]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 34 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
35 | * |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * ([email protected]) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
36090def | 44 | #include <linux/mm_inline.h> |
6e84f315 | 45 | #include <linux/sched/mm.h> |
f7ccbae4 | 46 | #include <linux/sched/coredump.h> |
6a3827d7 | 47 | #include <linux/sched/numa_balancing.h> |
29930025 | 48 | #include <linux/sched/task.h> |
1da177e4 LT |
49 | #include <linux/hugetlb.h> |
50 | #include <linux/mman.h> | |
51 | #include <linux/swap.h> | |
52 | #include <linux/highmem.h> | |
53 | #include <linux/pagemap.h> | |
5042db43 | 54 | #include <linux/memremap.h> |
b073d7f8 | 55 | #include <linux/kmsan.h> |
9a840895 | 56 | #include <linux/ksm.h> |
1da177e4 | 57 | #include <linux/rmap.h> |
b95f1b31 | 58 | #include <linux/export.h> |
0ff92245 | 59 | #include <linux/delayacct.h> |
1da177e4 | 60 | #include <linux/init.h> |
01c8f1c4 | 61 | #include <linux/pfn_t.h> |
edc79b2a | 62 | #include <linux/writeback.h> |
8a9f3ccd | 63 | #include <linux/memcontrol.h> |
cddb8a5c | 64 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
65 | #include <linux/swapops.h> |
66 | #include <linux/elf.h> | |
5a0e3ad6 | 67 | #include <linux/gfp.h> |
4daae3b4 | 68 | #include <linux/migrate.h> |
2fbc57c5 | 69 | #include <linux/string.h> |
467b171a | 70 | #include <linux/memory-tiers.h> |
1592eef0 | 71 | #include <linux/debugfs.h> |
6b251fc9 | 72 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 73 | #include <linux/dax.h> |
6b31d595 | 74 | #include <linux/oom.h> |
98fa15f3 | 75 | #include <linux/numa.h> |
bce617ed PX |
76 | #include <linux/perf_event.h> |
77 | #include <linux/ptrace.h> | |
e80d3909 | 78 | #include <linux/vmalloc.h> |
33024536 | 79 | #include <linux/sched/sysctl.h> |
1da177e4 | 80 | |
b3d1411b JFG |
81 | #include <trace/events/kmem.h> |
82 | ||
6952b61d | 83 | #include <asm/io.h> |
33a709b2 | 84 | #include <asm/mmu_context.h> |
1da177e4 | 85 | #include <asm/pgalloc.h> |
7c0f6ba6 | 86 | #include <linux/uaccess.h> |
1da177e4 LT |
87 | #include <asm/tlb.h> |
88 | #include <asm/tlbflush.h> | |
1da177e4 | 89 | |
e80d3909 | 90 | #include "pgalloc-track.h" |
42b77728 | 91 | #include "internal.h" |
014bb1de | 92 | #include "swap.h" |
42b77728 | 93 | |
af27d940 | 94 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 95 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
96 | #endif |
97 | ||
a9ee6cf5 | 98 | #ifndef CONFIG_NUMA |
1da177e4 | 99 | unsigned long max_mapnr; |
1da177e4 | 100 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
101 | |
102 | struct page *mem_map; | |
1da177e4 LT |
103 | EXPORT_SYMBOL(mem_map); |
104 | #endif | |
105 | ||
5c041f5d PX |
106 | static vm_fault_t do_fault(struct vm_fault *vmf); |
107 | ||
1da177e4 LT |
108 | /* |
109 | * A number of key systems in x86 including ioremap() rely on the assumption | |
110 | * that high_memory defines the upper bound on direct map memory, then end | |
111 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
112 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
113 | * and ZONE_HIGHMEM. | |
114 | */ | |
166f61b9 | 115 | void *high_memory; |
1da177e4 | 116 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 117 | |
32a93233 IM |
118 | /* |
119 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
120 | * | |
121 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
122 | * as ancient (libc5 based) binaries can segfault. ) | |
123 | */ | |
124 | int randomize_va_space __read_mostly = | |
125 | #ifdef CONFIG_COMPAT_BRK | |
126 | 1; | |
127 | #else | |
128 | 2; | |
129 | #endif | |
a62eaf15 | 130 | |
46bdb427 WD |
131 | #ifndef arch_wants_old_prefaulted_pte |
132 | static inline bool arch_wants_old_prefaulted_pte(void) | |
133 | { | |
134 | /* | |
135 | * Transitioning a PTE from 'old' to 'young' can be expensive on | |
136 | * some architectures, even if it's performed in hardware. By | |
137 | * default, "false" means prefaulted entries will be 'young'. | |
138 | */ | |
139 | return false; | |
140 | } | |
141 | #endif | |
142 | ||
a62eaf15 AK |
143 | static int __init disable_randmaps(char *s) |
144 | { | |
145 | randomize_va_space = 0; | |
9b41046c | 146 | return 1; |
a62eaf15 AK |
147 | } |
148 | __setup("norandmaps", disable_randmaps); | |
149 | ||
62eede62 | 150 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
151 | EXPORT_SYMBOL(zero_pfn); |
152 | ||
166f61b9 TH |
153 | unsigned long highest_memmap_pfn __read_mostly; |
154 | ||
a13ea5b7 HD |
155 | /* |
156 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
157 | */ | |
158 | static int __init init_zero_pfn(void) | |
159 | { | |
160 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
161 | return 0; | |
162 | } | |
e720e7d0 | 163 | early_initcall(init_zero_pfn); |
a62eaf15 | 164 | |
f1a79412 | 165 | void mm_trace_rss_stat(struct mm_struct *mm, int member) |
b3d1411b | 166 | { |
f1a79412 | 167 | trace_rss_stat(mm, member); |
b3d1411b | 168 | } |
d559db08 | 169 | |
1da177e4 LT |
170 | /* |
171 | * Note: this doesn't free the actual pages themselves. That | |
172 | * has been handled earlier when unmapping all the memory regions. | |
173 | */ | |
9e1b32ca BH |
174 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
175 | unsigned long addr) | |
1da177e4 | 176 | { |
2f569afd | 177 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 178 | pmd_clear(pmd); |
9e1b32ca | 179 | pte_free_tlb(tlb, token, addr); |
c4812909 | 180 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
181 | } |
182 | ||
e0da382c HD |
183 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
184 | unsigned long addr, unsigned long end, | |
185 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
186 | { |
187 | pmd_t *pmd; | |
188 | unsigned long next; | |
e0da382c | 189 | unsigned long start; |
1da177e4 | 190 | |
e0da382c | 191 | start = addr; |
1da177e4 | 192 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
193 | do { |
194 | next = pmd_addr_end(addr, end); | |
195 | if (pmd_none_or_clear_bad(pmd)) | |
196 | continue; | |
9e1b32ca | 197 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
198 | } while (pmd++, addr = next, addr != end); |
199 | ||
e0da382c HD |
200 | start &= PUD_MASK; |
201 | if (start < floor) | |
202 | return; | |
203 | if (ceiling) { | |
204 | ceiling &= PUD_MASK; | |
205 | if (!ceiling) | |
206 | return; | |
1da177e4 | 207 | } |
e0da382c HD |
208 | if (end - 1 > ceiling - 1) |
209 | return; | |
210 | ||
211 | pmd = pmd_offset(pud, start); | |
212 | pud_clear(pud); | |
9e1b32ca | 213 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 214 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
215 | } |
216 | ||
c2febafc | 217 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
218 | unsigned long addr, unsigned long end, |
219 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
220 | { |
221 | pud_t *pud; | |
222 | unsigned long next; | |
e0da382c | 223 | unsigned long start; |
1da177e4 | 224 | |
e0da382c | 225 | start = addr; |
c2febafc | 226 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
227 | do { |
228 | next = pud_addr_end(addr, end); | |
229 | if (pud_none_or_clear_bad(pud)) | |
230 | continue; | |
e0da382c | 231 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
232 | } while (pud++, addr = next, addr != end); |
233 | ||
c2febafc KS |
234 | start &= P4D_MASK; |
235 | if (start < floor) | |
236 | return; | |
237 | if (ceiling) { | |
238 | ceiling &= P4D_MASK; | |
239 | if (!ceiling) | |
240 | return; | |
241 | } | |
242 | if (end - 1 > ceiling - 1) | |
243 | return; | |
244 | ||
245 | pud = pud_offset(p4d, start); | |
246 | p4d_clear(p4d); | |
247 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 248 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
249 | } |
250 | ||
251 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
252 | unsigned long addr, unsigned long end, | |
253 | unsigned long floor, unsigned long ceiling) | |
254 | { | |
255 | p4d_t *p4d; | |
256 | unsigned long next; | |
257 | unsigned long start; | |
258 | ||
259 | start = addr; | |
260 | p4d = p4d_offset(pgd, addr); | |
261 | do { | |
262 | next = p4d_addr_end(addr, end); | |
263 | if (p4d_none_or_clear_bad(p4d)) | |
264 | continue; | |
265 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
266 | } while (p4d++, addr = next, addr != end); | |
267 | ||
e0da382c HD |
268 | start &= PGDIR_MASK; |
269 | if (start < floor) | |
270 | return; | |
271 | if (ceiling) { | |
272 | ceiling &= PGDIR_MASK; | |
273 | if (!ceiling) | |
274 | return; | |
1da177e4 | 275 | } |
e0da382c HD |
276 | if (end - 1 > ceiling - 1) |
277 | return; | |
278 | ||
c2febafc | 279 | p4d = p4d_offset(pgd, start); |
e0da382c | 280 | pgd_clear(pgd); |
c2febafc | 281 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
282 | } |
283 | ||
284 | /* | |
e0da382c | 285 | * This function frees user-level page tables of a process. |
1da177e4 | 286 | */ |
42b77728 | 287 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
288 | unsigned long addr, unsigned long end, |
289 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
290 | { |
291 | pgd_t *pgd; | |
292 | unsigned long next; | |
e0da382c HD |
293 | |
294 | /* | |
295 | * The next few lines have given us lots of grief... | |
296 | * | |
297 | * Why are we testing PMD* at this top level? Because often | |
298 | * there will be no work to do at all, and we'd prefer not to | |
299 | * go all the way down to the bottom just to discover that. | |
300 | * | |
301 | * Why all these "- 1"s? Because 0 represents both the bottom | |
302 | * of the address space and the top of it (using -1 for the | |
303 | * top wouldn't help much: the masks would do the wrong thing). | |
304 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
305 | * the address space, but end 0 and ceiling 0 refer to the top | |
306 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
307 | * that end 0 case should be mythical). | |
308 | * | |
309 | * Wherever addr is brought up or ceiling brought down, we must | |
310 | * be careful to reject "the opposite 0" before it confuses the | |
311 | * subsequent tests. But what about where end is brought down | |
312 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
313 | * | |
314 | * Whereas we round start (addr) and ceiling down, by different | |
315 | * masks at different levels, in order to test whether a table | |
316 | * now has no other vmas using it, so can be freed, we don't | |
317 | * bother to round floor or end up - the tests don't need that. | |
318 | */ | |
1da177e4 | 319 | |
e0da382c HD |
320 | addr &= PMD_MASK; |
321 | if (addr < floor) { | |
322 | addr += PMD_SIZE; | |
323 | if (!addr) | |
324 | return; | |
325 | } | |
326 | if (ceiling) { | |
327 | ceiling &= PMD_MASK; | |
328 | if (!ceiling) | |
329 | return; | |
330 | } | |
331 | if (end - 1 > ceiling - 1) | |
332 | end -= PMD_SIZE; | |
333 | if (addr > end - 1) | |
334 | return; | |
07e32661 AK |
335 | /* |
336 | * We add page table cache pages with PAGE_SIZE, | |
337 | * (see pte_free_tlb()), flush the tlb if we need | |
338 | */ | |
ed6a7935 | 339 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 340 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
341 | do { |
342 | next = pgd_addr_end(addr, end); | |
343 | if (pgd_none_or_clear_bad(pgd)) | |
344 | continue; | |
c2febafc | 345 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 346 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
347 | } |
348 | ||
763ecb03 LH |
349 | void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, |
350 | struct vm_area_struct *vma, unsigned long floor, | |
351 | unsigned long ceiling) | |
e0da382c | 352 | { |
763ecb03 LH |
353 | MA_STATE(mas, mt, vma->vm_end, vma->vm_end); |
354 | ||
355 | do { | |
e0da382c | 356 | unsigned long addr = vma->vm_start; |
763ecb03 LH |
357 | struct vm_area_struct *next; |
358 | ||
359 | /* | |
360 | * Note: USER_PGTABLES_CEILING may be passed as ceiling and may | |
361 | * be 0. This will underflow and is okay. | |
362 | */ | |
363 | next = mas_find(&mas, ceiling - 1); | |
e0da382c | 364 | |
8f4f8c16 | 365 | /* |
25d9e2d1 NP |
366 | * Hide vma from rmap and truncate_pagecache before freeing |
367 | * pgtables | |
8f4f8c16 | 368 | */ |
5beb4930 | 369 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
370 | unlink_file_vma(vma); |
371 | ||
9da61aef | 372 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 373 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 374 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
375 | } else { |
376 | /* | |
377 | * Optimization: gather nearby vmas into one call down | |
378 | */ | |
379 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 380 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 | 381 | vma = next; |
763ecb03 | 382 | next = mas_find(&mas, ceiling - 1); |
5beb4930 | 383 | unlink_anon_vmas(vma); |
8f4f8c16 | 384 | unlink_file_vma(vma); |
3bf5ee95 HD |
385 | } |
386 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 387 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 388 | } |
e0da382c | 389 | vma = next; |
763ecb03 | 390 | } while (vma); |
1da177e4 LT |
391 | } |
392 | ||
03c4f204 | 393 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) |
1da177e4 | 394 | { |
03c4f204 | 395 | spinlock_t *ptl = pmd_lock(mm, pmd); |
1bb3630e | 396 | |
8ac1f832 | 397 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 398 | mm_inc_nr_ptes(mm); |
ed33b5a6 QZ |
399 | /* |
400 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
401 | * visible before the pte is made visible to other CPUs by being | |
402 | * put into page tables. | |
403 | * | |
404 | * The other side of the story is the pointer chasing in the page | |
405 | * table walking code (when walking the page table without locking; | |
406 | * ie. most of the time). Fortunately, these data accesses consist | |
407 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
408 | * being the notable exception) will already guarantee loads are | |
409 | * seen in-order. See the alpha page table accessors for the | |
410 | * smp_rmb() barriers in page table walking code. | |
411 | */ | |
412 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
03c4f204 QZ |
413 | pmd_populate(mm, pmd, *pte); |
414 | *pte = NULL; | |
4b471e88 | 415 | } |
c4088ebd | 416 | spin_unlock(ptl); |
03c4f204 QZ |
417 | } |
418 | ||
4cf58924 | 419 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 420 | { |
4cf58924 | 421 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
422 | if (!new) |
423 | return -ENOMEM; | |
424 | ||
03c4f204 | 425 | pmd_install(mm, pmd, &new); |
2f569afd MS |
426 | if (new) |
427 | pte_free(mm, new); | |
1bb3630e | 428 | return 0; |
1da177e4 LT |
429 | } |
430 | ||
4cf58924 | 431 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 432 | { |
4cf58924 | 433 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
434 | if (!new) |
435 | return -ENOMEM; | |
436 | ||
437 | spin_lock(&init_mm.page_table_lock); | |
8ac1f832 | 438 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
ed33b5a6 | 439 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 440 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 441 | new = NULL; |
4b471e88 | 442 | } |
1bb3630e | 443 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
444 | if (new) |
445 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 446 | return 0; |
1da177e4 LT |
447 | } |
448 | ||
d559db08 KH |
449 | static inline void init_rss_vec(int *rss) |
450 | { | |
451 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
452 | } | |
453 | ||
454 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 455 | { |
d559db08 KH |
456 | int i; |
457 | ||
34e55232 | 458 | if (current->mm == mm) |
05af2e10 | 459 | sync_mm_rss(mm); |
d559db08 KH |
460 | for (i = 0; i < NR_MM_COUNTERS; i++) |
461 | if (rss[i]) | |
462 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
463 | } |
464 | ||
b5810039 | 465 | /* |
6aab341e LT |
466 | * This function is called to print an error when a bad pte |
467 | * is found. For example, we might have a PFN-mapped pte in | |
468 | * a region that doesn't allow it. | |
b5810039 NP |
469 | * |
470 | * The calling function must still handle the error. | |
471 | */ | |
3dc14741 HD |
472 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
473 | pte_t pte, struct page *page) | |
b5810039 | 474 | { |
3dc14741 | 475 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
476 | p4d_t *p4d = p4d_offset(pgd, addr); |
477 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
478 | pmd_t *pmd = pmd_offset(pud, addr); |
479 | struct address_space *mapping; | |
480 | pgoff_t index; | |
d936cf9b HD |
481 | static unsigned long resume; |
482 | static unsigned long nr_shown; | |
483 | static unsigned long nr_unshown; | |
484 | ||
485 | /* | |
486 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
487 | * or allow a steady drip of one report per second. | |
488 | */ | |
489 | if (nr_shown == 60) { | |
490 | if (time_before(jiffies, resume)) { | |
491 | nr_unshown++; | |
492 | return; | |
493 | } | |
494 | if (nr_unshown) { | |
1170532b JP |
495 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
496 | nr_unshown); | |
d936cf9b HD |
497 | nr_unshown = 0; |
498 | } | |
499 | nr_shown = 0; | |
500 | } | |
501 | if (nr_shown++ == 0) | |
502 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
503 | |
504 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
505 | index = linear_page_index(vma, addr); | |
506 | ||
1170532b JP |
507 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
508 | current->comm, | |
509 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 510 | if (page) |
f0b791a3 | 511 | dump_page(page, "bad pte"); |
6aa9b8b2 | 512 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", |
1170532b | 513 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
7e0a1265 | 514 | pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", |
2682582a KK |
515 | vma->vm_file, |
516 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
517 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
7e0a1265 | 518 | mapping ? mapping->a_ops->read_folio : NULL); |
b5810039 | 519 | dump_stack(); |
373d4d09 | 520 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
521 | } |
522 | ||
ee498ed7 | 523 | /* |
7e675137 | 524 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 525 | * |
7e675137 NP |
526 | * "Special" mappings do not wish to be associated with a "struct page" (either |
527 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
528 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 529 | * |
7e675137 NP |
530 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
531 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
532 | * may not have a spare pte bit, which requires a more complicated scheme, | |
533 | * described below. | |
534 | * | |
535 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
536 | * special mapping (even if there are underlying and valid "struct pages"). | |
537 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 538 | * |
b379d790 JH |
539 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
540 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
541 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
542 | * mapping will always honor the rule | |
6aab341e LT |
543 | * |
544 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
545 | * | |
7e675137 NP |
546 | * And for normal mappings this is false. |
547 | * | |
548 | * This restricts such mappings to be a linear translation from virtual address | |
549 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
550 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
551 | * special (because none can have been COWed). | |
b379d790 | 552 | * |
b379d790 | 553 | * |
7e675137 | 554 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
555 | * |
556 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
557 | * page" backing, however the difference is that _all_ pages with a struct | |
558 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
559 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
560 | * (which can be slower and simply not an option for some PFNMAP users). The | |
561 | * advantage is that we don't have to follow the strict linearity rule of | |
562 | * PFNMAP mappings in order to support COWable mappings. | |
563 | * | |
ee498ed7 | 564 | */ |
25b2995a CH |
565 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
566 | pte_t pte) | |
ee498ed7 | 567 | { |
22b31eec | 568 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 569 | |
00b3a331 | 570 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 571 | if (likely(!pte_special(pte))) |
22b31eec | 572 | goto check_pfn; |
667a0a06 DV |
573 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
574 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
575 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
576 | return NULL; | |
df6ad698 JG |
577 | if (is_zero_pfn(pfn)) |
578 | return NULL; | |
e1fb4a08 | 579 | if (pte_devmap(pte)) |
3218f871 AS |
580 | /* |
581 | * NOTE: New users of ZONE_DEVICE will not set pte_devmap() | |
582 | * and will have refcounts incremented on their struct pages | |
583 | * when they are inserted into PTEs, thus they are safe to | |
584 | * return here. Legacy ZONE_DEVICE pages that set pte_devmap() | |
585 | * do not have refcounts. Example of legacy ZONE_DEVICE is | |
586 | * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. | |
587 | */ | |
e1fb4a08 DJ |
588 | return NULL; |
589 | ||
df6ad698 | 590 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
591 | return NULL; |
592 | } | |
593 | ||
00b3a331 | 594 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 595 | |
b379d790 JH |
596 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
597 | if (vma->vm_flags & VM_MIXEDMAP) { | |
598 | if (!pfn_valid(pfn)) | |
599 | return NULL; | |
600 | goto out; | |
601 | } else { | |
7e675137 NP |
602 | unsigned long off; |
603 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
604 | if (pfn == vma->vm_pgoff + off) |
605 | return NULL; | |
606 | if (!is_cow_mapping(vma->vm_flags)) | |
607 | return NULL; | |
608 | } | |
6aab341e LT |
609 | } |
610 | ||
b38af472 HD |
611 | if (is_zero_pfn(pfn)) |
612 | return NULL; | |
00b3a331 | 613 | |
22b31eec HD |
614 | check_pfn: |
615 | if (unlikely(pfn > highest_memmap_pfn)) { | |
616 | print_bad_pte(vma, addr, pte, NULL); | |
617 | return NULL; | |
618 | } | |
6aab341e LT |
619 | |
620 | /* | |
7e675137 | 621 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 622 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 623 | */ |
b379d790 | 624 | out: |
6aab341e | 625 | return pfn_to_page(pfn); |
ee498ed7 HD |
626 | } |
627 | ||
318e9342 VMO |
628 | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, |
629 | pte_t pte) | |
630 | { | |
631 | struct page *page = vm_normal_page(vma, addr, pte); | |
632 | ||
633 | if (page) | |
634 | return page_folio(page); | |
635 | return NULL; | |
636 | } | |
637 | ||
28093f9f GS |
638 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
639 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
640 | pmd_t pmd) | |
641 | { | |
642 | unsigned long pfn = pmd_pfn(pmd); | |
643 | ||
644 | /* | |
645 | * There is no pmd_special() but there may be special pmds, e.g. | |
646 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 647 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
648 | */ |
649 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
650 | if (vma->vm_flags & VM_MIXEDMAP) { | |
651 | if (!pfn_valid(pfn)) | |
652 | return NULL; | |
653 | goto out; | |
654 | } else { | |
655 | unsigned long off; | |
656 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
657 | if (pfn == vma->vm_pgoff + off) | |
658 | return NULL; | |
659 | if (!is_cow_mapping(vma->vm_flags)) | |
660 | return NULL; | |
661 | } | |
662 | } | |
663 | ||
e1fb4a08 DJ |
664 | if (pmd_devmap(pmd)) |
665 | return NULL; | |
3cde287b | 666 | if (is_huge_zero_pmd(pmd)) |
28093f9f GS |
667 | return NULL; |
668 | if (unlikely(pfn > highest_memmap_pfn)) | |
669 | return NULL; | |
670 | ||
671 | /* | |
672 | * NOTE! We still have PageReserved() pages in the page tables. | |
673 | * eg. VDSO mappings can cause them to exist. | |
674 | */ | |
675 | out: | |
676 | return pfn_to_page(pfn); | |
677 | } | |
678 | #endif | |
679 | ||
b756a3b5 AP |
680 | static void restore_exclusive_pte(struct vm_area_struct *vma, |
681 | struct page *page, unsigned long address, | |
682 | pte_t *ptep) | |
683 | { | |
684 | pte_t pte; | |
685 | swp_entry_t entry; | |
686 | ||
687 | pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); | |
688 | if (pte_swp_soft_dirty(*ptep)) | |
689 | pte = pte_mksoft_dirty(pte); | |
690 | ||
691 | entry = pte_to_swp_entry(*ptep); | |
692 | if (pte_swp_uffd_wp(*ptep)) | |
693 | pte = pte_mkuffd_wp(pte); | |
694 | else if (is_writable_device_exclusive_entry(entry)) | |
695 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
696 | ||
6c287605 DH |
697 | VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); |
698 | ||
b756a3b5 AP |
699 | /* |
700 | * No need to take a page reference as one was already | |
701 | * created when the swap entry was made. | |
702 | */ | |
703 | if (PageAnon(page)) | |
f1e2db12 | 704 | page_add_anon_rmap(page, vma, address, RMAP_NONE); |
b756a3b5 AP |
705 | else |
706 | /* | |
707 | * Currently device exclusive access only supports anonymous | |
708 | * memory so the entry shouldn't point to a filebacked page. | |
709 | */ | |
4d8ff640 | 710 | WARN_ON_ONCE(1); |
b756a3b5 | 711 | |
1eba86c0 PT |
712 | set_pte_at(vma->vm_mm, address, ptep, pte); |
713 | ||
b756a3b5 AP |
714 | /* |
715 | * No need to invalidate - it was non-present before. However | |
716 | * secondary CPUs may have mappings that need invalidating. | |
717 | */ | |
718 | update_mmu_cache(vma, address, ptep); | |
719 | } | |
720 | ||
721 | /* | |
722 | * Tries to restore an exclusive pte if the page lock can be acquired without | |
723 | * sleeping. | |
724 | */ | |
725 | static int | |
726 | try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, | |
727 | unsigned long addr) | |
728 | { | |
729 | swp_entry_t entry = pte_to_swp_entry(*src_pte); | |
730 | struct page *page = pfn_swap_entry_to_page(entry); | |
731 | ||
732 | if (trylock_page(page)) { | |
733 | restore_exclusive_pte(vma, page, addr, src_pte); | |
734 | unlock_page(page); | |
735 | return 0; | |
736 | } | |
737 | ||
738 | return -EBUSY; | |
739 | } | |
740 | ||
1da177e4 LT |
741 | /* |
742 | * copy one vm_area from one task to the other. Assumes the page tables | |
743 | * already present in the new task to be cleared in the whole range | |
744 | * covered by this vma. | |
1da177e4 LT |
745 | */ |
746 | ||
df3a57d1 LT |
747 | static unsigned long |
748 | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
8f34f1ea PX |
749 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, |
750 | struct vm_area_struct *src_vma, unsigned long addr, int *rss) | |
1da177e4 | 751 | { |
8f34f1ea | 752 | unsigned long vm_flags = dst_vma->vm_flags; |
1da177e4 LT |
753 | pte_t pte = *src_pte; |
754 | struct page *page; | |
df3a57d1 LT |
755 | swp_entry_t entry = pte_to_swp_entry(pte); |
756 | ||
757 | if (likely(!non_swap_entry(entry))) { | |
758 | if (swap_duplicate(entry) < 0) | |
9a5cc85c | 759 | return -EIO; |
df3a57d1 LT |
760 | |
761 | /* make sure dst_mm is on swapoff's mmlist. */ | |
762 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
763 | spin_lock(&mmlist_lock); | |
764 | if (list_empty(&dst_mm->mmlist)) | |
765 | list_add(&dst_mm->mmlist, | |
766 | &src_mm->mmlist); | |
767 | spin_unlock(&mmlist_lock); | |
768 | } | |
1493a191 DH |
769 | /* Mark the swap entry as shared. */ |
770 | if (pte_swp_exclusive(*src_pte)) { | |
771 | pte = pte_swp_clear_exclusive(*src_pte); | |
772 | set_pte_at(src_mm, addr, src_pte, pte); | |
773 | } | |
df3a57d1 LT |
774 | rss[MM_SWAPENTS]++; |
775 | } else if (is_migration_entry(entry)) { | |
af5cdaf8 | 776 | page = pfn_swap_entry_to_page(entry); |
1da177e4 | 777 | |
df3a57d1 | 778 | rss[mm_counter(page)]++; |
5042db43 | 779 | |
6c287605 | 780 | if (!is_readable_migration_entry(entry) && |
df3a57d1 | 781 | is_cow_mapping(vm_flags)) { |
5042db43 | 782 | /* |
6c287605 DH |
783 | * COW mappings require pages in both parent and child |
784 | * to be set to read. A previously exclusive entry is | |
785 | * now shared. | |
5042db43 | 786 | */ |
4dd845b5 AP |
787 | entry = make_readable_migration_entry( |
788 | swp_offset(entry)); | |
df3a57d1 LT |
789 | pte = swp_entry_to_pte(entry); |
790 | if (pte_swp_soft_dirty(*src_pte)) | |
791 | pte = pte_swp_mksoft_dirty(pte); | |
792 | if (pte_swp_uffd_wp(*src_pte)) | |
793 | pte = pte_swp_mkuffd_wp(pte); | |
794 | set_pte_at(src_mm, addr, src_pte, pte); | |
795 | } | |
796 | } else if (is_device_private_entry(entry)) { | |
af5cdaf8 | 797 | page = pfn_swap_entry_to_page(entry); |
5042db43 | 798 | |
df3a57d1 LT |
799 | /* |
800 | * Update rss count even for unaddressable pages, as | |
801 | * they should treated just like normal pages in this | |
802 | * respect. | |
803 | * | |
804 | * We will likely want to have some new rss counters | |
805 | * for unaddressable pages, at some point. But for now | |
806 | * keep things as they are. | |
807 | */ | |
808 | get_page(page); | |
809 | rss[mm_counter(page)]++; | |
fb3d824d DH |
810 | /* Cannot fail as these pages cannot get pinned. */ |
811 | BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); | |
df3a57d1 LT |
812 | |
813 | /* | |
814 | * We do not preserve soft-dirty information, because so | |
815 | * far, checkpoint/restore is the only feature that | |
816 | * requires that. And checkpoint/restore does not work | |
817 | * when a device driver is involved (you cannot easily | |
818 | * save and restore device driver state). | |
819 | */ | |
4dd845b5 | 820 | if (is_writable_device_private_entry(entry) && |
df3a57d1 | 821 | is_cow_mapping(vm_flags)) { |
4dd845b5 AP |
822 | entry = make_readable_device_private_entry( |
823 | swp_offset(entry)); | |
df3a57d1 LT |
824 | pte = swp_entry_to_pte(entry); |
825 | if (pte_swp_uffd_wp(*src_pte)) | |
826 | pte = pte_swp_mkuffd_wp(pte); | |
827 | set_pte_at(src_mm, addr, src_pte, pte); | |
1da177e4 | 828 | } |
b756a3b5 AP |
829 | } else if (is_device_exclusive_entry(entry)) { |
830 | /* | |
831 | * Make device exclusive entries present by restoring the | |
832 | * original entry then copying as for a present pte. Device | |
833 | * exclusive entries currently only support private writable | |
834 | * (ie. COW) mappings. | |
835 | */ | |
836 | VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); | |
837 | if (try_restore_exclusive_pte(src_pte, src_vma, addr)) | |
838 | return -EBUSY; | |
839 | return -ENOENT; | |
c56d1b62 | 840 | } else if (is_pte_marker_entry(entry)) { |
7e3ce3f8 | 841 | if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) |
49d6d7fb | 842 | set_pte_at(dst_mm, addr, dst_pte, pte); |
c56d1b62 | 843 | return 0; |
1da177e4 | 844 | } |
8f34f1ea PX |
845 | if (!userfaultfd_wp(dst_vma)) |
846 | pte = pte_swp_clear_uffd_wp(pte); | |
df3a57d1 LT |
847 | set_pte_at(dst_mm, addr, dst_pte, pte); |
848 | return 0; | |
849 | } | |
850 | ||
70e806e4 | 851 | /* |
b51ad4f8 | 852 | * Copy a present and normal page. |
70e806e4 | 853 | * |
b51ad4f8 DH |
854 | * NOTE! The usual case is that this isn't required; |
855 | * instead, the caller can just increase the page refcount | |
856 | * and re-use the pte the traditional way. | |
70e806e4 PX |
857 | * |
858 | * And if we need a pre-allocated page but don't yet have | |
859 | * one, return a negative error to let the preallocation | |
860 | * code know so that it can do so outside the page table | |
861 | * lock. | |
862 | */ | |
863 | static inline int | |
c78f4636 PX |
864 | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
865 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
edf50470 | 866 | struct folio **prealloc, struct page *page) |
70e806e4 | 867 | { |
edf50470 | 868 | struct folio *new_folio; |
b51ad4f8 | 869 | pte_t pte; |
70e806e4 | 870 | |
edf50470 MWO |
871 | new_folio = *prealloc; |
872 | if (!new_folio) | |
70e806e4 PX |
873 | return -EAGAIN; |
874 | ||
875 | /* | |
876 | * We have a prealloc page, all good! Take it | |
877 | * over and copy the page & arm it. | |
878 | */ | |
879 | *prealloc = NULL; | |
edf50470 MWO |
880 | copy_user_highpage(&new_folio->page, page, addr, src_vma); |
881 | __folio_mark_uptodate(new_folio); | |
882 | folio_add_new_anon_rmap(new_folio, dst_vma, addr); | |
883 | folio_add_lru_vma(new_folio, dst_vma); | |
884 | rss[MM_ANONPAGES]++; | |
70e806e4 PX |
885 | |
886 | /* All done, just insert the new page copy in the child */ | |
edf50470 | 887 | pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); |
c78f4636 | 888 | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); |
8f34f1ea PX |
889 | if (userfaultfd_pte_wp(dst_vma, *src_pte)) |
890 | /* Uffd-wp needs to be delivered to dest pte as well */ | |
f1eb1bac | 891 | pte = pte_mkuffd_wp(pte); |
c78f4636 | 892 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
893 | return 0; |
894 | } | |
895 | ||
896 | /* | |
897 | * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page | |
898 | * is required to copy this pte. | |
899 | */ | |
900 | static inline int | |
c78f4636 PX |
901 | copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
902 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
edf50470 | 903 | struct folio **prealloc) |
df3a57d1 | 904 | { |
c78f4636 PX |
905 | struct mm_struct *src_mm = src_vma->vm_mm; |
906 | unsigned long vm_flags = src_vma->vm_flags; | |
df3a57d1 LT |
907 | pte_t pte = *src_pte; |
908 | struct page *page; | |
14ddee41 | 909 | struct folio *folio; |
df3a57d1 | 910 | |
c78f4636 | 911 | page = vm_normal_page(src_vma, addr, pte); |
14ddee41 MWO |
912 | if (page) |
913 | folio = page_folio(page); | |
914 | if (page && folio_test_anon(folio)) { | |
b51ad4f8 DH |
915 | /* |
916 | * If this page may have been pinned by the parent process, | |
917 | * copy the page immediately for the child so that we'll always | |
918 | * guarantee the pinned page won't be randomly replaced in the | |
919 | * future. | |
920 | */ | |
14ddee41 | 921 | folio_get(folio); |
fb3d824d | 922 | if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { |
14ddee41 MWO |
923 | /* Page may be pinned, we have to copy. */ |
924 | folio_put(folio); | |
fb3d824d DH |
925 | return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, |
926 | addr, rss, prealloc, page); | |
927 | } | |
edf50470 | 928 | rss[MM_ANONPAGES]++; |
b51ad4f8 | 929 | } else if (page) { |
14ddee41 | 930 | folio_get(folio); |
fb3d824d | 931 | page_dup_file_rmap(page, false); |
edf50470 | 932 | rss[mm_counter_file(page)]++; |
70e806e4 PX |
933 | } |
934 | ||
1da177e4 LT |
935 | /* |
936 | * If it's a COW mapping, write protect it both | |
937 | * in the parent and the child | |
938 | */ | |
1b2de5d0 | 939 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 940 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 941 | pte = pte_wrprotect(pte); |
1da177e4 | 942 | } |
14ddee41 | 943 | VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); |
1da177e4 LT |
944 | |
945 | /* | |
946 | * If it's a shared mapping, mark it clean in | |
947 | * the child | |
948 | */ | |
949 | if (vm_flags & VM_SHARED) | |
950 | pte = pte_mkclean(pte); | |
951 | pte = pte_mkold(pte); | |
6aab341e | 952 | |
8f34f1ea | 953 | if (!userfaultfd_wp(dst_vma)) |
b569a176 PX |
954 | pte = pte_clear_uffd_wp(pte); |
955 | ||
c78f4636 | 956 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
957 | return 0; |
958 | } | |
959 | ||
edf50470 MWO |
960 | static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, |
961 | struct vm_area_struct *vma, unsigned long addr) | |
70e806e4 | 962 | { |
edf50470 | 963 | struct folio *new_folio; |
70e806e4 | 964 | |
edf50470 MWO |
965 | new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); |
966 | if (!new_folio) | |
70e806e4 PX |
967 | return NULL; |
968 | ||
edf50470 MWO |
969 | if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { |
970 | folio_put(new_folio); | |
70e806e4 | 971 | return NULL; |
6aab341e | 972 | } |
e601ded4 | 973 | folio_throttle_swaprate(new_folio, GFP_KERNEL); |
ae859762 | 974 | |
edf50470 | 975 | return new_folio; |
1da177e4 LT |
976 | } |
977 | ||
c78f4636 PX |
978 | static int |
979 | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
980 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
981 | unsigned long end) | |
1da177e4 | 982 | { |
c78f4636 PX |
983 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
984 | struct mm_struct *src_mm = src_vma->vm_mm; | |
c36987e2 | 985 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 986 | pte_t *src_pte, *dst_pte; |
c74df32c | 987 | spinlock_t *src_ptl, *dst_ptl; |
70e806e4 | 988 | int progress, ret = 0; |
d559db08 | 989 | int rss[NR_MM_COUNTERS]; |
570a335b | 990 | swp_entry_t entry = (swp_entry_t){0}; |
edf50470 | 991 | struct folio *prealloc = NULL; |
1da177e4 LT |
992 | |
993 | again: | |
70e806e4 | 994 | progress = 0; |
d559db08 KH |
995 | init_rss_vec(rss); |
996 | ||
c74df32c | 997 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
70e806e4 PX |
998 | if (!dst_pte) { |
999 | ret = -ENOMEM; | |
1000 | goto out; | |
1001 | } | |
ece0e2b6 | 1002 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 1003 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 1004 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
1005 | orig_src_pte = src_pte; |
1006 | orig_dst_pte = dst_pte; | |
6606c3e0 | 1007 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 1008 | |
1da177e4 LT |
1009 | do { |
1010 | /* | |
1011 | * We are holding two locks at this point - either of them | |
1012 | * could generate latencies in another task on another CPU. | |
1013 | */ | |
e040f218 HD |
1014 | if (progress >= 32) { |
1015 | progress = 0; | |
1016 | if (need_resched() || | |
95c354fe | 1017 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
1018 | break; |
1019 | } | |
1da177e4 LT |
1020 | if (pte_none(*src_pte)) { |
1021 | progress++; | |
1022 | continue; | |
1023 | } | |
79a1971c | 1024 | if (unlikely(!pte_present(*src_pte))) { |
9a5cc85c AP |
1025 | ret = copy_nonpresent_pte(dst_mm, src_mm, |
1026 | dst_pte, src_pte, | |
1027 | dst_vma, src_vma, | |
1028 | addr, rss); | |
1029 | if (ret == -EIO) { | |
1030 | entry = pte_to_swp_entry(*src_pte); | |
79a1971c | 1031 | break; |
b756a3b5 AP |
1032 | } else if (ret == -EBUSY) { |
1033 | break; | |
1034 | } else if (!ret) { | |
1035 | progress += 8; | |
1036 | continue; | |
9a5cc85c | 1037 | } |
b756a3b5 AP |
1038 | |
1039 | /* | |
1040 | * Device exclusive entry restored, continue by copying | |
1041 | * the now present pte. | |
1042 | */ | |
1043 | WARN_ON_ONCE(ret != -ENOENT); | |
79a1971c | 1044 | } |
70e806e4 | 1045 | /* copy_present_pte() will clear `*prealloc' if consumed */ |
c78f4636 PX |
1046 | ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, |
1047 | addr, rss, &prealloc); | |
70e806e4 PX |
1048 | /* |
1049 | * If we need a pre-allocated page for this pte, drop the | |
1050 | * locks, allocate, and try again. | |
1051 | */ | |
1052 | if (unlikely(ret == -EAGAIN)) | |
1053 | break; | |
1054 | if (unlikely(prealloc)) { | |
1055 | /* | |
1056 | * pre-alloc page cannot be reused by next time so as | |
1057 | * to strictly follow mempolicy (e.g., alloc_page_vma() | |
1058 | * will allocate page according to address). This | |
1059 | * could only happen if one pinned pte changed. | |
1060 | */ | |
edf50470 | 1061 | folio_put(prealloc); |
70e806e4 PX |
1062 | prealloc = NULL; |
1063 | } | |
1da177e4 LT |
1064 | progress += 8; |
1065 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 1066 | |
6606c3e0 | 1067 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1068 | spin_unlock(src_ptl); |
ece0e2b6 | 1069 | pte_unmap(orig_src_pte); |
d559db08 | 1070 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 1071 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 1072 | cond_resched(); |
570a335b | 1073 | |
9a5cc85c AP |
1074 | if (ret == -EIO) { |
1075 | VM_WARN_ON_ONCE(!entry.val); | |
70e806e4 PX |
1076 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { |
1077 | ret = -ENOMEM; | |
1078 | goto out; | |
1079 | } | |
1080 | entry.val = 0; | |
b756a3b5 AP |
1081 | } else if (ret == -EBUSY) { |
1082 | goto out; | |
9a5cc85c | 1083 | } else if (ret == -EAGAIN) { |
c78f4636 | 1084 | prealloc = page_copy_prealloc(src_mm, src_vma, addr); |
70e806e4 | 1085 | if (!prealloc) |
570a335b | 1086 | return -ENOMEM; |
9a5cc85c AP |
1087 | } else if (ret) { |
1088 | VM_WARN_ON_ONCE(1); | |
570a335b | 1089 | } |
9a5cc85c AP |
1090 | |
1091 | /* We've captured and resolved the error. Reset, try again. */ | |
1092 | ret = 0; | |
1093 | ||
1da177e4 LT |
1094 | if (addr != end) |
1095 | goto again; | |
70e806e4 PX |
1096 | out: |
1097 | if (unlikely(prealloc)) | |
edf50470 | 1098 | folio_put(prealloc); |
70e806e4 | 1099 | return ret; |
1da177e4 LT |
1100 | } |
1101 | ||
c78f4636 PX |
1102 | static inline int |
1103 | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1104 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | |
1105 | unsigned long end) | |
1da177e4 | 1106 | { |
c78f4636 PX |
1107 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1108 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1109 | pmd_t *src_pmd, *dst_pmd; |
1110 | unsigned long next; | |
1111 | ||
1112 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1113 | if (!dst_pmd) | |
1114 | return -ENOMEM; | |
1115 | src_pmd = pmd_offset(src_pud, addr); | |
1116 | do { | |
1117 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
1118 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
1119 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 1120 | int err; |
c78f4636 | 1121 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); |
8f34f1ea PX |
1122 | err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, |
1123 | addr, dst_vma, src_vma); | |
71e3aac0 AA |
1124 | if (err == -ENOMEM) |
1125 | return -ENOMEM; | |
1126 | if (!err) | |
1127 | continue; | |
1128 | /* fall through */ | |
1129 | } | |
1da177e4 LT |
1130 | if (pmd_none_or_clear_bad(src_pmd)) |
1131 | continue; | |
c78f4636 PX |
1132 | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, |
1133 | addr, next)) | |
1da177e4 LT |
1134 | return -ENOMEM; |
1135 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1136 | return 0; | |
1137 | } | |
1138 | ||
c78f4636 PX |
1139 | static inline int |
1140 | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1141 | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | |
1142 | unsigned long end) | |
1da177e4 | 1143 | { |
c78f4636 PX |
1144 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1145 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1146 | pud_t *src_pud, *dst_pud; |
1147 | unsigned long next; | |
1148 | ||
c2febafc | 1149 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
1150 | if (!dst_pud) |
1151 | return -ENOMEM; | |
c2febafc | 1152 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
1153 | do { |
1154 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1155 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
1156 | int err; | |
1157 | ||
c78f4636 | 1158 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); |
a00cc7d9 | 1159 | err = copy_huge_pud(dst_mm, src_mm, |
c78f4636 | 1160 | dst_pud, src_pud, addr, src_vma); |
a00cc7d9 MW |
1161 | if (err == -ENOMEM) |
1162 | return -ENOMEM; | |
1163 | if (!err) | |
1164 | continue; | |
1165 | /* fall through */ | |
1166 | } | |
1da177e4 LT |
1167 | if (pud_none_or_clear_bad(src_pud)) |
1168 | continue; | |
c78f4636 PX |
1169 | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, |
1170 | addr, next)) | |
1da177e4 LT |
1171 | return -ENOMEM; |
1172 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1173 | return 0; | |
1174 | } | |
1175 | ||
c78f4636 PX |
1176 | static inline int |
1177 | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1178 | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | |
1179 | unsigned long end) | |
c2febafc | 1180 | { |
c78f4636 | 1181 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
c2febafc KS |
1182 | p4d_t *src_p4d, *dst_p4d; |
1183 | unsigned long next; | |
1184 | ||
1185 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1186 | if (!dst_p4d) | |
1187 | return -ENOMEM; | |
1188 | src_p4d = p4d_offset(src_pgd, addr); | |
1189 | do { | |
1190 | next = p4d_addr_end(addr, end); | |
1191 | if (p4d_none_or_clear_bad(src_p4d)) | |
1192 | continue; | |
c78f4636 PX |
1193 | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, |
1194 | addr, next)) | |
c2febafc KS |
1195 | return -ENOMEM; |
1196 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1197 | return 0; | |
1198 | } | |
1199 | ||
c56d1b62 PX |
1200 | /* |
1201 | * Return true if the vma needs to copy the pgtable during this fork(). Return | |
1202 | * false when we can speed up fork() by allowing lazy page faults later until | |
1203 | * when the child accesses the memory range. | |
1204 | */ | |
bc70fbf2 | 1205 | static bool |
c56d1b62 PX |
1206 | vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) |
1207 | { | |
1208 | /* | |
1209 | * Always copy pgtables when dst_vma has uffd-wp enabled even if it's | |
1210 | * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable | |
1211 | * contains uffd-wp protection information, that's something we can't | |
1212 | * retrieve from page cache, and skip copying will lose those info. | |
1213 | */ | |
1214 | if (userfaultfd_wp(dst_vma)) | |
1215 | return true; | |
1216 | ||
bcd51a3c | 1217 | if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
c56d1b62 PX |
1218 | return true; |
1219 | ||
1220 | if (src_vma->anon_vma) | |
1221 | return true; | |
1222 | ||
1223 | /* | |
1224 | * Don't copy ptes where a page fault will fill them correctly. Fork | |
1225 | * becomes much lighter when there are big shared or private readonly | |
1226 | * mappings. The tradeoff is that copy_page_range is more efficient | |
1227 | * than faulting. | |
1228 | */ | |
1229 | return false; | |
1230 | } | |
1231 | ||
c78f4636 PX |
1232 | int |
1233 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1da177e4 LT |
1234 | { |
1235 | pgd_t *src_pgd, *dst_pgd; | |
1236 | unsigned long next; | |
c78f4636 PX |
1237 | unsigned long addr = src_vma->vm_start; |
1238 | unsigned long end = src_vma->vm_end; | |
1239 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1240 | struct mm_struct *src_mm = src_vma->vm_mm; | |
ac46d4f3 | 1241 | struct mmu_notifier_range range; |
2ec74c3e | 1242 | bool is_cow; |
cddb8a5c | 1243 | int ret; |
1da177e4 | 1244 | |
c56d1b62 | 1245 | if (!vma_needs_copy(dst_vma, src_vma)) |
0661a336 | 1246 | return 0; |
d992895b | 1247 | |
c78f4636 | 1248 | if (is_vm_hugetlb_page(src_vma)) |
bc70fbf2 | 1249 | return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); |
1da177e4 | 1250 | |
c78f4636 | 1251 | if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1252 | /* |
1253 | * We do not free on error cases below as remove_vma | |
1254 | * gets called on error from higher level routine | |
1255 | */ | |
c78f4636 | 1256 | ret = track_pfn_copy(src_vma); |
2ab64037 | 1257 | if (ret) |
1258 | return ret; | |
1259 | } | |
1260 | ||
cddb8a5c AA |
1261 | /* |
1262 | * We need to invalidate the secondary MMU mappings only when | |
1263 | * there could be a permission downgrade on the ptes of the | |
1264 | * parent mm. And a permission downgrade will only happen if | |
1265 | * is_cow_mapping() returns true. | |
1266 | */ | |
c78f4636 | 1267 | is_cow = is_cow_mapping(src_vma->vm_flags); |
ac46d4f3 JG |
1268 | |
1269 | if (is_cow) { | |
7269f999 | 1270 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
7d4a8be0 | 1271 | 0, src_mm, addr, end); |
ac46d4f3 | 1272 | mmu_notifier_invalidate_range_start(&range); |
57efa1fe JG |
1273 | /* |
1274 | * Disabling preemption is not needed for the write side, as | |
1275 | * the read side doesn't spin, but goes to the mmap_lock. | |
1276 | * | |
1277 | * Use the raw variant of the seqcount_t write API to avoid | |
1278 | * lockdep complaining about preemptibility. | |
1279 | */ | |
1280 | mmap_assert_write_locked(src_mm); | |
1281 | raw_write_seqcount_begin(&src_mm->write_protect_seq); | |
ac46d4f3 | 1282 | } |
cddb8a5c AA |
1283 | |
1284 | ret = 0; | |
1da177e4 LT |
1285 | dst_pgd = pgd_offset(dst_mm, addr); |
1286 | src_pgd = pgd_offset(src_mm, addr); | |
1287 | do { | |
1288 | next = pgd_addr_end(addr, end); | |
1289 | if (pgd_none_or_clear_bad(src_pgd)) | |
1290 | continue; | |
c78f4636 PX |
1291 | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, |
1292 | addr, next))) { | |
d155df53 | 1293 | untrack_pfn_clear(dst_vma); |
cddb8a5c AA |
1294 | ret = -ENOMEM; |
1295 | break; | |
1296 | } | |
1da177e4 | 1297 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1298 | |
57efa1fe JG |
1299 | if (is_cow) { |
1300 | raw_write_seqcount_end(&src_mm->write_protect_seq); | |
ac46d4f3 | 1301 | mmu_notifier_invalidate_range_end(&range); |
57efa1fe | 1302 | } |
cddb8a5c | 1303 | return ret; |
1da177e4 LT |
1304 | } |
1305 | ||
5abfd71d PX |
1306 | /* Whether we should zap all COWed (private) pages too */ |
1307 | static inline bool should_zap_cows(struct zap_details *details) | |
1308 | { | |
1309 | /* By default, zap all pages */ | |
1310 | if (!details) | |
1311 | return true; | |
1312 | ||
1313 | /* Or, we zap COWed pages only if the caller wants to */ | |
2e148f1e | 1314 | return details->even_cows; |
5abfd71d PX |
1315 | } |
1316 | ||
2e148f1e | 1317 | /* Decides whether we should zap this page with the page pointer specified */ |
254ab940 | 1318 | static inline bool should_zap_page(struct zap_details *details, struct page *page) |
3506659e | 1319 | { |
5abfd71d PX |
1320 | /* If we can make a decision without *page.. */ |
1321 | if (should_zap_cows(details)) | |
254ab940 | 1322 | return true; |
5abfd71d PX |
1323 | |
1324 | /* E.g. the caller passes NULL for the case of a zero page */ | |
1325 | if (!page) | |
254ab940 | 1326 | return true; |
3506659e | 1327 | |
2e148f1e PX |
1328 | /* Otherwise we should only zap non-anon pages */ |
1329 | return !PageAnon(page); | |
3506659e MWO |
1330 | } |
1331 | ||
999dad82 PX |
1332 | static inline bool zap_drop_file_uffd_wp(struct zap_details *details) |
1333 | { | |
1334 | if (!details) | |
1335 | return false; | |
1336 | ||
1337 | return details->zap_flags & ZAP_FLAG_DROP_MARKER; | |
1338 | } | |
1339 | ||
1340 | /* | |
1341 | * This function makes sure that we'll replace the none pte with an uffd-wp | |
1342 | * swap special pte marker when necessary. Must be with the pgtable lock held. | |
1343 | */ | |
1344 | static inline void | |
1345 | zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, | |
1346 | unsigned long addr, pte_t *pte, | |
1347 | struct zap_details *details, pte_t pteval) | |
1348 | { | |
1349 | if (zap_drop_file_uffd_wp(details)) | |
1350 | return; | |
1351 | ||
1352 | pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); | |
1353 | } | |
1354 | ||
51c6f666 | 1355 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1356 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1357 | unsigned long addr, unsigned long end, |
97a89413 | 1358 | struct zap_details *details) |
1da177e4 | 1359 | { |
b5810039 | 1360 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1361 | int force_flush = 0; |
d559db08 | 1362 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1363 | spinlock_t *ptl; |
5f1a1907 | 1364 | pte_t *start_pte; |
97a89413 | 1365 | pte_t *pte; |
8a5f14a2 | 1366 | swp_entry_t entry; |
d559db08 | 1367 | |
ed6a7935 | 1368 | tlb_change_page_size(tlb, PAGE_SIZE); |
d16dfc55 | 1369 | again: |
e303297e | 1370 | init_rss_vec(rss); |
5f1a1907 SR |
1371 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1372 | pte = start_pte; | |
3ea27719 | 1373 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1374 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1375 | do { |
1376 | pte_t ptent = *pte; | |
8018db85 PX |
1377 | struct page *page; |
1378 | ||
166f61b9 | 1379 | if (pte_none(ptent)) |
1da177e4 | 1380 | continue; |
6f5e6b9e | 1381 | |
7b167b68 MK |
1382 | if (need_resched()) |
1383 | break; | |
1384 | ||
1da177e4 | 1385 | if (pte_present(ptent)) { |
5df397de LT |
1386 | unsigned int delay_rmap; |
1387 | ||
25b2995a | 1388 | page = vm_normal_page(vma, addr, ptent); |
254ab940 | 1389 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1390 | continue; |
b5810039 | 1391 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1392 | tlb->fullmm); |
1da177e4 | 1393 | tlb_remove_tlb_entry(tlb, pte, addr); |
999dad82 PX |
1394 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, |
1395 | ptent); | |
1da177e4 LT |
1396 | if (unlikely(!page)) |
1397 | continue; | |
eca56ff9 | 1398 | |
5df397de | 1399 | delay_rmap = 0; |
eca56ff9 | 1400 | if (!PageAnon(page)) { |
1cf35d47 | 1401 | if (pte_dirty(ptent)) { |
6237bcd9 | 1402 | set_page_dirty(page); |
5df397de LT |
1403 | if (tlb_delay_rmap(tlb)) { |
1404 | delay_rmap = 1; | |
1405 | force_flush = 1; | |
1406 | } | |
1cf35d47 | 1407 | } |
8788f678 | 1408 | if (pte_young(ptent) && likely(vma_has_recency(vma))) |
bf3f3bc5 | 1409 | mark_page_accessed(page); |
6237bcd9 | 1410 | } |
eca56ff9 | 1411 | rss[mm_counter(page)]--; |
5df397de LT |
1412 | if (!delay_rmap) { |
1413 | page_remove_rmap(page, vma, false); | |
1414 | if (unlikely(page_mapcount(page) < 0)) | |
1415 | print_bad_pte(vma, addr, ptent, page); | |
1416 | } | |
1417 | if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { | |
1cf35d47 | 1418 | force_flush = 1; |
ce9ec37b | 1419 | addr += PAGE_SIZE; |
d16dfc55 | 1420 | break; |
1cf35d47 | 1421 | } |
1da177e4 LT |
1422 | continue; |
1423 | } | |
5042db43 JG |
1424 | |
1425 | entry = pte_to_swp_entry(ptent); | |
b756a3b5 AP |
1426 | if (is_device_private_entry(entry) || |
1427 | is_device_exclusive_entry(entry)) { | |
8018db85 | 1428 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1429 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1430 | continue; |
999dad82 PX |
1431 | /* |
1432 | * Both device private/exclusive mappings should only | |
1433 | * work with anonymous page so far, so we don't need to | |
1434 | * consider uffd-wp bit when zap. For more information, | |
1435 | * see zap_install_uffd_wp_if_needed(). | |
1436 | */ | |
1437 | WARN_ON_ONCE(!vma_is_anonymous(vma)); | |
5042db43 | 1438 | rss[mm_counter(page)]--; |
b756a3b5 | 1439 | if (is_device_private_entry(entry)) |
cea86fe2 | 1440 | page_remove_rmap(page, vma, false); |
5042db43 | 1441 | put_page(page); |
8018db85 | 1442 | } else if (!non_swap_entry(entry)) { |
5abfd71d PX |
1443 | /* Genuine swap entry, hence a private anon page */ |
1444 | if (!should_zap_cows(details)) | |
1445 | continue; | |
8a5f14a2 | 1446 | rss[MM_SWAPENTS]--; |
8018db85 PX |
1447 | if (unlikely(!free_swap_and_cache(entry))) |
1448 | print_bad_pte(vma, addr, ptent, NULL); | |
5abfd71d | 1449 | } else if (is_migration_entry(entry)) { |
af5cdaf8 | 1450 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1451 | if (!should_zap_page(details, page)) |
5abfd71d | 1452 | continue; |
eca56ff9 | 1453 | rss[mm_counter(page)]--; |
999dad82 PX |
1454 | } else if (pte_marker_entry_uffd_wp(entry)) { |
1455 | /* Only drop the uffd-wp marker if explicitly requested */ | |
1456 | if (!zap_drop_file_uffd_wp(details)) | |
1457 | continue; | |
9f186f9e ML |
1458 | } else if (is_hwpoison_entry(entry) || |
1459 | is_swapin_error_entry(entry)) { | |
5abfd71d PX |
1460 | if (!should_zap_cows(details)) |
1461 | continue; | |
1462 | } else { | |
1463 | /* We should have covered all the swap entry types */ | |
1464 | WARN_ON_ONCE(1); | |
b084d435 | 1465 | } |
9888a1ca | 1466 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
999dad82 | 1467 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); |
97a89413 | 1468 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1469 | |
d559db08 | 1470 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1471 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1472 | |
1cf35d47 | 1473 | /* Do the actual TLB flush before dropping ptl */ |
5df397de | 1474 | if (force_flush) { |
1cf35d47 | 1475 | tlb_flush_mmu_tlbonly(tlb); |
f036c818 | 1476 | tlb_flush_rmaps(tlb, vma); |
5df397de | 1477 | } |
1cf35d47 LT |
1478 | pte_unmap_unlock(start_pte, ptl); |
1479 | ||
1480 | /* | |
1481 | * If we forced a TLB flush (either due to running out of | |
1482 | * batch buffers or because we needed to flush dirty TLB | |
1483 | * entries before releasing the ptl), free the batched | |
1484 | * memory too. Restart if we didn't do everything. | |
1485 | */ | |
1486 | if (force_flush) { | |
1487 | force_flush = 0; | |
fa0aafb8 | 1488 | tlb_flush_mmu(tlb); |
7b167b68 MK |
1489 | } |
1490 | ||
1491 | if (addr != end) { | |
1492 | cond_resched(); | |
1493 | goto again; | |
d16dfc55 PZ |
1494 | } |
1495 | ||
51c6f666 | 1496 | return addr; |
1da177e4 LT |
1497 | } |
1498 | ||
51c6f666 | 1499 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1500 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1501 | unsigned long addr, unsigned long end, |
97a89413 | 1502 | struct zap_details *details) |
1da177e4 LT |
1503 | { |
1504 | pmd_t *pmd; | |
1505 | unsigned long next; | |
1506 | ||
1507 | pmd = pmd_offset(pud, addr); | |
1508 | do { | |
1509 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1510 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1511 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1512 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
53406ed1 | 1513 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1514 | goto next; |
71e3aac0 | 1515 | /* fall through */ |
3506659e MWO |
1516 | } else if (details && details->single_folio && |
1517 | folio_test_pmd_mappable(details->single_folio) && | |
22061a1f HD |
1518 | next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { |
1519 | spinlock_t *ptl = pmd_lock(tlb->mm, pmd); | |
1520 | /* | |
1521 | * Take and drop THP pmd lock so that we cannot return | |
1522 | * prematurely, while zap_huge_pmd() has cleared *pmd, | |
1523 | * but not yet decremented compound_mapcount(). | |
1524 | */ | |
1525 | spin_unlock(ptl); | |
71e3aac0 | 1526 | } |
22061a1f | 1527 | |
1a5a9906 AA |
1528 | /* |
1529 | * Here there can be other concurrent MADV_DONTNEED or | |
1530 | * trans huge page faults running, and if the pmd is | |
1531 | * none or trans huge it can change under us. This is | |
c1e8d7c6 | 1532 | * because MADV_DONTNEED holds the mmap_lock in read |
1a5a9906 AA |
1533 | * mode. |
1534 | */ | |
1535 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1536 | goto next; | |
97a89413 | 1537 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1538 | next: |
97a89413 PZ |
1539 | cond_resched(); |
1540 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1541 | |
1542 | return addr; | |
1da177e4 LT |
1543 | } |
1544 | ||
51c6f666 | 1545 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1546 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1547 | unsigned long addr, unsigned long end, |
97a89413 | 1548 | struct zap_details *details) |
1da177e4 LT |
1549 | { |
1550 | pud_t *pud; | |
1551 | unsigned long next; | |
1552 | ||
c2febafc | 1553 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1554 | do { |
1555 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1556 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1557 | if (next - addr != HPAGE_PUD_SIZE) { | |
42fc5414 | 1558 | mmap_assert_locked(tlb->mm); |
a00cc7d9 MW |
1559 | split_huge_pud(vma, pud, addr); |
1560 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1561 | goto next; | |
1562 | /* fall through */ | |
1563 | } | |
97a89413 | 1564 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1565 | continue; |
97a89413 | 1566 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1567 | next: |
1568 | cond_resched(); | |
97a89413 | 1569 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1570 | |
1571 | return addr; | |
1da177e4 LT |
1572 | } |
1573 | ||
c2febafc KS |
1574 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1575 | struct vm_area_struct *vma, pgd_t *pgd, | |
1576 | unsigned long addr, unsigned long end, | |
1577 | struct zap_details *details) | |
1578 | { | |
1579 | p4d_t *p4d; | |
1580 | unsigned long next; | |
1581 | ||
1582 | p4d = p4d_offset(pgd, addr); | |
1583 | do { | |
1584 | next = p4d_addr_end(addr, end); | |
1585 | if (p4d_none_or_clear_bad(p4d)) | |
1586 | continue; | |
1587 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1588 | } while (p4d++, addr = next, addr != end); | |
1589 | ||
1590 | return addr; | |
1591 | } | |
1592 | ||
aac45363 | 1593 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1594 | struct vm_area_struct *vma, |
1595 | unsigned long addr, unsigned long end, | |
1596 | struct zap_details *details) | |
1da177e4 LT |
1597 | { |
1598 | pgd_t *pgd; | |
1599 | unsigned long next; | |
1600 | ||
1da177e4 LT |
1601 | BUG_ON(addr >= end); |
1602 | tlb_start_vma(tlb, vma); | |
1603 | pgd = pgd_offset(vma->vm_mm, addr); | |
1604 | do { | |
1605 | next = pgd_addr_end(addr, end); | |
97a89413 | 1606 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1607 | continue; |
c2febafc | 1608 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1609 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1610 | tlb_end_vma(tlb, vma); |
1611 | } | |
51c6f666 | 1612 | |
f5cc4eef AV |
1613 | |
1614 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1615 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1616 | unsigned long end_addr, |
68f48381 | 1617 | struct zap_details *details, bool mm_wr_locked) |
f5cc4eef AV |
1618 | { |
1619 | unsigned long start = max(vma->vm_start, start_addr); | |
1620 | unsigned long end; | |
1621 | ||
1622 | if (start >= vma->vm_end) | |
1623 | return; | |
1624 | end = min(vma->vm_end, end_addr); | |
1625 | if (end <= vma->vm_start) | |
1626 | return; | |
1627 | ||
cbc91f71 SD |
1628 | if (vma->vm_file) |
1629 | uprobe_munmap(vma, start, end); | |
1630 | ||
b3b9c293 | 1631 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
68f48381 | 1632 | untrack_pfn(vma, 0, 0, mm_wr_locked); |
f5cc4eef AV |
1633 | |
1634 | if (start != end) { | |
1635 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1636 | /* | |
1637 | * It is undesirable to test vma->vm_file as it | |
1638 | * should be non-null for valid hugetlb area. | |
1639 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1640 | * cleanup path of mmap_region. When |
f5cc4eef | 1641 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1642 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1643 | * before calling this function to clean up. |
1644 | * Since no pte has actually been setup, it is | |
1645 | * safe to do nothing in this case. | |
1646 | */ | |
24669e58 | 1647 | if (vma->vm_file) { |
05e90bd0 PX |
1648 | zap_flags_t zap_flags = details ? |
1649 | details->zap_flags : 0; | |
05e90bd0 PX |
1650 | __unmap_hugepage_range_final(tlb, vma, start, end, |
1651 | NULL, zap_flags); | |
24669e58 | 1652 | } |
f5cc4eef AV |
1653 | } else |
1654 | unmap_page_range(tlb, vma, start, end, details); | |
1655 | } | |
1da177e4 LT |
1656 | } |
1657 | ||
1da177e4 LT |
1658 | /** |
1659 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1660 | * @tlb: address of the caller's struct mmu_gather |
763ecb03 | 1661 | * @mt: the maple tree |
1da177e4 LT |
1662 | * @vma: the starting vma |
1663 | * @start_addr: virtual address at which to start unmapping | |
1664 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1665 | * |
508034a3 | 1666 | * Unmap all pages in the vma list. |
1da177e4 | 1667 | * |
1da177e4 LT |
1668 | * Only addresses between `start' and `end' will be unmapped. |
1669 | * | |
1670 | * The VMA list must be sorted in ascending virtual address order. | |
1671 | * | |
1672 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1673 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1674 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1675 | * drops the lock and schedules. | |
1676 | */ | |
763ecb03 | 1677 | void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, |
1da177e4 | 1678 | struct vm_area_struct *vma, unsigned long start_addr, |
68f48381 | 1679 | unsigned long end_addr, bool mm_wr_locked) |
1da177e4 | 1680 | { |
ac46d4f3 | 1681 | struct mmu_notifier_range range; |
999dad82 | 1682 | struct zap_details details = { |
04ada095 | 1683 | .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, |
999dad82 PX |
1684 | /* Careful - we need to zap private pages too! */ |
1685 | .even_cows = true, | |
1686 | }; | |
763ecb03 | 1687 | MA_STATE(mas, mt, vma->vm_end, vma->vm_end); |
1da177e4 | 1688 | |
7d4a8be0 | 1689 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, |
6f4f13e8 | 1690 | start_addr, end_addr); |
ac46d4f3 | 1691 | mmu_notifier_invalidate_range_start(&range); |
763ecb03 | 1692 | do { |
68f48381 SB |
1693 | unmap_single_vma(tlb, vma, start_addr, end_addr, &details, |
1694 | mm_wr_locked); | |
763ecb03 | 1695 | } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); |
ac46d4f3 | 1696 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1697 | } |
1698 | ||
f5cc4eef AV |
1699 | /** |
1700 | * zap_page_range_single - remove user pages in a given range | |
1701 | * @vma: vm_area_struct holding the applicable pages | |
1702 | * @address: starting address of pages to zap | |
1703 | * @size: number of bytes to zap | |
8a5f14a2 | 1704 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1705 | * |
1706 | * The range must fit into one VMA. | |
1da177e4 | 1707 | */ |
21b85b09 | 1708 | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1709 | unsigned long size, struct zap_details *details) |
1710 | { | |
21b85b09 | 1711 | const unsigned long end = address + size; |
ac46d4f3 | 1712 | struct mmu_notifier_range range; |
d16dfc55 | 1713 | struct mmu_gather tlb; |
1da177e4 | 1714 | |
1da177e4 | 1715 | lru_add_drain(); |
7d4a8be0 | 1716 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
21b85b09 MK |
1717 | address, end); |
1718 | if (is_vm_hugetlb_page(vma)) | |
1719 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1720 | &range.end); | |
a72afd87 | 1721 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1722 | update_hiwater_rss(vma->vm_mm); |
1723 | mmu_notifier_invalidate_range_start(&range); | |
21b85b09 MK |
1724 | /* |
1725 | * unmap 'address-end' not 'range.start-range.end' as range | |
1726 | * could have been expanded for hugetlb pmd sharing. | |
1727 | */ | |
68f48381 | 1728 | unmap_single_vma(&tlb, vma, address, end, details, false); |
ac46d4f3 | 1729 | mmu_notifier_invalidate_range_end(&range); |
ae8eba8b | 1730 | tlb_finish_mmu(&tlb); |
1da177e4 LT |
1731 | } |
1732 | ||
c627f9cc JS |
1733 | /** |
1734 | * zap_vma_ptes - remove ptes mapping the vma | |
1735 | * @vma: vm_area_struct holding ptes to be zapped | |
1736 | * @address: starting address of pages to zap | |
1737 | * @size: number of bytes to zap | |
1738 | * | |
1739 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1740 | * | |
1741 | * The entire address range must be fully contained within the vma. | |
1742 | * | |
c627f9cc | 1743 | */ |
27d036e3 | 1744 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1745 | unsigned long size) |
1746 | { | |
88a35912 | 1747 | if (!range_in_vma(vma, address, address + size) || |
c627f9cc | 1748 | !(vma->vm_flags & VM_PFNMAP)) |
27d036e3 LR |
1749 | return; |
1750 | ||
f5cc4eef | 1751 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1752 | } |
1753 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1754 | ||
8cd3984d | 1755 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) |
c9cfcddf | 1756 | { |
c2febafc KS |
1757 | pgd_t *pgd; |
1758 | p4d_t *p4d; | |
1759 | pud_t *pud; | |
1760 | pmd_t *pmd; | |
1761 | ||
1762 | pgd = pgd_offset(mm, addr); | |
1763 | p4d = p4d_alloc(mm, pgd, addr); | |
1764 | if (!p4d) | |
1765 | return NULL; | |
1766 | pud = pud_alloc(mm, p4d, addr); | |
1767 | if (!pud) | |
1768 | return NULL; | |
1769 | pmd = pmd_alloc(mm, pud, addr); | |
1770 | if (!pmd) | |
1771 | return NULL; | |
1772 | ||
1773 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
8cd3984d AR |
1774 | return pmd; |
1775 | } | |
1776 | ||
1777 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
1778 | spinlock_t **ptl) | |
1779 | { | |
1780 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
1781 | ||
1782 | if (!pmd) | |
1783 | return NULL; | |
c2febafc | 1784 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
c9cfcddf LT |
1785 | } |
1786 | ||
8efd6f5b AR |
1787 | static int validate_page_before_insert(struct page *page) |
1788 | { | |
1789 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | |
1790 | return -EINVAL; | |
1791 | flush_dcache_page(page); | |
1792 | return 0; | |
1793 | } | |
1794 | ||
cea86fe2 | 1795 | static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, |
8efd6f5b AR |
1796 | unsigned long addr, struct page *page, pgprot_t prot) |
1797 | { | |
1798 | if (!pte_none(*pte)) | |
1799 | return -EBUSY; | |
1800 | /* Ok, finally just insert the thing.. */ | |
1801 | get_page(page); | |
f1a79412 | 1802 | inc_mm_counter(vma->vm_mm, mm_counter_file(page)); |
cea86fe2 HD |
1803 | page_add_file_rmap(page, vma, false); |
1804 | set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); | |
8efd6f5b AR |
1805 | return 0; |
1806 | } | |
1807 | ||
238f58d8 LT |
1808 | /* |
1809 | * This is the old fallback for page remapping. | |
1810 | * | |
1811 | * For historical reasons, it only allows reserved pages. Only | |
1812 | * old drivers should use this, and they needed to mark their | |
1813 | * pages reserved for the old functions anyway. | |
1814 | */ | |
423bad60 NP |
1815 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1816 | struct page *page, pgprot_t prot) | |
238f58d8 LT |
1817 | { |
1818 | int retval; | |
c9cfcddf | 1819 | pte_t *pte; |
8a9f3ccd BS |
1820 | spinlock_t *ptl; |
1821 | ||
8efd6f5b AR |
1822 | retval = validate_page_before_insert(page); |
1823 | if (retval) | |
5b4e655e | 1824 | goto out; |
238f58d8 | 1825 | retval = -ENOMEM; |
cea86fe2 | 1826 | pte = get_locked_pte(vma->vm_mm, addr, &ptl); |
238f58d8 | 1827 | if (!pte) |
5b4e655e | 1828 | goto out; |
cea86fe2 | 1829 | retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); |
238f58d8 LT |
1830 | pte_unmap_unlock(pte, ptl); |
1831 | out: | |
1832 | return retval; | |
1833 | } | |
1834 | ||
8cd3984d | 1835 | #ifdef pte_index |
cea86fe2 | 1836 | static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, |
8cd3984d AR |
1837 | unsigned long addr, struct page *page, pgprot_t prot) |
1838 | { | |
1839 | int err; | |
1840 | ||
1841 | if (!page_count(page)) | |
1842 | return -EINVAL; | |
1843 | err = validate_page_before_insert(page); | |
7f70c2a6 AR |
1844 | if (err) |
1845 | return err; | |
cea86fe2 | 1846 | return insert_page_into_pte_locked(vma, pte, addr, page, prot); |
8cd3984d AR |
1847 | } |
1848 | ||
1849 | /* insert_pages() amortizes the cost of spinlock operations | |
1850 | * when inserting pages in a loop. Arch *must* define pte_index. | |
1851 | */ | |
1852 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1853 | struct page **pages, unsigned long *num, pgprot_t prot) | |
1854 | { | |
1855 | pmd_t *pmd = NULL; | |
7f70c2a6 AR |
1856 | pte_t *start_pte, *pte; |
1857 | spinlock_t *pte_lock; | |
8cd3984d AR |
1858 | struct mm_struct *const mm = vma->vm_mm; |
1859 | unsigned long curr_page_idx = 0; | |
1860 | unsigned long remaining_pages_total = *num; | |
1861 | unsigned long pages_to_write_in_pmd; | |
1862 | int ret; | |
1863 | more: | |
1864 | ret = -EFAULT; | |
1865 | pmd = walk_to_pmd(mm, addr); | |
1866 | if (!pmd) | |
1867 | goto out; | |
1868 | ||
1869 | pages_to_write_in_pmd = min_t(unsigned long, | |
1870 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
1871 | ||
1872 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
1873 | ret = -ENOMEM; | |
1874 | if (pte_alloc(mm, pmd)) | |
1875 | goto out; | |
8cd3984d AR |
1876 | |
1877 | while (pages_to_write_in_pmd) { | |
1878 | int pte_idx = 0; | |
1879 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
1880 | ||
7f70c2a6 AR |
1881 | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); |
1882 | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { | |
cea86fe2 | 1883 | int err = insert_page_in_batch_locked(vma, pte, |
8cd3984d AR |
1884 | addr, pages[curr_page_idx], prot); |
1885 | if (unlikely(err)) { | |
7f70c2a6 | 1886 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1887 | ret = err; |
1888 | remaining_pages_total -= pte_idx; | |
1889 | goto out; | |
1890 | } | |
1891 | addr += PAGE_SIZE; | |
1892 | ++curr_page_idx; | |
1893 | } | |
7f70c2a6 | 1894 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1895 | pages_to_write_in_pmd -= batch_size; |
1896 | remaining_pages_total -= batch_size; | |
1897 | } | |
1898 | if (remaining_pages_total) | |
1899 | goto more; | |
1900 | ret = 0; | |
1901 | out: | |
1902 | *num = remaining_pages_total; | |
1903 | return ret; | |
1904 | } | |
1905 | #endif /* ifdef pte_index */ | |
1906 | ||
1907 | /** | |
1908 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
1909 | * @vma: user vma to map to | |
1910 | * @addr: target start user address of these pages | |
1911 | * @pages: source kernel pages | |
1912 | * @num: in: number of pages to map. out: number of pages that were *not* | |
1913 | * mapped. (0 means all pages were successfully mapped). | |
1914 | * | |
1915 | * Preferred over vm_insert_page() when inserting multiple pages. | |
1916 | * | |
1917 | * In case of error, we may have mapped a subset of the provided | |
1918 | * pages. It is the caller's responsibility to account for this case. | |
1919 | * | |
1920 | * The same restrictions apply as in vm_insert_page(). | |
1921 | */ | |
1922 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1923 | struct page **pages, unsigned long *num) | |
1924 | { | |
1925 | #ifdef pte_index | |
1926 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | |
1927 | ||
1928 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
1929 | return -EFAULT; | |
1930 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
d8ed45c5 | 1931 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
8cd3984d | 1932 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1c71222e | 1933 | vm_flags_set(vma, VM_MIXEDMAP); |
8cd3984d AR |
1934 | } |
1935 | /* Defer page refcount checking till we're about to map that page. */ | |
1936 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
1937 | #else | |
1938 | unsigned long idx = 0, pgcount = *num; | |
45779b03 | 1939 | int err = -EINVAL; |
8cd3984d AR |
1940 | |
1941 | for (; idx < pgcount; ++idx) { | |
1942 | err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); | |
1943 | if (err) | |
1944 | break; | |
1945 | } | |
1946 | *num = pgcount - idx; | |
1947 | return err; | |
1948 | #endif /* ifdef pte_index */ | |
1949 | } | |
1950 | EXPORT_SYMBOL(vm_insert_pages); | |
1951 | ||
bfa5bf6d REB |
1952 | /** |
1953 | * vm_insert_page - insert single page into user vma | |
1954 | * @vma: user vma to map to | |
1955 | * @addr: target user address of this page | |
1956 | * @page: source kernel page | |
1957 | * | |
a145dd41 LT |
1958 | * This allows drivers to insert individual pages they've allocated |
1959 | * into a user vma. | |
1960 | * | |
1961 | * The page has to be a nice clean _individual_ kernel allocation. | |
1962 | * If you allocate a compound page, you need to have marked it as | |
1963 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1964 | * (see split_page()). |
a145dd41 LT |
1965 | * |
1966 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1967 | * took an arbitrary page protection parameter. This doesn't allow | |
1968 | * that. Your vma protection will have to be set up correctly, which | |
1969 | * means that if you want a shared writable mapping, you'd better | |
1970 | * ask for a shared writable mapping! | |
1971 | * | |
1972 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1973 | * |
1974 | * Usually this function is called from f_op->mmap() handler | |
c1e8d7c6 | 1975 | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. |
4b6e1e37 KK |
1976 | * Caller must set VM_MIXEDMAP on vma if it wants to call this |
1977 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
1978 | * |
1979 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 1980 | */ |
423bad60 NP |
1981 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1982 | struct page *page) | |
a145dd41 LT |
1983 | { |
1984 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1985 | return -EFAULT; | |
1986 | if (!page_count(page)) | |
1987 | return -EINVAL; | |
4b6e1e37 | 1988 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
d8ed45c5 | 1989 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
4b6e1e37 | 1990 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1c71222e | 1991 | vm_flags_set(vma, VM_MIXEDMAP); |
4b6e1e37 | 1992 | } |
423bad60 | 1993 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1994 | } |
e3c3374f | 1995 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1996 | |
a667d745 SJ |
1997 | /* |
1998 | * __vm_map_pages - maps range of kernel pages into user vma | |
1999 | * @vma: user vma to map to | |
2000 | * @pages: pointer to array of source kernel pages | |
2001 | * @num: number of pages in page array | |
2002 | * @offset: user's requested vm_pgoff | |
2003 | * | |
2004 | * This allows drivers to map range of kernel pages into a user vma. | |
2005 | * | |
2006 | * Return: 0 on success and error code otherwise. | |
2007 | */ | |
2008 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2009 | unsigned long num, unsigned long offset) | |
2010 | { | |
2011 | unsigned long count = vma_pages(vma); | |
2012 | unsigned long uaddr = vma->vm_start; | |
2013 | int ret, i; | |
2014 | ||
2015 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 2016 | if (offset >= num) |
a667d745 SJ |
2017 | return -ENXIO; |
2018 | ||
2019 | /* Fail if the user requested size exceeds available object size */ | |
2020 | if (count > num - offset) | |
2021 | return -ENXIO; | |
2022 | ||
2023 | for (i = 0; i < count; i++) { | |
2024 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
2025 | if (ret < 0) | |
2026 | return ret; | |
2027 | uaddr += PAGE_SIZE; | |
2028 | } | |
2029 | ||
2030 | return 0; | |
2031 | } | |
2032 | ||
2033 | /** | |
2034 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
2035 | * @vma: user vma to map to | |
2036 | * @pages: pointer to array of source kernel pages | |
2037 | * @num: number of pages in page array | |
2038 | * | |
2039 | * Maps an object consisting of @num pages, catering for the user's | |
2040 | * requested vm_pgoff | |
2041 | * | |
2042 | * If we fail to insert any page into the vma, the function will return | |
2043 | * immediately leaving any previously inserted pages present. Callers | |
2044 | * from the mmap handler may immediately return the error as their caller | |
2045 | * will destroy the vma, removing any successfully inserted pages. Other | |
2046 | * callers should make their own arrangements for calling unmap_region(). | |
2047 | * | |
2048 | * Context: Process context. Called by mmap handlers. | |
2049 | * Return: 0 on success and error code otherwise. | |
2050 | */ | |
2051 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2052 | unsigned long num) | |
2053 | { | |
2054 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
2055 | } | |
2056 | EXPORT_SYMBOL(vm_map_pages); | |
2057 | ||
2058 | /** | |
2059 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
2060 | * @vma: user vma to map to | |
2061 | * @pages: pointer to array of source kernel pages | |
2062 | * @num: number of pages in page array | |
2063 | * | |
2064 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
2065 | * to 0. This function is intended for the drivers that did not consider | |
2066 | * vm_pgoff. | |
2067 | * | |
2068 | * Context: Process context. Called by mmap handlers. | |
2069 | * Return: 0 on success and error code otherwise. | |
2070 | */ | |
2071 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
2072 | unsigned long num) | |
2073 | { | |
2074 | return __vm_map_pages(vma, pages, num, 0); | |
2075 | } | |
2076 | EXPORT_SYMBOL(vm_map_pages_zero); | |
2077 | ||
9b5a8e00 | 2078 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 2079 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
2080 | { |
2081 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
2082 | pte_t *pte, entry; |
2083 | spinlock_t *ptl; | |
2084 | ||
423bad60 NP |
2085 | pte = get_locked_pte(mm, addr, &ptl); |
2086 | if (!pte) | |
9b5a8e00 | 2087 | return VM_FAULT_OOM; |
b2770da6 RZ |
2088 | if (!pte_none(*pte)) { |
2089 | if (mkwrite) { | |
2090 | /* | |
2091 | * For read faults on private mappings the PFN passed | |
2092 | * in may not match the PFN we have mapped if the | |
2093 | * mapped PFN is a writeable COW page. In the mkwrite | |
2094 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
2095 | * mapping and we expect the PFNs to match. If they |
2096 | * don't match, we are likely racing with block | |
2097 | * allocation and mapping invalidation so just skip the | |
2098 | * update. | |
b2770da6 | 2099 | */ |
f2c57d91 JK |
2100 | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { |
2101 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | |
b2770da6 | 2102 | goto out_unlock; |
f2c57d91 | 2103 | } |
cae85cb8 JK |
2104 | entry = pte_mkyoung(*pte); |
2105 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2106 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
2107 | update_mmu_cache(vma, addr, pte); | |
2108 | } | |
2109 | goto out_unlock; | |
b2770da6 | 2110 | } |
423bad60 NP |
2111 | |
2112 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
2113 | if (pfn_t_devmap(pfn)) |
2114 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
2115 | else | |
2116 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 2117 | |
b2770da6 RZ |
2118 | if (mkwrite) { |
2119 | entry = pte_mkyoung(entry); | |
2120 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2121 | } | |
2122 | ||
423bad60 | 2123 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 2124 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 2125 | |
423bad60 NP |
2126 | out_unlock: |
2127 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 2128 | return VM_FAULT_NOPAGE; |
423bad60 NP |
2129 | } |
2130 | ||
f5e6d1d5 MW |
2131 | /** |
2132 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
2133 | * @vma: user vma to map to | |
2134 | * @addr: target user address of this page | |
2135 | * @pfn: source kernel pfn | |
2136 | * @pgprot: pgprot flags for the inserted page | |
2137 | * | |
a1a0aea5 | 2138 | * This is exactly like vmf_insert_pfn(), except that it allows drivers |
f5e6d1d5 MW |
2139 | * to override pgprot on a per-page basis. |
2140 | * | |
2141 | * This only makes sense for IO mappings, and it makes no sense for | |
2142 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 2143 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
2144 | * impractical. |
2145 | * | |
574c5b3d TH |
2146 | * See vmf_insert_mixed_prot() for a discussion of the implication of using |
2147 | * a value of @pgprot different from that of @vma->vm_page_prot. | |
2148 | * | |
ae2b01f3 | 2149 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
2150 | * Return: vm_fault_t value. |
2151 | */ | |
2152 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
2153 | unsigned long pfn, pgprot_t pgprot) | |
2154 | { | |
6d958546 MW |
2155 | /* |
2156 | * Technically, architectures with pte_special can avoid all these | |
2157 | * restrictions (same for remap_pfn_range). However we would like | |
2158 | * consistency in testing and feature parity among all, so we should | |
2159 | * try to keep these invariants in place for everybody. | |
2160 | */ | |
2161 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
2162 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
2163 | (VM_PFNMAP|VM_MIXEDMAP)); | |
2164 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
2165 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
2166 | ||
2167 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2168 | return VM_FAULT_SIGBUS; | |
2169 | ||
2170 | if (!pfn_modify_allowed(pfn, pgprot)) | |
2171 | return VM_FAULT_SIGBUS; | |
2172 | ||
2173 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
2174 | ||
9b5a8e00 | 2175 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 2176 | false); |
f5e6d1d5 MW |
2177 | } |
2178 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 2179 | |
ae2b01f3 MW |
2180 | /** |
2181 | * vmf_insert_pfn - insert single pfn into user vma | |
2182 | * @vma: user vma to map to | |
2183 | * @addr: target user address of this page | |
2184 | * @pfn: source kernel pfn | |
2185 | * | |
2186 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
2187 | * they've allocated into a user vma. Same comments apply. | |
2188 | * | |
2189 | * This function should only be called from a vm_ops->fault handler, and | |
2190 | * in that case the handler should return the result of this function. | |
2191 | * | |
2192 | * vma cannot be a COW mapping. | |
2193 | * | |
2194 | * As this is called only for pages that do not currently exist, we | |
2195 | * do not need to flush old virtual caches or the TLB. | |
2196 | * | |
2197 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2198 | * Return: vm_fault_t value. | |
2199 | */ | |
2200 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2201 | unsigned long pfn) | |
2202 | { | |
2203 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
2204 | } | |
2205 | EXPORT_SYMBOL(vmf_insert_pfn); | |
2206 | ||
785a3fab DW |
2207 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
2208 | { | |
2209 | /* these checks mirror the abort conditions in vm_normal_page */ | |
2210 | if (vma->vm_flags & VM_MIXEDMAP) | |
2211 | return true; | |
2212 | if (pfn_t_devmap(pfn)) | |
2213 | return true; | |
2214 | if (pfn_t_special(pfn)) | |
2215 | return true; | |
2216 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
2217 | return true; | |
2218 | return false; | |
2219 | } | |
2220 | ||
79f3aa5b | 2221 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
574c5b3d TH |
2222 | unsigned long addr, pfn_t pfn, pgprot_t pgprot, |
2223 | bool mkwrite) | |
423bad60 | 2224 | { |
79f3aa5b | 2225 | int err; |
87744ab3 | 2226 | |
785a3fab | 2227 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 2228 | |
423bad60 | 2229 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 2230 | return VM_FAULT_SIGBUS; |
308a047c BP |
2231 | |
2232 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 2233 | |
42e4089c | 2234 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 2235 | return VM_FAULT_SIGBUS; |
42e4089c | 2236 | |
423bad60 NP |
2237 | /* |
2238 | * If we don't have pte special, then we have to use the pfn_valid() | |
2239 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
2240 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
2241 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
2242 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 2243 | */ |
00b3a331 LD |
2244 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
2245 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
2246 | struct page *page; |
2247 | ||
03fc2da6 DW |
2248 | /* |
2249 | * At this point we are committed to insert_page() | |
2250 | * regardless of whether the caller specified flags that | |
2251 | * result in pfn_t_has_page() == false. | |
2252 | */ | |
2253 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
2254 | err = insert_page(vma, addr, page, pgprot); |
2255 | } else { | |
9b5a8e00 | 2256 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 2257 | } |
b2770da6 | 2258 | |
5d747637 MW |
2259 | if (err == -ENOMEM) |
2260 | return VM_FAULT_OOM; | |
2261 | if (err < 0 && err != -EBUSY) | |
2262 | return VM_FAULT_SIGBUS; | |
2263 | ||
2264 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 2265 | } |
79f3aa5b | 2266 | |
574c5b3d TH |
2267 | /** |
2268 | * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot | |
2269 | * @vma: user vma to map to | |
2270 | * @addr: target user address of this page | |
2271 | * @pfn: source kernel pfn | |
2272 | * @pgprot: pgprot flags for the inserted page | |
2273 | * | |
a1a0aea5 | 2274 | * This is exactly like vmf_insert_mixed(), except that it allows drivers |
574c5b3d TH |
2275 | * to override pgprot on a per-page basis. |
2276 | * | |
2277 | * Typically this function should be used by drivers to set caching- and | |
2278 | * encryption bits different than those of @vma->vm_page_prot, because | |
2279 | * the caching- or encryption mode may not be known at mmap() time. | |
2280 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
2281 | * to set caching and encryption bits for those vmas (except for COW pages). | |
2282 | * This is ensured by core vm only modifying these page table entries using | |
2283 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
2284 | * if needed. (See for example mprotect()). | |
2285 | * Also when new page-table entries are created, this is only done using the | |
2286 | * fault() callback, and never using the value of vma->vm_page_prot, | |
2287 | * except for page-table entries that point to anonymous pages as the result | |
2288 | * of COW. | |
2289 | * | |
2290 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2291 | * Return: vm_fault_t value. | |
2292 | */ | |
2293 | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, | |
2294 | pfn_t pfn, pgprot_t pgprot) | |
2295 | { | |
2296 | return __vm_insert_mixed(vma, addr, pfn, pgprot, false); | |
2297 | } | |
5379e4dd | 2298 | EXPORT_SYMBOL(vmf_insert_mixed_prot); |
574c5b3d | 2299 | |
79f3aa5b MW |
2300 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
2301 | pfn_t pfn) | |
2302 | { | |
574c5b3d | 2303 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); |
79f3aa5b | 2304 | } |
5d747637 | 2305 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 2306 | |
ab77dab4 SJ |
2307 | /* |
2308 | * If the insertion of PTE failed because someone else already added a | |
2309 | * different entry in the mean time, we treat that as success as we assume | |
2310 | * the same entry was actually inserted. | |
2311 | */ | |
ab77dab4 SJ |
2312 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
2313 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 2314 | { |
574c5b3d | 2315 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); |
b2770da6 | 2316 | } |
ab77dab4 | 2317 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 2318 | |
1da177e4 LT |
2319 | /* |
2320 | * maps a range of physical memory into the requested pages. the old | |
2321 | * mappings are removed. any references to nonexistent pages results | |
2322 | * in null mappings (currently treated as "copy-on-access") | |
2323 | */ | |
2324 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
2325 | unsigned long addr, unsigned long end, | |
2326 | unsigned long pfn, pgprot_t prot) | |
2327 | { | |
90a3e375 | 2328 | pte_t *pte, *mapped_pte; |
c74df32c | 2329 | spinlock_t *ptl; |
42e4089c | 2330 | int err = 0; |
1da177e4 | 2331 | |
90a3e375 | 2332 | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
2333 | if (!pte) |
2334 | return -ENOMEM; | |
6606c3e0 | 2335 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
2336 | do { |
2337 | BUG_ON(!pte_none(*pte)); | |
42e4089c AK |
2338 | if (!pfn_modify_allowed(pfn, prot)) { |
2339 | err = -EACCES; | |
2340 | break; | |
2341 | } | |
7e675137 | 2342 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
2343 | pfn++; |
2344 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 2345 | arch_leave_lazy_mmu_mode(); |
90a3e375 | 2346 | pte_unmap_unlock(mapped_pte, ptl); |
42e4089c | 2347 | return err; |
1da177e4 LT |
2348 | } |
2349 | ||
2350 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2351 | unsigned long addr, unsigned long end, | |
2352 | unsigned long pfn, pgprot_t prot) | |
2353 | { | |
2354 | pmd_t *pmd; | |
2355 | unsigned long next; | |
42e4089c | 2356 | int err; |
1da177e4 LT |
2357 | |
2358 | pfn -= addr >> PAGE_SHIFT; | |
2359 | pmd = pmd_alloc(mm, pud, addr); | |
2360 | if (!pmd) | |
2361 | return -ENOMEM; | |
f66055ab | 2362 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
2363 | do { |
2364 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
2365 | err = remap_pte_range(mm, pmd, addr, next, |
2366 | pfn + (addr >> PAGE_SHIFT), prot); | |
2367 | if (err) | |
2368 | return err; | |
1da177e4 LT |
2369 | } while (pmd++, addr = next, addr != end); |
2370 | return 0; | |
2371 | } | |
2372 | ||
c2febafc | 2373 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
2374 | unsigned long addr, unsigned long end, |
2375 | unsigned long pfn, pgprot_t prot) | |
2376 | { | |
2377 | pud_t *pud; | |
2378 | unsigned long next; | |
42e4089c | 2379 | int err; |
1da177e4 LT |
2380 | |
2381 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 2382 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
2383 | if (!pud) |
2384 | return -ENOMEM; | |
2385 | do { | |
2386 | next = pud_addr_end(addr, end); | |
42e4089c AK |
2387 | err = remap_pmd_range(mm, pud, addr, next, |
2388 | pfn + (addr >> PAGE_SHIFT), prot); | |
2389 | if (err) | |
2390 | return err; | |
1da177e4 LT |
2391 | } while (pud++, addr = next, addr != end); |
2392 | return 0; | |
2393 | } | |
2394 | ||
c2febafc KS |
2395 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2396 | unsigned long addr, unsigned long end, | |
2397 | unsigned long pfn, pgprot_t prot) | |
2398 | { | |
2399 | p4d_t *p4d; | |
2400 | unsigned long next; | |
42e4089c | 2401 | int err; |
c2febafc KS |
2402 | |
2403 | pfn -= addr >> PAGE_SHIFT; | |
2404 | p4d = p4d_alloc(mm, pgd, addr); | |
2405 | if (!p4d) | |
2406 | return -ENOMEM; | |
2407 | do { | |
2408 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
2409 | err = remap_pud_range(mm, p4d, addr, next, |
2410 | pfn + (addr >> PAGE_SHIFT), prot); | |
2411 | if (err) | |
2412 | return err; | |
c2febafc KS |
2413 | } while (p4d++, addr = next, addr != end); |
2414 | return 0; | |
2415 | } | |
2416 | ||
74ffa5a3 CH |
2417 | /* |
2418 | * Variant of remap_pfn_range that does not call track_pfn_remap. The caller | |
2419 | * must have pre-validated the caching bits of the pgprot_t. | |
bfa5bf6d | 2420 | */ |
74ffa5a3 CH |
2421 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
2422 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1da177e4 LT |
2423 | { |
2424 | pgd_t *pgd; | |
2425 | unsigned long next; | |
2d15cab8 | 2426 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
2427 | struct mm_struct *mm = vma->vm_mm; |
2428 | int err; | |
2429 | ||
0c4123e3 AZ |
2430 | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) |
2431 | return -EINVAL; | |
2432 | ||
1da177e4 LT |
2433 | /* |
2434 | * Physically remapped pages are special. Tell the | |
2435 | * rest of the world about it: | |
2436 | * VM_IO tells people not to look at these pages | |
2437 | * (accesses can have side effects). | |
6aab341e LT |
2438 | * VM_PFNMAP tells the core MM that the base pages are just |
2439 | * raw PFN mappings, and do not have a "struct page" associated | |
2440 | * with them. | |
314e51b9 KK |
2441 | * VM_DONTEXPAND |
2442 | * Disable vma merging and expanding with mremap(). | |
2443 | * VM_DONTDUMP | |
2444 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
2445 | * |
2446 | * There's a horrible special case to handle copy-on-write | |
2447 | * behaviour that some programs depend on. We mark the "original" | |
2448 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 2449 | * See vm_normal_page() for details. |
1da177e4 | 2450 | */ |
b3b9c293 KK |
2451 | if (is_cow_mapping(vma->vm_flags)) { |
2452 | if (addr != vma->vm_start || end != vma->vm_end) | |
2453 | return -EINVAL; | |
fb155c16 | 2454 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
2455 | } |
2456 | ||
1c71222e | 2457 | vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); |
1da177e4 LT |
2458 | |
2459 | BUG_ON(addr >= end); | |
2460 | pfn -= addr >> PAGE_SHIFT; | |
2461 | pgd = pgd_offset(mm, addr); | |
2462 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
2463 | do { |
2464 | next = pgd_addr_end(addr, end); | |
c2febafc | 2465 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
2466 | pfn + (addr >> PAGE_SHIFT), prot); |
2467 | if (err) | |
74ffa5a3 | 2468 | return err; |
1da177e4 | 2469 | } while (pgd++, addr = next, addr != end); |
2ab64037 | 2470 | |
74ffa5a3 CH |
2471 | return 0; |
2472 | } | |
2473 | ||
2474 | /** | |
2475 | * remap_pfn_range - remap kernel memory to userspace | |
2476 | * @vma: user vma to map to | |
2477 | * @addr: target page aligned user address to start at | |
2478 | * @pfn: page frame number of kernel physical memory address | |
2479 | * @size: size of mapping area | |
2480 | * @prot: page protection flags for this mapping | |
2481 | * | |
2482 | * Note: this is only safe if the mm semaphore is held when called. | |
2483 | * | |
2484 | * Return: %0 on success, negative error code otherwise. | |
2485 | */ | |
2486 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2487 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2488 | { | |
2489 | int err; | |
2490 | ||
2491 | err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); | |
2ab64037 | 2492 | if (err) |
74ffa5a3 | 2493 | return -EINVAL; |
2ab64037 | 2494 | |
74ffa5a3 CH |
2495 | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); |
2496 | if (err) | |
68f48381 | 2497 | untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); |
1da177e4 LT |
2498 | return err; |
2499 | } | |
2500 | EXPORT_SYMBOL(remap_pfn_range); | |
2501 | ||
b4cbb197 LT |
2502 | /** |
2503 | * vm_iomap_memory - remap memory to userspace | |
2504 | * @vma: user vma to map to | |
abd69b9e | 2505 | * @start: start of the physical memory to be mapped |
b4cbb197 LT |
2506 | * @len: size of area |
2507 | * | |
2508 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2509 | * driver just needs to give us the physical memory range to be mapped, | |
2510 | * we'll figure out the rest from the vma information. | |
2511 | * | |
2512 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2513 | * whatever write-combining details or similar. | |
a862f68a MR |
2514 | * |
2515 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
2516 | */ |
2517 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2518 | { | |
2519 | unsigned long vm_len, pfn, pages; | |
2520 | ||
2521 | /* Check that the physical memory area passed in looks valid */ | |
2522 | if (start + len < start) | |
2523 | return -EINVAL; | |
2524 | /* | |
2525 | * You *really* shouldn't map things that aren't page-aligned, | |
2526 | * but we've historically allowed it because IO memory might | |
2527 | * just have smaller alignment. | |
2528 | */ | |
2529 | len += start & ~PAGE_MASK; | |
2530 | pfn = start >> PAGE_SHIFT; | |
2531 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2532 | if (pfn + pages < pfn) | |
2533 | return -EINVAL; | |
2534 | ||
2535 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2536 | if (vma->vm_pgoff > pages) | |
2537 | return -EINVAL; | |
2538 | pfn += vma->vm_pgoff; | |
2539 | pages -= vma->vm_pgoff; | |
2540 | ||
2541 | /* Can we fit all of the mapping? */ | |
2542 | vm_len = vma->vm_end - vma->vm_start; | |
2543 | if (vm_len >> PAGE_SHIFT > pages) | |
2544 | return -EINVAL; | |
2545 | ||
2546 | /* Ok, let it rip */ | |
2547 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2548 | } | |
2549 | EXPORT_SYMBOL(vm_iomap_memory); | |
2550 | ||
aee16b3c JF |
2551 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2552 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2553 | pte_fn_t fn, void *data, bool create, |
2554 | pgtbl_mod_mask *mask) | |
aee16b3c | 2555 | { |
8abb50c7 | 2556 | pte_t *pte, *mapped_pte; |
be1db475 | 2557 | int err = 0; |
3f649ab7 | 2558 | spinlock_t *ptl; |
aee16b3c | 2559 | |
be1db475 | 2560 | if (create) { |
8abb50c7 | 2561 | mapped_pte = pte = (mm == &init_mm) ? |
e80d3909 | 2562 | pte_alloc_kernel_track(pmd, addr, mask) : |
be1db475 DA |
2563 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
2564 | if (!pte) | |
2565 | return -ENOMEM; | |
2566 | } else { | |
8abb50c7 | 2567 | mapped_pte = pte = (mm == &init_mm) ? |
be1db475 DA |
2568 | pte_offset_kernel(pmd, addr) : |
2569 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
2570 | } | |
aee16b3c JF |
2571 | |
2572 | BUG_ON(pmd_huge(*pmd)); | |
2573 | ||
38e0edb1 JF |
2574 | arch_enter_lazy_mmu_mode(); |
2575 | ||
eeb4a05f CH |
2576 | if (fn) { |
2577 | do { | |
2578 | if (create || !pte_none(*pte)) { | |
2579 | err = fn(pte++, addr, data); | |
2580 | if (err) | |
2581 | break; | |
2582 | } | |
2583 | } while (addr += PAGE_SIZE, addr != end); | |
2584 | } | |
e80d3909 | 2585 | *mask |= PGTBL_PTE_MODIFIED; |
aee16b3c | 2586 | |
38e0edb1 JF |
2587 | arch_leave_lazy_mmu_mode(); |
2588 | ||
aee16b3c | 2589 | if (mm != &init_mm) |
8abb50c7 | 2590 | pte_unmap_unlock(mapped_pte, ptl); |
aee16b3c JF |
2591 | return err; |
2592 | } | |
2593 | ||
2594 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2595 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2596 | pte_fn_t fn, void *data, bool create, |
2597 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2598 | { |
2599 | pmd_t *pmd; | |
2600 | unsigned long next; | |
be1db475 | 2601 | int err = 0; |
aee16b3c | 2602 | |
ceb86879 AK |
2603 | BUG_ON(pud_huge(*pud)); |
2604 | ||
be1db475 | 2605 | if (create) { |
e80d3909 | 2606 | pmd = pmd_alloc_track(mm, pud, addr, mask); |
be1db475 DA |
2607 | if (!pmd) |
2608 | return -ENOMEM; | |
2609 | } else { | |
2610 | pmd = pmd_offset(pud, addr); | |
2611 | } | |
aee16b3c JF |
2612 | do { |
2613 | next = pmd_addr_end(addr, end); | |
0c95cba4 NP |
2614 | if (pmd_none(*pmd) && !create) |
2615 | continue; | |
2616 | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | |
2617 | return -EINVAL; | |
2618 | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | |
2619 | if (!create) | |
2620 | continue; | |
2621 | pmd_clear_bad(pmd); | |
be1db475 | 2622 | } |
0c95cba4 NP |
2623 | err = apply_to_pte_range(mm, pmd, addr, next, |
2624 | fn, data, create, mask); | |
2625 | if (err) | |
2626 | break; | |
aee16b3c | 2627 | } while (pmd++, addr = next, addr != end); |
0c95cba4 | 2628 | |
aee16b3c JF |
2629 | return err; |
2630 | } | |
2631 | ||
c2febafc | 2632 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c | 2633 | unsigned long addr, unsigned long end, |
e80d3909 JR |
2634 | pte_fn_t fn, void *data, bool create, |
2635 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2636 | { |
2637 | pud_t *pud; | |
2638 | unsigned long next; | |
be1db475 | 2639 | int err = 0; |
aee16b3c | 2640 | |
be1db475 | 2641 | if (create) { |
e80d3909 | 2642 | pud = pud_alloc_track(mm, p4d, addr, mask); |
be1db475 DA |
2643 | if (!pud) |
2644 | return -ENOMEM; | |
2645 | } else { | |
2646 | pud = pud_offset(p4d, addr); | |
2647 | } | |
aee16b3c JF |
2648 | do { |
2649 | next = pud_addr_end(addr, end); | |
0c95cba4 NP |
2650 | if (pud_none(*pud) && !create) |
2651 | continue; | |
2652 | if (WARN_ON_ONCE(pud_leaf(*pud))) | |
2653 | return -EINVAL; | |
2654 | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | |
2655 | if (!create) | |
2656 | continue; | |
2657 | pud_clear_bad(pud); | |
be1db475 | 2658 | } |
0c95cba4 NP |
2659 | err = apply_to_pmd_range(mm, pud, addr, next, |
2660 | fn, data, create, mask); | |
2661 | if (err) | |
2662 | break; | |
aee16b3c | 2663 | } while (pud++, addr = next, addr != end); |
0c95cba4 | 2664 | |
aee16b3c JF |
2665 | return err; |
2666 | } | |
2667 | ||
c2febafc KS |
2668 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2669 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2670 | pte_fn_t fn, void *data, bool create, |
2671 | pgtbl_mod_mask *mask) | |
c2febafc KS |
2672 | { |
2673 | p4d_t *p4d; | |
2674 | unsigned long next; | |
be1db475 | 2675 | int err = 0; |
c2febafc | 2676 | |
be1db475 | 2677 | if (create) { |
e80d3909 | 2678 | p4d = p4d_alloc_track(mm, pgd, addr, mask); |
be1db475 DA |
2679 | if (!p4d) |
2680 | return -ENOMEM; | |
2681 | } else { | |
2682 | p4d = p4d_offset(pgd, addr); | |
2683 | } | |
c2febafc KS |
2684 | do { |
2685 | next = p4d_addr_end(addr, end); | |
0c95cba4 NP |
2686 | if (p4d_none(*p4d) && !create) |
2687 | continue; | |
2688 | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | |
2689 | return -EINVAL; | |
2690 | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | |
2691 | if (!create) | |
2692 | continue; | |
2693 | p4d_clear_bad(p4d); | |
be1db475 | 2694 | } |
0c95cba4 NP |
2695 | err = apply_to_pud_range(mm, p4d, addr, next, |
2696 | fn, data, create, mask); | |
2697 | if (err) | |
2698 | break; | |
c2febafc | 2699 | } while (p4d++, addr = next, addr != end); |
0c95cba4 | 2700 | |
c2febafc KS |
2701 | return err; |
2702 | } | |
2703 | ||
be1db475 DA |
2704 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2705 | unsigned long size, pte_fn_t fn, | |
2706 | void *data, bool create) | |
aee16b3c JF |
2707 | { |
2708 | pgd_t *pgd; | |
e80d3909 | 2709 | unsigned long start = addr, next; |
57250a5b | 2710 | unsigned long end = addr + size; |
e80d3909 | 2711 | pgtbl_mod_mask mask = 0; |
be1db475 | 2712 | int err = 0; |
aee16b3c | 2713 | |
9cb65bc3 MP |
2714 | if (WARN_ON(addr >= end)) |
2715 | return -EINVAL; | |
2716 | ||
aee16b3c JF |
2717 | pgd = pgd_offset(mm, addr); |
2718 | do { | |
2719 | next = pgd_addr_end(addr, end); | |
0c95cba4 | 2720 | if (pgd_none(*pgd) && !create) |
be1db475 | 2721 | continue; |
0c95cba4 NP |
2722 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
2723 | return -EINVAL; | |
2724 | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | |
2725 | if (!create) | |
2726 | continue; | |
2727 | pgd_clear_bad(pgd); | |
2728 | } | |
2729 | err = apply_to_p4d_range(mm, pgd, addr, next, | |
2730 | fn, data, create, &mask); | |
aee16b3c JF |
2731 | if (err) |
2732 | break; | |
2733 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2734 | |
e80d3909 JR |
2735 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
2736 | arch_sync_kernel_mappings(start, start + size); | |
2737 | ||
aee16b3c JF |
2738 | return err; |
2739 | } | |
be1db475 DA |
2740 | |
2741 | /* | |
2742 | * Scan a region of virtual memory, filling in page tables as necessary | |
2743 | * and calling a provided function on each leaf page table. | |
2744 | */ | |
2745 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2746 | unsigned long size, pte_fn_t fn, void *data) | |
2747 | { | |
2748 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
2749 | } | |
aee16b3c JF |
2750 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2751 | ||
be1db475 DA |
2752 | /* |
2753 | * Scan a region of virtual memory, calling a provided function on | |
2754 | * each leaf page table where it exists. | |
2755 | * | |
2756 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
2757 | * where they are absent. | |
2758 | */ | |
2759 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
2760 | unsigned long size, pte_fn_t fn, void *data) | |
2761 | { | |
2762 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
2763 | } | |
2764 | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | |
2765 | ||
8f4e2101 | 2766 | /* |
9b4bdd2f KS |
2767 | * handle_pte_fault chooses page fault handler according to an entry which was |
2768 | * read non-atomically. Before making any commitment, on those architectures | |
2769 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2770 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2771 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2772 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2773 | */ |
2ca99358 | 2774 | static inline int pte_unmap_same(struct vm_fault *vmf) |
8f4e2101 HD |
2775 | { |
2776 | int same = 1; | |
923717cb | 2777 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) |
8f4e2101 | 2778 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
2ca99358 | 2779 | spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4c21e2f2 | 2780 | spin_lock(ptl); |
2ca99358 | 2781 | same = pte_same(*vmf->pte, vmf->orig_pte); |
4c21e2f2 | 2782 | spin_unlock(ptl); |
8f4e2101 HD |
2783 | } |
2784 | #endif | |
2ca99358 PX |
2785 | pte_unmap(vmf->pte); |
2786 | vmf->pte = NULL; | |
8f4e2101 HD |
2787 | return same; |
2788 | } | |
2789 | ||
a873dfe1 TL |
2790 | /* |
2791 | * Return: | |
2792 | * 0: copied succeeded | |
2793 | * -EHWPOISON: copy failed due to hwpoison in source page | |
2794 | * -EAGAIN: copied failed (some other reason) | |
2795 | */ | |
2796 | static inline int __wp_page_copy_user(struct page *dst, struct page *src, | |
2797 | struct vm_fault *vmf) | |
6aab341e | 2798 | { |
a873dfe1 | 2799 | int ret; |
83d116c5 JH |
2800 | void *kaddr; |
2801 | void __user *uaddr; | |
c3e5ea6e | 2802 | bool locked = false; |
83d116c5 JH |
2803 | struct vm_area_struct *vma = vmf->vma; |
2804 | struct mm_struct *mm = vma->vm_mm; | |
2805 | unsigned long addr = vmf->address; | |
2806 | ||
83d116c5 | 2807 | if (likely(src)) { |
d302c239 TL |
2808 | if (copy_mc_user_highpage(dst, src, addr, vma)) { |
2809 | memory_failure_queue(page_to_pfn(src), 0); | |
a873dfe1 | 2810 | return -EHWPOISON; |
d302c239 | 2811 | } |
a873dfe1 | 2812 | return 0; |
83d116c5 JH |
2813 | } |
2814 | ||
6aab341e LT |
2815 | /* |
2816 | * If the source page was a PFN mapping, we don't have | |
2817 | * a "struct page" for it. We do a best-effort copy by | |
2818 | * just copying from the original user address. If that | |
2819 | * fails, we just zero-fill it. Live with it. | |
2820 | */ | |
83d116c5 JH |
2821 | kaddr = kmap_atomic(dst); |
2822 | uaddr = (void __user *)(addr & PAGE_MASK); | |
2823 | ||
2824 | /* | |
2825 | * On architectures with software "accessed" bits, we would | |
2826 | * take a double page fault, so mark it accessed here. | |
2827 | */ | |
e1fd09e3 | 2828 | if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { |
83d116c5 | 2829 | pte_t entry; |
5d2a2dbb | 2830 | |
83d116c5 | 2831 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); |
c3e5ea6e | 2832 | locked = true; |
83d116c5 JH |
2833 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2834 | /* | |
2835 | * Other thread has already handled the fault | |
7df67697 | 2836 | * and update local tlb only |
83d116c5 | 2837 | */ |
7df67697 | 2838 | update_mmu_tlb(vma, addr, vmf->pte); |
a873dfe1 | 2839 | ret = -EAGAIN; |
83d116c5 JH |
2840 | goto pte_unlock; |
2841 | } | |
2842 | ||
2843 | entry = pte_mkyoung(vmf->orig_pte); | |
2844 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
2845 | update_mmu_cache(vma, addr, vmf->pte); | |
2846 | } | |
2847 | ||
2848 | /* | |
2849 | * This really shouldn't fail, because the page is there | |
2850 | * in the page tables. But it might just be unreadable, | |
2851 | * in which case we just give up and fill the result with | |
2852 | * zeroes. | |
2853 | */ | |
2854 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
c3e5ea6e KS |
2855 | if (locked) |
2856 | goto warn; | |
2857 | ||
2858 | /* Re-validate under PTL if the page is still mapped */ | |
2859 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
2860 | locked = true; | |
2861 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | |
7df67697 BM |
2862 | /* The PTE changed under us, update local tlb */ |
2863 | update_mmu_tlb(vma, addr, vmf->pte); | |
a873dfe1 | 2864 | ret = -EAGAIN; |
c3e5ea6e KS |
2865 | goto pte_unlock; |
2866 | } | |
2867 | ||
5d2a2dbb | 2868 | /* |
985ba004 | 2869 | * The same page can be mapped back since last copy attempt. |
c3e5ea6e | 2870 | * Try to copy again under PTL. |
5d2a2dbb | 2871 | */ |
c3e5ea6e KS |
2872 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { |
2873 | /* | |
2874 | * Give a warn in case there can be some obscure | |
2875 | * use-case | |
2876 | */ | |
2877 | warn: | |
2878 | WARN_ON_ONCE(1); | |
2879 | clear_page(kaddr); | |
2880 | } | |
83d116c5 JH |
2881 | } |
2882 | ||
a873dfe1 | 2883 | ret = 0; |
83d116c5 JH |
2884 | |
2885 | pte_unlock: | |
c3e5ea6e | 2886 | if (locked) |
83d116c5 JH |
2887 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2888 | kunmap_atomic(kaddr); | |
2889 | flush_dcache_page(dst); | |
2890 | ||
2891 | return ret; | |
6aab341e LT |
2892 | } |
2893 | ||
c20cd45e MH |
2894 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2895 | { | |
2896 | struct file *vm_file = vma->vm_file; | |
2897 | ||
2898 | if (vm_file) | |
2899 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2900 | ||
2901 | /* | |
2902 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2903 | * a default GFP_KERNEL for them. | |
2904 | */ | |
2905 | return GFP_KERNEL; | |
2906 | } | |
2907 | ||
fb09a464 KS |
2908 | /* |
2909 | * Notify the address space that the page is about to become writable so that | |
2910 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2911 | * | |
2912 | * We do this without the lock held, so that it can sleep if it needs to. | |
2913 | */ | |
2b740303 | 2914 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2915 | { |
2b740303 | 2916 | vm_fault_t ret; |
38b8cb7f JK |
2917 | struct page *page = vmf->page; |
2918 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2919 | |
38b8cb7f | 2920 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2921 | |
dc617f29 DW |
2922 | if (vmf->vma->vm_file && |
2923 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
2924 | return VM_FAULT_SIGBUS; | |
2925 | ||
11bac800 | 2926 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2927 | /* Restore original flags so that caller is not surprised */ |
2928 | vmf->flags = old_flags; | |
fb09a464 KS |
2929 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2930 | return ret; | |
2931 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2932 | lock_page(page); | |
2933 | if (!page->mapping) { | |
2934 | unlock_page(page); | |
2935 | return 0; /* retry */ | |
2936 | } | |
2937 | ret |= VM_FAULT_LOCKED; | |
2938 | } else | |
2939 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2940 | return ret; | |
2941 | } | |
2942 | ||
97ba0c2b JK |
2943 | /* |
2944 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2945 | * | |
2946 | * The function expects the page to be locked and unlocks it. | |
2947 | */ | |
89b15332 | 2948 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) |
97ba0c2b | 2949 | { |
89b15332 | 2950 | struct vm_area_struct *vma = vmf->vma; |
97ba0c2b | 2951 | struct address_space *mapping; |
89b15332 | 2952 | struct page *page = vmf->page; |
97ba0c2b JK |
2953 | bool dirtied; |
2954 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2955 | ||
2956 | dirtied = set_page_dirty(page); | |
2957 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2958 | /* | |
2959 | * Take a local copy of the address_space - page.mapping may be zeroed | |
2960 | * by truncate after unlock_page(). The address_space itself remains | |
2961 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
2962 | * release semantics to prevent the compiler from undoing this copying. | |
2963 | */ | |
2964 | mapping = page_rmapping(page); | |
2965 | unlock_page(page); | |
2966 | ||
89b15332 JW |
2967 | if (!page_mkwrite) |
2968 | file_update_time(vma->vm_file); | |
2969 | ||
2970 | /* | |
2971 | * Throttle page dirtying rate down to writeback speed. | |
2972 | * | |
2973 | * mapping may be NULL here because some device drivers do not | |
2974 | * set page.mapping but still dirty their pages | |
2975 | * | |
c1e8d7c6 | 2976 | * Drop the mmap_lock before waiting on IO, if we can. The file |
89b15332 JW |
2977 | * is pinning the mapping, as per above. |
2978 | */ | |
97ba0c2b | 2979 | if ((dirtied || page_mkwrite) && mapping) { |
89b15332 JW |
2980 | struct file *fpin; |
2981 | ||
2982 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
97ba0c2b | 2983 | balance_dirty_pages_ratelimited(mapping); |
89b15332 JW |
2984 | if (fpin) { |
2985 | fput(fpin); | |
d9272525 | 2986 | return VM_FAULT_COMPLETED; |
89b15332 | 2987 | } |
97ba0c2b JK |
2988 | } |
2989 | ||
89b15332 | 2990 | return 0; |
97ba0c2b JK |
2991 | } |
2992 | ||
4e047f89 SR |
2993 | /* |
2994 | * Handle write page faults for pages that can be reused in the current vma | |
2995 | * | |
2996 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2997 | * or due to us being the last reference standing to the page. In either | |
2998 | * case, all we need to do here is to mark the page as writable and update | |
2999 | * any related book-keeping. | |
3000 | */ | |
997dd98d | 3001 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 3002 | __releases(vmf->ptl) |
4e047f89 | 3003 | { |
82b0f8c3 | 3004 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 3005 | struct page *page = vmf->page; |
4e047f89 | 3006 | pte_t entry; |
6c287605 | 3007 | |
c89357e2 | 3008 | VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); |
cdb281e6 | 3009 | VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); |
6c287605 | 3010 | |
4e047f89 SR |
3011 | /* |
3012 | * Clear the pages cpupid information as the existing | |
3013 | * information potentially belongs to a now completely | |
3014 | * unrelated process. | |
3015 | */ | |
3016 | if (page) | |
3017 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
3018 | ||
2994302b JK |
3019 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
3020 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 3021 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
3022 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
3023 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
3024 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
798a6b87 | 3025 | count_vm_event(PGREUSE); |
4e047f89 SR |
3026 | } |
3027 | ||
2f38ab2c | 3028 | /* |
c89357e2 DH |
3029 | * Handle the case of a page which we actually need to copy to a new page, |
3030 | * either due to COW or unsharing. | |
2f38ab2c | 3031 | * |
c1e8d7c6 | 3032 | * Called with mmap_lock locked and the old page referenced, but |
2f38ab2c SR |
3033 | * without the ptl held. |
3034 | * | |
3035 | * High level logic flow: | |
3036 | * | |
3037 | * - Allocate a page, copy the content of the old page to the new one. | |
3038 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
3039 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
3040 | * - If the pte is still the way we remember it, update the page table and all | |
3041 | * relevant references. This includes dropping the reference the page-table | |
3042 | * held to the old page, as well as updating the rmap. | |
3043 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
3044 | */ | |
2b740303 | 3045 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 3046 | { |
c89357e2 | 3047 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3048 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3049 | struct mm_struct *mm = vma->vm_mm; |
28d41a48 MWO |
3050 | struct folio *old_folio = NULL; |
3051 | struct folio *new_folio = NULL; | |
2f38ab2c SR |
3052 | pte_t entry; |
3053 | int page_copied = 0; | |
ac46d4f3 | 3054 | struct mmu_notifier_range range; |
a873dfe1 | 3055 | int ret; |
2f38ab2c | 3056 | |
662ce1dc YY |
3057 | delayacct_wpcopy_start(); |
3058 | ||
28d41a48 MWO |
3059 | if (vmf->page) |
3060 | old_folio = page_folio(vmf->page); | |
2f38ab2c SR |
3061 | if (unlikely(anon_vma_prepare(vma))) |
3062 | goto oom; | |
3063 | ||
2994302b | 3064 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
6bc56a4d MWO |
3065 | new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); |
3066 | if (!new_folio) | |
2f38ab2c SR |
3067 | goto oom; |
3068 | } else { | |
28d41a48 MWO |
3069 | new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, |
3070 | vmf->address, false); | |
3071 | if (!new_folio) | |
2f38ab2c | 3072 | goto oom; |
83d116c5 | 3073 | |
28d41a48 | 3074 | ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); |
a873dfe1 | 3075 | if (ret) { |
83d116c5 JH |
3076 | /* |
3077 | * COW failed, if the fault was solved by other, | |
3078 | * it's fine. If not, userspace would re-fault on | |
3079 | * the same address and we will handle the fault | |
3080 | * from the second attempt. | |
a873dfe1 | 3081 | * The -EHWPOISON case will not be retried. |
83d116c5 | 3082 | */ |
28d41a48 MWO |
3083 | folio_put(new_folio); |
3084 | if (old_folio) | |
3085 | folio_put(old_folio); | |
662ce1dc YY |
3086 | |
3087 | delayacct_wpcopy_end(); | |
a873dfe1 | 3088 | return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; |
83d116c5 | 3089 | } |
28d41a48 | 3090 | kmsan_copy_page_meta(&new_folio->page, vmf->page); |
2f38ab2c | 3091 | } |
2f38ab2c | 3092 | |
28d41a48 | 3093 | if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) |
2f38ab2c | 3094 | goto oom_free_new; |
28d41a48 | 3095 | cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL); |
2f38ab2c | 3096 | |
28d41a48 | 3097 | __folio_mark_uptodate(new_folio); |
eb3c24f3 | 3098 | |
7d4a8be0 | 3099 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
6f4f13e8 | 3100 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
3101 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
3102 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
3103 | |
3104 | /* | |
3105 | * Re-check the pte - we dropped the lock | |
3106 | */ | |
82b0f8c3 | 3107 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 3108 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
28d41a48 MWO |
3109 | if (old_folio) { |
3110 | if (!folio_test_anon(old_folio)) { | |
3111 | dec_mm_counter(mm, mm_counter_file(&old_folio->page)); | |
f1a79412 | 3112 | inc_mm_counter(mm, MM_ANONPAGES); |
2f38ab2c SR |
3113 | } |
3114 | } else { | |
f1a79412 | 3115 | inc_mm_counter(mm, MM_ANONPAGES); |
2f38ab2c | 3116 | } |
2994302b | 3117 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
28d41a48 | 3118 | entry = mk_pte(&new_folio->page, vma->vm_page_prot); |
50c25ee9 | 3119 | entry = pte_sw_mkyoung(entry); |
c89357e2 DH |
3120 | if (unlikely(unshare)) { |
3121 | if (pte_soft_dirty(vmf->orig_pte)) | |
3122 | entry = pte_mksoft_dirty(entry); | |
3123 | if (pte_uffd_wp(vmf->orig_pte)) | |
3124 | entry = pte_mkuffd_wp(entry); | |
3125 | } else { | |
3126 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3127 | } | |
111fe718 | 3128 | |
2f38ab2c SR |
3129 | /* |
3130 | * Clear the pte entry and flush it first, before updating the | |
111fe718 NP |
3131 | * pte with the new entry, to keep TLBs on different CPUs in |
3132 | * sync. This code used to set the new PTE then flush TLBs, but | |
3133 | * that left a window where the new PTE could be loaded into | |
3134 | * some TLBs while the old PTE remains in others. | |
2f38ab2c | 3135 | */ |
82b0f8c3 | 3136 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
28d41a48 MWO |
3137 | folio_add_new_anon_rmap(new_folio, vma, vmf->address); |
3138 | folio_add_lru_vma(new_folio, vma); | |
2f38ab2c SR |
3139 | /* |
3140 | * We call the notify macro here because, when using secondary | |
3141 | * mmu page tables (such as kvm shadow page tables), we want the | |
3142 | * new page to be mapped directly into the secondary page table. | |
3143 | */ | |
c89357e2 | 3144 | BUG_ON(unshare && pte_write(entry)); |
82b0f8c3 JK |
3145 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
3146 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
28d41a48 | 3147 | if (old_folio) { |
2f38ab2c SR |
3148 | /* |
3149 | * Only after switching the pte to the new page may | |
3150 | * we remove the mapcount here. Otherwise another | |
3151 | * process may come and find the rmap count decremented | |
3152 | * before the pte is switched to the new page, and | |
3153 | * "reuse" the old page writing into it while our pte | |
3154 | * here still points into it and can be read by other | |
3155 | * threads. | |
3156 | * | |
3157 | * The critical issue is to order this | |
3158 | * page_remove_rmap with the ptp_clear_flush above. | |
3159 | * Those stores are ordered by (if nothing else,) | |
3160 | * the barrier present in the atomic_add_negative | |
3161 | * in page_remove_rmap. | |
3162 | * | |
3163 | * Then the TLB flush in ptep_clear_flush ensures that | |
3164 | * no process can access the old page before the | |
3165 | * decremented mapcount is visible. And the old page | |
3166 | * cannot be reused until after the decremented | |
3167 | * mapcount is visible. So transitively, TLBs to | |
3168 | * old page will be flushed before it can be reused. | |
3169 | */ | |
28d41a48 | 3170 | page_remove_rmap(vmf->page, vma, false); |
2f38ab2c SR |
3171 | } |
3172 | ||
3173 | /* Free the old page.. */ | |
28d41a48 | 3174 | new_folio = old_folio; |
2f38ab2c SR |
3175 | page_copied = 1; |
3176 | } else { | |
7df67697 | 3177 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
2f38ab2c SR |
3178 | } |
3179 | ||
28d41a48 MWO |
3180 | if (new_folio) |
3181 | folio_put(new_folio); | |
2f38ab2c | 3182 | |
82b0f8c3 | 3183 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4645b9fe JG |
3184 | /* |
3185 | * No need to double call mmu_notifier->invalidate_range() callback as | |
3186 | * the above ptep_clear_flush_notify() did already call it. | |
3187 | */ | |
ac46d4f3 | 3188 | mmu_notifier_invalidate_range_only_end(&range); |
28d41a48 | 3189 | if (old_folio) { |
f4c4a3f4 | 3190 | if (page_copied) |
28d41a48 MWO |
3191 | free_swap_cache(&old_folio->page); |
3192 | folio_put(old_folio); | |
2f38ab2c | 3193 | } |
662ce1dc YY |
3194 | |
3195 | delayacct_wpcopy_end(); | |
cb8d8633 | 3196 | return 0; |
2f38ab2c | 3197 | oom_free_new: |
28d41a48 | 3198 | folio_put(new_folio); |
2f38ab2c | 3199 | oom: |
28d41a48 MWO |
3200 | if (old_folio) |
3201 | folio_put(old_folio); | |
662ce1dc YY |
3202 | |
3203 | delayacct_wpcopy_end(); | |
2f38ab2c SR |
3204 | return VM_FAULT_OOM; |
3205 | } | |
3206 | ||
66a6197c JK |
3207 | /** |
3208 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
3209 | * writeable once the page is prepared | |
3210 | * | |
3211 | * @vmf: structure describing the fault | |
3212 | * | |
3213 | * This function handles all that is needed to finish a write page fault in a | |
3214 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 3215 | * It handles locking of PTE and modifying it. |
66a6197c JK |
3216 | * |
3217 | * The function expects the page to be locked or other protection against | |
3218 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a | 3219 | * |
2797e79f | 3220 | * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before |
a862f68a | 3221 | * we acquired PTE lock. |
66a6197c | 3222 | */ |
2b740303 | 3223 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) |
66a6197c JK |
3224 | { |
3225 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
3226 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
3227 | &vmf->ptl); | |
3228 | /* | |
3229 | * We might have raced with another page fault while we released the | |
3230 | * pte_offset_map_lock. | |
3231 | */ | |
3232 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
7df67697 | 3233 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); |
66a6197c | 3234 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a19e2553 | 3235 | return VM_FAULT_NOPAGE; |
66a6197c JK |
3236 | } |
3237 | wp_page_reuse(vmf); | |
a19e2553 | 3238 | return 0; |
66a6197c JK |
3239 | } |
3240 | ||
dd906184 BH |
3241 | /* |
3242 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
3243 | * mapping | |
3244 | */ | |
2b740303 | 3245 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 3246 | { |
82b0f8c3 | 3247 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3248 | |
dd906184 | 3249 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 3250 | vm_fault_t ret; |
dd906184 | 3251 | |
82b0f8c3 | 3252 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 3253 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 3254 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 3255 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 3256 | return ret; |
66a6197c | 3257 | return finish_mkwrite_fault(vmf); |
dd906184 | 3258 | } |
997dd98d | 3259 | wp_page_reuse(vmf); |
cb8d8633 | 3260 | return 0; |
dd906184 BH |
3261 | } |
3262 | ||
2b740303 | 3263 | static vm_fault_t wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 3264 | __releases(vmf->ptl) |
93e478d4 | 3265 | { |
82b0f8c3 | 3266 | struct vm_area_struct *vma = vmf->vma; |
cb8d8633 | 3267 | vm_fault_t ret = 0; |
93e478d4 | 3268 | |
a41b70d6 | 3269 | get_page(vmf->page); |
93e478d4 | 3270 | |
93e478d4 | 3271 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 3272 | vm_fault_t tmp; |
93e478d4 | 3273 | |
82b0f8c3 | 3274 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 3275 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
3276 | if (unlikely(!tmp || (tmp & |
3277 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 3278 | put_page(vmf->page); |
93e478d4 SR |
3279 | return tmp; |
3280 | } | |
66a6197c | 3281 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 3282 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 3283 | unlock_page(vmf->page); |
a41b70d6 | 3284 | put_page(vmf->page); |
66a6197c | 3285 | return tmp; |
93e478d4 | 3286 | } |
66a6197c JK |
3287 | } else { |
3288 | wp_page_reuse(vmf); | |
997dd98d | 3289 | lock_page(vmf->page); |
93e478d4 | 3290 | } |
89b15332 | 3291 | ret |= fault_dirty_shared_page(vmf); |
997dd98d | 3292 | put_page(vmf->page); |
93e478d4 | 3293 | |
89b15332 | 3294 | return ret; |
93e478d4 SR |
3295 | } |
3296 | ||
1da177e4 | 3297 | /* |
c89357e2 DH |
3298 | * This routine handles present pages, when |
3299 | * * users try to write to a shared page (FAULT_FLAG_WRITE) | |
3300 | * * GUP wants to take a R/O pin on a possibly shared anonymous page | |
3301 | * (FAULT_FLAG_UNSHARE) | |
3302 | * | |
3303 | * It is done by copying the page to a new address and decrementing the | |
3304 | * shared-page counter for the old page. | |
1da177e4 | 3305 | * |
1da177e4 LT |
3306 | * Note that this routine assumes that the protection checks have been |
3307 | * done by the caller (the low-level page fault routine in most cases). | |
c89357e2 DH |
3308 | * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've |
3309 | * done any necessary COW. | |
1da177e4 | 3310 | * |
c89357e2 DH |
3311 | * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even |
3312 | * though the page will change only once the write actually happens. This | |
3313 | * avoids a few races, and potentially makes it more efficient. | |
1da177e4 | 3314 | * |
c1e8d7c6 | 3315 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3316 | * but allow concurrent faults), with pte both mapped and locked. |
c1e8d7c6 | 3317 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3318 | */ |
2b740303 | 3319 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 3320 | __releases(vmf->ptl) |
1da177e4 | 3321 | { |
c89357e2 | 3322 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3323 | struct vm_area_struct *vma = vmf->vma; |
b9086fde | 3324 | struct folio *folio = NULL; |
1da177e4 | 3325 | |
c89357e2 DH |
3326 | if (likely(!unshare)) { |
3327 | if (userfaultfd_pte_wp(vma, *vmf->pte)) { | |
3328 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3329 | return handle_userfault(vmf, VM_UFFD_WP); | |
3330 | } | |
3331 | ||
3332 | /* | |
3333 | * Userfaultfd write-protect can defer flushes. Ensure the TLB | |
3334 | * is flushed in this case before copying. | |
3335 | */ | |
3336 | if (unlikely(userfaultfd_wp(vmf->vma) && | |
3337 | mm_tlb_flush_pending(vmf->vma->vm_mm))) | |
3338 | flush_tlb_page(vmf->vma, vmf->address); | |
3339 | } | |
6ce64428 | 3340 | |
a41b70d6 | 3341 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
c89357e2 | 3342 | |
b9086fde DH |
3343 | /* |
3344 | * Shared mapping: we are guaranteed to have VM_WRITE and | |
3345 | * FAULT_FLAG_WRITE set at this point. | |
3346 | */ | |
3347 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { | |
251b97f5 | 3348 | /* |
64e45507 PF |
3349 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
3350 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
3351 | * |
3352 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 3353 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 | 3354 | */ |
b9086fde | 3355 | if (!vmf->page) |
2994302b | 3356 | return wp_pfn_shared(vmf); |
b9086fde | 3357 | return wp_page_shared(vmf); |
251b97f5 | 3358 | } |
1da177e4 | 3359 | |
b9086fde DH |
3360 | if (vmf->page) |
3361 | folio = page_folio(vmf->page); | |
3362 | ||
d08b3851 | 3363 | /* |
b9086fde DH |
3364 | * Private mapping: create an exclusive anonymous page copy if reuse |
3365 | * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. | |
d08b3851 | 3366 | */ |
b9086fde | 3367 | if (folio && folio_test_anon(folio)) { |
6c287605 DH |
3368 | /* |
3369 | * If the page is exclusive to this process we must reuse the | |
3370 | * page without further checks. | |
3371 | */ | |
e4a2ed94 | 3372 | if (PageAnonExclusive(vmf->page)) |
6c287605 DH |
3373 | goto reuse; |
3374 | ||
53a05ad9 | 3375 | /* |
e4a2ed94 MWO |
3376 | * We have to verify under folio lock: these early checks are |
3377 | * just an optimization to avoid locking the folio and freeing | |
53a05ad9 DH |
3378 | * the swapcache if there is little hope that we can reuse. |
3379 | * | |
e4a2ed94 | 3380 | * KSM doesn't necessarily raise the folio refcount. |
53a05ad9 | 3381 | */ |
e4a2ed94 | 3382 | if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) |
d4c47097 | 3383 | goto copy; |
e4a2ed94 | 3384 | if (!folio_test_lru(folio)) |
d4c47097 DH |
3385 | /* |
3386 | * Note: We cannot easily detect+handle references from | |
e4a2ed94 | 3387 | * remote LRU pagevecs or references to LRU folios. |
d4c47097 DH |
3388 | */ |
3389 | lru_add_drain(); | |
e4a2ed94 | 3390 | if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) |
09854ba9 | 3391 | goto copy; |
e4a2ed94 | 3392 | if (!folio_trylock(folio)) |
09854ba9 | 3393 | goto copy; |
e4a2ed94 MWO |
3394 | if (folio_test_swapcache(folio)) |
3395 | folio_free_swap(folio); | |
3396 | if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { | |
3397 | folio_unlock(folio); | |
52d1e606 | 3398 | goto copy; |
b009c024 | 3399 | } |
09854ba9 | 3400 | /* |
e4a2ed94 MWO |
3401 | * Ok, we've got the only folio reference from our mapping |
3402 | * and the folio is locked, it's dark out, and we're wearing | |
53a05ad9 | 3403 | * sunglasses. Hit it. |
09854ba9 | 3404 | */ |
e4a2ed94 MWO |
3405 | page_move_anon_rmap(vmf->page, vma); |
3406 | folio_unlock(folio); | |
6c287605 | 3407 | reuse: |
c89357e2 DH |
3408 | if (unlikely(unshare)) { |
3409 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3410 | return 0; | |
3411 | } | |
be068f29 | 3412 | wp_page_reuse(vmf); |
cb8d8633 | 3413 | return 0; |
1da177e4 | 3414 | } |
52d1e606 | 3415 | copy: |
1da177e4 LT |
3416 | /* |
3417 | * Ok, we need to copy. Oh, well.. | |
3418 | */ | |
b9086fde DH |
3419 | if (folio) |
3420 | folio_get(folio); | |
28766805 | 3421 | |
82b0f8c3 | 3422 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
94bfe85b | 3423 | #ifdef CONFIG_KSM |
b9086fde | 3424 | if (folio && folio_test_ksm(folio)) |
94bfe85b YY |
3425 | count_vm_event(COW_KSM); |
3426 | #endif | |
a41b70d6 | 3427 | return wp_page_copy(vmf); |
1da177e4 LT |
3428 | } |
3429 | ||
97a89413 | 3430 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
3431 | unsigned long start_addr, unsigned long end_addr, |
3432 | struct zap_details *details) | |
3433 | { | |
f5cc4eef | 3434 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
3435 | } |
3436 | ||
f808c13f | 3437 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
232a6a1c PX |
3438 | pgoff_t first_index, |
3439 | pgoff_t last_index, | |
1da177e4 LT |
3440 | struct zap_details *details) |
3441 | { | |
3442 | struct vm_area_struct *vma; | |
1da177e4 LT |
3443 | pgoff_t vba, vea, zba, zea; |
3444 | ||
232a6a1c | 3445 | vma_interval_tree_foreach(vma, root, first_index, last_index) { |
1da177e4 | 3446 | vba = vma->vm_pgoff; |
d6e93217 | 3447 | vea = vba + vma_pages(vma) - 1; |
f9871da9 ML |
3448 | zba = max(first_index, vba); |
3449 | zea = min(last_index, vea); | |
1da177e4 | 3450 | |
97a89413 | 3451 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
3452 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
3453 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 3454 | details); |
1da177e4 LT |
3455 | } |
3456 | } | |
3457 | ||
22061a1f | 3458 | /** |
3506659e MWO |
3459 | * unmap_mapping_folio() - Unmap single folio from processes. |
3460 | * @folio: The locked folio to be unmapped. | |
22061a1f | 3461 | * |
3506659e | 3462 | * Unmap this folio from any userspace process which still has it mmaped. |
22061a1f HD |
3463 | * Typically, for efficiency, the range of nearby pages has already been |
3464 | * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once | |
3506659e MWO |
3465 | * truncation or invalidation holds the lock on a folio, it may find that |
3466 | * the page has been remapped again: and then uses unmap_mapping_folio() | |
22061a1f HD |
3467 | * to unmap it finally. |
3468 | */ | |
3506659e | 3469 | void unmap_mapping_folio(struct folio *folio) |
22061a1f | 3470 | { |
3506659e | 3471 | struct address_space *mapping = folio->mapping; |
22061a1f | 3472 | struct zap_details details = { }; |
232a6a1c PX |
3473 | pgoff_t first_index; |
3474 | pgoff_t last_index; | |
22061a1f | 3475 | |
3506659e | 3476 | VM_BUG_ON(!folio_test_locked(folio)); |
22061a1f | 3477 | |
3506659e MWO |
3478 | first_index = folio->index; |
3479 | last_index = folio->index + folio_nr_pages(folio) - 1; | |
232a6a1c | 3480 | |
2e148f1e | 3481 | details.even_cows = false; |
3506659e | 3482 | details.single_folio = folio; |
999dad82 | 3483 | details.zap_flags = ZAP_FLAG_DROP_MARKER; |
22061a1f | 3484 | |
2c865995 | 3485 | i_mmap_lock_read(mapping); |
22061a1f | 3486 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3487 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3488 | last_index, &details); | |
2c865995 | 3489 | i_mmap_unlock_read(mapping); |
22061a1f HD |
3490 | } |
3491 | ||
977fbdcd MW |
3492 | /** |
3493 | * unmap_mapping_pages() - Unmap pages from processes. | |
3494 | * @mapping: The address space containing pages to be unmapped. | |
3495 | * @start: Index of first page to be unmapped. | |
3496 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
3497 | * @even_cows: Whether to unmap even private COWed pages. | |
3498 | * | |
3499 | * Unmap the pages in this address space from any userspace process which | |
3500 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
3501 | * a file is being truncated, but not when invalidating pages from the page | |
3502 | * cache. | |
3503 | */ | |
3504 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
3505 | pgoff_t nr, bool even_cows) | |
3506 | { | |
3507 | struct zap_details details = { }; | |
232a6a1c PX |
3508 | pgoff_t first_index = start; |
3509 | pgoff_t last_index = start + nr - 1; | |
977fbdcd | 3510 | |
2e148f1e | 3511 | details.even_cows = even_cows; |
232a6a1c PX |
3512 | if (last_index < first_index) |
3513 | last_index = ULONG_MAX; | |
977fbdcd | 3514 | |
2c865995 | 3515 | i_mmap_lock_read(mapping); |
977fbdcd | 3516 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3517 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3518 | last_index, &details); | |
2c865995 | 3519 | i_mmap_unlock_read(mapping); |
977fbdcd | 3520 | } |
6e0e99d5 | 3521 | EXPORT_SYMBOL_GPL(unmap_mapping_pages); |
977fbdcd | 3522 | |
1da177e4 | 3523 | /** |
8a5f14a2 | 3524 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 3525 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
3526 | * file. |
3527 | * | |
3d41088f | 3528 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
3529 | * @holebegin: byte in first page to unmap, relative to the start of |
3530 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 3531 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
3532 | * must keep the partial page. In contrast, we must get rid of |
3533 | * partial pages. | |
3534 | * @holelen: size of prospective hole in bytes. This will be rounded | |
3535 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
3536 | * end of the file. | |
3537 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
3538 | * but 0 when invalidating pagecache, don't throw away private data. | |
3539 | */ | |
3540 | void unmap_mapping_range(struct address_space *mapping, | |
3541 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
3542 | { | |
1da177e4 LT |
3543 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
3544 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3545 | ||
3546 | /* Check for overflow. */ | |
3547 | if (sizeof(holelen) > sizeof(hlen)) { | |
3548 | long long holeend = | |
3549 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3550 | if (holeend & ~(long long)ULONG_MAX) | |
3551 | hlen = ULONG_MAX - hba + 1; | |
3552 | } | |
3553 | ||
977fbdcd | 3554 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
3555 | } |
3556 | EXPORT_SYMBOL(unmap_mapping_range); | |
3557 | ||
b756a3b5 AP |
3558 | /* |
3559 | * Restore a potential device exclusive pte to a working pte entry | |
3560 | */ | |
3561 | static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) | |
3562 | { | |
19672a9e | 3563 | struct folio *folio = page_folio(vmf->page); |
b756a3b5 AP |
3564 | struct vm_area_struct *vma = vmf->vma; |
3565 | struct mmu_notifier_range range; | |
3566 | ||
19672a9e | 3567 | if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) |
b756a3b5 | 3568 | return VM_FAULT_RETRY; |
7d4a8be0 | 3569 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, |
b756a3b5 AP |
3570 | vma->vm_mm, vmf->address & PAGE_MASK, |
3571 | (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); | |
3572 | mmu_notifier_invalidate_range_start(&range); | |
3573 | ||
3574 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | |
3575 | &vmf->ptl); | |
3576 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) | |
19672a9e | 3577 | restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); |
b756a3b5 AP |
3578 | |
3579 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
19672a9e | 3580 | folio_unlock(folio); |
b756a3b5 AP |
3581 | |
3582 | mmu_notifier_invalidate_range_end(&range); | |
3583 | return 0; | |
3584 | } | |
3585 | ||
a160e537 | 3586 | static inline bool should_try_to_free_swap(struct folio *folio, |
c145e0b4 DH |
3587 | struct vm_area_struct *vma, |
3588 | unsigned int fault_flags) | |
3589 | { | |
a160e537 | 3590 | if (!folio_test_swapcache(folio)) |
c145e0b4 | 3591 | return false; |
9202d527 | 3592 | if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || |
a160e537 | 3593 | folio_test_mlocked(folio)) |
c145e0b4 DH |
3594 | return true; |
3595 | /* | |
3596 | * If we want to map a page that's in the swapcache writable, we | |
3597 | * have to detect via the refcount if we're really the exclusive | |
3598 | * user. Try freeing the swapcache to get rid of the swapcache | |
3599 | * reference only in case it's likely that we'll be the exlusive user. | |
3600 | */ | |
a160e537 MWO |
3601 | return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && |
3602 | folio_ref_count(folio) == 2; | |
c145e0b4 DH |
3603 | } |
3604 | ||
9c28a205 PX |
3605 | static vm_fault_t pte_marker_clear(struct vm_fault *vmf) |
3606 | { | |
3607 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
3608 | vmf->address, &vmf->ptl); | |
3609 | /* | |
3610 | * Be careful so that we will only recover a special uffd-wp pte into a | |
3611 | * none pte. Otherwise it means the pte could have changed, so retry. | |
7e3ce3f8 PX |
3612 | * |
3613 | * This should also cover the case where e.g. the pte changed | |
3614 | * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. | |
3615 | * So is_pte_marker() check is not enough to safely drop the pte. | |
9c28a205 | 3616 | */ |
7e3ce3f8 | 3617 | if (pte_same(vmf->orig_pte, *vmf->pte)) |
9c28a205 PX |
3618 | pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); |
3619 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3620 | return 0; | |
3621 | } | |
3622 | ||
3623 | /* | |
3624 | * This is actually a page-missing access, but with uffd-wp special pte | |
3625 | * installed. It means this pte was wr-protected before being unmapped. | |
3626 | */ | |
3627 | static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) | |
3628 | { | |
3629 | /* | |
3630 | * Just in case there're leftover special ptes even after the region | |
7a079ba2 | 3631 | * got unregistered - we can simply clear them. |
9c28a205 PX |
3632 | */ |
3633 | if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) | |
3634 | return pte_marker_clear(vmf); | |
3635 | ||
3636 | /* do_fault() can handle pte markers too like none pte */ | |
3637 | return do_fault(vmf); | |
3638 | } | |
3639 | ||
5c041f5d PX |
3640 | static vm_fault_t handle_pte_marker(struct vm_fault *vmf) |
3641 | { | |
3642 | swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); | |
3643 | unsigned long marker = pte_marker_get(entry); | |
3644 | ||
3645 | /* | |
ca92ea3d PX |
3646 | * PTE markers should never be empty. If anything weird happened, |
3647 | * the best thing to do is to kill the process along with its mm. | |
5c041f5d | 3648 | */ |
ca92ea3d | 3649 | if (WARN_ON_ONCE(!marker)) |
5c041f5d PX |
3650 | return VM_FAULT_SIGBUS; |
3651 | ||
15520a3f PX |
3652 | /* Higher priority than uffd-wp when data corrupted */ |
3653 | if (marker & PTE_MARKER_SWAPIN_ERROR) | |
3654 | return VM_FAULT_SIGBUS; | |
3655 | ||
9c28a205 PX |
3656 | if (pte_marker_entry_uffd_wp(entry)) |
3657 | return pte_marker_handle_uffd_wp(vmf); | |
3658 | ||
3659 | /* This is an unknown pte marker */ | |
3660 | return VM_FAULT_SIGBUS; | |
5c041f5d PX |
3661 | } |
3662 | ||
1da177e4 | 3663 | /* |
c1e8d7c6 | 3664 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3665 | * but allow concurrent faults), and pte mapped but not yet locked. |
9a95f3cf PC |
3666 | * We return with pte unmapped and unlocked. |
3667 | * | |
c1e8d7c6 | 3668 | * We return with the mmap_lock locked or unlocked in the same cases |
9a95f3cf | 3669 | * as does filemap_fault(). |
1da177e4 | 3670 | */ |
2b740303 | 3671 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 3672 | { |
82b0f8c3 | 3673 | struct vm_area_struct *vma = vmf->vma; |
d4f9565a MWO |
3674 | struct folio *swapcache, *folio = NULL; |
3675 | struct page *page; | |
2799e775 | 3676 | struct swap_info_struct *si = NULL; |
14f9135d | 3677 | rmap_t rmap_flags = RMAP_NONE; |
1493a191 | 3678 | bool exclusive = false; |
65500d23 | 3679 | swp_entry_t entry; |
1da177e4 | 3680 | pte_t pte; |
d065bd81 | 3681 | int locked; |
2b740303 | 3682 | vm_fault_t ret = 0; |
aae466b0 | 3683 | void *shadow = NULL; |
1da177e4 | 3684 | |
2ca99358 | 3685 | if (!pte_unmap_same(vmf)) |
8f4e2101 | 3686 | goto out; |
65500d23 | 3687 | |
2994302b | 3688 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
3689 | if (unlikely(non_swap_entry(entry))) { |
3690 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
3691 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
3692 | vmf->address); | |
b756a3b5 AP |
3693 | } else if (is_device_exclusive_entry(entry)) { |
3694 | vmf->page = pfn_swap_entry_to_page(entry); | |
3695 | ret = remove_device_exclusive_entry(vmf); | |
5042db43 | 3696 | } else if (is_device_private_entry(entry)) { |
af5cdaf8 | 3697 | vmf->page = pfn_swap_entry_to_page(entry); |
16ce101d AP |
3698 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3699 | vmf->address, &vmf->ptl); | |
3700 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | |
3701 | spin_unlock(vmf->ptl); | |
3702 | goto out; | |
3703 | } | |
3704 | ||
3705 | /* | |
3706 | * Get a page reference while we know the page can't be | |
3707 | * freed. | |
3708 | */ | |
3709 | get_page(vmf->page); | |
3710 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4a955bed | 3711 | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); |
16ce101d | 3712 | put_page(vmf->page); |
d1737fdb AK |
3713 | } else if (is_hwpoison_entry(entry)) { |
3714 | ret = VM_FAULT_HWPOISON; | |
5c041f5d PX |
3715 | } else if (is_pte_marker_entry(entry)) { |
3716 | ret = handle_pte_marker(vmf); | |
d1737fdb | 3717 | } else { |
2994302b | 3718 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 3719 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 3720 | } |
0697212a CL |
3721 | goto out; |
3722 | } | |
0bcac06f | 3723 | |
2799e775 ML |
3724 | /* Prevent swapoff from happening to us. */ |
3725 | si = get_swap_device(entry); | |
3726 | if (unlikely(!si)) | |
3727 | goto out; | |
0bcac06f | 3728 | |
5a423081 MWO |
3729 | folio = swap_cache_get_folio(entry, vma, vmf->address); |
3730 | if (folio) | |
3731 | page = folio_file_page(folio, swp_offset(entry)); | |
d4f9565a | 3732 | swapcache = folio; |
f8020772 | 3733 | |
d4f9565a | 3734 | if (!folio) { |
a449bf58 QC |
3735 | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && |
3736 | __swap_count(entry) == 1) { | |
0bcac06f | 3737 | /* skip swapcache */ |
63ad4add MWO |
3738 | folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, |
3739 | vma, vmf->address, false); | |
3740 | page = &folio->page; | |
3741 | if (folio) { | |
3742 | __folio_set_locked(folio); | |
3743 | __folio_set_swapbacked(folio); | |
4c6355b2 | 3744 | |
65995918 | 3745 | if (mem_cgroup_swapin_charge_folio(folio, |
63ad4add MWO |
3746 | vma->vm_mm, GFP_KERNEL, |
3747 | entry)) { | |
545b1b07 | 3748 | ret = VM_FAULT_OOM; |
4c6355b2 | 3749 | goto out_page; |
545b1b07 | 3750 | } |
0add0c77 | 3751 | mem_cgroup_swapin_uncharge_swap(entry); |
4c6355b2 | 3752 | |
aae466b0 JK |
3753 | shadow = get_shadow_from_swap_cache(entry); |
3754 | if (shadow) | |
63ad4add | 3755 | workingset_refault(folio, shadow); |
0076f029 | 3756 | |
63ad4add | 3757 | folio_add_lru(folio); |
0add0c77 SB |
3758 | |
3759 | /* To provide entry to swap_readpage() */ | |
63ad4add | 3760 | folio_set_swap_entry(folio, entry); |
5169b844 | 3761 | swap_readpage(page, true, NULL); |
63ad4add | 3762 | folio->private = NULL; |
0bcac06f | 3763 | } |
aa8d22a1 | 3764 | } else { |
e9e9b7ec MK |
3765 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
3766 | vmf); | |
63ad4add MWO |
3767 | if (page) |
3768 | folio = page_folio(page); | |
d4f9565a | 3769 | swapcache = folio; |
0bcac06f MK |
3770 | } |
3771 | ||
d4f9565a | 3772 | if (!folio) { |
1da177e4 | 3773 | /* |
8f4e2101 HD |
3774 | * Back out if somebody else faulted in this pte |
3775 | * while we released the pte lock. | |
1da177e4 | 3776 | */ |
82b0f8c3 JK |
3777 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3778 | vmf->address, &vmf->ptl); | |
2994302b | 3779 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 3780 | ret = VM_FAULT_OOM; |
65500d23 | 3781 | goto unlock; |
1da177e4 LT |
3782 | } |
3783 | ||
3784 | /* Had to read the page from swap area: Major fault */ | |
3785 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 3786 | count_vm_event(PGMAJFAULT); |
2262185c | 3787 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 3788 | } else if (PageHWPoison(page)) { |
71f72525 WF |
3789 | /* |
3790 | * hwpoisoned dirty swapcache pages are kept for killing | |
3791 | * owner processes (which may be unknown at hwpoison time) | |
3792 | */ | |
d1737fdb | 3793 | ret = VM_FAULT_HWPOISON; |
4779cb31 | 3794 | goto out_release; |
1da177e4 LT |
3795 | } |
3796 | ||
19672a9e | 3797 | locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); |
e709ffd6 | 3798 | |
d065bd81 ML |
3799 | if (!locked) { |
3800 | ret |= VM_FAULT_RETRY; | |
3801 | goto out_release; | |
3802 | } | |
073e587e | 3803 | |
84d60fdd DH |
3804 | if (swapcache) { |
3805 | /* | |
3b344157 | 3806 | * Make sure folio_free_swap() or swapoff did not release the |
84d60fdd DH |
3807 | * swapcache from under us. The page pin, and pte_same test |
3808 | * below, are not enough to exclude that. Even if it is still | |
3809 | * swapcache, we need to check that the page's swap has not | |
3810 | * changed. | |
3811 | */ | |
63ad4add | 3812 | if (unlikely(!folio_test_swapcache(folio) || |
84d60fdd DH |
3813 | page_private(page) != entry.val)) |
3814 | goto out_page; | |
3815 | ||
3816 | /* | |
3817 | * KSM sometimes has to copy on read faults, for example, if | |
3818 | * page->index of !PageKSM() pages would be nonlinear inside the | |
3819 | * anon VMA -- PageKSM() is lost on actual swapout. | |
3820 | */ | |
3821 | page = ksm_might_need_to_copy(page, vma, vmf->address); | |
3822 | if (unlikely(!page)) { | |
3823 | ret = VM_FAULT_OOM; | |
84d60fdd | 3824 | goto out_page; |
6b970599 KW |
3825 | } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { |
3826 | ret = VM_FAULT_HWPOISON; | |
3827 | goto out_page; | |
84d60fdd | 3828 | } |
63ad4add | 3829 | folio = page_folio(page); |
c145e0b4 DH |
3830 | |
3831 | /* | |
3832 | * If we want to map a page that's in the swapcache writable, we | |
3833 | * have to detect via the refcount if we're really the exclusive | |
3834 | * owner. Try removing the extra reference from the local LRU | |
3835 | * pagevecs if required. | |
3836 | */ | |
d4f9565a | 3837 | if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && |
63ad4add | 3838 | !folio_test_ksm(folio) && !folio_test_lru(folio)) |
c145e0b4 | 3839 | lru_add_drain(); |
5ad64688 HD |
3840 | } |
3841 | ||
4231f842 | 3842 | folio_throttle_swaprate(folio, GFP_KERNEL); |
8a9f3ccd | 3843 | |
1da177e4 | 3844 | /* |
8f4e2101 | 3845 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 3846 | */ |
82b0f8c3 JK |
3847 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3848 | &vmf->ptl); | |
2994302b | 3849 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 3850 | goto out_nomap; |
b8107480 | 3851 | |
63ad4add | 3852 | if (unlikely(!folio_test_uptodate(folio))) { |
b8107480 KK |
3853 | ret = VM_FAULT_SIGBUS; |
3854 | goto out_nomap; | |
1da177e4 LT |
3855 | } |
3856 | ||
78fbe906 DH |
3857 | /* |
3858 | * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte | |
3859 | * must never point at an anonymous page in the swapcache that is | |
3860 | * PG_anon_exclusive. Sanity check that this holds and especially, that | |
3861 | * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity | |
3862 | * check after taking the PT lock and making sure that nobody | |
3863 | * concurrently faulted in this page and set PG_anon_exclusive. | |
3864 | */ | |
63ad4add MWO |
3865 | BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); |
3866 | BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); | |
78fbe906 | 3867 | |
1493a191 DH |
3868 | /* |
3869 | * Check under PT lock (to protect against concurrent fork() sharing | |
3870 | * the swap entry concurrently) for certainly exclusive pages. | |
3871 | */ | |
63ad4add | 3872 | if (!folio_test_ksm(folio)) { |
1493a191 | 3873 | exclusive = pte_swp_exclusive(vmf->orig_pte); |
d4f9565a | 3874 | if (folio != swapcache) { |
1493a191 DH |
3875 | /* |
3876 | * We have a fresh page that is not exposed to the | |
3877 | * swapcache -> certainly exclusive. | |
3878 | */ | |
3879 | exclusive = true; | |
63ad4add | 3880 | } else if (exclusive && folio_test_writeback(folio) && |
eacde327 | 3881 | data_race(si->flags & SWP_STABLE_WRITES)) { |
1493a191 DH |
3882 | /* |
3883 | * This is tricky: not all swap backends support | |
3884 | * concurrent page modifications while under writeback. | |
3885 | * | |
3886 | * So if we stumble over such a page in the swapcache | |
3887 | * we must not set the page exclusive, otherwise we can | |
3888 | * map it writable without further checks and modify it | |
3889 | * while still under writeback. | |
3890 | * | |
3891 | * For these problematic swap backends, simply drop the | |
3892 | * exclusive marker: this is perfectly fine as we start | |
3893 | * writeback only if we fully unmapped the page and | |
3894 | * there are no unexpected references on the page after | |
3895 | * unmapping succeeded. After fully unmapped, no | |
3896 | * further GUP references (FOLL_GET and FOLL_PIN) can | |
3897 | * appear, so dropping the exclusive marker and mapping | |
3898 | * it only R/O is fine. | |
3899 | */ | |
3900 | exclusive = false; | |
3901 | } | |
3902 | } | |
3903 | ||
8c7c6e34 | 3904 | /* |
c145e0b4 DH |
3905 | * Remove the swap entry and conditionally try to free up the swapcache. |
3906 | * We're already holding a reference on the page but haven't mapped it | |
3907 | * yet. | |
8c7c6e34 | 3908 | */ |
c145e0b4 | 3909 | swap_free(entry); |
a160e537 MWO |
3910 | if (should_try_to_free_swap(folio, vma, vmf->flags)) |
3911 | folio_free_swap(folio); | |
1da177e4 | 3912 | |
f1a79412 SB |
3913 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
3914 | dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 3915 | pte = mk_pte(page, vma->vm_page_prot); |
c145e0b4 DH |
3916 | |
3917 | /* | |
1493a191 DH |
3918 | * Same logic as in do_wp_page(); however, optimize for pages that are |
3919 | * certainly not shared either because we just allocated them without | |
3920 | * exposing them to the swapcache or because the swap entry indicates | |
3921 | * exclusivity. | |
c145e0b4 | 3922 | */ |
63ad4add MWO |
3923 | if (!folio_test_ksm(folio) && |
3924 | (exclusive || folio_ref_count(folio) == 1)) { | |
6c287605 DH |
3925 | if (vmf->flags & FAULT_FLAG_WRITE) { |
3926 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
3927 | vmf->flags &= ~FAULT_FLAG_WRITE; | |
6c287605 | 3928 | } |
14f9135d | 3929 | rmap_flags |= RMAP_EXCLUSIVE; |
1da177e4 | 3930 | } |
1da177e4 | 3931 | flush_icache_page(vma, page); |
2994302b | 3932 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 3933 | pte = pte_mksoft_dirty(pte); |
f1eb1bac | 3934 | if (pte_swp_uffd_wp(vmf->orig_pte)) |
f45ec5ff | 3935 | pte = pte_mkuffd_wp(pte); |
2994302b | 3936 | vmf->orig_pte = pte; |
0bcac06f MK |
3937 | |
3938 | /* ksm created a completely new copy */ | |
d4f9565a | 3939 | if (unlikely(folio != swapcache && swapcache)) { |
40f2bbf7 | 3940 | page_add_new_anon_rmap(page, vma, vmf->address); |
63ad4add | 3941 | folio_add_lru_vma(folio, vma); |
0bcac06f | 3942 | } else { |
f1e2db12 | 3943 | page_add_anon_rmap(page, vma, vmf->address, rmap_flags); |
00501b53 | 3944 | } |
1da177e4 | 3945 | |
63ad4add MWO |
3946 | VM_BUG_ON(!folio_test_anon(folio) || |
3947 | (pte_write(pte) && !PageAnonExclusive(page))); | |
1eba86c0 PT |
3948 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
3949 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); | |
3950 | ||
63ad4add | 3951 | folio_unlock(folio); |
d4f9565a | 3952 | if (folio != swapcache && swapcache) { |
4969c119 AA |
3953 | /* |
3954 | * Hold the lock to avoid the swap entry to be reused | |
3955 | * until we take the PT lock for the pte_same() check | |
3956 | * (to avoid false positives from pte_same). For | |
3957 | * further safety release the lock after the swap_free | |
3958 | * so that the swap count won't change under a | |
3959 | * parallel locked swapcache. | |
3960 | */ | |
d4f9565a MWO |
3961 | folio_unlock(swapcache); |
3962 | folio_put(swapcache); | |
4969c119 | 3963 | } |
c475a8ab | 3964 | |
82b0f8c3 | 3965 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 3966 | ret |= do_wp_page(vmf); |
61469f1d HD |
3967 | if (ret & VM_FAULT_ERROR) |
3968 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
3969 | goto out; |
3970 | } | |
3971 | ||
3972 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3973 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3974 | unlock: |
82b0f8c3 | 3975 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 | 3976 | out: |
2799e775 ML |
3977 | if (si) |
3978 | put_swap_device(si); | |
1da177e4 | 3979 | return ret; |
b8107480 | 3980 | out_nomap: |
82b0f8c3 | 3981 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 3982 | out_page: |
63ad4add | 3983 | folio_unlock(folio); |
4779cb31 | 3984 | out_release: |
63ad4add | 3985 | folio_put(folio); |
d4f9565a MWO |
3986 | if (folio != swapcache && swapcache) { |
3987 | folio_unlock(swapcache); | |
3988 | folio_put(swapcache); | |
4969c119 | 3989 | } |
2799e775 ML |
3990 | if (si) |
3991 | put_swap_device(si); | |
65500d23 | 3992 | return ret; |
1da177e4 LT |
3993 | } |
3994 | ||
3995 | /* | |
c1e8d7c6 | 3996 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3997 | * but allow concurrent faults), and pte mapped but not yet locked. |
c1e8d7c6 | 3998 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3999 | */ |
2b740303 | 4000 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 4001 | { |
82b0f8c3 | 4002 | struct vm_area_struct *vma = vmf->vma; |
6bc56a4d | 4003 | struct folio *folio; |
2b740303 | 4004 | vm_fault_t ret = 0; |
1da177e4 | 4005 | pte_t entry; |
1da177e4 | 4006 | |
6b7339f4 KS |
4007 | /* File mapping without ->vm_ops ? */ |
4008 | if (vma->vm_flags & VM_SHARED) | |
4009 | return VM_FAULT_SIGBUS; | |
4010 | ||
7267ec00 KS |
4011 | /* |
4012 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
4013 | * pte_offset_map() on pmds where a huge pmd might be created | |
4014 | * from a different thread. | |
4015 | * | |
3e4e28c5 | 4016 | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when |
7267ec00 KS |
4017 | * parallel threads are excluded by other means. |
4018 | * | |
3e4e28c5 | 4019 | * Here we only have mmap_read_lock(mm). |
7267ec00 | 4020 | */ |
4cf58924 | 4021 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
4022 | return VM_FAULT_OOM; |
4023 | ||
f9ce0be7 | 4024 | /* See comment in handle_pte_fault() */ |
82b0f8c3 | 4025 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
4026 | return 0; |
4027 | ||
11ac5524 | 4028 | /* Use the zero-page for reads */ |
82b0f8c3 | 4029 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 4030 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 4031 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 4032 | vma->vm_page_prot)); |
82b0f8c3 JK |
4033 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
4034 | vmf->address, &vmf->ptl); | |
7df67697 BM |
4035 | if (!pte_none(*vmf->pte)) { |
4036 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
a13ea5b7 | 4037 | goto unlock; |
7df67697 | 4038 | } |
6b31d595 MH |
4039 | ret = check_stable_address_space(vma->vm_mm); |
4040 | if (ret) | |
4041 | goto unlock; | |
6b251fc9 AA |
4042 | /* Deliver the page fault to userland, check inside PT lock */ |
4043 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
4044 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4045 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 4046 | } |
a13ea5b7 HD |
4047 | goto setpte; |
4048 | } | |
4049 | ||
557ed1fa | 4050 | /* Allocate our own private page. */ |
557ed1fa NP |
4051 | if (unlikely(anon_vma_prepare(vma))) |
4052 | goto oom; | |
6bc56a4d MWO |
4053 | folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); |
4054 | if (!folio) | |
557ed1fa | 4055 | goto oom; |
eb3c24f3 | 4056 | |
6bc56a4d | 4057 | if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) |
eb3c24f3 | 4058 | goto oom_free_page; |
cb3184de | 4059 | cgroup_throttle_swaprate(&folio->page, GFP_KERNEL); |
eb3c24f3 | 4060 | |
52f37629 | 4061 | /* |
cb3184de | 4062 | * The memory barrier inside __folio_mark_uptodate makes sure that |
f4f5329d | 4063 | * preceding stores to the page contents become visible before |
52f37629 MK |
4064 | * the set_pte_at() write. |
4065 | */ | |
cb3184de | 4066 | __folio_mark_uptodate(folio); |
8f4e2101 | 4067 | |
cb3184de | 4068 | entry = mk_pte(&folio->page, vma->vm_page_prot); |
50c25ee9 | 4069 | entry = pte_sw_mkyoung(entry); |
1ac0cb5d HD |
4070 | if (vma->vm_flags & VM_WRITE) |
4071 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 4072 | |
82b0f8c3 JK |
4073 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
4074 | &vmf->ptl); | |
7df67697 | 4075 | if (!pte_none(*vmf->pte)) { |
bce8cb3c | 4076 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
557ed1fa | 4077 | goto release; |
7df67697 | 4078 | } |
9ba69294 | 4079 | |
6b31d595 MH |
4080 | ret = check_stable_address_space(vma->vm_mm); |
4081 | if (ret) | |
4082 | goto release; | |
4083 | ||
6b251fc9 AA |
4084 | /* Deliver the page fault to userland, check inside PT lock */ |
4085 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 4086 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
cb3184de | 4087 | folio_put(folio); |
82b0f8c3 | 4088 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
4089 | } |
4090 | ||
f1a79412 | 4091 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
cb3184de MWO |
4092 | folio_add_new_anon_rmap(folio, vma, vmf->address); |
4093 | folio_add_lru_vma(folio, vma); | |
a13ea5b7 | 4094 | setpte: |
82b0f8c3 | 4095 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
4096 | |
4097 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 4098 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 4099 | unlock: |
82b0f8c3 | 4100 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6b31d595 | 4101 | return ret; |
8f4e2101 | 4102 | release: |
cb3184de | 4103 | folio_put(folio); |
8f4e2101 | 4104 | goto unlock; |
8a9f3ccd | 4105 | oom_free_page: |
cb3184de | 4106 | folio_put(folio); |
65500d23 | 4107 | oom: |
1da177e4 LT |
4108 | return VM_FAULT_OOM; |
4109 | } | |
4110 | ||
9a95f3cf | 4111 | /* |
c1e8d7c6 | 4112 | * The mmap_lock must have been held on entry, and may have been |
9a95f3cf PC |
4113 | * released depending on flags and vma->vm_ops->fault() return value. |
4114 | * See filemap_fault() and __lock_page_retry(). | |
4115 | */ | |
2b740303 | 4116 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 4117 | { |
82b0f8c3 | 4118 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4119 | vm_fault_t ret; |
7eae74af | 4120 | |
63f3655f MH |
4121 | /* |
4122 | * Preallocate pte before we take page_lock because this might lead to | |
4123 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
4124 | * lock_page(A) | |
4125 | * SetPageWriteback(A) | |
4126 | * unlock_page(A) | |
4127 | * lock_page(B) | |
4128 | * lock_page(B) | |
d383807a | 4129 | * pte_alloc_one |
63f3655f MH |
4130 | * shrink_page_list |
4131 | * wait_on_page_writeback(A) | |
4132 | * SetPageWriteback(B) | |
4133 | * unlock_page(B) | |
4134 | * # flush A, B to clear the writeback | |
4135 | */ | |
4136 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
a7069ee3 | 4137 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
63f3655f MH |
4138 | if (!vmf->prealloc_pte) |
4139 | return VM_FAULT_OOM; | |
63f3655f MH |
4140 | } |
4141 | ||
11bac800 | 4142 | ret = vma->vm_ops->fault(vmf); |
3917048d | 4143 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 4144 | VM_FAULT_DONE_COW))) |
bc2466e4 | 4145 | return ret; |
7eae74af | 4146 | |
667240e0 | 4147 | if (unlikely(PageHWPoison(vmf->page))) { |
3149c79f | 4148 | struct page *page = vmf->page; |
e53ac737 RR |
4149 | vm_fault_t poisonret = VM_FAULT_HWPOISON; |
4150 | if (ret & VM_FAULT_LOCKED) { | |
3149c79f RR |
4151 | if (page_mapped(page)) |
4152 | unmap_mapping_pages(page_mapping(page), | |
4153 | page->index, 1, false); | |
e53ac737 | 4154 | /* Retry if a clean page was removed from the cache. */ |
3149c79f RR |
4155 | if (invalidate_inode_page(page)) |
4156 | poisonret = VM_FAULT_NOPAGE; | |
4157 | unlock_page(page); | |
e53ac737 | 4158 | } |
3149c79f | 4159 | put_page(page); |
936ca80d | 4160 | vmf->page = NULL; |
e53ac737 | 4161 | return poisonret; |
7eae74af KS |
4162 | } |
4163 | ||
4164 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 4165 | lock_page(vmf->page); |
7eae74af | 4166 | else |
667240e0 | 4167 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 4168 | |
7eae74af KS |
4169 | return ret; |
4170 | } | |
4171 | ||
396bcc52 | 4172 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
82b0f8c3 | 4173 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 4174 | { |
82b0f8c3 | 4175 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 4176 | |
82b0f8c3 | 4177 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
4178 | /* |
4179 | * We are going to consume the prealloc table, | |
4180 | * count that as nr_ptes. | |
4181 | */ | |
c4812909 | 4182 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 4183 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
4184 | } |
4185 | ||
f9ce0be7 | 4186 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4187 | { |
82b0f8c3 JK |
4188 | struct vm_area_struct *vma = vmf->vma; |
4189 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
4190 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 4191 | pmd_t entry; |
2b740303 | 4192 | int i; |
d01ac3c3 | 4193 | vm_fault_t ret = VM_FAULT_FALLBACK; |
10102459 KS |
4194 | |
4195 | if (!transhuge_vma_suitable(vma, haddr)) | |
d01ac3c3 | 4196 | return ret; |
10102459 | 4197 | |
10102459 | 4198 | page = compound_head(page); |
d01ac3c3 MWO |
4199 | if (compound_order(page) != HPAGE_PMD_ORDER) |
4200 | return ret; | |
10102459 | 4201 | |
eac96c3e YS |
4202 | /* |
4203 | * Just backoff if any subpage of a THP is corrupted otherwise | |
4204 | * the corrupted page may mapped by PMD silently to escape the | |
4205 | * check. This kind of THP just can be PTE mapped. Access to | |
4206 | * the corrupted subpage should trigger SIGBUS as expected. | |
4207 | */ | |
4208 | if (unlikely(PageHasHWPoisoned(page))) | |
4209 | return ret; | |
4210 | ||
953c66c2 | 4211 | /* |
f0953a1b | 4212 | * Archs like ppc64 need additional space to store information |
953c66c2 AK |
4213 | * related to pte entry. Use the preallocated table for that. |
4214 | */ | |
82b0f8c3 | 4215 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 4216 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 4217 | if (!vmf->prealloc_pte) |
953c66c2 | 4218 | return VM_FAULT_OOM; |
953c66c2 AK |
4219 | } |
4220 | ||
82b0f8c3 JK |
4221 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
4222 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
4223 | goto out; |
4224 | ||
4225 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
4226 | flush_icache_page(vma, page + i); | |
4227 | ||
4228 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
4229 | if (write) | |
f55e1014 | 4230 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 4231 | |
fadae295 | 4232 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
cea86fe2 HD |
4233 | page_add_file_rmap(page, vma, true); |
4234 | ||
953c66c2 AK |
4235 | /* |
4236 | * deposit and withdraw with pmd lock held | |
4237 | */ | |
4238 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 4239 | deposit_prealloc_pte(vmf); |
10102459 | 4240 | |
82b0f8c3 | 4241 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 4242 | |
82b0f8c3 | 4243 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
4244 | |
4245 | /* fault is handled */ | |
4246 | ret = 0; | |
95ecedcd | 4247 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 4248 | out: |
82b0f8c3 | 4249 | spin_unlock(vmf->ptl); |
10102459 KS |
4250 | return ret; |
4251 | } | |
4252 | #else | |
f9ce0be7 | 4253 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4254 | { |
f9ce0be7 | 4255 | return VM_FAULT_FALLBACK; |
10102459 KS |
4256 | } |
4257 | #endif | |
4258 | ||
9d3af4b4 | 4259 | void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) |
3bb97794 | 4260 | { |
82b0f8c3 | 4261 | struct vm_area_struct *vma = vmf->vma; |
9c28a205 | 4262 | bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); |
82b0f8c3 | 4263 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
9d3af4b4 | 4264 | bool prefault = vmf->address != addr; |
3bb97794 | 4265 | pte_t entry; |
7267ec00 | 4266 | |
3bb97794 KS |
4267 | flush_icache_page(vma, page); |
4268 | entry = mk_pte(page, vma->vm_page_prot); | |
46bdb427 WD |
4269 | |
4270 | if (prefault && arch_wants_old_prefaulted_pte()) | |
4271 | entry = pte_mkold(entry); | |
50c25ee9 TB |
4272 | else |
4273 | entry = pte_sw_mkyoung(entry); | |
46bdb427 | 4274 | |
3bb97794 KS |
4275 | if (write) |
4276 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
9c28a205 | 4277 | if (unlikely(uffd_wp)) |
f1eb1bac | 4278 | entry = pte_mkuffd_wp(entry); |
bae473a4 KS |
4279 | /* copy-on-write page */ |
4280 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
f1a79412 | 4281 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
40f2bbf7 | 4282 | page_add_new_anon_rmap(page, vma, addr); |
b518154e | 4283 | lru_cache_add_inactive_or_unevictable(page, vma); |
3bb97794 | 4284 | } else { |
f1a79412 | 4285 | inc_mm_counter(vma->vm_mm, mm_counter_file(page)); |
cea86fe2 | 4286 | page_add_file_rmap(page, vma, false); |
3bb97794 | 4287 | } |
9d3af4b4 | 4288 | set_pte_at(vma->vm_mm, addr, vmf->pte, entry); |
3bb97794 KS |
4289 | } |
4290 | ||
f46f2ade PX |
4291 | static bool vmf_pte_changed(struct vm_fault *vmf) |
4292 | { | |
4293 | if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) | |
4294 | return !pte_same(*vmf->pte, vmf->orig_pte); | |
4295 | ||
4296 | return !pte_none(*vmf->pte); | |
4297 | } | |
4298 | ||
9118c0cb JK |
4299 | /** |
4300 | * finish_fault - finish page fault once we have prepared the page to fault | |
4301 | * | |
4302 | * @vmf: structure describing the fault | |
4303 | * | |
4304 | * This function handles all that is needed to finish a page fault once the | |
4305 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
4306 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 4307 | * addition. |
9118c0cb JK |
4308 | * |
4309 | * The function expects the page to be locked and on success it consumes a | |
4310 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
4311 | * |
4312 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 4313 | */ |
2b740303 | 4314 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb | 4315 | { |
f9ce0be7 | 4316 | struct vm_area_struct *vma = vmf->vma; |
9118c0cb | 4317 | struct page *page; |
f9ce0be7 | 4318 | vm_fault_t ret; |
9118c0cb JK |
4319 | |
4320 | /* Did we COW the page? */ | |
f9ce0be7 | 4321 | if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
9118c0cb JK |
4322 | page = vmf->cow_page; |
4323 | else | |
4324 | page = vmf->page; | |
6b31d595 MH |
4325 | |
4326 | /* | |
4327 | * check even for read faults because we might have lost our CoWed | |
4328 | * page | |
4329 | */ | |
f9ce0be7 KS |
4330 | if (!(vma->vm_flags & VM_SHARED)) { |
4331 | ret = check_stable_address_space(vma->vm_mm); | |
4332 | if (ret) | |
4333 | return ret; | |
4334 | } | |
4335 | ||
4336 | if (pmd_none(*vmf->pmd)) { | |
4337 | if (PageTransCompound(page)) { | |
4338 | ret = do_set_pmd(vmf, page); | |
4339 | if (ret != VM_FAULT_FALLBACK) | |
4340 | return ret; | |
4341 | } | |
4342 | ||
03c4f204 QZ |
4343 | if (vmf->prealloc_pte) |
4344 | pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); | |
4345 | else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | |
f9ce0be7 KS |
4346 | return VM_FAULT_OOM; |
4347 | } | |
4348 | ||
3fe2895c JB |
4349 | /* |
4350 | * See comment in handle_pte_fault() for how this scenario happens, we | |
4351 | * need to return NOPAGE so that we drop this page. | |
4352 | */ | |
f9ce0be7 | 4353 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
3fe2895c | 4354 | return VM_FAULT_NOPAGE; |
f9ce0be7 KS |
4355 | |
4356 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
4357 | vmf->address, &vmf->ptl); | |
70427f6e | 4358 | |
f9ce0be7 | 4359 | /* Re-check under ptl */ |
70427f6e | 4360 | if (likely(!vmf_pte_changed(vmf))) { |
9d3af4b4 | 4361 | do_set_pte(vmf, page, vmf->address); |
70427f6e SA |
4362 | |
4363 | /* no need to invalidate: a not-present page won't be cached */ | |
4364 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
4365 | ||
4366 | ret = 0; | |
4367 | } else { | |
4368 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
f9ce0be7 | 4369 | ret = VM_FAULT_NOPAGE; |
70427f6e | 4370 | } |
f9ce0be7 | 4371 | |
f9ce0be7 | 4372 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
9118c0cb JK |
4373 | return ret; |
4374 | } | |
4375 | ||
3a91053a KS |
4376 | static unsigned long fault_around_bytes __read_mostly = |
4377 | rounddown_pow_of_two(65536); | |
a9b0f861 | 4378 | |
a9b0f861 KS |
4379 | #ifdef CONFIG_DEBUG_FS |
4380 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 4381 | { |
a9b0f861 | 4382 | *val = fault_around_bytes; |
1592eef0 KS |
4383 | return 0; |
4384 | } | |
4385 | ||
b4903d6e | 4386 | /* |
da391d64 WK |
4387 | * fault_around_bytes must be rounded down to the nearest page order as it's |
4388 | * what do_fault_around() expects to see. | |
b4903d6e | 4389 | */ |
a9b0f861 | 4390 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 4391 | { |
a9b0f861 | 4392 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 4393 | return -EINVAL; |
b4903d6e AR |
4394 | if (val > PAGE_SIZE) |
4395 | fault_around_bytes = rounddown_pow_of_two(val); | |
4396 | else | |
4397 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
4398 | return 0; |
4399 | } | |
0a1345f8 | 4400 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 4401 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
4402 | |
4403 | static int __init fault_around_debugfs(void) | |
4404 | { | |
d9f7979c GKH |
4405 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
4406 | &fault_around_bytes_fops); | |
1592eef0 KS |
4407 | return 0; |
4408 | } | |
4409 | late_initcall(fault_around_debugfs); | |
1592eef0 | 4410 | #endif |
8c6e50b0 | 4411 | |
1fdb412b KS |
4412 | /* |
4413 | * do_fault_around() tries to map few pages around the fault address. The hope | |
4414 | * is that the pages will be needed soon and this will lower the number of | |
4415 | * faults to handle. | |
4416 | * | |
4417 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
4418 | * not ready to be mapped: not up-to-date, locked, etc. | |
4419 | * | |
1fdb412b KS |
4420 | * This function doesn't cross the VMA boundaries, in order to call map_pages() |
4421 | * only once. | |
4422 | * | |
da391d64 WK |
4423 | * fault_around_bytes defines how many bytes we'll try to map. |
4424 | * do_fault_around() expects it to be set to a power of two less than or equal | |
4425 | * to PTRS_PER_PTE. | |
1fdb412b | 4426 | * |
da391d64 WK |
4427 | * The virtual address of the area that we map is naturally aligned to |
4428 | * fault_around_bytes rounded down to the machine page size | |
4429 | * (and therefore to page order). This way it's easier to guarantee | |
4430 | * that we don't cross page table boundaries. | |
1fdb412b | 4431 | */ |
2b740303 | 4432 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 4433 | { |
82b0f8c3 | 4434 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 4435 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 4436 | pgoff_t end_pgoff; |
2b740303 | 4437 | int off; |
8c6e50b0 | 4438 | |
4db0c3c2 | 4439 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
4440 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
4441 | ||
f9ce0be7 KS |
4442 | address = max(address & mask, vmf->vma->vm_start); |
4443 | off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 4444 | start_pgoff -= off; |
8c6e50b0 KS |
4445 | |
4446 | /* | |
da391d64 WK |
4447 | * end_pgoff is either the end of the page table, the end of |
4448 | * the vma or nr_pages from start_pgoff, depending what is nearest. | |
8c6e50b0 | 4449 | */ |
bae473a4 | 4450 | end_pgoff = start_pgoff - |
f9ce0be7 | 4451 | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 4452 | PTRS_PER_PTE - 1; |
82b0f8c3 | 4453 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 4454 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 4455 | |
82b0f8c3 | 4456 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 4457 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 4458 | if (!vmf->prealloc_pte) |
f9ce0be7 | 4459 | return VM_FAULT_OOM; |
8c6e50b0 KS |
4460 | } |
4461 | ||
f9ce0be7 | 4462 | return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
8c6e50b0 KS |
4463 | } |
4464 | ||
9c28a205 PX |
4465 | /* Return true if we should do read fault-around, false otherwise */ |
4466 | static inline bool should_fault_around(struct vm_fault *vmf) | |
4467 | { | |
4468 | /* No ->map_pages? No way to fault around... */ | |
4469 | if (!vmf->vma->vm_ops->map_pages) | |
4470 | return false; | |
4471 | ||
4472 | if (uffd_disable_fault_around(vmf->vma)) | |
4473 | return false; | |
4474 | ||
4475 | return fault_around_bytes >> PAGE_SHIFT > 1; | |
4476 | } | |
4477 | ||
2b740303 | 4478 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 4479 | { |
2b740303 | 4480 | vm_fault_t ret = 0; |
8c6e50b0 KS |
4481 | |
4482 | /* | |
4483 | * Let's call ->map_pages() first and use ->fault() as fallback | |
4484 | * if page by the offset is not ready to be mapped (cold cache or | |
4485 | * something). | |
4486 | */ | |
9c28a205 PX |
4487 | if (should_fault_around(vmf)) { |
4488 | ret = do_fault_around(vmf); | |
4489 | if (ret) | |
4490 | return ret; | |
8c6e50b0 | 4491 | } |
e655fb29 | 4492 | |
936ca80d | 4493 | ret = __do_fault(vmf); |
e655fb29 KS |
4494 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4495 | return ret; | |
4496 | ||
9118c0cb | 4497 | ret |= finish_fault(vmf); |
936ca80d | 4498 | unlock_page(vmf->page); |
7267ec00 | 4499 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 4500 | put_page(vmf->page); |
e655fb29 KS |
4501 | return ret; |
4502 | } | |
4503 | ||
2b740303 | 4504 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 4505 | { |
82b0f8c3 | 4506 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4507 | vm_fault_t ret; |
ec47c3b9 KS |
4508 | |
4509 | if (unlikely(anon_vma_prepare(vma))) | |
4510 | return VM_FAULT_OOM; | |
4511 | ||
936ca80d JK |
4512 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
4513 | if (!vmf->cow_page) | |
ec47c3b9 KS |
4514 | return VM_FAULT_OOM; |
4515 | ||
8f425e4e MWO |
4516 | if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, |
4517 | GFP_KERNEL)) { | |
936ca80d | 4518 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4519 | return VM_FAULT_OOM; |
4520 | } | |
9d82c694 | 4521 | cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); |
ec47c3b9 | 4522 | |
936ca80d | 4523 | ret = __do_fault(vmf); |
ec47c3b9 KS |
4524 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4525 | goto uncharge_out; | |
3917048d JK |
4526 | if (ret & VM_FAULT_DONE_COW) |
4527 | return ret; | |
ec47c3b9 | 4528 | |
b1aa812b | 4529 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 4530 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 4531 | |
9118c0cb | 4532 | ret |= finish_fault(vmf); |
b1aa812b JK |
4533 | unlock_page(vmf->page); |
4534 | put_page(vmf->page); | |
7267ec00 KS |
4535 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4536 | goto uncharge_out; | |
ec47c3b9 KS |
4537 | return ret; |
4538 | uncharge_out: | |
936ca80d | 4539 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4540 | return ret; |
4541 | } | |
4542 | ||
2b740303 | 4543 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 4544 | { |
82b0f8c3 | 4545 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4546 | vm_fault_t ret, tmp; |
1d65f86d | 4547 | |
936ca80d | 4548 | ret = __do_fault(vmf); |
7eae74af | 4549 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 4550 | return ret; |
1da177e4 LT |
4551 | |
4552 | /* | |
f0c6d4d2 KS |
4553 | * Check if the backing address space wants to know that the page is |
4554 | * about to become writable | |
1da177e4 | 4555 | */ |
fb09a464 | 4556 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 4557 | unlock_page(vmf->page); |
38b8cb7f | 4558 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
4559 | if (unlikely(!tmp || |
4560 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 4561 | put_page(vmf->page); |
fb09a464 | 4562 | return tmp; |
4294621f | 4563 | } |
fb09a464 KS |
4564 | } |
4565 | ||
9118c0cb | 4566 | ret |= finish_fault(vmf); |
7267ec00 KS |
4567 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
4568 | VM_FAULT_RETRY))) { | |
936ca80d JK |
4569 | unlock_page(vmf->page); |
4570 | put_page(vmf->page); | |
f0c6d4d2 | 4571 | return ret; |
1da177e4 | 4572 | } |
b827e496 | 4573 | |
89b15332 | 4574 | ret |= fault_dirty_shared_page(vmf); |
1d65f86d | 4575 | return ret; |
54cb8821 | 4576 | } |
d00806b1 | 4577 | |
9a95f3cf | 4578 | /* |
c1e8d7c6 | 4579 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
9a95f3cf | 4580 | * but allow concurrent faults). |
c1e8d7c6 | 4581 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 4582 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
c1e8d7c6 | 4583 | * If mmap_lock is released, vma may become invalid (for example |
fc8efd2d | 4584 | * by other thread calling munmap()). |
9a95f3cf | 4585 | */ |
2b740303 | 4586 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 4587 | { |
82b0f8c3 | 4588 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 4589 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 4590 | vm_fault_t ret; |
54cb8821 | 4591 | |
ff09d7ec AK |
4592 | /* |
4593 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
4594 | */ | |
4595 | if (!vma->vm_ops->fault) { | |
4596 | /* | |
4597 | * If we find a migration pmd entry or a none pmd entry, which | |
4598 | * should never happen, return SIGBUS | |
4599 | */ | |
4600 | if (unlikely(!pmd_present(*vmf->pmd))) | |
4601 | ret = VM_FAULT_SIGBUS; | |
4602 | else { | |
4603 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | |
4604 | vmf->pmd, | |
4605 | vmf->address, | |
4606 | &vmf->ptl); | |
4607 | /* | |
4608 | * Make sure this is not a temporary clearing of pte | |
4609 | * by holding ptl and checking again. A R/M/W update | |
4610 | * of pte involves: take ptl, clearing the pte so that | |
4611 | * we don't have concurrent modification by hardware | |
4612 | * followed by an update. | |
4613 | */ | |
4614 | if (unlikely(pte_none(*vmf->pte))) | |
4615 | ret = VM_FAULT_SIGBUS; | |
4616 | else | |
4617 | ret = VM_FAULT_NOPAGE; | |
4618 | ||
4619 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4620 | } | |
4621 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
4622 | ret = do_read_fault(vmf); |
4623 | else if (!(vma->vm_flags & VM_SHARED)) | |
4624 | ret = do_cow_fault(vmf); | |
4625 | else | |
4626 | ret = do_shared_fault(vmf); | |
4627 | ||
4628 | /* preallocated pagetable is unused: free it */ | |
4629 | if (vmf->prealloc_pte) { | |
fc8efd2d | 4630 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 4631 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
4632 | } |
4633 | return ret; | |
54cb8821 NP |
4634 | } |
4635 | ||
f4c0d836 YS |
4636 | int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
4637 | unsigned long addr, int page_nid, int *flags) | |
9532fec1 MG |
4638 | { |
4639 | get_page(page); | |
4640 | ||
4641 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 4642 | if (page_nid == numa_node_id()) { |
9532fec1 | 4643 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
4644 | *flags |= TNF_FAULT_LOCAL; |
4645 | } | |
9532fec1 MG |
4646 | |
4647 | return mpol_misplaced(page, vma, addr); | |
4648 | } | |
4649 | ||
2b740303 | 4650 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 4651 | { |
82b0f8c3 | 4652 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 4653 | struct page *page = NULL; |
98fa15f3 | 4654 | int page_nid = NUMA_NO_NODE; |
6a56ccbc | 4655 | bool writable = false; |
90572890 | 4656 | int last_cpupid; |
cbee9f88 | 4657 | int target_nid; |
04a86453 | 4658 | pte_t pte, old_pte; |
6688cc05 | 4659 | int flags = 0; |
d10e63f2 MG |
4660 | |
4661 | /* | |
166f61b9 TH |
4662 | * The "pte" at this point cannot be used safely without |
4663 | * validation through pte_unmap_same(). It's of NUMA type but | |
4664 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 4665 | */ |
82b0f8c3 JK |
4666 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
4667 | spin_lock(vmf->ptl); | |
cee216a6 | 4668 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 4669 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4670 | goto out; |
4671 | } | |
4672 | ||
b99a342d YH |
4673 | /* Get the normal PTE */ |
4674 | old_pte = ptep_get(vmf->pte); | |
04a86453 | 4675 | pte = pte_modify(old_pte, vma->vm_page_prot); |
d10e63f2 | 4676 | |
6a56ccbc DH |
4677 | /* |
4678 | * Detect now whether the PTE could be writable; this information | |
4679 | * is only valid while holding the PT lock. | |
4680 | */ | |
4681 | writable = pte_write(pte); | |
4682 | if (!writable && vma_wants_manual_pte_write_upgrade(vma) && | |
4683 | can_change_pte_writable(vma, vmf->address, pte)) | |
4684 | writable = true; | |
4685 | ||
82b0f8c3 | 4686 | page = vm_normal_page(vma, vmf->address, pte); |
3218f871 | 4687 | if (!page || is_zone_device_page(page)) |
b99a342d | 4688 | goto out_map; |
d10e63f2 | 4689 | |
e81c4802 | 4690 | /* TODO: handle PTE-mapped THP */ |
b99a342d YH |
4691 | if (PageCompound(page)) |
4692 | goto out_map; | |
e81c4802 | 4693 | |
6688cc05 | 4694 | /* |
bea66fbd MG |
4695 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
4696 | * much anyway since they can be in shared cache state. This misses | |
4697 | * the case where a mapping is writable but the process never writes | |
4698 | * to it but pte_write gets cleared during protection updates and | |
4699 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
4700 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 4701 | */ |
6a56ccbc | 4702 | if (!writable) |
6688cc05 PZ |
4703 | flags |= TNF_NO_GROUP; |
4704 | ||
dabe1d99 RR |
4705 | /* |
4706 | * Flag if the page is shared between multiple address spaces. This | |
4707 | * is later used when determining whether to group tasks together | |
4708 | */ | |
4709 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
4710 | flags |= TNF_SHARED; | |
4711 | ||
8191acbd | 4712 | page_nid = page_to_nid(page); |
33024536 YH |
4713 | /* |
4714 | * For memory tiering mode, cpupid of slow memory page is used | |
4715 | * to record page access time. So use default value. | |
4716 | */ | |
4717 | if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | |
4718 | !node_is_toptier(page_nid)) | |
4719 | last_cpupid = (-1 & LAST_CPUPID_MASK); | |
4720 | else | |
4721 | last_cpupid = page_cpupid_last(page); | |
82b0f8c3 | 4722 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 4723 | &flags); |
98fa15f3 | 4724 | if (target_nid == NUMA_NO_NODE) { |
4daae3b4 | 4725 | put_page(page); |
b99a342d | 4726 | goto out_map; |
4daae3b4 | 4727 | } |
b99a342d | 4728 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6a56ccbc | 4729 | writable = false; |
4daae3b4 MG |
4730 | |
4731 | /* Migrate to the requested node */ | |
bf90ac19 | 4732 | if (migrate_misplaced_page(page, vma, target_nid)) { |
8191acbd | 4733 | page_nid = target_nid; |
6688cc05 | 4734 | flags |= TNF_MIGRATED; |
b99a342d | 4735 | } else { |
074c2381 | 4736 | flags |= TNF_MIGRATE_FAIL; |
b99a342d YH |
4737 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
4738 | spin_lock(vmf->ptl); | |
4739 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | |
4740 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4741 | goto out; | |
4742 | } | |
4743 | goto out_map; | |
4744 | } | |
4daae3b4 MG |
4745 | |
4746 | out: | |
98fa15f3 | 4747 | if (page_nid != NUMA_NO_NODE) |
6688cc05 | 4748 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 | 4749 | return 0; |
b99a342d YH |
4750 | out_map: |
4751 | /* | |
4752 | * Make it present again, depending on how arch implements | |
4753 | * non-accessible ptes, some can allow access by kernel mode. | |
4754 | */ | |
4755 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); | |
4756 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4757 | pte = pte_mkyoung(pte); | |
6a56ccbc | 4758 | if (writable) |
b99a342d YH |
4759 | pte = pte_mkwrite(pte); |
4760 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); | |
4761 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
4762 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4763 | goto out; | |
d10e63f2 MG |
4764 | } |
4765 | ||
2b740303 | 4766 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4767 | { |
f4200391 | 4768 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 4769 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 4770 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 4771 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
4772 | return VM_FAULT_FALLBACK; |
4773 | } | |
4774 | ||
183f24aa | 4775 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
5db4f15c | 4776 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4777 | { |
c89357e2 | 4778 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
aea06577 | 4779 | vm_fault_t ret; |
c89357e2 | 4780 | |
529b930b | 4781 | if (vma_is_anonymous(vmf->vma)) { |
c89357e2 DH |
4782 | if (likely(!unshare) && |
4783 | userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) | |
529b930b | 4784 | return handle_userfault(vmf, VM_UFFD_WP); |
5db4f15c | 4785 | return do_huge_pmd_wp_page(vmf); |
529b930b | 4786 | } |
327e9fd4 | 4787 | |
aea06577 DH |
4788 | if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { |
4789 | if (vmf->vma->vm_ops->huge_fault) { | |
4790 | ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | |
4791 | if (!(ret & VM_FAULT_FALLBACK)) | |
4792 | return ret; | |
4793 | } | |
327e9fd4 | 4794 | } |
af9e4d5f | 4795 | |
327e9fd4 | 4796 | /* COW or write-notify handled on pte level: split pmd. */ |
82b0f8c3 | 4797 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); |
af9e4d5f | 4798 | |
b96375f7 MW |
4799 | return VM_FAULT_FALLBACK; |
4800 | } | |
4801 | ||
2b740303 | 4802 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 | 4803 | { |
14c99d65 GJ |
4804 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4805 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
4806 | /* No support for anonymous transparent PUD pages yet */ | |
4807 | if (vma_is_anonymous(vmf->vma)) | |
4808 | return VM_FAULT_FALLBACK; | |
4809 | if (vmf->vma->vm_ops->huge_fault) | |
4810 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4811 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
4812 | return VM_FAULT_FALLBACK; | |
4813 | } | |
4814 | ||
4815 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | |
4816 | { | |
327e9fd4 THV |
4817 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4818 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
aea06577 DH |
4819 | vm_fault_t ret; |
4820 | ||
a00cc7d9 MW |
4821 | /* No support for anonymous transparent PUD pages yet */ |
4822 | if (vma_is_anonymous(vmf->vma)) | |
327e9fd4 | 4823 | goto split; |
aea06577 DH |
4824 | if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { |
4825 | if (vmf->vma->vm_ops->huge_fault) { | |
4826 | ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4827 | if (!(ret & VM_FAULT_FALLBACK)) | |
4828 | return ret; | |
4829 | } | |
327e9fd4 THV |
4830 | } |
4831 | split: | |
4832 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
4833 | __split_huge_pud(vmf->vma, vmf->pud, vmf->address); | |
14c99d65 | 4834 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
a00cc7d9 MW |
4835 | return VM_FAULT_FALLBACK; |
4836 | } | |
4837 | ||
1da177e4 LT |
4838 | /* |
4839 | * These routines also need to handle stuff like marking pages dirty | |
4840 | * and/or accessed for architectures that don't do it in hardware (most | |
4841 | * RISC architectures). The early dirtying is also good on the i386. | |
4842 | * | |
4843 | * There is also a hook called "update_mmu_cache()" that architectures | |
4844 | * with external mmu caches can use to update those (ie the Sparc or | |
4845 | * PowerPC hashed page tables that act as extended TLBs). | |
4846 | * | |
c1e8d7c6 | 4847 | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow |
7267ec00 | 4848 | * concurrent faults). |
9a95f3cf | 4849 | * |
c1e8d7c6 | 4850 | * The mmap_lock may have been released depending on flags and our return value. |
9138e47e | 4851 | * See filemap_fault() and __folio_lock_or_retry(). |
1da177e4 | 4852 | */ |
2b740303 | 4853 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
4854 | { |
4855 | pte_t entry; | |
4856 | ||
82b0f8c3 | 4857 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
4858 | /* |
4859 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
4860 | * want to allocate huge page, and if we expose page table | |
4861 | * for an instant, it will be difficult to retract from | |
4862 | * concurrent faults and from rmap lookups. | |
4863 | */ | |
82b0f8c3 | 4864 | vmf->pte = NULL; |
f46f2ade | 4865 | vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 | 4866 | } else { |
f9ce0be7 KS |
4867 | /* |
4868 | * If a huge pmd materialized under us just retry later. Use | |
4869 | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead | |
4870 | * of pmd_trans_huge() to ensure the pmd didn't become | |
4871 | * pmd_trans_huge under us and then back to pmd_none, as a | |
4872 | * result of MADV_DONTNEED running immediately after a huge pmd | |
4873 | * fault in a different thread of this mm, in turn leading to a | |
4874 | * misleading pmd_trans_huge() retval. All we have to ensure is | |
4875 | * that it is a regular pmd that we can walk with | |
4876 | * pte_offset_map() and we can do that through an atomic read | |
4877 | * in C, which is what pmd_trans_unstable() provides. | |
4878 | */ | |
d0f0931d | 4879 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
4880 | return 0; |
4881 | /* | |
4882 | * A regular pmd is established and it can't morph into a huge | |
4883 | * pmd from under us anymore at this point because we hold the | |
c1e8d7c6 | 4884 | * mmap_lock read mode and khugepaged takes it in write mode. |
7267ec00 KS |
4885 | * So now it's safe to run pte_offset_map(). |
4886 | */ | |
82b0f8c3 | 4887 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 4888 | vmf->orig_pte = *vmf->pte; |
f46f2ade | 4889 | vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 KS |
4890 | |
4891 | /* | |
4892 | * some architectures can have larger ptes than wordsize, | |
4893 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
b03a0fe0 PM |
4894 | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic |
4895 | * accesses. The code below just needs a consistent view | |
4896 | * for the ifs and we later double check anyway with the | |
7267ec00 KS |
4897 | * ptl lock held. So here a barrier will do. |
4898 | */ | |
4899 | barrier(); | |
2994302b | 4900 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
4901 | pte_unmap(vmf->pte); |
4902 | vmf->pte = NULL; | |
65500d23 | 4903 | } |
1da177e4 LT |
4904 | } |
4905 | ||
82b0f8c3 JK |
4906 | if (!vmf->pte) { |
4907 | if (vma_is_anonymous(vmf->vma)) | |
4908 | return do_anonymous_page(vmf); | |
7267ec00 | 4909 | else |
82b0f8c3 | 4910 | return do_fault(vmf); |
7267ec00 KS |
4911 | } |
4912 | ||
2994302b JK |
4913 | if (!pte_present(vmf->orig_pte)) |
4914 | return do_swap_page(vmf); | |
7267ec00 | 4915 | |
2994302b JK |
4916 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
4917 | return do_numa_page(vmf); | |
d10e63f2 | 4918 | |
82b0f8c3 JK |
4919 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4920 | spin_lock(vmf->ptl); | |
2994302b | 4921 | entry = vmf->orig_pte; |
7df67697 BM |
4922 | if (unlikely(!pte_same(*vmf->pte, entry))) { |
4923 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | |
8f4e2101 | 4924 | goto unlock; |
7df67697 | 4925 | } |
c89357e2 | 4926 | if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { |
f6f37321 | 4927 | if (!pte_write(entry)) |
2994302b | 4928 | return do_wp_page(vmf); |
c89357e2 DH |
4929 | else if (likely(vmf->flags & FAULT_FLAG_WRITE)) |
4930 | entry = pte_mkdirty(entry); | |
1da177e4 LT |
4931 | } |
4932 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
4933 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
4934 | vmf->flags & FAULT_FLAG_WRITE)) { | |
4935 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 | 4936 | } else { |
b7333b58 YS |
4937 | /* Skip spurious TLB flush for retried page fault */ |
4938 | if (vmf->flags & FAULT_FLAG_TRIED) | |
4939 | goto unlock; | |
1a44e149 AA |
4940 | /* |
4941 | * This is needed only for protection faults but the arch code | |
4942 | * is not yet telling us if this is a protection fault or not. | |
4943 | * This still avoids useless tlb flushes for .text page faults | |
4944 | * with threads. | |
4945 | */ | |
82b0f8c3 JK |
4946 | if (vmf->flags & FAULT_FLAG_WRITE) |
4947 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 4948 | } |
8f4e2101 | 4949 | unlock: |
82b0f8c3 | 4950 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 4951 | return 0; |
1da177e4 LT |
4952 | } |
4953 | ||
4954 | /* | |
4955 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf | 4956 | * |
c1e8d7c6 | 4957 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 4958 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
1da177e4 | 4959 | */ |
2b740303 SJ |
4960 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
4961 | unsigned long address, unsigned int flags) | |
1da177e4 | 4962 | { |
82b0f8c3 | 4963 | struct vm_fault vmf = { |
bae473a4 | 4964 | .vma = vma, |
1a29d85e | 4965 | .address = address & PAGE_MASK, |
824ddc60 | 4966 | .real_address = address, |
bae473a4 | 4967 | .flags = flags, |
0721ec8b | 4968 | .pgoff = linear_page_index(vma, address), |
667240e0 | 4969 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 4970 | }; |
dcddffd4 | 4971 | struct mm_struct *mm = vma->vm_mm; |
7da4e2cb | 4972 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 | 4973 | pgd_t *pgd; |
c2febafc | 4974 | p4d_t *p4d; |
2b740303 | 4975 | vm_fault_t ret; |
1da177e4 | 4976 | |
1da177e4 | 4977 | pgd = pgd_offset(mm, address); |
c2febafc KS |
4978 | p4d = p4d_alloc(mm, pgd, address); |
4979 | if (!p4d) | |
4980 | return VM_FAULT_OOM; | |
a00cc7d9 | 4981 | |
c2febafc | 4982 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 4983 | if (!vmf.pud) |
c74df32c | 4984 | return VM_FAULT_OOM; |
625110b5 | 4985 | retry_pud: |
7da4e2cb | 4986 | if (pud_none(*vmf.pud) && |
a7f4e6e4 | 4987 | hugepage_vma_check(vma, vm_flags, false, true, true)) { |
a00cc7d9 MW |
4988 | ret = create_huge_pud(&vmf); |
4989 | if (!(ret & VM_FAULT_FALLBACK)) | |
4990 | return ret; | |
4991 | } else { | |
4992 | pud_t orig_pud = *vmf.pud; | |
4993 | ||
4994 | barrier(); | |
4995 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 4996 | |
c89357e2 DH |
4997 | /* |
4998 | * TODO once we support anonymous PUDs: NUMA case and | |
4999 | * FAULT_FLAG_UNSHARE handling. | |
5000 | */ | |
5001 | if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { | |
a00cc7d9 MW |
5002 | ret = wp_huge_pud(&vmf, orig_pud); |
5003 | if (!(ret & VM_FAULT_FALLBACK)) | |
5004 | return ret; | |
5005 | } else { | |
5006 | huge_pud_set_accessed(&vmf, orig_pud); | |
5007 | return 0; | |
5008 | } | |
5009 | } | |
5010 | } | |
5011 | ||
5012 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 5013 | if (!vmf.pmd) |
c74df32c | 5014 | return VM_FAULT_OOM; |
625110b5 TH |
5015 | |
5016 | /* Huge pud page fault raced with pmd_alloc? */ | |
5017 | if (pud_trans_unstable(vmf.pud)) | |
5018 | goto retry_pud; | |
5019 | ||
7da4e2cb | 5020 | if (pmd_none(*vmf.pmd) && |
a7f4e6e4 | 5021 | hugepage_vma_check(vma, vm_flags, false, true, true)) { |
a2d58167 | 5022 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
5023 | if (!(ret & VM_FAULT_FALLBACK)) |
5024 | return ret; | |
71e3aac0 | 5025 | } else { |
5db4f15c | 5026 | vmf.orig_pmd = *vmf.pmd; |
1f1d06c3 | 5027 | |
71e3aac0 | 5028 | barrier(); |
5db4f15c | 5029 | if (unlikely(is_swap_pmd(vmf.orig_pmd))) { |
84c3fc4e | 5030 | VM_BUG_ON(thp_migration_supported() && |
5db4f15c YS |
5031 | !is_pmd_migration_entry(vmf.orig_pmd)); |
5032 | if (is_pmd_migration_entry(vmf.orig_pmd)) | |
84c3fc4e ZY |
5033 | pmd_migration_entry_wait(mm, vmf.pmd); |
5034 | return 0; | |
5035 | } | |
5db4f15c YS |
5036 | if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { |
5037 | if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) | |
5038 | return do_huge_pmd_numa_page(&vmf); | |
d10e63f2 | 5039 | |
c89357e2 DH |
5040 | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && |
5041 | !pmd_write(vmf.orig_pmd)) { | |
5db4f15c | 5042 | ret = wp_huge_pmd(&vmf); |
9845cbbd KS |
5043 | if (!(ret & VM_FAULT_FALLBACK)) |
5044 | return ret; | |
a1dd450b | 5045 | } else { |
5db4f15c | 5046 | huge_pmd_set_accessed(&vmf); |
9845cbbd | 5047 | return 0; |
1f1d06c3 | 5048 | } |
71e3aac0 AA |
5049 | } |
5050 | } | |
5051 | ||
82b0f8c3 | 5052 | return handle_pte_fault(&vmf); |
1da177e4 LT |
5053 | } |
5054 | ||
bce617ed | 5055 | /** |
f0953a1b | 5056 | * mm_account_fault - Do page fault accounting |
bce617ed PX |
5057 | * |
5058 | * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting | |
5059 | * of perf event counters, but we'll still do the per-task accounting to | |
5060 | * the task who triggered this page fault. | |
5061 | * @address: the faulted address. | |
5062 | * @flags: the fault flags. | |
5063 | * @ret: the fault retcode. | |
5064 | * | |
f0953a1b | 5065 | * This will take care of most of the page fault accounting. Meanwhile, it |
bce617ed | 5066 | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter |
f0953a1b | 5067 | * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should |
bce617ed PX |
5068 | * still be in per-arch page fault handlers at the entry of page fault. |
5069 | */ | |
5070 | static inline void mm_account_fault(struct pt_regs *regs, | |
5071 | unsigned long address, unsigned int flags, | |
5072 | vm_fault_t ret) | |
5073 | { | |
5074 | bool major; | |
5075 | ||
5076 | /* | |
5077 | * We don't do accounting for some specific faults: | |
5078 | * | |
5079 | * - Unsuccessful faults (e.g. when the address wasn't valid). That | |
5080 | * includes arch_vma_access_permitted() failing before reaching here. | |
5081 | * So this is not a "this many hardware page faults" counter. We | |
5082 | * should use the hw profiling for that. | |
5083 | * | |
5084 | * - Incomplete faults (VM_FAULT_RETRY). They will only be counted | |
5085 | * once they're completed. | |
5086 | */ | |
5087 | if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) | |
5088 | return; | |
5089 | ||
5090 | /* | |
5091 | * We define the fault as a major fault when the final successful fault | |
5092 | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | |
5093 | * handle it immediately previously). | |
5094 | */ | |
5095 | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | |
5096 | ||
a2beb5f1 PX |
5097 | if (major) |
5098 | current->maj_flt++; | |
5099 | else | |
5100 | current->min_flt++; | |
5101 | ||
bce617ed | 5102 | /* |
a2beb5f1 PX |
5103 | * If the fault is done for GUP, regs will be NULL. We only do the |
5104 | * accounting for the per thread fault counters who triggered the | |
5105 | * fault, and we skip the perf event updates. | |
bce617ed PX |
5106 | */ |
5107 | if (!regs) | |
5108 | return; | |
5109 | ||
a2beb5f1 | 5110 | if (major) |
bce617ed | 5111 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); |
a2beb5f1 | 5112 | else |
bce617ed | 5113 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); |
bce617ed PX |
5114 | } |
5115 | ||
ec1c86b2 YZ |
5116 | #ifdef CONFIG_LRU_GEN |
5117 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
5118 | { | |
8788f678 YZ |
5119 | /* the LRU algorithm only applies to accesses with recency */ |
5120 | current->in_lru_fault = vma_has_recency(vma); | |
ec1c86b2 YZ |
5121 | } |
5122 | ||
5123 | static void lru_gen_exit_fault(void) | |
5124 | { | |
5125 | current->in_lru_fault = false; | |
5126 | } | |
5127 | #else | |
5128 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
5129 | { | |
5130 | } | |
5131 | ||
5132 | static void lru_gen_exit_fault(void) | |
5133 | { | |
5134 | } | |
5135 | #endif /* CONFIG_LRU_GEN */ | |
5136 | ||
cdc5021c DH |
5137 | static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, |
5138 | unsigned int *flags) | |
5139 | { | |
5140 | if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { | |
5141 | if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) | |
5142 | return VM_FAULT_SIGSEGV; | |
5143 | /* | |
5144 | * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's | |
5145 | * just treat it like an ordinary read-fault otherwise. | |
5146 | */ | |
5147 | if (!is_cow_mapping(vma->vm_flags)) | |
5148 | *flags &= ~FAULT_FLAG_UNSHARE; | |
79881fed DH |
5149 | } else if (*flags & FAULT_FLAG_WRITE) { |
5150 | /* Write faults on read-only mappings are impossible ... */ | |
5151 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) | |
5152 | return VM_FAULT_SIGSEGV; | |
5153 | /* ... and FOLL_FORCE only applies to COW mappings. */ | |
5154 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && | |
5155 | !is_cow_mapping(vma->vm_flags))) | |
5156 | return VM_FAULT_SIGSEGV; | |
cdc5021c DH |
5157 | } |
5158 | return 0; | |
5159 | } | |
5160 | ||
9a95f3cf PC |
5161 | /* |
5162 | * By the time we get here, we already hold the mm semaphore | |
5163 | * | |
c1e8d7c6 | 5164 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 5165 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
9a95f3cf | 5166 | */ |
2b740303 | 5167 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
bce617ed | 5168 | unsigned int flags, struct pt_regs *regs) |
519e5247 | 5169 | { |
2b740303 | 5170 | vm_fault_t ret; |
519e5247 JW |
5171 | |
5172 | __set_current_state(TASK_RUNNING); | |
5173 | ||
5174 | count_vm_event(PGFAULT); | |
2262185c | 5175 | count_memcg_event_mm(vma->vm_mm, PGFAULT); |
519e5247 | 5176 | |
cdc5021c DH |
5177 | ret = sanitize_fault_flags(vma, &flags); |
5178 | if (ret) | |
5179 | return ret; | |
5180 | ||
de0c799b LD |
5181 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
5182 | flags & FAULT_FLAG_INSTRUCTION, | |
5183 | flags & FAULT_FLAG_REMOTE)) | |
5184 | return VM_FAULT_SIGSEGV; | |
5185 | ||
519e5247 JW |
5186 | /* |
5187 | * Enable the memcg OOM handling for faults triggered in user | |
5188 | * space. Kernel faults are handled more gracefully. | |
5189 | */ | |
5190 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 5191 | mem_cgroup_enter_user_fault(); |
519e5247 | 5192 | |
ec1c86b2 YZ |
5193 | lru_gen_enter_fault(vma); |
5194 | ||
bae473a4 KS |
5195 | if (unlikely(is_vm_hugetlb_page(vma))) |
5196 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
5197 | else | |
5198 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 5199 | |
ec1c86b2 YZ |
5200 | lru_gen_exit_fault(); |
5201 | ||
49426420 | 5202 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 5203 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
5204 | /* |
5205 | * The task may have entered a memcg OOM situation but | |
5206 | * if the allocation error was handled gracefully (no | |
5207 | * VM_FAULT_OOM), there is no need to kill anything. | |
5208 | * Just clean up the OOM state peacefully. | |
5209 | */ | |
5210 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
5211 | mem_cgroup_oom_synchronize(false); | |
49426420 | 5212 | } |
3812c8c8 | 5213 | |
bce617ed PX |
5214 | mm_account_fault(regs, address, flags, ret); |
5215 | ||
519e5247 JW |
5216 | return ret; |
5217 | } | |
e1d6d01a | 5218 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 5219 | |
90eceff1 KS |
5220 | #ifndef __PAGETABLE_P4D_FOLDED |
5221 | /* | |
5222 | * Allocate p4d page table. | |
5223 | * We've already handled the fast-path in-line. | |
5224 | */ | |
5225 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
5226 | { | |
5227 | p4d_t *new = p4d_alloc_one(mm, address); | |
5228 | if (!new) | |
5229 | return -ENOMEM; | |
5230 | ||
90eceff1 | 5231 | spin_lock(&mm->page_table_lock); |
ed33b5a6 | 5232 | if (pgd_present(*pgd)) { /* Another has populated it */ |
90eceff1 | 5233 | p4d_free(mm, new); |
ed33b5a6 QZ |
5234 | } else { |
5235 | smp_wmb(); /* See comment in pmd_install() */ | |
90eceff1 | 5236 | pgd_populate(mm, pgd, new); |
ed33b5a6 | 5237 | } |
90eceff1 KS |
5238 | spin_unlock(&mm->page_table_lock); |
5239 | return 0; | |
5240 | } | |
5241 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
5242 | ||
1da177e4 LT |
5243 | #ifndef __PAGETABLE_PUD_FOLDED |
5244 | /* | |
5245 | * Allocate page upper directory. | |
872fec16 | 5246 | * We've already handled the fast-path in-line. |
1da177e4 | 5247 | */ |
c2febafc | 5248 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 5249 | { |
c74df32c HD |
5250 | pud_t *new = pud_alloc_one(mm, address); |
5251 | if (!new) | |
1bb3630e | 5252 | return -ENOMEM; |
1da177e4 | 5253 | |
872fec16 | 5254 | spin_lock(&mm->page_table_lock); |
b4e98d9a KS |
5255 | if (!p4d_present(*p4d)) { |
5256 | mm_inc_nr_puds(mm); | |
ed33b5a6 | 5257 | smp_wmb(); /* See comment in pmd_install() */ |
c2febafc | 5258 | p4d_populate(mm, p4d, new); |
b4e98d9a | 5259 | } else /* Another has populated it */ |
5e541973 | 5260 | pud_free(mm, new); |
c74df32c | 5261 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 5262 | return 0; |
1da177e4 LT |
5263 | } |
5264 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
5265 | ||
5266 | #ifndef __PAGETABLE_PMD_FOLDED | |
5267 | /* | |
5268 | * Allocate page middle directory. | |
872fec16 | 5269 | * We've already handled the fast-path in-line. |
1da177e4 | 5270 | */ |
1bb3630e | 5271 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 5272 | { |
a00cc7d9 | 5273 | spinlock_t *ptl; |
c74df32c HD |
5274 | pmd_t *new = pmd_alloc_one(mm, address); |
5275 | if (!new) | |
1bb3630e | 5276 | return -ENOMEM; |
1da177e4 | 5277 | |
a00cc7d9 | 5278 | ptl = pud_lock(mm, pud); |
dc6c9a35 KS |
5279 | if (!pud_present(*pud)) { |
5280 | mm_inc_nr_pmds(mm); | |
ed33b5a6 | 5281 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 5282 | pud_populate(mm, pud, new); |
ed33b5a6 | 5283 | } else { /* Another has populated it */ |
5e541973 | 5284 | pmd_free(mm, new); |
ed33b5a6 | 5285 | } |
a00cc7d9 | 5286 | spin_unlock(ptl); |
1bb3630e | 5287 | return 0; |
e0f39591 | 5288 | } |
1da177e4 LT |
5289 | #endif /* __PAGETABLE_PMD_FOLDED */ |
5290 | ||
0e5e64c0 MS |
5291 | /** |
5292 | * follow_pte - look up PTE at a user virtual address | |
5293 | * @mm: the mm_struct of the target address space | |
5294 | * @address: user virtual address | |
5295 | * @ptepp: location to store found PTE | |
5296 | * @ptlp: location to store the lock for the PTE | |
5297 | * | |
5298 | * On a successful return, the pointer to the PTE is stored in @ptepp; | |
5299 | * the corresponding lock is taken and its location is stored in @ptlp. | |
5300 | * The contents of the PTE are only stable until @ptlp is released; | |
5301 | * any further use, if any, must be protected against invalidation | |
5302 | * with MMU notifiers. | |
5303 | * | |
5304 | * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore | |
5305 | * should be taken for read. | |
5306 | * | |
5307 | * KVM uses this function. While it is arguably less bad than ``follow_pfn``, | |
5308 | * it is not a good general-purpose API. | |
5309 | * | |
5310 | * Return: zero on success, -ve otherwise. | |
5311 | */ | |
5312 | int follow_pte(struct mm_struct *mm, unsigned long address, | |
5313 | pte_t **ptepp, spinlock_t **ptlp) | |
f8ad0f49 JW |
5314 | { |
5315 | pgd_t *pgd; | |
c2febafc | 5316 | p4d_t *p4d; |
f8ad0f49 JW |
5317 | pud_t *pud; |
5318 | pmd_t *pmd; | |
5319 | pte_t *ptep; | |
5320 | ||
5321 | pgd = pgd_offset(mm, address); | |
5322 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
5323 | goto out; | |
5324 | ||
c2febafc KS |
5325 | p4d = p4d_offset(pgd, address); |
5326 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
5327 | goto out; | |
5328 | ||
5329 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
5330 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
5331 | goto out; | |
5332 | ||
5333 | pmd = pmd_offset(pud, address); | |
f66055ab | 5334 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 5335 | |
09796395 | 5336 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
f8ad0f49 JW |
5337 | goto out; |
5338 | ||
5339 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
f8ad0f49 JW |
5340 | if (!pte_present(*ptep)) |
5341 | goto unlock; | |
5342 | *ptepp = ptep; | |
5343 | return 0; | |
5344 | unlock: | |
5345 | pte_unmap_unlock(ptep, *ptlp); | |
5346 | out: | |
5347 | return -EINVAL; | |
5348 | } | |
9fd6dad1 PB |
5349 | EXPORT_SYMBOL_GPL(follow_pte); |
5350 | ||
3b6748e2 JW |
5351 | /** |
5352 | * follow_pfn - look up PFN at a user virtual address | |
5353 | * @vma: memory mapping | |
5354 | * @address: user virtual address | |
5355 | * @pfn: location to store found PFN | |
5356 | * | |
5357 | * Only IO mappings and raw PFN mappings are allowed. | |
5358 | * | |
9fd6dad1 PB |
5359 | * This function does not allow the caller to read the permissions |
5360 | * of the PTE. Do not use it. | |
5361 | * | |
a862f68a | 5362 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
5363 | */ |
5364 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
5365 | unsigned long *pfn) | |
5366 | { | |
5367 | int ret = -EINVAL; | |
5368 | spinlock_t *ptl; | |
5369 | pte_t *ptep; | |
5370 | ||
5371 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5372 | return ret; | |
5373 | ||
9fd6dad1 | 5374 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); |
3b6748e2 JW |
5375 | if (ret) |
5376 | return ret; | |
5377 | *pfn = pte_pfn(*ptep); | |
5378 | pte_unmap_unlock(ptep, ptl); | |
5379 | return 0; | |
5380 | } | |
5381 | EXPORT_SYMBOL(follow_pfn); | |
5382 | ||
28b2ee20 | 5383 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 5384 | int follow_phys(struct vm_area_struct *vma, |
5385 | unsigned long address, unsigned int flags, | |
5386 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 5387 | { |
03668a4d | 5388 | int ret = -EINVAL; |
28b2ee20 RR |
5389 | pte_t *ptep, pte; |
5390 | spinlock_t *ptl; | |
28b2ee20 | 5391 | |
d87fe660 | 5392 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
5393 | goto out; | |
28b2ee20 | 5394 | |
9fd6dad1 | 5395 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 5396 | goto out; |
28b2ee20 | 5397 | pte = *ptep; |
03668a4d | 5398 | |
f6f37321 | 5399 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 5400 | goto unlock; |
28b2ee20 RR |
5401 | |
5402 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 5403 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 5404 | |
03668a4d | 5405 | ret = 0; |
28b2ee20 RR |
5406 | unlock: |
5407 | pte_unmap_unlock(ptep, ptl); | |
5408 | out: | |
d87fe660 | 5409 | return ret; |
28b2ee20 RR |
5410 | } |
5411 | ||
96667f8a SV |
5412 | /** |
5413 | * generic_access_phys - generic implementation for iomem mmap access | |
5414 | * @vma: the vma to access | |
f0953a1b | 5415 | * @addr: userspace address, not relative offset within @vma |
96667f8a SV |
5416 | * @buf: buffer to read/write |
5417 | * @len: length of transfer | |
5418 | * @write: set to FOLL_WRITE when writing, otherwise reading | |
5419 | * | |
5420 | * This is a generic implementation for &vm_operations_struct.access for an | |
5421 | * iomem mapping. This callback is used by access_process_vm() when the @vma is | |
5422 | * not page based. | |
5423 | */ | |
28b2ee20 RR |
5424 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
5425 | void *buf, int len, int write) | |
5426 | { | |
5427 | resource_size_t phys_addr; | |
5428 | unsigned long prot = 0; | |
2bc7273b | 5429 | void __iomem *maddr; |
96667f8a SV |
5430 | pte_t *ptep, pte; |
5431 | spinlock_t *ptl; | |
5432 | int offset = offset_in_page(addr); | |
5433 | int ret = -EINVAL; | |
5434 | ||
5435 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5436 | return -EINVAL; | |
5437 | ||
5438 | retry: | |
e913a8cd | 5439 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
5440 | return -EINVAL; |
5441 | pte = *ptep; | |
5442 | pte_unmap_unlock(ptep, ptl); | |
28b2ee20 | 5443 | |
96667f8a SV |
5444 | prot = pgprot_val(pte_pgprot(pte)); |
5445 | phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | |
5446 | ||
5447 | if ((write & FOLL_WRITE) && !pte_write(pte)) | |
28b2ee20 RR |
5448 | return -EINVAL; |
5449 | ||
9cb12d7b | 5450 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 5451 | if (!maddr) |
5452 | return -ENOMEM; | |
5453 | ||
e913a8cd | 5454 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
5455 | goto out_unmap; |
5456 | ||
5457 | if (!pte_same(pte, *ptep)) { | |
5458 | pte_unmap_unlock(ptep, ptl); | |
5459 | iounmap(maddr); | |
5460 | ||
5461 | goto retry; | |
5462 | } | |
5463 | ||
28b2ee20 RR |
5464 | if (write) |
5465 | memcpy_toio(maddr + offset, buf, len); | |
5466 | else | |
5467 | memcpy_fromio(buf, maddr + offset, len); | |
96667f8a SV |
5468 | ret = len; |
5469 | pte_unmap_unlock(ptep, ptl); | |
5470 | out_unmap: | |
28b2ee20 RR |
5471 | iounmap(maddr); |
5472 | ||
96667f8a | 5473 | return ret; |
28b2ee20 | 5474 | } |
5a73633e | 5475 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
5476 | #endif |
5477 | ||
0ec76a11 | 5478 | /* |
d3f5ffca | 5479 | * Access another process' address space as given in mm. |
0ec76a11 | 5480 | */ |
d3f5ffca JH |
5481 | int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, |
5482 | int len, unsigned int gup_flags) | |
0ec76a11 | 5483 | { |
0ec76a11 | 5484 | struct vm_area_struct *vma; |
0ec76a11 | 5485 | void *old_buf = buf; |
442486ec | 5486 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 5487 | |
d8ed45c5 | 5488 | if (mmap_read_lock_killable(mm)) |
1e426fe2 KK |
5489 | return 0; |
5490 | ||
183ff22b | 5491 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
5492 | while (len) { |
5493 | int bytes, ret, offset; | |
5494 | void *maddr; | |
28b2ee20 | 5495 | struct page *page = NULL; |
0ec76a11 | 5496 | |
64019a2e | 5497 | ret = get_user_pages_remote(mm, addr, 1, |
5b56d49f | 5498 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 5499 | if (ret <= 0) { |
dbffcd03 RR |
5500 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
5501 | break; | |
5502 | #else | |
28b2ee20 RR |
5503 | /* |
5504 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
5505 | * we can access using slightly different code. | |
5506 | */ | |
3e418f98 LH |
5507 | vma = vma_lookup(mm, addr); |
5508 | if (!vma) | |
28b2ee20 RR |
5509 | break; |
5510 | if (vma->vm_ops && vma->vm_ops->access) | |
5511 | ret = vma->vm_ops->access(vma, addr, buf, | |
5512 | len, write); | |
5513 | if (ret <= 0) | |
28b2ee20 RR |
5514 | break; |
5515 | bytes = ret; | |
dbffcd03 | 5516 | #endif |
0ec76a11 | 5517 | } else { |
28b2ee20 RR |
5518 | bytes = len; |
5519 | offset = addr & (PAGE_SIZE-1); | |
5520 | if (bytes > PAGE_SIZE-offset) | |
5521 | bytes = PAGE_SIZE-offset; | |
5522 | ||
5523 | maddr = kmap(page); | |
5524 | if (write) { | |
5525 | copy_to_user_page(vma, page, addr, | |
5526 | maddr + offset, buf, bytes); | |
5527 | set_page_dirty_lock(page); | |
5528 | } else { | |
5529 | copy_from_user_page(vma, page, addr, | |
5530 | buf, maddr + offset, bytes); | |
5531 | } | |
5532 | kunmap(page); | |
09cbfeaf | 5533 | put_page(page); |
0ec76a11 | 5534 | } |
0ec76a11 DH |
5535 | len -= bytes; |
5536 | buf += bytes; | |
5537 | addr += bytes; | |
5538 | } | |
d8ed45c5 | 5539 | mmap_read_unlock(mm); |
0ec76a11 DH |
5540 | |
5541 | return buf - old_buf; | |
5542 | } | |
03252919 | 5543 | |
5ddd36b9 | 5544 | /** |
ae91dbfc | 5545 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
5546 | * @mm: the mm_struct of the target address space |
5547 | * @addr: start address to access | |
5548 | * @buf: source or destination buffer | |
5549 | * @len: number of bytes to transfer | |
6347e8d5 | 5550 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
5551 | * |
5552 | * The caller must hold a reference on @mm. | |
a862f68a MR |
5553 | * |
5554 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
5555 | */ |
5556 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 5557 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 5558 | { |
d3f5ffca | 5559 | return __access_remote_vm(mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
5560 | } |
5561 | ||
206cb636 SW |
5562 | /* |
5563 | * Access another process' address space. | |
5564 | * Source/target buffer must be kernel space, | |
5565 | * Do not walk the page table directly, use get_user_pages | |
5566 | */ | |
5567 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 5568 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
5569 | { |
5570 | struct mm_struct *mm; | |
5571 | int ret; | |
5572 | ||
5573 | mm = get_task_mm(tsk); | |
5574 | if (!mm) | |
5575 | return 0; | |
5576 | ||
d3f5ffca | 5577 | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); |
442486ec | 5578 | |
206cb636 SW |
5579 | mmput(mm); |
5580 | ||
5581 | return ret; | |
5582 | } | |
fcd35857 | 5583 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 5584 | |
03252919 AK |
5585 | /* |
5586 | * Print the name of a VMA. | |
5587 | */ | |
5588 | void print_vma_addr(char *prefix, unsigned long ip) | |
5589 | { | |
5590 | struct mm_struct *mm = current->mm; | |
5591 | struct vm_area_struct *vma; | |
5592 | ||
e8bff74a | 5593 | /* |
0a7f682d | 5594 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 5595 | */ |
d8ed45c5 | 5596 | if (!mmap_read_trylock(mm)) |
e8bff74a IM |
5597 | return; |
5598 | ||
03252919 AK |
5599 | vma = find_vma(mm, ip); |
5600 | if (vma && vma->vm_file) { | |
5601 | struct file *f = vma->vm_file; | |
0a7f682d | 5602 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 5603 | if (buf) { |
2fbc57c5 | 5604 | char *p; |
03252919 | 5605 | |
9bf39ab2 | 5606 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
5607 | if (IS_ERR(p)) |
5608 | p = "?"; | |
2fbc57c5 | 5609 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
5610 | vma->vm_start, |
5611 | vma->vm_end - vma->vm_start); | |
5612 | free_page((unsigned long)buf); | |
5613 | } | |
5614 | } | |
d8ed45c5 | 5615 | mmap_read_unlock(mm); |
03252919 | 5616 | } |
3ee1afa3 | 5617 | |
662bbcb2 | 5618 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 5619 | void __might_fault(const char *file, int line) |
3ee1afa3 | 5620 | { |
9ec23531 | 5621 | if (pagefault_disabled()) |
662bbcb2 | 5622 | return; |
42a38756 | 5623 | __might_sleep(file, line); |
9ec23531 | 5624 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
662bbcb2 | 5625 | if (current->mm) |
da1c55f1 | 5626 | might_lock_read(¤t->mm->mmap_lock); |
9ec23531 | 5627 | #endif |
3ee1afa3 | 5628 | } |
9ec23531 | 5629 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 5630 | #endif |
47ad8475 AA |
5631 | |
5632 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
5633 | /* |
5634 | * Process all subpages of the specified huge page with the specified | |
5635 | * operation. The target subpage will be processed last to keep its | |
5636 | * cache lines hot. | |
5637 | */ | |
5638 | static inline void process_huge_page( | |
5639 | unsigned long addr_hint, unsigned int pages_per_huge_page, | |
5640 | void (*process_subpage)(unsigned long addr, int idx, void *arg), | |
5641 | void *arg) | |
47ad8475 | 5642 | { |
c79b57e4 YH |
5643 | int i, n, base, l; |
5644 | unsigned long addr = addr_hint & | |
5645 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 5646 | |
c6ddfb6c | 5647 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 5648 | might_sleep(); |
c79b57e4 YH |
5649 | n = (addr_hint - addr) / PAGE_SIZE; |
5650 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 5651 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
5652 | base = 0; |
5653 | l = n; | |
c6ddfb6c | 5654 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
5655 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
5656 | cond_resched(); | |
c6ddfb6c | 5657 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5658 | } |
5659 | } else { | |
c6ddfb6c | 5660 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
5661 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
5662 | l = pages_per_huge_page - n; | |
c6ddfb6c | 5663 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
5664 | for (i = 0; i < base; i++) { |
5665 | cond_resched(); | |
c6ddfb6c | 5666 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5667 | } |
5668 | } | |
5669 | /* | |
c6ddfb6c YH |
5670 | * Process remaining subpages in left-right-left-right pattern |
5671 | * towards the target subpage | |
c79b57e4 YH |
5672 | */ |
5673 | for (i = 0; i < l; i++) { | |
5674 | int left_idx = base + i; | |
5675 | int right_idx = base + 2 * l - 1 - i; | |
5676 | ||
5677 | cond_resched(); | |
c6ddfb6c | 5678 | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
47ad8475 | 5679 | cond_resched(); |
c6ddfb6c | 5680 | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
47ad8475 AA |
5681 | } |
5682 | } | |
5683 | ||
c6ddfb6c YH |
5684 | static void clear_gigantic_page(struct page *page, |
5685 | unsigned long addr, | |
5686 | unsigned int pages_per_huge_page) | |
5687 | { | |
5688 | int i; | |
14455eab | 5689 | struct page *p; |
c6ddfb6c YH |
5690 | |
5691 | might_sleep(); | |
14455eab CL |
5692 | for (i = 0; i < pages_per_huge_page; i++) { |
5693 | p = nth_page(page, i); | |
c6ddfb6c YH |
5694 | cond_resched(); |
5695 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
5696 | } | |
5697 | } | |
5698 | ||
5699 | static void clear_subpage(unsigned long addr, int idx, void *arg) | |
5700 | { | |
5701 | struct page *page = arg; | |
5702 | ||
5703 | clear_user_highpage(page + idx, addr); | |
5704 | } | |
5705 | ||
5706 | void clear_huge_page(struct page *page, | |
5707 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
5708 | { | |
5709 | unsigned long addr = addr_hint & | |
5710 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5711 | ||
5712 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5713 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
5714 | return; | |
5715 | } | |
5716 | ||
5717 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
5718 | } | |
5719 | ||
47ad8475 AA |
5720 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
5721 | unsigned long addr, | |
5722 | struct vm_area_struct *vma, | |
5723 | unsigned int pages_per_huge_page) | |
5724 | { | |
5725 | int i; | |
5726 | struct page *dst_base = dst; | |
5727 | struct page *src_base = src; | |
5728 | ||
14455eab CL |
5729 | for (i = 0; i < pages_per_huge_page; i++) { |
5730 | dst = nth_page(dst_base, i); | |
5731 | src = nth_page(src_base, i); | |
5732 | ||
47ad8475 AA |
5733 | cond_resched(); |
5734 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
47ad8475 AA |
5735 | } |
5736 | } | |
5737 | ||
c9f4cd71 YH |
5738 | struct copy_subpage_arg { |
5739 | struct page *dst; | |
5740 | struct page *src; | |
5741 | struct vm_area_struct *vma; | |
5742 | }; | |
5743 | ||
5744 | static void copy_subpage(unsigned long addr, int idx, void *arg) | |
5745 | { | |
5746 | struct copy_subpage_arg *copy_arg = arg; | |
5747 | ||
5748 | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | |
5749 | addr, copy_arg->vma); | |
5750 | } | |
5751 | ||
47ad8475 | 5752 | void copy_user_huge_page(struct page *dst, struct page *src, |
c9f4cd71 | 5753 | unsigned long addr_hint, struct vm_area_struct *vma, |
47ad8475 AA |
5754 | unsigned int pages_per_huge_page) |
5755 | { | |
c9f4cd71 YH |
5756 | unsigned long addr = addr_hint & |
5757 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5758 | struct copy_subpage_arg arg = { | |
5759 | .dst = dst, | |
5760 | .src = src, | |
5761 | .vma = vma, | |
5762 | }; | |
47ad8475 AA |
5763 | |
5764 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5765 | copy_user_gigantic_page(dst, src, addr, vma, | |
5766 | pages_per_huge_page); | |
5767 | return; | |
5768 | } | |
5769 | ||
c9f4cd71 | 5770 | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 5771 | } |
fa4d75c1 MK |
5772 | |
5773 | long copy_huge_page_from_user(struct page *dst_page, | |
5774 | const void __user *usr_src, | |
810a56b9 MK |
5775 | unsigned int pages_per_huge_page, |
5776 | bool allow_pagefault) | |
fa4d75c1 | 5777 | { |
fa4d75c1 MK |
5778 | void *page_kaddr; |
5779 | unsigned long i, rc = 0; | |
5780 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
14455eab | 5781 | struct page *subpage; |
fa4d75c1 | 5782 | |
14455eab CL |
5783 | for (i = 0; i < pages_per_huge_page; i++) { |
5784 | subpage = nth_page(dst_page, i); | |
810a56b9 | 5785 | if (allow_pagefault) |
3272cfc2 | 5786 | page_kaddr = kmap(subpage); |
810a56b9 | 5787 | else |
3272cfc2 | 5788 | page_kaddr = kmap_atomic(subpage); |
fa4d75c1 | 5789 | rc = copy_from_user(page_kaddr, |
b063e374 | 5790 | usr_src + i * PAGE_SIZE, PAGE_SIZE); |
810a56b9 | 5791 | if (allow_pagefault) |
3272cfc2 | 5792 | kunmap(subpage); |
810a56b9 MK |
5793 | else |
5794 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
5795 | |
5796 | ret_val -= (PAGE_SIZE - rc); | |
5797 | if (rc) | |
5798 | break; | |
5799 | ||
e763243c MS |
5800 | flush_dcache_page(subpage); |
5801 | ||
fa4d75c1 MK |
5802 | cond_resched(); |
5803 | } | |
5804 | return ret_val; | |
5805 | } | |
47ad8475 | 5806 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 5807 | |
40b64acd | 5808 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
5809 | |
5810 | static struct kmem_cache *page_ptl_cachep; | |
5811 | ||
5812 | void __init ptlock_cache_init(void) | |
5813 | { | |
5814 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
5815 | SLAB_PANIC, NULL); | |
5816 | } | |
5817 | ||
539edb58 | 5818 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
5819 | { |
5820 | spinlock_t *ptl; | |
5821 | ||
b35f1819 | 5822 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
5823 | if (!ptl) |
5824 | return false; | |
539edb58 | 5825 | page->ptl = ptl; |
49076ec2 KS |
5826 | return true; |
5827 | } | |
5828 | ||
539edb58 | 5829 | void ptlock_free(struct page *page) |
49076ec2 | 5830 | { |
b35f1819 | 5831 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
5832 | } |
5833 | #endif |