]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
cde53535 | 8 | * (C) 2007 SGI, Christoph Lameter |
81819f0f CL |
9 | */ |
10 | ||
11 | #include <linux/mm.h> | |
1eb5ac64 | 12 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
13 | #include <linux/module.h> |
14 | #include <linux/bit_spinlock.h> | |
15 | #include <linux/interrupt.h> | |
16 | #include <linux/bitops.h> | |
17 | #include <linux/slab.h> | |
7b3c3a50 | 18 | #include <linux/proc_fs.h> |
81819f0f | 19 | #include <linux/seq_file.h> |
5a896d9e | 20 | #include <linux/kmemcheck.h> |
81819f0f CL |
21 | #include <linux/cpu.h> |
22 | #include <linux/cpuset.h> | |
23 | #include <linux/mempolicy.h> | |
24 | #include <linux/ctype.h> | |
3ac7fe5a | 25 | #include <linux/debugobjects.h> |
81819f0f | 26 | #include <linux/kallsyms.h> |
b9049e23 | 27 | #include <linux/memory.h> |
f8bd2258 | 28 | #include <linux/math64.h> |
773ff60e | 29 | #include <linux/fault-inject.h> |
81819f0f | 30 | |
4a92379b RK |
31 | #include <trace/events/kmem.h> |
32 | ||
81819f0f CL |
33 | /* |
34 | * Lock order: | |
35 | * 1. slab_lock(page) | |
36 | * 2. slab->list_lock | |
37 | * | |
38 | * The slab_lock protects operations on the object of a particular | |
39 | * slab and its metadata in the page struct. If the slab lock | |
40 | * has been taken then no allocations nor frees can be performed | |
41 | * on the objects in the slab nor can the slab be added or removed | |
42 | * from the partial or full lists since this would mean modifying | |
43 | * the page_struct of the slab. | |
44 | * | |
45 | * The list_lock protects the partial and full list on each node and | |
46 | * the partial slab counter. If taken then no new slabs may be added or | |
47 | * removed from the lists nor make the number of partial slabs be modified. | |
48 | * (Note that the total number of slabs is an atomic value that may be | |
49 | * modified without taking the list lock). | |
50 | * | |
51 | * The list_lock is a centralized lock and thus we avoid taking it as | |
52 | * much as possible. As long as SLUB does not have to handle partial | |
53 | * slabs, operations can continue without any centralized lock. F.e. | |
54 | * allocating a long series of objects that fill up slabs does not require | |
55 | * the list lock. | |
56 | * | |
57 | * The lock order is sometimes inverted when we are trying to get a slab | |
58 | * off a list. We take the list_lock and then look for a page on the list | |
59 | * to use. While we do that objects in the slabs may be freed. We can | |
60 | * only operate on the slab if we have also taken the slab_lock. So we use | |
61 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
62 | * can occur anymore and we can use the slab for allocations etc. If the | |
63 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
64 | * we must stay away from it for a while since we may cause a bouncing | |
65 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
66 | * If all pages are busy then we may allocate a new slab instead of reusing | |
25985edc | 67 | * a partial slab. A new slab has no one operating on it and thus there is |
81819f0f CL |
68 | * no danger of cacheline contention. |
69 | * | |
70 | * Interrupts are disabled during allocation and deallocation in order to | |
71 | * make the slab allocator safe to use in the context of an irq. In addition | |
72 | * interrupts are disabled to ensure that the processor does not change | |
73 | * while handling per_cpu slabs, due to kernel preemption. | |
74 | * | |
75 | * SLUB assigns one slab for allocation to each processor. | |
76 | * Allocations only occur from these slabs called cpu slabs. | |
77 | * | |
672bba3a CL |
78 | * Slabs with free elements are kept on a partial list and during regular |
79 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 80 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
81 | * We track full slabs for debugging purposes though because otherwise we |
82 | * cannot scan all objects. | |
81819f0f CL |
83 | * |
84 | * Slabs are freed when they become empty. Teardown and setup is | |
85 | * minimal so we rely on the page allocators per cpu caches for | |
86 | * fast frees and allocs. | |
87 | * | |
88 | * Overloading of page flags that are otherwise used for LRU management. | |
89 | * | |
4b6f0750 CL |
90 | * PageActive The slab is frozen and exempt from list processing. |
91 | * This means that the slab is dedicated to a purpose | |
92 | * such as satisfying allocations for a specific | |
93 | * processor. Objects may be freed in the slab while | |
94 | * it is frozen but slab_free will then skip the usual | |
95 | * list operations. It is up to the processor holding | |
96 | * the slab to integrate the slab into the slab lists | |
97 | * when the slab is no longer needed. | |
98 | * | |
99 | * One use of this flag is to mark slabs that are | |
100 | * used for allocations. Then such a slab becomes a cpu | |
101 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 102 | * freelist that allows lockless access to |
894b8788 CL |
103 | * free objects in addition to the regular freelist |
104 | * that requires the slab lock. | |
81819f0f CL |
105 | * |
106 | * PageError Slab requires special handling due to debug | |
107 | * options set. This moves slab handling out of | |
894b8788 | 108 | * the fast path and disables lockless freelists. |
81819f0f CL |
109 | */ |
110 | ||
af537b0a CL |
111 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
112 | SLAB_TRACE | SLAB_DEBUG_FREE) | |
113 | ||
114 | static inline int kmem_cache_debug(struct kmem_cache *s) | |
115 | { | |
5577bd8a | 116 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 117 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 118 | #else |
af537b0a | 119 | return 0; |
5577bd8a | 120 | #endif |
af537b0a | 121 | } |
5577bd8a | 122 | |
81819f0f CL |
123 | /* |
124 | * Issues still to be resolved: | |
125 | * | |
81819f0f CL |
126 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
127 | * | |
81819f0f CL |
128 | * - Variable sizing of the per node arrays |
129 | */ | |
130 | ||
131 | /* Enable to test recovery from slab corruption on boot */ | |
132 | #undef SLUB_RESILIENCY_TEST | |
133 | ||
b789ef51 CL |
134 | /* Enable to log cmpxchg failures */ |
135 | #undef SLUB_DEBUG_CMPXCHG | |
136 | ||
2086d26a CL |
137 | /* |
138 | * Mininum number of partial slabs. These will be left on the partial | |
139 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
140 | */ | |
76be8950 | 141 | #define MIN_PARTIAL 5 |
e95eed57 | 142 | |
2086d26a CL |
143 | /* |
144 | * Maximum number of desirable partial slabs. | |
145 | * The existence of more partial slabs makes kmem_cache_shrink | |
146 | * sort the partial list by the number of objects in the. | |
147 | */ | |
148 | #define MAX_PARTIAL 10 | |
149 | ||
81819f0f CL |
150 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
151 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 152 | |
fa5ec8a1 | 153 | /* |
3de47213 DR |
154 | * Debugging flags that require metadata to be stored in the slab. These get |
155 | * disabled when slub_debug=O is used and a cache's min order increases with | |
156 | * metadata. | |
fa5ec8a1 | 157 | */ |
3de47213 | 158 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 159 | |
81819f0f CL |
160 | /* |
161 | * Set of flags that will prevent slab merging | |
162 | */ | |
163 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
4c13dd3b DM |
164 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ |
165 | SLAB_FAILSLAB) | |
81819f0f CL |
166 | |
167 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
5a896d9e | 168 | SLAB_CACHE_DMA | SLAB_NOTRACK) |
81819f0f | 169 | |
210b5c06 CG |
170 | #define OO_SHIFT 16 |
171 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 172 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 173 | |
81819f0f | 174 | /* Internal SLUB flags */ |
f90ec390 | 175 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
b789ef51 | 176 | #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
81819f0f CL |
177 | |
178 | static int kmem_size = sizeof(struct kmem_cache); | |
179 | ||
180 | #ifdef CONFIG_SMP | |
181 | static struct notifier_block slab_notifier; | |
182 | #endif | |
183 | ||
184 | static enum { | |
185 | DOWN, /* No slab functionality available */ | |
51df1142 | 186 | PARTIAL, /* Kmem_cache_node works */ |
672bba3a | 187 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
188 | SYSFS /* Sysfs up */ |
189 | } slab_state = DOWN; | |
190 | ||
191 | /* A list of all slab caches on the system */ | |
192 | static DECLARE_RWSEM(slub_lock); | |
5af328a5 | 193 | static LIST_HEAD(slab_caches); |
81819f0f | 194 | |
02cbc874 CL |
195 | /* |
196 | * Tracking user of a slab. | |
197 | */ | |
198 | struct track { | |
ce71e27c | 199 | unsigned long addr; /* Called from address */ |
02cbc874 CL |
200 | int cpu; /* Was running on cpu */ |
201 | int pid; /* Pid context */ | |
202 | unsigned long when; /* When did the operation occur */ | |
203 | }; | |
204 | ||
205 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
206 | ||
ab4d5ed5 | 207 | #ifdef CONFIG_SYSFS |
81819f0f CL |
208 | static int sysfs_slab_add(struct kmem_cache *); |
209 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
210 | static void sysfs_slab_remove(struct kmem_cache *); | |
8ff12cfc | 211 | |
81819f0f | 212 | #else |
0c710013 CL |
213 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
214 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
215 | { return 0; } | |
151c602f CL |
216 | static inline void sysfs_slab_remove(struct kmem_cache *s) |
217 | { | |
84c1cf62 | 218 | kfree(s->name); |
151c602f CL |
219 | kfree(s); |
220 | } | |
8ff12cfc | 221 | |
81819f0f CL |
222 | #endif |
223 | ||
4fdccdfb | 224 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
225 | { |
226 | #ifdef CONFIG_SLUB_STATS | |
84e554e6 | 227 | __this_cpu_inc(s->cpu_slab->stat[si]); |
8ff12cfc CL |
228 | #endif |
229 | } | |
230 | ||
81819f0f CL |
231 | /******************************************************************** |
232 | * Core slab cache functions | |
233 | *******************************************************************/ | |
234 | ||
235 | int slab_is_available(void) | |
236 | { | |
237 | return slab_state >= UP; | |
238 | } | |
239 | ||
240 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
241 | { | |
81819f0f | 242 | return s->node[node]; |
81819f0f CL |
243 | } |
244 | ||
6446faa2 | 245 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
246 | static inline int check_valid_pointer(struct kmem_cache *s, |
247 | struct page *page, const void *object) | |
248 | { | |
249 | void *base; | |
250 | ||
a973e9dd | 251 | if (!object) |
02cbc874 CL |
252 | return 1; |
253 | ||
a973e9dd | 254 | base = page_address(page); |
39b26464 | 255 | if (object < base || object >= base + page->objects * s->size || |
02cbc874 CL |
256 | (object - base) % s->size) { |
257 | return 0; | |
258 | } | |
259 | ||
260 | return 1; | |
261 | } | |
262 | ||
7656c72b CL |
263 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
264 | { | |
265 | return *(void **)(object + s->offset); | |
266 | } | |
267 | ||
1393d9a1 CL |
268 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
269 | { | |
270 | void *p; | |
271 | ||
272 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
273 | probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); | |
274 | #else | |
275 | p = get_freepointer(s, object); | |
276 | #endif | |
277 | return p; | |
278 | } | |
279 | ||
7656c72b CL |
280 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
281 | { | |
282 | *(void **)(object + s->offset) = fp; | |
283 | } | |
284 | ||
285 | /* Loop over all objects in a slab */ | |
224a88be CL |
286 | #define for_each_object(__p, __s, __addr, __objects) \ |
287 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | |
7656c72b CL |
288 | __p += (__s)->size) |
289 | ||
7656c72b CL |
290 | /* Determine object index from a given position */ |
291 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
292 | { | |
293 | return (p - addr) / s->size; | |
294 | } | |
295 | ||
d71f606f MK |
296 | static inline size_t slab_ksize(const struct kmem_cache *s) |
297 | { | |
298 | #ifdef CONFIG_SLUB_DEBUG | |
299 | /* | |
300 | * Debugging requires use of the padding between object | |
301 | * and whatever may come after it. | |
302 | */ | |
303 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
304 | return s->objsize; | |
305 | ||
306 | #endif | |
307 | /* | |
308 | * If we have the need to store the freelist pointer | |
309 | * back there or track user information then we can | |
310 | * only use the space before that information. | |
311 | */ | |
312 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
313 | return s->inuse; | |
314 | /* | |
315 | * Else we can use all the padding etc for the allocation | |
316 | */ | |
317 | return s->size; | |
318 | } | |
319 | ||
ab9a0f19 LJ |
320 | static inline int order_objects(int order, unsigned long size, int reserved) |
321 | { | |
322 | return ((PAGE_SIZE << order) - reserved) / size; | |
323 | } | |
324 | ||
834f3d11 | 325 | static inline struct kmem_cache_order_objects oo_make(int order, |
ab9a0f19 | 326 | unsigned long size, int reserved) |
834f3d11 CL |
327 | { |
328 | struct kmem_cache_order_objects x = { | |
ab9a0f19 | 329 | (order << OO_SHIFT) + order_objects(order, size, reserved) |
834f3d11 CL |
330 | }; |
331 | ||
332 | return x; | |
333 | } | |
334 | ||
335 | static inline int oo_order(struct kmem_cache_order_objects x) | |
336 | { | |
210b5c06 | 337 | return x.x >> OO_SHIFT; |
834f3d11 CL |
338 | } |
339 | ||
340 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
341 | { | |
210b5c06 | 342 | return x.x & OO_MASK; |
834f3d11 CL |
343 | } |
344 | ||
b789ef51 CL |
345 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
346 | void *freelist_old, unsigned long counters_old, | |
347 | void *freelist_new, unsigned long counters_new, | |
348 | const char *n) | |
349 | { | |
350 | #ifdef CONFIG_CMPXCHG_DOUBLE | |
351 | if (s->flags & __CMPXCHG_DOUBLE) { | |
352 | if (cmpxchg_double(&page->freelist, | |
353 | freelist_old, counters_old, | |
354 | freelist_new, counters_new)) | |
355 | return 1; | |
356 | } else | |
357 | #endif | |
358 | { | |
359 | if (page->freelist == freelist_old && page->counters == counters_old) { | |
360 | page->freelist = freelist_new; | |
361 | page->counters = counters_new; | |
362 | return 1; | |
363 | } | |
364 | } | |
365 | ||
366 | cpu_relax(); | |
367 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
368 | ||
369 | #ifdef SLUB_DEBUG_CMPXCHG | |
370 | printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); | |
371 | #endif | |
372 | ||
373 | return 0; | |
374 | } | |
375 | ||
41ecc55b | 376 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
377 | /* |
378 | * Determine a map of object in use on a page. | |
379 | * | |
380 | * Slab lock or node listlock must be held to guarantee that the page does | |
381 | * not vanish from under us. | |
382 | */ | |
383 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
384 | { | |
385 | void *p; | |
386 | void *addr = page_address(page); | |
387 | ||
388 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
389 | set_bit(slab_index(p, s, addr), map); | |
390 | } | |
391 | ||
41ecc55b CL |
392 | /* |
393 | * Debug settings: | |
394 | */ | |
f0630fff CL |
395 | #ifdef CONFIG_SLUB_DEBUG_ON |
396 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
397 | #else | |
41ecc55b | 398 | static int slub_debug; |
f0630fff | 399 | #endif |
41ecc55b CL |
400 | |
401 | static char *slub_debug_slabs; | |
fa5ec8a1 | 402 | static int disable_higher_order_debug; |
41ecc55b | 403 | |
81819f0f CL |
404 | /* |
405 | * Object debugging | |
406 | */ | |
407 | static void print_section(char *text, u8 *addr, unsigned int length) | |
408 | { | |
409 | int i, offset; | |
410 | int newline = 1; | |
411 | char ascii[17]; | |
412 | ||
413 | ascii[16] = 0; | |
414 | ||
415 | for (i = 0; i < length; i++) { | |
416 | if (newline) { | |
24922684 | 417 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
418 | newline = 0; |
419 | } | |
06428780 | 420 | printk(KERN_CONT " %02x", addr[i]); |
81819f0f CL |
421 | offset = i % 16; |
422 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
423 | if (offset == 15) { | |
06428780 | 424 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
425 | newline = 1; |
426 | } | |
427 | } | |
428 | if (!newline) { | |
429 | i %= 16; | |
430 | while (i < 16) { | |
06428780 | 431 | printk(KERN_CONT " "); |
81819f0f CL |
432 | ascii[i] = ' '; |
433 | i++; | |
434 | } | |
06428780 | 435 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
436 | } |
437 | } | |
438 | ||
81819f0f CL |
439 | static struct track *get_track(struct kmem_cache *s, void *object, |
440 | enum track_item alloc) | |
441 | { | |
442 | struct track *p; | |
443 | ||
444 | if (s->offset) | |
445 | p = object + s->offset + sizeof(void *); | |
446 | else | |
447 | p = object + s->inuse; | |
448 | ||
449 | return p + alloc; | |
450 | } | |
451 | ||
452 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 453 | enum track_item alloc, unsigned long addr) |
81819f0f | 454 | { |
1a00df4a | 455 | struct track *p = get_track(s, object, alloc); |
81819f0f | 456 | |
81819f0f CL |
457 | if (addr) { |
458 | p->addr = addr; | |
459 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 460 | p->pid = current->pid; |
81819f0f CL |
461 | p->when = jiffies; |
462 | } else | |
463 | memset(p, 0, sizeof(struct track)); | |
464 | } | |
465 | ||
81819f0f CL |
466 | static void init_tracking(struct kmem_cache *s, void *object) |
467 | { | |
24922684 CL |
468 | if (!(s->flags & SLAB_STORE_USER)) |
469 | return; | |
470 | ||
ce71e27c EGM |
471 | set_track(s, object, TRACK_FREE, 0UL); |
472 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
473 | } |
474 | ||
475 | static void print_track(const char *s, struct track *t) | |
476 | { | |
477 | if (!t->addr) | |
478 | return; | |
479 | ||
7daf705f | 480 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
ce71e27c | 481 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
24922684 CL |
482 | } |
483 | ||
484 | static void print_tracking(struct kmem_cache *s, void *object) | |
485 | { | |
486 | if (!(s->flags & SLAB_STORE_USER)) | |
487 | return; | |
488 | ||
489 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
490 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
491 | } | |
492 | ||
493 | static void print_page_info(struct page *page) | |
494 | { | |
39b26464 CL |
495 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
496 | page, page->objects, page->inuse, page->freelist, page->flags); | |
24922684 CL |
497 | |
498 | } | |
499 | ||
500 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
501 | { | |
502 | va_list args; | |
503 | char buf[100]; | |
504 | ||
505 | va_start(args, fmt); | |
506 | vsnprintf(buf, sizeof(buf), fmt, args); | |
507 | va_end(args); | |
508 | printk(KERN_ERR "========================================" | |
509 | "=====================================\n"); | |
510 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
511 | printk(KERN_ERR "----------------------------------------" | |
512 | "-------------------------------------\n\n"); | |
81819f0f CL |
513 | } |
514 | ||
24922684 CL |
515 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
516 | { | |
517 | va_list args; | |
518 | char buf[100]; | |
519 | ||
520 | va_start(args, fmt); | |
521 | vsnprintf(buf, sizeof(buf), fmt, args); | |
522 | va_end(args); | |
523 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
524 | } | |
525 | ||
526 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
527 | { |
528 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 529 | u8 *addr = page_address(page); |
24922684 CL |
530 | |
531 | print_tracking(s, p); | |
532 | ||
533 | print_page_info(page); | |
534 | ||
535 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
536 | p, p - addr, get_freepointer(s, p)); | |
537 | ||
538 | if (p > addr + 16) | |
539 | print_section("Bytes b4", p - 16, 16); | |
540 | ||
0ebd652b | 541 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); |
81819f0f CL |
542 | |
543 | if (s->flags & SLAB_RED_ZONE) | |
544 | print_section("Redzone", p + s->objsize, | |
545 | s->inuse - s->objsize); | |
546 | ||
81819f0f CL |
547 | if (s->offset) |
548 | off = s->offset + sizeof(void *); | |
549 | else | |
550 | off = s->inuse; | |
551 | ||
24922684 | 552 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 553 | off += 2 * sizeof(struct track); |
81819f0f CL |
554 | |
555 | if (off != s->size) | |
556 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
557 | print_section("Padding", p + off, s->size - off); |
558 | ||
559 | dump_stack(); | |
81819f0f CL |
560 | } |
561 | ||
562 | static void object_err(struct kmem_cache *s, struct page *page, | |
563 | u8 *object, char *reason) | |
564 | { | |
3dc50637 | 565 | slab_bug(s, "%s", reason); |
24922684 | 566 | print_trailer(s, page, object); |
81819f0f CL |
567 | } |
568 | ||
24922684 | 569 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
570 | { |
571 | va_list args; | |
572 | char buf[100]; | |
573 | ||
24922684 CL |
574 | va_start(args, fmt); |
575 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 576 | va_end(args); |
3dc50637 | 577 | slab_bug(s, "%s", buf); |
24922684 | 578 | print_page_info(page); |
81819f0f CL |
579 | dump_stack(); |
580 | } | |
581 | ||
f7cb1933 | 582 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
583 | { |
584 | u8 *p = object; | |
585 | ||
586 | if (s->flags & __OBJECT_POISON) { | |
587 | memset(p, POISON_FREE, s->objsize - 1); | |
06428780 | 588 | p[s->objsize - 1] = POISON_END; |
81819f0f CL |
589 | } |
590 | ||
591 | if (s->flags & SLAB_RED_ZONE) | |
f7cb1933 | 592 | memset(p + s->objsize, val, s->inuse - s->objsize); |
81819f0f CL |
593 | } |
594 | ||
24922684 | 595 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
596 | { |
597 | while (bytes) { | |
598 | if (*start != (u8)value) | |
24922684 | 599 | return start; |
81819f0f CL |
600 | start++; |
601 | bytes--; | |
602 | } | |
24922684 CL |
603 | return NULL; |
604 | } | |
605 | ||
606 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
607 | void *from, void *to) | |
608 | { | |
609 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
610 | memset(from, data, to - from); | |
611 | } | |
612 | ||
613 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
614 | u8 *object, char *what, | |
06428780 | 615 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
616 | { |
617 | u8 *fault; | |
618 | u8 *end; | |
619 | ||
620 | fault = check_bytes(start, value, bytes); | |
621 | if (!fault) | |
622 | return 1; | |
623 | ||
624 | end = start + bytes; | |
625 | while (end > fault && end[-1] == value) | |
626 | end--; | |
627 | ||
628 | slab_bug(s, "%s overwritten", what); | |
629 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
630 | fault, end - 1, fault[0], value); | |
631 | print_trailer(s, page, object); | |
632 | ||
633 | restore_bytes(s, what, value, fault, end); | |
634 | return 0; | |
81819f0f CL |
635 | } |
636 | ||
81819f0f CL |
637 | /* |
638 | * Object layout: | |
639 | * | |
640 | * object address | |
641 | * Bytes of the object to be managed. | |
642 | * If the freepointer may overlay the object then the free | |
643 | * pointer is the first word of the object. | |
672bba3a | 644 | * |
81819f0f CL |
645 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
646 | * 0xa5 (POISON_END) | |
647 | * | |
648 | * object + s->objsize | |
649 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
650 | * Padding is extended by another word if Redzoning is enabled and |
651 | * objsize == inuse. | |
652 | * | |
81819f0f CL |
653 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
654 | * 0xcc (RED_ACTIVE) for objects in use. | |
655 | * | |
656 | * object + s->inuse | |
672bba3a CL |
657 | * Meta data starts here. |
658 | * | |
81819f0f CL |
659 | * A. Free pointer (if we cannot overwrite object on free) |
660 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 661 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 662 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
663 | * before the word boundary. |
664 | * | |
665 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
666 | * |
667 | * object + s->size | |
672bba3a | 668 | * Nothing is used beyond s->size. |
81819f0f | 669 | * |
672bba3a CL |
670 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
671 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
672 | * may be used with merged slabcaches. |
673 | */ | |
674 | ||
81819f0f CL |
675 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
676 | { | |
677 | unsigned long off = s->inuse; /* The end of info */ | |
678 | ||
679 | if (s->offset) | |
680 | /* Freepointer is placed after the object. */ | |
681 | off += sizeof(void *); | |
682 | ||
683 | if (s->flags & SLAB_STORE_USER) | |
684 | /* We also have user information there */ | |
685 | off += 2 * sizeof(struct track); | |
686 | ||
687 | if (s->size == off) | |
688 | return 1; | |
689 | ||
24922684 CL |
690 | return check_bytes_and_report(s, page, p, "Object padding", |
691 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
692 | } |
693 | ||
39b26464 | 694 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
695 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
696 | { | |
24922684 CL |
697 | u8 *start; |
698 | u8 *fault; | |
699 | u8 *end; | |
700 | int length; | |
701 | int remainder; | |
81819f0f CL |
702 | |
703 | if (!(s->flags & SLAB_POISON)) | |
704 | return 1; | |
705 | ||
a973e9dd | 706 | start = page_address(page); |
ab9a0f19 | 707 | length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
39b26464 CL |
708 | end = start + length; |
709 | remainder = length % s->size; | |
81819f0f CL |
710 | if (!remainder) |
711 | return 1; | |
712 | ||
39b26464 | 713 | fault = check_bytes(end - remainder, POISON_INUSE, remainder); |
24922684 CL |
714 | if (!fault) |
715 | return 1; | |
716 | while (end > fault && end[-1] == POISON_INUSE) | |
717 | end--; | |
718 | ||
719 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
39b26464 | 720 | print_section("Padding", end - remainder, remainder); |
24922684 | 721 | |
8a3d271d | 722 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
24922684 | 723 | return 0; |
81819f0f CL |
724 | } |
725 | ||
726 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 727 | void *object, u8 val) |
81819f0f CL |
728 | { |
729 | u8 *p = object; | |
730 | u8 *endobject = object + s->objsize; | |
731 | ||
732 | if (s->flags & SLAB_RED_ZONE) { | |
24922684 | 733 | if (!check_bytes_and_report(s, page, object, "Redzone", |
f7cb1933 | 734 | endobject, val, s->inuse - s->objsize)) |
81819f0f | 735 | return 0; |
81819f0f | 736 | } else { |
3adbefee IM |
737 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { |
738 | check_bytes_and_report(s, page, p, "Alignment padding", | |
739 | endobject, POISON_INUSE, s->inuse - s->objsize); | |
740 | } | |
81819f0f CL |
741 | } |
742 | ||
743 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 744 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 CL |
745 | (!check_bytes_and_report(s, page, p, "Poison", p, |
746 | POISON_FREE, s->objsize - 1) || | |
747 | !check_bytes_and_report(s, page, p, "Poison", | |
06428780 | 748 | p + s->objsize - 1, POISON_END, 1))) |
81819f0f | 749 | return 0; |
81819f0f CL |
750 | /* |
751 | * check_pad_bytes cleans up on its own. | |
752 | */ | |
753 | check_pad_bytes(s, page, p); | |
754 | } | |
755 | ||
f7cb1933 | 756 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
757 | /* |
758 | * Object and freepointer overlap. Cannot check | |
759 | * freepointer while object is allocated. | |
760 | */ | |
761 | return 1; | |
762 | ||
763 | /* Check free pointer validity */ | |
764 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
765 | object_err(s, page, p, "Freepointer corrupt"); | |
766 | /* | |
9f6c708e | 767 | * No choice but to zap it and thus lose the remainder |
81819f0f | 768 | * of the free objects in this slab. May cause |
672bba3a | 769 | * another error because the object count is now wrong. |
81819f0f | 770 | */ |
a973e9dd | 771 | set_freepointer(s, p, NULL); |
81819f0f CL |
772 | return 0; |
773 | } | |
774 | return 1; | |
775 | } | |
776 | ||
777 | static int check_slab(struct kmem_cache *s, struct page *page) | |
778 | { | |
39b26464 CL |
779 | int maxobj; |
780 | ||
81819f0f CL |
781 | VM_BUG_ON(!irqs_disabled()); |
782 | ||
783 | if (!PageSlab(page)) { | |
24922684 | 784 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
785 | return 0; |
786 | } | |
39b26464 | 787 | |
ab9a0f19 | 788 | maxobj = order_objects(compound_order(page), s->size, s->reserved); |
39b26464 CL |
789 | if (page->objects > maxobj) { |
790 | slab_err(s, page, "objects %u > max %u", | |
791 | s->name, page->objects, maxobj); | |
792 | return 0; | |
793 | } | |
794 | if (page->inuse > page->objects) { | |
24922684 | 795 | slab_err(s, page, "inuse %u > max %u", |
39b26464 | 796 | s->name, page->inuse, page->objects); |
81819f0f CL |
797 | return 0; |
798 | } | |
799 | /* Slab_pad_check fixes things up after itself */ | |
800 | slab_pad_check(s, page); | |
801 | return 1; | |
802 | } | |
803 | ||
804 | /* | |
672bba3a CL |
805 | * Determine if a certain object on a page is on the freelist. Must hold the |
806 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
807 | */ |
808 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
809 | { | |
810 | int nr = 0; | |
811 | void *fp = page->freelist; | |
812 | void *object = NULL; | |
224a88be | 813 | unsigned long max_objects; |
81819f0f | 814 | |
39b26464 | 815 | while (fp && nr <= page->objects) { |
81819f0f CL |
816 | if (fp == search) |
817 | return 1; | |
818 | if (!check_valid_pointer(s, page, fp)) { | |
819 | if (object) { | |
820 | object_err(s, page, object, | |
821 | "Freechain corrupt"); | |
a973e9dd | 822 | set_freepointer(s, object, NULL); |
81819f0f CL |
823 | break; |
824 | } else { | |
24922684 | 825 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 826 | page->freelist = NULL; |
39b26464 | 827 | page->inuse = page->objects; |
24922684 | 828 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
829 | return 0; |
830 | } | |
831 | break; | |
832 | } | |
833 | object = fp; | |
834 | fp = get_freepointer(s, object); | |
835 | nr++; | |
836 | } | |
837 | ||
ab9a0f19 | 838 | max_objects = order_objects(compound_order(page), s->size, s->reserved); |
210b5c06 CG |
839 | if (max_objects > MAX_OBJS_PER_PAGE) |
840 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
841 | |
842 | if (page->objects != max_objects) { | |
843 | slab_err(s, page, "Wrong number of objects. Found %d but " | |
844 | "should be %d", page->objects, max_objects); | |
845 | page->objects = max_objects; | |
846 | slab_fix(s, "Number of objects adjusted."); | |
847 | } | |
39b26464 | 848 | if (page->inuse != page->objects - nr) { |
70d71228 | 849 | slab_err(s, page, "Wrong object count. Counter is %d but " |
39b26464 CL |
850 | "counted were %d", page->inuse, page->objects - nr); |
851 | page->inuse = page->objects - nr; | |
24922684 | 852 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
853 | } |
854 | return search == NULL; | |
855 | } | |
856 | ||
0121c619 CL |
857 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
858 | int alloc) | |
3ec09742 CL |
859 | { |
860 | if (s->flags & SLAB_TRACE) { | |
861 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
862 | s->name, | |
863 | alloc ? "alloc" : "free", | |
864 | object, page->inuse, | |
865 | page->freelist); | |
866 | ||
867 | if (!alloc) | |
868 | print_section("Object", (void *)object, s->objsize); | |
869 | ||
870 | dump_stack(); | |
871 | } | |
872 | } | |
873 | ||
c016b0bd CL |
874 | /* |
875 | * Hooks for other subsystems that check memory allocations. In a typical | |
876 | * production configuration these hooks all should produce no code at all. | |
877 | */ | |
878 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | |
879 | { | |
c1d50836 | 880 | flags &= gfp_allowed_mask; |
c016b0bd CL |
881 | lockdep_trace_alloc(flags); |
882 | might_sleep_if(flags & __GFP_WAIT); | |
883 | ||
884 | return should_failslab(s->objsize, flags, s->flags); | |
885 | } | |
886 | ||
887 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) | |
888 | { | |
c1d50836 | 889 | flags &= gfp_allowed_mask; |
b3d41885 | 890 | kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); |
c016b0bd CL |
891 | kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); |
892 | } | |
893 | ||
894 | static inline void slab_free_hook(struct kmem_cache *s, void *x) | |
895 | { | |
896 | kmemleak_free_recursive(x, s->flags); | |
c016b0bd | 897 | |
d3f661d6 CL |
898 | /* |
899 | * Trouble is that we may no longer disable interupts in the fast path | |
900 | * So in order to make the debug calls that expect irqs to be | |
901 | * disabled we need to disable interrupts temporarily. | |
902 | */ | |
903 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | |
904 | { | |
905 | unsigned long flags; | |
906 | ||
907 | local_irq_save(flags); | |
908 | kmemcheck_slab_free(s, x, s->objsize); | |
909 | debug_check_no_locks_freed(x, s->objsize); | |
d3f661d6 CL |
910 | local_irq_restore(flags); |
911 | } | |
912 | #endif | |
f9b615de TG |
913 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
914 | debug_check_no_obj_freed(x, s->objsize); | |
c016b0bd CL |
915 | } |
916 | ||
643b1138 | 917 | /* |
672bba3a | 918 | * Tracking of fully allocated slabs for debugging purposes. |
5cc6eee8 CL |
919 | * |
920 | * list_lock must be held. | |
643b1138 | 921 | */ |
5cc6eee8 CL |
922 | static void add_full(struct kmem_cache *s, |
923 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 924 | { |
5cc6eee8 CL |
925 | if (!(s->flags & SLAB_STORE_USER)) |
926 | return; | |
927 | ||
643b1138 | 928 | list_add(&page->lru, &n->full); |
643b1138 CL |
929 | } |
930 | ||
5cc6eee8 CL |
931 | /* |
932 | * list_lock must be held. | |
933 | */ | |
643b1138 CL |
934 | static void remove_full(struct kmem_cache *s, struct page *page) |
935 | { | |
643b1138 CL |
936 | if (!(s->flags & SLAB_STORE_USER)) |
937 | return; | |
938 | ||
643b1138 | 939 | list_del(&page->lru); |
643b1138 CL |
940 | } |
941 | ||
0f389ec6 CL |
942 | /* Tracking of the number of slabs for debugging purposes */ |
943 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
944 | { | |
945 | struct kmem_cache_node *n = get_node(s, node); | |
946 | ||
947 | return atomic_long_read(&n->nr_slabs); | |
948 | } | |
949 | ||
26c02cf0 AB |
950 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
951 | { | |
952 | return atomic_long_read(&n->nr_slabs); | |
953 | } | |
954 | ||
205ab99d | 955 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
956 | { |
957 | struct kmem_cache_node *n = get_node(s, node); | |
958 | ||
959 | /* | |
960 | * May be called early in order to allocate a slab for the | |
961 | * kmem_cache_node structure. Solve the chicken-egg | |
962 | * dilemma by deferring the increment of the count during | |
963 | * bootstrap (see early_kmem_cache_node_alloc). | |
964 | */ | |
7340cc84 | 965 | if (n) { |
0f389ec6 | 966 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
967 | atomic_long_add(objects, &n->total_objects); |
968 | } | |
0f389ec6 | 969 | } |
205ab99d | 970 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
971 | { |
972 | struct kmem_cache_node *n = get_node(s, node); | |
973 | ||
974 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 975 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
976 | } |
977 | ||
978 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
979 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
980 | void *object) | |
981 | { | |
982 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
983 | return; | |
984 | ||
f7cb1933 | 985 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
986 | init_tracking(s, object); |
987 | } | |
988 | ||
1537066c | 989 | static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, |
ce71e27c | 990 | void *object, unsigned long addr) |
81819f0f CL |
991 | { |
992 | if (!check_slab(s, page)) | |
993 | goto bad; | |
994 | ||
81819f0f CL |
995 | if (!check_valid_pointer(s, page, object)) { |
996 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 997 | goto bad; |
81819f0f CL |
998 | } |
999 | ||
f7cb1933 | 1000 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
81819f0f | 1001 | goto bad; |
81819f0f | 1002 | |
3ec09742 CL |
1003 | /* Success perform special debug activities for allocs */ |
1004 | if (s->flags & SLAB_STORE_USER) | |
1005 | set_track(s, object, TRACK_ALLOC, addr); | |
1006 | trace(s, page, object, 1); | |
f7cb1933 | 1007 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1008 | return 1; |
3ec09742 | 1009 | |
81819f0f CL |
1010 | bad: |
1011 | if (PageSlab(page)) { | |
1012 | /* | |
1013 | * If this is a slab page then lets do the best we can | |
1014 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1015 | * as used avoids touching the remaining objects. |
81819f0f | 1016 | */ |
24922684 | 1017 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1018 | page->inuse = page->objects; |
a973e9dd | 1019 | page->freelist = NULL; |
81819f0f CL |
1020 | } |
1021 | return 0; | |
1022 | } | |
1023 | ||
1537066c CL |
1024 | static noinline int free_debug_processing(struct kmem_cache *s, |
1025 | struct page *page, void *object, unsigned long addr) | |
81819f0f CL |
1026 | { |
1027 | if (!check_slab(s, page)) | |
1028 | goto fail; | |
1029 | ||
1030 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 1031 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
1032 | goto fail; |
1033 | } | |
1034 | ||
1035 | if (on_freelist(s, page, object)) { | |
24922684 | 1036 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
1037 | goto fail; |
1038 | } | |
1039 | ||
f7cb1933 | 1040 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
81819f0f CL |
1041 | return 0; |
1042 | ||
1043 | if (unlikely(s != page->slab)) { | |
3adbefee | 1044 | if (!PageSlab(page)) { |
70d71228 CL |
1045 | slab_err(s, page, "Attempt to free object(0x%p) " |
1046 | "outside of slab", object); | |
3adbefee | 1047 | } else if (!page->slab) { |
81819f0f | 1048 | printk(KERN_ERR |
70d71228 | 1049 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 1050 | object); |
70d71228 | 1051 | dump_stack(); |
06428780 | 1052 | } else |
24922684 CL |
1053 | object_err(s, page, object, |
1054 | "page slab pointer corrupt."); | |
81819f0f CL |
1055 | goto fail; |
1056 | } | |
3ec09742 | 1057 | |
3ec09742 CL |
1058 | if (s->flags & SLAB_STORE_USER) |
1059 | set_track(s, object, TRACK_FREE, addr); | |
1060 | trace(s, page, object, 0); | |
f7cb1933 | 1061 | init_object(s, object, SLUB_RED_INACTIVE); |
81819f0f | 1062 | return 1; |
3ec09742 | 1063 | |
81819f0f | 1064 | fail: |
24922684 | 1065 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
1066 | return 0; |
1067 | } | |
1068 | ||
41ecc55b CL |
1069 | static int __init setup_slub_debug(char *str) |
1070 | { | |
f0630fff CL |
1071 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1072 | if (*str++ != '=' || !*str) | |
1073 | /* | |
1074 | * No options specified. Switch on full debugging. | |
1075 | */ | |
1076 | goto out; | |
1077 | ||
1078 | if (*str == ',') | |
1079 | /* | |
1080 | * No options but restriction on slabs. This means full | |
1081 | * debugging for slabs matching a pattern. | |
1082 | */ | |
1083 | goto check_slabs; | |
1084 | ||
fa5ec8a1 DR |
1085 | if (tolower(*str) == 'o') { |
1086 | /* | |
1087 | * Avoid enabling debugging on caches if its minimum order | |
1088 | * would increase as a result. | |
1089 | */ | |
1090 | disable_higher_order_debug = 1; | |
1091 | goto out; | |
1092 | } | |
1093 | ||
f0630fff CL |
1094 | slub_debug = 0; |
1095 | if (*str == '-') | |
1096 | /* | |
1097 | * Switch off all debugging measures. | |
1098 | */ | |
1099 | goto out; | |
1100 | ||
1101 | /* | |
1102 | * Determine which debug features should be switched on | |
1103 | */ | |
06428780 | 1104 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1105 | switch (tolower(*str)) { |
1106 | case 'f': | |
1107 | slub_debug |= SLAB_DEBUG_FREE; | |
1108 | break; | |
1109 | case 'z': | |
1110 | slub_debug |= SLAB_RED_ZONE; | |
1111 | break; | |
1112 | case 'p': | |
1113 | slub_debug |= SLAB_POISON; | |
1114 | break; | |
1115 | case 'u': | |
1116 | slub_debug |= SLAB_STORE_USER; | |
1117 | break; | |
1118 | case 't': | |
1119 | slub_debug |= SLAB_TRACE; | |
1120 | break; | |
4c13dd3b DM |
1121 | case 'a': |
1122 | slub_debug |= SLAB_FAILSLAB; | |
1123 | break; | |
f0630fff CL |
1124 | default: |
1125 | printk(KERN_ERR "slub_debug option '%c' " | |
06428780 | 1126 | "unknown. skipped\n", *str); |
f0630fff | 1127 | } |
41ecc55b CL |
1128 | } |
1129 | ||
f0630fff | 1130 | check_slabs: |
41ecc55b CL |
1131 | if (*str == ',') |
1132 | slub_debug_slabs = str + 1; | |
f0630fff | 1133 | out: |
41ecc55b CL |
1134 | return 1; |
1135 | } | |
1136 | ||
1137 | __setup("slub_debug", setup_slub_debug); | |
1138 | ||
ba0268a8 CL |
1139 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1140 | unsigned long flags, const char *name, | |
51cc5068 | 1141 | void (*ctor)(void *)) |
41ecc55b CL |
1142 | { |
1143 | /* | |
e153362a | 1144 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1145 | */ |
e153362a | 1146 | if (slub_debug && (!slub_debug_slabs || |
3de47213 DR |
1147 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) |
1148 | flags |= slub_debug; | |
ba0268a8 CL |
1149 | |
1150 | return flags; | |
41ecc55b CL |
1151 | } |
1152 | #else | |
3ec09742 CL |
1153 | static inline void setup_object_debug(struct kmem_cache *s, |
1154 | struct page *page, void *object) {} | |
41ecc55b | 1155 | |
3ec09742 | 1156 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1157 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1158 | |
3ec09742 | 1159 | static inline int free_debug_processing(struct kmem_cache *s, |
ce71e27c | 1160 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1161 | |
41ecc55b CL |
1162 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1163 | { return 1; } | |
1164 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1165 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1166 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1167 | struct page *page) {} | |
2cfb7455 | 1168 | static inline void remove_full(struct kmem_cache *s, struct page *page) {} |
ba0268a8 CL |
1169 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1170 | unsigned long flags, const char *name, | |
51cc5068 | 1171 | void (*ctor)(void *)) |
ba0268a8 CL |
1172 | { |
1173 | return flags; | |
1174 | } | |
41ecc55b | 1175 | #define slub_debug 0 |
0f389ec6 | 1176 | |
fdaa45e9 IM |
1177 | #define disable_higher_order_debug 0 |
1178 | ||
0f389ec6 CL |
1179 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1180 | { return 0; } | |
26c02cf0 AB |
1181 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1182 | { return 0; } | |
205ab99d CL |
1183 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1184 | int objects) {} | |
1185 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1186 | int objects) {} | |
7d550c56 CL |
1187 | |
1188 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | |
1189 | { return 0; } | |
1190 | ||
1191 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, | |
1192 | void *object) {} | |
1193 | ||
1194 | static inline void slab_free_hook(struct kmem_cache *s, void *x) {} | |
1195 | ||
ab4d5ed5 | 1196 | #endif /* CONFIG_SLUB_DEBUG */ |
205ab99d | 1197 | |
81819f0f CL |
1198 | /* |
1199 | * Slab allocation and freeing | |
1200 | */ | |
65c3376a CL |
1201 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1202 | struct kmem_cache_order_objects oo) | |
1203 | { | |
1204 | int order = oo_order(oo); | |
1205 | ||
b1eeab67 VN |
1206 | flags |= __GFP_NOTRACK; |
1207 | ||
2154a336 | 1208 | if (node == NUMA_NO_NODE) |
65c3376a CL |
1209 | return alloc_pages(flags, order); |
1210 | else | |
6b65aaf3 | 1211 | return alloc_pages_exact_node(node, flags, order); |
65c3376a CL |
1212 | } |
1213 | ||
81819f0f CL |
1214 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1215 | { | |
06428780 | 1216 | struct page *page; |
834f3d11 | 1217 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1218 | gfp_t alloc_gfp; |
81819f0f | 1219 | |
7e0528da CL |
1220 | flags &= gfp_allowed_mask; |
1221 | ||
1222 | if (flags & __GFP_WAIT) | |
1223 | local_irq_enable(); | |
1224 | ||
b7a49f0d | 1225 | flags |= s->allocflags; |
e12ba74d | 1226 | |
ba52270d PE |
1227 | /* |
1228 | * Let the initial higher-order allocation fail under memory pressure | |
1229 | * so we fall-back to the minimum order allocation. | |
1230 | */ | |
1231 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
1232 | ||
1233 | page = alloc_slab_page(alloc_gfp, node, oo); | |
65c3376a CL |
1234 | if (unlikely(!page)) { |
1235 | oo = s->min; | |
1236 | /* | |
1237 | * Allocation may have failed due to fragmentation. | |
1238 | * Try a lower order alloc if possible | |
1239 | */ | |
1240 | page = alloc_slab_page(flags, node, oo); | |
81819f0f | 1241 | |
7e0528da CL |
1242 | if (page) |
1243 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1244 | } |
5a896d9e | 1245 | |
7e0528da CL |
1246 | if (flags & __GFP_WAIT) |
1247 | local_irq_disable(); | |
1248 | ||
1249 | if (!page) | |
1250 | return NULL; | |
1251 | ||
5a896d9e | 1252 | if (kmemcheck_enabled |
5086c389 | 1253 | && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { |
b1eeab67 VN |
1254 | int pages = 1 << oo_order(oo); |
1255 | ||
1256 | kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); | |
1257 | ||
1258 | /* | |
1259 | * Objects from caches that have a constructor don't get | |
1260 | * cleared when they're allocated, so we need to do it here. | |
1261 | */ | |
1262 | if (s->ctor) | |
1263 | kmemcheck_mark_uninitialized_pages(page, pages); | |
1264 | else | |
1265 | kmemcheck_mark_unallocated_pages(page, pages); | |
5a896d9e VN |
1266 | } |
1267 | ||
834f3d11 | 1268 | page->objects = oo_objects(oo); |
81819f0f CL |
1269 | mod_zone_page_state(page_zone(page), |
1270 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1271 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
65c3376a | 1272 | 1 << oo_order(oo)); |
81819f0f CL |
1273 | |
1274 | return page; | |
1275 | } | |
1276 | ||
1277 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1278 | void *object) | |
1279 | { | |
3ec09742 | 1280 | setup_object_debug(s, page, object); |
4f104934 | 1281 | if (unlikely(s->ctor)) |
51cc5068 | 1282 | s->ctor(object); |
81819f0f CL |
1283 | } |
1284 | ||
1285 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1286 | { | |
1287 | struct page *page; | |
81819f0f | 1288 | void *start; |
81819f0f CL |
1289 | void *last; |
1290 | void *p; | |
1291 | ||
6cb06229 | 1292 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1293 | |
6cb06229 CL |
1294 | page = allocate_slab(s, |
1295 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1296 | if (!page) |
1297 | goto out; | |
1298 | ||
205ab99d | 1299 | inc_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1300 | page->slab = s; |
1301 | page->flags |= 1 << PG_slab; | |
81819f0f CL |
1302 | |
1303 | start = page_address(page); | |
81819f0f CL |
1304 | |
1305 | if (unlikely(s->flags & SLAB_POISON)) | |
834f3d11 | 1306 | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); |
81819f0f CL |
1307 | |
1308 | last = start; | |
224a88be | 1309 | for_each_object(p, s, start, page->objects) { |
81819f0f CL |
1310 | setup_object(s, page, last); |
1311 | set_freepointer(s, last, p); | |
1312 | last = p; | |
1313 | } | |
1314 | setup_object(s, page, last); | |
a973e9dd | 1315 | set_freepointer(s, last, NULL); |
81819f0f CL |
1316 | |
1317 | page->freelist = start; | |
1318 | page->inuse = 0; | |
8cb0a506 | 1319 | page->frozen = 1; |
81819f0f | 1320 | out: |
81819f0f CL |
1321 | return page; |
1322 | } | |
1323 | ||
1324 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1325 | { | |
834f3d11 CL |
1326 | int order = compound_order(page); |
1327 | int pages = 1 << order; | |
81819f0f | 1328 | |
af537b0a | 1329 | if (kmem_cache_debug(s)) { |
81819f0f CL |
1330 | void *p; |
1331 | ||
1332 | slab_pad_check(s, page); | |
224a88be CL |
1333 | for_each_object(p, s, page_address(page), |
1334 | page->objects) | |
f7cb1933 | 1335 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1336 | } |
1337 | ||
b1eeab67 | 1338 | kmemcheck_free_shadow(page, compound_order(page)); |
5a896d9e | 1339 | |
81819f0f CL |
1340 | mod_zone_page_state(page_zone(page), |
1341 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1342 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1343 | -pages); |
81819f0f | 1344 | |
49bd5221 CL |
1345 | __ClearPageSlab(page); |
1346 | reset_page_mapcount(page); | |
1eb5ac64 NP |
1347 | if (current->reclaim_state) |
1348 | current->reclaim_state->reclaimed_slab += pages; | |
834f3d11 | 1349 | __free_pages(page, order); |
81819f0f CL |
1350 | } |
1351 | ||
da9a638c LJ |
1352 | #define need_reserve_slab_rcu \ |
1353 | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | |
1354 | ||
81819f0f CL |
1355 | static void rcu_free_slab(struct rcu_head *h) |
1356 | { | |
1357 | struct page *page; | |
1358 | ||
da9a638c LJ |
1359 | if (need_reserve_slab_rcu) |
1360 | page = virt_to_head_page(h); | |
1361 | else | |
1362 | page = container_of((struct list_head *)h, struct page, lru); | |
1363 | ||
81819f0f CL |
1364 | __free_slab(page->slab, page); |
1365 | } | |
1366 | ||
1367 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1368 | { | |
1369 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
da9a638c LJ |
1370 | struct rcu_head *head; |
1371 | ||
1372 | if (need_reserve_slab_rcu) { | |
1373 | int order = compound_order(page); | |
1374 | int offset = (PAGE_SIZE << order) - s->reserved; | |
1375 | ||
1376 | VM_BUG_ON(s->reserved != sizeof(*head)); | |
1377 | head = page_address(page) + offset; | |
1378 | } else { | |
1379 | /* | |
1380 | * RCU free overloads the RCU head over the LRU | |
1381 | */ | |
1382 | head = (void *)&page->lru; | |
1383 | } | |
81819f0f CL |
1384 | |
1385 | call_rcu(head, rcu_free_slab); | |
1386 | } else | |
1387 | __free_slab(s, page); | |
1388 | } | |
1389 | ||
1390 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1391 | { | |
205ab99d | 1392 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1393 | free_slab(s, page); |
1394 | } | |
1395 | ||
1396 | /* | |
1397 | * Per slab locking using the pagelock | |
1398 | */ | |
1399 | static __always_inline void slab_lock(struct page *page) | |
1400 | { | |
1401 | bit_spin_lock(PG_locked, &page->flags); | |
1402 | } | |
1403 | ||
1404 | static __always_inline void slab_unlock(struct page *page) | |
1405 | { | |
a76d3546 | 1406 | __bit_spin_unlock(PG_locked, &page->flags); |
81819f0f CL |
1407 | } |
1408 | ||
1409 | static __always_inline int slab_trylock(struct page *page) | |
1410 | { | |
1411 | int rc = 1; | |
1412 | ||
1413 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1414 | return rc; | |
1415 | } | |
1416 | ||
1417 | /* | |
5cc6eee8 CL |
1418 | * Management of partially allocated slabs. |
1419 | * | |
1420 | * list_lock must be held. | |
81819f0f | 1421 | */ |
5cc6eee8 | 1422 | static inline void add_partial(struct kmem_cache_node *n, |
7c2e132c | 1423 | struct page *page, int tail) |
81819f0f | 1424 | { |
e95eed57 | 1425 | n->nr_partial++; |
7c2e132c CL |
1426 | if (tail) |
1427 | list_add_tail(&page->lru, &n->partial); | |
1428 | else | |
1429 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1430 | } |
1431 | ||
5cc6eee8 CL |
1432 | /* |
1433 | * list_lock must be held. | |
1434 | */ | |
1435 | static inline void remove_partial(struct kmem_cache_node *n, | |
62e346a8 CL |
1436 | struct page *page) |
1437 | { | |
1438 | list_del(&page->lru); | |
1439 | n->nr_partial--; | |
1440 | } | |
1441 | ||
81819f0f | 1442 | /* |
5cc6eee8 CL |
1443 | * Lock slab, remove from the partial list and put the object into the |
1444 | * per cpu freelist. | |
81819f0f | 1445 | * |
672bba3a | 1446 | * Must hold list_lock. |
81819f0f | 1447 | */ |
61728d1e CL |
1448 | static inline int lock_and_freeze_slab(struct kmem_cache *s, |
1449 | struct kmem_cache_node *n, struct page *page) | |
81819f0f | 1450 | { |
2cfb7455 CL |
1451 | void *freelist; |
1452 | unsigned long counters; | |
1453 | struct page new; | |
1454 | ||
1455 | ||
1456 | if (!slab_trylock(page)) | |
1457 | return 0; | |
1458 | ||
1459 | /* | |
1460 | * Zap the freelist and set the frozen bit. | |
1461 | * The old freelist is the list of objects for the | |
1462 | * per cpu allocation list. | |
1463 | */ | |
1464 | do { | |
1465 | freelist = page->freelist; | |
1466 | counters = page->counters; | |
1467 | new.counters = counters; | |
1468 | new.inuse = page->objects; | |
1469 | ||
1470 | VM_BUG_ON(new.frozen); | |
1471 | new.frozen = 1; | |
1472 | ||
1473 | } while (!cmpxchg_double_slab(s, page, | |
1474 | freelist, counters, | |
1475 | NULL, new.counters, | |
1476 | "lock and freeze")); | |
1477 | ||
1478 | remove_partial(n, page); | |
1479 | ||
1480 | if (freelist) { | |
1481 | /* Populate the per cpu freelist */ | |
1482 | this_cpu_write(s->cpu_slab->freelist, freelist); | |
1483 | this_cpu_write(s->cpu_slab->page, page); | |
1484 | this_cpu_write(s->cpu_slab->node, page_to_nid(page)); | |
81819f0f | 1485 | return 1; |
2cfb7455 CL |
1486 | } else { |
1487 | /* | |
1488 | * Slab page came from the wrong list. No object to allocate | |
1489 | * from. Put it onto the correct list and continue partial | |
1490 | * scan. | |
1491 | */ | |
1492 | printk(KERN_ERR "SLUB: %s : Page without available objects on" | |
1493 | " partial list\n", s->name); | |
1494 | slab_unlock(page); | |
1495 | return 0; | |
81819f0f | 1496 | } |
81819f0f CL |
1497 | } |
1498 | ||
1499 | /* | |
672bba3a | 1500 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1501 | */ |
61728d1e CL |
1502 | static struct page *get_partial_node(struct kmem_cache *s, |
1503 | struct kmem_cache_node *n) | |
81819f0f CL |
1504 | { |
1505 | struct page *page; | |
1506 | ||
1507 | /* | |
1508 | * Racy check. If we mistakenly see no partial slabs then we | |
1509 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1510 | * partial slab and there is none available then get_partials() |
1511 | * will return NULL. | |
81819f0f CL |
1512 | */ |
1513 | if (!n || !n->nr_partial) | |
1514 | return NULL; | |
1515 | ||
1516 | spin_lock(&n->list_lock); | |
1517 | list_for_each_entry(page, &n->partial, lru) | |
61728d1e | 1518 | if (lock_and_freeze_slab(s, n, page)) |
81819f0f CL |
1519 | goto out; |
1520 | page = NULL; | |
1521 | out: | |
1522 | spin_unlock(&n->list_lock); | |
1523 | return page; | |
1524 | } | |
1525 | ||
1526 | /* | |
672bba3a | 1527 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1528 | */ |
1529 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1530 | { | |
1531 | #ifdef CONFIG_NUMA | |
1532 | struct zonelist *zonelist; | |
dd1a239f | 1533 | struct zoneref *z; |
54a6eb5c MG |
1534 | struct zone *zone; |
1535 | enum zone_type high_zoneidx = gfp_zone(flags); | |
81819f0f CL |
1536 | struct page *page; |
1537 | ||
1538 | /* | |
672bba3a CL |
1539 | * The defrag ratio allows a configuration of the tradeoffs between |
1540 | * inter node defragmentation and node local allocations. A lower | |
1541 | * defrag_ratio increases the tendency to do local allocations | |
1542 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1543 | * |
672bba3a CL |
1544 | * If the defrag_ratio is set to 0 then kmalloc() always |
1545 | * returns node local objects. If the ratio is higher then kmalloc() | |
1546 | * may return off node objects because partial slabs are obtained | |
1547 | * from other nodes and filled up. | |
81819f0f | 1548 | * |
6446faa2 | 1549 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1550 | * defrag_ratio = 1000) then every (well almost) allocation will |
1551 | * first attempt to defrag slab caches on other nodes. This means | |
1552 | * scanning over all nodes to look for partial slabs which may be | |
1553 | * expensive if we do it every time we are trying to find a slab | |
1554 | * with available objects. | |
81819f0f | 1555 | */ |
9824601e CL |
1556 | if (!s->remote_node_defrag_ratio || |
1557 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1558 | return NULL; |
1559 | ||
c0ff7453 | 1560 | get_mems_allowed(); |
0e88460d | 1561 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
54a6eb5c | 1562 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
81819f0f CL |
1563 | struct kmem_cache_node *n; |
1564 | ||
54a6eb5c | 1565 | n = get_node(s, zone_to_nid(zone)); |
81819f0f | 1566 | |
54a6eb5c | 1567 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
3b89d7d8 | 1568 | n->nr_partial > s->min_partial) { |
61728d1e | 1569 | page = get_partial_node(s, n); |
c0ff7453 MX |
1570 | if (page) { |
1571 | put_mems_allowed(); | |
81819f0f | 1572 | return page; |
c0ff7453 | 1573 | } |
81819f0f CL |
1574 | } |
1575 | } | |
c0ff7453 | 1576 | put_mems_allowed(); |
81819f0f CL |
1577 | #endif |
1578 | return NULL; | |
1579 | } | |
1580 | ||
1581 | /* | |
1582 | * Get a partial page, lock it and return it. | |
1583 | */ | |
1584 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1585 | { | |
1586 | struct page *page; | |
2154a336 | 1587 | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; |
81819f0f | 1588 | |
61728d1e | 1589 | page = get_partial_node(s, get_node(s, searchnode)); |
33de04ec | 1590 | if (page || node != NUMA_NO_NODE) |
81819f0f CL |
1591 | return page; |
1592 | ||
1593 | return get_any_partial(s, flags); | |
1594 | } | |
1595 | ||
8a5ec0ba CL |
1596 | #ifdef CONFIG_PREEMPT |
1597 | /* | |
1598 | * Calculate the next globally unique transaction for disambiguiation | |
1599 | * during cmpxchg. The transactions start with the cpu number and are then | |
1600 | * incremented by CONFIG_NR_CPUS. | |
1601 | */ | |
1602 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1603 | #else | |
1604 | /* | |
1605 | * No preemption supported therefore also no need to check for | |
1606 | * different cpus. | |
1607 | */ | |
1608 | #define TID_STEP 1 | |
1609 | #endif | |
1610 | ||
1611 | static inline unsigned long next_tid(unsigned long tid) | |
1612 | { | |
1613 | return tid + TID_STEP; | |
1614 | } | |
1615 | ||
1616 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1617 | { | |
1618 | return tid % TID_STEP; | |
1619 | } | |
1620 | ||
1621 | static inline unsigned long tid_to_event(unsigned long tid) | |
1622 | { | |
1623 | return tid / TID_STEP; | |
1624 | } | |
1625 | ||
1626 | static inline unsigned int init_tid(int cpu) | |
1627 | { | |
1628 | return cpu; | |
1629 | } | |
1630 | ||
1631 | static inline void note_cmpxchg_failure(const char *n, | |
1632 | const struct kmem_cache *s, unsigned long tid) | |
1633 | { | |
1634 | #ifdef SLUB_DEBUG_CMPXCHG | |
1635 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
1636 | ||
1637 | printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); | |
1638 | ||
1639 | #ifdef CONFIG_PREEMPT | |
1640 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
1641 | printk("due to cpu change %d -> %d\n", | |
1642 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | |
1643 | else | |
1644 | #endif | |
1645 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
1646 | printk("due to cpu running other code. Event %ld->%ld\n", | |
1647 | tid_to_event(tid), tid_to_event(actual_tid)); | |
1648 | else | |
1649 | printk("for unknown reason: actual=%lx was=%lx target=%lx\n", | |
1650 | actual_tid, tid, next_tid(tid)); | |
1651 | #endif | |
4fdccdfb | 1652 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
1653 | } |
1654 | ||
8a5ec0ba CL |
1655 | void init_kmem_cache_cpus(struct kmem_cache *s) |
1656 | { | |
8a5ec0ba CL |
1657 | int cpu; |
1658 | ||
1659 | for_each_possible_cpu(cpu) | |
1660 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 1661 | } |
2cfb7455 CL |
1662 | /* |
1663 | * Remove the cpu slab | |
1664 | */ | |
1665 | ||
81819f0f CL |
1666 | /* |
1667 | * Remove the cpu slab | |
1668 | */ | |
dfb4f096 | 1669 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1670 | { |
2cfb7455 | 1671 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
dfb4f096 | 1672 | struct page *page = c->page; |
2cfb7455 CL |
1673 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1674 | int lock = 0; | |
1675 | enum slab_modes l = M_NONE, m = M_NONE; | |
1676 | void *freelist; | |
1677 | void *nextfree; | |
1678 | int tail = 0; | |
1679 | struct page new; | |
1680 | struct page old; | |
1681 | ||
1682 | if (page->freelist) { | |
84e554e6 | 1683 | stat(s, DEACTIVATE_REMOTE_FREES); |
2cfb7455 CL |
1684 | tail = 1; |
1685 | } | |
1686 | ||
1687 | c->tid = next_tid(c->tid); | |
1688 | c->page = NULL; | |
1689 | freelist = c->freelist; | |
1690 | c->freelist = NULL; | |
1691 | ||
894b8788 | 1692 | /* |
2cfb7455 CL |
1693 | * Stage one: Free all available per cpu objects back |
1694 | * to the page freelist while it is still frozen. Leave the | |
1695 | * last one. | |
1696 | * | |
1697 | * There is no need to take the list->lock because the page | |
1698 | * is still frozen. | |
1699 | */ | |
1700 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
1701 | void *prior; | |
1702 | unsigned long counters; | |
1703 | ||
1704 | do { | |
1705 | prior = page->freelist; | |
1706 | counters = page->counters; | |
1707 | set_freepointer(s, freelist, prior); | |
1708 | new.counters = counters; | |
1709 | new.inuse--; | |
1710 | VM_BUG_ON(!new.frozen); | |
1711 | ||
1712 | } while (!cmpxchg_double_slab(s, page, | |
1713 | prior, counters, | |
1714 | freelist, new.counters, | |
1715 | "drain percpu freelist")); | |
1716 | ||
1717 | freelist = nextfree; | |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * Stage two: Ensure that the page is unfrozen while the | |
1722 | * list presence reflects the actual number of objects | |
1723 | * during unfreeze. | |
1724 | * | |
1725 | * We setup the list membership and then perform a cmpxchg | |
1726 | * with the count. If there is a mismatch then the page | |
1727 | * is not unfrozen but the page is on the wrong list. | |
1728 | * | |
1729 | * Then we restart the process which may have to remove | |
1730 | * the page from the list that we just put it on again | |
1731 | * because the number of objects in the slab may have | |
1732 | * changed. | |
894b8788 | 1733 | */ |
2cfb7455 | 1734 | redo: |
894b8788 | 1735 | |
2cfb7455 CL |
1736 | old.freelist = page->freelist; |
1737 | old.counters = page->counters; | |
1738 | VM_BUG_ON(!old.frozen); | |
7c2e132c | 1739 | |
2cfb7455 CL |
1740 | /* Determine target state of the slab */ |
1741 | new.counters = old.counters; | |
1742 | if (freelist) { | |
1743 | new.inuse--; | |
1744 | set_freepointer(s, freelist, old.freelist); | |
1745 | new.freelist = freelist; | |
1746 | } else | |
1747 | new.freelist = old.freelist; | |
1748 | ||
1749 | new.frozen = 0; | |
1750 | ||
1751 | if (!new.inuse && n->nr_partial < s->min_partial) | |
1752 | m = M_FREE; | |
1753 | else if (new.freelist) { | |
1754 | m = M_PARTIAL; | |
1755 | if (!lock) { | |
1756 | lock = 1; | |
1757 | /* | |
1758 | * Taking the spinlock removes the possiblity | |
1759 | * that acquire_slab() will see a slab page that | |
1760 | * is frozen | |
1761 | */ | |
1762 | spin_lock(&n->list_lock); | |
1763 | } | |
1764 | } else { | |
1765 | m = M_FULL; | |
1766 | if (kmem_cache_debug(s) && !lock) { | |
1767 | lock = 1; | |
1768 | /* | |
1769 | * This also ensures that the scanning of full | |
1770 | * slabs from diagnostic functions will not see | |
1771 | * any frozen slabs. | |
1772 | */ | |
1773 | spin_lock(&n->list_lock); | |
1774 | } | |
1775 | } | |
1776 | ||
1777 | if (l != m) { | |
1778 | ||
1779 | if (l == M_PARTIAL) | |
1780 | ||
1781 | remove_partial(n, page); | |
1782 | ||
1783 | else if (l == M_FULL) | |
894b8788 | 1784 | |
2cfb7455 CL |
1785 | remove_full(s, page); |
1786 | ||
1787 | if (m == M_PARTIAL) { | |
1788 | ||
1789 | add_partial(n, page, tail); | |
1790 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | |
1791 | ||
1792 | } else if (m == M_FULL) { | |
1793 | ||
1794 | stat(s, DEACTIVATE_FULL); | |
1795 | add_full(s, n, page); | |
1796 | ||
1797 | } | |
1798 | } | |
1799 | ||
1800 | l = m; | |
1801 | if (!cmpxchg_double_slab(s, page, | |
1802 | old.freelist, old.counters, | |
1803 | new.freelist, new.counters, | |
1804 | "unfreezing slab")) | |
1805 | goto redo; | |
1806 | ||
1807 | slab_unlock(page); | |
1808 | ||
1809 | if (lock) | |
1810 | spin_unlock(&n->list_lock); | |
1811 | ||
1812 | if (m == M_FREE) { | |
1813 | stat(s, DEACTIVATE_EMPTY); | |
1814 | discard_slab(s, page); | |
1815 | stat(s, FREE_SLAB); | |
894b8788 | 1816 | } |
81819f0f CL |
1817 | } |
1818 | ||
dfb4f096 | 1819 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1820 | { |
84e554e6 | 1821 | stat(s, CPUSLAB_FLUSH); |
dfb4f096 CL |
1822 | slab_lock(c->page); |
1823 | deactivate_slab(s, c); | |
81819f0f CL |
1824 | } |
1825 | ||
1826 | /* | |
1827 | * Flush cpu slab. | |
6446faa2 | 1828 | * |
81819f0f CL |
1829 | * Called from IPI handler with interrupts disabled. |
1830 | */ | |
0c710013 | 1831 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 1832 | { |
9dfc6e68 | 1833 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 1834 | |
dfb4f096 CL |
1835 | if (likely(c && c->page)) |
1836 | flush_slab(s, c); | |
81819f0f CL |
1837 | } |
1838 | ||
1839 | static void flush_cpu_slab(void *d) | |
1840 | { | |
1841 | struct kmem_cache *s = d; | |
81819f0f | 1842 | |
dfb4f096 | 1843 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
1844 | } |
1845 | ||
1846 | static void flush_all(struct kmem_cache *s) | |
1847 | { | |
15c8b6c1 | 1848 | on_each_cpu(flush_cpu_slab, s, 1); |
81819f0f CL |
1849 | } |
1850 | ||
dfb4f096 CL |
1851 | /* |
1852 | * Check if the objects in a per cpu structure fit numa | |
1853 | * locality expectations. | |
1854 | */ | |
1855 | static inline int node_match(struct kmem_cache_cpu *c, int node) | |
1856 | { | |
1857 | #ifdef CONFIG_NUMA | |
2154a336 | 1858 | if (node != NUMA_NO_NODE && c->node != node) |
dfb4f096 CL |
1859 | return 0; |
1860 | #endif | |
1861 | return 1; | |
1862 | } | |
1863 | ||
781b2ba6 PE |
1864 | static int count_free(struct page *page) |
1865 | { | |
1866 | return page->objects - page->inuse; | |
1867 | } | |
1868 | ||
1869 | static unsigned long count_partial(struct kmem_cache_node *n, | |
1870 | int (*get_count)(struct page *)) | |
1871 | { | |
1872 | unsigned long flags; | |
1873 | unsigned long x = 0; | |
1874 | struct page *page; | |
1875 | ||
1876 | spin_lock_irqsave(&n->list_lock, flags); | |
1877 | list_for_each_entry(page, &n->partial, lru) | |
1878 | x += get_count(page); | |
1879 | spin_unlock_irqrestore(&n->list_lock, flags); | |
1880 | return x; | |
1881 | } | |
1882 | ||
26c02cf0 AB |
1883 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
1884 | { | |
1885 | #ifdef CONFIG_SLUB_DEBUG | |
1886 | return atomic_long_read(&n->total_objects); | |
1887 | #else | |
1888 | return 0; | |
1889 | #endif | |
1890 | } | |
1891 | ||
781b2ba6 PE |
1892 | static noinline void |
1893 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
1894 | { | |
1895 | int node; | |
1896 | ||
1897 | printk(KERN_WARNING | |
1898 | "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1899 | nid, gfpflags); | |
1900 | printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " | |
1901 | "default order: %d, min order: %d\n", s->name, s->objsize, | |
1902 | s->size, oo_order(s->oo), oo_order(s->min)); | |
1903 | ||
fa5ec8a1 DR |
1904 | if (oo_order(s->min) > get_order(s->objsize)) |
1905 | printk(KERN_WARNING " %s debugging increased min order, use " | |
1906 | "slub_debug=O to disable.\n", s->name); | |
1907 | ||
781b2ba6 PE |
1908 | for_each_online_node(node) { |
1909 | struct kmem_cache_node *n = get_node(s, node); | |
1910 | unsigned long nr_slabs; | |
1911 | unsigned long nr_objs; | |
1912 | unsigned long nr_free; | |
1913 | ||
1914 | if (!n) | |
1915 | continue; | |
1916 | ||
26c02cf0 AB |
1917 | nr_free = count_partial(n, count_free); |
1918 | nr_slabs = node_nr_slabs(n); | |
1919 | nr_objs = node_nr_objs(n); | |
781b2ba6 PE |
1920 | |
1921 | printk(KERN_WARNING | |
1922 | " node %d: slabs: %ld, objs: %ld, free: %ld\n", | |
1923 | node, nr_slabs, nr_objs, nr_free); | |
1924 | } | |
1925 | } | |
1926 | ||
81819f0f | 1927 | /* |
894b8788 CL |
1928 | * Slow path. The lockless freelist is empty or we need to perform |
1929 | * debugging duties. | |
1930 | * | |
1931 | * Interrupts are disabled. | |
81819f0f | 1932 | * |
894b8788 CL |
1933 | * Processing is still very fast if new objects have been freed to the |
1934 | * regular freelist. In that case we simply take over the regular freelist | |
1935 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1936 | * |
894b8788 CL |
1937 | * If that is not working then we fall back to the partial lists. We take the |
1938 | * first element of the freelist as the object to allocate now and move the | |
1939 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1940 | * |
894b8788 | 1941 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
1942 | * we need to allocate a new slab. This is the slowest path since it involves |
1943 | * a call to the page allocator and the setup of a new slab. | |
81819f0f | 1944 | */ |
ce71e27c EGM |
1945 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
1946 | unsigned long addr, struct kmem_cache_cpu *c) | |
81819f0f | 1947 | { |
81819f0f | 1948 | void **object; |
01ad8a7b | 1949 | struct page *page; |
8a5ec0ba | 1950 | unsigned long flags; |
2cfb7455 CL |
1951 | struct page new; |
1952 | unsigned long counters; | |
8a5ec0ba CL |
1953 | |
1954 | local_irq_save(flags); | |
1955 | #ifdef CONFIG_PREEMPT | |
1956 | /* | |
1957 | * We may have been preempted and rescheduled on a different | |
1958 | * cpu before disabling interrupts. Need to reload cpu area | |
1959 | * pointer. | |
1960 | */ | |
1961 | c = this_cpu_ptr(s->cpu_slab); | |
8a5ec0ba | 1962 | #endif |
81819f0f | 1963 | |
e72e9c23 LT |
1964 | /* We handle __GFP_ZERO in the caller */ |
1965 | gfpflags &= ~__GFP_ZERO; | |
1966 | ||
01ad8a7b CL |
1967 | page = c->page; |
1968 | if (!page) | |
81819f0f CL |
1969 | goto new_slab; |
1970 | ||
01ad8a7b | 1971 | slab_lock(page); |
dfb4f096 | 1972 | if (unlikely(!node_match(c, node))) |
81819f0f | 1973 | goto another_slab; |
6446faa2 | 1974 | |
2cfb7455 CL |
1975 | stat(s, ALLOC_SLOWPATH); |
1976 | ||
1977 | do { | |
1978 | object = page->freelist; | |
1979 | counters = page->counters; | |
1980 | new.counters = counters; | |
1981 | new.inuse = page->objects; | |
1982 | VM_BUG_ON(!new.frozen); | |
1983 | ||
1984 | } while (!cmpxchg_double_slab(s, page, | |
1985 | object, counters, | |
1986 | NULL, new.counters, | |
1987 | "__slab_alloc")); | |
6446faa2 | 1988 | |
894b8788 | 1989 | load_freelist: |
8cb0a506 CL |
1990 | VM_BUG_ON(!page->frozen); |
1991 | ||
a973e9dd | 1992 | if (unlikely(!object)) |
81819f0f | 1993 | goto another_slab; |
81819f0f | 1994 | |
2cfb7455 | 1995 | stat(s, ALLOC_REFILL); |
01ad8a7b | 1996 | |
01ad8a7b | 1997 | slab_unlock(page); |
2cfb7455 CL |
1998 | |
1999 | c->freelist = get_freepointer(s, object); | |
8a5ec0ba CL |
2000 | c->tid = next_tid(c->tid); |
2001 | local_irq_restore(flags); | |
81819f0f CL |
2002 | return object; |
2003 | ||
2004 | another_slab: | |
dfb4f096 | 2005 | deactivate_slab(s, c); |
81819f0f CL |
2006 | |
2007 | new_slab: | |
01ad8a7b CL |
2008 | page = get_partial(s, gfpflags, node); |
2009 | if (page) { | |
84e554e6 | 2010 | stat(s, ALLOC_FROM_PARTIAL); |
2cfb7455 CL |
2011 | object = c->freelist; |
2012 | ||
2013 | if (kmem_cache_debug(s)) | |
2014 | goto debug; | |
894b8788 | 2015 | goto load_freelist; |
81819f0f CL |
2016 | } |
2017 | ||
01ad8a7b | 2018 | page = new_slab(s, gfpflags, node); |
b811c202 | 2019 | |
01ad8a7b | 2020 | if (page) { |
9dfc6e68 | 2021 | c = __this_cpu_ptr(s->cpu_slab); |
05aa3450 | 2022 | if (c->page) |
dfb4f096 | 2023 | flush_slab(s, c); |
01ad8a7b | 2024 | |
2cfb7455 CL |
2025 | /* |
2026 | * No other reference to the page yet so we can | |
2027 | * muck around with it freely without cmpxchg | |
2028 | */ | |
2029 | object = page->freelist; | |
2030 | page->freelist = NULL; | |
2031 | page->inuse = page->objects; | |
2032 | ||
2033 | stat(s, ALLOC_SLAB); | |
01ad8a7b | 2034 | slab_lock(page); |
bd07d87f DR |
2035 | c->node = page_to_nid(page); |
2036 | c->page = page; | |
4b6f0750 | 2037 | goto load_freelist; |
81819f0f | 2038 | } |
95f85989 PE |
2039 | if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) |
2040 | slab_out_of_memory(s, gfpflags, node); | |
2fd66c51 | 2041 | local_irq_restore(flags); |
71c7a06f | 2042 | return NULL; |
2cfb7455 | 2043 | |
81819f0f | 2044 | debug: |
2cfb7455 CL |
2045 | if (!object || !alloc_debug_processing(s, page, object, addr)) |
2046 | goto new_slab; | |
894b8788 | 2047 | |
2cfb7455 | 2048 | c->freelist = get_freepointer(s, object); |
442b06bc CL |
2049 | deactivate_slab(s, c); |
2050 | c->page = NULL; | |
15b7c514 | 2051 | c->node = NUMA_NO_NODE; |
a71ae47a CL |
2052 | local_irq_restore(flags); |
2053 | return object; | |
894b8788 CL |
2054 | } |
2055 | ||
2056 | /* | |
2057 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2058 | * have the fastpath folded into their functions. So no function call | |
2059 | * overhead for requests that can be satisfied on the fastpath. | |
2060 | * | |
2061 | * The fastpath works by first checking if the lockless freelist can be used. | |
2062 | * If not then __slab_alloc is called for slow processing. | |
2063 | * | |
2064 | * Otherwise we can simply pick the next object from the lockless free list. | |
2065 | */ | |
06428780 | 2066 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
ce71e27c | 2067 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2068 | { |
894b8788 | 2069 | void **object; |
dfb4f096 | 2070 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2071 | unsigned long tid; |
1f84260c | 2072 | |
c016b0bd | 2073 | if (slab_pre_alloc_hook(s, gfpflags)) |
773ff60e | 2074 | return NULL; |
1f84260c | 2075 | |
8a5ec0ba | 2076 | redo: |
8a5ec0ba CL |
2077 | |
2078 | /* | |
2079 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2080 | * enabled. We may switch back and forth between cpus while | |
2081 | * reading from one cpu area. That does not matter as long | |
2082 | * as we end up on the original cpu again when doing the cmpxchg. | |
2083 | */ | |
9dfc6e68 | 2084 | c = __this_cpu_ptr(s->cpu_slab); |
8a5ec0ba | 2085 | |
8a5ec0ba CL |
2086 | /* |
2087 | * The transaction ids are globally unique per cpu and per operation on | |
2088 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2089 | * occurs on the right processor and that there was no operation on the | |
2090 | * linked list in between. | |
2091 | */ | |
2092 | tid = c->tid; | |
2093 | barrier(); | |
8a5ec0ba | 2094 | |
9dfc6e68 | 2095 | object = c->freelist; |
9dfc6e68 | 2096 | if (unlikely(!object || !node_match(c, node))) |
894b8788 | 2097 | |
dfb4f096 | 2098 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
2099 | |
2100 | else { | |
8a5ec0ba | 2101 | /* |
25985edc | 2102 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2103 | * operation and if we are on the right processor. |
2104 | * | |
2105 | * The cmpxchg does the following atomically (without lock semantics!) | |
2106 | * 1. Relocate first pointer to the current per cpu area. | |
2107 | * 2. Verify that tid and freelist have not been changed | |
2108 | * 3. If they were not changed replace tid and freelist | |
2109 | * | |
2110 | * Since this is without lock semantics the protection is only against | |
2111 | * code executing on this cpu *not* from access by other cpus. | |
2112 | */ | |
30106b8c | 2113 | if (unlikely(!irqsafe_cpu_cmpxchg_double( |
8a5ec0ba CL |
2114 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2115 | object, tid, | |
1393d9a1 | 2116 | get_freepointer_safe(s, object), next_tid(tid)))) { |
8a5ec0ba CL |
2117 | |
2118 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2119 | goto redo; | |
2120 | } | |
84e554e6 | 2121 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2122 | } |
8a5ec0ba | 2123 | |
74e2134f | 2124 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
ff12059e | 2125 | memset(object, 0, s->objsize); |
d07dbea4 | 2126 | |
c016b0bd | 2127 | slab_post_alloc_hook(s, gfpflags, object); |
5a896d9e | 2128 | |
894b8788 | 2129 | return object; |
81819f0f CL |
2130 | } |
2131 | ||
2132 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
2133 | { | |
2154a336 | 2134 | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); |
5b882be4 | 2135 | |
ca2b84cb | 2136 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); |
5b882be4 EGM |
2137 | |
2138 | return ret; | |
81819f0f CL |
2139 | } |
2140 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2141 | ||
0f24f128 | 2142 | #ifdef CONFIG_TRACING |
4a92379b RK |
2143 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2144 | { | |
2145 | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); | |
2146 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | |
2147 | return ret; | |
2148 | } | |
2149 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
2150 | ||
2151 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
5b882be4 | 2152 | { |
4a92379b RK |
2153 | void *ret = kmalloc_order(size, flags, order); |
2154 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
2155 | return ret; | |
5b882be4 | 2156 | } |
4a92379b | 2157 | EXPORT_SYMBOL(kmalloc_order_trace); |
5b882be4 EGM |
2158 | #endif |
2159 | ||
81819f0f CL |
2160 | #ifdef CONFIG_NUMA |
2161 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2162 | { | |
5b882be4 EGM |
2163 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
2164 | ||
ca2b84cb EGM |
2165 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
2166 | s->objsize, s->size, gfpflags, node); | |
5b882be4 EGM |
2167 | |
2168 | return ret; | |
81819f0f CL |
2169 | } |
2170 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2171 | |
0f24f128 | 2172 | #ifdef CONFIG_TRACING |
4a92379b | 2173 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2174 | gfp_t gfpflags, |
4a92379b | 2175 | int node, size_t size) |
5b882be4 | 2176 | { |
4a92379b RK |
2177 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
2178 | ||
2179 | trace_kmalloc_node(_RET_IP_, ret, | |
2180 | size, s->size, gfpflags, node); | |
2181 | return ret; | |
5b882be4 | 2182 | } |
4a92379b | 2183 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2184 | #endif |
5d1f57e4 | 2185 | #endif |
5b882be4 | 2186 | |
81819f0f | 2187 | /* |
894b8788 CL |
2188 | * Slow patch handling. This may still be called frequently since objects |
2189 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 2190 | * |
894b8788 CL |
2191 | * So we still attempt to reduce cache line usage. Just take the slab |
2192 | * lock and free the item. If there is no additional partial page | |
2193 | * handling required then we can return immediately. | |
81819f0f | 2194 | */ |
894b8788 | 2195 | static void __slab_free(struct kmem_cache *s, struct page *page, |
ff12059e | 2196 | void *x, unsigned long addr) |
81819f0f CL |
2197 | { |
2198 | void *prior; | |
2199 | void **object = (void *)x; | |
2cfb7455 CL |
2200 | int was_frozen; |
2201 | int inuse; | |
2202 | struct page new; | |
2203 | unsigned long counters; | |
2204 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2205 | unsigned long uninitialized_var(flags); |
81819f0f | 2206 | |
8a5ec0ba | 2207 | local_irq_save(flags); |
81819f0f | 2208 | slab_lock(page); |
8a5ec0ba | 2209 | stat(s, FREE_SLOWPATH); |
81819f0f | 2210 | |
8dc16c6c CL |
2211 | if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) |
2212 | goto out_unlock; | |
6446faa2 | 2213 | |
2cfb7455 CL |
2214 | do { |
2215 | prior = page->freelist; | |
2216 | counters = page->counters; | |
2217 | set_freepointer(s, object, prior); | |
2218 | new.counters = counters; | |
2219 | was_frozen = new.frozen; | |
2220 | new.inuse--; | |
2221 | if ((!new.inuse || !prior) && !was_frozen && !n) { | |
2222 | n = get_node(s, page_to_nid(page)); | |
2223 | /* | |
2224 | * Speculatively acquire the list_lock. | |
2225 | * If the cmpxchg does not succeed then we may | |
2226 | * drop the list_lock without any processing. | |
2227 | * | |
2228 | * Otherwise the list_lock will synchronize with | |
2229 | * other processors updating the list of slabs. | |
2230 | */ | |
2231 | spin_lock(&n->list_lock); | |
2232 | } | |
2233 | inuse = new.inuse; | |
81819f0f | 2234 | |
2cfb7455 CL |
2235 | } while (!cmpxchg_double_slab(s, page, |
2236 | prior, counters, | |
2237 | object, new.counters, | |
2238 | "__slab_free")); | |
81819f0f | 2239 | |
2cfb7455 CL |
2240 | if (likely(!n)) { |
2241 | /* | |
2242 | * The list lock was not taken therefore no list | |
2243 | * activity can be necessary. | |
2244 | */ | |
2245 | if (was_frozen) | |
2246 | stat(s, FREE_FROZEN); | |
2247 | goto out_unlock; | |
2248 | } | |
81819f0f CL |
2249 | |
2250 | /* | |
2cfb7455 CL |
2251 | * was_frozen may have been set after we acquired the list_lock in |
2252 | * an earlier loop. So we need to check it here again. | |
81819f0f | 2253 | */ |
2cfb7455 CL |
2254 | if (was_frozen) |
2255 | stat(s, FREE_FROZEN); | |
2256 | else { | |
2257 | if (unlikely(!inuse && n->nr_partial > s->min_partial)) | |
2258 | goto slab_empty; | |
5cc6eee8 | 2259 | |
2cfb7455 CL |
2260 | /* |
2261 | * Objects left in the slab. If it was not on the partial list before | |
2262 | * then add it. | |
2263 | */ | |
2264 | if (unlikely(!prior)) { | |
2265 | remove_full(s, page); | |
2266 | add_partial(n, page, 0); | |
2267 | stat(s, FREE_ADD_PARTIAL); | |
2268 | } | |
8ff12cfc | 2269 | } |
81819f0f | 2270 | |
2cfb7455 CL |
2271 | spin_unlock(&n->list_lock); |
2272 | ||
81819f0f CL |
2273 | out_unlock: |
2274 | slab_unlock(page); | |
8a5ec0ba | 2275 | local_irq_restore(flags); |
81819f0f CL |
2276 | return; |
2277 | ||
2278 | slab_empty: | |
a973e9dd | 2279 | if (prior) { |
81819f0f | 2280 | /* |
672bba3a | 2281 | * Slab still on the partial list. |
81819f0f | 2282 | */ |
5cc6eee8 | 2283 | remove_partial(n, page); |
84e554e6 | 2284 | stat(s, FREE_REMOVE_PARTIAL); |
8ff12cfc | 2285 | } |
2cfb7455 CL |
2286 | |
2287 | spin_unlock(&n->list_lock); | |
81819f0f | 2288 | slab_unlock(page); |
8a5ec0ba | 2289 | local_irq_restore(flags); |
84e554e6 | 2290 | stat(s, FREE_SLAB); |
81819f0f | 2291 | discard_slab(s, page); |
81819f0f CL |
2292 | } |
2293 | ||
894b8788 CL |
2294 | /* |
2295 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2296 | * can perform fastpath freeing without additional function calls. | |
2297 | * | |
2298 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2299 | * of this processor. This typically the case if we have just allocated | |
2300 | * the item before. | |
2301 | * | |
2302 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2303 | * with all sorts of special processing. | |
2304 | */ | |
06428780 | 2305 | static __always_inline void slab_free(struct kmem_cache *s, |
ce71e27c | 2306 | struct page *page, void *x, unsigned long addr) |
894b8788 CL |
2307 | { |
2308 | void **object = (void *)x; | |
dfb4f096 | 2309 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2310 | unsigned long tid; |
1f84260c | 2311 | |
c016b0bd CL |
2312 | slab_free_hook(s, x); |
2313 | ||
8a5ec0ba | 2314 | redo: |
a24c5a0e | 2315 | |
8a5ec0ba CL |
2316 | /* |
2317 | * Determine the currently cpus per cpu slab. | |
2318 | * The cpu may change afterward. However that does not matter since | |
2319 | * data is retrieved via this pointer. If we are on the same cpu | |
2320 | * during the cmpxchg then the free will succedd. | |
2321 | */ | |
9dfc6e68 | 2322 | c = __this_cpu_ptr(s->cpu_slab); |
c016b0bd | 2323 | |
8a5ec0ba CL |
2324 | tid = c->tid; |
2325 | barrier(); | |
c016b0bd | 2326 | |
442b06bc | 2327 | if (likely(page == c->page)) { |
ff12059e | 2328 | set_freepointer(s, object, c->freelist); |
8a5ec0ba | 2329 | |
30106b8c | 2330 | if (unlikely(!irqsafe_cpu_cmpxchg_double( |
8a5ec0ba CL |
2331 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2332 | c->freelist, tid, | |
2333 | object, next_tid(tid)))) { | |
2334 | ||
2335 | note_cmpxchg_failure("slab_free", s, tid); | |
2336 | goto redo; | |
2337 | } | |
84e554e6 | 2338 | stat(s, FREE_FASTPATH); |
894b8788 | 2339 | } else |
ff12059e | 2340 | __slab_free(s, page, x, addr); |
894b8788 | 2341 | |
894b8788 CL |
2342 | } |
2343 | ||
81819f0f CL |
2344 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2345 | { | |
77c5e2d0 | 2346 | struct page *page; |
81819f0f | 2347 | |
b49af68f | 2348 | page = virt_to_head_page(x); |
81819f0f | 2349 | |
ce71e27c | 2350 | slab_free(s, page, x, _RET_IP_); |
5b882be4 | 2351 | |
ca2b84cb | 2352 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
2353 | } |
2354 | EXPORT_SYMBOL(kmem_cache_free); | |
2355 | ||
81819f0f | 2356 | /* |
672bba3a CL |
2357 | * Object placement in a slab is made very easy because we always start at |
2358 | * offset 0. If we tune the size of the object to the alignment then we can | |
2359 | * get the required alignment by putting one properly sized object after | |
2360 | * another. | |
81819f0f CL |
2361 | * |
2362 | * Notice that the allocation order determines the sizes of the per cpu | |
2363 | * caches. Each processor has always one slab available for allocations. | |
2364 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 2365 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 2366 | * locking overhead. |
81819f0f CL |
2367 | */ |
2368 | ||
2369 | /* | |
2370 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
2371 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
2372 | * and increases the number of allocations possible without having to | |
2373 | * take the list_lock. | |
2374 | */ | |
2375 | static int slub_min_order; | |
114e9e89 | 2376 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 2377 | static int slub_min_objects; |
81819f0f CL |
2378 | |
2379 | /* | |
2380 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 2381 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
2382 | */ |
2383 | static int slub_nomerge; | |
2384 | ||
81819f0f CL |
2385 | /* |
2386 | * Calculate the order of allocation given an slab object size. | |
2387 | * | |
672bba3a CL |
2388 | * The order of allocation has significant impact on performance and other |
2389 | * system components. Generally order 0 allocations should be preferred since | |
2390 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
2391 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 2392 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
2393 | * would be wasted. |
2394 | * | |
2395 | * In order to reach satisfactory performance we must ensure that a minimum | |
2396 | * number of objects is in one slab. Otherwise we may generate too much | |
2397 | * activity on the partial lists which requires taking the list_lock. This is | |
2398 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 2399 | * |
672bba3a CL |
2400 | * slub_max_order specifies the order where we begin to stop considering the |
2401 | * number of objects in a slab as critical. If we reach slub_max_order then | |
2402 | * we try to keep the page order as low as possible. So we accept more waste | |
2403 | * of space in favor of a small page order. | |
81819f0f | 2404 | * |
672bba3a CL |
2405 | * Higher order allocations also allow the placement of more objects in a |
2406 | * slab and thereby reduce object handling overhead. If the user has | |
2407 | * requested a higher mininum order then we start with that one instead of | |
2408 | * the smallest order which will fit the object. | |
81819f0f | 2409 | */ |
5e6d444e | 2410 | static inline int slab_order(int size, int min_objects, |
ab9a0f19 | 2411 | int max_order, int fract_leftover, int reserved) |
81819f0f CL |
2412 | { |
2413 | int order; | |
2414 | int rem; | |
6300ea75 | 2415 | int min_order = slub_min_order; |
81819f0f | 2416 | |
ab9a0f19 | 2417 | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
210b5c06 | 2418 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 2419 | |
6300ea75 | 2420 | for (order = max(min_order, |
5e6d444e CL |
2421 | fls(min_objects * size - 1) - PAGE_SHIFT); |
2422 | order <= max_order; order++) { | |
81819f0f | 2423 | |
5e6d444e | 2424 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 2425 | |
ab9a0f19 | 2426 | if (slab_size < min_objects * size + reserved) |
81819f0f CL |
2427 | continue; |
2428 | ||
ab9a0f19 | 2429 | rem = (slab_size - reserved) % size; |
81819f0f | 2430 | |
5e6d444e | 2431 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
2432 | break; |
2433 | ||
2434 | } | |
672bba3a | 2435 | |
81819f0f CL |
2436 | return order; |
2437 | } | |
2438 | ||
ab9a0f19 | 2439 | static inline int calculate_order(int size, int reserved) |
5e6d444e CL |
2440 | { |
2441 | int order; | |
2442 | int min_objects; | |
2443 | int fraction; | |
e8120ff1 | 2444 | int max_objects; |
5e6d444e CL |
2445 | |
2446 | /* | |
2447 | * Attempt to find best configuration for a slab. This | |
2448 | * works by first attempting to generate a layout with | |
2449 | * the best configuration and backing off gradually. | |
2450 | * | |
2451 | * First we reduce the acceptable waste in a slab. Then | |
2452 | * we reduce the minimum objects required in a slab. | |
2453 | */ | |
2454 | min_objects = slub_min_objects; | |
9b2cd506 CL |
2455 | if (!min_objects) |
2456 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
ab9a0f19 | 2457 | max_objects = order_objects(slub_max_order, size, reserved); |
e8120ff1 ZY |
2458 | min_objects = min(min_objects, max_objects); |
2459 | ||
5e6d444e | 2460 | while (min_objects > 1) { |
c124f5b5 | 2461 | fraction = 16; |
5e6d444e CL |
2462 | while (fraction >= 4) { |
2463 | order = slab_order(size, min_objects, | |
ab9a0f19 | 2464 | slub_max_order, fraction, reserved); |
5e6d444e CL |
2465 | if (order <= slub_max_order) |
2466 | return order; | |
2467 | fraction /= 2; | |
2468 | } | |
5086c389 | 2469 | min_objects--; |
5e6d444e CL |
2470 | } |
2471 | ||
2472 | /* | |
2473 | * We were unable to place multiple objects in a slab. Now | |
2474 | * lets see if we can place a single object there. | |
2475 | */ | |
ab9a0f19 | 2476 | order = slab_order(size, 1, slub_max_order, 1, reserved); |
5e6d444e CL |
2477 | if (order <= slub_max_order) |
2478 | return order; | |
2479 | ||
2480 | /* | |
2481 | * Doh this slab cannot be placed using slub_max_order. | |
2482 | */ | |
ab9a0f19 | 2483 | order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
818cf590 | 2484 | if (order < MAX_ORDER) |
5e6d444e CL |
2485 | return order; |
2486 | return -ENOSYS; | |
2487 | } | |
2488 | ||
81819f0f | 2489 | /* |
672bba3a | 2490 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
2491 | */ |
2492 | static unsigned long calculate_alignment(unsigned long flags, | |
2493 | unsigned long align, unsigned long size) | |
2494 | { | |
2495 | /* | |
6446faa2 CL |
2496 | * If the user wants hardware cache aligned objects then follow that |
2497 | * suggestion if the object is sufficiently large. | |
81819f0f | 2498 | * |
6446faa2 CL |
2499 | * The hardware cache alignment cannot override the specified |
2500 | * alignment though. If that is greater then use it. | |
81819f0f | 2501 | */ |
b6210386 NP |
2502 | if (flags & SLAB_HWCACHE_ALIGN) { |
2503 | unsigned long ralign = cache_line_size(); | |
2504 | while (size <= ralign / 2) | |
2505 | ralign /= 2; | |
2506 | align = max(align, ralign); | |
2507 | } | |
81819f0f CL |
2508 | |
2509 | if (align < ARCH_SLAB_MINALIGN) | |
b6210386 | 2510 | align = ARCH_SLAB_MINALIGN; |
81819f0f CL |
2511 | |
2512 | return ALIGN(align, sizeof(void *)); | |
2513 | } | |
2514 | ||
5595cffc PE |
2515 | static void |
2516 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | |
81819f0f CL |
2517 | { |
2518 | n->nr_partial = 0; | |
81819f0f CL |
2519 | spin_lock_init(&n->list_lock); |
2520 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 2521 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 2522 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 2523 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 2524 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 2525 | #endif |
81819f0f CL |
2526 | } |
2527 | ||
55136592 | 2528 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 2529 | { |
6c182dc0 CL |
2530 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
2531 | SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); | |
4c93c355 | 2532 | |
8a5ec0ba | 2533 | /* |
d4d84fef CM |
2534 | * Must align to double word boundary for the double cmpxchg |
2535 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 2536 | */ |
d4d84fef CM |
2537 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
2538 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
2539 | |
2540 | if (!s->cpu_slab) | |
2541 | return 0; | |
2542 | ||
2543 | init_kmem_cache_cpus(s); | |
4c93c355 | 2544 | |
8a5ec0ba | 2545 | return 1; |
4c93c355 | 2546 | } |
4c93c355 | 2547 | |
51df1142 CL |
2548 | static struct kmem_cache *kmem_cache_node; |
2549 | ||
81819f0f CL |
2550 | /* |
2551 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2552 | * slab on the node for this slabcache. There are no concurrent accesses | |
2553 | * possible. | |
2554 | * | |
2555 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2556 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2557 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2558 | */ |
55136592 | 2559 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
2560 | { |
2561 | struct page *page; | |
2562 | struct kmem_cache_node *n; | |
2563 | ||
51df1142 | 2564 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 2565 | |
51df1142 | 2566 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
2567 | |
2568 | BUG_ON(!page); | |
a2f92ee7 CL |
2569 | if (page_to_nid(page) != node) { |
2570 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2571 | "node %d\n", node); | |
2572 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2573 | "in order to be able to continue\n"); | |
2574 | } | |
2575 | ||
81819f0f CL |
2576 | n = page->freelist; |
2577 | BUG_ON(!n); | |
51df1142 | 2578 | page->freelist = get_freepointer(kmem_cache_node, n); |
81819f0f | 2579 | page->inuse++; |
8cb0a506 | 2580 | page->frozen = 0; |
51df1142 | 2581 | kmem_cache_node->node[node] = n; |
8ab1372f | 2582 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 2583 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 2584 | init_tracking(kmem_cache_node, n); |
8ab1372f | 2585 | #endif |
51df1142 CL |
2586 | init_kmem_cache_node(n, kmem_cache_node); |
2587 | inc_slabs_node(kmem_cache_node, node, page->objects); | |
6446faa2 | 2588 | |
7c2e132c | 2589 | add_partial(n, page, 0); |
81819f0f CL |
2590 | } |
2591 | ||
2592 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2593 | { | |
2594 | int node; | |
2595 | ||
f64dc58c | 2596 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f | 2597 | struct kmem_cache_node *n = s->node[node]; |
51df1142 | 2598 | |
73367bd8 | 2599 | if (n) |
51df1142 CL |
2600 | kmem_cache_free(kmem_cache_node, n); |
2601 | ||
81819f0f CL |
2602 | s->node[node] = NULL; |
2603 | } | |
2604 | } | |
2605 | ||
55136592 | 2606 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
2607 | { |
2608 | int node; | |
81819f0f | 2609 | |
f64dc58c | 2610 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2611 | struct kmem_cache_node *n; |
2612 | ||
73367bd8 | 2613 | if (slab_state == DOWN) { |
55136592 | 2614 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
2615 | continue; |
2616 | } | |
51df1142 | 2617 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 2618 | GFP_KERNEL, node); |
81819f0f | 2619 | |
73367bd8 AD |
2620 | if (!n) { |
2621 | free_kmem_cache_nodes(s); | |
2622 | return 0; | |
81819f0f | 2623 | } |
73367bd8 | 2624 | |
81819f0f | 2625 | s->node[node] = n; |
5595cffc | 2626 | init_kmem_cache_node(n, s); |
81819f0f CL |
2627 | } |
2628 | return 1; | |
2629 | } | |
81819f0f | 2630 | |
c0bdb232 | 2631 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
2632 | { |
2633 | if (min < MIN_PARTIAL) | |
2634 | min = MIN_PARTIAL; | |
2635 | else if (min > MAX_PARTIAL) | |
2636 | min = MAX_PARTIAL; | |
2637 | s->min_partial = min; | |
2638 | } | |
2639 | ||
81819f0f CL |
2640 | /* |
2641 | * calculate_sizes() determines the order and the distribution of data within | |
2642 | * a slab object. | |
2643 | */ | |
06b285dc | 2644 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
2645 | { |
2646 | unsigned long flags = s->flags; | |
2647 | unsigned long size = s->objsize; | |
2648 | unsigned long align = s->align; | |
834f3d11 | 2649 | int order; |
81819f0f | 2650 | |
d8b42bf5 CL |
2651 | /* |
2652 | * Round up object size to the next word boundary. We can only | |
2653 | * place the free pointer at word boundaries and this determines | |
2654 | * the possible location of the free pointer. | |
2655 | */ | |
2656 | size = ALIGN(size, sizeof(void *)); | |
2657 | ||
2658 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
2659 | /* |
2660 | * Determine if we can poison the object itself. If the user of | |
2661 | * the slab may touch the object after free or before allocation | |
2662 | * then we should never poison the object itself. | |
2663 | */ | |
2664 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2665 | !s->ctor) |
81819f0f CL |
2666 | s->flags |= __OBJECT_POISON; |
2667 | else | |
2668 | s->flags &= ~__OBJECT_POISON; | |
2669 | ||
81819f0f CL |
2670 | |
2671 | /* | |
672bba3a | 2672 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2673 | * end of the object and the free pointer. If not then add an |
672bba3a | 2674 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
2675 | */ |
2676 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
2677 | size += sizeof(void *); | |
41ecc55b | 2678 | #endif |
81819f0f CL |
2679 | |
2680 | /* | |
672bba3a CL |
2681 | * With that we have determined the number of bytes in actual use |
2682 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2683 | */ |
2684 | s->inuse = size; | |
2685 | ||
2686 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2687 | s->ctor)) { |
81819f0f CL |
2688 | /* |
2689 | * Relocate free pointer after the object if it is not | |
2690 | * permitted to overwrite the first word of the object on | |
2691 | * kmem_cache_free. | |
2692 | * | |
2693 | * This is the case if we do RCU, have a constructor or | |
2694 | * destructor or are poisoning the objects. | |
2695 | */ | |
2696 | s->offset = size; | |
2697 | size += sizeof(void *); | |
2698 | } | |
2699 | ||
c12b3c62 | 2700 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2701 | if (flags & SLAB_STORE_USER) |
2702 | /* | |
2703 | * Need to store information about allocs and frees after | |
2704 | * the object. | |
2705 | */ | |
2706 | size += 2 * sizeof(struct track); | |
2707 | ||
be7b3fbc | 2708 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2709 | /* |
2710 | * Add some empty padding so that we can catch | |
2711 | * overwrites from earlier objects rather than let | |
2712 | * tracking information or the free pointer be | |
0211a9c8 | 2713 | * corrupted if a user writes before the start |
81819f0f CL |
2714 | * of the object. |
2715 | */ | |
2716 | size += sizeof(void *); | |
41ecc55b | 2717 | #endif |
672bba3a | 2718 | |
81819f0f CL |
2719 | /* |
2720 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2721 | * user specified and the dynamic determination of cache line size |
2722 | * on bootup. | |
81819f0f CL |
2723 | */ |
2724 | align = calculate_alignment(flags, align, s->objsize); | |
dcb0ce1b | 2725 | s->align = align; |
81819f0f CL |
2726 | |
2727 | /* | |
2728 | * SLUB stores one object immediately after another beginning from | |
2729 | * offset 0. In order to align the objects we have to simply size | |
2730 | * each object to conform to the alignment. | |
2731 | */ | |
2732 | size = ALIGN(size, align); | |
2733 | s->size = size; | |
06b285dc CL |
2734 | if (forced_order >= 0) |
2735 | order = forced_order; | |
2736 | else | |
ab9a0f19 | 2737 | order = calculate_order(size, s->reserved); |
81819f0f | 2738 | |
834f3d11 | 2739 | if (order < 0) |
81819f0f CL |
2740 | return 0; |
2741 | ||
b7a49f0d | 2742 | s->allocflags = 0; |
834f3d11 | 2743 | if (order) |
b7a49f0d CL |
2744 | s->allocflags |= __GFP_COMP; |
2745 | ||
2746 | if (s->flags & SLAB_CACHE_DMA) | |
2747 | s->allocflags |= SLUB_DMA; | |
2748 | ||
2749 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
2750 | s->allocflags |= __GFP_RECLAIMABLE; | |
2751 | ||
81819f0f CL |
2752 | /* |
2753 | * Determine the number of objects per slab | |
2754 | */ | |
ab9a0f19 LJ |
2755 | s->oo = oo_make(order, size, s->reserved); |
2756 | s->min = oo_make(get_order(size), size, s->reserved); | |
205ab99d CL |
2757 | if (oo_objects(s->oo) > oo_objects(s->max)) |
2758 | s->max = s->oo; | |
81819f0f | 2759 | |
834f3d11 | 2760 | return !!oo_objects(s->oo); |
81819f0f CL |
2761 | |
2762 | } | |
2763 | ||
55136592 | 2764 | static int kmem_cache_open(struct kmem_cache *s, |
81819f0f CL |
2765 | const char *name, size_t size, |
2766 | size_t align, unsigned long flags, | |
51cc5068 | 2767 | void (*ctor)(void *)) |
81819f0f CL |
2768 | { |
2769 | memset(s, 0, kmem_size); | |
2770 | s->name = name; | |
2771 | s->ctor = ctor; | |
81819f0f | 2772 | s->objsize = size; |
81819f0f | 2773 | s->align = align; |
ba0268a8 | 2774 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
ab9a0f19 | 2775 | s->reserved = 0; |
81819f0f | 2776 | |
da9a638c LJ |
2777 | if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) |
2778 | s->reserved = sizeof(struct rcu_head); | |
81819f0f | 2779 | |
06b285dc | 2780 | if (!calculate_sizes(s, -1)) |
81819f0f | 2781 | goto error; |
3de47213 DR |
2782 | if (disable_higher_order_debug) { |
2783 | /* | |
2784 | * Disable debugging flags that store metadata if the min slab | |
2785 | * order increased. | |
2786 | */ | |
2787 | if (get_order(s->size) > get_order(s->objsize)) { | |
2788 | s->flags &= ~DEBUG_METADATA_FLAGS; | |
2789 | s->offset = 0; | |
2790 | if (!calculate_sizes(s, -1)) | |
2791 | goto error; | |
2792 | } | |
2793 | } | |
81819f0f | 2794 | |
b789ef51 CL |
2795 | #ifdef CONFIG_CMPXCHG_DOUBLE |
2796 | if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) | |
2797 | /* Enable fast mode */ | |
2798 | s->flags |= __CMPXCHG_DOUBLE; | |
2799 | #endif | |
2800 | ||
3b89d7d8 DR |
2801 | /* |
2802 | * The larger the object size is, the more pages we want on the partial | |
2803 | * list to avoid pounding the page allocator excessively. | |
2804 | */ | |
c0bdb232 | 2805 | set_min_partial(s, ilog2(s->size)); |
81819f0f CL |
2806 | s->refcount = 1; |
2807 | #ifdef CONFIG_NUMA | |
e2cb96b7 | 2808 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 2809 | #endif |
55136592 | 2810 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 2811 | goto error; |
81819f0f | 2812 | |
55136592 | 2813 | if (alloc_kmem_cache_cpus(s)) |
81819f0f | 2814 | return 1; |
ff12059e | 2815 | |
4c93c355 | 2816 | free_kmem_cache_nodes(s); |
81819f0f CL |
2817 | error: |
2818 | if (flags & SLAB_PANIC) | |
2819 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2820 | "order=%u offset=%u flags=%lx\n", | |
834f3d11 | 2821 | s->name, (unsigned long)size, s->size, oo_order(s->oo), |
81819f0f CL |
2822 | s->offset, flags); |
2823 | return 0; | |
2824 | } | |
81819f0f | 2825 | |
81819f0f CL |
2826 | /* |
2827 | * Determine the size of a slab object | |
2828 | */ | |
2829 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2830 | { | |
2831 | return s->objsize; | |
2832 | } | |
2833 | EXPORT_SYMBOL(kmem_cache_size); | |
2834 | ||
33b12c38 CL |
2835 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
2836 | const char *text) | |
2837 | { | |
2838 | #ifdef CONFIG_SLUB_DEBUG | |
2839 | void *addr = page_address(page); | |
2840 | void *p; | |
a5dd5c11 NK |
2841 | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
2842 | sizeof(long), GFP_ATOMIC); | |
bbd7d57b ED |
2843 | if (!map) |
2844 | return; | |
33b12c38 CL |
2845 | slab_err(s, page, "%s", text); |
2846 | slab_lock(page); | |
33b12c38 | 2847 | |
5f80b13a | 2848 | get_map(s, page, map); |
33b12c38 CL |
2849 | for_each_object(p, s, addr, page->objects) { |
2850 | ||
2851 | if (!test_bit(slab_index(p, s, addr), map)) { | |
2852 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | |
2853 | p, p - addr); | |
2854 | print_tracking(s, p); | |
2855 | } | |
2856 | } | |
2857 | slab_unlock(page); | |
bbd7d57b | 2858 | kfree(map); |
33b12c38 CL |
2859 | #endif |
2860 | } | |
2861 | ||
81819f0f | 2862 | /* |
599870b1 | 2863 | * Attempt to free all partial slabs on a node. |
81819f0f | 2864 | */ |
599870b1 | 2865 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 2866 | { |
81819f0f CL |
2867 | unsigned long flags; |
2868 | struct page *page, *h; | |
2869 | ||
2870 | spin_lock_irqsave(&n->list_lock, flags); | |
33b12c38 | 2871 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 2872 | if (!page->inuse) { |
5cc6eee8 | 2873 | remove_partial(n, page); |
81819f0f | 2874 | discard_slab(s, page); |
33b12c38 CL |
2875 | } else { |
2876 | list_slab_objects(s, page, | |
2877 | "Objects remaining on kmem_cache_close()"); | |
599870b1 | 2878 | } |
33b12c38 | 2879 | } |
81819f0f | 2880 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2881 | } |
2882 | ||
2883 | /* | |
672bba3a | 2884 | * Release all resources used by a slab cache. |
81819f0f | 2885 | */ |
0c710013 | 2886 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
2887 | { |
2888 | int node; | |
2889 | ||
2890 | flush_all(s); | |
9dfc6e68 | 2891 | free_percpu(s->cpu_slab); |
81819f0f | 2892 | /* Attempt to free all objects */ |
f64dc58c | 2893 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2894 | struct kmem_cache_node *n = get_node(s, node); |
2895 | ||
599870b1 CL |
2896 | free_partial(s, n); |
2897 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
2898 | return 1; |
2899 | } | |
2900 | free_kmem_cache_nodes(s); | |
2901 | return 0; | |
2902 | } | |
2903 | ||
2904 | /* | |
2905 | * Close a cache and release the kmem_cache structure | |
2906 | * (must be used for caches created using kmem_cache_create) | |
2907 | */ | |
2908 | void kmem_cache_destroy(struct kmem_cache *s) | |
2909 | { | |
2910 | down_write(&slub_lock); | |
2911 | s->refcount--; | |
2912 | if (!s->refcount) { | |
2913 | list_del(&s->list); | |
d629d819 PE |
2914 | if (kmem_cache_close(s)) { |
2915 | printk(KERN_ERR "SLUB %s: %s called for cache that " | |
2916 | "still has objects.\n", s->name, __func__); | |
2917 | dump_stack(); | |
2918 | } | |
d76b1590 ED |
2919 | if (s->flags & SLAB_DESTROY_BY_RCU) |
2920 | rcu_barrier(); | |
81819f0f | 2921 | sysfs_slab_remove(s); |
2bce6485 CL |
2922 | } |
2923 | up_write(&slub_lock); | |
81819f0f CL |
2924 | } |
2925 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2926 | ||
2927 | /******************************************************************** | |
2928 | * Kmalloc subsystem | |
2929 | *******************************************************************/ | |
2930 | ||
51df1142 | 2931 | struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; |
81819f0f CL |
2932 | EXPORT_SYMBOL(kmalloc_caches); |
2933 | ||
51df1142 CL |
2934 | static struct kmem_cache *kmem_cache; |
2935 | ||
55136592 | 2936 | #ifdef CONFIG_ZONE_DMA |
51df1142 | 2937 | static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; |
55136592 CL |
2938 | #endif |
2939 | ||
81819f0f CL |
2940 | static int __init setup_slub_min_order(char *str) |
2941 | { | |
06428780 | 2942 | get_option(&str, &slub_min_order); |
81819f0f CL |
2943 | |
2944 | return 1; | |
2945 | } | |
2946 | ||
2947 | __setup("slub_min_order=", setup_slub_min_order); | |
2948 | ||
2949 | static int __init setup_slub_max_order(char *str) | |
2950 | { | |
06428780 | 2951 | get_option(&str, &slub_max_order); |
818cf590 | 2952 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
81819f0f CL |
2953 | |
2954 | return 1; | |
2955 | } | |
2956 | ||
2957 | __setup("slub_max_order=", setup_slub_max_order); | |
2958 | ||
2959 | static int __init setup_slub_min_objects(char *str) | |
2960 | { | |
06428780 | 2961 | get_option(&str, &slub_min_objects); |
81819f0f CL |
2962 | |
2963 | return 1; | |
2964 | } | |
2965 | ||
2966 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2967 | ||
2968 | static int __init setup_slub_nomerge(char *str) | |
2969 | { | |
2970 | slub_nomerge = 1; | |
2971 | return 1; | |
2972 | } | |
2973 | ||
2974 | __setup("slub_nomerge", setup_slub_nomerge); | |
2975 | ||
51df1142 CL |
2976 | static struct kmem_cache *__init create_kmalloc_cache(const char *name, |
2977 | int size, unsigned int flags) | |
81819f0f | 2978 | { |
51df1142 CL |
2979 | struct kmem_cache *s; |
2980 | ||
2981 | s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | |
2982 | ||
83b519e8 PE |
2983 | /* |
2984 | * This function is called with IRQs disabled during early-boot on | |
2985 | * single CPU so there's no need to take slub_lock here. | |
2986 | */ | |
55136592 | 2987 | if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, |
319d1e24 | 2988 | flags, NULL)) |
81819f0f CL |
2989 | goto panic; |
2990 | ||
2991 | list_add(&s->list, &slab_caches); | |
51df1142 | 2992 | return s; |
81819f0f CL |
2993 | |
2994 | panic: | |
2995 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
51df1142 | 2996 | return NULL; |
81819f0f CL |
2997 | } |
2998 | ||
f1b26339 CL |
2999 | /* |
3000 | * Conversion table for small slabs sizes / 8 to the index in the | |
3001 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
3002 | * of two cache sizes there. The size of larger slabs can be determined using | |
3003 | * fls. | |
3004 | */ | |
3005 | static s8 size_index[24] = { | |
3006 | 3, /* 8 */ | |
3007 | 4, /* 16 */ | |
3008 | 5, /* 24 */ | |
3009 | 5, /* 32 */ | |
3010 | 6, /* 40 */ | |
3011 | 6, /* 48 */ | |
3012 | 6, /* 56 */ | |
3013 | 6, /* 64 */ | |
3014 | 1, /* 72 */ | |
3015 | 1, /* 80 */ | |
3016 | 1, /* 88 */ | |
3017 | 1, /* 96 */ | |
3018 | 7, /* 104 */ | |
3019 | 7, /* 112 */ | |
3020 | 7, /* 120 */ | |
3021 | 7, /* 128 */ | |
3022 | 2, /* 136 */ | |
3023 | 2, /* 144 */ | |
3024 | 2, /* 152 */ | |
3025 | 2, /* 160 */ | |
3026 | 2, /* 168 */ | |
3027 | 2, /* 176 */ | |
3028 | 2, /* 184 */ | |
3029 | 2 /* 192 */ | |
3030 | }; | |
3031 | ||
acdfcd04 AK |
3032 | static inline int size_index_elem(size_t bytes) |
3033 | { | |
3034 | return (bytes - 1) / 8; | |
3035 | } | |
3036 | ||
81819f0f CL |
3037 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
3038 | { | |
f1b26339 | 3039 | int index; |
81819f0f | 3040 | |
f1b26339 CL |
3041 | if (size <= 192) { |
3042 | if (!size) | |
3043 | return ZERO_SIZE_PTR; | |
81819f0f | 3044 | |
acdfcd04 | 3045 | index = size_index[size_index_elem(size)]; |
aadb4bc4 | 3046 | } else |
f1b26339 | 3047 | index = fls(size - 1); |
81819f0f CL |
3048 | |
3049 | #ifdef CONFIG_ZONE_DMA | |
f1b26339 | 3050 | if (unlikely((flags & SLUB_DMA))) |
51df1142 | 3051 | return kmalloc_dma_caches[index]; |
f1b26339 | 3052 | |
81819f0f | 3053 | #endif |
51df1142 | 3054 | return kmalloc_caches[index]; |
81819f0f CL |
3055 | } |
3056 | ||
3057 | void *__kmalloc(size_t size, gfp_t flags) | |
3058 | { | |
aadb4bc4 | 3059 | struct kmem_cache *s; |
5b882be4 | 3060 | void *ret; |
81819f0f | 3061 | |
ffadd4d0 | 3062 | if (unlikely(size > SLUB_MAX_SIZE)) |
eada35ef | 3063 | return kmalloc_large(size, flags); |
aadb4bc4 CL |
3064 | |
3065 | s = get_slab(size, flags); | |
3066 | ||
3067 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3068 | return s; |
3069 | ||
2154a336 | 3070 | ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); |
5b882be4 | 3071 | |
ca2b84cb | 3072 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 EGM |
3073 | |
3074 | return ret; | |
81819f0f CL |
3075 | } |
3076 | EXPORT_SYMBOL(__kmalloc); | |
3077 | ||
5d1f57e4 | 3078 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3079 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3080 | { | |
b1eeab67 | 3081 | struct page *page; |
e4f7c0b4 | 3082 | void *ptr = NULL; |
f619cfe1 | 3083 | |
b1eeab67 VN |
3084 | flags |= __GFP_COMP | __GFP_NOTRACK; |
3085 | page = alloc_pages_node(node, flags, get_order(size)); | |
f619cfe1 | 3086 | if (page) |
e4f7c0b4 CM |
3087 | ptr = page_address(page); |
3088 | ||
3089 | kmemleak_alloc(ptr, size, 1, flags); | |
3090 | return ptr; | |
f619cfe1 CL |
3091 | } |
3092 | ||
81819f0f CL |
3093 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3094 | { | |
aadb4bc4 | 3095 | struct kmem_cache *s; |
5b882be4 | 3096 | void *ret; |
81819f0f | 3097 | |
057685cf | 3098 | if (unlikely(size > SLUB_MAX_SIZE)) { |
5b882be4 EGM |
3099 | ret = kmalloc_large_node(size, flags, node); |
3100 | ||
ca2b84cb EGM |
3101 | trace_kmalloc_node(_RET_IP_, ret, |
3102 | size, PAGE_SIZE << get_order(size), | |
3103 | flags, node); | |
5b882be4 EGM |
3104 | |
3105 | return ret; | |
3106 | } | |
aadb4bc4 CL |
3107 | |
3108 | s = get_slab(size, flags); | |
3109 | ||
3110 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3111 | return s; |
3112 | ||
5b882be4 EGM |
3113 | ret = slab_alloc(s, flags, node, _RET_IP_); |
3114 | ||
ca2b84cb | 3115 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 EGM |
3116 | |
3117 | return ret; | |
81819f0f CL |
3118 | } |
3119 | EXPORT_SYMBOL(__kmalloc_node); | |
3120 | #endif | |
3121 | ||
3122 | size_t ksize(const void *object) | |
3123 | { | |
272c1d21 | 3124 | struct page *page; |
81819f0f | 3125 | |
ef8b4520 | 3126 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3127 | return 0; |
3128 | ||
294a80a8 | 3129 | page = virt_to_head_page(object); |
294a80a8 | 3130 | |
76994412 PE |
3131 | if (unlikely(!PageSlab(page))) { |
3132 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3133 | return PAGE_SIZE << compound_order(page); |
76994412 | 3134 | } |
81819f0f | 3135 | |
b3d41885 | 3136 | return slab_ksize(page->slab); |
81819f0f | 3137 | } |
b1aabecd | 3138 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
3139 | |
3140 | void kfree(const void *x) | |
3141 | { | |
81819f0f | 3142 | struct page *page; |
5bb983b0 | 3143 | void *object = (void *)x; |
81819f0f | 3144 | |
2121db74 PE |
3145 | trace_kfree(_RET_IP_, x); |
3146 | ||
2408c550 | 3147 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3148 | return; |
3149 | ||
b49af68f | 3150 | page = virt_to_head_page(x); |
aadb4bc4 | 3151 | if (unlikely(!PageSlab(page))) { |
0937502a | 3152 | BUG_ON(!PageCompound(page)); |
e4f7c0b4 | 3153 | kmemleak_free(x); |
aadb4bc4 CL |
3154 | put_page(page); |
3155 | return; | |
3156 | } | |
ce71e27c | 3157 | slab_free(page->slab, page, object, _RET_IP_); |
81819f0f CL |
3158 | } |
3159 | EXPORT_SYMBOL(kfree); | |
3160 | ||
2086d26a | 3161 | /* |
672bba3a CL |
3162 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
3163 | * the remaining slabs by the number of items in use. The slabs with the | |
3164 | * most items in use come first. New allocations will then fill those up | |
3165 | * and thus they can be removed from the partial lists. | |
3166 | * | |
3167 | * The slabs with the least items are placed last. This results in them | |
3168 | * being allocated from last increasing the chance that the last objects | |
3169 | * are freed in them. | |
2086d26a CL |
3170 | */ |
3171 | int kmem_cache_shrink(struct kmem_cache *s) | |
3172 | { | |
3173 | int node; | |
3174 | int i; | |
3175 | struct kmem_cache_node *n; | |
3176 | struct page *page; | |
3177 | struct page *t; | |
205ab99d | 3178 | int objects = oo_objects(s->max); |
2086d26a | 3179 | struct list_head *slabs_by_inuse = |
834f3d11 | 3180 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
2086d26a CL |
3181 | unsigned long flags; |
3182 | ||
3183 | if (!slabs_by_inuse) | |
3184 | return -ENOMEM; | |
3185 | ||
3186 | flush_all(s); | |
f64dc58c | 3187 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
3188 | n = get_node(s, node); |
3189 | ||
3190 | if (!n->nr_partial) | |
3191 | continue; | |
3192 | ||
834f3d11 | 3193 | for (i = 0; i < objects; i++) |
2086d26a CL |
3194 | INIT_LIST_HEAD(slabs_by_inuse + i); |
3195 | ||
3196 | spin_lock_irqsave(&n->list_lock, flags); | |
3197 | ||
3198 | /* | |
672bba3a | 3199 | * Build lists indexed by the items in use in each slab. |
2086d26a | 3200 | * |
672bba3a CL |
3201 | * Note that concurrent frees may occur while we hold the |
3202 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3203 | */ |
3204 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
3205 | if (!page->inuse && slab_trylock(page)) { | |
3206 | /* | |
3207 | * Must hold slab lock here because slab_free | |
3208 | * may have freed the last object and be | |
3209 | * waiting to release the slab. | |
3210 | */ | |
5cc6eee8 | 3211 | remove_partial(n, page); |
2086d26a CL |
3212 | slab_unlock(page); |
3213 | discard_slab(s, page); | |
3214 | } else { | |
fcda3d89 CL |
3215 | list_move(&page->lru, |
3216 | slabs_by_inuse + page->inuse); | |
2086d26a CL |
3217 | } |
3218 | } | |
3219 | ||
2086d26a | 3220 | /* |
672bba3a CL |
3221 | * Rebuild the partial list with the slabs filled up most |
3222 | * first and the least used slabs at the end. | |
2086d26a | 3223 | */ |
834f3d11 | 3224 | for (i = objects - 1; i >= 0; i--) |
2086d26a CL |
3225 | list_splice(slabs_by_inuse + i, n->partial.prev); |
3226 | ||
2086d26a CL |
3227 | spin_unlock_irqrestore(&n->list_lock, flags); |
3228 | } | |
3229 | ||
3230 | kfree(slabs_by_inuse); | |
3231 | return 0; | |
3232 | } | |
3233 | EXPORT_SYMBOL(kmem_cache_shrink); | |
3234 | ||
92a5bbc1 | 3235 | #if defined(CONFIG_MEMORY_HOTPLUG) |
b9049e23 YG |
3236 | static int slab_mem_going_offline_callback(void *arg) |
3237 | { | |
3238 | struct kmem_cache *s; | |
3239 | ||
3240 | down_read(&slub_lock); | |
3241 | list_for_each_entry(s, &slab_caches, list) | |
3242 | kmem_cache_shrink(s); | |
3243 | up_read(&slub_lock); | |
3244 | ||
3245 | return 0; | |
3246 | } | |
3247 | ||
3248 | static void slab_mem_offline_callback(void *arg) | |
3249 | { | |
3250 | struct kmem_cache_node *n; | |
3251 | struct kmem_cache *s; | |
3252 | struct memory_notify *marg = arg; | |
3253 | int offline_node; | |
3254 | ||
3255 | offline_node = marg->status_change_nid; | |
3256 | ||
3257 | /* | |
3258 | * If the node still has available memory. we need kmem_cache_node | |
3259 | * for it yet. | |
3260 | */ | |
3261 | if (offline_node < 0) | |
3262 | return; | |
3263 | ||
3264 | down_read(&slub_lock); | |
3265 | list_for_each_entry(s, &slab_caches, list) { | |
3266 | n = get_node(s, offline_node); | |
3267 | if (n) { | |
3268 | /* | |
3269 | * if n->nr_slabs > 0, slabs still exist on the node | |
3270 | * that is going down. We were unable to free them, | |
c9404c9c | 3271 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
3272 | * callback. So, we must fail. |
3273 | */ | |
0f389ec6 | 3274 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
3275 | |
3276 | s->node[offline_node] = NULL; | |
8de66a0c | 3277 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
3278 | } |
3279 | } | |
3280 | up_read(&slub_lock); | |
3281 | } | |
3282 | ||
3283 | static int slab_mem_going_online_callback(void *arg) | |
3284 | { | |
3285 | struct kmem_cache_node *n; | |
3286 | struct kmem_cache *s; | |
3287 | struct memory_notify *marg = arg; | |
3288 | int nid = marg->status_change_nid; | |
3289 | int ret = 0; | |
3290 | ||
3291 | /* | |
3292 | * If the node's memory is already available, then kmem_cache_node is | |
3293 | * already created. Nothing to do. | |
3294 | */ | |
3295 | if (nid < 0) | |
3296 | return 0; | |
3297 | ||
3298 | /* | |
0121c619 | 3299 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
3300 | * allocate a kmem_cache_node structure in order to bring the node |
3301 | * online. | |
3302 | */ | |
3303 | down_read(&slub_lock); | |
3304 | list_for_each_entry(s, &slab_caches, list) { | |
3305 | /* | |
3306 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
3307 | * since memory is not yet available from the node that | |
3308 | * is brought up. | |
3309 | */ | |
8de66a0c | 3310 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
3311 | if (!n) { |
3312 | ret = -ENOMEM; | |
3313 | goto out; | |
3314 | } | |
5595cffc | 3315 | init_kmem_cache_node(n, s); |
b9049e23 YG |
3316 | s->node[nid] = n; |
3317 | } | |
3318 | out: | |
3319 | up_read(&slub_lock); | |
3320 | return ret; | |
3321 | } | |
3322 | ||
3323 | static int slab_memory_callback(struct notifier_block *self, | |
3324 | unsigned long action, void *arg) | |
3325 | { | |
3326 | int ret = 0; | |
3327 | ||
3328 | switch (action) { | |
3329 | case MEM_GOING_ONLINE: | |
3330 | ret = slab_mem_going_online_callback(arg); | |
3331 | break; | |
3332 | case MEM_GOING_OFFLINE: | |
3333 | ret = slab_mem_going_offline_callback(arg); | |
3334 | break; | |
3335 | case MEM_OFFLINE: | |
3336 | case MEM_CANCEL_ONLINE: | |
3337 | slab_mem_offline_callback(arg); | |
3338 | break; | |
3339 | case MEM_ONLINE: | |
3340 | case MEM_CANCEL_OFFLINE: | |
3341 | break; | |
3342 | } | |
dc19f9db KH |
3343 | if (ret) |
3344 | ret = notifier_from_errno(ret); | |
3345 | else | |
3346 | ret = NOTIFY_OK; | |
b9049e23 YG |
3347 | return ret; |
3348 | } | |
3349 | ||
3350 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
3351 | ||
81819f0f CL |
3352 | /******************************************************************** |
3353 | * Basic setup of slabs | |
3354 | *******************************************************************/ | |
3355 | ||
51df1142 CL |
3356 | /* |
3357 | * Used for early kmem_cache structures that were allocated using | |
3358 | * the page allocator | |
3359 | */ | |
3360 | ||
3361 | static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) | |
3362 | { | |
3363 | int node; | |
3364 | ||
3365 | list_add(&s->list, &slab_caches); | |
3366 | s->refcount = -1; | |
3367 | ||
3368 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
3369 | struct kmem_cache_node *n = get_node(s, node); | |
3370 | struct page *p; | |
3371 | ||
3372 | if (n) { | |
3373 | list_for_each_entry(p, &n->partial, lru) | |
3374 | p->slab = s; | |
3375 | ||
607bf324 | 3376 | #ifdef CONFIG_SLUB_DEBUG |
51df1142 CL |
3377 | list_for_each_entry(p, &n->full, lru) |
3378 | p->slab = s; | |
3379 | #endif | |
3380 | } | |
3381 | } | |
3382 | } | |
3383 | ||
81819f0f CL |
3384 | void __init kmem_cache_init(void) |
3385 | { | |
3386 | int i; | |
4b356be0 | 3387 | int caches = 0; |
51df1142 CL |
3388 | struct kmem_cache *temp_kmem_cache; |
3389 | int order; | |
51df1142 CL |
3390 | struct kmem_cache *temp_kmem_cache_node; |
3391 | unsigned long kmalloc_size; | |
3392 | ||
3393 | kmem_size = offsetof(struct kmem_cache, node) + | |
3394 | nr_node_ids * sizeof(struct kmem_cache_node *); | |
3395 | ||
3396 | /* Allocate two kmem_caches from the page allocator */ | |
3397 | kmalloc_size = ALIGN(kmem_size, cache_line_size()); | |
3398 | order = get_order(2 * kmalloc_size); | |
3399 | kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); | |
3400 | ||
81819f0f CL |
3401 | /* |
3402 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 3403 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
3404 | * kmem_cache_open for slab_state == DOWN. |
3405 | */ | |
51df1142 CL |
3406 | kmem_cache_node = (void *)kmem_cache + kmalloc_size; |
3407 | ||
3408 | kmem_cache_open(kmem_cache_node, "kmem_cache_node", | |
3409 | sizeof(struct kmem_cache_node), | |
3410 | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | |
b9049e23 | 3411 | |
0c40ba4f | 3412 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
3413 | |
3414 | /* Able to allocate the per node structures */ | |
3415 | slab_state = PARTIAL; | |
3416 | ||
51df1142 CL |
3417 | temp_kmem_cache = kmem_cache; |
3418 | kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, | |
3419 | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | |
3420 | kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | |
3421 | memcpy(kmem_cache, temp_kmem_cache, kmem_size); | |
81819f0f | 3422 | |
51df1142 CL |
3423 | /* |
3424 | * Allocate kmem_cache_node properly from the kmem_cache slab. | |
3425 | * kmem_cache_node is separately allocated so no need to | |
3426 | * update any list pointers. | |
3427 | */ | |
3428 | temp_kmem_cache_node = kmem_cache_node; | |
81819f0f | 3429 | |
51df1142 CL |
3430 | kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); |
3431 | memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); | |
3432 | ||
3433 | kmem_cache_bootstrap_fixup(kmem_cache_node); | |
3434 | ||
3435 | caches++; | |
51df1142 CL |
3436 | kmem_cache_bootstrap_fixup(kmem_cache); |
3437 | caches++; | |
3438 | /* Free temporary boot structure */ | |
3439 | free_pages((unsigned long)temp_kmem_cache, order); | |
3440 | ||
3441 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
f1b26339 CL |
3442 | |
3443 | /* | |
3444 | * Patch up the size_index table if we have strange large alignment | |
3445 | * requirements for the kmalloc array. This is only the case for | |
6446faa2 | 3446 | * MIPS it seems. The standard arches will not generate any code here. |
f1b26339 CL |
3447 | * |
3448 | * Largest permitted alignment is 256 bytes due to the way we | |
3449 | * handle the index determination for the smaller caches. | |
3450 | * | |
3451 | * Make sure that nothing crazy happens if someone starts tinkering | |
3452 | * around with ARCH_KMALLOC_MINALIGN | |
3453 | */ | |
3454 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | |
3455 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
3456 | ||
acdfcd04 AK |
3457 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
3458 | int elem = size_index_elem(i); | |
3459 | if (elem >= ARRAY_SIZE(size_index)) | |
3460 | break; | |
3461 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
3462 | } | |
f1b26339 | 3463 | |
acdfcd04 AK |
3464 | if (KMALLOC_MIN_SIZE == 64) { |
3465 | /* | |
3466 | * The 96 byte size cache is not used if the alignment | |
3467 | * is 64 byte. | |
3468 | */ | |
3469 | for (i = 64 + 8; i <= 96; i += 8) | |
3470 | size_index[size_index_elem(i)] = 7; | |
3471 | } else if (KMALLOC_MIN_SIZE == 128) { | |
41d54d3b CL |
3472 | /* |
3473 | * The 192 byte sized cache is not used if the alignment | |
3474 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
3475 | * instead. | |
3476 | */ | |
3477 | for (i = 128 + 8; i <= 192; i += 8) | |
acdfcd04 | 3478 | size_index[size_index_elem(i)] = 8; |
41d54d3b CL |
3479 | } |
3480 | ||
51df1142 CL |
3481 | /* Caches that are not of the two-to-the-power-of size */ |
3482 | if (KMALLOC_MIN_SIZE <= 32) { | |
3483 | kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); | |
3484 | caches++; | |
3485 | } | |
3486 | ||
3487 | if (KMALLOC_MIN_SIZE <= 64) { | |
3488 | kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); | |
3489 | caches++; | |
3490 | } | |
3491 | ||
3492 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | |
3493 | kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); | |
3494 | caches++; | |
3495 | } | |
3496 | ||
81819f0f CL |
3497 | slab_state = UP; |
3498 | ||
3499 | /* Provide the correct kmalloc names now that the caches are up */ | |
84c1cf62 PE |
3500 | if (KMALLOC_MIN_SIZE <= 32) { |
3501 | kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); | |
3502 | BUG_ON(!kmalloc_caches[1]->name); | |
3503 | } | |
3504 | ||
3505 | if (KMALLOC_MIN_SIZE <= 64) { | |
3506 | kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); | |
3507 | BUG_ON(!kmalloc_caches[2]->name); | |
3508 | } | |
3509 | ||
d7278bd7 CL |
3510 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
3511 | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | |
3512 | ||
3513 | BUG_ON(!s); | |
51df1142 | 3514 | kmalloc_caches[i]->name = s; |
d7278bd7 | 3515 | } |
81819f0f CL |
3516 | |
3517 | #ifdef CONFIG_SMP | |
3518 | register_cpu_notifier(&slab_notifier); | |
9dfc6e68 | 3519 | #endif |
81819f0f | 3520 | |
55136592 | 3521 | #ifdef CONFIG_ZONE_DMA |
51df1142 CL |
3522 | for (i = 0; i < SLUB_PAGE_SHIFT; i++) { |
3523 | struct kmem_cache *s = kmalloc_caches[i]; | |
55136592 | 3524 | |
51df1142 | 3525 | if (s && s->size) { |
55136592 CL |
3526 | char *name = kasprintf(GFP_NOWAIT, |
3527 | "dma-kmalloc-%d", s->objsize); | |
3528 | ||
3529 | BUG_ON(!name); | |
51df1142 CL |
3530 | kmalloc_dma_caches[i] = create_kmalloc_cache(name, |
3531 | s->objsize, SLAB_CACHE_DMA); | |
55136592 CL |
3532 | } |
3533 | } | |
3534 | #endif | |
3adbefee IM |
3535 | printk(KERN_INFO |
3536 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
3537 | " CPUs=%d, Nodes=%d\n", |
3538 | caches, cache_line_size(), | |
81819f0f CL |
3539 | slub_min_order, slub_max_order, slub_min_objects, |
3540 | nr_cpu_ids, nr_node_ids); | |
3541 | } | |
3542 | ||
7e85ee0c PE |
3543 | void __init kmem_cache_init_late(void) |
3544 | { | |
7e85ee0c PE |
3545 | } |
3546 | ||
81819f0f CL |
3547 | /* |
3548 | * Find a mergeable slab cache | |
3549 | */ | |
3550 | static int slab_unmergeable(struct kmem_cache *s) | |
3551 | { | |
3552 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
3553 | return 1; | |
3554 | ||
c59def9f | 3555 | if (s->ctor) |
81819f0f CL |
3556 | return 1; |
3557 | ||
8ffa6875 CL |
3558 | /* |
3559 | * We may have set a slab to be unmergeable during bootstrap. | |
3560 | */ | |
3561 | if (s->refcount < 0) | |
3562 | return 1; | |
3563 | ||
81819f0f CL |
3564 | return 0; |
3565 | } | |
3566 | ||
3567 | static struct kmem_cache *find_mergeable(size_t size, | |
ba0268a8 | 3568 | size_t align, unsigned long flags, const char *name, |
51cc5068 | 3569 | void (*ctor)(void *)) |
81819f0f | 3570 | { |
5b95a4ac | 3571 | struct kmem_cache *s; |
81819f0f CL |
3572 | |
3573 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
3574 | return NULL; | |
3575 | ||
c59def9f | 3576 | if (ctor) |
81819f0f CL |
3577 | return NULL; |
3578 | ||
3579 | size = ALIGN(size, sizeof(void *)); | |
3580 | align = calculate_alignment(flags, align, size); | |
3581 | size = ALIGN(size, align); | |
ba0268a8 | 3582 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 3583 | |
5b95a4ac | 3584 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
3585 | if (slab_unmergeable(s)) |
3586 | continue; | |
3587 | ||
3588 | if (size > s->size) | |
3589 | continue; | |
3590 | ||
ba0268a8 | 3591 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
3592 | continue; |
3593 | /* | |
3594 | * Check if alignment is compatible. | |
3595 | * Courtesy of Adrian Drzewiecki | |
3596 | */ | |
06428780 | 3597 | if ((s->size & ~(align - 1)) != s->size) |
81819f0f CL |
3598 | continue; |
3599 | ||
3600 | if (s->size - size >= sizeof(void *)) | |
3601 | continue; | |
3602 | ||
3603 | return s; | |
3604 | } | |
3605 | return NULL; | |
3606 | } | |
3607 | ||
3608 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
51cc5068 | 3609 | size_t align, unsigned long flags, void (*ctor)(void *)) |
81819f0f CL |
3610 | { |
3611 | struct kmem_cache *s; | |
84c1cf62 | 3612 | char *n; |
81819f0f | 3613 | |
fe1ff49d BH |
3614 | if (WARN_ON(!name)) |
3615 | return NULL; | |
3616 | ||
81819f0f | 3617 | down_write(&slub_lock); |
ba0268a8 | 3618 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
3619 | if (s) { |
3620 | s->refcount++; | |
3621 | /* | |
3622 | * Adjust the object sizes so that we clear | |
3623 | * the complete object on kzalloc. | |
3624 | */ | |
3625 | s->objsize = max(s->objsize, (int)size); | |
3626 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | |
6446faa2 | 3627 | |
7b8f3b66 | 3628 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 3629 | s->refcount--; |
81819f0f | 3630 | goto err; |
7b8f3b66 | 3631 | } |
2bce6485 | 3632 | up_write(&slub_lock); |
a0e1d1be CL |
3633 | return s; |
3634 | } | |
6446faa2 | 3635 | |
84c1cf62 PE |
3636 | n = kstrdup(name, GFP_KERNEL); |
3637 | if (!n) | |
3638 | goto err; | |
3639 | ||
a0e1d1be CL |
3640 | s = kmalloc(kmem_size, GFP_KERNEL); |
3641 | if (s) { | |
84c1cf62 | 3642 | if (kmem_cache_open(s, n, |
c59def9f | 3643 | size, align, flags, ctor)) { |
81819f0f | 3644 | list_add(&s->list, &slab_caches); |
7b8f3b66 | 3645 | if (sysfs_slab_add(s)) { |
7b8f3b66 | 3646 | list_del(&s->list); |
84c1cf62 | 3647 | kfree(n); |
7b8f3b66 | 3648 | kfree(s); |
a0e1d1be | 3649 | goto err; |
7b8f3b66 | 3650 | } |
2bce6485 | 3651 | up_write(&slub_lock); |
a0e1d1be CL |
3652 | return s; |
3653 | } | |
84c1cf62 | 3654 | kfree(n); |
a0e1d1be | 3655 | kfree(s); |
81819f0f | 3656 | } |
68cee4f1 | 3657 | err: |
81819f0f | 3658 | up_write(&slub_lock); |
81819f0f | 3659 | |
81819f0f CL |
3660 | if (flags & SLAB_PANIC) |
3661 | panic("Cannot create slabcache %s\n", name); | |
3662 | else | |
3663 | s = NULL; | |
3664 | return s; | |
3665 | } | |
3666 | EXPORT_SYMBOL(kmem_cache_create); | |
3667 | ||
81819f0f | 3668 | #ifdef CONFIG_SMP |
81819f0f | 3669 | /* |
672bba3a CL |
3670 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3671 | * necessary. | |
81819f0f CL |
3672 | */ |
3673 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
3674 | unsigned long action, void *hcpu) | |
3675 | { | |
3676 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3677 | struct kmem_cache *s; |
3678 | unsigned long flags; | |
81819f0f CL |
3679 | |
3680 | switch (action) { | |
3681 | case CPU_UP_CANCELED: | |
8bb78442 | 3682 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3683 | case CPU_DEAD: |
8bb78442 | 3684 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
3685 | down_read(&slub_lock); |
3686 | list_for_each_entry(s, &slab_caches, list) { | |
3687 | local_irq_save(flags); | |
3688 | __flush_cpu_slab(s, cpu); | |
3689 | local_irq_restore(flags); | |
3690 | } | |
3691 | up_read(&slub_lock); | |
81819f0f CL |
3692 | break; |
3693 | default: | |
3694 | break; | |
3695 | } | |
3696 | return NOTIFY_OK; | |
3697 | } | |
3698 | ||
06428780 | 3699 | static struct notifier_block __cpuinitdata slab_notifier = { |
3adbefee | 3700 | .notifier_call = slab_cpuup_callback |
06428780 | 3701 | }; |
81819f0f CL |
3702 | |
3703 | #endif | |
3704 | ||
ce71e27c | 3705 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 3706 | { |
aadb4bc4 | 3707 | struct kmem_cache *s; |
94b528d0 | 3708 | void *ret; |
aadb4bc4 | 3709 | |
ffadd4d0 | 3710 | if (unlikely(size > SLUB_MAX_SIZE)) |
eada35ef PE |
3711 | return kmalloc_large(size, gfpflags); |
3712 | ||
aadb4bc4 | 3713 | s = get_slab(size, gfpflags); |
81819f0f | 3714 | |
2408c550 | 3715 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3716 | return s; |
81819f0f | 3717 | |
2154a336 | 3718 | ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); |
94b528d0 | 3719 | |
25985edc | 3720 | /* Honor the call site pointer we received. */ |
ca2b84cb | 3721 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
3722 | |
3723 | return ret; | |
81819f0f CL |
3724 | } |
3725 | ||
5d1f57e4 | 3726 | #ifdef CONFIG_NUMA |
81819f0f | 3727 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 3728 | int node, unsigned long caller) |
81819f0f | 3729 | { |
aadb4bc4 | 3730 | struct kmem_cache *s; |
94b528d0 | 3731 | void *ret; |
aadb4bc4 | 3732 | |
d3e14aa3 XF |
3733 | if (unlikely(size > SLUB_MAX_SIZE)) { |
3734 | ret = kmalloc_large_node(size, gfpflags, node); | |
3735 | ||
3736 | trace_kmalloc_node(caller, ret, | |
3737 | size, PAGE_SIZE << get_order(size), | |
3738 | gfpflags, node); | |
3739 | ||
3740 | return ret; | |
3741 | } | |
eada35ef | 3742 | |
aadb4bc4 | 3743 | s = get_slab(size, gfpflags); |
81819f0f | 3744 | |
2408c550 | 3745 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3746 | return s; |
81819f0f | 3747 | |
94b528d0 EGM |
3748 | ret = slab_alloc(s, gfpflags, node, caller); |
3749 | ||
25985edc | 3750 | /* Honor the call site pointer we received. */ |
ca2b84cb | 3751 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
3752 | |
3753 | return ret; | |
81819f0f | 3754 | } |
5d1f57e4 | 3755 | #endif |
81819f0f | 3756 | |
ab4d5ed5 | 3757 | #ifdef CONFIG_SYSFS |
205ab99d CL |
3758 | static int count_inuse(struct page *page) |
3759 | { | |
3760 | return page->inuse; | |
3761 | } | |
3762 | ||
3763 | static int count_total(struct page *page) | |
3764 | { | |
3765 | return page->objects; | |
3766 | } | |
ab4d5ed5 | 3767 | #endif |
205ab99d | 3768 | |
ab4d5ed5 | 3769 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
3770 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3771 | unsigned long *map) | |
53e15af0 CL |
3772 | { |
3773 | void *p; | |
a973e9dd | 3774 | void *addr = page_address(page); |
53e15af0 CL |
3775 | |
3776 | if (!check_slab(s, page) || | |
3777 | !on_freelist(s, page, NULL)) | |
3778 | return 0; | |
3779 | ||
3780 | /* Now we know that a valid freelist exists */ | |
39b26464 | 3781 | bitmap_zero(map, page->objects); |
53e15af0 | 3782 | |
5f80b13a CL |
3783 | get_map(s, page, map); |
3784 | for_each_object(p, s, addr, page->objects) { | |
3785 | if (test_bit(slab_index(p, s, addr), map)) | |
3786 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
3787 | return 0; | |
53e15af0 CL |
3788 | } |
3789 | ||
224a88be | 3790 | for_each_object(p, s, addr, page->objects) |
7656c72b | 3791 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 3792 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
3793 | return 0; |
3794 | return 1; | |
3795 | } | |
3796 | ||
434e245d CL |
3797 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3798 | unsigned long *map) | |
53e15af0 CL |
3799 | { |
3800 | if (slab_trylock(page)) { | |
434e245d | 3801 | validate_slab(s, page, map); |
53e15af0 CL |
3802 | slab_unlock(page); |
3803 | } else | |
3804 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
3805 | s->name, page); | |
53e15af0 CL |
3806 | } |
3807 | ||
434e245d CL |
3808 | static int validate_slab_node(struct kmem_cache *s, |
3809 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3810 | { |
3811 | unsigned long count = 0; | |
3812 | struct page *page; | |
3813 | unsigned long flags; | |
3814 | ||
3815 | spin_lock_irqsave(&n->list_lock, flags); | |
3816 | ||
3817 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3818 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3819 | count++; |
3820 | } | |
3821 | if (count != n->nr_partial) | |
3822 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3823 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3824 | ||
3825 | if (!(s->flags & SLAB_STORE_USER)) | |
3826 | goto out; | |
3827 | ||
3828 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3829 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3830 | count++; |
3831 | } | |
3832 | if (count != atomic_long_read(&n->nr_slabs)) | |
3833 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3834 | "counter=%ld\n", s->name, count, | |
3835 | atomic_long_read(&n->nr_slabs)); | |
3836 | ||
3837 | out: | |
3838 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3839 | return count; | |
3840 | } | |
3841 | ||
434e245d | 3842 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3843 | { |
3844 | int node; | |
3845 | unsigned long count = 0; | |
205ab99d | 3846 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d CL |
3847 | sizeof(unsigned long), GFP_KERNEL); |
3848 | ||
3849 | if (!map) | |
3850 | return -ENOMEM; | |
53e15af0 CL |
3851 | |
3852 | flush_all(s); | |
f64dc58c | 3853 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3854 | struct kmem_cache_node *n = get_node(s, node); |
3855 | ||
434e245d | 3856 | count += validate_slab_node(s, n, map); |
53e15af0 | 3857 | } |
434e245d | 3858 | kfree(map); |
53e15af0 CL |
3859 | return count; |
3860 | } | |
88a420e4 | 3861 | /* |
672bba3a | 3862 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3863 | * and freed. |
3864 | */ | |
3865 | ||
3866 | struct location { | |
3867 | unsigned long count; | |
ce71e27c | 3868 | unsigned long addr; |
45edfa58 CL |
3869 | long long sum_time; |
3870 | long min_time; | |
3871 | long max_time; | |
3872 | long min_pid; | |
3873 | long max_pid; | |
174596a0 | 3874 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 3875 | nodemask_t nodes; |
88a420e4 CL |
3876 | }; |
3877 | ||
3878 | struct loc_track { | |
3879 | unsigned long max; | |
3880 | unsigned long count; | |
3881 | struct location *loc; | |
3882 | }; | |
3883 | ||
3884 | static void free_loc_track(struct loc_track *t) | |
3885 | { | |
3886 | if (t->max) | |
3887 | free_pages((unsigned long)t->loc, | |
3888 | get_order(sizeof(struct location) * t->max)); | |
3889 | } | |
3890 | ||
68dff6a9 | 3891 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3892 | { |
3893 | struct location *l; | |
3894 | int order; | |
3895 | ||
88a420e4 CL |
3896 | order = get_order(sizeof(struct location) * max); |
3897 | ||
68dff6a9 | 3898 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3899 | if (!l) |
3900 | return 0; | |
3901 | ||
3902 | if (t->count) { | |
3903 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
3904 | free_loc_track(t); | |
3905 | } | |
3906 | t->max = max; | |
3907 | t->loc = l; | |
3908 | return 1; | |
3909 | } | |
3910 | ||
3911 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 3912 | const struct track *track) |
88a420e4 CL |
3913 | { |
3914 | long start, end, pos; | |
3915 | struct location *l; | |
ce71e27c | 3916 | unsigned long caddr; |
45edfa58 | 3917 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
3918 | |
3919 | start = -1; | |
3920 | end = t->count; | |
3921 | ||
3922 | for ( ; ; ) { | |
3923 | pos = start + (end - start + 1) / 2; | |
3924 | ||
3925 | /* | |
3926 | * There is nothing at "end". If we end up there | |
3927 | * we need to add something to before end. | |
3928 | */ | |
3929 | if (pos == end) | |
3930 | break; | |
3931 | ||
3932 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
3933 | if (track->addr == caddr) { |
3934 | ||
3935 | l = &t->loc[pos]; | |
3936 | l->count++; | |
3937 | if (track->when) { | |
3938 | l->sum_time += age; | |
3939 | if (age < l->min_time) | |
3940 | l->min_time = age; | |
3941 | if (age > l->max_time) | |
3942 | l->max_time = age; | |
3943 | ||
3944 | if (track->pid < l->min_pid) | |
3945 | l->min_pid = track->pid; | |
3946 | if (track->pid > l->max_pid) | |
3947 | l->max_pid = track->pid; | |
3948 | ||
174596a0 RR |
3949 | cpumask_set_cpu(track->cpu, |
3950 | to_cpumask(l->cpus)); | |
45edfa58 CL |
3951 | } |
3952 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3953 | return 1; |
3954 | } | |
3955 | ||
45edfa58 | 3956 | if (track->addr < caddr) |
88a420e4 CL |
3957 | end = pos; |
3958 | else | |
3959 | start = pos; | |
3960 | } | |
3961 | ||
3962 | /* | |
672bba3a | 3963 | * Not found. Insert new tracking element. |
88a420e4 | 3964 | */ |
68dff6a9 | 3965 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
3966 | return 0; |
3967 | ||
3968 | l = t->loc + pos; | |
3969 | if (pos < t->count) | |
3970 | memmove(l + 1, l, | |
3971 | (t->count - pos) * sizeof(struct location)); | |
3972 | t->count++; | |
3973 | l->count = 1; | |
45edfa58 CL |
3974 | l->addr = track->addr; |
3975 | l->sum_time = age; | |
3976 | l->min_time = age; | |
3977 | l->max_time = age; | |
3978 | l->min_pid = track->pid; | |
3979 | l->max_pid = track->pid; | |
174596a0 RR |
3980 | cpumask_clear(to_cpumask(l->cpus)); |
3981 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
3982 | nodes_clear(l->nodes); |
3983 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3984 | return 1; |
3985 | } | |
3986 | ||
3987 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 3988 | struct page *page, enum track_item alloc, |
a5dd5c11 | 3989 | unsigned long *map) |
88a420e4 | 3990 | { |
a973e9dd | 3991 | void *addr = page_address(page); |
88a420e4 CL |
3992 | void *p; |
3993 | ||
39b26464 | 3994 | bitmap_zero(map, page->objects); |
5f80b13a | 3995 | get_map(s, page, map); |
88a420e4 | 3996 | |
224a88be | 3997 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
3998 | if (!test_bit(slab_index(p, s, addr), map)) |
3999 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4000 | } |
4001 | ||
4002 | static int list_locations(struct kmem_cache *s, char *buf, | |
4003 | enum track_item alloc) | |
4004 | { | |
e374d483 | 4005 | int len = 0; |
88a420e4 | 4006 | unsigned long i; |
68dff6a9 | 4007 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4008 | int node; |
bbd7d57b ED |
4009 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4010 | sizeof(unsigned long), GFP_KERNEL); | |
88a420e4 | 4011 | |
bbd7d57b ED |
4012 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4013 | GFP_TEMPORARY)) { | |
4014 | kfree(map); | |
68dff6a9 | 4015 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4016 | } |
88a420e4 CL |
4017 | /* Push back cpu slabs */ |
4018 | flush_all(s); | |
4019 | ||
f64dc58c | 4020 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
4021 | struct kmem_cache_node *n = get_node(s, node); |
4022 | unsigned long flags; | |
4023 | struct page *page; | |
4024 | ||
9e86943b | 4025 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4026 | continue; |
4027 | ||
4028 | spin_lock_irqsave(&n->list_lock, flags); | |
4029 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4030 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4031 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4032 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4033 | spin_unlock_irqrestore(&n->list_lock, flags); |
4034 | } | |
4035 | ||
4036 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4037 | struct location *l = &t.loc[i]; |
88a420e4 | 4038 | |
9c246247 | 4039 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4040 | break; |
e374d483 | 4041 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4042 | |
4043 | if (l->addr) | |
62c70bce | 4044 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4045 | else |
e374d483 | 4046 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4047 | |
4048 | if (l->sum_time != l->min_time) { | |
e374d483 | 4049 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4050 | l->min_time, |
4051 | (long)div_u64(l->sum_time, l->count), | |
4052 | l->max_time); | |
45edfa58 | 4053 | } else |
e374d483 | 4054 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4055 | l->min_time); |
4056 | ||
4057 | if (l->min_pid != l->max_pid) | |
e374d483 | 4058 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4059 | l->min_pid, l->max_pid); |
4060 | else | |
e374d483 | 4061 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4062 | l->min_pid); |
4063 | ||
174596a0 RR |
4064 | if (num_online_cpus() > 1 && |
4065 | !cpumask_empty(to_cpumask(l->cpus)) && | |
e374d483 HH |
4066 | len < PAGE_SIZE - 60) { |
4067 | len += sprintf(buf + len, " cpus="); | |
4068 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
174596a0 | 4069 | to_cpumask(l->cpus)); |
45edfa58 CL |
4070 | } |
4071 | ||
62bc62a8 | 4072 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
e374d483 HH |
4073 | len < PAGE_SIZE - 60) { |
4074 | len += sprintf(buf + len, " nodes="); | |
4075 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
4076 | l->nodes); |
4077 | } | |
4078 | ||
e374d483 | 4079 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4080 | } |
4081 | ||
4082 | free_loc_track(&t); | |
bbd7d57b | 4083 | kfree(map); |
88a420e4 | 4084 | if (!t.count) |
e374d483 HH |
4085 | len += sprintf(buf, "No data\n"); |
4086 | return len; | |
88a420e4 | 4087 | } |
ab4d5ed5 | 4088 | #endif |
88a420e4 | 4089 | |
a5a84755 CL |
4090 | #ifdef SLUB_RESILIENCY_TEST |
4091 | static void resiliency_test(void) | |
4092 | { | |
4093 | u8 *p; | |
4094 | ||
4095 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); | |
4096 | ||
4097 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
4098 | printk(KERN_ERR "-----------------------\n"); | |
4099 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
4100 | ||
4101 | p = kzalloc(16, GFP_KERNEL); | |
4102 | p[16] = 0x12; | |
4103 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
4104 | " 0x12->0x%p\n\n", p + 16); | |
4105 | ||
4106 | validate_slab_cache(kmalloc_caches[4]); | |
4107 | ||
4108 | /* Hmmm... The next two are dangerous */ | |
4109 | p = kzalloc(32, GFP_KERNEL); | |
4110 | p[32 + sizeof(void *)] = 0x34; | |
4111 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
4112 | " 0x34 -> -0x%p\n", p); | |
4113 | printk(KERN_ERR | |
4114 | "If allocated object is overwritten then not detectable\n\n"); | |
4115 | ||
4116 | validate_slab_cache(kmalloc_caches[5]); | |
4117 | p = kzalloc(64, GFP_KERNEL); | |
4118 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4119 | *p = 0x56; | |
4120 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
4121 | p); | |
4122 | printk(KERN_ERR | |
4123 | "If allocated object is overwritten then not detectable\n\n"); | |
4124 | validate_slab_cache(kmalloc_caches[6]); | |
4125 | ||
4126 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
4127 | p = kzalloc(128, GFP_KERNEL); | |
4128 | kfree(p); | |
4129 | *p = 0x78; | |
4130 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
4131 | validate_slab_cache(kmalloc_caches[7]); | |
4132 | ||
4133 | p = kzalloc(256, GFP_KERNEL); | |
4134 | kfree(p); | |
4135 | p[50] = 0x9a; | |
4136 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | |
4137 | p); | |
4138 | validate_slab_cache(kmalloc_caches[8]); | |
4139 | ||
4140 | p = kzalloc(512, GFP_KERNEL); | |
4141 | kfree(p); | |
4142 | p[512] = 0xab; | |
4143 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
4144 | validate_slab_cache(kmalloc_caches[9]); | |
4145 | } | |
4146 | #else | |
4147 | #ifdef CONFIG_SYSFS | |
4148 | static void resiliency_test(void) {}; | |
4149 | #endif | |
4150 | #endif | |
4151 | ||
ab4d5ed5 | 4152 | #ifdef CONFIG_SYSFS |
81819f0f | 4153 | enum slab_stat_type { |
205ab99d CL |
4154 | SL_ALL, /* All slabs */ |
4155 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4156 | SL_CPU, /* Only slabs used for cpu caches */ | |
4157 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4158 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4159 | }; |
4160 | ||
205ab99d | 4161 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4162 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4163 | #define SO_CPU (1 << SL_CPU) | |
4164 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4165 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4166 | |
62e5c4b4 CG |
4167 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4168 | char *buf, unsigned long flags) | |
81819f0f CL |
4169 | { |
4170 | unsigned long total = 0; | |
81819f0f CL |
4171 | int node; |
4172 | int x; | |
4173 | unsigned long *nodes; | |
4174 | unsigned long *per_cpu; | |
4175 | ||
4176 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
62e5c4b4 CG |
4177 | if (!nodes) |
4178 | return -ENOMEM; | |
81819f0f CL |
4179 | per_cpu = nodes + nr_node_ids; |
4180 | ||
205ab99d CL |
4181 | if (flags & SO_CPU) { |
4182 | int cpu; | |
81819f0f | 4183 | |
205ab99d | 4184 | for_each_possible_cpu(cpu) { |
9dfc6e68 | 4185 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
dfb4f096 | 4186 | |
205ab99d CL |
4187 | if (!c || c->node < 0) |
4188 | continue; | |
4189 | ||
4190 | if (c->page) { | |
4191 | if (flags & SO_TOTAL) | |
4192 | x = c->page->objects; | |
4193 | else if (flags & SO_OBJECTS) | |
4194 | x = c->page->inuse; | |
81819f0f CL |
4195 | else |
4196 | x = 1; | |
205ab99d | 4197 | |
81819f0f | 4198 | total += x; |
205ab99d | 4199 | nodes[c->node] += x; |
81819f0f | 4200 | } |
205ab99d | 4201 | per_cpu[c->node]++; |
81819f0f CL |
4202 | } |
4203 | } | |
4204 | ||
04d94879 | 4205 | lock_memory_hotplug(); |
ab4d5ed5 | 4206 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d CL |
4207 | if (flags & SO_ALL) { |
4208 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
4209 | struct kmem_cache_node *n = get_node(s, node); | |
4210 | ||
4211 | if (flags & SO_TOTAL) | |
4212 | x = atomic_long_read(&n->total_objects); | |
4213 | else if (flags & SO_OBJECTS) | |
4214 | x = atomic_long_read(&n->total_objects) - | |
4215 | count_partial(n, count_free); | |
81819f0f | 4216 | |
81819f0f | 4217 | else |
205ab99d | 4218 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4219 | total += x; |
4220 | nodes[node] += x; | |
4221 | } | |
4222 | ||
ab4d5ed5 CL |
4223 | } else |
4224 | #endif | |
4225 | if (flags & SO_PARTIAL) { | |
205ab99d CL |
4226 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4227 | struct kmem_cache_node *n = get_node(s, node); | |
81819f0f | 4228 | |
205ab99d CL |
4229 | if (flags & SO_TOTAL) |
4230 | x = count_partial(n, count_total); | |
4231 | else if (flags & SO_OBJECTS) | |
4232 | x = count_partial(n, count_inuse); | |
81819f0f | 4233 | else |
205ab99d | 4234 | x = n->nr_partial; |
81819f0f CL |
4235 | total += x; |
4236 | nodes[node] += x; | |
4237 | } | |
4238 | } | |
81819f0f CL |
4239 | x = sprintf(buf, "%lu", total); |
4240 | #ifdef CONFIG_NUMA | |
f64dc58c | 4241 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
4242 | if (nodes[node]) |
4243 | x += sprintf(buf + x, " N%d=%lu", | |
4244 | node, nodes[node]); | |
4245 | #endif | |
04d94879 | 4246 | unlock_memory_hotplug(); |
81819f0f CL |
4247 | kfree(nodes); |
4248 | return x + sprintf(buf + x, "\n"); | |
4249 | } | |
4250 | ||
ab4d5ed5 | 4251 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4252 | static int any_slab_objects(struct kmem_cache *s) |
4253 | { | |
4254 | int node; | |
81819f0f | 4255 | |
dfb4f096 | 4256 | for_each_online_node(node) { |
81819f0f CL |
4257 | struct kmem_cache_node *n = get_node(s, node); |
4258 | ||
dfb4f096 CL |
4259 | if (!n) |
4260 | continue; | |
4261 | ||
4ea33e2d | 4262 | if (atomic_long_read(&n->total_objects)) |
81819f0f CL |
4263 | return 1; |
4264 | } | |
4265 | return 0; | |
4266 | } | |
ab4d5ed5 | 4267 | #endif |
81819f0f CL |
4268 | |
4269 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
4270 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
4271 | ||
4272 | struct slab_attribute { | |
4273 | struct attribute attr; | |
4274 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4275 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4276 | }; | |
4277 | ||
4278 | #define SLAB_ATTR_RO(_name) \ | |
4279 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
4280 | ||
4281 | #define SLAB_ATTR(_name) \ | |
4282 | static struct slab_attribute _name##_attr = \ | |
4283 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
4284 | ||
81819f0f CL |
4285 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4286 | { | |
4287 | return sprintf(buf, "%d\n", s->size); | |
4288 | } | |
4289 | SLAB_ATTR_RO(slab_size); | |
4290 | ||
4291 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4292 | { | |
4293 | return sprintf(buf, "%d\n", s->align); | |
4294 | } | |
4295 | SLAB_ATTR_RO(align); | |
4296 | ||
4297 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4298 | { | |
4299 | return sprintf(buf, "%d\n", s->objsize); | |
4300 | } | |
4301 | SLAB_ATTR_RO(object_size); | |
4302 | ||
4303 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4304 | { | |
834f3d11 | 4305 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
4306 | } |
4307 | SLAB_ATTR_RO(objs_per_slab); | |
4308 | ||
06b285dc CL |
4309 | static ssize_t order_store(struct kmem_cache *s, |
4310 | const char *buf, size_t length) | |
4311 | { | |
0121c619 CL |
4312 | unsigned long order; |
4313 | int err; | |
4314 | ||
4315 | err = strict_strtoul(buf, 10, &order); | |
4316 | if (err) | |
4317 | return err; | |
06b285dc CL |
4318 | |
4319 | if (order > slub_max_order || order < slub_min_order) | |
4320 | return -EINVAL; | |
4321 | ||
4322 | calculate_sizes(s, order); | |
4323 | return length; | |
4324 | } | |
4325 | ||
81819f0f CL |
4326 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4327 | { | |
834f3d11 | 4328 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 4329 | } |
06b285dc | 4330 | SLAB_ATTR(order); |
81819f0f | 4331 | |
73d342b1 DR |
4332 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4333 | { | |
4334 | return sprintf(buf, "%lu\n", s->min_partial); | |
4335 | } | |
4336 | ||
4337 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4338 | size_t length) | |
4339 | { | |
4340 | unsigned long min; | |
4341 | int err; | |
4342 | ||
4343 | err = strict_strtoul(buf, 10, &min); | |
4344 | if (err) | |
4345 | return err; | |
4346 | ||
c0bdb232 | 4347 | set_min_partial(s, min); |
73d342b1 DR |
4348 | return length; |
4349 | } | |
4350 | SLAB_ATTR(min_partial); | |
4351 | ||
81819f0f CL |
4352 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4353 | { | |
62c70bce JP |
4354 | if (!s->ctor) |
4355 | return 0; | |
4356 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4357 | } |
4358 | SLAB_ATTR_RO(ctor); | |
4359 | ||
81819f0f CL |
4360 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4361 | { | |
4362 | return sprintf(buf, "%d\n", s->refcount - 1); | |
4363 | } | |
4364 | SLAB_ATTR_RO(aliases); | |
4365 | ||
81819f0f CL |
4366 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4367 | { | |
d9acf4b7 | 4368 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
4369 | } |
4370 | SLAB_ATTR_RO(partial); | |
4371 | ||
4372 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
4373 | { | |
d9acf4b7 | 4374 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
4375 | } |
4376 | SLAB_ATTR_RO(cpu_slabs); | |
4377 | ||
4378 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
4379 | { | |
205ab99d | 4380 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
4381 | } |
4382 | SLAB_ATTR_RO(objects); | |
4383 | ||
205ab99d CL |
4384 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
4385 | { | |
4386 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
4387 | } | |
4388 | SLAB_ATTR_RO(objects_partial); | |
4389 | ||
a5a84755 CL |
4390 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4391 | { | |
4392 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
4393 | } | |
4394 | ||
4395 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
4396 | const char *buf, size_t length) | |
4397 | { | |
4398 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
4399 | if (buf[0] == '1') | |
4400 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
4401 | return length; | |
4402 | } | |
4403 | SLAB_ATTR(reclaim_account); | |
4404 | ||
4405 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
4406 | { | |
4407 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
4408 | } | |
4409 | SLAB_ATTR_RO(hwcache_align); | |
4410 | ||
4411 | #ifdef CONFIG_ZONE_DMA | |
4412 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
4413 | { | |
4414 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
4415 | } | |
4416 | SLAB_ATTR_RO(cache_dma); | |
4417 | #endif | |
4418 | ||
4419 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
4420 | { | |
4421 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
4422 | } | |
4423 | SLAB_ATTR_RO(destroy_by_rcu); | |
4424 | ||
ab9a0f19 LJ |
4425 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
4426 | { | |
4427 | return sprintf(buf, "%d\n", s->reserved); | |
4428 | } | |
4429 | SLAB_ATTR_RO(reserved); | |
4430 | ||
ab4d5ed5 | 4431 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
4432 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
4433 | { | |
4434 | return show_slab_objects(s, buf, SO_ALL); | |
4435 | } | |
4436 | SLAB_ATTR_RO(slabs); | |
4437 | ||
205ab99d CL |
4438 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
4439 | { | |
4440 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
4441 | } | |
4442 | SLAB_ATTR_RO(total_objects); | |
4443 | ||
81819f0f CL |
4444 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
4445 | { | |
4446 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
4447 | } | |
4448 | ||
4449 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
4450 | const char *buf, size_t length) | |
4451 | { | |
4452 | s->flags &= ~SLAB_DEBUG_FREE; | |
b789ef51 CL |
4453 | if (buf[0] == '1') { |
4454 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4455 | s->flags |= SLAB_DEBUG_FREE; |
b789ef51 | 4456 | } |
81819f0f CL |
4457 | return length; |
4458 | } | |
4459 | SLAB_ATTR(sanity_checks); | |
4460 | ||
4461 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
4462 | { | |
4463 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
4464 | } | |
4465 | ||
4466 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
4467 | size_t length) | |
4468 | { | |
4469 | s->flags &= ~SLAB_TRACE; | |
b789ef51 CL |
4470 | if (buf[0] == '1') { |
4471 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4472 | s->flags |= SLAB_TRACE; |
b789ef51 | 4473 | } |
81819f0f CL |
4474 | return length; |
4475 | } | |
4476 | SLAB_ATTR(trace); | |
4477 | ||
81819f0f CL |
4478 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
4479 | { | |
4480 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
4481 | } | |
4482 | ||
4483 | static ssize_t red_zone_store(struct kmem_cache *s, | |
4484 | const char *buf, size_t length) | |
4485 | { | |
4486 | if (any_slab_objects(s)) | |
4487 | return -EBUSY; | |
4488 | ||
4489 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 CL |
4490 | if (buf[0] == '1') { |
4491 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4492 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 4493 | } |
06b285dc | 4494 | calculate_sizes(s, -1); |
81819f0f CL |
4495 | return length; |
4496 | } | |
4497 | SLAB_ATTR(red_zone); | |
4498 | ||
4499 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
4500 | { | |
4501 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
4502 | } | |
4503 | ||
4504 | static ssize_t poison_store(struct kmem_cache *s, | |
4505 | const char *buf, size_t length) | |
4506 | { | |
4507 | if (any_slab_objects(s)) | |
4508 | return -EBUSY; | |
4509 | ||
4510 | s->flags &= ~SLAB_POISON; | |
b789ef51 CL |
4511 | if (buf[0] == '1') { |
4512 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4513 | s->flags |= SLAB_POISON; |
b789ef51 | 4514 | } |
06b285dc | 4515 | calculate_sizes(s, -1); |
81819f0f CL |
4516 | return length; |
4517 | } | |
4518 | SLAB_ATTR(poison); | |
4519 | ||
4520 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
4521 | { | |
4522 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
4523 | } | |
4524 | ||
4525 | static ssize_t store_user_store(struct kmem_cache *s, | |
4526 | const char *buf, size_t length) | |
4527 | { | |
4528 | if (any_slab_objects(s)) | |
4529 | return -EBUSY; | |
4530 | ||
4531 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
4532 | if (buf[0] == '1') { |
4533 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4534 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 4535 | } |
06b285dc | 4536 | calculate_sizes(s, -1); |
81819f0f CL |
4537 | return length; |
4538 | } | |
4539 | SLAB_ATTR(store_user); | |
4540 | ||
53e15af0 CL |
4541 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4542 | { | |
4543 | return 0; | |
4544 | } | |
4545 | ||
4546 | static ssize_t validate_store(struct kmem_cache *s, | |
4547 | const char *buf, size_t length) | |
4548 | { | |
434e245d CL |
4549 | int ret = -EINVAL; |
4550 | ||
4551 | if (buf[0] == '1') { | |
4552 | ret = validate_slab_cache(s); | |
4553 | if (ret >= 0) | |
4554 | ret = length; | |
4555 | } | |
4556 | return ret; | |
53e15af0 CL |
4557 | } |
4558 | SLAB_ATTR(validate); | |
a5a84755 CL |
4559 | |
4560 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
4561 | { | |
4562 | if (!(s->flags & SLAB_STORE_USER)) | |
4563 | return -ENOSYS; | |
4564 | return list_locations(s, buf, TRACK_ALLOC); | |
4565 | } | |
4566 | SLAB_ATTR_RO(alloc_calls); | |
4567 | ||
4568 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
4569 | { | |
4570 | if (!(s->flags & SLAB_STORE_USER)) | |
4571 | return -ENOSYS; | |
4572 | return list_locations(s, buf, TRACK_FREE); | |
4573 | } | |
4574 | SLAB_ATTR_RO(free_calls); | |
4575 | #endif /* CONFIG_SLUB_DEBUG */ | |
4576 | ||
4577 | #ifdef CONFIG_FAILSLAB | |
4578 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
4579 | { | |
4580 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
4581 | } | |
4582 | ||
4583 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
4584 | size_t length) | |
4585 | { | |
4586 | s->flags &= ~SLAB_FAILSLAB; | |
4587 | if (buf[0] == '1') | |
4588 | s->flags |= SLAB_FAILSLAB; | |
4589 | return length; | |
4590 | } | |
4591 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 4592 | #endif |
53e15af0 | 4593 | |
2086d26a CL |
4594 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4595 | { | |
4596 | return 0; | |
4597 | } | |
4598 | ||
4599 | static ssize_t shrink_store(struct kmem_cache *s, | |
4600 | const char *buf, size_t length) | |
4601 | { | |
4602 | if (buf[0] == '1') { | |
4603 | int rc = kmem_cache_shrink(s); | |
4604 | ||
4605 | if (rc) | |
4606 | return rc; | |
4607 | } else | |
4608 | return -EINVAL; | |
4609 | return length; | |
4610 | } | |
4611 | SLAB_ATTR(shrink); | |
4612 | ||
81819f0f | 4613 | #ifdef CONFIG_NUMA |
9824601e | 4614 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 4615 | { |
9824601e | 4616 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
4617 | } |
4618 | ||
9824601e | 4619 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
4620 | const char *buf, size_t length) |
4621 | { | |
0121c619 CL |
4622 | unsigned long ratio; |
4623 | int err; | |
4624 | ||
4625 | err = strict_strtoul(buf, 10, &ratio); | |
4626 | if (err) | |
4627 | return err; | |
4628 | ||
e2cb96b7 | 4629 | if (ratio <= 100) |
0121c619 | 4630 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 4631 | |
81819f0f CL |
4632 | return length; |
4633 | } | |
9824601e | 4634 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
4635 | #endif |
4636 | ||
8ff12cfc | 4637 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
4638 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4639 | { | |
4640 | unsigned long sum = 0; | |
4641 | int cpu; | |
4642 | int len; | |
4643 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
4644 | ||
4645 | if (!data) | |
4646 | return -ENOMEM; | |
4647 | ||
4648 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 4649 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
4650 | |
4651 | data[cpu] = x; | |
4652 | sum += x; | |
4653 | } | |
4654 | ||
4655 | len = sprintf(buf, "%lu", sum); | |
4656 | ||
50ef37b9 | 4657 | #ifdef CONFIG_SMP |
8ff12cfc CL |
4658 | for_each_online_cpu(cpu) { |
4659 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 4660 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 4661 | } |
50ef37b9 | 4662 | #endif |
8ff12cfc CL |
4663 | kfree(data); |
4664 | return len + sprintf(buf + len, "\n"); | |
4665 | } | |
4666 | ||
78eb00cc DR |
4667 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
4668 | { | |
4669 | int cpu; | |
4670 | ||
4671 | for_each_online_cpu(cpu) | |
9dfc6e68 | 4672 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
4673 | } |
4674 | ||
8ff12cfc CL |
4675 | #define STAT_ATTR(si, text) \ |
4676 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
4677 | { \ | |
4678 | return show_stat(s, buf, si); \ | |
4679 | } \ | |
78eb00cc DR |
4680 | static ssize_t text##_store(struct kmem_cache *s, \ |
4681 | const char *buf, size_t length) \ | |
4682 | { \ | |
4683 | if (buf[0] != '0') \ | |
4684 | return -EINVAL; \ | |
4685 | clear_stat(s, si); \ | |
4686 | return length; \ | |
4687 | } \ | |
4688 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
4689 | |
4690 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
4691 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
4692 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
4693 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
4694 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
4695 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
4696 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
4697 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
4698 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
4699 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
4700 | STAT_ATTR(FREE_SLAB, free_slab); | |
4701 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
4702 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
4703 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
4704 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
4705 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
4706 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
65c3376a | 4707 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
4708 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
4709 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
8ff12cfc CL |
4710 | #endif |
4711 | ||
06428780 | 4712 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
4713 | &slab_size_attr.attr, |
4714 | &object_size_attr.attr, | |
4715 | &objs_per_slab_attr.attr, | |
4716 | &order_attr.attr, | |
73d342b1 | 4717 | &min_partial_attr.attr, |
81819f0f | 4718 | &objects_attr.attr, |
205ab99d | 4719 | &objects_partial_attr.attr, |
81819f0f CL |
4720 | &partial_attr.attr, |
4721 | &cpu_slabs_attr.attr, | |
4722 | &ctor_attr.attr, | |
81819f0f CL |
4723 | &aliases_attr.attr, |
4724 | &align_attr.attr, | |
81819f0f CL |
4725 | &hwcache_align_attr.attr, |
4726 | &reclaim_account_attr.attr, | |
4727 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 4728 | &shrink_attr.attr, |
ab9a0f19 | 4729 | &reserved_attr.attr, |
ab4d5ed5 | 4730 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
4731 | &total_objects_attr.attr, |
4732 | &slabs_attr.attr, | |
4733 | &sanity_checks_attr.attr, | |
4734 | &trace_attr.attr, | |
81819f0f CL |
4735 | &red_zone_attr.attr, |
4736 | &poison_attr.attr, | |
4737 | &store_user_attr.attr, | |
53e15af0 | 4738 | &validate_attr.attr, |
88a420e4 CL |
4739 | &alloc_calls_attr.attr, |
4740 | &free_calls_attr.attr, | |
ab4d5ed5 | 4741 | #endif |
81819f0f CL |
4742 | #ifdef CONFIG_ZONE_DMA |
4743 | &cache_dma_attr.attr, | |
4744 | #endif | |
4745 | #ifdef CONFIG_NUMA | |
9824601e | 4746 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
4747 | #endif |
4748 | #ifdef CONFIG_SLUB_STATS | |
4749 | &alloc_fastpath_attr.attr, | |
4750 | &alloc_slowpath_attr.attr, | |
4751 | &free_fastpath_attr.attr, | |
4752 | &free_slowpath_attr.attr, | |
4753 | &free_frozen_attr.attr, | |
4754 | &free_add_partial_attr.attr, | |
4755 | &free_remove_partial_attr.attr, | |
4756 | &alloc_from_partial_attr.attr, | |
4757 | &alloc_slab_attr.attr, | |
4758 | &alloc_refill_attr.attr, | |
4759 | &free_slab_attr.attr, | |
4760 | &cpuslab_flush_attr.attr, | |
4761 | &deactivate_full_attr.attr, | |
4762 | &deactivate_empty_attr.attr, | |
4763 | &deactivate_to_head_attr.attr, | |
4764 | &deactivate_to_tail_attr.attr, | |
4765 | &deactivate_remote_frees_attr.attr, | |
65c3376a | 4766 | &order_fallback_attr.attr, |
b789ef51 CL |
4767 | &cmpxchg_double_fail_attr.attr, |
4768 | &cmpxchg_double_cpu_fail_attr.attr, | |
81819f0f | 4769 | #endif |
4c13dd3b DM |
4770 | #ifdef CONFIG_FAILSLAB |
4771 | &failslab_attr.attr, | |
4772 | #endif | |
4773 | ||
81819f0f CL |
4774 | NULL |
4775 | }; | |
4776 | ||
4777 | static struct attribute_group slab_attr_group = { | |
4778 | .attrs = slab_attrs, | |
4779 | }; | |
4780 | ||
4781 | static ssize_t slab_attr_show(struct kobject *kobj, | |
4782 | struct attribute *attr, | |
4783 | char *buf) | |
4784 | { | |
4785 | struct slab_attribute *attribute; | |
4786 | struct kmem_cache *s; | |
4787 | int err; | |
4788 | ||
4789 | attribute = to_slab_attr(attr); | |
4790 | s = to_slab(kobj); | |
4791 | ||
4792 | if (!attribute->show) | |
4793 | return -EIO; | |
4794 | ||
4795 | err = attribute->show(s, buf); | |
4796 | ||
4797 | return err; | |
4798 | } | |
4799 | ||
4800 | static ssize_t slab_attr_store(struct kobject *kobj, | |
4801 | struct attribute *attr, | |
4802 | const char *buf, size_t len) | |
4803 | { | |
4804 | struct slab_attribute *attribute; | |
4805 | struct kmem_cache *s; | |
4806 | int err; | |
4807 | ||
4808 | attribute = to_slab_attr(attr); | |
4809 | s = to_slab(kobj); | |
4810 | ||
4811 | if (!attribute->store) | |
4812 | return -EIO; | |
4813 | ||
4814 | err = attribute->store(s, buf, len); | |
4815 | ||
4816 | return err; | |
4817 | } | |
4818 | ||
151c602f CL |
4819 | static void kmem_cache_release(struct kobject *kobj) |
4820 | { | |
4821 | struct kmem_cache *s = to_slab(kobj); | |
4822 | ||
84c1cf62 | 4823 | kfree(s->name); |
151c602f CL |
4824 | kfree(s); |
4825 | } | |
4826 | ||
52cf25d0 | 4827 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
4828 | .show = slab_attr_show, |
4829 | .store = slab_attr_store, | |
4830 | }; | |
4831 | ||
4832 | static struct kobj_type slab_ktype = { | |
4833 | .sysfs_ops = &slab_sysfs_ops, | |
151c602f | 4834 | .release = kmem_cache_release |
81819f0f CL |
4835 | }; |
4836 | ||
4837 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
4838 | { | |
4839 | struct kobj_type *ktype = get_ktype(kobj); | |
4840 | ||
4841 | if (ktype == &slab_ktype) | |
4842 | return 1; | |
4843 | return 0; | |
4844 | } | |
4845 | ||
9cd43611 | 4846 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
4847 | .filter = uevent_filter, |
4848 | }; | |
4849 | ||
27c3a314 | 4850 | static struct kset *slab_kset; |
81819f0f CL |
4851 | |
4852 | #define ID_STR_LENGTH 64 | |
4853 | ||
4854 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
4855 | * |
4856 | * Format :[flags-]size | |
81819f0f CL |
4857 | */ |
4858 | static char *create_unique_id(struct kmem_cache *s) | |
4859 | { | |
4860 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
4861 | char *p = name; | |
4862 | ||
4863 | BUG_ON(!name); | |
4864 | ||
4865 | *p++ = ':'; | |
4866 | /* | |
4867 | * First flags affecting slabcache operations. We will only | |
4868 | * get here for aliasable slabs so we do not need to support | |
4869 | * too many flags. The flags here must cover all flags that | |
4870 | * are matched during merging to guarantee that the id is | |
4871 | * unique. | |
4872 | */ | |
4873 | if (s->flags & SLAB_CACHE_DMA) | |
4874 | *p++ = 'd'; | |
4875 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
4876 | *p++ = 'a'; | |
4877 | if (s->flags & SLAB_DEBUG_FREE) | |
4878 | *p++ = 'F'; | |
5a896d9e VN |
4879 | if (!(s->flags & SLAB_NOTRACK)) |
4880 | *p++ = 't'; | |
81819f0f CL |
4881 | if (p != name + 1) |
4882 | *p++ = '-'; | |
4883 | p += sprintf(p, "%07d", s->size); | |
4884 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
4885 | return name; | |
4886 | } | |
4887 | ||
4888 | static int sysfs_slab_add(struct kmem_cache *s) | |
4889 | { | |
4890 | int err; | |
4891 | const char *name; | |
4892 | int unmergeable; | |
4893 | ||
4894 | if (slab_state < SYSFS) | |
4895 | /* Defer until later */ | |
4896 | return 0; | |
4897 | ||
4898 | unmergeable = slab_unmergeable(s); | |
4899 | if (unmergeable) { | |
4900 | /* | |
4901 | * Slabcache can never be merged so we can use the name proper. | |
4902 | * This is typically the case for debug situations. In that | |
4903 | * case we can catch duplicate names easily. | |
4904 | */ | |
27c3a314 | 4905 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
4906 | name = s->name; |
4907 | } else { | |
4908 | /* | |
4909 | * Create a unique name for the slab as a target | |
4910 | * for the symlinks. | |
4911 | */ | |
4912 | name = create_unique_id(s); | |
4913 | } | |
4914 | ||
27c3a314 | 4915 | s->kobj.kset = slab_kset; |
1eada11c GKH |
4916 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
4917 | if (err) { | |
4918 | kobject_put(&s->kobj); | |
81819f0f | 4919 | return err; |
1eada11c | 4920 | } |
81819f0f CL |
4921 | |
4922 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
5788d8ad XF |
4923 | if (err) { |
4924 | kobject_del(&s->kobj); | |
4925 | kobject_put(&s->kobj); | |
81819f0f | 4926 | return err; |
5788d8ad | 4927 | } |
81819f0f CL |
4928 | kobject_uevent(&s->kobj, KOBJ_ADD); |
4929 | if (!unmergeable) { | |
4930 | /* Setup first alias */ | |
4931 | sysfs_slab_alias(s, s->name); | |
4932 | kfree(name); | |
4933 | } | |
4934 | return 0; | |
4935 | } | |
4936 | ||
4937 | static void sysfs_slab_remove(struct kmem_cache *s) | |
4938 | { | |
2bce6485 CL |
4939 | if (slab_state < SYSFS) |
4940 | /* | |
4941 | * Sysfs has not been setup yet so no need to remove the | |
4942 | * cache from sysfs. | |
4943 | */ | |
4944 | return; | |
4945 | ||
81819f0f CL |
4946 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
4947 | kobject_del(&s->kobj); | |
151c602f | 4948 | kobject_put(&s->kobj); |
81819f0f CL |
4949 | } |
4950 | ||
4951 | /* | |
4952 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 4953 | * available lest we lose that information. |
81819f0f CL |
4954 | */ |
4955 | struct saved_alias { | |
4956 | struct kmem_cache *s; | |
4957 | const char *name; | |
4958 | struct saved_alias *next; | |
4959 | }; | |
4960 | ||
5af328a5 | 4961 | static struct saved_alias *alias_list; |
81819f0f CL |
4962 | |
4963 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
4964 | { | |
4965 | struct saved_alias *al; | |
4966 | ||
4967 | if (slab_state == SYSFS) { | |
4968 | /* | |
4969 | * If we have a leftover link then remove it. | |
4970 | */ | |
27c3a314 GKH |
4971 | sysfs_remove_link(&slab_kset->kobj, name); |
4972 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
4973 | } |
4974 | ||
4975 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
4976 | if (!al) | |
4977 | return -ENOMEM; | |
4978 | ||
4979 | al->s = s; | |
4980 | al->name = name; | |
4981 | al->next = alias_list; | |
4982 | alias_list = al; | |
4983 | return 0; | |
4984 | } | |
4985 | ||
4986 | static int __init slab_sysfs_init(void) | |
4987 | { | |
5b95a4ac | 4988 | struct kmem_cache *s; |
81819f0f CL |
4989 | int err; |
4990 | ||
2bce6485 CL |
4991 | down_write(&slub_lock); |
4992 | ||
0ff21e46 | 4993 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 4994 | if (!slab_kset) { |
2bce6485 | 4995 | up_write(&slub_lock); |
81819f0f CL |
4996 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4997 | return -ENOSYS; | |
4998 | } | |
4999 | ||
26a7bd03 CL |
5000 | slab_state = SYSFS; |
5001 | ||
5b95a4ac | 5002 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5003 | err = sysfs_slab_add(s); |
5d540fb7 CL |
5004 | if (err) |
5005 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
5006 | " to sysfs\n", s->name); | |
26a7bd03 | 5007 | } |
81819f0f CL |
5008 | |
5009 | while (alias_list) { | |
5010 | struct saved_alias *al = alias_list; | |
5011 | ||
5012 | alias_list = alias_list->next; | |
5013 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
5014 | if (err) |
5015 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
5016 | " %s to sysfs\n", s->name); | |
81819f0f CL |
5017 | kfree(al); |
5018 | } | |
5019 | ||
2bce6485 | 5020 | up_write(&slub_lock); |
81819f0f CL |
5021 | resiliency_test(); |
5022 | return 0; | |
5023 | } | |
5024 | ||
5025 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5026 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5027 | |
5028 | /* | |
5029 | * The /proc/slabinfo ABI | |
5030 | */ | |
158a9624 | 5031 | #ifdef CONFIG_SLABINFO |
57ed3eda PE |
5032 | static void print_slabinfo_header(struct seq_file *m) |
5033 | { | |
5034 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
5035 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
5036 | "<objperslab> <pagesperslab>"); | |
5037 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
5038 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
5039 | seq_putc(m, '\n'); | |
5040 | } | |
5041 | ||
5042 | static void *s_start(struct seq_file *m, loff_t *pos) | |
5043 | { | |
5044 | loff_t n = *pos; | |
5045 | ||
5046 | down_read(&slub_lock); | |
5047 | if (!n) | |
5048 | print_slabinfo_header(m); | |
5049 | ||
5050 | return seq_list_start(&slab_caches, *pos); | |
5051 | } | |
5052 | ||
5053 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
5054 | { | |
5055 | return seq_list_next(p, &slab_caches, pos); | |
5056 | } | |
5057 | ||
5058 | static void s_stop(struct seq_file *m, void *p) | |
5059 | { | |
5060 | up_read(&slub_lock); | |
5061 | } | |
5062 | ||
5063 | static int s_show(struct seq_file *m, void *p) | |
5064 | { | |
5065 | unsigned long nr_partials = 0; | |
5066 | unsigned long nr_slabs = 0; | |
5067 | unsigned long nr_inuse = 0; | |
205ab99d CL |
5068 | unsigned long nr_objs = 0; |
5069 | unsigned long nr_free = 0; | |
57ed3eda PE |
5070 | struct kmem_cache *s; |
5071 | int node; | |
5072 | ||
5073 | s = list_entry(p, struct kmem_cache, list); | |
5074 | ||
5075 | for_each_online_node(node) { | |
5076 | struct kmem_cache_node *n = get_node(s, node); | |
5077 | ||
5078 | if (!n) | |
5079 | continue; | |
5080 | ||
5081 | nr_partials += n->nr_partial; | |
5082 | nr_slabs += atomic_long_read(&n->nr_slabs); | |
205ab99d CL |
5083 | nr_objs += atomic_long_read(&n->total_objects); |
5084 | nr_free += count_partial(n, count_free); | |
57ed3eda PE |
5085 | } |
5086 | ||
205ab99d | 5087 | nr_inuse = nr_objs - nr_free; |
57ed3eda PE |
5088 | |
5089 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | |
834f3d11 CL |
5090 | nr_objs, s->size, oo_objects(s->oo), |
5091 | (1 << oo_order(s->oo))); | |
57ed3eda PE |
5092 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); |
5093 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | |
5094 | 0UL); | |
5095 | seq_putc(m, '\n'); | |
5096 | return 0; | |
5097 | } | |
5098 | ||
7b3c3a50 | 5099 | static const struct seq_operations slabinfo_op = { |
57ed3eda PE |
5100 | .start = s_start, |
5101 | .next = s_next, | |
5102 | .stop = s_stop, | |
5103 | .show = s_show, | |
5104 | }; | |
5105 | ||
7b3c3a50 AD |
5106 | static int slabinfo_open(struct inode *inode, struct file *file) |
5107 | { | |
5108 | return seq_open(file, &slabinfo_op); | |
5109 | } | |
5110 | ||
5111 | static const struct file_operations proc_slabinfo_operations = { | |
5112 | .open = slabinfo_open, | |
5113 | .read = seq_read, | |
5114 | .llseek = seq_lseek, | |
5115 | .release = seq_release, | |
5116 | }; | |
5117 | ||
5118 | static int __init slab_proc_init(void) | |
5119 | { | |
cf5d1131 | 5120 | proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); |
7b3c3a50 AD |
5121 | return 0; |
5122 | } | |
5123 | module_init(slab_proc_init); | |
158a9624 | 5124 | #endif /* CONFIG_SLABINFO */ |