]> Git Repo - linux.git/blame - mm/slub.c
nvme: quiet user passthrough command errors
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
5cf909c5 29#include <linux/stackdepot.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b89fb5ef 32#include <linux/kfence.h>
b9049e23 33#include <linux/memory.h>
f8bd2258 34#include <linux/math64.h>
773ff60e 35#include <linux/fault-inject.h>
bfa71457 36#include <linux/stacktrace.h>
4de900b4 37#include <linux/prefetch.h>
2633d7a0 38#include <linux/memcontrol.h>
2482ddec 39#include <linux/random.h>
1f9f78b1 40#include <kunit/test.h>
553c0369 41#include <linux/sort.h>
81819f0f 42
64dd6849 43#include <linux/debugfs.h>
4a92379b
RK
44#include <trace/events/kmem.h>
45
072bb0aa
MG
46#include "internal.h"
47
81819f0f
CL
48/*
49 * Lock order:
18004c5d 50 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
c2092c12 53 * 4. slab_lock(slab) (Only on some arches or for debugging)
bd0e7491 54 * 5. object_map_lock (Only for debugging)
81819f0f 55 *
18004c5d 56 * slab_mutex
881db7fb 57 *
18004c5d 58 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 59 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
60 * Also synchronizes memory hotplug callbacks.
61 *
62 * slab_lock
63 *
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * spinlock.
881db7fb
CL
66 *
67 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 68 * have the ability to do a cmpxchg_double. It only protects:
c2092c12
VB
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
881db7fb 73 *
bd0e7491
VB
74 * Frozen slabs
75 *
881db7fb 76 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 77 * on any list except per cpu partial list. The processor that froze the
c2092c12 78 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
c2092c12 81 * slab's freelist.
81819f0f 82 *
bd0e7491
VB
83 * list_lock
84 *
81819f0f
CL
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
90 *
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
95 * the list lock.
bd0e7491
VB
96 *
97 * cpu_slab->lock local lock
98 *
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
106 *
107 * lockless fastpaths
108 *
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
114 * another cpu.
115 *
116 * irq, preemption, migration considerations
117 *
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
121 *
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
126 *
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
129 *
672bba3a
CL
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 132 * freed then the slab will show up again on the partial lists.
672bba3a
CL
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
81819f0f
CL
135 *
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
139 *
c2092c12 140 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
148 *
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
dfb4f096 152 * freelist that allows lockless access to
894b8788
CL
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
81819f0f 155 *
aed68148 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 157 * options set. This moves slab handling out of
894b8788 158 * the fast path and disables lockless freelists.
81819f0f
CL
159 */
160
25c00c50
VB
161/*
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164 */
165#ifndef CONFIG_PREEMPT_RT
166#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
168#else
169#define slub_get_cpu_ptr(var) \
170({ \
171 migrate_disable(); \
172 this_cpu_ptr(var); \
173})
174#define slub_put_cpu_ptr(var) \
175do { \
176 (void)(var); \
177 migrate_enable(); \
178} while (0)
179#endif
180
ca0cab65
VB
181#ifdef CONFIG_SLUB_DEBUG
182#ifdef CONFIG_SLUB_DEBUG_ON
183DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184#else
185DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186#endif
79270291 187#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 188
59052e89
VB
189static inline bool kmem_cache_debug(struct kmem_cache *s)
190{
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 192}
5577bd8a 193
117d54df 194void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 195{
59052e89 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
197 p += s->red_left_pad;
198
199 return p;
200}
201
345c905d
JK
202static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203{
204#ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
206#else
207 return false;
208#endif
209}
210
81819f0f
CL
211/*
212 * Issues still to be resolved:
213 *
81819f0f
CL
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215 *
81819f0f
CL
216 * - Variable sizing of the per node arrays
217 */
218
b789ef51
CL
219/* Enable to log cmpxchg failures */
220#undef SLUB_DEBUG_CMPXCHG
221
2086d26a 222/*
dc84207d 223 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
225 */
76be8950 226#define MIN_PARTIAL 5
e95eed57 227
2086d26a
CL
228/*
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 231 * sort the partial list by the number of objects in use.
2086d26a
CL
232 */
233#define MAX_PARTIAL 10
234
becfda68 235#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 236 SLAB_POISON | SLAB_STORE_USER)
672bba3a 237
149daaf3
LA
238/*
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
241 */
242#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 SLAB_TRACE)
244
245
fa5ec8a1 246/*
3de47213
DR
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
249 * metadata.
fa5ec8a1 250 */
3de47213 251#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 252
210b5c06
CG
253#define OO_SHIFT 16
254#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 255#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 256
81819f0f 257/* Internal SLUB flags */
d50112ed 258/* Poison object */
4fd0b46e 259#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 260/* Use cmpxchg_double */
4fd0b46e 261#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 262
02cbc874
CL
263/*
264 * Tracking user of a slab.
265 */
d6543e39 266#define TRACK_ADDRS_COUNT 16
02cbc874 267struct track {
ce71e27c 268 unsigned long addr; /* Called from address */
5cf909c5
OG
269#ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
d6543e39 271#endif
02cbc874
CL
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
275};
276
277enum track_item { TRACK_ALLOC, TRACK_FREE };
278
ab4d5ed5 279#ifdef CONFIG_SYSFS
81819f0f
CL
280static int sysfs_slab_add(struct kmem_cache *);
281static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 282#else
0c710013
CL
283static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 { return 0; }
81819f0f
CL
286#endif
287
64dd6849
FM
288#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289static void debugfs_slab_add(struct kmem_cache *);
290#else
291static inline void debugfs_slab_add(struct kmem_cache *s) { }
292#endif
293
4fdccdfb 294static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
295{
296#ifdef CONFIG_SLUB_STATS
88da03a6
CL
297 /*
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
300 */
301 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
302#endif
303}
304
7e1fa93d
VB
305/*
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
310 */
311static nodemask_t slab_nodes;
312
e45cc288
ML
313/*
314 * Workqueue used for flush_cpu_slab().
315 */
316static struct workqueue_struct *flushwq;
317
81819f0f
CL
318/********************************************************************
319 * Core slab cache functions
320 *******************************************************************/
321
2482ddec
KC
322/*
323 * Returns freelist pointer (ptr). With hardening, this is obfuscated
324 * with an XOR of the address where the pointer is held and a per-cache
325 * random number.
326 */
327static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
328 unsigned long ptr_addr)
329{
330#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 331 /*
aa1ef4d7 332 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
333 * Normally, this doesn't cause any issues, as both set_freepointer()
334 * and get_freepointer() are called with a pointer with the same tag.
335 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
336 * example, when __free_slub() iterates over objects in a cache, it
337 * passes untagged pointers to check_object(). check_object() in turns
338 * calls get_freepointer() with an untagged pointer, which causes the
339 * freepointer to be restored incorrectly.
340 */
341 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 342 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
343#else
344 return ptr;
345#endif
346}
347
348/* Returns the freelist pointer recorded at location ptr_addr. */
349static inline void *freelist_dereference(const struct kmem_cache *s,
350 void *ptr_addr)
351{
352 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
353 (unsigned long)ptr_addr);
354}
355
7656c72b
CL
356static inline void *get_freepointer(struct kmem_cache *s, void *object)
357{
aa1ef4d7 358 object = kasan_reset_tag(object);
2482ddec 359 return freelist_dereference(s, object + s->offset);
7656c72b
CL
360}
361
0ad9500e
ED
362static void prefetch_freepointer(const struct kmem_cache *s, void *object)
363{
04b4b006 364 prefetchw(object + s->offset);
0ad9500e
ED
365}
366
1393d9a1
CL
367static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
368{
2482ddec 369 unsigned long freepointer_addr;
1393d9a1
CL
370 void *p;
371
8e57f8ac 372 if (!debug_pagealloc_enabled_static())
922d566c
JK
373 return get_freepointer(s, object);
374
f70b0049 375 object = kasan_reset_tag(object);
2482ddec 376 freepointer_addr = (unsigned long)object + s->offset;
fe557319 377 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 378 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
379}
380
7656c72b
CL
381static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
382{
2482ddec
KC
383 unsigned long freeptr_addr = (unsigned long)object + s->offset;
384
ce6fa91b
AP
385#ifdef CONFIG_SLAB_FREELIST_HARDENED
386 BUG_ON(object == fp); /* naive detection of double free or corruption */
387#endif
388
aa1ef4d7 389 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 390 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
391}
392
393/* Loop over all objects in a slab */
224a88be 394#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
395 for (__p = fixup_red_left(__s, __addr); \
396 __p < (__addr) + (__objects) * (__s)->size; \
397 __p += (__s)->size)
7656c72b 398
9736d2a9 399static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 400{
9736d2a9 401 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
402}
403
19af27af 404static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 405 unsigned int size)
834f3d11
CL
406{
407 struct kmem_cache_order_objects x = {
9736d2a9 408 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
409 };
410
411 return x;
412}
413
19af27af 414static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 415{
210b5c06 416 return x.x >> OO_SHIFT;
834f3d11
CL
417}
418
19af27af 419static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 420{
210b5c06 421 return x.x & OO_MASK;
834f3d11
CL
422}
423
b47291ef
VB
424#ifdef CONFIG_SLUB_CPU_PARTIAL
425static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
426{
bb192ed9 427 unsigned int nr_slabs;
b47291ef
VB
428
429 s->cpu_partial = nr_objects;
430
431 /*
432 * We take the number of objects but actually limit the number of
c2092c12
VB
433 * slabs on the per cpu partial list, in order to limit excessive
434 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
435 * be half-full.
436 */
bb192ed9
VB
437 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
438 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
439}
440#else
441static inline void
442slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
443{
444}
445#endif /* CONFIG_SLUB_CPU_PARTIAL */
446
881db7fb
CL
447/*
448 * Per slab locking using the pagelock
449 */
0393895b 450static __always_inline void __slab_lock(struct slab *slab)
881db7fb 451{
0393895b
VB
452 struct page *page = slab_page(slab);
453
48c935ad 454 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
455 bit_spin_lock(PG_locked, &page->flags);
456}
457
0393895b 458static __always_inline void __slab_unlock(struct slab *slab)
881db7fb 459{
0393895b
VB
460 struct page *page = slab_page(slab);
461
48c935ad 462 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
463 __bit_spin_unlock(PG_locked, &page->flags);
464}
465
bb192ed9 466static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
a2b4ae8b
VB
467{
468 if (IS_ENABLED(CONFIG_PREEMPT_RT))
469 local_irq_save(*flags);
bb192ed9 470 __slab_lock(slab);
a2b4ae8b
VB
471}
472
bb192ed9 473static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
a2b4ae8b 474{
bb192ed9 475 __slab_unlock(slab);
a2b4ae8b
VB
476 if (IS_ENABLED(CONFIG_PREEMPT_RT))
477 local_irq_restore(*flags);
478}
479
480/*
481 * Interrupts must be disabled (for the fallback code to work right), typically
482 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
483 * so we disable interrupts as part of slab_[un]lock().
484 */
bb192ed9 485static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
486 void *freelist_old, unsigned long counters_old,
487 void *freelist_new, unsigned long counters_new,
488 const char *n)
489{
a2b4ae8b
VB
490 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
491 lockdep_assert_irqs_disabled();
2565409f
HC
492#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
493 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 494 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 495 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
496 freelist_old, counters_old,
497 freelist_new, counters_new))
6f6528a1 498 return true;
1d07171c
CL
499 } else
500#endif
501 {
a2b4ae8b
VB
502 /* init to 0 to prevent spurious warnings */
503 unsigned long flags = 0;
504
bb192ed9
VB
505 slab_lock(slab, &flags);
506 if (slab->freelist == freelist_old &&
507 slab->counters == counters_old) {
508 slab->freelist = freelist_new;
509 slab->counters = counters_new;
510 slab_unlock(slab, &flags);
6f6528a1 511 return true;
1d07171c 512 }
bb192ed9 513 slab_unlock(slab, &flags);
1d07171c
CL
514 }
515
516 cpu_relax();
517 stat(s, CMPXCHG_DOUBLE_FAIL);
518
519#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 520 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
521#endif
522
6f6528a1 523 return false;
1d07171c
CL
524}
525
bb192ed9 526static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
527 void *freelist_old, unsigned long counters_old,
528 void *freelist_new, unsigned long counters_new,
529 const char *n)
530{
2565409f
HC
531#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
532 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 533 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 534 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
535 freelist_old, counters_old,
536 freelist_new, counters_new))
6f6528a1 537 return true;
b789ef51
CL
538 } else
539#endif
540 {
1d07171c
CL
541 unsigned long flags;
542
543 local_irq_save(flags);
bb192ed9
VB
544 __slab_lock(slab);
545 if (slab->freelist == freelist_old &&
546 slab->counters == counters_old) {
547 slab->freelist = freelist_new;
548 slab->counters = counters_new;
549 __slab_unlock(slab);
1d07171c 550 local_irq_restore(flags);
6f6528a1 551 return true;
b789ef51 552 }
bb192ed9 553 __slab_unlock(slab);
1d07171c 554 local_irq_restore(flags);
b789ef51
CL
555 }
556
557 cpu_relax();
558 stat(s, CMPXCHG_DOUBLE_FAIL);
559
560#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 561 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
562#endif
563
6f6528a1 564 return false;
b789ef51
CL
565}
566
41ecc55b 567#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 568static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 569static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 570
b3fd64e1 571static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 572 struct slab *slab)
b3fd64e1 573{
bb192ed9 574 void *addr = slab_address(slab);
b3fd64e1
VB
575 void *p;
576
bb192ed9 577 bitmap_zero(obj_map, slab->objects);
b3fd64e1 578
bb192ed9 579 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
580 set_bit(__obj_to_index(s, addr, p), obj_map);
581}
582
1f9f78b1
OG
583#if IS_ENABLED(CONFIG_KUNIT)
584static bool slab_add_kunit_errors(void)
585{
586 struct kunit_resource *resource;
587
588 if (likely(!current->kunit_test))
589 return false;
590
591 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
592 if (!resource)
593 return false;
594
595 (*(int *)resource->data)++;
596 kunit_put_resource(resource);
597 return true;
598}
599#else
600static inline bool slab_add_kunit_errors(void) { return false; }
601#endif
602
5f80b13a 603/*
c2092c12 604 * Determine a map of objects in use in a slab.
5f80b13a 605 *
c2092c12 606 * Node listlock must be held to guarantee that the slab does
5f80b13a
CL
607 * not vanish from under us.
608 */
bb192ed9 609static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
31364c2e 610 __acquires(&object_map_lock)
5f80b13a 611{
90e9f6a6
YZ
612 VM_BUG_ON(!irqs_disabled());
613
94ef0304 614 raw_spin_lock(&object_map_lock);
90e9f6a6 615
bb192ed9 616 __fill_map(object_map, s, slab);
90e9f6a6
YZ
617
618 return object_map;
619}
620
81aba9e0 621static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
622{
623 VM_BUG_ON(map != object_map);
94ef0304 624 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
625}
626
870b1fbb 627static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
628{
629 if (s->flags & SLAB_RED_ZONE)
630 return s->size - s->red_left_pad;
631
632 return s->size;
633}
634
635static inline void *restore_red_left(struct kmem_cache *s, void *p)
636{
637 if (s->flags & SLAB_RED_ZONE)
638 p -= s->red_left_pad;
639
640 return p;
641}
642
41ecc55b
CL
643/*
644 * Debug settings:
645 */
89d3c87e 646#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 647static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 648#else
d50112ed 649static slab_flags_t slub_debug;
f0630fff 650#endif
41ecc55b 651
e17f1dfb 652static char *slub_debug_string;
fa5ec8a1 653static int disable_higher_order_debug;
41ecc55b 654
a79316c6
AR
655/*
656 * slub is about to manipulate internal object metadata. This memory lies
657 * outside the range of the allocated object, so accessing it would normally
658 * be reported by kasan as a bounds error. metadata_access_enable() is used
659 * to tell kasan that these accesses are OK.
660 */
661static inline void metadata_access_enable(void)
662{
663 kasan_disable_current();
664}
665
666static inline void metadata_access_disable(void)
667{
668 kasan_enable_current();
669}
670
81819f0f
CL
671/*
672 * Object debugging
673 */
d86bd1be
JK
674
675/* Verify that a pointer has an address that is valid within a slab page */
676static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 677 struct slab *slab, void *object)
d86bd1be
JK
678{
679 void *base;
680
681 if (!object)
682 return 1;
683
bb192ed9 684 base = slab_address(slab);
338cfaad 685 object = kasan_reset_tag(object);
d86bd1be 686 object = restore_red_left(s, object);
bb192ed9 687 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
688 (object - base) % s->size) {
689 return 0;
690 }
691
692 return 1;
693}
694
aa2efd5e
DT
695static void print_section(char *level, char *text, u8 *addr,
696 unsigned int length)
81819f0f 697{
a79316c6 698 metadata_access_enable();
340caf17
KYL
699 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
700 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 701 metadata_access_disable();
81819f0f
CL
702}
703
cbfc35a4
WL
704/*
705 * See comment in calculate_sizes().
706 */
707static inline bool freeptr_outside_object(struct kmem_cache *s)
708{
709 return s->offset >= s->inuse;
710}
711
712/*
713 * Return offset of the end of info block which is inuse + free pointer if
714 * not overlapping with object.
715 */
716static inline unsigned int get_info_end(struct kmem_cache *s)
717{
718 if (freeptr_outside_object(s))
719 return s->inuse + sizeof(void *);
720 else
721 return s->inuse;
722}
723
81819f0f
CL
724static struct track *get_track(struct kmem_cache *s, void *object,
725 enum track_item alloc)
726{
727 struct track *p;
728
cbfc35a4 729 p = object + get_info_end(s);
81819f0f 730
aa1ef4d7 731 return kasan_reset_tag(p + alloc);
81819f0f
CL
732}
733
5cf909c5 734#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
735static noinline depot_stack_handle_t set_track_prepare(void)
736{
737 depot_stack_handle_t handle;
5cf909c5 738 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 739 unsigned int nr_entries;
ae14c63a 740
5cf909c5 741 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
742 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
743
744 return handle;
745}
746#else
747static inline depot_stack_handle_t set_track_prepare(void)
748{
749 return 0;
750}
d6543e39 751#endif
5cf909c5 752
c4cf6785
SAS
753static void set_track_update(struct kmem_cache *s, void *object,
754 enum track_item alloc, unsigned long addr,
755 depot_stack_handle_t handle)
756{
757 struct track *p = get_track(s, object, alloc);
758
759#ifdef CONFIG_STACKDEPOT
760 p->handle = handle;
761#endif
0cd1a029
VB
762 p->addr = addr;
763 p->cpu = smp_processor_id();
764 p->pid = current->pid;
765 p->when = jiffies;
81819f0f
CL
766}
767
c4cf6785
SAS
768static __always_inline void set_track(struct kmem_cache *s, void *object,
769 enum track_item alloc, unsigned long addr)
770{
771 depot_stack_handle_t handle = set_track_prepare();
772
773 set_track_update(s, object, alloc, addr, handle);
774}
775
81819f0f
CL
776static void init_tracking(struct kmem_cache *s, void *object)
777{
0cd1a029
VB
778 struct track *p;
779
24922684
CL
780 if (!(s->flags & SLAB_STORE_USER))
781 return;
782
0cd1a029
VB
783 p = get_track(s, object, TRACK_ALLOC);
784 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
785}
786
86609d33 787static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 788{
5cf909c5
OG
789 depot_stack_handle_t handle __maybe_unused;
790
81819f0f
CL
791 if (!t->addr)
792 return;
793
96b94abc 794 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 795 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
796#ifdef CONFIG_STACKDEPOT
797 handle = READ_ONCE(t->handle);
798 if (handle)
799 stack_depot_print(handle);
800 else
801 pr_err("object allocation/free stack trace missing\n");
d6543e39 802#endif
24922684
CL
803}
804
e42f174e 805void print_tracking(struct kmem_cache *s, void *object)
24922684 806{
86609d33 807 unsigned long pr_time = jiffies;
24922684
CL
808 if (!(s->flags & SLAB_STORE_USER))
809 return;
810
86609d33
CP
811 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
812 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
813}
814
fb012e27 815static void print_slab_info(const struct slab *slab)
24922684 816{
fb012e27 817 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 818
fb012e27
MWO
819 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
820 slab, slab->objects, slab->inuse, slab->freelist,
821 folio_flags(folio, 0));
24922684
CL
822}
823
824static void slab_bug(struct kmem_cache *s, char *fmt, ...)
825{
ecc42fbe 826 struct va_format vaf;
24922684 827 va_list args;
24922684
CL
828
829 va_start(args, fmt);
ecc42fbe
FF
830 vaf.fmt = fmt;
831 vaf.va = &args;
f9f58285 832 pr_err("=============================================================================\n");
ecc42fbe 833 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 834 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 835 va_end(args);
81819f0f
CL
836}
837
582d1212 838__printf(2, 3)
24922684
CL
839static void slab_fix(struct kmem_cache *s, char *fmt, ...)
840{
ecc42fbe 841 struct va_format vaf;
24922684 842 va_list args;
24922684 843
1f9f78b1
OG
844 if (slab_add_kunit_errors())
845 return;
846
24922684 847 va_start(args, fmt);
ecc42fbe
FF
848 vaf.fmt = fmt;
849 vaf.va = &args;
850 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 851 va_end(args);
24922684
CL
852}
853
bb192ed9 854static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
855{
856 unsigned int off; /* Offset of last byte */
bb192ed9 857 u8 *addr = slab_address(slab);
24922684
CL
858
859 print_tracking(s, p);
860
bb192ed9 861 print_slab_info(slab);
24922684 862
96b94abc 863 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 864 p, p - addr, get_freepointer(s, p));
24922684 865
d86bd1be 866 if (s->flags & SLAB_RED_ZONE)
8669dbab 867 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 868 s->red_left_pad);
d86bd1be 869 else if (p > addr + 16)
aa2efd5e 870 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 871
8669dbab 872 print_section(KERN_ERR, "Object ", p,
1b473f29 873 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 874 if (s->flags & SLAB_RED_ZONE)
8669dbab 875 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 876 s->inuse - s->object_size);
81819f0f 877
cbfc35a4 878 off = get_info_end(s);
81819f0f 879
24922684 880 if (s->flags & SLAB_STORE_USER)
81819f0f 881 off += 2 * sizeof(struct track);
81819f0f 882
80a9201a
AP
883 off += kasan_metadata_size(s);
884
d86bd1be 885 if (off != size_from_object(s))
81819f0f 886 /* Beginning of the filler is the free pointer */
8669dbab 887 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 888 size_from_object(s) - off);
24922684
CL
889
890 dump_stack();
81819f0f
CL
891}
892
bb192ed9 893static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
894 u8 *object, char *reason)
895{
1f9f78b1
OG
896 if (slab_add_kunit_errors())
897 return;
898
3dc50637 899 slab_bug(s, "%s", reason);
bb192ed9 900 print_trailer(s, slab, object);
65ebdeef 901 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
902}
903
bb192ed9 904static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
905 void **freelist, void *nextfree)
906{
907 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
908 !check_valid_pointer(s, slab, nextfree) && freelist) {
909 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
910 *freelist = NULL;
911 slab_fix(s, "Isolate corrupted freechain");
912 return true;
913 }
914
915 return false;
916}
917
bb192ed9 918static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 919 const char *fmt, ...)
81819f0f
CL
920{
921 va_list args;
922 char buf[100];
923
1f9f78b1
OG
924 if (slab_add_kunit_errors())
925 return;
926
24922684
CL
927 va_start(args, fmt);
928 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 929 va_end(args);
3dc50637 930 slab_bug(s, "%s", buf);
bb192ed9 931 print_slab_info(slab);
81819f0f 932 dump_stack();
65ebdeef 933 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
934}
935
f7cb1933 936static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 937{
aa1ef4d7 938 u8 *p = kasan_reset_tag(object);
81819f0f 939
d86bd1be
JK
940 if (s->flags & SLAB_RED_ZONE)
941 memset(p - s->red_left_pad, val, s->red_left_pad);
942
81819f0f 943 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
944 memset(p, POISON_FREE, s->object_size - 1);
945 p[s->object_size - 1] = POISON_END;
81819f0f
CL
946 }
947
948 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 949 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
950}
951
24922684
CL
952static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
953 void *from, void *to)
954{
582d1212 955 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
956 memset(from, data, to - from);
957}
958
bb192ed9 959static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 960 u8 *object, char *what,
06428780 961 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
962{
963 u8 *fault;
964 u8 *end;
bb192ed9 965 u8 *addr = slab_address(slab);
24922684 966
a79316c6 967 metadata_access_enable();
aa1ef4d7 968 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 969 metadata_access_disable();
24922684
CL
970 if (!fault)
971 return 1;
972
973 end = start + bytes;
974 while (end > fault && end[-1] == value)
975 end--;
976
1f9f78b1
OG
977 if (slab_add_kunit_errors())
978 goto skip_bug_print;
979
24922684 980 slab_bug(s, "%s overwritten", what);
96b94abc 981 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
982 fault, end - 1, fault - addr,
983 fault[0], value);
bb192ed9 984 print_trailer(s, slab, object);
65ebdeef 985 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 986
1f9f78b1 987skip_bug_print:
24922684
CL
988 restore_bytes(s, what, value, fault, end);
989 return 0;
81819f0f
CL
990}
991
81819f0f
CL
992/*
993 * Object layout:
994 *
995 * object address
996 * Bytes of the object to be managed.
997 * If the freepointer may overlay the object then the free
cbfc35a4 998 * pointer is at the middle of the object.
672bba3a 999 *
81819f0f
CL
1000 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1001 * 0xa5 (POISON_END)
1002 *
3b0efdfa 1003 * object + s->object_size
81819f0f 1004 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1005 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1006 * object_size == inuse.
672bba3a 1007 *
81819f0f
CL
1008 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1009 * 0xcc (RED_ACTIVE) for objects in use.
1010 *
1011 * object + s->inuse
672bba3a
CL
1012 * Meta data starts here.
1013 *
81819f0f
CL
1014 * A. Free pointer (if we cannot overwrite object on free)
1015 * B. Tracking data for SLAB_STORE_USER
dc84207d 1016 * C. Padding to reach required alignment boundary or at minimum
6446faa2 1017 * one word if debugging is on to be able to detect writes
672bba3a
CL
1018 * before the word boundary.
1019 *
1020 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1021 *
1022 * object + s->size
672bba3a 1023 * Nothing is used beyond s->size.
81819f0f 1024 *
3b0efdfa 1025 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1026 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1027 * may be used with merged slabcaches.
1028 */
1029
bb192ed9 1030static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1031{
cbfc35a4 1032 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
1033
1034 if (s->flags & SLAB_STORE_USER)
1035 /* We also have user information there */
1036 off += 2 * sizeof(struct track);
1037
80a9201a
AP
1038 off += kasan_metadata_size(s);
1039
d86bd1be 1040 if (size_from_object(s) == off)
81819f0f
CL
1041 return 1;
1042
bb192ed9 1043 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1044 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1045}
1046
39b26464 1047/* Check the pad bytes at the end of a slab page */
a204e6d6 1048static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1049{
24922684
CL
1050 u8 *start;
1051 u8 *fault;
1052 u8 *end;
5d682681 1053 u8 *pad;
24922684
CL
1054 int length;
1055 int remainder;
81819f0f
CL
1056
1057 if (!(s->flags & SLAB_POISON))
a204e6d6 1058 return;
81819f0f 1059
bb192ed9
VB
1060 start = slab_address(slab);
1061 length = slab_size(slab);
39b26464
CL
1062 end = start + length;
1063 remainder = length % s->size;
81819f0f 1064 if (!remainder)
a204e6d6 1065 return;
81819f0f 1066
5d682681 1067 pad = end - remainder;
a79316c6 1068 metadata_access_enable();
aa1ef4d7 1069 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1070 metadata_access_disable();
24922684 1071 if (!fault)
a204e6d6 1072 return;
24922684
CL
1073 while (end > fault && end[-1] == POISON_INUSE)
1074 end--;
1075
bb192ed9 1076 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1077 fault, end - 1, fault - start);
5d682681 1078 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1079
5d682681 1080 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1081}
1082
bb192ed9 1083static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1084 void *object, u8 val)
81819f0f
CL
1085{
1086 u8 *p = object;
3b0efdfa 1087 u8 *endobject = object + s->object_size;
81819f0f
CL
1088
1089 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1090 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1091 object - s->red_left_pad, val, s->red_left_pad))
1092 return 0;
1093
bb192ed9 1094 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1095 endobject, val, s->inuse - s->object_size))
81819f0f 1096 return 0;
81819f0f 1097 } else {
3b0efdfa 1098 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1099 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1100 endobject, POISON_INUSE,
1101 s->inuse - s->object_size);
3adbefee 1102 }
81819f0f
CL
1103 }
1104
1105 if (s->flags & SLAB_POISON) {
f7cb1933 1106 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1107 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1108 POISON_FREE, s->object_size - 1) ||
bb192ed9 1109 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1110 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1111 return 0;
81819f0f
CL
1112 /*
1113 * check_pad_bytes cleans up on its own.
1114 */
bb192ed9 1115 check_pad_bytes(s, slab, p);
81819f0f
CL
1116 }
1117
cbfc35a4 1118 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1119 /*
1120 * Object and freepointer overlap. Cannot check
1121 * freepointer while object is allocated.
1122 */
1123 return 1;
1124
1125 /* Check free pointer validity */
bb192ed9
VB
1126 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1127 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1128 /*
9f6c708e 1129 * No choice but to zap it and thus lose the remainder
81819f0f 1130 * of the free objects in this slab. May cause
672bba3a 1131 * another error because the object count is now wrong.
81819f0f 1132 */
a973e9dd 1133 set_freepointer(s, p, NULL);
81819f0f
CL
1134 return 0;
1135 }
1136 return 1;
1137}
1138
bb192ed9 1139static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1140{
39b26464
CL
1141 int maxobj;
1142
bb192ed9
VB
1143 if (!folio_test_slab(slab_folio(slab))) {
1144 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1145 return 0;
1146 }
39b26464 1147
bb192ed9
VB
1148 maxobj = order_objects(slab_order(slab), s->size);
1149 if (slab->objects > maxobj) {
1150 slab_err(s, slab, "objects %u > max %u",
1151 slab->objects, maxobj);
39b26464
CL
1152 return 0;
1153 }
bb192ed9
VB
1154 if (slab->inuse > slab->objects) {
1155 slab_err(s, slab, "inuse %u > max %u",
1156 slab->inuse, slab->objects);
81819f0f
CL
1157 return 0;
1158 }
1159 /* Slab_pad_check fixes things up after itself */
bb192ed9 1160 slab_pad_check(s, slab);
81819f0f
CL
1161 return 1;
1162}
1163
1164/*
c2092c12 1165 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1166 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1167 */
bb192ed9 1168static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1169{
1170 int nr = 0;
881db7fb 1171 void *fp;
81819f0f 1172 void *object = NULL;
f6edde9c 1173 int max_objects;
81819f0f 1174
bb192ed9
VB
1175 fp = slab->freelist;
1176 while (fp && nr <= slab->objects) {
81819f0f
CL
1177 if (fp == search)
1178 return 1;
bb192ed9 1179 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1180 if (object) {
bb192ed9 1181 object_err(s, slab, object,
81819f0f 1182 "Freechain corrupt");
a973e9dd 1183 set_freepointer(s, object, NULL);
81819f0f 1184 } else {
bb192ed9
VB
1185 slab_err(s, slab, "Freepointer corrupt");
1186 slab->freelist = NULL;
1187 slab->inuse = slab->objects;
24922684 1188 slab_fix(s, "Freelist cleared");
81819f0f
CL
1189 return 0;
1190 }
1191 break;
1192 }
1193 object = fp;
1194 fp = get_freepointer(s, object);
1195 nr++;
1196 }
1197
bb192ed9 1198 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1199 if (max_objects > MAX_OBJS_PER_PAGE)
1200 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1201
bb192ed9
VB
1202 if (slab->objects != max_objects) {
1203 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1204 slab->objects, max_objects);
1205 slab->objects = max_objects;
582d1212 1206 slab_fix(s, "Number of objects adjusted");
224a88be 1207 }
bb192ed9
VB
1208 if (slab->inuse != slab->objects - nr) {
1209 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1210 slab->inuse, slab->objects - nr);
1211 slab->inuse = slab->objects - nr;
582d1212 1212 slab_fix(s, "Object count adjusted");
81819f0f
CL
1213 }
1214 return search == NULL;
1215}
1216
bb192ed9 1217static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1218 int alloc)
3ec09742
CL
1219{
1220 if (s->flags & SLAB_TRACE) {
f9f58285 1221 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1222 s->name,
1223 alloc ? "alloc" : "free",
bb192ed9
VB
1224 object, slab->inuse,
1225 slab->freelist);
3ec09742
CL
1226
1227 if (!alloc)
aa2efd5e 1228 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1229 s->object_size);
3ec09742
CL
1230
1231 dump_stack();
1232 }
1233}
1234
643b1138 1235/*
672bba3a 1236 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1237 */
5cc6eee8 1238static void add_full(struct kmem_cache *s,
bb192ed9 1239 struct kmem_cache_node *n, struct slab *slab)
643b1138 1240{
5cc6eee8
CL
1241 if (!(s->flags & SLAB_STORE_USER))
1242 return;
1243
255d0884 1244 lockdep_assert_held(&n->list_lock);
bb192ed9 1245 list_add(&slab->slab_list, &n->full);
643b1138
CL
1246}
1247
bb192ed9 1248static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1249{
643b1138
CL
1250 if (!(s->flags & SLAB_STORE_USER))
1251 return;
1252
255d0884 1253 lockdep_assert_held(&n->list_lock);
bb192ed9 1254 list_del(&slab->slab_list);
643b1138
CL
1255}
1256
0f389ec6
CL
1257/* Tracking of the number of slabs for debugging purposes */
1258static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1259{
1260 struct kmem_cache_node *n = get_node(s, node);
1261
1262 return atomic_long_read(&n->nr_slabs);
1263}
1264
26c02cf0
AB
1265static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1266{
1267 return atomic_long_read(&n->nr_slabs);
1268}
1269
205ab99d 1270static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1271{
1272 struct kmem_cache_node *n = get_node(s, node);
1273
1274 /*
1275 * May be called early in order to allocate a slab for the
1276 * kmem_cache_node structure. Solve the chicken-egg
1277 * dilemma by deferring the increment of the count during
1278 * bootstrap (see early_kmem_cache_node_alloc).
1279 */
338b2642 1280 if (likely(n)) {
0f389ec6 1281 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1282 atomic_long_add(objects, &n->total_objects);
1283 }
0f389ec6 1284}
205ab99d 1285static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1286{
1287 struct kmem_cache_node *n = get_node(s, node);
1288
1289 atomic_long_dec(&n->nr_slabs);
205ab99d 1290 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1291}
1292
1293/* Object debug checks for alloc/free paths */
c0f81a94 1294static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1295{
8fc8d666 1296 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1297 return;
1298
f7cb1933 1299 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1300 init_tracking(s, object);
1301}
1302
a50b854e 1303static
bb192ed9 1304void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1305{
8fc8d666 1306 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1307 return;
1308
1309 metadata_access_enable();
bb192ed9 1310 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1311 metadata_access_disable();
1312}
1313
becfda68 1314static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1315 struct slab *slab, void *object)
81819f0f 1316{
bb192ed9 1317 if (!check_slab(s, slab))
becfda68 1318 return 0;
81819f0f 1319
bb192ed9
VB
1320 if (!check_valid_pointer(s, slab, object)) {
1321 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1322 return 0;
81819f0f
CL
1323 }
1324
bb192ed9 1325 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1326 return 0;
1327
1328 return 1;
1329}
1330
1331static noinline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1332 struct slab *slab,
becfda68
LA
1333 void *object, unsigned long addr)
1334{
1335 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1336 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1337 goto bad;
1338 }
81819f0f 1339
3ec09742
CL
1340 /* Success perform special debug activities for allocs */
1341 if (s->flags & SLAB_STORE_USER)
1342 set_track(s, object, TRACK_ALLOC, addr);
bb192ed9 1343 trace(s, slab, object, 1);
f7cb1933 1344 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1345 return 1;
3ec09742 1346
81819f0f 1347bad:
bb192ed9 1348 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1349 /*
1350 * If this is a slab page then lets do the best we can
1351 * to avoid issues in the future. Marking all objects
672bba3a 1352 * as used avoids touching the remaining objects.
81819f0f 1353 */
24922684 1354 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1355 slab->inuse = slab->objects;
1356 slab->freelist = NULL;
81819f0f
CL
1357 }
1358 return 0;
1359}
1360
becfda68 1361static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1362 struct slab *slab, void *object, unsigned long addr)
81819f0f 1363{
bb192ed9
VB
1364 if (!check_valid_pointer(s, slab, object)) {
1365 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1366 return 0;
81819f0f
CL
1367 }
1368
bb192ed9
VB
1369 if (on_freelist(s, slab, object)) {
1370 object_err(s, slab, object, "Object already free");
becfda68 1371 return 0;
81819f0f
CL
1372 }
1373
bb192ed9 1374 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1375 return 0;
81819f0f 1376
bb192ed9
VB
1377 if (unlikely(s != slab->slab_cache)) {
1378 if (!folio_test_slab(slab_folio(slab))) {
1379 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1380 object);
bb192ed9 1381 } else if (!slab->slab_cache) {
f9f58285
FF
1382 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1383 object);
70d71228 1384 dump_stack();
06428780 1385 } else
bb192ed9 1386 object_err(s, slab, object,
24922684 1387 "page slab pointer corrupt.");
becfda68
LA
1388 return 0;
1389 }
1390 return 1;
1391}
1392
1393/* Supports checking bulk free of a constructed freelist */
1394static noinline int free_debug_processing(
bb192ed9 1395 struct kmem_cache *s, struct slab *slab,
becfda68
LA
1396 void *head, void *tail, int bulk_cnt,
1397 unsigned long addr)
1398{
bb192ed9 1399 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
becfda68
LA
1400 void *object = head;
1401 int cnt = 0;
a2b4ae8b 1402 unsigned long flags, flags2;
becfda68 1403 int ret = 0;
c4cf6785
SAS
1404 depot_stack_handle_t handle = 0;
1405
1406 if (s->flags & SLAB_STORE_USER)
1407 handle = set_track_prepare();
becfda68
LA
1408
1409 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 1410 slab_lock(slab, &flags2);
becfda68
LA
1411
1412 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1413 if (!check_slab(s, slab))
becfda68
LA
1414 goto out;
1415 }
1416
1417next_object:
1418 cnt++;
1419
1420 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1421 if (!free_consistency_checks(s, slab, object, addr))
becfda68 1422 goto out;
81819f0f 1423 }
3ec09742 1424
3ec09742 1425 if (s->flags & SLAB_STORE_USER)
c4cf6785 1426 set_track_update(s, object, TRACK_FREE, addr, handle);
bb192ed9 1427 trace(s, slab, object, 0);
81084651 1428 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1429 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1430
1431 /* Reached end of constructed freelist yet? */
1432 if (object != tail) {
1433 object = get_freepointer(s, object);
1434 goto next_object;
1435 }
804aa132
LA
1436 ret = 1;
1437
5c2e4bbb 1438out:
81084651 1439 if (cnt != bulk_cnt)
bb192ed9 1440 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
81084651
JDB
1441 bulk_cnt, cnt);
1442
bb192ed9 1443 slab_unlock(slab, &flags2);
282acb43 1444 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1445 if (!ret)
1446 slab_fix(s, "Object at 0x%p not freed", object);
1447 return ret;
81819f0f
CL
1448}
1449
e17f1dfb
VB
1450/*
1451 * Parse a block of slub_debug options. Blocks are delimited by ';'
1452 *
1453 * @str: start of block
1454 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1455 * @slabs: return start of list of slabs, or NULL when there's no list
1456 * @init: assume this is initial parsing and not per-kmem-create parsing
1457 *
1458 * returns the start of next block if there's any, or NULL
1459 */
1460static char *
1461parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1462{
e17f1dfb 1463 bool higher_order_disable = false;
f0630fff 1464
e17f1dfb
VB
1465 /* Skip any completely empty blocks */
1466 while (*str && *str == ';')
1467 str++;
1468
1469 if (*str == ',') {
f0630fff
CL
1470 /*
1471 * No options but restriction on slabs. This means full
1472 * debugging for slabs matching a pattern.
1473 */
e17f1dfb 1474 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1475 goto check_slabs;
e17f1dfb
VB
1476 }
1477 *flags = 0;
f0630fff 1478
e17f1dfb
VB
1479 /* Determine which debug features should be switched on */
1480 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1481 switch (tolower(*str)) {
e17f1dfb
VB
1482 case '-':
1483 *flags = 0;
1484 break;
f0630fff 1485 case 'f':
e17f1dfb 1486 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1487 break;
1488 case 'z':
e17f1dfb 1489 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1490 break;
1491 case 'p':
e17f1dfb 1492 *flags |= SLAB_POISON;
f0630fff
CL
1493 break;
1494 case 'u':
e17f1dfb 1495 *flags |= SLAB_STORE_USER;
f0630fff
CL
1496 break;
1497 case 't':
e17f1dfb 1498 *flags |= SLAB_TRACE;
f0630fff 1499 break;
4c13dd3b 1500 case 'a':
e17f1dfb 1501 *flags |= SLAB_FAILSLAB;
4c13dd3b 1502 break;
08303a73
CA
1503 case 'o':
1504 /*
1505 * Avoid enabling debugging on caches if its minimum
1506 * order would increase as a result.
1507 */
e17f1dfb 1508 higher_order_disable = true;
08303a73 1509 break;
f0630fff 1510 default:
e17f1dfb
VB
1511 if (init)
1512 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1513 }
41ecc55b 1514 }
f0630fff 1515check_slabs:
41ecc55b 1516 if (*str == ',')
e17f1dfb
VB
1517 *slabs = ++str;
1518 else
1519 *slabs = NULL;
1520
1521 /* Skip over the slab list */
1522 while (*str && *str != ';')
1523 str++;
1524
1525 /* Skip any completely empty blocks */
1526 while (*str && *str == ';')
1527 str++;
1528
1529 if (init && higher_order_disable)
1530 disable_higher_order_debug = 1;
1531
1532 if (*str)
1533 return str;
1534 else
1535 return NULL;
1536}
1537
1538static int __init setup_slub_debug(char *str)
1539{
1540 slab_flags_t flags;
a7f1d485 1541 slab_flags_t global_flags;
e17f1dfb
VB
1542 char *saved_str;
1543 char *slab_list;
1544 bool global_slub_debug_changed = false;
1545 bool slab_list_specified = false;
1546
a7f1d485 1547 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1548 if (*str++ != '=' || !*str)
1549 /*
1550 * No options specified. Switch on full debugging.
1551 */
1552 goto out;
1553
1554 saved_str = str;
1555 while (str) {
1556 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1557
1558 if (!slab_list) {
a7f1d485 1559 global_flags = flags;
e17f1dfb
VB
1560 global_slub_debug_changed = true;
1561 } else {
1562 slab_list_specified = true;
5cf909c5
OG
1563 if (flags & SLAB_STORE_USER)
1564 stack_depot_want_early_init();
e17f1dfb
VB
1565 }
1566 }
1567
1568 /*
1569 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1570 * slabs means debugging is only changed for those slabs, so the global
1571 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1572 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1573 * long as there is no option specifying flags without a slab list.
1574 */
1575 if (slab_list_specified) {
1576 if (!global_slub_debug_changed)
a7f1d485 1577 global_flags = slub_debug;
e17f1dfb
VB
1578 slub_debug_string = saved_str;
1579 }
f0630fff 1580out:
a7f1d485 1581 slub_debug = global_flags;
5cf909c5
OG
1582 if (slub_debug & SLAB_STORE_USER)
1583 stack_depot_want_early_init();
ca0cab65
VB
1584 if (slub_debug != 0 || slub_debug_string)
1585 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1586 else
1587 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1588 if ((static_branch_unlikely(&init_on_alloc) ||
1589 static_branch_unlikely(&init_on_free)) &&
1590 (slub_debug & SLAB_POISON))
1591 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1592 return 1;
1593}
1594
1595__setup("slub_debug", setup_slub_debug);
1596
c5fd3ca0
AT
1597/*
1598 * kmem_cache_flags - apply debugging options to the cache
1599 * @object_size: the size of an object without meta data
1600 * @flags: flags to set
1601 * @name: name of the cache
c5fd3ca0
AT
1602 *
1603 * Debug option(s) are applied to @flags. In addition to the debug
1604 * option(s), if a slab name (or multiple) is specified i.e.
1605 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1606 * then only the select slabs will receive the debug option(s).
1607 */
0293d1fd 1608slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1609 slab_flags_t flags, const char *name)
41ecc55b 1610{
c5fd3ca0
AT
1611 char *iter;
1612 size_t len;
e17f1dfb
VB
1613 char *next_block;
1614 slab_flags_t block_flags;
ca220593
JB
1615 slab_flags_t slub_debug_local = slub_debug;
1616
a285909f
HY
1617 if (flags & SLAB_NO_USER_FLAGS)
1618 return flags;
1619
ca220593
JB
1620 /*
1621 * If the slab cache is for debugging (e.g. kmemleak) then
1622 * don't store user (stack trace) information by default,
1623 * but let the user enable it via the command line below.
1624 */
1625 if (flags & SLAB_NOLEAKTRACE)
1626 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1627
c5fd3ca0 1628 len = strlen(name);
e17f1dfb
VB
1629 next_block = slub_debug_string;
1630 /* Go through all blocks of debug options, see if any matches our slab's name */
1631 while (next_block) {
1632 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1633 if (!iter)
1634 continue;
1635 /* Found a block that has a slab list, search it */
1636 while (*iter) {
1637 char *end, *glob;
1638 size_t cmplen;
1639
1640 end = strchrnul(iter, ',');
1641 if (next_block && next_block < end)
1642 end = next_block - 1;
1643
1644 glob = strnchr(iter, end - iter, '*');
1645 if (glob)
1646 cmplen = glob - iter;
1647 else
1648 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1649
e17f1dfb
VB
1650 if (!strncmp(name, iter, cmplen)) {
1651 flags |= block_flags;
1652 return flags;
1653 }
c5fd3ca0 1654
e17f1dfb
VB
1655 if (!*end || *end == ';')
1656 break;
1657 iter = end + 1;
c5fd3ca0 1658 }
c5fd3ca0 1659 }
ba0268a8 1660
ca220593 1661 return flags | slub_debug_local;
41ecc55b 1662}
b4a64718 1663#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1664static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1665static inline
bb192ed9 1666void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1667
3ec09742 1668static inline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1669 struct slab *slab, void *object, unsigned long addr) { return 0; }
41ecc55b 1670
282acb43 1671static inline int free_debug_processing(
bb192ed9 1672 struct kmem_cache *s, struct slab *slab,
81084651 1673 void *head, void *tail, int bulk_cnt,
282acb43 1674 unsigned long addr) { return 0; }
41ecc55b 1675
a204e6d6 1676static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1677static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1678 void *object, u8 val) { return 1; }
5cc6eee8 1679static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1680 struct slab *slab) {}
c65c1877 1681static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1682 struct slab *slab) {}
0293d1fd 1683slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1684 slab_flags_t flags, const char *name)
ba0268a8
CL
1685{
1686 return flags;
1687}
41ecc55b 1688#define slub_debug 0
0f389ec6 1689
fdaa45e9
IM
1690#define disable_higher_order_debug 0
1691
0f389ec6
CL
1692static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1693 { return 0; }
26c02cf0
AB
1694static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1695 { return 0; }
205ab99d
CL
1696static inline void inc_slabs_node(struct kmem_cache *s, int node,
1697 int objects) {}
1698static inline void dec_slabs_node(struct kmem_cache *s, int node,
1699 int objects) {}
7d550c56 1700
bb192ed9 1701static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1702 void **freelist, void *nextfree)
52f23478
DZ
1703{
1704 return false;
1705}
02e72cc6
AR
1706#endif /* CONFIG_SLUB_DEBUG */
1707
1708/*
1709 * Hooks for other subsystems that check memory allocations. In a typical
1710 * production configuration these hooks all should produce no code at all.
1711 */
0116523c 1712static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1713{
53128245 1714 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1715 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1716 kmemleak_alloc(ptr, size, 1, flags);
53128245 1717 return ptr;
d56791b3
RB
1718}
1719
ee3ce779 1720static __always_inline void kfree_hook(void *x)
d56791b3
RB
1721{
1722 kmemleak_free(x);
027b37b5 1723 kasan_kfree_large(x);
d56791b3
RB
1724}
1725
d57a964e
AK
1726static __always_inline bool slab_free_hook(struct kmem_cache *s,
1727 void *x, bool init)
d56791b3
RB
1728{
1729 kmemleak_free_recursive(x, s->flags);
7d550c56 1730
84048039 1731 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1732
02e72cc6
AR
1733 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1734 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1735
cfbe1636
ME
1736 /* Use KCSAN to help debug racy use-after-free. */
1737 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1738 __kcsan_check_access(x, s->object_size,
1739 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1740
d57a964e
AK
1741 /*
1742 * As memory initialization might be integrated into KASAN,
1743 * kasan_slab_free and initialization memset's must be
1744 * kept together to avoid discrepancies in behavior.
1745 *
1746 * The initialization memset's clear the object and the metadata,
1747 * but don't touch the SLAB redzone.
1748 */
1749 if (init) {
1750 int rsize;
1751
1752 if (!kasan_has_integrated_init())
1753 memset(kasan_reset_tag(x), 0, s->object_size);
1754 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1755 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1756 s->size - s->inuse - rsize);
1757 }
1758 /* KASAN might put x into memory quarantine, delaying its reuse. */
1759 return kasan_slab_free(s, x, init);
02e72cc6 1760}
205ab99d 1761
c3895391 1762static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1763 void **head, void **tail,
1764 int *cnt)
81084651 1765{
6471384a
AP
1766
1767 void *object;
1768 void *next = *head;
1769 void *old_tail = *tail ? *tail : *head;
6471384a 1770
b89fb5ef 1771 if (is_kfence_address(next)) {
d57a964e 1772 slab_free_hook(s, next, false);
b89fb5ef
AP
1773 return true;
1774 }
1775
aea4df4c
LA
1776 /* Head and tail of the reconstructed freelist */
1777 *head = NULL;
1778 *tail = NULL;
1b7e816f 1779
aea4df4c
LA
1780 do {
1781 object = next;
1782 next = get_freepointer(s, object);
1783
c3895391 1784 /* If object's reuse doesn't have to be delayed */
d57a964e 1785 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1786 /* Move object to the new freelist */
1787 set_freepointer(s, object, *head);
1788 *head = object;
1789 if (!*tail)
1790 *tail = object;
899447f6
ML
1791 } else {
1792 /*
1793 * Adjust the reconstructed freelist depth
1794 * accordingly if object's reuse is delayed.
1795 */
1796 --(*cnt);
c3895391
AK
1797 }
1798 } while (object != old_tail);
1799
1800 if (*head == *tail)
1801 *tail = NULL;
1802
1803 return *head != NULL;
81084651
JDB
1804}
1805
c0f81a94 1806static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1807{
c0f81a94 1808 setup_object_debug(s, object);
4d176711 1809 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1810 if (unlikely(s->ctor)) {
1811 kasan_unpoison_object_data(s, object);
1812 s->ctor(object);
1813 kasan_poison_object_data(s, object);
1814 }
4d176711 1815 return object;
588f8ba9
TG
1816}
1817
81819f0f
CL
1818/*
1819 * Slab allocation and freeing
1820 */
a485e1da
XS
1821static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1822 struct kmem_cache_order_objects oo)
65c3376a 1823{
45387b8c
VB
1824 struct folio *folio;
1825 struct slab *slab;
19af27af 1826 unsigned int order = oo_order(oo);
65c3376a 1827
2154a336 1828 if (node == NUMA_NO_NODE)
45387b8c 1829 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1830 else
45387b8c 1831 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1832
45387b8c
VB
1833 if (!folio)
1834 return NULL;
1835
1836 slab = folio_slab(folio);
1837 __folio_set_slab(folio);
1838 if (page_is_pfmemalloc(folio_page(folio, 0)))
1839 slab_set_pfmemalloc(slab);
1840
1841 return slab;
65c3376a
CL
1842}
1843
210e7a43
TG
1844#ifdef CONFIG_SLAB_FREELIST_RANDOM
1845/* Pre-initialize the random sequence cache */
1846static int init_cache_random_seq(struct kmem_cache *s)
1847{
19af27af 1848 unsigned int count = oo_objects(s->oo);
210e7a43 1849 int err;
210e7a43 1850
a810007a
SR
1851 /* Bailout if already initialised */
1852 if (s->random_seq)
1853 return 0;
1854
210e7a43
TG
1855 err = cache_random_seq_create(s, count, GFP_KERNEL);
1856 if (err) {
1857 pr_err("SLUB: Unable to initialize free list for %s\n",
1858 s->name);
1859 return err;
1860 }
1861
1862 /* Transform to an offset on the set of pages */
1863 if (s->random_seq) {
19af27af
AD
1864 unsigned int i;
1865
210e7a43
TG
1866 for (i = 0; i < count; i++)
1867 s->random_seq[i] *= s->size;
1868 }
1869 return 0;
1870}
1871
1872/* Initialize each random sequence freelist per cache */
1873static void __init init_freelist_randomization(void)
1874{
1875 struct kmem_cache *s;
1876
1877 mutex_lock(&slab_mutex);
1878
1879 list_for_each_entry(s, &slab_caches, list)
1880 init_cache_random_seq(s);
1881
1882 mutex_unlock(&slab_mutex);
1883}
1884
1885/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1886static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1887 unsigned long *pos, void *start,
1888 unsigned long page_limit,
1889 unsigned long freelist_count)
1890{
1891 unsigned int idx;
1892
1893 /*
1894 * If the target page allocation failed, the number of objects on the
1895 * page might be smaller than the usual size defined by the cache.
1896 */
1897 do {
1898 idx = s->random_seq[*pos];
1899 *pos += 1;
1900 if (*pos >= freelist_count)
1901 *pos = 0;
1902 } while (unlikely(idx >= page_limit));
1903
1904 return (char *)start + idx;
1905}
1906
1907/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1908static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1909{
1910 void *start;
1911 void *cur;
1912 void *next;
1913 unsigned long idx, pos, page_limit, freelist_count;
1914
bb192ed9 1915 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1916 return false;
1917
1918 freelist_count = oo_objects(s->oo);
1919 pos = get_random_int() % freelist_count;
1920
bb192ed9
VB
1921 page_limit = slab->objects * s->size;
1922 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1923
1924 /* First entry is used as the base of the freelist */
bb192ed9 1925 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1926 freelist_count);
c0f81a94 1927 cur = setup_object(s, cur);
bb192ed9 1928 slab->freelist = cur;
210e7a43 1929
bb192ed9
VB
1930 for (idx = 1; idx < slab->objects; idx++) {
1931 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1932 freelist_count);
c0f81a94 1933 next = setup_object(s, next);
210e7a43
TG
1934 set_freepointer(s, cur, next);
1935 cur = next;
1936 }
210e7a43
TG
1937 set_freepointer(s, cur, NULL);
1938
1939 return true;
1940}
1941#else
1942static inline int init_cache_random_seq(struct kmem_cache *s)
1943{
1944 return 0;
1945}
1946static inline void init_freelist_randomization(void) { }
bb192ed9 1947static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1948{
1949 return false;
1950}
1951#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1952
bb192ed9 1953static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1954{
bb192ed9 1955 struct slab *slab;
834f3d11 1956 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1957 gfp_t alloc_gfp;
4d176711 1958 void *start, *p, *next;
a50b854e 1959 int idx;
210e7a43 1960 bool shuffle;
81819f0f 1961
7e0528da
CL
1962 flags &= gfp_allowed_mask;
1963
b7a49f0d 1964 flags |= s->allocflags;
e12ba74d 1965
ba52270d
PE
1966 /*
1967 * Let the initial higher-order allocation fail under memory pressure
1968 * so we fall-back to the minimum order allocation.
1969 */
1970 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1971 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 1972 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 1973
a485e1da 1974 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1975 if (unlikely(!slab)) {
65c3376a 1976 oo = s->min;
80c3a998 1977 alloc_gfp = flags;
65c3376a
CL
1978 /*
1979 * Allocation may have failed due to fragmentation.
1980 * Try a lower order alloc if possible
1981 */
a485e1da 1982 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1983 if (unlikely(!slab))
588f8ba9
TG
1984 goto out;
1985 stat(s, ORDER_FALLBACK);
65c3376a 1986 }
5a896d9e 1987
bb192ed9 1988 slab->objects = oo_objects(oo);
81819f0f 1989
bb192ed9 1990 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 1991
bb192ed9 1992 slab->slab_cache = s;
81819f0f 1993
6e48a966 1994 kasan_poison_slab(slab);
81819f0f 1995
bb192ed9 1996 start = slab_address(slab);
81819f0f 1997
bb192ed9 1998 setup_slab_debug(s, slab, start);
0316bec2 1999
bb192ed9 2000 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2001
2002 if (!shuffle) {
4d176711 2003 start = fixup_red_left(s, start);
c0f81a94 2004 start = setup_object(s, start);
bb192ed9
VB
2005 slab->freelist = start;
2006 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2007 next = p + s->size;
c0f81a94 2008 next = setup_object(s, next);
18e50661
AK
2009 set_freepointer(s, p, next);
2010 p = next;
2011 }
2012 set_freepointer(s, p, NULL);
81819f0f 2013 }
81819f0f 2014
bb192ed9
VB
2015 slab->inuse = slab->objects;
2016 slab->frozen = 1;
588f8ba9 2017
81819f0f 2018out:
bb192ed9 2019 if (!slab)
588f8ba9
TG
2020 return NULL;
2021
bb192ed9 2022 inc_slabs_node(s, slab_nid(slab), slab->objects);
588f8ba9 2023
bb192ed9 2024 return slab;
81819f0f
CL
2025}
2026
bb192ed9 2027static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2028{
44405099
LL
2029 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2030 flags = kmalloc_fix_flags(flags);
588f8ba9 2031
53a0de06
VB
2032 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2033
588f8ba9
TG
2034 return allocate_slab(s,
2035 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2036}
2037
4020b4a2 2038static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2039{
4020b4a2
VB
2040 struct folio *folio = slab_folio(slab);
2041 int order = folio_order(folio);
834f3d11 2042 int pages = 1 << order;
81819f0f 2043
8fc8d666 2044 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
2045 void *p;
2046
bb192ed9 2047 slab_pad_check(s, slab);
4020b4a2 2048 for_each_object(p, s, slab_address(slab), slab->objects)
bb192ed9 2049 check_object(s, slab, p, SLUB_RED_INACTIVE);
81819f0f
CL
2050 }
2051
4020b4a2
VB
2052 __slab_clear_pfmemalloc(slab);
2053 __folio_clear_slab(folio);
2054 folio->mapping = NULL;
1eb5ac64
NP
2055 if (current->reclaim_state)
2056 current->reclaim_state->reclaimed_slab += pages;
4020b4a2
VB
2057 unaccount_slab(slab, order, s);
2058 __free_pages(folio_page(folio, 0), order);
81819f0f
CL
2059}
2060
2061static void rcu_free_slab(struct rcu_head *h)
2062{
bb192ed9 2063 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2064
bb192ed9 2065 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2066}
2067
bb192ed9 2068static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2069{
5f0d5a3a 2070 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bb192ed9 2071 call_rcu(&slab->rcu_head, rcu_free_slab);
81819f0f 2072 } else
bb192ed9 2073 __free_slab(s, slab);
81819f0f
CL
2074}
2075
bb192ed9 2076static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2077{
bb192ed9
VB
2078 dec_slabs_node(s, slab_nid(slab), slab->objects);
2079 free_slab(s, slab);
81819f0f
CL
2080}
2081
2082/*
5cc6eee8 2083 * Management of partially allocated slabs.
81819f0f 2084 */
1e4dd946 2085static inline void
bb192ed9 2086__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2087{
e95eed57 2088 n->nr_partial++;
136333d1 2089 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2090 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2091 else
bb192ed9 2092 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2093}
2094
1e4dd946 2095static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2096 struct slab *slab, int tail)
62e346a8 2097{
c65c1877 2098 lockdep_assert_held(&n->list_lock);
bb192ed9 2099 __add_partial(n, slab, tail);
1e4dd946 2100}
c65c1877 2101
1e4dd946 2102static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2103 struct slab *slab)
1e4dd946
SR
2104{
2105 lockdep_assert_held(&n->list_lock);
bb192ed9 2106 list_del(&slab->slab_list);
52b4b950 2107 n->nr_partial--;
1e4dd946
SR
2108}
2109
81819f0f 2110/*
7ced3719
CL
2111 * Remove slab from the partial list, freeze it and
2112 * return the pointer to the freelist.
81819f0f 2113 *
497b66f2 2114 * Returns a list of objects or NULL if it fails.
81819f0f 2115 */
497b66f2 2116static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2117 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2118 int mode)
81819f0f 2119{
2cfb7455
CL
2120 void *freelist;
2121 unsigned long counters;
bb192ed9 2122 struct slab new;
2cfb7455 2123
c65c1877
PZ
2124 lockdep_assert_held(&n->list_lock);
2125
2cfb7455
CL
2126 /*
2127 * Zap the freelist and set the frozen bit.
2128 * The old freelist is the list of objects for the
2129 * per cpu allocation list.
2130 */
bb192ed9
VB
2131 freelist = slab->freelist;
2132 counters = slab->counters;
7ced3719 2133 new.counters = counters;
23910c50 2134 if (mode) {
bb192ed9 2135 new.inuse = slab->objects;
23910c50
PE
2136 new.freelist = NULL;
2137 } else {
2138 new.freelist = freelist;
2139 }
2cfb7455 2140
a0132ac0 2141 VM_BUG_ON(new.frozen);
7ced3719 2142 new.frozen = 1;
2cfb7455 2143
bb192ed9 2144 if (!__cmpxchg_double_slab(s, slab,
2cfb7455 2145 freelist, counters,
02d7633f 2146 new.freelist, new.counters,
7ced3719 2147 "acquire_slab"))
7ced3719 2148 return NULL;
2cfb7455 2149
bb192ed9 2150 remove_partial(n, slab);
7ced3719 2151 WARN_ON(!freelist);
49e22585 2152 return freelist;
81819f0f
CL
2153}
2154
e0a043aa 2155#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2156static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2157#else
bb192ed9 2158static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2159 int drain) { }
2160#endif
01b34d16 2161static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2162
81819f0f 2163/*
672bba3a 2164 * Try to allocate a partial slab from a specific node.
81819f0f 2165 */
8ba00bb6 2166static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 2167 struct slab **ret_slab, gfp_t gfpflags)
81819f0f 2168{
bb192ed9 2169 struct slab *slab, *slab2;
49e22585 2170 void *object = NULL;
4b1f449d 2171 unsigned long flags;
bb192ed9 2172 unsigned int partial_slabs = 0;
81819f0f
CL
2173
2174 /*
2175 * Racy check. If we mistakenly see no partial slabs then we
2176 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2177 * partial slab and there is none available then get_partial()
672bba3a 2178 * will return NULL.
81819f0f
CL
2179 */
2180 if (!n || !n->nr_partial)
2181 return NULL;
2182
4b1f449d 2183 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2184 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2185 void *t;
49e22585 2186
bb192ed9 2187 if (!pfmemalloc_match(slab, gfpflags))
8ba00bb6
JK
2188 continue;
2189
bb192ed9 2190 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2191 if (!t)
9b1ea29b 2192 break;
49e22585 2193
12d79634 2194 if (!object) {
bb192ed9 2195 *ret_slab = slab;
49e22585 2196 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2197 object = t;
49e22585 2198 } else {
bb192ed9 2199 put_cpu_partial(s, slab, 0);
8028dcea 2200 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2201 partial_slabs++;
49e22585 2202 }
b47291ef 2203#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2204 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2205 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2206 break;
b47291ef
VB
2207#else
2208 break;
2209#endif
49e22585 2210
497b66f2 2211 }
4b1f449d 2212 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2213 return object;
81819f0f
CL
2214}
2215
2216/*
c2092c12 2217 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2218 */
de3ec035 2219static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
bb192ed9 2220 struct slab **ret_slab)
81819f0f
CL
2221{
2222#ifdef CONFIG_NUMA
2223 struct zonelist *zonelist;
dd1a239f 2224 struct zoneref *z;
54a6eb5c 2225 struct zone *zone;
97a225e6 2226 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2227 void *object;
cc9a6c87 2228 unsigned int cpuset_mems_cookie;
81819f0f
CL
2229
2230 /*
672bba3a
CL
2231 * The defrag ratio allows a configuration of the tradeoffs between
2232 * inter node defragmentation and node local allocations. A lower
2233 * defrag_ratio increases the tendency to do local allocations
2234 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2235 *
672bba3a
CL
2236 * If the defrag_ratio is set to 0 then kmalloc() always
2237 * returns node local objects. If the ratio is higher then kmalloc()
2238 * may return off node objects because partial slabs are obtained
2239 * from other nodes and filled up.
81819f0f 2240 *
43efd3ea
LP
2241 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2242 * (which makes defrag_ratio = 1000) then every (well almost)
2243 * allocation will first attempt to defrag slab caches on other nodes.
2244 * This means scanning over all nodes to look for partial slabs which
2245 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2246 * with available objects.
81819f0f 2247 */
9824601e
CL
2248 if (!s->remote_node_defrag_ratio ||
2249 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2250 return NULL;
2251
cc9a6c87 2252 do {
d26914d1 2253 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2254 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2255 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2256 struct kmem_cache_node *n;
2257
2258 n = get_node(s, zone_to_nid(zone));
2259
dee2f8aa 2260 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2261 n->nr_partial > s->min_partial) {
bb192ed9 2262 object = get_partial_node(s, n, ret_slab, flags);
cc9a6c87
MG
2263 if (object) {
2264 /*
d26914d1
MG
2265 * Don't check read_mems_allowed_retry()
2266 * here - if mems_allowed was updated in
2267 * parallel, that was a harmless race
2268 * between allocation and the cpuset
2269 * update
cc9a6c87 2270 */
cc9a6c87
MG
2271 return object;
2272 }
c0ff7453 2273 }
81819f0f 2274 }
d26914d1 2275 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2276#endif /* CONFIG_NUMA */
81819f0f
CL
2277 return NULL;
2278}
2279
2280/*
c2092c12 2281 * Get a partial slab, lock it and return it.
81819f0f 2282 */
497b66f2 2283static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
bb192ed9 2284 struct slab **ret_slab)
81819f0f 2285{
497b66f2 2286 void *object;
a561ce00
JK
2287 int searchnode = node;
2288
2289 if (node == NUMA_NO_NODE)
2290 searchnode = numa_mem_id();
81819f0f 2291
bb192ed9 2292 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
497b66f2
CL
2293 if (object || node != NUMA_NO_NODE)
2294 return object;
81819f0f 2295
bb192ed9 2296 return get_any_partial(s, flags, ret_slab);
81819f0f
CL
2297}
2298
923717cb 2299#ifdef CONFIG_PREEMPTION
8a5ec0ba 2300/*
0d645ed1 2301 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2302 * during cmpxchg. The transactions start with the cpu number and are then
2303 * incremented by CONFIG_NR_CPUS.
2304 */
2305#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2306#else
2307/*
2308 * No preemption supported therefore also no need to check for
2309 * different cpus.
2310 */
2311#define TID_STEP 1
2312#endif
2313
2314static inline unsigned long next_tid(unsigned long tid)
2315{
2316 return tid + TID_STEP;
2317}
2318
9d5f0be0 2319#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2320static inline unsigned int tid_to_cpu(unsigned long tid)
2321{
2322 return tid % TID_STEP;
2323}
2324
2325static inline unsigned long tid_to_event(unsigned long tid)
2326{
2327 return tid / TID_STEP;
2328}
9d5f0be0 2329#endif
8a5ec0ba
CL
2330
2331static inline unsigned int init_tid(int cpu)
2332{
2333 return cpu;
2334}
2335
2336static inline void note_cmpxchg_failure(const char *n,
2337 const struct kmem_cache *s, unsigned long tid)
2338{
2339#ifdef SLUB_DEBUG_CMPXCHG
2340 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2341
f9f58285 2342 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2343
923717cb 2344#ifdef CONFIG_PREEMPTION
8a5ec0ba 2345 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2346 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2347 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2348 else
2349#endif
2350 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2351 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2352 tid_to_event(tid), tid_to_event(actual_tid));
2353 else
f9f58285 2354 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2355 actual_tid, tid, next_tid(tid));
2356#endif
4fdccdfb 2357 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2358}
2359
788e1aad 2360static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2361{
8a5ec0ba 2362 int cpu;
bd0e7491 2363 struct kmem_cache_cpu *c;
8a5ec0ba 2364
bd0e7491
VB
2365 for_each_possible_cpu(cpu) {
2366 c = per_cpu_ptr(s->cpu_slab, cpu);
2367 local_lock_init(&c->lock);
2368 c->tid = init_tid(cpu);
2369 }
8a5ec0ba 2370}
2cfb7455 2371
81819f0f 2372/*
c2092c12 2373 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2374 * unfreezes the slabs and puts it on the proper list.
2375 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2376 * by the caller.
81819f0f 2377 */
bb192ed9 2378static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2379 void *freelist)
81819f0f 2380{
6d3a16d0 2381 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
bb192ed9 2382 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2383 int free_delta = 0;
2384 enum slab_modes mode = M_NONE;
d930ff03 2385 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2386 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2387 unsigned long flags = 0;
bb192ed9
VB
2388 struct slab new;
2389 struct slab old;
2cfb7455 2390
bb192ed9 2391 if (slab->freelist) {
84e554e6 2392 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2393 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2394 }
2395
894b8788 2396 /*
d930ff03
VB
2397 * Stage one: Count the objects on cpu's freelist as free_delta and
2398 * remember the last object in freelist_tail for later splicing.
2cfb7455 2399 */
d930ff03
VB
2400 freelist_tail = NULL;
2401 freelist_iter = freelist;
2402 while (freelist_iter) {
2403 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2404
52f23478
DZ
2405 /*
2406 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2407 * 'freelist_iter' is already corrupted. So isolate all objects
2408 * starting at 'freelist_iter' by skipping them.
52f23478 2409 */
bb192ed9 2410 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2411 break;
2412
d930ff03
VB
2413 freelist_tail = freelist_iter;
2414 free_delta++;
2cfb7455 2415
d930ff03 2416 freelist_iter = nextfree;
2cfb7455
CL
2417 }
2418
894b8788 2419 /*
c2092c12
VB
2420 * Stage two: Unfreeze the slab while splicing the per-cpu
2421 * freelist to the head of slab's freelist.
d930ff03 2422 *
c2092c12 2423 * Ensure that the slab is unfrozen while the list presence
d930ff03 2424 * reflects the actual number of objects during unfreeze.
2cfb7455 2425 *
6d3a16d0
HY
2426 * We first perform cmpxchg holding lock and insert to list
2427 * when it succeed. If there is mismatch then the slab is not
2428 * unfrozen and number of objects in the slab may have changed.
2429 * Then release lock and retry cmpxchg again.
894b8788 2430 */
2cfb7455 2431redo:
894b8788 2432
bb192ed9
VB
2433 old.freelist = READ_ONCE(slab->freelist);
2434 old.counters = READ_ONCE(slab->counters);
a0132ac0 2435 VM_BUG_ON(!old.frozen);
7c2e132c 2436
2cfb7455
CL
2437 /* Determine target state of the slab */
2438 new.counters = old.counters;
d930ff03
VB
2439 if (freelist_tail) {
2440 new.inuse -= free_delta;
2441 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2442 new.freelist = freelist;
2443 } else
2444 new.freelist = old.freelist;
2445
2446 new.frozen = 0;
2447
6d3a16d0
HY
2448 if (!new.inuse && n->nr_partial >= s->min_partial) {
2449 mode = M_FREE;
2450 } else if (new.freelist) {
2451 mode = M_PARTIAL;
2452 /*
2453 * Taking the spinlock removes the possibility that
2454 * acquire_slab() will see a slab that is frozen
2455 */
2456 spin_lock_irqsave(&n->list_lock, flags);
2457 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2458 mode = M_FULL;
2459 /*
2460 * This also ensures that the scanning of full
2461 * slabs from diagnostic functions will not see
2462 * any frozen slabs.
2463 */
2464 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2465 } else {
6d3a16d0 2466 mode = M_FULL_NOLIST;
2cfb7455
CL
2467 }
2468
2cfb7455 2469
bb192ed9 2470 if (!cmpxchg_double_slab(s, slab,
2cfb7455
CL
2471 old.freelist, old.counters,
2472 new.freelist, new.counters,
6d3a16d0
HY
2473 "unfreezing slab")) {
2474 if (mode == M_PARTIAL || mode == M_FULL)
2475 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2476 goto redo;
6d3a16d0 2477 }
2cfb7455 2478
2cfb7455 2479
6d3a16d0
HY
2480 if (mode == M_PARTIAL) {
2481 add_partial(n, slab, tail);
2482 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2483 stat(s, tail);
6d3a16d0 2484 } else if (mode == M_FREE) {
2cfb7455 2485 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2486 discard_slab(s, slab);
2cfb7455 2487 stat(s, FREE_SLAB);
6d3a16d0
HY
2488 } else if (mode == M_FULL) {
2489 add_full(s, n, slab);
2490 spin_unlock_irqrestore(&n->list_lock, flags);
2491 stat(s, DEACTIVATE_FULL);
2492 } else if (mode == M_FULL_NOLIST) {
2493 stat(s, DEACTIVATE_FULL);
894b8788 2494 }
81819f0f
CL
2495}
2496
345c905d 2497#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2498static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2499{
43d77867 2500 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2501 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2502 unsigned long flags = 0;
49e22585 2503
bb192ed9
VB
2504 while (partial_slab) {
2505 struct slab new;
2506 struct slab old;
49e22585 2507
bb192ed9
VB
2508 slab = partial_slab;
2509 partial_slab = slab->next;
43d77867 2510
bb192ed9 2511 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2512 if (n != n2) {
2513 if (n)
7cf9f3ba 2514 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2515
2516 n = n2;
7cf9f3ba 2517 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2518 }
49e22585
CL
2519
2520 do {
2521
bb192ed9
VB
2522 old.freelist = slab->freelist;
2523 old.counters = slab->counters;
a0132ac0 2524 VM_BUG_ON(!old.frozen);
49e22585
CL
2525
2526 new.counters = old.counters;
2527 new.freelist = old.freelist;
2528
2529 new.frozen = 0;
2530
bb192ed9 2531 } while (!__cmpxchg_double_slab(s, slab,
49e22585
CL
2532 old.freelist, old.counters,
2533 new.freelist, new.counters,
2534 "unfreezing slab"));
2535
8a5b20ae 2536 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2537 slab->next = slab_to_discard;
2538 slab_to_discard = slab;
43d77867 2539 } else {
bb192ed9 2540 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2541 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2542 }
2543 }
2544
2545 if (n)
7cf9f3ba 2546 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2547
bb192ed9
VB
2548 while (slab_to_discard) {
2549 slab = slab_to_discard;
2550 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2551
2552 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2553 discard_slab(s, slab);
9ada1934
SL
2554 stat(s, FREE_SLAB);
2555 }
fc1455f4 2556}
f3ab8b6b 2557
fc1455f4
VB
2558/*
2559 * Unfreeze all the cpu partial slabs.
2560 */
2561static void unfreeze_partials(struct kmem_cache *s)
2562{
bb192ed9 2563 struct slab *partial_slab;
fc1455f4
VB
2564 unsigned long flags;
2565
bd0e7491 2566 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2567 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2568 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2569 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2570
bb192ed9
VB
2571 if (partial_slab)
2572 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2573}
2574
2575static void unfreeze_partials_cpu(struct kmem_cache *s,
2576 struct kmem_cache_cpu *c)
2577{
bb192ed9 2578 struct slab *partial_slab;
fc1455f4 2579
bb192ed9 2580 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2581 c->partial = NULL;
2582
bb192ed9
VB
2583 if (partial_slab)
2584 __unfreeze_partials(s, partial_slab);
49e22585
CL
2585}
2586
2587/*
c2092c12
VB
2588 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2589 * partial slab slot if available.
49e22585
CL
2590 *
2591 * If we did not find a slot then simply move all the partials to the
2592 * per node partial list.
2593 */
bb192ed9 2594static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2595{
bb192ed9
VB
2596 struct slab *oldslab;
2597 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2598 unsigned long flags;
bb192ed9 2599 int slabs = 0;
49e22585 2600
bd0e7491 2601 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2602
bb192ed9 2603 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2604
bb192ed9
VB
2605 if (oldslab) {
2606 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2607 /*
2608 * Partial array is full. Move the existing set to the
2609 * per node partial list. Postpone the actual unfreezing
2610 * outside of the critical section.
2611 */
bb192ed9
VB
2612 slab_to_unfreeze = oldslab;
2613 oldslab = NULL;
e0a043aa 2614 } else {
bb192ed9 2615 slabs = oldslab->slabs;
49e22585 2616 }
e0a043aa 2617 }
49e22585 2618
bb192ed9 2619 slabs++;
49e22585 2620
bb192ed9
VB
2621 slab->slabs = slabs;
2622 slab->next = oldslab;
49e22585 2623
bb192ed9 2624 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2625
bd0e7491 2626 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2627
bb192ed9
VB
2628 if (slab_to_unfreeze) {
2629 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2630 stat(s, CPU_PARTIAL_DRAIN);
2631 }
49e22585
CL
2632}
2633
e0a043aa
VB
2634#else /* CONFIG_SLUB_CPU_PARTIAL */
2635
2636static inline void unfreeze_partials(struct kmem_cache *s) { }
2637static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2638 struct kmem_cache_cpu *c) { }
2639
2640#endif /* CONFIG_SLUB_CPU_PARTIAL */
2641
dfb4f096 2642static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2643{
5a836bf6 2644 unsigned long flags;
bb192ed9 2645 struct slab *slab;
5a836bf6
SAS
2646 void *freelist;
2647
bd0e7491 2648 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2649
bb192ed9 2650 slab = c->slab;
5a836bf6 2651 freelist = c->freelist;
c17dda40 2652
bb192ed9 2653 c->slab = NULL;
a019d201 2654 c->freelist = NULL;
c17dda40 2655 c->tid = next_tid(c->tid);
a019d201 2656
bd0e7491 2657 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2658
bb192ed9
VB
2659 if (slab) {
2660 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2661 stat(s, CPUSLAB_FLUSH);
2662 }
81819f0f
CL
2663}
2664
0c710013 2665static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2666{
9dfc6e68 2667 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2668 void *freelist = c->freelist;
bb192ed9 2669 struct slab *slab = c->slab;
81819f0f 2670
bb192ed9 2671 c->slab = NULL;
08beb547
VB
2672 c->freelist = NULL;
2673 c->tid = next_tid(c->tid);
2674
bb192ed9
VB
2675 if (slab) {
2676 deactivate_slab(s, slab, freelist);
08beb547
VB
2677 stat(s, CPUSLAB_FLUSH);
2678 }
49e22585 2679
fc1455f4 2680 unfreeze_partials_cpu(s, c);
81819f0f
CL
2681}
2682
5a836bf6
SAS
2683struct slub_flush_work {
2684 struct work_struct work;
2685 struct kmem_cache *s;
2686 bool skip;
2687};
2688
fc1455f4
VB
2689/*
2690 * Flush cpu slab.
2691 *
5a836bf6 2692 * Called from CPU work handler with migration disabled.
fc1455f4 2693 */
5a836bf6 2694static void flush_cpu_slab(struct work_struct *w)
81819f0f 2695{
5a836bf6
SAS
2696 struct kmem_cache *s;
2697 struct kmem_cache_cpu *c;
2698 struct slub_flush_work *sfw;
2699
2700 sfw = container_of(w, struct slub_flush_work, work);
2701
2702 s = sfw->s;
2703 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2704
bb192ed9 2705 if (c->slab)
fc1455f4 2706 flush_slab(s, c);
81819f0f 2707
fc1455f4 2708 unfreeze_partials(s);
81819f0f
CL
2709}
2710
5a836bf6 2711static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2712{
a8364d55
GBY
2713 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2714
bb192ed9 2715 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2716}
2717
5a836bf6
SAS
2718static DEFINE_MUTEX(flush_lock);
2719static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2720
2721static void flush_all_cpus_locked(struct kmem_cache *s)
2722{
2723 struct slub_flush_work *sfw;
2724 unsigned int cpu;
2725
2726 lockdep_assert_cpus_held();
2727 mutex_lock(&flush_lock);
2728
2729 for_each_online_cpu(cpu) {
2730 sfw = &per_cpu(slub_flush, cpu);
2731 if (!has_cpu_slab(cpu, s)) {
2732 sfw->skip = true;
2733 continue;
2734 }
2735 INIT_WORK(&sfw->work, flush_cpu_slab);
2736 sfw->skip = false;
2737 sfw->s = s;
e45cc288 2738 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
2739 }
2740
2741 for_each_online_cpu(cpu) {
2742 sfw = &per_cpu(slub_flush, cpu);
2743 if (sfw->skip)
2744 continue;
2745 flush_work(&sfw->work);
2746 }
2747
2748 mutex_unlock(&flush_lock);
2749}
2750
81819f0f
CL
2751static void flush_all(struct kmem_cache *s)
2752{
5a836bf6
SAS
2753 cpus_read_lock();
2754 flush_all_cpus_locked(s);
2755 cpus_read_unlock();
81819f0f
CL
2756}
2757
a96a87bf
SAS
2758/*
2759 * Use the cpu notifier to insure that the cpu slabs are flushed when
2760 * necessary.
2761 */
2762static int slub_cpu_dead(unsigned int cpu)
2763{
2764 struct kmem_cache *s;
a96a87bf
SAS
2765
2766 mutex_lock(&slab_mutex);
0e7ac738 2767 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2768 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2769 mutex_unlock(&slab_mutex);
2770 return 0;
2771}
2772
dfb4f096
CL
2773/*
2774 * Check if the objects in a per cpu structure fit numa
2775 * locality expectations.
2776 */
bb192ed9 2777static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2778{
2779#ifdef CONFIG_NUMA
bb192ed9 2780 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2781 return 0;
2782#endif
2783 return 1;
2784}
2785
9a02d699 2786#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2787static int count_free(struct slab *slab)
781b2ba6 2788{
bb192ed9 2789 return slab->objects - slab->inuse;
781b2ba6
PE
2790}
2791
9a02d699
DR
2792static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2793{
2794 return atomic_long_read(&n->total_objects);
2795}
2796#endif /* CONFIG_SLUB_DEBUG */
2797
2798#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6 2799static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2800 int (*get_count)(struct slab *))
781b2ba6
PE
2801{
2802 unsigned long flags;
2803 unsigned long x = 0;
bb192ed9 2804 struct slab *slab;
781b2ba6
PE
2805
2806 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2807 list_for_each_entry(slab, &n->partial, slab_list)
2808 x += get_count(slab);
781b2ba6
PE
2809 spin_unlock_irqrestore(&n->list_lock, flags);
2810 return x;
2811}
9a02d699 2812#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2813
781b2ba6
PE
2814static noinline void
2815slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2816{
9a02d699
DR
2817#ifdef CONFIG_SLUB_DEBUG
2818 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2819 DEFAULT_RATELIMIT_BURST);
781b2ba6 2820 int node;
fa45dc25 2821 struct kmem_cache_node *n;
781b2ba6 2822
9a02d699
DR
2823 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2824 return;
2825
5b3810e5
VB
2826 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2827 nid, gfpflags, &gfpflags);
19af27af 2828 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2829 s->name, s->object_size, s->size, oo_order(s->oo),
2830 oo_order(s->min));
781b2ba6 2831
3b0efdfa 2832 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2833 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2834 s->name);
fa5ec8a1 2835
fa45dc25 2836 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2837 unsigned long nr_slabs;
2838 unsigned long nr_objs;
2839 unsigned long nr_free;
2840
26c02cf0
AB
2841 nr_free = count_partial(n, count_free);
2842 nr_slabs = node_nr_slabs(n);
2843 nr_objs = node_nr_objs(n);
781b2ba6 2844
f9f58285 2845 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2846 node, nr_slabs, nr_objs, nr_free);
2847 }
9a02d699 2848#endif
781b2ba6
PE
2849}
2850
01b34d16 2851static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 2852{
01b34d16 2853 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
2854 return gfp_pfmemalloc_allowed(gfpflags);
2855
2856 return true;
2857}
2858
213eeb9f 2859/*
c2092c12
VB
2860 * Check the slab->freelist and either transfer the freelist to the
2861 * per cpu freelist or deactivate the slab.
213eeb9f 2862 *
c2092c12 2863 * The slab is still frozen if the return value is not NULL.
213eeb9f 2864 *
c2092c12 2865 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 2866 */
bb192ed9 2867static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 2868{
bb192ed9 2869 struct slab new;
213eeb9f
CL
2870 unsigned long counters;
2871 void *freelist;
2872
bd0e7491
VB
2873 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2874
213eeb9f 2875 do {
bb192ed9
VB
2876 freelist = slab->freelist;
2877 counters = slab->counters;
6faa6833 2878
213eeb9f 2879 new.counters = counters;
a0132ac0 2880 VM_BUG_ON(!new.frozen);
213eeb9f 2881
bb192ed9 2882 new.inuse = slab->objects;
213eeb9f
CL
2883 new.frozen = freelist != NULL;
2884
bb192ed9 2885 } while (!__cmpxchg_double_slab(s, slab,
213eeb9f
CL
2886 freelist, counters,
2887 NULL, new.counters,
2888 "get_freelist"));
2889
2890 return freelist;
2891}
2892
81819f0f 2893/*
894b8788
CL
2894 * Slow path. The lockless freelist is empty or we need to perform
2895 * debugging duties.
2896 *
894b8788
CL
2897 * Processing is still very fast if new objects have been freed to the
2898 * regular freelist. In that case we simply take over the regular freelist
2899 * as the lockless freelist and zap the regular freelist.
81819f0f 2900 *
894b8788
CL
2901 * If that is not working then we fall back to the partial lists. We take the
2902 * first element of the freelist as the object to allocate now and move the
2903 * rest of the freelist to the lockless freelist.
81819f0f 2904 *
894b8788 2905 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2906 * we need to allocate a new slab. This is the slowest path since it involves
2907 * a call to the page allocator and the setup of a new slab.
a380a3c7 2908 *
e500059b 2909 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2910 * already disabled (which is the case for bulk allocation).
81819f0f 2911 */
a380a3c7 2912static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2913 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2914{
6faa6833 2915 void *freelist;
bb192ed9 2916 struct slab *slab;
e500059b 2917 unsigned long flags;
81819f0f 2918
9f986d99
AW
2919 stat(s, ALLOC_SLOWPATH);
2920
c2092c12 2921reread_slab:
0b303fb4 2922
bb192ed9
VB
2923 slab = READ_ONCE(c->slab);
2924 if (!slab) {
0715e6c5
VB
2925 /*
2926 * if the node is not online or has no normal memory, just
2927 * ignore the node constraint
2928 */
2929 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2930 !node_isset(node, slab_nodes)))
0715e6c5 2931 node = NUMA_NO_NODE;
81819f0f 2932 goto new_slab;
0715e6c5 2933 }
49e22585 2934redo:
6faa6833 2935
bb192ed9 2936 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
2937 /*
2938 * same as above but node_match() being false already
2939 * implies node != NUMA_NO_NODE
2940 */
7e1fa93d 2941 if (!node_isset(node, slab_nodes)) {
0715e6c5 2942 node = NUMA_NO_NODE;
0715e6c5 2943 } else {
a561ce00 2944 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2945 goto deactivate_slab;
a561ce00 2946 }
fc59c053 2947 }
6446faa2 2948
072bb0aa
MG
2949 /*
2950 * By rights, we should be searching for a slab page that was
2951 * PFMEMALLOC but right now, we are losing the pfmemalloc
2952 * information when the page leaves the per-cpu allocator
2953 */
bb192ed9 2954 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 2955 goto deactivate_slab;
072bb0aa 2956
c2092c12 2957 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 2958 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2959 if (unlikely(slab != c->slab)) {
bd0e7491 2960 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2961 goto reread_slab;
0b303fb4 2962 }
6faa6833
CL
2963 freelist = c->freelist;
2964 if (freelist)
73736e03 2965 goto load_freelist;
03e404af 2966
bb192ed9 2967 freelist = get_freelist(s, slab);
6446faa2 2968
6faa6833 2969 if (!freelist) {
bb192ed9 2970 c->slab = NULL;
eeaa345e 2971 c->tid = next_tid(c->tid);
bd0e7491 2972 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2973 stat(s, DEACTIVATE_BYPASS);
fc59c053 2974 goto new_slab;
03e404af 2975 }
6446faa2 2976
84e554e6 2977 stat(s, ALLOC_REFILL);
6446faa2 2978
894b8788 2979load_freelist:
0b303fb4 2980
bd0e7491 2981 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2982
507effea
CL
2983 /*
2984 * freelist is pointing to the list of objects to be used.
c2092c12
VB
2985 * slab is pointing to the slab from which the objects are obtained.
2986 * That slab must be frozen for per cpu allocations to work.
507effea 2987 */
bb192ed9 2988 VM_BUG_ON(!c->slab->frozen);
6faa6833 2989 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2990 c->tid = next_tid(c->tid);
bd0e7491 2991 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2992 return freelist;
81819f0f 2993
0b303fb4
VB
2994deactivate_slab:
2995
bd0e7491 2996 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2997 if (slab != c->slab) {
bd0e7491 2998 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2999 goto reread_slab;
0b303fb4 3000 }
a019d201 3001 freelist = c->freelist;
bb192ed9 3002 c->slab = NULL;
a019d201 3003 c->freelist = NULL;
eeaa345e 3004 c->tid = next_tid(c->tid);
bd0e7491 3005 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3006 deactivate_slab(s, slab, freelist);
0b303fb4 3007
81819f0f 3008new_slab:
2cfb7455 3009
a93cf07b 3010 if (slub_percpu_partial(c)) {
bd0e7491 3011 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3012 if (unlikely(c->slab)) {
bd0e7491 3013 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3014 goto reread_slab;
fa417ab7 3015 }
4b1f449d 3016 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3017 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3018 /* we were preempted and partial list got empty */
3019 goto new_objects;
4b1f449d 3020 }
fa417ab7 3021
bb192ed9
VB
3022 slab = c->slab = slub_percpu_partial(c);
3023 slub_set_percpu_partial(c, slab);
bd0e7491 3024 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3025 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3026 goto redo;
81819f0f
CL
3027 }
3028
fa417ab7
VB
3029new_objects:
3030
bb192ed9 3031 freelist = get_partial(s, gfpflags, node, &slab);
3f2b77e3 3032 if (freelist)
c2092c12 3033 goto check_new_slab;
2a904905 3034
25c00c50 3035 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3036 slab = new_slab(s, gfpflags, node);
25c00c50 3037 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3038
bb192ed9 3039 if (unlikely(!slab)) {
9a02d699 3040 slab_out_of_memory(s, gfpflags, node);
f4697436 3041 return NULL;
81819f0f 3042 }
2cfb7455 3043
53a0de06 3044 /*
c2092c12 3045 * No other reference to the slab yet so we can
53a0de06
VB
3046 * muck around with it freely without cmpxchg
3047 */
bb192ed9
VB
3048 freelist = slab->freelist;
3049 slab->freelist = NULL;
53a0de06
VB
3050
3051 stat(s, ALLOC_SLAB);
53a0de06 3052
c2092c12 3053check_new_slab:
2cfb7455 3054
1572df7c 3055 if (kmem_cache_debug(s)) {
bb192ed9 3056 if (!alloc_debug_processing(s, slab, freelist, addr)) {
1572df7c
VB
3057 /* Slab failed checks. Next slab needed */
3058 goto new_slab;
fa417ab7 3059 } else {
1572df7c
VB
3060 /*
3061 * For debug case, we don't load freelist so that all
3062 * allocations go through alloc_debug_processing()
3063 */
3064 goto return_single;
fa417ab7 3065 }
1572df7c
VB
3066 }
3067
bb192ed9 3068 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
1572df7c
VB
3069 /*
3070 * For !pfmemalloc_match() case we don't load freelist so that
3071 * we don't make further mismatched allocations easier.
3072 */
3073 goto return_single;
3074
c2092c12 3075retry_load_slab:
cfdf836e 3076
bd0e7491 3077 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3078 if (unlikely(c->slab)) {
cfdf836e 3079 void *flush_freelist = c->freelist;
bb192ed9 3080 struct slab *flush_slab = c->slab;
cfdf836e 3081
bb192ed9 3082 c->slab = NULL;
cfdf836e
VB
3083 c->freelist = NULL;
3084 c->tid = next_tid(c->tid);
3085
bd0e7491 3086 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3087
bb192ed9 3088 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3089
3090 stat(s, CPUSLAB_FLUSH);
3091
c2092c12 3092 goto retry_load_slab;
cfdf836e 3093 }
bb192ed9 3094 c->slab = slab;
3f2b77e3 3095
1572df7c
VB
3096 goto load_freelist;
3097
3098return_single:
894b8788 3099
bb192ed9 3100 deactivate_slab(s, slab, get_freepointer(s, freelist));
6faa6833 3101 return freelist;
894b8788
CL
3102}
3103
a380a3c7 3104/*
e500059b
VB
3105 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3106 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3107 * pointer.
a380a3c7
CL
3108 */
3109static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3110 unsigned long addr, struct kmem_cache_cpu *c)
3111{
3112 void *p;
a380a3c7 3113
e500059b 3114#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3115 /*
3116 * We may have been preempted and rescheduled on a different
e500059b 3117 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3118 * pointer.
3119 */
25c00c50 3120 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3121#endif
3122
3123 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3124#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3125 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3126#endif
a380a3c7
CL
3127 return p;
3128}
3129
0f181f9f
AP
3130/*
3131 * If the object has been wiped upon free, make sure it's fully initialized by
3132 * zeroing out freelist pointer.
3133 */
3134static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3135 void *obj)
3136{
3137 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3138 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3139 0, sizeof(void *));
0f181f9f
AP
3140}
3141
894b8788
CL
3142/*
3143 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3144 * have the fastpath folded into their functions. So no function call
3145 * overhead for requests that can be satisfied on the fastpath.
3146 *
3147 * The fastpath works by first checking if the lockless freelist can be used.
3148 * If not then __slab_alloc is called for slow processing.
3149 *
3150 * Otherwise we can simply pick the next object from the lockless free list.
3151 */
88f2ef73 3152static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3153 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3154{
03ec0ed5 3155 void *object;
dfb4f096 3156 struct kmem_cache_cpu *c;
bb192ed9 3157 struct slab *slab;
8a5ec0ba 3158 unsigned long tid;
964d4bd3 3159 struct obj_cgroup *objcg = NULL;
da844b78 3160 bool init = false;
1f84260c 3161
88f2ef73 3162 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
8135be5a 3163 if (!s)
773ff60e 3164 return NULL;
b89fb5ef
AP
3165
3166 object = kfence_alloc(s, orig_size, gfpflags);
3167 if (unlikely(object))
3168 goto out;
3169
8a5ec0ba 3170redo:
8a5ec0ba
CL
3171 /*
3172 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3173 * enabled. We may switch back and forth between cpus while
3174 * reading from one cpu area. That does not matter as long
3175 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3176 *
9b4bc85a
VB
3177 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3178 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3179 * the tid. If we are preempted and switched to another cpu between the
3180 * two reads, it's OK as the two are still associated with the same cpu
3181 * and cmpxchg later will validate the cpu.
8a5ec0ba 3182 */
9b4bc85a
VB
3183 c = raw_cpu_ptr(s->cpu_slab);
3184 tid = READ_ONCE(c->tid);
9aabf810
JK
3185
3186 /*
3187 * Irqless object alloc/free algorithm used here depends on sequence
3188 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3189 * on c to guarantee that object and slab associated with previous tid
9aabf810 3190 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3191 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3192 * request will be failed. In this case, we will retry. So, no problem.
3193 */
3194 barrier();
8a5ec0ba 3195
8a5ec0ba
CL
3196 /*
3197 * The transaction ids are globally unique per cpu and per operation on
3198 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3199 * occurs on the right processor and that there was no operation on the
3200 * linked list in between.
3201 */
8a5ec0ba 3202
9dfc6e68 3203 object = c->freelist;
bb192ed9 3204 slab = c->slab;
bd0e7491
VB
3205 /*
3206 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3207 * slowpath has taken the local_lock_irqsave(), it is not protected
3208 * against a fast path operation in an irq handler. So we need to take
3209 * the slow path which uses local_lock. It is still relatively fast if
3210 * there is a suitable cpu freelist.
3211 */
3212 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
bb192ed9 3213 unlikely(!object || !slab || !node_match(slab, node))) {
dfb4f096 3214 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3215 } else {
0ad9500e
ED
3216 void *next_object = get_freepointer_safe(s, object);
3217
8a5ec0ba 3218 /*
25985edc 3219 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3220 * operation and if we are on the right processor.
3221 *
d0e0ac97
CG
3222 * The cmpxchg does the following atomically (without lock
3223 * semantics!)
8a5ec0ba
CL
3224 * 1. Relocate first pointer to the current per cpu area.
3225 * 2. Verify that tid and freelist have not been changed
3226 * 3. If they were not changed replace tid and freelist
3227 *
d0e0ac97
CG
3228 * Since this is without lock semantics the protection is only
3229 * against code executing on this cpu *not* from access by
3230 * other cpus.
8a5ec0ba 3231 */
933393f5 3232 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3233 s->cpu_slab->freelist, s->cpu_slab->tid,
3234 object, tid,
0ad9500e 3235 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3236
3237 note_cmpxchg_failure("slab_alloc", s, tid);
3238 goto redo;
3239 }
0ad9500e 3240 prefetch_freepointer(s, next_object);
84e554e6 3241 stat(s, ALLOC_FASTPATH);
894b8788 3242 }
0f181f9f 3243
ce5716c6 3244 maybe_wipe_obj_freeptr(s, object);
da844b78 3245 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3246
b89fb5ef 3247out:
da844b78 3248 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3249
894b8788 3250 return object;
81819f0f
CL
3251}
3252
88f2ef73 3253static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3254 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3255{
88f2ef73 3256 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3257}
3258
88f2ef73
MS
3259static __always_inline
3260void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3261 gfp_t gfpflags)
81819f0f 3262{
88f2ef73 3263 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3264
b347aa7b 3265 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
d0e0ac97 3266 s->size, gfpflags);
5b882be4
EGM
3267
3268 return ret;
81819f0f 3269}
88f2ef73
MS
3270
3271void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3272{
3273 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3274}
81819f0f
CL
3275EXPORT_SYMBOL(kmem_cache_alloc);
3276
88f2ef73
MS
3277void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3278 gfp_t gfpflags)
3279{
3280 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3281}
3282EXPORT_SYMBOL(kmem_cache_alloc_lru);
3283
0f24f128 3284#ifdef CONFIG_TRACING
4a92379b
RK
3285void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3286{
88f2ef73 3287 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
b347aa7b 3288 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
0116523c 3289 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3290 return ret;
3291}
3292EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3293#endif
3294
81819f0f
CL
3295#ifdef CONFIG_NUMA
3296void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3297{
88f2ef73 3298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3299
b347aa7b 3300 trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3b0efdfa 3301 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3302
3303 return ret;
81819f0f
CL
3304}
3305EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3306
0f24f128 3307#ifdef CONFIG_TRACING
4a92379b 3308void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3309 gfp_t gfpflags,
4a92379b 3310 int node, size_t size)
5b882be4 3311{
88f2ef73 3312 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4a92379b 3313
b347aa7b 3314 trace_kmalloc_node(_RET_IP_, ret, s,
4a92379b 3315 size, s->size, gfpflags, node);
0316bec2 3316
0116523c 3317 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3318 return ret;
5b882be4 3319}
4a92379b 3320EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3321#endif
6dfd1b65 3322#endif /* CONFIG_NUMA */
5b882be4 3323
81819f0f 3324/*
94e4d712 3325 * Slow path handling. This may still be called frequently since objects
894b8788 3326 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3327 *
894b8788 3328 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3329 * lock and free the item. If there is no additional partial slab
894b8788 3330 * handling required then we can return immediately.
81819f0f 3331 */
bb192ed9 3332static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3333 void *head, void *tail, int cnt,
3334 unsigned long addr)
3335
81819f0f
CL
3336{
3337 void *prior;
2cfb7455 3338 int was_frozen;
bb192ed9 3339 struct slab new;
2cfb7455
CL
3340 unsigned long counters;
3341 struct kmem_cache_node *n = NULL;
3f649ab7 3342 unsigned long flags;
81819f0f 3343
8a5ec0ba 3344 stat(s, FREE_SLOWPATH);
81819f0f 3345
b89fb5ef
AP
3346 if (kfence_free(head))
3347 return;
3348
19c7ff9e 3349 if (kmem_cache_debug(s) &&
bb192ed9 3350 !free_debug_processing(s, slab, head, tail, cnt, addr))
80f08c19 3351 return;
6446faa2 3352
2cfb7455 3353 do {
837d678d
JK
3354 if (unlikely(n)) {
3355 spin_unlock_irqrestore(&n->list_lock, flags);
3356 n = NULL;
3357 }
bb192ed9
VB
3358 prior = slab->freelist;
3359 counters = slab->counters;
81084651 3360 set_freepointer(s, tail, prior);
2cfb7455
CL
3361 new.counters = counters;
3362 was_frozen = new.frozen;
81084651 3363 new.inuse -= cnt;
837d678d 3364 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3365
c65c1877 3366 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3367
3368 /*
d0e0ac97
CG
3369 * Slab was on no list before and will be
3370 * partially empty
3371 * We can defer the list move and instead
3372 * freeze it.
49e22585
CL
3373 */
3374 new.frozen = 1;
3375
c65c1877 3376 } else { /* Needs to be taken off a list */
49e22585 3377
bb192ed9 3378 n = get_node(s, slab_nid(slab));
49e22585
CL
3379 /*
3380 * Speculatively acquire the list_lock.
3381 * If the cmpxchg does not succeed then we may
3382 * drop the list_lock without any processing.
3383 *
3384 * Otherwise the list_lock will synchronize with
3385 * other processors updating the list of slabs.
3386 */
3387 spin_lock_irqsave(&n->list_lock, flags);
3388
3389 }
2cfb7455 3390 }
81819f0f 3391
bb192ed9 3392 } while (!cmpxchg_double_slab(s, slab,
2cfb7455 3393 prior, counters,
81084651 3394 head, new.counters,
2cfb7455 3395 "__slab_free"));
81819f0f 3396
2cfb7455 3397 if (likely(!n)) {
49e22585 3398
c270cf30
AW
3399 if (likely(was_frozen)) {
3400 /*
3401 * The list lock was not taken therefore no list
3402 * activity can be necessary.
3403 */
3404 stat(s, FREE_FROZEN);
3405 } else if (new.frozen) {
3406 /*
c2092c12 3407 * If we just froze the slab then put it onto the
c270cf30
AW
3408 * per cpu partial list.
3409 */
bb192ed9 3410 put_cpu_partial(s, slab, 1);
8028dcea
AS
3411 stat(s, CPU_PARTIAL_FREE);
3412 }
c270cf30 3413
b455def2
L
3414 return;
3415 }
81819f0f 3416
8a5b20ae 3417 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3418 goto slab_empty;
3419
81819f0f 3420 /*
837d678d
JK
3421 * Objects left in the slab. If it was not on the partial list before
3422 * then add it.
81819f0f 3423 */
345c905d 3424 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3425 remove_full(s, n, slab);
3426 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3427 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3428 }
80f08c19 3429 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3430 return;
3431
3432slab_empty:
a973e9dd 3433 if (prior) {
81819f0f 3434 /*
6fbabb20 3435 * Slab on the partial list.
81819f0f 3436 */
bb192ed9 3437 remove_partial(n, slab);
84e554e6 3438 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3439 } else {
6fbabb20 3440 /* Slab must be on the full list */
bb192ed9 3441 remove_full(s, n, slab);
c65c1877 3442 }
2cfb7455 3443
80f08c19 3444 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3445 stat(s, FREE_SLAB);
bb192ed9 3446 discard_slab(s, slab);
81819f0f
CL
3447}
3448
894b8788
CL
3449/*
3450 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3451 * can perform fastpath freeing without additional function calls.
3452 *
3453 * The fastpath is only possible if we are freeing to the current cpu slab
3454 * of this processor. This typically the case if we have just allocated
3455 * the item before.
3456 *
3457 * If fastpath is not possible then fall back to __slab_free where we deal
3458 * with all sorts of special processing.
81084651
JDB
3459 *
3460 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3461 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3462 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3463 */
80a9201a 3464static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3465 struct slab *slab, void *head, void *tail,
80a9201a 3466 int cnt, unsigned long addr)
894b8788 3467{
81084651 3468 void *tail_obj = tail ? : head;
dfb4f096 3469 struct kmem_cache_cpu *c;
8a5ec0ba 3470 unsigned long tid;
964d4bd3 3471
8a5ec0ba
CL
3472redo:
3473 /*
3474 * Determine the currently cpus per cpu slab.
3475 * The cpu may change afterward. However that does not matter since
3476 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3477 * during the cmpxchg then the free will succeed.
8a5ec0ba 3478 */
9b4bc85a
VB
3479 c = raw_cpu_ptr(s->cpu_slab);
3480 tid = READ_ONCE(c->tid);
c016b0bd 3481
9aabf810
JK
3482 /* Same with comment on barrier() in slab_alloc_node() */
3483 barrier();
c016b0bd 3484
bb192ed9 3485 if (likely(slab == c->slab)) {
bd0e7491 3486#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3487 void **freelist = READ_ONCE(c->freelist);
3488
3489 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3490
933393f5 3491 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3492 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3493 freelist, tid,
81084651 3494 head, next_tid(tid)))) {
8a5ec0ba
CL
3495
3496 note_cmpxchg_failure("slab_free", s, tid);
3497 goto redo;
3498 }
bd0e7491
VB
3499#else /* CONFIG_PREEMPT_RT */
3500 /*
3501 * We cannot use the lockless fastpath on PREEMPT_RT because if
3502 * a slowpath has taken the local_lock_irqsave(), it is not
3503 * protected against a fast path operation in an irq handler. So
3504 * we need to take the local_lock. We shouldn't simply defer to
3505 * __slab_free() as that wouldn't use the cpu freelist at all.
3506 */
3507 void **freelist;
3508
3509 local_lock(&s->cpu_slab->lock);
3510 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3511 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3512 local_unlock(&s->cpu_slab->lock);
3513 goto redo;
3514 }
3515 tid = c->tid;
3516 freelist = c->freelist;
3517
3518 set_freepointer(s, tail_obj, freelist);
3519 c->freelist = head;
3520 c->tid = next_tid(tid);
3521
3522 local_unlock(&s->cpu_slab->lock);
3523#endif
84e554e6 3524 stat(s, FREE_FASTPATH);
894b8788 3525 } else
bb192ed9 3526 __slab_free(s, slab, head, tail_obj, cnt, addr);
894b8788 3527
894b8788
CL
3528}
3529
bb192ed9 3530static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3531 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3532 unsigned long addr)
3533{
b77d5b1b 3534 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3535 /*
c3895391
AK
3536 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3537 * to remove objects, whose reuse must be delayed.
80a9201a 3538 */
899447f6 3539 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3540 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3541}
3542
2bd926b4 3543#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3544void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3545{
bb192ed9 3546 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3547}
3548#endif
3549
81819f0f
CL
3550void kmem_cache_free(struct kmem_cache *s, void *x)
3551{
b9ce5ef4
GC
3552 s = cache_from_obj(s, x);
3553 if (!s)
79576102 3554 return;
3544de8e 3555 trace_kmem_cache_free(_RET_IP_, x, s->name);
b77d5b1b 3556 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3557}
3558EXPORT_SYMBOL(kmem_cache_free);
3559
d0ecd894 3560struct detached_freelist {
cc465c3b 3561 struct slab *slab;
d0ecd894
JDB
3562 void *tail;
3563 void *freelist;
3564 int cnt;
376bf125 3565 struct kmem_cache *s;
d0ecd894 3566};
fbd02630 3567
d835eef4 3568static inline void free_large_kmalloc(struct folio *folio, void *object)
f227f0fa 3569{
d835eef4 3570 unsigned int order = folio_order(folio);
f227f0fa 3571
d835eef4 3572 if (WARN_ON_ONCE(order == 0))
d0fe47c6
KW
3573 pr_warn_once("object pointer: 0x%p\n", object);
3574
1ed7ce57 3575 kfree_hook(object);
d835eef4
MWO
3576 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3577 -(PAGE_SIZE << order));
3578 __free_pages(folio_page(folio, 0), order);
f227f0fa
SB
3579}
3580
d0ecd894
JDB
3581/*
3582 * This function progressively scans the array with free objects (with
3583 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3584 * slab. It builds a detached freelist directly within the given
3585 * slab/objects. This can happen without any need for
d0ecd894
JDB
3586 * synchronization, because the objects are owned by running process.
3587 * The freelist is build up as a single linked list in the objects.
3588 * The idea is, that this detached freelist can then be bulk
3589 * transferred to the real freelist(s), but only requiring a single
3590 * synchronization primitive. Look ahead in the array is limited due
3591 * to performance reasons.
3592 */
376bf125
JDB
3593static inline
3594int build_detached_freelist(struct kmem_cache *s, size_t size,
3595 void **p, struct detached_freelist *df)
d0ecd894 3596{
d0ecd894
JDB
3597 int lookahead = 3;
3598 void *object;
cc465c3b 3599 struct folio *folio;
b77d5b1b 3600 size_t same;
fbd02630 3601
b77d5b1b 3602 object = p[--size];
cc465c3b 3603 folio = virt_to_folio(object);
ca257195
JDB
3604 if (!s) {
3605 /* Handle kalloc'ed objects */
cc465c3b 3606 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3607 free_large_kmalloc(folio, object);
b77d5b1b 3608 df->slab = NULL;
ca257195
JDB
3609 return size;
3610 }
3611 /* Derive kmem_cache from object */
b77d5b1b
MS
3612 df->slab = folio_slab(folio);
3613 df->s = df->slab->slab_cache;
ca257195 3614 } else {
b77d5b1b 3615 df->slab = folio_slab(folio);
ca257195
JDB
3616 df->s = cache_from_obj(s, object); /* Support for memcg */
3617 }
376bf125 3618
d0ecd894 3619 /* Start new detached freelist */
d0ecd894
JDB
3620 df->tail = object;
3621 df->freelist = object;
d0ecd894
JDB
3622 df->cnt = 1;
3623
b77d5b1b
MS
3624 if (is_kfence_address(object))
3625 return size;
3626
3627 set_freepointer(df->s, object, NULL);
3628
3629 same = size;
d0ecd894
JDB
3630 while (size) {
3631 object = p[--size];
cc465c3b
MWO
3632 /* df->slab is always set at this point */
3633 if (df->slab == virt_to_slab(object)) {
d0ecd894 3634 /* Opportunity build freelist */
376bf125 3635 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3636 df->freelist = object;
3637 df->cnt++;
b77d5b1b
MS
3638 same--;
3639 if (size != same)
3640 swap(p[size], p[same]);
d0ecd894 3641 continue;
fbd02630 3642 }
d0ecd894
JDB
3643
3644 /* Limit look ahead search */
3645 if (!--lookahead)
3646 break;
fbd02630 3647 }
d0ecd894 3648
b77d5b1b 3649 return same;
d0ecd894
JDB
3650}
3651
d0ecd894 3652/* Note that interrupts must be enabled when calling this function. */
376bf125 3653void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3654{
2055e67b 3655 if (!size)
d0ecd894
JDB
3656 return;
3657
3658 do {
3659 struct detached_freelist df;
3660
3661 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3662 if (!df.slab)
d0ecd894
JDB
3663 continue;
3664
b77d5b1b
MS
3665 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3666 _RET_IP_);
d0ecd894 3667 } while (likely(size));
484748f0
CL
3668}
3669EXPORT_SYMBOL(kmem_cache_free_bulk);
3670
994eb764 3671/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3672int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3673 void **p)
484748f0 3674{
994eb764
JDB
3675 struct kmem_cache_cpu *c;
3676 int i;
964d4bd3 3677 struct obj_cgroup *objcg = NULL;
994eb764 3678
03ec0ed5 3679 /* memcg and kmem_cache debug support */
88f2ef73 3680 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
03ec0ed5
JDB
3681 if (unlikely(!s))
3682 return false;
994eb764
JDB
3683 /*
3684 * Drain objects in the per cpu slab, while disabling local
3685 * IRQs, which protects against PREEMPT and interrupts
3686 * handlers invoking normal fastpath.
3687 */
25c00c50 3688 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3689 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3690
3691 for (i = 0; i < size; i++) {
b89fb5ef 3692 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3693
b89fb5ef
AP
3694 if (unlikely(object)) {
3695 p[i] = object;
3696 continue;
3697 }
3698
3699 object = c->freelist;
ebe909e0 3700 if (unlikely(!object)) {
fd4d9c7d
JH
3701 /*
3702 * We may have removed an object from c->freelist using
3703 * the fastpath in the previous iteration; in that case,
3704 * c->tid has not been bumped yet.
3705 * Since ___slab_alloc() may reenable interrupts while
3706 * allocating memory, we should bump c->tid now.
3707 */
3708 c->tid = next_tid(c->tid);
3709
bd0e7491 3710 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3711
ebe909e0
JDB
3712 /*
3713 * Invoking slow path likely have side-effect
3714 * of re-populating per CPU c->freelist
3715 */
87098373 3716 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3717 _RET_IP_, c);
87098373
CL
3718 if (unlikely(!p[i]))
3719 goto error;
3720
ebe909e0 3721 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3722 maybe_wipe_obj_freeptr(s, p[i]);
3723
bd0e7491 3724 local_lock_irq(&s->cpu_slab->lock);
e500059b 3725
ebe909e0
JDB
3726 continue; /* goto for-loop */
3727 }
994eb764
JDB
3728 c->freelist = get_freepointer(s, object);
3729 p[i] = object;
0f181f9f 3730 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3731 }
3732 c->tid = next_tid(c->tid);
bd0e7491 3733 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3734 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3735
da844b78
AK
3736 /*
3737 * memcg and kmem_cache debug support and memory initialization.
3738 * Done outside of the IRQ disabled fastpath loop.
3739 */
3740 slab_post_alloc_hook(s, objcg, flags, size, p,
3741 slab_want_init_on_alloc(flags, s));
865762a8 3742 return i;
87098373 3743error:
25c00c50 3744 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3745 slab_post_alloc_hook(s, objcg, flags, i, p, false);
2055e67b 3746 kmem_cache_free_bulk(s, i, p);
865762a8 3747 return 0;
484748f0
CL
3748}
3749EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3750
3751
81819f0f 3752/*
672bba3a
CL
3753 * Object placement in a slab is made very easy because we always start at
3754 * offset 0. If we tune the size of the object to the alignment then we can
3755 * get the required alignment by putting one properly sized object after
3756 * another.
81819f0f
CL
3757 *
3758 * Notice that the allocation order determines the sizes of the per cpu
3759 * caches. Each processor has always one slab available for allocations.
3760 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3761 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3762 * locking overhead.
81819f0f
CL
3763 */
3764
3765/*
f0953a1b 3766 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3767 * and slab fragmentation. A higher order reduces the number of partial slabs
3768 * and increases the number of allocations possible without having to
3769 * take the list_lock.
3770 */
19af27af
AD
3771static unsigned int slub_min_order;
3772static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3773static unsigned int slub_min_objects;
81819f0f 3774
81819f0f
CL
3775/*
3776 * Calculate the order of allocation given an slab object size.
3777 *
672bba3a
CL
3778 * The order of allocation has significant impact on performance and other
3779 * system components. Generally order 0 allocations should be preferred since
3780 * order 0 does not cause fragmentation in the page allocator. Larger objects
3781 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3782 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3783 * would be wasted.
3784 *
3785 * In order to reach satisfactory performance we must ensure that a minimum
3786 * number of objects is in one slab. Otherwise we may generate too much
3787 * activity on the partial lists which requires taking the list_lock. This is
3788 * less a concern for large slabs though which are rarely used.
81819f0f 3789 *
672bba3a
CL
3790 * slub_max_order specifies the order where we begin to stop considering the
3791 * number of objects in a slab as critical. If we reach slub_max_order then
3792 * we try to keep the page order as low as possible. So we accept more waste
3793 * of space in favor of a small page order.
81819f0f 3794 *
672bba3a
CL
3795 * Higher order allocations also allow the placement of more objects in a
3796 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3797 * requested a higher minimum order then we start with that one instead of
672bba3a 3798 * the smallest order which will fit the object.
81819f0f 3799 */
d122019b 3800static inline unsigned int calc_slab_order(unsigned int size,
19af27af 3801 unsigned int min_objects, unsigned int max_order,
9736d2a9 3802 unsigned int fract_leftover)
81819f0f 3803{
19af27af
AD
3804 unsigned int min_order = slub_min_order;
3805 unsigned int order;
81819f0f 3806
9736d2a9 3807 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3808 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3809
9736d2a9 3810 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3811 order <= max_order; order++) {
81819f0f 3812
19af27af
AD
3813 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3814 unsigned int rem;
81819f0f 3815
9736d2a9 3816 rem = slab_size % size;
81819f0f 3817
5e6d444e 3818 if (rem <= slab_size / fract_leftover)
81819f0f 3819 break;
81819f0f 3820 }
672bba3a 3821
81819f0f
CL
3822 return order;
3823}
3824
9736d2a9 3825static inline int calculate_order(unsigned int size)
5e6d444e 3826{
19af27af
AD
3827 unsigned int order;
3828 unsigned int min_objects;
3829 unsigned int max_objects;
3286222f 3830 unsigned int nr_cpus;
5e6d444e
CL
3831
3832 /*
3833 * Attempt to find best configuration for a slab. This
3834 * works by first attempting to generate a layout with
3835 * the best configuration and backing off gradually.
3836 *
422ff4d7 3837 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3838 * we reduce the minimum objects required in a slab.
3839 */
3840 min_objects = slub_min_objects;
3286222f
VB
3841 if (!min_objects) {
3842 /*
3843 * Some architectures will only update present cpus when
3844 * onlining them, so don't trust the number if it's just 1. But
3845 * we also don't want to use nr_cpu_ids always, as on some other
3846 * architectures, there can be many possible cpus, but never
3847 * onlined. Here we compromise between trying to avoid too high
3848 * order on systems that appear larger than they are, and too
3849 * low order on systems that appear smaller than they are.
3850 */
3851 nr_cpus = num_present_cpus();
3852 if (nr_cpus <= 1)
3853 nr_cpus = nr_cpu_ids;
3854 min_objects = 4 * (fls(nr_cpus) + 1);
3855 }
9736d2a9 3856 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3857 min_objects = min(min_objects, max_objects);
3858
5e6d444e 3859 while (min_objects > 1) {
19af27af
AD
3860 unsigned int fraction;
3861
c124f5b5 3862 fraction = 16;
5e6d444e 3863 while (fraction >= 4) {
d122019b 3864 order = calc_slab_order(size, min_objects,
9736d2a9 3865 slub_max_order, fraction);
5e6d444e
CL
3866 if (order <= slub_max_order)
3867 return order;
3868 fraction /= 2;
3869 }
5086c389 3870 min_objects--;
5e6d444e
CL
3871 }
3872
3873 /*
3874 * We were unable to place multiple objects in a slab. Now
3875 * lets see if we can place a single object there.
3876 */
d122019b 3877 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3878 if (order <= slub_max_order)
3879 return order;
3880
3881 /*
3882 * Doh this slab cannot be placed using slub_max_order.
3883 */
d122019b 3884 order = calc_slab_order(size, 1, MAX_ORDER, 1);
818cf590 3885 if (order < MAX_ORDER)
5e6d444e
CL
3886 return order;
3887 return -ENOSYS;
3888}
3889
5595cffc 3890static void
4053497d 3891init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3892{
3893 n->nr_partial = 0;
81819f0f
CL
3894 spin_lock_init(&n->list_lock);
3895 INIT_LIST_HEAD(&n->partial);
8ab1372f 3896#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3897 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3898 atomic_long_set(&n->total_objects, 0);
643b1138 3899 INIT_LIST_HEAD(&n->full);
8ab1372f 3900#endif
81819f0f
CL
3901}
3902
55136592 3903static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3904{
6c182dc0 3905 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3906 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3907
8a5ec0ba 3908 /*
d4d84fef
CM
3909 * Must align to double word boundary for the double cmpxchg
3910 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3911 */
d4d84fef
CM
3912 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3913 2 * sizeof(void *));
8a5ec0ba
CL
3914
3915 if (!s->cpu_slab)
3916 return 0;
3917
3918 init_kmem_cache_cpus(s);
4c93c355 3919
8a5ec0ba 3920 return 1;
4c93c355 3921}
4c93c355 3922
51df1142
CL
3923static struct kmem_cache *kmem_cache_node;
3924
81819f0f
CL
3925/*
3926 * No kmalloc_node yet so do it by hand. We know that this is the first
3927 * slab on the node for this slabcache. There are no concurrent accesses
3928 * possible.
3929 *
721ae22a
ZYW
3930 * Note that this function only works on the kmem_cache_node
3931 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3932 * memory on a fresh node that has no slab structures yet.
81819f0f 3933 */
55136592 3934static void early_kmem_cache_node_alloc(int node)
81819f0f 3935{
bb192ed9 3936 struct slab *slab;
81819f0f
CL
3937 struct kmem_cache_node *n;
3938
51df1142 3939 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3940
bb192ed9 3941 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 3942
bb192ed9
VB
3943 BUG_ON(!slab);
3944 if (slab_nid(slab) != node) {
f9f58285
FF
3945 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3946 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3947 }
3948
bb192ed9 3949 n = slab->freelist;
81819f0f 3950 BUG_ON(!n);
8ab1372f 3951#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3952 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3953 init_tracking(kmem_cache_node, n);
8ab1372f 3954#endif
da844b78 3955 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
3956 slab->freelist = get_freepointer(kmem_cache_node, n);
3957 slab->inuse = 1;
3958 slab->frozen = 0;
12b22386 3959 kmem_cache_node->node[node] = n;
4053497d 3960 init_kmem_cache_node(n);
bb192ed9 3961 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 3962
67b6c900 3963 /*
1e4dd946
SR
3964 * No locks need to be taken here as it has just been
3965 * initialized and there is no concurrent access.
67b6c900 3966 */
bb192ed9 3967 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
3968}
3969
3970static void free_kmem_cache_nodes(struct kmem_cache *s)
3971{
3972 int node;
fa45dc25 3973 struct kmem_cache_node *n;
81819f0f 3974
fa45dc25 3975 for_each_kmem_cache_node(s, node, n) {
81819f0f 3976 s->node[node] = NULL;
ea37df54 3977 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3978 }
3979}
3980
52b4b950
DS
3981void __kmem_cache_release(struct kmem_cache *s)
3982{
210e7a43 3983 cache_random_seq_destroy(s);
52b4b950
DS
3984 free_percpu(s->cpu_slab);
3985 free_kmem_cache_nodes(s);
3986}
3987
55136592 3988static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3989{
3990 int node;
81819f0f 3991
7e1fa93d 3992 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3993 struct kmem_cache_node *n;
3994
73367bd8 3995 if (slab_state == DOWN) {
55136592 3996 early_kmem_cache_node_alloc(node);
73367bd8
AD
3997 continue;
3998 }
51df1142 3999 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 4000 GFP_KERNEL, node);
81819f0f 4001
73367bd8
AD
4002 if (!n) {
4003 free_kmem_cache_nodes(s);
4004 return 0;
81819f0f 4005 }
73367bd8 4006
4053497d 4007 init_kmem_cache_node(n);
ea37df54 4008 s->node[node] = n;
81819f0f
CL
4009 }
4010 return 1;
4011}
81819f0f 4012
e6d0e1dc
WY
4013static void set_cpu_partial(struct kmem_cache *s)
4014{
4015#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4016 unsigned int nr_objects;
4017
e6d0e1dc
WY
4018 /*
4019 * cpu_partial determined the maximum number of objects kept in the
4020 * per cpu partial lists of a processor.
4021 *
4022 * Per cpu partial lists mainly contain slabs that just have one
4023 * object freed. If they are used for allocation then they can be
4024 * filled up again with minimal effort. The slab will never hit the
4025 * per node partial lists and therefore no locking will be required.
4026 *
b47291ef
VB
4027 * For backwards compatibility reasons, this is determined as number
4028 * of objects, even though we now limit maximum number of pages, see
4029 * slub_set_cpu_partial()
e6d0e1dc
WY
4030 */
4031 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4032 nr_objects = 0;
e6d0e1dc 4033 else if (s->size >= PAGE_SIZE)
b47291ef 4034 nr_objects = 6;
e6d0e1dc 4035 else if (s->size >= 1024)
23e98ad1 4036 nr_objects = 24;
e6d0e1dc 4037 else if (s->size >= 256)
23e98ad1 4038 nr_objects = 52;
e6d0e1dc 4039 else
23e98ad1 4040 nr_objects = 120;
b47291ef
VB
4041
4042 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4043#endif
4044}
4045
81819f0f
CL
4046/*
4047 * calculate_sizes() determines the order and the distribution of data within
4048 * a slab object.
4049 */
ae44d81d 4050static int calculate_sizes(struct kmem_cache *s)
81819f0f 4051{
d50112ed 4052 slab_flags_t flags = s->flags;
be4a7988 4053 unsigned int size = s->object_size;
19af27af 4054 unsigned int order;
81819f0f 4055
d8b42bf5
CL
4056 /*
4057 * Round up object size to the next word boundary. We can only
4058 * place the free pointer at word boundaries and this determines
4059 * the possible location of the free pointer.
4060 */
4061 size = ALIGN(size, sizeof(void *));
4062
4063#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4064 /*
4065 * Determine if we can poison the object itself. If the user of
4066 * the slab may touch the object after free or before allocation
4067 * then we should never poison the object itself.
4068 */
5f0d5a3a 4069 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4070 !s->ctor)
81819f0f
CL
4071 s->flags |= __OBJECT_POISON;
4072 else
4073 s->flags &= ~__OBJECT_POISON;
4074
81819f0f
CL
4075
4076 /*
672bba3a 4077 * If we are Redzoning then check if there is some space between the
81819f0f 4078 * end of the object and the free pointer. If not then add an
672bba3a 4079 * additional word to have some bytes to store Redzone information.
81819f0f 4080 */
3b0efdfa 4081 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4082 size += sizeof(void *);
41ecc55b 4083#endif
81819f0f
CL
4084
4085 /*
672bba3a 4086 * With that we have determined the number of bytes in actual use
e41a49fa 4087 * by the object and redzoning.
81819f0f
CL
4088 */
4089 s->inuse = size;
4090
74c1d3e0
KC
4091 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4092 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4093 s->ctor) {
81819f0f
CL
4094 /*
4095 * Relocate free pointer after the object if it is not
4096 * permitted to overwrite the first word of the object on
4097 * kmem_cache_free.
4098 *
4099 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4100 * destructor, are poisoning the objects, or are
4101 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4102 *
4103 * The assumption that s->offset >= s->inuse means free
4104 * pointer is outside of the object is used in the
4105 * freeptr_outside_object() function. If that is no
4106 * longer true, the function needs to be modified.
81819f0f
CL
4107 */
4108 s->offset = size;
4109 size += sizeof(void *);
e41a49fa 4110 } else {
3202fa62
KC
4111 /*
4112 * Store freelist pointer near middle of object to keep
4113 * it away from the edges of the object to avoid small
4114 * sized over/underflows from neighboring allocations.
4115 */
e41a49fa 4116 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4117 }
4118
c12b3c62 4119#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4120 if (flags & SLAB_STORE_USER)
4121 /*
4122 * Need to store information about allocs and frees after
4123 * the object.
4124 */
4125 size += 2 * sizeof(struct track);
80a9201a 4126#endif
81819f0f 4127
80a9201a
AP
4128 kasan_cache_create(s, &size, &s->flags);
4129#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4130 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4131 /*
4132 * Add some empty padding so that we can catch
4133 * overwrites from earlier objects rather than let
4134 * tracking information or the free pointer be
0211a9c8 4135 * corrupted if a user writes before the start
81819f0f
CL
4136 * of the object.
4137 */
4138 size += sizeof(void *);
d86bd1be
JK
4139
4140 s->red_left_pad = sizeof(void *);
4141 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4142 size += s->red_left_pad;
4143 }
41ecc55b 4144#endif
672bba3a 4145
81819f0f
CL
4146 /*
4147 * SLUB stores one object immediately after another beginning from
4148 * offset 0. In order to align the objects we have to simply size
4149 * each object to conform to the alignment.
4150 */
45906855 4151 size = ALIGN(size, s->align);
81819f0f 4152 s->size = size;
4138fdfc 4153 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4154 order = calculate_order(size);
81819f0f 4155
19af27af 4156 if ((int)order < 0)
81819f0f
CL
4157 return 0;
4158
b7a49f0d 4159 s->allocflags = 0;
834f3d11 4160 if (order)
b7a49f0d
CL
4161 s->allocflags |= __GFP_COMP;
4162
4163 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4164 s->allocflags |= GFP_DMA;
b7a49f0d 4165
6d6ea1e9
NB
4166 if (s->flags & SLAB_CACHE_DMA32)
4167 s->allocflags |= GFP_DMA32;
4168
b7a49f0d
CL
4169 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4170 s->allocflags |= __GFP_RECLAIMABLE;
4171
81819f0f
CL
4172 /*
4173 * Determine the number of objects per slab
4174 */
9736d2a9
MW
4175 s->oo = oo_make(order, size);
4176 s->min = oo_make(get_order(size), size);
81819f0f 4177
834f3d11 4178 return !!oo_objects(s->oo);
81819f0f
CL
4179}
4180
d50112ed 4181static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4182{
37540008 4183 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4184#ifdef CONFIG_SLAB_FREELIST_HARDENED
4185 s->random = get_random_long();
4186#endif
81819f0f 4187
ae44d81d 4188 if (!calculate_sizes(s))
81819f0f 4189 goto error;
3de47213
DR
4190 if (disable_higher_order_debug) {
4191 /*
4192 * Disable debugging flags that store metadata if the min slab
4193 * order increased.
4194 */
3b0efdfa 4195 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4196 s->flags &= ~DEBUG_METADATA_FLAGS;
4197 s->offset = 0;
ae44d81d 4198 if (!calculate_sizes(s))
3de47213
DR
4199 goto error;
4200 }
4201 }
81819f0f 4202
2565409f
HC
4203#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4204 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4205 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4206 /* Enable fast mode */
4207 s->flags |= __CMPXCHG_DOUBLE;
4208#endif
4209
3b89d7d8 4210 /*
c2092c12 4211 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4212 * list to avoid pounding the page allocator excessively.
4213 */
5182f3c9
HY
4214 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4215 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4216
e6d0e1dc 4217 set_cpu_partial(s);
49e22585 4218
81819f0f 4219#ifdef CONFIG_NUMA
e2cb96b7 4220 s->remote_node_defrag_ratio = 1000;
81819f0f 4221#endif
210e7a43
TG
4222
4223 /* Initialize the pre-computed randomized freelist if slab is up */
4224 if (slab_state >= UP) {
4225 if (init_cache_random_seq(s))
4226 goto error;
4227 }
4228
55136592 4229 if (!init_kmem_cache_nodes(s))
dfb4f096 4230 goto error;
81819f0f 4231
55136592 4232 if (alloc_kmem_cache_cpus(s))
278b1bb1 4233 return 0;
ff12059e 4234
81819f0f 4235error:
9037c576 4236 __kmem_cache_release(s);
278b1bb1 4237 return -EINVAL;
81819f0f 4238}
81819f0f 4239
bb192ed9 4240static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4241 const char *text)
33b12c38
CL
4242{
4243#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4244 void *addr = slab_address(slab);
a2b4ae8b 4245 unsigned long flags;
55860d96 4246 unsigned long *map;
33b12c38 4247 void *p;
aa456c7a 4248
bb192ed9
VB
4249 slab_err(s, slab, text, s->name);
4250 slab_lock(slab, &flags);
33b12c38 4251
bb192ed9
VB
4252 map = get_map(s, slab);
4253 for_each_object(p, s, addr, slab->objects) {
33b12c38 4254
4138fdfc 4255 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4256 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4257 print_tracking(s, p);
4258 }
4259 }
55860d96 4260 put_map(map);
bb192ed9 4261 slab_unlock(slab, &flags);
33b12c38
CL
4262#endif
4263}
4264
81819f0f 4265/*
599870b1 4266 * Attempt to free all partial slabs on a node.
52b4b950
DS
4267 * This is called from __kmem_cache_shutdown(). We must take list_lock
4268 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4269 */
599870b1 4270static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4271{
60398923 4272 LIST_HEAD(discard);
bb192ed9 4273 struct slab *slab, *h;
81819f0f 4274
52b4b950
DS
4275 BUG_ON(irqs_disabled());
4276 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4277 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4278 if (!slab->inuse) {
4279 remove_partial(n, slab);
4280 list_add(&slab->slab_list, &discard);
33b12c38 4281 } else {
bb192ed9 4282 list_slab_objects(s, slab,
55860d96 4283 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4284 }
33b12c38 4285 }
52b4b950 4286 spin_unlock_irq(&n->list_lock);
60398923 4287
bb192ed9
VB
4288 list_for_each_entry_safe(slab, h, &discard, slab_list)
4289 discard_slab(s, slab);
81819f0f
CL
4290}
4291
f9e13c0a
SB
4292bool __kmem_cache_empty(struct kmem_cache *s)
4293{
4294 int node;
4295 struct kmem_cache_node *n;
4296
4297 for_each_kmem_cache_node(s, node, n)
4298 if (n->nr_partial || slabs_node(s, node))
4299 return false;
4300 return true;
4301}
4302
81819f0f 4303/*
672bba3a 4304 * Release all resources used by a slab cache.
81819f0f 4305 */
52b4b950 4306int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4307{
4308 int node;
fa45dc25 4309 struct kmem_cache_node *n;
81819f0f 4310
5a836bf6 4311 flush_all_cpus_locked(s);
81819f0f 4312 /* Attempt to free all objects */
fa45dc25 4313 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4314 free_partial(s, n);
4315 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4316 return 1;
4317 }
81819f0f
CL
4318 return 0;
4319}
4320
5bb1bb35 4321#ifdef CONFIG_PRINTK
2dfe63e6 4322void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4323{
4324 void *base;
4325 int __maybe_unused i;
4326 unsigned int objnr;
4327 void *objp;
4328 void *objp0;
7213230a 4329 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4330 struct track __maybe_unused *trackp;
4331
4332 kpp->kp_ptr = object;
7213230a 4333 kpp->kp_slab = slab;
8e7f37f2 4334 kpp->kp_slab_cache = s;
7213230a 4335 base = slab_address(slab);
8e7f37f2
PM
4336 objp0 = kasan_reset_tag(object);
4337#ifdef CONFIG_SLUB_DEBUG
4338 objp = restore_red_left(s, objp0);
4339#else
4340 objp = objp0;
4341#endif
40f3bf0c 4342 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4343 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4344 objp = base + s->size * objnr;
4345 kpp->kp_objp = objp;
7213230a
MWO
4346 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4347 || (objp - base) % s->size) ||
8e7f37f2
PM
4348 !(s->flags & SLAB_STORE_USER))
4349 return;
4350#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4351 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4352 trackp = get_track(s, objp, TRACK_ALLOC);
4353 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4354#ifdef CONFIG_STACKDEPOT
4355 {
4356 depot_stack_handle_t handle;
4357 unsigned long *entries;
4358 unsigned int nr_entries;
78869146 4359
5cf909c5
OG
4360 handle = READ_ONCE(trackp->handle);
4361 if (handle) {
4362 nr_entries = stack_depot_fetch(handle, &entries);
4363 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4364 kpp->kp_stack[i] = (void *)entries[i];
4365 }
78869146 4366
5cf909c5
OG
4367 trackp = get_track(s, objp, TRACK_FREE);
4368 handle = READ_ONCE(trackp->handle);
4369 if (handle) {
4370 nr_entries = stack_depot_fetch(handle, &entries);
4371 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4372 kpp->kp_free_stack[i] = (void *)entries[i];
4373 }
e548eaa1 4374 }
8e7f37f2
PM
4375#endif
4376#endif
4377}
5bb1bb35 4378#endif
8e7f37f2 4379
81819f0f
CL
4380/********************************************************************
4381 * Kmalloc subsystem
4382 *******************************************************************/
4383
81819f0f
CL
4384static int __init setup_slub_min_order(char *str)
4385{
19af27af 4386 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4387
4388 return 1;
4389}
4390
4391__setup("slub_min_order=", setup_slub_min_order);
4392
4393static int __init setup_slub_max_order(char *str)
4394{
19af27af
AD
4395 get_option(&str, (int *)&slub_max_order);
4396 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4397
4398 return 1;
4399}
4400
4401__setup("slub_max_order=", setup_slub_max_order);
4402
4403static int __init setup_slub_min_objects(char *str)
4404{
19af27af 4405 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4406
4407 return 1;
4408}
4409
4410__setup("slub_min_objects=", setup_slub_min_objects);
4411
81819f0f
CL
4412void *__kmalloc(size_t size, gfp_t flags)
4413{
aadb4bc4 4414 struct kmem_cache *s;
5b882be4 4415 void *ret;
81819f0f 4416
95a05b42 4417 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4418 return kmalloc_large(size, flags);
aadb4bc4 4419
2c59dd65 4420 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4421
4422 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4423 return s;
4424
88f2ef73 4425 ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
5b882be4 4426
b347aa7b 4427 trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags);
5b882be4 4428
0116523c 4429 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4430
5b882be4 4431 return ret;
81819f0f
CL
4432}
4433EXPORT_SYMBOL(__kmalloc);
4434
5d1f57e4 4435#ifdef CONFIG_NUMA
f619cfe1
CL
4436static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4437{
b1eeab67 4438 struct page *page;
e4f7c0b4 4439 void *ptr = NULL;
6a486c0a 4440 unsigned int order = get_order(size);
f619cfe1 4441
75f296d9 4442 flags |= __GFP_COMP;
6a486c0a
VB
4443 page = alloc_pages_node(node, flags, order);
4444 if (page) {
e4f7c0b4 4445 ptr = page_address(page);
96403bfe
MS
4446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4447 PAGE_SIZE << order);
6a486c0a 4448 }
e4f7c0b4 4449
0116523c 4450 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4451}
4452
81819f0f
CL
4453void *__kmalloc_node(size_t size, gfp_t flags, int node)
4454{
aadb4bc4 4455 struct kmem_cache *s;
5b882be4 4456 void *ret;
81819f0f 4457
95a05b42 4458 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4459 ret = kmalloc_large_node(size, flags, node);
4460
b347aa7b 4461 trace_kmalloc_node(_RET_IP_, ret, NULL,
ca2b84cb
EGM
4462 size, PAGE_SIZE << get_order(size),
4463 flags, node);
5b882be4
EGM
4464
4465 return ret;
4466 }
aadb4bc4 4467
2c59dd65 4468 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4469
4470 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4471 return s;
4472
88f2ef73 4473 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
5b882be4 4474
b347aa7b 4475 trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node);
5b882be4 4476
0116523c 4477 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4478
5b882be4 4479 return ret;
81819f0f
CL
4480}
4481EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4482#endif /* CONFIG_NUMA */
81819f0f 4483
ed18adc1
KC
4484#ifdef CONFIG_HARDENED_USERCOPY
4485/*
afcc90f8
KC
4486 * Rejects incorrectly sized objects and objects that are to be copied
4487 * to/from userspace but do not fall entirely within the containing slab
4488 * cache's usercopy region.
ed18adc1
KC
4489 *
4490 * Returns NULL if check passes, otherwise const char * to name of cache
4491 * to indicate an error.
4492 */
0b3eb091
MWO
4493void __check_heap_object(const void *ptr, unsigned long n,
4494 const struct slab *slab, bool to_user)
ed18adc1
KC
4495{
4496 struct kmem_cache *s;
44065b2e 4497 unsigned int offset;
b89fb5ef 4498 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4499
96fedce2
AK
4500 ptr = kasan_reset_tag(ptr);
4501
ed18adc1 4502 /* Find object and usable object size. */
0b3eb091 4503 s = slab->slab_cache;
ed18adc1
KC
4504
4505 /* Reject impossible pointers. */
0b3eb091 4506 if (ptr < slab_address(slab))
f4e6e289
KC
4507 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4508 to_user, 0, n);
ed18adc1
KC
4509
4510 /* Find offset within object. */
b89fb5ef
AP
4511 if (is_kfence)
4512 offset = ptr - kfence_object_start(ptr);
4513 else
0b3eb091 4514 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4515
4516 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4517 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4518 if (offset < s->red_left_pad)
f4e6e289
KC
4519 usercopy_abort("SLUB object in left red zone",
4520 s->name, to_user, offset, n);
ed18adc1
KC
4521 offset -= s->red_left_pad;
4522 }
4523
afcc90f8
KC
4524 /* Allow address range falling entirely within usercopy region. */
4525 if (offset >= s->useroffset &&
4526 offset - s->useroffset <= s->usersize &&
4527 n <= s->useroffset - offset + s->usersize)
f4e6e289 4528 return;
ed18adc1 4529
f4e6e289 4530 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4531}
4532#endif /* CONFIG_HARDENED_USERCOPY */
4533
10d1f8cb 4534size_t __ksize(const void *object)
81819f0f 4535{
0c24811b 4536 struct folio *folio;
81819f0f 4537
ef8b4520 4538 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4539 return 0;
4540
0c24811b 4541 folio = virt_to_folio(object);
294a80a8 4542
0c24811b
MWO
4543 if (unlikely(!folio_test_slab(folio)))
4544 return folio_size(folio);
81819f0f 4545
0c24811b 4546 return slab_ksize(folio_slab(folio)->slab_cache);
81819f0f 4547}
10d1f8cb 4548EXPORT_SYMBOL(__ksize);
81819f0f
CL
4549
4550void kfree(const void *x)
4551{
d835eef4
MWO
4552 struct folio *folio;
4553 struct slab *slab;
5bb983b0 4554 void *object = (void *)x;
81819f0f 4555
2121db74
PE
4556 trace_kfree(_RET_IP_, x);
4557
2408c550 4558 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4559 return;
4560
d835eef4
MWO
4561 folio = virt_to_folio(x);
4562 if (unlikely(!folio_test_slab(folio))) {
4563 free_large_kmalloc(folio, object);
aadb4bc4
CL
4564 return;
4565 }
d835eef4 4566 slab = folio_slab(folio);
b77d5b1b 4567 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
81819f0f
CL
4568}
4569EXPORT_SYMBOL(kfree);
4570
832f37f5
VD
4571#define SHRINK_PROMOTE_MAX 32
4572
2086d26a 4573/*
832f37f5
VD
4574 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4575 * up most to the head of the partial lists. New allocations will then
4576 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4577 *
4578 * The slabs with the least items are placed last. This results in them
4579 * being allocated from last increasing the chance that the last objects
4580 * are freed in them.
2086d26a 4581 */
5a836bf6 4582static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4583{
4584 int node;
4585 int i;
4586 struct kmem_cache_node *n;
bb192ed9
VB
4587 struct slab *slab;
4588 struct slab *t;
832f37f5
VD
4589 struct list_head discard;
4590 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4591 unsigned long flags;
ce3712d7 4592 int ret = 0;
2086d26a 4593
fa45dc25 4594 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4595 INIT_LIST_HEAD(&discard);
4596 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4597 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4598
4599 spin_lock_irqsave(&n->list_lock, flags);
4600
4601 /*
832f37f5 4602 * Build lists of slabs to discard or promote.
2086d26a 4603 *
672bba3a 4604 * Note that concurrent frees may occur while we hold the
c2092c12 4605 * list_lock. slab->inuse here is the upper limit.
2086d26a 4606 */
bb192ed9
VB
4607 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4608 int free = slab->objects - slab->inuse;
832f37f5 4609
c2092c12 4610 /* Do not reread slab->inuse */
832f37f5
VD
4611 barrier();
4612
4613 /* We do not keep full slabs on the list */
4614 BUG_ON(free <= 0);
4615
bb192ed9
VB
4616 if (free == slab->objects) {
4617 list_move(&slab->slab_list, &discard);
69cb8e6b 4618 n->nr_partial--;
832f37f5 4619 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4620 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4621 }
4622
2086d26a 4623 /*
832f37f5
VD
4624 * Promote the slabs filled up most to the head of the
4625 * partial list.
2086d26a 4626 */
832f37f5
VD
4627 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4628 list_splice(promote + i, &n->partial);
2086d26a 4629
2086d26a 4630 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4631
4632 /* Release empty slabs */
bb192ed9
VB
4633 list_for_each_entry_safe(slab, t, &discard, slab_list)
4634 discard_slab(s, slab);
ce3712d7
VD
4635
4636 if (slabs_node(s, node))
4637 ret = 1;
2086d26a
CL
4638 }
4639
ce3712d7 4640 return ret;
2086d26a 4641}
2086d26a 4642
5a836bf6
SAS
4643int __kmem_cache_shrink(struct kmem_cache *s)
4644{
4645 flush_all(s);
4646 return __kmem_cache_do_shrink(s);
4647}
4648
b9049e23
YG
4649static int slab_mem_going_offline_callback(void *arg)
4650{
4651 struct kmem_cache *s;
4652
18004c5d 4653 mutex_lock(&slab_mutex);
5a836bf6
SAS
4654 list_for_each_entry(s, &slab_caches, list) {
4655 flush_all_cpus_locked(s);
4656 __kmem_cache_do_shrink(s);
4657 }
18004c5d 4658 mutex_unlock(&slab_mutex);
b9049e23
YG
4659
4660 return 0;
4661}
4662
4663static void slab_mem_offline_callback(void *arg)
4664{
b9049e23
YG
4665 struct memory_notify *marg = arg;
4666 int offline_node;
4667
b9d5ab25 4668 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4669
4670 /*
4671 * If the node still has available memory. we need kmem_cache_node
4672 * for it yet.
4673 */
4674 if (offline_node < 0)
4675 return;
4676
18004c5d 4677 mutex_lock(&slab_mutex);
7e1fa93d 4678 node_clear(offline_node, slab_nodes);
666716fd
VB
4679 /*
4680 * We no longer free kmem_cache_node structures here, as it would be
4681 * racy with all get_node() users, and infeasible to protect them with
4682 * slab_mutex.
4683 */
18004c5d 4684 mutex_unlock(&slab_mutex);
b9049e23
YG
4685}
4686
4687static int slab_mem_going_online_callback(void *arg)
4688{
4689 struct kmem_cache_node *n;
4690 struct kmem_cache *s;
4691 struct memory_notify *marg = arg;
b9d5ab25 4692 int nid = marg->status_change_nid_normal;
b9049e23
YG
4693 int ret = 0;
4694
4695 /*
4696 * If the node's memory is already available, then kmem_cache_node is
4697 * already created. Nothing to do.
4698 */
4699 if (nid < 0)
4700 return 0;
4701
4702 /*
0121c619 4703 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4704 * allocate a kmem_cache_node structure in order to bring the node
4705 * online.
4706 */
18004c5d 4707 mutex_lock(&slab_mutex);
b9049e23 4708 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4709 /*
4710 * The structure may already exist if the node was previously
4711 * onlined and offlined.
4712 */
4713 if (get_node(s, nid))
4714 continue;
b9049e23
YG
4715 /*
4716 * XXX: kmem_cache_alloc_node will fallback to other nodes
4717 * since memory is not yet available from the node that
4718 * is brought up.
4719 */
8de66a0c 4720 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4721 if (!n) {
4722 ret = -ENOMEM;
4723 goto out;
4724 }
4053497d 4725 init_kmem_cache_node(n);
b9049e23
YG
4726 s->node[nid] = n;
4727 }
7e1fa93d
VB
4728 /*
4729 * Any cache created after this point will also have kmem_cache_node
4730 * initialized for the new node.
4731 */
4732 node_set(nid, slab_nodes);
b9049e23 4733out:
18004c5d 4734 mutex_unlock(&slab_mutex);
b9049e23
YG
4735 return ret;
4736}
4737
4738static int slab_memory_callback(struct notifier_block *self,
4739 unsigned long action, void *arg)
4740{
4741 int ret = 0;
4742
4743 switch (action) {
4744 case MEM_GOING_ONLINE:
4745 ret = slab_mem_going_online_callback(arg);
4746 break;
4747 case MEM_GOING_OFFLINE:
4748 ret = slab_mem_going_offline_callback(arg);
4749 break;
4750 case MEM_OFFLINE:
4751 case MEM_CANCEL_ONLINE:
4752 slab_mem_offline_callback(arg);
4753 break;
4754 case MEM_ONLINE:
4755 case MEM_CANCEL_OFFLINE:
4756 break;
4757 }
dc19f9db
KH
4758 if (ret)
4759 ret = notifier_from_errno(ret);
4760 else
4761 ret = NOTIFY_OK;
b9049e23
YG
4762 return ret;
4763}
4764
3ac38faa
AM
4765static struct notifier_block slab_memory_callback_nb = {
4766 .notifier_call = slab_memory_callback,
4767 .priority = SLAB_CALLBACK_PRI,
4768};
b9049e23 4769
81819f0f
CL
4770/********************************************************************
4771 * Basic setup of slabs
4772 *******************************************************************/
4773
51df1142
CL
4774/*
4775 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4776 * the page allocator. Allocate them properly then fix up the pointers
4777 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4778 */
4779
dffb4d60 4780static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4781{
4782 int node;
dffb4d60 4783 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4784 struct kmem_cache_node *n;
51df1142 4785
dffb4d60 4786 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4787
7d557b3c
GC
4788 /*
4789 * This runs very early, and only the boot processor is supposed to be
4790 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4791 * IPIs around.
4792 */
4793 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4794 for_each_kmem_cache_node(s, node, n) {
bb192ed9 4795 struct slab *p;
51df1142 4796
916ac052 4797 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4798 p->slab_cache = s;
51df1142 4799
607bf324 4800#ifdef CONFIG_SLUB_DEBUG
916ac052 4801 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4802 p->slab_cache = s;
51df1142 4803#endif
51df1142 4804 }
dffb4d60
CL
4805 list_add(&s->list, &slab_caches);
4806 return s;
51df1142
CL
4807}
4808
81819f0f
CL
4809void __init kmem_cache_init(void)
4810{
dffb4d60
CL
4811 static __initdata struct kmem_cache boot_kmem_cache,
4812 boot_kmem_cache_node;
7e1fa93d 4813 int node;
51df1142 4814
fc8d8620
SG
4815 if (debug_guardpage_minorder())
4816 slub_max_order = 0;
4817
79270291
SB
4818 /* Print slub debugging pointers without hashing */
4819 if (__slub_debug_enabled())
4820 no_hash_pointers_enable(NULL);
4821
dffb4d60
CL
4822 kmem_cache_node = &boot_kmem_cache_node;
4823 kmem_cache = &boot_kmem_cache;
51df1142 4824
7e1fa93d
VB
4825 /*
4826 * Initialize the nodemask for which we will allocate per node
4827 * structures. Here we don't need taking slab_mutex yet.
4828 */
4829 for_each_node_state(node, N_NORMAL_MEMORY)
4830 node_set(node, slab_nodes);
4831
dffb4d60 4832 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4833 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4834
3ac38faa 4835 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4836
4837 /* Able to allocate the per node structures */
4838 slab_state = PARTIAL;
4839
dffb4d60
CL
4840 create_boot_cache(kmem_cache, "kmem_cache",
4841 offsetof(struct kmem_cache, node) +
4842 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4843 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4844
dffb4d60 4845 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4846 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4847
4848 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4849 setup_kmalloc_cache_index_table();
f97d5f63 4850 create_kmalloc_caches(0);
81819f0f 4851
210e7a43
TG
4852 /* Setup random freelists for each cache */
4853 init_freelist_randomization();
4854
a96a87bf
SAS
4855 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4856 slub_cpu_dead);
81819f0f 4857
b9726c26 4858 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4859 cache_line_size(),
81819f0f
CL
4860 slub_min_order, slub_max_order, slub_min_objects,
4861 nr_cpu_ids, nr_node_ids);
4862}
4863
7e85ee0c
PE
4864void __init kmem_cache_init_late(void)
4865{
e45cc288
ML
4866 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4867 WARN_ON(!flushwq);
7e85ee0c
PE
4868}
4869
2633d7a0 4870struct kmem_cache *
f4957d5b 4871__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4872 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4873{
10befea9 4874 struct kmem_cache *s;
81819f0f 4875
a44cb944 4876 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 4877 if (s) {
efb93527
XS
4878 if (sysfs_slab_alias(s, name))
4879 return NULL;
4880
81819f0f 4881 s->refcount++;
84d0ddd6 4882
81819f0f
CL
4883 /*
4884 * Adjust the object sizes so that we clear
4885 * the complete object on kzalloc.
4886 */
1b473f29 4887 s->object_size = max(s->object_size, size);
52ee6d74 4888 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 4889 }
6446faa2 4890
cbb79694
CL
4891 return s;
4892}
84c1cf62 4893
d50112ed 4894int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4895{
aac3a166
PE
4896 int err;
4897
4898 err = kmem_cache_open(s, flags);
4899 if (err)
4900 return err;
20cea968 4901
45530c44
CL
4902 /* Mutex is not taken during early boot */
4903 if (slab_state <= UP)
4904 return 0;
4905
aac3a166 4906 err = sysfs_slab_add(s);
67823a54 4907 if (err) {
52b4b950 4908 __kmem_cache_release(s);
67823a54
ML
4909 return err;
4910 }
20cea968 4911
64dd6849
FM
4912 if (s->flags & SLAB_STORE_USER)
4913 debugfs_slab_add(s);
4914
67823a54 4915 return 0;
81819f0f 4916}
81819f0f 4917
ce71e27c 4918void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4919{
aadb4bc4 4920 struct kmem_cache *s;
94b528d0 4921 void *ret;
aadb4bc4 4922
95a05b42 4923 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4924 return kmalloc_large(size, gfpflags);
4925
2c59dd65 4926 s = kmalloc_slab(size, gfpflags);
81819f0f 4927
2408c550 4928 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4929 return s;
81819f0f 4930
88f2ef73 4931 ret = slab_alloc(s, NULL, gfpflags, caller, size);
94b528d0 4932
25985edc 4933 /* Honor the call site pointer we received. */
b347aa7b 4934 trace_kmalloc(caller, ret, s, size, s->size, gfpflags);
94b528d0 4935
5373b8a0
PC
4936 ret = kasan_kmalloc(s, ret, size, gfpflags);
4937
94b528d0 4938 return ret;
81819f0f 4939}
fd7cb575 4940EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4941
5d1f57e4 4942#ifdef CONFIG_NUMA
81819f0f 4943void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4944 int node, unsigned long caller)
81819f0f 4945{
aadb4bc4 4946 struct kmem_cache *s;
94b528d0 4947 void *ret;
aadb4bc4 4948
95a05b42 4949 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4950 ret = kmalloc_large_node(size, gfpflags, node);
4951
b347aa7b 4952 trace_kmalloc_node(caller, ret, NULL,
d3e14aa3
XF
4953 size, PAGE_SIZE << get_order(size),
4954 gfpflags, node);
4955
4956 return ret;
4957 }
eada35ef 4958
2c59dd65 4959 s = kmalloc_slab(size, gfpflags);
81819f0f 4960
2408c550 4961 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4962 return s;
81819f0f 4963
88f2ef73 4964 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
94b528d0 4965
25985edc 4966 /* Honor the call site pointer we received. */
b347aa7b 4967 trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node);
94b528d0 4968
5373b8a0
PC
4969 ret = kasan_kmalloc(s, ret, size, gfpflags);
4970
94b528d0 4971 return ret;
81819f0f 4972}
fd7cb575 4973EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4974#endif
81819f0f 4975
ab4d5ed5 4976#ifdef CONFIG_SYSFS
bb192ed9 4977static int count_inuse(struct slab *slab)
205ab99d 4978{
bb192ed9 4979 return slab->inuse;
205ab99d
CL
4980}
4981
bb192ed9 4982static int count_total(struct slab *slab)
205ab99d 4983{
bb192ed9 4984 return slab->objects;
205ab99d 4985}
ab4d5ed5 4986#endif
205ab99d 4987
ab4d5ed5 4988#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4989static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 4990 unsigned long *obj_map)
53e15af0
CL
4991{
4992 void *p;
bb192ed9 4993 void *addr = slab_address(slab);
a2b4ae8b 4994 unsigned long flags;
90e9f6a6 4995
bb192ed9 4996 slab_lock(slab, &flags);
53e15af0 4997
bb192ed9 4998 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
90e9f6a6 4999 goto unlock;
53e15af0
CL
5000
5001 /* Now we know that a valid freelist exists */
bb192ed9
VB
5002 __fill_map(obj_map, s, slab);
5003 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5004 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5005 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5006
bb192ed9 5007 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5008 break;
5009 }
90e9f6a6 5010unlock:
bb192ed9 5011 slab_unlock(slab, &flags);
53e15af0
CL
5012}
5013
434e245d 5014static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5015 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5016{
5017 unsigned long count = 0;
bb192ed9 5018 struct slab *slab;
53e15af0
CL
5019 unsigned long flags;
5020
5021 spin_lock_irqsave(&n->list_lock, flags);
5022
bb192ed9
VB
5023 list_for_each_entry(slab, &n->partial, slab_list) {
5024 validate_slab(s, slab, obj_map);
53e15af0
CL
5025 count++;
5026 }
1f9f78b1 5027 if (count != n->nr_partial) {
f9f58285
FF
5028 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5029 s->name, count, n->nr_partial);
1f9f78b1
OG
5030 slab_add_kunit_errors();
5031 }
53e15af0
CL
5032
5033 if (!(s->flags & SLAB_STORE_USER))
5034 goto out;
5035
bb192ed9
VB
5036 list_for_each_entry(slab, &n->full, slab_list) {
5037 validate_slab(s, slab, obj_map);
53e15af0
CL
5038 count++;
5039 }
1f9f78b1 5040 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
5041 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5042 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
5043 slab_add_kunit_errors();
5044 }
53e15af0
CL
5045
5046out:
5047 spin_unlock_irqrestore(&n->list_lock, flags);
5048 return count;
5049}
5050
1f9f78b1 5051long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5052{
5053 int node;
5054 unsigned long count = 0;
fa45dc25 5055 struct kmem_cache_node *n;
0a19e7dd
VB
5056 unsigned long *obj_map;
5057
5058 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5059 if (!obj_map)
5060 return -ENOMEM;
53e15af0
CL
5061
5062 flush_all(s);
fa45dc25 5063 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5064 count += validate_slab_node(s, n, obj_map);
5065
5066 bitmap_free(obj_map);
90e9f6a6 5067
53e15af0
CL
5068 return count;
5069}
1f9f78b1
OG
5070EXPORT_SYMBOL(validate_slab_cache);
5071
64dd6849 5072#ifdef CONFIG_DEBUG_FS
88a420e4 5073/*
672bba3a 5074 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5075 * and freed.
5076 */
5077
5078struct location {
8ea9fb92 5079 depot_stack_handle_t handle;
88a420e4 5080 unsigned long count;
ce71e27c 5081 unsigned long addr;
45edfa58
CL
5082 long long sum_time;
5083 long min_time;
5084 long max_time;
5085 long min_pid;
5086 long max_pid;
174596a0 5087 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5088 nodemask_t nodes;
88a420e4
CL
5089};
5090
5091struct loc_track {
5092 unsigned long max;
5093 unsigned long count;
5094 struct location *loc;
005a79e5 5095 loff_t idx;
88a420e4
CL
5096};
5097
64dd6849
FM
5098static struct dentry *slab_debugfs_root;
5099
88a420e4
CL
5100static void free_loc_track(struct loc_track *t)
5101{
5102 if (t->max)
5103 free_pages((unsigned long)t->loc,
5104 get_order(sizeof(struct location) * t->max));
5105}
5106
68dff6a9 5107static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5108{
5109 struct location *l;
5110 int order;
5111
88a420e4
CL
5112 order = get_order(sizeof(struct location) * max);
5113
68dff6a9 5114 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5115 if (!l)
5116 return 0;
5117
5118 if (t->count) {
5119 memcpy(l, t->loc, sizeof(struct location) * t->count);
5120 free_loc_track(t);
5121 }
5122 t->max = max;
5123 t->loc = l;
5124 return 1;
5125}
5126
5127static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 5128 const struct track *track)
88a420e4
CL
5129{
5130 long start, end, pos;
5131 struct location *l;
8ea9fb92 5132 unsigned long caddr, chandle;
45edfa58 5133 unsigned long age = jiffies - track->when;
8ea9fb92 5134 depot_stack_handle_t handle = 0;
88a420e4 5135
8ea9fb92
OG
5136#ifdef CONFIG_STACKDEPOT
5137 handle = READ_ONCE(track->handle);
5138#endif
88a420e4
CL
5139 start = -1;
5140 end = t->count;
5141
5142 for ( ; ; ) {
5143 pos = start + (end - start + 1) / 2;
5144
5145 /*
5146 * There is nothing at "end". If we end up there
5147 * we need to add something to before end.
5148 */
5149 if (pos == end)
5150 break;
5151
5152 caddr = t->loc[pos].addr;
8ea9fb92
OG
5153 chandle = t->loc[pos].handle;
5154 if ((track->addr == caddr) && (handle == chandle)) {
45edfa58
CL
5155
5156 l = &t->loc[pos];
5157 l->count++;
5158 if (track->when) {
5159 l->sum_time += age;
5160 if (age < l->min_time)
5161 l->min_time = age;
5162 if (age > l->max_time)
5163 l->max_time = age;
5164
5165 if (track->pid < l->min_pid)
5166 l->min_pid = track->pid;
5167 if (track->pid > l->max_pid)
5168 l->max_pid = track->pid;
5169
174596a0
RR
5170 cpumask_set_cpu(track->cpu,
5171 to_cpumask(l->cpus));
45edfa58
CL
5172 }
5173 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5174 return 1;
5175 }
5176
45edfa58 5177 if (track->addr < caddr)
88a420e4 5178 end = pos;
8ea9fb92
OG
5179 else if (track->addr == caddr && handle < chandle)
5180 end = pos;
88a420e4
CL
5181 else
5182 start = pos;
5183 }
5184
5185 /*
672bba3a 5186 * Not found. Insert new tracking element.
88a420e4 5187 */
68dff6a9 5188 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5189 return 0;
5190
5191 l = t->loc + pos;
5192 if (pos < t->count)
5193 memmove(l + 1, l,
5194 (t->count - pos) * sizeof(struct location));
5195 t->count++;
5196 l->count = 1;
45edfa58
CL
5197 l->addr = track->addr;
5198 l->sum_time = age;
5199 l->min_time = age;
5200 l->max_time = age;
5201 l->min_pid = track->pid;
5202 l->max_pid = track->pid;
8ea9fb92 5203 l->handle = handle;
174596a0
RR
5204 cpumask_clear(to_cpumask(l->cpus));
5205 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5206 nodes_clear(l->nodes);
5207 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5208 return 1;
5209}
5210
5211static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5212 struct slab *slab, enum track_item alloc,
b3fd64e1 5213 unsigned long *obj_map)
88a420e4 5214{
bb192ed9 5215 void *addr = slab_address(slab);
88a420e4
CL
5216 void *p;
5217
bb192ed9 5218 __fill_map(obj_map, s, slab);
b3fd64e1 5219
bb192ed9 5220 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5221 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5222 add_location(t, s, get_track(s, p, alloc));
88a420e4 5223}
64dd6849 5224#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5225#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5226
ab4d5ed5 5227#ifdef CONFIG_SYSFS
81819f0f 5228enum slab_stat_type {
205ab99d
CL
5229 SL_ALL, /* All slabs */
5230 SL_PARTIAL, /* Only partially allocated slabs */
5231 SL_CPU, /* Only slabs used for cpu caches */
5232 SL_OBJECTS, /* Determine allocated objects not slabs */
5233 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5234};
5235
205ab99d 5236#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5237#define SO_PARTIAL (1 << SL_PARTIAL)
5238#define SO_CPU (1 << SL_CPU)
5239#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5240#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5241
62e5c4b4 5242static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5243 char *buf, unsigned long flags)
81819f0f
CL
5244{
5245 unsigned long total = 0;
81819f0f
CL
5246 int node;
5247 int x;
5248 unsigned long *nodes;
bf16d19a 5249 int len = 0;
81819f0f 5250
6396bb22 5251 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5252 if (!nodes)
5253 return -ENOMEM;
81819f0f 5254
205ab99d
CL
5255 if (flags & SO_CPU) {
5256 int cpu;
81819f0f 5257
205ab99d 5258 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5259 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5260 cpu);
ec3ab083 5261 int node;
bb192ed9 5262 struct slab *slab;
dfb4f096 5263
bb192ed9
VB
5264 slab = READ_ONCE(c->slab);
5265 if (!slab)
ec3ab083 5266 continue;
205ab99d 5267
bb192ed9 5268 node = slab_nid(slab);
ec3ab083 5269 if (flags & SO_TOTAL)
bb192ed9 5270 x = slab->objects;
ec3ab083 5271 else if (flags & SO_OBJECTS)
bb192ed9 5272 x = slab->inuse;
ec3ab083
CL
5273 else
5274 x = 1;
49e22585 5275
ec3ab083
CL
5276 total += x;
5277 nodes[node] += x;
5278
9c01e9af 5279#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5280 slab = slub_percpu_partial_read_once(c);
5281 if (slab) {
5282 node = slab_nid(slab);
8afb1474
LZ
5283 if (flags & SO_TOTAL)
5284 WARN_ON_ONCE(1);
5285 else if (flags & SO_OBJECTS)
5286 WARN_ON_ONCE(1);
5287 else
bb192ed9 5288 x = slab->slabs;
bc6697d8
ED
5289 total += x;
5290 nodes[node] += x;
49e22585 5291 }
9c01e9af 5292#endif
81819f0f
CL
5293 }
5294 }
5295
e4f8e513
QC
5296 /*
5297 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5298 * already held which will conflict with an existing lock order:
5299 *
5300 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5301 *
5302 * We don't really need mem_hotplug_lock (to hold off
5303 * slab_mem_going_offline_callback) here because slab's memory hot
5304 * unplug code doesn't destroy the kmem_cache->node[] data.
5305 */
5306
ab4d5ed5 5307#ifdef CONFIG_SLUB_DEBUG
205ab99d 5308 if (flags & SO_ALL) {
fa45dc25
CL
5309 struct kmem_cache_node *n;
5310
5311 for_each_kmem_cache_node(s, node, n) {
205ab99d 5312
d0e0ac97
CG
5313 if (flags & SO_TOTAL)
5314 x = atomic_long_read(&n->total_objects);
5315 else if (flags & SO_OBJECTS)
5316 x = atomic_long_read(&n->total_objects) -
5317 count_partial(n, count_free);
81819f0f 5318 else
205ab99d 5319 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5320 total += x;
5321 nodes[node] += x;
5322 }
5323
ab4d5ed5
CL
5324 } else
5325#endif
5326 if (flags & SO_PARTIAL) {
fa45dc25 5327 struct kmem_cache_node *n;
81819f0f 5328
fa45dc25 5329 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5330 if (flags & SO_TOTAL)
5331 x = count_partial(n, count_total);
5332 else if (flags & SO_OBJECTS)
5333 x = count_partial(n, count_inuse);
81819f0f 5334 else
205ab99d 5335 x = n->nr_partial;
81819f0f
CL
5336 total += x;
5337 nodes[node] += x;
5338 }
5339 }
bf16d19a
JP
5340
5341 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5342#ifdef CONFIG_NUMA
bf16d19a 5343 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5344 if (nodes[node])
bf16d19a
JP
5345 len += sysfs_emit_at(buf, len, " N%d=%lu",
5346 node, nodes[node]);
5347 }
81819f0f 5348#endif
bf16d19a 5349 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5350 kfree(nodes);
bf16d19a
JP
5351
5352 return len;
81819f0f
CL
5353}
5354
81819f0f 5355#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5356#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5357
5358struct slab_attribute {
5359 struct attribute attr;
5360 ssize_t (*show)(struct kmem_cache *s, char *buf);
5361 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5362};
5363
5364#define SLAB_ATTR_RO(_name) \
d1d28bd9 5365 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5366
5367#define SLAB_ATTR(_name) \
d1d28bd9 5368 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5369
81819f0f
CL
5370static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5371{
bf16d19a 5372 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5373}
5374SLAB_ATTR_RO(slab_size);
5375
5376static ssize_t align_show(struct kmem_cache *s, char *buf)
5377{
bf16d19a 5378 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5379}
5380SLAB_ATTR_RO(align);
5381
5382static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5383{
bf16d19a 5384 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5385}
5386SLAB_ATTR_RO(object_size);
5387
5388static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5389{
bf16d19a 5390 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5391}
5392SLAB_ATTR_RO(objs_per_slab);
5393
5394static ssize_t order_show(struct kmem_cache *s, char *buf)
5395{
bf16d19a 5396 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5397}
32a6f409 5398SLAB_ATTR_RO(order);
81819f0f 5399
73d342b1
DR
5400static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5401{
bf16d19a 5402 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5403}
5404
5405static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5406 size_t length)
5407{
5408 unsigned long min;
5409 int err;
5410
3dbb95f7 5411 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5412 if (err)
5413 return err;
5414
5182f3c9 5415 s->min_partial = min;
73d342b1
DR
5416 return length;
5417}
5418SLAB_ATTR(min_partial);
5419
49e22585
CL
5420static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5421{
b47291ef
VB
5422 unsigned int nr_partial = 0;
5423#ifdef CONFIG_SLUB_CPU_PARTIAL
5424 nr_partial = s->cpu_partial;
5425#endif
5426
5427 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5428}
5429
5430static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5431 size_t length)
5432{
e5d9998f 5433 unsigned int objects;
49e22585
CL
5434 int err;
5435
e5d9998f 5436 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5437 if (err)
5438 return err;
345c905d 5439 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5440 return -EINVAL;
49e22585 5441
e6d0e1dc 5442 slub_set_cpu_partial(s, objects);
49e22585
CL
5443 flush_all(s);
5444 return length;
5445}
5446SLAB_ATTR(cpu_partial);
5447
81819f0f
CL
5448static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5449{
62c70bce
JP
5450 if (!s->ctor)
5451 return 0;
bf16d19a 5452 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5453}
5454SLAB_ATTR_RO(ctor);
5455
81819f0f
CL
5456static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5457{
bf16d19a 5458 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5459}
5460SLAB_ATTR_RO(aliases);
5461
81819f0f
CL
5462static ssize_t partial_show(struct kmem_cache *s, char *buf)
5463{
d9acf4b7 5464 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5465}
5466SLAB_ATTR_RO(partial);
5467
5468static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5469{
d9acf4b7 5470 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5471}
5472SLAB_ATTR_RO(cpu_slabs);
5473
5474static ssize_t objects_show(struct kmem_cache *s, char *buf)
5475{
205ab99d 5476 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5477}
5478SLAB_ATTR_RO(objects);
5479
205ab99d
CL
5480static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5481{
5482 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5483}
5484SLAB_ATTR_RO(objects_partial);
5485
49e22585
CL
5486static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5487{
5488 int objects = 0;
bb192ed9 5489 int slabs = 0;
9c01e9af 5490 int cpu __maybe_unused;
bf16d19a 5491 int len = 0;
49e22585 5492
9c01e9af 5493#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5494 for_each_online_cpu(cpu) {
bb192ed9 5495 struct slab *slab;
a93cf07b 5496
bb192ed9 5497 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5498
bb192ed9
VB
5499 if (slab)
5500 slabs += slab->slabs;
49e22585 5501 }
9c01e9af 5502#endif
49e22585 5503
c2092c12 5504 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5505 objects = (slabs * oo_objects(s->oo)) / 2;
5506 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5507
9c01e9af 5508#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
49e22585 5509 for_each_online_cpu(cpu) {
bb192ed9 5510 struct slab *slab;
a93cf07b 5511
bb192ed9
VB
5512 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5513 if (slab) {
5514 slabs = READ_ONCE(slab->slabs);
5515 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5516 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5517 cpu, objects, slabs);
b47291ef 5518 }
49e22585
CL
5519 }
5520#endif
bf16d19a
JP
5521 len += sysfs_emit_at(buf, len, "\n");
5522
5523 return len;
49e22585
CL
5524}
5525SLAB_ATTR_RO(slabs_cpu_partial);
5526
a5a84755
CL
5527static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5528{
bf16d19a 5529 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5530}
8f58119a 5531SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5532
5533static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5534{
bf16d19a 5535 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5536}
5537SLAB_ATTR_RO(hwcache_align);
5538
5539#ifdef CONFIG_ZONE_DMA
5540static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5541{
bf16d19a 5542 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5543}
5544SLAB_ATTR_RO(cache_dma);
5545#endif
5546
8eb8284b
DW
5547static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5548{
bf16d19a 5549 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5550}
5551SLAB_ATTR_RO(usersize);
5552
a5a84755
CL
5553static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5554{
bf16d19a 5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5556}
5557SLAB_ATTR_RO(destroy_by_rcu);
5558
ab4d5ed5 5559#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5560static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5561{
5562 return show_slab_objects(s, buf, SO_ALL);
5563}
5564SLAB_ATTR_RO(slabs);
5565
205ab99d
CL
5566static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5567{
5568 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5569}
5570SLAB_ATTR_RO(total_objects);
5571
81819f0f
CL
5572static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5573{
bf16d19a 5574 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5575}
060807f8 5576SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5577
5578static ssize_t trace_show(struct kmem_cache *s, char *buf)
5579{
bf16d19a 5580 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5581}
060807f8 5582SLAB_ATTR_RO(trace);
81819f0f 5583
81819f0f
CL
5584static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5585{
bf16d19a 5586 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5587}
5588
ad38b5b1 5589SLAB_ATTR_RO(red_zone);
81819f0f
CL
5590
5591static ssize_t poison_show(struct kmem_cache *s, char *buf)
5592{
bf16d19a 5593 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5594}
5595
ad38b5b1 5596SLAB_ATTR_RO(poison);
81819f0f
CL
5597
5598static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5599{
bf16d19a 5600 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5601}
5602
ad38b5b1 5603SLAB_ATTR_RO(store_user);
81819f0f 5604
53e15af0
CL
5605static ssize_t validate_show(struct kmem_cache *s, char *buf)
5606{
5607 return 0;
5608}
5609
5610static ssize_t validate_store(struct kmem_cache *s,
5611 const char *buf, size_t length)
5612{
434e245d
CL
5613 int ret = -EINVAL;
5614
5615 if (buf[0] == '1') {
5616 ret = validate_slab_cache(s);
5617 if (ret >= 0)
5618 ret = length;
5619 }
5620 return ret;
53e15af0
CL
5621}
5622SLAB_ATTR(validate);
a5a84755 5623
a5a84755
CL
5624#endif /* CONFIG_SLUB_DEBUG */
5625
5626#ifdef CONFIG_FAILSLAB
5627static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5628{
bf16d19a 5629 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5630}
060807f8 5631SLAB_ATTR_RO(failslab);
ab4d5ed5 5632#endif
53e15af0 5633
2086d26a
CL
5634static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5635{
5636 return 0;
5637}
5638
5639static ssize_t shrink_store(struct kmem_cache *s,
5640 const char *buf, size_t length)
5641{
832f37f5 5642 if (buf[0] == '1')
10befea9 5643 kmem_cache_shrink(s);
832f37f5 5644 else
2086d26a
CL
5645 return -EINVAL;
5646 return length;
5647}
5648SLAB_ATTR(shrink);
5649
81819f0f 5650#ifdef CONFIG_NUMA
9824601e 5651static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5652{
bf16d19a 5653 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5654}
5655
9824601e 5656static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5657 const char *buf, size_t length)
5658{
eb7235eb 5659 unsigned int ratio;
0121c619
CL
5660 int err;
5661
eb7235eb 5662 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5663 if (err)
5664 return err;
eb7235eb
AD
5665 if (ratio > 100)
5666 return -ERANGE;
0121c619 5667
eb7235eb 5668 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5669
81819f0f
CL
5670 return length;
5671}
9824601e 5672SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5673#endif
5674
8ff12cfc 5675#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5676static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5677{
5678 unsigned long sum = 0;
5679 int cpu;
bf16d19a 5680 int len = 0;
6da2ec56 5681 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5682
5683 if (!data)
5684 return -ENOMEM;
5685
5686 for_each_online_cpu(cpu) {
9dfc6e68 5687 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5688
5689 data[cpu] = x;
5690 sum += x;
5691 }
5692
bf16d19a 5693 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5694
50ef37b9 5695#ifdef CONFIG_SMP
8ff12cfc 5696 for_each_online_cpu(cpu) {
bf16d19a
JP
5697 if (data[cpu])
5698 len += sysfs_emit_at(buf, len, " C%d=%u",
5699 cpu, data[cpu]);
8ff12cfc 5700 }
50ef37b9 5701#endif
8ff12cfc 5702 kfree(data);
bf16d19a
JP
5703 len += sysfs_emit_at(buf, len, "\n");
5704
5705 return len;
8ff12cfc
CL
5706}
5707
78eb00cc
DR
5708static void clear_stat(struct kmem_cache *s, enum stat_item si)
5709{
5710 int cpu;
5711
5712 for_each_online_cpu(cpu)
9dfc6e68 5713 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5714}
5715
8ff12cfc
CL
5716#define STAT_ATTR(si, text) \
5717static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5718{ \
5719 return show_stat(s, buf, si); \
5720} \
78eb00cc
DR
5721static ssize_t text##_store(struct kmem_cache *s, \
5722 const char *buf, size_t length) \
5723{ \
5724 if (buf[0] != '0') \
5725 return -EINVAL; \
5726 clear_stat(s, si); \
5727 return length; \
5728} \
5729SLAB_ATTR(text); \
8ff12cfc
CL
5730
5731STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5732STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5733STAT_ATTR(FREE_FASTPATH, free_fastpath);
5734STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5735STAT_ATTR(FREE_FROZEN, free_frozen);
5736STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5737STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5738STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5739STAT_ATTR(ALLOC_SLAB, alloc_slab);
5740STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5741STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5742STAT_ATTR(FREE_SLAB, free_slab);
5743STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5744STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5745STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5746STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5747STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5748STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5749STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5750STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5751STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5752STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5753STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5754STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5755STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5756STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5757#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5758
06428780 5759static struct attribute *slab_attrs[] = {
81819f0f
CL
5760 &slab_size_attr.attr,
5761 &object_size_attr.attr,
5762 &objs_per_slab_attr.attr,
5763 &order_attr.attr,
73d342b1 5764 &min_partial_attr.attr,
49e22585 5765 &cpu_partial_attr.attr,
81819f0f 5766 &objects_attr.attr,
205ab99d 5767 &objects_partial_attr.attr,
81819f0f
CL
5768 &partial_attr.attr,
5769 &cpu_slabs_attr.attr,
5770 &ctor_attr.attr,
81819f0f
CL
5771 &aliases_attr.attr,
5772 &align_attr.attr,
81819f0f
CL
5773 &hwcache_align_attr.attr,
5774 &reclaim_account_attr.attr,
5775 &destroy_by_rcu_attr.attr,
a5a84755 5776 &shrink_attr.attr,
49e22585 5777 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5778#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5779 &total_objects_attr.attr,
5780 &slabs_attr.attr,
5781 &sanity_checks_attr.attr,
5782 &trace_attr.attr,
81819f0f
CL
5783 &red_zone_attr.attr,
5784 &poison_attr.attr,
5785 &store_user_attr.attr,
53e15af0 5786 &validate_attr.attr,
ab4d5ed5 5787#endif
81819f0f
CL
5788#ifdef CONFIG_ZONE_DMA
5789 &cache_dma_attr.attr,
5790#endif
5791#ifdef CONFIG_NUMA
9824601e 5792 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5793#endif
5794#ifdef CONFIG_SLUB_STATS
5795 &alloc_fastpath_attr.attr,
5796 &alloc_slowpath_attr.attr,
5797 &free_fastpath_attr.attr,
5798 &free_slowpath_attr.attr,
5799 &free_frozen_attr.attr,
5800 &free_add_partial_attr.attr,
5801 &free_remove_partial_attr.attr,
5802 &alloc_from_partial_attr.attr,
5803 &alloc_slab_attr.attr,
5804 &alloc_refill_attr.attr,
e36a2652 5805 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5806 &free_slab_attr.attr,
5807 &cpuslab_flush_attr.attr,
5808 &deactivate_full_attr.attr,
5809 &deactivate_empty_attr.attr,
5810 &deactivate_to_head_attr.attr,
5811 &deactivate_to_tail_attr.attr,
5812 &deactivate_remote_frees_attr.attr,
03e404af 5813 &deactivate_bypass_attr.attr,
65c3376a 5814 &order_fallback_attr.attr,
b789ef51
CL
5815 &cmpxchg_double_fail_attr.attr,
5816 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5817 &cpu_partial_alloc_attr.attr,
5818 &cpu_partial_free_attr.attr,
8028dcea
AS
5819 &cpu_partial_node_attr.attr,
5820 &cpu_partial_drain_attr.attr,
81819f0f 5821#endif
4c13dd3b
DM
5822#ifdef CONFIG_FAILSLAB
5823 &failslab_attr.attr,
5824#endif
8eb8284b 5825 &usersize_attr.attr,
4c13dd3b 5826
81819f0f
CL
5827 NULL
5828};
5829
1fdaaa23 5830static const struct attribute_group slab_attr_group = {
81819f0f
CL
5831 .attrs = slab_attrs,
5832};
5833
5834static ssize_t slab_attr_show(struct kobject *kobj,
5835 struct attribute *attr,
5836 char *buf)
5837{
5838 struct slab_attribute *attribute;
5839 struct kmem_cache *s;
5840 int err;
5841
5842 attribute = to_slab_attr(attr);
5843 s = to_slab(kobj);
5844
5845 if (!attribute->show)
5846 return -EIO;
5847
5848 err = attribute->show(s, buf);
5849
5850 return err;
5851}
5852
5853static ssize_t slab_attr_store(struct kobject *kobj,
5854 struct attribute *attr,
5855 const char *buf, size_t len)
5856{
5857 struct slab_attribute *attribute;
5858 struct kmem_cache *s;
5859 int err;
5860
5861 attribute = to_slab_attr(attr);
5862 s = to_slab(kobj);
5863
5864 if (!attribute->store)
5865 return -EIO;
5866
5867 err = attribute->store(s, buf, len);
81819f0f
CL
5868 return err;
5869}
5870
41a21285
CL
5871static void kmem_cache_release(struct kobject *k)
5872{
5873 slab_kmem_cache_release(to_slab(k));
5874}
5875
52cf25d0 5876static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5877 .show = slab_attr_show,
5878 .store = slab_attr_store,
5879};
5880
5881static struct kobj_type slab_ktype = {
5882 .sysfs_ops = &slab_sysfs_ops,
41a21285 5883 .release = kmem_cache_release,
81819f0f
CL
5884};
5885
27c3a314 5886static struct kset *slab_kset;
81819f0f 5887
9a41707b
VD
5888static inline struct kset *cache_kset(struct kmem_cache *s)
5889{
9a41707b
VD
5890 return slab_kset;
5891}
5892
81819f0f
CL
5893#define ID_STR_LENGTH 64
5894
5895/* Create a unique string id for a slab cache:
6446faa2
CL
5896 *
5897 * Format :[flags-]size
81819f0f
CL
5898 */
5899static char *create_unique_id(struct kmem_cache *s)
5900{
5901 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5902 char *p = name;
5903
7e9c323c
CY
5904 if (!name)
5905 return ERR_PTR(-ENOMEM);
81819f0f
CL
5906
5907 *p++ = ':';
5908 /*
5909 * First flags affecting slabcache operations. We will only
5910 * get here for aliasable slabs so we do not need to support
5911 * too many flags. The flags here must cover all flags that
5912 * are matched during merging to guarantee that the id is
5913 * unique.
5914 */
5915 if (s->flags & SLAB_CACHE_DMA)
5916 *p++ = 'd';
6d6ea1e9
NB
5917 if (s->flags & SLAB_CACHE_DMA32)
5918 *p++ = 'D';
81819f0f
CL
5919 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5920 *p++ = 'a';
becfda68 5921 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5922 *p++ = 'F';
230e9fc2
VD
5923 if (s->flags & SLAB_ACCOUNT)
5924 *p++ = 'A';
81819f0f
CL
5925 if (p != name + 1)
5926 *p++ = '-';
44065b2e 5927 p += sprintf(p, "%07u", s->size);
2633d7a0 5928
81819f0f
CL
5929 BUG_ON(p > name + ID_STR_LENGTH - 1);
5930 return name;
5931}
5932
5933static int sysfs_slab_add(struct kmem_cache *s)
5934{
5935 int err;
5936 const char *name;
1663f26d 5937 struct kset *kset = cache_kset(s);
45530c44 5938 int unmergeable = slab_unmergeable(s);
81819f0f 5939
1663f26d
TH
5940 if (!kset) {
5941 kobject_init(&s->kobj, &slab_ktype);
5942 return 0;
5943 }
5944
11066386
MC
5945 if (!unmergeable && disable_higher_order_debug &&
5946 (slub_debug & DEBUG_METADATA_FLAGS))
5947 unmergeable = 1;
5948
81819f0f
CL
5949 if (unmergeable) {
5950 /*
5951 * Slabcache can never be merged so we can use the name proper.
5952 * This is typically the case for debug situations. In that
5953 * case we can catch duplicate names easily.
5954 */
27c3a314 5955 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5956 name = s->name;
5957 } else {
5958 /*
5959 * Create a unique name for the slab as a target
5960 * for the symlinks.
5961 */
5962 name = create_unique_id(s);
7e9c323c
CY
5963 if (IS_ERR(name))
5964 return PTR_ERR(name);
81819f0f
CL
5965 }
5966
1663f26d 5967 s->kobj.kset = kset;
26e4f205 5968 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5969 if (err)
80da026a 5970 goto out;
81819f0f
CL
5971
5972 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5973 if (err)
5974 goto out_del_kobj;
9a41707b 5975
81819f0f
CL
5976 if (!unmergeable) {
5977 /* Setup first alias */
5978 sysfs_slab_alias(s, s->name);
81819f0f 5979 }
54b6a731
DJ
5980out:
5981 if (!unmergeable)
5982 kfree(name);
5983 return err;
5984out_del_kobj:
5985 kobject_del(&s->kobj);
54b6a731 5986 goto out;
81819f0f
CL
5987}
5988
d50d82fa
MP
5989void sysfs_slab_unlink(struct kmem_cache *s)
5990{
5991 if (slab_state >= FULL)
5992 kobject_del(&s->kobj);
5993}
5994
bf5eb3de
TH
5995void sysfs_slab_release(struct kmem_cache *s)
5996{
5997 if (slab_state >= FULL)
5998 kobject_put(&s->kobj);
81819f0f
CL
5999}
6000
6001/*
6002 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6003 * available lest we lose that information.
81819f0f
CL
6004 */
6005struct saved_alias {
6006 struct kmem_cache *s;
6007 const char *name;
6008 struct saved_alias *next;
6009};
6010
5af328a5 6011static struct saved_alias *alias_list;
81819f0f
CL
6012
6013static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6014{
6015 struct saved_alias *al;
6016
97d06609 6017 if (slab_state == FULL) {
81819f0f
CL
6018 /*
6019 * If we have a leftover link then remove it.
6020 */
27c3a314
GKH
6021 sysfs_remove_link(&slab_kset->kobj, name);
6022 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6023 }
6024
6025 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6026 if (!al)
6027 return -ENOMEM;
6028
6029 al->s = s;
6030 al->name = name;
6031 al->next = alias_list;
6032 alias_list = al;
6033 return 0;
6034}
6035
6036static int __init slab_sysfs_init(void)
6037{
5b95a4ac 6038 struct kmem_cache *s;
81819f0f
CL
6039 int err;
6040
18004c5d 6041 mutex_lock(&slab_mutex);
2bce6485 6042
d7660ce5 6043 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6044 if (!slab_kset) {
18004c5d 6045 mutex_unlock(&slab_mutex);
f9f58285 6046 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
6047 return -ENOSYS;
6048 }
6049
97d06609 6050 slab_state = FULL;
26a7bd03 6051
5b95a4ac 6052 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6053 err = sysfs_slab_add(s);
5d540fb7 6054 if (err)
f9f58285
FF
6055 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6056 s->name);
26a7bd03 6057 }
81819f0f
CL
6058
6059 while (alias_list) {
6060 struct saved_alias *al = alias_list;
6061
6062 alias_list = alias_list->next;
6063 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6064 if (err)
f9f58285
FF
6065 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6066 al->name);
81819f0f
CL
6067 kfree(al);
6068 }
6069
18004c5d 6070 mutex_unlock(&slab_mutex);
81819f0f
CL
6071 return 0;
6072}
6073
6074__initcall(slab_sysfs_init);
ab4d5ed5 6075#endif /* CONFIG_SYSFS */
57ed3eda 6076
64dd6849
FM
6077#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6078static int slab_debugfs_show(struct seq_file *seq, void *v)
6079{
64dd6849 6080 struct loc_track *t = seq->private;
005a79e5
GS
6081 struct location *l;
6082 unsigned long idx;
64dd6849 6083
005a79e5 6084 idx = (unsigned long) t->idx;
64dd6849
FM
6085 if (idx < t->count) {
6086 l = &t->loc[idx];
6087
6088 seq_printf(seq, "%7ld ", l->count);
6089
6090 if (l->addr)
6091 seq_printf(seq, "%pS", (void *)l->addr);
6092 else
6093 seq_puts(seq, "<not-available>");
6094
6095 if (l->sum_time != l->min_time) {
6096 seq_printf(seq, " age=%ld/%llu/%ld",
6097 l->min_time, div_u64(l->sum_time, l->count),
6098 l->max_time);
6099 } else
6100 seq_printf(seq, " age=%ld", l->min_time);
6101
6102 if (l->min_pid != l->max_pid)
6103 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6104 else
6105 seq_printf(seq, " pid=%ld",
6106 l->min_pid);
6107
6108 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6109 seq_printf(seq, " cpus=%*pbl",
6110 cpumask_pr_args(to_cpumask(l->cpus)));
6111
6112 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6113 seq_printf(seq, " nodes=%*pbl",
6114 nodemask_pr_args(&l->nodes));
6115
8ea9fb92
OG
6116#ifdef CONFIG_STACKDEPOT
6117 {
6118 depot_stack_handle_t handle;
6119 unsigned long *entries;
6120 unsigned int nr_entries, j;
6121
6122 handle = READ_ONCE(l->handle);
6123 if (handle) {
6124 nr_entries = stack_depot_fetch(handle, &entries);
6125 seq_puts(seq, "\n");
6126 for (j = 0; j < nr_entries; j++)
6127 seq_printf(seq, " %pS\n", (void *)entries[j]);
6128 }
6129 }
6130#endif
64dd6849
FM
6131 seq_puts(seq, "\n");
6132 }
6133
6134 if (!idx && !t->count)
6135 seq_puts(seq, "No data\n");
6136
6137 return 0;
6138}
6139
6140static void slab_debugfs_stop(struct seq_file *seq, void *v)
6141{
6142}
6143
6144static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6145{
6146 struct loc_track *t = seq->private;
6147
005a79e5 6148 t->idx = ++(*ppos);
64dd6849 6149 if (*ppos <= t->count)
005a79e5 6150 return ppos;
64dd6849
FM
6151
6152 return NULL;
6153}
6154
553c0369
OG
6155static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6156{
6157 struct location *loc1 = (struct location *)a;
6158 struct location *loc2 = (struct location *)b;
6159
6160 if (loc1->count > loc2->count)
6161 return -1;
6162 else
6163 return 1;
6164}
6165
64dd6849
FM
6166static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6167{
005a79e5
GS
6168 struct loc_track *t = seq->private;
6169
6170 t->idx = *ppos;
64dd6849
FM
6171 return ppos;
6172}
6173
6174static const struct seq_operations slab_debugfs_sops = {
6175 .start = slab_debugfs_start,
6176 .next = slab_debugfs_next,
6177 .stop = slab_debugfs_stop,
6178 .show = slab_debugfs_show,
6179};
6180
6181static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6182{
6183
6184 struct kmem_cache_node *n;
6185 enum track_item alloc;
6186 int node;
6187 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6188 sizeof(struct loc_track));
6189 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6190 unsigned long *obj_map;
6191
2127d225
ML
6192 if (!t)
6193 return -ENOMEM;
6194
b3fd64e1 6195 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6196 if (!obj_map) {
6197 seq_release_private(inode, filep);
b3fd64e1 6198 return -ENOMEM;
2127d225 6199 }
64dd6849
FM
6200
6201 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6202 alloc = TRACK_ALLOC;
6203 else
6204 alloc = TRACK_FREE;
6205
b3fd64e1
VB
6206 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6207 bitmap_free(obj_map);
2127d225 6208 seq_release_private(inode, filep);
64dd6849 6209 return -ENOMEM;
b3fd64e1 6210 }
64dd6849 6211
64dd6849
FM
6212 for_each_kmem_cache_node(s, node, n) {
6213 unsigned long flags;
bb192ed9 6214 struct slab *slab;
64dd6849
FM
6215
6216 if (!atomic_long_read(&n->nr_slabs))
6217 continue;
6218
6219 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6220 list_for_each_entry(slab, &n->partial, slab_list)
6221 process_slab(t, s, slab, alloc, obj_map);
6222 list_for_each_entry(slab, &n->full, slab_list)
6223 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6224 spin_unlock_irqrestore(&n->list_lock, flags);
6225 }
6226
553c0369
OG
6227 /* Sort locations by count */
6228 sort_r(t->loc, t->count, sizeof(struct location),
6229 cmp_loc_by_count, NULL, NULL);
6230
b3fd64e1 6231 bitmap_free(obj_map);
64dd6849
FM
6232 return 0;
6233}
6234
6235static int slab_debug_trace_release(struct inode *inode, struct file *file)
6236{
6237 struct seq_file *seq = file->private_data;
6238 struct loc_track *t = seq->private;
6239
6240 free_loc_track(t);
6241 return seq_release_private(inode, file);
6242}
6243
6244static const struct file_operations slab_debugfs_fops = {
6245 .open = slab_debug_trace_open,
6246 .read = seq_read,
6247 .llseek = seq_lseek,
6248 .release = slab_debug_trace_release,
6249};
6250
6251static void debugfs_slab_add(struct kmem_cache *s)
6252{
6253 struct dentry *slab_cache_dir;
6254
6255 if (unlikely(!slab_debugfs_root))
6256 return;
6257
6258 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6259
6260 debugfs_create_file("alloc_traces", 0400,
6261 slab_cache_dir, s, &slab_debugfs_fops);
6262
6263 debugfs_create_file("free_traces", 0400,
6264 slab_cache_dir, s, &slab_debugfs_fops);
6265}
6266
6267void debugfs_slab_release(struct kmem_cache *s)
6268{
6269 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6270}
6271
6272static int __init slab_debugfs_init(void)
6273{
6274 struct kmem_cache *s;
6275
6276 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6277
6278 list_for_each_entry(s, &slab_caches, list)
6279 if (s->flags & SLAB_STORE_USER)
6280 debugfs_slab_add(s);
6281
6282 return 0;
6283
6284}
6285__initcall(slab_debugfs_init);
6286#endif
57ed3eda
PE
6287/*
6288 * The /proc/slabinfo ABI
6289 */
5b365771 6290#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6291void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6292{
57ed3eda 6293 unsigned long nr_slabs = 0;
205ab99d
CL
6294 unsigned long nr_objs = 0;
6295 unsigned long nr_free = 0;
57ed3eda 6296 int node;
fa45dc25 6297 struct kmem_cache_node *n;
57ed3eda 6298
fa45dc25 6299 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6300 nr_slabs += node_nr_slabs(n);
6301 nr_objs += node_nr_objs(n);
205ab99d 6302 nr_free += count_partial(n, count_free);
57ed3eda
PE
6303 }
6304
0d7561c6
GC
6305 sinfo->active_objs = nr_objs - nr_free;
6306 sinfo->num_objs = nr_objs;
6307 sinfo->active_slabs = nr_slabs;
6308 sinfo->num_slabs = nr_slabs;
6309 sinfo->objects_per_slab = oo_objects(s->oo);
6310 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6311}
6312
0d7561c6 6313void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6314{
7b3c3a50
AD
6315}
6316
b7454ad3
GC
6317ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6318 size_t count, loff_t *ppos)
7b3c3a50 6319{
b7454ad3 6320 return -EIO;
7b3c3a50 6321}
5b365771 6322#endif /* CONFIG_SLUB_DEBUG */
This page took 2.990754 seconds and 4 git commands to generate.