]> Git Repo - linux.git/blame - mm/slub.c
mm/sl[au]b: generalize kmalloc subsystem
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
5cf909c5 29#include <linux/stackdepot.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b89fb5ef 32#include <linux/kfence.h>
b9049e23 33#include <linux/memory.h>
f8bd2258 34#include <linux/math64.h>
773ff60e 35#include <linux/fault-inject.h>
bfa71457 36#include <linux/stacktrace.h>
4de900b4 37#include <linux/prefetch.h>
2633d7a0 38#include <linux/memcontrol.h>
2482ddec 39#include <linux/random.h>
1f9f78b1 40#include <kunit/test.h>
553c0369 41#include <linux/sort.h>
81819f0f 42
64dd6849 43#include <linux/debugfs.h>
4a92379b
RK
44#include <trace/events/kmem.h>
45
072bb0aa
MG
46#include "internal.h"
47
81819f0f
CL
48/*
49 * Lock order:
18004c5d 50 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
c2092c12 53 * 4. slab_lock(slab) (Only on some arches or for debugging)
bd0e7491 54 * 5. object_map_lock (Only for debugging)
81819f0f 55 *
18004c5d 56 * slab_mutex
881db7fb 57 *
18004c5d 58 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 59 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
60 * Also synchronizes memory hotplug callbacks.
61 *
62 * slab_lock
63 *
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * spinlock.
881db7fb
CL
66 *
67 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 68 * have the ability to do a cmpxchg_double. It only protects:
c2092c12
VB
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
881db7fb 73 *
bd0e7491
VB
74 * Frozen slabs
75 *
881db7fb 76 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 77 * on any list except per cpu partial list. The processor that froze the
c2092c12 78 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
c2092c12 81 * slab's freelist.
81819f0f 82 *
bd0e7491
VB
83 * list_lock
84 *
81819f0f
CL
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
90 *
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
95 * the list lock.
bd0e7491
VB
96 *
97 * cpu_slab->lock local lock
98 *
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
106 *
107 * lockless fastpaths
108 *
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
114 * another cpu.
115 *
116 * irq, preemption, migration considerations
117 *
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
121 *
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
126 *
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
129 *
672bba3a
CL
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 132 * freed then the slab will show up again on the partial lists.
672bba3a
CL
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
81819f0f
CL
135 *
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
139 *
c2092c12 140 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
148 *
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
dfb4f096 152 * freelist that allows lockless access to
894b8788
CL
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
81819f0f 155 *
aed68148 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 157 * options set. This moves slab handling out of
894b8788 158 * the fast path and disables lockless freelists.
81819f0f
CL
159 */
160
25c00c50
VB
161/*
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164 */
165#ifndef CONFIG_PREEMPT_RT
166#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
168#else
169#define slub_get_cpu_ptr(var) \
170({ \
171 migrate_disable(); \
172 this_cpu_ptr(var); \
173})
174#define slub_put_cpu_ptr(var) \
175do { \
176 (void)(var); \
177 migrate_enable(); \
178} while (0)
179#endif
180
ca0cab65
VB
181#ifdef CONFIG_SLUB_DEBUG
182#ifdef CONFIG_SLUB_DEBUG_ON
183DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184#else
185DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186#endif
79270291 187#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 188
59052e89
VB
189static inline bool kmem_cache_debug(struct kmem_cache *s)
190{
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 192}
5577bd8a 193
117d54df 194void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 195{
59052e89 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
197 p += s->red_left_pad;
198
199 return p;
200}
201
345c905d
JK
202static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203{
204#ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
206#else
207 return false;
208#endif
209}
210
81819f0f
CL
211/*
212 * Issues still to be resolved:
213 *
81819f0f
CL
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215 *
81819f0f
CL
216 * - Variable sizing of the per node arrays
217 */
218
b789ef51
CL
219/* Enable to log cmpxchg failures */
220#undef SLUB_DEBUG_CMPXCHG
221
2086d26a 222/*
dc84207d 223 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
225 */
76be8950 226#define MIN_PARTIAL 5
e95eed57 227
2086d26a
CL
228/*
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 231 * sort the partial list by the number of objects in use.
2086d26a
CL
232 */
233#define MAX_PARTIAL 10
234
becfda68 235#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 236 SLAB_POISON | SLAB_STORE_USER)
672bba3a 237
149daaf3
LA
238/*
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
241 */
242#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 SLAB_TRACE)
244
245
fa5ec8a1 246/*
3de47213
DR
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
249 * metadata.
fa5ec8a1 250 */
3de47213 251#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 252
210b5c06
CG
253#define OO_SHIFT 16
254#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 255#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 256
81819f0f 257/* Internal SLUB flags */
d50112ed 258/* Poison object */
4fd0b46e 259#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 260/* Use cmpxchg_double */
4fd0b46e 261#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 262
02cbc874
CL
263/*
264 * Tracking user of a slab.
265 */
d6543e39 266#define TRACK_ADDRS_COUNT 16
02cbc874 267struct track {
ce71e27c 268 unsigned long addr; /* Called from address */
5cf909c5
OG
269#ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
d6543e39 271#endif
02cbc874
CL
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
275};
276
277enum track_item { TRACK_ALLOC, TRACK_FREE };
278
ab4d5ed5 279#ifdef CONFIG_SYSFS
81819f0f
CL
280static int sysfs_slab_add(struct kmem_cache *);
281static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 282#else
0c710013
CL
283static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 { return 0; }
81819f0f
CL
286#endif
287
64dd6849
FM
288#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289static void debugfs_slab_add(struct kmem_cache *);
290#else
291static inline void debugfs_slab_add(struct kmem_cache *s) { }
292#endif
293
4fdccdfb 294static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
295{
296#ifdef CONFIG_SLUB_STATS
88da03a6
CL
297 /*
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
300 */
301 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
302#endif
303}
304
7e1fa93d
VB
305/*
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
310 */
311static nodemask_t slab_nodes;
312
81819f0f
CL
313/********************************************************************
314 * Core slab cache functions
315 *******************************************************************/
316
2482ddec
KC
317/*
318 * Returns freelist pointer (ptr). With hardening, this is obfuscated
319 * with an XOR of the address where the pointer is held and a per-cache
320 * random number.
321 */
322static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 unsigned long ptr_addr)
324{
325#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 326 /*
aa1ef4d7 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
328 * Normally, this doesn't cause any issues, as both set_freepointer()
329 * and get_freepointer() are called with a pointer with the same tag.
330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 * example, when __free_slub() iterates over objects in a cache, it
332 * passes untagged pointers to check_object(). check_object() in turns
333 * calls get_freepointer() with an untagged pointer, which causes the
334 * freepointer to be restored incorrectly.
335 */
336 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
338#else
339 return ptr;
340#endif
341}
342
343/* Returns the freelist pointer recorded at location ptr_addr. */
344static inline void *freelist_dereference(const struct kmem_cache *s,
345 void *ptr_addr)
346{
347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 (unsigned long)ptr_addr);
349}
350
7656c72b
CL
351static inline void *get_freepointer(struct kmem_cache *s, void *object)
352{
aa1ef4d7 353 object = kasan_reset_tag(object);
2482ddec 354 return freelist_dereference(s, object + s->offset);
7656c72b
CL
355}
356
0ad9500e
ED
357static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358{
04b4b006 359 prefetchw(object + s->offset);
0ad9500e
ED
360}
361
1393d9a1
CL
362static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363{
2482ddec 364 unsigned long freepointer_addr;
1393d9a1
CL
365 void *p;
366
8e57f8ac 367 if (!debug_pagealloc_enabled_static())
922d566c
JK
368 return get_freepointer(s, object);
369
f70b0049 370 object = kasan_reset_tag(object);
2482ddec 371 freepointer_addr = (unsigned long)object + s->offset;
fe557319 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 373 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
374}
375
7656c72b
CL
376static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377{
2482ddec
KC
378 unsigned long freeptr_addr = (unsigned long)object + s->offset;
379
ce6fa91b
AP
380#ifdef CONFIG_SLAB_FREELIST_HARDENED
381 BUG_ON(object == fp); /* naive detection of double free or corruption */
382#endif
383
aa1ef4d7 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
386}
387
388/* Loop over all objects in a slab */
224a88be 389#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
390 for (__p = fixup_red_left(__s, __addr); \
391 __p < (__addr) + (__objects) * (__s)->size; \
392 __p += (__s)->size)
7656c72b 393
9736d2a9 394static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 395{
9736d2a9 396 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
397}
398
19af27af 399static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 400 unsigned int size)
834f3d11
CL
401{
402 struct kmem_cache_order_objects x = {
9736d2a9 403 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
404 };
405
406 return x;
407}
408
19af27af 409static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 410{
210b5c06 411 return x.x >> OO_SHIFT;
834f3d11
CL
412}
413
19af27af 414static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 415{
210b5c06 416 return x.x & OO_MASK;
834f3d11
CL
417}
418
b47291ef
VB
419#ifdef CONFIG_SLUB_CPU_PARTIAL
420static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421{
bb192ed9 422 unsigned int nr_slabs;
b47291ef
VB
423
424 s->cpu_partial = nr_objects;
425
426 /*
427 * We take the number of objects but actually limit the number of
c2092c12
VB
428 * slabs on the per cpu partial list, in order to limit excessive
429 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
430 * be half-full.
431 */
bb192ed9
VB
432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
434}
435#else
436static inline void
437slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438{
439}
440#endif /* CONFIG_SLUB_CPU_PARTIAL */
441
881db7fb
CL
442/*
443 * Per slab locking using the pagelock
444 */
0393895b 445static __always_inline void __slab_lock(struct slab *slab)
881db7fb 446{
0393895b
VB
447 struct page *page = slab_page(slab);
448
48c935ad 449 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
450 bit_spin_lock(PG_locked, &page->flags);
451}
452
0393895b 453static __always_inline void __slab_unlock(struct slab *slab)
881db7fb 454{
0393895b
VB
455 struct page *page = slab_page(slab);
456
48c935ad 457 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
458 __bit_spin_unlock(PG_locked, &page->flags);
459}
460
bb192ed9 461static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
a2b4ae8b
VB
462{
463 if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 local_irq_save(*flags);
bb192ed9 465 __slab_lock(slab);
a2b4ae8b
VB
466}
467
bb192ed9 468static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
a2b4ae8b 469{
bb192ed9 470 __slab_unlock(slab);
a2b4ae8b
VB
471 if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 local_irq_restore(*flags);
473}
474
475/*
476 * Interrupts must be disabled (for the fallback code to work right), typically
477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478 * so we disable interrupts as part of slab_[un]lock().
479 */
bb192ed9 480static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
481 void *freelist_old, unsigned long counters_old,
482 void *freelist_new, unsigned long counters_new,
483 const char *n)
484{
a2b4ae8b
VB
485 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 lockdep_assert_irqs_disabled();
2565409f
HC
487#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 489 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 490 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
491 freelist_old, counters_old,
492 freelist_new, counters_new))
6f6528a1 493 return true;
1d07171c
CL
494 } else
495#endif
496 {
a2b4ae8b
VB
497 /* init to 0 to prevent spurious warnings */
498 unsigned long flags = 0;
499
bb192ed9
VB
500 slab_lock(slab, &flags);
501 if (slab->freelist == freelist_old &&
502 slab->counters == counters_old) {
503 slab->freelist = freelist_new;
504 slab->counters = counters_new;
505 slab_unlock(slab, &flags);
6f6528a1 506 return true;
1d07171c 507 }
bb192ed9 508 slab_unlock(slab, &flags);
1d07171c
CL
509 }
510
511 cpu_relax();
512 stat(s, CMPXCHG_DOUBLE_FAIL);
513
514#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 515 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
516#endif
517
6f6528a1 518 return false;
1d07171c
CL
519}
520
bb192ed9 521static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new,
524 const char *n)
525{
2565409f
HC
526#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 528 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 529 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
530 freelist_old, counters_old,
531 freelist_new, counters_new))
6f6528a1 532 return true;
b789ef51
CL
533 } else
534#endif
535 {
1d07171c
CL
536 unsigned long flags;
537
538 local_irq_save(flags);
bb192ed9
VB
539 __slab_lock(slab);
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
544 __slab_unlock(slab);
1d07171c 545 local_irq_restore(flags);
6f6528a1 546 return true;
b789ef51 547 }
bb192ed9 548 __slab_unlock(slab);
1d07171c 549 local_irq_restore(flags);
b789ef51
CL
550 }
551
552 cpu_relax();
553 stat(s, CMPXCHG_DOUBLE_FAIL);
554
555#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 556 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
557#endif
558
6f6528a1 559 return false;
b789ef51
CL
560}
561
41ecc55b 562#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 563static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 564static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 565
b3fd64e1 566static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 567 struct slab *slab)
b3fd64e1 568{
bb192ed9 569 void *addr = slab_address(slab);
b3fd64e1
VB
570 void *p;
571
bb192ed9 572 bitmap_zero(obj_map, slab->objects);
b3fd64e1 573
bb192ed9 574 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
575 set_bit(__obj_to_index(s, addr, p), obj_map);
576}
577
1f9f78b1
OG
578#if IS_ENABLED(CONFIG_KUNIT)
579static bool slab_add_kunit_errors(void)
580{
581 struct kunit_resource *resource;
582
583 if (likely(!current->kunit_test))
584 return false;
585
586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 if (!resource)
588 return false;
589
590 (*(int *)resource->data)++;
591 kunit_put_resource(resource);
592 return true;
593}
594#else
595static inline bool slab_add_kunit_errors(void) { return false; }
596#endif
597
5f80b13a 598/*
c2092c12 599 * Determine a map of objects in use in a slab.
5f80b13a 600 *
c2092c12 601 * Node listlock must be held to guarantee that the slab does
5f80b13a
CL
602 * not vanish from under us.
603 */
bb192ed9 604static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
31364c2e 605 __acquires(&object_map_lock)
5f80b13a 606{
90e9f6a6
YZ
607 VM_BUG_ON(!irqs_disabled());
608
94ef0304 609 raw_spin_lock(&object_map_lock);
90e9f6a6 610
bb192ed9 611 __fill_map(object_map, s, slab);
90e9f6a6
YZ
612
613 return object_map;
614}
615
81aba9e0 616static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
617{
618 VM_BUG_ON(map != object_map);
94ef0304 619 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
620}
621
870b1fbb 622static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
623{
624 if (s->flags & SLAB_RED_ZONE)
625 return s->size - s->red_left_pad;
626
627 return s->size;
628}
629
630static inline void *restore_red_left(struct kmem_cache *s, void *p)
631{
632 if (s->flags & SLAB_RED_ZONE)
633 p -= s->red_left_pad;
634
635 return p;
636}
637
41ecc55b
CL
638/*
639 * Debug settings:
640 */
89d3c87e 641#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 642static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 643#else
d50112ed 644static slab_flags_t slub_debug;
f0630fff 645#endif
41ecc55b 646
e17f1dfb 647static char *slub_debug_string;
fa5ec8a1 648static int disable_higher_order_debug;
41ecc55b 649
a79316c6
AR
650/*
651 * slub is about to manipulate internal object metadata. This memory lies
652 * outside the range of the allocated object, so accessing it would normally
653 * be reported by kasan as a bounds error. metadata_access_enable() is used
654 * to tell kasan that these accesses are OK.
655 */
656static inline void metadata_access_enable(void)
657{
658 kasan_disable_current();
659}
660
661static inline void metadata_access_disable(void)
662{
663 kasan_enable_current();
664}
665
81819f0f
CL
666/*
667 * Object debugging
668 */
d86bd1be
JK
669
670/* Verify that a pointer has an address that is valid within a slab page */
671static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 672 struct slab *slab, void *object)
d86bd1be
JK
673{
674 void *base;
675
676 if (!object)
677 return 1;
678
bb192ed9 679 base = slab_address(slab);
338cfaad 680 object = kasan_reset_tag(object);
d86bd1be 681 object = restore_red_left(s, object);
bb192ed9 682 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
683 (object - base) % s->size) {
684 return 0;
685 }
686
687 return 1;
688}
689
aa2efd5e
DT
690static void print_section(char *level, char *text, u8 *addr,
691 unsigned int length)
81819f0f 692{
a79316c6 693 metadata_access_enable();
340caf17
KYL
694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 696 metadata_access_disable();
81819f0f
CL
697}
698
cbfc35a4
WL
699/*
700 * See comment in calculate_sizes().
701 */
702static inline bool freeptr_outside_object(struct kmem_cache *s)
703{
704 return s->offset >= s->inuse;
705}
706
707/*
708 * Return offset of the end of info block which is inuse + free pointer if
709 * not overlapping with object.
710 */
711static inline unsigned int get_info_end(struct kmem_cache *s)
712{
713 if (freeptr_outside_object(s))
714 return s->inuse + sizeof(void *);
715 else
716 return s->inuse;
717}
718
81819f0f
CL
719static struct track *get_track(struct kmem_cache *s, void *object,
720 enum track_item alloc)
721{
722 struct track *p;
723
cbfc35a4 724 p = object + get_info_end(s);
81819f0f 725
aa1ef4d7 726 return kasan_reset_tag(p + alloc);
81819f0f
CL
727}
728
5cf909c5 729#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
730static noinline depot_stack_handle_t set_track_prepare(void)
731{
732 depot_stack_handle_t handle;
5cf909c5 733 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 734 unsigned int nr_entries;
ae14c63a 735
5cf909c5 736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738
739 return handle;
740}
741#else
742static inline depot_stack_handle_t set_track_prepare(void)
743{
744 return 0;
745}
d6543e39 746#endif
5cf909c5 747
c4cf6785
SAS
748static void set_track_update(struct kmem_cache *s, void *object,
749 enum track_item alloc, unsigned long addr,
750 depot_stack_handle_t handle)
751{
752 struct track *p = get_track(s, object, alloc);
753
754#ifdef CONFIG_STACKDEPOT
755 p->handle = handle;
756#endif
0cd1a029
VB
757 p->addr = addr;
758 p->cpu = smp_processor_id();
759 p->pid = current->pid;
760 p->when = jiffies;
81819f0f
CL
761}
762
c4cf6785
SAS
763static __always_inline void set_track(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr)
765{
766 depot_stack_handle_t handle = set_track_prepare();
767
768 set_track_update(s, object, alloc, addr, handle);
769}
770
81819f0f
CL
771static void init_tracking(struct kmem_cache *s, void *object)
772{
0cd1a029
VB
773 struct track *p;
774
24922684
CL
775 if (!(s->flags & SLAB_STORE_USER))
776 return;
777
0cd1a029
VB
778 p = get_track(s, object, TRACK_ALLOC);
779 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
780}
781
86609d33 782static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 783{
5cf909c5
OG
784 depot_stack_handle_t handle __maybe_unused;
785
81819f0f
CL
786 if (!t->addr)
787 return;
788
96b94abc 789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
791#ifdef CONFIG_STACKDEPOT
792 handle = READ_ONCE(t->handle);
793 if (handle)
794 stack_depot_print(handle);
795 else
796 pr_err("object allocation/free stack trace missing\n");
d6543e39 797#endif
24922684
CL
798}
799
e42f174e 800void print_tracking(struct kmem_cache *s, void *object)
24922684 801{
86609d33 802 unsigned long pr_time = jiffies;
24922684
CL
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
86609d33
CP
806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
808}
809
fb012e27 810static void print_slab_info(const struct slab *slab)
24922684 811{
fb012e27 812 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 813
fb012e27
MWO
814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 slab, slab->objects, slab->inuse, slab->freelist,
816 folio_flags(folio, 0));
24922684
CL
817}
818
819static void slab_bug(struct kmem_cache *s, char *fmt, ...)
820{
ecc42fbe 821 struct va_format vaf;
24922684 822 va_list args;
24922684
CL
823
824 va_start(args, fmt);
ecc42fbe
FF
825 vaf.fmt = fmt;
826 vaf.va = &args;
f9f58285 827 pr_err("=============================================================================\n");
ecc42fbe 828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 829 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 830 va_end(args);
81819f0f
CL
831}
832
582d1212 833__printf(2, 3)
24922684
CL
834static void slab_fix(struct kmem_cache *s, char *fmt, ...)
835{
ecc42fbe 836 struct va_format vaf;
24922684 837 va_list args;
24922684 838
1f9f78b1
OG
839 if (slab_add_kunit_errors())
840 return;
841
24922684 842 va_start(args, fmt);
ecc42fbe
FF
843 vaf.fmt = fmt;
844 vaf.va = &args;
845 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 846 va_end(args);
24922684
CL
847}
848
bb192ed9 849static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
850{
851 unsigned int off; /* Offset of last byte */
bb192ed9 852 u8 *addr = slab_address(slab);
24922684
CL
853
854 print_tracking(s, p);
855
bb192ed9 856 print_slab_info(slab);
24922684 857
96b94abc 858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 859 p, p - addr, get_freepointer(s, p));
24922684 860
d86bd1be 861 if (s->flags & SLAB_RED_ZONE)
8669dbab 862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 863 s->red_left_pad);
d86bd1be 864 else if (p > addr + 16)
aa2efd5e 865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 866
8669dbab 867 print_section(KERN_ERR, "Object ", p,
1b473f29 868 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 869 if (s->flags & SLAB_RED_ZONE)
8669dbab 870 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 871 s->inuse - s->object_size);
81819f0f 872
cbfc35a4 873 off = get_info_end(s);
81819f0f 874
24922684 875 if (s->flags & SLAB_STORE_USER)
81819f0f 876 off += 2 * sizeof(struct track);
81819f0f 877
80a9201a
AP
878 off += kasan_metadata_size(s);
879
d86bd1be 880 if (off != size_from_object(s))
81819f0f 881 /* Beginning of the filler is the free pointer */
8669dbab 882 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 883 size_from_object(s) - off);
24922684
CL
884
885 dump_stack();
81819f0f
CL
886}
887
bb192ed9 888static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
889 u8 *object, char *reason)
890{
1f9f78b1
OG
891 if (slab_add_kunit_errors())
892 return;
893
3dc50637 894 slab_bug(s, "%s", reason);
bb192ed9 895 print_trailer(s, slab, object);
65ebdeef 896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
897}
898
bb192ed9 899static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
900 void **freelist, void *nextfree)
901{
902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
903 !check_valid_pointer(s, slab, nextfree) && freelist) {
904 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
905 *freelist = NULL;
906 slab_fix(s, "Isolate corrupted freechain");
907 return true;
908 }
909
910 return false;
911}
912
bb192ed9 913static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 914 const char *fmt, ...)
81819f0f
CL
915{
916 va_list args;
917 char buf[100];
918
1f9f78b1
OG
919 if (slab_add_kunit_errors())
920 return;
921
24922684
CL
922 va_start(args, fmt);
923 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 924 va_end(args);
3dc50637 925 slab_bug(s, "%s", buf);
bb192ed9 926 print_slab_info(slab);
81819f0f 927 dump_stack();
65ebdeef 928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
929}
930
f7cb1933 931static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 932{
aa1ef4d7 933 u8 *p = kasan_reset_tag(object);
81819f0f 934
d86bd1be
JK
935 if (s->flags & SLAB_RED_ZONE)
936 memset(p - s->red_left_pad, val, s->red_left_pad);
937
81819f0f 938 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
939 memset(p, POISON_FREE, s->object_size - 1);
940 p[s->object_size - 1] = POISON_END;
81819f0f
CL
941 }
942
943 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 944 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
945}
946
24922684
CL
947static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
948 void *from, void *to)
949{
582d1212 950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
951 memset(from, data, to - from);
952}
953
bb192ed9 954static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 955 u8 *object, char *what,
06428780 956 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
957{
958 u8 *fault;
959 u8 *end;
bb192ed9 960 u8 *addr = slab_address(slab);
24922684 961
a79316c6 962 metadata_access_enable();
aa1ef4d7 963 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 964 metadata_access_disable();
24922684
CL
965 if (!fault)
966 return 1;
967
968 end = start + bytes;
969 while (end > fault && end[-1] == value)
970 end--;
971
1f9f78b1
OG
972 if (slab_add_kunit_errors())
973 goto skip_bug_print;
974
24922684 975 slab_bug(s, "%s overwritten", what);
96b94abc 976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
977 fault, end - 1, fault - addr,
978 fault[0], value);
bb192ed9 979 print_trailer(s, slab, object);
65ebdeef 980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 981
1f9f78b1 982skip_bug_print:
24922684
CL
983 restore_bytes(s, what, value, fault, end);
984 return 0;
81819f0f
CL
985}
986
81819f0f
CL
987/*
988 * Object layout:
989 *
990 * object address
991 * Bytes of the object to be managed.
992 * If the freepointer may overlay the object then the free
cbfc35a4 993 * pointer is at the middle of the object.
672bba3a 994 *
81819f0f
CL
995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
996 * 0xa5 (POISON_END)
997 *
3b0efdfa 998 * object + s->object_size
81819f0f 999 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1000 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1001 * object_size == inuse.
672bba3a 1002 *
81819f0f
CL
1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1004 * 0xcc (RED_ACTIVE) for objects in use.
1005 *
1006 * object + s->inuse
672bba3a
CL
1007 * Meta data starts here.
1008 *
81819f0f
CL
1009 * A. Free pointer (if we cannot overwrite object on free)
1010 * B. Tracking data for SLAB_STORE_USER
dc84207d 1011 * C. Padding to reach required alignment boundary or at minimum
6446faa2 1012 * one word if debugging is on to be able to detect writes
672bba3a
CL
1013 * before the word boundary.
1014 *
1015 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1016 *
1017 * object + s->size
672bba3a 1018 * Nothing is used beyond s->size.
81819f0f 1019 *
3b0efdfa 1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1021 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1022 * may be used with merged slabcaches.
1023 */
1024
bb192ed9 1025static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1026{
cbfc35a4 1027 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
1028
1029 if (s->flags & SLAB_STORE_USER)
1030 /* We also have user information there */
1031 off += 2 * sizeof(struct track);
1032
80a9201a
AP
1033 off += kasan_metadata_size(s);
1034
d86bd1be 1035 if (size_from_object(s) == off)
81819f0f
CL
1036 return 1;
1037
bb192ed9 1038 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1039 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1040}
1041
39b26464 1042/* Check the pad bytes at the end of a slab page */
a204e6d6 1043static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1044{
24922684
CL
1045 u8 *start;
1046 u8 *fault;
1047 u8 *end;
5d682681 1048 u8 *pad;
24922684
CL
1049 int length;
1050 int remainder;
81819f0f
CL
1051
1052 if (!(s->flags & SLAB_POISON))
a204e6d6 1053 return;
81819f0f 1054
bb192ed9
VB
1055 start = slab_address(slab);
1056 length = slab_size(slab);
39b26464
CL
1057 end = start + length;
1058 remainder = length % s->size;
81819f0f 1059 if (!remainder)
a204e6d6 1060 return;
81819f0f 1061
5d682681 1062 pad = end - remainder;
a79316c6 1063 metadata_access_enable();
aa1ef4d7 1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1065 metadata_access_disable();
24922684 1066 if (!fault)
a204e6d6 1067 return;
24922684
CL
1068 while (end > fault && end[-1] == POISON_INUSE)
1069 end--;
1070
bb192ed9 1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1072 fault, end - 1, fault - start);
5d682681 1073 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1074
5d682681 1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1076}
1077
bb192ed9 1078static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1079 void *object, u8 val)
81819f0f
CL
1080{
1081 u8 *p = object;
3b0efdfa 1082 u8 *endobject = object + s->object_size;
81819f0f
CL
1083
1084 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1086 object - s->red_left_pad, val, s->red_left_pad))
1087 return 0;
1088
bb192ed9 1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1090 endobject, val, s->inuse - s->object_size))
81819f0f 1091 return 0;
81819f0f 1092 } else {
3b0efdfa 1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1094 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1095 endobject, POISON_INUSE,
1096 s->inuse - s->object_size);
3adbefee 1097 }
81819f0f
CL
1098 }
1099
1100 if (s->flags & SLAB_POISON) {
f7cb1933 1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1102 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1103 POISON_FREE, s->object_size - 1) ||
bb192ed9 1104 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1105 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1106 return 0;
81819f0f
CL
1107 /*
1108 * check_pad_bytes cleans up on its own.
1109 */
bb192ed9 1110 check_pad_bytes(s, slab, p);
81819f0f
CL
1111 }
1112
cbfc35a4 1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1114 /*
1115 * Object and freepointer overlap. Cannot check
1116 * freepointer while object is allocated.
1117 */
1118 return 1;
1119
1120 /* Check free pointer validity */
bb192ed9
VB
1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1122 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1123 /*
9f6c708e 1124 * No choice but to zap it and thus lose the remainder
81819f0f 1125 * of the free objects in this slab. May cause
672bba3a 1126 * another error because the object count is now wrong.
81819f0f 1127 */
a973e9dd 1128 set_freepointer(s, p, NULL);
81819f0f
CL
1129 return 0;
1130 }
1131 return 1;
1132}
1133
bb192ed9 1134static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1135{
39b26464
CL
1136 int maxobj;
1137
bb192ed9
VB
1138 if (!folio_test_slab(slab_folio(slab))) {
1139 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1140 return 0;
1141 }
39b26464 1142
bb192ed9
VB
1143 maxobj = order_objects(slab_order(slab), s->size);
1144 if (slab->objects > maxobj) {
1145 slab_err(s, slab, "objects %u > max %u",
1146 slab->objects, maxobj);
39b26464
CL
1147 return 0;
1148 }
bb192ed9
VB
1149 if (slab->inuse > slab->objects) {
1150 slab_err(s, slab, "inuse %u > max %u",
1151 slab->inuse, slab->objects);
81819f0f
CL
1152 return 0;
1153 }
1154 /* Slab_pad_check fixes things up after itself */
bb192ed9 1155 slab_pad_check(s, slab);
81819f0f
CL
1156 return 1;
1157}
1158
1159/*
c2092c12 1160 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1161 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1162 */
bb192ed9 1163static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1164{
1165 int nr = 0;
881db7fb 1166 void *fp;
81819f0f 1167 void *object = NULL;
f6edde9c 1168 int max_objects;
81819f0f 1169
bb192ed9
VB
1170 fp = slab->freelist;
1171 while (fp && nr <= slab->objects) {
81819f0f
CL
1172 if (fp == search)
1173 return 1;
bb192ed9 1174 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1175 if (object) {
bb192ed9 1176 object_err(s, slab, object,
81819f0f 1177 "Freechain corrupt");
a973e9dd 1178 set_freepointer(s, object, NULL);
81819f0f 1179 } else {
bb192ed9
VB
1180 slab_err(s, slab, "Freepointer corrupt");
1181 slab->freelist = NULL;
1182 slab->inuse = slab->objects;
24922684 1183 slab_fix(s, "Freelist cleared");
81819f0f
CL
1184 return 0;
1185 }
1186 break;
1187 }
1188 object = fp;
1189 fp = get_freepointer(s, object);
1190 nr++;
1191 }
1192
bb192ed9 1193 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1194 if (max_objects > MAX_OBJS_PER_PAGE)
1195 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1196
bb192ed9
VB
1197 if (slab->objects != max_objects) {
1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1199 slab->objects, max_objects);
1200 slab->objects = max_objects;
582d1212 1201 slab_fix(s, "Number of objects adjusted");
224a88be 1202 }
bb192ed9
VB
1203 if (slab->inuse != slab->objects - nr) {
1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1205 slab->inuse, slab->objects - nr);
1206 slab->inuse = slab->objects - nr;
582d1212 1207 slab_fix(s, "Object count adjusted");
81819f0f
CL
1208 }
1209 return search == NULL;
1210}
1211
bb192ed9 1212static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1213 int alloc)
3ec09742
CL
1214{
1215 if (s->flags & SLAB_TRACE) {
f9f58285 1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1217 s->name,
1218 alloc ? "alloc" : "free",
bb192ed9
VB
1219 object, slab->inuse,
1220 slab->freelist);
3ec09742
CL
1221
1222 if (!alloc)
aa2efd5e 1223 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1224 s->object_size);
3ec09742
CL
1225
1226 dump_stack();
1227 }
1228}
1229
643b1138 1230/*
672bba3a 1231 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1232 */
5cc6eee8 1233static void add_full(struct kmem_cache *s,
bb192ed9 1234 struct kmem_cache_node *n, struct slab *slab)
643b1138 1235{
5cc6eee8
CL
1236 if (!(s->flags & SLAB_STORE_USER))
1237 return;
1238
255d0884 1239 lockdep_assert_held(&n->list_lock);
bb192ed9 1240 list_add(&slab->slab_list, &n->full);
643b1138
CL
1241}
1242
bb192ed9 1243static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1244{
643b1138
CL
1245 if (!(s->flags & SLAB_STORE_USER))
1246 return;
1247
255d0884 1248 lockdep_assert_held(&n->list_lock);
bb192ed9 1249 list_del(&slab->slab_list);
643b1138
CL
1250}
1251
0f389ec6
CL
1252/* Tracking of the number of slabs for debugging purposes */
1253static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1254{
1255 struct kmem_cache_node *n = get_node(s, node);
1256
1257 return atomic_long_read(&n->nr_slabs);
1258}
1259
26c02cf0
AB
1260static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1261{
1262 return atomic_long_read(&n->nr_slabs);
1263}
1264
205ab99d 1265static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1266{
1267 struct kmem_cache_node *n = get_node(s, node);
1268
1269 /*
1270 * May be called early in order to allocate a slab for the
1271 * kmem_cache_node structure. Solve the chicken-egg
1272 * dilemma by deferring the increment of the count during
1273 * bootstrap (see early_kmem_cache_node_alloc).
1274 */
338b2642 1275 if (likely(n)) {
0f389ec6 1276 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1277 atomic_long_add(objects, &n->total_objects);
1278 }
0f389ec6 1279}
205ab99d 1280static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1281{
1282 struct kmem_cache_node *n = get_node(s, node);
1283
1284 atomic_long_dec(&n->nr_slabs);
205ab99d 1285 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1286}
1287
1288/* Object debug checks for alloc/free paths */
c0f81a94 1289static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1290{
8fc8d666 1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1292 return;
1293
f7cb1933 1294 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1295 init_tracking(s, object);
1296}
1297
a50b854e 1298static
bb192ed9 1299void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1300{
8fc8d666 1301 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1302 return;
1303
1304 metadata_access_enable();
bb192ed9 1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1306 metadata_access_disable();
1307}
1308
becfda68 1309static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1310 struct slab *slab, void *object)
81819f0f 1311{
bb192ed9 1312 if (!check_slab(s, slab))
becfda68 1313 return 0;
81819f0f 1314
bb192ed9
VB
1315 if (!check_valid_pointer(s, slab, object)) {
1316 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1317 return 0;
81819f0f
CL
1318 }
1319
bb192ed9 1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1321 return 0;
1322
1323 return 1;
1324}
1325
1326static noinline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1327 struct slab *slab,
becfda68
LA
1328 void *object, unsigned long addr)
1329{
1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1331 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1332 goto bad;
1333 }
81819f0f 1334
3ec09742
CL
1335 /* Success perform special debug activities for allocs */
1336 if (s->flags & SLAB_STORE_USER)
1337 set_track(s, object, TRACK_ALLOC, addr);
bb192ed9 1338 trace(s, slab, object, 1);
f7cb1933 1339 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1340 return 1;
3ec09742 1341
81819f0f 1342bad:
bb192ed9 1343 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1344 /*
1345 * If this is a slab page then lets do the best we can
1346 * to avoid issues in the future. Marking all objects
672bba3a 1347 * as used avoids touching the remaining objects.
81819f0f 1348 */
24922684 1349 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1350 slab->inuse = slab->objects;
1351 slab->freelist = NULL;
81819f0f
CL
1352 }
1353 return 0;
1354}
1355
becfda68 1356static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1357 struct slab *slab, void *object, unsigned long addr)
81819f0f 1358{
bb192ed9
VB
1359 if (!check_valid_pointer(s, slab, object)) {
1360 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1361 return 0;
81819f0f
CL
1362 }
1363
bb192ed9
VB
1364 if (on_freelist(s, slab, object)) {
1365 object_err(s, slab, object, "Object already free");
becfda68 1366 return 0;
81819f0f
CL
1367 }
1368
bb192ed9 1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1370 return 0;
81819f0f 1371
bb192ed9
VB
1372 if (unlikely(s != slab->slab_cache)) {
1373 if (!folio_test_slab(slab_folio(slab))) {
1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1375 object);
bb192ed9 1376 } else if (!slab->slab_cache) {
f9f58285
FF
1377 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1378 object);
70d71228 1379 dump_stack();
06428780 1380 } else
bb192ed9 1381 object_err(s, slab, object,
24922684 1382 "page slab pointer corrupt.");
becfda68
LA
1383 return 0;
1384 }
1385 return 1;
1386}
1387
1388/* Supports checking bulk free of a constructed freelist */
1389static noinline int free_debug_processing(
bb192ed9 1390 struct kmem_cache *s, struct slab *slab,
becfda68
LA
1391 void *head, void *tail, int bulk_cnt,
1392 unsigned long addr)
1393{
bb192ed9 1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
becfda68
LA
1395 void *object = head;
1396 int cnt = 0;
a2b4ae8b 1397 unsigned long flags, flags2;
becfda68 1398 int ret = 0;
c4cf6785
SAS
1399 depot_stack_handle_t handle = 0;
1400
1401 if (s->flags & SLAB_STORE_USER)
1402 handle = set_track_prepare();
becfda68
LA
1403
1404 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 1405 slab_lock(slab, &flags2);
becfda68
LA
1406
1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1408 if (!check_slab(s, slab))
becfda68
LA
1409 goto out;
1410 }
1411
1412next_object:
1413 cnt++;
1414
1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1416 if (!free_consistency_checks(s, slab, object, addr))
becfda68 1417 goto out;
81819f0f 1418 }
3ec09742 1419
3ec09742 1420 if (s->flags & SLAB_STORE_USER)
c4cf6785 1421 set_track_update(s, object, TRACK_FREE, addr, handle);
bb192ed9 1422 trace(s, slab, object, 0);
81084651 1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1424 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1425
1426 /* Reached end of constructed freelist yet? */
1427 if (object != tail) {
1428 object = get_freepointer(s, object);
1429 goto next_object;
1430 }
804aa132
LA
1431 ret = 1;
1432
5c2e4bbb 1433out:
81084651 1434 if (cnt != bulk_cnt)
bb192ed9 1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
81084651
JDB
1436 bulk_cnt, cnt);
1437
bb192ed9 1438 slab_unlock(slab, &flags2);
282acb43 1439 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1440 if (!ret)
1441 slab_fix(s, "Object at 0x%p not freed", object);
1442 return ret;
81819f0f
CL
1443}
1444
e17f1dfb
VB
1445/*
1446 * Parse a block of slub_debug options. Blocks are delimited by ';'
1447 *
1448 * @str: start of block
1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1450 * @slabs: return start of list of slabs, or NULL when there's no list
1451 * @init: assume this is initial parsing and not per-kmem-create parsing
1452 *
1453 * returns the start of next block if there's any, or NULL
1454 */
1455static char *
1456parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1457{
e17f1dfb 1458 bool higher_order_disable = false;
f0630fff 1459
e17f1dfb
VB
1460 /* Skip any completely empty blocks */
1461 while (*str && *str == ';')
1462 str++;
1463
1464 if (*str == ',') {
f0630fff
CL
1465 /*
1466 * No options but restriction on slabs. This means full
1467 * debugging for slabs matching a pattern.
1468 */
e17f1dfb 1469 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1470 goto check_slabs;
e17f1dfb
VB
1471 }
1472 *flags = 0;
f0630fff 1473
e17f1dfb
VB
1474 /* Determine which debug features should be switched on */
1475 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1476 switch (tolower(*str)) {
e17f1dfb
VB
1477 case '-':
1478 *flags = 0;
1479 break;
f0630fff 1480 case 'f':
e17f1dfb 1481 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1482 break;
1483 case 'z':
e17f1dfb 1484 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1485 break;
1486 case 'p':
e17f1dfb 1487 *flags |= SLAB_POISON;
f0630fff
CL
1488 break;
1489 case 'u':
e17f1dfb 1490 *flags |= SLAB_STORE_USER;
f0630fff
CL
1491 break;
1492 case 't':
e17f1dfb 1493 *flags |= SLAB_TRACE;
f0630fff 1494 break;
4c13dd3b 1495 case 'a':
e17f1dfb 1496 *flags |= SLAB_FAILSLAB;
4c13dd3b 1497 break;
08303a73
CA
1498 case 'o':
1499 /*
1500 * Avoid enabling debugging on caches if its minimum
1501 * order would increase as a result.
1502 */
e17f1dfb 1503 higher_order_disable = true;
08303a73 1504 break;
f0630fff 1505 default:
e17f1dfb
VB
1506 if (init)
1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1508 }
41ecc55b 1509 }
f0630fff 1510check_slabs:
41ecc55b 1511 if (*str == ',')
e17f1dfb
VB
1512 *slabs = ++str;
1513 else
1514 *slabs = NULL;
1515
1516 /* Skip over the slab list */
1517 while (*str && *str != ';')
1518 str++;
1519
1520 /* Skip any completely empty blocks */
1521 while (*str && *str == ';')
1522 str++;
1523
1524 if (init && higher_order_disable)
1525 disable_higher_order_debug = 1;
1526
1527 if (*str)
1528 return str;
1529 else
1530 return NULL;
1531}
1532
1533static int __init setup_slub_debug(char *str)
1534{
1535 slab_flags_t flags;
a7f1d485 1536 slab_flags_t global_flags;
e17f1dfb
VB
1537 char *saved_str;
1538 char *slab_list;
1539 bool global_slub_debug_changed = false;
1540 bool slab_list_specified = false;
1541
a7f1d485 1542 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1543 if (*str++ != '=' || !*str)
1544 /*
1545 * No options specified. Switch on full debugging.
1546 */
1547 goto out;
1548
1549 saved_str = str;
1550 while (str) {
1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1552
1553 if (!slab_list) {
a7f1d485 1554 global_flags = flags;
e17f1dfb
VB
1555 global_slub_debug_changed = true;
1556 } else {
1557 slab_list_specified = true;
5cf909c5
OG
1558 if (flags & SLAB_STORE_USER)
1559 stack_depot_want_early_init();
e17f1dfb
VB
1560 }
1561 }
1562
1563 /*
1564 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1565 * slabs means debugging is only changed for those slabs, so the global
1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1568 * long as there is no option specifying flags without a slab list.
1569 */
1570 if (slab_list_specified) {
1571 if (!global_slub_debug_changed)
a7f1d485 1572 global_flags = slub_debug;
e17f1dfb
VB
1573 slub_debug_string = saved_str;
1574 }
f0630fff 1575out:
a7f1d485 1576 slub_debug = global_flags;
5cf909c5
OG
1577 if (slub_debug & SLAB_STORE_USER)
1578 stack_depot_want_early_init();
ca0cab65
VB
1579 if (slub_debug != 0 || slub_debug_string)
1580 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1581 else
1582 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1583 if ((static_branch_unlikely(&init_on_alloc) ||
1584 static_branch_unlikely(&init_on_free)) &&
1585 (slub_debug & SLAB_POISON))
1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1587 return 1;
1588}
1589
1590__setup("slub_debug", setup_slub_debug);
1591
c5fd3ca0
AT
1592/*
1593 * kmem_cache_flags - apply debugging options to the cache
1594 * @object_size: the size of an object without meta data
1595 * @flags: flags to set
1596 * @name: name of the cache
c5fd3ca0
AT
1597 *
1598 * Debug option(s) are applied to @flags. In addition to the debug
1599 * option(s), if a slab name (or multiple) is specified i.e.
1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1601 * then only the select slabs will receive the debug option(s).
1602 */
0293d1fd 1603slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1604 slab_flags_t flags, const char *name)
41ecc55b 1605{
c5fd3ca0
AT
1606 char *iter;
1607 size_t len;
e17f1dfb
VB
1608 char *next_block;
1609 slab_flags_t block_flags;
ca220593
JB
1610 slab_flags_t slub_debug_local = slub_debug;
1611
a285909f
HY
1612 if (flags & SLAB_NO_USER_FLAGS)
1613 return flags;
1614
ca220593
JB
1615 /*
1616 * If the slab cache is for debugging (e.g. kmemleak) then
1617 * don't store user (stack trace) information by default,
1618 * but let the user enable it via the command line below.
1619 */
1620 if (flags & SLAB_NOLEAKTRACE)
1621 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1622
c5fd3ca0 1623 len = strlen(name);
e17f1dfb
VB
1624 next_block = slub_debug_string;
1625 /* Go through all blocks of debug options, see if any matches our slab's name */
1626 while (next_block) {
1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1628 if (!iter)
1629 continue;
1630 /* Found a block that has a slab list, search it */
1631 while (*iter) {
1632 char *end, *glob;
1633 size_t cmplen;
1634
1635 end = strchrnul(iter, ',');
1636 if (next_block && next_block < end)
1637 end = next_block - 1;
1638
1639 glob = strnchr(iter, end - iter, '*');
1640 if (glob)
1641 cmplen = glob - iter;
1642 else
1643 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1644
e17f1dfb
VB
1645 if (!strncmp(name, iter, cmplen)) {
1646 flags |= block_flags;
1647 return flags;
1648 }
c5fd3ca0 1649
e17f1dfb
VB
1650 if (!*end || *end == ';')
1651 break;
1652 iter = end + 1;
c5fd3ca0 1653 }
c5fd3ca0 1654 }
ba0268a8 1655
ca220593 1656 return flags | slub_debug_local;
41ecc55b 1657}
b4a64718 1658#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1659static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1660static inline
bb192ed9 1661void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1662
3ec09742 1663static inline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1664 struct slab *slab, void *object, unsigned long addr) { return 0; }
41ecc55b 1665
282acb43 1666static inline int free_debug_processing(
bb192ed9 1667 struct kmem_cache *s, struct slab *slab,
81084651 1668 void *head, void *tail, int bulk_cnt,
282acb43 1669 unsigned long addr) { return 0; }
41ecc55b 1670
a204e6d6 1671static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1672static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1673 void *object, u8 val) { return 1; }
5cc6eee8 1674static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1675 struct slab *slab) {}
c65c1877 1676static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1677 struct slab *slab) {}
0293d1fd 1678slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1679 slab_flags_t flags, const char *name)
ba0268a8
CL
1680{
1681 return flags;
1682}
41ecc55b 1683#define slub_debug 0
0f389ec6 1684
fdaa45e9
IM
1685#define disable_higher_order_debug 0
1686
0f389ec6
CL
1687static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1688 { return 0; }
26c02cf0
AB
1689static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1690 { return 0; }
205ab99d
CL
1691static inline void inc_slabs_node(struct kmem_cache *s, int node,
1692 int objects) {}
1693static inline void dec_slabs_node(struct kmem_cache *s, int node,
1694 int objects) {}
7d550c56 1695
bb192ed9 1696static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1697 void **freelist, void *nextfree)
52f23478
DZ
1698{
1699 return false;
1700}
02e72cc6
AR
1701#endif /* CONFIG_SLUB_DEBUG */
1702
1703/*
1704 * Hooks for other subsystems that check memory allocations. In a typical
1705 * production configuration these hooks all should produce no code at all.
1706 */
d57a964e
AK
1707static __always_inline bool slab_free_hook(struct kmem_cache *s,
1708 void *x, bool init)
d56791b3
RB
1709{
1710 kmemleak_free_recursive(x, s->flags);
7d550c56 1711
84048039 1712 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1713
02e72cc6
AR
1714 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1715 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1716
cfbe1636
ME
1717 /* Use KCSAN to help debug racy use-after-free. */
1718 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1719 __kcsan_check_access(x, s->object_size,
1720 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1721
d57a964e
AK
1722 /*
1723 * As memory initialization might be integrated into KASAN,
1724 * kasan_slab_free and initialization memset's must be
1725 * kept together to avoid discrepancies in behavior.
1726 *
1727 * The initialization memset's clear the object and the metadata,
1728 * but don't touch the SLAB redzone.
1729 */
1730 if (init) {
1731 int rsize;
1732
1733 if (!kasan_has_integrated_init())
1734 memset(kasan_reset_tag(x), 0, s->object_size);
1735 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1736 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1737 s->size - s->inuse - rsize);
1738 }
1739 /* KASAN might put x into memory quarantine, delaying its reuse. */
1740 return kasan_slab_free(s, x, init);
02e72cc6 1741}
205ab99d 1742
c3895391 1743static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1744 void **head, void **tail,
1745 int *cnt)
81084651 1746{
6471384a
AP
1747
1748 void *object;
1749 void *next = *head;
1750 void *old_tail = *tail ? *tail : *head;
6471384a 1751
b89fb5ef 1752 if (is_kfence_address(next)) {
d57a964e 1753 slab_free_hook(s, next, false);
b89fb5ef
AP
1754 return true;
1755 }
1756
aea4df4c
LA
1757 /* Head and tail of the reconstructed freelist */
1758 *head = NULL;
1759 *tail = NULL;
1b7e816f 1760
aea4df4c
LA
1761 do {
1762 object = next;
1763 next = get_freepointer(s, object);
1764
c3895391 1765 /* If object's reuse doesn't have to be delayed */
d57a964e 1766 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1767 /* Move object to the new freelist */
1768 set_freepointer(s, object, *head);
1769 *head = object;
1770 if (!*tail)
1771 *tail = object;
899447f6
ML
1772 } else {
1773 /*
1774 * Adjust the reconstructed freelist depth
1775 * accordingly if object's reuse is delayed.
1776 */
1777 --(*cnt);
c3895391
AK
1778 }
1779 } while (object != old_tail);
1780
1781 if (*head == *tail)
1782 *tail = NULL;
1783
1784 return *head != NULL;
81084651
JDB
1785}
1786
c0f81a94 1787static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1788{
c0f81a94 1789 setup_object_debug(s, object);
4d176711 1790 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1791 if (unlikely(s->ctor)) {
1792 kasan_unpoison_object_data(s, object);
1793 s->ctor(object);
1794 kasan_poison_object_data(s, object);
1795 }
4d176711 1796 return object;
588f8ba9
TG
1797}
1798
81819f0f
CL
1799/*
1800 * Slab allocation and freeing
1801 */
a485e1da
XS
1802static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1803 struct kmem_cache_order_objects oo)
65c3376a 1804{
45387b8c
VB
1805 struct folio *folio;
1806 struct slab *slab;
19af27af 1807 unsigned int order = oo_order(oo);
65c3376a 1808
2154a336 1809 if (node == NUMA_NO_NODE)
45387b8c 1810 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1811 else
45387b8c 1812 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1813
45387b8c
VB
1814 if (!folio)
1815 return NULL;
1816
1817 slab = folio_slab(folio);
1818 __folio_set_slab(folio);
1819 if (page_is_pfmemalloc(folio_page(folio, 0)))
1820 slab_set_pfmemalloc(slab);
1821
1822 return slab;
65c3376a
CL
1823}
1824
210e7a43
TG
1825#ifdef CONFIG_SLAB_FREELIST_RANDOM
1826/* Pre-initialize the random sequence cache */
1827static int init_cache_random_seq(struct kmem_cache *s)
1828{
19af27af 1829 unsigned int count = oo_objects(s->oo);
210e7a43 1830 int err;
210e7a43 1831
a810007a
SR
1832 /* Bailout if already initialised */
1833 if (s->random_seq)
1834 return 0;
1835
210e7a43
TG
1836 err = cache_random_seq_create(s, count, GFP_KERNEL);
1837 if (err) {
1838 pr_err("SLUB: Unable to initialize free list for %s\n",
1839 s->name);
1840 return err;
1841 }
1842
1843 /* Transform to an offset on the set of pages */
1844 if (s->random_seq) {
19af27af
AD
1845 unsigned int i;
1846
210e7a43
TG
1847 for (i = 0; i < count; i++)
1848 s->random_seq[i] *= s->size;
1849 }
1850 return 0;
1851}
1852
1853/* Initialize each random sequence freelist per cache */
1854static void __init init_freelist_randomization(void)
1855{
1856 struct kmem_cache *s;
1857
1858 mutex_lock(&slab_mutex);
1859
1860 list_for_each_entry(s, &slab_caches, list)
1861 init_cache_random_seq(s);
1862
1863 mutex_unlock(&slab_mutex);
1864}
1865
1866/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1867static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1868 unsigned long *pos, void *start,
1869 unsigned long page_limit,
1870 unsigned long freelist_count)
1871{
1872 unsigned int idx;
1873
1874 /*
1875 * If the target page allocation failed, the number of objects on the
1876 * page might be smaller than the usual size defined by the cache.
1877 */
1878 do {
1879 idx = s->random_seq[*pos];
1880 *pos += 1;
1881 if (*pos >= freelist_count)
1882 *pos = 0;
1883 } while (unlikely(idx >= page_limit));
1884
1885 return (char *)start + idx;
1886}
1887
1888/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1889static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1890{
1891 void *start;
1892 void *cur;
1893 void *next;
1894 unsigned long idx, pos, page_limit, freelist_count;
1895
bb192ed9 1896 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1897 return false;
1898
1899 freelist_count = oo_objects(s->oo);
1900 pos = get_random_int() % freelist_count;
1901
bb192ed9
VB
1902 page_limit = slab->objects * s->size;
1903 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1904
1905 /* First entry is used as the base of the freelist */
bb192ed9 1906 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1907 freelist_count);
c0f81a94 1908 cur = setup_object(s, cur);
bb192ed9 1909 slab->freelist = cur;
210e7a43 1910
bb192ed9
VB
1911 for (idx = 1; idx < slab->objects; idx++) {
1912 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1913 freelist_count);
c0f81a94 1914 next = setup_object(s, next);
210e7a43
TG
1915 set_freepointer(s, cur, next);
1916 cur = next;
1917 }
210e7a43
TG
1918 set_freepointer(s, cur, NULL);
1919
1920 return true;
1921}
1922#else
1923static inline int init_cache_random_seq(struct kmem_cache *s)
1924{
1925 return 0;
1926}
1927static inline void init_freelist_randomization(void) { }
bb192ed9 1928static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1929{
1930 return false;
1931}
1932#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1933
bb192ed9 1934static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1935{
bb192ed9 1936 struct slab *slab;
834f3d11 1937 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1938 gfp_t alloc_gfp;
4d176711 1939 void *start, *p, *next;
a50b854e 1940 int idx;
210e7a43 1941 bool shuffle;
81819f0f 1942
7e0528da
CL
1943 flags &= gfp_allowed_mask;
1944
b7a49f0d 1945 flags |= s->allocflags;
e12ba74d 1946
ba52270d
PE
1947 /*
1948 * Let the initial higher-order allocation fail under memory pressure
1949 * so we fall-back to the minimum order allocation.
1950 */
1951 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1952 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 1953 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 1954
a485e1da 1955 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1956 if (unlikely(!slab)) {
65c3376a 1957 oo = s->min;
80c3a998 1958 alloc_gfp = flags;
65c3376a
CL
1959 /*
1960 * Allocation may have failed due to fragmentation.
1961 * Try a lower order alloc if possible
1962 */
a485e1da 1963 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1964 if (unlikely(!slab))
588f8ba9
TG
1965 goto out;
1966 stat(s, ORDER_FALLBACK);
65c3376a 1967 }
5a896d9e 1968
bb192ed9 1969 slab->objects = oo_objects(oo);
81819f0f 1970
bb192ed9 1971 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 1972
bb192ed9 1973 slab->slab_cache = s;
81819f0f 1974
6e48a966 1975 kasan_poison_slab(slab);
81819f0f 1976
bb192ed9 1977 start = slab_address(slab);
81819f0f 1978
bb192ed9 1979 setup_slab_debug(s, slab, start);
0316bec2 1980
bb192ed9 1981 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
1982
1983 if (!shuffle) {
4d176711 1984 start = fixup_red_left(s, start);
c0f81a94 1985 start = setup_object(s, start);
bb192ed9
VB
1986 slab->freelist = start;
1987 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 1988 next = p + s->size;
c0f81a94 1989 next = setup_object(s, next);
18e50661
AK
1990 set_freepointer(s, p, next);
1991 p = next;
1992 }
1993 set_freepointer(s, p, NULL);
81819f0f 1994 }
81819f0f 1995
bb192ed9
VB
1996 slab->inuse = slab->objects;
1997 slab->frozen = 1;
588f8ba9 1998
81819f0f 1999out:
bb192ed9 2000 if (!slab)
588f8ba9
TG
2001 return NULL;
2002
bb192ed9 2003 inc_slabs_node(s, slab_nid(slab), slab->objects);
588f8ba9 2004
bb192ed9 2005 return slab;
81819f0f
CL
2006}
2007
bb192ed9 2008static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2009{
44405099
LL
2010 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2011 flags = kmalloc_fix_flags(flags);
588f8ba9 2012
53a0de06
VB
2013 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2014
588f8ba9
TG
2015 return allocate_slab(s,
2016 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2017}
2018
4020b4a2 2019static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2020{
4020b4a2
VB
2021 struct folio *folio = slab_folio(slab);
2022 int order = folio_order(folio);
834f3d11 2023 int pages = 1 << order;
81819f0f 2024
8fc8d666 2025 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
2026 void *p;
2027
bb192ed9 2028 slab_pad_check(s, slab);
4020b4a2 2029 for_each_object(p, s, slab_address(slab), slab->objects)
bb192ed9 2030 check_object(s, slab, p, SLUB_RED_INACTIVE);
81819f0f
CL
2031 }
2032
4020b4a2
VB
2033 __slab_clear_pfmemalloc(slab);
2034 __folio_clear_slab(folio);
2035 folio->mapping = NULL;
1eb5ac64
NP
2036 if (current->reclaim_state)
2037 current->reclaim_state->reclaimed_slab += pages;
4020b4a2
VB
2038 unaccount_slab(slab, order, s);
2039 __free_pages(folio_page(folio, 0), order);
81819f0f
CL
2040}
2041
2042static void rcu_free_slab(struct rcu_head *h)
2043{
bb192ed9 2044 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2045
bb192ed9 2046 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2047}
2048
bb192ed9 2049static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2050{
5f0d5a3a 2051 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bb192ed9 2052 call_rcu(&slab->rcu_head, rcu_free_slab);
81819f0f 2053 } else
bb192ed9 2054 __free_slab(s, slab);
81819f0f
CL
2055}
2056
bb192ed9 2057static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2058{
bb192ed9
VB
2059 dec_slabs_node(s, slab_nid(slab), slab->objects);
2060 free_slab(s, slab);
81819f0f
CL
2061}
2062
2063/*
5cc6eee8 2064 * Management of partially allocated slabs.
81819f0f 2065 */
1e4dd946 2066static inline void
bb192ed9 2067__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2068{
e95eed57 2069 n->nr_partial++;
136333d1 2070 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2071 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2072 else
bb192ed9 2073 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2074}
2075
1e4dd946 2076static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2077 struct slab *slab, int tail)
62e346a8 2078{
c65c1877 2079 lockdep_assert_held(&n->list_lock);
bb192ed9 2080 __add_partial(n, slab, tail);
1e4dd946 2081}
c65c1877 2082
1e4dd946 2083static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2084 struct slab *slab)
1e4dd946
SR
2085{
2086 lockdep_assert_held(&n->list_lock);
bb192ed9 2087 list_del(&slab->slab_list);
52b4b950 2088 n->nr_partial--;
1e4dd946
SR
2089}
2090
81819f0f 2091/*
7ced3719
CL
2092 * Remove slab from the partial list, freeze it and
2093 * return the pointer to the freelist.
81819f0f 2094 *
497b66f2 2095 * Returns a list of objects or NULL if it fails.
81819f0f 2096 */
497b66f2 2097static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2098 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2099 int mode)
81819f0f 2100{
2cfb7455
CL
2101 void *freelist;
2102 unsigned long counters;
bb192ed9 2103 struct slab new;
2cfb7455 2104
c65c1877
PZ
2105 lockdep_assert_held(&n->list_lock);
2106
2cfb7455
CL
2107 /*
2108 * Zap the freelist and set the frozen bit.
2109 * The old freelist is the list of objects for the
2110 * per cpu allocation list.
2111 */
bb192ed9
VB
2112 freelist = slab->freelist;
2113 counters = slab->counters;
7ced3719 2114 new.counters = counters;
23910c50 2115 if (mode) {
bb192ed9 2116 new.inuse = slab->objects;
23910c50
PE
2117 new.freelist = NULL;
2118 } else {
2119 new.freelist = freelist;
2120 }
2cfb7455 2121
a0132ac0 2122 VM_BUG_ON(new.frozen);
7ced3719 2123 new.frozen = 1;
2cfb7455 2124
bb192ed9 2125 if (!__cmpxchg_double_slab(s, slab,
2cfb7455 2126 freelist, counters,
02d7633f 2127 new.freelist, new.counters,
7ced3719 2128 "acquire_slab"))
7ced3719 2129 return NULL;
2cfb7455 2130
bb192ed9 2131 remove_partial(n, slab);
7ced3719 2132 WARN_ON(!freelist);
49e22585 2133 return freelist;
81819f0f
CL
2134}
2135
e0a043aa 2136#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2137static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2138#else
bb192ed9 2139static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2140 int drain) { }
2141#endif
01b34d16 2142static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2143
81819f0f 2144/*
672bba3a 2145 * Try to allocate a partial slab from a specific node.
81819f0f 2146 */
8ba00bb6 2147static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 2148 struct slab **ret_slab, gfp_t gfpflags)
81819f0f 2149{
bb192ed9 2150 struct slab *slab, *slab2;
49e22585 2151 void *object = NULL;
4b1f449d 2152 unsigned long flags;
bb192ed9 2153 unsigned int partial_slabs = 0;
81819f0f
CL
2154
2155 /*
2156 * Racy check. If we mistakenly see no partial slabs then we
2157 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2158 * partial slab and there is none available then get_partial()
672bba3a 2159 * will return NULL.
81819f0f
CL
2160 */
2161 if (!n || !n->nr_partial)
2162 return NULL;
2163
4b1f449d 2164 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2165 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2166 void *t;
49e22585 2167
bb192ed9 2168 if (!pfmemalloc_match(slab, gfpflags))
8ba00bb6
JK
2169 continue;
2170
bb192ed9 2171 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2172 if (!t)
9b1ea29b 2173 break;
49e22585 2174
12d79634 2175 if (!object) {
bb192ed9 2176 *ret_slab = slab;
49e22585 2177 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2178 object = t;
49e22585 2179 } else {
bb192ed9 2180 put_cpu_partial(s, slab, 0);
8028dcea 2181 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2182 partial_slabs++;
49e22585 2183 }
b47291ef 2184#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2185 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2186 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2187 break;
b47291ef
VB
2188#else
2189 break;
2190#endif
49e22585 2191
497b66f2 2192 }
4b1f449d 2193 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2194 return object;
81819f0f
CL
2195}
2196
2197/*
c2092c12 2198 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2199 */
de3ec035 2200static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
bb192ed9 2201 struct slab **ret_slab)
81819f0f
CL
2202{
2203#ifdef CONFIG_NUMA
2204 struct zonelist *zonelist;
dd1a239f 2205 struct zoneref *z;
54a6eb5c 2206 struct zone *zone;
97a225e6 2207 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2208 void *object;
cc9a6c87 2209 unsigned int cpuset_mems_cookie;
81819f0f
CL
2210
2211 /*
672bba3a
CL
2212 * The defrag ratio allows a configuration of the tradeoffs between
2213 * inter node defragmentation and node local allocations. A lower
2214 * defrag_ratio increases the tendency to do local allocations
2215 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2216 *
672bba3a
CL
2217 * If the defrag_ratio is set to 0 then kmalloc() always
2218 * returns node local objects. If the ratio is higher then kmalloc()
2219 * may return off node objects because partial slabs are obtained
2220 * from other nodes and filled up.
81819f0f 2221 *
43efd3ea
LP
2222 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2223 * (which makes defrag_ratio = 1000) then every (well almost)
2224 * allocation will first attempt to defrag slab caches on other nodes.
2225 * This means scanning over all nodes to look for partial slabs which
2226 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2227 * with available objects.
81819f0f 2228 */
9824601e
CL
2229 if (!s->remote_node_defrag_ratio ||
2230 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2231 return NULL;
2232
cc9a6c87 2233 do {
d26914d1 2234 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2235 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2236 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2237 struct kmem_cache_node *n;
2238
2239 n = get_node(s, zone_to_nid(zone));
2240
dee2f8aa 2241 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2242 n->nr_partial > s->min_partial) {
bb192ed9 2243 object = get_partial_node(s, n, ret_slab, flags);
cc9a6c87
MG
2244 if (object) {
2245 /*
d26914d1
MG
2246 * Don't check read_mems_allowed_retry()
2247 * here - if mems_allowed was updated in
2248 * parallel, that was a harmless race
2249 * between allocation and the cpuset
2250 * update
cc9a6c87 2251 */
cc9a6c87
MG
2252 return object;
2253 }
c0ff7453 2254 }
81819f0f 2255 }
d26914d1 2256 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2257#endif /* CONFIG_NUMA */
81819f0f
CL
2258 return NULL;
2259}
2260
2261/*
c2092c12 2262 * Get a partial slab, lock it and return it.
81819f0f 2263 */
497b66f2 2264static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
bb192ed9 2265 struct slab **ret_slab)
81819f0f 2266{
497b66f2 2267 void *object;
a561ce00
JK
2268 int searchnode = node;
2269
2270 if (node == NUMA_NO_NODE)
2271 searchnode = numa_mem_id();
81819f0f 2272
bb192ed9 2273 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
497b66f2
CL
2274 if (object || node != NUMA_NO_NODE)
2275 return object;
81819f0f 2276
bb192ed9 2277 return get_any_partial(s, flags, ret_slab);
81819f0f
CL
2278}
2279
923717cb 2280#ifdef CONFIG_PREEMPTION
8a5ec0ba 2281/*
0d645ed1 2282 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2283 * during cmpxchg. The transactions start with the cpu number and are then
2284 * incremented by CONFIG_NR_CPUS.
2285 */
2286#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2287#else
2288/*
2289 * No preemption supported therefore also no need to check for
2290 * different cpus.
2291 */
2292#define TID_STEP 1
2293#endif
2294
2295static inline unsigned long next_tid(unsigned long tid)
2296{
2297 return tid + TID_STEP;
2298}
2299
9d5f0be0 2300#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2301static inline unsigned int tid_to_cpu(unsigned long tid)
2302{
2303 return tid % TID_STEP;
2304}
2305
2306static inline unsigned long tid_to_event(unsigned long tid)
2307{
2308 return tid / TID_STEP;
2309}
9d5f0be0 2310#endif
8a5ec0ba
CL
2311
2312static inline unsigned int init_tid(int cpu)
2313{
2314 return cpu;
2315}
2316
2317static inline void note_cmpxchg_failure(const char *n,
2318 const struct kmem_cache *s, unsigned long tid)
2319{
2320#ifdef SLUB_DEBUG_CMPXCHG
2321 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2322
f9f58285 2323 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2324
923717cb 2325#ifdef CONFIG_PREEMPTION
8a5ec0ba 2326 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2327 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2328 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2329 else
2330#endif
2331 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2332 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2333 tid_to_event(tid), tid_to_event(actual_tid));
2334 else
f9f58285 2335 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2336 actual_tid, tid, next_tid(tid));
2337#endif
4fdccdfb 2338 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2339}
2340
788e1aad 2341static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2342{
8a5ec0ba 2343 int cpu;
bd0e7491 2344 struct kmem_cache_cpu *c;
8a5ec0ba 2345
bd0e7491
VB
2346 for_each_possible_cpu(cpu) {
2347 c = per_cpu_ptr(s->cpu_slab, cpu);
2348 local_lock_init(&c->lock);
2349 c->tid = init_tid(cpu);
2350 }
8a5ec0ba 2351}
2cfb7455 2352
81819f0f 2353/*
c2092c12 2354 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2355 * unfreezes the slabs and puts it on the proper list.
2356 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2357 * by the caller.
81819f0f 2358 */
bb192ed9 2359static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2360 void *freelist)
81819f0f 2361{
6d3a16d0 2362 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
bb192ed9 2363 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2364 int free_delta = 0;
2365 enum slab_modes mode = M_NONE;
d930ff03 2366 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2367 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2368 unsigned long flags = 0;
bb192ed9
VB
2369 struct slab new;
2370 struct slab old;
2cfb7455 2371
bb192ed9 2372 if (slab->freelist) {
84e554e6 2373 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2374 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2375 }
2376
894b8788 2377 /*
d930ff03
VB
2378 * Stage one: Count the objects on cpu's freelist as free_delta and
2379 * remember the last object in freelist_tail for later splicing.
2cfb7455 2380 */
d930ff03
VB
2381 freelist_tail = NULL;
2382 freelist_iter = freelist;
2383 while (freelist_iter) {
2384 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2385
52f23478
DZ
2386 /*
2387 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2388 * 'freelist_iter' is already corrupted. So isolate all objects
2389 * starting at 'freelist_iter' by skipping them.
52f23478 2390 */
bb192ed9 2391 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2392 break;
2393
d930ff03
VB
2394 freelist_tail = freelist_iter;
2395 free_delta++;
2cfb7455 2396
d930ff03 2397 freelist_iter = nextfree;
2cfb7455
CL
2398 }
2399
894b8788 2400 /*
c2092c12
VB
2401 * Stage two: Unfreeze the slab while splicing the per-cpu
2402 * freelist to the head of slab's freelist.
d930ff03 2403 *
c2092c12 2404 * Ensure that the slab is unfrozen while the list presence
d930ff03 2405 * reflects the actual number of objects during unfreeze.
2cfb7455 2406 *
6d3a16d0
HY
2407 * We first perform cmpxchg holding lock and insert to list
2408 * when it succeed. If there is mismatch then the slab is not
2409 * unfrozen and number of objects in the slab may have changed.
2410 * Then release lock and retry cmpxchg again.
894b8788 2411 */
2cfb7455 2412redo:
894b8788 2413
bb192ed9
VB
2414 old.freelist = READ_ONCE(slab->freelist);
2415 old.counters = READ_ONCE(slab->counters);
a0132ac0 2416 VM_BUG_ON(!old.frozen);
7c2e132c 2417
2cfb7455
CL
2418 /* Determine target state of the slab */
2419 new.counters = old.counters;
d930ff03
VB
2420 if (freelist_tail) {
2421 new.inuse -= free_delta;
2422 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2423 new.freelist = freelist;
2424 } else
2425 new.freelist = old.freelist;
2426
2427 new.frozen = 0;
2428
6d3a16d0
HY
2429 if (!new.inuse && n->nr_partial >= s->min_partial) {
2430 mode = M_FREE;
2431 } else if (new.freelist) {
2432 mode = M_PARTIAL;
2433 /*
2434 * Taking the spinlock removes the possibility that
2435 * acquire_slab() will see a slab that is frozen
2436 */
2437 spin_lock_irqsave(&n->list_lock, flags);
2438 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2439 mode = M_FULL;
2440 /*
2441 * This also ensures that the scanning of full
2442 * slabs from diagnostic functions will not see
2443 * any frozen slabs.
2444 */
2445 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2446 } else {
6d3a16d0 2447 mode = M_FULL_NOLIST;
2cfb7455
CL
2448 }
2449
2cfb7455 2450
bb192ed9 2451 if (!cmpxchg_double_slab(s, slab,
2cfb7455
CL
2452 old.freelist, old.counters,
2453 new.freelist, new.counters,
6d3a16d0
HY
2454 "unfreezing slab")) {
2455 if (mode == M_PARTIAL || mode == M_FULL)
2456 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2457 goto redo;
6d3a16d0 2458 }
2cfb7455 2459
2cfb7455 2460
6d3a16d0
HY
2461 if (mode == M_PARTIAL) {
2462 add_partial(n, slab, tail);
2463 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2464 stat(s, tail);
6d3a16d0 2465 } else if (mode == M_FREE) {
2cfb7455 2466 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2467 discard_slab(s, slab);
2cfb7455 2468 stat(s, FREE_SLAB);
6d3a16d0
HY
2469 } else if (mode == M_FULL) {
2470 add_full(s, n, slab);
2471 spin_unlock_irqrestore(&n->list_lock, flags);
2472 stat(s, DEACTIVATE_FULL);
2473 } else if (mode == M_FULL_NOLIST) {
2474 stat(s, DEACTIVATE_FULL);
894b8788 2475 }
81819f0f
CL
2476}
2477
345c905d 2478#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2479static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2480{
43d77867 2481 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2482 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2483 unsigned long flags = 0;
49e22585 2484
bb192ed9
VB
2485 while (partial_slab) {
2486 struct slab new;
2487 struct slab old;
49e22585 2488
bb192ed9
VB
2489 slab = partial_slab;
2490 partial_slab = slab->next;
43d77867 2491
bb192ed9 2492 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2493 if (n != n2) {
2494 if (n)
7cf9f3ba 2495 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2496
2497 n = n2;
7cf9f3ba 2498 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2499 }
49e22585
CL
2500
2501 do {
2502
bb192ed9
VB
2503 old.freelist = slab->freelist;
2504 old.counters = slab->counters;
a0132ac0 2505 VM_BUG_ON(!old.frozen);
49e22585
CL
2506
2507 new.counters = old.counters;
2508 new.freelist = old.freelist;
2509
2510 new.frozen = 0;
2511
bb192ed9 2512 } while (!__cmpxchg_double_slab(s, slab,
49e22585
CL
2513 old.freelist, old.counters,
2514 new.freelist, new.counters,
2515 "unfreezing slab"));
2516
8a5b20ae 2517 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2518 slab->next = slab_to_discard;
2519 slab_to_discard = slab;
43d77867 2520 } else {
bb192ed9 2521 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2522 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2523 }
2524 }
2525
2526 if (n)
7cf9f3ba 2527 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2528
bb192ed9
VB
2529 while (slab_to_discard) {
2530 slab = slab_to_discard;
2531 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2532
2533 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2534 discard_slab(s, slab);
9ada1934
SL
2535 stat(s, FREE_SLAB);
2536 }
fc1455f4 2537}
f3ab8b6b 2538
fc1455f4
VB
2539/*
2540 * Unfreeze all the cpu partial slabs.
2541 */
2542static void unfreeze_partials(struct kmem_cache *s)
2543{
bb192ed9 2544 struct slab *partial_slab;
fc1455f4
VB
2545 unsigned long flags;
2546
bd0e7491 2547 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2548 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2549 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2550 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2551
bb192ed9
VB
2552 if (partial_slab)
2553 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2554}
2555
2556static void unfreeze_partials_cpu(struct kmem_cache *s,
2557 struct kmem_cache_cpu *c)
2558{
bb192ed9 2559 struct slab *partial_slab;
fc1455f4 2560
bb192ed9 2561 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2562 c->partial = NULL;
2563
bb192ed9
VB
2564 if (partial_slab)
2565 __unfreeze_partials(s, partial_slab);
49e22585
CL
2566}
2567
2568/*
c2092c12
VB
2569 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2570 * partial slab slot if available.
49e22585
CL
2571 *
2572 * If we did not find a slot then simply move all the partials to the
2573 * per node partial list.
2574 */
bb192ed9 2575static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2576{
bb192ed9
VB
2577 struct slab *oldslab;
2578 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2579 unsigned long flags;
bb192ed9 2580 int slabs = 0;
49e22585 2581
bd0e7491 2582 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2583
bb192ed9 2584 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2585
bb192ed9
VB
2586 if (oldslab) {
2587 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2588 /*
2589 * Partial array is full. Move the existing set to the
2590 * per node partial list. Postpone the actual unfreezing
2591 * outside of the critical section.
2592 */
bb192ed9
VB
2593 slab_to_unfreeze = oldslab;
2594 oldslab = NULL;
e0a043aa 2595 } else {
bb192ed9 2596 slabs = oldslab->slabs;
49e22585 2597 }
e0a043aa 2598 }
49e22585 2599
bb192ed9 2600 slabs++;
49e22585 2601
bb192ed9
VB
2602 slab->slabs = slabs;
2603 slab->next = oldslab;
49e22585 2604
bb192ed9 2605 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2606
bd0e7491 2607 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2608
bb192ed9
VB
2609 if (slab_to_unfreeze) {
2610 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2611 stat(s, CPU_PARTIAL_DRAIN);
2612 }
49e22585
CL
2613}
2614
e0a043aa
VB
2615#else /* CONFIG_SLUB_CPU_PARTIAL */
2616
2617static inline void unfreeze_partials(struct kmem_cache *s) { }
2618static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2619 struct kmem_cache_cpu *c) { }
2620
2621#endif /* CONFIG_SLUB_CPU_PARTIAL */
2622
dfb4f096 2623static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2624{
5a836bf6 2625 unsigned long flags;
bb192ed9 2626 struct slab *slab;
5a836bf6
SAS
2627 void *freelist;
2628
bd0e7491 2629 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2630
bb192ed9 2631 slab = c->slab;
5a836bf6 2632 freelist = c->freelist;
c17dda40 2633
bb192ed9 2634 c->slab = NULL;
a019d201 2635 c->freelist = NULL;
c17dda40 2636 c->tid = next_tid(c->tid);
a019d201 2637
bd0e7491 2638 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2639
bb192ed9
VB
2640 if (slab) {
2641 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2642 stat(s, CPUSLAB_FLUSH);
2643 }
81819f0f
CL
2644}
2645
0c710013 2646static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2647{
9dfc6e68 2648 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2649 void *freelist = c->freelist;
bb192ed9 2650 struct slab *slab = c->slab;
81819f0f 2651
bb192ed9 2652 c->slab = NULL;
08beb547
VB
2653 c->freelist = NULL;
2654 c->tid = next_tid(c->tid);
2655
bb192ed9
VB
2656 if (slab) {
2657 deactivate_slab(s, slab, freelist);
08beb547
VB
2658 stat(s, CPUSLAB_FLUSH);
2659 }
49e22585 2660
fc1455f4 2661 unfreeze_partials_cpu(s, c);
81819f0f
CL
2662}
2663
5a836bf6
SAS
2664struct slub_flush_work {
2665 struct work_struct work;
2666 struct kmem_cache *s;
2667 bool skip;
2668};
2669
fc1455f4
VB
2670/*
2671 * Flush cpu slab.
2672 *
5a836bf6 2673 * Called from CPU work handler with migration disabled.
fc1455f4 2674 */
5a836bf6 2675static void flush_cpu_slab(struct work_struct *w)
81819f0f 2676{
5a836bf6
SAS
2677 struct kmem_cache *s;
2678 struct kmem_cache_cpu *c;
2679 struct slub_flush_work *sfw;
2680
2681 sfw = container_of(w, struct slub_flush_work, work);
2682
2683 s = sfw->s;
2684 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2685
bb192ed9 2686 if (c->slab)
fc1455f4 2687 flush_slab(s, c);
81819f0f 2688
fc1455f4 2689 unfreeze_partials(s);
81819f0f
CL
2690}
2691
5a836bf6 2692static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2693{
a8364d55
GBY
2694 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2695
bb192ed9 2696 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2697}
2698
5a836bf6
SAS
2699static DEFINE_MUTEX(flush_lock);
2700static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2701
2702static void flush_all_cpus_locked(struct kmem_cache *s)
2703{
2704 struct slub_flush_work *sfw;
2705 unsigned int cpu;
2706
2707 lockdep_assert_cpus_held();
2708 mutex_lock(&flush_lock);
2709
2710 for_each_online_cpu(cpu) {
2711 sfw = &per_cpu(slub_flush, cpu);
2712 if (!has_cpu_slab(cpu, s)) {
2713 sfw->skip = true;
2714 continue;
2715 }
2716 INIT_WORK(&sfw->work, flush_cpu_slab);
2717 sfw->skip = false;
2718 sfw->s = s;
2719 schedule_work_on(cpu, &sfw->work);
2720 }
2721
2722 for_each_online_cpu(cpu) {
2723 sfw = &per_cpu(slub_flush, cpu);
2724 if (sfw->skip)
2725 continue;
2726 flush_work(&sfw->work);
2727 }
2728
2729 mutex_unlock(&flush_lock);
2730}
2731
81819f0f
CL
2732static void flush_all(struct kmem_cache *s)
2733{
5a836bf6
SAS
2734 cpus_read_lock();
2735 flush_all_cpus_locked(s);
2736 cpus_read_unlock();
81819f0f
CL
2737}
2738
a96a87bf
SAS
2739/*
2740 * Use the cpu notifier to insure that the cpu slabs are flushed when
2741 * necessary.
2742 */
2743static int slub_cpu_dead(unsigned int cpu)
2744{
2745 struct kmem_cache *s;
a96a87bf
SAS
2746
2747 mutex_lock(&slab_mutex);
0e7ac738 2748 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2749 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2750 mutex_unlock(&slab_mutex);
2751 return 0;
2752}
2753
dfb4f096
CL
2754/*
2755 * Check if the objects in a per cpu structure fit numa
2756 * locality expectations.
2757 */
bb192ed9 2758static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2759{
2760#ifdef CONFIG_NUMA
bb192ed9 2761 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2762 return 0;
2763#endif
2764 return 1;
2765}
2766
9a02d699 2767#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2768static int count_free(struct slab *slab)
781b2ba6 2769{
bb192ed9 2770 return slab->objects - slab->inuse;
781b2ba6
PE
2771}
2772
9a02d699
DR
2773static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2774{
2775 return atomic_long_read(&n->total_objects);
2776}
2777#endif /* CONFIG_SLUB_DEBUG */
2778
2779#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6 2780static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2781 int (*get_count)(struct slab *))
781b2ba6
PE
2782{
2783 unsigned long flags;
2784 unsigned long x = 0;
bb192ed9 2785 struct slab *slab;
781b2ba6
PE
2786
2787 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2788 list_for_each_entry(slab, &n->partial, slab_list)
2789 x += get_count(slab);
781b2ba6
PE
2790 spin_unlock_irqrestore(&n->list_lock, flags);
2791 return x;
2792}
9a02d699 2793#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2794
781b2ba6
PE
2795static noinline void
2796slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2797{
9a02d699
DR
2798#ifdef CONFIG_SLUB_DEBUG
2799 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2800 DEFAULT_RATELIMIT_BURST);
781b2ba6 2801 int node;
fa45dc25 2802 struct kmem_cache_node *n;
781b2ba6 2803
9a02d699
DR
2804 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2805 return;
2806
5b3810e5
VB
2807 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2808 nid, gfpflags, &gfpflags);
19af27af 2809 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2810 s->name, s->object_size, s->size, oo_order(s->oo),
2811 oo_order(s->min));
781b2ba6 2812
3b0efdfa 2813 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2814 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2815 s->name);
fa5ec8a1 2816
fa45dc25 2817 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2818 unsigned long nr_slabs;
2819 unsigned long nr_objs;
2820 unsigned long nr_free;
2821
26c02cf0
AB
2822 nr_free = count_partial(n, count_free);
2823 nr_slabs = node_nr_slabs(n);
2824 nr_objs = node_nr_objs(n);
781b2ba6 2825
f9f58285 2826 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2827 node, nr_slabs, nr_objs, nr_free);
2828 }
9a02d699 2829#endif
781b2ba6
PE
2830}
2831
01b34d16 2832static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 2833{
01b34d16 2834 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
2835 return gfp_pfmemalloc_allowed(gfpflags);
2836
2837 return true;
2838}
2839
213eeb9f 2840/*
c2092c12
VB
2841 * Check the slab->freelist and either transfer the freelist to the
2842 * per cpu freelist or deactivate the slab.
213eeb9f 2843 *
c2092c12 2844 * The slab is still frozen if the return value is not NULL.
213eeb9f 2845 *
c2092c12 2846 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 2847 */
bb192ed9 2848static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 2849{
bb192ed9 2850 struct slab new;
213eeb9f
CL
2851 unsigned long counters;
2852 void *freelist;
2853
bd0e7491
VB
2854 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2855
213eeb9f 2856 do {
bb192ed9
VB
2857 freelist = slab->freelist;
2858 counters = slab->counters;
6faa6833 2859
213eeb9f 2860 new.counters = counters;
a0132ac0 2861 VM_BUG_ON(!new.frozen);
213eeb9f 2862
bb192ed9 2863 new.inuse = slab->objects;
213eeb9f
CL
2864 new.frozen = freelist != NULL;
2865
bb192ed9 2866 } while (!__cmpxchg_double_slab(s, slab,
213eeb9f
CL
2867 freelist, counters,
2868 NULL, new.counters,
2869 "get_freelist"));
2870
2871 return freelist;
2872}
2873
81819f0f 2874/*
894b8788
CL
2875 * Slow path. The lockless freelist is empty or we need to perform
2876 * debugging duties.
2877 *
894b8788
CL
2878 * Processing is still very fast if new objects have been freed to the
2879 * regular freelist. In that case we simply take over the regular freelist
2880 * as the lockless freelist and zap the regular freelist.
81819f0f 2881 *
894b8788
CL
2882 * If that is not working then we fall back to the partial lists. We take the
2883 * first element of the freelist as the object to allocate now and move the
2884 * rest of the freelist to the lockless freelist.
81819f0f 2885 *
894b8788 2886 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2887 * we need to allocate a new slab. This is the slowest path since it involves
2888 * a call to the page allocator and the setup of a new slab.
a380a3c7 2889 *
e500059b 2890 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2891 * already disabled (which is the case for bulk allocation).
81819f0f 2892 */
a380a3c7 2893static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2894 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2895{
6faa6833 2896 void *freelist;
bb192ed9 2897 struct slab *slab;
e500059b 2898 unsigned long flags;
81819f0f 2899
9f986d99
AW
2900 stat(s, ALLOC_SLOWPATH);
2901
c2092c12 2902reread_slab:
0b303fb4 2903
bb192ed9
VB
2904 slab = READ_ONCE(c->slab);
2905 if (!slab) {
0715e6c5
VB
2906 /*
2907 * if the node is not online or has no normal memory, just
2908 * ignore the node constraint
2909 */
2910 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2911 !node_isset(node, slab_nodes)))
0715e6c5 2912 node = NUMA_NO_NODE;
81819f0f 2913 goto new_slab;
0715e6c5 2914 }
49e22585 2915redo:
6faa6833 2916
bb192ed9 2917 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
2918 /*
2919 * same as above but node_match() being false already
2920 * implies node != NUMA_NO_NODE
2921 */
7e1fa93d 2922 if (!node_isset(node, slab_nodes)) {
0715e6c5 2923 node = NUMA_NO_NODE;
0715e6c5 2924 } else {
a561ce00 2925 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2926 goto deactivate_slab;
a561ce00 2927 }
fc59c053 2928 }
6446faa2 2929
072bb0aa
MG
2930 /*
2931 * By rights, we should be searching for a slab page that was
2932 * PFMEMALLOC but right now, we are losing the pfmemalloc
2933 * information when the page leaves the per-cpu allocator
2934 */
bb192ed9 2935 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 2936 goto deactivate_slab;
072bb0aa 2937
c2092c12 2938 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 2939 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2940 if (unlikely(slab != c->slab)) {
bd0e7491 2941 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2942 goto reread_slab;
0b303fb4 2943 }
6faa6833
CL
2944 freelist = c->freelist;
2945 if (freelist)
73736e03 2946 goto load_freelist;
03e404af 2947
bb192ed9 2948 freelist = get_freelist(s, slab);
6446faa2 2949
6faa6833 2950 if (!freelist) {
bb192ed9 2951 c->slab = NULL;
eeaa345e 2952 c->tid = next_tid(c->tid);
bd0e7491 2953 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2954 stat(s, DEACTIVATE_BYPASS);
fc59c053 2955 goto new_slab;
03e404af 2956 }
6446faa2 2957
84e554e6 2958 stat(s, ALLOC_REFILL);
6446faa2 2959
894b8788 2960load_freelist:
0b303fb4 2961
bd0e7491 2962 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2963
507effea
CL
2964 /*
2965 * freelist is pointing to the list of objects to be used.
c2092c12
VB
2966 * slab is pointing to the slab from which the objects are obtained.
2967 * That slab must be frozen for per cpu allocations to work.
507effea 2968 */
bb192ed9 2969 VM_BUG_ON(!c->slab->frozen);
6faa6833 2970 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2971 c->tid = next_tid(c->tid);
bd0e7491 2972 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2973 return freelist;
81819f0f 2974
0b303fb4
VB
2975deactivate_slab:
2976
bd0e7491 2977 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2978 if (slab != c->slab) {
bd0e7491 2979 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2980 goto reread_slab;
0b303fb4 2981 }
a019d201 2982 freelist = c->freelist;
bb192ed9 2983 c->slab = NULL;
a019d201 2984 c->freelist = NULL;
eeaa345e 2985 c->tid = next_tid(c->tid);
bd0e7491 2986 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 2987 deactivate_slab(s, slab, freelist);
0b303fb4 2988
81819f0f 2989new_slab:
2cfb7455 2990
a93cf07b 2991 if (slub_percpu_partial(c)) {
bd0e7491 2992 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2993 if (unlikely(c->slab)) {
bd0e7491 2994 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2995 goto reread_slab;
fa417ab7 2996 }
4b1f449d 2997 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 2998 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
2999 /* we were preempted and partial list got empty */
3000 goto new_objects;
4b1f449d 3001 }
fa417ab7 3002
bb192ed9
VB
3003 slab = c->slab = slub_percpu_partial(c);
3004 slub_set_percpu_partial(c, slab);
bd0e7491 3005 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3006 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3007 goto redo;
81819f0f
CL
3008 }
3009
fa417ab7
VB
3010new_objects:
3011
bb192ed9 3012 freelist = get_partial(s, gfpflags, node, &slab);
3f2b77e3 3013 if (freelist)
c2092c12 3014 goto check_new_slab;
2a904905 3015
25c00c50 3016 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3017 slab = new_slab(s, gfpflags, node);
25c00c50 3018 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3019
bb192ed9 3020 if (unlikely(!slab)) {
9a02d699 3021 slab_out_of_memory(s, gfpflags, node);
f4697436 3022 return NULL;
81819f0f 3023 }
2cfb7455 3024
53a0de06 3025 /*
c2092c12 3026 * No other reference to the slab yet so we can
53a0de06
VB
3027 * muck around with it freely without cmpxchg
3028 */
bb192ed9
VB
3029 freelist = slab->freelist;
3030 slab->freelist = NULL;
53a0de06
VB
3031
3032 stat(s, ALLOC_SLAB);
53a0de06 3033
c2092c12 3034check_new_slab:
2cfb7455 3035
1572df7c 3036 if (kmem_cache_debug(s)) {
bb192ed9 3037 if (!alloc_debug_processing(s, slab, freelist, addr)) {
1572df7c
VB
3038 /* Slab failed checks. Next slab needed */
3039 goto new_slab;
fa417ab7 3040 } else {
1572df7c
VB
3041 /*
3042 * For debug case, we don't load freelist so that all
3043 * allocations go through alloc_debug_processing()
3044 */
3045 goto return_single;
fa417ab7 3046 }
1572df7c
VB
3047 }
3048
bb192ed9 3049 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
1572df7c
VB
3050 /*
3051 * For !pfmemalloc_match() case we don't load freelist so that
3052 * we don't make further mismatched allocations easier.
3053 */
3054 goto return_single;
3055
c2092c12 3056retry_load_slab:
cfdf836e 3057
bd0e7491 3058 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3059 if (unlikely(c->slab)) {
cfdf836e 3060 void *flush_freelist = c->freelist;
bb192ed9 3061 struct slab *flush_slab = c->slab;
cfdf836e 3062
bb192ed9 3063 c->slab = NULL;
cfdf836e
VB
3064 c->freelist = NULL;
3065 c->tid = next_tid(c->tid);
3066
bd0e7491 3067 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3068
bb192ed9 3069 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3070
3071 stat(s, CPUSLAB_FLUSH);
3072
c2092c12 3073 goto retry_load_slab;
cfdf836e 3074 }
bb192ed9 3075 c->slab = slab;
3f2b77e3 3076
1572df7c
VB
3077 goto load_freelist;
3078
3079return_single:
894b8788 3080
bb192ed9 3081 deactivate_slab(s, slab, get_freepointer(s, freelist));
6faa6833 3082 return freelist;
894b8788
CL
3083}
3084
a380a3c7 3085/*
e500059b
VB
3086 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3087 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3088 * pointer.
a380a3c7
CL
3089 */
3090static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3091 unsigned long addr, struct kmem_cache_cpu *c)
3092{
3093 void *p;
a380a3c7 3094
e500059b 3095#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3096 /*
3097 * We may have been preempted and rescheduled on a different
e500059b 3098 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3099 * pointer.
3100 */
25c00c50 3101 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3102#endif
3103
3104 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3105#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3106 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3107#endif
a380a3c7
CL
3108 return p;
3109}
3110
0f181f9f
AP
3111/*
3112 * If the object has been wiped upon free, make sure it's fully initialized by
3113 * zeroing out freelist pointer.
3114 */
3115static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3116 void *obj)
3117{
3118 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3119 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3120 0, sizeof(void *));
0f181f9f
AP
3121}
3122
894b8788
CL
3123/*
3124 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3125 * have the fastpath folded into their functions. So no function call
3126 * overhead for requests that can be satisfied on the fastpath.
3127 *
3128 * The fastpath works by first checking if the lockless freelist can be used.
3129 * If not then __slab_alloc is called for slow processing.
3130 *
3131 * Otherwise we can simply pick the next object from the lockless free list.
3132 */
88f2ef73 3133static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3134 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3135{
03ec0ed5 3136 void *object;
dfb4f096 3137 struct kmem_cache_cpu *c;
bb192ed9 3138 struct slab *slab;
8a5ec0ba 3139 unsigned long tid;
964d4bd3 3140 struct obj_cgroup *objcg = NULL;
da844b78 3141 bool init = false;
1f84260c 3142
88f2ef73 3143 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
8135be5a 3144 if (!s)
773ff60e 3145 return NULL;
b89fb5ef
AP
3146
3147 object = kfence_alloc(s, orig_size, gfpflags);
3148 if (unlikely(object))
3149 goto out;
3150
8a5ec0ba 3151redo:
8a5ec0ba
CL
3152 /*
3153 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3154 * enabled. We may switch back and forth between cpus while
3155 * reading from one cpu area. That does not matter as long
3156 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3157 *
9b4bc85a
VB
3158 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3159 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3160 * the tid. If we are preempted and switched to another cpu between the
3161 * two reads, it's OK as the two are still associated with the same cpu
3162 * and cmpxchg later will validate the cpu.
8a5ec0ba 3163 */
9b4bc85a
VB
3164 c = raw_cpu_ptr(s->cpu_slab);
3165 tid = READ_ONCE(c->tid);
9aabf810
JK
3166
3167 /*
3168 * Irqless object alloc/free algorithm used here depends on sequence
3169 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3170 * on c to guarantee that object and slab associated with previous tid
9aabf810 3171 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3172 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3173 * request will be failed. In this case, we will retry. So, no problem.
3174 */
3175 barrier();
8a5ec0ba 3176
8a5ec0ba
CL
3177 /*
3178 * The transaction ids are globally unique per cpu and per operation on
3179 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3180 * occurs on the right processor and that there was no operation on the
3181 * linked list in between.
3182 */
8a5ec0ba 3183
9dfc6e68 3184 object = c->freelist;
bb192ed9 3185 slab = c->slab;
bd0e7491
VB
3186 /*
3187 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3188 * slowpath has taken the local_lock_irqsave(), it is not protected
3189 * against a fast path operation in an irq handler. So we need to take
3190 * the slow path which uses local_lock. It is still relatively fast if
3191 * there is a suitable cpu freelist.
3192 */
3193 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
bb192ed9 3194 unlikely(!object || !slab || !node_match(slab, node))) {
dfb4f096 3195 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3196 } else {
0ad9500e
ED
3197 void *next_object = get_freepointer_safe(s, object);
3198
8a5ec0ba 3199 /*
25985edc 3200 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3201 * operation and if we are on the right processor.
3202 *
d0e0ac97
CG
3203 * The cmpxchg does the following atomically (without lock
3204 * semantics!)
8a5ec0ba
CL
3205 * 1. Relocate first pointer to the current per cpu area.
3206 * 2. Verify that tid and freelist have not been changed
3207 * 3. If they were not changed replace tid and freelist
3208 *
d0e0ac97
CG
3209 * Since this is without lock semantics the protection is only
3210 * against code executing on this cpu *not* from access by
3211 * other cpus.
8a5ec0ba 3212 */
933393f5 3213 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3214 s->cpu_slab->freelist, s->cpu_slab->tid,
3215 object, tid,
0ad9500e 3216 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3217
3218 note_cmpxchg_failure("slab_alloc", s, tid);
3219 goto redo;
3220 }
0ad9500e 3221 prefetch_freepointer(s, next_object);
84e554e6 3222 stat(s, ALLOC_FASTPATH);
894b8788 3223 }
0f181f9f 3224
ce5716c6 3225 maybe_wipe_obj_freeptr(s, object);
da844b78 3226 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3227
b89fb5ef 3228out:
da844b78 3229 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3230
894b8788 3231 return object;
81819f0f
CL
3232}
3233
88f2ef73 3234static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3235 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3236{
88f2ef73 3237 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3238}
3239
88f2ef73
MS
3240static __always_inline
3241void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3242 gfp_t gfpflags)
81819f0f 3243{
88f2ef73 3244 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3245
b347aa7b 3246 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
d0e0ac97 3247 s->size, gfpflags);
5b882be4
EGM
3248
3249 return ret;
81819f0f 3250}
88f2ef73
MS
3251
3252void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3253{
3254 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3255}
81819f0f
CL
3256EXPORT_SYMBOL(kmem_cache_alloc);
3257
88f2ef73
MS
3258void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3259 gfp_t gfpflags)
3260{
3261 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3262}
3263EXPORT_SYMBOL(kmem_cache_alloc_lru);
3264
ed4cd17e
HY
3265void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3266 int node, size_t orig_size,
3267 unsigned long caller)
3268{
3269 return slab_alloc_node(s, NULL, gfpflags, node,
3270 caller, orig_size);
3271}
3272
0f24f128 3273#ifdef CONFIG_TRACING
4a92379b
RK
3274void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3275{
88f2ef73 3276 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
b347aa7b 3277 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
0116523c 3278 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3279 return ret;
3280}
3281EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3282#endif
3283
81819f0f
CL
3284void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3285{
88f2ef73 3286 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3287
b347aa7b 3288 trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3b0efdfa 3289 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3290
3291 return ret;
81819f0f
CL
3292}
3293EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3294
0f24f128 3295#ifdef CONFIG_TRACING
4a92379b 3296void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3297 gfp_t gfpflags,
4a92379b 3298 int node, size_t size)
5b882be4 3299{
88f2ef73 3300 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4a92379b 3301
b347aa7b 3302 trace_kmalloc_node(_RET_IP_, ret, s,
4a92379b 3303 size, s->size, gfpflags, node);
0316bec2 3304
0116523c 3305 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3306 return ret;
5b882be4 3307}
4a92379b 3308EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4
EGM
3309#endif
3310
81819f0f 3311/*
94e4d712 3312 * Slow path handling. This may still be called frequently since objects
894b8788 3313 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3314 *
894b8788 3315 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3316 * lock and free the item. If there is no additional partial slab
894b8788 3317 * handling required then we can return immediately.
81819f0f 3318 */
bb192ed9 3319static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3320 void *head, void *tail, int cnt,
3321 unsigned long addr)
3322
81819f0f
CL
3323{
3324 void *prior;
2cfb7455 3325 int was_frozen;
bb192ed9 3326 struct slab new;
2cfb7455
CL
3327 unsigned long counters;
3328 struct kmem_cache_node *n = NULL;
3f649ab7 3329 unsigned long flags;
81819f0f 3330
8a5ec0ba 3331 stat(s, FREE_SLOWPATH);
81819f0f 3332
b89fb5ef
AP
3333 if (kfence_free(head))
3334 return;
3335
19c7ff9e 3336 if (kmem_cache_debug(s) &&
bb192ed9 3337 !free_debug_processing(s, slab, head, tail, cnt, addr))
80f08c19 3338 return;
6446faa2 3339
2cfb7455 3340 do {
837d678d
JK
3341 if (unlikely(n)) {
3342 spin_unlock_irqrestore(&n->list_lock, flags);
3343 n = NULL;
3344 }
bb192ed9
VB
3345 prior = slab->freelist;
3346 counters = slab->counters;
81084651 3347 set_freepointer(s, tail, prior);
2cfb7455
CL
3348 new.counters = counters;
3349 was_frozen = new.frozen;
81084651 3350 new.inuse -= cnt;
837d678d 3351 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3352
c65c1877 3353 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3354
3355 /*
d0e0ac97
CG
3356 * Slab was on no list before and will be
3357 * partially empty
3358 * We can defer the list move and instead
3359 * freeze it.
49e22585
CL
3360 */
3361 new.frozen = 1;
3362
c65c1877 3363 } else { /* Needs to be taken off a list */
49e22585 3364
bb192ed9 3365 n = get_node(s, slab_nid(slab));
49e22585
CL
3366 /*
3367 * Speculatively acquire the list_lock.
3368 * If the cmpxchg does not succeed then we may
3369 * drop the list_lock without any processing.
3370 *
3371 * Otherwise the list_lock will synchronize with
3372 * other processors updating the list of slabs.
3373 */
3374 spin_lock_irqsave(&n->list_lock, flags);
3375
3376 }
2cfb7455 3377 }
81819f0f 3378
bb192ed9 3379 } while (!cmpxchg_double_slab(s, slab,
2cfb7455 3380 prior, counters,
81084651 3381 head, new.counters,
2cfb7455 3382 "__slab_free"));
81819f0f 3383
2cfb7455 3384 if (likely(!n)) {
49e22585 3385
c270cf30
AW
3386 if (likely(was_frozen)) {
3387 /*
3388 * The list lock was not taken therefore no list
3389 * activity can be necessary.
3390 */
3391 stat(s, FREE_FROZEN);
3392 } else if (new.frozen) {
3393 /*
c2092c12 3394 * If we just froze the slab then put it onto the
c270cf30
AW
3395 * per cpu partial list.
3396 */
bb192ed9 3397 put_cpu_partial(s, slab, 1);
8028dcea
AS
3398 stat(s, CPU_PARTIAL_FREE);
3399 }
c270cf30 3400
b455def2
L
3401 return;
3402 }
81819f0f 3403
8a5b20ae 3404 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3405 goto slab_empty;
3406
81819f0f 3407 /*
837d678d
JK
3408 * Objects left in the slab. If it was not on the partial list before
3409 * then add it.
81819f0f 3410 */
345c905d 3411 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3412 remove_full(s, n, slab);
3413 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3414 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3415 }
80f08c19 3416 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3417 return;
3418
3419slab_empty:
a973e9dd 3420 if (prior) {
81819f0f 3421 /*
6fbabb20 3422 * Slab on the partial list.
81819f0f 3423 */
bb192ed9 3424 remove_partial(n, slab);
84e554e6 3425 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3426 } else {
6fbabb20 3427 /* Slab must be on the full list */
bb192ed9 3428 remove_full(s, n, slab);
c65c1877 3429 }
2cfb7455 3430
80f08c19 3431 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3432 stat(s, FREE_SLAB);
bb192ed9 3433 discard_slab(s, slab);
81819f0f
CL
3434}
3435
894b8788
CL
3436/*
3437 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3438 * can perform fastpath freeing without additional function calls.
3439 *
3440 * The fastpath is only possible if we are freeing to the current cpu slab
3441 * of this processor. This typically the case if we have just allocated
3442 * the item before.
3443 *
3444 * If fastpath is not possible then fall back to __slab_free where we deal
3445 * with all sorts of special processing.
81084651
JDB
3446 *
3447 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3448 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3449 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3450 */
80a9201a 3451static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3452 struct slab *slab, void *head, void *tail,
80a9201a 3453 int cnt, unsigned long addr)
894b8788 3454{
81084651 3455 void *tail_obj = tail ? : head;
dfb4f096 3456 struct kmem_cache_cpu *c;
8a5ec0ba 3457 unsigned long tid;
964d4bd3 3458
8a5ec0ba
CL
3459redo:
3460 /*
3461 * Determine the currently cpus per cpu slab.
3462 * The cpu may change afterward. However that does not matter since
3463 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3464 * during the cmpxchg then the free will succeed.
8a5ec0ba 3465 */
9b4bc85a
VB
3466 c = raw_cpu_ptr(s->cpu_slab);
3467 tid = READ_ONCE(c->tid);
c016b0bd 3468
9aabf810
JK
3469 /* Same with comment on barrier() in slab_alloc_node() */
3470 barrier();
c016b0bd 3471
bb192ed9 3472 if (likely(slab == c->slab)) {
bd0e7491 3473#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3474 void **freelist = READ_ONCE(c->freelist);
3475
3476 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3477
933393f5 3478 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3479 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3480 freelist, tid,
81084651 3481 head, next_tid(tid)))) {
8a5ec0ba
CL
3482
3483 note_cmpxchg_failure("slab_free", s, tid);
3484 goto redo;
3485 }
bd0e7491
VB
3486#else /* CONFIG_PREEMPT_RT */
3487 /*
3488 * We cannot use the lockless fastpath on PREEMPT_RT because if
3489 * a slowpath has taken the local_lock_irqsave(), it is not
3490 * protected against a fast path operation in an irq handler. So
3491 * we need to take the local_lock. We shouldn't simply defer to
3492 * __slab_free() as that wouldn't use the cpu freelist at all.
3493 */
3494 void **freelist;
3495
3496 local_lock(&s->cpu_slab->lock);
3497 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3498 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3499 local_unlock(&s->cpu_slab->lock);
3500 goto redo;
3501 }
3502 tid = c->tid;
3503 freelist = c->freelist;
3504
3505 set_freepointer(s, tail_obj, freelist);
3506 c->freelist = head;
3507 c->tid = next_tid(tid);
3508
3509 local_unlock(&s->cpu_slab->lock);
3510#endif
84e554e6 3511 stat(s, FREE_FASTPATH);
894b8788 3512 } else
bb192ed9 3513 __slab_free(s, slab, head, tail_obj, cnt, addr);
894b8788 3514
894b8788
CL
3515}
3516
bb192ed9 3517static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3518 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3519 unsigned long addr)
3520{
b77d5b1b 3521 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3522 /*
c3895391
AK
3523 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3524 * to remove objects, whose reuse must be delayed.
80a9201a 3525 */
899447f6 3526 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3527 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3528}
3529
2bd926b4 3530#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3531void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3532{
bb192ed9 3533 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3534}
3535#endif
3536
ed4cd17e
HY
3537void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3538{
3539 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3540}
3541
81819f0f
CL
3542void kmem_cache_free(struct kmem_cache *s, void *x)
3543{
b9ce5ef4
GC
3544 s = cache_from_obj(s, x);
3545 if (!s)
79576102 3546 return;
3544de8e 3547 trace_kmem_cache_free(_RET_IP_, x, s->name);
b77d5b1b 3548 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3549}
3550EXPORT_SYMBOL(kmem_cache_free);
3551
d0ecd894 3552struct detached_freelist {
cc465c3b 3553 struct slab *slab;
d0ecd894
JDB
3554 void *tail;
3555 void *freelist;
3556 int cnt;
376bf125 3557 struct kmem_cache *s;
d0ecd894 3558};
fbd02630 3559
d0ecd894
JDB
3560/*
3561 * This function progressively scans the array with free objects (with
3562 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3563 * slab. It builds a detached freelist directly within the given
3564 * slab/objects. This can happen without any need for
d0ecd894
JDB
3565 * synchronization, because the objects are owned by running process.
3566 * The freelist is build up as a single linked list in the objects.
3567 * The idea is, that this detached freelist can then be bulk
3568 * transferred to the real freelist(s), but only requiring a single
3569 * synchronization primitive. Look ahead in the array is limited due
3570 * to performance reasons.
3571 */
376bf125
JDB
3572static inline
3573int build_detached_freelist(struct kmem_cache *s, size_t size,
3574 void **p, struct detached_freelist *df)
d0ecd894 3575{
d0ecd894
JDB
3576 int lookahead = 3;
3577 void *object;
cc465c3b 3578 struct folio *folio;
b77d5b1b 3579 size_t same;
fbd02630 3580
b77d5b1b 3581 object = p[--size];
cc465c3b 3582 folio = virt_to_folio(object);
ca257195
JDB
3583 if (!s) {
3584 /* Handle kalloc'ed objects */
cc465c3b 3585 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3586 free_large_kmalloc(folio, object);
b77d5b1b 3587 df->slab = NULL;
ca257195
JDB
3588 return size;
3589 }
3590 /* Derive kmem_cache from object */
b77d5b1b
MS
3591 df->slab = folio_slab(folio);
3592 df->s = df->slab->slab_cache;
ca257195 3593 } else {
b77d5b1b 3594 df->slab = folio_slab(folio);
ca257195
JDB
3595 df->s = cache_from_obj(s, object); /* Support for memcg */
3596 }
376bf125 3597
d0ecd894 3598 /* Start new detached freelist */
d0ecd894
JDB
3599 df->tail = object;
3600 df->freelist = object;
d0ecd894
JDB
3601 df->cnt = 1;
3602
b77d5b1b
MS
3603 if (is_kfence_address(object))
3604 return size;
3605
3606 set_freepointer(df->s, object, NULL);
3607
3608 same = size;
d0ecd894
JDB
3609 while (size) {
3610 object = p[--size];
cc465c3b
MWO
3611 /* df->slab is always set at this point */
3612 if (df->slab == virt_to_slab(object)) {
d0ecd894 3613 /* Opportunity build freelist */
376bf125 3614 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3615 df->freelist = object;
3616 df->cnt++;
b77d5b1b
MS
3617 same--;
3618 if (size != same)
3619 swap(p[size], p[same]);
d0ecd894 3620 continue;
fbd02630 3621 }
d0ecd894
JDB
3622
3623 /* Limit look ahead search */
3624 if (!--lookahead)
3625 break;
fbd02630 3626 }
d0ecd894 3627
b77d5b1b 3628 return same;
d0ecd894
JDB
3629}
3630
d0ecd894 3631/* Note that interrupts must be enabled when calling this function. */
376bf125 3632void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3633{
2055e67b 3634 if (!size)
d0ecd894
JDB
3635 return;
3636
3637 do {
3638 struct detached_freelist df;
3639
3640 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3641 if (!df.slab)
d0ecd894
JDB
3642 continue;
3643
b77d5b1b
MS
3644 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3645 _RET_IP_);
d0ecd894 3646 } while (likely(size));
484748f0
CL
3647}
3648EXPORT_SYMBOL(kmem_cache_free_bulk);
3649
994eb764 3650/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3651int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3652 void **p)
484748f0 3653{
994eb764
JDB
3654 struct kmem_cache_cpu *c;
3655 int i;
964d4bd3 3656 struct obj_cgroup *objcg = NULL;
994eb764 3657
03ec0ed5 3658 /* memcg and kmem_cache debug support */
88f2ef73 3659 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
03ec0ed5
JDB
3660 if (unlikely(!s))
3661 return false;
994eb764
JDB
3662 /*
3663 * Drain objects in the per cpu slab, while disabling local
3664 * IRQs, which protects against PREEMPT and interrupts
3665 * handlers invoking normal fastpath.
3666 */
25c00c50 3667 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3668 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3669
3670 for (i = 0; i < size; i++) {
b89fb5ef 3671 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3672
b89fb5ef
AP
3673 if (unlikely(object)) {
3674 p[i] = object;
3675 continue;
3676 }
3677
3678 object = c->freelist;
ebe909e0 3679 if (unlikely(!object)) {
fd4d9c7d
JH
3680 /*
3681 * We may have removed an object from c->freelist using
3682 * the fastpath in the previous iteration; in that case,
3683 * c->tid has not been bumped yet.
3684 * Since ___slab_alloc() may reenable interrupts while
3685 * allocating memory, we should bump c->tid now.
3686 */
3687 c->tid = next_tid(c->tid);
3688
bd0e7491 3689 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3690
ebe909e0
JDB
3691 /*
3692 * Invoking slow path likely have side-effect
3693 * of re-populating per CPU c->freelist
3694 */
87098373 3695 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3696 _RET_IP_, c);
87098373
CL
3697 if (unlikely(!p[i]))
3698 goto error;
3699
ebe909e0 3700 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3701 maybe_wipe_obj_freeptr(s, p[i]);
3702
bd0e7491 3703 local_lock_irq(&s->cpu_slab->lock);
e500059b 3704
ebe909e0
JDB
3705 continue; /* goto for-loop */
3706 }
994eb764
JDB
3707 c->freelist = get_freepointer(s, object);
3708 p[i] = object;
0f181f9f 3709 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3710 }
3711 c->tid = next_tid(c->tid);
bd0e7491 3712 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3713 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3714
da844b78
AK
3715 /*
3716 * memcg and kmem_cache debug support and memory initialization.
3717 * Done outside of the IRQ disabled fastpath loop.
3718 */
3719 slab_post_alloc_hook(s, objcg, flags, size, p,
3720 slab_want_init_on_alloc(flags, s));
865762a8 3721 return i;
87098373 3722error:
25c00c50 3723 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3724 slab_post_alloc_hook(s, objcg, flags, i, p, false);
2055e67b 3725 kmem_cache_free_bulk(s, i, p);
865762a8 3726 return 0;
484748f0
CL
3727}
3728EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3729
3730
81819f0f 3731/*
672bba3a
CL
3732 * Object placement in a slab is made very easy because we always start at
3733 * offset 0. If we tune the size of the object to the alignment then we can
3734 * get the required alignment by putting one properly sized object after
3735 * another.
81819f0f
CL
3736 *
3737 * Notice that the allocation order determines the sizes of the per cpu
3738 * caches. Each processor has always one slab available for allocations.
3739 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3740 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3741 * locking overhead.
81819f0f
CL
3742 */
3743
3744/*
f0953a1b 3745 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3746 * and slab fragmentation. A higher order reduces the number of partial slabs
3747 * and increases the number of allocations possible without having to
3748 * take the list_lock.
3749 */
19af27af
AD
3750static unsigned int slub_min_order;
3751static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3752static unsigned int slub_min_objects;
81819f0f 3753
81819f0f
CL
3754/*
3755 * Calculate the order of allocation given an slab object size.
3756 *
672bba3a
CL
3757 * The order of allocation has significant impact on performance and other
3758 * system components. Generally order 0 allocations should be preferred since
3759 * order 0 does not cause fragmentation in the page allocator. Larger objects
3760 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3761 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3762 * would be wasted.
3763 *
3764 * In order to reach satisfactory performance we must ensure that a minimum
3765 * number of objects is in one slab. Otherwise we may generate too much
3766 * activity on the partial lists which requires taking the list_lock. This is
3767 * less a concern for large slabs though which are rarely used.
81819f0f 3768 *
672bba3a
CL
3769 * slub_max_order specifies the order where we begin to stop considering the
3770 * number of objects in a slab as critical. If we reach slub_max_order then
3771 * we try to keep the page order as low as possible. So we accept more waste
3772 * of space in favor of a small page order.
81819f0f 3773 *
672bba3a
CL
3774 * Higher order allocations also allow the placement of more objects in a
3775 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3776 * requested a higher minimum order then we start with that one instead of
672bba3a 3777 * the smallest order which will fit the object.
81819f0f 3778 */
d122019b 3779static inline unsigned int calc_slab_order(unsigned int size,
19af27af 3780 unsigned int min_objects, unsigned int max_order,
9736d2a9 3781 unsigned int fract_leftover)
81819f0f 3782{
19af27af
AD
3783 unsigned int min_order = slub_min_order;
3784 unsigned int order;
81819f0f 3785
9736d2a9 3786 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3787 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3788
9736d2a9 3789 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3790 order <= max_order; order++) {
81819f0f 3791
19af27af
AD
3792 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3793 unsigned int rem;
81819f0f 3794
9736d2a9 3795 rem = slab_size % size;
81819f0f 3796
5e6d444e 3797 if (rem <= slab_size / fract_leftover)
81819f0f 3798 break;
81819f0f 3799 }
672bba3a 3800
81819f0f
CL
3801 return order;
3802}
3803
9736d2a9 3804static inline int calculate_order(unsigned int size)
5e6d444e 3805{
19af27af
AD
3806 unsigned int order;
3807 unsigned int min_objects;
3808 unsigned int max_objects;
3286222f 3809 unsigned int nr_cpus;
5e6d444e
CL
3810
3811 /*
3812 * Attempt to find best configuration for a slab. This
3813 * works by first attempting to generate a layout with
3814 * the best configuration and backing off gradually.
3815 *
422ff4d7 3816 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3817 * we reduce the minimum objects required in a slab.
3818 */
3819 min_objects = slub_min_objects;
3286222f
VB
3820 if (!min_objects) {
3821 /*
3822 * Some architectures will only update present cpus when
3823 * onlining them, so don't trust the number if it's just 1. But
3824 * we also don't want to use nr_cpu_ids always, as on some other
3825 * architectures, there can be many possible cpus, but never
3826 * onlined. Here we compromise between trying to avoid too high
3827 * order on systems that appear larger than they are, and too
3828 * low order on systems that appear smaller than they are.
3829 */
3830 nr_cpus = num_present_cpus();
3831 if (nr_cpus <= 1)
3832 nr_cpus = nr_cpu_ids;
3833 min_objects = 4 * (fls(nr_cpus) + 1);
3834 }
9736d2a9 3835 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3836 min_objects = min(min_objects, max_objects);
3837
5e6d444e 3838 while (min_objects > 1) {
19af27af
AD
3839 unsigned int fraction;
3840
c124f5b5 3841 fraction = 16;
5e6d444e 3842 while (fraction >= 4) {
d122019b 3843 order = calc_slab_order(size, min_objects,
9736d2a9 3844 slub_max_order, fraction);
5e6d444e
CL
3845 if (order <= slub_max_order)
3846 return order;
3847 fraction /= 2;
3848 }
5086c389 3849 min_objects--;
5e6d444e
CL
3850 }
3851
3852 /*
3853 * We were unable to place multiple objects in a slab. Now
3854 * lets see if we can place a single object there.
3855 */
d122019b 3856 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3857 if (order <= slub_max_order)
3858 return order;
3859
3860 /*
3861 * Doh this slab cannot be placed using slub_max_order.
3862 */
d122019b 3863 order = calc_slab_order(size, 1, MAX_ORDER, 1);
818cf590 3864 if (order < MAX_ORDER)
5e6d444e
CL
3865 return order;
3866 return -ENOSYS;
3867}
3868
5595cffc 3869static void
4053497d 3870init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3871{
3872 n->nr_partial = 0;
81819f0f
CL
3873 spin_lock_init(&n->list_lock);
3874 INIT_LIST_HEAD(&n->partial);
8ab1372f 3875#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3876 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3877 atomic_long_set(&n->total_objects, 0);
643b1138 3878 INIT_LIST_HEAD(&n->full);
8ab1372f 3879#endif
81819f0f
CL
3880}
3881
55136592 3882static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3883{
6c182dc0 3884 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3885 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3886
8a5ec0ba 3887 /*
d4d84fef
CM
3888 * Must align to double word boundary for the double cmpxchg
3889 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3890 */
d4d84fef
CM
3891 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3892 2 * sizeof(void *));
8a5ec0ba
CL
3893
3894 if (!s->cpu_slab)
3895 return 0;
3896
3897 init_kmem_cache_cpus(s);
4c93c355 3898
8a5ec0ba 3899 return 1;
4c93c355 3900}
4c93c355 3901
51df1142
CL
3902static struct kmem_cache *kmem_cache_node;
3903
81819f0f
CL
3904/*
3905 * No kmalloc_node yet so do it by hand. We know that this is the first
3906 * slab on the node for this slabcache. There are no concurrent accesses
3907 * possible.
3908 *
721ae22a
ZYW
3909 * Note that this function only works on the kmem_cache_node
3910 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3911 * memory on a fresh node that has no slab structures yet.
81819f0f 3912 */
55136592 3913static void early_kmem_cache_node_alloc(int node)
81819f0f 3914{
bb192ed9 3915 struct slab *slab;
81819f0f
CL
3916 struct kmem_cache_node *n;
3917
51df1142 3918 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3919
bb192ed9 3920 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 3921
bb192ed9
VB
3922 BUG_ON(!slab);
3923 if (slab_nid(slab) != node) {
f9f58285
FF
3924 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3925 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3926 }
3927
bb192ed9 3928 n = slab->freelist;
81819f0f 3929 BUG_ON(!n);
8ab1372f 3930#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3931 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3932 init_tracking(kmem_cache_node, n);
8ab1372f 3933#endif
da844b78 3934 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
3935 slab->freelist = get_freepointer(kmem_cache_node, n);
3936 slab->inuse = 1;
3937 slab->frozen = 0;
12b22386 3938 kmem_cache_node->node[node] = n;
4053497d 3939 init_kmem_cache_node(n);
bb192ed9 3940 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 3941
67b6c900 3942 /*
1e4dd946
SR
3943 * No locks need to be taken here as it has just been
3944 * initialized and there is no concurrent access.
67b6c900 3945 */
bb192ed9 3946 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
3947}
3948
3949static void free_kmem_cache_nodes(struct kmem_cache *s)
3950{
3951 int node;
fa45dc25 3952 struct kmem_cache_node *n;
81819f0f 3953
fa45dc25 3954 for_each_kmem_cache_node(s, node, n) {
81819f0f 3955 s->node[node] = NULL;
ea37df54 3956 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3957 }
3958}
3959
52b4b950
DS
3960void __kmem_cache_release(struct kmem_cache *s)
3961{
210e7a43 3962 cache_random_seq_destroy(s);
52b4b950
DS
3963 free_percpu(s->cpu_slab);
3964 free_kmem_cache_nodes(s);
3965}
3966
55136592 3967static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3968{
3969 int node;
81819f0f 3970
7e1fa93d 3971 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3972 struct kmem_cache_node *n;
3973
73367bd8 3974 if (slab_state == DOWN) {
55136592 3975 early_kmem_cache_node_alloc(node);
73367bd8
AD
3976 continue;
3977 }
51df1142 3978 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3979 GFP_KERNEL, node);
81819f0f 3980
73367bd8
AD
3981 if (!n) {
3982 free_kmem_cache_nodes(s);
3983 return 0;
81819f0f 3984 }
73367bd8 3985
4053497d 3986 init_kmem_cache_node(n);
ea37df54 3987 s->node[node] = n;
81819f0f
CL
3988 }
3989 return 1;
3990}
81819f0f 3991
e6d0e1dc
WY
3992static void set_cpu_partial(struct kmem_cache *s)
3993{
3994#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
3995 unsigned int nr_objects;
3996
e6d0e1dc
WY
3997 /*
3998 * cpu_partial determined the maximum number of objects kept in the
3999 * per cpu partial lists of a processor.
4000 *
4001 * Per cpu partial lists mainly contain slabs that just have one
4002 * object freed. If they are used for allocation then they can be
4003 * filled up again with minimal effort. The slab will never hit the
4004 * per node partial lists and therefore no locking will be required.
4005 *
b47291ef
VB
4006 * For backwards compatibility reasons, this is determined as number
4007 * of objects, even though we now limit maximum number of pages, see
4008 * slub_set_cpu_partial()
e6d0e1dc
WY
4009 */
4010 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4011 nr_objects = 0;
e6d0e1dc 4012 else if (s->size >= PAGE_SIZE)
b47291ef 4013 nr_objects = 6;
e6d0e1dc 4014 else if (s->size >= 1024)
23e98ad1 4015 nr_objects = 24;
e6d0e1dc 4016 else if (s->size >= 256)
23e98ad1 4017 nr_objects = 52;
e6d0e1dc 4018 else
23e98ad1 4019 nr_objects = 120;
b47291ef
VB
4020
4021 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4022#endif
4023}
4024
81819f0f
CL
4025/*
4026 * calculate_sizes() determines the order and the distribution of data within
4027 * a slab object.
4028 */
ae44d81d 4029static int calculate_sizes(struct kmem_cache *s)
81819f0f 4030{
d50112ed 4031 slab_flags_t flags = s->flags;
be4a7988 4032 unsigned int size = s->object_size;
19af27af 4033 unsigned int order;
81819f0f 4034
d8b42bf5
CL
4035 /*
4036 * Round up object size to the next word boundary. We can only
4037 * place the free pointer at word boundaries and this determines
4038 * the possible location of the free pointer.
4039 */
4040 size = ALIGN(size, sizeof(void *));
4041
4042#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4043 /*
4044 * Determine if we can poison the object itself. If the user of
4045 * the slab may touch the object after free or before allocation
4046 * then we should never poison the object itself.
4047 */
5f0d5a3a 4048 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4049 !s->ctor)
81819f0f
CL
4050 s->flags |= __OBJECT_POISON;
4051 else
4052 s->flags &= ~__OBJECT_POISON;
4053
81819f0f
CL
4054
4055 /*
672bba3a 4056 * If we are Redzoning then check if there is some space between the
81819f0f 4057 * end of the object and the free pointer. If not then add an
672bba3a 4058 * additional word to have some bytes to store Redzone information.
81819f0f 4059 */
3b0efdfa 4060 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4061 size += sizeof(void *);
41ecc55b 4062#endif
81819f0f
CL
4063
4064 /*
672bba3a 4065 * With that we have determined the number of bytes in actual use
e41a49fa 4066 * by the object and redzoning.
81819f0f
CL
4067 */
4068 s->inuse = size;
4069
74c1d3e0
KC
4070 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4071 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4072 s->ctor) {
81819f0f
CL
4073 /*
4074 * Relocate free pointer after the object if it is not
4075 * permitted to overwrite the first word of the object on
4076 * kmem_cache_free.
4077 *
4078 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4079 * destructor, are poisoning the objects, or are
4080 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4081 *
4082 * The assumption that s->offset >= s->inuse means free
4083 * pointer is outside of the object is used in the
4084 * freeptr_outside_object() function. If that is no
4085 * longer true, the function needs to be modified.
81819f0f
CL
4086 */
4087 s->offset = size;
4088 size += sizeof(void *);
e41a49fa 4089 } else {
3202fa62
KC
4090 /*
4091 * Store freelist pointer near middle of object to keep
4092 * it away from the edges of the object to avoid small
4093 * sized over/underflows from neighboring allocations.
4094 */
e41a49fa 4095 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4096 }
4097
c12b3c62 4098#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4099 if (flags & SLAB_STORE_USER)
4100 /*
4101 * Need to store information about allocs and frees after
4102 * the object.
4103 */
4104 size += 2 * sizeof(struct track);
80a9201a 4105#endif
81819f0f 4106
80a9201a
AP
4107 kasan_cache_create(s, &size, &s->flags);
4108#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4109 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4110 /*
4111 * Add some empty padding so that we can catch
4112 * overwrites from earlier objects rather than let
4113 * tracking information or the free pointer be
0211a9c8 4114 * corrupted if a user writes before the start
81819f0f
CL
4115 * of the object.
4116 */
4117 size += sizeof(void *);
d86bd1be
JK
4118
4119 s->red_left_pad = sizeof(void *);
4120 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4121 size += s->red_left_pad;
4122 }
41ecc55b 4123#endif
672bba3a 4124
81819f0f
CL
4125 /*
4126 * SLUB stores one object immediately after another beginning from
4127 * offset 0. In order to align the objects we have to simply size
4128 * each object to conform to the alignment.
4129 */
45906855 4130 size = ALIGN(size, s->align);
81819f0f 4131 s->size = size;
4138fdfc 4132 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4133 order = calculate_order(size);
81819f0f 4134
19af27af 4135 if ((int)order < 0)
81819f0f
CL
4136 return 0;
4137
b7a49f0d 4138 s->allocflags = 0;
834f3d11 4139 if (order)
b7a49f0d
CL
4140 s->allocflags |= __GFP_COMP;
4141
4142 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4143 s->allocflags |= GFP_DMA;
b7a49f0d 4144
6d6ea1e9
NB
4145 if (s->flags & SLAB_CACHE_DMA32)
4146 s->allocflags |= GFP_DMA32;
4147
b7a49f0d
CL
4148 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4149 s->allocflags |= __GFP_RECLAIMABLE;
4150
81819f0f
CL
4151 /*
4152 * Determine the number of objects per slab
4153 */
9736d2a9
MW
4154 s->oo = oo_make(order, size);
4155 s->min = oo_make(get_order(size), size);
81819f0f 4156
834f3d11 4157 return !!oo_objects(s->oo);
81819f0f
CL
4158}
4159
d50112ed 4160static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4161{
37540008 4162 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4163#ifdef CONFIG_SLAB_FREELIST_HARDENED
4164 s->random = get_random_long();
4165#endif
81819f0f 4166
ae44d81d 4167 if (!calculate_sizes(s))
81819f0f 4168 goto error;
3de47213
DR
4169 if (disable_higher_order_debug) {
4170 /*
4171 * Disable debugging flags that store metadata if the min slab
4172 * order increased.
4173 */
3b0efdfa 4174 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4175 s->flags &= ~DEBUG_METADATA_FLAGS;
4176 s->offset = 0;
ae44d81d 4177 if (!calculate_sizes(s))
3de47213
DR
4178 goto error;
4179 }
4180 }
81819f0f 4181
2565409f
HC
4182#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4183 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4184 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4185 /* Enable fast mode */
4186 s->flags |= __CMPXCHG_DOUBLE;
4187#endif
4188
3b89d7d8 4189 /*
c2092c12 4190 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4191 * list to avoid pounding the page allocator excessively.
4192 */
5182f3c9
HY
4193 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4194 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4195
e6d0e1dc 4196 set_cpu_partial(s);
49e22585 4197
81819f0f 4198#ifdef CONFIG_NUMA
e2cb96b7 4199 s->remote_node_defrag_ratio = 1000;
81819f0f 4200#endif
210e7a43
TG
4201
4202 /* Initialize the pre-computed randomized freelist if slab is up */
4203 if (slab_state >= UP) {
4204 if (init_cache_random_seq(s))
4205 goto error;
4206 }
4207
55136592 4208 if (!init_kmem_cache_nodes(s))
dfb4f096 4209 goto error;
81819f0f 4210
55136592 4211 if (alloc_kmem_cache_cpus(s))
278b1bb1 4212 return 0;
ff12059e 4213
81819f0f 4214error:
9037c576 4215 __kmem_cache_release(s);
278b1bb1 4216 return -EINVAL;
81819f0f 4217}
81819f0f 4218
bb192ed9 4219static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4220 const char *text)
33b12c38
CL
4221{
4222#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4223 void *addr = slab_address(slab);
a2b4ae8b 4224 unsigned long flags;
55860d96 4225 unsigned long *map;
33b12c38 4226 void *p;
aa456c7a 4227
bb192ed9
VB
4228 slab_err(s, slab, text, s->name);
4229 slab_lock(slab, &flags);
33b12c38 4230
bb192ed9
VB
4231 map = get_map(s, slab);
4232 for_each_object(p, s, addr, slab->objects) {
33b12c38 4233
4138fdfc 4234 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4235 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4236 print_tracking(s, p);
4237 }
4238 }
55860d96 4239 put_map(map);
bb192ed9 4240 slab_unlock(slab, &flags);
33b12c38
CL
4241#endif
4242}
4243
81819f0f 4244/*
599870b1 4245 * Attempt to free all partial slabs on a node.
52b4b950
DS
4246 * This is called from __kmem_cache_shutdown(). We must take list_lock
4247 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4248 */
599870b1 4249static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4250{
60398923 4251 LIST_HEAD(discard);
bb192ed9 4252 struct slab *slab, *h;
81819f0f 4253
52b4b950
DS
4254 BUG_ON(irqs_disabled());
4255 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4256 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4257 if (!slab->inuse) {
4258 remove_partial(n, slab);
4259 list_add(&slab->slab_list, &discard);
33b12c38 4260 } else {
bb192ed9 4261 list_slab_objects(s, slab,
55860d96 4262 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4263 }
33b12c38 4264 }
52b4b950 4265 spin_unlock_irq(&n->list_lock);
60398923 4266
bb192ed9
VB
4267 list_for_each_entry_safe(slab, h, &discard, slab_list)
4268 discard_slab(s, slab);
81819f0f
CL
4269}
4270
f9e13c0a
SB
4271bool __kmem_cache_empty(struct kmem_cache *s)
4272{
4273 int node;
4274 struct kmem_cache_node *n;
4275
4276 for_each_kmem_cache_node(s, node, n)
4277 if (n->nr_partial || slabs_node(s, node))
4278 return false;
4279 return true;
4280}
4281
81819f0f 4282/*
672bba3a 4283 * Release all resources used by a slab cache.
81819f0f 4284 */
52b4b950 4285int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4286{
4287 int node;
fa45dc25 4288 struct kmem_cache_node *n;
81819f0f 4289
5a836bf6 4290 flush_all_cpus_locked(s);
81819f0f 4291 /* Attempt to free all objects */
fa45dc25 4292 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4293 free_partial(s, n);
4294 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4295 return 1;
4296 }
81819f0f
CL
4297 return 0;
4298}
4299
5bb1bb35 4300#ifdef CONFIG_PRINTK
2dfe63e6 4301void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4302{
4303 void *base;
4304 int __maybe_unused i;
4305 unsigned int objnr;
4306 void *objp;
4307 void *objp0;
7213230a 4308 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4309 struct track __maybe_unused *trackp;
4310
4311 kpp->kp_ptr = object;
7213230a 4312 kpp->kp_slab = slab;
8e7f37f2 4313 kpp->kp_slab_cache = s;
7213230a 4314 base = slab_address(slab);
8e7f37f2
PM
4315 objp0 = kasan_reset_tag(object);
4316#ifdef CONFIG_SLUB_DEBUG
4317 objp = restore_red_left(s, objp0);
4318#else
4319 objp = objp0;
4320#endif
40f3bf0c 4321 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4322 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4323 objp = base + s->size * objnr;
4324 kpp->kp_objp = objp;
7213230a
MWO
4325 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4326 || (objp - base) % s->size) ||
8e7f37f2
PM
4327 !(s->flags & SLAB_STORE_USER))
4328 return;
4329#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4330 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4331 trackp = get_track(s, objp, TRACK_ALLOC);
4332 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4333#ifdef CONFIG_STACKDEPOT
4334 {
4335 depot_stack_handle_t handle;
4336 unsigned long *entries;
4337 unsigned int nr_entries;
78869146 4338
5cf909c5
OG
4339 handle = READ_ONCE(trackp->handle);
4340 if (handle) {
4341 nr_entries = stack_depot_fetch(handle, &entries);
4342 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4343 kpp->kp_stack[i] = (void *)entries[i];
4344 }
78869146 4345
5cf909c5
OG
4346 trackp = get_track(s, objp, TRACK_FREE);
4347 handle = READ_ONCE(trackp->handle);
4348 if (handle) {
4349 nr_entries = stack_depot_fetch(handle, &entries);
4350 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4351 kpp->kp_free_stack[i] = (void *)entries[i];
4352 }
e548eaa1 4353 }
8e7f37f2
PM
4354#endif
4355#endif
4356}
5bb1bb35 4357#endif
8e7f37f2 4358
81819f0f
CL
4359/********************************************************************
4360 * Kmalloc subsystem
4361 *******************************************************************/
4362
81819f0f
CL
4363static int __init setup_slub_min_order(char *str)
4364{
19af27af 4365 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4366
4367 return 1;
4368}
4369
4370__setup("slub_min_order=", setup_slub_min_order);
4371
4372static int __init setup_slub_max_order(char *str)
4373{
19af27af
AD
4374 get_option(&str, (int *)&slub_max_order);
4375 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4376
4377 return 1;
4378}
4379
4380__setup("slub_max_order=", setup_slub_max_order);
4381
4382static int __init setup_slub_min_objects(char *str)
4383{
19af27af 4384 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4385
4386 return 1;
4387}
4388
4389__setup("slub_min_objects=", setup_slub_min_objects);
4390
ed18adc1
KC
4391#ifdef CONFIG_HARDENED_USERCOPY
4392/*
afcc90f8
KC
4393 * Rejects incorrectly sized objects and objects that are to be copied
4394 * to/from userspace but do not fall entirely within the containing slab
4395 * cache's usercopy region.
ed18adc1
KC
4396 *
4397 * Returns NULL if check passes, otherwise const char * to name of cache
4398 * to indicate an error.
4399 */
0b3eb091
MWO
4400void __check_heap_object(const void *ptr, unsigned long n,
4401 const struct slab *slab, bool to_user)
ed18adc1
KC
4402{
4403 struct kmem_cache *s;
44065b2e 4404 unsigned int offset;
b89fb5ef 4405 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4406
96fedce2
AK
4407 ptr = kasan_reset_tag(ptr);
4408
ed18adc1 4409 /* Find object and usable object size. */
0b3eb091 4410 s = slab->slab_cache;
ed18adc1
KC
4411
4412 /* Reject impossible pointers. */
0b3eb091 4413 if (ptr < slab_address(slab))
f4e6e289
KC
4414 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4415 to_user, 0, n);
ed18adc1
KC
4416
4417 /* Find offset within object. */
b89fb5ef
AP
4418 if (is_kfence)
4419 offset = ptr - kfence_object_start(ptr);
4420 else
0b3eb091 4421 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4422
4423 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4424 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4425 if (offset < s->red_left_pad)
f4e6e289
KC
4426 usercopy_abort("SLUB object in left red zone",
4427 s->name, to_user, offset, n);
ed18adc1
KC
4428 offset -= s->red_left_pad;
4429 }
4430
afcc90f8
KC
4431 /* Allow address range falling entirely within usercopy region. */
4432 if (offset >= s->useroffset &&
4433 offset - s->useroffset <= s->usersize &&
4434 n <= s->useroffset - offset + s->usersize)
f4e6e289 4435 return;
ed18adc1 4436
f4e6e289 4437 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4438}
4439#endif /* CONFIG_HARDENED_USERCOPY */
4440
832f37f5
VD
4441#define SHRINK_PROMOTE_MAX 32
4442
2086d26a 4443/*
832f37f5
VD
4444 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4445 * up most to the head of the partial lists. New allocations will then
4446 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4447 *
4448 * The slabs with the least items are placed last. This results in them
4449 * being allocated from last increasing the chance that the last objects
4450 * are freed in them.
2086d26a 4451 */
5a836bf6 4452static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4453{
4454 int node;
4455 int i;
4456 struct kmem_cache_node *n;
bb192ed9
VB
4457 struct slab *slab;
4458 struct slab *t;
832f37f5
VD
4459 struct list_head discard;
4460 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4461 unsigned long flags;
ce3712d7 4462 int ret = 0;
2086d26a 4463
fa45dc25 4464 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4465 INIT_LIST_HEAD(&discard);
4466 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4467 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4468
4469 spin_lock_irqsave(&n->list_lock, flags);
4470
4471 /*
832f37f5 4472 * Build lists of slabs to discard or promote.
2086d26a 4473 *
672bba3a 4474 * Note that concurrent frees may occur while we hold the
c2092c12 4475 * list_lock. slab->inuse here is the upper limit.
2086d26a 4476 */
bb192ed9
VB
4477 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4478 int free = slab->objects - slab->inuse;
832f37f5 4479
c2092c12 4480 /* Do not reread slab->inuse */
832f37f5
VD
4481 barrier();
4482
4483 /* We do not keep full slabs on the list */
4484 BUG_ON(free <= 0);
4485
bb192ed9
VB
4486 if (free == slab->objects) {
4487 list_move(&slab->slab_list, &discard);
69cb8e6b 4488 n->nr_partial--;
832f37f5 4489 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4490 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4491 }
4492
2086d26a 4493 /*
832f37f5
VD
4494 * Promote the slabs filled up most to the head of the
4495 * partial list.
2086d26a 4496 */
832f37f5
VD
4497 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4498 list_splice(promote + i, &n->partial);
2086d26a 4499
2086d26a 4500 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4501
4502 /* Release empty slabs */
bb192ed9
VB
4503 list_for_each_entry_safe(slab, t, &discard, slab_list)
4504 discard_slab(s, slab);
ce3712d7
VD
4505
4506 if (slabs_node(s, node))
4507 ret = 1;
2086d26a
CL
4508 }
4509
ce3712d7 4510 return ret;
2086d26a 4511}
2086d26a 4512
5a836bf6
SAS
4513int __kmem_cache_shrink(struct kmem_cache *s)
4514{
4515 flush_all(s);
4516 return __kmem_cache_do_shrink(s);
4517}
4518
b9049e23
YG
4519static int slab_mem_going_offline_callback(void *arg)
4520{
4521 struct kmem_cache *s;
4522
18004c5d 4523 mutex_lock(&slab_mutex);
5a836bf6
SAS
4524 list_for_each_entry(s, &slab_caches, list) {
4525 flush_all_cpus_locked(s);
4526 __kmem_cache_do_shrink(s);
4527 }
18004c5d 4528 mutex_unlock(&slab_mutex);
b9049e23
YG
4529
4530 return 0;
4531}
4532
4533static void slab_mem_offline_callback(void *arg)
4534{
b9049e23
YG
4535 struct memory_notify *marg = arg;
4536 int offline_node;
4537
b9d5ab25 4538 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4539
4540 /*
4541 * If the node still has available memory. we need kmem_cache_node
4542 * for it yet.
4543 */
4544 if (offline_node < 0)
4545 return;
4546
18004c5d 4547 mutex_lock(&slab_mutex);
7e1fa93d 4548 node_clear(offline_node, slab_nodes);
666716fd
VB
4549 /*
4550 * We no longer free kmem_cache_node structures here, as it would be
4551 * racy with all get_node() users, and infeasible to protect them with
4552 * slab_mutex.
4553 */
18004c5d 4554 mutex_unlock(&slab_mutex);
b9049e23
YG
4555}
4556
4557static int slab_mem_going_online_callback(void *arg)
4558{
4559 struct kmem_cache_node *n;
4560 struct kmem_cache *s;
4561 struct memory_notify *marg = arg;
b9d5ab25 4562 int nid = marg->status_change_nid_normal;
b9049e23
YG
4563 int ret = 0;
4564
4565 /*
4566 * If the node's memory is already available, then kmem_cache_node is
4567 * already created. Nothing to do.
4568 */
4569 if (nid < 0)
4570 return 0;
4571
4572 /*
0121c619 4573 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4574 * allocate a kmem_cache_node structure in order to bring the node
4575 * online.
4576 */
18004c5d 4577 mutex_lock(&slab_mutex);
b9049e23 4578 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4579 /*
4580 * The structure may already exist if the node was previously
4581 * onlined and offlined.
4582 */
4583 if (get_node(s, nid))
4584 continue;
b9049e23
YG
4585 /*
4586 * XXX: kmem_cache_alloc_node will fallback to other nodes
4587 * since memory is not yet available from the node that
4588 * is brought up.
4589 */
8de66a0c 4590 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4591 if (!n) {
4592 ret = -ENOMEM;
4593 goto out;
4594 }
4053497d 4595 init_kmem_cache_node(n);
b9049e23
YG
4596 s->node[nid] = n;
4597 }
7e1fa93d
VB
4598 /*
4599 * Any cache created after this point will also have kmem_cache_node
4600 * initialized for the new node.
4601 */
4602 node_set(nid, slab_nodes);
b9049e23 4603out:
18004c5d 4604 mutex_unlock(&slab_mutex);
b9049e23
YG
4605 return ret;
4606}
4607
4608static int slab_memory_callback(struct notifier_block *self,
4609 unsigned long action, void *arg)
4610{
4611 int ret = 0;
4612
4613 switch (action) {
4614 case MEM_GOING_ONLINE:
4615 ret = slab_mem_going_online_callback(arg);
4616 break;
4617 case MEM_GOING_OFFLINE:
4618 ret = slab_mem_going_offline_callback(arg);
4619 break;
4620 case MEM_OFFLINE:
4621 case MEM_CANCEL_ONLINE:
4622 slab_mem_offline_callback(arg);
4623 break;
4624 case MEM_ONLINE:
4625 case MEM_CANCEL_OFFLINE:
4626 break;
4627 }
dc19f9db
KH
4628 if (ret)
4629 ret = notifier_from_errno(ret);
4630 else
4631 ret = NOTIFY_OK;
b9049e23
YG
4632 return ret;
4633}
4634
3ac38faa
AM
4635static struct notifier_block slab_memory_callback_nb = {
4636 .notifier_call = slab_memory_callback,
4637 .priority = SLAB_CALLBACK_PRI,
4638};
b9049e23 4639
81819f0f
CL
4640/********************************************************************
4641 * Basic setup of slabs
4642 *******************************************************************/
4643
51df1142
CL
4644/*
4645 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4646 * the page allocator. Allocate them properly then fix up the pointers
4647 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4648 */
4649
dffb4d60 4650static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4651{
4652 int node;
dffb4d60 4653 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4654 struct kmem_cache_node *n;
51df1142 4655
dffb4d60 4656 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4657
7d557b3c
GC
4658 /*
4659 * This runs very early, and only the boot processor is supposed to be
4660 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4661 * IPIs around.
4662 */
4663 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4664 for_each_kmem_cache_node(s, node, n) {
bb192ed9 4665 struct slab *p;
51df1142 4666
916ac052 4667 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4668 p->slab_cache = s;
51df1142 4669
607bf324 4670#ifdef CONFIG_SLUB_DEBUG
916ac052 4671 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4672 p->slab_cache = s;
51df1142 4673#endif
51df1142 4674 }
dffb4d60
CL
4675 list_add(&s->list, &slab_caches);
4676 return s;
51df1142
CL
4677}
4678
81819f0f
CL
4679void __init kmem_cache_init(void)
4680{
dffb4d60
CL
4681 static __initdata struct kmem_cache boot_kmem_cache,
4682 boot_kmem_cache_node;
7e1fa93d 4683 int node;
51df1142 4684
fc8d8620
SG
4685 if (debug_guardpage_minorder())
4686 slub_max_order = 0;
4687
79270291
SB
4688 /* Print slub debugging pointers without hashing */
4689 if (__slub_debug_enabled())
4690 no_hash_pointers_enable(NULL);
4691
dffb4d60
CL
4692 kmem_cache_node = &boot_kmem_cache_node;
4693 kmem_cache = &boot_kmem_cache;
51df1142 4694
7e1fa93d
VB
4695 /*
4696 * Initialize the nodemask for which we will allocate per node
4697 * structures. Here we don't need taking slab_mutex yet.
4698 */
4699 for_each_node_state(node, N_NORMAL_MEMORY)
4700 node_set(node, slab_nodes);
4701
dffb4d60 4702 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4703 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4704
3ac38faa 4705 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4706
4707 /* Able to allocate the per node structures */
4708 slab_state = PARTIAL;
4709
dffb4d60
CL
4710 create_boot_cache(kmem_cache, "kmem_cache",
4711 offsetof(struct kmem_cache, node) +
4712 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4713 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4714
dffb4d60 4715 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4716 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4717
4718 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4719 setup_kmalloc_cache_index_table();
f97d5f63 4720 create_kmalloc_caches(0);
81819f0f 4721
210e7a43
TG
4722 /* Setup random freelists for each cache */
4723 init_freelist_randomization();
4724
a96a87bf
SAS
4725 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4726 slub_cpu_dead);
81819f0f 4727
b9726c26 4728 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4729 cache_line_size(),
81819f0f
CL
4730 slub_min_order, slub_max_order, slub_min_objects,
4731 nr_cpu_ids, nr_node_ids);
4732}
4733
7e85ee0c
PE
4734void __init kmem_cache_init_late(void)
4735{
7e85ee0c
PE
4736}
4737
2633d7a0 4738struct kmem_cache *
f4957d5b 4739__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4740 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4741{
10befea9 4742 struct kmem_cache *s;
81819f0f 4743
a44cb944 4744 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 4745 if (s) {
efb93527
XS
4746 if (sysfs_slab_alias(s, name))
4747 return NULL;
4748
81819f0f 4749 s->refcount++;
84d0ddd6 4750
81819f0f
CL
4751 /*
4752 * Adjust the object sizes so that we clear
4753 * the complete object on kzalloc.
4754 */
1b473f29 4755 s->object_size = max(s->object_size, size);
52ee6d74 4756 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 4757 }
6446faa2 4758
cbb79694
CL
4759 return s;
4760}
84c1cf62 4761
d50112ed 4762int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4763{
aac3a166
PE
4764 int err;
4765
4766 err = kmem_cache_open(s, flags);
4767 if (err)
4768 return err;
20cea968 4769
45530c44
CL
4770 /* Mutex is not taken during early boot */
4771 if (slab_state <= UP)
4772 return 0;
4773
aac3a166 4774 err = sysfs_slab_add(s);
67823a54 4775 if (err) {
52b4b950 4776 __kmem_cache_release(s);
67823a54
ML
4777 return err;
4778 }
20cea968 4779
64dd6849
FM
4780 if (s->flags & SLAB_STORE_USER)
4781 debugfs_slab_add(s);
4782
67823a54 4783 return 0;
81819f0f 4784}
81819f0f 4785
ab4d5ed5 4786#ifdef CONFIG_SYSFS
bb192ed9 4787static int count_inuse(struct slab *slab)
205ab99d 4788{
bb192ed9 4789 return slab->inuse;
205ab99d
CL
4790}
4791
bb192ed9 4792static int count_total(struct slab *slab)
205ab99d 4793{
bb192ed9 4794 return slab->objects;
205ab99d 4795}
ab4d5ed5 4796#endif
205ab99d 4797
ab4d5ed5 4798#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4799static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 4800 unsigned long *obj_map)
53e15af0
CL
4801{
4802 void *p;
bb192ed9 4803 void *addr = slab_address(slab);
a2b4ae8b 4804 unsigned long flags;
90e9f6a6 4805
bb192ed9 4806 slab_lock(slab, &flags);
53e15af0 4807
bb192ed9 4808 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
90e9f6a6 4809 goto unlock;
53e15af0
CL
4810
4811 /* Now we know that a valid freelist exists */
bb192ed9
VB
4812 __fill_map(obj_map, s, slab);
4813 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 4814 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4815 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4816
bb192ed9 4817 if (!check_object(s, slab, p, val))
dd98afd4
YZ
4818 break;
4819 }
90e9f6a6 4820unlock:
bb192ed9 4821 slab_unlock(slab, &flags);
53e15af0
CL
4822}
4823
434e245d 4824static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 4825 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
4826{
4827 unsigned long count = 0;
bb192ed9 4828 struct slab *slab;
53e15af0
CL
4829 unsigned long flags;
4830
4831 spin_lock_irqsave(&n->list_lock, flags);
4832
bb192ed9
VB
4833 list_for_each_entry(slab, &n->partial, slab_list) {
4834 validate_slab(s, slab, obj_map);
53e15af0
CL
4835 count++;
4836 }
1f9f78b1 4837 if (count != n->nr_partial) {
f9f58285
FF
4838 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4839 s->name, count, n->nr_partial);
1f9f78b1
OG
4840 slab_add_kunit_errors();
4841 }
53e15af0
CL
4842
4843 if (!(s->flags & SLAB_STORE_USER))
4844 goto out;
4845
bb192ed9
VB
4846 list_for_each_entry(slab, &n->full, slab_list) {
4847 validate_slab(s, slab, obj_map);
53e15af0
CL
4848 count++;
4849 }
1f9f78b1 4850 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4851 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4852 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4853 slab_add_kunit_errors();
4854 }
53e15af0
CL
4855
4856out:
4857 spin_unlock_irqrestore(&n->list_lock, flags);
4858 return count;
4859}
4860
1f9f78b1 4861long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4862{
4863 int node;
4864 unsigned long count = 0;
fa45dc25 4865 struct kmem_cache_node *n;
0a19e7dd
VB
4866 unsigned long *obj_map;
4867
4868 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4869 if (!obj_map)
4870 return -ENOMEM;
53e15af0
CL
4871
4872 flush_all(s);
fa45dc25 4873 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
4874 count += validate_slab_node(s, n, obj_map);
4875
4876 bitmap_free(obj_map);
90e9f6a6 4877
53e15af0
CL
4878 return count;
4879}
1f9f78b1
OG
4880EXPORT_SYMBOL(validate_slab_cache);
4881
64dd6849 4882#ifdef CONFIG_DEBUG_FS
88a420e4 4883/*
672bba3a 4884 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4885 * and freed.
4886 */
4887
4888struct location {
8ea9fb92 4889 depot_stack_handle_t handle;
88a420e4 4890 unsigned long count;
ce71e27c 4891 unsigned long addr;
45edfa58
CL
4892 long long sum_time;
4893 long min_time;
4894 long max_time;
4895 long min_pid;
4896 long max_pid;
174596a0 4897 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4898 nodemask_t nodes;
88a420e4
CL
4899};
4900
4901struct loc_track {
4902 unsigned long max;
4903 unsigned long count;
4904 struct location *loc;
005a79e5 4905 loff_t idx;
88a420e4
CL
4906};
4907
64dd6849
FM
4908static struct dentry *slab_debugfs_root;
4909
88a420e4
CL
4910static void free_loc_track(struct loc_track *t)
4911{
4912 if (t->max)
4913 free_pages((unsigned long)t->loc,
4914 get_order(sizeof(struct location) * t->max));
4915}
4916
68dff6a9 4917static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4918{
4919 struct location *l;
4920 int order;
4921
88a420e4
CL
4922 order = get_order(sizeof(struct location) * max);
4923
68dff6a9 4924 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4925 if (!l)
4926 return 0;
4927
4928 if (t->count) {
4929 memcpy(l, t->loc, sizeof(struct location) * t->count);
4930 free_loc_track(t);
4931 }
4932 t->max = max;
4933 t->loc = l;
4934 return 1;
4935}
4936
4937static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4938 const struct track *track)
88a420e4
CL
4939{
4940 long start, end, pos;
4941 struct location *l;
8ea9fb92 4942 unsigned long caddr, chandle;
45edfa58 4943 unsigned long age = jiffies - track->when;
8ea9fb92 4944 depot_stack_handle_t handle = 0;
88a420e4 4945
8ea9fb92
OG
4946#ifdef CONFIG_STACKDEPOT
4947 handle = READ_ONCE(track->handle);
4948#endif
88a420e4
CL
4949 start = -1;
4950 end = t->count;
4951
4952 for ( ; ; ) {
4953 pos = start + (end - start + 1) / 2;
4954
4955 /*
4956 * There is nothing at "end". If we end up there
4957 * we need to add something to before end.
4958 */
4959 if (pos == end)
4960 break;
4961
4962 caddr = t->loc[pos].addr;
8ea9fb92
OG
4963 chandle = t->loc[pos].handle;
4964 if ((track->addr == caddr) && (handle == chandle)) {
45edfa58
CL
4965
4966 l = &t->loc[pos];
4967 l->count++;
4968 if (track->when) {
4969 l->sum_time += age;
4970 if (age < l->min_time)
4971 l->min_time = age;
4972 if (age > l->max_time)
4973 l->max_time = age;
4974
4975 if (track->pid < l->min_pid)
4976 l->min_pid = track->pid;
4977 if (track->pid > l->max_pid)
4978 l->max_pid = track->pid;
4979
174596a0
RR
4980 cpumask_set_cpu(track->cpu,
4981 to_cpumask(l->cpus));
45edfa58
CL
4982 }
4983 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4984 return 1;
4985 }
4986
45edfa58 4987 if (track->addr < caddr)
88a420e4 4988 end = pos;
8ea9fb92
OG
4989 else if (track->addr == caddr && handle < chandle)
4990 end = pos;
88a420e4
CL
4991 else
4992 start = pos;
4993 }
4994
4995 /*
672bba3a 4996 * Not found. Insert new tracking element.
88a420e4 4997 */
68dff6a9 4998 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4999 return 0;
5000
5001 l = t->loc + pos;
5002 if (pos < t->count)
5003 memmove(l + 1, l,
5004 (t->count - pos) * sizeof(struct location));
5005 t->count++;
5006 l->count = 1;
45edfa58
CL
5007 l->addr = track->addr;
5008 l->sum_time = age;
5009 l->min_time = age;
5010 l->max_time = age;
5011 l->min_pid = track->pid;
5012 l->max_pid = track->pid;
8ea9fb92 5013 l->handle = handle;
174596a0
RR
5014 cpumask_clear(to_cpumask(l->cpus));
5015 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5016 nodes_clear(l->nodes);
5017 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5018 return 1;
5019}
5020
5021static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5022 struct slab *slab, enum track_item alloc,
b3fd64e1 5023 unsigned long *obj_map)
88a420e4 5024{
bb192ed9 5025 void *addr = slab_address(slab);
88a420e4
CL
5026 void *p;
5027
bb192ed9 5028 __fill_map(obj_map, s, slab);
b3fd64e1 5029
bb192ed9 5030 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5031 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5032 add_location(t, s, get_track(s, p, alloc));
88a420e4 5033}
64dd6849 5034#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5035#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5036
ab4d5ed5 5037#ifdef CONFIG_SYSFS
81819f0f 5038enum slab_stat_type {
205ab99d
CL
5039 SL_ALL, /* All slabs */
5040 SL_PARTIAL, /* Only partially allocated slabs */
5041 SL_CPU, /* Only slabs used for cpu caches */
5042 SL_OBJECTS, /* Determine allocated objects not slabs */
5043 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5044};
5045
205ab99d 5046#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5047#define SO_PARTIAL (1 << SL_PARTIAL)
5048#define SO_CPU (1 << SL_CPU)
5049#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5050#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5051
62e5c4b4 5052static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5053 char *buf, unsigned long flags)
81819f0f
CL
5054{
5055 unsigned long total = 0;
81819f0f
CL
5056 int node;
5057 int x;
5058 unsigned long *nodes;
bf16d19a 5059 int len = 0;
81819f0f 5060
6396bb22 5061 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5062 if (!nodes)
5063 return -ENOMEM;
81819f0f 5064
205ab99d
CL
5065 if (flags & SO_CPU) {
5066 int cpu;
81819f0f 5067
205ab99d 5068 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5069 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5070 cpu);
ec3ab083 5071 int node;
bb192ed9 5072 struct slab *slab;
dfb4f096 5073
bb192ed9
VB
5074 slab = READ_ONCE(c->slab);
5075 if (!slab)
ec3ab083 5076 continue;
205ab99d 5077
bb192ed9 5078 node = slab_nid(slab);
ec3ab083 5079 if (flags & SO_TOTAL)
bb192ed9 5080 x = slab->objects;
ec3ab083 5081 else if (flags & SO_OBJECTS)
bb192ed9 5082 x = slab->inuse;
ec3ab083
CL
5083 else
5084 x = 1;
49e22585 5085
ec3ab083
CL
5086 total += x;
5087 nodes[node] += x;
5088
9c01e9af 5089#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5090 slab = slub_percpu_partial_read_once(c);
5091 if (slab) {
5092 node = slab_nid(slab);
8afb1474
LZ
5093 if (flags & SO_TOTAL)
5094 WARN_ON_ONCE(1);
5095 else if (flags & SO_OBJECTS)
5096 WARN_ON_ONCE(1);
5097 else
bb192ed9 5098 x = slab->slabs;
bc6697d8
ED
5099 total += x;
5100 nodes[node] += x;
49e22585 5101 }
9c01e9af 5102#endif
81819f0f
CL
5103 }
5104 }
5105
e4f8e513
QC
5106 /*
5107 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5108 * already held which will conflict with an existing lock order:
5109 *
5110 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5111 *
5112 * We don't really need mem_hotplug_lock (to hold off
5113 * slab_mem_going_offline_callback) here because slab's memory hot
5114 * unplug code doesn't destroy the kmem_cache->node[] data.
5115 */
5116
ab4d5ed5 5117#ifdef CONFIG_SLUB_DEBUG
205ab99d 5118 if (flags & SO_ALL) {
fa45dc25
CL
5119 struct kmem_cache_node *n;
5120
5121 for_each_kmem_cache_node(s, node, n) {
205ab99d 5122
d0e0ac97
CG
5123 if (flags & SO_TOTAL)
5124 x = atomic_long_read(&n->total_objects);
5125 else if (flags & SO_OBJECTS)
5126 x = atomic_long_read(&n->total_objects) -
5127 count_partial(n, count_free);
81819f0f 5128 else
205ab99d 5129 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5130 total += x;
5131 nodes[node] += x;
5132 }
5133
ab4d5ed5
CL
5134 } else
5135#endif
5136 if (flags & SO_PARTIAL) {
fa45dc25 5137 struct kmem_cache_node *n;
81819f0f 5138
fa45dc25 5139 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5140 if (flags & SO_TOTAL)
5141 x = count_partial(n, count_total);
5142 else if (flags & SO_OBJECTS)
5143 x = count_partial(n, count_inuse);
81819f0f 5144 else
205ab99d 5145 x = n->nr_partial;
81819f0f
CL
5146 total += x;
5147 nodes[node] += x;
5148 }
5149 }
bf16d19a
JP
5150
5151 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5152#ifdef CONFIG_NUMA
bf16d19a 5153 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5154 if (nodes[node])
bf16d19a
JP
5155 len += sysfs_emit_at(buf, len, " N%d=%lu",
5156 node, nodes[node]);
5157 }
81819f0f 5158#endif
bf16d19a 5159 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5160 kfree(nodes);
bf16d19a
JP
5161
5162 return len;
81819f0f
CL
5163}
5164
81819f0f 5165#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5166#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5167
5168struct slab_attribute {
5169 struct attribute attr;
5170 ssize_t (*show)(struct kmem_cache *s, char *buf);
5171 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5172};
5173
5174#define SLAB_ATTR_RO(_name) \
d1d28bd9 5175 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5176
5177#define SLAB_ATTR(_name) \
d1d28bd9 5178 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5179
81819f0f
CL
5180static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5181{
bf16d19a 5182 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5183}
5184SLAB_ATTR_RO(slab_size);
5185
5186static ssize_t align_show(struct kmem_cache *s, char *buf)
5187{
bf16d19a 5188 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5189}
5190SLAB_ATTR_RO(align);
5191
5192static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5193{
bf16d19a 5194 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5195}
5196SLAB_ATTR_RO(object_size);
5197
5198static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5199{
bf16d19a 5200 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5201}
5202SLAB_ATTR_RO(objs_per_slab);
5203
5204static ssize_t order_show(struct kmem_cache *s, char *buf)
5205{
bf16d19a 5206 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5207}
32a6f409 5208SLAB_ATTR_RO(order);
81819f0f 5209
73d342b1
DR
5210static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5211{
bf16d19a 5212 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5213}
5214
5215static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5216 size_t length)
5217{
5218 unsigned long min;
5219 int err;
5220
3dbb95f7 5221 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5222 if (err)
5223 return err;
5224
5182f3c9 5225 s->min_partial = min;
73d342b1
DR
5226 return length;
5227}
5228SLAB_ATTR(min_partial);
5229
49e22585
CL
5230static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5231{
b47291ef
VB
5232 unsigned int nr_partial = 0;
5233#ifdef CONFIG_SLUB_CPU_PARTIAL
5234 nr_partial = s->cpu_partial;
5235#endif
5236
5237 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5238}
5239
5240static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5241 size_t length)
5242{
e5d9998f 5243 unsigned int objects;
49e22585
CL
5244 int err;
5245
e5d9998f 5246 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5247 if (err)
5248 return err;
345c905d 5249 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5250 return -EINVAL;
49e22585 5251
e6d0e1dc 5252 slub_set_cpu_partial(s, objects);
49e22585
CL
5253 flush_all(s);
5254 return length;
5255}
5256SLAB_ATTR(cpu_partial);
5257
81819f0f
CL
5258static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5259{
62c70bce
JP
5260 if (!s->ctor)
5261 return 0;
bf16d19a 5262 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5263}
5264SLAB_ATTR_RO(ctor);
5265
81819f0f
CL
5266static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5267{
bf16d19a 5268 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5269}
5270SLAB_ATTR_RO(aliases);
5271
81819f0f
CL
5272static ssize_t partial_show(struct kmem_cache *s, char *buf)
5273{
d9acf4b7 5274 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5275}
5276SLAB_ATTR_RO(partial);
5277
5278static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5279{
d9acf4b7 5280 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5281}
5282SLAB_ATTR_RO(cpu_slabs);
5283
5284static ssize_t objects_show(struct kmem_cache *s, char *buf)
5285{
205ab99d 5286 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5287}
5288SLAB_ATTR_RO(objects);
5289
205ab99d
CL
5290static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5291{
5292 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5293}
5294SLAB_ATTR_RO(objects_partial);
5295
49e22585
CL
5296static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5297{
5298 int objects = 0;
bb192ed9 5299 int slabs = 0;
9c01e9af 5300 int cpu __maybe_unused;
bf16d19a 5301 int len = 0;
49e22585 5302
9c01e9af 5303#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5304 for_each_online_cpu(cpu) {
bb192ed9 5305 struct slab *slab;
a93cf07b 5306
bb192ed9 5307 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5308
bb192ed9
VB
5309 if (slab)
5310 slabs += slab->slabs;
49e22585 5311 }
9c01e9af 5312#endif
49e22585 5313
c2092c12 5314 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5315 objects = (slabs * oo_objects(s->oo)) / 2;
5316 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5317
9c01e9af 5318#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
49e22585 5319 for_each_online_cpu(cpu) {
bb192ed9 5320 struct slab *slab;
a93cf07b 5321
bb192ed9
VB
5322 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5323 if (slab) {
5324 slabs = READ_ONCE(slab->slabs);
5325 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5326 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5327 cpu, objects, slabs);
b47291ef 5328 }
49e22585
CL
5329 }
5330#endif
bf16d19a
JP
5331 len += sysfs_emit_at(buf, len, "\n");
5332
5333 return len;
49e22585
CL
5334}
5335SLAB_ATTR_RO(slabs_cpu_partial);
5336
a5a84755
CL
5337static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5338{
bf16d19a 5339 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5340}
8f58119a 5341SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5342
5343static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5344{
bf16d19a 5345 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5346}
5347SLAB_ATTR_RO(hwcache_align);
5348
5349#ifdef CONFIG_ZONE_DMA
5350static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5351{
bf16d19a 5352 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5353}
5354SLAB_ATTR_RO(cache_dma);
5355#endif
5356
8eb8284b
DW
5357static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5358{
bf16d19a 5359 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5360}
5361SLAB_ATTR_RO(usersize);
5362
a5a84755
CL
5363static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5364{
bf16d19a 5365 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5366}
5367SLAB_ATTR_RO(destroy_by_rcu);
5368
ab4d5ed5 5369#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5370static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5371{
5372 return show_slab_objects(s, buf, SO_ALL);
5373}
5374SLAB_ATTR_RO(slabs);
5375
205ab99d
CL
5376static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5377{
5378 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5379}
5380SLAB_ATTR_RO(total_objects);
5381
81819f0f
CL
5382static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5383{
bf16d19a 5384 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5385}
060807f8 5386SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5387
5388static ssize_t trace_show(struct kmem_cache *s, char *buf)
5389{
bf16d19a 5390 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5391}
060807f8 5392SLAB_ATTR_RO(trace);
81819f0f 5393
81819f0f
CL
5394static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5395{
bf16d19a 5396 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5397}
5398
ad38b5b1 5399SLAB_ATTR_RO(red_zone);
81819f0f
CL
5400
5401static ssize_t poison_show(struct kmem_cache *s, char *buf)
5402{
bf16d19a 5403 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5404}
5405
ad38b5b1 5406SLAB_ATTR_RO(poison);
81819f0f
CL
5407
5408static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5409{
bf16d19a 5410 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5411}
5412
ad38b5b1 5413SLAB_ATTR_RO(store_user);
81819f0f 5414
53e15af0
CL
5415static ssize_t validate_show(struct kmem_cache *s, char *buf)
5416{
5417 return 0;
5418}
5419
5420static ssize_t validate_store(struct kmem_cache *s,
5421 const char *buf, size_t length)
5422{
434e245d
CL
5423 int ret = -EINVAL;
5424
5425 if (buf[0] == '1') {
5426 ret = validate_slab_cache(s);
5427 if (ret >= 0)
5428 ret = length;
5429 }
5430 return ret;
53e15af0
CL
5431}
5432SLAB_ATTR(validate);
a5a84755 5433
a5a84755
CL
5434#endif /* CONFIG_SLUB_DEBUG */
5435
5436#ifdef CONFIG_FAILSLAB
5437static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5438{
bf16d19a 5439 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5440}
060807f8 5441SLAB_ATTR_RO(failslab);
ab4d5ed5 5442#endif
53e15af0 5443
2086d26a
CL
5444static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5445{
5446 return 0;
5447}
5448
5449static ssize_t shrink_store(struct kmem_cache *s,
5450 const char *buf, size_t length)
5451{
832f37f5 5452 if (buf[0] == '1')
10befea9 5453 kmem_cache_shrink(s);
832f37f5 5454 else
2086d26a
CL
5455 return -EINVAL;
5456 return length;
5457}
5458SLAB_ATTR(shrink);
5459
81819f0f 5460#ifdef CONFIG_NUMA
9824601e 5461static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5462{
bf16d19a 5463 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5464}
5465
9824601e 5466static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5467 const char *buf, size_t length)
5468{
eb7235eb 5469 unsigned int ratio;
0121c619
CL
5470 int err;
5471
eb7235eb 5472 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5473 if (err)
5474 return err;
eb7235eb
AD
5475 if (ratio > 100)
5476 return -ERANGE;
0121c619 5477
eb7235eb 5478 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5479
81819f0f
CL
5480 return length;
5481}
9824601e 5482SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5483#endif
5484
8ff12cfc 5485#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5486static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5487{
5488 unsigned long sum = 0;
5489 int cpu;
bf16d19a 5490 int len = 0;
6da2ec56 5491 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5492
5493 if (!data)
5494 return -ENOMEM;
5495
5496 for_each_online_cpu(cpu) {
9dfc6e68 5497 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5498
5499 data[cpu] = x;
5500 sum += x;
5501 }
5502
bf16d19a 5503 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5504
50ef37b9 5505#ifdef CONFIG_SMP
8ff12cfc 5506 for_each_online_cpu(cpu) {
bf16d19a
JP
5507 if (data[cpu])
5508 len += sysfs_emit_at(buf, len, " C%d=%u",
5509 cpu, data[cpu]);
8ff12cfc 5510 }
50ef37b9 5511#endif
8ff12cfc 5512 kfree(data);
bf16d19a
JP
5513 len += sysfs_emit_at(buf, len, "\n");
5514
5515 return len;
8ff12cfc
CL
5516}
5517
78eb00cc
DR
5518static void clear_stat(struct kmem_cache *s, enum stat_item si)
5519{
5520 int cpu;
5521
5522 for_each_online_cpu(cpu)
9dfc6e68 5523 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5524}
5525
8ff12cfc
CL
5526#define STAT_ATTR(si, text) \
5527static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5528{ \
5529 return show_stat(s, buf, si); \
5530} \
78eb00cc
DR
5531static ssize_t text##_store(struct kmem_cache *s, \
5532 const char *buf, size_t length) \
5533{ \
5534 if (buf[0] != '0') \
5535 return -EINVAL; \
5536 clear_stat(s, si); \
5537 return length; \
5538} \
5539SLAB_ATTR(text); \
8ff12cfc
CL
5540
5541STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5542STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5543STAT_ATTR(FREE_FASTPATH, free_fastpath);
5544STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5545STAT_ATTR(FREE_FROZEN, free_frozen);
5546STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5547STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5548STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5549STAT_ATTR(ALLOC_SLAB, alloc_slab);
5550STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5551STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5552STAT_ATTR(FREE_SLAB, free_slab);
5553STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5554STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5555STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5556STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5557STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5558STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5559STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5560STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5561STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5562STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5563STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5564STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5565STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5566STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5567#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5568
06428780 5569static struct attribute *slab_attrs[] = {
81819f0f
CL
5570 &slab_size_attr.attr,
5571 &object_size_attr.attr,
5572 &objs_per_slab_attr.attr,
5573 &order_attr.attr,
73d342b1 5574 &min_partial_attr.attr,
49e22585 5575 &cpu_partial_attr.attr,
81819f0f 5576 &objects_attr.attr,
205ab99d 5577 &objects_partial_attr.attr,
81819f0f
CL
5578 &partial_attr.attr,
5579 &cpu_slabs_attr.attr,
5580 &ctor_attr.attr,
81819f0f
CL
5581 &aliases_attr.attr,
5582 &align_attr.attr,
81819f0f
CL
5583 &hwcache_align_attr.attr,
5584 &reclaim_account_attr.attr,
5585 &destroy_by_rcu_attr.attr,
a5a84755 5586 &shrink_attr.attr,
49e22585 5587 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5588#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5589 &total_objects_attr.attr,
5590 &slabs_attr.attr,
5591 &sanity_checks_attr.attr,
5592 &trace_attr.attr,
81819f0f
CL
5593 &red_zone_attr.attr,
5594 &poison_attr.attr,
5595 &store_user_attr.attr,
53e15af0 5596 &validate_attr.attr,
ab4d5ed5 5597#endif
81819f0f
CL
5598#ifdef CONFIG_ZONE_DMA
5599 &cache_dma_attr.attr,
5600#endif
5601#ifdef CONFIG_NUMA
9824601e 5602 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5603#endif
5604#ifdef CONFIG_SLUB_STATS
5605 &alloc_fastpath_attr.attr,
5606 &alloc_slowpath_attr.attr,
5607 &free_fastpath_attr.attr,
5608 &free_slowpath_attr.attr,
5609 &free_frozen_attr.attr,
5610 &free_add_partial_attr.attr,
5611 &free_remove_partial_attr.attr,
5612 &alloc_from_partial_attr.attr,
5613 &alloc_slab_attr.attr,
5614 &alloc_refill_attr.attr,
e36a2652 5615 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5616 &free_slab_attr.attr,
5617 &cpuslab_flush_attr.attr,
5618 &deactivate_full_attr.attr,
5619 &deactivate_empty_attr.attr,
5620 &deactivate_to_head_attr.attr,
5621 &deactivate_to_tail_attr.attr,
5622 &deactivate_remote_frees_attr.attr,
03e404af 5623 &deactivate_bypass_attr.attr,
65c3376a 5624 &order_fallback_attr.attr,
b789ef51
CL
5625 &cmpxchg_double_fail_attr.attr,
5626 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5627 &cpu_partial_alloc_attr.attr,
5628 &cpu_partial_free_attr.attr,
8028dcea
AS
5629 &cpu_partial_node_attr.attr,
5630 &cpu_partial_drain_attr.attr,
81819f0f 5631#endif
4c13dd3b
DM
5632#ifdef CONFIG_FAILSLAB
5633 &failslab_attr.attr,
5634#endif
8eb8284b 5635 &usersize_attr.attr,
4c13dd3b 5636
81819f0f
CL
5637 NULL
5638};
5639
1fdaaa23 5640static const struct attribute_group slab_attr_group = {
81819f0f
CL
5641 .attrs = slab_attrs,
5642};
5643
5644static ssize_t slab_attr_show(struct kobject *kobj,
5645 struct attribute *attr,
5646 char *buf)
5647{
5648 struct slab_attribute *attribute;
5649 struct kmem_cache *s;
5650 int err;
5651
5652 attribute = to_slab_attr(attr);
5653 s = to_slab(kobj);
5654
5655 if (!attribute->show)
5656 return -EIO;
5657
5658 err = attribute->show(s, buf);
5659
5660 return err;
5661}
5662
5663static ssize_t slab_attr_store(struct kobject *kobj,
5664 struct attribute *attr,
5665 const char *buf, size_t len)
5666{
5667 struct slab_attribute *attribute;
5668 struct kmem_cache *s;
5669 int err;
5670
5671 attribute = to_slab_attr(attr);
5672 s = to_slab(kobj);
5673
5674 if (!attribute->store)
5675 return -EIO;
5676
5677 err = attribute->store(s, buf, len);
81819f0f
CL
5678 return err;
5679}
5680
41a21285
CL
5681static void kmem_cache_release(struct kobject *k)
5682{
5683 slab_kmem_cache_release(to_slab(k));
5684}
5685
52cf25d0 5686static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5687 .show = slab_attr_show,
5688 .store = slab_attr_store,
5689};
5690
5691static struct kobj_type slab_ktype = {
5692 .sysfs_ops = &slab_sysfs_ops,
41a21285 5693 .release = kmem_cache_release,
81819f0f
CL
5694};
5695
27c3a314 5696static struct kset *slab_kset;
81819f0f 5697
9a41707b
VD
5698static inline struct kset *cache_kset(struct kmem_cache *s)
5699{
9a41707b
VD
5700 return slab_kset;
5701}
5702
81819f0f
CL
5703#define ID_STR_LENGTH 64
5704
5705/* Create a unique string id for a slab cache:
6446faa2
CL
5706 *
5707 * Format :[flags-]size
81819f0f
CL
5708 */
5709static char *create_unique_id(struct kmem_cache *s)
5710{
5711 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5712 char *p = name;
5713
5714 BUG_ON(!name);
5715
5716 *p++ = ':';
5717 /*
5718 * First flags affecting slabcache operations. We will only
5719 * get here for aliasable slabs so we do not need to support
5720 * too many flags. The flags here must cover all flags that
5721 * are matched during merging to guarantee that the id is
5722 * unique.
5723 */
5724 if (s->flags & SLAB_CACHE_DMA)
5725 *p++ = 'd';
6d6ea1e9
NB
5726 if (s->flags & SLAB_CACHE_DMA32)
5727 *p++ = 'D';
81819f0f
CL
5728 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5729 *p++ = 'a';
becfda68 5730 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5731 *p++ = 'F';
230e9fc2
VD
5732 if (s->flags & SLAB_ACCOUNT)
5733 *p++ = 'A';
81819f0f
CL
5734 if (p != name + 1)
5735 *p++ = '-';
44065b2e 5736 p += sprintf(p, "%07u", s->size);
2633d7a0 5737
81819f0f
CL
5738 BUG_ON(p > name + ID_STR_LENGTH - 1);
5739 return name;
5740}
5741
5742static int sysfs_slab_add(struct kmem_cache *s)
5743{
5744 int err;
5745 const char *name;
1663f26d 5746 struct kset *kset = cache_kset(s);
45530c44 5747 int unmergeable = slab_unmergeable(s);
81819f0f 5748
1663f26d
TH
5749 if (!kset) {
5750 kobject_init(&s->kobj, &slab_ktype);
5751 return 0;
5752 }
5753
11066386
MC
5754 if (!unmergeable && disable_higher_order_debug &&
5755 (slub_debug & DEBUG_METADATA_FLAGS))
5756 unmergeable = 1;
5757
81819f0f
CL
5758 if (unmergeable) {
5759 /*
5760 * Slabcache can never be merged so we can use the name proper.
5761 * This is typically the case for debug situations. In that
5762 * case we can catch duplicate names easily.
5763 */
27c3a314 5764 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5765 name = s->name;
5766 } else {
5767 /*
5768 * Create a unique name for the slab as a target
5769 * for the symlinks.
5770 */
5771 name = create_unique_id(s);
5772 }
5773
1663f26d 5774 s->kobj.kset = kset;
26e4f205 5775 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5776 if (err)
80da026a 5777 goto out;
81819f0f
CL
5778
5779 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5780 if (err)
5781 goto out_del_kobj;
9a41707b 5782
81819f0f
CL
5783 if (!unmergeable) {
5784 /* Setup first alias */
5785 sysfs_slab_alias(s, s->name);
81819f0f 5786 }
54b6a731
DJ
5787out:
5788 if (!unmergeable)
5789 kfree(name);
5790 return err;
5791out_del_kobj:
5792 kobject_del(&s->kobj);
54b6a731 5793 goto out;
81819f0f
CL
5794}
5795
d50d82fa
MP
5796void sysfs_slab_unlink(struct kmem_cache *s)
5797{
5798 if (slab_state >= FULL)
5799 kobject_del(&s->kobj);
5800}
5801
bf5eb3de
TH
5802void sysfs_slab_release(struct kmem_cache *s)
5803{
5804 if (slab_state >= FULL)
5805 kobject_put(&s->kobj);
81819f0f
CL
5806}
5807
5808/*
5809 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5810 * available lest we lose that information.
81819f0f
CL
5811 */
5812struct saved_alias {
5813 struct kmem_cache *s;
5814 const char *name;
5815 struct saved_alias *next;
5816};
5817
5af328a5 5818static struct saved_alias *alias_list;
81819f0f
CL
5819
5820static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821{
5822 struct saved_alias *al;
5823
97d06609 5824 if (slab_state == FULL) {
81819f0f
CL
5825 /*
5826 * If we have a leftover link then remove it.
5827 */
27c3a314
GKH
5828 sysfs_remove_link(&slab_kset->kobj, name);
5829 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5830 }
5831
5832 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833 if (!al)
5834 return -ENOMEM;
5835
5836 al->s = s;
5837 al->name = name;
5838 al->next = alias_list;
5839 alias_list = al;
5840 return 0;
5841}
5842
5843static int __init slab_sysfs_init(void)
5844{
5b95a4ac 5845 struct kmem_cache *s;
81819f0f
CL
5846 int err;
5847
18004c5d 5848 mutex_lock(&slab_mutex);
2bce6485 5849
d7660ce5 5850 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5851 if (!slab_kset) {
18004c5d 5852 mutex_unlock(&slab_mutex);
f9f58285 5853 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5854 return -ENOSYS;
5855 }
5856
97d06609 5857 slab_state = FULL;
26a7bd03 5858
5b95a4ac 5859 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5860 err = sysfs_slab_add(s);
5d540fb7 5861 if (err)
f9f58285
FF
5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863 s->name);
26a7bd03 5864 }
81819f0f
CL
5865
5866 while (alias_list) {
5867 struct saved_alias *al = alias_list;
5868
5869 alias_list = alias_list->next;
5870 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5871 if (err)
f9f58285
FF
5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873 al->name);
81819f0f
CL
5874 kfree(al);
5875 }
5876
18004c5d 5877 mutex_unlock(&slab_mutex);
81819f0f
CL
5878 return 0;
5879}
5880
5881__initcall(slab_sysfs_init);
ab4d5ed5 5882#endif /* CONFIG_SYSFS */
57ed3eda 5883
64dd6849
FM
5884#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5885static int slab_debugfs_show(struct seq_file *seq, void *v)
5886{
64dd6849 5887 struct loc_track *t = seq->private;
005a79e5
GS
5888 struct location *l;
5889 unsigned long idx;
64dd6849 5890
005a79e5 5891 idx = (unsigned long) t->idx;
64dd6849
FM
5892 if (idx < t->count) {
5893 l = &t->loc[idx];
5894
5895 seq_printf(seq, "%7ld ", l->count);
5896
5897 if (l->addr)
5898 seq_printf(seq, "%pS", (void *)l->addr);
5899 else
5900 seq_puts(seq, "<not-available>");
5901
5902 if (l->sum_time != l->min_time) {
5903 seq_printf(seq, " age=%ld/%llu/%ld",
5904 l->min_time, div_u64(l->sum_time, l->count),
5905 l->max_time);
5906 } else
5907 seq_printf(seq, " age=%ld", l->min_time);
5908
5909 if (l->min_pid != l->max_pid)
5910 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5911 else
5912 seq_printf(seq, " pid=%ld",
5913 l->min_pid);
5914
5915 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5916 seq_printf(seq, " cpus=%*pbl",
5917 cpumask_pr_args(to_cpumask(l->cpus)));
5918
5919 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5920 seq_printf(seq, " nodes=%*pbl",
5921 nodemask_pr_args(&l->nodes));
5922
8ea9fb92
OG
5923#ifdef CONFIG_STACKDEPOT
5924 {
5925 depot_stack_handle_t handle;
5926 unsigned long *entries;
5927 unsigned int nr_entries, j;
5928
5929 handle = READ_ONCE(l->handle);
5930 if (handle) {
5931 nr_entries = stack_depot_fetch(handle, &entries);
5932 seq_puts(seq, "\n");
5933 for (j = 0; j < nr_entries; j++)
5934 seq_printf(seq, " %pS\n", (void *)entries[j]);
5935 }
5936 }
5937#endif
64dd6849
FM
5938 seq_puts(seq, "\n");
5939 }
5940
5941 if (!idx && !t->count)
5942 seq_puts(seq, "No data\n");
5943
5944 return 0;
5945}
5946
5947static void slab_debugfs_stop(struct seq_file *seq, void *v)
5948{
5949}
5950
5951static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5952{
5953 struct loc_track *t = seq->private;
5954
005a79e5 5955 t->idx = ++(*ppos);
64dd6849 5956 if (*ppos <= t->count)
005a79e5 5957 return ppos;
64dd6849
FM
5958
5959 return NULL;
5960}
5961
553c0369
OG
5962static int cmp_loc_by_count(const void *a, const void *b, const void *data)
5963{
5964 struct location *loc1 = (struct location *)a;
5965 struct location *loc2 = (struct location *)b;
5966
5967 if (loc1->count > loc2->count)
5968 return -1;
5969 else
5970 return 1;
5971}
5972
64dd6849
FM
5973static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5974{
005a79e5
GS
5975 struct loc_track *t = seq->private;
5976
5977 t->idx = *ppos;
64dd6849
FM
5978 return ppos;
5979}
5980
5981static const struct seq_operations slab_debugfs_sops = {
5982 .start = slab_debugfs_start,
5983 .next = slab_debugfs_next,
5984 .stop = slab_debugfs_stop,
5985 .show = slab_debugfs_show,
5986};
5987
5988static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5989{
5990
5991 struct kmem_cache_node *n;
5992 enum track_item alloc;
5993 int node;
5994 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5995 sizeof(struct loc_track));
5996 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
5997 unsigned long *obj_map;
5998
2127d225
ML
5999 if (!t)
6000 return -ENOMEM;
6001
b3fd64e1 6002 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6003 if (!obj_map) {
6004 seq_release_private(inode, filep);
b3fd64e1 6005 return -ENOMEM;
2127d225 6006 }
64dd6849
FM
6007
6008 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6009 alloc = TRACK_ALLOC;
6010 else
6011 alloc = TRACK_FREE;
6012
b3fd64e1
VB
6013 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6014 bitmap_free(obj_map);
2127d225 6015 seq_release_private(inode, filep);
64dd6849 6016 return -ENOMEM;
b3fd64e1 6017 }
64dd6849 6018
64dd6849
FM
6019 for_each_kmem_cache_node(s, node, n) {
6020 unsigned long flags;
bb192ed9 6021 struct slab *slab;
64dd6849
FM
6022
6023 if (!atomic_long_read(&n->nr_slabs))
6024 continue;
6025
6026 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6027 list_for_each_entry(slab, &n->partial, slab_list)
6028 process_slab(t, s, slab, alloc, obj_map);
6029 list_for_each_entry(slab, &n->full, slab_list)
6030 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6031 spin_unlock_irqrestore(&n->list_lock, flags);
6032 }
6033
553c0369
OG
6034 /* Sort locations by count */
6035 sort_r(t->loc, t->count, sizeof(struct location),
6036 cmp_loc_by_count, NULL, NULL);
6037
b3fd64e1 6038 bitmap_free(obj_map);
64dd6849
FM
6039 return 0;
6040}
6041
6042static int slab_debug_trace_release(struct inode *inode, struct file *file)
6043{
6044 struct seq_file *seq = file->private_data;
6045 struct loc_track *t = seq->private;
6046
6047 free_loc_track(t);
6048 return seq_release_private(inode, file);
6049}
6050
6051static const struct file_operations slab_debugfs_fops = {
6052 .open = slab_debug_trace_open,
6053 .read = seq_read,
6054 .llseek = seq_lseek,
6055 .release = slab_debug_trace_release,
6056};
6057
6058static void debugfs_slab_add(struct kmem_cache *s)
6059{
6060 struct dentry *slab_cache_dir;
6061
6062 if (unlikely(!slab_debugfs_root))
6063 return;
6064
6065 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6066
6067 debugfs_create_file("alloc_traces", 0400,
6068 slab_cache_dir, s, &slab_debugfs_fops);
6069
6070 debugfs_create_file("free_traces", 0400,
6071 slab_cache_dir, s, &slab_debugfs_fops);
6072}
6073
6074void debugfs_slab_release(struct kmem_cache *s)
6075{
6076 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6077}
6078
6079static int __init slab_debugfs_init(void)
6080{
6081 struct kmem_cache *s;
6082
6083 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6084
6085 list_for_each_entry(s, &slab_caches, list)
6086 if (s->flags & SLAB_STORE_USER)
6087 debugfs_slab_add(s);
6088
6089 return 0;
6090
6091}
6092__initcall(slab_debugfs_init);
6093#endif
57ed3eda
PE
6094/*
6095 * The /proc/slabinfo ABI
6096 */
5b365771 6097#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6098void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6099{
57ed3eda 6100 unsigned long nr_slabs = 0;
205ab99d
CL
6101 unsigned long nr_objs = 0;
6102 unsigned long nr_free = 0;
57ed3eda 6103 int node;
fa45dc25 6104 struct kmem_cache_node *n;
57ed3eda 6105
fa45dc25 6106 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6107 nr_slabs += node_nr_slabs(n);
6108 nr_objs += node_nr_objs(n);
205ab99d 6109 nr_free += count_partial(n, count_free);
57ed3eda
PE
6110 }
6111
0d7561c6
GC
6112 sinfo->active_objs = nr_objs - nr_free;
6113 sinfo->num_objs = nr_objs;
6114 sinfo->active_slabs = nr_slabs;
6115 sinfo->num_slabs = nr_slabs;
6116 sinfo->objects_per_slab = oo_objects(s->oo);
6117 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6118}
6119
0d7561c6 6120void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6121{
7b3c3a50
AD
6122}
6123
b7454ad3
GC
6124ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6125 size_t count, loff_t *ppos)
7b3c3a50 6126{
b7454ad3 6127 return -EIO;
7b3c3a50 6128}
5b365771 6129#endif /* CONFIG_SLUB_DEBUG */
This page took 2.906681 seconds and 4 git commands to generate.