
2312 | if (s->flags & SLAB_CACHE_DMA) | |
2313 | s->allocflags |= SLUB_DMA; | |
2314 | ||
2315 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
2316 | s->allocflags |= __GFP_RECLAIMABLE; | |
2317 | ||
81819f0f CL |
2318 | /* |
2319 | * Determine the number of objects per slab | |
2320 | */ | |
834f3d11 | 2321 | s->oo = oo_make(order, size); |
65c3376a | 2322 | s->min = oo_make(get_order(size), size); |
205ab99d CL |
2323 | if (oo_objects(s->oo) > oo_objects(s->max)) |
2324 | s->max = s->oo; | |
81819f0f | 2325 | |
834f3d11 | 2326 | return !!oo_objects(s->oo); |
81819f0f CL |
2327 | |
2328 | } | |
2329 | ||
81819f0f CL |
2330 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2331 | const char *name, size_t size, | |
2332 | size_t align, unsigned long flags, | |
51cc5068 | 2333 | void (*ctor)(void *)) |
81819f0f CL |
2334 | { |
2335 | memset(s, 0, kmem_size); | |
2336 | s->name = name; | |
2337 | s->ctor = ctor; | |
81819f0f | 2338 | s->objsize = size; |
81819f0f | 2339 | s->align = align; |
ba0268a8 | 2340 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
81819f0f | 2341 | |
06b285dc | 2342 | if (!calculate_sizes(s, -1)) |
81819f0f | 2343 | goto error; |
3de47213 DR |
2344 | if (disable_higher_order_debug) { |
2345 | /* | |
2346 | * Disable debugging flags that store metadata if the min slab | |
2347 | * order increased. | |
2348 | */ | |
2349 | if (get_order(s->size) > get_order(s->objsize)) { | |
2350 | s->flags &= ~DEBUG_METADATA_FLAGS; | |
2351 | s->offset = 0; | |
2352 | if (!calculate_sizes(s, -1)) | |
2353 | goto error; | |
2354 | } | |
2355 | } | |
81819f0f | 2356 | |
3b89d7d8 DR |
2357 | /* |
2358 | * The larger the object size is, the more pages we want on the partial | |
2359 | * list to avoid pounding the page allocator excessively. | |
2360 | */ | |
c0bdb232 | 2361 | set_min_partial(s, ilog2(s->size)); |
81819f0f CL |
2362 | s->refcount = 1; |
2363 | #ifdef CONFIG_NUMA | |
e2cb96b7 | 2364 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 2365 | #endif |
dfb4f096 CL |
2366 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2367 | goto error; | |
81819f0f | 2368 | |
dfb4f096 | 2369 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) |
81819f0f | 2370 | return 1; |
ff12059e | 2371 | |
4c93c355 | 2372 | free_kmem_cache_nodes(s); |
81819f0f CL |
2373 | error: |
2374 | if (flags & SLAB_PANIC) | |
2375 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2376 | "order=%u offset=%u flags=%lx\n", | |
834f3d11 | 2377 | s->name, (unsigned long)size, s->size, oo_order(s->oo), |
81819f0f CL |
2378 | s->offset, flags); |
2379 | return 0; | |
2380 | } | |
81819f0f CL |
2381 | |
2382 | /* | |
2383 | * Check if a given pointer is valid | |
2384 | */ | |
2385 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | |
2386 | { | |
06428780 | 2387 | struct page *page; |
81819f0f CL |
2388 | |
2389 | page = get_object_page(object); | |
2390 | ||
2391 | if (!page || s != page->slab) | |
2392 | /* No slab or wrong slab */ | |
2393 | return 0; | |
2394 | ||
abcd08a6 | 2395 | if (!check_valid_pointer(s, page, object)) |
81819f0f CL |
2396 | return 0; |
2397 | ||
2398 | /* | |
2399 | * We could also check if the object is on the slabs freelist. | |
2400 | * But this would be too expensive and it seems that the main | |
6446faa2 | 2401 | * purpose of kmem_ptr_valid() is to check if the object belongs |
81819f0f CL |
2402 | * to a certain slab. |
2403 | */ | |
2404 | return 1; | |
2405 | } | |
2406 | EXPORT_SYMBOL(kmem_ptr_validate); | |
2407 | ||
2408 | /* | |
2409 | * Determine the size of a slab object | |
2410 | */ | |
2411 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2412 | { | |
2413 | return s->objsize; | |
2414 | } | |
2415 | EXPORT_SYMBOL(kmem_cache_size); | |
2416 | ||
2417 | const char *kmem_cache_name(struct kmem_cache *s) | |
2418 | { | |
2419 | return s->name; | |
2420 | } | |
2421 | EXPORT_SYMBOL(kmem_cache_name); | |
2422 | ||
33b12c38 CL |
2423 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
2424 | const char *text) | |
2425 | { | |
2426 | #ifdef CONFIG_SLUB_DEBUG | |
2427 | void *addr = page_address(page); | |
2428 | void *p; | |
2429 | DECLARE_BITMAP(map, page->objects); | |
2430 | ||
2431 | bitmap_zero(map, page->objects); | |
2432 | slab_err(s, page, "%s", text); | |
2433 | slab_lock(page); | |
2434 | for_each_free_object(p, s, page->freelist) | |
2435 | set_bit(slab_index(p, s, addr), map); | |
2436 | ||
2437 | for_each_object(p, s, addr, page->objects) { | |
2438 | ||
2439 | if (!test_bit(slab_index(p, s, addr), map)) { | |
2440 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | |
2441 | p, p - addr); | |
2442 | print_tracking(s, p); | |
2443 | } | |
2444 | } | |
2445 | slab_unlock(page); | |
2446 | #endif | |
2447 | } | |
2448 | ||
81819f0f | 2449 | /* |
599870b1 | 2450 | * Attempt to free all partial slabs on a node. |
81819f0f | 2451 | */ |
599870b1 | 2452 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 2453 | { |
81819f0f CL |
2454 | unsigned long flags; |
2455 | struct page *page, *h; | |
2456 | ||
2457 | spin_lock_irqsave(&n->list_lock, flags); | |
33b12c38 | 2458 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f CL |
2459 | if (!page->inuse) { |
2460 | list_del(&page->lru); | |
2461 | discard_slab(s, page); | |
599870b1 | 2462 | n->nr_partial--; |
33b12c38 CL |
2463 | } else { |
2464 | list_slab_objects(s, page, | |
2465 | "Objects remaining on kmem_cache_close()"); | |
599870b1 | 2466 | } |
33b12c38 | 2467 | } |
81819f0f | 2468 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2469 | } |
2470 | ||
2471 | /* | |
672bba3a | 2472 | * Release all resources used by a slab cache. |
81819f0f | 2473 | */ |
0c710013 | 2474 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
2475 | { |
2476 | int node; | |
2477 | ||
2478 | flush_all(s); | |
9dfc6e68 | 2479 | free_percpu(s->cpu_slab); |
81819f0f | 2480 | /* Attempt to free all objects */ |
f64dc58c | 2481 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2482 | struct kmem_cache_node *n = get_node(s, node); |
2483 | ||
599870b1 CL |
2484 | free_partial(s, n); |
2485 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
2486 | return 1; |
2487 | } | |
2488 | free_kmem_cache_nodes(s); | |
2489 | return 0; | |
2490 | } | |
2491 | ||
2492 | /* | |
2493 | * Close a cache and release the kmem_cache structure | |
2494 | * (must be used for caches created using kmem_cache_create) | |
2495 | */ | |
2496 | void kmem_cache_destroy(struct kmem_cache *s) | |
2497 | { | |
2498 | down_write(&slub_lock); | |
2499 | s->refcount--; | |
2500 | if (!s->refcount) { | |
2501 | list_del(&s->list); | |
a0e1d1be | 2502 | up_write(&slub_lock); |
d629d819 PE |
2503 | if (kmem_cache_close(s)) { |
2504 | printk(KERN_ERR "SLUB %s: %s called for cache that " | |
2505 | "still has objects.\n", s->name, __func__); | |
2506 | dump_stack(); | |
2507 | } | |
d76b1590 ED |
2508 | if (s->flags & SLAB_DESTROY_BY_RCU) |
2509 | rcu_barrier(); | |
81819f0f | 2510 | sysfs_slab_remove(s); |
a0e1d1be CL |
2511 | } else |
2512 | up_write(&slub_lock); | |
81819f0f CL |
2513 | } |
2514 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2515 | ||
2516 | /******************************************************************** | |
2517 | * Kmalloc subsystem | |
2518 | *******************************************************************/ | |
2519 | ||
756dee75 | 2520 | struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; |
81819f0f CL |
2521 | EXPORT_SYMBOL(kmalloc_caches); |
2522 | ||
81819f0f CL |
2523 | static int __init setup_slub_min_order(char *str) |
2524 | { | |
06428780 | 2525 | get_option(&str, &slub_min_order); |
81819f0f CL |
2526 | |
2527 | return 1; | |
2528 | } | |
2529 | ||
2530 | __setup("slub_min_order=", setup_slub_min_order); | |
2531 | ||
2532 | static int __init setup_slub_max_order(char *str) | |
2533 | { | |
06428780 | 2534 | get_option(&str, &slub_max_order); |
818cf590 | 2535 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
81819f0f CL |
2536 | |
2537 | return 1; | |
2538 | } | |
2539 | ||
2540 | __setup("slub_max_order=", setup_slub_max_order); | |
2541 | ||
2542 | static int __init setup_slub_min_objects(char *str) | |
2543 | { | |
06428780 | 2544 | get_option(&str, &slub_min_objects); |
81819f0f CL |
2545 | |
2546 | return 1; | |
2547 | } | |
2548 | ||
2549 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2550 | ||
2551 | static int __init setup_slub_nomerge(char *str) | |
2552 | { | |
2553 | slub_nomerge = 1; | |
2554 | return 1; | |
2555 | } | |
2556 | ||
2557 | __setup("slub_nomerge", setup_slub_nomerge); | |
2558 | ||
81819f0f CL |
2559 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2560 | const char *name, int size, gfp_t gfp_flags) | |
2561 | { | |
2562 | unsigned int flags = 0; | |
2563 | ||
2564 | if (gfp_flags & SLUB_DMA) | |
2565 | flags = SLAB_CACHE_DMA; | |
2566 | ||
83b519e8 PE |
2567 | /* |
2568 | * This function is called with IRQs disabled during early-boot on | |
2569 | * single CPU so there's no need to take slub_lock here. | |
2570 | */ | |
81819f0f | 2571 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, |
319d1e24 | 2572 | flags, NULL)) |
81819f0f CL |
2573 | goto panic; |
2574 | ||
2575 | list_add(&s->list, &slab_caches); | |
83b519e8 | 2576 | |
81819f0f CL |
2577 | if (sysfs_slab_add(s)) |
2578 | goto panic; | |
2579 | return s; | |
2580 | ||
2581 | panic: | |
2582 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
2583 | } | |
2584 | ||
2e443fd0 | 2585 | #ifdef CONFIG_ZONE_DMA |
ffadd4d0 | 2586 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; |
1ceef402 CL |
2587 | |
2588 | static void sysfs_add_func(struct work_struct *w) | |
2589 | { | |
2590 | struct kmem_cache *s; | |
2591 | ||
2592 | down_write(&slub_lock); | |
2593 | list_for_each_entry(s, &slab_caches, list) { | |
2594 | if (s->flags & __SYSFS_ADD_DEFERRED) { | |
2595 | s->flags &= ~__SYSFS_ADD_DEFERRED; | |
2596 | sysfs_slab_add(s); | |
2597 | } | |
2598 | } | |
2599 | up_write(&slub_lock); | |
2600 | } | |
2601 | ||
2602 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | |
2603 | ||
2e443fd0 CL |
2604 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) |
2605 | { | |
2606 | struct kmem_cache *s; | |
2e443fd0 CL |
2607 | char *text; |
2608 | size_t realsize; | |
964cf35c | 2609 | unsigned long slabflags; |
756dee75 | 2610 | int i; |
2e443fd0 CL |
2611 | |
2612 | s = kmalloc_caches_dma[index]; | |
2613 | if (s) | |
2614 | return s; | |
2615 | ||
2616 | /* Dynamically create dma cache */ | |
1ceef402 CL |
2617 | if (flags & __GFP_WAIT) |
2618 | down_write(&slub_lock); | |
2619 | else { | |
2620 | if (!down_write_trylock(&slub_lock)) | |
2621 | goto out; | |
2622 | } | |
2623 | ||
2624 | if (kmalloc_caches_dma[index]) | |
2625 | goto unlock_out; | |
2e443fd0 | 2626 | |
7b55f620 | 2627 | realsize = kmalloc_caches[index].objsize; |
3adbefee IM |
2628 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", |
2629 | (unsigned int)realsize); | |
9dfc6e68 | 2630 | |
756dee75 CL |
2631 | s = NULL; |
2632 | for (i = 0; i < KMALLOC_CACHES; i++) | |
2633 | if (!kmalloc_caches[i].size) | |
2634 | break; | |
9dfc6e68 | 2635 | |
756dee75 CL |
2636 | BUG_ON(i >= KMALLOC_CACHES); |
2637 | s = kmalloc_caches + i; | |
1ceef402 | 2638 | |
964cf35c NP |
2639 | /* |
2640 | * Must defer sysfs creation to a workqueue because we don't know | |
2641 | * what context we are called from. Before sysfs comes up, we don't | |
2642 | * need to do anything because our sysfs initcall will start by | |
2643 | * adding all existing slabs to sysfs. | |
2644 | */ | |
5caf5c7d | 2645 | slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; |
964cf35c NP |
2646 | if (slab_state >= SYSFS) |
2647 | slabflags |= __SYSFS_ADD_DEFERRED; | |
2648 | ||
7738dd9e | 2649 | if (!text || !kmem_cache_open(s, flags, text, |
964cf35c | 2650 | realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { |
756dee75 | 2651 | s->size = 0; |
1ceef402 CL |
2652 | kfree(text); |
2653 | goto unlock_out; | |
dfce8648 | 2654 | } |
1ceef402 CL |
2655 | |
2656 | list_add(&s->list, &slab_caches); | |
2657 | kmalloc_caches_dma[index] = s; | |
2658 | ||
964cf35c NP |
2659 | if (slab_state >= SYSFS) |
2660 | schedule_work(&sysfs_add_work); | |
1ceef402 CL |
2661 | |
2662 | unlock_out: | |
dfce8648 | 2663 | up_write(&slub_lock); |
1ceef402 | 2664 | out: |
dfce8648 | 2665 | return kmalloc_caches_dma[index]; |
2e443fd0 CL |
2666 | } |
2667 | #endif | |
2668 | ||
f1b26339 CL |
2669 | /* |
2670 | * Conversion table for small slabs sizes / 8 to the index in the | |
2671 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
2672 | * of two cache sizes there. The size of larger slabs can be determined using | |
2673 | * fls. | |
2674 | */ | |
2675 | static s8 size_index[24] = { | |
2676 | 3, /* 8 */ | |
2677 | 4, /* 16 */ | |
2678 | 5, /* 24 */ | |
2679 | 5, /* 32 */ | |
2680 | 6, /* 40 */ | |
2681 | 6, /* 48 */ | |
2682 | 6, /* 56 */ | |
2683 | 6, /* 64 */ | |
2684 | 1, /* 72 */ | |
2685 | 1, /* 80 */ | |
2686 | 1, /* 88 */ | |
2687 | 1, /* 96 */ | |
2688 | 7, /* 104 */ | |
2689 | 7, /* 112 */ | |
2690 | 7, /* 120 */ | |
2691 | 7, /* 128 */ | |
2692 | 2, /* 136 */ | |
2693 | 2, /* 144 */ | |
2694 | 2, /* 152 */ | |
2695 | 2, /* 160 */ | |
2696 | 2, /* 168 */ | |
2697 | 2, /* 176 */ | |
2698 | 2, /* 184 */ | |
2699 | 2 /* 192 */ | |
2700 | }; | |
2701 | ||
acdfcd04 AK |
2702 | static inline int size_index_elem(size_t bytes) |
2703 | { | |
2704 | return (bytes - 1) / 8; | |
2705 | } | |
2706 | ||
81819f0f CL |
2707 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
2708 | { | |
f1b26339 | 2709 | int index; |
81819f0f | 2710 | |
f1b26339 CL |
2711 | if (size <= 192) { |
2712 | if (!size) | |
2713 | return ZERO_SIZE_PTR; | |
81819f0f | 2714 | |
acdfcd04 | 2715 | index = size_index[size_index_elem(size)]; |
aadb4bc4 | 2716 | } else |
f1b26339 | 2717 | index = fls(size - 1); |
81819f0f CL |
2718 | |
2719 | #ifdef CONFIG_ZONE_DMA | |
f1b26339 | 2720 | if (unlikely((flags & SLUB_DMA))) |
2e443fd0 | 2721 | return dma_kmalloc_cache(index, flags); |
f1b26339 | 2722 | |
81819f0f CL |
2723 | #endif |
2724 | return &kmalloc_caches[index]; | |
2725 | } | |
2726 | ||
2727 | void *__kmalloc(size_t size, gfp_t flags) | |
2728 | { | |
aadb4bc4 | 2729 | struct kmem_cache *s; |
5b882be4 | 2730 | void *ret; |
81819f0f | 2731 | |
ffadd4d0 | 2732 | if (unlikely(size > SLUB_MAX_SIZE)) |
eada35ef | 2733 | return kmalloc_large(size, flags); |
aadb4bc4 CL |
2734 | |
2735 | s = get_slab(size, flags); | |
2736 | ||
2737 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2738 | return s; |
2739 | ||
5b882be4 EGM |
2740 | ret = slab_alloc(s, flags, -1, _RET_IP_); |
2741 | ||
ca2b84cb | 2742 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 EGM |
2743 | |
2744 | return ret; | |
81819f0f CL |
2745 | } |
2746 | EXPORT_SYMBOL(__kmalloc); | |
2747 | ||
f619cfe1 CL |
2748 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
2749 | { | |
b1eeab67 | 2750 | struct page *page; |
e4f7c0b4 | 2751 | void *ptr = NULL; |
f619cfe1 | 2752 | |
b1eeab67 VN |
2753 | flags |= __GFP_COMP | __GFP_NOTRACK; |
2754 | page = alloc_pages_node(node, flags, get_order(size)); | |
f619cfe1 | 2755 | if (page) |
e4f7c0b4 CM |
2756 | ptr = page_address(page); |
2757 | ||
2758 | kmemleak_alloc(ptr, size, 1, flags); | |
2759 | return ptr; | |
f619cfe1 CL |
2760 | } |
2761 | ||
81819f0f CL |
2762 | #ifdef CONFIG_NUMA |
2763 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
2764 | { | |
aadb4bc4 | 2765 | struct kmem_cache *s; |
5b882be4 | 2766 | void *ret; |
81819f0f | 2767 | |
057685cf | 2768 | if (unlikely(size > SLUB_MAX_SIZE)) { |
5b882be4 EGM |
2769 | ret = kmalloc_large_node(size, flags, node); |
2770 | ||
ca2b84cb EGM |
2771 | trace_kmalloc_node(_RET_IP_, ret, |
2772 | size, PAGE_SIZE << get_order(size), | |
2773 | flags, node); | |
5b882be4 EGM |
2774 | |
2775 | return ret; | |
2776 | } | |
aadb4bc4 CL |
2777 | |
2778 | s = get_slab(size, flags); | |
2779 | ||
2780 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2781 | return s; |
2782 | ||
5b882be4 EGM |
2783 | ret = slab_alloc(s, flags, node, _RET_IP_); |
2784 | ||
ca2b84cb | 2785 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 EGM |
2786 | |
2787 | return ret; | |
81819f0f CL |
2788 | } |
2789 | EXPORT_SYMBOL(__kmalloc_node); | |
2790 | #endif | |
2791 | ||
2792 | size_t ksize(const void *object) | |
2793 | { | |
272c1d21 | 2794 | struct page *page; |
81819f0f CL |
2795 | struct kmem_cache *s; |
2796 | ||
ef8b4520 | 2797 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
2798 | return 0; |
2799 | ||
294a80a8 | 2800 | page = virt_to_head_page(object); |
294a80a8 | 2801 | |
76994412 PE |
2802 | if (unlikely(!PageSlab(page))) { |
2803 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 2804 | return PAGE_SIZE << compound_order(page); |
76994412 | 2805 | } |
81819f0f | 2806 | s = page->slab; |
81819f0f | 2807 | |
ae20bfda | 2808 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2809 | /* |
2810 | * Debugging requires use of the padding between object | |
2811 | * and whatever may come after it. | |
2812 | */ | |
2813 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
2814 | return s->objsize; | |
2815 | ||
ae20bfda | 2816 | #endif |
81819f0f CL |
2817 | /* |
2818 | * If we have the need to store the freelist pointer | |
2819 | * back there or track user information then we can | |
2820 | * only use the space before that information. | |
2821 | */ | |
2822 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
2823 | return s->inuse; | |
81819f0f CL |
2824 | /* |
2825 | * Else we can use all the padding etc for the allocation | |
2826 | */ | |
2827 | return s->size; | |
2828 | } | |
b1aabecd | 2829 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
2830 | |
2831 | void kfree(const void *x) | |
2832 | { | |
81819f0f | 2833 | struct page *page; |
5bb983b0 | 2834 | void *object = (void *)x; |
81819f0f | 2835 | |
2121db74 PE |
2836 | trace_kfree(_RET_IP_, x); |
2837 | ||
2408c550 | 2838 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
2839 | return; |
2840 | ||
b49af68f | 2841 | page = virt_to_head_page(x); |
aadb4bc4 | 2842 | if (unlikely(!PageSlab(page))) { |
0937502a | 2843 | BUG_ON(!PageCompound(page)); |
e4f7c0b4 | 2844 | kmemleak_free(x); |
aadb4bc4 CL |
2845 | put_page(page); |
2846 | return; | |
2847 | } | |
ce71e27c | 2848 | slab_free(page->slab, page, object, _RET_IP_); |
81819f0f CL |
2849 | } |
2850 | EXPORT_SYMBOL(kfree); | |
2851 | ||
2086d26a | 2852 | /* |
672bba3a CL |
2853 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2854 | * the remaining slabs by the number of items in use. The slabs with the | |
2855 | * most items in use come first. New allocations will then fill those up | |
2856 | * and thus they can be removed from the partial lists. | |
2857 | * | |
2858 | * The slabs with the least items are placed last. This results in them | |
2859 | * being allocated from last increasing the chance that the last objects | |
2860 | * are freed in them. | |
2086d26a CL |
2861 | */ |
2862 | int kmem_cache_shrink(struct kmem_cache *s) | |
2863 | { | |
2864 | int node; | |
2865 | int i; | |
2866 | struct kmem_cache_node *n; | |
2867 | struct page *page; | |
2868 | struct page *t; | |
205ab99d | 2869 | int objects = oo_objects(s->max); |
2086d26a | 2870 | struct list_head *slabs_by_inuse = |
834f3d11 | 2871 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
2086d26a CL |
2872 | unsigned long flags; |
2873 | ||
2874 | if (!slabs_by_inuse) | |
2875 | return -ENOMEM; | |
2876 | ||
2877 | flush_all(s); | |
f64dc58c | 2878 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
2879 | n = get_node(s, node); |
2880 | ||
2881 | if (!n->nr_partial) | |
2882 | continue; | |
2883 | ||
834f3d11 | 2884 | for (i = 0; i < objects; i++) |
2086d26a CL |
2885 | INIT_LIST_HEAD(slabs_by_inuse + i); |
2886 | ||
2887 | spin_lock_irqsave(&n->list_lock, flags); | |
2888 | ||
2889 | /* | |
672bba3a | 2890 | * Build lists indexed by the items in use in each slab. |
2086d26a | 2891 | * |
672bba3a CL |
2892 | * Note that concurrent frees may occur while we hold the |
2893 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
2894 | */ |
2895 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
2896 | if (!page->inuse && slab_trylock(page)) { | |
2897 | /* | |
2898 | * Must hold slab lock here because slab_free | |
2899 | * may have freed the last object and be | |
2900 | * waiting to release the slab. | |
2901 | */ | |
2902 | list_del(&page->lru); | |
2903 | n->nr_partial--; | |
2904 | slab_unlock(page); | |
2905 | discard_slab(s, page); | |
2906 | } else { | |
fcda3d89 CL |
2907 | list_move(&page->lru, |
2908 | slabs_by_inuse + page->inuse); | |
2086d26a CL |
2909 | } |
2910 | } | |
2911 | ||
2086d26a | 2912 | /* |
672bba3a CL |
2913 | * Rebuild the partial list with the slabs filled up most |
2914 | * first and the least used slabs at the end. | |
2086d26a | 2915 | */ |
834f3d11 | 2916 | for (i = objects - 1; i >= 0; i--) |
2086d26a CL |
2917 | list_splice(slabs_by_inuse + i, n->partial.prev); |
2918 | ||
2086d26a CL |
2919 | spin_unlock_irqrestore(&n->list_lock, flags); |
2920 | } | |
2921 | ||
2922 | kfree(slabs_by_inuse); | |
2923 | return 0; | |
2924 | } | |
2925 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2926 | ||
b9049e23 YG |
2927 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
2928 | static int slab_mem_going_offline_callback(void *arg) | |
2929 | { | |
2930 | struct kmem_cache *s; | |
2931 | ||
2932 | down_read(&slub_lock); | |
2933 | list_for_each_entry(s, &slab_caches, list) | |
2934 | kmem_cache_shrink(s); | |
2935 | up_read(&slub_lock); | |
2936 | ||
2937 | return 0; | |
2938 | } | |
2939 | ||
2940 | static void slab_mem_offline_callback(void *arg) | |
2941 | { | |
2942 | struct kmem_cache_node *n; | |
2943 | struct kmem_cache *s; | |
2944 | struct memory_notify *marg = arg; | |
2945 | int offline_node; | |
2946 | ||
2947 | offline_node = marg->status_change_nid; | |
2948 | ||
2949 | /* | |
2950 | * If the node still has available memory. we need kmem_cache_node | |
2951 | * for it yet. | |
2952 | */ | |
2953 | if (offline_node < 0) | |
2954 | return; | |
2955 | ||
2956 | down_read(&slub_lock); | |
2957 | list_for_each_entry(s, &slab_caches, list) { | |
2958 | n = get_node(s, offline_node); | |
2959 | if (n) { | |
2960 | /* | |
2961 | * if n->nr_slabs > 0, slabs still exist on the node | |
2962 | * that is going down. We were unable to free them, | |
2963 | * and offline_pages() function shoudn't call this | |
2964 | * callback. So, we must fail. | |
2965 | */ | |
0f389ec6 | 2966 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
2967 | |
2968 | s->node[offline_node] = NULL; | |
2969 | kmem_cache_free(kmalloc_caches, n); | |
2970 | } | |
2971 | } | |
2972 | up_read(&slub_lock); | |
2973 | } | |
2974 | ||
2975 | static int slab_mem_going_online_callback(void *arg) | |
2976 | { | |
2977 | struct kmem_cache_node *n; | |
2978 | struct kmem_cache *s; | |
2979 | struct memory_notify *marg = arg; | |
2980 | int nid = marg->status_change_nid; | |
2981 | int ret = 0; | |
2982 | ||
2983 | /* | |
2984 | * If the node's memory is already available, then kmem_cache_node is | |
2985 | * already created. Nothing to do. | |
2986 | */ | |
2987 | if (nid < 0) | |
2988 | return 0; | |
2989 | ||
2990 | /* | |
0121c619 | 2991 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
2992 | * allocate a kmem_cache_node structure in order to bring the node |
2993 | * online. | |
2994 | */ | |
2995 | down_read(&slub_lock); | |
2996 | list_for_each_entry(s, &slab_caches, list) { | |
2997 | /* | |
2998 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
2999 | * since memory is not yet available from the node that | |
3000 | * is brought up. | |
3001 | */ | |
3002 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | |
3003 | if (!n) { | |
3004 | ret = -ENOMEM; | |
3005 | goto out; | |
3006 | } | |
5595cffc | 3007 | init_kmem_cache_node(n, s); |
b9049e23 YG |
3008 | s->node[nid] = n; |
3009 | } | |
3010 | out: | |
3011 | up_read(&slub_lock); | |
3012 | return ret; | |
3013 | } | |
3014 | ||
3015 | static int slab_memory_callback(struct notifier_block *self, | |
3016 | unsigned long action, void *arg) | |
3017 | { | |
3018 | int ret = 0; | |
3019 | ||
3020 | switch (action) { | |
3021 | case MEM_GOING_ONLINE: | |
3022 | ret = slab_mem_going_online_callback(arg); | |
3023 | break; | |
3024 | case MEM_GOING_OFFLINE: | |
3025 | ret = slab_mem_going_offline_callback(arg); | |
3026 | break; | |
3027 | case MEM_OFFLINE: | |
3028 | case MEM_CANCEL_ONLINE: | |
3029 | slab_mem_offline_callback(arg); | |
3030 | break; | |
3031 | case MEM_ONLINE: | |
3032 | case MEM_CANCEL_OFFLINE: | |
3033 | break; | |
3034 | } | |
dc19f9db KH |
3035 | if (ret) |
3036 | ret = notifier_from_errno(ret); | |
3037 | else | |
3038 | ret = NOTIFY_OK; | |
b9049e23 YG |
3039 | return ret; |
3040 | } | |
3041 | ||
3042 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
3043 | ||
81819f0f CL |
3044 | /******************************************************************** |
3045 | * Basic setup of slabs | |
3046 | *******************************************************************/ | |
3047 | ||
3048 | void __init kmem_cache_init(void) | |
3049 | { | |
3050 | int i; | |
4b356be0 | 3051 | int caches = 0; |
81819f0f CL |
3052 | |
3053 | #ifdef CONFIG_NUMA | |
3054 | /* | |
3055 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 3056 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
3057 | * kmem_cache_open for slab_state == DOWN. |
3058 | */ | |
3059 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | |
83b519e8 | 3060 | sizeof(struct kmem_cache_node), GFP_NOWAIT); |
8ffa6875 | 3061 | kmalloc_caches[0].refcount = -1; |
4b356be0 | 3062 | caches++; |
b9049e23 | 3063 | |
0c40ba4f | 3064 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
3065 | #endif |
3066 | ||
3067 | /* Able to allocate the per node structures */ | |
3068 | slab_state = PARTIAL; | |
3069 | ||
3070 | /* Caches that are not of the two-to-the-power-of size */ | |
acdfcd04 | 3071 | if (KMALLOC_MIN_SIZE <= 32) { |
4b356be0 | 3072 | create_kmalloc_cache(&kmalloc_caches[1], |
83b519e8 | 3073 | "kmalloc-96", 96, GFP_NOWAIT); |
4b356be0 | 3074 | caches++; |
acdfcd04 AK |
3075 | } |
3076 | if (KMALLOC_MIN_SIZE <= 64) { | |
4b356be0 | 3077 | create_kmalloc_cache(&kmalloc_caches[2], |
83b519e8 | 3078 | "kmalloc-192", 192, GFP_NOWAIT); |
4b356be0 CL |
3079 | caches++; |
3080 | } | |
81819f0f | 3081 | |
ffadd4d0 | 3082 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
81819f0f | 3083 | create_kmalloc_cache(&kmalloc_caches[i], |
83b519e8 | 3084 | "kmalloc", 1 << i, GFP_NOWAIT); |
4b356be0 CL |
3085 | caches++; |
3086 | } | |
81819f0f | 3087 | |
f1b26339 CL |
3088 | |
3089 | /* | |
3090 | * Patch up the size_index table if we have strange large alignment | |
3091 | * requirements for the kmalloc array. This is only the case for | |
6446faa2 | 3092 | * MIPS it seems. The standard arches will not generate any code here. |
f1b26339 CL |
3093 | * |
3094 | * Largest permitted alignment is 256 bytes due to the way we | |
3095 | * handle the index determination for the smaller caches. | |
3096 | * | |
3097 | * Make sure that nothing crazy happens if someone starts tinkering | |
3098 | * around with ARCH_KMALLOC_MINALIGN | |
3099 | */ | |
3100 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | |
3101 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
3102 | ||
acdfcd04 AK |
3103 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
3104 | int elem = size_index_elem(i); | |
3105 | if (elem >= ARRAY_SIZE(size_index)) | |
3106 | break; | |
3107 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
3108 | } | |
f1b26339 | 3109 | |
acdfcd04 AK |
3110 | if (KMALLOC_MIN_SIZE == 64) { |
3111 | /* | |
3112 | * The 96 byte size cache is not used if the alignment | |
3113 | * is 64 byte. | |
3114 | */ | |
3115 | for (i = 64 + 8; i <= 96; i += 8) | |
3116 | size_index[size_index_elem(i)] = 7; | |
3117 | } else if (KMALLOC_MIN_SIZE == 128) { | |
41d54d3b CL |
3118 | /* |
3119 | * The 192 byte sized cache is not used if the alignment | |
3120 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
3121 | * instead. | |
3122 | */ | |
3123 | for (i = 128 + 8; i <= 192; i += 8) | |
acdfcd04 | 3124 | size_index[size_index_elem(i)] = 8; |
41d54d3b CL |
3125 | } |
3126 | ||
81819f0f CL |
3127 | slab_state = UP; |
3128 | ||
3129 | /* Provide the correct kmalloc names now that the caches are up */ | |
ffadd4d0 | 3130 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) |
81819f0f | 3131 | kmalloc_caches[i]. name = |
83b519e8 | 3132 | kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); |
81819f0f CL |
3133 | |
3134 | #ifdef CONFIG_SMP | |
3135 | register_cpu_notifier(&slab_notifier); | |
9dfc6e68 CL |
3136 | #endif |
3137 | #ifdef CONFIG_NUMA | |
3138 | kmem_size = offsetof(struct kmem_cache, node) + | |
3139 | nr_node_ids * sizeof(struct kmem_cache_node *); | |
4c93c355 CL |
3140 | #else |
3141 | kmem_size = sizeof(struct kmem_cache); | |
81819f0f CL |
3142 | #endif |
3143 | ||
3adbefee IM |
3144 | printk(KERN_INFO |
3145 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
3146 | " CPUs=%d, Nodes=%d\n", |
3147 | caches, cache_line_size(), | |
81819f0f CL |
3148 | slub_min_order, slub_max_order, slub_min_objects, |
3149 | nr_cpu_ids, nr_node_ids); | |
3150 | } | |
3151 | ||
7e85ee0c PE |
3152 | void __init kmem_cache_init_late(void) |
3153 | { | |
7e85ee0c PE |
3154 | } |
3155 | ||
81819f0f CL |
3156 | /* |
3157 | * Find a mergeable slab cache | |
3158 | */ | |
3159 | static int slab_unmergeable(struct kmem_cache *s) | |
3160 | { | |
3161 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
3162 | return 1; | |
3163 | ||
c59def9f | 3164 | if (s->ctor) |
81819f0f CL |
3165 | return 1; |
3166 | ||
8ffa6875 CL |
3167 | /* |
3168 | * We may have set a slab to be unmergeable during bootstrap. | |
3169 | */ | |
3170 | if (s->refcount < 0) | |
3171 | return 1; | |
3172 | ||
81819f0f CL |
3173 | return 0; |
3174 | } | |
3175 | ||
3176 | static struct kmem_cache *find_mergeable(size_t size, | |
ba0268a8 | 3177 | size_t align, unsigned long flags, const char *name, |
51cc5068 | 3178 | void (*ctor)(void *)) |
81819f0f | 3179 | { |
5b95a4ac | 3180 | struct kmem_cache *s; |
81819f0f CL |
3181 | |
3182 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
3183 | return NULL; | |
3184 | ||
c59def9f | 3185 | if (ctor) |
81819f0f CL |
3186 | return NULL; |
3187 | ||
3188 | size = ALIGN(size, sizeof(void *)); | |
3189 | align = calculate_alignment(flags, align, size); | |
3190 | size = ALIGN(size, align); | |
ba0268a8 | 3191 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 3192 | |
5b95a4ac | 3193 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
3194 | if (slab_unmergeable(s)) |
3195 | continue; | |
3196 | ||
3197 | if (size > s->size) | |
3198 | continue; | |
3199 | ||
ba0268a8 | 3200 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
3201 | continue; |
3202 | /* | |
3203 | * Check if alignment is compatible. | |
3204 | * Courtesy of Adrian Drzewiecki | |
3205 | */ | |
06428780 | 3206 | if ((s->size & ~(align - 1)) != s->size) |
81819f0f CL |
3207 | continue; |
3208 | ||
3209 | if (s->size - size >= sizeof(void *)) | |
3210 | continue; | |
3211 | ||
3212 | return s; | |
3213 | } | |
3214 | return NULL; | |
3215 | } | |
3216 | ||
3217 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
51cc5068 | 3218 | size_t align, unsigned long flags, void (*ctor)(void *)) |
81819f0f CL |
3219 | { |
3220 | struct kmem_cache *s; | |
3221 | ||
fe1ff49d BH |
3222 | if (WARN_ON(!name)) |
3223 | return NULL; | |
3224 | ||
81819f0f | 3225 | down_write(&slub_lock); |
ba0268a8 | 3226 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
3227 | if (s) { |
3228 | s->refcount++; | |
3229 | /* | |
3230 | * Adjust the object sizes so that we clear | |
3231 | * the complete object on kzalloc. | |
3232 | */ | |
3233 | s->objsize = max(s->objsize, (int)size); | |
3234 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | |
a0e1d1be | 3235 | up_write(&slub_lock); |
6446faa2 | 3236 | |
7b8f3b66 DR |
3237 | if (sysfs_slab_alias(s, name)) { |
3238 | down_write(&slub_lock); | |
3239 | s->refcount--; | |
3240 | up_write(&slub_lock); | |
81819f0f | 3241 | goto err; |
7b8f3b66 | 3242 | } |
a0e1d1be CL |
3243 | return s; |
3244 | } | |
6446faa2 | 3245 | |
a0e1d1be CL |
3246 | s = kmalloc(kmem_size, GFP_KERNEL); |
3247 | if (s) { | |
3248 | if (kmem_cache_open(s, GFP_KERNEL, name, | |
c59def9f | 3249 | size, align, flags, ctor)) { |
81819f0f | 3250 | list_add(&s->list, &slab_caches); |
a0e1d1be | 3251 | up_write(&slub_lock); |
7b8f3b66 DR |
3252 | if (sysfs_slab_add(s)) { |
3253 | down_write(&slub_lock); | |
3254 | list_del(&s->list); | |
3255 | up_write(&slub_lock); | |
3256 | kfree(s); | |
a0e1d1be | 3257 | goto err; |
7b8f3b66 | 3258 | } |
a0e1d1be CL |
3259 | return s; |
3260 | } | |
3261 | kfree(s); | |
81819f0f CL |
3262 | } |
3263 | up_write(&slub_lock); | |
81819f0f CL |
3264 | |
3265 | err: | |
81819f0f CL |
3266 | if (flags & SLAB_PANIC) |
3267 | panic("Cannot create slabcache %s\n", name); | |
3268 | else | |
3269 | s = NULL; | |
3270 | return s; | |
3271 | } | |
3272 | EXPORT_SYMBOL(kmem_cache_create); | |
3273 | ||
81819f0f | 3274 | #ifdef CONFIG_SMP |
81819f0f | 3275 | /* |
672bba3a CL |
3276 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3277 | * necessary. | |
81819f0f CL |
3278 | */ |
3279 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
3280 | unsigned long action, void *hcpu) | |
3281 | { | |
3282 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3283 | struct kmem_cache *s; |
3284 | unsigned long flags; | |
81819f0f CL |
3285 | |
3286 | switch (action) { | |
3287 | case CPU_UP_CANCELED: | |
8bb78442 | 3288 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3289 | case CPU_DEAD: |
8bb78442 | 3290 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
3291 | down_read(&slub_lock); |
3292 | list_for_each_entry(s, &slab_caches, list) { | |
3293 | local_irq_save(flags); | |
3294 | __flush_cpu_slab(s, cpu); | |
3295 | local_irq_restore(flags); | |
3296 | } | |
3297 | up_read(&slub_lock); | |
81819f0f CL |
3298 | break; |
3299 | default: | |
3300 | break; | |
3301 | } | |
3302 | return NOTIFY_OK; | |
3303 | } | |
3304 | ||
06428780 | 3305 | static struct notifier_block __cpuinitdata slab_notifier = { |
3adbefee | 3306 | .notifier_call = slab_cpuup_callback |
06428780 | 3307 | }; |
81819f0f CL |
3308 | |
3309 | #endif | |
3310 | ||
ce71e27c | 3311 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 3312 | { |
aadb4bc4 | 3313 | struct kmem_cache *s; |
94b528d0 | 3314 | void *ret; |
aadb4bc4 | 3315 | |
ffadd4d0 | 3316 | if (unlikely(size > SLUB_MAX_SIZE)) |
eada35ef PE |
3317 | return kmalloc_large(size, gfpflags); |
3318 | ||
aadb4bc4 | 3319 | s = get_slab(size, gfpflags); |
81819f0f | 3320 | |
2408c550 | 3321 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3322 | return s; |
81819f0f | 3323 | |
94b528d0 EGM |
3324 | ret = slab_alloc(s, gfpflags, -1, caller); |
3325 | ||
3326 | /* Honor the call site pointer we recieved. */ | |
ca2b84cb | 3327 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
3328 | |
3329 | return ret; | |
81819f0f CL |
3330 | } |
3331 | ||
3332 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |
ce71e27c | 3333 | int node, unsigned long caller) |
81819f0f | 3334 | { |
aadb4bc4 | 3335 | struct kmem_cache *s; |
94b528d0 | 3336 | void *ret; |
aadb4bc4 | 3337 | |
ffadd4d0 | 3338 | if (unlikely(size > SLUB_MAX_SIZE)) |
f619cfe1 | 3339 | return kmalloc_large_node(size, gfpflags, node); |
eada35ef | 3340 | |
aadb4bc4 | 3341 | s = get_slab(size, gfpflags); |
81819f0f | 3342 | |
2408c550 | 3343 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3344 | return s; |
81819f0f | 3345 | |
94b528d0 EGM |
3346 | ret = slab_alloc(s, gfpflags, node, caller); |
3347 | ||
3348 | /* Honor the call site pointer we recieved. */ | |
ca2b84cb | 3349 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
3350 | |
3351 | return ret; | |
81819f0f CL |
3352 | } |
3353 | ||
f6acb635 | 3354 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d CL |
3355 | static int count_inuse(struct page *page) |
3356 | { | |
3357 | return page->inuse; | |
3358 | } | |
3359 | ||
3360 | static int count_total(struct page *page) | |
3361 | { | |
3362 | return page->objects; | |
3363 | } | |
3364 | ||
434e245d CL |
3365 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3366 | unsigned long *map) | |
53e15af0 CL |
3367 | { |
3368 | void *p; | |
a973e9dd | 3369 | void *addr = page_address(page); |
53e15af0 CL |
3370 | |
3371 | if (!check_slab(s, page) || | |
3372 | !on_freelist(s, page, NULL)) | |
3373 | return 0; | |
3374 | ||
3375 | /* Now we know that a valid freelist exists */ | |
39b26464 | 3376 | bitmap_zero(map, page->objects); |
53e15af0 | 3377 | |
7656c72b CL |
3378 | for_each_free_object(p, s, page->freelist) { |
3379 | set_bit(slab_index(p, s, addr), map); | |
53e15af0 CL |
3380 | if (!check_object(s, page, p, 0)) |
3381 | return 0; | |
3382 | } | |
3383 | ||
224a88be | 3384 | for_each_object(p, s, addr, page->objects) |
7656c72b | 3385 | if (!test_bit(slab_index(p, s, addr), map)) |
53e15af0 CL |
3386 | if (!check_object(s, page, p, 1)) |
3387 | return 0; | |
3388 | return 1; | |
3389 | } | |
3390 | ||
434e245d CL |
3391 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3392 | unsigned long *map) | |
53e15af0 CL |
3393 | { |
3394 | if (slab_trylock(page)) { | |
434e245d | 3395 | validate_slab(s, page, map); |
53e15af0 CL |
3396 | slab_unlock(page); |
3397 | } else | |
3398 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
3399 | s->name, page); | |
3400 | ||
3401 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | |
8a38082d AW |
3402 | if (!PageSlubDebug(page)) |
3403 | printk(KERN_ERR "SLUB %s: SlubDebug not set " | |
53e15af0 CL |
3404 | "on slab 0x%p\n", s->name, page); |
3405 | } else { | |
8a38082d AW |
3406 | if (PageSlubDebug(page)) |
3407 | printk(KERN_ERR "SLUB %s: SlubDebug set on " | |
53e15af0 CL |
3408 | "slab 0x%p\n", s->name, page); |
3409 | } | |
3410 | } | |
3411 | ||
434e245d CL |
3412 | static int validate_slab_node(struct kmem_cache *s, |
3413 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3414 | { |
3415 | unsigned long count = 0; | |
3416 | struct page *page; | |
3417 | unsigned long flags; | |
3418 | ||
3419 | spin_lock_irqsave(&n->list_lock, flags); | |
3420 | ||
3421 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3422 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3423 | count++; |
3424 | } | |
3425 | if (count != n->nr_partial) | |
3426 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3427 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3428 | ||
3429 | if (!(s->flags & SLAB_STORE_USER)) | |
3430 | goto out; | |
3431 | ||
3432 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3433 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3434 | count++; |
3435 | } | |
3436 | if (count != atomic_long_read(&n->nr_slabs)) | |
3437 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3438 | "counter=%ld\n", s->name, count, | |
3439 | atomic_long_read(&n->nr_slabs)); | |
3440 | ||
3441 | out: | |
3442 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3443 | return count; | |
3444 | } | |
3445 | ||
434e245d | 3446 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3447 | { |
3448 | int node; | |
3449 | unsigned long count = 0; | |
205ab99d | 3450 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d CL |
3451 | sizeof(unsigned long), GFP_KERNEL); |
3452 | ||
3453 | if (!map) | |
3454 | return -ENOMEM; | |
53e15af0 CL |
3455 | |
3456 | flush_all(s); | |
f64dc58c | 3457 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3458 | struct kmem_cache_node *n = get_node(s, node); |
3459 | ||
434e245d | 3460 | count += validate_slab_node(s, n, map); |
53e15af0 | 3461 | } |
434e245d | 3462 | kfree(map); |
53e15af0 CL |
3463 | return count; |
3464 | } | |
3465 | ||
b3459709 CL |
3466 | #ifdef SLUB_RESILIENCY_TEST |
3467 | static void resiliency_test(void) | |
3468 | { | |
3469 | u8 *p; | |
3470 | ||
3471 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
3472 | printk(KERN_ERR "-----------------------\n"); | |
3473 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
3474 | ||
3475 | p = kzalloc(16, GFP_KERNEL); | |
3476 | p[16] = 0x12; | |
3477 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
3478 | " 0x12->0x%p\n\n", p + 16); | |
3479 | ||
3480 | validate_slab_cache(kmalloc_caches + 4); | |
3481 | ||
3482 | /* Hmmm... The next two are dangerous */ | |
3483 | p = kzalloc(32, GFP_KERNEL); | |
3484 | p[32 + sizeof(void *)] = 0x34; | |
3485 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
3adbefee IM |
3486 | " 0x34 -> -0x%p\n", p); |
3487 | printk(KERN_ERR | |
3488 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3489 | |
3490 | validate_slab_cache(kmalloc_caches + 5); | |
3491 | p = kzalloc(64, GFP_KERNEL); | |
3492 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
3493 | *p = 0x56; | |
3494 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
3495 | p); | |
3adbefee IM |
3496 | printk(KERN_ERR |
3497 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3498 | validate_slab_cache(kmalloc_caches + 6); |
3499 | ||
3500 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
3501 | p = kzalloc(128, GFP_KERNEL); | |
3502 | kfree(p); | |
3503 | *p = 0x78; | |
3504 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
3505 | validate_slab_cache(kmalloc_caches + 7); | |
3506 | ||
3507 | p = kzalloc(256, GFP_KERNEL); | |
3508 | kfree(p); | |
3509 | p[50] = 0x9a; | |
3adbefee IM |
3510 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", |
3511 | p); | |
b3459709 CL |
3512 | validate_slab_cache(kmalloc_caches + 8); |
3513 | ||
3514 | p = kzalloc(512, GFP_KERNEL); | |
3515 | kfree(p); | |
3516 | p[512] = 0xab; | |
3517 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
3518 | validate_slab_cache(kmalloc_caches + 9); | |
3519 | } | |
3520 | #else | |
3521 | static void resiliency_test(void) {}; | |
3522 | #endif | |
3523 | ||
88a420e4 | 3524 | /* |
672bba3a | 3525 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3526 | * and freed. |
3527 | */ | |
3528 | ||
3529 | struct location { | |
3530 | unsigned long count; | |
ce71e27c | 3531 | unsigned long addr; |
45edfa58 CL |
3532 | long long sum_time; |
3533 | long min_time; | |
3534 | long max_time; | |
3535 | long min_pid; | |
3536 | long max_pid; | |
174596a0 | 3537 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 3538 | nodemask_t nodes; |
88a420e4 CL |
3539 | }; |
3540 | ||
3541 | struct loc_track { | |
3542 | unsigned long max; | |
3543 | unsigned long count; | |
3544 | struct location *loc; | |
3545 | }; | |
3546 | ||
3547 | static void free_loc_track(struct loc_track *t) | |
3548 | { | |
3549 | if (t->max) | |
3550 | free_pages((unsigned long)t->loc, | |
3551 | get_order(sizeof(struct location) * t->max)); | |
3552 | } | |
3553 | ||
68dff6a9 | 3554 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3555 | { |
3556 | struct location *l; | |
3557 | int order; | |
3558 | ||
88a420e4 CL |
3559 | order = get_order(sizeof(struct location) * max); |
3560 | ||
68dff6a9 | 3561 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3562 | if (!l) |
3563 | return 0; | |
3564 | ||
3565 | if (t->count) { | |
3566 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
3567 | free_loc_track(t); | |
3568 | } | |
3569 | t->max = max; | |
3570 | t->loc = l; | |
3571 | return 1; | |
3572 | } | |
3573 | ||
3574 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 3575 | const struct track *track) |
88a420e4 CL |
3576 | { |
3577 | long start, end, pos; | |
3578 | struct location *l; | |
ce71e27c | 3579 | unsigned long caddr; |
45edfa58 | 3580 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
3581 | |
3582 | start = -1; | |
3583 | end = t->count; | |
3584 | ||
3585 | for ( ; ; ) { | |
3586 | pos = start + (end - start + 1) / 2; | |
3587 | ||
3588 | /* | |
3589 | * There is nothing at "end". If we end up there | |
3590 | * we need to add something to before end. | |
3591 | */ | |
3592 | if (pos == end) | |
3593 | break; | |
3594 | ||
3595 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
3596 | if (track->addr == caddr) { |
3597 | ||
3598 | l = &t->loc[pos]; | |
3599 | l->count++; | |
3600 | if (track->when) { | |
3601 | l->sum_time += age; | |
3602 | if (age < l->min_time) | |
3603 | l->min_time = age; | |
3604 | if (age > l->max_time) | |
3605 | l->max_time = age; | |
3606 | ||
3607 | if (track->pid < l->min_pid) | |
3608 | l->min_pid = track->pid; | |
3609 | if (track->pid > l->max_pid) | |
3610 | l->max_pid = track->pid; | |
3611 | ||
174596a0 RR |
3612 | cpumask_set_cpu(track->cpu, |
3613 | to_cpumask(l->cpus)); | |
45edfa58 CL |
3614 | } |
3615 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3616 | return 1; |
3617 | } | |
3618 | ||
45edfa58 | 3619 | if (track->addr < caddr) |
88a420e4 CL |
3620 | end = pos; |
3621 | else | |
3622 | start = pos; | |
3623 | } | |
3624 | ||
3625 | /* | |
672bba3a | 3626 | * Not found. Insert new tracking element. |
88a420e4 | 3627 | */ |
68dff6a9 | 3628 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
3629 | return 0; |
3630 | ||
3631 | l = t->loc + pos; | |
3632 | if (pos < t->count) | |
3633 | memmove(l + 1, l, | |
3634 | (t->count - pos) * sizeof(struct location)); | |
3635 | t->count++; | |
3636 | l->count = 1; | |
45edfa58 CL |
3637 | l->addr = track->addr; |
3638 | l->sum_time = age; | |
3639 | l->min_time = age; | |
3640 | l->max_time = age; | |
3641 | l->min_pid = track->pid; | |
3642 | l->max_pid = track->pid; | |
174596a0 RR |
3643 | cpumask_clear(to_cpumask(l->cpus)); |
3644 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
3645 | nodes_clear(l->nodes); |
3646 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3647 | return 1; |
3648 | } | |
3649 | ||
3650 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
3651 | struct page *page, enum track_item alloc) | |
3652 | { | |
a973e9dd | 3653 | void *addr = page_address(page); |
39b26464 | 3654 | DECLARE_BITMAP(map, page->objects); |
88a420e4 CL |
3655 | void *p; |
3656 | ||
39b26464 | 3657 | bitmap_zero(map, page->objects); |
7656c72b CL |
3658 | for_each_free_object(p, s, page->freelist) |
3659 | set_bit(slab_index(p, s, addr), map); | |
88a420e4 | 3660 | |
224a88be | 3661 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
3662 | if (!test_bit(slab_index(p, s, addr), map)) |
3663 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
3664 | } |
3665 | ||
3666 | static int list_locations(struct kmem_cache *s, char *buf, | |
3667 | enum track_item alloc) | |
3668 | { | |
e374d483 | 3669 | int len = 0; |
88a420e4 | 3670 | unsigned long i; |
68dff6a9 | 3671 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 CL |
3672 | int node; |
3673 | ||
68dff6a9 | 3674 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
ea3061d2 | 3675 | GFP_TEMPORARY)) |
68dff6a9 | 3676 | return sprintf(buf, "Out of memory\n"); |
88a420e4 CL |
3677 | |
3678 | /* Push back cpu slabs */ | |
3679 | flush_all(s); | |
3680 | ||
f64dc58c | 3681 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
3682 | struct kmem_cache_node *n = get_node(s, node); |
3683 | unsigned long flags; | |
3684 | struct page *page; | |
3685 | ||
9e86943b | 3686 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
3687 | continue; |
3688 | ||
3689 | spin_lock_irqsave(&n->list_lock, flags); | |
3690 | list_for_each_entry(page, &n->partial, lru) | |
3691 | process_slab(&t, s, page, alloc); | |
3692 | list_for_each_entry(page, &n->full, lru) | |
3693 | process_slab(&t, s, page, alloc); | |
3694 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3695 | } | |
3696 | ||
3697 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 3698 | struct location *l = &t.loc[i]; |
88a420e4 | 3699 | |
9c246247 | 3700 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 3701 | break; |
e374d483 | 3702 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
3703 | |
3704 | if (l->addr) | |
e374d483 | 3705 | len += sprint_symbol(buf + len, (unsigned long)l->addr); |
88a420e4 | 3706 | else |
e374d483 | 3707 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
3708 | |
3709 | if (l->sum_time != l->min_time) { | |
e374d483 | 3710 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
3711 | l->min_time, |
3712 | (long)div_u64(l->sum_time, l->count), | |
3713 | l->max_time); | |
45edfa58 | 3714 | } else |
e374d483 | 3715 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
3716 | l->min_time); |
3717 | ||
3718 | if (l->min_pid != l->max_pid) | |
e374d483 | 3719 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
3720 | l->min_pid, l->max_pid); |
3721 | else | |
e374d483 | 3722 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
3723 | l->min_pid); |
3724 | ||
174596a0 RR |
3725 | if (num_online_cpus() > 1 && |
3726 | !cpumask_empty(to_cpumask(l->cpus)) && | |
e374d483 HH |
3727 | len < PAGE_SIZE - 60) { |
3728 | len += sprintf(buf + len, " cpus="); | |
3729 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
174596a0 | 3730 | to_cpumask(l->cpus)); |
45edfa58 CL |
3731 | } |
3732 | ||
62bc62a8 | 3733 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
e374d483 HH |
3734 | len < PAGE_SIZE - 60) { |
3735 | len += sprintf(buf + len, " nodes="); | |
3736 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
3737 | l->nodes); |
3738 | } | |
3739 | ||
e374d483 | 3740 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
3741 | } |
3742 | ||
3743 | free_loc_track(&t); | |
3744 | if (!t.count) | |
e374d483 HH |
3745 | len += sprintf(buf, "No data\n"); |
3746 | return len; | |
88a420e4 CL |
3747 | } |
3748 | ||
81819f0f | 3749 | enum slab_stat_type { |
205ab99d CL |
3750 | SL_ALL, /* All slabs */ |
3751 | SL_PARTIAL, /* Only partially allocated slabs */ | |
3752 | SL_CPU, /* Only slabs used for cpu caches */ | |
3753 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
3754 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
3755 | }; |
3756 | ||
205ab99d | 3757 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
3758 | #define SO_PARTIAL (1 << SL_PARTIAL) |
3759 | #define SO_CPU (1 << SL_CPU) | |
3760 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 3761 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 3762 | |
62e5c4b4 CG |
3763 | static ssize_t show_slab_objects(struct kmem_cache *s, |
3764 | char *buf, unsigned long flags) | |
81819f0f CL |
3765 | { |
3766 | unsigned long total = 0; | |
81819f0f CL |
3767 | int node; |
3768 | int x; | |
3769 | unsigned long *nodes; | |
3770 | unsigned long *per_cpu; | |
3771 | ||
3772 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
62e5c4b4 CG |
3773 | if (!nodes) |
3774 | return -ENOMEM; | |
81819f0f CL |
3775 | per_cpu = nodes + nr_node_ids; |
3776 | ||
205ab99d CL |
3777 | if (flags & SO_CPU) { |
3778 | int cpu; | |
81819f0f | 3779 | |
205ab99d | 3780 | for_each_possible_cpu(cpu) { |
9dfc6e68 | 3781 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
dfb4f096 | 3782 | |
205ab99d CL |
3783 | if (!c || c->node < 0) |
3784 | continue; | |
3785 | ||
3786 | if (c->page) { | |
3787 | if (flags & SO_TOTAL) | |
3788 | x = c->page->objects; | |
3789 | else if (flags & SO_OBJECTS) | |
3790 | x = c->page->inuse; | |
81819f0f CL |
3791 | else |
3792 | x = 1; | |
205ab99d | 3793 | |
81819f0f | 3794 | total += x; |
205ab99d | 3795 | nodes[c->node] += x; |
81819f0f | 3796 | } |
205ab99d | 3797 | per_cpu[c->node]++; |
81819f0f CL |
3798 | } |
3799 | } | |
3800 | ||
205ab99d CL |
3801 | if (flags & SO_ALL) { |
3802 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
3803 | struct kmem_cache_node *n = get_node(s, node); | |
3804 | ||
3805 | if (flags & SO_TOTAL) | |
3806 | x = atomic_long_read(&n->total_objects); | |
3807 | else if (flags & SO_OBJECTS) | |
3808 | x = atomic_long_read(&n->total_objects) - | |
3809 | count_partial(n, count_free); | |
81819f0f | 3810 | |
81819f0f | 3811 | else |
205ab99d | 3812 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
3813 | total += x; |
3814 | nodes[node] += x; | |
3815 | } | |
3816 | ||
205ab99d CL |
3817 | } else if (flags & SO_PARTIAL) { |
3818 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
3819 | struct kmem_cache_node *n = get_node(s, node); | |
81819f0f | 3820 | |
205ab99d CL |
3821 | if (flags & SO_TOTAL) |
3822 | x = count_partial(n, count_total); | |
3823 | else if (flags & SO_OBJECTS) | |
3824 | x = count_partial(n, count_inuse); | |
81819f0f | 3825 | else |
205ab99d | 3826 | x = n->nr_partial; |
81819f0f CL |
3827 | total += x; |
3828 | nodes[node] += x; | |
3829 | } | |
3830 | } | |
81819f0f CL |
3831 | x = sprintf(buf, "%lu", total); |
3832 | #ifdef CONFIG_NUMA | |
f64dc58c | 3833 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
3834 | if (nodes[node]) |
3835 | x += sprintf(buf + x, " N%d=%lu", | |
3836 | node, nodes[node]); | |
3837 | #endif | |
3838 | kfree(nodes); | |
3839 | return x + sprintf(buf + x, "\n"); | |
3840 | } | |
3841 | ||
3842 | static int any_slab_objects(struct kmem_cache *s) | |
3843 | { | |
3844 | int node; | |
81819f0f | 3845 | |
dfb4f096 | 3846 | for_each_online_node(node) { |
81819f0f CL |
3847 | struct kmem_cache_node *n = get_node(s, node); |
3848 | ||
dfb4f096 CL |
3849 | if (!n) |
3850 | continue; | |
3851 | ||
4ea33e2d | 3852 | if (atomic_long_read(&n->total_objects)) |
81819f0f CL |
3853 | return 1; |
3854 | } | |
3855 | return 0; | |
3856 | } | |
3857 | ||
3858 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
3859 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
3860 | ||
3861 | struct slab_attribute { | |
3862 | struct attribute attr; | |
3863 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
3864 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
3865 | }; | |
3866 | ||
3867 | #define SLAB_ATTR_RO(_name) \ | |
3868 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
3869 | ||
3870 | #define SLAB_ATTR(_name) \ | |
3871 | static struct slab_attribute _name##_attr = \ | |
3872 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
3873 | ||
81819f0f CL |
3874 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3875 | { | |
3876 | return sprintf(buf, "%d\n", s->size); | |
3877 | } | |
3878 | SLAB_ATTR_RO(slab_size); | |
3879 | ||
3880 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
3881 | { | |
3882 | return sprintf(buf, "%d\n", s->align); | |
3883 | } | |
3884 | SLAB_ATTR_RO(align); | |
3885 | ||
3886 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
3887 | { | |
3888 | return sprintf(buf, "%d\n", s->objsize); | |
3889 | } | |
3890 | SLAB_ATTR_RO(object_size); | |
3891 | ||
3892 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
3893 | { | |
834f3d11 | 3894 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
3895 | } |
3896 | SLAB_ATTR_RO(objs_per_slab); | |
3897 | ||
06b285dc CL |
3898 | static ssize_t order_store(struct kmem_cache *s, |
3899 | const char *buf, size_t length) | |
3900 | { | |
0121c619 CL |
3901 | unsigned long order; |
3902 | int err; | |
3903 | ||
3904 | err = strict_strtoul(buf, 10, &order); | |
3905 | if (err) | |
3906 | return err; | |
06b285dc CL |
3907 | |
3908 | if (order > slub_max_order || order < slub_min_order) | |
3909 | return -EINVAL; | |
3910 | ||
3911 | calculate_sizes(s, order); | |
3912 | return length; | |
3913 | } | |
3914 | ||
81819f0f CL |
3915 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
3916 | { | |
834f3d11 | 3917 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 3918 | } |
06b285dc | 3919 | SLAB_ATTR(order); |
81819f0f | 3920 | |
73d342b1 DR |
3921 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
3922 | { | |
3923 | return sprintf(buf, "%lu\n", s->min_partial); | |
3924 | } | |
3925 | ||
3926 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
3927 | size_t length) | |
3928 | { | |
3929 | unsigned long min; | |
3930 | int err; | |
3931 | ||
3932 | err = strict_strtoul(buf, 10, &min); | |
3933 | if (err) | |
3934 | return err; | |
3935 | ||
c0bdb232 | 3936 | set_min_partial(s, min); |
73d342b1 DR |
3937 | return length; |
3938 | } | |
3939 | SLAB_ATTR(min_partial); | |
3940 | ||
81819f0f CL |
3941 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
3942 | { | |
3943 | if (s->ctor) { | |
3944 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | |
3945 | ||
3946 | return n + sprintf(buf + n, "\n"); | |
3947 | } | |
3948 | return 0; | |
3949 | } | |
3950 | SLAB_ATTR_RO(ctor); | |
3951 | ||
81819f0f CL |
3952 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3953 | { | |
3954 | return sprintf(buf, "%d\n", s->refcount - 1); | |
3955 | } | |
3956 | SLAB_ATTR_RO(aliases); | |
3957 | ||
3958 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
3959 | { | |
205ab99d | 3960 | return show_slab_objects(s, buf, SO_ALL); |
81819f0f CL |
3961 | } |
3962 | SLAB_ATTR_RO(slabs); | |
3963 | ||
3964 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
3965 | { | |
d9acf4b7 | 3966 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
3967 | } |
3968 | SLAB_ATTR_RO(partial); | |
3969 | ||
3970 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
3971 | { | |
d9acf4b7 | 3972 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
3973 | } |
3974 | SLAB_ATTR_RO(cpu_slabs); | |
3975 | ||
3976 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
3977 | { | |
205ab99d | 3978 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
3979 | } |
3980 | SLAB_ATTR_RO(objects); | |
3981 | ||
205ab99d CL |
3982 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
3983 | { | |
3984 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
3985 | } | |
3986 | SLAB_ATTR_RO(objects_partial); | |
3987 | ||
3988 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | |
3989 | { | |
3990 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
3991 | } | |
3992 | SLAB_ATTR_RO(total_objects); | |
3993 | ||
81819f0f CL |
3994 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
3995 | { | |
3996 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
3997 | } | |
3998 | ||
3999 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
4000 | const char *buf, size_t length) | |
4001 | { | |
4002 | s->flags &= ~SLAB_DEBUG_FREE; | |
4003 | if (buf[0] == '1') | |
4004 | s->flags |= SLAB_DEBUG_FREE; | |
4005 | return length; | |
4006 | } | |
4007 | SLAB_ATTR(sanity_checks); | |
4008 | ||
4009 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
4010 | { | |
4011 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
4012 | } | |
4013 | ||
4014 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
4015 | size_t length) | |
4016 | { | |
4017 | s->flags &= ~SLAB_TRACE; | |
4018 | if (buf[0] == '1') | |
4019 | s->flags |= SLAB_TRACE; | |
4020 | return length; | |
4021 | } | |
4022 | SLAB_ATTR(trace); | |
4023 | ||
4c13dd3b DM |
4024 | #ifdef CONFIG_FAILSLAB |
4025 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
4026 | { | |
4027 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
4028 | } | |
4029 | ||
4030 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
4031 | size_t length) | |
4032 | { | |
4033 | s->flags &= ~SLAB_FAILSLAB; | |
4034 | if (buf[0] == '1') | |
4035 | s->flags |= SLAB_FAILSLAB; | |
4036 | return length; | |
4037 | } | |
4038 | SLAB_ATTR(failslab); | |
4039 | #endif | |
4040 | ||
81819f0f CL |
4041 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4042 | { | |
4043 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
4044 | } | |
4045 | ||
4046 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
4047 | const char *buf, size_t length) | |
4048 | { | |
4049 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
4050 | if (buf[0] == '1') | |
4051 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
4052 | return length; | |
4053 | } | |
4054 | SLAB_ATTR(reclaim_account); | |
4055 | ||
4056 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
4057 | { | |
5af60839 | 4058 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
81819f0f CL |
4059 | } |
4060 | SLAB_ATTR_RO(hwcache_align); | |
4061 | ||
4062 | #ifdef CONFIG_ZONE_DMA | |
4063 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
4064 | { | |
4065 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
4066 | } | |
4067 | SLAB_ATTR_RO(cache_dma); | |
4068 | #endif | |
4069 | ||
4070 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
4071 | { | |
4072 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
4073 | } | |
4074 | SLAB_ATTR_RO(destroy_by_rcu); | |
4075 | ||
4076 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
4077 | { | |
4078 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
4079 | } | |
4080 | ||
4081 | static ssize_t red_zone_store(struct kmem_cache *s, | |
4082 | const char *buf, size_t length) | |
4083 | { | |
4084 | if (any_slab_objects(s)) | |
4085 | return -EBUSY; | |
4086 | ||
4087 | s->flags &= ~SLAB_RED_ZONE; | |
4088 | if (buf[0] == '1') | |
4089 | s->flags |= SLAB_RED_ZONE; | |
06b285dc | 4090 | calculate_sizes(s, -1); |
81819f0f CL |
4091 | return length; |
4092 | } | |
4093 | SLAB_ATTR(red_zone); | |
4094 | ||
4095 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
4096 | { | |
4097 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
4098 | } | |
4099 | ||
4100 | static ssize_t poison_store(struct kmem_cache *s, | |
4101 | const char *buf, size_t length) | |
4102 | { | |
4103 | if (any_slab_objects(s)) | |
4104 | return -EBUSY; | |
4105 | ||
4106 | s->flags &= ~SLAB_POISON; | |
4107 | if (buf[0] == '1') | |
4108 | s->flags |= SLAB_POISON; | |
06b285dc | 4109 | calculate_sizes(s, -1); |
81819f0f CL |
4110 | return length; |
4111 | } | |
4112 | SLAB_ATTR(poison); | |
4113 | ||
4114 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
4115 | { | |
4116 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
4117 | } | |
4118 | ||
4119 | static ssize_t store_user_store(struct kmem_cache *s, | |
4120 | const char *buf, size_t length) | |
4121 | { | |
4122 | if (any_slab_objects(s)) | |
4123 | return -EBUSY; | |
4124 | ||
4125 | s->flags &= ~SLAB_STORE_USER; | |
4126 | if (buf[0] == '1') | |
4127 | s->flags |= SLAB_STORE_USER; | |
06b285dc | 4128 | calculate_sizes(s, -1); |
81819f0f CL |
4129 | return length; |
4130 | } | |
4131 | SLAB_ATTR(store_user); | |
4132 | ||
53e15af0 CL |
4133 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4134 | { | |
4135 | return 0; | |
4136 | } | |
4137 | ||
4138 | static ssize_t validate_store(struct kmem_cache *s, | |
4139 | const char *buf, size_t length) | |
4140 | { | |
434e245d CL |
4141 | int ret = -EINVAL; |
4142 | ||
4143 | if (buf[0] == '1') { | |
4144 | ret = validate_slab_cache(s); | |
4145 | if (ret >= 0) | |
4146 | ret = length; | |
4147 | } | |
4148 | return ret; | |
53e15af0 CL |
4149 | } |
4150 | SLAB_ATTR(validate); | |
4151 | ||
2086d26a CL |
4152 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4153 | { | |
4154 | return 0; | |
4155 | } | |
4156 | ||
4157 | static ssize_t shrink_store(struct kmem_cache *s, | |
4158 | const char *buf, size_t length) | |
4159 | { | |
4160 | if (buf[0] == '1') { | |
4161 | int rc = kmem_cache_shrink(s); | |
4162 | ||
4163 | if (rc) | |
4164 | return rc; | |
4165 | } else | |
4166 | return -EINVAL; | |
4167 | return length; | |
4168 | } | |
4169 | SLAB_ATTR(shrink); | |
4170 | ||
88a420e4 CL |
4171 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
4172 | { | |
4173 | if (!(s->flags & SLAB_STORE_USER)) | |
4174 | return -ENOSYS; | |
4175 | return list_locations(s, buf, TRACK_ALLOC); | |
4176 | } | |
4177 | SLAB_ATTR_RO(alloc_calls); | |
4178 | ||
4179 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
4180 | { | |
4181 | if (!(s->flags & SLAB_STORE_USER)) | |
4182 | return -ENOSYS; | |
4183 | return list_locations(s, buf, TRACK_FREE); | |
4184 | } | |
4185 | SLAB_ATTR_RO(free_calls); | |
4186 | ||
81819f0f | 4187 | #ifdef CONFIG_NUMA |
9824601e | 4188 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 4189 | { |
9824601e | 4190 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
4191 | } |
4192 | ||
9824601e | 4193 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
4194 | const char *buf, size_t length) |
4195 | { | |
0121c619 CL |
4196 | unsigned long ratio; |
4197 | int err; | |
4198 | ||
4199 | err = strict_strtoul(buf, 10, &ratio); | |
4200 | if (err) | |
4201 | return err; | |
4202 | ||
e2cb96b7 | 4203 | if (ratio <= 100) |
0121c619 | 4204 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 4205 | |
81819f0f CL |
4206 | return length; |
4207 | } | |
9824601e | 4208 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
4209 | #endif |
4210 | ||
8ff12cfc | 4211 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
4212 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4213 | { | |
4214 | unsigned long sum = 0; | |
4215 | int cpu; | |
4216 | int len; | |
4217 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
4218 | ||
4219 | if (!data) | |
4220 | return -ENOMEM; | |
4221 | ||
4222 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 4223 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
4224 | |
4225 | data[cpu] = x; | |
4226 | sum += x; | |
4227 | } | |
4228 | ||
4229 | len = sprintf(buf, "%lu", sum); | |
4230 | ||
50ef37b9 | 4231 | #ifdef CONFIG_SMP |
8ff12cfc CL |
4232 | for_each_online_cpu(cpu) { |
4233 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 4234 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 4235 | } |
50ef37b9 | 4236 | #endif |
8ff12cfc CL |
4237 | kfree(data); |
4238 | return len + sprintf(buf + len, "\n"); | |
4239 | } | |
4240 | ||
78eb00cc DR |
4241 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
4242 | { | |
4243 | int cpu; | |
4244 | ||
4245 | for_each_online_cpu(cpu) | |
9dfc6e68 | 4246 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
4247 | } |
4248 | ||
8ff12cfc CL |
4249 | #define STAT_ATTR(si, text) \ |
4250 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
4251 | { \ | |
4252 | return show_stat(s, buf, si); \ | |
4253 | } \ | |
78eb00cc DR |
4254 | static ssize_t text##_store(struct kmem_cache *s, \ |
4255 | const char *buf, size_t length) \ | |
4256 | { \ | |
4257 | if (buf[0] != '0') \ | |
4258 | return -EINVAL; \ | |
4259 | clear_stat(s, si); \ | |
4260 | return length; \ | |
4261 | } \ | |
4262 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
4263 | |
4264 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
4265 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
4266 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
4267 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
4268 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
4269 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
4270 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
4271 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
4272 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
4273 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
4274 | STAT_ATTR(FREE_SLAB, free_slab); | |
4275 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
4276 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
4277 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
4278 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
4279 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
4280 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
65c3376a | 4281 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
8ff12cfc CL |
4282 | #endif |
4283 | ||
06428780 | 4284 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
4285 | &slab_size_attr.attr, |
4286 | &object_size_attr.attr, | |
4287 | &objs_per_slab_attr.attr, | |
4288 | &order_attr.attr, | |
73d342b1 | 4289 | &min_partial_attr.attr, |
81819f0f | 4290 | &objects_attr.attr, |
205ab99d CL |
4291 | &objects_partial_attr.attr, |
4292 | &total_objects_attr.attr, | |
81819f0f CL |
4293 | &slabs_attr.attr, |
4294 | &partial_attr.attr, | |
4295 | &cpu_slabs_attr.attr, | |
4296 | &ctor_attr.attr, | |
81819f0f CL |
4297 | &aliases_attr.attr, |
4298 | &align_attr.attr, | |
4299 | &sanity_checks_attr.attr, | |
4300 | &trace_attr.attr, | |
4301 | &hwcache_align_attr.attr, | |
4302 | &reclaim_account_attr.attr, | |
4303 | &destroy_by_rcu_attr.attr, | |
4304 | &red_zone_attr.attr, | |
4305 | &poison_attr.attr, | |
4306 | &store_user_attr.attr, | |
53e15af0 | 4307 | &validate_attr.attr, |
2086d26a | 4308 | &shrink_attr.attr, |
88a420e4 CL |
4309 | &alloc_calls_attr.attr, |
4310 | &free_calls_attr.attr, | |
81819f0f CL |
4311 | #ifdef CONFIG_ZONE_DMA |
4312 | &cache_dma_attr.attr, | |
4313 | #endif | |
4314 | #ifdef CONFIG_NUMA | |
9824601e | 4315 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
4316 | #endif |
4317 | #ifdef CONFIG_SLUB_STATS | |
4318 | &alloc_fastpath_attr.attr, | |
4319 | &alloc_slowpath_attr.attr, | |
4320 | &free_fastpath_attr.attr, | |
4321 | &free_slowpath_attr.attr, | |
4322 | &free_frozen_attr.attr, | |
4323 | &free_add_partial_attr.attr, | |
4324 | &free_remove_partial_attr.attr, | |
4325 | &alloc_from_partial_attr.attr, | |
4326 | &alloc_slab_attr.attr, | |
4327 | &alloc_refill_attr.attr, | |
4328 | &free_slab_attr.attr, | |
4329 | &cpuslab_flush_attr.attr, | |
4330 | &deactivate_full_attr.attr, | |
4331 | &deactivate_empty_attr.attr, | |
4332 | &deactivate_to_head_attr.attr, | |
4333 | &deactivate_to_tail_attr.attr, | |
4334 | &deactivate_remote_frees_attr.attr, | |
65c3376a | 4335 | &order_fallback_attr.attr, |
81819f0f | 4336 | #endif |
4c13dd3b DM |
4337 | #ifdef CONFIG_FAILSLAB |
4338 | &failslab_attr.attr, | |
4339 | #endif | |
4340 | ||
81819f0f CL |
4341 | NULL |
4342 | }; | |
4343 | ||
4344 | static struct attribute_group slab_attr_group = { | |
4345 | .attrs = slab_attrs, | |
4346 | }; | |
4347 | ||
4348 | static ssize_t slab_attr_show(struct kobject *kobj, | |
4349 | struct attribute *attr, | |
4350 | char *buf) | |
4351 | { | |
4352 | struct slab_attribute *attribute; | |
4353 | struct kmem_cache *s; | |
4354 | int err; | |
4355 | ||
4356 | attribute = to_slab_attr(attr); | |
4357 | s = to_slab(kobj); | |
4358 | ||
4359 | if (!attribute->show) | |
4360 | return -EIO; | |
4361 | ||
4362 | err = attribute->show(s, buf); | |
4363 | ||
4364 | return err; | |
4365 | } | |
4366 | ||
4367 | static ssize_t slab_attr_store(struct kobject *kobj, | |
4368 | struct attribute *attr, | |
4369 | const char *buf, size_t len) | |
4370 | { | |
4371 | struct slab_attribute *attribute; | |
4372 | struct kmem_cache *s; | |
4373 | int err; | |
4374 | ||
4375 | attribute = to_slab_attr(attr); | |
4376 | s = to_slab(kobj); | |
4377 | ||
4378 | if (!attribute->store) | |
4379 | return -EIO; | |
4380 | ||
4381 | err = attribute->store(s, buf, len); | |
4382 | ||
4383 | return err; | |
4384 | } | |
4385 | ||
151c602f CL |
4386 | static void kmem_cache_release(struct kobject *kobj) |
4387 | { | |
4388 | struct kmem_cache *s = to_slab(kobj); | |
4389 | ||
4390 | kfree(s); | |
4391 | } | |
4392 | ||
81819f0f CL |
4393 | static struct sysfs_ops slab_sysfs_ops = { |
4394 | .show = slab_attr_show, | |
4395 | .store = slab_attr_store, | |
4396 | }; | |
4397 | ||
4398 | static struct kobj_type slab_ktype = { | |
4399 | .sysfs_ops = &slab_sysfs_ops, | |
151c602f | 4400 | .release = kmem_cache_release |
81819f0f CL |
4401 | }; |
4402 | ||
4403 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
4404 | { | |
4405 | struct kobj_type *ktype = get_ktype(kobj); | |
4406 | ||
4407 | if (ktype == &slab_ktype) | |
4408 | return 1; | |
4409 | return 0; | |
4410 | } | |
4411 | ||
9cd43611 | 4412 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
4413 | .filter = uevent_filter, |
4414 | }; | |
4415 | ||
27c3a314 | 4416 | static struct kset *slab_kset; |
81819f0f CL |
4417 | |
4418 | #define ID_STR_LENGTH 64 | |
4419 | ||
4420 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
4421 | * |
4422 | * Format :[flags-]size | |
81819f0f CL |
4423 | */ |
4424 | static char *create_unique_id(struct kmem_cache *s) | |
4425 | { | |
4426 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
4427 | char *p = name; | |
4428 | ||
4429 | BUG_ON(!name); | |
4430 | ||
4431 | *p++ = ':'; | |
4432 | /* | |
4433 | * First flags affecting slabcache operations. We will only | |
4434 | * get here for aliasable slabs so we do not need to support | |
4435 | * too many flags. The flags here must cover all flags that | |
4436 | * are matched during merging to guarantee that the id is | |
4437 | * unique. | |
4438 | */ | |
4439 | if (s->flags & SLAB_CACHE_DMA) | |
4440 | *p++ = 'd'; | |
4441 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
4442 | *p++ = 'a'; | |
4443 | if (s->flags & SLAB_DEBUG_FREE) | |
4444 | *p++ = 'F'; | |
5a896d9e VN |
4445 | if (!(s->flags & SLAB_NOTRACK)) |
4446 | *p++ = 't'; | |
81819f0f CL |
4447 | if (p != name + 1) |
4448 | *p++ = '-'; | |
4449 | p += sprintf(p, "%07d", s->size); | |
4450 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
4451 | return name; | |
4452 | } | |
4453 | ||
4454 | static int sysfs_slab_add(struct kmem_cache *s) | |
4455 | { | |
4456 | int err; | |
4457 | const char *name; | |
4458 | int unmergeable; | |
4459 | ||
4460 | if (slab_state < SYSFS) | |
4461 | /* Defer until later */ | |
4462 | return 0; | |
4463 | ||
4464 | unmergeable = slab_unmergeable(s); | |
4465 | if (unmergeable) { | |
4466 | /* | |
4467 | * Slabcache can never be merged so we can use the name proper. | |
4468 | * This is typically the case for debug situations. In that | |
4469 | * case we can catch duplicate names easily. | |
4470 | */ | |
27c3a314 | 4471 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
4472 | name = s->name; |
4473 | } else { | |
4474 | /* | |
4475 | * Create a unique name for the slab as a target | |
4476 | * for the symlinks. | |
4477 | */ | |
4478 | name = create_unique_id(s); | |
4479 | } | |
4480 | ||
27c3a314 | 4481 | s->kobj.kset = slab_kset; |
1eada11c GKH |
4482 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
4483 | if (err) { | |
4484 | kobject_put(&s->kobj); | |
81819f0f | 4485 | return err; |
1eada11c | 4486 | } |
81819f0f CL |
4487 | |
4488 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
5788d8ad XF |
4489 | if (err) { |
4490 | kobject_del(&s->kobj); | |
4491 | kobject_put(&s->kobj); | |
81819f0f | 4492 | return err; |
5788d8ad | 4493 | } |
81819f0f CL |
4494 | kobject_uevent(&s->kobj, KOBJ_ADD); |
4495 | if (!unmergeable) { | |
4496 | /* Setup first alias */ | |
4497 | sysfs_slab_alias(s, s->name); | |
4498 | kfree(name); | |
4499 | } | |
4500 | return 0; | |
4501 | } | |
4502 | ||
4503 | static void sysfs_slab_remove(struct kmem_cache *s) | |
4504 | { | |
4505 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
4506 | kobject_del(&s->kobj); | |
151c602f | 4507 | kobject_put(&s->kobj); |
81819f0f CL |
4508 | } |
4509 | ||
4510 | /* | |
4511 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 4512 | * available lest we lose that information. |
81819f0f CL |
4513 | */ |
4514 | struct saved_alias { | |
4515 | struct kmem_cache *s; | |
4516 | const char *name; | |
4517 | struct saved_alias *next; | |
4518 | }; | |
4519 | ||
5af328a5 | 4520 | static struct saved_alias *alias_list; |
81819f0f CL |
4521 | |
4522 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
4523 | { | |
4524 | struct saved_alias *al; | |
4525 | ||
4526 | if (slab_state == SYSFS) { | |
4527 | /* | |
4528 | * If we have a leftover link then remove it. | |
4529 | */ | |
27c3a314 GKH |
4530 | sysfs_remove_link(&slab_kset->kobj, name); |
4531 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
4532 | } |
4533 | ||
4534 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
4535 | if (!al) | |
4536 | return -ENOMEM; | |
4537 | ||
4538 | al->s = s; | |
4539 | al->name = name; | |
4540 | al->next = alias_list; | |
4541 | alias_list = al; | |
4542 | return 0; | |
4543 | } | |
4544 | ||
4545 | static int __init slab_sysfs_init(void) | |
4546 | { | |
5b95a4ac | 4547 | struct kmem_cache *s; |
81819f0f CL |
4548 | int err; |
4549 | ||
0ff21e46 | 4550 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 4551 | if (!slab_kset) { |
81819f0f CL |
4552 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4553 | return -ENOSYS; | |
4554 | } | |
4555 | ||
26a7bd03 CL |
4556 | slab_state = SYSFS; |
4557 | ||
5b95a4ac | 4558 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 4559 | err = sysfs_slab_add(s); |
5d540fb7 CL |
4560 | if (err) |
4561 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
4562 | " to sysfs\n", s->name); | |
26a7bd03 | 4563 | } |
81819f0f CL |
4564 | |
4565 | while (alias_list) { | |
4566 | struct saved_alias *al = alias_list; | |
4567 | ||
4568 | alias_list = alias_list->next; | |
4569 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
4570 | if (err) |
4571 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
4572 | " %s to sysfs\n", s->name); | |
81819f0f CL |
4573 | kfree(al); |
4574 | } | |
4575 | ||
4576 | resiliency_test(); | |
4577 | return 0; | |
4578 | } | |
4579 | ||
4580 | __initcall(slab_sysfs_init); | |
81819f0f | 4581 | #endif |
57ed3eda PE |
4582 | |
4583 | /* | |
4584 | * The /proc/slabinfo ABI | |
4585 | */ | |
158a9624 | 4586 | #ifdef CONFIG_SLABINFO |
57ed3eda PE |
4587 | static void print_slabinfo_header(struct seq_file *m) |
4588 | { | |
4589 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
4590 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
4591 | "<objperslab> <pagesperslab>"); | |
4592 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4593 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
4594 | seq_putc(m, '\n'); | |
4595 | } | |
4596 | ||
4597 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4598 | { | |
4599 | loff_t n = *pos; | |
4600 | ||
4601 | down_read(&slub_lock); | |
4602 | if (!n) | |
4603 | print_slabinfo_header(m); | |
4604 | ||
4605 | return seq_list_start(&slab_caches, *pos); | |
4606 | } | |
4607 | ||
4608 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4609 | { | |
4610 | return seq_list_next(p, &slab_caches, pos); | |
4611 | } | |
4612 | ||
4613 | static void s_stop(struct seq_file *m, void *p) | |
4614 | { | |
4615 | up_read(&slub_lock); | |
4616 | } | |
4617 | ||
4618 | static int s_show(struct seq_file *m, void *p) | |
4619 | { | |
4620 | unsigned long nr_partials = 0; | |
4621 | unsigned long nr_slabs = 0; | |
4622 | unsigned long nr_inuse = 0; | |
205ab99d CL |
4623 | unsigned long nr_objs = 0; |
4624 | unsigned long nr_free = 0; | |
57ed3eda PE |
4625 | struct kmem_cache *s; |
4626 | int node; | |
4627 | ||
4628 | s = list_entry(p, struct kmem_cache, list); | |
4629 | ||
4630 | for_each_online_node(node) { | |
4631 | struct kmem_cache_node *n = get_node(s, node); | |
4632 | ||
4633 | if (!n) | |
4634 | continue; | |
4635 | ||
4636 | nr_partials += n->nr_partial; | |
4637 | nr_slabs += atomic_long_read(&n->nr_slabs); | |
205ab99d CL |
4638 | nr_objs += atomic_long_read(&n->total_objects); |
4639 | nr_free += count_partial(n, count_free); | |
57ed3eda PE |
4640 | } |
4641 | ||
205ab99d | 4642 | nr_inuse = nr_objs - nr_free; |
57ed3eda PE |
4643 | |
4644 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | |
834f3d11 CL |
4645 | nr_objs, s->size, oo_objects(s->oo), |
4646 | (1 << oo_order(s->oo))); | |
57ed3eda PE |
4647 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); |
4648 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | |
4649 | 0UL); | |
4650 | seq_putc(m, '\n'); | |
4651 | return 0; | |
4652 | } | |
4653 | ||
7b3c3a50 | 4654 | static const struct seq_operations slabinfo_op = { |
57ed3eda PE |
4655 | .start = s_start, |
4656 | .next = s_next, | |
4657 | .stop = s_stop, | |
4658 | .show = s_show, | |
4659 | }; | |
4660 | ||
7b3c3a50 AD |
4661 | static int slabinfo_open(struct inode *inode, struct file *file) |
4662 | { | |
4663 | return seq_open(file, &slabinfo_op); | |
4664 | } | |
4665 | ||
4666 | static const struct file_operations proc_slabinfo_operations = { | |
4667 | .open = slabinfo_open, | |
4668 | .read = seq_read, | |
4669 | .llseek = seq_lseek, | |
4670 | .release = seq_release, | |
4671 | }; | |
4672 | ||
4673 | static int __init slab_proc_init(void) | |
4674 | { | |
cf5d1131 | 4675 | proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); |
7b3c3a50 AD |
4676 | return 0; |
4677 | } | |
4678 | module_init(slab_proc_init); | |
158a9624 | 4679 | #endif /* CONFIG_SLABINFO */ |