]> Git Repo - linux.git/blame - mm/slub.c
xfs: AIL doesn't need manual pushing
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
6011be59 37#include <linux/kmemleak.h>
bfa71457 38#include <linux/stacktrace.h>
4de900b4 39#include <linux/prefetch.h>
2633d7a0 40#include <linux/memcontrol.h>
2482ddec 41#include <linux/random.h>
1f9f78b1 42#include <kunit/test.h>
909c6475 43#include <kunit/test-bug.h>
553c0369 44#include <linux/sort.h>
81819f0f 45
64dd6849 46#include <linux/debugfs.h>
4a92379b
RK
47#include <trace/events/kmem.h>
48
072bb0aa
MG
49#include "internal.h"
50
81819f0f
CL
51/*
52 * Lock order:
18004c5d 53 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 56 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 57 * 5. object_map_lock (Only for debugging)
81819f0f 58 *
18004c5d 59 * slab_mutex
881db7fb 60 *
18004c5d 61 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 62 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
881db7fb 69 *
41bec7c3
VB
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
c2092c12
VB
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
881db7fb 77 *
bd0e7491
VB
78 * Frozen slabs
79 *
31bda717
CZ
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
c2092c12 83 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
c2092c12 86 * slab's freelist.
81819f0f 87 *
31bda717
CZ
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
bd0e7491
VB
102 * list_lock
103 *
81819f0f
CL
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
bd0e7491 115 *
41bec7c3
VB
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
bd0e7491
VB
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
672bba3a
CL
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 156 * freed then the slab will show up again on the partial lists.
672bba3a
CL
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
81819f0f
CL
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
c2092c12 164 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
dfb4f096 176 * freelist that allows lockless access to
894b8788
CL
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
81819f0f 179 *
aed68148 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 181 * options set. This moves slab handling out of
894b8788 182 * the fast path and disables lockless freelists.
81819f0f
CL
183 */
184
25c00c50
VB
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
1f04b07d 204#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
205#endif
206
be784ba8
VB
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
ca0cab65
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
79270291 219#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 220
6edf2576
FT
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
6edf2576
FT
223 gfp_t flags;
224 unsigned int orig_size;
43c4c349 225 void *object;
6edf2576
FT
226};
227
59052e89
VB
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 231}
5577bd8a 232
6edf2576
FT
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
117d54df 239void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 240{
59052e89 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
242 p += s->red_left_pad;
243
244 return p;
245}
246
345c905d
JK
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
81819f0f
CL
256/*
257 * Issues still to be resolved:
258 *
81819f0f
CL
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
81819f0f
CL
261 * - Variable sizing of the per node arrays
262 */
263
b789ef51
CL
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
5a8a3c1f 267#ifndef CONFIG_SLUB_TINY
2086d26a 268/*
dc84207d 269 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
76be8950 272#define MIN_PARTIAL 5
e95eed57 273
2086d26a
CL
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 277 * sort the partial list by the number of objects in use.
2086d26a
CL
278 */
279#define MAX_PARTIAL 10
5a8a3c1f
VB
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
2086d26a 284
becfda68 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 286 SLAB_POISON | SLAB_STORE_USER)
672bba3a 287
149daaf3
LA
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
fa5ec8a1 296/*
3de47213 297 * Debugging flags that require metadata to be stored in the slab. These get
671776b3 298 * disabled when slab_debug=O is used and a cache's min order increases with
3de47213 299 * metadata.
fa5ec8a1 300 */
3de47213 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 302
210b5c06
CG
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 306
81819f0f 307/* Internal SLUB flags */
d50112ed 308/* Poison object */
cc61eb85 309#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
d50112ed 310/* Use cmpxchg_double */
6801be4f
PZ
311
312#ifdef system_has_freelist_aba
cc61eb85 313#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
6801be4f 314#else
cc61eb85 315#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
6801be4f 316#endif
81819f0f 317
02cbc874
CL
318/*
319 * Tracking user of a slab.
320 */
d6543e39 321#define TRACK_ADDRS_COUNT 16
02cbc874 322struct track {
ce71e27c 323 unsigned long addr; /* Called from address */
5cf909c5
OG
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
d6543e39 326#endif
02cbc874
CL
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
b1a413a3 334#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 337#else
0c710013
CL
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
81819f0f
CL
341#endif
342
64dd6849
FM
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
7ef08ae8
VB
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
c94d2224 394 struct slab *partial; /* Partially allocated slabs */
7ef08ae8
VB
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
4fdccdfb 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
404{
405#ifdef CONFIG_SLUB_STATS
88da03a6
CL
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
411#endif
412}
413
6f3dd2c3
VB
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
b52ef56e
VB
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
7e1fa93d
VB
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
0af8489b 457#ifndef CONFIG_SLUB_TINY
e45cc288
ML
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
0af8489b 462#endif
e45cc288 463
81819f0f
CL
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
44f6a42d
JH
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
2482ddec
KC
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
44f6a42d
JH
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
2482ddec 481{
b06952cd
VB
482 unsigned long encoded;
483
2482ddec 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 486#else
b06952cd 487 encoded = (unsigned long)ptr;
44f6a42d 488#endif
b06952cd 489 return (freeptr_t){.v = encoded};
44f6a42d
JH
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 499#else
44f6a42d 500 decoded = (void *)ptr.v;
2482ddec 501#endif
44f6a42d 502 return decoded;
2482ddec
KC
503}
504
7656c72b
CL
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
1662b6c2
VB
507 unsigned long ptr_addr;
508 freeptr_t p;
509
aa1ef4d7 510 object = kasan_reset_tag(object);
1662b6c2
VB
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
514}
515
0af8489b 516#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
04b4b006 519 prefetchw(object + s->offset);
0ad9500e 520}
0af8489b 521#endif
0ad9500e 522
68ef169a
AP
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
1393d9a1
CL
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
2482ddec 536 unsigned long freepointer_addr;
44f6a42d 537 freeptr_t p;
1393d9a1 538
8e57f8ac 539 if (!debug_pagealloc_enabled_static())
922d566c
JK
540 return get_freepointer(s, object);
541
f70b0049 542 object = kasan_reset_tag(object);
2482ddec 543 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
546}
547
7656c72b
CL
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
2482ddec
KC
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
ce6fa91b
AP
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
aa1ef4d7 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
558}
559
8f828aa4
NB
560/*
561 * See comment in calculate_sizes().
562 */
563static inline bool freeptr_outside_object(struct kmem_cache *s)
564{
565 return s->offset >= s->inuse;
566}
567
568/*
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
571 */
572static inline unsigned int get_info_end(struct kmem_cache *s)
573{
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
576 else
577 return s->inuse;
578}
579
7656c72b 580/* Loop over all objects in a slab */
224a88be 581#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
584 __p += (__s)->size)
7656c72b 585
9736d2a9 586static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 587{
9736d2a9 588 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
589}
590
19af27af 591static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 592 unsigned int size)
834f3d11
CL
593{
594 struct kmem_cache_order_objects x = {
9736d2a9 595 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
596 };
597
598 return x;
599}
600
19af27af 601static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 602{
210b5c06 603 return x.x >> OO_SHIFT;
834f3d11
CL
604}
605
19af27af 606static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 607{
210b5c06 608 return x.x & OO_MASK;
834f3d11
CL
609}
610
b47291ef
VB
611#ifdef CONFIG_SLUB_CPU_PARTIAL
612static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613{
bb192ed9 614 unsigned int nr_slabs;
b47291ef
VB
615
616 s->cpu_partial = nr_objects;
617
618 /*
619 * We take the number of objects but actually limit the number of
c2092c12
VB
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
622 * be half-full.
623 */
bb192ed9
VB
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
b47291ef 626}
721a2f8b
XS
627
628static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629{
630 return s->cpu_partial_slabs;
631}
b47291ef
VB
632#else
633static inline void
634slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635{
636}
721a2f8b
XS
637
638static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639{
640 return 0;
641}
b47291ef
VB
642#endif /* CONFIG_SLUB_CPU_PARTIAL */
643
881db7fb
CL
644/*
645 * Per slab locking using the pagelock
646 */
5875e598 647static __always_inline void slab_lock(struct slab *slab)
881db7fb 648{
5e0debe0 649 bit_spin_lock(PG_locked, &slab->__page_flags);
881db7fb
CL
650}
651
5875e598 652static __always_inline void slab_unlock(struct slab *slab)
881db7fb 653{
5e0debe0 654 bit_spin_unlock(PG_locked, &slab->__page_flags);
881db7fb
CL
655}
656
6801be4f
PZ
657static inline bool
658__update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
661{
662#ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667#else
668 return false;
669#endif
670}
671
672static inline bool
673__update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
676{
677 bool ret = false;
678
679 slab_lock(slab);
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
684 ret = true;
685 }
686 slab_unlock(slab);
687
688 return ret;
689}
690
a2b4ae8b
VB
691/*
692 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
a2b4ae8b 697 */
6801be4f 698static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
701 const char *n)
702{
6801be4f
PZ
703 bool ret;
704
1f04b07d 705 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 706 lockdep_assert_irqs_disabled();
6801be4f 707
1d07171c 708 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
711 } else {
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
1d07171c 714 }
6801be4f
PZ
715 if (likely(ret))
716 return true;
1d07171c
CL
717
718 cpu_relax();
719 stat(s, CMPXCHG_DOUBLE_FAIL);
720
721#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
723#endif
724
6f6528a1 725 return false;
1d07171c
CL
726}
727
6801be4f 728static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
731 const char *n)
732{
6801be4f
PZ
733 bool ret;
734
b789ef51 735 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 } else {
1d07171c
CL
739 unsigned long flags;
740
741 local_irq_save(flags);
6801be4f
PZ
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
1d07171c 744 local_irq_restore(flags);
b789ef51 745 }
6801be4f
PZ
746 if (likely(ret))
747 return true;
b789ef51
CL
748
749 cpu_relax();
750 stat(s, CMPXCHG_DOUBLE_FAIL);
751
752#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
754#endif
755
6f6528a1 756 return false;
b789ef51
CL
757}
758
41ecc55b 759#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 760static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 761static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 762
b3fd64e1 763static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 764 struct slab *slab)
b3fd64e1 765{
bb192ed9 766 void *addr = slab_address(slab);
b3fd64e1
VB
767 void *p;
768
bb192ed9 769 bitmap_zero(obj_map, slab->objects);
b3fd64e1 770
bb192ed9 771 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
772 set_bit(__obj_to_index(s, addr, p), obj_map);
773}
774
1f9f78b1
OG
775#if IS_ENABLED(CONFIG_KUNIT)
776static bool slab_add_kunit_errors(void)
777{
778 struct kunit_resource *resource;
779
909c6475 780 if (!kunit_get_current_test())
1f9f78b1
OG
781 return false;
782
783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 if (!resource)
785 return false;
786
787 (*(int *)resource->data)++;
788 kunit_put_resource(resource);
789 return true;
790}
791#else
792static inline bool slab_add_kunit_errors(void) { return false; }
793#endif
794
870b1fbb 795static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
796{
797 if (s->flags & SLAB_RED_ZONE)
798 return s->size - s->red_left_pad;
799
800 return s->size;
801}
802
803static inline void *restore_red_left(struct kmem_cache *s, void *p)
804{
805 if (s->flags & SLAB_RED_ZONE)
806 p -= s->red_left_pad;
807
808 return p;
809}
810
41ecc55b
CL
811/*
812 * Debug settings:
813 */
89d3c87e 814#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 815static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 816#else
d50112ed 817static slab_flags_t slub_debug;
f0630fff 818#endif
41ecc55b 819
e17f1dfb 820static char *slub_debug_string;
fa5ec8a1 821static int disable_higher_order_debug;
41ecc55b 822
a79316c6
AR
823/*
824 * slub is about to manipulate internal object metadata. This memory lies
825 * outside the range of the allocated object, so accessing it would normally
826 * be reported by kasan as a bounds error. metadata_access_enable() is used
827 * to tell kasan that these accesses are OK.
828 */
829static inline void metadata_access_enable(void)
830{
831 kasan_disable_current();
832}
833
834static inline void metadata_access_disable(void)
835{
836 kasan_enable_current();
837}
838
81819f0f
CL
839/*
840 * Object debugging
841 */
d86bd1be
JK
842
843/* Verify that a pointer has an address that is valid within a slab page */
844static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 845 struct slab *slab, void *object)
d86bd1be
JK
846{
847 void *base;
848
849 if (!object)
850 return 1;
851
bb192ed9 852 base = slab_address(slab);
338cfaad 853 object = kasan_reset_tag(object);
d86bd1be 854 object = restore_red_left(s, object);
bb192ed9 855 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
856 (object - base) % s->size) {
857 return 0;
858 }
859
860 return 1;
861}
862
aa2efd5e
DT
863static void print_section(char *level, char *text, u8 *addr,
864 unsigned int length)
81819f0f 865{
a79316c6 866 metadata_access_enable();
340caf17
KYL
867 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
868 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 869 metadata_access_disable();
81819f0f
CL
870}
871
81819f0f
CL
872static struct track *get_track(struct kmem_cache *s, void *object,
873 enum track_item alloc)
874{
875 struct track *p;
876
cbfc35a4 877 p = object + get_info_end(s);
81819f0f 878
aa1ef4d7 879 return kasan_reset_tag(p + alloc);
81819f0f
CL
880}
881
5cf909c5 882#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
883static noinline depot_stack_handle_t set_track_prepare(void)
884{
885 depot_stack_handle_t handle;
5cf909c5 886 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 887 unsigned int nr_entries;
ae14c63a 888
5cf909c5 889 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
890 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
891
892 return handle;
893}
894#else
895static inline depot_stack_handle_t set_track_prepare(void)
896{
897 return 0;
898}
d6543e39 899#endif
5cf909c5 900
c4cf6785
SAS
901static void set_track_update(struct kmem_cache *s, void *object,
902 enum track_item alloc, unsigned long addr,
903 depot_stack_handle_t handle)
904{
905 struct track *p = get_track(s, object, alloc);
906
907#ifdef CONFIG_STACKDEPOT
908 p->handle = handle;
909#endif
0cd1a029
VB
910 p->addr = addr;
911 p->cpu = smp_processor_id();
912 p->pid = current->pid;
913 p->when = jiffies;
81819f0f
CL
914}
915
c4cf6785
SAS
916static __always_inline void set_track(struct kmem_cache *s, void *object,
917 enum track_item alloc, unsigned long addr)
918{
919 depot_stack_handle_t handle = set_track_prepare();
920
921 set_track_update(s, object, alloc, addr, handle);
922}
923
81819f0f
CL
924static void init_tracking(struct kmem_cache *s, void *object)
925{
0cd1a029
VB
926 struct track *p;
927
24922684
CL
928 if (!(s->flags & SLAB_STORE_USER))
929 return;
930
0cd1a029
VB
931 p = get_track(s, object, TRACK_ALLOC);
932 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
933}
934
86609d33 935static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 936{
5cf909c5
OG
937 depot_stack_handle_t handle __maybe_unused;
938
81819f0f
CL
939 if (!t->addr)
940 return;
941
96b94abc 942 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 943 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
944#ifdef CONFIG_STACKDEPOT
945 handle = READ_ONCE(t->handle);
946 if (handle)
947 stack_depot_print(handle);
948 else
949 pr_err("object allocation/free stack trace missing\n");
d6543e39 950#endif
24922684
CL
951}
952
e42f174e 953void print_tracking(struct kmem_cache *s, void *object)
24922684 954{
86609d33 955 unsigned long pr_time = jiffies;
24922684
CL
956 if (!(s->flags & SLAB_STORE_USER))
957 return;
958
86609d33
CP
959 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
960 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
961}
962
fb012e27 963static void print_slab_info(const struct slab *slab)
24922684 964{
fb012e27 965 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 966
fb012e27
MWO
967 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
968 slab, slab->objects, slab->inuse, slab->freelist,
969 folio_flags(folio, 0));
24922684
CL
970}
971
6edf2576
FT
972/*
973 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
974 * family will round up the real request size to these fixed ones, so
975 * there could be an extra area than what is requested. Save the original
976 * request size in the meta data area, for better debug and sanity check.
977 */
978static inline void set_orig_size(struct kmem_cache *s,
979 void *object, unsigned int orig_size)
980{
981 void *p = kasan_reset_tag(object);
2d552463 982 unsigned int kasan_meta_size;
6edf2576
FT
983
984 if (!slub_debug_orig_size(s))
985 return;
986
946fa0db 987 /*
2d552463
AK
988 * KASAN can save its free meta data inside of the object at offset 0.
989 * If this meta data size is larger than 'orig_size', it will overlap
990 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
991 * 'orig_size' to be as at least as big as KASAN's meta data.
946fa0db 992 */
2d552463
AK
993 kasan_meta_size = kasan_metadata_size(s, true);
994 if (kasan_meta_size > orig_size)
995 orig_size = kasan_meta_size;
946fa0db 996
6edf2576
FT
997 p += get_info_end(s);
998 p += sizeof(struct track) * 2;
999
1000 *(unsigned int *)p = orig_size;
1001}
1002
1003static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1004{
1005 void *p = kasan_reset_tag(object);
1006
1007 if (!slub_debug_orig_size(s))
1008 return s->object_size;
1009
1010 p += get_info_end(s);
1011 p += sizeof(struct track) * 2;
1012
1013 return *(unsigned int *)p;
1014}
1015
946fa0db
FT
1016void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017{
1018 set_orig_size(s, (void *)object, s->object_size);
1019}
1020
24922684
CL
1021static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1022{
ecc42fbe 1023 struct va_format vaf;
24922684 1024 va_list args;
24922684
CL
1025
1026 va_start(args, fmt);
ecc42fbe
FF
1027 vaf.fmt = fmt;
1028 vaf.va = &args;
f9f58285 1029 pr_err("=============================================================================\n");
ecc42fbe 1030 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 1031 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 1032 va_end(args);
81819f0f
CL
1033}
1034
582d1212 1035__printf(2, 3)
24922684
CL
1036static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1037{
ecc42fbe 1038 struct va_format vaf;
24922684 1039 va_list args;
24922684 1040
1f9f78b1
OG
1041 if (slab_add_kunit_errors())
1042 return;
1043
24922684 1044 va_start(args, fmt);
ecc42fbe
FF
1045 vaf.fmt = fmt;
1046 vaf.va = &args;
1047 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 1048 va_end(args);
24922684
CL
1049}
1050
bb192ed9 1051static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
1052{
1053 unsigned int off; /* Offset of last byte */
bb192ed9 1054 u8 *addr = slab_address(slab);
24922684
CL
1055
1056 print_tracking(s, p);
1057
bb192ed9 1058 print_slab_info(slab);
24922684 1059
96b94abc 1060 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 1061 p, p - addr, get_freepointer(s, p));
24922684 1062
d86bd1be 1063 if (s->flags & SLAB_RED_ZONE)
8669dbab 1064 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 1065 s->red_left_pad);
d86bd1be 1066 else if (p > addr + 16)
aa2efd5e 1067 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 1068
8669dbab 1069 print_section(KERN_ERR, "Object ", p,
1b473f29 1070 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 1071 if (s->flags & SLAB_RED_ZONE)
8669dbab 1072 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 1073 s->inuse - s->object_size);
81819f0f 1074
cbfc35a4 1075 off = get_info_end(s);
81819f0f 1076
24922684 1077 if (s->flags & SLAB_STORE_USER)
81819f0f 1078 off += 2 * sizeof(struct track);
81819f0f 1079
6edf2576
FT
1080 if (slub_debug_orig_size(s))
1081 off += sizeof(unsigned int);
1082
5d1ba310 1083 off += kasan_metadata_size(s, false);
80a9201a 1084
d86bd1be 1085 if (off != size_from_object(s))
81819f0f 1086 /* Beginning of the filler is the free pointer */
8669dbab 1087 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 1088 size_from_object(s) - off);
24922684
CL
1089
1090 dump_stack();
81819f0f
CL
1091}
1092
bb192ed9 1093static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
1094 u8 *object, char *reason)
1095{
1f9f78b1
OG
1096 if (slab_add_kunit_errors())
1097 return;
1098
3dc50637 1099 slab_bug(s, "%s", reason);
bb192ed9 1100 print_trailer(s, slab, object);
65ebdeef 1101 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1102}
1103
bb192ed9 1104static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
1105 void **freelist, void *nextfree)
1106{
1107 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
1108 !check_valid_pointer(s, slab, nextfree) && freelist) {
1109 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1110 *freelist = NULL;
1111 slab_fix(s, "Isolate corrupted freechain");
1112 return true;
1113 }
1114
1115 return false;
1116}
1117
bb192ed9 1118static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1119 const char *fmt, ...)
81819f0f
CL
1120{
1121 va_list args;
1122 char buf[100];
1123
1f9f78b1
OG
1124 if (slab_add_kunit_errors())
1125 return;
1126
24922684
CL
1127 va_start(args, fmt);
1128 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1129 va_end(args);
3dc50637 1130 slab_bug(s, "%s", buf);
bb192ed9 1131 print_slab_info(slab);
81819f0f 1132 dump_stack();
65ebdeef 1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1134}
1135
f7cb1933 1136static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1137{
aa1ef4d7 1138 u8 *p = kasan_reset_tag(object);
946fa0db 1139 unsigned int poison_size = s->object_size;
81819f0f 1140
946fa0db 1141 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1142 memset(p - s->red_left_pad, val, s->red_left_pad);
1143
946fa0db
FT
1144 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1145 /*
1146 * Redzone the extra allocated space by kmalloc than
1147 * requested, and the poison size will be limited to
1148 * the original request size accordingly.
1149 */
1150 poison_size = get_orig_size(s, object);
1151 }
1152 }
1153
81819f0f 1154 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1155 memset(p, POISON_FREE, poison_size - 1);
1156 p[poison_size - 1] = POISON_END;
81819f0f
CL
1157 }
1158
1159 if (s->flags & SLAB_RED_ZONE)
946fa0db 1160 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1161}
1162
24922684
CL
1163static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1164 void *from, void *to)
1165{
582d1212 1166 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1167 memset(from, data, to - from);
1168}
1169
bb192ed9 1170static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1171 u8 *object, char *what,
06428780 1172 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1173{
1174 u8 *fault;
1175 u8 *end;
bb192ed9 1176 u8 *addr = slab_address(slab);
24922684 1177
a79316c6 1178 metadata_access_enable();
aa1ef4d7 1179 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1180 metadata_access_disable();
24922684
CL
1181 if (!fault)
1182 return 1;
1183
1184 end = start + bytes;
1185 while (end > fault && end[-1] == value)
1186 end--;
1187
1f9f78b1
OG
1188 if (slab_add_kunit_errors())
1189 goto skip_bug_print;
1190
24922684 1191 slab_bug(s, "%s overwritten", what);
96b94abc 1192 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1193 fault, end - 1, fault - addr,
1194 fault[0], value);
bb192ed9 1195 print_trailer(s, slab, object);
65ebdeef 1196 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1197
1f9f78b1 1198skip_bug_print:
24922684
CL
1199 restore_bytes(s, what, value, fault, end);
1200 return 0;
81819f0f
CL
1201}
1202
81819f0f
CL
1203/*
1204 * Object layout:
1205 *
1206 * object address
1207 * Bytes of the object to be managed.
1208 * If the freepointer may overlay the object then the free
cbfc35a4 1209 * pointer is at the middle of the object.
672bba3a 1210 *
81819f0f
CL
1211 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1212 * 0xa5 (POISON_END)
1213 *
3b0efdfa 1214 * object + s->object_size
81819f0f 1215 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1216 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1217 * object_size == inuse.
672bba3a 1218 *
81819f0f
CL
1219 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1220 * 0xcc (RED_ACTIVE) for objects in use.
1221 *
1222 * object + s->inuse
672bba3a
CL
1223 * Meta data starts here.
1224 *
81819f0f
CL
1225 * A. Free pointer (if we cannot overwrite object on free)
1226 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1227 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1228 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1229 * one word if debugging is on to be able to detect writes
672bba3a
CL
1230 * before the word boundary.
1231 *
1232 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1233 *
1234 * object + s->size
672bba3a 1235 * Nothing is used beyond s->size.
81819f0f 1236 *
3b0efdfa 1237 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1238 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1239 * may be used with merged slabcaches.
1240 */
1241
bb192ed9 1242static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1243{
cbfc35a4 1244 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1245
6edf2576 1246 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1247 /* We also have user information there */
1248 off += 2 * sizeof(struct track);
1249
6edf2576
FT
1250 if (s->flags & SLAB_KMALLOC)
1251 off += sizeof(unsigned int);
1252 }
1253
5d1ba310 1254 off += kasan_metadata_size(s, false);
80a9201a 1255
d86bd1be 1256 if (size_from_object(s) == off)
81819f0f
CL
1257 return 1;
1258
bb192ed9 1259 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1260 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1261}
1262
39b26464 1263/* Check the pad bytes at the end of a slab page */
a204e6d6 1264static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1265{
24922684
CL
1266 u8 *start;
1267 u8 *fault;
1268 u8 *end;
5d682681 1269 u8 *pad;
24922684
CL
1270 int length;
1271 int remainder;
81819f0f
CL
1272
1273 if (!(s->flags & SLAB_POISON))
a204e6d6 1274 return;
81819f0f 1275
bb192ed9
VB
1276 start = slab_address(slab);
1277 length = slab_size(slab);
39b26464
CL
1278 end = start + length;
1279 remainder = length % s->size;
81819f0f 1280 if (!remainder)
a204e6d6 1281 return;
81819f0f 1282
5d682681 1283 pad = end - remainder;
a79316c6 1284 metadata_access_enable();
aa1ef4d7 1285 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1286 metadata_access_disable();
24922684 1287 if (!fault)
a204e6d6 1288 return;
24922684
CL
1289 while (end > fault && end[-1] == POISON_INUSE)
1290 end--;
1291
bb192ed9 1292 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1293 fault, end - 1, fault - start);
5d682681 1294 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1295
5d682681 1296 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1297}
1298
bb192ed9 1299static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1300 void *object, u8 val)
81819f0f
CL
1301{
1302 u8 *p = object;
3b0efdfa 1303 u8 *endobject = object + s->object_size;
2d552463 1304 unsigned int orig_size, kasan_meta_size;
81819f0f
CL
1305
1306 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1307 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1308 object - s->red_left_pad, val, s->red_left_pad))
1309 return 0;
1310
bb192ed9 1311 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1312 endobject, val, s->inuse - s->object_size))
81819f0f 1313 return 0;
946fa0db
FT
1314
1315 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1316 orig_size = get_orig_size(s, object);
1317
1318 if (s->object_size > orig_size &&
1319 !check_bytes_and_report(s, slab, object,
1320 "kmalloc Redzone", p + orig_size,
1321 val, s->object_size - orig_size)) {
1322 return 0;
1323 }
1324 }
81819f0f 1325 } else {
3b0efdfa 1326 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1327 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1328 endobject, POISON_INUSE,
1329 s->inuse - s->object_size);
3adbefee 1330 }
81819f0f
CL
1331 }
1332
1333 if (s->flags & SLAB_POISON) {
2d552463
AK
1334 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1335 /*
1336 * KASAN can save its free meta data inside of the
1337 * object at offset 0. Thus, skip checking the part of
1338 * the redzone that overlaps with the meta data.
1339 */
1340 kasan_meta_size = kasan_metadata_size(s, true);
1341 if (kasan_meta_size < s->object_size - 1 &&
1342 !check_bytes_and_report(s, slab, p, "Poison",
1343 p + kasan_meta_size, POISON_FREE,
1344 s->object_size - kasan_meta_size - 1))
1345 return 0;
1346 if (kasan_meta_size < s->object_size &&
1347 !check_bytes_and_report(s, slab, p, "End Poison",
1348 p + s->object_size - 1, POISON_END, 1))
1349 return 0;
1350 }
81819f0f
CL
1351 /*
1352 * check_pad_bytes cleans up on its own.
1353 */
bb192ed9 1354 check_pad_bytes(s, slab, p);
81819f0f
CL
1355 }
1356
cbfc35a4 1357 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1358 /*
1359 * Object and freepointer overlap. Cannot check
1360 * freepointer while object is allocated.
1361 */
1362 return 1;
1363
1364 /* Check free pointer validity */
bb192ed9
VB
1365 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1366 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1367 /*
9f6c708e 1368 * No choice but to zap it and thus lose the remainder
81819f0f 1369 * of the free objects in this slab. May cause
672bba3a 1370 * another error because the object count is now wrong.
81819f0f 1371 */
a973e9dd 1372 set_freepointer(s, p, NULL);
81819f0f
CL
1373 return 0;
1374 }
1375 return 1;
1376}
1377
bb192ed9 1378static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1379{
39b26464
CL
1380 int maxobj;
1381
bb192ed9
VB
1382 if (!folio_test_slab(slab_folio(slab))) {
1383 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1384 return 0;
1385 }
39b26464 1386
bb192ed9
VB
1387 maxobj = order_objects(slab_order(slab), s->size);
1388 if (slab->objects > maxobj) {
1389 slab_err(s, slab, "objects %u > max %u",
1390 slab->objects, maxobj);
39b26464
CL
1391 return 0;
1392 }
bb192ed9
VB
1393 if (slab->inuse > slab->objects) {
1394 slab_err(s, slab, "inuse %u > max %u",
1395 slab->inuse, slab->objects);
81819f0f
CL
1396 return 0;
1397 }
1398 /* Slab_pad_check fixes things up after itself */
bb192ed9 1399 slab_pad_check(s, slab);
81819f0f
CL
1400 return 1;
1401}
1402
1403/*
c2092c12 1404 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1405 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1406 */
bb192ed9 1407static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1408{
1409 int nr = 0;
881db7fb 1410 void *fp;
81819f0f 1411 void *object = NULL;
f6edde9c 1412 int max_objects;
81819f0f 1413
bb192ed9
VB
1414 fp = slab->freelist;
1415 while (fp && nr <= slab->objects) {
81819f0f
CL
1416 if (fp == search)
1417 return 1;
bb192ed9 1418 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1419 if (object) {
bb192ed9 1420 object_err(s, slab, object,
81819f0f 1421 "Freechain corrupt");
a973e9dd 1422 set_freepointer(s, object, NULL);
81819f0f 1423 } else {
bb192ed9
VB
1424 slab_err(s, slab, "Freepointer corrupt");
1425 slab->freelist = NULL;
1426 slab->inuse = slab->objects;
24922684 1427 slab_fix(s, "Freelist cleared");
81819f0f
CL
1428 return 0;
1429 }
1430 break;
1431 }
1432 object = fp;
1433 fp = get_freepointer(s, object);
1434 nr++;
1435 }
1436
bb192ed9 1437 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1438 if (max_objects > MAX_OBJS_PER_PAGE)
1439 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1440
bb192ed9
VB
1441 if (slab->objects != max_objects) {
1442 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1443 slab->objects, max_objects);
1444 slab->objects = max_objects;
582d1212 1445 slab_fix(s, "Number of objects adjusted");
224a88be 1446 }
bb192ed9
VB
1447 if (slab->inuse != slab->objects - nr) {
1448 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1449 slab->inuse, slab->objects - nr);
1450 slab->inuse = slab->objects - nr;
582d1212 1451 slab_fix(s, "Object count adjusted");
81819f0f
CL
1452 }
1453 return search == NULL;
1454}
1455
bb192ed9 1456static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1457 int alloc)
3ec09742
CL
1458{
1459 if (s->flags & SLAB_TRACE) {
f9f58285 1460 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1461 s->name,
1462 alloc ? "alloc" : "free",
bb192ed9
VB
1463 object, slab->inuse,
1464 slab->freelist);
3ec09742
CL
1465
1466 if (!alloc)
aa2efd5e 1467 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1468 s->object_size);
3ec09742
CL
1469
1470 dump_stack();
1471 }
1472}
1473
643b1138 1474/*
672bba3a 1475 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1476 */
5cc6eee8 1477static void add_full(struct kmem_cache *s,
bb192ed9 1478 struct kmem_cache_node *n, struct slab *slab)
643b1138 1479{
5cc6eee8
CL
1480 if (!(s->flags & SLAB_STORE_USER))
1481 return;
1482
255d0884 1483 lockdep_assert_held(&n->list_lock);
bb192ed9 1484 list_add(&slab->slab_list, &n->full);
643b1138
CL
1485}
1486
bb192ed9 1487static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1488{
643b1138
CL
1489 if (!(s->flags & SLAB_STORE_USER))
1490 return;
1491
255d0884 1492 lockdep_assert_held(&n->list_lock);
bb192ed9 1493 list_del(&slab->slab_list);
643b1138
CL
1494}
1495
26c02cf0
AB
1496static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1497{
1498 return atomic_long_read(&n->nr_slabs);
1499}
1500
205ab99d 1501static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1502{
1503 struct kmem_cache_node *n = get_node(s, node);
1504
3dd549a5
CZ
1505 atomic_long_inc(&n->nr_slabs);
1506 atomic_long_add(objects, &n->total_objects);
0f389ec6 1507}
205ab99d 1508static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1509{
1510 struct kmem_cache_node *n = get_node(s, node);
1511
1512 atomic_long_dec(&n->nr_slabs);
205ab99d 1513 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1514}
1515
1516/* Object debug checks for alloc/free paths */
c0f81a94 1517static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1518{
8fc8d666 1519 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1520 return;
1521
f7cb1933 1522 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1523 init_tracking(s, object);
1524}
1525
a50b854e 1526static
bb192ed9 1527void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1528{
8fc8d666 1529 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1530 return;
1531
1532 metadata_access_enable();
bb192ed9 1533 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1534 metadata_access_disable();
1535}
1536
becfda68 1537static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1538 struct slab *slab, void *object)
81819f0f 1539{
bb192ed9 1540 if (!check_slab(s, slab))
becfda68 1541 return 0;
81819f0f 1542
bb192ed9
VB
1543 if (!check_valid_pointer(s, slab, object)) {
1544 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1545 return 0;
81819f0f
CL
1546 }
1547
bb192ed9 1548 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1549 return 0;
1550
1551 return 1;
1552}
1553
fa9b88e4 1554static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1555 struct slab *slab, void *object, int orig_size)
becfda68
LA
1556{
1557 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1558 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1559 goto bad;
1560 }
81819f0f 1561
c7323a5a 1562 /* Success. Perform special debug activities for allocs */
bb192ed9 1563 trace(s, slab, object, 1);
6edf2576 1564 set_orig_size(s, object, orig_size);
f7cb1933 1565 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1566 return true;
3ec09742 1567
81819f0f 1568bad:
bb192ed9 1569 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1570 /*
1571 * If this is a slab page then lets do the best we can
1572 * to avoid issues in the future. Marking all objects
672bba3a 1573 * as used avoids touching the remaining objects.
81819f0f 1574 */
24922684 1575 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1576 slab->inuse = slab->objects;
1577 slab->freelist = NULL;
81819f0f 1578 }
fa9b88e4 1579 return false;
81819f0f
CL
1580}
1581
becfda68 1582static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1583 struct slab *slab, void *object, unsigned long addr)
81819f0f 1584{
bb192ed9
VB
1585 if (!check_valid_pointer(s, slab, object)) {
1586 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1587 return 0;
81819f0f
CL
1588 }
1589
bb192ed9
VB
1590 if (on_freelist(s, slab, object)) {
1591 object_err(s, slab, object, "Object already free");
becfda68 1592 return 0;
81819f0f
CL
1593 }
1594
bb192ed9 1595 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1596 return 0;
81819f0f 1597
bb192ed9
VB
1598 if (unlikely(s != slab->slab_cache)) {
1599 if (!folio_test_slab(slab_folio(slab))) {
1600 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1601 object);
bb192ed9 1602 } else if (!slab->slab_cache) {
f9f58285
FF
1603 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1604 object);
70d71228 1605 dump_stack();
06428780 1606 } else
bb192ed9 1607 object_err(s, slab, object,
24922684 1608 "page slab pointer corrupt.");
becfda68
LA
1609 return 0;
1610 }
1611 return 1;
1612}
1613
e17f1dfb 1614/*
671776b3 1615 * Parse a block of slab_debug options. Blocks are delimited by ';'
e17f1dfb
VB
1616 *
1617 * @str: start of block
1618 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1619 * @slabs: return start of list of slabs, or NULL when there's no list
1620 * @init: assume this is initial parsing and not per-kmem-create parsing
1621 *
1622 * returns the start of next block if there's any, or NULL
1623 */
1624static char *
1625parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1626{
e17f1dfb 1627 bool higher_order_disable = false;
f0630fff 1628
e17f1dfb
VB
1629 /* Skip any completely empty blocks */
1630 while (*str && *str == ';')
1631 str++;
1632
1633 if (*str == ',') {
f0630fff
CL
1634 /*
1635 * No options but restriction on slabs. This means full
1636 * debugging for slabs matching a pattern.
1637 */
e17f1dfb 1638 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1639 goto check_slabs;
e17f1dfb
VB
1640 }
1641 *flags = 0;
f0630fff 1642
e17f1dfb
VB
1643 /* Determine which debug features should be switched on */
1644 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1645 switch (tolower(*str)) {
e17f1dfb
VB
1646 case '-':
1647 *flags = 0;
1648 break;
f0630fff 1649 case 'f':
e17f1dfb 1650 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1651 break;
1652 case 'z':
e17f1dfb 1653 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1654 break;
1655 case 'p':
e17f1dfb 1656 *flags |= SLAB_POISON;
f0630fff
CL
1657 break;
1658 case 'u':
e17f1dfb 1659 *flags |= SLAB_STORE_USER;
f0630fff
CL
1660 break;
1661 case 't':
e17f1dfb 1662 *flags |= SLAB_TRACE;
f0630fff 1663 break;
4c13dd3b 1664 case 'a':
e17f1dfb 1665 *flags |= SLAB_FAILSLAB;
4c13dd3b 1666 break;
08303a73
CA
1667 case 'o':
1668 /*
1669 * Avoid enabling debugging on caches if its minimum
1670 * order would increase as a result.
1671 */
e17f1dfb 1672 higher_order_disable = true;
08303a73 1673 break;
f0630fff 1674 default:
e17f1dfb 1675 if (init)
671776b3 1676 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
f0630fff 1677 }
41ecc55b 1678 }
f0630fff 1679check_slabs:
41ecc55b 1680 if (*str == ',')
e17f1dfb
VB
1681 *slabs = ++str;
1682 else
1683 *slabs = NULL;
1684
1685 /* Skip over the slab list */
1686 while (*str && *str != ';')
1687 str++;
1688
1689 /* Skip any completely empty blocks */
1690 while (*str && *str == ';')
1691 str++;
1692
1693 if (init && higher_order_disable)
1694 disable_higher_order_debug = 1;
1695
1696 if (*str)
1697 return str;
1698 else
1699 return NULL;
1700}
1701
1702static int __init setup_slub_debug(char *str)
1703{
1704 slab_flags_t flags;
a7f1d485 1705 slab_flags_t global_flags;
e17f1dfb
VB
1706 char *saved_str;
1707 char *slab_list;
1708 bool global_slub_debug_changed = false;
1709 bool slab_list_specified = false;
1710
a7f1d485 1711 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1712 if (*str++ != '=' || !*str)
1713 /*
1714 * No options specified. Switch on full debugging.
1715 */
1716 goto out;
1717
1718 saved_str = str;
1719 while (str) {
1720 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1721
1722 if (!slab_list) {
a7f1d485 1723 global_flags = flags;
e17f1dfb
VB
1724 global_slub_debug_changed = true;
1725 } else {
1726 slab_list_specified = true;
5cf909c5 1727 if (flags & SLAB_STORE_USER)
1c0310ad 1728 stack_depot_request_early_init();
e17f1dfb
VB
1729 }
1730 }
1731
1732 /*
1733 * For backwards compatibility, a single list of flags with list of
a7f1d485 1734 * slabs means debugging is only changed for those slabs, so the global
671776b3 1735 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
a7f1d485 1736 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1737 * long as there is no option specifying flags without a slab list.
1738 */
1739 if (slab_list_specified) {
1740 if (!global_slub_debug_changed)
a7f1d485 1741 global_flags = slub_debug;
e17f1dfb
VB
1742 slub_debug_string = saved_str;
1743 }
f0630fff 1744out:
a7f1d485 1745 slub_debug = global_flags;
5cf909c5 1746 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1747 stack_depot_request_early_init();
ca0cab65
VB
1748 if (slub_debug != 0 || slub_debug_string)
1749 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1750 else
1751 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1752 if ((static_branch_unlikely(&init_on_alloc) ||
1753 static_branch_unlikely(&init_on_free)) &&
1754 (slub_debug & SLAB_POISON))
1755 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1756 return 1;
1757}
1758
671776b3
XS
1759__setup("slab_debug", setup_slub_debug);
1760__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
41ecc55b 1761
c5fd3ca0
AT
1762/*
1763 * kmem_cache_flags - apply debugging options to the cache
c5fd3ca0
AT
1764 * @flags: flags to set
1765 * @name: name of the cache
c5fd3ca0
AT
1766 *
1767 * Debug option(s) are applied to @flags. In addition to the debug
1768 * option(s), if a slab name (or multiple) is specified i.e.
671776b3 1769 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
c5fd3ca0
AT
1770 * then only the select slabs will receive the debug option(s).
1771 */
303cd693 1772slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
41ecc55b 1773{
c5fd3ca0
AT
1774 char *iter;
1775 size_t len;
e17f1dfb
VB
1776 char *next_block;
1777 slab_flags_t block_flags;
ca220593
JB
1778 slab_flags_t slub_debug_local = slub_debug;
1779
a285909f
HY
1780 if (flags & SLAB_NO_USER_FLAGS)
1781 return flags;
1782
ca220593
JB
1783 /*
1784 * If the slab cache is for debugging (e.g. kmemleak) then
1785 * don't store user (stack trace) information by default,
1786 * but let the user enable it via the command line below.
1787 */
1788 if (flags & SLAB_NOLEAKTRACE)
1789 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1790
c5fd3ca0 1791 len = strlen(name);
e17f1dfb
VB
1792 next_block = slub_debug_string;
1793 /* Go through all blocks of debug options, see if any matches our slab's name */
1794 while (next_block) {
1795 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1796 if (!iter)
1797 continue;
1798 /* Found a block that has a slab list, search it */
1799 while (*iter) {
1800 char *end, *glob;
1801 size_t cmplen;
1802
1803 end = strchrnul(iter, ',');
1804 if (next_block && next_block < end)
1805 end = next_block - 1;
1806
1807 glob = strnchr(iter, end - iter, '*');
1808 if (glob)
1809 cmplen = glob - iter;
1810 else
1811 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1812
e17f1dfb
VB
1813 if (!strncmp(name, iter, cmplen)) {
1814 flags |= block_flags;
1815 return flags;
1816 }
c5fd3ca0 1817
e17f1dfb
VB
1818 if (!*end || *end == ';')
1819 break;
1820 iter = end + 1;
c5fd3ca0 1821 }
c5fd3ca0 1822 }
ba0268a8 1823
ca220593 1824 return flags | slub_debug_local;
41ecc55b 1825}
b4a64718 1826#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1827static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1828static inline
bb192ed9 1829void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1830
fa9b88e4
VB
1831static inline bool alloc_debug_processing(struct kmem_cache *s,
1832 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1833
fa9b88e4
VB
1834static inline bool free_debug_processing(struct kmem_cache *s,
1835 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1836 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1837
a204e6d6 1838static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1839static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1840 void *object, u8 val) { return 1; }
fa9b88e4 1841static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1842static inline void set_track(struct kmem_cache *s, void *object,
1843 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1844static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1845 struct slab *slab) {}
c65c1877 1846static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1847 struct slab *slab) {}
303cd693 1848slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
ba0268a8
CL
1849{
1850 return flags;
1851}
41ecc55b 1852#define slub_debug 0
0f389ec6 1853
fdaa45e9
IM
1854#define disable_higher_order_debug 0
1855
26c02cf0
AB
1856static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1857 { return 0; }
205ab99d
CL
1858static inline void inc_slabs_node(struct kmem_cache *s, int node,
1859 int objects) {}
1860static inline void dec_slabs_node(struct kmem_cache *s, int node,
1861 int objects) {}
7d550c56 1862
0af8489b 1863#ifndef CONFIG_SLUB_TINY
bb192ed9 1864static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1865 void **freelist, void *nextfree)
52f23478
DZ
1866{
1867 return false;
1868}
0af8489b 1869#endif
02e72cc6
AR
1870#endif /* CONFIG_SLUB_DEBUG */
1871
21c690a3
SB
1872#ifdef CONFIG_SLAB_OBJ_EXT
1873
239d6c96
SB
1874#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1875
1876static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
0bedcc66 1877{
239d6c96
SB
1878 struct slabobj_ext *slab_exts;
1879 struct slab *obj_exts_slab;
1880
1881 obj_exts_slab = virt_to_slab(obj_exts);
1882 slab_exts = slab_obj_exts(obj_exts_slab);
1883 if (slab_exts) {
1884 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1885 obj_exts_slab, obj_exts);
1886 /* codetag should be NULL */
1887 WARN_ON(slab_exts[offs].ref.ct);
1888 set_codetag_empty(&slab_exts[offs].ref);
1889 }
0bedcc66
VB
1890}
1891
09c46563 1892static inline void mark_failed_objexts_alloc(struct slab *slab)
0bedcc66 1893{
09c46563 1894 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
0bedcc66
VB
1895}
1896
09c46563
SB
1897static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1898 struct slabobj_ext *vec, unsigned int objects)
0bedcc66
VB
1899{
1900 /*
09c46563
SB
1901 * If vector previously failed to allocate then we have live
1902 * objects with no tag reference. Mark all references in this
1903 * vector as empty to avoid warnings later on.
0bedcc66 1904 */
09c46563
SB
1905 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1906 unsigned int i;
1907
1908 for (i = 0; i < objects; i++)
1909 set_codetag_empty(&vec[i].ref);
1910 }
0bedcc66
VB
1911}
1912
239d6c96
SB
1913#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1914
1915static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
09c46563
SB
1916static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1917static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1918 struct slabobj_ext *vec, unsigned int objects) {}
239d6c96
SB
1919
1920#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1921
0bedcc66 1922/*
21c690a3
SB
1923 * The allocated objcg pointers array is not accounted directly.
1924 * Moreover, it should not come from DMA buffer and is not readily
1925 * reclaimable. So those GFP bits should be masked off.
0bedcc66 1926 */
21c690a3
SB
1927#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1928 __GFP_ACCOUNT | __GFP_NOFAIL)
1929
e6100a45
VB
1930int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1931 gfp_t gfp, bool new_slab)
21c690a3
SB
1932{
1933 unsigned int objects = objs_per_slab(s, slab);
09c46563
SB
1934 unsigned long new_exts;
1935 unsigned long old_exts;
1936 struct slabobj_ext *vec;
21c690a3
SB
1937
1938 gfp &= ~OBJCGS_CLEAR_MASK;
768c33be
SB
1939 /* Prevent recursive extension vector allocation */
1940 gfp |= __GFP_NO_OBJ_EXT;
21c690a3
SB
1941 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1942 slab_nid(slab));
09c46563
SB
1943 if (!vec) {
1944 /* Mark vectors which failed to allocate */
1945 if (new_slab)
1946 mark_failed_objexts_alloc(slab);
1947
21c690a3 1948 return -ENOMEM;
09c46563 1949 }
21c690a3 1950
09c46563 1951 new_exts = (unsigned long)vec;
21c690a3 1952#ifdef CONFIG_MEMCG
09c46563 1953 new_exts |= MEMCG_DATA_OBJEXTS;
21c690a3 1954#endif
3f0c44c8 1955 old_exts = READ_ONCE(slab->obj_exts);
09c46563 1956 handle_failed_objexts_alloc(old_exts, vec, objects);
21c690a3
SB
1957 if (new_slab) {
1958 /*
1959 * If the slab is brand new and nobody can yet access its
1960 * obj_exts, no synchronization is required and obj_exts can
1961 * be simply assigned.
1962 */
09c46563 1963 slab->obj_exts = new_exts;
3f0c44c8
TLSC
1964 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1965 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
21c690a3
SB
1966 /*
1967 * If the slab is already in use, somebody can allocate and
1968 * assign slabobj_exts in parallel. In this case the existing
1969 * objcg vector should be reused.
1970 */
239d6c96 1971 mark_objexts_empty(vec);
21c690a3
SB
1972 kfree(vec);
1973 return 0;
1974 }
1975
1976 kmemleak_not_leak(vec);
1977 return 0;
1978}
1979
1980static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 1981{
21c690a3
SB
1982 struct slabobj_ext *obj_exts;
1983
1984 obj_exts = slab_obj_exts(slab);
1985 if (!obj_exts)
1986 return;
1987
0bedcc66 1988 /*
239d6c96
SB
1989 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
1990 * corresponding extension will be NULL. alloc_tag_sub() will throw a
1991 * warning if slab has extensions but the extension of an object is
1992 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
1993 * the extension for obj_exts is expected to be NULL.
0bedcc66 1994 */
239d6c96 1995 mark_objexts_empty(obj_exts);
21c690a3
SB
1996 kfree(obj_exts);
1997 slab->obj_exts = 0;
1998}
4b873696
SB
1999
2000static inline bool need_slab_obj_ext(void)
2001{
2002 if (mem_alloc_profiling_enabled())
0bedcc66
VB
2003 return true;
2004
4b873696
SB
2005 /*
2006 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally
2007 * inside memcg_slab_post_alloc_hook. No other users for now.
2008 */
2009 return false;
2010}
0bedcc66 2011
4b873696
SB
2012static inline struct slabobj_ext *
2013prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2014{
2015 struct slab *slab;
0bedcc66 2016
4b873696
SB
2017 if (!p)
2018 return NULL;
0bedcc66 2019
3b89ec41 2020 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
4b873696 2021 return NULL;
0bedcc66 2022
4b873696
SB
2023 if (flags & __GFP_NO_OBJ_EXT)
2024 return NULL;
2025
2026 slab = virt_to_slab(p);
2027 if (!slab_obj_exts(slab) &&
2028 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2029 "%s, %s: Failed to create slab extension vector!\n",
2030 __func__, s->name))
2031 return NULL;
2032
2033 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
0bedcc66
VB
2034}
2035
4b873696
SB
2036static inline void
2037alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2038 int objects)
3450a0e5 2039{
4b873696
SB
2040#ifdef CONFIG_MEM_ALLOC_PROFILING
2041 struct slabobj_ext *obj_exts;
2042 int i;
3450a0e5 2043
4b873696
SB
2044 if (!mem_alloc_profiling_enabled())
2045 return;
3450a0e5 2046
4b873696
SB
2047 obj_exts = slab_obj_exts(slab);
2048 if (!obj_exts)
2049 return;
2050
2051 for (i = 0; i < objects; i++) {
2052 unsigned int off = obj_to_index(s, slab, p[i]);
2053
2054 alloc_tag_sub(&obj_exts[off].ref, s->size);
2055 }
2056#endif
3450a0e5
VB
2057}
2058
21c690a3 2059#else /* CONFIG_SLAB_OBJ_EXT */
4b873696 2060
21c690a3
SB
2061static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2062 gfp_t gfp, bool new_slab)
0bedcc66 2063{
21c690a3
SB
2064 return 0;
2065}
0bedcc66 2066
21c690a3 2067static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 2068{
0bedcc66 2069}
0bedcc66 2070
4b873696
SB
2071static inline bool need_slab_obj_ext(void)
2072{
2073 return false;
2074}
0bedcc66 2075
4b873696
SB
2076static inline struct slabobj_ext *
2077prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2078{
2079 return NULL;
2080}
0bedcc66 2081
4b873696
SB
2082static inline void
2083alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2084 int objects)
2085{
0bedcc66
VB
2086}
2087
21c690a3 2088#endif /* CONFIG_SLAB_OBJ_EXT */
0bedcc66 2089
21c690a3 2090#ifdef CONFIG_MEMCG_KMEM
0bedcc66 2091
9f9796b4
VB
2092static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2093
3450a0e5 2094static __fastpath_inline
9f9796b4 2095bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
2096 gfp_t flags, size_t size, void **p)
2097{
9f9796b4 2098 if (likely(!memcg_kmem_online()))
3450a0e5 2099 return true;
3450a0e5 2100
3450a0e5
VB
2101 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2102 return true;
0bedcc66 2103
9f9796b4
VB
2104 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2105 return true;
0bedcc66 2106
9f9796b4
VB
2107 if (likely(size == 1)) {
2108 memcg_alloc_abort_single(s, *p);
2109 *p = NULL;
2110 } else {
2111 kmem_cache_free_bulk(s, size, p);
0bedcc66 2112 }
3450a0e5 2113
9f9796b4 2114 return false;
0bedcc66 2115}
ecf9a253
VB
2116
2117static __fastpath_inline
2118void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2119 int objects)
2120{
21c690a3 2121 struct slabobj_ext *obj_exts;
ecf9a253
VB
2122
2123 if (!memcg_kmem_online())
2124 return;
2125
21c690a3
SB
2126 obj_exts = slab_obj_exts(slab);
2127 if (likely(!obj_exts))
ecf9a253
VB
2128 return;
2129
21c690a3 2130 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
520a688a 2131}
0bedcc66 2132#else /* CONFIG_MEMCG_KMEM */
9f9796b4
VB
2133static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2134 struct list_lru *lru,
0bedcc66
VB
2135 gfp_t flags, size_t size,
2136 void **p)
2137{
9f9796b4 2138 return true;
0bedcc66
VB
2139}
2140
2141static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2142 void **p, int objects)
2143{
2144}
2145#endif /* CONFIG_MEMCG_KMEM */
2146
02e72cc6
AR
2147/*
2148 * Hooks for other subsystems that check memory allocations. In a typical
2149 * production configuration these hooks all should produce no code at all.
284f17ac
VB
2150 *
2151 * Returns true if freeing of the object can proceed, false if its reuse
782f8906 2152 * was delayed by KASAN quarantine, or it was returned to KFENCE.
02e72cc6 2153 */
284f17ac
VB
2154static __always_inline
2155bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
d56791b3
RB
2156{
2157 kmemleak_free_recursive(x, s->flags);
68ef169a 2158 kmsan_slab_free(s, x);
7d550c56 2159
84048039 2160 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 2161
02e72cc6
AR
2162 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2163 debug_check_no_obj_freed(x, s->object_size);
0316bec2 2164
cfbe1636
ME
2165 /* Use KCSAN to help debug racy use-after-free. */
2166 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2167 __kcsan_check_access(x, s->object_size,
2168 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2169
782f8906
VB
2170 if (kfence_free(x))
2171 return false;
2172
d57a964e
AK
2173 /*
2174 * As memory initialization might be integrated into KASAN,
2175 * kasan_slab_free and initialization memset's must be
2176 * kept together to avoid discrepancies in behavior.
2177 *
2178 * The initialization memset's clear the object and the metadata,
2179 * but don't touch the SLAB redzone.
8f828aa4
NB
2180 *
2181 * The object's freepointer is also avoided if stored outside the
2182 * object.
d57a964e 2183 */
ecf9a253 2184 if (unlikely(init)) {
d57a964e 2185 int rsize;
8f828aa4 2186 unsigned int inuse;
d57a964e 2187
8f828aa4 2188 inuse = get_info_end(s);
d57a964e
AK
2189 if (!kasan_has_integrated_init())
2190 memset(kasan_reset_tag(x), 0, s->object_size);
2191 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
8f828aa4
NB
2192 memset((char *)kasan_reset_tag(x) + inuse, 0,
2193 s->size - inuse - rsize);
d57a964e
AK
2194 }
2195 /* KASAN might put x into memory quarantine, delaying its reuse. */
284f17ac 2196 return !kasan_slab_free(s, x, init);
02e72cc6 2197}
205ab99d 2198
9ea9cd8e
KO
2199static __fastpath_inline
2200bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2201 int *cnt)
81084651 2202{
6471384a
AP
2203
2204 void *object;
2205 void *next = *head;
284f17ac 2206 void *old_tail = *tail;
782f8906 2207 bool init;
6471384a 2208
b89fb5ef 2209 if (is_kfence_address(next)) {
d57a964e 2210 slab_free_hook(s, next, false);
782f8906 2211 return false;
b89fb5ef
AP
2212 }
2213
aea4df4c
LA
2214 /* Head and tail of the reconstructed freelist */
2215 *head = NULL;
2216 *tail = NULL;
1b7e816f 2217
782f8906
VB
2218 init = slab_want_init_on_free(s);
2219
aea4df4c
LA
2220 do {
2221 object = next;
2222 next = get_freepointer(s, object);
2223
c3895391 2224 /* If object's reuse doesn't have to be delayed */
782f8906 2225 if (likely(slab_free_hook(s, object, init))) {
c3895391
AK
2226 /* Move object to the new freelist */
2227 set_freepointer(s, object, *head);
2228 *head = object;
2229 if (!*tail)
2230 *tail = object;
899447f6
ML
2231 } else {
2232 /*
2233 * Adjust the reconstructed freelist depth
2234 * accordingly if object's reuse is delayed.
2235 */
2236 --(*cnt);
c3895391
AK
2237 }
2238 } while (object != old_tail);
2239
c3895391 2240 return *head != NULL;
81084651
JDB
2241}
2242
c0f81a94 2243static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 2244{
c0f81a94 2245 setup_object_debug(s, object);
4d176711 2246 object = kasan_init_slab_obj(s, object);
588f8ba9 2247 if (unlikely(s->ctor)) {
1ce9a052 2248 kasan_unpoison_new_object(s, object);
588f8ba9 2249 s->ctor(object);
1ce9a052 2250 kasan_poison_new_object(s, object);
588f8ba9 2251 }
4d176711 2252 return object;
588f8ba9
TG
2253}
2254
81819f0f
CL
2255/*
2256 * Slab allocation and freeing
2257 */
a485e1da
XS
2258static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2259 struct kmem_cache_order_objects oo)
65c3376a 2260{
45387b8c
VB
2261 struct folio *folio;
2262 struct slab *slab;
19af27af 2263 unsigned int order = oo_order(oo);
65c3376a 2264
8014c46a 2265 folio = (struct folio *)alloc_pages_node(node, flags, order);
45387b8c
VB
2266 if (!folio)
2267 return NULL;
2268
2269 slab = folio_slab(folio);
2270 __folio_set_slab(folio);
8b881763
VB
2271 /* Make the flag visible before any changes to folio->mapping */
2272 smp_wmb();
02d65d6f 2273 if (folio_is_pfmemalloc(folio))
45387b8c
VB
2274 slab_set_pfmemalloc(slab);
2275
2276 return slab;
65c3376a
CL
2277}
2278
210e7a43
TG
2279#ifdef CONFIG_SLAB_FREELIST_RANDOM
2280/* Pre-initialize the random sequence cache */
2281static int init_cache_random_seq(struct kmem_cache *s)
2282{
19af27af 2283 unsigned int count = oo_objects(s->oo);
210e7a43 2284 int err;
210e7a43 2285
a810007a
SR
2286 /* Bailout if already initialised */
2287 if (s->random_seq)
2288 return 0;
2289
210e7a43
TG
2290 err = cache_random_seq_create(s, count, GFP_KERNEL);
2291 if (err) {
2292 pr_err("SLUB: Unable to initialize free list for %s\n",
2293 s->name);
2294 return err;
2295 }
2296
2297 /* Transform to an offset on the set of pages */
2298 if (s->random_seq) {
19af27af
AD
2299 unsigned int i;
2300
210e7a43
TG
2301 for (i = 0; i < count; i++)
2302 s->random_seq[i] *= s->size;
2303 }
2304 return 0;
2305}
2306
2307/* Initialize each random sequence freelist per cache */
2308static void __init init_freelist_randomization(void)
2309{
2310 struct kmem_cache *s;
2311
2312 mutex_lock(&slab_mutex);
2313
2314 list_for_each_entry(s, &slab_caches, list)
2315 init_cache_random_seq(s);
2316
2317 mutex_unlock(&slab_mutex);
2318}
2319
2320/* Get the next entry on the pre-computed freelist randomized */
c63349fc 2321static void *next_freelist_entry(struct kmem_cache *s,
210e7a43
TG
2322 unsigned long *pos, void *start,
2323 unsigned long page_limit,
2324 unsigned long freelist_count)
2325{
2326 unsigned int idx;
2327
2328 /*
2329 * If the target page allocation failed, the number of objects on the
2330 * page might be smaller than the usual size defined by the cache.
2331 */
2332 do {
2333 idx = s->random_seq[*pos];
2334 *pos += 1;
2335 if (*pos >= freelist_count)
2336 *pos = 0;
2337 } while (unlikely(idx >= page_limit));
2338
2339 return (char *)start + idx;
2340}
2341
2342/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 2343static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2344{
2345 void *start;
2346 void *cur;
2347 void *next;
2348 unsigned long idx, pos, page_limit, freelist_count;
2349
bb192ed9 2350 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
2351 return false;
2352
2353 freelist_count = oo_objects(s->oo);
8032bf12 2354 pos = get_random_u32_below(freelist_count);
210e7a43 2355
bb192ed9
VB
2356 page_limit = slab->objects * s->size;
2357 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
2358
2359 /* First entry is used as the base of the freelist */
c63349fc 2360 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
c0f81a94 2361 cur = setup_object(s, cur);
bb192ed9 2362 slab->freelist = cur;
210e7a43 2363
bb192ed9 2364 for (idx = 1; idx < slab->objects; idx++) {
c63349fc 2365 next = next_freelist_entry(s, &pos, start, page_limit,
210e7a43 2366 freelist_count);
c0f81a94 2367 next = setup_object(s, next);
210e7a43
TG
2368 set_freepointer(s, cur, next);
2369 cur = next;
2370 }
210e7a43
TG
2371 set_freepointer(s, cur, NULL);
2372
2373 return true;
2374}
2375#else
2376static inline int init_cache_random_seq(struct kmem_cache *s)
2377{
2378 return 0;
2379}
2380static inline void init_freelist_randomization(void) { }
bb192ed9 2381static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2382{
2383 return false;
2384}
2385#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2386
0bedcc66
VB
2387static __always_inline void account_slab(struct slab *slab, int order,
2388 struct kmem_cache *s, gfp_t gfp)
2389{
2390 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
21c690a3 2391 alloc_slab_obj_exts(slab, s, gfp, true);
0bedcc66
VB
2392
2393 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2394 PAGE_SIZE << order);
2395}
2396
2397static __always_inline void unaccount_slab(struct slab *slab, int order,
2398 struct kmem_cache *s)
2399{
4b873696 2400 if (memcg_kmem_online() || need_slab_obj_ext())
21c690a3 2401 free_slab_obj_exts(slab);
0bedcc66
VB
2402
2403 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2404 -(PAGE_SIZE << order));
2405}
2406
bb192ed9 2407static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 2408{
bb192ed9 2409 struct slab *slab;
834f3d11 2410 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2411 gfp_t alloc_gfp;
4d176711 2412 void *start, *p, *next;
a50b854e 2413 int idx;
210e7a43 2414 bool shuffle;
81819f0f 2415
7e0528da
CL
2416 flags &= gfp_allowed_mask;
2417
b7a49f0d 2418 flags |= s->allocflags;
e12ba74d 2419
ba52270d
PE
2420 /*
2421 * Let the initial higher-order allocation fail under memory pressure
2422 * so we fall-back to the minimum order allocation.
2423 */
2424 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2425 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2426 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2427
a485e1da 2428 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2429 if (unlikely(!slab)) {
65c3376a 2430 oo = s->min;
80c3a998 2431 alloc_gfp = flags;
65c3376a
CL
2432 /*
2433 * Allocation may have failed due to fragmentation.
2434 * Try a lower order alloc if possible
2435 */
a485e1da 2436 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2437 if (unlikely(!slab))
c7323a5a 2438 return NULL;
588f8ba9 2439 stat(s, ORDER_FALLBACK);
65c3376a 2440 }
5a896d9e 2441
bb192ed9 2442 slab->objects = oo_objects(oo);
c7323a5a
VB
2443 slab->inuse = 0;
2444 slab->frozen = 0;
81819f0f 2445
bb192ed9 2446 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2447
bb192ed9 2448 slab->slab_cache = s;
81819f0f 2449
6e48a966 2450 kasan_poison_slab(slab);
81819f0f 2451
bb192ed9 2452 start = slab_address(slab);
81819f0f 2453
bb192ed9 2454 setup_slab_debug(s, slab, start);
0316bec2 2455
bb192ed9 2456 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2457
2458 if (!shuffle) {
4d176711 2459 start = fixup_red_left(s, start);
c0f81a94 2460 start = setup_object(s, start);
bb192ed9
VB
2461 slab->freelist = start;
2462 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2463 next = p + s->size;
c0f81a94 2464 next = setup_object(s, next);
18e50661
AK
2465 set_freepointer(s, p, next);
2466 p = next;
2467 }
2468 set_freepointer(s, p, NULL);
81819f0f 2469 }
81819f0f 2470
bb192ed9 2471 return slab;
81819f0f
CL
2472}
2473
bb192ed9 2474static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2475{
44405099
LL
2476 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2477 flags = kmalloc_fix_flags(flags);
588f8ba9 2478
53a0de06
VB
2479 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2480
588f8ba9
TG
2481 return allocate_slab(s,
2482 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2483}
2484
4020b4a2 2485static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2486{
4020b4a2
VB
2487 struct folio *folio = slab_folio(slab);
2488 int order = folio_order(folio);
834f3d11 2489 int pages = 1 << order;
81819f0f 2490
4020b4a2 2491 __slab_clear_pfmemalloc(slab);
4020b4a2 2492 folio->mapping = NULL;
8b881763
VB
2493 /* Make the mapping reset visible before clearing the flag */
2494 smp_wmb();
2495 __folio_clear_slab(folio);
c7b23b68 2496 mm_account_reclaimed_pages(pages);
4020b4a2 2497 unaccount_slab(slab, order, s);
c034c6a4 2498 __free_pages(&folio->page, order);
81819f0f
CL
2499}
2500
2501static void rcu_free_slab(struct rcu_head *h)
2502{
bb192ed9 2503 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2504
bb192ed9 2505 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2506}
2507
bb192ed9 2508static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2509{
bc29d5bd
VB
2510 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2511 void *p;
2512
2513 slab_pad_check(s, slab);
2514 for_each_object(p, s, slab_address(slab), slab->objects)
2515 check_object(s, slab, p, SLUB_RED_INACTIVE);
2516 }
2517
2518 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2519 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2520 else
bb192ed9 2521 __free_slab(s, slab);
81819f0f
CL
2522}
2523
bb192ed9 2524static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2525{
bb192ed9
VB
2526 dec_slabs_node(s, slab_nid(slab), slab->objects);
2527 free_slab(s, slab);
81819f0f
CL
2528}
2529
8a399e2f
CZ
2530/*
2531 * SLUB reuses PG_workingset bit to keep track of whether it's on
2532 * the per-node partial list.
2533 */
2534static inline bool slab_test_node_partial(const struct slab *slab)
2535{
2536 return folio_test_workingset((struct folio *)slab_folio(slab));
2537}
2538
2539static inline void slab_set_node_partial(struct slab *slab)
2540{
2541 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2542}
2543
2544static inline void slab_clear_node_partial(struct slab *slab)
2545{
2546 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2547}
2548
81819f0f 2549/*
5cc6eee8 2550 * Management of partially allocated slabs.
81819f0f 2551 */
1e4dd946 2552static inline void
bb192ed9 2553__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2554{
e95eed57 2555 n->nr_partial++;
136333d1 2556 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2557 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2558 else
bb192ed9 2559 list_add(&slab->slab_list, &n->partial);
8a399e2f 2560 slab_set_node_partial(slab);
81819f0f
CL
2561}
2562
1e4dd946 2563static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2564 struct slab *slab, int tail)
62e346a8 2565{
c65c1877 2566 lockdep_assert_held(&n->list_lock);
bb192ed9 2567 __add_partial(n, slab, tail);
1e4dd946 2568}
c65c1877 2569
1e4dd946 2570static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2571 struct slab *slab)
1e4dd946
SR
2572{
2573 lockdep_assert_held(&n->list_lock);
bb192ed9 2574 list_del(&slab->slab_list);
8a399e2f 2575 slab_clear_node_partial(slab);
52b4b950 2576 n->nr_partial--;
1e4dd946
SR
2577}
2578
c7323a5a 2579/*
8cd3fa42 2580 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
c7323a5a
VB
2581 * slab from the n->partial list. Remove only a single object from the slab, do
2582 * the alloc_debug_processing() checks and leave the slab on the list, or move
2583 * it to full list if it was the last free object.
2584 */
2585static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2586 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2587{
2588 void *object;
2589
2590 lockdep_assert_held(&n->list_lock);
2591
2592 object = slab->freelist;
2593 slab->freelist = get_freepointer(s, object);
2594 slab->inuse++;
2595
6edf2576 2596 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2597 remove_partial(n, slab);
2598 return NULL;
2599 }
2600
2601 if (slab->inuse == slab->objects) {
2602 remove_partial(n, slab);
2603 add_full(s, n, slab);
2604 }
2605
2606 return object;
2607}
2608
2609/*
2610 * Called only for kmem_cache_debug() caches to allocate from a freshly
2611 * allocated slab. Allocate a single object instead of whole freelist
2612 * and put the slab to the partial (or full) list.
2613 */
2614static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2615 struct slab *slab, int orig_size)
c7323a5a
VB
2616{
2617 int nid = slab_nid(slab);
2618 struct kmem_cache_node *n = get_node(s, nid);
2619 unsigned long flags;
2620 void *object;
2621
2622
2623 object = slab->freelist;
2624 slab->freelist = get_freepointer(s, object);
2625 slab->inuse = 1;
2626
6edf2576 2627 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2628 /*
2629 * It's not really expected that this would fail on a
2630 * freshly allocated slab, but a concurrent memory
2631 * corruption in theory could cause that.
2632 */
2633 return NULL;
2634
2635 spin_lock_irqsave(&n->list_lock, flags);
2636
2637 if (slab->inuse == slab->objects)
2638 add_full(s, n, slab);
2639 else
2640 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2641
2642 inc_slabs_node(s, nid, slab->objects);
2643 spin_unlock_irqrestore(&n->list_lock, flags);
2644
2645 return object;
2646}
2647
e0a043aa 2648#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2649static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2650#else
bb192ed9 2651static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2652 int drain) { }
2653#endif
01b34d16 2654static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2655
81819f0f 2656/*
672bba3a 2657 * Try to allocate a partial slab from a specific node.
81819f0f 2658 */
43c4c349
CZ
2659static struct slab *get_partial_node(struct kmem_cache *s,
2660 struct kmem_cache_node *n,
2661 struct partial_context *pc)
81819f0f 2662{
43c4c349 2663 struct slab *slab, *slab2, *partial = NULL;
4b1f449d 2664 unsigned long flags;
bb192ed9 2665 unsigned int partial_slabs = 0;
81819f0f
CL
2666
2667 /*
2668 * Racy check. If we mistakenly see no partial slabs then we
2669 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2670 * partial slab and there is none available then get_partial()
672bba3a 2671 * will return NULL.
81819f0f
CL
2672 */
2673 if (!n || !n->nr_partial)
2674 return NULL;
2675
4b1f449d 2676 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2677 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
6edf2576 2678 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2679 continue;
2680
0af8489b 2681 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
8cd3fa42 2682 void *object = alloc_single_from_partial(s, n, slab,
6edf2576 2683 pc->orig_size);
43c4c349
CZ
2684 if (object) {
2685 partial = slab;
2686 pc->object = object;
c7323a5a 2687 break;
43c4c349 2688 }
c7323a5a
VB
2689 continue;
2690 }
2691
8cd3fa42 2692 remove_partial(n, slab);
49e22585 2693
43c4c349
CZ
2694 if (!partial) {
2695 partial = slab;
49e22585 2696 stat(s, ALLOC_FROM_PARTIAL);
ff99b18f
XS
2697
2698 if ((slub_get_cpu_partial(s) == 0)) {
2699 break;
2700 }
49e22585 2701 } else {
bb192ed9 2702 put_cpu_partial(s, slab, 0);
8028dcea 2703 stat(s, CPU_PARTIAL_NODE);
49e22585 2704
ff99b18f
XS
2705 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2706 break;
2707 }
2708 }
497b66f2 2709 }
4b1f449d 2710 spin_unlock_irqrestore(&n->list_lock, flags);
43c4c349 2711 return partial;
81819f0f
CL
2712}
2713
2714/*
c2092c12 2715 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2716 */
43c4c349
CZ
2717static struct slab *get_any_partial(struct kmem_cache *s,
2718 struct partial_context *pc)
81819f0f
CL
2719{
2720#ifdef CONFIG_NUMA
2721 struct zonelist *zonelist;
dd1a239f 2722 struct zoneref *z;
54a6eb5c 2723 struct zone *zone;
6edf2576 2724 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
43c4c349 2725 struct slab *slab;
cc9a6c87 2726 unsigned int cpuset_mems_cookie;
81819f0f
CL
2727
2728 /*
672bba3a
CL
2729 * The defrag ratio allows a configuration of the tradeoffs between
2730 * inter node defragmentation and node local allocations. A lower
2731 * defrag_ratio increases the tendency to do local allocations
2732 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2733 *
672bba3a
CL
2734 * If the defrag_ratio is set to 0 then kmalloc() always
2735 * returns node local objects. If the ratio is higher then kmalloc()
2736 * may return off node objects because partial slabs are obtained
2737 * from other nodes and filled up.
81819f0f 2738 *
43efd3ea
LP
2739 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2740 * (which makes defrag_ratio = 1000) then every (well almost)
2741 * allocation will first attempt to defrag slab caches on other nodes.
2742 * This means scanning over all nodes to look for partial slabs which
2743 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2744 * with available objects.
81819f0f 2745 */
9824601e
CL
2746 if (!s->remote_node_defrag_ratio ||
2747 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2748 return NULL;
2749
cc9a6c87 2750 do {
d26914d1 2751 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2752 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2753 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2754 struct kmem_cache_node *n;
2755
2756 n = get_node(s, zone_to_nid(zone));
2757
6edf2576 2758 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2759 n->nr_partial > s->min_partial) {
43c4c349
CZ
2760 slab = get_partial_node(s, n, pc);
2761 if (slab) {
cc9a6c87 2762 /*
d26914d1
MG
2763 * Don't check read_mems_allowed_retry()
2764 * here - if mems_allowed was updated in
2765 * parallel, that was a harmless race
2766 * between allocation and the cpuset
2767 * update
cc9a6c87 2768 */
43c4c349 2769 return slab;
cc9a6c87 2770 }
c0ff7453 2771 }
81819f0f 2772 }
d26914d1 2773 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2774#endif /* CONFIG_NUMA */
81819f0f
CL
2775 return NULL;
2776}
2777
2778/*
c2092c12 2779 * Get a partial slab, lock it and return it.
81819f0f 2780 */
43c4c349
CZ
2781static struct slab *get_partial(struct kmem_cache *s, int node,
2782 struct partial_context *pc)
81819f0f 2783{
43c4c349 2784 struct slab *slab;
a561ce00
JK
2785 int searchnode = node;
2786
2787 if (node == NUMA_NO_NODE)
2788 searchnode = numa_mem_id();
81819f0f 2789
43c4c349 2790 slab = get_partial_node(s, get_node(s, searchnode), pc);
9198ffbd 2791 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
43c4c349 2792 return slab;
81819f0f 2793
6edf2576 2794 return get_any_partial(s, pc);
81819f0f
CL
2795}
2796
0af8489b
VB
2797#ifndef CONFIG_SLUB_TINY
2798
923717cb 2799#ifdef CONFIG_PREEMPTION
8a5ec0ba 2800/*
0d645ed1 2801 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2802 * during cmpxchg. The transactions start with the cpu number and are then
2803 * incremented by CONFIG_NR_CPUS.
2804 */
2805#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2806#else
2807/*
2808 * No preemption supported therefore also no need to check for
2809 * different cpus.
2810 */
2811#define TID_STEP 1
0af8489b 2812#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2813
2814static inline unsigned long next_tid(unsigned long tid)
2815{
2816 return tid + TID_STEP;
2817}
2818
9d5f0be0 2819#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2820static inline unsigned int tid_to_cpu(unsigned long tid)
2821{
2822 return tid % TID_STEP;
2823}
2824
2825static inline unsigned long tid_to_event(unsigned long tid)
2826{
2827 return tid / TID_STEP;
2828}
9d5f0be0 2829#endif
8a5ec0ba
CL
2830
2831static inline unsigned int init_tid(int cpu)
2832{
2833 return cpu;
2834}
2835
2836static inline void note_cmpxchg_failure(const char *n,
2837 const struct kmem_cache *s, unsigned long tid)
2838{
2839#ifdef SLUB_DEBUG_CMPXCHG
2840 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2841
f9f58285 2842 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2843
923717cb 2844#ifdef CONFIG_PREEMPTION
8a5ec0ba 2845 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2846 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2847 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2848 else
2849#endif
2850 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2851 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2852 tid_to_event(tid), tid_to_event(actual_tid));
2853 else
f9f58285 2854 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2855 actual_tid, tid, next_tid(tid));
2856#endif
4fdccdfb 2857 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2858}
2859
788e1aad 2860static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2861{
8a5ec0ba 2862 int cpu;
bd0e7491 2863 struct kmem_cache_cpu *c;
8a5ec0ba 2864
bd0e7491
VB
2865 for_each_possible_cpu(cpu) {
2866 c = per_cpu_ptr(s->cpu_slab, cpu);
2867 local_lock_init(&c->lock);
2868 c->tid = init_tid(cpu);
2869 }
8a5ec0ba 2870}
2cfb7455 2871
81819f0f 2872/*
c2092c12 2873 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2874 * unfreezes the slabs and puts it on the proper list.
2875 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2876 * by the caller.
81819f0f 2877 */
bb192ed9 2878static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2879 void *freelist)
81819f0f 2880{
bb192ed9 2881 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0 2882 int free_delta = 0;
d930ff03 2883 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2884 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2885 unsigned long flags = 0;
bb192ed9
VB
2886 struct slab new;
2887 struct slab old;
2cfb7455 2888
844776cb 2889 if (READ_ONCE(slab->freelist)) {
84e554e6 2890 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2891 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2892 }
2893
894b8788 2894 /*
d930ff03
VB
2895 * Stage one: Count the objects on cpu's freelist as free_delta and
2896 * remember the last object in freelist_tail for later splicing.
2cfb7455 2897 */
d930ff03
VB
2898 freelist_tail = NULL;
2899 freelist_iter = freelist;
2900 while (freelist_iter) {
2901 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2902
52f23478
DZ
2903 /*
2904 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2905 * 'freelist_iter' is already corrupted. So isolate all objects
2906 * starting at 'freelist_iter' by skipping them.
52f23478 2907 */
bb192ed9 2908 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2909 break;
2910
d930ff03
VB
2911 freelist_tail = freelist_iter;
2912 free_delta++;
2cfb7455 2913
d930ff03 2914 freelist_iter = nextfree;
2cfb7455
CL
2915 }
2916
894b8788 2917 /*
c2092c12
VB
2918 * Stage two: Unfreeze the slab while splicing the per-cpu
2919 * freelist to the head of slab's freelist.
894b8788 2920 */
00eb60c2
CZ
2921 do {
2922 old.freelist = READ_ONCE(slab->freelist);
2923 old.counters = READ_ONCE(slab->counters);
2924 VM_BUG_ON(!old.frozen);
2925
2926 /* Determine target state of the slab */
2927 new.counters = old.counters;
2928 new.frozen = 0;
2929 if (freelist_tail) {
2930 new.inuse -= free_delta;
2931 set_freepointer(s, freelist_tail, old.freelist);
2932 new.freelist = freelist;
2933 } else {
2934 new.freelist = old.freelist;
2935 }
2936 } while (!slab_update_freelist(s, slab,
2937 old.freelist, old.counters,
2938 new.freelist, new.counters,
2939 "unfreezing slab"));
2cfb7455 2940
00eb60c2
CZ
2941 /*
2942 * Stage three: Manipulate the slab list based on the updated state.
2943 */
6d3a16d0 2944 if (!new.inuse && n->nr_partial >= s->min_partial) {
00eb60c2
CZ
2945 stat(s, DEACTIVATE_EMPTY);
2946 discard_slab(s, slab);
2947 stat(s, FREE_SLAB);
6d3a16d0 2948 } else if (new.freelist) {
6d3a16d0 2949 spin_lock_irqsave(&n->list_lock, flags);
6d3a16d0
HY
2950 add_partial(n, slab, tail);
2951 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2952 stat(s, tail);
00eb60c2 2953 } else {
6d3a16d0 2954 stat(s, DEACTIVATE_FULL);
894b8788 2955 }
81819f0f
CL
2956}
2957
345c905d 2958#ifdef CONFIG_SLUB_CPU_PARTIAL
21316fdc 2959static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2960{
43d77867 2961 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2962 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2963 unsigned long flags = 0;
49e22585 2964
bb192ed9 2965 while (partial_slab) {
bb192ed9
VB
2966 slab = partial_slab;
2967 partial_slab = slab->next;
43d77867 2968
bb192ed9 2969 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2970 if (n != n2) {
2971 if (n)
7cf9f3ba 2972 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2973
2974 n = n2;
7cf9f3ba 2975 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2976 }
49e22585 2977
8cd3fa42 2978 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2979 slab->next = slab_to_discard;
2980 slab_to_discard = slab;
43d77867 2981 } else {
bb192ed9 2982 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2983 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2984 }
2985 }
2986
2987 if (n)
7cf9f3ba 2988 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2989
bb192ed9
VB
2990 while (slab_to_discard) {
2991 slab = slab_to_discard;
2992 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2993
2994 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2995 discard_slab(s, slab);
9ada1934
SL
2996 stat(s, FREE_SLAB);
2997 }
fc1455f4 2998}
f3ab8b6b 2999
fc1455f4 3000/*
21316fdc 3001 * Put all the cpu partial slabs to the node partial list.
fc1455f4 3002 */
21316fdc 3003static void put_partials(struct kmem_cache *s)
fc1455f4 3004{
bb192ed9 3005 struct slab *partial_slab;
fc1455f4
VB
3006 unsigned long flags;
3007
bd0e7491 3008 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3009 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 3010 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 3011 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 3012
bb192ed9 3013 if (partial_slab)
21316fdc 3014 __put_partials(s, partial_slab);
fc1455f4
VB
3015}
3016
21316fdc
CZ
3017static void put_partials_cpu(struct kmem_cache *s,
3018 struct kmem_cache_cpu *c)
fc1455f4 3019{
bb192ed9 3020 struct slab *partial_slab;
fc1455f4 3021
bb192ed9 3022 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
3023 c->partial = NULL;
3024
bb192ed9 3025 if (partial_slab)
21316fdc 3026 __put_partials(s, partial_slab);
49e22585
CL
3027}
3028
3029/*
31bda717 3030 * Put a slab into a partial slab slot if available.
49e22585
CL
3031 *
3032 * If we did not find a slot then simply move all the partials to the
3033 * per node partial list.
3034 */
bb192ed9 3035static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 3036{
bb192ed9 3037 struct slab *oldslab;
21316fdc 3038 struct slab *slab_to_put = NULL;
e0a043aa 3039 unsigned long flags;
bb192ed9 3040 int slabs = 0;
49e22585 3041
bd0e7491 3042 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 3043
bb192ed9 3044 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 3045
bb192ed9
VB
3046 if (oldslab) {
3047 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
3048 /*
3049 * Partial array is full. Move the existing set to the
3050 * per node partial list. Postpone the actual unfreezing
3051 * outside of the critical section.
3052 */
21316fdc 3053 slab_to_put = oldslab;
bb192ed9 3054 oldslab = NULL;
e0a043aa 3055 } else {
bb192ed9 3056 slabs = oldslab->slabs;
49e22585 3057 }
e0a043aa 3058 }
49e22585 3059
bb192ed9 3060 slabs++;
49e22585 3061
bb192ed9
VB
3062 slab->slabs = slabs;
3063 slab->next = oldslab;
49e22585 3064
bb192ed9 3065 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 3066
bd0e7491 3067 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 3068
21316fdc
CZ
3069 if (slab_to_put) {
3070 __put_partials(s, slab_to_put);
e0a043aa
VB
3071 stat(s, CPU_PARTIAL_DRAIN);
3072 }
49e22585
CL
3073}
3074
e0a043aa
VB
3075#else /* CONFIG_SLUB_CPU_PARTIAL */
3076
21316fdc
CZ
3077static inline void put_partials(struct kmem_cache *s) { }
3078static inline void put_partials_cpu(struct kmem_cache *s,
3079 struct kmem_cache_cpu *c) { }
e0a043aa
VB
3080
3081#endif /* CONFIG_SLUB_CPU_PARTIAL */
3082
dfb4f096 3083static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 3084{
5a836bf6 3085 unsigned long flags;
bb192ed9 3086 struct slab *slab;
5a836bf6
SAS
3087 void *freelist;
3088
bd0e7491 3089 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 3090
bb192ed9 3091 slab = c->slab;
5a836bf6 3092 freelist = c->freelist;
c17dda40 3093
bb192ed9 3094 c->slab = NULL;
a019d201 3095 c->freelist = NULL;
c17dda40 3096 c->tid = next_tid(c->tid);
a019d201 3097
bd0e7491 3098 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 3099
bb192ed9
VB
3100 if (slab) {
3101 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
3102 stat(s, CPUSLAB_FLUSH);
3103 }
81819f0f
CL
3104}
3105
0c710013 3106static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 3107{
9dfc6e68 3108 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 3109 void *freelist = c->freelist;
bb192ed9 3110 struct slab *slab = c->slab;
81819f0f 3111
bb192ed9 3112 c->slab = NULL;
08beb547
VB
3113 c->freelist = NULL;
3114 c->tid = next_tid(c->tid);
3115
bb192ed9
VB
3116 if (slab) {
3117 deactivate_slab(s, slab, freelist);
08beb547
VB
3118 stat(s, CPUSLAB_FLUSH);
3119 }
49e22585 3120
21316fdc 3121 put_partials_cpu(s, c);
81819f0f
CL
3122}
3123
5a836bf6
SAS
3124struct slub_flush_work {
3125 struct work_struct work;
3126 struct kmem_cache *s;
3127 bool skip;
3128};
3129
fc1455f4
VB
3130/*
3131 * Flush cpu slab.
3132 *
5a836bf6 3133 * Called from CPU work handler with migration disabled.
fc1455f4 3134 */
5a836bf6 3135static void flush_cpu_slab(struct work_struct *w)
81819f0f 3136{
5a836bf6
SAS
3137 struct kmem_cache *s;
3138 struct kmem_cache_cpu *c;
3139 struct slub_flush_work *sfw;
3140
3141 sfw = container_of(w, struct slub_flush_work, work);
3142
3143 s = sfw->s;
3144 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 3145
bb192ed9 3146 if (c->slab)
fc1455f4 3147 flush_slab(s, c);
81819f0f 3148
21316fdc 3149 put_partials(s);
81819f0f
CL
3150}
3151
5a836bf6 3152static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 3153{
a8364d55
GBY
3154 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3155
bb192ed9 3156 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
3157}
3158
5a836bf6
SAS
3159static DEFINE_MUTEX(flush_lock);
3160static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3161
3162static void flush_all_cpus_locked(struct kmem_cache *s)
3163{
3164 struct slub_flush_work *sfw;
3165 unsigned int cpu;
3166
3167 lockdep_assert_cpus_held();
3168 mutex_lock(&flush_lock);
3169
3170 for_each_online_cpu(cpu) {
3171 sfw = &per_cpu(slub_flush, cpu);
3172 if (!has_cpu_slab(cpu, s)) {
3173 sfw->skip = true;
3174 continue;
3175 }
3176 INIT_WORK(&sfw->work, flush_cpu_slab);
3177 sfw->skip = false;
3178 sfw->s = s;
e45cc288 3179 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
3180 }
3181
3182 for_each_online_cpu(cpu) {
3183 sfw = &per_cpu(slub_flush, cpu);
3184 if (sfw->skip)
3185 continue;
3186 flush_work(&sfw->work);
3187 }
3188
3189 mutex_unlock(&flush_lock);
3190}
3191
81819f0f
CL
3192static void flush_all(struct kmem_cache *s)
3193{
5a836bf6
SAS
3194 cpus_read_lock();
3195 flush_all_cpus_locked(s);
3196 cpus_read_unlock();
81819f0f
CL
3197}
3198
a96a87bf
SAS
3199/*
3200 * Use the cpu notifier to insure that the cpu slabs are flushed when
3201 * necessary.
3202 */
3203static int slub_cpu_dead(unsigned int cpu)
3204{
3205 struct kmem_cache *s;
a96a87bf
SAS
3206
3207 mutex_lock(&slab_mutex);
0e7ac738 3208 list_for_each_entry(s, &slab_caches, list)
a96a87bf 3209 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
3210 mutex_unlock(&slab_mutex);
3211 return 0;
3212}
3213
0af8489b
VB
3214#else /* CONFIG_SLUB_TINY */
3215static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3216static inline void flush_all(struct kmem_cache *s) { }
3217static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3218static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3219#endif /* CONFIG_SLUB_TINY */
3220
dfb4f096
CL
3221/*
3222 * Check if the objects in a per cpu structure fit numa
3223 * locality expectations.
3224 */
bb192ed9 3225static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
3226{
3227#ifdef CONFIG_NUMA
bb192ed9 3228 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
3229 return 0;
3230#endif
3231 return 1;
3232}
3233
9a02d699 3234#ifdef CONFIG_SLUB_DEBUG
bb192ed9 3235static int count_free(struct slab *slab)
781b2ba6 3236{
bb192ed9 3237 return slab->objects - slab->inuse;
781b2ba6
PE
3238}
3239
9a02d699
DR
3240static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3241{
3242 return atomic_long_read(&n->total_objects);
3243}
a579b056
VB
3244
3245/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
3246static inline bool free_debug_processing(struct kmem_cache *s,
3247 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3248 unsigned long addr, depot_stack_handle_t handle)
a579b056 3249{
fa9b88e4 3250 bool checks_ok = false;
a579b056
VB
3251 void *object = head;
3252 int cnt = 0;
a579b056
VB
3253
3254 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3255 if (!check_slab(s, slab))
3256 goto out;
3257 }
3258
fa9b88e4 3259 if (slab->inuse < *bulk_cnt) {
c7323a5a 3260 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 3261 slab->inuse, *bulk_cnt);
c7323a5a
VB
3262 goto out;
3263 }
3264
a579b056 3265next_object:
c7323a5a 3266
fa9b88e4 3267 if (++cnt > *bulk_cnt)
c7323a5a 3268 goto out_cnt;
a579b056
VB
3269
3270 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3271 if (!free_consistency_checks(s, slab, object, addr))
3272 goto out;
3273 }
3274
3275 if (s->flags & SLAB_STORE_USER)
3276 set_track_update(s, object, TRACK_FREE, addr, handle);
3277 trace(s, slab, object, 0);
3278 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3279 init_object(s, object, SLUB_RED_INACTIVE);
3280
3281 /* Reached end of constructed freelist yet? */
3282 if (object != tail) {
3283 object = get_freepointer(s, object);
3284 goto next_object;
3285 }
c7323a5a 3286 checks_ok = true;
a579b056 3287
c7323a5a 3288out_cnt:
fa9b88e4 3289 if (cnt != *bulk_cnt) {
c7323a5a 3290 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
3291 *bulk_cnt, cnt);
3292 *bulk_cnt = cnt;
c7323a5a
VB
3293 }
3294
fa9b88e4 3295out:
c7323a5a
VB
3296
3297 if (!checks_ok)
a579b056 3298 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 3299
fa9b88e4 3300 return checks_ok;
a579b056 3301}
9a02d699
DR
3302#endif /* CONFIG_SLUB_DEBUG */
3303
b1a413a3 3304#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 3305static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 3306 int (*get_count)(struct slab *))
781b2ba6
PE
3307{
3308 unsigned long flags;
3309 unsigned long x = 0;
bb192ed9 3310 struct slab *slab;
781b2ba6
PE
3311
3312 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
3313 list_for_each_entry(slab, &n->partial, slab_list)
3314 x += get_count(slab);
781b2ba6
PE
3315 spin_unlock_irqrestore(&n->list_lock, flags);
3316 return x;
3317}
b1a413a3 3318#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 3319
56d5a2b9 3320#ifdef CONFIG_SLUB_DEBUG
046f4c69
JW
3321#define MAX_PARTIAL_TO_SCAN 10000
3322
3323static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3324{
3325 unsigned long flags;
3326 unsigned long x = 0;
3327 struct slab *slab;
3328
3329 spin_lock_irqsave(&n->list_lock, flags);
3330 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3331 list_for_each_entry(slab, &n->partial, slab_list)
3332 x += slab->objects - slab->inuse;
3333 } else {
3334 /*
3335 * For a long list, approximate the total count of objects in
3336 * it to meet the limit on the number of slabs to scan.
3337 * Scan from both the list's head and tail for better accuracy.
3338 */
3339 unsigned long scanned = 0;
3340
3341 list_for_each_entry(slab, &n->partial, slab_list) {
3342 x += slab->objects - slab->inuse;
3343 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3344 break;
3345 }
3346 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3347 x += slab->objects - slab->inuse;
3348 if (++scanned == MAX_PARTIAL_TO_SCAN)
3349 break;
3350 }
3351 x = mult_frac(x, n->nr_partial, scanned);
3352 x = min(x, node_nr_objs(n));
3353 }
3354 spin_unlock_irqrestore(&n->list_lock, flags);
3355 return x;
3356}
3357
781b2ba6
PE
3358static noinline void
3359slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3360{
9a02d699
DR
3361 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3362 DEFAULT_RATELIMIT_BURST);
781b2ba6 3363 int node;
fa45dc25 3364 struct kmem_cache_node *n;
781b2ba6 3365
9a02d699
DR
3366 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3367 return;
3368
5b3810e5
VB
3369 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3370 nid, gfpflags, &gfpflags);
19af27af 3371 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
3372 s->name, s->object_size, s->size, oo_order(s->oo),
3373 oo_order(s->min));
781b2ba6 3374
3b0efdfa 3375 if (oo_order(s->min) > get_order(s->object_size))
671776b3 3376 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
f9f58285 3377 s->name);
fa5ec8a1 3378
fa45dc25 3379 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3380 unsigned long nr_slabs;
3381 unsigned long nr_objs;
3382 unsigned long nr_free;
3383
b3d8a8e8 3384 nr_free = count_partial_free_approx(n);
26c02cf0
AB
3385 nr_slabs = node_nr_slabs(n);
3386 nr_objs = node_nr_objs(n);
781b2ba6 3387
f9f58285 3388 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3389 node, nr_slabs, nr_objs, nr_free);
3390 }
3391}
56d5a2b9
VB
3392#else /* CONFIG_SLUB_DEBUG */
3393static inline void
3394slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3395#endif
781b2ba6 3396
01b34d16 3397static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3398{
01b34d16 3399 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3400 return gfp_pfmemalloc_allowed(gfpflags);
3401
3402 return true;
3403}
3404
0af8489b 3405#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3406static inline bool
3407__update_cpu_freelist_fast(struct kmem_cache *s,
3408 void *freelist_old, void *freelist_new,
3409 unsigned long tid)
3410{
3411 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3412 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3413
3414 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3415 &old.full, new.full);
3416}
3417
213eeb9f 3418/*
c2092c12
VB
3419 * Check the slab->freelist and either transfer the freelist to the
3420 * per cpu freelist or deactivate the slab.
213eeb9f 3421 *
c2092c12 3422 * The slab is still frozen if the return value is not NULL.
213eeb9f 3423 *
c2092c12 3424 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3425 */
bb192ed9 3426static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3427{
bb192ed9 3428 struct slab new;
213eeb9f
CL
3429 unsigned long counters;
3430 void *freelist;
3431
bd0e7491
VB
3432 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3433
213eeb9f 3434 do {
bb192ed9
VB
3435 freelist = slab->freelist;
3436 counters = slab->counters;
6faa6833 3437
213eeb9f 3438 new.counters = counters;
213eeb9f 3439
bb192ed9 3440 new.inuse = slab->objects;
213eeb9f
CL
3441 new.frozen = freelist != NULL;
3442
6801be4f 3443 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3444 freelist, counters,
3445 NULL, new.counters,
3446 "get_freelist"));
3447
3448 return freelist;
3449}
3450
213094b5
CZ
3451/*
3452 * Freeze the partial slab and return the pointer to the freelist.
3453 */
3454static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3455{
3456 struct slab new;
3457 unsigned long counters;
3458 void *freelist;
3459
3460 do {
3461 freelist = slab->freelist;
3462 counters = slab->counters;
3463
3464 new.counters = counters;
3465 VM_BUG_ON(new.frozen);
3466
3467 new.inuse = slab->objects;
3468 new.frozen = 1;
3469
3470 } while (!slab_update_freelist(s, slab,
3471 freelist, counters,
3472 NULL, new.counters,
3473 "freeze_slab"));
3474
3475 return freelist;
3476}
3477
81819f0f 3478/*
894b8788
CL
3479 * Slow path. The lockless freelist is empty or we need to perform
3480 * debugging duties.
3481 *
894b8788
CL
3482 * Processing is still very fast if new objects have been freed to the
3483 * regular freelist. In that case we simply take over the regular freelist
3484 * as the lockless freelist and zap the regular freelist.
81819f0f 3485 *
894b8788
CL
3486 * If that is not working then we fall back to the partial lists. We take the
3487 * first element of the freelist as the object to allocate now and move the
3488 * rest of the freelist to the lockless freelist.
81819f0f 3489 *
894b8788 3490 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3491 * we need to allocate a new slab. This is the slowest path since it involves
3492 * a call to the page allocator and the setup of a new slab.
a380a3c7 3493 *
e500059b 3494 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3495 * already disabled (which is the case for bulk allocation).
81819f0f 3496 */
a380a3c7 3497static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3498 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3499{
6faa6833 3500 void *freelist;
bb192ed9 3501 struct slab *slab;
e500059b 3502 unsigned long flags;
6edf2576 3503 struct partial_context pc;
9198ffbd 3504 bool try_thisnode = true;
81819f0f 3505
9f986d99
AW
3506 stat(s, ALLOC_SLOWPATH);
3507
c2092c12 3508reread_slab:
0b303fb4 3509
bb192ed9
VB
3510 slab = READ_ONCE(c->slab);
3511 if (!slab) {
0715e6c5
VB
3512 /*
3513 * if the node is not online or has no normal memory, just
3514 * ignore the node constraint
3515 */
3516 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3517 !node_isset(node, slab_nodes)))
0715e6c5 3518 node = NUMA_NO_NODE;
81819f0f 3519 goto new_slab;
0715e6c5 3520 }
6faa6833 3521
bb192ed9 3522 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3523 /*
3524 * same as above but node_match() being false already
3525 * implies node != NUMA_NO_NODE
3526 */
7e1fa93d 3527 if (!node_isset(node, slab_nodes)) {
0715e6c5 3528 node = NUMA_NO_NODE;
0715e6c5 3529 } else {
a561ce00 3530 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3531 goto deactivate_slab;
a561ce00 3532 }
fc59c053 3533 }
6446faa2 3534
072bb0aa
MG
3535 /*
3536 * By rights, we should be searching for a slab page that was
3537 * PFMEMALLOC but right now, we are losing the pfmemalloc
3538 * information when the page leaves the per-cpu allocator
3539 */
bb192ed9 3540 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3541 goto deactivate_slab;
072bb0aa 3542
c2092c12 3543 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3544 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3545 if (unlikely(slab != c->slab)) {
bd0e7491 3546 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3547 goto reread_slab;
0b303fb4 3548 }
6faa6833
CL
3549 freelist = c->freelist;
3550 if (freelist)
73736e03 3551 goto load_freelist;
03e404af 3552
bb192ed9 3553 freelist = get_freelist(s, slab);
6446faa2 3554
6faa6833 3555 if (!freelist) {
bb192ed9 3556 c->slab = NULL;
eeaa345e 3557 c->tid = next_tid(c->tid);
bd0e7491 3558 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3559 stat(s, DEACTIVATE_BYPASS);
fc59c053 3560 goto new_slab;
03e404af 3561 }
6446faa2 3562
84e554e6 3563 stat(s, ALLOC_REFILL);
6446faa2 3564
894b8788 3565load_freelist:
0b303fb4 3566
bd0e7491 3567 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3568
507effea
CL
3569 /*
3570 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3571 * slab is pointing to the slab from which the objects are obtained.
3572 * That slab must be frozen for per cpu allocations to work.
507effea 3573 */
bb192ed9 3574 VM_BUG_ON(!c->slab->frozen);
6faa6833 3575 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3576 c->tid = next_tid(c->tid);
bd0e7491 3577 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3578 return freelist;
81819f0f 3579
0b303fb4
VB
3580deactivate_slab:
3581
bd0e7491 3582 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3583 if (slab != c->slab) {
bd0e7491 3584 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3585 goto reread_slab;
0b303fb4 3586 }
a019d201 3587 freelist = c->freelist;
bb192ed9 3588 c->slab = NULL;
a019d201 3589 c->freelist = NULL;
eeaa345e 3590 c->tid = next_tid(c->tid);
bd0e7491 3591 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3592 deactivate_slab(s, slab, freelist);
0b303fb4 3593
81819f0f 3594new_slab:
2cfb7455 3595
8cd3fa42
CZ
3596#ifdef CONFIG_SLUB_CPU_PARTIAL
3597 while (slub_percpu_partial(c)) {
bd0e7491 3598 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3599 if (unlikely(c->slab)) {
bd0e7491 3600 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3601 goto reread_slab;
fa417ab7 3602 }
4b1f449d 3603 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3604 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3605 /* we were preempted and partial list got empty */
3606 goto new_objects;
4b1f449d 3607 }
fa417ab7 3608
8cd3fa42 3609 slab = slub_percpu_partial(c);
bb192ed9 3610 slub_set_percpu_partial(c, slab);
8cd3fa42 3611
90b1e566
CZ
3612 if (likely(node_match(slab, node) &&
3613 pfmemalloc_match(slab, gfpflags))) {
3614 c->slab = slab;
3615 freelist = get_freelist(s, slab);
3616 VM_BUG_ON(!freelist);
3617 stat(s, CPU_PARTIAL_ALLOC);
3618 goto load_freelist;
8cd3fa42
CZ
3619 }
3620
90b1e566
CZ
3621 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3622
3623 slab->next = NULL;
3624 __put_partials(s, slab);
81819f0f 3625 }
8cd3fa42 3626#endif
81819f0f 3627
fa417ab7
VB
3628new_objects:
3629
6edf2576 3630 pc.flags = gfpflags;
9198ffbd
CJ
3631 /*
3632 * When a preferred node is indicated but no __GFP_THISNODE
3633 *
3634 * 1) try to get a partial slab from target node only by having
3635 * __GFP_THISNODE in pc.flags for get_partial()
3636 * 2) if 1) failed, try to allocate a new slab from target node with
3637 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3638 * 3) if 2) failed, retry with original gfpflags which will allow
3639 * get_partial() try partial lists of other nodes before potentially
3640 * allocating new page from other nodes
3641 */
3642 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3643 && try_thisnode))
3644 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3645
6edf2576 3646 pc.orig_size = orig_size;
43c4c349
CZ
3647 slab = get_partial(s, node, &pc);
3648 if (slab) {
24c6a097 3649 if (kmem_cache_debug(s)) {
8cd3fa42 3650 freelist = pc.object;
24c6a097
CZ
3651 /*
3652 * For debug caches here we had to go through
3653 * alloc_single_from_partial() so just store the
3654 * tracking info and return the object.
3655 */
3656 if (s->flags & SLAB_STORE_USER)
3657 set_track(s, freelist, TRACK_ALLOC, addr);
3658
3659 return freelist;
3660 }
3661
8cd3fa42 3662 freelist = freeze_slab(s, slab);
24c6a097
CZ
3663 goto retry_load_slab;
3664 }
2a904905 3665
25c00c50 3666 slub_put_cpu_ptr(s->cpu_slab);
9198ffbd 3667 slab = new_slab(s, pc.flags, node);
25c00c50 3668 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3669
bb192ed9 3670 if (unlikely(!slab)) {
9198ffbd
CJ
3671 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3672 && try_thisnode) {
3673 try_thisnode = false;
3674 goto new_objects;
3675 }
9a02d699 3676 slab_out_of_memory(s, gfpflags, node);
f4697436 3677 return NULL;
81819f0f 3678 }
2cfb7455 3679
c7323a5a
VB
3680 stat(s, ALLOC_SLAB);
3681
3682 if (kmem_cache_debug(s)) {
6edf2576 3683 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3684
3685 if (unlikely(!freelist))
3686 goto new_objects;
3687
3688 if (s->flags & SLAB_STORE_USER)
3689 set_track(s, freelist, TRACK_ALLOC, addr);
3690
3691 return freelist;
3692 }
3693
53a0de06 3694 /*
c2092c12 3695 * No other reference to the slab yet so we can
53a0de06
VB
3696 * muck around with it freely without cmpxchg
3697 */
bb192ed9
VB
3698 freelist = slab->freelist;
3699 slab->freelist = NULL;
c7323a5a
VB
3700 slab->inuse = slab->objects;
3701 slab->frozen = 1;
53a0de06 3702
c7323a5a 3703 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3704
c7323a5a 3705 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3706 /*
3707 * For !pfmemalloc_match() case we don't load freelist so that
3708 * we don't make further mismatched allocations easier.
3709 */
c7323a5a
VB
3710 deactivate_slab(s, slab, get_freepointer(s, freelist));
3711 return freelist;
3712 }
1572df7c 3713
c2092c12 3714retry_load_slab:
cfdf836e 3715
bd0e7491 3716 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3717 if (unlikely(c->slab)) {
cfdf836e 3718 void *flush_freelist = c->freelist;
bb192ed9 3719 struct slab *flush_slab = c->slab;
cfdf836e 3720
bb192ed9 3721 c->slab = NULL;
cfdf836e
VB
3722 c->freelist = NULL;
3723 c->tid = next_tid(c->tid);
3724
bd0e7491 3725 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3726
bb192ed9 3727 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3728
3729 stat(s, CPUSLAB_FLUSH);
3730
c2092c12 3731 goto retry_load_slab;
cfdf836e 3732 }
bb192ed9 3733 c->slab = slab;
3f2b77e3 3734
1572df7c 3735 goto load_freelist;
894b8788
CL
3736}
3737
a380a3c7 3738/*
e500059b
VB
3739 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3740 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3741 * pointer.
a380a3c7
CL
3742 */
3743static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3744 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3745{
3746 void *p;
a380a3c7 3747
e500059b 3748#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3749 /*
3750 * We may have been preempted and rescheduled on a different
e500059b 3751 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3752 * pointer.
3753 */
25c00c50 3754 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3755#endif
3756
6edf2576 3757 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3758#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3759 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3760#endif
a380a3c7
CL
3761 return p;
3762}
3763
56d5a2b9 3764static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3765 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3766{
dfb4f096 3767 struct kmem_cache_cpu *c;
bb192ed9 3768 struct slab *slab;
8a5ec0ba 3769 unsigned long tid;
56d5a2b9 3770 void *object;
b89fb5ef 3771
8a5ec0ba 3772redo:
8a5ec0ba
CL
3773 /*
3774 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3775 * enabled. We may switch back and forth between cpus while
3776 * reading from one cpu area. That does not matter as long
3777 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3778 *
9b4bc85a
VB
3779 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3780 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3781 * the tid. If we are preempted and switched to another cpu between the
3782 * two reads, it's OK as the two are still associated with the same cpu
3783 * and cmpxchg later will validate the cpu.
8a5ec0ba 3784 */
9b4bc85a
VB
3785 c = raw_cpu_ptr(s->cpu_slab);
3786 tid = READ_ONCE(c->tid);
9aabf810
JK
3787
3788 /*
3789 * Irqless object alloc/free algorithm used here depends on sequence
3790 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3791 * on c to guarantee that object and slab associated with previous tid
9aabf810 3792 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3793 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3794 * request will be failed. In this case, we will retry. So, no problem.
3795 */
3796 barrier();
8a5ec0ba 3797
8a5ec0ba
CL
3798 /*
3799 * The transaction ids are globally unique per cpu and per operation on
3800 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3801 * occurs on the right processor and that there was no operation on the
3802 * linked list in between.
3803 */
8a5ec0ba 3804
9dfc6e68 3805 object = c->freelist;
bb192ed9 3806 slab = c->slab;
1f04b07d
TG
3807
3808 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3809 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3810 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3811 } else {
0ad9500e
ED
3812 void *next_object = get_freepointer_safe(s, object);
3813
8a5ec0ba 3814 /*
25985edc 3815 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3816 * operation and if we are on the right processor.
3817 *
d0e0ac97
CG
3818 * The cmpxchg does the following atomically (without lock
3819 * semantics!)
8a5ec0ba
CL
3820 * 1. Relocate first pointer to the current per cpu area.
3821 * 2. Verify that tid and freelist have not been changed
3822 * 3. If they were not changed replace tid and freelist
3823 *
d0e0ac97
CG
3824 * Since this is without lock semantics the protection is only
3825 * against code executing on this cpu *not* from access by
3826 * other cpus.
8a5ec0ba 3827 */
6801be4f 3828 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3829 note_cmpxchg_failure("slab_alloc", s, tid);
3830 goto redo;
3831 }
0ad9500e 3832 prefetch_freepointer(s, next_object);
84e554e6 3833 stat(s, ALLOC_FASTPATH);
894b8788 3834 }
0f181f9f 3835
56d5a2b9
VB
3836 return object;
3837}
0af8489b
VB
3838#else /* CONFIG_SLUB_TINY */
3839static void *__slab_alloc_node(struct kmem_cache *s,
3840 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3841{
3842 struct partial_context pc;
3843 struct slab *slab;
3844 void *object;
3845
3846 pc.flags = gfpflags;
0af8489b 3847 pc.orig_size = orig_size;
43c4c349 3848 slab = get_partial(s, node, &pc);
0af8489b 3849
43c4c349
CZ
3850 if (slab)
3851 return pc.object;
0af8489b
VB
3852
3853 slab = new_slab(s, gfpflags, node);
3854 if (unlikely(!slab)) {
3855 slab_out_of_memory(s, gfpflags, node);
3856 return NULL;
3857 }
3858
3859 object = alloc_single_from_new_slab(s, slab, orig_size);
3860
3861 return object;
3862}
3863#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3864
3865/*
3866 * If the object has been wiped upon free, make sure it's fully initialized by
3867 * zeroing out freelist pointer.
3868 */
3869static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3870 void *obj)
3871{
8f828aa4
NB
3872 if (unlikely(slab_want_init_on_free(s)) && obj &&
3873 !freeptr_outside_object(s))
56d5a2b9
VB
3874 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3875 0, sizeof(void *));
3876}
3877
6011be59
VB
3878noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3879{
3880 if (__should_failslab(s, gfpflags))
3881 return -ENOMEM;
3882 return 0;
3883}
3884ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3885
3450a0e5 3886static __fastpath_inline
9f9796b4 3887struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
6011be59
VB
3888{
3889 flags &= gfp_allowed_mask;
3890
3891 might_alloc(flags);
3892
3450a0e5 3893 if (unlikely(should_failslab(s, flags)))
6011be59
VB
3894 return NULL;
3895
6011be59
VB
3896 return s;
3897}
3898
3450a0e5 3899static __fastpath_inline
9f9796b4 3900bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
3901 gfp_t flags, size_t size, void **p, bool init,
3902 unsigned int orig_size)
6011be59
VB
3903{
3904 unsigned int zero_size = s->object_size;
3905 bool kasan_init = init;
3906 size_t i;
3450a0e5 3907 gfp_t init_flags = flags & gfp_allowed_mask;
6011be59
VB
3908
3909 /*
3910 * For kmalloc object, the allocated memory size(object_size) is likely
3911 * larger than the requested size(orig_size). If redzone check is
3912 * enabled for the extra space, don't zero it, as it will be redzoned
3913 * soon. The redzone operation for this extra space could be seen as a
3914 * replacement of current poisoning under certain debug option, and
3915 * won't break other sanity checks.
3916 */
3917 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3918 (s->flags & SLAB_KMALLOC))
3919 zero_size = orig_size;
3920
3921 /*
671776b3 3922 * When slab_debug is enabled, avoid memory initialization integrated
6011be59
VB
3923 * into KASAN and instead zero out the memory via the memset below with
3924 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3925 * cause false-positive reports. This does not lead to a performance
671776b3 3926 * penalty on production builds, as slab_debug is not intended to be
6011be59
VB
3927 * enabled there.
3928 */
3929 if (__slub_debug_enabled())
3930 kasan_init = false;
3931
3932 /*
3933 * As memory initialization might be integrated into KASAN,
3934 * kasan_slab_alloc and initialization memset must be
3935 * kept together to avoid discrepancies in behavior.
3936 *
3937 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3938 */
3939 for (i = 0; i < size; i++) {
3450a0e5 3940 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
6011be59
VB
3941 if (p[i] && init && (!kasan_init ||
3942 !kasan_has_integrated_init()))
3943 memset(p[i], 0, zero_size);
3944 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3450a0e5
VB
3945 s->flags, init_flags);
3946 kmsan_slab_alloc(s, p[i], init_flags);
b4601d09 3947#ifdef CONFIG_MEM_ALLOC_PROFILING
4b873696 3948 if (need_slab_obj_ext()) {
b4601d09
SB
3949 struct slabobj_ext *obj_exts;
3950
4b873696 3951 obj_exts = prepare_slab_obj_exts_hook(s, flags, p[i]);
4b873696
SB
3952 /*
3953 * Currently obj_exts is used only for allocation profiling.
3954 * If other users appear then mem_alloc_profiling_enabled()
3955 * check should be added before alloc_tag_add().
3956 */
3957 if (likely(obj_exts))
3958 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
4b873696 3959 }
b4601d09 3960#endif
6011be59
VB
3961 }
3962
9f9796b4 3963 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
6011be59
VB
3964}
3965
56d5a2b9
VB
3966/*
3967 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3968 * have the fastpath folded into their functions. So no function call
3969 * overhead for requests that can be satisfied on the fastpath.
3970 *
3971 * The fastpath works by first checking if the lockless freelist can be used.
3972 * If not then __slab_alloc is called for slow processing.
3973 *
3974 * Otherwise we can simply pick the next object from the lockless free list.
3975 */
be784ba8 3976static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3977 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3978{
3979 void *object;
56d5a2b9
VB
3980 bool init = false;
3981
9f9796b4 3982 s = slab_pre_alloc_hook(s, gfpflags);
3450a0e5 3983 if (unlikely(!s))
56d5a2b9
VB
3984 return NULL;
3985
3986 object = kfence_alloc(s, orig_size, gfpflags);
3987 if (unlikely(object))
3988 goto out;
3989
3990 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3991
ce5716c6 3992 maybe_wipe_obj_freeptr(s, object);
da844b78 3993 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3994
b89fb5ef 3995out:
9ce67395
FT
3996 /*
3997 * When init equals 'true', like for kzalloc() family, only
3998 * @orig_size bytes might be zeroed instead of s->object_size
9f9796b4
VB
3999 * In case this fails due to memcg_slab_post_alloc_hook(),
4000 * object is set to NULL
9ce67395 4001 */
9f9796b4 4002 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5a896d9e 4003
894b8788 4004 return object;
81819f0f
CL
4005}
4006
7bd230a2 4007void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
2b847c3c 4008{
49378a05
VB
4009 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4010 s->object_size);
5b882be4 4011
2c1d697f 4012 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4013
4014 return ret;
2b847c3c 4015}
7bd230a2 4016EXPORT_SYMBOL(kmem_cache_alloc_noprof);
2b847c3c 4017
7bd230a2 4018void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
88f2ef73 4019 gfp_t gfpflags)
81819f0f 4020{
49378a05
VB
4021 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4022 s->object_size);
5b882be4 4023
2c1d697f 4024 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4025
4026 return ret;
81819f0f 4027}
7bd230a2 4028EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
88f2ef73 4029
0445ee00
VB
4030/**
4031 * kmem_cache_alloc_node - Allocate an object on the specified node
4032 * @s: The cache to allocate from.
4033 * @gfpflags: See kmalloc().
4034 * @node: node number of the target node.
4035 *
4036 * Identical to kmem_cache_alloc but it will allocate memory on the given
4037 * node, which can improve the performance for cpu bound structures.
4038 *
4039 * Fallback to other node is possible if __GFP_THISNODE is not set.
4040 *
4041 * Return: pointer to the new object or %NULL in case of error
4042 */
7bd230a2 4043void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
81819f0f 4044{
88f2ef73 4045 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 4046
2c1d697f 4047 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
4048
4049 return ret;
81819f0f 4050}
7bd230a2 4051EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
81819f0f 4052
4862caa5
VB
4053/*
4054 * To avoid unnecessary overhead, we pass through large allocation requests
4055 * directly to the page allocator. We use __GFP_COMP, because we will need to
4056 * know the allocation order to free the pages properly in kfree.
4057 */
4058static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
88f2ef73 4059{
fb46e22a 4060 struct folio *folio;
4862caa5
VB
4061 void *ptr = NULL;
4062 unsigned int order = get_order(size);
4063
4064 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4065 flags = kmalloc_fix_flags(flags);
4066
4067 flags |= __GFP_COMP;
7bd230a2 4068 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
fb46e22a
LT
4069 if (folio) {
4070 ptr = folio_address(folio);
4071 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4862caa5
VB
4072 PAGE_SIZE << order);
4073 }
4074
4075 ptr = kasan_kmalloc_large(ptr, size, flags);
4076 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4077 kmemleak_alloc(ptr, size, 1, flags);
4078 kmsan_kmalloc_large(ptr, size, flags);
4079
4080 return ptr;
88f2ef73 4081}
81819f0f 4082
7bd230a2 4083void *kmalloc_large_noprof(size_t size, gfp_t flags)
88f2ef73 4084{
4862caa5
VB
4085 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
4086
4087 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4088 flags, NUMA_NO_NODE);
4089 return ret;
88f2ef73 4090}
7bd230a2 4091EXPORT_SYMBOL(kmalloc_large_noprof);
88f2ef73 4092
7bd230a2 4093void *kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4a92379b 4094{
4862caa5
VB
4095 void *ret = __kmalloc_large_node(size, flags, node);
4096
4097 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4098 flags, node);
4099 return ret;
4a92379b 4100}
7bd230a2 4101EXPORT_SYMBOL(kmalloc_large_node_noprof);
5b882be4 4102
4862caa5
VB
4103static __always_inline
4104void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
4105 unsigned long caller)
81819f0f 4106{
4862caa5
VB
4107 struct kmem_cache *s;
4108 void *ret;
5b882be4 4109
4862caa5
VB
4110 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4111 ret = __kmalloc_large_node(size, flags, node);
4112 trace_kmalloc(caller, ret, size,
4113 PAGE_SIZE << get_order(size), flags, node);
4114 return ret;
4115 }
5b882be4 4116
4862caa5
VB
4117 if (unlikely(!size))
4118 return ZERO_SIZE_PTR;
4119
4120 s = kmalloc_slab(size, flags, caller);
4121
4122 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4123 ret = kasan_kmalloc(s, ret, size, flags);
4124 trace_kmalloc(caller, ret, size, s->size, flags, node);
5b882be4 4125 return ret;
81819f0f 4126}
4862caa5 4127
7bd230a2 4128void *__kmalloc_node_noprof(size_t size, gfp_t flags, int node)
4862caa5
VB
4129{
4130 return __do_kmalloc_node(size, flags, node, _RET_IP_);
4131}
7bd230a2 4132EXPORT_SYMBOL(__kmalloc_node_noprof);
4862caa5 4133
7bd230a2 4134void *__kmalloc_noprof(size_t size, gfp_t flags)
4862caa5
VB
4135{
4136 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4137}
7bd230a2 4138EXPORT_SYMBOL(__kmalloc_noprof);
4862caa5 4139
7bd230a2
SB
4140void *kmalloc_node_track_caller_noprof(size_t size, gfp_t flags,
4141 int node, unsigned long caller)
4862caa5
VB
4142{
4143 return __do_kmalloc_node(size, flags, node, caller);
4144}
7bd230a2 4145EXPORT_SYMBOL(kmalloc_node_track_caller_noprof);
4862caa5 4146
7bd230a2 4147void *kmalloc_trace_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4862caa5
VB
4148{
4149 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4150 _RET_IP_, size);
4151
4152 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4153
4154 ret = kasan_kmalloc(s, ret, size, gfpflags);
4155 return ret;
4156}
7bd230a2 4157EXPORT_SYMBOL(kmalloc_trace_noprof);
4862caa5 4158
7bd230a2 4159void *kmalloc_node_trace_noprof(struct kmem_cache *s, gfp_t gfpflags,
4862caa5
VB
4160 int node, size_t size)
4161{
4162 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4163
4164 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4165
4166 ret = kasan_kmalloc(s, ret, size, gfpflags);
4167 return ret;
4168}
7bd230a2 4169EXPORT_SYMBOL(kmalloc_node_trace_noprof);
81819f0f 4170
fa9b88e4
VB
4171static noinline void free_to_partial_list(
4172 struct kmem_cache *s, struct slab *slab,
4173 void *head, void *tail, int bulk_cnt,
4174 unsigned long addr)
4175{
4176 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4177 struct slab *slab_free = NULL;
4178 int cnt = bulk_cnt;
4179 unsigned long flags;
4180 depot_stack_handle_t handle = 0;
4181
4182 if (s->flags & SLAB_STORE_USER)
4183 handle = set_track_prepare();
4184
4185 spin_lock_irqsave(&n->list_lock, flags);
4186
4187 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4188 void *prior = slab->freelist;
4189
4190 /* Perform the actual freeing while we still hold the locks */
4191 slab->inuse -= cnt;
4192 set_freepointer(s, tail, prior);
4193 slab->freelist = head;
4194
4195 /*
4196 * If the slab is empty, and node's partial list is full,
4197 * it should be discarded anyway no matter it's on full or
4198 * partial list.
4199 */
4200 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4201 slab_free = slab;
4202
4203 if (!prior) {
4204 /* was on full list */
4205 remove_full(s, n, slab);
4206 if (!slab_free) {
4207 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4208 stat(s, FREE_ADD_PARTIAL);
4209 }
4210 } else if (slab_free) {
4211 remove_partial(n, slab);
4212 stat(s, FREE_REMOVE_PARTIAL);
4213 }
4214 }
4215
4216 if (slab_free) {
4217 /*
4218 * Update the counters while still holding n->list_lock to
4219 * prevent spurious validation warnings
4220 */
4221 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4222 }
4223
4224 spin_unlock_irqrestore(&n->list_lock, flags);
4225
4226 if (slab_free) {
4227 stat(s, FREE_SLAB);
4228 free_slab(s, slab_free);
4229 }
4230}
4231
81819f0f 4232/*
94e4d712 4233 * Slow path handling. This may still be called frequently since objects
894b8788 4234 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 4235 *
894b8788 4236 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 4237 * lock and free the item. If there is no additional partial slab
894b8788 4238 * handling required then we can return immediately.
81819f0f 4239 */
bb192ed9 4240static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
4241 void *head, void *tail, int cnt,
4242 unsigned long addr)
4243
81819f0f
CL
4244{
4245 void *prior;
2cfb7455 4246 int was_frozen;
bb192ed9 4247 struct slab new;
2cfb7455
CL
4248 unsigned long counters;
4249 struct kmem_cache_node *n = NULL;
3f649ab7 4250 unsigned long flags;
422e7d54 4251 bool on_node_partial;
81819f0f 4252
8a5ec0ba 4253 stat(s, FREE_SLOWPATH);
81819f0f 4254
0af8489b 4255 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 4256 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 4257 return;
c7323a5a 4258 }
6446faa2 4259
2cfb7455 4260 do {
837d678d
JK
4261 if (unlikely(n)) {
4262 spin_unlock_irqrestore(&n->list_lock, flags);
4263 n = NULL;
4264 }
bb192ed9
VB
4265 prior = slab->freelist;
4266 counters = slab->counters;
81084651 4267 set_freepointer(s, tail, prior);
2cfb7455
CL
4268 new.counters = counters;
4269 was_frozen = new.frozen;
81084651 4270 new.inuse -= cnt;
837d678d 4271 if ((!new.inuse || !prior) && !was_frozen) {
8cd3fa42
CZ
4272 /* Needs to be taken off a list */
4273 if (!kmem_cache_has_cpu_partial(s) || prior) {
49e22585 4274
bb192ed9 4275 n = get_node(s, slab_nid(slab));
49e22585
CL
4276 /*
4277 * Speculatively acquire the list_lock.
4278 * If the cmpxchg does not succeed then we may
4279 * drop the list_lock without any processing.
4280 *
4281 * Otherwise the list_lock will synchronize with
4282 * other processors updating the list of slabs.
4283 */
4284 spin_lock_irqsave(&n->list_lock, flags);
4285
422e7d54 4286 on_node_partial = slab_test_node_partial(slab);
49e22585 4287 }
2cfb7455 4288 }
81819f0f 4289
6801be4f 4290 } while (!slab_update_freelist(s, slab,
2cfb7455 4291 prior, counters,
81084651 4292 head, new.counters,
2cfb7455 4293 "__slab_free"));
81819f0f 4294
2cfb7455 4295 if (likely(!n)) {
49e22585 4296
c270cf30
AW
4297 if (likely(was_frozen)) {
4298 /*
4299 * The list lock was not taken therefore no list
4300 * activity can be necessary.
4301 */
4302 stat(s, FREE_FROZEN);
8cd3fa42 4303 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
c270cf30 4304 /*
8cd3fa42 4305 * If we started with a full slab then put it onto the
c270cf30
AW
4306 * per cpu partial list.
4307 */
bb192ed9 4308 put_cpu_partial(s, slab, 1);
8028dcea
AS
4309 stat(s, CPU_PARTIAL_FREE);
4310 }
c270cf30 4311
b455def2
L
4312 return;
4313 }
81819f0f 4314
422e7d54
CZ
4315 /*
4316 * This slab was partially empty but not on the per-node partial list,
4317 * in which case we shouldn't manipulate its list, just return.
4318 */
4319 if (prior && !on_node_partial) {
4320 spin_unlock_irqrestore(&n->list_lock, flags);
4321 return;
4322 }
4323
8a5b20ae 4324 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
4325 goto slab_empty;
4326
81819f0f 4327 /*
837d678d
JK
4328 * Objects left in the slab. If it was not on the partial list before
4329 * then add it.
81819f0f 4330 */
345c905d 4331 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9 4332 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 4333 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 4334 }
80f08c19 4335 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
4336 return;
4337
4338slab_empty:
a973e9dd 4339 if (prior) {
81819f0f 4340 /*
6fbabb20 4341 * Slab on the partial list.
81819f0f 4342 */
bb192ed9 4343 remove_partial(n, slab);
84e554e6 4344 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 4345 }
2cfb7455 4346
80f08c19 4347 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 4348 stat(s, FREE_SLAB);
bb192ed9 4349 discard_slab(s, slab);
81819f0f
CL
4350}
4351
0af8489b 4352#ifndef CONFIG_SLUB_TINY
894b8788
CL
4353/*
4354 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4355 * can perform fastpath freeing without additional function calls.
4356 *
4357 * The fastpath is only possible if we are freeing to the current cpu slab
4358 * of this processor. This typically the case if we have just allocated
4359 * the item before.
4360 *
4361 * If fastpath is not possible then fall back to __slab_free where we deal
4362 * with all sorts of special processing.
81084651
JDB
4363 *
4364 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 4365 * same slab) possible by specifying head and tail ptr, plus objects
81084651 4366 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 4367 */
80a9201a 4368static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 4369 struct slab *slab, void *head, void *tail,
80a9201a 4370 int cnt, unsigned long addr)
894b8788 4371{
dfb4f096 4372 struct kmem_cache_cpu *c;
8a5ec0ba 4373 unsigned long tid;
1f04b07d 4374 void **freelist;
964d4bd3 4375
8a5ec0ba
CL
4376redo:
4377 /*
4378 * Determine the currently cpus per cpu slab.
4379 * The cpu may change afterward. However that does not matter since
4380 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 4381 * during the cmpxchg then the free will succeed.
8a5ec0ba 4382 */
9b4bc85a
VB
4383 c = raw_cpu_ptr(s->cpu_slab);
4384 tid = READ_ONCE(c->tid);
c016b0bd 4385
b062539c 4386 /* Same with comment on barrier() in __slab_alloc_node() */
9aabf810 4387 barrier();
c016b0bd 4388
1f04b07d 4389 if (unlikely(slab != c->slab)) {
284f17ac 4390 __slab_free(s, slab, head, tail, cnt, addr);
1f04b07d
TG
4391 return;
4392 }
4393
4394 if (USE_LOCKLESS_FAST_PATH()) {
4395 freelist = READ_ONCE(c->freelist);
5076190d 4396
284f17ac 4397 set_freepointer(s, tail, freelist);
8a5ec0ba 4398
6801be4f 4399 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
4400 note_cmpxchg_failure("slab_free", s, tid);
4401 goto redo;
4402 }
1f04b07d
TG
4403 } else {
4404 /* Update the free list under the local lock */
bd0e7491
VB
4405 local_lock(&s->cpu_slab->lock);
4406 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 4407 if (unlikely(slab != c->slab)) {
bd0e7491
VB
4408 local_unlock(&s->cpu_slab->lock);
4409 goto redo;
4410 }
4411 tid = c->tid;
4412 freelist = c->freelist;
4413
284f17ac 4414 set_freepointer(s, tail, freelist);
bd0e7491
VB
4415 c->freelist = head;
4416 c->tid = next_tid(tid);
4417
4418 local_unlock(&s->cpu_slab->lock);
1f04b07d 4419 }
6f3dd2c3 4420 stat_add(s, FREE_FASTPATH, cnt);
894b8788 4421}
0af8489b
VB
4422#else /* CONFIG_SLUB_TINY */
4423static void do_slab_free(struct kmem_cache *s,
4424 struct slab *slab, void *head, void *tail,
4425 int cnt, unsigned long addr)
4426{
284f17ac 4427 __slab_free(s, slab, head, tail, cnt, addr);
0af8489b
VB
4428}
4429#endif /* CONFIG_SLUB_TINY */
894b8788 4430
284f17ac
VB
4431static __fastpath_inline
4432void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4433 unsigned long addr)
4434{
284f17ac 4435 memcg_slab_free_hook(s, slab, &object, 1);
4b873696 4436 alloc_tagging_slab_free_hook(s, slab, &object, 1);
284f17ac 4437
782f8906 4438 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
284f17ac
VB
4439 do_slab_free(s, slab, object, object, 1, addr);
4440}
4441
9f9796b4
VB
4442#ifdef CONFIG_MEMCG_KMEM
4443/* Do not inline the rare memcg charging failed path into the allocation path */
4444static noinline
4445void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4446{
4447 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4448 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4449}
4450#endif
4451
284f17ac
VB
4452static __fastpath_inline
4453void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4454 void *tail, void **p, int cnt, unsigned long addr)
80a9201a 4455{
b77d5b1b 4456 memcg_slab_free_hook(s, slab, p, cnt);
4b873696 4457 alloc_tagging_slab_free_hook(s, slab, p, cnt);
80a9201a 4458 /*
c3895391
AK
4459 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4460 * to remove objects, whose reuse must be delayed.
80a9201a 4461 */
ecf9a253 4462 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
bb192ed9 4463 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
4464}
4465
2bd926b4 4466#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
4467void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4468{
284f17ac 4469 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
80a9201a
AP
4470}
4471#endif
4472
0bedcc66 4473static inline struct kmem_cache *virt_to_cache(const void *obj)
ed4cd17e 4474{
0bedcc66
VB
4475 struct slab *slab;
4476
4477 slab = virt_to_slab(obj);
4478 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4479 return NULL;
4480 return slab->slab_cache;
ed4cd17e
HY
4481}
4482
0bedcc66
VB
4483static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4484{
4485 struct kmem_cache *cachep;
4486
4487 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4488 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4489 return s;
4490
4491 cachep = virt_to_cache(x);
4492 if (WARN(cachep && cachep != s,
4493 "%s: Wrong slab cache. %s but object is from %s\n",
4494 __func__, s->name, cachep->name))
4495 print_tracking(cachep, x);
4496 return cachep;
4497}
4498
0445ee00
VB
4499/**
4500 * kmem_cache_free - Deallocate an object
4501 * @s: The cache the allocation was from.
4502 * @x: The previously allocated object.
4503 *
4504 * Free an object which was previously allocated from this
4505 * cache.
4506 */
81819f0f
CL
4507void kmem_cache_free(struct kmem_cache *s, void *x)
4508{
b9ce5ef4
GC
4509 s = cache_from_obj(s, x);
4510 if (!s)
79576102 4511 return;
2c1d697f 4512 trace_kmem_cache_free(_RET_IP_, x, s);
284f17ac 4513 slab_free(s, virt_to_slab(x), x, _RET_IP_);
81819f0f
CL
4514}
4515EXPORT_SYMBOL(kmem_cache_free);
4516
b774d3e3
VB
4517static void free_large_kmalloc(struct folio *folio, void *object)
4518{
4519 unsigned int order = folio_order(folio);
4520
4521 if (WARN_ON_ONCE(order == 0))
4522 pr_warn_once("object pointer: 0x%p\n", object);
4523
4524 kmemleak_free(object);
4525 kasan_kfree_large(object);
4526 kmsan_kfree_large(object);
4527
fb46e22a 4528 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
b774d3e3 4529 -(PAGE_SIZE << order));
fb46e22a 4530 folio_put(folio);
b774d3e3
VB
4531}
4532
4533/**
4534 * kfree - free previously allocated memory
4535 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4536 *
4537 * If @object is NULL, no operation is performed.
4538 */
4539void kfree(const void *object)
4540{
4541 struct folio *folio;
4542 struct slab *slab;
4543 struct kmem_cache *s;
4544 void *x = (void *)object;
4545
4546 trace_kfree(_RET_IP_, object);
4547
4548 if (unlikely(ZERO_OR_NULL_PTR(object)))
4549 return;
4550
4551 folio = virt_to_folio(object);
4552 if (unlikely(!folio_test_slab(folio))) {
4553 free_large_kmalloc(folio, (void *)object);
4554 return;
4555 }
4556
4557 slab = folio_slab(folio);
4558 s = slab->slab_cache;
284f17ac 4559 slab_free(s, slab, x, _RET_IP_);
b774d3e3
VB
4560}
4561EXPORT_SYMBOL(kfree);
4562
d0ecd894 4563struct detached_freelist {
cc465c3b 4564 struct slab *slab;
d0ecd894
JDB
4565 void *tail;
4566 void *freelist;
4567 int cnt;
376bf125 4568 struct kmem_cache *s;
d0ecd894 4569};
fbd02630 4570
d0ecd894
JDB
4571/*
4572 * This function progressively scans the array with free objects (with
4573 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
4574 * slab. It builds a detached freelist directly within the given
4575 * slab/objects. This can happen without any need for
d0ecd894
JDB
4576 * synchronization, because the objects are owned by running process.
4577 * The freelist is build up as a single linked list in the objects.
4578 * The idea is, that this detached freelist can then be bulk
4579 * transferred to the real freelist(s), but only requiring a single
4580 * synchronization primitive. Look ahead in the array is limited due
4581 * to performance reasons.
4582 */
376bf125
JDB
4583static inline
4584int build_detached_freelist(struct kmem_cache *s, size_t size,
4585 void **p, struct detached_freelist *df)
d0ecd894 4586{
d0ecd894
JDB
4587 int lookahead = 3;
4588 void *object;
cc465c3b 4589 struct folio *folio;
b77d5b1b 4590 size_t same;
fbd02630 4591
b77d5b1b 4592 object = p[--size];
cc465c3b 4593 folio = virt_to_folio(object);
ca257195
JDB
4594 if (!s) {
4595 /* Handle kalloc'ed objects */
cc465c3b 4596 if (unlikely(!folio_test_slab(folio))) {
d835eef4 4597 free_large_kmalloc(folio, object);
b77d5b1b 4598 df->slab = NULL;
ca257195
JDB
4599 return size;
4600 }
4601 /* Derive kmem_cache from object */
b77d5b1b
MS
4602 df->slab = folio_slab(folio);
4603 df->s = df->slab->slab_cache;
ca257195 4604 } else {
b77d5b1b 4605 df->slab = folio_slab(folio);
ca257195
JDB
4606 df->s = cache_from_obj(s, object); /* Support for memcg */
4607 }
376bf125 4608
d0ecd894 4609 /* Start new detached freelist */
d0ecd894
JDB
4610 df->tail = object;
4611 df->freelist = object;
d0ecd894
JDB
4612 df->cnt = 1;
4613
b77d5b1b
MS
4614 if (is_kfence_address(object))
4615 return size;
4616
4617 set_freepointer(df->s, object, NULL);
4618
4619 same = size;
d0ecd894
JDB
4620 while (size) {
4621 object = p[--size];
cc465c3b
MWO
4622 /* df->slab is always set at this point */
4623 if (df->slab == virt_to_slab(object)) {
d0ecd894 4624 /* Opportunity build freelist */
376bf125 4625 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
4626 df->freelist = object;
4627 df->cnt++;
b77d5b1b
MS
4628 same--;
4629 if (size != same)
4630 swap(p[size], p[same]);
d0ecd894 4631 continue;
fbd02630 4632 }
d0ecd894
JDB
4633
4634 /* Limit look ahead search */
4635 if (!--lookahead)
4636 break;
fbd02630 4637 }
d0ecd894 4638
b77d5b1b 4639 return same;
d0ecd894
JDB
4640}
4641
520a688a
VB
4642/*
4643 * Internal bulk free of objects that were not initialised by the post alloc
4644 * hooks and thus should not be processed by the free hooks
4645 */
4646static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4647{
4648 if (!size)
4649 return;
4650
4651 do {
4652 struct detached_freelist df;
4653
4654 size = build_detached_freelist(s, size, p, &df);
4655 if (!df.slab)
4656 continue;
4657
4658 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4659 _RET_IP_);
4660 } while (likely(size));
4661}
4662
d0ecd894 4663/* Note that interrupts must be enabled when calling this function. */
376bf125 4664void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 4665{
2055e67b 4666 if (!size)
d0ecd894
JDB
4667 return;
4668
4669 do {
4670 struct detached_freelist df;
4671
4672 size = build_detached_freelist(s, size, p, &df);
cc465c3b 4673 if (!df.slab)
d0ecd894
JDB
4674 continue;
4675
284f17ac
VB
4676 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4677 df.cnt, _RET_IP_);
d0ecd894 4678 } while (likely(size));
484748f0
CL
4679}
4680EXPORT_SYMBOL(kmem_cache_free_bulk);
4681
0af8489b 4682#ifndef CONFIG_SLUB_TINY
520a688a
VB
4683static inline
4684int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4685 void **p)
484748f0 4686{
994eb764 4687 struct kmem_cache_cpu *c;
f5451547 4688 unsigned long irqflags;
994eb764
JDB
4689 int i;
4690
994eb764
JDB
4691 /*
4692 * Drain objects in the per cpu slab, while disabling local
4693 * IRQs, which protects against PREEMPT and interrupts
4694 * handlers invoking normal fastpath.
4695 */
25c00c50 4696 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 4697 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
4698
4699 for (i = 0; i < size; i++) {
b89fb5ef 4700 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 4701
b89fb5ef
AP
4702 if (unlikely(object)) {
4703 p[i] = object;
4704 continue;
4705 }
4706
4707 object = c->freelist;
ebe909e0 4708 if (unlikely(!object)) {
fd4d9c7d
JH
4709 /*
4710 * We may have removed an object from c->freelist using
4711 * the fastpath in the previous iteration; in that case,
4712 * c->tid has not been bumped yet.
4713 * Since ___slab_alloc() may reenable interrupts while
4714 * allocating memory, we should bump c->tid now.
4715 */
4716 c->tid = next_tid(c->tid);
4717
f5451547 4718 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 4719
ebe909e0
JDB
4720 /*
4721 * Invoking slow path likely have side-effect
4722 * of re-populating per CPU c->freelist
4723 */
87098373 4724 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 4725 _RET_IP_, c, s->object_size);
87098373
CL
4726 if (unlikely(!p[i]))
4727 goto error;
4728
ebe909e0 4729 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
4730 maybe_wipe_obj_freeptr(s, p[i]);
4731
f5451547 4732 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 4733
ebe909e0
JDB
4734 continue; /* goto for-loop */
4735 }
994eb764
JDB
4736 c->freelist = get_freepointer(s, object);
4737 p[i] = object;
0f181f9f 4738 maybe_wipe_obj_freeptr(s, p[i]);
6f3dd2c3 4739 stat(s, ALLOC_FASTPATH);
994eb764
JDB
4740 }
4741 c->tid = next_tid(c->tid);
f5451547 4742 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 4743 slub_put_cpu_ptr(s->cpu_slab);
994eb764 4744
865762a8 4745 return i;
56d5a2b9 4746
87098373 4747error:
25c00c50 4748 slub_put_cpu_ptr(s->cpu_slab);
520a688a 4749 __kmem_cache_free_bulk(s, i, p);
865762a8 4750 return 0;
56d5a2b9
VB
4751
4752}
0af8489b
VB
4753#else /* CONFIG_SLUB_TINY */
4754static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
520a688a 4755 size_t size, void **p)
0af8489b
VB
4756{
4757 int i;
4758
4759 for (i = 0; i < size; i++) {
4760 void *object = kfence_alloc(s, s->object_size, flags);
4761
4762 if (unlikely(object)) {
4763 p[i] = object;
4764 continue;
4765 }
4766
4767 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4768 _RET_IP_, s->object_size);
4769 if (unlikely(!p[i]))
4770 goto error;
4771
4772 maybe_wipe_obj_freeptr(s, p[i]);
4773 }
4774
4775 return i;
4776
4777error:
520a688a 4778 __kmem_cache_free_bulk(s, i, p);
0af8489b
VB
4779 return 0;
4780}
4781#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4782
4783/* Note that interrupts must be enabled when calling this function. */
7bd230a2
SB
4784int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4785 void **p)
56d5a2b9
VB
4786{
4787 int i;
56d5a2b9
VB
4788
4789 if (!size)
4790 return 0;
4791
9f9796b4 4792 s = slab_pre_alloc_hook(s, flags);
56d5a2b9
VB
4793 if (unlikely(!s))
4794 return 0;
4795
520a688a 4796 i = __kmem_cache_alloc_bulk(s, flags, size, p);
9f9796b4
VB
4797 if (unlikely(i == 0))
4798 return 0;
56d5a2b9
VB
4799
4800 /*
4801 * memcg and kmem_cache debug support and memory initialization.
4802 * Done outside of the IRQ disabled fastpath loop.
4803 */
9f9796b4
VB
4804 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4805 slab_want_init_on_alloc(flags, s), s->object_size))) {
4806 return 0;
520a688a 4807 }
56d5a2b9 4808 return i;
484748f0 4809}
7bd230a2 4810EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
484748f0
CL
4811
4812
81819f0f 4813/*
672bba3a
CL
4814 * Object placement in a slab is made very easy because we always start at
4815 * offset 0. If we tune the size of the object to the alignment then we can
4816 * get the required alignment by putting one properly sized object after
4817 * another.
81819f0f
CL
4818 *
4819 * Notice that the allocation order determines the sizes of the per cpu
4820 * caches. Each processor has always one slab available for allocations.
4821 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4822 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4823 * locking overhead.
81819f0f
CL
4824 */
4825
4826/*
f0953a1b 4827 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4828 * and slab fragmentation. A higher order reduces the number of partial slabs
4829 * and increases the number of allocations possible without having to
4830 * take the list_lock.
4831 */
19af27af 4832static unsigned int slub_min_order;
90ce872c
VB
4833static unsigned int slub_max_order =
4834 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4835static unsigned int slub_min_objects;
81819f0f 4836
81819f0f
CL
4837/*
4838 * Calculate the order of allocation given an slab object size.
4839 *
672bba3a
CL
4840 * The order of allocation has significant impact on performance and other
4841 * system components. Generally order 0 allocations should be preferred since
4842 * order 0 does not cause fragmentation in the page allocator. Larger objects
4843 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4844 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4845 * would be wasted.
4846 *
4847 * In order to reach satisfactory performance we must ensure that a minimum
4848 * number of objects is in one slab. Otherwise we may generate too much
4849 * activity on the partial lists which requires taking the list_lock. This is
4850 * less a concern for large slabs though which are rarely used.
81819f0f 4851 *
671776b3
XS
4852 * slab_max_order specifies the order where we begin to stop considering the
4853 * number of objects in a slab as critical. If we reach slab_max_order then
672bba3a
CL
4854 * we try to keep the page order as low as possible. So we accept more waste
4855 * of space in favor of a small page order.
81819f0f 4856 *
672bba3a
CL
4857 * Higher order allocations also allow the placement of more objects in a
4858 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4859 * requested a higher minimum order then we start with that one instead of
672bba3a 4860 * the smallest order which will fit the object.
81819f0f 4861 */
d122019b 4862static inline unsigned int calc_slab_order(unsigned int size,
90f055df 4863 unsigned int min_order, unsigned int max_order,
9736d2a9 4864 unsigned int fract_leftover)
81819f0f 4865{
19af27af 4866 unsigned int order;
81819f0f 4867
90f055df 4868 for (order = min_order; order <= max_order; order++) {
81819f0f 4869
19af27af
AD
4870 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4871 unsigned int rem;
81819f0f 4872
9736d2a9 4873 rem = slab_size % size;
81819f0f 4874
5e6d444e 4875 if (rem <= slab_size / fract_leftover)
81819f0f 4876 break;
81819f0f 4877 }
672bba3a 4878
81819f0f
CL
4879 return order;
4880}
4881
9736d2a9 4882static inline int calculate_order(unsigned int size)
5e6d444e 4883{
19af27af
AD
4884 unsigned int order;
4885 unsigned int min_objects;
4886 unsigned int max_objects;
90f055df 4887 unsigned int min_order;
5e6d444e 4888
5e6d444e 4889 min_objects = slub_min_objects;
3286222f
VB
4890 if (!min_objects) {
4891 /*
4892 * Some architectures will only update present cpus when
4893 * onlining them, so don't trust the number if it's just 1. But
4894 * we also don't want to use nr_cpu_ids always, as on some other
4895 * architectures, there can be many possible cpus, but never
4896 * onlined. Here we compromise between trying to avoid too high
4897 * order on systems that appear larger than they are, and too
4898 * low order on systems that appear smaller than they are.
4899 */
90f055df 4900 unsigned int nr_cpus = num_present_cpus();
3286222f
VB
4901 if (nr_cpus <= 1)
4902 nr_cpus = nr_cpu_ids;
4903 min_objects = 4 * (fls(nr_cpus) + 1);
4904 }
90f055df
VB
4905 /* min_objects can't be 0 because get_order(0) is undefined */
4906 max_objects = max(order_objects(slub_max_order, size), 1U);
e8120ff1
ZY
4907 min_objects = min(min_objects, max_objects);
4908
90f055df
VB
4909 min_order = max_t(unsigned int, slub_min_order,
4910 get_order(min_objects * size));
4911 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4912 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4913
0fe2735d
VB
4914 /*
4915 * Attempt to find best configuration for a slab. This works by first
4916 * attempting to generate a layout with the best possible configuration
4917 * and backing off gradually.
4918 *
4919 * We start with accepting at most 1/16 waste and try to find the
671776b3
XS
4920 * smallest order from min_objects-derived/slab_min_order up to
4921 * slab_max_order that will satisfy the constraint. Note that increasing
0fe2735d
VB
4922 * the order can only result in same or less fractional waste, not more.
4923 *
4924 * If that fails, we increase the acceptable fraction of waste and try
5886fc82
VB
4925 * again. The last iteration with fraction of 1/2 would effectively
4926 * accept any waste and give us the order determined by min_objects, as
671776b3 4927 * long as at least single object fits within slab_max_order.
0fe2735d 4928 */
5886fc82 4929 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
90f055df 4930 order = calc_slab_order(size, min_order, slub_max_order,
0fe2735d
VB
4931 fraction);
4932 if (order <= slub_max_order)
4933 return order;
5e6d444e
CL
4934 }
4935
5e6d444e 4936 /*
671776b3 4937 * Doh this slab cannot be placed using slab_max_order.
5e6d444e 4938 */
c7355d75 4939 order = get_order(size);
5e0a760b 4940 if (order <= MAX_PAGE_ORDER)
5e6d444e
CL
4941 return order;
4942 return -ENOSYS;
4943}
4944
5595cffc 4945static void
4053497d 4946init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4947{
4948 n->nr_partial = 0;
81819f0f
CL
4949 spin_lock_init(&n->list_lock);
4950 INIT_LIST_HEAD(&n->partial);
8ab1372f 4951#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4952 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4953 atomic_long_set(&n->total_objects, 0);
643b1138 4954 INIT_LIST_HEAD(&n->full);
8ab1372f 4955#endif
81819f0f
CL
4956}
4957
0af8489b 4958#ifndef CONFIG_SLUB_TINY
55136592 4959static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4960{
6c182dc0 4961 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4962 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4963 sizeof(struct kmem_cache_cpu));
4c93c355 4964
8a5ec0ba 4965 /*
d4d84fef
CM
4966 * Must align to double word boundary for the double cmpxchg
4967 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4968 */
d4d84fef
CM
4969 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4970 2 * sizeof(void *));
8a5ec0ba
CL
4971
4972 if (!s->cpu_slab)
4973 return 0;
4974
4975 init_kmem_cache_cpus(s);
4c93c355 4976
8a5ec0ba 4977 return 1;
4c93c355 4978}
0af8489b
VB
4979#else
4980static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4981{
4982 return 1;
4983}
4984#endif /* CONFIG_SLUB_TINY */
4c93c355 4985
51df1142
CL
4986static struct kmem_cache *kmem_cache_node;
4987
81819f0f
CL
4988/*
4989 * No kmalloc_node yet so do it by hand. We know that this is the first
4990 * slab on the node for this slabcache. There are no concurrent accesses
4991 * possible.
4992 *
721ae22a
ZYW
4993 * Note that this function only works on the kmem_cache_node
4994 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4995 * memory on a fresh node that has no slab structures yet.
81819f0f 4996 */
55136592 4997static void early_kmem_cache_node_alloc(int node)
81819f0f 4998{
bb192ed9 4999 struct slab *slab;
81819f0f
CL
5000 struct kmem_cache_node *n;
5001
51df1142 5002 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 5003
bb192ed9 5004 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 5005
bb192ed9
VB
5006 BUG_ON(!slab);
5007 if (slab_nid(slab) != node) {
f9f58285
FF
5008 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5009 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
5010 }
5011
bb192ed9 5012 n = slab->freelist;
81819f0f 5013 BUG_ON(!n);
8ab1372f 5014#ifdef CONFIG_SLUB_DEBUG
f7cb1933 5015 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
8ab1372f 5016#endif
da844b78 5017 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
5018 slab->freelist = get_freepointer(kmem_cache_node, n);
5019 slab->inuse = 1;
12b22386 5020 kmem_cache_node->node[node] = n;
4053497d 5021 init_kmem_cache_node(n);
bb192ed9 5022 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 5023
67b6c900 5024 /*
1e4dd946
SR
5025 * No locks need to be taken here as it has just been
5026 * initialized and there is no concurrent access.
67b6c900 5027 */
bb192ed9 5028 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
5029}
5030
5031static void free_kmem_cache_nodes(struct kmem_cache *s)
5032{
5033 int node;
fa45dc25 5034 struct kmem_cache_node *n;
81819f0f 5035
fa45dc25 5036 for_each_kmem_cache_node(s, node, n) {
81819f0f 5037 s->node[node] = NULL;
ea37df54 5038 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
5039 }
5040}
5041
52b4b950
DS
5042void __kmem_cache_release(struct kmem_cache *s)
5043{
210e7a43 5044 cache_random_seq_destroy(s);
0af8489b 5045#ifndef CONFIG_SLUB_TINY
52b4b950 5046 free_percpu(s->cpu_slab);
0af8489b 5047#endif
52b4b950
DS
5048 free_kmem_cache_nodes(s);
5049}
5050
55136592 5051static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
5052{
5053 int node;
81819f0f 5054
7e1fa93d 5055 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
5056 struct kmem_cache_node *n;
5057
73367bd8 5058 if (slab_state == DOWN) {
55136592 5059 early_kmem_cache_node_alloc(node);
73367bd8
AD
5060 continue;
5061 }
51df1142 5062 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 5063 GFP_KERNEL, node);
81819f0f 5064
73367bd8
AD
5065 if (!n) {
5066 free_kmem_cache_nodes(s);
5067 return 0;
81819f0f 5068 }
73367bd8 5069
4053497d 5070 init_kmem_cache_node(n);
ea37df54 5071 s->node[node] = n;
81819f0f
CL
5072 }
5073 return 1;
5074}
81819f0f 5075
e6d0e1dc
WY
5076static void set_cpu_partial(struct kmem_cache *s)
5077{
5078#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
5079 unsigned int nr_objects;
5080
e6d0e1dc
WY
5081 /*
5082 * cpu_partial determined the maximum number of objects kept in the
5083 * per cpu partial lists of a processor.
5084 *
5085 * Per cpu partial lists mainly contain slabs that just have one
5086 * object freed. If they are used for allocation then they can be
5087 * filled up again with minimal effort. The slab will never hit the
5088 * per node partial lists and therefore no locking will be required.
5089 *
b47291ef
VB
5090 * For backwards compatibility reasons, this is determined as number
5091 * of objects, even though we now limit maximum number of pages, see
5092 * slub_set_cpu_partial()
e6d0e1dc
WY
5093 */
5094 if (!kmem_cache_has_cpu_partial(s))
b47291ef 5095 nr_objects = 0;
e6d0e1dc 5096 else if (s->size >= PAGE_SIZE)
b47291ef 5097 nr_objects = 6;
e6d0e1dc 5098 else if (s->size >= 1024)
23e98ad1 5099 nr_objects = 24;
e6d0e1dc 5100 else if (s->size >= 256)
23e98ad1 5101 nr_objects = 52;
e6d0e1dc 5102 else
23e98ad1 5103 nr_objects = 120;
b47291ef
VB
5104
5105 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
5106#endif
5107}
5108
81819f0f
CL
5109/*
5110 * calculate_sizes() determines the order and the distribution of data within
5111 * a slab object.
5112 */
ae44d81d 5113static int calculate_sizes(struct kmem_cache *s)
81819f0f 5114{
d50112ed 5115 slab_flags_t flags = s->flags;
be4a7988 5116 unsigned int size = s->object_size;
19af27af 5117 unsigned int order;
81819f0f 5118
d8b42bf5
CL
5119 /*
5120 * Round up object size to the next word boundary. We can only
5121 * place the free pointer at word boundaries and this determines
5122 * the possible location of the free pointer.
5123 */
5124 size = ALIGN(size, sizeof(void *));
5125
5126#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
5127 /*
5128 * Determine if we can poison the object itself. If the user of
5129 * the slab may touch the object after free or before allocation
5130 * then we should never poison the object itself.
5131 */
5f0d5a3a 5132 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 5133 !s->ctor)
81819f0f
CL
5134 s->flags |= __OBJECT_POISON;
5135 else
5136 s->flags &= ~__OBJECT_POISON;
5137
81819f0f
CL
5138
5139 /*
672bba3a 5140 * If we are Redzoning then check if there is some space between the
81819f0f 5141 * end of the object and the free pointer. If not then add an
672bba3a 5142 * additional word to have some bytes to store Redzone information.
81819f0f 5143 */
3b0efdfa 5144 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 5145 size += sizeof(void *);
41ecc55b 5146#endif
81819f0f
CL
5147
5148 /*
672bba3a 5149 * With that we have determined the number of bytes in actual use
e41a49fa 5150 * by the object and redzoning.
81819f0f
CL
5151 */
5152 s->inuse = size;
5153
946fa0db
FT
5154 if (slub_debug_orig_size(s) ||
5155 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
5156 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5157 s->ctor) {
81819f0f
CL
5158 /*
5159 * Relocate free pointer after the object if it is not
5160 * permitted to overwrite the first word of the object on
5161 * kmem_cache_free.
5162 *
5163 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
5164 * destructor, are poisoning the objects, or are
5165 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
5166 *
5167 * The assumption that s->offset >= s->inuse means free
5168 * pointer is outside of the object is used in the
5169 * freeptr_outside_object() function. If that is no
5170 * longer true, the function needs to be modified.
81819f0f
CL
5171 */
5172 s->offset = size;
5173 size += sizeof(void *);
e41a49fa 5174 } else {
3202fa62
KC
5175 /*
5176 * Store freelist pointer near middle of object to keep
5177 * it away from the edges of the object to avoid small
5178 * sized over/underflows from neighboring allocations.
5179 */
e41a49fa 5180 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
5181 }
5182
c12b3c62 5183#ifdef CONFIG_SLUB_DEBUG
6edf2576 5184 if (flags & SLAB_STORE_USER) {
81819f0f
CL
5185 /*
5186 * Need to store information about allocs and frees after
5187 * the object.
5188 */
5189 size += 2 * sizeof(struct track);
6edf2576
FT
5190
5191 /* Save the original kmalloc request size */
5192 if (flags & SLAB_KMALLOC)
5193 size += sizeof(unsigned int);
5194 }
80a9201a 5195#endif
81819f0f 5196
80a9201a
AP
5197 kasan_cache_create(s, &size, &s->flags);
5198#ifdef CONFIG_SLUB_DEBUG
d86bd1be 5199 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
5200 /*
5201 * Add some empty padding so that we can catch
5202 * overwrites from earlier objects rather than let
5203 * tracking information or the free pointer be
0211a9c8 5204 * corrupted if a user writes before the start
81819f0f
CL
5205 * of the object.
5206 */
5207 size += sizeof(void *);
d86bd1be
JK
5208
5209 s->red_left_pad = sizeof(void *);
5210 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5211 size += s->red_left_pad;
5212 }
41ecc55b 5213#endif
672bba3a 5214
81819f0f
CL
5215 /*
5216 * SLUB stores one object immediately after another beginning from
5217 * offset 0. In order to align the objects we have to simply size
5218 * each object to conform to the alignment.
5219 */
45906855 5220 size = ALIGN(size, s->align);
81819f0f 5221 s->size = size;
4138fdfc 5222 s->reciprocal_size = reciprocal_value(size);
ae44d81d 5223 order = calculate_order(size);
81819f0f 5224
19af27af 5225 if ((int)order < 0)
81819f0f
CL
5226 return 0;
5227
5b15f3fb 5228 s->allocflags = __GFP_COMP;
b7a49f0d
CL
5229
5230 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 5231 s->allocflags |= GFP_DMA;
b7a49f0d 5232
6d6ea1e9
NB
5233 if (s->flags & SLAB_CACHE_DMA32)
5234 s->allocflags |= GFP_DMA32;
5235
b7a49f0d
CL
5236 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5237 s->allocflags |= __GFP_RECLAIMABLE;
5238
81819f0f
CL
5239 /*
5240 * Determine the number of objects per slab
5241 */
9736d2a9
MW
5242 s->oo = oo_make(order, size);
5243 s->min = oo_make(get_order(size), size);
81819f0f 5244
834f3d11 5245 return !!oo_objects(s->oo);
81819f0f
CL
5246}
5247
d50112ed 5248static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 5249{
303cd693 5250 s->flags = kmem_cache_flags(flags, s->name);
2482ddec
KC
5251#ifdef CONFIG_SLAB_FREELIST_HARDENED
5252 s->random = get_random_long();
5253#endif
81819f0f 5254
ae44d81d 5255 if (!calculate_sizes(s))
81819f0f 5256 goto error;
3de47213
DR
5257 if (disable_higher_order_debug) {
5258 /*
5259 * Disable debugging flags that store metadata if the min slab
5260 * order increased.
5261 */
3b0efdfa 5262 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
5263 s->flags &= ~DEBUG_METADATA_FLAGS;
5264 s->offset = 0;
ae44d81d 5265 if (!calculate_sizes(s))
3de47213
DR
5266 goto error;
5267 }
5268 }
81819f0f 5269
6801be4f
PZ
5270#ifdef system_has_freelist_aba
5271 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
5272 /* Enable fast mode */
5273 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 5274 }
b789ef51
CL
5275#endif
5276
3b89d7d8 5277 /*
c2092c12 5278 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
5279 * list to avoid pounding the page allocator excessively.
5280 */
5182f3c9
HY
5281 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5282 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 5283
e6d0e1dc 5284 set_cpu_partial(s);
49e22585 5285
81819f0f 5286#ifdef CONFIG_NUMA
e2cb96b7 5287 s->remote_node_defrag_ratio = 1000;
81819f0f 5288#endif
210e7a43
TG
5289
5290 /* Initialize the pre-computed randomized freelist if slab is up */
5291 if (slab_state >= UP) {
5292 if (init_cache_random_seq(s))
5293 goto error;
5294 }
5295
55136592 5296 if (!init_kmem_cache_nodes(s))
dfb4f096 5297 goto error;
81819f0f 5298
55136592 5299 if (alloc_kmem_cache_cpus(s))
278b1bb1 5300 return 0;
ff12059e 5301
81819f0f 5302error:
9037c576 5303 __kmem_cache_release(s);
278b1bb1 5304 return -EINVAL;
81819f0f 5305}
81819f0f 5306
bb192ed9 5307static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 5308 const char *text)
33b12c38
CL
5309{
5310#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5311 void *addr = slab_address(slab);
33b12c38 5312 void *p;
aa456c7a 5313
bb192ed9 5314 slab_err(s, slab, text, s->name);
33b12c38 5315
4ef3f5a3
VB
5316 spin_lock(&object_map_lock);
5317 __fill_map(object_map, s, slab);
5318
bb192ed9 5319 for_each_object(p, s, addr, slab->objects) {
33b12c38 5320
4ef3f5a3 5321 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 5322 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
5323 print_tracking(s, p);
5324 }
5325 }
4ef3f5a3 5326 spin_unlock(&object_map_lock);
33b12c38
CL
5327#endif
5328}
5329
81819f0f 5330/*
599870b1 5331 * Attempt to free all partial slabs on a node.
52b4b950
DS
5332 * This is called from __kmem_cache_shutdown(). We must take list_lock
5333 * because sysfs file might still access partial list after the shutdowning.
81819f0f 5334 */
599870b1 5335static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 5336{
60398923 5337 LIST_HEAD(discard);
bb192ed9 5338 struct slab *slab, *h;
81819f0f 5339
52b4b950
DS
5340 BUG_ON(irqs_disabled());
5341 spin_lock_irq(&n->list_lock);
bb192ed9
VB
5342 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5343 if (!slab->inuse) {
5344 remove_partial(n, slab);
5345 list_add(&slab->slab_list, &discard);
33b12c38 5346 } else {
bb192ed9 5347 list_slab_objects(s, slab,
55860d96 5348 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 5349 }
33b12c38 5350 }
52b4b950 5351 spin_unlock_irq(&n->list_lock);
60398923 5352
bb192ed9
VB
5353 list_for_each_entry_safe(slab, h, &discard, slab_list)
5354 discard_slab(s, slab);
81819f0f
CL
5355}
5356
f9e13c0a
SB
5357bool __kmem_cache_empty(struct kmem_cache *s)
5358{
5359 int node;
5360 struct kmem_cache_node *n;
5361
5362 for_each_kmem_cache_node(s, node, n)
4f174a8b 5363 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
5364 return false;
5365 return true;
5366}
5367
81819f0f 5368/*
672bba3a 5369 * Release all resources used by a slab cache.
81819f0f 5370 */
52b4b950 5371int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
5372{
5373 int node;
fa45dc25 5374 struct kmem_cache_node *n;
81819f0f 5375
5a836bf6 5376 flush_all_cpus_locked(s);
81819f0f 5377 /* Attempt to free all objects */
fa45dc25 5378 for_each_kmem_cache_node(s, node, n) {
599870b1 5379 free_partial(s, n);
4f174a8b 5380 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
5381 return 1;
5382 }
81819f0f
CL
5383 return 0;
5384}
5385
5bb1bb35 5386#ifdef CONFIG_PRINTK
2dfe63e6 5387void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
5388{
5389 void *base;
5390 int __maybe_unused i;
5391 unsigned int objnr;
5392 void *objp;
5393 void *objp0;
7213230a 5394 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
5395 struct track __maybe_unused *trackp;
5396
5397 kpp->kp_ptr = object;
7213230a 5398 kpp->kp_slab = slab;
8e7f37f2 5399 kpp->kp_slab_cache = s;
7213230a 5400 base = slab_address(slab);
8e7f37f2
PM
5401 objp0 = kasan_reset_tag(object);
5402#ifdef CONFIG_SLUB_DEBUG
5403 objp = restore_red_left(s, objp0);
5404#else
5405 objp = objp0;
5406#endif
40f3bf0c 5407 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
5408 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5409 objp = base + s->size * objnr;
5410 kpp->kp_objp = objp;
7213230a
MWO
5411 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5412 || (objp - base) % s->size) ||
8e7f37f2
PM
5413 !(s->flags & SLAB_STORE_USER))
5414 return;
5415#ifdef CONFIG_SLUB_DEBUG
0cbc124b 5416 objp = fixup_red_left(s, objp);
8e7f37f2
PM
5417 trackp = get_track(s, objp, TRACK_ALLOC);
5418 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
5419#ifdef CONFIG_STACKDEPOT
5420 {
5421 depot_stack_handle_t handle;
5422 unsigned long *entries;
5423 unsigned int nr_entries;
78869146 5424
5cf909c5
OG
5425 handle = READ_ONCE(trackp->handle);
5426 if (handle) {
5427 nr_entries = stack_depot_fetch(handle, &entries);
5428 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5429 kpp->kp_stack[i] = (void *)entries[i];
5430 }
78869146 5431
5cf909c5
OG
5432 trackp = get_track(s, objp, TRACK_FREE);
5433 handle = READ_ONCE(trackp->handle);
5434 if (handle) {
5435 nr_entries = stack_depot_fetch(handle, &entries);
5436 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5437 kpp->kp_free_stack[i] = (void *)entries[i];
5438 }
e548eaa1 5439 }
8e7f37f2
PM
5440#endif
5441#endif
5442}
5bb1bb35 5443#endif
8e7f37f2 5444
81819f0f
CL
5445/********************************************************************
5446 * Kmalloc subsystem
5447 *******************************************************************/
5448
81819f0f
CL
5449static int __init setup_slub_min_order(char *str)
5450{
19af27af 5451 get_option(&str, (int *)&slub_min_order);
81819f0f 5452
e519ce7a
FT
5453 if (slub_min_order > slub_max_order)
5454 slub_max_order = slub_min_order;
5455
81819f0f
CL
5456 return 1;
5457}
5458
671776b3
XS
5459__setup("slab_min_order=", setup_slub_min_order);
5460__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5461
81819f0f
CL
5462
5463static int __init setup_slub_max_order(char *str)
5464{
19af27af 5465 get_option(&str, (int *)&slub_max_order);
5e0a760b 5466 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
81819f0f 5467
e519ce7a
FT
5468 if (slub_min_order > slub_max_order)
5469 slub_min_order = slub_max_order;
5470
81819f0f
CL
5471 return 1;
5472}
5473
671776b3
XS
5474__setup("slab_max_order=", setup_slub_max_order);
5475__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
81819f0f
CL
5476
5477static int __init setup_slub_min_objects(char *str)
5478{
19af27af 5479 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
5480
5481 return 1;
5482}
5483
671776b3
XS
5484__setup("slab_min_objects=", setup_slub_min_objects);
5485__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
81819f0f 5486
ed18adc1
KC
5487#ifdef CONFIG_HARDENED_USERCOPY
5488/*
afcc90f8
KC
5489 * Rejects incorrectly sized objects and objects that are to be copied
5490 * to/from userspace but do not fall entirely within the containing slab
5491 * cache's usercopy region.
ed18adc1
KC
5492 *
5493 * Returns NULL if check passes, otherwise const char * to name of cache
5494 * to indicate an error.
5495 */
0b3eb091
MWO
5496void __check_heap_object(const void *ptr, unsigned long n,
5497 const struct slab *slab, bool to_user)
ed18adc1
KC
5498{
5499 struct kmem_cache *s;
44065b2e 5500 unsigned int offset;
b89fb5ef 5501 bool is_kfence = is_kfence_address(ptr);
ed18adc1 5502
96fedce2
AK
5503 ptr = kasan_reset_tag(ptr);
5504
ed18adc1 5505 /* Find object and usable object size. */
0b3eb091 5506 s = slab->slab_cache;
ed18adc1
KC
5507
5508 /* Reject impossible pointers. */
0b3eb091 5509 if (ptr < slab_address(slab))
f4e6e289
KC
5510 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5511 to_user, 0, n);
ed18adc1
KC
5512
5513 /* Find offset within object. */
b89fb5ef
AP
5514 if (is_kfence)
5515 offset = ptr - kfence_object_start(ptr);
5516 else
0b3eb091 5517 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
5518
5519 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 5520 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 5521 if (offset < s->red_left_pad)
f4e6e289
KC
5522 usercopy_abort("SLUB object in left red zone",
5523 s->name, to_user, offset, n);
ed18adc1
KC
5524 offset -= s->red_left_pad;
5525 }
5526
afcc90f8
KC
5527 /* Allow address range falling entirely within usercopy region. */
5528 if (offset >= s->useroffset &&
5529 offset - s->useroffset <= s->usersize &&
5530 n <= s->useroffset - offset + s->usersize)
f4e6e289 5531 return;
ed18adc1 5532
f4e6e289 5533 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
5534}
5535#endif /* CONFIG_HARDENED_USERCOPY */
5536
832f37f5
VD
5537#define SHRINK_PROMOTE_MAX 32
5538
2086d26a 5539/*
832f37f5
VD
5540 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5541 * up most to the head of the partial lists. New allocations will then
5542 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
5543 *
5544 * The slabs with the least items are placed last. This results in them
5545 * being allocated from last increasing the chance that the last objects
5546 * are freed in them.
2086d26a 5547 */
5a836bf6 5548static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
5549{
5550 int node;
5551 int i;
5552 struct kmem_cache_node *n;
bb192ed9
VB
5553 struct slab *slab;
5554 struct slab *t;
832f37f5
VD
5555 struct list_head discard;
5556 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 5557 unsigned long flags;
ce3712d7 5558 int ret = 0;
2086d26a 5559
fa45dc25 5560 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
5561 INIT_LIST_HEAD(&discard);
5562 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5563 INIT_LIST_HEAD(promote + i);
2086d26a
CL
5564
5565 spin_lock_irqsave(&n->list_lock, flags);
5566
5567 /*
832f37f5 5568 * Build lists of slabs to discard or promote.
2086d26a 5569 *
672bba3a 5570 * Note that concurrent frees may occur while we hold the
c2092c12 5571 * list_lock. slab->inuse here is the upper limit.
2086d26a 5572 */
bb192ed9
VB
5573 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5574 int free = slab->objects - slab->inuse;
832f37f5 5575
c2092c12 5576 /* Do not reread slab->inuse */
832f37f5
VD
5577 barrier();
5578
5579 /* We do not keep full slabs on the list */
5580 BUG_ON(free <= 0);
5581
bb192ed9
VB
5582 if (free == slab->objects) {
5583 list_move(&slab->slab_list, &discard);
8a399e2f 5584 slab_clear_node_partial(slab);
69cb8e6b 5585 n->nr_partial--;
c7323a5a 5586 dec_slabs_node(s, node, slab->objects);
832f37f5 5587 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 5588 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
5589 }
5590
2086d26a 5591 /*
832f37f5
VD
5592 * Promote the slabs filled up most to the head of the
5593 * partial list.
2086d26a 5594 */
832f37f5
VD
5595 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5596 list_splice(promote + i, &n->partial);
2086d26a 5597
2086d26a 5598 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
5599
5600 /* Release empty slabs */
bb192ed9 5601 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 5602 free_slab(s, slab);
ce3712d7 5603
4f174a8b 5604 if (node_nr_slabs(n))
ce3712d7 5605 ret = 1;
2086d26a
CL
5606 }
5607
ce3712d7 5608 return ret;
2086d26a 5609}
2086d26a 5610
5a836bf6
SAS
5611int __kmem_cache_shrink(struct kmem_cache *s)
5612{
5613 flush_all(s);
5614 return __kmem_cache_do_shrink(s);
5615}
5616
b9049e23
YG
5617static int slab_mem_going_offline_callback(void *arg)
5618{
5619 struct kmem_cache *s;
5620
18004c5d 5621 mutex_lock(&slab_mutex);
5a836bf6
SAS
5622 list_for_each_entry(s, &slab_caches, list) {
5623 flush_all_cpus_locked(s);
5624 __kmem_cache_do_shrink(s);
5625 }
18004c5d 5626 mutex_unlock(&slab_mutex);
b9049e23
YG
5627
5628 return 0;
5629}
5630
5631static void slab_mem_offline_callback(void *arg)
5632{
b9049e23
YG
5633 struct memory_notify *marg = arg;
5634 int offline_node;
5635
b9d5ab25 5636 offline_node = marg->status_change_nid_normal;
b9049e23
YG
5637
5638 /*
5639 * If the node still has available memory. we need kmem_cache_node
5640 * for it yet.
5641 */
5642 if (offline_node < 0)
5643 return;
5644
18004c5d 5645 mutex_lock(&slab_mutex);
7e1fa93d 5646 node_clear(offline_node, slab_nodes);
666716fd
VB
5647 /*
5648 * We no longer free kmem_cache_node structures here, as it would be
5649 * racy with all get_node() users, and infeasible to protect them with
5650 * slab_mutex.
5651 */
18004c5d 5652 mutex_unlock(&slab_mutex);
b9049e23
YG
5653}
5654
5655static int slab_mem_going_online_callback(void *arg)
5656{
5657 struct kmem_cache_node *n;
5658 struct kmem_cache *s;
5659 struct memory_notify *marg = arg;
b9d5ab25 5660 int nid = marg->status_change_nid_normal;
b9049e23
YG
5661 int ret = 0;
5662
5663 /*
5664 * If the node's memory is already available, then kmem_cache_node is
5665 * already created. Nothing to do.
5666 */
5667 if (nid < 0)
5668 return 0;
5669
5670 /*
0121c619 5671 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
5672 * allocate a kmem_cache_node structure in order to bring the node
5673 * online.
5674 */
18004c5d 5675 mutex_lock(&slab_mutex);
b9049e23 5676 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
5677 /*
5678 * The structure may already exist if the node was previously
5679 * onlined and offlined.
5680 */
5681 if (get_node(s, nid))
5682 continue;
b9049e23
YG
5683 /*
5684 * XXX: kmem_cache_alloc_node will fallback to other nodes
5685 * since memory is not yet available from the node that
5686 * is brought up.
5687 */
8de66a0c 5688 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
5689 if (!n) {
5690 ret = -ENOMEM;
5691 goto out;
5692 }
4053497d 5693 init_kmem_cache_node(n);
b9049e23
YG
5694 s->node[nid] = n;
5695 }
7e1fa93d
VB
5696 /*
5697 * Any cache created after this point will also have kmem_cache_node
5698 * initialized for the new node.
5699 */
5700 node_set(nid, slab_nodes);
b9049e23 5701out:
18004c5d 5702 mutex_unlock(&slab_mutex);
b9049e23
YG
5703 return ret;
5704}
5705
5706static int slab_memory_callback(struct notifier_block *self,
5707 unsigned long action, void *arg)
5708{
5709 int ret = 0;
5710
5711 switch (action) {
5712 case MEM_GOING_ONLINE:
5713 ret = slab_mem_going_online_callback(arg);
5714 break;
5715 case MEM_GOING_OFFLINE:
5716 ret = slab_mem_going_offline_callback(arg);
5717 break;
5718 case MEM_OFFLINE:
5719 case MEM_CANCEL_ONLINE:
5720 slab_mem_offline_callback(arg);
5721 break;
5722 case MEM_ONLINE:
5723 case MEM_CANCEL_OFFLINE:
5724 break;
5725 }
dc19f9db
KH
5726 if (ret)
5727 ret = notifier_from_errno(ret);
5728 else
5729 ret = NOTIFY_OK;
b9049e23
YG
5730 return ret;
5731}
5732
81819f0f
CL
5733/********************************************************************
5734 * Basic setup of slabs
5735 *******************************************************************/
5736
51df1142
CL
5737/*
5738 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
5739 * the page allocator. Allocate them properly then fix up the pointers
5740 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
5741 */
5742
dffb4d60 5743static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
5744{
5745 int node;
dffb4d60 5746 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 5747 struct kmem_cache_node *n;
51df1142 5748
dffb4d60 5749 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5750
7d557b3c
GC
5751 /*
5752 * This runs very early, and only the boot processor is supposed to be
5753 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5754 * IPIs around.
5755 */
5756 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5757 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5758 struct slab *p;
51df1142 5759
916ac052 5760 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5761 p->slab_cache = s;
51df1142 5762
607bf324 5763#ifdef CONFIG_SLUB_DEBUG
916ac052 5764 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5765 p->slab_cache = s;
51df1142 5766#endif
51df1142 5767 }
dffb4d60
CL
5768 list_add(&s->list, &slab_caches);
5769 return s;
51df1142
CL
5770}
5771
81819f0f
CL
5772void __init kmem_cache_init(void)
5773{
dffb4d60
CL
5774 static __initdata struct kmem_cache boot_kmem_cache,
5775 boot_kmem_cache_node;
7e1fa93d 5776 int node;
51df1142 5777
fc8d8620
SG
5778 if (debug_guardpage_minorder())
5779 slub_max_order = 0;
5780
79270291
SB
5781 /* Print slub debugging pointers without hashing */
5782 if (__slub_debug_enabled())
5783 no_hash_pointers_enable(NULL);
5784
dffb4d60
CL
5785 kmem_cache_node = &boot_kmem_cache_node;
5786 kmem_cache = &boot_kmem_cache;
51df1142 5787
7e1fa93d
VB
5788 /*
5789 * Initialize the nodemask for which we will allocate per node
5790 * structures. Here we don't need taking slab_mutex yet.
5791 */
5792 for_each_node_state(node, N_NORMAL_MEMORY)
5793 node_set(node, slab_nodes);
5794
dffb4d60 5795 create_boot_cache(kmem_cache_node, "kmem_cache_node",
45012241
SB
5796 sizeof(struct kmem_cache_node),
5797 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
b9049e23 5798
946d5f9c 5799 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5800
5801 /* Able to allocate the per node structures */
5802 slab_state = PARTIAL;
5803
dffb4d60
CL
5804 create_boot_cache(kmem_cache, "kmem_cache",
5805 offsetof(struct kmem_cache, node) +
5806 nr_node_ids * sizeof(struct kmem_cache_node *),
45012241 5807 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8a13a4cc 5808
dffb4d60 5809 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5810 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5811
5812 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5813 setup_kmalloc_cache_index_table();
66b3dc1f 5814 create_kmalloc_caches();
81819f0f 5815
210e7a43
TG
5816 /* Setup random freelists for each cache */
5817 init_freelist_randomization();
5818
a96a87bf
SAS
5819 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5820 slub_cpu_dead);
81819f0f 5821
b9726c26 5822 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5823 cache_line_size(),
81819f0f
CL
5824 slub_min_order, slub_max_order, slub_min_objects,
5825 nr_cpu_ids, nr_node_ids);
5826}
5827
7e85ee0c
PE
5828void __init kmem_cache_init_late(void)
5829{
0af8489b 5830#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5831 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5832 WARN_ON(!flushwq);
0af8489b 5833#endif
7e85ee0c
PE
5834}
5835
2633d7a0 5836struct kmem_cache *
f4957d5b 5837__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5838 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5839{
10befea9 5840 struct kmem_cache *s;
81819f0f 5841
a44cb944 5842 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5843 if (s) {
efb93527
XS
5844 if (sysfs_slab_alias(s, name))
5845 return NULL;
5846
81819f0f 5847 s->refcount++;
84d0ddd6 5848
81819f0f
CL
5849 /*
5850 * Adjust the object sizes so that we clear
5851 * the complete object on kzalloc.
5852 */
1b473f29 5853 s->object_size = max(s->object_size, size);
52ee6d74 5854 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5855 }
6446faa2 5856
cbb79694
CL
5857 return s;
5858}
84c1cf62 5859
d50112ed 5860int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5861{
aac3a166
PE
5862 int err;
5863
5864 err = kmem_cache_open(s, flags);
5865 if (err)
5866 return err;
20cea968 5867
45530c44
CL
5868 /* Mutex is not taken during early boot */
5869 if (slab_state <= UP)
5870 return 0;
5871
aac3a166 5872 err = sysfs_slab_add(s);
67823a54 5873 if (err) {
52b4b950 5874 __kmem_cache_release(s);
67823a54
ML
5875 return err;
5876 }
20cea968 5877
64dd6849
FM
5878 if (s->flags & SLAB_STORE_USER)
5879 debugfs_slab_add(s);
5880
67823a54 5881 return 0;
81819f0f 5882}
81819f0f 5883
b1a413a3 5884#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5885static int count_inuse(struct slab *slab)
205ab99d 5886{
bb192ed9 5887 return slab->inuse;
205ab99d
CL
5888}
5889
bb192ed9 5890static int count_total(struct slab *slab)
205ab99d 5891{
bb192ed9 5892 return slab->objects;
205ab99d 5893}
ab4d5ed5 5894#endif
205ab99d 5895
ab4d5ed5 5896#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5897static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5898 unsigned long *obj_map)
53e15af0
CL
5899{
5900 void *p;
bb192ed9 5901 void *addr = slab_address(slab);
53e15af0 5902
bb192ed9 5903 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5904 return;
53e15af0
CL
5905
5906 /* Now we know that a valid freelist exists */
bb192ed9
VB
5907 __fill_map(obj_map, s, slab);
5908 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5909 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5910 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5911
bb192ed9 5912 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5913 break;
5914 }
53e15af0
CL
5915}
5916
434e245d 5917static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5918 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5919{
5920 unsigned long count = 0;
bb192ed9 5921 struct slab *slab;
53e15af0
CL
5922 unsigned long flags;
5923
5924 spin_lock_irqsave(&n->list_lock, flags);
5925
bb192ed9
VB
5926 list_for_each_entry(slab, &n->partial, slab_list) {
5927 validate_slab(s, slab, obj_map);
53e15af0
CL
5928 count++;
5929 }
1f9f78b1 5930 if (count != n->nr_partial) {
f9f58285
FF
5931 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5932 s->name, count, n->nr_partial);
1f9f78b1
OG
5933 slab_add_kunit_errors();
5934 }
53e15af0
CL
5935
5936 if (!(s->flags & SLAB_STORE_USER))
5937 goto out;
5938
bb192ed9
VB
5939 list_for_each_entry(slab, &n->full, slab_list) {
5940 validate_slab(s, slab, obj_map);
53e15af0
CL
5941 count++;
5942 }
8040cbf5 5943 if (count != node_nr_slabs(n)) {
f9f58285 5944 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5945 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5946 slab_add_kunit_errors();
5947 }
53e15af0
CL
5948
5949out:
5950 spin_unlock_irqrestore(&n->list_lock, flags);
5951 return count;
5952}
5953
1f9f78b1 5954long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5955{
5956 int node;
5957 unsigned long count = 0;
fa45dc25 5958 struct kmem_cache_node *n;
0a19e7dd
VB
5959 unsigned long *obj_map;
5960
5961 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5962 if (!obj_map)
5963 return -ENOMEM;
53e15af0
CL
5964
5965 flush_all(s);
fa45dc25 5966 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5967 count += validate_slab_node(s, n, obj_map);
5968
5969 bitmap_free(obj_map);
90e9f6a6 5970
53e15af0
CL
5971 return count;
5972}
1f9f78b1
OG
5973EXPORT_SYMBOL(validate_slab_cache);
5974
64dd6849 5975#ifdef CONFIG_DEBUG_FS
88a420e4 5976/*
672bba3a 5977 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5978 * and freed.
5979 */
5980
5981struct location {
8ea9fb92 5982 depot_stack_handle_t handle;
88a420e4 5983 unsigned long count;
ce71e27c 5984 unsigned long addr;
6edf2576 5985 unsigned long waste;
45edfa58
CL
5986 long long sum_time;
5987 long min_time;
5988 long max_time;
5989 long min_pid;
5990 long max_pid;
174596a0 5991 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5992 nodemask_t nodes;
88a420e4
CL
5993};
5994
5995struct loc_track {
5996 unsigned long max;
5997 unsigned long count;
5998 struct location *loc;
005a79e5 5999 loff_t idx;
88a420e4
CL
6000};
6001
64dd6849
FM
6002static struct dentry *slab_debugfs_root;
6003
88a420e4
CL
6004static void free_loc_track(struct loc_track *t)
6005{
6006 if (t->max)
6007 free_pages((unsigned long)t->loc,
6008 get_order(sizeof(struct location) * t->max));
6009}
6010
68dff6a9 6011static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
6012{
6013 struct location *l;
6014 int order;
6015
88a420e4
CL
6016 order = get_order(sizeof(struct location) * max);
6017
68dff6a9 6018 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
6019 if (!l)
6020 return 0;
6021
6022 if (t->count) {
6023 memcpy(l, t->loc, sizeof(struct location) * t->count);
6024 free_loc_track(t);
6025 }
6026 t->max = max;
6027 t->loc = l;
6028 return 1;
6029}
6030
6031static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
6032 const struct track *track,
6033 unsigned int orig_size)
88a420e4
CL
6034{
6035 long start, end, pos;
6036 struct location *l;
6edf2576 6037 unsigned long caddr, chandle, cwaste;
45edfa58 6038 unsigned long age = jiffies - track->when;
8ea9fb92 6039 depot_stack_handle_t handle = 0;
6edf2576 6040 unsigned int waste = s->object_size - orig_size;
88a420e4 6041
8ea9fb92
OG
6042#ifdef CONFIG_STACKDEPOT
6043 handle = READ_ONCE(track->handle);
6044#endif
88a420e4
CL
6045 start = -1;
6046 end = t->count;
6047
6048 for ( ; ; ) {
6049 pos = start + (end - start + 1) / 2;
6050
6051 /*
6052 * There is nothing at "end". If we end up there
6053 * we need to add something to before end.
6054 */
6055 if (pos == end)
6056 break;
6057
6edf2576
FT
6058 l = &t->loc[pos];
6059 caddr = l->addr;
6060 chandle = l->handle;
6061 cwaste = l->waste;
6062 if ((track->addr == caddr) && (handle == chandle) &&
6063 (waste == cwaste)) {
45edfa58 6064
45edfa58
CL
6065 l->count++;
6066 if (track->when) {
6067 l->sum_time += age;
6068 if (age < l->min_time)
6069 l->min_time = age;
6070 if (age > l->max_time)
6071 l->max_time = age;
6072
6073 if (track->pid < l->min_pid)
6074 l->min_pid = track->pid;
6075 if (track->pid > l->max_pid)
6076 l->max_pid = track->pid;
6077
174596a0
RR
6078 cpumask_set_cpu(track->cpu,
6079 to_cpumask(l->cpus));
45edfa58
CL
6080 }
6081 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6082 return 1;
6083 }
6084
45edfa58 6085 if (track->addr < caddr)
88a420e4 6086 end = pos;
8ea9fb92
OG
6087 else if (track->addr == caddr && handle < chandle)
6088 end = pos;
6edf2576
FT
6089 else if (track->addr == caddr && handle == chandle &&
6090 waste < cwaste)
6091 end = pos;
88a420e4
CL
6092 else
6093 start = pos;
6094 }
6095
6096 /*
672bba3a 6097 * Not found. Insert new tracking element.
88a420e4 6098 */
68dff6a9 6099 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
6100 return 0;
6101
6102 l = t->loc + pos;
6103 if (pos < t->count)
6104 memmove(l + 1, l,
6105 (t->count - pos) * sizeof(struct location));
6106 t->count++;
6107 l->count = 1;
45edfa58
CL
6108 l->addr = track->addr;
6109 l->sum_time = age;
6110 l->min_time = age;
6111 l->max_time = age;
6112 l->min_pid = track->pid;
6113 l->max_pid = track->pid;
8ea9fb92 6114 l->handle = handle;
6edf2576 6115 l->waste = waste;
174596a0
RR
6116 cpumask_clear(to_cpumask(l->cpus));
6117 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
6118 nodes_clear(l->nodes);
6119 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6120 return 1;
6121}
6122
6123static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 6124 struct slab *slab, enum track_item alloc,
b3fd64e1 6125 unsigned long *obj_map)
88a420e4 6126{
bb192ed9 6127 void *addr = slab_address(slab);
6edf2576 6128 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
6129 void *p;
6130
bb192ed9 6131 __fill_map(obj_map, s, slab);
b3fd64e1 6132
bb192ed9 6133 for_each_object(p, s, addr, slab->objects)
b3fd64e1 6134 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
6135 add_location(t, s, get_track(s, p, alloc),
6136 is_alloc ? get_orig_size(s, p) :
6137 s->object_size);
88a420e4 6138}
64dd6849 6139#endif /* CONFIG_DEBUG_FS */
6dfd1b65 6140#endif /* CONFIG_SLUB_DEBUG */
88a420e4 6141
b1a413a3 6142#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 6143enum slab_stat_type {
205ab99d
CL
6144 SL_ALL, /* All slabs */
6145 SL_PARTIAL, /* Only partially allocated slabs */
6146 SL_CPU, /* Only slabs used for cpu caches */
6147 SL_OBJECTS, /* Determine allocated objects not slabs */
6148 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
6149};
6150
205ab99d 6151#define SO_ALL (1 << SL_ALL)
81819f0f
CL
6152#define SO_PARTIAL (1 << SL_PARTIAL)
6153#define SO_CPU (1 << SL_CPU)
6154#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 6155#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 6156
62e5c4b4 6157static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 6158 char *buf, unsigned long flags)
81819f0f
CL
6159{
6160 unsigned long total = 0;
81819f0f
CL
6161 int node;
6162 int x;
6163 unsigned long *nodes;
bf16d19a 6164 int len = 0;
81819f0f 6165
6396bb22 6166 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
6167 if (!nodes)
6168 return -ENOMEM;
81819f0f 6169
205ab99d
CL
6170 if (flags & SO_CPU) {
6171 int cpu;
81819f0f 6172
205ab99d 6173 for_each_possible_cpu(cpu) {
d0e0ac97
CG
6174 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6175 cpu);
ec3ab083 6176 int node;
bb192ed9 6177 struct slab *slab;
dfb4f096 6178
bb192ed9
VB
6179 slab = READ_ONCE(c->slab);
6180 if (!slab)
ec3ab083 6181 continue;
205ab99d 6182
bb192ed9 6183 node = slab_nid(slab);
ec3ab083 6184 if (flags & SO_TOTAL)
bb192ed9 6185 x = slab->objects;
ec3ab083 6186 else if (flags & SO_OBJECTS)
bb192ed9 6187 x = slab->inuse;
ec3ab083
CL
6188 else
6189 x = 1;
49e22585 6190
ec3ab083
CL
6191 total += x;
6192 nodes[node] += x;
6193
9c01e9af 6194#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
6195 slab = slub_percpu_partial_read_once(c);
6196 if (slab) {
6197 node = slab_nid(slab);
8afb1474
LZ
6198 if (flags & SO_TOTAL)
6199 WARN_ON_ONCE(1);
6200 else if (flags & SO_OBJECTS)
6201 WARN_ON_ONCE(1);
6202 else
87654cf7 6203 x = data_race(slab->slabs);
bc6697d8
ED
6204 total += x;
6205 nodes[node] += x;
49e22585 6206 }
9c01e9af 6207#endif
81819f0f
CL
6208 }
6209 }
6210
e4f8e513
QC
6211 /*
6212 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6213 * already held which will conflict with an existing lock order:
6214 *
6215 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6216 *
6217 * We don't really need mem_hotplug_lock (to hold off
6218 * slab_mem_going_offline_callback) here because slab's memory hot
6219 * unplug code doesn't destroy the kmem_cache->node[] data.
6220 */
6221
ab4d5ed5 6222#ifdef CONFIG_SLUB_DEBUG
205ab99d 6223 if (flags & SO_ALL) {
fa45dc25
CL
6224 struct kmem_cache_node *n;
6225
6226 for_each_kmem_cache_node(s, node, n) {
205ab99d 6227
d0e0ac97 6228 if (flags & SO_TOTAL)
8040cbf5 6229 x = node_nr_objs(n);
d0e0ac97 6230 else if (flags & SO_OBJECTS)
8040cbf5 6231 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 6232 else
8040cbf5 6233 x = node_nr_slabs(n);
81819f0f
CL
6234 total += x;
6235 nodes[node] += x;
6236 }
6237
ab4d5ed5
CL
6238 } else
6239#endif
6240 if (flags & SO_PARTIAL) {
fa45dc25 6241 struct kmem_cache_node *n;
81819f0f 6242
fa45dc25 6243 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
6244 if (flags & SO_TOTAL)
6245 x = count_partial(n, count_total);
6246 else if (flags & SO_OBJECTS)
6247 x = count_partial(n, count_inuse);
81819f0f 6248 else
205ab99d 6249 x = n->nr_partial;
81819f0f
CL
6250 total += x;
6251 nodes[node] += x;
6252 }
6253 }
bf16d19a
JP
6254
6255 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 6256#ifdef CONFIG_NUMA
bf16d19a 6257 for (node = 0; node < nr_node_ids; node++) {
81819f0f 6258 if (nodes[node])
bf16d19a
JP
6259 len += sysfs_emit_at(buf, len, " N%d=%lu",
6260 node, nodes[node]);
6261 }
81819f0f 6262#endif
bf16d19a 6263 len += sysfs_emit_at(buf, len, "\n");
81819f0f 6264 kfree(nodes);
bf16d19a
JP
6265
6266 return len;
81819f0f
CL
6267}
6268
81819f0f 6269#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 6270#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
6271
6272struct slab_attribute {
6273 struct attribute attr;
6274 ssize_t (*show)(struct kmem_cache *s, char *buf);
6275 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6276};
6277
6278#define SLAB_ATTR_RO(_name) \
d1d28bd9 6279 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
6280
6281#define SLAB_ATTR(_name) \
d1d28bd9 6282 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 6283
81819f0f
CL
6284static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6285{
bf16d19a 6286 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
6287}
6288SLAB_ATTR_RO(slab_size);
6289
6290static ssize_t align_show(struct kmem_cache *s, char *buf)
6291{
bf16d19a 6292 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
6293}
6294SLAB_ATTR_RO(align);
6295
6296static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6297{
bf16d19a 6298 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
6299}
6300SLAB_ATTR_RO(object_size);
6301
6302static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6303{
bf16d19a 6304 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
6305}
6306SLAB_ATTR_RO(objs_per_slab);
6307
6308static ssize_t order_show(struct kmem_cache *s, char *buf)
6309{
bf16d19a 6310 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 6311}
32a6f409 6312SLAB_ATTR_RO(order);
81819f0f 6313
73d342b1
DR
6314static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6315{
bf16d19a 6316 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
6317}
6318
6319static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6320 size_t length)
6321{
6322 unsigned long min;
6323 int err;
6324
3dbb95f7 6325 err = kstrtoul(buf, 10, &min);
73d342b1
DR
6326 if (err)
6327 return err;
6328
5182f3c9 6329 s->min_partial = min;
73d342b1
DR
6330 return length;
6331}
6332SLAB_ATTR(min_partial);
6333
49e22585
CL
6334static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6335{
b47291ef
VB
6336 unsigned int nr_partial = 0;
6337#ifdef CONFIG_SLUB_CPU_PARTIAL
6338 nr_partial = s->cpu_partial;
6339#endif
6340
6341 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
6342}
6343
6344static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6345 size_t length)
6346{
e5d9998f 6347 unsigned int objects;
49e22585
CL
6348 int err;
6349
e5d9998f 6350 err = kstrtouint(buf, 10, &objects);
49e22585
CL
6351 if (err)
6352 return err;
345c905d 6353 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 6354 return -EINVAL;
49e22585 6355
e6d0e1dc 6356 slub_set_cpu_partial(s, objects);
49e22585
CL
6357 flush_all(s);
6358 return length;
6359}
6360SLAB_ATTR(cpu_partial);
6361
81819f0f
CL
6362static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6363{
62c70bce
JP
6364 if (!s->ctor)
6365 return 0;
bf16d19a 6366 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
6367}
6368SLAB_ATTR_RO(ctor);
6369
81819f0f
CL
6370static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6371{
bf16d19a 6372 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
6373}
6374SLAB_ATTR_RO(aliases);
6375
81819f0f
CL
6376static ssize_t partial_show(struct kmem_cache *s, char *buf)
6377{
d9acf4b7 6378 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
6379}
6380SLAB_ATTR_RO(partial);
6381
6382static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6383{
d9acf4b7 6384 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
6385}
6386SLAB_ATTR_RO(cpu_slabs);
6387
205ab99d
CL
6388static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6389{
6390 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6391}
6392SLAB_ATTR_RO(objects_partial);
6393
49e22585
CL
6394static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6395{
6396 int objects = 0;
bb192ed9 6397 int slabs = 0;
9c01e9af 6398 int cpu __maybe_unused;
bf16d19a 6399 int len = 0;
49e22585 6400
9c01e9af 6401#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6402 for_each_online_cpu(cpu) {
bb192ed9 6403 struct slab *slab;
a93cf07b 6404
bb192ed9 6405 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 6406
bb192ed9 6407 if (slab)
87654cf7 6408 slabs += data_race(slab->slabs);
49e22585 6409 }
9c01e9af 6410#endif
49e22585 6411
c2092c12 6412 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
6413 objects = (slabs * oo_objects(s->oo)) / 2;
6414 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 6415
c6c17c4d 6416#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6417 for_each_online_cpu(cpu) {
bb192ed9 6418 struct slab *slab;
a93cf07b 6419
bb192ed9
VB
6420 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6421 if (slab) {
87654cf7 6422 slabs = data_race(slab->slabs);
bb192ed9 6423 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 6424 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 6425 cpu, objects, slabs);
b47291ef 6426 }
49e22585
CL
6427 }
6428#endif
bf16d19a
JP
6429 len += sysfs_emit_at(buf, len, "\n");
6430
6431 return len;
49e22585
CL
6432}
6433SLAB_ATTR_RO(slabs_cpu_partial);
6434
a5a84755
CL
6435static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6436{
bf16d19a 6437 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 6438}
8f58119a 6439SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
6440
6441static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6442{
bf16d19a 6443 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
6444}
6445SLAB_ATTR_RO(hwcache_align);
6446
6447#ifdef CONFIG_ZONE_DMA
6448static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6449{
bf16d19a 6450 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
6451}
6452SLAB_ATTR_RO(cache_dma);
6453#endif
6454
346907ce 6455#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
6456static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6457{
bf16d19a 6458 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
6459}
6460SLAB_ATTR_RO(usersize);
346907ce 6461#endif
8eb8284b 6462
a5a84755
CL
6463static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6464{
bf16d19a 6465 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
6466}
6467SLAB_ATTR_RO(destroy_by_rcu);
6468
ab4d5ed5 6469#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
6470static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6471{
6472 return show_slab_objects(s, buf, SO_ALL);
6473}
6474SLAB_ATTR_RO(slabs);
6475
205ab99d
CL
6476static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6477{
6478 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6479}
6480SLAB_ATTR_RO(total_objects);
6481
81bd3179
XS
6482static ssize_t objects_show(struct kmem_cache *s, char *buf)
6483{
6484 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6485}
6486SLAB_ATTR_RO(objects);
6487
81819f0f
CL
6488static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6489{
bf16d19a 6490 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 6491}
060807f8 6492SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
6493
6494static ssize_t trace_show(struct kmem_cache *s, char *buf)
6495{
bf16d19a 6496 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 6497}
060807f8 6498SLAB_ATTR_RO(trace);
81819f0f 6499
81819f0f
CL
6500static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6501{
bf16d19a 6502 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
6503}
6504
ad38b5b1 6505SLAB_ATTR_RO(red_zone);
81819f0f
CL
6506
6507static ssize_t poison_show(struct kmem_cache *s, char *buf)
6508{
bf16d19a 6509 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
6510}
6511
ad38b5b1 6512SLAB_ATTR_RO(poison);
81819f0f
CL
6513
6514static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6515{
bf16d19a 6516 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
6517}
6518
ad38b5b1 6519SLAB_ATTR_RO(store_user);
81819f0f 6520
53e15af0
CL
6521static ssize_t validate_show(struct kmem_cache *s, char *buf)
6522{
6523 return 0;
6524}
6525
6526static ssize_t validate_store(struct kmem_cache *s,
6527 const char *buf, size_t length)
6528{
434e245d
CL
6529 int ret = -EINVAL;
6530
c7323a5a 6531 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
6532 ret = validate_slab_cache(s);
6533 if (ret >= 0)
6534 ret = length;
6535 }
6536 return ret;
53e15af0
CL
6537}
6538SLAB_ATTR(validate);
a5a84755 6539
a5a84755
CL
6540#endif /* CONFIG_SLUB_DEBUG */
6541
6542#ifdef CONFIG_FAILSLAB
6543static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6544{
bf16d19a 6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 6546}
7c82b3b3
AA
6547
6548static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6549 size_t length)
6550{
6551 if (s->refcount > 1)
6552 return -EINVAL;
6553
6554 if (buf[0] == '1')
6555 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6556 else
6557 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6558
6559 return length;
6560}
6561SLAB_ATTR(failslab);
ab4d5ed5 6562#endif
53e15af0 6563
2086d26a
CL
6564static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6565{
6566 return 0;
6567}
6568
6569static ssize_t shrink_store(struct kmem_cache *s,
6570 const char *buf, size_t length)
6571{
832f37f5 6572 if (buf[0] == '1')
10befea9 6573 kmem_cache_shrink(s);
832f37f5 6574 else
2086d26a
CL
6575 return -EINVAL;
6576 return length;
6577}
6578SLAB_ATTR(shrink);
6579
81819f0f 6580#ifdef CONFIG_NUMA
9824601e 6581static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 6582{
bf16d19a 6583 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
6584}
6585
9824601e 6586static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
6587 const char *buf, size_t length)
6588{
eb7235eb 6589 unsigned int ratio;
0121c619
CL
6590 int err;
6591
eb7235eb 6592 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
6593 if (err)
6594 return err;
eb7235eb
AD
6595 if (ratio > 100)
6596 return -ERANGE;
0121c619 6597
eb7235eb 6598 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 6599
81819f0f
CL
6600 return length;
6601}
9824601e 6602SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
6603#endif
6604
8ff12cfc 6605#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
6606static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6607{
6608 unsigned long sum = 0;
6609 int cpu;
bf16d19a 6610 int len = 0;
6da2ec56 6611 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
6612
6613 if (!data)
6614 return -ENOMEM;
6615
6616 for_each_online_cpu(cpu) {
9dfc6e68 6617 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
6618
6619 data[cpu] = x;
6620 sum += x;
6621 }
6622
bf16d19a 6623 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 6624
50ef37b9 6625#ifdef CONFIG_SMP
8ff12cfc 6626 for_each_online_cpu(cpu) {
bf16d19a
JP
6627 if (data[cpu])
6628 len += sysfs_emit_at(buf, len, " C%d=%u",
6629 cpu, data[cpu]);
8ff12cfc 6630 }
50ef37b9 6631#endif
8ff12cfc 6632 kfree(data);
bf16d19a
JP
6633 len += sysfs_emit_at(buf, len, "\n");
6634
6635 return len;
8ff12cfc
CL
6636}
6637
78eb00cc
DR
6638static void clear_stat(struct kmem_cache *s, enum stat_item si)
6639{
6640 int cpu;
6641
6642 for_each_online_cpu(cpu)
9dfc6e68 6643 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
6644}
6645
8ff12cfc
CL
6646#define STAT_ATTR(si, text) \
6647static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6648{ \
6649 return show_stat(s, buf, si); \
6650} \
78eb00cc
DR
6651static ssize_t text##_store(struct kmem_cache *s, \
6652 const char *buf, size_t length) \
6653{ \
6654 if (buf[0] != '0') \
6655 return -EINVAL; \
6656 clear_stat(s, si); \
6657 return length; \
6658} \
6659SLAB_ATTR(text); \
8ff12cfc
CL
6660
6661STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6662STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6663STAT_ATTR(FREE_FASTPATH, free_fastpath);
6664STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6665STAT_ATTR(FREE_FROZEN, free_frozen);
6666STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6667STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6668STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6669STAT_ATTR(ALLOC_SLAB, alloc_slab);
6670STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 6671STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
6672STAT_ATTR(FREE_SLAB, free_slab);
6673STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6674STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6675STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6676STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6677STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6678STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 6679STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 6680STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
6681STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6682STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
6683STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6684STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
6685STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6686STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 6687#endif /* CONFIG_SLUB_STATS */
8ff12cfc 6688
b84e04f1
IK
6689#ifdef CONFIG_KFENCE
6690static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6691{
6692 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6693}
6694
6695static ssize_t skip_kfence_store(struct kmem_cache *s,
6696 const char *buf, size_t length)
6697{
6698 int ret = length;
6699
6700 if (buf[0] == '0')
6701 s->flags &= ~SLAB_SKIP_KFENCE;
6702 else if (buf[0] == '1')
6703 s->flags |= SLAB_SKIP_KFENCE;
6704 else
6705 ret = -EINVAL;
6706
6707 return ret;
6708}
6709SLAB_ATTR(skip_kfence);
6710#endif
6711
06428780 6712static struct attribute *slab_attrs[] = {
81819f0f
CL
6713 &slab_size_attr.attr,
6714 &object_size_attr.attr,
6715 &objs_per_slab_attr.attr,
6716 &order_attr.attr,
73d342b1 6717 &min_partial_attr.attr,
49e22585 6718 &cpu_partial_attr.attr,
205ab99d 6719 &objects_partial_attr.attr,
81819f0f
CL
6720 &partial_attr.attr,
6721 &cpu_slabs_attr.attr,
6722 &ctor_attr.attr,
81819f0f
CL
6723 &aliases_attr.attr,
6724 &align_attr.attr,
81819f0f
CL
6725 &hwcache_align_attr.attr,
6726 &reclaim_account_attr.attr,
6727 &destroy_by_rcu_attr.attr,
a5a84755 6728 &shrink_attr.attr,
49e22585 6729 &slabs_cpu_partial_attr.attr,
ab4d5ed5 6730#ifdef CONFIG_SLUB_DEBUG
a5a84755 6731 &total_objects_attr.attr,
81bd3179 6732 &objects_attr.attr,
a5a84755
CL
6733 &slabs_attr.attr,
6734 &sanity_checks_attr.attr,
6735 &trace_attr.attr,
81819f0f
CL
6736 &red_zone_attr.attr,
6737 &poison_attr.attr,
6738 &store_user_attr.attr,
53e15af0 6739 &validate_attr.attr,
ab4d5ed5 6740#endif
81819f0f
CL
6741#ifdef CONFIG_ZONE_DMA
6742 &cache_dma_attr.attr,
6743#endif
6744#ifdef CONFIG_NUMA
9824601e 6745 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
6746#endif
6747#ifdef CONFIG_SLUB_STATS
6748 &alloc_fastpath_attr.attr,
6749 &alloc_slowpath_attr.attr,
6750 &free_fastpath_attr.attr,
6751 &free_slowpath_attr.attr,
6752 &free_frozen_attr.attr,
6753 &free_add_partial_attr.attr,
6754 &free_remove_partial_attr.attr,
6755 &alloc_from_partial_attr.attr,
6756 &alloc_slab_attr.attr,
6757 &alloc_refill_attr.attr,
e36a2652 6758 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6759 &free_slab_attr.attr,
6760 &cpuslab_flush_attr.attr,
6761 &deactivate_full_attr.attr,
6762 &deactivate_empty_attr.attr,
6763 &deactivate_to_head_attr.attr,
6764 &deactivate_to_tail_attr.attr,
6765 &deactivate_remote_frees_attr.attr,
03e404af 6766 &deactivate_bypass_attr.attr,
65c3376a 6767 &order_fallback_attr.attr,
b789ef51
CL
6768 &cmpxchg_double_fail_attr.attr,
6769 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6770 &cpu_partial_alloc_attr.attr,
6771 &cpu_partial_free_attr.attr,
8028dcea
AS
6772 &cpu_partial_node_attr.attr,
6773 &cpu_partial_drain_attr.attr,
81819f0f 6774#endif
4c13dd3b
DM
6775#ifdef CONFIG_FAILSLAB
6776 &failslab_attr.attr,
6777#endif
346907ce 6778#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6779 &usersize_attr.attr,
346907ce 6780#endif
b84e04f1
IK
6781#ifdef CONFIG_KFENCE
6782 &skip_kfence_attr.attr,
6783#endif
4c13dd3b 6784
81819f0f
CL
6785 NULL
6786};
6787
1fdaaa23 6788static const struct attribute_group slab_attr_group = {
81819f0f
CL
6789 .attrs = slab_attrs,
6790};
6791
6792static ssize_t slab_attr_show(struct kobject *kobj,
6793 struct attribute *attr,
6794 char *buf)
6795{
6796 struct slab_attribute *attribute;
6797 struct kmem_cache *s;
81819f0f
CL
6798
6799 attribute = to_slab_attr(attr);
6800 s = to_slab(kobj);
6801
6802 if (!attribute->show)
6803 return -EIO;
6804
2bfbb027 6805 return attribute->show(s, buf);
81819f0f
CL
6806}
6807
6808static ssize_t slab_attr_store(struct kobject *kobj,
6809 struct attribute *attr,
6810 const char *buf, size_t len)
6811{
6812 struct slab_attribute *attribute;
6813 struct kmem_cache *s;
81819f0f
CL
6814
6815 attribute = to_slab_attr(attr);
6816 s = to_slab(kobj);
6817
6818 if (!attribute->store)
6819 return -EIO;
6820
2bfbb027 6821 return attribute->store(s, buf, len);
81819f0f
CL
6822}
6823
41a21285
CL
6824static void kmem_cache_release(struct kobject *k)
6825{
6826 slab_kmem_cache_release(to_slab(k));
6827}
6828
52cf25d0 6829static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6830 .show = slab_attr_show,
6831 .store = slab_attr_store,
6832};
6833
9ebe720e 6834static const struct kobj_type slab_ktype = {
81819f0f 6835 .sysfs_ops = &slab_sysfs_ops,
41a21285 6836 .release = kmem_cache_release,
81819f0f
CL
6837};
6838
27c3a314 6839static struct kset *slab_kset;
81819f0f 6840
9a41707b
VD
6841static inline struct kset *cache_kset(struct kmem_cache *s)
6842{
9a41707b
VD
6843 return slab_kset;
6844}
6845
d65360f2 6846#define ID_STR_LENGTH 32
81819f0f
CL
6847
6848/* Create a unique string id for a slab cache:
6446faa2
CL
6849 *
6850 * Format :[flags-]size
81819f0f
CL
6851 */
6852static char *create_unique_id(struct kmem_cache *s)
6853{
6854 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6855 char *p = name;
6856
7e9c323c
CY
6857 if (!name)
6858 return ERR_PTR(-ENOMEM);
81819f0f
CL
6859
6860 *p++ = ':';
6861 /*
6862 * First flags affecting slabcache operations. We will only
6863 * get here for aliasable slabs so we do not need to support
6864 * too many flags. The flags here must cover all flags that
6865 * are matched during merging to guarantee that the id is
6866 * unique.
6867 */
6868 if (s->flags & SLAB_CACHE_DMA)
6869 *p++ = 'd';
6d6ea1e9
NB
6870 if (s->flags & SLAB_CACHE_DMA32)
6871 *p++ = 'D';
81819f0f
CL
6872 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6873 *p++ = 'a';
becfda68 6874 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6875 *p++ = 'F';
230e9fc2
VD
6876 if (s->flags & SLAB_ACCOUNT)
6877 *p++ = 'A';
81819f0f
CL
6878 if (p != name + 1)
6879 *p++ = '-';
d65360f2 6880 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6881
d65360f2
CY
6882 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6883 kfree(name);
6884 return ERR_PTR(-EINVAL);
6885 }
68ef169a 6886 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6887 return name;
6888}
6889
6890static int sysfs_slab_add(struct kmem_cache *s)
6891{
6892 int err;
6893 const char *name;
1663f26d 6894 struct kset *kset = cache_kset(s);
45530c44 6895 int unmergeable = slab_unmergeable(s);
81819f0f 6896
11066386
MC
6897 if (!unmergeable && disable_higher_order_debug &&
6898 (slub_debug & DEBUG_METADATA_FLAGS))
6899 unmergeable = 1;
6900
81819f0f
CL
6901 if (unmergeable) {
6902 /*
6903 * Slabcache can never be merged so we can use the name proper.
6904 * This is typically the case for debug situations. In that
6905 * case we can catch duplicate names easily.
6906 */
27c3a314 6907 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6908 name = s->name;
6909 } else {
6910 /*
6911 * Create a unique name for the slab as a target
6912 * for the symlinks.
6913 */
6914 name = create_unique_id(s);
7e9c323c
CY
6915 if (IS_ERR(name))
6916 return PTR_ERR(name);
81819f0f
CL
6917 }
6918
1663f26d 6919 s->kobj.kset = kset;
26e4f205 6920 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6921 if (err)
80da026a 6922 goto out;
81819f0f
CL
6923
6924 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6925 if (err)
6926 goto out_del_kobj;
9a41707b 6927
81819f0f
CL
6928 if (!unmergeable) {
6929 /* Setup first alias */
6930 sysfs_slab_alias(s, s->name);
81819f0f 6931 }
54b6a731
DJ
6932out:
6933 if (!unmergeable)
6934 kfree(name);
6935 return err;
6936out_del_kobj:
6937 kobject_del(&s->kobj);
54b6a731 6938 goto out;
81819f0f
CL
6939}
6940
d50d82fa
MP
6941void sysfs_slab_unlink(struct kmem_cache *s)
6942{
011568eb 6943 kobject_del(&s->kobj);
d50d82fa
MP
6944}
6945
bf5eb3de
TH
6946void sysfs_slab_release(struct kmem_cache *s)
6947{
011568eb 6948 kobject_put(&s->kobj);
81819f0f
CL
6949}
6950
6951/*
6952 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6953 * available lest we lose that information.
81819f0f
CL
6954 */
6955struct saved_alias {
6956 struct kmem_cache *s;
6957 const char *name;
6958 struct saved_alias *next;
6959};
6960
5af328a5 6961static struct saved_alias *alias_list;
81819f0f
CL
6962
6963static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6964{
6965 struct saved_alias *al;
6966
97d06609 6967 if (slab_state == FULL) {
81819f0f
CL
6968 /*
6969 * If we have a leftover link then remove it.
6970 */
27c3a314
GKH
6971 sysfs_remove_link(&slab_kset->kobj, name);
6972 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6973 }
6974
6975 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6976 if (!al)
6977 return -ENOMEM;
6978
6979 al->s = s;
6980 al->name = name;
6981 al->next = alias_list;
6982 alias_list = al;
68ef169a 6983 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6984 return 0;
6985}
6986
6987static int __init slab_sysfs_init(void)
6988{
5b95a4ac 6989 struct kmem_cache *s;
81819f0f
CL
6990 int err;
6991
18004c5d 6992 mutex_lock(&slab_mutex);
2bce6485 6993
d7660ce5 6994 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6995 if (!slab_kset) {
18004c5d 6996 mutex_unlock(&slab_mutex);
f9f58285 6997 pr_err("Cannot register slab subsystem.\n");
35973232 6998 return -ENOMEM;
81819f0f
CL
6999 }
7000
97d06609 7001 slab_state = FULL;
26a7bd03 7002
5b95a4ac 7003 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 7004 err = sysfs_slab_add(s);
5d540fb7 7005 if (err)
f9f58285
FF
7006 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7007 s->name);
26a7bd03 7008 }
81819f0f
CL
7009
7010 while (alias_list) {
7011 struct saved_alias *al = alias_list;
7012
7013 alias_list = alias_list->next;
7014 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 7015 if (err)
f9f58285
FF
7016 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7017 al->name);
81819f0f
CL
7018 kfree(al);
7019 }
7020
18004c5d 7021 mutex_unlock(&slab_mutex);
81819f0f
CL
7022 return 0;
7023}
1a5ad30b 7024late_initcall(slab_sysfs_init);
b1a413a3 7025#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 7026
64dd6849
FM
7027#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7028static int slab_debugfs_show(struct seq_file *seq, void *v)
7029{
64dd6849 7030 struct loc_track *t = seq->private;
005a79e5
GS
7031 struct location *l;
7032 unsigned long idx;
64dd6849 7033
005a79e5 7034 idx = (unsigned long) t->idx;
64dd6849
FM
7035 if (idx < t->count) {
7036 l = &t->loc[idx];
7037
7038 seq_printf(seq, "%7ld ", l->count);
7039
7040 if (l->addr)
7041 seq_printf(seq, "%pS", (void *)l->addr);
7042 else
7043 seq_puts(seq, "<not-available>");
7044
6edf2576
FT
7045 if (l->waste)
7046 seq_printf(seq, " waste=%lu/%lu",
7047 l->count * l->waste, l->waste);
7048
64dd6849
FM
7049 if (l->sum_time != l->min_time) {
7050 seq_printf(seq, " age=%ld/%llu/%ld",
7051 l->min_time, div_u64(l->sum_time, l->count),
7052 l->max_time);
7053 } else
7054 seq_printf(seq, " age=%ld", l->min_time);
7055
7056 if (l->min_pid != l->max_pid)
7057 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7058 else
7059 seq_printf(seq, " pid=%ld",
7060 l->min_pid);
7061
7062 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7063 seq_printf(seq, " cpus=%*pbl",
7064 cpumask_pr_args(to_cpumask(l->cpus)));
7065
7066 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7067 seq_printf(seq, " nodes=%*pbl",
7068 nodemask_pr_args(&l->nodes));
7069
8ea9fb92
OG
7070#ifdef CONFIG_STACKDEPOT
7071 {
7072 depot_stack_handle_t handle;
7073 unsigned long *entries;
7074 unsigned int nr_entries, j;
7075
7076 handle = READ_ONCE(l->handle);
7077 if (handle) {
7078 nr_entries = stack_depot_fetch(handle, &entries);
7079 seq_puts(seq, "\n");
7080 for (j = 0; j < nr_entries; j++)
7081 seq_printf(seq, " %pS\n", (void *)entries[j]);
7082 }
7083 }
7084#endif
64dd6849
FM
7085 seq_puts(seq, "\n");
7086 }
7087
7088 if (!idx && !t->count)
7089 seq_puts(seq, "No data\n");
7090
7091 return 0;
7092}
7093
7094static void slab_debugfs_stop(struct seq_file *seq, void *v)
7095{
7096}
7097
7098static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7099{
7100 struct loc_track *t = seq->private;
7101
005a79e5 7102 t->idx = ++(*ppos);
64dd6849 7103 if (*ppos <= t->count)
005a79e5 7104 return ppos;
64dd6849
FM
7105
7106 return NULL;
7107}
7108
553c0369
OG
7109static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7110{
7111 struct location *loc1 = (struct location *)a;
7112 struct location *loc2 = (struct location *)b;
7113
7114 if (loc1->count > loc2->count)
7115 return -1;
7116 else
7117 return 1;
7118}
7119
64dd6849
FM
7120static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7121{
005a79e5
GS
7122 struct loc_track *t = seq->private;
7123
7124 t->idx = *ppos;
64dd6849
FM
7125 return ppos;
7126}
7127
7128static const struct seq_operations slab_debugfs_sops = {
7129 .start = slab_debugfs_start,
7130 .next = slab_debugfs_next,
7131 .stop = slab_debugfs_stop,
7132 .show = slab_debugfs_show,
7133};
7134
7135static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7136{
7137
7138 struct kmem_cache_node *n;
7139 enum track_item alloc;
7140 int node;
7141 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7142 sizeof(struct loc_track));
7143 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
7144 unsigned long *obj_map;
7145
2127d225
ML
7146 if (!t)
7147 return -ENOMEM;
7148
b3fd64e1 7149 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
7150 if (!obj_map) {
7151 seq_release_private(inode, filep);
b3fd64e1 7152 return -ENOMEM;
2127d225 7153 }
64dd6849
FM
7154
7155 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7156 alloc = TRACK_ALLOC;
7157 else
7158 alloc = TRACK_FREE;
7159
b3fd64e1
VB
7160 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7161 bitmap_free(obj_map);
2127d225 7162 seq_release_private(inode, filep);
64dd6849 7163 return -ENOMEM;
b3fd64e1 7164 }
64dd6849 7165
64dd6849
FM
7166 for_each_kmem_cache_node(s, node, n) {
7167 unsigned long flags;
bb192ed9 7168 struct slab *slab;
64dd6849 7169
8040cbf5 7170 if (!node_nr_slabs(n))
64dd6849
FM
7171 continue;
7172
7173 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
7174 list_for_each_entry(slab, &n->partial, slab_list)
7175 process_slab(t, s, slab, alloc, obj_map);
7176 list_for_each_entry(slab, &n->full, slab_list)
7177 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
7178 spin_unlock_irqrestore(&n->list_lock, flags);
7179 }
7180
553c0369
OG
7181 /* Sort locations by count */
7182 sort_r(t->loc, t->count, sizeof(struct location),
7183 cmp_loc_by_count, NULL, NULL);
7184
b3fd64e1 7185 bitmap_free(obj_map);
64dd6849
FM
7186 return 0;
7187}
7188
7189static int slab_debug_trace_release(struct inode *inode, struct file *file)
7190{
7191 struct seq_file *seq = file->private_data;
7192 struct loc_track *t = seq->private;
7193
7194 free_loc_track(t);
7195 return seq_release_private(inode, file);
7196}
7197
7198static const struct file_operations slab_debugfs_fops = {
7199 .open = slab_debug_trace_open,
7200 .read = seq_read,
7201 .llseek = seq_lseek,
7202 .release = slab_debug_trace_release,
7203};
7204
7205static void debugfs_slab_add(struct kmem_cache *s)
7206{
7207 struct dentry *slab_cache_dir;
7208
7209 if (unlikely(!slab_debugfs_root))
7210 return;
7211
7212 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7213
7214 debugfs_create_file("alloc_traces", 0400,
7215 slab_cache_dir, s, &slab_debugfs_fops);
7216
7217 debugfs_create_file("free_traces", 0400,
7218 slab_cache_dir, s, &slab_debugfs_fops);
7219}
7220
7221void debugfs_slab_release(struct kmem_cache *s)
7222{
aa4a8605 7223 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
7224}
7225
7226static int __init slab_debugfs_init(void)
7227{
7228 struct kmem_cache *s;
7229
7230 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7231
7232 list_for_each_entry(s, &slab_caches, list)
7233 if (s->flags & SLAB_STORE_USER)
7234 debugfs_slab_add(s);
7235
7236 return 0;
7237
7238}
7239__initcall(slab_debugfs_init);
7240#endif
57ed3eda
PE
7241/*
7242 * The /proc/slabinfo ABI
7243 */
5b365771 7244#ifdef CONFIG_SLUB_DEBUG
0d7561c6 7245void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 7246{
57ed3eda 7247 unsigned long nr_slabs = 0;
205ab99d
CL
7248 unsigned long nr_objs = 0;
7249 unsigned long nr_free = 0;
57ed3eda 7250 int node;
fa45dc25 7251 struct kmem_cache_node *n;
57ed3eda 7252
fa45dc25 7253 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
7254 nr_slabs += node_nr_slabs(n);
7255 nr_objs += node_nr_objs(n);
046f4c69 7256 nr_free += count_partial_free_approx(n);
57ed3eda
PE
7257 }
7258
0d7561c6
GC
7259 sinfo->active_objs = nr_objs - nr_free;
7260 sinfo->num_objs = nr_objs;
7261 sinfo->active_slabs = nr_slabs;
7262 sinfo->num_slabs = nr_slabs;
7263 sinfo->objects_per_slab = oo_objects(s->oo);
7264 sinfo->cache_order = oo_order(s->oo);
57ed3eda 7265}
5b365771 7266#endif /* CONFIG_SLUB_DEBUG */
This page took 3.435095 seconds and 4 git commands to generate.