]> Git Repo - linux.git/blame - mm/slub.c
Revert "drm/amd/display: Fix overlay validation by considering cursors"
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
81819f0f 39
4a92379b
RK
40#include <trace/events/kmem.h>
41
072bb0aa
MG
42#include "internal.h"
43
81819f0f
CL
44/*
45 * Lock order:
18004c5d 46 * 1. slab_mutex (Global Mutex)
881db7fb
CL
47 * 2. node->list_lock
48 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 49 *
18004c5d 50 * slab_mutex
881db7fb 51 *
18004c5d 52 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
53 * and to synchronize major metadata changes to slab cache structures.
54 *
55 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 56 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 57 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
58 * B. page->inuse -> Number of objects in use
59 * C. page->objects -> Number of objects in page
60 * D. page->frozen -> frozen state
881db7fb
CL
61 *
62 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
63 * on any list except per cpu partial list. The processor that froze the
64 * slab is the one who can perform list operations on the page. Other
65 * processors may put objects onto the freelist but the processor that
66 * froze the slab is the only one that can retrieve the objects from the
67 * page's freelist.
81819f0f
CL
68 *
69 * The list_lock protects the partial and full list on each node and
70 * the partial slab counter. If taken then no new slabs may be added or
71 * removed from the lists nor make the number of partial slabs be modified.
72 * (Note that the total number of slabs is an atomic value that may be
73 * modified without taking the list lock).
74 *
75 * The list_lock is a centralized lock and thus we avoid taking it as
76 * much as possible. As long as SLUB does not have to handle partial
77 * slabs, operations can continue without any centralized lock. F.e.
78 * allocating a long series of objects that fill up slabs does not require
79 * the list lock.
81819f0f
CL
80 * Interrupts are disabled during allocation and deallocation in order to
81 * make the slab allocator safe to use in the context of an irq. In addition
82 * interrupts are disabled to ensure that the processor does not change
83 * while handling per_cpu slabs, due to kernel preemption.
84 *
85 * SLUB assigns one slab for allocation to each processor.
86 * Allocations only occur from these slabs called cpu slabs.
87 *
672bba3a
CL
88 * Slabs with free elements are kept on a partial list and during regular
89 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 90 * freed then the slab will show up again on the partial lists.
672bba3a
CL
91 * We track full slabs for debugging purposes though because otherwise we
92 * cannot scan all objects.
81819f0f
CL
93 *
94 * Slabs are freed when they become empty. Teardown and setup is
95 * minimal so we rely on the page allocators per cpu caches for
96 * fast frees and allocs.
97 *
aed68148 98 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f 113 *
aed68148 114 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
ca0cab65
VB
119#ifdef CONFIG_SLUB_DEBUG
120#ifdef CONFIG_SLUB_DEBUG_ON
121DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
122#else
123DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
124#endif
125#endif
126
59052e89
VB
127static inline bool kmem_cache_debug(struct kmem_cache *s)
128{
129 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 130}
5577bd8a 131
117d54df 132void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 133{
59052e89 134 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
135 p += s->red_left_pad;
136
137 return p;
138}
139
345c905d
JK
140static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
141{
142#ifdef CONFIG_SLUB_CPU_PARTIAL
143 return !kmem_cache_debug(s);
144#else
145 return false;
146#endif
147}
148
81819f0f
CL
149/*
150 * Issues still to be resolved:
151 *
81819f0f
CL
152 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
153 *
81819f0f
CL
154 * - Variable sizing of the per node arrays
155 */
156
157/* Enable to test recovery from slab corruption on boot */
158#undef SLUB_RESILIENCY_TEST
159
b789ef51
CL
160/* Enable to log cmpxchg failures */
161#undef SLUB_DEBUG_CMPXCHG
162
2086d26a 163/*
dc84207d 164 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
165 * lists even if they are empty. kmem_cache_shrink may reclaim them.
166 */
76be8950 167#define MIN_PARTIAL 5
e95eed57 168
2086d26a
CL
169/*
170 * Maximum number of desirable partial slabs.
171 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 172 * sort the partial list by the number of objects in use.
2086d26a
CL
173 */
174#define MAX_PARTIAL 10
175
becfda68 176#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 177 SLAB_POISON | SLAB_STORE_USER)
672bba3a 178
149daaf3
LA
179/*
180 * These debug flags cannot use CMPXCHG because there might be consistency
181 * issues when checking or reading debug information
182 */
183#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 SLAB_TRACE)
185
186
fa5ec8a1 187/*
3de47213
DR
188 * Debugging flags that require metadata to be stored in the slab. These get
189 * disabled when slub_debug=O is used and a cache's min order increases with
190 * metadata.
fa5ec8a1 191 */
3de47213 192#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 193
210b5c06
CG
194#define OO_SHIFT 16
195#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 196#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 197
81819f0f 198/* Internal SLUB flags */
d50112ed 199/* Poison object */
4fd0b46e 200#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 201/* Use cmpxchg_double */
4fd0b46e 202#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 203
02cbc874
CL
204/*
205 * Tracking user of a slab.
206 */
d6543e39 207#define TRACK_ADDRS_COUNT 16
02cbc874 208struct track {
ce71e27c 209 unsigned long addr; /* Called from address */
d6543e39
BG
210#ifdef CONFIG_STACKTRACE
211 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
212#endif
02cbc874
CL
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
ab4d5ed5 220#ifdef CONFIG_SYSFS
81819f0f
CL
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 223#else
0c710013
CL
224static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
225static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
226 { return 0; }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
7e1fa93d
VB
240/*
241 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
242 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
243 * differ during memory hotplug/hotremove operations.
244 * Protected by slab_mutex.
245 */
246static nodemask_t slab_nodes;
247
81819f0f
CL
248/********************************************************************
249 * Core slab cache functions
250 *******************************************************************/
251
2482ddec
KC
252/*
253 * Returns freelist pointer (ptr). With hardening, this is obfuscated
254 * with an XOR of the address where the pointer is held and a per-cache
255 * random number.
256 */
257static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
258 unsigned long ptr_addr)
259{
260#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 261 /*
aa1ef4d7 262 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
263 * Normally, this doesn't cause any issues, as both set_freepointer()
264 * and get_freepointer() are called with a pointer with the same tag.
265 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
266 * example, when __free_slub() iterates over objects in a cache, it
267 * passes untagged pointers to check_object(). check_object() in turns
268 * calls get_freepointer() with an untagged pointer, which causes the
269 * freepointer to be restored incorrectly.
270 */
271 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 272 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
273#else
274 return ptr;
275#endif
276}
277
278/* Returns the freelist pointer recorded at location ptr_addr. */
279static inline void *freelist_dereference(const struct kmem_cache *s,
280 void *ptr_addr)
281{
282 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
283 (unsigned long)ptr_addr);
284}
285
7656c72b
CL
286static inline void *get_freepointer(struct kmem_cache *s, void *object)
287{
aa1ef4d7 288 object = kasan_reset_tag(object);
2482ddec 289 return freelist_dereference(s, object + s->offset);
7656c72b
CL
290}
291
0ad9500e
ED
292static void prefetch_freepointer(const struct kmem_cache *s, void *object)
293{
0882ff91 294 prefetch(object + s->offset);
0ad9500e
ED
295}
296
1393d9a1
CL
297static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
298{
2482ddec 299 unsigned long freepointer_addr;
1393d9a1
CL
300 void *p;
301
8e57f8ac 302 if (!debug_pagealloc_enabled_static())
922d566c
JK
303 return get_freepointer(s, object);
304
f70b0049 305 object = kasan_reset_tag(object);
2482ddec 306 freepointer_addr = (unsigned long)object + s->offset;
fe557319 307 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 308 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
309}
310
7656c72b
CL
311static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
312{
2482ddec
KC
313 unsigned long freeptr_addr = (unsigned long)object + s->offset;
314
ce6fa91b
AP
315#ifdef CONFIG_SLAB_FREELIST_HARDENED
316 BUG_ON(object == fp); /* naive detection of double free or corruption */
317#endif
318
aa1ef4d7 319 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 320 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
321}
322
323/* Loop over all objects in a slab */
224a88be 324#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
325 for (__p = fixup_red_left(__s, __addr); \
326 __p < (__addr) + (__objects) * (__s)->size; \
327 __p += (__s)->size)
7656c72b 328
9736d2a9 329static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 330{
9736d2a9 331 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
332}
333
19af27af 334static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 335 unsigned int size)
834f3d11
CL
336{
337 struct kmem_cache_order_objects x = {
9736d2a9 338 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
339 };
340
341 return x;
342}
343
19af27af 344static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 345{
210b5c06 346 return x.x >> OO_SHIFT;
834f3d11
CL
347}
348
19af27af 349static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 350{
210b5c06 351 return x.x & OO_MASK;
834f3d11
CL
352}
353
881db7fb
CL
354/*
355 * Per slab locking using the pagelock
356 */
357static __always_inline void slab_lock(struct page *page)
358{
48c935ad 359 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
48c935ad 365 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
366 __bit_spin_unlock(PG_locked, &page->flags);
367}
368
1d07171c
CL
369/* Interrupts must be disabled (for the fallback code to work right) */
370static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
371 void *freelist_old, unsigned long counters_old,
372 void *freelist_new, unsigned long counters_new,
373 const char *n)
374{
375 VM_BUG_ON(!irqs_disabled());
2565409f
HC
376#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
377 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 378 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 379 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
380 freelist_old, counters_old,
381 freelist_new, counters_new))
6f6528a1 382 return true;
1d07171c
CL
383 } else
384#endif
385 {
386 slab_lock(page);
d0e0ac97
CG
387 if (page->freelist == freelist_old &&
388 page->counters == counters_old) {
1d07171c 389 page->freelist = freelist_new;
7d27a04b 390 page->counters = counters_new;
1d07171c 391 slab_unlock(page);
6f6528a1 392 return true;
1d07171c
CL
393 }
394 slab_unlock(page);
395 }
396
397 cpu_relax();
398 stat(s, CMPXCHG_DOUBLE_FAIL);
399
400#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 401 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
402#endif
403
6f6528a1 404 return false;
1d07171c
CL
405}
406
b789ef51
CL
407static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
408 void *freelist_old, unsigned long counters_old,
409 void *freelist_new, unsigned long counters_new,
410 const char *n)
411{
2565409f
HC
412#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
413 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 414 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 415 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
416 freelist_old, counters_old,
417 freelist_new, counters_new))
6f6528a1 418 return true;
b789ef51
CL
419 } else
420#endif
421 {
1d07171c
CL
422 unsigned long flags;
423
424 local_irq_save(flags);
881db7fb 425 slab_lock(page);
d0e0ac97
CG
426 if (page->freelist == freelist_old &&
427 page->counters == counters_old) {
b789ef51 428 page->freelist = freelist_new;
7d27a04b 429 page->counters = counters_new;
881db7fb 430 slab_unlock(page);
1d07171c 431 local_irq_restore(flags);
6f6528a1 432 return true;
b789ef51 433 }
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 }
437
438 cpu_relax();
439 stat(s, CMPXCHG_DOUBLE_FAIL);
440
441#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 442 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
443#endif
444
6f6528a1 445 return false;
b789ef51
CL
446}
447
41ecc55b 448#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
449static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
450static DEFINE_SPINLOCK(object_map_lock);
451
5f80b13a
CL
452/*
453 * Determine a map of object in use on a page.
454 *
881db7fb 455 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
456 * not vanish from under us.
457 */
90e9f6a6 458static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 459 __acquires(&object_map_lock)
5f80b13a
CL
460{
461 void *p;
462 void *addr = page_address(page);
463
90e9f6a6
YZ
464 VM_BUG_ON(!irqs_disabled());
465
466 spin_lock(&object_map_lock);
467
468 bitmap_zero(object_map, page->objects);
469
5f80b13a 470 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 471 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
472
473 return object_map;
474}
475
81aba9e0 476static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
477{
478 VM_BUG_ON(map != object_map);
90e9f6a6 479 spin_unlock(&object_map_lock);
5f80b13a
CL
480}
481
870b1fbb 482static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
483{
484 if (s->flags & SLAB_RED_ZONE)
485 return s->size - s->red_left_pad;
486
487 return s->size;
488}
489
490static inline void *restore_red_left(struct kmem_cache *s, void *p)
491{
492 if (s->flags & SLAB_RED_ZONE)
493 p -= s->red_left_pad;
494
495 return p;
496}
497
41ecc55b
CL
498/*
499 * Debug settings:
500 */
89d3c87e 501#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 502static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 503#else
d50112ed 504static slab_flags_t slub_debug;
f0630fff 505#endif
41ecc55b 506
e17f1dfb 507static char *slub_debug_string;
fa5ec8a1 508static int disable_higher_order_debug;
41ecc55b 509
a79316c6
AR
510/*
511 * slub is about to manipulate internal object metadata. This memory lies
512 * outside the range of the allocated object, so accessing it would normally
513 * be reported by kasan as a bounds error. metadata_access_enable() is used
514 * to tell kasan that these accesses are OK.
515 */
516static inline void metadata_access_enable(void)
517{
518 kasan_disable_current();
519}
520
521static inline void metadata_access_disable(void)
522{
523 kasan_enable_current();
524}
525
81819f0f
CL
526/*
527 * Object debugging
528 */
d86bd1be
JK
529
530/* Verify that a pointer has an address that is valid within a slab page */
531static inline int check_valid_pointer(struct kmem_cache *s,
532 struct page *page, void *object)
533{
534 void *base;
535
536 if (!object)
537 return 1;
538
539 base = page_address(page);
338cfaad 540 object = kasan_reset_tag(object);
d86bd1be
JK
541 object = restore_red_left(s, object);
542 if (object < base || object >= base + page->objects * s->size ||
543 (object - base) % s->size) {
544 return 0;
545 }
546
547 return 1;
548}
549
aa2efd5e
DT
550static void print_section(char *level, char *text, u8 *addr,
551 unsigned int length)
81819f0f 552{
a79316c6 553 metadata_access_enable();
aa1ef4d7
AK
554 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
555 16, 1, addr, length, 1);
a79316c6 556 metadata_access_disable();
81819f0f
CL
557}
558
cbfc35a4
WL
559/*
560 * See comment in calculate_sizes().
561 */
562static inline bool freeptr_outside_object(struct kmem_cache *s)
563{
564 return s->offset >= s->inuse;
565}
566
567/*
568 * Return offset of the end of info block which is inuse + free pointer if
569 * not overlapping with object.
570 */
571static inline unsigned int get_info_end(struct kmem_cache *s)
572{
573 if (freeptr_outside_object(s))
574 return s->inuse + sizeof(void *);
575 else
576 return s->inuse;
577}
578
81819f0f
CL
579static struct track *get_track(struct kmem_cache *s, void *object,
580 enum track_item alloc)
581{
582 struct track *p;
583
cbfc35a4 584 p = object + get_info_end(s);
81819f0f 585
aa1ef4d7 586 return kasan_reset_tag(p + alloc);
81819f0f
CL
587}
588
589static void set_track(struct kmem_cache *s, void *object,
ce71e27c 590 enum track_item alloc, unsigned long addr)
81819f0f 591{
1a00df4a 592 struct track *p = get_track(s, object, alloc);
81819f0f 593
81819f0f 594 if (addr) {
d6543e39 595#ifdef CONFIG_STACKTRACE
79716799 596 unsigned int nr_entries;
d6543e39 597
a79316c6 598 metadata_access_enable();
aa1ef4d7
AK
599 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
600 TRACK_ADDRS_COUNT, 3);
a79316c6 601 metadata_access_disable();
d6543e39 602
79716799
TG
603 if (nr_entries < TRACK_ADDRS_COUNT)
604 p->addrs[nr_entries] = 0;
d6543e39 605#endif
81819f0f
CL
606 p->addr = addr;
607 p->cpu = smp_processor_id();
88e4ccf2 608 p->pid = current->pid;
81819f0f 609 p->when = jiffies;
b8ca7ff7 610 } else {
81819f0f 611 memset(p, 0, sizeof(struct track));
b8ca7ff7 612 }
81819f0f
CL
613}
614
81819f0f
CL
615static void init_tracking(struct kmem_cache *s, void *object)
616{
24922684
CL
617 if (!(s->flags & SLAB_STORE_USER))
618 return;
619
ce71e27c
EGM
620 set_track(s, object, TRACK_FREE, 0UL);
621 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
622}
623
86609d33 624static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
625{
626 if (!t->addr)
627 return;
628
96b94abc 629 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 630 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
631#ifdef CONFIG_STACKTRACE
632 {
633 int i;
634 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
635 if (t->addrs[i])
f9f58285 636 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
637 else
638 break;
639 }
640#endif
24922684
CL
641}
642
e42f174e 643void print_tracking(struct kmem_cache *s, void *object)
24922684 644{
86609d33 645 unsigned long pr_time = jiffies;
24922684
CL
646 if (!(s->flags & SLAB_STORE_USER))
647 return;
648
86609d33
CP
649 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
650 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
651}
652
653static void print_page_info(struct page *page)
654{
96b94abc 655 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
656 page, page->objects, page->inuse, page->freelist,
657 page->flags, &page->flags);
24922684
CL
658
659}
660
661static void slab_bug(struct kmem_cache *s, char *fmt, ...)
662{
ecc42fbe 663 struct va_format vaf;
24922684 664 va_list args;
24922684
CL
665
666 va_start(args, fmt);
ecc42fbe
FF
667 vaf.fmt = fmt;
668 vaf.va = &args;
f9f58285 669 pr_err("=============================================================================\n");
ecc42fbe 670 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 671 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 672
373d4d09 673 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 674 va_end(args);
81819f0f
CL
675}
676
24922684
CL
677static void slab_fix(struct kmem_cache *s, char *fmt, ...)
678{
ecc42fbe 679 struct va_format vaf;
24922684 680 va_list args;
24922684
CL
681
682 va_start(args, fmt);
ecc42fbe
FF
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 686 va_end(args);
24922684
CL
687}
688
52f23478 689static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 690 void **freelist, void *nextfree)
52f23478
DZ
691{
692 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
693 !check_valid_pointer(s, page, nextfree) && freelist) {
694 object_err(s, page, *freelist, "Freechain corrupt");
695 *freelist = NULL;
52f23478
DZ
696 slab_fix(s, "Isolate corrupted freechain");
697 return true;
698 }
699
700 return false;
701}
702
24922684 703static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
704{
705 unsigned int off; /* Offset of last byte */
a973e9dd 706 u8 *addr = page_address(page);
24922684
CL
707
708 print_tracking(s, p);
709
710 print_page_info(page);
711
96b94abc 712 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 713 p, p - addr, get_freepointer(s, p));
24922684 714
d86bd1be 715 if (s->flags & SLAB_RED_ZONE)
8669dbab 716 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 717 s->red_left_pad);
d86bd1be 718 else if (p > addr + 16)
aa2efd5e 719 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 720
8669dbab 721 print_section(KERN_ERR, "Object ", p,
1b473f29 722 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 723 if (s->flags & SLAB_RED_ZONE)
8669dbab 724 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 725 s->inuse - s->object_size);
81819f0f 726
cbfc35a4 727 off = get_info_end(s);
81819f0f 728
24922684 729 if (s->flags & SLAB_STORE_USER)
81819f0f 730 off += 2 * sizeof(struct track);
81819f0f 731
80a9201a
AP
732 off += kasan_metadata_size(s);
733
d86bd1be 734 if (off != size_from_object(s))
81819f0f 735 /* Beginning of the filler is the free pointer */
8669dbab 736 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 737 size_from_object(s) - off);
24922684
CL
738
739 dump_stack();
81819f0f
CL
740}
741
75c66def 742void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
743 u8 *object, char *reason)
744{
3dc50637 745 slab_bug(s, "%s", reason);
24922684 746 print_trailer(s, page, object);
81819f0f
CL
747}
748
a38965bf 749static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 750 const char *fmt, ...)
81819f0f
CL
751{
752 va_list args;
753 char buf[100];
754
24922684
CL
755 va_start(args, fmt);
756 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 757 va_end(args);
3dc50637 758 slab_bug(s, "%s", buf);
24922684 759 print_page_info(page);
81819f0f
CL
760 dump_stack();
761}
762
f7cb1933 763static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 764{
aa1ef4d7 765 u8 *p = kasan_reset_tag(object);
81819f0f 766
d86bd1be
JK
767 if (s->flags & SLAB_RED_ZONE)
768 memset(p - s->red_left_pad, val, s->red_left_pad);
769
81819f0f 770 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
771 memset(p, POISON_FREE, s->object_size - 1);
772 p[s->object_size - 1] = POISON_END;
81819f0f
CL
773 }
774
775 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 776 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
777}
778
24922684
CL
779static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
780 void *from, void *to)
781{
782 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
783 memset(from, data, to - from);
784}
785
786static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
787 u8 *object, char *what,
06428780 788 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
789{
790 u8 *fault;
791 u8 *end;
e1b70dd1 792 u8 *addr = page_address(page);
24922684 793
a79316c6 794 metadata_access_enable();
aa1ef4d7 795 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 796 metadata_access_disable();
24922684
CL
797 if (!fault)
798 return 1;
799
800 end = start + bytes;
801 while (end > fault && end[-1] == value)
802 end--;
803
804 slab_bug(s, "%s overwritten", what);
96b94abc 805 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
806 fault, end - 1, fault - addr,
807 fault[0], value);
24922684
CL
808 print_trailer(s, page, object);
809
810 restore_bytes(s, what, value, fault, end);
811 return 0;
81819f0f
CL
812}
813
81819f0f
CL
814/*
815 * Object layout:
816 *
817 * object address
818 * Bytes of the object to be managed.
819 * If the freepointer may overlay the object then the free
cbfc35a4 820 * pointer is at the middle of the object.
672bba3a 821 *
81819f0f
CL
822 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
823 * 0xa5 (POISON_END)
824 *
3b0efdfa 825 * object + s->object_size
81819f0f 826 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 827 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 828 * object_size == inuse.
672bba3a 829 *
81819f0f
CL
830 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
831 * 0xcc (RED_ACTIVE) for objects in use.
832 *
833 * object + s->inuse
672bba3a
CL
834 * Meta data starts here.
835 *
81819f0f
CL
836 * A. Free pointer (if we cannot overwrite object on free)
837 * B. Tracking data for SLAB_STORE_USER
dc84207d 838 * C. Padding to reach required alignment boundary or at minimum
6446faa2 839 * one word if debugging is on to be able to detect writes
672bba3a
CL
840 * before the word boundary.
841 *
842 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
843 *
844 * object + s->size
672bba3a 845 * Nothing is used beyond s->size.
81819f0f 846 *
3b0efdfa 847 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 848 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
849 * may be used with merged slabcaches.
850 */
851
81819f0f
CL
852static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
853{
cbfc35a4 854 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
855
856 if (s->flags & SLAB_STORE_USER)
857 /* We also have user information there */
858 off += 2 * sizeof(struct track);
859
80a9201a
AP
860 off += kasan_metadata_size(s);
861
d86bd1be 862 if (size_from_object(s) == off)
81819f0f
CL
863 return 1;
864
24922684 865 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 866 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
867}
868
39b26464 869/* Check the pad bytes at the end of a slab page */
81819f0f
CL
870static int slab_pad_check(struct kmem_cache *s, struct page *page)
871{
24922684
CL
872 u8 *start;
873 u8 *fault;
874 u8 *end;
5d682681 875 u8 *pad;
24922684
CL
876 int length;
877 int remainder;
81819f0f
CL
878
879 if (!(s->flags & SLAB_POISON))
880 return 1;
881
a973e9dd 882 start = page_address(page);
a50b854e 883 length = page_size(page);
39b26464
CL
884 end = start + length;
885 remainder = length % s->size;
81819f0f
CL
886 if (!remainder)
887 return 1;
888
5d682681 889 pad = end - remainder;
a79316c6 890 metadata_access_enable();
aa1ef4d7 891 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 892 metadata_access_disable();
24922684
CL
893 if (!fault)
894 return 1;
895 while (end > fault && end[-1] == POISON_INUSE)
896 end--;
897
e1b70dd1
MC
898 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
899 fault, end - 1, fault - start);
5d682681 900 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 901
5d682681 902 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 903 return 0;
81819f0f
CL
904}
905
906static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 907 void *object, u8 val)
81819f0f
CL
908{
909 u8 *p = object;
3b0efdfa 910 u8 *endobject = object + s->object_size;
81819f0f
CL
911
912 if (s->flags & SLAB_RED_ZONE) {
8669dbab 913 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
914 object - s->red_left_pad, val, s->red_left_pad))
915 return 0;
916
8669dbab 917 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 918 endobject, val, s->inuse - s->object_size))
81819f0f 919 return 0;
81819f0f 920 } else {
3b0efdfa 921 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 922 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
923 endobject, POISON_INUSE,
924 s->inuse - s->object_size);
3adbefee 925 }
81819f0f
CL
926 }
927
928 if (s->flags & SLAB_POISON) {
f7cb1933 929 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 930 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 931 POISON_FREE, s->object_size - 1) ||
8669dbab 932 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 933 p + s->object_size - 1, POISON_END, 1)))
81819f0f 934 return 0;
81819f0f
CL
935 /*
936 * check_pad_bytes cleans up on its own.
937 */
938 check_pad_bytes(s, page, p);
939 }
940
cbfc35a4 941 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
942 /*
943 * Object and freepointer overlap. Cannot check
944 * freepointer while object is allocated.
945 */
946 return 1;
947
948 /* Check free pointer validity */
949 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
950 object_err(s, page, p, "Freepointer corrupt");
951 /*
9f6c708e 952 * No choice but to zap it and thus lose the remainder
81819f0f 953 * of the free objects in this slab. May cause
672bba3a 954 * another error because the object count is now wrong.
81819f0f 955 */
a973e9dd 956 set_freepointer(s, p, NULL);
81819f0f
CL
957 return 0;
958 }
959 return 1;
960}
961
962static int check_slab(struct kmem_cache *s, struct page *page)
963{
39b26464
CL
964 int maxobj;
965
81819f0f
CL
966 VM_BUG_ON(!irqs_disabled());
967
968 if (!PageSlab(page)) {
24922684 969 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
970 return 0;
971 }
39b26464 972
9736d2a9 973 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
974 if (page->objects > maxobj) {
975 slab_err(s, page, "objects %u > max %u",
f6edde9c 976 page->objects, maxobj);
39b26464
CL
977 return 0;
978 }
979 if (page->inuse > page->objects) {
24922684 980 slab_err(s, page, "inuse %u > max %u",
f6edde9c 981 page->inuse, page->objects);
81819f0f
CL
982 return 0;
983 }
984 /* Slab_pad_check fixes things up after itself */
985 slab_pad_check(s, page);
986 return 1;
987}
988
989/*
672bba3a
CL
990 * Determine if a certain object on a page is on the freelist. Must hold the
991 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
992 */
993static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
994{
995 int nr = 0;
881db7fb 996 void *fp;
81819f0f 997 void *object = NULL;
f6edde9c 998 int max_objects;
81819f0f 999
881db7fb 1000 fp = page->freelist;
39b26464 1001 while (fp && nr <= page->objects) {
81819f0f
CL
1002 if (fp == search)
1003 return 1;
1004 if (!check_valid_pointer(s, page, fp)) {
1005 if (object) {
1006 object_err(s, page, object,
1007 "Freechain corrupt");
a973e9dd 1008 set_freepointer(s, object, NULL);
81819f0f 1009 } else {
24922684 1010 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1011 page->freelist = NULL;
39b26464 1012 page->inuse = page->objects;
24922684 1013 slab_fix(s, "Freelist cleared");
81819f0f
CL
1014 return 0;
1015 }
1016 break;
1017 }
1018 object = fp;
1019 fp = get_freepointer(s, object);
1020 nr++;
1021 }
1022
9736d2a9 1023 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1024 if (max_objects > MAX_OBJS_PER_PAGE)
1025 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1026
1027 if (page->objects != max_objects) {
756a025f
JP
1028 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1029 page->objects, max_objects);
224a88be
CL
1030 page->objects = max_objects;
1031 slab_fix(s, "Number of objects adjusted.");
1032 }
39b26464 1033 if (page->inuse != page->objects - nr) {
756a025f
JP
1034 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1035 page->inuse, page->objects - nr);
39b26464 1036 page->inuse = page->objects - nr;
24922684 1037 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1038 }
1039 return search == NULL;
1040}
1041
0121c619
CL
1042static void trace(struct kmem_cache *s, struct page *page, void *object,
1043 int alloc)
3ec09742
CL
1044{
1045 if (s->flags & SLAB_TRACE) {
f9f58285 1046 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1047 s->name,
1048 alloc ? "alloc" : "free",
1049 object, page->inuse,
1050 page->freelist);
1051
1052 if (!alloc)
aa2efd5e 1053 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1054 s->object_size);
3ec09742
CL
1055
1056 dump_stack();
1057 }
1058}
1059
643b1138 1060/*
672bba3a 1061 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1062 */
5cc6eee8
CL
1063static void add_full(struct kmem_cache *s,
1064 struct kmem_cache_node *n, struct page *page)
643b1138 1065{
5cc6eee8
CL
1066 if (!(s->flags & SLAB_STORE_USER))
1067 return;
1068
255d0884 1069 lockdep_assert_held(&n->list_lock);
916ac052 1070 list_add(&page->slab_list, &n->full);
643b1138
CL
1071}
1072
c65c1877 1073static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1074{
643b1138
CL
1075 if (!(s->flags & SLAB_STORE_USER))
1076 return;
1077
255d0884 1078 lockdep_assert_held(&n->list_lock);
916ac052 1079 list_del(&page->slab_list);
643b1138
CL
1080}
1081
0f389ec6
CL
1082/* Tracking of the number of slabs for debugging purposes */
1083static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1084{
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 return atomic_long_read(&n->nr_slabs);
1088}
1089
26c02cf0
AB
1090static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1091{
1092 return atomic_long_read(&n->nr_slabs);
1093}
1094
205ab99d 1095static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1096{
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 /*
1100 * May be called early in order to allocate a slab for the
1101 * kmem_cache_node structure. Solve the chicken-egg
1102 * dilemma by deferring the increment of the count during
1103 * bootstrap (see early_kmem_cache_node_alloc).
1104 */
338b2642 1105 if (likely(n)) {
0f389ec6 1106 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1107 atomic_long_add(objects, &n->total_objects);
1108 }
0f389ec6 1109}
205ab99d 1110static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1111{
1112 struct kmem_cache_node *n = get_node(s, node);
1113
1114 atomic_long_dec(&n->nr_slabs);
205ab99d 1115 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1116}
1117
1118/* Object debug checks for alloc/free paths */
3ec09742
CL
1119static void setup_object_debug(struct kmem_cache *s, struct page *page,
1120 void *object)
1121{
8fc8d666 1122 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1123 return;
1124
f7cb1933 1125 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1126 init_tracking(s, object);
1127}
1128
a50b854e
MWO
1129static
1130void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1131{
8fc8d666 1132 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1133 return;
1134
1135 metadata_access_enable();
aa1ef4d7 1136 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1137 metadata_access_disable();
1138}
1139
becfda68 1140static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1141 struct page *page, void *object)
81819f0f
CL
1142{
1143 if (!check_slab(s, page))
becfda68 1144 return 0;
81819f0f 1145
81819f0f
CL
1146 if (!check_valid_pointer(s, page, object)) {
1147 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1148 return 0;
81819f0f
CL
1149 }
1150
f7cb1933 1151 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1152 return 0;
1153
1154 return 1;
1155}
1156
1157static noinline int alloc_debug_processing(struct kmem_cache *s,
1158 struct page *page,
1159 void *object, unsigned long addr)
1160{
1161 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1162 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1163 goto bad;
1164 }
81819f0f 1165
3ec09742
CL
1166 /* Success perform special debug activities for allocs */
1167 if (s->flags & SLAB_STORE_USER)
1168 set_track(s, object, TRACK_ALLOC, addr);
1169 trace(s, page, object, 1);
f7cb1933 1170 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1171 return 1;
3ec09742 1172
81819f0f
CL
1173bad:
1174 if (PageSlab(page)) {
1175 /*
1176 * If this is a slab page then lets do the best we can
1177 * to avoid issues in the future. Marking all objects
672bba3a 1178 * as used avoids touching the remaining objects.
81819f0f 1179 */
24922684 1180 slab_fix(s, "Marking all objects used");
39b26464 1181 page->inuse = page->objects;
a973e9dd 1182 page->freelist = NULL;
81819f0f
CL
1183 }
1184 return 0;
1185}
1186
becfda68
LA
1187static inline int free_consistency_checks(struct kmem_cache *s,
1188 struct page *page, void *object, unsigned long addr)
81819f0f 1189{
81819f0f 1190 if (!check_valid_pointer(s, page, object)) {
70d71228 1191 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1192 return 0;
81819f0f
CL
1193 }
1194
1195 if (on_freelist(s, page, object)) {
24922684 1196 object_err(s, page, object, "Object already free");
becfda68 1197 return 0;
81819f0f
CL
1198 }
1199
f7cb1933 1200 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1201 return 0;
81819f0f 1202
1b4f59e3 1203 if (unlikely(s != page->slab_cache)) {
3adbefee 1204 if (!PageSlab(page)) {
756a025f
JP
1205 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1206 object);
1b4f59e3 1207 } else if (!page->slab_cache) {
f9f58285
FF
1208 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1209 object);
70d71228 1210 dump_stack();
06428780 1211 } else
24922684
CL
1212 object_err(s, page, object,
1213 "page slab pointer corrupt.");
becfda68
LA
1214 return 0;
1215 }
1216 return 1;
1217}
1218
1219/* Supports checking bulk free of a constructed freelist */
1220static noinline int free_debug_processing(
1221 struct kmem_cache *s, struct page *page,
1222 void *head, void *tail, int bulk_cnt,
1223 unsigned long addr)
1224{
1225 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1226 void *object = head;
1227 int cnt = 0;
3f649ab7 1228 unsigned long flags;
becfda68
LA
1229 int ret = 0;
1230
1231 spin_lock_irqsave(&n->list_lock, flags);
1232 slab_lock(page);
1233
1234 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1235 if (!check_slab(s, page))
1236 goto out;
1237 }
1238
1239next_object:
1240 cnt++;
1241
1242 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1243 if (!free_consistency_checks(s, page, object, addr))
1244 goto out;
81819f0f 1245 }
3ec09742 1246
3ec09742
CL
1247 if (s->flags & SLAB_STORE_USER)
1248 set_track(s, object, TRACK_FREE, addr);
1249 trace(s, page, object, 0);
81084651 1250 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1251 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1252
1253 /* Reached end of constructed freelist yet? */
1254 if (object != tail) {
1255 object = get_freepointer(s, object);
1256 goto next_object;
1257 }
804aa132
LA
1258 ret = 1;
1259
5c2e4bbb 1260out:
81084651
JDB
1261 if (cnt != bulk_cnt)
1262 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1263 bulk_cnt, cnt);
1264
881db7fb 1265 slab_unlock(page);
282acb43 1266 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1267 if (!ret)
1268 slab_fix(s, "Object at 0x%p not freed", object);
1269 return ret;
81819f0f
CL
1270}
1271
e17f1dfb
VB
1272/*
1273 * Parse a block of slub_debug options. Blocks are delimited by ';'
1274 *
1275 * @str: start of block
1276 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1277 * @slabs: return start of list of slabs, or NULL when there's no list
1278 * @init: assume this is initial parsing and not per-kmem-create parsing
1279 *
1280 * returns the start of next block if there's any, or NULL
1281 */
1282static char *
1283parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1284{
e17f1dfb 1285 bool higher_order_disable = false;
f0630fff 1286
e17f1dfb
VB
1287 /* Skip any completely empty blocks */
1288 while (*str && *str == ';')
1289 str++;
1290
1291 if (*str == ',') {
f0630fff
CL
1292 /*
1293 * No options but restriction on slabs. This means full
1294 * debugging for slabs matching a pattern.
1295 */
e17f1dfb 1296 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1297 goto check_slabs;
e17f1dfb
VB
1298 }
1299 *flags = 0;
f0630fff 1300
e17f1dfb
VB
1301 /* Determine which debug features should be switched on */
1302 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1303 switch (tolower(*str)) {
e17f1dfb
VB
1304 case '-':
1305 *flags = 0;
1306 break;
f0630fff 1307 case 'f':
e17f1dfb 1308 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1309 break;
1310 case 'z':
e17f1dfb 1311 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1312 break;
1313 case 'p':
e17f1dfb 1314 *flags |= SLAB_POISON;
f0630fff
CL
1315 break;
1316 case 'u':
e17f1dfb 1317 *flags |= SLAB_STORE_USER;
f0630fff
CL
1318 break;
1319 case 't':
e17f1dfb 1320 *flags |= SLAB_TRACE;
f0630fff 1321 break;
4c13dd3b 1322 case 'a':
e17f1dfb 1323 *flags |= SLAB_FAILSLAB;
4c13dd3b 1324 break;
08303a73
CA
1325 case 'o':
1326 /*
1327 * Avoid enabling debugging on caches if its minimum
1328 * order would increase as a result.
1329 */
e17f1dfb 1330 higher_order_disable = true;
08303a73 1331 break;
f0630fff 1332 default:
e17f1dfb
VB
1333 if (init)
1334 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1335 }
41ecc55b 1336 }
f0630fff 1337check_slabs:
41ecc55b 1338 if (*str == ',')
e17f1dfb
VB
1339 *slabs = ++str;
1340 else
1341 *slabs = NULL;
1342
1343 /* Skip over the slab list */
1344 while (*str && *str != ';')
1345 str++;
1346
1347 /* Skip any completely empty blocks */
1348 while (*str && *str == ';')
1349 str++;
1350
1351 if (init && higher_order_disable)
1352 disable_higher_order_debug = 1;
1353
1354 if (*str)
1355 return str;
1356 else
1357 return NULL;
1358}
1359
1360static int __init setup_slub_debug(char *str)
1361{
1362 slab_flags_t flags;
1363 char *saved_str;
1364 char *slab_list;
1365 bool global_slub_debug_changed = false;
1366 bool slab_list_specified = false;
1367
1368 slub_debug = DEBUG_DEFAULT_FLAGS;
1369 if (*str++ != '=' || !*str)
1370 /*
1371 * No options specified. Switch on full debugging.
1372 */
1373 goto out;
1374
1375 saved_str = str;
1376 while (str) {
1377 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1378
1379 if (!slab_list) {
1380 slub_debug = flags;
1381 global_slub_debug_changed = true;
1382 } else {
1383 slab_list_specified = true;
1384 }
1385 }
1386
1387 /*
1388 * For backwards compatibility, a single list of flags with list of
1389 * slabs means debugging is only enabled for those slabs, so the global
1390 * slub_debug should be 0. We can extended that to multiple lists as
1391 * long as there is no option specifying flags without a slab list.
1392 */
1393 if (slab_list_specified) {
1394 if (!global_slub_debug_changed)
1395 slub_debug = 0;
1396 slub_debug_string = saved_str;
1397 }
f0630fff 1398out:
ca0cab65
VB
1399 if (slub_debug != 0 || slub_debug_string)
1400 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1401 if ((static_branch_unlikely(&init_on_alloc) ||
1402 static_branch_unlikely(&init_on_free)) &&
1403 (slub_debug & SLAB_POISON))
1404 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1405 return 1;
1406}
1407
1408__setup("slub_debug", setup_slub_debug);
1409
c5fd3ca0
AT
1410/*
1411 * kmem_cache_flags - apply debugging options to the cache
1412 * @object_size: the size of an object without meta data
1413 * @flags: flags to set
1414 * @name: name of the cache
c5fd3ca0
AT
1415 *
1416 * Debug option(s) are applied to @flags. In addition to the debug
1417 * option(s), if a slab name (or multiple) is specified i.e.
1418 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1419 * then only the select slabs will receive the debug option(s).
1420 */
0293d1fd 1421slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1422 slab_flags_t flags, const char *name)
41ecc55b 1423{
c5fd3ca0
AT
1424 char *iter;
1425 size_t len;
e17f1dfb
VB
1426 char *next_block;
1427 slab_flags_t block_flags;
ca220593
JB
1428 slab_flags_t slub_debug_local = slub_debug;
1429
1430 /*
1431 * If the slab cache is for debugging (e.g. kmemleak) then
1432 * don't store user (stack trace) information by default,
1433 * but let the user enable it via the command line below.
1434 */
1435 if (flags & SLAB_NOLEAKTRACE)
1436 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1437
c5fd3ca0 1438 len = strlen(name);
e17f1dfb
VB
1439 next_block = slub_debug_string;
1440 /* Go through all blocks of debug options, see if any matches our slab's name */
1441 while (next_block) {
1442 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1443 if (!iter)
1444 continue;
1445 /* Found a block that has a slab list, search it */
1446 while (*iter) {
1447 char *end, *glob;
1448 size_t cmplen;
1449
1450 end = strchrnul(iter, ',');
1451 if (next_block && next_block < end)
1452 end = next_block - 1;
1453
1454 glob = strnchr(iter, end - iter, '*');
1455 if (glob)
1456 cmplen = glob - iter;
1457 else
1458 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1459
e17f1dfb
VB
1460 if (!strncmp(name, iter, cmplen)) {
1461 flags |= block_flags;
1462 return flags;
1463 }
c5fd3ca0 1464
e17f1dfb
VB
1465 if (!*end || *end == ';')
1466 break;
1467 iter = end + 1;
c5fd3ca0 1468 }
c5fd3ca0 1469 }
ba0268a8 1470
ca220593 1471 return flags | slub_debug_local;
41ecc55b 1472}
b4a64718 1473#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1474static inline void setup_object_debug(struct kmem_cache *s,
1475 struct page *page, void *object) {}
a50b854e
MWO
1476static inline
1477void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1478
3ec09742 1479static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1480 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1481
282acb43 1482static inline int free_debug_processing(
81084651
JDB
1483 struct kmem_cache *s, struct page *page,
1484 void *head, void *tail, int bulk_cnt,
282acb43 1485 unsigned long addr) { return 0; }
41ecc55b 1486
41ecc55b
CL
1487static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1488 { return 1; }
1489static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1490 void *object, u8 val) { return 1; }
5cc6eee8
CL
1491static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
c65c1877
PZ
1493static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1494 struct page *page) {}
0293d1fd 1495slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1496 slab_flags_t flags, const char *name)
ba0268a8
CL
1497{
1498 return flags;
1499}
41ecc55b 1500#define slub_debug 0
0f389ec6 1501
fdaa45e9
IM
1502#define disable_higher_order_debug 0
1503
0f389ec6
CL
1504static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1505 { return 0; }
26c02cf0
AB
1506static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1507 { return 0; }
205ab99d
CL
1508static inline void inc_slabs_node(struct kmem_cache *s, int node,
1509 int objects) {}
1510static inline void dec_slabs_node(struct kmem_cache *s, int node,
1511 int objects) {}
7d550c56 1512
52f23478 1513static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1514 void **freelist, void *nextfree)
52f23478
DZ
1515{
1516 return false;
1517}
02e72cc6
AR
1518#endif /* CONFIG_SLUB_DEBUG */
1519
1520/*
1521 * Hooks for other subsystems that check memory allocations. In a typical
1522 * production configuration these hooks all should produce no code at all.
1523 */
0116523c 1524static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1525{
53128245 1526 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1527 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1528 kmemleak_alloc(ptr, size, 1, flags);
53128245 1529 return ptr;
d56791b3
RB
1530}
1531
ee3ce779 1532static __always_inline void kfree_hook(void *x)
d56791b3
RB
1533{
1534 kmemleak_free(x);
027b37b5 1535 kasan_kfree_large(x);
d56791b3
RB
1536}
1537
d57a964e
AK
1538static __always_inline bool slab_free_hook(struct kmem_cache *s,
1539 void *x, bool init)
d56791b3
RB
1540{
1541 kmemleak_free_recursive(x, s->flags);
7d550c56 1542
02e72cc6
AR
1543 /*
1544 * Trouble is that we may no longer disable interrupts in the fast path
1545 * So in order to make the debug calls that expect irqs to be
1546 * disabled we need to disable interrupts temporarily.
1547 */
4675ff05 1548#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1549 {
1550 unsigned long flags;
1551
1552 local_irq_save(flags);
02e72cc6
AR
1553 debug_check_no_locks_freed(x, s->object_size);
1554 local_irq_restore(flags);
1555 }
1556#endif
1557 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1558 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1559
cfbe1636
ME
1560 /* Use KCSAN to help debug racy use-after-free. */
1561 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1562 __kcsan_check_access(x, s->object_size,
1563 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1564
d57a964e
AK
1565 /*
1566 * As memory initialization might be integrated into KASAN,
1567 * kasan_slab_free and initialization memset's must be
1568 * kept together to avoid discrepancies in behavior.
1569 *
1570 * The initialization memset's clear the object and the metadata,
1571 * but don't touch the SLAB redzone.
1572 */
1573 if (init) {
1574 int rsize;
1575
1576 if (!kasan_has_integrated_init())
1577 memset(kasan_reset_tag(x), 0, s->object_size);
1578 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1579 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1580 s->size - s->inuse - rsize);
1581 }
1582 /* KASAN might put x into memory quarantine, delaying its reuse. */
1583 return kasan_slab_free(s, x, init);
02e72cc6 1584}
205ab99d 1585
c3895391
AK
1586static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1587 void **head, void **tail)
81084651 1588{
6471384a
AP
1589
1590 void *object;
1591 void *next = *head;
1592 void *old_tail = *tail ? *tail : *head;
6471384a 1593
b89fb5ef 1594 if (is_kfence_address(next)) {
d57a964e 1595 slab_free_hook(s, next, false);
b89fb5ef
AP
1596 return true;
1597 }
1598
aea4df4c
LA
1599 /* Head and tail of the reconstructed freelist */
1600 *head = NULL;
1601 *tail = NULL;
1b7e816f 1602
aea4df4c
LA
1603 do {
1604 object = next;
1605 next = get_freepointer(s, object);
1606
c3895391 1607 /* If object's reuse doesn't have to be delayed */
d57a964e 1608 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1609 /* Move object to the new freelist */
1610 set_freepointer(s, object, *head);
1611 *head = object;
1612 if (!*tail)
1613 *tail = object;
1614 }
1615 } while (object != old_tail);
1616
1617 if (*head == *tail)
1618 *tail = NULL;
1619
1620 return *head != NULL;
81084651
JDB
1621}
1622
4d176711 1623static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1624 void *object)
1625{
1626 setup_object_debug(s, page, object);
4d176711 1627 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1628 if (unlikely(s->ctor)) {
1629 kasan_unpoison_object_data(s, object);
1630 s->ctor(object);
1631 kasan_poison_object_data(s, object);
1632 }
4d176711 1633 return object;
588f8ba9
TG
1634}
1635
81819f0f
CL
1636/*
1637 * Slab allocation and freeing
1638 */
5dfb4175
VD
1639static inline struct page *alloc_slab_page(struct kmem_cache *s,
1640 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1641{
5dfb4175 1642 struct page *page;
19af27af 1643 unsigned int order = oo_order(oo);
65c3376a 1644
2154a336 1645 if (node == NUMA_NO_NODE)
5dfb4175 1646 page = alloc_pages(flags, order);
65c3376a 1647 else
96db800f 1648 page = __alloc_pages_node(node, flags, order);
5dfb4175 1649
5dfb4175 1650 return page;
65c3376a
CL
1651}
1652
210e7a43
TG
1653#ifdef CONFIG_SLAB_FREELIST_RANDOM
1654/* Pre-initialize the random sequence cache */
1655static int init_cache_random_seq(struct kmem_cache *s)
1656{
19af27af 1657 unsigned int count = oo_objects(s->oo);
210e7a43 1658 int err;
210e7a43 1659
a810007a
SR
1660 /* Bailout if already initialised */
1661 if (s->random_seq)
1662 return 0;
1663
210e7a43
TG
1664 err = cache_random_seq_create(s, count, GFP_KERNEL);
1665 if (err) {
1666 pr_err("SLUB: Unable to initialize free list for %s\n",
1667 s->name);
1668 return err;
1669 }
1670
1671 /* Transform to an offset on the set of pages */
1672 if (s->random_seq) {
19af27af
AD
1673 unsigned int i;
1674
210e7a43
TG
1675 for (i = 0; i < count; i++)
1676 s->random_seq[i] *= s->size;
1677 }
1678 return 0;
1679}
1680
1681/* Initialize each random sequence freelist per cache */
1682static void __init init_freelist_randomization(void)
1683{
1684 struct kmem_cache *s;
1685
1686 mutex_lock(&slab_mutex);
1687
1688 list_for_each_entry(s, &slab_caches, list)
1689 init_cache_random_seq(s);
1690
1691 mutex_unlock(&slab_mutex);
1692}
1693
1694/* Get the next entry on the pre-computed freelist randomized */
1695static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1696 unsigned long *pos, void *start,
1697 unsigned long page_limit,
1698 unsigned long freelist_count)
1699{
1700 unsigned int idx;
1701
1702 /*
1703 * If the target page allocation failed, the number of objects on the
1704 * page might be smaller than the usual size defined by the cache.
1705 */
1706 do {
1707 idx = s->random_seq[*pos];
1708 *pos += 1;
1709 if (*pos >= freelist_count)
1710 *pos = 0;
1711 } while (unlikely(idx >= page_limit));
1712
1713 return (char *)start + idx;
1714}
1715
1716/* Shuffle the single linked freelist based on a random pre-computed sequence */
1717static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1718{
1719 void *start;
1720 void *cur;
1721 void *next;
1722 unsigned long idx, pos, page_limit, freelist_count;
1723
1724 if (page->objects < 2 || !s->random_seq)
1725 return false;
1726
1727 freelist_count = oo_objects(s->oo);
1728 pos = get_random_int() % freelist_count;
1729
1730 page_limit = page->objects * s->size;
1731 start = fixup_red_left(s, page_address(page));
1732
1733 /* First entry is used as the base of the freelist */
1734 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1735 freelist_count);
4d176711 1736 cur = setup_object(s, page, cur);
210e7a43
TG
1737 page->freelist = cur;
1738
1739 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1740 next = next_freelist_entry(s, page, &pos, start, page_limit,
1741 freelist_count);
4d176711 1742 next = setup_object(s, page, next);
210e7a43
TG
1743 set_freepointer(s, cur, next);
1744 cur = next;
1745 }
210e7a43
TG
1746 set_freepointer(s, cur, NULL);
1747
1748 return true;
1749}
1750#else
1751static inline int init_cache_random_seq(struct kmem_cache *s)
1752{
1753 return 0;
1754}
1755static inline void init_freelist_randomization(void) { }
1756static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1757{
1758 return false;
1759}
1760#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1761
81819f0f
CL
1762static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1763{
06428780 1764 struct page *page;
834f3d11 1765 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1766 gfp_t alloc_gfp;
4d176711 1767 void *start, *p, *next;
a50b854e 1768 int idx;
210e7a43 1769 bool shuffle;
81819f0f 1770
7e0528da
CL
1771 flags &= gfp_allowed_mask;
1772
d0164adc 1773 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1774 local_irq_enable();
1775
b7a49f0d 1776 flags |= s->allocflags;
e12ba74d 1777
ba52270d
PE
1778 /*
1779 * Let the initial higher-order allocation fail under memory pressure
1780 * so we fall-back to the minimum order allocation.
1781 */
1782 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1783 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1784 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1785
5dfb4175 1786 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1787 if (unlikely(!page)) {
1788 oo = s->min;
80c3a998 1789 alloc_gfp = flags;
65c3376a
CL
1790 /*
1791 * Allocation may have failed due to fragmentation.
1792 * Try a lower order alloc if possible
1793 */
5dfb4175 1794 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1795 if (unlikely(!page))
1796 goto out;
1797 stat(s, ORDER_FALLBACK);
65c3376a 1798 }
5a896d9e 1799
834f3d11 1800 page->objects = oo_objects(oo);
81819f0f 1801
2e9bd483 1802 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1803
1b4f59e3 1804 page->slab_cache = s;
c03f94cc 1805 __SetPageSlab(page);
2f064f34 1806 if (page_is_pfmemalloc(page))
072bb0aa 1807 SetPageSlabPfmemalloc(page);
81819f0f 1808
a7101224 1809 kasan_poison_slab(page);
81819f0f 1810
a7101224 1811 start = page_address(page);
81819f0f 1812
a50b854e 1813 setup_page_debug(s, page, start);
0316bec2 1814
210e7a43
TG
1815 shuffle = shuffle_freelist(s, page);
1816
1817 if (!shuffle) {
4d176711
AK
1818 start = fixup_red_left(s, start);
1819 start = setup_object(s, page, start);
1820 page->freelist = start;
18e50661
AK
1821 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1822 next = p + s->size;
1823 next = setup_object(s, page, next);
1824 set_freepointer(s, p, next);
1825 p = next;
1826 }
1827 set_freepointer(s, p, NULL);
81819f0f 1828 }
81819f0f 1829
e6e82ea1 1830 page->inuse = page->objects;
8cb0a506 1831 page->frozen = 1;
588f8ba9 1832
81819f0f 1833out:
d0164adc 1834 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1835 local_irq_disable();
1836 if (!page)
1837 return NULL;
1838
588f8ba9
TG
1839 inc_slabs_node(s, page_to_nid(page), page->objects);
1840
81819f0f
CL
1841 return page;
1842}
1843
588f8ba9
TG
1844static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1845{
44405099
LL
1846 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1847 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1848
1849 return allocate_slab(s,
1850 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1851}
1852
81819f0f
CL
1853static void __free_slab(struct kmem_cache *s, struct page *page)
1854{
834f3d11
CL
1855 int order = compound_order(page);
1856 int pages = 1 << order;
81819f0f 1857
8fc8d666 1858 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1859 void *p;
1860
1861 slab_pad_check(s, page);
224a88be
CL
1862 for_each_object(p, s, page_address(page),
1863 page->objects)
f7cb1933 1864 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1865 }
1866
072bb0aa 1867 __ClearPageSlabPfmemalloc(page);
49bd5221 1868 __ClearPageSlab(page);
0c06dd75
VB
1869 /* In union with page->mapping where page allocator expects NULL */
1870 page->slab_cache = NULL;
1eb5ac64
NP
1871 if (current->reclaim_state)
1872 current->reclaim_state->reclaimed_slab += pages;
74d555be 1873 unaccount_slab_page(page, order, s);
27ee57c9 1874 __free_pages(page, order);
81819f0f
CL
1875}
1876
1877static void rcu_free_slab(struct rcu_head *h)
1878{
bf68c214 1879 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1880
1b4f59e3 1881 __free_slab(page->slab_cache, page);
81819f0f
CL
1882}
1883
1884static void free_slab(struct kmem_cache *s, struct page *page)
1885{
5f0d5a3a 1886 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1887 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1888 } else
1889 __free_slab(s, page);
1890}
1891
1892static void discard_slab(struct kmem_cache *s, struct page *page)
1893{
205ab99d 1894 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1895 free_slab(s, page);
1896}
1897
1898/*
5cc6eee8 1899 * Management of partially allocated slabs.
81819f0f 1900 */
1e4dd946
SR
1901static inline void
1902__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1903{
e95eed57 1904 n->nr_partial++;
136333d1 1905 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1906 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1907 else
916ac052 1908 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1909}
1910
1e4dd946
SR
1911static inline void add_partial(struct kmem_cache_node *n,
1912 struct page *page, int tail)
62e346a8 1913{
c65c1877 1914 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1915 __add_partial(n, page, tail);
1916}
c65c1877 1917
1e4dd946
SR
1918static inline void remove_partial(struct kmem_cache_node *n,
1919 struct page *page)
1920{
1921 lockdep_assert_held(&n->list_lock);
916ac052 1922 list_del(&page->slab_list);
52b4b950 1923 n->nr_partial--;
1e4dd946
SR
1924}
1925
81819f0f 1926/*
7ced3719
CL
1927 * Remove slab from the partial list, freeze it and
1928 * return the pointer to the freelist.
81819f0f 1929 *
497b66f2 1930 * Returns a list of objects or NULL if it fails.
81819f0f 1931 */
497b66f2 1932static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1933 struct kmem_cache_node *n, struct page *page,
633b0764 1934 int mode, int *objects)
81819f0f 1935{
2cfb7455
CL
1936 void *freelist;
1937 unsigned long counters;
1938 struct page new;
1939
c65c1877
PZ
1940 lockdep_assert_held(&n->list_lock);
1941
2cfb7455
CL
1942 /*
1943 * Zap the freelist and set the frozen bit.
1944 * The old freelist is the list of objects for the
1945 * per cpu allocation list.
1946 */
7ced3719
CL
1947 freelist = page->freelist;
1948 counters = page->counters;
1949 new.counters = counters;
633b0764 1950 *objects = new.objects - new.inuse;
23910c50 1951 if (mode) {
7ced3719 1952 new.inuse = page->objects;
23910c50
PE
1953 new.freelist = NULL;
1954 } else {
1955 new.freelist = freelist;
1956 }
2cfb7455 1957
a0132ac0 1958 VM_BUG_ON(new.frozen);
7ced3719 1959 new.frozen = 1;
2cfb7455 1960
7ced3719 1961 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1962 freelist, counters,
02d7633f 1963 new.freelist, new.counters,
7ced3719 1964 "acquire_slab"))
7ced3719 1965 return NULL;
2cfb7455
CL
1966
1967 remove_partial(n, page);
7ced3719 1968 WARN_ON(!freelist);
49e22585 1969 return freelist;
81819f0f
CL
1970}
1971
633b0764 1972static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1973static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1974
81819f0f 1975/*
672bba3a 1976 * Try to allocate a partial slab from a specific node.
81819f0f 1977 */
8ba00bb6
JK
1978static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1979 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1980{
49e22585
CL
1981 struct page *page, *page2;
1982 void *object = NULL;
e5d9998f 1983 unsigned int available = 0;
633b0764 1984 int objects;
81819f0f
CL
1985
1986 /*
1987 * Racy check. If we mistakenly see no partial slabs then we
1988 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1989 * partial slab and there is none available then get_partial()
672bba3a 1990 * will return NULL.
81819f0f
CL
1991 */
1992 if (!n || !n->nr_partial)
1993 return NULL;
1994
1995 spin_lock(&n->list_lock);
916ac052 1996 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1997 void *t;
49e22585 1998
8ba00bb6
JK
1999 if (!pfmemalloc_match(page, flags))
2000 continue;
2001
633b0764 2002 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2003 if (!t)
9b1ea29b 2004 break;
49e22585 2005
633b0764 2006 available += objects;
12d79634 2007 if (!object) {
49e22585 2008 c->page = page;
49e22585 2009 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2010 object = t;
49e22585 2011 } else {
633b0764 2012 put_cpu_partial(s, page, 0);
8028dcea 2013 stat(s, CPU_PARTIAL_NODE);
49e22585 2014 }
345c905d 2015 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2016 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2017 break;
2018
497b66f2 2019 }
81819f0f 2020 spin_unlock(&n->list_lock);
497b66f2 2021 return object;
81819f0f
CL
2022}
2023
2024/*
672bba3a 2025 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2026 */
de3ec035 2027static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2028 struct kmem_cache_cpu *c)
81819f0f
CL
2029{
2030#ifdef CONFIG_NUMA
2031 struct zonelist *zonelist;
dd1a239f 2032 struct zoneref *z;
54a6eb5c 2033 struct zone *zone;
97a225e6 2034 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2035 void *object;
cc9a6c87 2036 unsigned int cpuset_mems_cookie;
81819f0f
CL
2037
2038 /*
672bba3a
CL
2039 * The defrag ratio allows a configuration of the tradeoffs between
2040 * inter node defragmentation and node local allocations. A lower
2041 * defrag_ratio increases the tendency to do local allocations
2042 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2043 *
672bba3a
CL
2044 * If the defrag_ratio is set to 0 then kmalloc() always
2045 * returns node local objects. If the ratio is higher then kmalloc()
2046 * may return off node objects because partial slabs are obtained
2047 * from other nodes and filled up.
81819f0f 2048 *
43efd3ea
LP
2049 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2050 * (which makes defrag_ratio = 1000) then every (well almost)
2051 * allocation will first attempt to defrag slab caches on other nodes.
2052 * This means scanning over all nodes to look for partial slabs which
2053 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2054 * with available objects.
81819f0f 2055 */
9824601e
CL
2056 if (!s->remote_node_defrag_ratio ||
2057 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2058 return NULL;
2059
cc9a6c87 2060 do {
d26914d1 2061 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2062 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2063 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2064 struct kmem_cache_node *n;
2065
2066 n = get_node(s, zone_to_nid(zone));
2067
dee2f8aa 2068 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2069 n->nr_partial > s->min_partial) {
8ba00bb6 2070 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2071 if (object) {
2072 /*
d26914d1
MG
2073 * Don't check read_mems_allowed_retry()
2074 * here - if mems_allowed was updated in
2075 * parallel, that was a harmless race
2076 * between allocation and the cpuset
2077 * update
cc9a6c87 2078 */
cc9a6c87
MG
2079 return object;
2080 }
c0ff7453 2081 }
81819f0f 2082 }
d26914d1 2083 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2084#endif /* CONFIG_NUMA */
81819f0f
CL
2085 return NULL;
2086}
2087
2088/*
2089 * Get a partial page, lock it and return it.
2090 */
497b66f2 2091static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2092 struct kmem_cache_cpu *c)
81819f0f 2093{
497b66f2 2094 void *object;
a561ce00
JK
2095 int searchnode = node;
2096
2097 if (node == NUMA_NO_NODE)
2098 searchnode = numa_mem_id();
81819f0f 2099
8ba00bb6 2100 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2101 if (object || node != NUMA_NO_NODE)
2102 return object;
81819f0f 2103
acd19fd1 2104 return get_any_partial(s, flags, c);
81819f0f
CL
2105}
2106
923717cb 2107#ifdef CONFIG_PREEMPTION
8a5ec0ba 2108/*
0d645ed1 2109 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2110 * during cmpxchg. The transactions start with the cpu number and are then
2111 * incremented by CONFIG_NR_CPUS.
2112 */
2113#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2114#else
2115/*
2116 * No preemption supported therefore also no need to check for
2117 * different cpus.
2118 */
2119#define TID_STEP 1
2120#endif
2121
2122static inline unsigned long next_tid(unsigned long tid)
2123{
2124 return tid + TID_STEP;
2125}
2126
9d5f0be0 2127#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2128static inline unsigned int tid_to_cpu(unsigned long tid)
2129{
2130 return tid % TID_STEP;
2131}
2132
2133static inline unsigned long tid_to_event(unsigned long tid)
2134{
2135 return tid / TID_STEP;
2136}
9d5f0be0 2137#endif
8a5ec0ba
CL
2138
2139static inline unsigned int init_tid(int cpu)
2140{
2141 return cpu;
2142}
2143
2144static inline void note_cmpxchg_failure(const char *n,
2145 const struct kmem_cache *s, unsigned long tid)
2146{
2147#ifdef SLUB_DEBUG_CMPXCHG
2148 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2149
f9f58285 2150 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2151
923717cb 2152#ifdef CONFIG_PREEMPTION
8a5ec0ba 2153 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2154 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2155 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2156 else
2157#endif
2158 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2159 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2160 tid_to_event(tid), tid_to_event(actual_tid));
2161 else
f9f58285 2162 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2163 actual_tid, tid, next_tid(tid));
2164#endif
4fdccdfb 2165 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2166}
2167
788e1aad 2168static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2169{
8a5ec0ba
CL
2170 int cpu;
2171
2172 for_each_possible_cpu(cpu)
2173 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2174}
2cfb7455 2175
81819f0f
CL
2176/*
2177 * Remove the cpu slab
2178 */
d0e0ac97 2179static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2180 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2181{
2cfb7455 2182 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2183 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2184 int lock = 0, free_delta = 0;
2cfb7455 2185 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2186 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2187 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2188 struct page new;
2189 struct page old;
2190
2191 if (page->freelist) {
84e554e6 2192 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2193 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2194 }
2195
894b8788 2196 /*
d930ff03
VB
2197 * Stage one: Count the objects on cpu's freelist as free_delta and
2198 * remember the last object in freelist_tail for later splicing.
2cfb7455 2199 */
d930ff03
VB
2200 freelist_tail = NULL;
2201 freelist_iter = freelist;
2202 while (freelist_iter) {
2203 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2204
52f23478
DZ
2205 /*
2206 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2207 * 'freelist_iter' is already corrupted. So isolate all objects
2208 * starting at 'freelist_iter' by skipping them.
52f23478 2209 */
d930ff03 2210 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2211 break;
2212
d930ff03
VB
2213 freelist_tail = freelist_iter;
2214 free_delta++;
2cfb7455 2215
d930ff03 2216 freelist_iter = nextfree;
2cfb7455
CL
2217 }
2218
894b8788 2219 /*
d930ff03
VB
2220 * Stage two: Unfreeze the page while splicing the per-cpu
2221 * freelist to the head of page's freelist.
2222 *
2223 * Ensure that the page is unfrozen while the list presence
2224 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2225 *
2226 * We setup the list membership and then perform a cmpxchg
2227 * with the count. If there is a mismatch then the page
2228 * is not unfrozen but the page is on the wrong list.
2229 *
2230 * Then we restart the process which may have to remove
2231 * the page from the list that we just put it on again
2232 * because the number of objects in the slab may have
2233 * changed.
894b8788 2234 */
2cfb7455 2235redo:
894b8788 2236
d930ff03
VB
2237 old.freelist = READ_ONCE(page->freelist);
2238 old.counters = READ_ONCE(page->counters);
a0132ac0 2239 VM_BUG_ON(!old.frozen);
7c2e132c 2240
2cfb7455
CL
2241 /* Determine target state of the slab */
2242 new.counters = old.counters;
d930ff03
VB
2243 if (freelist_tail) {
2244 new.inuse -= free_delta;
2245 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2246 new.freelist = freelist;
2247 } else
2248 new.freelist = old.freelist;
2249
2250 new.frozen = 0;
2251
8a5b20ae 2252 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2253 m = M_FREE;
2254 else if (new.freelist) {
2255 m = M_PARTIAL;
2256 if (!lock) {
2257 lock = 1;
2258 /*
8bb4e7a2 2259 * Taking the spinlock removes the possibility
2cfb7455
CL
2260 * that acquire_slab() will see a slab page that
2261 * is frozen
2262 */
2263 spin_lock(&n->list_lock);
2264 }
2265 } else {
2266 m = M_FULL;
965c4848 2267 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2268 lock = 1;
2269 /*
2270 * This also ensures that the scanning of full
2271 * slabs from diagnostic functions will not see
2272 * any frozen slabs.
2273 */
2274 spin_lock(&n->list_lock);
2275 }
2276 }
2277
2278 if (l != m) {
2cfb7455 2279 if (l == M_PARTIAL)
2cfb7455 2280 remove_partial(n, page);
2cfb7455 2281 else if (l == M_FULL)
c65c1877 2282 remove_full(s, n, page);
2cfb7455 2283
88349a28 2284 if (m == M_PARTIAL)
2cfb7455 2285 add_partial(n, page, tail);
88349a28 2286 else if (m == M_FULL)
2cfb7455 2287 add_full(s, n, page);
2cfb7455
CL
2288 }
2289
2290 l = m;
1d07171c 2291 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2292 old.freelist, old.counters,
2293 new.freelist, new.counters,
2294 "unfreezing slab"))
2295 goto redo;
2296
2cfb7455
CL
2297 if (lock)
2298 spin_unlock(&n->list_lock);
2299
88349a28
WY
2300 if (m == M_PARTIAL)
2301 stat(s, tail);
2302 else if (m == M_FULL)
2303 stat(s, DEACTIVATE_FULL);
2304 else if (m == M_FREE) {
2cfb7455
CL
2305 stat(s, DEACTIVATE_EMPTY);
2306 discard_slab(s, page);
2307 stat(s, FREE_SLAB);
894b8788 2308 }
d4ff6d35
WY
2309
2310 c->page = NULL;
2311 c->freelist = NULL;
81819f0f
CL
2312}
2313
d24ac77f
JK
2314/*
2315 * Unfreeze all the cpu partial slabs.
2316 *
59a09917
CL
2317 * This function must be called with interrupts disabled
2318 * for the cpu using c (or some other guarantee must be there
2319 * to guarantee no concurrent accesses).
d24ac77f 2320 */
59a09917
CL
2321static void unfreeze_partials(struct kmem_cache *s,
2322 struct kmem_cache_cpu *c)
49e22585 2323{
345c905d 2324#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2325 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2326 struct page *page, *discard_page = NULL;
49e22585 2327
4c7ba22e 2328 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2329 struct page new;
2330 struct page old;
2331
4c7ba22e 2332 slub_set_percpu_partial(c, page);
43d77867
JK
2333
2334 n2 = get_node(s, page_to_nid(page));
2335 if (n != n2) {
2336 if (n)
2337 spin_unlock(&n->list_lock);
2338
2339 n = n2;
2340 spin_lock(&n->list_lock);
2341 }
49e22585
CL
2342
2343 do {
2344
2345 old.freelist = page->freelist;
2346 old.counters = page->counters;
a0132ac0 2347 VM_BUG_ON(!old.frozen);
49e22585
CL
2348
2349 new.counters = old.counters;
2350 new.freelist = old.freelist;
2351
2352 new.frozen = 0;
2353
d24ac77f 2354 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2355 old.freelist, old.counters,
2356 new.freelist, new.counters,
2357 "unfreezing slab"));
2358
8a5b20ae 2359 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2360 page->next = discard_page;
2361 discard_page = page;
43d77867
JK
2362 } else {
2363 add_partial(n, page, DEACTIVATE_TO_TAIL);
2364 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2365 }
2366 }
2367
2368 if (n)
2369 spin_unlock(&n->list_lock);
9ada1934
SL
2370
2371 while (discard_page) {
2372 page = discard_page;
2373 discard_page = discard_page->next;
2374
2375 stat(s, DEACTIVATE_EMPTY);
2376 discard_slab(s, page);
2377 stat(s, FREE_SLAB);
2378 }
6dfd1b65 2379#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2380}
2381
2382/*
9234bae9
WY
2383 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2384 * partial page slot if available.
49e22585
CL
2385 *
2386 * If we did not find a slot then simply move all the partials to the
2387 * per node partial list.
2388 */
633b0764 2389static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2390{
345c905d 2391#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2392 struct page *oldpage;
2393 int pages;
2394 int pobjects;
2395
d6e0b7fa 2396 preempt_disable();
49e22585
CL
2397 do {
2398 pages = 0;
2399 pobjects = 0;
2400 oldpage = this_cpu_read(s->cpu_slab->partial);
2401
2402 if (oldpage) {
2403 pobjects = oldpage->pobjects;
2404 pages = oldpage->pages;
bbd4e305 2405 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2406 unsigned long flags;
2407 /*
2408 * partial array is full. Move the existing
2409 * set to the per node partial list.
2410 */
2411 local_irq_save(flags);
59a09917 2412 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2413 local_irq_restore(flags);
e24fc410 2414 oldpage = NULL;
49e22585
CL
2415 pobjects = 0;
2416 pages = 0;
8028dcea 2417 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2418 }
2419 }
2420
2421 pages++;
2422 pobjects += page->objects - page->inuse;
2423
2424 page->pages = pages;
2425 page->pobjects = pobjects;
2426 page->next = oldpage;
2427
d0e0ac97
CG
2428 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2429 != oldpage);
bbd4e305 2430 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2431 unsigned long flags;
2432
2433 local_irq_save(flags);
2434 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2435 local_irq_restore(flags);
2436 }
2437 preempt_enable();
6dfd1b65 2438#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2439}
2440
dfb4f096 2441static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2442{
84e554e6 2443 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2444 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2445
2446 c->tid = next_tid(c->tid);
81819f0f
CL
2447}
2448
2449/*
2450 * Flush cpu slab.
6446faa2 2451 *
81819f0f
CL
2452 * Called from IPI handler with interrupts disabled.
2453 */
0c710013 2454static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2455{
9dfc6e68 2456 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2457
1265ef2d
WY
2458 if (c->page)
2459 flush_slab(s, c);
49e22585 2460
1265ef2d 2461 unfreeze_partials(s, c);
81819f0f
CL
2462}
2463
2464static void flush_cpu_slab(void *d)
2465{
2466 struct kmem_cache *s = d;
81819f0f 2467
dfb4f096 2468 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2469}
2470
a8364d55
GBY
2471static bool has_cpu_slab(int cpu, void *info)
2472{
2473 struct kmem_cache *s = info;
2474 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2475
a93cf07b 2476 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2477}
2478
81819f0f
CL
2479static void flush_all(struct kmem_cache *s)
2480{
cb923159 2481 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2482}
2483
a96a87bf
SAS
2484/*
2485 * Use the cpu notifier to insure that the cpu slabs are flushed when
2486 * necessary.
2487 */
2488static int slub_cpu_dead(unsigned int cpu)
2489{
2490 struct kmem_cache *s;
2491 unsigned long flags;
2492
2493 mutex_lock(&slab_mutex);
2494 list_for_each_entry(s, &slab_caches, list) {
2495 local_irq_save(flags);
2496 __flush_cpu_slab(s, cpu);
2497 local_irq_restore(flags);
2498 }
2499 mutex_unlock(&slab_mutex);
2500 return 0;
2501}
2502
dfb4f096
CL
2503/*
2504 * Check if the objects in a per cpu structure fit numa
2505 * locality expectations.
2506 */
57d437d2 2507static inline int node_match(struct page *page, int node)
dfb4f096
CL
2508{
2509#ifdef CONFIG_NUMA
6159d0f5 2510 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2511 return 0;
2512#endif
2513 return 1;
2514}
2515
9a02d699 2516#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2517static int count_free(struct page *page)
2518{
2519 return page->objects - page->inuse;
2520}
2521
9a02d699
DR
2522static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2523{
2524 return atomic_long_read(&n->total_objects);
2525}
2526#endif /* CONFIG_SLUB_DEBUG */
2527
2528#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2529static unsigned long count_partial(struct kmem_cache_node *n,
2530 int (*get_count)(struct page *))
2531{
2532 unsigned long flags;
2533 unsigned long x = 0;
2534 struct page *page;
2535
2536 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2537 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2538 x += get_count(page);
2539 spin_unlock_irqrestore(&n->list_lock, flags);
2540 return x;
2541}
9a02d699 2542#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2543
781b2ba6
PE
2544static noinline void
2545slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2546{
9a02d699
DR
2547#ifdef CONFIG_SLUB_DEBUG
2548 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2549 DEFAULT_RATELIMIT_BURST);
781b2ba6 2550 int node;
fa45dc25 2551 struct kmem_cache_node *n;
781b2ba6 2552
9a02d699
DR
2553 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2554 return;
2555
5b3810e5
VB
2556 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2557 nid, gfpflags, &gfpflags);
19af27af 2558 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2559 s->name, s->object_size, s->size, oo_order(s->oo),
2560 oo_order(s->min));
781b2ba6 2561
3b0efdfa 2562 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2563 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2564 s->name);
fa5ec8a1 2565
fa45dc25 2566 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2567 unsigned long nr_slabs;
2568 unsigned long nr_objs;
2569 unsigned long nr_free;
2570
26c02cf0
AB
2571 nr_free = count_partial(n, count_free);
2572 nr_slabs = node_nr_slabs(n);
2573 nr_objs = node_nr_objs(n);
781b2ba6 2574
f9f58285 2575 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2576 node, nr_slabs, nr_objs, nr_free);
2577 }
9a02d699 2578#endif
781b2ba6
PE
2579}
2580
497b66f2
CL
2581static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2582 int node, struct kmem_cache_cpu **pc)
2583{
6faa6833 2584 void *freelist;
188fd063
CL
2585 struct kmem_cache_cpu *c = *pc;
2586 struct page *page;
497b66f2 2587
128227e7
MW
2588 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2589
188fd063 2590 freelist = get_partial(s, flags, node, c);
497b66f2 2591
188fd063
CL
2592 if (freelist)
2593 return freelist;
2594
2595 page = new_slab(s, flags, node);
497b66f2 2596 if (page) {
7c8e0181 2597 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2598 if (c->page)
2599 flush_slab(s, c);
2600
2601 /*
2602 * No other reference to the page yet so we can
2603 * muck around with it freely without cmpxchg
2604 */
6faa6833 2605 freelist = page->freelist;
497b66f2
CL
2606 page->freelist = NULL;
2607
2608 stat(s, ALLOC_SLAB);
497b66f2
CL
2609 c->page = page;
2610 *pc = c;
edde82b6 2611 }
497b66f2 2612
6faa6833 2613 return freelist;
497b66f2
CL
2614}
2615
072bb0aa
MG
2616static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2617{
2618 if (unlikely(PageSlabPfmemalloc(page)))
2619 return gfp_pfmemalloc_allowed(gfpflags);
2620
2621 return true;
2622}
2623
213eeb9f 2624/*
d0e0ac97
CG
2625 * Check the page->freelist of a page and either transfer the freelist to the
2626 * per cpu freelist or deactivate the page.
213eeb9f
CL
2627 *
2628 * The page is still frozen if the return value is not NULL.
2629 *
2630 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2631 *
2632 * This function must be called with interrupt disabled.
213eeb9f
CL
2633 */
2634static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2635{
2636 struct page new;
2637 unsigned long counters;
2638 void *freelist;
2639
2640 do {
2641 freelist = page->freelist;
2642 counters = page->counters;
6faa6833 2643
213eeb9f 2644 new.counters = counters;
a0132ac0 2645 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2646
2647 new.inuse = page->objects;
2648 new.frozen = freelist != NULL;
2649
d24ac77f 2650 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2651 freelist, counters,
2652 NULL, new.counters,
2653 "get_freelist"));
2654
2655 return freelist;
2656}
2657
81819f0f 2658/*
894b8788
CL
2659 * Slow path. The lockless freelist is empty or we need to perform
2660 * debugging duties.
2661 *
894b8788
CL
2662 * Processing is still very fast if new objects have been freed to the
2663 * regular freelist. In that case we simply take over the regular freelist
2664 * as the lockless freelist and zap the regular freelist.
81819f0f 2665 *
894b8788
CL
2666 * If that is not working then we fall back to the partial lists. We take the
2667 * first element of the freelist as the object to allocate now and move the
2668 * rest of the freelist to the lockless freelist.
81819f0f 2669 *
894b8788 2670 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2671 * we need to allocate a new slab. This is the slowest path since it involves
2672 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2673 *
2674 * Version of __slab_alloc to use when we know that interrupts are
2675 * already disabled (which is the case for bulk allocation).
81819f0f 2676 */
a380a3c7 2677static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2678 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2679{
6faa6833 2680 void *freelist;
f6e7def7 2681 struct page *page;
81819f0f 2682
9f986d99
AW
2683 stat(s, ALLOC_SLOWPATH);
2684
f6e7def7 2685 page = c->page;
0715e6c5
VB
2686 if (!page) {
2687 /*
2688 * if the node is not online or has no normal memory, just
2689 * ignore the node constraint
2690 */
2691 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2692 !node_isset(node, slab_nodes)))
0715e6c5 2693 node = NUMA_NO_NODE;
81819f0f 2694 goto new_slab;
0715e6c5 2695 }
49e22585 2696redo:
6faa6833 2697
57d437d2 2698 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2699 /*
2700 * same as above but node_match() being false already
2701 * implies node != NUMA_NO_NODE
2702 */
7e1fa93d 2703 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2704 node = NUMA_NO_NODE;
2705 goto redo;
2706 } else {
a561ce00 2707 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2708 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2709 goto new_slab;
2710 }
fc59c053 2711 }
6446faa2 2712
072bb0aa
MG
2713 /*
2714 * By rights, we should be searching for a slab page that was
2715 * PFMEMALLOC but right now, we are losing the pfmemalloc
2716 * information when the page leaves the per-cpu allocator
2717 */
2718 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2719 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2720 goto new_slab;
2721 }
2722
73736e03 2723 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2724 freelist = c->freelist;
2725 if (freelist)
73736e03 2726 goto load_freelist;
03e404af 2727
f6e7def7 2728 freelist = get_freelist(s, page);
6446faa2 2729
6faa6833 2730 if (!freelist) {
03e404af
CL
2731 c->page = NULL;
2732 stat(s, DEACTIVATE_BYPASS);
fc59c053 2733 goto new_slab;
03e404af 2734 }
6446faa2 2735
84e554e6 2736 stat(s, ALLOC_REFILL);
6446faa2 2737
894b8788 2738load_freelist:
507effea
CL
2739 /*
2740 * freelist is pointing to the list of objects to be used.
2741 * page is pointing to the page from which the objects are obtained.
2742 * That page must be frozen for per cpu allocations to work.
2743 */
a0132ac0 2744 VM_BUG_ON(!c->page->frozen);
6faa6833 2745 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2746 c->tid = next_tid(c->tid);
6faa6833 2747 return freelist;
81819f0f 2748
81819f0f 2749new_slab:
2cfb7455 2750
a93cf07b
WY
2751 if (slub_percpu_partial(c)) {
2752 page = c->page = slub_percpu_partial(c);
2753 slub_set_percpu_partial(c, page);
49e22585 2754 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2755 goto redo;
81819f0f
CL
2756 }
2757
188fd063 2758 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2759
f4697436 2760 if (unlikely(!freelist)) {
9a02d699 2761 slab_out_of_memory(s, gfpflags, node);
f4697436 2762 return NULL;
81819f0f 2763 }
2cfb7455 2764
f6e7def7 2765 page = c->page;
5091b74a 2766 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2767 goto load_freelist;
2cfb7455 2768
497b66f2 2769 /* Only entered in the debug case */
d0e0ac97
CG
2770 if (kmem_cache_debug(s) &&
2771 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2772 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2773
d4ff6d35 2774 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2775 return freelist;
894b8788
CL
2776}
2777
a380a3c7
CL
2778/*
2779 * Another one that disabled interrupt and compensates for possible
2780 * cpu changes by refetching the per cpu area pointer.
2781 */
2782static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2783 unsigned long addr, struct kmem_cache_cpu *c)
2784{
2785 void *p;
2786 unsigned long flags;
2787
2788 local_irq_save(flags);
923717cb 2789#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2790 /*
2791 * We may have been preempted and rescheduled on a different
2792 * cpu before disabling interrupts. Need to reload cpu area
2793 * pointer.
2794 */
2795 c = this_cpu_ptr(s->cpu_slab);
2796#endif
2797
2798 p = ___slab_alloc(s, gfpflags, node, addr, c);
2799 local_irq_restore(flags);
2800 return p;
2801}
2802
0f181f9f
AP
2803/*
2804 * If the object has been wiped upon free, make sure it's fully initialized by
2805 * zeroing out freelist pointer.
2806 */
2807static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2808 void *obj)
2809{
2810 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2811 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2812 0, sizeof(void *));
0f181f9f
AP
2813}
2814
894b8788
CL
2815/*
2816 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2817 * have the fastpath folded into their functions. So no function call
2818 * overhead for requests that can be satisfied on the fastpath.
2819 *
2820 * The fastpath works by first checking if the lockless freelist can be used.
2821 * If not then __slab_alloc is called for slow processing.
2822 *
2823 * Otherwise we can simply pick the next object from the lockless free list.
2824 */
2b847c3c 2825static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2826 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2827{
03ec0ed5 2828 void *object;
dfb4f096 2829 struct kmem_cache_cpu *c;
57d437d2 2830 struct page *page;
8a5ec0ba 2831 unsigned long tid;
964d4bd3 2832 struct obj_cgroup *objcg = NULL;
da844b78 2833 bool init = false;
1f84260c 2834
964d4bd3 2835 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2836 if (!s)
773ff60e 2837 return NULL;
b89fb5ef
AP
2838
2839 object = kfence_alloc(s, orig_size, gfpflags);
2840 if (unlikely(object))
2841 goto out;
2842
8a5ec0ba 2843redo:
8a5ec0ba
CL
2844 /*
2845 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2846 * enabled. We may switch back and forth between cpus while
2847 * reading from one cpu area. That does not matter as long
2848 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2849 *
9aabf810 2850 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2851 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2852 * to check if it is matched or not.
8a5ec0ba 2853 */
9aabf810
JK
2854 do {
2855 tid = this_cpu_read(s->cpu_slab->tid);
2856 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2857 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2858 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2859
2860 /*
2861 * Irqless object alloc/free algorithm used here depends on sequence
2862 * of fetching cpu_slab's data. tid should be fetched before anything
2863 * on c to guarantee that object and page associated with previous tid
2864 * won't be used with current tid. If we fetch tid first, object and
2865 * page could be one associated with next tid and our alloc/free
2866 * request will be failed. In this case, we will retry. So, no problem.
2867 */
2868 barrier();
8a5ec0ba 2869
8a5ec0ba
CL
2870 /*
2871 * The transaction ids are globally unique per cpu and per operation on
2872 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2873 * occurs on the right processor and that there was no operation on the
2874 * linked list in between.
2875 */
8a5ec0ba 2876
9dfc6e68 2877 object = c->freelist;
57d437d2 2878 page = c->page;
22e4663e 2879 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2880 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2881 } else {
0ad9500e
ED
2882 void *next_object = get_freepointer_safe(s, object);
2883
8a5ec0ba 2884 /*
25985edc 2885 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2886 * operation and if we are on the right processor.
2887 *
d0e0ac97
CG
2888 * The cmpxchg does the following atomically (without lock
2889 * semantics!)
8a5ec0ba
CL
2890 * 1. Relocate first pointer to the current per cpu area.
2891 * 2. Verify that tid and freelist have not been changed
2892 * 3. If they were not changed replace tid and freelist
2893 *
d0e0ac97
CG
2894 * Since this is without lock semantics the protection is only
2895 * against code executing on this cpu *not* from access by
2896 * other cpus.
8a5ec0ba 2897 */
933393f5 2898 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2899 s->cpu_slab->freelist, s->cpu_slab->tid,
2900 object, tid,
0ad9500e 2901 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2902
2903 note_cmpxchg_failure("slab_alloc", s, tid);
2904 goto redo;
2905 }
0ad9500e 2906 prefetch_freepointer(s, next_object);
84e554e6 2907 stat(s, ALLOC_FASTPATH);
894b8788 2908 }
0f181f9f 2909
ce5716c6 2910 maybe_wipe_obj_freeptr(s, object);
da844b78 2911 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2912
b89fb5ef 2913out:
da844b78 2914 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2915
894b8788 2916 return object;
81819f0f
CL
2917}
2918
2b847c3c 2919static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2920 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2921{
b89fb5ef 2922 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2923}
2924
81819f0f
CL
2925void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2926{
b89fb5ef 2927 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2928
d0e0ac97
CG
2929 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2930 s->size, gfpflags);
5b882be4
EGM
2931
2932 return ret;
81819f0f
CL
2933}
2934EXPORT_SYMBOL(kmem_cache_alloc);
2935
0f24f128 2936#ifdef CONFIG_TRACING
4a92379b
RK
2937void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2938{
b89fb5ef 2939 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2940 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2941 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2942 return ret;
2943}
2944EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2945#endif
2946
81819f0f
CL
2947#ifdef CONFIG_NUMA
2948void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2949{
b89fb5ef 2950 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2951
ca2b84cb 2952 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2953 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2954
2955 return ret;
81819f0f
CL
2956}
2957EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2958
0f24f128 2959#ifdef CONFIG_TRACING
4a92379b 2960void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2961 gfp_t gfpflags,
4a92379b 2962 int node, size_t size)
5b882be4 2963{
b89fb5ef 2964 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2965
2966 trace_kmalloc_node(_RET_IP_, ret,
2967 size, s->size, gfpflags, node);
0316bec2 2968
0116523c 2969 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2970 return ret;
5b882be4 2971}
4a92379b 2972EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2973#endif
6dfd1b65 2974#endif /* CONFIG_NUMA */
5b882be4 2975
81819f0f 2976/*
94e4d712 2977 * Slow path handling. This may still be called frequently since objects
894b8788 2978 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2979 *
894b8788
CL
2980 * So we still attempt to reduce cache line usage. Just take the slab
2981 * lock and free the item. If there is no additional partial page
2982 * handling required then we can return immediately.
81819f0f 2983 */
894b8788 2984static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2985 void *head, void *tail, int cnt,
2986 unsigned long addr)
2987
81819f0f
CL
2988{
2989 void *prior;
2cfb7455 2990 int was_frozen;
2cfb7455
CL
2991 struct page new;
2992 unsigned long counters;
2993 struct kmem_cache_node *n = NULL;
3f649ab7 2994 unsigned long flags;
81819f0f 2995
8a5ec0ba 2996 stat(s, FREE_SLOWPATH);
81819f0f 2997
b89fb5ef
AP
2998 if (kfence_free(head))
2999 return;
3000
19c7ff9e 3001 if (kmem_cache_debug(s) &&
282acb43 3002 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3003 return;
6446faa2 3004
2cfb7455 3005 do {
837d678d
JK
3006 if (unlikely(n)) {
3007 spin_unlock_irqrestore(&n->list_lock, flags);
3008 n = NULL;
3009 }
2cfb7455
CL
3010 prior = page->freelist;
3011 counters = page->counters;
81084651 3012 set_freepointer(s, tail, prior);
2cfb7455
CL
3013 new.counters = counters;
3014 was_frozen = new.frozen;
81084651 3015 new.inuse -= cnt;
837d678d 3016 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3017
c65c1877 3018 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3019
3020 /*
d0e0ac97
CG
3021 * Slab was on no list before and will be
3022 * partially empty
3023 * We can defer the list move and instead
3024 * freeze it.
49e22585
CL
3025 */
3026 new.frozen = 1;
3027
c65c1877 3028 } else { /* Needs to be taken off a list */
49e22585 3029
b455def2 3030 n = get_node(s, page_to_nid(page));
49e22585
CL
3031 /*
3032 * Speculatively acquire the list_lock.
3033 * If the cmpxchg does not succeed then we may
3034 * drop the list_lock without any processing.
3035 *
3036 * Otherwise the list_lock will synchronize with
3037 * other processors updating the list of slabs.
3038 */
3039 spin_lock_irqsave(&n->list_lock, flags);
3040
3041 }
2cfb7455 3042 }
81819f0f 3043
2cfb7455
CL
3044 } while (!cmpxchg_double_slab(s, page,
3045 prior, counters,
81084651 3046 head, new.counters,
2cfb7455 3047 "__slab_free"));
81819f0f 3048
2cfb7455 3049 if (likely(!n)) {
49e22585 3050
c270cf30
AW
3051 if (likely(was_frozen)) {
3052 /*
3053 * The list lock was not taken therefore no list
3054 * activity can be necessary.
3055 */
3056 stat(s, FREE_FROZEN);
3057 } else if (new.frozen) {
3058 /*
3059 * If we just froze the page then put it onto the
3060 * per cpu partial list.
3061 */
49e22585 3062 put_cpu_partial(s, page, 1);
8028dcea
AS
3063 stat(s, CPU_PARTIAL_FREE);
3064 }
c270cf30 3065
b455def2
L
3066 return;
3067 }
81819f0f 3068
8a5b20ae 3069 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3070 goto slab_empty;
3071
81819f0f 3072 /*
837d678d
JK
3073 * Objects left in the slab. If it was not on the partial list before
3074 * then add it.
81819f0f 3075 */
345c905d 3076 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3077 remove_full(s, n, page);
837d678d
JK
3078 add_partial(n, page, DEACTIVATE_TO_TAIL);
3079 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3080 }
80f08c19 3081 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3082 return;
3083
3084slab_empty:
a973e9dd 3085 if (prior) {
81819f0f 3086 /*
6fbabb20 3087 * Slab on the partial list.
81819f0f 3088 */
5cc6eee8 3089 remove_partial(n, page);
84e554e6 3090 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3091 } else {
6fbabb20 3092 /* Slab must be on the full list */
c65c1877
PZ
3093 remove_full(s, n, page);
3094 }
2cfb7455 3095
80f08c19 3096 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3097 stat(s, FREE_SLAB);
81819f0f 3098 discard_slab(s, page);
81819f0f
CL
3099}
3100
894b8788
CL
3101/*
3102 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3103 * can perform fastpath freeing without additional function calls.
3104 *
3105 * The fastpath is only possible if we are freeing to the current cpu slab
3106 * of this processor. This typically the case if we have just allocated
3107 * the item before.
3108 *
3109 * If fastpath is not possible then fall back to __slab_free where we deal
3110 * with all sorts of special processing.
81084651
JDB
3111 *
3112 * Bulk free of a freelist with several objects (all pointing to the
3113 * same page) possible by specifying head and tail ptr, plus objects
3114 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3115 */
80a9201a
AP
3116static __always_inline void do_slab_free(struct kmem_cache *s,
3117 struct page *page, void *head, void *tail,
3118 int cnt, unsigned long addr)
894b8788 3119{
81084651 3120 void *tail_obj = tail ? : head;
dfb4f096 3121 struct kmem_cache_cpu *c;
8a5ec0ba 3122 unsigned long tid;
964d4bd3 3123
d1b2cf6c 3124 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3125redo:
3126 /*
3127 * Determine the currently cpus per cpu slab.
3128 * The cpu may change afterward. However that does not matter since
3129 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3130 * during the cmpxchg then the free will succeed.
8a5ec0ba 3131 */
9aabf810
JK
3132 do {
3133 tid = this_cpu_read(s->cpu_slab->tid);
3134 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3135 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3136 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3137
9aabf810
JK
3138 /* Same with comment on barrier() in slab_alloc_node() */
3139 barrier();
c016b0bd 3140
442b06bc 3141 if (likely(page == c->page)) {
5076190d
LT
3142 void **freelist = READ_ONCE(c->freelist);
3143
3144 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3145
933393f5 3146 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3147 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3148 freelist, tid,
81084651 3149 head, next_tid(tid)))) {
8a5ec0ba
CL
3150
3151 note_cmpxchg_failure("slab_free", s, tid);
3152 goto redo;
3153 }
84e554e6 3154 stat(s, FREE_FASTPATH);
894b8788 3155 } else
81084651 3156 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3157
894b8788
CL
3158}
3159
80a9201a
AP
3160static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3161 void *head, void *tail, int cnt,
3162 unsigned long addr)
3163{
80a9201a 3164 /*
c3895391
AK
3165 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3166 * to remove objects, whose reuse must be delayed.
80a9201a 3167 */
c3895391
AK
3168 if (slab_free_freelist_hook(s, &head, &tail))
3169 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3170}
3171
2bd926b4 3172#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3173void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3174{
3175 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3176}
3177#endif
3178
81819f0f
CL
3179void kmem_cache_free(struct kmem_cache *s, void *x)
3180{
b9ce5ef4
GC
3181 s = cache_from_obj(s, x);
3182 if (!s)
79576102 3183 return;
81084651 3184 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3185 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3186}
3187EXPORT_SYMBOL(kmem_cache_free);
3188
d0ecd894 3189struct detached_freelist {
fbd02630 3190 struct page *page;
d0ecd894
JDB
3191 void *tail;
3192 void *freelist;
3193 int cnt;
376bf125 3194 struct kmem_cache *s;
d0ecd894 3195};
fbd02630 3196
d0ecd894
JDB
3197/*
3198 * This function progressively scans the array with free objects (with
3199 * a limited look ahead) and extract objects belonging to the same
3200 * page. It builds a detached freelist directly within the given
3201 * page/objects. This can happen without any need for
3202 * synchronization, because the objects are owned by running process.
3203 * The freelist is build up as a single linked list in the objects.
3204 * The idea is, that this detached freelist can then be bulk
3205 * transferred to the real freelist(s), but only requiring a single
3206 * synchronization primitive. Look ahead in the array is limited due
3207 * to performance reasons.
3208 */
376bf125
JDB
3209static inline
3210int build_detached_freelist(struct kmem_cache *s, size_t size,
3211 void **p, struct detached_freelist *df)
d0ecd894
JDB
3212{
3213 size_t first_skipped_index = 0;
3214 int lookahead = 3;
3215 void *object;
ca257195 3216 struct page *page;
fbd02630 3217
d0ecd894
JDB
3218 /* Always re-init detached_freelist */
3219 df->page = NULL;
fbd02630 3220
d0ecd894
JDB
3221 do {
3222 object = p[--size];
ca257195 3223 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3224 } while (!object && size);
3eed034d 3225
d0ecd894
JDB
3226 if (!object)
3227 return 0;
fbd02630 3228
ca257195
JDB
3229 page = virt_to_head_page(object);
3230 if (!s) {
3231 /* Handle kalloc'ed objects */
3232 if (unlikely(!PageSlab(page))) {
3233 BUG_ON(!PageCompound(page));
3234 kfree_hook(object);
4949148a 3235 __free_pages(page, compound_order(page));
ca257195
JDB
3236 p[size] = NULL; /* mark object processed */
3237 return size;
3238 }
3239 /* Derive kmem_cache from object */
3240 df->s = page->slab_cache;
3241 } else {
3242 df->s = cache_from_obj(s, object); /* Support for memcg */
3243 }
376bf125 3244
b89fb5ef 3245 if (is_kfence_address(object)) {
d57a964e 3246 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3247 __kfence_free(object);
3248 p[size] = NULL; /* mark object processed */
3249 return size;
3250 }
3251
d0ecd894 3252 /* Start new detached freelist */
ca257195 3253 df->page = page;
376bf125 3254 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3255 df->tail = object;
3256 df->freelist = object;
3257 p[size] = NULL; /* mark object processed */
3258 df->cnt = 1;
3259
3260 while (size) {
3261 object = p[--size];
3262 if (!object)
3263 continue; /* Skip processed objects */
3264
3265 /* df->page is always set at this point */
3266 if (df->page == virt_to_head_page(object)) {
3267 /* Opportunity build freelist */
376bf125 3268 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3269 df->freelist = object;
3270 df->cnt++;
3271 p[size] = NULL; /* mark object processed */
3272
3273 continue;
fbd02630 3274 }
d0ecd894
JDB
3275
3276 /* Limit look ahead search */
3277 if (!--lookahead)
3278 break;
3279
3280 if (!first_skipped_index)
3281 first_skipped_index = size + 1;
fbd02630 3282 }
d0ecd894
JDB
3283
3284 return first_skipped_index;
3285}
3286
d0ecd894 3287/* Note that interrupts must be enabled when calling this function. */
376bf125 3288void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3289{
3290 if (WARN_ON(!size))
3291 return;
3292
d1b2cf6c 3293 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3294 do {
3295 struct detached_freelist df;
3296
3297 size = build_detached_freelist(s, size, p, &df);
84582c8a 3298 if (!df.page)
d0ecd894
JDB
3299 continue;
3300
457c82c3 3301 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3302 } while (likely(size));
484748f0
CL
3303}
3304EXPORT_SYMBOL(kmem_cache_free_bulk);
3305
994eb764 3306/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3307int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3308 void **p)
484748f0 3309{
994eb764
JDB
3310 struct kmem_cache_cpu *c;
3311 int i;
964d4bd3 3312 struct obj_cgroup *objcg = NULL;
994eb764 3313
03ec0ed5 3314 /* memcg and kmem_cache debug support */
964d4bd3 3315 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3316 if (unlikely(!s))
3317 return false;
994eb764
JDB
3318 /*
3319 * Drain objects in the per cpu slab, while disabling local
3320 * IRQs, which protects against PREEMPT and interrupts
3321 * handlers invoking normal fastpath.
3322 */
3323 local_irq_disable();
3324 c = this_cpu_ptr(s->cpu_slab);
3325
3326 for (i = 0; i < size; i++) {
b89fb5ef 3327 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3328
b89fb5ef
AP
3329 if (unlikely(object)) {
3330 p[i] = object;
3331 continue;
3332 }
3333
3334 object = c->freelist;
ebe909e0 3335 if (unlikely(!object)) {
fd4d9c7d
JH
3336 /*
3337 * We may have removed an object from c->freelist using
3338 * the fastpath in the previous iteration; in that case,
3339 * c->tid has not been bumped yet.
3340 * Since ___slab_alloc() may reenable interrupts while
3341 * allocating memory, we should bump c->tid now.
3342 */
3343 c->tid = next_tid(c->tid);
3344
ebe909e0
JDB
3345 /*
3346 * Invoking slow path likely have side-effect
3347 * of re-populating per CPU c->freelist
3348 */
87098373 3349 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3350 _RET_IP_, c);
87098373
CL
3351 if (unlikely(!p[i]))
3352 goto error;
3353
ebe909e0 3354 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3355 maybe_wipe_obj_freeptr(s, p[i]);
3356
ebe909e0
JDB
3357 continue; /* goto for-loop */
3358 }
994eb764
JDB
3359 c->freelist = get_freepointer(s, object);
3360 p[i] = object;
0f181f9f 3361 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3362 }
3363 c->tid = next_tid(c->tid);
3364 local_irq_enable();
3365
da844b78
AK
3366 /*
3367 * memcg and kmem_cache debug support and memory initialization.
3368 * Done outside of the IRQ disabled fastpath loop.
3369 */
3370 slab_post_alloc_hook(s, objcg, flags, size, p,
3371 slab_want_init_on_alloc(flags, s));
865762a8 3372 return i;
87098373 3373error:
87098373 3374 local_irq_enable();
da844b78 3375 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3376 __kmem_cache_free_bulk(s, i, p);
865762a8 3377 return 0;
484748f0
CL
3378}
3379EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3380
3381
81819f0f 3382/*
672bba3a
CL
3383 * Object placement in a slab is made very easy because we always start at
3384 * offset 0. If we tune the size of the object to the alignment then we can
3385 * get the required alignment by putting one properly sized object after
3386 * another.
81819f0f
CL
3387 *
3388 * Notice that the allocation order determines the sizes of the per cpu
3389 * caches. Each processor has always one slab available for allocations.
3390 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3391 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3392 * locking overhead.
81819f0f
CL
3393 */
3394
3395/*
f0953a1b 3396 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3397 * and slab fragmentation. A higher order reduces the number of partial slabs
3398 * and increases the number of allocations possible without having to
3399 * take the list_lock.
3400 */
19af27af
AD
3401static unsigned int slub_min_order;
3402static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3403static unsigned int slub_min_objects;
81819f0f 3404
81819f0f
CL
3405/*
3406 * Calculate the order of allocation given an slab object size.
3407 *
672bba3a
CL
3408 * The order of allocation has significant impact on performance and other
3409 * system components. Generally order 0 allocations should be preferred since
3410 * order 0 does not cause fragmentation in the page allocator. Larger objects
3411 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3412 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3413 * would be wasted.
3414 *
3415 * In order to reach satisfactory performance we must ensure that a minimum
3416 * number of objects is in one slab. Otherwise we may generate too much
3417 * activity on the partial lists which requires taking the list_lock. This is
3418 * less a concern for large slabs though which are rarely used.
81819f0f 3419 *
672bba3a
CL
3420 * slub_max_order specifies the order where we begin to stop considering the
3421 * number of objects in a slab as critical. If we reach slub_max_order then
3422 * we try to keep the page order as low as possible. So we accept more waste
3423 * of space in favor of a small page order.
81819f0f 3424 *
672bba3a
CL
3425 * Higher order allocations also allow the placement of more objects in a
3426 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3427 * requested a higher minimum order then we start with that one instead of
672bba3a 3428 * the smallest order which will fit the object.
81819f0f 3429 */
19af27af
AD
3430static inline unsigned int slab_order(unsigned int size,
3431 unsigned int min_objects, unsigned int max_order,
9736d2a9 3432 unsigned int fract_leftover)
81819f0f 3433{
19af27af
AD
3434 unsigned int min_order = slub_min_order;
3435 unsigned int order;
81819f0f 3436
9736d2a9 3437 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3438 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3439
9736d2a9 3440 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3441 order <= max_order; order++) {
81819f0f 3442
19af27af
AD
3443 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3444 unsigned int rem;
81819f0f 3445
9736d2a9 3446 rem = slab_size % size;
81819f0f 3447
5e6d444e 3448 if (rem <= slab_size / fract_leftover)
81819f0f 3449 break;
81819f0f 3450 }
672bba3a 3451
81819f0f
CL
3452 return order;
3453}
3454
9736d2a9 3455static inline int calculate_order(unsigned int size)
5e6d444e 3456{
19af27af
AD
3457 unsigned int order;
3458 unsigned int min_objects;
3459 unsigned int max_objects;
3286222f 3460 unsigned int nr_cpus;
5e6d444e
CL
3461
3462 /*
3463 * Attempt to find best configuration for a slab. This
3464 * works by first attempting to generate a layout with
3465 * the best configuration and backing off gradually.
3466 *
422ff4d7 3467 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3468 * we reduce the minimum objects required in a slab.
3469 */
3470 min_objects = slub_min_objects;
3286222f
VB
3471 if (!min_objects) {
3472 /*
3473 * Some architectures will only update present cpus when
3474 * onlining them, so don't trust the number if it's just 1. But
3475 * we also don't want to use nr_cpu_ids always, as on some other
3476 * architectures, there can be many possible cpus, but never
3477 * onlined. Here we compromise between trying to avoid too high
3478 * order on systems that appear larger than they are, and too
3479 * low order on systems that appear smaller than they are.
3480 */
3481 nr_cpus = num_present_cpus();
3482 if (nr_cpus <= 1)
3483 nr_cpus = nr_cpu_ids;
3484 min_objects = 4 * (fls(nr_cpus) + 1);
3485 }
9736d2a9 3486 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3487 min_objects = min(min_objects, max_objects);
3488
5e6d444e 3489 while (min_objects > 1) {
19af27af
AD
3490 unsigned int fraction;
3491
c124f5b5 3492 fraction = 16;
5e6d444e
CL
3493 while (fraction >= 4) {
3494 order = slab_order(size, min_objects,
9736d2a9 3495 slub_max_order, fraction);
5e6d444e
CL
3496 if (order <= slub_max_order)
3497 return order;
3498 fraction /= 2;
3499 }
5086c389 3500 min_objects--;
5e6d444e
CL
3501 }
3502
3503 /*
3504 * We were unable to place multiple objects in a slab. Now
3505 * lets see if we can place a single object there.
3506 */
9736d2a9 3507 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3508 if (order <= slub_max_order)
3509 return order;
3510
3511 /*
3512 * Doh this slab cannot be placed using slub_max_order.
3513 */
9736d2a9 3514 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3515 if (order < MAX_ORDER)
5e6d444e
CL
3516 return order;
3517 return -ENOSYS;
3518}
3519
5595cffc 3520static void
4053497d 3521init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3522{
3523 n->nr_partial = 0;
81819f0f
CL
3524 spin_lock_init(&n->list_lock);
3525 INIT_LIST_HEAD(&n->partial);
8ab1372f 3526#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3527 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3528 atomic_long_set(&n->total_objects, 0);
643b1138 3529 INIT_LIST_HEAD(&n->full);
8ab1372f 3530#endif
81819f0f
CL
3531}
3532
55136592 3533static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3534{
6c182dc0 3535 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3536 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3537
8a5ec0ba 3538 /*
d4d84fef
CM
3539 * Must align to double word boundary for the double cmpxchg
3540 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3541 */
d4d84fef
CM
3542 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3543 2 * sizeof(void *));
8a5ec0ba
CL
3544
3545 if (!s->cpu_slab)
3546 return 0;
3547
3548 init_kmem_cache_cpus(s);
4c93c355 3549
8a5ec0ba 3550 return 1;
4c93c355 3551}
4c93c355 3552
51df1142
CL
3553static struct kmem_cache *kmem_cache_node;
3554
81819f0f
CL
3555/*
3556 * No kmalloc_node yet so do it by hand. We know that this is the first
3557 * slab on the node for this slabcache. There are no concurrent accesses
3558 * possible.
3559 *
721ae22a
ZYW
3560 * Note that this function only works on the kmem_cache_node
3561 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3562 * memory on a fresh node that has no slab structures yet.
81819f0f 3563 */
55136592 3564static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3565{
3566 struct page *page;
3567 struct kmem_cache_node *n;
3568
51df1142 3569 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3570
51df1142 3571 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3572
3573 BUG_ON(!page);
a2f92ee7 3574 if (page_to_nid(page) != node) {
f9f58285
FF
3575 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3576 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3577 }
3578
81819f0f
CL
3579 n = page->freelist;
3580 BUG_ON(!n);
8ab1372f 3581#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3582 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3583 init_tracking(kmem_cache_node, n);
8ab1372f 3584#endif
da844b78 3585 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3586 page->freelist = get_freepointer(kmem_cache_node, n);
3587 page->inuse = 1;
3588 page->frozen = 0;
3589 kmem_cache_node->node[node] = n;
4053497d 3590 init_kmem_cache_node(n);
51df1142 3591 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3592
67b6c900 3593 /*
1e4dd946
SR
3594 * No locks need to be taken here as it has just been
3595 * initialized and there is no concurrent access.
67b6c900 3596 */
1e4dd946 3597 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3598}
3599
3600static void free_kmem_cache_nodes(struct kmem_cache *s)
3601{
3602 int node;
fa45dc25 3603 struct kmem_cache_node *n;
81819f0f 3604
fa45dc25 3605 for_each_kmem_cache_node(s, node, n) {
81819f0f 3606 s->node[node] = NULL;
ea37df54 3607 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3608 }
3609}
3610
52b4b950
DS
3611void __kmem_cache_release(struct kmem_cache *s)
3612{
210e7a43 3613 cache_random_seq_destroy(s);
52b4b950
DS
3614 free_percpu(s->cpu_slab);
3615 free_kmem_cache_nodes(s);
3616}
3617
55136592 3618static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3619{
3620 int node;
81819f0f 3621
7e1fa93d 3622 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3623 struct kmem_cache_node *n;
3624
73367bd8 3625 if (slab_state == DOWN) {
55136592 3626 early_kmem_cache_node_alloc(node);
73367bd8
AD
3627 continue;
3628 }
51df1142 3629 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3630 GFP_KERNEL, node);
81819f0f 3631
73367bd8
AD
3632 if (!n) {
3633 free_kmem_cache_nodes(s);
3634 return 0;
81819f0f 3635 }
73367bd8 3636
4053497d 3637 init_kmem_cache_node(n);
ea37df54 3638 s->node[node] = n;
81819f0f
CL
3639 }
3640 return 1;
3641}
81819f0f 3642
c0bdb232 3643static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3644{
3645 if (min < MIN_PARTIAL)
3646 min = MIN_PARTIAL;
3647 else if (min > MAX_PARTIAL)
3648 min = MAX_PARTIAL;
3649 s->min_partial = min;
3650}
3651
e6d0e1dc
WY
3652static void set_cpu_partial(struct kmem_cache *s)
3653{
3654#ifdef CONFIG_SLUB_CPU_PARTIAL
3655 /*
3656 * cpu_partial determined the maximum number of objects kept in the
3657 * per cpu partial lists of a processor.
3658 *
3659 * Per cpu partial lists mainly contain slabs that just have one
3660 * object freed. If they are used for allocation then they can be
3661 * filled up again with minimal effort. The slab will never hit the
3662 * per node partial lists and therefore no locking will be required.
3663 *
3664 * This setting also determines
3665 *
3666 * A) The number of objects from per cpu partial slabs dumped to the
3667 * per node list when we reach the limit.
3668 * B) The number of objects in cpu partial slabs to extract from the
3669 * per node list when we run out of per cpu objects. We only fetch
3670 * 50% to keep some capacity around for frees.
3671 */
3672 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3673 slub_set_cpu_partial(s, 0);
e6d0e1dc 3674 else if (s->size >= PAGE_SIZE)
bbd4e305 3675 slub_set_cpu_partial(s, 2);
e6d0e1dc 3676 else if (s->size >= 1024)
bbd4e305 3677 slub_set_cpu_partial(s, 6);
e6d0e1dc 3678 else if (s->size >= 256)
bbd4e305 3679 slub_set_cpu_partial(s, 13);
e6d0e1dc 3680 else
bbd4e305 3681 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3682#endif
3683}
3684
81819f0f
CL
3685/*
3686 * calculate_sizes() determines the order and the distribution of data within
3687 * a slab object.
3688 */
06b285dc 3689static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3690{
d50112ed 3691 slab_flags_t flags = s->flags;
be4a7988 3692 unsigned int size = s->object_size;
19af27af 3693 unsigned int order;
81819f0f 3694
d8b42bf5
CL
3695 /*
3696 * Round up object size to the next word boundary. We can only
3697 * place the free pointer at word boundaries and this determines
3698 * the possible location of the free pointer.
3699 */
3700 size = ALIGN(size, sizeof(void *));
3701
3702#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3703 /*
3704 * Determine if we can poison the object itself. If the user of
3705 * the slab may touch the object after free or before allocation
3706 * then we should never poison the object itself.
3707 */
5f0d5a3a 3708 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3709 !s->ctor)
81819f0f
CL
3710 s->flags |= __OBJECT_POISON;
3711 else
3712 s->flags &= ~__OBJECT_POISON;
3713
81819f0f
CL
3714
3715 /*
672bba3a 3716 * If we are Redzoning then check if there is some space between the
81819f0f 3717 * end of the object and the free pointer. If not then add an
672bba3a 3718 * additional word to have some bytes to store Redzone information.
81819f0f 3719 */
3b0efdfa 3720 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3721 size += sizeof(void *);
41ecc55b 3722#endif
81819f0f
CL
3723
3724 /*
672bba3a 3725 * With that we have determined the number of bytes in actual use
e41a49fa 3726 * by the object and redzoning.
81819f0f
CL
3727 */
3728 s->inuse = size;
3729
74c1d3e0
KC
3730 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3731 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3732 s->ctor) {
81819f0f
CL
3733 /*
3734 * Relocate free pointer after the object if it is not
3735 * permitted to overwrite the first word of the object on
3736 * kmem_cache_free.
3737 *
3738 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3739 * destructor, are poisoning the objects, or are
3740 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3741 *
3742 * The assumption that s->offset >= s->inuse means free
3743 * pointer is outside of the object is used in the
3744 * freeptr_outside_object() function. If that is no
3745 * longer true, the function needs to be modified.
81819f0f
CL
3746 */
3747 s->offset = size;
3748 size += sizeof(void *);
e41a49fa 3749 } else {
3202fa62
KC
3750 /*
3751 * Store freelist pointer near middle of object to keep
3752 * it away from the edges of the object to avoid small
3753 * sized over/underflows from neighboring allocations.
3754 */
e41a49fa 3755 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3756 }
3757
c12b3c62 3758#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3759 if (flags & SLAB_STORE_USER)
3760 /*
3761 * Need to store information about allocs and frees after
3762 * the object.
3763 */
3764 size += 2 * sizeof(struct track);
80a9201a 3765#endif
81819f0f 3766
80a9201a
AP
3767 kasan_cache_create(s, &size, &s->flags);
3768#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3769 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3770 /*
3771 * Add some empty padding so that we can catch
3772 * overwrites from earlier objects rather than let
3773 * tracking information or the free pointer be
0211a9c8 3774 * corrupted if a user writes before the start
81819f0f
CL
3775 * of the object.
3776 */
3777 size += sizeof(void *);
d86bd1be
JK
3778
3779 s->red_left_pad = sizeof(void *);
3780 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3781 size += s->red_left_pad;
3782 }
41ecc55b 3783#endif
672bba3a 3784
81819f0f
CL
3785 /*
3786 * SLUB stores one object immediately after another beginning from
3787 * offset 0. In order to align the objects we have to simply size
3788 * each object to conform to the alignment.
3789 */
45906855 3790 size = ALIGN(size, s->align);
81819f0f 3791 s->size = size;
4138fdfc 3792 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3793 if (forced_order >= 0)
3794 order = forced_order;
3795 else
9736d2a9 3796 order = calculate_order(size);
81819f0f 3797
19af27af 3798 if ((int)order < 0)
81819f0f
CL
3799 return 0;
3800
b7a49f0d 3801 s->allocflags = 0;
834f3d11 3802 if (order)
b7a49f0d
CL
3803 s->allocflags |= __GFP_COMP;
3804
3805 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3806 s->allocflags |= GFP_DMA;
b7a49f0d 3807
6d6ea1e9
NB
3808 if (s->flags & SLAB_CACHE_DMA32)
3809 s->allocflags |= GFP_DMA32;
3810
b7a49f0d
CL
3811 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3812 s->allocflags |= __GFP_RECLAIMABLE;
3813
81819f0f
CL
3814 /*
3815 * Determine the number of objects per slab
3816 */
9736d2a9
MW
3817 s->oo = oo_make(order, size);
3818 s->min = oo_make(get_order(size), size);
205ab99d
CL
3819 if (oo_objects(s->oo) > oo_objects(s->max))
3820 s->max = s->oo;
81819f0f 3821
834f3d11 3822 return !!oo_objects(s->oo);
81819f0f
CL
3823}
3824
d50112ed 3825static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3826{
37540008 3827 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3828#ifdef CONFIG_SLAB_FREELIST_HARDENED
3829 s->random = get_random_long();
3830#endif
81819f0f 3831
06b285dc 3832 if (!calculate_sizes(s, -1))
81819f0f 3833 goto error;
3de47213
DR
3834 if (disable_higher_order_debug) {
3835 /*
3836 * Disable debugging flags that store metadata if the min slab
3837 * order increased.
3838 */
3b0efdfa 3839 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3840 s->flags &= ~DEBUG_METADATA_FLAGS;
3841 s->offset = 0;
3842 if (!calculate_sizes(s, -1))
3843 goto error;
3844 }
3845 }
81819f0f 3846
2565409f
HC
3847#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3848 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3849 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3850 /* Enable fast mode */
3851 s->flags |= __CMPXCHG_DOUBLE;
3852#endif
3853
3b89d7d8
DR
3854 /*
3855 * The larger the object size is, the more pages we want on the partial
3856 * list to avoid pounding the page allocator excessively.
3857 */
49e22585
CL
3858 set_min_partial(s, ilog2(s->size) / 2);
3859
e6d0e1dc 3860 set_cpu_partial(s);
49e22585 3861
81819f0f 3862#ifdef CONFIG_NUMA
e2cb96b7 3863 s->remote_node_defrag_ratio = 1000;
81819f0f 3864#endif
210e7a43
TG
3865
3866 /* Initialize the pre-computed randomized freelist if slab is up */
3867 if (slab_state >= UP) {
3868 if (init_cache_random_seq(s))
3869 goto error;
3870 }
3871
55136592 3872 if (!init_kmem_cache_nodes(s))
dfb4f096 3873 goto error;
81819f0f 3874
55136592 3875 if (alloc_kmem_cache_cpus(s))
278b1bb1 3876 return 0;
ff12059e 3877
4c93c355 3878 free_kmem_cache_nodes(s);
81819f0f 3879error:
278b1bb1 3880 return -EINVAL;
81819f0f 3881}
81819f0f 3882
33b12c38 3883static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3884 const char *text)
33b12c38
CL
3885{
3886#ifdef CONFIG_SLUB_DEBUG
3887 void *addr = page_address(page);
55860d96 3888 unsigned long *map;
33b12c38 3889 void *p;
aa456c7a 3890
945cf2b6 3891 slab_err(s, page, text, s->name);
33b12c38 3892 slab_lock(page);
33b12c38 3893
90e9f6a6 3894 map = get_map(s, page);
33b12c38
CL
3895 for_each_object(p, s, addr, page->objects) {
3896
4138fdfc 3897 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3898 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3899 print_tracking(s, p);
3900 }
3901 }
55860d96 3902 put_map(map);
33b12c38
CL
3903 slab_unlock(page);
3904#endif
3905}
3906
81819f0f 3907/*
599870b1 3908 * Attempt to free all partial slabs on a node.
52b4b950
DS
3909 * This is called from __kmem_cache_shutdown(). We must take list_lock
3910 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3911 */
599870b1 3912static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3913{
60398923 3914 LIST_HEAD(discard);
81819f0f
CL
3915 struct page *page, *h;
3916
52b4b950
DS
3917 BUG_ON(irqs_disabled());
3918 spin_lock_irq(&n->list_lock);
916ac052 3919 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3920 if (!page->inuse) {
52b4b950 3921 remove_partial(n, page);
916ac052 3922 list_add(&page->slab_list, &discard);
33b12c38
CL
3923 } else {
3924 list_slab_objects(s, page,
55860d96 3925 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3926 }
33b12c38 3927 }
52b4b950 3928 spin_unlock_irq(&n->list_lock);
60398923 3929
916ac052 3930 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3931 discard_slab(s, page);
81819f0f
CL
3932}
3933
f9e13c0a
SB
3934bool __kmem_cache_empty(struct kmem_cache *s)
3935{
3936 int node;
3937 struct kmem_cache_node *n;
3938
3939 for_each_kmem_cache_node(s, node, n)
3940 if (n->nr_partial || slabs_node(s, node))
3941 return false;
3942 return true;
3943}
3944
81819f0f 3945/*
672bba3a 3946 * Release all resources used by a slab cache.
81819f0f 3947 */
52b4b950 3948int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3949{
3950 int node;
fa45dc25 3951 struct kmem_cache_node *n;
81819f0f
CL
3952
3953 flush_all(s);
81819f0f 3954 /* Attempt to free all objects */
fa45dc25 3955 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3956 free_partial(s, n);
3957 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3958 return 1;
3959 }
81819f0f
CL
3960 return 0;
3961}
3962
5bb1bb35 3963#ifdef CONFIG_PRINTK
8e7f37f2
PM
3964void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3965{
3966 void *base;
3967 int __maybe_unused i;
3968 unsigned int objnr;
3969 void *objp;
3970 void *objp0;
3971 struct kmem_cache *s = page->slab_cache;
3972 struct track __maybe_unused *trackp;
3973
3974 kpp->kp_ptr = object;
3975 kpp->kp_page = page;
3976 kpp->kp_slab_cache = s;
3977 base = page_address(page);
3978 objp0 = kasan_reset_tag(object);
3979#ifdef CONFIG_SLUB_DEBUG
3980 objp = restore_red_left(s, objp0);
3981#else
3982 objp = objp0;
3983#endif
3984 objnr = obj_to_index(s, page, objp);
3985 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3986 objp = base + s->size * objnr;
3987 kpp->kp_objp = objp;
3988 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3989 !(s->flags & SLAB_STORE_USER))
3990 return;
3991#ifdef CONFIG_SLUB_DEBUG
3992 trackp = get_track(s, objp, TRACK_ALLOC);
3993 kpp->kp_ret = (void *)trackp->addr;
3994#ifdef CONFIG_STACKTRACE
3995 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3996 kpp->kp_stack[i] = (void *)trackp->addrs[i];
3997 if (!kpp->kp_stack[i])
3998 break;
3999 }
4000#endif
4001#endif
4002}
5bb1bb35 4003#endif
8e7f37f2 4004
81819f0f
CL
4005/********************************************************************
4006 * Kmalloc subsystem
4007 *******************************************************************/
4008
81819f0f
CL
4009static int __init setup_slub_min_order(char *str)
4010{
19af27af 4011 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4012
4013 return 1;
4014}
4015
4016__setup("slub_min_order=", setup_slub_min_order);
4017
4018static int __init setup_slub_max_order(char *str)
4019{
19af27af
AD
4020 get_option(&str, (int *)&slub_max_order);
4021 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4022
4023 return 1;
4024}
4025
4026__setup("slub_max_order=", setup_slub_max_order);
4027
4028static int __init setup_slub_min_objects(char *str)
4029{
19af27af 4030 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4031
4032 return 1;
4033}
4034
4035__setup("slub_min_objects=", setup_slub_min_objects);
4036
81819f0f
CL
4037void *__kmalloc(size_t size, gfp_t flags)
4038{
aadb4bc4 4039 struct kmem_cache *s;
5b882be4 4040 void *ret;
81819f0f 4041
95a05b42 4042 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4043 return kmalloc_large(size, flags);
aadb4bc4 4044
2c59dd65 4045 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4046
4047 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4048 return s;
4049
b89fb5ef 4050 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4051
ca2b84cb 4052 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4053
0116523c 4054 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4055
5b882be4 4056 return ret;
81819f0f
CL
4057}
4058EXPORT_SYMBOL(__kmalloc);
4059
5d1f57e4 4060#ifdef CONFIG_NUMA
f619cfe1
CL
4061static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4062{
b1eeab67 4063 struct page *page;
e4f7c0b4 4064 void *ptr = NULL;
6a486c0a 4065 unsigned int order = get_order(size);
f619cfe1 4066
75f296d9 4067 flags |= __GFP_COMP;
6a486c0a
VB
4068 page = alloc_pages_node(node, flags, order);
4069 if (page) {
e4f7c0b4 4070 ptr = page_address(page);
96403bfe
MS
4071 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4072 PAGE_SIZE << order);
6a486c0a 4073 }
e4f7c0b4 4074
0116523c 4075 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4076}
4077
81819f0f
CL
4078void *__kmalloc_node(size_t size, gfp_t flags, int node)
4079{
aadb4bc4 4080 struct kmem_cache *s;
5b882be4 4081 void *ret;
81819f0f 4082
95a05b42 4083 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4084 ret = kmalloc_large_node(size, flags, node);
4085
ca2b84cb
EGM
4086 trace_kmalloc_node(_RET_IP_, ret,
4087 size, PAGE_SIZE << get_order(size),
4088 flags, node);
5b882be4
EGM
4089
4090 return ret;
4091 }
aadb4bc4 4092
2c59dd65 4093 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4094
4095 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4096 return s;
4097
b89fb5ef 4098 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4099
ca2b84cb 4100 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4101
0116523c 4102 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4103
5b882be4 4104 return ret;
81819f0f
CL
4105}
4106EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4107#endif /* CONFIG_NUMA */
81819f0f 4108
ed18adc1
KC
4109#ifdef CONFIG_HARDENED_USERCOPY
4110/*
afcc90f8
KC
4111 * Rejects incorrectly sized objects and objects that are to be copied
4112 * to/from userspace but do not fall entirely within the containing slab
4113 * cache's usercopy region.
ed18adc1
KC
4114 *
4115 * Returns NULL if check passes, otherwise const char * to name of cache
4116 * to indicate an error.
4117 */
f4e6e289
KC
4118void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4119 bool to_user)
ed18adc1
KC
4120{
4121 struct kmem_cache *s;
44065b2e 4122 unsigned int offset;
ed18adc1 4123 size_t object_size;
b89fb5ef 4124 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4125
96fedce2
AK
4126 ptr = kasan_reset_tag(ptr);
4127
ed18adc1
KC
4128 /* Find object and usable object size. */
4129 s = page->slab_cache;
ed18adc1
KC
4130
4131 /* Reject impossible pointers. */
4132 if (ptr < page_address(page))
f4e6e289
KC
4133 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4134 to_user, 0, n);
ed18adc1
KC
4135
4136 /* Find offset within object. */
b89fb5ef
AP
4137 if (is_kfence)
4138 offset = ptr - kfence_object_start(ptr);
4139 else
4140 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4141
4142 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4143 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4144 if (offset < s->red_left_pad)
f4e6e289
KC
4145 usercopy_abort("SLUB object in left red zone",
4146 s->name, to_user, offset, n);
ed18adc1
KC
4147 offset -= s->red_left_pad;
4148 }
4149
afcc90f8
KC
4150 /* Allow address range falling entirely within usercopy region. */
4151 if (offset >= s->useroffset &&
4152 offset - s->useroffset <= s->usersize &&
4153 n <= s->useroffset - offset + s->usersize)
f4e6e289 4154 return;
ed18adc1 4155
afcc90f8
KC
4156 /*
4157 * If the copy is still within the allocated object, produce
4158 * a warning instead of rejecting the copy. This is intended
4159 * to be a temporary method to find any missing usercopy
4160 * whitelists.
4161 */
4162 object_size = slab_ksize(s);
2d891fbc
KC
4163 if (usercopy_fallback &&
4164 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4165 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4166 return;
4167 }
ed18adc1 4168
f4e6e289 4169 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4170}
4171#endif /* CONFIG_HARDENED_USERCOPY */
4172
10d1f8cb 4173size_t __ksize(const void *object)
81819f0f 4174{
272c1d21 4175 struct page *page;
81819f0f 4176
ef8b4520 4177 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4178 return 0;
4179
294a80a8 4180 page = virt_to_head_page(object);
294a80a8 4181
76994412
PE
4182 if (unlikely(!PageSlab(page))) {
4183 WARN_ON(!PageCompound(page));
a50b854e 4184 return page_size(page);
76994412 4185 }
81819f0f 4186
1b4f59e3 4187 return slab_ksize(page->slab_cache);
81819f0f 4188}
10d1f8cb 4189EXPORT_SYMBOL(__ksize);
81819f0f
CL
4190
4191void kfree(const void *x)
4192{
81819f0f 4193 struct page *page;
5bb983b0 4194 void *object = (void *)x;
81819f0f 4195
2121db74
PE
4196 trace_kfree(_RET_IP_, x);
4197
2408c550 4198 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4199 return;
4200
b49af68f 4201 page = virt_to_head_page(x);
aadb4bc4 4202 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4203 unsigned int order = compound_order(page);
4204
0937502a 4205 BUG_ON(!PageCompound(page));
47adccce 4206 kfree_hook(object);
96403bfe
MS
4207 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4208 -(PAGE_SIZE << order));
6a486c0a 4209 __free_pages(page, order);
aadb4bc4
CL
4210 return;
4211 }
81084651 4212 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4213}
4214EXPORT_SYMBOL(kfree);
4215
832f37f5
VD
4216#define SHRINK_PROMOTE_MAX 32
4217
2086d26a 4218/*
832f37f5
VD
4219 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4220 * up most to the head of the partial lists. New allocations will then
4221 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4222 *
4223 * The slabs with the least items are placed last. This results in them
4224 * being allocated from last increasing the chance that the last objects
4225 * are freed in them.
2086d26a 4226 */
c9fc5864 4227int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4228{
4229 int node;
4230 int i;
4231 struct kmem_cache_node *n;
4232 struct page *page;
4233 struct page *t;
832f37f5
VD
4234 struct list_head discard;
4235 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4236 unsigned long flags;
ce3712d7 4237 int ret = 0;
2086d26a 4238
2086d26a 4239 flush_all(s);
fa45dc25 4240 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4241 INIT_LIST_HEAD(&discard);
4242 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4243 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4244
4245 spin_lock_irqsave(&n->list_lock, flags);
4246
4247 /*
832f37f5 4248 * Build lists of slabs to discard or promote.
2086d26a 4249 *
672bba3a
CL
4250 * Note that concurrent frees may occur while we hold the
4251 * list_lock. page->inuse here is the upper limit.
2086d26a 4252 */
916ac052 4253 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4254 int free = page->objects - page->inuse;
4255
4256 /* Do not reread page->inuse */
4257 barrier();
4258
4259 /* We do not keep full slabs on the list */
4260 BUG_ON(free <= 0);
4261
4262 if (free == page->objects) {
916ac052 4263 list_move(&page->slab_list, &discard);
69cb8e6b 4264 n->nr_partial--;
832f37f5 4265 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4266 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4267 }
4268
2086d26a 4269 /*
832f37f5
VD
4270 * Promote the slabs filled up most to the head of the
4271 * partial list.
2086d26a 4272 */
832f37f5
VD
4273 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4274 list_splice(promote + i, &n->partial);
2086d26a 4275
2086d26a 4276 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4277
4278 /* Release empty slabs */
916ac052 4279 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4280 discard_slab(s, page);
ce3712d7
VD
4281
4282 if (slabs_node(s, node))
4283 ret = 1;
2086d26a
CL
4284 }
4285
ce3712d7 4286 return ret;
2086d26a 4287}
2086d26a 4288
b9049e23
YG
4289static int slab_mem_going_offline_callback(void *arg)
4290{
4291 struct kmem_cache *s;
4292
18004c5d 4293 mutex_lock(&slab_mutex);
b9049e23 4294 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4295 __kmem_cache_shrink(s);
18004c5d 4296 mutex_unlock(&slab_mutex);
b9049e23
YG
4297
4298 return 0;
4299}
4300
4301static void slab_mem_offline_callback(void *arg)
4302{
b9049e23
YG
4303 struct memory_notify *marg = arg;
4304 int offline_node;
4305
b9d5ab25 4306 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4307
4308 /*
4309 * If the node still has available memory. we need kmem_cache_node
4310 * for it yet.
4311 */
4312 if (offline_node < 0)
4313 return;
4314
18004c5d 4315 mutex_lock(&slab_mutex);
7e1fa93d 4316 node_clear(offline_node, slab_nodes);
666716fd
VB
4317 /*
4318 * We no longer free kmem_cache_node structures here, as it would be
4319 * racy with all get_node() users, and infeasible to protect them with
4320 * slab_mutex.
4321 */
18004c5d 4322 mutex_unlock(&slab_mutex);
b9049e23
YG
4323}
4324
4325static int slab_mem_going_online_callback(void *arg)
4326{
4327 struct kmem_cache_node *n;
4328 struct kmem_cache *s;
4329 struct memory_notify *marg = arg;
b9d5ab25 4330 int nid = marg->status_change_nid_normal;
b9049e23
YG
4331 int ret = 0;
4332
4333 /*
4334 * If the node's memory is already available, then kmem_cache_node is
4335 * already created. Nothing to do.
4336 */
4337 if (nid < 0)
4338 return 0;
4339
4340 /*
0121c619 4341 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4342 * allocate a kmem_cache_node structure in order to bring the node
4343 * online.
4344 */
18004c5d 4345 mutex_lock(&slab_mutex);
b9049e23 4346 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4347 /*
4348 * The structure may already exist if the node was previously
4349 * onlined and offlined.
4350 */
4351 if (get_node(s, nid))
4352 continue;
b9049e23
YG
4353 /*
4354 * XXX: kmem_cache_alloc_node will fallback to other nodes
4355 * since memory is not yet available from the node that
4356 * is brought up.
4357 */
8de66a0c 4358 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4359 if (!n) {
4360 ret = -ENOMEM;
4361 goto out;
4362 }
4053497d 4363 init_kmem_cache_node(n);
b9049e23
YG
4364 s->node[nid] = n;
4365 }
7e1fa93d
VB
4366 /*
4367 * Any cache created after this point will also have kmem_cache_node
4368 * initialized for the new node.
4369 */
4370 node_set(nid, slab_nodes);
b9049e23 4371out:
18004c5d 4372 mutex_unlock(&slab_mutex);
b9049e23
YG
4373 return ret;
4374}
4375
4376static int slab_memory_callback(struct notifier_block *self,
4377 unsigned long action, void *arg)
4378{
4379 int ret = 0;
4380
4381 switch (action) {
4382 case MEM_GOING_ONLINE:
4383 ret = slab_mem_going_online_callback(arg);
4384 break;
4385 case MEM_GOING_OFFLINE:
4386 ret = slab_mem_going_offline_callback(arg);
4387 break;
4388 case MEM_OFFLINE:
4389 case MEM_CANCEL_ONLINE:
4390 slab_mem_offline_callback(arg);
4391 break;
4392 case MEM_ONLINE:
4393 case MEM_CANCEL_OFFLINE:
4394 break;
4395 }
dc19f9db
KH
4396 if (ret)
4397 ret = notifier_from_errno(ret);
4398 else
4399 ret = NOTIFY_OK;
b9049e23
YG
4400 return ret;
4401}
4402
3ac38faa
AM
4403static struct notifier_block slab_memory_callback_nb = {
4404 .notifier_call = slab_memory_callback,
4405 .priority = SLAB_CALLBACK_PRI,
4406};
b9049e23 4407
81819f0f
CL
4408/********************************************************************
4409 * Basic setup of slabs
4410 *******************************************************************/
4411
51df1142
CL
4412/*
4413 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4414 * the page allocator. Allocate them properly then fix up the pointers
4415 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4416 */
4417
dffb4d60 4418static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4419{
4420 int node;
dffb4d60 4421 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4422 struct kmem_cache_node *n;
51df1142 4423
dffb4d60 4424 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4425
7d557b3c
GC
4426 /*
4427 * This runs very early, and only the boot processor is supposed to be
4428 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4429 * IPIs around.
4430 */
4431 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4432 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4433 struct page *p;
4434
916ac052 4435 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4436 p->slab_cache = s;
51df1142 4437
607bf324 4438#ifdef CONFIG_SLUB_DEBUG
916ac052 4439 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4440 p->slab_cache = s;
51df1142 4441#endif
51df1142 4442 }
dffb4d60
CL
4443 list_add(&s->list, &slab_caches);
4444 return s;
51df1142
CL
4445}
4446
81819f0f
CL
4447void __init kmem_cache_init(void)
4448{
dffb4d60
CL
4449 static __initdata struct kmem_cache boot_kmem_cache,
4450 boot_kmem_cache_node;
7e1fa93d 4451 int node;
51df1142 4452
fc8d8620
SG
4453 if (debug_guardpage_minorder())
4454 slub_max_order = 0;
4455
dffb4d60
CL
4456 kmem_cache_node = &boot_kmem_cache_node;
4457 kmem_cache = &boot_kmem_cache;
51df1142 4458
7e1fa93d
VB
4459 /*
4460 * Initialize the nodemask for which we will allocate per node
4461 * structures. Here we don't need taking slab_mutex yet.
4462 */
4463 for_each_node_state(node, N_NORMAL_MEMORY)
4464 node_set(node, slab_nodes);
4465
dffb4d60 4466 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4467 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4468
3ac38faa 4469 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4470
4471 /* Able to allocate the per node structures */
4472 slab_state = PARTIAL;
4473
dffb4d60
CL
4474 create_boot_cache(kmem_cache, "kmem_cache",
4475 offsetof(struct kmem_cache, node) +
4476 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4477 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4478
dffb4d60 4479 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4480 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4481
4482 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4483 setup_kmalloc_cache_index_table();
f97d5f63 4484 create_kmalloc_caches(0);
81819f0f 4485
210e7a43
TG
4486 /* Setup random freelists for each cache */
4487 init_freelist_randomization();
4488
a96a87bf
SAS
4489 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4490 slub_cpu_dead);
81819f0f 4491
b9726c26 4492 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4493 cache_line_size(),
81819f0f
CL
4494 slub_min_order, slub_max_order, slub_min_objects,
4495 nr_cpu_ids, nr_node_ids);
4496}
4497
7e85ee0c
PE
4498void __init kmem_cache_init_late(void)
4499{
7e85ee0c
PE
4500}
4501
2633d7a0 4502struct kmem_cache *
f4957d5b 4503__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4504 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4505{
10befea9 4506 struct kmem_cache *s;
81819f0f 4507
a44cb944 4508 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4509 if (s) {
4510 s->refcount++;
84d0ddd6 4511
81819f0f
CL
4512 /*
4513 * Adjust the object sizes so that we clear
4514 * the complete object on kzalloc.
4515 */
1b473f29 4516 s->object_size = max(s->object_size, size);
52ee6d74 4517 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4518
7b8f3b66 4519 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4520 s->refcount--;
cbb79694 4521 s = NULL;
7b8f3b66 4522 }
a0e1d1be 4523 }
6446faa2 4524
cbb79694
CL
4525 return s;
4526}
84c1cf62 4527
d50112ed 4528int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4529{
aac3a166
PE
4530 int err;
4531
4532 err = kmem_cache_open(s, flags);
4533 if (err)
4534 return err;
20cea968 4535
45530c44
CL
4536 /* Mutex is not taken during early boot */
4537 if (slab_state <= UP)
4538 return 0;
4539
aac3a166 4540 err = sysfs_slab_add(s);
aac3a166 4541 if (err)
52b4b950 4542 __kmem_cache_release(s);
20cea968 4543
aac3a166 4544 return err;
81819f0f 4545}
81819f0f 4546
ce71e27c 4547void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4548{
aadb4bc4 4549 struct kmem_cache *s;
94b528d0 4550 void *ret;
aadb4bc4 4551
95a05b42 4552 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4553 return kmalloc_large(size, gfpflags);
4554
2c59dd65 4555 s = kmalloc_slab(size, gfpflags);
81819f0f 4556
2408c550 4557 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4558 return s;
81819f0f 4559
b89fb5ef 4560 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4561
25985edc 4562 /* Honor the call site pointer we received. */
ca2b84cb 4563 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4564
4565 return ret;
81819f0f 4566}
fd7cb575 4567EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4568
5d1f57e4 4569#ifdef CONFIG_NUMA
81819f0f 4570void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4571 int node, unsigned long caller)
81819f0f 4572{
aadb4bc4 4573 struct kmem_cache *s;
94b528d0 4574 void *ret;
aadb4bc4 4575
95a05b42 4576 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4577 ret = kmalloc_large_node(size, gfpflags, node);
4578
4579 trace_kmalloc_node(caller, ret,
4580 size, PAGE_SIZE << get_order(size),
4581 gfpflags, node);
4582
4583 return ret;
4584 }
eada35ef 4585
2c59dd65 4586 s = kmalloc_slab(size, gfpflags);
81819f0f 4587
2408c550 4588 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4589 return s;
81819f0f 4590
b89fb5ef 4591 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4592
25985edc 4593 /* Honor the call site pointer we received. */
ca2b84cb 4594 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4595
4596 return ret;
81819f0f 4597}
fd7cb575 4598EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4599#endif
81819f0f 4600
ab4d5ed5 4601#ifdef CONFIG_SYSFS
205ab99d
CL
4602static int count_inuse(struct page *page)
4603{
4604 return page->inuse;
4605}
4606
4607static int count_total(struct page *page)
4608{
4609 return page->objects;
4610}
ab4d5ed5 4611#endif
205ab99d 4612
ab4d5ed5 4613#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4614static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4615{
4616 void *p;
a973e9dd 4617 void *addr = page_address(page);
90e9f6a6
YZ
4618 unsigned long *map;
4619
4620 slab_lock(page);
53e15af0 4621
dd98afd4 4622 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4623 goto unlock;
53e15af0
CL
4624
4625 /* Now we know that a valid freelist exists */
90e9f6a6 4626 map = get_map(s, page);
5f80b13a 4627 for_each_object(p, s, addr, page->objects) {
4138fdfc 4628 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4629 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4630
dd98afd4
YZ
4631 if (!check_object(s, page, p, val))
4632 break;
4633 }
90e9f6a6
YZ
4634 put_map(map);
4635unlock:
881db7fb 4636 slab_unlock(page);
53e15af0
CL
4637}
4638
434e245d 4639static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4640 struct kmem_cache_node *n)
53e15af0
CL
4641{
4642 unsigned long count = 0;
4643 struct page *page;
4644 unsigned long flags;
4645
4646 spin_lock_irqsave(&n->list_lock, flags);
4647
916ac052 4648 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4649 validate_slab(s, page);
53e15af0
CL
4650 count++;
4651 }
4652 if (count != n->nr_partial)
f9f58285
FF
4653 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4654 s->name, count, n->nr_partial);
53e15af0
CL
4655
4656 if (!(s->flags & SLAB_STORE_USER))
4657 goto out;
4658
916ac052 4659 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4660 validate_slab(s, page);
53e15af0
CL
4661 count++;
4662 }
4663 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4664 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4665 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4666
4667out:
4668 spin_unlock_irqrestore(&n->list_lock, flags);
4669 return count;
4670}
4671
434e245d 4672static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4673{
4674 int node;
4675 unsigned long count = 0;
fa45dc25 4676 struct kmem_cache_node *n;
53e15af0
CL
4677
4678 flush_all(s);
fa45dc25 4679 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4680 count += validate_slab_node(s, n);
4681
53e15af0
CL
4682 return count;
4683}
88a420e4 4684/*
672bba3a 4685 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4686 * and freed.
4687 */
4688
4689struct location {
4690 unsigned long count;
ce71e27c 4691 unsigned long addr;
45edfa58
CL
4692 long long sum_time;
4693 long min_time;
4694 long max_time;
4695 long min_pid;
4696 long max_pid;
174596a0 4697 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4698 nodemask_t nodes;
88a420e4
CL
4699};
4700
4701struct loc_track {
4702 unsigned long max;
4703 unsigned long count;
4704 struct location *loc;
4705};
4706
4707static void free_loc_track(struct loc_track *t)
4708{
4709 if (t->max)
4710 free_pages((unsigned long)t->loc,
4711 get_order(sizeof(struct location) * t->max));
4712}
4713
68dff6a9 4714static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4715{
4716 struct location *l;
4717 int order;
4718
88a420e4
CL
4719 order = get_order(sizeof(struct location) * max);
4720
68dff6a9 4721 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4722 if (!l)
4723 return 0;
4724
4725 if (t->count) {
4726 memcpy(l, t->loc, sizeof(struct location) * t->count);
4727 free_loc_track(t);
4728 }
4729 t->max = max;
4730 t->loc = l;
4731 return 1;
4732}
4733
4734static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4735 const struct track *track)
88a420e4
CL
4736{
4737 long start, end, pos;
4738 struct location *l;
ce71e27c 4739 unsigned long caddr;
45edfa58 4740 unsigned long age = jiffies - track->when;
88a420e4
CL
4741
4742 start = -1;
4743 end = t->count;
4744
4745 for ( ; ; ) {
4746 pos = start + (end - start + 1) / 2;
4747
4748 /*
4749 * There is nothing at "end". If we end up there
4750 * we need to add something to before end.
4751 */
4752 if (pos == end)
4753 break;
4754
4755 caddr = t->loc[pos].addr;
45edfa58
CL
4756 if (track->addr == caddr) {
4757
4758 l = &t->loc[pos];
4759 l->count++;
4760 if (track->when) {
4761 l->sum_time += age;
4762 if (age < l->min_time)
4763 l->min_time = age;
4764 if (age > l->max_time)
4765 l->max_time = age;
4766
4767 if (track->pid < l->min_pid)
4768 l->min_pid = track->pid;
4769 if (track->pid > l->max_pid)
4770 l->max_pid = track->pid;
4771
174596a0
RR
4772 cpumask_set_cpu(track->cpu,
4773 to_cpumask(l->cpus));
45edfa58
CL
4774 }
4775 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4776 return 1;
4777 }
4778
45edfa58 4779 if (track->addr < caddr)
88a420e4
CL
4780 end = pos;
4781 else
4782 start = pos;
4783 }
4784
4785 /*
672bba3a 4786 * Not found. Insert new tracking element.
88a420e4 4787 */
68dff6a9 4788 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4789 return 0;
4790
4791 l = t->loc + pos;
4792 if (pos < t->count)
4793 memmove(l + 1, l,
4794 (t->count - pos) * sizeof(struct location));
4795 t->count++;
4796 l->count = 1;
45edfa58
CL
4797 l->addr = track->addr;
4798 l->sum_time = age;
4799 l->min_time = age;
4800 l->max_time = age;
4801 l->min_pid = track->pid;
4802 l->max_pid = track->pid;
174596a0
RR
4803 cpumask_clear(to_cpumask(l->cpus));
4804 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4805 nodes_clear(l->nodes);
4806 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4807 return 1;
4808}
4809
4810static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4811 struct page *page, enum track_item alloc)
88a420e4 4812{
a973e9dd 4813 void *addr = page_address(page);
88a420e4 4814 void *p;
90e9f6a6 4815 unsigned long *map;
88a420e4 4816
90e9f6a6 4817 map = get_map(s, page);
224a88be 4818 for_each_object(p, s, addr, page->objects)
4138fdfc 4819 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4820 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4821 put_map(map);
88a420e4
CL
4822}
4823
4824static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4825 enum track_item alloc)
88a420e4 4826{
e374d483 4827 int len = 0;
88a420e4 4828 unsigned long i;
68dff6a9 4829 struct loc_track t = { 0, 0, NULL };
88a420e4 4830 int node;
fa45dc25 4831 struct kmem_cache_node *n;
88a420e4 4832
90e9f6a6
YZ
4833 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4834 GFP_KERNEL)) {
bf16d19a 4835 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4836 }
88a420e4
CL
4837 /* Push back cpu slabs */
4838 flush_all(s);
4839
fa45dc25 4840 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4841 unsigned long flags;
4842 struct page *page;
4843
9e86943b 4844 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4845 continue;
4846
4847 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4848 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4849 process_slab(&t, s, page, alloc);
916ac052 4850 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4851 process_slab(&t, s, page, alloc);
88a420e4
CL
4852 spin_unlock_irqrestore(&n->list_lock, flags);
4853 }
4854
4855 for (i = 0; i < t.count; i++) {
45edfa58 4856 struct location *l = &t.loc[i];
88a420e4 4857
bf16d19a 4858 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4859
4860 if (l->addr)
bf16d19a 4861 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4862 else
bf16d19a
JP
4863 len += sysfs_emit_at(buf, len, "<not-available>");
4864
4865 if (l->sum_time != l->min_time)
4866 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4867 l->min_time,
4868 (long)div_u64(l->sum_time,
4869 l->count),
4870 l->max_time);
4871 else
4872 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4873
4874 if (l->min_pid != l->max_pid)
bf16d19a
JP
4875 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4876 l->min_pid, l->max_pid);
45edfa58 4877 else
bf16d19a
JP
4878 len += sysfs_emit_at(buf, len, " pid=%ld",
4879 l->min_pid);
45edfa58 4880
174596a0 4881 if (num_online_cpus() > 1 &&
bf16d19a
JP
4882 !cpumask_empty(to_cpumask(l->cpus)))
4883 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4884 cpumask_pr_args(to_cpumask(l->cpus)));
4885
4886 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4887 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4888 nodemask_pr_args(&l->nodes));
4889
4890 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4891 }
4892
4893 free_loc_track(&t);
4894 if (!t.count)
bf16d19a
JP
4895 len += sysfs_emit_at(buf, len, "No data\n");
4896
e374d483 4897 return len;
88a420e4 4898}
6dfd1b65 4899#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4900
a5a84755 4901#ifdef SLUB_RESILIENCY_TEST
c07b8183 4902static void __init resiliency_test(void)
a5a84755
CL
4903{
4904 u8 *p;
cc252eae 4905 int type = KMALLOC_NORMAL;
a5a84755 4906
95a05b42 4907 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4908
f9f58285
FF
4909 pr_err("SLUB resiliency testing\n");
4910 pr_err("-----------------------\n");
4911 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4912
4913 p = kzalloc(16, GFP_KERNEL);
4914 p[16] = 0x12;
f9f58285
FF
4915 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4916 p + 16);
a5a84755 4917
cc252eae 4918 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4919
4920 /* Hmmm... The next two are dangerous */
4921 p = kzalloc(32, GFP_KERNEL);
4922 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4923 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4924 p);
4925 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4926
cc252eae 4927 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4928 p = kzalloc(64, GFP_KERNEL);
4929 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4930 *p = 0x56;
f9f58285
FF
4931 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4932 p);
4933 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4934 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4935
f9f58285 4936 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4937 p = kzalloc(128, GFP_KERNEL);
4938 kfree(p);
4939 *p = 0x78;
f9f58285 4940 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4941 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4942
4943 p = kzalloc(256, GFP_KERNEL);
4944 kfree(p);
4945 p[50] = 0x9a;
f9f58285 4946 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4947 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4948
4949 p = kzalloc(512, GFP_KERNEL);
4950 kfree(p);
4951 p[512] = 0xab;
f9f58285 4952 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4953 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4954}
4955#else
4956#ifdef CONFIG_SYSFS
4957static void resiliency_test(void) {};
4958#endif
6dfd1b65 4959#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4960
ab4d5ed5 4961#ifdef CONFIG_SYSFS
81819f0f 4962enum slab_stat_type {
205ab99d
CL
4963 SL_ALL, /* All slabs */
4964 SL_PARTIAL, /* Only partially allocated slabs */
4965 SL_CPU, /* Only slabs used for cpu caches */
4966 SL_OBJECTS, /* Determine allocated objects not slabs */
4967 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4968};
4969
205ab99d 4970#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4971#define SO_PARTIAL (1 << SL_PARTIAL)
4972#define SO_CPU (1 << SL_CPU)
4973#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4974#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4975
62e5c4b4 4976static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4977 char *buf, unsigned long flags)
81819f0f
CL
4978{
4979 unsigned long total = 0;
81819f0f
CL
4980 int node;
4981 int x;
4982 unsigned long *nodes;
bf16d19a 4983 int len = 0;
81819f0f 4984
6396bb22 4985 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4986 if (!nodes)
4987 return -ENOMEM;
81819f0f 4988
205ab99d
CL
4989 if (flags & SO_CPU) {
4990 int cpu;
81819f0f 4991
205ab99d 4992 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4993 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4994 cpu);
ec3ab083 4995 int node;
49e22585 4996 struct page *page;
dfb4f096 4997
4db0c3c2 4998 page = READ_ONCE(c->page);
ec3ab083
CL
4999 if (!page)
5000 continue;
205ab99d 5001
ec3ab083
CL
5002 node = page_to_nid(page);
5003 if (flags & SO_TOTAL)
5004 x = page->objects;
5005 else if (flags & SO_OBJECTS)
5006 x = page->inuse;
5007 else
5008 x = 1;
49e22585 5009
ec3ab083
CL
5010 total += x;
5011 nodes[node] += x;
5012
a93cf07b 5013 page = slub_percpu_partial_read_once(c);
49e22585 5014 if (page) {
8afb1474
LZ
5015 node = page_to_nid(page);
5016 if (flags & SO_TOTAL)
5017 WARN_ON_ONCE(1);
5018 else if (flags & SO_OBJECTS)
5019 WARN_ON_ONCE(1);
5020 else
5021 x = page->pages;
bc6697d8
ED
5022 total += x;
5023 nodes[node] += x;
49e22585 5024 }
81819f0f
CL
5025 }
5026 }
5027
e4f8e513
QC
5028 /*
5029 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5030 * already held which will conflict with an existing lock order:
5031 *
5032 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5033 *
5034 * We don't really need mem_hotplug_lock (to hold off
5035 * slab_mem_going_offline_callback) here because slab's memory hot
5036 * unplug code doesn't destroy the kmem_cache->node[] data.
5037 */
5038
ab4d5ed5 5039#ifdef CONFIG_SLUB_DEBUG
205ab99d 5040 if (flags & SO_ALL) {
fa45dc25
CL
5041 struct kmem_cache_node *n;
5042
5043 for_each_kmem_cache_node(s, node, n) {
205ab99d 5044
d0e0ac97
CG
5045 if (flags & SO_TOTAL)
5046 x = atomic_long_read(&n->total_objects);
5047 else if (flags & SO_OBJECTS)
5048 x = atomic_long_read(&n->total_objects) -
5049 count_partial(n, count_free);
81819f0f 5050 else
205ab99d 5051 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5052 total += x;
5053 nodes[node] += x;
5054 }
5055
ab4d5ed5
CL
5056 } else
5057#endif
5058 if (flags & SO_PARTIAL) {
fa45dc25 5059 struct kmem_cache_node *n;
81819f0f 5060
fa45dc25 5061 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5062 if (flags & SO_TOTAL)
5063 x = count_partial(n, count_total);
5064 else if (flags & SO_OBJECTS)
5065 x = count_partial(n, count_inuse);
81819f0f 5066 else
205ab99d 5067 x = n->nr_partial;
81819f0f
CL
5068 total += x;
5069 nodes[node] += x;
5070 }
5071 }
bf16d19a
JP
5072
5073 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5074#ifdef CONFIG_NUMA
bf16d19a 5075 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5076 if (nodes[node])
bf16d19a
JP
5077 len += sysfs_emit_at(buf, len, " N%d=%lu",
5078 node, nodes[node]);
5079 }
81819f0f 5080#endif
bf16d19a 5081 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5082 kfree(nodes);
bf16d19a
JP
5083
5084 return len;
81819f0f
CL
5085}
5086
81819f0f 5087#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5088#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5089
5090struct slab_attribute {
5091 struct attribute attr;
5092 ssize_t (*show)(struct kmem_cache *s, char *buf);
5093 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5094};
5095
5096#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5097 static struct slab_attribute _name##_attr = \
5098 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5099
5100#define SLAB_ATTR(_name) \
5101 static struct slab_attribute _name##_attr = \
ab067e99 5102 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5103
81819f0f
CL
5104static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5105{
bf16d19a 5106 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5107}
5108SLAB_ATTR_RO(slab_size);
5109
5110static ssize_t align_show(struct kmem_cache *s, char *buf)
5111{
bf16d19a 5112 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5113}
5114SLAB_ATTR_RO(align);
5115
5116static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5117{
bf16d19a 5118 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5119}
5120SLAB_ATTR_RO(object_size);
5121
5122static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5123{
bf16d19a 5124 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5125}
5126SLAB_ATTR_RO(objs_per_slab);
5127
5128static ssize_t order_show(struct kmem_cache *s, char *buf)
5129{
bf16d19a 5130 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5131}
32a6f409 5132SLAB_ATTR_RO(order);
81819f0f 5133
73d342b1
DR
5134static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5135{
bf16d19a 5136 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5137}
5138
5139static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5140 size_t length)
5141{
5142 unsigned long min;
5143 int err;
5144
3dbb95f7 5145 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5146 if (err)
5147 return err;
5148
c0bdb232 5149 set_min_partial(s, min);
73d342b1
DR
5150 return length;
5151}
5152SLAB_ATTR(min_partial);
5153
49e22585
CL
5154static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5155{
bf16d19a 5156 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5157}
5158
5159static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5160 size_t length)
5161{
e5d9998f 5162 unsigned int objects;
49e22585
CL
5163 int err;
5164
e5d9998f 5165 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5166 if (err)
5167 return err;
345c905d 5168 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5169 return -EINVAL;
49e22585 5170
e6d0e1dc 5171 slub_set_cpu_partial(s, objects);
49e22585
CL
5172 flush_all(s);
5173 return length;
5174}
5175SLAB_ATTR(cpu_partial);
5176
81819f0f
CL
5177static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5178{
62c70bce
JP
5179 if (!s->ctor)
5180 return 0;
bf16d19a 5181 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5182}
5183SLAB_ATTR_RO(ctor);
5184
81819f0f
CL
5185static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5186{
bf16d19a 5187 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5188}
5189SLAB_ATTR_RO(aliases);
5190
81819f0f
CL
5191static ssize_t partial_show(struct kmem_cache *s, char *buf)
5192{
d9acf4b7 5193 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5194}
5195SLAB_ATTR_RO(partial);
5196
5197static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5198{
d9acf4b7 5199 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5200}
5201SLAB_ATTR_RO(cpu_slabs);
5202
5203static ssize_t objects_show(struct kmem_cache *s, char *buf)
5204{
205ab99d 5205 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5206}
5207SLAB_ATTR_RO(objects);
5208
205ab99d
CL
5209static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5210{
5211 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5212}
5213SLAB_ATTR_RO(objects_partial);
5214
49e22585
CL
5215static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5216{
5217 int objects = 0;
5218 int pages = 0;
5219 int cpu;
bf16d19a 5220 int len = 0;
49e22585
CL
5221
5222 for_each_online_cpu(cpu) {
a93cf07b
WY
5223 struct page *page;
5224
5225 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5226
5227 if (page) {
5228 pages += page->pages;
5229 objects += page->pobjects;
5230 }
5231 }
5232
bf16d19a 5233 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5234
5235#ifdef CONFIG_SMP
5236 for_each_online_cpu(cpu) {
a93cf07b
WY
5237 struct page *page;
5238
5239 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5240 if (page)
5241 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5242 cpu, page->pobjects, page->pages);
49e22585
CL
5243 }
5244#endif
bf16d19a
JP
5245 len += sysfs_emit_at(buf, len, "\n");
5246
5247 return len;
49e22585
CL
5248}
5249SLAB_ATTR_RO(slabs_cpu_partial);
5250
a5a84755
CL
5251static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5252{
bf16d19a 5253 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5254}
8f58119a 5255SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5256
5257static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5258{
bf16d19a 5259 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5260}
5261SLAB_ATTR_RO(hwcache_align);
5262
5263#ifdef CONFIG_ZONE_DMA
5264static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5265{
bf16d19a 5266 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5267}
5268SLAB_ATTR_RO(cache_dma);
5269#endif
5270
8eb8284b
DW
5271static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5272{
bf16d19a 5273 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5274}
5275SLAB_ATTR_RO(usersize);
5276
a5a84755
CL
5277static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5278{
bf16d19a 5279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5280}
5281SLAB_ATTR_RO(destroy_by_rcu);
5282
ab4d5ed5 5283#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5284static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5285{
5286 return show_slab_objects(s, buf, SO_ALL);
5287}
5288SLAB_ATTR_RO(slabs);
5289
205ab99d
CL
5290static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5291{
5292 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5293}
5294SLAB_ATTR_RO(total_objects);
5295
81819f0f
CL
5296static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5297{
bf16d19a 5298 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5299}
060807f8 5300SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5301
5302static ssize_t trace_show(struct kmem_cache *s, char *buf)
5303{
bf16d19a 5304 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5305}
060807f8 5306SLAB_ATTR_RO(trace);
81819f0f 5307
81819f0f
CL
5308static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5309{
bf16d19a 5310 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5311}
5312
ad38b5b1 5313SLAB_ATTR_RO(red_zone);
81819f0f
CL
5314
5315static ssize_t poison_show(struct kmem_cache *s, char *buf)
5316{
bf16d19a 5317 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5318}
5319
ad38b5b1 5320SLAB_ATTR_RO(poison);
81819f0f
CL
5321
5322static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5323{
bf16d19a 5324 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5325}
5326
ad38b5b1 5327SLAB_ATTR_RO(store_user);
81819f0f 5328
53e15af0
CL
5329static ssize_t validate_show(struct kmem_cache *s, char *buf)
5330{
5331 return 0;
5332}
5333
5334static ssize_t validate_store(struct kmem_cache *s,
5335 const char *buf, size_t length)
5336{
434e245d
CL
5337 int ret = -EINVAL;
5338
5339 if (buf[0] == '1') {
5340 ret = validate_slab_cache(s);
5341 if (ret >= 0)
5342 ret = length;
5343 }
5344 return ret;
53e15af0
CL
5345}
5346SLAB_ATTR(validate);
a5a84755
CL
5347
5348static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5349{
5350 if (!(s->flags & SLAB_STORE_USER))
5351 return -ENOSYS;
5352 return list_locations(s, buf, TRACK_ALLOC);
5353}
5354SLAB_ATTR_RO(alloc_calls);
5355
5356static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5357{
5358 if (!(s->flags & SLAB_STORE_USER))
5359 return -ENOSYS;
5360 return list_locations(s, buf, TRACK_FREE);
5361}
5362SLAB_ATTR_RO(free_calls);
5363#endif /* CONFIG_SLUB_DEBUG */
5364
5365#ifdef CONFIG_FAILSLAB
5366static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5367{
bf16d19a 5368 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5369}
060807f8 5370SLAB_ATTR_RO(failslab);
ab4d5ed5 5371#endif
53e15af0 5372
2086d26a
CL
5373static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5374{
5375 return 0;
5376}
5377
5378static ssize_t shrink_store(struct kmem_cache *s,
5379 const char *buf, size_t length)
5380{
832f37f5 5381 if (buf[0] == '1')
10befea9 5382 kmem_cache_shrink(s);
832f37f5 5383 else
2086d26a
CL
5384 return -EINVAL;
5385 return length;
5386}
5387SLAB_ATTR(shrink);
5388
81819f0f 5389#ifdef CONFIG_NUMA
9824601e 5390static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5391{
bf16d19a 5392 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5393}
5394
9824601e 5395static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5396 const char *buf, size_t length)
5397{
eb7235eb 5398 unsigned int ratio;
0121c619
CL
5399 int err;
5400
eb7235eb 5401 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5402 if (err)
5403 return err;
eb7235eb
AD
5404 if (ratio > 100)
5405 return -ERANGE;
0121c619 5406
eb7235eb 5407 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5408
81819f0f
CL
5409 return length;
5410}
9824601e 5411SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5412#endif
5413
8ff12cfc 5414#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5415static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5416{
5417 unsigned long sum = 0;
5418 int cpu;
bf16d19a 5419 int len = 0;
6da2ec56 5420 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5421
5422 if (!data)
5423 return -ENOMEM;
5424
5425 for_each_online_cpu(cpu) {
9dfc6e68 5426 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5427
5428 data[cpu] = x;
5429 sum += x;
5430 }
5431
bf16d19a 5432 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5433
50ef37b9 5434#ifdef CONFIG_SMP
8ff12cfc 5435 for_each_online_cpu(cpu) {
bf16d19a
JP
5436 if (data[cpu])
5437 len += sysfs_emit_at(buf, len, " C%d=%u",
5438 cpu, data[cpu]);
8ff12cfc 5439 }
50ef37b9 5440#endif
8ff12cfc 5441 kfree(data);
bf16d19a
JP
5442 len += sysfs_emit_at(buf, len, "\n");
5443
5444 return len;
8ff12cfc
CL
5445}
5446
78eb00cc
DR
5447static void clear_stat(struct kmem_cache *s, enum stat_item si)
5448{
5449 int cpu;
5450
5451 for_each_online_cpu(cpu)
9dfc6e68 5452 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5453}
5454
8ff12cfc
CL
5455#define STAT_ATTR(si, text) \
5456static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5457{ \
5458 return show_stat(s, buf, si); \
5459} \
78eb00cc
DR
5460static ssize_t text##_store(struct kmem_cache *s, \
5461 const char *buf, size_t length) \
5462{ \
5463 if (buf[0] != '0') \
5464 return -EINVAL; \
5465 clear_stat(s, si); \
5466 return length; \
5467} \
5468SLAB_ATTR(text); \
8ff12cfc
CL
5469
5470STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5471STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5472STAT_ATTR(FREE_FASTPATH, free_fastpath);
5473STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5474STAT_ATTR(FREE_FROZEN, free_frozen);
5475STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5476STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5477STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5478STAT_ATTR(ALLOC_SLAB, alloc_slab);
5479STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5480STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5481STAT_ATTR(FREE_SLAB, free_slab);
5482STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5483STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5484STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5485STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5486STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5487STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5488STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5489STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5490STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5491STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5492STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5493STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5494STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5495STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5496#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5497
06428780 5498static struct attribute *slab_attrs[] = {
81819f0f
CL
5499 &slab_size_attr.attr,
5500 &object_size_attr.attr,
5501 &objs_per_slab_attr.attr,
5502 &order_attr.attr,
73d342b1 5503 &min_partial_attr.attr,
49e22585 5504 &cpu_partial_attr.attr,
81819f0f 5505 &objects_attr.attr,
205ab99d 5506 &objects_partial_attr.attr,
81819f0f
CL
5507 &partial_attr.attr,
5508 &cpu_slabs_attr.attr,
5509 &ctor_attr.attr,
81819f0f
CL
5510 &aliases_attr.attr,
5511 &align_attr.attr,
81819f0f
CL
5512 &hwcache_align_attr.attr,
5513 &reclaim_account_attr.attr,
5514 &destroy_by_rcu_attr.attr,
a5a84755 5515 &shrink_attr.attr,
49e22585 5516 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5517#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5518 &total_objects_attr.attr,
5519 &slabs_attr.attr,
5520 &sanity_checks_attr.attr,
5521 &trace_attr.attr,
81819f0f
CL
5522 &red_zone_attr.attr,
5523 &poison_attr.attr,
5524 &store_user_attr.attr,
53e15af0 5525 &validate_attr.attr,
88a420e4
CL
5526 &alloc_calls_attr.attr,
5527 &free_calls_attr.attr,
ab4d5ed5 5528#endif
81819f0f
CL
5529#ifdef CONFIG_ZONE_DMA
5530 &cache_dma_attr.attr,
5531#endif
5532#ifdef CONFIG_NUMA
9824601e 5533 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5534#endif
5535#ifdef CONFIG_SLUB_STATS
5536 &alloc_fastpath_attr.attr,
5537 &alloc_slowpath_attr.attr,
5538 &free_fastpath_attr.attr,
5539 &free_slowpath_attr.attr,
5540 &free_frozen_attr.attr,
5541 &free_add_partial_attr.attr,
5542 &free_remove_partial_attr.attr,
5543 &alloc_from_partial_attr.attr,
5544 &alloc_slab_attr.attr,
5545 &alloc_refill_attr.attr,
e36a2652 5546 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5547 &free_slab_attr.attr,
5548 &cpuslab_flush_attr.attr,
5549 &deactivate_full_attr.attr,
5550 &deactivate_empty_attr.attr,
5551 &deactivate_to_head_attr.attr,
5552 &deactivate_to_tail_attr.attr,
5553 &deactivate_remote_frees_attr.attr,
03e404af 5554 &deactivate_bypass_attr.attr,
65c3376a 5555 &order_fallback_attr.attr,
b789ef51
CL
5556 &cmpxchg_double_fail_attr.attr,
5557 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5558 &cpu_partial_alloc_attr.attr,
5559 &cpu_partial_free_attr.attr,
8028dcea
AS
5560 &cpu_partial_node_attr.attr,
5561 &cpu_partial_drain_attr.attr,
81819f0f 5562#endif
4c13dd3b
DM
5563#ifdef CONFIG_FAILSLAB
5564 &failslab_attr.attr,
5565#endif
8eb8284b 5566 &usersize_attr.attr,
4c13dd3b 5567
81819f0f
CL
5568 NULL
5569};
5570
1fdaaa23 5571static const struct attribute_group slab_attr_group = {
81819f0f
CL
5572 .attrs = slab_attrs,
5573};
5574
5575static ssize_t slab_attr_show(struct kobject *kobj,
5576 struct attribute *attr,
5577 char *buf)
5578{
5579 struct slab_attribute *attribute;
5580 struct kmem_cache *s;
5581 int err;
5582
5583 attribute = to_slab_attr(attr);
5584 s = to_slab(kobj);
5585
5586 if (!attribute->show)
5587 return -EIO;
5588
5589 err = attribute->show(s, buf);
5590
5591 return err;
5592}
5593
5594static ssize_t slab_attr_store(struct kobject *kobj,
5595 struct attribute *attr,
5596 const char *buf, size_t len)
5597{
5598 struct slab_attribute *attribute;
5599 struct kmem_cache *s;
5600 int err;
5601
5602 attribute = to_slab_attr(attr);
5603 s = to_slab(kobj);
5604
5605 if (!attribute->store)
5606 return -EIO;
5607
5608 err = attribute->store(s, buf, len);
81819f0f
CL
5609 return err;
5610}
5611
41a21285
CL
5612static void kmem_cache_release(struct kobject *k)
5613{
5614 slab_kmem_cache_release(to_slab(k));
5615}
5616
52cf25d0 5617static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5618 .show = slab_attr_show,
5619 .store = slab_attr_store,
5620};
5621
5622static struct kobj_type slab_ktype = {
5623 .sysfs_ops = &slab_sysfs_ops,
41a21285 5624 .release = kmem_cache_release,
81819f0f
CL
5625};
5626
27c3a314 5627static struct kset *slab_kset;
81819f0f 5628
9a41707b
VD
5629static inline struct kset *cache_kset(struct kmem_cache *s)
5630{
9a41707b
VD
5631 return slab_kset;
5632}
5633
81819f0f
CL
5634#define ID_STR_LENGTH 64
5635
5636/* Create a unique string id for a slab cache:
6446faa2
CL
5637 *
5638 * Format :[flags-]size
81819f0f
CL
5639 */
5640static char *create_unique_id(struct kmem_cache *s)
5641{
5642 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5643 char *p = name;
5644
5645 BUG_ON(!name);
5646
5647 *p++ = ':';
5648 /*
5649 * First flags affecting slabcache operations. We will only
5650 * get here for aliasable slabs so we do not need to support
5651 * too many flags. The flags here must cover all flags that
5652 * are matched during merging to guarantee that the id is
5653 * unique.
5654 */
5655 if (s->flags & SLAB_CACHE_DMA)
5656 *p++ = 'd';
6d6ea1e9
NB
5657 if (s->flags & SLAB_CACHE_DMA32)
5658 *p++ = 'D';
81819f0f
CL
5659 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5660 *p++ = 'a';
becfda68 5661 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5662 *p++ = 'F';
230e9fc2
VD
5663 if (s->flags & SLAB_ACCOUNT)
5664 *p++ = 'A';
81819f0f
CL
5665 if (p != name + 1)
5666 *p++ = '-';
44065b2e 5667 p += sprintf(p, "%07u", s->size);
2633d7a0 5668
81819f0f
CL
5669 BUG_ON(p > name + ID_STR_LENGTH - 1);
5670 return name;
5671}
5672
5673static int sysfs_slab_add(struct kmem_cache *s)
5674{
5675 int err;
5676 const char *name;
1663f26d 5677 struct kset *kset = cache_kset(s);
45530c44 5678 int unmergeable = slab_unmergeable(s);
81819f0f 5679
1663f26d
TH
5680 if (!kset) {
5681 kobject_init(&s->kobj, &slab_ktype);
5682 return 0;
5683 }
5684
11066386
MC
5685 if (!unmergeable && disable_higher_order_debug &&
5686 (slub_debug & DEBUG_METADATA_FLAGS))
5687 unmergeable = 1;
5688
81819f0f
CL
5689 if (unmergeable) {
5690 /*
5691 * Slabcache can never be merged so we can use the name proper.
5692 * This is typically the case for debug situations. In that
5693 * case we can catch duplicate names easily.
5694 */
27c3a314 5695 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5696 name = s->name;
5697 } else {
5698 /*
5699 * Create a unique name for the slab as a target
5700 * for the symlinks.
5701 */
5702 name = create_unique_id(s);
5703 }
5704
1663f26d 5705 s->kobj.kset = kset;
26e4f205 5706 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5707 if (err)
80da026a 5708 goto out;
81819f0f
CL
5709
5710 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5711 if (err)
5712 goto out_del_kobj;
9a41707b 5713
81819f0f
CL
5714 if (!unmergeable) {
5715 /* Setup first alias */
5716 sysfs_slab_alias(s, s->name);
81819f0f 5717 }
54b6a731
DJ
5718out:
5719 if (!unmergeable)
5720 kfree(name);
5721 return err;
5722out_del_kobj:
5723 kobject_del(&s->kobj);
54b6a731 5724 goto out;
81819f0f
CL
5725}
5726
d50d82fa
MP
5727void sysfs_slab_unlink(struct kmem_cache *s)
5728{
5729 if (slab_state >= FULL)
5730 kobject_del(&s->kobj);
5731}
5732
bf5eb3de
TH
5733void sysfs_slab_release(struct kmem_cache *s)
5734{
5735 if (slab_state >= FULL)
5736 kobject_put(&s->kobj);
81819f0f
CL
5737}
5738
5739/*
5740 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5741 * available lest we lose that information.
81819f0f
CL
5742 */
5743struct saved_alias {
5744 struct kmem_cache *s;
5745 const char *name;
5746 struct saved_alias *next;
5747};
5748
5af328a5 5749static struct saved_alias *alias_list;
81819f0f
CL
5750
5751static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5752{
5753 struct saved_alias *al;
5754
97d06609 5755 if (slab_state == FULL) {
81819f0f
CL
5756 /*
5757 * If we have a leftover link then remove it.
5758 */
27c3a314
GKH
5759 sysfs_remove_link(&slab_kset->kobj, name);
5760 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5761 }
5762
5763 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5764 if (!al)
5765 return -ENOMEM;
5766
5767 al->s = s;
5768 al->name = name;
5769 al->next = alias_list;
5770 alias_list = al;
5771 return 0;
5772}
5773
5774static int __init slab_sysfs_init(void)
5775{
5b95a4ac 5776 struct kmem_cache *s;
81819f0f
CL
5777 int err;
5778
18004c5d 5779 mutex_lock(&slab_mutex);
2bce6485 5780
d7660ce5 5781 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5782 if (!slab_kset) {
18004c5d 5783 mutex_unlock(&slab_mutex);
f9f58285 5784 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5785 return -ENOSYS;
5786 }
5787
97d06609 5788 slab_state = FULL;
26a7bd03 5789
5b95a4ac 5790 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5791 err = sysfs_slab_add(s);
5d540fb7 5792 if (err)
f9f58285
FF
5793 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5794 s->name);
26a7bd03 5795 }
81819f0f
CL
5796
5797 while (alias_list) {
5798 struct saved_alias *al = alias_list;
5799
5800 alias_list = alias_list->next;
5801 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5802 if (err)
f9f58285
FF
5803 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5804 al->name);
81819f0f
CL
5805 kfree(al);
5806 }
5807
18004c5d 5808 mutex_unlock(&slab_mutex);
81819f0f
CL
5809 resiliency_test();
5810 return 0;
5811}
5812
5813__initcall(slab_sysfs_init);
ab4d5ed5 5814#endif /* CONFIG_SYSFS */
57ed3eda
PE
5815
5816/*
5817 * The /proc/slabinfo ABI
5818 */
5b365771 5819#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5820void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5821{
57ed3eda 5822 unsigned long nr_slabs = 0;
205ab99d
CL
5823 unsigned long nr_objs = 0;
5824 unsigned long nr_free = 0;
57ed3eda 5825 int node;
fa45dc25 5826 struct kmem_cache_node *n;
57ed3eda 5827
fa45dc25 5828 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5829 nr_slabs += node_nr_slabs(n);
5830 nr_objs += node_nr_objs(n);
205ab99d 5831 nr_free += count_partial(n, count_free);
57ed3eda
PE
5832 }
5833
0d7561c6
GC
5834 sinfo->active_objs = nr_objs - nr_free;
5835 sinfo->num_objs = nr_objs;
5836 sinfo->active_slabs = nr_slabs;
5837 sinfo->num_slabs = nr_slabs;
5838 sinfo->objects_per_slab = oo_objects(s->oo);
5839 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5840}
5841
0d7561c6 5842void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5843{
7b3c3a50
AD
5844}
5845
b7454ad3
GC
5846ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5847 size_t count, loff_t *ppos)
7b3c3a50 5848{
b7454ad3 5849 return -EIO;
7b3c3a50 5850}
5b365771 5851#endif /* CONFIG_SLUB_DEBUG */
This page took 3.100138 seconds and 4 git commands to generate.