]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
3ac38faa | 22 | #include <linux/notifier.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
81819f0f CL |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpuset.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ctype.h> | |
3ac7fe5a | 29 | #include <linux/debugobjects.h> |
81819f0f | 30 | #include <linux/kallsyms.h> |
b9049e23 | 31 | #include <linux/memory.h> |
f8bd2258 | 32 | #include <linux/math64.h> |
773ff60e | 33 | #include <linux/fault-inject.h> |
bfa71457 | 34 | #include <linux/stacktrace.h> |
4de900b4 | 35 | #include <linux/prefetch.h> |
2633d7a0 | 36 | #include <linux/memcontrol.h> |
2482ddec | 37 | #include <linux/random.h> |
81819f0f | 38 | |
4a92379b RK |
39 | #include <trace/events/kmem.h> |
40 | ||
072bb0aa MG |
41 | #include "internal.h" |
42 | ||
81819f0f CL |
43 | /* |
44 | * Lock order: | |
18004c5d | 45 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
46 | * 2. node->list_lock |
47 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 48 | * |
18004c5d | 49 | * slab_mutex |
881db7fb | 50 | * |
18004c5d | 51 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
52 | * and to synchronize major metadata changes to slab cache structures. |
53 | * | |
54 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 55 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 56 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
57 | * B. page->inuse -> Number of objects in use |
58 | * C. page->objects -> Number of objects in page | |
59 | * D. page->frozen -> frozen state | |
881db7fb CL |
60 | * |
61 | * If a slab is frozen then it is exempt from list management. It is not | |
62 | * on any list. The processor that froze the slab is the one who can | |
63 | * perform list operations on the page. Other processors may put objects | |
64 | * onto the freelist but the processor that froze the slab is the only | |
65 | * one that can retrieve the objects from the page's freelist. | |
81819f0f CL |
66 | * |
67 | * The list_lock protects the partial and full list on each node and | |
68 | * the partial slab counter. If taken then no new slabs may be added or | |
69 | * removed from the lists nor make the number of partial slabs be modified. | |
70 | * (Note that the total number of slabs is an atomic value that may be | |
71 | * modified without taking the list lock). | |
72 | * | |
73 | * The list_lock is a centralized lock and thus we avoid taking it as | |
74 | * much as possible. As long as SLUB does not have to handle partial | |
75 | * slabs, operations can continue without any centralized lock. F.e. | |
76 | * allocating a long series of objects that fill up slabs does not require | |
77 | * the list lock. | |
81819f0f CL |
78 | * Interrupts are disabled during allocation and deallocation in order to |
79 | * make the slab allocator safe to use in the context of an irq. In addition | |
80 | * interrupts are disabled to ensure that the processor does not change | |
81 | * while handling per_cpu slabs, due to kernel preemption. | |
82 | * | |
83 | * SLUB assigns one slab for allocation to each processor. | |
84 | * Allocations only occur from these slabs called cpu slabs. | |
85 | * | |
672bba3a CL |
86 | * Slabs with free elements are kept on a partial list and during regular |
87 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 88 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
89 | * We track full slabs for debugging purposes though because otherwise we |
90 | * cannot scan all objects. | |
81819f0f CL |
91 | * |
92 | * Slabs are freed when they become empty. Teardown and setup is | |
93 | * minimal so we rely on the page allocators per cpu caches for | |
94 | * fast frees and allocs. | |
95 | * | |
96 | * Overloading of page flags that are otherwise used for LRU management. | |
97 | * | |
4b6f0750 CL |
98 | * PageActive The slab is frozen and exempt from list processing. |
99 | * This means that the slab is dedicated to a purpose | |
100 | * such as satisfying allocations for a specific | |
101 | * processor. Objects may be freed in the slab while | |
102 | * it is frozen but slab_free will then skip the usual | |
103 | * list operations. It is up to the processor holding | |
104 | * the slab to integrate the slab into the slab lists | |
105 | * when the slab is no longer needed. | |
106 | * | |
107 | * One use of this flag is to mark slabs that are | |
108 | * used for allocations. Then such a slab becomes a cpu | |
109 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 110 | * freelist that allows lockless access to |
894b8788 CL |
111 | * free objects in addition to the regular freelist |
112 | * that requires the slab lock. | |
81819f0f CL |
113 | * |
114 | * PageError Slab requires special handling due to debug | |
115 | * options set. This moves slab handling out of | |
894b8788 | 116 | * the fast path and disables lockless freelists. |
81819f0f CL |
117 | */ |
118 | ||
af537b0a CL |
119 | static inline int kmem_cache_debug(struct kmem_cache *s) |
120 | { | |
5577bd8a | 121 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 122 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 123 | #else |
af537b0a | 124 | return 0; |
5577bd8a | 125 | #endif |
af537b0a | 126 | } |
5577bd8a | 127 | |
117d54df | 128 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
129 | { |
130 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
131 | p += s->red_left_pad; | |
132 | ||
133 | return p; | |
134 | } | |
135 | ||
345c905d JK |
136 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
137 | { | |
138 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
139 | return !kmem_cache_debug(s); | |
140 | #else | |
141 | return false; | |
142 | #endif | |
143 | } | |
144 | ||
81819f0f CL |
145 | /* |
146 | * Issues still to be resolved: | |
147 | * | |
81819f0f CL |
148 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
149 | * | |
81819f0f CL |
150 | * - Variable sizing of the per node arrays |
151 | */ | |
152 | ||
153 | /* Enable to test recovery from slab corruption on boot */ | |
154 | #undef SLUB_RESILIENCY_TEST | |
155 | ||
b789ef51 CL |
156 | /* Enable to log cmpxchg failures */ |
157 | #undef SLUB_DEBUG_CMPXCHG | |
158 | ||
2086d26a CL |
159 | /* |
160 | * Mininum number of partial slabs. These will be left on the partial | |
161 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
162 | */ | |
76be8950 | 163 | #define MIN_PARTIAL 5 |
e95eed57 | 164 | |
2086d26a CL |
165 | /* |
166 | * Maximum number of desirable partial slabs. | |
167 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 168 | * sort the partial list by the number of objects in use. |
2086d26a CL |
169 | */ |
170 | #define MAX_PARTIAL 10 | |
171 | ||
becfda68 | 172 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 173 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 174 | |
149daaf3 LA |
175 | /* |
176 | * These debug flags cannot use CMPXCHG because there might be consistency | |
177 | * issues when checking or reading debug information | |
178 | */ | |
179 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
180 | SLAB_TRACE) | |
181 | ||
182 | ||
fa5ec8a1 | 183 | /* |
3de47213 DR |
184 | * Debugging flags that require metadata to be stored in the slab. These get |
185 | * disabled when slub_debug=O is used and a cache's min order increases with | |
186 | * metadata. | |
fa5ec8a1 | 187 | */ |
3de47213 | 188 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 189 | |
210b5c06 CG |
190 | #define OO_SHIFT 16 |
191 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 192 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 193 | |
81819f0f | 194 | /* Internal SLUB flags */ |
d50112ed | 195 | /* Poison object */ |
4fd0b46e | 196 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 197 | /* Use cmpxchg_double */ |
4fd0b46e | 198 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 199 | |
02cbc874 CL |
200 | /* |
201 | * Tracking user of a slab. | |
202 | */ | |
d6543e39 | 203 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 204 | struct track { |
ce71e27c | 205 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
206 | #ifdef CONFIG_STACKTRACE |
207 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
208 | #endif | |
02cbc874 CL |
209 | int cpu; /* Was running on cpu */ |
210 | int pid; /* Pid context */ | |
211 | unsigned long when; /* When did the operation occur */ | |
212 | }; | |
213 | ||
214 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
215 | ||
ab4d5ed5 | 216 | #ifdef CONFIG_SYSFS |
81819f0f CL |
217 | static int sysfs_slab_add(struct kmem_cache *); |
218 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 219 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 220 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 221 | #else |
0c710013 CL |
222 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
223 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
224 | { return 0; } | |
107dab5c | 225 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 226 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
227 | #endif |
228 | ||
4fdccdfb | 229 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
230 | { |
231 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
232 | /* |
233 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
234 | * avoid this_cpu_add()'s irq-disable overhead. | |
235 | */ | |
236 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
237 | #endif |
238 | } | |
239 | ||
81819f0f CL |
240 | /******************************************************************** |
241 | * Core slab cache functions | |
242 | *******************************************************************/ | |
243 | ||
2482ddec KC |
244 | /* |
245 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
246 | * with an XOR of the address where the pointer is held and a per-cache | |
247 | * random number. | |
248 | */ | |
249 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
250 | unsigned long ptr_addr) | |
251 | { | |
252 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
253 | return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); | |
254 | #else | |
255 | return ptr; | |
256 | #endif | |
257 | } | |
258 | ||
259 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
260 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
261 | void *ptr_addr) | |
262 | { | |
263 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
264 | (unsigned long)ptr_addr); | |
265 | } | |
266 | ||
7656c72b CL |
267 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
268 | { | |
2482ddec | 269 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
270 | } |
271 | ||
0ad9500e ED |
272 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
273 | { | |
0882ff91 | 274 | prefetch(object + s->offset); |
0ad9500e ED |
275 | } |
276 | ||
1393d9a1 CL |
277 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
278 | { | |
2482ddec | 279 | unsigned long freepointer_addr; |
1393d9a1 CL |
280 | void *p; |
281 | ||
922d566c JK |
282 | if (!debug_pagealloc_enabled()) |
283 | return get_freepointer(s, object); | |
284 | ||
2482ddec KC |
285 | freepointer_addr = (unsigned long)object + s->offset; |
286 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
287 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
288 | } |
289 | ||
7656c72b CL |
290 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
291 | { | |
2482ddec KC |
292 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
293 | ||
ce6fa91b AP |
294 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
295 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
296 | #endif | |
297 | ||
2482ddec | 298 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
299 | } |
300 | ||
301 | /* Loop over all objects in a slab */ | |
224a88be | 302 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
303 | for (__p = fixup_red_left(__s, __addr); \ |
304 | __p < (__addr) + (__objects) * (__s)->size; \ | |
305 | __p += (__s)->size) | |
7656c72b | 306 | |
54266640 | 307 | #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ |
d86bd1be JK |
308 | for (__p = fixup_red_left(__s, __addr), __idx = 1; \ |
309 | __idx <= __objects; \ | |
310 | __p += (__s)->size, __idx++) | |
54266640 | 311 | |
7656c72b | 312 | /* Determine object index from a given position */ |
284b50dd | 313 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) |
7656c72b CL |
314 | { |
315 | return (p - addr) / s->size; | |
316 | } | |
317 | ||
9736d2a9 | 318 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 319 | { |
9736d2a9 | 320 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
321 | } |
322 | ||
19af27af | 323 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 324 | unsigned int size) |
834f3d11 CL |
325 | { |
326 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 327 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
328 | }; |
329 | ||
330 | return x; | |
331 | } | |
332 | ||
19af27af | 333 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 334 | { |
210b5c06 | 335 | return x.x >> OO_SHIFT; |
834f3d11 CL |
336 | } |
337 | ||
19af27af | 338 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 339 | { |
210b5c06 | 340 | return x.x & OO_MASK; |
834f3d11 CL |
341 | } |
342 | ||
881db7fb CL |
343 | /* |
344 | * Per slab locking using the pagelock | |
345 | */ | |
346 | static __always_inline void slab_lock(struct page *page) | |
347 | { | |
48c935ad | 348 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
349 | bit_spin_lock(PG_locked, &page->flags); |
350 | } | |
351 | ||
352 | static __always_inline void slab_unlock(struct page *page) | |
353 | { | |
48c935ad | 354 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
355 | __bit_spin_unlock(PG_locked, &page->flags); |
356 | } | |
357 | ||
1d07171c CL |
358 | /* Interrupts must be disabled (for the fallback code to work right) */ |
359 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
360 | void *freelist_old, unsigned long counters_old, | |
361 | void *freelist_new, unsigned long counters_new, | |
362 | const char *n) | |
363 | { | |
364 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
365 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
366 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 367 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 368 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
369 | freelist_old, counters_old, |
370 | freelist_new, counters_new)) | |
6f6528a1 | 371 | return true; |
1d07171c CL |
372 | } else |
373 | #endif | |
374 | { | |
375 | slab_lock(page); | |
d0e0ac97 CG |
376 | if (page->freelist == freelist_old && |
377 | page->counters == counters_old) { | |
1d07171c | 378 | page->freelist = freelist_new; |
7d27a04b | 379 | page->counters = counters_new; |
1d07171c | 380 | slab_unlock(page); |
6f6528a1 | 381 | return true; |
1d07171c CL |
382 | } |
383 | slab_unlock(page); | |
384 | } | |
385 | ||
386 | cpu_relax(); | |
387 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
388 | ||
389 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 390 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
391 | #endif |
392 | ||
6f6528a1 | 393 | return false; |
1d07171c CL |
394 | } |
395 | ||
b789ef51 CL |
396 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
397 | void *freelist_old, unsigned long counters_old, | |
398 | void *freelist_new, unsigned long counters_new, | |
399 | const char *n) | |
400 | { | |
2565409f HC |
401 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
402 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 403 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 404 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
405 | freelist_old, counters_old, |
406 | freelist_new, counters_new)) | |
6f6528a1 | 407 | return true; |
b789ef51 CL |
408 | } else |
409 | #endif | |
410 | { | |
1d07171c CL |
411 | unsigned long flags; |
412 | ||
413 | local_irq_save(flags); | |
881db7fb | 414 | slab_lock(page); |
d0e0ac97 CG |
415 | if (page->freelist == freelist_old && |
416 | page->counters == counters_old) { | |
b789ef51 | 417 | page->freelist = freelist_new; |
7d27a04b | 418 | page->counters = counters_new; |
881db7fb | 419 | slab_unlock(page); |
1d07171c | 420 | local_irq_restore(flags); |
6f6528a1 | 421 | return true; |
b789ef51 | 422 | } |
881db7fb | 423 | slab_unlock(page); |
1d07171c | 424 | local_irq_restore(flags); |
b789ef51 CL |
425 | } |
426 | ||
427 | cpu_relax(); | |
428 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
429 | ||
430 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 431 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
432 | #endif |
433 | ||
6f6528a1 | 434 | return false; |
b789ef51 CL |
435 | } |
436 | ||
41ecc55b | 437 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
438 | /* |
439 | * Determine a map of object in use on a page. | |
440 | * | |
881db7fb | 441 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
442 | * not vanish from under us. |
443 | */ | |
444 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
445 | { | |
446 | void *p; | |
447 | void *addr = page_address(page); | |
448 | ||
449 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
450 | set_bit(slab_index(p, s, addr), map); | |
451 | } | |
452 | ||
870b1fbb | 453 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
454 | { |
455 | if (s->flags & SLAB_RED_ZONE) | |
456 | return s->size - s->red_left_pad; | |
457 | ||
458 | return s->size; | |
459 | } | |
460 | ||
461 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
462 | { | |
463 | if (s->flags & SLAB_RED_ZONE) | |
464 | p -= s->red_left_pad; | |
465 | ||
466 | return p; | |
467 | } | |
468 | ||
41ecc55b CL |
469 | /* |
470 | * Debug settings: | |
471 | */ | |
89d3c87e | 472 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 473 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 474 | #else |
d50112ed | 475 | static slab_flags_t slub_debug; |
f0630fff | 476 | #endif |
41ecc55b CL |
477 | |
478 | static char *slub_debug_slabs; | |
fa5ec8a1 | 479 | static int disable_higher_order_debug; |
41ecc55b | 480 | |
a79316c6 AR |
481 | /* |
482 | * slub is about to manipulate internal object metadata. This memory lies | |
483 | * outside the range of the allocated object, so accessing it would normally | |
484 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
485 | * to tell kasan that these accesses are OK. | |
486 | */ | |
487 | static inline void metadata_access_enable(void) | |
488 | { | |
489 | kasan_disable_current(); | |
490 | } | |
491 | ||
492 | static inline void metadata_access_disable(void) | |
493 | { | |
494 | kasan_enable_current(); | |
495 | } | |
496 | ||
81819f0f CL |
497 | /* |
498 | * Object debugging | |
499 | */ | |
d86bd1be JK |
500 | |
501 | /* Verify that a pointer has an address that is valid within a slab page */ | |
502 | static inline int check_valid_pointer(struct kmem_cache *s, | |
503 | struct page *page, void *object) | |
504 | { | |
505 | void *base; | |
506 | ||
507 | if (!object) | |
508 | return 1; | |
509 | ||
510 | base = page_address(page); | |
511 | object = restore_red_left(s, object); | |
512 | if (object < base || object >= base + page->objects * s->size || | |
513 | (object - base) % s->size) { | |
514 | return 0; | |
515 | } | |
516 | ||
517 | return 1; | |
518 | } | |
519 | ||
aa2efd5e DT |
520 | static void print_section(char *level, char *text, u8 *addr, |
521 | unsigned int length) | |
81819f0f | 522 | { |
a79316c6 | 523 | metadata_access_enable(); |
aa2efd5e | 524 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 525 | length, 1); |
a79316c6 | 526 | metadata_access_disable(); |
81819f0f CL |
527 | } |
528 | ||
81819f0f CL |
529 | static struct track *get_track(struct kmem_cache *s, void *object, |
530 | enum track_item alloc) | |
531 | { | |
532 | struct track *p; | |
533 | ||
534 | if (s->offset) | |
535 | p = object + s->offset + sizeof(void *); | |
536 | else | |
537 | p = object + s->inuse; | |
538 | ||
539 | return p + alloc; | |
540 | } | |
541 | ||
542 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 543 | enum track_item alloc, unsigned long addr) |
81819f0f | 544 | { |
1a00df4a | 545 | struct track *p = get_track(s, object, alloc); |
81819f0f | 546 | |
81819f0f | 547 | if (addr) { |
d6543e39 BG |
548 | #ifdef CONFIG_STACKTRACE |
549 | struct stack_trace trace; | |
550 | int i; | |
551 | ||
552 | trace.nr_entries = 0; | |
553 | trace.max_entries = TRACK_ADDRS_COUNT; | |
554 | trace.entries = p->addrs; | |
555 | trace.skip = 3; | |
a79316c6 | 556 | metadata_access_enable(); |
d6543e39 | 557 | save_stack_trace(&trace); |
a79316c6 | 558 | metadata_access_disable(); |
d6543e39 BG |
559 | |
560 | /* See rant in lockdep.c */ | |
561 | if (trace.nr_entries != 0 && | |
562 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | |
563 | trace.nr_entries--; | |
564 | ||
565 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | |
566 | p->addrs[i] = 0; | |
567 | #endif | |
81819f0f CL |
568 | p->addr = addr; |
569 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 570 | p->pid = current->pid; |
81819f0f CL |
571 | p->when = jiffies; |
572 | } else | |
573 | memset(p, 0, sizeof(struct track)); | |
574 | } | |
575 | ||
81819f0f CL |
576 | static void init_tracking(struct kmem_cache *s, void *object) |
577 | { | |
24922684 CL |
578 | if (!(s->flags & SLAB_STORE_USER)) |
579 | return; | |
580 | ||
ce71e27c EGM |
581 | set_track(s, object, TRACK_FREE, 0UL); |
582 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
583 | } |
584 | ||
86609d33 | 585 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
586 | { |
587 | if (!t->addr) | |
588 | return; | |
589 | ||
f9f58285 | 590 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 591 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
592 | #ifdef CONFIG_STACKTRACE |
593 | { | |
594 | int i; | |
595 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
596 | if (t->addrs[i]) | |
f9f58285 | 597 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
598 | else |
599 | break; | |
600 | } | |
601 | #endif | |
24922684 CL |
602 | } |
603 | ||
604 | static void print_tracking(struct kmem_cache *s, void *object) | |
605 | { | |
86609d33 | 606 | unsigned long pr_time = jiffies; |
24922684 CL |
607 | if (!(s->flags & SLAB_STORE_USER)) |
608 | return; | |
609 | ||
86609d33 CP |
610 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
611 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
612 | } |
613 | ||
614 | static void print_page_info(struct page *page) | |
615 | { | |
f9f58285 | 616 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 617 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
618 | |
619 | } | |
620 | ||
621 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
622 | { | |
ecc42fbe | 623 | struct va_format vaf; |
24922684 | 624 | va_list args; |
24922684 CL |
625 | |
626 | va_start(args, fmt); | |
ecc42fbe FF |
627 | vaf.fmt = fmt; |
628 | vaf.va = &args; | |
f9f58285 | 629 | pr_err("=============================================================================\n"); |
ecc42fbe | 630 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 631 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 632 | |
373d4d09 | 633 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 634 | va_end(args); |
81819f0f CL |
635 | } |
636 | ||
24922684 CL |
637 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
638 | { | |
ecc42fbe | 639 | struct va_format vaf; |
24922684 | 640 | va_list args; |
24922684 CL |
641 | |
642 | va_start(args, fmt); | |
ecc42fbe FF |
643 | vaf.fmt = fmt; |
644 | vaf.va = &args; | |
645 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 646 | va_end(args); |
24922684 CL |
647 | } |
648 | ||
649 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
650 | { |
651 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 652 | u8 *addr = page_address(page); |
24922684 CL |
653 | |
654 | print_tracking(s, p); | |
655 | ||
656 | print_page_info(page); | |
657 | ||
f9f58285 FF |
658 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
659 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 660 | |
d86bd1be | 661 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
662 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
663 | s->red_left_pad); | |
d86bd1be | 664 | else if (p > addr + 16) |
aa2efd5e | 665 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 666 | |
aa2efd5e | 667 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 668 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 669 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 670 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 671 | s->inuse - s->object_size); |
81819f0f | 672 | |
81819f0f CL |
673 | if (s->offset) |
674 | off = s->offset + sizeof(void *); | |
675 | else | |
676 | off = s->inuse; | |
677 | ||
24922684 | 678 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 679 | off += 2 * sizeof(struct track); |
81819f0f | 680 | |
80a9201a AP |
681 | off += kasan_metadata_size(s); |
682 | ||
d86bd1be | 683 | if (off != size_from_object(s)) |
81819f0f | 684 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
685 | print_section(KERN_ERR, "Padding ", p + off, |
686 | size_from_object(s) - off); | |
24922684 CL |
687 | |
688 | dump_stack(); | |
81819f0f CL |
689 | } |
690 | ||
75c66def | 691 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
692 | u8 *object, char *reason) |
693 | { | |
3dc50637 | 694 | slab_bug(s, "%s", reason); |
24922684 | 695 | print_trailer(s, page, object); |
81819f0f CL |
696 | } |
697 | ||
a38965bf | 698 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 699 | const char *fmt, ...) |
81819f0f CL |
700 | { |
701 | va_list args; | |
702 | char buf[100]; | |
703 | ||
24922684 CL |
704 | va_start(args, fmt); |
705 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 706 | va_end(args); |
3dc50637 | 707 | slab_bug(s, "%s", buf); |
24922684 | 708 | print_page_info(page); |
81819f0f CL |
709 | dump_stack(); |
710 | } | |
711 | ||
f7cb1933 | 712 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
713 | { |
714 | u8 *p = object; | |
715 | ||
d86bd1be JK |
716 | if (s->flags & SLAB_RED_ZONE) |
717 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
718 | ||
81819f0f | 719 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
720 | memset(p, POISON_FREE, s->object_size - 1); |
721 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
722 | } |
723 | ||
724 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 725 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
726 | } |
727 | ||
24922684 CL |
728 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
729 | void *from, void *to) | |
730 | { | |
731 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
732 | memset(from, data, to - from); | |
733 | } | |
734 | ||
735 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
736 | u8 *object, char *what, | |
06428780 | 737 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
738 | { |
739 | u8 *fault; | |
740 | u8 *end; | |
741 | ||
a79316c6 | 742 | metadata_access_enable(); |
79824820 | 743 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 744 | metadata_access_disable(); |
24922684 CL |
745 | if (!fault) |
746 | return 1; | |
747 | ||
748 | end = start + bytes; | |
749 | while (end > fault && end[-1] == value) | |
750 | end--; | |
751 | ||
752 | slab_bug(s, "%s overwritten", what); | |
f9f58285 | 753 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
24922684 CL |
754 | fault, end - 1, fault[0], value); |
755 | print_trailer(s, page, object); | |
756 | ||
757 | restore_bytes(s, what, value, fault, end); | |
758 | return 0; | |
81819f0f CL |
759 | } |
760 | ||
81819f0f CL |
761 | /* |
762 | * Object layout: | |
763 | * | |
764 | * object address | |
765 | * Bytes of the object to be managed. | |
766 | * If the freepointer may overlay the object then the free | |
767 | * pointer is the first word of the object. | |
672bba3a | 768 | * |
81819f0f CL |
769 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
770 | * 0xa5 (POISON_END) | |
771 | * | |
3b0efdfa | 772 | * object + s->object_size |
81819f0f | 773 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 774 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 775 | * object_size == inuse. |
672bba3a | 776 | * |
81819f0f CL |
777 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
778 | * 0xcc (RED_ACTIVE) for objects in use. | |
779 | * | |
780 | * object + s->inuse | |
672bba3a CL |
781 | * Meta data starts here. |
782 | * | |
81819f0f CL |
783 | * A. Free pointer (if we cannot overwrite object on free) |
784 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 785 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 786 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
787 | * before the word boundary. |
788 | * | |
789 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
790 | * |
791 | * object + s->size | |
672bba3a | 792 | * Nothing is used beyond s->size. |
81819f0f | 793 | * |
3b0efdfa | 794 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 795 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
796 | * may be used with merged slabcaches. |
797 | */ | |
798 | ||
81819f0f CL |
799 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
800 | { | |
801 | unsigned long off = s->inuse; /* The end of info */ | |
802 | ||
803 | if (s->offset) | |
804 | /* Freepointer is placed after the object. */ | |
805 | off += sizeof(void *); | |
806 | ||
807 | if (s->flags & SLAB_STORE_USER) | |
808 | /* We also have user information there */ | |
809 | off += 2 * sizeof(struct track); | |
810 | ||
80a9201a AP |
811 | off += kasan_metadata_size(s); |
812 | ||
d86bd1be | 813 | if (size_from_object(s) == off) |
81819f0f CL |
814 | return 1; |
815 | ||
24922684 | 816 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 817 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
818 | } |
819 | ||
39b26464 | 820 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
821 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
822 | { | |
24922684 CL |
823 | u8 *start; |
824 | u8 *fault; | |
825 | u8 *end; | |
5d682681 | 826 | u8 *pad; |
24922684 CL |
827 | int length; |
828 | int remainder; | |
81819f0f CL |
829 | |
830 | if (!(s->flags & SLAB_POISON)) | |
831 | return 1; | |
832 | ||
a973e9dd | 833 | start = page_address(page); |
9736d2a9 | 834 | length = PAGE_SIZE << compound_order(page); |
39b26464 CL |
835 | end = start + length; |
836 | remainder = length % s->size; | |
81819f0f CL |
837 | if (!remainder) |
838 | return 1; | |
839 | ||
5d682681 | 840 | pad = end - remainder; |
a79316c6 | 841 | metadata_access_enable(); |
5d682681 | 842 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 843 | metadata_access_disable(); |
24922684 CL |
844 | if (!fault) |
845 | return 1; | |
846 | while (end > fault && end[-1] == POISON_INUSE) | |
847 | end--; | |
848 | ||
849 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
5d682681 | 850 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 851 | |
5d682681 | 852 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 853 | return 0; |
81819f0f CL |
854 | } |
855 | ||
856 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 857 | void *object, u8 val) |
81819f0f CL |
858 | { |
859 | u8 *p = object; | |
3b0efdfa | 860 | u8 *endobject = object + s->object_size; |
81819f0f CL |
861 | |
862 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
863 | if (!check_bytes_and_report(s, page, object, "Redzone", |
864 | object - s->red_left_pad, val, s->red_left_pad)) | |
865 | return 0; | |
866 | ||
24922684 | 867 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 868 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 869 | return 0; |
81819f0f | 870 | } else { |
3b0efdfa | 871 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 872 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
873 | endobject, POISON_INUSE, |
874 | s->inuse - s->object_size); | |
3adbefee | 875 | } |
81819f0f CL |
876 | } |
877 | ||
878 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 879 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 880 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 881 | POISON_FREE, s->object_size - 1) || |
24922684 | 882 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 883 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 884 | return 0; |
81819f0f CL |
885 | /* |
886 | * check_pad_bytes cleans up on its own. | |
887 | */ | |
888 | check_pad_bytes(s, page, p); | |
889 | } | |
890 | ||
f7cb1933 | 891 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
892 | /* |
893 | * Object and freepointer overlap. Cannot check | |
894 | * freepointer while object is allocated. | |
895 | */ | |
896 | return 1; | |
897 | ||
898 | /* Check free pointer validity */ | |
899 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
900 | object_err(s, page, p, "Freepointer corrupt"); | |
901 | /* | |
9f6c708e | 902 | * No choice but to zap it and thus lose the remainder |
81819f0f | 903 | * of the free objects in this slab. May cause |
672bba3a | 904 | * another error because the object count is now wrong. |
81819f0f | 905 | */ |
a973e9dd | 906 | set_freepointer(s, p, NULL); |
81819f0f CL |
907 | return 0; |
908 | } | |
909 | return 1; | |
910 | } | |
911 | ||
912 | static int check_slab(struct kmem_cache *s, struct page *page) | |
913 | { | |
39b26464 CL |
914 | int maxobj; |
915 | ||
81819f0f CL |
916 | VM_BUG_ON(!irqs_disabled()); |
917 | ||
918 | if (!PageSlab(page)) { | |
24922684 | 919 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
920 | return 0; |
921 | } | |
39b26464 | 922 | |
9736d2a9 | 923 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
924 | if (page->objects > maxobj) { |
925 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 926 | page->objects, maxobj); |
39b26464 CL |
927 | return 0; |
928 | } | |
929 | if (page->inuse > page->objects) { | |
24922684 | 930 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 931 | page->inuse, page->objects); |
81819f0f CL |
932 | return 0; |
933 | } | |
934 | /* Slab_pad_check fixes things up after itself */ | |
935 | slab_pad_check(s, page); | |
936 | return 1; | |
937 | } | |
938 | ||
939 | /* | |
672bba3a CL |
940 | * Determine if a certain object on a page is on the freelist. Must hold the |
941 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
942 | */ |
943 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
944 | { | |
945 | int nr = 0; | |
881db7fb | 946 | void *fp; |
81819f0f | 947 | void *object = NULL; |
f6edde9c | 948 | int max_objects; |
81819f0f | 949 | |
881db7fb | 950 | fp = page->freelist; |
39b26464 | 951 | while (fp && nr <= page->objects) { |
81819f0f CL |
952 | if (fp == search) |
953 | return 1; | |
954 | if (!check_valid_pointer(s, page, fp)) { | |
955 | if (object) { | |
956 | object_err(s, page, object, | |
957 | "Freechain corrupt"); | |
a973e9dd | 958 | set_freepointer(s, object, NULL); |
81819f0f | 959 | } else { |
24922684 | 960 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 961 | page->freelist = NULL; |
39b26464 | 962 | page->inuse = page->objects; |
24922684 | 963 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
964 | return 0; |
965 | } | |
966 | break; | |
967 | } | |
968 | object = fp; | |
969 | fp = get_freepointer(s, object); | |
970 | nr++; | |
971 | } | |
972 | ||
9736d2a9 | 973 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
974 | if (max_objects > MAX_OBJS_PER_PAGE) |
975 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
976 | |
977 | if (page->objects != max_objects) { | |
756a025f JP |
978 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
979 | page->objects, max_objects); | |
224a88be CL |
980 | page->objects = max_objects; |
981 | slab_fix(s, "Number of objects adjusted."); | |
982 | } | |
39b26464 | 983 | if (page->inuse != page->objects - nr) { |
756a025f JP |
984 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
985 | page->inuse, page->objects - nr); | |
39b26464 | 986 | page->inuse = page->objects - nr; |
24922684 | 987 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
988 | } |
989 | return search == NULL; | |
990 | } | |
991 | ||
0121c619 CL |
992 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
993 | int alloc) | |
3ec09742 CL |
994 | { |
995 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 996 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
997 | s->name, |
998 | alloc ? "alloc" : "free", | |
999 | object, page->inuse, | |
1000 | page->freelist); | |
1001 | ||
1002 | if (!alloc) | |
aa2efd5e | 1003 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1004 | s->object_size); |
3ec09742 CL |
1005 | |
1006 | dump_stack(); | |
1007 | } | |
1008 | } | |
1009 | ||
643b1138 | 1010 | /* |
672bba3a | 1011 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1012 | */ |
5cc6eee8 CL |
1013 | static void add_full(struct kmem_cache *s, |
1014 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1015 | { |
5cc6eee8 CL |
1016 | if (!(s->flags & SLAB_STORE_USER)) |
1017 | return; | |
1018 | ||
255d0884 | 1019 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1020 | list_add(&page->lru, &n->full); |
643b1138 CL |
1021 | } |
1022 | ||
c65c1877 | 1023 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1024 | { |
643b1138 CL |
1025 | if (!(s->flags & SLAB_STORE_USER)) |
1026 | return; | |
1027 | ||
255d0884 | 1028 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1029 | list_del(&page->lru); |
643b1138 CL |
1030 | } |
1031 | ||
0f389ec6 CL |
1032 | /* Tracking of the number of slabs for debugging purposes */ |
1033 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1034 | { | |
1035 | struct kmem_cache_node *n = get_node(s, node); | |
1036 | ||
1037 | return atomic_long_read(&n->nr_slabs); | |
1038 | } | |
1039 | ||
26c02cf0 AB |
1040 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1041 | { | |
1042 | return atomic_long_read(&n->nr_slabs); | |
1043 | } | |
1044 | ||
205ab99d | 1045 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1046 | { |
1047 | struct kmem_cache_node *n = get_node(s, node); | |
1048 | ||
1049 | /* | |
1050 | * May be called early in order to allocate a slab for the | |
1051 | * kmem_cache_node structure. Solve the chicken-egg | |
1052 | * dilemma by deferring the increment of the count during | |
1053 | * bootstrap (see early_kmem_cache_node_alloc). | |
1054 | */ | |
338b2642 | 1055 | if (likely(n)) { |
0f389ec6 | 1056 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1057 | atomic_long_add(objects, &n->total_objects); |
1058 | } | |
0f389ec6 | 1059 | } |
205ab99d | 1060 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1061 | { |
1062 | struct kmem_cache_node *n = get_node(s, node); | |
1063 | ||
1064 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1065 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1066 | } |
1067 | ||
1068 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1069 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1070 | void *object) | |
1071 | { | |
1072 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1073 | return; | |
1074 | ||
f7cb1933 | 1075 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1076 | init_tracking(s, object); |
1077 | } | |
1078 | ||
becfda68 | 1079 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
d0e0ac97 | 1080 | struct page *page, |
ce71e27c | 1081 | void *object, unsigned long addr) |
81819f0f CL |
1082 | { |
1083 | if (!check_slab(s, page)) | |
becfda68 | 1084 | return 0; |
81819f0f | 1085 | |
81819f0f CL |
1086 | if (!check_valid_pointer(s, page, object)) { |
1087 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1088 | return 0; |
81819f0f CL |
1089 | } |
1090 | ||
f7cb1933 | 1091 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1092 | return 0; |
1093 | ||
1094 | return 1; | |
1095 | } | |
1096 | ||
1097 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1098 | struct page *page, | |
1099 | void *object, unsigned long addr) | |
1100 | { | |
1101 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1102 | if (!alloc_consistency_checks(s, page, object, addr)) | |
1103 | goto bad; | |
1104 | } | |
81819f0f | 1105 | |
3ec09742 CL |
1106 | /* Success perform special debug activities for allocs */ |
1107 | if (s->flags & SLAB_STORE_USER) | |
1108 | set_track(s, object, TRACK_ALLOC, addr); | |
1109 | trace(s, page, object, 1); | |
f7cb1933 | 1110 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1111 | return 1; |
3ec09742 | 1112 | |
81819f0f CL |
1113 | bad: |
1114 | if (PageSlab(page)) { | |
1115 | /* | |
1116 | * If this is a slab page then lets do the best we can | |
1117 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1118 | * as used avoids touching the remaining objects. |
81819f0f | 1119 | */ |
24922684 | 1120 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1121 | page->inuse = page->objects; |
a973e9dd | 1122 | page->freelist = NULL; |
81819f0f CL |
1123 | } |
1124 | return 0; | |
1125 | } | |
1126 | ||
becfda68 LA |
1127 | static inline int free_consistency_checks(struct kmem_cache *s, |
1128 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1129 | { |
81819f0f | 1130 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1131 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1132 | return 0; |
81819f0f CL |
1133 | } |
1134 | ||
1135 | if (on_freelist(s, page, object)) { | |
24922684 | 1136 | object_err(s, page, object, "Object already free"); |
becfda68 | 1137 | return 0; |
81819f0f CL |
1138 | } |
1139 | ||
f7cb1933 | 1140 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1141 | return 0; |
81819f0f | 1142 | |
1b4f59e3 | 1143 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1144 | if (!PageSlab(page)) { |
756a025f JP |
1145 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1146 | object); | |
1b4f59e3 | 1147 | } else if (!page->slab_cache) { |
f9f58285 FF |
1148 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1149 | object); | |
70d71228 | 1150 | dump_stack(); |
06428780 | 1151 | } else |
24922684 CL |
1152 | object_err(s, page, object, |
1153 | "page slab pointer corrupt."); | |
becfda68 LA |
1154 | return 0; |
1155 | } | |
1156 | return 1; | |
1157 | } | |
1158 | ||
1159 | /* Supports checking bulk free of a constructed freelist */ | |
1160 | static noinline int free_debug_processing( | |
1161 | struct kmem_cache *s, struct page *page, | |
1162 | void *head, void *tail, int bulk_cnt, | |
1163 | unsigned long addr) | |
1164 | { | |
1165 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1166 | void *object = head; | |
1167 | int cnt = 0; | |
1168 | unsigned long uninitialized_var(flags); | |
1169 | int ret = 0; | |
1170 | ||
1171 | spin_lock_irqsave(&n->list_lock, flags); | |
1172 | slab_lock(page); | |
1173 | ||
1174 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1175 | if (!check_slab(s, page)) | |
1176 | goto out; | |
1177 | } | |
1178 | ||
1179 | next_object: | |
1180 | cnt++; | |
1181 | ||
1182 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1183 | if (!free_consistency_checks(s, page, object, addr)) | |
1184 | goto out; | |
81819f0f | 1185 | } |
3ec09742 | 1186 | |
3ec09742 CL |
1187 | if (s->flags & SLAB_STORE_USER) |
1188 | set_track(s, object, TRACK_FREE, addr); | |
1189 | trace(s, page, object, 0); | |
81084651 | 1190 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1191 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1192 | |
1193 | /* Reached end of constructed freelist yet? */ | |
1194 | if (object != tail) { | |
1195 | object = get_freepointer(s, object); | |
1196 | goto next_object; | |
1197 | } | |
804aa132 LA |
1198 | ret = 1; |
1199 | ||
5c2e4bbb | 1200 | out: |
81084651 JDB |
1201 | if (cnt != bulk_cnt) |
1202 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1203 | bulk_cnt, cnt); | |
1204 | ||
881db7fb | 1205 | slab_unlock(page); |
282acb43 | 1206 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1207 | if (!ret) |
1208 | slab_fix(s, "Object at 0x%p not freed", object); | |
1209 | return ret; | |
81819f0f CL |
1210 | } |
1211 | ||
41ecc55b CL |
1212 | static int __init setup_slub_debug(char *str) |
1213 | { | |
f0630fff CL |
1214 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1215 | if (*str++ != '=' || !*str) | |
1216 | /* | |
1217 | * No options specified. Switch on full debugging. | |
1218 | */ | |
1219 | goto out; | |
1220 | ||
1221 | if (*str == ',') | |
1222 | /* | |
1223 | * No options but restriction on slabs. This means full | |
1224 | * debugging for slabs matching a pattern. | |
1225 | */ | |
1226 | goto check_slabs; | |
1227 | ||
1228 | slub_debug = 0; | |
1229 | if (*str == '-') | |
1230 | /* | |
1231 | * Switch off all debugging measures. | |
1232 | */ | |
1233 | goto out; | |
1234 | ||
1235 | /* | |
1236 | * Determine which debug features should be switched on | |
1237 | */ | |
06428780 | 1238 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1239 | switch (tolower(*str)) { |
1240 | case 'f': | |
becfda68 | 1241 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1242 | break; |
1243 | case 'z': | |
1244 | slub_debug |= SLAB_RED_ZONE; | |
1245 | break; | |
1246 | case 'p': | |
1247 | slub_debug |= SLAB_POISON; | |
1248 | break; | |
1249 | case 'u': | |
1250 | slub_debug |= SLAB_STORE_USER; | |
1251 | break; | |
1252 | case 't': | |
1253 | slub_debug |= SLAB_TRACE; | |
1254 | break; | |
4c13dd3b DM |
1255 | case 'a': |
1256 | slub_debug |= SLAB_FAILSLAB; | |
1257 | break; | |
08303a73 CA |
1258 | case 'o': |
1259 | /* | |
1260 | * Avoid enabling debugging on caches if its minimum | |
1261 | * order would increase as a result. | |
1262 | */ | |
1263 | disable_higher_order_debug = 1; | |
1264 | break; | |
f0630fff | 1265 | default: |
f9f58285 FF |
1266 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1267 | *str); | |
f0630fff | 1268 | } |
41ecc55b CL |
1269 | } |
1270 | ||
f0630fff | 1271 | check_slabs: |
41ecc55b CL |
1272 | if (*str == ',') |
1273 | slub_debug_slabs = str + 1; | |
f0630fff | 1274 | out: |
41ecc55b CL |
1275 | return 1; |
1276 | } | |
1277 | ||
1278 | __setup("slub_debug", setup_slub_debug); | |
1279 | ||
0293d1fd | 1280 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1281 | slab_flags_t flags, const char *name, |
51cc5068 | 1282 | void (*ctor)(void *)) |
41ecc55b CL |
1283 | { |
1284 | /* | |
e153362a | 1285 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1286 | */ |
c6f58d9b CL |
1287 | if (slub_debug && (!slub_debug_slabs || (name && |
1288 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | |
3de47213 | 1289 | flags |= slub_debug; |
ba0268a8 CL |
1290 | |
1291 | return flags; | |
41ecc55b | 1292 | } |
b4a64718 | 1293 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1294 | static inline void setup_object_debug(struct kmem_cache *s, |
1295 | struct page *page, void *object) {} | |
41ecc55b | 1296 | |
3ec09742 | 1297 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1298 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1299 | |
282acb43 | 1300 | static inline int free_debug_processing( |
81084651 JDB |
1301 | struct kmem_cache *s, struct page *page, |
1302 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1303 | unsigned long addr) { return 0; } |
41ecc55b | 1304 | |
41ecc55b CL |
1305 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1306 | { return 1; } | |
1307 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1308 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1309 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1310 | struct page *page) {} | |
c65c1877 PZ |
1311 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1312 | struct page *page) {} | |
0293d1fd | 1313 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1314 | slab_flags_t flags, const char *name, |
51cc5068 | 1315 | void (*ctor)(void *)) |
ba0268a8 CL |
1316 | { |
1317 | return flags; | |
1318 | } | |
41ecc55b | 1319 | #define slub_debug 0 |
0f389ec6 | 1320 | |
fdaa45e9 IM |
1321 | #define disable_higher_order_debug 0 |
1322 | ||
0f389ec6 CL |
1323 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1324 | { return 0; } | |
26c02cf0 AB |
1325 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1326 | { return 0; } | |
205ab99d CL |
1327 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1328 | int objects) {} | |
1329 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1330 | int objects) {} | |
7d550c56 | 1331 | |
02e72cc6 AR |
1332 | #endif /* CONFIG_SLUB_DEBUG */ |
1333 | ||
1334 | /* | |
1335 | * Hooks for other subsystems that check memory allocations. In a typical | |
1336 | * production configuration these hooks all should produce no code at all. | |
1337 | */ | |
d56791b3 RB |
1338 | static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
1339 | { | |
1340 | kmemleak_alloc(ptr, size, 1, flags); | |
505f5dcb | 1341 | kasan_kmalloc_large(ptr, size, flags); |
d56791b3 RB |
1342 | } |
1343 | ||
ee3ce779 | 1344 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1345 | { |
1346 | kmemleak_free(x); | |
ee3ce779 | 1347 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1348 | } |
1349 | ||
c3895391 | 1350 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1351 | { |
1352 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1353 | |
02e72cc6 AR |
1354 | /* |
1355 | * Trouble is that we may no longer disable interrupts in the fast path | |
1356 | * So in order to make the debug calls that expect irqs to be | |
1357 | * disabled we need to disable interrupts temporarily. | |
1358 | */ | |
4675ff05 | 1359 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1360 | { |
1361 | unsigned long flags; | |
1362 | ||
1363 | local_irq_save(flags); | |
02e72cc6 AR |
1364 | debug_check_no_locks_freed(x, s->object_size); |
1365 | local_irq_restore(flags); | |
1366 | } | |
1367 | #endif | |
1368 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1369 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1370 | |
c3895391 AK |
1371 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1372 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1373 | } |
205ab99d | 1374 | |
c3895391 AK |
1375 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1376 | void **head, void **tail) | |
81084651 JDB |
1377 | { |
1378 | /* | |
1379 | * Compiler cannot detect this function can be removed if slab_free_hook() | |
1380 | * evaluates to nothing. Thus, catch all relevant config debug options here. | |
1381 | */ | |
4675ff05 | 1382 | #if defined(CONFIG_LOCKDEP) || \ |
81084651 JDB |
1383 | defined(CONFIG_DEBUG_KMEMLEAK) || \ |
1384 | defined(CONFIG_DEBUG_OBJECTS_FREE) || \ | |
1385 | defined(CONFIG_KASAN) | |
1386 | ||
c3895391 AK |
1387 | void *object; |
1388 | void *next = *head; | |
1389 | void *old_tail = *tail ? *tail : *head; | |
1390 | ||
1391 | /* Head and tail of the reconstructed freelist */ | |
1392 | *head = NULL; | |
1393 | *tail = NULL; | |
81084651 JDB |
1394 | |
1395 | do { | |
c3895391 AK |
1396 | object = next; |
1397 | next = get_freepointer(s, object); | |
1398 | /* If object's reuse doesn't have to be delayed */ | |
1399 | if (!slab_free_hook(s, object)) { | |
1400 | /* Move object to the new freelist */ | |
1401 | set_freepointer(s, object, *head); | |
1402 | *head = object; | |
1403 | if (!*tail) | |
1404 | *tail = object; | |
1405 | } | |
1406 | } while (object != old_tail); | |
1407 | ||
1408 | if (*head == *tail) | |
1409 | *tail = NULL; | |
1410 | ||
1411 | return *head != NULL; | |
1412 | #else | |
1413 | return true; | |
81084651 JDB |
1414 | #endif |
1415 | } | |
1416 | ||
588f8ba9 TG |
1417 | static void setup_object(struct kmem_cache *s, struct page *page, |
1418 | void *object) | |
1419 | { | |
1420 | setup_object_debug(s, page, object); | |
b3cbd9bf | 1421 | kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1422 | if (unlikely(s->ctor)) { |
1423 | kasan_unpoison_object_data(s, object); | |
1424 | s->ctor(object); | |
1425 | kasan_poison_object_data(s, object); | |
1426 | } | |
1427 | } | |
1428 | ||
81819f0f CL |
1429 | /* |
1430 | * Slab allocation and freeing | |
1431 | */ | |
5dfb4175 VD |
1432 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1433 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1434 | { |
5dfb4175 | 1435 | struct page *page; |
19af27af | 1436 | unsigned int order = oo_order(oo); |
65c3376a | 1437 | |
2154a336 | 1438 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1439 | page = alloc_pages(flags, order); |
65c3376a | 1440 | else |
96db800f | 1441 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1442 | |
f3ccb2c4 VD |
1443 | if (page && memcg_charge_slab(page, flags, order, s)) { |
1444 | __free_pages(page, order); | |
1445 | page = NULL; | |
1446 | } | |
5dfb4175 VD |
1447 | |
1448 | return page; | |
65c3376a CL |
1449 | } |
1450 | ||
210e7a43 TG |
1451 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1452 | /* Pre-initialize the random sequence cache */ | |
1453 | static int init_cache_random_seq(struct kmem_cache *s) | |
1454 | { | |
19af27af | 1455 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1456 | int err; |
210e7a43 | 1457 | |
a810007a SR |
1458 | /* Bailout if already initialised */ |
1459 | if (s->random_seq) | |
1460 | return 0; | |
1461 | ||
210e7a43 TG |
1462 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1463 | if (err) { | |
1464 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1465 | s->name); | |
1466 | return err; | |
1467 | } | |
1468 | ||
1469 | /* Transform to an offset on the set of pages */ | |
1470 | if (s->random_seq) { | |
19af27af AD |
1471 | unsigned int i; |
1472 | ||
210e7a43 TG |
1473 | for (i = 0; i < count; i++) |
1474 | s->random_seq[i] *= s->size; | |
1475 | } | |
1476 | return 0; | |
1477 | } | |
1478 | ||
1479 | /* Initialize each random sequence freelist per cache */ | |
1480 | static void __init init_freelist_randomization(void) | |
1481 | { | |
1482 | struct kmem_cache *s; | |
1483 | ||
1484 | mutex_lock(&slab_mutex); | |
1485 | ||
1486 | list_for_each_entry(s, &slab_caches, list) | |
1487 | init_cache_random_seq(s); | |
1488 | ||
1489 | mutex_unlock(&slab_mutex); | |
1490 | } | |
1491 | ||
1492 | /* Get the next entry on the pre-computed freelist randomized */ | |
1493 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1494 | unsigned long *pos, void *start, | |
1495 | unsigned long page_limit, | |
1496 | unsigned long freelist_count) | |
1497 | { | |
1498 | unsigned int idx; | |
1499 | ||
1500 | /* | |
1501 | * If the target page allocation failed, the number of objects on the | |
1502 | * page might be smaller than the usual size defined by the cache. | |
1503 | */ | |
1504 | do { | |
1505 | idx = s->random_seq[*pos]; | |
1506 | *pos += 1; | |
1507 | if (*pos >= freelist_count) | |
1508 | *pos = 0; | |
1509 | } while (unlikely(idx >= page_limit)); | |
1510 | ||
1511 | return (char *)start + idx; | |
1512 | } | |
1513 | ||
1514 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1515 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1516 | { | |
1517 | void *start; | |
1518 | void *cur; | |
1519 | void *next; | |
1520 | unsigned long idx, pos, page_limit, freelist_count; | |
1521 | ||
1522 | if (page->objects < 2 || !s->random_seq) | |
1523 | return false; | |
1524 | ||
1525 | freelist_count = oo_objects(s->oo); | |
1526 | pos = get_random_int() % freelist_count; | |
1527 | ||
1528 | page_limit = page->objects * s->size; | |
1529 | start = fixup_red_left(s, page_address(page)); | |
1530 | ||
1531 | /* First entry is used as the base of the freelist */ | |
1532 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1533 | freelist_count); | |
1534 | page->freelist = cur; | |
1535 | ||
1536 | for (idx = 1; idx < page->objects; idx++) { | |
1537 | setup_object(s, page, cur); | |
1538 | next = next_freelist_entry(s, page, &pos, start, page_limit, | |
1539 | freelist_count); | |
1540 | set_freepointer(s, cur, next); | |
1541 | cur = next; | |
1542 | } | |
1543 | setup_object(s, page, cur); | |
1544 | set_freepointer(s, cur, NULL); | |
1545 | ||
1546 | return true; | |
1547 | } | |
1548 | #else | |
1549 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1550 | { | |
1551 | return 0; | |
1552 | } | |
1553 | static inline void init_freelist_randomization(void) { } | |
1554 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1555 | { | |
1556 | return false; | |
1557 | } | |
1558 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1559 | ||
81819f0f CL |
1560 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1561 | { | |
06428780 | 1562 | struct page *page; |
834f3d11 | 1563 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1564 | gfp_t alloc_gfp; |
588f8ba9 TG |
1565 | void *start, *p; |
1566 | int idx, order; | |
210e7a43 | 1567 | bool shuffle; |
81819f0f | 1568 | |
7e0528da CL |
1569 | flags &= gfp_allowed_mask; |
1570 | ||
d0164adc | 1571 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1572 | local_irq_enable(); |
1573 | ||
b7a49f0d | 1574 | flags |= s->allocflags; |
e12ba74d | 1575 | |
ba52270d PE |
1576 | /* |
1577 | * Let the initial higher-order allocation fail under memory pressure | |
1578 | * so we fall-back to the minimum order allocation. | |
1579 | */ | |
1580 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1581 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1582 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1583 | |
5dfb4175 | 1584 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1585 | if (unlikely(!page)) { |
1586 | oo = s->min; | |
80c3a998 | 1587 | alloc_gfp = flags; |
65c3376a CL |
1588 | /* |
1589 | * Allocation may have failed due to fragmentation. | |
1590 | * Try a lower order alloc if possible | |
1591 | */ | |
5dfb4175 | 1592 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1593 | if (unlikely(!page)) |
1594 | goto out; | |
1595 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1596 | } |
5a896d9e | 1597 | |
834f3d11 | 1598 | page->objects = oo_objects(oo); |
81819f0f | 1599 | |
1f458cbf | 1600 | order = compound_order(page); |
1b4f59e3 | 1601 | page->slab_cache = s; |
c03f94cc | 1602 | __SetPageSlab(page); |
2f064f34 | 1603 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1604 | SetPageSlabPfmemalloc(page); |
81819f0f CL |
1605 | |
1606 | start = page_address(page); | |
81819f0f CL |
1607 | |
1608 | if (unlikely(s->flags & SLAB_POISON)) | |
1f458cbf | 1609 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
81819f0f | 1610 | |
0316bec2 AR |
1611 | kasan_poison_slab(page); |
1612 | ||
210e7a43 TG |
1613 | shuffle = shuffle_freelist(s, page); |
1614 | ||
1615 | if (!shuffle) { | |
1616 | for_each_object_idx(p, idx, s, start, page->objects) { | |
1617 | setup_object(s, page, p); | |
1618 | if (likely(idx < page->objects)) | |
1619 | set_freepointer(s, p, p + s->size); | |
1620 | else | |
1621 | set_freepointer(s, p, NULL); | |
1622 | } | |
1623 | page->freelist = fixup_red_left(s, start); | |
81819f0f | 1624 | } |
81819f0f | 1625 | |
e6e82ea1 | 1626 | page->inuse = page->objects; |
8cb0a506 | 1627 | page->frozen = 1; |
588f8ba9 | 1628 | |
81819f0f | 1629 | out: |
d0164adc | 1630 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1631 | local_irq_disable(); |
1632 | if (!page) | |
1633 | return NULL; | |
1634 | ||
7779f212 | 1635 | mod_lruvec_page_state(page, |
588f8ba9 TG |
1636 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1637 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1638 | 1 << oo_order(oo)); | |
1639 | ||
1640 | inc_slabs_node(s, page_to_nid(page), page->objects); | |
1641 | ||
81819f0f CL |
1642 | return page; |
1643 | } | |
1644 | ||
588f8ba9 TG |
1645 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1646 | { | |
1647 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1648 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1649 | flags &= ~GFP_SLAB_BUG_MASK; |
1650 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1651 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1652 | dump_stack(); |
588f8ba9 TG |
1653 | } |
1654 | ||
1655 | return allocate_slab(s, | |
1656 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1657 | } | |
1658 | ||
81819f0f CL |
1659 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1660 | { | |
834f3d11 CL |
1661 | int order = compound_order(page); |
1662 | int pages = 1 << order; | |
81819f0f | 1663 | |
becfda68 | 1664 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1665 | void *p; |
1666 | ||
1667 | slab_pad_check(s, page); | |
224a88be CL |
1668 | for_each_object(p, s, page_address(page), |
1669 | page->objects) | |
f7cb1933 | 1670 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1671 | } |
1672 | ||
7779f212 | 1673 | mod_lruvec_page_state(page, |
81819f0f CL |
1674 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1675 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1676 | -pages); |
81819f0f | 1677 | |
072bb0aa | 1678 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1679 | __ClearPageSlab(page); |
1f458cbf | 1680 | |
d4fc5069 | 1681 | page->mapping = NULL; |
1eb5ac64 NP |
1682 | if (current->reclaim_state) |
1683 | current->reclaim_state->reclaimed_slab += pages; | |
27ee57c9 VD |
1684 | memcg_uncharge_slab(page, order, s); |
1685 | __free_pages(page, order); | |
81819f0f CL |
1686 | } |
1687 | ||
1688 | static void rcu_free_slab(struct rcu_head *h) | |
1689 | { | |
bf68c214 | 1690 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1691 | |
1b4f59e3 | 1692 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1693 | } |
1694 | ||
1695 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1696 | { | |
5f0d5a3a | 1697 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1698 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1699 | } else |
1700 | __free_slab(s, page); | |
1701 | } | |
1702 | ||
1703 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1704 | { | |
205ab99d | 1705 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1706 | free_slab(s, page); |
1707 | } | |
1708 | ||
1709 | /* | |
5cc6eee8 | 1710 | * Management of partially allocated slabs. |
81819f0f | 1711 | */ |
1e4dd946 SR |
1712 | static inline void |
1713 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1714 | { |
e95eed57 | 1715 | n->nr_partial++; |
136333d1 | 1716 | if (tail == DEACTIVATE_TO_TAIL) |
7c2e132c CL |
1717 | list_add_tail(&page->lru, &n->partial); |
1718 | else | |
1719 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1720 | } |
1721 | ||
1e4dd946 SR |
1722 | static inline void add_partial(struct kmem_cache_node *n, |
1723 | struct page *page, int tail) | |
62e346a8 | 1724 | { |
c65c1877 | 1725 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1726 | __add_partial(n, page, tail); |
1727 | } | |
c65c1877 | 1728 | |
1e4dd946 SR |
1729 | static inline void remove_partial(struct kmem_cache_node *n, |
1730 | struct page *page) | |
1731 | { | |
1732 | lockdep_assert_held(&n->list_lock); | |
52b4b950 DS |
1733 | list_del(&page->lru); |
1734 | n->nr_partial--; | |
1e4dd946 SR |
1735 | } |
1736 | ||
81819f0f | 1737 | /* |
7ced3719 CL |
1738 | * Remove slab from the partial list, freeze it and |
1739 | * return the pointer to the freelist. | |
81819f0f | 1740 | * |
497b66f2 | 1741 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1742 | */ |
497b66f2 | 1743 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1744 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1745 | int mode, int *objects) |
81819f0f | 1746 | { |
2cfb7455 CL |
1747 | void *freelist; |
1748 | unsigned long counters; | |
1749 | struct page new; | |
1750 | ||
c65c1877 PZ |
1751 | lockdep_assert_held(&n->list_lock); |
1752 | ||
2cfb7455 CL |
1753 | /* |
1754 | * Zap the freelist and set the frozen bit. | |
1755 | * The old freelist is the list of objects for the | |
1756 | * per cpu allocation list. | |
1757 | */ | |
7ced3719 CL |
1758 | freelist = page->freelist; |
1759 | counters = page->counters; | |
1760 | new.counters = counters; | |
633b0764 | 1761 | *objects = new.objects - new.inuse; |
23910c50 | 1762 | if (mode) { |
7ced3719 | 1763 | new.inuse = page->objects; |
23910c50 PE |
1764 | new.freelist = NULL; |
1765 | } else { | |
1766 | new.freelist = freelist; | |
1767 | } | |
2cfb7455 | 1768 | |
a0132ac0 | 1769 | VM_BUG_ON(new.frozen); |
7ced3719 | 1770 | new.frozen = 1; |
2cfb7455 | 1771 | |
7ced3719 | 1772 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1773 | freelist, counters, |
02d7633f | 1774 | new.freelist, new.counters, |
7ced3719 | 1775 | "acquire_slab")) |
7ced3719 | 1776 | return NULL; |
2cfb7455 CL |
1777 | |
1778 | remove_partial(n, page); | |
7ced3719 | 1779 | WARN_ON(!freelist); |
49e22585 | 1780 | return freelist; |
81819f0f CL |
1781 | } |
1782 | ||
633b0764 | 1783 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1784 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1785 | |
81819f0f | 1786 | /* |
672bba3a | 1787 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1788 | */ |
8ba00bb6 JK |
1789 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1790 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1791 | { |
49e22585 CL |
1792 | struct page *page, *page2; |
1793 | void *object = NULL; | |
e5d9998f | 1794 | unsigned int available = 0; |
633b0764 | 1795 | int objects; |
81819f0f CL |
1796 | |
1797 | /* | |
1798 | * Racy check. If we mistakenly see no partial slabs then we | |
1799 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1800 | * partial slab and there is none available then get_partials() |
1801 | * will return NULL. | |
81819f0f CL |
1802 | */ |
1803 | if (!n || !n->nr_partial) | |
1804 | return NULL; | |
1805 | ||
1806 | spin_lock(&n->list_lock); | |
49e22585 | 1807 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
8ba00bb6 | 1808 | void *t; |
49e22585 | 1809 | |
8ba00bb6 JK |
1810 | if (!pfmemalloc_match(page, flags)) |
1811 | continue; | |
1812 | ||
633b0764 | 1813 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1814 | if (!t) |
1815 | break; | |
1816 | ||
633b0764 | 1817 | available += objects; |
12d79634 | 1818 | if (!object) { |
49e22585 | 1819 | c->page = page; |
49e22585 | 1820 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1821 | object = t; |
49e22585 | 1822 | } else { |
633b0764 | 1823 | put_cpu_partial(s, page, 0); |
8028dcea | 1824 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1825 | } |
345c905d | 1826 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1827 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1828 | break; |
1829 | ||
497b66f2 | 1830 | } |
81819f0f | 1831 | spin_unlock(&n->list_lock); |
497b66f2 | 1832 | return object; |
81819f0f CL |
1833 | } |
1834 | ||
1835 | /* | |
672bba3a | 1836 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1837 | */ |
de3ec035 | 1838 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1839 | struct kmem_cache_cpu *c) |
81819f0f CL |
1840 | { |
1841 | #ifdef CONFIG_NUMA | |
1842 | struct zonelist *zonelist; | |
dd1a239f | 1843 | struct zoneref *z; |
54a6eb5c MG |
1844 | struct zone *zone; |
1845 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1846 | void *object; |
cc9a6c87 | 1847 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1848 | |
1849 | /* | |
672bba3a CL |
1850 | * The defrag ratio allows a configuration of the tradeoffs between |
1851 | * inter node defragmentation and node local allocations. A lower | |
1852 | * defrag_ratio increases the tendency to do local allocations | |
1853 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1854 | * |
672bba3a CL |
1855 | * If the defrag_ratio is set to 0 then kmalloc() always |
1856 | * returns node local objects. If the ratio is higher then kmalloc() | |
1857 | * may return off node objects because partial slabs are obtained | |
1858 | * from other nodes and filled up. | |
81819f0f | 1859 | * |
43efd3ea LP |
1860 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1861 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1862 | * allocation will first attempt to defrag slab caches on other nodes. | |
1863 | * This means scanning over all nodes to look for partial slabs which | |
1864 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1865 | * with available objects. |
81819f0f | 1866 | */ |
9824601e CL |
1867 | if (!s->remote_node_defrag_ratio || |
1868 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1869 | return NULL; |
1870 | ||
cc9a6c87 | 1871 | do { |
d26914d1 | 1872 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1873 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1874 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1875 | struct kmem_cache_node *n; | |
1876 | ||
1877 | n = get_node(s, zone_to_nid(zone)); | |
1878 | ||
dee2f8aa | 1879 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1880 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1881 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1882 | if (object) { |
1883 | /* | |
d26914d1 MG |
1884 | * Don't check read_mems_allowed_retry() |
1885 | * here - if mems_allowed was updated in | |
1886 | * parallel, that was a harmless race | |
1887 | * between allocation and the cpuset | |
1888 | * update | |
cc9a6c87 | 1889 | */ |
cc9a6c87 MG |
1890 | return object; |
1891 | } | |
c0ff7453 | 1892 | } |
81819f0f | 1893 | } |
d26914d1 | 1894 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
81819f0f CL |
1895 | #endif |
1896 | return NULL; | |
1897 | } | |
1898 | ||
1899 | /* | |
1900 | * Get a partial page, lock it and return it. | |
1901 | */ | |
497b66f2 | 1902 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1903 | struct kmem_cache_cpu *c) |
81819f0f | 1904 | { |
497b66f2 | 1905 | void *object; |
a561ce00 JK |
1906 | int searchnode = node; |
1907 | ||
1908 | if (node == NUMA_NO_NODE) | |
1909 | searchnode = numa_mem_id(); | |
1910 | else if (!node_present_pages(node)) | |
1911 | searchnode = node_to_mem_node(node); | |
81819f0f | 1912 | |
8ba00bb6 | 1913 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1914 | if (object || node != NUMA_NO_NODE) |
1915 | return object; | |
81819f0f | 1916 | |
acd19fd1 | 1917 | return get_any_partial(s, flags, c); |
81819f0f CL |
1918 | } |
1919 | ||
8a5ec0ba CL |
1920 | #ifdef CONFIG_PREEMPT |
1921 | /* | |
1922 | * Calculate the next globally unique transaction for disambiguiation | |
1923 | * during cmpxchg. The transactions start with the cpu number and are then | |
1924 | * incremented by CONFIG_NR_CPUS. | |
1925 | */ | |
1926 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1927 | #else | |
1928 | /* | |
1929 | * No preemption supported therefore also no need to check for | |
1930 | * different cpus. | |
1931 | */ | |
1932 | #define TID_STEP 1 | |
1933 | #endif | |
1934 | ||
1935 | static inline unsigned long next_tid(unsigned long tid) | |
1936 | { | |
1937 | return tid + TID_STEP; | |
1938 | } | |
1939 | ||
1940 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1941 | { | |
1942 | return tid % TID_STEP; | |
1943 | } | |
1944 | ||
1945 | static inline unsigned long tid_to_event(unsigned long tid) | |
1946 | { | |
1947 | return tid / TID_STEP; | |
1948 | } | |
1949 | ||
1950 | static inline unsigned int init_tid(int cpu) | |
1951 | { | |
1952 | return cpu; | |
1953 | } | |
1954 | ||
1955 | static inline void note_cmpxchg_failure(const char *n, | |
1956 | const struct kmem_cache *s, unsigned long tid) | |
1957 | { | |
1958 | #ifdef SLUB_DEBUG_CMPXCHG | |
1959 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
1960 | ||
f9f58285 | 1961 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba CL |
1962 | |
1963 | #ifdef CONFIG_PREEMPT | |
1964 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
f9f58285 | 1965 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
1966 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
1967 | else | |
1968 | #endif | |
1969 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 1970 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
1971 | tid_to_event(tid), tid_to_event(actual_tid)); |
1972 | else | |
f9f58285 | 1973 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
1974 | actual_tid, tid, next_tid(tid)); |
1975 | #endif | |
4fdccdfb | 1976 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
1977 | } |
1978 | ||
788e1aad | 1979 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 1980 | { |
8a5ec0ba CL |
1981 | int cpu; |
1982 | ||
1983 | for_each_possible_cpu(cpu) | |
1984 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 1985 | } |
2cfb7455 | 1986 | |
81819f0f CL |
1987 | /* |
1988 | * Remove the cpu slab | |
1989 | */ | |
d0e0ac97 | 1990 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 1991 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 1992 | { |
2cfb7455 | 1993 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
1994 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1995 | int lock = 0; | |
1996 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 1997 | void *nextfree; |
136333d1 | 1998 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
1999 | struct page new; |
2000 | struct page old; | |
2001 | ||
2002 | if (page->freelist) { | |
84e554e6 | 2003 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2004 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2005 | } |
2006 | ||
894b8788 | 2007 | /* |
2cfb7455 CL |
2008 | * Stage one: Free all available per cpu objects back |
2009 | * to the page freelist while it is still frozen. Leave the | |
2010 | * last one. | |
2011 | * | |
2012 | * There is no need to take the list->lock because the page | |
2013 | * is still frozen. | |
2014 | */ | |
2015 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2016 | void *prior; | |
2017 | unsigned long counters; | |
2018 | ||
2019 | do { | |
2020 | prior = page->freelist; | |
2021 | counters = page->counters; | |
2022 | set_freepointer(s, freelist, prior); | |
2023 | new.counters = counters; | |
2024 | new.inuse--; | |
a0132ac0 | 2025 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2026 | |
1d07171c | 2027 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2028 | prior, counters, |
2029 | freelist, new.counters, | |
2030 | "drain percpu freelist")); | |
2031 | ||
2032 | freelist = nextfree; | |
2033 | } | |
2034 | ||
894b8788 | 2035 | /* |
2cfb7455 CL |
2036 | * Stage two: Ensure that the page is unfrozen while the |
2037 | * list presence reflects the actual number of objects | |
2038 | * during unfreeze. | |
2039 | * | |
2040 | * We setup the list membership and then perform a cmpxchg | |
2041 | * with the count. If there is a mismatch then the page | |
2042 | * is not unfrozen but the page is on the wrong list. | |
2043 | * | |
2044 | * Then we restart the process which may have to remove | |
2045 | * the page from the list that we just put it on again | |
2046 | * because the number of objects in the slab may have | |
2047 | * changed. | |
894b8788 | 2048 | */ |
2cfb7455 | 2049 | redo: |
894b8788 | 2050 | |
2cfb7455 CL |
2051 | old.freelist = page->freelist; |
2052 | old.counters = page->counters; | |
a0132ac0 | 2053 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2054 | |
2cfb7455 CL |
2055 | /* Determine target state of the slab */ |
2056 | new.counters = old.counters; | |
2057 | if (freelist) { | |
2058 | new.inuse--; | |
2059 | set_freepointer(s, freelist, old.freelist); | |
2060 | new.freelist = freelist; | |
2061 | } else | |
2062 | new.freelist = old.freelist; | |
2063 | ||
2064 | new.frozen = 0; | |
2065 | ||
8a5b20ae | 2066 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2067 | m = M_FREE; |
2068 | else if (new.freelist) { | |
2069 | m = M_PARTIAL; | |
2070 | if (!lock) { | |
2071 | lock = 1; | |
2072 | /* | |
2073 | * Taking the spinlock removes the possiblity | |
2074 | * that acquire_slab() will see a slab page that | |
2075 | * is frozen | |
2076 | */ | |
2077 | spin_lock(&n->list_lock); | |
2078 | } | |
2079 | } else { | |
2080 | m = M_FULL; | |
2081 | if (kmem_cache_debug(s) && !lock) { | |
2082 | lock = 1; | |
2083 | /* | |
2084 | * This also ensures that the scanning of full | |
2085 | * slabs from diagnostic functions will not see | |
2086 | * any frozen slabs. | |
2087 | */ | |
2088 | spin_lock(&n->list_lock); | |
2089 | } | |
2090 | } | |
2091 | ||
2092 | if (l != m) { | |
2093 | ||
2094 | if (l == M_PARTIAL) | |
2095 | ||
2096 | remove_partial(n, page); | |
2097 | ||
2098 | else if (l == M_FULL) | |
894b8788 | 2099 | |
c65c1877 | 2100 | remove_full(s, n, page); |
2cfb7455 CL |
2101 | |
2102 | if (m == M_PARTIAL) { | |
2103 | ||
2104 | add_partial(n, page, tail); | |
136333d1 | 2105 | stat(s, tail); |
2cfb7455 CL |
2106 | |
2107 | } else if (m == M_FULL) { | |
894b8788 | 2108 | |
2cfb7455 CL |
2109 | stat(s, DEACTIVATE_FULL); |
2110 | add_full(s, n, page); | |
2111 | ||
2112 | } | |
2113 | } | |
2114 | ||
2115 | l = m; | |
1d07171c | 2116 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2117 | old.freelist, old.counters, |
2118 | new.freelist, new.counters, | |
2119 | "unfreezing slab")) | |
2120 | goto redo; | |
2121 | ||
2cfb7455 CL |
2122 | if (lock) |
2123 | spin_unlock(&n->list_lock); | |
2124 | ||
2125 | if (m == M_FREE) { | |
2126 | stat(s, DEACTIVATE_EMPTY); | |
2127 | discard_slab(s, page); | |
2128 | stat(s, FREE_SLAB); | |
894b8788 | 2129 | } |
d4ff6d35 WY |
2130 | |
2131 | c->page = NULL; | |
2132 | c->freelist = NULL; | |
81819f0f CL |
2133 | } |
2134 | ||
d24ac77f JK |
2135 | /* |
2136 | * Unfreeze all the cpu partial slabs. | |
2137 | * | |
59a09917 CL |
2138 | * This function must be called with interrupts disabled |
2139 | * for the cpu using c (or some other guarantee must be there | |
2140 | * to guarantee no concurrent accesses). | |
d24ac77f | 2141 | */ |
59a09917 CL |
2142 | static void unfreeze_partials(struct kmem_cache *s, |
2143 | struct kmem_cache_cpu *c) | |
49e22585 | 2144 | { |
345c905d | 2145 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2146 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2147 | struct page *page, *discard_page = NULL; |
49e22585 CL |
2148 | |
2149 | while ((page = c->partial)) { | |
49e22585 CL |
2150 | struct page new; |
2151 | struct page old; | |
2152 | ||
2153 | c->partial = page->next; | |
43d77867 JK |
2154 | |
2155 | n2 = get_node(s, page_to_nid(page)); | |
2156 | if (n != n2) { | |
2157 | if (n) | |
2158 | spin_unlock(&n->list_lock); | |
2159 | ||
2160 | n = n2; | |
2161 | spin_lock(&n->list_lock); | |
2162 | } | |
49e22585 CL |
2163 | |
2164 | do { | |
2165 | ||
2166 | old.freelist = page->freelist; | |
2167 | old.counters = page->counters; | |
a0132ac0 | 2168 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2169 | |
2170 | new.counters = old.counters; | |
2171 | new.freelist = old.freelist; | |
2172 | ||
2173 | new.frozen = 0; | |
2174 | ||
d24ac77f | 2175 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2176 | old.freelist, old.counters, |
2177 | new.freelist, new.counters, | |
2178 | "unfreezing slab")); | |
2179 | ||
8a5b20ae | 2180 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2181 | page->next = discard_page; |
2182 | discard_page = page; | |
43d77867 JK |
2183 | } else { |
2184 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2185 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2186 | } |
2187 | } | |
2188 | ||
2189 | if (n) | |
2190 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2191 | |
2192 | while (discard_page) { | |
2193 | page = discard_page; | |
2194 | discard_page = discard_page->next; | |
2195 | ||
2196 | stat(s, DEACTIVATE_EMPTY); | |
2197 | discard_slab(s, page); | |
2198 | stat(s, FREE_SLAB); | |
2199 | } | |
345c905d | 2200 | #endif |
49e22585 CL |
2201 | } |
2202 | ||
2203 | /* | |
2204 | * Put a page that was just frozen (in __slab_free) into a partial page | |
0d2d5d40 | 2205 | * slot if available. |
49e22585 CL |
2206 | * |
2207 | * If we did not find a slot then simply move all the partials to the | |
2208 | * per node partial list. | |
2209 | */ | |
633b0764 | 2210 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2211 | { |
345c905d | 2212 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2213 | struct page *oldpage; |
2214 | int pages; | |
2215 | int pobjects; | |
2216 | ||
d6e0b7fa | 2217 | preempt_disable(); |
49e22585 CL |
2218 | do { |
2219 | pages = 0; | |
2220 | pobjects = 0; | |
2221 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2222 | ||
2223 | if (oldpage) { | |
2224 | pobjects = oldpage->pobjects; | |
2225 | pages = oldpage->pages; | |
2226 | if (drain && pobjects > s->cpu_partial) { | |
2227 | unsigned long flags; | |
2228 | /* | |
2229 | * partial array is full. Move the existing | |
2230 | * set to the per node partial list. | |
2231 | */ | |
2232 | local_irq_save(flags); | |
59a09917 | 2233 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2234 | local_irq_restore(flags); |
e24fc410 | 2235 | oldpage = NULL; |
49e22585 CL |
2236 | pobjects = 0; |
2237 | pages = 0; | |
8028dcea | 2238 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2239 | } |
2240 | } | |
2241 | ||
2242 | pages++; | |
2243 | pobjects += page->objects - page->inuse; | |
2244 | ||
2245 | page->pages = pages; | |
2246 | page->pobjects = pobjects; | |
2247 | page->next = oldpage; | |
2248 | ||
d0e0ac97 CG |
2249 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2250 | != oldpage); | |
d6e0b7fa VD |
2251 | if (unlikely(!s->cpu_partial)) { |
2252 | unsigned long flags; | |
2253 | ||
2254 | local_irq_save(flags); | |
2255 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2256 | local_irq_restore(flags); | |
2257 | } | |
2258 | preempt_enable(); | |
345c905d | 2259 | #endif |
49e22585 CL |
2260 | } |
2261 | ||
dfb4f096 | 2262 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2263 | { |
84e554e6 | 2264 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2265 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2266 | |
2267 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2268 | } |
2269 | ||
2270 | /* | |
2271 | * Flush cpu slab. | |
6446faa2 | 2272 | * |
81819f0f CL |
2273 | * Called from IPI handler with interrupts disabled. |
2274 | */ | |
0c710013 | 2275 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2276 | { |
9dfc6e68 | 2277 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2278 | |
49e22585 CL |
2279 | if (likely(c)) { |
2280 | if (c->page) | |
2281 | flush_slab(s, c); | |
2282 | ||
59a09917 | 2283 | unfreeze_partials(s, c); |
49e22585 | 2284 | } |
81819f0f CL |
2285 | } |
2286 | ||
2287 | static void flush_cpu_slab(void *d) | |
2288 | { | |
2289 | struct kmem_cache *s = d; | |
81819f0f | 2290 | |
dfb4f096 | 2291 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2292 | } |
2293 | ||
a8364d55 GBY |
2294 | static bool has_cpu_slab(int cpu, void *info) |
2295 | { | |
2296 | struct kmem_cache *s = info; | |
2297 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2298 | ||
a93cf07b | 2299 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2300 | } |
2301 | ||
81819f0f CL |
2302 | static void flush_all(struct kmem_cache *s) |
2303 | { | |
a8364d55 | 2304 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2305 | } |
2306 | ||
a96a87bf SAS |
2307 | /* |
2308 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2309 | * necessary. | |
2310 | */ | |
2311 | static int slub_cpu_dead(unsigned int cpu) | |
2312 | { | |
2313 | struct kmem_cache *s; | |
2314 | unsigned long flags; | |
2315 | ||
2316 | mutex_lock(&slab_mutex); | |
2317 | list_for_each_entry(s, &slab_caches, list) { | |
2318 | local_irq_save(flags); | |
2319 | __flush_cpu_slab(s, cpu); | |
2320 | local_irq_restore(flags); | |
2321 | } | |
2322 | mutex_unlock(&slab_mutex); | |
2323 | return 0; | |
2324 | } | |
2325 | ||
dfb4f096 CL |
2326 | /* |
2327 | * Check if the objects in a per cpu structure fit numa | |
2328 | * locality expectations. | |
2329 | */ | |
57d437d2 | 2330 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2331 | { |
2332 | #ifdef CONFIG_NUMA | |
4d7868e6 | 2333 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
dfb4f096 CL |
2334 | return 0; |
2335 | #endif | |
2336 | return 1; | |
2337 | } | |
2338 | ||
9a02d699 | 2339 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2340 | static int count_free(struct page *page) |
2341 | { | |
2342 | return page->objects - page->inuse; | |
2343 | } | |
2344 | ||
9a02d699 DR |
2345 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2346 | { | |
2347 | return atomic_long_read(&n->total_objects); | |
2348 | } | |
2349 | #endif /* CONFIG_SLUB_DEBUG */ | |
2350 | ||
2351 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2352 | static unsigned long count_partial(struct kmem_cache_node *n, |
2353 | int (*get_count)(struct page *)) | |
2354 | { | |
2355 | unsigned long flags; | |
2356 | unsigned long x = 0; | |
2357 | struct page *page; | |
2358 | ||
2359 | spin_lock_irqsave(&n->list_lock, flags); | |
2360 | list_for_each_entry(page, &n->partial, lru) | |
2361 | x += get_count(page); | |
2362 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2363 | return x; | |
2364 | } | |
9a02d699 | 2365 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2366 | |
781b2ba6 PE |
2367 | static noinline void |
2368 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2369 | { | |
9a02d699 DR |
2370 | #ifdef CONFIG_SLUB_DEBUG |
2371 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2372 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2373 | int node; |
fa45dc25 | 2374 | struct kmem_cache_node *n; |
781b2ba6 | 2375 | |
9a02d699 DR |
2376 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2377 | return; | |
2378 | ||
5b3810e5 VB |
2379 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2380 | nid, gfpflags, &gfpflags); | |
19af27af | 2381 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2382 | s->name, s->object_size, s->size, oo_order(s->oo), |
2383 | oo_order(s->min)); | |
781b2ba6 | 2384 | |
3b0efdfa | 2385 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2386 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2387 | s->name); | |
fa5ec8a1 | 2388 | |
fa45dc25 | 2389 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2390 | unsigned long nr_slabs; |
2391 | unsigned long nr_objs; | |
2392 | unsigned long nr_free; | |
2393 | ||
26c02cf0 AB |
2394 | nr_free = count_partial(n, count_free); |
2395 | nr_slabs = node_nr_slabs(n); | |
2396 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2397 | |
f9f58285 | 2398 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2399 | node, nr_slabs, nr_objs, nr_free); |
2400 | } | |
9a02d699 | 2401 | #endif |
781b2ba6 PE |
2402 | } |
2403 | ||
497b66f2 CL |
2404 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2405 | int node, struct kmem_cache_cpu **pc) | |
2406 | { | |
6faa6833 | 2407 | void *freelist; |
188fd063 CL |
2408 | struct kmem_cache_cpu *c = *pc; |
2409 | struct page *page; | |
497b66f2 | 2410 | |
128227e7 MW |
2411 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2412 | ||
188fd063 | 2413 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2414 | |
188fd063 CL |
2415 | if (freelist) |
2416 | return freelist; | |
2417 | ||
2418 | page = new_slab(s, flags, node); | |
497b66f2 | 2419 | if (page) { |
7c8e0181 | 2420 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2421 | if (c->page) |
2422 | flush_slab(s, c); | |
2423 | ||
2424 | /* | |
2425 | * No other reference to the page yet so we can | |
2426 | * muck around with it freely without cmpxchg | |
2427 | */ | |
6faa6833 | 2428 | freelist = page->freelist; |
497b66f2 CL |
2429 | page->freelist = NULL; |
2430 | ||
2431 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2432 | c->page = page; |
2433 | *pc = c; | |
2434 | } else | |
6faa6833 | 2435 | freelist = NULL; |
497b66f2 | 2436 | |
6faa6833 | 2437 | return freelist; |
497b66f2 CL |
2438 | } |
2439 | ||
072bb0aa MG |
2440 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2441 | { | |
2442 | if (unlikely(PageSlabPfmemalloc(page))) | |
2443 | return gfp_pfmemalloc_allowed(gfpflags); | |
2444 | ||
2445 | return true; | |
2446 | } | |
2447 | ||
213eeb9f | 2448 | /* |
d0e0ac97 CG |
2449 | * Check the page->freelist of a page and either transfer the freelist to the |
2450 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2451 | * |
2452 | * The page is still frozen if the return value is not NULL. | |
2453 | * | |
2454 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2455 | * |
2456 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2457 | */ |
2458 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2459 | { | |
2460 | struct page new; | |
2461 | unsigned long counters; | |
2462 | void *freelist; | |
2463 | ||
2464 | do { | |
2465 | freelist = page->freelist; | |
2466 | counters = page->counters; | |
6faa6833 | 2467 | |
213eeb9f | 2468 | new.counters = counters; |
a0132ac0 | 2469 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2470 | |
2471 | new.inuse = page->objects; | |
2472 | new.frozen = freelist != NULL; | |
2473 | ||
d24ac77f | 2474 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2475 | freelist, counters, |
2476 | NULL, new.counters, | |
2477 | "get_freelist")); | |
2478 | ||
2479 | return freelist; | |
2480 | } | |
2481 | ||
81819f0f | 2482 | /* |
894b8788 CL |
2483 | * Slow path. The lockless freelist is empty or we need to perform |
2484 | * debugging duties. | |
2485 | * | |
894b8788 CL |
2486 | * Processing is still very fast if new objects have been freed to the |
2487 | * regular freelist. In that case we simply take over the regular freelist | |
2488 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2489 | * |
894b8788 CL |
2490 | * If that is not working then we fall back to the partial lists. We take the |
2491 | * first element of the freelist as the object to allocate now and move the | |
2492 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2493 | * |
894b8788 | 2494 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2495 | * we need to allocate a new slab. This is the slowest path since it involves |
2496 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2497 | * |
2498 | * Version of __slab_alloc to use when we know that interrupts are | |
2499 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2500 | */ |
a380a3c7 | 2501 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2502 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2503 | { |
6faa6833 | 2504 | void *freelist; |
f6e7def7 | 2505 | struct page *page; |
81819f0f | 2506 | |
f6e7def7 CL |
2507 | page = c->page; |
2508 | if (!page) | |
81819f0f | 2509 | goto new_slab; |
49e22585 | 2510 | redo: |
6faa6833 | 2511 | |
57d437d2 | 2512 | if (unlikely(!node_match(page, node))) { |
a561ce00 JK |
2513 | int searchnode = node; |
2514 | ||
2515 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | |
2516 | searchnode = node_to_mem_node(node); | |
2517 | ||
2518 | if (unlikely(!node_match(page, searchnode))) { | |
2519 | stat(s, ALLOC_NODE_MISMATCH); | |
d4ff6d35 | 2520 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2521 | goto new_slab; |
2522 | } | |
fc59c053 | 2523 | } |
6446faa2 | 2524 | |
072bb0aa MG |
2525 | /* |
2526 | * By rights, we should be searching for a slab page that was | |
2527 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2528 | * information when the page leaves the per-cpu allocator | |
2529 | */ | |
2530 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2531 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2532 | goto new_slab; |
2533 | } | |
2534 | ||
73736e03 | 2535 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2536 | freelist = c->freelist; |
2537 | if (freelist) | |
73736e03 | 2538 | goto load_freelist; |
03e404af | 2539 | |
f6e7def7 | 2540 | freelist = get_freelist(s, page); |
6446faa2 | 2541 | |
6faa6833 | 2542 | if (!freelist) { |
03e404af CL |
2543 | c->page = NULL; |
2544 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2545 | goto new_slab; |
03e404af | 2546 | } |
6446faa2 | 2547 | |
84e554e6 | 2548 | stat(s, ALLOC_REFILL); |
6446faa2 | 2549 | |
894b8788 | 2550 | load_freelist: |
507effea CL |
2551 | /* |
2552 | * freelist is pointing to the list of objects to be used. | |
2553 | * page is pointing to the page from which the objects are obtained. | |
2554 | * That page must be frozen for per cpu allocations to work. | |
2555 | */ | |
a0132ac0 | 2556 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2557 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2558 | c->tid = next_tid(c->tid); |
6faa6833 | 2559 | return freelist; |
81819f0f | 2560 | |
81819f0f | 2561 | new_slab: |
2cfb7455 | 2562 | |
a93cf07b WY |
2563 | if (slub_percpu_partial(c)) { |
2564 | page = c->page = slub_percpu_partial(c); | |
2565 | slub_set_percpu_partial(c, page); | |
49e22585 | 2566 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2567 | goto redo; |
81819f0f CL |
2568 | } |
2569 | ||
188fd063 | 2570 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2571 | |
f4697436 | 2572 | if (unlikely(!freelist)) { |
9a02d699 | 2573 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2574 | return NULL; |
81819f0f | 2575 | } |
2cfb7455 | 2576 | |
f6e7def7 | 2577 | page = c->page; |
5091b74a | 2578 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2579 | goto load_freelist; |
2cfb7455 | 2580 | |
497b66f2 | 2581 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2582 | if (kmem_cache_debug(s) && |
2583 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2584 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2585 | |
d4ff6d35 | 2586 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2587 | return freelist; |
894b8788 CL |
2588 | } |
2589 | ||
a380a3c7 CL |
2590 | /* |
2591 | * Another one that disabled interrupt and compensates for possible | |
2592 | * cpu changes by refetching the per cpu area pointer. | |
2593 | */ | |
2594 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2595 | unsigned long addr, struct kmem_cache_cpu *c) | |
2596 | { | |
2597 | void *p; | |
2598 | unsigned long flags; | |
2599 | ||
2600 | local_irq_save(flags); | |
2601 | #ifdef CONFIG_PREEMPT | |
2602 | /* | |
2603 | * We may have been preempted and rescheduled on a different | |
2604 | * cpu before disabling interrupts. Need to reload cpu area | |
2605 | * pointer. | |
2606 | */ | |
2607 | c = this_cpu_ptr(s->cpu_slab); | |
2608 | #endif | |
2609 | ||
2610 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2611 | local_irq_restore(flags); | |
2612 | return p; | |
2613 | } | |
2614 | ||
894b8788 CL |
2615 | /* |
2616 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2617 | * have the fastpath folded into their functions. So no function call | |
2618 | * overhead for requests that can be satisfied on the fastpath. | |
2619 | * | |
2620 | * The fastpath works by first checking if the lockless freelist can be used. | |
2621 | * If not then __slab_alloc is called for slow processing. | |
2622 | * | |
2623 | * Otherwise we can simply pick the next object from the lockless free list. | |
2624 | */ | |
2b847c3c | 2625 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2626 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2627 | { |
03ec0ed5 | 2628 | void *object; |
dfb4f096 | 2629 | struct kmem_cache_cpu *c; |
57d437d2 | 2630 | struct page *page; |
8a5ec0ba | 2631 | unsigned long tid; |
1f84260c | 2632 | |
8135be5a VD |
2633 | s = slab_pre_alloc_hook(s, gfpflags); |
2634 | if (!s) | |
773ff60e | 2635 | return NULL; |
8a5ec0ba | 2636 | redo: |
8a5ec0ba CL |
2637 | /* |
2638 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2639 | * enabled. We may switch back and forth between cpus while | |
2640 | * reading from one cpu area. That does not matter as long | |
2641 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2642 | * |
9aabf810 JK |
2643 | * We should guarantee that tid and kmem_cache are retrieved on |
2644 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | |
2645 | * to check if it is matched or not. | |
8a5ec0ba | 2646 | */ |
9aabf810 JK |
2647 | do { |
2648 | tid = this_cpu_read(s->cpu_slab->tid); | |
2649 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2650 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2651 | unlikely(tid != READ_ONCE(c->tid))); | |
9aabf810 JK |
2652 | |
2653 | /* | |
2654 | * Irqless object alloc/free algorithm used here depends on sequence | |
2655 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2656 | * on c to guarantee that object and page associated with previous tid | |
2657 | * won't be used with current tid. If we fetch tid first, object and | |
2658 | * page could be one associated with next tid and our alloc/free | |
2659 | * request will be failed. In this case, we will retry. So, no problem. | |
2660 | */ | |
2661 | barrier(); | |
8a5ec0ba | 2662 | |
8a5ec0ba CL |
2663 | /* |
2664 | * The transaction ids are globally unique per cpu and per operation on | |
2665 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2666 | * occurs on the right processor and that there was no operation on the | |
2667 | * linked list in between. | |
2668 | */ | |
8a5ec0ba | 2669 | |
9dfc6e68 | 2670 | object = c->freelist; |
57d437d2 | 2671 | page = c->page; |
8eae1492 | 2672 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2673 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2674 | stat(s, ALLOC_SLOWPATH); |
2675 | } else { | |
0ad9500e ED |
2676 | void *next_object = get_freepointer_safe(s, object); |
2677 | ||
8a5ec0ba | 2678 | /* |
25985edc | 2679 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2680 | * operation and if we are on the right processor. |
2681 | * | |
d0e0ac97 CG |
2682 | * The cmpxchg does the following atomically (without lock |
2683 | * semantics!) | |
8a5ec0ba CL |
2684 | * 1. Relocate first pointer to the current per cpu area. |
2685 | * 2. Verify that tid and freelist have not been changed | |
2686 | * 3. If they were not changed replace tid and freelist | |
2687 | * | |
d0e0ac97 CG |
2688 | * Since this is without lock semantics the protection is only |
2689 | * against code executing on this cpu *not* from access by | |
2690 | * other cpus. | |
8a5ec0ba | 2691 | */ |
933393f5 | 2692 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2693 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2694 | object, tid, | |
0ad9500e | 2695 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2696 | |
2697 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2698 | goto redo; | |
2699 | } | |
0ad9500e | 2700 | prefetch_freepointer(s, next_object); |
84e554e6 | 2701 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2702 | } |
8a5ec0ba | 2703 | |
74e2134f | 2704 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2705 | memset(object, 0, s->object_size); |
d07dbea4 | 2706 | |
03ec0ed5 | 2707 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2708 | |
894b8788 | 2709 | return object; |
81819f0f CL |
2710 | } |
2711 | ||
2b847c3c EG |
2712 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2713 | gfp_t gfpflags, unsigned long addr) | |
2714 | { | |
2715 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2716 | } | |
2717 | ||
81819f0f CL |
2718 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2719 | { | |
2b847c3c | 2720 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2721 | |
d0e0ac97 CG |
2722 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2723 | s->size, gfpflags); | |
5b882be4 EGM |
2724 | |
2725 | return ret; | |
81819f0f CL |
2726 | } |
2727 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2728 | ||
0f24f128 | 2729 | #ifdef CONFIG_TRACING |
4a92379b RK |
2730 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2731 | { | |
2b847c3c | 2732 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2733 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
505f5dcb | 2734 | kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2735 | return ret; |
2736 | } | |
2737 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2738 | #endif |
2739 | ||
81819f0f CL |
2740 | #ifdef CONFIG_NUMA |
2741 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2742 | { | |
2b847c3c | 2743 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2744 | |
ca2b84cb | 2745 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2746 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2747 | |
2748 | return ret; | |
81819f0f CL |
2749 | } |
2750 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2751 | |
0f24f128 | 2752 | #ifdef CONFIG_TRACING |
4a92379b | 2753 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2754 | gfp_t gfpflags, |
4a92379b | 2755 | int node, size_t size) |
5b882be4 | 2756 | { |
2b847c3c | 2757 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2758 | |
2759 | trace_kmalloc_node(_RET_IP_, ret, | |
2760 | size, s->size, gfpflags, node); | |
0316bec2 | 2761 | |
505f5dcb | 2762 | kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2763 | return ret; |
5b882be4 | 2764 | } |
4a92379b | 2765 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2766 | #endif |
5d1f57e4 | 2767 | #endif |
5b882be4 | 2768 | |
81819f0f | 2769 | /* |
94e4d712 | 2770 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2771 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2772 | * |
894b8788 CL |
2773 | * So we still attempt to reduce cache line usage. Just take the slab |
2774 | * lock and free the item. If there is no additional partial page | |
2775 | * handling required then we can return immediately. | |
81819f0f | 2776 | */ |
894b8788 | 2777 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2778 | void *head, void *tail, int cnt, |
2779 | unsigned long addr) | |
2780 | ||
81819f0f CL |
2781 | { |
2782 | void *prior; | |
2cfb7455 | 2783 | int was_frozen; |
2cfb7455 CL |
2784 | struct page new; |
2785 | unsigned long counters; | |
2786 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2787 | unsigned long uninitialized_var(flags); |
81819f0f | 2788 | |
8a5ec0ba | 2789 | stat(s, FREE_SLOWPATH); |
81819f0f | 2790 | |
19c7ff9e | 2791 | if (kmem_cache_debug(s) && |
282acb43 | 2792 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2793 | return; |
6446faa2 | 2794 | |
2cfb7455 | 2795 | do { |
837d678d JK |
2796 | if (unlikely(n)) { |
2797 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2798 | n = NULL; | |
2799 | } | |
2cfb7455 CL |
2800 | prior = page->freelist; |
2801 | counters = page->counters; | |
81084651 | 2802 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2803 | new.counters = counters; |
2804 | was_frozen = new.frozen; | |
81084651 | 2805 | new.inuse -= cnt; |
837d678d | 2806 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2807 | |
c65c1877 | 2808 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2809 | |
2810 | /* | |
d0e0ac97 CG |
2811 | * Slab was on no list before and will be |
2812 | * partially empty | |
2813 | * We can defer the list move and instead | |
2814 | * freeze it. | |
49e22585 CL |
2815 | */ |
2816 | new.frozen = 1; | |
2817 | ||
c65c1877 | 2818 | } else { /* Needs to be taken off a list */ |
49e22585 | 2819 | |
b455def2 | 2820 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2821 | /* |
2822 | * Speculatively acquire the list_lock. | |
2823 | * If the cmpxchg does not succeed then we may | |
2824 | * drop the list_lock without any processing. | |
2825 | * | |
2826 | * Otherwise the list_lock will synchronize with | |
2827 | * other processors updating the list of slabs. | |
2828 | */ | |
2829 | spin_lock_irqsave(&n->list_lock, flags); | |
2830 | ||
2831 | } | |
2cfb7455 | 2832 | } |
81819f0f | 2833 | |
2cfb7455 CL |
2834 | } while (!cmpxchg_double_slab(s, page, |
2835 | prior, counters, | |
81084651 | 2836 | head, new.counters, |
2cfb7455 | 2837 | "__slab_free")); |
81819f0f | 2838 | |
2cfb7455 | 2839 | if (likely(!n)) { |
49e22585 CL |
2840 | |
2841 | /* | |
2842 | * If we just froze the page then put it onto the | |
2843 | * per cpu partial list. | |
2844 | */ | |
8028dcea | 2845 | if (new.frozen && !was_frozen) { |
49e22585 | 2846 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2847 | stat(s, CPU_PARTIAL_FREE); |
2848 | } | |
49e22585 | 2849 | /* |
2cfb7455 CL |
2850 | * The list lock was not taken therefore no list |
2851 | * activity can be necessary. | |
2852 | */ | |
b455def2 L |
2853 | if (was_frozen) |
2854 | stat(s, FREE_FROZEN); | |
2855 | return; | |
2856 | } | |
81819f0f | 2857 | |
8a5b20ae | 2858 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2859 | goto slab_empty; |
2860 | ||
81819f0f | 2861 | /* |
837d678d JK |
2862 | * Objects left in the slab. If it was not on the partial list before |
2863 | * then add it. | |
81819f0f | 2864 | */ |
345c905d JK |
2865 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
2866 | if (kmem_cache_debug(s)) | |
c65c1877 | 2867 | remove_full(s, n, page); |
837d678d JK |
2868 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2869 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2870 | } |
80f08c19 | 2871 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2872 | return; |
2873 | ||
2874 | slab_empty: | |
a973e9dd | 2875 | if (prior) { |
81819f0f | 2876 | /* |
6fbabb20 | 2877 | * Slab on the partial list. |
81819f0f | 2878 | */ |
5cc6eee8 | 2879 | remove_partial(n, page); |
84e554e6 | 2880 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2881 | } else { |
6fbabb20 | 2882 | /* Slab must be on the full list */ |
c65c1877 PZ |
2883 | remove_full(s, n, page); |
2884 | } | |
2cfb7455 | 2885 | |
80f08c19 | 2886 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2887 | stat(s, FREE_SLAB); |
81819f0f | 2888 | discard_slab(s, page); |
81819f0f CL |
2889 | } |
2890 | ||
894b8788 CL |
2891 | /* |
2892 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2893 | * can perform fastpath freeing without additional function calls. | |
2894 | * | |
2895 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2896 | * of this processor. This typically the case if we have just allocated | |
2897 | * the item before. | |
2898 | * | |
2899 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2900 | * with all sorts of special processing. | |
81084651 JDB |
2901 | * |
2902 | * Bulk free of a freelist with several objects (all pointing to the | |
2903 | * same page) possible by specifying head and tail ptr, plus objects | |
2904 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2905 | */ |
80a9201a AP |
2906 | static __always_inline void do_slab_free(struct kmem_cache *s, |
2907 | struct page *page, void *head, void *tail, | |
2908 | int cnt, unsigned long addr) | |
894b8788 | 2909 | { |
81084651 | 2910 | void *tail_obj = tail ? : head; |
dfb4f096 | 2911 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2912 | unsigned long tid; |
8a5ec0ba CL |
2913 | redo: |
2914 | /* | |
2915 | * Determine the currently cpus per cpu slab. | |
2916 | * The cpu may change afterward. However that does not matter since | |
2917 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2918 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2919 | */ |
9aabf810 JK |
2920 | do { |
2921 | tid = this_cpu_read(s->cpu_slab->tid); | |
2922 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2923 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2924 | unlikely(tid != READ_ONCE(c->tid))); | |
c016b0bd | 2925 | |
9aabf810 JK |
2926 | /* Same with comment on barrier() in slab_alloc_node() */ |
2927 | barrier(); | |
c016b0bd | 2928 | |
442b06bc | 2929 | if (likely(page == c->page)) { |
81084651 | 2930 | set_freepointer(s, tail_obj, c->freelist); |
8a5ec0ba | 2931 | |
933393f5 | 2932 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2933 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2934 | c->freelist, tid, | |
81084651 | 2935 | head, next_tid(tid)))) { |
8a5ec0ba CL |
2936 | |
2937 | note_cmpxchg_failure("slab_free", s, tid); | |
2938 | goto redo; | |
2939 | } | |
84e554e6 | 2940 | stat(s, FREE_FASTPATH); |
894b8788 | 2941 | } else |
81084651 | 2942 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 2943 | |
894b8788 CL |
2944 | } |
2945 | ||
80a9201a AP |
2946 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
2947 | void *head, void *tail, int cnt, | |
2948 | unsigned long addr) | |
2949 | { | |
80a9201a | 2950 | /* |
c3895391 AK |
2951 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
2952 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 2953 | */ |
c3895391 AK |
2954 | if (slab_free_freelist_hook(s, &head, &tail)) |
2955 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
2956 | } |
2957 | ||
2958 | #ifdef CONFIG_KASAN | |
2959 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | |
2960 | { | |
2961 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
2962 | } | |
2963 | #endif | |
2964 | ||
81819f0f CL |
2965 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2966 | { | |
b9ce5ef4 GC |
2967 | s = cache_from_obj(s, x); |
2968 | if (!s) | |
79576102 | 2969 | return; |
81084651 | 2970 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 2971 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
2972 | } |
2973 | EXPORT_SYMBOL(kmem_cache_free); | |
2974 | ||
d0ecd894 | 2975 | struct detached_freelist { |
fbd02630 | 2976 | struct page *page; |
d0ecd894 JDB |
2977 | void *tail; |
2978 | void *freelist; | |
2979 | int cnt; | |
376bf125 | 2980 | struct kmem_cache *s; |
d0ecd894 | 2981 | }; |
fbd02630 | 2982 | |
d0ecd894 JDB |
2983 | /* |
2984 | * This function progressively scans the array with free objects (with | |
2985 | * a limited look ahead) and extract objects belonging to the same | |
2986 | * page. It builds a detached freelist directly within the given | |
2987 | * page/objects. This can happen without any need for | |
2988 | * synchronization, because the objects are owned by running process. | |
2989 | * The freelist is build up as a single linked list in the objects. | |
2990 | * The idea is, that this detached freelist can then be bulk | |
2991 | * transferred to the real freelist(s), but only requiring a single | |
2992 | * synchronization primitive. Look ahead in the array is limited due | |
2993 | * to performance reasons. | |
2994 | */ | |
376bf125 JDB |
2995 | static inline |
2996 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
2997 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
2998 | { |
2999 | size_t first_skipped_index = 0; | |
3000 | int lookahead = 3; | |
3001 | void *object; | |
ca257195 | 3002 | struct page *page; |
fbd02630 | 3003 | |
d0ecd894 JDB |
3004 | /* Always re-init detached_freelist */ |
3005 | df->page = NULL; | |
fbd02630 | 3006 | |
d0ecd894 JDB |
3007 | do { |
3008 | object = p[--size]; | |
ca257195 | 3009 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3010 | } while (!object && size); |
3eed034d | 3011 | |
d0ecd894 JDB |
3012 | if (!object) |
3013 | return 0; | |
fbd02630 | 3014 | |
ca257195 JDB |
3015 | page = virt_to_head_page(object); |
3016 | if (!s) { | |
3017 | /* Handle kalloc'ed objects */ | |
3018 | if (unlikely(!PageSlab(page))) { | |
3019 | BUG_ON(!PageCompound(page)); | |
3020 | kfree_hook(object); | |
4949148a | 3021 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3022 | p[size] = NULL; /* mark object processed */ |
3023 | return size; | |
3024 | } | |
3025 | /* Derive kmem_cache from object */ | |
3026 | df->s = page->slab_cache; | |
3027 | } else { | |
3028 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3029 | } | |
376bf125 | 3030 | |
d0ecd894 | 3031 | /* Start new detached freelist */ |
ca257195 | 3032 | df->page = page; |
376bf125 | 3033 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3034 | df->tail = object; |
3035 | df->freelist = object; | |
3036 | p[size] = NULL; /* mark object processed */ | |
3037 | df->cnt = 1; | |
3038 | ||
3039 | while (size) { | |
3040 | object = p[--size]; | |
3041 | if (!object) | |
3042 | continue; /* Skip processed objects */ | |
3043 | ||
3044 | /* df->page is always set at this point */ | |
3045 | if (df->page == virt_to_head_page(object)) { | |
3046 | /* Opportunity build freelist */ | |
376bf125 | 3047 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3048 | df->freelist = object; |
3049 | df->cnt++; | |
3050 | p[size] = NULL; /* mark object processed */ | |
3051 | ||
3052 | continue; | |
fbd02630 | 3053 | } |
d0ecd894 JDB |
3054 | |
3055 | /* Limit look ahead search */ | |
3056 | if (!--lookahead) | |
3057 | break; | |
3058 | ||
3059 | if (!first_skipped_index) | |
3060 | first_skipped_index = size + 1; | |
fbd02630 | 3061 | } |
d0ecd894 JDB |
3062 | |
3063 | return first_skipped_index; | |
3064 | } | |
3065 | ||
d0ecd894 | 3066 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3067 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3068 | { |
3069 | if (WARN_ON(!size)) | |
3070 | return; | |
3071 | ||
3072 | do { | |
3073 | struct detached_freelist df; | |
3074 | ||
3075 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3076 | if (!df.page) |
d0ecd894 JDB |
3077 | continue; |
3078 | ||
376bf125 | 3079 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3080 | } while (likely(size)); |
484748f0 CL |
3081 | } |
3082 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3083 | ||
994eb764 | 3084 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3085 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3086 | void **p) | |
484748f0 | 3087 | { |
994eb764 JDB |
3088 | struct kmem_cache_cpu *c; |
3089 | int i; | |
3090 | ||
03ec0ed5 JDB |
3091 | /* memcg and kmem_cache debug support */ |
3092 | s = slab_pre_alloc_hook(s, flags); | |
3093 | if (unlikely(!s)) | |
3094 | return false; | |
994eb764 JDB |
3095 | /* |
3096 | * Drain objects in the per cpu slab, while disabling local | |
3097 | * IRQs, which protects against PREEMPT and interrupts | |
3098 | * handlers invoking normal fastpath. | |
3099 | */ | |
3100 | local_irq_disable(); | |
3101 | c = this_cpu_ptr(s->cpu_slab); | |
3102 | ||
3103 | for (i = 0; i < size; i++) { | |
3104 | void *object = c->freelist; | |
3105 | ||
ebe909e0 | 3106 | if (unlikely(!object)) { |
ebe909e0 JDB |
3107 | /* |
3108 | * Invoking slow path likely have side-effect | |
3109 | * of re-populating per CPU c->freelist | |
3110 | */ | |
87098373 | 3111 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3112 | _RET_IP_, c); |
87098373 CL |
3113 | if (unlikely(!p[i])) |
3114 | goto error; | |
3115 | ||
ebe909e0 JDB |
3116 | c = this_cpu_ptr(s->cpu_slab); |
3117 | continue; /* goto for-loop */ | |
3118 | } | |
994eb764 JDB |
3119 | c->freelist = get_freepointer(s, object); |
3120 | p[i] = object; | |
3121 | } | |
3122 | c->tid = next_tid(c->tid); | |
3123 | local_irq_enable(); | |
3124 | ||
3125 | /* Clear memory outside IRQ disabled fastpath loop */ | |
3126 | if (unlikely(flags & __GFP_ZERO)) { | |
3127 | int j; | |
3128 | ||
3129 | for (j = 0; j < i; j++) | |
3130 | memset(p[j], 0, s->object_size); | |
3131 | } | |
3132 | ||
03ec0ed5 JDB |
3133 | /* memcg and kmem_cache debug support */ |
3134 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3135 | return i; |
87098373 | 3136 | error: |
87098373 | 3137 | local_irq_enable(); |
03ec0ed5 JDB |
3138 | slab_post_alloc_hook(s, flags, i, p); |
3139 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3140 | return 0; |
484748f0 CL |
3141 | } |
3142 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3143 | ||
3144 | ||
81819f0f | 3145 | /* |
672bba3a CL |
3146 | * Object placement in a slab is made very easy because we always start at |
3147 | * offset 0. If we tune the size of the object to the alignment then we can | |
3148 | * get the required alignment by putting one properly sized object after | |
3149 | * another. | |
81819f0f CL |
3150 | * |
3151 | * Notice that the allocation order determines the sizes of the per cpu | |
3152 | * caches. Each processor has always one slab available for allocations. | |
3153 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3154 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3155 | * locking overhead. |
81819f0f CL |
3156 | */ |
3157 | ||
3158 | /* | |
3159 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3160 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3161 | * and increases the number of allocations possible without having to | |
3162 | * take the list_lock. | |
3163 | */ | |
19af27af AD |
3164 | static unsigned int slub_min_order; |
3165 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3166 | static unsigned int slub_min_objects; | |
81819f0f | 3167 | |
81819f0f CL |
3168 | /* |
3169 | * Calculate the order of allocation given an slab object size. | |
3170 | * | |
672bba3a CL |
3171 | * The order of allocation has significant impact on performance and other |
3172 | * system components. Generally order 0 allocations should be preferred since | |
3173 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3174 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3175 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3176 | * would be wasted. |
3177 | * | |
3178 | * In order to reach satisfactory performance we must ensure that a minimum | |
3179 | * number of objects is in one slab. Otherwise we may generate too much | |
3180 | * activity on the partial lists which requires taking the list_lock. This is | |
3181 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3182 | * |
672bba3a CL |
3183 | * slub_max_order specifies the order where we begin to stop considering the |
3184 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3185 | * we try to keep the page order as low as possible. So we accept more waste | |
3186 | * of space in favor of a small page order. | |
81819f0f | 3187 | * |
672bba3a CL |
3188 | * Higher order allocations also allow the placement of more objects in a |
3189 | * slab and thereby reduce object handling overhead. If the user has | |
3190 | * requested a higher mininum order then we start with that one instead of | |
3191 | * the smallest order which will fit the object. | |
81819f0f | 3192 | */ |
19af27af AD |
3193 | static inline unsigned int slab_order(unsigned int size, |
3194 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3195 | unsigned int fract_leftover) |
81819f0f | 3196 | { |
19af27af AD |
3197 | unsigned int min_order = slub_min_order; |
3198 | unsigned int order; | |
81819f0f | 3199 | |
9736d2a9 | 3200 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3201 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3202 | |
9736d2a9 | 3203 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3204 | order <= max_order; order++) { |
81819f0f | 3205 | |
19af27af AD |
3206 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3207 | unsigned int rem; | |
81819f0f | 3208 | |
9736d2a9 | 3209 | rem = slab_size % size; |
81819f0f | 3210 | |
5e6d444e | 3211 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3212 | break; |
81819f0f | 3213 | } |
672bba3a | 3214 | |
81819f0f CL |
3215 | return order; |
3216 | } | |
3217 | ||
9736d2a9 | 3218 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3219 | { |
19af27af AD |
3220 | unsigned int order; |
3221 | unsigned int min_objects; | |
3222 | unsigned int max_objects; | |
5e6d444e CL |
3223 | |
3224 | /* | |
3225 | * Attempt to find best configuration for a slab. This | |
3226 | * works by first attempting to generate a layout with | |
3227 | * the best configuration and backing off gradually. | |
3228 | * | |
422ff4d7 | 3229 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3230 | * we reduce the minimum objects required in a slab. |
3231 | */ | |
3232 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3233 | if (!min_objects) |
3234 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3235 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3236 | min_objects = min(min_objects, max_objects); |
3237 | ||
5e6d444e | 3238 | while (min_objects > 1) { |
19af27af AD |
3239 | unsigned int fraction; |
3240 | ||
c124f5b5 | 3241 | fraction = 16; |
5e6d444e CL |
3242 | while (fraction >= 4) { |
3243 | order = slab_order(size, min_objects, | |
9736d2a9 | 3244 | slub_max_order, fraction); |
5e6d444e CL |
3245 | if (order <= slub_max_order) |
3246 | return order; | |
3247 | fraction /= 2; | |
3248 | } | |
5086c389 | 3249 | min_objects--; |
5e6d444e CL |
3250 | } |
3251 | ||
3252 | /* | |
3253 | * We were unable to place multiple objects in a slab. Now | |
3254 | * lets see if we can place a single object there. | |
3255 | */ | |
9736d2a9 | 3256 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3257 | if (order <= slub_max_order) |
3258 | return order; | |
3259 | ||
3260 | /* | |
3261 | * Doh this slab cannot be placed using slub_max_order. | |
3262 | */ | |
9736d2a9 | 3263 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3264 | if (order < MAX_ORDER) |
5e6d444e CL |
3265 | return order; |
3266 | return -ENOSYS; | |
3267 | } | |
3268 | ||
5595cffc | 3269 | static void |
4053497d | 3270 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3271 | { |
3272 | n->nr_partial = 0; | |
81819f0f CL |
3273 | spin_lock_init(&n->list_lock); |
3274 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3275 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3276 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3277 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3278 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3279 | #endif |
81819f0f CL |
3280 | } |
3281 | ||
55136592 | 3282 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3283 | { |
6c182dc0 | 3284 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3285 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3286 | |
8a5ec0ba | 3287 | /* |
d4d84fef CM |
3288 | * Must align to double word boundary for the double cmpxchg |
3289 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3290 | */ |
d4d84fef CM |
3291 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3292 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3293 | |
3294 | if (!s->cpu_slab) | |
3295 | return 0; | |
3296 | ||
3297 | init_kmem_cache_cpus(s); | |
4c93c355 | 3298 | |
8a5ec0ba | 3299 | return 1; |
4c93c355 | 3300 | } |
4c93c355 | 3301 | |
51df1142 CL |
3302 | static struct kmem_cache *kmem_cache_node; |
3303 | ||
81819f0f CL |
3304 | /* |
3305 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3306 | * slab on the node for this slabcache. There are no concurrent accesses | |
3307 | * possible. | |
3308 | * | |
721ae22a ZYW |
3309 | * Note that this function only works on the kmem_cache_node |
3310 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3311 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3312 | */ |
55136592 | 3313 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3314 | { |
3315 | struct page *page; | |
3316 | struct kmem_cache_node *n; | |
3317 | ||
51df1142 | 3318 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3319 | |
51df1142 | 3320 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3321 | |
3322 | BUG_ON(!page); | |
a2f92ee7 | 3323 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3324 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3325 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3326 | } |
3327 | ||
81819f0f CL |
3328 | n = page->freelist; |
3329 | BUG_ON(!n); | |
51df1142 | 3330 | page->freelist = get_freepointer(kmem_cache_node, n); |
e6e82ea1 | 3331 | page->inuse = 1; |
8cb0a506 | 3332 | page->frozen = 0; |
51df1142 | 3333 | kmem_cache_node->node[node] = n; |
8ab1372f | 3334 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3335 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3336 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3337 | #endif |
505f5dcb AP |
3338 | kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
3339 | GFP_KERNEL); | |
4053497d | 3340 | init_kmem_cache_node(n); |
51df1142 | 3341 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3342 | |
67b6c900 | 3343 | /* |
1e4dd946 SR |
3344 | * No locks need to be taken here as it has just been |
3345 | * initialized and there is no concurrent access. | |
67b6c900 | 3346 | */ |
1e4dd946 | 3347 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3348 | } |
3349 | ||
3350 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3351 | { | |
3352 | int node; | |
fa45dc25 | 3353 | struct kmem_cache_node *n; |
81819f0f | 3354 | |
fa45dc25 | 3355 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3356 | s->node[node] = NULL; |
ea37df54 | 3357 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3358 | } |
3359 | } | |
3360 | ||
52b4b950 DS |
3361 | void __kmem_cache_release(struct kmem_cache *s) |
3362 | { | |
210e7a43 | 3363 | cache_random_seq_destroy(s); |
52b4b950 DS |
3364 | free_percpu(s->cpu_slab); |
3365 | free_kmem_cache_nodes(s); | |
3366 | } | |
3367 | ||
55136592 | 3368 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3369 | { |
3370 | int node; | |
81819f0f | 3371 | |
f64dc58c | 3372 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3373 | struct kmem_cache_node *n; |
3374 | ||
73367bd8 | 3375 | if (slab_state == DOWN) { |
55136592 | 3376 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3377 | continue; |
3378 | } | |
51df1142 | 3379 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3380 | GFP_KERNEL, node); |
81819f0f | 3381 | |
73367bd8 AD |
3382 | if (!n) { |
3383 | free_kmem_cache_nodes(s); | |
3384 | return 0; | |
81819f0f | 3385 | } |
73367bd8 | 3386 | |
4053497d | 3387 | init_kmem_cache_node(n); |
ea37df54 | 3388 | s->node[node] = n; |
81819f0f CL |
3389 | } |
3390 | return 1; | |
3391 | } | |
81819f0f | 3392 | |
c0bdb232 | 3393 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3394 | { |
3395 | if (min < MIN_PARTIAL) | |
3396 | min = MIN_PARTIAL; | |
3397 | else if (min > MAX_PARTIAL) | |
3398 | min = MAX_PARTIAL; | |
3399 | s->min_partial = min; | |
3400 | } | |
3401 | ||
e6d0e1dc WY |
3402 | static void set_cpu_partial(struct kmem_cache *s) |
3403 | { | |
3404 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3405 | /* | |
3406 | * cpu_partial determined the maximum number of objects kept in the | |
3407 | * per cpu partial lists of a processor. | |
3408 | * | |
3409 | * Per cpu partial lists mainly contain slabs that just have one | |
3410 | * object freed. If they are used for allocation then they can be | |
3411 | * filled up again with minimal effort. The slab will never hit the | |
3412 | * per node partial lists and therefore no locking will be required. | |
3413 | * | |
3414 | * This setting also determines | |
3415 | * | |
3416 | * A) The number of objects from per cpu partial slabs dumped to the | |
3417 | * per node list when we reach the limit. | |
3418 | * B) The number of objects in cpu partial slabs to extract from the | |
3419 | * per node list when we run out of per cpu objects. We only fetch | |
3420 | * 50% to keep some capacity around for frees. | |
3421 | */ | |
3422 | if (!kmem_cache_has_cpu_partial(s)) | |
3423 | s->cpu_partial = 0; | |
3424 | else if (s->size >= PAGE_SIZE) | |
3425 | s->cpu_partial = 2; | |
3426 | else if (s->size >= 1024) | |
3427 | s->cpu_partial = 6; | |
3428 | else if (s->size >= 256) | |
3429 | s->cpu_partial = 13; | |
3430 | else | |
3431 | s->cpu_partial = 30; | |
3432 | #endif | |
3433 | } | |
3434 | ||
81819f0f CL |
3435 | /* |
3436 | * calculate_sizes() determines the order and the distribution of data within | |
3437 | * a slab object. | |
3438 | */ | |
06b285dc | 3439 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3440 | { |
d50112ed | 3441 | slab_flags_t flags = s->flags; |
be4a7988 | 3442 | unsigned int size = s->object_size; |
19af27af | 3443 | unsigned int order; |
81819f0f | 3444 | |
d8b42bf5 CL |
3445 | /* |
3446 | * Round up object size to the next word boundary. We can only | |
3447 | * place the free pointer at word boundaries and this determines | |
3448 | * the possible location of the free pointer. | |
3449 | */ | |
3450 | size = ALIGN(size, sizeof(void *)); | |
3451 | ||
3452 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3453 | /* |
3454 | * Determine if we can poison the object itself. If the user of | |
3455 | * the slab may touch the object after free or before allocation | |
3456 | * then we should never poison the object itself. | |
3457 | */ | |
5f0d5a3a | 3458 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3459 | !s->ctor) |
81819f0f CL |
3460 | s->flags |= __OBJECT_POISON; |
3461 | else | |
3462 | s->flags &= ~__OBJECT_POISON; | |
3463 | ||
81819f0f CL |
3464 | |
3465 | /* | |
672bba3a | 3466 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3467 | * end of the object and the free pointer. If not then add an |
672bba3a | 3468 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3469 | */ |
3b0efdfa | 3470 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3471 | size += sizeof(void *); |
41ecc55b | 3472 | #endif |
81819f0f CL |
3473 | |
3474 | /* | |
672bba3a CL |
3475 | * With that we have determined the number of bytes in actual use |
3476 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3477 | */ |
3478 | s->inuse = size; | |
3479 | ||
5f0d5a3a | 3480 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3481 | s->ctor)) { |
81819f0f CL |
3482 | /* |
3483 | * Relocate free pointer after the object if it is not | |
3484 | * permitted to overwrite the first word of the object on | |
3485 | * kmem_cache_free. | |
3486 | * | |
3487 | * This is the case if we do RCU, have a constructor or | |
3488 | * destructor or are poisoning the objects. | |
3489 | */ | |
3490 | s->offset = size; | |
3491 | size += sizeof(void *); | |
3492 | } | |
3493 | ||
c12b3c62 | 3494 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3495 | if (flags & SLAB_STORE_USER) |
3496 | /* | |
3497 | * Need to store information about allocs and frees after | |
3498 | * the object. | |
3499 | */ | |
3500 | size += 2 * sizeof(struct track); | |
80a9201a | 3501 | #endif |
81819f0f | 3502 | |
80a9201a AP |
3503 | kasan_cache_create(s, &size, &s->flags); |
3504 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3505 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3506 | /* |
3507 | * Add some empty padding so that we can catch | |
3508 | * overwrites from earlier objects rather than let | |
3509 | * tracking information or the free pointer be | |
0211a9c8 | 3510 | * corrupted if a user writes before the start |
81819f0f CL |
3511 | * of the object. |
3512 | */ | |
3513 | size += sizeof(void *); | |
d86bd1be JK |
3514 | |
3515 | s->red_left_pad = sizeof(void *); | |
3516 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3517 | size += s->red_left_pad; | |
3518 | } | |
41ecc55b | 3519 | #endif |
672bba3a | 3520 | |
81819f0f CL |
3521 | /* |
3522 | * SLUB stores one object immediately after another beginning from | |
3523 | * offset 0. In order to align the objects we have to simply size | |
3524 | * each object to conform to the alignment. | |
3525 | */ | |
45906855 | 3526 | size = ALIGN(size, s->align); |
81819f0f | 3527 | s->size = size; |
06b285dc CL |
3528 | if (forced_order >= 0) |
3529 | order = forced_order; | |
3530 | else | |
9736d2a9 | 3531 | order = calculate_order(size); |
81819f0f | 3532 | |
19af27af | 3533 | if ((int)order < 0) |
81819f0f CL |
3534 | return 0; |
3535 | ||
b7a49f0d | 3536 | s->allocflags = 0; |
834f3d11 | 3537 | if (order) |
b7a49f0d CL |
3538 | s->allocflags |= __GFP_COMP; |
3539 | ||
3540 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3541 | s->allocflags |= GFP_DMA; |
b7a49f0d CL |
3542 | |
3543 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3544 | s->allocflags |= __GFP_RECLAIMABLE; | |
3545 | ||
81819f0f CL |
3546 | /* |
3547 | * Determine the number of objects per slab | |
3548 | */ | |
9736d2a9 MW |
3549 | s->oo = oo_make(order, size); |
3550 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3551 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3552 | s->max = s->oo; | |
81819f0f | 3553 | |
834f3d11 | 3554 | return !!oo_objects(s->oo); |
81819f0f CL |
3555 | } |
3556 | ||
d50112ed | 3557 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3558 | { |
8a13a4cc | 3559 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3560 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3561 | s->random = get_random_long(); | |
3562 | #endif | |
81819f0f | 3563 | |
06b285dc | 3564 | if (!calculate_sizes(s, -1)) |
81819f0f | 3565 | goto error; |
3de47213 DR |
3566 | if (disable_higher_order_debug) { |
3567 | /* | |
3568 | * Disable debugging flags that store metadata if the min slab | |
3569 | * order increased. | |
3570 | */ | |
3b0efdfa | 3571 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3572 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3573 | s->offset = 0; | |
3574 | if (!calculate_sizes(s, -1)) | |
3575 | goto error; | |
3576 | } | |
3577 | } | |
81819f0f | 3578 | |
2565409f HC |
3579 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3580 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3581 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3582 | /* Enable fast mode */ |
3583 | s->flags |= __CMPXCHG_DOUBLE; | |
3584 | #endif | |
3585 | ||
3b89d7d8 DR |
3586 | /* |
3587 | * The larger the object size is, the more pages we want on the partial | |
3588 | * list to avoid pounding the page allocator excessively. | |
3589 | */ | |
49e22585 CL |
3590 | set_min_partial(s, ilog2(s->size) / 2); |
3591 | ||
e6d0e1dc | 3592 | set_cpu_partial(s); |
49e22585 | 3593 | |
81819f0f | 3594 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3595 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3596 | #endif |
210e7a43 TG |
3597 | |
3598 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3599 | if (slab_state >= UP) { | |
3600 | if (init_cache_random_seq(s)) | |
3601 | goto error; | |
3602 | } | |
3603 | ||
55136592 | 3604 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3605 | goto error; |
81819f0f | 3606 | |
55136592 | 3607 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3608 | return 0; |
ff12059e | 3609 | |
4c93c355 | 3610 | free_kmem_cache_nodes(s); |
81819f0f CL |
3611 | error: |
3612 | if (flags & SLAB_PANIC) | |
44065b2e AD |
3613 | panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", |
3614 | s->name, s->size, s->size, | |
4fd0b46e | 3615 | oo_order(s->oo), s->offset, (unsigned long)flags); |
278b1bb1 | 3616 | return -EINVAL; |
81819f0f | 3617 | } |
81819f0f | 3618 | |
33b12c38 CL |
3619 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3620 | const char *text) | |
3621 | { | |
3622 | #ifdef CONFIG_SLUB_DEBUG | |
3623 | void *addr = page_address(page); | |
3624 | void *p; | |
6396bb22 KC |
3625 | unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), |
3626 | sizeof(long), | |
3627 | GFP_ATOMIC); | |
bbd7d57b ED |
3628 | if (!map) |
3629 | return; | |
945cf2b6 | 3630 | slab_err(s, page, text, s->name); |
33b12c38 | 3631 | slab_lock(page); |
33b12c38 | 3632 | |
5f80b13a | 3633 | get_map(s, page, map); |
33b12c38 CL |
3634 | for_each_object(p, s, addr, page->objects) { |
3635 | ||
3636 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3637 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3638 | print_tracking(s, p); |
3639 | } | |
3640 | } | |
3641 | slab_unlock(page); | |
bbd7d57b | 3642 | kfree(map); |
33b12c38 CL |
3643 | #endif |
3644 | } | |
3645 | ||
81819f0f | 3646 | /* |
599870b1 | 3647 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3648 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3649 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3650 | */ |
599870b1 | 3651 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3652 | { |
60398923 | 3653 | LIST_HEAD(discard); |
81819f0f CL |
3654 | struct page *page, *h; |
3655 | ||
52b4b950 DS |
3656 | BUG_ON(irqs_disabled()); |
3657 | spin_lock_irq(&n->list_lock); | |
33b12c38 | 3658 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 3659 | if (!page->inuse) { |
52b4b950 | 3660 | remove_partial(n, page); |
60398923 | 3661 | list_add(&page->lru, &discard); |
33b12c38 CL |
3662 | } else { |
3663 | list_slab_objects(s, page, | |
52b4b950 | 3664 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3665 | } |
33b12c38 | 3666 | } |
52b4b950 | 3667 | spin_unlock_irq(&n->list_lock); |
60398923 CW |
3668 | |
3669 | list_for_each_entry_safe(page, h, &discard, lru) | |
3670 | discard_slab(s, page); | |
81819f0f CL |
3671 | } |
3672 | ||
f9e13c0a SB |
3673 | bool __kmem_cache_empty(struct kmem_cache *s) |
3674 | { | |
3675 | int node; | |
3676 | struct kmem_cache_node *n; | |
3677 | ||
3678 | for_each_kmem_cache_node(s, node, n) | |
3679 | if (n->nr_partial || slabs_node(s, node)) | |
3680 | return false; | |
3681 | return true; | |
3682 | } | |
3683 | ||
81819f0f | 3684 | /* |
672bba3a | 3685 | * Release all resources used by a slab cache. |
81819f0f | 3686 | */ |
52b4b950 | 3687 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3688 | { |
3689 | int node; | |
fa45dc25 | 3690 | struct kmem_cache_node *n; |
81819f0f CL |
3691 | |
3692 | flush_all(s); | |
81819f0f | 3693 | /* Attempt to free all objects */ |
fa45dc25 | 3694 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3695 | free_partial(s, n); |
3696 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3697 | return 1; |
3698 | } | |
bf5eb3de | 3699 | sysfs_slab_remove(s); |
81819f0f CL |
3700 | return 0; |
3701 | } | |
3702 | ||
81819f0f CL |
3703 | /******************************************************************** |
3704 | * Kmalloc subsystem | |
3705 | *******************************************************************/ | |
3706 | ||
81819f0f CL |
3707 | static int __init setup_slub_min_order(char *str) |
3708 | { | |
19af27af | 3709 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3710 | |
3711 | return 1; | |
3712 | } | |
3713 | ||
3714 | __setup("slub_min_order=", setup_slub_min_order); | |
3715 | ||
3716 | static int __init setup_slub_max_order(char *str) | |
3717 | { | |
19af27af AD |
3718 | get_option(&str, (int *)&slub_max_order); |
3719 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3720 | |
3721 | return 1; | |
3722 | } | |
3723 | ||
3724 | __setup("slub_max_order=", setup_slub_max_order); | |
3725 | ||
3726 | static int __init setup_slub_min_objects(char *str) | |
3727 | { | |
19af27af | 3728 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3729 | |
3730 | return 1; | |
3731 | } | |
3732 | ||
3733 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3734 | ||
81819f0f CL |
3735 | void *__kmalloc(size_t size, gfp_t flags) |
3736 | { | |
aadb4bc4 | 3737 | struct kmem_cache *s; |
5b882be4 | 3738 | void *ret; |
81819f0f | 3739 | |
95a05b42 | 3740 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3741 | return kmalloc_large(size, flags); |
aadb4bc4 | 3742 | |
2c59dd65 | 3743 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3744 | |
3745 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3746 | return s; |
3747 | ||
2b847c3c | 3748 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3749 | |
ca2b84cb | 3750 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3751 | |
505f5dcb | 3752 | kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3753 | |
5b882be4 | 3754 | return ret; |
81819f0f CL |
3755 | } |
3756 | EXPORT_SYMBOL(__kmalloc); | |
3757 | ||
5d1f57e4 | 3758 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3759 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3760 | { | |
b1eeab67 | 3761 | struct page *page; |
e4f7c0b4 | 3762 | void *ptr = NULL; |
f619cfe1 | 3763 | |
75f296d9 | 3764 | flags |= __GFP_COMP; |
4949148a | 3765 | page = alloc_pages_node(node, flags, get_order(size)); |
f619cfe1 | 3766 | if (page) |
e4f7c0b4 CM |
3767 | ptr = page_address(page); |
3768 | ||
d56791b3 | 3769 | kmalloc_large_node_hook(ptr, size, flags); |
e4f7c0b4 | 3770 | return ptr; |
f619cfe1 CL |
3771 | } |
3772 | ||
81819f0f CL |
3773 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3774 | { | |
aadb4bc4 | 3775 | struct kmem_cache *s; |
5b882be4 | 3776 | void *ret; |
81819f0f | 3777 | |
95a05b42 | 3778 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3779 | ret = kmalloc_large_node(size, flags, node); |
3780 | ||
ca2b84cb EGM |
3781 | trace_kmalloc_node(_RET_IP_, ret, |
3782 | size, PAGE_SIZE << get_order(size), | |
3783 | flags, node); | |
5b882be4 EGM |
3784 | |
3785 | return ret; | |
3786 | } | |
aadb4bc4 | 3787 | |
2c59dd65 | 3788 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3789 | |
3790 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3791 | return s; |
3792 | ||
2b847c3c | 3793 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3794 | |
ca2b84cb | 3795 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3796 | |
505f5dcb | 3797 | kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3798 | |
5b882be4 | 3799 | return ret; |
81819f0f CL |
3800 | } |
3801 | EXPORT_SYMBOL(__kmalloc_node); | |
3802 | #endif | |
3803 | ||
ed18adc1 KC |
3804 | #ifdef CONFIG_HARDENED_USERCOPY |
3805 | /* | |
afcc90f8 KC |
3806 | * Rejects incorrectly sized objects and objects that are to be copied |
3807 | * to/from userspace but do not fall entirely within the containing slab | |
3808 | * cache's usercopy region. | |
ed18adc1 KC |
3809 | * |
3810 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3811 | * to indicate an error. | |
3812 | */ | |
f4e6e289 KC |
3813 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
3814 | bool to_user) | |
ed18adc1 KC |
3815 | { |
3816 | struct kmem_cache *s; | |
44065b2e | 3817 | unsigned int offset; |
ed18adc1 KC |
3818 | size_t object_size; |
3819 | ||
3820 | /* Find object and usable object size. */ | |
3821 | s = page->slab_cache; | |
ed18adc1 KC |
3822 | |
3823 | /* Reject impossible pointers. */ | |
3824 | if (ptr < page_address(page)) | |
f4e6e289 KC |
3825 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
3826 | to_user, 0, n); | |
ed18adc1 KC |
3827 | |
3828 | /* Find offset within object. */ | |
3829 | offset = (ptr - page_address(page)) % s->size; | |
3830 | ||
3831 | /* Adjust for redzone and reject if within the redzone. */ | |
3832 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3833 | if (offset < s->red_left_pad) | |
f4e6e289 KC |
3834 | usercopy_abort("SLUB object in left red zone", |
3835 | s->name, to_user, offset, n); | |
ed18adc1 KC |
3836 | offset -= s->red_left_pad; |
3837 | } | |
3838 | ||
afcc90f8 KC |
3839 | /* Allow address range falling entirely within usercopy region. */ |
3840 | if (offset >= s->useroffset && | |
3841 | offset - s->useroffset <= s->usersize && | |
3842 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 3843 | return; |
ed18adc1 | 3844 | |
afcc90f8 KC |
3845 | /* |
3846 | * If the copy is still within the allocated object, produce | |
3847 | * a warning instead of rejecting the copy. This is intended | |
3848 | * to be a temporary method to find any missing usercopy | |
3849 | * whitelists. | |
3850 | */ | |
3851 | object_size = slab_ksize(s); | |
2d891fbc KC |
3852 | if (usercopy_fallback && |
3853 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
3854 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
3855 | return; | |
3856 | } | |
ed18adc1 | 3857 | |
f4e6e289 | 3858 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
3859 | } |
3860 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
3861 | ||
0316bec2 | 3862 | static size_t __ksize(const void *object) |
81819f0f | 3863 | { |
272c1d21 | 3864 | struct page *page; |
81819f0f | 3865 | |
ef8b4520 | 3866 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3867 | return 0; |
3868 | ||
294a80a8 | 3869 | page = virt_to_head_page(object); |
294a80a8 | 3870 | |
76994412 PE |
3871 | if (unlikely(!PageSlab(page))) { |
3872 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3873 | return PAGE_SIZE << compound_order(page); |
76994412 | 3874 | } |
81819f0f | 3875 | |
1b4f59e3 | 3876 | return slab_ksize(page->slab_cache); |
81819f0f | 3877 | } |
0316bec2 AR |
3878 | |
3879 | size_t ksize(const void *object) | |
3880 | { | |
3881 | size_t size = __ksize(object); | |
3882 | /* We assume that ksize callers could use whole allocated area, | |
4ebb31a4 AP |
3883 | * so we need to unpoison this area. |
3884 | */ | |
3885 | kasan_unpoison_shadow(object, size); | |
0316bec2 AR |
3886 | return size; |
3887 | } | |
b1aabecd | 3888 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
3889 | |
3890 | void kfree(const void *x) | |
3891 | { | |
81819f0f | 3892 | struct page *page; |
5bb983b0 | 3893 | void *object = (void *)x; |
81819f0f | 3894 | |
2121db74 PE |
3895 | trace_kfree(_RET_IP_, x); |
3896 | ||
2408c550 | 3897 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3898 | return; |
3899 | ||
b49af68f | 3900 | page = virt_to_head_page(x); |
aadb4bc4 | 3901 | if (unlikely(!PageSlab(page))) { |
0937502a | 3902 | BUG_ON(!PageCompound(page)); |
47adccce | 3903 | kfree_hook(object); |
4949148a | 3904 | __free_pages(page, compound_order(page)); |
aadb4bc4 CL |
3905 | return; |
3906 | } | |
81084651 | 3907 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3908 | } |
3909 | EXPORT_SYMBOL(kfree); | |
3910 | ||
832f37f5 VD |
3911 | #define SHRINK_PROMOTE_MAX 32 |
3912 | ||
2086d26a | 3913 | /* |
832f37f5 VD |
3914 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
3915 | * up most to the head of the partial lists. New allocations will then | |
3916 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
3917 | * |
3918 | * The slabs with the least items are placed last. This results in them | |
3919 | * being allocated from last increasing the chance that the last objects | |
3920 | * are freed in them. | |
2086d26a | 3921 | */ |
c9fc5864 | 3922 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
3923 | { |
3924 | int node; | |
3925 | int i; | |
3926 | struct kmem_cache_node *n; | |
3927 | struct page *page; | |
3928 | struct page *t; | |
832f37f5 VD |
3929 | struct list_head discard; |
3930 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 3931 | unsigned long flags; |
ce3712d7 | 3932 | int ret = 0; |
2086d26a | 3933 | |
2086d26a | 3934 | flush_all(s); |
fa45dc25 | 3935 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
3936 | INIT_LIST_HEAD(&discard); |
3937 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
3938 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
3939 | |
3940 | spin_lock_irqsave(&n->list_lock, flags); | |
3941 | ||
3942 | /* | |
832f37f5 | 3943 | * Build lists of slabs to discard or promote. |
2086d26a | 3944 | * |
672bba3a CL |
3945 | * Note that concurrent frees may occur while we hold the |
3946 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3947 | */ |
3948 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
832f37f5 VD |
3949 | int free = page->objects - page->inuse; |
3950 | ||
3951 | /* Do not reread page->inuse */ | |
3952 | barrier(); | |
3953 | ||
3954 | /* We do not keep full slabs on the list */ | |
3955 | BUG_ON(free <= 0); | |
3956 | ||
3957 | if (free == page->objects) { | |
3958 | list_move(&page->lru, &discard); | |
69cb8e6b | 3959 | n->nr_partial--; |
832f37f5 VD |
3960 | } else if (free <= SHRINK_PROMOTE_MAX) |
3961 | list_move(&page->lru, promote + free - 1); | |
2086d26a CL |
3962 | } |
3963 | ||
2086d26a | 3964 | /* |
832f37f5 VD |
3965 | * Promote the slabs filled up most to the head of the |
3966 | * partial list. | |
2086d26a | 3967 | */ |
832f37f5 VD |
3968 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
3969 | list_splice(promote + i, &n->partial); | |
2086d26a | 3970 | |
2086d26a | 3971 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
3972 | |
3973 | /* Release empty slabs */ | |
832f37f5 | 3974 | list_for_each_entry_safe(page, t, &discard, lru) |
69cb8e6b | 3975 | discard_slab(s, page); |
ce3712d7 VD |
3976 | |
3977 | if (slabs_node(s, node)) | |
3978 | ret = 1; | |
2086d26a CL |
3979 | } |
3980 | ||
ce3712d7 | 3981 | return ret; |
2086d26a | 3982 | } |
2086d26a | 3983 | |
c9fc5864 | 3984 | #ifdef CONFIG_MEMCG |
01fb58bc TH |
3985 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) |
3986 | { | |
50862ce7 TH |
3987 | /* |
3988 | * Called with all the locks held after a sched RCU grace period. | |
3989 | * Even if @s becomes empty after shrinking, we can't know that @s | |
3990 | * doesn't have allocations already in-flight and thus can't | |
3991 | * destroy @s until the associated memcg is released. | |
3992 | * | |
3993 | * However, let's remove the sysfs files for empty caches here. | |
3994 | * Each cache has a lot of interface files which aren't | |
3995 | * particularly useful for empty draining caches; otherwise, we can | |
3996 | * easily end up with millions of unnecessary sysfs files on | |
3997 | * systems which have a lot of memory and transient cgroups. | |
3998 | */ | |
3999 | if (!__kmem_cache_shrink(s)) | |
4000 | sysfs_slab_remove(s); | |
01fb58bc TH |
4001 | } |
4002 | ||
c9fc5864 TH |
4003 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4004 | { | |
4005 | /* | |
4006 | * Disable empty slabs caching. Used to avoid pinning offline | |
4007 | * memory cgroups by kmem pages that can be freed. | |
4008 | */ | |
e6d0e1dc | 4009 | slub_set_cpu_partial(s, 0); |
c9fc5864 TH |
4010 | s->min_partial = 0; |
4011 | ||
4012 | /* | |
4013 | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | |
01fb58bc | 4014 | * we have to make sure the change is visible before shrinking. |
c9fc5864 | 4015 | */ |
01fb58bc | 4016 | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); |
c9fc5864 TH |
4017 | } |
4018 | #endif | |
4019 | ||
b9049e23 YG |
4020 | static int slab_mem_going_offline_callback(void *arg) |
4021 | { | |
4022 | struct kmem_cache *s; | |
4023 | ||
18004c5d | 4024 | mutex_lock(&slab_mutex); |
b9049e23 | 4025 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4026 | __kmem_cache_shrink(s); |
18004c5d | 4027 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4028 | |
4029 | return 0; | |
4030 | } | |
4031 | ||
4032 | static void slab_mem_offline_callback(void *arg) | |
4033 | { | |
4034 | struct kmem_cache_node *n; | |
4035 | struct kmem_cache *s; | |
4036 | struct memory_notify *marg = arg; | |
4037 | int offline_node; | |
4038 | ||
b9d5ab25 | 4039 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4040 | |
4041 | /* | |
4042 | * If the node still has available memory. we need kmem_cache_node | |
4043 | * for it yet. | |
4044 | */ | |
4045 | if (offline_node < 0) | |
4046 | return; | |
4047 | ||
18004c5d | 4048 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4049 | list_for_each_entry(s, &slab_caches, list) { |
4050 | n = get_node(s, offline_node); | |
4051 | if (n) { | |
4052 | /* | |
4053 | * if n->nr_slabs > 0, slabs still exist on the node | |
4054 | * that is going down. We were unable to free them, | |
c9404c9c | 4055 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4056 | * callback. So, we must fail. |
4057 | */ | |
0f389ec6 | 4058 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4059 | |
4060 | s->node[offline_node] = NULL; | |
8de66a0c | 4061 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4062 | } |
4063 | } | |
18004c5d | 4064 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4065 | } |
4066 | ||
4067 | static int slab_mem_going_online_callback(void *arg) | |
4068 | { | |
4069 | struct kmem_cache_node *n; | |
4070 | struct kmem_cache *s; | |
4071 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4072 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4073 | int ret = 0; |
4074 | ||
4075 | /* | |
4076 | * If the node's memory is already available, then kmem_cache_node is | |
4077 | * already created. Nothing to do. | |
4078 | */ | |
4079 | if (nid < 0) | |
4080 | return 0; | |
4081 | ||
4082 | /* | |
0121c619 | 4083 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4084 | * allocate a kmem_cache_node structure in order to bring the node |
4085 | * online. | |
4086 | */ | |
18004c5d | 4087 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4088 | list_for_each_entry(s, &slab_caches, list) { |
4089 | /* | |
4090 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4091 | * since memory is not yet available from the node that | |
4092 | * is brought up. | |
4093 | */ | |
8de66a0c | 4094 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4095 | if (!n) { |
4096 | ret = -ENOMEM; | |
4097 | goto out; | |
4098 | } | |
4053497d | 4099 | init_kmem_cache_node(n); |
b9049e23 YG |
4100 | s->node[nid] = n; |
4101 | } | |
4102 | out: | |
18004c5d | 4103 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4104 | return ret; |
4105 | } | |
4106 | ||
4107 | static int slab_memory_callback(struct notifier_block *self, | |
4108 | unsigned long action, void *arg) | |
4109 | { | |
4110 | int ret = 0; | |
4111 | ||
4112 | switch (action) { | |
4113 | case MEM_GOING_ONLINE: | |
4114 | ret = slab_mem_going_online_callback(arg); | |
4115 | break; | |
4116 | case MEM_GOING_OFFLINE: | |
4117 | ret = slab_mem_going_offline_callback(arg); | |
4118 | break; | |
4119 | case MEM_OFFLINE: | |
4120 | case MEM_CANCEL_ONLINE: | |
4121 | slab_mem_offline_callback(arg); | |
4122 | break; | |
4123 | case MEM_ONLINE: | |
4124 | case MEM_CANCEL_OFFLINE: | |
4125 | break; | |
4126 | } | |
dc19f9db KH |
4127 | if (ret) |
4128 | ret = notifier_from_errno(ret); | |
4129 | else | |
4130 | ret = NOTIFY_OK; | |
b9049e23 YG |
4131 | return ret; |
4132 | } | |
4133 | ||
3ac38faa AM |
4134 | static struct notifier_block slab_memory_callback_nb = { |
4135 | .notifier_call = slab_memory_callback, | |
4136 | .priority = SLAB_CALLBACK_PRI, | |
4137 | }; | |
b9049e23 | 4138 | |
81819f0f CL |
4139 | /******************************************************************** |
4140 | * Basic setup of slabs | |
4141 | *******************************************************************/ | |
4142 | ||
51df1142 CL |
4143 | /* |
4144 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4145 | * the page allocator. Allocate them properly then fix up the pointers |
4146 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4147 | */ |
4148 | ||
dffb4d60 | 4149 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4150 | { |
4151 | int node; | |
dffb4d60 | 4152 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4153 | struct kmem_cache_node *n; |
51df1142 | 4154 | |
dffb4d60 | 4155 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4156 | |
7d557b3c GC |
4157 | /* |
4158 | * This runs very early, and only the boot processor is supposed to be | |
4159 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4160 | * IPIs around. | |
4161 | */ | |
4162 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4163 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4164 | struct page *p; |
4165 | ||
fa45dc25 CL |
4166 | list_for_each_entry(p, &n->partial, lru) |
4167 | p->slab_cache = s; | |
51df1142 | 4168 | |
607bf324 | 4169 | #ifdef CONFIG_SLUB_DEBUG |
fa45dc25 CL |
4170 | list_for_each_entry(p, &n->full, lru) |
4171 | p->slab_cache = s; | |
51df1142 | 4172 | #endif |
51df1142 | 4173 | } |
f7ce3190 | 4174 | slab_init_memcg_params(s); |
dffb4d60 | 4175 | list_add(&s->list, &slab_caches); |
510ded33 | 4176 | memcg_link_cache(s); |
dffb4d60 | 4177 | return s; |
51df1142 CL |
4178 | } |
4179 | ||
81819f0f CL |
4180 | void __init kmem_cache_init(void) |
4181 | { | |
dffb4d60 CL |
4182 | static __initdata struct kmem_cache boot_kmem_cache, |
4183 | boot_kmem_cache_node; | |
51df1142 | 4184 | |
fc8d8620 SG |
4185 | if (debug_guardpage_minorder()) |
4186 | slub_max_order = 0; | |
4187 | ||
dffb4d60 CL |
4188 | kmem_cache_node = &boot_kmem_cache_node; |
4189 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4190 | |
dffb4d60 | 4191 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4192 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4193 | |
3ac38faa | 4194 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4195 | |
4196 | /* Able to allocate the per node structures */ | |
4197 | slab_state = PARTIAL; | |
4198 | ||
dffb4d60 CL |
4199 | create_boot_cache(kmem_cache, "kmem_cache", |
4200 | offsetof(struct kmem_cache, node) + | |
4201 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4202 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4203 | |
dffb4d60 | 4204 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4205 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4206 | |
4207 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4208 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4209 | create_kmalloc_caches(0); |
81819f0f | 4210 | |
210e7a43 TG |
4211 | /* Setup random freelists for each cache */ |
4212 | init_freelist_randomization(); | |
4213 | ||
a96a87bf SAS |
4214 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4215 | slub_cpu_dead); | |
81819f0f | 4216 | |
19af27af | 4217 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", |
f97d5f63 | 4218 | cache_line_size(), |
81819f0f CL |
4219 | slub_min_order, slub_max_order, slub_min_objects, |
4220 | nr_cpu_ids, nr_node_ids); | |
4221 | } | |
4222 | ||
7e85ee0c PE |
4223 | void __init kmem_cache_init_late(void) |
4224 | { | |
7e85ee0c PE |
4225 | } |
4226 | ||
2633d7a0 | 4227 | struct kmem_cache * |
f4957d5b | 4228 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4229 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4230 | { |
426589f5 | 4231 | struct kmem_cache *s, *c; |
81819f0f | 4232 | |
a44cb944 | 4233 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4234 | if (s) { |
4235 | s->refcount++; | |
84d0ddd6 | 4236 | |
81819f0f CL |
4237 | /* |
4238 | * Adjust the object sizes so that we clear | |
4239 | * the complete object on kzalloc. | |
4240 | */ | |
1b473f29 | 4241 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4242 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4243 | |
426589f5 | 4244 | for_each_memcg_cache(c, s) { |
84d0ddd6 | 4245 | c->object_size = s->object_size; |
52ee6d74 | 4246 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4247 | } |
4248 | ||
7b8f3b66 | 4249 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4250 | s->refcount--; |
cbb79694 | 4251 | s = NULL; |
7b8f3b66 | 4252 | } |
a0e1d1be | 4253 | } |
6446faa2 | 4254 | |
cbb79694 CL |
4255 | return s; |
4256 | } | |
84c1cf62 | 4257 | |
d50112ed | 4258 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4259 | { |
aac3a166 PE |
4260 | int err; |
4261 | ||
4262 | err = kmem_cache_open(s, flags); | |
4263 | if (err) | |
4264 | return err; | |
20cea968 | 4265 | |
45530c44 CL |
4266 | /* Mutex is not taken during early boot */ |
4267 | if (slab_state <= UP) | |
4268 | return 0; | |
4269 | ||
107dab5c | 4270 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4271 | err = sysfs_slab_add(s); |
aac3a166 | 4272 | if (err) |
52b4b950 | 4273 | __kmem_cache_release(s); |
20cea968 | 4274 | |
aac3a166 | 4275 | return err; |
81819f0f | 4276 | } |
81819f0f | 4277 | |
ce71e27c | 4278 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4279 | { |
aadb4bc4 | 4280 | struct kmem_cache *s; |
94b528d0 | 4281 | void *ret; |
aadb4bc4 | 4282 | |
95a05b42 | 4283 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4284 | return kmalloc_large(size, gfpflags); |
4285 | ||
2c59dd65 | 4286 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4287 | |
2408c550 | 4288 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4289 | return s; |
81819f0f | 4290 | |
2b847c3c | 4291 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4292 | |
25985edc | 4293 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4294 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4295 | |
4296 | return ret; | |
81819f0f CL |
4297 | } |
4298 | ||
5d1f57e4 | 4299 | #ifdef CONFIG_NUMA |
81819f0f | 4300 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4301 | int node, unsigned long caller) |
81819f0f | 4302 | { |
aadb4bc4 | 4303 | struct kmem_cache *s; |
94b528d0 | 4304 | void *ret; |
aadb4bc4 | 4305 | |
95a05b42 | 4306 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4307 | ret = kmalloc_large_node(size, gfpflags, node); |
4308 | ||
4309 | trace_kmalloc_node(caller, ret, | |
4310 | size, PAGE_SIZE << get_order(size), | |
4311 | gfpflags, node); | |
4312 | ||
4313 | return ret; | |
4314 | } | |
eada35ef | 4315 | |
2c59dd65 | 4316 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4317 | |
2408c550 | 4318 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4319 | return s; |
81819f0f | 4320 | |
2b847c3c | 4321 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4322 | |
25985edc | 4323 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4324 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4325 | |
4326 | return ret; | |
81819f0f | 4327 | } |
5d1f57e4 | 4328 | #endif |
81819f0f | 4329 | |
ab4d5ed5 | 4330 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4331 | static int count_inuse(struct page *page) |
4332 | { | |
4333 | return page->inuse; | |
4334 | } | |
4335 | ||
4336 | static int count_total(struct page *page) | |
4337 | { | |
4338 | return page->objects; | |
4339 | } | |
ab4d5ed5 | 4340 | #endif |
205ab99d | 4341 | |
ab4d5ed5 | 4342 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
4343 | static int validate_slab(struct kmem_cache *s, struct page *page, |
4344 | unsigned long *map) | |
53e15af0 CL |
4345 | { |
4346 | void *p; | |
a973e9dd | 4347 | void *addr = page_address(page); |
53e15af0 CL |
4348 | |
4349 | if (!check_slab(s, page) || | |
4350 | !on_freelist(s, page, NULL)) | |
4351 | return 0; | |
4352 | ||
4353 | /* Now we know that a valid freelist exists */ | |
39b26464 | 4354 | bitmap_zero(map, page->objects); |
53e15af0 | 4355 | |
5f80b13a CL |
4356 | get_map(s, page, map); |
4357 | for_each_object(p, s, addr, page->objects) { | |
4358 | if (test_bit(slab_index(p, s, addr), map)) | |
4359 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
4360 | return 0; | |
53e15af0 CL |
4361 | } |
4362 | ||
224a88be | 4363 | for_each_object(p, s, addr, page->objects) |
7656c72b | 4364 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 4365 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
4366 | return 0; |
4367 | return 1; | |
4368 | } | |
4369 | ||
434e245d CL |
4370 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4371 | unsigned long *map) | |
53e15af0 | 4372 | { |
881db7fb CL |
4373 | slab_lock(page); |
4374 | validate_slab(s, page, map); | |
4375 | slab_unlock(page); | |
53e15af0 CL |
4376 | } |
4377 | ||
434e245d CL |
4378 | static int validate_slab_node(struct kmem_cache *s, |
4379 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
4380 | { |
4381 | unsigned long count = 0; | |
4382 | struct page *page; | |
4383 | unsigned long flags; | |
4384 | ||
4385 | spin_lock_irqsave(&n->list_lock, flags); | |
4386 | ||
4387 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 4388 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4389 | count++; |
4390 | } | |
4391 | if (count != n->nr_partial) | |
f9f58285 FF |
4392 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4393 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4394 | |
4395 | if (!(s->flags & SLAB_STORE_USER)) | |
4396 | goto out; | |
4397 | ||
4398 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 4399 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4400 | count++; |
4401 | } | |
4402 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4403 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4404 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4405 | |
4406 | out: | |
4407 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4408 | return count; | |
4409 | } | |
4410 | ||
434e245d | 4411 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4412 | { |
4413 | int node; | |
4414 | unsigned long count = 0; | |
6da2ec56 KC |
4415 | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), |
4416 | sizeof(unsigned long), | |
4417 | GFP_KERNEL); | |
fa45dc25 | 4418 | struct kmem_cache_node *n; |
434e245d CL |
4419 | |
4420 | if (!map) | |
4421 | return -ENOMEM; | |
53e15af0 CL |
4422 | |
4423 | flush_all(s); | |
fa45dc25 | 4424 | for_each_kmem_cache_node(s, node, n) |
434e245d | 4425 | count += validate_slab_node(s, n, map); |
434e245d | 4426 | kfree(map); |
53e15af0 CL |
4427 | return count; |
4428 | } | |
88a420e4 | 4429 | /* |
672bba3a | 4430 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4431 | * and freed. |
4432 | */ | |
4433 | ||
4434 | struct location { | |
4435 | unsigned long count; | |
ce71e27c | 4436 | unsigned long addr; |
45edfa58 CL |
4437 | long long sum_time; |
4438 | long min_time; | |
4439 | long max_time; | |
4440 | long min_pid; | |
4441 | long max_pid; | |
174596a0 | 4442 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4443 | nodemask_t nodes; |
88a420e4 CL |
4444 | }; |
4445 | ||
4446 | struct loc_track { | |
4447 | unsigned long max; | |
4448 | unsigned long count; | |
4449 | struct location *loc; | |
4450 | }; | |
4451 | ||
4452 | static void free_loc_track(struct loc_track *t) | |
4453 | { | |
4454 | if (t->max) | |
4455 | free_pages((unsigned long)t->loc, | |
4456 | get_order(sizeof(struct location) * t->max)); | |
4457 | } | |
4458 | ||
68dff6a9 | 4459 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4460 | { |
4461 | struct location *l; | |
4462 | int order; | |
4463 | ||
88a420e4 CL |
4464 | order = get_order(sizeof(struct location) * max); |
4465 | ||
68dff6a9 | 4466 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4467 | if (!l) |
4468 | return 0; | |
4469 | ||
4470 | if (t->count) { | |
4471 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4472 | free_loc_track(t); | |
4473 | } | |
4474 | t->max = max; | |
4475 | t->loc = l; | |
4476 | return 1; | |
4477 | } | |
4478 | ||
4479 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4480 | const struct track *track) |
88a420e4 CL |
4481 | { |
4482 | long start, end, pos; | |
4483 | struct location *l; | |
ce71e27c | 4484 | unsigned long caddr; |
45edfa58 | 4485 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4486 | |
4487 | start = -1; | |
4488 | end = t->count; | |
4489 | ||
4490 | for ( ; ; ) { | |
4491 | pos = start + (end - start + 1) / 2; | |
4492 | ||
4493 | /* | |
4494 | * There is nothing at "end". If we end up there | |
4495 | * we need to add something to before end. | |
4496 | */ | |
4497 | if (pos == end) | |
4498 | break; | |
4499 | ||
4500 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4501 | if (track->addr == caddr) { |
4502 | ||
4503 | l = &t->loc[pos]; | |
4504 | l->count++; | |
4505 | if (track->when) { | |
4506 | l->sum_time += age; | |
4507 | if (age < l->min_time) | |
4508 | l->min_time = age; | |
4509 | if (age > l->max_time) | |
4510 | l->max_time = age; | |
4511 | ||
4512 | if (track->pid < l->min_pid) | |
4513 | l->min_pid = track->pid; | |
4514 | if (track->pid > l->max_pid) | |
4515 | l->max_pid = track->pid; | |
4516 | ||
174596a0 RR |
4517 | cpumask_set_cpu(track->cpu, |
4518 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4519 | } |
4520 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4521 | return 1; |
4522 | } | |
4523 | ||
45edfa58 | 4524 | if (track->addr < caddr) |
88a420e4 CL |
4525 | end = pos; |
4526 | else | |
4527 | start = pos; | |
4528 | } | |
4529 | ||
4530 | /* | |
672bba3a | 4531 | * Not found. Insert new tracking element. |
88a420e4 | 4532 | */ |
68dff6a9 | 4533 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4534 | return 0; |
4535 | ||
4536 | l = t->loc + pos; | |
4537 | if (pos < t->count) | |
4538 | memmove(l + 1, l, | |
4539 | (t->count - pos) * sizeof(struct location)); | |
4540 | t->count++; | |
4541 | l->count = 1; | |
45edfa58 CL |
4542 | l->addr = track->addr; |
4543 | l->sum_time = age; | |
4544 | l->min_time = age; | |
4545 | l->max_time = age; | |
4546 | l->min_pid = track->pid; | |
4547 | l->max_pid = track->pid; | |
174596a0 RR |
4548 | cpumask_clear(to_cpumask(l->cpus)); |
4549 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4550 | nodes_clear(l->nodes); |
4551 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4552 | return 1; |
4553 | } | |
4554 | ||
4555 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4556 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4557 | unsigned long *map) |
88a420e4 | 4558 | { |
a973e9dd | 4559 | void *addr = page_address(page); |
88a420e4 CL |
4560 | void *p; |
4561 | ||
39b26464 | 4562 | bitmap_zero(map, page->objects); |
5f80b13a | 4563 | get_map(s, page, map); |
88a420e4 | 4564 | |
224a88be | 4565 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4566 | if (!test_bit(slab_index(p, s, addr), map)) |
4567 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4568 | } |
4569 | ||
4570 | static int list_locations(struct kmem_cache *s, char *buf, | |
4571 | enum track_item alloc) | |
4572 | { | |
e374d483 | 4573 | int len = 0; |
88a420e4 | 4574 | unsigned long i; |
68dff6a9 | 4575 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4576 | int node; |
6da2ec56 KC |
4577 | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), |
4578 | sizeof(unsigned long), | |
4579 | GFP_KERNEL); | |
fa45dc25 | 4580 | struct kmem_cache_node *n; |
88a420e4 | 4581 | |
bbd7d57b | 4582 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
0ee931c4 | 4583 | GFP_KERNEL)) { |
bbd7d57b | 4584 | kfree(map); |
68dff6a9 | 4585 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4586 | } |
88a420e4 CL |
4587 | /* Push back cpu slabs */ |
4588 | flush_all(s); | |
4589 | ||
fa45dc25 | 4590 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4591 | unsigned long flags; |
4592 | struct page *page; | |
4593 | ||
9e86943b | 4594 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4595 | continue; |
4596 | ||
4597 | spin_lock_irqsave(&n->list_lock, flags); | |
4598 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4599 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4600 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4601 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4602 | spin_unlock_irqrestore(&n->list_lock, flags); |
4603 | } | |
4604 | ||
4605 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4606 | struct location *l = &t.loc[i]; |
88a420e4 | 4607 | |
9c246247 | 4608 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4609 | break; |
e374d483 | 4610 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4611 | |
4612 | if (l->addr) | |
62c70bce | 4613 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4614 | else |
e374d483 | 4615 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4616 | |
4617 | if (l->sum_time != l->min_time) { | |
e374d483 | 4618 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4619 | l->min_time, |
4620 | (long)div_u64(l->sum_time, l->count), | |
4621 | l->max_time); | |
45edfa58 | 4622 | } else |
e374d483 | 4623 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4624 | l->min_time); |
4625 | ||
4626 | if (l->min_pid != l->max_pid) | |
e374d483 | 4627 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4628 | l->min_pid, l->max_pid); |
4629 | else | |
e374d483 | 4630 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4631 | l->min_pid); |
4632 | ||
174596a0 RR |
4633 | if (num_online_cpus() > 1 && |
4634 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4635 | len < PAGE_SIZE - 60) |
4636 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4637 | " cpus=%*pbl", | |
4638 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4639 | |
62bc62a8 | 4640 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4641 | len < PAGE_SIZE - 60) |
4642 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4643 | " nodes=%*pbl", | |
4644 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4645 | |
e374d483 | 4646 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4647 | } |
4648 | ||
4649 | free_loc_track(&t); | |
bbd7d57b | 4650 | kfree(map); |
88a420e4 | 4651 | if (!t.count) |
e374d483 HH |
4652 | len += sprintf(buf, "No data\n"); |
4653 | return len; | |
88a420e4 | 4654 | } |
ab4d5ed5 | 4655 | #endif |
88a420e4 | 4656 | |
a5a84755 | 4657 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4658 | static void __init resiliency_test(void) |
a5a84755 CL |
4659 | { |
4660 | u8 *p; | |
4661 | ||
95a05b42 | 4662 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4663 | |
f9f58285 FF |
4664 | pr_err("SLUB resiliency testing\n"); |
4665 | pr_err("-----------------------\n"); | |
4666 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4667 | |
4668 | p = kzalloc(16, GFP_KERNEL); | |
4669 | p[16] = 0x12; | |
f9f58285 FF |
4670 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4671 | p + 16); | |
a5a84755 CL |
4672 | |
4673 | validate_slab_cache(kmalloc_caches[4]); | |
4674 | ||
4675 | /* Hmmm... The next two are dangerous */ | |
4676 | p = kzalloc(32, GFP_KERNEL); | |
4677 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4678 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4679 | p); | |
4680 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4681 | |
4682 | validate_slab_cache(kmalloc_caches[5]); | |
4683 | p = kzalloc(64, GFP_KERNEL); | |
4684 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4685 | *p = 0x56; | |
f9f58285 FF |
4686 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4687 | p); | |
4688 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4689 | validate_slab_cache(kmalloc_caches[6]); |
4690 | ||
f9f58285 | 4691 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4692 | p = kzalloc(128, GFP_KERNEL); |
4693 | kfree(p); | |
4694 | *p = 0x78; | |
f9f58285 | 4695 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
a5a84755 CL |
4696 | validate_slab_cache(kmalloc_caches[7]); |
4697 | ||
4698 | p = kzalloc(256, GFP_KERNEL); | |
4699 | kfree(p); | |
4700 | p[50] = 0x9a; | |
f9f58285 | 4701 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
a5a84755 CL |
4702 | validate_slab_cache(kmalloc_caches[8]); |
4703 | ||
4704 | p = kzalloc(512, GFP_KERNEL); | |
4705 | kfree(p); | |
4706 | p[512] = 0xab; | |
f9f58285 | 4707 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
a5a84755 CL |
4708 | validate_slab_cache(kmalloc_caches[9]); |
4709 | } | |
4710 | #else | |
4711 | #ifdef CONFIG_SYSFS | |
4712 | static void resiliency_test(void) {}; | |
4713 | #endif | |
4714 | #endif | |
4715 | ||
ab4d5ed5 | 4716 | #ifdef CONFIG_SYSFS |
81819f0f | 4717 | enum slab_stat_type { |
205ab99d CL |
4718 | SL_ALL, /* All slabs */ |
4719 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4720 | SL_CPU, /* Only slabs used for cpu caches */ | |
4721 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4722 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4723 | }; |
4724 | ||
205ab99d | 4725 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4726 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4727 | #define SO_CPU (1 << SL_CPU) | |
4728 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4729 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4730 | |
1663f26d TH |
4731 | #ifdef CONFIG_MEMCG |
4732 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4733 | ||
4734 | static int __init setup_slub_memcg_sysfs(char *str) | |
4735 | { | |
4736 | int v; | |
4737 | ||
4738 | if (get_option(&str, &v) > 0) | |
4739 | memcg_sysfs_enabled = v; | |
4740 | ||
4741 | return 1; | |
4742 | } | |
4743 | ||
4744 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4745 | #endif | |
4746 | ||
62e5c4b4 CG |
4747 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4748 | char *buf, unsigned long flags) | |
81819f0f CL |
4749 | { |
4750 | unsigned long total = 0; | |
81819f0f CL |
4751 | int node; |
4752 | int x; | |
4753 | unsigned long *nodes; | |
81819f0f | 4754 | |
6396bb22 | 4755 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4756 | if (!nodes) |
4757 | return -ENOMEM; | |
81819f0f | 4758 | |
205ab99d CL |
4759 | if (flags & SO_CPU) { |
4760 | int cpu; | |
81819f0f | 4761 | |
205ab99d | 4762 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4763 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4764 | cpu); | |
ec3ab083 | 4765 | int node; |
49e22585 | 4766 | struct page *page; |
dfb4f096 | 4767 | |
4db0c3c2 | 4768 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4769 | if (!page) |
4770 | continue; | |
205ab99d | 4771 | |
ec3ab083 CL |
4772 | node = page_to_nid(page); |
4773 | if (flags & SO_TOTAL) | |
4774 | x = page->objects; | |
4775 | else if (flags & SO_OBJECTS) | |
4776 | x = page->inuse; | |
4777 | else | |
4778 | x = 1; | |
49e22585 | 4779 | |
ec3ab083 CL |
4780 | total += x; |
4781 | nodes[node] += x; | |
4782 | ||
a93cf07b | 4783 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4784 | if (page) { |
8afb1474 LZ |
4785 | node = page_to_nid(page); |
4786 | if (flags & SO_TOTAL) | |
4787 | WARN_ON_ONCE(1); | |
4788 | else if (flags & SO_OBJECTS) | |
4789 | WARN_ON_ONCE(1); | |
4790 | else | |
4791 | x = page->pages; | |
bc6697d8 ED |
4792 | total += x; |
4793 | nodes[node] += x; | |
49e22585 | 4794 | } |
81819f0f CL |
4795 | } |
4796 | } | |
4797 | ||
bfc8c901 | 4798 | get_online_mems(); |
ab4d5ed5 | 4799 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4800 | if (flags & SO_ALL) { |
fa45dc25 CL |
4801 | struct kmem_cache_node *n; |
4802 | ||
4803 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4804 | |
d0e0ac97 CG |
4805 | if (flags & SO_TOTAL) |
4806 | x = atomic_long_read(&n->total_objects); | |
4807 | else if (flags & SO_OBJECTS) | |
4808 | x = atomic_long_read(&n->total_objects) - | |
4809 | count_partial(n, count_free); | |
81819f0f | 4810 | else |
205ab99d | 4811 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4812 | total += x; |
4813 | nodes[node] += x; | |
4814 | } | |
4815 | ||
ab4d5ed5 CL |
4816 | } else |
4817 | #endif | |
4818 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4819 | struct kmem_cache_node *n; |
81819f0f | 4820 | |
fa45dc25 | 4821 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4822 | if (flags & SO_TOTAL) |
4823 | x = count_partial(n, count_total); | |
4824 | else if (flags & SO_OBJECTS) | |
4825 | x = count_partial(n, count_inuse); | |
81819f0f | 4826 | else |
205ab99d | 4827 | x = n->nr_partial; |
81819f0f CL |
4828 | total += x; |
4829 | nodes[node] += x; | |
4830 | } | |
4831 | } | |
81819f0f CL |
4832 | x = sprintf(buf, "%lu", total); |
4833 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4834 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4835 | if (nodes[node]) |
4836 | x += sprintf(buf + x, " N%d=%lu", | |
4837 | node, nodes[node]); | |
4838 | #endif | |
bfc8c901 | 4839 | put_online_mems(); |
81819f0f CL |
4840 | kfree(nodes); |
4841 | return x + sprintf(buf + x, "\n"); | |
4842 | } | |
4843 | ||
ab4d5ed5 | 4844 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4845 | static int any_slab_objects(struct kmem_cache *s) |
4846 | { | |
4847 | int node; | |
fa45dc25 | 4848 | struct kmem_cache_node *n; |
81819f0f | 4849 | |
fa45dc25 | 4850 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4851 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4852 | return 1; |
fa45dc25 | 4853 | |
81819f0f CL |
4854 | return 0; |
4855 | } | |
ab4d5ed5 | 4856 | #endif |
81819f0f CL |
4857 | |
4858 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4859 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4860 | |
4861 | struct slab_attribute { | |
4862 | struct attribute attr; | |
4863 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4864 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4865 | }; | |
4866 | ||
4867 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4868 | static struct slab_attribute _name##_attr = \ |
4869 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4870 | |
4871 | #define SLAB_ATTR(_name) \ | |
4872 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4873 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4874 | |
81819f0f CL |
4875 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4876 | { | |
44065b2e | 4877 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
4878 | } |
4879 | SLAB_ATTR_RO(slab_size); | |
4880 | ||
4881 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4882 | { | |
3a3791ec | 4883 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
4884 | } |
4885 | SLAB_ATTR_RO(align); | |
4886 | ||
4887 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4888 | { | |
1b473f29 | 4889 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
4890 | } |
4891 | SLAB_ATTR_RO(object_size); | |
4892 | ||
4893 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4894 | { | |
19af27af | 4895 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
4896 | } |
4897 | SLAB_ATTR_RO(objs_per_slab); | |
4898 | ||
06b285dc CL |
4899 | static ssize_t order_store(struct kmem_cache *s, |
4900 | const char *buf, size_t length) | |
4901 | { | |
19af27af | 4902 | unsigned int order; |
0121c619 CL |
4903 | int err; |
4904 | ||
19af27af | 4905 | err = kstrtouint(buf, 10, &order); |
0121c619 CL |
4906 | if (err) |
4907 | return err; | |
06b285dc CL |
4908 | |
4909 | if (order > slub_max_order || order < slub_min_order) | |
4910 | return -EINVAL; | |
4911 | ||
4912 | calculate_sizes(s, order); | |
4913 | return length; | |
4914 | } | |
4915 | ||
81819f0f CL |
4916 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4917 | { | |
19af27af | 4918 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 4919 | } |
06b285dc | 4920 | SLAB_ATTR(order); |
81819f0f | 4921 | |
73d342b1 DR |
4922 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4923 | { | |
4924 | return sprintf(buf, "%lu\n", s->min_partial); | |
4925 | } | |
4926 | ||
4927 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4928 | size_t length) | |
4929 | { | |
4930 | unsigned long min; | |
4931 | int err; | |
4932 | ||
3dbb95f7 | 4933 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
4934 | if (err) |
4935 | return err; | |
4936 | ||
c0bdb232 | 4937 | set_min_partial(s, min); |
73d342b1 DR |
4938 | return length; |
4939 | } | |
4940 | SLAB_ATTR(min_partial); | |
4941 | ||
49e22585 CL |
4942 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4943 | { | |
e6d0e1dc | 4944 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
4945 | } |
4946 | ||
4947 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4948 | size_t length) | |
4949 | { | |
e5d9998f | 4950 | unsigned int objects; |
49e22585 CL |
4951 | int err; |
4952 | ||
e5d9998f | 4953 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
4954 | if (err) |
4955 | return err; | |
345c905d | 4956 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4957 | return -EINVAL; |
49e22585 | 4958 | |
e6d0e1dc | 4959 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
4960 | flush_all(s); |
4961 | return length; | |
4962 | } | |
4963 | SLAB_ATTR(cpu_partial); | |
4964 | ||
81819f0f CL |
4965 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4966 | { | |
62c70bce JP |
4967 | if (!s->ctor) |
4968 | return 0; | |
4969 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4970 | } |
4971 | SLAB_ATTR_RO(ctor); | |
4972 | ||
81819f0f CL |
4973 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4974 | { | |
4307c14f | 4975 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
4976 | } |
4977 | SLAB_ATTR_RO(aliases); | |
4978 | ||
81819f0f CL |
4979 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4980 | { | |
d9acf4b7 | 4981 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
4982 | } |
4983 | SLAB_ATTR_RO(partial); | |
4984 | ||
4985 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
4986 | { | |
d9acf4b7 | 4987 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
4988 | } |
4989 | SLAB_ATTR_RO(cpu_slabs); | |
4990 | ||
4991 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
4992 | { | |
205ab99d | 4993 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
4994 | } |
4995 | SLAB_ATTR_RO(objects); | |
4996 | ||
205ab99d CL |
4997 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
4998 | { | |
4999 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5000 | } | |
5001 | SLAB_ATTR_RO(objects_partial); | |
5002 | ||
49e22585 CL |
5003 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5004 | { | |
5005 | int objects = 0; | |
5006 | int pages = 0; | |
5007 | int cpu; | |
5008 | int len; | |
5009 | ||
5010 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5011 | struct page *page; |
5012 | ||
5013 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5014 | |
5015 | if (page) { | |
5016 | pages += page->pages; | |
5017 | objects += page->pobjects; | |
5018 | } | |
5019 | } | |
5020 | ||
5021 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5022 | ||
5023 | #ifdef CONFIG_SMP | |
5024 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5025 | struct page *page; |
5026 | ||
5027 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5028 | |
5029 | if (page && len < PAGE_SIZE - 20) | |
5030 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5031 | page->pobjects, page->pages); | |
5032 | } | |
5033 | #endif | |
5034 | return len + sprintf(buf + len, "\n"); | |
5035 | } | |
5036 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5037 | ||
a5a84755 CL |
5038 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5039 | { | |
5040 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5041 | } | |
5042 | ||
5043 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5044 | const char *buf, size_t length) | |
5045 | { | |
5046 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5047 | if (buf[0] == '1') | |
5048 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5049 | return length; | |
5050 | } | |
5051 | SLAB_ATTR(reclaim_account); | |
5052 | ||
5053 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5054 | { | |
5055 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5056 | } | |
5057 | SLAB_ATTR_RO(hwcache_align); | |
5058 | ||
5059 | #ifdef CONFIG_ZONE_DMA | |
5060 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5061 | { | |
5062 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5063 | } | |
5064 | SLAB_ATTR_RO(cache_dma); | |
5065 | #endif | |
5066 | ||
8eb8284b DW |
5067 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5068 | { | |
7bbdb81e | 5069 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5070 | } |
5071 | SLAB_ATTR_RO(usersize); | |
5072 | ||
a5a84755 CL |
5073 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5074 | { | |
5f0d5a3a | 5075 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5076 | } |
5077 | SLAB_ATTR_RO(destroy_by_rcu); | |
5078 | ||
ab4d5ed5 | 5079 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5080 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5081 | { | |
5082 | return show_slab_objects(s, buf, SO_ALL); | |
5083 | } | |
5084 | SLAB_ATTR_RO(slabs); | |
5085 | ||
205ab99d CL |
5086 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5087 | { | |
5088 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5089 | } | |
5090 | SLAB_ATTR_RO(total_objects); | |
5091 | ||
81819f0f CL |
5092 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5093 | { | |
becfda68 | 5094 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5095 | } |
5096 | ||
5097 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5098 | const char *buf, size_t length) | |
5099 | { | |
becfda68 | 5100 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5101 | if (buf[0] == '1') { |
5102 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5103 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5104 | } |
81819f0f CL |
5105 | return length; |
5106 | } | |
5107 | SLAB_ATTR(sanity_checks); | |
5108 | ||
5109 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5110 | { | |
5111 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5112 | } | |
5113 | ||
5114 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5115 | size_t length) | |
5116 | { | |
c9e16131 CL |
5117 | /* |
5118 | * Tracing a merged cache is going to give confusing results | |
5119 | * as well as cause other issues like converting a mergeable | |
5120 | * cache into an umergeable one. | |
5121 | */ | |
5122 | if (s->refcount > 1) | |
5123 | return -EINVAL; | |
5124 | ||
81819f0f | 5125 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5126 | if (buf[0] == '1') { |
5127 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5128 | s->flags |= SLAB_TRACE; |
b789ef51 | 5129 | } |
81819f0f CL |
5130 | return length; |
5131 | } | |
5132 | SLAB_ATTR(trace); | |
5133 | ||
81819f0f CL |
5134 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5135 | { | |
5136 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5137 | } | |
5138 | ||
5139 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5140 | const char *buf, size_t length) | |
5141 | { | |
5142 | if (any_slab_objects(s)) | |
5143 | return -EBUSY; | |
5144 | ||
5145 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5146 | if (buf[0] == '1') { |
81819f0f | 5147 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5148 | } |
06b285dc | 5149 | calculate_sizes(s, -1); |
81819f0f CL |
5150 | return length; |
5151 | } | |
5152 | SLAB_ATTR(red_zone); | |
5153 | ||
5154 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5155 | { | |
5156 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5157 | } | |
5158 | ||
5159 | static ssize_t poison_store(struct kmem_cache *s, | |
5160 | const char *buf, size_t length) | |
5161 | { | |
5162 | if (any_slab_objects(s)) | |
5163 | return -EBUSY; | |
5164 | ||
5165 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5166 | if (buf[0] == '1') { |
81819f0f | 5167 | s->flags |= SLAB_POISON; |
b789ef51 | 5168 | } |
06b285dc | 5169 | calculate_sizes(s, -1); |
81819f0f CL |
5170 | return length; |
5171 | } | |
5172 | SLAB_ATTR(poison); | |
5173 | ||
5174 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5175 | { | |
5176 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5177 | } | |
5178 | ||
5179 | static ssize_t store_user_store(struct kmem_cache *s, | |
5180 | const char *buf, size_t length) | |
5181 | { | |
5182 | if (any_slab_objects(s)) | |
5183 | return -EBUSY; | |
5184 | ||
5185 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5186 | if (buf[0] == '1') { |
5187 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5188 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5189 | } |
06b285dc | 5190 | calculate_sizes(s, -1); |
81819f0f CL |
5191 | return length; |
5192 | } | |
5193 | SLAB_ATTR(store_user); | |
5194 | ||
53e15af0 CL |
5195 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5196 | { | |
5197 | return 0; | |
5198 | } | |
5199 | ||
5200 | static ssize_t validate_store(struct kmem_cache *s, | |
5201 | const char *buf, size_t length) | |
5202 | { | |
434e245d CL |
5203 | int ret = -EINVAL; |
5204 | ||
5205 | if (buf[0] == '1') { | |
5206 | ret = validate_slab_cache(s); | |
5207 | if (ret >= 0) | |
5208 | ret = length; | |
5209 | } | |
5210 | return ret; | |
53e15af0 CL |
5211 | } |
5212 | SLAB_ATTR(validate); | |
a5a84755 CL |
5213 | |
5214 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5215 | { | |
5216 | if (!(s->flags & SLAB_STORE_USER)) | |
5217 | return -ENOSYS; | |
5218 | return list_locations(s, buf, TRACK_ALLOC); | |
5219 | } | |
5220 | SLAB_ATTR_RO(alloc_calls); | |
5221 | ||
5222 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5223 | { | |
5224 | if (!(s->flags & SLAB_STORE_USER)) | |
5225 | return -ENOSYS; | |
5226 | return list_locations(s, buf, TRACK_FREE); | |
5227 | } | |
5228 | SLAB_ATTR_RO(free_calls); | |
5229 | #endif /* CONFIG_SLUB_DEBUG */ | |
5230 | ||
5231 | #ifdef CONFIG_FAILSLAB | |
5232 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5233 | { | |
5234 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5235 | } | |
5236 | ||
5237 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5238 | size_t length) | |
5239 | { | |
c9e16131 CL |
5240 | if (s->refcount > 1) |
5241 | return -EINVAL; | |
5242 | ||
a5a84755 CL |
5243 | s->flags &= ~SLAB_FAILSLAB; |
5244 | if (buf[0] == '1') | |
5245 | s->flags |= SLAB_FAILSLAB; | |
5246 | return length; | |
5247 | } | |
5248 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5249 | #endif |
53e15af0 | 5250 | |
2086d26a CL |
5251 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5252 | { | |
5253 | return 0; | |
5254 | } | |
5255 | ||
5256 | static ssize_t shrink_store(struct kmem_cache *s, | |
5257 | const char *buf, size_t length) | |
5258 | { | |
832f37f5 VD |
5259 | if (buf[0] == '1') |
5260 | kmem_cache_shrink(s); | |
5261 | else | |
2086d26a CL |
5262 | return -EINVAL; |
5263 | return length; | |
5264 | } | |
5265 | SLAB_ATTR(shrink); | |
5266 | ||
81819f0f | 5267 | #ifdef CONFIG_NUMA |
9824601e | 5268 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5269 | { |
eb7235eb | 5270 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5271 | } |
5272 | ||
9824601e | 5273 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5274 | const char *buf, size_t length) |
5275 | { | |
eb7235eb | 5276 | unsigned int ratio; |
0121c619 CL |
5277 | int err; |
5278 | ||
eb7235eb | 5279 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5280 | if (err) |
5281 | return err; | |
eb7235eb AD |
5282 | if (ratio > 100) |
5283 | return -ERANGE; | |
0121c619 | 5284 | |
eb7235eb | 5285 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5286 | |
81819f0f CL |
5287 | return length; |
5288 | } | |
9824601e | 5289 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5290 | #endif |
5291 | ||
8ff12cfc | 5292 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5293 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5294 | { | |
5295 | unsigned long sum = 0; | |
5296 | int cpu; | |
5297 | int len; | |
6da2ec56 | 5298 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5299 | |
5300 | if (!data) | |
5301 | return -ENOMEM; | |
5302 | ||
5303 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5304 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5305 | |
5306 | data[cpu] = x; | |
5307 | sum += x; | |
5308 | } | |
5309 | ||
5310 | len = sprintf(buf, "%lu", sum); | |
5311 | ||
50ef37b9 | 5312 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5313 | for_each_online_cpu(cpu) { |
5314 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5315 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5316 | } |
50ef37b9 | 5317 | #endif |
8ff12cfc CL |
5318 | kfree(data); |
5319 | return len + sprintf(buf + len, "\n"); | |
5320 | } | |
5321 | ||
78eb00cc DR |
5322 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5323 | { | |
5324 | int cpu; | |
5325 | ||
5326 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5327 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5328 | } |
5329 | ||
8ff12cfc CL |
5330 | #define STAT_ATTR(si, text) \ |
5331 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5332 | { \ | |
5333 | return show_stat(s, buf, si); \ | |
5334 | } \ | |
78eb00cc DR |
5335 | static ssize_t text##_store(struct kmem_cache *s, \ |
5336 | const char *buf, size_t length) \ | |
5337 | { \ | |
5338 | if (buf[0] != '0') \ | |
5339 | return -EINVAL; \ | |
5340 | clear_stat(s, si); \ | |
5341 | return length; \ | |
5342 | } \ | |
5343 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5344 | |
5345 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5346 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5347 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5348 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5349 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5350 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5351 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5352 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5353 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5354 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5355 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5356 | STAT_ATTR(FREE_SLAB, free_slab); |
5357 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5358 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5359 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5360 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5361 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5362 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5363 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5364 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5365 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5366 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5367 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5368 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5369 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5370 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
8ff12cfc CL |
5371 | #endif |
5372 | ||
06428780 | 5373 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5374 | &slab_size_attr.attr, |
5375 | &object_size_attr.attr, | |
5376 | &objs_per_slab_attr.attr, | |
5377 | &order_attr.attr, | |
73d342b1 | 5378 | &min_partial_attr.attr, |
49e22585 | 5379 | &cpu_partial_attr.attr, |
81819f0f | 5380 | &objects_attr.attr, |
205ab99d | 5381 | &objects_partial_attr.attr, |
81819f0f CL |
5382 | &partial_attr.attr, |
5383 | &cpu_slabs_attr.attr, | |
5384 | &ctor_attr.attr, | |
81819f0f CL |
5385 | &aliases_attr.attr, |
5386 | &align_attr.attr, | |
81819f0f CL |
5387 | &hwcache_align_attr.attr, |
5388 | &reclaim_account_attr.attr, | |
5389 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5390 | &shrink_attr.attr, |
49e22585 | 5391 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5392 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5393 | &total_objects_attr.attr, |
5394 | &slabs_attr.attr, | |
5395 | &sanity_checks_attr.attr, | |
5396 | &trace_attr.attr, | |
81819f0f CL |
5397 | &red_zone_attr.attr, |
5398 | &poison_attr.attr, | |
5399 | &store_user_attr.attr, | |
53e15af0 | 5400 | &validate_attr.attr, |
88a420e4 CL |
5401 | &alloc_calls_attr.attr, |
5402 | &free_calls_attr.attr, | |
ab4d5ed5 | 5403 | #endif |
81819f0f CL |
5404 | #ifdef CONFIG_ZONE_DMA |
5405 | &cache_dma_attr.attr, | |
5406 | #endif | |
5407 | #ifdef CONFIG_NUMA | |
9824601e | 5408 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5409 | #endif |
5410 | #ifdef CONFIG_SLUB_STATS | |
5411 | &alloc_fastpath_attr.attr, | |
5412 | &alloc_slowpath_attr.attr, | |
5413 | &free_fastpath_attr.attr, | |
5414 | &free_slowpath_attr.attr, | |
5415 | &free_frozen_attr.attr, | |
5416 | &free_add_partial_attr.attr, | |
5417 | &free_remove_partial_attr.attr, | |
5418 | &alloc_from_partial_attr.attr, | |
5419 | &alloc_slab_attr.attr, | |
5420 | &alloc_refill_attr.attr, | |
e36a2652 | 5421 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5422 | &free_slab_attr.attr, |
5423 | &cpuslab_flush_attr.attr, | |
5424 | &deactivate_full_attr.attr, | |
5425 | &deactivate_empty_attr.attr, | |
5426 | &deactivate_to_head_attr.attr, | |
5427 | &deactivate_to_tail_attr.attr, | |
5428 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5429 | &deactivate_bypass_attr.attr, |
65c3376a | 5430 | &order_fallback_attr.attr, |
b789ef51 CL |
5431 | &cmpxchg_double_fail_attr.attr, |
5432 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5433 | &cpu_partial_alloc_attr.attr, |
5434 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5435 | &cpu_partial_node_attr.attr, |
5436 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5437 | #endif |
4c13dd3b DM |
5438 | #ifdef CONFIG_FAILSLAB |
5439 | &failslab_attr.attr, | |
5440 | #endif | |
8eb8284b | 5441 | &usersize_attr.attr, |
4c13dd3b | 5442 | |
81819f0f CL |
5443 | NULL |
5444 | }; | |
5445 | ||
1fdaaa23 | 5446 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5447 | .attrs = slab_attrs, |
5448 | }; | |
5449 | ||
5450 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5451 | struct attribute *attr, | |
5452 | char *buf) | |
5453 | { | |
5454 | struct slab_attribute *attribute; | |
5455 | struct kmem_cache *s; | |
5456 | int err; | |
5457 | ||
5458 | attribute = to_slab_attr(attr); | |
5459 | s = to_slab(kobj); | |
5460 | ||
5461 | if (!attribute->show) | |
5462 | return -EIO; | |
5463 | ||
5464 | err = attribute->show(s, buf); | |
5465 | ||
5466 | return err; | |
5467 | } | |
5468 | ||
5469 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5470 | struct attribute *attr, | |
5471 | const char *buf, size_t len) | |
5472 | { | |
5473 | struct slab_attribute *attribute; | |
5474 | struct kmem_cache *s; | |
5475 | int err; | |
5476 | ||
5477 | attribute = to_slab_attr(attr); | |
5478 | s = to_slab(kobj); | |
5479 | ||
5480 | if (!attribute->store) | |
5481 | return -EIO; | |
5482 | ||
5483 | err = attribute->store(s, buf, len); | |
127424c8 | 5484 | #ifdef CONFIG_MEMCG |
107dab5c | 5485 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5486 | struct kmem_cache *c; |
81819f0f | 5487 | |
107dab5c GC |
5488 | mutex_lock(&slab_mutex); |
5489 | if (s->max_attr_size < len) | |
5490 | s->max_attr_size = len; | |
5491 | ||
ebe945c2 GC |
5492 | /* |
5493 | * This is a best effort propagation, so this function's return | |
5494 | * value will be determined by the parent cache only. This is | |
5495 | * basically because not all attributes will have a well | |
5496 | * defined semantics for rollbacks - most of the actions will | |
5497 | * have permanent effects. | |
5498 | * | |
5499 | * Returning the error value of any of the children that fail | |
5500 | * is not 100 % defined, in the sense that users seeing the | |
5501 | * error code won't be able to know anything about the state of | |
5502 | * the cache. | |
5503 | * | |
5504 | * Only returning the error code for the parent cache at least | |
5505 | * has well defined semantics. The cache being written to | |
5506 | * directly either failed or succeeded, in which case we loop | |
5507 | * through the descendants with best-effort propagation. | |
5508 | */ | |
426589f5 VD |
5509 | for_each_memcg_cache(c, s) |
5510 | attribute->store(c, buf, len); | |
107dab5c GC |
5511 | mutex_unlock(&slab_mutex); |
5512 | } | |
5513 | #endif | |
81819f0f CL |
5514 | return err; |
5515 | } | |
5516 | ||
107dab5c GC |
5517 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5518 | { | |
127424c8 | 5519 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5520 | int i; |
5521 | char *buffer = NULL; | |
93030d83 | 5522 | struct kmem_cache *root_cache; |
107dab5c | 5523 | |
93030d83 | 5524 | if (is_root_cache(s)) |
107dab5c GC |
5525 | return; |
5526 | ||
f7ce3190 | 5527 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5528 | |
107dab5c GC |
5529 | /* |
5530 | * This mean this cache had no attribute written. Therefore, no point | |
5531 | * in copying default values around | |
5532 | */ | |
93030d83 | 5533 | if (!root_cache->max_attr_size) |
107dab5c GC |
5534 | return; |
5535 | ||
5536 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5537 | char mbuf[64]; | |
5538 | char *buf; | |
5539 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5540 | ssize_t len; |
107dab5c GC |
5541 | |
5542 | if (!attr || !attr->store || !attr->show) | |
5543 | continue; | |
5544 | ||
5545 | /* | |
5546 | * It is really bad that we have to allocate here, so we will | |
5547 | * do it only as a fallback. If we actually allocate, though, | |
5548 | * we can just use the allocated buffer until the end. | |
5549 | * | |
5550 | * Most of the slub attributes will tend to be very small in | |
5551 | * size, but sysfs allows buffers up to a page, so they can | |
5552 | * theoretically happen. | |
5553 | */ | |
5554 | if (buffer) | |
5555 | buf = buffer; | |
93030d83 | 5556 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5557 | buf = mbuf; |
5558 | else { | |
5559 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5560 | if (WARN_ON(!buffer)) | |
5561 | continue; | |
5562 | buf = buffer; | |
5563 | } | |
5564 | ||
478fe303 TG |
5565 | len = attr->show(root_cache, buf); |
5566 | if (len > 0) | |
5567 | attr->store(s, buf, len); | |
107dab5c GC |
5568 | } |
5569 | ||
5570 | if (buffer) | |
5571 | free_page((unsigned long)buffer); | |
5572 | #endif | |
5573 | } | |
5574 | ||
41a21285 CL |
5575 | static void kmem_cache_release(struct kobject *k) |
5576 | { | |
5577 | slab_kmem_cache_release(to_slab(k)); | |
5578 | } | |
5579 | ||
52cf25d0 | 5580 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5581 | .show = slab_attr_show, |
5582 | .store = slab_attr_store, | |
5583 | }; | |
5584 | ||
5585 | static struct kobj_type slab_ktype = { | |
5586 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5587 | .release = kmem_cache_release, |
81819f0f CL |
5588 | }; |
5589 | ||
5590 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5591 | { | |
5592 | struct kobj_type *ktype = get_ktype(kobj); | |
5593 | ||
5594 | if (ktype == &slab_ktype) | |
5595 | return 1; | |
5596 | return 0; | |
5597 | } | |
5598 | ||
9cd43611 | 5599 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5600 | .filter = uevent_filter, |
5601 | }; | |
5602 | ||
27c3a314 | 5603 | static struct kset *slab_kset; |
81819f0f | 5604 | |
9a41707b VD |
5605 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5606 | { | |
127424c8 | 5607 | #ifdef CONFIG_MEMCG |
9a41707b | 5608 | if (!is_root_cache(s)) |
f7ce3190 | 5609 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5610 | #endif |
5611 | return slab_kset; | |
5612 | } | |
5613 | ||
81819f0f CL |
5614 | #define ID_STR_LENGTH 64 |
5615 | ||
5616 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5617 | * |
5618 | * Format :[flags-]size | |
81819f0f CL |
5619 | */ |
5620 | static char *create_unique_id(struct kmem_cache *s) | |
5621 | { | |
5622 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5623 | char *p = name; | |
5624 | ||
5625 | BUG_ON(!name); | |
5626 | ||
5627 | *p++ = ':'; | |
5628 | /* | |
5629 | * First flags affecting slabcache operations. We will only | |
5630 | * get here for aliasable slabs so we do not need to support | |
5631 | * too many flags. The flags here must cover all flags that | |
5632 | * are matched during merging to guarantee that the id is | |
5633 | * unique. | |
5634 | */ | |
5635 | if (s->flags & SLAB_CACHE_DMA) | |
5636 | *p++ = 'd'; | |
5637 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5638 | *p++ = 'a'; | |
becfda68 | 5639 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5640 | *p++ = 'F'; |
230e9fc2 VD |
5641 | if (s->flags & SLAB_ACCOUNT) |
5642 | *p++ = 'A'; | |
81819f0f CL |
5643 | if (p != name + 1) |
5644 | *p++ = '-'; | |
44065b2e | 5645 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5646 | |
81819f0f CL |
5647 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5648 | return name; | |
5649 | } | |
5650 | ||
3b7b3140 TH |
5651 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5652 | { | |
5653 | struct kmem_cache *s = | |
5654 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5655 | ||
5656 | if (!s->kobj.state_in_sysfs) | |
5657 | /* | |
5658 | * For a memcg cache, this may be called during | |
5659 | * deactivation and again on shutdown. Remove only once. | |
5660 | * A cache is never shut down before deactivation is | |
5661 | * complete, so no need to worry about synchronization. | |
5662 | */ | |
f6ba4880 | 5663 | goto out; |
3b7b3140 TH |
5664 | |
5665 | #ifdef CONFIG_MEMCG | |
5666 | kset_unregister(s->memcg_kset); | |
5667 | #endif | |
5668 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
f6ba4880 | 5669 | out: |
3b7b3140 TH |
5670 | kobject_put(&s->kobj); |
5671 | } | |
5672 | ||
81819f0f CL |
5673 | static int sysfs_slab_add(struct kmem_cache *s) |
5674 | { | |
5675 | int err; | |
5676 | const char *name; | |
1663f26d | 5677 | struct kset *kset = cache_kset(s); |
45530c44 | 5678 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5679 | |
3b7b3140 TH |
5680 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5681 | ||
1663f26d TH |
5682 | if (!kset) { |
5683 | kobject_init(&s->kobj, &slab_ktype); | |
5684 | return 0; | |
5685 | } | |
5686 | ||
11066386 MC |
5687 | if (!unmergeable && disable_higher_order_debug && |
5688 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5689 | unmergeable = 1; | |
5690 | ||
81819f0f CL |
5691 | if (unmergeable) { |
5692 | /* | |
5693 | * Slabcache can never be merged so we can use the name proper. | |
5694 | * This is typically the case for debug situations. In that | |
5695 | * case we can catch duplicate names easily. | |
5696 | */ | |
27c3a314 | 5697 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5698 | name = s->name; |
5699 | } else { | |
5700 | /* | |
5701 | * Create a unique name for the slab as a target | |
5702 | * for the symlinks. | |
5703 | */ | |
5704 | name = create_unique_id(s); | |
5705 | } | |
5706 | ||
1663f26d | 5707 | s->kobj.kset = kset; |
26e4f205 | 5708 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5709 | if (err) |
80da026a | 5710 | goto out; |
81819f0f CL |
5711 | |
5712 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5713 | if (err) |
5714 | goto out_del_kobj; | |
9a41707b | 5715 | |
127424c8 | 5716 | #ifdef CONFIG_MEMCG |
1663f26d | 5717 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5718 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5719 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5720 | err = -ENOMEM; |
5721 | goto out_del_kobj; | |
9a41707b VD |
5722 | } |
5723 | } | |
5724 | #endif | |
5725 | ||
81819f0f CL |
5726 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5727 | if (!unmergeable) { | |
5728 | /* Setup first alias */ | |
5729 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5730 | } |
54b6a731 DJ |
5731 | out: |
5732 | if (!unmergeable) | |
5733 | kfree(name); | |
5734 | return err; | |
5735 | out_del_kobj: | |
5736 | kobject_del(&s->kobj); | |
54b6a731 | 5737 | goto out; |
81819f0f CL |
5738 | } |
5739 | ||
bf5eb3de | 5740 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5741 | { |
97d06609 | 5742 | if (slab_state < FULL) |
2bce6485 CL |
5743 | /* |
5744 | * Sysfs has not been setup yet so no need to remove the | |
5745 | * cache from sysfs. | |
5746 | */ | |
5747 | return; | |
5748 | ||
3b7b3140 TH |
5749 | kobject_get(&s->kobj); |
5750 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5751 | } |
5752 | ||
d50d82fa MP |
5753 | void sysfs_slab_unlink(struct kmem_cache *s) |
5754 | { | |
5755 | if (slab_state >= FULL) | |
5756 | kobject_del(&s->kobj); | |
5757 | } | |
5758 | ||
bf5eb3de TH |
5759 | void sysfs_slab_release(struct kmem_cache *s) |
5760 | { | |
5761 | if (slab_state >= FULL) | |
5762 | kobject_put(&s->kobj); | |
81819f0f CL |
5763 | } |
5764 | ||
5765 | /* | |
5766 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5767 | * available lest we lose that information. |
81819f0f CL |
5768 | */ |
5769 | struct saved_alias { | |
5770 | struct kmem_cache *s; | |
5771 | const char *name; | |
5772 | struct saved_alias *next; | |
5773 | }; | |
5774 | ||
5af328a5 | 5775 | static struct saved_alias *alias_list; |
81819f0f CL |
5776 | |
5777 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5778 | { | |
5779 | struct saved_alias *al; | |
5780 | ||
97d06609 | 5781 | if (slab_state == FULL) { |
81819f0f CL |
5782 | /* |
5783 | * If we have a leftover link then remove it. | |
5784 | */ | |
27c3a314 GKH |
5785 | sysfs_remove_link(&slab_kset->kobj, name); |
5786 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5787 | } |
5788 | ||
5789 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5790 | if (!al) | |
5791 | return -ENOMEM; | |
5792 | ||
5793 | al->s = s; | |
5794 | al->name = name; | |
5795 | al->next = alias_list; | |
5796 | alias_list = al; | |
5797 | return 0; | |
5798 | } | |
5799 | ||
5800 | static int __init slab_sysfs_init(void) | |
5801 | { | |
5b95a4ac | 5802 | struct kmem_cache *s; |
81819f0f CL |
5803 | int err; |
5804 | ||
18004c5d | 5805 | mutex_lock(&slab_mutex); |
2bce6485 | 5806 | |
0ff21e46 | 5807 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5808 | if (!slab_kset) { |
18004c5d | 5809 | mutex_unlock(&slab_mutex); |
f9f58285 | 5810 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5811 | return -ENOSYS; |
5812 | } | |
5813 | ||
97d06609 | 5814 | slab_state = FULL; |
26a7bd03 | 5815 | |
5b95a4ac | 5816 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5817 | err = sysfs_slab_add(s); |
5d540fb7 | 5818 | if (err) |
f9f58285 FF |
5819 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5820 | s->name); | |
26a7bd03 | 5821 | } |
81819f0f CL |
5822 | |
5823 | while (alias_list) { | |
5824 | struct saved_alias *al = alias_list; | |
5825 | ||
5826 | alias_list = alias_list->next; | |
5827 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5828 | if (err) |
f9f58285 FF |
5829 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5830 | al->name); | |
81819f0f CL |
5831 | kfree(al); |
5832 | } | |
5833 | ||
18004c5d | 5834 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5835 | resiliency_test(); |
5836 | return 0; | |
5837 | } | |
5838 | ||
5839 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5840 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5841 | |
5842 | /* | |
5843 | * The /proc/slabinfo ABI | |
5844 | */ | |
5b365771 | 5845 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5846 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5847 | { |
57ed3eda | 5848 | unsigned long nr_slabs = 0; |
205ab99d CL |
5849 | unsigned long nr_objs = 0; |
5850 | unsigned long nr_free = 0; | |
57ed3eda | 5851 | int node; |
fa45dc25 | 5852 | struct kmem_cache_node *n; |
57ed3eda | 5853 | |
fa45dc25 | 5854 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5855 | nr_slabs += node_nr_slabs(n); |
5856 | nr_objs += node_nr_objs(n); | |
205ab99d | 5857 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5858 | } |
5859 | ||
0d7561c6 GC |
5860 | sinfo->active_objs = nr_objs - nr_free; |
5861 | sinfo->num_objs = nr_objs; | |
5862 | sinfo->active_slabs = nr_slabs; | |
5863 | sinfo->num_slabs = nr_slabs; | |
5864 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5865 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5866 | } |
5867 | ||
0d7561c6 | 5868 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5869 | { |
7b3c3a50 AD |
5870 | } |
5871 | ||
b7454ad3 GC |
5872 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5873 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5874 | { |
b7454ad3 | 5875 | return -EIO; |
7b3c3a50 | 5876 | } |
5b365771 | 5877 | #endif /* CONFIG_SLUB_DEBUG */ |