]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
3ac38faa | 22 | #include <linux/notifier.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
5a896d9e | 25 | #include <linux/kmemcheck.h> |
81819f0f CL |
26 | #include <linux/cpu.h> |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/ctype.h> | |
3ac7fe5a | 30 | #include <linux/debugobjects.h> |
81819f0f | 31 | #include <linux/kallsyms.h> |
b9049e23 | 32 | #include <linux/memory.h> |
f8bd2258 | 33 | #include <linux/math64.h> |
773ff60e | 34 | #include <linux/fault-inject.h> |
bfa71457 | 35 | #include <linux/stacktrace.h> |
4de900b4 | 36 | #include <linux/prefetch.h> |
2633d7a0 | 37 | #include <linux/memcontrol.h> |
2482ddec | 38 | #include <linux/random.h> |
81819f0f | 39 | |
4a92379b RK |
40 | #include <trace/events/kmem.h> |
41 | ||
072bb0aa MG |
42 | #include "internal.h" |
43 | ||
81819f0f CL |
44 | /* |
45 | * Lock order: | |
18004c5d | 46 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
47 | * 2. node->list_lock |
48 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 49 | * |
18004c5d | 50 | * slab_mutex |
881db7fb | 51 | * |
18004c5d | 52 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
53 | * and to synchronize major metadata changes to slab cache structures. |
54 | * | |
55 | * The slab_lock is only used for debugging and on arches that do not | |
56 | * have the ability to do a cmpxchg_double. It only protects the second | |
57 | * double word in the page struct. Meaning | |
58 | * A. page->freelist -> List of object free in a page | |
59 | * B. page->counters -> Counters of objects | |
60 | * C. page->frozen -> frozen state | |
61 | * | |
62 | * If a slab is frozen then it is exempt from list management. It is not | |
63 | * on any list. The processor that froze the slab is the one who can | |
64 | * perform list operations on the page. Other processors may put objects | |
65 | * onto the freelist but the processor that froze the slab is the only | |
66 | * one that can retrieve the objects from the page's freelist. | |
81819f0f CL |
67 | * |
68 | * The list_lock protects the partial and full list on each node and | |
69 | * the partial slab counter. If taken then no new slabs may be added or | |
70 | * removed from the lists nor make the number of partial slabs be modified. | |
71 | * (Note that the total number of slabs is an atomic value that may be | |
72 | * modified without taking the list lock). | |
73 | * | |
74 | * The list_lock is a centralized lock and thus we avoid taking it as | |
75 | * much as possible. As long as SLUB does not have to handle partial | |
76 | * slabs, operations can continue without any centralized lock. F.e. | |
77 | * allocating a long series of objects that fill up slabs does not require | |
78 | * the list lock. | |
81819f0f CL |
79 | * Interrupts are disabled during allocation and deallocation in order to |
80 | * make the slab allocator safe to use in the context of an irq. In addition | |
81 | * interrupts are disabled to ensure that the processor does not change | |
82 | * while handling per_cpu slabs, due to kernel preemption. | |
83 | * | |
84 | * SLUB assigns one slab for allocation to each processor. | |
85 | * Allocations only occur from these slabs called cpu slabs. | |
86 | * | |
672bba3a CL |
87 | * Slabs with free elements are kept on a partial list and during regular |
88 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 89 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
90 | * We track full slabs for debugging purposes though because otherwise we |
91 | * cannot scan all objects. | |
81819f0f CL |
92 | * |
93 | * Slabs are freed when they become empty. Teardown and setup is | |
94 | * minimal so we rely on the page allocators per cpu caches for | |
95 | * fast frees and allocs. | |
96 | * | |
97 | * Overloading of page flags that are otherwise used for LRU management. | |
98 | * | |
4b6f0750 CL |
99 | * PageActive The slab is frozen and exempt from list processing. |
100 | * This means that the slab is dedicated to a purpose | |
101 | * such as satisfying allocations for a specific | |
102 | * processor. Objects may be freed in the slab while | |
103 | * it is frozen but slab_free will then skip the usual | |
104 | * list operations. It is up to the processor holding | |
105 | * the slab to integrate the slab into the slab lists | |
106 | * when the slab is no longer needed. | |
107 | * | |
108 | * One use of this flag is to mark slabs that are | |
109 | * used for allocations. Then such a slab becomes a cpu | |
110 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 111 | * freelist that allows lockless access to |
894b8788 CL |
112 | * free objects in addition to the regular freelist |
113 | * that requires the slab lock. | |
81819f0f CL |
114 | * |
115 | * PageError Slab requires special handling due to debug | |
116 | * options set. This moves slab handling out of | |
894b8788 | 117 | * the fast path and disables lockless freelists. |
81819f0f CL |
118 | */ |
119 | ||
af537b0a CL |
120 | static inline int kmem_cache_debug(struct kmem_cache *s) |
121 | { | |
5577bd8a | 122 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 123 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 124 | #else |
af537b0a | 125 | return 0; |
5577bd8a | 126 | #endif |
af537b0a | 127 | } |
5577bd8a | 128 | |
117d54df | 129 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
130 | { |
131 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
132 | p += s->red_left_pad; | |
133 | ||
134 | return p; | |
135 | } | |
136 | ||
345c905d JK |
137 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
138 | { | |
139 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
140 | return !kmem_cache_debug(s); | |
141 | #else | |
142 | return false; | |
143 | #endif | |
144 | } | |
145 | ||
81819f0f CL |
146 | /* |
147 | * Issues still to be resolved: | |
148 | * | |
81819f0f CL |
149 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
150 | * | |
81819f0f CL |
151 | * - Variable sizing of the per node arrays |
152 | */ | |
153 | ||
154 | /* Enable to test recovery from slab corruption on boot */ | |
155 | #undef SLUB_RESILIENCY_TEST | |
156 | ||
b789ef51 CL |
157 | /* Enable to log cmpxchg failures */ |
158 | #undef SLUB_DEBUG_CMPXCHG | |
159 | ||
2086d26a CL |
160 | /* |
161 | * Mininum number of partial slabs. These will be left on the partial | |
162 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
163 | */ | |
76be8950 | 164 | #define MIN_PARTIAL 5 |
e95eed57 | 165 | |
2086d26a CL |
166 | /* |
167 | * Maximum number of desirable partial slabs. | |
168 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 169 | * sort the partial list by the number of objects in use. |
2086d26a CL |
170 | */ |
171 | #define MAX_PARTIAL 10 | |
172 | ||
becfda68 | 173 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 174 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 175 | |
149daaf3 LA |
176 | /* |
177 | * These debug flags cannot use CMPXCHG because there might be consistency | |
178 | * issues when checking or reading debug information | |
179 | */ | |
180 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
181 | SLAB_TRACE) | |
182 | ||
183 | ||
fa5ec8a1 | 184 | /* |
3de47213 DR |
185 | * Debugging flags that require metadata to be stored in the slab. These get |
186 | * disabled when slub_debug=O is used and a cache's min order increases with | |
187 | * metadata. | |
fa5ec8a1 | 188 | */ |
3de47213 | 189 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 190 | |
210b5c06 CG |
191 | #define OO_SHIFT 16 |
192 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 193 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 194 | |
81819f0f | 195 | /* Internal SLUB flags */ |
f90ec390 | 196 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
b789ef51 | 197 | #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
81819f0f | 198 | |
02cbc874 CL |
199 | /* |
200 | * Tracking user of a slab. | |
201 | */ | |
d6543e39 | 202 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 203 | struct track { |
ce71e27c | 204 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
205 | #ifdef CONFIG_STACKTRACE |
206 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
207 | #endif | |
02cbc874 CL |
208 | int cpu; /* Was running on cpu */ |
209 | int pid; /* Pid context */ | |
210 | unsigned long when; /* When did the operation occur */ | |
211 | }; | |
212 | ||
213 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
214 | ||
ab4d5ed5 | 215 | #ifdef CONFIG_SYSFS |
81819f0f CL |
216 | static int sysfs_slab_add(struct kmem_cache *); |
217 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 218 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 219 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 220 | #else |
0c710013 CL |
221 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
222 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
223 | { return 0; } | |
107dab5c | 224 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 225 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
226 | #endif |
227 | ||
4fdccdfb | 228 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
229 | { |
230 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
231 | /* |
232 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
233 | * avoid this_cpu_add()'s irq-disable overhead. | |
234 | */ | |
235 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
236 | #endif |
237 | } | |
238 | ||
81819f0f CL |
239 | /******************************************************************** |
240 | * Core slab cache functions | |
241 | *******************************************************************/ | |
242 | ||
2482ddec KC |
243 | /* |
244 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
245 | * with an XOR of the address where the pointer is held and a per-cache | |
246 | * random number. | |
247 | */ | |
248 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
249 | unsigned long ptr_addr) | |
250 | { | |
251 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
252 | return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); | |
253 | #else | |
254 | return ptr; | |
255 | #endif | |
256 | } | |
257 | ||
258 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
259 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
260 | void *ptr_addr) | |
261 | { | |
262 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
263 | (unsigned long)ptr_addr); | |
264 | } | |
265 | ||
7656c72b CL |
266 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
267 | { | |
2482ddec | 268 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
269 | } |
270 | ||
0ad9500e ED |
271 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
272 | { | |
2482ddec KC |
273 | if (object) |
274 | prefetch(freelist_dereference(s, object + s->offset)); | |
0ad9500e ED |
275 | } |
276 | ||
1393d9a1 CL |
277 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
278 | { | |
2482ddec | 279 | unsigned long freepointer_addr; |
1393d9a1 CL |
280 | void *p; |
281 | ||
922d566c JK |
282 | if (!debug_pagealloc_enabled()) |
283 | return get_freepointer(s, object); | |
284 | ||
2482ddec KC |
285 | freepointer_addr = (unsigned long)object + s->offset; |
286 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
287 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
288 | } |
289 | ||
7656c72b CL |
290 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
291 | { | |
2482ddec KC |
292 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
293 | ||
ce6fa91b AP |
294 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
295 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
296 | #endif | |
297 | ||
2482ddec | 298 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
299 | } |
300 | ||
301 | /* Loop over all objects in a slab */ | |
224a88be | 302 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
303 | for (__p = fixup_red_left(__s, __addr); \ |
304 | __p < (__addr) + (__objects) * (__s)->size; \ | |
305 | __p += (__s)->size) | |
7656c72b | 306 | |
54266640 | 307 | #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ |
d86bd1be JK |
308 | for (__p = fixup_red_left(__s, __addr), __idx = 1; \ |
309 | __idx <= __objects; \ | |
310 | __p += (__s)->size, __idx++) | |
54266640 | 311 | |
7656c72b CL |
312 | /* Determine object index from a given position */ |
313 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
314 | { | |
315 | return (p - addr) / s->size; | |
316 | } | |
317 | ||
ab9a0f19 LJ |
318 | static inline int order_objects(int order, unsigned long size, int reserved) |
319 | { | |
320 | return ((PAGE_SIZE << order) - reserved) / size; | |
321 | } | |
322 | ||
834f3d11 | 323 | static inline struct kmem_cache_order_objects oo_make(int order, |
ab9a0f19 | 324 | unsigned long size, int reserved) |
834f3d11 CL |
325 | { |
326 | struct kmem_cache_order_objects x = { | |
ab9a0f19 | 327 | (order << OO_SHIFT) + order_objects(order, size, reserved) |
834f3d11 CL |
328 | }; |
329 | ||
330 | return x; | |
331 | } | |
332 | ||
333 | static inline int oo_order(struct kmem_cache_order_objects x) | |
334 | { | |
210b5c06 | 335 | return x.x >> OO_SHIFT; |
834f3d11 CL |
336 | } |
337 | ||
338 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
339 | { | |
210b5c06 | 340 | return x.x & OO_MASK; |
834f3d11 CL |
341 | } |
342 | ||
881db7fb CL |
343 | /* |
344 | * Per slab locking using the pagelock | |
345 | */ | |
346 | static __always_inline void slab_lock(struct page *page) | |
347 | { | |
48c935ad | 348 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
349 | bit_spin_lock(PG_locked, &page->flags); |
350 | } | |
351 | ||
352 | static __always_inline void slab_unlock(struct page *page) | |
353 | { | |
48c935ad | 354 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
355 | __bit_spin_unlock(PG_locked, &page->flags); |
356 | } | |
357 | ||
a0320865 DH |
358 | static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) |
359 | { | |
360 | struct page tmp; | |
361 | tmp.counters = counters_new; | |
362 | /* | |
363 | * page->counters can cover frozen/inuse/objects as well | |
0139aa7b JK |
364 | * as page->_refcount. If we assign to ->counters directly |
365 | * we run the risk of losing updates to page->_refcount, so | |
a0320865 DH |
366 | * be careful and only assign to the fields we need. |
367 | */ | |
368 | page->frozen = tmp.frozen; | |
369 | page->inuse = tmp.inuse; | |
370 | page->objects = tmp.objects; | |
371 | } | |
372 | ||
1d07171c CL |
373 | /* Interrupts must be disabled (for the fallback code to work right) */ |
374 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
375 | void *freelist_old, unsigned long counters_old, | |
376 | void *freelist_new, unsigned long counters_new, | |
377 | const char *n) | |
378 | { | |
379 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
380 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
381 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 382 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 383 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
384 | freelist_old, counters_old, |
385 | freelist_new, counters_new)) | |
6f6528a1 | 386 | return true; |
1d07171c CL |
387 | } else |
388 | #endif | |
389 | { | |
390 | slab_lock(page); | |
d0e0ac97 CG |
391 | if (page->freelist == freelist_old && |
392 | page->counters == counters_old) { | |
1d07171c | 393 | page->freelist = freelist_new; |
a0320865 | 394 | set_page_slub_counters(page, counters_new); |
1d07171c | 395 | slab_unlock(page); |
6f6528a1 | 396 | return true; |
1d07171c CL |
397 | } |
398 | slab_unlock(page); | |
399 | } | |
400 | ||
401 | cpu_relax(); | |
402 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
403 | ||
404 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 405 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
406 | #endif |
407 | ||
6f6528a1 | 408 | return false; |
1d07171c CL |
409 | } |
410 | ||
b789ef51 CL |
411 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
412 | void *freelist_old, unsigned long counters_old, | |
413 | void *freelist_new, unsigned long counters_new, | |
414 | const char *n) | |
415 | { | |
2565409f HC |
416 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
417 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 418 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 419 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
420 | freelist_old, counters_old, |
421 | freelist_new, counters_new)) | |
6f6528a1 | 422 | return true; |
b789ef51 CL |
423 | } else |
424 | #endif | |
425 | { | |
1d07171c CL |
426 | unsigned long flags; |
427 | ||
428 | local_irq_save(flags); | |
881db7fb | 429 | slab_lock(page); |
d0e0ac97 CG |
430 | if (page->freelist == freelist_old && |
431 | page->counters == counters_old) { | |
b789ef51 | 432 | page->freelist = freelist_new; |
a0320865 | 433 | set_page_slub_counters(page, counters_new); |
881db7fb | 434 | slab_unlock(page); |
1d07171c | 435 | local_irq_restore(flags); |
6f6528a1 | 436 | return true; |
b789ef51 | 437 | } |
881db7fb | 438 | slab_unlock(page); |
1d07171c | 439 | local_irq_restore(flags); |
b789ef51 CL |
440 | } |
441 | ||
442 | cpu_relax(); | |
443 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
444 | ||
445 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 446 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
447 | #endif |
448 | ||
6f6528a1 | 449 | return false; |
b789ef51 CL |
450 | } |
451 | ||
41ecc55b | 452 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
453 | /* |
454 | * Determine a map of object in use on a page. | |
455 | * | |
881db7fb | 456 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
457 | * not vanish from under us. |
458 | */ | |
459 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
460 | { | |
461 | void *p; | |
462 | void *addr = page_address(page); | |
463 | ||
464 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
465 | set_bit(slab_index(p, s, addr), map); | |
466 | } | |
467 | ||
d86bd1be JK |
468 | static inline int size_from_object(struct kmem_cache *s) |
469 | { | |
470 | if (s->flags & SLAB_RED_ZONE) | |
471 | return s->size - s->red_left_pad; | |
472 | ||
473 | return s->size; | |
474 | } | |
475 | ||
476 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
477 | { | |
478 | if (s->flags & SLAB_RED_ZONE) | |
479 | p -= s->red_left_pad; | |
480 | ||
481 | return p; | |
482 | } | |
483 | ||
41ecc55b CL |
484 | /* |
485 | * Debug settings: | |
486 | */ | |
89d3c87e | 487 | #if defined(CONFIG_SLUB_DEBUG_ON) |
f0630fff CL |
488 | static int slub_debug = DEBUG_DEFAULT_FLAGS; |
489 | #else | |
41ecc55b | 490 | static int slub_debug; |
f0630fff | 491 | #endif |
41ecc55b CL |
492 | |
493 | static char *slub_debug_slabs; | |
fa5ec8a1 | 494 | static int disable_higher_order_debug; |
41ecc55b | 495 | |
a79316c6 AR |
496 | /* |
497 | * slub is about to manipulate internal object metadata. This memory lies | |
498 | * outside the range of the allocated object, so accessing it would normally | |
499 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
500 | * to tell kasan that these accesses are OK. | |
501 | */ | |
502 | static inline void metadata_access_enable(void) | |
503 | { | |
504 | kasan_disable_current(); | |
505 | } | |
506 | ||
507 | static inline void metadata_access_disable(void) | |
508 | { | |
509 | kasan_enable_current(); | |
510 | } | |
511 | ||
81819f0f CL |
512 | /* |
513 | * Object debugging | |
514 | */ | |
d86bd1be JK |
515 | |
516 | /* Verify that a pointer has an address that is valid within a slab page */ | |
517 | static inline int check_valid_pointer(struct kmem_cache *s, | |
518 | struct page *page, void *object) | |
519 | { | |
520 | void *base; | |
521 | ||
522 | if (!object) | |
523 | return 1; | |
524 | ||
525 | base = page_address(page); | |
526 | object = restore_red_left(s, object); | |
527 | if (object < base || object >= base + page->objects * s->size || | |
528 | (object - base) % s->size) { | |
529 | return 0; | |
530 | } | |
531 | ||
532 | return 1; | |
533 | } | |
534 | ||
aa2efd5e DT |
535 | static void print_section(char *level, char *text, u8 *addr, |
536 | unsigned int length) | |
81819f0f | 537 | { |
a79316c6 | 538 | metadata_access_enable(); |
aa2efd5e | 539 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 540 | length, 1); |
a79316c6 | 541 | metadata_access_disable(); |
81819f0f CL |
542 | } |
543 | ||
81819f0f CL |
544 | static struct track *get_track(struct kmem_cache *s, void *object, |
545 | enum track_item alloc) | |
546 | { | |
547 | struct track *p; | |
548 | ||
549 | if (s->offset) | |
550 | p = object + s->offset + sizeof(void *); | |
551 | else | |
552 | p = object + s->inuse; | |
553 | ||
554 | return p + alloc; | |
555 | } | |
556 | ||
557 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 558 | enum track_item alloc, unsigned long addr) |
81819f0f | 559 | { |
1a00df4a | 560 | struct track *p = get_track(s, object, alloc); |
81819f0f | 561 | |
81819f0f | 562 | if (addr) { |
d6543e39 BG |
563 | #ifdef CONFIG_STACKTRACE |
564 | struct stack_trace trace; | |
565 | int i; | |
566 | ||
567 | trace.nr_entries = 0; | |
568 | trace.max_entries = TRACK_ADDRS_COUNT; | |
569 | trace.entries = p->addrs; | |
570 | trace.skip = 3; | |
a79316c6 | 571 | metadata_access_enable(); |
d6543e39 | 572 | save_stack_trace(&trace); |
a79316c6 | 573 | metadata_access_disable(); |
d6543e39 BG |
574 | |
575 | /* See rant in lockdep.c */ | |
576 | if (trace.nr_entries != 0 && | |
577 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | |
578 | trace.nr_entries--; | |
579 | ||
580 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | |
581 | p->addrs[i] = 0; | |
582 | #endif | |
81819f0f CL |
583 | p->addr = addr; |
584 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 585 | p->pid = current->pid; |
81819f0f CL |
586 | p->when = jiffies; |
587 | } else | |
588 | memset(p, 0, sizeof(struct track)); | |
589 | } | |
590 | ||
81819f0f CL |
591 | static void init_tracking(struct kmem_cache *s, void *object) |
592 | { | |
24922684 CL |
593 | if (!(s->flags & SLAB_STORE_USER)) |
594 | return; | |
595 | ||
ce71e27c EGM |
596 | set_track(s, object, TRACK_FREE, 0UL); |
597 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
598 | } |
599 | ||
600 | static void print_track(const char *s, struct track *t) | |
601 | { | |
602 | if (!t->addr) | |
603 | return; | |
604 | ||
f9f58285 FF |
605 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
606 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); | |
d6543e39 BG |
607 | #ifdef CONFIG_STACKTRACE |
608 | { | |
609 | int i; | |
610 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
611 | if (t->addrs[i]) | |
f9f58285 | 612 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
613 | else |
614 | break; | |
615 | } | |
616 | #endif | |
24922684 CL |
617 | } |
618 | ||
619 | static void print_tracking(struct kmem_cache *s, void *object) | |
620 | { | |
621 | if (!(s->flags & SLAB_STORE_USER)) | |
622 | return; | |
623 | ||
624 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
625 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
626 | } | |
627 | ||
628 | static void print_page_info(struct page *page) | |
629 | { | |
f9f58285 | 630 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 631 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
632 | |
633 | } | |
634 | ||
635 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
636 | { | |
ecc42fbe | 637 | struct va_format vaf; |
24922684 | 638 | va_list args; |
24922684 CL |
639 | |
640 | va_start(args, fmt); | |
ecc42fbe FF |
641 | vaf.fmt = fmt; |
642 | vaf.va = &args; | |
f9f58285 | 643 | pr_err("=============================================================================\n"); |
ecc42fbe | 644 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 645 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 646 | |
373d4d09 | 647 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 648 | va_end(args); |
81819f0f CL |
649 | } |
650 | ||
24922684 CL |
651 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
652 | { | |
ecc42fbe | 653 | struct va_format vaf; |
24922684 | 654 | va_list args; |
24922684 CL |
655 | |
656 | va_start(args, fmt); | |
ecc42fbe FF |
657 | vaf.fmt = fmt; |
658 | vaf.va = &args; | |
659 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 660 | va_end(args); |
24922684 CL |
661 | } |
662 | ||
663 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
664 | { |
665 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 666 | u8 *addr = page_address(page); |
24922684 CL |
667 | |
668 | print_tracking(s, p); | |
669 | ||
670 | print_page_info(page); | |
671 | ||
f9f58285 FF |
672 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
673 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 674 | |
d86bd1be | 675 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
676 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
677 | s->red_left_pad); | |
d86bd1be | 678 | else if (p > addr + 16) |
aa2efd5e | 679 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 680 | |
aa2efd5e DT |
681 | print_section(KERN_ERR, "Object ", p, |
682 | min_t(unsigned long, s->object_size, PAGE_SIZE)); | |
81819f0f | 683 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 684 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 685 | s->inuse - s->object_size); |
81819f0f | 686 | |
81819f0f CL |
687 | if (s->offset) |
688 | off = s->offset + sizeof(void *); | |
689 | else | |
690 | off = s->inuse; | |
691 | ||
24922684 | 692 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 693 | off += 2 * sizeof(struct track); |
81819f0f | 694 | |
80a9201a AP |
695 | off += kasan_metadata_size(s); |
696 | ||
d86bd1be | 697 | if (off != size_from_object(s)) |
81819f0f | 698 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
699 | print_section(KERN_ERR, "Padding ", p + off, |
700 | size_from_object(s) - off); | |
24922684 CL |
701 | |
702 | dump_stack(); | |
81819f0f CL |
703 | } |
704 | ||
75c66def | 705 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
706 | u8 *object, char *reason) |
707 | { | |
3dc50637 | 708 | slab_bug(s, "%s", reason); |
24922684 | 709 | print_trailer(s, page, object); |
81819f0f CL |
710 | } |
711 | ||
d0e0ac97 CG |
712 | static void slab_err(struct kmem_cache *s, struct page *page, |
713 | const char *fmt, ...) | |
81819f0f CL |
714 | { |
715 | va_list args; | |
716 | char buf[100]; | |
717 | ||
24922684 CL |
718 | va_start(args, fmt); |
719 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 720 | va_end(args); |
3dc50637 | 721 | slab_bug(s, "%s", buf); |
24922684 | 722 | print_page_info(page); |
81819f0f CL |
723 | dump_stack(); |
724 | } | |
725 | ||
f7cb1933 | 726 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
727 | { |
728 | u8 *p = object; | |
729 | ||
d86bd1be JK |
730 | if (s->flags & SLAB_RED_ZONE) |
731 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
732 | ||
81819f0f | 733 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
734 | memset(p, POISON_FREE, s->object_size - 1); |
735 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
736 | } |
737 | ||
738 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 739 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
740 | } |
741 | ||
24922684 CL |
742 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
743 | void *from, void *to) | |
744 | { | |
745 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
746 | memset(from, data, to - from); | |
747 | } | |
748 | ||
749 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
750 | u8 *object, char *what, | |
06428780 | 751 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
752 | { |
753 | u8 *fault; | |
754 | u8 *end; | |
755 | ||
a79316c6 | 756 | metadata_access_enable(); |
79824820 | 757 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 758 | metadata_access_disable(); |
24922684 CL |
759 | if (!fault) |
760 | return 1; | |
761 | ||
762 | end = start + bytes; | |
763 | while (end > fault && end[-1] == value) | |
764 | end--; | |
765 | ||
766 | slab_bug(s, "%s overwritten", what); | |
f9f58285 | 767 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
24922684 CL |
768 | fault, end - 1, fault[0], value); |
769 | print_trailer(s, page, object); | |
770 | ||
771 | restore_bytes(s, what, value, fault, end); | |
772 | return 0; | |
81819f0f CL |
773 | } |
774 | ||
81819f0f CL |
775 | /* |
776 | * Object layout: | |
777 | * | |
778 | * object address | |
779 | * Bytes of the object to be managed. | |
780 | * If the freepointer may overlay the object then the free | |
781 | * pointer is the first word of the object. | |
672bba3a | 782 | * |
81819f0f CL |
783 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
784 | * 0xa5 (POISON_END) | |
785 | * | |
3b0efdfa | 786 | * object + s->object_size |
81819f0f | 787 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 788 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 789 | * object_size == inuse. |
672bba3a | 790 | * |
81819f0f CL |
791 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
792 | * 0xcc (RED_ACTIVE) for objects in use. | |
793 | * | |
794 | * object + s->inuse | |
672bba3a CL |
795 | * Meta data starts here. |
796 | * | |
81819f0f CL |
797 | * A. Free pointer (if we cannot overwrite object on free) |
798 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 799 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 800 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
801 | * before the word boundary. |
802 | * | |
803 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
804 | * |
805 | * object + s->size | |
672bba3a | 806 | * Nothing is used beyond s->size. |
81819f0f | 807 | * |
3b0efdfa | 808 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 809 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
810 | * may be used with merged slabcaches. |
811 | */ | |
812 | ||
81819f0f CL |
813 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
814 | { | |
815 | unsigned long off = s->inuse; /* The end of info */ | |
816 | ||
817 | if (s->offset) | |
818 | /* Freepointer is placed after the object. */ | |
819 | off += sizeof(void *); | |
820 | ||
821 | if (s->flags & SLAB_STORE_USER) | |
822 | /* We also have user information there */ | |
823 | off += 2 * sizeof(struct track); | |
824 | ||
80a9201a AP |
825 | off += kasan_metadata_size(s); |
826 | ||
d86bd1be | 827 | if (size_from_object(s) == off) |
81819f0f CL |
828 | return 1; |
829 | ||
24922684 | 830 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 831 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
832 | } |
833 | ||
39b26464 | 834 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
835 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
836 | { | |
24922684 CL |
837 | u8 *start; |
838 | u8 *fault; | |
839 | u8 *end; | |
840 | int length; | |
841 | int remainder; | |
81819f0f CL |
842 | |
843 | if (!(s->flags & SLAB_POISON)) | |
844 | return 1; | |
845 | ||
a973e9dd | 846 | start = page_address(page); |
ab9a0f19 | 847 | length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
39b26464 CL |
848 | end = start + length; |
849 | remainder = length % s->size; | |
81819f0f CL |
850 | if (!remainder) |
851 | return 1; | |
852 | ||
a79316c6 | 853 | metadata_access_enable(); |
79824820 | 854 | fault = memchr_inv(end - remainder, POISON_INUSE, remainder); |
a79316c6 | 855 | metadata_access_disable(); |
24922684 CL |
856 | if (!fault) |
857 | return 1; | |
858 | while (end > fault && end[-1] == POISON_INUSE) | |
859 | end--; | |
860 | ||
861 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
aa2efd5e | 862 | print_section(KERN_ERR, "Padding ", end - remainder, remainder); |
24922684 | 863 | |
8a3d271d | 864 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
24922684 | 865 | return 0; |
81819f0f CL |
866 | } |
867 | ||
868 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 869 | void *object, u8 val) |
81819f0f CL |
870 | { |
871 | u8 *p = object; | |
3b0efdfa | 872 | u8 *endobject = object + s->object_size; |
81819f0f CL |
873 | |
874 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
875 | if (!check_bytes_and_report(s, page, object, "Redzone", |
876 | object - s->red_left_pad, val, s->red_left_pad)) | |
877 | return 0; | |
878 | ||
24922684 | 879 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 880 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 881 | return 0; |
81819f0f | 882 | } else { |
3b0efdfa | 883 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 884 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
885 | endobject, POISON_INUSE, |
886 | s->inuse - s->object_size); | |
3adbefee | 887 | } |
81819f0f CL |
888 | } |
889 | ||
890 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 891 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 892 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 893 | POISON_FREE, s->object_size - 1) || |
24922684 | 894 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 895 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 896 | return 0; |
81819f0f CL |
897 | /* |
898 | * check_pad_bytes cleans up on its own. | |
899 | */ | |
900 | check_pad_bytes(s, page, p); | |
901 | } | |
902 | ||
f7cb1933 | 903 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
904 | /* |
905 | * Object and freepointer overlap. Cannot check | |
906 | * freepointer while object is allocated. | |
907 | */ | |
908 | return 1; | |
909 | ||
910 | /* Check free pointer validity */ | |
911 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
912 | object_err(s, page, p, "Freepointer corrupt"); | |
913 | /* | |
9f6c708e | 914 | * No choice but to zap it and thus lose the remainder |
81819f0f | 915 | * of the free objects in this slab. May cause |
672bba3a | 916 | * another error because the object count is now wrong. |
81819f0f | 917 | */ |
a973e9dd | 918 | set_freepointer(s, p, NULL); |
81819f0f CL |
919 | return 0; |
920 | } | |
921 | return 1; | |
922 | } | |
923 | ||
924 | static int check_slab(struct kmem_cache *s, struct page *page) | |
925 | { | |
39b26464 CL |
926 | int maxobj; |
927 | ||
81819f0f CL |
928 | VM_BUG_ON(!irqs_disabled()); |
929 | ||
930 | if (!PageSlab(page)) { | |
24922684 | 931 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
932 | return 0; |
933 | } | |
39b26464 | 934 | |
ab9a0f19 | 935 | maxobj = order_objects(compound_order(page), s->size, s->reserved); |
39b26464 CL |
936 | if (page->objects > maxobj) { |
937 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 938 | page->objects, maxobj); |
39b26464 CL |
939 | return 0; |
940 | } | |
941 | if (page->inuse > page->objects) { | |
24922684 | 942 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 943 | page->inuse, page->objects); |
81819f0f CL |
944 | return 0; |
945 | } | |
946 | /* Slab_pad_check fixes things up after itself */ | |
947 | slab_pad_check(s, page); | |
948 | return 1; | |
949 | } | |
950 | ||
951 | /* | |
672bba3a CL |
952 | * Determine if a certain object on a page is on the freelist. Must hold the |
953 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
954 | */ |
955 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
956 | { | |
957 | int nr = 0; | |
881db7fb | 958 | void *fp; |
81819f0f | 959 | void *object = NULL; |
f6edde9c | 960 | int max_objects; |
81819f0f | 961 | |
881db7fb | 962 | fp = page->freelist; |
39b26464 | 963 | while (fp && nr <= page->objects) { |
81819f0f CL |
964 | if (fp == search) |
965 | return 1; | |
966 | if (!check_valid_pointer(s, page, fp)) { | |
967 | if (object) { | |
968 | object_err(s, page, object, | |
969 | "Freechain corrupt"); | |
a973e9dd | 970 | set_freepointer(s, object, NULL); |
81819f0f | 971 | } else { |
24922684 | 972 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 973 | page->freelist = NULL; |
39b26464 | 974 | page->inuse = page->objects; |
24922684 | 975 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
976 | return 0; |
977 | } | |
978 | break; | |
979 | } | |
980 | object = fp; | |
981 | fp = get_freepointer(s, object); | |
982 | nr++; | |
983 | } | |
984 | ||
ab9a0f19 | 985 | max_objects = order_objects(compound_order(page), s->size, s->reserved); |
210b5c06 CG |
986 | if (max_objects > MAX_OBJS_PER_PAGE) |
987 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
988 | |
989 | if (page->objects != max_objects) { | |
756a025f JP |
990 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
991 | page->objects, max_objects); | |
224a88be CL |
992 | page->objects = max_objects; |
993 | slab_fix(s, "Number of objects adjusted."); | |
994 | } | |
39b26464 | 995 | if (page->inuse != page->objects - nr) { |
756a025f JP |
996 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
997 | page->inuse, page->objects - nr); | |
39b26464 | 998 | page->inuse = page->objects - nr; |
24922684 | 999 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
1000 | } |
1001 | return search == NULL; | |
1002 | } | |
1003 | ||
0121c619 CL |
1004 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
1005 | int alloc) | |
3ec09742 CL |
1006 | { |
1007 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1008 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1009 | s->name, |
1010 | alloc ? "alloc" : "free", | |
1011 | object, page->inuse, | |
1012 | page->freelist); | |
1013 | ||
1014 | if (!alloc) | |
aa2efd5e | 1015 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1016 | s->object_size); |
3ec09742 CL |
1017 | |
1018 | dump_stack(); | |
1019 | } | |
1020 | } | |
1021 | ||
643b1138 | 1022 | /* |
672bba3a | 1023 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1024 | */ |
5cc6eee8 CL |
1025 | static void add_full(struct kmem_cache *s, |
1026 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1027 | { |
5cc6eee8 CL |
1028 | if (!(s->flags & SLAB_STORE_USER)) |
1029 | return; | |
1030 | ||
255d0884 | 1031 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1032 | list_add(&page->lru, &n->full); |
643b1138 CL |
1033 | } |
1034 | ||
c65c1877 | 1035 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1036 | { |
643b1138 CL |
1037 | if (!(s->flags & SLAB_STORE_USER)) |
1038 | return; | |
1039 | ||
255d0884 | 1040 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1041 | list_del(&page->lru); |
643b1138 CL |
1042 | } |
1043 | ||
0f389ec6 CL |
1044 | /* Tracking of the number of slabs for debugging purposes */ |
1045 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1046 | { | |
1047 | struct kmem_cache_node *n = get_node(s, node); | |
1048 | ||
1049 | return atomic_long_read(&n->nr_slabs); | |
1050 | } | |
1051 | ||
26c02cf0 AB |
1052 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1053 | { | |
1054 | return atomic_long_read(&n->nr_slabs); | |
1055 | } | |
1056 | ||
205ab99d | 1057 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1058 | { |
1059 | struct kmem_cache_node *n = get_node(s, node); | |
1060 | ||
1061 | /* | |
1062 | * May be called early in order to allocate a slab for the | |
1063 | * kmem_cache_node structure. Solve the chicken-egg | |
1064 | * dilemma by deferring the increment of the count during | |
1065 | * bootstrap (see early_kmem_cache_node_alloc). | |
1066 | */ | |
338b2642 | 1067 | if (likely(n)) { |
0f389ec6 | 1068 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1069 | atomic_long_add(objects, &n->total_objects); |
1070 | } | |
0f389ec6 | 1071 | } |
205ab99d | 1072 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1073 | { |
1074 | struct kmem_cache_node *n = get_node(s, node); | |
1075 | ||
1076 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1077 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1078 | } |
1079 | ||
1080 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1081 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1082 | void *object) | |
1083 | { | |
1084 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1085 | return; | |
1086 | ||
f7cb1933 | 1087 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1088 | init_tracking(s, object); |
1089 | } | |
1090 | ||
becfda68 | 1091 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
d0e0ac97 | 1092 | struct page *page, |
ce71e27c | 1093 | void *object, unsigned long addr) |
81819f0f CL |
1094 | { |
1095 | if (!check_slab(s, page)) | |
becfda68 | 1096 | return 0; |
81819f0f | 1097 | |
81819f0f CL |
1098 | if (!check_valid_pointer(s, page, object)) { |
1099 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1100 | return 0; |
81819f0f CL |
1101 | } |
1102 | ||
f7cb1933 | 1103 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1104 | return 0; |
1105 | ||
1106 | return 1; | |
1107 | } | |
1108 | ||
1109 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1110 | struct page *page, | |
1111 | void *object, unsigned long addr) | |
1112 | { | |
1113 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1114 | if (!alloc_consistency_checks(s, page, object, addr)) | |
1115 | goto bad; | |
1116 | } | |
81819f0f | 1117 | |
3ec09742 CL |
1118 | /* Success perform special debug activities for allocs */ |
1119 | if (s->flags & SLAB_STORE_USER) | |
1120 | set_track(s, object, TRACK_ALLOC, addr); | |
1121 | trace(s, page, object, 1); | |
f7cb1933 | 1122 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1123 | return 1; |
3ec09742 | 1124 | |
81819f0f CL |
1125 | bad: |
1126 | if (PageSlab(page)) { | |
1127 | /* | |
1128 | * If this is a slab page then lets do the best we can | |
1129 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1130 | * as used avoids touching the remaining objects. |
81819f0f | 1131 | */ |
24922684 | 1132 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1133 | page->inuse = page->objects; |
a973e9dd | 1134 | page->freelist = NULL; |
81819f0f CL |
1135 | } |
1136 | return 0; | |
1137 | } | |
1138 | ||
becfda68 LA |
1139 | static inline int free_consistency_checks(struct kmem_cache *s, |
1140 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1141 | { |
81819f0f | 1142 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1143 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1144 | return 0; |
81819f0f CL |
1145 | } |
1146 | ||
1147 | if (on_freelist(s, page, object)) { | |
24922684 | 1148 | object_err(s, page, object, "Object already free"); |
becfda68 | 1149 | return 0; |
81819f0f CL |
1150 | } |
1151 | ||
f7cb1933 | 1152 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1153 | return 0; |
81819f0f | 1154 | |
1b4f59e3 | 1155 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1156 | if (!PageSlab(page)) { |
756a025f JP |
1157 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1158 | object); | |
1b4f59e3 | 1159 | } else if (!page->slab_cache) { |
f9f58285 FF |
1160 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1161 | object); | |
70d71228 | 1162 | dump_stack(); |
06428780 | 1163 | } else |
24922684 CL |
1164 | object_err(s, page, object, |
1165 | "page slab pointer corrupt."); | |
becfda68 LA |
1166 | return 0; |
1167 | } | |
1168 | return 1; | |
1169 | } | |
1170 | ||
1171 | /* Supports checking bulk free of a constructed freelist */ | |
1172 | static noinline int free_debug_processing( | |
1173 | struct kmem_cache *s, struct page *page, | |
1174 | void *head, void *tail, int bulk_cnt, | |
1175 | unsigned long addr) | |
1176 | { | |
1177 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1178 | void *object = head; | |
1179 | int cnt = 0; | |
1180 | unsigned long uninitialized_var(flags); | |
1181 | int ret = 0; | |
1182 | ||
1183 | spin_lock_irqsave(&n->list_lock, flags); | |
1184 | slab_lock(page); | |
1185 | ||
1186 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1187 | if (!check_slab(s, page)) | |
1188 | goto out; | |
1189 | } | |
1190 | ||
1191 | next_object: | |
1192 | cnt++; | |
1193 | ||
1194 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1195 | if (!free_consistency_checks(s, page, object, addr)) | |
1196 | goto out; | |
81819f0f | 1197 | } |
3ec09742 | 1198 | |
3ec09742 CL |
1199 | if (s->flags & SLAB_STORE_USER) |
1200 | set_track(s, object, TRACK_FREE, addr); | |
1201 | trace(s, page, object, 0); | |
81084651 | 1202 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1203 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1204 | |
1205 | /* Reached end of constructed freelist yet? */ | |
1206 | if (object != tail) { | |
1207 | object = get_freepointer(s, object); | |
1208 | goto next_object; | |
1209 | } | |
804aa132 LA |
1210 | ret = 1; |
1211 | ||
5c2e4bbb | 1212 | out: |
81084651 JDB |
1213 | if (cnt != bulk_cnt) |
1214 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1215 | bulk_cnt, cnt); | |
1216 | ||
881db7fb | 1217 | slab_unlock(page); |
282acb43 | 1218 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1219 | if (!ret) |
1220 | slab_fix(s, "Object at 0x%p not freed", object); | |
1221 | return ret; | |
81819f0f CL |
1222 | } |
1223 | ||
41ecc55b CL |
1224 | static int __init setup_slub_debug(char *str) |
1225 | { | |
f0630fff CL |
1226 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1227 | if (*str++ != '=' || !*str) | |
1228 | /* | |
1229 | * No options specified. Switch on full debugging. | |
1230 | */ | |
1231 | goto out; | |
1232 | ||
1233 | if (*str == ',') | |
1234 | /* | |
1235 | * No options but restriction on slabs. This means full | |
1236 | * debugging for slabs matching a pattern. | |
1237 | */ | |
1238 | goto check_slabs; | |
1239 | ||
1240 | slub_debug = 0; | |
1241 | if (*str == '-') | |
1242 | /* | |
1243 | * Switch off all debugging measures. | |
1244 | */ | |
1245 | goto out; | |
1246 | ||
1247 | /* | |
1248 | * Determine which debug features should be switched on | |
1249 | */ | |
06428780 | 1250 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1251 | switch (tolower(*str)) { |
1252 | case 'f': | |
becfda68 | 1253 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1254 | break; |
1255 | case 'z': | |
1256 | slub_debug |= SLAB_RED_ZONE; | |
1257 | break; | |
1258 | case 'p': | |
1259 | slub_debug |= SLAB_POISON; | |
1260 | break; | |
1261 | case 'u': | |
1262 | slub_debug |= SLAB_STORE_USER; | |
1263 | break; | |
1264 | case 't': | |
1265 | slub_debug |= SLAB_TRACE; | |
1266 | break; | |
4c13dd3b DM |
1267 | case 'a': |
1268 | slub_debug |= SLAB_FAILSLAB; | |
1269 | break; | |
08303a73 CA |
1270 | case 'o': |
1271 | /* | |
1272 | * Avoid enabling debugging on caches if its minimum | |
1273 | * order would increase as a result. | |
1274 | */ | |
1275 | disable_higher_order_debug = 1; | |
1276 | break; | |
f0630fff | 1277 | default: |
f9f58285 FF |
1278 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1279 | *str); | |
f0630fff | 1280 | } |
41ecc55b CL |
1281 | } |
1282 | ||
f0630fff | 1283 | check_slabs: |
41ecc55b CL |
1284 | if (*str == ',') |
1285 | slub_debug_slabs = str + 1; | |
f0630fff | 1286 | out: |
41ecc55b CL |
1287 | return 1; |
1288 | } | |
1289 | ||
1290 | __setup("slub_debug", setup_slub_debug); | |
1291 | ||
423c929c | 1292 | unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1293 | unsigned long flags, const char *name, |
51cc5068 | 1294 | void (*ctor)(void *)) |
41ecc55b CL |
1295 | { |
1296 | /* | |
e153362a | 1297 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1298 | */ |
c6f58d9b CL |
1299 | if (slub_debug && (!slub_debug_slabs || (name && |
1300 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | |
3de47213 | 1301 | flags |= slub_debug; |
ba0268a8 CL |
1302 | |
1303 | return flags; | |
41ecc55b | 1304 | } |
b4a64718 | 1305 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1306 | static inline void setup_object_debug(struct kmem_cache *s, |
1307 | struct page *page, void *object) {} | |
41ecc55b | 1308 | |
3ec09742 | 1309 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1310 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1311 | |
282acb43 | 1312 | static inline int free_debug_processing( |
81084651 JDB |
1313 | struct kmem_cache *s, struct page *page, |
1314 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1315 | unsigned long addr) { return 0; } |
41ecc55b | 1316 | |
41ecc55b CL |
1317 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1318 | { return 1; } | |
1319 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1320 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1321 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1322 | struct page *page) {} | |
c65c1877 PZ |
1323 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1324 | struct page *page) {} | |
423c929c | 1325 | unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1326 | unsigned long flags, const char *name, |
51cc5068 | 1327 | void (*ctor)(void *)) |
ba0268a8 CL |
1328 | { |
1329 | return flags; | |
1330 | } | |
41ecc55b | 1331 | #define slub_debug 0 |
0f389ec6 | 1332 | |
fdaa45e9 IM |
1333 | #define disable_higher_order_debug 0 |
1334 | ||
0f389ec6 CL |
1335 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1336 | { return 0; } | |
26c02cf0 AB |
1337 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1338 | { return 0; } | |
205ab99d CL |
1339 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1340 | int objects) {} | |
1341 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1342 | int objects) {} | |
7d550c56 | 1343 | |
02e72cc6 AR |
1344 | #endif /* CONFIG_SLUB_DEBUG */ |
1345 | ||
1346 | /* | |
1347 | * Hooks for other subsystems that check memory allocations. In a typical | |
1348 | * production configuration these hooks all should produce no code at all. | |
1349 | */ | |
d56791b3 RB |
1350 | static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
1351 | { | |
1352 | kmemleak_alloc(ptr, size, 1, flags); | |
505f5dcb | 1353 | kasan_kmalloc_large(ptr, size, flags); |
d56791b3 RB |
1354 | } |
1355 | ||
1356 | static inline void kfree_hook(const void *x) | |
1357 | { | |
1358 | kmemleak_free(x); | |
0316bec2 | 1359 | kasan_kfree_large(x); |
d56791b3 RB |
1360 | } |
1361 | ||
80a9201a | 1362 | static inline void *slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 | 1363 | { |
80a9201a AP |
1364 | void *freeptr; |
1365 | ||
d56791b3 | 1366 | kmemleak_free_recursive(x, s->flags); |
7d550c56 | 1367 | |
02e72cc6 AR |
1368 | /* |
1369 | * Trouble is that we may no longer disable interrupts in the fast path | |
1370 | * So in order to make the debug calls that expect irqs to be | |
1371 | * disabled we need to disable interrupts temporarily. | |
1372 | */ | |
1373 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | |
1374 | { | |
1375 | unsigned long flags; | |
1376 | ||
1377 | local_irq_save(flags); | |
1378 | kmemcheck_slab_free(s, x, s->object_size); | |
1379 | debug_check_no_locks_freed(x, s->object_size); | |
1380 | local_irq_restore(flags); | |
1381 | } | |
1382 | #endif | |
1383 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1384 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1385 | |
80a9201a AP |
1386 | freeptr = get_freepointer(s, x); |
1387 | /* | |
1388 | * kasan_slab_free() may put x into memory quarantine, delaying its | |
1389 | * reuse. In this case the object's freelist pointer is changed. | |
1390 | */ | |
0316bec2 | 1391 | kasan_slab_free(s, x); |
80a9201a | 1392 | return freeptr; |
02e72cc6 | 1393 | } |
205ab99d | 1394 | |
81084651 JDB |
1395 | static inline void slab_free_freelist_hook(struct kmem_cache *s, |
1396 | void *head, void *tail) | |
1397 | { | |
1398 | /* | |
1399 | * Compiler cannot detect this function can be removed if slab_free_hook() | |
1400 | * evaluates to nothing. Thus, catch all relevant config debug options here. | |
1401 | */ | |
1402 | #if defined(CONFIG_KMEMCHECK) || \ | |
1403 | defined(CONFIG_LOCKDEP) || \ | |
1404 | defined(CONFIG_DEBUG_KMEMLEAK) || \ | |
1405 | defined(CONFIG_DEBUG_OBJECTS_FREE) || \ | |
1406 | defined(CONFIG_KASAN) | |
1407 | ||
1408 | void *object = head; | |
1409 | void *tail_obj = tail ? : head; | |
80a9201a | 1410 | void *freeptr; |
81084651 JDB |
1411 | |
1412 | do { | |
80a9201a AP |
1413 | freeptr = slab_free_hook(s, object); |
1414 | } while ((object != tail_obj) && (object = freeptr)); | |
81084651 JDB |
1415 | #endif |
1416 | } | |
1417 | ||
588f8ba9 TG |
1418 | static void setup_object(struct kmem_cache *s, struct page *page, |
1419 | void *object) | |
1420 | { | |
1421 | setup_object_debug(s, page, object); | |
b3cbd9bf | 1422 | kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1423 | if (unlikely(s->ctor)) { |
1424 | kasan_unpoison_object_data(s, object); | |
1425 | s->ctor(object); | |
1426 | kasan_poison_object_data(s, object); | |
1427 | } | |
1428 | } | |
1429 | ||
81819f0f CL |
1430 | /* |
1431 | * Slab allocation and freeing | |
1432 | */ | |
5dfb4175 VD |
1433 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1434 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1435 | { |
5dfb4175 | 1436 | struct page *page; |
65c3376a CL |
1437 | int order = oo_order(oo); |
1438 | ||
b1eeab67 VN |
1439 | flags |= __GFP_NOTRACK; |
1440 | ||
2154a336 | 1441 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1442 | page = alloc_pages(flags, order); |
65c3376a | 1443 | else |
96db800f | 1444 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1445 | |
f3ccb2c4 VD |
1446 | if (page && memcg_charge_slab(page, flags, order, s)) { |
1447 | __free_pages(page, order); | |
1448 | page = NULL; | |
1449 | } | |
5dfb4175 VD |
1450 | |
1451 | return page; | |
65c3376a CL |
1452 | } |
1453 | ||
210e7a43 TG |
1454 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1455 | /* Pre-initialize the random sequence cache */ | |
1456 | static int init_cache_random_seq(struct kmem_cache *s) | |
1457 | { | |
1458 | int err; | |
1459 | unsigned long i, count = oo_objects(s->oo); | |
1460 | ||
a810007a SR |
1461 | /* Bailout if already initialised */ |
1462 | if (s->random_seq) | |
1463 | return 0; | |
1464 | ||
210e7a43 TG |
1465 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1466 | if (err) { | |
1467 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1468 | s->name); | |
1469 | return err; | |
1470 | } | |
1471 | ||
1472 | /* Transform to an offset on the set of pages */ | |
1473 | if (s->random_seq) { | |
1474 | for (i = 0; i < count; i++) | |
1475 | s->random_seq[i] *= s->size; | |
1476 | } | |
1477 | return 0; | |
1478 | } | |
1479 | ||
1480 | /* Initialize each random sequence freelist per cache */ | |
1481 | static void __init init_freelist_randomization(void) | |
1482 | { | |
1483 | struct kmem_cache *s; | |
1484 | ||
1485 | mutex_lock(&slab_mutex); | |
1486 | ||
1487 | list_for_each_entry(s, &slab_caches, list) | |
1488 | init_cache_random_seq(s); | |
1489 | ||
1490 | mutex_unlock(&slab_mutex); | |
1491 | } | |
1492 | ||
1493 | /* Get the next entry on the pre-computed freelist randomized */ | |
1494 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1495 | unsigned long *pos, void *start, | |
1496 | unsigned long page_limit, | |
1497 | unsigned long freelist_count) | |
1498 | { | |
1499 | unsigned int idx; | |
1500 | ||
1501 | /* | |
1502 | * If the target page allocation failed, the number of objects on the | |
1503 | * page might be smaller than the usual size defined by the cache. | |
1504 | */ | |
1505 | do { | |
1506 | idx = s->random_seq[*pos]; | |
1507 | *pos += 1; | |
1508 | if (*pos >= freelist_count) | |
1509 | *pos = 0; | |
1510 | } while (unlikely(idx >= page_limit)); | |
1511 | ||
1512 | return (char *)start + idx; | |
1513 | } | |
1514 | ||
1515 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1516 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1517 | { | |
1518 | void *start; | |
1519 | void *cur; | |
1520 | void *next; | |
1521 | unsigned long idx, pos, page_limit, freelist_count; | |
1522 | ||
1523 | if (page->objects < 2 || !s->random_seq) | |
1524 | return false; | |
1525 | ||
1526 | freelist_count = oo_objects(s->oo); | |
1527 | pos = get_random_int() % freelist_count; | |
1528 | ||
1529 | page_limit = page->objects * s->size; | |
1530 | start = fixup_red_left(s, page_address(page)); | |
1531 | ||
1532 | /* First entry is used as the base of the freelist */ | |
1533 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1534 | freelist_count); | |
1535 | page->freelist = cur; | |
1536 | ||
1537 | for (idx = 1; idx < page->objects; idx++) { | |
1538 | setup_object(s, page, cur); | |
1539 | next = next_freelist_entry(s, page, &pos, start, page_limit, | |
1540 | freelist_count); | |
1541 | set_freepointer(s, cur, next); | |
1542 | cur = next; | |
1543 | } | |
1544 | setup_object(s, page, cur); | |
1545 | set_freepointer(s, cur, NULL); | |
1546 | ||
1547 | return true; | |
1548 | } | |
1549 | #else | |
1550 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1551 | { | |
1552 | return 0; | |
1553 | } | |
1554 | static inline void init_freelist_randomization(void) { } | |
1555 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1556 | { | |
1557 | return false; | |
1558 | } | |
1559 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1560 | ||
81819f0f CL |
1561 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1562 | { | |
06428780 | 1563 | struct page *page; |
834f3d11 | 1564 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1565 | gfp_t alloc_gfp; |
588f8ba9 TG |
1566 | void *start, *p; |
1567 | int idx, order; | |
210e7a43 | 1568 | bool shuffle; |
81819f0f | 1569 | |
7e0528da CL |
1570 | flags &= gfp_allowed_mask; |
1571 | ||
d0164adc | 1572 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1573 | local_irq_enable(); |
1574 | ||
b7a49f0d | 1575 | flags |= s->allocflags; |
e12ba74d | 1576 | |
ba52270d PE |
1577 | /* |
1578 | * Let the initial higher-order allocation fail under memory pressure | |
1579 | * so we fall-back to the minimum order allocation. | |
1580 | */ | |
1581 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1582 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1583 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1584 | |
5dfb4175 | 1585 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1586 | if (unlikely(!page)) { |
1587 | oo = s->min; | |
80c3a998 | 1588 | alloc_gfp = flags; |
65c3376a CL |
1589 | /* |
1590 | * Allocation may have failed due to fragmentation. | |
1591 | * Try a lower order alloc if possible | |
1592 | */ | |
5dfb4175 | 1593 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1594 | if (unlikely(!page)) |
1595 | goto out; | |
1596 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1597 | } |
5a896d9e | 1598 | |
588f8ba9 TG |
1599 | if (kmemcheck_enabled && |
1600 | !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { | |
b1eeab67 VN |
1601 | int pages = 1 << oo_order(oo); |
1602 | ||
80c3a998 | 1603 | kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); |
b1eeab67 VN |
1604 | |
1605 | /* | |
1606 | * Objects from caches that have a constructor don't get | |
1607 | * cleared when they're allocated, so we need to do it here. | |
1608 | */ | |
1609 | if (s->ctor) | |
1610 | kmemcheck_mark_uninitialized_pages(page, pages); | |
1611 | else | |
1612 | kmemcheck_mark_unallocated_pages(page, pages); | |
5a896d9e VN |
1613 | } |
1614 | ||
834f3d11 | 1615 | page->objects = oo_objects(oo); |
81819f0f | 1616 | |
1f458cbf | 1617 | order = compound_order(page); |
1b4f59e3 | 1618 | page->slab_cache = s; |
c03f94cc | 1619 | __SetPageSlab(page); |
2f064f34 | 1620 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1621 | SetPageSlabPfmemalloc(page); |
81819f0f CL |
1622 | |
1623 | start = page_address(page); | |
81819f0f CL |
1624 | |
1625 | if (unlikely(s->flags & SLAB_POISON)) | |
1f458cbf | 1626 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
81819f0f | 1627 | |
0316bec2 AR |
1628 | kasan_poison_slab(page); |
1629 | ||
210e7a43 TG |
1630 | shuffle = shuffle_freelist(s, page); |
1631 | ||
1632 | if (!shuffle) { | |
1633 | for_each_object_idx(p, idx, s, start, page->objects) { | |
1634 | setup_object(s, page, p); | |
1635 | if (likely(idx < page->objects)) | |
1636 | set_freepointer(s, p, p + s->size); | |
1637 | else | |
1638 | set_freepointer(s, p, NULL); | |
1639 | } | |
1640 | page->freelist = fixup_red_left(s, start); | |
81819f0f | 1641 | } |
81819f0f | 1642 | |
e6e82ea1 | 1643 | page->inuse = page->objects; |
8cb0a506 | 1644 | page->frozen = 1; |
588f8ba9 | 1645 | |
81819f0f | 1646 | out: |
d0164adc | 1647 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1648 | local_irq_disable(); |
1649 | if (!page) | |
1650 | return NULL; | |
1651 | ||
7779f212 | 1652 | mod_lruvec_page_state(page, |
588f8ba9 TG |
1653 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1654 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1655 | 1 << oo_order(oo)); | |
1656 | ||
1657 | inc_slabs_node(s, page_to_nid(page), page->objects); | |
1658 | ||
81819f0f CL |
1659 | return page; |
1660 | } | |
1661 | ||
588f8ba9 TG |
1662 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1663 | { | |
1664 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1665 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1666 | flags &= ~GFP_SLAB_BUG_MASK; |
1667 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1668 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1669 | dump_stack(); |
588f8ba9 TG |
1670 | } |
1671 | ||
1672 | return allocate_slab(s, | |
1673 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1674 | } | |
1675 | ||
81819f0f CL |
1676 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1677 | { | |
834f3d11 CL |
1678 | int order = compound_order(page); |
1679 | int pages = 1 << order; | |
81819f0f | 1680 | |
becfda68 | 1681 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1682 | void *p; |
1683 | ||
1684 | slab_pad_check(s, page); | |
224a88be CL |
1685 | for_each_object(p, s, page_address(page), |
1686 | page->objects) | |
f7cb1933 | 1687 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1688 | } |
1689 | ||
b1eeab67 | 1690 | kmemcheck_free_shadow(page, compound_order(page)); |
5a896d9e | 1691 | |
7779f212 | 1692 | mod_lruvec_page_state(page, |
81819f0f CL |
1693 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1694 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1695 | -pages); |
81819f0f | 1696 | |
072bb0aa | 1697 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1698 | __ClearPageSlab(page); |
1f458cbf | 1699 | |
22b751c3 | 1700 | page_mapcount_reset(page); |
1eb5ac64 NP |
1701 | if (current->reclaim_state) |
1702 | current->reclaim_state->reclaimed_slab += pages; | |
27ee57c9 VD |
1703 | memcg_uncharge_slab(page, order, s); |
1704 | __free_pages(page, order); | |
81819f0f CL |
1705 | } |
1706 | ||
da9a638c LJ |
1707 | #define need_reserve_slab_rcu \ |
1708 | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | |
1709 | ||
81819f0f CL |
1710 | static void rcu_free_slab(struct rcu_head *h) |
1711 | { | |
1712 | struct page *page; | |
1713 | ||
da9a638c LJ |
1714 | if (need_reserve_slab_rcu) |
1715 | page = virt_to_head_page(h); | |
1716 | else | |
1717 | page = container_of((struct list_head *)h, struct page, lru); | |
1718 | ||
1b4f59e3 | 1719 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1720 | } |
1721 | ||
1722 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1723 | { | |
5f0d5a3a | 1724 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
da9a638c LJ |
1725 | struct rcu_head *head; |
1726 | ||
1727 | if (need_reserve_slab_rcu) { | |
1728 | int order = compound_order(page); | |
1729 | int offset = (PAGE_SIZE << order) - s->reserved; | |
1730 | ||
1731 | VM_BUG_ON(s->reserved != sizeof(*head)); | |
1732 | head = page_address(page) + offset; | |
1733 | } else { | |
bc4f610d | 1734 | head = &page->rcu_head; |
da9a638c | 1735 | } |
81819f0f CL |
1736 | |
1737 | call_rcu(head, rcu_free_slab); | |
1738 | } else | |
1739 | __free_slab(s, page); | |
1740 | } | |
1741 | ||
1742 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1743 | { | |
205ab99d | 1744 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1745 | free_slab(s, page); |
1746 | } | |
1747 | ||
1748 | /* | |
5cc6eee8 | 1749 | * Management of partially allocated slabs. |
81819f0f | 1750 | */ |
1e4dd946 SR |
1751 | static inline void |
1752 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1753 | { |
e95eed57 | 1754 | n->nr_partial++; |
136333d1 | 1755 | if (tail == DEACTIVATE_TO_TAIL) |
7c2e132c CL |
1756 | list_add_tail(&page->lru, &n->partial); |
1757 | else | |
1758 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1759 | } |
1760 | ||
1e4dd946 SR |
1761 | static inline void add_partial(struct kmem_cache_node *n, |
1762 | struct page *page, int tail) | |
62e346a8 | 1763 | { |
c65c1877 | 1764 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1765 | __add_partial(n, page, tail); |
1766 | } | |
c65c1877 | 1767 | |
1e4dd946 SR |
1768 | static inline void remove_partial(struct kmem_cache_node *n, |
1769 | struct page *page) | |
1770 | { | |
1771 | lockdep_assert_held(&n->list_lock); | |
52b4b950 DS |
1772 | list_del(&page->lru); |
1773 | n->nr_partial--; | |
1e4dd946 SR |
1774 | } |
1775 | ||
81819f0f | 1776 | /* |
7ced3719 CL |
1777 | * Remove slab from the partial list, freeze it and |
1778 | * return the pointer to the freelist. | |
81819f0f | 1779 | * |
497b66f2 | 1780 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1781 | */ |
497b66f2 | 1782 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1783 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1784 | int mode, int *objects) |
81819f0f | 1785 | { |
2cfb7455 CL |
1786 | void *freelist; |
1787 | unsigned long counters; | |
1788 | struct page new; | |
1789 | ||
c65c1877 PZ |
1790 | lockdep_assert_held(&n->list_lock); |
1791 | ||
2cfb7455 CL |
1792 | /* |
1793 | * Zap the freelist and set the frozen bit. | |
1794 | * The old freelist is the list of objects for the | |
1795 | * per cpu allocation list. | |
1796 | */ | |
7ced3719 CL |
1797 | freelist = page->freelist; |
1798 | counters = page->counters; | |
1799 | new.counters = counters; | |
633b0764 | 1800 | *objects = new.objects - new.inuse; |
23910c50 | 1801 | if (mode) { |
7ced3719 | 1802 | new.inuse = page->objects; |
23910c50 PE |
1803 | new.freelist = NULL; |
1804 | } else { | |
1805 | new.freelist = freelist; | |
1806 | } | |
2cfb7455 | 1807 | |
a0132ac0 | 1808 | VM_BUG_ON(new.frozen); |
7ced3719 | 1809 | new.frozen = 1; |
2cfb7455 | 1810 | |
7ced3719 | 1811 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1812 | freelist, counters, |
02d7633f | 1813 | new.freelist, new.counters, |
7ced3719 | 1814 | "acquire_slab")) |
7ced3719 | 1815 | return NULL; |
2cfb7455 CL |
1816 | |
1817 | remove_partial(n, page); | |
7ced3719 | 1818 | WARN_ON(!freelist); |
49e22585 | 1819 | return freelist; |
81819f0f CL |
1820 | } |
1821 | ||
633b0764 | 1822 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1823 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1824 | |
81819f0f | 1825 | /* |
672bba3a | 1826 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1827 | */ |
8ba00bb6 JK |
1828 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1829 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1830 | { |
49e22585 CL |
1831 | struct page *page, *page2; |
1832 | void *object = NULL; | |
633b0764 JK |
1833 | int available = 0; |
1834 | int objects; | |
81819f0f CL |
1835 | |
1836 | /* | |
1837 | * Racy check. If we mistakenly see no partial slabs then we | |
1838 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1839 | * partial slab and there is none available then get_partials() |
1840 | * will return NULL. | |
81819f0f CL |
1841 | */ |
1842 | if (!n || !n->nr_partial) | |
1843 | return NULL; | |
1844 | ||
1845 | spin_lock(&n->list_lock); | |
49e22585 | 1846 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
8ba00bb6 | 1847 | void *t; |
49e22585 | 1848 | |
8ba00bb6 JK |
1849 | if (!pfmemalloc_match(page, flags)) |
1850 | continue; | |
1851 | ||
633b0764 | 1852 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1853 | if (!t) |
1854 | break; | |
1855 | ||
633b0764 | 1856 | available += objects; |
12d79634 | 1857 | if (!object) { |
49e22585 | 1858 | c->page = page; |
49e22585 | 1859 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1860 | object = t; |
49e22585 | 1861 | } else { |
633b0764 | 1862 | put_cpu_partial(s, page, 0); |
8028dcea | 1863 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1864 | } |
345c905d | 1865 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1866 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1867 | break; |
1868 | ||
497b66f2 | 1869 | } |
81819f0f | 1870 | spin_unlock(&n->list_lock); |
497b66f2 | 1871 | return object; |
81819f0f CL |
1872 | } |
1873 | ||
1874 | /* | |
672bba3a | 1875 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1876 | */ |
de3ec035 | 1877 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1878 | struct kmem_cache_cpu *c) |
81819f0f CL |
1879 | { |
1880 | #ifdef CONFIG_NUMA | |
1881 | struct zonelist *zonelist; | |
dd1a239f | 1882 | struct zoneref *z; |
54a6eb5c MG |
1883 | struct zone *zone; |
1884 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1885 | void *object; |
cc9a6c87 | 1886 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1887 | |
1888 | /* | |
672bba3a CL |
1889 | * The defrag ratio allows a configuration of the tradeoffs between |
1890 | * inter node defragmentation and node local allocations. A lower | |
1891 | * defrag_ratio increases the tendency to do local allocations | |
1892 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1893 | * |
672bba3a CL |
1894 | * If the defrag_ratio is set to 0 then kmalloc() always |
1895 | * returns node local objects. If the ratio is higher then kmalloc() | |
1896 | * may return off node objects because partial slabs are obtained | |
1897 | * from other nodes and filled up. | |
81819f0f | 1898 | * |
43efd3ea LP |
1899 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1900 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1901 | * allocation will first attempt to defrag slab caches on other nodes. | |
1902 | * This means scanning over all nodes to look for partial slabs which | |
1903 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1904 | * with available objects. |
81819f0f | 1905 | */ |
9824601e CL |
1906 | if (!s->remote_node_defrag_ratio || |
1907 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1908 | return NULL; |
1909 | ||
cc9a6c87 | 1910 | do { |
d26914d1 | 1911 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1912 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1913 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1914 | struct kmem_cache_node *n; | |
1915 | ||
1916 | n = get_node(s, zone_to_nid(zone)); | |
1917 | ||
dee2f8aa | 1918 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1919 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1920 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1921 | if (object) { |
1922 | /* | |
d26914d1 MG |
1923 | * Don't check read_mems_allowed_retry() |
1924 | * here - if mems_allowed was updated in | |
1925 | * parallel, that was a harmless race | |
1926 | * between allocation and the cpuset | |
1927 | * update | |
cc9a6c87 | 1928 | */ |
cc9a6c87 MG |
1929 | return object; |
1930 | } | |
c0ff7453 | 1931 | } |
81819f0f | 1932 | } |
d26914d1 | 1933 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
81819f0f CL |
1934 | #endif |
1935 | return NULL; | |
1936 | } | |
1937 | ||
1938 | /* | |
1939 | * Get a partial page, lock it and return it. | |
1940 | */ | |
497b66f2 | 1941 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1942 | struct kmem_cache_cpu *c) |
81819f0f | 1943 | { |
497b66f2 | 1944 | void *object; |
a561ce00 JK |
1945 | int searchnode = node; |
1946 | ||
1947 | if (node == NUMA_NO_NODE) | |
1948 | searchnode = numa_mem_id(); | |
1949 | else if (!node_present_pages(node)) | |
1950 | searchnode = node_to_mem_node(node); | |
81819f0f | 1951 | |
8ba00bb6 | 1952 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1953 | if (object || node != NUMA_NO_NODE) |
1954 | return object; | |
81819f0f | 1955 | |
acd19fd1 | 1956 | return get_any_partial(s, flags, c); |
81819f0f CL |
1957 | } |
1958 | ||
8a5ec0ba CL |
1959 | #ifdef CONFIG_PREEMPT |
1960 | /* | |
1961 | * Calculate the next globally unique transaction for disambiguiation | |
1962 | * during cmpxchg. The transactions start with the cpu number and are then | |
1963 | * incremented by CONFIG_NR_CPUS. | |
1964 | */ | |
1965 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1966 | #else | |
1967 | /* | |
1968 | * No preemption supported therefore also no need to check for | |
1969 | * different cpus. | |
1970 | */ | |
1971 | #define TID_STEP 1 | |
1972 | #endif | |
1973 | ||
1974 | static inline unsigned long next_tid(unsigned long tid) | |
1975 | { | |
1976 | return tid + TID_STEP; | |
1977 | } | |
1978 | ||
1979 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1980 | { | |
1981 | return tid % TID_STEP; | |
1982 | } | |
1983 | ||
1984 | static inline unsigned long tid_to_event(unsigned long tid) | |
1985 | { | |
1986 | return tid / TID_STEP; | |
1987 | } | |
1988 | ||
1989 | static inline unsigned int init_tid(int cpu) | |
1990 | { | |
1991 | return cpu; | |
1992 | } | |
1993 | ||
1994 | static inline void note_cmpxchg_failure(const char *n, | |
1995 | const struct kmem_cache *s, unsigned long tid) | |
1996 | { | |
1997 | #ifdef SLUB_DEBUG_CMPXCHG | |
1998 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
1999 | ||
f9f58285 | 2000 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba CL |
2001 | |
2002 | #ifdef CONFIG_PREEMPT | |
2003 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
f9f58285 | 2004 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2005 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2006 | else | |
2007 | #endif | |
2008 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2009 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2010 | tid_to_event(tid), tid_to_event(actual_tid)); |
2011 | else | |
f9f58285 | 2012 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2013 | actual_tid, tid, next_tid(tid)); |
2014 | #endif | |
4fdccdfb | 2015 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2016 | } |
2017 | ||
788e1aad | 2018 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2019 | { |
8a5ec0ba CL |
2020 | int cpu; |
2021 | ||
2022 | for_each_possible_cpu(cpu) | |
2023 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2024 | } |
2cfb7455 | 2025 | |
81819f0f CL |
2026 | /* |
2027 | * Remove the cpu slab | |
2028 | */ | |
d0e0ac97 | 2029 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2030 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2031 | { |
2cfb7455 | 2032 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2033 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2034 | int lock = 0; | |
2035 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2036 | void *nextfree; |
136333d1 | 2037 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2038 | struct page new; |
2039 | struct page old; | |
2040 | ||
2041 | if (page->freelist) { | |
84e554e6 | 2042 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2043 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2044 | } |
2045 | ||
894b8788 | 2046 | /* |
2cfb7455 CL |
2047 | * Stage one: Free all available per cpu objects back |
2048 | * to the page freelist while it is still frozen. Leave the | |
2049 | * last one. | |
2050 | * | |
2051 | * There is no need to take the list->lock because the page | |
2052 | * is still frozen. | |
2053 | */ | |
2054 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2055 | void *prior; | |
2056 | unsigned long counters; | |
2057 | ||
2058 | do { | |
2059 | prior = page->freelist; | |
2060 | counters = page->counters; | |
2061 | set_freepointer(s, freelist, prior); | |
2062 | new.counters = counters; | |
2063 | new.inuse--; | |
a0132ac0 | 2064 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2065 | |
1d07171c | 2066 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2067 | prior, counters, |
2068 | freelist, new.counters, | |
2069 | "drain percpu freelist")); | |
2070 | ||
2071 | freelist = nextfree; | |
2072 | } | |
2073 | ||
894b8788 | 2074 | /* |
2cfb7455 CL |
2075 | * Stage two: Ensure that the page is unfrozen while the |
2076 | * list presence reflects the actual number of objects | |
2077 | * during unfreeze. | |
2078 | * | |
2079 | * We setup the list membership and then perform a cmpxchg | |
2080 | * with the count. If there is a mismatch then the page | |
2081 | * is not unfrozen but the page is on the wrong list. | |
2082 | * | |
2083 | * Then we restart the process which may have to remove | |
2084 | * the page from the list that we just put it on again | |
2085 | * because the number of objects in the slab may have | |
2086 | * changed. | |
894b8788 | 2087 | */ |
2cfb7455 | 2088 | redo: |
894b8788 | 2089 | |
2cfb7455 CL |
2090 | old.freelist = page->freelist; |
2091 | old.counters = page->counters; | |
a0132ac0 | 2092 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2093 | |
2cfb7455 CL |
2094 | /* Determine target state of the slab */ |
2095 | new.counters = old.counters; | |
2096 | if (freelist) { | |
2097 | new.inuse--; | |
2098 | set_freepointer(s, freelist, old.freelist); | |
2099 | new.freelist = freelist; | |
2100 | } else | |
2101 | new.freelist = old.freelist; | |
2102 | ||
2103 | new.frozen = 0; | |
2104 | ||
8a5b20ae | 2105 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2106 | m = M_FREE; |
2107 | else if (new.freelist) { | |
2108 | m = M_PARTIAL; | |
2109 | if (!lock) { | |
2110 | lock = 1; | |
2111 | /* | |
2112 | * Taking the spinlock removes the possiblity | |
2113 | * that acquire_slab() will see a slab page that | |
2114 | * is frozen | |
2115 | */ | |
2116 | spin_lock(&n->list_lock); | |
2117 | } | |
2118 | } else { | |
2119 | m = M_FULL; | |
2120 | if (kmem_cache_debug(s) && !lock) { | |
2121 | lock = 1; | |
2122 | /* | |
2123 | * This also ensures that the scanning of full | |
2124 | * slabs from diagnostic functions will not see | |
2125 | * any frozen slabs. | |
2126 | */ | |
2127 | spin_lock(&n->list_lock); | |
2128 | } | |
2129 | } | |
2130 | ||
2131 | if (l != m) { | |
2132 | ||
2133 | if (l == M_PARTIAL) | |
2134 | ||
2135 | remove_partial(n, page); | |
2136 | ||
2137 | else if (l == M_FULL) | |
894b8788 | 2138 | |
c65c1877 | 2139 | remove_full(s, n, page); |
2cfb7455 CL |
2140 | |
2141 | if (m == M_PARTIAL) { | |
2142 | ||
2143 | add_partial(n, page, tail); | |
136333d1 | 2144 | stat(s, tail); |
2cfb7455 CL |
2145 | |
2146 | } else if (m == M_FULL) { | |
894b8788 | 2147 | |
2cfb7455 CL |
2148 | stat(s, DEACTIVATE_FULL); |
2149 | add_full(s, n, page); | |
2150 | ||
2151 | } | |
2152 | } | |
2153 | ||
2154 | l = m; | |
1d07171c | 2155 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2156 | old.freelist, old.counters, |
2157 | new.freelist, new.counters, | |
2158 | "unfreezing slab")) | |
2159 | goto redo; | |
2160 | ||
2cfb7455 CL |
2161 | if (lock) |
2162 | spin_unlock(&n->list_lock); | |
2163 | ||
2164 | if (m == M_FREE) { | |
2165 | stat(s, DEACTIVATE_EMPTY); | |
2166 | discard_slab(s, page); | |
2167 | stat(s, FREE_SLAB); | |
894b8788 | 2168 | } |
d4ff6d35 WY |
2169 | |
2170 | c->page = NULL; | |
2171 | c->freelist = NULL; | |
81819f0f CL |
2172 | } |
2173 | ||
d24ac77f JK |
2174 | /* |
2175 | * Unfreeze all the cpu partial slabs. | |
2176 | * | |
59a09917 CL |
2177 | * This function must be called with interrupts disabled |
2178 | * for the cpu using c (or some other guarantee must be there | |
2179 | * to guarantee no concurrent accesses). | |
d24ac77f | 2180 | */ |
59a09917 CL |
2181 | static void unfreeze_partials(struct kmem_cache *s, |
2182 | struct kmem_cache_cpu *c) | |
49e22585 | 2183 | { |
345c905d | 2184 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2185 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2186 | struct page *page, *discard_page = NULL; |
49e22585 CL |
2187 | |
2188 | while ((page = c->partial)) { | |
49e22585 CL |
2189 | struct page new; |
2190 | struct page old; | |
2191 | ||
2192 | c->partial = page->next; | |
43d77867 JK |
2193 | |
2194 | n2 = get_node(s, page_to_nid(page)); | |
2195 | if (n != n2) { | |
2196 | if (n) | |
2197 | spin_unlock(&n->list_lock); | |
2198 | ||
2199 | n = n2; | |
2200 | spin_lock(&n->list_lock); | |
2201 | } | |
49e22585 CL |
2202 | |
2203 | do { | |
2204 | ||
2205 | old.freelist = page->freelist; | |
2206 | old.counters = page->counters; | |
a0132ac0 | 2207 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2208 | |
2209 | new.counters = old.counters; | |
2210 | new.freelist = old.freelist; | |
2211 | ||
2212 | new.frozen = 0; | |
2213 | ||
d24ac77f | 2214 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2215 | old.freelist, old.counters, |
2216 | new.freelist, new.counters, | |
2217 | "unfreezing slab")); | |
2218 | ||
8a5b20ae | 2219 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2220 | page->next = discard_page; |
2221 | discard_page = page; | |
43d77867 JK |
2222 | } else { |
2223 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2224 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2225 | } |
2226 | } | |
2227 | ||
2228 | if (n) | |
2229 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2230 | |
2231 | while (discard_page) { | |
2232 | page = discard_page; | |
2233 | discard_page = discard_page->next; | |
2234 | ||
2235 | stat(s, DEACTIVATE_EMPTY); | |
2236 | discard_slab(s, page); | |
2237 | stat(s, FREE_SLAB); | |
2238 | } | |
345c905d | 2239 | #endif |
49e22585 CL |
2240 | } |
2241 | ||
2242 | /* | |
2243 | * Put a page that was just frozen (in __slab_free) into a partial page | |
2244 | * slot if available. This is done without interrupts disabled and without | |
2245 | * preemption disabled. The cmpxchg is racy and may put the partial page | |
2246 | * onto a random cpus partial slot. | |
2247 | * | |
2248 | * If we did not find a slot then simply move all the partials to the | |
2249 | * per node partial list. | |
2250 | */ | |
633b0764 | 2251 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2252 | { |
345c905d | 2253 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2254 | struct page *oldpage; |
2255 | int pages; | |
2256 | int pobjects; | |
2257 | ||
d6e0b7fa | 2258 | preempt_disable(); |
49e22585 CL |
2259 | do { |
2260 | pages = 0; | |
2261 | pobjects = 0; | |
2262 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2263 | ||
2264 | if (oldpage) { | |
2265 | pobjects = oldpage->pobjects; | |
2266 | pages = oldpage->pages; | |
2267 | if (drain && pobjects > s->cpu_partial) { | |
2268 | unsigned long flags; | |
2269 | /* | |
2270 | * partial array is full. Move the existing | |
2271 | * set to the per node partial list. | |
2272 | */ | |
2273 | local_irq_save(flags); | |
59a09917 | 2274 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2275 | local_irq_restore(flags); |
e24fc410 | 2276 | oldpage = NULL; |
49e22585 CL |
2277 | pobjects = 0; |
2278 | pages = 0; | |
8028dcea | 2279 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2280 | } |
2281 | } | |
2282 | ||
2283 | pages++; | |
2284 | pobjects += page->objects - page->inuse; | |
2285 | ||
2286 | page->pages = pages; | |
2287 | page->pobjects = pobjects; | |
2288 | page->next = oldpage; | |
2289 | ||
d0e0ac97 CG |
2290 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2291 | != oldpage); | |
d6e0b7fa VD |
2292 | if (unlikely(!s->cpu_partial)) { |
2293 | unsigned long flags; | |
2294 | ||
2295 | local_irq_save(flags); | |
2296 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2297 | local_irq_restore(flags); | |
2298 | } | |
2299 | preempt_enable(); | |
345c905d | 2300 | #endif |
49e22585 CL |
2301 | } |
2302 | ||
dfb4f096 | 2303 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2304 | { |
84e554e6 | 2305 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2306 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2307 | |
2308 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2309 | } |
2310 | ||
2311 | /* | |
2312 | * Flush cpu slab. | |
6446faa2 | 2313 | * |
81819f0f CL |
2314 | * Called from IPI handler with interrupts disabled. |
2315 | */ | |
0c710013 | 2316 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2317 | { |
9dfc6e68 | 2318 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2319 | |
49e22585 CL |
2320 | if (likely(c)) { |
2321 | if (c->page) | |
2322 | flush_slab(s, c); | |
2323 | ||
59a09917 | 2324 | unfreeze_partials(s, c); |
49e22585 | 2325 | } |
81819f0f CL |
2326 | } |
2327 | ||
2328 | static void flush_cpu_slab(void *d) | |
2329 | { | |
2330 | struct kmem_cache *s = d; | |
81819f0f | 2331 | |
dfb4f096 | 2332 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2333 | } |
2334 | ||
a8364d55 GBY |
2335 | static bool has_cpu_slab(int cpu, void *info) |
2336 | { | |
2337 | struct kmem_cache *s = info; | |
2338 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2339 | ||
a93cf07b | 2340 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2341 | } |
2342 | ||
81819f0f CL |
2343 | static void flush_all(struct kmem_cache *s) |
2344 | { | |
a8364d55 | 2345 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2346 | } |
2347 | ||
a96a87bf SAS |
2348 | /* |
2349 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2350 | * necessary. | |
2351 | */ | |
2352 | static int slub_cpu_dead(unsigned int cpu) | |
2353 | { | |
2354 | struct kmem_cache *s; | |
2355 | unsigned long flags; | |
2356 | ||
2357 | mutex_lock(&slab_mutex); | |
2358 | list_for_each_entry(s, &slab_caches, list) { | |
2359 | local_irq_save(flags); | |
2360 | __flush_cpu_slab(s, cpu); | |
2361 | local_irq_restore(flags); | |
2362 | } | |
2363 | mutex_unlock(&slab_mutex); | |
2364 | return 0; | |
2365 | } | |
2366 | ||
dfb4f096 CL |
2367 | /* |
2368 | * Check if the objects in a per cpu structure fit numa | |
2369 | * locality expectations. | |
2370 | */ | |
57d437d2 | 2371 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2372 | { |
2373 | #ifdef CONFIG_NUMA | |
4d7868e6 | 2374 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
dfb4f096 CL |
2375 | return 0; |
2376 | #endif | |
2377 | return 1; | |
2378 | } | |
2379 | ||
9a02d699 | 2380 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2381 | static int count_free(struct page *page) |
2382 | { | |
2383 | return page->objects - page->inuse; | |
2384 | } | |
2385 | ||
9a02d699 DR |
2386 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2387 | { | |
2388 | return atomic_long_read(&n->total_objects); | |
2389 | } | |
2390 | #endif /* CONFIG_SLUB_DEBUG */ | |
2391 | ||
2392 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2393 | static unsigned long count_partial(struct kmem_cache_node *n, |
2394 | int (*get_count)(struct page *)) | |
2395 | { | |
2396 | unsigned long flags; | |
2397 | unsigned long x = 0; | |
2398 | struct page *page; | |
2399 | ||
2400 | spin_lock_irqsave(&n->list_lock, flags); | |
2401 | list_for_each_entry(page, &n->partial, lru) | |
2402 | x += get_count(page); | |
2403 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2404 | return x; | |
2405 | } | |
9a02d699 | 2406 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2407 | |
781b2ba6 PE |
2408 | static noinline void |
2409 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2410 | { | |
9a02d699 DR |
2411 | #ifdef CONFIG_SLUB_DEBUG |
2412 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2413 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2414 | int node; |
fa45dc25 | 2415 | struct kmem_cache_node *n; |
781b2ba6 | 2416 | |
9a02d699 DR |
2417 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2418 | return; | |
2419 | ||
5b3810e5 VB |
2420 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2421 | nid, gfpflags, &gfpflags); | |
f9f58285 FF |
2422 | pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", |
2423 | s->name, s->object_size, s->size, oo_order(s->oo), | |
2424 | oo_order(s->min)); | |
781b2ba6 | 2425 | |
3b0efdfa | 2426 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2427 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2428 | s->name); | |
fa5ec8a1 | 2429 | |
fa45dc25 | 2430 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2431 | unsigned long nr_slabs; |
2432 | unsigned long nr_objs; | |
2433 | unsigned long nr_free; | |
2434 | ||
26c02cf0 AB |
2435 | nr_free = count_partial(n, count_free); |
2436 | nr_slabs = node_nr_slabs(n); | |
2437 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2438 | |
f9f58285 | 2439 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2440 | node, nr_slabs, nr_objs, nr_free); |
2441 | } | |
9a02d699 | 2442 | #endif |
781b2ba6 PE |
2443 | } |
2444 | ||
497b66f2 CL |
2445 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2446 | int node, struct kmem_cache_cpu **pc) | |
2447 | { | |
6faa6833 | 2448 | void *freelist; |
188fd063 CL |
2449 | struct kmem_cache_cpu *c = *pc; |
2450 | struct page *page; | |
497b66f2 | 2451 | |
188fd063 | 2452 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2453 | |
188fd063 CL |
2454 | if (freelist) |
2455 | return freelist; | |
2456 | ||
2457 | page = new_slab(s, flags, node); | |
497b66f2 | 2458 | if (page) { |
7c8e0181 | 2459 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2460 | if (c->page) |
2461 | flush_slab(s, c); | |
2462 | ||
2463 | /* | |
2464 | * No other reference to the page yet so we can | |
2465 | * muck around with it freely without cmpxchg | |
2466 | */ | |
6faa6833 | 2467 | freelist = page->freelist; |
497b66f2 CL |
2468 | page->freelist = NULL; |
2469 | ||
2470 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2471 | c->page = page; |
2472 | *pc = c; | |
2473 | } else | |
6faa6833 | 2474 | freelist = NULL; |
497b66f2 | 2475 | |
6faa6833 | 2476 | return freelist; |
497b66f2 CL |
2477 | } |
2478 | ||
072bb0aa MG |
2479 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2480 | { | |
2481 | if (unlikely(PageSlabPfmemalloc(page))) | |
2482 | return gfp_pfmemalloc_allowed(gfpflags); | |
2483 | ||
2484 | return true; | |
2485 | } | |
2486 | ||
213eeb9f | 2487 | /* |
d0e0ac97 CG |
2488 | * Check the page->freelist of a page and either transfer the freelist to the |
2489 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2490 | * |
2491 | * The page is still frozen if the return value is not NULL. | |
2492 | * | |
2493 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2494 | * |
2495 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2496 | */ |
2497 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2498 | { | |
2499 | struct page new; | |
2500 | unsigned long counters; | |
2501 | void *freelist; | |
2502 | ||
2503 | do { | |
2504 | freelist = page->freelist; | |
2505 | counters = page->counters; | |
6faa6833 | 2506 | |
213eeb9f | 2507 | new.counters = counters; |
a0132ac0 | 2508 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2509 | |
2510 | new.inuse = page->objects; | |
2511 | new.frozen = freelist != NULL; | |
2512 | ||
d24ac77f | 2513 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2514 | freelist, counters, |
2515 | NULL, new.counters, | |
2516 | "get_freelist")); | |
2517 | ||
2518 | return freelist; | |
2519 | } | |
2520 | ||
81819f0f | 2521 | /* |
894b8788 CL |
2522 | * Slow path. The lockless freelist is empty or we need to perform |
2523 | * debugging duties. | |
2524 | * | |
894b8788 CL |
2525 | * Processing is still very fast if new objects have been freed to the |
2526 | * regular freelist. In that case we simply take over the regular freelist | |
2527 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2528 | * |
894b8788 CL |
2529 | * If that is not working then we fall back to the partial lists. We take the |
2530 | * first element of the freelist as the object to allocate now and move the | |
2531 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2532 | * |
894b8788 | 2533 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2534 | * we need to allocate a new slab. This is the slowest path since it involves |
2535 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2536 | * |
2537 | * Version of __slab_alloc to use when we know that interrupts are | |
2538 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2539 | */ |
a380a3c7 | 2540 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2541 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2542 | { |
6faa6833 | 2543 | void *freelist; |
f6e7def7 | 2544 | struct page *page; |
81819f0f | 2545 | |
f6e7def7 CL |
2546 | page = c->page; |
2547 | if (!page) | |
81819f0f | 2548 | goto new_slab; |
49e22585 | 2549 | redo: |
6faa6833 | 2550 | |
57d437d2 | 2551 | if (unlikely(!node_match(page, node))) { |
a561ce00 JK |
2552 | int searchnode = node; |
2553 | ||
2554 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | |
2555 | searchnode = node_to_mem_node(node); | |
2556 | ||
2557 | if (unlikely(!node_match(page, searchnode))) { | |
2558 | stat(s, ALLOC_NODE_MISMATCH); | |
d4ff6d35 | 2559 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2560 | goto new_slab; |
2561 | } | |
fc59c053 | 2562 | } |
6446faa2 | 2563 | |
072bb0aa MG |
2564 | /* |
2565 | * By rights, we should be searching for a slab page that was | |
2566 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2567 | * information when the page leaves the per-cpu allocator | |
2568 | */ | |
2569 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2570 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2571 | goto new_slab; |
2572 | } | |
2573 | ||
73736e03 | 2574 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2575 | freelist = c->freelist; |
2576 | if (freelist) | |
73736e03 | 2577 | goto load_freelist; |
03e404af | 2578 | |
f6e7def7 | 2579 | freelist = get_freelist(s, page); |
6446faa2 | 2580 | |
6faa6833 | 2581 | if (!freelist) { |
03e404af CL |
2582 | c->page = NULL; |
2583 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2584 | goto new_slab; |
03e404af | 2585 | } |
6446faa2 | 2586 | |
84e554e6 | 2587 | stat(s, ALLOC_REFILL); |
6446faa2 | 2588 | |
894b8788 | 2589 | load_freelist: |
507effea CL |
2590 | /* |
2591 | * freelist is pointing to the list of objects to be used. | |
2592 | * page is pointing to the page from which the objects are obtained. | |
2593 | * That page must be frozen for per cpu allocations to work. | |
2594 | */ | |
a0132ac0 | 2595 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2596 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2597 | c->tid = next_tid(c->tid); |
6faa6833 | 2598 | return freelist; |
81819f0f | 2599 | |
81819f0f | 2600 | new_slab: |
2cfb7455 | 2601 | |
a93cf07b WY |
2602 | if (slub_percpu_partial(c)) { |
2603 | page = c->page = slub_percpu_partial(c); | |
2604 | slub_set_percpu_partial(c, page); | |
49e22585 | 2605 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2606 | goto redo; |
81819f0f CL |
2607 | } |
2608 | ||
188fd063 | 2609 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2610 | |
f4697436 | 2611 | if (unlikely(!freelist)) { |
9a02d699 | 2612 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2613 | return NULL; |
81819f0f | 2614 | } |
2cfb7455 | 2615 | |
f6e7def7 | 2616 | page = c->page; |
5091b74a | 2617 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2618 | goto load_freelist; |
2cfb7455 | 2619 | |
497b66f2 | 2620 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2621 | if (kmem_cache_debug(s) && |
2622 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2623 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2624 | |
d4ff6d35 | 2625 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2626 | return freelist; |
894b8788 CL |
2627 | } |
2628 | ||
a380a3c7 CL |
2629 | /* |
2630 | * Another one that disabled interrupt and compensates for possible | |
2631 | * cpu changes by refetching the per cpu area pointer. | |
2632 | */ | |
2633 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2634 | unsigned long addr, struct kmem_cache_cpu *c) | |
2635 | { | |
2636 | void *p; | |
2637 | unsigned long flags; | |
2638 | ||
2639 | local_irq_save(flags); | |
2640 | #ifdef CONFIG_PREEMPT | |
2641 | /* | |
2642 | * We may have been preempted and rescheduled on a different | |
2643 | * cpu before disabling interrupts. Need to reload cpu area | |
2644 | * pointer. | |
2645 | */ | |
2646 | c = this_cpu_ptr(s->cpu_slab); | |
2647 | #endif | |
2648 | ||
2649 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2650 | local_irq_restore(flags); | |
2651 | return p; | |
2652 | } | |
2653 | ||
894b8788 CL |
2654 | /* |
2655 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2656 | * have the fastpath folded into their functions. So no function call | |
2657 | * overhead for requests that can be satisfied on the fastpath. | |
2658 | * | |
2659 | * The fastpath works by first checking if the lockless freelist can be used. | |
2660 | * If not then __slab_alloc is called for slow processing. | |
2661 | * | |
2662 | * Otherwise we can simply pick the next object from the lockless free list. | |
2663 | */ | |
2b847c3c | 2664 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2665 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2666 | { |
03ec0ed5 | 2667 | void *object; |
dfb4f096 | 2668 | struct kmem_cache_cpu *c; |
57d437d2 | 2669 | struct page *page; |
8a5ec0ba | 2670 | unsigned long tid; |
1f84260c | 2671 | |
8135be5a VD |
2672 | s = slab_pre_alloc_hook(s, gfpflags); |
2673 | if (!s) | |
773ff60e | 2674 | return NULL; |
8a5ec0ba | 2675 | redo: |
8a5ec0ba CL |
2676 | /* |
2677 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2678 | * enabled. We may switch back and forth between cpus while | |
2679 | * reading from one cpu area. That does not matter as long | |
2680 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2681 | * |
9aabf810 JK |
2682 | * We should guarantee that tid and kmem_cache are retrieved on |
2683 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | |
2684 | * to check if it is matched or not. | |
8a5ec0ba | 2685 | */ |
9aabf810 JK |
2686 | do { |
2687 | tid = this_cpu_read(s->cpu_slab->tid); | |
2688 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2689 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2690 | unlikely(tid != READ_ONCE(c->tid))); | |
9aabf810 JK |
2691 | |
2692 | /* | |
2693 | * Irqless object alloc/free algorithm used here depends on sequence | |
2694 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2695 | * on c to guarantee that object and page associated with previous tid | |
2696 | * won't be used with current tid. If we fetch tid first, object and | |
2697 | * page could be one associated with next tid and our alloc/free | |
2698 | * request will be failed. In this case, we will retry. So, no problem. | |
2699 | */ | |
2700 | barrier(); | |
8a5ec0ba | 2701 | |
8a5ec0ba CL |
2702 | /* |
2703 | * The transaction ids are globally unique per cpu and per operation on | |
2704 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2705 | * occurs on the right processor and that there was no operation on the | |
2706 | * linked list in between. | |
2707 | */ | |
8a5ec0ba | 2708 | |
9dfc6e68 | 2709 | object = c->freelist; |
57d437d2 | 2710 | page = c->page; |
8eae1492 | 2711 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2712 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2713 | stat(s, ALLOC_SLOWPATH); |
2714 | } else { | |
0ad9500e ED |
2715 | void *next_object = get_freepointer_safe(s, object); |
2716 | ||
8a5ec0ba | 2717 | /* |
25985edc | 2718 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2719 | * operation and if we are on the right processor. |
2720 | * | |
d0e0ac97 CG |
2721 | * The cmpxchg does the following atomically (without lock |
2722 | * semantics!) | |
8a5ec0ba CL |
2723 | * 1. Relocate first pointer to the current per cpu area. |
2724 | * 2. Verify that tid and freelist have not been changed | |
2725 | * 3. If they were not changed replace tid and freelist | |
2726 | * | |
d0e0ac97 CG |
2727 | * Since this is without lock semantics the protection is only |
2728 | * against code executing on this cpu *not* from access by | |
2729 | * other cpus. | |
8a5ec0ba | 2730 | */ |
933393f5 | 2731 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2732 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2733 | object, tid, | |
0ad9500e | 2734 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2735 | |
2736 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2737 | goto redo; | |
2738 | } | |
0ad9500e | 2739 | prefetch_freepointer(s, next_object); |
84e554e6 | 2740 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2741 | } |
8a5ec0ba | 2742 | |
74e2134f | 2743 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2744 | memset(object, 0, s->object_size); |
d07dbea4 | 2745 | |
03ec0ed5 | 2746 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2747 | |
894b8788 | 2748 | return object; |
81819f0f CL |
2749 | } |
2750 | ||
2b847c3c EG |
2751 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2752 | gfp_t gfpflags, unsigned long addr) | |
2753 | { | |
2754 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2755 | } | |
2756 | ||
81819f0f CL |
2757 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2758 | { | |
2b847c3c | 2759 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2760 | |
d0e0ac97 CG |
2761 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2762 | s->size, gfpflags); | |
5b882be4 EGM |
2763 | |
2764 | return ret; | |
81819f0f CL |
2765 | } |
2766 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2767 | ||
0f24f128 | 2768 | #ifdef CONFIG_TRACING |
4a92379b RK |
2769 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2770 | { | |
2b847c3c | 2771 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2772 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
505f5dcb | 2773 | kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2774 | return ret; |
2775 | } | |
2776 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2777 | #endif |
2778 | ||
81819f0f CL |
2779 | #ifdef CONFIG_NUMA |
2780 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2781 | { | |
2b847c3c | 2782 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2783 | |
ca2b84cb | 2784 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2785 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2786 | |
2787 | return ret; | |
81819f0f CL |
2788 | } |
2789 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2790 | |
0f24f128 | 2791 | #ifdef CONFIG_TRACING |
4a92379b | 2792 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2793 | gfp_t gfpflags, |
4a92379b | 2794 | int node, size_t size) |
5b882be4 | 2795 | { |
2b847c3c | 2796 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2797 | |
2798 | trace_kmalloc_node(_RET_IP_, ret, | |
2799 | size, s->size, gfpflags, node); | |
0316bec2 | 2800 | |
505f5dcb | 2801 | kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2802 | return ret; |
5b882be4 | 2803 | } |
4a92379b | 2804 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2805 | #endif |
5d1f57e4 | 2806 | #endif |
5b882be4 | 2807 | |
81819f0f | 2808 | /* |
94e4d712 | 2809 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2810 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2811 | * |
894b8788 CL |
2812 | * So we still attempt to reduce cache line usage. Just take the slab |
2813 | * lock and free the item. If there is no additional partial page | |
2814 | * handling required then we can return immediately. | |
81819f0f | 2815 | */ |
894b8788 | 2816 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2817 | void *head, void *tail, int cnt, |
2818 | unsigned long addr) | |
2819 | ||
81819f0f CL |
2820 | { |
2821 | void *prior; | |
2cfb7455 | 2822 | int was_frozen; |
2cfb7455 CL |
2823 | struct page new; |
2824 | unsigned long counters; | |
2825 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2826 | unsigned long uninitialized_var(flags); |
81819f0f | 2827 | |
8a5ec0ba | 2828 | stat(s, FREE_SLOWPATH); |
81819f0f | 2829 | |
19c7ff9e | 2830 | if (kmem_cache_debug(s) && |
282acb43 | 2831 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2832 | return; |
6446faa2 | 2833 | |
2cfb7455 | 2834 | do { |
837d678d JK |
2835 | if (unlikely(n)) { |
2836 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2837 | n = NULL; | |
2838 | } | |
2cfb7455 CL |
2839 | prior = page->freelist; |
2840 | counters = page->counters; | |
81084651 | 2841 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2842 | new.counters = counters; |
2843 | was_frozen = new.frozen; | |
81084651 | 2844 | new.inuse -= cnt; |
837d678d | 2845 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2846 | |
c65c1877 | 2847 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2848 | |
2849 | /* | |
d0e0ac97 CG |
2850 | * Slab was on no list before and will be |
2851 | * partially empty | |
2852 | * We can defer the list move and instead | |
2853 | * freeze it. | |
49e22585 CL |
2854 | */ |
2855 | new.frozen = 1; | |
2856 | ||
c65c1877 | 2857 | } else { /* Needs to be taken off a list */ |
49e22585 | 2858 | |
b455def2 | 2859 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2860 | /* |
2861 | * Speculatively acquire the list_lock. | |
2862 | * If the cmpxchg does not succeed then we may | |
2863 | * drop the list_lock without any processing. | |
2864 | * | |
2865 | * Otherwise the list_lock will synchronize with | |
2866 | * other processors updating the list of slabs. | |
2867 | */ | |
2868 | spin_lock_irqsave(&n->list_lock, flags); | |
2869 | ||
2870 | } | |
2cfb7455 | 2871 | } |
81819f0f | 2872 | |
2cfb7455 CL |
2873 | } while (!cmpxchg_double_slab(s, page, |
2874 | prior, counters, | |
81084651 | 2875 | head, new.counters, |
2cfb7455 | 2876 | "__slab_free")); |
81819f0f | 2877 | |
2cfb7455 | 2878 | if (likely(!n)) { |
49e22585 CL |
2879 | |
2880 | /* | |
2881 | * If we just froze the page then put it onto the | |
2882 | * per cpu partial list. | |
2883 | */ | |
8028dcea | 2884 | if (new.frozen && !was_frozen) { |
49e22585 | 2885 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2886 | stat(s, CPU_PARTIAL_FREE); |
2887 | } | |
49e22585 | 2888 | /* |
2cfb7455 CL |
2889 | * The list lock was not taken therefore no list |
2890 | * activity can be necessary. | |
2891 | */ | |
b455def2 L |
2892 | if (was_frozen) |
2893 | stat(s, FREE_FROZEN); | |
2894 | return; | |
2895 | } | |
81819f0f | 2896 | |
8a5b20ae | 2897 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2898 | goto slab_empty; |
2899 | ||
81819f0f | 2900 | /* |
837d678d JK |
2901 | * Objects left in the slab. If it was not on the partial list before |
2902 | * then add it. | |
81819f0f | 2903 | */ |
345c905d JK |
2904 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
2905 | if (kmem_cache_debug(s)) | |
c65c1877 | 2906 | remove_full(s, n, page); |
837d678d JK |
2907 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2908 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2909 | } |
80f08c19 | 2910 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2911 | return; |
2912 | ||
2913 | slab_empty: | |
a973e9dd | 2914 | if (prior) { |
81819f0f | 2915 | /* |
6fbabb20 | 2916 | * Slab on the partial list. |
81819f0f | 2917 | */ |
5cc6eee8 | 2918 | remove_partial(n, page); |
84e554e6 | 2919 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2920 | } else { |
6fbabb20 | 2921 | /* Slab must be on the full list */ |
c65c1877 PZ |
2922 | remove_full(s, n, page); |
2923 | } | |
2cfb7455 | 2924 | |
80f08c19 | 2925 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2926 | stat(s, FREE_SLAB); |
81819f0f | 2927 | discard_slab(s, page); |
81819f0f CL |
2928 | } |
2929 | ||
894b8788 CL |
2930 | /* |
2931 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2932 | * can perform fastpath freeing without additional function calls. | |
2933 | * | |
2934 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2935 | * of this processor. This typically the case if we have just allocated | |
2936 | * the item before. | |
2937 | * | |
2938 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2939 | * with all sorts of special processing. | |
81084651 JDB |
2940 | * |
2941 | * Bulk free of a freelist with several objects (all pointing to the | |
2942 | * same page) possible by specifying head and tail ptr, plus objects | |
2943 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2944 | */ |
80a9201a AP |
2945 | static __always_inline void do_slab_free(struct kmem_cache *s, |
2946 | struct page *page, void *head, void *tail, | |
2947 | int cnt, unsigned long addr) | |
894b8788 | 2948 | { |
81084651 | 2949 | void *tail_obj = tail ? : head; |
dfb4f096 | 2950 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2951 | unsigned long tid; |
8a5ec0ba CL |
2952 | redo: |
2953 | /* | |
2954 | * Determine the currently cpus per cpu slab. | |
2955 | * The cpu may change afterward. However that does not matter since | |
2956 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2957 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2958 | */ |
9aabf810 JK |
2959 | do { |
2960 | tid = this_cpu_read(s->cpu_slab->tid); | |
2961 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2962 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2963 | unlikely(tid != READ_ONCE(c->tid))); | |
c016b0bd | 2964 | |
9aabf810 JK |
2965 | /* Same with comment on barrier() in slab_alloc_node() */ |
2966 | barrier(); | |
c016b0bd | 2967 | |
442b06bc | 2968 | if (likely(page == c->page)) { |
81084651 | 2969 | set_freepointer(s, tail_obj, c->freelist); |
8a5ec0ba | 2970 | |
933393f5 | 2971 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2972 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2973 | c->freelist, tid, | |
81084651 | 2974 | head, next_tid(tid)))) { |
8a5ec0ba CL |
2975 | |
2976 | note_cmpxchg_failure("slab_free", s, tid); | |
2977 | goto redo; | |
2978 | } | |
84e554e6 | 2979 | stat(s, FREE_FASTPATH); |
894b8788 | 2980 | } else |
81084651 | 2981 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 2982 | |
894b8788 CL |
2983 | } |
2984 | ||
80a9201a AP |
2985 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
2986 | void *head, void *tail, int cnt, | |
2987 | unsigned long addr) | |
2988 | { | |
2989 | slab_free_freelist_hook(s, head, tail); | |
2990 | /* | |
2991 | * slab_free_freelist_hook() could have put the items into quarantine. | |
2992 | * If so, no need to free them. | |
2993 | */ | |
5f0d5a3a | 2994 | if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) |
80a9201a AP |
2995 | return; |
2996 | do_slab_free(s, page, head, tail, cnt, addr); | |
2997 | } | |
2998 | ||
2999 | #ifdef CONFIG_KASAN | |
3000 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | |
3001 | { | |
3002 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3003 | } | |
3004 | #endif | |
3005 | ||
81819f0f CL |
3006 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3007 | { | |
b9ce5ef4 GC |
3008 | s = cache_from_obj(s, x); |
3009 | if (!s) | |
79576102 | 3010 | return; |
81084651 | 3011 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3012 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3013 | } |
3014 | EXPORT_SYMBOL(kmem_cache_free); | |
3015 | ||
d0ecd894 | 3016 | struct detached_freelist { |
fbd02630 | 3017 | struct page *page; |
d0ecd894 JDB |
3018 | void *tail; |
3019 | void *freelist; | |
3020 | int cnt; | |
376bf125 | 3021 | struct kmem_cache *s; |
d0ecd894 | 3022 | }; |
fbd02630 | 3023 | |
d0ecd894 JDB |
3024 | /* |
3025 | * This function progressively scans the array with free objects (with | |
3026 | * a limited look ahead) and extract objects belonging to the same | |
3027 | * page. It builds a detached freelist directly within the given | |
3028 | * page/objects. This can happen without any need for | |
3029 | * synchronization, because the objects are owned by running process. | |
3030 | * The freelist is build up as a single linked list in the objects. | |
3031 | * The idea is, that this detached freelist can then be bulk | |
3032 | * transferred to the real freelist(s), but only requiring a single | |
3033 | * synchronization primitive. Look ahead in the array is limited due | |
3034 | * to performance reasons. | |
3035 | */ | |
376bf125 JDB |
3036 | static inline |
3037 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3038 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3039 | { |
3040 | size_t first_skipped_index = 0; | |
3041 | int lookahead = 3; | |
3042 | void *object; | |
ca257195 | 3043 | struct page *page; |
fbd02630 | 3044 | |
d0ecd894 JDB |
3045 | /* Always re-init detached_freelist */ |
3046 | df->page = NULL; | |
fbd02630 | 3047 | |
d0ecd894 JDB |
3048 | do { |
3049 | object = p[--size]; | |
ca257195 | 3050 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3051 | } while (!object && size); |
3eed034d | 3052 | |
d0ecd894 JDB |
3053 | if (!object) |
3054 | return 0; | |
fbd02630 | 3055 | |
ca257195 JDB |
3056 | page = virt_to_head_page(object); |
3057 | if (!s) { | |
3058 | /* Handle kalloc'ed objects */ | |
3059 | if (unlikely(!PageSlab(page))) { | |
3060 | BUG_ON(!PageCompound(page)); | |
3061 | kfree_hook(object); | |
4949148a | 3062 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3063 | p[size] = NULL; /* mark object processed */ |
3064 | return size; | |
3065 | } | |
3066 | /* Derive kmem_cache from object */ | |
3067 | df->s = page->slab_cache; | |
3068 | } else { | |
3069 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3070 | } | |
376bf125 | 3071 | |
d0ecd894 | 3072 | /* Start new detached freelist */ |
ca257195 | 3073 | df->page = page; |
376bf125 | 3074 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3075 | df->tail = object; |
3076 | df->freelist = object; | |
3077 | p[size] = NULL; /* mark object processed */ | |
3078 | df->cnt = 1; | |
3079 | ||
3080 | while (size) { | |
3081 | object = p[--size]; | |
3082 | if (!object) | |
3083 | continue; /* Skip processed objects */ | |
3084 | ||
3085 | /* df->page is always set at this point */ | |
3086 | if (df->page == virt_to_head_page(object)) { | |
3087 | /* Opportunity build freelist */ | |
376bf125 | 3088 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3089 | df->freelist = object; |
3090 | df->cnt++; | |
3091 | p[size] = NULL; /* mark object processed */ | |
3092 | ||
3093 | continue; | |
fbd02630 | 3094 | } |
d0ecd894 JDB |
3095 | |
3096 | /* Limit look ahead search */ | |
3097 | if (!--lookahead) | |
3098 | break; | |
3099 | ||
3100 | if (!first_skipped_index) | |
3101 | first_skipped_index = size + 1; | |
fbd02630 | 3102 | } |
d0ecd894 JDB |
3103 | |
3104 | return first_skipped_index; | |
3105 | } | |
3106 | ||
d0ecd894 | 3107 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3108 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3109 | { |
3110 | if (WARN_ON(!size)) | |
3111 | return; | |
3112 | ||
3113 | do { | |
3114 | struct detached_freelist df; | |
3115 | ||
3116 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3117 | if (!df.page) |
d0ecd894 JDB |
3118 | continue; |
3119 | ||
376bf125 | 3120 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3121 | } while (likely(size)); |
484748f0 CL |
3122 | } |
3123 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3124 | ||
994eb764 | 3125 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3126 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3127 | void **p) | |
484748f0 | 3128 | { |
994eb764 JDB |
3129 | struct kmem_cache_cpu *c; |
3130 | int i; | |
3131 | ||
03ec0ed5 JDB |
3132 | /* memcg and kmem_cache debug support */ |
3133 | s = slab_pre_alloc_hook(s, flags); | |
3134 | if (unlikely(!s)) | |
3135 | return false; | |
994eb764 JDB |
3136 | /* |
3137 | * Drain objects in the per cpu slab, while disabling local | |
3138 | * IRQs, which protects against PREEMPT and interrupts | |
3139 | * handlers invoking normal fastpath. | |
3140 | */ | |
3141 | local_irq_disable(); | |
3142 | c = this_cpu_ptr(s->cpu_slab); | |
3143 | ||
3144 | for (i = 0; i < size; i++) { | |
3145 | void *object = c->freelist; | |
3146 | ||
ebe909e0 | 3147 | if (unlikely(!object)) { |
ebe909e0 JDB |
3148 | /* |
3149 | * Invoking slow path likely have side-effect | |
3150 | * of re-populating per CPU c->freelist | |
3151 | */ | |
87098373 | 3152 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3153 | _RET_IP_, c); |
87098373 CL |
3154 | if (unlikely(!p[i])) |
3155 | goto error; | |
3156 | ||
ebe909e0 JDB |
3157 | c = this_cpu_ptr(s->cpu_slab); |
3158 | continue; /* goto for-loop */ | |
3159 | } | |
994eb764 JDB |
3160 | c->freelist = get_freepointer(s, object); |
3161 | p[i] = object; | |
3162 | } | |
3163 | c->tid = next_tid(c->tid); | |
3164 | local_irq_enable(); | |
3165 | ||
3166 | /* Clear memory outside IRQ disabled fastpath loop */ | |
3167 | if (unlikely(flags & __GFP_ZERO)) { | |
3168 | int j; | |
3169 | ||
3170 | for (j = 0; j < i; j++) | |
3171 | memset(p[j], 0, s->object_size); | |
3172 | } | |
3173 | ||
03ec0ed5 JDB |
3174 | /* memcg and kmem_cache debug support */ |
3175 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3176 | return i; |
87098373 | 3177 | error: |
87098373 | 3178 | local_irq_enable(); |
03ec0ed5 JDB |
3179 | slab_post_alloc_hook(s, flags, i, p); |
3180 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3181 | return 0; |
484748f0 CL |
3182 | } |
3183 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3184 | ||
3185 | ||
81819f0f | 3186 | /* |
672bba3a CL |
3187 | * Object placement in a slab is made very easy because we always start at |
3188 | * offset 0. If we tune the size of the object to the alignment then we can | |
3189 | * get the required alignment by putting one properly sized object after | |
3190 | * another. | |
81819f0f CL |
3191 | * |
3192 | * Notice that the allocation order determines the sizes of the per cpu | |
3193 | * caches. Each processor has always one slab available for allocations. | |
3194 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3195 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3196 | * locking overhead. |
81819f0f CL |
3197 | */ |
3198 | ||
3199 | /* | |
3200 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3201 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3202 | * and increases the number of allocations possible without having to | |
3203 | * take the list_lock. | |
3204 | */ | |
3205 | static int slub_min_order; | |
114e9e89 | 3206 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 3207 | static int slub_min_objects; |
81819f0f | 3208 | |
81819f0f CL |
3209 | /* |
3210 | * Calculate the order of allocation given an slab object size. | |
3211 | * | |
672bba3a CL |
3212 | * The order of allocation has significant impact on performance and other |
3213 | * system components. Generally order 0 allocations should be preferred since | |
3214 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3215 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3216 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3217 | * would be wasted. |
3218 | * | |
3219 | * In order to reach satisfactory performance we must ensure that a minimum | |
3220 | * number of objects is in one slab. Otherwise we may generate too much | |
3221 | * activity on the partial lists which requires taking the list_lock. This is | |
3222 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3223 | * |
672bba3a CL |
3224 | * slub_max_order specifies the order where we begin to stop considering the |
3225 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3226 | * we try to keep the page order as low as possible. So we accept more waste | |
3227 | * of space in favor of a small page order. | |
81819f0f | 3228 | * |
672bba3a CL |
3229 | * Higher order allocations also allow the placement of more objects in a |
3230 | * slab and thereby reduce object handling overhead. If the user has | |
3231 | * requested a higher mininum order then we start with that one instead of | |
3232 | * the smallest order which will fit the object. | |
81819f0f | 3233 | */ |
5e6d444e | 3234 | static inline int slab_order(int size, int min_objects, |
ab9a0f19 | 3235 | int max_order, int fract_leftover, int reserved) |
81819f0f CL |
3236 | { |
3237 | int order; | |
3238 | int rem; | |
6300ea75 | 3239 | int min_order = slub_min_order; |
81819f0f | 3240 | |
ab9a0f19 | 3241 | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3242 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3243 | |
9f835703 | 3244 | for (order = max(min_order, get_order(min_objects * size + reserved)); |
5e6d444e | 3245 | order <= max_order; order++) { |
81819f0f | 3246 | |
5e6d444e | 3247 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 3248 | |
ab9a0f19 | 3249 | rem = (slab_size - reserved) % size; |
81819f0f | 3250 | |
5e6d444e | 3251 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3252 | break; |
81819f0f | 3253 | } |
672bba3a | 3254 | |
81819f0f CL |
3255 | return order; |
3256 | } | |
3257 | ||
ab9a0f19 | 3258 | static inline int calculate_order(int size, int reserved) |
5e6d444e CL |
3259 | { |
3260 | int order; | |
3261 | int min_objects; | |
3262 | int fraction; | |
e8120ff1 | 3263 | int max_objects; |
5e6d444e CL |
3264 | |
3265 | /* | |
3266 | * Attempt to find best configuration for a slab. This | |
3267 | * works by first attempting to generate a layout with | |
3268 | * the best configuration and backing off gradually. | |
3269 | * | |
422ff4d7 | 3270 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3271 | * we reduce the minimum objects required in a slab. |
3272 | */ | |
3273 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3274 | if (!min_objects) |
3275 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
ab9a0f19 | 3276 | max_objects = order_objects(slub_max_order, size, reserved); |
e8120ff1 ZY |
3277 | min_objects = min(min_objects, max_objects); |
3278 | ||
5e6d444e | 3279 | while (min_objects > 1) { |
c124f5b5 | 3280 | fraction = 16; |
5e6d444e CL |
3281 | while (fraction >= 4) { |
3282 | order = slab_order(size, min_objects, | |
ab9a0f19 | 3283 | slub_max_order, fraction, reserved); |
5e6d444e CL |
3284 | if (order <= slub_max_order) |
3285 | return order; | |
3286 | fraction /= 2; | |
3287 | } | |
5086c389 | 3288 | min_objects--; |
5e6d444e CL |
3289 | } |
3290 | ||
3291 | /* | |
3292 | * We were unable to place multiple objects in a slab. Now | |
3293 | * lets see if we can place a single object there. | |
3294 | */ | |
ab9a0f19 | 3295 | order = slab_order(size, 1, slub_max_order, 1, reserved); |
5e6d444e CL |
3296 | if (order <= slub_max_order) |
3297 | return order; | |
3298 | ||
3299 | /* | |
3300 | * Doh this slab cannot be placed using slub_max_order. | |
3301 | */ | |
ab9a0f19 | 3302 | order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
818cf590 | 3303 | if (order < MAX_ORDER) |
5e6d444e CL |
3304 | return order; |
3305 | return -ENOSYS; | |
3306 | } | |
3307 | ||
5595cffc | 3308 | static void |
4053497d | 3309 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3310 | { |
3311 | n->nr_partial = 0; | |
81819f0f CL |
3312 | spin_lock_init(&n->list_lock); |
3313 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3314 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3315 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3316 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3317 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3318 | #endif |
81819f0f CL |
3319 | } |
3320 | ||
55136592 | 3321 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3322 | { |
6c182dc0 | 3323 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3324 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3325 | |
8a5ec0ba | 3326 | /* |
d4d84fef CM |
3327 | * Must align to double word boundary for the double cmpxchg |
3328 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3329 | */ |
d4d84fef CM |
3330 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3331 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3332 | |
3333 | if (!s->cpu_slab) | |
3334 | return 0; | |
3335 | ||
3336 | init_kmem_cache_cpus(s); | |
4c93c355 | 3337 | |
8a5ec0ba | 3338 | return 1; |
4c93c355 | 3339 | } |
4c93c355 | 3340 | |
51df1142 CL |
3341 | static struct kmem_cache *kmem_cache_node; |
3342 | ||
81819f0f CL |
3343 | /* |
3344 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3345 | * slab on the node for this slabcache. There are no concurrent accesses | |
3346 | * possible. | |
3347 | * | |
721ae22a ZYW |
3348 | * Note that this function only works on the kmem_cache_node |
3349 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3350 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3351 | */ |
55136592 | 3352 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3353 | { |
3354 | struct page *page; | |
3355 | struct kmem_cache_node *n; | |
3356 | ||
51df1142 | 3357 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3358 | |
51df1142 | 3359 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3360 | |
3361 | BUG_ON(!page); | |
a2f92ee7 | 3362 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3363 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3364 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3365 | } |
3366 | ||
81819f0f CL |
3367 | n = page->freelist; |
3368 | BUG_ON(!n); | |
51df1142 | 3369 | page->freelist = get_freepointer(kmem_cache_node, n); |
e6e82ea1 | 3370 | page->inuse = 1; |
8cb0a506 | 3371 | page->frozen = 0; |
51df1142 | 3372 | kmem_cache_node->node[node] = n; |
8ab1372f | 3373 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3374 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3375 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3376 | #endif |
505f5dcb AP |
3377 | kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
3378 | GFP_KERNEL); | |
4053497d | 3379 | init_kmem_cache_node(n); |
51df1142 | 3380 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3381 | |
67b6c900 | 3382 | /* |
1e4dd946 SR |
3383 | * No locks need to be taken here as it has just been |
3384 | * initialized and there is no concurrent access. | |
67b6c900 | 3385 | */ |
1e4dd946 | 3386 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3387 | } |
3388 | ||
3389 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3390 | { | |
3391 | int node; | |
fa45dc25 | 3392 | struct kmem_cache_node *n; |
81819f0f | 3393 | |
fa45dc25 | 3394 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3395 | s->node[node] = NULL; |
ea37df54 | 3396 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3397 | } |
3398 | } | |
3399 | ||
52b4b950 DS |
3400 | void __kmem_cache_release(struct kmem_cache *s) |
3401 | { | |
210e7a43 | 3402 | cache_random_seq_destroy(s); |
52b4b950 DS |
3403 | free_percpu(s->cpu_slab); |
3404 | free_kmem_cache_nodes(s); | |
3405 | } | |
3406 | ||
55136592 | 3407 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3408 | { |
3409 | int node; | |
81819f0f | 3410 | |
f64dc58c | 3411 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3412 | struct kmem_cache_node *n; |
3413 | ||
73367bd8 | 3414 | if (slab_state == DOWN) { |
55136592 | 3415 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3416 | continue; |
3417 | } | |
51df1142 | 3418 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3419 | GFP_KERNEL, node); |
81819f0f | 3420 | |
73367bd8 AD |
3421 | if (!n) { |
3422 | free_kmem_cache_nodes(s); | |
3423 | return 0; | |
81819f0f | 3424 | } |
73367bd8 | 3425 | |
4053497d | 3426 | init_kmem_cache_node(n); |
ea37df54 | 3427 | s->node[node] = n; |
81819f0f CL |
3428 | } |
3429 | return 1; | |
3430 | } | |
81819f0f | 3431 | |
c0bdb232 | 3432 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3433 | { |
3434 | if (min < MIN_PARTIAL) | |
3435 | min = MIN_PARTIAL; | |
3436 | else if (min > MAX_PARTIAL) | |
3437 | min = MAX_PARTIAL; | |
3438 | s->min_partial = min; | |
3439 | } | |
3440 | ||
e6d0e1dc WY |
3441 | static void set_cpu_partial(struct kmem_cache *s) |
3442 | { | |
3443 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3444 | /* | |
3445 | * cpu_partial determined the maximum number of objects kept in the | |
3446 | * per cpu partial lists of a processor. | |
3447 | * | |
3448 | * Per cpu partial lists mainly contain slabs that just have one | |
3449 | * object freed. If they are used for allocation then they can be | |
3450 | * filled up again with minimal effort. The slab will never hit the | |
3451 | * per node partial lists and therefore no locking will be required. | |
3452 | * | |
3453 | * This setting also determines | |
3454 | * | |
3455 | * A) The number of objects from per cpu partial slabs dumped to the | |
3456 | * per node list when we reach the limit. | |
3457 | * B) The number of objects in cpu partial slabs to extract from the | |
3458 | * per node list when we run out of per cpu objects. We only fetch | |
3459 | * 50% to keep some capacity around for frees. | |
3460 | */ | |
3461 | if (!kmem_cache_has_cpu_partial(s)) | |
3462 | s->cpu_partial = 0; | |
3463 | else if (s->size >= PAGE_SIZE) | |
3464 | s->cpu_partial = 2; | |
3465 | else if (s->size >= 1024) | |
3466 | s->cpu_partial = 6; | |
3467 | else if (s->size >= 256) | |
3468 | s->cpu_partial = 13; | |
3469 | else | |
3470 | s->cpu_partial = 30; | |
3471 | #endif | |
3472 | } | |
3473 | ||
81819f0f CL |
3474 | /* |
3475 | * calculate_sizes() determines the order and the distribution of data within | |
3476 | * a slab object. | |
3477 | */ | |
06b285dc | 3478 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
3479 | { |
3480 | unsigned long flags = s->flags; | |
80a9201a | 3481 | size_t size = s->object_size; |
834f3d11 | 3482 | int order; |
81819f0f | 3483 | |
d8b42bf5 CL |
3484 | /* |
3485 | * Round up object size to the next word boundary. We can only | |
3486 | * place the free pointer at word boundaries and this determines | |
3487 | * the possible location of the free pointer. | |
3488 | */ | |
3489 | size = ALIGN(size, sizeof(void *)); | |
3490 | ||
3491 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3492 | /* |
3493 | * Determine if we can poison the object itself. If the user of | |
3494 | * the slab may touch the object after free or before allocation | |
3495 | * then we should never poison the object itself. | |
3496 | */ | |
5f0d5a3a | 3497 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3498 | !s->ctor) |
81819f0f CL |
3499 | s->flags |= __OBJECT_POISON; |
3500 | else | |
3501 | s->flags &= ~__OBJECT_POISON; | |
3502 | ||
81819f0f CL |
3503 | |
3504 | /* | |
672bba3a | 3505 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3506 | * end of the object and the free pointer. If not then add an |
672bba3a | 3507 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3508 | */ |
3b0efdfa | 3509 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3510 | size += sizeof(void *); |
41ecc55b | 3511 | #endif |
81819f0f CL |
3512 | |
3513 | /* | |
672bba3a CL |
3514 | * With that we have determined the number of bytes in actual use |
3515 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3516 | */ |
3517 | s->inuse = size; | |
3518 | ||
5f0d5a3a | 3519 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3520 | s->ctor)) { |
81819f0f CL |
3521 | /* |
3522 | * Relocate free pointer after the object if it is not | |
3523 | * permitted to overwrite the first word of the object on | |
3524 | * kmem_cache_free. | |
3525 | * | |
3526 | * This is the case if we do RCU, have a constructor or | |
3527 | * destructor or are poisoning the objects. | |
3528 | */ | |
3529 | s->offset = size; | |
3530 | size += sizeof(void *); | |
3531 | } | |
3532 | ||
c12b3c62 | 3533 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3534 | if (flags & SLAB_STORE_USER) |
3535 | /* | |
3536 | * Need to store information about allocs and frees after | |
3537 | * the object. | |
3538 | */ | |
3539 | size += 2 * sizeof(struct track); | |
80a9201a | 3540 | #endif |
81819f0f | 3541 | |
80a9201a AP |
3542 | kasan_cache_create(s, &size, &s->flags); |
3543 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3544 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3545 | /* |
3546 | * Add some empty padding so that we can catch | |
3547 | * overwrites from earlier objects rather than let | |
3548 | * tracking information or the free pointer be | |
0211a9c8 | 3549 | * corrupted if a user writes before the start |
81819f0f CL |
3550 | * of the object. |
3551 | */ | |
3552 | size += sizeof(void *); | |
d86bd1be JK |
3553 | |
3554 | s->red_left_pad = sizeof(void *); | |
3555 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3556 | size += s->red_left_pad; | |
3557 | } | |
41ecc55b | 3558 | #endif |
672bba3a | 3559 | |
81819f0f CL |
3560 | /* |
3561 | * SLUB stores one object immediately after another beginning from | |
3562 | * offset 0. In order to align the objects we have to simply size | |
3563 | * each object to conform to the alignment. | |
3564 | */ | |
45906855 | 3565 | size = ALIGN(size, s->align); |
81819f0f | 3566 | s->size = size; |
06b285dc CL |
3567 | if (forced_order >= 0) |
3568 | order = forced_order; | |
3569 | else | |
ab9a0f19 | 3570 | order = calculate_order(size, s->reserved); |
81819f0f | 3571 | |
834f3d11 | 3572 | if (order < 0) |
81819f0f CL |
3573 | return 0; |
3574 | ||
b7a49f0d | 3575 | s->allocflags = 0; |
834f3d11 | 3576 | if (order) |
b7a49f0d CL |
3577 | s->allocflags |= __GFP_COMP; |
3578 | ||
3579 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3580 | s->allocflags |= GFP_DMA; |
b7a49f0d CL |
3581 | |
3582 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3583 | s->allocflags |= __GFP_RECLAIMABLE; | |
3584 | ||
81819f0f CL |
3585 | /* |
3586 | * Determine the number of objects per slab | |
3587 | */ | |
ab9a0f19 LJ |
3588 | s->oo = oo_make(order, size, s->reserved); |
3589 | s->min = oo_make(get_order(size), size, s->reserved); | |
205ab99d CL |
3590 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3591 | s->max = s->oo; | |
81819f0f | 3592 | |
834f3d11 | 3593 | return !!oo_objects(s->oo); |
81819f0f CL |
3594 | } |
3595 | ||
8a13a4cc | 3596 | static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) |
81819f0f | 3597 | { |
8a13a4cc | 3598 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
ab9a0f19 | 3599 | s->reserved = 0; |
2482ddec KC |
3600 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3601 | s->random = get_random_long(); | |
3602 | #endif | |
81819f0f | 3603 | |
5f0d5a3a | 3604 | if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) |
da9a638c | 3605 | s->reserved = sizeof(struct rcu_head); |
81819f0f | 3606 | |
06b285dc | 3607 | if (!calculate_sizes(s, -1)) |
81819f0f | 3608 | goto error; |
3de47213 DR |
3609 | if (disable_higher_order_debug) { |
3610 | /* | |
3611 | * Disable debugging flags that store metadata if the min slab | |
3612 | * order increased. | |
3613 | */ | |
3b0efdfa | 3614 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3615 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3616 | s->offset = 0; | |
3617 | if (!calculate_sizes(s, -1)) | |
3618 | goto error; | |
3619 | } | |
3620 | } | |
81819f0f | 3621 | |
2565409f HC |
3622 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3623 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3624 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3625 | /* Enable fast mode */ |
3626 | s->flags |= __CMPXCHG_DOUBLE; | |
3627 | #endif | |
3628 | ||
3b89d7d8 DR |
3629 | /* |
3630 | * The larger the object size is, the more pages we want on the partial | |
3631 | * list to avoid pounding the page allocator excessively. | |
3632 | */ | |
49e22585 CL |
3633 | set_min_partial(s, ilog2(s->size) / 2); |
3634 | ||
e6d0e1dc | 3635 | set_cpu_partial(s); |
49e22585 | 3636 | |
81819f0f | 3637 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3638 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3639 | #endif |
210e7a43 TG |
3640 | |
3641 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3642 | if (slab_state >= UP) { | |
3643 | if (init_cache_random_seq(s)) | |
3644 | goto error; | |
3645 | } | |
3646 | ||
55136592 | 3647 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3648 | goto error; |
81819f0f | 3649 | |
55136592 | 3650 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3651 | return 0; |
ff12059e | 3652 | |
4c93c355 | 3653 | free_kmem_cache_nodes(s); |
81819f0f CL |
3654 | error: |
3655 | if (flags & SLAB_PANIC) | |
756a025f JP |
3656 | panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", |
3657 | s->name, (unsigned long)s->size, s->size, | |
3658 | oo_order(s->oo), s->offset, flags); | |
278b1bb1 | 3659 | return -EINVAL; |
81819f0f | 3660 | } |
81819f0f | 3661 | |
33b12c38 CL |
3662 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3663 | const char *text) | |
3664 | { | |
3665 | #ifdef CONFIG_SLUB_DEBUG | |
3666 | void *addr = page_address(page); | |
3667 | void *p; | |
a5dd5c11 NK |
3668 | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
3669 | sizeof(long), GFP_ATOMIC); | |
bbd7d57b ED |
3670 | if (!map) |
3671 | return; | |
945cf2b6 | 3672 | slab_err(s, page, text, s->name); |
33b12c38 | 3673 | slab_lock(page); |
33b12c38 | 3674 | |
5f80b13a | 3675 | get_map(s, page, map); |
33b12c38 CL |
3676 | for_each_object(p, s, addr, page->objects) { |
3677 | ||
3678 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3679 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3680 | print_tracking(s, p); |
3681 | } | |
3682 | } | |
3683 | slab_unlock(page); | |
bbd7d57b | 3684 | kfree(map); |
33b12c38 CL |
3685 | #endif |
3686 | } | |
3687 | ||
81819f0f | 3688 | /* |
599870b1 | 3689 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3690 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3691 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3692 | */ |
599870b1 | 3693 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3694 | { |
60398923 | 3695 | LIST_HEAD(discard); |
81819f0f CL |
3696 | struct page *page, *h; |
3697 | ||
52b4b950 DS |
3698 | BUG_ON(irqs_disabled()); |
3699 | spin_lock_irq(&n->list_lock); | |
33b12c38 | 3700 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 3701 | if (!page->inuse) { |
52b4b950 | 3702 | remove_partial(n, page); |
60398923 | 3703 | list_add(&page->lru, &discard); |
33b12c38 CL |
3704 | } else { |
3705 | list_slab_objects(s, page, | |
52b4b950 | 3706 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3707 | } |
33b12c38 | 3708 | } |
52b4b950 | 3709 | spin_unlock_irq(&n->list_lock); |
60398923 CW |
3710 | |
3711 | list_for_each_entry_safe(page, h, &discard, lru) | |
3712 | discard_slab(s, page); | |
81819f0f CL |
3713 | } |
3714 | ||
3715 | /* | |
672bba3a | 3716 | * Release all resources used by a slab cache. |
81819f0f | 3717 | */ |
52b4b950 | 3718 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3719 | { |
3720 | int node; | |
fa45dc25 | 3721 | struct kmem_cache_node *n; |
81819f0f CL |
3722 | |
3723 | flush_all(s); | |
81819f0f | 3724 | /* Attempt to free all objects */ |
fa45dc25 | 3725 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3726 | free_partial(s, n); |
3727 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3728 | return 1; |
3729 | } | |
bf5eb3de | 3730 | sysfs_slab_remove(s); |
81819f0f CL |
3731 | return 0; |
3732 | } | |
3733 | ||
81819f0f CL |
3734 | /******************************************************************** |
3735 | * Kmalloc subsystem | |
3736 | *******************************************************************/ | |
3737 | ||
81819f0f CL |
3738 | static int __init setup_slub_min_order(char *str) |
3739 | { | |
06428780 | 3740 | get_option(&str, &slub_min_order); |
81819f0f CL |
3741 | |
3742 | return 1; | |
3743 | } | |
3744 | ||
3745 | __setup("slub_min_order=", setup_slub_min_order); | |
3746 | ||
3747 | static int __init setup_slub_max_order(char *str) | |
3748 | { | |
06428780 | 3749 | get_option(&str, &slub_max_order); |
818cf590 | 3750 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
81819f0f CL |
3751 | |
3752 | return 1; | |
3753 | } | |
3754 | ||
3755 | __setup("slub_max_order=", setup_slub_max_order); | |
3756 | ||
3757 | static int __init setup_slub_min_objects(char *str) | |
3758 | { | |
06428780 | 3759 | get_option(&str, &slub_min_objects); |
81819f0f CL |
3760 | |
3761 | return 1; | |
3762 | } | |
3763 | ||
3764 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3765 | ||
81819f0f CL |
3766 | void *__kmalloc(size_t size, gfp_t flags) |
3767 | { | |
aadb4bc4 | 3768 | struct kmem_cache *s; |
5b882be4 | 3769 | void *ret; |
81819f0f | 3770 | |
95a05b42 | 3771 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3772 | return kmalloc_large(size, flags); |
aadb4bc4 | 3773 | |
2c59dd65 | 3774 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3775 | |
3776 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3777 | return s; |
3778 | ||
2b847c3c | 3779 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3780 | |
ca2b84cb | 3781 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3782 | |
505f5dcb | 3783 | kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3784 | |
5b882be4 | 3785 | return ret; |
81819f0f CL |
3786 | } |
3787 | EXPORT_SYMBOL(__kmalloc); | |
3788 | ||
5d1f57e4 | 3789 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3790 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3791 | { | |
b1eeab67 | 3792 | struct page *page; |
e4f7c0b4 | 3793 | void *ptr = NULL; |
f619cfe1 | 3794 | |
52383431 | 3795 | flags |= __GFP_COMP | __GFP_NOTRACK; |
4949148a | 3796 | page = alloc_pages_node(node, flags, get_order(size)); |
f619cfe1 | 3797 | if (page) |
e4f7c0b4 CM |
3798 | ptr = page_address(page); |
3799 | ||
d56791b3 | 3800 | kmalloc_large_node_hook(ptr, size, flags); |
e4f7c0b4 | 3801 | return ptr; |
f619cfe1 CL |
3802 | } |
3803 | ||
81819f0f CL |
3804 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3805 | { | |
aadb4bc4 | 3806 | struct kmem_cache *s; |
5b882be4 | 3807 | void *ret; |
81819f0f | 3808 | |
95a05b42 | 3809 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3810 | ret = kmalloc_large_node(size, flags, node); |
3811 | ||
ca2b84cb EGM |
3812 | trace_kmalloc_node(_RET_IP_, ret, |
3813 | size, PAGE_SIZE << get_order(size), | |
3814 | flags, node); | |
5b882be4 EGM |
3815 | |
3816 | return ret; | |
3817 | } | |
aadb4bc4 | 3818 | |
2c59dd65 | 3819 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3820 | |
3821 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3822 | return s; |
3823 | ||
2b847c3c | 3824 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3825 | |
ca2b84cb | 3826 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3827 | |
505f5dcb | 3828 | kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3829 | |
5b882be4 | 3830 | return ret; |
81819f0f CL |
3831 | } |
3832 | EXPORT_SYMBOL(__kmalloc_node); | |
3833 | #endif | |
3834 | ||
ed18adc1 KC |
3835 | #ifdef CONFIG_HARDENED_USERCOPY |
3836 | /* | |
3837 | * Rejects objects that are incorrectly sized. | |
3838 | * | |
3839 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3840 | * to indicate an error. | |
3841 | */ | |
3842 | const char *__check_heap_object(const void *ptr, unsigned long n, | |
3843 | struct page *page) | |
3844 | { | |
3845 | struct kmem_cache *s; | |
3846 | unsigned long offset; | |
3847 | size_t object_size; | |
3848 | ||
3849 | /* Find object and usable object size. */ | |
3850 | s = page->slab_cache; | |
3851 | object_size = slab_ksize(s); | |
3852 | ||
3853 | /* Reject impossible pointers. */ | |
3854 | if (ptr < page_address(page)) | |
3855 | return s->name; | |
3856 | ||
3857 | /* Find offset within object. */ | |
3858 | offset = (ptr - page_address(page)) % s->size; | |
3859 | ||
3860 | /* Adjust for redzone and reject if within the redzone. */ | |
3861 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3862 | if (offset < s->red_left_pad) | |
3863 | return s->name; | |
3864 | offset -= s->red_left_pad; | |
3865 | } | |
3866 | ||
3867 | /* Allow address range falling entirely within object size. */ | |
3868 | if (offset <= object_size && n <= object_size - offset) | |
3869 | return NULL; | |
3870 | ||
3871 | return s->name; | |
3872 | } | |
3873 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
3874 | ||
0316bec2 | 3875 | static size_t __ksize(const void *object) |
81819f0f | 3876 | { |
272c1d21 | 3877 | struct page *page; |
81819f0f | 3878 | |
ef8b4520 | 3879 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3880 | return 0; |
3881 | ||
294a80a8 | 3882 | page = virt_to_head_page(object); |
294a80a8 | 3883 | |
76994412 PE |
3884 | if (unlikely(!PageSlab(page))) { |
3885 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3886 | return PAGE_SIZE << compound_order(page); |
76994412 | 3887 | } |
81819f0f | 3888 | |
1b4f59e3 | 3889 | return slab_ksize(page->slab_cache); |
81819f0f | 3890 | } |
0316bec2 AR |
3891 | |
3892 | size_t ksize(const void *object) | |
3893 | { | |
3894 | size_t size = __ksize(object); | |
3895 | /* We assume that ksize callers could use whole allocated area, | |
4ebb31a4 AP |
3896 | * so we need to unpoison this area. |
3897 | */ | |
3898 | kasan_unpoison_shadow(object, size); | |
0316bec2 AR |
3899 | return size; |
3900 | } | |
b1aabecd | 3901 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
3902 | |
3903 | void kfree(const void *x) | |
3904 | { | |
81819f0f | 3905 | struct page *page; |
5bb983b0 | 3906 | void *object = (void *)x; |
81819f0f | 3907 | |
2121db74 PE |
3908 | trace_kfree(_RET_IP_, x); |
3909 | ||
2408c550 | 3910 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3911 | return; |
3912 | ||
b49af68f | 3913 | page = virt_to_head_page(x); |
aadb4bc4 | 3914 | if (unlikely(!PageSlab(page))) { |
0937502a | 3915 | BUG_ON(!PageCompound(page)); |
d56791b3 | 3916 | kfree_hook(x); |
4949148a | 3917 | __free_pages(page, compound_order(page)); |
aadb4bc4 CL |
3918 | return; |
3919 | } | |
81084651 | 3920 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3921 | } |
3922 | EXPORT_SYMBOL(kfree); | |
3923 | ||
832f37f5 VD |
3924 | #define SHRINK_PROMOTE_MAX 32 |
3925 | ||
2086d26a | 3926 | /* |
832f37f5 VD |
3927 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
3928 | * up most to the head of the partial lists. New allocations will then | |
3929 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
3930 | * |
3931 | * The slabs with the least items are placed last. This results in them | |
3932 | * being allocated from last increasing the chance that the last objects | |
3933 | * are freed in them. | |
2086d26a | 3934 | */ |
c9fc5864 | 3935 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
3936 | { |
3937 | int node; | |
3938 | int i; | |
3939 | struct kmem_cache_node *n; | |
3940 | struct page *page; | |
3941 | struct page *t; | |
832f37f5 VD |
3942 | struct list_head discard; |
3943 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 3944 | unsigned long flags; |
ce3712d7 | 3945 | int ret = 0; |
2086d26a | 3946 | |
2086d26a | 3947 | flush_all(s); |
fa45dc25 | 3948 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
3949 | INIT_LIST_HEAD(&discard); |
3950 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
3951 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
3952 | |
3953 | spin_lock_irqsave(&n->list_lock, flags); | |
3954 | ||
3955 | /* | |
832f37f5 | 3956 | * Build lists of slabs to discard or promote. |
2086d26a | 3957 | * |
672bba3a CL |
3958 | * Note that concurrent frees may occur while we hold the |
3959 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3960 | */ |
3961 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
832f37f5 VD |
3962 | int free = page->objects - page->inuse; |
3963 | ||
3964 | /* Do not reread page->inuse */ | |
3965 | barrier(); | |
3966 | ||
3967 | /* We do not keep full slabs on the list */ | |
3968 | BUG_ON(free <= 0); | |
3969 | ||
3970 | if (free == page->objects) { | |
3971 | list_move(&page->lru, &discard); | |
69cb8e6b | 3972 | n->nr_partial--; |
832f37f5 VD |
3973 | } else if (free <= SHRINK_PROMOTE_MAX) |
3974 | list_move(&page->lru, promote + free - 1); | |
2086d26a CL |
3975 | } |
3976 | ||
2086d26a | 3977 | /* |
832f37f5 VD |
3978 | * Promote the slabs filled up most to the head of the |
3979 | * partial list. | |
2086d26a | 3980 | */ |
832f37f5 VD |
3981 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
3982 | list_splice(promote + i, &n->partial); | |
2086d26a | 3983 | |
2086d26a | 3984 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
3985 | |
3986 | /* Release empty slabs */ | |
832f37f5 | 3987 | list_for_each_entry_safe(page, t, &discard, lru) |
69cb8e6b | 3988 | discard_slab(s, page); |
ce3712d7 VD |
3989 | |
3990 | if (slabs_node(s, node)) | |
3991 | ret = 1; | |
2086d26a CL |
3992 | } |
3993 | ||
ce3712d7 | 3994 | return ret; |
2086d26a | 3995 | } |
2086d26a | 3996 | |
c9fc5864 | 3997 | #ifdef CONFIG_MEMCG |
01fb58bc TH |
3998 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) |
3999 | { | |
50862ce7 TH |
4000 | /* |
4001 | * Called with all the locks held after a sched RCU grace period. | |
4002 | * Even if @s becomes empty after shrinking, we can't know that @s | |
4003 | * doesn't have allocations already in-flight and thus can't | |
4004 | * destroy @s until the associated memcg is released. | |
4005 | * | |
4006 | * However, let's remove the sysfs files for empty caches here. | |
4007 | * Each cache has a lot of interface files which aren't | |
4008 | * particularly useful for empty draining caches; otherwise, we can | |
4009 | * easily end up with millions of unnecessary sysfs files on | |
4010 | * systems which have a lot of memory and transient cgroups. | |
4011 | */ | |
4012 | if (!__kmem_cache_shrink(s)) | |
4013 | sysfs_slab_remove(s); | |
01fb58bc TH |
4014 | } |
4015 | ||
c9fc5864 TH |
4016 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4017 | { | |
4018 | /* | |
4019 | * Disable empty slabs caching. Used to avoid pinning offline | |
4020 | * memory cgroups by kmem pages that can be freed. | |
4021 | */ | |
e6d0e1dc | 4022 | slub_set_cpu_partial(s, 0); |
c9fc5864 TH |
4023 | s->min_partial = 0; |
4024 | ||
4025 | /* | |
4026 | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | |
01fb58bc | 4027 | * we have to make sure the change is visible before shrinking. |
c9fc5864 | 4028 | */ |
01fb58bc | 4029 | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); |
c9fc5864 TH |
4030 | } |
4031 | #endif | |
4032 | ||
b9049e23 YG |
4033 | static int slab_mem_going_offline_callback(void *arg) |
4034 | { | |
4035 | struct kmem_cache *s; | |
4036 | ||
18004c5d | 4037 | mutex_lock(&slab_mutex); |
b9049e23 | 4038 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4039 | __kmem_cache_shrink(s); |
18004c5d | 4040 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4041 | |
4042 | return 0; | |
4043 | } | |
4044 | ||
4045 | static void slab_mem_offline_callback(void *arg) | |
4046 | { | |
4047 | struct kmem_cache_node *n; | |
4048 | struct kmem_cache *s; | |
4049 | struct memory_notify *marg = arg; | |
4050 | int offline_node; | |
4051 | ||
b9d5ab25 | 4052 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4053 | |
4054 | /* | |
4055 | * If the node still has available memory. we need kmem_cache_node | |
4056 | * for it yet. | |
4057 | */ | |
4058 | if (offline_node < 0) | |
4059 | return; | |
4060 | ||
18004c5d | 4061 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4062 | list_for_each_entry(s, &slab_caches, list) { |
4063 | n = get_node(s, offline_node); | |
4064 | if (n) { | |
4065 | /* | |
4066 | * if n->nr_slabs > 0, slabs still exist on the node | |
4067 | * that is going down. We were unable to free them, | |
c9404c9c | 4068 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4069 | * callback. So, we must fail. |
4070 | */ | |
0f389ec6 | 4071 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4072 | |
4073 | s->node[offline_node] = NULL; | |
8de66a0c | 4074 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4075 | } |
4076 | } | |
18004c5d | 4077 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4078 | } |
4079 | ||
4080 | static int slab_mem_going_online_callback(void *arg) | |
4081 | { | |
4082 | struct kmem_cache_node *n; | |
4083 | struct kmem_cache *s; | |
4084 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4085 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4086 | int ret = 0; |
4087 | ||
4088 | /* | |
4089 | * If the node's memory is already available, then kmem_cache_node is | |
4090 | * already created. Nothing to do. | |
4091 | */ | |
4092 | if (nid < 0) | |
4093 | return 0; | |
4094 | ||
4095 | /* | |
0121c619 | 4096 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4097 | * allocate a kmem_cache_node structure in order to bring the node |
4098 | * online. | |
4099 | */ | |
18004c5d | 4100 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4101 | list_for_each_entry(s, &slab_caches, list) { |
4102 | /* | |
4103 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4104 | * since memory is not yet available from the node that | |
4105 | * is brought up. | |
4106 | */ | |
8de66a0c | 4107 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4108 | if (!n) { |
4109 | ret = -ENOMEM; | |
4110 | goto out; | |
4111 | } | |
4053497d | 4112 | init_kmem_cache_node(n); |
b9049e23 YG |
4113 | s->node[nid] = n; |
4114 | } | |
4115 | out: | |
18004c5d | 4116 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4117 | return ret; |
4118 | } | |
4119 | ||
4120 | static int slab_memory_callback(struct notifier_block *self, | |
4121 | unsigned long action, void *arg) | |
4122 | { | |
4123 | int ret = 0; | |
4124 | ||
4125 | switch (action) { | |
4126 | case MEM_GOING_ONLINE: | |
4127 | ret = slab_mem_going_online_callback(arg); | |
4128 | break; | |
4129 | case MEM_GOING_OFFLINE: | |
4130 | ret = slab_mem_going_offline_callback(arg); | |
4131 | break; | |
4132 | case MEM_OFFLINE: | |
4133 | case MEM_CANCEL_ONLINE: | |
4134 | slab_mem_offline_callback(arg); | |
4135 | break; | |
4136 | case MEM_ONLINE: | |
4137 | case MEM_CANCEL_OFFLINE: | |
4138 | break; | |
4139 | } | |
dc19f9db KH |
4140 | if (ret) |
4141 | ret = notifier_from_errno(ret); | |
4142 | else | |
4143 | ret = NOTIFY_OK; | |
b9049e23 YG |
4144 | return ret; |
4145 | } | |
4146 | ||
3ac38faa AM |
4147 | static struct notifier_block slab_memory_callback_nb = { |
4148 | .notifier_call = slab_memory_callback, | |
4149 | .priority = SLAB_CALLBACK_PRI, | |
4150 | }; | |
b9049e23 | 4151 | |
81819f0f CL |
4152 | /******************************************************************** |
4153 | * Basic setup of slabs | |
4154 | *******************************************************************/ | |
4155 | ||
51df1142 CL |
4156 | /* |
4157 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4158 | * the page allocator. Allocate them properly then fix up the pointers |
4159 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4160 | */ |
4161 | ||
dffb4d60 | 4162 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4163 | { |
4164 | int node; | |
dffb4d60 | 4165 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4166 | struct kmem_cache_node *n; |
51df1142 | 4167 | |
dffb4d60 | 4168 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4169 | |
7d557b3c GC |
4170 | /* |
4171 | * This runs very early, and only the boot processor is supposed to be | |
4172 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4173 | * IPIs around. | |
4174 | */ | |
4175 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4176 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4177 | struct page *p; |
4178 | ||
fa45dc25 CL |
4179 | list_for_each_entry(p, &n->partial, lru) |
4180 | p->slab_cache = s; | |
51df1142 | 4181 | |
607bf324 | 4182 | #ifdef CONFIG_SLUB_DEBUG |
fa45dc25 CL |
4183 | list_for_each_entry(p, &n->full, lru) |
4184 | p->slab_cache = s; | |
51df1142 | 4185 | #endif |
51df1142 | 4186 | } |
f7ce3190 | 4187 | slab_init_memcg_params(s); |
dffb4d60 | 4188 | list_add(&s->list, &slab_caches); |
510ded33 | 4189 | memcg_link_cache(s); |
dffb4d60 | 4190 | return s; |
51df1142 CL |
4191 | } |
4192 | ||
81819f0f CL |
4193 | void __init kmem_cache_init(void) |
4194 | { | |
dffb4d60 CL |
4195 | static __initdata struct kmem_cache boot_kmem_cache, |
4196 | boot_kmem_cache_node; | |
51df1142 | 4197 | |
fc8d8620 SG |
4198 | if (debug_guardpage_minorder()) |
4199 | slub_max_order = 0; | |
4200 | ||
dffb4d60 CL |
4201 | kmem_cache_node = &boot_kmem_cache_node; |
4202 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4203 | |
dffb4d60 CL |
4204 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
4205 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); | |
b9049e23 | 4206 | |
3ac38faa | 4207 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4208 | |
4209 | /* Able to allocate the per node structures */ | |
4210 | slab_state = PARTIAL; | |
4211 | ||
dffb4d60 CL |
4212 | create_boot_cache(kmem_cache, "kmem_cache", |
4213 | offsetof(struct kmem_cache, node) + | |
4214 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
4215 | SLAB_HWCACHE_ALIGN); | |
8a13a4cc | 4216 | |
dffb4d60 | 4217 | kmem_cache = bootstrap(&boot_kmem_cache); |
81819f0f | 4218 | |
51df1142 CL |
4219 | /* |
4220 | * Allocate kmem_cache_node properly from the kmem_cache slab. | |
4221 | * kmem_cache_node is separately allocated so no need to | |
4222 | * update any list pointers. | |
4223 | */ | |
dffb4d60 | 4224 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4225 | |
4226 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4227 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4228 | create_kmalloc_caches(0); |
81819f0f | 4229 | |
210e7a43 TG |
4230 | /* Setup random freelists for each cache */ |
4231 | init_freelist_randomization(); | |
4232 | ||
a96a87bf SAS |
4233 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4234 | slub_cpu_dead); | |
81819f0f | 4235 | |
9b130ad5 | 4236 | pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n", |
f97d5f63 | 4237 | cache_line_size(), |
81819f0f CL |
4238 | slub_min_order, slub_max_order, slub_min_objects, |
4239 | nr_cpu_ids, nr_node_ids); | |
4240 | } | |
4241 | ||
7e85ee0c PE |
4242 | void __init kmem_cache_init_late(void) |
4243 | { | |
7e85ee0c PE |
4244 | } |
4245 | ||
2633d7a0 | 4246 | struct kmem_cache * |
a44cb944 VD |
4247 | __kmem_cache_alias(const char *name, size_t size, size_t align, |
4248 | unsigned long flags, void (*ctor)(void *)) | |
81819f0f | 4249 | { |
426589f5 | 4250 | struct kmem_cache *s, *c; |
81819f0f | 4251 | |
a44cb944 | 4252 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4253 | if (s) { |
4254 | s->refcount++; | |
84d0ddd6 | 4255 | |
81819f0f CL |
4256 | /* |
4257 | * Adjust the object sizes so that we clear | |
4258 | * the complete object on kzalloc. | |
4259 | */ | |
3b0efdfa | 4260 | s->object_size = max(s->object_size, (int)size); |
81819f0f | 4261 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4262 | |
426589f5 | 4263 | for_each_memcg_cache(c, s) { |
84d0ddd6 VD |
4264 | c->object_size = s->object_size; |
4265 | c->inuse = max_t(int, c->inuse, | |
4266 | ALIGN(size, sizeof(void *))); | |
4267 | } | |
4268 | ||
7b8f3b66 | 4269 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4270 | s->refcount--; |
cbb79694 | 4271 | s = NULL; |
7b8f3b66 | 4272 | } |
a0e1d1be | 4273 | } |
6446faa2 | 4274 | |
cbb79694 CL |
4275 | return s; |
4276 | } | |
84c1cf62 | 4277 | |
8a13a4cc | 4278 | int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) |
cbb79694 | 4279 | { |
aac3a166 PE |
4280 | int err; |
4281 | ||
4282 | err = kmem_cache_open(s, flags); | |
4283 | if (err) | |
4284 | return err; | |
20cea968 | 4285 | |
45530c44 CL |
4286 | /* Mutex is not taken during early boot */ |
4287 | if (slab_state <= UP) | |
4288 | return 0; | |
4289 | ||
107dab5c | 4290 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4291 | err = sysfs_slab_add(s); |
aac3a166 | 4292 | if (err) |
52b4b950 | 4293 | __kmem_cache_release(s); |
20cea968 | 4294 | |
aac3a166 | 4295 | return err; |
81819f0f | 4296 | } |
81819f0f | 4297 | |
ce71e27c | 4298 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4299 | { |
aadb4bc4 | 4300 | struct kmem_cache *s; |
94b528d0 | 4301 | void *ret; |
aadb4bc4 | 4302 | |
95a05b42 | 4303 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4304 | return kmalloc_large(size, gfpflags); |
4305 | ||
2c59dd65 | 4306 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4307 | |
2408c550 | 4308 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4309 | return s; |
81819f0f | 4310 | |
2b847c3c | 4311 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4312 | |
25985edc | 4313 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4314 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4315 | |
4316 | return ret; | |
81819f0f CL |
4317 | } |
4318 | ||
5d1f57e4 | 4319 | #ifdef CONFIG_NUMA |
81819f0f | 4320 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4321 | int node, unsigned long caller) |
81819f0f | 4322 | { |
aadb4bc4 | 4323 | struct kmem_cache *s; |
94b528d0 | 4324 | void *ret; |
aadb4bc4 | 4325 | |
95a05b42 | 4326 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4327 | ret = kmalloc_large_node(size, gfpflags, node); |
4328 | ||
4329 | trace_kmalloc_node(caller, ret, | |
4330 | size, PAGE_SIZE << get_order(size), | |
4331 | gfpflags, node); | |
4332 | ||
4333 | return ret; | |
4334 | } | |
eada35ef | 4335 | |
2c59dd65 | 4336 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4337 | |
2408c550 | 4338 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4339 | return s; |
81819f0f | 4340 | |
2b847c3c | 4341 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4342 | |
25985edc | 4343 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4344 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4345 | |
4346 | return ret; | |
81819f0f | 4347 | } |
5d1f57e4 | 4348 | #endif |
81819f0f | 4349 | |
ab4d5ed5 | 4350 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4351 | static int count_inuse(struct page *page) |
4352 | { | |
4353 | return page->inuse; | |
4354 | } | |
4355 | ||
4356 | static int count_total(struct page *page) | |
4357 | { | |
4358 | return page->objects; | |
4359 | } | |
ab4d5ed5 | 4360 | #endif |
205ab99d | 4361 | |
ab4d5ed5 | 4362 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
4363 | static int validate_slab(struct kmem_cache *s, struct page *page, |
4364 | unsigned long *map) | |
53e15af0 CL |
4365 | { |
4366 | void *p; | |
a973e9dd | 4367 | void *addr = page_address(page); |
53e15af0 CL |
4368 | |
4369 | if (!check_slab(s, page) || | |
4370 | !on_freelist(s, page, NULL)) | |
4371 | return 0; | |
4372 | ||
4373 | /* Now we know that a valid freelist exists */ | |
39b26464 | 4374 | bitmap_zero(map, page->objects); |
53e15af0 | 4375 | |
5f80b13a CL |
4376 | get_map(s, page, map); |
4377 | for_each_object(p, s, addr, page->objects) { | |
4378 | if (test_bit(slab_index(p, s, addr), map)) | |
4379 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
4380 | return 0; | |
53e15af0 CL |
4381 | } |
4382 | ||
224a88be | 4383 | for_each_object(p, s, addr, page->objects) |
7656c72b | 4384 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 4385 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
4386 | return 0; |
4387 | return 1; | |
4388 | } | |
4389 | ||
434e245d CL |
4390 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4391 | unsigned long *map) | |
53e15af0 | 4392 | { |
881db7fb CL |
4393 | slab_lock(page); |
4394 | validate_slab(s, page, map); | |
4395 | slab_unlock(page); | |
53e15af0 CL |
4396 | } |
4397 | ||
434e245d CL |
4398 | static int validate_slab_node(struct kmem_cache *s, |
4399 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
4400 | { |
4401 | unsigned long count = 0; | |
4402 | struct page *page; | |
4403 | unsigned long flags; | |
4404 | ||
4405 | spin_lock_irqsave(&n->list_lock, flags); | |
4406 | ||
4407 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 4408 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4409 | count++; |
4410 | } | |
4411 | if (count != n->nr_partial) | |
f9f58285 FF |
4412 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4413 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4414 | |
4415 | if (!(s->flags & SLAB_STORE_USER)) | |
4416 | goto out; | |
4417 | ||
4418 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 4419 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4420 | count++; |
4421 | } | |
4422 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4423 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4424 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4425 | |
4426 | out: | |
4427 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4428 | return count; | |
4429 | } | |
4430 | ||
434e245d | 4431 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4432 | { |
4433 | int node; | |
4434 | unsigned long count = 0; | |
205ab99d | 4435 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d | 4436 | sizeof(unsigned long), GFP_KERNEL); |
fa45dc25 | 4437 | struct kmem_cache_node *n; |
434e245d CL |
4438 | |
4439 | if (!map) | |
4440 | return -ENOMEM; | |
53e15af0 CL |
4441 | |
4442 | flush_all(s); | |
fa45dc25 | 4443 | for_each_kmem_cache_node(s, node, n) |
434e245d | 4444 | count += validate_slab_node(s, n, map); |
434e245d | 4445 | kfree(map); |
53e15af0 CL |
4446 | return count; |
4447 | } | |
88a420e4 | 4448 | /* |
672bba3a | 4449 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4450 | * and freed. |
4451 | */ | |
4452 | ||
4453 | struct location { | |
4454 | unsigned long count; | |
ce71e27c | 4455 | unsigned long addr; |
45edfa58 CL |
4456 | long long sum_time; |
4457 | long min_time; | |
4458 | long max_time; | |
4459 | long min_pid; | |
4460 | long max_pid; | |
174596a0 | 4461 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4462 | nodemask_t nodes; |
88a420e4 CL |
4463 | }; |
4464 | ||
4465 | struct loc_track { | |
4466 | unsigned long max; | |
4467 | unsigned long count; | |
4468 | struct location *loc; | |
4469 | }; | |
4470 | ||
4471 | static void free_loc_track(struct loc_track *t) | |
4472 | { | |
4473 | if (t->max) | |
4474 | free_pages((unsigned long)t->loc, | |
4475 | get_order(sizeof(struct location) * t->max)); | |
4476 | } | |
4477 | ||
68dff6a9 | 4478 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4479 | { |
4480 | struct location *l; | |
4481 | int order; | |
4482 | ||
88a420e4 CL |
4483 | order = get_order(sizeof(struct location) * max); |
4484 | ||
68dff6a9 | 4485 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4486 | if (!l) |
4487 | return 0; | |
4488 | ||
4489 | if (t->count) { | |
4490 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4491 | free_loc_track(t); | |
4492 | } | |
4493 | t->max = max; | |
4494 | t->loc = l; | |
4495 | return 1; | |
4496 | } | |
4497 | ||
4498 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4499 | const struct track *track) |
88a420e4 CL |
4500 | { |
4501 | long start, end, pos; | |
4502 | struct location *l; | |
ce71e27c | 4503 | unsigned long caddr; |
45edfa58 | 4504 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4505 | |
4506 | start = -1; | |
4507 | end = t->count; | |
4508 | ||
4509 | for ( ; ; ) { | |
4510 | pos = start + (end - start + 1) / 2; | |
4511 | ||
4512 | /* | |
4513 | * There is nothing at "end". If we end up there | |
4514 | * we need to add something to before end. | |
4515 | */ | |
4516 | if (pos == end) | |
4517 | break; | |
4518 | ||
4519 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4520 | if (track->addr == caddr) { |
4521 | ||
4522 | l = &t->loc[pos]; | |
4523 | l->count++; | |
4524 | if (track->when) { | |
4525 | l->sum_time += age; | |
4526 | if (age < l->min_time) | |
4527 | l->min_time = age; | |
4528 | if (age > l->max_time) | |
4529 | l->max_time = age; | |
4530 | ||
4531 | if (track->pid < l->min_pid) | |
4532 | l->min_pid = track->pid; | |
4533 | if (track->pid > l->max_pid) | |
4534 | l->max_pid = track->pid; | |
4535 | ||
174596a0 RR |
4536 | cpumask_set_cpu(track->cpu, |
4537 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4538 | } |
4539 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4540 | return 1; |
4541 | } | |
4542 | ||
45edfa58 | 4543 | if (track->addr < caddr) |
88a420e4 CL |
4544 | end = pos; |
4545 | else | |
4546 | start = pos; | |
4547 | } | |
4548 | ||
4549 | /* | |
672bba3a | 4550 | * Not found. Insert new tracking element. |
88a420e4 | 4551 | */ |
68dff6a9 | 4552 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4553 | return 0; |
4554 | ||
4555 | l = t->loc + pos; | |
4556 | if (pos < t->count) | |
4557 | memmove(l + 1, l, | |
4558 | (t->count - pos) * sizeof(struct location)); | |
4559 | t->count++; | |
4560 | l->count = 1; | |
45edfa58 CL |
4561 | l->addr = track->addr; |
4562 | l->sum_time = age; | |
4563 | l->min_time = age; | |
4564 | l->max_time = age; | |
4565 | l->min_pid = track->pid; | |
4566 | l->max_pid = track->pid; | |
174596a0 RR |
4567 | cpumask_clear(to_cpumask(l->cpus)); |
4568 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4569 | nodes_clear(l->nodes); |
4570 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4571 | return 1; |
4572 | } | |
4573 | ||
4574 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4575 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4576 | unsigned long *map) |
88a420e4 | 4577 | { |
a973e9dd | 4578 | void *addr = page_address(page); |
88a420e4 CL |
4579 | void *p; |
4580 | ||
39b26464 | 4581 | bitmap_zero(map, page->objects); |
5f80b13a | 4582 | get_map(s, page, map); |
88a420e4 | 4583 | |
224a88be | 4584 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4585 | if (!test_bit(slab_index(p, s, addr), map)) |
4586 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4587 | } |
4588 | ||
4589 | static int list_locations(struct kmem_cache *s, char *buf, | |
4590 | enum track_item alloc) | |
4591 | { | |
e374d483 | 4592 | int len = 0; |
88a420e4 | 4593 | unsigned long i; |
68dff6a9 | 4594 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4595 | int node; |
bbd7d57b ED |
4596 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4597 | sizeof(unsigned long), GFP_KERNEL); | |
fa45dc25 | 4598 | struct kmem_cache_node *n; |
88a420e4 | 4599 | |
bbd7d57b | 4600 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
0ee931c4 | 4601 | GFP_KERNEL)) { |
bbd7d57b | 4602 | kfree(map); |
68dff6a9 | 4603 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4604 | } |
88a420e4 CL |
4605 | /* Push back cpu slabs */ |
4606 | flush_all(s); | |
4607 | ||
fa45dc25 | 4608 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4609 | unsigned long flags; |
4610 | struct page *page; | |
4611 | ||
9e86943b | 4612 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4613 | continue; |
4614 | ||
4615 | spin_lock_irqsave(&n->list_lock, flags); | |
4616 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4617 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4618 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4619 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4620 | spin_unlock_irqrestore(&n->list_lock, flags); |
4621 | } | |
4622 | ||
4623 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4624 | struct location *l = &t.loc[i]; |
88a420e4 | 4625 | |
9c246247 | 4626 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4627 | break; |
e374d483 | 4628 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4629 | |
4630 | if (l->addr) | |
62c70bce | 4631 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4632 | else |
e374d483 | 4633 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4634 | |
4635 | if (l->sum_time != l->min_time) { | |
e374d483 | 4636 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4637 | l->min_time, |
4638 | (long)div_u64(l->sum_time, l->count), | |
4639 | l->max_time); | |
45edfa58 | 4640 | } else |
e374d483 | 4641 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4642 | l->min_time); |
4643 | ||
4644 | if (l->min_pid != l->max_pid) | |
e374d483 | 4645 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4646 | l->min_pid, l->max_pid); |
4647 | else | |
e374d483 | 4648 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4649 | l->min_pid); |
4650 | ||
174596a0 RR |
4651 | if (num_online_cpus() > 1 && |
4652 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4653 | len < PAGE_SIZE - 60) |
4654 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4655 | " cpus=%*pbl", | |
4656 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4657 | |
62bc62a8 | 4658 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4659 | len < PAGE_SIZE - 60) |
4660 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4661 | " nodes=%*pbl", | |
4662 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4663 | |
e374d483 | 4664 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4665 | } |
4666 | ||
4667 | free_loc_track(&t); | |
bbd7d57b | 4668 | kfree(map); |
88a420e4 | 4669 | if (!t.count) |
e374d483 HH |
4670 | len += sprintf(buf, "No data\n"); |
4671 | return len; | |
88a420e4 | 4672 | } |
ab4d5ed5 | 4673 | #endif |
88a420e4 | 4674 | |
a5a84755 | 4675 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4676 | static void __init resiliency_test(void) |
a5a84755 CL |
4677 | { |
4678 | u8 *p; | |
4679 | ||
95a05b42 | 4680 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4681 | |
f9f58285 FF |
4682 | pr_err("SLUB resiliency testing\n"); |
4683 | pr_err("-----------------------\n"); | |
4684 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4685 | |
4686 | p = kzalloc(16, GFP_KERNEL); | |
4687 | p[16] = 0x12; | |
f9f58285 FF |
4688 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4689 | p + 16); | |
a5a84755 CL |
4690 | |
4691 | validate_slab_cache(kmalloc_caches[4]); | |
4692 | ||
4693 | /* Hmmm... The next two are dangerous */ | |
4694 | p = kzalloc(32, GFP_KERNEL); | |
4695 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4696 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4697 | p); | |
4698 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4699 | |
4700 | validate_slab_cache(kmalloc_caches[5]); | |
4701 | p = kzalloc(64, GFP_KERNEL); | |
4702 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4703 | *p = 0x56; | |
f9f58285 FF |
4704 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4705 | p); | |
4706 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 CL |
4707 | validate_slab_cache(kmalloc_caches[6]); |
4708 | ||
f9f58285 | 4709 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4710 | p = kzalloc(128, GFP_KERNEL); |
4711 | kfree(p); | |
4712 | *p = 0x78; | |
f9f58285 | 4713 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
a5a84755 CL |
4714 | validate_slab_cache(kmalloc_caches[7]); |
4715 | ||
4716 | p = kzalloc(256, GFP_KERNEL); | |
4717 | kfree(p); | |
4718 | p[50] = 0x9a; | |
f9f58285 | 4719 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
a5a84755 CL |
4720 | validate_slab_cache(kmalloc_caches[8]); |
4721 | ||
4722 | p = kzalloc(512, GFP_KERNEL); | |
4723 | kfree(p); | |
4724 | p[512] = 0xab; | |
f9f58285 | 4725 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
a5a84755 CL |
4726 | validate_slab_cache(kmalloc_caches[9]); |
4727 | } | |
4728 | #else | |
4729 | #ifdef CONFIG_SYSFS | |
4730 | static void resiliency_test(void) {}; | |
4731 | #endif | |
4732 | #endif | |
4733 | ||
ab4d5ed5 | 4734 | #ifdef CONFIG_SYSFS |
81819f0f | 4735 | enum slab_stat_type { |
205ab99d CL |
4736 | SL_ALL, /* All slabs */ |
4737 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4738 | SL_CPU, /* Only slabs used for cpu caches */ | |
4739 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4740 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4741 | }; |
4742 | ||
205ab99d | 4743 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4744 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4745 | #define SO_CPU (1 << SL_CPU) | |
4746 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4747 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4748 | |
1663f26d TH |
4749 | #ifdef CONFIG_MEMCG |
4750 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4751 | ||
4752 | static int __init setup_slub_memcg_sysfs(char *str) | |
4753 | { | |
4754 | int v; | |
4755 | ||
4756 | if (get_option(&str, &v) > 0) | |
4757 | memcg_sysfs_enabled = v; | |
4758 | ||
4759 | return 1; | |
4760 | } | |
4761 | ||
4762 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4763 | #endif | |
4764 | ||
62e5c4b4 CG |
4765 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4766 | char *buf, unsigned long flags) | |
81819f0f CL |
4767 | { |
4768 | unsigned long total = 0; | |
81819f0f CL |
4769 | int node; |
4770 | int x; | |
4771 | unsigned long *nodes; | |
81819f0f | 4772 | |
e35e1a97 | 4773 | nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); |
62e5c4b4 CG |
4774 | if (!nodes) |
4775 | return -ENOMEM; | |
81819f0f | 4776 | |
205ab99d CL |
4777 | if (flags & SO_CPU) { |
4778 | int cpu; | |
81819f0f | 4779 | |
205ab99d | 4780 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4781 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4782 | cpu); | |
ec3ab083 | 4783 | int node; |
49e22585 | 4784 | struct page *page; |
dfb4f096 | 4785 | |
4db0c3c2 | 4786 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4787 | if (!page) |
4788 | continue; | |
205ab99d | 4789 | |
ec3ab083 CL |
4790 | node = page_to_nid(page); |
4791 | if (flags & SO_TOTAL) | |
4792 | x = page->objects; | |
4793 | else if (flags & SO_OBJECTS) | |
4794 | x = page->inuse; | |
4795 | else | |
4796 | x = 1; | |
49e22585 | 4797 | |
ec3ab083 CL |
4798 | total += x; |
4799 | nodes[node] += x; | |
4800 | ||
a93cf07b | 4801 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4802 | if (page) { |
8afb1474 LZ |
4803 | node = page_to_nid(page); |
4804 | if (flags & SO_TOTAL) | |
4805 | WARN_ON_ONCE(1); | |
4806 | else if (flags & SO_OBJECTS) | |
4807 | WARN_ON_ONCE(1); | |
4808 | else | |
4809 | x = page->pages; | |
bc6697d8 ED |
4810 | total += x; |
4811 | nodes[node] += x; | |
49e22585 | 4812 | } |
81819f0f CL |
4813 | } |
4814 | } | |
4815 | ||
bfc8c901 | 4816 | get_online_mems(); |
ab4d5ed5 | 4817 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4818 | if (flags & SO_ALL) { |
fa45dc25 CL |
4819 | struct kmem_cache_node *n; |
4820 | ||
4821 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4822 | |
d0e0ac97 CG |
4823 | if (flags & SO_TOTAL) |
4824 | x = atomic_long_read(&n->total_objects); | |
4825 | else if (flags & SO_OBJECTS) | |
4826 | x = atomic_long_read(&n->total_objects) - | |
4827 | count_partial(n, count_free); | |
81819f0f | 4828 | else |
205ab99d | 4829 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4830 | total += x; |
4831 | nodes[node] += x; | |
4832 | } | |
4833 | ||
ab4d5ed5 CL |
4834 | } else |
4835 | #endif | |
4836 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4837 | struct kmem_cache_node *n; |
81819f0f | 4838 | |
fa45dc25 | 4839 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4840 | if (flags & SO_TOTAL) |
4841 | x = count_partial(n, count_total); | |
4842 | else if (flags & SO_OBJECTS) | |
4843 | x = count_partial(n, count_inuse); | |
81819f0f | 4844 | else |
205ab99d | 4845 | x = n->nr_partial; |
81819f0f CL |
4846 | total += x; |
4847 | nodes[node] += x; | |
4848 | } | |
4849 | } | |
81819f0f CL |
4850 | x = sprintf(buf, "%lu", total); |
4851 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4852 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4853 | if (nodes[node]) |
4854 | x += sprintf(buf + x, " N%d=%lu", | |
4855 | node, nodes[node]); | |
4856 | #endif | |
bfc8c901 | 4857 | put_online_mems(); |
81819f0f CL |
4858 | kfree(nodes); |
4859 | return x + sprintf(buf + x, "\n"); | |
4860 | } | |
4861 | ||
ab4d5ed5 | 4862 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4863 | static int any_slab_objects(struct kmem_cache *s) |
4864 | { | |
4865 | int node; | |
fa45dc25 | 4866 | struct kmem_cache_node *n; |
81819f0f | 4867 | |
fa45dc25 | 4868 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4869 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4870 | return 1; |
fa45dc25 | 4871 | |
81819f0f CL |
4872 | return 0; |
4873 | } | |
ab4d5ed5 | 4874 | #endif |
81819f0f CL |
4875 | |
4876 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4877 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4878 | |
4879 | struct slab_attribute { | |
4880 | struct attribute attr; | |
4881 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4882 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4883 | }; | |
4884 | ||
4885 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4886 | static struct slab_attribute _name##_attr = \ |
4887 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4888 | |
4889 | #define SLAB_ATTR(_name) \ | |
4890 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4891 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4892 | |
81819f0f CL |
4893 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4894 | { | |
4895 | return sprintf(buf, "%d\n", s->size); | |
4896 | } | |
4897 | SLAB_ATTR_RO(slab_size); | |
4898 | ||
4899 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4900 | { | |
4901 | return sprintf(buf, "%d\n", s->align); | |
4902 | } | |
4903 | SLAB_ATTR_RO(align); | |
4904 | ||
4905 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4906 | { | |
3b0efdfa | 4907 | return sprintf(buf, "%d\n", s->object_size); |
81819f0f CL |
4908 | } |
4909 | SLAB_ATTR_RO(object_size); | |
4910 | ||
4911 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4912 | { | |
834f3d11 | 4913 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
4914 | } |
4915 | SLAB_ATTR_RO(objs_per_slab); | |
4916 | ||
06b285dc CL |
4917 | static ssize_t order_store(struct kmem_cache *s, |
4918 | const char *buf, size_t length) | |
4919 | { | |
0121c619 CL |
4920 | unsigned long order; |
4921 | int err; | |
4922 | ||
3dbb95f7 | 4923 | err = kstrtoul(buf, 10, &order); |
0121c619 CL |
4924 | if (err) |
4925 | return err; | |
06b285dc CL |
4926 | |
4927 | if (order > slub_max_order || order < slub_min_order) | |
4928 | return -EINVAL; | |
4929 | ||
4930 | calculate_sizes(s, order); | |
4931 | return length; | |
4932 | } | |
4933 | ||
81819f0f CL |
4934 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4935 | { | |
834f3d11 | 4936 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 4937 | } |
06b285dc | 4938 | SLAB_ATTR(order); |
81819f0f | 4939 | |
73d342b1 DR |
4940 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4941 | { | |
4942 | return sprintf(buf, "%lu\n", s->min_partial); | |
4943 | } | |
4944 | ||
4945 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4946 | size_t length) | |
4947 | { | |
4948 | unsigned long min; | |
4949 | int err; | |
4950 | ||
3dbb95f7 | 4951 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
4952 | if (err) |
4953 | return err; | |
4954 | ||
c0bdb232 | 4955 | set_min_partial(s, min); |
73d342b1 DR |
4956 | return length; |
4957 | } | |
4958 | SLAB_ATTR(min_partial); | |
4959 | ||
49e22585 CL |
4960 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4961 | { | |
e6d0e1dc | 4962 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
4963 | } |
4964 | ||
4965 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4966 | size_t length) | |
4967 | { | |
4968 | unsigned long objects; | |
4969 | int err; | |
4970 | ||
3dbb95f7 | 4971 | err = kstrtoul(buf, 10, &objects); |
49e22585 CL |
4972 | if (err) |
4973 | return err; | |
345c905d | 4974 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4975 | return -EINVAL; |
49e22585 | 4976 | |
e6d0e1dc | 4977 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
4978 | flush_all(s); |
4979 | return length; | |
4980 | } | |
4981 | SLAB_ATTR(cpu_partial); | |
4982 | ||
81819f0f CL |
4983 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4984 | { | |
62c70bce JP |
4985 | if (!s->ctor) |
4986 | return 0; | |
4987 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4988 | } |
4989 | SLAB_ATTR_RO(ctor); | |
4990 | ||
81819f0f CL |
4991 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4992 | { | |
4307c14f | 4993 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
4994 | } |
4995 | SLAB_ATTR_RO(aliases); | |
4996 | ||
81819f0f CL |
4997 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4998 | { | |
d9acf4b7 | 4999 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5000 | } |
5001 | SLAB_ATTR_RO(partial); | |
5002 | ||
5003 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5004 | { | |
d9acf4b7 | 5005 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5006 | } |
5007 | SLAB_ATTR_RO(cpu_slabs); | |
5008 | ||
5009 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5010 | { | |
205ab99d | 5011 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5012 | } |
5013 | SLAB_ATTR_RO(objects); | |
5014 | ||
205ab99d CL |
5015 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5016 | { | |
5017 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5018 | } | |
5019 | SLAB_ATTR_RO(objects_partial); | |
5020 | ||
49e22585 CL |
5021 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5022 | { | |
5023 | int objects = 0; | |
5024 | int pages = 0; | |
5025 | int cpu; | |
5026 | int len; | |
5027 | ||
5028 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5029 | struct page *page; |
5030 | ||
5031 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5032 | |
5033 | if (page) { | |
5034 | pages += page->pages; | |
5035 | objects += page->pobjects; | |
5036 | } | |
5037 | } | |
5038 | ||
5039 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5040 | ||
5041 | #ifdef CONFIG_SMP | |
5042 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5043 | struct page *page; |
5044 | ||
5045 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5046 | |
5047 | if (page && len < PAGE_SIZE - 20) | |
5048 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5049 | page->pobjects, page->pages); | |
5050 | } | |
5051 | #endif | |
5052 | return len + sprintf(buf + len, "\n"); | |
5053 | } | |
5054 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5055 | ||
a5a84755 CL |
5056 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5057 | { | |
5058 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5059 | } | |
5060 | ||
5061 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5062 | const char *buf, size_t length) | |
5063 | { | |
5064 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5065 | if (buf[0] == '1') | |
5066 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5067 | return length; | |
5068 | } | |
5069 | SLAB_ATTR(reclaim_account); | |
5070 | ||
5071 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5072 | { | |
5073 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5074 | } | |
5075 | SLAB_ATTR_RO(hwcache_align); | |
5076 | ||
5077 | #ifdef CONFIG_ZONE_DMA | |
5078 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5079 | { | |
5080 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5081 | } | |
5082 | SLAB_ATTR_RO(cache_dma); | |
5083 | #endif | |
5084 | ||
5085 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
5086 | { | |
5f0d5a3a | 5087 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5088 | } |
5089 | SLAB_ATTR_RO(destroy_by_rcu); | |
5090 | ||
ab9a0f19 LJ |
5091 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
5092 | { | |
5093 | return sprintf(buf, "%d\n", s->reserved); | |
5094 | } | |
5095 | SLAB_ATTR_RO(reserved); | |
5096 | ||
ab4d5ed5 | 5097 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5098 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5099 | { | |
5100 | return show_slab_objects(s, buf, SO_ALL); | |
5101 | } | |
5102 | SLAB_ATTR_RO(slabs); | |
5103 | ||
205ab99d CL |
5104 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5105 | { | |
5106 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5107 | } | |
5108 | SLAB_ATTR_RO(total_objects); | |
5109 | ||
81819f0f CL |
5110 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5111 | { | |
becfda68 | 5112 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5113 | } |
5114 | ||
5115 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5116 | const char *buf, size_t length) | |
5117 | { | |
becfda68 | 5118 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5119 | if (buf[0] == '1') { |
5120 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5121 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5122 | } |
81819f0f CL |
5123 | return length; |
5124 | } | |
5125 | SLAB_ATTR(sanity_checks); | |
5126 | ||
5127 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5128 | { | |
5129 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5130 | } | |
5131 | ||
5132 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5133 | size_t length) | |
5134 | { | |
c9e16131 CL |
5135 | /* |
5136 | * Tracing a merged cache is going to give confusing results | |
5137 | * as well as cause other issues like converting a mergeable | |
5138 | * cache into an umergeable one. | |
5139 | */ | |
5140 | if (s->refcount > 1) | |
5141 | return -EINVAL; | |
5142 | ||
81819f0f | 5143 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5144 | if (buf[0] == '1') { |
5145 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5146 | s->flags |= SLAB_TRACE; |
b789ef51 | 5147 | } |
81819f0f CL |
5148 | return length; |
5149 | } | |
5150 | SLAB_ATTR(trace); | |
5151 | ||
81819f0f CL |
5152 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5153 | { | |
5154 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5155 | } | |
5156 | ||
5157 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5158 | const char *buf, size_t length) | |
5159 | { | |
5160 | if (any_slab_objects(s)) | |
5161 | return -EBUSY; | |
5162 | ||
5163 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5164 | if (buf[0] == '1') { |
81819f0f | 5165 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5166 | } |
06b285dc | 5167 | calculate_sizes(s, -1); |
81819f0f CL |
5168 | return length; |
5169 | } | |
5170 | SLAB_ATTR(red_zone); | |
5171 | ||
5172 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5173 | { | |
5174 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5175 | } | |
5176 | ||
5177 | static ssize_t poison_store(struct kmem_cache *s, | |
5178 | const char *buf, size_t length) | |
5179 | { | |
5180 | if (any_slab_objects(s)) | |
5181 | return -EBUSY; | |
5182 | ||
5183 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5184 | if (buf[0] == '1') { |
81819f0f | 5185 | s->flags |= SLAB_POISON; |
b789ef51 | 5186 | } |
06b285dc | 5187 | calculate_sizes(s, -1); |
81819f0f CL |
5188 | return length; |
5189 | } | |
5190 | SLAB_ATTR(poison); | |
5191 | ||
5192 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5193 | { | |
5194 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5195 | } | |
5196 | ||
5197 | static ssize_t store_user_store(struct kmem_cache *s, | |
5198 | const char *buf, size_t length) | |
5199 | { | |
5200 | if (any_slab_objects(s)) | |
5201 | return -EBUSY; | |
5202 | ||
5203 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5204 | if (buf[0] == '1') { |
5205 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5206 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5207 | } |
06b285dc | 5208 | calculate_sizes(s, -1); |
81819f0f CL |
5209 | return length; |
5210 | } | |
5211 | SLAB_ATTR(store_user); | |
5212 | ||
53e15af0 CL |
5213 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5214 | { | |
5215 | return 0; | |
5216 | } | |
5217 | ||
5218 | static ssize_t validate_store(struct kmem_cache *s, | |
5219 | const char *buf, size_t length) | |
5220 | { | |
434e245d CL |
5221 | int ret = -EINVAL; |
5222 | ||
5223 | if (buf[0] == '1') { | |
5224 | ret = validate_slab_cache(s); | |
5225 | if (ret >= 0) | |
5226 | ret = length; | |
5227 | } | |
5228 | return ret; | |
53e15af0 CL |
5229 | } |
5230 | SLAB_ATTR(validate); | |
a5a84755 CL |
5231 | |
5232 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5233 | { | |
5234 | if (!(s->flags & SLAB_STORE_USER)) | |
5235 | return -ENOSYS; | |
5236 | return list_locations(s, buf, TRACK_ALLOC); | |
5237 | } | |
5238 | SLAB_ATTR_RO(alloc_calls); | |
5239 | ||
5240 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5241 | { | |
5242 | if (!(s->flags & SLAB_STORE_USER)) | |
5243 | return -ENOSYS; | |
5244 | return list_locations(s, buf, TRACK_FREE); | |
5245 | } | |
5246 | SLAB_ATTR_RO(free_calls); | |
5247 | #endif /* CONFIG_SLUB_DEBUG */ | |
5248 | ||
5249 | #ifdef CONFIG_FAILSLAB | |
5250 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5251 | { | |
5252 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5253 | } | |
5254 | ||
5255 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5256 | size_t length) | |
5257 | { | |
c9e16131 CL |
5258 | if (s->refcount > 1) |
5259 | return -EINVAL; | |
5260 | ||
a5a84755 CL |
5261 | s->flags &= ~SLAB_FAILSLAB; |
5262 | if (buf[0] == '1') | |
5263 | s->flags |= SLAB_FAILSLAB; | |
5264 | return length; | |
5265 | } | |
5266 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5267 | #endif |
53e15af0 | 5268 | |
2086d26a CL |
5269 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5270 | { | |
5271 | return 0; | |
5272 | } | |
5273 | ||
5274 | static ssize_t shrink_store(struct kmem_cache *s, | |
5275 | const char *buf, size_t length) | |
5276 | { | |
832f37f5 VD |
5277 | if (buf[0] == '1') |
5278 | kmem_cache_shrink(s); | |
5279 | else | |
2086d26a CL |
5280 | return -EINVAL; |
5281 | return length; | |
5282 | } | |
5283 | SLAB_ATTR(shrink); | |
5284 | ||
81819f0f | 5285 | #ifdef CONFIG_NUMA |
9824601e | 5286 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5287 | { |
9824601e | 5288 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5289 | } |
5290 | ||
9824601e | 5291 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5292 | const char *buf, size_t length) |
5293 | { | |
0121c619 CL |
5294 | unsigned long ratio; |
5295 | int err; | |
5296 | ||
3dbb95f7 | 5297 | err = kstrtoul(buf, 10, &ratio); |
0121c619 CL |
5298 | if (err) |
5299 | return err; | |
5300 | ||
e2cb96b7 | 5301 | if (ratio <= 100) |
0121c619 | 5302 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5303 | |
81819f0f CL |
5304 | return length; |
5305 | } | |
9824601e | 5306 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5307 | #endif |
5308 | ||
8ff12cfc | 5309 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5310 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5311 | { | |
5312 | unsigned long sum = 0; | |
5313 | int cpu; | |
5314 | int len; | |
5315 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
5316 | ||
5317 | if (!data) | |
5318 | return -ENOMEM; | |
5319 | ||
5320 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5321 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5322 | |
5323 | data[cpu] = x; | |
5324 | sum += x; | |
5325 | } | |
5326 | ||
5327 | len = sprintf(buf, "%lu", sum); | |
5328 | ||
50ef37b9 | 5329 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5330 | for_each_online_cpu(cpu) { |
5331 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5332 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5333 | } |
50ef37b9 | 5334 | #endif |
8ff12cfc CL |
5335 | kfree(data); |
5336 | return len + sprintf(buf + len, "\n"); | |
5337 | } | |
5338 | ||
78eb00cc DR |
5339 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5340 | { | |
5341 | int cpu; | |
5342 | ||
5343 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5344 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5345 | } |
5346 | ||
8ff12cfc CL |
5347 | #define STAT_ATTR(si, text) \ |
5348 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5349 | { \ | |
5350 | return show_stat(s, buf, si); \ | |
5351 | } \ | |
78eb00cc DR |
5352 | static ssize_t text##_store(struct kmem_cache *s, \ |
5353 | const char *buf, size_t length) \ | |
5354 | { \ | |
5355 | if (buf[0] != '0') \ | |
5356 | return -EINVAL; \ | |
5357 | clear_stat(s, si); \ | |
5358 | return length; \ | |
5359 | } \ | |
5360 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5361 | |
5362 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5363 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5364 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5365 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5366 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5367 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5368 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5369 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5370 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5371 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5372 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5373 | STAT_ATTR(FREE_SLAB, free_slab); |
5374 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5375 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5376 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5377 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5378 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5379 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5380 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5381 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5382 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5383 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5384 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5385 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5386 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5387 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
8ff12cfc CL |
5388 | #endif |
5389 | ||
06428780 | 5390 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5391 | &slab_size_attr.attr, |
5392 | &object_size_attr.attr, | |
5393 | &objs_per_slab_attr.attr, | |
5394 | &order_attr.attr, | |
73d342b1 | 5395 | &min_partial_attr.attr, |
49e22585 | 5396 | &cpu_partial_attr.attr, |
81819f0f | 5397 | &objects_attr.attr, |
205ab99d | 5398 | &objects_partial_attr.attr, |
81819f0f CL |
5399 | &partial_attr.attr, |
5400 | &cpu_slabs_attr.attr, | |
5401 | &ctor_attr.attr, | |
81819f0f CL |
5402 | &aliases_attr.attr, |
5403 | &align_attr.attr, | |
81819f0f CL |
5404 | &hwcache_align_attr.attr, |
5405 | &reclaim_account_attr.attr, | |
5406 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5407 | &shrink_attr.attr, |
ab9a0f19 | 5408 | &reserved_attr.attr, |
49e22585 | 5409 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5410 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5411 | &total_objects_attr.attr, |
5412 | &slabs_attr.attr, | |
5413 | &sanity_checks_attr.attr, | |
5414 | &trace_attr.attr, | |
81819f0f CL |
5415 | &red_zone_attr.attr, |
5416 | &poison_attr.attr, | |
5417 | &store_user_attr.attr, | |
53e15af0 | 5418 | &validate_attr.attr, |
88a420e4 CL |
5419 | &alloc_calls_attr.attr, |
5420 | &free_calls_attr.attr, | |
ab4d5ed5 | 5421 | #endif |
81819f0f CL |
5422 | #ifdef CONFIG_ZONE_DMA |
5423 | &cache_dma_attr.attr, | |
5424 | #endif | |
5425 | #ifdef CONFIG_NUMA | |
9824601e | 5426 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5427 | #endif |
5428 | #ifdef CONFIG_SLUB_STATS | |
5429 | &alloc_fastpath_attr.attr, | |
5430 | &alloc_slowpath_attr.attr, | |
5431 | &free_fastpath_attr.attr, | |
5432 | &free_slowpath_attr.attr, | |
5433 | &free_frozen_attr.attr, | |
5434 | &free_add_partial_attr.attr, | |
5435 | &free_remove_partial_attr.attr, | |
5436 | &alloc_from_partial_attr.attr, | |
5437 | &alloc_slab_attr.attr, | |
5438 | &alloc_refill_attr.attr, | |
e36a2652 | 5439 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5440 | &free_slab_attr.attr, |
5441 | &cpuslab_flush_attr.attr, | |
5442 | &deactivate_full_attr.attr, | |
5443 | &deactivate_empty_attr.attr, | |
5444 | &deactivate_to_head_attr.attr, | |
5445 | &deactivate_to_tail_attr.attr, | |
5446 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5447 | &deactivate_bypass_attr.attr, |
65c3376a | 5448 | &order_fallback_attr.attr, |
b789ef51 CL |
5449 | &cmpxchg_double_fail_attr.attr, |
5450 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5451 | &cpu_partial_alloc_attr.attr, |
5452 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5453 | &cpu_partial_node_attr.attr, |
5454 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5455 | #endif |
4c13dd3b DM |
5456 | #ifdef CONFIG_FAILSLAB |
5457 | &failslab_attr.attr, | |
5458 | #endif | |
5459 | ||
81819f0f CL |
5460 | NULL |
5461 | }; | |
5462 | ||
1fdaaa23 | 5463 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5464 | .attrs = slab_attrs, |
5465 | }; | |
5466 | ||
5467 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5468 | struct attribute *attr, | |
5469 | char *buf) | |
5470 | { | |
5471 | struct slab_attribute *attribute; | |
5472 | struct kmem_cache *s; | |
5473 | int err; | |
5474 | ||
5475 | attribute = to_slab_attr(attr); | |
5476 | s = to_slab(kobj); | |
5477 | ||
5478 | if (!attribute->show) | |
5479 | return -EIO; | |
5480 | ||
5481 | err = attribute->show(s, buf); | |
5482 | ||
5483 | return err; | |
5484 | } | |
5485 | ||
5486 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5487 | struct attribute *attr, | |
5488 | const char *buf, size_t len) | |
5489 | { | |
5490 | struct slab_attribute *attribute; | |
5491 | struct kmem_cache *s; | |
5492 | int err; | |
5493 | ||
5494 | attribute = to_slab_attr(attr); | |
5495 | s = to_slab(kobj); | |
5496 | ||
5497 | if (!attribute->store) | |
5498 | return -EIO; | |
5499 | ||
5500 | err = attribute->store(s, buf, len); | |
127424c8 | 5501 | #ifdef CONFIG_MEMCG |
107dab5c | 5502 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5503 | struct kmem_cache *c; |
81819f0f | 5504 | |
107dab5c GC |
5505 | mutex_lock(&slab_mutex); |
5506 | if (s->max_attr_size < len) | |
5507 | s->max_attr_size = len; | |
5508 | ||
ebe945c2 GC |
5509 | /* |
5510 | * This is a best effort propagation, so this function's return | |
5511 | * value will be determined by the parent cache only. This is | |
5512 | * basically because not all attributes will have a well | |
5513 | * defined semantics for rollbacks - most of the actions will | |
5514 | * have permanent effects. | |
5515 | * | |
5516 | * Returning the error value of any of the children that fail | |
5517 | * is not 100 % defined, in the sense that users seeing the | |
5518 | * error code won't be able to know anything about the state of | |
5519 | * the cache. | |
5520 | * | |
5521 | * Only returning the error code for the parent cache at least | |
5522 | * has well defined semantics. The cache being written to | |
5523 | * directly either failed or succeeded, in which case we loop | |
5524 | * through the descendants with best-effort propagation. | |
5525 | */ | |
426589f5 VD |
5526 | for_each_memcg_cache(c, s) |
5527 | attribute->store(c, buf, len); | |
107dab5c GC |
5528 | mutex_unlock(&slab_mutex); |
5529 | } | |
5530 | #endif | |
81819f0f CL |
5531 | return err; |
5532 | } | |
5533 | ||
107dab5c GC |
5534 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5535 | { | |
127424c8 | 5536 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5537 | int i; |
5538 | char *buffer = NULL; | |
93030d83 | 5539 | struct kmem_cache *root_cache; |
107dab5c | 5540 | |
93030d83 | 5541 | if (is_root_cache(s)) |
107dab5c GC |
5542 | return; |
5543 | ||
f7ce3190 | 5544 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5545 | |
107dab5c GC |
5546 | /* |
5547 | * This mean this cache had no attribute written. Therefore, no point | |
5548 | * in copying default values around | |
5549 | */ | |
93030d83 | 5550 | if (!root_cache->max_attr_size) |
107dab5c GC |
5551 | return; |
5552 | ||
5553 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5554 | char mbuf[64]; | |
5555 | char *buf; | |
5556 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5557 | ssize_t len; |
107dab5c GC |
5558 | |
5559 | if (!attr || !attr->store || !attr->show) | |
5560 | continue; | |
5561 | ||
5562 | /* | |
5563 | * It is really bad that we have to allocate here, so we will | |
5564 | * do it only as a fallback. If we actually allocate, though, | |
5565 | * we can just use the allocated buffer until the end. | |
5566 | * | |
5567 | * Most of the slub attributes will tend to be very small in | |
5568 | * size, but sysfs allows buffers up to a page, so they can | |
5569 | * theoretically happen. | |
5570 | */ | |
5571 | if (buffer) | |
5572 | buf = buffer; | |
93030d83 | 5573 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5574 | buf = mbuf; |
5575 | else { | |
5576 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5577 | if (WARN_ON(!buffer)) | |
5578 | continue; | |
5579 | buf = buffer; | |
5580 | } | |
5581 | ||
478fe303 TG |
5582 | len = attr->show(root_cache, buf); |
5583 | if (len > 0) | |
5584 | attr->store(s, buf, len); | |
107dab5c GC |
5585 | } |
5586 | ||
5587 | if (buffer) | |
5588 | free_page((unsigned long)buffer); | |
5589 | #endif | |
5590 | } | |
5591 | ||
41a21285 CL |
5592 | static void kmem_cache_release(struct kobject *k) |
5593 | { | |
5594 | slab_kmem_cache_release(to_slab(k)); | |
5595 | } | |
5596 | ||
52cf25d0 | 5597 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5598 | .show = slab_attr_show, |
5599 | .store = slab_attr_store, | |
5600 | }; | |
5601 | ||
5602 | static struct kobj_type slab_ktype = { | |
5603 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5604 | .release = kmem_cache_release, |
81819f0f CL |
5605 | }; |
5606 | ||
5607 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5608 | { | |
5609 | struct kobj_type *ktype = get_ktype(kobj); | |
5610 | ||
5611 | if (ktype == &slab_ktype) | |
5612 | return 1; | |
5613 | return 0; | |
5614 | } | |
5615 | ||
9cd43611 | 5616 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5617 | .filter = uevent_filter, |
5618 | }; | |
5619 | ||
27c3a314 | 5620 | static struct kset *slab_kset; |
81819f0f | 5621 | |
9a41707b VD |
5622 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5623 | { | |
127424c8 | 5624 | #ifdef CONFIG_MEMCG |
9a41707b | 5625 | if (!is_root_cache(s)) |
f7ce3190 | 5626 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5627 | #endif |
5628 | return slab_kset; | |
5629 | } | |
5630 | ||
81819f0f CL |
5631 | #define ID_STR_LENGTH 64 |
5632 | ||
5633 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5634 | * |
5635 | * Format :[flags-]size | |
81819f0f CL |
5636 | */ |
5637 | static char *create_unique_id(struct kmem_cache *s) | |
5638 | { | |
5639 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5640 | char *p = name; | |
5641 | ||
5642 | BUG_ON(!name); | |
5643 | ||
5644 | *p++ = ':'; | |
5645 | /* | |
5646 | * First flags affecting slabcache operations. We will only | |
5647 | * get here for aliasable slabs so we do not need to support | |
5648 | * too many flags. The flags here must cover all flags that | |
5649 | * are matched during merging to guarantee that the id is | |
5650 | * unique. | |
5651 | */ | |
5652 | if (s->flags & SLAB_CACHE_DMA) | |
5653 | *p++ = 'd'; | |
5654 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5655 | *p++ = 'a'; | |
becfda68 | 5656 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5657 | *p++ = 'F'; |
5a896d9e VN |
5658 | if (!(s->flags & SLAB_NOTRACK)) |
5659 | *p++ = 't'; | |
230e9fc2 VD |
5660 | if (s->flags & SLAB_ACCOUNT) |
5661 | *p++ = 'A'; | |
81819f0f CL |
5662 | if (p != name + 1) |
5663 | *p++ = '-'; | |
5664 | p += sprintf(p, "%07d", s->size); | |
2633d7a0 | 5665 | |
81819f0f CL |
5666 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5667 | return name; | |
5668 | } | |
5669 | ||
3b7b3140 TH |
5670 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5671 | { | |
5672 | struct kmem_cache *s = | |
5673 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5674 | ||
5675 | if (!s->kobj.state_in_sysfs) | |
5676 | /* | |
5677 | * For a memcg cache, this may be called during | |
5678 | * deactivation and again on shutdown. Remove only once. | |
5679 | * A cache is never shut down before deactivation is | |
5680 | * complete, so no need to worry about synchronization. | |
5681 | */ | |
f6ba4880 | 5682 | goto out; |
3b7b3140 TH |
5683 | |
5684 | #ifdef CONFIG_MEMCG | |
5685 | kset_unregister(s->memcg_kset); | |
5686 | #endif | |
5687 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
5688 | kobject_del(&s->kobj); | |
f6ba4880 | 5689 | out: |
3b7b3140 TH |
5690 | kobject_put(&s->kobj); |
5691 | } | |
5692 | ||
81819f0f CL |
5693 | static int sysfs_slab_add(struct kmem_cache *s) |
5694 | { | |
5695 | int err; | |
5696 | const char *name; | |
1663f26d | 5697 | struct kset *kset = cache_kset(s); |
45530c44 | 5698 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5699 | |
3b7b3140 TH |
5700 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5701 | ||
1663f26d TH |
5702 | if (!kset) { |
5703 | kobject_init(&s->kobj, &slab_ktype); | |
5704 | return 0; | |
5705 | } | |
5706 | ||
81819f0f CL |
5707 | if (unmergeable) { |
5708 | /* | |
5709 | * Slabcache can never be merged so we can use the name proper. | |
5710 | * This is typically the case for debug situations. In that | |
5711 | * case we can catch duplicate names easily. | |
5712 | */ | |
27c3a314 | 5713 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5714 | name = s->name; |
5715 | } else { | |
5716 | /* | |
5717 | * Create a unique name for the slab as a target | |
5718 | * for the symlinks. | |
5719 | */ | |
5720 | name = create_unique_id(s); | |
5721 | } | |
5722 | ||
1663f26d | 5723 | s->kobj.kset = kset; |
26e4f205 | 5724 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5725 | if (err) |
80da026a | 5726 | goto out; |
81819f0f CL |
5727 | |
5728 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5729 | if (err) |
5730 | goto out_del_kobj; | |
9a41707b | 5731 | |
127424c8 | 5732 | #ifdef CONFIG_MEMCG |
1663f26d | 5733 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5734 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5735 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5736 | err = -ENOMEM; |
5737 | goto out_del_kobj; | |
9a41707b VD |
5738 | } |
5739 | } | |
5740 | #endif | |
5741 | ||
81819f0f CL |
5742 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5743 | if (!unmergeable) { | |
5744 | /* Setup first alias */ | |
5745 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5746 | } |
54b6a731 DJ |
5747 | out: |
5748 | if (!unmergeable) | |
5749 | kfree(name); | |
5750 | return err; | |
5751 | out_del_kobj: | |
5752 | kobject_del(&s->kobj); | |
54b6a731 | 5753 | goto out; |
81819f0f CL |
5754 | } |
5755 | ||
bf5eb3de | 5756 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5757 | { |
97d06609 | 5758 | if (slab_state < FULL) |
2bce6485 CL |
5759 | /* |
5760 | * Sysfs has not been setup yet so no need to remove the | |
5761 | * cache from sysfs. | |
5762 | */ | |
5763 | return; | |
5764 | ||
3b7b3140 TH |
5765 | kobject_get(&s->kobj); |
5766 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5767 | } |
5768 | ||
5769 | void sysfs_slab_release(struct kmem_cache *s) | |
5770 | { | |
5771 | if (slab_state >= FULL) | |
5772 | kobject_put(&s->kobj); | |
81819f0f CL |
5773 | } |
5774 | ||
5775 | /* | |
5776 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5777 | * available lest we lose that information. |
81819f0f CL |
5778 | */ |
5779 | struct saved_alias { | |
5780 | struct kmem_cache *s; | |
5781 | const char *name; | |
5782 | struct saved_alias *next; | |
5783 | }; | |
5784 | ||
5af328a5 | 5785 | static struct saved_alias *alias_list; |
81819f0f CL |
5786 | |
5787 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5788 | { | |
5789 | struct saved_alias *al; | |
5790 | ||
97d06609 | 5791 | if (slab_state == FULL) { |
81819f0f CL |
5792 | /* |
5793 | * If we have a leftover link then remove it. | |
5794 | */ | |
27c3a314 GKH |
5795 | sysfs_remove_link(&slab_kset->kobj, name); |
5796 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5797 | } |
5798 | ||
5799 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5800 | if (!al) | |
5801 | return -ENOMEM; | |
5802 | ||
5803 | al->s = s; | |
5804 | al->name = name; | |
5805 | al->next = alias_list; | |
5806 | alias_list = al; | |
5807 | return 0; | |
5808 | } | |
5809 | ||
5810 | static int __init slab_sysfs_init(void) | |
5811 | { | |
5b95a4ac | 5812 | struct kmem_cache *s; |
81819f0f CL |
5813 | int err; |
5814 | ||
18004c5d | 5815 | mutex_lock(&slab_mutex); |
2bce6485 | 5816 | |
0ff21e46 | 5817 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5818 | if (!slab_kset) { |
18004c5d | 5819 | mutex_unlock(&slab_mutex); |
f9f58285 | 5820 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5821 | return -ENOSYS; |
5822 | } | |
5823 | ||
97d06609 | 5824 | slab_state = FULL; |
26a7bd03 | 5825 | |
5b95a4ac | 5826 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5827 | err = sysfs_slab_add(s); |
5d540fb7 | 5828 | if (err) |
f9f58285 FF |
5829 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5830 | s->name); | |
26a7bd03 | 5831 | } |
81819f0f CL |
5832 | |
5833 | while (alias_list) { | |
5834 | struct saved_alias *al = alias_list; | |
5835 | ||
5836 | alias_list = alias_list->next; | |
5837 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5838 | if (err) |
f9f58285 FF |
5839 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5840 | al->name); | |
81819f0f CL |
5841 | kfree(al); |
5842 | } | |
5843 | ||
18004c5d | 5844 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5845 | resiliency_test(); |
5846 | return 0; | |
5847 | } | |
5848 | ||
5849 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5850 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5851 | |
5852 | /* | |
5853 | * The /proc/slabinfo ABI | |
5854 | */ | |
158a9624 | 5855 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 5856 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5857 | { |
57ed3eda | 5858 | unsigned long nr_slabs = 0; |
205ab99d CL |
5859 | unsigned long nr_objs = 0; |
5860 | unsigned long nr_free = 0; | |
57ed3eda | 5861 | int node; |
fa45dc25 | 5862 | struct kmem_cache_node *n; |
57ed3eda | 5863 | |
fa45dc25 | 5864 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5865 | nr_slabs += node_nr_slabs(n); |
5866 | nr_objs += node_nr_objs(n); | |
205ab99d | 5867 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5868 | } |
5869 | ||
0d7561c6 GC |
5870 | sinfo->active_objs = nr_objs - nr_free; |
5871 | sinfo->num_objs = nr_objs; | |
5872 | sinfo->active_slabs = nr_slabs; | |
5873 | sinfo->num_slabs = nr_slabs; | |
5874 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5875 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5876 | } |
5877 | ||
0d7561c6 | 5878 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5879 | { |
7b3c3a50 AD |
5880 | } |
5881 | ||
b7454ad3 GC |
5882 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5883 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5884 | { |
b7454ad3 | 5885 | return -EIO; |
7b3c3a50 | 5886 | } |
158a9624 | 5887 | #endif /* CONFIG_SLABINFO */ |