]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
68ef169a | 25 | #include <linux/kmsan.h> |
81819f0f CL |
26 | #include <linux/cpu.h> |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/ctype.h> | |
5cf909c5 | 30 | #include <linux/stackdepot.h> |
3ac7fe5a | 31 | #include <linux/debugobjects.h> |
81819f0f | 32 | #include <linux/kallsyms.h> |
b89fb5ef | 33 | #include <linux/kfence.h> |
b9049e23 | 34 | #include <linux/memory.h> |
f8bd2258 | 35 | #include <linux/math64.h> |
773ff60e | 36 | #include <linux/fault-inject.h> |
bfa71457 | 37 | #include <linux/stacktrace.h> |
4de900b4 | 38 | #include <linux/prefetch.h> |
2633d7a0 | 39 | #include <linux/memcontrol.h> |
2482ddec | 40 | #include <linux/random.h> |
1f9f78b1 | 41 | #include <kunit/test.h> |
909c6475 | 42 | #include <kunit/test-bug.h> |
553c0369 | 43 | #include <linux/sort.h> |
81819f0f | 44 | |
64dd6849 | 45 | #include <linux/debugfs.h> |
4a92379b RK |
46 | #include <trace/events/kmem.h> |
47 | ||
072bb0aa MG |
48 | #include "internal.h" |
49 | ||
81819f0f CL |
50 | /* |
51 | * Lock order: | |
18004c5d | 52 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
53 | * 2. node->list_lock (Spinlock) |
54 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
41bec7c3 | 55 | * 4. slab_lock(slab) (Only on some arches) |
bd0e7491 | 56 | * 5. object_map_lock (Only for debugging) |
81819f0f | 57 | * |
18004c5d | 58 | * slab_mutex |
881db7fb | 59 | * |
18004c5d | 60 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 61 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
62 | * Also synchronizes memory hotplug callbacks. |
63 | * | |
64 | * slab_lock | |
65 | * | |
66 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
67 | * spinlock. | |
881db7fb | 68 | * |
41bec7c3 VB |
69 | * The slab_lock is only used on arches that do not have the ability |
70 | * to do a cmpxchg_double. It only protects: | |
71 | * | |
c2092c12 VB |
72 | * A. slab->freelist -> List of free objects in a slab |
73 | * B. slab->inuse -> Number of objects in use | |
74 | * C. slab->objects -> Number of objects in slab | |
75 | * D. slab->frozen -> frozen state | |
881db7fb | 76 | * |
bd0e7491 VB |
77 | * Frozen slabs |
78 | * | |
881db7fb | 79 | * If a slab is frozen then it is exempt from list management. It is not |
632b2ef0 | 80 | * on any list except per cpu partial list. The processor that froze the |
c2092c12 | 81 | * slab is the one who can perform list operations on the slab. Other |
632b2ef0 LX |
82 | * processors may put objects onto the freelist but the processor that |
83 | * froze the slab is the only one that can retrieve the objects from the | |
c2092c12 | 84 | * slab's freelist. |
81819f0f | 85 | * |
bd0e7491 VB |
86 | * list_lock |
87 | * | |
81819f0f CL |
88 | * The list_lock protects the partial and full list on each node and |
89 | * the partial slab counter. If taken then no new slabs may be added or | |
90 | * removed from the lists nor make the number of partial slabs be modified. | |
91 | * (Note that the total number of slabs is an atomic value that may be | |
92 | * modified without taking the list lock). | |
93 | * | |
94 | * The list_lock is a centralized lock and thus we avoid taking it as | |
95 | * much as possible. As long as SLUB does not have to handle partial | |
96 | * slabs, operations can continue without any centralized lock. F.e. | |
97 | * allocating a long series of objects that fill up slabs does not require | |
98 | * the list lock. | |
bd0e7491 | 99 | * |
41bec7c3 VB |
100 | * For debug caches, all allocations are forced to go through a list_lock |
101 | * protected region to serialize against concurrent validation. | |
102 | * | |
bd0e7491 VB |
103 | * cpu_slab->lock local lock |
104 | * | |
105 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
106 | * except the stat counters. This is a percpu structure manipulated only by | |
107 | * the local cpu, so the lock protects against being preempted or interrupted | |
108 | * by an irq. Fast path operations rely on lockless operations instead. | |
1f04b07d TG |
109 | * |
110 | * On PREEMPT_RT, the local lock neither disables interrupts nor preemption | |
111 | * which means the lockless fastpath cannot be used as it might interfere with | |
112 | * an in-progress slow path operations. In this case the local lock is always | |
113 | * taken but it still utilizes the freelist for the common operations. | |
bd0e7491 VB |
114 | * |
115 | * lockless fastpaths | |
116 | * | |
117 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
118 | * are fully lockless when satisfied from the percpu slab (and when | |
119 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
120 | * They also don't disable preemption or migration or irqs. They rely on | |
121 | * the transaction id (tid) field to detect being preempted or moved to | |
122 | * another cpu. | |
123 | * | |
124 | * irq, preemption, migration considerations | |
125 | * | |
126 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
127 | * around the slab_lock operation, in order to make the slab allocator safe | |
128 | * to use in the context of an irq. | |
129 | * | |
130 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
131 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
132 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
133 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
134 | * |
135 | * SLUB assigns one slab for allocation to each processor. | |
136 | * Allocations only occur from these slabs called cpu slabs. | |
137 | * | |
672bba3a CL |
138 | * Slabs with free elements are kept on a partial list and during regular |
139 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 140 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
141 | * We track full slabs for debugging purposes though because otherwise we |
142 | * cannot scan all objects. | |
81819f0f CL |
143 | * |
144 | * Slabs are freed when they become empty. Teardown and setup is | |
145 | * minimal so we rely on the page allocators per cpu caches for | |
146 | * fast frees and allocs. | |
147 | * | |
c2092c12 | 148 | * slab->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
149 | * This means that the slab is dedicated to a purpose |
150 | * such as satisfying allocations for a specific | |
151 | * processor. Objects may be freed in the slab while | |
152 | * it is frozen but slab_free will then skip the usual | |
153 | * list operations. It is up to the processor holding | |
154 | * the slab to integrate the slab into the slab lists | |
155 | * when the slab is no longer needed. | |
156 | * | |
157 | * One use of this flag is to mark slabs that are | |
158 | * used for allocations. Then such a slab becomes a cpu | |
159 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 160 | * freelist that allows lockless access to |
894b8788 CL |
161 | * free objects in addition to the regular freelist |
162 | * that requires the slab lock. | |
81819f0f | 163 | * |
aed68148 | 164 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 165 | * options set. This moves slab handling out of |
894b8788 | 166 | * the fast path and disables lockless freelists. |
81819f0f CL |
167 | */ |
168 | ||
25c00c50 VB |
169 | /* |
170 | * We could simply use migrate_disable()/enable() but as long as it's a | |
171 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
172 | */ | |
173 | #ifndef CONFIG_PREEMPT_RT | |
1f04b07d TG |
174 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) |
175 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
176 | #define USE_LOCKLESS_FAST_PATH() (true) | |
25c00c50 VB |
177 | #else |
178 | #define slub_get_cpu_ptr(var) \ | |
179 | ({ \ | |
180 | migrate_disable(); \ | |
181 | this_cpu_ptr(var); \ | |
182 | }) | |
183 | #define slub_put_cpu_ptr(var) \ | |
184 | do { \ | |
185 | (void)(var); \ | |
186 | migrate_enable(); \ | |
187 | } while (0) | |
1f04b07d | 188 | #define USE_LOCKLESS_FAST_PATH() (false) |
25c00c50 VB |
189 | #endif |
190 | ||
be784ba8 VB |
191 | #ifndef CONFIG_SLUB_TINY |
192 | #define __fastpath_inline __always_inline | |
193 | #else | |
194 | #define __fastpath_inline | |
195 | #endif | |
196 | ||
ca0cab65 VB |
197 | #ifdef CONFIG_SLUB_DEBUG |
198 | #ifdef CONFIG_SLUB_DEBUG_ON | |
199 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
200 | #else | |
201 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
202 | #endif | |
79270291 | 203 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 204 | |
6edf2576 FT |
205 | /* Structure holding parameters for get_partial() call chain */ |
206 | struct partial_context { | |
207 | struct slab **slab; | |
208 | gfp_t flags; | |
209 | unsigned int orig_size; | |
210 | }; | |
211 | ||
59052e89 VB |
212 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
213 | { | |
214 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 215 | } |
5577bd8a | 216 | |
6edf2576 FT |
217 | static inline bool slub_debug_orig_size(struct kmem_cache *s) |
218 | { | |
219 | return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && | |
220 | (s->flags & SLAB_KMALLOC)); | |
221 | } | |
222 | ||
117d54df | 223 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 224 | { |
59052e89 | 225 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
226 | p += s->red_left_pad; |
227 | ||
228 | return p; | |
229 | } | |
230 | ||
345c905d JK |
231 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
232 | { | |
233 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
234 | return !kmem_cache_debug(s); | |
235 | #else | |
236 | return false; | |
237 | #endif | |
238 | } | |
239 | ||
81819f0f CL |
240 | /* |
241 | * Issues still to be resolved: | |
242 | * | |
81819f0f CL |
243 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
244 | * | |
81819f0f CL |
245 | * - Variable sizing of the per node arrays |
246 | */ | |
247 | ||
b789ef51 CL |
248 | /* Enable to log cmpxchg failures */ |
249 | #undef SLUB_DEBUG_CMPXCHG | |
250 | ||
5a8a3c1f | 251 | #ifndef CONFIG_SLUB_TINY |
2086d26a | 252 | /* |
dc84207d | 253 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
254 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
255 | */ | |
76be8950 | 256 | #define MIN_PARTIAL 5 |
e95eed57 | 257 | |
2086d26a CL |
258 | /* |
259 | * Maximum number of desirable partial slabs. | |
260 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 261 | * sort the partial list by the number of objects in use. |
2086d26a CL |
262 | */ |
263 | #define MAX_PARTIAL 10 | |
5a8a3c1f VB |
264 | #else |
265 | #define MIN_PARTIAL 0 | |
266 | #define MAX_PARTIAL 0 | |
267 | #endif | |
2086d26a | 268 | |
becfda68 | 269 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 270 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 271 | |
149daaf3 LA |
272 | /* |
273 | * These debug flags cannot use CMPXCHG because there might be consistency | |
274 | * issues when checking or reading debug information | |
275 | */ | |
276 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
277 | SLAB_TRACE) | |
278 | ||
279 | ||
fa5ec8a1 | 280 | /* |
3de47213 DR |
281 | * Debugging flags that require metadata to be stored in the slab. These get |
282 | * disabled when slub_debug=O is used and a cache's min order increases with | |
283 | * metadata. | |
fa5ec8a1 | 284 | */ |
3de47213 | 285 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 286 | |
210b5c06 CG |
287 | #define OO_SHIFT 16 |
288 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
c2092c12 | 289 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
210b5c06 | 290 | |
81819f0f | 291 | /* Internal SLUB flags */ |
d50112ed | 292 | /* Poison object */ |
4fd0b46e | 293 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 294 | /* Use cmpxchg_double */ |
4fd0b46e | 295 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 296 | |
02cbc874 CL |
297 | /* |
298 | * Tracking user of a slab. | |
299 | */ | |
d6543e39 | 300 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 301 | struct track { |
ce71e27c | 302 | unsigned long addr; /* Called from address */ |
5cf909c5 OG |
303 | #ifdef CONFIG_STACKDEPOT |
304 | depot_stack_handle_t handle; | |
d6543e39 | 305 | #endif |
02cbc874 CL |
306 | int cpu; /* Was running on cpu */ |
307 | int pid; /* Pid context */ | |
308 | unsigned long when; /* When did the operation occur */ | |
309 | }; | |
310 | ||
311 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
312 | ||
b1a413a3 | 313 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f CL |
314 | static int sysfs_slab_add(struct kmem_cache *); |
315 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 316 | #else |
0c710013 CL |
317 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
318 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
319 | { return 0; } | |
81819f0f CL |
320 | #endif |
321 | ||
64dd6849 FM |
322 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
323 | static void debugfs_slab_add(struct kmem_cache *); | |
324 | #else | |
325 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
326 | #endif | |
327 | ||
4fdccdfb | 328 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
329 | { |
330 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
331 | /* |
332 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
333 | * avoid this_cpu_add()'s irq-disable overhead. | |
334 | */ | |
335 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
336 | #endif |
337 | } | |
338 | ||
7e1fa93d VB |
339 | /* |
340 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
341 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
342 | * differ during memory hotplug/hotremove operations. | |
343 | * Protected by slab_mutex. | |
344 | */ | |
345 | static nodemask_t slab_nodes; | |
346 | ||
0af8489b | 347 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
348 | /* |
349 | * Workqueue used for flush_cpu_slab(). | |
350 | */ | |
351 | static struct workqueue_struct *flushwq; | |
0af8489b | 352 | #endif |
e45cc288 | 353 | |
81819f0f CL |
354 | /******************************************************************** |
355 | * Core slab cache functions | |
356 | *******************************************************************/ | |
357 | ||
2482ddec KC |
358 | /* |
359 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
360 | * with an XOR of the address where the pointer is held and a per-cache | |
361 | * random number. | |
362 | */ | |
363 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
364 | unsigned long ptr_addr) | |
365 | { | |
366 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 | 367 | /* |
aa1ef4d7 | 368 | * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. |
d36a63a9 AK |
369 | * Normally, this doesn't cause any issues, as both set_freepointer() |
370 | * and get_freepointer() are called with a pointer with the same tag. | |
371 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
372 | * example, when __free_slub() iterates over objects in a cache, it | |
373 | * passes untagged pointers to check_object(). check_object() in turns | |
374 | * calls get_freepointer() with an untagged pointer, which causes the | |
375 | * freepointer to be restored incorrectly. | |
376 | */ | |
377 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 378 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
379 | #else |
380 | return ptr; | |
381 | #endif | |
382 | } | |
383 | ||
384 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
385 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
386 | void *ptr_addr) | |
387 | { | |
388 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
389 | (unsigned long)ptr_addr); | |
390 | } | |
391 | ||
7656c72b CL |
392 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
393 | { | |
aa1ef4d7 | 394 | object = kasan_reset_tag(object); |
2482ddec | 395 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
396 | } |
397 | ||
0af8489b | 398 | #ifndef CONFIG_SLUB_TINY |
0ad9500e ED |
399 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
400 | { | |
04b4b006 | 401 | prefetchw(object + s->offset); |
0ad9500e | 402 | } |
0af8489b | 403 | #endif |
0ad9500e | 404 | |
68ef169a AP |
405 | /* |
406 | * When running under KMSAN, get_freepointer_safe() may return an uninitialized | |
407 | * pointer value in the case the current thread loses the race for the next | |
408 | * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in | |
409 | * slab_alloc_node() will fail, so the uninitialized value won't be used, but | |
410 | * KMSAN will still check all arguments of cmpxchg because of imperfect | |
411 | * handling of inline assembly. | |
412 | * To work around this problem, we apply __no_kmsan_checks to ensure that | |
413 | * get_freepointer_safe() returns initialized memory. | |
414 | */ | |
415 | __no_kmsan_checks | |
1393d9a1 CL |
416 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
417 | { | |
2482ddec | 418 | unsigned long freepointer_addr; |
1393d9a1 CL |
419 | void *p; |
420 | ||
8e57f8ac | 421 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
422 | return get_freepointer(s, object); |
423 | ||
f70b0049 | 424 | object = kasan_reset_tag(object); |
2482ddec | 425 | freepointer_addr = (unsigned long)object + s->offset; |
fe557319 | 426 | copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); |
2482ddec | 427 | return freelist_ptr(s, p, freepointer_addr); |
1393d9a1 CL |
428 | } |
429 | ||
7656c72b CL |
430 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
431 | { | |
2482ddec KC |
432 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
433 | ||
ce6fa91b AP |
434 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
435 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
436 | #endif | |
437 | ||
aa1ef4d7 | 438 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
2482ddec | 439 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
440 | } |
441 | ||
442 | /* Loop over all objects in a slab */ | |
224a88be | 443 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
444 | for (__p = fixup_red_left(__s, __addr); \ |
445 | __p < (__addr) + (__objects) * (__s)->size; \ | |
446 | __p += (__s)->size) | |
7656c72b | 447 | |
9736d2a9 | 448 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 449 | { |
9736d2a9 | 450 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
451 | } |
452 | ||
19af27af | 453 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 454 | unsigned int size) |
834f3d11 CL |
455 | { |
456 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 457 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
458 | }; |
459 | ||
460 | return x; | |
461 | } | |
462 | ||
19af27af | 463 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 464 | { |
210b5c06 | 465 | return x.x >> OO_SHIFT; |
834f3d11 CL |
466 | } |
467 | ||
19af27af | 468 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 469 | { |
210b5c06 | 470 | return x.x & OO_MASK; |
834f3d11 CL |
471 | } |
472 | ||
b47291ef VB |
473 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
474 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
475 | { | |
bb192ed9 | 476 | unsigned int nr_slabs; |
b47291ef VB |
477 | |
478 | s->cpu_partial = nr_objects; | |
479 | ||
480 | /* | |
481 | * We take the number of objects but actually limit the number of | |
c2092c12 VB |
482 | * slabs on the per cpu partial list, in order to limit excessive |
483 | * growth of the list. For simplicity we assume that the slabs will | |
b47291ef VB |
484 | * be half-full. |
485 | */ | |
bb192ed9 VB |
486 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
487 | s->cpu_partial_slabs = nr_slabs; | |
b47291ef VB |
488 | } |
489 | #else | |
490 | static inline void | |
491 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
492 | { | |
493 | } | |
494 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
495 | ||
881db7fb CL |
496 | /* |
497 | * Per slab locking using the pagelock | |
498 | */ | |
5875e598 | 499 | static __always_inline void slab_lock(struct slab *slab) |
881db7fb | 500 | { |
0393895b VB |
501 | struct page *page = slab_page(slab); |
502 | ||
48c935ad | 503 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
504 | bit_spin_lock(PG_locked, &page->flags); |
505 | } | |
506 | ||
5875e598 | 507 | static __always_inline void slab_unlock(struct slab *slab) |
881db7fb | 508 | { |
0393895b VB |
509 | struct page *page = slab_page(slab); |
510 | ||
48c935ad | 511 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
512 | __bit_spin_unlock(PG_locked, &page->flags); |
513 | } | |
514 | ||
a2b4ae8b VB |
515 | /* |
516 | * Interrupts must be disabled (for the fallback code to work right), typically | |
5875e598 VB |
517 | * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is |
518 | * part of bit_spin_lock(), is sufficient because the policy is not to allow any | |
519 | * allocation/ free operation in hardirq context. Therefore nothing can | |
520 | * interrupt the operation. | |
a2b4ae8b | 521 | */ |
bb192ed9 | 522 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
1d07171c CL |
523 | void *freelist_old, unsigned long counters_old, |
524 | void *freelist_new, unsigned long counters_new, | |
525 | const char *n) | |
526 | { | |
1f04b07d | 527 | if (USE_LOCKLESS_FAST_PATH()) |
a2b4ae8b | 528 | lockdep_assert_irqs_disabled(); |
2565409f HC |
529 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
530 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 531 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 532 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
533 | freelist_old, counters_old, |
534 | freelist_new, counters_new)) | |
6f6528a1 | 535 | return true; |
1d07171c CL |
536 | } else |
537 | #endif | |
538 | { | |
5875e598 | 539 | slab_lock(slab); |
bb192ed9 VB |
540 | if (slab->freelist == freelist_old && |
541 | slab->counters == counters_old) { | |
542 | slab->freelist = freelist_new; | |
543 | slab->counters = counters_new; | |
5875e598 | 544 | slab_unlock(slab); |
6f6528a1 | 545 | return true; |
1d07171c | 546 | } |
5875e598 | 547 | slab_unlock(slab); |
1d07171c CL |
548 | } |
549 | ||
550 | cpu_relax(); | |
551 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
552 | ||
553 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 554 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
555 | #endif |
556 | ||
6f6528a1 | 557 | return false; |
1d07171c CL |
558 | } |
559 | ||
bb192ed9 | 560 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
b789ef51 CL |
561 | void *freelist_old, unsigned long counters_old, |
562 | void *freelist_new, unsigned long counters_new, | |
563 | const char *n) | |
564 | { | |
2565409f HC |
565 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
566 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 567 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 568 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
569 | freelist_old, counters_old, |
570 | freelist_new, counters_new)) | |
6f6528a1 | 571 | return true; |
b789ef51 CL |
572 | } else |
573 | #endif | |
574 | { | |
1d07171c CL |
575 | unsigned long flags; |
576 | ||
577 | local_irq_save(flags); | |
5875e598 | 578 | slab_lock(slab); |
bb192ed9 VB |
579 | if (slab->freelist == freelist_old && |
580 | slab->counters == counters_old) { | |
581 | slab->freelist = freelist_new; | |
582 | slab->counters = counters_new; | |
5875e598 | 583 | slab_unlock(slab); |
1d07171c | 584 | local_irq_restore(flags); |
6f6528a1 | 585 | return true; |
b789ef51 | 586 | } |
5875e598 | 587 | slab_unlock(slab); |
1d07171c | 588 | local_irq_restore(flags); |
b789ef51 CL |
589 | } |
590 | ||
591 | cpu_relax(); | |
592 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
593 | ||
594 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 595 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
596 | #endif |
597 | ||
6f6528a1 | 598 | return false; |
b789ef51 CL |
599 | } |
600 | ||
41ecc55b | 601 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 602 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
4ef3f5a3 | 603 | static DEFINE_SPINLOCK(object_map_lock); |
90e9f6a6 | 604 | |
b3fd64e1 | 605 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
bb192ed9 | 606 | struct slab *slab) |
b3fd64e1 | 607 | { |
bb192ed9 | 608 | void *addr = slab_address(slab); |
b3fd64e1 VB |
609 | void *p; |
610 | ||
bb192ed9 | 611 | bitmap_zero(obj_map, slab->objects); |
b3fd64e1 | 612 | |
bb192ed9 | 613 | for (p = slab->freelist; p; p = get_freepointer(s, p)) |
b3fd64e1 VB |
614 | set_bit(__obj_to_index(s, addr, p), obj_map); |
615 | } | |
616 | ||
1f9f78b1 OG |
617 | #if IS_ENABLED(CONFIG_KUNIT) |
618 | static bool slab_add_kunit_errors(void) | |
619 | { | |
620 | struct kunit_resource *resource; | |
621 | ||
909c6475 | 622 | if (!kunit_get_current_test()) |
1f9f78b1 OG |
623 | return false; |
624 | ||
625 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
626 | if (!resource) | |
627 | return false; | |
628 | ||
629 | (*(int *)resource->data)++; | |
630 | kunit_put_resource(resource); | |
631 | return true; | |
632 | } | |
633 | #else | |
634 | static inline bool slab_add_kunit_errors(void) { return false; } | |
635 | #endif | |
636 | ||
870b1fbb | 637 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
638 | { |
639 | if (s->flags & SLAB_RED_ZONE) | |
640 | return s->size - s->red_left_pad; | |
641 | ||
642 | return s->size; | |
643 | } | |
644 | ||
645 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
646 | { | |
647 | if (s->flags & SLAB_RED_ZONE) | |
648 | p -= s->red_left_pad; | |
649 | ||
650 | return p; | |
651 | } | |
652 | ||
41ecc55b CL |
653 | /* |
654 | * Debug settings: | |
655 | */ | |
89d3c87e | 656 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 657 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 658 | #else |
d50112ed | 659 | static slab_flags_t slub_debug; |
f0630fff | 660 | #endif |
41ecc55b | 661 | |
e17f1dfb | 662 | static char *slub_debug_string; |
fa5ec8a1 | 663 | static int disable_higher_order_debug; |
41ecc55b | 664 | |
a79316c6 AR |
665 | /* |
666 | * slub is about to manipulate internal object metadata. This memory lies | |
667 | * outside the range of the allocated object, so accessing it would normally | |
668 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
669 | * to tell kasan that these accesses are OK. | |
670 | */ | |
671 | static inline void metadata_access_enable(void) | |
672 | { | |
673 | kasan_disable_current(); | |
674 | } | |
675 | ||
676 | static inline void metadata_access_disable(void) | |
677 | { | |
678 | kasan_enable_current(); | |
679 | } | |
680 | ||
81819f0f CL |
681 | /* |
682 | * Object debugging | |
683 | */ | |
d86bd1be JK |
684 | |
685 | /* Verify that a pointer has an address that is valid within a slab page */ | |
686 | static inline int check_valid_pointer(struct kmem_cache *s, | |
bb192ed9 | 687 | struct slab *slab, void *object) |
d86bd1be JK |
688 | { |
689 | void *base; | |
690 | ||
691 | if (!object) | |
692 | return 1; | |
693 | ||
bb192ed9 | 694 | base = slab_address(slab); |
338cfaad | 695 | object = kasan_reset_tag(object); |
d86bd1be | 696 | object = restore_red_left(s, object); |
bb192ed9 | 697 | if (object < base || object >= base + slab->objects * s->size || |
d86bd1be JK |
698 | (object - base) % s->size) { |
699 | return 0; | |
700 | } | |
701 | ||
702 | return 1; | |
703 | } | |
704 | ||
aa2efd5e DT |
705 | static void print_section(char *level, char *text, u8 *addr, |
706 | unsigned int length) | |
81819f0f | 707 | { |
a79316c6 | 708 | metadata_access_enable(); |
340caf17 KYL |
709 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
710 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 711 | metadata_access_disable(); |
81819f0f CL |
712 | } |
713 | ||
cbfc35a4 WL |
714 | /* |
715 | * See comment in calculate_sizes(). | |
716 | */ | |
717 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
718 | { | |
719 | return s->offset >= s->inuse; | |
720 | } | |
721 | ||
722 | /* | |
723 | * Return offset of the end of info block which is inuse + free pointer if | |
724 | * not overlapping with object. | |
725 | */ | |
726 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
727 | { | |
728 | if (freeptr_outside_object(s)) | |
729 | return s->inuse + sizeof(void *); | |
730 | else | |
731 | return s->inuse; | |
732 | } | |
733 | ||
81819f0f CL |
734 | static struct track *get_track(struct kmem_cache *s, void *object, |
735 | enum track_item alloc) | |
736 | { | |
737 | struct track *p; | |
738 | ||
cbfc35a4 | 739 | p = object + get_info_end(s); |
81819f0f | 740 | |
aa1ef4d7 | 741 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
742 | } |
743 | ||
5cf909c5 | 744 | #ifdef CONFIG_STACKDEPOT |
c4cf6785 SAS |
745 | static noinline depot_stack_handle_t set_track_prepare(void) |
746 | { | |
747 | depot_stack_handle_t handle; | |
5cf909c5 | 748 | unsigned long entries[TRACK_ADDRS_COUNT]; |
0cd1a029 | 749 | unsigned int nr_entries; |
ae14c63a | 750 | |
5cf909c5 | 751 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
c4cf6785 SAS |
752 | handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
753 | ||
754 | return handle; | |
755 | } | |
756 | #else | |
757 | static inline depot_stack_handle_t set_track_prepare(void) | |
758 | { | |
759 | return 0; | |
760 | } | |
d6543e39 | 761 | #endif |
5cf909c5 | 762 | |
c4cf6785 SAS |
763 | static void set_track_update(struct kmem_cache *s, void *object, |
764 | enum track_item alloc, unsigned long addr, | |
765 | depot_stack_handle_t handle) | |
766 | { | |
767 | struct track *p = get_track(s, object, alloc); | |
768 | ||
769 | #ifdef CONFIG_STACKDEPOT | |
770 | p->handle = handle; | |
771 | #endif | |
0cd1a029 VB |
772 | p->addr = addr; |
773 | p->cpu = smp_processor_id(); | |
774 | p->pid = current->pid; | |
775 | p->when = jiffies; | |
81819f0f CL |
776 | } |
777 | ||
c4cf6785 SAS |
778 | static __always_inline void set_track(struct kmem_cache *s, void *object, |
779 | enum track_item alloc, unsigned long addr) | |
780 | { | |
781 | depot_stack_handle_t handle = set_track_prepare(); | |
782 | ||
783 | set_track_update(s, object, alloc, addr, handle); | |
784 | } | |
785 | ||
81819f0f CL |
786 | static void init_tracking(struct kmem_cache *s, void *object) |
787 | { | |
0cd1a029 VB |
788 | struct track *p; |
789 | ||
24922684 CL |
790 | if (!(s->flags & SLAB_STORE_USER)) |
791 | return; | |
792 | ||
0cd1a029 VB |
793 | p = get_track(s, object, TRACK_ALLOC); |
794 | memset(p, 0, 2*sizeof(struct track)); | |
81819f0f CL |
795 | } |
796 | ||
86609d33 | 797 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f | 798 | { |
5cf909c5 OG |
799 | depot_stack_handle_t handle __maybe_unused; |
800 | ||
81819f0f CL |
801 | if (!t->addr) |
802 | return; | |
803 | ||
96b94abc | 804 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 805 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
5cf909c5 OG |
806 | #ifdef CONFIG_STACKDEPOT |
807 | handle = READ_ONCE(t->handle); | |
808 | if (handle) | |
809 | stack_depot_print(handle); | |
810 | else | |
811 | pr_err("object allocation/free stack trace missing\n"); | |
d6543e39 | 812 | #endif |
24922684 CL |
813 | } |
814 | ||
e42f174e | 815 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 816 | { |
86609d33 | 817 | unsigned long pr_time = jiffies; |
24922684 CL |
818 | if (!(s->flags & SLAB_STORE_USER)) |
819 | return; | |
820 | ||
86609d33 CP |
821 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
822 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
823 | } |
824 | ||
fb012e27 | 825 | static void print_slab_info(const struct slab *slab) |
24922684 | 826 | { |
fb012e27 | 827 | struct folio *folio = (struct folio *)slab_folio(slab); |
24922684 | 828 | |
fb012e27 MWO |
829 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
830 | slab, slab->objects, slab->inuse, slab->freelist, | |
831 | folio_flags(folio, 0)); | |
24922684 CL |
832 | } |
833 | ||
6edf2576 FT |
834 | /* |
835 | * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API | |
836 | * family will round up the real request size to these fixed ones, so | |
837 | * there could be an extra area than what is requested. Save the original | |
838 | * request size in the meta data area, for better debug and sanity check. | |
839 | */ | |
840 | static inline void set_orig_size(struct kmem_cache *s, | |
841 | void *object, unsigned int orig_size) | |
842 | { | |
843 | void *p = kasan_reset_tag(object); | |
844 | ||
845 | if (!slub_debug_orig_size(s)) | |
846 | return; | |
847 | ||
946fa0db FT |
848 | #ifdef CONFIG_KASAN_GENERIC |
849 | /* | |
850 | * KASAN could save its free meta data in object's data area at | |
851 | * offset 0, if the size is larger than 'orig_size', it will | |
852 | * overlap the data redzone in [orig_size+1, object_size], and | |
853 | * the check should be skipped. | |
854 | */ | |
855 | if (kasan_metadata_size(s, true) > orig_size) | |
856 | orig_size = s->object_size; | |
857 | #endif | |
858 | ||
6edf2576 FT |
859 | p += get_info_end(s); |
860 | p += sizeof(struct track) * 2; | |
861 | ||
862 | *(unsigned int *)p = orig_size; | |
863 | } | |
864 | ||
865 | static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) | |
866 | { | |
867 | void *p = kasan_reset_tag(object); | |
868 | ||
869 | if (!slub_debug_orig_size(s)) | |
870 | return s->object_size; | |
871 | ||
872 | p += get_info_end(s); | |
873 | p += sizeof(struct track) * 2; | |
874 | ||
875 | return *(unsigned int *)p; | |
876 | } | |
877 | ||
946fa0db FT |
878 | void skip_orig_size_check(struct kmem_cache *s, const void *object) |
879 | { | |
880 | set_orig_size(s, (void *)object, s->object_size); | |
881 | } | |
882 | ||
24922684 CL |
883 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
884 | { | |
ecc42fbe | 885 | struct va_format vaf; |
24922684 | 886 | va_list args; |
24922684 CL |
887 | |
888 | va_start(args, fmt); | |
ecc42fbe FF |
889 | vaf.fmt = fmt; |
890 | vaf.va = &args; | |
f9f58285 | 891 | pr_err("=============================================================================\n"); |
ecc42fbe | 892 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 893 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 894 | va_end(args); |
81819f0f CL |
895 | } |
896 | ||
582d1212 | 897 | __printf(2, 3) |
24922684 CL |
898 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
899 | { | |
ecc42fbe | 900 | struct va_format vaf; |
24922684 | 901 | va_list args; |
24922684 | 902 | |
1f9f78b1 OG |
903 | if (slab_add_kunit_errors()) |
904 | return; | |
905 | ||
24922684 | 906 | va_start(args, fmt); |
ecc42fbe FF |
907 | vaf.fmt = fmt; |
908 | vaf.va = &args; | |
909 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 910 | va_end(args); |
24922684 CL |
911 | } |
912 | ||
bb192ed9 | 913 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f CL |
914 | { |
915 | unsigned int off; /* Offset of last byte */ | |
bb192ed9 | 916 | u8 *addr = slab_address(slab); |
24922684 CL |
917 | |
918 | print_tracking(s, p); | |
919 | ||
bb192ed9 | 920 | print_slab_info(slab); |
24922684 | 921 | |
96b94abc | 922 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 923 | p, p - addr, get_freepointer(s, p)); |
24922684 | 924 | |
d86bd1be | 925 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 926 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 927 | s->red_left_pad); |
d86bd1be | 928 | else if (p > addr + 16) |
aa2efd5e | 929 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 930 | |
8669dbab | 931 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 932 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 933 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 934 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 935 | s->inuse - s->object_size); |
81819f0f | 936 | |
cbfc35a4 | 937 | off = get_info_end(s); |
81819f0f | 938 | |
24922684 | 939 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 940 | off += 2 * sizeof(struct track); |
81819f0f | 941 | |
6edf2576 FT |
942 | if (slub_debug_orig_size(s)) |
943 | off += sizeof(unsigned int); | |
944 | ||
5d1ba310 | 945 | off += kasan_metadata_size(s, false); |
80a9201a | 946 | |
d86bd1be | 947 | if (off != size_from_object(s)) |
81819f0f | 948 | /* Beginning of the filler is the free pointer */ |
8669dbab | 949 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 950 | size_from_object(s) - off); |
24922684 CL |
951 | |
952 | dump_stack(); | |
81819f0f CL |
953 | } |
954 | ||
bb192ed9 | 955 | static void object_err(struct kmem_cache *s, struct slab *slab, |
81819f0f CL |
956 | u8 *object, char *reason) |
957 | { | |
1f9f78b1 OG |
958 | if (slab_add_kunit_errors()) |
959 | return; | |
960 | ||
3dc50637 | 961 | slab_bug(s, "%s", reason); |
bb192ed9 | 962 | print_trailer(s, slab, object); |
65ebdeef | 963 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
964 | } |
965 | ||
bb192ed9 | 966 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
ae16d059 VB |
967 | void **freelist, void *nextfree) |
968 | { | |
969 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
bb192ed9 VB |
970 | !check_valid_pointer(s, slab, nextfree) && freelist) { |
971 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
ae16d059 VB |
972 | *freelist = NULL; |
973 | slab_fix(s, "Isolate corrupted freechain"); | |
974 | return true; | |
975 | } | |
976 | ||
977 | return false; | |
978 | } | |
979 | ||
bb192ed9 | 980 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
d0e0ac97 | 981 | const char *fmt, ...) |
81819f0f CL |
982 | { |
983 | va_list args; | |
984 | char buf[100]; | |
985 | ||
1f9f78b1 OG |
986 | if (slab_add_kunit_errors()) |
987 | return; | |
988 | ||
24922684 CL |
989 | va_start(args, fmt); |
990 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 991 | va_end(args); |
3dc50637 | 992 | slab_bug(s, "%s", buf); |
bb192ed9 | 993 | print_slab_info(slab); |
81819f0f | 994 | dump_stack(); |
65ebdeef | 995 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
996 | } |
997 | ||
f7cb1933 | 998 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 999 | { |
aa1ef4d7 | 1000 | u8 *p = kasan_reset_tag(object); |
946fa0db | 1001 | unsigned int poison_size = s->object_size; |
81819f0f | 1002 | |
946fa0db | 1003 | if (s->flags & SLAB_RED_ZONE) { |
d86bd1be JK |
1004 | memset(p - s->red_left_pad, val, s->red_left_pad); |
1005 | ||
946fa0db FT |
1006 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { |
1007 | /* | |
1008 | * Redzone the extra allocated space by kmalloc than | |
1009 | * requested, and the poison size will be limited to | |
1010 | * the original request size accordingly. | |
1011 | */ | |
1012 | poison_size = get_orig_size(s, object); | |
1013 | } | |
1014 | } | |
1015 | ||
81819f0f | 1016 | if (s->flags & __OBJECT_POISON) { |
946fa0db FT |
1017 | memset(p, POISON_FREE, poison_size - 1); |
1018 | p[poison_size - 1] = POISON_END; | |
81819f0f CL |
1019 | } |
1020 | ||
1021 | if (s->flags & SLAB_RED_ZONE) | |
946fa0db | 1022 | memset(p + poison_size, val, s->inuse - poison_size); |
81819f0f CL |
1023 | } |
1024 | ||
24922684 CL |
1025 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
1026 | void *from, void *to) | |
1027 | { | |
582d1212 | 1028 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
1029 | memset(from, data, to - from); |
1030 | } | |
1031 | ||
bb192ed9 | 1032 | static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, |
24922684 | 1033 | u8 *object, char *what, |
06428780 | 1034 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
1035 | { |
1036 | u8 *fault; | |
1037 | u8 *end; | |
bb192ed9 | 1038 | u8 *addr = slab_address(slab); |
24922684 | 1039 | |
a79316c6 | 1040 | metadata_access_enable(); |
aa1ef4d7 | 1041 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 1042 | metadata_access_disable(); |
24922684 CL |
1043 | if (!fault) |
1044 | return 1; | |
1045 | ||
1046 | end = start + bytes; | |
1047 | while (end > fault && end[-1] == value) | |
1048 | end--; | |
1049 | ||
1f9f78b1 OG |
1050 | if (slab_add_kunit_errors()) |
1051 | goto skip_bug_print; | |
1052 | ||
24922684 | 1053 | slab_bug(s, "%s overwritten", what); |
96b94abc | 1054 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
1055 | fault, end - 1, fault - addr, |
1056 | fault[0], value); | |
bb192ed9 | 1057 | print_trailer(s, slab, object); |
65ebdeef | 1058 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
24922684 | 1059 | |
1f9f78b1 | 1060 | skip_bug_print: |
24922684 CL |
1061 | restore_bytes(s, what, value, fault, end); |
1062 | return 0; | |
81819f0f CL |
1063 | } |
1064 | ||
81819f0f CL |
1065 | /* |
1066 | * Object layout: | |
1067 | * | |
1068 | * object address | |
1069 | * Bytes of the object to be managed. | |
1070 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 1071 | * pointer is at the middle of the object. |
672bba3a | 1072 | * |
81819f0f CL |
1073 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
1074 | * 0xa5 (POISON_END) | |
1075 | * | |
3b0efdfa | 1076 | * object + s->object_size |
81819f0f | 1077 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 1078 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 1079 | * object_size == inuse. |
672bba3a | 1080 | * |
81819f0f CL |
1081 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
1082 | * 0xcc (RED_ACTIVE) for objects in use. | |
1083 | * | |
1084 | * object + s->inuse | |
672bba3a CL |
1085 | * Meta data starts here. |
1086 | * | |
81819f0f CL |
1087 | * A. Free pointer (if we cannot overwrite object on free) |
1088 | * B. Tracking data for SLAB_STORE_USER | |
6edf2576 FT |
1089 | * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) |
1090 | * D. Padding to reach required alignment boundary or at minimum | |
6446faa2 | 1091 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
1092 | * before the word boundary. |
1093 | * | |
1094 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
1095 | * |
1096 | * object + s->size | |
672bba3a | 1097 | * Nothing is used beyond s->size. |
81819f0f | 1098 | * |
3b0efdfa | 1099 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 1100 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
1101 | * may be used with merged slabcaches. |
1102 | */ | |
1103 | ||
bb192ed9 | 1104 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f | 1105 | { |
cbfc35a4 | 1106 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f | 1107 | |
6edf2576 | 1108 | if (s->flags & SLAB_STORE_USER) { |
81819f0f CL |
1109 | /* We also have user information there */ |
1110 | off += 2 * sizeof(struct track); | |
1111 | ||
6edf2576 FT |
1112 | if (s->flags & SLAB_KMALLOC) |
1113 | off += sizeof(unsigned int); | |
1114 | } | |
1115 | ||
5d1ba310 | 1116 | off += kasan_metadata_size(s, false); |
80a9201a | 1117 | |
d86bd1be | 1118 | if (size_from_object(s) == off) |
81819f0f CL |
1119 | return 1; |
1120 | ||
bb192ed9 | 1121 | return check_bytes_and_report(s, slab, p, "Object padding", |
d86bd1be | 1122 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
1123 | } |
1124 | ||
39b26464 | 1125 | /* Check the pad bytes at the end of a slab page */ |
a204e6d6 | 1126 | static void slab_pad_check(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1127 | { |
24922684 CL |
1128 | u8 *start; |
1129 | u8 *fault; | |
1130 | u8 *end; | |
5d682681 | 1131 | u8 *pad; |
24922684 CL |
1132 | int length; |
1133 | int remainder; | |
81819f0f CL |
1134 | |
1135 | if (!(s->flags & SLAB_POISON)) | |
a204e6d6 | 1136 | return; |
81819f0f | 1137 | |
bb192ed9 VB |
1138 | start = slab_address(slab); |
1139 | length = slab_size(slab); | |
39b26464 CL |
1140 | end = start + length; |
1141 | remainder = length % s->size; | |
81819f0f | 1142 | if (!remainder) |
a204e6d6 | 1143 | return; |
81819f0f | 1144 | |
5d682681 | 1145 | pad = end - remainder; |
a79316c6 | 1146 | metadata_access_enable(); |
aa1ef4d7 | 1147 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1148 | metadata_access_disable(); |
24922684 | 1149 | if (!fault) |
a204e6d6 | 1150 | return; |
24922684 CL |
1151 | while (end > fault && end[-1] == POISON_INUSE) |
1152 | end--; | |
1153 | ||
bb192ed9 | 1154 | slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
e1b70dd1 | 1155 | fault, end - 1, fault - start); |
5d682681 | 1156 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1157 | |
5d682681 | 1158 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
81819f0f CL |
1159 | } |
1160 | ||
bb192ed9 | 1161 | static int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1162 | void *object, u8 val) |
81819f0f CL |
1163 | { |
1164 | u8 *p = object; | |
3b0efdfa | 1165 | u8 *endobject = object + s->object_size; |
946fa0db | 1166 | unsigned int orig_size; |
81819f0f CL |
1167 | |
1168 | if (s->flags & SLAB_RED_ZONE) { | |
bb192ed9 | 1169 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
d86bd1be JK |
1170 | object - s->red_left_pad, val, s->red_left_pad)) |
1171 | return 0; | |
1172 | ||
bb192ed9 | 1173 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
3b0efdfa | 1174 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 1175 | return 0; |
946fa0db FT |
1176 | |
1177 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { | |
1178 | orig_size = get_orig_size(s, object); | |
1179 | ||
1180 | if (s->object_size > orig_size && | |
1181 | !check_bytes_and_report(s, slab, object, | |
1182 | "kmalloc Redzone", p + orig_size, | |
1183 | val, s->object_size - orig_size)) { | |
1184 | return 0; | |
1185 | } | |
1186 | } | |
81819f0f | 1187 | } else { |
3b0efdfa | 1188 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
bb192ed9 | 1189 | check_bytes_and_report(s, slab, p, "Alignment padding", |
d0e0ac97 CG |
1190 | endobject, POISON_INUSE, |
1191 | s->inuse - s->object_size); | |
3adbefee | 1192 | } |
81819f0f CL |
1193 | } |
1194 | ||
1195 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 1196 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
bb192ed9 | 1197 | (!check_bytes_and_report(s, slab, p, "Poison", p, |
3b0efdfa | 1198 | POISON_FREE, s->object_size - 1) || |
bb192ed9 | 1199 | !check_bytes_and_report(s, slab, p, "End Poison", |
3b0efdfa | 1200 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 1201 | return 0; |
81819f0f CL |
1202 | /* |
1203 | * check_pad_bytes cleans up on its own. | |
1204 | */ | |
bb192ed9 | 1205 | check_pad_bytes(s, slab, p); |
81819f0f CL |
1206 | } |
1207 | ||
cbfc35a4 | 1208 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
1209 | /* |
1210 | * Object and freepointer overlap. Cannot check | |
1211 | * freepointer while object is allocated. | |
1212 | */ | |
1213 | return 1; | |
1214 | ||
1215 | /* Check free pointer validity */ | |
bb192ed9 VB |
1216 | if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { |
1217 | object_err(s, slab, p, "Freepointer corrupt"); | |
81819f0f | 1218 | /* |
9f6c708e | 1219 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1220 | * of the free objects in this slab. May cause |
672bba3a | 1221 | * another error because the object count is now wrong. |
81819f0f | 1222 | */ |
a973e9dd | 1223 | set_freepointer(s, p, NULL); |
81819f0f CL |
1224 | return 0; |
1225 | } | |
1226 | return 1; | |
1227 | } | |
1228 | ||
bb192ed9 | 1229 | static int check_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1230 | { |
39b26464 CL |
1231 | int maxobj; |
1232 | ||
bb192ed9 VB |
1233 | if (!folio_test_slab(slab_folio(slab))) { |
1234 | slab_err(s, slab, "Not a valid slab page"); | |
81819f0f CL |
1235 | return 0; |
1236 | } | |
39b26464 | 1237 | |
bb192ed9 VB |
1238 | maxobj = order_objects(slab_order(slab), s->size); |
1239 | if (slab->objects > maxobj) { | |
1240 | slab_err(s, slab, "objects %u > max %u", | |
1241 | slab->objects, maxobj); | |
39b26464 CL |
1242 | return 0; |
1243 | } | |
bb192ed9 VB |
1244 | if (slab->inuse > slab->objects) { |
1245 | slab_err(s, slab, "inuse %u > max %u", | |
1246 | slab->inuse, slab->objects); | |
81819f0f CL |
1247 | return 0; |
1248 | } | |
1249 | /* Slab_pad_check fixes things up after itself */ | |
bb192ed9 | 1250 | slab_pad_check(s, slab); |
81819f0f CL |
1251 | return 1; |
1252 | } | |
1253 | ||
1254 | /* | |
c2092c12 | 1255 | * Determine if a certain object in a slab is on the freelist. Must hold the |
672bba3a | 1256 | * slab lock to guarantee that the chains are in a consistent state. |
81819f0f | 1257 | */ |
bb192ed9 | 1258 | static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
81819f0f CL |
1259 | { |
1260 | int nr = 0; | |
881db7fb | 1261 | void *fp; |
81819f0f | 1262 | void *object = NULL; |
f6edde9c | 1263 | int max_objects; |
81819f0f | 1264 | |
bb192ed9 VB |
1265 | fp = slab->freelist; |
1266 | while (fp && nr <= slab->objects) { | |
81819f0f CL |
1267 | if (fp == search) |
1268 | return 1; | |
bb192ed9 | 1269 | if (!check_valid_pointer(s, slab, fp)) { |
81819f0f | 1270 | if (object) { |
bb192ed9 | 1271 | object_err(s, slab, object, |
81819f0f | 1272 | "Freechain corrupt"); |
a973e9dd | 1273 | set_freepointer(s, object, NULL); |
81819f0f | 1274 | } else { |
bb192ed9 VB |
1275 | slab_err(s, slab, "Freepointer corrupt"); |
1276 | slab->freelist = NULL; | |
1277 | slab->inuse = slab->objects; | |
24922684 | 1278 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1279 | return 0; |
1280 | } | |
1281 | break; | |
1282 | } | |
1283 | object = fp; | |
1284 | fp = get_freepointer(s, object); | |
1285 | nr++; | |
1286 | } | |
1287 | ||
bb192ed9 | 1288 | max_objects = order_objects(slab_order(slab), s->size); |
210b5c06 CG |
1289 | if (max_objects > MAX_OBJS_PER_PAGE) |
1290 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be | 1291 | |
bb192ed9 VB |
1292 | if (slab->objects != max_objects) { |
1293 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1294 | slab->objects, max_objects); | |
1295 | slab->objects = max_objects; | |
582d1212 | 1296 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1297 | } |
bb192ed9 VB |
1298 | if (slab->inuse != slab->objects - nr) { |
1299 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1300 | slab->inuse, slab->objects - nr); | |
1301 | slab->inuse = slab->objects - nr; | |
582d1212 | 1302 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1303 | } |
1304 | return search == NULL; | |
1305 | } | |
1306 | ||
bb192ed9 | 1307 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
0121c619 | 1308 | int alloc) |
3ec09742 CL |
1309 | { |
1310 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1311 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1312 | s->name, |
1313 | alloc ? "alloc" : "free", | |
bb192ed9 VB |
1314 | object, slab->inuse, |
1315 | slab->freelist); | |
3ec09742 CL |
1316 | |
1317 | if (!alloc) | |
aa2efd5e | 1318 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1319 | s->object_size); |
3ec09742 CL |
1320 | |
1321 | dump_stack(); | |
1322 | } | |
1323 | } | |
1324 | ||
643b1138 | 1325 | /* |
672bba3a | 1326 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1327 | */ |
5cc6eee8 | 1328 | static void add_full(struct kmem_cache *s, |
bb192ed9 | 1329 | struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1330 | { |
5cc6eee8 CL |
1331 | if (!(s->flags & SLAB_STORE_USER)) |
1332 | return; | |
1333 | ||
255d0884 | 1334 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1335 | list_add(&slab->slab_list, &n->full); |
643b1138 CL |
1336 | } |
1337 | ||
bb192ed9 | 1338 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1339 | { |
643b1138 CL |
1340 | if (!(s->flags & SLAB_STORE_USER)) |
1341 | return; | |
1342 | ||
255d0884 | 1343 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1344 | list_del(&slab->slab_list); |
643b1138 CL |
1345 | } |
1346 | ||
0f389ec6 CL |
1347 | /* Tracking of the number of slabs for debugging purposes */ |
1348 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1349 | { | |
1350 | struct kmem_cache_node *n = get_node(s, node); | |
1351 | ||
1352 | return atomic_long_read(&n->nr_slabs); | |
1353 | } | |
1354 | ||
26c02cf0 AB |
1355 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1356 | { | |
1357 | return atomic_long_read(&n->nr_slabs); | |
1358 | } | |
1359 | ||
205ab99d | 1360 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1361 | { |
1362 | struct kmem_cache_node *n = get_node(s, node); | |
1363 | ||
1364 | /* | |
1365 | * May be called early in order to allocate a slab for the | |
1366 | * kmem_cache_node structure. Solve the chicken-egg | |
1367 | * dilemma by deferring the increment of the count during | |
1368 | * bootstrap (see early_kmem_cache_node_alloc). | |
1369 | */ | |
338b2642 | 1370 | if (likely(n)) { |
0f389ec6 | 1371 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1372 | atomic_long_add(objects, &n->total_objects); |
1373 | } | |
0f389ec6 | 1374 | } |
205ab99d | 1375 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1376 | { |
1377 | struct kmem_cache_node *n = get_node(s, node); | |
1378 | ||
1379 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1380 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1381 | } |
1382 | ||
1383 | /* Object debug checks for alloc/free paths */ | |
c0f81a94 | 1384 | static void setup_object_debug(struct kmem_cache *s, void *object) |
3ec09742 | 1385 | { |
8fc8d666 | 1386 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1387 | return; |
1388 | ||
f7cb1933 | 1389 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1390 | init_tracking(s, object); |
1391 | } | |
1392 | ||
a50b854e | 1393 | static |
bb192ed9 | 1394 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
a7101224 | 1395 | { |
8fc8d666 | 1396 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1397 | return; |
1398 | ||
1399 | metadata_access_enable(); | |
bb192ed9 | 1400 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
a7101224 AK |
1401 | metadata_access_disable(); |
1402 | } | |
1403 | ||
becfda68 | 1404 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1405 | struct slab *slab, void *object) |
81819f0f | 1406 | { |
bb192ed9 | 1407 | if (!check_slab(s, slab)) |
becfda68 | 1408 | return 0; |
81819f0f | 1409 | |
bb192ed9 VB |
1410 | if (!check_valid_pointer(s, slab, object)) { |
1411 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
becfda68 | 1412 | return 0; |
81819f0f CL |
1413 | } |
1414 | ||
bb192ed9 | 1415 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1416 | return 0; |
1417 | ||
1418 | return 1; | |
1419 | } | |
1420 | ||
fa9b88e4 | 1421 | static noinline bool alloc_debug_processing(struct kmem_cache *s, |
6edf2576 | 1422 | struct slab *slab, void *object, int orig_size) |
becfda68 LA |
1423 | { |
1424 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1425 | if (!alloc_consistency_checks(s, slab, object)) |
becfda68 LA |
1426 | goto bad; |
1427 | } | |
81819f0f | 1428 | |
c7323a5a | 1429 | /* Success. Perform special debug activities for allocs */ |
bb192ed9 | 1430 | trace(s, slab, object, 1); |
6edf2576 | 1431 | set_orig_size(s, object, orig_size); |
f7cb1933 | 1432 | init_object(s, object, SLUB_RED_ACTIVE); |
fa9b88e4 | 1433 | return true; |
3ec09742 | 1434 | |
81819f0f | 1435 | bad: |
bb192ed9 | 1436 | if (folio_test_slab(slab_folio(slab))) { |
81819f0f CL |
1437 | /* |
1438 | * If this is a slab page then lets do the best we can | |
1439 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1440 | * as used avoids touching the remaining objects. |
81819f0f | 1441 | */ |
24922684 | 1442 | slab_fix(s, "Marking all objects used"); |
bb192ed9 VB |
1443 | slab->inuse = slab->objects; |
1444 | slab->freelist = NULL; | |
81819f0f | 1445 | } |
fa9b88e4 | 1446 | return false; |
81819f0f CL |
1447 | } |
1448 | ||
becfda68 | 1449 | static inline int free_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1450 | struct slab *slab, void *object, unsigned long addr) |
81819f0f | 1451 | { |
bb192ed9 VB |
1452 | if (!check_valid_pointer(s, slab, object)) { |
1453 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
becfda68 | 1454 | return 0; |
81819f0f CL |
1455 | } |
1456 | ||
bb192ed9 VB |
1457 | if (on_freelist(s, slab, object)) { |
1458 | object_err(s, slab, object, "Object already free"); | |
becfda68 | 1459 | return 0; |
81819f0f CL |
1460 | } |
1461 | ||
bb192ed9 | 1462 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
becfda68 | 1463 | return 0; |
81819f0f | 1464 | |
bb192ed9 VB |
1465 | if (unlikely(s != slab->slab_cache)) { |
1466 | if (!folio_test_slab(slab_folio(slab))) { | |
1467 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
756a025f | 1468 | object); |
bb192ed9 | 1469 | } else if (!slab->slab_cache) { |
f9f58285 FF |
1470 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1471 | object); | |
70d71228 | 1472 | dump_stack(); |
06428780 | 1473 | } else |
bb192ed9 | 1474 | object_err(s, slab, object, |
24922684 | 1475 | "page slab pointer corrupt."); |
becfda68 LA |
1476 | return 0; |
1477 | } | |
1478 | return 1; | |
1479 | } | |
1480 | ||
e17f1dfb VB |
1481 | /* |
1482 | * Parse a block of slub_debug options. Blocks are delimited by ';' | |
1483 | * | |
1484 | * @str: start of block | |
1485 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1486 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1487 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1488 | * | |
1489 | * returns the start of next block if there's any, or NULL | |
1490 | */ | |
1491 | static char * | |
1492 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1493 | { |
e17f1dfb | 1494 | bool higher_order_disable = false; |
f0630fff | 1495 | |
e17f1dfb VB |
1496 | /* Skip any completely empty blocks */ |
1497 | while (*str && *str == ';') | |
1498 | str++; | |
1499 | ||
1500 | if (*str == ',') { | |
f0630fff CL |
1501 | /* |
1502 | * No options but restriction on slabs. This means full | |
1503 | * debugging for slabs matching a pattern. | |
1504 | */ | |
e17f1dfb | 1505 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1506 | goto check_slabs; |
e17f1dfb VB |
1507 | } |
1508 | *flags = 0; | |
f0630fff | 1509 | |
e17f1dfb VB |
1510 | /* Determine which debug features should be switched on */ |
1511 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1512 | switch (tolower(*str)) { |
e17f1dfb VB |
1513 | case '-': |
1514 | *flags = 0; | |
1515 | break; | |
f0630fff | 1516 | case 'f': |
e17f1dfb | 1517 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1518 | break; |
1519 | case 'z': | |
e17f1dfb | 1520 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1521 | break; |
1522 | case 'p': | |
e17f1dfb | 1523 | *flags |= SLAB_POISON; |
f0630fff CL |
1524 | break; |
1525 | case 'u': | |
e17f1dfb | 1526 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1527 | break; |
1528 | case 't': | |
e17f1dfb | 1529 | *flags |= SLAB_TRACE; |
f0630fff | 1530 | break; |
4c13dd3b | 1531 | case 'a': |
e17f1dfb | 1532 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1533 | break; |
08303a73 CA |
1534 | case 'o': |
1535 | /* | |
1536 | * Avoid enabling debugging on caches if its minimum | |
1537 | * order would increase as a result. | |
1538 | */ | |
e17f1dfb | 1539 | higher_order_disable = true; |
08303a73 | 1540 | break; |
f0630fff | 1541 | default: |
e17f1dfb VB |
1542 | if (init) |
1543 | pr_err("slub_debug option '%c' unknown. skipped\n", *str); | |
f0630fff | 1544 | } |
41ecc55b | 1545 | } |
f0630fff | 1546 | check_slabs: |
41ecc55b | 1547 | if (*str == ',') |
e17f1dfb VB |
1548 | *slabs = ++str; |
1549 | else | |
1550 | *slabs = NULL; | |
1551 | ||
1552 | /* Skip over the slab list */ | |
1553 | while (*str && *str != ';') | |
1554 | str++; | |
1555 | ||
1556 | /* Skip any completely empty blocks */ | |
1557 | while (*str && *str == ';') | |
1558 | str++; | |
1559 | ||
1560 | if (init && higher_order_disable) | |
1561 | disable_higher_order_debug = 1; | |
1562 | ||
1563 | if (*str) | |
1564 | return str; | |
1565 | else | |
1566 | return NULL; | |
1567 | } | |
1568 | ||
1569 | static int __init setup_slub_debug(char *str) | |
1570 | { | |
1571 | slab_flags_t flags; | |
a7f1d485 | 1572 | slab_flags_t global_flags; |
e17f1dfb VB |
1573 | char *saved_str; |
1574 | char *slab_list; | |
1575 | bool global_slub_debug_changed = false; | |
1576 | bool slab_list_specified = false; | |
1577 | ||
a7f1d485 | 1578 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1579 | if (*str++ != '=' || !*str) |
1580 | /* | |
1581 | * No options specified. Switch on full debugging. | |
1582 | */ | |
1583 | goto out; | |
1584 | ||
1585 | saved_str = str; | |
1586 | while (str) { | |
1587 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1588 | ||
1589 | if (!slab_list) { | |
a7f1d485 | 1590 | global_flags = flags; |
e17f1dfb VB |
1591 | global_slub_debug_changed = true; |
1592 | } else { | |
1593 | slab_list_specified = true; | |
5cf909c5 OG |
1594 | if (flags & SLAB_STORE_USER) |
1595 | stack_depot_want_early_init(); | |
e17f1dfb VB |
1596 | } |
1597 | } | |
1598 | ||
1599 | /* | |
1600 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 VB |
1601 | * slabs means debugging is only changed for those slabs, so the global |
1602 | * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending | |
1603 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as | |
e17f1dfb VB |
1604 | * long as there is no option specifying flags without a slab list. |
1605 | */ | |
1606 | if (slab_list_specified) { | |
1607 | if (!global_slub_debug_changed) | |
a7f1d485 | 1608 | global_flags = slub_debug; |
e17f1dfb VB |
1609 | slub_debug_string = saved_str; |
1610 | } | |
f0630fff | 1611 | out: |
a7f1d485 | 1612 | slub_debug = global_flags; |
5cf909c5 OG |
1613 | if (slub_debug & SLAB_STORE_USER) |
1614 | stack_depot_want_early_init(); | |
ca0cab65 VB |
1615 | if (slub_debug != 0 || slub_debug_string) |
1616 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1617 | else |
1618 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1619 | if ((static_branch_unlikely(&init_on_alloc) || |
1620 | static_branch_unlikely(&init_on_free)) && | |
1621 | (slub_debug & SLAB_POISON)) | |
1622 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1623 | return 1; |
1624 | } | |
1625 | ||
1626 | __setup("slub_debug", setup_slub_debug); | |
1627 | ||
c5fd3ca0 AT |
1628 | /* |
1629 | * kmem_cache_flags - apply debugging options to the cache | |
1630 | * @object_size: the size of an object without meta data | |
1631 | * @flags: flags to set | |
1632 | * @name: name of the cache | |
c5fd3ca0 AT |
1633 | * |
1634 | * Debug option(s) are applied to @flags. In addition to the debug | |
1635 | * option(s), if a slab name (or multiple) is specified i.e. | |
1636 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1637 | * then only the select slabs will receive the debug option(s). | |
1638 | */ | |
0293d1fd | 1639 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1640 | slab_flags_t flags, const char *name) |
41ecc55b | 1641 | { |
c5fd3ca0 AT |
1642 | char *iter; |
1643 | size_t len; | |
e17f1dfb VB |
1644 | char *next_block; |
1645 | slab_flags_t block_flags; | |
ca220593 JB |
1646 | slab_flags_t slub_debug_local = slub_debug; |
1647 | ||
a285909f HY |
1648 | if (flags & SLAB_NO_USER_FLAGS) |
1649 | return flags; | |
1650 | ||
ca220593 JB |
1651 | /* |
1652 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1653 | * don't store user (stack trace) information by default, | |
1654 | * but let the user enable it via the command line below. | |
1655 | */ | |
1656 | if (flags & SLAB_NOLEAKTRACE) | |
1657 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1658 | |
c5fd3ca0 | 1659 | len = strlen(name); |
e17f1dfb VB |
1660 | next_block = slub_debug_string; |
1661 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1662 | while (next_block) { | |
1663 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1664 | if (!iter) | |
1665 | continue; | |
1666 | /* Found a block that has a slab list, search it */ | |
1667 | while (*iter) { | |
1668 | char *end, *glob; | |
1669 | size_t cmplen; | |
1670 | ||
1671 | end = strchrnul(iter, ','); | |
1672 | if (next_block && next_block < end) | |
1673 | end = next_block - 1; | |
1674 | ||
1675 | glob = strnchr(iter, end - iter, '*'); | |
1676 | if (glob) | |
1677 | cmplen = glob - iter; | |
1678 | else | |
1679 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1680 | |
e17f1dfb VB |
1681 | if (!strncmp(name, iter, cmplen)) { |
1682 | flags |= block_flags; | |
1683 | return flags; | |
1684 | } | |
c5fd3ca0 | 1685 | |
e17f1dfb VB |
1686 | if (!*end || *end == ';') |
1687 | break; | |
1688 | iter = end + 1; | |
c5fd3ca0 | 1689 | } |
c5fd3ca0 | 1690 | } |
ba0268a8 | 1691 | |
ca220593 | 1692 | return flags | slub_debug_local; |
41ecc55b | 1693 | } |
b4a64718 | 1694 | #else /* !CONFIG_SLUB_DEBUG */ |
c0f81a94 | 1695 | static inline void setup_object_debug(struct kmem_cache *s, void *object) {} |
a50b854e | 1696 | static inline |
bb192ed9 | 1697 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
41ecc55b | 1698 | |
fa9b88e4 VB |
1699 | static inline bool alloc_debug_processing(struct kmem_cache *s, |
1700 | struct slab *slab, void *object, int orig_size) { return true; } | |
41ecc55b | 1701 | |
fa9b88e4 VB |
1702 | static inline bool free_debug_processing(struct kmem_cache *s, |
1703 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
1704 | unsigned long addr, depot_stack_handle_t handle) { return true; } | |
41ecc55b | 1705 | |
a204e6d6 | 1706 | static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} |
bb192ed9 | 1707 | static inline int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1708 | void *object, u8 val) { return 1; } |
fa9b88e4 | 1709 | static inline depot_stack_handle_t set_track_prepare(void) { return 0; } |
c7323a5a VB |
1710 | static inline void set_track(struct kmem_cache *s, void *object, |
1711 | enum track_item alloc, unsigned long addr) {} | |
5cc6eee8 | 1712 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1713 | struct slab *slab) {} |
c65c1877 | 1714 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1715 | struct slab *slab) {} |
0293d1fd | 1716 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1717 | slab_flags_t flags, const char *name) |
ba0268a8 CL |
1718 | { |
1719 | return flags; | |
1720 | } | |
41ecc55b | 1721 | #define slub_debug 0 |
0f389ec6 | 1722 | |
fdaa45e9 IM |
1723 | #define disable_higher_order_debug 0 |
1724 | ||
0f389ec6 CL |
1725 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1726 | { return 0; } | |
26c02cf0 AB |
1727 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1728 | { return 0; } | |
205ab99d CL |
1729 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1730 | int objects) {} | |
1731 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1732 | int objects) {} | |
7d550c56 | 1733 | |
0af8489b | 1734 | #ifndef CONFIG_SLUB_TINY |
bb192ed9 | 1735 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
dc07a728 | 1736 | void **freelist, void *nextfree) |
52f23478 DZ |
1737 | { |
1738 | return false; | |
1739 | } | |
0af8489b | 1740 | #endif |
02e72cc6 AR |
1741 | #endif /* CONFIG_SLUB_DEBUG */ |
1742 | ||
1743 | /* | |
1744 | * Hooks for other subsystems that check memory allocations. In a typical | |
1745 | * production configuration these hooks all should produce no code at all. | |
1746 | */ | |
d57a964e AK |
1747 | static __always_inline bool slab_free_hook(struct kmem_cache *s, |
1748 | void *x, bool init) | |
d56791b3 RB |
1749 | { |
1750 | kmemleak_free_recursive(x, s->flags); | |
68ef169a | 1751 | kmsan_slab_free(s, x); |
7d550c56 | 1752 | |
84048039 | 1753 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 1754 | |
02e72cc6 AR |
1755 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1756 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1757 | |
cfbe1636 ME |
1758 | /* Use KCSAN to help debug racy use-after-free. */ |
1759 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
1760 | __kcsan_check_access(x, s->object_size, | |
1761 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
1762 | ||
d57a964e AK |
1763 | /* |
1764 | * As memory initialization might be integrated into KASAN, | |
1765 | * kasan_slab_free and initialization memset's must be | |
1766 | * kept together to avoid discrepancies in behavior. | |
1767 | * | |
1768 | * The initialization memset's clear the object and the metadata, | |
1769 | * but don't touch the SLAB redzone. | |
1770 | */ | |
1771 | if (init) { | |
1772 | int rsize; | |
1773 | ||
1774 | if (!kasan_has_integrated_init()) | |
1775 | memset(kasan_reset_tag(x), 0, s->object_size); | |
1776 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
1777 | memset((char *)kasan_reset_tag(x) + s->inuse, 0, | |
1778 | s->size - s->inuse - rsize); | |
1779 | } | |
1780 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
1781 | return kasan_slab_free(s, x, init); | |
02e72cc6 | 1782 | } |
205ab99d | 1783 | |
c3895391 | 1784 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
899447f6 ML |
1785 | void **head, void **tail, |
1786 | int *cnt) | |
81084651 | 1787 | { |
6471384a AP |
1788 | |
1789 | void *object; | |
1790 | void *next = *head; | |
1791 | void *old_tail = *tail ? *tail : *head; | |
6471384a | 1792 | |
b89fb5ef | 1793 | if (is_kfence_address(next)) { |
d57a964e | 1794 | slab_free_hook(s, next, false); |
b89fb5ef AP |
1795 | return true; |
1796 | } | |
1797 | ||
aea4df4c LA |
1798 | /* Head and tail of the reconstructed freelist */ |
1799 | *head = NULL; | |
1800 | *tail = NULL; | |
1b7e816f | 1801 | |
aea4df4c LA |
1802 | do { |
1803 | object = next; | |
1804 | next = get_freepointer(s, object); | |
1805 | ||
c3895391 | 1806 | /* If object's reuse doesn't have to be delayed */ |
d57a964e | 1807 | if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { |
c3895391 AK |
1808 | /* Move object to the new freelist */ |
1809 | set_freepointer(s, object, *head); | |
1810 | *head = object; | |
1811 | if (!*tail) | |
1812 | *tail = object; | |
899447f6 ML |
1813 | } else { |
1814 | /* | |
1815 | * Adjust the reconstructed freelist depth | |
1816 | * accordingly if object's reuse is delayed. | |
1817 | */ | |
1818 | --(*cnt); | |
c3895391 AK |
1819 | } |
1820 | } while (object != old_tail); | |
1821 | ||
1822 | if (*head == *tail) | |
1823 | *tail = NULL; | |
1824 | ||
1825 | return *head != NULL; | |
81084651 JDB |
1826 | } |
1827 | ||
c0f81a94 | 1828 | static void *setup_object(struct kmem_cache *s, void *object) |
588f8ba9 | 1829 | { |
c0f81a94 | 1830 | setup_object_debug(s, object); |
4d176711 | 1831 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1832 | if (unlikely(s->ctor)) { |
1833 | kasan_unpoison_object_data(s, object); | |
1834 | s->ctor(object); | |
1835 | kasan_poison_object_data(s, object); | |
1836 | } | |
4d176711 | 1837 | return object; |
588f8ba9 TG |
1838 | } |
1839 | ||
81819f0f CL |
1840 | /* |
1841 | * Slab allocation and freeing | |
1842 | */ | |
a485e1da XS |
1843 | static inline struct slab *alloc_slab_page(gfp_t flags, int node, |
1844 | struct kmem_cache_order_objects oo) | |
65c3376a | 1845 | { |
45387b8c VB |
1846 | struct folio *folio; |
1847 | struct slab *slab; | |
19af27af | 1848 | unsigned int order = oo_order(oo); |
65c3376a | 1849 | |
2154a336 | 1850 | if (node == NUMA_NO_NODE) |
45387b8c | 1851 | folio = (struct folio *)alloc_pages(flags, order); |
65c3376a | 1852 | else |
45387b8c | 1853 | folio = (struct folio *)__alloc_pages_node(node, flags, order); |
5dfb4175 | 1854 | |
45387b8c VB |
1855 | if (!folio) |
1856 | return NULL; | |
1857 | ||
1858 | slab = folio_slab(folio); | |
1859 | __folio_set_slab(folio); | |
8b881763 VB |
1860 | /* Make the flag visible before any changes to folio->mapping */ |
1861 | smp_wmb(); | |
02d65d6f | 1862 | if (folio_is_pfmemalloc(folio)) |
45387b8c VB |
1863 | slab_set_pfmemalloc(slab); |
1864 | ||
1865 | return slab; | |
65c3376a CL |
1866 | } |
1867 | ||
210e7a43 TG |
1868 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1869 | /* Pre-initialize the random sequence cache */ | |
1870 | static int init_cache_random_seq(struct kmem_cache *s) | |
1871 | { | |
19af27af | 1872 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1873 | int err; |
210e7a43 | 1874 | |
a810007a SR |
1875 | /* Bailout if already initialised */ |
1876 | if (s->random_seq) | |
1877 | return 0; | |
1878 | ||
210e7a43 TG |
1879 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1880 | if (err) { | |
1881 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1882 | s->name); | |
1883 | return err; | |
1884 | } | |
1885 | ||
1886 | /* Transform to an offset on the set of pages */ | |
1887 | if (s->random_seq) { | |
19af27af AD |
1888 | unsigned int i; |
1889 | ||
210e7a43 TG |
1890 | for (i = 0; i < count; i++) |
1891 | s->random_seq[i] *= s->size; | |
1892 | } | |
1893 | return 0; | |
1894 | } | |
1895 | ||
1896 | /* Initialize each random sequence freelist per cache */ | |
1897 | static void __init init_freelist_randomization(void) | |
1898 | { | |
1899 | struct kmem_cache *s; | |
1900 | ||
1901 | mutex_lock(&slab_mutex); | |
1902 | ||
1903 | list_for_each_entry(s, &slab_caches, list) | |
1904 | init_cache_random_seq(s); | |
1905 | ||
1906 | mutex_unlock(&slab_mutex); | |
1907 | } | |
1908 | ||
1909 | /* Get the next entry on the pre-computed freelist randomized */ | |
bb192ed9 | 1910 | static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, |
210e7a43 TG |
1911 | unsigned long *pos, void *start, |
1912 | unsigned long page_limit, | |
1913 | unsigned long freelist_count) | |
1914 | { | |
1915 | unsigned int idx; | |
1916 | ||
1917 | /* | |
1918 | * If the target page allocation failed, the number of objects on the | |
1919 | * page might be smaller than the usual size defined by the cache. | |
1920 | */ | |
1921 | do { | |
1922 | idx = s->random_seq[*pos]; | |
1923 | *pos += 1; | |
1924 | if (*pos >= freelist_count) | |
1925 | *pos = 0; | |
1926 | } while (unlikely(idx >= page_limit)); | |
1927 | ||
1928 | return (char *)start + idx; | |
1929 | } | |
1930 | ||
1931 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
bb192ed9 | 1932 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1933 | { |
1934 | void *start; | |
1935 | void *cur; | |
1936 | void *next; | |
1937 | unsigned long idx, pos, page_limit, freelist_count; | |
1938 | ||
bb192ed9 | 1939 | if (slab->objects < 2 || !s->random_seq) |
210e7a43 TG |
1940 | return false; |
1941 | ||
1942 | freelist_count = oo_objects(s->oo); | |
8032bf12 | 1943 | pos = get_random_u32_below(freelist_count); |
210e7a43 | 1944 | |
bb192ed9 VB |
1945 | page_limit = slab->objects * s->size; |
1946 | start = fixup_red_left(s, slab_address(slab)); | |
210e7a43 TG |
1947 | |
1948 | /* First entry is used as the base of the freelist */ | |
bb192ed9 | 1949 | cur = next_freelist_entry(s, slab, &pos, start, page_limit, |
210e7a43 | 1950 | freelist_count); |
c0f81a94 | 1951 | cur = setup_object(s, cur); |
bb192ed9 | 1952 | slab->freelist = cur; |
210e7a43 | 1953 | |
bb192ed9 VB |
1954 | for (idx = 1; idx < slab->objects; idx++) { |
1955 | next = next_freelist_entry(s, slab, &pos, start, page_limit, | |
210e7a43 | 1956 | freelist_count); |
c0f81a94 | 1957 | next = setup_object(s, next); |
210e7a43 TG |
1958 | set_freepointer(s, cur, next); |
1959 | cur = next; | |
1960 | } | |
210e7a43 TG |
1961 | set_freepointer(s, cur, NULL); |
1962 | ||
1963 | return true; | |
1964 | } | |
1965 | #else | |
1966 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1967 | { | |
1968 | return 0; | |
1969 | } | |
1970 | static inline void init_freelist_randomization(void) { } | |
bb192ed9 | 1971 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1972 | { |
1973 | return false; | |
1974 | } | |
1975 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1976 | ||
bb192ed9 | 1977 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
81819f0f | 1978 | { |
bb192ed9 | 1979 | struct slab *slab; |
834f3d11 | 1980 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1981 | gfp_t alloc_gfp; |
4d176711 | 1982 | void *start, *p, *next; |
a50b854e | 1983 | int idx; |
210e7a43 | 1984 | bool shuffle; |
81819f0f | 1985 | |
7e0528da CL |
1986 | flags &= gfp_allowed_mask; |
1987 | ||
b7a49f0d | 1988 | flags |= s->allocflags; |
e12ba74d | 1989 | |
ba52270d PE |
1990 | /* |
1991 | * Let the initial higher-order allocation fail under memory pressure | |
1992 | * so we fall-back to the minimum order allocation. | |
1993 | */ | |
1994 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1995 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
27c08f75 | 1996 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; |
ba52270d | 1997 | |
a485e1da | 1998 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 1999 | if (unlikely(!slab)) { |
65c3376a | 2000 | oo = s->min; |
80c3a998 | 2001 | alloc_gfp = flags; |
65c3376a CL |
2002 | /* |
2003 | * Allocation may have failed due to fragmentation. | |
2004 | * Try a lower order alloc if possible | |
2005 | */ | |
a485e1da | 2006 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 2007 | if (unlikely(!slab)) |
c7323a5a | 2008 | return NULL; |
588f8ba9 | 2009 | stat(s, ORDER_FALLBACK); |
65c3376a | 2010 | } |
5a896d9e | 2011 | |
bb192ed9 | 2012 | slab->objects = oo_objects(oo); |
c7323a5a VB |
2013 | slab->inuse = 0; |
2014 | slab->frozen = 0; | |
81819f0f | 2015 | |
bb192ed9 | 2016 | account_slab(slab, oo_order(oo), s, flags); |
1f3147b4 | 2017 | |
bb192ed9 | 2018 | slab->slab_cache = s; |
81819f0f | 2019 | |
6e48a966 | 2020 | kasan_poison_slab(slab); |
81819f0f | 2021 | |
bb192ed9 | 2022 | start = slab_address(slab); |
81819f0f | 2023 | |
bb192ed9 | 2024 | setup_slab_debug(s, slab, start); |
0316bec2 | 2025 | |
bb192ed9 | 2026 | shuffle = shuffle_freelist(s, slab); |
210e7a43 TG |
2027 | |
2028 | if (!shuffle) { | |
4d176711 | 2029 | start = fixup_red_left(s, start); |
c0f81a94 | 2030 | start = setup_object(s, start); |
bb192ed9 VB |
2031 | slab->freelist = start; |
2032 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
18e50661 | 2033 | next = p + s->size; |
c0f81a94 | 2034 | next = setup_object(s, next); |
18e50661 AK |
2035 | set_freepointer(s, p, next); |
2036 | p = next; | |
2037 | } | |
2038 | set_freepointer(s, p, NULL); | |
81819f0f | 2039 | } |
81819f0f | 2040 | |
bb192ed9 | 2041 | return slab; |
81819f0f CL |
2042 | } |
2043 | ||
bb192ed9 | 2044 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
588f8ba9 | 2045 | { |
44405099 LL |
2046 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2047 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 2048 | |
53a0de06 VB |
2049 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2050 | ||
588f8ba9 TG |
2051 | return allocate_slab(s, |
2052 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2053 | } | |
2054 | ||
4020b4a2 | 2055 | static void __free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2056 | { |
4020b4a2 VB |
2057 | struct folio *folio = slab_folio(slab); |
2058 | int order = folio_order(folio); | |
834f3d11 | 2059 | int pages = 1 << order; |
81819f0f | 2060 | |
4020b4a2 | 2061 | __slab_clear_pfmemalloc(slab); |
4020b4a2 | 2062 | folio->mapping = NULL; |
8b881763 VB |
2063 | /* Make the mapping reset visible before clearing the flag */ |
2064 | smp_wmb(); | |
2065 | __folio_clear_slab(folio); | |
1eb5ac64 NP |
2066 | if (current->reclaim_state) |
2067 | current->reclaim_state->reclaimed_slab += pages; | |
4020b4a2 VB |
2068 | unaccount_slab(slab, order, s); |
2069 | __free_pages(folio_page(folio, 0), order); | |
81819f0f CL |
2070 | } |
2071 | ||
2072 | static void rcu_free_slab(struct rcu_head *h) | |
2073 | { | |
bb192ed9 | 2074 | struct slab *slab = container_of(h, struct slab, rcu_head); |
da9a638c | 2075 | |
bb192ed9 | 2076 | __free_slab(slab->slab_cache, slab); |
81819f0f CL |
2077 | } |
2078 | ||
bb192ed9 | 2079 | static void free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2080 | { |
bc29d5bd VB |
2081 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
2082 | void *p; | |
2083 | ||
2084 | slab_pad_check(s, slab); | |
2085 | for_each_object(p, s, slab_address(slab), slab->objects) | |
2086 | check_object(s, slab, p, SLUB_RED_INACTIVE); | |
2087 | } | |
2088 | ||
2089 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
bb192ed9 | 2090 | call_rcu(&slab->rcu_head, rcu_free_slab); |
bc29d5bd | 2091 | else |
bb192ed9 | 2092 | __free_slab(s, slab); |
81819f0f CL |
2093 | } |
2094 | ||
bb192ed9 | 2095 | static void discard_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2096 | { |
bb192ed9 VB |
2097 | dec_slabs_node(s, slab_nid(slab), slab->objects); |
2098 | free_slab(s, slab); | |
81819f0f CL |
2099 | } |
2100 | ||
2101 | /* | |
5cc6eee8 | 2102 | * Management of partially allocated slabs. |
81819f0f | 2103 | */ |
1e4dd946 | 2104 | static inline void |
bb192ed9 | 2105 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
81819f0f | 2106 | { |
e95eed57 | 2107 | n->nr_partial++; |
136333d1 | 2108 | if (tail == DEACTIVATE_TO_TAIL) |
bb192ed9 | 2109 | list_add_tail(&slab->slab_list, &n->partial); |
7c2e132c | 2110 | else |
bb192ed9 | 2111 | list_add(&slab->slab_list, &n->partial); |
81819f0f CL |
2112 | } |
2113 | ||
1e4dd946 | 2114 | static inline void add_partial(struct kmem_cache_node *n, |
bb192ed9 | 2115 | struct slab *slab, int tail) |
62e346a8 | 2116 | { |
c65c1877 | 2117 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 2118 | __add_partial(n, slab, tail); |
1e4dd946 | 2119 | } |
c65c1877 | 2120 | |
1e4dd946 | 2121 | static inline void remove_partial(struct kmem_cache_node *n, |
bb192ed9 | 2122 | struct slab *slab) |
1e4dd946 SR |
2123 | { |
2124 | lockdep_assert_held(&n->list_lock); | |
bb192ed9 | 2125 | list_del(&slab->slab_list); |
52b4b950 | 2126 | n->nr_partial--; |
1e4dd946 SR |
2127 | } |
2128 | ||
c7323a5a VB |
2129 | /* |
2130 | * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a | |
2131 | * slab from the n->partial list. Remove only a single object from the slab, do | |
2132 | * the alloc_debug_processing() checks and leave the slab on the list, or move | |
2133 | * it to full list if it was the last free object. | |
2134 | */ | |
2135 | static void *alloc_single_from_partial(struct kmem_cache *s, | |
6edf2576 | 2136 | struct kmem_cache_node *n, struct slab *slab, int orig_size) |
c7323a5a VB |
2137 | { |
2138 | void *object; | |
2139 | ||
2140 | lockdep_assert_held(&n->list_lock); | |
2141 | ||
2142 | object = slab->freelist; | |
2143 | slab->freelist = get_freepointer(s, object); | |
2144 | slab->inuse++; | |
2145 | ||
6edf2576 | 2146 | if (!alloc_debug_processing(s, slab, object, orig_size)) { |
c7323a5a VB |
2147 | remove_partial(n, slab); |
2148 | return NULL; | |
2149 | } | |
2150 | ||
2151 | if (slab->inuse == slab->objects) { | |
2152 | remove_partial(n, slab); | |
2153 | add_full(s, n, slab); | |
2154 | } | |
2155 | ||
2156 | return object; | |
2157 | } | |
2158 | ||
2159 | /* | |
2160 | * Called only for kmem_cache_debug() caches to allocate from a freshly | |
2161 | * allocated slab. Allocate a single object instead of whole freelist | |
2162 | * and put the slab to the partial (or full) list. | |
2163 | */ | |
2164 | static void *alloc_single_from_new_slab(struct kmem_cache *s, | |
6edf2576 | 2165 | struct slab *slab, int orig_size) |
c7323a5a VB |
2166 | { |
2167 | int nid = slab_nid(slab); | |
2168 | struct kmem_cache_node *n = get_node(s, nid); | |
2169 | unsigned long flags; | |
2170 | void *object; | |
2171 | ||
2172 | ||
2173 | object = slab->freelist; | |
2174 | slab->freelist = get_freepointer(s, object); | |
2175 | slab->inuse = 1; | |
2176 | ||
6edf2576 | 2177 | if (!alloc_debug_processing(s, slab, object, orig_size)) |
c7323a5a VB |
2178 | /* |
2179 | * It's not really expected that this would fail on a | |
2180 | * freshly allocated slab, but a concurrent memory | |
2181 | * corruption in theory could cause that. | |
2182 | */ | |
2183 | return NULL; | |
2184 | ||
2185 | spin_lock_irqsave(&n->list_lock, flags); | |
2186 | ||
2187 | if (slab->inuse == slab->objects) | |
2188 | add_full(s, n, slab); | |
2189 | else | |
2190 | add_partial(n, slab, DEACTIVATE_TO_HEAD); | |
2191 | ||
2192 | inc_slabs_node(s, nid, slab->objects); | |
2193 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2194 | ||
2195 | return object; | |
2196 | } | |
2197 | ||
81819f0f | 2198 | /* |
7ced3719 CL |
2199 | * Remove slab from the partial list, freeze it and |
2200 | * return the pointer to the freelist. | |
81819f0f | 2201 | * |
497b66f2 | 2202 | * Returns a list of objects or NULL if it fails. |
81819f0f | 2203 | */ |
497b66f2 | 2204 | static inline void *acquire_slab(struct kmem_cache *s, |
bb192ed9 | 2205 | struct kmem_cache_node *n, struct slab *slab, |
b47291ef | 2206 | int mode) |
81819f0f | 2207 | { |
2cfb7455 CL |
2208 | void *freelist; |
2209 | unsigned long counters; | |
bb192ed9 | 2210 | struct slab new; |
2cfb7455 | 2211 | |
c65c1877 PZ |
2212 | lockdep_assert_held(&n->list_lock); |
2213 | ||
2cfb7455 CL |
2214 | /* |
2215 | * Zap the freelist and set the frozen bit. | |
2216 | * The old freelist is the list of objects for the | |
2217 | * per cpu allocation list. | |
2218 | */ | |
bb192ed9 VB |
2219 | freelist = slab->freelist; |
2220 | counters = slab->counters; | |
7ced3719 | 2221 | new.counters = counters; |
23910c50 | 2222 | if (mode) { |
bb192ed9 | 2223 | new.inuse = slab->objects; |
23910c50 PE |
2224 | new.freelist = NULL; |
2225 | } else { | |
2226 | new.freelist = freelist; | |
2227 | } | |
2cfb7455 | 2228 | |
a0132ac0 | 2229 | VM_BUG_ON(new.frozen); |
7ced3719 | 2230 | new.frozen = 1; |
2cfb7455 | 2231 | |
bb192ed9 | 2232 | if (!__cmpxchg_double_slab(s, slab, |
2cfb7455 | 2233 | freelist, counters, |
02d7633f | 2234 | new.freelist, new.counters, |
7ced3719 | 2235 | "acquire_slab")) |
7ced3719 | 2236 | return NULL; |
2cfb7455 | 2237 | |
bb192ed9 | 2238 | remove_partial(n, slab); |
7ced3719 | 2239 | WARN_ON(!freelist); |
49e22585 | 2240 | return freelist; |
81819f0f CL |
2241 | } |
2242 | ||
e0a043aa | 2243 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2244 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
e0a043aa | 2245 | #else |
bb192ed9 | 2246 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
e0a043aa VB |
2247 | int drain) { } |
2248 | #endif | |
01b34d16 | 2249 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
49e22585 | 2250 | |
81819f0f | 2251 | /* |
672bba3a | 2252 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2253 | */ |
8ba00bb6 | 2254 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
6edf2576 | 2255 | struct partial_context *pc) |
81819f0f | 2256 | { |
bb192ed9 | 2257 | struct slab *slab, *slab2; |
49e22585 | 2258 | void *object = NULL; |
4b1f449d | 2259 | unsigned long flags; |
bb192ed9 | 2260 | unsigned int partial_slabs = 0; |
81819f0f CL |
2261 | |
2262 | /* | |
2263 | * Racy check. If we mistakenly see no partial slabs then we | |
2264 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2265 | * partial slab and there is none available then get_partial() |
672bba3a | 2266 | * will return NULL. |
81819f0f CL |
2267 | */ |
2268 | if (!n || !n->nr_partial) | |
2269 | return NULL; | |
2270 | ||
4b1f449d | 2271 | spin_lock_irqsave(&n->list_lock, flags); |
bb192ed9 | 2272 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
8ba00bb6 | 2273 | void *t; |
49e22585 | 2274 | |
6edf2576 | 2275 | if (!pfmemalloc_match(slab, pc->flags)) |
8ba00bb6 JK |
2276 | continue; |
2277 | ||
0af8489b | 2278 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
6edf2576 FT |
2279 | object = alloc_single_from_partial(s, n, slab, |
2280 | pc->orig_size); | |
c7323a5a VB |
2281 | if (object) |
2282 | break; | |
2283 | continue; | |
2284 | } | |
2285 | ||
bb192ed9 | 2286 | t = acquire_slab(s, n, slab, object == NULL); |
49e22585 | 2287 | if (!t) |
9b1ea29b | 2288 | break; |
49e22585 | 2289 | |
12d79634 | 2290 | if (!object) { |
6edf2576 | 2291 | *pc->slab = slab; |
49e22585 | 2292 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 2293 | object = t; |
49e22585 | 2294 | } else { |
bb192ed9 | 2295 | put_cpu_partial(s, slab, 0); |
8028dcea | 2296 | stat(s, CPU_PARTIAL_NODE); |
bb192ed9 | 2297 | partial_slabs++; |
49e22585 | 2298 | } |
b47291ef | 2299 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
345c905d | 2300 | if (!kmem_cache_has_cpu_partial(s) |
bb192ed9 | 2301 | || partial_slabs > s->cpu_partial_slabs / 2) |
49e22585 | 2302 | break; |
b47291ef VB |
2303 | #else |
2304 | break; | |
2305 | #endif | |
49e22585 | 2306 | |
497b66f2 | 2307 | } |
4b1f449d | 2308 | spin_unlock_irqrestore(&n->list_lock, flags); |
497b66f2 | 2309 | return object; |
81819f0f CL |
2310 | } |
2311 | ||
2312 | /* | |
c2092c12 | 2313 | * Get a slab from somewhere. Search in increasing NUMA distances. |
81819f0f | 2314 | */ |
6edf2576 | 2315 | static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) |
81819f0f CL |
2316 | { |
2317 | #ifdef CONFIG_NUMA | |
2318 | struct zonelist *zonelist; | |
dd1a239f | 2319 | struct zoneref *z; |
54a6eb5c | 2320 | struct zone *zone; |
6edf2576 | 2321 | enum zone_type highest_zoneidx = gfp_zone(pc->flags); |
497b66f2 | 2322 | void *object; |
cc9a6c87 | 2323 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2324 | |
2325 | /* | |
672bba3a CL |
2326 | * The defrag ratio allows a configuration of the tradeoffs between |
2327 | * inter node defragmentation and node local allocations. A lower | |
2328 | * defrag_ratio increases the tendency to do local allocations | |
2329 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2330 | * |
672bba3a CL |
2331 | * If the defrag_ratio is set to 0 then kmalloc() always |
2332 | * returns node local objects. If the ratio is higher then kmalloc() | |
2333 | * may return off node objects because partial slabs are obtained | |
2334 | * from other nodes and filled up. | |
81819f0f | 2335 | * |
43efd3ea LP |
2336 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2337 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2338 | * allocation will first attempt to defrag slab caches on other nodes. | |
2339 | * This means scanning over all nodes to look for partial slabs which | |
2340 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2341 | * with available objects. |
81819f0f | 2342 | */ |
9824601e CL |
2343 | if (!s->remote_node_defrag_ratio || |
2344 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2345 | return NULL; |
2346 | ||
cc9a6c87 | 2347 | do { |
d26914d1 | 2348 | cpuset_mems_cookie = read_mems_allowed_begin(); |
6edf2576 | 2349 | zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); |
97a225e6 | 2350 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2351 | struct kmem_cache_node *n; |
2352 | ||
2353 | n = get_node(s, zone_to_nid(zone)); | |
2354 | ||
6edf2576 | 2355 | if (n && cpuset_zone_allowed(zone, pc->flags) && |
cc9a6c87 | 2356 | n->nr_partial > s->min_partial) { |
6edf2576 | 2357 | object = get_partial_node(s, n, pc); |
cc9a6c87 MG |
2358 | if (object) { |
2359 | /* | |
d26914d1 MG |
2360 | * Don't check read_mems_allowed_retry() |
2361 | * here - if mems_allowed was updated in | |
2362 | * parallel, that was a harmless race | |
2363 | * between allocation and the cpuset | |
2364 | * update | |
cc9a6c87 | 2365 | */ |
cc9a6c87 MG |
2366 | return object; |
2367 | } | |
c0ff7453 | 2368 | } |
81819f0f | 2369 | } |
d26914d1 | 2370 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2371 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2372 | return NULL; |
2373 | } | |
2374 | ||
2375 | /* | |
c2092c12 | 2376 | * Get a partial slab, lock it and return it. |
81819f0f | 2377 | */ |
6edf2576 | 2378 | static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) |
81819f0f | 2379 | { |
497b66f2 | 2380 | void *object; |
a561ce00 JK |
2381 | int searchnode = node; |
2382 | ||
2383 | if (node == NUMA_NO_NODE) | |
2384 | searchnode = numa_mem_id(); | |
81819f0f | 2385 | |
6edf2576 | 2386 | object = get_partial_node(s, get_node(s, searchnode), pc); |
497b66f2 CL |
2387 | if (object || node != NUMA_NO_NODE) |
2388 | return object; | |
81819f0f | 2389 | |
6edf2576 | 2390 | return get_any_partial(s, pc); |
81819f0f CL |
2391 | } |
2392 | ||
0af8489b VB |
2393 | #ifndef CONFIG_SLUB_TINY |
2394 | ||
923717cb | 2395 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2396 | /* |
0d645ed1 | 2397 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2398 | * during cmpxchg. The transactions start with the cpu number and are then |
2399 | * incremented by CONFIG_NR_CPUS. | |
2400 | */ | |
2401 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2402 | #else | |
2403 | /* | |
2404 | * No preemption supported therefore also no need to check for | |
2405 | * different cpus. | |
2406 | */ | |
2407 | #define TID_STEP 1 | |
0af8489b | 2408 | #endif /* CONFIG_PREEMPTION */ |
8a5ec0ba CL |
2409 | |
2410 | static inline unsigned long next_tid(unsigned long tid) | |
2411 | { | |
2412 | return tid + TID_STEP; | |
2413 | } | |
2414 | ||
9d5f0be0 | 2415 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2416 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2417 | { | |
2418 | return tid % TID_STEP; | |
2419 | } | |
2420 | ||
2421 | static inline unsigned long tid_to_event(unsigned long tid) | |
2422 | { | |
2423 | return tid / TID_STEP; | |
2424 | } | |
9d5f0be0 | 2425 | #endif |
8a5ec0ba CL |
2426 | |
2427 | static inline unsigned int init_tid(int cpu) | |
2428 | { | |
2429 | return cpu; | |
2430 | } | |
2431 | ||
2432 | static inline void note_cmpxchg_failure(const char *n, | |
2433 | const struct kmem_cache *s, unsigned long tid) | |
2434 | { | |
2435 | #ifdef SLUB_DEBUG_CMPXCHG | |
2436 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2437 | ||
f9f58285 | 2438 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2439 | |
923717cb | 2440 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2441 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2442 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2443 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2444 | else | |
2445 | #endif | |
2446 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2447 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2448 | tid_to_event(tid), tid_to_event(actual_tid)); |
2449 | else | |
f9f58285 | 2450 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2451 | actual_tid, tid, next_tid(tid)); |
2452 | #endif | |
4fdccdfb | 2453 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2454 | } |
2455 | ||
788e1aad | 2456 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2457 | { |
8a5ec0ba | 2458 | int cpu; |
bd0e7491 | 2459 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2460 | |
bd0e7491 VB |
2461 | for_each_possible_cpu(cpu) { |
2462 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2463 | local_lock_init(&c->lock); | |
2464 | c->tid = init_tid(cpu); | |
2465 | } | |
8a5ec0ba | 2466 | } |
2cfb7455 | 2467 | |
81819f0f | 2468 | /* |
c2092c12 | 2469 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
a019d201 VB |
2470 | * unfreezes the slabs and puts it on the proper list. |
2471 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2472 | * by the caller. | |
81819f0f | 2473 | */ |
bb192ed9 | 2474 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
a019d201 | 2475 | void *freelist) |
81819f0f | 2476 | { |
a8e53869 | 2477 | enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; |
bb192ed9 | 2478 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
6d3a16d0 HY |
2479 | int free_delta = 0; |
2480 | enum slab_modes mode = M_NONE; | |
d930ff03 | 2481 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2482 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2483 | unsigned long flags = 0; |
bb192ed9 VB |
2484 | struct slab new; |
2485 | struct slab old; | |
2cfb7455 | 2486 | |
bb192ed9 | 2487 | if (slab->freelist) { |
84e554e6 | 2488 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2489 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2490 | } |
2491 | ||
894b8788 | 2492 | /* |
d930ff03 VB |
2493 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2494 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2495 | */ |
d930ff03 VB |
2496 | freelist_tail = NULL; |
2497 | freelist_iter = freelist; | |
2498 | while (freelist_iter) { | |
2499 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2500 | |
52f23478 DZ |
2501 | /* |
2502 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2503 | * 'freelist_iter' is already corrupted. So isolate all objects |
2504 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2505 | */ |
bb192ed9 | 2506 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
52f23478 DZ |
2507 | break; |
2508 | ||
d930ff03 VB |
2509 | freelist_tail = freelist_iter; |
2510 | free_delta++; | |
2cfb7455 | 2511 | |
d930ff03 | 2512 | freelist_iter = nextfree; |
2cfb7455 CL |
2513 | } |
2514 | ||
894b8788 | 2515 | /* |
c2092c12 VB |
2516 | * Stage two: Unfreeze the slab while splicing the per-cpu |
2517 | * freelist to the head of slab's freelist. | |
d930ff03 | 2518 | * |
c2092c12 | 2519 | * Ensure that the slab is unfrozen while the list presence |
d930ff03 | 2520 | * reflects the actual number of objects during unfreeze. |
2cfb7455 | 2521 | * |
6d3a16d0 HY |
2522 | * We first perform cmpxchg holding lock and insert to list |
2523 | * when it succeed. If there is mismatch then the slab is not | |
2524 | * unfrozen and number of objects in the slab may have changed. | |
2525 | * Then release lock and retry cmpxchg again. | |
894b8788 | 2526 | */ |
2cfb7455 | 2527 | redo: |
894b8788 | 2528 | |
bb192ed9 VB |
2529 | old.freelist = READ_ONCE(slab->freelist); |
2530 | old.counters = READ_ONCE(slab->counters); | |
a0132ac0 | 2531 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2532 | |
2cfb7455 CL |
2533 | /* Determine target state of the slab */ |
2534 | new.counters = old.counters; | |
d930ff03 VB |
2535 | if (freelist_tail) { |
2536 | new.inuse -= free_delta; | |
2537 | set_freepointer(s, freelist_tail, old.freelist); | |
2cfb7455 CL |
2538 | new.freelist = freelist; |
2539 | } else | |
2540 | new.freelist = old.freelist; | |
2541 | ||
2542 | new.frozen = 0; | |
2543 | ||
6d3a16d0 HY |
2544 | if (!new.inuse && n->nr_partial >= s->min_partial) { |
2545 | mode = M_FREE; | |
2546 | } else if (new.freelist) { | |
2547 | mode = M_PARTIAL; | |
2548 | /* | |
2549 | * Taking the spinlock removes the possibility that | |
2550 | * acquire_slab() will see a slab that is frozen | |
2551 | */ | |
2552 | spin_lock_irqsave(&n->list_lock, flags); | |
2cfb7455 | 2553 | } else { |
6d3a16d0 | 2554 | mode = M_FULL_NOLIST; |
2cfb7455 CL |
2555 | } |
2556 | ||
2cfb7455 | 2557 | |
bb192ed9 | 2558 | if (!cmpxchg_double_slab(s, slab, |
2cfb7455 CL |
2559 | old.freelist, old.counters, |
2560 | new.freelist, new.counters, | |
6d3a16d0 | 2561 | "unfreezing slab")) { |
a8e53869 | 2562 | if (mode == M_PARTIAL) |
6d3a16d0 | 2563 | spin_unlock_irqrestore(&n->list_lock, flags); |
2cfb7455 | 2564 | goto redo; |
6d3a16d0 | 2565 | } |
2cfb7455 | 2566 | |
2cfb7455 | 2567 | |
6d3a16d0 HY |
2568 | if (mode == M_PARTIAL) { |
2569 | add_partial(n, slab, tail); | |
2570 | spin_unlock_irqrestore(&n->list_lock, flags); | |
88349a28 | 2571 | stat(s, tail); |
6d3a16d0 | 2572 | } else if (mode == M_FREE) { |
2cfb7455 | 2573 | stat(s, DEACTIVATE_EMPTY); |
bb192ed9 | 2574 | discard_slab(s, slab); |
2cfb7455 | 2575 | stat(s, FREE_SLAB); |
6d3a16d0 HY |
2576 | } else if (mode == M_FULL_NOLIST) { |
2577 | stat(s, DEACTIVATE_FULL); | |
894b8788 | 2578 | } |
81819f0f CL |
2579 | } |
2580 | ||
345c905d | 2581 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2582 | static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) |
fc1455f4 | 2583 | { |
43d77867 | 2584 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
bb192ed9 | 2585 | struct slab *slab, *slab_to_discard = NULL; |
7cf9f3ba | 2586 | unsigned long flags = 0; |
49e22585 | 2587 | |
bb192ed9 VB |
2588 | while (partial_slab) { |
2589 | struct slab new; | |
2590 | struct slab old; | |
49e22585 | 2591 | |
bb192ed9 VB |
2592 | slab = partial_slab; |
2593 | partial_slab = slab->next; | |
43d77867 | 2594 | |
bb192ed9 | 2595 | n2 = get_node(s, slab_nid(slab)); |
43d77867 JK |
2596 | if (n != n2) { |
2597 | if (n) | |
7cf9f3ba | 2598 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
2599 | |
2600 | n = n2; | |
7cf9f3ba | 2601 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 2602 | } |
49e22585 CL |
2603 | |
2604 | do { | |
2605 | ||
bb192ed9 VB |
2606 | old.freelist = slab->freelist; |
2607 | old.counters = slab->counters; | |
a0132ac0 | 2608 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2609 | |
2610 | new.counters = old.counters; | |
2611 | new.freelist = old.freelist; | |
2612 | ||
2613 | new.frozen = 0; | |
2614 | ||
bb192ed9 | 2615 | } while (!__cmpxchg_double_slab(s, slab, |
49e22585 CL |
2616 | old.freelist, old.counters, |
2617 | new.freelist, new.counters, | |
2618 | "unfreezing slab")); | |
2619 | ||
8a5b20ae | 2620 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
bb192ed9 VB |
2621 | slab->next = slab_to_discard; |
2622 | slab_to_discard = slab; | |
43d77867 | 2623 | } else { |
bb192ed9 | 2624 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
43d77867 | 2625 | stat(s, FREE_ADD_PARTIAL); |
49e22585 CL |
2626 | } |
2627 | } | |
2628 | ||
2629 | if (n) | |
7cf9f3ba | 2630 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 2631 | |
bb192ed9 VB |
2632 | while (slab_to_discard) { |
2633 | slab = slab_to_discard; | |
2634 | slab_to_discard = slab_to_discard->next; | |
9ada1934 SL |
2635 | |
2636 | stat(s, DEACTIVATE_EMPTY); | |
bb192ed9 | 2637 | discard_slab(s, slab); |
9ada1934 SL |
2638 | stat(s, FREE_SLAB); |
2639 | } | |
fc1455f4 | 2640 | } |
f3ab8b6b | 2641 | |
fc1455f4 VB |
2642 | /* |
2643 | * Unfreeze all the cpu partial slabs. | |
2644 | */ | |
2645 | static void unfreeze_partials(struct kmem_cache *s) | |
2646 | { | |
bb192ed9 | 2647 | struct slab *partial_slab; |
fc1455f4 VB |
2648 | unsigned long flags; |
2649 | ||
bd0e7491 | 2650 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2651 | partial_slab = this_cpu_read(s->cpu_slab->partial); |
fc1455f4 | 2652 | this_cpu_write(s->cpu_slab->partial, NULL); |
bd0e7491 | 2653 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 | 2654 | |
bb192ed9 VB |
2655 | if (partial_slab) |
2656 | __unfreeze_partials(s, partial_slab); | |
fc1455f4 VB |
2657 | } |
2658 | ||
2659 | static void unfreeze_partials_cpu(struct kmem_cache *s, | |
2660 | struct kmem_cache_cpu *c) | |
2661 | { | |
bb192ed9 | 2662 | struct slab *partial_slab; |
fc1455f4 | 2663 | |
bb192ed9 | 2664 | partial_slab = slub_percpu_partial(c); |
fc1455f4 VB |
2665 | c->partial = NULL; |
2666 | ||
bb192ed9 VB |
2667 | if (partial_slab) |
2668 | __unfreeze_partials(s, partial_slab); | |
49e22585 CL |
2669 | } |
2670 | ||
2671 | /* | |
c2092c12 VB |
2672 | * Put a slab that was just frozen (in __slab_free|get_partial_node) into a |
2673 | * partial slab slot if available. | |
49e22585 CL |
2674 | * |
2675 | * If we did not find a slot then simply move all the partials to the | |
2676 | * per node partial list. | |
2677 | */ | |
bb192ed9 | 2678 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
49e22585 | 2679 | { |
bb192ed9 VB |
2680 | struct slab *oldslab; |
2681 | struct slab *slab_to_unfreeze = NULL; | |
e0a043aa | 2682 | unsigned long flags; |
bb192ed9 | 2683 | int slabs = 0; |
49e22585 | 2684 | |
bd0e7491 | 2685 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 2686 | |
bb192ed9 | 2687 | oldslab = this_cpu_read(s->cpu_slab->partial); |
e0a043aa | 2688 | |
bb192ed9 VB |
2689 | if (oldslab) { |
2690 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
e0a043aa VB |
2691 | /* |
2692 | * Partial array is full. Move the existing set to the | |
2693 | * per node partial list. Postpone the actual unfreezing | |
2694 | * outside of the critical section. | |
2695 | */ | |
bb192ed9 VB |
2696 | slab_to_unfreeze = oldslab; |
2697 | oldslab = NULL; | |
e0a043aa | 2698 | } else { |
bb192ed9 | 2699 | slabs = oldslab->slabs; |
49e22585 | 2700 | } |
e0a043aa | 2701 | } |
49e22585 | 2702 | |
bb192ed9 | 2703 | slabs++; |
49e22585 | 2704 | |
bb192ed9 VB |
2705 | slab->slabs = slabs; |
2706 | slab->next = oldslab; | |
49e22585 | 2707 | |
bb192ed9 | 2708 | this_cpu_write(s->cpu_slab->partial, slab); |
e0a043aa | 2709 | |
bd0e7491 | 2710 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa | 2711 | |
bb192ed9 VB |
2712 | if (slab_to_unfreeze) { |
2713 | __unfreeze_partials(s, slab_to_unfreeze); | |
e0a043aa VB |
2714 | stat(s, CPU_PARTIAL_DRAIN); |
2715 | } | |
49e22585 CL |
2716 | } |
2717 | ||
e0a043aa VB |
2718 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
2719 | ||
2720 | static inline void unfreeze_partials(struct kmem_cache *s) { } | |
2721 | static inline void unfreeze_partials_cpu(struct kmem_cache *s, | |
2722 | struct kmem_cache_cpu *c) { } | |
2723 | ||
2724 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
2725 | ||
dfb4f096 | 2726 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2727 | { |
5a836bf6 | 2728 | unsigned long flags; |
bb192ed9 | 2729 | struct slab *slab; |
5a836bf6 SAS |
2730 | void *freelist; |
2731 | ||
bd0e7491 | 2732 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 | 2733 | |
bb192ed9 | 2734 | slab = c->slab; |
5a836bf6 | 2735 | freelist = c->freelist; |
c17dda40 | 2736 | |
bb192ed9 | 2737 | c->slab = NULL; |
a019d201 | 2738 | c->freelist = NULL; |
c17dda40 | 2739 | c->tid = next_tid(c->tid); |
a019d201 | 2740 | |
bd0e7491 | 2741 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 2742 | |
bb192ed9 VB |
2743 | if (slab) { |
2744 | deactivate_slab(s, slab, freelist); | |
5a836bf6 SAS |
2745 | stat(s, CPUSLAB_FLUSH); |
2746 | } | |
81819f0f CL |
2747 | } |
2748 | ||
0c710013 | 2749 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2750 | { |
9dfc6e68 | 2751 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 | 2752 | void *freelist = c->freelist; |
bb192ed9 | 2753 | struct slab *slab = c->slab; |
81819f0f | 2754 | |
bb192ed9 | 2755 | c->slab = NULL; |
08beb547 VB |
2756 | c->freelist = NULL; |
2757 | c->tid = next_tid(c->tid); | |
2758 | ||
bb192ed9 VB |
2759 | if (slab) { |
2760 | deactivate_slab(s, slab, freelist); | |
08beb547 VB |
2761 | stat(s, CPUSLAB_FLUSH); |
2762 | } | |
49e22585 | 2763 | |
fc1455f4 | 2764 | unfreeze_partials_cpu(s, c); |
81819f0f CL |
2765 | } |
2766 | ||
5a836bf6 SAS |
2767 | struct slub_flush_work { |
2768 | struct work_struct work; | |
2769 | struct kmem_cache *s; | |
2770 | bool skip; | |
2771 | }; | |
2772 | ||
fc1455f4 VB |
2773 | /* |
2774 | * Flush cpu slab. | |
2775 | * | |
5a836bf6 | 2776 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 2777 | */ |
5a836bf6 | 2778 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 2779 | { |
5a836bf6 SAS |
2780 | struct kmem_cache *s; |
2781 | struct kmem_cache_cpu *c; | |
2782 | struct slub_flush_work *sfw; | |
2783 | ||
2784 | sfw = container_of(w, struct slub_flush_work, work); | |
2785 | ||
2786 | s = sfw->s; | |
2787 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 | 2788 | |
bb192ed9 | 2789 | if (c->slab) |
fc1455f4 | 2790 | flush_slab(s, c); |
81819f0f | 2791 | |
fc1455f4 | 2792 | unfreeze_partials(s); |
81819f0f CL |
2793 | } |
2794 | ||
5a836bf6 | 2795 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 2796 | { |
a8364d55 GBY |
2797 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2798 | ||
bb192ed9 | 2799 | return c->slab || slub_percpu_partial(c); |
a8364d55 GBY |
2800 | } |
2801 | ||
5a836bf6 SAS |
2802 | static DEFINE_MUTEX(flush_lock); |
2803 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
2804 | ||
2805 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
2806 | { | |
2807 | struct slub_flush_work *sfw; | |
2808 | unsigned int cpu; | |
2809 | ||
2810 | lockdep_assert_cpus_held(); | |
2811 | mutex_lock(&flush_lock); | |
2812 | ||
2813 | for_each_online_cpu(cpu) { | |
2814 | sfw = &per_cpu(slub_flush, cpu); | |
2815 | if (!has_cpu_slab(cpu, s)) { | |
2816 | sfw->skip = true; | |
2817 | continue; | |
2818 | } | |
2819 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
2820 | sfw->skip = false; | |
2821 | sfw->s = s; | |
e45cc288 | 2822 | queue_work_on(cpu, flushwq, &sfw->work); |
5a836bf6 SAS |
2823 | } |
2824 | ||
2825 | for_each_online_cpu(cpu) { | |
2826 | sfw = &per_cpu(slub_flush, cpu); | |
2827 | if (sfw->skip) | |
2828 | continue; | |
2829 | flush_work(&sfw->work); | |
2830 | } | |
2831 | ||
2832 | mutex_unlock(&flush_lock); | |
2833 | } | |
2834 | ||
81819f0f CL |
2835 | static void flush_all(struct kmem_cache *s) |
2836 | { | |
5a836bf6 SAS |
2837 | cpus_read_lock(); |
2838 | flush_all_cpus_locked(s); | |
2839 | cpus_read_unlock(); | |
81819f0f CL |
2840 | } |
2841 | ||
a96a87bf SAS |
2842 | /* |
2843 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2844 | * necessary. | |
2845 | */ | |
2846 | static int slub_cpu_dead(unsigned int cpu) | |
2847 | { | |
2848 | struct kmem_cache *s; | |
a96a87bf SAS |
2849 | |
2850 | mutex_lock(&slab_mutex); | |
0e7ac738 | 2851 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 2852 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
2853 | mutex_unlock(&slab_mutex); |
2854 | return 0; | |
2855 | } | |
2856 | ||
0af8489b VB |
2857 | #else /* CONFIG_SLUB_TINY */ |
2858 | static inline void flush_all_cpus_locked(struct kmem_cache *s) { } | |
2859 | static inline void flush_all(struct kmem_cache *s) { } | |
2860 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } | |
2861 | static inline int slub_cpu_dead(unsigned int cpu) { return 0; } | |
2862 | #endif /* CONFIG_SLUB_TINY */ | |
2863 | ||
dfb4f096 CL |
2864 | /* |
2865 | * Check if the objects in a per cpu structure fit numa | |
2866 | * locality expectations. | |
2867 | */ | |
bb192ed9 | 2868 | static inline int node_match(struct slab *slab, int node) |
dfb4f096 CL |
2869 | { |
2870 | #ifdef CONFIG_NUMA | |
bb192ed9 | 2871 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
dfb4f096 CL |
2872 | return 0; |
2873 | #endif | |
2874 | return 1; | |
2875 | } | |
2876 | ||
9a02d699 | 2877 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 2878 | static int count_free(struct slab *slab) |
781b2ba6 | 2879 | { |
bb192ed9 | 2880 | return slab->objects - slab->inuse; |
781b2ba6 PE |
2881 | } |
2882 | ||
9a02d699 DR |
2883 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2884 | { | |
2885 | return atomic_long_read(&n->total_objects); | |
2886 | } | |
a579b056 VB |
2887 | |
2888 | /* Supports checking bulk free of a constructed freelist */ | |
fa9b88e4 VB |
2889 | static inline bool free_debug_processing(struct kmem_cache *s, |
2890 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
2891 | unsigned long addr, depot_stack_handle_t handle) | |
a579b056 | 2892 | { |
fa9b88e4 | 2893 | bool checks_ok = false; |
a579b056 VB |
2894 | void *object = head; |
2895 | int cnt = 0; | |
a579b056 VB |
2896 | |
2897 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
2898 | if (!check_slab(s, slab)) | |
2899 | goto out; | |
2900 | } | |
2901 | ||
fa9b88e4 | 2902 | if (slab->inuse < *bulk_cnt) { |
c7323a5a | 2903 | slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", |
fa9b88e4 | 2904 | slab->inuse, *bulk_cnt); |
c7323a5a VB |
2905 | goto out; |
2906 | } | |
2907 | ||
a579b056 | 2908 | next_object: |
c7323a5a | 2909 | |
fa9b88e4 | 2910 | if (++cnt > *bulk_cnt) |
c7323a5a | 2911 | goto out_cnt; |
a579b056 VB |
2912 | |
2913 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
2914 | if (!free_consistency_checks(s, slab, object, addr)) | |
2915 | goto out; | |
2916 | } | |
2917 | ||
2918 | if (s->flags & SLAB_STORE_USER) | |
2919 | set_track_update(s, object, TRACK_FREE, addr, handle); | |
2920 | trace(s, slab, object, 0); | |
2921 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | |
2922 | init_object(s, object, SLUB_RED_INACTIVE); | |
2923 | ||
2924 | /* Reached end of constructed freelist yet? */ | |
2925 | if (object != tail) { | |
2926 | object = get_freepointer(s, object); | |
2927 | goto next_object; | |
2928 | } | |
c7323a5a | 2929 | checks_ok = true; |
a579b056 | 2930 | |
c7323a5a | 2931 | out_cnt: |
fa9b88e4 | 2932 | if (cnt != *bulk_cnt) { |
c7323a5a | 2933 | slab_err(s, slab, "Bulk free expected %d objects but found %d\n", |
fa9b88e4 VB |
2934 | *bulk_cnt, cnt); |
2935 | *bulk_cnt = cnt; | |
c7323a5a VB |
2936 | } |
2937 | ||
fa9b88e4 | 2938 | out: |
c7323a5a VB |
2939 | |
2940 | if (!checks_ok) | |
a579b056 | 2941 | slab_fix(s, "Object at 0x%p not freed", object); |
c7323a5a | 2942 | |
fa9b88e4 | 2943 | return checks_ok; |
a579b056 | 2944 | } |
9a02d699 DR |
2945 | #endif /* CONFIG_SLUB_DEBUG */ |
2946 | ||
b1a413a3 | 2947 | #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) |
781b2ba6 | 2948 | static unsigned long count_partial(struct kmem_cache_node *n, |
bb192ed9 | 2949 | int (*get_count)(struct slab *)) |
781b2ba6 PE |
2950 | { |
2951 | unsigned long flags; | |
2952 | unsigned long x = 0; | |
bb192ed9 | 2953 | struct slab *slab; |
781b2ba6 PE |
2954 | |
2955 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
2956 | list_for_each_entry(slab, &n->partial, slab_list) |
2957 | x += get_count(slab); | |
781b2ba6 PE |
2958 | spin_unlock_irqrestore(&n->list_lock, flags); |
2959 | return x; | |
2960 | } | |
b1a413a3 | 2961 | #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ |
26c02cf0 | 2962 | |
56d5a2b9 | 2963 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2964 | static noinline void |
2965 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2966 | { | |
9a02d699 DR |
2967 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
2968 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2969 | int node; |
fa45dc25 | 2970 | struct kmem_cache_node *n; |
781b2ba6 | 2971 | |
9a02d699 DR |
2972 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2973 | return; | |
2974 | ||
5b3810e5 VB |
2975 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2976 | nid, gfpflags, &gfpflags); | |
19af27af | 2977 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2978 | s->name, s->object_size, s->size, oo_order(s->oo), |
2979 | oo_order(s->min)); | |
781b2ba6 | 2980 | |
3b0efdfa | 2981 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2982 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2983 | s->name); | |
fa5ec8a1 | 2984 | |
fa45dc25 | 2985 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2986 | unsigned long nr_slabs; |
2987 | unsigned long nr_objs; | |
2988 | unsigned long nr_free; | |
2989 | ||
26c02cf0 AB |
2990 | nr_free = count_partial(n, count_free); |
2991 | nr_slabs = node_nr_slabs(n); | |
2992 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2993 | |
f9f58285 | 2994 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2995 | node, nr_slabs, nr_objs, nr_free); |
2996 | } | |
2997 | } | |
56d5a2b9 VB |
2998 | #else /* CONFIG_SLUB_DEBUG */ |
2999 | static inline void | |
3000 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } | |
3001 | #endif | |
781b2ba6 | 3002 | |
01b34d16 | 3003 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
072bb0aa | 3004 | { |
01b34d16 | 3005 | if (unlikely(slab_test_pfmemalloc(slab))) |
0b303fb4 VB |
3006 | return gfp_pfmemalloc_allowed(gfpflags); |
3007 | ||
3008 | return true; | |
3009 | } | |
3010 | ||
0af8489b | 3011 | #ifndef CONFIG_SLUB_TINY |
213eeb9f | 3012 | /* |
c2092c12 VB |
3013 | * Check the slab->freelist and either transfer the freelist to the |
3014 | * per cpu freelist or deactivate the slab. | |
213eeb9f | 3015 | * |
c2092c12 | 3016 | * The slab is still frozen if the return value is not NULL. |
213eeb9f | 3017 | * |
c2092c12 | 3018 | * If this function returns NULL then the slab has been unfrozen. |
213eeb9f | 3019 | */ |
bb192ed9 | 3020 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
213eeb9f | 3021 | { |
bb192ed9 | 3022 | struct slab new; |
213eeb9f CL |
3023 | unsigned long counters; |
3024 | void *freelist; | |
3025 | ||
bd0e7491 VB |
3026 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
3027 | ||
213eeb9f | 3028 | do { |
bb192ed9 VB |
3029 | freelist = slab->freelist; |
3030 | counters = slab->counters; | |
6faa6833 | 3031 | |
213eeb9f | 3032 | new.counters = counters; |
a0132ac0 | 3033 | VM_BUG_ON(!new.frozen); |
213eeb9f | 3034 | |
bb192ed9 | 3035 | new.inuse = slab->objects; |
213eeb9f CL |
3036 | new.frozen = freelist != NULL; |
3037 | ||
bb192ed9 | 3038 | } while (!__cmpxchg_double_slab(s, slab, |
213eeb9f CL |
3039 | freelist, counters, |
3040 | NULL, new.counters, | |
3041 | "get_freelist")); | |
3042 | ||
3043 | return freelist; | |
3044 | } | |
3045 | ||
81819f0f | 3046 | /* |
894b8788 CL |
3047 | * Slow path. The lockless freelist is empty or we need to perform |
3048 | * debugging duties. | |
3049 | * | |
894b8788 CL |
3050 | * Processing is still very fast if new objects have been freed to the |
3051 | * regular freelist. In that case we simply take over the regular freelist | |
3052 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 3053 | * |
894b8788 CL |
3054 | * If that is not working then we fall back to the partial lists. We take the |
3055 | * first element of the freelist as the object to allocate now and move the | |
3056 | * rest of the freelist to the lockless freelist. | |
81819f0f | 3057 | * |
894b8788 | 3058 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
3059 | * we need to allocate a new slab. This is the slowest path since it involves |
3060 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 3061 | * |
e500059b | 3062 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 3063 | * already disabled (which is the case for bulk allocation). |
81819f0f | 3064 | */ |
a380a3c7 | 3065 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
6edf2576 | 3066 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
81819f0f | 3067 | { |
6faa6833 | 3068 | void *freelist; |
bb192ed9 | 3069 | struct slab *slab; |
e500059b | 3070 | unsigned long flags; |
6edf2576 | 3071 | struct partial_context pc; |
81819f0f | 3072 | |
9f986d99 AW |
3073 | stat(s, ALLOC_SLOWPATH); |
3074 | ||
c2092c12 | 3075 | reread_slab: |
0b303fb4 | 3076 | |
bb192ed9 VB |
3077 | slab = READ_ONCE(c->slab); |
3078 | if (!slab) { | |
0715e6c5 VB |
3079 | /* |
3080 | * if the node is not online or has no normal memory, just | |
3081 | * ignore the node constraint | |
3082 | */ | |
3083 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 3084 | !node_isset(node, slab_nodes))) |
0715e6c5 | 3085 | node = NUMA_NO_NODE; |
81819f0f | 3086 | goto new_slab; |
0715e6c5 | 3087 | } |
49e22585 | 3088 | redo: |
6faa6833 | 3089 | |
bb192ed9 | 3090 | if (unlikely(!node_match(slab, node))) { |
0715e6c5 VB |
3091 | /* |
3092 | * same as above but node_match() being false already | |
3093 | * implies node != NUMA_NO_NODE | |
3094 | */ | |
7e1fa93d | 3095 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 | 3096 | node = NUMA_NO_NODE; |
0715e6c5 | 3097 | } else { |
a561ce00 | 3098 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 3099 | goto deactivate_slab; |
a561ce00 | 3100 | } |
fc59c053 | 3101 | } |
6446faa2 | 3102 | |
072bb0aa MG |
3103 | /* |
3104 | * By rights, we should be searching for a slab page that was | |
3105 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
3106 | * information when the page leaves the per-cpu allocator | |
3107 | */ | |
bb192ed9 | 3108 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
0b303fb4 | 3109 | goto deactivate_slab; |
072bb0aa | 3110 | |
c2092c12 | 3111 | /* must check again c->slab in case we got preempted and it changed */ |
bd0e7491 | 3112 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3113 | if (unlikely(slab != c->slab)) { |
bd0e7491 | 3114 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3115 | goto reread_slab; |
0b303fb4 | 3116 | } |
6faa6833 CL |
3117 | freelist = c->freelist; |
3118 | if (freelist) | |
73736e03 | 3119 | goto load_freelist; |
03e404af | 3120 | |
bb192ed9 | 3121 | freelist = get_freelist(s, slab); |
6446faa2 | 3122 | |
6faa6833 | 3123 | if (!freelist) { |
bb192ed9 | 3124 | c->slab = NULL; |
eeaa345e | 3125 | c->tid = next_tid(c->tid); |
bd0e7491 | 3126 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 3127 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 3128 | goto new_slab; |
03e404af | 3129 | } |
6446faa2 | 3130 | |
84e554e6 | 3131 | stat(s, ALLOC_REFILL); |
6446faa2 | 3132 | |
894b8788 | 3133 | load_freelist: |
0b303fb4 | 3134 | |
bd0e7491 | 3135 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 3136 | |
507effea CL |
3137 | /* |
3138 | * freelist is pointing to the list of objects to be used. | |
c2092c12 VB |
3139 | * slab is pointing to the slab from which the objects are obtained. |
3140 | * That slab must be frozen for per cpu allocations to work. | |
507effea | 3141 | */ |
bb192ed9 | 3142 | VM_BUG_ON(!c->slab->frozen); |
6faa6833 | 3143 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 3144 | c->tid = next_tid(c->tid); |
bd0e7491 | 3145 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 3146 | return freelist; |
81819f0f | 3147 | |
0b303fb4 VB |
3148 | deactivate_slab: |
3149 | ||
bd0e7491 | 3150 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3151 | if (slab != c->slab) { |
bd0e7491 | 3152 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3153 | goto reread_slab; |
0b303fb4 | 3154 | } |
a019d201 | 3155 | freelist = c->freelist; |
bb192ed9 | 3156 | c->slab = NULL; |
a019d201 | 3157 | c->freelist = NULL; |
eeaa345e | 3158 | c->tid = next_tid(c->tid); |
bd0e7491 | 3159 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
bb192ed9 | 3160 | deactivate_slab(s, slab, freelist); |
0b303fb4 | 3161 | |
81819f0f | 3162 | new_slab: |
2cfb7455 | 3163 | |
a93cf07b | 3164 | if (slub_percpu_partial(c)) { |
bd0e7491 | 3165 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3166 | if (unlikely(c->slab)) { |
bd0e7491 | 3167 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3168 | goto reread_slab; |
fa417ab7 | 3169 | } |
4b1f449d | 3170 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 3171 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
3172 | /* we were preempted and partial list got empty */ |
3173 | goto new_objects; | |
4b1f449d | 3174 | } |
fa417ab7 | 3175 | |
bb192ed9 VB |
3176 | slab = c->slab = slub_percpu_partial(c); |
3177 | slub_set_percpu_partial(c, slab); | |
bd0e7491 | 3178 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
49e22585 | 3179 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 3180 | goto redo; |
81819f0f CL |
3181 | } |
3182 | ||
fa417ab7 VB |
3183 | new_objects: |
3184 | ||
6edf2576 FT |
3185 | pc.flags = gfpflags; |
3186 | pc.slab = &slab; | |
3187 | pc.orig_size = orig_size; | |
3188 | freelist = get_partial(s, node, &pc); | |
3f2b77e3 | 3189 | if (freelist) |
c2092c12 | 3190 | goto check_new_slab; |
2a904905 | 3191 | |
25c00c50 | 3192 | slub_put_cpu_ptr(s->cpu_slab); |
bb192ed9 | 3193 | slab = new_slab(s, gfpflags, node); |
25c00c50 | 3194 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 3195 | |
bb192ed9 | 3196 | if (unlikely(!slab)) { |
9a02d699 | 3197 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 3198 | return NULL; |
81819f0f | 3199 | } |
2cfb7455 | 3200 | |
c7323a5a VB |
3201 | stat(s, ALLOC_SLAB); |
3202 | ||
3203 | if (kmem_cache_debug(s)) { | |
6edf2576 | 3204 | freelist = alloc_single_from_new_slab(s, slab, orig_size); |
c7323a5a VB |
3205 | |
3206 | if (unlikely(!freelist)) | |
3207 | goto new_objects; | |
3208 | ||
3209 | if (s->flags & SLAB_STORE_USER) | |
3210 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3211 | ||
3212 | return freelist; | |
3213 | } | |
3214 | ||
53a0de06 | 3215 | /* |
c2092c12 | 3216 | * No other reference to the slab yet so we can |
53a0de06 VB |
3217 | * muck around with it freely without cmpxchg |
3218 | */ | |
bb192ed9 VB |
3219 | freelist = slab->freelist; |
3220 | slab->freelist = NULL; | |
c7323a5a VB |
3221 | slab->inuse = slab->objects; |
3222 | slab->frozen = 1; | |
53a0de06 | 3223 | |
c7323a5a | 3224 | inc_slabs_node(s, slab_nid(slab), slab->objects); |
53a0de06 | 3225 | |
c2092c12 | 3226 | check_new_slab: |
2cfb7455 | 3227 | |
1572df7c | 3228 | if (kmem_cache_debug(s)) { |
c7323a5a VB |
3229 | /* |
3230 | * For debug caches here we had to go through | |
3231 | * alloc_single_from_partial() so just store the tracking info | |
3232 | * and return the object | |
3233 | */ | |
3234 | if (s->flags & SLAB_STORE_USER) | |
3235 | set_track(s, freelist, TRACK_ALLOC, addr); | |
6edf2576 | 3236 | |
c7323a5a | 3237 | return freelist; |
1572df7c VB |
3238 | } |
3239 | ||
c7323a5a | 3240 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) { |
1572df7c VB |
3241 | /* |
3242 | * For !pfmemalloc_match() case we don't load freelist so that | |
3243 | * we don't make further mismatched allocations easier. | |
3244 | */ | |
c7323a5a VB |
3245 | deactivate_slab(s, slab, get_freepointer(s, freelist)); |
3246 | return freelist; | |
3247 | } | |
1572df7c | 3248 | |
c2092c12 | 3249 | retry_load_slab: |
cfdf836e | 3250 | |
bd0e7491 | 3251 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3252 | if (unlikely(c->slab)) { |
cfdf836e | 3253 | void *flush_freelist = c->freelist; |
bb192ed9 | 3254 | struct slab *flush_slab = c->slab; |
cfdf836e | 3255 | |
bb192ed9 | 3256 | c->slab = NULL; |
cfdf836e VB |
3257 | c->freelist = NULL; |
3258 | c->tid = next_tid(c->tid); | |
3259 | ||
bd0e7491 | 3260 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 3261 | |
bb192ed9 | 3262 | deactivate_slab(s, flush_slab, flush_freelist); |
cfdf836e VB |
3263 | |
3264 | stat(s, CPUSLAB_FLUSH); | |
3265 | ||
c2092c12 | 3266 | goto retry_load_slab; |
cfdf836e | 3267 | } |
bb192ed9 | 3268 | c->slab = slab; |
3f2b77e3 | 3269 | |
1572df7c | 3270 | goto load_freelist; |
894b8788 CL |
3271 | } |
3272 | ||
a380a3c7 | 3273 | /* |
e500059b VB |
3274 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3275 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3276 | * pointer. | |
a380a3c7 CL |
3277 | */ |
3278 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
6edf2576 | 3279 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
a380a3c7 CL |
3280 | { |
3281 | void *p; | |
a380a3c7 | 3282 | |
e500059b | 3283 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3284 | /* |
3285 | * We may have been preempted and rescheduled on a different | |
e500059b | 3286 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3287 | * pointer. |
3288 | */ | |
25c00c50 | 3289 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3290 | #endif |
3291 | ||
6edf2576 | 3292 | p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); |
e500059b | 3293 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3294 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3295 | #endif |
a380a3c7 CL |
3296 | return p; |
3297 | } | |
3298 | ||
56d5a2b9 | 3299 | static __always_inline void *__slab_alloc_node(struct kmem_cache *s, |
b89fb5ef | 3300 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3301 | { |
dfb4f096 | 3302 | struct kmem_cache_cpu *c; |
bb192ed9 | 3303 | struct slab *slab; |
8a5ec0ba | 3304 | unsigned long tid; |
56d5a2b9 | 3305 | void *object; |
b89fb5ef | 3306 | |
8a5ec0ba | 3307 | redo: |
8a5ec0ba CL |
3308 | /* |
3309 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3310 | * enabled. We may switch back and forth between cpus while | |
3311 | * reading from one cpu area. That does not matter as long | |
3312 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3313 | * |
9b4bc85a VB |
3314 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3315 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3316 | * the tid. If we are preempted and switched to another cpu between the | |
3317 | * two reads, it's OK as the two are still associated with the same cpu | |
3318 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3319 | */ |
9b4bc85a VB |
3320 | c = raw_cpu_ptr(s->cpu_slab); |
3321 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3322 | |
3323 | /* | |
3324 | * Irqless object alloc/free algorithm used here depends on sequence | |
3325 | * of fetching cpu_slab's data. tid should be fetched before anything | |
c2092c12 | 3326 | * on c to guarantee that object and slab associated with previous tid |
9aabf810 | 3327 | * won't be used with current tid. If we fetch tid first, object and |
c2092c12 | 3328 | * slab could be one associated with next tid and our alloc/free |
9aabf810 JK |
3329 | * request will be failed. In this case, we will retry. So, no problem. |
3330 | */ | |
3331 | barrier(); | |
8a5ec0ba | 3332 | |
8a5ec0ba CL |
3333 | /* |
3334 | * The transaction ids are globally unique per cpu and per operation on | |
3335 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3336 | * occurs on the right processor and that there was no operation on the | |
3337 | * linked list in between. | |
3338 | */ | |
8a5ec0ba | 3339 | |
9dfc6e68 | 3340 | object = c->freelist; |
bb192ed9 | 3341 | slab = c->slab; |
1f04b07d TG |
3342 | |
3343 | if (!USE_LOCKLESS_FAST_PATH() || | |
bb192ed9 | 3344 | unlikely(!object || !slab || !node_match(slab, node))) { |
6edf2576 | 3345 | object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); |
8eae1492 | 3346 | } else { |
0ad9500e ED |
3347 | void *next_object = get_freepointer_safe(s, object); |
3348 | ||
8a5ec0ba | 3349 | /* |
25985edc | 3350 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3351 | * operation and if we are on the right processor. |
3352 | * | |
d0e0ac97 CG |
3353 | * The cmpxchg does the following atomically (without lock |
3354 | * semantics!) | |
8a5ec0ba CL |
3355 | * 1. Relocate first pointer to the current per cpu area. |
3356 | * 2. Verify that tid and freelist have not been changed | |
3357 | * 3. If they were not changed replace tid and freelist | |
3358 | * | |
d0e0ac97 CG |
3359 | * Since this is without lock semantics the protection is only |
3360 | * against code executing on this cpu *not* from access by | |
3361 | * other cpus. | |
8a5ec0ba | 3362 | */ |
933393f5 | 3363 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
3364 | s->cpu_slab->freelist, s->cpu_slab->tid, |
3365 | object, tid, | |
0ad9500e | 3366 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
3367 | |
3368 | note_cmpxchg_failure("slab_alloc", s, tid); | |
3369 | goto redo; | |
3370 | } | |
0ad9500e | 3371 | prefetch_freepointer(s, next_object); |
84e554e6 | 3372 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3373 | } |
0f181f9f | 3374 | |
56d5a2b9 VB |
3375 | return object; |
3376 | } | |
0af8489b VB |
3377 | #else /* CONFIG_SLUB_TINY */ |
3378 | static void *__slab_alloc_node(struct kmem_cache *s, | |
3379 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
3380 | { | |
3381 | struct partial_context pc; | |
3382 | struct slab *slab; | |
3383 | void *object; | |
3384 | ||
3385 | pc.flags = gfpflags; | |
3386 | pc.slab = &slab; | |
3387 | pc.orig_size = orig_size; | |
3388 | object = get_partial(s, node, &pc); | |
3389 | ||
3390 | if (object) | |
3391 | return object; | |
3392 | ||
3393 | slab = new_slab(s, gfpflags, node); | |
3394 | if (unlikely(!slab)) { | |
3395 | slab_out_of_memory(s, gfpflags, node); | |
3396 | return NULL; | |
3397 | } | |
3398 | ||
3399 | object = alloc_single_from_new_slab(s, slab, orig_size); | |
3400 | ||
3401 | return object; | |
3402 | } | |
3403 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
3404 | |
3405 | /* | |
3406 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3407 | * zeroing out freelist pointer. | |
3408 | */ | |
3409 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3410 | void *obj) | |
3411 | { | |
3412 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
3413 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), | |
3414 | 0, sizeof(void *)); | |
3415 | } | |
3416 | ||
3417 | /* | |
3418 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
3419 | * have the fastpath folded into their functions. So no function call | |
3420 | * overhead for requests that can be satisfied on the fastpath. | |
3421 | * | |
3422 | * The fastpath works by first checking if the lockless freelist can be used. | |
3423 | * If not then __slab_alloc is called for slow processing. | |
3424 | * | |
3425 | * Otherwise we can simply pick the next object from the lockless free list. | |
3426 | */ | |
be784ba8 | 3427 | static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, |
56d5a2b9 VB |
3428 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
3429 | { | |
3430 | void *object; | |
3431 | struct obj_cgroup *objcg = NULL; | |
3432 | bool init = false; | |
3433 | ||
3434 | s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); | |
3435 | if (!s) | |
3436 | return NULL; | |
3437 | ||
3438 | object = kfence_alloc(s, orig_size, gfpflags); | |
3439 | if (unlikely(object)) | |
3440 | goto out; | |
3441 | ||
3442 | object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); | |
3443 | ||
ce5716c6 | 3444 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 3445 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 3446 | |
b89fb5ef | 3447 | out: |
9ce67395 FT |
3448 | /* |
3449 | * When init equals 'true', like for kzalloc() family, only | |
3450 | * @orig_size bytes might be zeroed instead of s->object_size | |
3451 | */ | |
3452 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); | |
5a896d9e | 3453 | |
894b8788 | 3454 | return object; |
81819f0f CL |
3455 | } |
3456 | ||
be784ba8 | 3457 | static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, |
b89fb5ef | 3458 | gfp_t gfpflags, unsigned long addr, size_t orig_size) |
2b847c3c | 3459 | { |
88f2ef73 | 3460 | return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); |
2b847c3c EG |
3461 | } |
3462 | ||
be784ba8 | 3463 | static __fastpath_inline |
88f2ef73 MS |
3464 | void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, |
3465 | gfp_t gfpflags) | |
81819f0f | 3466 | { |
88f2ef73 | 3467 | void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); |
5b882be4 | 3468 | |
2c1d697f | 3469 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
5b882be4 EGM |
3470 | |
3471 | return ret; | |
81819f0f | 3472 | } |
88f2ef73 MS |
3473 | |
3474 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
3475 | { | |
3476 | return __kmem_cache_alloc_lru(s, NULL, gfpflags); | |
3477 | } | |
81819f0f CL |
3478 | EXPORT_SYMBOL(kmem_cache_alloc); |
3479 | ||
88f2ef73 MS |
3480 | void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, |
3481 | gfp_t gfpflags) | |
3482 | { | |
3483 | return __kmem_cache_alloc_lru(s, lru, gfpflags); | |
3484 | } | |
3485 | EXPORT_SYMBOL(kmem_cache_alloc_lru); | |
3486 | ||
ed4cd17e HY |
3487 | void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, |
3488 | int node, size_t orig_size, | |
3489 | unsigned long caller) | |
4a92379b | 3490 | { |
ed4cd17e HY |
3491 | return slab_alloc_node(s, NULL, gfpflags, node, |
3492 | caller, orig_size); | |
4a92379b | 3493 | } |
5b882be4 | 3494 | |
81819f0f CL |
3495 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
3496 | { | |
88f2ef73 | 3497 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 3498 | |
2c1d697f | 3499 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); |
5b882be4 EGM |
3500 | |
3501 | return ret; | |
81819f0f CL |
3502 | } |
3503 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 3504 | |
fa9b88e4 VB |
3505 | static noinline void free_to_partial_list( |
3506 | struct kmem_cache *s, struct slab *slab, | |
3507 | void *head, void *tail, int bulk_cnt, | |
3508 | unsigned long addr) | |
3509 | { | |
3510 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); | |
3511 | struct slab *slab_free = NULL; | |
3512 | int cnt = bulk_cnt; | |
3513 | unsigned long flags; | |
3514 | depot_stack_handle_t handle = 0; | |
3515 | ||
3516 | if (s->flags & SLAB_STORE_USER) | |
3517 | handle = set_track_prepare(); | |
3518 | ||
3519 | spin_lock_irqsave(&n->list_lock, flags); | |
3520 | ||
3521 | if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { | |
3522 | void *prior = slab->freelist; | |
3523 | ||
3524 | /* Perform the actual freeing while we still hold the locks */ | |
3525 | slab->inuse -= cnt; | |
3526 | set_freepointer(s, tail, prior); | |
3527 | slab->freelist = head; | |
3528 | ||
3529 | /* | |
3530 | * If the slab is empty, and node's partial list is full, | |
3531 | * it should be discarded anyway no matter it's on full or | |
3532 | * partial list. | |
3533 | */ | |
3534 | if (slab->inuse == 0 && n->nr_partial >= s->min_partial) | |
3535 | slab_free = slab; | |
3536 | ||
3537 | if (!prior) { | |
3538 | /* was on full list */ | |
3539 | remove_full(s, n, slab); | |
3540 | if (!slab_free) { | |
3541 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
3542 | stat(s, FREE_ADD_PARTIAL); | |
3543 | } | |
3544 | } else if (slab_free) { | |
3545 | remove_partial(n, slab); | |
3546 | stat(s, FREE_REMOVE_PARTIAL); | |
3547 | } | |
3548 | } | |
3549 | ||
3550 | if (slab_free) { | |
3551 | /* | |
3552 | * Update the counters while still holding n->list_lock to | |
3553 | * prevent spurious validation warnings | |
3554 | */ | |
3555 | dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); | |
3556 | } | |
3557 | ||
3558 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3559 | ||
3560 | if (slab_free) { | |
3561 | stat(s, FREE_SLAB); | |
3562 | free_slab(s, slab_free); | |
3563 | } | |
3564 | } | |
3565 | ||
81819f0f | 3566 | /* |
94e4d712 | 3567 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 3568 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 3569 | * |
894b8788 | 3570 | * So we still attempt to reduce cache line usage. Just take the slab |
c2092c12 | 3571 | * lock and free the item. If there is no additional partial slab |
894b8788 | 3572 | * handling required then we can return immediately. |
81819f0f | 3573 | */ |
bb192ed9 | 3574 | static void __slab_free(struct kmem_cache *s, struct slab *slab, |
81084651 JDB |
3575 | void *head, void *tail, int cnt, |
3576 | unsigned long addr) | |
3577 | ||
81819f0f CL |
3578 | { |
3579 | void *prior; | |
2cfb7455 | 3580 | int was_frozen; |
bb192ed9 | 3581 | struct slab new; |
2cfb7455 CL |
3582 | unsigned long counters; |
3583 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 3584 | unsigned long flags; |
81819f0f | 3585 | |
8a5ec0ba | 3586 | stat(s, FREE_SLOWPATH); |
81819f0f | 3587 | |
b89fb5ef AP |
3588 | if (kfence_free(head)) |
3589 | return; | |
3590 | ||
0af8489b | 3591 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
fa9b88e4 | 3592 | free_to_partial_list(s, slab, head, tail, cnt, addr); |
80f08c19 | 3593 | return; |
c7323a5a | 3594 | } |
6446faa2 | 3595 | |
2cfb7455 | 3596 | do { |
837d678d JK |
3597 | if (unlikely(n)) { |
3598 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3599 | n = NULL; | |
3600 | } | |
bb192ed9 VB |
3601 | prior = slab->freelist; |
3602 | counters = slab->counters; | |
81084651 | 3603 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
3604 | new.counters = counters; |
3605 | was_frozen = new.frozen; | |
81084651 | 3606 | new.inuse -= cnt; |
837d678d | 3607 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 3608 | |
c65c1877 | 3609 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
3610 | |
3611 | /* | |
d0e0ac97 CG |
3612 | * Slab was on no list before and will be |
3613 | * partially empty | |
3614 | * We can defer the list move and instead | |
3615 | * freeze it. | |
49e22585 CL |
3616 | */ |
3617 | new.frozen = 1; | |
3618 | ||
c65c1877 | 3619 | } else { /* Needs to be taken off a list */ |
49e22585 | 3620 | |
bb192ed9 | 3621 | n = get_node(s, slab_nid(slab)); |
49e22585 CL |
3622 | /* |
3623 | * Speculatively acquire the list_lock. | |
3624 | * If the cmpxchg does not succeed then we may | |
3625 | * drop the list_lock without any processing. | |
3626 | * | |
3627 | * Otherwise the list_lock will synchronize with | |
3628 | * other processors updating the list of slabs. | |
3629 | */ | |
3630 | spin_lock_irqsave(&n->list_lock, flags); | |
3631 | ||
3632 | } | |
2cfb7455 | 3633 | } |
81819f0f | 3634 | |
bb192ed9 | 3635 | } while (!cmpxchg_double_slab(s, slab, |
2cfb7455 | 3636 | prior, counters, |
81084651 | 3637 | head, new.counters, |
2cfb7455 | 3638 | "__slab_free")); |
81819f0f | 3639 | |
2cfb7455 | 3640 | if (likely(!n)) { |
49e22585 | 3641 | |
c270cf30 AW |
3642 | if (likely(was_frozen)) { |
3643 | /* | |
3644 | * The list lock was not taken therefore no list | |
3645 | * activity can be necessary. | |
3646 | */ | |
3647 | stat(s, FREE_FROZEN); | |
3648 | } else if (new.frozen) { | |
3649 | /* | |
c2092c12 | 3650 | * If we just froze the slab then put it onto the |
c270cf30 AW |
3651 | * per cpu partial list. |
3652 | */ | |
bb192ed9 | 3653 | put_cpu_partial(s, slab, 1); |
8028dcea AS |
3654 | stat(s, CPU_PARTIAL_FREE); |
3655 | } | |
c270cf30 | 3656 | |
b455def2 L |
3657 | return; |
3658 | } | |
81819f0f | 3659 | |
8a5b20ae | 3660 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
3661 | goto slab_empty; |
3662 | ||
81819f0f | 3663 | /* |
837d678d JK |
3664 | * Objects left in the slab. If it was not on the partial list before |
3665 | * then add it. | |
81819f0f | 3666 | */ |
345c905d | 3667 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
bb192ed9 VB |
3668 | remove_full(s, n, slab); |
3669 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
837d678d | 3670 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 3671 | } |
80f08c19 | 3672 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
3673 | return; |
3674 | ||
3675 | slab_empty: | |
a973e9dd | 3676 | if (prior) { |
81819f0f | 3677 | /* |
6fbabb20 | 3678 | * Slab on the partial list. |
81819f0f | 3679 | */ |
bb192ed9 | 3680 | remove_partial(n, slab); |
84e554e6 | 3681 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 3682 | } else { |
6fbabb20 | 3683 | /* Slab must be on the full list */ |
bb192ed9 | 3684 | remove_full(s, n, slab); |
c65c1877 | 3685 | } |
2cfb7455 | 3686 | |
80f08c19 | 3687 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3688 | stat(s, FREE_SLAB); |
bb192ed9 | 3689 | discard_slab(s, slab); |
81819f0f CL |
3690 | } |
3691 | ||
0af8489b | 3692 | #ifndef CONFIG_SLUB_TINY |
894b8788 CL |
3693 | /* |
3694 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3695 | * can perform fastpath freeing without additional function calls. | |
3696 | * | |
3697 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3698 | * of this processor. This typically the case if we have just allocated | |
3699 | * the item before. | |
3700 | * | |
3701 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3702 | * with all sorts of special processing. | |
81084651 JDB |
3703 | * |
3704 | * Bulk free of a freelist with several objects (all pointing to the | |
c2092c12 | 3705 | * same slab) possible by specifying head and tail ptr, plus objects |
81084651 | 3706 | * count (cnt). Bulk free indicated by tail pointer being set. |
894b8788 | 3707 | */ |
80a9201a | 3708 | static __always_inline void do_slab_free(struct kmem_cache *s, |
bb192ed9 | 3709 | struct slab *slab, void *head, void *tail, |
80a9201a | 3710 | int cnt, unsigned long addr) |
894b8788 | 3711 | { |
81084651 | 3712 | void *tail_obj = tail ? : head; |
dfb4f096 | 3713 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3714 | unsigned long tid; |
1f04b07d | 3715 | void **freelist; |
964d4bd3 | 3716 | |
8a5ec0ba CL |
3717 | redo: |
3718 | /* | |
3719 | * Determine the currently cpus per cpu slab. | |
3720 | * The cpu may change afterward. However that does not matter since | |
3721 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3722 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3723 | */ |
9b4bc85a VB |
3724 | c = raw_cpu_ptr(s->cpu_slab); |
3725 | tid = READ_ONCE(c->tid); | |
c016b0bd | 3726 | |
9aabf810 JK |
3727 | /* Same with comment on barrier() in slab_alloc_node() */ |
3728 | barrier(); | |
c016b0bd | 3729 | |
1f04b07d TG |
3730 | if (unlikely(slab != c->slab)) { |
3731 | __slab_free(s, slab, head, tail_obj, cnt, addr); | |
3732 | return; | |
3733 | } | |
3734 | ||
3735 | if (USE_LOCKLESS_FAST_PATH()) { | |
3736 | freelist = READ_ONCE(c->freelist); | |
5076190d LT |
3737 | |
3738 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3739 | |
933393f5 | 3740 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3741 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3742 | freelist, tid, |
81084651 | 3743 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3744 | |
3745 | note_cmpxchg_failure("slab_free", s, tid); | |
3746 | goto redo; | |
3747 | } | |
1f04b07d TG |
3748 | } else { |
3749 | /* Update the free list under the local lock */ | |
bd0e7491 VB |
3750 | local_lock(&s->cpu_slab->lock); |
3751 | c = this_cpu_ptr(s->cpu_slab); | |
bb192ed9 | 3752 | if (unlikely(slab != c->slab)) { |
bd0e7491 VB |
3753 | local_unlock(&s->cpu_slab->lock); |
3754 | goto redo; | |
3755 | } | |
3756 | tid = c->tid; | |
3757 | freelist = c->freelist; | |
3758 | ||
3759 | set_freepointer(s, tail_obj, freelist); | |
3760 | c->freelist = head; | |
3761 | c->tid = next_tid(tid); | |
3762 | ||
3763 | local_unlock(&s->cpu_slab->lock); | |
1f04b07d TG |
3764 | } |
3765 | stat(s, FREE_FASTPATH); | |
894b8788 | 3766 | } |
0af8489b VB |
3767 | #else /* CONFIG_SLUB_TINY */ |
3768 | static void do_slab_free(struct kmem_cache *s, | |
3769 | struct slab *slab, void *head, void *tail, | |
3770 | int cnt, unsigned long addr) | |
3771 | { | |
3772 | void *tail_obj = tail ? : head; | |
894b8788 | 3773 | |
0af8489b VB |
3774 | __slab_free(s, slab, head, tail_obj, cnt, addr); |
3775 | } | |
3776 | #endif /* CONFIG_SLUB_TINY */ | |
894b8788 | 3777 | |
be784ba8 | 3778 | static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, |
b77d5b1b | 3779 | void *head, void *tail, void **p, int cnt, |
80a9201a AP |
3780 | unsigned long addr) |
3781 | { | |
b77d5b1b | 3782 | memcg_slab_free_hook(s, slab, p, cnt); |
80a9201a | 3783 | /* |
c3895391 AK |
3784 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3785 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3786 | */ |
899447f6 | 3787 | if (slab_free_freelist_hook(s, &head, &tail, &cnt)) |
bb192ed9 | 3788 | do_slab_free(s, slab, head, tail, cnt, addr); |
80a9201a AP |
3789 | } |
3790 | ||
2bd926b4 | 3791 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3792 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3793 | { | |
bb192ed9 | 3794 | do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); |
80a9201a AP |
3795 | } |
3796 | #endif | |
3797 | ||
ed4cd17e HY |
3798 | void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) |
3799 | { | |
3800 | slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); | |
3801 | } | |
3802 | ||
81819f0f CL |
3803 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3804 | { | |
b9ce5ef4 GC |
3805 | s = cache_from_obj(s, x); |
3806 | if (!s) | |
79576102 | 3807 | return; |
2c1d697f | 3808 | trace_kmem_cache_free(_RET_IP_, x, s); |
b77d5b1b | 3809 | slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); |
81819f0f CL |
3810 | } |
3811 | EXPORT_SYMBOL(kmem_cache_free); | |
3812 | ||
d0ecd894 | 3813 | struct detached_freelist { |
cc465c3b | 3814 | struct slab *slab; |
d0ecd894 JDB |
3815 | void *tail; |
3816 | void *freelist; | |
3817 | int cnt; | |
376bf125 | 3818 | struct kmem_cache *s; |
d0ecd894 | 3819 | }; |
fbd02630 | 3820 | |
d0ecd894 JDB |
3821 | /* |
3822 | * This function progressively scans the array with free objects (with | |
3823 | * a limited look ahead) and extract objects belonging to the same | |
cc465c3b MWO |
3824 | * slab. It builds a detached freelist directly within the given |
3825 | * slab/objects. This can happen without any need for | |
d0ecd894 JDB |
3826 | * synchronization, because the objects are owned by running process. |
3827 | * The freelist is build up as a single linked list in the objects. | |
3828 | * The idea is, that this detached freelist can then be bulk | |
3829 | * transferred to the real freelist(s), but only requiring a single | |
3830 | * synchronization primitive. Look ahead in the array is limited due | |
3831 | * to performance reasons. | |
3832 | */ | |
376bf125 JDB |
3833 | static inline |
3834 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3835 | void **p, struct detached_freelist *df) | |
d0ecd894 | 3836 | { |
d0ecd894 JDB |
3837 | int lookahead = 3; |
3838 | void *object; | |
cc465c3b | 3839 | struct folio *folio; |
b77d5b1b | 3840 | size_t same; |
fbd02630 | 3841 | |
b77d5b1b | 3842 | object = p[--size]; |
cc465c3b | 3843 | folio = virt_to_folio(object); |
ca257195 JDB |
3844 | if (!s) { |
3845 | /* Handle kalloc'ed objects */ | |
cc465c3b | 3846 | if (unlikely(!folio_test_slab(folio))) { |
d835eef4 | 3847 | free_large_kmalloc(folio, object); |
b77d5b1b | 3848 | df->slab = NULL; |
ca257195 JDB |
3849 | return size; |
3850 | } | |
3851 | /* Derive kmem_cache from object */ | |
b77d5b1b MS |
3852 | df->slab = folio_slab(folio); |
3853 | df->s = df->slab->slab_cache; | |
ca257195 | 3854 | } else { |
b77d5b1b | 3855 | df->slab = folio_slab(folio); |
ca257195 JDB |
3856 | df->s = cache_from_obj(s, object); /* Support for memcg */ |
3857 | } | |
376bf125 | 3858 | |
d0ecd894 | 3859 | /* Start new detached freelist */ |
d0ecd894 JDB |
3860 | df->tail = object; |
3861 | df->freelist = object; | |
d0ecd894 JDB |
3862 | df->cnt = 1; |
3863 | ||
b77d5b1b MS |
3864 | if (is_kfence_address(object)) |
3865 | return size; | |
3866 | ||
3867 | set_freepointer(df->s, object, NULL); | |
3868 | ||
3869 | same = size; | |
d0ecd894 JDB |
3870 | while (size) { |
3871 | object = p[--size]; | |
cc465c3b MWO |
3872 | /* df->slab is always set at this point */ |
3873 | if (df->slab == virt_to_slab(object)) { | |
d0ecd894 | 3874 | /* Opportunity build freelist */ |
376bf125 | 3875 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3876 | df->freelist = object; |
3877 | df->cnt++; | |
b77d5b1b MS |
3878 | same--; |
3879 | if (size != same) | |
3880 | swap(p[size], p[same]); | |
d0ecd894 | 3881 | continue; |
fbd02630 | 3882 | } |
d0ecd894 JDB |
3883 | |
3884 | /* Limit look ahead search */ | |
3885 | if (!--lookahead) | |
3886 | break; | |
fbd02630 | 3887 | } |
d0ecd894 | 3888 | |
b77d5b1b | 3889 | return same; |
d0ecd894 JDB |
3890 | } |
3891 | ||
d0ecd894 | 3892 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3893 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 | 3894 | { |
2055e67b | 3895 | if (!size) |
d0ecd894 JDB |
3896 | return; |
3897 | ||
3898 | do { | |
3899 | struct detached_freelist df; | |
3900 | ||
3901 | size = build_detached_freelist(s, size, p, &df); | |
cc465c3b | 3902 | if (!df.slab) |
d0ecd894 JDB |
3903 | continue; |
3904 | ||
b77d5b1b MS |
3905 | slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, |
3906 | _RET_IP_); | |
d0ecd894 | 3907 | } while (likely(size)); |
484748f0 CL |
3908 | } |
3909 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3910 | ||
0af8489b | 3911 | #ifndef CONFIG_SLUB_TINY |
56d5a2b9 VB |
3912 | static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, |
3913 | size_t size, void **p, struct obj_cgroup *objcg) | |
484748f0 | 3914 | { |
994eb764 JDB |
3915 | struct kmem_cache_cpu *c; |
3916 | int i; | |
3917 | ||
994eb764 JDB |
3918 | /* |
3919 | * Drain objects in the per cpu slab, while disabling local | |
3920 | * IRQs, which protects against PREEMPT and interrupts | |
3921 | * handlers invoking normal fastpath. | |
3922 | */ | |
25c00c50 | 3923 | c = slub_get_cpu_ptr(s->cpu_slab); |
bd0e7491 | 3924 | local_lock_irq(&s->cpu_slab->lock); |
994eb764 JDB |
3925 | |
3926 | for (i = 0; i < size; i++) { | |
b89fb5ef | 3927 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 3928 | |
b89fb5ef AP |
3929 | if (unlikely(object)) { |
3930 | p[i] = object; | |
3931 | continue; | |
3932 | } | |
3933 | ||
3934 | object = c->freelist; | |
ebe909e0 | 3935 | if (unlikely(!object)) { |
fd4d9c7d JH |
3936 | /* |
3937 | * We may have removed an object from c->freelist using | |
3938 | * the fastpath in the previous iteration; in that case, | |
3939 | * c->tid has not been bumped yet. | |
3940 | * Since ___slab_alloc() may reenable interrupts while | |
3941 | * allocating memory, we should bump c->tid now. | |
3942 | */ | |
3943 | c->tid = next_tid(c->tid); | |
3944 | ||
bd0e7491 | 3945 | local_unlock_irq(&s->cpu_slab->lock); |
e500059b | 3946 | |
ebe909e0 JDB |
3947 | /* |
3948 | * Invoking slow path likely have side-effect | |
3949 | * of re-populating per CPU c->freelist | |
3950 | */ | |
87098373 | 3951 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
6edf2576 | 3952 | _RET_IP_, c, s->object_size); |
87098373 CL |
3953 | if (unlikely(!p[i])) |
3954 | goto error; | |
3955 | ||
ebe909e0 | 3956 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3957 | maybe_wipe_obj_freeptr(s, p[i]); |
3958 | ||
bd0e7491 | 3959 | local_lock_irq(&s->cpu_slab->lock); |
e500059b | 3960 | |
ebe909e0 JDB |
3961 | continue; /* goto for-loop */ |
3962 | } | |
994eb764 JDB |
3963 | c->freelist = get_freepointer(s, object); |
3964 | p[i] = object; | |
0f181f9f | 3965 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3966 | } |
3967 | c->tid = next_tid(c->tid); | |
bd0e7491 | 3968 | local_unlock_irq(&s->cpu_slab->lock); |
25c00c50 | 3969 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 3970 | |
865762a8 | 3971 | return i; |
56d5a2b9 | 3972 | |
87098373 | 3973 | error: |
25c00c50 | 3974 | slub_put_cpu_ptr(s->cpu_slab); |
9ce67395 | 3975 | slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); |
2055e67b | 3976 | kmem_cache_free_bulk(s, i, p); |
865762a8 | 3977 | return 0; |
56d5a2b9 VB |
3978 | |
3979 | } | |
0af8489b VB |
3980 | #else /* CONFIG_SLUB_TINY */ |
3981 | static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, | |
3982 | size_t size, void **p, struct obj_cgroup *objcg) | |
3983 | { | |
3984 | int i; | |
3985 | ||
3986 | for (i = 0; i < size; i++) { | |
3987 | void *object = kfence_alloc(s, s->object_size, flags); | |
3988 | ||
3989 | if (unlikely(object)) { | |
3990 | p[i] = object; | |
3991 | continue; | |
3992 | } | |
3993 | ||
3994 | p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, | |
3995 | _RET_IP_, s->object_size); | |
3996 | if (unlikely(!p[i])) | |
3997 | goto error; | |
3998 | ||
3999 | maybe_wipe_obj_freeptr(s, p[i]); | |
4000 | } | |
4001 | ||
4002 | return i; | |
4003 | ||
4004 | error: | |
dc19745a | 4005 | slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); |
0af8489b VB |
4006 | kmem_cache_free_bulk(s, i, p); |
4007 | return 0; | |
4008 | } | |
4009 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
4010 | |
4011 | /* Note that interrupts must be enabled when calling this function. */ | |
4012 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | |
4013 | void **p) | |
4014 | { | |
4015 | int i; | |
4016 | struct obj_cgroup *objcg = NULL; | |
4017 | ||
4018 | if (!size) | |
4019 | return 0; | |
4020 | ||
4021 | /* memcg and kmem_cache debug support */ | |
4022 | s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); | |
4023 | if (unlikely(!s)) | |
4024 | return 0; | |
4025 | ||
4026 | i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); | |
4027 | ||
4028 | /* | |
4029 | * memcg and kmem_cache debug support and memory initialization. | |
4030 | * Done outside of the IRQ disabled fastpath loop. | |
4031 | */ | |
4032 | if (i != 0) | |
4033 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
dc19745a | 4034 | slab_want_init_on_alloc(flags, s), s->object_size); |
56d5a2b9 | 4035 | return i; |
484748f0 CL |
4036 | } |
4037 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
4038 | ||
4039 | ||
81819f0f | 4040 | /* |
672bba3a CL |
4041 | * Object placement in a slab is made very easy because we always start at |
4042 | * offset 0. If we tune the size of the object to the alignment then we can | |
4043 | * get the required alignment by putting one properly sized object after | |
4044 | * another. | |
81819f0f CL |
4045 | * |
4046 | * Notice that the allocation order determines the sizes of the per cpu | |
4047 | * caches. Each processor has always one slab available for allocations. | |
4048 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 4049 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 4050 | * locking overhead. |
81819f0f CL |
4051 | */ |
4052 | ||
4053 | /* | |
f0953a1b | 4054 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
4055 | * and slab fragmentation. A higher order reduces the number of partial slabs |
4056 | * and increases the number of allocations possible without having to | |
4057 | * take the list_lock. | |
4058 | */ | |
19af27af | 4059 | static unsigned int slub_min_order; |
90ce872c VB |
4060 | static unsigned int slub_max_order = |
4061 | IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; | |
19af27af | 4062 | static unsigned int slub_min_objects; |
81819f0f | 4063 | |
81819f0f CL |
4064 | /* |
4065 | * Calculate the order of allocation given an slab object size. | |
4066 | * | |
672bba3a CL |
4067 | * The order of allocation has significant impact on performance and other |
4068 | * system components. Generally order 0 allocations should be preferred since | |
4069 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
4070 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 4071 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
4072 | * would be wasted. |
4073 | * | |
4074 | * In order to reach satisfactory performance we must ensure that a minimum | |
4075 | * number of objects is in one slab. Otherwise we may generate too much | |
4076 | * activity on the partial lists which requires taking the list_lock. This is | |
4077 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 4078 | * |
672bba3a CL |
4079 | * slub_max_order specifies the order where we begin to stop considering the |
4080 | * number of objects in a slab as critical. If we reach slub_max_order then | |
4081 | * we try to keep the page order as low as possible. So we accept more waste | |
4082 | * of space in favor of a small page order. | |
81819f0f | 4083 | * |
672bba3a CL |
4084 | * Higher order allocations also allow the placement of more objects in a |
4085 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 4086 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 4087 | * the smallest order which will fit the object. |
81819f0f | 4088 | */ |
d122019b | 4089 | static inline unsigned int calc_slab_order(unsigned int size, |
19af27af | 4090 | unsigned int min_objects, unsigned int max_order, |
9736d2a9 | 4091 | unsigned int fract_leftover) |
81819f0f | 4092 | { |
19af27af AD |
4093 | unsigned int min_order = slub_min_order; |
4094 | unsigned int order; | |
81819f0f | 4095 | |
9736d2a9 | 4096 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 4097 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 4098 | |
9736d2a9 | 4099 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 4100 | order <= max_order; order++) { |
81819f0f | 4101 | |
19af27af AD |
4102 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
4103 | unsigned int rem; | |
81819f0f | 4104 | |
9736d2a9 | 4105 | rem = slab_size % size; |
81819f0f | 4106 | |
5e6d444e | 4107 | if (rem <= slab_size / fract_leftover) |
81819f0f | 4108 | break; |
81819f0f | 4109 | } |
672bba3a | 4110 | |
81819f0f CL |
4111 | return order; |
4112 | } | |
4113 | ||
9736d2a9 | 4114 | static inline int calculate_order(unsigned int size) |
5e6d444e | 4115 | { |
19af27af AD |
4116 | unsigned int order; |
4117 | unsigned int min_objects; | |
4118 | unsigned int max_objects; | |
3286222f | 4119 | unsigned int nr_cpus; |
5e6d444e CL |
4120 | |
4121 | /* | |
4122 | * Attempt to find best configuration for a slab. This | |
4123 | * works by first attempting to generate a layout with | |
4124 | * the best configuration and backing off gradually. | |
4125 | * | |
422ff4d7 | 4126 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
4127 | * we reduce the minimum objects required in a slab. |
4128 | */ | |
4129 | min_objects = slub_min_objects; | |
3286222f VB |
4130 | if (!min_objects) { |
4131 | /* | |
4132 | * Some architectures will only update present cpus when | |
4133 | * onlining them, so don't trust the number if it's just 1. But | |
4134 | * we also don't want to use nr_cpu_ids always, as on some other | |
4135 | * architectures, there can be many possible cpus, but never | |
4136 | * onlined. Here we compromise between trying to avoid too high | |
4137 | * order on systems that appear larger than they are, and too | |
4138 | * low order on systems that appear smaller than they are. | |
4139 | */ | |
4140 | nr_cpus = num_present_cpus(); | |
4141 | if (nr_cpus <= 1) | |
4142 | nr_cpus = nr_cpu_ids; | |
4143 | min_objects = 4 * (fls(nr_cpus) + 1); | |
4144 | } | |
9736d2a9 | 4145 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
4146 | min_objects = min(min_objects, max_objects); |
4147 | ||
5e6d444e | 4148 | while (min_objects > 1) { |
19af27af AD |
4149 | unsigned int fraction; |
4150 | ||
c124f5b5 | 4151 | fraction = 16; |
5e6d444e | 4152 | while (fraction >= 4) { |
d122019b | 4153 | order = calc_slab_order(size, min_objects, |
9736d2a9 | 4154 | slub_max_order, fraction); |
5e6d444e CL |
4155 | if (order <= slub_max_order) |
4156 | return order; | |
4157 | fraction /= 2; | |
4158 | } | |
5086c389 | 4159 | min_objects--; |
5e6d444e CL |
4160 | } |
4161 | ||
4162 | /* | |
4163 | * We were unable to place multiple objects in a slab. Now | |
4164 | * lets see if we can place a single object there. | |
4165 | */ | |
d122019b | 4166 | order = calc_slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
4167 | if (order <= slub_max_order) |
4168 | return order; | |
4169 | ||
4170 | /* | |
4171 | * Doh this slab cannot be placed using slub_max_order. | |
4172 | */ | |
d122019b | 4173 | order = calc_slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 4174 | if (order < MAX_ORDER) |
5e6d444e CL |
4175 | return order; |
4176 | return -ENOSYS; | |
4177 | } | |
4178 | ||
5595cffc | 4179 | static void |
4053497d | 4180 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
4181 | { |
4182 | n->nr_partial = 0; | |
81819f0f CL |
4183 | spin_lock_init(&n->list_lock); |
4184 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 4185 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 4186 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 4187 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 4188 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 4189 | #endif |
81819f0f CL |
4190 | } |
4191 | ||
0af8489b | 4192 | #ifndef CONFIG_SLUB_TINY |
55136592 | 4193 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 4194 | { |
6c182dc0 | 4195 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
a0dc161a BH |
4196 | NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * |
4197 | sizeof(struct kmem_cache_cpu)); | |
4c93c355 | 4198 | |
8a5ec0ba | 4199 | /* |
d4d84fef CM |
4200 | * Must align to double word boundary for the double cmpxchg |
4201 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 4202 | */ |
d4d84fef CM |
4203 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
4204 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
4205 | |
4206 | if (!s->cpu_slab) | |
4207 | return 0; | |
4208 | ||
4209 | init_kmem_cache_cpus(s); | |
4c93c355 | 4210 | |
8a5ec0ba | 4211 | return 1; |
4c93c355 | 4212 | } |
0af8489b VB |
4213 | #else |
4214 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | |
4215 | { | |
4216 | return 1; | |
4217 | } | |
4218 | #endif /* CONFIG_SLUB_TINY */ | |
4c93c355 | 4219 | |
51df1142 CL |
4220 | static struct kmem_cache *kmem_cache_node; |
4221 | ||
81819f0f CL |
4222 | /* |
4223 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
4224 | * slab on the node for this slabcache. There are no concurrent accesses | |
4225 | * possible. | |
4226 | * | |
721ae22a ZYW |
4227 | * Note that this function only works on the kmem_cache_node |
4228 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 4229 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 4230 | */ |
55136592 | 4231 | static void early_kmem_cache_node_alloc(int node) |
81819f0f | 4232 | { |
bb192ed9 | 4233 | struct slab *slab; |
81819f0f CL |
4234 | struct kmem_cache_node *n; |
4235 | ||
51df1142 | 4236 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 4237 | |
bb192ed9 | 4238 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f | 4239 | |
bb192ed9 | 4240 | BUG_ON(!slab); |
c7323a5a | 4241 | inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); |
bb192ed9 | 4242 | if (slab_nid(slab) != node) { |
f9f58285 FF |
4243 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
4244 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
4245 | } |
4246 | ||
bb192ed9 | 4247 | n = slab->freelist; |
81819f0f | 4248 | BUG_ON(!n); |
8ab1372f | 4249 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 4250 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 4251 | init_tracking(kmem_cache_node, n); |
8ab1372f | 4252 | #endif |
da844b78 | 4253 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
bb192ed9 VB |
4254 | slab->freelist = get_freepointer(kmem_cache_node, n); |
4255 | slab->inuse = 1; | |
12b22386 | 4256 | kmem_cache_node->node[node] = n; |
4053497d | 4257 | init_kmem_cache_node(n); |
bb192ed9 | 4258 | inc_slabs_node(kmem_cache_node, node, slab->objects); |
6446faa2 | 4259 | |
67b6c900 | 4260 | /* |
1e4dd946 SR |
4261 | * No locks need to be taken here as it has just been |
4262 | * initialized and there is no concurrent access. | |
67b6c900 | 4263 | */ |
bb192ed9 | 4264 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
81819f0f CL |
4265 | } |
4266 | ||
4267 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
4268 | { | |
4269 | int node; | |
fa45dc25 | 4270 | struct kmem_cache_node *n; |
81819f0f | 4271 | |
fa45dc25 | 4272 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 4273 | s->node[node] = NULL; |
ea37df54 | 4274 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
4275 | } |
4276 | } | |
4277 | ||
52b4b950 DS |
4278 | void __kmem_cache_release(struct kmem_cache *s) |
4279 | { | |
210e7a43 | 4280 | cache_random_seq_destroy(s); |
0af8489b | 4281 | #ifndef CONFIG_SLUB_TINY |
52b4b950 | 4282 | free_percpu(s->cpu_slab); |
0af8489b | 4283 | #endif |
52b4b950 DS |
4284 | free_kmem_cache_nodes(s); |
4285 | } | |
4286 | ||
55136592 | 4287 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
4288 | { |
4289 | int node; | |
81819f0f | 4290 | |
7e1fa93d | 4291 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
4292 | struct kmem_cache_node *n; |
4293 | ||
73367bd8 | 4294 | if (slab_state == DOWN) { |
55136592 | 4295 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
4296 | continue; |
4297 | } | |
51df1142 | 4298 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 4299 | GFP_KERNEL, node); |
81819f0f | 4300 | |
73367bd8 AD |
4301 | if (!n) { |
4302 | free_kmem_cache_nodes(s); | |
4303 | return 0; | |
81819f0f | 4304 | } |
73367bd8 | 4305 | |
4053497d | 4306 | init_kmem_cache_node(n); |
ea37df54 | 4307 | s->node[node] = n; |
81819f0f CL |
4308 | } |
4309 | return 1; | |
4310 | } | |
81819f0f | 4311 | |
e6d0e1dc WY |
4312 | static void set_cpu_partial(struct kmem_cache *s) |
4313 | { | |
4314 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
b47291ef VB |
4315 | unsigned int nr_objects; |
4316 | ||
e6d0e1dc WY |
4317 | /* |
4318 | * cpu_partial determined the maximum number of objects kept in the | |
4319 | * per cpu partial lists of a processor. | |
4320 | * | |
4321 | * Per cpu partial lists mainly contain slabs that just have one | |
4322 | * object freed. If they are used for allocation then they can be | |
4323 | * filled up again with minimal effort. The slab will never hit the | |
4324 | * per node partial lists and therefore no locking will be required. | |
4325 | * | |
b47291ef VB |
4326 | * For backwards compatibility reasons, this is determined as number |
4327 | * of objects, even though we now limit maximum number of pages, see | |
4328 | * slub_set_cpu_partial() | |
e6d0e1dc WY |
4329 | */ |
4330 | if (!kmem_cache_has_cpu_partial(s)) | |
b47291ef | 4331 | nr_objects = 0; |
e6d0e1dc | 4332 | else if (s->size >= PAGE_SIZE) |
b47291ef | 4333 | nr_objects = 6; |
e6d0e1dc | 4334 | else if (s->size >= 1024) |
23e98ad1 | 4335 | nr_objects = 24; |
e6d0e1dc | 4336 | else if (s->size >= 256) |
23e98ad1 | 4337 | nr_objects = 52; |
e6d0e1dc | 4338 | else |
23e98ad1 | 4339 | nr_objects = 120; |
b47291ef VB |
4340 | |
4341 | slub_set_cpu_partial(s, nr_objects); | |
e6d0e1dc WY |
4342 | #endif |
4343 | } | |
4344 | ||
81819f0f CL |
4345 | /* |
4346 | * calculate_sizes() determines the order and the distribution of data within | |
4347 | * a slab object. | |
4348 | */ | |
ae44d81d | 4349 | static int calculate_sizes(struct kmem_cache *s) |
81819f0f | 4350 | { |
d50112ed | 4351 | slab_flags_t flags = s->flags; |
be4a7988 | 4352 | unsigned int size = s->object_size; |
19af27af | 4353 | unsigned int order; |
81819f0f | 4354 | |
d8b42bf5 CL |
4355 | /* |
4356 | * Round up object size to the next word boundary. We can only | |
4357 | * place the free pointer at word boundaries and this determines | |
4358 | * the possible location of the free pointer. | |
4359 | */ | |
4360 | size = ALIGN(size, sizeof(void *)); | |
4361 | ||
4362 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
4363 | /* |
4364 | * Determine if we can poison the object itself. If the user of | |
4365 | * the slab may touch the object after free or before allocation | |
4366 | * then we should never poison the object itself. | |
4367 | */ | |
5f0d5a3a | 4368 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 4369 | !s->ctor) |
81819f0f CL |
4370 | s->flags |= __OBJECT_POISON; |
4371 | else | |
4372 | s->flags &= ~__OBJECT_POISON; | |
4373 | ||
81819f0f CL |
4374 | |
4375 | /* | |
672bba3a | 4376 | * If we are Redzoning then check if there is some space between the |
81819f0f | 4377 | * end of the object and the free pointer. If not then add an |
672bba3a | 4378 | * additional word to have some bytes to store Redzone information. |
81819f0f | 4379 | */ |
3b0efdfa | 4380 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 4381 | size += sizeof(void *); |
41ecc55b | 4382 | #endif |
81819f0f CL |
4383 | |
4384 | /* | |
672bba3a | 4385 | * With that we have determined the number of bytes in actual use |
e41a49fa | 4386 | * by the object and redzoning. |
81819f0f CL |
4387 | */ |
4388 | s->inuse = size; | |
4389 | ||
946fa0db FT |
4390 | if (slub_debug_orig_size(s) || |
4391 | (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | |
74c1d3e0 KC |
4392 | ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || |
4393 | s->ctor) { | |
81819f0f CL |
4394 | /* |
4395 | * Relocate free pointer after the object if it is not | |
4396 | * permitted to overwrite the first word of the object on | |
4397 | * kmem_cache_free. | |
4398 | * | |
4399 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 KC |
4400 | * destructor, are poisoning the objects, or are |
4401 | * redzoning an object smaller than sizeof(void *). | |
cbfc35a4 WL |
4402 | * |
4403 | * The assumption that s->offset >= s->inuse means free | |
4404 | * pointer is outside of the object is used in the | |
4405 | * freeptr_outside_object() function. If that is no | |
4406 | * longer true, the function needs to be modified. | |
81819f0f CL |
4407 | */ |
4408 | s->offset = size; | |
4409 | size += sizeof(void *); | |
e41a49fa | 4410 | } else { |
3202fa62 KC |
4411 | /* |
4412 | * Store freelist pointer near middle of object to keep | |
4413 | * it away from the edges of the object to avoid small | |
4414 | * sized over/underflows from neighboring allocations. | |
4415 | */ | |
e41a49fa | 4416 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
4417 | } |
4418 | ||
c12b3c62 | 4419 | #ifdef CONFIG_SLUB_DEBUG |
6edf2576 | 4420 | if (flags & SLAB_STORE_USER) { |
81819f0f CL |
4421 | /* |
4422 | * Need to store information about allocs and frees after | |
4423 | * the object. | |
4424 | */ | |
4425 | size += 2 * sizeof(struct track); | |
6edf2576 FT |
4426 | |
4427 | /* Save the original kmalloc request size */ | |
4428 | if (flags & SLAB_KMALLOC) | |
4429 | size += sizeof(unsigned int); | |
4430 | } | |
80a9201a | 4431 | #endif |
81819f0f | 4432 | |
80a9201a AP |
4433 | kasan_cache_create(s, &size, &s->flags); |
4434 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 4435 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
4436 | /* |
4437 | * Add some empty padding so that we can catch | |
4438 | * overwrites from earlier objects rather than let | |
4439 | * tracking information or the free pointer be | |
0211a9c8 | 4440 | * corrupted if a user writes before the start |
81819f0f CL |
4441 | * of the object. |
4442 | */ | |
4443 | size += sizeof(void *); | |
d86bd1be JK |
4444 | |
4445 | s->red_left_pad = sizeof(void *); | |
4446 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
4447 | size += s->red_left_pad; | |
4448 | } | |
41ecc55b | 4449 | #endif |
672bba3a | 4450 | |
81819f0f CL |
4451 | /* |
4452 | * SLUB stores one object immediately after another beginning from | |
4453 | * offset 0. In order to align the objects we have to simply size | |
4454 | * each object to conform to the alignment. | |
4455 | */ | |
45906855 | 4456 | size = ALIGN(size, s->align); |
81819f0f | 4457 | s->size = size; |
4138fdfc | 4458 | s->reciprocal_size = reciprocal_value(size); |
ae44d81d | 4459 | order = calculate_order(size); |
81819f0f | 4460 | |
19af27af | 4461 | if ((int)order < 0) |
81819f0f CL |
4462 | return 0; |
4463 | ||
b7a49f0d | 4464 | s->allocflags = 0; |
834f3d11 | 4465 | if (order) |
b7a49f0d CL |
4466 | s->allocflags |= __GFP_COMP; |
4467 | ||
4468 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 4469 | s->allocflags |= GFP_DMA; |
b7a49f0d | 4470 | |
6d6ea1e9 NB |
4471 | if (s->flags & SLAB_CACHE_DMA32) |
4472 | s->allocflags |= GFP_DMA32; | |
4473 | ||
b7a49f0d CL |
4474 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
4475 | s->allocflags |= __GFP_RECLAIMABLE; | |
4476 | ||
81819f0f CL |
4477 | /* |
4478 | * Determine the number of objects per slab | |
4479 | */ | |
9736d2a9 MW |
4480 | s->oo = oo_make(order, size); |
4481 | s->min = oo_make(get_order(size), size); | |
81819f0f | 4482 | |
834f3d11 | 4483 | return !!oo_objects(s->oo); |
81819f0f CL |
4484 | } |
4485 | ||
d50112ed | 4486 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 4487 | { |
37540008 | 4488 | s->flags = kmem_cache_flags(s->size, flags, s->name); |
2482ddec KC |
4489 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
4490 | s->random = get_random_long(); | |
4491 | #endif | |
81819f0f | 4492 | |
ae44d81d | 4493 | if (!calculate_sizes(s)) |
81819f0f | 4494 | goto error; |
3de47213 DR |
4495 | if (disable_higher_order_debug) { |
4496 | /* | |
4497 | * Disable debugging flags that store metadata if the min slab | |
4498 | * order increased. | |
4499 | */ | |
3b0efdfa | 4500 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
4501 | s->flags &= ~DEBUG_METADATA_FLAGS; |
4502 | s->offset = 0; | |
ae44d81d | 4503 | if (!calculate_sizes(s)) |
3de47213 DR |
4504 | goto error; |
4505 | } | |
4506 | } | |
81819f0f | 4507 | |
2565409f HC |
4508 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
4509 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 4510 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
4511 | /* Enable fast mode */ |
4512 | s->flags |= __CMPXCHG_DOUBLE; | |
4513 | #endif | |
4514 | ||
3b89d7d8 | 4515 | /* |
c2092c12 | 4516 | * The larger the object size is, the more slabs we want on the partial |
3b89d7d8 DR |
4517 | * list to avoid pounding the page allocator excessively. |
4518 | */ | |
5182f3c9 HY |
4519 | s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); |
4520 | s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); | |
49e22585 | 4521 | |
e6d0e1dc | 4522 | set_cpu_partial(s); |
49e22585 | 4523 | |
81819f0f | 4524 | #ifdef CONFIG_NUMA |
e2cb96b7 | 4525 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 4526 | #endif |
210e7a43 TG |
4527 | |
4528 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
4529 | if (slab_state >= UP) { | |
4530 | if (init_cache_random_seq(s)) | |
4531 | goto error; | |
4532 | } | |
4533 | ||
55136592 | 4534 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 4535 | goto error; |
81819f0f | 4536 | |
55136592 | 4537 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 4538 | return 0; |
ff12059e | 4539 | |
81819f0f | 4540 | error: |
9037c576 | 4541 | __kmem_cache_release(s); |
278b1bb1 | 4542 | return -EINVAL; |
81819f0f | 4543 | } |
81819f0f | 4544 | |
bb192ed9 | 4545 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
55860d96 | 4546 | const char *text) |
33b12c38 CL |
4547 | { |
4548 | #ifdef CONFIG_SLUB_DEBUG | |
bb192ed9 | 4549 | void *addr = slab_address(slab); |
33b12c38 | 4550 | void *p; |
aa456c7a | 4551 | |
bb192ed9 | 4552 | slab_err(s, slab, text, s->name); |
33b12c38 | 4553 | |
4ef3f5a3 VB |
4554 | spin_lock(&object_map_lock); |
4555 | __fill_map(object_map, s, slab); | |
4556 | ||
bb192ed9 | 4557 | for_each_object(p, s, addr, slab->objects) { |
33b12c38 | 4558 | |
4ef3f5a3 | 4559 | if (!test_bit(__obj_to_index(s, addr, p), object_map)) { |
96b94abc | 4560 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
4561 | print_tracking(s, p); |
4562 | } | |
4563 | } | |
4ef3f5a3 | 4564 | spin_unlock(&object_map_lock); |
33b12c38 CL |
4565 | #endif |
4566 | } | |
4567 | ||
81819f0f | 4568 | /* |
599870b1 | 4569 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
4570 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
4571 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 4572 | */ |
599870b1 | 4573 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 4574 | { |
60398923 | 4575 | LIST_HEAD(discard); |
bb192ed9 | 4576 | struct slab *slab, *h; |
81819f0f | 4577 | |
52b4b950 DS |
4578 | BUG_ON(irqs_disabled()); |
4579 | spin_lock_irq(&n->list_lock); | |
bb192ed9 VB |
4580 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
4581 | if (!slab->inuse) { | |
4582 | remove_partial(n, slab); | |
4583 | list_add(&slab->slab_list, &discard); | |
33b12c38 | 4584 | } else { |
bb192ed9 | 4585 | list_slab_objects(s, slab, |
55860d96 | 4586 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 4587 | } |
33b12c38 | 4588 | } |
52b4b950 | 4589 | spin_unlock_irq(&n->list_lock); |
60398923 | 4590 | |
bb192ed9 VB |
4591 | list_for_each_entry_safe(slab, h, &discard, slab_list) |
4592 | discard_slab(s, slab); | |
81819f0f CL |
4593 | } |
4594 | ||
f9e13c0a SB |
4595 | bool __kmem_cache_empty(struct kmem_cache *s) |
4596 | { | |
4597 | int node; | |
4598 | struct kmem_cache_node *n; | |
4599 | ||
4600 | for_each_kmem_cache_node(s, node, n) | |
4601 | if (n->nr_partial || slabs_node(s, node)) | |
4602 | return false; | |
4603 | return true; | |
4604 | } | |
4605 | ||
81819f0f | 4606 | /* |
672bba3a | 4607 | * Release all resources used by a slab cache. |
81819f0f | 4608 | */ |
52b4b950 | 4609 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
4610 | { |
4611 | int node; | |
fa45dc25 | 4612 | struct kmem_cache_node *n; |
81819f0f | 4613 | |
5a836bf6 | 4614 | flush_all_cpus_locked(s); |
81819f0f | 4615 | /* Attempt to free all objects */ |
fa45dc25 | 4616 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
4617 | free_partial(s, n); |
4618 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
4619 | return 1; |
4620 | } | |
81819f0f CL |
4621 | return 0; |
4622 | } | |
4623 | ||
5bb1bb35 | 4624 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 4625 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
4626 | { |
4627 | void *base; | |
4628 | int __maybe_unused i; | |
4629 | unsigned int objnr; | |
4630 | void *objp; | |
4631 | void *objp0; | |
7213230a | 4632 | struct kmem_cache *s = slab->slab_cache; |
8e7f37f2 PM |
4633 | struct track __maybe_unused *trackp; |
4634 | ||
4635 | kpp->kp_ptr = object; | |
7213230a | 4636 | kpp->kp_slab = slab; |
8e7f37f2 | 4637 | kpp->kp_slab_cache = s; |
7213230a | 4638 | base = slab_address(slab); |
8e7f37f2 PM |
4639 | objp0 = kasan_reset_tag(object); |
4640 | #ifdef CONFIG_SLUB_DEBUG | |
4641 | objp = restore_red_left(s, objp0); | |
4642 | #else | |
4643 | objp = objp0; | |
4644 | #endif | |
40f3bf0c | 4645 | objnr = obj_to_index(s, slab, objp); |
8e7f37f2 PM |
4646 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
4647 | objp = base + s->size * objnr; | |
4648 | kpp->kp_objp = objp; | |
7213230a MWO |
4649 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
4650 | || (objp - base) % s->size) || | |
8e7f37f2 PM |
4651 | !(s->flags & SLAB_STORE_USER)) |
4652 | return; | |
4653 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 4654 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
4655 | trackp = get_track(s, objp, TRACK_ALLOC); |
4656 | kpp->kp_ret = (void *)trackp->addr; | |
5cf909c5 OG |
4657 | #ifdef CONFIG_STACKDEPOT |
4658 | { | |
4659 | depot_stack_handle_t handle; | |
4660 | unsigned long *entries; | |
4661 | unsigned int nr_entries; | |
78869146 | 4662 | |
5cf909c5 OG |
4663 | handle = READ_ONCE(trackp->handle); |
4664 | if (handle) { | |
4665 | nr_entries = stack_depot_fetch(handle, &entries); | |
4666 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
4667 | kpp->kp_stack[i] = (void *)entries[i]; | |
4668 | } | |
78869146 | 4669 | |
5cf909c5 OG |
4670 | trackp = get_track(s, objp, TRACK_FREE); |
4671 | handle = READ_ONCE(trackp->handle); | |
4672 | if (handle) { | |
4673 | nr_entries = stack_depot_fetch(handle, &entries); | |
4674 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
4675 | kpp->kp_free_stack[i] = (void *)entries[i]; | |
4676 | } | |
e548eaa1 | 4677 | } |
8e7f37f2 PM |
4678 | #endif |
4679 | #endif | |
4680 | } | |
5bb1bb35 | 4681 | #endif |
8e7f37f2 | 4682 | |
81819f0f CL |
4683 | /******************************************************************** |
4684 | * Kmalloc subsystem | |
4685 | *******************************************************************/ | |
4686 | ||
81819f0f CL |
4687 | static int __init setup_slub_min_order(char *str) |
4688 | { | |
19af27af | 4689 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
4690 | |
4691 | return 1; | |
4692 | } | |
4693 | ||
4694 | __setup("slub_min_order=", setup_slub_min_order); | |
4695 | ||
4696 | static int __init setup_slub_max_order(char *str) | |
4697 | { | |
19af27af AD |
4698 | get_option(&str, (int *)&slub_max_order); |
4699 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
4700 | |
4701 | return 1; | |
4702 | } | |
4703 | ||
4704 | __setup("slub_max_order=", setup_slub_max_order); | |
4705 | ||
4706 | static int __init setup_slub_min_objects(char *str) | |
4707 | { | |
19af27af | 4708 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
4709 | |
4710 | return 1; | |
4711 | } | |
4712 | ||
4713 | __setup("slub_min_objects=", setup_slub_min_objects); | |
4714 | ||
ed18adc1 KC |
4715 | #ifdef CONFIG_HARDENED_USERCOPY |
4716 | /* | |
afcc90f8 KC |
4717 | * Rejects incorrectly sized objects and objects that are to be copied |
4718 | * to/from userspace but do not fall entirely within the containing slab | |
4719 | * cache's usercopy region. | |
ed18adc1 KC |
4720 | * |
4721 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4722 | * to indicate an error. | |
4723 | */ | |
0b3eb091 MWO |
4724 | void __check_heap_object(const void *ptr, unsigned long n, |
4725 | const struct slab *slab, bool to_user) | |
ed18adc1 KC |
4726 | { |
4727 | struct kmem_cache *s; | |
44065b2e | 4728 | unsigned int offset; |
b89fb5ef | 4729 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 4730 | |
96fedce2 AK |
4731 | ptr = kasan_reset_tag(ptr); |
4732 | ||
ed18adc1 | 4733 | /* Find object and usable object size. */ |
0b3eb091 | 4734 | s = slab->slab_cache; |
ed18adc1 KC |
4735 | |
4736 | /* Reject impossible pointers. */ | |
0b3eb091 | 4737 | if (ptr < slab_address(slab)) |
f4e6e289 KC |
4738 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
4739 | to_user, 0, n); | |
ed18adc1 KC |
4740 | |
4741 | /* Find offset within object. */ | |
b89fb5ef AP |
4742 | if (is_kfence) |
4743 | offset = ptr - kfence_object_start(ptr); | |
4744 | else | |
0b3eb091 | 4745 | offset = (ptr - slab_address(slab)) % s->size; |
ed18adc1 KC |
4746 | |
4747 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 4748 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 4749 | if (offset < s->red_left_pad) |
f4e6e289 KC |
4750 | usercopy_abort("SLUB object in left red zone", |
4751 | s->name, to_user, offset, n); | |
ed18adc1 KC |
4752 | offset -= s->red_left_pad; |
4753 | } | |
4754 | ||
afcc90f8 KC |
4755 | /* Allow address range falling entirely within usercopy region. */ |
4756 | if (offset >= s->useroffset && | |
4757 | offset - s->useroffset <= s->usersize && | |
4758 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4759 | return; |
ed18adc1 | 4760 | |
f4e6e289 | 4761 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4762 | } |
4763 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4764 | ||
832f37f5 VD |
4765 | #define SHRINK_PROMOTE_MAX 32 |
4766 | ||
2086d26a | 4767 | /* |
832f37f5 VD |
4768 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4769 | * up most to the head of the partial lists. New allocations will then | |
4770 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4771 | * |
4772 | * The slabs with the least items are placed last. This results in them | |
4773 | * being allocated from last increasing the chance that the last objects | |
4774 | * are freed in them. | |
2086d26a | 4775 | */ |
5a836bf6 | 4776 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
4777 | { |
4778 | int node; | |
4779 | int i; | |
4780 | struct kmem_cache_node *n; | |
bb192ed9 VB |
4781 | struct slab *slab; |
4782 | struct slab *t; | |
832f37f5 VD |
4783 | struct list_head discard; |
4784 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4785 | unsigned long flags; |
ce3712d7 | 4786 | int ret = 0; |
2086d26a | 4787 | |
fa45dc25 | 4788 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4789 | INIT_LIST_HEAD(&discard); |
4790 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4791 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4792 | |
4793 | spin_lock_irqsave(&n->list_lock, flags); | |
4794 | ||
4795 | /* | |
832f37f5 | 4796 | * Build lists of slabs to discard or promote. |
2086d26a | 4797 | * |
672bba3a | 4798 | * Note that concurrent frees may occur while we hold the |
c2092c12 | 4799 | * list_lock. slab->inuse here is the upper limit. |
2086d26a | 4800 | */ |
bb192ed9 VB |
4801 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
4802 | int free = slab->objects - slab->inuse; | |
832f37f5 | 4803 | |
c2092c12 | 4804 | /* Do not reread slab->inuse */ |
832f37f5 VD |
4805 | barrier(); |
4806 | ||
4807 | /* We do not keep full slabs on the list */ | |
4808 | BUG_ON(free <= 0); | |
4809 | ||
bb192ed9 VB |
4810 | if (free == slab->objects) { |
4811 | list_move(&slab->slab_list, &discard); | |
69cb8e6b | 4812 | n->nr_partial--; |
c7323a5a | 4813 | dec_slabs_node(s, node, slab->objects); |
832f37f5 | 4814 | } else if (free <= SHRINK_PROMOTE_MAX) |
bb192ed9 | 4815 | list_move(&slab->slab_list, promote + free - 1); |
2086d26a CL |
4816 | } |
4817 | ||
2086d26a | 4818 | /* |
832f37f5 VD |
4819 | * Promote the slabs filled up most to the head of the |
4820 | * partial list. | |
2086d26a | 4821 | */ |
832f37f5 VD |
4822 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4823 | list_splice(promote + i, &n->partial); | |
2086d26a | 4824 | |
2086d26a | 4825 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4826 | |
4827 | /* Release empty slabs */ | |
bb192ed9 | 4828 | list_for_each_entry_safe(slab, t, &discard, slab_list) |
c7323a5a | 4829 | free_slab(s, slab); |
ce3712d7 VD |
4830 | |
4831 | if (slabs_node(s, node)) | |
4832 | ret = 1; | |
2086d26a CL |
4833 | } |
4834 | ||
ce3712d7 | 4835 | return ret; |
2086d26a | 4836 | } |
2086d26a | 4837 | |
5a836bf6 SAS |
4838 | int __kmem_cache_shrink(struct kmem_cache *s) |
4839 | { | |
4840 | flush_all(s); | |
4841 | return __kmem_cache_do_shrink(s); | |
4842 | } | |
4843 | ||
b9049e23 YG |
4844 | static int slab_mem_going_offline_callback(void *arg) |
4845 | { | |
4846 | struct kmem_cache *s; | |
4847 | ||
18004c5d | 4848 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
4849 | list_for_each_entry(s, &slab_caches, list) { |
4850 | flush_all_cpus_locked(s); | |
4851 | __kmem_cache_do_shrink(s); | |
4852 | } | |
18004c5d | 4853 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4854 | |
4855 | return 0; | |
4856 | } | |
4857 | ||
4858 | static void slab_mem_offline_callback(void *arg) | |
4859 | { | |
b9049e23 YG |
4860 | struct memory_notify *marg = arg; |
4861 | int offline_node; | |
4862 | ||
b9d5ab25 | 4863 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4864 | |
4865 | /* | |
4866 | * If the node still has available memory. we need kmem_cache_node | |
4867 | * for it yet. | |
4868 | */ | |
4869 | if (offline_node < 0) | |
4870 | return; | |
4871 | ||
18004c5d | 4872 | mutex_lock(&slab_mutex); |
7e1fa93d | 4873 | node_clear(offline_node, slab_nodes); |
666716fd VB |
4874 | /* |
4875 | * We no longer free kmem_cache_node structures here, as it would be | |
4876 | * racy with all get_node() users, and infeasible to protect them with | |
4877 | * slab_mutex. | |
4878 | */ | |
18004c5d | 4879 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4880 | } |
4881 | ||
4882 | static int slab_mem_going_online_callback(void *arg) | |
4883 | { | |
4884 | struct kmem_cache_node *n; | |
4885 | struct kmem_cache *s; | |
4886 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4887 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4888 | int ret = 0; |
4889 | ||
4890 | /* | |
4891 | * If the node's memory is already available, then kmem_cache_node is | |
4892 | * already created. Nothing to do. | |
4893 | */ | |
4894 | if (nid < 0) | |
4895 | return 0; | |
4896 | ||
4897 | /* | |
0121c619 | 4898 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4899 | * allocate a kmem_cache_node structure in order to bring the node |
4900 | * online. | |
4901 | */ | |
18004c5d | 4902 | mutex_lock(&slab_mutex); |
b9049e23 | 4903 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
4904 | /* |
4905 | * The structure may already exist if the node was previously | |
4906 | * onlined and offlined. | |
4907 | */ | |
4908 | if (get_node(s, nid)) | |
4909 | continue; | |
b9049e23 YG |
4910 | /* |
4911 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4912 | * since memory is not yet available from the node that | |
4913 | * is brought up. | |
4914 | */ | |
8de66a0c | 4915 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4916 | if (!n) { |
4917 | ret = -ENOMEM; | |
4918 | goto out; | |
4919 | } | |
4053497d | 4920 | init_kmem_cache_node(n); |
b9049e23 YG |
4921 | s->node[nid] = n; |
4922 | } | |
7e1fa93d VB |
4923 | /* |
4924 | * Any cache created after this point will also have kmem_cache_node | |
4925 | * initialized for the new node. | |
4926 | */ | |
4927 | node_set(nid, slab_nodes); | |
b9049e23 | 4928 | out: |
18004c5d | 4929 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4930 | return ret; |
4931 | } | |
4932 | ||
4933 | static int slab_memory_callback(struct notifier_block *self, | |
4934 | unsigned long action, void *arg) | |
4935 | { | |
4936 | int ret = 0; | |
4937 | ||
4938 | switch (action) { | |
4939 | case MEM_GOING_ONLINE: | |
4940 | ret = slab_mem_going_online_callback(arg); | |
4941 | break; | |
4942 | case MEM_GOING_OFFLINE: | |
4943 | ret = slab_mem_going_offline_callback(arg); | |
4944 | break; | |
4945 | case MEM_OFFLINE: | |
4946 | case MEM_CANCEL_ONLINE: | |
4947 | slab_mem_offline_callback(arg); | |
4948 | break; | |
4949 | case MEM_ONLINE: | |
4950 | case MEM_CANCEL_OFFLINE: | |
4951 | break; | |
4952 | } | |
dc19f9db KH |
4953 | if (ret) |
4954 | ret = notifier_from_errno(ret); | |
4955 | else | |
4956 | ret = NOTIFY_OK; | |
b9049e23 YG |
4957 | return ret; |
4958 | } | |
4959 | ||
81819f0f CL |
4960 | /******************************************************************** |
4961 | * Basic setup of slabs | |
4962 | *******************************************************************/ | |
4963 | ||
51df1142 CL |
4964 | /* |
4965 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4966 | * the page allocator. Allocate them properly then fix up the pointers |
4967 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4968 | */ |
4969 | ||
dffb4d60 | 4970 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4971 | { |
4972 | int node; | |
dffb4d60 | 4973 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4974 | struct kmem_cache_node *n; |
51df1142 | 4975 | |
dffb4d60 | 4976 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4977 | |
7d557b3c GC |
4978 | /* |
4979 | * This runs very early, and only the boot processor is supposed to be | |
4980 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4981 | * IPIs around. | |
4982 | */ | |
4983 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4984 | for_each_kmem_cache_node(s, node, n) { |
bb192ed9 | 4985 | struct slab *p; |
51df1142 | 4986 | |
916ac052 | 4987 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4988 | p->slab_cache = s; |
51df1142 | 4989 | |
607bf324 | 4990 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4991 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4992 | p->slab_cache = s; |
51df1142 | 4993 | #endif |
51df1142 | 4994 | } |
dffb4d60 CL |
4995 | list_add(&s->list, &slab_caches); |
4996 | return s; | |
51df1142 CL |
4997 | } |
4998 | ||
81819f0f CL |
4999 | void __init kmem_cache_init(void) |
5000 | { | |
dffb4d60 CL |
5001 | static __initdata struct kmem_cache boot_kmem_cache, |
5002 | boot_kmem_cache_node; | |
7e1fa93d | 5003 | int node; |
51df1142 | 5004 | |
fc8d8620 SG |
5005 | if (debug_guardpage_minorder()) |
5006 | slub_max_order = 0; | |
5007 | ||
79270291 SB |
5008 | /* Print slub debugging pointers without hashing */ |
5009 | if (__slub_debug_enabled()) | |
5010 | no_hash_pointers_enable(NULL); | |
5011 | ||
dffb4d60 CL |
5012 | kmem_cache_node = &boot_kmem_cache_node; |
5013 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 5014 | |
7e1fa93d VB |
5015 | /* |
5016 | * Initialize the nodemask for which we will allocate per node | |
5017 | * structures. Here we don't need taking slab_mutex yet. | |
5018 | */ | |
5019 | for_each_node_state(node, N_NORMAL_MEMORY) | |
5020 | node_set(node, slab_nodes); | |
5021 | ||
dffb4d60 | 5022 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 5023 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 5024 | |
946d5f9c | 5025 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
5026 | |
5027 | /* Able to allocate the per node structures */ | |
5028 | slab_state = PARTIAL; | |
5029 | ||
dffb4d60 CL |
5030 | create_boot_cache(kmem_cache, "kmem_cache", |
5031 | offsetof(struct kmem_cache, node) + | |
5032 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 5033 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 5034 | |
dffb4d60 | 5035 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 5036 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
5037 | |
5038 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 5039 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 5040 | create_kmalloc_caches(0); |
81819f0f | 5041 | |
210e7a43 TG |
5042 | /* Setup random freelists for each cache */ |
5043 | init_freelist_randomization(); | |
5044 | ||
a96a87bf SAS |
5045 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
5046 | slub_cpu_dead); | |
81819f0f | 5047 | |
b9726c26 | 5048 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 5049 | cache_line_size(), |
81819f0f CL |
5050 | slub_min_order, slub_max_order, slub_min_objects, |
5051 | nr_cpu_ids, nr_node_ids); | |
5052 | } | |
5053 | ||
7e85ee0c PE |
5054 | void __init kmem_cache_init_late(void) |
5055 | { | |
0af8489b | 5056 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
5057 | flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); |
5058 | WARN_ON(!flushwq); | |
0af8489b | 5059 | #endif |
7e85ee0c PE |
5060 | } |
5061 | ||
2633d7a0 | 5062 | struct kmem_cache * |
f4957d5b | 5063 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 5064 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 5065 | { |
10befea9 | 5066 | struct kmem_cache *s; |
81819f0f | 5067 | |
a44cb944 | 5068 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 5069 | if (s) { |
efb93527 XS |
5070 | if (sysfs_slab_alias(s, name)) |
5071 | return NULL; | |
5072 | ||
81819f0f | 5073 | s->refcount++; |
84d0ddd6 | 5074 | |
81819f0f CL |
5075 | /* |
5076 | * Adjust the object sizes so that we clear | |
5077 | * the complete object on kzalloc. | |
5078 | */ | |
1b473f29 | 5079 | s->object_size = max(s->object_size, size); |
52ee6d74 | 5080 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 5081 | } |
6446faa2 | 5082 | |
cbb79694 CL |
5083 | return s; |
5084 | } | |
84c1cf62 | 5085 | |
d50112ed | 5086 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 5087 | { |
aac3a166 PE |
5088 | int err; |
5089 | ||
5090 | err = kmem_cache_open(s, flags); | |
5091 | if (err) | |
5092 | return err; | |
20cea968 | 5093 | |
45530c44 CL |
5094 | /* Mutex is not taken during early boot */ |
5095 | if (slab_state <= UP) | |
5096 | return 0; | |
5097 | ||
aac3a166 | 5098 | err = sysfs_slab_add(s); |
67823a54 | 5099 | if (err) { |
52b4b950 | 5100 | __kmem_cache_release(s); |
67823a54 ML |
5101 | return err; |
5102 | } | |
20cea968 | 5103 | |
64dd6849 FM |
5104 | if (s->flags & SLAB_STORE_USER) |
5105 | debugfs_slab_add(s); | |
5106 | ||
67823a54 | 5107 | return 0; |
81819f0f | 5108 | } |
81819f0f | 5109 | |
b1a413a3 | 5110 | #ifdef SLAB_SUPPORTS_SYSFS |
bb192ed9 | 5111 | static int count_inuse(struct slab *slab) |
205ab99d | 5112 | { |
bb192ed9 | 5113 | return slab->inuse; |
205ab99d CL |
5114 | } |
5115 | ||
bb192ed9 | 5116 | static int count_total(struct slab *slab) |
205ab99d | 5117 | { |
bb192ed9 | 5118 | return slab->objects; |
205ab99d | 5119 | } |
ab4d5ed5 | 5120 | #endif |
205ab99d | 5121 | |
ab4d5ed5 | 5122 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 5123 | static void validate_slab(struct kmem_cache *s, struct slab *slab, |
0a19e7dd | 5124 | unsigned long *obj_map) |
53e15af0 CL |
5125 | { |
5126 | void *p; | |
bb192ed9 | 5127 | void *addr = slab_address(slab); |
53e15af0 | 5128 | |
bb192ed9 | 5129 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
41bec7c3 | 5130 | return; |
53e15af0 CL |
5131 | |
5132 | /* Now we know that a valid freelist exists */ | |
bb192ed9 VB |
5133 | __fill_map(obj_map, s, slab); |
5134 | for_each_object(p, s, addr, slab->objects) { | |
0a19e7dd | 5135 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 5136 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 5137 | |
bb192ed9 | 5138 | if (!check_object(s, slab, p, val)) |
dd98afd4 YZ |
5139 | break; |
5140 | } | |
53e15af0 CL |
5141 | } |
5142 | ||
434e245d | 5143 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 5144 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
5145 | { |
5146 | unsigned long count = 0; | |
bb192ed9 | 5147 | struct slab *slab; |
53e15af0 CL |
5148 | unsigned long flags; |
5149 | ||
5150 | spin_lock_irqsave(&n->list_lock, flags); | |
5151 | ||
bb192ed9 VB |
5152 | list_for_each_entry(slab, &n->partial, slab_list) { |
5153 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5154 | count++; |
5155 | } | |
1f9f78b1 | 5156 | if (count != n->nr_partial) { |
f9f58285 FF |
5157 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
5158 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
5159 | slab_add_kunit_errors(); |
5160 | } | |
53e15af0 CL |
5161 | |
5162 | if (!(s->flags & SLAB_STORE_USER)) | |
5163 | goto out; | |
5164 | ||
bb192ed9 VB |
5165 | list_for_each_entry(slab, &n->full, slab_list) { |
5166 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5167 | count++; |
5168 | } | |
1f9f78b1 | 5169 | if (count != atomic_long_read(&n->nr_slabs)) { |
f9f58285 FF |
5170 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
5171 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
1f9f78b1 OG |
5172 | slab_add_kunit_errors(); |
5173 | } | |
53e15af0 CL |
5174 | |
5175 | out: | |
5176 | spin_unlock_irqrestore(&n->list_lock, flags); | |
5177 | return count; | |
5178 | } | |
5179 | ||
1f9f78b1 | 5180 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
5181 | { |
5182 | int node; | |
5183 | unsigned long count = 0; | |
fa45dc25 | 5184 | struct kmem_cache_node *n; |
0a19e7dd VB |
5185 | unsigned long *obj_map; |
5186 | ||
5187 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
5188 | if (!obj_map) | |
5189 | return -ENOMEM; | |
53e15af0 CL |
5190 | |
5191 | flush_all(s); | |
fa45dc25 | 5192 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
5193 | count += validate_slab_node(s, n, obj_map); |
5194 | ||
5195 | bitmap_free(obj_map); | |
90e9f6a6 | 5196 | |
53e15af0 CL |
5197 | return count; |
5198 | } | |
1f9f78b1 OG |
5199 | EXPORT_SYMBOL(validate_slab_cache); |
5200 | ||
64dd6849 | 5201 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 5202 | /* |
672bba3a | 5203 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
5204 | * and freed. |
5205 | */ | |
5206 | ||
5207 | struct location { | |
8ea9fb92 | 5208 | depot_stack_handle_t handle; |
88a420e4 | 5209 | unsigned long count; |
ce71e27c | 5210 | unsigned long addr; |
6edf2576 | 5211 | unsigned long waste; |
45edfa58 CL |
5212 | long long sum_time; |
5213 | long min_time; | |
5214 | long max_time; | |
5215 | long min_pid; | |
5216 | long max_pid; | |
174596a0 | 5217 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 5218 | nodemask_t nodes; |
88a420e4 CL |
5219 | }; |
5220 | ||
5221 | struct loc_track { | |
5222 | unsigned long max; | |
5223 | unsigned long count; | |
5224 | struct location *loc; | |
005a79e5 | 5225 | loff_t idx; |
88a420e4 CL |
5226 | }; |
5227 | ||
64dd6849 FM |
5228 | static struct dentry *slab_debugfs_root; |
5229 | ||
88a420e4 CL |
5230 | static void free_loc_track(struct loc_track *t) |
5231 | { | |
5232 | if (t->max) | |
5233 | free_pages((unsigned long)t->loc, | |
5234 | get_order(sizeof(struct location) * t->max)); | |
5235 | } | |
5236 | ||
68dff6a9 | 5237 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
5238 | { |
5239 | struct location *l; | |
5240 | int order; | |
5241 | ||
88a420e4 CL |
5242 | order = get_order(sizeof(struct location) * max); |
5243 | ||
68dff6a9 | 5244 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
5245 | if (!l) |
5246 | return 0; | |
5247 | ||
5248 | if (t->count) { | |
5249 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
5250 | free_loc_track(t); | |
5251 | } | |
5252 | t->max = max; | |
5253 | t->loc = l; | |
5254 | return 1; | |
5255 | } | |
5256 | ||
5257 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
6edf2576 FT |
5258 | const struct track *track, |
5259 | unsigned int orig_size) | |
88a420e4 CL |
5260 | { |
5261 | long start, end, pos; | |
5262 | struct location *l; | |
6edf2576 | 5263 | unsigned long caddr, chandle, cwaste; |
45edfa58 | 5264 | unsigned long age = jiffies - track->when; |
8ea9fb92 | 5265 | depot_stack_handle_t handle = 0; |
6edf2576 | 5266 | unsigned int waste = s->object_size - orig_size; |
88a420e4 | 5267 | |
8ea9fb92 OG |
5268 | #ifdef CONFIG_STACKDEPOT |
5269 | handle = READ_ONCE(track->handle); | |
5270 | #endif | |
88a420e4 CL |
5271 | start = -1; |
5272 | end = t->count; | |
5273 | ||
5274 | for ( ; ; ) { | |
5275 | pos = start + (end - start + 1) / 2; | |
5276 | ||
5277 | /* | |
5278 | * There is nothing at "end". If we end up there | |
5279 | * we need to add something to before end. | |
5280 | */ | |
5281 | if (pos == end) | |
5282 | break; | |
5283 | ||
6edf2576 FT |
5284 | l = &t->loc[pos]; |
5285 | caddr = l->addr; | |
5286 | chandle = l->handle; | |
5287 | cwaste = l->waste; | |
5288 | if ((track->addr == caddr) && (handle == chandle) && | |
5289 | (waste == cwaste)) { | |
45edfa58 | 5290 | |
45edfa58 CL |
5291 | l->count++; |
5292 | if (track->when) { | |
5293 | l->sum_time += age; | |
5294 | if (age < l->min_time) | |
5295 | l->min_time = age; | |
5296 | if (age > l->max_time) | |
5297 | l->max_time = age; | |
5298 | ||
5299 | if (track->pid < l->min_pid) | |
5300 | l->min_pid = track->pid; | |
5301 | if (track->pid > l->max_pid) | |
5302 | l->max_pid = track->pid; | |
5303 | ||
174596a0 RR |
5304 | cpumask_set_cpu(track->cpu, |
5305 | to_cpumask(l->cpus)); | |
45edfa58 CL |
5306 | } |
5307 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5308 | return 1; |
5309 | } | |
5310 | ||
45edfa58 | 5311 | if (track->addr < caddr) |
88a420e4 | 5312 | end = pos; |
8ea9fb92 OG |
5313 | else if (track->addr == caddr && handle < chandle) |
5314 | end = pos; | |
6edf2576 FT |
5315 | else if (track->addr == caddr && handle == chandle && |
5316 | waste < cwaste) | |
5317 | end = pos; | |
88a420e4 CL |
5318 | else |
5319 | start = pos; | |
5320 | } | |
5321 | ||
5322 | /* | |
672bba3a | 5323 | * Not found. Insert new tracking element. |
88a420e4 | 5324 | */ |
68dff6a9 | 5325 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
5326 | return 0; |
5327 | ||
5328 | l = t->loc + pos; | |
5329 | if (pos < t->count) | |
5330 | memmove(l + 1, l, | |
5331 | (t->count - pos) * sizeof(struct location)); | |
5332 | t->count++; | |
5333 | l->count = 1; | |
45edfa58 CL |
5334 | l->addr = track->addr; |
5335 | l->sum_time = age; | |
5336 | l->min_time = age; | |
5337 | l->max_time = age; | |
5338 | l->min_pid = track->pid; | |
5339 | l->max_pid = track->pid; | |
8ea9fb92 | 5340 | l->handle = handle; |
6edf2576 | 5341 | l->waste = waste; |
174596a0 RR |
5342 | cpumask_clear(to_cpumask(l->cpus)); |
5343 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
5344 | nodes_clear(l->nodes); |
5345 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5346 | return 1; |
5347 | } | |
5348 | ||
5349 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bb192ed9 | 5350 | struct slab *slab, enum track_item alloc, |
b3fd64e1 | 5351 | unsigned long *obj_map) |
88a420e4 | 5352 | { |
bb192ed9 | 5353 | void *addr = slab_address(slab); |
6edf2576 | 5354 | bool is_alloc = (alloc == TRACK_ALLOC); |
88a420e4 CL |
5355 | void *p; |
5356 | ||
bb192ed9 | 5357 | __fill_map(obj_map, s, slab); |
b3fd64e1 | 5358 | |
bb192ed9 | 5359 | for_each_object(p, s, addr, slab->objects) |
b3fd64e1 | 5360 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
6edf2576 FT |
5361 | add_location(t, s, get_track(s, p, alloc), |
5362 | is_alloc ? get_orig_size(s, p) : | |
5363 | s->object_size); | |
88a420e4 | 5364 | } |
64dd6849 | 5365 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 5366 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 5367 | |
b1a413a3 | 5368 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f | 5369 | enum slab_stat_type { |
205ab99d CL |
5370 | SL_ALL, /* All slabs */ |
5371 | SL_PARTIAL, /* Only partially allocated slabs */ | |
5372 | SL_CPU, /* Only slabs used for cpu caches */ | |
5373 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
5374 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
5375 | }; |
5376 | ||
205ab99d | 5377 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
5378 | #define SO_PARTIAL (1 << SL_PARTIAL) |
5379 | #define SO_CPU (1 << SL_CPU) | |
5380 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 5381 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 5382 | |
62e5c4b4 | 5383 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 5384 | char *buf, unsigned long flags) |
81819f0f CL |
5385 | { |
5386 | unsigned long total = 0; | |
81819f0f CL |
5387 | int node; |
5388 | int x; | |
5389 | unsigned long *nodes; | |
bf16d19a | 5390 | int len = 0; |
81819f0f | 5391 | |
6396bb22 | 5392 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
5393 | if (!nodes) |
5394 | return -ENOMEM; | |
81819f0f | 5395 | |
205ab99d CL |
5396 | if (flags & SO_CPU) { |
5397 | int cpu; | |
81819f0f | 5398 | |
205ab99d | 5399 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
5400 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
5401 | cpu); | |
ec3ab083 | 5402 | int node; |
bb192ed9 | 5403 | struct slab *slab; |
dfb4f096 | 5404 | |
bb192ed9 VB |
5405 | slab = READ_ONCE(c->slab); |
5406 | if (!slab) | |
ec3ab083 | 5407 | continue; |
205ab99d | 5408 | |
bb192ed9 | 5409 | node = slab_nid(slab); |
ec3ab083 | 5410 | if (flags & SO_TOTAL) |
bb192ed9 | 5411 | x = slab->objects; |
ec3ab083 | 5412 | else if (flags & SO_OBJECTS) |
bb192ed9 | 5413 | x = slab->inuse; |
ec3ab083 CL |
5414 | else |
5415 | x = 1; | |
49e22585 | 5416 | |
ec3ab083 CL |
5417 | total += x; |
5418 | nodes[node] += x; | |
5419 | ||
9c01e9af | 5420 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 VB |
5421 | slab = slub_percpu_partial_read_once(c); |
5422 | if (slab) { | |
5423 | node = slab_nid(slab); | |
8afb1474 LZ |
5424 | if (flags & SO_TOTAL) |
5425 | WARN_ON_ONCE(1); | |
5426 | else if (flags & SO_OBJECTS) | |
5427 | WARN_ON_ONCE(1); | |
5428 | else | |
bb192ed9 | 5429 | x = slab->slabs; |
bc6697d8 ED |
5430 | total += x; |
5431 | nodes[node] += x; | |
49e22585 | 5432 | } |
9c01e9af | 5433 | #endif |
81819f0f CL |
5434 | } |
5435 | } | |
5436 | ||
e4f8e513 QC |
5437 | /* |
5438 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
5439 | * already held which will conflict with an existing lock order: | |
5440 | * | |
5441 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
5442 | * | |
5443 | * We don't really need mem_hotplug_lock (to hold off | |
5444 | * slab_mem_going_offline_callback) here because slab's memory hot | |
5445 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
5446 | */ | |
5447 | ||
ab4d5ed5 | 5448 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 5449 | if (flags & SO_ALL) { |
fa45dc25 CL |
5450 | struct kmem_cache_node *n; |
5451 | ||
5452 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 5453 | |
d0e0ac97 CG |
5454 | if (flags & SO_TOTAL) |
5455 | x = atomic_long_read(&n->total_objects); | |
5456 | else if (flags & SO_OBJECTS) | |
5457 | x = atomic_long_read(&n->total_objects) - | |
5458 | count_partial(n, count_free); | |
81819f0f | 5459 | else |
205ab99d | 5460 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
5461 | total += x; |
5462 | nodes[node] += x; | |
5463 | } | |
5464 | ||
ab4d5ed5 CL |
5465 | } else |
5466 | #endif | |
5467 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 5468 | struct kmem_cache_node *n; |
81819f0f | 5469 | |
fa45dc25 | 5470 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
5471 | if (flags & SO_TOTAL) |
5472 | x = count_partial(n, count_total); | |
5473 | else if (flags & SO_OBJECTS) | |
5474 | x = count_partial(n, count_inuse); | |
81819f0f | 5475 | else |
205ab99d | 5476 | x = n->nr_partial; |
81819f0f CL |
5477 | total += x; |
5478 | nodes[node] += x; | |
5479 | } | |
5480 | } | |
bf16d19a JP |
5481 | |
5482 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 5483 | #ifdef CONFIG_NUMA |
bf16d19a | 5484 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 5485 | if (nodes[node]) |
bf16d19a JP |
5486 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
5487 | node, nodes[node]); | |
5488 | } | |
81819f0f | 5489 | #endif |
bf16d19a | 5490 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 5491 | kfree(nodes); |
bf16d19a JP |
5492 | |
5493 | return len; | |
81819f0f CL |
5494 | } |
5495 | ||
81819f0f | 5496 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 5497 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5498 | |
5499 | struct slab_attribute { | |
5500 | struct attribute attr; | |
5501 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5502 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5503 | }; | |
5504 | ||
5505 | #define SLAB_ATTR_RO(_name) \ | |
d1d28bd9 | 5506 | static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) |
81819f0f CL |
5507 | |
5508 | #define SLAB_ATTR(_name) \ | |
d1d28bd9 | 5509 | static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) |
81819f0f | 5510 | |
81819f0f CL |
5511 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5512 | { | |
bf16d19a | 5513 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
5514 | } |
5515 | SLAB_ATTR_RO(slab_size); | |
5516 | ||
5517 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5518 | { | |
bf16d19a | 5519 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
5520 | } |
5521 | SLAB_ATTR_RO(align); | |
5522 | ||
5523 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5524 | { | |
bf16d19a | 5525 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
5526 | } |
5527 | SLAB_ATTR_RO(object_size); | |
5528 | ||
5529 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5530 | { | |
bf16d19a | 5531 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5532 | } |
5533 | SLAB_ATTR_RO(objs_per_slab); | |
5534 | ||
5535 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
5536 | { | |
bf16d19a | 5537 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5538 | } |
32a6f409 | 5539 | SLAB_ATTR_RO(order); |
81819f0f | 5540 | |
73d342b1 DR |
5541 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5542 | { | |
bf16d19a | 5543 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
5544 | } |
5545 | ||
5546 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5547 | size_t length) | |
5548 | { | |
5549 | unsigned long min; | |
5550 | int err; | |
5551 | ||
3dbb95f7 | 5552 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5553 | if (err) |
5554 | return err; | |
5555 | ||
5182f3c9 | 5556 | s->min_partial = min; |
73d342b1 DR |
5557 | return length; |
5558 | } | |
5559 | SLAB_ATTR(min_partial); | |
5560 | ||
49e22585 CL |
5561 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5562 | { | |
b47291ef VB |
5563 | unsigned int nr_partial = 0; |
5564 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
5565 | nr_partial = s->cpu_partial; | |
5566 | #endif | |
5567 | ||
5568 | return sysfs_emit(buf, "%u\n", nr_partial); | |
49e22585 CL |
5569 | } |
5570 | ||
5571 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5572 | size_t length) | |
5573 | { | |
e5d9998f | 5574 | unsigned int objects; |
49e22585 CL |
5575 | int err; |
5576 | ||
e5d9998f | 5577 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5578 | if (err) |
5579 | return err; | |
345c905d | 5580 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5581 | return -EINVAL; |
49e22585 | 5582 | |
e6d0e1dc | 5583 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5584 | flush_all(s); |
5585 | return length; | |
5586 | } | |
5587 | SLAB_ATTR(cpu_partial); | |
5588 | ||
81819f0f CL |
5589 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5590 | { | |
62c70bce JP |
5591 | if (!s->ctor) |
5592 | return 0; | |
bf16d19a | 5593 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
5594 | } |
5595 | SLAB_ATTR_RO(ctor); | |
5596 | ||
81819f0f CL |
5597 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5598 | { | |
bf16d19a | 5599 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5600 | } |
5601 | SLAB_ATTR_RO(aliases); | |
5602 | ||
81819f0f CL |
5603 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5604 | { | |
d9acf4b7 | 5605 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5606 | } |
5607 | SLAB_ATTR_RO(partial); | |
5608 | ||
5609 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5610 | { | |
d9acf4b7 | 5611 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5612 | } |
5613 | SLAB_ATTR_RO(cpu_slabs); | |
5614 | ||
5615 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5616 | { | |
205ab99d | 5617 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5618 | } |
5619 | SLAB_ATTR_RO(objects); | |
5620 | ||
205ab99d CL |
5621 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5622 | { | |
5623 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5624 | } | |
5625 | SLAB_ATTR_RO(objects_partial); | |
5626 | ||
49e22585 CL |
5627 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5628 | { | |
5629 | int objects = 0; | |
bb192ed9 | 5630 | int slabs = 0; |
9c01e9af | 5631 | int cpu __maybe_unused; |
bf16d19a | 5632 | int len = 0; |
49e22585 | 5633 | |
9c01e9af | 5634 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 5635 | for_each_online_cpu(cpu) { |
bb192ed9 | 5636 | struct slab *slab; |
a93cf07b | 5637 | |
bb192ed9 | 5638 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
49e22585 | 5639 | |
bb192ed9 VB |
5640 | if (slab) |
5641 | slabs += slab->slabs; | |
49e22585 | 5642 | } |
9c01e9af | 5643 | #endif |
49e22585 | 5644 | |
c2092c12 | 5645 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
bb192ed9 VB |
5646 | objects = (slabs * oo_objects(s->oo)) / 2; |
5647 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
49e22585 | 5648 | |
9c01e9af | 5649 | #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) |
49e22585 | 5650 | for_each_online_cpu(cpu) { |
bb192ed9 | 5651 | struct slab *slab; |
a93cf07b | 5652 | |
bb192ed9 VB |
5653 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
5654 | if (slab) { | |
5655 | slabs = READ_ONCE(slab->slabs); | |
5656 | objects = (slabs * oo_objects(s->oo)) / 2; | |
bf16d19a | 5657 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
bb192ed9 | 5658 | cpu, objects, slabs); |
b47291ef | 5659 | } |
49e22585 CL |
5660 | } |
5661 | #endif | |
bf16d19a JP |
5662 | len += sysfs_emit_at(buf, len, "\n"); |
5663 | ||
5664 | return len; | |
49e22585 CL |
5665 | } |
5666 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5667 | ||
a5a84755 CL |
5668 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5669 | { | |
bf16d19a | 5670 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 5671 | } |
8f58119a | 5672 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
5673 | |
5674 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5675 | { | |
bf16d19a | 5676 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
5677 | } |
5678 | SLAB_ATTR_RO(hwcache_align); | |
5679 | ||
5680 | #ifdef CONFIG_ZONE_DMA | |
5681 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5682 | { | |
bf16d19a | 5683 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
5684 | } |
5685 | SLAB_ATTR_RO(cache_dma); | |
5686 | #endif | |
5687 | ||
346907ce | 5688 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
5689 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5690 | { | |
bf16d19a | 5691 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
5692 | } |
5693 | SLAB_ATTR_RO(usersize); | |
346907ce | 5694 | #endif |
8eb8284b | 5695 | |
a5a84755 CL |
5696 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5697 | { | |
bf16d19a | 5698 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5699 | } |
5700 | SLAB_ATTR_RO(destroy_by_rcu); | |
5701 | ||
ab4d5ed5 | 5702 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5703 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5704 | { | |
5705 | return show_slab_objects(s, buf, SO_ALL); | |
5706 | } | |
5707 | SLAB_ATTR_RO(slabs); | |
5708 | ||
205ab99d CL |
5709 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5710 | { | |
5711 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5712 | } | |
5713 | SLAB_ATTR_RO(total_objects); | |
5714 | ||
81819f0f CL |
5715 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5716 | { | |
bf16d19a | 5717 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 5718 | } |
060807f8 | 5719 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
5720 | |
5721 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5722 | { | |
bf16d19a | 5723 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 5724 | } |
060807f8 | 5725 | SLAB_ATTR_RO(trace); |
81819f0f | 5726 | |
81819f0f CL |
5727 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5728 | { | |
bf16d19a | 5729 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
5730 | } |
5731 | ||
ad38b5b1 | 5732 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
5733 | |
5734 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5735 | { | |
bf16d19a | 5736 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
5737 | } |
5738 | ||
ad38b5b1 | 5739 | SLAB_ATTR_RO(poison); |
81819f0f CL |
5740 | |
5741 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5742 | { | |
bf16d19a | 5743 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
5744 | } |
5745 | ||
ad38b5b1 | 5746 | SLAB_ATTR_RO(store_user); |
81819f0f | 5747 | |
53e15af0 CL |
5748 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5749 | { | |
5750 | return 0; | |
5751 | } | |
5752 | ||
5753 | static ssize_t validate_store(struct kmem_cache *s, | |
5754 | const char *buf, size_t length) | |
5755 | { | |
434e245d CL |
5756 | int ret = -EINVAL; |
5757 | ||
c7323a5a | 5758 | if (buf[0] == '1' && kmem_cache_debug(s)) { |
434e245d CL |
5759 | ret = validate_slab_cache(s); |
5760 | if (ret >= 0) | |
5761 | ret = length; | |
5762 | } | |
5763 | return ret; | |
53e15af0 CL |
5764 | } |
5765 | SLAB_ATTR(validate); | |
a5a84755 | 5766 | |
a5a84755 CL |
5767 | #endif /* CONFIG_SLUB_DEBUG */ |
5768 | ||
5769 | #ifdef CONFIG_FAILSLAB | |
5770 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5771 | { | |
bf16d19a | 5772 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 5773 | } |
7c82b3b3 AA |
5774 | |
5775 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5776 | size_t length) | |
5777 | { | |
5778 | if (s->refcount > 1) | |
5779 | return -EINVAL; | |
5780 | ||
5781 | if (buf[0] == '1') | |
5782 | WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); | |
5783 | else | |
5784 | WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); | |
5785 | ||
5786 | return length; | |
5787 | } | |
5788 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5789 | #endif |
53e15af0 | 5790 | |
2086d26a CL |
5791 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5792 | { | |
5793 | return 0; | |
5794 | } | |
5795 | ||
5796 | static ssize_t shrink_store(struct kmem_cache *s, | |
5797 | const char *buf, size_t length) | |
5798 | { | |
832f37f5 | 5799 | if (buf[0] == '1') |
10befea9 | 5800 | kmem_cache_shrink(s); |
832f37f5 | 5801 | else |
2086d26a CL |
5802 | return -EINVAL; |
5803 | return length; | |
5804 | } | |
5805 | SLAB_ATTR(shrink); | |
5806 | ||
81819f0f | 5807 | #ifdef CONFIG_NUMA |
9824601e | 5808 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5809 | { |
bf16d19a | 5810 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5811 | } |
5812 | ||
9824601e | 5813 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5814 | const char *buf, size_t length) |
5815 | { | |
eb7235eb | 5816 | unsigned int ratio; |
0121c619 CL |
5817 | int err; |
5818 | ||
eb7235eb | 5819 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5820 | if (err) |
5821 | return err; | |
eb7235eb AD |
5822 | if (ratio > 100) |
5823 | return -ERANGE; | |
0121c619 | 5824 | |
eb7235eb | 5825 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5826 | |
81819f0f CL |
5827 | return length; |
5828 | } | |
9824601e | 5829 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5830 | #endif |
5831 | ||
8ff12cfc | 5832 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5833 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5834 | { | |
5835 | unsigned long sum = 0; | |
5836 | int cpu; | |
bf16d19a | 5837 | int len = 0; |
6da2ec56 | 5838 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5839 | |
5840 | if (!data) | |
5841 | return -ENOMEM; | |
5842 | ||
5843 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5844 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5845 | |
5846 | data[cpu] = x; | |
5847 | sum += x; | |
5848 | } | |
5849 | ||
bf16d19a | 5850 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 5851 | |
50ef37b9 | 5852 | #ifdef CONFIG_SMP |
8ff12cfc | 5853 | for_each_online_cpu(cpu) { |
bf16d19a JP |
5854 | if (data[cpu]) |
5855 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
5856 | cpu, data[cpu]); | |
8ff12cfc | 5857 | } |
50ef37b9 | 5858 | #endif |
8ff12cfc | 5859 | kfree(data); |
bf16d19a JP |
5860 | len += sysfs_emit_at(buf, len, "\n"); |
5861 | ||
5862 | return len; | |
8ff12cfc CL |
5863 | } |
5864 | ||
78eb00cc DR |
5865 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5866 | { | |
5867 | int cpu; | |
5868 | ||
5869 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5870 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5871 | } |
5872 | ||
8ff12cfc CL |
5873 | #define STAT_ATTR(si, text) \ |
5874 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5875 | { \ | |
5876 | return show_stat(s, buf, si); \ | |
5877 | } \ | |
78eb00cc DR |
5878 | static ssize_t text##_store(struct kmem_cache *s, \ |
5879 | const char *buf, size_t length) \ | |
5880 | { \ | |
5881 | if (buf[0] != '0') \ | |
5882 | return -EINVAL; \ | |
5883 | clear_stat(s, si); \ | |
5884 | return length; \ | |
5885 | } \ | |
5886 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5887 | |
5888 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5889 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5890 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5891 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5892 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5893 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5894 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5895 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5896 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5897 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5898 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5899 | STAT_ATTR(FREE_SLAB, free_slab); |
5900 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5901 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5902 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5903 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5904 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5905 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5906 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5907 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5908 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5909 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5910 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5911 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5912 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5913 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5914 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5915 | |
b84e04f1 IK |
5916 | #ifdef CONFIG_KFENCE |
5917 | static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) | |
5918 | { | |
5919 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); | |
5920 | } | |
5921 | ||
5922 | static ssize_t skip_kfence_store(struct kmem_cache *s, | |
5923 | const char *buf, size_t length) | |
5924 | { | |
5925 | int ret = length; | |
5926 | ||
5927 | if (buf[0] == '0') | |
5928 | s->flags &= ~SLAB_SKIP_KFENCE; | |
5929 | else if (buf[0] == '1') | |
5930 | s->flags |= SLAB_SKIP_KFENCE; | |
5931 | else | |
5932 | ret = -EINVAL; | |
5933 | ||
5934 | return ret; | |
5935 | } | |
5936 | SLAB_ATTR(skip_kfence); | |
5937 | #endif | |
5938 | ||
06428780 | 5939 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5940 | &slab_size_attr.attr, |
5941 | &object_size_attr.attr, | |
5942 | &objs_per_slab_attr.attr, | |
5943 | &order_attr.attr, | |
73d342b1 | 5944 | &min_partial_attr.attr, |
49e22585 | 5945 | &cpu_partial_attr.attr, |
81819f0f | 5946 | &objects_attr.attr, |
205ab99d | 5947 | &objects_partial_attr.attr, |
81819f0f CL |
5948 | &partial_attr.attr, |
5949 | &cpu_slabs_attr.attr, | |
5950 | &ctor_attr.attr, | |
81819f0f CL |
5951 | &aliases_attr.attr, |
5952 | &align_attr.attr, | |
81819f0f CL |
5953 | &hwcache_align_attr.attr, |
5954 | &reclaim_account_attr.attr, | |
5955 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5956 | &shrink_attr.attr, |
49e22585 | 5957 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5958 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5959 | &total_objects_attr.attr, |
5960 | &slabs_attr.attr, | |
5961 | &sanity_checks_attr.attr, | |
5962 | &trace_attr.attr, | |
81819f0f CL |
5963 | &red_zone_attr.attr, |
5964 | &poison_attr.attr, | |
5965 | &store_user_attr.attr, | |
53e15af0 | 5966 | &validate_attr.attr, |
ab4d5ed5 | 5967 | #endif |
81819f0f CL |
5968 | #ifdef CONFIG_ZONE_DMA |
5969 | &cache_dma_attr.attr, | |
5970 | #endif | |
5971 | #ifdef CONFIG_NUMA | |
9824601e | 5972 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5973 | #endif |
5974 | #ifdef CONFIG_SLUB_STATS | |
5975 | &alloc_fastpath_attr.attr, | |
5976 | &alloc_slowpath_attr.attr, | |
5977 | &free_fastpath_attr.attr, | |
5978 | &free_slowpath_attr.attr, | |
5979 | &free_frozen_attr.attr, | |
5980 | &free_add_partial_attr.attr, | |
5981 | &free_remove_partial_attr.attr, | |
5982 | &alloc_from_partial_attr.attr, | |
5983 | &alloc_slab_attr.attr, | |
5984 | &alloc_refill_attr.attr, | |
e36a2652 | 5985 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5986 | &free_slab_attr.attr, |
5987 | &cpuslab_flush_attr.attr, | |
5988 | &deactivate_full_attr.attr, | |
5989 | &deactivate_empty_attr.attr, | |
5990 | &deactivate_to_head_attr.attr, | |
5991 | &deactivate_to_tail_attr.attr, | |
5992 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5993 | &deactivate_bypass_attr.attr, |
65c3376a | 5994 | &order_fallback_attr.attr, |
b789ef51 CL |
5995 | &cmpxchg_double_fail_attr.attr, |
5996 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5997 | &cpu_partial_alloc_attr.attr, |
5998 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5999 | &cpu_partial_node_attr.attr, |
6000 | &cpu_partial_drain_attr.attr, | |
81819f0f | 6001 | #endif |
4c13dd3b DM |
6002 | #ifdef CONFIG_FAILSLAB |
6003 | &failslab_attr.attr, | |
6004 | #endif | |
346907ce | 6005 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b | 6006 | &usersize_attr.attr, |
346907ce | 6007 | #endif |
b84e04f1 IK |
6008 | #ifdef CONFIG_KFENCE |
6009 | &skip_kfence_attr.attr, | |
6010 | #endif | |
4c13dd3b | 6011 | |
81819f0f CL |
6012 | NULL |
6013 | }; | |
6014 | ||
1fdaaa23 | 6015 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
6016 | .attrs = slab_attrs, |
6017 | }; | |
6018 | ||
6019 | static ssize_t slab_attr_show(struct kobject *kobj, | |
6020 | struct attribute *attr, | |
6021 | char *buf) | |
6022 | { | |
6023 | struct slab_attribute *attribute; | |
6024 | struct kmem_cache *s; | |
81819f0f CL |
6025 | |
6026 | attribute = to_slab_attr(attr); | |
6027 | s = to_slab(kobj); | |
6028 | ||
6029 | if (!attribute->show) | |
6030 | return -EIO; | |
6031 | ||
2bfbb027 | 6032 | return attribute->show(s, buf); |
81819f0f CL |
6033 | } |
6034 | ||
6035 | static ssize_t slab_attr_store(struct kobject *kobj, | |
6036 | struct attribute *attr, | |
6037 | const char *buf, size_t len) | |
6038 | { | |
6039 | struct slab_attribute *attribute; | |
6040 | struct kmem_cache *s; | |
81819f0f CL |
6041 | |
6042 | attribute = to_slab_attr(attr); | |
6043 | s = to_slab(kobj); | |
6044 | ||
6045 | if (!attribute->store) | |
6046 | return -EIO; | |
6047 | ||
2bfbb027 | 6048 | return attribute->store(s, buf, len); |
81819f0f CL |
6049 | } |
6050 | ||
41a21285 CL |
6051 | static void kmem_cache_release(struct kobject *k) |
6052 | { | |
6053 | slab_kmem_cache_release(to_slab(k)); | |
6054 | } | |
6055 | ||
52cf25d0 | 6056 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
6057 | .show = slab_attr_show, |
6058 | .store = slab_attr_store, | |
6059 | }; | |
6060 | ||
6061 | static struct kobj_type slab_ktype = { | |
6062 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 6063 | .release = kmem_cache_release, |
81819f0f CL |
6064 | }; |
6065 | ||
27c3a314 | 6066 | static struct kset *slab_kset; |
81819f0f | 6067 | |
9a41707b VD |
6068 | static inline struct kset *cache_kset(struct kmem_cache *s) |
6069 | { | |
9a41707b VD |
6070 | return slab_kset; |
6071 | } | |
6072 | ||
d65360f2 | 6073 | #define ID_STR_LENGTH 32 |
81819f0f CL |
6074 | |
6075 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
6076 | * |
6077 | * Format :[flags-]size | |
81819f0f CL |
6078 | */ |
6079 | static char *create_unique_id(struct kmem_cache *s) | |
6080 | { | |
6081 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
6082 | char *p = name; | |
6083 | ||
7e9c323c CY |
6084 | if (!name) |
6085 | return ERR_PTR(-ENOMEM); | |
81819f0f CL |
6086 | |
6087 | *p++ = ':'; | |
6088 | /* | |
6089 | * First flags affecting slabcache operations. We will only | |
6090 | * get here for aliasable slabs so we do not need to support | |
6091 | * too many flags. The flags here must cover all flags that | |
6092 | * are matched during merging to guarantee that the id is | |
6093 | * unique. | |
6094 | */ | |
6095 | if (s->flags & SLAB_CACHE_DMA) | |
6096 | *p++ = 'd'; | |
6d6ea1e9 NB |
6097 | if (s->flags & SLAB_CACHE_DMA32) |
6098 | *p++ = 'D'; | |
81819f0f CL |
6099 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
6100 | *p++ = 'a'; | |
becfda68 | 6101 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 6102 | *p++ = 'F'; |
230e9fc2 VD |
6103 | if (s->flags & SLAB_ACCOUNT) |
6104 | *p++ = 'A'; | |
81819f0f CL |
6105 | if (p != name + 1) |
6106 | *p++ = '-'; | |
d65360f2 | 6107 | p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); |
2633d7a0 | 6108 | |
d65360f2 CY |
6109 | if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { |
6110 | kfree(name); | |
6111 | return ERR_PTR(-EINVAL); | |
6112 | } | |
68ef169a | 6113 | kmsan_unpoison_memory(name, p - name); |
81819f0f CL |
6114 | return name; |
6115 | } | |
6116 | ||
6117 | static int sysfs_slab_add(struct kmem_cache *s) | |
6118 | { | |
6119 | int err; | |
6120 | const char *name; | |
1663f26d | 6121 | struct kset *kset = cache_kset(s); |
45530c44 | 6122 | int unmergeable = slab_unmergeable(s); |
81819f0f | 6123 | |
11066386 MC |
6124 | if (!unmergeable && disable_higher_order_debug && |
6125 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
6126 | unmergeable = 1; | |
6127 | ||
81819f0f CL |
6128 | if (unmergeable) { |
6129 | /* | |
6130 | * Slabcache can never be merged so we can use the name proper. | |
6131 | * This is typically the case for debug situations. In that | |
6132 | * case we can catch duplicate names easily. | |
6133 | */ | |
27c3a314 | 6134 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
6135 | name = s->name; |
6136 | } else { | |
6137 | /* | |
6138 | * Create a unique name for the slab as a target | |
6139 | * for the symlinks. | |
6140 | */ | |
6141 | name = create_unique_id(s); | |
7e9c323c CY |
6142 | if (IS_ERR(name)) |
6143 | return PTR_ERR(name); | |
81819f0f CL |
6144 | } |
6145 | ||
1663f26d | 6146 | s->kobj.kset = kset; |
26e4f205 | 6147 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 6148 | if (err) |
80da026a | 6149 | goto out; |
81819f0f CL |
6150 | |
6151 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
6152 | if (err) |
6153 | goto out_del_kobj; | |
9a41707b | 6154 | |
81819f0f CL |
6155 | if (!unmergeable) { |
6156 | /* Setup first alias */ | |
6157 | sysfs_slab_alias(s, s->name); | |
81819f0f | 6158 | } |
54b6a731 DJ |
6159 | out: |
6160 | if (!unmergeable) | |
6161 | kfree(name); | |
6162 | return err; | |
6163 | out_del_kobj: | |
6164 | kobject_del(&s->kobj); | |
54b6a731 | 6165 | goto out; |
81819f0f CL |
6166 | } |
6167 | ||
d50d82fa MP |
6168 | void sysfs_slab_unlink(struct kmem_cache *s) |
6169 | { | |
6170 | if (slab_state >= FULL) | |
6171 | kobject_del(&s->kobj); | |
6172 | } | |
6173 | ||
bf5eb3de TH |
6174 | void sysfs_slab_release(struct kmem_cache *s) |
6175 | { | |
6176 | if (slab_state >= FULL) | |
6177 | kobject_put(&s->kobj); | |
81819f0f CL |
6178 | } |
6179 | ||
6180 | /* | |
6181 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 6182 | * available lest we lose that information. |
81819f0f CL |
6183 | */ |
6184 | struct saved_alias { | |
6185 | struct kmem_cache *s; | |
6186 | const char *name; | |
6187 | struct saved_alias *next; | |
6188 | }; | |
6189 | ||
5af328a5 | 6190 | static struct saved_alias *alias_list; |
81819f0f CL |
6191 | |
6192 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
6193 | { | |
6194 | struct saved_alias *al; | |
6195 | ||
97d06609 | 6196 | if (slab_state == FULL) { |
81819f0f CL |
6197 | /* |
6198 | * If we have a leftover link then remove it. | |
6199 | */ | |
27c3a314 GKH |
6200 | sysfs_remove_link(&slab_kset->kobj, name); |
6201 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
6202 | } |
6203 | ||
6204 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
6205 | if (!al) | |
6206 | return -ENOMEM; | |
6207 | ||
6208 | al->s = s; | |
6209 | al->name = name; | |
6210 | al->next = alias_list; | |
6211 | alias_list = al; | |
68ef169a | 6212 | kmsan_unpoison_memory(al, sizeof(*al)); |
81819f0f CL |
6213 | return 0; |
6214 | } | |
6215 | ||
6216 | static int __init slab_sysfs_init(void) | |
6217 | { | |
5b95a4ac | 6218 | struct kmem_cache *s; |
81819f0f CL |
6219 | int err; |
6220 | ||
18004c5d | 6221 | mutex_lock(&slab_mutex); |
2bce6485 | 6222 | |
d7660ce5 | 6223 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 6224 | if (!slab_kset) { |
18004c5d | 6225 | mutex_unlock(&slab_mutex); |
f9f58285 | 6226 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
6227 | return -ENOSYS; |
6228 | } | |
6229 | ||
97d06609 | 6230 | slab_state = FULL; |
26a7bd03 | 6231 | |
5b95a4ac | 6232 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 6233 | err = sysfs_slab_add(s); |
5d540fb7 | 6234 | if (err) |
f9f58285 FF |
6235 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
6236 | s->name); | |
26a7bd03 | 6237 | } |
81819f0f CL |
6238 | |
6239 | while (alias_list) { | |
6240 | struct saved_alias *al = alias_list; | |
6241 | ||
6242 | alias_list = alias_list->next; | |
6243 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 6244 | if (err) |
f9f58285 FF |
6245 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
6246 | al->name); | |
81819f0f CL |
6247 | kfree(al); |
6248 | } | |
6249 | ||
18004c5d | 6250 | mutex_unlock(&slab_mutex); |
81819f0f CL |
6251 | return 0; |
6252 | } | |
1a5ad30b | 6253 | late_initcall(slab_sysfs_init); |
b1a413a3 | 6254 | #endif /* SLAB_SUPPORTS_SYSFS */ |
57ed3eda | 6255 | |
64dd6849 FM |
6256 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
6257 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
6258 | { | |
64dd6849 | 6259 | struct loc_track *t = seq->private; |
005a79e5 GS |
6260 | struct location *l; |
6261 | unsigned long idx; | |
64dd6849 | 6262 | |
005a79e5 | 6263 | idx = (unsigned long) t->idx; |
64dd6849 FM |
6264 | if (idx < t->count) { |
6265 | l = &t->loc[idx]; | |
6266 | ||
6267 | seq_printf(seq, "%7ld ", l->count); | |
6268 | ||
6269 | if (l->addr) | |
6270 | seq_printf(seq, "%pS", (void *)l->addr); | |
6271 | else | |
6272 | seq_puts(seq, "<not-available>"); | |
6273 | ||
6edf2576 FT |
6274 | if (l->waste) |
6275 | seq_printf(seq, " waste=%lu/%lu", | |
6276 | l->count * l->waste, l->waste); | |
6277 | ||
64dd6849 FM |
6278 | if (l->sum_time != l->min_time) { |
6279 | seq_printf(seq, " age=%ld/%llu/%ld", | |
6280 | l->min_time, div_u64(l->sum_time, l->count), | |
6281 | l->max_time); | |
6282 | } else | |
6283 | seq_printf(seq, " age=%ld", l->min_time); | |
6284 | ||
6285 | if (l->min_pid != l->max_pid) | |
6286 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
6287 | else | |
6288 | seq_printf(seq, " pid=%ld", | |
6289 | l->min_pid); | |
6290 | ||
6291 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
6292 | seq_printf(seq, " cpus=%*pbl", | |
6293 | cpumask_pr_args(to_cpumask(l->cpus))); | |
6294 | ||
6295 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
6296 | seq_printf(seq, " nodes=%*pbl", | |
6297 | nodemask_pr_args(&l->nodes)); | |
6298 | ||
8ea9fb92 OG |
6299 | #ifdef CONFIG_STACKDEPOT |
6300 | { | |
6301 | depot_stack_handle_t handle; | |
6302 | unsigned long *entries; | |
6303 | unsigned int nr_entries, j; | |
6304 | ||
6305 | handle = READ_ONCE(l->handle); | |
6306 | if (handle) { | |
6307 | nr_entries = stack_depot_fetch(handle, &entries); | |
6308 | seq_puts(seq, "\n"); | |
6309 | for (j = 0; j < nr_entries; j++) | |
6310 | seq_printf(seq, " %pS\n", (void *)entries[j]); | |
6311 | } | |
6312 | } | |
6313 | #endif | |
64dd6849 FM |
6314 | seq_puts(seq, "\n"); |
6315 | } | |
6316 | ||
6317 | if (!idx && !t->count) | |
6318 | seq_puts(seq, "No data\n"); | |
6319 | ||
6320 | return 0; | |
6321 | } | |
6322 | ||
6323 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
6324 | { | |
6325 | } | |
6326 | ||
6327 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
6328 | { | |
6329 | struct loc_track *t = seq->private; | |
6330 | ||
005a79e5 | 6331 | t->idx = ++(*ppos); |
64dd6849 | 6332 | if (*ppos <= t->count) |
005a79e5 | 6333 | return ppos; |
64dd6849 FM |
6334 | |
6335 | return NULL; | |
6336 | } | |
6337 | ||
553c0369 OG |
6338 | static int cmp_loc_by_count(const void *a, const void *b, const void *data) |
6339 | { | |
6340 | struct location *loc1 = (struct location *)a; | |
6341 | struct location *loc2 = (struct location *)b; | |
6342 | ||
6343 | if (loc1->count > loc2->count) | |
6344 | return -1; | |
6345 | else | |
6346 | return 1; | |
6347 | } | |
6348 | ||
64dd6849 FM |
6349 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) |
6350 | { | |
005a79e5 GS |
6351 | struct loc_track *t = seq->private; |
6352 | ||
6353 | t->idx = *ppos; | |
64dd6849 FM |
6354 | return ppos; |
6355 | } | |
6356 | ||
6357 | static const struct seq_operations slab_debugfs_sops = { | |
6358 | .start = slab_debugfs_start, | |
6359 | .next = slab_debugfs_next, | |
6360 | .stop = slab_debugfs_stop, | |
6361 | .show = slab_debugfs_show, | |
6362 | }; | |
6363 | ||
6364 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
6365 | { | |
6366 | ||
6367 | struct kmem_cache_node *n; | |
6368 | enum track_item alloc; | |
6369 | int node; | |
6370 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
6371 | sizeof(struct loc_track)); | |
6372 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
6373 | unsigned long *obj_map; |
6374 | ||
2127d225 ML |
6375 | if (!t) |
6376 | return -ENOMEM; | |
6377 | ||
b3fd64e1 | 6378 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
2127d225 ML |
6379 | if (!obj_map) { |
6380 | seq_release_private(inode, filep); | |
b3fd64e1 | 6381 | return -ENOMEM; |
2127d225 | 6382 | } |
64dd6849 FM |
6383 | |
6384 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
6385 | alloc = TRACK_ALLOC; | |
6386 | else | |
6387 | alloc = TRACK_FREE; | |
6388 | ||
b3fd64e1 VB |
6389 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
6390 | bitmap_free(obj_map); | |
2127d225 | 6391 | seq_release_private(inode, filep); |
64dd6849 | 6392 | return -ENOMEM; |
b3fd64e1 | 6393 | } |
64dd6849 | 6394 | |
64dd6849 FM |
6395 | for_each_kmem_cache_node(s, node, n) { |
6396 | unsigned long flags; | |
bb192ed9 | 6397 | struct slab *slab; |
64dd6849 FM |
6398 | |
6399 | if (!atomic_long_read(&n->nr_slabs)) | |
6400 | continue; | |
6401 | ||
6402 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
6403 | list_for_each_entry(slab, &n->partial, slab_list) |
6404 | process_slab(t, s, slab, alloc, obj_map); | |
6405 | list_for_each_entry(slab, &n->full, slab_list) | |
6406 | process_slab(t, s, slab, alloc, obj_map); | |
64dd6849 FM |
6407 | spin_unlock_irqrestore(&n->list_lock, flags); |
6408 | } | |
6409 | ||
553c0369 OG |
6410 | /* Sort locations by count */ |
6411 | sort_r(t->loc, t->count, sizeof(struct location), | |
6412 | cmp_loc_by_count, NULL, NULL); | |
6413 | ||
b3fd64e1 | 6414 | bitmap_free(obj_map); |
64dd6849 FM |
6415 | return 0; |
6416 | } | |
6417 | ||
6418 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
6419 | { | |
6420 | struct seq_file *seq = file->private_data; | |
6421 | struct loc_track *t = seq->private; | |
6422 | ||
6423 | free_loc_track(t); | |
6424 | return seq_release_private(inode, file); | |
6425 | } | |
6426 | ||
6427 | static const struct file_operations slab_debugfs_fops = { | |
6428 | .open = slab_debug_trace_open, | |
6429 | .read = seq_read, | |
6430 | .llseek = seq_lseek, | |
6431 | .release = slab_debug_trace_release, | |
6432 | }; | |
6433 | ||
6434 | static void debugfs_slab_add(struct kmem_cache *s) | |
6435 | { | |
6436 | struct dentry *slab_cache_dir; | |
6437 | ||
6438 | if (unlikely(!slab_debugfs_root)) | |
6439 | return; | |
6440 | ||
6441 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
6442 | ||
6443 | debugfs_create_file("alloc_traces", 0400, | |
6444 | slab_cache_dir, s, &slab_debugfs_fops); | |
6445 | ||
6446 | debugfs_create_file("free_traces", 0400, | |
6447 | slab_cache_dir, s, &slab_debugfs_fops); | |
6448 | } | |
6449 | ||
6450 | void debugfs_slab_release(struct kmem_cache *s) | |
6451 | { | |
6452 | debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); | |
6453 | } | |
6454 | ||
6455 | static int __init slab_debugfs_init(void) | |
6456 | { | |
6457 | struct kmem_cache *s; | |
6458 | ||
6459 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
6460 | ||
6461 | list_for_each_entry(s, &slab_caches, list) | |
6462 | if (s->flags & SLAB_STORE_USER) | |
6463 | debugfs_slab_add(s); | |
6464 | ||
6465 | return 0; | |
6466 | ||
6467 | } | |
6468 | __initcall(slab_debugfs_init); | |
6469 | #endif | |
57ed3eda PE |
6470 | /* |
6471 | * The /proc/slabinfo ABI | |
6472 | */ | |
5b365771 | 6473 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 6474 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 6475 | { |
57ed3eda | 6476 | unsigned long nr_slabs = 0; |
205ab99d CL |
6477 | unsigned long nr_objs = 0; |
6478 | unsigned long nr_free = 0; | |
57ed3eda | 6479 | int node; |
fa45dc25 | 6480 | struct kmem_cache_node *n; |
57ed3eda | 6481 | |
fa45dc25 | 6482 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
6483 | nr_slabs += node_nr_slabs(n); |
6484 | nr_objs += node_nr_objs(n); | |
205ab99d | 6485 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
6486 | } |
6487 | ||
0d7561c6 GC |
6488 | sinfo->active_objs = nr_objs - nr_free; |
6489 | sinfo->num_objs = nr_objs; | |
6490 | sinfo->active_slabs = nr_slabs; | |
6491 | sinfo->num_slabs = nr_slabs; | |
6492 | sinfo->objects_per_slab = oo_objects(s->oo); | |
6493 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
6494 | } |
6495 | ||
0d7561c6 | 6496 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 6497 | { |
7b3c3a50 AD |
6498 | } |
6499 | ||
b7454ad3 GC |
6500 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
6501 | size_t count, loff_t *ppos) | |
7b3c3a50 | 6502 | { |
b7454ad3 | 6503 | return -EIO; |
7b3c3a50 | 6504 | } |
5b365771 | 6505 | #endif /* CONFIG_SLUB_DEBUG */ |