]>
Commit | Line | Data |
---|---|---|
d61ea1cb | 1 | |
457c8996 | 2 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
3 | /* |
4 | * linux/mm/memory.c | |
5 | * | |
6 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
7 | */ | |
8 | ||
9 | /* | |
10 | * demand-loading started 01.12.91 - seems it is high on the list of | |
11 | * things wanted, and it should be easy to implement. - Linus | |
12 | */ | |
13 | ||
14 | /* | |
15 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
16 | * pages started 02.12.91, seems to work. - Linus. | |
17 | * | |
18 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
19 | * would have taken more than the 6M I have free, but it worked well as | |
20 | * far as I could see. | |
21 | * | |
22 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
23 | */ | |
24 | ||
25 | /* | |
26 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
27 | * thought has to go into this. Oh, well.. | |
28 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
29 | * Found it. Everything seems to work now. | |
30 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
31 | */ | |
32 | ||
33 | /* | |
34 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 35 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
36 | * |
37 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
38 | * ([email protected]) | |
39 | * | |
40 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
41 | */ | |
42 | ||
43 | #include <linux/kernel_stat.h> | |
44 | #include <linux/mm.h> | |
36090def | 45 | #include <linux/mm_inline.h> |
6e84f315 | 46 | #include <linux/sched/mm.h> |
f7ccbae4 | 47 | #include <linux/sched/coredump.h> |
6a3827d7 | 48 | #include <linux/sched/numa_balancing.h> |
29930025 | 49 | #include <linux/sched/task.h> |
1da177e4 LT |
50 | #include <linux/hugetlb.h> |
51 | #include <linux/mman.h> | |
52 | #include <linux/swap.h> | |
53 | #include <linux/highmem.h> | |
54 | #include <linux/pagemap.h> | |
5042db43 | 55 | #include <linux/memremap.h> |
b073d7f8 | 56 | #include <linux/kmsan.h> |
9a840895 | 57 | #include <linux/ksm.h> |
1da177e4 | 58 | #include <linux/rmap.h> |
b95f1b31 | 59 | #include <linux/export.h> |
0ff92245 | 60 | #include <linux/delayacct.h> |
1da177e4 | 61 | #include <linux/init.h> |
01c8f1c4 | 62 | #include <linux/pfn_t.h> |
edc79b2a | 63 | #include <linux/writeback.h> |
8a9f3ccd | 64 | #include <linux/memcontrol.h> |
cddb8a5c | 65 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
66 | #include <linux/swapops.h> |
67 | #include <linux/elf.h> | |
5a0e3ad6 | 68 | #include <linux/gfp.h> |
4daae3b4 | 69 | #include <linux/migrate.h> |
2fbc57c5 | 70 | #include <linux/string.h> |
467b171a | 71 | #include <linux/memory-tiers.h> |
1592eef0 | 72 | #include <linux/debugfs.h> |
6b251fc9 | 73 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 74 | #include <linux/dax.h> |
6b31d595 | 75 | #include <linux/oom.h> |
98fa15f3 | 76 | #include <linux/numa.h> |
bce617ed PX |
77 | #include <linux/perf_event.h> |
78 | #include <linux/ptrace.h> | |
e80d3909 | 79 | #include <linux/vmalloc.h> |
33024536 | 80 | #include <linux/sched/sysctl.h> |
1da177e4 | 81 | |
b3d1411b JFG |
82 | #include <trace/events/kmem.h> |
83 | ||
6952b61d | 84 | #include <asm/io.h> |
33a709b2 | 85 | #include <asm/mmu_context.h> |
1da177e4 | 86 | #include <asm/pgalloc.h> |
7c0f6ba6 | 87 | #include <linux/uaccess.h> |
1da177e4 LT |
88 | #include <asm/tlb.h> |
89 | #include <asm/tlbflush.h> | |
1da177e4 | 90 | |
e80d3909 | 91 | #include "pgalloc-track.h" |
42b77728 | 92 | #include "internal.h" |
014bb1de | 93 | #include "swap.h" |
42b77728 | 94 | |
af27d940 | 95 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 96 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
97 | #endif |
98 | ||
a9ee6cf5 | 99 | #ifndef CONFIG_NUMA |
1da177e4 | 100 | unsigned long max_mapnr; |
1da177e4 | 101 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
102 | |
103 | struct page *mem_map; | |
1da177e4 LT |
104 | EXPORT_SYMBOL(mem_map); |
105 | #endif | |
106 | ||
5c041f5d | 107 | static vm_fault_t do_fault(struct vm_fault *vmf); |
2bad466c PX |
108 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf); |
109 | static bool vmf_pte_changed(struct vm_fault *vmf); | |
110 | ||
111 | /* | |
112 | * Return true if the original pte was a uffd-wp pte marker (so the pte was | |
113 | * wr-protected). | |
114 | */ | |
115 | static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) | |
116 | { | |
117 | if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) | |
118 | return false; | |
119 | ||
120 | return pte_marker_uffd_wp(vmf->orig_pte); | |
121 | } | |
5c041f5d | 122 | |
1da177e4 LT |
123 | /* |
124 | * A number of key systems in x86 including ioremap() rely on the assumption | |
125 | * that high_memory defines the upper bound on direct map memory, then end | |
126 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
127 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
128 | * and ZONE_HIGHMEM. | |
129 | */ | |
166f61b9 | 130 | void *high_memory; |
1da177e4 | 131 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 132 | |
32a93233 IM |
133 | /* |
134 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
135 | * | |
136 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
137 | * as ancient (libc5 based) binaries can segfault. ) | |
138 | */ | |
139 | int randomize_va_space __read_mostly = | |
140 | #ifdef CONFIG_COMPAT_BRK | |
141 | 1; | |
142 | #else | |
143 | 2; | |
144 | #endif | |
a62eaf15 | 145 | |
46bdb427 WD |
146 | #ifndef arch_wants_old_prefaulted_pte |
147 | static inline bool arch_wants_old_prefaulted_pte(void) | |
148 | { | |
149 | /* | |
150 | * Transitioning a PTE from 'old' to 'young' can be expensive on | |
151 | * some architectures, even if it's performed in hardware. By | |
152 | * default, "false" means prefaulted entries will be 'young'. | |
153 | */ | |
154 | return false; | |
155 | } | |
156 | #endif | |
157 | ||
a62eaf15 AK |
158 | static int __init disable_randmaps(char *s) |
159 | { | |
160 | randomize_va_space = 0; | |
9b41046c | 161 | return 1; |
a62eaf15 AK |
162 | } |
163 | __setup("norandmaps", disable_randmaps); | |
164 | ||
62eede62 | 165 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
166 | EXPORT_SYMBOL(zero_pfn); |
167 | ||
166f61b9 TH |
168 | unsigned long highest_memmap_pfn __read_mostly; |
169 | ||
a13ea5b7 HD |
170 | /* |
171 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
172 | */ | |
173 | static int __init init_zero_pfn(void) | |
174 | { | |
175 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
176 | return 0; | |
177 | } | |
e720e7d0 | 178 | early_initcall(init_zero_pfn); |
a62eaf15 | 179 | |
f1a79412 | 180 | void mm_trace_rss_stat(struct mm_struct *mm, int member) |
b3d1411b | 181 | { |
f1a79412 | 182 | trace_rss_stat(mm, member); |
b3d1411b | 183 | } |
d559db08 | 184 | |
1da177e4 LT |
185 | /* |
186 | * Note: this doesn't free the actual pages themselves. That | |
187 | * has been handled earlier when unmapping all the memory regions. | |
188 | */ | |
9e1b32ca BH |
189 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
190 | unsigned long addr) | |
1da177e4 | 191 | { |
2f569afd | 192 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 193 | pmd_clear(pmd); |
9e1b32ca | 194 | pte_free_tlb(tlb, token, addr); |
c4812909 | 195 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
196 | } |
197 | ||
e0da382c HD |
198 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
199 | unsigned long addr, unsigned long end, | |
200 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
201 | { |
202 | pmd_t *pmd; | |
203 | unsigned long next; | |
e0da382c | 204 | unsigned long start; |
1da177e4 | 205 | |
e0da382c | 206 | start = addr; |
1da177e4 | 207 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
208 | do { |
209 | next = pmd_addr_end(addr, end); | |
210 | if (pmd_none_or_clear_bad(pmd)) | |
211 | continue; | |
9e1b32ca | 212 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
213 | } while (pmd++, addr = next, addr != end); |
214 | ||
e0da382c HD |
215 | start &= PUD_MASK; |
216 | if (start < floor) | |
217 | return; | |
218 | if (ceiling) { | |
219 | ceiling &= PUD_MASK; | |
220 | if (!ceiling) | |
221 | return; | |
1da177e4 | 222 | } |
e0da382c HD |
223 | if (end - 1 > ceiling - 1) |
224 | return; | |
225 | ||
226 | pmd = pmd_offset(pud, start); | |
227 | pud_clear(pud); | |
9e1b32ca | 228 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 229 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
230 | } |
231 | ||
c2febafc | 232 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
233 | unsigned long addr, unsigned long end, |
234 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
235 | { |
236 | pud_t *pud; | |
237 | unsigned long next; | |
e0da382c | 238 | unsigned long start; |
1da177e4 | 239 | |
e0da382c | 240 | start = addr; |
c2febafc | 241 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
242 | do { |
243 | next = pud_addr_end(addr, end); | |
244 | if (pud_none_or_clear_bad(pud)) | |
245 | continue; | |
e0da382c | 246 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
247 | } while (pud++, addr = next, addr != end); |
248 | ||
c2febafc KS |
249 | start &= P4D_MASK; |
250 | if (start < floor) | |
251 | return; | |
252 | if (ceiling) { | |
253 | ceiling &= P4D_MASK; | |
254 | if (!ceiling) | |
255 | return; | |
256 | } | |
257 | if (end - 1 > ceiling - 1) | |
258 | return; | |
259 | ||
260 | pud = pud_offset(p4d, start); | |
261 | p4d_clear(p4d); | |
262 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 263 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
264 | } |
265 | ||
266 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
267 | unsigned long addr, unsigned long end, | |
268 | unsigned long floor, unsigned long ceiling) | |
269 | { | |
270 | p4d_t *p4d; | |
271 | unsigned long next; | |
272 | unsigned long start; | |
273 | ||
274 | start = addr; | |
275 | p4d = p4d_offset(pgd, addr); | |
276 | do { | |
277 | next = p4d_addr_end(addr, end); | |
278 | if (p4d_none_or_clear_bad(p4d)) | |
279 | continue; | |
280 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
281 | } while (p4d++, addr = next, addr != end); | |
282 | ||
e0da382c HD |
283 | start &= PGDIR_MASK; |
284 | if (start < floor) | |
285 | return; | |
286 | if (ceiling) { | |
287 | ceiling &= PGDIR_MASK; | |
288 | if (!ceiling) | |
289 | return; | |
1da177e4 | 290 | } |
e0da382c HD |
291 | if (end - 1 > ceiling - 1) |
292 | return; | |
293 | ||
c2febafc | 294 | p4d = p4d_offset(pgd, start); |
e0da382c | 295 | pgd_clear(pgd); |
c2febafc | 296 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
297 | } |
298 | ||
299 | /* | |
e0da382c | 300 | * This function frees user-level page tables of a process. |
1da177e4 | 301 | */ |
42b77728 | 302 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
303 | unsigned long addr, unsigned long end, |
304 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
305 | { |
306 | pgd_t *pgd; | |
307 | unsigned long next; | |
e0da382c HD |
308 | |
309 | /* | |
310 | * The next few lines have given us lots of grief... | |
311 | * | |
312 | * Why are we testing PMD* at this top level? Because often | |
313 | * there will be no work to do at all, and we'd prefer not to | |
314 | * go all the way down to the bottom just to discover that. | |
315 | * | |
316 | * Why all these "- 1"s? Because 0 represents both the bottom | |
317 | * of the address space and the top of it (using -1 for the | |
318 | * top wouldn't help much: the masks would do the wrong thing). | |
319 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
320 | * the address space, but end 0 and ceiling 0 refer to the top | |
321 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
322 | * that end 0 case should be mythical). | |
323 | * | |
324 | * Wherever addr is brought up or ceiling brought down, we must | |
325 | * be careful to reject "the opposite 0" before it confuses the | |
326 | * subsequent tests. But what about where end is brought down | |
327 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
328 | * | |
329 | * Whereas we round start (addr) and ceiling down, by different | |
330 | * masks at different levels, in order to test whether a table | |
331 | * now has no other vmas using it, so can be freed, we don't | |
332 | * bother to round floor or end up - the tests don't need that. | |
333 | */ | |
1da177e4 | 334 | |
e0da382c HD |
335 | addr &= PMD_MASK; |
336 | if (addr < floor) { | |
337 | addr += PMD_SIZE; | |
338 | if (!addr) | |
339 | return; | |
340 | } | |
341 | if (ceiling) { | |
342 | ceiling &= PMD_MASK; | |
343 | if (!ceiling) | |
344 | return; | |
345 | } | |
346 | if (end - 1 > ceiling - 1) | |
347 | end -= PMD_SIZE; | |
348 | if (addr > end - 1) | |
349 | return; | |
07e32661 AK |
350 | /* |
351 | * We add page table cache pages with PAGE_SIZE, | |
352 | * (see pte_free_tlb()), flush the tlb if we need | |
353 | */ | |
ed6a7935 | 354 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 355 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
356 | do { |
357 | next = pgd_addr_end(addr, end); | |
358 | if (pgd_none_or_clear_bad(pgd)) | |
359 | continue; | |
c2febafc | 360 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 361 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
362 | } |
363 | ||
fd892593 | 364 | void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, |
763ecb03 | 365 | struct vm_area_struct *vma, unsigned long floor, |
98e51a22 | 366 | unsigned long ceiling, bool mm_wr_locked) |
e0da382c | 367 | { |
763ecb03 | 368 | do { |
e0da382c | 369 | unsigned long addr = vma->vm_start; |
763ecb03 LH |
370 | struct vm_area_struct *next; |
371 | ||
372 | /* | |
373 | * Note: USER_PGTABLES_CEILING may be passed as ceiling and may | |
374 | * be 0. This will underflow and is okay. | |
375 | */ | |
fd892593 | 376 | next = mas_find(mas, ceiling - 1); |
e0da382c | 377 | |
8f4f8c16 | 378 | /* |
25d9e2d1 NP |
379 | * Hide vma from rmap and truncate_pagecache before freeing |
380 | * pgtables | |
8f4f8c16 | 381 | */ |
98e51a22 SB |
382 | if (mm_wr_locked) |
383 | vma_start_write(vma); | |
5beb4930 | 384 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
385 | unlink_file_vma(vma); |
386 | ||
9da61aef | 387 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 388 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 389 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
390 | } else { |
391 | /* | |
392 | * Optimization: gather nearby vmas into one call down | |
393 | */ | |
394 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 395 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 | 396 | vma = next; |
fd892593 | 397 | next = mas_find(mas, ceiling - 1); |
98e51a22 SB |
398 | if (mm_wr_locked) |
399 | vma_start_write(vma); | |
5beb4930 | 400 | unlink_anon_vmas(vma); |
8f4f8c16 | 401 | unlink_file_vma(vma); |
3bf5ee95 HD |
402 | } |
403 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 404 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 405 | } |
e0da382c | 406 | vma = next; |
763ecb03 | 407 | } while (vma); |
1da177e4 LT |
408 | } |
409 | ||
03c4f204 | 410 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) |
1da177e4 | 411 | { |
03c4f204 | 412 | spinlock_t *ptl = pmd_lock(mm, pmd); |
1bb3630e | 413 | |
8ac1f832 | 414 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 415 | mm_inc_nr_ptes(mm); |
ed33b5a6 QZ |
416 | /* |
417 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
418 | * visible before the pte is made visible to other CPUs by being | |
419 | * put into page tables. | |
420 | * | |
421 | * The other side of the story is the pointer chasing in the page | |
422 | * table walking code (when walking the page table without locking; | |
423 | * ie. most of the time). Fortunately, these data accesses consist | |
424 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
425 | * being the notable exception) will already guarantee loads are | |
426 | * seen in-order. See the alpha page table accessors for the | |
427 | * smp_rmb() barriers in page table walking code. | |
428 | */ | |
429 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
03c4f204 QZ |
430 | pmd_populate(mm, pmd, *pte); |
431 | *pte = NULL; | |
4b471e88 | 432 | } |
c4088ebd | 433 | spin_unlock(ptl); |
03c4f204 QZ |
434 | } |
435 | ||
4cf58924 | 436 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 437 | { |
4cf58924 | 438 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
439 | if (!new) |
440 | return -ENOMEM; | |
441 | ||
03c4f204 | 442 | pmd_install(mm, pmd, &new); |
2f569afd MS |
443 | if (new) |
444 | pte_free(mm, new); | |
1bb3630e | 445 | return 0; |
1da177e4 LT |
446 | } |
447 | ||
4cf58924 | 448 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 449 | { |
4cf58924 | 450 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
451 | if (!new) |
452 | return -ENOMEM; | |
453 | ||
454 | spin_lock(&init_mm.page_table_lock); | |
8ac1f832 | 455 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
ed33b5a6 | 456 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 457 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 458 | new = NULL; |
4b471e88 | 459 | } |
1bb3630e | 460 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
461 | if (new) |
462 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 463 | return 0; |
1da177e4 LT |
464 | } |
465 | ||
d559db08 KH |
466 | static inline void init_rss_vec(int *rss) |
467 | { | |
468 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
469 | } | |
470 | ||
471 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 472 | { |
d559db08 KH |
473 | int i; |
474 | ||
475 | for (i = 0; i < NR_MM_COUNTERS; i++) | |
476 | if (rss[i]) | |
477 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
478 | } |
479 | ||
b5810039 | 480 | /* |
6aab341e LT |
481 | * This function is called to print an error when a bad pte |
482 | * is found. For example, we might have a PFN-mapped pte in | |
483 | * a region that doesn't allow it. | |
b5810039 NP |
484 | * |
485 | * The calling function must still handle the error. | |
486 | */ | |
3dc14741 HD |
487 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
488 | pte_t pte, struct page *page) | |
b5810039 | 489 | { |
3dc14741 | 490 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
491 | p4d_t *p4d = p4d_offset(pgd, addr); |
492 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
493 | pmd_t *pmd = pmd_offset(pud, addr); |
494 | struct address_space *mapping; | |
495 | pgoff_t index; | |
d936cf9b HD |
496 | static unsigned long resume; |
497 | static unsigned long nr_shown; | |
498 | static unsigned long nr_unshown; | |
499 | ||
500 | /* | |
501 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
502 | * or allow a steady drip of one report per second. | |
503 | */ | |
504 | if (nr_shown == 60) { | |
505 | if (time_before(jiffies, resume)) { | |
506 | nr_unshown++; | |
507 | return; | |
508 | } | |
509 | if (nr_unshown) { | |
1170532b JP |
510 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
511 | nr_unshown); | |
d936cf9b HD |
512 | nr_unshown = 0; |
513 | } | |
514 | nr_shown = 0; | |
515 | } | |
516 | if (nr_shown++ == 0) | |
517 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
518 | |
519 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
520 | index = linear_page_index(vma, addr); | |
521 | ||
1170532b JP |
522 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
523 | current->comm, | |
524 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 525 | if (page) |
f0b791a3 | 526 | dump_page(page, "bad pte"); |
6aa9b8b2 | 527 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", |
1170532b | 528 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
7e0a1265 | 529 | pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", |
2682582a KK |
530 | vma->vm_file, |
531 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
532 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
7e0a1265 | 533 | mapping ? mapping->a_ops->read_folio : NULL); |
b5810039 | 534 | dump_stack(); |
373d4d09 | 535 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
536 | } |
537 | ||
ee498ed7 | 538 | /* |
7e675137 | 539 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 540 | * |
7e675137 NP |
541 | * "Special" mappings do not wish to be associated with a "struct page" (either |
542 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
543 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 544 | * |
7e675137 NP |
545 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
546 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
547 | * may not have a spare pte bit, which requires a more complicated scheme, | |
548 | * described below. | |
549 | * | |
550 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
551 | * special mapping (even if there are underlying and valid "struct pages"). | |
552 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 553 | * |
b379d790 JH |
554 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
555 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
556 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
557 | * mapping will always honor the rule | |
6aab341e LT |
558 | * |
559 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
560 | * | |
7e675137 NP |
561 | * And for normal mappings this is false. |
562 | * | |
563 | * This restricts such mappings to be a linear translation from virtual address | |
564 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
565 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
566 | * special (because none can have been COWed). | |
b379d790 | 567 | * |
b379d790 | 568 | * |
7e675137 | 569 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
570 | * |
571 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
572 | * page" backing, however the difference is that _all_ pages with a struct | |
573 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
574 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
575 | * (which can be slower and simply not an option for some PFNMAP users). The | |
576 | * advantage is that we don't have to follow the strict linearity rule of | |
577 | * PFNMAP mappings in order to support COWable mappings. | |
578 | * | |
ee498ed7 | 579 | */ |
25b2995a CH |
580 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
581 | pte_t pte) | |
ee498ed7 | 582 | { |
22b31eec | 583 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 584 | |
00b3a331 | 585 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 586 | if (likely(!pte_special(pte))) |
22b31eec | 587 | goto check_pfn; |
667a0a06 DV |
588 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
589 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
590 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
591 | return NULL; | |
df6ad698 JG |
592 | if (is_zero_pfn(pfn)) |
593 | return NULL; | |
e1fb4a08 | 594 | if (pte_devmap(pte)) |
3218f871 AS |
595 | /* |
596 | * NOTE: New users of ZONE_DEVICE will not set pte_devmap() | |
597 | * and will have refcounts incremented on their struct pages | |
598 | * when they are inserted into PTEs, thus they are safe to | |
599 | * return here. Legacy ZONE_DEVICE pages that set pte_devmap() | |
600 | * do not have refcounts. Example of legacy ZONE_DEVICE is | |
601 | * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. | |
602 | */ | |
e1fb4a08 DJ |
603 | return NULL; |
604 | ||
df6ad698 | 605 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
606 | return NULL; |
607 | } | |
608 | ||
00b3a331 | 609 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 610 | |
b379d790 JH |
611 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
612 | if (vma->vm_flags & VM_MIXEDMAP) { | |
613 | if (!pfn_valid(pfn)) | |
614 | return NULL; | |
615 | goto out; | |
616 | } else { | |
7e675137 NP |
617 | unsigned long off; |
618 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
619 | if (pfn == vma->vm_pgoff + off) |
620 | return NULL; | |
621 | if (!is_cow_mapping(vma->vm_flags)) | |
622 | return NULL; | |
623 | } | |
6aab341e LT |
624 | } |
625 | ||
b38af472 HD |
626 | if (is_zero_pfn(pfn)) |
627 | return NULL; | |
00b3a331 | 628 | |
22b31eec HD |
629 | check_pfn: |
630 | if (unlikely(pfn > highest_memmap_pfn)) { | |
631 | print_bad_pte(vma, addr, pte, NULL); | |
632 | return NULL; | |
633 | } | |
6aab341e LT |
634 | |
635 | /* | |
7e675137 | 636 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 637 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 638 | */ |
b379d790 | 639 | out: |
6aab341e | 640 | return pfn_to_page(pfn); |
ee498ed7 HD |
641 | } |
642 | ||
318e9342 VMO |
643 | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, |
644 | pte_t pte) | |
645 | { | |
646 | struct page *page = vm_normal_page(vma, addr, pte); | |
647 | ||
648 | if (page) | |
649 | return page_folio(page); | |
650 | return NULL; | |
651 | } | |
652 | ||
28093f9f GS |
653 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
654 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
655 | pmd_t pmd) | |
656 | { | |
657 | unsigned long pfn = pmd_pfn(pmd); | |
658 | ||
659 | /* | |
660 | * There is no pmd_special() but there may be special pmds, e.g. | |
661 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 662 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
663 | */ |
664 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
665 | if (vma->vm_flags & VM_MIXEDMAP) { | |
666 | if (!pfn_valid(pfn)) | |
667 | return NULL; | |
668 | goto out; | |
669 | } else { | |
670 | unsigned long off; | |
671 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
672 | if (pfn == vma->vm_pgoff + off) | |
673 | return NULL; | |
674 | if (!is_cow_mapping(vma->vm_flags)) | |
675 | return NULL; | |
676 | } | |
677 | } | |
678 | ||
e1fb4a08 DJ |
679 | if (pmd_devmap(pmd)) |
680 | return NULL; | |
3cde287b | 681 | if (is_huge_zero_pmd(pmd)) |
28093f9f GS |
682 | return NULL; |
683 | if (unlikely(pfn > highest_memmap_pfn)) | |
684 | return NULL; | |
685 | ||
686 | /* | |
687 | * NOTE! We still have PageReserved() pages in the page tables. | |
688 | * eg. VDSO mappings can cause them to exist. | |
689 | */ | |
690 | out: | |
691 | return pfn_to_page(pfn); | |
692 | } | |
65610453 KW |
693 | |
694 | struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, | |
695 | unsigned long addr, pmd_t pmd) | |
696 | { | |
697 | struct page *page = vm_normal_page_pmd(vma, addr, pmd); | |
698 | ||
699 | if (page) | |
700 | return page_folio(page); | |
701 | return NULL; | |
702 | } | |
28093f9f GS |
703 | #endif |
704 | ||
b756a3b5 AP |
705 | static void restore_exclusive_pte(struct vm_area_struct *vma, |
706 | struct page *page, unsigned long address, | |
707 | pte_t *ptep) | |
708 | { | |
c33c7948 | 709 | pte_t orig_pte; |
b756a3b5 AP |
710 | pte_t pte; |
711 | swp_entry_t entry; | |
712 | ||
c33c7948 | 713 | orig_pte = ptep_get(ptep); |
b756a3b5 | 714 | pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); |
c33c7948 | 715 | if (pte_swp_soft_dirty(orig_pte)) |
b756a3b5 AP |
716 | pte = pte_mksoft_dirty(pte); |
717 | ||
c33c7948 RR |
718 | entry = pte_to_swp_entry(orig_pte); |
719 | if (pte_swp_uffd_wp(orig_pte)) | |
b756a3b5 AP |
720 | pte = pte_mkuffd_wp(pte); |
721 | else if (is_writable_device_exclusive_entry(entry)) | |
722 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
723 | ||
6c287605 DH |
724 | VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); |
725 | ||
b756a3b5 AP |
726 | /* |
727 | * No need to take a page reference as one was already | |
728 | * created when the swap entry was made. | |
729 | */ | |
730 | if (PageAnon(page)) | |
f1e2db12 | 731 | page_add_anon_rmap(page, vma, address, RMAP_NONE); |
b756a3b5 AP |
732 | else |
733 | /* | |
734 | * Currently device exclusive access only supports anonymous | |
735 | * memory so the entry shouldn't point to a filebacked page. | |
736 | */ | |
4d8ff640 | 737 | WARN_ON_ONCE(1); |
b756a3b5 | 738 | |
1eba86c0 PT |
739 | set_pte_at(vma->vm_mm, address, ptep, pte); |
740 | ||
b756a3b5 AP |
741 | /* |
742 | * No need to invalidate - it was non-present before. However | |
743 | * secondary CPUs may have mappings that need invalidating. | |
744 | */ | |
745 | update_mmu_cache(vma, address, ptep); | |
746 | } | |
747 | ||
748 | /* | |
749 | * Tries to restore an exclusive pte if the page lock can be acquired without | |
750 | * sleeping. | |
751 | */ | |
752 | static int | |
753 | try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, | |
754 | unsigned long addr) | |
755 | { | |
c33c7948 | 756 | swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); |
b756a3b5 AP |
757 | struct page *page = pfn_swap_entry_to_page(entry); |
758 | ||
759 | if (trylock_page(page)) { | |
760 | restore_exclusive_pte(vma, page, addr, src_pte); | |
761 | unlock_page(page); | |
762 | return 0; | |
763 | } | |
764 | ||
765 | return -EBUSY; | |
766 | } | |
767 | ||
1da177e4 LT |
768 | /* |
769 | * copy one vm_area from one task to the other. Assumes the page tables | |
770 | * already present in the new task to be cleared in the whole range | |
771 | * covered by this vma. | |
1da177e4 LT |
772 | */ |
773 | ||
df3a57d1 LT |
774 | static unsigned long |
775 | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
8f34f1ea PX |
776 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, |
777 | struct vm_area_struct *src_vma, unsigned long addr, int *rss) | |
1da177e4 | 778 | { |
8f34f1ea | 779 | unsigned long vm_flags = dst_vma->vm_flags; |
c33c7948 RR |
780 | pte_t orig_pte = ptep_get(src_pte); |
781 | pte_t pte = orig_pte; | |
1da177e4 | 782 | struct page *page; |
c33c7948 | 783 | swp_entry_t entry = pte_to_swp_entry(orig_pte); |
df3a57d1 LT |
784 | |
785 | if (likely(!non_swap_entry(entry))) { | |
786 | if (swap_duplicate(entry) < 0) | |
9a5cc85c | 787 | return -EIO; |
df3a57d1 LT |
788 | |
789 | /* make sure dst_mm is on swapoff's mmlist. */ | |
790 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
791 | spin_lock(&mmlist_lock); | |
792 | if (list_empty(&dst_mm->mmlist)) | |
793 | list_add(&dst_mm->mmlist, | |
794 | &src_mm->mmlist); | |
795 | spin_unlock(&mmlist_lock); | |
796 | } | |
1493a191 | 797 | /* Mark the swap entry as shared. */ |
c33c7948 RR |
798 | if (pte_swp_exclusive(orig_pte)) { |
799 | pte = pte_swp_clear_exclusive(orig_pte); | |
1493a191 DH |
800 | set_pte_at(src_mm, addr, src_pte, pte); |
801 | } | |
df3a57d1 LT |
802 | rss[MM_SWAPENTS]++; |
803 | } else if (is_migration_entry(entry)) { | |
af5cdaf8 | 804 | page = pfn_swap_entry_to_page(entry); |
1da177e4 | 805 | |
df3a57d1 | 806 | rss[mm_counter(page)]++; |
5042db43 | 807 | |
6c287605 | 808 | if (!is_readable_migration_entry(entry) && |
df3a57d1 | 809 | is_cow_mapping(vm_flags)) { |
5042db43 | 810 | /* |
6c287605 DH |
811 | * COW mappings require pages in both parent and child |
812 | * to be set to read. A previously exclusive entry is | |
813 | * now shared. | |
5042db43 | 814 | */ |
4dd845b5 AP |
815 | entry = make_readable_migration_entry( |
816 | swp_offset(entry)); | |
df3a57d1 | 817 | pte = swp_entry_to_pte(entry); |
c33c7948 | 818 | if (pte_swp_soft_dirty(orig_pte)) |
df3a57d1 | 819 | pte = pte_swp_mksoft_dirty(pte); |
c33c7948 | 820 | if (pte_swp_uffd_wp(orig_pte)) |
df3a57d1 LT |
821 | pte = pte_swp_mkuffd_wp(pte); |
822 | set_pte_at(src_mm, addr, src_pte, pte); | |
823 | } | |
824 | } else if (is_device_private_entry(entry)) { | |
af5cdaf8 | 825 | page = pfn_swap_entry_to_page(entry); |
5042db43 | 826 | |
df3a57d1 LT |
827 | /* |
828 | * Update rss count even for unaddressable pages, as | |
829 | * they should treated just like normal pages in this | |
830 | * respect. | |
831 | * | |
832 | * We will likely want to have some new rss counters | |
833 | * for unaddressable pages, at some point. But for now | |
834 | * keep things as they are. | |
835 | */ | |
836 | get_page(page); | |
837 | rss[mm_counter(page)]++; | |
fb3d824d DH |
838 | /* Cannot fail as these pages cannot get pinned. */ |
839 | BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); | |
df3a57d1 LT |
840 | |
841 | /* | |
842 | * We do not preserve soft-dirty information, because so | |
843 | * far, checkpoint/restore is the only feature that | |
844 | * requires that. And checkpoint/restore does not work | |
845 | * when a device driver is involved (you cannot easily | |
846 | * save and restore device driver state). | |
847 | */ | |
4dd845b5 | 848 | if (is_writable_device_private_entry(entry) && |
df3a57d1 | 849 | is_cow_mapping(vm_flags)) { |
4dd845b5 AP |
850 | entry = make_readable_device_private_entry( |
851 | swp_offset(entry)); | |
df3a57d1 | 852 | pte = swp_entry_to_pte(entry); |
c33c7948 | 853 | if (pte_swp_uffd_wp(orig_pte)) |
df3a57d1 LT |
854 | pte = pte_swp_mkuffd_wp(pte); |
855 | set_pte_at(src_mm, addr, src_pte, pte); | |
1da177e4 | 856 | } |
b756a3b5 AP |
857 | } else if (is_device_exclusive_entry(entry)) { |
858 | /* | |
859 | * Make device exclusive entries present by restoring the | |
860 | * original entry then copying as for a present pte. Device | |
861 | * exclusive entries currently only support private writable | |
862 | * (ie. COW) mappings. | |
863 | */ | |
864 | VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); | |
865 | if (try_restore_exclusive_pte(src_pte, src_vma, addr)) | |
866 | return -EBUSY; | |
867 | return -ENOENT; | |
c56d1b62 | 868 | } else if (is_pte_marker_entry(entry)) { |
af19487f AR |
869 | pte_marker marker = copy_pte_marker(entry, dst_vma); |
870 | ||
871 | if (marker) | |
872 | set_pte_at(dst_mm, addr, dst_pte, | |
873 | make_pte_marker(marker)); | |
c56d1b62 | 874 | return 0; |
1da177e4 | 875 | } |
8f34f1ea PX |
876 | if (!userfaultfd_wp(dst_vma)) |
877 | pte = pte_swp_clear_uffd_wp(pte); | |
df3a57d1 LT |
878 | set_pte_at(dst_mm, addr, dst_pte, pte); |
879 | return 0; | |
880 | } | |
881 | ||
70e806e4 | 882 | /* |
b51ad4f8 | 883 | * Copy a present and normal page. |
70e806e4 | 884 | * |
b51ad4f8 DH |
885 | * NOTE! The usual case is that this isn't required; |
886 | * instead, the caller can just increase the page refcount | |
887 | * and re-use the pte the traditional way. | |
70e806e4 PX |
888 | * |
889 | * And if we need a pre-allocated page but don't yet have | |
890 | * one, return a negative error to let the preallocation | |
891 | * code know so that it can do so outside the page table | |
892 | * lock. | |
893 | */ | |
894 | static inline int | |
c78f4636 PX |
895 | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
896 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
edf50470 | 897 | struct folio **prealloc, struct page *page) |
70e806e4 | 898 | { |
edf50470 | 899 | struct folio *new_folio; |
b51ad4f8 | 900 | pte_t pte; |
70e806e4 | 901 | |
edf50470 MWO |
902 | new_folio = *prealloc; |
903 | if (!new_folio) | |
70e806e4 PX |
904 | return -EAGAIN; |
905 | ||
906 | /* | |
907 | * We have a prealloc page, all good! Take it | |
908 | * over and copy the page & arm it. | |
909 | */ | |
910 | *prealloc = NULL; | |
edf50470 MWO |
911 | copy_user_highpage(&new_folio->page, page, addr, src_vma); |
912 | __folio_mark_uptodate(new_folio); | |
913 | folio_add_new_anon_rmap(new_folio, dst_vma, addr); | |
914 | folio_add_lru_vma(new_folio, dst_vma); | |
915 | rss[MM_ANONPAGES]++; | |
70e806e4 PX |
916 | |
917 | /* All done, just insert the new page copy in the child */ | |
edf50470 | 918 | pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); |
c78f4636 | 919 | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); |
c33c7948 | 920 | if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) |
8f34f1ea | 921 | /* Uffd-wp needs to be delivered to dest pte as well */ |
f1eb1bac | 922 | pte = pte_mkuffd_wp(pte); |
c78f4636 | 923 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
924 | return 0; |
925 | } | |
926 | ||
927 | /* | |
928 | * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page | |
929 | * is required to copy this pte. | |
930 | */ | |
931 | static inline int | |
c78f4636 PX |
932 | copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
933 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
edf50470 | 934 | struct folio **prealloc) |
df3a57d1 | 935 | { |
c78f4636 PX |
936 | struct mm_struct *src_mm = src_vma->vm_mm; |
937 | unsigned long vm_flags = src_vma->vm_flags; | |
c33c7948 | 938 | pte_t pte = ptep_get(src_pte); |
df3a57d1 | 939 | struct page *page; |
14ddee41 | 940 | struct folio *folio; |
df3a57d1 | 941 | |
c78f4636 | 942 | page = vm_normal_page(src_vma, addr, pte); |
14ddee41 MWO |
943 | if (page) |
944 | folio = page_folio(page); | |
945 | if (page && folio_test_anon(folio)) { | |
b51ad4f8 DH |
946 | /* |
947 | * If this page may have been pinned by the parent process, | |
948 | * copy the page immediately for the child so that we'll always | |
949 | * guarantee the pinned page won't be randomly replaced in the | |
950 | * future. | |
951 | */ | |
14ddee41 | 952 | folio_get(folio); |
fb3d824d | 953 | if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { |
14ddee41 MWO |
954 | /* Page may be pinned, we have to copy. */ |
955 | folio_put(folio); | |
fb3d824d DH |
956 | return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, |
957 | addr, rss, prealloc, page); | |
958 | } | |
edf50470 | 959 | rss[MM_ANONPAGES]++; |
b51ad4f8 | 960 | } else if (page) { |
14ddee41 | 961 | folio_get(folio); |
fb3d824d | 962 | page_dup_file_rmap(page, false); |
edf50470 | 963 | rss[mm_counter_file(page)]++; |
70e806e4 PX |
964 | } |
965 | ||
1da177e4 LT |
966 | /* |
967 | * If it's a COW mapping, write protect it both | |
968 | * in the parent and the child | |
969 | */ | |
1b2de5d0 | 970 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 971 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 972 | pte = pte_wrprotect(pte); |
1da177e4 | 973 | } |
14ddee41 | 974 | VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); |
1da177e4 LT |
975 | |
976 | /* | |
977 | * If it's a shared mapping, mark it clean in | |
978 | * the child | |
979 | */ | |
980 | if (vm_flags & VM_SHARED) | |
981 | pte = pte_mkclean(pte); | |
982 | pte = pte_mkold(pte); | |
6aab341e | 983 | |
8f34f1ea | 984 | if (!userfaultfd_wp(dst_vma)) |
b569a176 PX |
985 | pte = pte_clear_uffd_wp(pte); |
986 | ||
c78f4636 | 987 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
988 | return 0; |
989 | } | |
990 | ||
edf50470 MWO |
991 | static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, |
992 | struct vm_area_struct *vma, unsigned long addr) | |
70e806e4 | 993 | { |
edf50470 | 994 | struct folio *new_folio; |
70e806e4 | 995 | |
edf50470 MWO |
996 | new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); |
997 | if (!new_folio) | |
70e806e4 PX |
998 | return NULL; |
999 | ||
edf50470 MWO |
1000 | if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { |
1001 | folio_put(new_folio); | |
70e806e4 | 1002 | return NULL; |
6aab341e | 1003 | } |
e601ded4 | 1004 | folio_throttle_swaprate(new_folio, GFP_KERNEL); |
ae859762 | 1005 | |
edf50470 | 1006 | return new_folio; |
1da177e4 LT |
1007 | } |
1008 | ||
c78f4636 PX |
1009 | static int |
1010 | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1011 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
1012 | unsigned long end) | |
1da177e4 | 1013 | { |
c78f4636 PX |
1014 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1015 | struct mm_struct *src_mm = src_vma->vm_mm; | |
c36987e2 | 1016 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 1017 | pte_t *src_pte, *dst_pte; |
c33c7948 | 1018 | pte_t ptent; |
c74df32c | 1019 | spinlock_t *src_ptl, *dst_ptl; |
70e806e4 | 1020 | int progress, ret = 0; |
d559db08 | 1021 | int rss[NR_MM_COUNTERS]; |
570a335b | 1022 | swp_entry_t entry = (swp_entry_t){0}; |
edf50470 | 1023 | struct folio *prealloc = NULL; |
1da177e4 LT |
1024 | |
1025 | again: | |
70e806e4 | 1026 | progress = 0; |
d559db08 KH |
1027 | init_rss_vec(rss); |
1028 | ||
3db82b93 HD |
1029 | /* |
1030 | * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the | |
1031 | * error handling here, assume that exclusive mmap_lock on dst and src | |
1032 | * protects anon from unexpected THP transitions; with shmem and file | |
1033 | * protected by mmap_lock-less collapse skipping areas with anon_vma | |
1034 | * (whereas vma_needs_copy() skips areas without anon_vma). A rework | |
1035 | * can remove such assumptions later, but this is good enough for now. | |
1036 | */ | |
c74df32c | 1037 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
70e806e4 PX |
1038 | if (!dst_pte) { |
1039 | ret = -ENOMEM; | |
1040 | goto out; | |
1041 | } | |
3db82b93 HD |
1042 | src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); |
1043 | if (!src_pte) { | |
1044 | pte_unmap_unlock(dst_pte, dst_ptl); | |
1045 | /* ret == 0 */ | |
1046 | goto out; | |
1047 | } | |
f20dc5f7 | 1048 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
1049 | orig_src_pte = src_pte; |
1050 | orig_dst_pte = dst_pte; | |
6606c3e0 | 1051 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 1052 | |
1da177e4 LT |
1053 | do { |
1054 | /* | |
1055 | * We are holding two locks at this point - either of them | |
1056 | * could generate latencies in another task on another CPU. | |
1057 | */ | |
e040f218 HD |
1058 | if (progress >= 32) { |
1059 | progress = 0; | |
1060 | if (need_resched() || | |
95c354fe | 1061 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
1062 | break; |
1063 | } | |
c33c7948 RR |
1064 | ptent = ptep_get(src_pte); |
1065 | if (pte_none(ptent)) { | |
1da177e4 LT |
1066 | progress++; |
1067 | continue; | |
1068 | } | |
c33c7948 | 1069 | if (unlikely(!pte_present(ptent))) { |
9a5cc85c AP |
1070 | ret = copy_nonpresent_pte(dst_mm, src_mm, |
1071 | dst_pte, src_pte, | |
1072 | dst_vma, src_vma, | |
1073 | addr, rss); | |
1074 | if (ret == -EIO) { | |
c33c7948 | 1075 | entry = pte_to_swp_entry(ptep_get(src_pte)); |
79a1971c | 1076 | break; |
b756a3b5 AP |
1077 | } else if (ret == -EBUSY) { |
1078 | break; | |
1079 | } else if (!ret) { | |
1080 | progress += 8; | |
1081 | continue; | |
9a5cc85c | 1082 | } |
b756a3b5 AP |
1083 | |
1084 | /* | |
1085 | * Device exclusive entry restored, continue by copying | |
1086 | * the now present pte. | |
1087 | */ | |
1088 | WARN_ON_ONCE(ret != -ENOENT); | |
79a1971c | 1089 | } |
70e806e4 | 1090 | /* copy_present_pte() will clear `*prealloc' if consumed */ |
c78f4636 PX |
1091 | ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, |
1092 | addr, rss, &prealloc); | |
70e806e4 PX |
1093 | /* |
1094 | * If we need a pre-allocated page for this pte, drop the | |
1095 | * locks, allocate, and try again. | |
1096 | */ | |
1097 | if (unlikely(ret == -EAGAIN)) | |
1098 | break; | |
1099 | if (unlikely(prealloc)) { | |
1100 | /* | |
1101 | * pre-alloc page cannot be reused by next time so as | |
1102 | * to strictly follow mempolicy (e.g., alloc_page_vma() | |
1103 | * will allocate page according to address). This | |
1104 | * could only happen if one pinned pte changed. | |
1105 | */ | |
edf50470 | 1106 | folio_put(prealloc); |
70e806e4 PX |
1107 | prealloc = NULL; |
1108 | } | |
1da177e4 LT |
1109 | progress += 8; |
1110 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 1111 | |
6606c3e0 | 1112 | arch_leave_lazy_mmu_mode(); |
3db82b93 | 1113 | pte_unmap_unlock(orig_src_pte, src_ptl); |
d559db08 | 1114 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 1115 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 1116 | cond_resched(); |
570a335b | 1117 | |
9a5cc85c AP |
1118 | if (ret == -EIO) { |
1119 | VM_WARN_ON_ONCE(!entry.val); | |
70e806e4 PX |
1120 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { |
1121 | ret = -ENOMEM; | |
1122 | goto out; | |
1123 | } | |
1124 | entry.val = 0; | |
b756a3b5 AP |
1125 | } else if (ret == -EBUSY) { |
1126 | goto out; | |
9a5cc85c | 1127 | } else if (ret == -EAGAIN) { |
c78f4636 | 1128 | prealloc = page_copy_prealloc(src_mm, src_vma, addr); |
70e806e4 | 1129 | if (!prealloc) |
570a335b | 1130 | return -ENOMEM; |
9a5cc85c AP |
1131 | } else if (ret) { |
1132 | VM_WARN_ON_ONCE(1); | |
570a335b | 1133 | } |
9a5cc85c AP |
1134 | |
1135 | /* We've captured and resolved the error. Reset, try again. */ | |
1136 | ret = 0; | |
1137 | ||
1da177e4 LT |
1138 | if (addr != end) |
1139 | goto again; | |
70e806e4 PX |
1140 | out: |
1141 | if (unlikely(prealloc)) | |
edf50470 | 1142 | folio_put(prealloc); |
70e806e4 | 1143 | return ret; |
1da177e4 LT |
1144 | } |
1145 | ||
c78f4636 PX |
1146 | static inline int |
1147 | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1148 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | |
1149 | unsigned long end) | |
1da177e4 | 1150 | { |
c78f4636 PX |
1151 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1152 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1153 | pmd_t *src_pmd, *dst_pmd; |
1154 | unsigned long next; | |
1155 | ||
1156 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1157 | if (!dst_pmd) | |
1158 | return -ENOMEM; | |
1159 | src_pmd = pmd_offset(src_pud, addr); | |
1160 | do { | |
1161 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
1162 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
1163 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 1164 | int err; |
c78f4636 | 1165 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); |
8f34f1ea PX |
1166 | err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, |
1167 | addr, dst_vma, src_vma); | |
71e3aac0 AA |
1168 | if (err == -ENOMEM) |
1169 | return -ENOMEM; | |
1170 | if (!err) | |
1171 | continue; | |
1172 | /* fall through */ | |
1173 | } | |
1da177e4 LT |
1174 | if (pmd_none_or_clear_bad(src_pmd)) |
1175 | continue; | |
c78f4636 PX |
1176 | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, |
1177 | addr, next)) | |
1da177e4 LT |
1178 | return -ENOMEM; |
1179 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1180 | return 0; | |
1181 | } | |
1182 | ||
c78f4636 PX |
1183 | static inline int |
1184 | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1185 | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | |
1186 | unsigned long end) | |
1da177e4 | 1187 | { |
c78f4636 PX |
1188 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1189 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1190 | pud_t *src_pud, *dst_pud; |
1191 | unsigned long next; | |
1192 | ||
c2febafc | 1193 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
1194 | if (!dst_pud) |
1195 | return -ENOMEM; | |
c2febafc | 1196 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
1197 | do { |
1198 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1199 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
1200 | int err; | |
1201 | ||
c78f4636 | 1202 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); |
a00cc7d9 | 1203 | err = copy_huge_pud(dst_mm, src_mm, |
c78f4636 | 1204 | dst_pud, src_pud, addr, src_vma); |
a00cc7d9 MW |
1205 | if (err == -ENOMEM) |
1206 | return -ENOMEM; | |
1207 | if (!err) | |
1208 | continue; | |
1209 | /* fall through */ | |
1210 | } | |
1da177e4 LT |
1211 | if (pud_none_or_clear_bad(src_pud)) |
1212 | continue; | |
c78f4636 PX |
1213 | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, |
1214 | addr, next)) | |
1da177e4 LT |
1215 | return -ENOMEM; |
1216 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1217 | return 0; | |
1218 | } | |
1219 | ||
c78f4636 PX |
1220 | static inline int |
1221 | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1222 | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | |
1223 | unsigned long end) | |
c2febafc | 1224 | { |
c78f4636 | 1225 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
c2febafc KS |
1226 | p4d_t *src_p4d, *dst_p4d; |
1227 | unsigned long next; | |
1228 | ||
1229 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1230 | if (!dst_p4d) | |
1231 | return -ENOMEM; | |
1232 | src_p4d = p4d_offset(src_pgd, addr); | |
1233 | do { | |
1234 | next = p4d_addr_end(addr, end); | |
1235 | if (p4d_none_or_clear_bad(src_p4d)) | |
1236 | continue; | |
c78f4636 PX |
1237 | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, |
1238 | addr, next)) | |
c2febafc KS |
1239 | return -ENOMEM; |
1240 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1241 | return 0; | |
1242 | } | |
1243 | ||
c56d1b62 PX |
1244 | /* |
1245 | * Return true if the vma needs to copy the pgtable during this fork(). Return | |
1246 | * false when we can speed up fork() by allowing lazy page faults later until | |
1247 | * when the child accesses the memory range. | |
1248 | */ | |
bc70fbf2 | 1249 | static bool |
c56d1b62 PX |
1250 | vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) |
1251 | { | |
1252 | /* | |
1253 | * Always copy pgtables when dst_vma has uffd-wp enabled even if it's | |
1254 | * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable | |
1255 | * contains uffd-wp protection information, that's something we can't | |
1256 | * retrieve from page cache, and skip copying will lose those info. | |
1257 | */ | |
1258 | if (userfaultfd_wp(dst_vma)) | |
1259 | return true; | |
1260 | ||
bcd51a3c | 1261 | if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
c56d1b62 PX |
1262 | return true; |
1263 | ||
1264 | if (src_vma->anon_vma) | |
1265 | return true; | |
1266 | ||
1267 | /* | |
1268 | * Don't copy ptes where a page fault will fill them correctly. Fork | |
1269 | * becomes much lighter when there are big shared or private readonly | |
1270 | * mappings. The tradeoff is that copy_page_range is more efficient | |
1271 | * than faulting. | |
1272 | */ | |
1273 | return false; | |
1274 | } | |
1275 | ||
c78f4636 PX |
1276 | int |
1277 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1da177e4 LT |
1278 | { |
1279 | pgd_t *src_pgd, *dst_pgd; | |
1280 | unsigned long next; | |
c78f4636 PX |
1281 | unsigned long addr = src_vma->vm_start; |
1282 | unsigned long end = src_vma->vm_end; | |
1283 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1284 | struct mm_struct *src_mm = src_vma->vm_mm; | |
ac46d4f3 | 1285 | struct mmu_notifier_range range; |
2ec74c3e | 1286 | bool is_cow; |
cddb8a5c | 1287 | int ret; |
1da177e4 | 1288 | |
c56d1b62 | 1289 | if (!vma_needs_copy(dst_vma, src_vma)) |
0661a336 | 1290 | return 0; |
d992895b | 1291 | |
c78f4636 | 1292 | if (is_vm_hugetlb_page(src_vma)) |
bc70fbf2 | 1293 | return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); |
1da177e4 | 1294 | |
c78f4636 | 1295 | if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1296 | /* |
1297 | * We do not free on error cases below as remove_vma | |
1298 | * gets called on error from higher level routine | |
1299 | */ | |
c78f4636 | 1300 | ret = track_pfn_copy(src_vma); |
2ab64037 | 1301 | if (ret) |
1302 | return ret; | |
1303 | } | |
1304 | ||
cddb8a5c AA |
1305 | /* |
1306 | * We need to invalidate the secondary MMU mappings only when | |
1307 | * there could be a permission downgrade on the ptes of the | |
1308 | * parent mm. And a permission downgrade will only happen if | |
1309 | * is_cow_mapping() returns true. | |
1310 | */ | |
c78f4636 | 1311 | is_cow = is_cow_mapping(src_vma->vm_flags); |
ac46d4f3 JG |
1312 | |
1313 | if (is_cow) { | |
7269f999 | 1314 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
7d4a8be0 | 1315 | 0, src_mm, addr, end); |
ac46d4f3 | 1316 | mmu_notifier_invalidate_range_start(&range); |
57efa1fe JG |
1317 | /* |
1318 | * Disabling preemption is not needed for the write side, as | |
1319 | * the read side doesn't spin, but goes to the mmap_lock. | |
1320 | * | |
1321 | * Use the raw variant of the seqcount_t write API to avoid | |
1322 | * lockdep complaining about preemptibility. | |
1323 | */ | |
e727bfd5 | 1324 | vma_assert_write_locked(src_vma); |
57efa1fe | 1325 | raw_write_seqcount_begin(&src_mm->write_protect_seq); |
ac46d4f3 | 1326 | } |
cddb8a5c AA |
1327 | |
1328 | ret = 0; | |
1da177e4 LT |
1329 | dst_pgd = pgd_offset(dst_mm, addr); |
1330 | src_pgd = pgd_offset(src_mm, addr); | |
1331 | do { | |
1332 | next = pgd_addr_end(addr, end); | |
1333 | if (pgd_none_or_clear_bad(src_pgd)) | |
1334 | continue; | |
c78f4636 PX |
1335 | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, |
1336 | addr, next))) { | |
d155df53 | 1337 | untrack_pfn_clear(dst_vma); |
cddb8a5c AA |
1338 | ret = -ENOMEM; |
1339 | break; | |
1340 | } | |
1da177e4 | 1341 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1342 | |
57efa1fe JG |
1343 | if (is_cow) { |
1344 | raw_write_seqcount_end(&src_mm->write_protect_seq); | |
ac46d4f3 | 1345 | mmu_notifier_invalidate_range_end(&range); |
57efa1fe | 1346 | } |
cddb8a5c | 1347 | return ret; |
1da177e4 LT |
1348 | } |
1349 | ||
5abfd71d PX |
1350 | /* Whether we should zap all COWed (private) pages too */ |
1351 | static inline bool should_zap_cows(struct zap_details *details) | |
1352 | { | |
1353 | /* By default, zap all pages */ | |
1354 | if (!details) | |
1355 | return true; | |
1356 | ||
1357 | /* Or, we zap COWed pages only if the caller wants to */ | |
2e148f1e | 1358 | return details->even_cows; |
5abfd71d PX |
1359 | } |
1360 | ||
2e148f1e | 1361 | /* Decides whether we should zap this page with the page pointer specified */ |
254ab940 | 1362 | static inline bool should_zap_page(struct zap_details *details, struct page *page) |
3506659e | 1363 | { |
5abfd71d PX |
1364 | /* If we can make a decision without *page.. */ |
1365 | if (should_zap_cows(details)) | |
254ab940 | 1366 | return true; |
5abfd71d PX |
1367 | |
1368 | /* E.g. the caller passes NULL for the case of a zero page */ | |
1369 | if (!page) | |
254ab940 | 1370 | return true; |
3506659e | 1371 | |
2e148f1e PX |
1372 | /* Otherwise we should only zap non-anon pages */ |
1373 | return !PageAnon(page); | |
3506659e MWO |
1374 | } |
1375 | ||
999dad82 PX |
1376 | static inline bool zap_drop_file_uffd_wp(struct zap_details *details) |
1377 | { | |
1378 | if (!details) | |
1379 | return false; | |
1380 | ||
1381 | return details->zap_flags & ZAP_FLAG_DROP_MARKER; | |
1382 | } | |
1383 | ||
1384 | /* | |
1385 | * This function makes sure that we'll replace the none pte with an uffd-wp | |
1386 | * swap special pte marker when necessary. Must be with the pgtable lock held. | |
1387 | */ | |
1388 | static inline void | |
1389 | zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, | |
1390 | unsigned long addr, pte_t *pte, | |
1391 | struct zap_details *details, pte_t pteval) | |
1392 | { | |
2bad466c PX |
1393 | /* Zap on anonymous always means dropping everything */ |
1394 | if (vma_is_anonymous(vma)) | |
1395 | return; | |
1396 | ||
999dad82 PX |
1397 | if (zap_drop_file_uffd_wp(details)) |
1398 | return; | |
1399 | ||
1400 | pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); | |
1401 | } | |
1402 | ||
51c6f666 | 1403 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1404 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1405 | unsigned long addr, unsigned long end, |
97a89413 | 1406 | struct zap_details *details) |
1da177e4 | 1407 | { |
b5810039 | 1408 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1409 | int force_flush = 0; |
d559db08 | 1410 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1411 | spinlock_t *ptl; |
5f1a1907 | 1412 | pte_t *start_pte; |
97a89413 | 1413 | pte_t *pte; |
8a5f14a2 | 1414 | swp_entry_t entry; |
d559db08 | 1415 | |
ed6a7935 | 1416 | tlb_change_page_size(tlb, PAGE_SIZE); |
e303297e | 1417 | init_rss_vec(rss); |
3db82b93 HD |
1418 | start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1419 | if (!pte) | |
1420 | return addr; | |
1421 | ||
3ea27719 | 1422 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1423 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 1424 | do { |
c33c7948 | 1425 | pte_t ptent = ptep_get(pte); |
8018db85 PX |
1426 | struct page *page; |
1427 | ||
166f61b9 | 1428 | if (pte_none(ptent)) |
1da177e4 | 1429 | continue; |
6f5e6b9e | 1430 | |
7b167b68 MK |
1431 | if (need_resched()) |
1432 | break; | |
1433 | ||
1da177e4 | 1434 | if (pte_present(ptent)) { |
5df397de LT |
1435 | unsigned int delay_rmap; |
1436 | ||
25b2995a | 1437 | page = vm_normal_page(vma, addr, ptent); |
254ab940 | 1438 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1439 | continue; |
b5810039 | 1440 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1441 | tlb->fullmm); |
e5136e87 | 1442 | arch_check_zapped_pte(vma, ptent); |
1da177e4 | 1443 | tlb_remove_tlb_entry(tlb, pte, addr); |
999dad82 PX |
1444 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, |
1445 | ptent); | |
e2942062 | 1446 | if (unlikely(!page)) { |
6080d19f | 1447 | ksm_might_unmap_zero_page(mm, ptent); |
1da177e4 | 1448 | continue; |
e2942062 | 1449 | } |
eca56ff9 | 1450 | |
5df397de | 1451 | delay_rmap = 0; |
eca56ff9 | 1452 | if (!PageAnon(page)) { |
1cf35d47 | 1453 | if (pte_dirty(ptent)) { |
6237bcd9 | 1454 | set_page_dirty(page); |
5df397de LT |
1455 | if (tlb_delay_rmap(tlb)) { |
1456 | delay_rmap = 1; | |
1457 | force_flush = 1; | |
1458 | } | |
1cf35d47 | 1459 | } |
8788f678 | 1460 | if (pte_young(ptent) && likely(vma_has_recency(vma))) |
bf3f3bc5 | 1461 | mark_page_accessed(page); |
6237bcd9 | 1462 | } |
eca56ff9 | 1463 | rss[mm_counter(page)]--; |
5df397de LT |
1464 | if (!delay_rmap) { |
1465 | page_remove_rmap(page, vma, false); | |
1466 | if (unlikely(page_mapcount(page) < 0)) | |
1467 | print_bad_pte(vma, addr, ptent, page); | |
1468 | } | |
1469 | if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { | |
1cf35d47 | 1470 | force_flush = 1; |
ce9ec37b | 1471 | addr += PAGE_SIZE; |
d16dfc55 | 1472 | break; |
1cf35d47 | 1473 | } |
1da177e4 LT |
1474 | continue; |
1475 | } | |
5042db43 JG |
1476 | |
1477 | entry = pte_to_swp_entry(ptent); | |
b756a3b5 AP |
1478 | if (is_device_private_entry(entry) || |
1479 | is_device_exclusive_entry(entry)) { | |
8018db85 | 1480 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1481 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1482 | continue; |
999dad82 PX |
1483 | /* |
1484 | * Both device private/exclusive mappings should only | |
1485 | * work with anonymous page so far, so we don't need to | |
1486 | * consider uffd-wp bit when zap. For more information, | |
1487 | * see zap_install_uffd_wp_if_needed(). | |
1488 | */ | |
1489 | WARN_ON_ONCE(!vma_is_anonymous(vma)); | |
5042db43 | 1490 | rss[mm_counter(page)]--; |
b756a3b5 | 1491 | if (is_device_private_entry(entry)) |
cea86fe2 | 1492 | page_remove_rmap(page, vma, false); |
5042db43 | 1493 | put_page(page); |
8018db85 | 1494 | } else if (!non_swap_entry(entry)) { |
5abfd71d PX |
1495 | /* Genuine swap entry, hence a private anon page */ |
1496 | if (!should_zap_cows(details)) | |
1497 | continue; | |
8a5f14a2 | 1498 | rss[MM_SWAPENTS]--; |
8018db85 PX |
1499 | if (unlikely(!free_swap_and_cache(entry))) |
1500 | print_bad_pte(vma, addr, ptent, NULL); | |
5abfd71d | 1501 | } else if (is_migration_entry(entry)) { |
af5cdaf8 | 1502 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1503 | if (!should_zap_page(details, page)) |
5abfd71d | 1504 | continue; |
eca56ff9 | 1505 | rss[mm_counter(page)]--; |
999dad82 | 1506 | } else if (pte_marker_entry_uffd_wp(entry)) { |
2bad466c PX |
1507 | /* |
1508 | * For anon: always drop the marker; for file: only | |
1509 | * drop the marker if explicitly requested. | |
1510 | */ | |
1511 | if (!vma_is_anonymous(vma) && | |
1512 | !zap_drop_file_uffd_wp(details)) | |
999dad82 | 1513 | continue; |
9f186f9e | 1514 | } else if (is_hwpoison_entry(entry) || |
af19487f | 1515 | is_poisoned_swp_entry(entry)) { |
5abfd71d PX |
1516 | if (!should_zap_cows(details)) |
1517 | continue; | |
1518 | } else { | |
1519 | /* We should have covered all the swap entry types */ | |
727d16f1 | 1520 | pr_alert("unrecognized swap entry 0x%lx\n", entry.val); |
5abfd71d | 1521 | WARN_ON_ONCE(1); |
b084d435 | 1522 | } |
9888a1ca | 1523 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
999dad82 | 1524 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); |
97a89413 | 1525 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1526 | |
d559db08 | 1527 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1528 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1529 | |
1cf35d47 | 1530 | /* Do the actual TLB flush before dropping ptl */ |
5df397de | 1531 | if (force_flush) { |
1cf35d47 | 1532 | tlb_flush_mmu_tlbonly(tlb); |
f036c818 | 1533 | tlb_flush_rmaps(tlb, vma); |
5df397de | 1534 | } |
1cf35d47 LT |
1535 | pte_unmap_unlock(start_pte, ptl); |
1536 | ||
1537 | /* | |
1538 | * If we forced a TLB flush (either due to running out of | |
1539 | * batch buffers or because we needed to flush dirty TLB | |
1540 | * entries before releasing the ptl), free the batched | |
3db82b93 | 1541 | * memory too. Come back again if we didn't do everything. |
1cf35d47 | 1542 | */ |
3db82b93 | 1543 | if (force_flush) |
fa0aafb8 | 1544 | tlb_flush_mmu(tlb); |
d16dfc55 | 1545 | |
51c6f666 | 1546 | return addr; |
1da177e4 LT |
1547 | } |
1548 | ||
51c6f666 | 1549 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1550 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1551 | unsigned long addr, unsigned long end, |
97a89413 | 1552 | struct zap_details *details) |
1da177e4 LT |
1553 | { |
1554 | pmd_t *pmd; | |
1555 | unsigned long next; | |
1556 | ||
1557 | pmd = pmd_offset(pud, addr); | |
1558 | do { | |
1559 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1560 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1561 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1562 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
3db82b93 HD |
1563 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) { |
1564 | addr = next; | |
1565 | continue; | |
1566 | } | |
71e3aac0 | 1567 | /* fall through */ |
3506659e MWO |
1568 | } else if (details && details->single_folio && |
1569 | folio_test_pmd_mappable(details->single_folio) && | |
22061a1f HD |
1570 | next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { |
1571 | spinlock_t *ptl = pmd_lock(tlb->mm, pmd); | |
1572 | /* | |
1573 | * Take and drop THP pmd lock so that we cannot return | |
1574 | * prematurely, while zap_huge_pmd() has cleared *pmd, | |
1575 | * but not yet decremented compound_mapcount(). | |
1576 | */ | |
1577 | spin_unlock(ptl); | |
71e3aac0 | 1578 | } |
3db82b93 HD |
1579 | if (pmd_none(*pmd)) { |
1580 | addr = next; | |
1581 | continue; | |
1582 | } | |
1583 | addr = zap_pte_range(tlb, vma, pmd, addr, next, details); | |
1584 | if (addr != next) | |
1585 | pmd--; | |
1586 | } while (pmd++, cond_resched(), addr != end); | |
51c6f666 RH |
1587 | |
1588 | return addr; | |
1da177e4 LT |
1589 | } |
1590 | ||
51c6f666 | 1591 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1592 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1593 | unsigned long addr, unsigned long end, |
97a89413 | 1594 | struct zap_details *details) |
1da177e4 LT |
1595 | { |
1596 | pud_t *pud; | |
1597 | unsigned long next; | |
1598 | ||
c2febafc | 1599 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1600 | do { |
1601 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1602 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1603 | if (next - addr != HPAGE_PUD_SIZE) { | |
42fc5414 | 1604 | mmap_assert_locked(tlb->mm); |
a00cc7d9 MW |
1605 | split_huge_pud(vma, pud, addr); |
1606 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1607 | goto next; | |
1608 | /* fall through */ | |
1609 | } | |
97a89413 | 1610 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1611 | continue; |
97a89413 | 1612 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1613 | next: |
1614 | cond_resched(); | |
97a89413 | 1615 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1616 | |
1617 | return addr; | |
1da177e4 LT |
1618 | } |
1619 | ||
c2febafc KS |
1620 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1621 | struct vm_area_struct *vma, pgd_t *pgd, | |
1622 | unsigned long addr, unsigned long end, | |
1623 | struct zap_details *details) | |
1624 | { | |
1625 | p4d_t *p4d; | |
1626 | unsigned long next; | |
1627 | ||
1628 | p4d = p4d_offset(pgd, addr); | |
1629 | do { | |
1630 | next = p4d_addr_end(addr, end); | |
1631 | if (p4d_none_or_clear_bad(p4d)) | |
1632 | continue; | |
1633 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1634 | } while (p4d++, addr = next, addr != end); | |
1635 | ||
1636 | return addr; | |
1637 | } | |
1638 | ||
aac45363 | 1639 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1640 | struct vm_area_struct *vma, |
1641 | unsigned long addr, unsigned long end, | |
1642 | struct zap_details *details) | |
1da177e4 LT |
1643 | { |
1644 | pgd_t *pgd; | |
1645 | unsigned long next; | |
1646 | ||
1da177e4 LT |
1647 | BUG_ON(addr >= end); |
1648 | tlb_start_vma(tlb, vma); | |
1649 | pgd = pgd_offset(vma->vm_mm, addr); | |
1650 | do { | |
1651 | next = pgd_addr_end(addr, end); | |
97a89413 | 1652 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1653 | continue; |
c2febafc | 1654 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1655 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1656 | tlb_end_vma(tlb, vma); |
1657 | } | |
51c6f666 | 1658 | |
f5cc4eef AV |
1659 | |
1660 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1661 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1662 | unsigned long end_addr, |
68f48381 | 1663 | struct zap_details *details, bool mm_wr_locked) |
f5cc4eef AV |
1664 | { |
1665 | unsigned long start = max(vma->vm_start, start_addr); | |
1666 | unsigned long end; | |
1667 | ||
1668 | if (start >= vma->vm_end) | |
1669 | return; | |
1670 | end = min(vma->vm_end, end_addr); | |
1671 | if (end <= vma->vm_start) | |
1672 | return; | |
1673 | ||
cbc91f71 SD |
1674 | if (vma->vm_file) |
1675 | uprobe_munmap(vma, start, end); | |
1676 | ||
b3b9c293 | 1677 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
68f48381 | 1678 | untrack_pfn(vma, 0, 0, mm_wr_locked); |
f5cc4eef AV |
1679 | |
1680 | if (start != end) { | |
1681 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1682 | /* | |
1683 | * It is undesirable to test vma->vm_file as it | |
1684 | * should be non-null for valid hugetlb area. | |
1685 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1686 | * cleanup path of mmap_region. When |
f5cc4eef | 1687 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1688 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1689 | * before calling this function to clean up. |
1690 | * Since no pte has actually been setup, it is | |
1691 | * safe to do nothing in this case. | |
1692 | */ | |
24669e58 | 1693 | if (vma->vm_file) { |
05e90bd0 PX |
1694 | zap_flags_t zap_flags = details ? |
1695 | details->zap_flags : 0; | |
2820b0f0 | 1696 | __unmap_hugepage_range(tlb, vma, start, end, |
05e90bd0 | 1697 | NULL, zap_flags); |
24669e58 | 1698 | } |
f5cc4eef AV |
1699 | } else |
1700 | unmap_page_range(tlb, vma, start, end, details); | |
1701 | } | |
1da177e4 LT |
1702 | } |
1703 | ||
1da177e4 LT |
1704 | /** |
1705 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1706 | * @tlb: address of the caller's struct mmu_gather |
6e412203 | 1707 | * @mas: the maple state |
1da177e4 LT |
1708 | * @vma: the starting vma |
1709 | * @start_addr: virtual address at which to start unmapping | |
1710 | * @end_addr: virtual address at which to end unmapping | |
6e412203 | 1711 | * @tree_end: The maximum index to check |
809ef83c | 1712 | * @mm_wr_locked: lock flag |
1da177e4 | 1713 | * |
508034a3 | 1714 | * Unmap all pages in the vma list. |
1da177e4 | 1715 | * |
1da177e4 LT |
1716 | * Only addresses between `start' and `end' will be unmapped. |
1717 | * | |
1718 | * The VMA list must be sorted in ascending virtual address order. | |
1719 | * | |
1720 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1721 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1722 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1723 | * drops the lock and schedules. | |
1724 | */ | |
fd892593 | 1725 | void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, |
1da177e4 | 1726 | struct vm_area_struct *vma, unsigned long start_addr, |
fd892593 LH |
1727 | unsigned long end_addr, unsigned long tree_end, |
1728 | bool mm_wr_locked) | |
1da177e4 | 1729 | { |
ac46d4f3 | 1730 | struct mmu_notifier_range range; |
999dad82 | 1731 | struct zap_details details = { |
04ada095 | 1732 | .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, |
999dad82 PX |
1733 | /* Careful - we need to zap private pages too! */ |
1734 | .even_cows = true, | |
1735 | }; | |
1da177e4 | 1736 | |
7d4a8be0 | 1737 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, |
6f4f13e8 | 1738 | start_addr, end_addr); |
ac46d4f3 | 1739 | mmu_notifier_invalidate_range_start(&range); |
763ecb03 | 1740 | do { |
2820b0f0 RR |
1741 | unsigned long start = start_addr; |
1742 | unsigned long end = end_addr; | |
1743 | hugetlb_zap_begin(vma, &start, &end); | |
1744 | unmap_single_vma(tlb, vma, start, end, &details, | |
68f48381 | 1745 | mm_wr_locked); |
2820b0f0 | 1746 | hugetlb_zap_end(vma, &details); |
fd892593 | 1747 | } while ((vma = mas_find(mas, tree_end - 1)) != NULL); |
ac46d4f3 | 1748 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1749 | } |
1750 | ||
f5cc4eef AV |
1751 | /** |
1752 | * zap_page_range_single - remove user pages in a given range | |
1753 | * @vma: vm_area_struct holding the applicable pages | |
1754 | * @address: starting address of pages to zap | |
1755 | * @size: number of bytes to zap | |
8a5f14a2 | 1756 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1757 | * |
1758 | * The range must fit into one VMA. | |
1da177e4 | 1759 | */ |
21b85b09 | 1760 | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1761 | unsigned long size, struct zap_details *details) |
1762 | { | |
21b85b09 | 1763 | const unsigned long end = address + size; |
ac46d4f3 | 1764 | struct mmu_notifier_range range; |
d16dfc55 | 1765 | struct mmu_gather tlb; |
1da177e4 | 1766 | |
1da177e4 | 1767 | lru_add_drain(); |
7d4a8be0 | 1768 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
21b85b09 | 1769 | address, end); |
2820b0f0 | 1770 | hugetlb_zap_begin(vma, &range.start, &range.end); |
a72afd87 | 1771 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1772 | update_hiwater_rss(vma->vm_mm); |
1773 | mmu_notifier_invalidate_range_start(&range); | |
21b85b09 MK |
1774 | /* |
1775 | * unmap 'address-end' not 'range.start-range.end' as range | |
1776 | * could have been expanded for hugetlb pmd sharing. | |
1777 | */ | |
68f48381 | 1778 | unmap_single_vma(&tlb, vma, address, end, details, false); |
ac46d4f3 | 1779 | mmu_notifier_invalidate_range_end(&range); |
ae8eba8b | 1780 | tlb_finish_mmu(&tlb); |
2820b0f0 | 1781 | hugetlb_zap_end(vma, details); |
1da177e4 LT |
1782 | } |
1783 | ||
c627f9cc JS |
1784 | /** |
1785 | * zap_vma_ptes - remove ptes mapping the vma | |
1786 | * @vma: vm_area_struct holding ptes to be zapped | |
1787 | * @address: starting address of pages to zap | |
1788 | * @size: number of bytes to zap | |
1789 | * | |
1790 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1791 | * | |
1792 | * The entire address range must be fully contained within the vma. | |
1793 | * | |
c627f9cc | 1794 | */ |
27d036e3 | 1795 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1796 | unsigned long size) |
1797 | { | |
88a35912 | 1798 | if (!range_in_vma(vma, address, address + size) || |
c627f9cc | 1799 | !(vma->vm_flags & VM_PFNMAP)) |
27d036e3 LR |
1800 | return; |
1801 | ||
f5cc4eef | 1802 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1803 | } |
1804 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1805 | ||
8cd3984d | 1806 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) |
c9cfcddf | 1807 | { |
c2febafc KS |
1808 | pgd_t *pgd; |
1809 | p4d_t *p4d; | |
1810 | pud_t *pud; | |
1811 | pmd_t *pmd; | |
1812 | ||
1813 | pgd = pgd_offset(mm, addr); | |
1814 | p4d = p4d_alloc(mm, pgd, addr); | |
1815 | if (!p4d) | |
1816 | return NULL; | |
1817 | pud = pud_alloc(mm, p4d, addr); | |
1818 | if (!pud) | |
1819 | return NULL; | |
1820 | pmd = pmd_alloc(mm, pud, addr); | |
1821 | if (!pmd) | |
1822 | return NULL; | |
1823 | ||
1824 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
8cd3984d AR |
1825 | return pmd; |
1826 | } | |
1827 | ||
1828 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
1829 | spinlock_t **ptl) | |
1830 | { | |
1831 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
1832 | ||
1833 | if (!pmd) | |
1834 | return NULL; | |
c2febafc | 1835 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
c9cfcddf LT |
1836 | } |
1837 | ||
8efd6f5b AR |
1838 | static int validate_page_before_insert(struct page *page) |
1839 | { | |
1840 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | |
1841 | return -EINVAL; | |
1842 | flush_dcache_page(page); | |
1843 | return 0; | |
1844 | } | |
1845 | ||
cea86fe2 | 1846 | static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, |
8efd6f5b AR |
1847 | unsigned long addr, struct page *page, pgprot_t prot) |
1848 | { | |
c33c7948 | 1849 | if (!pte_none(ptep_get(pte))) |
8efd6f5b AR |
1850 | return -EBUSY; |
1851 | /* Ok, finally just insert the thing.. */ | |
1852 | get_page(page); | |
f1a79412 | 1853 | inc_mm_counter(vma->vm_mm, mm_counter_file(page)); |
cea86fe2 HD |
1854 | page_add_file_rmap(page, vma, false); |
1855 | set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); | |
8efd6f5b AR |
1856 | return 0; |
1857 | } | |
1858 | ||
238f58d8 LT |
1859 | /* |
1860 | * This is the old fallback for page remapping. | |
1861 | * | |
1862 | * For historical reasons, it only allows reserved pages. Only | |
1863 | * old drivers should use this, and they needed to mark their | |
1864 | * pages reserved for the old functions anyway. | |
1865 | */ | |
423bad60 NP |
1866 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1867 | struct page *page, pgprot_t prot) | |
238f58d8 LT |
1868 | { |
1869 | int retval; | |
c9cfcddf | 1870 | pte_t *pte; |
8a9f3ccd BS |
1871 | spinlock_t *ptl; |
1872 | ||
8efd6f5b AR |
1873 | retval = validate_page_before_insert(page); |
1874 | if (retval) | |
5b4e655e | 1875 | goto out; |
238f58d8 | 1876 | retval = -ENOMEM; |
cea86fe2 | 1877 | pte = get_locked_pte(vma->vm_mm, addr, &ptl); |
238f58d8 | 1878 | if (!pte) |
5b4e655e | 1879 | goto out; |
cea86fe2 | 1880 | retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); |
238f58d8 LT |
1881 | pte_unmap_unlock(pte, ptl); |
1882 | out: | |
1883 | return retval; | |
1884 | } | |
1885 | ||
cea86fe2 | 1886 | static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, |
8cd3984d AR |
1887 | unsigned long addr, struct page *page, pgprot_t prot) |
1888 | { | |
1889 | int err; | |
1890 | ||
1891 | if (!page_count(page)) | |
1892 | return -EINVAL; | |
1893 | err = validate_page_before_insert(page); | |
7f70c2a6 AR |
1894 | if (err) |
1895 | return err; | |
cea86fe2 | 1896 | return insert_page_into_pte_locked(vma, pte, addr, page, prot); |
8cd3984d AR |
1897 | } |
1898 | ||
1899 | /* insert_pages() amortizes the cost of spinlock operations | |
bb7dbaaf | 1900 | * when inserting pages in a loop. |
8cd3984d AR |
1901 | */ |
1902 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1903 | struct page **pages, unsigned long *num, pgprot_t prot) | |
1904 | { | |
1905 | pmd_t *pmd = NULL; | |
7f70c2a6 AR |
1906 | pte_t *start_pte, *pte; |
1907 | spinlock_t *pte_lock; | |
8cd3984d AR |
1908 | struct mm_struct *const mm = vma->vm_mm; |
1909 | unsigned long curr_page_idx = 0; | |
1910 | unsigned long remaining_pages_total = *num; | |
1911 | unsigned long pages_to_write_in_pmd; | |
1912 | int ret; | |
1913 | more: | |
1914 | ret = -EFAULT; | |
1915 | pmd = walk_to_pmd(mm, addr); | |
1916 | if (!pmd) | |
1917 | goto out; | |
1918 | ||
1919 | pages_to_write_in_pmd = min_t(unsigned long, | |
1920 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
1921 | ||
1922 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
1923 | ret = -ENOMEM; | |
1924 | if (pte_alloc(mm, pmd)) | |
1925 | goto out; | |
8cd3984d AR |
1926 | |
1927 | while (pages_to_write_in_pmd) { | |
1928 | int pte_idx = 0; | |
1929 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
1930 | ||
7f70c2a6 | 1931 | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); |
3db82b93 HD |
1932 | if (!start_pte) { |
1933 | ret = -EFAULT; | |
1934 | goto out; | |
1935 | } | |
7f70c2a6 | 1936 | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { |
cea86fe2 | 1937 | int err = insert_page_in_batch_locked(vma, pte, |
8cd3984d AR |
1938 | addr, pages[curr_page_idx], prot); |
1939 | if (unlikely(err)) { | |
7f70c2a6 | 1940 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1941 | ret = err; |
1942 | remaining_pages_total -= pte_idx; | |
1943 | goto out; | |
1944 | } | |
1945 | addr += PAGE_SIZE; | |
1946 | ++curr_page_idx; | |
1947 | } | |
7f70c2a6 | 1948 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1949 | pages_to_write_in_pmd -= batch_size; |
1950 | remaining_pages_total -= batch_size; | |
1951 | } | |
1952 | if (remaining_pages_total) | |
1953 | goto more; | |
1954 | ret = 0; | |
1955 | out: | |
1956 | *num = remaining_pages_total; | |
1957 | return ret; | |
1958 | } | |
8cd3984d AR |
1959 | |
1960 | /** | |
1961 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
1962 | * @vma: user vma to map to | |
1963 | * @addr: target start user address of these pages | |
1964 | * @pages: source kernel pages | |
1965 | * @num: in: number of pages to map. out: number of pages that were *not* | |
1966 | * mapped. (0 means all pages were successfully mapped). | |
1967 | * | |
1968 | * Preferred over vm_insert_page() when inserting multiple pages. | |
1969 | * | |
1970 | * In case of error, we may have mapped a subset of the provided | |
1971 | * pages. It is the caller's responsibility to account for this case. | |
1972 | * | |
1973 | * The same restrictions apply as in vm_insert_page(). | |
1974 | */ | |
1975 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1976 | struct page **pages, unsigned long *num) | |
1977 | { | |
8cd3984d AR |
1978 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; |
1979 | ||
1980 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
1981 | return -EFAULT; | |
1982 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
d8ed45c5 | 1983 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
8cd3984d | 1984 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1c71222e | 1985 | vm_flags_set(vma, VM_MIXEDMAP); |
8cd3984d AR |
1986 | } |
1987 | /* Defer page refcount checking till we're about to map that page. */ | |
1988 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
8cd3984d AR |
1989 | } |
1990 | EXPORT_SYMBOL(vm_insert_pages); | |
1991 | ||
bfa5bf6d REB |
1992 | /** |
1993 | * vm_insert_page - insert single page into user vma | |
1994 | * @vma: user vma to map to | |
1995 | * @addr: target user address of this page | |
1996 | * @page: source kernel page | |
1997 | * | |
a145dd41 LT |
1998 | * This allows drivers to insert individual pages they've allocated |
1999 | * into a user vma. | |
2000 | * | |
2001 | * The page has to be a nice clean _individual_ kernel allocation. | |
2002 | * If you allocate a compound page, you need to have marked it as | |
2003 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 2004 | * (see split_page()). |
a145dd41 LT |
2005 | * |
2006 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
2007 | * took an arbitrary page protection parameter. This doesn't allow | |
2008 | * that. Your vma protection will have to be set up correctly, which | |
2009 | * means that if you want a shared writable mapping, you'd better | |
2010 | * ask for a shared writable mapping! | |
2011 | * | |
2012 | * The page does not need to be reserved. | |
4b6e1e37 KK |
2013 | * |
2014 | * Usually this function is called from f_op->mmap() handler | |
c1e8d7c6 | 2015 | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. |
4b6e1e37 KK |
2016 | * Caller must set VM_MIXEDMAP on vma if it wants to call this |
2017 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
2018 | * |
2019 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 2020 | */ |
423bad60 NP |
2021 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
2022 | struct page *page) | |
a145dd41 LT |
2023 | { |
2024 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2025 | return -EFAULT; | |
2026 | if (!page_count(page)) | |
2027 | return -EINVAL; | |
4b6e1e37 | 2028 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
d8ed45c5 | 2029 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
4b6e1e37 | 2030 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1c71222e | 2031 | vm_flags_set(vma, VM_MIXEDMAP); |
4b6e1e37 | 2032 | } |
423bad60 | 2033 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 2034 | } |
e3c3374f | 2035 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 2036 | |
a667d745 SJ |
2037 | /* |
2038 | * __vm_map_pages - maps range of kernel pages into user vma | |
2039 | * @vma: user vma to map to | |
2040 | * @pages: pointer to array of source kernel pages | |
2041 | * @num: number of pages in page array | |
2042 | * @offset: user's requested vm_pgoff | |
2043 | * | |
2044 | * This allows drivers to map range of kernel pages into a user vma. | |
2045 | * | |
2046 | * Return: 0 on success and error code otherwise. | |
2047 | */ | |
2048 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2049 | unsigned long num, unsigned long offset) | |
2050 | { | |
2051 | unsigned long count = vma_pages(vma); | |
2052 | unsigned long uaddr = vma->vm_start; | |
2053 | int ret, i; | |
2054 | ||
2055 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 2056 | if (offset >= num) |
a667d745 SJ |
2057 | return -ENXIO; |
2058 | ||
2059 | /* Fail if the user requested size exceeds available object size */ | |
2060 | if (count > num - offset) | |
2061 | return -ENXIO; | |
2062 | ||
2063 | for (i = 0; i < count; i++) { | |
2064 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
2065 | if (ret < 0) | |
2066 | return ret; | |
2067 | uaddr += PAGE_SIZE; | |
2068 | } | |
2069 | ||
2070 | return 0; | |
2071 | } | |
2072 | ||
2073 | /** | |
2074 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
2075 | * @vma: user vma to map to | |
2076 | * @pages: pointer to array of source kernel pages | |
2077 | * @num: number of pages in page array | |
2078 | * | |
2079 | * Maps an object consisting of @num pages, catering for the user's | |
2080 | * requested vm_pgoff | |
2081 | * | |
2082 | * If we fail to insert any page into the vma, the function will return | |
2083 | * immediately leaving any previously inserted pages present. Callers | |
2084 | * from the mmap handler may immediately return the error as their caller | |
2085 | * will destroy the vma, removing any successfully inserted pages. Other | |
2086 | * callers should make their own arrangements for calling unmap_region(). | |
2087 | * | |
2088 | * Context: Process context. Called by mmap handlers. | |
2089 | * Return: 0 on success and error code otherwise. | |
2090 | */ | |
2091 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2092 | unsigned long num) | |
2093 | { | |
2094 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
2095 | } | |
2096 | EXPORT_SYMBOL(vm_map_pages); | |
2097 | ||
2098 | /** | |
2099 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
2100 | * @vma: user vma to map to | |
2101 | * @pages: pointer to array of source kernel pages | |
2102 | * @num: number of pages in page array | |
2103 | * | |
2104 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
2105 | * to 0. This function is intended for the drivers that did not consider | |
2106 | * vm_pgoff. | |
2107 | * | |
2108 | * Context: Process context. Called by mmap handlers. | |
2109 | * Return: 0 on success and error code otherwise. | |
2110 | */ | |
2111 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
2112 | unsigned long num) | |
2113 | { | |
2114 | return __vm_map_pages(vma, pages, num, 0); | |
2115 | } | |
2116 | EXPORT_SYMBOL(vm_map_pages_zero); | |
2117 | ||
9b5a8e00 | 2118 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 2119 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
2120 | { |
2121 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
2122 | pte_t *pte, entry; |
2123 | spinlock_t *ptl; | |
2124 | ||
423bad60 NP |
2125 | pte = get_locked_pte(mm, addr, &ptl); |
2126 | if (!pte) | |
9b5a8e00 | 2127 | return VM_FAULT_OOM; |
c33c7948 RR |
2128 | entry = ptep_get(pte); |
2129 | if (!pte_none(entry)) { | |
b2770da6 RZ |
2130 | if (mkwrite) { |
2131 | /* | |
2132 | * For read faults on private mappings the PFN passed | |
2133 | * in may not match the PFN we have mapped if the | |
2134 | * mapped PFN is a writeable COW page. In the mkwrite | |
2135 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
2136 | * mapping and we expect the PFNs to match. If they |
2137 | * don't match, we are likely racing with block | |
2138 | * allocation and mapping invalidation so just skip the | |
2139 | * update. | |
b2770da6 | 2140 | */ |
c33c7948 RR |
2141 | if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { |
2142 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); | |
b2770da6 | 2143 | goto out_unlock; |
f2c57d91 | 2144 | } |
c33c7948 | 2145 | entry = pte_mkyoung(entry); |
cae85cb8 JK |
2146 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2147 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
2148 | update_mmu_cache(vma, addr, pte); | |
2149 | } | |
2150 | goto out_unlock; | |
b2770da6 | 2151 | } |
423bad60 NP |
2152 | |
2153 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
2154 | if (pfn_t_devmap(pfn)) |
2155 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
2156 | else | |
2157 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 2158 | |
b2770da6 RZ |
2159 | if (mkwrite) { |
2160 | entry = pte_mkyoung(entry); | |
2161 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2162 | } | |
2163 | ||
423bad60 | 2164 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 2165 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 2166 | |
423bad60 NP |
2167 | out_unlock: |
2168 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 2169 | return VM_FAULT_NOPAGE; |
423bad60 NP |
2170 | } |
2171 | ||
f5e6d1d5 MW |
2172 | /** |
2173 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
2174 | * @vma: user vma to map to | |
2175 | * @addr: target user address of this page | |
2176 | * @pfn: source kernel pfn | |
2177 | * @pgprot: pgprot flags for the inserted page | |
2178 | * | |
a1a0aea5 | 2179 | * This is exactly like vmf_insert_pfn(), except that it allows drivers |
f5e6d1d5 MW |
2180 | * to override pgprot on a per-page basis. |
2181 | * | |
2182 | * This only makes sense for IO mappings, and it makes no sense for | |
2183 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 2184 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
2185 | * impractical. |
2186 | * | |
28d8b812 LS |
2187 | * pgprot typically only differs from @vma->vm_page_prot when drivers set |
2188 | * caching- and encryption bits different than those of @vma->vm_page_prot, | |
2189 | * because the caching- or encryption mode may not be known at mmap() time. | |
2190 | * | |
2191 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
2192 | * to set caching and encryption bits for those vmas (except for COW pages). | |
2193 | * This is ensured by core vm only modifying these page table entries using | |
2194 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
2195 | * if needed. (See for example mprotect()). | |
2196 | * | |
2197 | * Also when new page-table entries are created, this is only done using the | |
2198 | * fault() callback, and never using the value of vma->vm_page_prot, | |
2199 | * except for page-table entries that point to anonymous pages as the result | |
2200 | * of COW. | |
574c5b3d | 2201 | * |
ae2b01f3 | 2202 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
2203 | * Return: vm_fault_t value. |
2204 | */ | |
2205 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
2206 | unsigned long pfn, pgprot_t pgprot) | |
2207 | { | |
6d958546 MW |
2208 | /* |
2209 | * Technically, architectures with pte_special can avoid all these | |
2210 | * restrictions (same for remap_pfn_range). However we would like | |
2211 | * consistency in testing and feature parity among all, so we should | |
2212 | * try to keep these invariants in place for everybody. | |
2213 | */ | |
2214 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
2215 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
2216 | (VM_PFNMAP|VM_MIXEDMAP)); | |
2217 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
2218 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
2219 | ||
2220 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2221 | return VM_FAULT_SIGBUS; | |
2222 | ||
2223 | if (!pfn_modify_allowed(pfn, pgprot)) | |
2224 | return VM_FAULT_SIGBUS; | |
2225 | ||
2226 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
2227 | ||
9b5a8e00 | 2228 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 2229 | false); |
f5e6d1d5 MW |
2230 | } |
2231 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 2232 | |
ae2b01f3 MW |
2233 | /** |
2234 | * vmf_insert_pfn - insert single pfn into user vma | |
2235 | * @vma: user vma to map to | |
2236 | * @addr: target user address of this page | |
2237 | * @pfn: source kernel pfn | |
2238 | * | |
2239 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
2240 | * they've allocated into a user vma. Same comments apply. | |
2241 | * | |
2242 | * This function should only be called from a vm_ops->fault handler, and | |
2243 | * in that case the handler should return the result of this function. | |
2244 | * | |
2245 | * vma cannot be a COW mapping. | |
2246 | * | |
2247 | * As this is called only for pages that do not currently exist, we | |
2248 | * do not need to flush old virtual caches or the TLB. | |
2249 | * | |
2250 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2251 | * Return: vm_fault_t value. | |
2252 | */ | |
2253 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2254 | unsigned long pfn) | |
2255 | { | |
2256 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
2257 | } | |
2258 | EXPORT_SYMBOL(vmf_insert_pfn); | |
2259 | ||
785a3fab DW |
2260 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
2261 | { | |
2262 | /* these checks mirror the abort conditions in vm_normal_page */ | |
2263 | if (vma->vm_flags & VM_MIXEDMAP) | |
2264 | return true; | |
2265 | if (pfn_t_devmap(pfn)) | |
2266 | return true; | |
2267 | if (pfn_t_special(pfn)) | |
2268 | return true; | |
2269 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
2270 | return true; | |
2271 | return false; | |
2272 | } | |
2273 | ||
79f3aa5b | 2274 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
28d8b812 | 2275 | unsigned long addr, pfn_t pfn, bool mkwrite) |
423bad60 | 2276 | { |
28d8b812 | 2277 | pgprot_t pgprot = vma->vm_page_prot; |
79f3aa5b | 2278 | int err; |
87744ab3 | 2279 | |
785a3fab | 2280 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 2281 | |
423bad60 | 2282 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 2283 | return VM_FAULT_SIGBUS; |
308a047c BP |
2284 | |
2285 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 2286 | |
42e4089c | 2287 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 2288 | return VM_FAULT_SIGBUS; |
42e4089c | 2289 | |
423bad60 NP |
2290 | /* |
2291 | * If we don't have pte special, then we have to use the pfn_valid() | |
2292 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
2293 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
2294 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
2295 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 2296 | */ |
00b3a331 LD |
2297 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
2298 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
2299 | struct page *page; |
2300 | ||
03fc2da6 DW |
2301 | /* |
2302 | * At this point we are committed to insert_page() | |
2303 | * regardless of whether the caller specified flags that | |
2304 | * result in pfn_t_has_page() == false. | |
2305 | */ | |
2306 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
2307 | err = insert_page(vma, addr, page, pgprot); |
2308 | } else { | |
9b5a8e00 | 2309 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 2310 | } |
b2770da6 | 2311 | |
5d747637 MW |
2312 | if (err == -ENOMEM) |
2313 | return VM_FAULT_OOM; | |
2314 | if (err < 0 && err != -EBUSY) | |
2315 | return VM_FAULT_SIGBUS; | |
2316 | ||
2317 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 2318 | } |
79f3aa5b MW |
2319 | |
2320 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | |
2321 | pfn_t pfn) | |
2322 | { | |
28d8b812 | 2323 | return __vm_insert_mixed(vma, addr, pfn, false); |
79f3aa5b | 2324 | } |
5d747637 | 2325 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 2326 | |
ab77dab4 SJ |
2327 | /* |
2328 | * If the insertion of PTE failed because someone else already added a | |
2329 | * different entry in the mean time, we treat that as success as we assume | |
2330 | * the same entry was actually inserted. | |
2331 | */ | |
ab77dab4 SJ |
2332 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
2333 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 2334 | { |
28d8b812 | 2335 | return __vm_insert_mixed(vma, addr, pfn, true); |
b2770da6 | 2336 | } |
ab77dab4 | 2337 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 2338 | |
1da177e4 LT |
2339 | /* |
2340 | * maps a range of physical memory into the requested pages. the old | |
2341 | * mappings are removed. any references to nonexistent pages results | |
2342 | * in null mappings (currently treated as "copy-on-access") | |
2343 | */ | |
2344 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
2345 | unsigned long addr, unsigned long end, | |
2346 | unsigned long pfn, pgprot_t prot) | |
2347 | { | |
90a3e375 | 2348 | pte_t *pte, *mapped_pte; |
c74df32c | 2349 | spinlock_t *ptl; |
42e4089c | 2350 | int err = 0; |
1da177e4 | 2351 | |
90a3e375 | 2352 | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
2353 | if (!pte) |
2354 | return -ENOMEM; | |
6606c3e0 | 2355 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 2356 | do { |
c33c7948 | 2357 | BUG_ON(!pte_none(ptep_get(pte))); |
42e4089c AK |
2358 | if (!pfn_modify_allowed(pfn, prot)) { |
2359 | err = -EACCES; | |
2360 | break; | |
2361 | } | |
7e675137 | 2362 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
2363 | pfn++; |
2364 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 2365 | arch_leave_lazy_mmu_mode(); |
90a3e375 | 2366 | pte_unmap_unlock(mapped_pte, ptl); |
42e4089c | 2367 | return err; |
1da177e4 LT |
2368 | } |
2369 | ||
2370 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2371 | unsigned long addr, unsigned long end, | |
2372 | unsigned long pfn, pgprot_t prot) | |
2373 | { | |
2374 | pmd_t *pmd; | |
2375 | unsigned long next; | |
42e4089c | 2376 | int err; |
1da177e4 LT |
2377 | |
2378 | pfn -= addr >> PAGE_SHIFT; | |
2379 | pmd = pmd_alloc(mm, pud, addr); | |
2380 | if (!pmd) | |
2381 | return -ENOMEM; | |
f66055ab | 2382 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
2383 | do { |
2384 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
2385 | err = remap_pte_range(mm, pmd, addr, next, |
2386 | pfn + (addr >> PAGE_SHIFT), prot); | |
2387 | if (err) | |
2388 | return err; | |
1da177e4 LT |
2389 | } while (pmd++, addr = next, addr != end); |
2390 | return 0; | |
2391 | } | |
2392 | ||
c2febafc | 2393 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
2394 | unsigned long addr, unsigned long end, |
2395 | unsigned long pfn, pgprot_t prot) | |
2396 | { | |
2397 | pud_t *pud; | |
2398 | unsigned long next; | |
42e4089c | 2399 | int err; |
1da177e4 LT |
2400 | |
2401 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 2402 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
2403 | if (!pud) |
2404 | return -ENOMEM; | |
2405 | do { | |
2406 | next = pud_addr_end(addr, end); | |
42e4089c AK |
2407 | err = remap_pmd_range(mm, pud, addr, next, |
2408 | pfn + (addr >> PAGE_SHIFT), prot); | |
2409 | if (err) | |
2410 | return err; | |
1da177e4 LT |
2411 | } while (pud++, addr = next, addr != end); |
2412 | return 0; | |
2413 | } | |
2414 | ||
c2febafc KS |
2415 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2416 | unsigned long addr, unsigned long end, | |
2417 | unsigned long pfn, pgprot_t prot) | |
2418 | { | |
2419 | p4d_t *p4d; | |
2420 | unsigned long next; | |
42e4089c | 2421 | int err; |
c2febafc KS |
2422 | |
2423 | pfn -= addr >> PAGE_SHIFT; | |
2424 | p4d = p4d_alloc(mm, pgd, addr); | |
2425 | if (!p4d) | |
2426 | return -ENOMEM; | |
2427 | do { | |
2428 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
2429 | err = remap_pud_range(mm, p4d, addr, next, |
2430 | pfn + (addr >> PAGE_SHIFT), prot); | |
2431 | if (err) | |
2432 | return err; | |
c2febafc KS |
2433 | } while (p4d++, addr = next, addr != end); |
2434 | return 0; | |
2435 | } | |
2436 | ||
74ffa5a3 CH |
2437 | /* |
2438 | * Variant of remap_pfn_range that does not call track_pfn_remap. The caller | |
2439 | * must have pre-validated the caching bits of the pgprot_t. | |
bfa5bf6d | 2440 | */ |
74ffa5a3 CH |
2441 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
2442 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1da177e4 LT |
2443 | { |
2444 | pgd_t *pgd; | |
2445 | unsigned long next; | |
2d15cab8 | 2446 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
2447 | struct mm_struct *mm = vma->vm_mm; |
2448 | int err; | |
2449 | ||
0c4123e3 AZ |
2450 | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) |
2451 | return -EINVAL; | |
2452 | ||
1da177e4 LT |
2453 | /* |
2454 | * Physically remapped pages are special. Tell the | |
2455 | * rest of the world about it: | |
2456 | * VM_IO tells people not to look at these pages | |
2457 | * (accesses can have side effects). | |
6aab341e LT |
2458 | * VM_PFNMAP tells the core MM that the base pages are just |
2459 | * raw PFN mappings, and do not have a "struct page" associated | |
2460 | * with them. | |
314e51b9 KK |
2461 | * VM_DONTEXPAND |
2462 | * Disable vma merging and expanding with mremap(). | |
2463 | * VM_DONTDUMP | |
2464 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
2465 | * |
2466 | * There's a horrible special case to handle copy-on-write | |
2467 | * behaviour that some programs depend on. We mark the "original" | |
2468 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 2469 | * See vm_normal_page() for details. |
1da177e4 | 2470 | */ |
b3b9c293 KK |
2471 | if (is_cow_mapping(vma->vm_flags)) { |
2472 | if (addr != vma->vm_start || end != vma->vm_end) | |
2473 | return -EINVAL; | |
fb155c16 | 2474 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
2475 | } |
2476 | ||
1c71222e | 2477 | vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); |
1da177e4 LT |
2478 | |
2479 | BUG_ON(addr >= end); | |
2480 | pfn -= addr >> PAGE_SHIFT; | |
2481 | pgd = pgd_offset(mm, addr); | |
2482 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
2483 | do { |
2484 | next = pgd_addr_end(addr, end); | |
c2febafc | 2485 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
2486 | pfn + (addr >> PAGE_SHIFT), prot); |
2487 | if (err) | |
74ffa5a3 | 2488 | return err; |
1da177e4 | 2489 | } while (pgd++, addr = next, addr != end); |
2ab64037 | 2490 | |
74ffa5a3 CH |
2491 | return 0; |
2492 | } | |
2493 | ||
2494 | /** | |
2495 | * remap_pfn_range - remap kernel memory to userspace | |
2496 | * @vma: user vma to map to | |
2497 | * @addr: target page aligned user address to start at | |
2498 | * @pfn: page frame number of kernel physical memory address | |
2499 | * @size: size of mapping area | |
2500 | * @prot: page protection flags for this mapping | |
2501 | * | |
2502 | * Note: this is only safe if the mm semaphore is held when called. | |
2503 | * | |
2504 | * Return: %0 on success, negative error code otherwise. | |
2505 | */ | |
2506 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2507 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2508 | { | |
2509 | int err; | |
2510 | ||
2511 | err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); | |
2ab64037 | 2512 | if (err) |
74ffa5a3 | 2513 | return -EINVAL; |
2ab64037 | 2514 | |
74ffa5a3 CH |
2515 | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); |
2516 | if (err) | |
68f48381 | 2517 | untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); |
1da177e4 LT |
2518 | return err; |
2519 | } | |
2520 | EXPORT_SYMBOL(remap_pfn_range); | |
2521 | ||
b4cbb197 LT |
2522 | /** |
2523 | * vm_iomap_memory - remap memory to userspace | |
2524 | * @vma: user vma to map to | |
abd69b9e | 2525 | * @start: start of the physical memory to be mapped |
b4cbb197 LT |
2526 | * @len: size of area |
2527 | * | |
2528 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2529 | * driver just needs to give us the physical memory range to be mapped, | |
2530 | * we'll figure out the rest from the vma information. | |
2531 | * | |
2532 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2533 | * whatever write-combining details or similar. | |
a862f68a MR |
2534 | * |
2535 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
2536 | */ |
2537 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2538 | { | |
2539 | unsigned long vm_len, pfn, pages; | |
2540 | ||
2541 | /* Check that the physical memory area passed in looks valid */ | |
2542 | if (start + len < start) | |
2543 | return -EINVAL; | |
2544 | /* | |
2545 | * You *really* shouldn't map things that aren't page-aligned, | |
2546 | * but we've historically allowed it because IO memory might | |
2547 | * just have smaller alignment. | |
2548 | */ | |
2549 | len += start & ~PAGE_MASK; | |
2550 | pfn = start >> PAGE_SHIFT; | |
2551 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2552 | if (pfn + pages < pfn) | |
2553 | return -EINVAL; | |
2554 | ||
2555 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2556 | if (vma->vm_pgoff > pages) | |
2557 | return -EINVAL; | |
2558 | pfn += vma->vm_pgoff; | |
2559 | pages -= vma->vm_pgoff; | |
2560 | ||
2561 | /* Can we fit all of the mapping? */ | |
2562 | vm_len = vma->vm_end - vma->vm_start; | |
2563 | if (vm_len >> PAGE_SHIFT > pages) | |
2564 | return -EINVAL; | |
2565 | ||
2566 | /* Ok, let it rip */ | |
2567 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2568 | } | |
2569 | EXPORT_SYMBOL(vm_iomap_memory); | |
2570 | ||
aee16b3c JF |
2571 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2572 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2573 | pte_fn_t fn, void *data, bool create, |
2574 | pgtbl_mod_mask *mask) | |
aee16b3c | 2575 | { |
8abb50c7 | 2576 | pte_t *pte, *mapped_pte; |
be1db475 | 2577 | int err = 0; |
3f649ab7 | 2578 | spinlock_t *ptl; |
aee16b3c | 2579 | |
be1db475 | 2580 | if (create) { |
8abb50c7 | 2581 | mapped_pte = pte = (mm == &init_mm) ? |
e80d3909 | 2582 | pte_alloc_kernel_track(pmd, addr, mask) : |
be1db475 DA |
2583 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
2584 | if (!pte) | |
2585 | return -ENOMEM; | |
2586 | } else { | |
8abb50c7 | 2587 | mapped_pte = pte = (mm == &init_mm) ? |
be1db475 DA |
2588 | pte_offset_kernel(pmd, addr) : |
2589 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
3db82b93 HD |
2590 | if (!pte) |
2591 | return -EINVAL; | |
be1db475 | 2592 | } |
aee16b3c | 2593 | |
38e0edb1 JF |
2594 | arch_enter_lazy_mmu_mode(); |
2595 | ||
eeb4a05f CH |
2596 | if (fn) { |
2597 | do { | |
c33c7948 | 2598 | if (create || !pte_none(ptep_get(pte))) { |
eeb4a05f CH |
2599 | err = fn(pte++, addr, data); |
2600 | if (err) | |
2601 | break; | |
2602 | } | |
2603 | } while (addr += PAGE_SIZE, addr != end); | |
2604 | } | |
e80d3909 | 2605 | *mask |= PGTBL_PTE_MODIFIED; |
aee16b3c | 2606 | |
38e0edb1 JF |
2607 | arch_leave_lazy_mmu_mode(); |
2608 | ||
aee16b3c | 2609 | if (mm != &init_mm) |
8abb50c7 | 2610 | pte_unmap_unlock(mapped_pte, ptl); |
aee16b3c JF |
2611 | return err; |
2612 | } | |
2613 | ||
2614 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2615 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2616 | pte_fn_t fn, void *data, bool create, |
2617 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2618 | { |
2619 | pmd_t *pmd; | |
2620 | unsigned long next; | |
be1db475 | 2621 | int err = 0; |
aee16b3c | 2622 | |
ceb86879 AK |
2623 | BUG_ON(pud_huge(*pud)); |
2624 | ||
be1db475 | 2625 | if (create) { |
e80d3909 | 2626 | pmd = pmd_alloc_track(mm, pud, addr, mask); |
be1db475 DA |
2627 | if (!pmd) |
2628 | return -ENOMEM; | |
2629 | } else { | |
2630 | pmd = pmd_offset(pud, addr); | |
2631 | } | |
aee16b3c JF |
2632 | do { |
2633 | next = pmd_addr_end(addr, end); | |
0c95cba4 NP |
2634 | if (pmd_none(*pmd) && !create) |
2635 | continue; | |
2636 | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | |
2637 | return -EINVAL; | |
2638 | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | |
2639 | if (!create) | |
2640 | continue; | |
2641 | pmd_clear_bad(pmd); | |
be1db475 | 2642 | } |
0c95cba4 NP |
2643 | err = apply_to_pte_range(mm, pmd, addr, next, |
2644 | fn, data, create, mask); | |
2645 | if (err) | |
2646 | break; | |
aee16b3c | 2647 | } while (pmd++, addr = next, addr != end); |
0c95cba4 | 2648 | |
aee16b3c JF |
2649 | return err; |
2650 | } | |
2651 | ||
c2febafc | 2652 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c | 2653 | unsigned long addr, unsigned long end, |
e80d3909 JR |
2654 | pte_fn_t fn, void *data, bool create, |
2655 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2656 | { |
2657 | pud_t *pud; | |
2658 | unsigned long next; | |
be1db475 | 2659 | int err = 0; |
aee16b3c | 2660 | |
be1db475 | 2661 | if (create) { |
e80d3909 | 2662 | pud = pud_alloc_track(mm, p4d, addr, mask); |
be1db475 DA |
2663 | if (!pud) |
2664 | return -ENOMEM; | |
2665 | } else { | |
2666 | pud = pud_offset(p4d, addr); | |
2667 | } | |
aee16b3c JF |
2668 | do { |
2669 | next = pud_addr_end(addr, end); | |
0c95cba4 NP |
2670 | if (pud_none(*pud) && !create) |
2671 | continue; | |
2672 | if (WARN_ON_ONCE(pud_leaf(*pud))) | |
2673 | return -EINVAL; | |
2674 | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | |
2675 | if (!create) | |
2676 | continue; | |
2677 | pud_clear_bad(pud); | |
be1db475 | 2678 | } |
0c95cba4 NP |
2679 | err = apply_to_pmd_range(mm, pud, addr, next, |
2680 | fn, data, create, mask); | |
2681 | if (err) | |
2682 | break; | |
aee16b3c | 2683 | } while (pud++, addr = next, addr != end); |
0c95cba4 | 2684 | |
aee16b3c JF |
2685 | return err; |
2686 | } | |
2687 | ||
c2febafc KS |
2688 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2689 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2690 | pte_fn_t fn, void *data, bool create, |
2691 | pgtbl_mod_mask *mask) | |
c2febafc KS |
2692 | { |
2693 | p4d_t *p4d; | |
2694 | unsigned long next; | |
be1db475 | 2695 | int err = 0; |
c2febafc | 2696 | |
be1db475 | 2697 | if (create) { |
e80d3909 | 2698 | p4d = p4d_alloc_track(mm, pgd, addr, mask); |
be1db475 DA |
2699 | if (!p4d) |
2700 | return -ENOMEM; | |
2701 | } else { | |
2702 | p4d = p4d_offset(pgd, addr); | |
2703 | } | |
c2febafc KS |
2704 | do { |
2705 | next = p4d_addr_end(addr, end); | |
0c95cba4 NP |
2706 | if (p4d_none(*p4d) && !create) |
2707 | continue; | |
2708 | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | |
2709 | return -EINVAL; | |
2710 | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | |
2711 | if (!create) | |
2712 | continue; | |
2713 | p4d_clear_bad(p4d); | |
be1db475 | 2714 | } |
0c95cba4 NP |
2715 | err = apply_to_pud_range(mm, p4d, addr, next, |
2716 | fn, data, create, mask); | |
2717 | if (err) | |
2718 | break; | |
c2febafc | 2719 | } while (p4d++, addr = next, addr != end); |
0c95cba4 | 2720 | |
c2febafc KS |
2721 | return err; |
2722 | } | |
2723 | ||
be1db475 DA |
2724 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2725 | unsigned long size, pte_fn_t fn, | |
2726 | void *data, bool create) | |
aee16b3c JF |
2727 | { |
2728 | pgd_t *pgd; | |
e80d3909 | 2729 | unsigned long start = addr, next; |
57250a5b | 2730 | unsigned long end = addr + size; |
e80d3909 | 2731 | pgtbl_mod_mask mask = 0; |
be1db475 | 2732 | int err = 0; |
aee16b3c | 2733 | |
9cb65bc3 MP |
2734 | if (WARN_ON(addr >= end)) |
2735 | return -EINVAL; | |
2736 | ||
aee16b3c JF |
2737 | pgd = pgd_offset(mm, addr); |
2738 | do { | |
2739 | next = pgd_addr_end(addr, end); | |
0c95cba4 | 2740 | if (pgd_none(*pgd) && !create) |
be1db475 | 2741 | continue; |
0c95cba4 NP |
2742 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
2743 | return -EINVAL; | |
2744 | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | |
2745 | if (!create) | |
2746 | continue; | |
2747 | pgd_clear_bad(pgd); | |
2748 | } | |
2749 | err = apply_to_p4d_range(mm, pgd, addr, next, | |
2750 | fn, data, create, &mask); | |
aee16b3c JF |
2751 | if (err) |
2752 | break; | |
2753 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2754 | |
e80d3909 JR |
2755 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
2756 | arch_sync_kernel_mappings(start, start + size); | |
2757 | ||
aee16b3c JF |
2758 | return err; |
2759 | } | |
be1db475 DA |
2760 | |
2761 | /* | |
2762 | * Scan a region of virtual memory, filling in page tables as necessary | |
2763 | * and calling a provided function on each leaf page table. | |
2764 | */ | |
2765 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2766 | unsigned long size, pte_fn_t fn, void *data) | |
2767 | { | |
2768 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
2769 | } | |
aee16b3c JF |
2770 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2771 | ||
be1db475 DA |
2772 | /* |
2773 | * Scan a region of virtual memory, calling a provided function on | |
2774 | * each leaf page table where it exists. | |
2775 | * | |
2776 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
2777 | * where they are absent. | |
2778 | */ | |
2779 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
2780 | unsigned long size, pte_fn_t fn, void *data) | |
2781 | { | |
2782 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
2783 | } | |
2784 | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | |
2785 | ||
8f4e2101 | 2786 | /* |
9b4bdd2f KS |
2787 | * handle_pte_fault chooses page fault handler according to an entry which was |
2788 | * read non-atomically. Before making any commitment, on those architectures | |
2789 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2790 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2791 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2792 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2793 | */ |
2ca99358 | 2794 | static inline int pte_unmap_same(struct vm_fault *vmf) |
8f4e2101 HD |
2795 | { |
2796 | int same = 1; | |
923717cb | 2797 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) |
8f4e2101 | 2798 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
c7ad0880 | 2799 | spin_lock(vmf->ptl); |
c33c7948 | 2800 | same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); |
c7ad0880 | 2801 | spin_unlock(vmf->ptl); |
8f4e2101 HD |
2802 | } |
2803 | #endif | |
2ca99358 PX |
2804 | pte_unmap(vmf->pte); |
2805 | vmf->pte = NULL; | |
8f4e2101 HD |
2806 | return same; |
2807 | } | |
2808 | ||
a873dfe1 TL |
2809 | /* |
2810 | * Return: | |
2811 | * 0: copied succeeded | |
2812 | * -EHWPOISON: copy failed due to hwpoison in source page | |
2813 | * -EAGAIN: copied failed (some other reason) | |
2814 | */ | |
2815 | static inline int __wp_page_copy_user(struct page *dst, struct page *src, | |
2816 | struct vm_fault *vmf) | |
6aab341e | 2817 | { |
a873dfe1 | 2818 | int ret; |
83d116c5 JH |
2819 | void *kaddr; |
2820 | void __user *uaddr; | |
83d116c5 JH |
2821 | struct vm_area_struct *vma = vmf->vma; |
2822 | struct mm_struct *mm = vma->vm_mm; | |
2823 | unsigned long addr = vmf->address; | |
2824 | ||
83d116c5 | 2825 | if (likely(src)) { |
d302c239 TL |
2826 | if (copy_mc_user_highpage(dst, src, addr, vma)) { |
2827 | memory_failure_queue(page_to_pfn(src), 0); | |
a873dfe1 | 2828 | return -EHWPOISON; |
d302c239 | 2829 | } |
a873dfe1 | 2830 | return 0; |
83d116c5 JH |
2831 | } |
2832 | ||
6aab341e LT |
2833 | /* |
2834 | * If the source page was a PFN mapping, we don't have | |
2835 | * a "struct page" for it. We do a best-effort copy by | |
2836 | * just copying from the original user address. If that | |
2837 | * fails, we just zero-fill it. Live with it. | |
2838 | */ | |
83d116c5 JH |
2839 | kaddr = kmap_atomic(dst); |
2840 | uaddr = (void __user *)(addr & PAGE_MASK); | |
2841 | ||
2842 | /* | |
2843 | * On architectures with software "accessed" bits, we would | |
2844 | * take a double page fault, so mark it accessed here. | |
2845 | */ | |
3db82b93 | 2846 | vmf->pte = NULL; |
e1fd09e3 | 2847 | if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { |
83d116c5 | 2848 | pte_t entry; |
5d2a2dbb | 2849 | |
83d116c5 | 2850 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); |
c33c7948 | 2851 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { |
83d116c5 JH |
2852 | /* |
2853 | * Other thread has already handled the fault | |
7df67697 | 2854 | * and update local tlb only |
83d116c5 | 2855 | */ |
a92cbb82 HD |
2856 | if (vmf->pte) |
2857 | update_mmu_tlb(vma, addr, vmf->pte); | |
a873dfe1 | 2858 | ret = -EAGAIN; |
83d116c5 JH |
2859 | goto pte_unlock; |
2860 | } | |
2861 | ||
2862 | entry = pte_mkyoung(vmf->orig_pte); | |
2863 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
5003a2bd | 2864 | update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); |
83d116c5 JH |
2865 | } |
2866 | ||
2867 | /* | |
2868 | * This really shouldn't fail, because the page is there | |
2869 | * in the page tables. But it might just be unreadable, | |
2870 | * in which case we just give up and fill the result with | |
2871 | * zeroes. | |
2872 | */ | |
2873 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
3db82b93 | 2874 | if (vmf->pte) |
c3e5ea6e KS |
2875 | goto warn; |
2876 | ||
2877 | /* Re-validate under PTL if the page is still mapped */ | |
2878 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
c33c7948 | 2879 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { |
7df67697 | 2880 | /* The PTE changed under us, update local tlb */ |
a92cbb82 HD |
2881 | if (vmf->pte) |
2882 | update_mmu_tlb(vma, addr, vmf->pte); | |
a873dfe1 | 2883 | ret = -EAGAIN; |
c3e5ea6e KS |
2884 | goto pte_unlock; |
2885 | } | |
2886 | ||
5d2a2dbb | 2887 | /* |
985ba004 | 2888 | * The same page can be mapped back since last copy attempt. |
c3e5ea6e | 2889 | * Try to copy again under PTL. |
5d2a2dbb | 2890 | */ |
c3e5ea6e KS |
2891 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { |
2892 | /* | |
2893 | * Give a warn in case there can be some obscure | |
2894 | * use-case | |
2895 | */ | |
2896 | warn: | |
2897 | WARN_ON_ONCE(1); | |
2898 | clear_page(kaddr); | |
2899 | } | |
83d116c5 JH |
2900 | } |
2901 | ||
a873dfe1 | 2902 | ret = 0; |
83d116c5 JH |
2903 | |
2904 | pte_unlock: | |
3db82b93 | 2905 | if (vmf->pte) |
83d116c5 JH |
2906 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2907 | kunmap_atomic(kaddr); | |
2908 | flush_dcache_page(dst); | |
2909 | ||
2910 | return ret; | |
6aab341e LT |
2911 | } |
2912 | ||
c20cd45e MH |
2913 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2914 | { | |
2915 | struct file *vm_file = vma->vm_file; | |
2916 | ||
2917 | if (vm_file) | |
2918 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2919 | ||
2920 | /* | |
2921 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2922 | * a default GFP_KERNEL for them. | |
2923 | */ | |
2924 | return GFP_KERNEL; | |
2925 | } | |
2926 | ||
fb09a464 KS |
2927 | /* |
2928 | * Notify the address space that the page is about to become writable so that | |
2929 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2930 | * | |
2931 | * We do this without the lock held, so that it can sleep if it needs to. | |
2932 | */ | |
86aa6998 | 2933 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) |
fb09a464 | 2934 | { |
2b740303 | 2935 | vm_fault_t ret; |
38b8cb7f | 2936 | unsigned int old_flags = vmf->flags; |
fb09a464 | 2937 | |
38b8cb7f | 2938 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2939 | |
dc617f29 DW |
2940 | if (vmf->vma->vm_file && |
2941 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
2942 | return VM_FAULT_SIGBUS; | |
2943 | ||
11bac800 | 2944 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2945 | /* Restore original flags so that caller is not surprised */ |
2946 | vmf->flags = old_flags; | |
fb09a464 KS |
2947 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2948 | return ret; | |
2949 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
3d243659 SK |
2950 | folio_lock(folio); |
2951 | if (!folio->mapping) { | |
2952 | folio_unlock(folio); | |
fb09a464 KS |
2953 | return 0; /* retry */ |
2954 | } | |
2955 | ret |= VM_FAULT_LOCKED; | |
2956 | } else | |
3d243659 | 2957 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
fb09a464 KS |
2958 | return ret; |
2959 | } | |
2960 | ||
97ba0c2b JK |
2961 | /* |
2962 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2963 | * | |
2964 | * The function expects the page to be locked and unlocks it. | |
2965 | */ | |
89b15332 | 2966 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) |
97ba0c2b | 2967 | { |
89b15332 | 2968 | struct vm_area_struct *vma = vmf->vma; |
97ba0c2b | 2969 | struct address_space *mapping; |
15b4919a | 2970 | struct folio *folio = page_folio(vmf->page); |
97ba0c2b JK |
2971 | bool dirtied; |
2972 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2973 | ||
15b4919a Z |
2974 | dirtied = folio_mark_dirty(folio); |
2975 | VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); | |
97ba0c2b | 2976 | /* |
15b4919a Z |
2977 | * Take a local copy of the address_space - folio.mapping may be zeroed |
2978 | * by truncate after folio_unlock(). The address_space itself remains | |
2979 | * pinned by vma->vm_file's reference. We rely on folio_unlock()'s | |
97ba0c2b JK |
2980 | * release semantics to prevent the compiler from undoing this copying. |
2981 | */ | |
15b4919a Z |
2982 | mapping = folio_raw_mapping(folio); |
2983 | folio_unlock(folio); | |
97ba0c2b | 2984 | |
89b15332 JW |
2985 | if (!page_mkwrite) |
2986 | file_update_time(vma->vm_file); | |
2987 | ||
2988 | /* | |
2989 | * Throttle page dirtying rate down to writeback speed. | |
2990 | * | |
2991 | * mapping may be NULL here because some device drivers do not | |
2992 | * set page.mapping but still dirty their pages | |
2993 | * | |
c1e8d7c6 | 2994 | * Drop the mmap_lock before waiting on IO, if we can. The file |
89b15332 JW |
2995 | * is pinning the mapping, as per above. |
2996 | */ | |
97ba0c2b | 2997 | if ((dirtied || page_mkwrite) && mapping) { |
89b15332 JW |
2998 | struct file *fpin; |
2999 | ||
3000 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
97ba0c2b | 3001 | balance_dirty_pages_ratelimited(mapping); |
89b15332 JW |
3002 | if (fpin) { |
3003 | fput(fpin); | |
d9272525 | 3004 | return VM_FAULT_COMPLETED; |
89b15332 | 3005 | } |
97ba0c2b JK |
3006 | } |
3007 | ||
89b15332 | 3008 | return 0; |
97ba0c2b JK |
3009 | } |
3010 | ||
4e047f89 SR |
3011 | /* |
3012 | * Handle write page faults for pages that can be reused in the current vma | |
3013 | * | |
3014 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
3015 | * or due to us being the last reference standing to the page. In either | |
3016 | * case, all we need to do here is to mark the page as writable and update | |
3017 | * any related book-keeping. | |
3018 | */ | |
a86bc96b | 3019 | static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) |
82b0f8c3 | 3020 | __releases(vmf->ptl) |
4e047f89 | 3021 | { |
82b0f8c3 | 3022 | struct vm_area_struct *vma = vmf->vma; |
4e047f89 | 3023 | pte_t entry; |
6c287605 | 3024 | |
c89357e2 | 3025 | VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); |
6c287605 | 3026 | |
c2c3b514 KW |
3027 | if (folio) { |
3028 | VM_BUG_ON(folio_test_anon(folio) && | |
3029 | !PageAnonExclusive(vmf->page)); | |
3030 | /* | |
3031 | * Clear the folio's cpupid information as the existing | |
3032 | * information potentially belongs to a now completely | |
3033 | * unrelated process. | |
3034 | */ | |
3035 | folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); | |
3036 | } | |
4e047f89 | 3037 | |
2994302b JK |
3038 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
3039 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 3040 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 | 3041 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
5003a2bd | 3042 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); |
82b0f8c3 | 3043 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
798a6b87 | 3044 | count_vm_event(PGREUSE); |
4e047f89 SR |
3045 | } |
3046 | ||
4ed43798 MWO |
3047 | /* |
3048 | * We could add a bitflag somewhere, but for now, we know that all | |
3049 | * vm_ops that have a ->map_pages have been audited and don't need | |
3050 | * the mmap_lock to be held. | |
3051 | */ | |
3052 | static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) | |
3053 | { | |
3054 | struct vm_area_struct *vma = vmf->vma; | |
3055 | ||
3056 | if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) | |
3057 | return 0; | |
3058 | vma_end_read(vma); | |
3059 | return VM_FAULT_RETRY; | |
3060 | } | |
3061 | ||
164b06f2 MWO |
3062 | static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) |
3063 | { | |
3064 | struct vm_area_struct *vma = vmf->vma; | |
3065 | ||
3066 | if (likely(vma->anon_vma)) | |
3067 | return 0; | |
3068 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) { | |
3069 | vma_end_read(vma); | |
3070 | return VM_FAULT_RETRY; | |
3071 | } | |
3072 | if (__anon_vma_prepare(vma)) | |
3073 | return VM_FAULT_OOM; | |
3074 | return 0; | |
3075 | } | |
3076 | ||
2f38ab2c | 3077 | /* |
c89357e2 DH |
3078 | * Handle the case of a page which we actually need to copy to a new page, |
3079 | * either due to COW or unsharing. | |
2f38ab2c | 3080 | * |
c1e8d7c6 | 3081 | * Called with mmap_lock locked and the old page referenced, but |
2f38ab2c SR |
3082 | * without the ptl held. |
3083 | * | |
3084 | * High level logic flow: | |
3085 | * | |
3086 | * - Allocate a page, copy the content of the old page to the new one. | |
3087 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
3088 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
3089 | * - If the pte is still the way we remember it, update the page table and all | |
3090 | * relevant references. This includes dropping the reference the page-table | |
3091 | * held to the old page, as well as updating the rmap. | |
3092 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
3093 | */ | |
2b740303 | 3094 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 3095 | { |
c89357e2 | 3096 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3097 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3098 | struct mm_struct *mm = vma->vm_mm; |
28d41a48 MWO |
3099 | struct folio *old_folio = NULL; |
3100 | struct folio *new_folio = NULL; | |
2f38ab2c SR |
3101 | pte_t entry; |
3102 | int page_copied = 0; | |
ac46d4f3 | 3103 | struct mmu_notifier_range range; |
164b06f2 | 3104 | vm_fault_t ret; |
2f38ab2c | 3105 | |
662ce1dc YY |
3106 | delayacct_wpcopy_start(); |
3107 | ||
28d41a48 MWO |
3108 | if (vmf->page) |
3109 | old_folio = page_folio(vmf->page); | |
164b06f2 MWO |
3110 | ret = vmf_anon_prepare(vmf); |
3111 | if (unlikely(ret)) | |
3112 | goto out; | |
2f38ab2c | 3113 | |
2994302b | 3114 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
6bc56a4d MWO |
3115 | new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); |
3116 | if (!new_folio) | |
2f38ab2c SR |
3117 | goto oom; |
3118 | } else { | |
164b06f2 | 3119 | int err; |
28d41a48 MWO |
3120 | new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, |
3121 | vmf->address, false); | |
3122 | if (!new_folio) | |
2f38ab2c | 3123 | goto oom; |
83d116c5 | 3124 | |
164b06f2 MWO |
3125 | err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); |
3126 | if (err) { | |
83d116c5 JH |
3127 | /* |
3128 | * COW failed, if the fault was solved by other, | |
3129 | * it's fine. If not, userspace would re-fault on | |
3130 | * the same address and we will handle the fault | |
3131 | * from the second attempt. | |
a873dfe1 | 3132 | * The -EHWPOISON case will not be retried. |
83d116c5 | 3133 | */ |
28d41a48 MWO |
3134 | folio_put(new_folio); |
3135 | if (old_folio) | |
3136 | folio_put(old_folio); | |
662ce1dc YY |
3137 | |
3138 | delayacct_wpcopy_end(); | |
164b06f2 | 3139 | return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; |
83d116c5 | 3140 | } |
28d41a48 | 3141 | kmsan_copy_page_meta(&new_folio->page, vmf->page); |
2f38ab2c | 3142 | } |
2f38ab2c | 3143 | |
28d41a48 | 3144 | if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) |
2f38ab2c | 3145 | goto oom_free_new; |
4d4f75bf | 3146 | folio_throttle_swaprate(new_folio, GFP_KERNEL); |
2f38ab2c | 3147 | |
28d41a48 | 3148 | __folio_mark_uptodate(new_folio); |
eb3c24f3 | 3149 | |
7d4a8be0 | 3150 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
6f4f13e8 | 3151 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
3152 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
3153 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
3154 | |
3155 | /* | |
3156 | * Re-check the pte - we dropped the lock | |
3157 | */ | |
82b0f8c3 | 3158 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
c33c7948 | 3159 | if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { |
28d41a48 MWO |
3160 | if (old_folio) { |
3161 | if (!folio_test_anon(old_folio)) { | |
3162 | dec_mm_counter(mm, mm_counter_file(&old_folio->page)); | |
f1a79412 | 3163 | inc_mm_counter(mm, MM_ANONPAGES); |
2f38ab2c SR |
3164 | } |
3165 | } else { | |
6080d19f | 3166 | ksm_might_unmap_zero_page(mm, vmf->orig_pte); |
f1a79412 | 3167 | inc_mm_counter(mm, MM_ANONPAGES); |
2f38ab2c | 3168 | } |
2994302b | 3169 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
28d41a48 | 3170 | entry = mk_pte(&new_folio->page, vma->vm_page_prot); |
50c25ee9 | 3171 | entry = pte_sw_mkyoung(entry); |
c89357e2 DH |
3172 | if (unlikely(unshare)) { |
3173 | if (pte_soft_dirty(vmf->orig_pte)) | |
3174 | entry = pte_mksoft_dirty(entry); | |
3175 | if (pte_uffd_wp(vmf->orig_pte)) | |
3176 | entry = pte_mkuffd_wp(entry); | |
3177 | } else { | |
3178 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3179 | } | |
111fe718 | 3180 | |
2f38ab2c SR |
3181 | /* |
3182 | * Clear the pte entry and flush it first, before updating the | |
111fe718 NP |
3183 | * pte with the new entry, to keep TLBs on different CPUs in |
3184 | * sync. This code used to set the new PTE then flush TLBs, but | |
3185 | * that left a window where the new PTE could be loaded into | |
3186 | * some TLBs while the old PTE remains in others. | |
2f38ab2c | 3187 | */ |
ec8832d0 | 3188 | ptep_clear_flush(vma, vmf->address, vmf->pte); |
28d41a48 MWO |
3189 | folio_add_new_anon_rmap(new_folio, vma, vmf->address); |
3190 | folio_add_lru_vma(new_folio, vma); | |
2f38ab2c SR |
3191 | /* |
3192 | * We call the notify macro here because, when using secondary | |
3193 | * mmu page tables (such as kvm shadow page tables), we want the | |
3194 | * new page to be mapped directly into the secondary page table. | |
3195 | */ | |
c89357e2 | 3196 | BUG_ON(unshare && pte_write(entry)); |
82b0f8c3 | 3197 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
5003a2bd | 3198 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); |
28d41a48 | 3199 | if (old_folio) { |
2f38ab2c SR |
3200 | /* |
3201 | * Only after switching the pte to the new page may | |
3202 | * we remove the mapcount here. Otherwise another | |
3203 | * process may come and find the rmap count decremented | |
3204 | * before the pte is switched to the new page, and | |
3205 | * "reuse" the old page writing into it while our pte | |
3206 | * here still points into it and can be read by other | |
3207 | * threads. | |
3208 | * | |
3209 | * The critical issue is to order this | |
3210 | * page_remove_rmap with the ptp_clear_flush above. | |
3211 | * Those stores are ordered by (if nothing else,) | |
3212 | * the barrier present in the atomic_add_negative | |
3213 | * in page_remove_rmap. | |
3214 | * | |
3215 | * Then the TLB flush in ptep_clear_flush ensures that | |
3216 | * no process can access the old page before the | |
3217 | * decremented mapcount is visible. And the old page | |
3218 | * cannot be reused until after the decremented | |
3219 | * mapcount is visible. So transitively, TLBs to | |
3220 | * old page will be flushed before it can be reused. | |
3221 | */ | |
28d41a48 | 3222 | page_remove_rmap(vmf->page, vma, false); |
2f38ab2c SR |
3223 | } |
3224 | ||
3225 | /* Free the old page.. */ | |
28d41a48 | 3226 | new_folio = old_folio; |
2f38ab2c | 3227 | page_copied = 1; |
3db82b93 HD |
3228 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
3229 | } else if (vmf->pte) { | |
7df67697 | 3230 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
3db82b93 | 3231 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2f38ab2c SR |
3232 | } |
3233 | ||
ec8832d0 | 3234 | mmu_notifier_invalidate_range_end(&range); |
3db82b93 HD |
3235 | |
3236 | if (new_folio) | |
3237 | folio_put(new_folio); | |
28d41a48 | 3238 | if (old_folio) { |
f4c4a3f4 | 3239 | if (page_copied) |
28d41a48 MWO |
3240 | free_swap_cache(&old_folio->page); |
3241 | folio_put(old_folio); | |
2f38ab2c | 3242 | } |
662ce1dc YY |
3243 | |
3244 | delayacct_wpcopy_end(); | |
cb8d8633 | 3245 | return 0; |
2f38ab2c | 3246 | oom_free_new: |
28d41a48 | 3247 | folio_put(new_folio); |
2f38ab2c | 3248 | oom: |
164b06f2 MWO |
3249 | ret = VM_FAULT_OOM; |
3250 | out: | |
28d41a48 MWO |
3251 | if (old_folio) |
3252 | folio_put(old_folio); | |
662ce1dc YY |
3253 | |
3254 | delayacct_wpcopy_end(); | |
164b06f2 | 3255 | return ret; |
2f38ab2c SR |
3256 | } |
3257 | ||
66a6197c JK |
3258 | /** |
3259 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
3260 | * writeable once the page is prepared | |
3261 | * | |
3262 | * @vmf: structure describing the fault | |
a86bc96b | 3263 | * @folio: the folio of vmf->page |
66a6197c JK |
3264 | * |
3265 | * This function handles all that is needed to finish a write page fault in a | |
3266 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 3267 | * It handles locking of PTE and modifying it. |
66a6197c JK |
3268 | * |
3269 | * The function expects the page to be locked or other protection against | |
3270 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a | 3271 | * |
2797e79f | 3272 | * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before |
a862f68a | 3273 | * we acquired PTE lock. |
66a6197c | 3274 | */ |
a86bc96b | 3275 | static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) |
66a6197c JK |
3276 | { |
3277 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
3278 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
3279 | &vmf->ptl); | |
3db82b93 HD |
3280 | if (!vmf->pte) |
3281 | return VM_FAULT_NOPAGE; | |
66a6197c JK |
3282 | /* |
3283 | * We might have raced with another page fault while we released the | |
3284 | * pte_offset_map_lock. | |
3285 | */ | |
c33c7948 | 3286 | if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { |
7df67697 | 3287 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); |
66a6197c | 3288 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a19e2553 | 3289 | return VM_FAULT_NOPAGE; |
66a6197c | 3290 | } |
a86bc96b | 3291 | wp_page_reuse(vmf, folio); |
a19e2553 | 3292 | return 0; |
66a6197c JK |
3293 | } |
3294 | ||
dd906184 BH |
3295 | /* |
3296 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
3297 | * mapping | |
3298 | */ | |
2b740303 | 3299 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 3300 | { |
82b0f8c3 | 3301 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3302 | |
dd906184 | 3303 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 3304 | vm_fault_t ret; |
dd906184 | 3305 | |
82b0f8c3 | 3306 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4a68fef1 MWO |
3307 | ret = vmf_can_call_fault(vmf); |
3308 | if (ret) | |
3309 | return ret; | |
063e60d8 | 3310 | |
fe82221f | 3311 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 3312 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 3313 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 3314 | return ret; |
a86bc96b | 3315 | return finish_mkwrite_fault(vmf, NULL); |
dd906184 | 3316 | } |
a86bc96b | 3317 | wp_page_reuse(vmf, NULL); |
cb8d8633 | 3318 | return 0; |
dd906184 BH |
3319 | } |
3320 | ||
5a97858b | 3321 | static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) |
82b0f8c3 | 3322 | __releases(vmf->ptl) |
93e478d4 | 3323 | { |
82b0f8c3 | 3324 | struct vm_area_struct *vma = vmf->vma; |
cb8d8633 | 3325 | vm_fault_t ret = 0; |
93e478d4 | 3326 | |
5a97858b | 3327 | folio_get(folio); |
93e478d4 | 3328 | |
93e478d4 | 3329 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 3330 | vm_fault_t tmp; |
93e478d4 | 3331 | |
82b0f8c3 | 3332 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4a68fef1 MWO |
3333 | tmp = vmf_can_call_fault(vmf); |
3334 | if (tmp) { | |
063e60d8 | 3335 | folio_put(folio); |
4a68fef1 | 3336 | return tmp; |
063e60d8 MWO |
3337 | } |
3338 | ||
86aa6998 | 3339 | tmp = do_page_mkwrite(vmf, folio); |
93e478d4 SR |
3340 | if (unlikely(!tmp || (tmp & |
3341 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
5a97858b | 3342 | folio_put(folio); |
93e478d4 SR |
3343 | return tmp; |
3344 | } | |
a86bc96b | 3345 | tmp = finish_mkwrite_fault(vmf, folio); |
a19e2553 | 3346 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
5a97858b SK |
3347 | folio_unlock(folio); |
3348 | folio_put(folio); | |
66a6197c | 3349 | return tmp; |
93e478d4 | 3350 | } |
66a6197c | 3351 | } else { |
a86bc96b | 3352 | wp_page_reuse(vmf, folio); |
5a97858b | 3353 | folio_lock(folio); |
93e478d4 | 3354 | } |
89b15332 | 3355 | ret |= fault_dirty_shared_page(vmf); |
5a97858b | 3356 | folio_put(folio); |
93e478d4 | 3357 | |
89b15332 | 3358 | return ret; |
93e478d4 SR |
3359 | } |
3360 | ||
dec078cc DH |
3361 | static bool wp_can_reuse_anon_folio(struct folio *folio, |
3362 | struct vm_area_struct *vma) | |
3363 | { | |
3364 | /* | |
3365 | * We have to verify under folio lock: these early checks are | |
3366 | * just an optimization to avoid locking the folio and freeing | |
3367 | * the swapcache if there is little hope that we can reuse. | |
3368 | * | |
3369 | * KSM doesn't necessarily raise the folio refcount. | |
3370 | */ | |
3371 | if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) | |
3372 | return false; | |
3373 | if (!folio_test_lru(folio)) | |
3374 | /* | |
3375 | * We cannot easily detect+handle references from | |
3376 | * remote LRU caches or references to LRU folios. | |
3377 | */ | |
3378 | lru_add_drain(); | |
3379 | if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) | |
3380 | return false; | |
3381 | if (!folio_trylock(folio)) | |
3382 | return false; | |
3383 | if (folio_test_swapcache(folio)) | |
3384 | folio_free_swap(folio); | |
3385 | if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { | |
3386 | folio_unlock(folio); | |
3387 | return false; | |
3388 | } | |
3389 | /* | |
3390 | * Ok, we've got the only folio reference from our mapping | |
3391 | * and the folio is locked, it's dark out, and we're wearing | |
3392 | * sunglasses. Hit it. | |
3393 | */ | |
3394 | folio_move_anon_rmap(folio, vma); | |
3395 | folio_unlock(folio); | |
3396 | return true; | |
3397 | } | |
3398 | ||
1da177e4 | 3399 | /* |
c89357e2 DH |
3400 | * This routine handles present pages, when |
3401 | * * users try to write to a shared page (FAULT_FLAG_WRITE) | |
3402 | * * GUP wants to take a R/O pin on a possibly shared anonymous page | |
3403 | * (FAULT_FLAG_UNSHARE) | |
3404 | * | |
3405 | * It is done by copying the page to a new address and decrementing the | |
3406 | * shared-page counter for the old page. | |
1da177e4 | 3407 | * |
1da177e4 LT |
3408 | * Note that this routine assumes that the protection checks have been |
3409 | * done by the caller (the low-level page fault routine in most cases). | |
c89357e2 DH |
3410 | * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've |
3411 | * done any necessary COW. | |
1da177e4 | 3412 | * |
c89357e2 DH |
3413 | * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even |
3414 | * though the page will change only once the write actually happens. This | |
3415 | * avoids a few races, and potentially makes it more efficient. | |
1da177e4 | 3416 | * |
c1e8d7c6 | 3417 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3418 | * but allow concurrent faults), with pte both mapped and locked. |
c1e8d7c6 | 3419 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3420 | */ |
2b740303 | 3421 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 3422 | __releases(vmf->ptl) |
1da177e4 | 3423 | { |
c89357e2 | 3424 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3425 | struct vm_area_struct *vma = vmf->vma; |
b9086fde | 3426 | struct folio *folio = NULL; |
d61ea1cb | 3427 | pte_t pte; |
1da177e4 | 3428 | |
c89357e2 | 3429 | if (likely(!unshare)) { |
c33c7948 | 3430 | if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { |
d61ea1cb PX |
3431 | if (!userfaultfd_wp_async(vma)) { |
3432 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3433 | return handle_userfault(vmf, VM_UFFD_WP); | |
3434 | } | |
3435 | ||
3436 | /* | |
3437 | * Nothing needed (cache flush, TLB invalidations, | |
3438 | * etc.) because we're only removing the uffd-wp bit, | |
3439 | * which is completely invisible to the user. | |
3440 | */ | |
3441 | pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); | |
3442 | ||
3443 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); | |
3444 | /* | |
3445 | * Update this to be prepared for following up CoW | |
3446 | * handling | |
3447 | */ | |
3448 | vmf->orig_pte = pte; | |
c89357e2 DH |
3449 | } |
3450 | ||
3451 | /* | |
3452 | * Userfaultfd write-protect can defer flushes. Ensure the TLB | |
3453 | * is flushed in this case before copying. | |
3454 | */ | |
3455 | if (unlikely(userfaultfd_wp(vmf->vma) && | |
3456 | mm_tlb_flush_pending(vmf->vma->vm_mm))) | |
3457 | flush_tlb_page(vmf->vma, vmf->address); | |
3458 | } | |
6ce64428 | 3459 | |
a41b70d6 | 3460 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
c89357e2 | 3461 | |
5a97858b SK |
3462 | if (vmf->page) |
3463 | folio = page_folio(vmf->page); | |
3464 | ||
b9086fde DH |
3465 | /* |
3466 | * Shared mapping: we are guaranteed to have VM_WRITE and | |
3467 | * FAULT_FLAG_WRITE set at this point. | |
3468 | */ | |
3469 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { | |
251b97f5 | 3470 | /* |
64e45507 PF |
3471 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
3472 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
3473 | * |
3474 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 3475 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 | 3476 | */ |
b9086fde | 3477 | if (!vmf->page) |
2994302b | 3478 | return wp_pfn_shared(vmf); |
5a97858b | 3479 | return wp_page_shared(vmf, folio); |
251b97f5 | 3480 | } |
1da177e4 | 3481 | |
d08b3851 | 3482 | /* |
b9086fde DH |
3483 | * Private mapping: create an exclusive anonymous page copy if reuse |
3484 | * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. | |
dec078cc DH |
3485 | * |
3486 | * If we encounter a page that is marked exclusive, we must reuse | |
3487 | * the page without further checks. | |
d08b3851 | 3488 | */ |
dec078cc DH |
3489 | if (folio && folio_test_anon(folio) && |
3490 | (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { | |
3491 | if (!PageAnonExclusive(vmf->page)) | |
3492 | SetPageAnonExclusive(vmf->page); | |
c89357e2 DH |
3493 | if (unlikely(unshare)) { |
3494 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3495 | return 0; | |
3496 | } | |
a86bc96b | 3497 | wp_page_reuse(vmf, folio); |
cb8d8633 | 3498 | return 0; |
1da177e4 | 3499 | } |
1da177e4 LT |
3500 | /* |
3501 | * Ok, we need to copy. Oh, well.. | |
3502 | */ | |
b9086fde DH |
3503 | if (folio) |
3504 | folio_get(folio); | |
28766805 | 3505 | |
82b0f8c3 | 3506 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
94bfe85b | 3507 | #ifdef CONFIG_KSM |
b9086fde | 3508 | if (folio && folio_test_ksm(folio)) |
94bfe85b YY |
3509 | count_vm_event(COW_KSM); |
3510 | #endif | |
a41b70d6 | 3511 | return wp_page_copy(vmf); |
1da177e4 LT |
3512 | } |
3513 | ||
97a89413 | 3514 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
3515 | unsigned long start_addr, unsigned long end_addr, |
3516 | struct zap_details *details) | |
3517 | { | |
f5cc4eef | 3518 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
3519 | } |
3520 | ||
f808c13f | 3521 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
232a6a1c PX |
3522 | pgoff_t first_index, |
3523 | pgoff_t last_index, | |
1da177e4 LT |
3524 | struct zap_details *details) |
3525 | { | |
3526 | struct vm_area_struct *vma; | |
1da177e4 LT |
3527 | pgoff_t vba, vea, zba, zea; |
3528 | ||
232a6a1c | 3529 | vma_interval_tree_foreach(vma, root, first_index, last_index) { |
1da177e4 | 3530 | vba = vma->vm_pgoff; |
d6e93217 | 3531 | vea = vba + vma_pages(vma) - 1; |
f9871da9 ML |
3532 | zba = max(first_index, vba); |
3533 | zea = min(last_index, vea); | |
1da177e4 | 3534 | |
97a89413 | 3535 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
3536 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
3537 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 3538 | details); |
1da177e4 LT |
3539 | } |
3540 | } | |
3541 | ||
22061a1f | 3542 | /** |
3506659e MWO |
3543 | * unmap_mapping_folio() - Unmap single folio from processes. |
3544 | * @folio: The locked folio to be unmapped. | |
22061a1f | 3545 | * |
3506659e | 3546 | * Unmap this folio from any userspace process which still has it mmaped. |
22061a1f HD |
3547 | * Typically, for efficiency, the range of nearby pages has already been |
3548 | * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once | |
3506659e MWO |
3549 | * truncation or invalidation holds the lock on a folio, it may find that |
3550 | * the page has been remapped again: and then uses unmap_mapping_folio() | |
22061a1f HD |
3551 | * to unmap it finally. |
3552 | */ | |
3506659e | 3553 | void unmap_mapping_folio(struct folio *folio) |
22061a1f | 3554 | { |
3506659e | 3555 | struct address_space *mapping = folio->mapping; |
22061a1f | 3556 | struct zap_details details = { }; |
232a6a1c PX |
3557 | pgoff_t first_index; |
3558 | pgoff_t last_index; | |
22061a1f | 3559 | |
3506659e | 3560 | VM_BUG_ON(!folio_test_locked(folio)); |
22061a1f | 3561 | |
3506659e | 3562 | first_index = folio->index; |
87b11f86 | 3563 | last_index = folio_next_index(folio) - 1; |
232a6a1c | 3564 | |
2e148f1e | 3565 | details.even_cows = false; |
3506659e | 3566 | details.single_folio = folio; |
999dad82 | 3567 | details.zap_flags = ZAP_FLAG_DROP_MARKER; |
22061a1f | 3568 | |
2c865995 | 3569 | i_mmap_lock_read(mapping); |
22061a1f | 3570 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3571 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3572 | last_index, &details); | |
2c865995 | 3573 | i_mmap_unlock_read(mapping); |
22061a1f HD |
3574 | } |
3575 | ||
977fbdcd MW |
3576 | /** |
3577 | * unmap_mapping_pages() - Unmap pages from processes. | |
3578 | * @mapping: The address space containing pages to be unmapped. | |
3579 | * @start: Index of first page to be unmapped. | |
3580 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
3581 | * @even_cows: Whether to unmap even private COWed pages. | |
3582 | * | |
3583 | * Unmap the pages in this address space from any userspace process which | |
3584 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
3585 | * a file is being truncated, but not when invalidating pages from the page | |
3586 | * cache. | |
3587 | */ | |
3588 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
3589 | pgoff_t nr, bool even_cows) | |
3590 | { | |
3591 | struct zap_details details = { }; | |
232a6a1c PX |
3592 | pgoff_t first_index = start; |
3593 | pgoff_t last_index = start + nr - 1; | |
977fbdcd | 3594 | |
2e148f1e | 3595 | details.even_cows = even_cows; |
232a6a1c PX |
3596 | if (last_index < first_index) |
3597 | last_index = ULONG_MAX; | |
977fbdcd | 3598 | |
2c865995 | 3599 | i_mmap_lock_read(mapping); |
977fbdcd | 3600 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3601 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3602 | last_index, &details); | |
2c865995 | 3603 | i_mmap_unlock_read(mapping); |
977fbdcd | 3604 | } |
6e0e99d5 | 3605 | EXPORT_SYMBOL_GPL(unmap_mapping_pages); |
977fbdcd | 3606 | |
1da177e4 | 3607 | /** |
8a5f14a2 | 3608 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 3609 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
3610 | * file. |
3611 | * | |
3d41088f | 3612 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
3613 | * @holebegin: byte in first page to unmap, relative to the start of |
3614 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 3615 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
3616 | * must keep the partial page. In contrast, we must get rid of |
3617 | * partial pages. | |
3618 | * @holelen: size of prospective hole in bytes. This will be rounded | |
3619 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
3620 | * end of the file. | |
3621 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
3622 | * but 0 when invalidating pagecache, don't throw away private data. | |
3623 | */ | |
3624 | void unmap_mapping_range(struct address_space *mapping, | |
3625 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
3626 | { | |
1da177e4 LT |
3627 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
3628 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3629 | ||
3630 | /* Check for overflow. */ | |
3631 | if (sizeof(holelen) > sizeof(hlen)) { | |
3632 | long long holeend = | |
3633 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3634 | if (holeend & ~(long long)ULONG_MAX) | |
3635 | hlen = ULONG_MAX - hba + 1; | |
3636 | } | |
3637 | ||
977fbdcd | 3638 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
3639 | } |
3640 | EXPORT_SYMBOL(unmap_mapping_range); | |
3641 | ||
b756a3b5 AP |
3642 | /* |
3643 | * Restore a potential device exclusive pte to a working pte entry | |
3644 | */ | |
3645 | static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) | |
3646 | { | |
19672a9e | 3647 | struct folio *folio = page_folio(vmf->page); |
b756a3b5 AP |
3648 | struct vm_area_struct *vma = vmf->vma; |
3649 | struct mmu_notifier_range range; | |
fdc724d6 | 3650 | vm_fault_t ret; |
b756a3b5 | 3651 | |
7c7b9629 AP |
3652 | /* |
3653 | * We need a reference to lock the folio because we don't hold | |
3654 | * the PTL so a racing thread can remove the device-exclusive | |
3655 | * entry and unmap it. If the folio is free the entry must | |
3656 | * have been removed already. If it happens to have already | |
3657 | * been re-allocated after being freed all we do is lock and | |
3658 | * unlock it. | |
3659 | */ | |
3660 | if (!folio_try_get(folio)) | |
3661 | return 0; | |
3662 | ||
fdc724d6 SB |
3663 | ret = folio_lock_or_retry(folio, vmf); |
3664 | if (ret) { | |
7c7b9629 | 3665 | folio_put(folio); |
fdc724d6 | 3666 | return ret; |
7c7b9629 | 3667 | } |
7d4a8be0 | 3668 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, |
b756a3b5 AP |
3669 | vma->vm_mm, vmf->address & PAGE_MASK, |
3670 | (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); | |
3671 | mmu_notifier_invalidate_range_start(&range); | |
3672 | ||
3673 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | |
3674 | &vmf->ptl); | |
c33c7948 | 3675 | if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) |
19672a9e | 3676 | restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); |
b756a3b5 | 3677 | |
3db82b93 HD |
3678 | if (vmf->pte) |
3679 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
19672a9e | 3680 | folio_unlock(folio); |
7c7b9629 | 3681 | folio_put(folio); |
b756a3b5 AP |
3682 | |
3683 | mmu_notifier_invalidate_range_end(&range); | |
3684 | return 0; | |
3685 | } | |
3686 | ||
a160e537 | 3687 | static inline bool should_try_to_free_swap(struct folio *folio, |
c145e0b4 DH |
3688 | struct vm_area_struct *vma, |
3689 | unsigned int fault_flags) | |
3690 | { | |
a160e537 | 3691 | if (!folio_test_swapcache(folio)) |
c145e0b4 | 3692 | return false; |
9202d527 | 3693 | if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || |
a160e537 | 3694 | folio_test_mlocked(folio)) |
c145e0b4 DH |
3695 | return true; |
3696 | /* | |
3697 | * If we want to map a page that's in the swapcache writable, we | |
3698 | * have to detect via the refcount if we're really the exclusive | |
3699 | * user. Try freeing the swapcache to get rid of the swapcache | |
3700 | * reference only in case it's likely that we'll be the exlusive user. | |
3701 | */ | |
a160e537 MWO |
3702 | return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && |
3703 | folio_ref_count(folio) == 2; | |
c145e0b4 DH |
3704 | } |
3705 | ||
9c28a205 PX |
3706 | static vm_fault_t pte_marker_clear(struct vm_fault *vmf) |
3707 | { | |
3708 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
3709 | vmf->address, &vmf->ptl); | |
3db82b93 HD |
3710 | if (!vmf->pte) |
3711 | return 0; | |
9c28a205 PX |
3712 | /* |
3713 | * Be careful so that we will only recover a special uffd-wp pte into a | |
3714 | * none pte. Otherwise it means the pte could have changed, so retry. | |
7e3ce3f8 PX |
3715 | * |
3716 | * This should also cover the case where e.g. the pte changed | |
af19487f | 3717 | * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. |
7e3ce3f8 | 3718 | * So is_pte_marker() check is not enough to safely drop the pte. |
9c28a205 | 3719 | */ |
c33c7948 | 3720 | if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) |
9c28a205 PX |
3721 | pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); |
3722 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3723 | return 0; | |
3724 | } | |
3725 | ||
2bad466c PX |
3726 | static vm_fault_t do_pte_missing(struct vm_fault *vmf) |
3727 | { | |
3728 | if (vma_is_anonymous(vmf->vma)) | |
3729 | return do_anonymous_page(vmf); | |
3730 | else | |
3731 | return do_fault(vmf); | |
3732 | } | |
3733 | ||
9c28a205 PX |
3734 | /* |
3735 | * This is actually a page-missing access, but with uffd-wp special pte | |
3736 | * installed. It means this pte was wr-protected before being unmapped. | |
3737 | */ | |
3738 | static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) | |
3739 | { | |
3740 | /* | |
3741 | * Just in case there're leftover special ptes even after the region | |
7a079ba2 | 3742 | * got unregistered - we can simply clear them. |
9c28a205 | 3743 | */ |
2bad466c | 3744 | if (unlikely(!userfaultfd_wp(vmf->vma))) |
9c28a205 PX |
3745 | return pte_marker_clear(vmf); |
3746 | ||
2bad466c | 3747 | return do_pte_missing(vmf); |
9c28a205 PX |
3748 | } |
3749 | ||
5c041f5d PX |
3750 | static vm_fault_t handle_pte_marker(struct vm_fault *vmf) |
3751 | { | |
3752 | swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); | |
3753 | unsigned long marker = pte_marker_get(entry); | |
3754 | ||
3755 | /* | |
ca92ea3d PX |
3756 | * PTE markers should never be empty. If anything weird happened, |
3757 | * the best thing to do is to kill the process along with its mm. | |
5c041f5d | 3758 | */ |
ca92ea3d | 3759 | if (WARN_ON_ONCE(!marker)) |
5c041f5d PX |
3760 | return VM_FAULT_SIGBUS; |
3761 | ||
15520a3f | 3762 | /* Higher priority than uffd-wp when data corrupted */ |
af19487f AR |
3763 | if (marker & PTE_MARKER_POISONED) |
3764 | return VM_FAULT_HWPOISON; | |
15520a3f | 3765 | |
9c28a205 PX |
3766 | if (pte_marker_entry_uffd_wp(entry)) |
3767 | return pte_marker_handle_uffd_wp(vmf); | |
3768 | ||
3769 | /* This is an unknown pte marker */ | |
3770 | return VM_FAULT_SIGBUS; | |
5c041f5d PX |
3771 | } |
3772 | ||
1da177e4 | 3773 | /* |
c1e8d7c6 | 3774 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3775 | * but allow concurrent faults), and pte mapped but not yet locked. |
9a95f3cf PC |
3776 | * We return with pte unmapped and unlocked. |
3777 | * | |
c1e8d7c6 | 3778 | * We return with the mmap_lock locked or unlocked in the same cases |
9a95f3cf | 3779 | * as does filemap_fault(). |
1da177e4 | 3780 | */ |
2b740303 | 3781 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 3782 | { |
82b0f8c3 | 3783 | struct vm_area_struct *vma = vmf->vma; |
d4f9565a MWO |
3784 | struct folio *swapcache, *folio = NULL; |
3785 | struct page *page; | |
2799e775 | 3786 | struct swap_info_struct *si = NULL; |
14f9135d | 3787 | rmap_t rmap_flags = RMAP_NONE; |
1493a191 | 3788 | bool exclusive = false; |
65500d23 | 3789 | swp_entry_t entry; |
1da177e4 | 3790 | pte_t pte; |
2b740303 | 3791 | vm_fault_t ret = 0; |
aae466b0 | 3792 | void *shadow = NULL; |
1da177e4 | 3793 | |
2ca99358 | 3794 | if (!pte_unmap_same(vmf)) |
8f4e2101 | 3795 | goto out; |
65500d23 | 3796 | |
2994302b | 3797 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
3798 | if (unlikely(non_swap_entry(entry))) { |
3799 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
3800 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
3801 | vmf->address); | |
b756a3b5 AP |
3802 | } else if (is_device_exclusive_entry(entry)) { |
3803 | vmf->page = pfn_swap_entry_to_page(entry); | |
3804 | ret = remove_device_exclusive_entry(vmf); | |
5042db43 | 3805 | } else if (is_device_private_entry(entry)) { |
1235ccd0 SB |
3806 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) { |
3807 | /* | |
3808 | * migrate_to_ram is not yet ready to operate | |
3809 | * under VMA lock. | |
3810 | */ | |
3811 | vma_end_read(vma); | |
3812 | ret = VM_FAULT_RETRY; | |
3813 | goto out; | |
3814 | } | |
3815 | ||
af5cdaf8 | 3816 | vmf->page = pfn_swap_entry_to_page(entry); |
16ce101d AP |
3817 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3818 | vmf->address, &vmf->ptl); | |
3db82b93 | 3819 | if (unlikely(!vmf->pte || |
c33c7948 RR |
3820 | !pte_same(ptep_get(vmf->pte), |
3821 | vmf->orig_pte))) | |
3b65f437 | 3822 | goto unlock; |
16ce101d AP |
3823 | |
3824 | /* | |
3825 | * Get a page reference while we know the page can't be | |
3826 | * freed. | |
3827 | */ | |
3828 | get_page(vmf->page); | |
3829 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4a955bed | 3830 | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); |
16ce101d | 3831 | put_page(vmf->page); |
d1737fdb AK |
3832 | } else if (is_hwpoison_entry(entry)) { |
3833 | ret = VM_FAULT_HWPOISON; | |
5c041f5d PX |
3834 | } else if (is_pte_marker_entry(entry)) { |
3835 | ret = handle_pte_marker(vmf); | |
d1737fdb | 3836 | } else { |
2994302b | 3837 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 3838 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 3839 | } |
0697212a CL |
3840 | goto out; |
3841 | } | |
0bcac06f | 3842 | |
2799e775 ML |
3843 | /* Prevent swapoff from happening to us. */ |
3844 | si = get_swap_device(entry); | |
3845 | if (unlikely(!si)) | |
3846 | goto out; | |
0bcac06f | 3847 | |
5a423081 MWO |
3848 | folio = swap_cache_get_folio(entry, vma, vmf->address); |
3849 | if (folio) | |
3850 | page = folio_file_page(folio, swp_offset(entry)); | |
d4f9565a | 3851 | swapcache = folio; |
f8020772 | 3852 | |
d4f9565a | 3853 | if (!folio) { |
a449bf58 QC |
3854 | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && |
3855 | __swap_count(entry) == 1) { | |
0bcac06f | 3856 | /* skip swapcache */ |
63ad4add MWO |
3857 | folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, |
3858 | vma, vmf->address, false); | |
3859 | page = &folio->page; | |
3860 | if (folio) { | |
3861 | __folio_set_locked(folio); | |
3862 | __folio_set_swapbacked(folio); | |
4c6355b2 | 3863 | |
65995918 | 3864 | if (mem_cgroup_swapin_charge_folio(folio, |
63ad4add MWO |
3865 | vma->vm_mm, GFP_KERNEL, |
3866 | entry)) { | |
545b1b07 | 3867 | ret = VM_FAULT_OOM; |
4c6355b2 | 3868 | goto out_page; |
545b1b07 | 3869 | } |
0add0c77 | 3870 | mem_cgroup_swapin_uncharge_swap(entry); |
4c6355b2 | 3871 | |
aae466b0 JK |
3872 | shadow = get_shadow_from_swap_cache(entry); |
3873 | if (shadow) | |
63ad4add | 3874 | workingset_refault(folio, shadow); |
0076f029 | 3875 | |
63ad4add | 3876 | folio_add_lru(folio); |
0add0c77 SB |
3877 | |
3878 | /* To provide entry to swap_readpage() */ | |
3d2c9087 | 3879 | folio->swap = entry; |
5169b844 | 3880 | swap_readpage(page, true, NULL); |
63ad4add | 3881 | folio->private = NULL; |
0bcac06f | 3882 | } |
aa8d22a1 | 3883 | } else { |
e9e9b7ec MK |
3884 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
3885 | vmf); | |
63ad4add MWO |
3886 | if (page) |
3887 | folio = page_folio(page); | |
d4f9565a | 3888 | swapcache = folio; |
0bcac06f MK |
3889 | } |
3890 | ||
d4f9565a | 3891 | if (!folio) { |
1da177e4 | 3892 | /* |
8f4e2101 HD |
3893 | * Back out if somebody else faulted in this pte |
3894 | * while we released the pte lock. | |
1da177e4 | 3895 | */ |
82b0f8c3 JK |
3896 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3897 | vmf->address, &vmf->ptl); | |
c33c7948 RR |
3898 | if (likely(vmf->pte && |
3899 | pte_same(ptep_get(vmf->pte), vmf->orig_pte))) | |
1da177e4 | 3900 | ret = VM_FAULT_OOM; |
65500d23 | 3901 | goto unlock; |
1da177e4 LT |
3902 | } |
3903 | ||
3904 | /* Had to read the page from swap area: Major fault */ | |
3905 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 3906 | count_vm_event(PGMAJFAULT); |
2262185c | 3907 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 3908 | } else if (PageHWPoison(page)) { |
71f72525 WF |
3909 | /* |
3910 | * hwpoisoned dirty swapcache pages are kept for killing | |
3911 | * owner processes (which may be unknown at hwpoison time) | |
3912 | */ | |
d1737fdb | 3913 | ret = VM_FAULT_HWPOISON; |
4779cb31 | 3914 | goto out_release; |
1da177e4 LT |
3915 | } |
3916 | ||
fdc724d6 SB |
3917 | ret |= folio_lock_or_retry(folio, vmf); |
3918 | if (ret & VM_FAULT_RETRY) | |
d065bd81 | 3919 | goto out_release; |
073e587e | 3920 | |
84d60fdd DH |
3921 | if (swapcache) { |
3922 | /* | |
3b344157 | 3923 | * Make sure folio_free_swap() or swapoff did not release the |
84d60fdd DH |
3924 | * swapcache from under us. The page pin, and pte_same test |
3925 | * below, are not enough to exclude that. Even if it is still | |
3926 | * swapcache, we need to check that the page's swap has not | |
3927 | * changed. | |
3928 | */ | |
63ad4add | 3929 | if (unlikely(!folio_test_swapcache(folio) || |
cfeed8ff | 3930 | page_swap_entry(page).val != entry.val)) |
84d60fdd DH |
3931 | goto out_page; |
3932 | ||
3933 | /* | |
3934 | * KSM sometimes has to copy on read faults, for example, if | |
3935 | * page->index of !PageKSM() pages would be nonlinear inside the | |
3936 | * anon VMA -- PageKSM() is lost on actual swapout. | |
3937 | */ | |
3938 | page = ksm_might_need_to_copy(page, vma, vmf->address); | |
3939 | if (unlikely(!page)) { | |
3940 | ret = VM_FAULT_OOM; | |
84d60fdd | 3941 | goto out_page; |
6b970599 KW |
3942 | } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { |
3943 | ret = VM_FAULT_HWPOISON; | |
3944 | goto out_page; | |
84d60fdd | 3945 | } |
63ad4add | 3946 | folio = page_folio(page); |
c145e0b4 DH |
3947 | |
3948 | /* | |
3949 | * If we want to map a page that's in the swapcache writable, we | |
3950 | * have to detect via the refcount if we're really the exclusive | |
3951 | * owner. Try removing the extra reference from the local LRU | |
1fec6890 | 3952 | * caches if required. |
c145e0b4 | 3953 | */ |
d4f9565a | 3954 | if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && |
63ad4add | 3955 | !folio_test_ksm(folio) && !folio_test_lru(folio)) |
c145e0b4 | 3956 | lru_add_drain(); |
5ad64688 HD |
3957 | } |
3958 | ||
4231f842 | 3959 | folio_throttle_swaprate(folio, GFP_KERNEL); |
8a9f3ccd | 3960 | |
1da177e4 | 3961 | /* |
8f4e2101 | 3962 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 3963 | */ |
82b0f8c3 JK |
3964 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3965 | &vmf->ptl); | |
c33c7948 | 3966 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) |
b8107480 | 3967 | goto out_nomap; |
b8107480 | 3968 | |
63ad4add | 3969 | if (unlikely(!folio_test_uptodate(folio))) { |
b8107480 KK |
3970 | ret = VM_FAULT_SIGBUS; |
3971 | goto out_nomap; | |
1da177e4 LT |
3972 | } |
3973 | ||
78fbe906 DH |
3974 | /* |
3975 | * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte | |
3976 | * must never point at an anonymous page in the swapcache that is | |
3977 | * PG_anon_exclusive. Sanity check that this holds and especially, that | |
3978 | * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity | |
3979 | * check after taking the PT lock and making sure that nobody | |
3980 | * concurrently faulted in this page and set PG_anon_exclusive. | |
3981 | */ | |
63ad4add MWO |
3982 | BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); |
3983 | BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); | |
78fbe906 | 3984 | |
1493a191 DH |
3985 | /* |
3986 | * Check under PT lock (to protect against concurrent fork() sharing | |
3987 | * the swap entry concurrently) for certainly exclusive pages. | |
3988 | */ | |
63ad4add | 3989 | if (!folio_test_ksm(folio)) { |
1493a191 | 3990 | exclusive = pte_swp_exclusive(vmf->orig_pte); |
d4f9565a | 3991 | if (folio != swapcache) { |
1493a191 DH |
3992 | /* |
3993 | * We have a fresh page that is not exposed to the | |
3994 | * swapcache -> certainly exclusive. | |
3995 | */ | |
3996 | exclusive = true; | |
63ad4add | 3997 | } else if (exclusive && folio_test_writeback(folio) && |
eacde327 | 3998 | data_race(si->flags & SWP_STABLE_WRITES)) { |
1493a191 DH |
3999 | /* |
4000 | * This is tricky: not all swap backends support | |
4001 | * concurrent page modifications while under writeback. | |
4002 | * | |
4003 | * So if we stumble over such a page in the swapcache | |
4004 | * we must not set the page exclusive, otherwise we can | |
4005 | * map it writable without further checks and modify it | |
4006 | * while still under writeback. | |
4007 | * | |
4008 | * For these problematic swap backends, simply drop the | |
4009 | * exclusive marker: this is perfectly fine as we start | |
4010 | * writeback only if we fully unmapped the page and | |
4011 | * there are no unexpected references on the page after | |
4012 | * unmapping succeeded. After fully unmapped, no | |
4013 | * further GUP references (FOLL_GET and FOLL_PIN) can | |
4014 | * appear, so dropping the exclusive marker and mapping | |
4015 | * it only R/O is fine. | |
4016 | */ | |
4017 | exclusive = false; | |
4018 | } | |
4019 | } | |
4020 | ||
6dca4ac6 PC |
4021 | /* |
4022 | * Some architectures may have to restore extra metadata to the page | |
4023 | * when reading from swap. This metadata may be indexed by swap entry | |
4024 | * so this must be called before swap_free(). | |
4025 | */ | |
4026 | arch_swap_restore(entry, folio); | |
4027 | ||
8c7c6e34 | 4028 | /* |
c145e0b4 DH |
4029 | * Remove the swap entry and conditionally try to free up the swapcache. |
4030 | * We're already holding a reference on the page but haven't mapped it | |
4031 | * yet. | |
8c7c6e34 | 4032 | */ |
c145e0b4 | 4033 | swap_free(entry); |
a160e537 MWO |
4034 | if (should_try_to_free_swap(folio, vma, vmf->flags)) |
4035 | folio_free_swap(folio); | |
1da177e4 | 4036 | |
f1a79412 SB |
4037 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
4038 | dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 4039 | pte = mk_pte(page, vma->vm_page_prot); |
c145e0b4 DH |
4040 | |
4041 | /* | |
1493a191 DH |
4042 | * Same logic as in do_wp_page(); however, optimize for pages that are |
4043 | * certainly not shared either because we just allocated them without | |
4044 | * exposing them to the swapcache or because the swap entry indicates | |
4045 | * exclusivity. | |
c145e0b4 | 4046 | */ |
63ad4add MWO |
4047 | if (!folio_test_ksm(folio) && |
4048 | (exclusive || folio_ref_count(folio) == 1)) { | |
6c287605 DH |
4049 | if (vmf->flags & FAULT_FLAG_WRITE) { |
4050 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
4051 | vmf->flags &= ~FAULT_FLAG_WRITE; | |
6c287605 | 4052 | } |
14f9135d | 4053 | rmap_flags |= RMAP_EXCLUSIVE; |
1da177e4 | 4054 | } |
1da177e4 | 4055 | flush_icache_page(vma, page); |
2994302b | 4056 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 4057 | pte = pte_mksoft_dirty(pte); |
f1eb1bac | 4058 | if (pte_swp_uffd_wp(vmf->orig_pte)) |
f45ec5ff | 4059 | pte = pte_mkuffd_wp(pte); |
2994302b | 4060 | vmf->orig_pte = pte; |
0bcac06f MK |
4061 | |
4062 | /* ksm created a completely new copy */ | |
d4f9565a | 4063 | if (unlikely(folio != swapcache && swapcache)) { |
40f2bbf7 | 4064 | page_add_new_anon_rmap(page, vma, vmf->address); |
63ad4add | 4065 | folio_add_lru_vma(folio, vma); |
0bcac06f | 4066 | } else { |
f1e2db12 | 4067 | page_add_anon_rmap(page, vma, vmf->address, rmap_flags); |
00501b53 | 4068 | } |
1da177e4 | 4069 | |
63ad4add MWO |
4070 | VM_BUG_ON(!folio_test_anon(folio) || |
4071 | (pte_write(pte) && !PageAnonExclusive(page))); | |
1eba86c0 PT |
4072 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
4073 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); | |
4074 | ||
63ad4add | 4075 | folio_unlock(folio); |
d4f9565a | 4076 | if (folio != swapcache && swapcache) { |
4969c119 AA |
4077 | /* |
4078 | * Hold the lock to avoid the swap entry to be reused | |
4079 | * until we take the PT lock for the pte_same() check | |
4080 | * (to avoid false positives from pte_same). For | |
4081 | * further safety release the lock after the swap_free | |
4082 | * so that the swap count won't change under a | |
4083 | * parallel locked swapcache. | |
4084 | */ | |
d4f9565a MWO |
4085 | folio_unlock(swapcache); |
4086 | folio_put(swapcache); | |
4969c119 | 4087 | } |
c475a8ab | 4088 | |
82b0f8c3 | 4089 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 4090 | ret |= do_wp_page(vmf); |
61469f1d HD |
4091 | if (ret & VM_FAULT_ERROR) |
4092 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
4093 | goto out; |
4094 | } | |
4095 | ||
4096 | /* No need to invalidate - it was non-present before */ | |
5003a2bd | 4097 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); |
65500d23 | 4098 | unlock: |
3db82b93 HD |
4099 | if (vmf->pte) |
4100 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
1da177e4 | 4101 | out: |
2799e775 ML |
4102 | if (si) |
4103 | put_swap_device(si); | |
1da177e4 | 4104 | return ret; |
b8107480 | 4105 | out_nomap: |
3db82b93 HD |
4106 | if (vmf->pte) |
4107 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
bc43f75c | 4108 | out_page: |
63ad4add | 4109 | folio_unlock(folio); |
4779cb31 | 4110 | out_release: |
63ad4add | 4111 | folio_put(folio); |
d4f9565a MWO |
4112 | if (folio != swapcache && swapcache) { |
4113 | folio_unlock(swapcache); | |
4114 | folio_put(swapcache); | |
4969c119 | 4115 | } |
2799e775 ML |
4116 | if (si) |
4117 | put_swap_device(si); | |
65500d23 | 4118 | return ret; |
1da177e4 LT |
4119 | } |
4120 | ||
4121 | /* | |
c1e8d7c6 | 4122 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 4123 | * but allow concurrent faults), and pte mapped but not yet locked. |
c1e8d7c6 | 4124 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 4125 | */ |
2b740303 | 4126 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 4127 | { |
2bad466c | 4128 | bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); |
82b0f8c3 | 4129 | struct vm_area_struct *vma = vmf->vma; |
6bc56a4d | 4130 | struct folio *folio; |
2b740303 | 4131 | vm_fault_t ret = 0; |
1da177e4 | 4132 | pte_t entry; |
1da177e4 | 4133 | |
6b7339f4 KS |
4134 | /* File mapping without ->vm_ops ? */ |
4135 | if (vma->vm_flags & VM_SHARED) | |
4136 | return VM_FAULT_SIGBUS; | |
4137 | ||
7267ec00 | 4138 | /* |
3db82b93 HD |
4139 | * Use pte_alloc() instead of pte_alloc_map(), so that OOM can |
4140 | * be distinguished from a transient failure of pte_offset_map(). | |
7267ec00 | 4141 | */ |
4cf58924 | 4142 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
4143 | return VM_FAULT_OOM; |
4144 | ||
11ac5524 | 4145 | /* Use the zero-page for reads */ |
82b0f8c3 | 4146 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 4147 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 4148 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 4149 | vma->vm_page_prot)); |
82b0f8c3 JK |
4150 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
4151 | vmf->address, &vmf->ptl); | |
3db82b93 HD |
4152 | if (!vmf->pte) |
4153 | goto unlock; | |
2bad466c | 4154 | if (vmf_pte_changed(vmf)) { |
7df67697 | 4155 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
a13ea5b7 | 4156 | goto unlock; |
7df67697 | 4157 | } |
6b31d595 MH |
4158 | ret = check_stable_address_space(vma->vm_mm); |
4159 | if (ret) | |
4160 | goto unlock; | |
6b251fc9 AA |
4161 | /* Deliver the page fault to userland, check inside PT lock */ |
4162 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
4163 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4164 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 4165 | } |
a13ea5b7 HD |
4166 | goto setpte; |
4167 | } | |
4168 | ||
557ed1fa | 4169 | /* Allocate our own private page. */ |
557ed1fa NP |
4170 | if (unlikely(anon_vma_prepare(vma))) |
4171 | goto oom; | |
6bc56a4d MWO |
4172 | folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); |
4173 | if (!folio) | |
557ed1fa | 4174 | goto oom; |
eb3c24f3 | 4175 | |
6bc56a4d | 4176 | if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) |
eb3c24f3 | 4177 | goto oom_free_page; |
e2bf3e2c | 4178 | folio_throttle_swaprate(folio, GFP_KERNEL); |
eb3c24f3 | 4179 | |
52f37629 | 4180 | /* |
cb3184de | 4181 | * The memory barrier inside __folio_mark_uptodate makes sure that |
f4f5329d | 4182 | * preceding stores to the page contents become visible before |
52f37629 MK |
4183 | * the set_pte_at() write. |
4184 | */ | |
cb3184de | 4185 | __folio_mark_uptodate(folio); |
8f4e2101 | 4186 | |
cb3184de | 4187 | entry = mk_pte(&folio->page, vma->vm_page_prot); |
50c25ee9 | 4188 | entry = pte_sw_mkyoung(entry); |
1ac0cb5d | 4189 | if (vma->vm_flags & VM_WRITE) |
161e393c | 4190 | entry = pte_mkwrite(pte_mkdirty(entry), vma); |
1da177e4 | 4191 | |
82b0f8c3 JK |
4192 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
4193 | &vmf->ptl); | |
3db82b93 HD |
4194 | if (!vmf->pte) |
4195 | goto release; | |
2bad466c | 4196 | if (vmf_pte_changed(vmf)) { |
bce8cb3c | 4197 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
557ed1fa | 4198 | goto release; |
7df67697 | 4199 | } |
9ba69294 | 4200 | |
6b31d595 MH |
4201 | ret = check_stable_address_space(vma->vm_mm); |
4202 | if (ret) | |
4203 | goto release; | |
4204 | ||
6b251fc9 AA |
4205 | /* Deliver the page fault to userland, check inside PT lock */ |
4206 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 4207 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
cb3184de | 4208 | folio_put(folio); |
82b0f8c3 | 4209 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
4210 | } |
4211 | ||
f1a79412 | 4212 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
cb3184de MWO |
4213 | folio_add_new_anon_rmap(folio, vma, vmf->address); |
4214 | folio_add_lru_vma(folio, vma); | |
a13ea5b7 | 4215 | setpte: |
2bad466c PX |
4216 | if (uffd_wp) |
4217 | entry = pte_mkuffd_wp(entry); | |
82b0f8c3 | 4218 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
4219 | |
4220 | /* No need to invalidate - it was non-present before */ | |
5003a2bd | 4221 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); |
65500d23 | 4222 | unlock: |
3db82b93 HD |
4223 | if (vmf->pte) |
4224 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
6b31d595 | 4225 | return ret; |
8f4e2101 | 4226 | release: |
cb3184de | 4227 | folio_put(folio); |
8f4e2101 | 4228 | goto unlock; |
8a9f3ccd | 4229 | oom_free_page: |
cb3184de | 4230 | folio_put(folio); |
65500d23 | 4231 | oom: |
1da177e4 LT |
4232 | return VM_FAULT_OOM; |
4233 | } | |
4234 | ||
9a95f3cf | 4235 | /* |
c1e8d7c6 | 4236 | * The mmap_lock must have been held on entry, and may have been |
9a95f3cf PC |
4237 | * released depending on flags and vma->vm_ops->fault() return value. |
4238 | * See filemap_fault() and __lock_page_retry(). | |
4239 | */ | |
2b740303 | 4240 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 4241 | { |
82b0f8c3 | 4242 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4243 | vm_fault_t ret; |
7eae74af | 4244 | |
63f3655f MH |
4245 | /* |
4246 | * Preallocate pte before we take page_lock because this might lead to | |
4247 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
4248 | * lock_page(A) | |
4249 | * SetPageWriteback(A) | |
4250 | * unlock_page(A) | |
4251 | * lock_page(B) | |
4252 | * lock_page(B) | |
d383807a | 4253 | * pte_alloc_one |
63f3655f MH |
4254 | * shrink_page_list |
4255 | * wait_on_page_writeback(A) | |
4256 | * SetPageWriteback(B) | |
4257 | * unlock_page(B) | |
4258 | * # flush A, B to clear the writeback | |
4259 | */ | |
4260 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
a7069ee3 | 4261 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
63f3655f MH |
4262 | if (!vmf->prealloc_pte) |
4263 | return VM_FAULT_OOM; | |
63f3655f MH |
4264 | } |
4265 | ||
11bac800 | 4266 | ret = vma->vm_ops->fault(vmf); |
3917048d | 4267 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 4268 | VM_FAULT_DONE_COW))) |
bc2466e4 | 4269 | return ret; |
7eae74af | 4270 | |
667240e0 | 4271 | if (unlikely(PageHWPoison(vmf->page))) { |
3149c79f | 4272 | struct page *page = vmf->page; |
e53ac737 RR |
4273 | vm_fault_t poisonret = VM_FAULT_HWPOISON; |
4274 | if (ret & VM_FAULT_LOCKED) { | |
3149c79f RR |
4275 | if (page_mapped(page)) |
4276 | unmap_mapping_pages(page_mapping(page), | |
4277 | page->index, 1, false); | |
e53ac737 | 4278 | /* Retry if a clean page was removed from the cache. */ |
3149c79f RR |
4279 | if (invalidate_inode_page(page)) |
4280 | poisonret = VM_FAULT_NOPAGE; | |
4281 | unlock_page(page); | |
e53ac737 | 4282 | } |
3149c79f | 4283 | put_page(page); |
936ca80d | 4284 | vmf->page = NULL; |
e53ac737 | 4285 | return poisonret; |
7eae74af KS |
4286 | } |
4287 | ||
4288 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 4289 | lock_page(vmf->page); |
7eae74af | 4290 | else |
667240e0 | 4291 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 4292 | |
7eae74af KS |
4293 | return ret; |
4294 | } | |
4295 | ||
396bcc52 | 4296 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
82b0f8c3 | 4297 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 4298 | { |
82b0f8c3 | 4299 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 4300 | |
82b0f8c3 | 4301 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
4302 | /* |
4303 | * We are going to consume the prealloc table, | |
4304 | * count that as nr_ptes. | |
4305 | */ | |
c4812909 | 4306 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 4307 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
4308 | } |
4309 | ||
f9ce0be7 | 4310 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4311 | { |
82b0f8c3 JK |
4312 | struct vm_area_struct *vma = vmf->vma; |
4313 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
4314 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 4315 | pmd_t entry; |
d01ac3c3 | 4316 | vm_fault_t ret = VM_FAULT_FALLBACK; |
10102459 KS |
4317 | |
4318 | if (!transhuge_vma_suitable(vma, haddr)) | |
d01ac3c3 | 4319 | return ret; |
10102459 | 4320 | |
10102459 | 4321 | page = compound_head(page); |
d01ac3c3 MWO |
4322 | if (compound_order(page) != HPAGE_PMD_ORDER) |
4323 | return ret; | |
10102459 | 4324 | |
eac96c3e YS |
4325 | /* |
4326 | * Just backoff if any subpage of a THP is corrupted otherwise | |
4327 | * the corrupted page may mapped by PMD silently to escape the | |
4328 | * check. This kind of THP just can be PTE mapped. Access to | |
4329 | * the corrupted subpage should trigger SIGBUS as expected. | |
4330 | */ | |
4331 | if (unlikely(PageHasHWPoisoned(page))) | |
4332 | return ret; | |
4333 | ||
953c66c2 | 4334 | /* |
f0953a1b | 4335 | * Archs like ppc64 need additional space to store information |
953c66c2 AK |
4336 | * related to pte entry. Use the preallocated table for that. |
4337 | */ | |
82b0f8c3 | 4338 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 4339 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 4340 | if (!vmf->prealloc_pte) |
953c66c2 | 4341 | return VM_FAULT_OOM; |
953c66c2 AK |
4342 | } |
4343 | ||
82b0f8c3 JK |
4344 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
4345 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
4346 | goto out; |
4347 | ||
9f1f5b60 | 4348 | flush_icache_pages(vma, page, HPAGE_PMD_NR); |
10102459 KS |
4349 | |
4350 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
4351 | if (write) | |
f55e1014 | 4352 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 4353 | |
fadae295 | 4354 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
cea86fe2 HD |
4355 | page_add_file_rmap(page, vma, true); |
4356 | ||
953c66c2 AK |
4357 | /* |
4358 | * deposit and withdraw with pmd lock held | |
4359 | */ | |
4360 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 4361 | deposit_prealloc_pte(vmf); |
10102459 | 4362 | |
82b0f8c3 | 4363 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 4364 | |
82b0f8c3 | 4365 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
4366 | |
4367 | /* fault is handled */ | |
4368 | ret = 0; | |
95ecedcd | 4369 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 4370 | out: |
82b0f8c3 | 4371 | spin_unlock(vmf->ptl); |
10102459 KS |
4372 | return ret; |
4373 | } | |
4374 | #else | |
f9ce0be7 | 4375 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4376 | { |
f9ce0be7 | 4377 | return VM_FAULT_FALLBACK; |
10102459 KS |
4378 | } |
4379 | #endif | |
4380 | ||
3bd786f7 YF |
4381 | /** |
4382 | * set_pte_range - Set a range of PTEs to point to pages in a folio. | |
4383 | * @vmf: Fault decription. | |
4384 | * @folio: The folio that contains @page. | |
4385 | * @page: The first page to create a PTE for. | |
4386 | * @nr: The number of PTEs to create. | |
4387 | * @addr: The first address to create a PTE for. | |
4388 | */ | |
4389 | void set_pte_range(struct vm_fault *vmf, struct folio *folio, | |
4390 | struct page *page, unsigned int nr, unsigned long addr) | |
3bb97794 | 4391 | { |
82b0f8c3 | 4392 | struct vm_area_struct *vma = vmf->vma; |
2bad466c | 4393 | bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); |
82b0f8c3 | 4394 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
3bd786f7 | 4395 | bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); |
3bb97794 | 4396 | pte_t entry; |
7267ec00 | 4397 | |
3bd786f7 | 4398 | flush_icache_pages(vma, page, nr); |
3bb97794 | 4399 | entry = mk_pte(page, vma->vm_page_prot); |
46bdb427 WD |
4400 | |
4401 | if (prefault && arch_wants_old_prefaulted_pte()) | |
4402 | entry = pte_mkold(entry); | |
50c25ee9 TB |
4403 | else |
4404 | entry = pte_sw_mkyoung(entry); | |
46bdb427 | 4405 | |
3bb97794 KS |
4406 | if (write) |
4407 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
9c28a205 | 4408 | if (unlikely(uffd_wp)) |
f1eb1bac | 4409 | entry = pte_mkuffd_wp(entry); |
bae473a4 KS |
4410 | /* copy-on-write page */ |
4411 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bd786f7 YF |
4412 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); |
4413 | VM_BUG_ON_FOLIO(nr != 1, folio); | |
4414 | folio_add_new_anon_rmap(folio, vma, addr); | |
4415 | folio_add_lru_vma(folio, vma); | |
3bb97794 | 4416 | } else { |
3bd786f7 YF |
4417 | add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); |
4418 | folio_add_file_rmap_range(folio, page, nr, vma, false); | |
3bb97794 | 4419 | } |
3bd786f7 YF |
4420 | set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); |
4421 | ||
4422 | /* no need to invalidate: a not-present page won't be cached */ | |
4423 | update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); | |
3bb97794 KS |
4424 | } |
4425 | ||
f46f2ade PX |
4426 | static bool vmf_pte_changed(struct vm_fault *vmf) |
4427 | { | |
4428 | if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) | |
c33c7948 | 4429 | return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); |
f46f2ade | 4430 | |
c33c7948 | 4431 | return !pte_none(ptep_get(vmf->pte)); |
f46f2ade PX |
4432 | } |
4433 | ||
9118c0cb JK |
4434 | /** |
4435 | * finish_fault - finish page fault once we have prepared the page to fault | |
4436 | * | |
4437 | * @vmf: structure describing the fault | |
4438 | * | |
4439 | * This function handles all that is needed to finish a page fault once the | |
4440 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
4441 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 4442 | * addition. |
9118c0cb JK |
4443 | * |
4444 | * The function expects the page to be locked and on success it consumes a | |
4445 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
4446 | * |
4447 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 4448 | */ |
2b740303 | 4449 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb | 4450 | { |
f9ce0be7 | 4451 | struct vm_area_struct *vma = vmf->vma; |
9118c0cb | 4452 | struct page *page; |
f9ce0be7 | 4453 | vm_fault_t ret; |
9118c0cb JK |
4454 | |
4455 | /* Did we COW the page? */ | |
f9ce0be7 | 4456 | if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
9118c0cb JK |
4457 | page = vmf->cow_page; |
4458 | else | |
4459 | page = vmf->page; | |
6b31d595 MH |
4460 | |
4461 | /* | |
4462 | * check even for read faults because we might have lost our CoWed | |
4463 | * page | |
4464 | */ | |
f9ce0be7 KS |
4465 | if (!(vma->vm_flags & VM_SHARED)) { |
4466 | ret = check_stable_address_space(vma->vm_mm); | |
4467 | if (ret) | |
4468 | return ret; | |
4469 | } | |
4470 | ||
4471 | if (pmd_none(*vmf->pmd)) { | |
4472 | if (PageTransCompound(page)) { | |
4473 | ret = do_set_pmd(vmf, page); | |
4474 | if (ret != VM_FAULT_FALLBACK) | |
4475 | return ret; | |
4476 | } | |
4477 | ||
03c4f204 QZ |
4478 | if (vmf->prealloc_pte) |
4479 | pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); | |
4480 | else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | |
f9ce0be7 KS |
4481 | return VM_FAULT_OOM; |
4482 | } | |
4483 | ||
f9ce0be7 KS |
4484 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
4485 | vmf->address, &vmf->ptl); | |
3db82b93 HD |
4486 | if (!vmf->pte) |
4487 | return VM_FAULT_NOPAGE; | |
70427f6e | 4488 | |
f9ce0be7 | 4489 | /* Re-check under ptl */ |
70427f6e | 4490 | if (likely(!vmf_pte_changed(vmf))) { |
3bd786f7 | 4491 | struct folio *folio = page_folio(page); |
70427f6e | 4492 | |
3bd786f7 | 4493 | set_pte_range(vmf, folio, page, 1, vmf->address); |
70427f6e SA |
4494 | ret = 0; |
4495 | } else { | |
4496 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
f9ce0be7 | 4497 | ret = VM_FAULT_NOPAGE; |
70427f6e | 4498 | } |
f9ce0be7 | 4499 | |
f9ce0be7 | 4500 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
9118c0cb JK |
4501 | return ret; |
4502 | } | |
4503 | ||
53d36a56 LS |
4504 | static unsigned long fault_around_pages __read_mostly = |
4505 | 65536 >> PAGE_SHIFT; | |
a9b0f861 | 4506 | |
a9b0f861 KS |
4507 | #ifdef CONFIG_DEBUG_FS |
4508 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 4509 | { |
53d36a56 | 4510 | *val = fault_around_pages << PAGE_SHIFT; |
1592eef0 KS |
4511 | return 0; |
4512 | } | |
4513 | ||
b4903d6e | 4514 | /* |
da391d64 WK |
4515 | * fault_around_bytes must be rounded down to the nearest page order as it's |
4516 | * what do_fault_around() expects to see. | |
b4903d6e | 4517 | */ |
a9b0f861 | 4518 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 4519 | { |
a9b0f861 | 4520 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 4521 | return -EINVAL; |
53d36a56 LS |
4522 | |
4523 | /* | |
4524 | * The minimum value is 1 page, however this results in no fault-around | |
4525 | * at all. See should_fault_around(). | |
4526 | */ | |
4527 | fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); | |
4528 | ||
1592eef0 KS |
4529 | return 0; |
4530 | } | |
0a1345f8 | 4531 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 4532 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
4533 | |
4534 | static int __init fault_around_debugfs(void) | |
4535 | { | |
d9f7979c GKH |
4536 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
4537 | &fault_around_bytes_fops); | |
1592eef0 KS |
4538 | return 0; |
4539 | } | |
4540 | late_initcall(fault_around_debugfs); | |
1592eef0 | 4541 | #endif |
8c6e50b0 | 4542 | |
1fdb412b KS |
4543 | /* |
4544 | * do_fault_around() tries to map few pages around the fault address. The hope | |
4545 | * is that the pages will be needed soon and this will lower the number of | |
4546 | * faults to handle. | |
4547 | * | |
4548 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
4549 | * not ready to be mapped: not up-to-date, locked, etc. | |
4550 | * | |
9042599e LS |
4551 | * This function doesn't cross VMA or page table boundaries, in order to call |
4552 | * map_pages() and acquire a PTE lock only once. | |
1fdb412b | 4553 | * |
53d36a56 | 4554 | * fault_around_pages defines how many pages we'll try to map. |
da391d64 WK |
4555 | * do_fault_around() expects it to be set to a power of two less than or equal |
4556 | * to PTRS_PER_PTE. | |
1fdb412b | 4557 | * |
da391d64 | 4558 | * The virtual address of the area that we map is naturally aligned to |
53d36a56 | 4559 | * fault_around_pages * PAGE_SIZE rounded down to the machine page size |
da391d64 WK |
4560 | * (and therefore to page order). This way it's easier to guarantee |
4561 | * that we don't cross page table boundaries. | |
1fdb412b | 4562 | */ |
2b740303 | 4563 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 4564 | { |
53d36a56 | 4565 | pgoff_t nr_pages = READ_ONCE(fault_around_pages); |
9042599e LS |
4566 | pgoff_t pte_off = pte_index(vmf->address); |
4567 | /* The page offset of vmf->address within the VMA. */ | |
4568 | pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; | |
4569 | pgoff_t from_pte, to_pte; | |
58ef47ef | 4570 | vm_fault_t ret; |
8c6e50b0 | 4571 | |
9042599e LS |
4572 | /* The PTE offset of the start address, clamped to the VMA. */ |
4573 | from_pte = max(ALIGN_DOWN(pte_off, nr_pages), | |
4574 | pte_off - min(pte_off, vma_off)); | |
aecd6f44 | 4575 | |
9042599e LS |
4576 | /* The PTE offset of the end address, clamped to the VMA and PTE. */ |
4577 | to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, | |
4578 | pte_off + vma_pages(vmf->vma) - vma_off) - 1; | |
8c6e50b0 | 4579 | |
82b0f8c3 | 4580 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 4581 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 4582 | if (!vmf->prealloc_pte) |
f9ce0be7 | 4583 | return VM_FAULT_OOM; |
8c6e50b0 KS |
4584 | } |
4585 | ||
58ef47ef MWO |
4586 | rcu_read_lock(); |
4587 | ret = vmf->vma->vm_ops->map_pages(vmf, | |
4588 | vmf->pgoff + from_pte - pte_off, | |
4589 | vmf->pgoff + to_pte - pte_off); | |
4590 | rcu_read_unlock(); | |
4591 | ||
4592 | return ret; | |
8c6e50b0 KS |
4593 | } |
4594 | ||
9c28a205 PX |
4595 | /* Return true if we should do read fault-around, false otherwise */ |
4596 | static inline bool should_fault_around(struct vm_fault *vmf) | |
4597 | { | |
4598 | /* No ->map_pages? No way to fault around... */ | |
4599 | if (!vmf->vma->vm_ops->map_pages) | |
4600 | return false; | |
4601 | ||
4602 | if (uffd_disable_fault_around(vmf->vma)) | |
4603 | return false; | |
4604 | ||
53d36a56 LS |
4605 | /* A single page implies no faulting 'around' at all. */ |
4606 | return fault_around_pages > 1; | |
9c28a205 PX |
4607 | } |
4608 | ||
2b740303 | 4609 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 4610 | { |
2b740303 | 4611 | vm_fault_t ret = 0; |
22d1e68f | 4612 | struct folio *folio; |
8c6e50b0 KS |
4613 | |
4614 | /* | |
4615 | * Let's call ->map_pages() first and use ->fault() as fallback | |
4616 | * if page by the offset is not ready to be mapped (cold cache or | |
4617 | * something). | |
4618 | */ | |
9c28a205 PX |
4619 | if (should_fault_around(vmf)) { |
4620 | ret = do_fault_around(vmf); | |
4621 | if (ret) | |
4622 | return ret; | |
8c6e50b0 | 4623 | } |
e655fb29 | 4624 | |
12214eba MWO |
4625 | ret = vmf_can_call_fault(vmf); |
4626 | if (ret) | |
4627 | return ret; | |
f5617ffe | 4628 | |
936ca80d | 4629 | ret = __do_fault(vmf); |
e655fb29 KS |
4630 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4631 | return ret; | |
4632 | ||
9118c0cb | 4633 | ret |= finish_fault(vmf); |
22d1e68f SK |
4634 | folio = page_folio(vmf->page); |
4635 | folio_unlock(folio); | |
7267ec00 | 4636 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
22d1e68f | 4637 | folio_put(folio); |
e655fb29 KS |
4638 | return ret; |
4639 | } | |
4640 | ||
2b740303 | 4641 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 4642 | { |
82b0f8c3 | 4643 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4644 | vm_fault_t ret; |
ec47c3b9 | 4645 | |
4de8c93a MWO |
4646 | ret = vmf_can_call_fault(vmf); |
4647 | if (!ret) | |
4648 | ret = vmf_anon_prepare(vmf); | |
4649 | if (ret) | |
4650 | return ret; | |
ec47c3b9 | 4651 | |
936ca80d JK |
4652 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
4653 | if (!vmf->cow_page) | |
ec47c3b9 KS |
4654 | return VM_FAULT_OOM; |
4655 | ||
8f425e4e MWO |
4656 | if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, |
4657 | GFP_KERNEL)) { | |
936ca80d | 4658 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4659 | return VM_FAULT_OOM; |
4660 | } | |
68fa572b | 4661 | folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); |
ec47c3b9 | 4662 | |
936ca80d | 4663 | ret = __do_fault(vmf); |
ec47c3b9 KS |
4664 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4665 | goto uncharge_out; | |
3917048d JK |
4666 | if (ret & VM_FAULT_DONE_COW) |
4667 | return ret; | |
ec47c3b9 | 4668 | |
b1aa812b | 4669 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 4670 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 4671 | |
9118c0cb | 4672 | ret |= finish_fault(vmf); |
b1aa812b JK |
4673 | unlock_page(vmf->page); |
4674 | put_page(vmf->page); | |
7267ec00 KS |
4675 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4676 | goto uncharge_out; | |
ec47c3b9 KS |
4677 | return ret; |
4678 | uncharge_out: | |
936ca80d | 4679 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4680 | return ret; |
4681 | } | |
4682 | ||
2b740303 | 4683 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 4684 | { |
82b0f8c3 | 4685 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4686 | vm_fault_t ret, tmp; |
6f609b7e | 4687 | struct folio *folio; |
1d65f86d | 4688 | |
4ed43798 MWO |
4689 | ret = vmf_can_call_fault(vmf); |
4690 | if (ret) | |
4691 | return ret; | |
1d65f86d | 4692 | |
936ca80d | 4693 | ret = __do_fault(vmf); |
7eae74af | 4694 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 4695 | return ret; |
1da177e4 | 4696 | |
6f609b7e SK |
4697 | folio = page_folio(vmf->page); |
4698 | ||
1da177e4 | 4699 | /* |
f0c6d4d2 KS |
4700 | * Check if the backing address space wants to know that the page is |
4701 | * about to become writable | |
1da177e4 | 4702 | */ |
fb09a464 | 4703 | if (vma->vm_ops->page_mkwrite) { |
6f609b7e | 4704 | folio_unlock(folio); |
86aa6998 | 4705 | tmp = do_page_mkwrite(vmf, folio); |
fb09a464 KS |
4706 | if (unlikely(!tmp || |
4707 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
6f609b7e | 4708 | folio_put(folio); |
fb09a464 | 4709 | return tmp; |
4294621f | 4710 | } |
fb09a464 KS |
4711 | } |
4712 | ||
9118c0cb | 4713 | ret |= finish_fault(vmf); |
7267ec00 KS |
4714 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
4715 | VM_FAULT_RETRY))) { | |
6f609b7e SK |
4716 | folio_unlock(folio); |
4717 | folio_put(folio); | |
f0c6d4d2 | 4718 | return ret; |
1da177e4 | 4719 | } |
b827e496 | 4720 | |
89b15332 | 4721 | ret |= fault_dirty_shared_page(vmf); |
1d65f86d | 4722 | return ret; |
54cb8821 | 4723 | } |
d00806b1 | 4724 | |
9a95f3cf | 4725 | /* |
c1e8d7c6 | 4726 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
9a95f3cf | 4727 | * but allow concurrent faults). |
c1e8d7c6 | 4728 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 4729 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
c1e8d7c6 | 4730 | * If mmap_lock is released, vma may become invalid (for example |
fc8efd2d | 4731 | * by other thread calling munmap()). |
9a95f3cf | 4732 | */ |
2b740303 | 4733 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 4734 | { |
82b0f8c3 | 4735 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 4736 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 4737 | vm_fault_t ret; |
54cb8821 | 4738 | |
ff09d7ec AK |
4739 | /* |
4740 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
4741 | */ | |
4742 | if (!vma->vm_ops->fault) { | |
3db82b93 HD |
4743 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, |
4744 | vmf->address, &vmf->ptl); | |
4745 | if (unlikely(!vmf->pte)) | |
ff09d7ec AK |
4746 | ret = VM_FAULT_SIGBUS; |
4747 | else { | |
ff09d7ec AK |
4748 | /* |
4749 | * Make sure this is not a temporary clearing of pte | |
4750 | * by holding ptl and checking again. A R/M/W update | |
4751 | * of pte involves: take ptl, clearing the pte so that | |
4752 | * we don't have concurrent modification by hardware | |
4753 | * followed by an update. | |
4754 | */ | |
c33c7948 | 4755 | if (unlikely(pte_none(ptep_get(vmf->pte)))) |
ff09d7ec AK |
4756 | ret = VM_FAULT_SIGBUS; |
4757 | else | |
4758 | ret = VM_FAULT_NOPAGE; | |
4759 | ||
4760 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4761 | } | |
4762 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
4763 | ret = do_read_fault(vmf); |
4764 | else if (!(vma->vm_flags & VM_SHARED)) | |
4765 | ret = do_cow_fault(vmf); | |
4766 | else | |
4767 | ret = do_shared_fault(vmf); | |
4768 | ||
4769 | /* preallocated pagetable is unused: free it */ | |
4770 | if (vmf->prealloc_pte) { | |
fc8efd2d | 4771 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 4772 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
4773 | } |
4774 | return ret; | |
54cb8821 NP |
4775 | } |
4776 | ||
cda6d936 | 4777 | int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, |
f4c0d836 | 4778 | unsigned long addr, int page_nid, int *flags) |
9532fec1 | 4779 | { |
cda6d936 | 4780 | folio_get(folio); |
9532fec1 | 4781 | |
fc137c0d R |
4782 | /* Record the current PID acceesing VMA */ |
4783 | vma_set_access_pid_bit(vma); | |
4784 | ||
9532fec1 | 4785 | count_vm_numa_event(NUMA_HINT_FAULTS); |
04bb2f94 | 4786 | if (page_nid == numa_node_id()) { |
9532fec1 | 4787 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
4788 | *flags |= TNF_FAULT_LOCAL; |
4789 | } | |
9532fec1 | 4790 | |
75c70128 | 4791 | return mpol_misplaced(folio, vma, addr); |
9532fec1 MG |
4792 | } |
4793 | ||
2b740303 | 4794 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 4795 | { |
82b0f8c3 | 4796 | struct vm_area_struct *vma = vmf->vma; |
6695cf68 KW |
4797 | struct folio *folio = NULL; |
4798 | int nid = NUMA_NO_NODE; | |
6a56ccbc | 4799 | bool writable = false; |
90572890 | 4800 | int last_cpupid; |
cbee9f88 | 4801 | int target_nid; |
04a86453 | 4802 | pte_t pte, old_pte; |
6688cc05 | 4803 | int flags = 0; |
d10e63f2 MG |
4804 | |
4805 | /* | |
166f61b9 TH |
4806 | * The "pte" at this point cannot be used safely without |
4807 | * validation through pte_unmap_same(). It's of NUMA type but | |
4808 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 4809 | */ |
82b0f8c3 | 4810 | spin_lock(vmf->ptl); |
c33c7948 | 4811 | if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { |
82b0f8c3 | 4812 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4813 | goto out; |
4814 | } | |
4815 | ||
b99a342d YH |
4816 | /* Get the normal PTE */ |
4817 | old_pte = ptep_get(vmf->pte); | |
04a86453 | 4818 | pte = pte_modify(old_pte, vma->vm_page_prot); |
d10e63f2 | 4819 | |
6a56ccbc DH |
4820 | /* |
4821 | * Detect now whether the PTE could be writable; this information | |
4822 | * is only valid while holding the PT lock. | |
4823 | */ | |
4824 | writable = pte_write(pte); | |
4825 | if (!writable && vma_wants_manual_pte_write_upgrade(vma) && | |
4826 | can_change_pte_writable(vma, vmf->address, pte)) | |
4827 | writable = true; | |
4828 | ||
6695cf68 KW |
4829 | folio = vm_normal_folio(vma, vmf->address, pte); |
4830 | if (!folio || folio_is_zone_device(folio)) | |
b99a342d | 4831 | goto out_map; |
d10e63f2 | 4832 | |
e81c4802 | 4833 | /* TODO: handle PTE-mapped THP */ |
6695cf68 | 4834 | if (folio_test_large(folio)) |
b99a342d | 4835 | goto out_map; |
e81c4802 | 4836 | |
6688cc05 | 4837 | /* |
bea66fbd MG |
4838 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
4839 | * much anyway since they can be in shared cache state. This misses | |
4840 | * the case where a mapping is writable but the process never writes | |
4841 | * to it but pte_write gets cleared during protection updates and | |
4842 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
4843 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 4844 | */ |
6a56ccbc | 4845 | if (!writable) |
6688cc05 PZ |
4846 | flags |= TNF_NO_GROUP; |
4847 | ||
dabe1d99 | 4848 | /* |
6695cf68 | 4849 | * Flag if the folio is shared between multiple address spaces. This |
dabe1d99 RR |
4850 | * is later used when determining whether to group tasks together |
4851 | */ | |
6695cf68 | 4852 | if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED)) |
dabe1d99 RR |
4853 | flags |= TNF_SHARED; |
4854 | ||
6695cf68 | 4855 | nid = folio_nid(folio); |
33024536 YH |
4856 | /* |
4857 | * For memory tiering mode, cpupid of slow memory page is used | |
4858 | * to record page access time. So use default value. | |
4859 | */ | |
4860 | if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | |
6695cf68 | 4861 | !node_is_toptier(nid)) |
33024536 YH |
4862 | last_cpupid = (-1 & LAST_CPUPID_MASK); |
4863 | else | |
67b33e3f | 4864 | last_cpupid = folio_last_cpupid(folio); |
cda6d936 | 4865 | target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags); |
98fa15f3 | 4866 | if (target_nid == NUMA_NO_NODE) { |
6695cf68 | 4867 | folio_put(folio); |
b99a342d | 4868 | goto out_map; |
4daae3b4 | 4869 | } |
b99a342d | 4870 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6a56ccbc | 4871 | writable = false; |
4daae3b4 MG |
4872 | |
4873 | /* Migrate to the requested node */ | |
6695cf68 KW |
4874 | if (migrate_misplaced_folio(folio, vma, target_nid)) { |
4875 | nid = target_nid; | |
6688cc05 | 4876 | flags |= TNF_MIGRATED; |
b99a342d | 4877 | } else { |
074c2381 | 4878 | flags |= TNF_MIGRATE_FAIL; |
c7ad0880 HD |
4879 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
4880 | vmf->address, &vmf->ptl); | |
4881 | if (unlikely(!vmf->pte)) | |
4882 | goto out; | |
c33c7948 | 4883 | if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { |
b99a342d YH |
4884 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4885 | goto out; | |
4886 | } | |
4887 | goto out_map; | |
4888 | } | |
4daae3b4 MG |
4889 | |
4890 | out: | |
6695cf68 KW |
4891 | if (nid != NUMA_NO_NODE) |
4892 | task_numa_fault(last_cpupid, nid, 1, flags); | |
d10e63f2 | 4893 | return 0; |
b99a342d YH |
4894 | out_map: |
4895 | /* | |
4896 | * Make it present again, depending on how arch implements | |
4897 | * non-accessible ptes, some can allow access by kernel mode. | |
4898 | */ | |
4899 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); | |
4900 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4901 | pte = pte_mkyoung(pte); | |
6a56ccbc | 4902 | if (writable) |
161e393c | 4903 | pte = pte_mkwrite(pte, vma); |
b99a342d | 4904 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); |
5003a2bd | 4905 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); |
b99a342d YH |
4906 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4907 | goto out; | |
d10e63f2 MG |
4908 | } |
4909 | ||
2b740303 | 4910 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4911 | { |
8f5fd0e1 MWO |
4912 | struct vm_area_struct *vma = vmf->vma; |
4913 | if (vma_is_anonymous(vma)) | |
82b0f8c3 | 4914 | return do_huge_pmd_anonymous_page(vmf); |
40d49a3c | 4915 | if (vma->vm_ops->huge_fault) |
1d024e7a | 4916 | return vma->vm_ops->huge_fault(vmf, PMD_ORDER); |
b96375f7 MW |
4917 | return VM_FAULT_FALLBACK; |
4918 | } | |
4919 | ||
183f24aa | 4920 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
5db4f15c | 4921 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4922 | { |
8f5fd0e1 | 4923 | struct vm_area_struct *vma = vmf->vma; |
c89357e2 | 4924 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
aea06577 | 4925 | vm_fault_t ret; |
c89357e2 | 4926 | |
8f5fd0e1 | 4927 | if (vma_is_anonymous(vma)) { |
c89357e2 | 4928 | if (likely(!unshare) && |
d61ea1cb PX |
4929 | userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { |
4930 | if (userfaultfd_wp_async(vmf->vma)) | |
4931 | goto split; | |
529b930b | 4932 | return handle_userfault(vmf, VM_UFFD_WP); |
d61ea1cb | 4933 | } |
5db4f15c | 4934 | return do_huge_pmd_wp_page(vmf); |
529b930b | 4935 | } |
327e9fd4 | 4936 | |
8f5fd0e1 MWO |
4937 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { |
4938 | if (vma->vm_ops->huge_fault) { | |
1d024e7a | 4939 | ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); |
aea06577 DH |
4940 | if (!(ret & VM_FAULT_FALLBACK)) |
4941 | return ret; | |
4942 | } | |
327e9fd4 | 4943 | } |
af9e4d5f | 4944 | |
d61ea1cb | 4945 | split: |
327e9fd4 | 4946 | /* COW or write-notify handled on pte level: split pmd. */ |
8f5fd0e1 | 4947 | __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); |
af9e4d5f | 4948 | |
b96375f7 MW |
4949 | return VM_FAULT_FALLBACK; |
4950 | } | |
4951 | ||
2b740303 | 4952 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 | 4953 | { |
14c99d65 GJ |
4954 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4955 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
c4fd825e | 4956 | struct vm_area_struct *vma = vmf->vma; |
14c99d65 | 4957 | /* No support for anonymous transparent PUD pages yet */ |
c4fd825e | 4958 | if (vma_is_anonymous(vma)) |
14c99d65 | 4959 | return VM_FAULT_FALLBACK; |
40d49a3c | 4960 | if (vma->vm_ops->huge_fault) |
1d024e7a | 4961 | return vma->vm_ops->huge_fault(vmf, PUD_ORDER); |
14c99d65 GJ |
4962 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
4963 | return VM_FAULT_FALLBACK; | |
4964 | } | |
4965 | ||
4966 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | |
4967 | { | |
327e9fd4 THV |
4968 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4969 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
c4fd825e | 4970 | struct vm_area_struct *vma = vmf->vma; |
aea06577 DH |
4971 | vm_fault_t ret; |
4972 | ||
a00cc7d9 | 4973 | /* No support for anonymous transparent PUD pages yet */ |
c4fd825e | 4974 | if (vma_is_anonymous(vma)) |
327e9fd4 | 4975 | goto split; |
c4fd825e MWO |
4976 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { |
4977 | if (vma->vm_ops->huge_fault) { | |
1d024e7a | 4978 | ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); |
aea06577 DH |
4979 | if (!(ret & VM_FAULT_FALLBACK)) |
4980 | return ret; | |
4981 | } | |
327e9fd4 THV |
4982 | } |
4983 | split: | |
4984 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
c4fd825e | 4985 | __split_huge_pud(vma, vmf->pud, vmf->address); |
14c99d65 | 4986 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
a00cc7d9 MW |
4987 | return VM_FAULT_FALLBACK; |
4988 | } | |
4989 | ||
1da177e4 LT |
4990 | /* |
4991 | * These routines also need to handle stuff like marking pages dirty | |
4992 | * and/or accessed for architectures that don't do it in hardware (most | |
4993 | * RISC architectures). The early dirtying is also good on the i386. | |
4994 | * | |
4995 | * There is also a hook called "update_mmu_cache()" that architectures | |
4996 | * with external mmu caches can use to update those (ie the Sparc or | |
4997 | * PowerPC hashed page tables that act as extended TLBs). | |
4998 | * | |
c1e8d7c6 | 4999 | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow |
7267ec00 | 5000 | * concurrent faults). |
9a95f3cf | 5001 | * |
c1e8d7c6 | 5002 | * The mmap_lock may have been released depending on flags and our return value. |
9138e47e | 5003 | * See filemap_fault() and __folio_lock_or_retry(). |
1da177e4 | 5004 | */ |
2b740303 | 5005 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
5006 | { |
5007 | pte_t entry; | |
5008 | ||
82b0f8c3 | 5009 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
5010 | /* |
5011 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
5012 | * want to allocate huge page, and if we expose page table | |
5013 | * for an instant, it will be difficult to retract from | |
5014 | * concurrent faults and from rmap lookups. | |
5015 | */ | |
82b0f8c3 | 5016 | vmf->pte = NULL; |
f46f2ade | 5017 | vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 | 5018 | } else { |
7267ec00 KS |
5019 | /* |
5020 | * A regular pmd is established and it can't morph into a huge | |
c7ad0880 HD |
5021 | * pmd by anon khugepaged, since that takes mmap_lock in write |
5022 | * mode; but shmem or file collapse to THP could still morph | |
5023 | * it into a huge pmd: just retry later if so. | |
7267ec00 | 5024 | */ |
c7ad0880 HD |
5025 | vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, |
5026 | vmf->address, &vmf->ptl); | |
5027 | if (unlikely(!vmf->pte)) | |
5028 | return 0; | |
26e1a0c3 | 5029 | vmf->orig_pte = ptep_get_lockless(vmf->pte); |
f46f2ade | 5030 | vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 | 5031 | |
2994302b | 5032 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
5033 | pte_unmap(vmf->pte); |
5034 | vmf->pte = NULL; | |
65500d23 | 5035 | } |
1da177e4 LT |
5036 | } |
5037 | ||
2bad466c PX |
5038 | if (!vmf->pte) |
5039 | return do_pte_missing(vmf); | |
7267ec00 | 5040 | |
2994302b JK |
5041 | if (!pte_present(vmf->orig_pte)) |
5042 | return do_swap_page(vmf); | |
7267ec00 | 5043 | |
2994302b JK |
5044 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
5045 | return do_numa_page(vmf); | |
d10e63f2 | 5046 | |
82b0f8c3 | 5047 | spin_lock(vmf->ptl); |
2994302b | 5048 | entry = vmf->orig_pte; |
c33c7948 | 5049 | if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { |
7df67697 | 5050 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); |
8f4e2101 | 5051 | goto unlock; |
7df67697 | 5052 | } |
c89357e2 | 5053 | if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { |
f6f37321 | 5054 | if (!pte_write(entry)) |
2994302b | 5055 | return do_wp_page(vmf); |
c89357e2 DH |
5056 | else if (likely(vmf->flags & FAULT_FLAG_WRITE)) |
5057 | entry = pte_mkdirty(entry); | |
1da177e4 LT |
5058 | } |
5059 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
5060 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
5061 | vmf->flags & FAULT_FLAG_WRITE)) { | |
5003a2bd MWO |
5062 | update_mmu_cache_range(vmf, vmf->vma, vmf->address, |
5063 | vmf->pte, 1); | |
1a44e149 | 5064 | } else { |
b7333b58 YS |
5065 | /* Skip spurious TLB flush for retried page fault */ |
5066 | if (vmf->flags & FAULT_FLAG_TRIED) | |
5067 | goto unlock; | |
1a44e149 AA |
5068 | /* |
5069 | * This is needed only for protection faults but the arch code | |
5070 | * is not yet telling us if this is a protection fault or not. | |
5071 | * This still avoids useless tlb flushes for .text page faults | |
5072 | * with threads. | |
5073 | */ | |
82b0f8c3 | 5074 | if (vmf->flags & FAULT_FLAG_WRITE) |
99c29133 GS |
5075 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, |
5076 | vmf->pte); | |
1a44e149 | 5077 | } |
8f4e2101 | 5078 | unlock: |
82b0f8c3 | 5079 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 5080 | return 0; |
1da177e4 LT |
5081 | } |
5082 | ||
5083 | /* | |
4ec31152 MWO |
5084 | * On entry, we hold either the VMA lock or the mmap_lock |
5085 | * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in | |
5086 | * the result, the mmap_lock is not held on exit. See filemap_fault() | |
5087 | * and __folio_lock_or_retry(). | |
1da177e4 | 5088 | */ |
2b740303 SJ |
5089 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
5090 | unsigned long address, unsigned int flags) | |
1da177e4 | 5091 | { |
82b0f8c3 | 5092 | struct vm_fault vmf = { |
bae473a4 | 5093 | .vma = vma, |
1a29d85e | 5094 | .address = address & PAGE_MASK, |
824ddc60 | 5095 | .real_address = address, |
bae473a4 | 5096 | .flags = flags, |
0721ec8b | 5097 | .pgoff = linear_page_index(vma, address), |
667240e0 | 5098 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 5099 | }; |
dcddffd4 | 5100 | struct mm_struct *mm = vma->vm_mm; |
7da4e2cb | 5101 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 | 5102 | pgd_t *pgd; |
c2febafc | 5103 | p4d_t *p4d; |
2b740303 | 5104 | vm_fault_t ret; |
1da177e4 | 5105 | |
1da177e4 | 5106 | pgd = pgd_offset(mm, address); |
c2febafc KS |
5107 | p4d = p4d_alloc(mm, pgd, address); |
5108 | if (!p4d) | |
5109 | return VM_FAULT_OOM; | |
a00cc7d9 | 5110 | |
c2febafc | 5111 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 5112 | if (!vmf.pud) |
c74df32c | 5113 | return VM_FAULT_OOM; |
625110b5 | 5114 | retry_pud: |
7da4e2cb | 5115 | if (pud_none(*vmf.pud) && |
a7f4e6e4 | 5116 | hugepage_vma_check(vma, vm_flags, false, true, true)) { |
a00cc7d9 MW |
5117 | ret = create_huge_pud(&vmf); |
5118 | if (!(ret & VM_FAULT_FALLBACK)) | |
5119 | return ret; | |
5120 | } else { | |
5121 | pud_t orig_pud = *vmf.pud; | |
5122 | ||
5123 | barrier(); | |
5124 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 5125 | |
c89357e2 DH |
5126 | /* |
5127 | * TODO once we support anonymous PUDs: NUMA case and | |
5128 | * FAULT_FLAG_UNSHARE handling. | |
5129 | */ | |
5130 | if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { | |
a00cc7d9 MW |
5131 | ret = wp_huge_pud(&vmf, orig_pud); |
5132 | if (!(ret & VM_FAULT_FALLBACK)) | |
5133 | return ret; | |
5134 | } else { | |
5135 | huge_pud_set_accessed(&vmf, orig_pud); | |
5136 | return 0; | |
5137 | } | |
5138 | } | |
5139 | } | |
5140 | ||
5141 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 5142 | if (!vmf.pmd) |
c74df32c | 5143 | return VM_FAULT_OOM; |
625110b5 TH |
5144 | |
5145 | /* Huge pud page fault raced with pmd_alloc? */ | |
5146 | if (pud_trans_unstable(vmf.pud)) | |
5147 | goto retry_pud; | |
5148 | ||
7da4e2cb | 5149 | if (pmd_none(*vmf.pmd) && |
a7f4e6e4 | 5150 | hugepage_vma_check(vma, vm_flags, false, true, true)) { |
a2d58167 | 5151 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
5152 | if (!(ret & VM_FAULT_FALLBACK)) |
5153 | return ret; | |
71e3aac0 | 5154 | } else { |
26e1a0c3 | 5155 | vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); |
1f1d06c3 | 5156 | |
5db4f15c | 5157 | if (unlikely(is_swap_pmd(vmf.orig_pmd))) { |
84c3fc4e | 5158 | VM_BUG_ON(thp_migration_supported() && |
5db4f15c YS |
5159 | !is_pmd_migration_entry(vmf.orig_pmd)); |
5160 | if (is_pmd_migration_entry(vmf.orig_pmd)) | |
84c3fc4e ZY |
5161 | pmd_migration_entry_wait(mm, vmf.pmd); |
5162 | return 0; | |
5163 | } | |
5db4f15c YS |
5164 | if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { |
5165 | if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) | |
5166 | return do_huge_pmd_numa_page(&vmf); | |
d10e63f2 | 5167 | |
c89357e2 DH |
5168 | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && |
5169 | !pmd_write(vmf.orig_pmd)) { | |
5db4f15c | 5170 | ret = wp_huge_pmd(&vmf); |
9845cbbd KS |
5171 | if (!(ret & VM_FAULT_FALLBACK)) |
5172 | return ret; | |
a1dd450b | 5173 | } else { |
5db4f15c | 5174 | huge_pmd_set_accessed(&vmf); |
9845cbbd | 5175 | return 0; |
1f1d06c3 | 5176 | } |
71e3aac0 AA |
5177 | } |
5178 | } | |
5179 | ||
82b0f8c3 | 5180 | return handle_pte_fault(&vmf); |
1da177e4 LT |
5181 | } |
5182 | ||
bce617ed | 5183 | /** |
f0953a1b | 5184 | * mm_account_fault - Do page fault accounting |
809ef83c | 5185 | * @mm: mm from which memcg should be extracted. It can be NULL. |
bce617ed PX |
5186 | * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting |
5187 | * of perf event counters, but we'll still do the per-task accounting to | |
5188 | * the task who triggered this page fault. | |
5189 | * @address: the faulted address. | |
5190 | * @flags: the fault flags. | |
5191 | * @ret: the fault retcode. | |
5192 | * | |
f0953a1b | 5193 | * This will take care of most of the page fault accounting. Meanwhile, it |
bce617ed | 5194 | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter |
f0953a1b | 5195 | * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should |
bce617ed PX |
5196 | * still be in per-arch page fault handlers at the entry of page fault. |
5197 | */ | |
53156443 | 5198 | static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, |
bce617ed PX |
5199 | unsigned long address, unsigned int flags, |
5200 | vm_fault_t ret) | |
5201 | { | |
5202 | bool major; | |
5203 | ||
53156443 SB |
5204 | /* Incomplete faults will be accounted upon completion. */ |
5205 | if (ret & VM_FAULT_RETRY) | |
5206 | return; | |
5207 | ||
bce617ed | 5208 | /* |
53156443 SB |
5209 | * To preserve the behavior of older kernels, PGFAULT counters record |
5210 | * both successful and failed faults, as opposed to perf counters, | |
5211 | * which ignore failed cases. | |
bce617ed | 5212 | */ |
53156443 SB |
5213 | count_vm_event(PGFAULT); |
5214 | count_memcg_event_mm(mm, PGFAULT); | |
5215 | ||
5216 | /* | |
5217 | * Do not account for unsuccessful faults (e.g. when the address wasn't | |
5218 | * valid). That includes arch_vma_access_permitted() failing before | |
5219 | * reaching here. So this is not a "this many hardware page faults" | |
5220 | * counter. We should use the hw profiling for that. | |
5221 | */ | |
5222 | if (ret & VM_FAULT_ERROR) | |
bce617ed PX |
5223 | return; |
5224 | ||
5225 | /* | |
5226 | * We define the fault as a major fault when the final successful fault | |
5227 | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | |
5228 | * handle it immediately previously). | |
5229 | */ | |
5230 | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | |
5231 | ||
a2beb5f1 PX |
5232 | if (major) |
5233 | current->maj_flt++; | |
5234 | else | |
5235 | current->min_flt++; | |
5236 | ||
bce617ed | 5237 | /* |
a2beb5f1 PX |
5238 | * If the fault is done for GUP, regs will be NULL. We only do the |
5239 | * accounting for the per thread fault counters who triggered the | |
5240 | * fault, and we skip the perf event updates. | |
bce617ed PX |
5241 | */ |
5242 | if (!regs) | |
5243 | return; | |
5244 | ||
a2beb5f1 | 5245 | if (major) |
bce617ed | 5246 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); |
a2beb5f1 | 5247 | else |
bce617ed | 5248 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); |
bce617ed PX |
5249 | } |
5250 | ||
ec1c86b2 YZ |
5251 | #ifdef CONFIG_LRU_GEN |
5252 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
5253 | { | |
8788f678 YZ |
5254 | /* the LRU algorithm only applies to accesses with recency */ |
5255 | current->in_lru_fault = vma_has_recency(vma); | |
ec1c86b2 YZ |
5256 | } |
5257 | ||
5258 | static void lru_gen_exit_fault(void) | |
5259 | { | |
5260 | current->in_lru_fault = false; | |
5261 | } | |
5262 | #else | |
5263 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
5264 | { | |
5265 | } | |
5266 | ||
5267 | static void lru_gen_exit_fault(void) | |
5268 | { | |
5269 | } | |
5270 | #endif /* CONFIG_LRU_GEN */ | |
5271 | ||
cdc5021c DH |
5272 | static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, |
5273 | unsigned int *flags) | |
5274 | { | |
5275 | if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { | |
5276 | if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) | |
5277 | return VM_FAULT_SIGSEGV; | |
5278 | /* | |
5279 | * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's | |
5280 | * just treat it like an ordinary read-fault otherwise. | |
5281 | */ | |
5282 | if (!is_cow_mapping(vma->vm_flags)) | |
5283 | *flags &= ~FAULT_FLAG_UNSHARE; | |
79881fed DH |
5284 | } else if (*flags & FAULT_FLAG_WRITE) { |
5285 | /* Write faults on read-only mappings are impossible ... */ | |
5286 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) | |
5287 | return VM_FAULT_SIGSEGV; | |
5288 | /* ... and FOLL_FORCE only applies to COW mappings. */ | |
5289 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && | |
5290 | !is_cow_mapping(vma->vm_flags))) | |
5291 | return VM_FAULT_SIGSEGV; | |
cdc5021c | 5292 | } |
4089eef0 SB |
5293 | #ifdef CONFIG_PER_VMA_LOCK |
5294 | /* | |
5295 | * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of | |
5296 | * the assumption that lock is dropped on VM_FAULT_RETRY. | |
5297 | */ | |
5298 | if (WARN_ON_ONCE((*flags & | |
5299 | (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == | |
5300 | (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) | |
5301 | return VM_FAULT_SIGSEGV; | |
5302 | #endif | |
5303 | ||
cdc5021c DH |
5304 | return 0; |
5305 | } | |
5306 | ||
9a95f3cf PC |
5307 | /* |
5308 | * By the time we get here, we already hold the mm semaphore | |
5309 | * | |
c1e8d7c6 | 5310 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 5311 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
9a95f3cf | 5312 | */ |
2b740303 | 5313 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
bce617ed | 5314 | unsigned int flags, struct pt_regs *regs) |
519e5247 | 5315 | { |
53156443 SB |
5316 | /* If the fault handler drops the mmap_lock, vma may be freed */ |
5317 | struct mm_struct *mm = vma->vm_mm; | |
2b740303 | 5318 | vm_fault_t ret; |
519e5247 JW |
5319 | |
5320 | __set_current_state(TASK_RUNNING); | |
5321 | ||
cdc5021c DH |
5322 | ret = sanitize_fault_flags(vma, &flags); |
5323 | if (ret) | |
53156443 | 5324 | goto out; |
cdc5021c | 5325 | |
de0c799b LD |
5326 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
5327 | flags & FAULT_FLAG_INSTRUCTION, | |
53156443 SB |
5328 | flags & FAULT_FLAG_REMOTE)) { |
5329 | ret = VM_FAULT_SIGSEGV; | |
5330 | goto out; | |
5331 | } | |
de0c799b | 5332 | |
519e5247 JW |
5333 | /* |
5334 | * Enable the memcg OOM handling for faults triggered in user | |
5335 | * space. Kernel faults are handled more gracefully. | |
5336 | */ | |
5337 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 5338 | mem_cgroup_enter_user_fault(); |
519e5247 | 5339 | |
ec1c86b2 YZ |
5340 | lru_gen_enter_fault(vma); |
5341 | ||
bae473a4 KS |
5342 | if (unlikely(is_vm_hugetlb_page(vma))) |
5343 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
5344 | else | |
5345 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 5346 | |
ec1c86b2 YZ |
5347 | lru_gen_exit_fault(); |
5348 | ||
49426420 | 5349 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 5350 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
5351 | /* |
5352 | * The task may have entered a memcg OOM situation but | |
5353 | * if the allocation error was handled gracefully (no | |
5354 | * VM_FAULT_OOM), there is no need to kill anything. | |
5355 | * Just clean up the OOM state peacefully. | |
5356 | */ | |
5357 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
5358 | mem_cgroup_oom_synchronize(false); | |
49426420 | 5359 | } |
53156443 SB |
5360 | out: |
5361 | mm_account_fault(mm, regs, address, flags, ret); | |
bce617ed | 5362 | |
519e5247 JW |
5363 | return ret; |
5364 | } | |
e1d6d01a | 5365 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 5366 | |
c2508ec5 LT |
5367 | #ifdef CONFIG_LOCK_MM_AND_FIND_VMA |
5368 | #include <linux/extable.h> | |
5369 | ||
5370 | static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) | |
5371 | { | |
4542057e | 5372 | if (likely(mmap_read_trylock(mm))) |
c2508ec5 | 5373 | return true; |
c2508ec5 LT |
5374 | |
5375 | if (regs && !user_mode(regs)) { | |
5376 | unsigned long ip = instruction_pointer(regs); | |
5377 | if (!search_exception_tables(ip)) | |
5378 | return false; | |
5379 | } | |
5380 | ||
eda00472 | 5381 | return !mmap_read_lock_killable(mm); |
c2508ec5 LT |
5382 | } |
5383 | ||
5384 | static inline bool mmap_upgrade_trylock(struct mm_struct *mm) | |
5385 | { | |
5386 | /* | |
5387 | * We don't have this operation yet. | |
5388 | * | |
5389 | * It should be easy enough to do: it's basically a | |
5390 | * atomic_long_try_cmpxchg_acquire() | |
5391 | * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but | |
5392 | * it also needs the proper lockdep magic etc. | |
5393 | */ | |
5394 | return false; | |
5395 | } | |
5396 | ||
5397 | static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) | |
5398 | { | |
5399 | mmap_read_unlock(mm); | |
5400 | if (regs && !user_mode(regs)) { | |
5401 | unsigned long ip = instruction_pointer(regs); | |
5402 | if (!search_exception_tables(ip)) | |
5403 | return false; | |
5404 | } | |
eda00472 | 5405 | return !mmap_write_lock_killable(mm); |
c2508ec5 LT |
5406 | } |
5407 | ||
5408 | /* | |
5409 | * Helper for page fault handling. | |
5410 | * | |
5411 | * This is kind of equivalend to "mmap_read_lock()" followed | |
5412 | * by "find_extend_vma()", except it's a lot more careful about | |
5413 | * the locking (and will drop the lock on failure). | |
5414 | * | |
5415 | * For example, if we have a kernel bug that causes a page | |
5416 | * fault, we don't want to just use mmap_read_lock() to get | |
5417 | * the mm lock, because that would deadlock if the bug were | |
5418 | * to happen while we're holding the mm lock for writing. | |
5419 | * | |
5420 | * So this checks the exception tables on kernel faults in | |
5421 | * order to only do this all for instructions that are actually | |
5422 | * expected to fault. | |
5423 | * | |
5424 | * We can also actually take the mm lock for writing if we | |
5425 | * need to extend the vma, which helps the VM layer a lot. | |
5426 | */ | |
5427 | struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, | |
5428 | unsigned long addr, struct pt_regs *regs) | |
5429 | { | |
5430 | struct vm_area_struct *vma; | |
5431 | ||
5432 | if (!get_mmap_lock_carefully(mm, regs)) | |
5433 | return NULL; | |
5434 | ||
5435 | vma = find_vma(mm, addr); | |
5436 | if (likely(vma && (vma->vm_start <= addr))) | |
5437 | return vma; | |
5438 | ||
5439 | /* | |
5440 | * Well, dang. We might still be successful, but only | |
5441 | * if we can extend a vma to do so. | |
5442 | */ | |
5443 | if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { | |
5444 | mmap_read_unlock(mm); | |
5445 | return NULL; | |
5446 | } | |
5447 | ||
5448 | /* | |
5449 | * We can try to upgrade the mmap lock atomically, | |
5450 | * in which case we can continue to use the vma | |
5451 | * we already looked up. | |
5452 | * | |
5453 | * Otherwise we'll have to drop the mmap lock and | |
5454 | * re-take it, and also look up the vma again, | |
5455 | * re-checking it. | |
5456 | */ | |
5457 | if (!mmap_upgrade_trylock(mm)) { | |
5458 | if (!upgrade_mmap_lock_carefully(mm, regs)) | |
5459 | return NULL; | |
5460 | ||
5461 | vma = find_vma(mm, addr); | |
5462 | if (!vma) | |
5463 | goto fail; | |
5464 | if (vma->vm_start <= addr) | |
5465 | goto success; | |
5466 | if (!(vma->vm_flags & VM_GROWSDOWN)) | |
5467 | goto fail; | |
5468 | } | |
5469 | ||
8d7071af | 5470 | if (expand_stack_locked(vma, addr)) |
c2508ec5 LT |
5471 | goto fail; |
5472 | ||
5473 | success: | |
5474 | mmap_write_downgrade(mm); | |
5475 | return vma; | |
5476 | ||
5477 | fail: | |
5478 | mmap_write_unlock(mm); | |
5479 | return NULL; | |
5480 | } | |
5481 | #endif | |
5482 | ||
50ee3253 SB |
5483 | #ifdef CONFIG_PER_VMA_LOCK |
5484 | /* | |
5485 | * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be | |
5486 | * stable and not isolated. If the VMA is not found or is being modified the | |
5487 | * function returns NULL. | |
5488 | */ | |
5489 | struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, | |
5490 | unsigned long address) | |
5491 | { | |
5492 | MA_STATE(mas, &mm->mm_mt, address, address); | |
5493 | struct vm_area_struct *vma; | |
5494 | ||
5495 | rcu_read_lock(); | |
5496 | retry: | |
5497 | vma = mas_walk(&mas); | |
5498 | if (!vma) | |
5499 | goto inval; | |
5500 | ||
50ee3253 SB |
5501 | if (!vma_start_read(vma)) |
5502 | goto inval; | |
5503 | ||
657b5146 JH |
5504 | /* |
5505 | * find_mergeable_anon_vma uses adjacent vmas which are not locked. | |
5506 | * This check must happen after vma_start_read(); otherwise, a | |
5507 | * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA | |
5508 | * from its anon_vma. | |
5509 | */ | |
29a22b9e | 5510 | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) |
657b5146 | 5511 | goto inval_end_read; |
444eeb17 | 5512 | |
50ee3253 | 5513 | /* Check since vm_start/vm_end might change before we lock the VMA */ |
657b5146 JH |
5514 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) |
5515 | goto inval_end_read; | |
50ee3253 SB |
5516 | |
5517 | /* Check if the VMA got isolated after we found it */ | |
5518 | if (vma->detached) { | |
5519 | vma_end_read(vma); | |
52f23865 | 5520 | count_vm_vma_lock_event(VMA_LOCK_MISS); |
50ee3253 SB |
5521 | /* The area was replaced with another one */ |
5522 | goto retry; | |
5523 | } | |
5524 | ||
5525 | rcu_read_unlock(); | |
5526 | return vma; | |
657b5146 JH |
5527 | |
5528 | inval_end_read: | |
5529 | vma_end_read(vma); | |
50ee3253 SB |
5530 | inval: |
5531 | rcu_read_unlock(); | |
52f23865 | 5532 | count_vm_vma_lock_event(VMA_LOCK_ABORT); |
50ee3253 SB |
5533 | return NULL; |
5534 | } | |
5535 | #endif /* CONFIG_PER_VMA_LOCK */ | |
5536 | ||
90eceff1 KS |
5537 | #ifndef __PAGETABLE_P4D_FOLDED |
5538 | /* | |
5539 | * Allocate p4d page table. | |
5540 | * We've already handled the fast-path in-line. | |
5541 | */ | |
5542 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
5543 | { | |
5544 | p4d_t *new = p4d_alloc_one(mm, address); | |
5545 | if (!new) | |
5546 | return -ENOMEM; | |
5547 | ||
90eceff1 | 5548 | spin_lock(&mm->page_table_lock); |
ed33b5a6 | 5549 | if (pgd_present(*pgd)) { /* Another has populated it */ |
90eceff1 | 5550 | p4d_free(mm, new); |
ed33b5a6 QZ |
5551 | } else { |
5552 | smp_wmb(); /* See comment in pmd_install() */ | |
90eceff1 | 5553 | pgd_populate(mm, pgd, new); |
ed33b5a6 | 5554 | } |
90eceff1 KS |
5555 | spin_unlock(&mm->page_table_lock); |
5556 | return 0; | |
5557 | } | |
5558 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
5559 | ||
1da177e4 LT |
5560 | #ifndef __PAGETABLE_PUD_FOLDED |
5561 | /* | |
5562 | * Allocate page upper directory. | |
872fec16 | 5563 | * We've already handled the fast-path in-line. |
1da177e4 | 5564 | */ |
c2febafc | 5565 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 5566 | { |
c74df32c HD |
5567 | pud_t *new = pud_alloc_one(mm, address); |
5568 | if (!new) | |
1bb3630e | 5569 | return -ENOMEM; |
1da177e4 | 5570 | |
872fec16 | 5571 | spin_lock(&mm->page_table_lock); |
b4e98d9a KS |
5572 | if (!p4d_present(*p4d)) { |
5573 | mm_inc_nr_puds(mm); | |
ed33b5a6 | 5574 | smp_wmb(); /* See comment in pmd_install() */ |
c2febafc | 5575 | p4d_populate(mm, p4d, new); |
b4e98d9a | 5576 | } else /* Another has populated it */ |
5e541973 | 5577 | pud_free(mm, new); |
c74df32c | 5578 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 5579 | return 0; |
1da177e4 LT |
5580 | } |
5581 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
5582 | ||
5583 | #ifndef __PAGETABLE_PMD_FOLDED | |
5584 | /* | |
5585 | * Allocate page middle directory. | |
872fec16 | 5586 | * We've already handled the fast-path in-line. |
1da177e4 | 5587 | */ |
1bb3630e | 5588 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 5589 | { |
a00cc7d9 | 5590 | spinlock_t *ptl; |
c74df32c HD |
5591 | pmd_t *new = pmd_alloc_one(mm, address); |
5592 | if (!new) | |
1bb3630e | 5593 | return -ENOMEM; |
1da177e4 | 5594 | |
a00cc7d9 | 5595 | ptl = pud_lock(mm, pud); |
dc6c9a35 KS |
5596 | if (!pud_present(*pud)) { |
5597 | mm_inc_nr_pmds(mm); | |
ed33b5a6 | 5598 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 5599 | pud_populate(mm, pud, new); |
ed33b5a6 | 5600 | } else { /* Another has populated it */ |
5e541973 | 5601 | pmd_free(mm, new); |
ed33b5a6 | 5602 | } |
a00cc7d9 | 5603 | spin_unlock(ptl); |
1bb3630e | 5604 | return 0; |
e0f39591 | 5605 | } |
1da177e4 LT |
5606 | #endif /* __PAGETABLE_PMD_FOLDED */ |
5607 | ||
0e5e64c0 MS |
5608 | /** |
5609 | * follow_pte - look up PTE at a user virtual address | |
5610 | * @mm: the mm_struct of the target address space | |
5611 | * @address: user virtual address | |
5612 | * @ptepp: location to store found PTE | |
5613 | * @ptlp: location to store the lock for the PTE | |
5614 | * | |
5615 | * On a successful return, the pointer to the PTE is stored in @ptepp; | |
5616 | * the corresponding lock is taken and its location is stored in @ptlp. | |
5617 | * The contents of the PTE are only stable until @ptlp is released; | |
5618 | * any further use, if any, must be protected against invalidation | |
5619 | * with MMU notifiers. | |
5620 | * | |
5621 | * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore | |
5622 | * should be taken for read. | |
5623 | * | |
5624 | * KVM uses this function. While it is arguably less bad than ``follow_pfn``, | |
5625 | * it is not a good general-purpose API. | |
5626 | * | |
5627 | * Return: zero on success, -ve otherwise. | |
5628 | */ | |
5629 | int follow_pte(struct mm_struct *mm, unsigned long address, | |
5630 | pte_t **ptepp, spinlock_t **ptlp) | |
f8ad0f49 JW |
5631 | { |
5632 | pgd_t *pgd; | |
c2febafc | 5633 | p4d_t *p4d; |
f8ad0f49 JW |
5634 | pud_t *pud; |
5635 | pmd_t *pmd; | |
5636 | pte_t *ptep; | |
5637 | ||
5638 | pgd = pgd_offset(mm, address); | |
5639 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
5640 | goto out; | |
5641 | ||
c2febafc KS |
5642 | p4d = p4d_offset(pgd, address); |
5643 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
5644 | goto out; | |
5645 | ||
5646 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
5647 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
5648 | goto out; | |
5649 | ||
5650 | pmd = pmd_offset(pud, address); | |
f66055ab | 5651 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 5652 | |
f8ad0f49 | 5653 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); |
3db82b93 HD |
5654 | if (!ptep) |
5655 | goto out; | |
c33c7948 | 5656 | if (!pte_present(ptep_get(ptep))) |
f8ad0f49 JW |
5657 | goto unlock; |
5658 | *ptepp = ptep; | |
5659 | return 0; | |
5660 | unlock: | |
5661 | pte_unmap_unlock(ptep, *ptlp); | |
5662 | out: | |
5663 | return -EINVAL; | |
5664 | } | |
9fd6dad1 PB |
5665 | EXPORT_SYMBOL_GPL(follow_pte); |
5666 | ||
3b6748e2 JW |
5667 | /** |
5668 | * follow_pfn - look up PFN at a user virtual address | |
5669 | * @vma: memory mapping | |
5670 | * @address: user virtual address | |
5671 | * @pfn: location to store found PFN | |
5672 | * | |
5673 | * Only IO mappings and raw PFN mappings are allowed. | |
5674 | * | |
9fd6dad1 PB |
5675 | * This function does not allow the caller to read the permissions |
5676 | * of the PTE. Do not use it. | |
5677 | * | |
a862f68a | 5678 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
5679 | */ |
5680 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
5681 | unsigned long *pfn) | |
5682 | { | |
5683 | int ret = -EINVAL; | |
5684 | spinlock_t *ptl; | |
5685 | pte_t *ptep; | |
5686 | ||
5687 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5688 | return ret; | |
5689 | ||
9fd6dad1 | 5690 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); |
3b6748e2 JW |
5691 | if (ret) |
5692 | return ret; | |
c33c7948 | 5693 | *pfn = pte_pfn(ptep_get(ptep)); |
3b6748e2 JW |
5694 | pte_unmap_unlock(ptep, ptl); |
5695 | return 0; | |
5696 | } | |
5697 | EXPORT_SYMBOL(follow_pfn); | |
5698 | ||
28b2ee20 | 5699 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 5700 | int follow_phys(struct vm_area_struct *vma, |
5701 | unsigned long address, unsigned int flags, | |
5702 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 5703 | { |
03668a4d | 5704 | int ret = -EINVAL; |
28b2ee20 RR |
5705 | pte_t *ptep, pte; |
5706 | spinlock_t *ptl; | |
28b2ee20 | 5707 | |
d87fe660 | 5708 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
5709 | goto out; | |
28b2ee20 | 5710 | |
9fd6dad1 | 5711 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 5712 | goto out; |
c33c7948 | 5713 | pte = ptep_get(ptep); |
03668a4d | 5714 | |
f6f37321 | 5715 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 5716 | goto unlock; |
28b2ee20 RR |
5717 | |
5718 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 5719 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 5720 | |
03668a4d | 5721 | ret = 0; |
28b2ee20 RR |
5722 | unlock: |
5723 | pte_unmap_unlock(ptep, ptl); | |
5724 | out: | |
d87fe660 | 5725 | return ret; |
28b2ee20 RR |
5726 | } |
5727 | ||
96667f8a SV |
5728 | /** |
5729 | * generic_access_phys - generic implementation for iomem mmap access | |
5730 | * @vma: the vma to access | |
f0953a1b | 5731 | * @addr: userspace address, not relative offset within @vma |
96667f8a SV |
5732 | * @buf: buffer to read/write |
5733 | * @len: length of transfer | |
5734 | * @write: set to FOLL_WRITE when writing, otherwise reading | |
5735 | * | |
5736 | * This is a generic implementation for &vm_operations_struct.access for an | |
5737 | * iomem mapping. This callback is used by access_process_vm() when the @vma is | |
5738 | * not page based. | |
5739 | */ | |
28b2ee20 RR |
5740 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
5741 | void *buf, int len, int write) | |
5742 | { | |
5743 | resource_size_t phys_addr; | |
5744 | unsigned long prot = 0; | |
2bc7273b | 5745 | void __iomem *maddr; |
96667f8a SV |
5746 | pte_t *ptep, pte; |
5747 | spinlock_t *ptl; | |
5748 | int offset = offset_in_page(addr); | |
5749 | int ret = -EINVAL; | |
5750 | ||
5751 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5752 | return -EINVAL; | |
5753 | ||
5754 | retry: | |
e913a8cd | 5755 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a | 5756 | return -EINVAL; |
c33c7948 | 5757 | pte = ptep_get(ptep); |
96667f8a | 5758 | pte_unmap_unlock(ptep, ptl); |
28b2ee20 | 5759 | |
96667f8a SV |
5760 | prot = pgprot_val(pte_pgprot(pte)); |
5761 | phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | |
5762 | ||
5763 | if ((write & FOLL_WRITE) && !pte_write(pte)) | |
28b2ee20 RR |
5764 | return -EINVAL; |
5765 | ||
9cb12d7b | 5766 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 5767 | if (!maddr) |
5768 | return -ENOMEM; | |
5769 | ||
e913a8cd | 5770 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
5771 | goto out_unmap; |
5772 | ||
c33c7948 | 5773 | if (!pte_same(pte, ptep_get(ptep))) { |
96667f8a SV |
5774 | pte_unmap_unlock(ptep, ptl); |
5775 | iounmap(maddr); | |
5776 | ||
5777 | goto retry; | |
5778 | } | |
5779 | ||
28b2ee20 RR |
5780 | if (write) |
5781 | memcpy_toio(maddr + offset, buf, len); | |
5782 | else | |
5783 | memcpy_fromio(buf, maddr + offset, len); | |
96667f8a SV |
5784 | ret = len; |
5785 | pte_unmap_unlock(ptep, ptl); | |
5786 | out_unmap: | |
28b2ee20 RR |
5787 | iounmap(maddr); |
5788 | ||
96667f8a | 5789 | return ret; |
28b2ee20 | 5790 | } |
5a73633e | 5791 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
5792 | #endif |
5793 | ||
0ec76a11 | 5794 | /* |
d3f5ffca | 5795 | * Access another process' address space as given in mm. |
0ec76a11 | 5796 | */ |
c43cfa42 LS |
5797 | static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, |
5798 | void *buf, int len, unsigned int gup_flags) | |
0ec76a11 | 5799 | { |
0ec76a11 | 5800 | void *old_buf = buf; |
442486ec | 5801 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 5802 | |
d8ed45c5 | 5803 | if (mmap_read_lock_killable(mm)) |
1e426fe2 KK |
5804 | return 0; |
5805 | ||
22883973 KS |
5806 | /* Untag the address before looking up the VMA */ |
5807 | addr = untagged_addr_remote(mm, addr); | |
5808 | ||
eee9c708 LT |
5809 | /* Avoid triggering the temporary warning in __get_user_pages */ |
5810 | if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) | |
5811 | return 0; | |
5812 | ||
183ff22b | 5813 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 | 5814 | while (len) { |
ca5e8632 | 5815 | int bytes, offset; |
0ec76a11 | 5816 | void *maddr; |
ca5e8632 LS |
5817 | struct vm_area_struct *vma = NULL; |
5818 | struct page *page = get_user_page_vma_remote(mm, addr, | |
5819 | gup_flags, &vma); | |
0ec76a11 | 5820 | |
6a1960b8 | 5821 | if (IS_ERR(page)) { |
9471f1f2 LT |
5822 | /* We might need to expand the stack to access it */ |
5823 | vma = vma_lookup(mm, addr); | |
5824 | if (!vma) { | |
5825 | vma = expand_stack(mm, addr); | |
5826 | ||
5827 | /* mmap_lock was dropped on failure */ | |
5828 | if (!vma) | |
5829 | return buf - old_buf; | |
5830 | ||
5831 | /* Try again if stack expansion worked */ | |
5832 | continue; | |
5833 | } | |
5834 | ||
28b2ee20 RR |
5835 | /* |
5836 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
5837 | * we can access using slightly different code. | |
5838 | */ | |
9471f1f2 LT |
5839 | bytes = 0; |
5840 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
28b2ee20 | 5841 | if (vma->vm_ops && vma->vm_ops->access) |
9471f1f2 LT |
5842 | bytes = vma->vm_ops->access(vma, addr, buf, |
5843 | len, write); | |
dbffcd03 | 5844 | #endif |
9471f1f2 LT |
5845 | if (bytes <= 0) |
5846 | break; | |
0ec76a11 | 5847 | } else { |
28b2ee20 RR |
5848 | bytes = len; |
5849 | offset = addr & (PAGE_SIZE-1); | |
5850 | if (bytes > PAGE_SIZE-offset) | |
5851 | bytes = PAGE_SIZE-offset; | |
5852 | ||
5853 | maddr = kmap(page); | |
5854 | if (write) { | |
5855 | copy_to_user_page(vma, page, addr, | |
5856 | maddr + offset, buf, bytes); | |
5857 | set_page_dirty_lock(page); | |
5858 | } else { | |
5859 | copy_from_user_page(vma, page, addr, | |
5860 | buf, maddr + offset, bytes); | |
5861 | } | |
5862 | kunmap(page); | |
09cbfeaf | 5863 | put_page(page); |
0ec76a11 | 5864 | } |
0ec76a11 DH |
5865 | len -= bytes; |
5866 | buf += bytes; | |
5867 | addr += bytes; | |
5868 | } | |
d8ed45c5 | 5869 | mmap_read_unlock(mm); |
0ec76a11 DH |
5870 | |
5871 | return buf - old_buf; | |
5872 | } | |
03252919 | 5873 | |
5ddd36b9 | 5874 | /** |
ae91dbfc | 5875 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
5876 | * @mm: the mm_struct of the target address space |
5877 | * @addr: start address to access | |
5878 | * @buf: source or destination buffer | |
5879 | * @len: number of bytes to transfer | |
6347e8d5 | 5880 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
5881 | * |
5882 | * The caller must hold a reference on @mm. | |
a862f68a MR |
5883 | * |
5884 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
5885 | */ |
5886 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 5887 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 5888 | { |
d3f5ffca | 5889 | return __access_remote_vm(mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
5890 | } |
5891 | ||
206cb636 SW |
5892 | /* |
5893 | * Access another process' address space. | |
5894 | * Source/target buffer must be kernel space, | |
5895 | * Do not walk the page table directly, use get_user_pages | |
5896 | */ | |
5897 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 5898 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
5899 | { |
5900 | struct mm_struct *mm; | |
5901 | int ret; | |
5902 | ||
5903 | mm = get_task_mm(tsk); | |
5904 | if (!mm) | |
5905 | return 0; | |
5906 | ||
d3f5ffca | 5907 | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); |
442486ec | 5908 | |
206cb636 SW |
5909 | mmput(mm); |
5910 | ||
5911 | return ret; | |
5912 | } | |
fcd35857 | 5913 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 5914 | |
03252919 AK |
5915 | /* |
5916 | * Print the name of a VMA. | |
5917 | */ | |
5918 | void print_vma_addr(char *prefix, unsigned long ip) | |
5919 | { | |
5920 | struct mm_struct *mm = current->mm; | |
5921 | struct vm_area_struct *vma; | |
5922 | ||
e8bff74a | 5923 | /* |
0a7f682d | 5924 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 5925 | */ |
d8ed45c5 | 5926 | if (!mmap_read_trylock(mm)) |
e8bff74a IM |
5927 | return; |
5928 | ||
03252919 AK |
5929 | vma = find_vma(mm, ip); |
5930 | if (vma && vma->vm_file) { | |
5931 | struct file *f = vma->vm_file; | |
0a7f682d | 5932 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 5933 | if (buf) { |
2fbc57c5 | 5934 | char *p; |
03252919 | 5935 | |
9bf39ab2 | 5936 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
5937 | if (IS_ERR(p)) |
5938 | p = "?"; | |
2fbc57c5 | 5939 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
5940 | vma->vm_start, |
5941 | vma->vm_end - vma->vm_start); | |
5942 | free_page((unsigned long)buf); | |
5943 | } | |
5944 | } | |
d8ed45c5 | 5945 | mmap_read_unlock(mm); |
03252919 | 5946 | } |
3ee1afa3 | 5947 | |
662bbcb2 | 5948 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 5949 | void __might_fault(const char *file, int line) |
3ee1afa3 | 5950 | { |
9ec23531 | 5951 | if (pagefault_disabled()) |
662bbcb2 | 5952 | return; |
42a38756 | 5953 | __might_sleep(file, line); |
9ec23531 | 5954 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
662bbcb2 | 5955 | if (current->mm) |
da1c55f1 | 5956 | might_lock_read(¤t->mm->mmap_lock); |
9ec23531 | 5957 | #endif |
3ee1afa3 | 5958 | } |
9ec23531 | 5959 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 5960 | #endif |
47ad8475 AA |
5961 | |
5962 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
5963 | /* |
5964 | * Process all subpages of the specified huge page with the specified | |
5965 | * operation. The target subpage will be processed last to keep its | |
5966 | * cache lines hot. | |
5967 | */ | |
1cb9dc4b | 5968 | static inline int process_huge_page( |
c6ddfb6c | 5969 | unsigned long addr_hint, unsigned int pages_per_huge_page, |
1cb9dc4b | 5970 | int (*process_subpage)(unsigned long addr, int idx, void *arg), |
c6ddfb6c | 5971 | void *arg) |
47ad8475 | 5972 | { |
1cb9dc4b | 5973 | int i, n, base, l, ret; |
c79b57e4 YH |
5974 | unsigned long addr = addr_hint & |
5975 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 5976 | |
c6ddfb6c | 5977 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 5978 | might_sleep(); |
c79b57e4 YH |
5979 | n = (addr_hint - addr) / PAGE_SIZE; |
5980 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 5981 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
5982 | base = 0; |
5983 | l = n; | |
c6ddfb6c | 5984 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
5985 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
5986 | cond_resched(); | |
1cb9dc4b LS |
5987 | ret = process_subpage(addr + i * PAGE_SIZE, i, arg); |
5988 | if (ret) | |
5989 | return ret; | |
c79b57e4 YH |
5990 | } |
5991 | } else { | |
c6ddfb6c | 5992 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
5993 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
5994 | l = pages_per_huge_page - n; | |
c6ddfb6c | 5995 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
5996 | for (i = 0; i < base; i++) { |
5997 | cond_resched(); | |
1cb9dc4b LS |
5998 | ret = process_subpage(addr + i * PAGE_SIZE, i, arg); |
5999 | if (ret) | |
6000 | return ret; | |
c79b57e4 YH |
6001 | } |
6002 | } | |
6003 | /* | |
c6ddfb6c YH |
6004 | * Process remaining subpages in left-right-left-right pattern |
6005 | * towards the target subpage | |
c79b57e4 YH |
6006 | */ |
6007 | for (i = 0; i < l; i++) { | |
6008 | int left_idx = base + i; | |
6009 | int right_idx = base + 2 * l - 1 - i; | |
6010 | ||
6011 | cond_resched(); | |
1cb9dc4b LS |
6012 | ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
6013 | if (ret) | |
6014 | return ret; | |
47ad8475 | 6015 | cond_resched(); |
1cb9dc4b LS |
6016 | ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
6017 | if (ret) | |
6018 | return ret; | |
47ad8475 | 6019 | } |
1cb9dc4b | 6020 | return 0; |
47ad8475 AA |
6021 | } |
6022 | ||
c6ddfb6c YH |
6023 | static void clear_gigantic_page(struct page *page, |
6024 | unsigned long addr, | |
6025 | unsigned int pages_per_huge_page) | |
6026 | { | |
6027 | int i; | |
14455eab | 6028 | struct page *p; |
c6ddfb6c YH |
6029 | |
6030 | might_sleep(); | |
14455eab CL |
6031 | for (i = 0; i < pages_per_huge_page; i++) { |
6032 | p = nth_page(page, i); | |
c6ddfb6c YH |
6033 | cond_resched(); |
6034 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
6035 | } | |
6036 | } | |
6037 | ||
1cb9dc4b | 6038 | static int clear_subpage(unsigned long addr, int idx, void *arg) |
c6ddfb6c YH |
6039 | { |
6040 | struct page *page = arg; | |
6041 | ||
6042 | clear_user_highpage(page + idx, addr); | |
1cb9dc4b | 6043 | return 0; |
c6ddfb6c YH |
6044 | } |
6045 | ||
6046 | void clear_huge_page(struct page *page, | |
6047 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
6048 | { | |
6049 | unsigned long addr = addr_hint & | |
6050 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
6051 | ||
6052 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
6053 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
6054 | return; | |
6055 | } | |
6056 | ||
6057 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
6058 | } | |
6059 | ||
1cb9dc4b | 6060 | static int copy_user_gigantic_page(struct folio *dst, struct folio *src, |
c0e8150e Z |
6061 | unsigned long addr, |
6062 | struct vm_area_struct *vma, | |
6063 | unsigned int pages_per_huge_page) | |
47ad8475 AA |
6064 | { |
6065 | int i; | |
c0e8150e Z |
6066 | struct page *dst_page; |
6067 | struct page *src_page; | |
47ad8475 | 6068 | |
14455eab | 6069 | for (i = 0; i < pages_per_huge_page; i++) { |
c0e8150e Z |
6070 | dst_page = folio_page(dst, i); |
6071 | src_page = folio_page(src, i); | |
14455eab | 6072 | |
47ad8475 | 6073 | cond_resched(); |
1cb9dc4b LS |
6074 | if (copy_mc_user_highpage(dst_page, src_page, |
6075 | addr + i*PAGE_SIZE, vma)) { | |
6076 | memory_failure_queue(page_to_pfn(src_page), 0); | |
6077 | return -EHWPOISON; | |
6078 | } | |
47ad8475 | 6079 | } |
1cb9dc4b | 6080 | return 0; |
47ad8475 AA |
6081 | } |
6082 | ||
c9f4cd71 YH |
6083 | struct copy_subpage_arg { |
6084 | struct page *dst; | |
6085 | struct page *src; | |
6086 | struct vm_area_struct *vma; | |
6087 | }; | |
6088 | ||
1cb9dc4b | 6089 | static int copy_subpage(unsigned long addr, int idx, void *arg) |
c9f4cd71 YH |
6090 | { |
6091 | struct copy_subpage_arg *copy_arg = arg; | |
6092 | ||
1cb9dc4b LS |
6093 | if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, |
6094 | addr, copy_arg->vma)) { | |
6095 | memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); | |
6096 | return -EHWPOISON; | |
6097 | } | |
6098 | return 0; | |
c9f4cd71 YH |
6099 | } |
6100 | ||
1cb9dc4b LS |
6101 | int copy_user_large_folio(struct folio *dst, struct folio *src, |
6102 | unsigned long addr_hint, struct vm_area_struct *vma) | |
47ad8475 | 6103 | { |
c0e8150e | 6104 | unsigned int pages_per_huge_page = folio_nr_pages(dst); |
c9f4cd71 YH |
6105 | unsigned long addr = addr_hint & |
6106 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
6107 | struct copy_subpage_arg arg = { | |
c0e8150e Z |
6108 | .dst = &dst->page, |
6109 | .src = &src->page, | |
c9f4cd71 YH |
6110 | .vma = vma, |
6111 | }; | |
47ad8475 | 6112 | |
1cb9dc4b LS |
6113 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) |
6114 | return copy_user_gigantic_page(dst, src, addr, vma, | |
6115 | pages_per_huge_page); | |
47ad8475 | 6116 | |
1cb9dc4b | 6117 | return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 6118 | } |
fa4d75c1 | 6119 | |
e87340ca Z |
6120 | long copy_folio_from_user(struct folio *dst_folio, |
6121 | const void __user *usr_src, | |
6122 | bool allow_pagefault) | |
fa4d75c1 | 6123 | { |
e87340ca | 6124 | void *kaddr; |
fa4d75c1 | 6125 | unsigned long i, rc = 0; |
e87340ca Z |
6126 | unsigned int nr_pages = folio_nr_pages(dst_folio); |
6127 | unsigned long ret_val = nr_pages * PAGE_SIZE; | |
14455eab | 6128 | struct page *subpage; |
fa4d75c1 | 6129 | |
e87340ca Z |
6130 | for (i = 0; i < nr_pages; i++) { |
6131 | subpage = folio_page(dst_folio, i); | |
6132 | kaddr = kmap_local_page(subpage); | |
0d508c1f Z |
6133 | if (!allow_pagefault) |
6134 | pagefault_disable(); | |
e87340ca | 6135 | rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); |
0d508c1f Z |
6136 | if (!allow_pagefault) |
6137 | pagefault_enable(); | |
e87340ca | 6138 | kunmap_local(kaddr); |
fa4d75c1 MK |
6139 | |
6140 | ret_val -= (PAGE_SIZE - rc); | |
6141 | if (rc) | |
6142 | break; | |
6143 | ||
e763243c MS |
6144 | flush_dcache_page(subpage); |
6145 | ||
fa4d75c1 MK |
6146 | cond_resched(); |
6147 | } | |
6148 | return ret_val; | |
6149 | } | |
47ad8475 | 6150 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 6151 | |
40b64acd | 6152 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
6153 | |
6154 | static struct kmem_cache *page_ptl_cachep; | |
6155 | ||
6156 | void __init ptlock_cache_init(void) | |
6157 | { | |
6158 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
6159 | SLAB_PANIC, NULL); | |
6160 | } | |
6161 | ||
f5ecca06 | 6162 | bool ptlock_alloc(struct ptdesc *ptdesc) |
49076ec2 KS |
6163 | { |
6164 | spinlock_t *ptl; | |
6165 | ||
b35f1819 | 6166 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
6167 | if (!ptl) |
6168 | return false; | |
f5ecca06 | 6169 | ptdesc->ptl = ptl; |
49076ec2 KS |
6170 | return true; |
6171 | } | |
6172 | ||
6ed1b8a0 | 6173 | void ptlock_free(struct ptdesc *ptdesc) |
49076ec2 | 6174 | { |
6ed1b8a0 | 6175 | kmem_cache_free(page_ptl_cachep, ptdesc->ptl); |
49076ec2 KS |
6176 | } |
6177 | #endif |