]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
81819f0f CL |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpuset.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ctype.h> | |
5cf909c5 | 29 | #include <linux/stackdepot.h> |
3ac7fe5a | 30 | #include <linux/debugobjects.h> |
81819f0f | 31 | #include <linux/kallsyms.h> |
b89fb5ef | 32 | #include <linux/kfence.h> |
b9049e23 | 33 | #include <linux/memory.h> |
f8bd2258 | 34 | #include <linux/math64.h> |
773ff60e | 35 | #include <linux/fault-inject.h> |
bfa71457 | 36 | #include <linux/stacktrace.h> |
4de900b4 | 37 | #include <linux/prefetch.h> |
2633d7a0 | 38 | #include <linux/memcontrol.h> |
2482ddec | 39 | #include <linux/random.h> |
1f9f78b1 | 40 | #include <kunit/test.h> |
553c0369 | 41 | #include <linux/sort.h> |
81819f0f | 42 | |
64dd6849 | 43 | #include <linux/debugfs.h> |
4a92379b RK |
44 | #include <trace/events/kmem.h> |
45 | ||
072bb0aa MG |
46 | #include "internal.h" |
47 | ||
81819f0f CL |
48 | /* |
49 | * Lock order: | |
18004c5d | 50 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
51 | * 2. node->list_lock (Spinlock) |
52 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
c2092c12 | 53 | * 4. slab_lock(slab) (Only on some arches or for debugging) |
bd0e7491 | 54 | * 5. object_map_lock (Only for debugging) |
81819f0f | 55 | * |
18004c5d | 56 | * slab_mutex |
881db7fb | 57 | * |
18004c5d | 58 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 59 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
60 | * Also synchronizes memory hotplug callbacks. |
61 | * | |
62 | * slab_lock | |
63 | * | |
64 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
65 | * spinlock. | |
881db7fb CL |
66 | * |
67 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 68 | * have the ability to do a cmpxchg_double. It only protects: |
c2092c12 VB |
69 | * A. slab->freelist -> List of free objects in a slab |
70 | * B. slab->inuse -> Number of objects in use | |
71 | * C. slab->objects -> Number of objects in slab | |
72 | * D. slab->frozen -> frozen state | |
881db7fb | 73 | * |
bd0e7491 VB |
74 | * Frozen slabs |
75 | * | |
881db7fb | 76 | * If a slab is frozen then it is exempt from list management. It is not |
632b2ef0 | 77 | * on any list except per cpu partial list. The processor that froze the |
c2092c12 | 78 | * slab is the one who can perform list operations on the slab. Other |
632b2ef0 LX |
79 | * processors may put objects onto the freelist but the processor that |
80 | * froze the slab is the only one that can retrieve the objects from the | |
c2092c12 | 81 | * slab's freelist. |
81819f0f | 82 | * |
bd0e7491 VB |
83 | * list_lock |
84 | * | |
81819f0f CL |
85 | * The list_lock protects the partial and full list on each node and |
86 | * the partial slab counter. If taken then no new slabs may be added or | |
87 | * removed from the lists nor make the number of partial slabs be modified. | |
88 | * (Note that the total number of slabs is an atomic value that may be | |
89 | * modified without taking the list lock). | |
90 | * | |
91 | * The list_lock is a centralized lock and thus we avoid taking it as | |
92 | * much as possible. As long as SLUB does not have to handle partial | |
93 | * slabs, operations can continue without any centralized lock. F.e. | |
94 | * allocating a long series of objects that fill up slabs does not require | |
95 | * the list lock. | |
bd0e7491 VB |
96 | * |
97 | * cpu_slab->lock local lock | |
98 | * | |
99 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
100 | * except the stat counters. This is a percpu structure manipulated only by | |
101 | * the local cpu, so the lock protects against being preempted or interrupted | |
102 | * by an irq. Fast path operations rely on lockless operations instead. | |
103 | * On PREEMPT_RT, the local lock does not actually disable irqs (and thus | |
104 | * prevent the lockless operations), so fastpath operations also need to take | |
105 | * the lock and are no longer lockless. | |
106 | * | |
107 | * lockless fastpaths | |
108 | * | |
109 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
110 | * are fully lockless when satisfied from the percpu slab (and when | |
111 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
112 | * They also don't disable preemption or migration or irqs. They rely on | |
113 | * the transaction id (tid) field to detect being preempted or moved to | |
114 | * another cpu. | |
115 | * | |
116 | * irq, preemption, migration considerations | |
117 | * | |
118 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
119 | * around the slab_lock operation, in order to make the slab allocator safe | |
120 | * to use in the context of an irq. | |
121 | * | |
122 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
123 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
124 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
125 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
126 | * |
127 | * SLUB assigns one slab for allocation to each processor. | |
128 | * Allocations only occur from these slabs called cpu slabs. | |
129 | * | |
672bba3a CL |
130 | * Slabs with free elements are kept on a partial list and during regular |
131 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 132 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
133 | * We track full slabs for debugging purposes though because otherwise we |
134 | * cannot scan all objects. | |
81819f0f CL |
135 | * |
136 | * Slabs are freed when they become empty. Teardown and setup is | |
137 | * minimal so we rely on the page allocators per cpu caches for | |
138 | * fast frees and allocs. | |
139 | * | |
c2092c12 | 140 | * slab->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
141 | * This means that the slab is dedicated to a purpose |
142 | * such as satisfying allocations for a specific | |
143 | * processor. Objects may be freed in the slab while | |
144 | * it is frozen but slab_free will then skip the usual | |
145 | * list operations. It is up to the processor holding | |
146 | * the slab to integrate the slab into the slab lists | |
147 | * when the slab is no longer needed. | |
148 | * | |
149 | * One use of this flag is to mark slabs that are | |
150 | * used for allocations. Then such a slab becomes a cpu | |
151 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 152 | * freelist that allows lockless access to |
894b8788 CL |
153 | * free objects in addition to the regular freelist |
154 | * that requires the slab lock. | |
81819f0f | 155 | * |
aed68148 | 156 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 157 | * options set. This moves slab handling out of |
894b8788 | 158 | * the fast path and disables lockless freelists. |
81819f0f CL |
159 | */ |
160 | ||
25c00c50 VB |
161 | /* |
162 | * We could simply use migrate_disable()/enable() but as long as it's a | |
163 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
164 | */ | |
165 | #ifndef CONFIG_PREEMPT_RT | |
166 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) | |
167 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
168 | #else | |
169 | #define slub_get_cpu_ptr(var) \ | |
170 | ({ \ | |
171 | migrate_disable(); \ | |
172 | this_cpu_ptr(var); \ | |
173 | }) | |
174 | #define slub_put_cpu_ptr(var) \ | |
175 | do { \ | |
176 | (void)(var); \ | |
177 | migrate_enable(); \ | |
178 | } while (0) | |
179 | #endif | |
180 | ||
ca0cab65 VB |
181 | #ifdef CONFIG_SLUB_DEBUG |
182 | #ifdef CONFIG_SLUB_DEBUG_ON | |
183 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
184 | #else | |
185 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
186 | #endif | |
79270291 | 187 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 188 | |
59052e89 VB |
189 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
190 | { | |
191 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 192 | } |
5577bd8a | 193 | |
117d54df | 194 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 195 | { |
59052e89 | 196 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
197 | p += s->red_left_pad; |
198 | ||
199 | return p; | |
200 | } | |
201 | ||
345c905d JK |
202 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
203 | { | |
204 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
205 | return !kmem_cache_debug(s); | |
206 | #else | |
207 | return false; | |
208 | #endif | |
209 | } | |
210 | ||
81819f0f CL |
211 | /* |
212 | * Issues still to be resolved: | |
213 | * | |
81819f0f CL |
214 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
215 | * | |
81819f0f CL |
216 | * - Variable sizing of the per node arrays |
217 | */ | |
218 | ||
b789ef51 CL |
219 | /* Enable to log cmpxchg failures */ |
220 | #undef SLUB_DEBUG_CMPXCHG | |
221 | ||
2086d26a | 222 | /* |
dc84207d | 223 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
224 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
225 | */ | |
76be8950 | 226 | #define MIN_PARTIAL 5 |
e95eed57 | 227 | |
2086d26a CL |
228 | /* |
229 | * Maximum number of desirable partial slabs. | |
230 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 231 | * sort the partial list by the number of objects in use. |
2086d26a CL |
232 | */ |
233 | #define MAX_PARTIAL 10 | |
234 | ||
becfda68 | 235 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 236 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 237 | |
149daaf3 LA |
238 | /* |
239 | * These debug flags cannot use CMPXCHG because there might be consistency | |
240 | * issues when checking or reading debug information | |
241 | */ | |
242 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
243 | SLAB_TRACE) | |
244 | ||
245 | ||
fa5ec8a1 | 246 | /* |
3de47213 DR |
247 | * Debugging flags that require metadata to be stored in the slab. These get |
248 | * disabled when slub_debug=O is used and a cache's min order increases with | |
249 | * metadata. | |
fa5ec8a1 | 250 | */ |
3de47213 | 251 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 252 | |
210b5c06 CG |
253 | #define OO_SHIFT 16 |
254 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
c2092c12 | 255 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
210b5c06 | 256 | |
81819f0f | 257 | /* Internal SLUB flags */ |
d50112ed | 258 | /* Poison object */ |
4fd0b46e | 259 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 260 | /* Use cmpxchg_double */ |
4fd0b46e | 261 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 262 | |
02cbc874 CL |
263 | /* |
264 | * Tracking user of a slab. | |
265 | */ | |
d6543e39 | 266 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 267 | struct track { |
ce71e27c | 268 | unsigned long addr; /* Called from address */ |
5cf909c5 OG |
269 | #ifdef CONFIG_STACKDEPOT |
270 | depot_stack_handle_t handle; | |
d6543e39 | 271 | #endif |
02cbc874 CL |
272 | int cpu; /* Was running on cpu */ |
273 | int pid; /* Pid context */ | |
274 | unsigned long when; /* When did the operation occur */ | |
275 | }; | |
276 | ||
277 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
278 | ||
ab4d5ed5 | 279 | #ifdef CONFIG_SYSFS |
81819f0f CL |
280 | static int sysfs_slab_add(struct kmem_cache *); |
281 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 282 | #else |
0c710013 CL |
283 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
284 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
285 | { return 0; } | |
81819f0f CL |
286 | #endif |
287 | ||
64dd6849 FM |
288 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
289 | static void debugfs_slab_add(struct kmem_cache *); | |
290 | #else | |
291 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
292 | #endif | |
293 | ||
4fdccdfb | 294 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
295 | { |
296 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
297 | /* |
298 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
299 | * avoid this_cpu_add()'s irq-disable overhead. | |
300 | */ | |
301 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
302 | #endif |
303 | } | |
304 | ||
7e1fa93d VB |
305 | /* |
306 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
307 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
308 | * differ during memory hotplug/hotremove operations. | |
309 | * Protected by slab_mutex. | |
310 | */ | |
311 | static nodemask_t slab_nodes; | |
312 | ||
81819f0f CL |
313 | /******************************************************************** |
314 | * Core slab cache functions | |
315 | *******************************************************************/ | |
316 | ||
2482ddec KC |
317 | /* |
318 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
319 | * with an XOR of the address where the pointer is held and a per-cache | |
320 | * random number. | |
321 | */ | |
322 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
323 | unsigned long ptr_addr) | |
324 | { | |
325 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 | 326 | /* |
aa1ef4d7 | 327 | * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. |
d36a63a9 AK |
328 | * Normally, this doesn't cause any issues, as both set_freepointer() |
329 | * and get_freepointer() are called with a pointer with the same tag. | |
330 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
331 | * example, when __free_slub() iterates over objects in a cache, it | |
332 | * passes untagged pointers to check_object(). check_object() in turns | |
333 | * calls get_freepointer() with an untagged pointer, which causes the | |
334 | * freepointer to be restored incorrectly. | |
335 | */ | |
336 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 337 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
338 | #else |
339 | return ptr; | |
340 | #endif | |
341 | } | |
342 | ||
343 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
344 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
345 | void *ptr_addr) | |
346 | { | |
347 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
348 | (unsigned long)ptr_addr); | |
349 | } | |
350 | ||
7656c72b CL |
351 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
352 | { | |
aa1ef4d7 | 353 | object = kasan_reset_tag(object); |
2482ddec | 354 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
355 | } |
356 | ||
0ad9500e ED |
357 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
358 | { | |
04b4b006 | 359 | prefetchw(object + s->offset); |
0ad9500e ED |
360 | } |
361 | ||
1393d9a1 CL |
362 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
363 | { | |
2482ddec | 364 | unsigned long freepointer_addr; |
1393d9a1 CL |
365 | void *p; |
366 | ||
8e57f8ac | 367 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
368 | return get_freepointer(s, object); |
369 | ||
f70b0049 | 370 | object = kasan_reset_tag(object); |
2482ddec | 371 | freepointer_addr = (unsigned long)object + s->offset; |
fe557319 | 372 | copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); |
2482ddec | 373 | return freelist_ptr(s, p, freepointer_addr); |
1393d9a1 CL |
374 | } |
375 | ||
7656c72b CL |
376 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
377 | { | |
2482ddec KC |
378 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
379 | ||
ce6fa91b AP |
380 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
381 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
382 | #endif | |
383 | ||
aa1ef4d7 | 384 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
2482ddec | 385 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
386 | } |
387 | ||
388 | /* Loop over all objects in a slab */ | |
224a88be | 389 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
390 | for (__p = fixup_red_left(__s, __addr); \ |
391 | __p < (__addr) + (__objects) * (__s)->size; \ | |
392 | __p += (__s)->size) | |
7656c72b | 393 | |
9736d2a9 | 394 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 395 | { |
9736d2a9 | 396 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
397 | } |
398 | ||
19af27af | 399 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 400 | unsigned int size) |
834f3d11 CL |
401 | { |
402 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 403 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
404 | }; |
405 | ||
406 | return x; | |
407 | } | |
408 | ||
19af27af | 409 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 410 | { |
210b5c06 | 411 | return x.x >> OO_SHIFT; |
834f3d11 CL |
412 | } |
413 | ||
19af27af | 414 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 415 | { |
210b5c06 | 416 | return x.x & OO_MASK; |
834f3d11 CL |
417 | } |
418 | ||
b47291ef VB |
419 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
420 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
421 | { | |
bb192ed9 | 422 | unsigned int nr_slabs; |
b47291ef VB |
423 | |
424 | s->cpu_partial = nr_objects; | |
425 | ||
426 | /* | |
427 | * We take the number of objects but actually limit the number of | |
c2092c12 VB |
428 | * slabs on the per cpu partial list, in order to limit excessive |
429 | * growth of the list. For simplicity we assume that the slabs will | |
b47291ef VB |
430 | * be half-full. |
431 | */ | |
bb192ed9 VB |
432 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
433 | s->cpu_partial_slabs = nr_slabs; | |
b47291ef VB |
434 | } |
435 | #else | |
436 | static inline void | |
437 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
438 | { | |
439 | } | |
440 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
441 | ||
881db7fb CL |
442 | /* |
443 | * Per slab locking using the pagelock | |
444 | */ | |
0393895b | 445 | static __always_inline void __slab_lock(struct slab *slab) |
881db7fb | 446 | { |
0393895b VB |
447 | struct page *page = slab_page(slab); |
448 | ||
48c935ad | 449 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
450 | bit_spin_lock(PG_locked, &page->flags); |
451 | } | |
452 | ||
0393895b | 453 | static __always_inline void __slab_unlock(struct slab *slab) |
881db7fb | 454 | { |
0393895b VB |
455 | struct page *page = slab_page(slab); |
456 | ||
48c935ad | 457 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
458 | __bit_spin_unlock(PG_locked, &page->flags); |
459 | } | |
460 | ||
bb192ed9 | 461 | static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) |
a2b4ae8b VB |
462 | { |
463 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | |
464 | local_irq_save(*flags); | |
bb192ed9 | 465 | __slab_lock(slab); |
a2b4ae8b VB |
466 | } |
467 | ||
bb192ed9 | 468 | static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) |
a2b4ae8b | 469 | { |
bb192ed9 | 470 | __slab_unlock(slab); |
a2b4ae8b VB |
471 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
472 | local_irq_restore(*flags); | |
473 | } | |
474 | ||
475 | /* | |
476 | * Interrupts must be disabled (for the fallback code to work right), typically | |
477 | * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different | |
478 | * so we disable interrupts as part of slab_[un]lock(). | |
479 | */ | |
bb192ed9 | 480 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
1d07171c CL |
481 | void *freelist_old, unsigned long counters_old, |
482 | void *freelist_new, unsigned long counters_new, | |
483 | const char *n) | |
484 | { | |
a2b4ae8b VB |
485 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
486 | lockdep_assert_irqs_disabled(); | |
2565409f HC |
487 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
488 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 489 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 490 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
491 | freelist_old, counters_old, |
492 | freelist_new, counters_new)) | |
6f6528a1 | 493 | return true; |
1d07171c CL |
494 | } else |
495 | #endif | |
496 | { | |
a2b4ae8b VB |
497 | /* init to 0 to prevent spurious warnings */ |
498 | unsigned long flags = 0; | |
499 | ||
bb192ed9 VB |
500 | slab_lock(slab, &flags); |
501 | if (slab->freelist == freelist_old && | |
502 | slab->counters == counters_old) { | |
503 | slab->freelist = freelist_new; | |
504 | slab->counters = counters_new; | |
505 | slab_unlock(slab, &flags); | |
6f6528a1 | 506 | return true; |
1d07171c | 507 | } |
bb192ed9 | 508 | slab_unlock(slab, &flags); |
1d07171c CL |
509 | } |
510 | ||
511 | cpu_relax(); | |
512 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
513 | ||
514 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 515 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
516 | #endif |
517 | ||
6f6528a1 | 518 | return false; |
1d07171c CL |
519 | } |
520 | ||
bb192ed9 | 521 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, |
b789ef51 CL |
522 | void *freelist_old, unsigned long counters_old, |
523 | void *freelist_new, unsigned long counters_new, | |
524 | const char *n) | |
525 | { | |
2565409f HC |
526 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
527 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 528 | if (s->flags & __CMPXCHG_DOUBLE) { |
bb192ed9 | 529 | if (cmpxchg_double(&slab->freelist, &slab->counters, |
0aa9a13d DC |
530 | freelist_old, counters_old, |
531 | freelist_new, counters_new)) | |
6f6528a1 | 532 | return true; |
b789ef51 CL |
533 | } else |
534 | #endif | |
535 | { | |
1d07171c CL |
536 | unsigned long flags; |
537 | ||
538 | local_irq_save(flags); | |
bb192ed9 VB |
539 | __slab_lock(slab); |
540 | if (slab->freelist == freelist_old && | |
541 | slab->counters == counters_old) { | |
542 | slab->freelist = freelist_new; | |
543 | slab->counters = counters_new; | |
544 | __slab_unlock(slab); | |
1d07171c | 545 | local_irq_restore(flags); |
6f6528a1 | 546 | return true; |
b789ef51 | 547 | } |
bb192ed9 | 548 | __slab_unlock(slab); |
1d07171c | 549 | local_irq_restore(flags); |
b789ef51 CL |
550 | } |
551 | ||
552 | cpu_relax(); | |
553 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
554 | ||
555 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 556 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
557 | #endif |
558 | ||
6f6528a1 | 559 | return false; |
b789ef51 CL |
560 | } |
561 | ||
41ecc55b | 562 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 563 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
94ef0304 | 564 | static DEFINE_RAW_SPINLOCK(object_map_lock); |
90e9f6a6 | 565 | |
b3fd64e1 | 566 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
bb192ed9 | 567 | struct slab *slab) |
b3fd64e1 | 568 | { |
bb192ed9 | 569 | void *addr = slab_address(slab); |
b3fd64e1 VB |
570 | void *p; |
571 | ||
bb192ed9 | 572 | bitmap_zero(obj_map, slab->objects); |
b3fd64e1 | 573 | |
bb192ed9 | 574 | for (p = slab->freelist; p; p = get_freepointer(s, p)) |
b3fd64e1 VB |
575 | set_bit(__obj_to_index(s, addr, p), obj_map); |
576 | } | |
577 | ||
1f9f78b1 OG |
578 | #if IS_ENABLED(CONFIG_KUNIT) |
579 | static bool slab_add_kunit_errors(void) | |
580 | { | |
581 | struct kunit_resource *resource; | |
582 | ||
583 | if (likely(!current->kunit_test)) | |
584 | return false; | |
585 | ||
586 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
587 | if (!resource) | |
588 | return false; | |
589 | ||
590 | (*(int *)resource->data)++; | |
591 | kunit_put_resource(resource); | |
592 | return true; | |
593 | } | |
594 | #else | |
595 | static inline bool slab_add_kunit_errors(void) { return false; } | |
596 | #endif | |
597 | ||
5f80b13a | 598 | /* |
c2092c12 | 599 | * Determine a map of objects in use in a slab. |
5f80b13a | 600 | * |
c2092c12 | 601 | * Node listlock must be held to guarantee that the slab does |
5f80b13a CL |
602 | * not vanish from under us. |
603 | */ | |
bb192ed9 | 604 | static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) |
31364c2e | 605 | __acquires(&object_map_lock) |
5f80b13a | 606 | { |
90e9f6a6 YZ |
607 | VM_BUG_ON(!irqs_disabled()); |
608 | ||
94ef0304 | 609 | raw_spin_lock(&object_map_lock); |
90e9f6a6 | 610 | |
bb192ed9 | 611 | __fill_map(object_map, s, slab); |
90e9f6a6 YZ |
612 | |
613 | return object_map; | |
614 | } | |
615 | ||
81aba9e0 | 616 | static void put_map(unsigned long *map) __releases(&object_map_lock) |
90e9f6a6 YZ |
617 | { |
618 | VM_BUG_ON(map != object_map); | |
94ef0304 | 619 | raw_spin_unlock(&object_map_lock); |
5f80b13a CL |
620 | } |
621 | ||
870b1fbb | 622 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
623 | { |
624 | if (s->flags & SLAB_RED_ZONE) | |
625 | return s->size - s->red_left_pad; | |
626 | ||
627 | return s->size; | |
628 | } | |
629 | ||
630 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
631 | { | |
632 | if (s->flags & SLAB_RED_ZONE) | |
633 | p -= s->red_left_pad; | |
634 | ||
635 | return p; | |
636 | } | |
637 | ||
41ecc55b CL |
638 | /* |
639 | * Debug settings: | |
640 | */ | |
89d3c87e | 641 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 642 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 643 | #else |
d50112ed | 644 | static slab_flags_t slub_debug; |
f0630fff | 645 | #endif |
41ecc55b | 646 | |
e17f1dfb | 647 | static char *slub_debug_string; |
fa5ec8a1 | 648 | static int disable_higher_order_debug; |
41ecc55b | 649 | |
a79316c6 AR |
650 | /* |
651 | * slub is about to manipulate internal object metadata. This memory lies | |
652 | * outside the range of the allocated object, so accessing it would normally | |
653 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
654 | * to tell kasan that these accesses are OK. | |
655 | */ | |
656 | static inline void metadata_access_enable(void) | |
657 | { | |
658 | kasan_disable_current(); | |
659 | } | |
660 | ||
661 | static inline void metadata_access_disable(void) | |
662 | { | |
663 | kasan_enable_current(); | |
664 | } | |
665 | ||
81819f0f CL |
666 | /* |
667 | * Object debugging | |
668 | */ | |
d86bd1be JK |
669 | |
670 | /* Verify that a pointer has an address that is valid within a slab page */ | |
671 | static inline int check_valid_pointer(struct kmem_cache *s, | |
bb192ed9 | 672 | struct slab *slab, void *object) |
d86bd1be JK |
673 | { |
674 | void *base; | |
675 | ||
676 | if (!object) | |
677 | return 1; | |
678 | ||
bb192ed9 | 679 | base = slab_address(slab); |
338cfaad | 680 | object = kasan_reset_tag(object); |
d86bd1be | 681 | object = restore_red_left(s, object); |
bb192ed9 | 682 | if (object < base || object >= base + slab->objects * s->size || |
d86bd1be JK |
683 | (object - base) % s->size) { |
684 | return 0; | |
685 | } | |
686 | ||
687 | return 1; | |
688 | } | |
689 | ||
aa2efd5e DT |
690 | static void print_section(char *level, char *text, u8 *addr, |
691 | unsigned int length) | |
81819f0f | 692 | { |
a79316c6 | 693 | metadata_access_enable(); |
340caf17 KYL |
694 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
695 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 696 | metadata_access_disable(); |
81819f0f CL |
697 | } |
698 | ||
cbfc35a4 WL |
699 | /* |
700 | * See comment in calculate_sizes(). | |
701 | */ | |
702 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
703 | { | |
704 | return s->offset >= s->inuse; | |
705 | } | |
706 | ||
707 | /* | |
708 | * Return offset of the end of info block which is inuse + free pointer if | |
709 | * not overlapping with object. | |
710 | */ | |
711 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
712 | { | |
713 | if (freeptr_outside_object(s)) | |
714 | return s->inuse + sizeof(void *); | |
715 | else | |
716 | return s->inuse; | |
717 | } | |
718 | ||
81819f0f CL |
719 | static struct track *get_track(struct kmem_cache *s, void *object, |
720 | enum track_item alloc) | |
721 | { | |
722 | struct track *p; | |
723 | ||
cbfc35a4 | 724 | p = object + get_info_end(s); |
81819f0f | 725 | |
aa1ef4d7 | 726 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
727 | } |
728 | ||
5cf909c5 | 729 | #ifdef CONFIG_STACKDEPOT |
c4cf6785 SAS |
730 | static noinline depot_stack_handle_t set_track_prepare(void) |
731 | { | |
732 | depot_stack_handle_t handle; | |
5cf909c5 | 733 | unsigned long entries[TRACK_ADDRS_COUNT]; |
0cd1a029 | 734 | unsigned int nr_entries; |
ae14c63a | 735 | |
5cf909c5 | 736 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
c4cf6785 SAS |
737 | handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
738 | ||
739 | return handle; | |
740 | } | |
741 | #else | |
742 | static inline depot_stack_handle_t set_track_prepare(void) | |
743 | { | |
744 | return 0; | |
745 | } | |
d6543e39 | 746 | #endif |
5cf909c5 | 747 | |
c4cf6785 SAS |
748 | static void set_track_update(struct kmem_cache *s, void *object, |
749 | enum track_item alloc, unsigned long addr, | |
750 | depot_stack_handle_t handle) | |
751 | { | |
752 | struct track *p = get_track(s, object, alloc); | |
753 | ||
754 | #ifdef CONFIG_STACKDEPOT | |
755 | p->handle = handle; | |
756 | #endif | |
0cd1a029 VB |
757 | p->addr = addr; |
758 | p->cpu = smp_processor_id(); | |
759 | p->pid = current->pid; | |
760 | p->when = jiffies; | |
81819f0f CL |
761 | } |
762 | ||
c4cf6785 SAS |
763 | static __always_inline void set_track(struct kmem_cache *s, void *object, |
764 | enum track_item alloc, unsigned long addr) | |
765 | { | |
766 | depot_stack_handle_t handle = set_track_prepare(); | |
767 | ||
768 | set_track_update(s, object, alloc, addr, handle); | |
769 | } | |
770 | ||
81819f0f CL |
771 | static void init_tracking(struct kmem_cache *s, void *object) |
772 | { | |
0cd1a029 VB |
773 | struct track *p; |
774 | ||
24922684 CL |
775 | if (!(s->flags & SLAB_STORE_USER)) |
776 | return; | |
777 | ||
0cd1a029 VB |
778 | p = get_track(s, object, TRACK_ALLOC); |
779 | memset(p, 0, 2*sizeof(struct track)); | |
81819f0f CL |
780 | } |
781 | ||
86609d33 | 782 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f | 783 | { |
5cf909c5 OG |
784 | depot_stack_handle_t handle __maybe_unused; |
785 | ||
81819f0f CL |
786 | if (!t->addr) |
787 | return; | |
788 | ||
96b94abc | 789 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 790 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
5cf909c5 OG |
791 | #ifdef CONFIG_STACKDEPOT |
792 | handle = READ_ONCE(t->handle); | |
793 | if (handle) | |
794 | stack_depot_print(handle); | |
795 | else | |
796 | pr_err("object allocation/free stack trace missing\n"); | |
d6543e39 | 797 | #endif |
24922684 CL |
798 | } |
799 | ||
e42f174e | 800 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 801 | { |
86609d33 | 802 | unsigned long pr_time = jiffies; |
24922684 CL |
803 | if (!(s->flags & SLAB_STORE_USER)) |
804 | return; | |
805 | ||
86609d33 CP |
806 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
807 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
808 | } |
809 | ||
fb012e27 | 810 | static void print_slab_info(const struct slab *slab) |
24922684 | 811 | { |
fb012e27 | 812 | struct folio *folio = (struct folio *)slab_folio(slab); |
24922684 | 813 | |
fb012e27 MWO |
814 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
815 | slab, slab->objects, slab->inuse, slab->freelist, | |
816 | folio_flags(folio, 0)); | |
24922684 CL |
817 | } |
818 | ||
819 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
820 | { | |
ecc42fbe | 821 | struct va_format vaf; |
24922684 | 822 | va_list args; |
24922684 CL |
823 | |
824 | va_start(args, fmt); | |
ecc42fbe FF |
825 | vaf.fmt = fmt; |
826 | vaf.va = &args; | |
f9f58285 | 827 | pr_err("=============================================================================\n"); |
ecc42fbe | 828 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 829 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 830 | va_end(args); |
81819f0f CL |
831 | } |
832 | ||
582d1212 | 833 | __printf(2, 3) |
24922684 CL |
834 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
835 | { | |
ecc42fbe | 836 | struct va_format vaf; |
24922684 | 837 | va_list args; |
24922684 | 838 | |
1f9f78b1 OG |
839 | if (slab_add_kunit_errors()) |
840 | return; | |
841 | ||
24922684 | 842 | va_start(args, fmt); |
ecc42fbe FF |
843 | vaf.fmt = fmt; |
844 | vaf.va = &args; | |
845 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 846 | va_end(args); |
24922684 CL |
847 | } |
848 | ||
bb192ed9 | 849 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f CL |
850 | { |
851 | unsigned int off; /* Offset of last byte */ | |
bb192ed9 | 852 | u8 *addr = slab_address(slab); |
24922684 CL |
853 | |
854 | print_tracking(s, p); | |
855 | ||
bb192ed9 | 856 | print_slab_info(slab); |
24922684 | 857 | |
96b94abc | 858 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 859 | p, p - addr, get_freepointer(s, p)); |
24922684 | 860 | |
d86bd1be | 861 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 862 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 863 | s->red_left_pad); |
d86bd1be | 864 | else if (p > addr + 16) |
aa2efd5e | 865 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 866 | |
8669dbab | 867 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 868 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 869 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 870 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 871 | s->inuse - s->object_size); |
81819f0f | 872 | |
cbfc35a4 | 873 | off = get_info_end(s); |
81819f0f | 874 | |
24922684 | 875 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 876 | off += 2 * sizeof(struct track); |
81819f0f | 877 | |
80a9201a AP |
878 | off += kasan_metadata_size(s); |
879 | ||
d86bd1be | 880 | if (off != size_from_object(s)) |
81819f0f | 881 | /* Beginning of the filler is the free pointer */ |
8669dbab | 882 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 883 | size_from_object(s) - off); |
24922684 CL |
884 | |
885 | dump_stack(); | |
81819f0f CL |
886 | } |
887 | ||
bb192ed9 | 888 | static void object_err(struct kmem_cache *s, struct slab *slab, |
81819f0f CL |
889 | u8 *object, char *reason) |
890 | { | |
1f9f78b1 OG |
891 | if (slab_add_kunit_errors()) |
892 | return; | |
893 | ||
3dc50637 | 894 | slab_bug(s, "%s", reason); |
bb192ed9 | 895 | print_trailer(s, slab, object); |
65ebdeef | 896 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
897 | } |
898 | ||
bb192ed9 | 899 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
ae16d059 VB |
900 | void **freelist, void *nextfree) |
901 | { | |
902 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
bb192ed9 VB |
903 | !check_valid_pointer(s, slab, nextfree) && freelist) { |
904 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
ae16d059 VB |
905 | *freelist = NULL; |
906 | slab_fix(s, "Isolate corrupted freechain"); | |
907 | return true; | |
908 | } | |
909 | ||
910 | return false; | |
911 | } | |
912 | ||
bb192ed9 | 913 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
d0e0ac97 | 914 | const char *fmt, ...) |
81819f0f CL |
915 | { |
916 | va_list args; | |
917 | char buf[100]; | |
918 | ||
1f9f78b1 OG |
919 | if (slab_add_kunit_errors()) |
920 | return; | |
921 | ||
24922684 CL |
922 | va_start(args, fmt); |
923 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 924 | va_end(args); |
3dc50637 | 925 | slab_bug(s, "%s", buf); |
bb192ed9 | 926 | print_slab_info(slab); |
81819f0f | 927 | dump_stack(); |
65ebdeef | 928 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
929 | } |
930 | ||
f7cb1933 | 931 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 932 | { |
aa1ef4d7 | 933 | u8 *p = kasan_reset_tag(object); |
81819f0f | 934 | |
d86bd1be JK |
935 | if (s->flags & SLAB_RED_ZONE) |
936 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
937 | ||
81819f0f | 938 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
939 | memset(p, POISON_FREE, s->object_size - 1); |
940 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
941 | } |
942 | ||
943 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 944 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
945 | } |
946 | ||
24922684 CL |
947 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
948 | void *from, void *to) | |
949 | { | |
582d1212 | 950 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
951 | memset(from, data, to - from); |
952 | } | |
953 | ||
bb192ed9 | 954 | static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, |
24922684 | 955 | u8 *object, char *what, |
06428780 | 956 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
957 | { |
958 | u8 *fault; | |
959 | u8 *end; | |
bb192ed9 | 960 | u8 *addr = slab_address(slab); |
24922684 | 961 | |
a79316c6 | 962 | metadata_access_enable(); |
aa1ef4d7 | 963 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 964 | metadata_access_disable(); |
24922684 CL |
965 | if (!fault) |
966 | return 1; | |
967 | ||
968 | end = start + bytes; | |
969 | while (end > fault && end[-1] == value) | |
970 | end--; | |
971 | ||
1f9f78b1 OG |
972 | if (slab_add_kunit_errors()) |
973 | goto skip_bug_print; | |
974 | ||
24922684 | 975 | slab_bug(s, "%s overwritten", what); |
96b94abc | 976 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
977 | fault, end - 1, fault - addr, |
978 | fault[0], value); | |
bb192ed9 | 979 | print_trailer(s, slab, object); |
65ebdeef | 980 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
24922684 | 981 | |
1f9f78b1 | 982 | skip_bug_print: |
24922684 CL |
983 | restore_bytes(s, what, value, fault, end); |
984 | return 0; | |
81819f0f CL |
985 | } |
986 | ||
81819f0f CL |
987 | /* |
988 | * Object layout: | |
989 | * | |
990 | * object address | |
991 | * Bytes of the object to be managed. | |
992 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 993 | * pointer is at the middle of the object. |
672bba3a | 994 | * |
81819f0f CL |
995 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
996 | * 0xa5 (POISON_END) | |
997 | * | |
3b0efdfa | 998 | * object + s->object_size |
81819f0f | 999 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 1000 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 1001 | * object_size == inuse. |
672bba3a | 1002 | * |
81819f0f CL |
1003 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
1004 | * 0xcc (RED_ACTIVE) for objects in use. | |
1005 | * | |
1006 | * object + s->inuse | |
672bba3a CL |
1007 | * Meta data starts here. |
1008 | * | |
81819f0f CL |
1009 | * A. Free pointer (if we cannot overwrite object on free) |
1010 | * B. Tracking data for SLAB_STORE_USER | |
dc84207d | 1011 | * C. Padding to reach required alignment boundary or at minimum |
6446faa2 | 1012 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
1013 | * before the word boundary. |
1014 | * | |
1015 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
1016 | * |
1017 | * object + s->size | |
672bba3a | 1018 | * Nothing is used beyond s->size. |
81819f0f | 1019 | * |
3b0efdfa | 1020 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 1021 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
1022 | * may be used with merged slabcaches. |
1023 | */ | |
1024 | ||
bb192ed9 | 1025 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f | 1026 | { |
cbfc35a4 | 1027 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f CL |
1028 | |
1029 | if (s->flags & SLAB_STORE_USER) | |
1030 | /* We also have user information there */ | |
1031 | off += 2 * sizeof(struct track); | |
1032 | ||
80a9201a AP |
1033 | off += kasan_metadata_size(s); |
1034 | ||
d86bd1be | 1035 | if (size_from_object(s) == off) |
81819f0f CL |
1036 | return 1; |
1037 | ||
bb192ed9 | 1038 | return check_bytes_and_report(s, slab, p, "Object padding", |
d86bd1be | 1039 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
1040 | } |
1041 | ||
39b26464 | 1042 | /* Check the pad bytes at the end of a slab page */ |
a204e6d6 | 1043 | static void slab_pad_check(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1044 | { |
24922684 CL |
1045 | u8 *start; |
1046 | u8 *fault; | |
1047 | u8 *end; | |
5d682681 | 1048 | u8 *pad; |
24922684 CL |
1049 | int length; |
1050 | int remainder; | |
81819f0f CL |
1051 | |
1052 | if (!(s->flags & SLAB_POISON)) | |
a204e6d6 | 1053 | return; |
81819f0f | 1054 | |
bb192ed9 VB |
1055 | start = slab_address(slab); |
1056 | length = slab_size(slab); | |
39b26464 CL |
1057 | end = start + length; |
1058 | remainder = length % s->size; | |
81819f0f | 1059 | if (!remainder) |
a204e6d6 | 1060 | return; |
81819f0f | 1061 | |
5d682681 | 1062 | pad = end - remainder; |
a79316c6 | 1063 | metadata_access_enable(); |
aa1ef4d7 | 1064 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1065 | metadata_access_disable(); |
24922684 | 1066 | if (!fault) |
a204e6d6 | 1067 | return; |
24922684 CL |
1068 | while (end > fault && end[-1] == POISON_INUSE) |
1069 | end--; | |
1070 | ||
bb192ed9 | 1071 | slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
e1b70dd1 | 1072 | fault, end - 1, fault - start); |
5d682681 | 1073 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1074 | |
5d682681 | 1075 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
81819f0f CL |
1076 | } |
1077 | ||
bb192ed9 | 1078 | static int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1079 | void *object, u8 val) |
81819f0f CL |
1080 | { |
1081 | u8 *p = object; | |
3b0efdfa | 1082 | u8 *endobject = object + s->object_size; |
81819f0f CL |
1083 | |
1084 | if (s->flags & SLAB_RED_ZONE) { | |
bb192ed9 | 1085 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
d86bd1be JK |
1086 | object - s->red_left_pad, val, s->red_left_pad)) |
1087 | return 0; | |
1088 | ||
bb192ed9 | 1089 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
3b0efdfa | 1090 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 1091 | return 0; |
81819f0f | 1092 | } else { |
3b0efdfa | 1093 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
bb192ed9 | 1094 | check_bytes_and_report(s, slab, p, "Alignment padding", |
d0e0ac97 CG |
1095 | endobject, POISON_INUSE, |
1096 | s->inuse - s->object_size); | |
3adbefee | 1097 | } |
81819f0f CL |
1098 | } |
1099 | ||
1100 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 1101 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
bb192ed9 | 1102 | (!check_bytes_and_report(s, slab, p, "Poison", p, |
3b0efdfa | 1103 | POISON_FREE, s->object_size - 1) || |
bb192ed9 | 1104 | !check_bytes_and_report(s, slab, p, "End Poison", |
3b0efdfa | 1105 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 1106 | return 0; |
81819f0f CL |
1107 | /* |
1108 | * check_pad_bytes cleans up on its own. | |
1109 | */ | |
bb192ed9 | 1110 | check_pad_bytes(s, slab, p); |
81819f0f CL |
1111 | } |
1112 | ||
cbfc35a4 | 1113 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
1114 | /* |
1115 | * Object and freepointer overlap. Cannot check | |
1116 | * freepointer while object is allocated. | |
1117 | */ | |
1118 | return 1; | |
1119 | ||
1120 | /* Check free pointer validity */ | |
bb192ed9 VB |
1121 | if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { |
1122 | object_err(s, slab, p, "Freepointer corrupt"); | |
81819f0f | 1123 | /* |
9f6c708e | 1124 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1125 | * of the free objects in this slab. May cause |
672bba3a | 1126 | * another error because the object count is now wrong. |
81819f0f | 1127 | */ |
a973e9dd | 1128 | set_freepointer(s, p, NULL); |
81819f0f CL |
1129 | return 0; |
1130 | } | |
1131 | return 1; | |
1132 | } | |
1133 | ||
bb192ed9 | 1134 | static int check_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1135 | { |
39b26464 CL |
1136 | int maxobj; |
1137 | ||
bb192ed9 VB |
1138 | if (!folio_test_slab(slab_folio(slab))) { |
1139 | slab_err(s, slab, "Not a valid slab page"); | |
81819f0f CL |
1140 | return 0; |
1141 | } | |
39b26464 | 1142 | |
bb192ed9 VB |
1143 | maxobj = order_objects(slab_order(slab), s->size); |
1144 | if (slab->objects > maxobj) { | |
1145 | slab_err(s, slab, "objects %u > max %u", | |
1146 | slab->objects, maxobj); | |
39b26464 CL |
1147 | return 0; |
1148 | } | |
bb192ed9 VB |
1149 | if (slab->inuse > slab->objects) { |
1150 | slab_err(s, slab, "inuse %u > max %u", | |
1151 | slab->inuse, slab->objects); | |
81819f0f CL |
1152 | return 0; |
1153 | } | |
1154 | /* Slab_pad_check fixes things up after itself */ | |
bb192ed9 | 1155 | slab_pad_check(s, slab); |
81819f0f CL |
1156 | return 1; |
1157 | } | |
1158 | ||
1159 | /* | |
c2092c12 | 1160 | * Determine if a certain object in a slab is on the freelist. Must hold the |
672bba3a | 1161 | * slab lock to guarantee that the chains are in a consistent state. |
81819f0f | 1162 | */ |
bb192ed9 | 1163 | static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
81819f0f CL |
1164 | { |
1165 | int nr = 0; | |
881db7fb | 1166 | void *fp; |
81819f0f | 1167 | void *object = NULL; |
f6edde9c | 1168 | int max_objects; |
81819f0f | 1169 | |
bb192ed9 VB |
1170 | fp = slab->freelist; |
1171 | while (fp && nr <= slab->objects) { | |
81819f0f CL |
1172 | if (fp == search) |
1173 | return 1; | |
bb192ed9 | 1174 | if (!check_valid_pointer(s, slab, fp)) { |
81819f0f | 1175 | if (object) { |
bb192ed9 | 1176 | object_err(s, slab, object, |
81819f0f | 1177 | "Freechain corrupt"); |
a973e9dd | 1178 | set_freepointer(s, object, NULL); |
81819f0f | 1179 | } else { |
bb192ed9 VB |
1180 | slab_err(s, slab, "Freepointer corrupt"); |
1181 | slab->freelist = NULL; | |
1182 | slab->inuse = slab->objects; | |
24922684 | 1183 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1184 | return 0; |
1185 | } | |
1186 | break; | |
1187 | } | |
1188 | object = fp; | |
1189 | fp = get_freepointer(s, object); | |
1190 | nr++; | |
1191 | } | |
1192 | ||
bb192ed9 | 1193 | max_objects = order_objects(slab_order(slab), s->size); |
210b5c06 CG |
1194 | if (max_objects > MAX_OBJS_PER_PAGE) |
1195 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be | 1196 | |
bb192ed9 VB |
1197 | if (slab->objects != max_objects) { |
1198 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1199 | slab->objects, max_objects); | |
1200 | slab->objects = max_objects; | |
582d1212 | 1201 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1202 | } |
bb192ed9 VB |
1203 | if (slab->inuse != slab->objects - nr) { |
1204 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1205 | slab->inuse, slab->objects - nr); | |
1206 | slab->inuse = slab->objects - nr; | |
582d1212 | 1207 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1208 | } |
1209 | return search == NULL; | |
1210 | } | |
1211 | ||
bb192ed9 | 1212 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
0121c619 | 1213 | int alloc) |
3ec09742 CL |
1214 | { |
1215 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1216 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1217 | s->name, |
1218 | alloc ? "alloc" : "free", | |
bb192ed9 VB |
1219 | object, slab->inuse, |
1220 | slab->freelist); | |
3ec09742 CL |
1221 | |
1222 | if (!alloc) | |
aa2efd5e | 1223 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1224 | s->object_size); |
3ec09742 CL |
1225 | |
1226 | dump_stack(); | |
1227 | } | |
1228 | } | |
1229 | ||
643b1138 | 1230 | /* |
672bba3a | 1231 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1232 | */ |
5cc6eee8 | 1233 | static void add_full(struct kmem_cache *s, |
bb192ed9 | 1234 | struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1235 | { |
5cc6eee8 CL |
1236 | if (!(s->flags & SLAB_STORE_USER)) |
1237 | return; | |
1238 | ||
255d0884 | 1239 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1240 | list_add(&slab->slab_list, &n->full); |
643b1138 CL |
1241 | } |
1242 | ||
bb192ed9 | 1243 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1244 | { |
643b1138 CL |
1245 | if (!(s->flags & SLAB_STORE_USER)) |
1246 | return; | |
1247 | ||
255d0884 | 1248 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1249 | list_del(&slab->slab_list); |
643b1138 CL |
1250 | } |
1251 | ||
0f389ec6 CL |
1252 | /* Tracking of the number of slabs for debugging purposes */ |
1253 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1254 | { | |
1255 | struct kmem_cache_node *n = get_node(s, node); | |
1256 | ||
1257 | return atomic_long_read(&n->nr_slabs); | |
1258 | } | |
1259 | ||
26c02cf0 AB |
1260 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1261 | { | |
1262 | return atomic_long_read(&n->nr_slabs); | |
1263 | } | |
1264 | ||
205ab99d | 1265 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1266 | { |
1267 | struct kmem_cache_node *n = get_node(s, node); | |
1268 | ||
1269 | /* | |
1270 | * May be called early in order to allocate a slab for the | |
1271 | * kmem_cache_node structure. Solve the chicken-egg | |
1272 | * dilemma by deferring the increment of the count during | |
1273 | * bootstrap (see early_kmem_cache_node_alloc). | |
1274 | */ | |
338b2642 | 1275 | if (likely(n)) { |
0f389ec6 | 1276 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1277 | atomic_long_add(objects, &n->total_objects); |
1278 | } | |
0f389ec6 | 1279 | } |
205ab99d | 1280 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1281 | { |
1282 | struct kmem_cache_node *n = get_node(s, node); | |
1283 | ||
1284 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1285 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1286 | } |
1287 | ||
1288 | /* Object debug checks for alloc/free paths */ | |
c0f81a94 | 1289 | static void setup_object_debug(struct kmem_cache *s, void *object) |
3ec09742 | 1290 | { |
8fc8d666 | 1291 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1292 | return; |
1293 | ||
f7cb1933 | 1294 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1295 | init_tracking(s, object); |
1296 | } | |
1297 | ||
a50b854e | 1298 | static |
bb192ed9 | 1299 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
a7101224 | 1300 | { |
8fc8d666 | 1301 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1302 | return; |
1303 | ||
1304 | metadata_access_enable(); | |
bb192ed9 | 1305 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
a7101224 AK |
1306 | metadata_access_disable(); |
1307 | } | |
1308 | ||
becfda68 | 1309 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1310 | struct slab *slab, void *object) |
81819f0f | 1311 | { |
bb192ed9 | 1312 | if (!check_slab(s, slab)) |
becfda68 | 1313 | return 0; |
81819f0f | 1314 | |
bb192ed9 VB |
1315 | if (!check_valid_pointer(s, slab, object)) { |
1316 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
becfda68 | 1317 | return 0; |
81819f0f CL |
1318 | } |
1319 | ||
bb192ed9 | 1320 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1321 | return 0; |
1322 | ||
1323 | return 1; | |
1324 | } | |
1325 | ||
1326 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
bb192ed9 | 1327 | struct slab *slab, |
becfda68 LA |
1328 | void *object, unsigned long addr) |
1329 | { | |
1330 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1331 | if (!alloc_consistency_checks(s, slab, object)) |
becfda68 LA |
1332 | goto bad; |
1333 | } | |
81819f0f | 1334 | |
3ec09742 CL |
1335 | /* Success perform special debug activities for allocs */ |
1336 | if (s->flags & SLAB_STORE_USER) | |
1337 | set_track(s, object, TRACK_ALLOC, addr); | |
bb192ed9 | 1338 | trace(s, slab, object, 1); |
f7cb1933 | 1339 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1340 | return 1; |
3ec09742 | 1341 | |
81819f0f | 1342 | bad: |
bb192ed9 | 1343 | if (folio_test_slab(slab_folio(slab))) { |
81819f0f CL |
1344 | /* |
1345 | * If this is a slab page then lets do the best we can | |
1346 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1347 | * as used avoids touching the remaining objects. |
81819f0f | 1348 | */ |
24922684 | 1349 | slab_fix(s, "Marking all objects used"); |
bb192ed9 VB |
1350 | slab->inuse = slab->objects; |
1351 | slab->freelist = NULL; | |
81819f0f CL |
1352 | } |
1353 | return 0; | |
1354 | } | |
1355 | ||
becfda68 | 1356 | static inline int free_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1357 | struct slab *slab, void *object, unsigned long addr) |
81819f0f | 1358 | { |
bb192ed9 VB |
1359 | if (!check_valid_pointer(s, slab, object)) { |
1360 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
becfda68 | 1361 | return 0; |
81819f0f CL |
1362 | } |
1363 | ||
bb192ed9 VB |
1364 | if (on_freelist(s, slab, object)) { |
1365 | object_err(s, slab, object, "Object already free"); | |
becfda68 | 1366 | return 0; |
81819f0f CL |
1367 | } |
1368 | ||
bb192ed9 | 1369 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
becfda68 | 1370 | return 0; |
81819f0f | 1371 | |
bb192ed9 VB |
1372 | if (unlikely(s != slab->slab_cache)) { |
1373 | if (!folio_test_slab(slab_folio(slab))) { | |
1374 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
756a025f | 1375 | object); |
bb192ed9 | 1376 | } else if (!slab->slab_cache) { |
f9f58285 FF |
1377 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1378 | object); | |
70d71228 | 1379 | dump_stack(); |
06428780 | 1380 | } else |
bb192ed9 | 1381 | object_err(s, slab, object, |
24922684 | 1382 | "page slab pointer corrupt."); |
becfda68 LA |
1383 | return 0; |
1384 | } | |
1385 | return 1; | |
1386 | } | |
1387 | ||
1388 | /* Supports checking bulk free of a constructed freelist */ | |
1389 | static noinline int free_debug_processing( | |
bb192ed9 | 1390 | struct kmem_cache *s, struct slab *slab, |
becfda68 LA |
1391 | void *head, void *tail, int bulk_cnt, |
1392 | unsigned long addr) | |
1393 | { | |
bb192ed9 | 1394 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
becfda68 LA |
1395 | void *object = head; |
1396 | int cnt = 0; | |
a2b4ae8b | 1397 | unsigned long flags, flags2; |
becfda68 | 1398 | int ret = 0; |
c4cf6785 SAS |
1399 | depot_stack_handle_t handle = 0; |
1400 | ||
1401 | if (s->flags & SLAB_STORE_USER) | |
1402 | handle = set_track_prepare(); | |
becfda68 LA |
1403 | |
1404 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 | 1405 | slab_lock(slab, &flags2); |
becfda68 LA |
1406 | |
1407 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1408 | if (!check_slab(s, slab)) |
becfda68 LA |
1409 | goto out; |
1410 | } | |
1411 | ||
1412 | next_object: | |
1413 | cnt++; | |
1414 | ||
1415 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1416 | if (!free_consistency_checks(s, slab, object, addr)) |
becfda68 | 1417 | goto out; |
81819f0f | 1418 | } |
3ec09742 | 1419 | |
3ec09742 | 1420 | if (s->flags & SLAB_STORE_USER) |
c4cf6785 | 1421 | set_track_update(s, object, TRACK_FREE, addr, handle); |
bb192ed9 | 1422 | trace(s, slab, object, 0); |
81084651 | 1423 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1424 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1425 | |
1426 | /* Reached end of constructed freelist yet? */ | |
1427 | if (object != tail) { | |
1428 | object = get_freepointer(s, object); | |
1429 | goto next_object; | |
1430 | } | |
804aa132 LA |
1431 | ret = 1; |
1432 | ||
5c2e4bbb | 1433 | out: |
81084651 | 1434 | if (cnt != bulk_cnt) |
bb192ed9 | 1435 | slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", |
81084651 JDB |
1436 | bulk_cnt, cnt); |
1437 | ||
bb192ed9 | 1438 | slab_unlock(slab, &flags2); |
282acb43 | 1439 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1440 | if (!ret) |
1441 | slab_fix(s, "Object at 0x%p not freed", object); | |
1442 | return ret; | |
81819f0f CL |
1443 | } |
1444 | ||
e17f1dfb VB |
1445 | /* |
1446 | * Parse a block of slub_debug options. Blocks are delimited by ';' | |
1447 | * | |
1448 | * @str: start of block | |
1449 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1450 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1451 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1452 | * | |
1453 | * returns the start of next block if there's any, or NULL | |
1454 | */ | |
1455 | static char * | |
1456 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1457 | { |
e17f1dfb | 1458 | bool higher_order_disable = false; |
f0630fff | 1459 | |
e17f1dfb VB |
1460 | /* Skip any completely empty blocks */ |
1461 | while (*str && *str == ';') | |
1462 | str++; | |
1463 | ||
1464 | if (*str == ',') { | |
f0630fff CL |
1465 | /* |
1466 | * No options but restriction on slabs. This means full | |
1467 | * debugging for slabs matching a pattern. | |
1468 | */ | |
e17f1dfb | 1469 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1470 | goto check_slabs; |
e17f1dfb VB |
1471 | } |
1472 | *flags = 0; | |
f0630fff | 1473 | |
e17f1dfb VB |
1474 | /* Determine which debug features should be switched on */ |
1475 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1476 | switch (tolower(*str)) { |
e17f1dfb VB |
1477 | case '-': |
1478 | *flags = 0; | |
1479 | break; | |
f0630fff | 1480 | case 'f': |
e17f1dfb | 1481 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1482 | break; |
1483 | case 'z': | |
e17f1dfb | 1484 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1485 | break; |
1486 | case 'p': | |
e17f1dfb | 1487 | *flags |= SLAB_POISON; |
f0630fff CL |
1488 | break; |
1489 | case 'u': | |
e17f1dfb | 1490 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1491 | break; |
1492 | case 't': | |
e17f1dfb | 1493 | *flags |= SLAB_TRACE; |
f0630fff | 1494 | break; |
4c13dd3b | 1495 | case 'a': |
e17f1dfb | 1496 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1497 | break; |
08303a73 CA |
1498 | case 'o': |
1499 | /* | |
1500 | * Avoid enabling debugging on caches if its minimum | |
1501 | * order would increase as a result. | |
1502 | */ | |
e17f1dfb | 1503 | higher_order_disable = true; |
08303a73 | 1504 | break; |
f0630fff | 1505 | default: |
e17f1dfb VB |
1506 | if (init) |
1507 | pr_err("slub_debug option '%c' unknown. skipped\n", *str); | |
f0630fff | 1508 | } |
41ecc55b | 1509 | } |
f0630fff | 1510 | check_slabs: |
41ecc55b | 1511 | if (*str == ',') |
e17f1dfb VB |
1512 | *slabs = ++str; |
1513 | else | |
1514 | *slabs = NULL; | |
1515 | ||
1516 | /* Skip over the slab list */ | |
1517 | while (*str && *str != ';') | |
1518 | str++; | |
1519 | ||
1520 | /* Skip any completely empty blocks */ | |
1521 | while (*str && *str == ';') | |
1522 | str++; | |
1523 | ||
1524 | if (init && higher_order_disable) | |
1525 | disable_higher_order_debug = 1; | |
1526 | ||
1527 | if (*str) | |
1528 | return str; | |
1529 | else | |
1530 | return NULL; | |
1531 | } | |
1532 | ||
1533 | static int __init setup_slub_debug(char *str) | |
1534 | { | |
1535 | slab_flags_t flags; | |
a7f1d485 | 1536 | slab_flags_t global_flags; |
e17f1dfb VB |
1537 | char *saved_str; |
1538 | char *slab_list; | |
1539 | bool global_slub_debug_changed = false; | |
1540 | bool slab_list_specified = false; | |
1541 | ||
a7f1d485 | 1542 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1543 | if (*str++ != '=' || !*str) |
1544 | /* | |
1545 | * No options specified. Switch on full debugging. | |
1546 | */ | |
1547 | goto out; | |
1548 | ||
1549 | saved_str = str; | |
1550 | while (str) { | |
1551 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1552 | ||
1553 | if (!slab_list) { | |
a7f1d485 | 1554 | global_flags = flags; |
e17f1dfb VB |
1555 | global_slub_debug_changed = true; |
1556 | } else { | |
1557 | slab_list_specified = true; | |
5cf909c5 OG |
1558 | if (flags & SLAB_STORE_USER) |
1559 | stack_depot_want_early_init(); | |
e17f1dfb VB |
1560 | } |
1561 | } | |
1562 | ||
1563 | /* | |
1564 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 VB |
1565 | * slabs means debugging is only changed for those slabs, so the global |
1566 | * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending | |
1567 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as | |
e17f1dfb VB |
1568 | * long as there is no option specifying flags without a slab list. |
1569 | */ | |
1570 | if (slab_list_specified) { | |
1571 | if (!global_slub_debug_changed) | |
a7f1d485 | 1572 | global_flags = slub_debug; |
e17f1dfb VB |
1573 | slub_debug_string = saved_str; |
1574 | } | |
f0630fff | 1575 | out: |
a7f1d485 | 1576 | slub_debug = global_flags; |
5cf909c5 OG |
1577 | if (slub_debug & SLAB_STORE_USER) |
1578 | stack_depot_want_early_init(); | |
ca0cab65 VB |
1579 | if (slub_debug != 0 || slub_debug_string) |
1580 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1581 | else |
1582 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1583 | if ((static_branch_unlikely(&init_on_alloc) || |
1584 | static_branch_unlikely(&init_on_free)) && | |
1585 | (slub_debug & SLAB_POISON)) | |
1586 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1587 | return 1; |
1588 | } | |
1589 | ||
1590 | __setup("slub_debug", setup_slub_debug); | |
1591 | ||
c5fd3ca0 AT |
1592 | /* |
1593 | * kmem_cache_flags - apply debugging options to the cache | |
1594 | * @object_size: the size of an object without meta data | |
1595 | * @flags: flags to set | |
1596 | * @name: name of the cache | |
c5fd3ca0 AT |
1597 | * |
1598 | * Debug option(s) are applied to @flags. In addition to the debug | |
1599 | * option(s), if a slab name (or multiple) is specified i.e. | |
1600 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1601 | * then only the select slabs will receive the debug option(s). | |
1602 | */ | |
0293d1fd | 1603 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1604 | slab_flags_t flags, const char *name) |
41ecc55b | 1605 | { |
c5fd3ca0 AT |
1606 | char *iter; |
1607 | size_t len; | |
e17f1dfb VB |
1608 | char *next_block; |
1609 | slab_flags_t block_flags; | |
ca220593 JB |
1610 | slab_flags_t slub_debug_local = slub_debug; |
1611 | ||
a285909f HY |
1612 | if (flags & SLAB_NO_USER_FLAGS) |
1613 | return flags; | |
1614 | ||
ca220593 JB |
1615 | /* |
1616 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1617 | * don't store user (stack trace) information by default, | |
1618 | * but let the user enable it via the command line below. | |
1619 | */ | |
1620 | if (flags & SLAB_NOLEAKTRACE) | |
1621 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1622 | |
c5fd3ca0 | 1623 | len = strlen(name); |
e17f1dfb VB |
1624 | next_block = slub_debug_string; |
1625 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1626 | while (next_block) { | |
1627 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1628 | if (!iter) | |
1629 | continue; | |
1630 | /* Found a block that has a slab list, search it */ | |
1631 | while (*iter) { | |
1632 | char *end, *glob; | |
1633 | size_t cmplen; | |
1634 | ||
1635 | end = strchrnul(iter, ','); | |
1636 | if (next_block && next_block < end) | |
1637 | end = next_block - 1; | |
1638 | ||
1639 | glob = strnchr(iter, end - iter, '*'); | |
1640 | if (glob) | |
1641 | cmplen = glob - iter; | |
1642 | else | |
1643 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1644 | |
e17f1dfb VB |
1645 | if (!strncmp(name, iter, cmplen)) { |
1646 | flags |= block_flags; | |
1647 | return flags; | |
1648 | } | |
c5fd3ca0 | 1649 | |
e17f1dfb VB |
1650 | if (!*end || *end == ';') |
1651 | break; | |
1652 | iter = end + 1; | |
c5fd3ca0 | 1653 | } |
c5fd3ca0 | 1654 | } |
ba0268a8 | 1655 | |
ca220593 | 1656 | return flags | slub_debug_local; |
41ecc55b | 1657 | } |
b4a64718 | 1658 | #else /* !CONFIG_SLUB_DEBUG */ |
c0f81a94 | 1659 | static inline void setup_object_debug(struct kmem_cache *s, void *object) {} |
a50b854e | 1660 | static inline |
bb192ed9 | 1661 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
41ecc55b | 1662 | |
3ec09742 | 1663 | static inline int alloc_debug_processing(struct kmem_cache *s, |
bb192ed9 | 1664 | struct slab *slab, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1665 | |
282acb43 | 1666 | static inline int free_debug_processing( |
bb192ed9 | 1667 | struct kmem_cache *s, struct slab *slab, |
81084651 | 1668 | void *head, void *tail, int bulk_cnt, |
282acb43 | 1669 | unsigned long addr) { return 0; } |
41ecc55b | 1670 | |
a204e6d6 | 1671 | static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} |
bb192ed9 | 1672 | static inline int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1673 | void *object, u8 val) { return 1; } |
5cc6eee8 | 1674 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1675 | struct slab *slab) {} |
c65c1877 | 1676 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1677 | struct slab *slab) {} |
0293d1fd | 1678 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1679 | slab_flags_t flags, const char *name) |
ba0268a8 CL |
1680 | { |
1681 | return flags; | |
1682 | } | |
41ecc55b | 1683 | #define slub_debug 0 |
0f389ec6 | 1684 | |
fdaa45e9 IM |
1685 | #define disable_higher_order_debug 0 |
1686 | ||
0f389ec6 CL |
1687 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1688 | { return 0; } | |
26c02cf0 AB |
1689 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1690 | { return 0; } | |
205ab99d CL |
1691 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1692 | int objects) {} | |
1693 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1694 | int objects) {} | |
7d550c56 | 1695 | |
bb192ed9 | 1696 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
dc07a728 | 1697 | void **freelist, void *nextfree) |
52f23478 DZ |
1698 | { |
1699 | return false; | |
1700 | } | |
02e72cc6 AR |
1701 | #endif /* CONFIG_SLUB_DEBUG */ |
1702 | ||
1703 | /* | |
1704 | * Hooks for other subsystems that check memory allocations. In a typical | |
1705 | * production configuration these hooks all should produce no code at all. | |
1706 | */ | |
d57a964e AK |
1707 | static __always_inline bool slab_free_hook(struct kmem_cache *s, |
1708 | void *x, bool init) | |
d56791b3 RB |
1709 | { |
1710 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1711 | |
84048039 | 1712 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 1713 | |
02e72cc6 AR |
1714 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1715 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1716 | |
cfbe1636 ME |
1717 | /* Use KCSAN to help debug racy use-after-free. */ |
1718 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
1719 | __kcsan_check_access(x, s->object_size, | |
1720 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
1721 | ||
d57a964e AK |
1722 | /* |
1723 | * As memory initialization might be integrated into KASAN, | |
1724 | * kasan_slab_free and initialization memset's must be | |
1725 | * kept together to avoid discrepancies in behavior. | |
1726 | * | |
1727 | * The initialization memset's clear the object and the metadata, | |
1728 | * but don't touch the SLAB redzone. | |
1729 | */ | |
1730 | if (init) { | |
1731 | int rsize; | |
1732 | ||
1733 | if (!kasan_has_integrated_init()) | |
1734 | memset(kasan_reset_tag(x), 0, s->object_size); | |
1735 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
1736 | memset((char *)kasan_reset_tag(x) + s->inuse, 0, | |
1737 | s->size - s->inuse - rsize); | |
1738 | } | |
1739 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
1740 | return kasan_slab_free(s, x, init); | |
02e72cc6 | 1741 | } |
205ab99d | 1742 | |
c3895391 | 1743 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
899447f6 ML |
1744 | void **head, void **tail, |
1745 | int *cnt) | |
81084651 | 1746 | { |
6471384a AP |
1747 | |
1748 | void *object; | |
1749 | void *next = *head; | |
1750 | void *old_tail = *tail ? *tail : *head; | |
6471384a | 1751 | |
b89fb5ef | 1752 | if (is_kfence_address(next)) { |
d57a964e | 1753 | slab_free_hook(s, next, false); |
b89fb5ef AP |
1754 | return true; |
1755 | } | |
1756 | ||
aea4df4c LA |
1757 | /* Head and tail of the reconstructed freelist */ |
1758 | *head = NULL; | |
1759 | *tail = NULL; | |
1b7e816f | 1760 | |
aea4df4c LA |
1761 | do { |
1762 | object = next; | |
1763 | next = get_freepointer(s, object); | |
1764 | ||
c3895391 | 1765 | /* If object's reuse doesn't have to be delayed */ |
d57a964e | 1766 | if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { |
c3895391 AK |
1767 | /* Move object to the new freelist */ |
1768 | set_freepointer(s, object, *head); | |
1769 | *head = object; | |
1770 | if (!*tail) | |
1771 | *tail = object; | |
899447f6 ML |
1772 | } else { |
1773 | /* | |
1774 | * Adjust the reconstructed freelist depth | |
1775 | * accordingly if object's reuse is delayed. | |
1776 | */ | |
1777 | --(*cnt); | |
c3895391 AK |
1778 | } |
1779 | } while (object != old_tail); | |
1780 | ||
1781 | if (*head == *tail) | |
1782 | *tail = NULL; | |
1783 | ||
1784 | return *head != NULL; | |
81084651 JDB |
1785 | } |
1786 | ||
c0f81a94 | 1787 | static void *setup_object(struct kmem_cache *s, void *object) |
588f8ba9 | 1788 | { |
c0f81a94 | 1789 | setup_object_debug(s, object); |
4d176711 | 1790 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1791 | if (unlikely(s->ctor)) { |
1792 | kasan_unpoison_object_data(s, object); | |
1793 | s->ctor(object); | |
1794 | kasan_poison_object_data(s, object); | |
1795 | } | |
4d176711 | 1796 | return object; |
588f8ba9 TG |
1797 | } |
1798 | ||
81819f0f CL |
1799 | /* |
1800 | * Slab allocation and freeing | |
1801 | */ | |
a485e1da XS |
1802 | static inline struct slab *alloc_slab_page(gfp_t flags, int node, |
1803 | struct kmem_cache_order_objects oo) | |
65c3376a | 1804 | { |
45387b8c VB |
1805 | struct folio *folio; |
1806 | struct slab *slab; | |
19af27af | 1807 | unsigned int order = oo_order(oo); |
65c3376a | 1808 | |
2154a336 | 1809 | if (node == NUMA_NO_NODE) |
45387b8c | 1810 | folio = (struct folio *)alloc_pages(flags, order); |
65c3376a | 1811 | else |
45387b8c | 1812 | folio = (struct folio *)__alloc_pages_node(node, flags, order); |
5dfb4175 | 1813 | |
45387b8c VB |
1814 | if (!folio) |
1815 | return NULL; | |
1816 | ||
1817 | slab = folio_slab(folio); | |
1818 | __folio_set_slab(folio); | |
1819 | if (page_is_pfmemalloc(folio_page(folio, 0))) | |
1820 | slab_set_pfmemalloc(slab); | |
1821 | ||
1822 | return slab; | |
65c3376a CL |
1823 | } |
1824 | ||
210e7a43 TG |
1825 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1826 | /* Pre-initialize the random sequence cache */ | |
1827 | static int init_cache_random_seq(struct kmem_cache *s) | |
1828 | { | |
19af27af | 1829 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1830 | int err; |
210e7a43 | 1831 | |
a810007a SR |
1832 | /* Bailout if already initialised */ |
1833 | if (s->random_seq) | |
1834 | return 0; | |
1835 | ||
210e7a43 TG |
1836 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1837 | if (err) { | |
1838 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1839 | s->name); | |
1840 | return err; | |
1841 | } | |
1842 | ||
1843 | /* Transform to an offset on the set of pages */ | |
1844 | if (s->random_seq) { | |
19af27af AD |
1845 | unsigned int i; |
1846 | ||
210e7a43 TG |
1847 | for (i = 0; i < count; i++) |
1848 | s->random_seq[i] *= s->size; | |
1849 | } | |
1850 | return 0; | |
1851 | } | |
1852 | ||
1853 | /* Initialize each random sequence freelist per cache */ | |
1854 | static void __init init_freelist_randomization(void) | |
1855 | { | |
1856 | struct kmem_cache *s; | |
1857 | ||
1858 | mutex_lock(&slab_mutex); | |
1859 | ||
1860 | list_for_each_entry(s, &slab_caches, list) | |
1861 | init_cache_random_seq(s); | |
1862 | ||
1863 | mutex_unlock(&slab_mutex); | |
1864 | } | |
1865 | ||
1866 | /* Get the next entry on the pre-computed freelist randomized */ | |
bb192ed9 | 1867 | static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, |
210e7a43 TG |
1868 | unsigned long *pos, void *start, |
1869 | unsigned long page_limit, | |
1870 | unsigned long freelist_count) | |
1871 | { | |
1872 | unsigned int idx; | |
1873 | ||
1874 | /* | |
1875 | * If the target page allocation failed, the number of objects on the | |
1876 | * page might be smaller than the usual size defined by the cache. | |
1877 | */ | |
1878 | do { | |
1879 | idx = s->random_seq[*pos]; | |
1880 | *pos += 1; | |
1881 | if (*pos >= freelist_count) | |
1882 | *pos = 0; | |
1883 | } while (unlikely(idx >= page_limit)); | |
1884 | ||
1885 | return (char *)start + idx; | |
1886 | } | |
1887 | ||
1888 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
bb192ed9 | 1889 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1890 | { |
1891 | void *start; | |
1892 | void *cur; | |
1893 | void *next; | |
1894 | unsigned long idx, pos, page_limit, freelist_count; | |
1895 | ||
bb192ed9 | 1896 | if (slab->objects < 2 || !s->random_seq) |
210e7a43 TG |
1897 | return false; |
1898 | ||
1899 | freelist_count = oo_objects(s->oo); | |
1900 | pos = get_random_int() % freelist_count; | |
1901 | ||
bb192ed9 VB |
1902 | page_limit = slab->objects * s->size; |
1903 | start = fixup_red_left(s, slab_address(slab)); | |
210e7a43 TG |
1904 | |
1905 | /* First entry is used as the base of the freelist */ | |
bb192ed9 | 1906 | cur = next_freelist_entry(s, slab, &pos, start, page_limit, |
210e7a43 | 1907 | freelist_count); |
c0f81a94 | 1908 | cur = setup_object(s, cur); |
bb192ed9 | 1909 | slab->freelist = cur; |
210e7a43 | 1910 | |
bb192ed9 VB |
1911 | for (idx = 1; idx < slab->objects; idx++) { |
1912 | next = next_freelist_entry(s, slab, &pos, start, page_limit, | |
210e7a43 | 1913 | freelist_count); |
c0f81a94 | 1914 | next = setup_object(s, next); |
210e7a43 TG |
1915 | set_freepointer(s, cur, next); |
1916 | cur = next; | |
1917 | } | |
210e7a43 TG |
1918 | set_freepointer(s, cur, NULL); |
1919 | ||
1920 | return true; | |
1921 | } | |
1922 | #else | |
1923 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1924 | { | |
1925 | return 0; | |
1926 | } | |
1927 | static inline void init_freelist_randomization(void) { } | |
bb192ed9 | 1928 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
1929 | { |
1930 | return false; | |
1931 | } | |
1932 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1933 | ||
bb192ed9 | 1934 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
81819f0f | 1935 | { |
bb192ed9 | 1936 | struct slab *slab; |
834f3d11 | 1937 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1938 | gfp_t alloc_gfp; |
4d176711 | 1939 | void *start, *p, *next; |
a50b854e | 1940 | int idx; |
210e7a43 | 1941 | bool shuffle; |
81819f0f | 1942 | |
7e0528da CL |
1943 | flags &= gfp_allowed_mask; |
1944 | ||
b7a49f0d | 1945 | flags |= s->allocflags; |
e12ba74d | 1946 | |
ba52270d PE |
1947 | /* |
1948 | * Let the initial higher-order allocation fail under memory pressure | |
1949 | * so we fall-back to the minimum order allocation. | |
1950 | */ | |
1951 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1952 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
27c08f75 | 1953 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; |
ba52270d | 1954 | |
a485e1da | 1955 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 1956 | if (unlikely(!slab)) { |
65c3376a | 1957 | oo = s->min; |
80c3a998 | 1958 | alloc_gfp = flags; |
65c3376a CL |
1959 | /* |
1960 | * Allocation may have failed due to fragmentation. | |
1961 | * Try a lower order alloc if possible | |
1962 | */ | |
a485e1da | 1963 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 1964 | if (unlikely(!slab)) |
588f8ba9 TG |
1965 | goto out; |
1966 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1967 | } |
5a896d9e | 1968 | |
bb192ed9 | 1969 | slab->objects = oo_objects(oo); |
81819f0f | 1970 | |
bb192ed9 | 1971 | account_slab(slab, oo_order(oo), s, flags); |
1f3147b4 | 1972 | |
bb192ed9 | 1973 | slab->slab_cache = s; |
81819f0f | 1974 | |
6e48a966 | 1975 | kasan_poison_slab(slab); |
81819f0f | 1976 | |
bb192ed9 | 1977 | start = slab_address(slab); |
81819f0f | 1978 | |
bb192ed9 | 1979 | setup_slab_debug(s, slab, start); |
0316bec2 | 1980 | |
bb192ed9 | 1981 | shuffle = shuffle_freelist(s, slab); |
210e7a43 TG |
1982 | |
1983 | if (!shuffle) { | |
4d176711 | 1984 | start = fixup_red_left(s, start); |
c0f81a94 | 1985 | start = setup_object(s, start); |
bb192ed9 VB |
1986 | slab->freelist = start; |
1987 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
18e50661 | 1988 | next = p + s->size; |
c0f81a94 | 1989 | next = setup_object(s, next); |
18e50661 AK |
1990 | set_freepointer(s, p, next); |
1991 | p = next; | |
1992 | } | |
1993 | set_freepointer(s, p, NULL); | |
81819f0f | 1994 | } |
81819f0f | 1995 | |
bb192ed9 VB |
1996 | slab->inuse = slab->objects; |
1997 | slab->frozen = 1; | |
588f8ba9 | 1998 | |
81819f0f | 1999 | out: |
bb192ed9 | 2000 | if (!slab) |
588f8ba9 TG |
2001 | return NULL; |
2002 | ||
bb192ed9 | 2003 | inc_slabs_node(s, slab_nid(slab), slab->objects); |
588f8ba9 | 2004 | |
bb192ed9 | 2005 | return slab; |
81819f0f CL |
2006 | } |
2007 | ||
bb192ed9 | 2008 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
588f8ba9 | 2009 | { |
44405099 LL |
2010 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2011 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 2012 | |
53a0de06 VB |
2013 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2014 | ||
588f8ba9 TG |
2015 | return allocate_slab(s, |
2016 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2017 | } | |
2018 | ||
4020b4a2 | 2019 | static void __free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2020 | { |
4020b4a2 VB |
2021 | struct folio *folio = slab_folio(slab); |
2022 | int order = folio_order(folio); | |
834f3d11 | 2023 | int pages = 1 << order; |
81819f0f | 2024 | |
8fc8d666 | 2025 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
81819f0f CL |
2026 | void *p; |
2027 | ||
bb192ed9 | 2028 | slab_pad_check(s, slab); |
4020b4a2 | 2029 | for_each_object(p, s, slab_address(slab), slab->objects) |
bb192ed9 | 2030 | check_object(s, slab, p, SLUB_RED_INACTIVE); |
81819f0f CL |
2031 | } |
2032 | ||
4020b4a2 VB |
2033 | __slab_clear_pfmemalloc(slab); |
2034 | __folio_clear_slab(folio); | |
2035 | folio->mapping = NULL; | |
1eb5ac64 NP |
2036 | if (current->reclaim_state) |
2037 | current->reclaim_state->reclaimed_slab += pages; | |
4020b4a2 VB |
2038 | unaccount_slab(slab, order, s); |
2039 | __free_pages(folio_page(folio, 0), order); | |
81819f0f CL |
2040 | } |
2041 | ||
2042 | static void rcu_free_slab(struct rcu_head *h) | |
2043 | { | |
bb192ed9 | 2044 | struct slab *slab = container_of(h, struct slab, rcu_head); |
da9a638c | 2045 | |
bb192ed9 | 2046 | __free_slab(slab->slab_cache, slab); |
81819f0f CL |
2047 | } |
2048 | ||
bb192ed9 | 2049 | static void free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2050 | { |
5f0d5a3a | 2051 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bb192ed9 | 2052 | call_rcu(&slab->rcu_head, rcu_free_slab); |
81819f0f | 2053 | } else |
bb192ed9 | 2054 | __free_slab(s, slab); |
81819f0f CL |
2055 | } |
2056 | ||
bb192ed9 | 2057 | static void discard_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2058 | { |
bb192ed9 VB |
2059 | dec_slabs_node(s, slab_nid(slab), slab->objects); |
2060 | free_slab(s, slab); | |
81819f0f CL |
2061 | } |
2062 | ||
2063 | /* | |
5cc6eee8 | 2064 | * Management of partially allocated slabs. |
81819f0f | 2065 | */ |
1e4dd946 | 2066 | static inline void |
bb192ed9 | 2067 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
81819f0f | 2068 | { |
e95eed57 | 2069 | n->nr_partial++; |
136333d1 | 2070 | if (tail == DEACTIVATE_TO_TAIL) |
bb192ed9 | 2071 | list_add_tail(&slab->slab_list, &n->partial); |
7c2e132c | 2072 | else |
bb192ed9 | 2073 | list_add(&slab->slab_list, &n->partial); |
81819f0f CL |
2074 | } |
2075 | ||
1e4dd946 | 2076 | static inline void add_partial(struct kmem_cache_node *n, |
bb192ed9 | 2077 | struct slab *slab, int tail) |
62e346a8 | 2078 | { |
c65c1877 | 2079 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 2080 | __add_partial(n, slab, tail); |
1e4dd946 | 2081 | } |
c65c1877 | 2082 | |
1e4dd946 | 2083 | static inline void remove_partial(struct kmem_cache_node *n, |
bb192ed9 | 2084 | struct slab *slab) |
1e4dd946 SR |
2085 | { |
2086 | lockdep_assert_held(&n->list_lock); | |
bb192ed9 | 2087 | list_del(&slab->slab_list); |
52b4b950 | 2088 | n->nr_partial--; |
1e4dd946 SR |
2089 | } |
2090 | ||
81819f0f | 2091 | /* |
7ced3719 CL |
2092 | * Remove slab from the partial list, freeze it and |
2093 | * return the pointer to the freelist. | |
81819f0f | 2094 | * |
497b66f2 | 2095 | * Returns a list of objects or NULL if it fails. |
81819f0f | 2096 | */ |
497b66f2 | 2097 | static inline void *acquire_slab(struct kmem_cache *s, |
bb192ed9 | 2098 | struct kmem_cache_node *n, struct slab *slab, |
b47291ef | 2099 | int mode) |
81819f0f | 2100 | { |
2cfb7455 CL |
2101 | void *freelist; |
2102 | unsigned long counters; | |
bb192ed9 | 2103 | struct slab new; |
2cfb7455 | 2104 | |
c65c1877 PZ |
2105 | lockdep_assert_held(&n->list_lock); |
2106 | ||
2cfb7455 CL |
2107 | /* |
2108 | * Zap the freelist and set the frozen bit. | |
2109 | * The old freelist is the list of objects for the | |
2110 | * per cpu allocation list. | |
2111 | */ | |
bb192ed9 VB |
2112 | freelist = slab->freelist; |
2113 | counters = slab->counters; | |
7ced3719 | 2114 | new.counters = counters; |
23910c50 | 2115 | if (mode) { |
bb192ed9 | 2116 | new.inuse = slab->objects; |
23910c50 PE |
2117 | new.freelist = NULL; |
2118 | } else { | |
2119 | new.freelist = freelist; | |
2120 | } | |
2cfb7455 | 2121 | |
a0132ac0 | 2122 | VM_BUG_ON(new.frozen); |
7ced3719 | 2123 | new.frozen = 1; |
2cfb7455 | 2124 | |
bb192ed9 | 2125 | if (!__cmpxchg_double_slab(s, slab, |
2cfb7455 | 2126 | freelist, counters, |
02d7633f | 2127 | new.freelist, new.counters, |
7ced3719 | 2128 | "acquire_slab")) |
7ced3719 | 2129 | return NULL; |
2cfb7455 | 2130 | |
bb192ed9 | 2131 | remove_partial(n, slab); |
7ced3719 | 2132 | WARN_ON(!freelist); |
49e22585 | 2133 | return freelist; |
81819f0f CL |
2134 | } |
2135 | ||
e0a043aa | 2136 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2137 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
e0a043aa | 2138 | #else |
bb192ed9 | 2139 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
e0a043aa VB |
2140 | int drain) { } |
2141 | #endif | |
01b34d16 | 2142 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
49e22585 | 2143 | |
81819f0f | 2144 | /* |
672bba3a | 2145 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2146 | */ |
8ba00bb6 | 2147 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 2148 | struct slab **ret_slab, gfp_t gfpflags) |
81819f0f | 2149 | { |
bb192ed9 | 2150 | struct slab *slab, *slab2; |
49e22585 | 2151 | void *object = NULL; |
4b1f449d | 2152 | unsigned long flags; |
bb192ed9 | 2153 | unsigned int partial_slabs = 0; |
81819f0f CL |
2154 | |
2155 | /* | |
2156 | * Racy check. If we mistakenly see no partial slabs then we | |
2157 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2158 | * partial slab and there is none available then get_partial() |
672bba3a | 2159 | * will return NULL. |
81819f0f CL |
2160 | */ |
2161 | if (!n || !n->nr_partial) | |
2162 | return NULL; | |
2163 | ||
4b1f449d | 2164 | spin_lock_irqsave(&n->list_lock, flags); |
bb192ed9 | 2165 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
8ba00bb6 | 2166 | void *t; |
49e22585 | 2167 | |
bb192ed9 | 2168 | if (!pfmemalloc_match(slab, gfpflags)) |
8ba00bb6 JK |
2169 | continue; |
2170 | ||
bb192ed9 | 2171 | t = acquire_slab(s, n, slab, object == NULL); |
49e22585 | 2172 | if (!t) |
9b1ea29b | 2173 | break; |
49e22585 | 2174 | |
12d79634 | 2175 | if (!object) { |
bb192ed9 | 2176 | *ret_slab = slab; |
49e22585 | 2177 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 2178 | object = t; |
49e22585 | 2179 | } else { |
bb192ed9 | 2180 | put_cpu_partial(s, slab, 0); |
8028dcea | 2181 | stat(s, CPU_PARTIAL_NODE); |
bb192ed9 | 2182 | partial_slabs++; |
49e22585 | 2183 | } |
b47291ef | 2184 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
345c905d | 2185 | if (!kmem_cache_has_cpu_partial(s) |
bb192ed9 | 2186 | || partial_slabs > s->cpu_partial_slabs / 2) |
49e22585 | 2187 | break; |
b47291ef VB |
2188 | #else |
2189 | break; | |
2190 | #endif | |
49e22585 | 2191 | |
497b66f2 | 2192 | } |
4b1f449d | 2193 | spin_unlock_irqrestore(&n->list_lock, flags); |
497b66f2 | 2194 | return object; |
81819f0f CL |
2195 | } |
2196 | ||
2197 | /* | |
c2092c12 | 2198 | * Get a slab from somewhere. Search in increasing NUMA distances. |
81819f0f | 2199 | */ |
de3ec035 | 2200 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
bb192ed9 | 2201 | struct slab **ret_slab) |
81819f0f CL |
2202 | { |
2203 | #ifdef CONFIG_NUMA | |
2204 | struct zonelist *zonelist; | |
dd1a239f | 2205 | struct zoneref *z; |
54a6eb5c | 2206 | struct zone *zone; |
97a225e6 | 2207 | enum zone_type highest_zoneidx = gfp_zone(flags); |
497b66f2 | 2208 | void *object; |
cc9a6c87 | 2209 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2210 | |
2211 | /* | |
672bba3a CL |
2212 | * The defrag ratio allows a configuration of the tradeoffs between |
2213 | * inter node defragmentation and node local allocations. A lower | |
2214 | * defrag_ratio increases the tendency to do local allocations | |
2215 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2216 | * |
672bba3a CL |
2217 | * If the defrag_ratio is set to 0 then kmalloc() always |
2218 | * returns node local objects. If the ratio is higher then kmalloc() | |
2219 | * may return off node objects because partial slabs are obtained | |
2220 | * from other nodes and filled up. | |
81819f0f | 2221 | * |
43efd3ea LP |
2222 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2223 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2224 | * allocation will first attempt to defrag slab caches on other nodes. | |
2225 | * This means scanning over all nodes to look for partial slabs which | |
2226 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2227 | * with available objects. |
81819f0f | 2228 | */ |
9824601e CL |
2229 | if (!s->remote_node_defrag_ratio || |
2230 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2231 | return NULL; |
2232 | ||
cc9a6c87 | 2233 | do { |
d26914d1 | 2234 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 2235 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
97a225e6 | 2236 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2237 | struct kmem_cache_node *n; |
2238 | ||
2239 | n = get_node(s, zone_to_nid(zone)); | |
2240 | ||
dee2f8aa | 2241 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 2242 | n->nr_partial > s->min_partial) { |
bb192ed9 | 2243 | object = get_partial_node(s, n, ret_slab, flags); |
cc9a6c87 MG |
2244 | if (object) { |
2245 | /* | |
d26914d1 MG |
2246 | * Don't check read_mems_allowed_retry() |
2247 | * here - if mems_allowed was updated in | |
2248 | * parallel, that was a harmless race | |
2249 | * between allocation and the cpuset | |
2250 | * update | |
cc9a6c87 | 2251 | */ |
cc9a6c87 MG |
2252 | return object; |
2253 | } | |
c0ff7453 | 2254 | } |
81819f0f | 2255 | } |
d26914d1 | 2256 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2257 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2258 | return NULL; |
2259 | } | |
2260 | ||
2261 | /* | |
c2092c12 | 2262 | * Get a partial slab, lock it and return it. |
81819f0f | 2263 | */ |
497b66f2 | 2264 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
bb192ed9 | 2265 | struct slab **ret_slab) |
81819f0f | 2266 | { |
497b66f2 | 2267 | void *object; |
a561ce00 JK |
2268 | int searchnode = node; |
2269 | ||
2270 | if (node == NUMA_NO_NODE) | |
2271 | searchnode = numa_mem_id(); | |
81819f0f | 2272 | |
bb192ed9 | 2273 | object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); |
497b66f2 CL |
2274 | if (object || node != NUMA_NO_NODE) |
2275 | return object; | |
81819f0f | 2276 | |
bb192ed9 | 2277 | return get_any_partial(s, flags, ret_slab); |
81819f0f CL |
2278 | } |
2279 | ||
923717cb | 2280 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2281 | /* |
0d645ed1 | 2282 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2283 | * during cmpxchg. The transactions start with the cpu number and are then |
2284 | * incremented by CONFIG_NR_CPUS. | |
2285 | */ | |
2286 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2287 | #else | |
2288 | /* | |
2289 | * No preemption supported therefore also no need to check for | |
2290 | * different cpus. | |
2291 | */ | |
2292 | #define TID_STEP 1 | |
2293 | #endif | |
2294 | ||
2295 | static inline unsigned long next_tid(unsigned long tid) | |
2296 | { | |
2297 | return tid + TID_STEP; | |
2298 | } | |
2299 | ||
9d5f0be0 | 2300 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2301 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2302 | { | |
2303 | return tid % TID_STEP; | |
2304 | } | |
2305 | ||
2306 | static inline unsigned long tid_to_event(unsigned long tid) | |
2307 | { | |
2308 | return tid / TID_STEP; | |
2309 | } | |
9d5f0be0 | 2310 | #endif |
8a5ec0ba CL |
2311 | |
2312 | static inline unsigned int init_tid(int cpu) | |
2313 | { | |
2314 | return cpu; | |
2315 | } | |
2316 | ||
2317 | static inline void note_cmpxchg_failure(const char *n, | |
2318 | const struct kmem_cache *s, unsigned long tid) | |
2319 | { | |
2320 | #ifdef SLUB_DEBUG_CMPXCHG | |
2321 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2322 | ||
f9f58285 | 2323 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2324 | |
923717cb | 2325 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2326 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2327 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2328 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2329 | else | |
2330 | #endif | |
2331 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2332 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2333 | tid_to_event(tid), tid_to_event(actual_tid)); |
2334 | else | |
f9f58285 | 2335 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2336 | actual_tid, tid, next_tid(tid)); |
2337 | #endif | |
4fdccdfb | 2338 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2339 | } |
2340 | ||
788e1aad | 2341 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2342 | { |
8a5ec0ba | 2343 | int cpu; |
bd0e7491 | 2344 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2345 | |
bd0e7491 VB |
2346 | for_each_possible_cpu(cpu) { |
2347 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2348 | local_lock_init(&c->lock); | |
2349 | c->tid = init_tid(cpu); | |
2350 | } | |
8a5ec0ba | 2351 | } |
2cfb7455 | 2352 | |
81819f0f | 2353 | /* |
c2092c12 | 2354 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
a019d201 VB |
2355 | * unfreezes the slabs and puts it on the proper list. |
2356 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2357 | * by the caller. | |
81819f0f | 2358 | */ |
bb192ed9 | 2359 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
a019d201 | 2360 | void *freelist) |
81819f0f | 2361 | { |
6d3a16d0 | 2362 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; |
bb192ed9 | 2363 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
6d3a16d0 HY |
2364 | int free_delta = 0; |
2365 | enum slab_modes mode = M_NONE; | |
d930ff03 | 2366 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2367 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2368 | unsigned long flags = 0; |
bb192ed9 VB |
2369 | struct slab new; |
2370 | struct slab old; | |
2cfb7455 | 2371 | |
bb192ed9 | 2372 | if (slab->freelist) { |
84e554e6 | 2373 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2374 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2375 | } |
2376 | ||
894b8788 | 2377 | /* |
d930ff03 VB |
2378 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2379 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2380 | */ |
d930ff03 VB |
2381 | freelist_tail = NULL; |
2382 | freelist_iter = freelist; | |
2383 | while (freelist_iter) { | |
2384 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2385 | |
52f23478 DZ |
2386 | /* |
2387 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2388 | * 'freelist_iter' is already corrupted. So isolate all objects |
2389 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2390 | */ |
bb192ed9 | 2391 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
52f23478 DZ |
2392 | break; |
2393 | ||
d930ff03 VB |
2394 | freelist_tail = freelist_iter; |
2395 | free_delta++; | |
2cfb7455 | 2396 | |
d930ff03 | 2397 | freelist_iter = nextfree; |
2cfb7455 CL |
2398 | } |
2399 | ||
894b8788 | 2400 | /* |
c2092c12 VB |
2401 | * Stage two: Unfreeze the slab while splicing the per-cpu |
2402 | * freelist to the head of slab's freelist. | |
d930ff03 | 2403 | * |
c2092c12 | 2404 | * Ensure that the slab is unfrozen while the list presence |
d930ff03 | 2405 | * reflects the actual number of objects during unfreeze. |
2cfb7455 | 2406 | * |
6d3a16d0 HY |
2407 | * We first perform cmpxchg holding lock and insert to list |
2408 | * when it succeed. If there is mismatch then the slab is not | |
2409 | * unfrozen and number of objects in the slab may have changed. | |
2410 | * Then release lock and retry cmpxchg again. | |
894b8788 | 2411 | */ |
2cfb7455 | 2412 | redo: |
894b8788 | 2413 | |
bb192ed9 VB |
2414 | old.freelist = READ_ONCE(slab->freelist); |
2415 | old.counters = READ_ONCE(slab->counters); | |
a0132ac0 | 2416 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2417 | |
2cfb7455 CL |
2418 | /* Determine target state of the slab */ |
2419 | new.counters = old.counters; | |
d930ff03 VB |
2420 | if (freelist_tail) { |
2421 | new.inuse -= free_delta; | |
2422 | set_freepointer(s, freelist_tail, old.freelist); | |
2cfb7455 CL |
2423 | new.freelist = freelist; |
2424 | } else | |
2425 | new.freelist = old.freelist; | |
2426 | ||
2427 | new.frozen = 0; | |
2428 | ||
6d3a16d0 HY |
2429 | if (!new.inuse && n->nr_partial >= s->min_partial) { |
2430 | mode = M_FREE; | |
2431 | } else if (new.freelist) { | |
2432 | mode = M_PARTIAL; | |
2433 | /* | |
2434 | * Taking the spinlock removes the possibility that | |
2435 | * acquire_slab() will see a slab that is frozen | |
2436 | */ | |
2437 | spin_lock_irqsave(&n->list_lock, flags); | |
2438 | } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { | |
2439 | mode = M_FULL; | |
2440 | /* | |
2441 | * This also ensures that the scanning of full | |
2442 | * slabs from diagnostic functions will not see | |
2443 | * any frozen slabs. | |
2444 | */ | |
2445 | spin_lock_irqsave(&n->list_lock, flags); | |
2cfb7455 | 2446 | } else { |
6d3a16d0 | 2447 | mode = M_FULL_NOLIST; |
2cfb7455 CL |
2448 | } |
2449 | ||
2cfb7455 | 2450 | |
bb192ed9 | 2451 | if (!cmpxchg_double_slab(s, slab, |
2cfb7455 CL |
2452 | old.freelist, old.counters, |
2453 | new.freelist, new.counters, | |
6d3a16d0 HY |
2454 | "unfreezing slab")) { |
2455 | if (mode == M_PARTIAL || mode == M_FULL) | |
2456 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2cfb7455 | 2457 | goto redo; |
6d3a16d0 | 2458 | } |
2cfb7455 | 2459 | |
2cfb7455 | 2460 | |
6d3a16d0 HY |
2461 | if (mode == M_PARTIAL) { |
2462 | add_partial(n, slab, tail); | |
2463 | spin_unlock_irqrestore(&n->list_lock, flags); | |
88349a28 | 2464 | stat(s, tail); |
6d3a16d0 | 2465 | } else if (mode == M_FREE) { |
2cfb7455 | 2466 | stat(s, DEACTIVATE_EMPTY); |
bb192ed9 | 2467 | discard_slab(s, slab); |
2cfb7455 | 2468 | stat(s, FREE_SLAB); |
6d3a16d0 HY |
2469 | } else if (mode == M_FULL) { |
2470 | add_full(s, n, slab); | |
2471 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2472 | stat(s, DEACTIVATE_FULL); | |
2473 | } else if (mode == M_FULL_NOLIST) { | |
2474 | stat(s, DEACTIVATE_FULL); | |
894b8788 | 2475 | } |
81819f0f CL |
2476 | } |
2477 | ||
345c905d | 2478 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2479 | static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) |
fc1455f4 | 2480 | { |
43d77867 | 2481 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
bb192ed9 | 2482 | struct slab *slab, *slab_to_discard = NULL; |
7cf9f3ba | 2483 | unsigned long flags = 0; |
49e22585 | 2484 | |
bb192ed9 VB |
2485 | while (partial_slab) { |
2486 | struct slab new; | |
2487 | struct slab old; | |
49e22585 | 2488 | |
bb192ed9 VB |
2489 | slab = partial_slab; |
2490 | partial_slab = slab->next; | |
43d77867 | 2491 | |
bb192ed9 | 2492 | n2 = get_node(s, slab_nid(slab)); |
43d77867 JK |
2493 | if (n != n2) { |
2494 | if (n) | |
7cf9f3ba | 2495 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
2496 | |
2497 | n = n2; | |
7cf9f3ba | 2498 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 2499 | } |
49e22585 CL |
2500 | |
2501 | do { | |
2502 | ||
bb192ed9 VB |
2503 | old.freelist = slab->freelist; |
2504 | old.counters = slab->counters; | |
a0132ac0 | 2505 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2506 | |
2507 | new.counters = old.counters; | |
2508 | new.freelist = old.freelist; | |
2509 | ||
2510 | new.frozen = 0; | |
2511 | ||
bb192ed9 | 2512 | } while (!__cmpxchg_double_slab(s, slab, |
49e22585 CL |
2513 | old.freelist, old.counters, |
2514 | new.freelist, new.counters, | |
2515 | "unfreezing slab")); | |
2516 | ||
8a5b20ae | 2517 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
bb192ed9 VB |
2518 | slab->next = slab_to_discard; |
2519 | slab_to_discard = slab; | |
43d77867 | 2520 | } else { |
bb192ed9 | 2521 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
43d77867 | 2522 | stat(s, FREE_ADD_PARTIAL); |
49e22585 CL |
2523 | } |
2524 | } | |
2525 | ||
2526 | if (n) | |
7cf9f3ba | 2527 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 2528 | |
bb192ed9 VB |
2529 | while (slab_to_discard) { |
2530 | slab = slab_to_discard; | |
2531 | slab_to_discard = slab_to_discard->next; | |
9ada1934 SL |
2532 | |
2533 | stat(s, DEACTIVATE_EMPTY); | |
bb192ed9 | 2534 | discard_slab(s, slab); |
9ada1934 SL |
2535 | stat(s, FREE_SLAB); |
2536 | } | |
fc1455f4 | 2537 | } |
f3ab8b6b | 2538 | |
fc1455f4 VB |
2539 | /* |
2540 | * Unfreeze all the cpu partial slabs. | |
2541 | */ | |
2542 | static void unfreeze_partials(struct kmem_cache *s) | |
2543 | { | |
bb192ed9 | 2544 | struct slab *partial_slab; |
fc1455f4 VB |
2545 | unsigned long flags; |
2546 | ||
bd0e7491 | 2547 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2548 | partial_slab = this_cpu_read(s->cpu_slab->partial); |
fc1455f4 | 2549 | this_cpu_write(s->cpu_slab->partial, NULL); |
bd0e7491 | 2550 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 | 2551 | |
bb192ed9 VB |
2552 | if (partial_slab) |
2553 | __unfreeze_partials(s, partial_slab); | |
fc1455f4 VB |
2554 | } |
2555 | ||
2556 | static void unfreeze_partials_cpu(struct kmem_cache *s, | |
2557 | struct kmem_cache_cpu *c) | |
2558 | { | |
bb192ed9 | 2559 | struct slab *partial_slab; |
fc1455f4 | 2560 | |
bb192ed9 | 2561 | partial_slab = slub_percpu_partial(c); |
fc1455f4 VB |
2562 | c->partial = NULL; |
2563 | ||
bb192ed9 VB |
2564 | if (partial_slab) |
2565 | __unfreeze_partials(s, partial_slab); | |
49e22585 CL |
2566 | } |
2567 | ||
2568 | /* | |
c2092c12 VB |
2569 | * Put a slab that was just frozen (in __slab_free|get_partial_node) into a |
2570 | * partial slab slot if available. | |
49e22585 CL |
2571 | * |
2572 | * If we did not find a slot then simply move all the partials to the | |
2573 | * per node partial list. | |
2574 | */ | |
bb192ed9 | 2575 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
49e22585 | 2576 | { |
bb192ed9 VB |
2577 | struct slab *oldslab; |
2578 | struct slab *slab_to_unfreeze = NULL; | |
e0a043aa | 2579 | unsigned long flags; |
bb192ed9 | 2580 | int slabs = 0; |
49e22585 | 2581 | |
bd0e7491 | 2582 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 2583 | |
bb192ed9 | 2584 | oldslab = this_cpu_read(s->cpu_slab->partial); |
e0a043aa | 2585 | |
bb192ed9 VB |
2586 | if (oldslab) { |
2587 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
e0a043aa VB |
2588 | /* |
2589 | * Partial array is full. Move the existing set to the | |
2590 | * per node partial list. Postpone the actual unfreezing | |
2591 | * outside of the critical section. | |
2592 | */ | |
bb192ed9 VB |
2593 | slab_to_unfreeze = oldslab; |
2594 | oldslab = NULL; | |
e0a043aa | 2595 | } else { |
bb192ed9 | 2596 | slabs = oldslab->slabs; |
49e22585 | 2597 | } |
e0a043aa | 2598 | } |
49e22585 | 2599 | |
bb192ed9 | 2600 | slabs++; |
49e22585 | 2601 | |
bb192ed9 VB |
2602 | slab->slabs = slabs; |
2603 | slab->next = oldslab; | |
49e22585 | 2604 | |
bb192ed9 | 2605 | this_cpu_write(s->cpu_slab->partial, slab); |
e0a043aa | 2606 | |
bd0e7491 | 2607 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa | 2608 | |
bb192ed9 VB |
2609 | if (slab_to_unfreeze) { |
2610 | __unfreeze_partials(s, slab_to_unfreeze); | |
e0a043aa VB |
2611 | stat(s, CPU_PARTIAL_DRAIN); |
2612 | } | |
49e22585 CL |
2613 | } |
2614 | ||
e0a043aa VB |
2615 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
2616 | ||
2617 | static inline void unfreeze_partials(struct kmem_cache *s) { } | |
2618 | static inline void unfreeze_partials_cpu(struct kmem_cache *s, | |
2619 | struct kmem_cache_cpu *c) { } | |
2620 | ||
2621 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
2622 | ||
dfb4f096 | 2623 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2624 | { |
5a836bf6 | 2625 | unsigned long flags; |
bb192ed9 | 2626 | struct slab *slab; |
5a836bf6 SAS |
2627 | void *freelist; |
2628 | ||
bd0e7491 | 2629 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 | 2630 | |
bb192ed9 | 2631 | slab = c->slab; |
5a836bf6 | 2632 | freelist = c->freelist; |
c17dda40 | 2633 | |
bb192ed9 | 2634 | c->slab = NULL; |
a019d201 | 2635 | c->freelist = NULL; |
c17dda40 | 2636 | c->tid = next_tid(c->tid); |
a019d201 | 2637 | |
bd0e7491 | 2638 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 2639 | |
bb192ed9 VB |
2640 | if (slab) { |
2641 | deactivate_slab(s, slab, freelist); | |
5a836bf6 SAS |
2642 | stat(s, CPUSLAB_FLUSH); |
2643 | } | |
81819f0f CL |
2644 | } |
2645 | ||
0c710013 | 2646 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2647 | { |
9dfc6e68 | 2648 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 | 2649 | void *freelist = c->freelist; |
bb192ed9 | 2650 | struct slab *slab = c->slab; |
81819f0f | 2651 | |
bb192ed9 | 2652 | c->slab = NULL; |
08beb547 VB |
2653 | c->freelist = NULL; |
2654 | c->tid = next_tid(c->tid); | |
2655 | ||
bb192ed9 VB |
2656 | if (slab) { |
2657 | deactivate_slab(s, slab, freelist); | |
08beb547 VB |
2658 | stat(s, CPUSLAB_FLUSH); |
2659 | } | |
49e22585 | 2660 | |
fc1455f4 | 2661 | unfreeze_partials_cpu(s, c); |
81819f0f CL |
2662 | } |
2663 | ||
5a836bf6 SAS |
2664 | struct slub_flush_work { |
2665 | struct work_struct work; | |
2666 | struct kmem_cache *s; | |
2667 | bool skip; | |
2668 | }; | |
2669 | ||
fc1455f4 VB |
2670 | /* |
2671 | * Flush cpu slab. | |
2672 | * | |
5a836bf6 | 2673 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 2674 | */ |
5a836bf6 | 2675 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 2676 | { |
5a836bf6 SAS |
2677 | struct kmem_cache *s; |
2678 | struct kmem_cache_cpu *c; | |
2679 | struct slub_flush_work *sfw; | |
2680 | ||
2681 | sfw = container_of(w, struct slub_flush_work, work); | |
2682 | ||
2683 | s = sfw->s; | |
2684 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 | 2685 | |
bb192ed9 | 2686 | if (c->slab) |
fc1455f4 | 2687 | flush_slab(s, c); |
81819f0f | 2688 | |
fc1455f4 | 2689 | unfreeze_partials(s); |
81819f0f CL |
2690 | } |
2691 | ||
5a836bf6 | 2692 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 2693 | { |
a8364d55 GBY |
2694 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2695 | ||
bb192ed9 | 2696 | return c->slab || slub_percpu_partial(c); |
a8364d55 GBY |
2697 | } |
2698 | ||
5a836bf6 SAS |
2699 | static DEFINE_MUTEX(flush_lock); |
2700 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
2701 | ||
2702 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
2703 | { | |
2704 | struct slub_flush_work *sfw; | |
2705 | unsigned int cpu; | |
2706 | ||
2707 | lockdep_assert_cpus_held(); | |
2708 | mutex_lock(&flush_lock); | |
2709 | ||
2710 | for_each_online_cpu(cpu) { | |
2711 | sfw = &per_cpu(slub_flush, cpu); | |
2712 | if (!has_cpu_slab(cpu, s)) { | |
2713 | sfw->skip = true; | |
2714 | continue; | |
2715 | } | |
2716 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
2717 | sfw->skip = false; | |
2718 | sfw->s = s; | |
2719 | schedule_work_on(cpu, &sfw->work); | |
2720 | } | |
2721 | ||
2722 | for_each_online_cpu(cpu) { | |
2723 | sfw = &per_cpu(slub_flush, cpu); | |
2724 | if (sfw->skip) | |
2725 | continue; | |
2726 | flush_work(&sfw->work); | |
2727 | } | |
2728 | ||
2729 | mutex_unlock(&flush_lock); | |
2730 | } | |
2731 | ||
81819f0f CL |
2732 | static void flush_all(struct kmem_cache *s) |
2733 | { | |
5a836bf6 SAS |
2734 | cpus_read_lock(); |
2735 | flush_all_cpus_locked(s); | |
2736 | cpus_read_unlock(); | |
81819f0f CL |
2737 | } |
2738 | ||
a96a87bf SAS |
2739 | /* |
2740 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2741 | * necessary. | |
2742 | */ | |
2743 | static int slub_cpu_dead(unsigned int cpu) | |
2744 | { | |
2745 | struct kmem_cache *s; | |
a96a87bf SAS |
2746 | |
2747 | mutex_lock(&slab_mutex); | |
0e7ac738 | 2748 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 2749 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
2750 | mutex_unlock(&slab_mutex); |
2751 | return 0; | |
2752 | } | |
2753 | ||
dfb4f096 CL |
2754 | /* |
2755 | * Check if the objects in a per cpu structure fit numa | |
2756 | * locality expectations. | |
2757 | */ | |
bb192ed9 | 2758 | static inline int node_match(struct slab *slab, int node) |
dfb4f096 CL |
2759 | { |
2760 | #ifdef CONFIG_NUMA | |
bb192ed9 | 2761 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
dfb4f096 CL |
2762 | return 0; |
2763 | #endif | |
2764 | return 1; | |
2765 | } | |
2766 | ||
9a02d699 | 2767 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 2768 | static int count_free(struct slab *slab) |
781b2ba6 | 2769 | { |
bb192ed9 | 2770 | return slab->objects - slab->inuse; |
781b2ba6 PE |
2771 | } |
2772 | ||
9a02d699 DR |
2773 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2774 | { | |
2775 | return atomic_long_read(&n->total_objects); | |
2776 | } | |
2777 | #endif /* CONFIG_SLUB_DEBUG */ | |
2778 | ||
2779 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 | 2780 | static unsigned long count_partial(struct kmem_cache_node *n, |
bb192ed9 | 2781 | int (*get_count)(struct slab *)) |
781b2ba6 PE |
2782 | { |
2783 | unsigned long flags; | |
2784 | unsigned long x = 0; | |
bb192ed9 | 2785 | struct slab *slab; |
781b2ba6 PE |
2786 | |
2787 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
2788 | list_for_each_entry(slab, &n->partial, slab_list) |
2789 | x += get_count(slab); | |
781b2ba6 PE |
2790 | spin_unlock_irqrestore(&n->list_lock, flags); |
2791 | return x; | |
2792 | } | |
9a02d699 | 2793 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2794 | |
781b2ba6 PE |
2795 | static noinline void |
2796 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2797 | { | |
9a02d699 DR |
2798 | #ifdef CONFIG_SLUB_DEBUG |
2799 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2800 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2801 | int node; |
fa45dc25 | 2802 | struct kmem_cache_node *n; |
781b2ba6 | 2803 | |
9a02d699 DR |
2804 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2805 | return; | |
2806 | ||
5b3810e5 VB |
2807 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2808 | nid, gfpflags, &gfpflags); | |
19af27af | 2809 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2810 | s->name, s->object_size, s->size, oo_order(s->oo), |
2811 | oo_order(s->min)); | |
781b2ba6 | 2812 | |
3b0efdfa | 2813 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2814 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2815 | s->name); | |
fa5ec8a1 | 2816 | |
fa45dc25 | 2817 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2818 | unsigned long nr_slabs; |
2819 | unsigned long nr_objs; | |
2820 | unsigned long nr_free; | |
2821 | ||
26c02cf0 AB |
2822 | nr_free = count_partial(n, count_free); |
2823 | nr_slabs = node_nr_slabs(n); | |
2824 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2825 | |
f9f58285 | 2826 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2827 | node, nr_slabs, nr_objs, nr_free); |
2828 | } | |
9a02d699 | 2829 | #endif |
781b2ba6 PE |
2830 | } |
2831 | ||
01b34d16 | 2832 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
072bb0aa | 2833 | { |
01b34d16 | 2834 | if (unlikely(slab_test_pfmemalloc(slab))) |
0b303fb4 VB |
2835 | return gfp_pfmemalloc_allowed(gfpflags); |
2836 | ||
2837 | return true; | |
2838 | } | |
2839 | ||
213eeb9f | 2840 | /* |
c2092c12 VB |
2841 | * Check the slab->freelist and either transfer the freelist to the |
2842 | * per cpu freelist or deactivate the slab. | |
213eeb9f | 2843 | * |
c2092c12 | 2844 | * The slab is still frozen if the return value is not NULL. |
213eeb9f | 2845 | * |
c2092c12 | 2846 | * If this function returns NULL then the slab has been unfrozen. |
213eeb9f | 2847 | */ |
bb192ed9 | 2848 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
213eeb9f | 2849 | { |
bb192ed9 | 2850 | struct slab new; |
213eeb9f CL |
2851 | unsigned long counters; |
2852 | void *freelist; | |
2853 | ||
bd0e7491 VB |
2854 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
2855 | ||
213eeb9f | 2856 | do { |
bb192ed9 VB |
2857 | freelist = slab->freelist; |
2858 | counters = slab->counters; | |
6faa6833 | 2859 | |
213eeb9f | 2860 | new.counters = counters; |
a0132ac0 | 2861 | VM_BUG_ON(!new.frozen); |
213eeb9f | 2862 | |
bb192ed9 | 2863 | new.inuse = slab->objects; |
213eeb9f CL |
2864 | new.frozen = freelist != NULL; |
2865 | ||
bb192ed9 | 2866 | } while (!__cmpxchg_double_slab(s, slab, |
213eeb9f CL |
2867 | freelist, counters, |
2868 | NULL, new.counters, | |
2869 | "get_freelist")); | |
2870 | ||
2871 | return freelist; | |
2872 | } | |
2873 | ||
81819f0f | 2874 | /* |
894b8788 CL |
2875 | * Slow path. The lockless freelist is empty or we need to perform |
2876 | * debugging duties. | |
2877 | * | |
894b8788 CL |
2878 | * Processing is still very fast if new objects have been freed to the |
2879 | * regular freelist. In that case we simply take over the regular freelist | |
2880 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2881 | * |
894b8788 CL |
2882 | * If that is not working then we fall back to the partial lists. We take the |
2883 | * first element of the freelist as the object to allocate now and move the | |
2884 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2885 | * |
894b8788 | 2886 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2887 | * we need to allocate a new slab. This is the slowest path since it involves |
2888 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 2889 | * |
e500059b | 2890 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 2891 | * already disabled (which is the case for bulk allocation). |
81819f0f | 2892 | */ |
a380a3c7 | 2893 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2894 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2895 | { |
6faa6833 | 2896 | void *freelist; |
bb192ed9 | 2897 | struct slab *slab; |
e500059b | 2898 | unsigned long flags; |
81819f0f | 2899 | |
9f986d99 AW |
2900 | stat(s, ALLOC_SLOWPATH); |
2901 | ||
c2092c12 | 2902 | reread_slab: |
0b303fb4 | 2903 | |
bb192ed9 VB |
2904 | slab = READ_ONCE(c->slab); |
2905 | if (!slab) { | |
0715e6c5 VB |
2906 | /* |
2907 | * if the node is not online or has no normal memory, just | |
2908 | * ignore the node constraint | |
2909 | */ | |
2910 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 2911 | !node_isset(node, slab_nodes))) |
0715e6c5 | 2912 | node = NUMA_NO_NODE; |
81819f0f | 2913 | goto new_slab; |
0715e6c5 | 2914 | } |
49e22585 | 2915 | redo: |
6faa6833 | 2916 | |
bb192ed9 | 2917 | if (unlikely(!node_match(slab, node))) { |
0715e6c5 VB |
2918 | /* |
2919 | * same as above but node_match() being false already | |
2920 | * implies node != NUMA_NO_NODE | |
2921 | */ | |
7e1fa93d | 2922 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 | 2923 | node = NUMA_NO_NODE; |
0715e6c5 | 2924 | } else { |
a561ce00 | 2925 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 2926 | goto deactivate_slab; |
a561ce00 | 2927 | } |
fc59c053 | 2928 | } |
6446faa2 | 2929 | |
072bb0aa MG |
2930 | /* |
2931 | * By rights, we should be searching for a slab page that was | |
2932 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2933 | * information when the page leaves the per-cpu allocator | |
2934 | */ | |
bb192ed9 | 2935 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
0b303fb4 | 2936 | goto deactivate_slab; |
072bb0aa | 2937 | |
c2092c12 | 2938 | /* must check again c->slab in case we got preempted and it changed */ |
bd0e7491 | 2939 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2940 | if (unlikely(slab != c->slab)) { |
bd0e7491 | 2941 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2942 | goto reread_slab; |
0b303fb4 | 2943 | } |
6faa6833 CL |
2944 | freelist = c->freelist; |
2945 | if (freelist) | |
73736e03 | 2946 | goto load_freelist; |
03e404af | 2947 | |
bb192ed9 | 2948 | freelist = get_freelist(s, slab); |
6446faa2 | 2949 | |
6faa6833 | 2950 | if (!freelist) { |
bb192ed9 | 2951 | c->slab = NULL; |
eeaa345e | 2952 | c->tid = next_tid(c->tid); |
bd0e7491 | 2953 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 2954 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 2955 | goto new_slab; |
03e404af | 2956 | } |
6446faa2 | 2957 | |
84e554e6 | 2958 | stat(s, ALLOC_REFILL); |
6446faa2 | 2959 | |
894b8788 | 2960 | load_freelist: |
0b303fb4 | 2961 | |
bd0e7491 | 2962 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 2963 | |
507effea CL |
2964 | /* |
2965 | * freelist is pointing to the list of objects to be used. | |
c2092c12 VB |
2966 | * slab is pointing to the slab from which the objects are obtained. |
2967 | * That slab must be frozen for per cpu allocations to work. | |
507effea | 2968 | */ |
bb192ed9 | 2969 | VM_BUG_ON(!c->slab->frozen); |
6faa6833 | 2970 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2971 | c->tid = next_tid(c->tid); |
bd0e7491 | 2972 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 2973 | return freelist; |
81819f0f | 2974 | |
0b303fb4 VB |
2975 | deactivate_slab: |
2976 | ||
bd0e7491 | 2977 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2978 | if (slab != c->slab) { |
bd0e7491 | 2979 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2980 | goto reread_slab; |
0b303fb4 | 2981 | } |
a019d201 | 2982 | freelist = c->freelist; |
bb192ed9 | 2983 | c->slab = NULL; |
a019d201 | 2984 | c->freelist = NULL; |
eeaa345e | 2985 | c->tid = next_tid(c->tid); |
bd0e7491 | 2986 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
bb192ed9 | 2987 | deactivate_slab(s, slab, freelist); |
0b303fb4 | 2988 | |
81819f0f | 2989 | new_slab: |
2cfb7455 | 2990 | |
a93cf07b | 2991 | if (slub_percpu_partial(c)) { |
bd0e7491 | 2992 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2993 | if (unlikely(c->slab)) { |
bd0e7491 | 2994 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 2995 | goto reread_slab; |
fa417ab7 | 2996 | } |
4b1f449d | 2997 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 2998 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
2999 | /* we were preempted and partial list got empty */ |
3000 | goto new_objects; | |
4b1f449d | 3001 | } |
fa417ab7 | 3002 | |
bb192ed9 VB |
3003 | slab = c->slab = slub_percpu_partial(c); |
3004 | slub_set_percpu_partial(c, slab); | |
bd0e7491 | 3005 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
49e22585 | 3006 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 3007 | goto redo; |
81819f0f CL |
3008 | } |
3009 | ||
fa417ab7 VB |
3010 | new_objects: |
3011 | ||
bb192ed9 | 3012 | freelist = get_partial(s, gfpflags, node, &slab); |
3f2b77e3 | 3013 | if (freelist) |
c2092c12 | 3014 | goto check_new_slab; |
2a904905 | 3015 | |
25c00c50 | 3016 | slub_put_cpu_ptr(s->cpu_slab); |
bb192ed9 | 3017 | slab = new_slab(s, gfpflags, node); |
25c00c50 | 3018 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 3019 | |
bb192ed9 | 3020 | if (unlikely(!slab)) { |
9a02d699 | 3021 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 3022 | return NULL; |
81819f0f | 3023 | } |
2cfb7455 | 3024 | |
53a0de06 | 3025 | /* |
c2092c12 | 3026 | * No other reference to the slab yet so we can |
53a0de06 VB |
3027 | * muck around with it freely without cmpxchg |
3028 | */ | |
bb192ed9 VB |
3029 | freelist = slab->freelist; |
3030 | slab->freelist = NULL; | |
53a0de06 VB |
3031 | |
3032 | stat(s, ALLOC_SLAB); | |
53a0de06 | 3033 | |
c2092c12 | 3034 | check_new_slab: |
2cfb7455 | 3035 | |
1572df7c | 3036 | if (kmem_cache_debug(s)) { |
bb192ed9 | 3037 | if (!alloc_debug_processing(s, slab, freelist, addr)) { |
1572df7c VB |
3038 | /* Slab failed checks. Next slab needed */ |
3039 | goto new_slab; | |
fa417ab7 | 3040 | } else { |
1572df7c VB |
3041 | /* |
3042 | * For debug case, we don't load freelist so that all | |
3043 | * allocations go through alloc_debug_processing() | |
3044 | */ | |
3045 | goto return_single; | |
fa417ab7 | 3046 | } |
1572df7c VB |
3047 | } |
3048 | ||
bb192ed9 | 3049 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
1572df7c VB |
3050 | /* |
3051 | * For !pfmemalloc_match() case we don't load freelist so that | |
3052 | * we don't make further mismatched allocations easier. | |
3053 | */ | |
3054 | goto return_single; | |
3055 | ||
c2092c12 | 3056 | retry_load_slab: |
cfdf836e | 3057 | |
bd0e7491 | 3058 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3059 | if (unlikely(c->slab)) { |
cfdf836e | 3060 | void *flush_freelist = c->freelist; |
bb192ed9 | 3061 | struct slab *flush_slab = c->slab; |
cfdf836e | 3062 | |
bb192ed9 | 3063 | c->slab = NULL; |
cfdf836e VB |
3064 | c->freelist = NULL; |
3065 | c->tid = next_tid(c->tid); | |
3066 | ||
bd0e7491 | 3067 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 3068 | |
bb192ed9 | 3069 | deactivate_slab(s, flush_slab, flush_freelist); |
cfdf836e VB |
3070 | |
3071 | stat(s, CPUSLAB_FLUSH); | |
3072 | ||
c2092c12 | 3073 | goto retry_load_slab; |
cfdf836e | 3074 | } |
bb192ed9 | 3075 | c->slab = slab; |
3f2b77e3 | 3076 | |
1572df7c VB |
3077 | goto load_freelist; |
3078 | ||
3079 | return_single: | |
894b8788 | 3080 | |
bb192ed9 | 3081 | deactivate_slab(s, slab, get_freepointer(s, freelist)); |
6faa6833 | 3082 | return freelist; |
894b8788 CL |
3083 | } |
3084 | ||
a380a3c7 | 3085 | /* |
e500059b VB |
3086 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3087 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3088 | * pointer. | |
a380a3c7 CL |
3089 | */ |
3090 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
3091 | unsigned long addr, struct kmem_cache_cpu *c) | |
3092 | { | |
3093 | void *p; | |
a380a3c7 | 3094 | |
e500059b | 3095 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3096 | /* |
3097 | * We may have been preempted and rescheduled on a different | |
e500059b | 3098 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3099 | * pointer. |
3100 | */ | |
25c00c50 | 3101 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3102 | #endif |
3103 | ||
3104 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
e500059b | 3105 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3106 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3107 | #endif |
a380a3c7 CL |
3108 | return p; |
3109 | } | |
3110 | ||
0f181f9f AP |
3111 | /* |
3112 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3113 | * zeroing out freelist pointer. | |
3114 | */ | |
3115 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3116 | void *obj) | |
3117 | { | |
3118 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
ce5716c6 AK |
3119 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), |
3120 | 0, sizeof(void *)); | |
0f181f9f AP |
3121 | } |
3122 | ||
894b8788 CL |
3123 | /* |
3124 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
3125 | * have the fastpath folded into their functions. So no function call | |
3126 | * overhead for requests that can be satisfied on the fastpath. | |
3127 | * | |
3128 | * The fastpath works by first checking if the lockless freelist can be used. | |
3129 | * If not then __slab_alloc is called for slow processing. | |
3130 | * | |
3131 | * Otherwise we can simply pick the next object from the lockless free list. | |
3132 | */ | |
88f2ef73 | 3133 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, |
b89fb5ef | 3134 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3135 | { |
03ec0ed5 | 3136 | void *object; |
dfb4f096 | 3137 | struct kmem_cache_cpu *c; |
bb192ed9 | 3138 | struct slab *slab; |
8a5ec0ba | 3139 | unsigned long tid; |
964d4bd3 | 3140 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3141 | bool init = false; |
1f84260c | 3142 | |
88f2ef73 | 3143 | s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); |
8135be5a | 3144 | if (!s) |
773ff60e | 3145 | return NULL; |
b89fb5ef AP |
3146 | |
3147 | object = kfence_alloc(s, orig_size, gfpflags); | |
3148 | if (unlikely(object)) | |
3149 | goto out; | |
3150 | ||
8a5ec0ba | 3151 | redo: |
8a5ec0ba CL |
3152 | /* |
3153 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3154 | * enabled. We may switch back and forth between cpus while | |
3155 | * reading from one cpu area. That does not matter as long | |
3156 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3157 | * |
9b4bc85a VB |
3158 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3159 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3160 | * the tid. If we are preempted and switched to another cpu between the | |
3161 | * two reads, it's OK as the two are still associated with the same cpu | |
3162 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3163 | */ |
9b4bc85a VB |
3164 | c = raw_cpu_ptr(s->cpu_slab); |
3165 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3166 | |
3167 | /* | |
3168 | * Irqless object alloc/free algorithm used here depends on sequence | |
3169 | * of fetching cpu_slab's data. tid should be fetched before anything | |
c2092c12 | 3170 | * on c to guarantee that object and slab associated with previous tid |
9aabf810 | 3171 | * won't be used with current tid. If we fetch tid first, object and |
c2092c12 | 3172 | * slab could be one associated with next tid and our alloc/free |
9aabf810 JK |
3173 | * request will be failed. In this case, we will retry. So, no problem. |
3174 | */ | |
3175 | barrier(); | |
8a5ec0ba | 3176 | |
8a5ec0ba CL |
3177 | /* |
3178 | * The transaction ids are globally unique per cpu and per operation on | |
3179 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3180 | * occurs on the right processor and that there was no operation on the | |
3181 | * linked list in between. | |
3182 | */ | |
8a5ec0ba | 3183 | |
9dfc6e68 | 3184 | object = c->freelist; |
bb192ed9 | 3185 | slab = c->slab; |
bd0e7491 VB |
3186 | /* |
3187 | * We cannot use the lockless fastpath on PREEMPT_RT because if a | |
3188 | * slowpath has taken the local_lock_irqsave(), it is not protected | |
3189 | * against a fast path operation in an irq handler. So we need to take | |
3190 | * the slow path which uses local_lock. It is still relatively fast if | |
3191 | * there is a suitable cpu freelist. | |
3192 | */ | |
3193 | if (IS_ENABLED(CONFIG_PREEMPT_RT) || | |
bb192ed9 | 3194 | unlikely(!object || !slab || !node_match(slab, node))) { |
dfb4f096 | 3195 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 | 3196 | } else { |
0ad9500e ED |
3197 | void *next_object = get_freepointer_safe(s, object); |
3198 | ||
8a5ec0ba | 3199 | /* |
25985edc | 3200 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3201 | * operation and if we are on the right processor. |
3202 | * | |
d0e0ac97 CG |
3203 | * The cmpxchg does the following atomically (without lock |
3204 | * semantics!) | |
8a5ec0ba CL |
3205 | * 1. Relocate first pointer to the current per cpu area. |
3206 | * 2. Verify that tid and freelist have not been changed | |
3207 | * 3. If they were not changed replace tid and freelist | |
3208 | * | |
d0e0ac97 CG |
3209 | * Since this is without lock semantics the protection is only |
3210 | * against code executing on this cpu *not* from access by | |
3211 | * other cpus. | |
8a5ec0ba | 3212 | */ |
933393f5 | 3213 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
3214 | s->cpu_slab->freelist, s->cpu_slab->tid, |
3215 | object, tid, | |
0ad9500e | 3216 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
3217 | |
3218 | note_cmpxchg_failure("slab_alloc", s, tid); | |
3219 | goto redo; | |
3220 | } | |
0ad9500e | 3221 | prefetch_freepointer(s, next_object); |
84e554e6 | 3222 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3223 | } |
0f181f9f | 3224 | |
ce5716c6 | 3225 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 3226 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 3227 | |
b89fb5ef | 3228 | out: |
da844b78 | 3229 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); |
5a896d9e | 3230 | |
894b8788 | 3231 | return object; |
81819f0f CL |
3232 | } |
3233 | ||
88f2ef73 | 3234 | static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, |
b89fb5ef | 3235 | gfp_t gfpflags, unsigned long addr, size_t orig_size) |
2b847c3c | 3236 | { |
88f2ef73 | 3237 | return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); |
2b847c3c EG |
3238 | } |
3239 | ||
88f2ef73 MS |
3240 | static __always_inline |
3241 | void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, | |
3242 | gfp_t gfpflags) | |
81819f0f | 3243 | { |
88f2ef73 | 3244 | void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); |
5b882be4 | 3245 | |
b347aa7b | 3246 | trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size, |
d0e0ac97 | 3247 | s->size, gfpflags); |
5b882be4 EGM |
3248 | |
3249 | return ret; | |
81819f0f | 3250 | } |
88f2ef73 MS |
3251 | |
3252 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
3253 | { | |
3254 | return __kmem_cache_alloc_lru(s, NULL, gfpflags); | |
3255 | } | |
81819f0f CL |
3256 | EXPORT_SYMBOL(kmem_cache_alloc); |
3257 | ||
88f2ef73 MS |
3258 | void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, |
3259 | gfp_t gfpflags) | |
3260 | { | |
3261 | return __kmem_cache_alloc_lru(s, lru, gfpflags); | |
3262 | } | |
3263 | EXPORT_SYMBOL(kmem_cache_alloc_lru); | |
3264 | ||
ed4cd17e HY |
3265 | void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, |
3266 | int node, size_t orig_size, | |
3267 | unsigned long caller) | |
3268 | { | |
3269 | return slab_alloc_node(s, NULL, gfpflags, node, | |
3270 | caller, orig_size); | |
3271 | } | |
3272 | ||
0f24f128 | 3273 | #ifdef CONFIG_TRACING |
4a92379b RK |
3274 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
3275 | { | |
88f2ef73 | 3276 | void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); |
b347aa7b | 3277 | trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags); |
0116523c | 3278 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
3279 | return ret; |
3280 | } | |
3281 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
3282 | #endif |
3283 | ||
81819f0f CL |
3284 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
3285 | { | |
88f2ef73 | 3286 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 3287 | |
b347aa7b | 3288 | trace_kmem_cache_alloc_node(_RET_IP_, ret, s, |
3b0efdfa | 3289 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
3290 | |
3291 | return ret; | |
81819f0f CL |
3292 | } |
3293 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 3294 | |
0f24f128 | 3295 | #ifdef CONFIG_TRACING |
4a92379b | 3296 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 3297 | gfp_t gfpflags, |
4a92379b | 3298 | int node, size_t size) |
5b882be4 | 3299 | { |
88f2ef73 | 3300 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); |
4a92379b | 3301 | |
b347aa7b | 3302 | trace_kmalloc_node(_RET_IP_, ret, s, |
4a92379b | 3303 | size, s->size, gfpflags, node); |
0316bec2 | 3304 | |
0116523c | 3305 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 3306 | return ret; |
5b882be4 | 3307 | } |
4a92379b | 3308 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 EGM |
3309 | #endif |
3310 | ||
81819f0f | 3311 | /* |
94e4d712 | 3312 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 3313 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 3314 | * |
894b8788 | 3315 | * So we still attempt to reduce cache line usage. Just take the slab |
c2092c12 | 3316 | * lock and free the item. If there is no additional partial slab |
894b8788 | 3317 | * handling required then we can return immediately. |
81819f0f | 3318 | */ |
bb192ed9 | 3319 | static void __slab_free(struct kmem_cache *s, struct slab *slab, |
81084651 JDB |
3320 | void *head, void *tail, int cnt, |
3321 | unsigned long addr) | |
3322 | ||
81819f0f CL |
3323 | { |
3324 | void *prior; | |
2cfb7455 | 3325 | int was_frozen; |
bb192ed9 | 3326 | struct slab new; |
2cfb7455 CL |
3327 | unsigned long counters; |
3328 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 3329 | unsigned long flags; |
81819f0f | 3330 | |
8a5ec0ba | 3331 | stat(s, FREE_SLOWPATH); |
81819f0f | 3332 | |
b89fb5ef AP |
3333 | if (kfence_free(head)) |
3334 | return; | |
3335 | ||
19c7ff9e | 3336 | if (kmem_cache_debug(s) && |
bb192ed9 | 3337 | !free_debug_processing(s, slab, head, tail, cnt, addr)) |
80f08c19 | 3338 | return; |
6446faa2 | 3339 | |
2cfb7455 | 3340 | do { |
837d678d JK |
3341 | if (unlikely(n)) { |
3342 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3343 | n = NULL; | |
3344 | } | |
bb192ed9 VB |
3345 | prior = slab->freelist; |
3346 | counters = slab->counters; | |
81084651 | 3347 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
3348 | new.counters = counters; |
3349 | was_frozen = new.frozen; | |
81084651 | 3350 | new.inuse -= cnt; |
837d678d | 3351 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 3352 | |
c65c1877 | 3353 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
3354 | |
3355 | /* | |
d0e0ac97 CG |
3356 | * Slab was on no list before and will be |
3357 | * partially empty | |
3358 | * We can defer the list move and instead | |
3359 | * freeze it. | |
49e22585 CL |
3360 | */ |
3361 | new.frozen = 1; | |
3362 | ||
c65c1877 | 3363 | } else { /* Needs to be taken off a list */ |
49e22585 | 3364 | |
bb192ed9 | 3365 | n = get_node(s, slab_nid(slab)); |
49e22585 CL |
3366 | /* |
3367 | * Speculatively acquire the list_lock. | |
3368 | * If the cmpxchg does not succeed then we may | |
3369 | * drop the list_lock without any processing. | |
3370 | * | |
3371 | * Otherwise the list_lock will synchronize with | |
3372 | * other processors updating the list of slabs. | |
3373 | */ | |
3374 | spin_lock_irqsave(&n->list_lock, flags); | |
3375 | ||
3376 | } | |
2cfb7455 | 3377 | } |
81819f0f | 3378 | |
bb192ed9 | 3379 | } while (!cmpxchg_double_slab(s, slab, |
2cfb7455 | 3380 | prior, counters, |
81084651 | 3381 | head, new.counters, |
2cfb7455 | 3382 | "__slab_free")); |
81819f0f | 3383 | |
2cfb7455 | 3384 | if (likely(!n)) { |
49e22585 | 3385 | |
c270cf30 AW |
3386 | if (likely(was_frozen)) { |
3387 | /* | |
3388 | * The list lock was not taken therefore no list | |
3389 | * activity can be necessary. | |
3390 | */ | |
3391 | stat(s, FREE_FROZEN); | |
3392 | } else if (new.frozen) { | |
3393 | /* | |
c2092c12 | 3394 | * If we just froze the slab then put it onto the |
c270cf30 AW |
3395 | * per cpu partial list. |
3396 | */ | |
bb192ed9 | 3397 | put_cpu_partial(s, slab, 1); |
8028dcea AS |
3398 | stat(s, CPU_PARTIAL_FREE); |
3399 | } | |
c270cf30 | 3400 | |
b455def2 L |
3401 | return; |
3402 | } | |
81819f0f | 3403 | |
8a5b20ae | 3404 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
3405 | goto slab_empty; |
3406 | ||
81819f0f | 3407 | /* |
837d678d JK |
3408 | * Objects left in the slab. If it was not on the partial list before |
3409 | * then add it. | |
81819f0f | 3410 | */ |
345c905d | 3411 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
bb192ed9 VB |
3412 | remove_full(s, n, slab); |
3413 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
837d678d | 3414 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 3415 | } |
80f08c19 | 3416 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
3417 | return; |
3418 | ||
3419 | slab_empty: | |
a973e9dd | 3420 | if (prior) { |
81819f0f | 3421 | /* |
6fbabb20 | 3422 | * Slab on the partial list. |
81819f0f | 3423 | */ |
bb192ed9 | 3424 | remove_partial(n, slab); |
84e554e6 | 3425 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 3426 | } else { |
6fbabb20 | 3427 | /* Slab must be on the full list */ |
bb192ed9 | 3428 | remove_full(s, n, slab); |
c65c1877 | 3429 | } |
2cfb7455 | 3430 | |
80f08c19 | 3431 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3432 | stat(s, FREE_SLAB); |
bb192ed9 | 3433 | discard_slab(s, slab); |
81819f0f CL |
3434 | } |
3435 | ||
894b8788 CL |
3436 | /* |
3437 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3438 | * can perform fastpath freeing without additional function calls. | |
3439 | * | |
3440 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3441 | * of this processor. This typically the case if we have just allocated | |
3442 | * the item before. | |
3443 | * | |
3444 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3445 | * with all sorts of special processing. | |
81084651 JDB |
3446 | * |
3447 | * Bulk free of a freelist with several objects (all pointing to the | |
c2092c12 | 3448 | * same slab) possible by specifying head and tail ptr, plus objects |
81084651 | 3449 | * count (cnt). Bulk free indicated by tail pointer being set. |
894b8788 | 3450 | */ |
80a9201a | 3451 | static __always_inline void do_slab_free(struct kmem_cache *s, |
bb192ed9 | 3452 | struct slab *slab, void *head, void *tail, |
80a9201a | 3453 | int cnt, unsigned long addr) |
894b8788 | 3454 | { |
81084651 | 3455 | void *tail_obj = tail ? : head; |
dfb4f096 | 3456 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3457 | unsigned long tid; |
964d4bd3 | 3458 | |
8a5ec0ba CL |
3459 | redo: |
3460 | /* | |
3461 | * Determine the currently cpus per cpu slab. | |
3462 | * The cpu may change afterward. However that does not matter since | |
3463 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3464 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3465 | */ |
9b4bc85a VB |
3466 | c = raw_cpu_ptr(s->cpu_slab); |
3467 | tid = READ_ONCE(c->tid); | |
c016b0bd | 3468 | |
9aabf810 JK |
3469 | /* Same with comment on barrier() in slab_alloc_node() */ |
3470 | barrier(); | |
c016b0bd | 3471 | |
bb192ed9 | 3472 | if (likely(slab == c->slab)) { |
bd0e7491 | 3473 | #ifndef CONFIG_PREEMPT_RT |
5076190d LT |
3474 | void **freelist = READ_ONCE(c->freelist); |
3475 | ||
3476 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3477 | |
933393f5 | 3478 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3479 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3480 | freelist, tid, |
81084651 | 3481 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3482 | |
3483 | note_cmpxchg_failure("slab_free", s, tid); | |
3484 | goto redo; | |
3485 | } | |
bd0e7491 VB |
3486 | #else /* CONFIG_PREEMPT_RT */ |
3487 | /* | |
3488 | * We cannot use the lockless fastpath on PREEMPT_RT because if | |
3489 | * a slowpath has taken the local_lock_irqsave(), it is not | |
3490 | * protected against a fast path operation in an irq handler. So | |
3491 | * we need to take the local_lock. We shouldn't simply defer to | |
3492 | * __slab_free() as that wouldn't use the cpu freelist at all. | |
3493 | */ | |
3494 | void **freelist; | |
3495 | ||
3496 | local_lock(&s->cpu_slab->lock); | |
3497 | c = this_cpu_ptr(s->cpu_slab); | |
bb192ed9 | 3498 | if (unlikely(slab != c->slab)) { |
bd0e7491 VB |
3499 | local_unlock(&s->cpu_slab->lock); |
3500 | goto redo; | |
3501 | } | |
3502 | tid = c->tid; | |
3503 | freelist = c->freelist; | |
3504 | ||
3505 | set_freepointer(s, tail_obj, freelist); | |
3506 | c->freelist = head; | |
3507 | c->tid = next_tid(tid); | |
3508 | ||
3509 | local_unlock(&s->cpu_slab->lock); | |
3510 | #endif | |
84e554e6 | 3511 | stat(s, FREE_FASTPATH); |
894b8788 | 3512 | } else |
bb192ed9 | 3513 | __slab_free(s, slab, head, tail_obj, cnt, addr); |
894b8788 | 3514 | |
894b8788 CL |
3515 | } |
3516 | ||
bb192ed9 | 3517 | static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, |
b77d5b1b | 3518 | void *head, void *tail, void **p, int cnt, |
80a9201a AP |
3519 | unsigned long addr) |
3520 | { | |
b77d5b1b | 3521 | memcg_slab_free_hook(s, slab, p, cnt); |
80a9201a | 3522 | /* |
c3895391 AK |
3523 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3524 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3525 | */ |
899447f6 | 3526 | if (slab_free_freelist_hook(s, &head, &tail, &cnt)) |
bb192ed9 | 3527 | do_slab_free(s, slab, head, tail, cnt, addr); |
80a9201a AP |
3528 | } |
3529 | ||
2bd926b4 | 3530 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3531 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3532 | { | |
bb192ed9 | 3533 | do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); |
80a9201a AP |
3534 | } |
3535 | #endif | |
3536 | ||
ed4cd17e HY |
3537 | void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) |
3538 | { | |
3539 | slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); | |
3540 | } | |
3541 | ||
81819f0f CL |
3542 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3543 | { | |
b9ce5ef4 GC |
3544 | s = cache_from_obj(s, x); |
3545 | if (!s) | |
79576102 | 3546 | return; |
3544de8e | 3547 | trace_kmem_cache_free(_RET_IP_, x, s->name); |
b77d5b1b | 3548 | slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); |
81819f0f CL |
3549 | } |
3550 | EXPORT_SYMBOL(kmem_cache_free); | |
3551 | ||
d0ecd894 | 3552 | struct detached_freelist { |
cc465c3b | 3553 | struct slab *slab; |
d0ecd894 JDB |
3554 | void *tail; |
3555 | void *freelist; | |
3556 | int cnt; | |
376bf125 | 3557 | struct kmem_cache *s; |
d0ecd894 | 3558 | }; |
fbd02630 | 3559 | |
d0ecd894 JDB |
3560 | /* |
3561 | * This function progressively scans the array with free objects (with | |
3562 | * a limited look ahead) and extract objects belonging to the same | |
cc465c3b MWO |
3563 | * slab. It builds a detached freelist directly within the given |
3564 | * slab/objects. This can happen without any need for | |
d0ecd894 JDB |
3565 | * synchronization, because the objects are owned by running process. |
3566 | * The freelist is build up as a single linked list in the objects. | |
3567 | * The idea is, that this detached freelist can then be bulk | |
3568 | * transferred to the real freelist(s), but only requiring a single | |
3569 | * synchronization primitive. Look ahead in the array is limited due | |
3570 | * to performance reasons. | |
3571 | */ | |
376bf125 JDB |
3572 | static inline |
3573 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3574 | void **p, struct detached_freelist *df) | |
d0ecd894 | 3575 | { |
d0ecd894 JDB |
3576 | int lookahead = 3; |
3577 | void *object; | |
cc465c3b | 3578 | struct folio *folio; |
b77d5b1b | 3579 | size_t same; |
fbd02630 | 3580 | |
b77d5b1b | 3581 | object = p[--size]; |
cc465c3b | 3582 | folio = virt_to_folio(object); |
ca257195 JDB |
3583 | if (!s) { |
3584 | /* Handle kalloc'ed objects */ | |
cc465c3b | 3585 | if (unlikely(!folio_test_slab(folio))) { |
d835eef4 | 3586 | free_large_kmalloc(folio, object); |
b77d5b1b | 3587 | df->slab = NULL; |
ca257195 JDB |
3588 | return size; |
3589 | } | |
3590 | /* Derive kmem_cache from object */ | |
b77d5b1b MS |
3591 | df->slab = folio_slab(folio); |
3592 | df->s = df->slab->slab_cache; | |
ca257195 | 3593 | } else { |
b77d5b1b | 3594 | df->slab = folio_slab(folio); |
ca257195 JDB |
3595 | df->s = cache_from_obj(s, object); /* Support for memcg */ |
3596 | } | |
376bf125 | 3597 | |
d0ecd894 | 3598 | /* Start new detached freelist */ |
d0ecd894 JDB |
3599 | df->tail = object; |
3600 | df->freelist = object; | |
d0ecd894 JDB |
3601 | df->cnt = 1; |
3602 | ||
b77d5b1b MS |
3603 | if (is_kfence_address(object)) |
3604 | return size; | |
3605 | ||
3606 | set_freepointer(df->s, object, NULL); | |
3607 | ||
3608 | same = size; | |
d0ecd894 JDB |
3609 | while (size) { |
3610 | object = p[--size]; | |
cc465c3b MWO |
3611 | /* df->slab is always set at this point */ |
3612 | if (df->slab == virt_to_slab(object)) { | |
d0ecd894 | 3613 | /* Opportunity build freelist */ |
376bf125 | 3614 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3615 | df->freelist = object; |
3616 | df->cnt++; | |
b77d5b1b MS |
3617 | same--; |
3618 | if (size != same) | |
3619 | swap(p[size], p[same]); | |
d0ecd894 | 3620 | continue; |
fbd02630 | 3621 | } |
d0ecd894 JDB |
3622 | |
3623 | /* Limit look ahead search */ | |
3624 | if (!--lookahead) | |
3625 | break; | |
fbd02630 | 3626 | } |
d0ecd894 | 3627 | |
b77d5b1b | 3628 | return same; |
d0ecd894 JDB |
3629 | } |
3630 | ||
d0ecd894 | 3631 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3632 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 | 3633 | { |
2055e67b | 3634 | if (!size) |
d0ecd894 JDB |
3635 | return; |
3636 | ||
3637 | do { | |
3638 | struct detached_freelist df; | |
3639 | ||
3640 | size = build_detached_freelist(s, size, p, &df); | |
cc465c3b | 3641 | if (!df.slab) |
d0ecd894 JDB |
3642 | continue; |
3643 | ||
b77d5b1b MS |
3644 | slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, |
3645 | _RET_IP_); | |
d0ecd894 | 3646 | } while (likely(size)); |
484748f0 CL |
3647 | } |
3648 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3649 | ||
994eb764 | 3650 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3651 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3652 | void **p) | |
484748f0 | 3653 | { |
994eb764 JDB |
3654 | struct kmem_cache_cpu *c; |
3655 | int i; | |
964d4bd3 | 3656 | struct obj_cgroup *objcg = NULL; |
994eb764 | 3657 | |
03ec0ed5 | 3658 | /* memcg and kmem_cache debug support */ |
88f2ef73 | 3659 | s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); |
03ec0ed5 JDB |
3660 | if (unlikely(!s)) |
3661 | return false; | |
994eb764 JDB |
3662 | /* |
3663 | * Drain objects in the per cpu slab, while disabling local | |
3664 | * IRQs, which protects against PREEMPT and interrupts | |
3665 | * handlers invoking normal fastpath. | |
3666 | */ | |
25c00c50 | 3667 | c = slub_get_cpu_ptr(s->cpu_slab); |
bd0e7491 | 3668 | local_lock_irq(&s->cpu_slab->lock); |
994eb764 JDB |
3669 | |
3670 | for (i = 0; i < size; i++) { | |
b89fb5ef | 3671 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 3672 | |
b89fb5ef AP |
3673 | if (unlikely(object)) { |
3674 | p[i] = object; | |
3675 | continue; | |
3676 | } | |
3677 | ||
3678 | object = c->freelist; | |
ebe909e0 | 3679 | if (unlikely(!object)) { |
fd4d9c7d JH |
3680 | /* |
3681 | * We may have removed an object from c->freelist using | |
3682 | * the fastpath in the previous iteration; in that case, | |
3683 | * c->tid has not been bumped yet. | |
3684 | * Since ___slab_alloc() may reenable interrupts while | |
3685 | * allocating memory, we should bump c->tid now. | |
3686 | */ | |
3687 | c->tid = next_tid(c->tid); | |
3688 | ||
bd0e7491 | 3689 | local_unlock_irq(&s->cpu_slab->lock); |
e500059b | 3690 | |
ebe909e0 JDB |
3691 | /* |
3692 | * Invoking slow path likely have side-effect | |
3693 | * of re-populating per CPU c->freelist | |
3694 | */ | |
87098373 | 3695 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3696 | _RET_IP_, c); |
87098373 CL |
3697 | if (unlikely(!p[i])) |
3698 | goto error; | |
3699 | ||
ebe909e0 | 3700 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3701 | maybe_wipe_obj_freeptr(s, p[i]); |
3702 | ||
bd0e7491 | 3703 | local_lock_irq(&s->cpu_slab->lock); |
e500059b | 3704 | |
ebe909e0 JDB |
3705 | continue; /* goto for-loop */ |
3706 | } | |
994eb764 JDB |
3707 | c->freelist = get_freepointer(s, object); |
3708 | p[i] = object; | |
0f181f9f | 3709 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3710 | } |
3711 | c->tid = next_tid(c->tid); | |
bd0e7491 | 3712 | local_unlock_irq(&s->cpu_slab->lock); |
25c00c50 | 3713 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 3714 | |
da844b78 AK |
3715 | /* |
3716 | * memcg and kmem_cache debug support and memory initialization. | |
3717 | * Done outside of the IRQ disabled fastpath loop. | |
3718 | */ | |
3719 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
3720 | slab_want_init_on_alloc(flags, s)); | |
865762a8 | 3721 | return i; |
87098373 | 3722 | error: |
25c00c50 | 3723 | slub_put_cpu_ptr(s->cpu_slab); |
da844b78 | 3724 | slab_post_alloc_hook(s, objcg, flags, i, p, false); |
2055e67b | 3725 | kmem_cache_free_bulk(s, i, p); |
865762a8 | 3726 | return 0; |
484748f0 CL |
3727 | } |
3728 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3729 | ||
3730 | ||
81819f0f | 3731 | /* |
672bba3a CL |
3732 | * Object placement in a slab is made very easy because we always start at |
3733 | * offset 0. If we tune the size of the object to the alignment then we can | |
3734 | * get the required alignment by putting one properly sized object after | |
3735 | * another. | |
81819f0f CL |
3736 | * |
3737 | * Notice that the allocation order determines the sizes of the per cpu | |
3738 | * caches. Each processor has always one slab available for allocations. | |
3739 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3740 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3741 | * locking overhead. |
81819f0f CL |
3742 | */ |
3743 | ||
3744 | /* | |
f0953a1b | 3745 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
3746 | * and slab fragmentation. A higher order reduces the number of partial slabs |
3747 | * and increases the number of allocations possible without having to | |
3748 | * take the list_lock. | |
3749 | */ | |
19af27af AD |
3750 | static unsigned int slub_min_order; |
3751 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3752 | static unsigned int slub_min_objects; | |
81819f0f | 3753 | |
81819f0f CL |
3754 | /* |
3755 | * Calculate the order of allocation given an slab object size. | |
3756 | * | |
672bba3a CL |
3757 | * The order of allocation has significant impact on performance and other |
3758 | * system components. Generally order 0 allocations should be preferred since | |
3759 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3760 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3761 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3762 | * would be wasted. |
3763 | * | |
3764 | * In order to reach satisfactory performance we must ensure that a minimum | |
3765 | * number of objects is in one slab. Otherwise we may generate too much | |
3766 | * activity on the partial lists which requires taking the list_lock. This is | |
3767 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3768 | * |
672bba3a CL |
3769 | * slub_max_order specifies the order where we begin to stop considering the |
3770 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3771 | * we try to keep the page order as low as possible. So we accept more waste | |
3772 | * of space in favor of a small page order. | |
81819f0f | 3773 | * |
672bba3a CL |
3774 | * Higher order allocations also allow the placement of more objects in a |
3775 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 3776 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 3777 | * the smallest order which will fit the object. |
81819f0f | 3778 | */ |
d122019b | 3779 | static inline unsigned int calc_slab_order(unsigned int size, |
19af27af | 3780 | unsigned int min_objects, unsigned int max_order, |
9736d2a9 | 3781 | unsigned int fract_leftover) |
81819f0f | 3782 | { |
19af27af AD |
3783 | unsigned int min_order = slub_min_order; |
3784 | unsigned int order; | |
81819f0f | 3785 | |
9736d2a9 | 3786 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3787 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3788 | |
9736d2a9 | 3789 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3790 | order <= max_order; order++) { |
81819f0f | 3791 | |
19af27af AD |
3792 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3793 | unsigned int rem; | |
81819f0f | 3794 | |
9736d2a9 | 3795 | rem = slab_size % size; |
81819f0f | 3796 | |
5e6d444e | 3797 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3798 | break; |
81819f0f | 3799 | } |
672bba3a | 3800 | |
81819f0f CL |
3801 | return order; |
3802 | } | |
3803 | ||
9736d2a9 | 3804 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3805 | { |
19af27af AD |
3806 | unsigned int order; |
3807 | unsigned int min_objects; | |
3808 | unsigned int max_objects; | |
3286222f | 3809 | unsigned int nr_cpus; |
5e6d444e CL |
3810 | |
3811 | /* | |
3812 | * Attempt to find best configuration for a slab. This | |
3813 | * works by first attempting to generate a layout with | |
3814 | * the best configuration and backing off gradually. | |
3815 | * | |
422ff4d7 | 3816 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3817 | * we reduce the minimum objects required in a slab. |
3818 | */ | |
3819 | min_objects = slub_min_objects; | |
3286222f VB |
3820 | if (!min_objects) { |
3821 | /* | |
3822 | * Some architectures will only update present cpus when | |
3823 | * onlining them, so don't trust the number if it's just 1. But | |
3824 | * we also don't want to use nr_cpu_ids always, as on some other | |
3825 | * architectures, there can be many possible cpus, but never | |
3826 | * onlined. Here we compromise between trying to avoid too high | |
3827 | * order on systems that appear larger than they are, and too | |
3828 | * low order on systems that appear smaller than they are. | |
3829 | */ | |
3830 | nr_cpus = num_present_cpus(); | |
3831 | if (nr_cpus <= 1) | |
3832 | nr_cpus = nr_cpu_ids; | |
3833 | min_objects = 4 * (fls(nr_cpus) + 1); | |
3834 | } | |
9736d2a9 | 3835 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3836 | min_objects = min(min_objects, max_objects); |
3837 | ||
5e6d444e | 3838 | while (min_objects > 1) { |
19af27af AD |
3839 | unsigned int fraction; |
3840 | ||
c124f5b5 | 3841 | fraction = 16; |
5e6d444e | 3842 | while (fraction >= 4) { |
d122019b | 3843 | order = calc_slab_order(size, min_objects, |
9736d2a9 | 3844 | slub_max_order, fraction); |
5e6d444e CL |
3845 | if (order <= slub_max_order) |
3846 | return order; | |
3847 | fraction /= 2; | |
3848 | } | |
5086c389 | 3849 | min_objects--; |
5e6d444e CL |
3850 | } |
3851 | ||
3852 | /* | |
3853 | * We were unable to place multiple objects in a slab. Now | |
3854 | * lets see if we can place a single object there. | |
3855 | */ | |
d122019b | 3856 | order = calc_slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3857 | if (order <= slub_max_order) |
3858 | return order; | |
3859 | ||
3860 | /* | |
3861 | * Doh this slab cannot be placed using slub_max_order. | |
3862 | */ | |
d122019b | 3863 | order = calc_slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3864 | if (order < MAX_ORDER) |
5e6d444e CL |
3865 | return order; |
3866 | return -ENOSYS; | |
3867 | } | |
3868 | ||
5595cffc | 3869 | static void |
4053497d | 3870 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3871 | { |
3872 | n->nr_partial = 0; | |
81819f0f CL |
3873 | spin_lock_init(&n->list_lock); |
3874 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3875 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3876 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3877 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3878 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3879 | #endif |
81819f0f CL |
3880 | } |
3881 | ||
55136592 | 3882 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3883 | { |
6c182dc0 | 3884 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3885 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3886 | |
8a5ec0ba | 3887 | /* |
d4d84fef CM |
3888 | * Must align to double word boundary for the double cmpxchg |
3889 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3890 | */ |
d4d84fef CM |
3891 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3892 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3893 | |
3894 | if (!s->cpu_slab) | |
3895 | return 0; | |
3896 | ||
3897 | init_kmem_cache_cpus(s); | |
4c93c355 | 3898 | |
8a5ec0ba | 3899 | return 1; |
4c93c355 | 3900 | } |
4c93c355 | 3901 | |
51df1142 CL |
3902 | static struct kmem_cache *kmem_cache_node; |
3903 | ||
81819f0f CL |
3904 | /* |
3905 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3906 | * slab on the node for this slabcache. There are no concurrent accesses | |
3907 | * possible. | |
3908 | * | |
721ae22a ZYW |
3909 | * Note that this function only works on the kmem_cache_node |
3910 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3911 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3912 | */ |
55136592 | 3913 | static void early_kmem_cache_node_alloc(int node) |
81819f0f | 3914 | { |
bb192ed9 | 3915 | struct slab *slab; |
81819f0f CL |
3916 | struct kmem_cache_node *n; |
3917 | ||
51df1142 | 3918 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3919 | |
bb192ed9 | 3920 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f | 3921 | |
bb192ed9 VB |
3922 | BUG_ON(!slab); |
3923 | if (slab_nid(slab) != node) { | |
f9f58285 FF |
3924 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3925 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3926 | } |
3927 | ||
bb192ed9 | 3928 | n = slab->freelist; |
81819f0f | 3929 | BUG_ON(!n); |
8ab1372f | 3930 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3931 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3932 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3933 | #endif |
da844b78 | 3934 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
bb192ed9 VB |
3935 | slab->freelist = get_freepointer(kmem_cache_node, n); |
3936 | slab->inuse = 1; | |
3937 | slab->frozen = 0; | |
12b22386 | 3938 | kmem_cache_node->node[node] = n; |
4053497d | 3939 | init_kmem_cache_node(n); |
bb192ed9 | 3940 | inc_slabs_node(kmem_cache_node, node, slab->objects); |
6446faa2 | 3941 | |
67b6c900 | 3942 | /* |
1e4dd946 SR |
3943 | * No locks need to be taken here as it has just been |
3944 | * initialized and there is no concurrent access. | |
67b6c900 | 3945 | */ |
bb192ed9 | 3946 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3947 | } |
3948 | ||
3949 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3950 | { | |
3951 | int node; | |
fa45dc25 | 3952 | struct kmem_cache_node *n; |
81819f0f | 3953 | |
fa45dc25 | 3954 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3955 | s->node[node] = NULL; |
ea37df54 | 3956 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3957 | } |
3958 | } | |
3959 | ||
52b4b950 DS |
3960 | void __kmem_cache_release(struct kmem_cache *s) |
3961 | { | |
210e7a43 | 3962 | cache_random_seq_destroy(s); |
52b4b950 DS |
3963 | free_percpu(s->cpu_slab); |
3964 | free_kmem_cache_nodes(s); | |
3965 | } | |
3966 | ||
55136592 | 3967 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3968 | { |
3969 | int node; | |
81819f0f | 3970 | |
7e1fa93d | 3971 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
3972 | struct kmem_cache_node *n; |
3973 | ||
73367bd8 | 3974 | if (slab_state == DOWN) { |
55136592 | 3975 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3976 | continue; |
3977 | } | |
51df1142 | 3978 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3979 | GFP_KERNEL, node); |
81819f0f | 3980 | |
73367bd8 AD |
3981 | if (!n) { |
3982 | free_kmem_cache_nodes(s); | |
3983 | return 0; | |
81819f0f | 3984 | } |
73367bd8 | 3985 | |
4053497d | 3986 | init_kmem_cache_node(n); |
ea37df54 | 3987 | s->node[node] = n; |
81819f0f CL |
3988 | } |
3989 | return 1; | |
3990 | } | |
81819f0f | 3991 | |
e6d0e1dc WY |
3992 | static void set_cpu_partial(struct kmem_cache *s) |
3993 | { | |
3994 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
b47291ef VB |
3995 | unsigned int nr_objects; |
3996 | ||
e6d0e1dc WY |
3997 | /* |
3998 | * cpu_partial determined the maximum number of objects kept in the | |
3999 | * per cpu partial lists of a processor. | |
4000 | * | |
4001 | * Per cpu partial lists mainly contain slabs that just have one | |
4002 | * object freed. If they are used for allocation then they can be | |
4003 | * filled up again with minimal effort. The slab will never hit the | |
4004 | * per node partial lists and therefore no locking will be required. | |
4005 | * | |
b47291ef VB |
4006 | * For backwards compatibility reasons, this is determined as number |
4007 | * of objects, even though we now limit maximum number of pages, see | |
4008 | * slub_set_cpu_partial() | |
e6d0e1dc WY |
4009 | */ |
4010 | if (!kmem_cache_has_cpu_partial(s)) | |
b47291ef | 4011 | nr_objects = 0; |
e6d0e1dc | 4012 | else if (s->size >= PAGE_SIZE) |
b47291ef | 4013 | nr_objects = 6; |
e6d0e1dc | 4014 | else if (s->size >= 1024) |
23e98ad1 | 4015 | nr_objects = 24; |
e6d0e1dc | 4016 | else if (s->size >= 256) |
23e98ad1 | 4017 | nr_objects = 52; |
e6d0e1dc | 4018 | else |
23e98ad1 | 4019 | nr_objects = 120; |
b47291ef VB |
4020 | |
4021 | slub_set_cpu_partial(s, nr_objects); | |
e6d0e1dc WY |
4022 | #endif |
4023 | } | |
4024 | ||
81819f0f CL |
4025 | /* |
4026 | * calculate_sizes() determines the order and the distribution of data within | |
4027 | * a slab object. | |
4028 | */ | |
ae44d81d | 4029 | static int calculate_sizes(struct kmem_cache *s) |
81819f0f | 4030 | { |
d50112ed | 4031 | slab_flags_t flags = s->flags; |
be4a7988 | 4032 | unsigned int size = s->object_size; |
19af27af | 4033 | unsigned int order; |
81819f0f | 4034 | |
d8b42bf5 CL |
4035 | /* |
4036 | * Round up object size to the next word boundary. We can only | |
4037 | * place the free pointer at word boundaries and this determines | |
4038 | * the possible location of the free pointer. | |
4039 | */ | |
4040 | size = ALIGN(size, sizeof(void *)); | |
4041 | ||
4042 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
4043 | /* |
4044 | * Determine if we can poison the object itself. If the user of | |
4045 | * the slab may touch the object after free or before allocation | |
4046 | * then we should never poison the object itself. | |
4047 | */ | |
5f0d5a3a | 4048 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 4049 | !s->ctor) |
81819f0f CL |
4050 | s->flags |= __OBJECT_POISON; |
4051 | else | |
4052 | s->flags &= ~__OBJECT_POISON; | |
4053 | ||
81819f0f CL |
4054 | |
4055 | /* | |
672bba3a | 4056 | * If we are Redzoning then check if there is some space between the |
81819f0f | 4057 | * end of the object and the free pointer. If not then add an |
672bba3a | 4058 | * additional word to have some bytes to store Redzone information. |
81819f0f | 4059 | */ |
3b0efdfa | 4060 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 4061 | size += sizeof(void *); |
41ecc55b | 4062 | #endif |
81819f0f CL |
4063 | |
4064 | /* | |
672bba3a | 4065 | * With that we have determined the number of bytes in actual use |
e41a49fa | 4066 | * by the object and redzoning. |
81819f0f CL |
4067 | */ |
4068 | s->inuse = size; | |
4069 | ||
74c1d3e0 KC |
4070 | if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
4071 | ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || | |
4072 | s->ctor) { | |
81819f0f CL |
4073 | /* |
4074 | * Relocate free pointer after the object if it is not | |
4075 | * permitted to overwrite the first word of the object on | |
4076 | * kmem_cache_free. | |
4077 | * | |
4078 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 KC |
4079 | * destructor, are poisoning the objects, or are |
4080 | * redzoning an object smaller than sizeof(void *). | |
cbfc35a4 WL |
4081 | * |
4082 | * The assumption that s->offset >= s->inuse means free | |
4083 | * pointer is outside of the object is used in the | |
4084 | * freeptr_outside_object() function. If that is no | |
4085 | * longer true, the function needs to be modified. | |
81819f0f CL |
4086 | */ |
4087 | s->offset = size; | |
4088 | size += sizeof(void *); | |
e41a49fa | 4089 | } else { |
3202fa62 KC |
4090 | /* |
4091 | * Store freelist pointer near middle of object to keep | |
4092 | * it away from the edges of the object to avoid small | |
4093 | * sized over/underflows from neighboring allocations. | |
4094 | */ | |
e41a49fa | 4095 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
4096 | } |
4097 | ||
c12b3c62 | 4098 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4099 | if (flags & SLAB_STORE_USER) |
4100 | /* | |
4101 | * Need to store information about allocs and frees after | |
4102 | * the object. | |
4103 | */ | |
4104 | size += 2 * sizeof(struct track); | |
80a9201a | 4105 | #endif |
81819f0f | 4106 | |
80a9201a AP |
4107 | kasan_cache_create(s, &size, &s->flags); |
4108 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 4109 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
4110 | /* |
4111 | * Add some empty padding so that we can catch | |
4112 | * overwrites from earlier objects rather than let | |
4113 | * tracking information or the free pointer be | |
0211a9c8 | 4114 | * corrupted if a user writes before the start |
81819f0f CL |
4115 | * of the object. |
4116 | */ | |
4117 | size += sizeof(void *); | |
d86bd1be JK |
4118 | |
4119 | s->red_left_pad = sizeof(void *); | |
4120 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
4121 | size += s->red_left_pad; | |
4122 | } | |
41ecc55b | 4123 | #endif |
672bba3a | 4124 | |
81819f0f CL |
4125 | /* |
4126 | * SLUB stores one object immediately after another beginning from | |
4127 | * offset 0. In order to align the objects we have to simply size | |
4128 | * each object to conform to the alignment. | |
4129 | */ | |
45906855 | 4130 | size = ALIGN(size, s->align); |
81819f0f | 4131 | s->size = size; |
4138fdfc | 4132 | s->reciprocal_size = reciprocal_value(size); |
ae44d81d | 4133 | order = calculate_order(size); |
81819f0f | 4134 | |
19af27af | 4135 | if ((int)order < 0) |
81819f0f CL |
4136 | return 0; |
4137 | ||
b7a49f0d | 4138 | s->allocflags = 0; |
834f3d11 | 4139 | if (order) |
b7a49f0d CL |
4140 | s->allocflags |= __GFP_COMP; |
4141 | ||
4142 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 4143 | s->allocflags |= GFP_DMA; |
b7a49f0d | 4144 | |
6d6ea1e9 NB |
4145 | if (s->flags & SLAB_CACHE_DMA32) |
4146 | s->allocflags |= GFP_DMA32; | |
4147 | ||
b7a49f0d CL |
4148 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
4149 | s->allocflags |= __GFP_RECLAIMABLE; | |
4150 | ||
81819f0f CL |
4151 | /* |
4152 | * Determine the number of objects per slab | |
4153 | */ | |
9736d2a9 MW |
4154 | s->oo = oo_make(order, size); |
4155 | s->min = oo_make(get_order(size), size); | |
81819f0f | 4156 | |
834f3d11 | 4157 | return !!oo_objects(s->oo); |
81819f0f CL |
4158 | } |
4159 | ||
d50112ed | 4160 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 4161 | { |
37540008 | 4162 | s->flags = kmem_cache_flags(s->size, flags, s->name); |
2482ddec KC |
4163 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
4164 | s->random = get_random_long(); | |
4165 | #endif | |
81819f0f | 4166 | |
ae44d81d | 4167 | if (!calculate_sizes(s)) |
81819f0f | 4168 | goto error; |
3de47213 DR |
4169 | if (disable_higher_order_debug) { |
4170 | /* | |
4171 | * Disable debugging flags that store metadata if the min slab | |
4172 | * order increased. | |
4173 | */ | |
3b0efdfa | 4174 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
4175 | s->flags &= ~DEBUG_METADATA_FLAGS; |
4176 | s->offset = 0; | |
ae44d81d | 4177 | if (!calculate_sizes(s)) |
3de47213 DR |
4178 | goto error; |
4179 | } | |
4180 | } | |
81819f0f | 4181 | |
2565409f HC |
4182 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
4183 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 4184 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
4185 | /* Enable fast mode */ |
4186 | s->flags |= __CMPXCHG_DOUBLE; | |
4187 | #endif | |
4188 | ||
3b89d7d8 | 4189 | /* |
c2092c12 | 4190 | * The larger the object size is, the more slabs we want on the partial |
3b89d7d8 DR |
4191 | * list to avoid pounding the page allocator excessively. |
4192 | */ | |
5182f3c9 HY |
4193 | s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); |
4194 | s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); | |
49e22585 | 4195 | |
e6d0e1dc | 4196 | set_cpu_partial(s); |
49e22585 | 4197 | |
81819f0f | 4198 | #ifdef CONFIG_NUMA |
e2cb96b7 | 4199 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 4200 | #endif |
210e7a43 TG |
4201 | |
4202 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
4203 | if (slab_state >= UP) { | |
4204 | if (init_cache_random_seq(s)) | |
4205 | goto error; | |
4206 | } | |
4207 | ||
55136592 | 4208 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 4209 | goto error; |
81819f0f | 4210 | |
55136592 | 4211 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 4212 | return 0; |
ff12059e | 4213 | |
81819f0f | 4214 | error: |
9037c576 | 4215 | __kmem_cache_release(s); |
278b1bb1 | 4216 | return -EINVAL; |
81819f0f | 4217 | } |
81819f0f | 4218 | |
bb192ed9 | 4219 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
55860d96 | 4220 | const char *text) |
33b12c38 CL |
4221 | { |
4222 | #ifdef CONFIG_SLUB_DEBUG | |
bb192ed9 | 4223 | void *addr = slab_address(slab); |
a2b4ae8b | 4224 | unsigned long flags; |
55860d96 | 4225 | unsigned long *map; |
33b12c38 | 4226 | void *p; |
aa456c7a | 4227 | |
bb192ed9 VB |
4228 | slab_err(s, slab, text, s->name); |
4229 | slab_lock(slab, &flags); | |
33b12c38 | 4230 | |
bb192ed9 VB |
4231 | map = get_map(s, slab); |
4232 | for_each_object(p, s, addr, slab->objects) { | |
33b12c38 | 4233 | |
4138fdfc | 4234 | if (!test_bit(__obj_to_index(s, addr, p), map)) { |
96b94abc | 4235 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
4236 | print_tracking(s, p); |
4237 | } | |
4238 | } | |
55860d96 | 4239 | put_map(map); |
bb192ed9 | 4240 | slab_unlock(slab, &flags); |
33b12c38 CL |
4241 | #endif |
4242 | } | |
4243 | ||
81819f0f | 4244 | /* |
599870b1 | 4245 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
4246 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
4247 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 4248 | */ |
599870b1 | 4249 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 4250 | { |
60398923 | 4251 | LIST_HEAD(discard); |
bb192ed9 | 4252 | struct slab *slab, *h; |
81819f0f | 4253 | |
52b4b950 DS |
4254 | BUG_ON(irqs_disabled()); |
4255 | spin_lock_irq(&n->list_lock); | |
bb192ed9 VB |
4256 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
4257 | if (!slab->inuse) { | |
4258 | remove_partial(n, slab); | |
4259 | list_add(&slab->slab_list, &discard); | |
33b12c38 | 4260 | } else { |
bb192ed9 | 4261 | list_slab_objects(s, slab, |
55860d96 | 4262 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 4263 | } |
33b12c38 | 4264 | } |
52b4b950 | 4265 | spin_unlock_irq(&n->list_lock); |
60398923 | 4266 | |
bb192ed9 VB |
4267 | list_for_each_entry_safe(slab, h, &discard, slab_list) |
4268 | discard_slab(s, slab); | |
81819f0f CL |
4269 | } |
4270 | ||
f9e13c0a SB |
4271 | bool __kmem_cache_empty(struct kmem_cache *s) |
4272 | { | |
4273 | int node; | |
4274 | struct kmem_cache_node *n; | |
4275 | ||
4276 | for_each_kmem_cache_node(s, node, n) | |
4277 | if (n->nr_partial || slabs_node(s, node)) | |
4278 | return false; | |
4279 | return true; | |
4280 | } | |
4281 | ||
81819f0f | 4282 | /* |
672bba3a | 4283 | * Release all resources used by a slab cache. |
81819f0f | 4284 | */ |
52b4b950 | 4285 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
4286 | { |
4287 | int node; | |
fa45dc25 | 4288 | struct kmem_cache_node *n; |
81819f0f | 4289 | |
5a836bf6 | 4290 | flush_all_cpus_locked(s); |
81819f0f | 4291 | /* Attempt to free all objects */ |
fa45dc25 | 4292 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
4293 | free_partial(s, n); |
4294 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
4295 | return 1; |
4296 | } | |
81819f0f CL |
4297 | return 0; |
4298 | } | |
4299 | ||
5bb1bb35 | 4300 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 4301 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
4302 | { |
4303 | void *base; | |
4304 | int __maybe_unused i; | |
4305 | unsigned int objnr; | |
4306 | void *objp; | |
4307 | void *objp0; | |
7213230a | 4308 | struct kmem_cache *s = slab->slab_cache; |
8e7f37f2 PM |
4309 | struct track __maybe_unused *trackp; |
4310 | ||
4311 | kpp->kp_ptr = object; | |
7213230a | 4312 | kpp->kp_slab = slab; |
8e7f37f2 | 4313 | kpp->kp_slab_cache = s; |
7213230a | 4314 | base = slab_address(slab); |
8e7f37f2 PM |
4315 | objp0 = kasan_reset_tag(object); |
4316 | #ifdef CONFIG_SLUB_DEBUG | |
4317 | objp = restore_red_left(s, objp0); | |
4318 | #else | |
4319 | objp = objp0; | |
4320 | #endif | |
40f3bf0c | 4321 | objnr = obj_to_index(s, slab, objp); |
8e7f37f2 PM |
4322 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
4323 | objp = base + s->size * objnr; | |
4324 | kpp->kp_objp = objp; | |
7213230a MWO |
4325 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
4326 | || (objp - base) % s->size) || | |
8e7f37f2 PM |
4327 | !(s->flags & SLAB_STORE_USER)) |
4328 | return; | |
4329 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 4330 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
4331 | trackp = get_track(s, objp, TRACK_ALLOC); |
4332 | kpp->kp_ret = (void *)trackp->addr; | |
5cf909c5 OG |
4333 | #ifdef CONFIG_STACKDEPOT |
4334 | { | |
4335 | depot_stack_handle_t handle; | |
4336 | unsigned long *entries; | |
4337 | unsigned int nr_entries; | |
78869146 | 4338 | |
5cf909c5 OG |
4339 | handle = READ_ONCE(trackp->handle); |
4340 | if (handle) { | |
4341 | nr_entries = stack_depot_fetch(handle, &entries); | |
4342 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
4343 | kpp->kp_stack[i] = (void *)entries[i]; | |
4344 | } | |
78869146 | 4345 | |
5cf909c5 OG |
4346 | trackp = get_track(s, objp, TRACK_FREE); |
4347 | handle = READ_ONCE(trackp->handle); | |
4348 | if (handle) { | |
4349 | nr_entries = stack_depot_fetch(handle, &entries); | |
4350 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
4351 | kpp->kp_free_stack[i] = (void *)entries[i]; | |
4352 | } | |
e548eaa1 | 4353 | } |
8e7f37f2 PM |
4354 | #endif |
4355 | #endif | |
4356 | } | |
5bb1bb35 | 4357 | #endif |
8e7f37f2 | 4358 | |
81819f0f CL |
4359 | /******************************************************************** |
4360 | * Kmalloc subsystem | |
4361 | *******************************************************************/ | |
4362 | ||
81819f0f CL |
4363 | static int __init setup_slub_min_order(char *str) |
4364 | { | |
19af27af | 4365 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
4366 | |
4367 | return 1; | |
4368 | } | |
4369 | ||
4370 | __setup("slub_min_order=", setup_slub_min_order); | |
4371 | ||
4372 | static int __init setup_slub_max_order(char *str) | |
4373 | { | |
19af27af AD |
4374 | get_option(&str, (int *)&slub_max_order); |
4375 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
4376 | |
4377 | return 1; | |
4378 | } | |
4379 | ||
4380 | __setup("slub_max_order=", setup_slub_max_order); | |
4381 | ||
4382 | static int __init setup_slub_min_objects(char *str) | |
4383 | { | |
19af27af | 4384 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
4385 | |
4386 | return 1; | |
4387 | } | |
4388 | ||
4389 | __setup("slub_min_objects=", setup_slub_min_objects); | |
4390 | ||
ed18adc1 KC |
4391 | #ifdef CONFIG_HARDENED_USERCOPY |
4392 | /* | |
afcc90f8 KC |
4393 | * Rejects incorrectly sized objects and objects that are to be copied |
4394 | * to/from userspace but do not fall entirely within the containing slab | |
4395 | * cache's usercopy region. | |
ed18adc1 KC |
4396 | * |
4397 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4398 | * to indicate an error. | |
4399 | */ | |
0b3eb091 MWO |
4400 | void __check_heap_object(const void *ptr, unsigned long n, |
4401 | const struct slab *slab, bool to_user) | |
ed18adc1 KC |
4402 | { |
4403 | struct kmem_cache *s; | |
44065b2e | 4404 | unsigned int offset; |
b89fb5ef | 4405 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 4406 | |
96fedce2 AK |
4407 | ptr = kasan_reset_tag(ptr); |
4408 | ||
ed18adc1 | 4409 | /* Find object and usable object size. */ |
0b3eb091 | 4410 | s = slab->slab_cache; |
ed18adc1 KC |
4411 | |
4412 | /* Reject impossible pointers. */ | |
0b3eb091 | 4413 | if (ptr < slab_address(slab)) |
f4e6e289 KC |
4414 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
4415 | to_user, 0, n); | |
ed18adc1 KC |
4416 | |
4417 | /* Find offset within object. */ | |
b89fb5ef AP |
4418 | if (is_kfence) |
4419 | offset = ptr - kfence_object_start(ptr); | |
4420 | else | |
0b3eb091 | 4421 | offset = (ptr - slab_address(slab)) % s->size; |
ed18adc1 KC |
4422 | |
4423 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 4424 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 4425 | if (offset < s->red_left_pad) |
f4e6e289 KC |
4426 | usercopy_abort("SLUB object in left red zone", |
4427 | s->name, to_user, offset, n); | |
ed18adc1 KC |
4428 | offset -= s->red_left_pad; |
4429 | } | |
4430 | ||
afcc90f8 KC |
4431 | /* Allow address range falling entirely within usercopy region. */ |
4432 | if (offset >= s->useroffset && | |
4433 | offset - s->useroffset <= s->usersize && | |
4434 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4435 | return; |
ed18adc1 | 4436 | |
f4e6e289 | 4437 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4438 | } |
4439 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4440 | ||
832f37f5 VD |
4441 | #define SHRINK_PROMOTE_MAX 32 |
4442 | ||
2086d26a | 4443 | /* |
832f37f5 VD |
4444 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4445 | * up most to the head of the partial lists. New allocations will then | |
4446 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4447 | * |
4448 | * The slabs with the least items are placed last. This results in them | |
4449 | * being allocated from last increasing the chance that the last objects | |
4450 | * are freed in them. | |
2086d26a | 4451 | */ |
5a836bf6 | 4452 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
4453 | { |
4454 | int node; | |
4455 | int i; | |
4456 | struct kmem_cache_node *n; | |
bb192ed9 VB |
4457 | struct slab *slab; |
4458 | struct slab *t; | |
832f37f5 VD |
4459 | struct list_head discard; |
4460 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4461 | unsigned long flags; |
ce3712d7 | 4462 | int ret = 0; |
2086d26a | 4463 | |
fa45dc25 | 4464 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4465 | INIT_LIST_HEAD(&discard); |
4466 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4467 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4468 | |
4469 | spin_lock_irqsave(&n->list_lock, flags); | |
4470 | ||
4471 | /* | |
832f37f5 | 4472 | * Build lists of slabs to discard or promote. |
2086d26a | 4473 | * |
672bba3a | 4474 | * Note that concurrent frees may occur while we hold the |
c2092c12 | 4475 | * list_lock. slab->inuse here is the upper limit. |
2086d26a | 4476 | */ |
bb192ed9 VB |
4477 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
4478 | int free = slab->objects - slab->inuse; | |
832f37f5 | 4479 | |
c2092c12 | 4480 | /* Do not reread slab->inuse */ |
832f37f5 VD |
4481 | barrier(); |
4482 | ||
4483 | /* We do not keep full slabs on the list */ | |
4484 | BUG_ON(free <= 0); | |
4485 | ||
bb192ed9 VB |
4486 | if (free == slab->objects) { |
4487 | list_move(&slab->slab_list, &discard); | |
69cb8e6b | 4488 | n->nr_partial--; |
832f37f5 | 4489 | } else if (free <= SHRINK_PROMOTE_MAX) |
bb192ed9 | 4490 | list_move(&slab->slab_list, promote + free - 1); |
2086d26a CL |
4491 | } |
4492 | ||
2086d26a | 4493 | /* |
832f37f5 VD |
4494 | * Promote the slabs filled up most to the head of the |
4495 | * partial list. | |
2086d26a | 4496 | */ |
832f37f5 VD |
4497 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4498 | list_splice(promote + i, &n->partial); | |
2086d26a | 4499 | |
2086d26a | 4500 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4501 | |
4502 | /* Release empty slabs */ | |
bb192ed9 VB |
4503 | list_for_each_entry_safe(slab, t, &discard, slab_list) |
4504 | discard_slab(s, slab); | |
ce3712d7 VD |
4505 | |
4506 | if (slabs_node(s, node)) | |
4507 | ret = 1; | |
2086d26a CL |
4508 | } |
4509 | ||
ce3712d7 | 4510 | return ret; |
2086d26a | 4511 | } |
2086d26a | 4512 | |
5a836bf6 SAS |
4513 | int __kmem_cache_shrink(struct kmem_cache *s) |
4514 | { | |
4515 | flush_all(s); | |
4516 | return __kmem_cache_do_shrink(s); | |
4517 | } | |
4518 | ||
b9049e23 YG |
4519 | static int slab_mem_going_offline_callback(void *arg) |
4520 | { | |
4521 | struct kmem_cache *s; | |
4522 | ||
18004c5d | 4523 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
4524 | list_for_each_entry(s, &slab_caches, list) { |
4525 | flush_all_cpus_locked(s); | |
4526 | __kmem_cache_do_shrink(s); | |
4527 | } | |
18004c5d | 4528 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4529 | |
4530 | return 0; | |
4531 | } | |
4532 | ||
4533 | static void slab_mem_offline_callback(void *arg) | |
4534 | { | |
b9049e23 YG |
4535 | struct memory_notify *marg = arg; |
4536 | int offline_node; | |
4537 | ||
b9d5ab25 | 4538 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4539 | |
4540 | /* | |
4541 | * If the node still has available memory. we need kmem_cache_node | |
4542 | * for it yet. | |
4543 | */ | |
4544 | if (offline_node < 0) | |
4545 | return; | |
4546 | ||
18004c5d | 4547 | mutex_lock(&slab_mutex); |
7e1fa93d | 4548 | node_clear(offline_node, slab_nodes); |
666716fd VB |
4549 | /* |
4550 | * We no longer free kmem_cache_node structures here, as it would be | |
4551 | * racy with all get_node() users, and infeasible to protect them with | |
4552 | * slab_mutex. | |
4553 | */ | |
18004c5d | 4554 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4555 | } |
4556 | ||
4557 | static int slab_mem_going_online_callback(void *arg) | |
4558 | { | |
4559 | struct kmem_cache_node *n; | |
4560 | struct kmem_cache *s; | |
4561 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4562 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4563 | int ret = 0; |
4564 | ||
4565 | /* | |
4566 | * If the node's memory is already available, then kmem_cache_node is | |
4567 | * already created. Nothing to do. | |
4568 | */ | |
4569 | if (nid < 0) | |
4570 | return 0; | |
4571 | ||
4572 | /* | |
0121c619 | 4573 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4574 | * allocate a kmem_cache_node structure in order to bring the node |
4575 | * online. | |
4576 | */ | |
18004c5d | 4577 | mutex_lock(&slab_mutex); |
b9049e23 | 4578 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
4579 | /* |
4580 | * The structure may already exist if the node was previously | |
4581 | * onlined and offlined. | |
4582 | */ | |
4583 | if (get_node(s, nid)) | |
4584 | continue; | |
b9049e23 YG |
4585 | /* |
4586 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4587 | * since memory is not yet available from the node that | |
4588 | * is brought up. | |
4589 | */ | |
8de66a0c | 4590 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4591 | if (!n) { |
4592 | ret = -ENOMEM; | |
4593 | goto out; | |
4594 | } | |
4053497d | 4595 | init_kmem_cache_node(n); |
b9049e23 YG |
4596 | s->node[nid] = n; |
4597 | } | |
7e1fa93d VB |
4598 | /* |
4599 | * Any cache created after this point will also have kmem_cache_node | |
4600 | * initialized for the new node. | |
4601 | */ | |
4602 | node_set(nid, slab_nodes); | |
b9049e23 | 4603 | out: |
18004c5d | 4604 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4605 | return ret; |
4606 | } | |
4607 | ||
4608 | static int slab_memory_callback(struct notifier_block *self, | |
4609 | unsigned long action, void *arg) | |
4610 | { | |
4611 | int ret = 0; | |
4612 | ||
4613 | switch (action) { | |
4614 | case MEM_GOING_ONLINE: | |
4615 | ret = slab_mem_going_online_callback(arg); | |
4616 | break; | |
4617 | case MEM_GOING_OFFLINE: | |
4618 | ret = slab_mem_going_offline_callback(arg); | |
4619 | break; | |
4620 | case MEM_OFFLINE: | |
4621 | case MEM_CANCEL_ONLINE: | |
4622 | slab_mem_offline_callback(arg); | |
4623 | break; | |
4624 | case MEM_ONLINE: | |
4625 | case MEM_CANCEL_OFFLINE: | |
4626 | break; | |
4627 | } | |
dc19f9db KH |
4628 | if (ret) |
4629 | ret = notifier_from_errno(ret); | |
4630 | else | |
4631 | ret = NOTIFY_OK; | |
b9049e23 YG |
4632 | return ret; |
4633 | } | |
4634 | ||
3ac38faa AM |
4635 | static struct notifier_block slab_memory_callback_nb = { |
4636 | .notifier_call = slab_memory_callback, | |
4637 | .priority = SLAB_CALLBACK_PRI, | |
4638 | }; | |
b9049e23 | 4639 | |
81819f0f CL |
4640 | /******************************************************************** |
4641 | * Basic setup of slabs | |
4642 | *******************************************************************/ | |
4643 | ||
51df1142 CL |
4644 | /* |
4645 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4646 | * the page allocator. Allocate them properly then fix up the pointers |
4647 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4648 | */ |
4649 | ||
dffb4d60 | 4650 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4651 | { |
4652 | int node; | |
dffb4d60 | 4653 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4654 | struct kmem_cache_node *n; |
51df1142 | 4655 | |
dffb4d60 | 4656 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4657 | |
7d557b3c GC |
4658 | /* |
4659 | * This runs very early, and only the boot processor is supposed to be | |
4660 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4661 | * IPIs around. | |
4662 | */ | |
4663 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4664 | for_each_kmem_cache_node(s, node, n) { |
bb192ed9 | 4665 | struct slab *p; |
51df1142 | 4666 | |
916ac052 | 4667 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4668 | p->slab_cache = s; |
51df1142 | 4669 | |
607bf324 | 4670 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4671 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4672 | p->slab_cache = s; |
51df1142 | 4673 | #endif |
51df1142 | 4674 | } |
dffb4d60 CL |
4675 | list_add(&s->list, &slab_caches); |
4676 | return s; | |
51df1142 CL |
4677 | } |
4678 | ||
81819f0f CL |
4679 | void __init kmem_cache_init(void) |
4680 | { | |
dffb4d60 CL |
4681 | static __initdata struct kmem_cache boot_kmem_cache, |
4682 | boot_kmem_cache_node; | |
7e1fa93d | 4683 | int node; |
51df1142 | 4684 | |
fc8d8620 SG |
4685 | if (debug_guardpage_minorder()) |
4686 | slub_max_order = 0; | |
4687 | ||
79270291 SB |
4688 | /* Print slub debugging pointers without hashing */ |
4689 | if (__slub_debug_enabled()) | |
4690 | no_hash_pointers_enable(NULL); | |
4691 | ||
dffb4d60 CL |
4692 | kmem_cache_node = &boot_kmem_cache_node; |
4693 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4694 | |
7e1fa93d VB |
4695 | /* |
4696 | * Initialize the nodemask for which we will allocate per node | |
4697 | * structures. Here we don't need taking slab_mutex yet. | |
4698 | */ | |
4699 | for_each_node_state(node, N_NORMAL_MEMORY) | |
4700 | node_set(node, slab_nodes); | |
4701 | ||
dffb4d60 | 4702 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4703 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4704 | |
3ac38faa | 4705 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4706 | |
4707 | /* Able to allocate the per node structures */ | |
4708 | slab_state = PARTIAL; | |
4709 | ||
dffb4d60 CL |
4710 | create_boot_cache(kmem_cache, "kmem_cache", |
4711 | offsetof(struct kmem_cache, node) + | |
4712 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4713 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4714 | |
dffb4d60 | 4715 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4716 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4717 | |
4718 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4719 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4720 | create_kmalloc_caches(0); |
81819f0f | 4721 | |
210e7a43 TG |
4722 | /* Setup random freelists for each cache */ |
4723 | init_freelist_randomization(); | |
4724 | ||
a96a87bf SAS |
4725 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4726 | slub_cpu_dead); | |
81819f0f | 4727 | |
b9726c26 | 4728 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4729 | cache_line_size(), |
81819f0f CL |
4730 | slub_min_order, slub_max_order, slub_min_objects, |
4731 | nr_cpu_ids, nr_node_ids); | |
4732 | } | |
4733 | ||
7e85ee0c PE |
4734 | void __init kmem_cache_init_late(void) |
4735 | { | |
7e85ee0c PE |
4736 | } |
4737 | ||
2633d7a0 | 4738 | struct kmem_cache * |
f4957d5b | 4739 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4740 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4741 | { |
10befea9 | 4742 | struct kmem_cache *s; |
81819f0f | 4743 | |
a44cb944 | 4744 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 4745 | if (s) { |
efb93527 XS |
4746 | if (sysfs_slab_alias(s, name)) |
4747 | return NULL; | |
4748 | ||
81819f0f | 4749 | s->refcount++; |
84d0ddd6 | 4750 | |
81819f0f CL |
4751 | /* |
4752 | * Adjust the object sizes so that we clear | |
4753 | * the complete object on kzalloc. | |
4754 | */ | |
1b473f29 | 4755 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4756 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 4757 | } |
6446faa2 | 4758 | |
cbb79694 CL |
4759 | return s; |
4760 | } | |
84c1cf62 | 4761 | |
d50112ed | 4762 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4763 | { |
aac3a166 PE |
4764 | int err; |
4765 | ||
4766 | err = kmem_cache_open(s, flags); | |
4767 | if (err) | |
4768 | return err; | |
20cea968 | 4769 | |
45530c44 CL |
4770 | /* Mutex is not taken during early boot */ |
4771 | if (slab_state <= UP) | |
4772 | return 0; | |
4773 | ||
aac3a166 | 4774 | err = sysfs_slab_add(s); |
67823a54 | 4775 | if (err) { |
52b4b950 | 4776 | __kmem_cache_release(s); |
67823a54 ML |
4777 | return err; |
4778 | } | |
20cea968 | 4779 | |
64dd6849 FM |
4780 | if (s->flags & SLAB_STORE_USER) |
4781 | debugfs_slab_add(s); | |
4782 | ||
67823a54 | 4783 | return 0; |
81819f0f | 4784 | } |
81819f0f | 4785 | |
ab4d5ed5 | 4786 | #ifdef CONFIG_SYSFS |
bb192ed9 | 4787 | static int count_inuse(struct slab *slab) |
205ab99d | 4788 | { |
bb192ed9 | 4789 | return slab->inuse; |
205ab99d CL |
4790 | } |
4791 | ||
bb192ed9 | 4792 | static int count_total(struct slab *slab) |
205ab99d | 4793 | { |
bb192ed9 | 4794 | return slab->objects; |
205ab99d | 4795 | } |
ab4d5ed5 | 4796 | #endif |
205ab99d | 4797 | |
ab4d5ed5 | 4798 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 4799 | static void validate_slab(struct kmem_cache *s, struct slab *slab, |
0a19e7dd | 4800 | unsigned long *obj_map) |
53e15af0 CL |
4801 | { |
4802 | void *p; | |
bb192ed9 | 4803 | void *addr = slab_address(slab); |
a2b4ae8b | 4804 | unsigned long flags; |
90e9f6a6 | 4805 | |
bb192ed9 | 4806 | slab_lock(slab, &flags); |
53e15af0 | 4807 | |
bb192ed9 | 4808 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
90e9f6a6 | 4809 | goto unlock; |
53e15af0 CL |
4810 | |
4811 | /* Now we know that a valid freelist exists */ | |
bb192ed9 VB |
4812 | __fill_map(obj_map, s, slab); |
4813 | for_each_object(p, s, addr, slab->objects) { | |
0a19e7dd | 4814 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 4815 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 4816 | |
bb192ed9 | 4817 | if (!check_object(s, slab, p, val)) |
dd98afd4 YZ |
4818 | break; |
4819 | } | |
90e9f6a6 | 4820 | unlock: |
bb192ed9 | 4821 | slab_unlock(slab, &flags); |
53e15af0 CL |
4822 | } |
4823 | ||
434e245d | 4824 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 4825 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
4826 | { |
4827 | unsigned long count = 0; | |
bb192ed9 | 4828 | struct slab *slab; |
53e15af0 CL |
4829 | unsigned long flags; |
4830 | ||
4831 | spin_lock_irqsave(&n->list_lock, flags); | |
4832 | ||
bb192ed9 VB |
4833 | list_for_each_entry(slab, &n->partial, slab_list) { |
4834 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
4835 | count++; |
4836 | } | |
1f9f78b1 | 4837 | if (count != n->nr_partial) { |
f9f58285 FF |
4838 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4839 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
4840 | slab_add_kunit_errors(); |
4841 | } | |
53e15af0 CL |
4842 | |
4843 | if (!(s->flags & SLAB_STORE_USER)) | |
4844 | goto out; | |
4845 | ||
bb192ed9 VB |
4846 | list_for_each_entry(slab, &n->full, slab_list) { |
4847 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
4848 | count++; |
4849 | } | |
1f9f78b1 | 4850 | if (count != atomic_long_read(&n->nr_slabs)) { |
f9f58285 FF |
4851 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4852 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
1f9f78b1 OG |
4853 | slab_add_kunit_errors(); |
4854 | } | |
53e15af0 CL |
4855 | |
4856 | out: | |
4857 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4858 | return count; | |
4859 | } | |
4860 | ||
1f9f78b1 | 4861 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4862 | { |
4863 | int node; | |
4864 | unsigned long count = 0; | |
fa45dc25 | 4865 | struct kmem_cache_node *n; |
0a19e7dd VB |
4866 | unsigned long *obj_map; |
4867 | ||
4868 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
4869 | if (!obj_map) | |
4870 | return -ENOMEM; | |
53e15af0 CL |
4871 | |
4872 | flush_all(s); | |
fa45dc25 | 4873 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
4874 | count += validate_slab_node(s, n, obj_map); |
4875 | ||
4876 | bitmap_free(obj_map); | |
90e9f6a6 | 4877 | |
53e15af0 CL |
4878 | return count; |
4879 | } | |
1f9f78b1 OG |
4880 | EXPORT_SYMBOL(validate_slab_cache); |
4881 | ||
64dd6849 | 4882 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 4883 | /* |
672bba3a | 4884 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4885 | * and freed. |
4886 | */ | |
4887 | ||
4888 | struct location { | |
8ea9fb92 | 4889 | depot_stack_handle_t handle; |
88a420e4 | 4890 | unsigned long count; |
ce71e27c | 4891 | unsigned long addr; |
45edfa58 CL |
4892 | long long sum_time; |
4893 | long min_time; | |
4894 | long max_time; | |
4895 | long min_pid; | |
4896 | long max_pid; | |
174596a0 | 4897 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4898 | nodemask_t nodes; |
88a420e4 CL |
4899 | }; |
4900 | ||
4901 | struct loc_track { | |
4902 | unsigned long max; | |
4903 | unsigned long count; | |
4904 | struct location *loc; | |
005a79e5 | 4905 | loff_t idx; |
88a420e4 CL |
4906 | }; |
4907 | ||
64dd6849 FM |
4908 | static struct dentry *slab_debugfs_root; |
4909 | ||
88a420e4 CL |
4910 | static void free_loc_track(struct loc_track *t) |
4911 | { | |
4912 | if (t->max) | |
4913 | free_pages((unsigned long)t->loc, | |
4914 | get_order(sizeof(struct location) * t->max)); | |
4915 | } | |
4916 | ||
68dff6a9 | 4917 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4918 | { |
4919 | struct location *l; | |
4920 | int order; | |
4921 | ||
88a420e4 CL |
4922 | order = get_order(sizeof(struct location) * max); |
4923 | ||
68dff6a9 | 4924 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4925 | if (!l) |
4926 | return 0; | |
4927 | ||
4928 | if (t->count) { | |
4929 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4930 | free_loc_track(t); | |
4931 | } | |
4932 | t->max = max; | |
4933 | t->loc = l; | |
4934 | return 1; | |
4935 | } | |
4936 | ||
4937 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4938 | const struct track *track) |
88a420e4 CL |
4939 | { |
4940 | long start, end, pos; | |
4941 | struct location *l; | |
8ea9fb92 | 4942 | unsigned long caddr, chandle; |
45edfa58 | 4943 | unsigned long age = jiffies - track->when; |
8ea9fb92 | 4944 | depot_stack_handle_t handle = 0; |
88a420e4 | 4945 | |
8ea9fb92 OG |
4946 | #ifdef CONFIG_STACKDEPOT |
4947 | handle = READ_ONCE(track->handle); | |
4948 | #endif | |
88a420e4 CL |
4949 | start = -1; |
4950 | end = t->count; | |
4951 | ||
4952 | for ( ; ; ) { | |
4953 | pos = start + (end - start + 1) / 2; | |
4954 | ||
4955 | /* | |
4956 | * There is nothing at "end". If we end up there | |
4957 | * we need to add something to before end. | |
4958 | */ | |
4959 | if (pos == end) | |
4960 | break; | |
4961 | ||
4962 | caddr = t->loc[pos].addr; | |
8ea9fb92 OG |
4963 | chandle = t->loc[pos].handle; |
4964 | if ((track->addr == caddr) && (handle == chandle)) { | |
45edfa58 CL |
4965 | |
4966 | l = &t->loc[pos]; | |
4967 | l->count++; | |
4968 | if (track->when) { | |
4969 | l->sum_time += age; | |
4970 | if (age < l->min_time) | |
4971 | l->min_time = age; | |
4972 | if (age > l->max_time) | |
4973 | l->max_time = age; | |
4974 | ||
4975 | if (track->pid < l->min_pid) | |
4976 | l->min_pid = track->pid; | |
4977 | if (track->pid > l->max_pid) | |
4978 | l->max_pid = track->pid; | |
4979 | ||
174596a0 RR |
4980 | cpumask_set_cpu(track->cpu, |
4981 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4982 | } |
4983 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4984 | return 1; |
4985 | } | |
4986 | ||
45edfa58 | 4987 | if (track->addr < caddr) |
88a420e4 | 4988 | end = pos; |
8ea9fb92 OG |
4989 | else if (track->addr == caddr && handle < chandle) |
4990 | end = pos; | |
88a420e4 CL |
4991 | else |
4992 | start = pos; | |
4993 | } | |
4994 | ||
4995 | /* | |
672bba3a | 4996 | * Not found. Insert new tracking element. |
88a420e4 | 4997 | */ |
68dff6a9 | 4998 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4999 | return 0; |
5000 | ||
5001 | l = t->loc + pos; | |
5002 | if (pos < t->count) | |
5003 | memmove(l + 1, l, | |
5004 | (t->count - pos) * sizeof(struct location)); | |
5005 | t->count++; | |
5006 | l->count = 1; | |
45edfa58 CL |
5007 | l->addr = track->addr; |
5008 | l->sum_time = age; | |
5009 | l->min_time = age; | |
5010 | l->max_time = age; | |
5011 | l->min_pid = track->pid; | |
5012 | l->max_pid = track->pid; | |
8ea9fb92 | 5013 | l->handle = handle; |
174596a0 RR |
5014 | cpumask_clear(to_cpumask(l->cpus)); |
5015 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
5016 | nodes_clear(l->nodes); |
5017 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5018 | return 1; |
5019 | } | |
5020 | ||
5021 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bb192ed9 | 5022 | struct slab *slab, enum track_item alloc, |
b3fd64e1 | 5023 | unsigned long *obj_map) |
88a420e4 | 5024 | { |
bb192ed9 | 5025 | void *addr = slab_address(slab); |
88a420e4 CL |
5026 | void *p; |
5027 | ||
bb192ed9 | 5028 | __fill_map(obj_map, s, slab); |
b3fd64e1 | 5029 | |
bb192ed9 | 5030 | for_each_object(p, s, addr, slab->objects) |
b3fd64e1 | 5031 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
45edfa58 | 5032 | add_location(t, s, get_track(s, p, alloc)); |
88a420e4 | 5033 | } |
64dd6849 | 5034 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 5035 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 5036 | |
ab4d5ed5 | 5037 | #ifdef CONFIG_SYSFS |
81819f0f | 5038 | enum slab_stat_type { |
205ab99d CL |
5039 | SL_ALL, /* All slabs */ |
5040 | SL_PARTIAL, /* Only partially allocated slabs */ | |
5041 | SL_CPU, /* Only slabs used for cpu caches */ | |
5042 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
5043 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
5044 | }; |
5045 | ||
205ab99d | 5046 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
5047 | #define SO_PARTIAL (1 << SL_PARTIAL) |
5048 | #define SO_CPU (1 << SL_CPU) | |
5049 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 5050 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 5051 | |
62e5c4b4 | 5052 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 5053 | char *buf, unsigned long flags) |
81819f0f CL |
5054 | { |
5055 | unsigned long total = 0; | |
81819f0f CL |
5056 | int node; |
5057 | int x; | |
5058 | unsigned long *nodes; | |
bf16d19a | 5059 | int len = 0; |
81819f0f | 5060 | |
6396bb22 | 5061 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
5062 | if (!nodes) |
5063 | return -ENOMEM; | |
81819f0f | 5064 | |
205ab99d CL |
5065 | if (flags & SO_CPU) { |
5066 | int cpu; | |
81819f0f | 5067 | |
205ab99d | 5068 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
5069 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
5070 | cpu); | |
ec3ab083 | 5071 | int node; |
bb192ed9 | 5072 | struct slab *slab; |
dfb4f096 | 5073 | |
bb192ed9 VB |
5074 | slab = READ_ONCE(c->slab); |
5075 | if (!slab) | |
ec3ab083 | 5076 | continue; |
205ab99d | 5077 | |
bb192ed9 | 5078 | node = slab_nid(slab); |
ec3ab083 | 5079 | if (flags & SO_TOTAL) |
bb192ed9 | 5080 | x = slab->objects; |
ec3ab083 | 5081 | else if (flags & SO_OBJECTS) |
bb192ed9 | 5082 | x = slab->inuse; |
ec3ab083 CL |
5083 | else |
5084 | x = 1; | |
49e22585 | 5085 | |
ec3ab083 CL |
5086 | total += x; |
5087 | nodes[node] += x; | |
5088 | ||
9c01e9af | 5089 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 VB |
5090 | slab = slub_percpu_partial_read_once(c); |
5091 | if (slab) { | |
5092 | node = slab_nid(slab); | |
8afb1474 LZ |
5093 | if (flags & SO_TOTAL) |
5094 | WARN_ON_ONCE(1); | |
5095 | else if (flags & SO_OBJECTS) | |
5096 | WARN_ON_ONCE(1); | |
5097 | else | |
bb192ed9 | 5098 | x = slab->slabs; |
bc6697d8 ED |
5099 | total += x; |
5100 | nodes[node] += x; | |
49e22585 | 5101 | } |
9c01e9af | 5102 | #endif |
81819f0f CL |
5103 | } |
5104 | } | |
5105 | ||
e4f8e513 QC |
5106 | /* |
5107 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
5108 | * already held which will conflict with an existing lock order: | |
5109 | * | |
5110 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
5111 | * | |
5112 | * We don't really need mem_hotplug_lock (to hold off | |
5113 | * slab_mem_going_offline_callback) here because slab's memory hot | |
5114 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
5115 | */ | |
5116 | ||
ab4d5ed5 | 5117 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 5118 | if (flags & SO_ALL) { |
fa45dc25 CL |
5119 | struct kmem_cache_node *n; |
5120 | ||
5121 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 5122 | |
d0e0ac97 CG |
5123 | if (flags & SO_TOTAL) |
5124 | x = atomic_long_read(&n->total_objects); | |
5125 | else if (flags & SO_OBJECTS) | |
5126 | x = atomic_long_read(&n->total_objects) - | |
5127 | count_partial(n, count_free); | |
81819f0f | 5128 | else |
205ab99d | 5129 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
5130 | total += x; |
5131 | nodes[node] += x; | |
5132 | } | |
5133 | ||
ab4d5ed5 CL |
5134 | } else |
5135 | #endif | |
5136 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 5137 | struct kmem_cache_node *n; |
81819f0f | 5138 | |
fa45dc25 | 5139 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
5140 | if (flags & SO_TOTAL) |
5141 | x = count_partial(n, count_total); | |
5142 | else if (flags & SO_OBJECTS) | |
5143 | x = count_partial(n, count_inuse); | |
81819f0f | 5144 | else |
205ab99d | 5145 | x = n->nr_partial; |
81819f0f CL |
5146 | total += x; |
5147 | nodes[node] += x; | |
5148 | } | |
5149 | } | |
bf16d19a JP |
5150 | |
5151 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 5152 | #ifdef CONFIG_NUMA |
bf16d19a | 5153 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 5154 | if (nodes[node]) |
bf16d19a JP |
5155 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
5156 | node, nodes[node]); | |
5157 | } | |
81819f0f | 5158 | #endif |
bf16d19a | 5159 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 5160 | kfree(nodes); |
bf16d19a JP |
5161 | |
5162 | return len; | |
81819f0f CL |
5163 | } |
5164 | ||
81819f0f | 5165 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 5166 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5167 | |
5168 | struct slab_attribute { | |
5169 | struct attribute attr; | |
5170 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5171 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5172 | }; | |
5173 | ||
5174 | #define SLAB_ATTR_RO(_name) \ | |
d1d28bd9 | 5175 | static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) |
81819f0f CL |
5176 | |
5177 | #define SLAB_ATTR(_name) \ | |
d1d28bd9 | 5178 | static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) |
81819f0f | 5179 | |
81819f0f CL |
5180 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5181 | { | |
bf16d19a | 5182 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
5183 | } |
5184 | SLAB_ATTR_RO(slab_size); | |
5185 | ||
5186 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5187 | { | |
bf16d19a | 5188 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
5189 | } |
5190 | SLAB_ATTR_RO(align); | |
5191 | ||
5192 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5193 | { | |
bf16d19a | 5194 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
5195 | } |
5196 | SLAB_ATTR_RO(object_size); | |
5197 | ||
5198 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5199 | { | |
bf16d19a | 5200 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5201 | } |
5202 | SLAB_ATTR_RO(objs_per_slab); | |
5203 | ||
5204 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
5205 | { | |
bf16d19a | 5206 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5207 | } |
32a6f409 | 5208 | SLAB_ATTR_RO(order); |
81819f0f | 5209 | |
73d342b1 DR |
5210 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5211 | { | |
bf16d19a | 5212 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
5213 | } |
5214 | ||
5215 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5216 | size_t length) | |
5217 | { | |
5218 | unsigned long min; | |
5219 | int err; | |
5220 | ||
3dbb95f7 | 5221 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5222 | if (err) |
5223 | return err; | |
5224 | ||
5182f3c9 | 5225 | s->min_partial = min; |
73d342b1 DR |
5226 | return length; |
5227 | } | |
5228 | SLAB_ATTR(min_partial); | |
5229 | ||
49e22585 CL |
5230 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5231 | { | |
b47291ef VB |
5232 | unsigned int nr_partial = 0; |
5233 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
5234 | nr_partial = s->cpu_partial; | |
5235 | #endif | |
5236 | ||
5237 | return sysfs_emit(buf, "%u\n", nr_partial); | |
49e22585 CL |
5238 | } |
5239 | ||
5240 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5241 | size_t length) | |
5242 | { | |
e5d9998f | 5243 | unsigned int objects; |
49e22585 CL |
5244 | int err; |
5245 | ||
e5d9998f | 5246 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5247 | if (err) |
5248 | return err; | |
345c905d | 5249 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5250 | return -EINVAL; |
49e22585 | 5251 | |
e6d0e1dc | 5252 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5253 | flush_all(s); |
5254 | return length; | |
5255 | } | |
5256 | SLAB_ATTR(cpu_partial); | |
5257 | ||
81819f0f CL |
5258 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5259 | { | |
62c70bce JP |
5260 | if (!s->ctor) |
5261 | return 0; | |
bf16d19a | 5262 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
5263 | } |
5264 | SLAB_ATTR_RO(ctor); | |
5265 | ||
81819f0f CL |
5266 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5267 | { | |
bf16d19a | 5268 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5269 | } |
5270 | SLAB_ATTR_RO(aliases); | |
5271 | ||
81819f0f CL |
5272 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5273 | { | |
d9acf4b7 | 5274 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5275 | } |
5276 | SLAB_ATTR_RO(partial); | |
5277 | ||
5278 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5279 | { | |
d9acf4b7 | 5280 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5281 | } |
5282 | SLAB_ATTR_RO(cpu_slabs); | |
5283 | ||
5284 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5285 | { | |
205ab99d | 5286 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5287 | } |
5288 | SLAB_ATTR_RO(objects); | |
5289 | ||
205ab99d CL |
5290 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5291 | { | |
5292 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5293 | } | |
5294 | SLAB_ATTR_RO(objects_partial); | |
5295 | ||
49e22585 CL |
5296 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5297 | { | |
5298 | int objects = 0; | |
bb192ed9 | 5299 | int slabs = 0; |
9c01e9af | 5300 | int cpu __maybe_unused; |
bf16d19a | 5301 | int len = 0; |
49e22585 | 5302 | |
9c01e9af | 5303 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 5304 | for_each_online_cpu(cpu) { |
bb192ed9 | 5305 | struct slab *slab; |
a93cf07b | 5306 | |
bb192ed9 | 5307 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
49e22585 | 5308 | |
bb192ed9 VB |
5309 | if (slab) |
5310 | slabs += slab->slabs; | |
49e22585 | 5311 | } |
9c01e9af | 5312 | #endif |
49e22585 | 5313 | |
c2092c12 | 5314 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
bb192ed9 VB |
5315 | objects = (slabs * oo_objects(s->oo)) / 2; |
5316 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
49e22585 | 5317 | |
9c01e9af | 5318 | #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) |
49e22585 | 5319 | for_each_online_cpu(cpu) { |
bb192ed9 | 5320 | struct slab *slab; |
a93cf07b | 5321 | |
bb192ed9 VB |
5322 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
5323 | if (slab) { | |
5324 | slabs = READ_ONCE(slab->slabs); | |
5325 | objects = (slabs * oo_objects(s->oo)) / 2; | |
bf16d19a | 5326 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
bb192ed9 | 5327 | cpu, objects, slabs); |
b47291ef | 5328 | } |
49e22585 CL |
5329 | } |
5330 | #endif | |
bf16d19a JP |
5331 | len += sysfs_emit_at(buf, len, "\n"); |
5332 | ||
5333 | return len; | |
49e22585 CL |
5334 | } |
5335 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5336 | ||
a5a84755 CL |
5337 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5338 | { | |
bf16d19a | 5339 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 5340 | } |
8f58119a | 5341 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
5342 | |
5343 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5344 | { | |
bf16d19a | 5345 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
5346 | } |
5347 | SLAB_ATTR_RO(hwcache_align); | |
5348 | ||
5349 | #ifdef CONFIG_ZONE_DMA | |
5350 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5351 | { | |
bf16d19a | 5352 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
5353 | } |
5354 | SLAB_ATTR_RO(cache_dma); | |
5355 | #endif | |
5356 | ||
8eb8284b DW |
5357 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5358 | { | |
bf16d19a | 5359 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
5360 | } |
5361 | SLAB_ATTR_RO(usersize); | |
5362 | ||
a5a84755 CL |
5363 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5364 | { | |
bf16d19a | 5365 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5366 | } |
5367 | SLAB_ATTR_RO(destroy_by_rcu); | |
5368 | ||
ab4d5ed5 | 5369 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5370 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5371 | { | |
5372 | return show_slab_objects(s, buf, SO_ALL); | |
5373 | } | |
5374 | SLAB_ATTR_RO(slabs); | |
5375 | ||
205ab99d CL |
5376 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5377 | { | |
5378 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5379 | } | |
5380 | SLAB_ATTR_RO(total_objects); | |
5381 | ||
81819f0f CL |
5382 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5383 | { | |
bf16d19a | 5384 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 5385 | } |
060807f8 | 5386 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
5387 | |
5388 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5389 | { | |
bf16d19a | 5390 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 5391 | } |
060807f8 | 5392 | SLAB_ATTR_RO(trace); |
81819f0f | 5393 | |
81819f0f CL |
5394 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5395 | { | |
bf16d19a | 5396 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
5397 | } |
5398 | ||
ad38b5b1 | 5399 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
5400 | |
5401 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5402 | { | |
bf16d19a | 5403 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
5404 | } |
5405 | ||
ad38b5b1 | 5406 | SLAB_ATTR_RO(poison); |
81819f0f CL |
5407 | |
5408 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5409 | { | |
bf16d19a | 5410 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
5411 | } |
5412 | ||
ad38b5b1 | 5413 | SLAB_ATTR_RO(store_user); |
81819f0f | 5414 | |
53e15af0 CL |
5415 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5416 | { | |
5417 | return 0; | |
5418 | } | |
5419 | ||
5420 | static ssize_t validate_store(struct kmem_cache *s, | |
5421 | const char *buf, size_t length) | |
5422 | { | |
434e245d CL |
5423 | int ret = -EINVAL; |
5424 | ||
5425 | if (buf[0] == '1') { | |
5426 | ret = validate_slab_cache(s); | |
5427 | if (ret >= 0) | |
5428 | ret = length; | |
5429 | } | |
5430 | return ret; | |
53e15af0 CL |
5431 | } |
5432 | SLAB_ATTR(validate); | |
a5a84755 | 5433 | |
a5a84755 CL |
5434 | #endif /* CONFIG_SLUB_DEBUG */ |
5435 | ||
5436 | #ifdef CONFIG_FAILSLAB | |
5437 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5438 | { | |
bf16d19a | 5439 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 5440 | } |
060807f8 | 5441 | SLAB_ATTR_RO(failslab); |
ab4d5ed5 | 5442 | #endif |
53e15af0 | 5443 | |
2086d26a CL |
5444 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5445 | { | |
5446 | return 0; | |
5447 | } | |
5448 | ||
5449 | static ssize_t shrink_store(struct kmem_cache *s, | |
5450 | const char *buf, size_t length) | |
5451 | { | |
832f37f5 | 5452 | if (buf[0] == '1') |
10befea9 | 5453 | kmem_cache_shrink(s); |
832f37f5 | 5454 | else |
2086d26a CL |
5455 | return -EINVAL; |
5456 | return length; | |
5457 | } | |
5458 | SLAB_ATTR(shrink); | |
5459 | ||
81819f0f | 5460 | #ifdef CONFIG_NUMA |
9824601e | 5461 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5462 | { |
bf16d19a | 5463 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5464 | } |
5465 | ||
9824601e | 5466 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5467 | const char *buf, size_t length) |
5468 | { | |
eb7235eb | 5469 | unsigned int ratio; |
0121c619 CL |
5470 | int err; |
5471 | ||
eb7235eb | 5472 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5473 | if (err) |
5474 | return err; | |
eb7235eb AD |
5475 | if (ratio > 100) |
5476 | return -ERANGE; | |
0121c619 | 5477 | |
eb7235eb | 5478 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5479 | |
81819f0f CL |
5480 | return length; |
5481 | } | |
9824601e | 5482 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5483 | #endif |
5484 | ||
8ff12cfc | 5485 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5486 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5487 | { | |
5488 | unsigned long sum = 0; | |
5489 | int cpu; | |
bf16d19a | 5490 | int len = 0; |
6da2ec56 | 5491 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5492 | |
5493 | if (!data) | |
5494 | return -ENOMEM; | |
5495 | ||
5496 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5497 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5498 | |
5499 | data[cpu] = x; | |
5500 | sum += x; | |
5501 | } | |
5502 | ||
bf16d19a | 5503 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 5504 | |
50ef37b9 | 5505 | #ifdef CONFIG_SMP |
8ff12cfc | 5506 | for_each_online_cpu(cpu) { |
bf16d19a JP |
5507 | if (data[cpu]) |
5508 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
5509 | cpu, data[cpu]); | |
8ff12cfc | 5510 | } |
50ef37b9 | 5511 | #endif |
8ff12cfc | 5512 | kfree(data); |
bf16d19a JP |
5513 | len += sysfs_emit_at(buf, len, "\n"); |
5514 | ||
5515 | return len; | |
8ff12cfc CL |
5516 | } |
5517 | ||
78eb00cc DR |
5518 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5519 | { | |
5520 | int cpu; | |
5521 | ||
5522 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5523 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5524 | } |
5525 | ||
8ff12cfc CL |
5526 | #define STAT_ATTR(si, text) \ |
5527 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5528 | { \ | |
5529 | return show_stat(s, buf, si); \ | |
5530 | } \ | |
78eb00cc DR |
5531 | static ssize_t text##_store(struct kmem_cache *s, \ |
5532 | const char *buf, size_t length) \ | |
5533 | { \ | |
5534 | if (buf[0] != '0') \ | |
5535 | return -EINVAL; \ | |
5536 | clear_stat(s, si); \ | |
5537 | return length; \ | |
5538 | } \ | |
5539 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5540 | |
5541 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5542 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5543 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5544 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5545 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5546 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5547 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5548 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5549 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5550 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5551 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5552 | STAT_ATTR(FREE_SLAB, free_slab); |
5553 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5554 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5555 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5556 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5557 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5558 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5559 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5560 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5561 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5562 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5563 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5564 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5565 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5566 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5567 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5568 | |
06428780 | 5569 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5570 | &slab_size_attr.attr, |
5571 | &object_size_attr.attr, | |
5572 | &objs_per_slab_attr.attr, | |
5573 | &order_attr.attr, | |
73d342b1 | 5574 | &min_partial_attr.attr, |
49e22585 | 5575 | &cpu_partial_attr.attr, |
81819f0f | 5576 | &objects_attr.attr, |
205ab99d | 5577 | &objects_partial_attr.attr, |
81819f0f CL |
5578 | &partial_attr.attr, |
5579 | &cpu_slabs_attr.attr, | |
5580 | &ctor_attr.attr, | |
81819f0f CL |
5581 | &aliases_attr.attr, |
5582 | &align_attr.attr, | |
81819f0f CL |
5583 | &hwcache_align_attr.attr, |
5584 | &reclaim_account_attr.attr, | |
5585 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5586 | &shrink_attr.attr, |
49e22585 | 5587 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5588 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5589 | &total_objects_attr.attr, |
5590 | &slabs_attr.attr, | |
5591 | &sanity_checks_attr.attr, | |
5592 | &trace_attr.attr, | |
81819f0f CL |
5593 | &red_zone_attr.attr, |
5594 | &poison_attr.attr, | |
5595 | &store_user_attr.attr, | |
53e15af0 | 5596 | &validate_attr.attr, |
ab4d5ed5 | 5597 | #endif |
81819f0f CL |
5598 | #ifdef CONFIG_ZONE_DMA |
5599 | &cache_dma_attr.attr, | |
5600 | #endif | |
5601 | #ifdef CONFIG_NUMA | |
9824601e | 5602 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5603 | #endif |
5604 | #ifdef CONFIG_SLUB_STATS | |
5605 | &alloc_fastpath_attr.attr, | |
5606 | &alloc_slowpath_attr.attr, | |
5607 | &free_fastpath_attr.attr, | |
5608 | &free_slowpath_attr.attr, | |
5609 | &free_frozen_attr.attr, | |
5610 | &free_add_partial_attr.attr, | |
5611 | &free_remove_partial_attr.attr, | |
5612 | &alloc_from_partial_attr.attr, | |
5613 | &alloc_slab_attr.attr, | |
5614 | &alloc_refill_attr.attr, | |
e36a2652 | 5615 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5616 | &free_slab_attr.attr, |
5617 | &cpuslab_flush_attr.attr, | |
5618 | &deactivate_full_attr.attr, | |
5619 | &deactivate_empty_attr.attr, | |
5620 | &deactivate_to_head_attr.attr, | |
5621 | &deactivate_to_tail_attr.attr, | |
5622 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5623 | &deactivate_bypass_attr.attr, |
65c3376a | 5624 | &order_fallback_attr.attr, |
b789ef51 CL |
5625 | &cmpxchg_double_fail_attr.attr, |
5626 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5627 | &cpu_partial_alloc_attr.attr, |
5628 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5629 | &cpu_partial_node_attr.attr, |
5630 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5631 | #endif |
4c13dd3b DM |
5632 | #ifdef CONFIG_FAILSLAB |
5633 | &failslab_attr.attr, | |
5634 | #endif | |
8eb8284b | 5635 | &usersize_attr.attr, |
4c13dd3b | 5636 | |
81819f0f CL |
5637 | NULL |
5638 | }; | |
5639 | ||
1fdaaa23 | 5640 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5641 | .attrs = slab_attrs, |
5642 | }; | |
5643 | ||
5644 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5645 | struct attribute *attr, | |
5646 | char *buf) | |
5647 | { | |
5648 | struct slab_attribute *attribute; | |
5649 | struct kmem_cache *s; | |
5650 | int err; | |
5651 | ||
5652 | attribute = to_slab_attr(attr); | |
5653 | s = to_slab(kobj); | |
5654 | ||
5655 | if (!attribute->show) | |
5656 | return -EIO; | |
5657 | ||
5658 | err = attribute->show(s, buf); | |
5659 | ||
5660 | return err; | |
5661 | } | |
5662 | ||
5663 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5664 | struct attribute *attr, | |
5665 | const char *buf, size_t len) | |
5666 | { | |
5667 | struct slab_attribute *attribute; | |
5668 | struct kmem_cache *s; | |
5669 | int err; | |
5670 | ||
5671 | attribute = to_slab_attr(attr); | |
5672 | s = to_slab(kobj); | |
5673 | ||
5674 | if (!attribute->store) | |
5675 | return -EIO; | |
5676 | ||
5677 | err = attribute->store(s, buf, len); | |
81819f0f CL |
5678 | return err; |
5679 | } | |
5680 | ||
41a21285 CL |
5681 | static void kmem_cache_release(struct kobject *k) |
5682 | { | |
5683 | slab_kmem_cache_release(to_slab(k)); | |
5684 | } | |
5685 | ||
52cf25d0 | 5686 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5687 | .show = slab_attr_show, |
5688 | .store = slab_attr_store, | |
5689 | }; | |
5690 | ||
5691 | static struct kobj_type slab_ktype = { | |
5692 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5693 | .release = kmem_cache_release, |
81819f0f CL |
5694 | }; |
5695 | ||
27c3a314 | 5696 | static struct kset *slab_kset; |
81819f0f | 5697 | |
9a41707b VD |
5698 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5699 | { | |
9a41707b VD |
5700 | return slab_kset; |
5701 | } | |
5702 | ||
81819f0f CL |
5703 | #define ID_STR_LENGTH 64 |
5704 | ||
5705 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5706 | * |
5707 | * Format :[flags-]size | |
81819f0f CL |
5708 | */ |
5709 | static char *create_unique_id(struct kmem_cache *s) | |
5710 | { | |
5711 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5712 | char *p = name; | |
5713 | ||
5714 | BUG_ON(!name); | |
5715 | ||
5716 | *p++ = ':'; | |
5717 | /* | |
5718 | * First flags affecting slabcache operations. We will only | |
5719 | * get here for aliasable slabs so we do not need to support | |
5720 | * too many flags. The flags here must cover all flags that | |
5721 | * are matched during merging to guarantee that the id is | |
5722 | * unique. | |
5723 | */ | |
5724 | if (s->flags & SLAB_CACHE_DMA) | |
5725 | *p++ = 'd'; | |
6d6ea1e9 NB |
5726 | if (s->flags & SLAB_CACHE_DMA32) |
5727 | *p++ = 'D'; | |
81819f0f CL |
5728 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5729 | *p++ = 'a'; | |
becfda68 | 5730 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5731 | *p++ = 'F'; |
230e9fc2 VD |
5732 | if (s->flags & SLAB_ACCOUNT) |
5733 | *p++ = 'A'; | |
81819f0f CL |
5734 | if (p != name + 1) |
5735 | *p++ = '-'; | |
44065b2e | 5736 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5737 | |
81819f0f CL |
5738 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5739 | return name; | |
5740 | } | |
5741 | ||
5742 | static int sysfs_slab_add(struct kmem_cache *s) | |
5743 | { | |
5744 | int err; | |
5745 | const char *name; | |
1663f26d | 5746 | struct kset *kset = cache_kset(s); |
45530c44 | 5747 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5748 | |
1663f26d TH |
5749 | if (!kset) { |
5750 | kobject_init(&s->kobj, &slab_ktype); | |
5751 | return 0; | |
5752 | } | |
5753 | ||
11066386 MC |
5754 | if (!unmergeable && disable_higher_order_debug && |
5755 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5756 | unmergeable = 1; | |
5757 | ||
81819f0f CL |
5758 | if (unmergeable) { |
5759 | /* | |
5760 | * Slabcache can never be merged so we can use the name proper. | |
5761 | * This is typically the case for debug situations. In that | |
5762 | * case we can catch duplicate names easily. | |
5763 | */ | |
27c3a314 | 5764 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5765 | name = s->name; |
5766 | } else { | |
5767 | /* | |
5768 | * Create a unique name for the slab as a target | |
5769 | * for the symlinks. | |
5770 | */ | |
5771 | name = create_unique_id(s); | |
5772 | } | |
5773 | ||
1663f26d | 5774 | s->kobj.kset = kset; |
26e4f205 | 5775 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 5776 | if (err) |
80da026a | 5777 | goto out; |
81819f0f CL |
5778 | |
5779 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5780 | if (err) |
5781 | goto out_del_kobj; | |
9a41707b | 5782 | |
81819f0f CL |
5783 | if (!unmergeable) { |
5784 | /* Setup first alias */ | |
5785 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5786 | } |
54b6a731 DJ |
5787 | out: |
5788 | if (!unmergeable) | |
5789 | kfree(name); | |
5790 | return err; | |
5791 | out_del_kobj: | |
5792 | kobject_del(&s->kobj); | |
54b6a731 | 5793 | goto out; |
81819f0f CL |
5794 | } |
5795 | ||
d50d82fa MP |
5796 | void sysfs_slab_unlink(struct kmem_cache *s) |
5797 | { | |
5798 | if (slab_state >= FULL) | |
5799 | kobject_del(&s->kobj); | |
5800 | } | |
5801 | ||
bf5eb3de TH |
5802 | void sysfs_slab_release(struct kmem_cache *s) |
5803 | { | |
5804 | if (slab_state >= FULL) | |
5805 | kobject_put(&s->kobj); | |
81819f0f CL |
5806 | } |
5807 | ||
5808 | /* | |
5809 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5810 | * available lest we lose that information. |
81819f0f CL |
5811 | */ |
5812 | struct saved_alias { | |
5813 | struct kmem_cache *s; | |
5814 | const char *name; | |
5815 | struct saved_alias *next; | |
5816 | }; | |
5817 | ||
5af328a5 | 5818 | static struct saved_alias *alias_list; |
81819f0f CL |
5819 | |
5820 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5821 | { | |
5822 | struct saved_alias *al; | |
5823 | ||
97d06609 | 5824 | if (slab_state == FULL) { |
81819f0f CL |
5825 | /* |
5826 | * If we have a leftover link then remove it. | |
5827 | */ | |
27c3a314 GKH |
5828 | sysfs_remove_link(&slab_kset->kobj, name); |
5829 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5830 | } |
5831 | ||
5832 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5833 | if (!al) | |
5834 | return -ENOMEM; | |
5835 | ||
5836 | al->s = s; | |
5837 | al->name = name; | |
5838 | al->next = alias_list; | |
5839 | alias_list = al; | |
5840 | return 0; | |
5841 | } | |
5842 | ||
5843 | static int __init slab_sysfs_init(void) | |
5844 | { | |
5b95a4ac | 5845 | struct kmem_cache *s; |
81819f0f CL |
5846 | int err; |
5847 | ||
18004c5d | 5848 | mutex_lock(&slab_mutex); |
2bce6485 | 5849 | |
d7660ce5 | 5850 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 5851 | if (!slab_kset) { |
18004c5d | 5852 | mutex_unlock(&slab_mutex); |
f9f58285 | 5853 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5854 | return -ENOSYS; |
5855 | } | |
5856 | ||
97d06609 | 5857 | slab_state = FULL; |
26a7bd03 | 5858 | |
5b95a4ac | 5859 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5860 | err = sysfs_slab_add(s); |
5d540fb7 | 5861 | if (err) |
f9f58285 FF |
5862 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5863 | s->name); | |
26a7bd03 | 5864 | } |
81819f0f CL |
5865 | |
5866 | while (alias_list) { | |
5867 | struct saved_alias *al = alias_list; | |
5868 | ||
5869 | alias_list = alias_list->next; | |
5870 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5871 | if (err) |
f9f58285 FF |
5872 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5873 | al->name); | |
81819f0f CL |
5874 | kfree(al); |
5875 | } | |
5876 | ||
18004c5d | 5877 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5878 | return 0; |
5879 | } | |
5880 | ||
5881 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5882 | #endif /* CONFIG_SYSFS */ |
57ed3eda | 5883 | |
64dd6849 FM |
5884 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
5885 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
5886 | { | |
64dd6849 | 5887 | struct loc_track *t = seq->private; |
005a79e5 GS |
5888 | struct location *l; |
5889 | unsigned long idx; | |
64dd6849 | 5890 | |
005a79e5 | 5891 | idx = (unsigned long) t->idx; |
64dd6849 FM |
5892 | if (idx < t->count) { |
5893 | l = &t->loc[idx]; | |
5894 | ||
5895 | seq_printf(seq, "%7ld ", l->count); | |
5896 | ||
5897 | if (l->addr) | |
5898 | seq_printf(seq, "%pS", (void *)l->addr); | |
5899 | else | |
5900 | seq_puts(seq, "<not-available>"); | |
5901 | ||
5902 | if (l->sum_time != l->min_time) { | |
5903 | seq_printf(seq, " age=%ld/%llu/%ld", | |
5904 | l->min_time, div_u64(l->sum_time, l->count), | |
5905 | l->max_time); | |
5906 | } else | |
5907 | seq_printf(seq, " age=%ld", l->min_time); | |
5908 | ||
5909 | if (l->min_pid != l->max_pid) | |
5910 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
5911 | else | |
5912 | seq_printf(seq, " pid=%ld", | |
5913 | l->min_pid); | |
5914 | ||
5915 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
5916 | seq_printf(seq, " cpus=%*pbl", | |
5917 | cpumask_pr_args(to_cpumask(l->cpus))); | |
5918 | ||
5919 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
5920 | seq_printf(seq, " nodes=%*pbl", | |
5921 | nodemask_pr_args(&l->nodes)); | |
5922 | ||
8ea9fb92 OG |
5923 | #ifdef CONFIG_STACKDEPOT |
5924 | { | |
5925 | depot_stack_handle_t handle; | |
5926 | unsigned long *entries; | |
5927 | unsigned int nr_entries, j; | |
5928 | ||
5929 | handle = READ_ONCE(l->handle); | |
5930 | if (handle) { | |
5931 | nr_entries = stack_depot_fetch(handle, &entries); | |
5932 | seq_puts(seq, "\n"); | |
5933 | for (j = 0; j < nr_entries; j++) | |
5934 | seq_printf(seq, " %pS\n", (void *)entries[j]); | |
5935 | } | |
5936 | } | |
5937 | #endif | |
64dd6849 FM |
5938 | seq_puts(seq, "\n"); |
5939 | } | |
5940 | ||
5941 | if (!idx && !t->count) | |
5942 | seq_puts(seq, "No data\n"); | |
5943 | ||
5944 | return 0; | |
5945 | } | |
5946 | ||
5947 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
5948 | { | |
5949 | } | |
5950 | ||
5951 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
5952 | { | |
5953 | struct loc_track *t = seq->private; | |
5954 | ||
005a79e5 | 5955 | t->idx = ++(*ppos); |
64dd6849 | 5956 | if (*ppos <= t->count) |
005a79e5 | 5957 | return ppos; |
64dd6849 FM |
5958 | |
5959 | return NULL; | |
5960 | } | |
5961 | ||
553c0369 OG |
5962 | static int cmp_loc_by_count(const void *a, const void *b, const void *data) |
5963 | { | |
5964 | struct location *loc1 = (struct location *)a; | |
5965 | struct location *loc2 = (struct location *)b; | |
5966 | ||
5967 | if (loc1->count > loc2->count) | |
5968 | return -1; | |
5969 | else | |
5970 | return 1; | |
5971 | } | |
5972 | ||
64dd6849 FM |
5973 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) |
5974 | { | |
005a79e5 GS |
5975 | struct loc_track *t = seq->private; |
5976 | ||
5977 | t->idx = *ppos; | |
64dd6849 FM |
5978 | return ppos; |
5979 | } | |
5980 | ||
5981 | static const struct seq_operations slab_debugfs_sops = { | |
5982 | .start = slab_debugfs_start, | |
5983 | .next = slab_debugfs_next, | |
5984 | .stop = slab_debugfs_stop, | |
5985 | .show = slab_debugfs_show, | |
5986 | }; | |
5987 | ||
5988 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
5989 | { | |
5990 | ||
5991 | struct kmem_cache_node *n; | |
5992 | enum track_item alloc; | |
5993 | int node; | |
5994 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
5995 | sizeof(struct loc_track)); | |
5996 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
5997 | unsigned long *obj_map; |
5998 | ||
2127d225 ML |
5999 | if (!t) |
6000 | return -ENOMEM; | |
6001 | ||
b3fd64e1 | 6002 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
2127d225 ML |
6003 | if (!obj_map) { |
6004 | seq_release_private(inode, filep); | |
b3fd64e1 | 6005 | return -ENOMEM; |
2127d225 | 6006 | } |
64dd6849 FM |
6007 | |
6008 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
6009 | alloc = TRACK_ALLOC; | |
6010 | else | |
6011 | alloc = TRACK_FREE; | |
6012 | ||
b3fd64e1 VB |
6013 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
6014 | bitmap_free(obj_map); | |
2127d225 | 6015 | seq_release_private(inode, filep); |
64dd6849 | 6016 | return -ENOMEM; |
b3fd64e1 | 6017 | } |
64dd6849 | 6018 | |
64dd6849 FM |
6019 | for_each_kmem_cache_node(s, node, n) { |
6020 | unsigned long flags; | |
bb192ed9 | 6021 | struct slab *slab; |
64dd6849 FM |
6022 | |
6023 | if (!atomic_long_read(&n->nr_slabs)) | |
6024 | continue; | |
6025 | ||
6026 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
6027 | list_for_each_entry(slab, &n->partial, slab_list) |
6028 | process_slab(t, s, slab, alloc, obj_map); | |
6029 | list_for_each_entry(slab, &n->full, slab_list) | |
6030 | process_slab(t, s, slab, alloc, obj_map); | |
64dd6849 FM |
6031 | spin_unlock_irqrestore(&n->list_lock, flags); |
6032 | } | |
6033 | ||
553c0369 OG |
6034 | /* Sort locations by count */ |
6035 | sort_r(t->loc, t->count, sizeof(struct location), | |
6036 | cmp_loc_by_count, NULL, NULL); | |
6037 | ||
b3fd64e1 | 6038 | bitmap_free(obj_map); |
64dd6849 FM |
6039 | return 0; |
6040 | } | |
6041 | ||
6042 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
6043 | { | |
6044 | struct seq_file *seq = file->private_data; | |
6045 | struct loc_track *t = seq->private; | |
6046 | ||
6047 | free_loc_track(t); | |
6048 | return seq_release_private(inode, file); | |
6049 | } | |
6050 | ||
6051 | static const struct file_operations slab_debugfs_fops = { | |
6052 | .open = slab_debug_trace_open, | |
6053 | .read = seq_read, | |
6054 | .llseek = seq_lseek, | |
6055 | .release = slab_debug_trace_release, | |
6056 | }; | |
6057 | ||
6058 | static void debugfs_slab_add(struct kmem_cache *s) | |
6059 | { | |
6060 | struct dentry *slab_cache_dir; | |
6061 | ||
6062 | if (unlikely(!slab_debugfs_root)) | |
6063 | return; | |
6064 | ||
6065 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
6066 | ||
6067 | debugfs_create_file("alloc_traces", 0400, | |
6068 | slab_cache_dir, s, &slab_debugfs_fops); | |
6069 | ||
6070 | debugfs_create_file("free_traces", 0400, | |
6071 | slab_cache_dir, s, &slab_debugfs_fops); | |
6072 | } | |
6073 | ||
6074 | void debugfs_slab_release(struct kmem_cache *s) | |
6075 | { | |
6076 | debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); | |
6077 | } | |
6078 | ||
6079 | static int __init slab_debugfs_init(void) | |
6080 | { | |
6081 | struct kmem_cache *s; | |
6082 | ||
6083 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
6084 | ||
6085 | list_for_each_entry(s, &slab_caches, list) | |
6086 | if (s->flags & SLAB_STORE_USER) | |
6087 | debugfs_slab_add(s); | |
6088 | ||
6089 | return 0; | |
6090 | ||
6091 | } | |
6092 | __initcall(slab_debugfs_init); | |
6093 | #endif | |
57ed3eda PE |
6094 | /* |
6095 | * The /proc/slabinfo ABI | |
6096 | */ | |
5b365771 | 6097 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 6098 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 6099 | { |
57ed3eda | 6100 | unsigned long nr_slabs = 0; |
205ab99d CL |
6101 | unsigned long nr_objs = 0; |
6102 | unsigned long nr_free = 0; | |
57ed3eda | 6103 | int node; |
fa45dc25 | 6104 | struct kmem_cache_node *n; |
57ed3eda | 6105 | |
fa45dc25 | 6106 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
6107 | nr_slabs += node_nr_slabs(n); |
6108 | nr_objs += node_nr_objs(n); | |
205ab99d | 6109 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
6110 | } |
6111 | ||
0d7561c6 GC |
6112 | sinfo->active_objs = nr_objs - nr_free; |
6113 | sinfo->num_objs = nr_objs; | |
6114 | sinfo->active_slabs = nr_slabs; | |
6115 | sinfo->num_slabs = nr_slabs; | |
6116 | sinfo->objects_per_slab = oo_objects(s->oo); | |
6117 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
6118 | } |
6119 | ||
0d7561c6 | 6120 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 6121 | { |
7b3c3a50 AD |
6122 | } |
6123 | ||
b7454ad3 GC |
6124 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
6125 | size_t count, loff_t *ppos) | |
7b3c3a50 | 6126 | { |
b7454ad3 | 6127 | return -EIO; |
7b3c3a50 | 6128 | } |
5b365771 | 6129 | #endif /* CONFIG_SLUB_DEBUG */ |