]> Git Repo - linux.git/blame - mm/page_alloc.c
hugetlb: remove duplicated code
[linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
692}
693
c0a32fc5
SG
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
96a2b03f
VB
696
697#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699#else
700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701#endif
505f6d22 702EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
703
704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 705
031bc574
JK
706static int __init early_debug_pagealloc(char *buf)
707{
96a2b03f
VB
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
031bc574 711 return -EINVAL;
96a2b03f
VB
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
031bc574
JK
717}
718early_param("debug_pagealloc", early_debug_pagealloc);
719
e30825f1
JK
720static void init_debug_guardpage(void)
721{
031bc574
JK
722 if (!debug_pagealloc_enabled())
723 return;
724
f1c1e9f7
JK
725 if (!debug_guardpage_minorder())
726 return;
727
96a2b03f 728 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
729}
730
c0a32fc5
SG
731static int __init debug_guardpage_minorder_setup(char *buf)
732{
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 736 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
1170532b 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
741 return 0;
742}
f1c1e9f7 743early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 744
acbc15a4 745static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 746 unsigned int order, int migratetype)
c0a32fc5 747{
e30825f1 748 if (!debug_guardpage_enabled())
acbc15a4
JK
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
e30825f1 753
3972f6bb 754 __SetPageGuard(page);
2847cf95
JK
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
759
760 return true;
c0a32fc5
SG
761}
762
2847cf95
JK
763static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
c0a32fc5 765{
e30825f1
JK
766 if (!debug_guardpage_enabled())
767 return;
768
3972f6bb 769 __ClearPageGuard(page);
e30825f1 770
2847cf95
JK
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
774}
775#else
acbc15a4
JK
776static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
2847cf95
JK
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
c0a32fc5
SG
780#endif
781
7aeb09f9 782static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 783{
4c21e2f2 784 set_page_private(page, order);
676165a8 785 __SetPageBuddy(page);
1da177e4
LT
786}
787
1da177e4
LT
788/*
789 * This function checks whether a page is free && is the buddy
6e292b9b 790 * we can coalesce a page and its buddy if
13ad59df 791 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 792 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
676165a8 795 *
6e292b9b
MW
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 798 *
676165a8 799 * For recording page's order, we use page_private(page).
1da177e4 800 */
cb2b95e1 801static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 802 unsigned int order)
1da177e4 803{
c0a32fc5 804 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
4c5018ce
WY
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
c0a32fc5
SG
810 return 1;
811 }
812
cb2b95e1 813 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
4c5018ce
WY
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
6aa3001b 824 return 1;
676165a8 825 }
6aa3001b 826 return 0;
1da177e4
LT
827}
828
5e1f0f09
MG
829#ifdef CONFIG_COMPACTION
830static inline struct capture_control *task_capc(struct zone *zone)
831{
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839}
840
841static inline bool
842compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844{
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864}
865
866#else
867static inline struct capture_control *task_capc(struct zone *zone)
868{
869 return NULL;
870}
871
872static inline bool
873compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875{
876 return false;
877}
878#endif /* CONFIG_COMPACTION */
879
1da177e4
LT
880/*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
1da177e4 895 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
1da177e4 898 * If a block is freed, and its buddy is also free, then this
5f63b720 899 * triggers coalescing into a block of larger size.
1da177e4 900 *
6d49e352 901 * -- nyc
1da177e4
LT
902 */
903
48db57f8 904static inline void __free_one_page(struct page *page,
dc4b0caf 905 unsigned long pfn,
ed0ae21d
MG
906 struct zone *zone, unsigned int order,
907 int migratetype)
1da177e4 908{
76741e77
VB
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 911 struct page *buddy;
d9dddbf5 912 unsigned int max_order;
5e1f0f09 913 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 916
d29bb978 917 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 919
ed0ae21d 920 VM_BUG_ON(migratetype == -1);
d9dddbf5 921 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 923
76741e77 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 926
d9dddbf5 927continue_merging:
3c605096 928 while (order < max_order - 1) {
5e1f0f09
MG
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
76741e77
VB
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
cb2b95e1 939 if (!page_is_buddy(page, buddy, order))
d9dddbf5 940 goto done_merging;
c0a32fc5
SG
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
b03641af 945 if (page_is_guard(buddy))
2847cf95 946 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
1da177e4
LT
952 order++;
953 }
d9dddbf5
VB
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
76741e77
VB
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979done_merging:
1da177e4 980 set_page_order(page, order);
6dda9d55
CZ
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
97500a4a
DW
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
6dda9d55 992 struct page *higher_page, *higher_buddy;
76741e77
VB
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
6dda9d55
CZ
1002 }
1003 }
1004
97500a4a
DW
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1da177e4
LT
1011}
1012
7bfec6f4
MG
1013/*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020{
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026#ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028#endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033}
1034
bb552ac6 1035static void free_pages_check_bad(struct page *page)
1da177e4 1036{
7bfec6f4
MG
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
7bfec6f4
MG
1040 bad_reason = NULL;
1041 bad_flags = 0;
f0b791a3 1042
53f9263b 1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
fe896d18 1047 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1048 bad_reason = "nonzero _refcount";
f0b791a3
DH
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
9edad6ea
JW
1053#ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056#endif
7bfec6f4 1057 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1058}
1059
1060static inline int free_pages_check(struct page *page)
1061{
da838d4f 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1063 return 0;
bb552ac6
MG
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
7bfec6f4 1067 return 1;
1da177e4
LT
1068}
1069
4db7548c
MG
1070static int free_tail_pages_check(struct page *head_page, struct page *page)
1071{
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
4da1984e 1086 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
fa3015b7 1095 * deferred_list.next -- ignore value.
4db7548c
MG
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118}
1119
6471384a
AP
1120static void kernel_init_free_pages(struct page *page, int numpages)
1121{
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126}
1127
e2769dbd
MG
1128static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
4db7548c 1130{
e2769dbd 1131 int bad = 0;
4db7548c 1132
4db7548c
MG
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
e2769dbd 1135 trace_mm_page_free(page, order);
e2769dbd
MG
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1146
9a73f61b
KS
1147 if (compound)
1148 ClearPageDoubleMap(page);
e2769dbd
MG
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
bda807d4 1159 if (PageMappingFlags(page))
4db7548c 1160 page->mapping = NULL;
c4159a75 1161 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1162 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
4db7548c 1167
e2769dbd
MG
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
4db7548c
MG
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
e2769dbd 1174 PAGE_SIZE << order);
4db7548c 1175 debug_check_no_obj_freed(page_address(page),
e2769dbd 1176 PAGE_SIZE << order);
4db7548c 1177 }
6471384a
AP
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
e2769dbd 1181 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1182 /*
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1186 */
1187 arch_free_page(page, order);
1188
d6332692
RE
1189 if (debug_pagealloc_enabled())
1190 kernel_map_pages(page, 1 << order, 0);
1191
3c0c12cc 1192 kasan_free_nondeferred_pages(page, order);
4db7548c 1193
4db7548c
MG
1194 return true;
1195}
1196
e2769dbd 1197#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1198/*
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1202 */
1203static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1204{
1205 return free_pages_prepare(page, 0, true);
1206}
1207
4462b32c 1208static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1209{
4462b32c
VB
1210 if (debug_pagealloc_enabled())
1211 return free_pages_check(page);
1212 else
1213 return false;
e2769dbd
MG
1214}
1215#else
4462b32c
VB
1216/*
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1221 */
e2769dbd
MG
1222static bool free_pcp_prepare(struct page *page)
1223{
4462b32c
VB
1224 if (debug_pagealloc_enabled())
1225 return free_pages_prepare(page, 0, true);
1226 else
1227 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1228}
1229
4db7548c
MG
1230static bool bulkfree_pcp_prepare(struct page *page)
1231{
1232 return free_pages_check(page);
1233}
1234#endif /* CONFIG_DEBUG_VM */
1235
97334162
AL
1236static inline void prefetch_buddy(struct page *page)
1237{
1238 unsigned long pfn = page_to_pfn(page);
1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 struct page *buddy = page + (buddy_pfn - pfn);
1241
1242 prefetch(buddy);
1243}
1244
1da177e4 1245/*
5f8dcc21 1246 * Frees a number of pages from the PCP lists
1da177e4 1247 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1248 * count is the number of pages to free.
1da177e4
LT
1249 *
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1252 *
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1255 */
5f8dcc21
MG
1256static void free_pcppages_bulk(struct zone *zone, int count,
1257 struct per_cpu_pages *pcp)
1da177e4 1258{
5f8dcc21 1259 int migratetype = 0;
a6f9edd6 1260 int batch_free = 0;
97334162 1261 int prefetch_nr = 0;
3777999d 1262 bool isolated_pageblocks;
0a5f4e5b
AL
1263 struct page *page, *tmp;
1264 LIST_HEAD(head);
f2260e6b 1265
e5b31ac2 1266 while (count) {
5f8dcc21
MG
1267 struct list_head *list;
1268
1269 /*
a6f9edd6
MG
1270 * Remove pages from lists in a round-robin fashion. A
1271 * batch_free count is maintained that is incremented when an
1272 * empty list is encountered. This is so more pages are freed
1273 * off fuller lists instead of spinning excessively around empty
1274 * lists
5f8dcc21
MG
1275 */
1276 do {
a6f9edd6 1277 batch_free++;
5f8dcc21
MG
1278 if (++migratetype == MIGRATE_PCPTYPES)
1279 migratetype = 0;
1280 list = &pcp->lists[migratetype];
1281 } while (list_empty(list));
48db57f8 1282
1d16871d
NK
1283 /* This is the only non-empty list. Free them all. */
1284 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1285 batch_free = count;
1d16871d 1286
a6f9edd6 1287 do {
a16601c5 1288 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1289 /* must delete to avoid corrupting pcp list */
a6f9edd6 1290 list_del(&page->lru);
77ba9062 1291 pcp->count--;
aa016d14 1292
4db7548c
MG
1293 if (bulkfree_pcp_prepare(page))
1294 continue;
1295
0a5f4e5b 1296 list_add_tail(&page->lru, &head);
97334162
AL
1297
1298 /*
1299 * We are going to put the page back to the global
1300 * pool, prefetch its buddy to speed up later access
1301 * under zone->lock. It is believed the overhead of
1302 * an additional test and calculating buddy_pfn here
1303 * can be offset by reduced memory latency later. To
1304 * avoid excessive prefetching due to large count, only
1305 * prefetch buddy for the first pcp->batch nr of pages.
1306 */
1307 if (prefetch_nr++ < pcp->batch)
1308 prefetch_buddy(page);
e5b31ac2 1309 } while (--count && --batch_free && !list_empty(list));
1da177e4 1310 }
0a5f4e5b
AL
1311
1312 spin_lock(&zone->lock);
1313 isolated_pageblocks = has_isolate_pageblock(zone);
1314
1315 /*
1316 * Use safe version since after __free_one_page(),
1317 * page->lru.next will not point to original list.
1318 */
1319 list_for_each_entry_safe(page, tmp, &head, lru) {
1320 int mt = get_pcppage_migratetype(page);
1321 /* MIGRATE_ISOLATE page should not go to pcplists */
1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 /* Pageblock could have been isolated meanwhile */
1324 if (unlikely(isolated_pageblocks))
1325 mt = get_pageblock_migratetype(page);
1326
1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 trace_mm_page_pcpu_drain(page, 0, mt);
1329 }
d34b0733 1330 spin_unlock(&zone->lock);
1da177e4
LT
1331}
1332
dc4b0caf
MG
1333static void free_one_page(struct zone *zone,
1334 struct page *page, unsigned long pfn,
7aeb09f9 1335 unsigned int order,
ed0ae21d 1336 int migratetype)
1da177e4 1337{
d34b0733 1338 spin_lock(&zone->lock);
ad53f92e
JK
1339 if (unlikely(has_isolate_pageblock(zone) ||
1340 is_migrate_isolate(migratetype))) {
1341 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1342 }
dc4b0caf 1343 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1344 spin_unlock(&zone->lock);
48db57f8
NP
1345}
1346
1e8ce83c 1347static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1348 unsigned long zone, int nid)
1e8ce83c 1349{
d0dc12e8 1350 mm_zero_struct_page(page);
1e8ce83c 1351 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1352 init_page_count(page);
1353 page_mapcount_reset(page);
1354 page_cpupid_reset_last(page);
2813b9c0 1355 page_kasan_tag_reset(page);
1e8ce83c 1356
1e8ce83c
RH
1357 INIT_LIST_HEAD(&page->lru);
1358#ifdef WANT_PAGE_VIRTUAL
1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 if (!is_highmem_idx(zone))
1361 set_page_address(page, __va(pfn << PAGE_SHIFT));
1362#endif
1363}
1364
7e18adb4 1365#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1366static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1367{
1368 pg_data_t *pgdat;
1369 int nid, zid;
1370
1371 if (!early_page_uninitialised(pfn))
1372 return;
1373
1374 nid = early_pfn_to_nid(pfn);
1375 pgdat = NODE_DATA(nid);
1376
1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 struct zone *zone = &pgdat->node_zones[zid];
1379
1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 break;
1382 }
d0dc12e8 1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1384}
1385#else
1386static inline void init_reserved_page(unsigned long pfn)
1387{
1388}
1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
92923ca3
NZ
1391/*
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1396 */
4b50bcc7 1397void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1398{
1399 unsigned long start_pfn = PFN_DOWN(start);
1400 unsigned long end_pfn = PFN_UP(end);
1401
7e18adb4
MG
1402 for (; start_pfn < end_pfn; start_pfn++) {
1403 if (pfn_valid(start_pfn)) {
1404 struct page *page = pfn_to_page(start_pfn);
1405
1406 init_reserved_page(start_pfn);
1d798ca3
KS
1407
1408 /* Avoid false-positive PageTail() */
1409 INIT_LIST_HEAD(&page->lru);
1410
d483da5b
AD
1411 /*
1412 * no need for atomic set_bit because the struct
1413 * page is not visible yet so nobody should
1414 * access it yet.
1415 */
1416 __SetPageReserved(page);
7e18adb4
MG
1417 }
1418 }
92923ca3
NZ
1419}
1420
ec95f53a
KM
1421static void __free_pages_ok(struct page *page, unsigned int order)
1422{
d34b0733 1423 unsigned long flags;
95e34412 1424 int migratetype;
dc4b0caf 1425 unsigned long pfn = page_to_pfn(page);
ec95f53a 1426
e2769dbd 1427 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1428 return;
1429
cfc47a28 1430 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1431 local_irq_save(flags);
1432 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1433 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1434 local_irq_restore(flags);
1da177e4
LT
1435}
1436
a9cd410a 1437void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1438{
c3993076 1439 unsigned int nr_pages = 1 << order;
e2d0bd2b 1440 struct page *p = page;
c3993076 1441 unsigned int loop;
a226f6c8 1442
e2d0bd2b
YL
1443 prefetchw(p);
1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 prefetchw(p + 1);
c3993076
JW
1446 __ClearPageReserved(p);
1447 set_page_count(p, 0);
a226f6c8 1448 }
e2d0bd2b
YL
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
c3993076 1451
9705bea5 1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1453 set_page_refcounted(page);
1454 __free_pages(page, order);
a226f6c8
DH
1455}
1456
75a592a4
MG
1457#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1459
75a592a4
MG
1460static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461
1462int __meminit early_pfn_to_nid(unsigned long pfn)
1463{
7ace9917 1464 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1465 int nid;
1466
7ace9917 1467 spin_lock(&early_pfn_lock);
75a592a4 1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1469 if (nid < 0)
e4568d38 1470 nid = first_online_node;
7ace9917
MG
1471 spin_unlock(&early_pfn_lock);
1472
1473 return nid;
75a592a4
MG
1474}
1475#endif
1476
1477#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1478/* Only safe to use early in boot when initialisation is single-threaded */
1479static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1480{
1481 int nid;
1482
56ec43d8 1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1484 if (nid >= 0 && nid != node)
1485 return false;
1486 return true;
1487}
1488
75a592a4 1489#else
75a592a4
MG
1490static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491{
1492 return true;
1493}
75a592a4
MG
1494#endif
1495
1496
7c2ee349 1497void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1498 unsigned int order)
1499{
1500 if (early_page_uninitialised(pfn))
1501 return;
a9cd410a 1502 __free_pages_core(page, order);
3a80a7fa
MG
1503}
1504
7cf91a98
JK
1505/*
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1511 *
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513 *
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
1521 */
1522struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 unsigned long end_pfn, struct zone *zone)
1524{
1525 struct page *start_page;
1526 struct page *end_page;
1527
1528 /* end_pfn is one past the range we are checking */
1529 end_pfn--;
1530
1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 return NULL;
1533
2d070eab
MH
1534 start_page = pfn_to_online_page(start_pfn);
1535 if (!start_page)
1536 return NULL;
7cf91a98
JK
1537
1538 if (page_zone(start_page) != zone)
1539 return NULL;
1540
1541 end_page = pfn_to_page(end_pfn);
1542
1543 /* This gives a shorter code than deriving page_zone(end_page) */
1544 if (page_zone_id(start_page) != page_zone_id(end_page))
1545 return NULL;
1546
1547 return start_page;
1548}
1549
1550void set_zone_contiguous(struct zone *zone)
1551{
1552 unsigned long block_start_pfn = zone->zone_start_pfn;
1553 unsigned long block_end_pfn;
1554
1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 for (; block_start_pfn < zone_end_pfn(zone);
1557 block_start_pfn = block_end_pfn,
1558 block_end_pfn += pageblock_nr_pages) {
1559
1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561
1562 if (!__pageblock_pfn_to_page(block_start_pfn,
1563 block_end_pfn, zone))
1564 return;
1565 }
1566
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1569}
1570
1571void clear_zone_contiguous(struct zone *zone)
1572{
1573 zone->contiguous = false;
1574}
1575
7e18adb4 1576#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1577static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
a4de83dd 1579{
2f47a91f
PT
1580 struct page *page;
1581 unsigned long i;
a4de83dd 1582
2f47a91f 1583 if (!nr_pages)
a4de83dd
MG
1584 return;
1585
2f47a91f
PT
1586 page = pfn_to_page(pfn);
1587
a4de83dd 1588 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1592 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1593 return;
1594 }
1595
e780149b
XQ
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1599 __free_pages_core(page, 0);
e780149b 1600 }
a4de83dd
MG
1601}
1602
d3cd131d
NS
1603/* Completion tracking for deferred_init_memmap() threads */
1604static atomic_t pgdat_init_n_undone __initdata;
1605static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607static inline void __init pgdat_init_report_one_done(void)
1608{
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1611}
0e1cc95b 1612
2f47a91f 1613/*
80b1f41c
PT
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
2f47a91f 1622 */
56ec43d8 1623static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1624{
80b1f41c
PT
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
80b1f41c
PT
1629 return true;
1630}
2f47a91f 1631
80b1f41c
PT
1632/*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
56ec43d8 1636static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1637 unsigned long end_pfn)
1638{
80b1f41c
PT
1639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
2f47a91f 1641
80b1f41c 1642 for (; pfn < end_pfn; pfn++) {
56ec43d8 1643 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
3a2d7fa8 1649 touch_nmi_watchdog();
80b1f41c
PT
1650 } else {
1651 nr_free++;
1652 }
1653 }
1654 /* Free the last block of pages to allocator */
1655 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1656}
1657
80b1f41c
PT
1658/*
1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1662 */
56ec43d8 1663static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1664 unsigned long pfn,
1665 unsigned long end_pfn)
2f47a91f 1666{
2f47a91f 1667 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1668 int nid = zone_to_nid(zone);
2f47a91f 1669 unsigned long nr_pages = 0;
56ec43d8 1670 int zid = zone_idx(zone);
2f47a91f 1671 struct page *page = NULL;
2f47a91f 1672
80b1f41c 1673 for (; pfn < end_pfn; pfn++) {
56ec43d8 1674 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1675 page = NULL;
2f47a91f 1676 continue;
80b1f41c 1677 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1678 page = pfn_to_page(pfn);
3a2d7fa8 1679 touch_nmi_watchdog();
80b1f41c
PT
1680 } else {
1681 page++;
2f47a91f 1682 }
d0dc12e8 1683 __init_single_page(page, pfn, zid, nid);
80b1f41c 1684 nr_pages++;
2f47a91f 1685 }
80b1f41c 1686 return (nr_pages);
2f47a91f
PT
1687}
1688
0e56acae
AD
1689/*
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1694 */
1695static bool __init
1696deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 unsigned long *spfn, unsigned long *epfn,
1698 unsigned long first_init_pfn)
1699{
1700 u64 j;
1701
1702 /*
1703 * Start out by walking through the ranges in this zone that have
1704 * already been initialized. We don't need to do anything with them
1705 * so we just need to flush them out of the system.
1706 */
1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 if (*epfn <= first_init_pfn)
1709 continue;
1710 if (*spfn < first_init_pfn)
1711 *spfn = first_init_pfn;
1712 *i = j;
1713 return true;
1714 }
1715
1716 return false;
1717}
1718
1719/*
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1724 *
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1728 */
1729static unsigned long __init
1730deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 unsigned long *end_pfn)
1732{
1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 unsigned long nr_pages = 0;
1736 u64 j = *i;
1737
1738 /* First we loop through and initialize the page values */
1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 unsigned long t;
1741
1742 if (mo_pfn <= *start_pfn)
1743 break;
1744
1745 t = min(mo_pfn, *end_pfn);
1746 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747
1748 if (mo_pfn < *end_pfn) {
1749 *start_pfn = mo_pfn;
1750 break;
1751 }
1752 }
1753
1754 /* Reset values and now loop through freeing pages as needed */
1755 swap(j, *i);
1756
1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 unsigned long t;
1759
1760 if (mo_pfn <= spfn)
1761 break;
1762
1763 t = min(mo_pfn, epfn);
1764 deferred_free_pages(spfn, t);
1765
1766 if (mo_pfn <= epfn)
1767 break;
1768 }
1769
1770 return nr_pages;
1771}
1772
7e18adb4 1773/* Initialise remaining memory on a node */
0e1cc95b 1774static int __init deferred_init_memmap(void *data)
7e18adb4 1775{
0e1cc95b 1776 pg_data_t *pgdat = data;
0e56acae
AD
1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 unsigned long first_init_pfn, flags;
7e18adb4 1780 unsigned long start = jiffies;
7e18adb4 1781 struct zone *zone;
0e56acae 1782 int zid;
2f47a91f 1783 u64 i;
7e18adb4 1784
3a2d7fa8
PT
1785 /* Bind memory initialisation thread to a local node if possible */
1786 if (!cpumask_empty(cpumask))
1787 set_cpus_allowed_ptr(current, cpumask);
1788
1789 pgdat_resize_lock(pgdat, &flags);
1790 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1791 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1792 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1793 pgdat_init_report_one_done();
0e1cc95b
MG
1794 return 0;
1795 }
1796
7e18adb4
MG
1797 /* Sanity check boundaries */
1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 pgdat->first_deferred_pfn = ULONG_MAX;
1801
1802 /* Only the highest zone is deferred so find it */
1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 zone = pgdat->node_zones + zid;
1805 if (first_init_pfn < zone_end_pfn(zone))
1806 break;
1807 }
0e56acae
AD
1808
1809 /* If the zone is empty somebody else may have cleared out the zone */
1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 first_init_pfn))
1812 goto zone_empty;
7e18adb4 1813
80b1f41c 1814 /*
0e56acae
AD
1815 * Initialize and free pages in MAX_ORDER sized increments so
1816 * that we can avoid introducing any issues with the buddy
1817 * allocator.
80b1f41c 1818 */
0e56acae
AD
1819 while (spfn < epfn)
1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821zone_empty:
3a2d7fa8 1822 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1823
1824 /* Sanity check that the next zone really is unpopulated */
1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826
837566e7
AD
1827 pr_info("node %d initialised, %lu pages in %ums\n",
1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1829
1830 pgdat_init_report_one_done();
0e1cc95b
MG
1831 return 0;
1832}
c9e97a19 1833
c9e97a19
PT
1834/*
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840 *
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1844 *
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1848 */
1849static noinline bool __init
1850deferred_grow_zone(struct zone *zone, unsigned int order)
1851{
c9e97a19 1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1853 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1855 unsigned long spfn, epfn, flags;
1856 unsigned long nr_pages = 0;
c9e97a19
PT
1857 u64 i;
1858
1859 /* Only the last zone may have deferred pages */
1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 return false;
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864
1865 /*
1866 * If deferred pages have been initialized while we were waiting for
1867 * the lock, return true, as the zone was grown. The caller will retry
1868 * this zone. We won't return to this function since the caller also
1869 * has this static branch.
1870 */
1871 if (!static_branch_unlikely(&deferred_pages)) {
1872 pgdat_resize_unlock(pgdat, &flags);
1873 return true;
1874 }
1875
1876 /*
1877 * If someone grew this zone while we were waiting for spinlock, return
1878 * true, as there might be enough pages already.
1879 */
1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 pgdat_resize_unlock(pgdat, &flags);
1882 return true;
1883 }
1884
0e56acae
AD
1885 /* If the zone is empty somebody else may have cleared out the zone */
1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 first_deferred_pfn)) {
1888 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1889 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1890 /* Retry only once. */
1891 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1892 }
1893
0e56acae
AD
1894 /*
1895 * Initialize and free pages in MAX_ORDER sized increments so
1896 * that we can avoid introducing any issues with the buddy
1897 * allocator.
1898 */
1899 while (spfn < epfn) {
1900 /* update our first deferred PFN for this section */
1901 first_deferred_pfn = spfn;
1902
1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1904
0e56acae
AD
1905 /* We should only stop along section boundaries */
1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 continue;
c9e97a19 1908
0e56acae 1909 /* If our quota has been met we can stop here */
c9e97a19
PT
1910 if (nr_pages >= nr_pages_needed)
1911 break;
1912 }
1913
0e56acae 1914 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1915 pgdat_resize_unlock(pgdat, &flags);
1916
1917 return nr_pages > 0;
1918}
1919
1920/*
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1925 */
1926static bool __ref
1927_deferred_grow_zone(struct zone *zone, unsigned int order)
1928{
1929 return deferred_grow_zone(zone, order);
1930}
1931
7cf91a98 1932#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1933
1934void __init page_alloc_init_late(void)
1935{
7cf91a98 1936 struct zone *zone;
e900a918 1937 int nid;
7cf91a98
JK
1938
1939#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1940
d3cd131d
NS
1941 /* There will be num_node_state(N_MEMORY) threads */
1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1943 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 }
1946
1947 /* Block until all are initialised */
d3cd131d 1948 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1949
3e8fc007
MG
1950 /*
1951 * The number of managed pages has changed due to the initialisation
1952 * so the pcpu batch and high limits needs to be updated or the limits
1953 * will be artificially small.
1954 */
1955 for_each_populated_zone(zone)
1956 zone_pcp_update(zone);
1957
c9e97a19
PT
1958 /*
1959 * We initialized the rest of the deferred pages. Permanently disable
1960 * on-demand struct page initialization.
1961 */
1962 static_branch_disable(&deferred_pages);
1963
4248b0da
MG
1964 /* Reinit limits that are based on free pages after the kernel is up */
1965 files_maxfiles_init();
7cf91a98 1966#endif
350e88ba 1967
3010f876
PT
1968 /* Discard memblock private memory */
1969 memblock_discard();
7cf91a98 1970
e900a918
DW
1971 for_each_node_state(nid, N_MEMORY)
1972 shuffle_free_memory(NODE_DATA(nid));
1973
7cf91a98
JK
1974 for_each_populated_zone(zone)
1975 set_zone_contiguous(zone);
3972f6bb
VB
1976
1977#ifdef CONFIG_DEBUG_PAGEALLOC
1978 init_debug_guardpage();
1979#endif
7e18adb4 1980}
7e18adb4 1981
47118af0 1982#ifdef CONFIG_CMA
9cf510a5 1983/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1984void __init init_cma_reserved_pageblock(struct page *page)
1985{
1986 unsigned i = pageblock_nr_pages;
1987 struct page *p = page;
1988
1989 do {
1990 __ClearPageReserved(p);
1991 set_page_count(p, 0);
d883c6cf 1992 } while (++p, --i);
47118af0 1993
47118af0 1994 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1995
1996 if (pageblock_order >= MAX_ORDER) {
1997 i = pageblock_nr_pages;
1998 p = page;
1999 do {
2000 set_page_refcounted(p);
2001 __free_pages(p, MAX_ORDER - 1);
2002 p += MAX_ORDER_NR_PAGES;
2003 } while (i -= MAX_ORDER_NR_PAGES);
2004 } else {
2005 set_page_refcounted(page);
2006 __free_pages(page, pageblock_order);
2007 }
2008
3dcc0571 2009 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2010}
2011#endif
1da177e4
LT
2012
2013/*
2014 * The order of subdivision here is critical for the IO subsystem.
2015 * Please do not alter this order without good reasons and regression
2016 * testing. Specifically, as large blocks of memory are subdivided,
2017 * the order in which smaller blocks are delivered depends on the order
2018 * they're subdivided in this function. This is the primary factor
2019 * influencing the order in which pages are delivered to the IO
2020 * subsystem according to empirical testing, and this is also justified
2021 * by considering the behavior of a buddy system containing a single
2022 * large block of memory acted on by a series of small allocations.
2023 * This behavior is a critical factor in sglist merging's success.
2024 *
6d49e352 2025 * -- nyc
1da177e4 2026 */
085cc7d5 2027static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2028 int low, int high, struct free_area *area,
2029 int migratetype)
1da177e4
LT
2030{
2031 unsigned long size = 1 << high;
2032
2033 while (high > low) {
2034 area--;
2035 high--;
2036 size >>= 1;
309381fe 2037 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2038
acbc15a4
JK
2039 /*
2040 * Mark as guard pages (or page), that will allow to
2041 * merge back to allocator when buddy will be freed.
2042 * Corresponding page table entries will not be touched,
2043 * pages will stay not present in virtual address space
2044 */
2045 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2046 continue;
acbc15a4 2047
b03641af 2048 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2049 set_page_order(&page[size], high);
2050 }
1da177e4
LT
2051}
2052
4e611801 2053static void check_new_page_bad(struct page *page)
1da177e4 2054{
4e611801
VB
2055 const char *bad_reason = NULL;
2056 unsigned long bad_flags = 0;
7bfec6f4 2057
53f9263b 2058 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2059 bad_reason = "nonzero mapcount";
2060 if (unlikely(page->mapping != NULL))
2061 bad_reason = "non-NULL mapping";
fe896d18 2062 if (unlikely(page_ref_count(page) != 0))
136ac591 2063 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2064 if (unlikely(page->flags & __PG_HWPOISON)) {
2065 bad_reason = "HWPoisoned (hardware-corrupted)";
2066 bad_flags = __PG_HWPOISON;
e570f56c
NH
2067 /* Don't complain about hwpoisoned pages */
2068 page_mapcount_reset(page); /* remove PageBuddy */
2069 return;
f4c18e6f 2070 }
f0b791a3
DH
2071 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2072 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2073 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2074 }
9edad6ea
JW
2075#ifdef CONFIG_MEMCG
2076 if (unlikely(page->mem_cgroup))
2077 bad_reason = "page still charged to cgroup";
2078#endif
4e611801
VB
2079 bad_page(page, bad_reason, bad_flags);
2080}
2081
2082/*
2083 * This page is about to be returned from the page allocator
2084 */
2085static inline int check_new_page(struct page *page)
2086{
2087 if (likely(page_expected_state(page,
2088 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2089 return 0;
2090
2091 check_new_page_bad(page);
2092 return 1;
2a7684a2
WF
2093}
2094
bd33ef36 2095static inline bool free_pages_prezeroed(void)
1414c7f4 2096{
6471384a
AP
2097 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2098 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2099}
2100
479f854a 2101#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2102/*
2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2105 * also checked when pcp lists are refilled from the free lists.
2106 */
2107static inline bool check_pcp_refill(struct page *page)
479f854a 2108{
4462b32c
VB
2109 if (debug_pagealloc_enabled())
2110 return check_new_page(page);
2111 else
2112 return false;
479f854a
MG
2113}
2114
4462b32c 2115static inline bool check_new_pcp(struct page *page)
479f854a
MG
2116{
2117 return check_new_page(page);
2118}
2119#else
4462b32c
VB
2120/*
2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2123 * enabled, they are also checked when being allocated from the pcp lists.
2124 */
2125static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2126{
2127 return check_new_page(page);
2128}
4462b32c 2129static inline bool check_new_pcp(struct page *page)
479f854a 2130{
4462b32c
VB
2131 if (debug_pagealloc_enabled())
2132 return check_new_page(page);
2133 else
2134 return false;
479f854a
MG
2135}
2136#endif /* CONFIG_DEBUG_VM */
2137
2138static bool check_new_pages(struct page *page, unsigned int order)
2139{
2140 int i;
2141 for (i = 0; i < (1 << order); i++) {
2142 struct page *p = page + i;
2143
2144 if (unlikely(check_new_page(p)))
2145 return true;
2146 }
2147
2148 return false;
2149}
2150
46f24fd8
JK
2151inline void post_alloc_hook(struct page *page, unsigned int order,
2152 gfp_t gfp_flags)
2153{
2154 set_page_private(page, 0);
2155 set_page_refcounted(page);
2156
2157 arch_alloc_page(page, order);
d6332692
RE
2158 if (debug_pagealloc_enabled())
2159 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2160 kasan_alloc_pages(page, order);
4117992d 2161 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2162 set_page_owner(page, order, gfp_flags);
2163}
2164
479f854a 2165static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2166 unsigned int alloc_flags)
2a7684a2 2167{
46f24fd8 2168 post_alloc_hook(page, order, gfp_flags);
17cf4406 2169
6471384a
AP
2170 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2171 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2172
2173 if (order && (gfp_flags & __GFP_COMP))
2174 prep_compound_page(page, order);
2175
75379191 2176 /*
2f064f34 2177 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2178 * allocate the page. The expectation is that the caller is taking
2179 * steps that will free more memory. The caller should avoid the page
2180 * being used for !PFMEMALLOC purposes.
2181 */
2f064f34
MH
2182 if (alloc_flags & ALLOC_NO_WATERMARKS)
2183 set_page_pfmemalloc(page);
2184 else
2185 clear_page_pfmemalloc(page);
1da177e4
LT
2186}
2187
56fd56b8
MG
2188/*
2189 * Go through the free lists for the given migratetype and remove
2190 * the smallest available page from the freelists
2191 */
85ccc8fa 2192static __always_inline
728ec980 2193struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2194 int migratetype)
2195{
2196 unsigned int current_order;
b8af2941 2197 struct free_area *area;
56fd56b8
MG
2198 struct page *page;
2199
2200 /* Find a page of the appropriate size in the preferred list */
2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2202 area = &(zone->free_area[current_order]);
b03641af 2203 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2204 if (!page)
2205 continue;
b03641af 2206 del_page_from_free_area(page, area);
56fd56b8 2207 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2208 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2209 return page;
2210 }
2211
2212 return NULL;
2213}
2214
2215
b2a0ac88
MG
2216/*
2217 * This array describes the order lists are fallen back to when
2218 * the free lists for the desirable migrate type are depleted
2219 */
47118af0 2220static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2221 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2222 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2223 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2224#ifdef CONFIG_CMA
974a786e 2225 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2226#endif
194159fb 2227#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2228 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2229#endif
b2a0ac88
MG
2230};
2231
dc67647b 2232#ifdef CONFIG_CMA
85ccc8fa 2233static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2234 unsigned int order)
2235{
2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2237}
2238#else
2239static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2240 unsigned int order) { return NULL; }
2241#endif
2242
c361be55
MG
2243/*
2244 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2245 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2246 * boundary. If alignment is required, use move_freepages_block()
2247 */
02aa0cdd 2248static int move_freepages(struct zone *zone,
b69a7288 2249 struct page *start_page, struct page *end_page,
02aa0cdd 2250 int migratetype, int *num_movable)
c361be55
MG
2251{
2252 struct page *page;
d00181b9 2253 unsigned int order;
d100313f 2254 int pages_moved = 0;
c361be55 2255
c361be55
MG
2256 for (page = start_page; page <= end_page;) {
2257 if (!pfn_valid_within(page_to_pfn(page))) {
2258 page++;
2259 continue;
2260 }
2261
2262 if (!PageBuddy(page)) {
02aa0cdd
VB
2263 /*
2264 * We assume that pages that could be isolated for
2265 * migration are movable. But we don't actually try
2266 * isolating, as that would be expensive.
2267 */
2268 if (num_movable &&
2269 (PageLRU(page) || __PageMovable(page)))
2270 (*num_movable)++;
2271
c361be55
MG
2272 page++;
2273 continue;
2274 }
2275
cd961038
DR
2276 /* Make sure we are not inadvertently changing nodes */
2277 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2278 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2279
c361be55 2280 order = page_order(page);
b03641af 2281 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2282 page += 1 << order;
d100313f 2283 pages_moved += 1 << order;
c361be55
MG
2284 }
2285
d100313f 2286 return pages_moved;
c361be55
MG
2287}
2288
ee6f509c 2289int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2290 int migratetype, int *num_movable)
c361be55
MG
2291{
2292 unsigned long start_pfn, end_pfn;
2293 struct page *start_page, *end_page;
2294
4a222127
DR
2295 if (num_movable)
2296 *num_movable = 0;
2297
c361be55 2298 start_pfn = page_to_pfn(page);
d9c23400 2299 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2300 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2301 end_page = start_page + pageblock_nr_pages - 1;
2302 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2303
2304 /* Do not cross zone boundaries */
108bcc96 2305 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2306 start_page = page;
108bcc96 2307 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2308 return 0;
2309
02aa0cdd
VB
2310 return move_freepages(zone, start_page, end_page, migratetype,
2311 num_movable);
c361be55
MG
2312}
2313
2f66a68f
MG
2314static void change_pageblock_range(struct page *pageblock_page,
2315 int start_order, int migratetype)
2316{
2317 int nr_pageblocks = 1 << (start_order - pageblock_order);
2318
2319 while (nr_pageblocks--) {
2320 set_pageblock_migratetype(pageblock_page, migratetype);
2321 pageblock_page += pageblock_nr_pages;
2322 }
2323}
2324
fef903ef 2325/*
9c0415eb
VB
2326 * When we are falling back to another migratetype during allocation, try to
2327 * steal extra free pages from the same pageblocks to satisfy further
2328 * allocations, instead of polluting multiple pageblocks.
2329 *
2330 * If we are stealing a relatively large buddy page, it is likely there will
2331 * be more free pages in the pageblock, so try to steal them all. For
2332 * reclaimable and unmovable allocations, we steal regardless of page size,
2333 * as fragmentation caused by those allocations polluting movable pageblocks
2334 * is worse than movable allocations stealing from unmovable and reclaimable
2335 * pageblocks.
fef903ef 2336 */
4eb7dce6
JK
2337static bool can_steal_fallback(unsigned int order, int start_mt)
2338{
2339 /*
2340 * Leaving this order check is intended, although there is
2341 * relaxed order check in next check. The reason is that
2342 * we can actually steal whole pageblock if this condition met,
2343 * but, below check doesn't guarantee it and that is just heuristic
2344 * so could be changed anytime.
2345 */
2346 if (order >= pageblock_order)
2347 return true;
2348
2349 if (order >= pageblock_order / 2 ||
2350 start_mt == MIGRATE_RECLAIMABLE ||
2351 start_mt == MIGRATE_UNMOVABLE ||
2352 page_group_by_mobility_disabled)
2353 return true;
2354
2355 return false;
2356}
2357
1c30844d
MG
2358static inline void boost_watermark(struct zone *zone)
2359{
2360 unsigned long max_boost;
2361
2362 if (!watermark_boost_factor)
2363 return;
2364
2365 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2366 watermark_boost_factor, 10000);
94b3334c
MG
2367
2368 /*
2369 * high watermark may be uninitialised if fragmentation occurs
2370 * very early in boot so do not boost. We do not fall
2371 * through and boost by pageblock_nr_pages as failing
2372 * allocations that early means that reclaim is not going
2373 * to help and it may even be impossible to reclaim the
2374 * boosted watermark resulting in a hang.
2375 */
2376 if (!max_boost)
2377 return;
2378
1c30844d
MG
2379 max_boost = max(pageblock_nr_pages, max_boost);
2380
2381 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2382 max_boost);
2383}
2384
4eb7dce6
JK
2385/*
2386 * This function implements actual steal behaviour. If order is large enough,
2387 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2388 * pageblock to our migratetype and determine how many already-allocated pages
2389 * are there in the pageblock with a compatible migratetype. If at least half
2390 * of pages are free or compatible, we can change migratetype of the pageblock
2391 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2392 */
2393static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2394 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2395{
d00181b9 2396 unsigned int current_order = page_order(page);
3bc48f96 2397 struct free_area *area;
02aa0cdd
VB
2398 int free_pages, movable_pages, alike_pages;
2399 int old_block_type;
2400
2401 old_block_type = get_pageblock_migratetype(page);
fef903ef 2402
3bc48f96
VB
2403 /*
2404 * This can happen due to races and we want to prevent broken
2405 * highatomic accounting.
2406 */
02aa0cdd 2407 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2408 goto single_page;
2409
fef903ef
SB
2410 /* Take ownership for orders >= pageblock_order */
2411 if (current_order >= pageblock_order) {
2412 change_pageblock_range(page, current_order, start_type);
3bc48f96 2413 goto single_page;
fef903ef
SB
2414 }
2415
1c30844d
MG
2416 /*
2417 * Boost watermarks to increase reclaim pressure to reduce the
2418 * likelihood of future fallbacks. Wake kswapd now as the node
2419 * may be balanced overall and kswapd will not wake naturally.
2420 */
2421 boost_watermark(zone);
2422 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2424
3bc48f96
VB
2425 /* We are not allowed to try stealing from the whole block */
2426 if (!whole_block)
2427 goto single_page;
2428
02aa0cdd
VB
2429 free_pages = move_freepages_block(zone, page, start_type,
2430 &movable_pages);
2431 /*
2432 * Determine how many pages are compatible with our allocation.
2433 * For movable allocation, it's the number of movable pages which
2434 * we just obtained. For other types it's a bit more tricky.
2435 */
2436 if (start_type == MIGRATE_MOVABLE) {
2437 alike_pages = movable_pages;
2438 } else {
2439 /*
2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441 * to MOVABLE pageblock, consider all non-movable pages as
2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443 * vice versa, be conservative since we can't distinguish the
2444 * exact migratetype of non-movable pages.
2445 */
2446 if (old_block_type == MIGRATE_MOVABLE)
2447 alike_pages = pageblock_nr_pages
2448 - (free_pages + movable_pages);
2449 else
2450 alike_pages = 0;
2451 }
2452
3bc48f96 2453 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2454 if (!free_pages)
3bc48f96 2455 goto single_page;
fef903ef 2456
02aa0cdd
VB
2457 /*
2458 * If a sufficient number of pages in the block are either free or of
2459 * comparable migratability as our allocation, claim the whole block.
2460 */
2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2462 page_group_by_mobility_disabled)
2463 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2464
2465 return;
2466
2467single_page:
2468 area = &zone->free_area[current_order];
b03641af 2469 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2470}
2471
2149cdae
JK
2472/*
2473 * Check whether there is a suitable fallback freepage with requested order.
2474 * If only_stealable is true, this function returns fallback_mt only if
2475 * we can steal other freepages all together. This would help to reduce
2476 * fragmentation due to mixed migratetype pages in one pageblock.
2477 */
2478int find_suitable_fallback(struct free_area *area, unsigned int order,
2479 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2480{
2481 int i;
2482 int fallback_mt;
2483
2484 if (area->nr_free == 0)
2485 return -1;
2486
2487 *can_steal = false;
2488 for (i = 0;; i++) {
2489 fallback_mt = fallbacks[migratetype][i];
974a786e 2490 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2491 break;
2492
b03641af 2493 if (free_area_empty(area, fallback_mt))
4eb7dce6 2494 continue;
fef903ef 2495
4eb7dce6
JK
2496 if (can_steal_fallback(order, migratetype))
2497 *can_steal = true;
2498
2149cdae
JK
2499 if (!only_stealable)
2500 return fallback_mt;
2501
2502 if (*can_steal)
2503 return fallback_mt;
fef903ef 2504 }
4eb7dce6
JK
2505
2506 return -1;
fef903ef
SB
2507}
2508
0aaa29a5
MG
2509/*
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2512 */
2513static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514 unsigned int alloc_order)
2515{
2516 int mt;
2517 unsigned long max_managed, flags;
2518
2519 /*
2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2521 * Check is race-prone but harmless.
2522 */
9705bea5 2523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2524 if (zone->nr_reserved_highatomic >= max_managed)
2525 return;
2526
2527 spin_lock_irqsave(&zone->lock, flags);
2528
2529 /* Recheck the nr_reserved_highatomic limit under the lock */
2530 if (zone->nr_reserved_highatomic >= max_managed)
2531 goto out_unlock;
2532
2533 /* Yoink! */
2534 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2537 zone->nr_reserved_highatomic += pageblock_nr_pages;
2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2540 }
2541
2542out_unlock:
2543 spin_unlock_irqrestore(&zone->lock, flags);
2544}
2545
2546/*
2547 * Used when an allocation is about to fail under memory pressure. This
2548 * potentially hurts the reliability of high-order allocations when under
2549 * intense memory pressure but failed atomic allocations should be easier
2550 * to recover from than an OOM.
29fac03b
MK
2551 *
2552 * If @force is true, try to unreserve a pageblock even though highatomic
2553 * pageblock is exhausted.
0aaa29a5 2554 */
29fac03b
MK
2555static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556 bool force)
0aaa29a5
MG
2557{
2558 struct zonelist *zonelist = ac->zonelist;
2559 unsigned long flags;
2560 struct zoneref *z;
2561 struct zone *zone;
2562 struct page *page;
2563 int order;
04c8716f 2564 bool ret;
0aaa29a5
MG
2565
2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567 ac->nodemask) {
29fac03b
MK
2568 /*
2569 * Preserve at least one pageblock unless memory pressure
2570 * is really high.
2571 */
2572 if (!force && zone->nr_reserved_highatomic <=
2573 pageblock_nr_pages)
0aaa29a5
MG
2574 continue;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
2577 for (order = 0; order < MAX_ORDER; order++) {
2578 struct free_area *area = &(zone->free_area[order]);
2579
b03641af 2580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2581 if (!page)
0aaa29a5
MG
2582 continue;
2583
0aaa29a5 2584 /*
4855e4a7
MK
2585 * In page freeing path, migratetype change is racy so
2586 * we can counter several free pages in a pageblock
2587 * in this loop althoug we changed the pageblock type
2588 * from highatomic to ac->migratetype. So we should
2589 * adjust the count once.
0aaa29a5 2590 */
a6ffdc07 2591 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2592 /*
2593 * It should never happen but changes to
2594 * locking could inadvertently allow a per-cpu
2595 * drain to add pages to MIGRATE_HIGHATOMIC
2596 * while unreserving so be safe and watch for
2597 * underflows.
2598 */
2599 zone->nr_reserved_highatomic -= min(
2600 pageblock_nr_pages,
2601 zone->nr_reserved_highatomic);
2602 }
0aaa29a5
MG
2603
2604 /*
2605 * Convert to ac->migratetype and avoid the normal
2606 * pageblock stealing heuristics. Minimally, the caller
2607 * is doing the work and needs the pages. More
2608 * importantly, if the block was always converted to
2609 * MIGRATE_UNMOVABLE or another type then the number
2610 * of pageblocks that cannot be completely freed
2611 * may increase.
2612 */
2613 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2614 ret = move_freepages_block(zone, page, ac->migratetype,
2615 NULL);
29fac03b
MK
2616 if (ret) {
2617 spin_unlock_irqrestore(&zone->lock, flags);
2618 return ret;
2619 }
0aaa29a5
MG
2620 }
2621 spin_unlock_irqrestore(&zone->lock, flags);
2622 }
04c8716f
MK
2623
2624 return false;
0aaa29a5
MG
2625}
2626
3bc48f96
VB
2627/*
2628 * Try finding a free buddy page on the fallback list and put it on the free
2629 * list of requested migratetype, possibly along with other pages from the same
2630 * block, depending on fragmentation avoidance heuristics. Returns true if
2631 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2632 *
2633 * The use of signed ints for order and current_order is a deliberate
2634 * deviation from the rest of this file, to make the for loop
2635 * condition simpler.
3bc48f96 2636 */
85ccc8fa 2637static __always_inline bool
6bb15450
MG
2638__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639 unsigned int alloc_flags)
b2a0ac88 2640{
b8af2941 2641 struct free_area *area;
b002529d 2642 int current_order;
6bb15450 2643 int min_order = order;
b2a0ac88 2644 struct page *page;
4eb7dce6
JK
2645 int fallback_mt;
2646 bool can_steal;
b2a0ac88 2647
6bb15450
MG
2648 /*
2649 * Do not steal pages from freelists belonging to other pageblocks
2650 * i.e. orders < pageblock_order. If there are no local zones free,
2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2652 */
2653 if (alloc_flags & ALLOC_NOFRAGMENT)
2654 min_order = pageblock_order;
2655
7a8f58f3
VB
2656 /*
2657 * Find the largest available free page in the other list. This roughly
2658 * approximates finding the pageblock with the most free pages, which
2659 * would be too costly to do exactly.
2660 */
6bb15450 2661 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2662 --current_order) {
4eb7dce6
JK
2663 area = &(zone->free_area[current_order]);
2664 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2665 start_migratetype, false, &can_steal);
4eb7dce6
JK
2666 if (fallback_mt == -1)
2667 continue;
b2a0ac88 2668
7a8f58f3
VB
2669 /*
2670 * We cannot steal all free pages from the pageblock and the
2671 * requested migratetype is movable. In that case it's better to
2672 * steal and split the smallest available page instead of the
2673 * largest available page, because even if the next movable
2674 * allocation falls back into a different pageblock than this
2675 * one, it won't cause permanent fragmentation.
2676 */
2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678 && current_order > order)
2679 goto find_smallest;
b2a0ac88 2680
7a8f58f3
VB
2681 goto do_steal;
2682 }
e0fff1bd 2683
7a8f58f3 2684 return false;
e0fff1bd 2685
7a8f58f3
VB
2686find_smallest:
2687 for (current_order = order; current_order < MAX_ORDER;
2688 current_order++) {
2689 area = &(zone->free_area[current_order]);
2690 fallback_mt = find_suitable_fallback(area, current_order,
2691 start_migratetype, false, &can_steal);
2692 if (fallback_mt != -1)
2693 break;
b2a0ac88
MG
2694 }
2695
7a8f58f3
VB
2696 /*
2697 * This should not happen - we already found a suitable fallback
2698 * when looking for the largest page.
2699 */
2700 VM_BUG_ON(current_order == MAX_ORDER);
2701
2702do_steal:
b03641af 2703 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2704
1c30844d
MG
2705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706 can_steal);
7a8f58f3
VB
2707
2708 trace_mm_page_alloc_extfrag(page, order, current_order,
2709 start_migratetype, fallback_mt);
2710
2711 return true;
2712
b2a0ac88
MG
2713}
2714
56fd56b8 2715/*
1da177e4
LT
2716 * Do the hard work of removing an element from the buddy allocator.
2717 * Call me with the zone->lock already held.
2718 */
85ccc8fa 2719static __always_inline struct page *
6bb15450
MG
2720__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721 unsigned int alloc_flags)
1da177e4 2722{
1da177e4
LT
2723 struct page *page;
2724
3bc48f96 2725retry:
56fd56b8 2726 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2727 if (unlikely(!page)) {
dc67647b
JK
2728 if (migratetype == MIGRATE_MOVABLE)
2729 page = __rmqueue_cma_fallback(zone, order);
2730
6bb15450
MG
2731 if (!page && __rmqueue_fallback(zone, order, migratetype,
2732 alloc_flags))
3bc48f96 2733 goto retry;
728ec980
MG
2734 }
2735
0d3d062a 2736 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2737 return page;
1da177e4
LT
2738}
2739
5f63b720 2740/*
1da177e4
LT
2741 * Obtain a specified number of elements from the buddy allocator, all under
2742 * a single hold of the lock, for efficiency. Add them to the supplied list.
2743 * Returns the number of new pages which were placed at *list.
2744 */
5f63b720 2745static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2746 unsigned long count, struct list_head *list,
6bb15450 2747 int migratetype, unsigned int alloc_flags)
1da177e4 2748{
a6de734b 2749 int i, alloced = 0;
5f63b720 2750
d34b0733 2751 spin_lock(&zone->lock);
1da177e4 2752 for (i = 0; i < count; ++i) {
6bb15450
MG
2753 struct page *page = __rmqueue(zone, order, migratetype,
2754 alloc_flags);
085cc7d5 2755 if (unlikely(page == NULL))
1da177e4 2756 break;
81eabcbe 2757
479f854a
MG
2758 if (unlikely(check_pcp_refill(page)))
2759 continue;
2760
81eabcbe 2761 /*
0fac3ba5
VB
2762 * Split buddy pages returned by expand() are received here in
2763 * physical page order. The page is added to the tail of
2764 * caller's list. From the callers perspective, the linked list
2765 * is ordered by page number under some conditions. This is
2766 * useful for IO devices that can forward direction from the
2767 * head, thus also in the physical page order. This is useful
2768 * for IO devices that can merge IO requests if the physical
2769 * pages are ordered properly.
81eabcbe 2770 */
0fac3ba5 2771 list_add_tail(&page->lru, list);
a6de734b 2772 alloced++;
bb14c2c7 2773 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775 -(1 << order));
1da177e4 2776 }
a6de734b
MG
2777
2778 /*
2779 * i pages were removed from the buddy list even if some leak due
2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781 * on i. Do not confuse with 'alloced' which is the number of
2782 * pages added to the pcp list.
2783 */
f2260e6b 2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2785 spin_unlock(&zone->lock);
a6de734b 2786 return alloced;
1da177e4
LT
2787}
2788
4ae7c039 2789#ifdef CONFIG_NUMA
8fce4d8e 2790/*
4037d452
CL
2791 * Called from the vmstat counter updater to drain pagesets of this
2792 * currently executing processor on remote nodes after they have
2793 * expired.
2794 *
879336c3
CL
2795 * Note that this function must be called with the thread pinned to
2796 * a single processor.
8fce4d8e 2797 */
4037d452 2798void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2799{
4ae7c039 2800 unsigned long flags;
7be12fc9 2801 int to_drain, batch;
4ae7c039 2802
4037d452 2803 local_irq_save(flags);
4db0c3c2 2804 batch = READ_ONCE(pcp->batch);
7be12fc9 2805 to_drain = min(pcp->count, batch);
77ba9062 2806 if (to_drain > 0)
2a13515c 2807 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2808 local_irq_restore(flags);
4ae7c039
CL
2809}
2810#endif
2811
9f8f2172 2812/*
93481ff0 2813 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2814 *
2815 * The processor must either be the current processor and the
2816 * thread pinned to the current processor or a processor that
2817 * is not online.
2818 */
93481ff0 2819static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2820{
c54ad30c 2821 unsigned long flags;
93481ff0
VB
2822 struct per_cpu_pageset *pset;
2823 struct per_cpu_pages *pcp;
1da177e4 2824
93481ff0
VB
2825 local_irq_save(flags);
2826 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2827
93481ff0 2828 pcp = &pset->pcp;
77ba9062 2829 if (pcp->count)
93481ff0 2830 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2831 local_irq_restore(flags);
2832}
3dfa5721 2833
93481ff0
VB
2834/*
2835 * Drain pcplists of all zones on the indicated processor.
2836 *
2837 * The processor must either be the current processor and the
2838 * thread pinned to the current processor or a processor that
2839 * is not online.
2840 */
2841static void drain_pages(unsigned int cpu)
2842{
2843 struct zone *zone;
2844
2845 for_each_populated_zone(zone) {
2846 drain_pages_zone(cpu, zone);
1da177e4
LT
2847 }
2848}
1da177e4 2849
9f8f2172
CL
2850/*
2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2852 *
2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854 * the single zone's pages.
9f8f2172 2855 */
93481ff0 2856void drain_local_pages(struct zone *zone)
9f8f2172 2857{
93481ff0
VB
2858 int cpu = smp_processor_id();
2859
2860 if (zone)
2861 drain_pages_zone(cpu, zone);
2862 else
2863 drain_pages(cpu);
9f8f2172
CL
2864}
2865
0ccce3b9
MG
2866static void drain_local_pages_wq(struct work_struct *work)
2867{
d9367bd0
WY
2868 struct pcpu_drain *drain;
2869
2870 drain = container_of(work, struct pcpu_drain, work);
2871
a459eeb7
MH
2872 /*
2873 * drain_all_pages doesn't use proper cpu hotplug protection so
2874 * we can race with cpu offline when the WQ can move this from
2875 * a cpu pinned worker to an unbound one. We can operate on a different
2876 * cpu which is allright but we also have to make sure to not move to
2877 * a different one.
2878 */
2879 preempt_disable();
d9367bd0 2880 drain_local_pages(drain->zone);
a459eeb7 2881 preempt_enable();
0ccce3b9
MG
2882}
2883
9f8f2172 2884/*
74046494
GBY
2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2886 *
93481ff0
VB
2887 * When zone parameter is non-NULL, spill just the single zone's pages.
2888 *
0ccce3b9 2889 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2890 */
93481ff0 2891void drain_all_pages(struct zone *zone)
9f8f2172 2892{
74046494 2893 int cpu;
74046494
GBY
2894
2895 /*
2896 * Allocate in the BSS so we wont require allocation in
2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2898 */
2899 static cpumask_t cpus_with_pcps;
2900
ce612879
MH
2901 /*
2902 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 * initialized.
2904 */
2905 if (WARN_ON_ONCE(!mm_percpu_wq))
2906 return;
2907
bd233f53
MG
2908 /*
2909 * Do not drain if one is already in progress unless it's specific to
2910 * a zone. Such callers are primarily CMA and memory hotplug and need
2911 * the drain to be complete when the call returns.
2912 */
2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914 if (!zone)
2915 return;
2916 mutex_lock(&pcpu_drain_mutex);
2917 }
0ccce3b9 2918
74046494
GBY
2919 /*
2920 * We don't care about racing with CPU hotplug event
2921 * as offline notification will cause the notified
2922 * cpu to drain that CPU pcps and on_each_cpu_mask
2923 * disables preemption as part of its processing
2924 */
2925 for_each_online_cpu(cpu) {
93481ff0
VB
2926 struct per_cpu_pageset *pcp;
2927 struct zone *z;
74046494 2928 bool has_pcps = false;
93481ff0
VB
2929
2930 if (zone) {
74046494 2931 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2932 if (pcp->pcp.count)
74046494 2933 has_pcps = true;
93481ff0
VB
2934 } else {
2935 for_each_populated_zone(z) {
2936 pcp = per_cpu_ptr(z->pageset, cpu);
2937 if (pcp->pcp.count) {
2938 has_pcps = true;
2939 break;
2940 }
74046494
GBY
2941 }
2942 }
93481ff0 2943
74046494
GBY
2944 if (has_pcps)
2945 cpumask_set_cpu(cpu, &cpus_with_pcps);
2946 else
2947 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948 }
0ccce3b9 2949
bd233f53 2950 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2952
2953 drain->zone = zone;
2954 INIT_WORK(&drain->work, drain_local_pages_wq);
2955 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2956 }
bd233f53 2957 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2959
2960 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2961}
2962
296699de 2963#ifdef CONFIG_HIBERNATION
1da177e4 2964
556b969a
CY
2965/*
2966 * Touch the watchdog for every WD_PAGE_COUNT pages.
2967 */
2968#define WD_PAGE_COUNT (128*1024)
2969
1da177e4
LT
2970void mark_free_pages(struct zone *zone)
2971{
556b969a 2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2973 unsigned long flags;
7aeb09f9 2974 unsigned int order, t;
86760a2c 2975 struct page *page;
1da177e4 2976
8080fc03 2977 if (zone_is_empty(zone))
1da177e4
LT
2978 return;
2979
2980 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2981
108bcc96 2982 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984 if (pfn_valid(pfn)) {
86760a2c 2985 page = pfn_to_page(pfn);
ba6b0979 2986
556b969a
CY
2987 if (!--page_count) {
2988 touch_nmi_watchdog();
2989 page_count = WD_PAGE_COUNT;
2990 }
2991
ba6b0979
JK
2992 if (page_zone(page) != zone)
2993 continue;
2994
7be98234
RW
2995 if (!swsusp_page_is_forbidden(page))
2996 swsusp_unset_page_free(page);
f623f0db 2997 }
1da177e4 2998
b2a0ac88 2999 for_each_migratetype_order(order, t) {
86760a2c
GT
3000 list_for_each_entry(page,
3001 &zone->free_area[order].free_list[t], lru) {
f623f0db 3002 unsigned long i;
1da177e4 3003
86760a2c 3004 pfn = page_to_pfn(page);
556b969a
CY
3005 for (i = 0; i < (1UL << order); i++) {
3006 if (!--page_count) {
3007 touch_nmi_watchdog();
3008 page_count = WD_PAGE_COUNT;
3009 }
7be98234 3010 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3011 }
f623f0db 3012 }
b2a0ac88 3013 }
1da177e4
LT
3014 spin_unlock_irqrestore(&zone->lock, flags);
3015}
e2c55dc8 3016#endif /* CONFIG_PM */
1da177e4 3017
2d4894b5 3018static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3019{
5f8dcc21 3020 int migratetype;
1da177e4 3021
4db7548c 3022 if (!free_pcp_prepare(page))
9cca35d4 3023 return false;
689bcebf 3024
dc4b0caf 3025 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3026 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3027 return true;
3028}
3029
2d4894b5 3030static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3031{
3032 struct zone *zone = page_zone(page);
3033 struct per_cpu_pages *pcp;
3034 int migratetype;
3035
3036 migratetype = get_pcppage_migratetype(page);
d34b0733 3037 __count_vm_event(PGFREE);
da456f14 3038
5f8dcc21
MG
3039 /*
3040 * We only track unmovable, reclaimable and movable on pcp lists.
3041 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3042 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3043 * areas back if necessary. Otherwise, we may have to free
3044 * excessively into the page allocator
3045 */
3046 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3047 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3048 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3049 return;
5f8dcc21
MG
3050 }
3051 migratetype = MIGRATE_MOVABLE;
3052 }
3053
99dcc3e5 3054 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3055 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3056 pcp->count++;
48db57f8 3057 if (pcp->count >= pcp->high) {
4db0c3c2 3058 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3059 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3060 }
9cca35d4 3061}
5f8dcc21 3062
9cca35d4
MG
3063/*
3064 * Free a 0-order page
9cca35d4 3065 */
2d4894b5 3066void free_unref_page(struct page *page)
9cca35d4
MG
3067{
3068 unsigned long flags;
3069 unsigned long pfn = page_to_pfn(page);
3070
2d4894b5 3071 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3072 return;
3073
3074 local_irq_save(flags);
2d4894b5 3075 free_unref_page_commit(page, pfn);
d34b0733 3076 local_irq_restore(flags);
1da177e4
LT
3077}
3078
cc59850e
KK
3079/*
3080 * Free a list of 0-order pages
3081 */
2d4894b5 3082void free_unref_page_list(struct list_head *list)
cc59850e
KK
3083{
3084 struct page *page, *next;
9cca35d4 3085 unsigned long flags, pfn;
c24ad77d 3086 int batch_count = 0;
9cca35d4
MG
3087
3088 /* Prepare pages for freeing */
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 pfn = page_to_pfn(page);
2d4894b5 3091 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3092 list_del(&page->lru);
3093 set_page_private(page, pfn);
3094 }
cc59850e 3095
9cca35d4 3096 local_irq_save(flags);
cc59850e 3097 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3098 unsigned long pfn = page_private(page);
3099
3100 set_page_private(page, 0);
2d4894b5
MG
3101 trace_mm_page_free_batched(page);
3102 free_unref_page_commit(page, pfn);
c24ad77d
LS
3103
3104 /*
3105 * Guard against excessive IRQ disabled times when we get
3106 * a large list of pages to free.
3107 */
3108 if (++batch_count == SWAP_CLUSTER_MAX) {
3109 local_irq_restore(flags);
3110 batch_count = 0;
3111 local_irq_save(flags);
3112 }
cc59850e 3113 }
9cca35d4 3114 local_irq_restore(flags);
cc59850e
KK
3115}
3116
8dfcc9ba
NP
3117/*
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3120 * Each sub-page must be freed individually.
3121 *
3122 * Note: this is probably too low level an operation for use in drivers.
3123 * Please consult with lkml before using this in your driver.
3124 */
3125void split_page(struct page *page, unsigned int order)
3126{
3127 int i;
3128
309381fe
SL
3129 VM_BUG_ON_PAGE(PageCompound(page), page);
3130 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3131
a9627bc5 3132 for (i = 1; i < (1 << order); i++)
7835e98b 3133 set_page_refcounted(page + i);
a9627bc5 3134 split_page_owner(page, order);
8dfcc9ba 3135}
5853ff23 3136EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3137
3c605096 3138int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3139{
b03641af 3140 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3141 unsigned long watermark;
3142 struct zone *zone;
2139cbe6 3143 int mt;
748446bb
MG
3144
3145 BUG_ON(!PageBuddy(page));
3146
3147 zone = page_zone(page);
2e30abd1 3148 mt = get_pageblock_migratetype(page);
748446bb 3149
194159fb 3150 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3151 /*
3152 * Obey watermarks as if the page was being allocated. We can
3153 * emulate a high-order watermark check with a raised order-0
3154 * watermark, because we already know our high-order page
3155 * exists.
3156 */
fd1444b2 3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3159 return 0;
3160
8fb74b9f 3161 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3162 }
748446bb
MG
3163
3164 /* Remove page from free list */
b03641af
DW
3165
3166 del_page_from_free_area(page, area);
2139cbe6 3167
400bc7fd 3168 /*
3169 * Set the pageblock if the isolated page is at least half of a
3170 * pageblock
3171 */
748446bb
MG
3172 if (order >= pageblock_order - 1) {
3173 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3174 for (; page < endpage; page += pageblock_nr_pages) {
3175 int mt = get_pageblock_migratetype(page);
88ed365e 3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3177 && !is_migrate_highatomic(mt))
47118af0
MN
3178 set_pageblock_migratetype(page,
3179 MIGRATE_MOVABLE);
3180 }
748446bb
MG
3181 }
3182
f3a14ced 3183
8fb74b9f 3184 return 1UL << order;
1fb3f8ca
MG
3185}
3186
060e7417
MG
3187/*
3188 * Update NUMA hit/miss statistics
3189 *
3190 * Must be called with interrupts disabled.
060e7417 3191 */
41b6167e 3192static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3193{
3194#ifdef CONFIG_NUMA
3a321d2a 3195 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3196
4518085e
KW
3197 /* skip numa counters update if numa stats is disabled */
3198 if (!static_branch_likely(&vm_numa_stat_key))
3199 return;
3200
c1093b74 3201 if (zone_to_nid(z) != numa_node_id())
060e7417 3202 local_stat = NUMA_OTHER;
060e7417 3203
c1093b74 3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3205 __inc_numa_state(z, NUMA_HIT);
2df26639 3206 else {
3a321d2a
KW
3207 __inc_numa_state(z, NUMA_MISS);
3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3209 }
3a321d2a 3210 __inc_numa_state(z, local_stat);
060e7417
MG
3211#endif
3212}
3213
066b2393
MG
3214/* Remove page from the per-cpu list, caller must protect the list */
3215static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3216 unsigned int alloc_flags,
453f85d4 3217 struct per_cpu_pages *pcp,
066b2393
MG
3218 struct list_head *list)
3219{
3220 struct page *page;
3221
3222 do {
3223 if (list_empty(list)) {
3224 pcp->count += rmqueue_bulk(zone, 0,
3225 pcp->batch, list,
6bb15450 3226 migratetype, alloc_flags);
066b2393
MG
3227 if (unlikely(list_empty(list)))
3228 return NULL;
3229 }
3230
453f85d4 3231 page = list_first_entry(list, struct page, lru);
066b2393
MG
3232 list_del(&page->lru);
3233 pcp->count--;
3234 } while (check_new_pcp(page));
3235
3236 return page;
3237}
3238
3239/* Lock and remove page from the per-cpu list */
3240static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3241 struct zone *zone, gfp_t gfp_flags,
3242 int migratetype, unsigned int alloc_flags)
066b2393
MG
3243{
3244 struct per_cpu_pages *pcp;
3245 struct list_head *list;
066b2393 3246 struct page *page;
d34b0733 3247 unsigned long flags;
066b2393 3248
d34b0733 3249 local_irq_save(flags);
066b2393
MG
3250 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251 list = &pcp->lists[migratetype];
6bb15450 3252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3253 if (page) {
1c52e6d0 3254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3255 zone_statistics(preferred_zone, zone);
3256 }
d34b0733 3257 local_irq_restore(flags);
066b2393
MG
3258 return page;
3259}
3260
1da177e4 3261/*
75379191 3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3263 */
0a15c3e9 3264static inline
066b2393 3265struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3266 struct zone *zone, unsigned int order,
c603844b
MG
3267 gfp_t gfp_flags, unsigned int alloc_flags,
3268 int migratetype)
1da177e4
LT
3269{
3270 unsigned long flags;
689bcebf 3271 struct page *page;
1da177e4 3272
d34b0733 3273 if (likely(order == 0)) {
1c52e6d0
YS
3274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275 migratetype, alloc_flags);
066b2393
MG
3276 goto out;
3277 }
83b9355b 3278
066b2393
MG
3279 /*
3280 * We most definitely don't want callers attempting to
3281 * allocate greater than order-1 page units with __GFP_NOFAIL.
3282 */
3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3285
066b2393
MG
3286 do {
3287 page = NULL;
3288 if (alloc_flags & ALLOC_HARDER) {
3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290 if (page)
3291 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3292 }
a74609fa 3293 if (!page)
6bb15450 3294 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3295 } while (page && check_new_pages(page, order));
3296 spin_unlock(&zone->lock);
3297 if (!page)
3298 goto failed;
3299 __mod_zone_freepage_state(zone, -(1 << order),
3300 get_pcppage_migratetype(page));
1da177e4 3301
16709d1d 3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3303 zone_statistics(preferred_zone, zone);
a74609fa 3304 local_irq_restore(flags);
1da177e4 3305
066b2393 3306out:
73444bc4
MG
3307 /* Separate test+clear to avoid unnecessary atomics */
3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311 }
3312
066b2393 3313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3314 return page;
a74609fa
NP
3315
3316failed:
3317 local_irq_restore(flags);
a74609fa 3318 return NULL;
1da177e4
LT
3319}
3320
933e312e
AM
3321#ifdef CONFIG_FAIL_PAGE_ALLOC
3322
b2588c4b 3323static struct {
933e312e
AM
3324 struct fault_attr attr;
3325
621a5f7a 3326 bool ignore_gfp_highmem;
71baba4b 3327 bool ignore_gfp_reclaim;
54114994 3328 u32 min_order;
933e312e
AM
3329} fail_page_alloc = {
3330 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3331 .ignore_gfp_reclaim = true,
621a5f7a 3332 .ignore_gfp_highmem = true,
54114994 3333 .min_order = 1,
933e312e
AM
3334};
3335
3336static int __init setup_fail_page_alloc(char *str)
3337{
3338 return setup_fault_attr(&fail_page_alloc.attr, str);
3339}
3340__setup("fail_page_alloc=", setup_fail_page_alloc);
3341
af3b8544 3342static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3343{
54114994 3344 if (order < fail_page_alloc.min_order)
deaf386e 3345 return false;
933e312e 3346 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3347 return false;
933e312e 3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3349 return false;
71baba4b
MG
3350 if (fail_page_alloc.ignore_gfp_reclaim &&
3351 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3352 return false;
933e312e
AM
3353
3354 return should_fail(&fail_page_alloc.attr, 1 << order);
3355}
3356
3357#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3358
3359static int __init fail_page_alloc_debugfs(void)
3360{
0825a6f9 3361 umode_t mode = S_IFREG | 0600;
933e312e 3362 struct dentry *dir;
933e312e 3363
dd48c085
AM
3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365 &fail_page_alloc.attr);
b2588c4b 3366
d9f7979c
GKH
3367 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368 &fail_page_alloc.ignore_gfp_reclaim);
3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370 &fail_page_alloc.ignore_gfp_highmem);
3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3372
d9f7979c 3373 return 0;
933e312e
AM
3374}
3375
3376late_initcall(fail_page_alloc_debugfs);
3377
3378#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3379
3380#else /* CONFIG_FAIL_PAGE_ALLOC */
3381
af3b8544 3382static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3383{
deaf386e 3384 return false;
933e312e
AM
3385}
3386
3387#endif /* CONFIG_FAIL_PAGE_ALLOC */
3388
af3b8544
BP
3389static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3390{
3391 return __should_fail_alloc_page(gfp_mask, order);
3392}
3393ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394
1da177e4 3395/*
97a16fc8
MG
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3398 * one free page of a suitable size. Checking now avoids taking the zone lock
3399 * to check in the allocation paths if no pages are free.
1da177e4 3400 */
86a294a8
MH
3401bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402 int classzone_idx, unsigned int alloc_flags,
3403 long free_pages)
1da177e4 3404{
d23ad423 3405 long min = mark;
1da177e4 3406 int o;
cd04ae1e 3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3408
0aaa29a5 3409 /* free_pages may go negative - that's OK */
df0a6daa 3410 free_pages -= (1 << order) - 1;
0aaa29a5 3411
7fb1d9fc 3412 if (alloc_flags & ALLOC_HIGH)
1da177e4 3413 min -= min / 2;
0aaa29a5
MG
3414
3415 /*
3416 * If the caller does not have rights to ALLOC_HARDER then subtract
3417 * the high-atomic reserves. This will over-estimate the size of the
3418 * atomic reserve but it avoids a search.
3419 */
cd04ae1e 3420 if (likely(!alloc_harder)) {
0aaa29a5 3421 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3422 } else {
3423 /*
3424 * OOM victims can try even harder than normal ALLOC_HARDER
3425 * users on the grounds that it's definitely going to be in
3426 * the exit path shortly and free memory. Any allocation it
3427 * makes during the free path will be small and short-lived.
3428 */
3429 if (alloc_flags & ALLOC_OOM)
3430 min -= min / 2;
3431 else
3432 min -= min / 4;
3433 }
3434
e2b19197 3435
d883c6cf
JK
3436#ifdef CONFIG_CMA
3437 /* If allocation can't use CMA areas don't use free CMA pages */
3438 if (!(alloc_flags & ALLOC_CMA))
3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440#endif
3441
97a16fc8
MG
3442 /*
3443 * Check watermarks for an order-0 allocation request. If these
3444 * are not met, then a high-order request also cannot go ahead
3445 * even if a suitable page happened to be free.
3446 */
3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3448 return false;
1da177e4 3449
97a16fc8
MG
3450 /* If this is an order-0 request then the watermark is fine */
3451 if (!order)
3452 return true;
3453
3454 /* For a high-order request, check at least one suitable page is free */
3455 for (o = order; o < MAX_ORDER; o++) {
3456 struct free_area *area = &z->free_area[o];
3457 int mt;
3458
3459 if (!area->nr_free)
3460 continue;
3461
97a16fc8 3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3463 if (!free_area_empty(area, mt))
97a16fc8
MG
3464 return true;
3465 }
3466
3467#ifdef CONFIG_CMA
d883c6cf 3468 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3469 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3470 return true;
d883c6cf 3471 }
97a16fc8 3472#endif
b050e376
VB
3473 if (alloc_harder &&
3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475 return true;
1da177e4 3476 }
97a16fc8 3477 return false;
88f5acf8
MG
3478}
3479
7aeb09f9 3480bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3481 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3482{
3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484 zone_page_state(z, NR_FREE_PAGES));
3485}
3486
48ee5f36
MG
3487static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3488 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3489{
3490 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3491 long cma_pages = 0;
3492
3493#ifdef CONFIG_CMA
3494 /* If allocation can't use CMA areas don't use free CMA pages */
3495 if (!(alloc_flags & ALLOC_CMA))
3496 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3497#endif
48ee5f36
MG
3498
3499 /*
3500 * Fast check for order-0 only. If this fails then the reserves
3501 * need to be calculated. There is a corner case where the check
3502 * passes but only the high-order atomic reserve are free. If
3503 * the caller is !atomic then it'll uselessly search the free
3504 * list. That corner case is then slower but it is harmless.
3505 */
d883c6cf 3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3507 return true;
3508
3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3510 free_pages);
3511}
3512
7aeb09f9 3513bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3514 unsigned long mark, int classzone_idx)
88f5acf8
MG
3515{
3516 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3517
3518 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3519 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3520
e2b19197 3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3522 free_pages);
1da177e4
LT
3523}
3524
9276b1bc 3525#ifdef CONFIG_NUMA
957f822a
DR
3526static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3527{
e02dc017 3528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3529 node_reclaim_distance;
957f822a 3530}
9276b1bc 3531#else /* CONFIG_NUMA */
957f822a
DR
3532static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3533{
3534 return true;
3535}
9276b1bc
PJ
3536#endif /* CONFIG_NUMA */
3537
6bb15450
MG
3538/*
3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3541 * premature use of a lower zone may cause lowmem pressure problems that
3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3543 * probably too small. It only makes sense to spread allocations to avoid
3544 * fragmentation between the Normal and DMA32 zones.
3545 */
3546static inline unsigned int
0a79cdad 3547alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3548{
0a79cdad
MG
3549 unsigned int alloc_flags = 0;
3550
3551 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3552 alloc_flags |= ALLOC_KSWAPD;
3553
3554#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3555 if (!zone)
3556 return alloc_flags;
3557
6bb15450 3558 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3559 return alloc_flags;
6bb15450
MG
3560
3561 /*
3562 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3563 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3564 * on UMA that if Normal is populated then so is DMA32.
3565 */
3566 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3567 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3568 return alloc_flags;
6bb15450 3569
8118b82e 3570 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3571#endif /* CONFIG_ZONE_DMA32 */
3572 return alloc_flags;
6bb15450 3573}
6bb15450 3574
7fb1d9fc 3575/*
0798e519 3576 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3577 * a page.
3578 */
3579static struct page *
a9263751
VB
3580get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3581 const struct alloc_context *ac)
753ee728 3582{
6bb15450 3583 struct zoneref *z;
5117f45d 3584 struct zone *zone;
3b8c0be4 3585 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3586 bool no_fallback;
3b8c0be4 3587
6bb15450 3588retry:
7fb1d9fc 3589 /*
9276b1bc 3590 * Scan zonelist, looking for a zone with enough free.
344736f2 3591 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3592 */
6bb15450
MG
3593 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3594 z = ac->preferred_zoneref;
c33d6c06 3595 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3596 ac->nodemask) {
be06af00 3597 struct page *page;
e085dbc5
JW
3598 unsigned long mark;
3599
664eedde
MG
3600 if (cpusets_enabled() &&
3601 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3602 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3603 continue;
a756cf59
JW
3604 /*
3605 * When allocating a page cache page for writing, we
281e3726
MG
3606 * want to get it from a node that is within its dirty
3607 * limit, such that no single node holds more than its
a756cf59 3608 * proportional share of globally allowed dirty pages.
281e3726 3609 * The dirty limits take into account the node's
a756cf59
JW
3610 * lowmem reserves and high watermark so that kswapd
3611 * should be able to balance it without having to
3612 * write pages from its LRU list.
3613 *
a756cf59 3614 * XXX: For now, allow allocations to potentially
281e3726 3615 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3616 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3617 * which is important when on a NUMA setup the allowed
281e3726 3618 * nodes are together not big enough to reach the
a756cf59 3619 * global limit. The proper fix for these situations
281e3726 3620 * will require awareness of nodes in the
a756cf59
JW
3621 * dirty-throttling and the flusher threads.
3622 */
3b8c0be4
MG
3623 if (ac->spread_dirty_pages) {
3624 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3625 continue;
3626
3627 if (!node_dirty_ok(zone->zone_pgdat)) {
3628 last_pgdat_dirty_limit = zone->zone_pgdat;
3629 continue;
3630 }
3631 }
7fb1d9fc 3632
6bb15450
MG
3633 if (no_fallback && nr_online_nodes > 1 &&
3634 zone != ac->preferred_zoneref->zone) {
3635 int local_nid;
3636
3637 /*
3638 * If moving to a remote node, retry but allow
3639 * fragmenting fallbacks. Locality is more important
3640 * than fragmentation avoidance.
3641 */
3642 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3643 if (zone_to_nid(zone) != local_nid) {
3644 alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 goto retry;
3646 }
3647 }
3648
a9214443 3649 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3650 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3651 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3652 int ret;
3653
c9e97a19
PT
3654#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3655 /*
3656 * Watermark failed for this zone, but see if we can
3657 * grow this zone if it contains deferred pages.
3658 */
3659 if (static_branch_unlikely(&deferred_pages)) {
3660 if (_deferred_grow_zone(zone, order))
3661 goto try_this_zone;
3662 }
3663#endif
5dab2911
MG
3664 /* Checked here to keep the fast path fast */
3665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3666 if (alloc_flags & ALLOC_NO_WATERMARKS)
3667 goto try_this_zone;
3668
a5f5f91d 3669 if (node_reclaim_mode == 0 ||
c33d6c06 3670 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3671 continue;
3672
a5f5f91d 3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3674 switch (ret) {
a5f5f91d 3675 case NODE_RECLAIM_NOSCAN:
fa5e084e 3676 /* did not scan */
cd38b115 3677 continue;
a5f5f91d 3678 case NODE_RECLAIM_FULL:
fa5e084e 3679 /* scanned but unreclaimable */
cd38b115 3680 continue;
fa5e084e
MG
3681 default:
3682 /* did we reclaim enough */
fed2719e 3683 if (zone_watermark_ok(zone, order, mark,
93ea9964 3684 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3685 goto try_this_zone;
3686
fed2719e 3687 continue;
0798e519 3688 }
7fb1d9fc
RS
3689 }
3690
fa5e084e 3691try_this_zone:
066b2393 3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3693 gfp_mask, alloc_flags, ac->migratetype);
75379191 3694 if (page) {
479f854a 3695 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3696
3697 /*
3698 * If this is a high-order atomic allocation then check
3699 * if the pageblock should be reserved for the future
3700 */
3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3702 reserve_highatomic_pageblock(page, zone, order);
3703
75379191 3704 return page;
c9e97a19
PT
3705 } else {
3706#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3707 /* Try again if zone has deferred pages */
3708 if (static_branch_unlikely(&deferred_pages)) {
3709 if (_deferred_grow_zone(zone, order))
3710 goto try_this_zone;
3711 }
3712#endif
75379191 3713 }
54a6eb5c 3714 }
9276b1bc 3715
6bb15450
MG
3716 /*
3717 * It's possible on a UMA machine to get through all zones that are
3718 * fragmented. If avoiding fragmentation, reset and try again.
3719 */
3720 if (no_fallback) {
3721 alloc_flags &= ~ALLOC_NOFRAGMENT;
3722 goto retry;
3723 }
3724
4ffeaf35 3725 return NULL;
753ee728
MH
3726}
3727
9af744d7 3728static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3729{
a238ab5b 3730 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3731
3732 /*
3733 * This documents exceptions given to allocations in certain
3734 * contexts that are allowed to allocate outside current's set
3735 * of allowed nodes.
3736 */
3737 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3738 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3739 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3742 filter &= ~SHOW_MEM_FILTER_NODES;
3743
9af744d7 3744 show_mem(filter, nodemask);
aa187507
MH
3745}
3746
a8e99259 3747void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3748{
3749 struct va_format vaf;
3750 va_list args;
1be334e5 3751 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3752
0f7896f1 3753 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3754 return;
3755
7877cdcc
MH
3756 va_start(args, fmt);
3757 vaf.fmt = fmt;
3758 vaf.va = &args;
ef8444ea 3759 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3760 current->comm, &vaf, gfp_mask, &gfp_mask,
3761 nodemask_pr_args(nodemask));
7877cdcc 3762 va_end(args);
3ee9a4f0 3763
a8e99259 3764 cpuset_print_current_mems_allowed();
ef8444ea 3765 pr_cont("\n");
a238ab5b 3766 dump_stack();
685dbf6f 3767 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3768}
3769
6c18ba7a
MH
3770static inline struct page *
3771__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3772 unsigned int alloc_flags,
3773 const struct alloc_context *ac)
3774{
3775 struct page *page;
3776
3777 page = get_page_from_freelist(gfp_mask, order,
3778 alloc_flags|ALLOC_CPUSET, ac);
3779 /*
3780 * fallback to ignore cpuset restriction if our nodes
3781 * are depleted
3782 */
3783 if (!page)
3784 page = get_page_from_freelist(gfp_mask, order,
3785 alloc_flags, ac);
3786
3787 return page;
3788}
3789
11e33f6a
MG
3790static inline struct page *
3791__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3792 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3793{
6e0fc46d
DR
3794 struct oom_control oc = {
3795 .zonelist = ac->zonelist,
3796 .nodemask = ac->nodemask,
2a966b77 3797 .memcg = NULL,
6e0fc46d
DR
3798 .gfp_mask = gfp_mask,
3799 .order = order,
6e0fc46d 3800 };
11e33f6a
MG
3801 struct page *page;
3802
9879de73
JW
3803 *did_some_progress = 0;
3804
9879de73 3805 /*
dc56401f
JW
3806 * Acquire the oom lock. If that fails, somebody else is
3807 * making progress for us.
9879de73 3808 */
dc56401f 3809 if (!mutex_trylock(&oom_lock)) {
9879de73 3810 *did_some_progress = 1;
11e33f6a 3811 schedule_timeout_uninterruptible(1);
1da177e4
LT
3812 return NULL;
3813 }
6b1de916 3814
11e33f6a
MG
3815 /*
3816 * Go through the zonelist yet one more time, keep very high watermark
3817 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3818 * we're still under heavy pressure. But make sure that this reclaim
3819 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3820 * allocation which will never fail due to oom_lock already held.
11e33f6a 3821 */
e746bf73
TH
3822 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3823 ~__GFP_DIRECT_RECLAIM, order,
3824 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3825 if (page)
11e33f6a
MG
3826 goto out;
3827
06ad276a
MH
3828 /* Coredumps can quickly deplete all memory reserves */
3829 if (current->flags & PF_DUMPCORE)
3830 goto out;
3831 /* The OOM killer will not help higher order allocs */
3832 if (order > PAGE_ALLOC_COSTLY_ORDER)
3833 goto out;
dcda9b04
MH
3834 /*
3835 * We have already exhausted all our reclaim opportunities without any
3836 * success so it is time to admit defeat. We will skip the OOM killer
3837 * because it is very likely that the caller has a more reasonable
3838 * fallback than shooting a random task.
3839 */
3840 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3841 goto out;
06ad276a
MH
3842 /* The OOM killer does not needlessly kill tasks for lowmem */
3843 if (ac->high_zoneidx < ZONE_NORMAL)
3844 goto out;
3845 if (pm_suspended_storage())
3846 goto out;
3847 /*
3848 * XXX: GFP_NOFS allocations should rather fail than rely on
3849 * other request to make a forward progress.
3850 * We are in an unfortunate situation where out_of_memory cannot
3851 * do much for this context but let's try it to at least get
3852 * access to memory reserved if the current task is killed (see
3853 * out_of_memory). Once filesystems are ready to handle allocation
3854 * failures more gracefully we should just bail out here.
3855 */
3856
3857 /* The OOM killer may not free memory on a specific node */
3858 if (gfp_mask & __GFP_THISNODE)
3859 goto out;
3da88fb3 3860
3c2c6488 3861 /* Exhausted what can be done so it's blame time */
5020e285 3862 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3863 *did_some_progress = 1;
5020e285 3864
6c18ba7a
MH
3865 /*
3866 * Help non-failing allocations by giving them access to memory
3867 * reserves
3868 */
3869 if (gfp_mask & __GFP_NOFAIL)
3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3871 ALLOC_NO_WATERMARKS, ac);
5020e285 3872 }
11e33f6a 3873out:
dc56401f 3874 mutex_unlock(&oom_lock);
11e33f6a
MG
3875 return page;
3876}
3877
33c2d214
MH
3878/*
3879 * Maximum number of compaction retries wit a progress before OOM
3880 * killer is consider as the only way to move forward.
3881 */
3882#define MAX_COMPACT_RETRIES 16
3883
56de7263
MG
3884#ifdef CONFIG_COMPACTION
3885/* Try memory compaction for high-order allocations before reclaim */
3886static struct page *
3887__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3888 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3889 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3890{
5e1f0f09 3891 struct page *page = NULL;
eb414681 3892 unsigned long pflags;
499118e9 3893 unsigned int noreclaim_flag;
53853e2d
VB
3894
3895 if (!order)
66199712 3896 return NULL;
66199712 3897
eb414681 3898 psi_memstall_enter(&pflags);
499118e9 3899 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3900
c5d01d0d 3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3902 prio, &page);
eb414681 3903
499118e9 3904 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3905 psi_memstall_leave(&pflags);
56de7263 3906
98dd3b48
VB
3907 /*
3908 * At least in one zone compaction wasn't deferred or skipped, so let's
3909 * count a compaction stall
3910 */
3911 count_vm_event(COMPACTSTALL);
8fb74b9f 3912
5e1f0f09
MG
3913 /* Prep a captured page if available */
3914 if (page)
3915 prep_new_page(page, order, gfp_mask, alloc_flags);
3916
3917 /* Try get a page from the freelist if available */
3918 if (!page)
3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3920
98dd3b48
VB
3921 if (page) {
3922 struct zone *zone = page_zone(page);
53853e2d 3923
98dd3b48
VB
3924 zone->compact_blockskip_flush = false;
3925 compaction_defer_reset(zone, order, true);
3926 count_vm_event(COMPACTSUCCESS);
3927 return page;
3928 }
56de7263 3929
98dd3b48
VB
3930 /*
3931 * It's bad if compaction run occurs and fails. The most likely reason
3932 * is that pages exist, but not enough to satisfy watermarks.
3933 */
3934 count_vm_event(COMPACTFAIL);
66199712 3935
98dd3b48 3936 cond_resched();
56de7263
MG
3937
3938 return NULL;
3939}
33c2d214 3940
3250845d
VB
3941static inline bool
3942should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3943 enum compact_result compact_result,
3944 enum compact_priority *compact_priority,
d9436498 3945 int *compaction_retries)
3250845d
VB
3946{
3947 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3948 int min_priority;
65190cff
MH
3949 bool ret = false;
3950 int retries = *compaction_retries;
3951 enum compact_priority priority = *compact_priority;
3250845d
VB
3952
3953 if (!order)
3954 return false;
3955
d9436498
VB
3956 if (compaction_made_progress(compact_result))
3957 (*compaction_retries)++;
3958
3250845d
VB
3959 /*
3960 * compaction considers all the zone as desperately out of memory
3961 * so it doesn't really make much sense to retry except when the
3962 * failure could be caused by insufficient priority
3963 */
d9436498
VB
3964 if (compaction_failed(compact_result))
3965 goto check_priority;
3250845d 3966
49433085
VB
3967 /*
3968 * compaction was skipped because there are not enough order-0 pages
3969 * to work with, so we retry only if it looks like reclaim can help.
3970 */
3971 if (compaction_needs_reclaim(compact_result)) {
3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3973 goto out;
3974 }
3975
3250845d
VB
3976 /*
3977 * make sure the compaction wasn't deferred or didn't bail out early
3978 * due to locks contention before we declare that we should give up.
49433085
VB
3979 * But the next retry should use a higher priority if allowed, so
3980 * we don't just keep bailing out endlessly.
3250845d 3981 */
65190cff 3982 if (compaction_withdrawn(compact_result)) {
49433085 3983 goto check_priority;
65190cff 3984 }
3250845d
VB
3985
3986 /*
dcda9b04 3987 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3988 * costly ones because they are de facto nofail and invoke OOM
3989 * killer to move on while costly can fail and users are ready
3990 * to cope with that. 1/4 retries is rather arbitrary but we
3991 * would need much more detailed feedback from compaction to
3992 * make a better decision.
3993 */
3994 if (order > PAGE_ALLOC_COSTLY_ORDER)
3995 max_retries /= 4;
65190cff
MH
3996 if (*compaction_retries <= max_retries) {
3997 ret = true;
3998 goto out;
3999 }
3250845d 4000
d9436498
VB
4001 /*
4002 * Make sure there are attempts at the highest priority if we exhausted
4003 * all retries or failed at the lower priorities.
4004 */
4005check_priority:
c2033b00
VB
4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4007 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4008
c2033b00 4009 if (*compact_priority > min_priority) {
d9436498
VB
4010 (*compact_priority)--;
4011 *compaction_retries = 0;
65190cff 4012 ret = true;
d9436498 4013 }
65190cff
MH
4014out:
4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4016 return ret;
3250845d 4017}
56de7263
MG
4018#else
4019static inline struct page *
4020__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4021 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4022 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4023{
33c2d214 4024 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4025 return NULL;
4026}
33c2d214
MH
4027
4028static inline bool
86a294a8
MH
4029should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4030 enum compact_result compact_result,
a5508cd8 4031 enum compact_priority *compact_priority,
d9436498 4032 int *compaction_retries)
33c2d214 4033{
31e49bfd
MH
4034 struct zone *zone;
4035 struct zoneref *z;
4036
4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4038 return false;
4039
4040 /*
4041 * There are setups with compaction disabled which would prefer to loop
4042 * inside the allocator rather than hit the oom killer prematurely.
4043 * Let's give them a good hope and keep retrying while the order-0
4044 * watermarks are OK.
4045 */
4046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4047 ac->nodemask) {
4048 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4049 ac_classzone_idx(ac), alloc_flags))
4050 return true;
4051 }
33c2d214
MH
4052 return false;
4053}
3250845d 4054#endif /* CONFIG_COMPACTION */
56de7263 4055
d92a8cfc 4056#ifdef CONFIG_LOCKDEP
93781325 4057static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4058 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4059
4060static bool __need_fs_reclaim(gfp_t gfp_mask)
4061{
4062 gfp_mask = current_gfp_context(gfp_mask);
4063
4064 /* no reclaim without waiting on it */
4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4066 return false;
4067
4068 /* this guy won't enter reclaim */
2e517d68 4069 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4070 return false;
4071
4072 /* We're only interested __GFP_FS allocations for now */
4073 if (!(gfp_mask & __GFP_FS))
4074 return false;
4075
4076 if (gfp_mask & __GFP_NOLOCKDEP)
4077 return false;
4078
4079 return true;
4080}
4081
93781325
OS
4082void __fs_reclaim_acquire(void)
4083{
4084 lock_map_acquire(&__fs_reclaim_map);
4085}
4086
4087void __fs_reclaim_release(void)
4088{
4089 lock_map_release(&__fs_reclaim_map);
4090}
4091
d92a8cfc
PZ
4092void fs_reclaim_acquire(gfp_t gfp_mask)
4093{
4094 if (__need_fs_reclaim(gfp_mask))
93781325 4095 __fs_reclaim_acquire();
d92a8cfc
PZ
4096}
4097EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4098
4099void fs_reclaim_release(gfp_t gfp_mask)
4100{
4101 if (__need_fs_reclaim(gfp_mask))
93781325 4102 __fs_reclaim_release();
d92a8cfc
PZ
4103}
4104EXPORT_SYMBOL_GPL(fs_reclaim_release);
4105#endif
4106
bba90710
MS
4107/* Perform direct synchronous page reclaim */
4108static int
a9263751
VB
4109__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4110 const struct alloc_context *ac)
11e33f6a 4111{
bba90710 4112 int progress;
499118e9 4113 unsigned int noreclaim_flag;
eb414681 4114 unsigned long pflags;
11e33f6a
MG
4115
4116 cond_resched();
4117
4118 /* We now go into synchronous reclaim */
4119 cpuset_memory_pressure_bump();
eb414681 4120 psi_memstall_enter(&pflags);
d92a8cfc 4121 fs_reclaim_acquire(gfp_mask);
93781325 4122 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4123
a9263751
VB
4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4125 ac->nodemask);
11e33f6a 4126
499118e9 4127 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4128 fs_reclaim_release(gfp_mask);
eb414681 4129 psi_memstall_leave(&pflags);
11e33f6a
MG
4130
4131 cond_resched();
4132
bba90710
MS
4133 return progress;
4134}
4135
4136/* The really slow allocator path where we enter direct reclaim */
4137static inline struct page *
4138__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4139 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4140 unsigned long *did_some_progress)
bba90710
MS
4141{
4142 struct page *page = NULL;
4143 bool drained = false;
4144
a9263751 4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4146 if (unlikely(!(*did_some_progress)))
4147 return NULL;
11e33f6a 4148
9ee493ce 4149retry:
31a6c190 4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4151
4152 /*
4153 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4154 * pages are pinned on the per-cpu lists or in high alloc reserves.
4155 * Shrink them them and try again
9ee493ce
MG
4156 */
4157 if (!page && !drained) {
29fac03b 4158 unreserve_highatomic_pageblock(ac, false);
93481ff0 4159 drain_all_pages(NULL);
9ee493ce
MG
4160 drained = true;
4161 goto retry;
4162 }
4163
11e33f6a
MG
4164 return page;
4165}
4166
5ecd9d40
DR
4167static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168 const struct alloc_context *ac)
3a025760
JW
4169{
4170 struct zoneref *z;
4171 struct zone *zone;
e1a55637 4172 pg_data_t *last_pgdat = NULL;
5ecd9d40 4173 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4174
5ecd9d40
DR
4175 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4176 ac->nodemask) {
e1a55637 4177 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4179 last_pgdat = zone->zone_pgdat;
4180 }
3a025760
JW
4181}
4182
c603844b 4183static inline unsigned int
341ce06f
PZ
4184gfp_to_alloc_flags(gfp_t gfp_mask)
4185{
c603844b 4186 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4187
a56f57ff 4188 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4189 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4190
341ce06f
PZ
4191 /*
4192 * The caller may dip into page reserves a bit more if the caller
4193 * cannot run direct reclaim, or if the caller has realtime scheduling
4194 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4195 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4196 */
e6223a3b 4197 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4198
d0164adc 4199 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4200 /*
b104a35d
DR
4201 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4202 * if it can't schedule.
5c3240d9 4203 */
b104a35d 4204 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4205 alloc_flags |= ALLOC_HARDER;
523b9458 4206 /*
b104a35d 4207 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4208 * comment for __cpuset_node_allowed().
523b9458 4209 */
341ce06f 4210 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4211 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4212 alloc_flags |= ALLOC_HARDER;
4213
0a79cdad
MG
4214 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4215 alloc_flags |= ALLOC_KSWAPD;
4216
d883c6cf
JK
4217#ifdef CONFIG_CMA
4218 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4219 alloc_flags |= ALLOC_CMA;
4220#endif
341ce06f
PZ
4221 return alloc_flags;
4222}
4223
cd04ae1e 4224static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4225{
cd04ae1e
MH
4226 if (!tsk_is_oom_victim(tsk))
4227 return false;
4228
4229 /*
4230 * !MMU doesn't have oom reaper so give access to memory reserves
4231 * only to the thread with TIF_MEMDIE set
4232 */
4233 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4234 return false;
4235
cd04ae1e
MH
4236 return true;
4237}
4238
4239/*
4240 * Distinguish requests which really need access to full memory
4241 * reserves from oom victims which can live with a portion of it
4242 */
4243static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4244{
4245 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4246 return 0;
31a6c190 4247 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4248 return ALLOC_NO_WATERMARKS;
31a6c190 4249 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4250 return ALLOC_NO_WATERMARKS;
4251 if (!in_interrupt()) {
4252 if (current->flags & PF_MEMALLOC)
4253 return ALLOC_NO_WATERMARKS;
4254 else if (oom_reserves_allowed(current))
4255 return ALLOC_OOM;
4256 }
31a6c190 4257
cd04ae1e
MH
4258 return 0;
4259}
4260
4261bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4262{
4263 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4264}
4265
0a0337e0
MH
4266/*
4267 * Checks whether it makes sense to retry the reclaim to make a forward progress
4268 * for the given allocation request.
491d79ae
JW
4269 *
4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4271 * without success, or when we couldn't even meet the watermark if we
4272 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4273 *
4274 * Returns true if a retry is viable or false to enter the oom path.
4275 */
4276static inline bool
4277should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4278 struct alloc_context *ac, int alloc_flags,
423b452e 4279 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4280{
4281 struct zone *zone;
4282 struct zoneref *z;
15f570bf 4283 bool ret = false;
0a0337e0 4284
423b452e
VB
4285 /*
4286 * Costly allocations might have made a progress but this doesn't mean
4287 * their order will become available due to high fragmentation so
4288 * always increment the no progress counter for them
4289 */
4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4291 *no_progress_loops = 0;
4292 else
4293 (*no_progress_loops)++;
4294
0a0337e0
MH
4295 /*
4296 * Make sure we converge to OOM if we cannot make any progress
4297 * several times in the row.
4298 */
04c8716f
MK
4299 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4300 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4301 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4302 }
0a0337e0 4303
bca67592
MG
4304 /*
4305 * Keep reclaiming pages while there is a chance this will lead
4306 * somewhere. If none of the target zones can satisfy our allocation
4307 * request even if all reclaimable pages are considered then we are
4308 * screwed and have to go OOM.
0a0337e0
MH
4309 */
4310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4311 ac->nodemask) {
4312 unsigned long available;
ede37713 4313 unsigned long reclaimable;
d379f01d
MH
4314 unsigned long min_wmark = min_wmark_pages(zone);
4315 bool wmark;
0a0337e0 4316
5a1c84b4 4317 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4318 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4319
4320 /*
491d79ae
JW
4321 * Would the allocation succeed if we reclaimed all
4322 * reclaimable pages?
0a0337e0 4323 */
d379f01d
MH
4324 wmark = __zone_watermark_ok(zone, order, min_wmark,
4325 ac_classzone_idx(ac), alloc_flags, available);
4326 trace_reclaim_retry_zone(z, order, reclaimable,
4327 available, min_wmark, *no_progress_loops, wmark);
4328 if (wmark) {
ede37713
MH
4329 /*
4330 * If we didn't make any progress and have a lot of
4331 * dirty + writeback pages then we should wait for
4332 * an IO to complete to slow down the reclaim and
4333 * prevent from pre mature OOM
4334 */
4335 if (!did_some_progress) {
11fb9989 4336 unsigned long write_pending;
ede37713 4337
5a1c84b4
MG
4338 write_pending = zone_page_state_snapshot(zone,
4339 NR_ZONE_WRITE_PENDING);
ede37713 4340
11fb9989 4341 if (2 * write_pending > reclaimable) {
ede37713
MH
4342 congestion_wait(BLK_RW_ASYNC, HZ/10);
4343 return true;
4344 }
4345 }
5a1c84b4 4346
15f570bf
MH
4347 ret = true;
4348 goto out;
0a0337e0
MH
4349 }
4350 }
4351
15f570bf
MH
4352out:
4353 /*
4354 * Memory allocation/reclaim might be called from a WQ context and the
4355 * current implementation of the WQ concurrency control doesn't
4356 * recognize that a particular WQ is congested if the worker thread is
4357 * looping without ever sleeping. Therefore we have to do a short sleep
4358 * here rather than calling cond_resched().
4359 */
4360 if (current->flags & PF_WQ_WORKER)
4361 schedule_timeout_uninterruptible(1);
4362 else
4363 cond_resched();
4364 return ret;
0a0337e0
MH
4365}
4366
902b6281
VB
4367static inline bool
4368check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4369{
4370 /*
4371 * It's possible that cpuset's mems_allowed and the nodemask from
4372 * mempolicy don't intersect. This should be normally dealt with by
4373 * policy_nodemask(), but it's possible to race with cpuset update in
4374 * such a way the check therein was true, and then it became false
4375 * before we got our cpuset_mems_cookie here.
4376 * This assumes that for all allocations, ac->nodemask can come only
4377 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4378 * when it does not intersect with the cpuset restrictions) or the
4379 * caller can deal with a violated nodemask.
4380 */
4381 if (cpusets_enabled() && ac->nodemask &&
4382 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4383 ac->nodemask = NULL;
4384 return true;
4385 }
4386
4387 /*
4388 * When updating a task's mems_allowed or mempolicy nodemask, it is
4389 * possible to race with parallel threads in such a way that our
4390 * allocation can fail while the mask is being updated. If we are about
4391 * to fail, check if the cpuset changed during allocation and if so,
4392 * retry.
4393 */
4394 if (read_mems_allowed_retry(cpuset_mems_cookie))
4395 return true;
4396
4397 return false;
4398}
4399
11e33f6a
MG
4400static inline struct page *
4401__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4402 struct alloc_context *ac)
11e33f6a 4403{
d0164adc 4404 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4406 struct page *page = NULL;
c603844b 4407 unsigned int alloc_flags;
11e33f6a 4408 unsigned long did_some_progress;
5ce9bfef 4409 enum compact_priority compact_priority;
c5d01d0d 4410 enum compact_result compact_result;
5ce9bfef
VB
4411 int compaction_retries;
4412 int no_progress_loops;
5ce9bfef 4413 unsigned int cpuset_mems_cookie;
cd04ae1e 4414 int reserve_flags;
1da177e4 4415
d0164adc
MG
4416 /*
4417 * We also sanity check to catch abuse of atomic reserves being used by
4418 * callers that are not in atomic context.
4419 */
4420 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4421 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4422 gfp_mask &= ~__GFP_ATOMIC;
4423
5ce9bfef
VB
4424retry_cpuset:
4425 compaction_retries = 0;
4426 no_progress_loops = 0;
4427 compact_priority = DEF_COMPACT_PRIORITY;
4428 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4429
4430 /*
4431 * The fast path uses conservative alloc_flags to succeed only until
4432 * kswapd needs to be woken up, and to avoid the cost of setting up
4433 * alloc_flags precisely. So we do that now.
4434 */
4435 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4436
e47483bc
VB
4437 /*
4438 * We need to recalculate the starting point for the zonelist iterator
4439 * because we might have used different nodemask in the fast path, or
4440 * there was a cpuset modification and we are retrying - otherwise we
4441 * could end up iterating over non-eligible zones endlessly.
4442 */
4443 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444 ac->high_zoneidx, ac->nodemask);
4445 if (!ac->preferred_zoneref->zone)
4446 goto nopage;
4447
0a79cdad 4448 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4449 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4450
4451 /*
4452 * The adjusted alloc_flags might result in immediate success, so try
4453 * that first
4454 */
4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4456 if (page)
4457 goto got_pg;
4458
a8161d1e
VB
4459 /*
4460 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4461 * that we have enough base pages and don't need to reclaim. For non-
4462 * movable high-order allocations, do that as well, as compaction will
4463 * try prevent permanent fragmentation by migrating from blocks of the
4464 * same migratetype.
4465 * Don't try this for allocations that are allowed to ignore
4466 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4467 */
282722b0
VB
4468 if (can_direct_reclaim &&
4469 (costly_order ||
4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4471 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4472 page = __alloc_pages_direct_compact(gfp_mask, order,
4473 alloc_flags, ac,
a5508cd8 4474 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4475 &compact_result);
4476 if (page)
4477 goto got_pg;
4478
3f36d866
DR
4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4480 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
b39d0ee2
DR
4481 /*
4482 * If allocating entire pageblock(s) and compaction
4483 * failed because all zones are below low watermarks
4484 * or is prohibited because it recently failed at this
3f36d866
DR
4485 * order, fail immediately unless the allocator has
4486 * requested compaction and reclaim retry.
b39d0ee2
DR
4487 *
4488 * Reclaim is
4489 * - potentially very expensive because zones are far
4490 * below their low watermarks or this is part of very
4491 * bursty high order allocations,
4492 * - not guaranteed to help because isolate_freepages()
4493 * may not iterate over freed pages as part of its
4494 * linear scan, and
4495 * - unlikely to make entire pageblocks free on its
4496 * own.
4497 */
4498 if (compact_result == COMPACT_SKIPPED ||
4499 compact_result == COMPACT_DEFERRED)
4500 goto nopage;
4501 }
4502
3eb2771b
VB
4503 /*
4504 * Checks for costly allocations with __GFP_NORETRY, which
4505 * includes THP page fault allocations
4506 */
282722b0 4507 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4508 /*
4509 * If compaction is deferred for high-order allocations,
4510 * it is because sync compaction recently failed. If
4511 * this is the case and the caller requested a THP
4512 * allocation, we do not want to heavily disrupt the
4513 * system, so we fail the allocation instead of entering
4514 * direct reclaim.
4515 */
4516 if (compact_result == COMPACT_DEFERRED)
4517 goto nopage;
4518
a8161d1e 4519 /*
3eb2771b
VB
4520 * Looks like reclaim/compaction is worth trying, but
4521 * sync compaction could be very expensive, so keep
25160354 4522 * using async compaction.
a8161d1e 4523 */
a5508cd8 4524 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4525 }
4526 }
23771235 4527
31a6c190 4528retry:
23771235 4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4530 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4531 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4532
cd04ae1e
MH
4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4534 if (reserve_flags)
4535 alloc_flags = reserve_flags;
23771235 4536
e46e7b77 4537 /*
d6a24df0
VB
4538 * Reset the nodemask and zonelist iterators if memory policies can be
4539 * ignored. These allocations are high priority and system rather than
4540 * user oriented.
e46e7b77 4541 */
cd04ae1e 4542 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4543 ac->nodemask = NULL;
e46e7b77
MG
4544 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4545 ac->high_zoneidx, ac->nodemask);
4546 }
4547
23771235 4548 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4550 if (page)
4551 goto got_pg;
1da177e4 4552
d0164adc 4553 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4554 if (!can_direct_reclaim)
1da177e4
LT
4555 goto nopage;
4556
9a67f648
MH
4557 /* Avoid recursion of direct reclaim */
4558 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4559 goto nopage;
4560
a8161d1e
VB
4561 /* Try direct reclaim and then allocating */
4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4563 &did_some_progress);
4564 if (page)
4565 goto got_pg;
4566
4567 /* Try direct compaction and then allocating */
a9263751 4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4569 compact_priority, &compact_result);
56de7263
MG
4570 if (page)
4571 goto got_pg;
75f30861 4572
9083905a
JW
4573 /* Do not loop if specifically requested */
4574 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4575 goto nopage;
9083905a 4576
0a0337e0
MH
4577 /*
4578 * Do not retry costly high order allocations unless they are
dcda9b04 4579 * __GFP_RETRY_MAYFAIL
0a0337e0 4580 */
dcda9b04 4581 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4582 goto nopage;
0a0337e0 4583
0a0337e0 4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4585 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4586 goto retry;
4587
33c2d214
MH
4588 /*
4589 * It doesn't make any sense to retry for the compaction if the order-0
4590 * reclaim is not able to make any progress because the current
4591 * implementation of the compaction depends on the sufficient amount
4592 * of free memory (see __compaction_suitable)
4593 */
4594 if (did_some_progress > 0 &&
86a294a8 4595 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4596 compact_result, &compact_priority,
d9436498 4597 &compaction_retries))
33c2d214
MH
4598 goto retry;
4599
902b6281
VB
4600
4601 /* Deal with possible cpuset update races before we start OOM killing */
4602 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4603 goto retry_cpuset;
4604
9083905a
JW
4605 /* Reclaim has failed us, start killing things */
4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4607 if (page)
4608 goto got_pg;
4609
9a67f648 4610 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4611 if (tsk_is_oom_victim(current) &&
4612 (alloc_flags == ALLOC_OOM ||
c288983d 4613 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4614 goto nopage;
4615
9083905a 4616 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4617 if (did_some_progress) {
4618 no_progress_loops = 0;
9083905a 4619 goto retry;
0a0337e0 4620 }
9083905a 4621
1da177e4 4622nopage:
902b6281
VB
4623 /* Deal with possible cpuset update races before we fail */
4624 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4625 goto retry_cpuset;
4626
9a67f648
MH
4627 /*
4628 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629 * we always retry
4630 */
4631 if (gfp_mask & __GFP_NOFAIL) {
4632 /*
4633 * All existing users of the __GFP_NOFAIL are blockable, so warn
4634 * of any new users that actually require GFP_NOWAIT
4635 */
4636 if (WARN_ON_ONCE(!can_direct_reclaim))
4637 goto fail;
4638
4639 /*
4640 * PF_MEMALLOC request from this context is rather bizarre
4641 * because we cannot reclaim anything and only can loop waiting
4642 * for somebody to do a work for us
4643 */
4644 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4645
4646 /*
4647 * non failing costly orders are a hard requirement which we
4648 * are not prepared for much so let's warn about these users
4649 * so that we can identify them and convert them to something
4650 * else.
4651 */
4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4653
6c18ba7a
MH
4654 /*
4655 * Help non-failing allocations by giving them access to memory
4656 * reserves but do not use ALLOC_NO_WATERMARKS because this
4657 * could deplete whole memory reserves which would just make
4658 * the situation worse
4659 */
4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4661 if (page)
4662 goto got_pg;
4663
9a67f648
MH
4664 cond_resched();
4665 goto retry;
4666 }
4667fail:
a8e99259 4668 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4669 "page allocation failure: order:%u", order);
1da177e4 4670got_pg:
072bb0aa 4671 return page;
1da177e4 4672}
11e33f6a 4673
9cd75558 4674static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4675 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4676 struct alloc_context *ac, gfp_t *alloc_mask,
4677 unsigned int *alloc_flags)
11e33f6a 4678{
9cd75558 4679 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4680 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4681 ac->nodemask = nodemask;
4682 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4683
682a3385 4684 if (cpusets_enabled()) {
9cd75558 4685 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4686 if (!ac->nodemask)
4687 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4688 else
4689 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4690 }
4691
d92a8cfc
PZ
4692 fs_reclaim_acquire(gfp_mask);
4693 fs_reclaim_release(gfp_mask);
11e33f6a 4694
d0164adc 4695 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4696
4697 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4698 return false;
11e33f6a 4699
d883c6cf
JK
4700 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4701 *alloc_flags |= ALLOC_CMA;
4702
9cd75558
MG
4703 return true;
4704}
21bb9bd1 4705
9cd75558 4706/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4707static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4708{
c9ab0c4f 4709 /* Dirty zone balancing only done in the fast path */
9cd75558 4710 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4711
e46e7b77
MG
4712 /*
4713 * The preferred zone is used for statistics but crucially it is
4714 * also used as the starting point for the zonelist iterator. It
4715 * may get reset for allocations that ignore memory policies.
4716 */
9cd75558
MG
4717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4718 ac->high_zoneidx, ac->nodemask);
4719}
4720
4721/*
4722 * This is the 'heart' of the zoned buddy allocator.
4723 */
4724struct page *
04ec6264
VB
4725__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4726 nodemask_t *nodemask)
9cd75558
MG
4727{
4728 struct page *page;
4729 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4730 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4731 struct alloc_context ac = { };
4732
c63ae43b
MH
4733 /*
4734 * There are several places where we assume that the order value is sane
4735 * so bail out early if the request is out of bound.
4736 */
4737 if (unlikely(order >= MAX_ORDER)) {
4738 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4739 return NULL;
4740 }
4741
9cd75558 4742 gfp_mask &= gfp_allowed_mask;
f19360f0 4743 alloc_mask = gfp_mask;
04ec6264 4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4745 return NULL;
4746
a380b40a 4747 finalise_ac(gfp_mask, &ac);
5bb1b169 4748
6bb15450
MG
4749 /*
4750 * Forbid the first pass from falling back to types that fragment
4751 * memory until all local zones are considered.
4752 */
0a79cdad 4753 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4754
5117f45d 4755 /* First allocation attempt */
a9263751 4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4757 if (likely(page))
4758 goto out;
11e33f6a 4759
4fcb0971 4760 /*
7dea19f9
MH
4761 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4762 * resp. GFP_NOIO which has to be inherited for all allocation requests
4763 * from a particular context which has been marked by
4764 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4765 */
7dea19f9 4766 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4767 ac.spread_dirty_pages = false;
23f086f9 4768
4741526b
MG
4769 /*
4770 * Restore the original nodemask if it was potentially replaced with
4771 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4772 */
e47483bc 4773 if (unlikely(ac.nodemask != nodemask))
4741526b 4774 ac.nodemask = nodemask;
16096c25 4775
4fcb0971 4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4777
4fcb0971 4778out:
c4159a75 4779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4781 __free_pages(page, order);
4782 page = NULL;
4949148a
VD
4783 }
4784
4fcb0971
MG
4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4786
11e33f6a 4787 return page;
1da177e4 4788}
d239171e 4789EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4790
4791/*
9ea9a680
MH
4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794 * you need to access high mem.
1da177e4 4795 */
920c7a5d 4796unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4797{
945a1113
AM
4798 struct page *page;
4799
9ea9a680 4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4801 if (!page)
4802 return 0;
4803 return (unsigned long) page_address(page);
4804}
1da177e4
LT
4805EXPORT_SYMBOL(__get_free_pages);
4806
920c7a5d 4807unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4808{
945a1113 4809 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4810}
1da177e4
LT
4811EXPORT_SYMBOL(get_zeroed_page);
4812
742aa7fb 4813static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4814{
742aa7fb
AL
4815 if (order == 0) /* Via pcp? */
4816 free_unref_page(page);
4817 else
4818 __free_pages_ok(page, order);
1da177e4
LT
4819}
4820
742aa7fb
AL
4821void __free_pages(struct page *page, unsigned int order)
4822{
4823 if (put_page_testzero(page))
4824 free_the_page(page, order);
4825}
1da177e4
LT
4826EXPORT_SYMBOL(__free_pages);
4827
920c7a5d 4828void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4829{
4830 if (addr != 0) {
725d704e 4831 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4832 __free_pages(virt_to_page((void *)addr), order);
4833 }
4834}
4835
4836EXPORT_SYMBOL(free_pages);
4837
b63ae8ca
AD
4838/*
4839 * Page Fragment:
4840 * An arbitrary-length arbitrary-offset area of memory which resides
4841 * within a 0 or higher order page. Multiple fragments within that page
4842 * are individually refcounted, in the page's reference counter.
4843 *
4844 * The page_frag functions below provide a simple allocation framework for
4845 * page fragments. This is used by the network stack and network device
4846 * drivers to provide a backing region of memory for use as either an
4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4848 */
2976db80
AD
4849static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4850 gfp_t gfp_mask)
b63ae8ca
AD
4851{
4852 struct page *page = NULL;
4853 gfp_t gfp = gfp_mask;
4854
4855#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4856 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4857 __GFP_NOMEMALLOC;
4858 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4859 PAGE_FRAG_CACHE_MAX_ORDER);
4860 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4861#endif
4862 if (unlikely(!page))
4863 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4864
4865 nc->va = page ? page_address(page) : NULL;
4866
4867 return page;
4868}
4869
2976db80 4870void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4871{
4872 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4873
742aa7fb
AL
4874 if (page_ref_sub_and_test(page, count))
4875 free_the_page(page, compound_order(page));
44fdffd7 4876}
2976db80 4877EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4878
8c2dd3e4
AD
4879void *page_frag_alloc(struct page_frag_cache *nc,
4880 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4881{
4882 unsigned int size = PAGE_SIZE;
4883 struct page *page;
4884 int offset;
4885
4886 if (unlikely(!nc->va)) {
4887refill:
2976db80 4888 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4889 if (!page)
4890 return NULL;
4891
4892#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4893 /* if size can vary use size else just use PAGE_SIZE */
4894 size = nc->size;
4895#endif
4896 /* Even if we own the page, we do not use atomic_set().
4897 * This would break get_page_unless_zero() users.
4898 */
86447726 4899 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4900
4901 /* reset page count bias and offset to start of new frag */
2f064f34 4902 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4903 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4904 nc->offset = size;
4905 }
4906
4907 offset = nc->offset - fragsz;
4908 if (unlikely(offset < 0)) {
4909 page = virt_to_page(nc->va);
4910
fe896d18 4911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4912 goto refill;
4913
4914#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4915 /* if size can vary use size else just use PAGE_SIZE */
4916 size = nc->size;
4917#endif
4918 /* OK, page count is 0, we can safely set it */
86447726 4919 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4920
4921 /* reset page count bias and offset to start of new frag */
86447726 4922 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4923 offset = size - fragsz;
4924 }
4925
4926 nc->pagecnt_bias--;
4927 nc->offset = offset;
4928
4929 return nc->va + offset;
4930}
8c2dd3e4 4931EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4932
4933/*
4934 * Frees a page fragment allocated out of either a compound or order 0 page.
4935 */
8c2dd3e4 4936void page_frag_free(void *addr)
b63ae8ca
AD
4937{
4938 struct page *page = virt_to_head_page(addr);
4939
742aa7fb
AL
4940 if (unlikely(put_page_testzero(page)))
4941 free_the_page(page, compound_order(page));
b63ae8ca 4942}
8c2dd3e4 4943EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4944
d00181b9
KS
4945static void *make_alloc_exact(unsigned long addr, unsigned int order,
4946 size_t size)
ee85c2e1
AK
4947{
4948 if (addr) {
4949 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4950 unsigned long used = addr + PAGE_ALIGN(size);
4951
4952 split_page(virt_to_page((void *)addr), order);
4953 while (used < alloc_end) {
4954 free_page(used);
4955 used += PAGE_SIZE;
4956 }
4957 }
4958 return (void *)addr;
4959}
4960
2be0ffe2
TT
4961/**
4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963 * @size: the number of bytes to allocate
63931eb9 4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4965 *
4966 * This function is similar to alloc_pages(), except that it allocates the
4967 * minimum number of pages to satisfy the request. alloc_pages() can only
4968 * allocate memory in power-of-two pages.
4969 *
4970 * This function is also limited by MAX_ORDER.
4971 *
4972 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4973 *
4974 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4975 */
4976void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4977{
4978 unsigned int order = get_order(size);
4979 unsigned long addr;
4980
63931eb9
VB
4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 gfp_mask &= ~__GFP_COMP;
4983
2be0ffe2 4984 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4985 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4986}
4987EXPORT_SYMBOL(alloc_pages_exact);
4988
ee85c2e1
AK
4989/**
4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991 * pages on a node.
b5e6ab58 4992 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4993 * @size: the number of bytes to allocate
63931eb9 4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4995 *
4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997 * back.
a862f68a
MR
4998 *
4999 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5000 */
e1931811 5001void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5002{
d00181b9 5003 unsigned int order = get_order(size);
63931eb9
VB
5004 struct page *p;
5005
5006 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5007 gfp_mask &= ~__GFP_COMP;
5008
5009 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5010 if (!p)
5011 return NULL;
5012 return make_alloc_exact((unsigned long)page_address(p), order, size);
5013}
ee85c2e1 5014
2be0ffe2
TT
5015/**
5016 * free_pages_exact - release memory allocated via alloc_pages_exact()
5017 * @virt: the value returned by alloc_pages_exact.
5018 * @size: size of allocation, same value as passed to alloc_pages_exact().
5019 *
5020 * Release the memory allocated by a previous call to alloc_pages_exact.
5021 */
5022void free_pages_exact(void *virt, size_t size)
5023{
5024 unsigned long addr = (unsigned long)virt;
5025 unsigned long end = addr + PAGE_ALIGN(size);
5026
5027 while (addr < end) {
5028 free_page(addr);
5029 addr += PAGE_SIZE;
5030 }
5031}
5032EXPORT_SYMBOL(free_pages_exact);
5033
e0fb5815
ZY
5034/**
5035 * nr_free_zone_pages - count number of pages beyond high watermark
5036 * @offset: The zone index of the highest zone
5037 *
a862f68a 5038 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5039 * high watermark within all zones at or below a given zone index. For each
5040 * zone, the number of pages is calculated as:
0e056eb5
MCC
5041 *
5042 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5043 *
5044 * Return: number of pages beyond high watermark.
e0fb5815 5045 */
ebec3862 5046static unsigned long nr_free_zone_pages(int offset)
1da177e4 5047{
dd1a239f 5048 struct zoneref *z;
54a6eb5c
MG
5049 struct zone *zone;
5050
e310fd43 5051 /* Just pick one node, since fallback list is circular */
ebec3862 5052 unsigned long sum = 0;
1da177e4 5053
0e88460d 5054 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5055
54a6eb5c 5056 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5057 unsigned long size = zone_managed_pages(zone);
41858966 5058 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5059 if (size > high)
5060 sum += size - high;
1da177e4
LT
5061 }
5062
5063 return sum;
5064}
5065
e0fb5815
ZY
5066/**
5067 * nr_free_buffer_pages - count number of pages beyond high watermark
5068 *
5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5071 *
5072 * Return: number of pages beyond high watermark within ZONE_DMA and
5073 * ZONE_NORMAL.
1da177e4 5074 */
ebec3862 5075unsigned long nr_free_buffer_pages(void)
1da177e4 5076{
af4ca457 5077 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5078}
c2f1a551 5079EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5080
e0fb5815
ZY
5081/**
5082 * nr_free_pagecache_pages - count number of pages beyond high watermark
5083 *
5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones.
a862f68a
MR
5086 *
5087 * Return: number of pages beyond high watermark within all zones.
1da177e4 5088 */
ebec3862 5089unsigned long nr_free_pagecache_pages(void)
1da177e4 5090{
2a1e274a 5091 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5092}
08e0f6a9
CL
5093
5094static inline void show_node(struct zone *zone)
1da177e4 5095{
e5adfffc 5096 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5097 printk("Node %d ", zone_to_nid(zone));
1da177e4 5098}
1da177e4 5099
d02bd27b
IR
5100long si_mem_available(void)
5101{
5102 long available;
5103 unsigned long pagecache;
5104 unsigned long wmark_low = 0;
5105 unsigned long pages[NR_LRU_LISTS];
b29940c1 5106 unsigned long reclaimable;
d02bd27b
IR
5107 struct zone *zone;
5108 int lru;
5109
5110 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5111 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5112
5113 for_each_zone(zone)
a9214443 5114 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5115
5116 /*
5117 * Estimate the amount of memory available for userspace allocations,
5118 * without causing swapping.
5119 */
c41f012a 5120 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5121
5122 /*
5123 * Not all the page cache can be freed, otherwise the system will
5124 * start swapping. Assume at least half of the page cache, or the
5125 * low watermark worth of cache, needs to stay.
5126 */
5127 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5128 pagecache -= min(pagecache / 2, wmark_low);
5129 available += pagecache;
5130
5131 /*
b29940c1
VB
5132 * Part of the reclaimable slab and other kernel memory consists of
5133 * items that are in use, and cannot be freed. Cap this estimate at the
5134 * low watermark.
d02bd27b 5135 */
b29940c1
VB
5136 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5137 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5138 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5139
d02bd27b
IR
5140 if (available < 0)
5141 available = 0;
5142 return available;
5143}
5144EXPORT_SYMBOL_GPL(si_mem_available);
5145
1da177e4
LT
5146void si_meminfo(struct sysinfo *val)
5147{
ca79b0c2 5148 val->totalram = totalram_pages();
11fb9989 5149 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5150 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5151 val->bufferram = nr_blockdev_pages();
ca79b0c2 5152 val->totalhigh = totalhigh_pages();
1da177e4 5153 val->freehigh = nr_free_highpages();
1da177e4
LT
5154 val->mem_unit = PAGE_SIZE;
5155}
5156
5157EXPORT_SYMBOL(si_meminfo);
5158
5159#ifdef CONFIG_NUMA
5160void si_meminfo_node(struct sysinfo *val, int nid)
5161{
cdd91a77
JL
5162 int zone_type; /* needs to be signed */
5163 unsigned long managed_pages = 0;
fc2bd799
JK
5164 unsigned long managed_highpages = 0;
5165 unsigned long free_highpages = 0;
1da177e4
LT
5166 pg_data_t *pgdat = NODE_DATA(nid);
5167
cdd91a77 5168 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5169 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5170 val->totalram = managed_pages;
11fb9989 5171 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5172 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5173#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5175 struct zone *zone = &pgdat->node_zones[zone_type];
5176
5177 if (is_highmem(zone)) {
9705bea5 5178 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5179 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5180 }
5181 }
5182 val->totalhigh = managed_highpages;
5183 val->freehigh = free_highpages;
98d2b0eb 5184#else
fc2bd799
JK
5185 val->totalhigh = managed_highpages;
5186 val->freehigh = free_highpages;
98d2b0eb 5187#endif
1da177e4
LT
5188 val->mem_unit = PAGE_SIZE;
5189}
5190#endif
5191
ddd588b5 5192/*
7bf02ea2
DR
5193 * Determine whether the node should be displayed or not, depending on whether
5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5195 */
9af744d7 5196static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5197{
ddd588b5 5198 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5199 return false;
ddd588b5 5200
9af744d7
MH
5201 /*
5202 * no node mask - aka implicit memory numa policy. Do not bother with
5203 * the synchronization - read_mems_allowed_begin - because we do not
5204 * have to be precise here.
5205 */
5206 if (!nodemask)
5207 nodemask = &cpuset_current_mems_allowed;
5208
5209 return !node_isset(nid, *nodemask);
ddd588b5
DR
5210}
5211
1da177e4
LT
5212#define K(x) ((x) << (PAGE_SHIFT-10))
5213
377e4f16
RV
5214static void show_migration_types(unsigned char type)
5215{
5216 static const char types[MIGRATE_TYPES] = {
5217 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5218 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5219 [MIGRATE_RECLAIMABLE] = 'E',
5220 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5221#ifdef CONFIG_CMA
5222 [MIGRATE_CMA] = 'C',
5223#endif
194159fb 5224#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5225 [MIGRATE_ISOLATE] = 'I',
194159fb 5226#endif
377e4f16
RV
5227 };
5228 char tmp[MIGRATE_TYPES + 1];
5229 char *p = tmp;
5230 int i;
5231
5232 for (i = 0; i < MIGRATE_TYPES; i++) {
5233 if (type & (1 << i))
5234 *p++ = types[i];
5235 }
5236
5237 *p = '\0';
1f84a18f 5238 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5239}
5240
1da177e4
LT
5241/*
5242 * Show free area list (used inside shift_scroll-lock stuff)
5243 * We also calculate the percentage fragmentation. We do this by counting the
5244 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5245 *
5246 * Bits in @filter:
5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248 * cpuset.
1da177e4 5249 */
9af744d7 5250void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5251{
d1bfcdb8 5252 unsigned long free_pcp = 0;
c7241913 5253 int cpu;
1da177e4 5254 struct zone *zone;
599d0c95 5255 pg_data_t *pgdat;
1da177e4 5256
ee99c71c 5257 for_each_populated_zone(zone) {
9af744d7 5258 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5259 continue;
d1bfcdb8 5260
761b0677
KK
5261 for_each_online_cpu(cpu)
5262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5263 }
5264
a731286d
KM
5265 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5266 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5267 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5268 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5270 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5271 global_node_page_state(NR_ACTIVE_ANON),
5272 global_node_page_state(NR_INACTIVE_ANON),
5273 global_node_page_state(NR_ISOLATED_ANON),
5274 global_node_page_state(NR_ACTIVE_FILE),
5275 global_node_page_state(NR_INACTIVE_FILE),
5276 global_node_page_state(NR_ISOLATED_FILE),
5277 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5278 global_node_page_state(NR_FILE_DIRTY),
5279 global_node_page_state(NR_WRITEBACK),
5280 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5281 global_node_page_state(NR_SLAB_RECLAIMABLE),
5282 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5283 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5284 global_node_page_state(NR_SHMEM),
c41f012a
MH
5285 global_zone_page_state(NR_PAGETABLE),
5286 global_zone_page_state(NR_BOUNCE),
5287 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5288 free_pcp,
c41f012a 5289 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5290
599d0c95 5291 for_each_online_pgdat(pgdat) {
9af744d7 5292 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5293 continue;
5294
599d0c95
MG
5295 printk("Node %d"
5296 " active_anon:%lukB"
5297 " inactive_anon:%lukB"
5298 " active_file:%lukB"
5299 " inactive_file:%lukB"
5300 " unevictable:%lukB"
5301 " isolated(anon):%lukB"
5302 " isolated(file):%lukB"
50658e2e 5303 " mapped:%lukB"
11fb9989
MG
5304 " dirty:%lukB"
5305 " writeback:%lukB"
5306 " shmem:%lukB"
5307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 " shmem_thp: %lukB"
5309 " shmem_pmdmapped: %lukB"
5310 " anon_thp: %lukB"
5311#endif
5312 " writeback_tmp:%lukB"
5313 " unstable:%lukB"
599d0c95
MG
5314 " all_unreclaimable? %s"
5315 "\n",
5316 pgdat->node_id,
5317 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5318 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5319 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5320 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5321 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5322 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5323 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5324 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5325 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5326 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5327 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5331 * HPAGE_PMD_NR),
5332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5333#endif
11fb9989
MG
5334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5336 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5337 "yes" : "no");
599d0c95
MG
5338 }
5339
ee99c71c 5340 for_each_populated_zone(zone) {
1da177e4
LT
5341 int i;
5342
9af744d7 5343 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5344 continue;
d1bfcdb8
KK
5345
5346 free_pcp = 0;
5347 for_each_online_cpu(cpu)
5348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5349
1da177e4 5350 show_node(zone);
1f84a18f
JP
5351 printk(KERN_CONT
5352 "%s"
1da177e4
LT
5353 " free:%lukB"
5354 " min:%lukB"
5355 " low:%lukB"
5356 " high:%lukB"
e47b346a 5357 " reserved_highatomic:%luKB"
71c799f4
MK
5358 " active_anon:%lukB"
5359 " inactive_anon:%lukB"
5360 " active_file:%lukB"
5361 " inactive_file:%lukB"
5362 " unevictable:%lukB"
5a1c84b4 5363 " writepending:%lukB"
1da177e4 5364 " present:%lukB"
9feedc9d 5365 " managed:%lukB"
4a0aa73f 5366 " mlocked:%lukB"
c6a7f572 5367 " kernel_stack:%lukB"
4a0aa73f 5368 " pagetables:%lukB"
4a0aa73f 5369 " bounce:%lukB"
d1bfcdb8
KK
5370 " free_pcp:%lukB"
5371 " local_pcp:%ukB"
d1ce749a 5372 " free_cma:%lukB"
1da177e4
LT
5373 "\n",
5374 zone->name,
88f5acf8 5375 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5376 K(min_wmark_pages(zone)),
5377 K(low_wmark_pages(zone)),
5378 K(high_wmark_pages(zone)),
e47b346a 5379 K(zone->nr_reserved_highatomic),
71c799f4
MK
5380 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5381 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5382 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5383 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5384 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5385 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5386 K(zone->present_pages),
9705bea5 5387 K(zone_managed_pages(zone)),
4a0aa73f 5388 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5389 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5390 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5391 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5392 K(free_pcp),
5393 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5394 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5395 printk("lowmem_reserve[]:");
5396 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5397 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5398 printk(KERN_CONT "\n");
1da177e4
LT
5399 }
5400
ee99c71c 5401 for_each_populated_zone(zone) {
d00181b9
KS
5402 unsigned int order;
5403 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5404 unsigned char types[MAX_ORDER];
1da177e4 5405
9af744d7 5406 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5407 continue;
1da177e4 5408 show_node(zone);
1f84a18f 5409 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5410
5411 spin_lock_irqsave(&zone->lock, flags);
5412 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5413 struct free_area *area = &zone->free_area[order];
5414 int type;
5415
5416 nr[order] = area->nr_free;
8f9de51a 5417 total += nr[order] << order;
377e4f16
RV
5418
5419 types[order] = 0;
5420 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5421 if (!free_area_empty(area, type))
377e4f16
RV
5422 types[order] |= 1 << type;
5423 }
1da177e4
LT
5424 }
5425 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5426 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5427 printk(KERN_CONT "%lu*%lukB ",
5428 nr[order], K(1UL) << order);
377e4f16
RV
5429 if (nr[order])
5430 show_migration_types(types[order]);
5431 }
1f84a18f 5432 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5433 }
5434
949f7ec5
DR
5435 hugetlb_show_meminfo();
5436
11fb9989 5437 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5438
1da177e4
LT
5439 show_swap_cache_info();
5440}
5441
19770b32
MG
5442static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5443{
5444 zoneref->zone = zone;
5445 zoneref->zone_idx = zone_idx(zone);
5446}
5447
1da177e4
LT
5448/*
5449 * Builds allocation fallback zone lists.
1a93205b
CL
5450 *
5451 * Add all populated zones of a node to the zonelist.
1da177e4 5452 */
9d3be21b 5453static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5454{
1a93205b 5455 struct zone *zone;
bc732f1d 5456 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5457 int nr_zones = 0;
02a68a5e
CL
5458
5459 do {
2f6726e5 5460 zone_type--;
070f8032 5461 zone = pgdat->node_zones + zone_type;
6aa303de 5462 if (managed_zone(zone)) {
9d3be21b 5463 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5464 check_highest_zone(zone_type);
1da177e4 5465 }
2f6726e5 5466 } while (zone_type);
bc732f1d 5467
070f8032 5468 return nr_zones;
1da177e4
LT
5469}
5470
5471#ifdef CONFIG_NUMA
f0c0b2b8
KH
5472
5473static int __parse_numa_zonelist_order(char *s)
5474{
c9bff3ee
MH
5475 /*
5476 * We used to support different zonlists modes but they turned
5477 * out to be just not useful. Let's keep the warning in place
5478 * if somebody still use the cmd line parameter so that we do
5479 * not fail it silently
5480 */
5481 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5482 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5483 return -EINVAL;
5484 }
5485 return 0;
5486}
5487
5488static __init int setup_numa_zonelist_order(char *s)
5489{
ecb256f8
VL
5490 if (!s)
5491 return 0;
5492
c9bff3ee 5493 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5494}
5495early_param("numa_zonelist_order", setup_numa_zonelist_order);
5496
c9bff3ee
MH
5497char numa_zonelist_order[] = "Node";
5498
f0c0b2b8
KH
5499/*
5500 * sysctl handler for numa_zonelist_order
5501 */
cccad5b9 5502int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5503 void __user *buffer, size_t *length,
f0c0b2b8
KH
5504 loff_t *ppos)
5505{
c9bff3ee 5506 char *str;
f0c0b2b8
KH
5507 int ret;
5508
c9bff3ee
MH
5509 if (!write)
5510 return proc_dostring(table, write, buffer, length, ppos);
5511 str = memdup_user_nul(buffer, 16);
5512 if (IS_ERR(str))
5513 return PTR_ERR(str);
dacbde09 5514
c9bff3ee
MH
5515 ret = __parse_numa_zonelist_order(str);
5516 kfree(str);
443c6f14 5517 return ret;
f0c0b2b8
KH
5518}
5519
5520
62bc62a8 5521#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5522static int node_load[MAX_NUMNODES];
5523
1da177e4 5524/**
4dc3b16b 5525 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5526 * @node: node whose fallback list we're appending
5527 * @used_node_mask: nodemask_t of already used nodes
5528 *
5529 * We use a number of factors to determine which is the next node that should
5530 * appear on a given node's fallback list. The node should not have appeared
5531 * already in @node's fallback list, and it should be the next closest node
5532 * according to the distance array (which contains arbitrary distance values
5533 * from each node to each node in the system), and should also prefer nodes
5534 * with no CPUs, since presumably they'll have very little allocation pressure
5535 * on them otherwise.
a862f68a
MR
5536 *
5537 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5538 */
f0c0b2b8 5539static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5540{
4cf808eb 5541 int n, val;
1da177e4 5542 int min_val = INT_MAX;
00ef2d2f 5543 int best_node = NUMA_NO_NODE;
a70f7302 5544 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5545
4cf808eb
LT
5546 /* Use the local node if we haven't already */
5547 if (!node_isset(node, *used_node_mask)) {
5548 node_set(node, *used_node_mask);
5549 return node;
5550 }
1da177e4 5551
4b0ef1fe 5552 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5553
5554 /* Don't want a node to appear more than once */
5555 if (node_isset(n, *used_node_mask))
5556 continue;
5557
1da177e4
LT
5558 /* Use the distance array to find the distance */
5559 val = node_distance(node, n);
5560
4cf808eb
LT
5561 /* Penalize nodes under us ("prefer the next node") */
5562 val += (n < node);
5563
1da177e4 5564 /* Give preference to headless and unused nodes */
a70f7302
RR
5565 tmp = cpumask_of_node(n);
5566 if (!cpumask_empty(tmp))
1da177e4
LT
5567 val += PENALTY_FOR_NODE_WITH_CPUS;
5568
5569 /* Slight preference for less loaded node */
5570 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5571 val += node_load[n];
5572
5573 if (val < min_val) {
5574 min_val = val;
5575 best_node = n;
5576 }
5577 }
5578
5579 if (best_node >= 0)
5580 node_set(best_node, *used_node_mask);
5581
5582 return best_node;
5583}
5584
f0c0b2b8
KH
5585
5586/*
5587 * Build zonelists ordered by node and zones within node.
5588 * This results in maximum locality--normal zone overflows into local
5589 * DMA zone, if any--but risks exhausting DMA zone.
5590 */
9d3be21b
MH
5591static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5592 unsigned nr_nodes)
1da177e4 5593{
9d3be21b
MH
5594 struct zoneref *zonerefs;
5595 int i;
5596
5597 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5598
5599 for (i = 0; i < nr_nodes; i++) {
5600 int nr_zones;
5601
5602 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5603
9d3be21b
MH
5604 nr_zones = build_zonerefs_node(node, zonerefs);
5605 zonerefs += nr_zones;
5606 }
5607 zonerefs->zone = NULL;
5608 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5609}
5610
523b9458
CL
5611/*
5612 * Build gfp_thisnode zonelists
5613 */
5614static void build_thisnode_zonelists(pg_data_t *pgdat)
5615{
9d3be21b
MH
5616 struct zoneref *zonerefs;
5617 int nr_zones;
523b9458 5618
9d3be21b
MH
5619 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5620 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5621 zonerefs += nr_zones;
5622 zonerefs->zone = NULL;
5623 zonerefs->zone_idx = 0;
523b9458
CL
5624}
5625
f0c0b2b8
KH
5626/*
5627 * Build zonelists ordered by zone and nodes within zones.
5628 * This results in conserving DMA zone[s] until all Normal memory is
5629 * exhausted, but results in overflowing to remote node while memory
5630 * may still exist in local DMA zone.
5631 */
f0c0b2b8 5632
f0c0b2b8
KH
5633static void build_zonelists(pg_data_t *pgdat)
5634{
9d3be21b
MH
5635 static int node_order[MAX_NUMNODES];
5636 int node, load, nr_nodes = 0;
1da177e4 5637 nodemask_t used_mask;
f0c0b2b8 5638 int local_node, prev_node;
1da177e4
LT
5639
5640 /* NUMA-aware ordering of nodes */
5641 local_node = pgdat->node_id;
62bc62a8 5642 load = nr_online_nodes;
1da177e4
LT
5643 prev_node = local_node;
5644 nodes_clear(used_mask);
f0c0b2b8 5645
f0c0b2b8 5646 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5647 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5648 /*
5649 * We don't want to pressure a particular node.
5650 * So adding penalty to the first node in same
5651 * distance group to make it round-robin.
5652 */
957f822a
DR
5653 if (node_distance(local_node, node) !=
5654 node_distance(local_node, prev_node))
f0c0b2b8
KH
5655 node_load[node] = load;
5656
9d3be21b 5657 node_order[nr_nodes++] = node;
1da177e4
LT
5658 prev_node = node;
5659 load--;
1da177e4 5660 }
523b9458 5661
9d3be21b 5662 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5663 build_thisnode_zonelists(pgdat);
1da177e4
LT
5664}
5665
7aac7898
LS
5666#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5667/*
5668 * Return node id of node used for "local" allocations.
5669 * I.e., first node id of first zone in arg node's generic zonelist.
5670 * Used for initializing percpu 'numa_mem', which is used primarily
5671 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5672 */
5673int local_memory_node(int node)
5674{
c33d6c06 5675 struct zoneref *z;
7aac7898 5676
c33d6c06 5677 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5678 gfp_zone(GFP_KERNEL),
c33d6c06 5679 NULL);
c1093b74 5680 return zone_to_nid(z->zone);
7aac7898
LS
5681}
5682#endif
f0c0b2b8 5683
6423aa81
JK
5684static void setup_min_unmapped_ratio(void);
5685static void setup_min_slab_ratio(void);
1da177e4
LT
5686#else /* CONFIG_NUMA */
5687
f0c0b2b8 5688static void build_zonelists(pg_data_t *pgdat)
1da177e4 5689{
19655d34 5690 int node, local_node;
9d3be21b
MH
5691 struct zoneref *zonerefs;
5692 int nr_zones;
1da177e4
LT
5693
5694 local_node = pgdat->node_id;
1da177e4 5695
9d3be21b
MH
5696 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5697 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5698 zonerefs += nr_zones;
1da177e4 5699
54a6eb5c
MG
5700 /*
5701 * Now we build the zonelist so that it contains the zones
5702 * of all the other nodes.
5703 * We don't want to pressure a particular node, so when
5704 * building the zones for node N, we make sure that the
5705 * zones coming right after the local ones are those from
5706 * node N+1 (modulo N)
5707 */
5708 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5709 if (!node_online(node))
5710 continue;
9d3be21b
MH
5711 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5712 zonerefs += nr_zones;
1da177e4 5713 }
54a6eb5c
MG
5714 for (node = 0; node < local_node; node++) {
5715 if (!node_online(node))
5716 continue;
9d3be21b
MH
5717 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5718 zonerefs += nr_zones;
54a6eb5c
MG
5719 }
5720
9d3be21b
MH
5721 zonerefs->zone = NULL;
5722 zonerefs->zone_idx = 0;
1da177e4
LT
5723}
5724
5725#endif /* CONFIG_NUMA */
5726
99dcc3e5
CL
5727/*
5728 * Boot pageset table. One per cpu which is going to be used for all
5729 * zones and all nodes. The parameters will be set in such a way
5730 * that an item put on a list will immediately be handed over to
5731 * the buddy list. This is safe since pageset manipulation is done
5732 * with interrupts disabled.
5733 *
5734 * The boot_pagesets must be kept even after bootup is complete for
5735 * unused processors and/or zones. They do play a role for bootstrapping
5736 * hotplugged processors.
5737 *
5738 * zoneinfo_show() and maybe other functions do
5739 * not check if the processor is online before following the pageset pointer.
5740 * Other parts of the kernel may not check if the zone is available.
5741 */
5742static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5743static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5744static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5745
11cd8638 5746static void __build_all_zonelists(void *data)
1da177e4 5747{
6811378e 5748 int nid;
afb6ebb3 5749 int __maybe_unused cpu;
9adb62a5 5750 pg_data_t *self = data;
b93e0f32
MH
5751 static DEFINE_SPINLOCK(lock);
5752
5753 spin_lock(&lock);
9276b1bc 5754
7f9cfb31
BL
5755#ifdef CONFIG_NUMA
5756 memset(node_load, 0, sizeof(node_load));
5757#endif
9adb62a5 5758
c1152583
WY
5759 /*
5760 * This node is hotadded and no memory is yet present. So just
5761 * building zonelists is fine - no need to touch other nodes.
5762 */
9adb62a5
JL
5763 if (self && !node_online(self->node_id)) {
5764 build_zonelists(self);
c1152583
WY
5765 } else {
5766 for_each_online_node(nid) {
5767 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5768
c1152583
WY
5769 build_zonelists(pgdat);
5770 }
99dcc3e5 5771
7aac7898
LS
5772#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5773 /*
5774 * We now know the "local memory node" for each node--
5775 * i.e., the node of the first zone in the generic zonelist.
5776 * Set up numa_mem percpu variable for on-line cpus. During
5777 * boot, only the boot cpu should be on-line; we'll init the
5778 * secondary cpus' numa_mem as they come on-line. During
5779 * node/memory hotplug, we'll fixup all on-line cpus.
5780 */
d9c9a0b9 5781 for_each_online_cpu(cpu)
7aac7898 5782 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5783#endif
d9c9a0b9 5784 }
b93e0f32
MH
5785
5786 spin_unlock(&lock);
6811378e
YG
5787}
5788
061f67bc
RV
5789static noinline void __init
5790build_all_zonelists_init(void)
5791{
afb6ebb3
MH
5792 int cpu;
5793
061f67bc 5794 __build_all_zonelists(NULL);
afb6ebb3
MH
5795
5796 /*
5797 * Initialize the boot_pagesets that are going to be used
5798 * for bootstrapping processors. The real pagesets for
5799 * each zone will be allocated later when the per cpu
5800 * allocator is available.
5801 *
5802 * boot_pagesets are used also for bootstrapping offline
5803 * cpus if the system is already booted because the pagesets
5804 * are needed to initialize allocators on a specific cpu too.
5805 * F.e. the percpu allocator needs the page allocator which
5806 * needs the percpu allocator in order to allocate its pagesets
5807 * (a chicken-egg dilemma).
5808 */
5809 for_each_possible_cpu(cpu)
5810 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5811
061f67bc
RV
5812 mminit_verify_zonelist();
5813 cpuset_init_current_mems_allowed();
5814}
5815
4eaf3f64 5816/*
4eaf3f64 5817 * unless system_state == SYSTEM_BOOTING.
061f67bc 5818 *
72675e13 5819 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5820 * [protected by SYSTEM_BOOTING].
4eaf3f64 5821 */
72675e13 5822void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5823{
5824 if (system_state == SYSTEM_BOOTING) {
061f67bc 5825 build_all_zonelists_init();
6811378e 5826 } else {
11cd8638 5827 __build_all_zonelists(pgdat);
6811378e
YG
5828 /* cpuset refresh routine should be here */
5829 }
bd1e22b8 5830 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5831 /*
5832 * Disable grouping by mobility if the number of pages in the
5833 * system is too low to allow the mechanism to work. It would be
5834 * more accurate, but expensive to check per-zone. This check is
5835 * made on memory-hotadd so a system can start with mobility
5836 * disabled and enable it later
5837 */
d9c23400 5838 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5839 page_group_by_mobility_disabled = 1;
5840 else
5841 page_group_by_mobility_disabled = 0;
5842
ce0725f7 5843 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5844 nr_online_nodes,
756a025f
JP
5845 page_group_by_mobility_disabled ? "off" : "on",
5846 vm_total_pages);
f0c0b2b8 5847#ifdef CONFIG_NUMA
f88dfff5 5848 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5849#endif
1da177e4
LT
5850}
5851
a9a9e77f
PT
5852/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5853static bool __meminit
5854overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5855{
5856#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5857 static struct memblock_region *r;
5858
5859 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5860 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5861 for_each_memblock(memory, r) {
5862 if (*pfn < memblock_region_memory_end_pfn(r))
5863 break;
5864 }
5865 }
5866 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5867 memblock_is_mirror(r)) {
5868 *pfn = memblock_region_memory_end_pfn(r);
5869 return true;
5870 }
5871 }
5872#endif
5873 return false;
5874}
5875
1da177e4
LT
5876/*
5877 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5878 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5879 * done. Non-atomic initialization, single-pass.
5880 */
c09b4240 5881void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5882 unsigned long start_pfn, enum memmap_context context,
5883 struct vmem_altmap *altmap)
1da177e4 5884{
a9a9e77f 5885 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5886 struct page *page;
1da177e4 5887
22b31eec
HD
5888 if (highest_memmap_pfn < end_pfn - 1)
5889 highest_memmap_pfn = end_pfn - 1;
5890
966cf44f 5891#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5892 /*
5893 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5894 * memory. We limit the total number of pages to initialize to just
5895 * those that might contain the memory mapping. We will defer the
5896 * ZONE_DEVICE page initialization until after we have released
5897 * the hotplug lock.
4b94ffdc 5898 */
966cf44f
AD
5899 if (zone == ZONE_DEVICE) {
5900 if (!altmap)
5901 return;
5902
5903 if (start_pfn == altmap->base_pfn)
5904 start_pfn += altmap->reserve;
5905 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5906 }
5907#endif
4b94ffdc 5908
cbe8dd4a 5909 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5910 /*
b72d0ffb
AM
5911 * There can be holes in boot-time mem_map[]s handed to this
5912 * function. They do not exist on hotplugged memory.
a2f3aa02 5913 */
a9a9e77f
PT
5914 if (context == MEMMAP_EARLY) {
5915 if (!early_pfn_valid(pfn))
b72d0ffb 5916 continue;
a9a9e77f
PT
5917 if (!early_pfn_in_nid(pfn, nid))
5918 continue;
5919 if (overlap_memmap_init(zone, &pfn))
5920 continue;
5921 if (defer_init(nid, pfn, end_pfn))
5922 break;
a2f3aa02 5923 }
ac5d2539 5924
d0dc12e8
PT
5925 page = pfn_to_page(pfn);
5926 __init_single_page(page, pfn, zone, nid);
5927 if (context == MEMMAP_HOTPLUG)
d483da5b 5928 __SetPageReserved(page);
d0dc12e8 5929
ac5d2539
MG
5930 /*
5931 * Mark the block movable so that blocks are reserved for
5932 * movable at startup. This will force kernel allocations
5933 * to reserve their blocks rather than leaking throughout
5934 * the address space during boot when many long-lived
974a786e 5935 * kernel allocations are made.
ac5d2539
MG
5936 *
5937 * bitmap is created for zone's valid pfn range. but memmap
5938 * can be created for invalid pages (for alignment)
5939 * check here not to call set_pageblock_migratetype() against
5940 * pfn out of zone.
5941 */
5942 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5943 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5944 cond_resched();
ac5d2539 5945 }
1da177e4
LT
5946 }
5947}
5948
966cf44f
AD
5949#ifdef CONFIG_ZONE_DEVICE
5950void __ref memmap_init_zone_device(struct zone *zone,
5951 unsigned long start_pfn,
5952 unsigned long size,
5953 struct dev_pagemap *pgmap)
5954{
5955 unsigned long pfn, end_pfn = start_pfn + size;
5956 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5957 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5958 unsigned long zone_idx = zone_idx(zone);
5959 unsigned long start = jiffies;
5960 int nid = pgdat->node_id;
5961
46d945ae 5962 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
5963 return;
5964
5965 /*
5966 * The call to memmap_init_zone should have already taken care
5967 * of the pages reserved for the memmap, so we can just jump to
5968 * the end of that region and start processing the device pages.
5969 */
514caf23 5970 if (altmap) {
966cf44f
AD
5971 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5972 size = end_pfn - start_pfn;
5973 }
5974
5975 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5976 struct page *page = pfn_to_page(pfn);
5977
5978 __init_single_page(page, pfn, zone_idx, nid);
5979
5980 /*
5981 * Mark page reserved as it will need to wait for onlining
5982 * phase for it to be fully associated with a zone.
5983 *
5984 * We can use the non-atomic __set_bit operation for setting
5985 * the flag as we are still initializing the pages.
5986 */
5987 __SetPageReserved(page);
5988
5989 /*
8a164fef
CH
5990 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5991 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5992 * ever freed or placed on a driver-private list.
966cf44f
AD
5993 */
5994 page->pgmap = pgmap;
8a164fef 5995 page->zone_device_data = NULL;
966cf44f
AD
5996
5997 /*
5998 * Mark the block movable so that blocks are reserved for
5999 * movable at startup. This will force kernel allocations
6000 * to reserve their blocks rather than leaking throughout
6001 * the address space during boot when many long-lived
6002 * kernel allocations are made.
6003 *
6004 * bitmap is created for zone's valid pfn range. but memmap
6005 * can be created for invalid pages (for alignment)
6006 * check here not to call set_pageblock_migratetype() against
6007 * pfn out of zone.
6008 *
6009 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6010 * because this is done early in section_activate()
966cf44f
AD
6011 */
6012 if (!(pfn & (pageblock_nr_pages - 1))) {
6013 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6014 cond_resched();
6015 }
6016 }
6017
fdc029b1 6018 pr_info("%s initialised %lu pages in %ums\n", __func__,
966cf44f
AD
6019 size, jiffies_to_msecs(jiffies - start));
6020}
6021
6022#endif
1e548deb 6023static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6024{
7aeb09f9 6025 unsigned int order, t;
b2a0ac88
MG
6026 for_each_migratetype_order(order, t) {
6027 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6028 zone->free_area[order].nr_free = 0;
6029 }
6030}
6031
dfb3ccd0
PT
6032void __meminit __weak memmap_init(unsigned long size, int nid,
6033 unsigned long zone, unsigned long start_pfn)
6034{
6035 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6036}
1da177e4 6037
7cd2b0a3 6038static int zone_batchsize(struct zone *zone)
e7c8d5c9 6039{
3a6be87f 6040#ifdef CONFIG_MMU
e7c8d5c9
CL
6041 int batch;
6042
6043 /*
6044 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6045 * size of the zone.
e7c8d5c9 6046 */
9705bea5 6047 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6048 /* But no more than a meg. */
6049 if (batch * PAGE_SIZE > 1024 * 1024)
6050 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6051 batch /= 4; /* We effectively *= 4 below */
6052 if (batch < 1)
6053 batch = 1;
6054
6055 /*
0ceaacc9
NP
6056 * Clamp the batch to a 2^n - 1 value. Having a power
6057 * of 2 value was found to be more likely to have
6058 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6059 *
0ceaacc9
NP
6060 * For example if 2 tasks are alternately allocating
6061 * batches of pages, one task can end up with a lot
6062 * of pages of one half of the possible page colors
6063 * and the other with pages of the other colors.
e7c8d5c9 6064 */
9155203a 6065 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6066
e7c8d5c9 6067 return batch;
3a6be87f
DH
6068
6069#else
6070 /* The deferral and batching of frees should be suppressed under NOMMU
6071 * conditions.
6072 *
6073 * The problem is that NOMMU needs to be able to allocate large chunks
6074 * of contiguous memory as there's no hardware page translation to
6075 * assemble apparent contiguous memory from discontiguous pages.
6076 *
6077 * Queueing large contiguous runs of pages for batching, however,
6078 * causes the pages to actually be freed in smaller chunks. As there
6079 * can be a significant delay between the individual batches being
6080 * recycled, this leads to the once large chunks of space being
6081 * fragmented and becoming unavailable for high-order allocations.
6082 */
6083 return 0;
6084#endif
e7c8d5c9
CL
6085}
6086
8d7a8fa9
CS
6087/*
6088 * pcp->high and pcp->batch values are related and dependent on one another:
6089 * ->batch must never be higher then ->high.
6090 * The following function updates them in a safe manner without read side
6091 * locking.
6092 *
6093 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6094 * those fields changing asynchronously (acording the the above rule).
6095 *
6096 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6097 * outside of boot time (or some other assurance that no concurrent updaters
6098 * exist).
6099 */
6100static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6101 unsigned long batch)
6102{
6103 /* start with a fail safe value for batch */
6104 pcp->batch = 1;
6105 smp_wmb();
6106
6107 /* Update high, then batch, in order */
6108 pcp->high = high;
6109 smp_wmb();
6110
6111 pcp->batch = batch;
6112}
6113
3664033c 6114/* a companion to pageset_set_high() */
4008bab7
CS
6115static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6116{
8d7a8fa9 6117 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6118}
6119
88c90dbc 6120static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6121{
6122 struct per_cpu_pages *pcp;
5f8dcc21 6123 int migratetype;
2caaad41 6124
1c6fe946
MD
6125 memset(p, 0, sizeof(*p));
6126
3dfa5721 6127 pcp = &p->pcp;
5f8dcc21
MG
6128 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6129 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6130}
6131
88c90dbc
CS
6132static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6133{
6134 pageset_init(p);
6135 pageset_set_batch(p, batch);
6136}
6137
8ad4b1fb 6138/*
3664033c 6139 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6140 * to the value high for the pageset p.
6141 */
3664033c 6142static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6143 unsigned long high)
6144{
8d7a8fa9
CS
6145 unsigned long batch = max(1UL, high / 4);
6146 if ((high / 4) > (PAGE_SHIFT * 8))
6147 batch = PAGE_SHIFT * 8;
8ad4b1fb 6148
8d7a8fa9 6149 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6150}
6151
7cd2b0a3
DR
6152static void pageset_set_high_and_batch(struct zone *zone,
6153 struct per_cpu_pageset *pcp)
56cef2b8 6154{
56cef2b8 6155 if (percpu_pagelist_fraction)
3664033c 6156 pageset_set_high(pcp,
9705bea5 6157 (zone_managed_pages(zone) /
56cef2b8
CS
6158 percpu_pagelist_fraction));
6159 else
6160 pageset_set_batch(pcp, zone_batchsize(zone));
6161}
6162
169f6c19
CS
6163static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6164{
6165 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6166
6167 pageset_init(pcp);
6168 pageset_set_high_and_batch(zone, pcp);
6169}
6170
72675e13 6171void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6172{
6173 int cpu;
319774e2 6174 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6175 for_each_possible_cpu(cpu)
6176 zone_pageset_init(zone, cpu);
319774e2
WF
6177}
6178
2caaad41 6179/*
99dcc3e5
CL
6180 * Allocate per cpu pagesets and initialize them.
6181 * Before this call only boot pagesets were available.
e7c8d5c9 6182 */
99dcc3e5 6183void __init setup_per_cpu_pageset(void)
e7c8d5c9 6184{
b4911ea2 6185 struct pglist_data *pgdat;
99dcc3e5 6186 struct zone *zone;
e7c8d5c9 6187
319774e2
WF
6188 for_each_populated_zone(zone)
6189 setup_zone_pageset(zone);
b4911ea2
MG
6190
6191 for_each_online_pgdat(pgdat)
6192 pgdat->per_cpu_nodestats =
6193 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6194}
6195
c09b4240 6196static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6197{
99dcc3e5
CL
6198 /*
6199 * per cpu subsystem is not up at this point. The following code
6200 * relies on the ability of the linker to provide the
6201 * offset of a (static) per cpu variable into the per cpu area.
6202 */
6203 zone->pageset = &boot_pageset;
ed8ece2e 6204
b38a8725 6205 if (populated_zone(zone))
99dcc3e5
CL
6206 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6207 zone->name, zone->present_pages,
6208 zone_batchsize(zone));
ed8ece2e
DH
6209}
6210
dc0bbf3b 6211void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6212 unsigned long zone_start_pfn,
b171e409 6213 unsigned long size)
ed8ece2e
DH
6214{
6215 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6216 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6217
8f416836
WY
6218 if (zone_idx > pgdat->nr_zones)
6219 pgdat->nr_zones = zone_idx;
ed8ece2e 6220
ed8ece2e
DH
6221 zone->zone_start_pfn = zone_start_pfn;
6222
708614e6
MG
6223 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6224 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6225 pgdat->node_id,
6226 (unsigned long)zone_idx(zone),
6227 zone_start_pfn, (zone_start_pfn + size));
6228
1e548deb 6229 zone_init_free_lists(zone);
9dcb8b68 6230 zone->initialized = 1;
ed8ece2e
DH
6231}
6232
0ee332c1 6233#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6234#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6235
c713216d
MG
6236/*
6237 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6238 */
8a942fde
MG
6239int __meminit __early_pfn_to_nid(unsigned long pfn,
6240 struct mminit_pfnnid_cache *state)
c713216d 6241{
c13291a5 6242 unsigned long start_pfn, end_pfn;
e76b63f8 6243 int nid;
7c243c71 6244
8a942fde
MG
6245 if (state->last_start <= pfn && pfn < state->last_end)
6246 return state->last_nid;
c713216d 6247
e76b63f8 6248 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6249 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6250 state->last_start = start_pfn;
6251 state->last_end = end_pfn;
6252 state->last_nid = nid;
e76b63f8
YL
6253 }
6254
6255 return nid;
c713216d
MG
6256}
6257#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6258
c713216d 6259/**
6782832e 6260 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6261 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6262 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6263 *
7d018176
ZZ
6264 * If an architecture guarantees that all ranges registered contain no holes
6265 * and may be freed, this this function may be used instead of calling
6266 * memblock_free_early_nid() manually.
c713216d 6267 */
c13291a5 6268void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6269{
c13291a5
TH
6270 unsigned long start_pfn, end_pfn;
6271 int i, this_nid;
edbe7d23 6272
c13291a5
TH
6273 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6274 start_pfn = min(start_pfn, max_low_pfn);
6275 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6276
c13291a5 6277 if (start_pfn < end_pfn)
6782832e
SS
6278 memblock_free_early_nid(PFN_PHYS(start_pfn),
6279 (end_pfn - start_pfn) << PAGE_SHIFT,
6280 this_nid);
edbe7d23 6281 }
edbe7d23 6282}
edbe7d23 6283
c713216d
MG
6284/**
6285 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6286 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6287 *
7d018176
ZZ
6288 * If an architecture guarantees that all ranges registered contain no holes and may
6289 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6290 */
6291void __init sparse_memory_present_with_active_regions(int nid)
6292{
c13291a5
TH
6293 unsigned long start_pfn, end_pfn;
6294 int i, this_nid;
c713216d 6295
c13291a5
TH
6296 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6297 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6298}
6299
6300/**
6301 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6302 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6303 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6304 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6305 *
6306 * It returns the start and end page frame of a node based on information
7d018176 6307 * provided by memblock_set_node(). If called for a node
c713216d 6308 * with no available memory, a warning is printed and the start and end
88ca3b94 6309 * PFNs will be 0.
c713216d 6310 */
bbe5d993 6311void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6312 unsigned long *start_pfn, unsigned long *end_pfn)
6313{
c13291a5 6314 unsigned long this_start_pfn, this_end_pfn;
c713216d 6315 int i;
c13291a5 6316
c713216d
MG
6317 *start_pfn = -1UL;
6318 *end_pfn = 0;
6319
c13291a5
TH
6320 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6321 *start_pfn = min(*start_pfn, this_start_pfn);
6322 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6323 }
6324
633c0666 6325 if (*start_pfn == -1UL)
c713216d 6326 *start_pfn = 0;
c713216d
MG
6327}
6328
2a1e274a
MG
6329/*
6330 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6331 * assumption is made that zones within a node are ordered in monotonic
6332 * increasing memory addresses so that the "highest" populated zone is used
6333 */
b69a7288 6334static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6335{
6336 int zone_index;
6337 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6338 if (zone_index == ZONE_MOVABLE)
6339 continue;
6340
6341 if (arch_zone_highest_possible_pfn[zone_index] >
6342 arch_zone_lowest_possible_pfn[zone_index])
6343 break;
6344 }
6345
6346 VM_BUG_ON(zone_index == -1);
6347 movable_zone = zone_index;
6348}
6349
6350/*
6351 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6352 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6353 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6354 * in each node depending on the size of each node and how evenly kernelcore
6355 * is distributed. This helper function adjusts the zone ranges
6356 * provided by the architecture for a given node by using the end of the
6357 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6358 * zones within a node are in order of monotonic increases memory addresses
6359 */
bbe5d993 6360static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6361 unsigned long zone_type,
6362 unsigned long node_start_pfn,
6363 unsigned long node_end_pfn,
6364 unsigned long *zone_start_pfn,
6365 unsigned long *zone_end_pfn)
6366{
6367 /* Only adjust if ZONE_MOVABLE is on this node */
6368 if (zone_movable_pfn[nid]) {
6369 /* Size ZONE_MOVABLE */
6370 if (zone_type == ZONE_MOVABLE) {
6371 *zone_start_pfn = zone_movable_pfn[nid];
6372 *zone_end_pfn = min(node_end_pfn,
6373 arch_zone_highest_possible_pfn[movable_zone]);
6374
e506b996
XQ
6375 /* Adjust for ZONE_MOVABLE starting within this range */
6376 } else if (!mirrored_kernelcore &&
6377 *zone_start_pfn < zone_movable_pfn[nid] &&
6378 *zone_end_pfn > zone_movable_pfn[nid]) {
6379 *zone_end_pfn = zone_movable_pfn[nid];
6380
2a1e274a
MG
6381 /* Check if this whole range is within ZONE_MOVABLE */
6382 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6383 *zone_start_pfn = *zone_end_pfn;
6384 }
6385}
6386
c713216d
MG
6387/*
6388 * Return the number of pages a zone spans in a node, including holes
6389 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6390 */
bbe5d993 6391static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6392 unsigned long zone_type,
7960aedd
ZY
6393 unsigned long node_start_pfn,
6394 unsigned long node_end_pfn,
d91749c1
TI
6395 unsigned long *zone_start_pfn,
6396 unsigned long *zone_end_pfn,
c713216d
MG
6397 unsigned long *ignored)
6398{
299c83dc
LF
6399 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6400 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6401 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6402 if (!node_start_pfn && !node_end_pfn)
6403 return 0;
6404
7960aedd 6405 /* Get the start and end of the zone */
299c83dc
LF
6406 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6407 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6408 adjust_zone_range_for_zone_movable(nid, zone_type,
6409 node_start_pfn, node_end_pfn,
d91749c1 6410 zone_start_pfn, zone_end_pfn);
c713216d
MG
6411
6412 /* Check that this node has pages within the zone's required range */
d91749c1 6413 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6414 return 0;
6415
6416 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6417 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6418 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6419
6420 /* Return the spanned pages */
d91749c1 6421 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6422}
6423
6424/*
6425 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6426 * then all holes in the requested range will be accounted for.
c713216d 6427 */
bbe5d993 6428unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6429 unsigned long range_start_pfn,
6430 unsigned long range_end_pfn)
6431{
96e907d1
TH
6432 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6433 unsigned long start_pfn, end_pfn;
6434 int i;
c713216d 6435
96e907d1
TH
6436 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6437 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6438 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6439 nr_absent -= end_pfn - start_pfn;
c713216d 6440 }
96e907d1 6441 return nr_absent;
c713216d
MG
6442}
6443
6444/**
6445 * absent_pages_in_range - Return number of page frames in holes within a range
6446 * @start_pfn: The start PFN to start searching for holes
6447 * @end_pfn: The end PFN to stop searching for holes
6448 *
a862f68a 6449 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6450 */
6451unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6452 unsigned long end_pfn)
6453{
6454 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6455}
6456
6457/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6458static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6459 unsigned long zone_type,
7960aedd
ZY
6460 unsigned long node_start_pfn,
6461 unsigned long node_end_pfn,
c713216d
MG
6462 unsigned long *ignored)
6463{
96e907d1
TH
6464 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6465 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6466 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6467 unsigned long nr_absent;
9c7cd687 6468
b5685e92 6469 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6470 if (!node_start_pfn && !node_end_pfn)
6471 return 0;
6472
96e907d1
TH
6473 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6474 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6475
2a1e274a
MG
6476 adjust_zone_range_for_zone_movable(nid, zone_type,
6477 node_start_pfn, node_end_pfn,
6478 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6479 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6480
6481 /*
6482 * ZONE_MOVABLE handling.
6483 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6484 * and vice versa.
6485 */
e506b996
XQ
6486 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6487 unsigned long start_pfn, end_pfn;
6488 struct memblock_region *r;
6489
6490 for_each_memblock(memory, r) {
6491 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6492 zone_start_pfn, zone_end_pfn);
6493 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6494 zone_start_pfn, zone_end_pfn);
6495
6496 if (zone_type == ZONE_MOVABLE &&
6497 memblock_is_mirror(r))
6498 nr_absent += end_pfn - start_pfn;
6499
6500 if (zone_type == ZONE_NORMAL &&
6501 !memblock_is_mirror(r))
6502 nr_absent += end_pfn - start_pfn;
342332e6
TI
6503 }
6504 }
6505
6506 return nr_absent;
c713216d 6507}
0e0b864e 6508
0ee332c1 6509#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6510static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6511 unsigned long zone_type,
7960aedd
ZY
6512 unsigned long node_start_pfn,
6513 unsigned long node_end_pfn,
d91749c1
TI
6514 unsigned long *zone_start_pfn,
6515 unsigned long *zone_end_pfn,
c713216d
MG
6516 unsigned long *zones_size)
6517{
d91749c1
TI
6518 unsigned int zone;
6519
6520 *zone_start_pfn = node_start_pfn;
6521 for (zone = 0; zone < zone_type; zone++)
6522 *zone_start_pfn += zones_size[zone];
6523
6524 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6525
c713216d
MG
6526 return zones_size[zone_type];
6527}
6528
bbe5d993 6529static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6530 unsigned long zone_type,
7960aedd
ZY
6531 unsigned long node_start_pfn,
6532 unsigned long node_end_pfn,
c713216d
MG
6533 unsigned long *zholes_size)
6534{
6535 if (!zholes_size)
6536 return 0;
6537
6538 return zholes_size[zone_type];
6539}
20e6926d 6540
0ee332c1 6541#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6542
bbe5d993 6543static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6544 unsigned long node_start_pfn,
6545 unsigned long node_end_pfn,
6546 unsigned long *zones_size,
6547 unsigned long *zholes_size)
c713216d 6548{
febd5949 6549 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6550 enum zone_type i;
6551
febd5949
GZ
6552 for (i = 0; i < MAX_NR_ZONES; i++) {
6553 struct zone *zone = pgdat->node_zones + i;
d91749c1 6554 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6555 unsigned long size, real_size;
c713216d 6556
febd5949
GZ
6557 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6558 node_start_pfn,
6559 node_end_pfn,
d91749c1
TI
6560 &zone_start_pfn,
6561 &zone_end_pfn,
febd5949
GZ
6562 zones_size);
6563 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6564 node_start_pfn, node_end_pfn,
6565 zholes_size);
d91749c1
TI
6566 if (size)
6567 zone->zone_start_pfn = zone_start_pfn;
6568 else
6569 zone->zone_start_pfn = 0;
febd5949
GZ
6570 zone->spanned_pages = size;
6571 zone->present_pages = real_size;
6572
6573 totalpages += size;
6574 realtotalpages += real_size;
6575 }
6576
6577 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6578 pgdat->node_present_pages = realtotalpages;
6579 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6580 realtotalpages);
6581}
6582
835c134e
MG
6583#ifndef CONFIG_SPARSEMEM
6584/*
6585 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6586 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6587 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6588 * round what is now in bits to nearest long in bits, then return it in
6589 * bytes.
6590 */
7c45512d 6591static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6592{
6593 unsigned long usemapsize;
6594
7c45512d 6595 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6596 usemapsize = roundup(zonesize, pageblock_nr_pages);
6597 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6598 usemapsize *= NR_PAGEBLOCK_BITS;
6599 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6600
6601 return usemapsize / 8;
6602}
6603
7cc2a959 6604static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6605 struct zone *zone,
6606 unsigned long zone_start_pfn,
6607 unsigned long zonesize)
835c134e 6608{
7c45512d 6609 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6610 zone->pageblock_flags = NULL;
23a7052a 6611 if (usemapsize) {
6782832e 6612 zone->pageblock_flags =
26fb3dae
MR
6613 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6614 pgdat->node_id);
23a7052a
MR
6615 if (!zone->pageblock_flags)
6616 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6617 usemapsize, zone->name, pgdat->node_id);
6618 }
835c134e
MG
6619}
6620#else
7c45512d
LT
6621static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6622 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6623#endif /* CONFIG_SPARSEMEM */
6624
d9c23400 6625#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6626
d9c23400 6627/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6628void __init set_pageblock_order(void)
d9c23400 6629{
955c1cd7
AM
6630 unsigned int order;
6631
d9c23400
MG
6632 /* Check that pageblock_nr_pages has not already been setup */
6633 if (pageblock_order)
6634 return;
6635
955c1cd7
AM
6636 if (HPAGE_SHIFT > PAGE_SHIFT)
6637 order = HUGETLB_PAGE_ORDER;
6638 else
6639 order = MAX_ORDER - 1;
6640
d9c23400
MG
6641 /*
6642 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6643 * This value may be variable depending on boot parameters on IA64 and
6644 * powerpc.
d9c23400
MG
6645 */
6646 pageblock_order = order;
6647}
6648#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6649
ba72cb8c
MG
6650/*
6651 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6652 * is unused as pageblock_order is set at compile-time. See
6653 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6654 * the kernel config
ba72cb8c 6655 */
03e85f9d 6656void __init set_pageblock_order(void)
ba72cb8c 6657{
ba72cb8c 6658}
d9c23400
MG
6659
6660#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6661
03e85f9d 6662static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6663 unsigned long present_pages)
01cefaef
JL
6664{
6665 unsigned long pages = spanned_pages;
6666
6667 /*
6668 * Provide a more accurate estimation if there are holes within
6669 * the zone and SPARSEMEM is in use. If there are holes within the
6670 * zone, each populated memory region may cost us one or two extra
6671 * memmap pages due to alignment because memmap pages for each
89d790ab 6672 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6673 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6674 */
6675 if (spanned_pages > present_pages + (present_pages >> 4) &&
6676 IS_ENABLED(CONFIG_SPARSEMEM))
6677 pages = present_pages;
6678
6679 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6680}
6681
ace1db39
OS
6682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6683static void pgdat_init_split_queue(struct pglist_data *pgdat)
6684{
364c1eeb
YS
6685 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6686
6687 spin_lock_init(&ds_queue->split_queue_lock);
6688 INIT_LIST_HEAD(&ds_queue->split_queue);
6689 ds_queue->split_queue_len = 0;
ace1db39
OS
6690}
6691#else
6692static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6693#endif
6694
6695#ifdef CONFIG_COMPACTION
6696static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6697{
6698 init_waitqueue_head(&pgdat->kcompactd_wait);
6699}
6700#else
6701static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6702#endif
6703
03e85f9d 6704static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6705{
208d54e5 6706 pgdat_resize_init(pgdat);
ace1db39 6707
ace1db39
OS
6708 pgdat_init_split_queue(pgdat);
6709 pgdat_init_kcompactd(pgdat);
6710
1da177e4 6711 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6712 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6713
eefa864b 6714 pgdat_page_ext_init(pgdat);
a52633d8 6715 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6716 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6717}
6718
6719static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6720 unsigned long remaining_pages)
6721{
9705bea5 6722 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6723 zone_set_nid(zone, nid);
6724 zone->name = zone_names[idx];
6725 zone->zone_pgdat = NODE_DATA(nid);
6726 spin_lock_init(&zone->lock);
6727 zone_seqlock_init(zone);
6728 zone_pcp_init(zone);
6729}
6730
6731/*
6732 * Set up the zone data structures
6733 * - init pgdat internals
6734 * - init all zones belonging to this node
6735 *
6736 * NOTE: this function is only called during memory hotplug
6737 */
6738#ifdef CONFIG_MEMORY_HOTPLUG
6739void __ref free_area_init_core_hotplug(int nid)
6740{
6741 enum zone_type z;
6742 pg_data_t *pgdat = NODE_DATA(nid);
6743
6744 pgdat_init_internals(pgdat);
6745 for (z = 0; z < MAX_NR_ZONES; z++)
6746 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6747}
6748#endif
6749
6750/*
6751 * Set up the zone data structures:
6752 * - mark all pages reserved
6753 * - mark all memory queues empty
6754 * - clear the memory bitmaps
6755 *
6756 * NOTE: pgdat should get zeroed by caller.
6757 * NOTE: this function is only called during early init.
6758 */
6759static void __init free_area_init_core(struct pglist_data *pgdat)
6760{
6761 enum zone_type j;
6762 int nid = pgdat->node_id;
5f63b720 6763
03e85f9d 6764 pgdat_init_internals(pgdat);
385386cf
JW
6765 pgdat->per_cpu_nodestats = &boot_nodestats;
6766
1da177e4
LT
6767 for (j = 0; j < MAX_NR_ZONES; j++) {
6768 struct zone *zone = pgdat->node_zones + j;
e6943859 6769 unsigned long size, freesize, memmap_pages;
d91749c1 6770 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6771
febd5949 6772 size = zone->spanned_pages;
e6943859 6773 freesize = zone->present_pages;
1da177e4 6774
0e0b864e 6775 /*
9feedc9d 6776 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6777 * is used by this zone for memmap. This affects the watermark
6778 * and per-cpu initialisations
6779 */
e6943859 6780 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6781 if (!is_highmem_idx(j)) {
6782 if (freesize >= memmap_pages) {
6783 freesize -= memmap_pages;
6784 if (memmap_pages)
6785 printk(KERN_DEBUG
6786 " %s zone: %lu pages used for memmap\n",
6787 zone_names[j], memmap_pages);
6788 } else
1170532b 6789 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6790 zone_names[j], memmap_pages, freesize);
6791 }
0e0b864e 6792
6267276f 6793 /* Account for reserved pages */
9feedc9d
JL
6794 if (j == 0 && freesize > dma_reserve) {
6795 freesize -= dma_reserve;
d903ef9f 6796 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6797 zone_names[0], dma_reserve);
0e0b864e
MG
6798 }
6799
98d2b0eb 6800 if (!is_highmem_idx(j))
9feedc9d 6801 nr_kernel_pages += freesize;
01cefaef
JL
6802 /* Charge for highmem memmap if there are enough kernel pages */
6803 else if (nr_kernel_pages > memmap_pages * 2)
6804 nr_kernel_pages -= memmap_pages;
9feedc9d 6805 nr_all_pages += freesize;
1da177e4 6806
9feedc9d
JL
6807 /*
6808 * Set an approximate value for lowmem here, it will be adjusted
6809 * when the bootmem allocator frees pages into the buddy system.
6810 * And all highmem pages will be managed by the buddy system.
6811 */
03e85f9d 6812 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6813
d883c6cf 6814 if (!size)
1da177e4
LT
6815 continue;
6816
955c1cd7 6817 set_pageblock_order();
d883c6cf
JK
6818 setup_usemap(pgdat, zone, zone_start_pfn, size);
6819 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6820 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6821 }
6822}
6823
0cd842f9 6824#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6825static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6826{
b0aeba74 6827 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6828 unsigned long __maybe_unused offset = 0;
6829
1da177e4
LT
6830 /* Skip empty nodes */
6831 if (!pgdat->node_spanned_pages)
6832 return;
6833
b0aeba74
TL
6834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6835 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6836 /* ia64 gets its own node_mem_map, before this, without bootmem */
6837 if (!pgdat->node_mem_map) {
b0aeba74 6838 unsigned long size, end;
d41dee36
AW
6839 struct page *map;
6840
e984bb43
BP
6841 /*
6842 * The zone's endpoints aren't required to be MAX_ORDER
6843 * aligned but the node_mem_map endpoints must be in order
6844 * for the buddy allocator to function correctly.
6845 */
108bcc96 6846 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6847 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6848 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6849 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6850 pgdat->node_id);
23a7052a
MR
6851 if (!map)
6852 panic("Failed to allocate %ld bytes for node %d memory map\n",
6853 size, pgdat->node_id);
a1c34a3b 6854 pgdat->node_mem_map = map + offset;
1da177e4 6855 }
0cd842f9
OS
6856 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6857 __func__, pgdat->node_id, (unsigned long)pgdat,
6858 (unsigned long)pgdat->node_mem_map);
12d810c1 6859#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6860 /*
6861 * With no DISCONTIG, the global mem_map is just set as node 0's
6862 */
c713216d 6863 if (pgdat == NODE_DATA(0)) {
1da177e4 6864 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6865#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6866 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6867 mem_map -= offset;
0ee332c1 6868#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6869 }
1da177e4
LT
6870#endif
6871}
0cd842f9
OS
6872#else
6873static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6874#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6875
0188dc98
OS
6876#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6877static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6878{
0188dc98
OS
6879 pgdat->first_deferred_pfn = ULONG_MAX;
6880}
6881#else
6882static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6883#endif
6884
03e85f9d 6885void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6886 unsigned long node_start_pfn,
6887 unsigned long *zholes_size)
1da177e4 6888{
9109fb7b 6889 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6890 unsigned long start_pfn = 0;
6891 unsigned long end_pfn = 0;
9109fb7b 6892
88fdf75d 6893 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6894 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6895
1da177e4
LT
6896 pgdat->node_id = nid;
6897 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6898 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6899#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6900 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6901 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6902 (u64)start_pfn << PAGE_SHIFT,
6903 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6904#else
6905 start_pfn = node_start_pfn;
7960aedd
ZY
6906#endif
6907 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6908 zones_size, zholes_size);
1da177e4
LT
6909
6910 alloc_node_mem_map(pgdat);
0188dc98 6911 pgdat_set_deferred_range(pgdat);
1da177e4 6912
7f3eb55b 6913 free_area_init_core(pgdat);
1da177e4
LT
6914}
6915
aca52c39 6916#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6917/*
6918 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6919 * pages zeroed
6920 */
6921static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6922{
6923 unsigned long pfn;
6924 u64 pgcnt = 0;
6925
6926 for (pfn = spfn; pfn < epfn; pfn++) {
6927 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6928 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6929 + pageblock_nr_pages - 1;
6930 continue;
6931 }
6932 mm_zero_struct_page(pfn_to_page(pfn));
6933 pgcnt++;
6934 }
6935
6936 return pgcnt;
6937}
6938
a4a3ede2
PT
6939/*
6940 * Only struct pages that are backed by physical memory are zeroed and
6941 * initialized by going through __init_single_page(). But, there are some
6942 * struct pages which are reserved in memblock allocator and their fields
6943 * may be accessed (for example page_to_pfn() on some configuration accesses
6944 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6945 *
6946 * This function also addresses a similar issue where struct pages are left
6947 * uninitialized because the physical address range is not covered by
6948 * memblock.memory or memblock.reserved. That could happen when memblock
6949 * layout is manually configured via memmap=.
a4a3ede2 6950 */
03e85f9d 6951void __init zero_resv_unavail(void)
a4a3ede2
PT
6952{
6953 phys_addr_t start, end;
a4a3ede2 6954 u64 i, pgcnt;
907ec5fc 6955 phys_addr_t next = 0;
a4a3ede2
PT
6956
6957 /*
907ec5fc 6958 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6959 */
6960 pgcnt = 0;
907ec5fc
NH
6961 for_each_mem_range(i, &memblock.memory, NULL,
6962 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6963 if (next < start)
6964 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6965 next = end;
6966 }
ec393a0f 6967 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6968
a4a3ede2
PT
6969 /*
6970 * Struct pages that do not have backing memory. This could be because
6971 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6972 */
6973 if (pgcnt)
907ec5fc 6974 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6975}
aca52c39 6976#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6977
0ee332c1 6978#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6979
6980#if MAX_NUMNODES > 1
6981/*
6982 * Figure out the number of possible node ids.
6983 */
f9872caf 6984void __init setup_nr_node_ids(void)
418508c1 6985{
904a9553 6986 unsigned int highest;
418508c1 6987
904a9553 6988 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6989 nr_node_ids = highest + 1;
6990}
418508c1
MS
6991#endif
6992
1e01979c
TH
6993/**
6994 * node_map_pfn_alignment - determine the maximum internode alignment
6995 *
6996 * This function should be called after node map is populated and sorted.
6997 * It calculates the maximum power of two alignment which can distinguish
6998 * all the nodes.
6999 *
7000 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7001 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7002 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7003 * shifted, 1GiB is enough and this function will indicate so.
7004 *
7005 * This is used to test whether pfn -> nid mapping of the chosen memory
7006 * model has fine enough granularity to avoid incorrect mapping for the
7007 * populated node map.
7008 *
a862f68a 7009 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7010 * requirement (single node).
7011 */
7012unsigned long __init node_map_pfn_alignment(void)
7013{
7014 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7015 unsigned long start, end, mask;
98fa15f3 7016 int last_nid = NUMA_NO_NODE;
c13291a5 7017 int i, nid;
1e01979c 7018
c13291a5 7019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7020 if (!start || last_nid < 0 || last_nid == nid) {
7021 last_nid = nid;
7022 last_end = end;
7023 continue;
7024 }
7025
7026 /*
7027 * Start with a mask granular enough to pin-point to the
7028 * start pfn and tick off bits one-by-one until it becomes
7029 * too coarse to separate the current node from the last.
7030 */
7031 mask = ~((1 << __ffs(start)) - 1);
7032 while (mask && last_end <= (start & (mask << 1)))
7033 mask <<= 1;
7034
7035 /* accumulate all internode masks */
7036 accl_mask |= mask;
7037 }
7038
7039 /* convert mask to number of pages */
7040 return ~accl_mask + 1;
7041}
7042
a6af2bc3 7043/* Find the lowest pfn for a node */
b69a7288 7044static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7045{
a6af2bc3 7046 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7047 unsigned long start_pfn;
7048 int i;
1abbfb41 7049
c13291a5
TH
7050 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7051 min_pfn = min(min_pfn, start_pfn);
c713216d 7052
a6af2bc3 7053 if (min_pfn == ULONG_MAX) {
1170532b 7054 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7055 return 0;
7056 }
7057
7058 return min_pfn;
c713216d
MG
7059}
7060
7061/**
7062 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7063 *
a862f68a 7064 * Return: the minimum PFN based on information provided via
7d018176 7065 * memblock_set_node().
c713216d
MG
7066 */
7067unsigned long __init find_min_pfn_with_active_regions(void)
7068{
7069 return find_min_pfn_for_node(MAX_NUMNODES);
7070}
7071
37b07e41
LS
7072/*
7073 * early_calculate_totalpages()
7074 * Sum pages in active regions for movable zone.
4b0ef1fe 7075 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7076 */
484f51f8 7077static unsigned long __init early_calculate_totalpages(void)
7e63efef 7078{
7e63efef 7079 unsigned long totalpages = 0;
c13291a5
TH
7080 unsigned long start_pfn, end_pfn;
7081 int i, nid;
7082
7083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7084 unsigned long pages = end_pfn - start_pfn;
7e63efef 7085
37b07e41
LS
7086 totalpages += pages;
7087 if (pages)
4b0ef1fe 7088 node_set_state(nid, N_MEMORY);
37b07e41 7089 }
b8af2941 7090 return totalpages;
7e63efef
MG
7091}
7092
2a1e274a
MG
7093/*
7094 * Find the PFN the Movable zone begins in each node. Kernel memory
7095 * is spread evenly between nodes as long as the nodes have enough
7096 * memory. When they don't, some nodes will have more kernelcore than
7097 * others
7098 */
b224ef85 7099static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7100{
7101 int i, nid;
7102 unsigned long usable_startpfn;
7103 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7104 /* save the state before borrow the nodemask */
4b0ef1fe 7105 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7106 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7107 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7108 struct memblock_region *r;
b2f3eebe
TC
7109
7110 /* Need to find movable_zone earlier when movable_node is specified. */
7111 find_usable_zone_for_movable();
7112
7113 /*
7114 * If movable_node is specified, ignore kernelcore and movablecore
7115 * options.
7116 */
7117 if (movable_node_is_enabled()) {
136199f0
EM
7118 for_each_memblock(memory, r) {
7119 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7120 continue;
7121
136199f0 7122 nid = r->nid;
b2f3eebe 7123
136199f0 7124 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7126 min(usable_startpfn, zone_movable_pfn[nid]) :
7127 usable_startpfn;
7128 }
7129
7130 goto out2;
7131 }
2a1e274a 7132
342332e6
TI
7133 /*
7134 * If kernelcore=mirror is specified, ignore movablecore option
7135 */
7136 if (mirrored_kernelcore) {
7137 bool mem_below_4gb_not_mirrored = false;
7138
7139 for_each_memblock(memory, r) {
7140 if (memblock_is_mirror(r))
7141 continue;
7142
7143 nid = r->nid;
7144
7145 usable_startpfn = memblock_region_memory_base_pfn(r);
7146
7147 if (usable_startpfn < 0x100000) {
7148 mem_below_4gb_not_mirrored = true;
7149 continue;
7150 }
7151
7152 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7153 min(usable_startpfn, zone_movable_pfn[nid]) :
7154 usable_startpfn;
7155 }
7156
7157 if (mem_below_4gb_not_mirrored)
7158 pr_warn("This configuration results in unmirrored kernel memory.");
7159
7160 goto out2;
7161 }
7162
7e63efef 7163 /*
a5c6d650
DR
7164 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7165 * amount of necessary memory.
7166 */
7167 if (required_kernelcore_percent)
7168 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7169 10000UL;
7170 if (required_movablecore_percent)
7171 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7172 10000UL;
7173
7174 /*
7175 * If movablecore= was specified, calculate what size of
7e63efef
MG
7176 * kernelcore that corresponds so that memory usable for
7177 * any allocation type is evenly spread. If both kernelcore
7178 * and movablecore are specified, then the value of kernelcore
7179 * will be used for required_kernelcore if it's greater than
7180 * what movablecore would have allowed.
7181 */
7182 if (required_movablecore) {
7e63efef
MG
7183 unsigned long corepages;
7184
7185 /*
7186 * Round-up so that ZONE_MOVABLE is at least as large as what
7187 * was requested by the user
7188 */
7189 required_movablecore =
7190 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7191 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7192 corepages = totalpages - required_movablecore;
7193
7194 required_kernelcore = max(required_kernelcore, corepages);
7195 }
7196
bde304bd
XQ
7197 /*
7198 * If kernelcore was not specified or kernelcore size is larger
7199 * than totalpages, there is no ZONE_MOVABLE.
7200 */
7201 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7202 goto out;
2a1e274a
MG
7203
7204 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7205 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7206
7207restart:
7208 /* Spread kernelcore memory as evenly as possible throughout nodes */
7209 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7210 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7211 unsigned long start_pfn, end_pfn;
7212
2a1e274a
MG
7213 /*
7214 * Recalculate kernelcore_node if the division per node
7215 * now exceeds what is necessary to satisfy the requested
7216 * amount of memory for the kernel
7217 */
7218 if (required_kernelcore < kernelcore_node)
7219 kernelcore_node = required_kernelcore / usable_nodes;
7220
7221 /*
7222 * As the map is walked, we track how much memory is usable
7223 * by the kernel using kernelcore_remaining. When it is
7224 * 0, the rest of the node is usable by ZONE_MOVABLE
7225 */
7226 kernelcore_remaining = kernelcore_node;
7227
7228 /* Go through each range of PFNs within this node */
c13291a5 7229 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7230 unsigned long size_pages;
7231
c13291a5 7232 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7233 if (start_pfn >= end_pfn)
7234 continue;
7235
7236 /* Account for what is only usable for kernelcore */
7237 if (start_pfn < usable_startpfn) {
7238 unsigned long kernel_pages;
7239 kernel_pages = min(end_pfn, usable_startpfn)
7240 - start_pfn;
7241
7242 kernelcore_remaining -= min(kernel_pages,
7243 kernelcore_remaining);
7244 required_kernelcore -= min(kernel_pages,
7245 required_kernelcore);
7246
7247 /* Continue if range is now fully accounted */
7248 if (end_pfn <= usable_startpfn) {
7249
7250 /*
7251 * Push zone_movable_pfn to the end so
7252 * that if we have to rebalance
7253 * kernelcore across nodes, we will
7254 * not double account here
7255 */
7256 zone_movable_pfn[nid] = end_pfn;
7257 continue;
7258 }
7259 start_pfn = usable_startpfn;
7260 }
7261
7262 /*
7263 * The usable PFN range for ZONE_MOVABLE is from
7264 * start_pfn->end_pfn. Calculate size_pages as the
7265 * number of pages used as kernelcore
7266 */
7267 size_pages = end_pfn - start_pfn;
7268 if (size_pages > kernelcore_remaining)
7269 size_pages = kernelcore_remaining;
7270 zone_movable_pfn[nid] = start_pfn + size_pages;
7271
7272 /*
7273 * Some kernelcore has been met, update counts and
7274 * break if the kernelcore for this node has been
b8af2941 7275 * satisfied
2a1e274a
MG
7276 */
7277 required_kernelcore -= min(required_kernelcore,
7278 size_pages);
7279 kernelcore_remaining -= size_pages;
7280 if (!kernelcore_remaining)
7281 break;
7282 }
7283 }
7284
7285 /*
7286 * If there is still required_kernelcore, we do another pass with one
7287 * less node in the count. This will push zone_movable_pfn[nid] further
7288 * along on the nodes that still have memory until kernelcore is
b8af2941 7289 * satisfied
2a1e274a
MG
7290 */
7291 usable_nodes--;
7292 if (usable_nodes && required_kernelcore > usable_nodes)
7293 goto restart;
7294
b2f3eebe 7295out2:
2a1e274a
MG
7296 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7297 for (nid = 0; nid < MAX_NUMNODES; nid++)
7298 zone_movable_pfn[nid] =
7299 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7300
20e6926d 7301out:
66918dcd 7302 /* restore the node_state */
4b0ef1fe 7303 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7304}
7305
4b0ef1fe
LJ
7306/* Any regular or high memory on that node ? */
7307static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7308{
37b07e41
LS
7309 enum zone_type zone_type;
7310
4b0ef1fe 7311 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7312 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7313 if (populated_zone(zone)) {
7b0e0c0e
OS
7314 if (IS_ENABLED(CONFIG_HIGHMEM))
7315 node_set_state(nid, N_HIGH_MEMORY);
7316 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7317 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7318 break;
7319 }
37b07e41 7320 }
37b07e41
LS
7321}
7322
c713216d
MG
7323/**
7324 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7325 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7326 *
7327 * This will call free_area_init_node() for each active node in the system.
7d018176 7328 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7329 * zone in each node and their holes is calculated. If the maximum PFN
7330 * between two adjacent zones match, it is assumed that the zone is empty.
7331 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7332 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7333 * starts where the previous one ended. For example, ZONE_DMA32 starts
7334 * at arch_max_dma_pfn.
7335 */
7336void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7337{
c13291a5
TH
7338 unsigned long start_pfn, end_pfn;
7339 int i, nid;
a6af2bc3 7340
c713216d
MG
7341 /* Record where the zone boundaries are */
7342 memset(arch_zone_lowest_possible_pfn, 0,
7343 sizeof(arch_zone_lowest_possible_pfn));
7344 memset(arch_zone_highest_possible_pfn, 0,
7345 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7346
7347 start_pfn = find_min_pfn_with_active_regions();
7348
7349 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7350 if (i == ZONE_MOVABLE)
7351 continue;
90cae1fe
OH
7352
7353 end_pfn = max(max_zone_pfn[i], start_pfn);
7354 arch_zone_lowest_possible_pfn[i] = start_pfn;
7355 arch_zone_highest_possible_pfn[i] = end_pfn;
7356
7357 start_pfn = end_pfn;
c713216d 7358 }
2a1e274a
MG
7359
7360 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7361 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7362 find_zone_movable_pfns_for_nodes();
c713216d 7363
c713216d 7364 /* Print out the zone ranges */
f88dfff5 7365 pr_info("Zone ranges:\n");
2a1e274a
MG
7366 for (i = 0; i < MAX_NR_ZONES; i++) {
7367 if (i == ZONE_MOVABLE)
7368 continue;
f88dfff5 7369 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7370 if (arch_zone_lowest_possible_pfn[i] ==
7371 arch_zone_highest_possible_pfn[i])
f88dfff5 7372 pr_cont("empty\n");
72f0ba02 7373 else
8d29e18a
JG
7374 pr_cont("[mem %#018Lx-%#018Lx]\n",
7375 (u64)arch_zone_lowest_possible_pfn[i]
7376 << PAGE_SHIFT,
7377 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7378 << PAGE_SHIFT) - 1);
2a1e274a
MG
7379 }
7380
7381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7382 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7383 for (i = 0; i < MAX_NUMNODES; i++) {
7384 if (zone_movable_pfn[i])
8d29e18a
JG
7385 pr_info(" Node %d: %#018Lx\n", i,
7386 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7387 }
c713216d 7388
f46edbd1
DW
7389 /*
7390 * Print out the early node map, and initialize the
7391 * subsection-map relative to active online memory ranges to
7392 * enable future "sub-section" extensions of the memory map.
7393 */
f88dfff5 7394 pr_info("Early memory node ranges\n");
f46edbd1 7395 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7396 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7397 (u64)start_pfn << PAGE_SHIFT,
7398 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7399 subsection_map_init(start_pfn, end_pfn - start_pfn);
7400 }
c713216d
MG
7401
7402 /* Initialise every node */
708614e6 7403 mminit_verify_pageflags_layout();
8ef82866 7404 setup_nr_node_ids();
e181ae0c 7405 zero_resv_unavail();
c713216d
MG
7406 for_each_online_node(nid) {
7407 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7408 free_area_init_node(nid, NULL,
c713216d 7409 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7410
7411 /* Any memory on that node */
7412 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7413 node_set_state(nid, N_MEMORY);
7414 check_for_memory(pgdat, nid);
c713216d
MG
7415 }
7416}
2a1e274a 7417
a5c6d650
DR
7418static int __init cmdline_parse_core(char *p, unsigned long *core,
7419 unsigned long *percent)
2a1e274a
MG
7420{
7421 unsigned long long coremem;
a5c6d650
DR
7422 char *endptr;
7423
2a1e274a
MG
7424 if (!p)
7425 return -EINVAL;
7426
a5c6d650
DR
7427 /* Value may be a percentage of total memory, otherwise bytes */
7428 coremem = simple_strtoull(p, &endptr, 0);
7429 if (*endptr == '%') {
7430 /* Paranoid check for percent values greater than 100 */
7431 WARN_ON(coremem > 100);
2a1e274a 7432
a5c6d650
DR
7433 *percent = coremem;
7434 } else {
7435 coremem = memparse(p, &p);
7436 /* Paranoid check that UL is enough for the coremem value */
7437 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7438
a5c6d650
DR
7439 *core = coremem >> PAGE_SHIFT;
7440 *percent = 0UL;
7441 }
2a1e274a
MG
7442 return 0;
7443}
ed7ed365 7444
7e63efef
MG
7445/*
7446 * kernelcore=size sets the amount of memory for use for allocations that
7447 * cannot be reclaimed or migrated.
7448 */
7449static int __init cmdline_parse_kernelcore(char *p)
7450{
342332e6
TI
7451 /* parse kernelcore=mirror */
7452 if (parse_option_str(p, "mirror")) {
7453 mirrored_kernelcore = true;
7454 return 0;
7455 }
7456
a5c6d650
DR
7457 return cmdline_parse_core(p, &required_kernelcore,
7458 &required_kernelcore_percent);
7e63efef
MG
7459}
7460
7461/*
7462 * movablecore=size sets the amount of memory for use for allocations that
7463 * can be reclaimed or migrated.
7464 */
7465static int __init cmdline_parse_movablecore(char *p)
7466{
a5c6d650
DR
7467 return cmdline_parse_core(p, &required_movablecore,
7468 &required_movablecore_percent);
7e63efef
MG
7469}
7470
ed7ed365 7471early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7472early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7473
0ee332c1 7474#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7475
c3d5f5f0
JL
7476void adjust_managed_page_count(struct page *page, long count)
7477{
9705bea5 7478 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7479 totalram_pages_add(count);
3dcc0571
JL
7480#ifdef CONFIG_HIGHMEM
7481 if (PageHighMem(page))
ca79b0c2 7482 totalhigh_pages_add(count);
3dcc0571 7483#endif
c3d5f5f0 7484}
3dcc0571 7485EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7486
e5cb113f 7487unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7488{
11199692
JL
7489 void *pos;
7490 unsigned long pages = 0;
69afade7 7491
11199692
JL
7492 start = (void *)PAGE_ALIGN((unsigned long)start);
7493 end = (void *)((unsigned long)end & PAGE_MASK);
7494 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7495 struct page *page = virt_to_page(pos);
7496 void *direct_map_addr;
7497
7498 /*
7499 * 'direct_map_addr' might be different from 'pos'
7500 * because some architectures' virt_to_page()
7501 * work with aliases. Getting the direct map
7502 * address ensures that we get a _writeable_
7503 * alias for the memset().
7504 */
7505 direct_map_addr = page_address(page);
dbe67df4 7506 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7507 memset(direct_map_addr, poison, PAGE_SIZE);
7508
7509 free_reserved_page(page);
69afade7
JL
7510 }
7511
7512 if (pages && s)
adb1fe9a
JP
7513 pr_info("Freeing %s memory: %ldK\n",
7514 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7515
7516 return pages;
7517}
7518
cfa11e08
JL
7519#ifdef CONFIG_HIGHMEM
7520void free_highmem_page(struct page *page)
7521{
7522 __free_reserved_page(page);
ca79b0c2 7523 totalram_pages_inc();
9705bea5 7524 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7525 totalhigh_pages_inc();
cfa11e08
JL
7526}
7527#endif
7528
7ee3d4e8
JL
7529
7530void __init mem_init_print_info(const char *str)
7531{
7532 unsigned long physpages, codesize, datasize, rosize, bss_size;
7533 unsigned long init_code_size, init_data_size;
7534
7535 physpages = get_num_physpages();
7536 codesize = _etext - _stext;
7537 datasize = _edata - _sdata;
7538 rosize = __end_rodata - __start_rodata;
7539 bss_size = __bss_stop - __bss_start;
7540 init_data_size = __init_end - __init_begin;
7541 init_code_size = _einittext - _sinittext;
7542
7543 /*
7544 * Detect special cases and adjust section sizes accordingly:
7545 * 1) .init.* may be embedded into .data sections
7546 * 2) .init.text.* may be out of [__init_begin, __init_end],
7547 * please refer to arch/tile/kernel/vmlinux.lds.S.
7548 * 3) .rodata.* may be embedded into .text or .data sections.
7549 */
7550#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7551 do { \
7552 if (start <= pos && pos < end && size > adj) \
7553 size -= adj; \
7554 } while (0)
7ee3d4e8
JL
7555
7556 adj_init_size(__init_begin, __init_end, init_data_size,
7557 _sinittext, init_code_size);
7558 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7559 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7560 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7561 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7562
7563#undef adj_init_size
7564
756a025f 7565 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7566#ifdef CONFIG_HIGHMEM
756a025f 7567 ", %luK highmem"
7ee3d4e8 7568#endif
756a025f
JP
7569 "%s%s)\n",
7570 nr_free_pages() << (PAGE_SHIFT - 10),
7571 physpages << (PAGE_SHIFT - 10),
7572 codesize >> 10, datasize >> 10, rosize >> 10,
7573 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7574 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7575 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7576#ifdef CONFIG_HIGHMEM
ca79b0c2 7577 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7578#endif
756a025f 7579 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7580}
7581
0e0b864e 7582/**
88ca3b94
RD
7583 * set_dma_reserve - set the specified number of pages reserved in the first zone
7584 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7585 *
013110a7 7586 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7587 * In the DMA zone, a significant percentage may be consumed by kernel image
7588 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7589 * function may optionally be used to account for unfreeable pages in the
7590 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7591 * smaller per-cpu batchsize.
0e0b864e
MG
7592 */
7593void __init set_dma_reserve(unsigned long new_dma_reserve)
7594{
7595 dma_reserve = new_dma_reserve;
7596}
7597
1da177e4
LT
7598void __init free_area_init(unsigned long *zones_size)
7599{
e181ae0c 7600 zero_resv_unavail();
9109fb7b 7601 free_area_init_node(0, zones_size,
1da177e4
LT
7602 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7603}
1da177e4 7604
005fd4bb 7605static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7606{
1da177e4 7607
005fd4bb
SAS
7608 lru_add_drain_cpu(cpu);
7609 drain_pages(cpu);
9f8f2172 7610
005fd4bb
SAS
7611 /*
7612 * Spill the event counters of the dead processor
7613 * into the current processors event counters.
7614 * This artificially elevates the count of the current
7615 * processor.
7616 */
7617 vm_events_fold_cpu(cpu);
9f8f2172 7618
005fd4bb
SAS
7619 /*
7620 * Zero the differential counters of the dead processor
7621 * so that the vm statistics are consistent.
7622 *
7623 * This is only okay since the processor is dead and cannot
7624 * race with what we are doing.
7625 */
7626 cpu_vm_stats_fold(cpu);
7627 return 0;
1da177e4 7628}
1da177e4 7629
e03a5125
NP
7630#ifdef CONFIG_NUMA
7631int hashdist = HASHDIST_DEFAULT;
7632
7633static int __init set_hashdist(char *str)
7634{
7635 if (!str)
7636 return 0;
7637 hashdist = simple_strtoul(str, &str, 0);
7638 return 1;
7639}
7640__setup("hashdist=", set_hashdist);
7641#endif
7642
1da177e4
LT
7643void __init page_alloc_init(void)
7644{
005fd4bb
SAS
7645 int ret;
7646
e03a5125
NP
7647#ifdef CONFIG_NUMA
7648 if (num_node_state(N_MEMORY) == 1)
7649 hashdist = 0;
7650#endif
7651
005fd4bb
SAS
7652 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7653 "mm/page_alloc:dead", NULL,
7654 page_alloc_cpu_dead);
7655 WARN_ON(ret < 0);
1da177e4
LT
7656}
7657
cb45b0e9 7658/*
34b10060 7659 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7660 * or min_free_kbytes changes.
7661 */
7662static void calculate_totalreserve_pages(void)
7663{
7664 struct pglist_data *pgdat;
7665 unsigned long reserve_pages = 0;
2f6726e5 7666 enum zone_type i, j;
cb45b0e9
HA
7667
7668 for_each_online_pgdat(pgdat) {
281e3726
MG
7669
7670 pgdat->totalreserve_pages = 0;
7671
cb45b0e9
HA
7672 for (i = 0; i < MAX_NR_ZONES; i++) {
7673 struct zone *zone = pgdat->node_zones + i;
3484b2de 7674 long max = 0;
9705bea5 7675 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7676
7677 /* Find valid and maximum lowmem_reserve in the zone */
7678 for (j = i; j < MAX_NR_ZONES; j++) {
7679 if (zone->lowmem_reserve[j] > max)
7680 max = zone->lowmem_reserve[j];
7681 }
7682
41858966
MG
7683 /* we treat the high watermark as reserved pages. */
7684 max += high_wmark_pages(zone);
cb45b0e9 7685
3d6357de
AK
7686 if (max > managed_pages)
7687 max = managed_pages;
a8d01437 7688
281e3726 7689 pgdat->totalreserve_pages += max;
a8d01437 7690
cb45b0e9
HA
7691 reserve_pages += max;
7692 }
7693 }
7694 totalreserve_pages = reserve_pages;
7695}
7696
1da177e4
LT
7697/*
7698 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7699 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7700 * has a correct pages reserved value, so an adequate number of
7701 * pages are left in the zone after a successful __alloc_pages().
7702 */
7703static void setup_per_zone_lowmem_reserve(void)
7704{
7705 struct pglist_data *pgdat;
2f6726e5 7706 enum zone_type j, idx;
1da177e4 7707
ec936fc5 7708 for_each_online_pgdat(pgdat) {
1da177e4
LT
7709 for (j = 0; j < MAX_NR_ZONES; j++) {
7710 struct zone *zone = pgdat->node_zones + j;
9705bea5 7711 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7712
7713 zone->lowmem_reserve[j] = 0;
7714
2f6726e5
CL
7715 idx = j;
7716 while (idx) {
1da177e4
LT
7717 struct zone *lower_zone;
7718
2f6726e5 7719 idx--;
1da177e4 7720 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7721
7722 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7723 sysctl_lowmem_reserve_ratio[idx] = 0;
7724 lower_zone->lowmem_reserve[j] = 0;
7725 } else {
7726 lower_zone->lowmem_reserve[j] =
7727 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7728 }
9705bea5 7729 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7730 }
7731 }
7732 }
cb45b0e9
HA
7733
7734 /* update totalreserve_pages */
7735 calculate_totalreserve_pages();
1da177e4
LT
7736}
7737
cfd3da1e 7738static void __setup_per_zone_wmarks(void)
1da177e4
LT
7739{
7740 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7741 unsigned long lowmem_pages = 0;
7742 struct zone *zone;
7743 unsigned long flags;
7744
7745 /* Calculate total number of !ZONE_HIGHMEM pages */
7746 for_each_zone(zone) {
7747 if (!is_highmem(zone))
9705bea5 7748 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7749 }
7750
7751 for_each_zone(zone) {
ac924c60
AM
7752 u64 tmp;
7753
1125b4e3 7754 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7755 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7756 do_div(tmp, lowmem_pages);
1da177e4
LT
7757 if (is_highmem(zone)) {
7758 /*
669ed175
NP
7759 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7760 * need highmem pages, so cap pages_min to a small
7761 * value here.
7762 *
41858966 7763 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7764 * deltas control async page reclaim, and so should
669ed175 7765 * not be capped for highmem.
1da177e4 7766 */
90ae8d67 7767 unsigned long min_pages;
1da177e4 7768
9705bea5 7769 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7770 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7771 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7772 } else {
669ed175
NP
7773 /*
7774 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7775 * proportionate to the zone's size.
7776 */
a9214443 7777 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7778 }
7779
795ae7a0
JW
7780 /*
7781 * Set the kswapd watermarks distance according to the
7782 * scale factor in proportion to available memory, but
7783 * ensure a minimum size on small systems.
7784 */
7785 tmp = max_t(u64, tmp >> 2,
9705bea5 7786 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7787 watermark_scale_factor, 10000));
7788
a9214443
MG
7789 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7790 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7791 zone->watermark_boost = 0;
49f223a9 7792
1125b4e3 7793 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7794 }
cb45b0e9
HA
7795
7796 /* update totalreserve_pages */
7797 calculate_totalreserve_pages();
1da177e4
LT
7798}
7799
cfd3da1e
MG
7800/**
7801 * setup_per_zone_wmarks - called when min_free_kbytes changes
7802 * or when memory is hot-{added|removed}
7803 *
7804 * Ensures that the watermark[min,low,high] values for each zone are set
7805 * correctly with respect to min_free_kbytes.
7806 */
7807void setup_per_zone_wmarks(void)
7808{
b93e0f32
MH
7809 static DEFINE_SPINLOCK(lock);
7810
7811 spin_lock(&lock);
cfd3da1e 7812 __setup_per_zone_wmarks();
b93e0f32 7813 spin_unlock(&lock);
cfd3da1e
MG
7814}
7815
1da177e4
LT
7816/*
7817 * Initialise min_free_kbytes.
7818 *
7819 * For small machines we want it small (128k min). For large machines
7820 * we want it large (64MB max). But it is not linear, because network
7821 * bandwidth does not increase linearly with machine size. We use
7822 *
b8af2941 7823 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7824 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7825 *
7826 * which yields
7827 *
7828 * 16MB: 512k
7829 * 32MB: 724k
7830 * 64MB: 1024k
7831 * 128MB: 1448k
7832 * 256MB: 2048k
7833 * 512MB: 2896k
7834 * 1024MB: 4096k
7835 * 2048MB: 5792k
7836 * 4096MB: 8192k
7837 * 8192MB: 11584k
7838 * 16384MB: 16384k
7839 */
1b79acc9 7840int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7841{
7842 unsigned long lowmem_kbytes;
5f12733e 7843 int new_min_free_kbytes;
1da177e4
LT
7844
7845 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7846 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7847
7848 if (new_min_free_kbytes > user_min_free_kbytes) {
7849 min_free_kbytes = new_min_free_kbytes;
7850 if (min_free_kbytes < 128)
7851 min_free_kbytes = 128;
7852 if (min_free_kbytes > 65536)
7853 min_free_kbytes = 65536;
7854 } else {
7855 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7856 new_min_free_kbytes, user_min_free_kbytes);
7857 }
bc75d33f 7858 setup_per_zone_wmarks();
a6cccdc3 7859 refresh_zone_stat_thresholds();
1da177e4 7860 setup_per_zone_lowmem_reserve();
6423aa81
JK
7861
7862#ifdef CONFIG_NUMA
7863 setup_min_unmapped_ratio();
7864 setup_min_slab_ratio();
7865#endif
7866
1da177e4
LT
7867 return 0;
7868}
bc22af74 7869core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7870
7871/*
b8af2941 7872 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7873 * that we can call two helper functions whenever min_free_kbytes
7874 * changes.
7875 */
cccad5b9 7876int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7877 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7878{
da8c757b
HP
7879 int rc;
7880
7881 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7882 if (rc)
7883 return rc;
7884
5f12733e
MH
7885 if (write) {
7886 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7887 setup_per_zone_wmarks();
5f12733e 7888 }
1da177e4
LT
7889 return 0;
7890}
7891
1c30844d
MG
7892int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7893 void __user *buffer, size_t *length, loff_t *ppos)
7894{
7895 int rc;
7896
7897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7898 if (rc)
7899 return rc;
7900
7901 return 0;
7902}
7903
795ae7a0
JW
7904int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7905 void __user *buffer, size_t *length, loff_t *ppos)
7906{
7907 int rc;
7908
7909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7910 if (rc)
7911 return rc;
7912
7913 if (write)
7914 setup_per_zone_wmarks();
7915
7916 return 0;
7917}
7918
9614634f 7919#ifdef CONFIG_NUMA
6423aa81 7920static void setup_min_unmapped_ratio(void)
9614634f 7921{
6423aa81 7922 pg_data_t *pgdat;
9614634f 7923 struct zone *zone;
9614634f 7924
a5f5f91d 7925 for_each_online_pgdat(pgdat)
81cbcbc2 7926 pgdat->min_unmapped_pages = 0;
a5f5f91d 7927
9614634f 7928 for_each_zone(zone)
9705bea5
AK
7929 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7930 sysctl_min_unmapped_ratio) / 100;
9614634f 7931}
0ff38490 7932
6423aa81
JK
7933
7934int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7935 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7936{
0ff38490
CL
7937 int rc;
7938
8d65af78 7939 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7940 if (rc)
7941 return rc;
7942
6423aa81
JK
7943 setup_min_unmapped_ratio();
7944
7945 return 0;
7946}
7947
7948static void setup_min_slab_ratio(void)
7949{
7950 pg_data_t *pgdat;
7951 struct zone *zone;
7952
a5f5f91d
MG
7953 for_each_online_pgdat(pgdat)
7954 pgdat->min_slab_pages = 0;
7955
0ff38490 7956 for_each_zone(zone)
9705bea5
AK
7957 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7958 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7959}
7960
7961int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7962 void __user *buffer, size_t *length, loff_t *ppos)
7963{
7964 int rc;
7965
7966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7967 if (rc)
7968 return rc;
7969
7970 setup_min_slab_ratio();
7971
0ff38490
CL
7972 return 0;
7973}
9614634f
CL
7974#endif
7975
1da177e4
LT
7976/*
7977 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7978 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7979 * whenever sysctl_lowmem_reserve_ratio changes.
7980 *
7981 * The reserve ratio obviously has absolutely no relation with the
41858966 7982 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7983 * if in function of the boot time zone sizes.
7984 */
cccad5b9 7985int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7986 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7987{
8d65af78 7988 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7989 setup_per_zone_lowmem_reserve();
7990 return 0;
7991}
7992
cb1ef534
MG
7993static void __zone_pcp_update(struct zone *zone)
7994{
7995 unsigned int cpu;
7996
7997 for_each_possible_cpu(cpu)
7998 pageset_set_high_and_batch(zone,
7999 per_cpu_ptr(zone->pageset, cpu));
8000}
8001
8ad4b1fb
RS
8002/*
8003 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8004 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8005 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8006 */
cccad5b9 8007int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8008 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8009{
8010 struct zone *zone;
7cd2b0a3 8011 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8012 int ret;
8013
7cd2b0a3
DR
8014 mutex_lock(&pcp_batch_high_lock);
8015 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8016
8d65af78 8017 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8018 if (!write || ret < 0)
8019 goto out;
8020
8021 /* Sanity checking to avoid pcp imbalance */
8022 if (percpu_pagelist_fraction &&
8023 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8024 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8025 ret = -EINVAL;
8026 goto out;
8027 }
8028
8029 /* No change? */
8030 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8031 goto out;
c8e251fa 8032
cb1ef534
MG
8033 for_each_populated_zone(zone)
8034 __zone_pcp_update(zone);
7cd2b0a3 8035out:
c8e251fa 8036 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8037 return ret;
8ad4b1fb
RS
8038}
8039
f6f34b43
SD
8040#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8041/*
8042 * Returns the number of pages that arch has reserved but
8043 * is not known to alloc_large_system_hash().
8044 */
8045static unsigned long __init arch_reserved_kernel_pages(void)
8046{
8047 return 0;
8048}
8049#endif
8050
9017217b
PT
8051/*
8052 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8053 * machines. As memory size is increased the scale is also increased but at
8054 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8055 * quadruples the scale is increased by one, which means the size of hash table
8056 * only doubles, instead of quadrupling as well.
8057 * Because 32-bit systems cannot have large physical memory, where this scaling
8058 * makes sense, it is disabled on such platforms.
8059 */
8060#if __BITS_PER_LONG > 32
8061#define ADAPT_SCALE_BASE (64ul << 30)
8062#define ADAPT_SCALE_SHIFT 2
8063#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8064#endif
8065
1da177e4
LT
8066/*
8067 * allocate a large system hash table from bootmem
8068 * - it is assumed that the hash table must contain an exact power-of-2
8069 * quantity of entries
8070 * - limit is the number of hash buckets, not the total allocation size
8071 */
8072void *__init alloc_large_system_hash(const char *tablename,
8073 unsigned long bucketsize,
8074 unsigned long numentries,
8075 int scale,
8076 int flags,
8077 unsigned int *_hash_shift,
8078 unsigned int *_hash_mask,
31fe62b9
TB
8079 unsigned long low_limit,
8080 unsigned long high_limit)
1da177e4 8081{
31fe62b9 8082 unsigned long long max = high_limit;
1da177e4
LT
8083 unsigned long log2qty, size;
8084 void *table = NULL;
3749a8f0 8085 gfp_t gfp_flags;
ec11408a 8086 bool virt;
1da177e4
LT
8087
8088 /* allow the kernel cmdline to have a say */
8089 if (!numentries) {
8090 /* round applicable memory size up to nearest megabyte */
04903664 8091 numentries = nr_kernel_pages;
f6f34b43 8092 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8093
8094 /* It isn't necessary when PAGE_SIZE >= 1MB */
8095 if (PAGE_SHIFT < 20)
8096 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8097
9017217b
PT
8098#if __BITS_PER_LONG > 32
8099 if (!high_limit) {
8100 unsigned long adapt;
8101
8102 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8103 adapt <<= ADAPT_SCALE_SHIFT)
8104 scale++;
8105 }
8106#endif
8107
1da177e4
LT
8108 /* limit to 1 bucket per 2^scale bytes of low memory */
8109 if (scale > PAGE_SHIFT)
8110 numentries >>= (scale - PAGE_SHIFT);
8111 else
8112 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8113
8114 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8115 if (unlikely(flags & HASH_SMALL)) {
8116 /* Makes no sense without HASH_EARLY */
8117 WARN_ON(!(flags & HASH_EARLY));
8118 if (!(numentries >> *_hash_shift)) {
8119 numentries = 1UL << *_hash_shift;
8120 BUG_ON(!numentries);
8121 }
8122 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8123 numentries = PAGE_SIZE / bucketsize;
1da177e4 8124 }
6e692ed3 8125 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8126
8127 /* limit allocation size to 1/16 total memory by default */
8128 if (max == 0) {
8129 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8130 do_div(max, bucketsize);
8131 }
074b8517 8132 max = min(max, 0x80000000ULL);
1da177e4 8133
31fe62b9
TB
8134 if (numentries < low_limit)
8135 numentries = low_limit;
1da177e4
LT
8136 if (numentries > max)
8137 numentries = max;
8138
f0d1b0b3 8139 log2qty = ilog2(numentries);
1da177e4 8140
3749a8f0 8141 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8142 do {
ec11408a 8143 virt = false;
1da177e4 8144 size = bucketsize << log2qty;
ea1f5f37
PT
8145 if (flags & HASH_EARLY) {
8146 if (flags & HASH_ZERO)
26fb3dae 8147 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8148 else
7e1c4e27
MR
8149 table = memblock_alloc_raw(size,
8150 SMP_CACHE_BYTES);
ec11408a 8151 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8152 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8153 virt = true;
ea1f5f37 8154 } else {
1037b83b
ED
8155 /*
8156 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8157 * some pages at the end of hash table which
8158 * alloc_pages_exact() automatically does
1037b83b 8159 */
ec11408a
NP
8160 table = alloc_pages_exact(size, gfp_flags);
8161 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8162 }
8163 } while (!table && size > PAGE_SIZE && --log2qty);
8164
8165 if (!table)
8166 panic("Failed to allocate %s hash table\n", tablename);
8167
ec11408a
NP
8168 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8169 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8170 virt ? "vmalloc" : "linear");
1da177e4
LT
8171
8172 if (_hash_shift)
8173 *_hash_shift = log2qty;
8174 if (_hash_mask)
8175 *_hash_mask = (1 << log2qty) - 1;
8176
8177 return table;
8178}
a117e66e 8179
a5d76b54 8180/*
80934513
MK
8181 * This function checks whether pageblock includes unmovable pages or not.
8182 * If @count is not zero, it is okay to include less @count unmovable pages
8183 *
b8af2941 8184 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8185 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8186 * check without lock_page also may miss some movable non-lru pages at
8187 * race condition. So you can't expect this function should be exact.
a5d76b54 8188 */
b023f468 8189bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8190 int migratetype, int flags)
49ac8255 8191{
1a9f2191
QC
8192 unsigned long found;
8193 unsigned long iter = 0;
8194 unsigned long pfn = page_to_pfn(page);
8195 const char *reason = "unmovable page";
47118af0 8196
49ac8255 8197 /*
15c30bc0
MH
8198 * TODO we could make this much more efficient by not checking every
8199 * page in the range if we know all of them are in MOVABLE_ZONE and
8200 * that the movable zone guarantees that pages are migratable but
8201 * the later is not the case right now unfortunatelly. E.g. movablecore
8202 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8203 */
49ac8255 8204
1a9f2191
QC
8205 if (is_migrate_cma_page(page)) {
8206 /*
8207 * CMA allocations (alloc_contig_range) really need to mark
8208 * isolate CMA pageblocks even when they are not movable in fact
8209 * so consider them movable here.
8210 */
8211 if (is_migrate_cma(migratetype))
8212 return false;
8213
8214 reason = "CMA page";
8215 goto unmovable;
8216 }
4da2ce25 8217
1a9f2191 8218 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8219 unsigned long check = pfn + iter;
8220
29723fcc 8221 if (!pfn_valid_within(check))
49ac8255 8222 continue;
29723fcc 8223
49ac8255 8224 page = pfn_to_page(check);
c8721bbb 8225
d7ab3672 8226 if (PageReserved(page))
15c30bc0 8227 goto unmovable;
d7ab3672 8228
9d789999
MH
8229 /*
8230 * If the zone is movable and we have ruled out all reserved
8231 * pages then it should be reasonably safe to assume the rest
8232 * is movable.
8233 */
8234 if (zone_idx(zone) == ZONE_MOVABLE)
8235 continue;
8236
c8721bbb
NH
8237 /*
8238 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8239 * We need not scan over tail pages because we don't
c8721bbb
NH
8240 * handle each tail page individually in migration.
8241 */
8242 if (PageHuge(page)) {
17e2e7d7
OS
8243 struct page *head = compound_head(page);
8244 unsigned int skip_pages;
464c7ffb 8245
17e2e7d7 8246 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8247 goto unmovable;
8248
d8c6546b 8249 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8250 iter += skip_pages - 1;
c8721bbb
NH
8251 continue;
8252 }
8253
97d255c8
MK
8254 /*
8255 * We can't use page_count without pin a page
8256 * because another CPU can free compound page.
8257 * This check already skips compound tails of THP
0139aa7b 8258 * because their page->_refcount is zero at all time.
97d255c8 8259 */
fe896d18 8260 if (!page_ref_count(page)) {
49ac8255
KH
8261 if (PageBuddy(page))
8262 iter += (1 << page_order(page)) - 1;
8263 continue;
8264 }
97d255c8 8265
b023f468
WC
8266 /*
8267 * The HWPoisoned page may be not in buddy system, and
8268 * page_count() is not 0.
8269 */
756d25be 8270 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8271 continue;
8272
0efadf48
YX
8273 if (__PageMovable(page))
8274 continue;
8275
49ac8255
KH
8276 if (!PageLRU(page))
8277 found++;
8278 /*
6b4f7799
JW
8279 * If there are RECLAIMABLE pages, we need to check
8280 * it. But now, memory offline itself doesn't call
8281 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8282 */
8283 /*
8284 * If the page is not RAM, page_count()should be 0.
8285 * we don't need more check. This is an _used_ not-movable page.
8286 *
8287 * The problematic thing here is PG_reserved pages. PG_reserved
8288 * is set to both of a memory hole page and a _used_ kernel
8289 * page at boot.
8290 */
8291 if (found > count)
15c30bc0 8292 goto unmovable;
49ac8255 8293 }
80934513 8294 return false;
15c30bc0
MH
8295unmovable:
8296 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8297 if (flags & REPORT_FAILURE)
1a9f2191 8298 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8299 return true;
49ac8255
KH
8300}
8301
8df995f6 8302#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8303static unsigned long pfn_max_align_down(unsigned long pfn)
8304{
8305 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306 pageblock_nr_pages) - 1);
8307}
8308
8309static unsigned long pfn_max_align_up(unsigned long pfn)
8310{
8311 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8312 pageblock_nr_pages));
8313}
8314
041d3a8c 8315/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8316static int __alloc_contig_migrate_range(struct compact_control *cc,
8317 unsigned long start, unsigned long end)
041d3a8c
MN
8318{
8319 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8320 unsigned long nr_reclaimed;
041d3a8c
MN
8321 unsigned long pfn = start;
8322 unsigned int tries = 0;
8323 int ret = 0;
8324
be49a6e1 8325 migrate_prep();
041d3a8c 8326
bb13ffeb 8327 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8328 if (fatal_signal_pending(current)) {
8329 ret = -EINTR;
8330 break;
8331 }
8332
bb13ffeb
MG
8333 if (list_empty(&cc->migratepages)) {
8334 cc->nr_migratepages = 0;
edc2ca61 8335 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8336 if (!pfn) {
8337 ret = -EINTR;
8338 break;
8339 }
8340 tries = 0;
8341 } else if (++tries == 5) {
8342 ret = ret < 0 ? ret : -EBUSY;
8343 break;
8344 }
8345
beb51eaa
MK
8346 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8347 &cc->migratepages);
8348 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8349
9c620e2b 8350 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8351 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8352 }
2a6f5124
SP
8353 if (ret < 0) {
8354 putback_movable_pages(&cc->migratepages);
8355 return ret;
8356 }
8357 return 0;
041d3a8c
MN
8358}
8359
8360/**
8361 * alloc_contig_range() -- tries to allocate given range of pages
8362 * @start: start PFN to allocate
8363 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8364 * @migratetype: migratetype of the underlaying pageblocks (either
8365 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8366 * in range must have the same migratetype and it must
8367 * be either of the two.
ca96b625 8368 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8369 *
8370 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8371 * aligned. The PFN range must belong to a single zone.
041d3a8c 8372 *
2c7452a0
MK
8373 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8374 * pageblocks in the range. Once isolated, the pageblocks should not
8375 * be modified by others.
041d3a8c 8376 *
a862f68a 8377 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8378 * pages which PFN is in [start, end) are allocated for the caller and
8379 * need to be freed with free_contig_range().
8380 */
0815f3d8 8381int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8382 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8383{
041d3a8c 8384 unsigned long outer_start, outer_end;
d00181b9
KS
8385 unsigned int order;
8386 int ret = 0;
041d3a8c 8387
bb13ffeb
MG
8388 struct compact_control cc = {
8389 .nr_migratepages = 0,
8390 .order = -1,
8391 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8392 .mode = MIGRATE_SYNC,
bb13ffeb 8393 .ignore_skip_hint = true,
2583d671 8394 .no_set_skip_hint = true,
7dea19f9 8395 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8396 };
8397 INIT_LIST_HEAD(&cc.migratepages);
8398
041d3a8c
MN
8399 /*
8400 * What we do here is we mark all pageblocks in range as
8401 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8402 * have different sizes, and due to the way page allocator
8403 * work, we align the range to biggest of the two pages so
8404 * that page allocator won't try to merge buddies from
8405 * different pageblocks and change MIGRATE_ISOLATE to some
8406 * other migration type.
8407 *
8408 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8409 * migrate the pages from an unaligned range (ie. pages that
8410 * we are interested in). This will put all the pages in
8411 * range back to page allocator as MIGRATE_ISOLATE.
8412 *
8413 * When this is done, we take the pages in range from page
8414 * allocator removing them from the buddy system. This way
8415 * page allocator will never consider using them.
8416 *
8417 * This lets us mark the pageblocks back as
8418 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8419 * aligned range but not in the unaligned, original range are
8420 * put back to page allocator so that buddy can use them.
8421 */
8422
8423 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8424 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8425 if (ret < 0)
86a595f9 8426 return ret;
041d3a8c 8427
8ef5849f
JK
8428 /*
8429 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8430 * So, just fall through. test_pages_isolated() has a tracepoint
8431 * which will report the busy page.
8432 *
8433 * It is possible that busy pages could become available before
8434 * the call to test_pages_isolated, and the range will actually be
8435 * allocated. So, if we fall through be sure to clear ret so that
8436 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8437 */
bb13ffeb 8438 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8439 if (ret && ret != -EBUSY)
041d3a8c 8440 goto done;
63cd4489 8441 ret =0;
041d3a8c
MN
8442
8443 /*
8444 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8445 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8446 * more, all pages in [start, end) are free in page allocator.
8447 * What we are going to do is to allocate all pages from
8448 * [start, end) (that is remove them from page allocator).
8449 *
8450 * The only problem is that pages at the beginning and at the
8451 * end of interesting range may be not aligned with pages that
8452 * page allocator holds, ie. they can be part of higher order
8453 * pages. Because of this, we reserve the bigger range and
8454 * once this is done free the pages we are not interested in.
8455 *
8456 * We don't have to hold zone->lock here because the pages are
8457 * isolated thus they won't get removed from buddy.
8458 */
8459
8460 lru_add_drain_all();
041d3a8c
MN
8461
8462 order = 0;
8463 outer_start = start;
8464 while (!PageBuddy(pfn_to_page(outer_start))) {
8465 if (++order >= MAX_ORDER) {
8ef5849f
JK
8466 outer_start = start;
8467 break;
041d3a8c
MN
8468 }
8469 outer_start &= ~0UL << order;
8470 }
8471
8ef5849f
JK
8472 if (outer_start != start) {
8473 order = page_order(pfn_to_page(outer_start));
8474
8475 /*
8476 * outer_start page could be small order buddy page and
8477 * it doesn't include start page. Adjust outer_start
8478 * in this case to report failed page properly
8479 * on tracepoint in test_pages_isolated()
8480 */
8481 if (outer_start + (1UL << order) <= start)
8482 outer_start = start;
8483 }
8484
041d3a8c 8485 /* Make sure the range is really isolated. */
756d25be 8486 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8487 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8488 __func__, outer_start, end);
041d3a8c
MN
8489 ret = -EBUSY;
8490 goto done;
8491 }
8492
49f223a9 8493 /* Grab isolated pages from freelists. */
bb13ffeb 8494 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8495 if (!outer_end) {
8496 ret = -EBUSY;
8497 goto done;
8498 }
8499
8500 /* Free head and tail (if any) */
8501 if (start != outer_start)
8502 free_contig_range(outer_start, start - outer_start);
8503 if (end != outer_end)
8504 free_contig_range(end, outer_end - end);
8505
8506done:
8507 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8508 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8509 return ret;
8510}
5e27a2df
AK
8511
8512static int __alloc_contig_pages(unsigned long start_pfn,
8513 unsigned long nr_pages, gfp_t gfp_mask)
8514{
8515 unsigned long end_pfn = start_pfn + nr_pages;
8516
8517 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8518 gfp_mask);
8519}
8520
8521static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8522 unsigned long nr_pages)
8523{
8524 unsigned long i, end_pfn = start_pfn + nr_pages;
8525 struct page *page;
8526
8527 for (i = start_pfn; i < end_pfn; i++) {
8528 page = pfn_to_online_page(i);
8529 if (!page)
8530 return false;
8531
8532 if (page_zone(page) != z)
8533 return false;
8534
8535 if (PageReserved(page))
8536 return false;
8537
8538 if (page_count(page) > 0)
8539 return false;
8540
8541 if (PageHuge(page))
8542 return false;
8543 }
8544 return true;
8545}
8546
8547static bool zone_spans_last_pfn(const struct zone *zone,
8548 unsigned long start_pfn, unsigned long nr_pages)
8549{
8550 unsigned long last_pfn = start_pfn + nr_pages - 1;
8551
8552 return zone_spans_pfn(zone, last_pfn);
8553}
8554
8555/**
8556 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8557 * @nr_pages: Number of contiguous pages to allocate
8558 * @gfp_mask: GFP mask to limit search and used during compaction
8559 * @nid: Target node
8560 * @nodemask: Mask for other possible nodes
8561 *
8562 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8563 * on an applicable zonelist to find a contiguous pfn range which can then be
8564 * tried for allocation with alloc_contig_range(). This routine is intended
8565 * for allocation requests which can not be fulfilled with the buddy allocator.
8566 *
8567 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8568 * power of two then the alignment is guaranteed to be to the given nr_pages
8569 * (e.g. 1GB request would be aligned to 1GB).
8570 *
8571 * Allocated pages can be freed with free_contig_range() or by manually calling
8572 * __free_page() on each allocated page.
8573 *
8574 * Return: pointer to contiguous pages on success, or NULL if not successful.
8575 */
8576struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8577 int nid, nodemask_t *nodemask)
8578{
8579 unsigned long ret, pfn, flags;
8580 struct zonelist *zonelist;
8581 struct zone *zone;
8582 struct zoneref *z;
8583
8584 zonelist = node_zonelist(nid, gfp_mask);
8585 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8586 gfp_zone(gfp_mask), nodemask) {
8587 spin_lock_irqsave(&zone->lock, flags);
8588
8589 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8590 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8591 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8592 /*
8593 * We release the zone lock here because
8594 * alloc_contig_range() will also lock the zone
8595 * at some point. If there's an allocation
8596 * spinning on this lock, it may win the race
8597 * and cause alloc_contig_range() to fail...
8598 */
8599 spin_unlock_irqrestore(&zone->lock, flags);
8600 ret = __alloc_contig_pages(pfn, nr_pages,
8601 gfp_mask);
8602 if (!ret)
8603 return pfn_to_page(pfn);
8604 spin_lock_irqsave(&zone->lock, flags);
8605 }
8606 pfn += nr_pages;
8607 }
8608 spin_unlock_irqrestore(&zone->lock, flags);
8609 }
8610 return NULL;
8611}
4eb0716e 8612#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8613
4eb0716e 8614void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8615{
bcc2b02f
MS
8616 unsigned int count = 0;
8617
8618 for (; nr_pages--; pfn++) {
8619 struct page *page = pfn_to_page(pfn);
8620
8621 count += page_count(page) != 1;
8622 __free_page(page);
8623 }
8624 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8625}
041d3a8c 8626
0a647f38
CS
8627/*
8628 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8629 * page high values need to be recalulated.
8630 */
4ed7e022
JL
8631void __meminit zone_pcp_update(struct zone *zone)
8632{
c8e251fa 8633 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8634 __zone_pcp_update(zone);
c8e251fa 8635 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8636}
4ed7e022 8637
340175b7
JL
8638void zone_pcp_reset(struct zone *zone)
8639{
8640 unsigned long flags;
5a883813
MK
8641 int cpu;
8642 struct per_cpu_pageset *pset;
340175b7
JL
8643
8644 /* avoid races with drain_pages() */
8645 local_irq_save(flags);
8646 if (zone->pageset != &boot_pageset) {
5a883813
MK
8647 for_each_online_cpu(cpu) {
8648 pset = per_cpu_ptr(zone->pageset, cpu);
8649 drain_zonestat(zone, pset);
8650 }
340175b7
JL
8651 free_percpu(zone->pageset);
8652 zone->pageset = &boot_pageset;
8653 }
8654 local_irq_restore(flags);
8655}
8656
6dcd73d7 8657#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8658/*
b9eb6319
JK
8659 * All pages in the range must be in a single zone and isolated
8660 * before calling this.
0c0e6195 8661 */
5557c766 8662unsigned long
0c0e6195
KH
8663__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8664{
8665 struct page *page;
8666 struct zone *zone;
0ee5f4f3 8667 unsigned int order;
0c0e6195
KH
8668 unsigned long pfn;
8669 unsigned long flags;
5557c766
MH
8670 unsigned long offlined_pages = 0;
8671
0c0e6195
KH
8672 /* find the first valid pfn */
8673 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8674 if (pfn_valid(pfn))
8675 break;
8676 if (pfn == end_pfn)
5557c766
MH
8677 return offlined_pages;
8678
2d070eab 8679 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8680 zone = page_zone(pfn_to_page(pfn));
8681 spin_lock_irqsave(&zone->lock, flags);
8682 pfn = start_pfn;
8683 while (pfn < end_pfn) {
8684 if (!pfn_valid(pfn)) {
8685 pfn++;
8686 continue;
8687 }
8688 page = pfn_to_page(pfn);
b023f468
WC
8689 /*
8690 * The HWPoisoned page may be not in buddy system, and
8691 * page_count() is not 0.
8692 */
8693 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8694 pfn++;
5557c766 8695 offlined_pages++;
b023f468
WC
8696 continue;
8697 }
8698
0c0e6195
KH
8699 BUG_ON(page_count(page));
8700 BUG_ON(!PageBuddy(page));
8701 order = page_order(page);
5557c766 8702 offlined_pages += 1 << order;
0c0e6195 8703#ifdef CONFIG_DEBUG_VM
1170532b
JP
8704 pr_info("remove from free list %lx %d %lx\n",
8705 pfn, 1 << order, end_pfn);
0c0e6195 8706#endif
b03641af 8707 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8708 pfn += (1 << order);
8709 }
8710 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8711
8712 return offlined_pages;
0c0e6195
KH
8713}
8714#endif
8d22ba1b 8715
8d22ba1b
WF
8716bool is_free_buddy_page(struct page *page)
8717{
8718 struct zone *zone = page_zone(page);
8719 unsigned long pfn = page_to_pfn(page);
8720 unsigned long flags;
7aeb09f9 8721 unsigned int order;
8d22ba1b
WF
8722
8723 spin_lock_irqsave(&zone->lock, flags);
8724 for (order = 0; order < MAX_ORDER; order++) {
8725 struct page *page_head = page - (pfn & ((1 << order) - 1));
8726
8727 if (PageBuddy(page_head) && page_order(page_head) >= order)
8728 break;
8729 }
8730 spin_unlock_irqrestore(&zone->lock, flags);
8731
8732 return order < MAX_ORDER;
8733}
d4ae9916
NH
8734
8735#ifdef CONFIG_MEMORY_FAILURE
8736/*
8737 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8738 * test is performed under the zone lock to prevent a race against page
8739 * allocation.
8740 */
8741bool set_hwpoison_free_buddy_page(struct page *page)
8742{
8743 struct zone *zone = page_zone(page);
8744 unsigned long pfn = page_to_pfn(page);
8745 unsigned long flags;
8746 unsigned int order;
8747 bool hwpoisoned = false;
8748
8749 spin_lock_irqsave(&zone->lock, flags);
8750 for (order = 0; order < MAX_ORDER; order++) {
8751 struct page *page_head = page - (pfn & ((1 << order) - 1));
8752
8753 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8754 if (!TestSetPageHWPoison(page))
8755 hwpoisoned = true;
8756 break;
8757 }
8758 }
8759 spin_unlock_irqrestore(&zone->lock, flags);
8760
8761 return hwpoisoned;
8762}
8763#endif
This page took 3.798683 seconds and 4 git commands to generate.