]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
81819f0f CL |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpuset.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ctype.h> | |
3ac7fe5a | 29 | #include <linux/debugobjects.h> |
81819f0f | 30 | #include <linux/kallsyms.h> |
b89fb5ef | 31 | #include <linux/kfence.h> |
b9049e23 | 32 | #include <linux/memory.h> |
f8bd2258 | 33 | #include <linux/math64.h> |
773ff60e | 34 | #include <linux/fault-inject.h> |
bfa71457 | 35 | #include <linux/stacktrace.h> |
4de900b4 | 36 | #include <linux/prefetch.h> |
2633d7a0 | 37 | #include <linux/memcontrol.h> |
2482ddec | 38 | #include <linux/random.h> |
1f9f78b1 | 39 | #include <kunit/test.h> |
81819f0f | 40 | |
64dd6849 | 41 | #include <linux/debugfs.h> |
4a92379b RK |
42 | #include <trace/events/kmem.h> |
43 | ||
072bb0aa MG |
44 | #include "internal.h" |
45 | ||
81819f0f CL |
46 | /* |
47 | * Lock order: | |
18004c5d | 48 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
49 | * 2. node->list_lock (Spinlock) |
50 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
c2092c12 | 51 | * 4. slab_lock(slab) (Only on some arches or for debugging) |
bd0e7491 | 52 | * 5. object_map_lock (Only for debugging) |
81819f0f | 53 | * |
18004c5d | 54 | * slab_mutex |
881db7fb | 55 | * |
18004c5d | 56 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 57 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
58 | * Also synchronizes memory hotplug callbacks. |
59 | * | |
60 | * slab_lock | |
61 | * | |
62 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
63 | * spinlock. | |
881db7fb CL |
64 | * |
65 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 66 | * have the ability to do a cmpxchg_double. It only protects: |
c2092c12 VB |
67 | * A. slab->freelist -> List of free objects in a slab |
68 | * B. slab->inuse -> Number of objects in use | |
69 | * C. slab->objects -> Number of objects in slab | |
70 | * D. slab->frozen -> frozen state | |
881db7fb | 71 | * |
bd0e7491 VB |
72 | * Frozen slabs |
73 | * | |
881db7fb | 74 | * If a slab is frozen then it is exempt from list management. It is not |
632b2ef0 | 75 | * on any list except per cpu partial list. The processor that froze the |
c2092c12 | 76 | * slab is the one who can perform list operations on the slab. Other |
632b2ef0 LX |
77 | * processors may put objects onto the freelist but the processor that |
78 | * froze the slab is the only one that can retrieve the objects from the | |
c2092c12 | 79 | * slab's freelist. |
81819f0f | 80 | * |
bd0e7491 VB |
81 | * list_lock |
82 | * | |
81819f0f CL |
83 | * The list_lock protects the partial and full list on each node and |
84 | * the partial slab counter. If taken then no new slabs may be added or | |
85 | * removed from the lists nor make the number of partial slabs be modified. | |
86 | * (Note that the total number of slabs is an atomic value that may be | |
87 | * modified without taking the list lock). | |
88 | * | |
89 | * The list_lock is a centralized lock and thus we avoid taking it as | |
90 | * much as possible. As long as SLUB does not have to handle partial | |
91 | * slabs, operations can continue without any centralized lock. F.e. | |
92 | * allocating a long series of objects that fill up slabs does not require | |
93 | * the list lock. | |
bd0e7491 VB |
94 | * |
95 | * cpu_slab->lock local lock | |
96 | * | |
97 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
98 | * except the stat counters. This is a percpu structure manipulated only by | |
99 | * the local cpu, so the lock protects against being preempted or interrupted | |
100 | * by an irq. Fast path operations rely on lockless operations instead. | |
101 | * On PREEMPT_RT, the local lock does not actually disable irqs (and thus | |
102 | * prevent the lockless operations), so fastpath operations also need to take | |
103 | * the lock and are no longer lockless. | |
104 | * | |
105 | * lockless fastpaths | |
106 | * | |
107 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
108 | * are fully lockless when satisfied from the percpu slab (and when | |
109 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
110 | * They also don't disable preemption or migration or irqs. They rely on | |
111 | * the transaction id (tid) field to detect being preempted or moved to | |
112 | * another cpu. | |
113 | * | |
114 | * irq, preemption, migration considerations | |
115 | * | |
116 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
117 | * around the slab_lock operation, in order to make the slab allocator safe | |
118 | * to use in the context of an irq. | |
119 | * | |
120 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
121 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
122 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
123 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
124 | * |
125 | * SLUB assigns one slab for allocation to each processor. | |
126 | * Allocations only occur from these slabs called cpu slabs. | |
127 | * | |
672bba3a CL |
128 | * Slabs with free elements are kept on a partial list and during regular |
129 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 130 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
131 | * We track full slabs for debugging purposes though because otherwise we |
132 | * cannot scan all objects. | |
81819f0f CL |
133 | * |
134 | * Slabs are freed when they become empty. Teardown and setup is | |
135 | * minimal so we rely on the page allocators per cpu caches for | |
136 | * fast frees and allocs. | |
137 | * | |
c2092c12 | 138 | * slab->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
139 | * This means that the slab is dedicated to a purpose |
140 | * such as satisfying allocations for a specific | |
141 | * processor. Objects may be freed in the slab while | |
142 | * it is frozen but slab_free will then skip the usual | |
143 | * list operations. It is up to the processor holding | |
144 | * the slab to integrate the slab into the slab lists | |
145 | * when the slab is no longer needed. | |
146 | * | |
147 | * One use of this flag is to mark slabs that are | |
148 | * used for allocations. Then such a slab becomes a cpu | |
149 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 150 | * freelist that allows lockless access to |
894b8788 CL |
151 | * free objects in addition to the regular freelist |
152 | * that requires the slab lock. | |
81819f0f | 153 | * |
aed68148 | 154 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 155 | * options set. This moves slab handling out of |
894b8788 | 156 | * the fast path and disables lockless freelists. |
81819f0f CL |
157 | */ |
158 | ||
25c00c50 VB |
159 | /* |
160 | * We could simply use migrate_disable()/enable() but as long as it's a | |
161 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
162 | */ | |
163 | #ifndef CONFIG_PREEMPT_RT | |
164 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) | |
165 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
166 | #else | |
167 | #define slub_get_cpu_ptr(var) \ | |
168 | ({ \ | |
169 | migrate_disable(); \ | |
170 | this_cpu_ptr(var); \ | |
171 | }) | |
172 | #define slub_put_cpu_ptr(var) \ | |
173 | do { \ | |
174 | (void)(var); \ | |
175 | migrate_enable(); \ | |
176 | } while (0) | |
177 | #endif | |
178 | ||
ca0cab65 VB |
179 | #ifdef CONFIG_SLUB_DEBUG |
180 | #ifdef CONFIG_SLUB_DEBUG_ON | |
181 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
182 | #else | |
183 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
184 | #endif | |
79270291 | 185 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 186 | |
59052e89 VB |
187 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
188 | { | |
189 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 190 | } |
5577bd8a | 191 | |
117d54df | 192 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 193 | { |
59052e89 | 194 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
195 | p += s->red_left_pad; |
196 | ||
197 | return p; | |
198 | } | |
199 | ||
345c905d JK |
200 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
201 | { | |
202 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
203 | return !kmem_cache_debug(s); | |
204 | #else | |
205 | return false; | |
206 | #endif | |
207 | } | |
208 | ||
81819f0f CL |
209 | /* |
210 | * Issues still to be resolved: | |
211 | * | |
81819f0f CL |
212 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
213 | * | |
81819f0f CL |
214 | * - Variable sizing of the per node arrays |
215 | */ | |
216 | ||
b789ef51 CL |
217 | /* Enable to log cmpxchg failures */ |
218 | #undef SLUB_DEBUG_CMPXCHG | |
219 | ||
2086d26a | 220 | /* |
dc84207d | 221 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
222 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
223 | */ | |
76be8950 | 224 | #define MIN_PARTIAL 5 |
e95eed57 | 225 | |
2086d26a CL |
226 | /* |
227 | * Maximum number of desirable partial slabs. | |
228 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 229 | * sort the partial list by the number of objects in use. |
2086d26a CL |
230 | */ |
231 | #define MAX_PARTIAL 10 | |
232 | ||
becfda68 | 233 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 234 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 235 | |
149daaf3 LA |
236 | /* |
237 | * These debug flags cannot use CMPXCHG because there might be consistency | |
238 | * issues when checking or reading debug information | |
239 | */ | |
240 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
241 | SLAB_TRACE) | |
242 | ||
243 | ||
fa5ec8a1 | 244 | /* |
3de47213 DR |
245 | * Debugging flags that require metadata to be stored in the slab. These get |
246 | * disabled when slub_debug=O is used and a cache's min order increases with | |
247 | * metadata. | |
fa5ec8a1 | 248 | */ |
3de47213 | 249 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 250 | |
210b5c06 CG |
251 | #define OO_SHIFT 16 |
252 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
c2092c12 | 253 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
210b5c06 | 254 | |
81819f0f | 255 | /* Internal SLUB flags */ |
d50112ed | 256 | /* Poison object */ |
4fd0b46e | 257 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 258 | /* Use cmpxchg_double */ |
4fd0b46e | 259 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 260 | |
02cbc874 CL |
261 | /* |
262 | * Tracking user of a slab. | |
263 | */ | |
d6543e39 | 264 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 265 | struct track { |
ce71e27c | 266 | unsigned long addr; /* Called from address */ |
ae14c63a LT |
267 | #ifdef CONFIG_STACKTRACE |
268 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
d6543e39 | 269 | #endif |
02cbc874 CL |
270 | int cpu; /* Was running on cpu */ |
271 | int pid; /* Pid context */ | |
272 | unsigned long when; /* When did the operation occur */ | |
273 | }; | |
274 | ||
275 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
276 | ||
ab4d5ed5 | 277 | #ifdef CONFIG_SYSFS |
81819f0f CL |
278 | static int sysfs_slab_add(struct kmem_cache *); |
279 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 280 | #else |
0c710013 CL |
281 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
282 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
283 | { return 0; } | |
81819f0f CL |
284 | #endif |
285 | ||
64dd6849 FM |
286 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
287 | static void debugfs_slab_add(struct kmem_cache *); | |
288 | #else | |
289 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
290 | #endif | |
291 | ||
4fdccdfb | 292 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
293 | { |
294 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
295 | /* |
296 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
297 | * avoid this_cpu_add()'s irq-disable overhead. | |
298 | */ | |
299 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
300 | #endif |
301 | } | |
302 | ||
7e1fa93d VB |
303 | /* |
304 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
305 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
306 | * differ during memory hotplug/hotremove operations. | |
307 | * Protected by slab_mutex. | |
308 | */ | |
309 | static nodemask_t slab_nodes; | |
310 | ||
81819f0f CL |
311 | /******************************************************************** |
312 | * Core slab cache functions | |
313 | *******************************************************************/ | |
314 | ||
2482ddec KC |
315 | /* |
316 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
317 | * with an XOR of the address where the pointer is held and a per-cache | |
318 | * random number. | |
319 | */ | |
320 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
321 | unsigned long ptr_addr) | |
322 | { | |
323 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 | 324 | /* |
aa1ef4d7 | 325 | * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. |
d36a63a9 AK |
326 | * Normally, this doesn't cause any issues, as both set_freepointer() |
327 | * and get_freepointer() are called with a pointer with the same tag. | |
328 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
329 | * example, when __free_slub() iterates over objects in a cache, it | |
330 | * passes untagged pointers to check_object(). check_object() in turns | |
331 | * calls get_freepointer() with an untagged pointer, which causes the | |
332 | * freepointer to be restored incorrectly. | |
333 | */ | |
334 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 335 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
336 | #else |
337 | return ptr; | |
338 | #endif | |
339 | } | |
340 | ||
341 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
342 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
343 | void *ptr_addr) | |
344 | { | |
345 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
346 | (unsigned long)ptr_addr); | |
347 | } | |
348 | ||
7656c72b CL |
349 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
350 | { | |
aa1ef4d7 | 351 | object = kasan_reset_tag(object); |
2482ddec | 352 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
353 | } |
354 | ||
0ad9500e ED |
355 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
356 | { | |
04b4b006 | 357 | prefetchw(object + s->offset); |
0ad9500e ED |
358 | } |
359 | ||
1393d9a1 CL |
360 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
361 | { | |
2482ddec | 362 | unsigned long freepointer_addr; |
1393d9a1 CL |
363 | void *p; |
364 | ||
8e57f8ac | 365 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
366 | return get_freepointer(s, object); |
367 | ||
f70b0049 | 368 | object = kasan_reset_tag(object); |
2482ddec | 369 | freepointer_addr = (unsigned long)object + s->offset; |
fe557319 | 370 | copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); |
2482ddec | 371 | return freelist_ptr(s, p, freepointer_addr); |
1393d9a1 CL |
372 | } |
373 | ||
7656c72b CL |
374 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
375 | { | |
2482ddec KC |
376 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
377 | ||
ce6fa91b AP |
378 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
379 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
380 | #endif | |
381 | ||
aa1ef4d7 | 382 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
2482ddec | 383 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
384 | } |
385 | ||
386 | /* Loop over all objects in a slab */ | |
224a88be | 387 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
388 | for (__p = fixup_red_left(__s, __addr); \ |
389 | __p < (__addr) + (__objects) * (__s)->size; \ | |
390 | __p += (__s)->size) | |
7656c72b | 391 | |
9736d2a9 | 392 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 393 | { |
9736d2a9 | 394 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
395 | } |
396 | ||
19af27af | 397 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 398 | unsigned int size) |
834f3d11 CL |
399 | { |
400 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 401 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
402 | }; |
403 | ||
404 | return x; | |
405 | } | |
406 | ||
19af27af | 407 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 408 | { |
210b5c06 | 409 | return x.x >> OO_SHIFT; |
834f3d11 CL |
410 | } |
411 | ||
19af27af | 412 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 413 | { |
210b5c06 | 414 | return x.x & OO_MASK; |
834f3d11 CL |
415 | } |
416 | ||
b47291ef VB |
417 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
418 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
419 | { | |
bb192ed9 | 420 | unsigned int nr_slabs; |
b47291ef VB |
421 | |
422 | s->cpu_partial = nr_objects; | |
423 | ||
424 | /* | |
425 | * We take the number of objects but actually limit the number of | |
c2092c12 VB |
426 | * slabs on the per cpu partial list, in order to limit excessive |
427 | * growth of the list. For simplicity we assume that the slabs will | |
b47291ef VB |
428 | * be half-full. |
429 | */ | |
bb192ed9 VB |
430 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
431 | s->cpu_partial_slabs = nr_slabs; | |
b47291ef VB |
432 | } |
433 | #else | |
434 | static inline void | |
435 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
436 | { | |
437 | } | |
438 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
439 | ||
881db7fb CL |
440 | /* |
441 | * Per slab locking using the pagelock | |
442 | */ | |
0393895b | 443 | static __always_inline void __slab_lock(struct slab *slab) |
881db7fb | 444 | { |
0393895b VB |
445 | struct page *page = slab_page(slab); |
446 | ||
48c935ad | 447 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
448 | bit_spin_lock(PG_locked, &page->flags); |
449 | } | |
450 | ||
0393895b | 451 | static __always_inline void __slab_unlock(struct slab *slab) |
881db7fb | 452 | { |
0393895b VB |
453 | struct page *page = slab_page(slab); |
454 | ||
48c935ad | 455 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
456 | __bit_spin_unlock(PG_locked, &page->flags); |
457 | } | |
458 | ||
bb192ed9 | 459 | static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) |
a2b4ae8b VB |
460 | { |
461 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | |
462 | local_irq_save(*flags); | |
bb192ed9 | 463 | __slab_lock(slab); |
a2b4ae8b VB |
464 | } |
465 | ||
bb192ed9 | 466 | static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) |
a2b4ae8b | 467 | { |
bb192ed9 | 468 | __slab_unlock(slab); |
a2b4ae8b VB |
469 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
470 | local_irq_restore(*flags); | |
471 | } | |
472 | ||
473 | /* | |
474 | * Interrupts must be disabled (for the fallback code to work right), typically | |
475 | * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different | |
476 | * so we disable interrupts as part of slab_[un]lock(). | |
477 | */ | |
bb192ed9 | 478 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
1d07171c CL |
479 | void *freelist_old, unsigned long counters_old, |
480 | void *freelist_new, unsigned long counters_new, | |
481 | const char *n) | |
482 | { | |
a2b4ae8b VB |
483 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
484 | lockdep_assert_irqs_disabled(); | |
2565409f HC |
485 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
486 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 487 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 488 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
489 | freelist_old, counters_old, |
490 | freelist_new, counters_new)) | |
6f6528a1 | 491 | return true; |
1d07171c CL |
492 | } else |
493 | #endif | |
494 | { | |
a2b4ae8b VB |
495 | /* init to 0 to prevent spurious warnings */ |
496 | unsigned long flags = 0; | |
497 | ||
bb192ed9 VB |
498 | slab_lock(slab, &flags); |
499 | if (slab->freelist == freelist_old && | |
500 | slab->counters == counters_old) { | |
501 | slab->freelist = freelist_new; | |
502 | slab->counters = counters_new; | |
503 | slab_unlock(slab, &flags); | |
6f6528a1 | 504 | return true; |
1d07171c | 505 | } |
bb192ed9 | 506 | slab_unlock(slab, &flags); |
1d07171c CL |
507 | } |
508 | ||
509 | cpu_relax(); | |
510 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
511 | ||
512 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 513 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
514 | #endif |
515 | ||
6f6528a1 | 516 | return false; |
1d07171c CL |
517 | } |
518 | ||
bb192ed9 | 519 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
b789ef51 CL |
520 | void *freelist_old, unsigned long counters_old, |
521 | void *freelist_new, unsigned long counters_new, | |
522 | const char *n) | |
523 | { | |
2565409f HC |
524 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
525 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 526 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 527 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
528 | freelist_old, counters_old, |
529 | freelist_new, counters_new)) | |
6f6528a1 | 530 | return true; |
b789ef51 CL |
531 | } else |
532 | #endif | |
533 | { | |
1d07171c CL |
534 | unsigned long flags; |
535 | ||
536 | local_irq_save(flags); | |
bb192ed9 VB |
537 | __slab_lock(slab); |
538 | if (slab->freelist == freelist_old && | |
539 | slab->counters == counters_old) { | |
540 | slab->freelist = freelist_new; | |
541 | slab->counters = counters_new; | |
542 | __slab_unlock(slab); | |
1d07171c | 543 | local_irq_restore(flags); |
6f6528a1 | 544 | return true; |
b789ef51 | 545 | } |
bb192ed9 | 546 | __slab_unlock(slab); |
1d07171c | 547 | local_irq_restore(flags); |
b789ef51 CL |
548 | } |
549 | ||
550 | cpu_relax(); | |
551 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
552 | ||
553 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 554 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
555 | #endif |
556 | ||
6f6528a1 | 557 | return false; |
b789ef51 CL |
558 | } |
559 | ||
41ecc55b | 560 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 561 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
94ef0304 | 562 | static DEFINE_RAW_SPINLOCK(object_map_lock); |
90e9f6a6 | 563 | |
b3fd64e1 | 564 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
bb192ed9 | 565 | struct slab *slab) |
b3fd64e1 | 566 | { |
bb192ed9 | 567 | void *addr = slab_address(slab); |
b3fd64e1 VB |
568 | void *p; |
569 | ||
bb192ed9 | 570 | bitmap_zero(obj_map, slab->objects); |
b3fd64e1 | 571 | |
bb192ed9 | 572 | for (p = slab->freelist; p; p = get_freepointer(s, p)) |
b3fd64e1 VB |
573 | set_bit(__obj_to_index(s, addr, p), obj_map); |
574 | } | |
575 | ||
1f9f78b1 OG |
576 | #if IS_ENABLED(CONFIG_KUNIT) |
577 | static bool slab_add_kunit_errors(void) | |
578 | { | |
579 | struct kunit_resource *resource; | |
580 | ||
581 | if (likely(!current->kunit_test)) | |
582 | return false; | |
583 | ||
584 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
585 | if (!resource) | |
586 | return false; | |
587 | ||
588 | (*(int *)resource->data)++; | |
589 | kunit_put_resource(resource); | |
590 | return true; | |
591 | } | |
592 | #else | |
593 | static inline bool slab_add_kunit_errors(void) { return false; } | |
594 | #endif | |
595 | ||
5f80b13a | 596 | /* |
c2092c12 | 597 | * Determine a map of objects in use in a slab. |
5f80b13a | 598 | * |
c2092c12 | 599 | * Node listlock must be held to guarantee that the slab does |
5f80b13a CL |
600 | * not vanish from under us. |
601 | */ | |
bb192ed9 | 602 | static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) |
31364c2e | 603 | __acquires(&object_map_lock) |
5f80b13a | 604 | { |
90e9f6a6 YZ |
605 | VM_BUG_ON(!irqs_disabled()); |
606 | ||
94ef0304 | 607 | raw_spin_lock(&object_map_lock); |
90e9f6a6 | 608 | |
bb192ed9 | 609 | __fill_map(object_map, s, slab); |
90e9f6a6 YZ |
610 | |
611 | return object_map; | |
612 | } | |
613 | ||
81aba9e0 | 614 | static void put_map(unsigned long *map) __releases(&object_map_lock) |
90e9f6a6 YZ |
615 | { |
616 | VM_BUG_ON(map != object_map); | |
94ef0304 | 617 | raw_spin_unlock(&object_map_lock); |
5f80b13a CL |
618 | } |
619 | ||
870b1fbb | 620 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
621 | { |
622 | if (s->flags & SLAB_RED_ZONE) | |
623 | return s->size - s->red_left_pad; | |
624 | ||
625 | return s->size; | |
626 | } | |
627 | ||
628 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
629 | { | |
630 | if (s->flags & SLAB_RED_ZONE) | |
631 | p -= s->red_left_pad; | |
632 | ||
633 | return p; | |
634 | } | |
635 | ||
41ecc55b CL |
636 | /* |
637 | * Debug settings: | |
638 | */ | |
89d3c87e | 639 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 640 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 641 | #else |
d50112ed | 642 | static slab_flags_t slub_debug; |
f0630fff | 643 | #endif |
41ecc55b | 644 | |
e17f1dfb | 645 | static char *slub_debug_string; |
fa5ec8a1 | 646 | static int disable_higher_order_debug; |
41ecc55b | 647 | |
a79316c6 AR |
648 | /* |
649 | * slub is about to manipulate internal object metadata. This memory lies | |
650 | * outside the range of the allocated object, so accessing it would normally | |
651 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
652 | * to tell kasan that these accesses are OK. | |
653 | */ | |
654 | static inline void metadata_access_enable(void) | |
655 | { | |
656 | kasan_disable_current(); | |
657 | } | |
658 | ||
659 | static inline void metadata_access_disable(void) | |
660 | { | |
661 | kasan_enable_current(); | |
662 | } | |
663 | ||
81819f0f CL |
664 | /* |
665 | * Object debugging | |
666 | */ | |
d86bd1be JK |
667 | |
668 | /* Verify that a pointer has an address that is valid within a slab page */ | |
669 | static inline int check_valid_pointer(struct kmem_cache *s, | |
bb192ed9 | 670 | struct slab *slab, void *object) |
d86bd1be JK |
671 | { |
672 | void *base; | |
673 | ||
674 | if (!object) | |
675 | return 1; | |
676 | ||
bb192ed9 | 677 | base = slab_address(slab); |
338cfaad | 678 | object = kasan_reset_tag(object); |
d86bd1be | 679 | object = restore_red_left(s, object); |
bb192ed9 | 680 | if (object < base || object >= base + slab->objects * s->size || |
d86bd1be JK |
681 | (object - base) % s->size) { |
682 | return 0; | |
683 | } | |
684 | ||
685 | return 1; | |
686 | } | |
687 | ||
aa2efd5e DT |
688 | static void print_section(char *level, char *text, u8 *addr, |
689 | unsigned int length) | |
81819f0f | 690 | { |
a79316c6 | 691 | metadata_access_enable(); |
340caf17 KYL |
692 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
693 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 694 | metadata_access_disable(); |
81819f0f CL |
695 | } |
696 | ||
cbfc35a4 WL |
697 | /* |
698 | * See comment in calculate_sizes(). | |
699 | */ | |
700 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
701 | { | |
702 | return s->offset >= s->inuse; | |
703 | } | |
704 | ||
705 | /* | |
706 | * Return offset of the end of info block which is inuse + free pointer if | |
707 | * not overlapping with object. | |
708 | */ | |
709 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
710 | { | |
711 | if (freeptr_outside_object(s)) | |
712 | return s->inuse + sizeof(void *); | |
713 | else | |
714 | return s->inuse; | |
715 | } | |
716 | ||
81819f0f CL |
717 | static struct track *get_track(struct kmem_cache *s, void *object, |
718 | enum track_item alloc) | |
719 | { | |
720 | struct track *p; | |
721 | ||
cbfc35a4 | 722 | p = object + get_info_end(s); |
81819f0f | 723 | |
aa1ef4d7 | 724 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
725 | } |
726 | ||
727 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 728 | enum track_item alloc, unsigned long addr) |
81819f0f | 729 | { |
1a00df4a | 730 | struct track *p = get_track(s, object, alloc); |
81819f0f | 731 | |
81819f0f | 732 | if (addr) { |
ae14c63a LT |
733 | #ifdef CONFIG_STACKTRACE |
734 | unsigned int nr_entries; | |
735 | ||
736 | metadata_access_enable(); | |
737 | nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), | |
738 | TRACK_ADDRS_COUNT, 3); | |
739 | metadata_access_disable(); | |
740 | ||
741 | if (nr_entries < TRACK_ADDRS_COUNT) | |
742 | p->addrs[nr_entries] = 0; | |
d6543e39 | 743 | #endif |
81819f0f CL |
744 | p->addr = addr; |
745 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 746 | p->pid = current->pid; |
81819f0f | 747 | p->when = jiffies; |
b8ca7ff7 | 748 | } else { |
81819f0f | 749 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 750 | } |
81819f0f CL |
751 | } |
752 | ||
81819f0f CL |
753 | static void init_tracking(struct kmem_cache *s, void *object) |
754 | { | |
24922684 CL |
755 | if (!(s->flags & SLAB_STORE_USER)) |
756 | return; | |
757 | ||
ce71e27c EGM |
758 | set_track(s, object, TRACK_FREE, 0UL); |
759 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
760 | } |
761 | ||
86609d33 | 762 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
763 | { |
764 | if (!t->addr) | |
765 | return; | |
766 | ||
96b94abc | 767 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 768 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
ae14c63a | 769 | #ifdef CONFIG_STACKTRACE |
d6543e39 | 770 | { |
ae14c63a LT |
771 | int i; |
772 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
773 | if (t->addrs[i]) | |
774 | pr_err("\t%pS\n", (void *)t->addrs[i]); | |
775 | else | |
776 | break; | |
d6543e39 BG |
777 | } |
778 | #endif | |
24922684 CL |
779 | } |
780 | ||
e42f174e | 781 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 782 | { |
86609d33 | 783 | unsigned long pr_time = jiffies; |
24922684 CL |
784 | if (!(s->flags & SLAB_STORE_USER)) |
785 | return; | |
786 | ||
86609d33 CP |
787 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
788 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
789 | } |
790 | ||
fb012e27 | 791 | static void print_slab_info(const struct slab *slab) |
24922684 | 792 | { |
fb012e27 | 793 | struct folio *folio = (struct folio *)slab_folio(slab); |
24922684 | 794 | |
fb012e27 MWO |
795 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
796 | slab, slab->objects, slab->inuse, slab->freelist, | |
797 | folio_flags(folio, 0)); | |
24922684 CL |
798 | } |
799 | ||
800 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
801 | { | |
ecc42fbe | 802 | struct va_format vaf; |
24922684 | 803 | va_list args; |
24922684 CL |
804 | |
805 | va_start(args, fmt); | |
ecc42fbe FF |
806 | vaf.fmt = fmt; |
807 | vaf.va = &args; | |
f9f58285 | 808 | pr_err("=============================================================================\n"); |
ecc42fbe | 809 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 810 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 811 | va_end(args); |
81819f0f CL |
812 | } |
813 | ||
582d1212 | 814 | __printf(2, 3) |
24922684 CL |
815 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
816 | { | |
ecc42fbe | 817 | struct va_format vaf; |
24922684 | 818 | va_list args; |
24922684 | 819 | |
1f9f78b1 OG |
820 | if (slab_add_kunit_errors()) |
821 | return; | |
822 | ||
24922684 | 823 | va_start(args, fmt); |
ecc42fbe FF |
824 | vaf.fmt = fmt; |
825 | vaf.va = &args; | |
826 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 827 | va_end(args); |
24922684 CL |
828 | } |
829 | ||
bb192ed9 | 830 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f CL |
831 | { |
832 | unsigned int off; /* Offset of last byte */ | |
bb192ed9 | 833 | u8 *addr = slab_address(slab); |
24922684 CL |
834 | |
835 | print_tracking(s, p); | |
836 | ||
bb192ed9 | 837 | print_slab_info(slab); |
24922684 | 838 | |
96b94abc | 839 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 840 | p, p - addr, get_freepointer(s, p)); |
24922684 | 841 | |
d86bd1be | 842 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 843 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 844 | s->red_left_pad); |
d86bd1be | 845 | else if (p > addr + 16) |
aa2efd5e | 846 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 847 | |
8669dbab | 848 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 849 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 850 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 851 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 852 | s->inuse - s->object_size); |
81819f0f | 853 | |
cbfc35a4 | 854 | off = get_info_end(s); |
81819f0f | 855 | |
24922684 | 856 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 857 | off += 2 * sizeof(struct track); |
81819f0f | 858 | |
80a9201a AP |
859 | off += kasan_metadata_size(s); |
860 | ||
d86bd1be | 861 | if (off != size_from_object(s)) |
81819f0f | 862 | /* Beginning of the filler is the free pointer */ |
8669dbab | 863 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 864 | size_from_object(s) - off); |
24922684 CL |
865 | |
866 | dump_stack(); | |
81819f0f CL |
867 | } |
868 | ||
bb192ed9 | 869 | static void object_err(struct kmem_cache *s, struct slab *slab, |
81819f0f CL |
870 | u8 *object, char *reason) |
871 | { | |
1f9f78b1 OG |
872 | if (slab_add_kunit_errors()) |
873 | return; | |
874 | ||
3dc50637 | 875 | slab_bug(s, "%s", reason); |
bb192ed9 | 876 | print_trailer(s, slab, object); |
65ebdeef | 877 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
878 | } |
879 | ||
bb192ed9 | 880 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
ae16d059 VB |
881 | void **freelist, void *nextfree) |
882 | { | |
883 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
bb192ed9 VB |
884 | !check_valid_pointer(s, slab, nextfree) && freelist) { |
885 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
ae16d059 VB |
886 | *freelist = NULL; |
887 | slab_fix(s, "Isolate corrupted freechain"); | |
888 | return true; | |
889 | } | |
890 | ||
891 | return false; | |
892 | } | |
893 | ||
bb192ed9 | 894 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
d0e0ac97 | 895 | const char *fmt, ...) |
81819f0f CL |
896 | { |
897 | va_list args; | |
898 | char buf[100]; | |
899 | ||
1f9f78b1 OG |
900 | if (slab_add_kunit_errors()) |
901 | return; | |
902 | ||
24922684 CL |
903 | va_start(args, fmt); |
904 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 905 | va_end(args); |
3dc50637 | 906 | slab_bug(s, "%s", buf); |
bb192ed9 | 907 | print_slab_info(slab); |
81819f0f | 908 | dump_stack(); |
65ebdeef | 909 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
910 | } |
911 | ||
f7cb1933 | 912 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 913 | { |
aa1ef4d7 | 914 | u8 *p = kasan_reset_tag(object); |
81819f0f | 915 | |
d86bd1be JK |
916 | if (s->flags & SLAB_RED_ZONE) |
917 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
918 | ||
81819f0f | 919 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
920 | memset(p, POISON_FREE, s->object_size - 1); |
921 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
922 | } |
923 | ||
924 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 925 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
926 | } |
927 | ||
24922684 CL |
928 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
929 | void *from, void *to) | |
930 | { | |
582d1212 | 931 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
932 | memset(from, data, to - from); |
933 | } | |
934 | ||
bb192ed9 | 935 | static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, |
24922684 | 936 | u8 *object, char *what, |
06428780 | 937 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
938 | { |
939 | u8 *fault; | |
940 | u8 *end; | |
bb192ed9 | 941 | u8 *addr = slab_address(slab); |
24922684 | 942 | |
a79316c6 | 943 | metadata_access_enable(); |
aa1ef4d7 | 944 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 945 | metadata_access_disable(); |
24922684 CL |
946 | if (!fault) |
947 | return 1; | |
948 | ||
949 | end = start + bytes; | |
950 | while (end > fault && end[-1] == value) | |
951 | end--; | |
952 | ||
1f9f78b1 OG |
953 | if (slab_add_kunit_errors()) |
954 | goto skip_bug_print; | |
955 | ||
24922684 | 956 | slab_bug(s, "%s overwritten", what); |
96b94abc | 957 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
958 | fault, end - 1, fault - addr, |
959 | fault[0], value); | |
bb192ed9 | 960 | print_trailer(s, slab, object); |
65ebdeef | 961 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
24922684 | 962 | |
1f9f78b1 | 963 | skip_bug_print: |
24922684 CL |
964 | restore_bytes(s, what, value, fault, end); |
965 | return 0; | |
81819f0f CL |
966 | } |
967 | ||
81819f0f CL |
968 | /* |
969 | * Object layout: | |
970 | * | |
971 | * object address | |
972 | * Bytes of the object to be managed. | |
973 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 974 | * pointer is at the middle of the object. |
672bba3a | 975 | * |
81819f0f CL |
976 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
977 | * 0xa5 (POISON_END) | |
978 | * | |
3b0efdfa | 979 | * object + s->object_size |
81819f0f | 980 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 981 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 982 | * object_size == inuse. |
672bba3a | 983 | * |
81819f0f CL |
984 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
985 | * 0xcc (RED_ACTIVE) for objects in use. | |
986 | * | |
987 | * object + s->inuse | |
672bba3a CL |
988 | * Meta data starts here. |
989 | * | |
81819f0f CL |
990 | * A. Free pointer (if we cannot overwrite object on free) |
991 | * B. Tracking data for SLAB_STORE_USER | |
dc84207d | 992 | * C. Padding to reach required alignment boundary or at minimum |
6446faa2 | 993 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
994 | * before the word boundary. |
995 | * | |
996 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
997 | * |
998 | * object + s->size | |
672bba3a | 999 | * Nothing is used beyond s->size. |
81819f0f | 1000 | * |
3b0efdfa | 1001 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 1002 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
1003 | * may be used with merged slabcaches. |
1004 | */ | |
1005 | ||
bb192ed9 | 1006 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f | 1007 | { |
cbfc35a4 | 1008 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f CL |
1009 | |
1010 | if (s->flags & SLAB_STORE_USER) | |
1011 | /* We also have user information there */ | |
1012 | off += 2 * sizeof(struct track); | |
1013 | ||
80a9201a AP |
1014 | off += kasan_metadata_size(s); |
1015 | ||
d86bd1be | 1016 | if (size_from_object(s) == off) |
81819f0f CL |
1017 | return 1; |
1018 | ||
bb192ed9 | 1019 | return check_bytes_and_report(s, slab, p, "Object padding", |
d86bd1be | 1020 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
1021 | } |
1022 | ||
39b26464 | 1023 | /* Check the pad bytes at the end of a slab page */ |
bb192ed9 | 1024 | static int slab_pad_check(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1025 | { |
24922684 CL |
1026 | u8 *start; |
1027 | u8 *fault; | |
1028 | u8 *end; | |
5d682681 | 1029 | u8 *pad; |
24922684 CL |
1030 | int length; |
1031 | int remainder; | |
81819f0f CL |
1032 | |
1033 | if (!(s->flags & SLAB_POISON)) | |
1034 | return 1; | |
1035 | ||
bb192ed9 VB |
1036 | start = slab_address(slab); |
1037 | length = slab_size(slab); | |
39b26464 CL |
1038 | end = start + length; |
1039 | remainder = length % s->size; | |
81819f0f CL |
1040 | if (!remainder) |
1041 | return 1; | |
1042 | ||
5d682681 | 1043 | pad = end - remainder; |
a79316c6 | 1044 | metadata_access_enable(); |
aa1ef4d7 | 1045 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1046 | metadata_access_disable(); |
24922684 CL |
1047 | if (!fault) |
1048 | return 1; | |
1049 | while (end > fault && end[-1] == POISON_INUSE) | |
1050 | end--; | |
1051 | ||
bb192ed9 | 1052 | slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
e1b70dd1 | 1053 | fault, end - 1, fault - start); |
5d682681 | 1054 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1055 | |
5d682681 | 1056 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 1057 | return 0; |
81819f0f CL |
1058 | } |
1059 | ||
bb192ed9 | 1060 | static int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1061 | void *object, u8 val) |
81819f0f CL |
1062 | { |
1063 | u8 *p = object; | |
3b0efdfa | 1064 | u8 *endobject = object + s->object_size; |
81819f0f CL |
1065 | |
1066 | if (s->flags & SLAB_RED_ZONE) { | |
bb192ed9 | 1067 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
d86bd1be JK |
1068 | object - s->red_left_pad, val, s->red_left_pad)) |
1069 | return 0; | |
1070 | ||
bb192ed9 | 1071 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
3b0efdfa | 1072 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 1073 | return 0; |
81819f0f | 1074 | } else { |
3b0efdfa | 1075 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
bb192ed9 | 1076 | check_bytes_and_report(s, slab, p, "Alignment padding", |
d0e0ac97 CG |
1077 | endobject, POISON_INUSE, |
1078 | s->inuse - s->object_size); | |
3adbefee | 1079 | } |
81819f0f CL |
1080 | } |
1081 | ||
1082 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 1083 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
bb192ed9 | 1084 | (!check_bytes_and_report(s, slab, p, "Poison", p, |
3b0efdfa | 1085 | POISON_FREE, s->object_size - 1) || |
bb192ed9 | 1086 | !check_bytes_and_report(s, slab, p, "End Poison", |
3b0efdfa | 1087 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 1088 | return 0; |
81819f0f CL |
1089 | /* |
1090 | * check_pad_bytes cleans up on its own. | |
1091 | */ | |
bb192ed9 | 1092 | check_pad_bytes(s, slab, p); |
81819f0f CL |
1093 | } |
1094 | ||
cbfc35a4 | 1095 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
1096 | /* |
1097 | * Object and freepointer overlap. Cannot check | |
1098 | * freepointer while object is allocated. | |
1099 | */ | |
1100 | return 1; | |
1101 | ||
1102 | /* Check free pointer validity */ | |
bb192ed9 VB |
1103 | if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { |
1104 | object_err(s, slab, p, "Freepointer corrupt"); | |
81819f0f | 1105 | /* |
9f6c708e | 1106 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1107 | * of the free objects in this slab. May cause |
672bba3a | 1108 | * another error because the object count is now wrong. |
81819f0f | 1109 | */ |
a973e9dd | 1110 | set_freepointer(s, p, NULL); |
81819f0f CL |
1111 | return 0; |
1112 | } | |
1113 | return 1; | |
1114 | } | |
1115 | ||
bb192ed9 | 1116 | static int check_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1117 | { |
39b26464 CL |
1118 | int maxobj; |
1119 | ||
bb192ed9 VB |
1120 | if (!folio_test_slab(slab_folio(slab))) { |
1121 | slab_err(s, slab, "Not a valid slab page"); | |
81819f0f CL |
1122 | return 0; |
1123 | } | |
39b26464 | 1124 | |
bb192ed9 VB |
1125 | maxobj = order_objects(slab_order(slab), s->size); |
1126 | if (slab->objects > maxobj) { | |
1127 | slab_err(s, slab, "objects %u > max %u", | |
1128 | slab->objects, maxobj); | |
39b26464 CL |
1129 | return 0; |
1130 | } | |
bb192ed9 VB |
1131 | if (slab->inuse > slab->objects) { |
1132 | slab_err(s, slab, "inuse %u > max %u", | |
1133 | slab->inuse, slab->objects); | |
81819f0f CL |
1134 | return 0; |
1135 | } | |
1136 | /* Slab_pad_check fixes things up after itself */ | |
bb192ed9 | 1137 | slab_pad_check(s, slab); |
81819f0f CL |
1138 | return 1; |
1139 | } | |
1140 | ||
1141 | /* | |
c2092c12 | 1142 | * Determine if a certain object in a slab is on the freelist. Must hold the |
672bba3a | 1143 | * slab lock to guarantee that the chains are in a consistent state. |
81819f0f | 1144 | */ |
bb192ed9 | 1145 | static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
81819f0f CL |
1146 | { |
1147 | int nr = 0; | |
881db7fb | 1148 | void *fp; |
81819f0f | 1149 | void *object = NULL; |
f6edde9c | 1150 | int max_objects; |
81819f0f | 1151 | |
bb192ed9 VB |
1152 | fp = slab->freelist; |
1153 | while (fp && nr <= slab->objects) { | |
81819f0f CL |
1154 | if (fp == search) |
1155 | return 1; | |
bb192ed9 | 1156 | if (!check_valid_pointer(s, slab, fp)) { |
81819f0f | 1157 | if (object) { |
bb192ed9 | 1158 | object_err(s, slab, object, |
81819f0f | 1159 | "Freechain corrupt"); |
a973e9dd | 1160 | set_freepointer(s, object, NULL); |
81819f0f | 1161 | } else { |
bb192ed9 VB |
1162 | slab_err(s, slab, "Freepointer corrupt"); |
1163 | slab->freelist = NULL; | |
1164 | slab->inuse = slab->objects; | |
24922684 | 1165 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1166 | return 0; |
1167 | } | |
1168 | break; | |
1169 | } | |
1170 | object = fp; | |
1171 | fp = get_freepointer(s, object); | |
1172 | nr++; | |
1173 | } | |
1174 | ||
bb192ed9 | 1175 | max_objects = order_objects(slab_order(slab), s->size); |
210b5c06 CG |
1176 | if (max_objects > MAX_OBJS_PER_PAGE) |
1177 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be | 1178 | |
bb192ed9 VB |
1179 | if (slab->objects != max_objects) { |
1180 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1181 | slab->objects, max_objects); | |
1182 | slab->objects = max_objects; | |
582d1212 | 1183 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1184 | } |
bb192ed9 VB |
1185 | if (slab->inuse != slab->objects - nr) { |
1186 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1187 | slab->inuse, slab->objects - nr); | |
1188 | slab->inuse = slab->objects - nr; | |
582d1212 | 1189 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1190 | } |
1191 | return search == NULL; | |
1192 | } | |
1193 | ||
bb192ed9 | 1194 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
0121c619 | 1195 | int alloc) |
3ec09742 CL |
1196 | { |
1197 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1198 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1199 | s->name, |
1200 | alloc ? "alloc" : "free", | |
bb192ed9 VB |
1201 | object, slab->inuse, |
1202 | slab->freelist); | |
3ec09742 CL |
1203 | |
1204 | if (!alloc) | |
aa2efd5e | 1205 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1206 | s->object_size); |
3ec09742 CL |
1207 | |
1208 | dump_stack(); | |
1209 | } | |
1210 | } | |
1211 | ||
643b1138 | 1212 | /* |
672bba3a | 1213 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1214 | */ |
5cc6eee8 | 1215 | static void add_full(struct kmem_cache *s, |
bb192ed9 | 1216 | struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1217 | { |
5cc6eee8 CL |
1218 | if (!(s->flags & SLAB_STORE_USER)) |
1219 | return; | |
1220 | ||
255d0884 | 1221 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1222 | list_add(&slab->slab_list, &n->full); |
643b1138 CL |
1223 | } |
1224 | ||
bb192ed9 | 1225 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1226 | { |
643b1138 CL |
1227 | if (!(s->flags & SLAB_STORE_USER)) |
1228 | return; | |
1229 | ||
255d0884 | 1230 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1231 | list_del(&slab->slab_list); |
643b1138 CL |
1232 | } |
1233 | ||
0f389ec6 CL |
1234 | /* Tracking of the number of slabs for debugging purposes */ |
1235 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1236 | { | |
1237 | struct kmem_cache_node *n = get_node(s, node); | |
1238 | ||
1239 | return atomic_long_read(&n->nr_slabs); | |
1240 | } | |
1241 | ||
26c02cf0 AB |
1242 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1243 | { | |
1244 | return atomic_long_read(&n->nr_slabs); | |
1245 | } | |
1246 | ||
205ab99d | 1247 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1248 | { |
1249 | struct kmem_cache_node *n = get_node(s, node); | |
1250 | ||
1251 | /* | |
1252 | * May be called early in order to allocate a slab for the | |
1253 | * kmem_cache_node structure. Solve the chicken-egg | |
1254 | * dilemma by deferring the increment of the count during | |
1255 | * bootstrap (see early_kmem_cache_node_alloc). | |
1256 | */ | |
338b2642 | 1257 | if (likely(n)) { |
0f389ec6 | 1258 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1259 | atomic_long_add(objects, &n->total_objects); |
1260 | } | |
0f389ec6 | 1261 | } |
205ab99d | 1262 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1263 | { |
1264 | struct kmem_cache_node *n = get_node(s, node); | |
1265 | ||
1266 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1267 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1268 | } |
1269 | ||
1270 | /* Object debug checks for alloc/free paths */ | |
bb192ed9 | 1271 | static void setup_object_debug(struct kmem_cache *s, struct slab *slab, |
3ec09742 CL |
1272 | void *object) |
1273 | { | |
8fc8d666 | 1274 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1275 | return; |
1276 | ||
f7cb1933 | 1277 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1278 | init_tracking(s, object); |
1279 | } | |
1280 | ||
a50b854e | 1281 | static |
bb192ed9 | 1282 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
a7101224 | 1283 | { |
8fc8d666 | 1284 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1285 | return; |
1286 | ||
1287 | metadata_access_enable(); | |
bb192ed9 | 1288 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
a7101224 AK |
1289 | metadata_access_disable(); |
1290 | } | |
1291 | ||
becfda68 | 1292 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1293 | struct slab *slab, void *object) |
81819f0f | 1294 | { |
bb192ed9 | 1295 | if (!check_slab(s, slab)) |
becfda68 | 1296 | return 0; |
81819f0f | 1297 | |
bb192ed9 VB |
1298 | if (!check_valid_pointer(s, slab, object)) { |
1299 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
becfda68 | 1300 | return 0; |
81819f0f CL |
1301 | } |
1302 | ||
bb192ed9 | 1303 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1304 | return 0; |
1305 | ||
1306 | return 1; | |
1307 | } | |
1308 | ||
1309 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
bb192ed9 | 1310 | struct slab *slab, |
becfda68 LA |
1311 | void *object, unsigned long addr) |
1312 | { | |
1313 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1314 | if (!alloc_consistency_checks(s, slab, object)) |
becfda68 LA |
1315 | goto bad; |
1316 | } | |
81819f0f | 1317 | |
3ec09742 CL |
1318 | /* Success perform special debug activities for allocs */ |
1319 | if (s->flags & SLAB_STORE_USER) | |
1320 | set_track(s, object, TRACK_ALLOC, addr); | |
bb192ed9 | 1321 | trace(s, slab, object, 1); |
f7cb1933 | 1322 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1323 | return 1; |
3ec09742 | 1324 | |
81819f0f | 1325 | bad: |
bb192ed9 | 1326 | if (folio_test_slab(slab_folio(slab))) { |
81819f0f CL |
1327 | /* |
1328 | * If this is a slab page then lets do the best we can | |
1329 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1330 | * as used avoids touching the remaining objects. |
81819f0f | 1331 | */ |
24922684 | 1332 | slab_fix(s, "Marking all objects used"); |
bb192ed9 VB |
1333 | slab->inuse = slab->objects; |
1334 | slab->freelist = NULL; | |
81819f0f CL |
1335 | } |
1336 | return 0; | |
1337 | } | |
1338 | ||
becfda68 | 1339 | static inline int free_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1340 | struct slab *slab, void *object, unsigned long addr) |
81819f0f | 1341 | { |
bb192ed9 VB |
1342 | if (!check_valid_pointer(s, slab, object)) { |
1343 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
becfda68 | 1344 | return 0; |
81819f0f CL |
1345 | } |
1346 | ||
bb192ed9 VB |
1347 | if (on_freelist(s, slab, object)) { |
1348 | object_err(s, slab, object, "Object already free"); | |
becfda68 | 1349 | return 0; |
81819f0f CL |
1350 | } |
1351 | ||
bb192ed9 | 1352 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
becfda68 | 1353 | return 0; |
81819f0f | 1354 | |
bb192ed9 VB |
1355 | if (unlikely(s != slab->slab_cache)) { |
1356 | if (!folio_test_slab(slab_folio(slab))) { | |
1357 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
756a025f | 1358 | object); |
bb192ed9 | 1359 | } else if (!slab->slab_cache) { |
f9f58285 FF |
1360 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1361 | object); | |
70d71228 | 1362 | dump_stack(); |
06428780 | 1363 | } else |
bb192ed9 | 1364 | object_err(s, slab, object, |
24922684 | 1365 | "page slab pointer corrupt."); |
becfda68 LA |
1366 | return 0; |
1367 | } | |
1368 | return 1; | |
1369 | } | |
1370 | ||
1371 | /* Supports checking bulk free of a constructed freelist */ | |
1372 | static noinline int free_debug_processing( | |
bb192ed9 | 1373 | struct kmem_cache *s, struct slab *slab, |
becfda68 LA |
1374 | void *head, void *tail, int bulk_cnt, |
1375 | unsigned long addr) | |
1376 | { | |
bb192ed9 | 1377 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
becfda68 LA |
1378 | void *object = head; |
1379 | int cnt = 0; | |
a2b4ae8b | 1380 | unsigned long flags, flags2; |
becfda68 LA |
1381 | int ret = 0; |
1382 | ||
1383 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 | 1384 | slab_lock(slab, &flags2); |
becfda68 LA |
1385 | |
1386 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1387 | if (!check_slab(s, slab)) |
becfda68 LA |
1388 | goto out; |
1389 | } | |
1390 | ||
1391 | next_object: | |
1392 | cnt++; | |
1393 | ||
1394 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1395 | if (!free_consistency_checks(s, slab, object, addr)) |
becfda68 | 1396 | goto out; |
81819f0f | 1397 | } |
3ec09742 | 1398 | |
3ec09742 CL |
1399 | if (s->flags & SLAB_STORE_USER) |
1400 | set_track(s, object, TRACK_FREE, addr); | |
bb192ed9 | 1401 | trace(s, slab, object, 0); |
81084651 | 1402 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1403 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1404 | |
1405 | /* Reached end of constructed freelist yet? */ | |
1406 | if (object != tail) { | |
1407 | object = get_freepointer(s, object); | |
1408 | goto next_object; | |
1409 | } | |
804aa132 LA |
1410 | ret = 1; |
1411 | ||
5c2e4bbb | 1412 | out: |
81084651 | 1413 | if (cnt != bulk_cnt) |
bb192ed9 | 1414 | slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", |
81084651 JDB |
1415 | bulk_cnt, cnt); |
1416 | ||
bb192ed9 | 1417 | slab_unlock(slab, &flags2); |
282acb43 | 1418 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1419 | if (!ret) |
1420 | slab_fix(s, "Object at 0x%p not freed", object); | |
1421 | return ret; | |
81819f0f CL |
1422 | } |
1423 | ||
e17f1dfb VB |
1424 | /* |
1425 | * Parse a block of slub_debug options. Blocks are delimited by ';' | |
1426 | * | |
1427 | * @str: start of block | |
1428 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1429 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1430 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1431 | * | |
1432 | * returns the start of next block if there's any, or NULL | |
1433 | */ | |
1434 | static char * | |
1435 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1436 | { |
e17f1dfb | 1437 | bool higher_order_disable = false; |
f0630fff | 1438 | |
e17f1dfb VB |
1439 | /* Skip any completely empty blocks */ |
1440 | while (*str && *str == ';') | |
1441 | str++; | |
1442 | ||
1443 | if (*str == ',') { | |
f0630fff CL |
1444 | /* |
1445 | * No options but restriction on slabs. This means full | |
1446 | * debugging for slabs matching a pattern. | |
1447 | */ | |
e17f1dfb | 1448 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1449 | goto check_slabs; |
e17f1dfb VB |
1450 | } |
1451 | *flags = 0; | |
f0630fff | 1452 | |
e17f1dfb VB |
1453 | /* Determine which debug features should be switched on */ |
1454 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1455 | switch (tolower(*str)) { |
e17f1dfb VB |
1456 | case '-': |
1457 | *flags = 0; | |
1458 | break; | |
f0630fff | 1459 | case 'f': |
e17f1dfb | 1460 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1461 | break; |
1462 | case 'z': | |
e17f1dfb | 1463 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1464 | break; |
1465 | case 'p': | |
e17f1dfb | 1466 | *flags |= SLAB_POISON; |
f0630fff CL |
1467 | break; |
1468 | case 'u': | |
e17f1dfb | 1469 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1470 | break; |
1471 | case 't': | |
e17f1dfb | 1472 | *flags |= SLAB_TRACE; |
f0630fff | 1473 | break; |
4c13dd3b | 1474 | case 'a': |
e17f1dfb | 1475 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1476 | break; |
08303a73 CA |
1477 | case 'o': |
1478 | /* | |
1479 | * Avoid enabling debugging on caches if its minimum | |
1480 | * order would increase as a result. | |
1481 | */ | |
e17f1dfb | 1482 | higher_order_disable = true; |
08303a73 | 1483 | break; |
f0630fff | 1484 | default: |
e17f1dfb VB |
1485 | if (init) |
1486 | pr_err("slub_debug option '%c' unknown. skipped\n", *str); | |
f0630fff | 1487 | } |
41ecc55b | 1488 | } |
f0630fff | 1489 | check_slabs: |
41ecc55b | 1490 | if (*str == ',') |
e17f1dfb VB |
1491 | *slabs = ++str; |
1492 | else | |
1493 | *slabs = NULL; | |
1494 | ||
1495 | /* Skip over the slab list */ | |
1496 | while (*str && *str != ';') | |
1497 | str++; | |
1498 | ||
1499 | /* Skip any completely empty blocks */ | |
1500 | while (*str && *str == ';') | |
1501 | str++; | |
1502 | ||
1503 | if (init && higher_order_disable) | |
1504 | disable_higher_order_debug = 1; | |
1505 | ||
1506 | if (*str) | |
1507 | return str; | |
1508 | else | |
1509 | return NULL; | |
1510 | } | |
1511 | ||
1512 | static int __init setup_slub_debug(char *str) | |
1513 | { | |
1514 | slab_flags_t flags; | |
a7f1d485 | 1515 | slab_flags_t global_flags; |
e17f1dfb VB |
1516 | char *saved_str; |
1517 | char *slab_list; | |
1518 | bool global_slub_debug_changed = false; | |
1519 | bool slab_list_specified = false; | |
1520 | ||
a7f1d485 | 1521 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1522 | if (*str++ != '=' || !*str) |
1523 | /* | |
1524 | * No options specified. Switch on full debugging. | |
1525 | */ | |
1526 | goto out; | |
1527 | ||
1528 | saved_str = str; | |
1529 | while (str) { | |
1530 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1531 | ||
1532 | if (!slab_list) { | |
a7f1d485 | 1533 | global_flags = flags; |
e17f1dfb VB |
1534 | global_slub_debug_changed = true; |
1535 | } else { | |
1536 | slab_list_specified = true; | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 VB |
1542 | * slabs means debugging is only changed for those slabs, so the global |
1543 | * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending | |
1544 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as | |
e17f1dfb VB |
1545 | * long as there is no option specifying flags without a slab list. |
1546 | */ | |
1547 | if (slab_list_specified) { | |
1548 | if (!global_slub_debug_changed) | |
a7f1d485 | 1549 | global_flags = slub_debug; |
e17f1dfb VB |
1550 | slub_debug_string = saved_str; |
1551 | } | |
f0630fff | 1552 | out: |
a7f1d485 | 1553 | slub_debug = global_flags; |
ca0cab65 VB |
1554 | if (slub_debug != 0 || slub_debug_string) |
1555 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1556 | else |
1557 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1558 | if ((static_branch_unlikely(&init_on_alloc) || |
1559 | static_branch_unlikely(&init_on_free)) && | |
1560 | (slub_debug & SLAB_POISON)) | |
1561 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1562 | return 1; |
1563 | } | |
1564 | ||
1565 | __setup("slub_debug", setup_slub_debug); | |
1566 | ||
c5fd3ca0 AT |
1567 | /* |
1568 | * kmem_cache_flags - apply debugging options to the cache | |
1569 | * @object_size: the size of an object without meta data | |
1570 | * @flags: flags to set | |
1571 | * @name: name of the cache | |
c5fd3ca0 AT |
1572 | * |
1573 | * Debug option(s) are applied to @flags. In addition to the debug | |
1574 | * option(s), if a slab name (or multiple) is specified i.e. | |
1575 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1576 | * then only the select slabs will receive the debug option(s). | |
1577 | */ | |
0293d1fd | 1578 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1579 | slab_flags_t flags, const char *name) |
41ecc55b | 1580 | { |
c5fd3ca0 AT |
1581 | char *iter; |
1582 | size_t len; | |
e17f1dfb VB |
1583 | char *next_block; |
1584 | slab_flags_t block_flags; | |
ca220593 JB |
1585 | slab_flags_t slub_debug_local = slub_debug; |
1586 | ||
1587 | /* | |
1588 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1589 | * don't store user (stack trace) information by default, | |
1590 | * but let the user enable it via the command line below. | |
1591 | */ | |
1592 | if (flags & SLAB_NOLEAKTRACE) | |
1593 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1594 | |
c5fd3ca0 | 1595 | len = strlen(name); |
e17f1dfb VB |
1596 | next_block = slub_debug_string; |
1597 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1598 | while (next_block) { | |
1599 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1600 | if (!iter) | |
1601 | continue; | |
1602 | /* Found a block that has a slab list, search it */ | |
1603 | while (*iter) { | |
1604 | char *end, *glob; | |
1605 | size_t cmplen; | |
1606 | ||
1607 | end = strchrnul(iter, ','); | |
1608 | if (next_block && next_block < end) | |
1609 | end = next_block - 1; | |
1610 | ||
1611 | glob = strnchr(iter, end - iter, '*'); | |
1612 | if (glob) | |
1613 | cmplen = glob - iter; | |
1614 | else | |
1615 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1616 | |
e17f1dfb VB |
1617 | if (!strncmp(name, iter, cmplen)) { |
1618 | flags |= block_flags; | |
1619 | return flags; | |
1620 | } | |
c5fd3ca0 | 1621 | |
e17f1dfb VB |
1622 | if (!*end || *end == ';') |
1623 | break; | |
1624 | iter = end + 1; | |
c5fd3ca0 | 1625 | } |
c5fd3ca0 | 1626 | } |
ba0268a8 | 1627 | |
ca220593 | 1628 | return flags | slub_debug_local; |
41ecc55b | 1629 | } |
b4a64718 | 1630 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 | 1631 | static inline void setup_object_debug(struct kmem_cache *s, |
bb192ed9 | 1632 | struct slab *slab, void *object) {} |
a50b854e | 1633 | static inline |
bb192ed9 | 1634 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
41ecc55b | 1635 | |
3ec09742 | 1636 | static inline int alloc_debug_processing(struct kmem_cache *s, |
bb192ed9 | 1637 | struct slab *slab, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1638 | |
282acb43 | 1639 | static inline int free_debug_processing( |
bb192ed9 | 1640 | struct kmem_cache *s, struct slab *slab, |
81084651 | 1641 | void *head, void *tail, int bulk_cnt, |
282acb43 | 1642 | unsigned long addr) { return 0; } |
41ecc55b | 1643 | |
bb192ed9 | 1644 | static inline int slab_pad_check(struct kmem_cache *s, struct slab *slab) |
41ecc55b | 1645 | { return 1; } |
bb192ed9 | 1646 | static inline int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1647 | void *object, u8 val) { return 1; } |
5cc6eee8 | 1648 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1649 | struct slab *slab) {} |
c65c1877 | 1650 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1651 | struct slab *slab) {} |
0293d1fd | 1652 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1653 | slab_flags_t flags, const char *name) |
ba0268a8 CL |
1654 | { |
1655 | return flags; | |
1656 | } | |
41ecc55b | 1657 | #define slub_debug 0 |
0f389ec6 | 1658 | |
fdaa45e9 IM |
1659 | #define disable_higher_order_debug 0 |
1660 | ||
0f389ec6 CL |
1661 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1662 | { return 0; } | |
26c02cf0 AB |
1663 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1664 | { return 0; } | |
205ab99d CL |
1665 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1666 | int objects) {} | |
1667 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1668 | int objects) {} | |
7d550c56 | 1669 | |
bb192ed9 | 1670 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
dc07a728 | 1671 | void **freelist, void *nextfree) |
52f23478 DZ |
1672 | { |
1673 | return false; | |
1674 | } | |
02e72cc6 AR |
1675 | #endif /* CONFIG_SLUB_DEBUG */ |
1676 | ||
1677 | /* | |
1678 | * Hooks for other subsystems that check memory allocations. In a typical | |
1679 | * production configuration these hooks all should produce no code at all. | |
1680 | */ | |
0116523c | 1681 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1682 | { |
53128245 | 1683 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1684 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1685 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1686 | return ptr; |
d56791b3 RB |
1687 | } |
1688 | ||
ee3ce779 | 1689 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1690 | { |
1691 | kmemleak_free(x); | |
027b37b5 | 1692 | kasan_kfree_large(x); |
d56791b3 RB |
1693 | } |
1694 | ||
d57a964e AK |
1695 | static __always_inline bool slab_free_hook(struct kmem_cache *s, |
1696 | void *x, bool init) | |
d56791b3 RB |
1697 | { |
1698 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1699 | |
84048039 | 1700 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 1701 | |
02e72cc6 AR |
1702 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1703 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1704 | |
cfbe1636 ME |
1705 | /* Use KCSAN to help debug racy use-after-free. */ |
1706 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
1707 | __kcsan_check_access(x, s->object_size, | |
1708 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
1709 | ||
d57a964e AK |
1710 | /* |
1711 | * As memory initialization might be integrated into KASAN, | |
1712 | * kasan_slab_free and initialization memset's must be | |
1713 | * kept together to avoid discrepancies in behavior. | |
1714 | * | |
1715 | * The initialization memset's clear the object and the metadata, | |
1716 | * but don't touch the SLAB redzone. | |
1717 | */ | |
1718 | if (init) { | |
1719 | int rsize; | |
1720 | ||
1721 | if (!kasan_has_integrated_init()) | |
1722 | memset(kasan_reset_tag(x), 0, s->object_size); | |
1723 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
1724 | memset((char *)kasan_reset_tag(x) + s->inuse, 0, | |
1725 | s->size - s->inuse - rsize); | |
1726 | } | |
1727 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
1728 | return kasan_slab_free(s, x, init); | |
02e72cc6 | 1729 | } |
205ab99d | 1730 | |
c3895391 | 1731 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
899447f6 ML |
1732 | void **head, void **tail, |
1733 | int *cnt) | |
81084651 | 1734 | { |
6471384a AP |
1735 | |
1736 | void *object; | |
1737 | void *next = *head; | |
1738 | void *old_tail = *tail ? *tail : *head; | |
6471384a | 1739 | |
b89fb5ef | 1740 | if (is_kfence_address(next)) { |
d57a964e | 1741 | slab_free_hook(s, next, false); |
b89fb5ef AP |
1742 | return true; |
1743 | } | |
1744 | ||
aea4df4c LA |
1745 | /* Head and tail of the reconstructed freelist */ |
1746 | *head = NULL; | |
1747 | *tail = NULL; | |
1b7e816f | 1748 | |
aea4df4c LA |
1749 | do { |
1750 | object = next; | |
1751 | next = get_freepointer(s, object); | |
1752 | ||
c3895391 | 1753 | /* If object's reuse doesn't have to be delayed */ |
d57a964e | 1754 | if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { |
c3895391 AK |
1755 | /* Move object to the new freelist */ |
1756 | set_freepointer(s, object, *head); | |
1757 | *head = object; | |
1758 | if (!*tail) | |
1759 | *tail = object; | |
899447f6 ML |
1760 | } else { |
1761 | /* | |
1762 | * Adjust the reconstructed freelist depth | |
1763 | * accordingly if object's reuse is delayed. | |
1764 | */ | |
1765 | --(*cnt); | |
c3895391 AK |
1766 | } |
1767 | } while (object != old_tail); | |
1768 | ||
1769 | if (*head == *tail) | |
1770 | *tail = NULL; | |
1771 | ||
1772 | return *head != NULL; | |
81084651 JDB |
1773 | } |
1774 | ||
bb192ed9 | 1775 | static void *setup_object(struct kmem_cache *s, struct slab *slab, |
588f8ba9 TG |
1776 | void *object) |
1777 | { | |
bb192ed9 | 1778 | setup_object_debug(s, slab, object); |
4d176711 | 1779 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1780 | if (unlikely(s->ctor)) { |
1781 | kasan_unpoison_object_data(s, object); | |
1782 | s->ctor(object); | |
1783 | kasan_poison_object_data(s, object); | |
1784 | } | |
4d176711 | 1785 | return object; |
588f8ba9 TG |
1786 | } |
1787 | ||
81819f0f CL |
1788 | /* |
1789 | * Slab allocation and freeing | |
1790 | */ | |
45387b8c | 1791 | static inline struct slab *alloc_slab_page(struct kmem_cache *s, |
5dfb4175 | 1792 | gfp_t flags, int node, struct kmem_cache_order_objects oo) |
65c3376a | 1793 | { |
45387b8c VB |
1794 | struct folio *folio; |
1795 | struct slab *slab; | |
19af27af | 1796 | unsigned int order = oo_order(oo); |
65c3376a | 1797 | |
2154a336 | 1798 | if (node == NUMA_NO_NODE) |
45387b8c | 1799 | folio = (struct folio *)alloc_pages(flags, order); |
65c3376a | 1800 | else |
45387b8c | 1801 | folio = (struct folio *)__alloc_pages_node(node, flags, order); |
5dfb4175 | 1802 | |
45387b8c VB |
1803 | if (!folio) |
1804 | return NULL; | |
1805 | ||
1806 | slab = folio_slab(folio); | |
1807 | __folio_set_slab(folio); | |
1808 | if (page_is_pfmemalloc(folio_page(folio, 0))) | |
1809 | slab_set_pfmemalloc(slab); | |
1810 | ||
1811 | return slab; | |
65c3376a CL |
1812 | } |
1813 | ||
210e7a43 TG |
1814 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1815 | /* Pre-initialize the random sequence cache */ | |
1816 | static int init_cache_random_seq(struct kmem_cache *s) | |
1817 | { | |
19af27af | 1818 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1819 | int err; |
210e7a43 | 1820 | |
a810007a SR |
1821 | /* Bailout if already initialised */ |
1822 | if (s->random_seq) | |
1823 | return 0; | |
1824 | ||
210e7a43 TG |
1825 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1826 | if (err) { | |
1827 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1828 | s->name); | |
1829 | return err; | |
1830 | } | |
1831 | ||
1832 | /* Transform to an offset on the set of pages */ | |
1833 | if (s->random_seq) { | |
19af27af AD |
1834 | unsigned int i; |
1835 | ||
210e7a43 TG |
1836 | for (i = 0; i < count; i++) |
1837 | s->random_seq[i] *= s->size; | |
1838 | } | |
1839 | return 0; | |
1840 | } | |
1841 | ||
1842 | /* Initialize each random sequence freelist per cache */ | |
1843 | static void __init init_freelist_randomization(void) | |
1844 | { | |
1845 | struct kmem_cache *s; | |
1846 | ||
1847 | mutex_lock(&slab_mutex); | |
1848 | ||
1849 | list_for_each_entry(s, &slab_caches, list) | |
1850 | init_cache_random_seq(s); | |
1851 | ||
1852 | mutex_unlock(&slab_mutex); | |
1853 | } | |
1854 | ||
1855 | /* Get the next entry on the pre-computed freelist randomized */ | |
bb192ed9 | 1856 | static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, |
210e7a43 TG |
1857 | unsigned long *pos, void *start, |
1858 | unsigned long page_limit, | |
1859 | unsigned long freelist_count) | |
1860 | { | |
1861 | unsigned int idx; | |
1862 | ||
1863 | /* | |
1864 | * If the target page allocation failed, the number of objects on the | |
1865 | * page might be smaller than the usual size defined by the cache. | |
1866 | */ | |
1867 | do { | |
1868 | idx = s->random_seq[*pos]; | |
1869 | *pos += 1; | |
1870 | if (*pos >= freelist_count) | |
1871 | *pos = 0; | |
1872 | } while (unlikely(idx >= page_limit)); | |
1873 | ||
1874 | return (char *)start + idx; | |
1875 | } | |
1876 | ||
1877 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
bb192ed9 | 1878 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1879 | { |
1880 | void *start; | |
1881 | void *cur; | |
1882 | void *next; | |
1883 | unsigned long idx, pos, page_limit, freelist_count; | |
1884 | ||
bb192ed9 | 1885 | if (slab->objects < 2 || !s->random_seq) |
210e7a43 TG |
1886 | return false; |
1887 | ||
1888 | freelist_count = oo_objects(s->oo); | |
1889 | pos = get_random_int() % freelist_count; | |
1890 | ||
bb192ed9 VB |
1891 | page_limit = slab->objects * s->size; |
1892 | start = fixup_red_left(s, slab_address(slab)); | |
210e7a43 TG |
1893 | |
1894 | /* First entry is used as the base of the freelist */ | |
bb192ed9 | 1895 | cur = next_freelist_entry(s, slab, &pos, start, page_limit, |
210e7a43 | 1896 | freelist_count); |
bb192ed9 VB |
1897 | cur = setup_object(s, slab, cur); |
1898 | slab->freelist = cur; | |
210e7a43 | 1899 | |
bb192ed9 VB |
1900 | for (idx = 1; idx < slab->objects; idx++) { |
1901 | next = next_freelist_entry(s, slab, &pos, start, page_limit, | |
210e7a43 | 1902 | freelist_count); |
bb192ed9 | 1903 | next = setup_object(s, slab, next); |
210e7a43 TG |
1904 | set_freepointer(s, cur, next); |
1905 | cur = next; | |
1906 | } | |
210e7a43 TG |
1907 | set_freepointer(s, cur, NULL); |
1908 | ||
1909 | return true; | |
1910 | } | |
1911 | #else | |
1912 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1913 | { | |
1914 | return 0; | |
1915 | } | |
1916 | static inline void init_freelist_randomization(void) { } | |
bb192ed9 | 1917 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1918 | { |
1919 | return false; | |
1920 | } | |
1921 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1922 | ||
bb192ed9 | 1923 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
81819f0f | 1924 | { |
bb192ed9 | 1925 | struct slab *slab; |
834f3d11 | 1926 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1927 | gfp_t alloc_gfp; |
4d176711 | 1928 | void *start, *p, *next; |
a50b854e | 1929 | int idx; |
210e7a43 | 1930 | bool shuffle; |
81819f0f | 1931 | |
7e0528da CL |
1932 | flags &= gfp_allowed_mask; |
1933 | ||
b7a49f0d | 1934 | flags |= s->allocflags; |
e12ba74d | 1935 | |
ba52270d PE |
1936 | /* |
1937 | * Let the initial higher-order allocation fail under memory pressure | |
1938 | * so we fall-back to the minimum order allocation. | |
1939 | */ | |
1940 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1941 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1942 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1943 | |
bb192ed9 VB |
1944 | slab = alloc_slab_page(s, alloc_gfp, node, oo); |
1945 | if (unlikely(!slab)) { | |
65c3376a | 1946 | oo = s->min; |
80c3a998 | 1947 | alloc_gfp = flags; |
65c3376a CL |
1948 | /* |
1949 | * Allocation may have failed due to fragmentation. | |
1950 | * Try a lower order alloc if possible | |
1951 | */ | |
bb192ed9 VB |
1952 | slab = alloc_slab_page(s, alloc_gfp, node, oo); |
1953 | if (unlikely(!slab)) | |
588f8ba9 TG |
1954 | goto out; |
1955 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1956 | } |
5a896d9e | 1957 | |
bb192ed9 | 1958 | slab->objects = oo_objects(oo); |
81819f0f | 1959 | |
bb192ed9 | 1960 | account_slab(slab, oo_order(oo), s, flags); |
1f3147b4 | 1961 | |
bb192ed9 | 1962 | slab->slab_cache = s; |
81819f0f | 1963 | |
6e48a966 | 1964 | kasan_poison_slab(slab); |
81819f0f | 1965 | |
bb192ed9 | 1966 | start = slab_address(slab); |
81819f0f | 1967 | |
bb192ed9 | 1968 | setup_slab_debug(s, slab, start); |
0316bec2 | 1969 | |
bb192ed9 | 1970 | shuffle = shuffle_freelist(s, slab); |
210e7a43 TG |
1971 | |
1972 | if (!shuffle) { | |
4d176711 | 1973 | start = fixup_red_left(s, start); |
bb192ed9 VB |
1974 | start = setup_object(s, slab, start); |
1975 | slab->freelist = start; | |
1976 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
18e50661 | 1977 | next = p + s->size; |
bb192ed9 | 1978 | next = setup_object(s, slab, next); |
18e50661 AK |
1979 | set_freepointer(s, p, next); |
1980 | p = next; | |
1981 | } | |
1982 | set_freepointer(s, p, NULL); | |
81819f0f | 1983 | } |
81819f0f | 1984 | |
bb192ed9 VB |
1985 | slab->inuse = slab->objects; |
1986 | slab->frozen = 1; | |
588f8ba9 | 1987 | |
81819f0f | 1988 | out: |
bb192ed9 | 1989 | if (!slab) |
588f8ba9 TG |
1990 | return NULL; |
1991 | ||
bb192ed9 | 1992 | inc_slabs_node(s, slab_nid(slab), slab->objects); |
588f8ba9 | 1993 | |
bb192ed9 | 1994 | return slab; |
81819f0f CL |
1995 | } |
1996 | ||
bb192ed9 | 1997 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
588f8ba9 | 1998 | { |
44405099 LL |
1999 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2000 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 2001 | |
53a0de06 VB |
2002 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2003 | ||
588f8ba9 TG |
2004 | return allocate_slab(s, |
2005 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2006 | } | |
2007 | ||
4020b4a2 | 2008 | static void __free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2009 | { |
4020b4a2 VB |
2010 | struct folio *folio = slab_folio(slab); |
2011 | int order = folio_order(folio); | |
834f3d11 | 2012 | int pages = 1 << order; |
81819f0f | 2013 | |
8fc8d666 | 2014 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
81819f0f CL |
2015 | void *p; |
2016 | ||
bb192ed9 | 2017 | slab_pad_check(s, slab); |
4020b4a2 | 2018 | for_each_object(p, s, slab_address(slab), slab->objects) |
bb192ed9 | 2019 | check_object(s, slab, p, SLUB_RED_INACTIVE); |
81819f0f CL |
2020 | } |
2021 | ||
4020b4a2 VB |
2022 | __slab_clear_pfmemalloc(slab); |
2023 | __folio_clear_slab(folio); | |
2024 | folio->mapping = NULL; | |
1eb5ac64 NP |
2025 | if (current->reclaim_state) |
2026 | current->reclaim_state->reclaimed_slab += pages; | |
4020b4a2 VB |
2027 | unaccount_slab(slab, order, s); |
2028 | __free_pages(folio_page(folio, 0), order); | |
81819f0f CL |
2029 | } |
2030 | ||
2031 | static void rcu_free_slab(struct rcu_head *h) | |
2032 | { | |
bb192ed9 | 2033 | struct slab *slab = container_of(h, struct slab, rcu_head); |
da9a638c | 2034 | |
bb192ed9 | 2035 | __free_slab(slab->slab_cache, slab); |
81819f0f CL |
2036 | } |
2037 | ||
bb192ed9 | 2038 | static void free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2039 | { |
5f0d5a3a | 2040 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bb192ed9 | 2041 | call_rcu(&slab->rcu_head, rcu_free_slab); |
81819f0f | 2042 | } else |
bb192ed9 | 2043 | __free_slab(s, slab); |
81819f0f CL |
2044 | } |
2045 | ||
bb192ed9 | 2046 | static void discard_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2047 | { |
bb192ed9 VB |
2048 | dec_slabs_node(s, slab_nid(slab), slab->objects); |
2049 | free_slab(s, slab); | |
81819f0f CL |
2050 | } |
2051 | ||
2052 | /* | |
5cc6eee8 | 2053 | * Management of partially allocated slabs. |
81819f0f | 2054 | */ |
1e4dd946 | 2055 | static inline void |
bb192ed9 | 2056 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
81819f0f | 2057 | { |
e95eed57 | 2058 | n->nr_partial++; |
136333d1 | 2059 | if (tail == DEACTIVATE_TO_TAIL) |
bb192ed9 | 2060 | list_add_tail(&slab->slab_list, &n->partial); |
7c2e132c | 2061 | else |
bb192ed9 | 2062 | list_add(&slab->slab_list, &n->partial); |
81819f0f CL |
2063 | } |
2064 | ||
1e4dd946 | 2065 | static inline void add_partial(struct kmem_cache_node *n, |
bb192ed9 | 2066 | struct slab *slab, int tail) |
62e346a8 | 2067 | { |
c65c1877 | 2068 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 2069 | __add_partial(n, slab, tail); |
1e4dd946 | 2070 | } |
c65c1877 | 2071 | |
1e4dd946 | 2072 | static inline void remove_partial(struct kmem_cache_node *n, |
bb192ed9 | 2073 | struct slab *slab) |
1e4dd946 SR |
2074 | { |
2075 | lockdep_assert_held(&n->list_lock); | |
bb192ed9 | 2076 | list_del(&slab->slab_list); |
52b4b950 | 2077 | n->nr_partial--; |
1e4dd946 SR |
2078 | } |
2079 | ||
81819f0f | 2080 | /* |
7ced3719 CL |
2081 | * Remove slab from the partial list, freeze it and |
2082 | * return the pointer to the freelist. | |
81819f0f | 2083 | * |
497b66f2 | 2084 | * Returns a list of objects or NULL if it fails. |
81819f0f | 2085 | */ |
497b66f2 | 2086 | static inline void *acquire_slab(struct kmem_cache *s, |
bb192ed9 | 2087 | struct kmem_cache_node *n, struct slab *slab, |
b47291ef | 2088 | int mode) |
81819f0f | 2089 | { |
2cfb7455 CL |
2090 | void *freelist; |
2091 | unsigned long counters; | |
bb192ed9 | 2092 | struct slab new; |
2cfb7455 | 2093 | |
c65c1877 PZ |
2094 | lockdep_assert_held(&n->list_lock); |
2095 | ||
2cfb7455 CL |
2096 | /* |
2097 | * Zap the freelist and set the frozen bit. | |
2098 | * The old freelist is the list of objects for the | |
2099 | * per cpu allocation list. | |
2100 | */ | |
bb192ed9 VB |
2101 | freelist = slab->freelist; |
2102 | counters = slab->counters; | |
7ced3719 | 2103 | new.counters = counters; |
23910c50 | 2104 | if (mode) { |
bb192ed9 | 2105 | new.inuse = slab->objects; |
23910c50 PE |
2106 | new.freelist = NULL; |
2107 | } else { | |
2108 | new.freelist = freelist; | |
2109 | } | |
2cfb7455 | 2110 | |
a0132ac0 | 2111 | VM_BUG_ON(new.frozen); |
7ced3719 | 2112 | new.frozen = 1; |
2cfb7455 | 2113 | |
bb192ed9 | 2114 | if (!__cmpxchg_double_slab(s, slab, |
2cfb7455 | 2115 | freelist, counters, |
02d7633f | 2116 | new.freelist, new.counters, |
7ced3719 | 2117 | "acquire_slab")) |
7ced3719 | 2118 | return NULL; |
2cfb7455 | 2119 | |
bb192ed9 | 2120 | remove_partial(n, slab); |
7ced3719 | 2121 | WARN_ON(!freelist); |
49e22585 | 2122 | return freelist; |
81819f0f CL |
2123 | } |
2124 | ||
e0a043aa | 2125 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2126 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
e0a043aa | 2127 | #else |
bb192ed9 | 2128 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
e0a043aa VB |
2129 | int drain) { } |
2130 | #endif | |
01b34d16 | 2131 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
49e22585 | 2132 | |
81819f0f | 2133 | /* |
672bba3a | 2134 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2135 | */ |
8ba00bb6 | 2136 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 2137 | struct slab **ret_slab, gfp_t gfpflags) |
81819f0f | 2138 | { |
bb192ed9 | 2139 | struct slab *slab, *slab2; |
49e22585 | 2140 | void *object = NULL; |
4b1f449d | 2141 | unsigned long flags; |
bb192ed9 | 2142 | unsigned int partial_slabs = 0; |
81819f0f CL |
2143 | |
2144 | /* | |
2145 | * Racy check. If we mistakenly see no partial slabs then we | |
2146 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2147 | * partial slab and there is none available then get_partial() |
672bba3a | 2148 | * will return NULL. |
81819f0f CL |
2149 | */ |
2150 | if (!n || !n->nr_partial) | |
2151 | return NULL; | |
2152 | ||
4b1f449d | 2153 | spin_lock_irqsave(&n->list_lock, flags); |
bb192ed9 | 2154 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
8ba00bb6 | 2155 | void *t; |
49e22585 | 2156 | |
bb192ed9 | 2157 | if (!pfmemalloc_match(slab, gfpflags)) |
8ba00bb6 JK |
2158 | continue; |
2159 | ||
bb192ed9 | 2160 | t = acquire_slab(s, n, slab, object == NULL); |
49e22585 | 2161 | if (!t) |
9b1ea29b | 2162 | break; |
49e22585 | 2163 | |
12d79634 | 2164 | if (!object) { |
bb192ed9 | 2165 | *ret_slab = slab; |
49e22585 | 2166 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 2167 | object = t; |
49e22585 | 2168 | } else { |
bb192ed9 | 2169 | put_cpu_partial(s, slab, 0); |
8028dcea | 2170 | stat(s, CPU_PARTIAL_NODE); |
bb192ed9 | 2171 | partial_slabs++; |
49e22585 | 2172 | } |
b47291ef | 2173 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
345c905d | 2174 | if (!kmem_cache_has_cpu_partial(s) |
bb192ed9 | 2175 | || partial_slabs > s->cpu_partial_slabs / 2) |
49e22585 | 2176 | break; |
b47291ef VB |
2177 | #else |
2178 | break; | |
2179 | #endif | |
49e22585 | 2180 | |
497b66f2 | 2181 | } |
4b1f449d | 2182 | spin_unlock_irqrestore(&n->list_lock, flags); |
497b66f2 | 2183 | return object; |
81819f0f CL |
2184 | } |
2185 | ||
2186 | /* | |
c2092c12 | 2187 | * Get a slab from somewhere. Search in increasing NUMA distances. |
81819f0f | 2188 | */ |
de3ec035 | 2189 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
bb192ed9 | 2190 | struct slab **ret_slab) |
81819f0f CL |
2191 | { |
2192 | #ifdef CONFIG_NUMA | |
2193 | struct zonelist *zonelist; | |
dd1a239f | 2194 | struct zoneref *z; |
54a6eb5c | 2195 | struct zone *zone; |
97a225e6 | 2196 | enum zone_type highest_zoneidx = gfp_zone(flags); |
497b66f2 | 2197 | void *object; |
cc9a6c87 | 2198 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2199 | |
2200 | /* | |
672bba3a CL |
2201 | * The defrag ratio allows a configuration of the tradeoffs between |
2202 | * inter node defragmentation and node local allocations. A lower | |
2203 | * defrag_ratio increases the tendency to do local allocations | |
2204 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2205 | * |
672bba3a CL |
2206 | * If the defrag_ratio is set to 0 then kmalloc() always |
2207 | * returns node local objects. If the ratio is higher then kmalloc() | |
2208 | * may return off node objects because partial slabs are obtained | |
2209 | * from other nodes and filled up. | |
81819f0f | 2210 | * |
43efd3ea LP |
2211 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2212 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2213 | * allocation will first attempt to defrag slab caches on other nodes. | |
2214 | * This means scanning over all nodes to look for partial slabs which | |
2215 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2216 | * with available objects. |
81819f0f | 2217 | */ |
9824601e CL |
2218 | if (!s->remote_node_defrag_ratio || |
2219 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2220 | return NULL; |
2221 | ||
cc9a6c87 | 2222 | do { |
d26914d1 | 2223 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 2224 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
97a225e6 | 2225 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2226 | struct kmem_cache_node *n; |
2227 | ||
2228 | n = get_node(s, zone_to_nid(zone)); | |
2229 | ||
dee2f8aa | 2230 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 2231 | n->nr_partial > s->min_partial) { |
bb192ed9 | 2232 | object = get_partial_node(s, n, ret_slab, flags); |
cc9a6c87 MG |
2233 | if (object) { |
2234 | /* | |
d26914d1 MG |
2235 | * Don't check read_mems_allowed_retry() |
2236 | * here - if mems_allowed was updated in | |
2237 | * parallel, that was a harmless race | |
2238 | * between allocation and the cpuset | |
2239 | * update | |
cc9a6c87 | 2240 | */ |
cc9a6c87 MG |
2241 | return object; |
2242 | } | |
c0ff7453 | 2243 | } |
81819f0f | 2244 | } |
d26914d1 | 2245 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2246 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2247 | return NULL; |
2248 | } | |
2249 | ||
2250 | /* | |
c2092c12 | 2251 | * Get a partial slab, lock it and return it. |
81819f0f | 2252 | */ |
497b66f2 | 2253 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
bb192ed9 | 2254 | struct slab **ret_slab) |
81819f0f | 2255 | { |
497b66f2 | 2256 | void *object; |
a561ce00 JK |
2257 | int searchnode = node; |
2258 | ||
2259 | if (node == NUMA_NO_NODE) | |
2260 | searchnode = numa_mem_id(); | |
81819f0f | 2261 | |
bb192ed9 | 2262 | object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); |
497b66f2 CL |
2263 | if (object || node != NUMA_NO_NODE) |
2264 | return object; | |
81819f0f | 2265 | |
bb192ed9 | 2266 | return get_any_partial(s, flags, ret_slab); |
81819f0f CL |
2267 | } |
2268 | ||
923717cb | 2269 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2270 | /* |
0d645ed1 | 2271 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2272 | * during cmpxchg. The transactions start with the cpu number and are then |
2273 | * incremented by CONFIG_NR_CPUS. | |
2274 | */ | |
2275 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2276 | #else | |
2277 | /* | |
2278 | * No preemption supported therefore also no need to check for | |
2279 | * different cpus. | |
2280 | */ | |
2281 | #define TID_STEP 1 | |
2282 | #endif | |
2283 | ||
2284 | static inline unsigned long next_tid(unsigned long tid) | |
2285 | { | |
2286 | return tid + TID_STEP; | |
2287 | } | |
2288 | ||
9d5f0be0 | 2289 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2290 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2291 | { | |
2292 | return tid % TID_STEP; | |
2293 | } | |
2294 | ||
2295 | static inline unsigned long tid_to_event(unsigned long tid) | |
2296 | { | |
2297 | return tid / TID_STEP; | |
2298 | } | |
9d5f0be0 | 2299 | #endif |
8a5ec0ba CL |
2300 | |
2301 | static inline unsigned int init_tid(int cpu) | |
2302 | { | |
2303 | return cpu; | |
2304 | } | |
2305 | ||
2306 | static inline void note_cmpxchg_failure(const char *n, | |
2307 | const struct kmem_cache *s, unsigned long tid) | |
2308 | { | |
2309 | #ifdef SLUB_DEBUG_CMPXCHG | |
2310 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2311 | ||
f9f58285 | 2312 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2313 | |
923717cb | 2314 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2315 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2316 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2317 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2318 | else | |
2319 | #endif | |
2320 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2321 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2322 | tid_to_event(tid), tid_to_event(actual_tid)); |
2323 | else | |
f9f58285 | 2324 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2325 | actual_tid, tid, next_tid(tid)); |
2326 | #endif | |
4fdccdfb | 2327 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2328 | } |
2329 | ||
788e1aad | 2330 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2331 | { |
8a5ec0ba | 2332 | int cpu; |
bd0e7491 | 2333 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2334 | |
bd0e7491 VB |
2335 | for_each_possible_cpu(cpu) { |
2336 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2337 | local_lock_init(&c->lock); | |
2338 | c->tid = init_tid(cpu); | |
2339 | } | |
8a5ec0ba | 2340 | } |
2cfb7455 | 2341 | |
81819f0f | 2342 | /* |
c2092c12 | 2343 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
a019d201 VB |
2344 | * unfreezes the slabs and puts it on the proper list. |
2345 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2346 | * by the caller. | |
81819f0f | 2347 | */ |
bb192ed9 | 2348 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
a019d201 | 2349 | void *freelist) |
81819f0f | 2350 | { |
2cfb7455 | 2351 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
bb192ed9 | 2352 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
d930ff03 | 2353 | int lock = 0, free_delta = 0; |
2cfb7455 | 2354 | enum slab_modes l = M_NONE, m = M_NONE; |
d930ff03 | 2355 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2356 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2357 | unsigned long flags = 0; |
bb192ed9 VB |
2358 | struct slab new; |
2359 | struct slab old; | |
2cfb7455 | 2360 | |
bb192ed9 | 2361 | if (slab->freelist) { |
84e554e6 | 2362 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2363 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2364 | } |
2365 | ||
894b8788 | 2366 | /* |
d930ff03 VB |
2367 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2368 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2369 | */ |
d930ff03 VB |
2370 | freelist_tail = NULL; |
2371 | freelist_iter = freelist; | |
2372 | while (freelist_iter) { | |
2373 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2374 | |
52f23478 DZ |
2375 | /* |
2376 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2377 | * 'freelist_iter' is already corrupted. So isolate all objects |
2378 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2379 | */ |
bb192ed9 | 2380 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
52f23478 DZ |
2381 | break; |
2382 | ||
d930ff03 VB |
2383 | freelist_tail = freelist_iter; |
2384 | free_delta++; | |
2cfb7455 | 2385 | |
d930ff03 | 2386 | freelist_iter = nextfree; |
2cfb7455 CL |
2387 | } |
2388 | ||
894b8788 | 2389 | /* |
c2092c12 VB |
2390 | * Stage two: Unfreeze the slab while splicing the per-cpu |
2391 | * freelist to the head of slab's freelist. | |
d930ff03 | 2392 | * |
c2092c12 | 2393 | * Ensure that the slab is unfrozen while the list presence |
d930ff03 | 2394 | * reflects the actual number of objects during unfreeze. |
2cfb7455 CL |
2395 | * |
2396 | * We setup the list membership and then perform a cmpxchg | |
c2092c12 VB |
2397 | * with the count. If there is a mismatch then the slab |
2398 | * is not unfrozen but the slab is on the wrong list. | |
2cfb7455 CL |
2399 | * |
2400 | * Then we restart the process which may have to remove | |
c2092c12 | 2401 | * the slab from the list that we just put it on again |
2cfb7455 CL |
2402 | * because the number of objects in the slab may have |
2403 | * changed. | |
894b8788 | 2404 | */ |
2cfb7455 | 2405 | redo: |
894b8788 | 2406 | |
bb192ed9 VB |
2407 | old.freelist = READ_ONCE(slab->freelist); |
2408 | old.counters = READ_ONCE(slab->counters); | |
a0132ac0 | 2409 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2410 | |
2cfb7455 CL |
2411 | /* Determine target state of the slab */ |
2412 | new.counters = old.counters; | |
d930ff03 VB |
2413 | if (freelist_tail) { |
2414 | new.inuse -= free_delta; | |
2415 | set_freepointer(s, freelist_tail, old.freelist); | |
2cfb7455 CL |
2416 | new.freelist = freelist; |
2417 | } else | |
2418 | new.freelist = old.freelist; | |
2419 | ||
2420 | new.frozen = 0; | |
2421 | ||
8a5b20ae | 2422 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2423 | m = M_FREE; |
2424 | else if (new.freelist) { | |
2425 | m = M_PARTIAL; | |
2426 | if (!lock) { | |
2427 | lock = 1; | |
2428 | /* | |
c2092c12 VB |
2429 | * Taking the spinlock removes the possibility that |
2430 | * acquire_slab() will see a slab that is frozen | |
2cfb7455 | 2431 | */ |
3406e91b | 2432 | spin_lock_irqsave(&n->list_lock, flags); |
2cfb7455 CL |
2433 | } |
2434 | } else { | |
2435 | m = M_FULL; | |
965c4848 | 2436 | if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { |
2cfb7455 CL |
2437 | lock = 1; |
2438 | /* | |
2439 | * This also ensures that the scanning of full | |
2440 | * slabs from diagnostic functions will not see | |
2441 | * any frozen slabs. | |
2442 | */ | |
3406e91b | 2443 | spin_lock_irqsave(&n->list_lock, flags); |
2cfb7455 CL |
2444 | } |
2445 | } | |
2446 | ||
2447 | if (l != m) { | |
2cfb7455 | 2448 | if (l == M_PARTIAL) |
bb192ed9 | 2449 | remove_partial(n, slab); |
2cfb7455 | 2450 | else if (l == M_FULL) |
bb192ed9 | 2451 | remove_full(s, n, slab); |
2cfb7455 | 2452 | |
88349a28 | 2453 | if (m == M_PARTIAL) |
bb192ed9 | 2454 | add_partial(n, slab, tail); |
88349a28 | 2455 | else if (m == M_FULL) |
bb192ed9 | 2456 | add_full(s, n, slab); |
2cfb7455 CL |
2457 | } |
2458 | ||
2459 | l = m; | |
bb192ed9 | 2460 | if (!cmpxchg_double_slab(s, slab, |
2cfb7455 CL |
2461 | old.freelist, old.counters, |
2462 | new.freelist, new.counters, | |
2463 | "unfreezing slab")) | |
2464 | goto redo; | |
2465 | ||
2cfb7455 | 2466 | if (lock) |
3406e91b | 2467 | spin_unlock_irqrestore(&n->list_lock, flags); |
2cfb7455 | 2468 | |
88349a28 WY |
2469 | if (m == M_PARTIAL) |
2470 | stat(s, tail); | |
2471 | else if (m == M_FULL) | |
2472 | stat(s, DEACTIVATE_FULL); | |
2473 | else if (m == M_FREE) { | |
2cfb7455 | 2474 | stat(s, DEACTIVATE_EMPTY); |
bb192ed9 | 2475 | discard_slab(s, slab); |
2cfb7455 | 2476 | stat(s, FREE_SLAB); |
894b8788 | 2477 | } |
81819f0f CL |
2478 | } |
2479 | ||
345c905d | 2480 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2481 | static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) |
fc1455f4 | 2482 | { |
43d77867 | 2483 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
bb192ed9 | 2484 | struct slab *slab, *slab_to_discard = NULL; |
7cf9f3ba | 2485 | unsigned long flags = 0; |
49e22585 | 2486 | |
bb192ed9 VB |
2487 | while (partial_slab) { |
2488 | struct slab new; | |
2489 | struct slab old; | |
49e22585 | 2490 | |
bb192ed9 VB |
2491 | slab = partial_slab; |
2492 | partial_slab = slab->next; | |
43d77867 | 2493 | |
bb192ed9 | 2494 | n2 = get_node(s, slab_nid(slab)); |
43d77867 JK |
2495 | if (n != n2) { |
2496 | if (n) | |
7cf9f3ba | 2497 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
2498 | |
2499 | n = n2; | |
7cf9f3ba | 2500 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 2501 | } |
49e22585 CL |
2502 | |
2503 | do { | |
2504 | ||
bb192ed9 VB |
2505 | old.freelist = slab->freelist; |
2506 | old.counters = slab->counters; | |
a0132ac0 | 2507 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2508 | |
2509 | new.counters = old.counters; | |
2510 | new.freelist = old.freelist; | |
2511 | ||
2512 | new.frozen = 0; | |
2513 | ||
bb192ed9 | 2514 | } while (!__cmpxchg_double_slab(s, slab, |
49e22585 CL |
2515 | old.freelist, old.counters, |
2516 | new.freelist, new.counters, | |
2517 | "unfreezing slab")); | |
2518 | ||
8a5b20ae | 2519 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
bb192ed9 VB |
2520 | slab->next = slab_to_discard; |
2521 | slab_to_discard = slab; | |
43d77867 | 2522 | } else { |
bb192ed9 | 2523 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
43d77867 | 2524 | stat(s, FREE_ADD_PARTIAL); |
49e22585 CL |
2525 | } |
2526 | } | |
2527 | ||
2528 | if (n) | |
7cf9f3ba | 2529 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 2530 | |
bb192ed9 VB |
2531 | while (slab_to_discard) { |
2532 | slab = slab_to_discard; | |
2533 | slab_to_discard = slab_to_discard->next; | |
9ada1934 SL |
2534 | |
2535 | stat(s, DEACTIVATE_EMPTY); | |
bb192ed9 | 2536 | discard_slab(s, slab); |
9ada1934 SL |
2537 | stat(s, FREE_SLAB); |
2538 | } | |
fc1455f4 | 2539 | } |
f3ab8b6b | 2540 | |
fc1455f4 VB |
2541 | /* |
2542 | * Unfreeze all the cpu partial slabs. | |
2543 | */ | |
2544 | static void unfreeze_partials(struct kmem_cache *s) | |
2545 | { | |
bb192ed9 | 2546 | struct slab *partial_slab; |
fc1455f4 VB |
2547 | unsigned long flags; |
2548 | ||
bd0e7491 | 2549 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2550 | partial_slab = this_cpu_read(s->cpu_slab->partial); |
fc1455f4 | 2551 | this_cpu_write(s->cpu_slab->partial, NULL); |
bd0e7491 | 2552 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 | 2553 | |
bb192ed9 VB |
2554 | if (partial_slab) |
2555 | __unfreeze_partials(s, partial_slab); | |
fc1455f4 VB |
2556 | } |
2557 | ||
2558 | static void unfreeze_partials_cpu(struct kmem_cache *s, | |
2559 | struct kmem_cache_cpu *c) | |
2560 | { | |
bb192ed9 | 2561 | struct slab *partial_slab; |
fc1455f4 | 2562 | |
bb192ed9 | 2563 | partial_slab = slub_percpu_partial(c); |
fc1455f4 VB |
2564 | c->partial = NULL; |
2565 | ||
bb192ed9 VB |
2566 | if (partial_slab) |
2567 | __unfreeze_partials(s, partial_slab); | |
49e22585 CL |
2568 | } |
2569 | ||
2570 | /* | |
c2092c12 VB |
2571 | * Put a slab that was just frozen (in __slab_free|get_partial_node) into a |
2572 | * partial slab slot if available. | |
49e22585 CL |
2573 | * |
2574 | * If we did not find a slot then simply move all the partials to the | |
2575 | * per node partial list. | |
2576 | */ | |
bb192ed9 | 2577 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
49e22585 | 2578 | { |
bb192ed9 VB |
2579 | struct slab *oldslab; |
2580 | struct slab *slab_to_unfreeze = NULL; | |
e0a043aa | 2581 | unsigned long flags; |
bb192ed9 | 2582 | int slabs = 0; |
49e22585 | 2583 | |
bd0e7491 | 2584 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 2585 | |
bb192ed9 | 2586 | oldslab = this_cpu_read(s->cpu_slab->partial); |
e0a043aa | 2587 | |
bb192ed9 VB |
2588 | if (oldslab) { |
2589 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
e0a043aa VB |
2590 | /* |
2591 | * Partial array is full. Move the existing set to the | |
2592 | * per node partial list. Postpone the actual unfreezing | |
2593 | * outside of the critical section. | |
2594 | */ | |
bb192ed9 VB |
2595 | slab_to_unfreeze = oldslab; |
2596 | oldslab = NULL; | |
e0a043aa | 2597 | } else { |
bb192ed9 | 2598 | slabs = oldslab->slabs; |
49e22585 | 2599 | } |
e0a043aa | 2600 | } |
49e22585 | 2601 | |
bb192ed9 | 2602 | slabs++; |
49e22585 | 2603 | |
bb192ed9 VB |
2604 | slab->slabs = slabs; |
2605 | slab->next = oldslab; | |
49e22585 | 2606 | |
bb192ed9 | 2607 | this_cpu_write(s->cpu_slab->partial, slab); |
e0a043aa | 2608 | |
bd0e7491 | 2609 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa | 2610 | |
bb192ed9 VB |
2611 | if (slab_to_unfreeze) { |
2612 | __unfreeze_partials(s, slab_to_unfreeze); | |
e0a043aa VB |
2613 | stat(s, CPU_PARTIAL_DRAIN); |
2614 | } | |
49e22585 CL |
2615 | } |
2616 | ||
e0a043aa VB |
2617 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
2618 | ||
2619 | static inline void unfreeze_partials(struct kmem_cache *s) { } | |
2620 | static inline void unfreeze_partials_cpu(struct kmem_cache *s, | |
2621 | struct kmem_cache_cpu *c) { } | |
2622 | ||
2623 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
2624 | ||
dfb4f096 | 2625 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2626 | { |
5a836bf6 | 2627 | unsigned long flags; |
bb192ed9 | 2628 | struct slab *slab; |
5a836bf6 SAS |
2629 | void *freelist; |
2630 | ||
bd0e7491 | 2631 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 | 2632 | |
bb192ed9 | 2633 | slab = c->slab; |
5a836bf6 | 2634 | freelist = c->freelist; |
c17dda40 | 2635 | |
bb192ed9 | 2636 | c->slab = NULL; |
a019d201 | 2637 | c->freelist = NULL; |
c17dda40 | 2638 | c->tid = next_tid(c->tid); |
a019d201 | 2639 | |
bd0e7491 | 2640 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 2641 | |
bb192ed9 VB |
2642 | if (slab) { |
2643 | deactivate_slab(s, slab, freelist); | |
5a836bf6 SAS |
2644 | stat(s, CPUSLAB_FLUSH); |
2645 | } | |
81819f0f CL |
2646 | } |
2647 | ||
0c710013 | 2648 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2649 | { |
9dfc6e68 | 2650 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 | 2651 | void *freelist = c->freelist; |
bb192ed9 | 2652 | struct slab *slab = c->slab; |
81819f0f | 2653 | |
bb192ed9 | 2654 | c->slab = NULL; |
08beb547 VB |
2655 | c->freelist = NULL; |
2656 | c->tid = next_tid(c->tid); | |
2657 | ||
bb192ed9 VB |
2658 | if (slab) { |
2659 | deactivate_slab(s, slab, freelist); | |
08beb547 VB |
2660 | stat(s, CPUSLAB_FLUSH); |
2661 | } | |
49e22585 | 2662 | |
fc1455f4 | 2663 | unfreeze_partials_cpu(s, c); |
81819f0f CL |
2664 | } |
2665 | ||
5a836bf6 SAS |
2666 | struct slub_flush_work { |
2667 | struct work_struct work; | |
2668 | struct kmem_cache *s; | |
2669 | bool skip; | |
2670 | }; | |
2671 | ||
fc1455f4 VB |
2672 | /* |
2673 | * Flush cpu slab. | |
2674 | * | |
5a836bf6 | 2675 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 2676 | */ |
5a836bf6 | 2677 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 2678 | { |
5a836bf6 SAS |
2679 | struct kmem_cache *s; |
2680 | struct kmem_cache_cpu *c; | |
2681 | struct slub_flush_work *sfw; | |
2682 | ||
2683 | sfw = container_of(w, struct slub_flush_work, work); | |
2684 | ||
2685 | s = sfw->s; | |
2686 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 | 2687 | |
bb192ed9 | 2688 | if (c->slab) |
fc1455f4 | 2689 | flush_slab(s, c); |
81819f0f | 2690 | |
fc1455f4 | 2691 | unfreeze_partials(s); |
81819f0f CL |
2692 | } |
2693 | ||
5a836bf6 | 2694 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 2695 | { |
a8364d55 GBY |
2696 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2697 | ||
bb192ed9 | 2698 | return c->slab || slub_percpu_partial(c); |
a8364d55 GBY |
2699 | } |
2700 | ||
5a836bf6 SAS |
2701 | static DEFINE_MUTEX(flush_lock); |
2702 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
2703 | ||
2704 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
2705 | { | |
2706 | struct slub_flush_work *sfw; | |
2707 | unsigned int cpu; | |
2708 | ||
2709 | lockdep_assert_cpus_held(); | |
2710 | mutex_lock(&flush_lock); | |
2711 | ||
2712 | for_each_online_cpu(cpu) { | |
2713 | sfw = &per_cpu(slub_flush, cpu); | |
2714 | if (!has_cpu_slab(cpu, s)) { | |
2715 | sfw->skip = true; | |
2716 | continue; | |
2717 | } | |
2718 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
2719 | sfw->skip = false; | |
2720 | sfw->s = s; | |
2721 | schedule_work_on(cpu, &sfw->work); | |
2722 | } | |
2723 | ||
2724 | for_each_online_cpu(cpu) { | |
2725 | sfw = &per_cpu(slub_flush, cpu); | |
2726 | if (sfw->skip) | |
2727 | continue; | |
2728 | flush_work(&sfw->work); | |
2729 | } | |
2730 | ||
2731 | mutex_unlock(&flush_lock); | |
2732 | } | |
2733 | ||
81819f0f CL |
2734 | static void flush_all(struct kmem_cache *s) |
2735 | { | |
5a836bf6 SAS |
2736 | cpus_read_lock(); |
2737 | flush_all_cpus_locked(s); | |
2738 | cpus_read_unlock(); | |
81819f0f CL |
2739 | } |
2740 | ||
a96a87bf SAS |
2741 | /* |
2742 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2743 | * necessary. | |
2744 | */ | |
2745 | static int slub_cpu_dead(unsigned int cpu) | |
2746 | { | |
2747 | struct kmem_cache *s; | |
a96a87bf SAS |
2748 | |
2749 | mutex_lock(&slab_mutex); | |
0e7ac738 | 2750 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 2751 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
2752 | mutex_unlock(&slab_mutex); |
2753 | return 0; | |
2754 | } | |
2755 | ||
dfb4f096 CL |
2756 | /* |
2757 | * Check if the objects in a per cpu structure fit numa | |
2758 | * locality expectations. | |
2759 | */ | |
bb192ed9 | 2760 | static inline int node_match(struct slab *slab, int node) |
dfb4f096 CL |
2761 | { |
2762 | #ifdef CONFIG_NUMA | |
bb192ed9 | 2763 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
dfb4f096 CL |
2764 | return 0; |
2765 | #endif | |
2766 | return 1; | |
2767 | } | |
2768 | ||
9a02d699 | 2769 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 2770 | static int count_free(struct slab *slab) |
781b2ba6 | 2771 | { |
bb192ed9 | 2772 | return slab->objects - slab->inuse; |
781b2ba6 PE |
2773 | } |
2774 | ||
9a02d699 DR |
2775 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2776 | { | |
2777 | return atomic_long_read(&n->total_objects); | |
2778 | } | |
2779 | #endif /* CONFIG_SLUB_DEBUG */ | |
2780 | ||
2781 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 | 2782 | static unsigned long count_partial(struct kmem_cache_node *n, |
bb192ed9 | 2783 | int (*get_count)(struct slab *)) |
781b2ba6 PE |
2784 | { |
2785 | unsigned long flags; | |
2786 | unsigned long x = 0; | |
bb192ed9 | 2787 | struct slab *slab; |
781b2ba6 PE |
2788 | |
2789 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
2790 | list_for_each_entry(slab, &n->partial, slab_list) |
2791 | x += get_count(slab); | |
781b2ba6 PE |
2792 | spin_unlock_irqrestore(&n->list_lock, flags); |
2793 | return x; | |
2794 | } | |
9a02d699 | 2795 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2796 | |
781b2ba6 PE |
2797 | static noinline void |
2798 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2799 | { | |
9a02d699 DR |
2800 | #ifdef CONFIG_SLUB_DEBUG |
2801 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2802 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2803 | int node; |
fa45dc25 | 2804 | struct kmem_cache_node *n; |
781b2ba6 | 2805 | |
9a02d699 DR |
2806 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2807 | return; | |
2808 | ||
5b3810e5 VB |
2809 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2810 | nid, gfpflags, &gfpflags); | |
19af27af | 2811 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2812 | s->name, s->object_size, s->size, oo_order(s->oo), |
2813 | oo_order(s->min)); | |
781b2ba6 | 2814 | |
3b0efdfa | 2815 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2816 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2817 | s->name); | |
fa5ec8a1 | 2818 | |
fa45dc25 | 2819 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2820 | unsigned long nr_slabs; |
2821 | unsigned long nr_objs; | |
2822 | unsigned long nr_free; | |
2823 | ||
26c02cf0 AB |
2824 | nr_free = count_partial(n, count_free); |
2825 | nr_slabs = node_nr_slabs(n); | |
2826 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2827 | |
f9f58285 | 2828 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2829 | node, nr_slabs, nr_objs, nr_free); |
2830 | } | |
9a02d699 | 2831 | #endif |
781b2ba6 PE |
2832 | } |
2833 | ||
01b34d16 | 2834 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
072bb0aa | 2835 | { |
01b34d16 | 2836 | if (unlikely(slab_test_pfmemalloc(slab))) |
0b303fb4 VB |
2837 | return gfp_pfmemalloc_allowed(gfpflags); |
2838 | ||
2839 | return true; | |
2840 | } | |
2841 | ||
213eeb9f | 2842 | /* |
c2092c12 VB |
2843 | * Check the slab->freelist and either transfer the freelist to the |
2844 | * per cpu freelist or deactivate the slab. | |
213eeb9f | 2845 | * |
c2092c12 | 2846 | * The slab is still frozen if the return value is not NULL. |
213eeb9f | 2847 | * |
c2092c12 | 2848 | * If this function returns NULL then the slab has been unfrozen. |
213eeb9f | 2849 | */ |
bb192ed9 | 2850 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
213eeb9f | 2851 | { |
bb192ed9 | 2852 | struct slab new; |
213eeb9f CL |
2853 | unsigned long counters; |
2854 | void *freelist; | |
2855 | ||
bd0e7491 VB |
2856 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
2857 | ||
213eeb9f | 2858 | do { |
bb192ed9 VB |
2859 | freelist = slab->freelist; |
2860 | counters = slab->counters; | |
6faa6833 | 2861 | |
213eeb9f | 2862 | new.counters = counters; |
a0132ac0 | 2863 | VM_BUG_ON(!new.frozen); |
213eeb9f | 2864 | |
bb192ed9 | 2865 | new.inuse = slab->objects; |
213eeb9f CL |
2866 | new.frozen = freelist != NULL; |
2867 | ||
bb192ed9 | 2868 | } while (!__cmpxchg_double_slab(s, slab, |
213eeb9f CL |
2869 | freelist, counters, |
2870 | NULL, new.counters, | |
2871 | "get_freelist")); | |
2872 | ||
2873 | return freelist; | |
2874 | } | |
2875 | ||
81819f0f | 2876 | /* |
894b8788 CL |
2877 | * Slow path. The lockless freelist is empty or we need to perform |
2878 | * debugging duties. | |
2879 | * | |
894b8788 CL |
2880 | * Processing is still very fast if new objects have been freed to the |
2881 | * regular freelist. In that case we simply take over the regular freelist | |
2882 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2883 | * |
894b8788 CL |
2884 | * If that is not working then we fall back to the partial lists. We take the |
2885 | * first element of the freelist as the object to allocate now and move the | |
2886 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2887 | * |
894b8788 | 2888 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2889 | * we need to allocate a new slab. This is the slowest path since it involves |
2890 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 2891 | * |
e500059b | 2892 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 2893 | * already disabled (which is the case for bulk allocation). |
81819f0f | 2894 | */ |
a380a3c7 | 2895 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2896 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2897 | { |
6faa6833 | 2898 | void *freelist; |
bb192ed9 | 2899 | struct slab *slab; |
e500059b | 2900 | unsigned long flags; |
81819f0f | 2901 | |
9f986d99 AW |
2902 | stat(s, ALLOC_SLOWPATH); |
2903 | ||
c2092c12 | 2904 | reread_slab: |
0b303fb4 | 2905 | |
bb192ed9 VB |
2906 | slab = READ_ONCE(c->slab); |
2907 | if (!slab) { | |
0715e6c5 VB |
2908 | /* |
2909 | * if the node is not online or has no normal memory, just | |
2910 | * ignore the node constraint | |
2911 | */ | |
2912 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 2913 | !node_isset(node, slab_nodes))) |
0715e6c5 | 2914 | node = NUMA_NO_NODE; |
81819f0f | 2915 | goto new_slab; |
0715e6c5 | 2916 | } |
49e22585 | 2917 | redo: |
6faa6833 | 2918 | |
bb192ed9 | 2919 | if (unlikely(!node_match(slab, node))) { |
0715e6c5 VB |
2920 | /* |
2921 | * same as above but node_match() being false already | |
2922 | * implies node != NUMA_NO_NODE | |
2923 | */ | |
7e1fa93d | 2924 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 VB |
2925 | node = NUMA_NO_NODE; |
2926 | goto redo; | |
2927 | } else { | |
a561ce00 | 2928 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 2929 | goto deactivate_slab; |
a561ce00 | 2930 | } |
fc59c053 | 2931 | } |
6446faa2 | 2932 | |
072bb0aa MG |
2933 | /* |
2934 | * By rights, we should be searching for a slab page that was | |
2935 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2936 | * information when the page leaves the per-cpu allocator | |
2937 | */ | |
bb192ed9 | 2938 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
0b303fb4 | 2939 | goto deactivate_slab; |
072bb0aa | 2940 | |
c2092c12 | 2941 | /* must check again c->slab in case we got preempted and it changed */ |
bd0e7491 | 2942 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2943 | if (unlikely(slab != c->slab)) { |
bd0e7491 | 2944 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2945 | goto reread_slab; |
0b303fb4 | 2946 | } |
6faa6833 CL |
2947 | freelist = c->freelist; |
2948 | if (freelist) | |
73736e03 | 2949 | goto load_freelist; |
03e404af | 2950 | |
bb192ed9 | 2951 | freelist = get_freelist(s, slab); |
6446faa2 | 2952 | |
6faa6833 | 2953 | if (!freelist) { |
bb192ed9 | 2954 | c->slab = NULL; |
bd0e7491 | 2955 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 2956 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 2957 | goto new_slab; |
03e404af | 2958 | } |
6446faa2 | 2959 | |
84e554e6 | 2960 | stat(s, ALLOC_REFILL); |
6446faa2 | 2961 | |
894b8788 | 2962 | load_freelist: |
0b303fb4 | 2963 | |
bd0e7491 | 2964 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 2965 | |
507effea CL |
2966 | /* |
2967 | * freelist is pointing to the list of objects to be used. | |
c2092c12 VB |
2968 | * slab is pointing to the slab from which the objects are obtained. |
2969 | * That slab must be frozen for per cpu allocations to work. | |
507effea | 2970 | */ |
bb192ed9 | 2971 | VM_BUG_ON(!c->slab->frozen); |
6faa6833 | 2972 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2973 | c->tid = next_tid(c->tid); |
bd0e7491 | 2974 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 2975 | return freelist; |
81819f0f | 2976 | |
0b303fb4 VB |
2977 | deactivate_slab: |
2978 | ||
bd0e7491 | 2979 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2980 | if (slab != c->slab) { |
bd0e7491 | 2981 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2982 | goto reread_slab; |
0b303fb4 | 2983 | } |
a019d201 | 2984 | freelist = c->freelist; |
bb192ed9 | 2985 | c->slab = NULL; |
a019d201 | 2986 | c->freelist = NULL; |
bd0e7491 | 2987 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
bb192ed9 | 2988 | deactivate_slab(s, slab, freelist); |
0b303fb4 | 2989 | |
81819f0f | 2990 | new_slab: |
2cfb7455 | 2991 | |
a93cf07b | 2992 | if (slub_percpu_partial(c)) { |
bd0e7491 | 2993 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2994 | if (unlikely(c->slab)) { |
bd0e7491 | 2995 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2996 | goto reread_slab; |
fa417ab7 | 2997 | } |
4b1f449d | 2998 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 2999 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
3000 | /* we were preempted and partial list got empty */ |
3001 | goto new_objects; | |
4b1f449d | 3002 | } |
fa417ab7 | 3003 | |
bb192ed9 VB |
3004 | slab = c->slab = slub_percpu_partial(c); |
3005 | slub_set_percpu_partial(c, slab); | |
bd0e7491 | 3006 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
49e22585 | 3007 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 3008 | goto redo; |
81819f0f CL |
3009 | } |
3010 | ||
fa417ab7 VB |
3011 | new_objects: |
3012 | ||
bb192ed9 | 3013 | freelist = get_partial(s, gfpflags, node, &slab); |
3f2b77e3 | 3014 | if (freelist) |
c2092c12 | 3015 | goto check_new_slab; |
2a904905 | 3016 | |
25c00c50 | 3017 | slub_put_cpu_ptr(s->cpu_slab); |
bb192ed9 | 3018 | slab = new_slab(s, gfpflags, node); |
25c00c50 | 3019 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 3020 | |
bb192ed9 | 3021 | if (unlikely(!slab)) { |
9a02d699 | 3022 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 3023 | return NULL; |
81819f0f | 3024 | } |
2cfb7455 | 3025 | |
53a0de06 | 3026 | /* |
c2092c12 | 3027 | * No other reference to the slab yet so we can |
53a0de06 VB |
3028 | * muck around with it freely without cmpxchg |
3029 | */ | |
bb192ed9 VB |
3030 | freelist = slab->freelist; |
3031 | slab->freelist = NULL; | |
53a0de06 VB |
3032 | |
3033 | stat(s, ALLOC_SLAB); | |
53a0de06 | 3034 | |
c2092c12 | 3035 | check_new_slab: |
2cfb7455 | 3036 | |
1572df7c | 3037 | if (kmem_cache_debug(s)) { |
bb192ed9 | 3038 | if (!alloc_debug_processing(s, slab, freelist, addr)) { |
1572df7c VB |
3039 | /* Slab failed checks. Next slab needed */ |
3040 | goto new_slab; | |
fa417ab7 | 3041 | } else { |
1572df7c VB |
3042 | /* |
3043 | * For debug case, we don't load freelist so that all | |
3044 | * allocations go through alloc_debug_processing() | |
3045 | */ | |
3046 | goto return_single; | |
fa417ab7 | 3047 | } |
1572df7c VB |
3048 | } |
3049 | ||
bb192ed9 | 3050 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
1572df7c VB |
3051 | /* |
3052 | * For !pfmemalloc_match() case we don't load freelist so that | |
3053 | * we don't make further mismatched allocations easier. | |
3054 | */ | |
3055 | goto return_single; | |
3056 | ||
c2092c12 | 3057 | retry_load_slab: |
cfdf836e | 3058 | |
bd0e7491 | 3059 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3060 | if (unlikely(c->slab)) { |
cfdf836e | 3061 | void *flush_freelist = c->freelist; |
bb192ed9 | 3062 | struct slab *flush_slab = c->slab; |
cfdf836e | 3063 | |
bb192ed9 | 3064 | c->slab = NULL; |
cfdf836e VB |
3065 | c->freelist = NULL; |
3066 | c->tid = next_tid(c->tid); | |
3067 | ||
bd0e7491 | 3068 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 3069 | |
bb192ed9 | 3070 | deactivate_slab(s, flush_slab, flush_freelist); |
cfdf836e VB |
3071 | |
3072 | stat(s, CPUSLAB_FLUSH); | |
3073 | ||
c2092c12 | 3074 | goto retry_load_slab; |
cfdf836e | 3075 | } |
bb192ed9 | 3076 | c->slab = slab; |
3f2b77e3 | 3077 | |
1572df7c VB |
3078 | goto load_freelist; |
3079 | ||
3080 | return_single: | |
894b8788 | 3081 | |
bb192ed9 | 3082 | deactivate_slab(s, slab, get_freepointer(s, freelist)); |
6faa6833 | 3083 | return freelist; |
894b8788 CL |
3084 | } |
3085 | ||
a380a3c7 | 3086 | /* |
e500059b VB |
3087 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3088 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3089 | * pointer. | |
a380a3c7 CL |
3090 | */ |
3091 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
3092 | unsigned long addr, struct kmem_cache_cpu *c) | |
3093 | { | |
3094 | void *p; | |
a380a3c7 | 3095 | |
e500059b | 3096 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3097 | /* |
3098 | * We may have been preempted and rescheduled on a different | |
e500059b | 3099 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3100 | * pointer. |
3101 | */ | |
25c00c50 | 3102 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3103 | #endif |
3104 | ||
3105 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
e500059b | 3106 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3107 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3108 | #endif |
a380a3c7 CL |
3109 | return p; |
3110 | } | |
3111 | ||
0f181f9f AP |
3112 | /* |
3113 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3114 | * zeroing out freelist pointer. | |
3115 | */ | |
3116 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3117 | void *obj) | |
3118 | { | |
3119 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
ce5716c6 AK |
3120 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), |
3121 | 0, sizeof(void *)); | |
0f181f9f AP |
3122 | } |
3123 | ||
894b8788 CL |
3124 | /* |
3125 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
3126 | * have the fastpath folded into their functions. So no function call | |
3127 | * overhead for requests that can be satisfied on the fastpath. | |
3128 | * | |
3129 | * The fastpath works by first checking if the lockless freelist can be used. | |
3130 | * If not then __slab_alloc is called for slow processing. | |
3131 | * | |
3132 | * Otherwise we can simply pick the next object from the lockless free list. | |
3133 | */ | |
2b847c3c | 3134 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
b89fb5ef | 3135 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3136 | { |
03ec0ed5 | 3137 | void *object; |
dfb4f096 | 3138 | struct kmem_cache_cpu *c; |
bb192ed9 | 3139 | struct slab *slab; |
8a5ec0ba | 3140 | unsigned long tid; |
964d4bd3 | 3141 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3142 | bool init = false; |
1f84260c | 3143 | |
964d4bd3 | 3144 | s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); |
8135be5a | 3145 | if (!s) |
773ff60e | 3146 | return NULL; |
b89fb5ef AP |
3147 | |
3148 | object = kfence_alloc(s, orig_size, gfpflags); | |
3149 | if (unlikely(object)) | |
3150 | goto out; | |
3151 | ||
8a5ec0ba | 3152 | redo: |
8a5ec0ba CL |
3153 | /* |
3154 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3155 | * enabled. We may switch back and forth between cpus while | |
3156 | * reading from one cpu area. That does not matter as long | |
3157 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3158 | * |
9b4bc85a VB |
3159 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3160 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3161 | * the tid. If we are preempted and switched to another cpu between the | |
3162 | * two reads, it's OK as the two are still associated with the same cpu | |
3163 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3164 | */ |
9b4bc85a VB |
3165 | c = raw_cpu_ptr(s->cpu_slab); |
3166 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3167 | |
3168 | /* | |
3169 | * Irqless object alloc/free algorithm used here depends on sequence | |
3170 | * of fetching cpu_slab's data. tid should be fetched before anything | |
c2092c12 | 3171 | * on c to guarantee that object and slab associated with previous tid |
9aabf810 | 3172 | * won't be used with current tid. If we fetch tid first, object and |
c2092c12 | 3173 | * slab could be one associated with next tid and our alloc/free |
9aabf810 JK |
3174 | * request will be failed. In this case, we will retry. So, no problem. |
3175 | */ | |
3176 | barrier(); | |
8a5ec0ba | 3177 | |
8a5ec0ba CL |
3178 | /* |
3179 | * The transaction ids are globally unique per cpu and per operation on | |
3180 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3181 | * occurs on the right processor and that there was no operation on the | |
3182 | * linked list in between. | |
3183 | */ | |
8a5ec0ba | 3184 | |
9dfc6e68 | 3185 | object = c->freelist; |
bb192ed9 | 3186 | slab = c->slab; |
bd0e7491 VB |
3187 | /* |
3188 | * We cannot use the lockless fastpath on PREEMPT_RT because if a | |
3189 | * slowpath has taken the local_lock_irqsave(), it is not protected | |
3190 | * against a fast path operation in an irq handler. So we need to take | |
3191 | * the slow path which uses local_lock. It is still relatively fast if | |
3192 | * there is a suitable cpu freelist. | |
3193 | */ | |
3194 | if (IS_ENABLED(CONFIG_PREEMPT_RT) || | |
bb192ed9 | 3195 | unlikely(!object || !slab || !node_match(slab, node))) { |
dfb4f096 | 3196 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 | 3197 | } else { |
0ad9500e ED |
3198 | void *next_object = get_freepointer_safe(s, object); |
3199 | ||
8a5ec0ba | 3200 | /* |
25985edc | 3201 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3202 | * operation and if we are on the right processor. |
3203 | * | |
d0e0ac97 CG |
3204 | * The cmpxchg does the following atomically (without lock |
3205 | * semantics!) | |
8a5ec0ba CL |
3206 | * 1. Relocate first pointer to the current per cpu area. |
3207 | * 2. Verify that tid and freelist have not been changed | |
3208 | * 3. If they were not changed replace tid and freelist | |
3209 | * | |
d0e0ac97 CG |
3210 | * Since this is without lock semantics the protection is only |
3211 | * against code executing on this cpu *not* from access by | |
3212 | * other cpus. | |
8a5ec0ba | 3213 | */ |
933393f5 | 3214 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
3215 | s->cpu_slab->freelist, s->cpu_slab->tid, |
3216 | object, tid, | |
0ad9500e | 3217 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
3218 | |
3219 | note_cmpxchg_failure("slab_alloc", s, tid); | |
3220 | goto redo; | |
3221 | } | |
0ad9500e | 3222 | prefetch_freepointer(s, next_object); |
84e554e6 | 3223 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3224 | } |
0f181f9f | 3225 | |
ce5716c6 | 3226 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 3227 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 3228 | |
b89fb5ef | 3229 | out: |
da844b78 | 3230 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); |
5a896d9e | 3231 | |
894b8788 | 3232 | return object; |
81819f0f CL |
3233 | } |
3234 | ||
2b847c3c | 3235 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
b89fb5ef | 3236 | gfp_t gfpflags, unsigned long addr, size_t orig_size) |
2b847c3c | 3237 | { |
b89fb5ef | 3238 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); |
2b847c3c EG |
3239 | } |
3240 | ||
81819f0f CL |
3241 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
3242 | { | |
b89fb5ef | 3243 | void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); |
5b882be4 | 3244 | |
d0e0ac97 CG |
3245 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
3246 | s->size, gfpflags); | |
5b882be4 EGM |
3247 | |
3248 | return ret; | |
81819f0f CL |
3249 | } |
3250 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3251 | ||
0f24f128 | 3252 | #ifdef CONFIG_TRACING |
4a92379b RK |
3253 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
3254 | { | |
b89fb5ef | 3255 | void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); |
4a92379b | 3256 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 3257 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
3258 | return ret; |
3259 | } | |
3260 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
3261 | #endif |
3262 | ||
81819f0f CL |
3263 | #ifdef CONFIG_NUMA |
3264 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
3265 | { | |
b89fb5ef | 3266 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 3267 | |
ca2b84cb | 3268 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 3269 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
3270 | |
3271 | return ret; | |
81819f0f CL |
3272 | } |
3273 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 3274 | |
0f24f128 | 3275 | #ifdef CONFIG_TRACING |
4a92379b | 3276 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 3277 | gfp_t gfpflags, |
4a92379b | 3278 | int node, size_t size) |
5b882be4 | 3279 | { |
b89fb5ef | 3280 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); |
4a92379b RK |
3281 | |
3282 | trace_kmalloc_node(_RET_IP_, ret, | |
3283 | size, s->size, gfpflags, node); | |
0316bec2 | 3284 | |
0116523c | 3285 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 3286 | return ret; |
5b882be4 | 3287 | } |
4a92379b | 3288 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 3289 | #endif |
6dfd1b65 | 3290 | #endif /* CONFIG_NUMA */ |
5b882be4 | 3291 | |
81819f0f | 3292 | /* |
94e4d712 | 3293 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 3294 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 3295 | * |
894b8788 | 3296 | * So we still attempt to reduce cache line usage. Just take the slab |
c2092c12 | 3297 | * lock and free the item. If there is no additional partial slab |
894b8788 | 3298 | * handling required then we can return immediately. |
81819f0f | 3299 | */ |
bb192ed9 | 3300 | static void __slab_free(struct kmem_cache *s, struct slab *slab, |
81084651 JDB |
3301 | void *head, void *tail, int cnt, |
3302 | unsigned long addr) | |
3303 | ||
81819f0f CL |
3304 | { |
3305 | void *prior; | |
2cfb7455 | 3306 | int was_frozen; |
bb192ed9 | 3307 | struct slab new; |
2cfb7455 CL |
3308 | unsigned long counters; |
3309 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 3310 | unsigned long flags; |
81819f0f | 3311 | |
8a5ec0ba | 3312 | stat(s, FREE_SLOWPATH); |
81819f0f | 3313 | |
b89fb5ef AP |
3314 | if (kfence_free(head)) |
3315 | return; | |
3316 | ||
19c7ff9e | 3317 | if (kmem_cache_debug(s) && |
bb192ed9 | 3318 | !free_debug_processing(s, slab, head, tail, cnt, addr)) |
80f08c19 | 3319 | return; |
6446faa2 | 3320 | |
2cfb7455 | 3321 | do { |
837d678d JK |
3322 | if (unlikely(n)) { |
3323 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3324 | n = NULL; | |
3325 | } | |
bb192ed9 VB |
3326 | prior = slab->freelist; |
3327 | counters = slab->counters; | |
81084651 | 3328 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
3329 | new.counters = counters; |
3330 | was_frozen = new.frozen; | |
81084651 | 3331 | new.inuse -= cnt; |
837d678d | 3332 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 3333 | |
c65c1877 | 3334 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
3335 | |
3336 | /* | |
d0e0ac97 CG |
3337 | * Slab was on no list before and will be |
3338 | * partially empty | |
3339 | * We can defer the list move and instead | |
3340 | * freeze it. | |
49e22585 CL |
3341 | */ |
3342 | new.frozen = 1; | |
3343 | ||
c65c1877 | 3344 | } else { /* Needs to be taken off a list */ |
49e22585 | 3345 | |
bb192ed9 | 3346 | n = get_node(s, slab_nid(slab)); |
49e22585 CL |
3347 | /* |
3348 | * Speculatively acquire the list_lock. | |
3349 | * If the cmpxchg does not succeed then we may | |
3350 | * drop the list_lock without any processing. | |
3351 | * | |
3352 | * Otherwise the list_lock will synchronize with | |
3353 | * other processors updating the list of slabs. | |
3354 | */ | |
3355 | spin_lock_irqsave(&n->list_lock, flags); | |
3356 | ||
3357 | } | |
2cfb7455 | 3358 | } |
81819f0f | 3359 | |
bb192ed9 | 3360 | } while (!cmpxchg_double_slab(s, slab, |
2cfb7455 | 3361 | prior, counters, |
81084651 | 3362 | head, new.counters, |
2cfb7455 | 3363 | "__slab_free")); |
81819f0f | 3364 | |
2cfb7455 | 3365 | if (likely(!n)) { |
49e22585 | 3366 | |
c270cf30 AW |
3367 | if (likely(was_frozen)) { |
3368 | /* | |
3369 | * The list lock was not taken therefore no list | |
3370 | * activity can be necessary. | |
3371 | */ | |
3372 | stat(s, FREE_FROZEN); | |
3373 | } else if (new.frozen) { | |
3374 | /* | |
c2092c12 | 3375 | * If we just froze the slab then put it onto the |
c270cf30 AW |
3376 | * per cpu partial list. |
3377 | */ | |
bb192ed9 | 3378 | put_cpu_partial(s, slab, 1); |
8028dcea AS |
3379 | stat(s, CPU_PARTIAL_FREE); |
3380 | } | |
c270cf30 | 3381 | |
b455def2 L |
3382 | return; |
3383 | } | |
81819f0f | 3384 | |
8a5b20ae | 3385 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
3386 | goto slab_empty; |
3387 | ||
81819f0f | 3388 | /* |
837d678d JK |
3389 | * Objects left in the slab. If it was not on the partial list before |
3390 | * then add it. | |
81819f0f | 3391 | */ |
345c905d | 3392 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
bb192ed9 VB |
3393 | remove_full(s, n, slab); |
3394 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
837d678d | 3395 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 3396 | } |
80f08c19 | 3397 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
3398 | return; |
3399 | ||
3400 | slab_empty: | |
a973e9dd | 3401 | if (prior) { |
81819f0f | 3402 | /* |
6fbabb20 | 3403 | * Slab on the partial list. |
81819f0f | 3404 | */ |
bb192ed9 | 3405 | remove_partial(n, slab); |
84e554e6 | 3406 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 3407 | } else { |
6fbabb20 | 3408 | /* Slab must be on the full list */ |
bb192ed9 | 3409 | remove_full(s, n, slab); |
c65c1877 | 3410 | } |
2cfb7455 | 3411 | |
80f08c19 | 3412 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3413 | stat(s, FREE_SLAB); |
bb192ed9 | 3414 | discard_slab(s, slab); |
81819f0f CL |
3415 | } |
3416 | ||
894b8788 CL |
3417 | /* |
3418 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3419 | * can perform fastpath freeing without additional function calls. | |
3420 | * | |
3421 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3422 | * of this processor. This typically the case if we have just allocated | |
3423 | * the item before. | |
3424 | * | |
3425 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3426 | * with all sorts of special processing. | |
81084651 JDB |
3427 | * |
3428 | * Bulk free of a freelist with several objects (all pointing to the | |
c2092c12 | 3429 | * same slab) possible by specifying head and tail ptr, plus objects |
81084651 | 3430 | * count (cnt). Bulk free indicated by tail pointer being set. |
894b8788 | 3431 | */ |
80a9201a | 3432 | static __always_inline void do_slab_free(struct kmem_cache *s, |
bb192ed9 | 3433 | struct slab *slab, void *head, void *tail, |
80a9201a | 3434 | int cnt, unsigned long addr) |
894b8788 | 3435 | { |
81084651 | 3436 | void *tail_obj = tail ? : head; |
dfb4f096 | 3437 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3438 | unsigned long tid; |
964d4bd3 | 3439 | |
3ddd6026 ML |
3440 | /* memcg_slab_free_hook() is already called for bulk free. */ |
3441 | if (!tail) | |
3442 | memcg_slab_free_hook(s, &head, 1); | |
8a5ec0ba CL |
3443 | redo: |
3444 | /* | |
3445 | * Determine the currently cpus per cpu slab. | |
3446 | * The cpu may change afterward. However that does not matter since | |
3447 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3448 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3449 | */ |
9b4bc85a VB |
3450 | c = raw_cpu_ptr(s->cpu_slab); |
3451 | tid = READ_ONCE(c->tid); | |
c016b0bd | 3452 | |
9aabf810 JK |
3453 | /* Same with comment on barrier() in slab_alloc_node() */ |
3454 | barrier(); | |
c016b0bd | 3455 | |
bb192ed9 | 3456 | if (likely(slab == c->slab)) { |
bd0e7491 | 3457 | #ifndef CONFIG_PREEMPT_RT |
5076190d LT |
3458 | void **freelist = READ_ONCE(c->freelist); |
3459 | ||
3460 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3461 | |
933393f5 | 3462 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3463 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3464 | freelist, tid, |
81084651 | 3465 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3466 | |
3467 | note_cmpxchg_failure("slab_free", s, tid); | |
3468 | goto redo; | |
3469 | } | |
bd0e7491 VB |
3470 | #else /* CONFIG_PREEMPT_RT */ |
3471 | /* | |
3472 | * We cannot use the lockless fastpath on PREEMPT_RT because if | |
3473 | * a slowpath has taken the local_lock_irqsave(), it is not | |
3474 | * protected against a fast path operation in an irq handler. So | |
3475 | * we need to take the local_lock. We shouldn't simply defer to | |
3476 | * __slab_free() as that wouldn't use the cpu freelist at all. | |
3477 | */ | |
3478 | void **freelist; | |
3479 | ||
3480 | local_lock(&s->cpu_slab->lock); | |
3481 | c = this_cpu_ptr(s->cpu_slab); | |
bb192ed9 | 3482 | if (unlikely(slab != c->slab)) { |
bd0e7491 VB |
3483 | local_unlock(&s->cpu_slab->lock); |
3484 | goto redo; | |
3485 | } | |
3486 | tid = c->tid; | |
3487 | freelist = c->freelist; | |
3488 | ||
3489 | set_freepointer(s, tail_obj, freelist); | |
3490 | c->freelist = head; | |
3491 | c->tid = next_tid(tid); | |
3492 | ||
3493 | local_unlock(&s->cpu_slab->lock); | |
3494 | #endif | |
84e554e6 | 3495 | stat(s, FREE_FASTPATH); |
894b8788 | 3496 | } else |
bb192ed9 | 3497 | __slab_free(s, slab, head, tail_obj, cnt, addr); |
894b8788 | 3498 | |
894b8788 CL |
3499 | } |
3500 | ||
bb192ed9 | 3501 | static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, |
80a9201a AP |
3502 | void *head, void *tail, int cnt, |
3503 | unsigned long addr) | |
3504 | { | |
80a9201a | 3505 | /* |
c3895391 AK |
3506 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3507 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3508 | */ |
899447f6 | 3509 | if (slab_free_freelist_hook(s, &head, &tail, &cnt)) |
bb192ed9 | 3510 | do_slab_free(s, slab, head, tail, cnt, addr); |
80a9201a AP |
3511 | } |
3512 | ||
2bd926b4 | 3513 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3514 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3515 | { | |
bb192ed9 | 3516 | do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); |
80a9201a AP |
3517 | } |
3518 | #endif | |
3519 | ||
81819f0f CL |
3520 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3521 | { | |
b9ce5ef4 GC |
3522 | s = cache_from_obj(s, x); |
3523 | if (!s) | |
79576102 | 3524 | return; |
3544de8e | 3525 | trace_kmem_cache_free(_RET_IP_, x, s->name); |
bb192ed9 | 3526 | slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_); |
81819f0f CL |
3527 | } |
3528 | EXPORT_SYMBOL(kmem_cache_free); | |
3529 | ||
d0ecd894 | 3530 | struct detached_freelist { |
cc465c3b | 3531 | struct slab *slab; |
d0ecd894 JDB |
3532 | void *tail; |
3533 | void *freelist; | |
3534 | int cnt; | |
376bf125 | 3535 | struct kmem_cache *s; |
d0ecd894 | 3536 | }; |
fbd02630 | 3537 | |
d835eef4 | 3538 | static inline void free_large_kmalloc(struct folio *folio, void *object) |
f227f0fa | 3539 | { |
d835eef4 | 3540 | unsigned int order = folio_order(folio); |
f227f0fa | 3541 | |
d835eef4 | 3542 | if (WARN_ON_ONCE(order == 0)) |
d0fe47c6 KW |
3543 | pr_warn_once("object pointer: 0x%p\n", object); |
3544 | ||
1ed7ce57 | 3545 | kfree_hook(object); |
d835eef4 MWO |
3546 | mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, |
3547 | -(PAGE_SIZE << order)); | |
3548 | __free_pages(folio_page(folio, 0), order); | |
f227f0fa SB |
3549 | } |
3550 | ||
d0ecd894 JDB |
3551 | /* |
3552 | * This function progressively scans the array with free objects (with | |
3553 | * a limited look ahead) and extract objects belonging to the same | |
cc465c3b MWO |
3554 | * slab. It builds a detached freelist directly within the given |
3555 | * slab/objects. This can happen without any need for | |
d0ecd894 JDB |
3556 | * synchronization, because the objects are owned by running process. |
3557 | * The freelist is build up as a single linked list in the objects. | |
3558 | * The idea is, that this detached freelist can then be bulk | |
3559 | * transferred to the real freelist(s), but only requiring a single | |
3560 | * synchronization primitive. Look ahead in the array is limited due | |
3561 | * to performance reasons. | |
3562 | */ | |
376bf125 JDB |
3563 | static inline |
3564 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3565 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3566 | { |
3567 | size_t first_skipped_index = 0; | |
3568 | int lookahead = 3; | |
3569 | void *object; | |
cc465c3b MWO |
3570 | struct folio *folio; |
3571 | struct slab *slab; | |
fbd02630 | 3572 | |
d0ecd894 | 3573 | /* Always re-init detached_freelist */ |
cc465c3b | 3574 | df->slab = NULL; |
fbd02630 | 3575 | |
d0ecd894 JDB |
3576 | do { |
3577 | object = p[--size]; | |
ca257195 | 3578 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3579 | } while (!object && size); |
3eed034d | 3580 | |
d0ecd894 JDB |
3581 | if (!object) |
3582 | return 0; | |
fbd02630 | 3583 | |
cc465c3b | 3584 | folio = virt_to_folio(object); |
ca257195 JDB |
3585 | if (!s) { |
3586 | /* Handle kalloc'ed objects */ | |
cc465c3b | 3587 | if (unlikely(!folio_test_slab(folio))) { |
d835eef4 | 3588 | free_large_kmalloc(folio, object); |
ca257195 JDB |
3589 | p[size] = NULL; /* mark object processed */ |
3590 | return size; | |
3591 | } | |
3592 | /* Derive kmem_cache from object */ | |
cc465c3b MWO |
3593 | slab = folio_slab(folio); |
3594 | df->s = slab->slab_cache; | |
ca257195 | 3595 | } else { |
cc465c3b | 3596 | slab = folio_slab(folio); |
ca257195 JDB |
3597 | df->s = cache_from_obj(s, object); /* Support for memcg */ |
3598 | } | |
376bf125 | 3599 | |
b89fb5ef | 3600 | if (is_kfence_address(object)) { |
d57a964e | 3601 | slab_free_hook(df->s, object, false); |
b89fb5ef AP |
3602 | __kfence_free(object); |
3603 | p[size] = NULL; /* mark object processed */ | |
3604 | return size; | |
3605 | } | |
3606 | ||
d0ecd894 | 3607 | /* Start new detached freelist */ |
cc465c3b | 3608 | df->slab = slab; |
376bf125 | 3609 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3610 | df->tail = object; |
3611 | df->freelist = object; | |
3612 | p[size] = NULL; /* mark object processed */ | |
3613 | df->cnt = 1; | |
3614 | ||
3615 | while (size) { | |
3616 | object = p[--size]; | |
3617 | if (!object) | |
3618 | continue; /* Skip processed objects */ | |
3619 | ||
cc465c3b MWO |
3620 | /* df->slab is always set at this point */ |
3621 | if (df->slab == virt_to_slab(object)) { | |
d0ecd894 | 3622 | /* Opportunity build freelist */ |
376bf125 | 3623 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3624 | df->freelist = object; |
3625 | df->cnt++; | |
3626 | p[size] = NULL; /* mark object processed */ | |
3627 | ||
3628 | continue; | |
fbd02630 | 3629 | } |
d0ecd894 JDB |
3630 | |
3631 | /* Limit look ahead search */ | |
3632 | if (!--lookahead) | |
3633 | break; | |
3634 | ||
3635 | if (!first_skipped_index) | |
3636 | first_skipped_index = size + 1; | |
fbd02630 | 3637 | } |
d0ecd894 JDB |
3638 | |
3639 | return first_skipped_index; | |
3640 | } | |
3641 | ||
d0ecd894 | 3642 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3643 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3644 | { |
3645 | if (WARN_ON(!size)) | |
3646 | return; | |
3647 | ||
d1b2cf6c | 3648 | memcg_slab_free_hook(s, p, size); |
d0ecd894 JDB |
3649 | do { |
3650 | struct detached_freelist df; | |
3651 | ||
3652 | size = build_detached_freelist(s, size, p, &df); | |
cc465c3b | 3653 | if (!df.slab) |
d0ecd894 JDB |
3654 | continue; |
3655 | ||
bb192ed9 | 3656 | slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_); |
d0ecd894 | 3657 | } while (likely(size)); |
484748f0 CL |
3658 | } |
3659 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3660 | ||
994eb764 | 3661 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3662 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3663 | void **p) | |
484748f0 | 3664 | { |
994eb764 JDB |
3665 | struct kmem_cache_cpu *c; |
3666 | int i; | |
964d4bd3 | 3667 | struct obj_cgroup *objcg = NULL; |
994eb764 | 3668 | |
03ec0ed5 | 3669 | /* memcg and kmem_cache debug support */ |
964d4bd3 | 3670 | s = slab_pre_alloc_hook(s, &objcg, size, flags); |
03ec0ed5 JDB |
3671 | if (unlikely(!s)) |
3672 | return false; | |
994eb764 JDB |
3673 | /* |
3674 | * Drain objects in the per cpu slab, while disabling local | |
3675 | * IRQs, which protects against PREEMPT and interrupts | |
3676 | * handlers invoking normal fastpath. | |
3677 | */ | |
25c00c50 | 3678 | c = slub_get_cpu_ptr(s->cpu_slab); |
bd0e7491 | 3679 | local_lock_irq(&s->cpu_slab->lock); |
994eb764 JDB |
3680 | |
3681 | for (i = 0; i < size; i++) { | |
b89fb5ef | 3682 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 3683 | |
b89fb5ef AP |
3684 | if (unlikely(object)) { |
3685 | p[i] = object; | |
3686 | continue; | |
3687 | } | |
3688 | ||
3689 | object = c->freelist; | |
ebe909e0 | 3690 | if (unlikely(!object)) { |
fd4d9c7d JH |
3691 | /* |
3692 | * We may have removed an object from c->freelist using | |
3693 | * the fastpath in the previous iteration; in that case, | |
3694 | * c->tid has not been bumped yet. | |
3695 | * Since ___slab_alloc() may reenable interrupts while | |
3696 | * allocating memory, we should bump c->tid now. | |
3697 | */ | |
3698 | c->tid = next_tid(c->tid); | |
3699 | ||
bd0e7491 | 3700 | local_unlock_irq(&s->cpu_slab->lock); |
e500059b | 3701 | |
ebe909e0 JDB |
3702 | /* |
3703 | * Invoking slow path likely have side-effect | |
3704 | * of re-populating per CPU c->freelist | |
3705 | */ | |
87098373 | 3706 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3707 | _RET_IP_, c); |
87098373 CL |
3708 | if (unlikely(!p[i])) |
3709 | goto error; | |
3710 | ||
ebe909e0 | 3711 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3712 | maybe_wipe_obj_freeptr(s, p[i]); |
3713 | ||
bd0e7491 | 3714 | local_lock_irq(&s->cpu_slab->lock); |
e500059b | 3715 | |
ebe909e0 JDB |
3716 | continue; /* goto for-loop */ |
3717 | } | |
994eb764 JDB |
3718 | c->freelist = get_freepointer(s, object); |
3719 | p[i] = object; | |
0f181f9f | 3720 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3721 | } |
3722 | c->tid = next_tid(c->tid); | |
bd0e7491 | 3723 | local_unlock_irq(&s->cpu_slab->lock); |
25c00c50 | 3724 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 3725 | |
da844b78 AK |
3726 | /* |
3727 | * memcg and kmem_cache debug support and memory initialization. | |
3728 | * Done outside of the IRQ disabled fastpath loop. | |
3729 | */ | |
3730 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
3731 | slab_want_init_on_alloc(flags, s)); | |
865762a8 | 3732 | return i; |
87098373 | 3733 | error: |
25c00c50 | 3734 | slub_put_cpu_ptr(s->cpu_slab); |
da844b78 | 3735 | slab_post_alloc_hook(s, objcg, flags, i, p, false); |
03ec0ed5 | 3736 | __kmem_cache_free_bulk(s, i, p); |
865762a8 | 3737 | return 0; |
484748f0 CL |
3738 | } |
3739 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3740 | ||
3741 | ||
81819f0f | 3742 | /* |
672bba3a CL |
3743 | * Object placement in a slab is made very easy because we always start at |
3744 | * offset 0. If we tune the size of the object to the alignment then we can | |
3745 | * get the required alignment by putting one properly sized object after | |
3746 | * another. | |
81819f0f CL |
3747 | * |
3748 | * Notice that the allocation order determines the sizes of the per cpu | |
3749 | * caches. Each processor has always one slab available for allocations. | |
3750 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3751 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3752 | * locking overhead. |
81819f0f CL |
3753 | */ |
3754 | ||
3755 | /* | |
f0953a1b | 3756 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
3757 | * and slab fragmentation. A higher order reduces the number of partial slabs |
3758 | * and increases the number of allocations possible without having to | |
3759 | * take the list_lock. | |
3760 | */ | |
19af27af AD |
3761 | static unsigned int slub_min_order; |
3762 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3763 | static unsigned int slub_min_objects; | |
81819f0f | 3764 | |
81819f0f CL |
3765 | /* |
3766 | * Calculate the order of allocation given an slab object size. | |
3767 | * | |
672bba3a CL |
3768 | * The order of allocation has significant impact on performance and other |
3769 | * system components. Generally order 0 allocations should be preferred since | |
3770 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3771 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3772 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3773 | * would be wasted. |
3774 | * | |
3775 | * In order to reach satisfactory performance we must ensure that a minimum | |
3776 | * number of objects is in one slab. Otherwise we may generate too much | |
3777 | * activity on the partial lists which requires taking the list_lock. This is | |
3778 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3779 | * |
672bba3a CL |
3780 | * slub_max_order specifies the order where we begin to stop considering the |
3781 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3782 | * we try to keep the page order as low as possible. So we accept more waste | |
3783 | * of space in favor of a small page order. | |
81819f0f | 3784 | * |
672bba3a CL |
3785 | * Higher order allocations also allow the placement of more objects in a |
3786 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 3787 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 3788 | * the smallest order which will fit the object. |
81819f0f | 3789 | */ |
d122019b | 3790 | static inline unsigned int calc_slab_order(unsigned int size, |
19af27af | 3791 | unsigned int min_objects, unsigned int max_order, |
9736d2a9 | 3792 | unsigned int fract_leftover) |
81819f0f | 3793 | { |
19af27af AD |
3794 | unsigned int min_order = slub_min_order; |
3795 | unsigned int order; | |
81819f0f | 3796 | |
9736d2a9 | 3797 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3798 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3799 | |
9736d2a9 | 3800 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3801 | order <= max_order; order++) { |
81819f0f | 3802 | |
19af27af AD |
3803 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3804 | unsigned int rem; | |
81819f0f | 3805 | |
9736d2a9 | 3806 | rem = slab_size % size; |
81819f0f | 3807 | |
5e6d444e | 3808 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3809 | break; |
81819f0f | 3810 | } |
672bba3a | 3811 | |
81819f0f CL |
3812 | return order; |
3813 | } | |
3814 | ||
9736d2a9 | 3815 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3816 | { |
19af27af AD |
3817 | unsigned int order; |
3818 | unsigned int min_objects; | |
3819 | unsigned int max_objects; | |
3286222f | 3820 | unsigned int nr_cpus; |
5e6d444e CL |
3821 | |
3822 | /* | |
3823 | * Attempt to find best configuration for a slab. This | |
3824 | * works by first attempting to generate a layout with | |
3825 | * the best configuration and backing off gradually. | |
3826 | * | |
422ff4d7 | 3827 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3828 | * we reduce the minimum objects required in a slab. |
3829 | */ | |
3830 | min_objects = slub_min_objects; | |
3286222f VB |
3831 | if (!min_objects) { |
3832 | /* | |
3833 | * Some architectures will only update present cpus when | |
3834 | * onlining them, so don't trust the number if it's just 1. But | |
3835 | * we also don't want to use nr_cpu_ids always, as on some other | |
3836 | * architectures, there can be many possible cpus, but never | |
3837 | * onlined. Here we compromise between trying to avoid too high | |
3838 | * order on systems that appear larger than they are, and too | |
3839 | * low order on systems that appear smaller than they are. | |
3840 | */ | |
3841 | nr_cpus = num_present_cpus(); | |
3842 | if (nr_cpus <= 1) | |
3843 | nr_cpus = nr_cpu_ids; | |
3844 | min_objects = 4 * (fls(nr_cpus) + 1); | |
3845 | } | |
9736d2a9 | 3846 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3847 | min_objects = min(min_objects, max_objects); |
3848 | ||
5e6d444e | 3849 | while (min_objects > 1) { |
19af27af AD |
3850 | unsigned int fraction; |
3851 | ||
c124f5b5 | 3852 | fraction = 16; |
5e6d444e | 3853 | while (fraction >= 4) { |
d122019b | 3854 | order = calc_slab_order(size, min_objects, |
9736d2a9 | 3855 | slub_max_order, fraction); |
5e6d444e CL |
3856 | if (order <= slub_max_order) |
3857 | return order; | |
3858 | fraction /= 2; | |
3859 | } | |
5086c389 | 3860 | min_objects--; |
5e6d444e CL |
3861 | } |
3862 | ||
3863 | /* | |
3864 | * We were unable to place multiple objects in a slab. Now | |
3865 | * lets see if we can place a single object there. | |
3866 | */ | |
d122019b | 3867 | order = calc_slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3868 | if (order <= slub_max_order) |
3869 | return order; | |
3870 | ||
3871 | /* | |
3872 | * Doh this slab cannot be placed using slub_max_order. | |
3873 | */ | |
d122019b | 3874 | order = calc_slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3875 | if (order < MAX_ORDER) |
5e6d444e CL |
3876 | return order; |
3877 | return -ENOSYS; | |
3878 | } | |
3879 | ||
5595cffc | 3880 | static void |
4053497d | 3881 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3882 | { |
3883 | n->nr_partial = 0; | |
81819f0f CL |
3884 | spin_lock_init(&n->list_lock); |
3885 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3886 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3887 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3888 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3889 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3890 | #endif |
81819f0f CL |
3891 | } |
3892 | ||
55136592 | 3893 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3894 | { |
6c182dc0 | 3895 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3896 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3897 | |
8a5ec0ba | 3898 | /* |
d4d84fef CM |
3899 | * Must align to double word boundary for the double cmpxchg |
3900 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3901 | */ |
d4d84fef CM |
3902 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3903 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3904 | |
3905 | if (!s->cpu_slab) | |
3906 | return 0; | |
3907 | ||
3908 | init_kmem_cache_cpus(s); | |
4c93c355 | 3909 | |
8a5ec0ba | 3910 | return 1; |
4c93c355 | 3911 | } |
4c93c355 | 3912 | |
51df1142 CL |
3913 | static struct kmem_cache *kmem_cache_node; |
3914 | ||
81819f0f CL |
3915 | /* |
3916 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3917 | * slab on the node for this slabcache. There are no concurrent accesses | |
3918 | * possible. | |
3919 | * | |
721ae22a ZYW |
3920 | * Note that this function only works on the kmem_cache_node |
3921 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3922 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3923 | */ |
55136592 | 3924 | static void early_kmem_cache_node_alloc(int node) |
81819f0f | 3925 | { |
bb192ed9 | 3926 | struct slab *slab; |
81819f0f CL |
3927 | struct kmem_cache_node *n; |
3928 | ||
51df1142 | 3929 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3930 | |
bb192ed9 | 3931 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f | 3932 | |
bb192ed9 VB |
3933 | BUG_ON(!slab); |
3934 | if (slab_nid(slab) != node) { | |
f9f58285 FF |
3935 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3936 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3937 | } |
3938 | ||
bb192ed9 | 3939 | n = slab->freelist; |
81819f0f | 3940 | BUG_ON(!n); |
8ab1372f | 3941 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3942 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3943 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3944 | #endif |
da844b78 | 3945 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
bb192ed9 VB |
3946 | slab->freelist = get_freepointer(kmem_cache_node, n); |
3947 | slab->inuse = 1; | |
3948 | slab->frozen = 0; | |
12b22386 | 3949 | kmem_cache_node->node[node] = n; |
4053497d | 3950 | init_kmem_cache_node(n); |
bb192ed9 | 3951 | inc_slabs_node(kmem_cache_node, node, slab->objects); |
6446faa2 | 3952 | |
67b6c900 | 3953 | /* |
1e4dd946 SR |
3954 | * No locks need to be taken here as it has just been |
3955 | * initialized and there is no concurrent access. | |
67b6c900 | 3956 | */ |
bb192ed9 | 3957 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3958 | } |
3959 | ||
3960 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3961 | { | |
3962 | int node; | |
fa45dc25 | 3963 | struct kmem_cache_node *n; |
81819f0f | 3964 | |
fa45dc25 | 3965 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3966 | s->node[node] = NULL; |
ea37df54 | 3967 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3968 | } |
3969 | } | |
3970 | ||
52b4b950 DS |
3971 | void __kmem_cache_release(struct kmem_cache *s) |
3972 | { | |
210e7a43 | 3973 | cache_random_seq_destroy(s); |
52b4b950 DS |
3974 | free_percpu(s->cpu_slab); |
3975 | free_kmem_cache_nodes(s); | |
3976 | } | |
3977 | ||
55136592 | 3978 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3979 | { |
3980 | int node; | |
81819f0f | 3981 | |
7e1fa93d | 3982 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
3983 | struct kmem_cache_node *n; |
3984 | ||
73367bd8 | 3985 | if (slab_state == DOWN) { |
55136592 | 3986 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3987 | continue; |
3988 | } | |
51df1142 | 3989 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3990 | GFP_KERNEL, node); |
81819f0f | 3991 | |
73367bd8 AD |
3992 | if (!n) { |
3993 | free_kmem_cache_nodes(s); | |
3994 | return 0; | |
81819f0f | 3995 | } |
73367bd8 | 3996 | |
4053497d | 3997 | init_kmem_cache_node(n); |
ea37df54 | 3998 | s->node[node] = n; |
81819f0f CL |
3999 | } |
4000 | return 1; | |
4001 | } | |
81819f0f | 4002 | |
c0bdb232 | 4003 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
4004 | { |
4005 | if (min < MIN_PARTIAL) | |
4006 | min = MIN_PARTIAL; | |
4007 | else if (min > MAX_PARTIAL) | |
4008 | min = MAX_PARTIAL; | |
4009 | s->min_partial = min; | |
4010 | } | |
4011 | ||
e6d0e1dc WY |
4012 | static void set_cpu_partial(struct kmem_cache *s) |
4013 | { | |
4014 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
b47291ef VB |
4015 | unsigned int nr_objects; |
4016 | ||
e6d0e1dc WY |
4017 | /* |
4018 | * cpu_partial determined the maximum number of objects kept in the | |
4019 | * per cpu partial lists of a processor. | |
4020 | * | |
4021 | * Per cpu partial lists mainly contain slabs that just have one | |
4022 | * object freed. If they are used for allocation then they can be | |
4023 | * filled up again with minimal effort. The slab will never hit the | |
4024 | * per node partial lists and therefore no locking will be required. | |
4025 | * | |
b47291ef VB |
4026 | * For backwards compatibility reasons, this is determined as number |
4027 | * of objects, even though we now limit maximum number of pages, see | |
4028 | * slub_set_cpu_partial() | |
e6d0e1dc WY |
4029 | */ |
4030 | if (!kmem_cache_has_cpu_partial(s)) | |
b47291ef | 4031 | nr_objects = 0; |
e6d0e1dc | 4032 | else if (s->size >= PAGE_SIZE) |
b47291ef | 4033 | nr_objects = 6; |
e6d0e1dc | 4034 | else if (s->size >= 1024) |
23e98ad1 | 4035 | nr_objects = 24; |
e6d0e1dc | 4036 | else if (s->size >= 256) |
23e98ad1 | 4037 | nr_objects = 52; |
e6d0e1dc | 4038 | else |
23e98ad1 | 4039 | nr_objects = 120; |
b47291ef VB |
4040 | |
4041 | slub_set_cpu_partial(s, nr_objects); | |
e6d0e1dc WY |
4042 | #endif |
4043 | } | |
4044 | ||
81819f0f CL |
4045 | /* |
4046 | * calculate_sizes() determines the order and the distribution of data within | |
4047 | * a slab object. | |
4048 | */ | |
06b285dc | 4049 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 4050 | { |
d50112ed | 4051 | slab_flags_t flags = s->flags; |
be4a7988 | 4052 | unsigned int size = s->object_size; |
19af27af | 4053 | unsigned int order; |
81819f0f | 4054 | |
d8b42bf5 CL |
4055 | /* |
4056 | * Round up object size to the next word boundary. We can only | |
4057 | * place the free pointer at word boundaries and this determines | |
4058 | * the possible location of the free pointer. | |
4059 | */ | |
4060 | size = ALIGN(size, sizeof(void *)); | |
4061 | ||
4062 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
4063 | /* |
4064 | * Determine if we can poison the object itself. If the user of | |
4065 | * the slab may touch the object after free or before allocation | |
4066 | * then we should never poison the object itself. | |
4067 | */ | |
5f0d5a3a | 4068 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 4069 | !s->ctor) |
81819f0f CL |
4070 | s->flags |= __OBJECT_POISON; |
4071 | else | |
4072 | s->flags &= ~__OBJECT_POISON; | |
4073 | ||
81819f0f CL |
4074 | |
4075 | /* | |
672bba3a | 4076 | * If we are Redzoning then check if there is some space between the |
81819f0f | 4077 | * end of the object and the free pointer. If not then add an |
672bba3a | 4078 | * additional word to have some bytes to store Redzone information. |
81819f0f | 4079 | */ |
3b0efdfa | 4080 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 4081 | size += sizeof(void *); |
41ecc55b | 4082 | #endif |
81819f0f CL |
4083 | |
4084 | /* | |
672bba3a | 4085 | * With that we have determined the number of bytes in actual use |
e41a49fa | 4086 | * by the object and redzoning. |
81819f0f CL |
4087 | */ |
4088 | s->inuse = size; | |
4089 | ||
74c1d3e0 KC |
4090 | if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
4091 | ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || | |
4092 | s->ctor) { | |
81819f0f CL |
4093 | /* |
4094 | * Relocate free pointer after the object if it is not | |
4095 | * permitted to overwrite the first word of the object on | |
4096 | * kmem_cache_free. | |
4097 | * | |
4098 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 KC |
4099 | * destructor, are poisoning the objects, or are |
4100 | * redzoning an object smaller than sizeof(void *). | |
cbfc35a4 WL |
4101 | * |
4102 | * The assumption that s->offset >= s->inuse means free | |
4103 | * pointer is outside of the object is used in the | |
4104 | * freeptr_outside_object() function. If that is no | |
4105 | * longer true, the function needs to be modified. | |
81819f0f CL |
4106 | */ |
4107 | s->offset = size; | |
4108 | size += sizeof(void *); | |
e41a49fa | 4109 | } else { |
3202fa62 KC |
4110 | /* |
4111 | * Store freelist pointer near middle of object to keep | |
4112 | * it away from the edges of the object to avoid small | |
4113 | * sized over/underflows from neighboring allocations. | |
4114 | */ | |
e41a49fa | 4115 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
4116 | } |
4117 | ||
c12b3c62 | 4118 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4119 | if (flags & SLAB_STORE_USER) |
4120 | /* | |
4121 | * Need to store information about allocs and frees after | |
4122 | * the object. | |
4123 | */ | |
4124 | size += 2 * sizeof(struct track); | |
80a9201a | 4125 | #endif |
81819f0f | 4126 | |
80a9201a AP |
4127 | kasan_cache_create(s, &size, &s->flags); |
4128 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 4129 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
4130 | /* |
4131 | * Add some empty padding so that we can catch | |
4132 | * overwrites from earlier objects rather than let | |
4133 | * tracking information or the free pointer be | |
0211a9c8 | 4134 | * corrupted if a user writes before the start |
81819f0f CL |
4135 | * of the object. |
4136 | */ | |
4137 | size += sizeof(void *); | |
d86bd1be JK |
4138 | |
4139 | s->red_left_pad = sizeof(void *); | |
4140 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
4141 | size += s->red_left_pad; | |
4142 | } | |
41ecc55b | 4143 | #endif |
672bba3a | 4144 | |
81819f0f CL |
4145 | /* |
4146 | * SLUB stores one object immediately after another beginning from | |
4147 | * offset 0. In order to align the objects we have to simply size | |
4148 | * each object to conform to the alignment. | |
4149 | */ | |
45906855 | 4150 | size = ALIGN(size, s->align); |
81819f0f | 4151 | s->size = size; |
4138fdfc | 4152 | s->reciprocal_size = reciprocal_value(size); |
06b285dc CL |
4153 | if (forced_order >= 0) |
4154 | order = forced_order; | |
4155 | else | |
9736d2a9 | 4156 | order = calculate_order(size); |
81819f0f | 4157 | |
19af27af | 4158 | if ((int)order < 0) |
81819f0f CL |
4159 | return 0; |
4160 | ||
b7a49f0d | 4161 | s->allocflags = 0; |
834f3d11 | 4162 | if (order) |
b7a49f0d CL |
4163 | s->allocflags |= __GFP_COMP; |
4164 | ||
4165 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 4166 | s->allocflags |= GFP_DMA; |
b7a49f0d | 4167 | |
6d6ea1e9 NB |
4168 | if (s->flags & SLAB_CACHE_DMA32) |
4169 | s->allocflags |= GFP_DMA32; | |
4170 | ||
b7a49f0d CL |
4171 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
4172 | s->allocflags |= __GFP_RECLAIMABLE; | |
4173 | ||
81819f0f CL |
4174 | /* |
4175 | * Determine the number of objects per slab | |
4176 | */ | |
9736d2a9 MW |
4177 | s->oo = oo_make(order, size); |
4178 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
4179 | if (oo_objects(s->oo) > oo_objects(s->max)) |
4180 | s->max = s->oo; | |
81819f0f | 4181 | |
834f3d11 | 4182 | return !!oo_objects(s->oo); |
81819f0f CL |
4183 | } |
4184 | ||
d50112ed | 4185 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 4186 | { |
37540008 | 4187 | s->flags = kmem_cache_flags(s->size, flags, s->name); |
2482ddec KC |
4188 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
4189 | s->random = get_random_long(); | |
4190 | #endif | |
81819f0f | 4191 | |
06b285dc | 4192 | if (!calculate_sizes(s, -1)) |
81819f0f | 4193 | goto error; |
3de47213 DR |
4194 | if (disable_higher_order_debug) { |
4195 | /* | |
4196 | * Disable debugging flags that store metadata if the min slab | |
4197 | * order increased. | |
4198 | */ | |
3b0efdfa | 4199 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
4200 | s->flags &= ~DEBUG_METADATA_FLAGS; |
4201 | s->offset = 0; | |
4202 | if (!calculate_sizes(s, -1)) | |
4203 | goto error; | |
4204 | } | |
4205 | } | |
81819f0f | 4206 | |
2565409f HC |
4207 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
4208 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 4209 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
4210 | /* Enable fast mode */ |
4211 | s->flags |= __CMPXCHG_DOUBLE; | |
4212 | #endif | |
4213 | ||
3b89d7d8 | 4214 | /* |
c2092c12 | 4215 | * The larger the object size is, the more slabs we want on the partial |
3b89d7d8 DR |
4216 | * list to avoid pounding the page allocator excessively. |
4217 | */ | |
49e22585 CL |
4218 | set_min_partial(s, ilog2(s->size) / 2); |
4219 | ||
e6d0e1dc | 4220 | set_cpu_partial(s); |
49e22585 | 4221 | |
81819f0f | 4222 | #ifdef CONFIG_NUMA |
e2cb96b7 | 4223 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 4224 | #endif |
210e7a43 TG |
4225 | |
4226 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
4227 | if (slab_state >= UP) { | |
4228 | if (init_cache_random_seq(s)) | |
4229 | goto error; | |
4230 | } | |
4231 | ||
55136592 | 4232 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 4233 | goto error; |
81819f0f | 4234 | |
55136592 | 4235 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 4236 | return 0; |
ff12059e | 4237 | |
81819f0f | 4238 | error: |
9037c576 | 4239 | __kmem_cache_release(s); |
278b1bb1 | 4240 | return -EINVAL; |
81819f0f | 4241 | } |
81819f0f | 4242 | |
bb192ed9 | 4243 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
55860d96 | 4244 | const char *text) |
33b12c38 CL |
4245 | { |
4246 | #ifdef CONFIG_SLUB_DEBUG | |
bb192ed9 | 4247 | void *addr = slab_address(slab); |
a2b4ae8b | 4248 | unsigned long flags; |
55860d96 | 4249 | unsigned long *map; |
33b12c38 | 4250 | void *p; |
aa456c7a | 4251 | |
bb192ed9 VB |
4252 | slab_err(s, slab, text, s->name); |
4253 | slab_lock(slab, &flags); | |
33b12c38 | 4254 | |
bb192ed9 VB |
4255 | map = get_map(s, slab); |
4256 | for_each_object(p, s, addr, slab->objects) { | |
33b12c38 | 4257 | |
4138fdfc | 4258 | if (!test_bit(__obj_to_index(s, addr, p), map)) { |
96b94abc | 4259 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
4260 | print_tracking(s, p); |
4261 | } | |
4262 | } | |
55860d96 | 4263 | put_map(map); |
bb192ed9 | 4264 | slab_unlock(slab, &flags); |
33b12c38 CL |
4265 | #endif |
4266 | } | |
4267 | ||
81819f0f | 4268 | /* |
599870b1 | 4269 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
4270 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
4271 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 4272 | */ |
599870b1 | 4273 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 4274 | { |
60398923 | 4275 | LIST_HEAD(discard); |
bb192ed9 | 4276 | struct slab *slab, *h; |
81819f0f | 4277 | |
52b4b950 DS |
4278 | BUG_ON(irqs_disabled()); |
4279 | spin_lock_irq(&n->list_lock); | |
bb192ed9 VB |
4280 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
4281 | if (!slab->inuse) { | |
4282 | remove_partial(n, slab); | |
4283 | list_add(&slab->slab_list, &discard); | |
33b12c38 | 4284 | } else { |
bb192ed9 | 4285 | list_slab_objects(s, slab, |
55860d96 | 4286 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 4287 | } |
33b12c38 | 4288 | } |
52b4b950 | 4289 | spin_unlock_irq(&n->list_lock); |
60398923 | 4290 | |
bb192ed9 VB |
4291 | list_for_each_entry_safe(slab, h, &discard, slab_list) |
4292 | discard_slab(s, slab); | |
81819f0f CL |
4293 | } |
4294 | ||
f9e13c0a SB |
4295 | bool __kmem_cache_empty(struct kmem_cache *s) |
4296 | { | |
4297 | int node; | |
4298 | struct kmem_cache_node *n; | |
4299 | ||
4300 | for_each_kmem_cache_node(s, node, n) | |
4301 | if (n->nr_partial || slabs_node(s, node)) | |
4302 | return false; | |
4303 | return true; | |
4304 | } | |
4305 | ||
81819f0f | 4306 | /* |
672bba3a | 4307 | * Release all resources used by a slab cache. |
81819f0f | 4308 | */ |
52b4b950 | 4309 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
4310 | { |
4311 | int node; | |
fa45dc25 | 4312 | struct kmem_cache_node *n; |
81819f0f | 4313 | |
5a836bf6 | 4314 | flush_all_cpus_locked(s); |
81819f0f | 4315 | /* Attempt to free all objects */ |
fa45dc25 | 4316 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
4317 | free_partial(s, n); |
4318 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
4319 | return 1; |
4320 | } | |
81819f0f CL |
4321 | return 0; |
4322 | } | |
4323 | ||
5bb1bb35 | 4324 | #ifdef CONFIG_PRINTK |
7213230a | 4325 | void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
4326 | { |
4327 | void *base; | |
4328 | int __maybe_unused i; | |
4329 | unsigned int objnr; | |
4330 | void *objp; | |
4331 | void *objp0; | |
7213230a | 4332 | struct kmem_cache *s = slab->slab_cache; |
8e7f37f2 PM |
4333 | struct track __maybe_unused *trackp; |
4334 | ||
4335 | kpp->kp_ptr = object; | |
7213230a | 4336 | kpp->kp_slab = slab; |
8e7f37f2 | 4337 | kpp->kp_slab_cache = s; |
7213230a | 4338 | base = slab_address(slab); |
8e7f37f2 PM |
4339 | objp0 = kasan_reset_tag(object); |
4340 | #ifdef CONFIG_SLUB_DEBUG | |
4341 | objp = restore_red_left(s, objp0); | |
4342 | #else | |
4343 | objp = objp0; | |
4344 | #endif | |
40f3bf0c | 4345 | objnr = obj_to_index(s, slab, objp); |
8e7f37f2 PM |
4346 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
4347 | objp = base + s->size * objnr; | |
4348 | kpp->kp_objp = objp; | |
7213230a MWO |
4349 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
4350 | || (objp - base) % s->size) || | |
8e7f37f2 PM |
4351 | !(s->flags & SLAB_STORE_USER)) |
4352 | return; | |
4353 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 4354 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
4355 | trackp = get_track(s, objp, TRACK_ALLOC); |
4356 | kpp->kp_ret = (void *)trackp->addr; | |
ae14c63a LT |
4357 | #ifdef CONFIG_STACKTRACE |
4358 | for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { | |
4359 | kpp->kp_stack[i] = (void *)trackp->addrs[i]; | |
4360 | if (!kpp->kp_stack[i]) | |
4361 | break; | |
4362 | } | |
78869146 | 4363 | |
ae14c63a LT |
4364 | trackp = get_track(s, objp, TRACK_FREE); |
4365 | for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { | |
4366 | kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; | |
4367 | if (!kpp->kp_free_stack[i]) | |
4368 | break; | |
e548eaa1 | 4369 | } |
8e7f37f2 PM |
4370 | #endif |
4371 | #endif | |
4372 | } | |
5bb1bb35 | 4373 | #endif |
8e7f37f2 | 4374 | |
81819f0f CL |
4375 | /******************************************************************** |
4376 | * Kmalloc subsystem | |
4377 | *******************************************************************/ | |
4378 | ||
81819f0f CL |
4379 | static int __init setup_slub_min_order(char *str) |
4380 | { | |
19af27af | 4381 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
4382 | |
4383 | return 1; | |
4384 | } | |
4385 | ||
4386 | __setup("slub_min_order=", setup_slub_min_order); | |
4387 | ||
4388 | static int __init setup_slub_max_order(char *str) | |
4389 | { | |
19af27af AD |
4390 | get_option(&str, (int *)&slub_max_order); |
4391 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
4392 | |
4393 | return 1; | |
4394 | } | |
4395 | ||
4396 | __setup("slub_max_order=", setup_slub_max_order); | |
4397 | ||
4398 | static int __init setup_slub_min_objects(char *str) | |
4399 | { | |
19af27af | 4400 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
4401 | |
4402 | return 1; | |
4403 | } | |
4404 | ||
4405 | __setup("slub_min_objects=", setup_slub_min_objects); | |
4406 | ||
81819f0f CL |
4407 | void *__kmalloc(size_t size, gfp_t flags) |
4408 | { | |
aadb4bc4 | 4409 | struct kmem_cache *s; |
5b882be4 | 4410 | void *ret; |
81819f0f | 4411 | |
95a05b42 | 4412 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 4413 | return kmalloc_large(size, flags); |
aadb4bc4 | 4414 | |
2c59dd65 | 4415 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
4416 | |
4417 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
4418 | return s; |
4419 | ||
b89fb5ef | 4420 | ret = slab_alloc(s, flags, _RET_IP_, size); |
5b882be4 | 4421 | |
ca2b84cb | 4422 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 4423 | |
0116523c | 4424 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 4425 | |
5b882be4 | 4426 | return ret; |
81819f0f CL |
4427 | } |
4428 | EXPORT_SYMBOL(__kmalloc); | |
4429 | ||
5d1f57e4 | 4430 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
4431 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
4432 | { | |
b1eeab67 | 4433 | struct page *page; |
e4f7c0b4 | 4434 | void *ptr = NULL; |
6a486c0a | 4435 | unsigned int order = get_order(size); |
f619cfe1 | 4436 | |
75f296d9 | 4437 | flags |= __GFP_COMP; |
6a486c0a VB |
4438 | page = alloc_pages_node(node, flags, order); |
4439 | if (page) { | |
e4f7c0b4 | 4440 | ptr = page_address(page); |
96403bfe MS |
4441 | mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, |
4442 | PAGE_SIZE << order); | |
6a486c0a | 4443 | } |
e4f7c0b4 | 4444 | |
0116523c | 4445 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
4446 | } |
4447 | ||
81819f0f CL |
4448 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
4449 | { | |
aadb4bc4 | 4450 | struct kmem_cache *s; |
5b882be4 | 4451 | void *ret; |
81819f0f | 4452 | |
95a05b42 | 4453 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
4454 | ret = kmalloc_large_node(size, flags, node); |
4455 | ||
ca2b84cb EGM |
4456 | trace_kmalloc_node(_RET_IP_, ret, |
4457 | size, PAGE_SIZE << get_order(size), | |
4458 | flags, node); | |
5b882be4 EGM |
4459 | |
4460 | return ret; | |
4461 | } | |
aadb4bc4 | 4462 | |
2c59dd65 | 4463 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
4464 | |
4465 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
4466 | return s; |
4467 | ||
b89fb5ef | 4468 | ret = slab_alloc_node(s, flags, node, _RET_IP_, size); |
5b882be4 | 4469 | |
ca2b84cb | 4470 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 4471 | |
0116523c | 4472 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 4473 | |
5b882be4 | 4474 | return ret; |
81819f0f CL |
4475 | } |
4476 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 4477 | #endif /* CONFIG_NUMA */ |
81819f0f | 4478 | |
ed18adc1 KC |
4479 | #ifdef CONFIG_HARDENED_USERCOPY |
4480 | /* | |
afcc90f8 KC |
4481 | * Rejects incorrectly sized objects and objects that are to be copied |
4482 | * to/from userspace but do not fall entirely within the containing slab | |
4483 | * cache's usercopy region. | |
ed18adc1 KC |
4484 | * |
4485 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4486 | * to indicate an error. | |
4487 | */ | |
0b3eb091 MWO |
4488 | void __check_heap_object(const void *ptr, unsigned long n, |
4489 | const struct slab *slab, bool to_user) | |
ed18adc1 KC |
4490 | { |
4491 | struct kmem_cache *s; | |
44065b2e | 4492 | unsigned int offset; |
b89fb5ef | 4493 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 4494 | |
96fedce2 AK |
4495 | ptr = kasan_reset_tag(ptr); |
4496 | ||
ed18adc1 | 4497 | /* Find object and usable object size. */ |
0b3eb091 | 4498 | s = slab->slab_cache; |
ed18adc1 KC |
4499 | |
4500 | /* Reject impossible pointers. */ | |
0b3eb091 | 4501 | if (ptr < slab_address(slab)) |
f4e6e289 KC |
4502 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
4503 | to_user, 0, n); | |
ed18adc1 KC |
4504 | |
4505 | /* Find offset within object. */ | |
b89fb5ef AP |
4506 | if (is_kfence) |
4507 | offset = ptr - kfence_object_start(ptr); | |
4508 | else | |
0b3eb091 | 4509 | offset = (ptr - slab_address(slab)) % s->size; |
ed18adc1 KC |
4510 | |
4511 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 4512 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 4513 | if (offset < s->red_left_pad) |
f4e6e289 KC |
4514 | usercopy_abort("SLUB object in left red zone", |
4515 | s->name, to_user, offset, n); | |
ed18adc1 KC |
4516 | offset -= s->red_left_pad; |
4517 | } | |
4518 | ||
afcc90f8 KC |
4519 | /* Allow address range falling entirely within usercopy region. */ |
4520 | if (offset >= s->useroffset && | |
4521 | offset - s->useroffset <= s->usersize && | |
4522 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4523 | return; |
ed18adc1 | 4524 | |
f4e6e289 | 4525 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4526 | } |
4527 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4528 | ||
10d1f8cb | 4529 | size_t __ksize(const void *object) |
81819f0f | 4530 | { |
0c24811b | 4531 | struct folio *folio; |
81819f0f | 4532 | |
ef8b4520 | 4533 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
4534 | return 0; |
4535 | ||
0c24811b | 4536 | folio = virt_to_folio(object); |
294a80a8 | 4537 | |
0c24811b MWO |
4538 | if (unlikely(!folio_test_slab(folio))) |
4539 | return folio_size(folio); | |
81819f0f | 4540 | |
0c24811b | 4541 | return slab_ksize(folio_slab(folio)->slab_cache); |
81819f0f | 4542 | } |
10d1f8cb | 4543 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
4544 | |
4545 | void kfree(const void *x) | |
4546 | { | |
d835eef4 MWO |
4547 | struct folio *folio; |
4548 | struct slab *slab; | |
5bb983b0 | 4549 | void *object = (void *)x; |
81819f0f | 4550 | |
2121db74 PE |
4551 | trace_kfree(_RET_IP_, x); |
4552 | ||
2408c550 | 4553 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
4554 | return; |
4555 | ||
d835eef4 MWO |
4556 | folio = virt_to_folio(x); |
4557 | if (unlikely(!folio_test_slab(folio))) { | |
4558 | free_large_kmalloc(folio, object); | |
aadb4bc4 CL |
4559 | return; |
4560 | } | |
d835eef4 | 4561 | slab = folio_slab(folio); |
bb192ed9 | 4562 | slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_); |
81819f0f CL |
4563 | } |
4564 | EXPORT_SYMBOL(kfree); | |
4565 | ||
832f37f5 VD |
4566 | #define SHRINK_PROMOTE_MAX 32 |
4567 | ||
2086d26a | 4568 | /* |
832f37f5 VD |
4569 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4570 | * up most to the head of the partial lists. New allocations will then | |
4571 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4572 | * |
4573 | * The slabs with the least items are placed last. This results in them | |
4574 | * being allocated from last increasing the chance that the last objects | |
4575 | * are freed in them. | |
2086d26a | 4576 | */ |
5a836bf6 | 4577 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
4578 | { |
4579 | int node; | |
4580 | int i; | |
4581 | struct kmem_cache_node *n; | |
bb192ed9 VB |
4582 | struct slab *slab; |
4583 | struct slab *t; | |
832f37f5 VD |
4584 | struct list_head discard; |
4585 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4586 | unsigned long flags; |
ce3712d7 | 4587 | int ret = 0; |
2086d26a | 4588 | |
fa45dc25 | 4589 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4590 | INIT_LIST_HEAD(&discard); |
4591 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4592 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4593 | |
4594 | spin_lock_irqsave(&n->list_lock, flags); | |
4595 | ||
4596 | /* | |
832f37f5 | 4597 | * Build lists of slabs to discard or promote. |
2086d26a | 4598 | * |
672bba3a | 4599 | * Note that concurrent frees may occur while we hold the |
c2092c12 | 4600 | * list_lock. slab->inuse here is the upper limit. |
2086d26a | 4601 | */ |
bb192ed9 VB |
4602 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
4603 | int free = slab->objects - slab->inuse; | |
832f37f5 | 4604 | |
c2092c12 | 4605 | /* Do not reread slab->inuse */ |
832f37f5 VD |
4606 | barrier(); |
4607 | ||
4608 | /* We do not keep full slabs on the list */ | |
4609 | BUG_ON(free <= 0); | |
4610 | ||
bb192ed9 VB |
4611 | if (free == slab->objects) { |
4612 | list_move(&slab->slab_list, &discard); | |
69cb8e6b | 4613 | n->nr_partial--; |
832f37f5 | 4614 | } else if (free <= SHRINK_PROMOTE_MAX) |
bb192ed9 | 4615 | list_move(&slab->slab_list, promote + free - 1); |
2086d26a CL |
4616 | } |
4617 | ||
2086d26a | 4618 | /* |
832f37f5 VD |
4619 | * Promote the slabs filled up most to the head of the |
4620 | * partial list. | |
2086d26a | 4621 | */ |
832f37f5 VD |
4622 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4623 | list_splice(promote + i, &n->partial); | |
2086d26a | 4624 | |
2086d26a | 4625 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4626 | |
4627 | /* Release empty slabs */ | |
bb192ed9 VB |
4628 | list_for_each_entry_safe(slab, t, &discard, slab_list) |
4629 | discard_slab(s, slab); | |
ce3712d7 VD |
4630 | |
4631 | if (slabs_node(s, node)) | |
4632 | ret = 1; | |
2086d26a CL |
4633 | } |
4634 | ||
ce3712d7 | 4635 | return ret; |
2086d26a | 4636 | } |
2086d26a | 4637 | |
5a836bf6 SAS |
4638 | int __kmem_cache_shrink(struct kmem_cache *s) |
4639 | { | |
4640 | flush_all(s); | |
4641 | return __kmem_cache_do_shrink(s); | |
4642 | } | |
4643 | ||
b9049e23 YG |
4644 | static int slab_mem_going_offline_callback(void *arg) |
4645 | { | |
4646 | struct kmem_cache *s; | |
4647 | ||
18004c5d | 4648 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
4649 | list_for_each_entry(s, &slab_caches, list) { |
4650 | flush_all_cpus_locked(s); | |
4651 | __kmem_cache_do_shrink(s); | |
4652 | } | |
18004c5d | 4653 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4654 | |
4655 | return 0; | |
4656 | } | |
4657 | ||
4658 | static void slab_mem_offline_callback(void *arg) | |
4659 | { | |
b9049e23 YG |
4660 | struct memory_notify *marg = arg; |
4661 | int offline_node; | |
4662 | ||
b9d5ab25 | 4663 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4664 | |
4665 | /* | |
4666 | * If the node still has available memory. we need kmem_cache_node | |
4667 | * for it yet. | |
4668 | */ | |
4669 | if (offline_node < 0) | |
4670 | return; | |
4671 | ||
18004c5d | 4672 | mutex_lock(&slab_mutex); |
7e1fa93d | 4673 | node_clear(offline_node, slab_nodes); |
666716fd VB |
4674 | /* |
4675 | * We no longer free kmem_cache_node structures here, as it would be | |
4676 | * racy with all get_node() users, and infeasible to protect them with | |
4677 | * slab_mutex. | |
4678 | */ | |
18004c5d | 4679 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4680 | } |
4681 | ||
4682 | static int slab_mem_going_online_callback(void *arg) | |
4683 | { | |
4684 | struct kmem_cache_node *n; | |
4685 | struct kmem_cache *s; | |
4686 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4687 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4688 | int ret = 0; |
4689 | ||
4690 | /* | |
4691 | * If the node's memory is already available, then kmem_cache_node is | |
4692 | * already created. Nothing to do. | |
4693 | */ | |
4694 | if (nid < 0) | |
4695 | return 0; | |
4696 | ||
4697 | /* | |
0121c619 | 4698 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4699 | * allocate a kmem_cache_node structure in order to bring the node |
4700 | * online. | |
4701 | */ | |
18004c5d | 4702 | mutex_lock(&slab_mutex); |
b9049e23 | 4703 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
4704 | /* |
4705 | * The structure may already exist if the node was previously | |
4706 | * onlined and offlined. | |
4707 | */ | |
4708 | if (get_node(s, nid)) | |
4709 | continue; | |
b9049e23 YG |
4710 | /* |
4711 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4712 | * since memory is not yet available from the node that | |
4713 | * is brought up. | |
4714 | */ | |
8de66a0c | 4715 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4716 | if (!n) { |
4717 | ret = -ENOMEM; | |
4718 | goto out; | |
4719 | } | |
4053497d | 4720 | init_kmem_cache_node(n); |
b9049e23 YG |
4721 | s->node[nid] = n; |
4722 | } | |
7e1fa93d VB |
4723 | /* |
4724 | * Any cache created after this point will also have kmem_cache_node | |
4725 | * initialized for the new node. | |
4726 | */ | |
4727 | node_set(nid, slab_nodes); | |
b9049e23 | 4728 | out: |
18004c5d | 4729 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4730 | return ret; |
4731 | } | |
4732 | ||
4733 | static int slab_memory_callback(struct notifier_block *self, | |
4734 | unsigned long action, void *arg) | |
4735 | { | |
4736 | int ret = 0; | |
4737 | ||
4738 | switch (action) { | |
4739 | case MEM_GOING_ONLINE: | |
4740 | ret = slab_mem_going_online_callback(arg); | |
4741 | break; | |
4742 | case MEM_GOING_OFFLINE: | |
4743 | ret = slab_mem_going_offline_callback(arg); | |
4744 | break; | |
4745 | case MEM_OFFLINE: | |
4746 | case MEM_CANCEL_ONLINE: | |
4747 | slab_mem_offline_callback(arg); | |
4748 | break; | |
4749 | case MEM_ONLINE: | |
4750 | case MEM_CANCEL_OFFLINE: | |
4751 | break; | |
4752 | } | |
dc19f9db KH |
4753 | if (ret) |
4754 | ret = notifier_from_errno(ret); | |
4755 | else | |
4756 | ret = NOTIFY_OK; | |
b9049e23 YG |
4757 | return ret; |
4758 | } | |
4759 | ||
3ac38faa AM |
4760 | static struct notifier_block slab_memory_callback_nb = { |
4761 | .notifier_call = slab_memory_callback, | |
4762 | .priority = SLAB_CALLBACK_PRI, | |
4763 | }; | |
b9049e23 | 4764 | |
81819f0f CL |
4765 | /******************************************************************** |
4766 | * Basic setup of slabs | |
4767 | *******************************************************************/ | |
4768 | ||
51df1142 CL |
4769 | /* |
4770 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4771 | * the page allocator. Allocate them properly then fix up the pointers |
4772 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4773 | */ |
4774 | ||
dffb4d60 | 4775 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4776 | { |
4777 | int node; | |
dffb4d60 | 4778 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4779 | struct kmem_cache_node *n; |
51df1142 | 4780 | |
dffb4d60 | 4781 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4782 | |
7d557b3c GC |
4783 | /* |
4784 | * This runs very early, and only the boot processor is supposed to be | |
4785 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4786 | * IPIs around. | |
4787 | */ | |
4788 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4789 | for_each_kmem_cache_node(s, node, n) { |
bb192ed9 | 4790 | struct slab *p; |
51df1142 | 4791 | |
916ac052 | 4792 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4793 | p->slab_cache = s; |
51df1142 | 4794 | |
607bf324 | 4795 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4796 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4797 | p->slab_cache = s; |
51df1142 | 4798 | #endif |
51df1142 | 4799 | } |
dffb4d60 CL |
4800 | list_add(&s->list, &slab_caches); |
4801 | return s; | |
51df1142 CL |
4802 | } |
4803 | ||
81819f0f CL |
4804 | void __init kmem_cache_init(void) |
4805 | { | |
dffb4d60 CL |
4806 | static __initdata struct kmem_cache boot_kmem_cache, |
4807 | boot_kmem_cache_node; | |
7e1fa93d | 4808 | int node; |
51df1142 | 4809 | |
fc8d8620 SG |
4810 | if (debug_guardpage_minorder()) |
4811 | slub_max_order = 0; | |
4812 | ||
79270291 SB |
4813 | /* Print slub debugging pointers without hashing */ |
4814 | if (__slub_debug_enabled()) | |
4815 | no_hash_pointers_enable(NULL); | |
4816 | ||
dffb4d60 CL |
4817 | kmem_cache_node = &boot_kmem_cache_node; |
4818 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4819 | |
7e1fa93d VB |
4820 | /* |
4821 | * Initialize the nodemask for which we will allocate per node | |
4822 | * structures. Here we don't need taking slab_mutex yet. | |
4823 | */ | |
4824 | for_each_node_state(node, N_NORMAL_MEMORY) | |
4825 | node_set(node, slab_nodes); | |
4826 | ||
dffb4d60 | 4827 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4828 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4829 | |
3ac38faa | 4830 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4831 | |
4832 | /* Able to allocate the per node structures */ | |
4833 | slab_state = PARTIAL; | |
4834 | ||
dffb4d60 CL |
4835 | create_boot_cache(kmem_cache, "kmem_cache", |
4836 | offsetof(struct kmem_cache, node) + | |
4837 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4838 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4839 | |
dffb4d60 | 4840 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4841 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4842 | |
4843 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4844 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4845 | create_kmalloc_caches(0); |
81819f0f | 4846 | |
210e7a43 TG |
4847 | /* Setup random freelists for each cache */ |
4848 | init_freelist_randomization(); | |
4849 | ||
a96a87bf SAS |
4850 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4851 | slub_cpu_dead); | |
81819f0f | 4852 | |
b9726c26 | 4853 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4854 | cache_line_size(), |
81819f0f CL |
4855 | slub_min_order, slub_max_order, slub_min_objects, |
4856 | nr_cpu_ids, nr_node_ids); | |
4857 | } | |
4858 | ||
7e85ee0c PE |
4859 | void __init kmem_cache_init_late(void) |
4860 | { | |
7e85ee0c PE |
4861 | } |
4862 | ||
2633d7a0 | 4863 | struct kmem_cache * |
f4957d5b | 4864 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4865 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4866 | { |
10befea9 | 4867 | struct kmem_cache *s; |
81819f0f | 4868 | |
a44cb944 | 4869 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4870 | if (s) { |
4871 | s->refcount++; | |
84d0ddd6 | 4872 | |
81819f0f CL |
4873 | /* |
4874 | * Adjust the object sizes so that we clear | |
4875 | * the complete object on kzalloc. | |
4876 | */ | |
1b473f29 | 4877 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4878 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4879 | |
7b8f3b66 | 4880 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4881 | s->refcount--; |
cbb79694 | 4882 | s = NULL; |
7b8f3b66 | 4883 | } |
a0e1d1be | 4884 | } |
6446faa2 | 4885 | |
cbb79694 CL |
4886 | return s; |
4887 | } | |
84c1cf62 | 4888 | |
d50112ed | 4889 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4890 | { |
aac3a166 PE |
4891 | int err; |
4892 | ||
4893 | err = kmem_cache_open(s, flags); | |
4894 | if (err) | |
4895 | return err; | |
20cea968 | 4896 | |
45530c44 CL |
4897 | /* Mutex is not taken during early boot */ |
4898 | if (slab_state <= UP) | |
4899 | return 0; | |
4900 | ||
aac3a166 | 4901 | err = sysfs_slab_add(s); |
67823a54 | 4902 | if (err) { |
52b4b950 | 4903 | __kmem_cache_release(s); |
67823a54 ML |
4904 | return err; |
4905 | } | |
20cea968 | 4906 | |
64dd6849 FM |
4907 | if (s->flags & SLAB_STORE_USER) |
4908 | debugfs_slab_add(s); | |
4909 | ||
67823a54 | 4910 | return 0; |
81819f0f | 4911 | } |
81819f0f | 4912 | |
ce71e27c | 4913 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4914 | { |
aadb4bc4 | 4915 | struct kmem_cache *s; |
94b528d0 | 4916 | void *ret; |
aadb4bc4 | 4917 | |
95a05b42 | 4918 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4919 | return kmalloc_large(size, gfpflags); |
4920 | ||
2c59dd65 | 4921 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4922 | |
2408c550 | 4923 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4924 | return s; |
81819f0f | 4925 | |
b89fb5ef | 4926 | ret = slab_alloc(s, gfpflags, caller, size); |
94b528d0 | 4927 | |
25985edc | 4928 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4929 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4930 | |
4931 | return ret; | |
81819f0f | 4932 | } |
fd7cb575 | 4933 | EXPORT_SYMBOL(__kmalloc_track_caller); |
81819f0f | 4934 | |
5d1f57e4 | 4935 | #ifdef CONFIG_NUMA |
81819f0f | 4936 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4937 | int node, unsigned long caller) |
81819f0f | 4938 | { |
aadb4bc4 | 4939 | struct kmem_cache *s; |
94b528d0 | 4940 | void *ret; |
aadb4bc4 | 4941 | |
95a05b42 | 4942 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4943 | ret = kmalloc_large_node(size, gfpflags, node); |
4944 | ||
4945 | trace_kmalloc_node(caller, ret, | |
4946 | size, PAGE_SIZE << get_order(size), | |
4947 | gfpflags, node); | |
4948 | ||
4949 | return ret; | |
4950 | } | |
eada35ef | 4951 | |
2c59dd65 | 4952 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4953 | |
2408c550 | 4954 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4955 | return s; |
81819f0f | 4956 | |
b89fb5ef | 4957 | ret = slab_alloc_node(s, gfpflags, node, caller, size); |
94b528d0 | 4958 | |
25985edc | 4959 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4960 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4961 | |
4962 | return ret; | |
81819f0f | 4963 | } |
fd7cb575 | 4964 | EXPORT_SYMBOL(__kmalloc_node_track_caller); |
5d1f57e4 | 4965 | #endif |
81819f0f | 4966 | |
ab4d5ed5 | 4967 | #ifdef CONFIG_SYSFS |
bb192ed9 | 4968 | static int count_inuse(struct slab *slab) |
205ab99d | 4969 | { |
bb192ed9 | 4970 | return slab->inuse; |
205ab99d CL |
4971 | } |
4972 | ||
bb192ed9 | 4973 | static int count_total(struct slab *slab) |
205ab99d | 4974 | { |
bb192ed9 | 4975 | return slab->objects; |
205ab99d | 4976 | } |
ab4d5ed5 | 4977 | #endif |
205ab99d | 4978 | |
ab4d5ed5 | 4979 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 4980 | static void validate_slab(struct kmem_cache *s, struct slab *slab, |
0a19e7dd | 4981 | unsigned long *obj_map) |
53e15af0 CL |
4982 | { |
4983 | void *p; | |
bb192ed9 | 4984 | void *addr = slab_address(slab); |
a2b4ae8b | 4985 | unsigned long flags; |
90e9f6a6 | 4986 | |
bb192ed9 | 4987 | slab_lock(slab, &flags); |
53e15af0 | 4988 | |
bb192ed9 | 4989 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
90e9f6a6 | 4990 | goto unlock; |
53e15af0 CL |
4991 | |
4992 | /* Now we know that a valid freelist exists */ | |
bb192ed9 VB |
4993 | __fill_map(obj_map, s, slab); |
4994 | for_each_object(p, s, addr, slab->objects) { | |
0a19e7dd | 4995 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 4996 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 4997 | |
bb192ed9 | 4998 | if (!check_object(s, slab, p, val)) |
dd98afd4 YZ |
4999 | break; |
5000 | } | |
90e9f6a6 | 5001 | unlock: |
bb192ed9 | 5002 | slab_unlock(slab, &flags); |
53e15af0 CL |
5003 | } |
5004 | ||
434e245d | 5005 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 5006 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
5007 | { |
5008 | unsigned long count = 0; | |
bb192ed9 | 5009 | struct slab *slab; |
53e15af0 CL |
5010 | unsigned long flags; |
5011 | ||
5012 | spin_lock_irqsave(&n->list_lock, flags); | |
5013 | ||
bb192ed9 VB |
5014 | list_for_each_entry(slab, &n->partial, slab_list) { |
5015 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5016 | count++; |
5017 | } | |
1f9f78b1 | 5018 | if (count != n->nr_partial) { |
f9f58285 FF |
5019 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
5020 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
5021 | slab_add_kunit_errors(); |
5022 | } | |
53e15af0 CL |
5023 | |
5024 | if (!(s->flags & SLAB_STORE_USER)) | |
5025 | goto out; | |
5026 | ||
bb192ed9 VB |
5027 | list_for_each_entry(slab, &n->full, slab_list) { |
5028 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5029 | count++; |
5030 | } | |
1f9f78b1 | 5031 | if (count != atomic_long_read(&n->nr_slabs)) { |
f9f58285 FF |
5032 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
5033 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
1f9f78b1 OG |
5034 | slab_add_kunit_errors(); |
5035 | } | |
53e15af0 CL |
5036 | |
5037 | out: | |
5038 | spin_unlock_irqrestore(&n->list_lock, flags); | |
5039 | return count; | |
5040 | } | |
5041 | ||
1f9f78b1 | 5042 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
5043 | { |
5044 | int node; | |
5045 | unsigned long count = 0; | |
fa45dc25 | 5046 | struct kmem_cache_node *n; |
0a19e7dd VB |
5047 | unsigned long *obj_map; |
5048 | ||
5049 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
5050 | if (!obj_map) | |
5051 | return -ENOMEM; | |
53e15af0 CL |
5052 | |
5053 | flush_all(s); | |
fa45dc25 | 5054 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
5055 | count += validate_slab_node(s, n, obj_map); |
5056 | ||
5057 | bitmap_free(obj_map); | |
90e9f6a6 | 5058 | |
53e15af0 CL |
5059 | return count; |
5060 | } | |
1f9f78b1 OG |
5061 | EXPORT_SYMBOL(validate_slab_cache); |
5062 | ||
64dd6849 | 5063 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 5064 | /* |
672bba3a | 5065 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
5066 | * and freed. |
5067 | */ | |
5068 | ||
5069 | struct location { | |
5070 | unsigned long count; | |
ce71e27c | 5071 | unsigned long addr; |
45edfa58 CL |
5072 | long long sum_time; |
5073 | long min_time; | |
5074 | long max_time; | |
5075 | long min_pid; | |
5076 | long max_pid; | |
174596a0 | 5077 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 5078 | nodemask_t nodes; |
88a420e4 CL |
5079 | }; |
5080 | ||
5081 | struct loc_track { | |
5082 | unsigned long max; | |
5083 | unsigned long count; | |
5084 | struct location *loc; | |
005a79e5 | 5085 | loff_t idx; |
88a420e4 CL |
5086 | }; |
5087 | ||
64dd6849 FM |
5088 | static struct dentry *slab_debugfs_root; |
5089 | ||
88a420e4 CL |
5090 | static void free_loc_track(struct loc_track *t) |
5091 | { | |
5092 | if (t->max) | |
5093 | free_pages((unsigned long)t->loc, | |
5094 | get_order(sizeof(struct location) * t->max)); | |
5095 | } | |
5096 | ||
68dff6a9 | 5097 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
5098 | { |
5099 | struct location *l; | |
5100 | int order; | |
5101 | ||
88a420e4 CL |
5102 | order = get_order(sizeof(struct location) * max); |
5103 | ||
68dff6a9 | 5104 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
5105 | if (!l) |
5106 | return 0; | |
5107 | ||
5108 | if (t->count) { | |
5109 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
5110 | free_loc_track(t); | |
5111 | } | |
5112 | t->max = max; | |
5113 | t->loc = l; | |
5114 | return 1; | |
5115 | } | |
5116 | ||
5117 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 5118 | const struct track *track) |
88a420e4 CL |
5119 | { |
5120 | long start, end, pos; | |
5121 | struct location *l; | |
ce71e27c | 5122 | unsigned long caddr; |
45edfa58 | 5123 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
5124 | |
5125 | start = -1; | |
5126 | end = t->count; | |
5127 | ||
5128 | for ( ; ; ) { | |
5129 | pos = start + (end - start + 1) / 2; | |
5130 | ||
5131 | /* | |
5132 | * There is nothing at "end". If we end up there | |
5133 | * we need to add something to before end. | |
5134 | */ | |
5135 | if (pos == end) | |
5136 | break; | |
5137 | ||
5138 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
5139 | if (track->addr == caddr) { |
5140 | ||
5141 | l = &t->loc[pos]; | |
5142 | l->count++; | |
5143 | if (track->when) { | |
5144 | l->sum_time += age; | |
5145 | if (age < l->min_time) | |
5146 | l->min_time = age; | |
5147 | if (age > l->max_time) | |
5148 | l->max_time = age; | |
5149 | ||
5150 | if (track->pid < l->min_pid) | |
5151 | l->min_pid = track->pid; | |
5152 | if (track->pid > l->max_pid) | |
5153 | l->max_pid = track->pid; | |
5154 | ||
174596a0 RR |
5155 | cpumask_set_cpu(track->cpu, |
5156 | to_cpumask(l->cpus)); | |
45edfa58 CL |
5157 | } |
5158 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5159 | return 1; |
5160 | } | |
5161 | ||
45edfa58 | 5162 | if (track->addr < caddr) |
88a420e4 CL |
5163 | end = pos; |
5164 | else | |
5165 | start = pos; | |
5166 | } | |
5167 | ||
5168 | /* | |
672bba3a | 5169 | * Not found. Insert new tracking element. |
88a420e4 | 5170 | */ |
68dff6a9 | 5171 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
5172 | return 0; |
5173 | ||
5174 | l = t->loc + pos; | |
5175 | if (pos < t->count) | |
5176 | memmove(l + 1, l, | |
5177 | (t->count - pos) * sizeof(struct location)); | |
5178 | t->count++; | |
5179 | l->count = 1; | |
45edfa58 CL |
5180 | l->addr = track->addr; |
5181 | l->sum_time = age; | |
5182 | l->min_time = age; | |
5183 | l->max_time = age; | |
5184 | l->min_pid = track->pid; | |
5185 | l->max_pid = track->pid; | |
174596a0 RR |
5186 | cpumask_clear(to_cpumask(l->cpus)); |
5187 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
5188 | nodes_clear(l->nodes); |
5189 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5190 | return 1; |
5191 | } | |
5192 | ||
5193 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bb192ed9 | 5194 | struct slab *slab, enum track_item alloc, |
b3fd64e1 | 5195 | unsigned long *obj_map) |
88a420e4 | 5196 | { |
bb192ed9 | 5197 | void *addr = slab_address(slab); |
88a420e4 CL |
5198 | void *p; |
5199 | ||
bb192ed9 | 5200 | __fill_map(obj_map, s, slab); |
b3fd64e1 | 5201 | |
bb192ed9 | 5202 | for_each_object(p, s, addr, slab->objects) |
b3fd64e1 | 5203 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
45edfa58 | 5204 | add_location(t, s, get_track(s, p, alloc)); |
88a420e4 | 5205 | } |
64dd6849 | 5206 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 5207 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 5208 | |
ab4d5ed5 | 5209 | #ifdef CONFIG_SYSFS |
81819f0f | 5210 | enum slab_stat_type { |
205ab99d CL |
5211 | SL_ALL, /* All slabs */ |
5212 | SL_PARTIAL, /* Only partially allocated slabs */ | |
5213 | SL_CPU, /* Only slabs used for cpu caches */ | |
5214 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
5215 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
5216 | }; |
5217 | ||
205ab99d | 5218 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
5219 | #define SO_PARTIAL (1 << SL_PARTIAL) |
5220 | #define SO_CPU (1 << SL_CPU) | |
5221 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 5222 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 5223 | |
62e5c4b4 | 5224 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 5225 | char *buf, unsigned long flags) |
81819f0f CL |
5226 | { |
5227 | unsigned long total = 0; | |
81819f0f CL |
5228 | int node; |
5229 | int x; | |
5230 | unsigned long *nodes; | |
bf16d19a | 5231 | int len = 0; |
81819f0f | 5232 | |
6396bb22 | 5233 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
5234 | if (!nodes) |
5235 | return -ENOMEM; | |
81819f0f | 5236 | |
205ab99d CL |
5237 | if (flags & SO_CPU) { |
5238 | int cpu; | |
81819f0f | 5239 | |
205ab99d | 5240 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
5241 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
5242 | cpu); | |
ec3ab083 | 5243 | int node; |
bb192ed9 | 5244 | struct slab *slab; |
dfb4f096 | 5245 | |
bb192ed9 VB |
5246 | slab = READ_ONCE(c->slab); |
5247 | if (!slab) | |
ec3ab083 | 5248 | continue; |
205ab99d | 5249 | |
bb192ed9 | 5250 | node = slab_nid(slab); |
ec3ab083 | 5251 | if (flags & SO_TOTAL) |
bb192ed9 | 5252 | x = slab->objects; |
ec3ab083 | 5253 | else if (flags & SO_OBJECTS) |
bb192ed9 | 5254 | x = slab->inuse; |
ec3ab083 CL |
5255 | else |
5256 | x = 1; | |
49e22585 | 5257 | |
ec3ab083 CL |
5258 | total += x; |
5259 | nodes[node] += x; | |
5260 | ||
9c01e9af | 5261 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 VB |
5262 | slab = slub_percpu_partial_read_once(c); |
5263 | if (slab) { | |
5264 | node = slab_nid(slab); | |
8afb1474 LZ |
5265 | if (flags & SO_TOTAL) |
5266 | WARN_ON_ONCE(1); | |
5267 | else if (flags & SO_OBJECTS) | |
5268 | WARN_ON_ONCE(1); | |
5269 | else | |
bb192ed9 | 5270 | x = slab->slabs; |
bc6697d8 ED |
5271 | total += x; |
5272 | nodes[node] += x; | |
49e22585 | 5273 | } |
9c01e9af | 5274 | #endif |
81819f0f CL |
5275 | } |
5276 | } | |
5277 | ||
e4f8e513 QC |
5278 | /* |
5279 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
5280 | * already held which will conflict with an existing lock order: | |
5281 | * | |
5282 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
5283 | * | |
5284 | * We don't really need mem_hotplug_lock (to hold off | |
5285 | * slab_mem_going_offline_callback) here because slab's memory hot | |
5286 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
5287 | */ | |
5288 | ||
ab4d5ed5 | 5289 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 5290 | if (flags & SO_ALL) { |
fa45dc25 CL |
5291 | struct kmem_cache_node *n; |
5292 | ||
5293 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 5294 | |
d0e0ac97 CG |
5295 | if (flags & SO_TOTAL) |
5296 | x = atomic_long_read(&n->total_objects); | |
5297 | else if (flags & SO_OBJECTS) | |
5298 | x = atomic_long_read(&n->total_objects) - | |
5299 | count_partial(n, count_free); | |
81819f0f | 5300 | else |
205ab99d | 5301 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
5302 | total += x; |
5303 | nodes[node] += x; | |
5304 | } | |
5305 | ||
ab4d5ed5 CL |
5306 | } else |
5307 | #endif | |
5308 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 5309 | struct kmem_cache_node *n; |
81819f0f | 5310 | |
fa45dc25 | 5311 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
5312 | if (flags & SO_TOTAL) |
5313 | x = count_partial(n, count_total); | |
5314 | else if (flags & SO_OBJECTS) | |
5315 | x = count_partial(n, count_inuse); | |
81819f0f | 5316 | else |
205ab99d | 5317 | x = n->nr_partial; |
81819f0f CL |
5318 | total += x; |
5319 | nodes[node] += x; | |
5320 | } | |
5321 | } | |
bf16d19a JP |
5322 | |
5323 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 5324 | #ifdef CONFIG_NUMA |
bf16d19a | 5325 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 5326 | if (nodes[node]) |
bf16d19a JP |
5327 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
5328 | node, nodes[node]); | |
5329 | } | |
81819f0f | 5330 | #endif |
bf16d19a | 5331 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 5332 | kfree(nodes); |
bf16d19a JP |
5333 | |
5334 | return len; | |
81819f0f CL |
5335 | } |
5336 | ||
81819f0f | 5337 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 5338 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5339 | |
5340 | struct slab_attribute { | |
5341 | struct attribute attr; | |
5342 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5343 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5344 | }; | |
5345 | ||
5346 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
5347 | static struct slab_attribute _name##_attr = \ |
5348 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
5349 | |
5350 | #define SLAB_ATTR(_name) \ | |
5351 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 5352 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 5353 | |
81819f0f CL |
5354 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5355 | { | |
bf16d19a | 5356 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
5357 | } |
5358 | SLAB_ATTR_RO(slab_size); | |
5359 | ||
5360 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5361 | { | |
bf16d19a | 5362 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
5363 | } |
5364 | SLAB_ATTR_RO(align); | |
5365 | ||
5366 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5367 | { | |
bf16d19a | 5368 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
5369 | } |
5370 | SLAB_ATTR_RO(object_size); | |
5371 | ||
5372 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5373 | { | |
bf16d19a | 5374 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5375 | } |
5376 | SLAB_ATTR_RO(objs_per_slab); | |
5377 | ||
5378 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
5379 | { | |
bf16d19a | 5380 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5381 | } |
32a6f409 | 5382 | SLAB_ATTR_RO(order); |
81819f0f | 5383 | |
73d342b1 DR |
5384 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5385 | { | |
bf16d19a | 5386 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
5387 | } |
5388 | ||
5389 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5390 | size_t length) | |
5391 | { | |
5392 | unsigned long min; | |
5393 | int err; | |
5394 | ||
3dbb95f7 | 5395 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5396 | if (err) |
5397 | return err; | |
5398 | ||
c0bdb232 | 5399 | set_min_partial(s, min); |
73d342b1 DR |
5400 | return length; |
5401 | } | |
5402 | SLAB_ATTR(min_partial); | |
5403 | ||
49e22585 CL |
5404 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5405 | { | |
b47291ef VB |
5406 | unsigned int nr_partial = 0; |
5407 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
5408 | nr_partial = s->cpu_partial; | |
5409 | #endif | |
5410 | ||
5411 | return sysfs_emit(buf, "%u\n", nr_partial); | |
49e22585 CL |
5412 | } |
5413 | ||
5414 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5415 | size_t length) | |
5416 | { | |
e5d9998f | 5417 | unsigned int objects; |
49e22585 CL |
5418 | int err; |
5419 | ||
e5d9998f | 5420 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5421 | if (err) |
5422 | return err; | |
345c905d | 5423 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5424 | return -EINVAL; |
49e22585 | 5425 | |
e6d0e1dc | 5426 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5427 | flush_all(s); |
5428 | return length; | |
5429 | } | |
5430 | SLAB_ATTR(cpu_partial); | |
5431 | ||
81819f0f CL |
5432 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5433 | { | |
62c70bce JP |
5434 | if (!s->ctor) |
5435 | return 0; | |
bf16d19a | 5436 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
5437 | } |
5438 | SLAB_ATTR_RO(ctor); | |
5439 | ||
81819f0f CL |
5440 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5441 | { | |
bf16d19a | 5442 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5443 | } |
5444 | SLAB_ATTR_RO(aliases); | |
5445 | ||
81819f0f CL |
5446 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5447 | { | |
d9acf4b7 | 5448 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5449 | } |
5450 | SLAB_ATTR_RO(partial); | |
5451 | ||
5452 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5453 | { | |
d9acf4b7 | 5454 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5455 | } |
5456 | SLAB_ATTR_RO(cpu_slabs); | |
5457 | ||
5458 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5459 | { | |
205ab99d | 5460 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5461 | } |
5462 | SLAB_ATTR_RO(objects); | |
5463 | ||
205ab99d CL |
5464 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5465 | { | |
5466 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5467 | } | |
5468 | SLAB_ATTR_RO(objects_partial); | |
5469 | ||
49e22585 CL |
5470 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5471 | { | |
5472 | int objects = 0; | |
bb192ed9 | 5473 | int slabs = 0; |
9c01e9af | 5474 | int cpu __maybe_unused; |
bf16d19a | 5475 | int len = 0; |
49e22585 | 5476 | |
9c01e9af | 5477 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 5478 | for_each_online_cpu(cpu) { |
bb192ed9 | 5479 | struct slab *slab; |
a93cf07b | 5480 | |
bb192ed9 | 5481 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
49e22585 | 5482 | |
bb192ed9 VB |
5483 | if (slab) |
5484 | slabs += slab->slabs; | |
49e22585 | 5485 | } |
9c01e9af | 5486 | #endif |
49e22585 | 5487 | |
c2092c12 | 5488 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
bb192ed9 VB |
5489 | objects = (slabs * oo_objects(s->oo)) / 2; |
5490 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
49e22585 | 5491 | |
9c01e9af | 5492 | #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) |
49e22585 | 5493 | for_each_online_cpu(cpu) { |
bb192ed9 | 5494 | struct slab *slab; |
a93cf07b | 5495 | |
bb192ed9 VB |
5496 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
5497 | if (slab) { | |
5498 | slabs = READ_ONCE(slab->slabs); | |
5499 | objects = (slabs * oo_objects(s->oo)) / 2; | |
bf16d19a | 5500 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
bb192ed9 | 5501 | cpu, objects, slabs); |
b47291ef | 5502 | } |
49e22585 CL |
5503 | } |
5504 | #endif | |
bf16d19a JP |
5505 | len += sysfs_emit_at(buf, len, "\n"); |
5506 | ||
5507 | return len; | |
49e22585 CL |
5508 | } |
5509 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5510 | ||
a5a84755 CL |
5511 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5512 | { | |
bf16d19a | 5513 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 5514 | } |
8f58119a | 5515 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
5516 | |
5517 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5518 | { | |
bf16d19a | 5519 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
5520 | } |
5521 | SLAB_ATTR_RO(hwcache_align); | |
5522 | ||
5523 | #ifdef CONFIG_ZONE_DMA | |
5524 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5525 | { | |
bf16d19a | 5526 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
5527 | } |
5528 | SLAB_ATTR_RO(cache_dma); | |
5529 | #endif | |
5530 | ||
8eb8284b DW |
5531 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5532 | { | |
bf16d19a | 5533 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
5534 | } |
5535 | SLAB_ATTR_RO(usersize); | |
5536 | ||
a5a84755 CL |
5537 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5538 | { | |
bf16d19a | 5539 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5540 | } |
5541 | SLAB_ATTR_RO(destroy_by_rcu); | |
5542 | ||
ab4d5ed5 | 5543 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5544 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5545 | { | |
5546 | return show_slab_objects(s, buf, SO_ALL); | |
5547 | } | |
5548 | SLAB_ATTR_RO(slabs); | |
5549 | ||
205ab99d CL |
5550 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5551 | { | |
5552 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5553 | } | |
5554 | SLAB_ATTR_RO(total_objects); | |
5555 | ||
81819f0f CL |
5556 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5557 | { | |
bf16d19a | 5558 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 5559 | } |
060807f8 | 5560 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
5561 | |
5562 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5563 | { | |
bf16d19a | 5564 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 5565 | } |
060807f8 | 5566 | SLAB_ATTR_RO(trace); |
81819f0f | 5567 | |
81819f0f CL |
5568 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5569 | { | |
bf16d19a | 5570 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
5571 | } |
5572 | ||
ad38b5b1 | 5573 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
5574 | |
5575 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5576 | { | |
bf16d19a | 5577 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
5578 | } |
5579 | ||
ad38b5b1 | 5580 | SLAB_ATTR_RO(poison); |
81819f0f CL |
5581 | |
5582 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5583 | { | |
bf16d19a | 5584 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
5585 | } |
5586 | ||
ad38b5b1 | 5587 | SLAB_ATTR_RO(store_user); |
81819f0f | 5588 | |
53e15af0 CL |
5589 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5590 | { | |
5591 | return 0; | |
5592 | } | |
5593 | ||
5594 | static ssize_t validate_store(struct kmem_cache *s, | |
5595 | const char *buf, size_t length) | |
5596 | { | |
434e245d CL |
5597 | int ret = -EINVAL; |
5598 | ||
5599 | if (buf[0] == '1') { | |
5600 | ret = validate_slab_cache(s); | |
5601 | if (ret >= 0) | |
5602 | ret = length; | |
5603 | } | |
5604 | return ret; | |
53e15af0 CL |
5605 | } |
5606 | SLAB_ATTR(validate); | |
a5a84755 | 5607 | |
a5a84755 CL |
5608 | #endif /* CONFIG_SLUB_DEBUG */ |
5609 | ||
5610 | #ifdef CONFIG_FAILSLAB | |
5611 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5612 | { | |
bf16d19a | 5613 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 5614 | } |
060807f8 | 5615 | SLAB_ATTR_RO(failslab); |
ab4d5ed5 | 5616 | #endif |
53e15af0 | 5617 | |
2086d26a CL |
5618 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5619 | { | |
5620 | return 0; | |
5621 | } | |
5622 | ||
5623 | static ssize_t shrink_store(struct kmem_cache *s, | |
5624 | const char *buf, size_t length) | |
5625 | { | |
832f37f5 | 5626 | if (buf[0] == '1') |
10befea9 | 5627 | kmem_cache_shrink(s); |
832f37f5 | 5628 | else |
2086d26a CL |
5629 | return -EINVAL; |
5630 | return length; | |
5631 | } | |
5632 | SLAB_ATTR(shrink); | |
5633 | ||
81819f0f | 5634 | #ifdef CONFIG_NUMA |
9824601e | 5635 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5636 | { |
bf16d19a | 5637 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5638 | } |
5639 | ||
9824601e | 5640 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5641 | const char *buf, size_t length) |
5642 | { | |
eb7235eb | 5643 | unsigned int ratio; |
0121c619 CL |
5644 | int err; |
5645 | ||
eb7235eb | 5646 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5647 | if (err) |
5648 | return err; | |
eb7235eb AD |
5649 | if (ratio > 100) |
5650 | return -ERANGE; | |
0121c619 | 5651 | |
eb7235eb | 5652 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5653 | |
81819f0f CL |
5654 | return length; |
5655 | } | |
9824601e | 5656 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5657 | #endif |
5658 | ||
8ff12cfc | 5659 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5660 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5661 | { | |
5662 | unsigned long sum = 0; | |
5663 | int cpu; | |
bf16d19a | 5664 | int len = 0; |
6da2ec56 | 5665 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5666 | |
5667 | if (!data) | |
5668 | return -ENOMEM; | |
5669 | ||
5670 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5671 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5672 | |
5673 | data[cpu] = x; | |
5674 | sum += x; | |
5675 | } | |
5676 | ||
bf16d19a | 5677 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 5678 | |
50ef37b9 | 5679 | #ifdef CONFIG_SMP |
8ff12cfc | 5680 | for_each_online_cpu(cpu) { |
bf16d19a JP |
5681 | if (data[cpu]) |
5682 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
5683 | cpu, data[cpu]); | |
8ff12cfc | 5684 | } |
50ef37b9 | 5685 | #endif |
8ff12cfc | 5686 | kfree(data); |
bf16d19a JP |
5687 | len += sysfs_emit_at(buf, len, "\n"); |
5688 | ||
5689 | return len; | |
8ff12cfc CL |
5690 | } |
5691 | ||
78eb00cc DR |
5692 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5693 | { | |
5694 | int cpu; | |
5695 | ||
5696 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5697 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5698 | } |
5699 | ||
8ff12cfc CL |
5700 | #define STAT_ATTR(si, text) \ |
5701 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5702 | { \ | |
5703 | return show_stat(s, buf, si); \ | |
5704 | } \ | |
78eb00cc DR |
5705 | static ssize_t text##_store(struct kmem_cache *s, \ |
5706 | const char *buf, size_t length) \ | |
5707 | { \ | |
5708 | if (buf[0] != '0') \ | |
5709 | return -EINVAL; \ | |
5710 | clear_stat(s, si); \ | |
5711 | return length; \ | |
5712 | } \ | |
5713 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5714 | |
5715 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5716 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5717 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5718 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5719 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5720 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5721 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5722 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5723 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5724 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5725 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5726 | STAT_ATTR(FREE_SLAB, free_slab); |
5727 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5728 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5729 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5730 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5731 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5732 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5733 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5734 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5735 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5736 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5737 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5738 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5739 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5740 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5741 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5742 | |
06428780 | 5743 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5744 | &slab_size_attr.attr, |
5745 | &object_size_attr.attr, | |
5746 | &objs_per_slab_attr.attr, | |
5747 | &order_attr.attr, | |
73d342b1 | 5748 | &min_partial_attr.attr, |
49e22585 | 5749 | &cpu_partial_attr.attr, |
81819f0f | 5750 | &objects_attr.attr, |
205ab99d | 5751 | &objects_partial_attr.attr, |
81819f0f CL |
5752 | &partial_attr.attr, |
5753 | &cpu_slabs_attr.attr, | |
5754 | &ctor_attr.attr, | |
81819f0f CL |
5755 | &aliases_attr.attr, |
5756 | &align_attr.attr, | |
81819f0f CL |
5757 | &hwcache_align_attr.attr, |
5758 | &reclaim_account_attr.attr, | |
5759 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5760 | &shrink_attr.attr, |
49e22585 | 5761 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5762 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5763 | &total_objects_attr.attr, |
5764 | &slabs_attr.attr, | |
5765 | &sanity_checks_attr.attr, | |
5766 | &trace_attr.attr, | |
81819f0f CL |
5767 | &red_zone_attr.attr, |
5768 | &poison_attr.attr, | |
5769 | &store_user_attr.attr, | |
53e15af0 | 5770 | &validate_attr.attr, |
ab4d5ed5 | 5771 | #endif |
81819f0f CL |
5772 | #ifdef CONFIG_ZONE_DMA |
5773 | &cache_dma_attr.attr, | |
5774 | #endif | |
5775 | #ifdef CONFIG_NUMA | |
9824601e | 5776 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5777 | #endif |
5778 | #ifdef CONFIG_SLUB_STATS | |
5779 | &alloc_fastpath_attr.attr, | |
5780 | &alloc_slowpath_attr.attr, | |
5781 | &free_fastpath_attr.attr, | |
5782 | &free_slowpath_attr.attr, | |
5783 | &free_frozen_attr.attr, | |
5784 | &free_add_partial_attr.attr, | |
5785 | &free_remove_partial_attr.attr, | |
5786 | &alloc_from_partial_attr.attr, | |
5787 | &alloc_slab_attr.attr, | |
5788 | &alloc_refill_attr.attr, | |
e36a2652 | 5789 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5790 | &free_slab_attr.attr, |
5791 | &cpuslab_flush_attr.attr, | |
5792 | &deactivate_full_attr.attr, | |
5793 | &deactivate_empty_attr.attr, | |
5794 | &deactivate_to_head_attr.attr, | |
5795 | &deactivate_to_tail_attr.attr, | |
5796 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5797 | &deactivate_bypass_attr.attr, |
65c3376a | 5798 | &order_fallback_attr.attr, |
b789ef51 CL |
5799 | &cmpxchg_double_fail_attr.attr, |
5800 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5801 | &cpu_partial_alloc_attr.attr, |
5802 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5803 | &cpu_partial_node_attr.attr, |
5804 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5805 | #endif |
4c13dd3b DM |
5806 | #ifdef CONFIG_FAILSLAB |
5807 | &failslab_attr.attr, | |
5808 | #endif | |
8eb8284b | 5809 | &usersize_attr.attr, |
4c13dd3b | 5810 | |
81819f0f CL |
5811 | NULL |
5812 | }; | |
5813 | ||
1fdaaa23 | 5814 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5815 | .attrs = slab_attrs, |
5816 | }; | |
5817 | ||
5818 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5819 | struct attribute *attr, | |
5820 | char *buf) | |
5821 | { | |
5822 | struct slab_attribute *attribute; | |
5823 | struct kmem_cache *s; | |
5824 | int err; | |
5825 | ||
5826 | attribute = to_slab_attr(attr); | |
5827 | s = to_slab(kobj); | |
5828 | ||
5829 | if (!attribute->show) | |
5830 | return -EIO; | |
5831 | ||
5832 | err = attribute->show(s, buf); | |
5833 | ||
5834 | return err; | |
5835 | } | |
5836 | ||
5837 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5838 | struct attribute *attr, | |
5839 | const char *buf, size_t len) | |
5840 | { | |
5841 | struct slab_attribute *attribute; | |
5842 | struct kmem_cache *s; | |
5843 | int err; | |
5844 | ||
5845 | attribute = to_slab_attr(attr); | |
5846 | s = to_slab(kobj); | |
5847 | ||
5848 | if (!attribute->store) | |
5849 | return -EIO; | |
5850 | ||
5851 | err = attribute->store(s, buf, len); | |
81819f0f CL |
5852 | return err; |
5853 | } | |
5854 | ||
41a21285 CL |
5855 | static void kmem_cache_release(struct kobject *k) |
5856 | { | |
5857 | slab_kmem_cache_release(to_slab(k)); | |
5858 | } | |
5859 | ||
52cf25d0 | 5860 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5861 | .show = slab_attr_show, |
5862 | .store = slab_attr_store, | |
5863 | }; | |
5864 | ||
5865 | static struct kobj_type slab_ktype = { | |
5866 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5867 | .release = kmem_cache_release, |
81819f0f CL |
5868 | }; |
5869 | ||
27c3a314 | 5870 | static struct kset *slab_kset; |
81819f0f | 5871 | |
9a41707b VD |
5872 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5873 | { | |
9a41707b VD |
5874 | return slab_kset; |
5875 | } | |
5876 | ||
81819f0f CL |
5877 | #define ID_STR_LENGTH 64 |
5878 | ||
5879 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5880 | * |
5881 | * Format :[flags-]size | |
81819f0f CL |
5882 | */ |
5883 | static char *create_unique_id(struct kmem_cache *s) | |
5884 | { | |
5885 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5886 | char *p = name; | |
5887 | ||
5888 | BUG_ON(!name); | |
5889 | ||
5890 | *p++ = ':'; | |
5891 | /* | |
5892 | * First flags affecting slabcache operations. We will only | |
5893 | * get here for aliasable slabs so we do not need to support | |
5894 | * too many flags. The flags here must cover all flags that | |
5895 | * are matched during merging to guarantee that the id is | |
5896 | * unique. | |
5897 | */ | |
5898 | if (s->flags & SLAB_CACHE_DMA) | |
5899 | *p++ = 'd'; | |
6d6ea1e9 NB |
5900 | if (s->flags & SLAB_CACHE_DMA32) |
5901 | *p++ = 'D'; | |
81819f0f CL |
5902 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5903 | *p++ = 'a'; | |
becfda68 | 5904 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5905 | *p++ = 'F'; |
230e9fc2 VD |
5906 | if (s->flags & SLAB_ACCOUNT) |
5907 | *p++ = 'A'; | |
81819f0f CL |
5908 | if (p != name + 1) |
5909 | *p++ = '-'; | |
44065b2e | 5910 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5911 | |
81819f0f CL |
5912 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5913 | return name; | |
5914 | } | |
5915 | ||
5916 | static int sysfs_slab_add(struct kmem_cache *s) | |
5917 | { | |
5918 | int err; | |
5919 | const char *name; | |
1663f26d | 5920 | struct kset *kset = cache_kset(s); |
45530c44 | 5921 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5922 | |
1663f26d TH |
5923 | if (!kset) { |
5924 | kobject_init(&s->kobj, &slab_ktype); | |
5925 | return 0; | |
5926 | } | |
5927 | ||
11066386 MC |
5928 | if (!unmergeable && disable_higher_order_debug && |
5929 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5930 | unmergeable = 1; | |
5931 | ||
81819f0f CL |
5932 | if (unmergeable) { |
5933 | /* | |
5934 | * Slabcache can never be merged so we can use the name proper. | |
5935 | * This is typically the case for debug situations. In that | |
5936 | * case we can catch duplicate names easily. | |
5937 | */ | |
27c3a314 | 5938 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5939 | name = s->name; |
5940 | } else { | |
5941 | /* | |
5942 | * Create a unique name for the slab as a target | |
5943 | * for the symlinks. | |
5944 | */ | |
5945 | name = create_unique_id(s); | |
5946 | } | |
5947 | ||
1663f26d | 5948 | s->kobj.kset = kset; |
26e4f205 | 5949 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 5950 | if (err) |
80da026a | 5951 | goto out; |
81819f0f CL |
5952 | |
5953 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5954 | if (err) |
5955 | goto out_del_kobj; | |
9a41707b | 5956 | |
81819f0f CL |
5957 | if (!unmergeable) { |
5958 | /* Setup first alias */ | |
5959 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5960 | } |
54b6a731 DJ |
5961 | out: |
5962 | if (!unmergeable) | |
5963 | kfree(name); | |
5964 | return err; | |
5965 | out_del_kobj: | |
5966 | kobject_del(&s->kobj); | |
54b6a731 | 5967 | goto out; |
81819f0f CL |
5968 | } |
5969 | ||
d50d82fa MP |
5970 | void sysfs_slab_unlink(struct kmem_cache *s) |
5971 | { | |
5972 | if (slab_state >= FULL) | |
5973 | kobject_del(&s->kobj); | |
5974 | } | |
5975 | ||
bf5eb3de TH |
5976 | void sysfs_slab_release(struct kmem_cache *s) |
5977 | { | |
5978 | if (slab_state >= FULL) | |
5979 | kobject_put(&s->kobj); | |
81819f0f CL |
5980 | } |
5981 | ||
5982 | /* | |
5983 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5984 | * available lest we lose that information. |
81819f0f CL |
5985 | */ |
5986 | struct saved_alias { | |
5987 | struct kmem_cache *s; | |
5988 | const char *name; | |
5989 | struct saved_alias *next; | |
5990 | }; | |
5991 | ||
5af328a5 | 5992 | static struct saved_alias *alias_list; |
81819f0f CL |
5993 | |
5994 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5995 | { | |
5996 | struct saved_alias *al; | |
5997 | ||
97d06609 | 5998 | if (slab_state == FULL) { |
81819f0f CL |
5999 | /* |
6000 | * If we have a leftover link then remove it. | |
6001 | */ | |
27c3a314 GKH |
6002 | sysfs_remove_link(&slab_kset->kobj, name); |
6003 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
6004 | } |
6005 | ||
6006 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
6007 | if (!al) | |
6008 | return -ENOMEM; | |
6009 | ||
6010 | al->s = s; | |
6011 | al->name = name; | |
6012 | al->next = alias_list; | |
6013 | alias_list = al; | |
6014 | return 0; | |
6015 | } | |
6016 | ||
6017 | static int __init slab_sysfs_init(void) | |
6018 | { | |
5b95a4ac | 6019 | struct kmem_cache *s; |
81819f0f CL |
6020 | int err; |
6021 | ||
18004c5d | 6022 | mutex_lock(&slab_mutex); |
2bce6485 | 6023 | |
d7660ce5 | 6024 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 6025 | if (!slab_kset) { |
18004c5d | 6026 | mutex_unlock(&slab_mutex); |
f9f58285 | 6027 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
6028 | return -ENOSYS; |
6029 | } | |
6030 | ||
97d06609 | 6031 | slab_state = FULL; |
26a7bd03 | 6032 | |
5b95a4ac | 6033 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 6034 | err = sysfs_slab_add(s); |
5d540fb7 | 6035 | if (err) |
f9f58285 FF |
6036 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
6037 | s->name); | |
26a7bd03 | 6038 | } |
81819f0f CL |
6039 | |
6040 | while (alias_list) { | |
6041 | struct saved_alias *al = alias_list; | |
6042 | ||
6043 | alias_list = alias_list->next; | |
6044 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 6045 | if (err) |
f9f58285 FF |
6046 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
6047 | al->name); | |
81819f0f CL |
6048 | kfree(al); |
6049 | } | |
6050 | ||
18004c5d | 6051 | mutex_unlock(&slab_mutex); |
81819f0f CL |
6052 | return 0; |
6053 | } | |
6054 | ||
6055 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 6056 | #endif /* CONFIG_SYSFS */ |
57ed3eda | 6057 | |
64dd6849 FM |
6058 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
6059 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
6060 | { | |
64dd6849 | 6061 | struct loc_track *t = seq->private; |
005a79e5 GS |
6062 | struct location *l; |
6063 | unsigned long idx; | |
64dd6849 | 6064 | |
005a79e5 | 6065 | idx = (unsigned long) t->idx; |
64dd6849 FM |
6066 | if (idx < t->count) { |
6067 | l = &t->loc[idx]; | |
6068 | ||
6069 | seq_printf(seq, "%7ld ", l->count); | |
6070 | ||
6071 | if (l->addr) | |
6072 | seq_printf(seq, "%pS", (void *)l->addr); | |
6073 | else | |
6074 | seq_puts(seq, "<not-available>"); | |
6075 | ||
6076 | if (l->sum_time != l->min_time) { | |
6077 | seq_printf(seq, " age=%ld/%llu/%ld", | |
6078 | l->min_time, div_u64(l->sum_time, l->count), | |
6079 | l->max_time); | |
6080 | } else | |
6081 | seq_printf(seq, " age=%ld", l->min_time); | |
6082 | ||
6083 | if (l->min_pid != l->max_pid) | |
6084 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
6085 | else | |
6086 | seq_printf(seq, " pid=%ld", | |
6087 | l->min_pid); | |
6088 | ||
6089 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
6090 | seq_printf(seq, " cpus=%*pbl", | |
6091 | cpumask_pr_args(to_cpumask(l->cpus))); | |
6092 | ||
6093 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
6094 | seq_printf(seq, " nodes=%*pbl", | |
6095 | nodemask_pr_args(&l->nodes)); | |
6096 | ||
6097 | seq_puts(seq, "\n"); | |
6098 | } | |
6099 | ||
6100 | if (!idx && !t->count) | |
6101 | seq_puts(seq, "No data\n"); | |
6102 | ||
6103 | return 0; | |
6104 | } | |
6105 | ||
6106 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
6107 | { | |
6108 | } | |
6109 | ||
6110 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
6111 | { | |
6112 | struct loc_track *t = seq->private; | |
6113 | ||
005a79e5 | 6114 | t->idx = ++(*ppos); |
64dd6849 | 6115 | if (*ppos <= t->count) |
005a79e5 | 6116 | return ppos; |
64dd6849 FM |
6117 | |
6118 | return NULL; | |
6119 | } | |
6120 | ||
6121 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) | |
6122 | { | |
005a79e5 GS |
6123 | struct loc_track *t = seq->private; |
6124 | ||
6125 | t->idx = *ppos; | |
64dd6849 FM |
6126 | return ppos; |
6127 | } | |
6128 | ||
6129 | static const struct seq_operations slab_debugfs_sops = { | |
6130 | .start = slab_debugfs_start, | |
6131 | .next = slab_debugfs_next, | |
6132 | .stop = slab_debugfs_stop, | |
6133 | .show = slab_debugfs_show, | |
6134 | }; | |
6135 | ||
6136 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
6137 | { | |
6138 | ||
6139 | struct kmem_cache_node *n; | |
6140 | enum track_item alloc; | |
6141 | int node; | |
6142 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
6143 | sizeof(struct loc_track)); | |
6144 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
6145 | unsigned long *obj_map; |
6146 | ||
2127d225 ML |
6147 | if (!t) |
6148 | return -ENOMEM; | |
6149 | ||
b3fd64e1 | 6150 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
2127d225 ML |
6151 | if (!obj_map) { |
6152 | seq_release_private(inode, filep); | |
b3fd64e1 | 6153 | return -ENOMEM; |
2127d225 | 6154 | } |
64dd6849 FM |
6155 | |
6156 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
6157 | alloc = TRACK_ALLOC; | |
6158 | else | |
6159 | alloc = TRACK_FREE; | |
6160 | ||
b3fd64e1 VB |
6161 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
6162 | bitmap_free(obj_map); | |
2127d225 | 6163 | seq_release_private(inode, filep); |
64dd6849 | 6164 | return -ENOMEM; |
b3fd64e1 | 6165 | } |
64dd6849 | 6166 | |
64dd6849 FM |
6167 | for_each_kmem_cache_node(s, node, n) { |
6168 | unsigned long flags; | |
bb192ed9 | 6169 | struct slab *slab; |
64dd6849 FM |
6170 | |
6171 | if (!atomic_long_read(&n->nr_slabs)) | |
6172 | continue; | |
6173 | ||
6174 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
6175 | list_for_each_entry(slab, &n->partial, slab_list) |
6176 | process_slab(t, s, slab, alloc, obj_map); | |
6177 | list_for_each_entry(slab, &n->full, slab_list) | |
6178 | process_slab(t, s, slab, alloc, obj_map); | |
64dd6849 FM |
6179 | spin_unlock_irqrestore(&n->list_lock, flags); |
6180 | } | |
6181 | ||
b3fd64e1 | 6182 | bitmap_free(obj_map); |
64dd6849 FM |
6183 | return 0; |
6184 | } | |
6185 | ||
6186 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
6187 | { | |
6188 | struct seq_file *seq = file->private_data; | |
6189 | struct loc_track *t = seq->private; | |
6190 | ||
6191 | free_loc_track(t); | |
6192 | return seq_release_private(inode, file); | |
6193 | } | |
6194 | ||
6195 | static const struct file_operations slab_debugfs_fops = { | |
6196 | .open = slab_debug_trace_open, | |
6197 | .read = seq_read, | |
6198 | .llseek = seq_lseek, | |
6199 | .release = slab_debug_trace_release, | |
6200 | }; | |
6201 | ||
6202 | static void debugfs_slab_add(struct kmem_cache *s) | |
6203 | { | |
6204 | struct dentry *slab_cache_dir; | |
6205 | ||
6206 | if (unlikely(!slab_debugfs_root)) | |
6207 | return; | |
6208 | ||
6209 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
6210 | ||
6211 | debugfs_create_file("alloc_traces", 0400, | |
6212 | slab_cache_dir, s, &slab_debugfs_fops); | |
6213 | ||
6214 | debugfs_create_file("free_traces", 0400, | |
6215 | slab_cache_dir, s, &slab_debugfs_fops); | |
6216 | } | |
6217 | ||
6218 | void debugfs_slab_release(struct kmem_cache *s) | |
6219 | { | |
6220 | debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); | |
6221 | } | |
6222 | ||
6223 | static int __init slab_debugfs_init(void) | |
6224 | { | |
6225 | struct kmem_cache *s; | |
6226 | ||
6227 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
6228 | ||
6229 | list_for_each_entry(s, &slab_caches, list) | |
6230 | if (s->flags & SLAB_STORE_USER) | |
6231 | debugfs_slab_add(s); | |
6232 | ||
6233 | return 0; | |
6234 | ||
6235 | } | |
6236 | __initcall(slab_debugfs_init); | |
6237 | #endif | |
57ed3eda PE |
6238 | /* |
6239 | * The /proc/slabinfo ABI | |
6240 | */ | |
5b365771 | 6241 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 6242 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 6243 | { |
57ed3eda | 6244 | unsigned long nr_slabs = 0; |
205ab99d CL |
6245 | unsigned long nr_objs = 0; |
6246 | unsigned long nr_free = 0; | |
57ed3eda | 6247 | int node; |
fa45dc25 | 6248 | struct kmem_cache_node *n; |
57ed3eda | 6249 | |
fa45dc25 | 6250 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
6251 | nr_slabs += node_nr_slabs(n); |
6252 | nr_objs += node_nr_objs(n); | |
205ab99d | 6253 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
6254 | } |
6255 | ||
0d7561c6 GC |
6256 | sinfo->active_objs = nr_objs - nr_free; |
6257 | sinfo->num_objs = nr_objs; | |
6258 | sinfo->active_slabs = nr_slabs; | |
6259 | sinfo->num_slabs = nr_slabs; | |
6260 | sinfo->objects_per_slab = oo_objects(s->oo); | |
6261 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
6262 | } |
6263 | ||
0d7561c6 | 6264 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 6265 | { |
7b3c3a50 AD |
6266 | } |
6267 | ||
b7454ad3 GC |
6268 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
6269 | size_t count, loff_t *ppos) | |
7b3c3a50 | 6270 | { |
b7454ad3 | 6271 | return -EIO; |
7b3c3a50 | 6272 | } |
5b365771 | 6273 | #endif /* CONFIG_SLUB_DEBUG */ |