]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
2482ddec | 36 | #include <linux/random.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 54 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 55 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
56 | * B. page->inuse -> Number of objects in use |
57 | * C. page->objects -> Number of objects in page | |
58 | * D. page->frozen -> frozen state | |
881db7fb CL |
59 | * |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
632b2ef0 LX |
61 | * on any list except per cpu partial list. The processor that froze the |
62 | * slab is the one who can perform list operations on the page. Other | |
63 | * processors may put objects onto the freelist but the processor that | |
64 | * froze the slab is the only one that can retrieve the objects from the | |
65 | * page's freelist. | |
81819f0f CL |
66 | * |
67 | * The list_lock protects the partial and full list on each node and | |
68 | * the partial slab counter. If taken then no new slabs may be added or | |
69 | * removed from the lists nor make the number of partial slabs be modified. | |
70 | * (Note that the total number of slabs is an atomic value that may be | |
71 | * modified without taking the list lock). | |
72 | * | |
73 | * The list_lock is a centralized lock and thus we avoid taking it as | |
74 | * much as possible. As long as SLUB does not have to handle partial | |
75 | * slabs, operations can continue without any centralized lock. F.e. | |
76 | * allocating a long series of objects that fill up slabs does not require | |
77 | * the list lock. | |
81819f0f CL |
78 | * Interrupts are disabled during allocation and deallocation in order to |
79 | * make the slab allocator safe to use in the context of an irq. In addition | |
80 | * interrupts are disabled to ensure that the processor does not change | |
81 | * while handling per_cpu slabs, due to kernel preemption. | |
82 | * | |
83 | * SLUB assigns one slab for allocation to each processor. | |
84 | * Allocations only occur from these slabs called cpu slabs. | |
85 | * | |
672bba3a CL |
86 | * Slabs with free elements are kept on a partial list and during regular |
87 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 88 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
89 | * We track full slabs for debugging purposes though because otherwise we |
90 | * cannot scan all objects. | |
81819f0f CL |
91 | * |
92 | * Slabs are freed when they become empty. Teardown and setup is | |
93 | * minimal so we rely on the page allocators per cpu caches for | |
94 | * fast frees and allocs. | |
95 | * | |
aed68148 | 96 | * page->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
97 | * This means that the slab is dedicated to a purpose |
98 | * such as satisfying allocations for a specific | |
99 | * processor. Objects may be freed in the slab while | |
100 | * it is frozen but slab_free will then skip the usual | |
101 | * list operations. It is up to the processor holding | |
102 | * the slab to integrate the slab into the slab lists | |
103 | * when the slab is no longer needed. | |
104 | * | |
105 | * One use of this flag is to mark slabs that are | |
106 | * used for allocations. Then such a slab becomes a cpu | |
107 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 108 | * freelist that allows lockless access to |
894b8788 CL |
109 | * free objects in addition to the regular freelist |
110 | * that requires the slab lock. | |
81819f0f | 111 | * |
aed68148 | 112 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 113 | * options set. This moves slab handling out of |
894b8788 | 114 | * the fast path and disables lockless freelists. |
81819f0f CL |
115 | */ |
116 | ||
ca0cab65 VB |
117 | #ifdef CONFIG_SLUB_DEBUG |
118 | #ifdef CONFIG_SLUB_DEBUG_ON | |
119 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
120 | #else | |
121 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
122 | #endif | |
123 | #endif | |
124 | ||
59052e89 VB |
125 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
126 | { | |
127 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 128 | } |
5577bd8a | 129 | |
117d54df | 130 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 131 | { |
59052e89 | 132 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
133 | p += s->red_left_pad; |
134 | ||
135 | return p; | |
136 | } | |
137 | ||
345c905d JK |
138 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
139 | { | |
140 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
141 | return !kmem_cache_debug(s); | |
142 | #else | |
143 | return false; | |
144 | #endif | |
145 | } | |
146 | ||
81819f0f CL |
147 | /* |
148 | * Issues still to be resolved: | |
149 | * | |
81819f0f CL |
150 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
151 | * | |
81819f0f CL |
152 | * - Variable sizing of the per node arrays |
153 | */ | |
154 | ||
155 | /* Enable to test recovery from slab corruption on boot */ | |
156 | #undef SLUB_RESILIENCY_TEST | |
157 | ||
b789ef51 CL |
158 | /* Enable to log cmpxchg failures */ |
159 | #undef SLUB_DEBUG_CMPXCHG | |
160 | ||
2086d26a CL |
161 | /* |
162 | * Mininum number of partial slabs. These will be left on the partial | |
163 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
164 | */ | |
76be8950 | 165 | #define MIN_PARTIAL 5 |
e95eed57 | 166 | |
2086d26a CL |
167 | /* |
168 | * Maximum number of desirable partial slabs. | |
169 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 170 | * sort the partial list by the number of objects in use. |
2086d26a CL |
171 | */ |
172 | #define MAX_PARTIAL 10 | |
173 | ||
becfda68 | 174 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 175 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 176 | |
149daaf3 LA |
177 | /* |
178 | * These debug flags cannot use CMPXCHG because there might be consistency | |
179 | * issues when checking or reading debug information | |
180 | */ | |
181 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
182 | SLAB_TRACE) | |
183 | ||
184 | ||
fa5ec8a1 | 185 | /* |
3de47213 DR |
186 | * Debugging flags that require metadata to be stored in the slab. These get |
187 | * disabled when slub_debug=O is used and a cache's min order increases with | |
188 | * metadata. | |
fa5ec8a1 | 189 | */ |
3de47213 | 190 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 191 | |
210b5c06 CG |
192 | #define OO_SHIFT 16 |
193 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 194 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 195 | |
81819f0f | 196 | /* Internal SLUB flags */ |
d50112ed | 197 | /* Poison object */ |
4fd0b46e | 198 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 199 | /* Use cmpxchg_double */ |
4fd0b46e | 200 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 201 | |
02cbc874 CL |
202 | /* |
203 | * Tracking user of a slab. | |
204 | */ | |
d6543e39 | 205 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 206 | struct track { |
ce71e27c | 207 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
208 | #ifdef CONFIG_STACKTRACE |
209 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
210 | #endif | |
02cbc874 CL |
211 | int cpu; /* Was running on cpu */ |
212 | int pid; /* Pid context */ | |
213 | unsigned long when; /* When did the operation occur */ | |
214 | }; | |
215 | ||
216 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
217 | ||
ab4d5ed5 | 218 | #ifdef CONFIG_SYSFS |
81819f0f CL |
219 | static int sysfs_slab_add(struct kmem_cache *); |
220 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 221 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 222 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 223 | #else |
0c710013 CL |
224 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
225 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
226 | { return 0; } | |
107dab5c | 227 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 228 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
229 | #endif |
230 | ||
4fdccdfb | 231 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
232 | { |
233 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
234 | /* |
235 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
236 | * avoid this_cpu_add()'s irq-disable overhead. | |
237 | */ | |
238 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
239 | #endif |
240 | } | |
241 | ||
81819f0f CL |
242 | /******************************************************************** |
243 | * Core slab cache functions | |
244 | *******************************************************************/ | |
245 | ||
2482ddec KC |
246 | /* |
247 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
248 | * with an XOR of the address where the pointer is held and a per-cache | |
249 | * random number. | |
250 | */ | |
251 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
252 | unsigned long ptr_addr) | |
253 | { | |
254 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 AK |
255 | /* |
256 | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | |
257 | * Normally, this doesn't cause any issues, as both set_freepointer() | |
258 | * and get_freepointer() are called with a pointer with the same tag. | |
259 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
260 | * example, when __free_slub() iterates over objects in a cache, it | |
261 | * passes untagged pointers to check_object(). check_object() in turns | |
262 | * calls get_freepointer() with an untagged pointer, which causes the | |
263 | * freepointer to be restored incorrectly. | |
264 | */ | |
265 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 266 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
267 | #else |
268 | return ptr; | |
269 | #endif | |
270 | } | |
271 | ||
272 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
273 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
274 | void *ptr_addr) | |
275 | { | |
276 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
277 | (unsigned long)ptr_addr); | |
278 | } | |
279 | ||
7656c72b CL |
280 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
281 | { | |
2482ddec | 282 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
283 | } |
284 | ||
0ad9500e ED |
285 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
286 | { | |
0882ff91 | 287 | prefetch(object + s->offset); |
0ad9500e ED |
288 | } |
289 | ||
1393d9a1 CL |
290 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
291 | { | |
2482ddec | 292 | unsigned long freepointer_addr; |
1393d9a1 CL |
293 | void *p; |
294 | ||
8e57f8ac | 295 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
296 | return get_freepointer(s, object); |
297 | ||
2482ddec | 298 | freepointer_addr = (unsigned long)object + s->offset; |
fe557319 | 299 | copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); |
2482ddec | 300 | return freelist_ptr(s, p, freepointer_addr); |
1393d9a1 CL |
301 | } |
302 | ||
7656c72b CL |
303 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
304 | { | |
2482ddec KC |
305 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
306 | ||
ce6fa91b AP |
307 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
308 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
309 | #endif | |
310 | ||
2482ddec | 311 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
312 | } |
313 | ||
314 | /* Loop over all objects in a slab */ | |
224a88be | 315 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
316 | for (__p = fixup_red_left(__s, __addr); \ |
317 | __p < (__addr) + (__objects) * (__s)->size; \ | |
318 | __p += (__s)->size) | |
7656c72b | 319 | |
9736d2a9 | 320 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 321 | { |
9736d2a9 | 322 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
323 | } |
324 | ||
19af27af | 325 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 326 | unsigned int size) |
834f3d11 CL |
327 | { |
328 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 329 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
330 | }; |
331 | ||
332 | return x; | |
333 | } | |
334 | ||
19af27af | 335 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 336 | { |
210b5c06 | 337 | return x.x >> OO_SHIFT; |
834f3d11 CL |
338 | } |
339 | ||
19af27af | 340 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 341 | { |
210b5c06 | 342 | return x.x & OO_MASK; |
834f3d11 CL |
343 | } |
344 | ||
881db7fb CL |
345 | /* |
346 | * Per slab locking using the pagelock | |
347 | */ | |
348 | static __always_inline void slab_lock(struct page *page) | |
349 | { | |
48c935ad | 350 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
351 | bit_spin_lock(PG_locked, &page->flags); |
352 | } | |
353 | ||
354 | static __always_inline void slab_unlock(struct page *page) | |
355 | { | |
48c935ad | 356 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
357 | __bit_spin_unlock(PG_locked, &page->flags); |
358 | } | |
359 | ||
1d07171c CL |
360 | /* Interrupts must be disabled (for the fallback code to work right) */ |
361 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
362 | void *freelist_old, unsigned long counters_old, | |
363 | void *freelist_new, unsigned long counters_new, | |
364 | const char *n) | |
365 | { | |
366 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
367 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
368 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 369 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 370 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
371 | freelist_old, counters_old, |
372 | freelist_new, counters_new)) | |
6f6528a1 | 373 | return true; |
1d07171c CL |
374 | } else |
375 | #endif | |
376 | { | |
377 | slab_lock(page); | |
d0e0ac97 CG |
378 | if (page->freelist == freelist_old && |
379 | page->counters == counters_old) { | |
1d07171c | 380 | page->freelist = freelist_new; |
7d27a04b | 381 | page->counters = counters_new; |
1d07171c | 382 | slab_unlock(page); |
6f6528a1 | 383 | return true; |
1d07171c CL |
384 | } |
385 | slab_unlock(page); | |
386 | } | |
387 | ||
388 | cpu_relax(); | |
389 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
390 | ||
391 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 392 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
393 | #endif |
394 | ||
6f6528a1 | 395 | return false; |
1d07171c CL |
396 | } |
397 | ||
b789ef51 CL |
398 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
399 | void *freelist_old, unsigned long counters_old, | |
400 | void *freelist_new, unsigned long counters_new, | |
401 | const char *n) | |
402 | { | |
2565409f HC |
403 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
404 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 405 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 406 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
407 | freelist_old, counters_old, |
408 | freelist_new, counters_new)) | |
6f6528a1 | 409 | return true; |
b789ef51 CL |
410 | } else |
411 | #endif | |
412 | { | |
1d07171c CL |
413 | unsigned long flags; |
414 | ||
415 | local_irq_save(flags); | |
881db7fb | 416 | slab_lock(page); |
d0e0ac97 CG |
417 | if (page->freelist == freelist_old && |
418 | page->counters == counters_old) { | |
b789ef51 | 419 | page->freelist = freelist_new; |
7d27a04b | 420 | page->counters = counters_new; |
881db7fb | 421 | slab_unlock(page); |
1d07171c | 422 | local_irq_restore(flags); |
6f6528a1 | 423 | return true; |
b789ef51 | 424 | } |
881db7fb | 425 | slab_unlock(page); |
1d07171c | 426 | local_irq_restore(flags); |
b789ef51 CL |
427 | } |
428 | ||
429 | cpu_relax(); | |
430 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
431 | ||
432 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 433 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
434 | #endif |
435 | ||
6f6528a1 | 436 | return false; |
b789ef51 CL |
437 | } |
438 | ||
41ecc55b | 439 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 YZ |
440 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
441 | static DEFINE_SPINLOCK(object_map_lock); | |
442 | ||
5f80b13a CL |
443 | /* |
444 | * Determine a map of object in use on a page. | |
445 | * | |
881db7fb | 446 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
447 | * not vanish from under us. |
448 | */ | |
90e9f6a6 | 449 | static unsigned long *get_map(struct kmem_cache *s, struct page *page) |
31364c2e | 450 | __acquires(&object_map_lock) |
5f80b13a CL |
451 | { |
452 | void *p; | |
453 | void *addr = page_address(page); | |
454 | ||
90e9f6a6 YZ |
455 | VM_BUG_ON(!irqs_disabled()); |
456 | ||
457 | spin_lock(&object_map_lock); | |
458 | ||
459 | bitmap_zero(object_map, page->objects); | |
460 | ||
5f80b13a | 461 | for (p = page->freelist; p; p = get_freepointer(s, p)) |
4138fdfc | 462 | set_bit(__obj_to_index(s, addr, p), object_map); |
90e9f6a6 YZ |
463 | |
464 | return object_map; | |
465 | } | |
466 | ||
81aba9e0 | 467 | static void put_map(unsigned long *map) __releases(&object_map_lock) |
90e9f6a6 YZ |
468 | { |
469 | VM_BUG_ON(map != object_map); | |
90e9f6a6 | 470 | spin_unlock(&object_map_lock); |
5f80b13a CL |
471 | } |
472 | ||
870b1fbb | 473 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
474 | { |
475 | if (s->flags & SLAB_RED_ZONE) | |
476 | return s->size - s->red_left_pad; | |
477 | ||
478 | return s->size; | |
479 | } | |
480 | ||
481 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
482 | { | |
483 | if (s->flags & SLAB_RED_ZONE) | |
484 | p -= s->red_left_pad; | |
485 | ||
486 | return p; | |
487 | } | |
488 | ||
41ecc55b CL |
489 | /* |
490 | * Debug settings: | |
491 | */ | |
89d3c87e | 492 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 493 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 494 | #else |
d50112ed | 495 | static slab_flags_t slub_debug; |
f0630fff | 496 | #endif |
41ecc55b | 497 | |
e17f1dfb | 498 | static char *slub_debug_string; |
fa5ec8a1 | 499 | static int disable_higher_order_debug; |
41ecc55b | 500 | |
a79316c6 AR |
501 | /* |
502 | * slub is about to manipulate internal object metadata. This memory lies | |
503 | * outside the range of the allocated object, so accessing it would normally | |
504 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
505 | * to tell kasan that these accesses are OK. | |
506 | */ | |
507 | static inline void metadata_access_enable(void) | |
508 | { | |
509 | kasan_disable_current(); | |
510 | } | |
511 | ||
512 | static inline void metadata_access_disable(void) | |
513 | { | |
514 | kasan_enable_current(); | |
515 | } | |
516 | ||
81819f0f CL |
517 | /* |
518 | * Object debugging | |
519 | */ | |
d86bd1be JK |
520 | |
521 | /* Verify that a pointer has an address that is valid within a slab page */ | |
522 | static inline int check_valid_pointer(struct kmem_cache *s, | |
523 | struct page *page, void *object) | |
524 | { | |
525 | void *base; | |
526 | ||
527 | if (!object) | |
528 | return 1; | |
529 | ||
530 | base = page_address(page); | |
338cfaad | 531 | object = kasan_reset_tag(object); |
d86bd1be JK |
532 | object = restore_red_left(s, object); |
533 | if (object < base || object >= base + page->objects * s->size || | |
534 | (object - base) % s->size) { | |
535 | return 0; | |
536 | } | |
537 | ||
538 | return 1; | |
539 | } | |
540 | ||
aa2efd5e DT |
541 | static void print_section(char *level, char *text, u8 *addr, |
542 | unsigned int length) | |
81819f0f | 543 | { |
a79316c6 | 544 | metadata_access_enable(); |
aa2efd5e | 545 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 546 | length, 1); |
a79316c6 | 547 | metadata_access_disable(); |
81819f0f CL |
548 | } |
549 | ||
cbfc35a4 WL |
550 | /* |
551 | * See comment in calculate_sizes(). | |
552 | */ | |
553 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
554 | { | |
555 | return s->offset >= s->inuse; | |
556 | } | |
557 | ||
558 | /* | |
559 | * Return offset of the end of info block which is inuse + free pointer if | |
560 | * not overlapping with object. | |
561 | */ | |
562 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
563 | { | |
564 | if (freeptr_outside_object(s)) | |
565 | return s->inuse + sizeof(void *); | |
566 | else | |
567 | return s->inuse; | |
568 | } | |
569 | ||
81819f0f CL |
570 | static struct track *get_track(struct kmem_cache *s, void *object, |
571 | enum track_item alloc) | |
572 | { | |
573 | struct track *p; | |
574 | ||
cbfc35a4 | 575 | p = object + get_info_end(s); |
81819f0f CL |
576 | |
577 | return p + alloc; | |
578 | } | |
579 | ||
580 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 581 | enum track_item alloc, unsigned long addr) |
81819f0f | 582 | { |
1a00df4a | 583 | struct track *p = get_track(s, object, alloc); |
81819f0f | 584 | |
81819f0f | 585 | if (addr) { |
d6543e39 | 586 | #ifdef CONFIG_STACKTRACE |
79716799 | 587 | unsigned int nr_entries; |
d6543e39 | 588 | |
a79316c6 | 589 | metadata_access_enable(); |
79716799 | 590 | nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); |
a79316c6 | 591 | metadata_access_disable(); |
d6543e39 | 592 | |
79716799 TG |
593 | if (nr_entries < TRACK_ADDRS_COUNT) |
594 | p->addrs[nr_entries] = 0; | |
d6543e39 | 595 | #endif |
81819f0f CL |
596 | p->addr = addr; |
597 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 598 | p->pid = current->pid; |
81819f0f | 599 | p->when = jiffies; |
b8ca7ff7 | 600 | } else { |
81819f0f | 601 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 602 | } |
81819f0f CL |
603 | } |
604 | ||
81819f0f CL |
605 | static void init_tracking(struct kmem_cache *s, void *object) |
606 | { | |
24922684 CL |
607 | if (!(s->flags & SLAB_STORE_USER)) |
608 | return; | |
609 | ||
ce71e27c EGM |
610 | set_track(s, object, TRACK_FREE, 0UL); |
611 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
612 | } |
613 | ||
86609d33 | 614 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
615 | { |
616 | if (!t->addr) | |
617 | return; | |
618 | ||
f9f58285 | 619 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 620 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
621 | #ifdef CONFIG_STACKTRACE |
622 | { | |
623 | int i; | |
624 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
625 | if (t->addrs[i]) | |
f9f58285 | 626 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
627 | else |
628 | break; | |
629 | } | |
630 | #endif | |
24922684 CL |
631 | } |
632 | ||
e42f174e | 633 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 634 | { |
86609d33 | 635 | unsigned long pr_time = jiffies; |
24922684 CL |
636 | if (!(s->flags & SLAB_STORE_USER)) |
637 | return; | |
638 | ||
86609d33 CP |
639 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
640 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
641 | } |
642 | ||
643 | static void print_page_info(struct page *page) | |
644 | { | |
f9f58285 | 645 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 646 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
647 | |
648 | } | |
649 | ||
650 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
651 | { | |
ecc42fbe | 652 | struct va_format vaf; |
24922684 | 653 | va_list args; |
24922684 CL |
654 | |
655 | va_start(args, fmt); | |
ecc42fbe FF |
656 | vaf.fmt = fmt; |
657 | vaf.va = &args; | |
f9f58285 | 658 | pr_err("=============================================================================\n"); |
ecc42fbe | 659 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 660 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 661 | |
373d4d09 | 662 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 663 | va_end(args); |
81819f0f CL |
664 | } |
665 | ||
24922684 CL |
666 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
667 | { | |
ecc42fbe | 668 | struct va_format vaf; |
24922684 | 669 | va_list args; |
24922684 CL |
670 | |
671 | va_start(args, fmt); | |
ecc42fbe FF |
672 | vaf.fmt = fmt; |
673 | vaf.va = &args; | |
674 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 675 | va_end(args); |
24922684 CL |
676 | } |
677 | ||
52f23478 DZ |
678 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
679 | void *freelist, void *nextfree) | |
680 | { | |
681 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
682 | !check_valid_pointer(s, page, nextfree)) { | |
683 | object_err(s, page, freelist, "Freechain corrupt"); | |
684 | freelist = NULL; | |
685 | slab_fix(s, "Isolate corrupted freechain"); | |
686 | return true; | |
687 | } | |
688 | ||
689 | return false; | |
690 | } | |
691 | ||
24922684 | 692 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
81819f0f CL |
693 | { |
694 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 695 | u8 *addr = page_address(page); |
24922684 CL |
696 | |
697 | print_tracking(s, p); | |
698 | ||
699 | print_page_info(page); | |
700 | ||
f9f58285 FF |
701 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
702 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 703 | |
d86bd1be | 704 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
705 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
706 | s->red_left_pad); | |
d86bd1be | 707 | else if (p > addr + 16) |
aa2efd5e | 708 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 709 | |
aa2efd5e | 710 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 711 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 712 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 713 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 714 | s->inuse - s->object_size); |
81819f0f | 715 | |
cbfc35a4 | 716 | off = get_info_end(s); |
81819f0f | 717 | |
24922684 | 718 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 719 | off += 2 * sizeof(struct track); |
81819f0f | 720 | |
80a9201a AP |
721 | off += kasan_metadata_size(s); |
722 | ||
d86bd1be | 723 | if (off != size_from_object(s)) |
81819f0f | 724 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
725 | print_section(KERN_ERR, "Padding ", p + off, |
726 | size_from_object(s) - off); | |
24922684 CL |
727 | |
728 | dump_stack(); | |
81819f0f CL |
729 | } |
730 | ||
75c66def | 731 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
732 | u8 *object, char *reason) |
733 | { | |
3dc50637 | 734 | slab_bug(s, "%s", reason); |
24922684 | 735 | print_trailer(s, page, object); |
81819f0f CL |
736 | } |
737 | ||
a38965bf | 738 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 739 | const char *fmt, ...) |
81819f0f CL |
740 | { |
741 | va_list args; | |
742 | char buf[100]; | |
743 | ||
24922684 CL |
744 | va_start(args, fmt); |
745 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 746 | va_end(args); |
3dc50637 | 747 | slab_bug(s, "%s", buf); |
24922684 | 748 | print_page_info(page); |
81819f0f CL |
749 | dump_stack(); |
750 | } | |
751 | ||
f7cb1933 | 752 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
753 | { |
754 | u8 *p = object; | |
755 | ||
d86bd1be JK |
756 | if (s->flags & SLAB_RED_ZONE) |
757 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
758 | ||
81819f0f | 759 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
760 | memset(p, POISON_FREE, s->object_size - 1); |
761 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
762 | } |
763 | ||
764 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 765 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
766 | } |
767 | ||
24922684 CL |
768 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
769 | void *from, void *to) | |
770 | { | |
771 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
772 | memset(from, data, to - from); | |
773 | } | |
774 | ||
775 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
776 | u8 *object, char *what, | |
06428780 | 777 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
778 | { |
779 | u8 *fault; | |
780 | u8 *end; | |
e1b70dd1 | 781 | u8 *addr = page_address(page); |
24922684 | 782 | |
a79316c6 | 783 | metadata_access_enable(); |
79824820 | 784 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 785 | metadata_access_disable(); |
24922684 CL |
786 | if (!fault) |
787 | return 1; | |
788 | ||
789 | end = start + bytes; | |
790 | while (end > fault && end[-1] == value) | |
791 | end--; | |
792 | ||
793 | slab_bug(s, "%s overwritten", what); | |
e1b70dd1 MC |
794 | pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
795 | fault, end - 1, fault - addr, | |
796 | fault[0], value); | |
24922684 CL |
797 | print_trailer(s, page, object); |
798 | ||
799 | restore_bytes(s, what, value, fault, end); | |
800 | return 0; | |
81819f0f CL |
801 | } |
802 | ||
81819f0f CL |
803 | /* |
804 | * Object layout: | |
805 | * | |
806 | * object address | |
807 | * Bytes of the object to be managed. | |
808 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 809 | * pointer is at the middle of the object. |
672bba3a | 810 | * |
81819f0f CL |
811 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
812 | * 0xa5 (POISON_END) | |
813 | * | |
3b0efdfa | 814 | * object + s->object_size |
81819f0f | 815 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 816 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 817 | * object_size == inuse. |
672bba3a | 818 | * |
81819f0f CL |
819 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
820 | * 0xcc (RED_ACTIVE) for objects in use. | |
821 | * | |
822 | * object + s->inuse | |
672bba3a CL |
823 | * Meta data starts here. |
824 | * | |
81819f0f CL |
825 | * A. Free pointer (if we cannot overwrite object on free) |
826 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 827 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 828 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
829 | * before the word boundary. |
830 | * | |
831 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
832 | * |
833 | * object + s->size | |
672bba3a | 834 | * Nothing is used beyond s->size. |
81819f0f | 835 | * |
3b0efdfa | 836 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 837 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
838 | * may be used with merged slabcaches. |
839 | */ | |
840 | ||
81819f0f CL |
841 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
842 | { | |
cbfc35a4 | 843 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f CL |
844 | |
845 | if (s->flags & SLAB_STORE_USER) | |
846 | /* We also have user information there */ | |
847 | off += 2 * sizeof(struct track); | |
848 | ||
80a9201a AP |
849 | off += kasan_metadata_size(s); |
850 | ||
d86bd1be | 851 | if (size_from_object(s) == off) |
81819f0f CL |
852 | return 1; |
853 | ||
24922684 | 854 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 855 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
856 | } |
857 | ||
39b26464 | 858 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
859 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
860 | { | |
24922684 CL |
861 | u8 *start; |
862 | u8 *fault; | |
863 | u8 *end; | |
5d682681 | 864 | u8 *pad; |
24922684 CL |
865 | int length; |
866 | int remainder; | |
81819f0f CL |
867 | |
868 | if (!(s->flags & SLAB_POISON)) | |
869 | return 1; | |
870 | ||
a973e9dd | 871 | start = page_address(page); |
a50b854e | 872 | length = page_size(page); |
39b26464 CL |
873 | end = start + length; |
874 | remainder = length % s->size; | |
81819f0f CL |
875 | if (!remainder) |
876 | return 1; | |
877 | ||
5d682681 | 878 | pad = end - remainder; |
a79316c6 | 879 | metadata_access_enable(); |
5d682681 | 880 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 881 | metadata_access_disable(); |
24922684 CL |
882 | if (!fault) |
883 | return 1; | |
884 | while (end > fault && end[-1] == POISON_INUSE) | |
885 | end--; | |
886 | ||
e1b70dd1 MC |
887 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
888 | fault, end - 1, fault - start); | |
5d682681 | 889 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 890 | |
5d682681 | 891 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 892 | return 0; |
81819f0f CL |
893 | } |
894 | ||
895 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 896 | void *object, u8 val) |
81819f0f CL |
897 | { |
898 | u8 *p = object; | |
3b0efdfa | 899 | u8 *endobject = object + s->object_size; |
81819f0f CL |
900 | |
901 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
902 | if (!check_bytes_and_report(s, page, object, "Redzone", |
903 | object - s->red_left_pad, val, s->red_left_pad)) | |
904 | return 0; | |
905 | ||
24922684 | 906 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 907 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 908 | return 0; |
81819f0f | 909 | } else { |
3b0efdfa | 910 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 911 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
912 | endobject, POISON_INUSE, |
913 | s->inuse - s->object_size); | |
3adbefee | 914 | } |
81819f0f CL |
915 | } |
916 | ||
917 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 918 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 919 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 920 | POISON_FREE, s->object_size - 1) || |
24922684 | 921 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 922 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 923 | return 0; |
81819f0f CL |
924 | /* |
925 | * check_pad_bytes cleans up on its own. | |
926 | */ | |
927 | check_pad_bytes(s, page, p); | |
928 | } | |
929 | ||
cbfc35a4 | 930 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
931 | /* |
932 | * Object and freepointer overlap. Cannot check | |
933 | * freepointer while object is allocated. | |
934 | */ | |
935 | return 1; | |
936 | ||
937 | /* Check free pointer validity */ | |
938 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
939 | object_err(s, page, p, "Freepointer corrupt"); | |
940 | /* | |
9f6c708e | 941 | * No choice but to zap it and thus lose the remainder |
81819f0f | 942 | * of the free objects in this slab. May cause |
672bba3a | 943 | * another error because the object count is now wrong. |
81819f0f | 944 | */ |
a973e9dd | 945 | set_freepointer(s, p, NULL); |
81819f0f CL |
946 | return 0; |
947 | } | |
948 | return 1; | |
949 | } | |
950 | ||
951 | static int check_slab(struct kmem_cache *s, struct page *page) | |
952 | { | |
39b26464 CL |
953 | int maxobj; |
954 | ||
81819f0f CL |
955 | VM_BUG_ON(!irqs_disabled()); |
956 | ||
957 | if (!PageSlab(page)) { | |
24922684 | 958 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
959 | return 0; |
960 | } | |
39b26464 | 961 | |
9736d2a9 | 962 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
963 | if (page->objects > maxobj) { |
964 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 965 | page->objects, maxobj); |
39b26464 CL |
966 | return 0; |
967 | } | |
968 | if (page->inuse > page->objects) { | |
24922684 | 969 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 970 | page->inuse, page->objects); |
81819f0f CL |
971 | return 0; |
972 | } | |
973 | /* Slab_pad_check fixes things up after itself */ | |
974 | slab_pad_check(s, page); | |
975 | return 1; | |
976 | } | |
977 | ||
978 | /* | |
672bba3a CL |
979 | * Determine if a certain object on a page is on the freelist. Must hold the |
980 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
981 | */ |
982 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
983 | { | |
984 | int nr = 0; | |
881db7fb | 985 | void *fp; |
81819f0f | 986 | void *object = NULL; |
f6edde9c | 987 | int max_objects; |
81819f0f | 988 | |
881db7fb | 989 | fp = page->freelist; |
39b26464 | 990 | while (fp && nr <= page->objects) { |
81819f0f CL |
991 | if (fp == search) |
992 | return 1; | |
993 | if (!check_valid_pointer(s, page, fp)) { | |
994 | if (object) { | |
995 | object_err(s, page, object, | |
996 | "Freechain corrupt"); | |
a973e9dd | 997 | set_freepointer(s, object, NULL); |
81819f0f | 998 | } else { |
24922684 | 999 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 1000 | page->freelist = NULL; |
39b26464 | 1001 | page->inuse = page->objects; |
24922684 | 1002 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1003 | return 0; |
1004 | } | |
1005 | break; | |
1006 | } | |
1007 | object = fp; | |
1008 | fp = get_freepointer(s, object); | |
1009 | nr++; | |
1010 | } | |
1011 | ||
9736d2a9 | 1012 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
1013 | if (max_objects > MAX_OBJS_PER_PAGE) |
1014 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
1015 | |
1016 | if (page->objects != max_objects) { | |
756a025f JP |
1017 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
1018 | page->objects, max_objects); | |
224a88be CL |
1019 | page->objects = max_objects; |
1020 | slab_fix(s, "Number of objects adjusted."); | |
1021 | } | |
39b26464 | 1022 | if (page->inuse != page->objects - nr) { |
756a025f JP |
1023 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
1024 | page->inuse, page->objects - nr); | |
39b26464 | 1025 | page->inuse = page->objects - nr; |
24922684 | 1026 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
1027 | } |
1028 | return search == NULL; | |
1029 | } | |
1030 | ||
0121c619 CL |
1031 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
1032 | int alloc) | |
3ec09742 CL |
1033 | { |
1034 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1035 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1036 | s->name, |
1037 | alloc ? "alloc" : "free", | |
1038 | object, page->inuse, | |
1039 | page->freelist); | |
1040 | ||
1041 | if (!alloc) | |
aa2efd5e | 1042 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1043 | s->object_size); |
3ec09742 CL |
1044 | |
1045 | dump_stack(); | |
1046 | } | |
1047 | } | |
1048 | ||
643b1138 | 1049 | /* |
672bba3a | 1050 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1051 | */ |
5cc6eee8 CL |
1052 | static void add_full(struct kmem_cache *s, |
1053 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1054 | { |
5cc6eee8 CL |
1055 | if (!(s->flags & SLAB_STORE_USER)) |
1056 | return; | |
1057 | ||
255d0884 | 1058 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1059 | list_add(&page->slab_list, &n->full); |
643b1138 CL |
1060 | } |
1061 | ||
c65c1877 | 1062 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1063 | { |
643b1138 CL |
1064 | if (!(s->flags & SLAB_STORE_USER)) |
1065 | return; | |
1066 | ||
255d0884 | 1067 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1068 | list_del(&page->slab_list); |
643b1138 CL |
1069 | } |
1070 | ||
0f389ec6 CL |
1071 | /* Tracking of the number of slabs for debugging purposes */ |
1072 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1073 | { | |
1074 | struct kmem_cache_node *n = get_node(s, node); | |
1075 | ||
1076 | return atomic_long_read(&n->nr_slabs); | |
1077 | } | |
1078 | ||
26c02cf0 AB |
1079 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1080 | { | |
1081 | return atomic_long_read(&n->nr_slabs); | |
1082 | } | |
1083 | ||
205ab99d | 1084 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1085 | { |
1086 | struct kmem_cache_node *n = get_node(s, node); | |
1087 | ||
1088 | /* | |
1089 | * May be called early in order to allocate a slab for the | |
1090 | * kmem_cache_node structure. Solve the chicken-egg | |
1091 | * dilemma by deferring the increment of the count during | |
1092 | * bootstrap (see early_kmem_cache_node_alloc). | |
1093 | */ | |
338b2642 | 1094 | if (likely(n)) { |
0f389ec6 | 1095 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1096 | atomic_long_add(objects, &n->total_objects); |
1097 | } | |
0f389ec6 | 1098 | } |
205ab99d | 1099 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1100 | { |
1101 | struct kmem_cache_node *n = get_node(s, node); | |
1102 | ||
1103 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1104 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1105 | } |
1106 | ||
1107 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1108 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1109 | void *object) | |
1110 | { | |
8fc8d666 | 1111 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1112 | return; |
1113 | ||
f7cb1933 | 1114 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1115 | init_tracking(s, object); |
1116 | } | |
1117 | ||
a50b854e MWO |
1118 | static |
1119 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) | |
a7101224 | 1120 | { |
8fc8d666 | 1121 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1122 | return; |
1123 | ||
1124 | metadata_access_enable(); | |
a50b854e | 1125 | memset(addr, POISON_INUSE, page_size(page)); |
a7101224 AK |
1126 | metadata_access_disable(); |
1127 | } | |
1128 | ||
becfda68 | 1129 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
278d7756 | 1130 | struct page *page, void *object) |
81819f0f CL |
1131 | { |
1132 | if (!check_slab(s, page)) | |
becfda68 | 1133 | return 0; |
81819f0f | 1134 | |
81819f0f CL |
1135 | if (!check_valid_pointer(s, page, object)) { |
1136 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1137 | return 0; |
81819f0f CL |
1138 | } |
1139 | ||
f7cb1933 | 1140 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1141 | return 0; |
1142 | ||
1143 | return 1; | |
1144 | } | |
1145 | ||
1146 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1147 | struct page *page, | |
1148 | void *object, unsigned long addr) | |
1149 | { | |
1150 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
278d7756 | 1151 | if (!alloc_consistency_checks(s, page, object)) |
becfda68 LA |
1152 | goto bad; |
1153 | } | |
81819f0f | 1154 | |
3ec09742 CL |
1155 | /* Success perform special debug activities for allocs */ |
1156 | if (s->flags & SLAB_STORE_USER) | |
1157 | set_track(s, object, TRACK_ALLOC, addr); | |
1158 | trace(s, page, object, 1); | |
f7cb1933 | 1159 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1160 | return 1; |
3ec09742 | 1161 | |
81819f0f CL |
1162 | bad: |
1163 | if (PageSlab(page)) { | |
1164 | /* | |
1165 | * If this is a slab page then lets do the best we can | |
1166 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1167 | * as used avoids touching the remaining objects. |
81819f0f | 1168 | */ |
24922684 | 1169 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1170 | page->inuse = page->objects; |
a973e9dd | 1171 | page->freelist = NULL; |
81819f0f CL |
1172 | } |
1173 | return 0; | |
1174 | } | |
1175 | ||
becfda68 LA |
1176 | static inline int free_consistency_checks(struct kmem_cache *s, |
1177 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1178 | { |
81819f0f | 1179 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1180 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1181 | return 0; |
81819f0f CL |
1182 | } |
1183 | ||
1184 | if (on_freelist(s, page, object)) { | |
24922684 | 1185 | object_err(s, page, object, "Object already free"); |
becfda68 | 1186 | return 0; |
81819f0f CL |
1187 | } |
1188 | ||
f7cb1933 | 1189 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1190 | return 0; |
81819f0f | 1191 | |
1b4f59e3 | 1192 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1193 | if (!PageSlab(page)) { |
756a025f JP |
1194 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1195 | object); | |
1b4f59e3 | 1196 | } else if (!page->slab_cache) { |
f9f58285 FF |
1197 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1198 | object); | |
70d71228 | 1199 | dump_stack(); |
06428780 | 1200 | } else |
24922684 CL |
1201 | object_err(s, page, object, |
1202 | "page slab pointer corrupt."); | |
becfda68 LA |
1203 | return 0; |
1204 | } | |
1205 | return 1; | |
1206 | } | |
1207 | ||
1208 | /* Supports checking bulk free of a constructed freelist */ | |
1209 | static noinline int free_debug_processing( | |
1210 | struct kmem_cache *s, struct page *page, | |
1211 | void *head, void *tail, int bulk_cnt, | |
1212 | unsigned long addr) | |
1213 | { | |
1214 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1215 | void *object = head; | |
1216 | int cnt = 0; | |
3f649ab7 | 1217 | unsigned long flags; |
becfda68 LA |
1218 | int ret = 0; |
1219 | ||
1220 | spin_lock_irqsave(&n->list_lock, flags); | |
1221 | slab_lock(page); | |
1222 | ||
1223 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1224 | if (!check_slab(s, page)) | |
1225 | goto out; | |
1226 | } | |
1227 | ||
1228 | next_object: | |
1229 | cnt++; | |
1230 | ||
1231 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1232 | if (!free_consistency_checks(s, page, object, addr)) | |
1233 | goto out; | |
81819f0f | 1234 | } |
3ec09742 | 1235 | |
3ec09742 CL |
1236 | if (s->flags & SLAB_STORE_USER) |
1237 | set_track(s, object, TRACK_FREE, addr); | |
1238 | trace(s, page, object, 0); | |
81084651 | 1239 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1240 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1241 | |
1242 | /* Reached end of constructed freelist yet? */ | |
1243 | if (object != tail) { | |
1244 | object = get_freepointer(s, object); | |
1245 | goto next_object; | |
1246 | } | |
804aa132 LA |
1247 | ret = 1; |
1248 | ||
5c2e4bbb | 1249 | out: |
81084651 JDB |
1250 | if (cnt != bulk_cnt) |
1251 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1252 | bulk_cnt, cnt); | |
1253 | ||
881db7fb | 1254 | slab_unlock(page); |
282acb43 | 1255 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1256 | if (!ret) |
1257 | slab_fix(s, "Object at 0x%p not freed", object); | |
1258 | return ret; | |
81819f0f CL |
1259 | } |
1260 | ||
e17f1dfb VB |
1261 | /* |
1262 | * Parse a block of slub_debug options. Blocks are delimited by ';' | |
1263 | * | |
1264 | * @str: start of block | |
1265 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1266 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1267 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1268 | * | |
1269 | * returns the start of next block if there's any, or NULL | |
1270 | */ | |
1271 | static char * | |
1272 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1273 | { |
e17f1dfb | 1274 | bool higher_order_disable = false; |
f0630fff | 1275 | |
e17f1dfb VB |
1276 | /* Skip any completely empty blocks */ |
1277 | while (*str && *str == ';') | |
1278 | str++; | |
1279 | ||
1280 | if (*str == ',') { | |
f0630fff CL |
1281 | /* |
1282 | * No options but restriction on slabs. This means full | |
1283 | * debugging for slabs matching a pattern. | |
1284 | */ | |
e17f1dfb | 1285 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1286 | goto check_slabs; |
e17f1dfb VB |
1287 | } |
1288 | *flags = 0; | |
f0630fff | 1289 | |
e17f1dfb VB |
1290 | /* Determine which debug features should be switched on */ |
1291 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1292 | switch (tolower(*str)) { |
e17f1dfb VB |
1293 | case '-': |
1294 | *flags = 0; | |
1295 | break; | |
f0630fff | 1296 | case 'f': |
e17f1dfb | 1297 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1298 | break; |
1299 | case 'z': | |
e17f1dfb | 1300 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1301 | break; |
1302 | case 'p': | |
e17f1dfb | 1303 | *flags |= SLAB_POISON; |
f0630fff CL |
1304 | break; |
1305 | case 'u': | |
e17f1dfb | 1306 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1307 | break; |
1308 | case 't': | |
e17f1dfb | 1309 | *flags |= SLAB_TRACE; |
f0630fff | 1310 | break; |
4c13dd3b | 1311 | case 'a': |
e17f1dfb | 1312 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1313 | break; |
08303a73 CA |
1314 | case 'o': |
1315 | /* | |
1316 | * Avoid enabling debugging on caches if its minimum | |
1317 | * order would increase as a result. | |
1318 | */ | |
e17f1dfb | 1319 | higher_order_disable = true; |
08303a73 | 1320 | break; |
f0630fff | 1321 | default: |
e17f1dfb VB |
1322 | if (init) |
1323 | pr_err("slub_debug option '%c' unknown. skipped\n", *str); | |
f0630fff | 1324 | } |
41ecc55b | 1325 | } |
f0630fff | 1326 | check_slabs: |
41ecc55b | 1327 | if (*str == ',') |
e17f1dfb VB |
1328 | *slabs = ++str; |
1329 | else | |
1330 | *slabs = NULL; | |
1331 | ||
1332 | /* Skip over the slab list */ | |
1333 | while (*str && *str != ';') | |
1334 | str++; | |
1335 | ||
1336 | /* Skip any completely empty blocks */ | |
1337 | while (*str && *str == ';') | |
1338 | str++; | |
1339 | ||
1340 | if (init && higher_order_disable) | |
1341 | disable_higher_order_debug = 1; | |
1342 | ||
1343 | if (*str) | |
1344 | return str; | |
1345 | else | |
1346 | return NULL; | |
1347 | } | |
1348 | ||
1349 | static int __init setup_slub_debug(char *str) | |
1350 | { | |
1351 | slab_flags_t flags; | |
1352 | char *saved_str; | |
1353 | char *slab_list; | |
1354 | bool global_slub_debug_changed = false; | |
1355 | bool slab_list_specified = false; | |
1356 | ||
1357 | slub_debug = DEBUG_DEFAULT_FLAGS; | |
1358 | if (*str++ != '=' || !*str) | |
1359 | /* | |
1360 | * No options specified. Switch on full debugging. | |
1361 | */ | |
1362 | goto out; | |
1363 | ||
1364 | saved_str = str; | |
1365 | while (str) { | |
1366 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1367 | ||
1368 | if (!slab_list) { | |
1369 | slub_debug = flags; | |
1370 | global_slub_debug_changed = true; | |
1371 | } else { | |
1372 | slab_list_specified = true; | |
1373 | } | |
1374 | } | |
1375 | ||
1376 | /* | |
1377 | * For backwards compatibility, a single list of flags with list of | |
1378 | * slabs means debugging is only enabled for those slabs, so the global | |
1379 | * slub_debug should be 0. We can extended that to multiple lists as | |
1380 | * long as there is no option specifying flags without a slab list. | |
1381 | */ | |
1382 | if (slab_list_specified) { | |
1383 | if (!global_slub_debug_changed) | |
1384 | slub_debug = 0; | |
1385 | slub_debug_string = saved_str; | |
1386 | } | |
f0630fff | 1387 | out: |
ca0cab65 VB |
1388 | if (slub_debug != 0 || slub_debug_string) |
1389 | static_branch_enable(&slub_debug_enabled); | |
6471384a AP |
1390 | if ((static_branch_unlikely(&init_on_alloc) || |
1391 | static_branch_unlikely(&init_on_free)) && | |
1392 | (slub_debug & SLAB_POISON)) | |
1393 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1394 | return 1; |
1395 | } | |
1396 | ||
1397 | __setup("slub_debug", setup_slub_debug); | |
1398 | ||
c5fd3ca0 AT |
1399 | /* |
1400 | * kmem_cache_flags - apply debugging options to the cache | |
1401 | * @object_size: the size of an object without meta data | |
1402 | * @flags: flags to set | |
1403 | * @name: name of the cache | |
1404 | * @ctor: constructor function | |
1405 | * | |
1406 | * Debug option(s) are applied to @flags. In addition to the debug | |
1407 | * option(s), if a slab name (or multiple) is specified i.e. | |
1408 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1409 | * then only the select slabs will receive the debug option(s). | |
1410 | */ | |
0293d1fd | 1411 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1412 | slab_flags_t flags, const char *name, |
51cc5068 | 1413 | void (*ctor)(void *)) |
41ecc55b | 1414 | { |
c5fd3ca0 AT |
1415 | char *iter; |
1416 | size_t len; | |
e17f1dfb VB |
1417 | char *next_block; |
1418 | slab_flags_t block_flags; | |
c5fd3ca0 AT |
1419 | |
1420 | /* If slub_debug = 0, it folds into the if conditional. */ | |
e17f1dfb | 1421 | if (!slub_debug_string) |
c5fd3ca0 AT |
1422 | return flags | slub_debug; |
1423 | ||
1424 | len = strlen(name); | |
e17f1dfb VB |
1425 | next_block = slub_debug_string; |
1426 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1427 | while (next_block) { | |
1428 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1429 | if (!iter) | |
1430 | continue; | |
1431 | /* Found a block that has a slab list, search it */ | |
1432 | while (*iter) { | |
1433 | char *end, *glob; | |
1434 | size_t cmplen; | |
1435 | ||
1436 | end = strchrnul(iter, ','); | |
1437 | if (next_block && next_block < end) | |
1438 | end = next_block - 1; | |
1439 | ||
1440 | glob = strnchr(iter, end - iter, '*'); | |
1441 | if (glob) | |
1442 | cmplen = glob - iter; | |
1443 | else | |
1444 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1445 | |
e17f1dfb VB |
1446 | if (!strncmp(name, iter, cmplen)) { |
1447 | flags |= block_flags; | |
1448 | return flags; | |
1449 | } | |
c5fd3ca0 | 1450 | |
e17f1dfb VB |
1451 | if (!*end || *end == ';') |
1452 | break; | |
1453 | iter = end + 1; | |
c5fd3ca0 | 1454 | } |
c5fd3ca0 | 1455 | } |
ba0268a8 | 1456 | |
e17f1dfb | 1457 | return slub_debug; |
41ecc55b | 1458 | } |
b4a64718 | 1459 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1460 | static inline void setup_object_debug(struct kmem_cache *s, |
1461 | struct page *page, void *object) {} | |
a50b854e MWO |
1462 | static inline |
1463 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} | |
41ecc55b | 1464 | |
3ec09742 | 1465 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1466 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1467 | |
282acb43 | 1468 | static inline int free_debug_processing( |
81084651 JDB |
1469 | struct kmem_cache *s, struct page *page, |
1470 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1471 | unsigned long addr) { return 0; } |
41ecc55b | 1472 | |
41ecc55b CL |
1473 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1474 | { return 1; } | |
1475 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1476 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1477 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1478 | struct page *page) {} | |
c65c1877 PZ |
1479 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1480 | struct page *page) {} | |
0293d1fd | 1481 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1482 | slab_flags_t flags, const char *name, |
51cc5068 | 1483 | void (*ctor)(void *)) |
ba0268a8 CL |
1484 | { |
1485 | return flags; | |
1486 | } | |
41ecc55b | 1487 | #define slub_debug 0 |
0f389ec6 | 1488 | |
fdaa45e9 IM |
1489 | #define disable_higher_order_debug 0 |
1490 | ||
0f389ec6 CL |
1491 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1492 | { return 0; } | |
26c02cf0 AB |
1493 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1494 | { return 0; } | |
205ab99d CL |
1495 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1496 | int objects) {} | |
1497 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1498 | int objects) {} | |
7d550c56 | 1499 | |
52f23478 DZ |
1500 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
1501 | void *freelist, void *nextfree) | |
1502 | { | |
1503 | return false; | |
1504 | } | |
02e72cc6 AR |
1505 | #endif /* CONFIG_SLUB_DEBUG */ |
1506 | ||
1507 | /* | |
1508 | * Hooks for other subsystems that check memory allocations. In a typical | |
1509 | * production configuration these hooks all should produce no code at all. | |
1510 | */ | |
0116523c | 1511 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1512 | { |
53128245 | 1513 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1514 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1515 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1516 | return ptr; |
d56791b3 RB |
1517 | } |
1518 | ||
ee3ce779 | 1519 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1520 | { |
1521 | kmemleak_free(x); | |
ee3ce779 | 1522 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1523 | } |
1524 | ||
c3895391 | 1525 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1526 | { |
1527 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1528 | |
02e72cc6 AR |
1529 | /* |
1530 | * Trouble is that we may no longer disable interrupts in the fast path | |
1531 | * So in order to make the debug calls that expect irqs to be | |
1532 | * disabled we need to disable interrupts temporarily. | |
1533 | */ | |
4675ff05 | 1534 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1535 | { |
1536 | unsigned long flags; | |
1537 | ||
1538 | local_irq_save(flags); | |
02e72cc6 AR |
1539 | debug_check_no_locks_freed(x, s->object_size); |
1540 | local_irq_restore(flags); | |
1541 | } | |
1542 | #endif | |
1543 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1544 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1545 | |
cfbe1636 ME |
1546 | /* Use KCSAN to help debug racy use-after-free. */ |
1547 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
1548 | __kcsan_check_access(x, s->object_size, | |
1549 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
1550 | ||
c3895391 AK |
1551 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1552 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1553 | } |
205ab99d | 1554 | |
c3895391 AK |
1555 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1556 | void **head, void **tail) | |
81084651 | 1557 | { |
6471384a AP |
1558 | |
1559 | void *object; | |
1560 | void *next = *head; | |
1561 | void *old_tail = *tail ? *tail : *head; | |
1562 | int rsize; | |
1563 | ||
aea4df4c LA |
1564 | /* Head and tail of the reconstructed freelist */ |
1565 | *head = NULL; | |
1566 | *tail = NULL; | |
1b7e816f | 1567 | |
aea4df4c LA |
1568 | do { |
1569 | object = next; | |
1570 | next = get_freepointer(s, object); | |
1571 | ||
1572 | if (slab_want_init_on_free(s)) { | |
6471384a AP |
1573 | /* |
1574 | * Clear the object and the metadata, but don't touch | |
1575 | * the redzone. | |
1576 | */ | |
1577 | memset(object, 0, s->object_size); | |
1578 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | |
1579 | : 0; | |
1580 | memset((char *)object + s->inuse, 0, | |
1581 | s->size - s->inuse - rsize); | |
81084651 | 1582 | |
aea4df4c | 1583 | } |
c3895391 AK |
1584 | /* If object's reuse doesn't have to be delayed */ |
1585 | if (!slab_free_hook(s, object)) { | |
1586 | /* Move object to the new freelist */ | |
1587 | set_freepointer(s, object, *head); | |
1588 | *head = object; | |
1589 | if (!*tail) | |
1590 | *tail = object; | |
1591 | } | |
1592 | } while (object != old_tail); | |
1593 | ||
1594 | if (*head == *tail) | |
1595 | *tail = NULL; | |
1596 | ||
1597 | return *head != NULL; | |
81084651 JDB |
1598 | } |
1599 | ||
4d176711 | 1600 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1601 | void *object) |
1602 | { | |
1603 | setup_object_debug(s, page, object); | |
4d176711 | 1604 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1605 | if (unlikely(s->ctor)) { |
1606 | kasan_unpoison_object_data(s, object); | |
1607 | s->ctor(object); | |
1608 | kasan_poison_object_data(s, object); | |
1609 | } | |
4d176711 | 1610 | return object; |
588f8ba9 TG |
1611 | } |
1612 | ||
81819f0f CL |
1613 | /* |
1614 | * Slab allocation and freeing | |
1615 | */ | |
5dfb4175 VD |
1616 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1617 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1618 | { |
5dfb4175 | 1619 | struct page *page; |
19af27af | 1620 | unsigned int order = oo_order(oo); |
65c3376a | 1621 | |
2154a336 | 1622 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1623 | page = alloc_pages(flags, order); |
65c3376a | 1624 | else |
96db800f | 1625 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1626 | |
6cea1d56 | 1627 | if (page && charge_slab_page(page, flags, order, s)) { |
f3ccb2c4 VD |
1628 | __free_pages(page, order); |
1629 | page = NULL; | |
1630 | } | |
5dfb4175 VD |
1631 | |
1632 | return page; | |
65c3376a CL |
1633 | } |
1634 | ||
210e7a43 TG |
1635 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1636 | /* Pre-initialize the random sequence cache */ | |
1637 | static int init_cache_random_seq(struct kmem_cache *s) | |
1638 | { | |
19af27af | 1639 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1640 | int err; |
210e7a43 | 1641 | |
a810007a SR |
1642 | /* Bailout if already initialised */ |
1643 | if (s->random_seq) | |
1644 | return 0; | |
1645 | ||
210e7a43 TG |
1646 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1647 | if (err) { | |
1648 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1649 | s->name); | |
1650 | return err; | |
1651 | } | |
1652 | ||
1653 | /* Transform to an offset on the set of pages */ | |
1654 | if (s->random_seq) { | |
19af27af AD |
1655 | unsigned int i; |
1656 | ||
210e7a43 TG |
1657 | for (i = 0; i < count; i++) |
1658 | s->random_seq[i] *= s->size; | |
1659 | } | |
1660 | return 0; | |
1661 | } | |
1662 | ||
1663 | /* Initialize each random sequence freelist per cache */ | |
1664 | static void __init init_freelist_randomization(void) | |
1665 | { | |
1666 | struct kmem_cache *s; | |
1667 | ||
1668 | mutex_lock(&slab_mutex); | |
1669 | ||
1670 | list_for_each_entry(s, &slab_caches, list) | |
1671 | init_cache_random_seq(s); | |
1672 | ||
1673 | mutex_unlock(&slab_mutex); | |
1674 | } | |
1675 | ||
1676 | /* Get the next entry on the pre-computed freelist randomized */ | |
1677 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1678 | unsigned long *pos, void *start, | |
1679 | unsigned long page_limit, | |
1680 | unsigned long freelist_count) | |
1681 | { | |
1682 | unsigned int idx; | |
1683 | ||
1684 | /* | |
1685 | * If the target page allocation failed, the number of objects on the | |
1686 | * page might be smaller than the usual size defined by the cache. | |
1687 | */ | |
1688 | do { | |
1689 | idx = s->random_seq[*pos]; | |
1690 | *pos += 1; | |
1691 | if (*pos >= freelist_count) | |
1692 | *pos = 0; | |
1693 | } while (unlikely(idx >= page_limit)); | |
1694 | ||
1695 | return (char *)start + idx; | |
1696 | } | |
1697 | ||
1698 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1699 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1700 | { | |
1701 | void *start; | |
1702 | void *cur; | |
1703 | void *next; | |
1704 | unsigned long idx, pos, page_limit, freelist_count; | |
1705 | ||
1706 | if (page->objects < 2 || !s->random_seq) | |
1707 | return false; | |
1708 | ||
1709 | freelist_count = oo_objects(s->oo); | |
1710 | pos = get_random_int() % freelist_count; | |
1711 | ||
1712 | page_limit = page->objects * s->size; | |
1713 | start = fixup_red_left(s, page_address(page)); | |
1714 | ||
1715 | /* First entry is used as the base of the freelist */ | |
1716 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1717 | freelist_count); | |
4d176711 | 1718 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1719 | page->freelist = cur; |
1720 | ||
1721 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1722 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1723 | freelist_count); | |
4d176711 | 1724 | next = setup_object(s, page, next); |
210e7a43 TG |
1725 | set_freepointer(s, cur, next); |
1726 | cur = next; | |
1727 | } | |
210e7a43 TG |
1728 | set_freepointer(s, cur, NULL); |
1729 | ||
1730 | return true; | |
1731 | } | |
1732 | #else | |
1733 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1734 | { | |
1735 | return 0; | |
1736 | } | |
1737 | static inline void init_freelist_randomization(void) { } | |
1738 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1739 | { | |
1740 | return false; | |
1741 | } | |
1742 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1743 | ||
81819f0f CL |
1744 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1745 | { | |
06428780 | 1746 | struct page *page; |
834f3d11 | 1747 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1748 | gfp_t alloc_gfp; |
4d176711 | 1749 | void *start, *p, *next; |
a50b854e | 1750 | int idx; |
210e7a43 | 1751 | bool shuffle; |
81819f0f | 1752 | |
7e0528da CL |
1753 | flags &= gfp_allowed_mask; |
1754 | ||
d0164adc | 1755 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1756 | local_irq_enable(); |
1757 | ||
b7a49f0d | 1758 | flags |= s->allocflags; |
e12ba74d | 1759 | |
ba52270d PE |
1760 | /* |
1761 | * Let the initial higher-order allocation fail under memory pressure | |
1762 | * so we fall-back to the minimum order allocation. | |
1763 | */ | |
1764 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1765 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1766 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1767 | |
5dfb4175 | 1768 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1769 | if (unlikely(!page)) { |
1770 | oo = s->min; | |
80c3a998 | 1771 | alloc_gfp = flags; |
65c3376a CL |
1772 | /* |
1773 | * Allocation may have failed due to fragmentation. | |
1774 | * Try a lower order alloc if possible | |
1775 | */ | |
5dfb4175 | 1776 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1777 | if (unlikely(!page)) |
1778 | goto out; | |
1779 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1780 | } |
5a896d9e | 1781 | |
834f3d11 | 1782 | page->objects = oo_objects(oo); |
81819f0f | 1783 | |
1b4f59e3 | 1784 | page->slab_cache = s; |
c03f94cc | 1785 | __SetPageSlab(page); |
2f064f34 | 1786 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1787 | SetPageSlabPfmemalloc(page); |
81819f0f | 1788 | |
a7101224 | 1789 | kasan_poison_slab(page); |
81819f0f | 1790 | |
a7101224 | 1791 | start = page_address(page); |
81819f0f | 1792 | |
a50b854e | 1793 | setup_page_debug(s, page, start); |
0316bec2 | 1794 | |
210e7a43 TG |
1795 | shuffle = shuffle_freelist(s, page); |
1796 | ||
1797 | if (!shuffle) { | |
4d176711 AK |
1798 | start = fixup_red_left(s, start); |
1799 | start = setup_object(s, page, start); | |
1800 | page->freelist = start; | |
18e50661 AK |
1801 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { |
1802 | next = p + s->size; | |
1803 | next = setup_object(s, page, next); | |
1804 | set_freepointer(s, p, next); | |
1805 | p = next; | |
1806 | } | |
1807 | set_freepointer(s, p, NULL); | |
81819f0f | 1808 | } |
81819f0f | 1809 | |
e6e82ea1 | 1810 | page->inuse = page->objects; |
8cb0a506 | 1811 | page->frozen = 1; |
588f8ba9 | 1812 | |
81819f0f | 1813 | out: |
d0164adc | 1814 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1815 | local_irq_disable(); |
1816 | if (!page) | |
1817 | return NULL; | |
1818 | ||
588f8ba9 TG |
1819 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1820 | ||
81819f0f CL |
1821 | return page; |
1822 | } | |
1823 | ||
588f8ba9 TG |
1824 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1825 | { | |
44405099 LL |
1826 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
1827 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 TG |
1828 | |
1829 | return allocate_slab(s, | |
1830 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1831 | } | |
1832 | ||
81819f0f CL |
1833 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1834 | { | |
834f3d11 CL |
1835 | int order = compound_order(page); |
1836 | int pages = 1 << order; | |
81819f0f | 1837 | |
8fc8d666 | 1838 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
81819f0f CL |
1839 | void *p; |
1840 | ||
1841 | slab_pad_check(s, page); | |
224a88be CL |
1842 | for_each_object(p, s, page_address(page), |
1843 | page->objects) | |
f7cb1933 | 1844 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1845 | } |
1846 | ||
072bb0aa | 1847 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1848 | __ClearPageSlab(page); |
1f458cbf | 1849 | |
d4fc5069 | 1850 | page->mapping = NULL; |
1eb5ac64 NP |
1851 | if (current->reclaim_state) |
1852 | current->reclaim_state->reclaimed_slab += pages; | |
6cea1d56 | 1853 | uncharge_slab_page(page, order, s); |
27ee57c9 | 1854 | __free_pages(page, order); |
81819f0f CL |
1855 | } |
1856 | ||
1857 | static void rcu_free_slab(struct rcu_head *h) | |
1858 | { | |
bf68c214 | 1859 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1860 | |
1b4f59e3 | 1861 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1862 | } |
1863 | ||
1864 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1865 | { | |
5f0d5a3a | 1866 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1867 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1868 | } else |
1869 | __free_slab(s, page); | |
1870 | } | |
1871 | ||
1872 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1873 | { | |
205ab99d | 1874 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1875 | free_slab(s, page); |
1876 | } | |
1877 | ||
1878 | /* | |
5cc6eee8 | 1879 | * Management of partially allocated slabs. |
81819f0f | 1880 | */ |
1e4dd946 SR |
1881 | static inline void |
1882 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1883 | { |
e95eed57 | 1884 | n->nr_partial++; |
136333d1 | 1885 | if (tail == DEACTIVATE_TO_TAIL) |
916ac052 | 1886 | list_add_tail(&page->slab_list, &n->partial); |
7c2e132c | 1887 | else |
916ac052 | 1888 | list_add(&page->slab_list, &n->partial); |
81819f0f CL |
1889 | } |
1890 | ||
1e4dd946 SR |
1891 | static inline void add_partial(struct kmem_cache_node *n, |
1892 | struct page *page, int tail) | |
62e346a8 | 1893 | { |
c65c1877 | 1894 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1895 | __add_partial(n, page, tail); |
1896 | } | |
c65c1877 | 1897 | |
1e4dd946 SR |
1898 | static inline void remove_partial(struct kmem_cache_node *n, |
1899 | struct page *page) | |
1900 | { | |
1901 | lockdep_assert_held(&n->list_lock); | |
916ac052 | 1902 | list_del(&page->slab_list); |
52b4b950 | 1903 | n->nr_partial--; |
1e4dd946 SR |
1904 | } |
1905 | ||
81819f0f | 1906 | /* |
7ced3719 CL |
1907 | * Remove slab from the partial list, freeze it and |
1908 | * return the pointer to the freelist. | |
81819f0f | 1909 | * |
497b66f2 | 1910 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1911 | */ |
497b66f2 | 1912 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1913 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1914 | int mode, int *objects) |
81819f0f | 1915 | { |
2cfb7455 CL |
1916 | void *freelist; |
1917 | unsigned long counters; | |
1918 | struct page new; | |
1919 | ||
c65c1877 PZ |
1920 | lockdep_assert_held(&n->list_lock); |
1921 | ||
2cfb7455 CL |
1922 | /* |
1923 | * Zap the freelist and set the frozen bit. | |
1924 | * The old freelist is the list of objects for the | |
1925 | * per cpu allocation list. | |
1926 | */ | |
7ced3719 CL |
1927 | freelist = page->freelist; |
1928 | counters = page->counters; | |
1929 | new.counters = counters; | |
633b0764 | 1930 | *objects = new.objects - new.inuse; |
23910c50 | 1931 | if (mode) { |
7ced3719 | 1932 | new.inuse = page->objects; |
23910c50 PE |
1933 | new.freelist = NULL; |
1934 | } else { | |
1935 | new.freelist = freelist; | |
1936 | } | |
2cfb7455 | 1937 | |
a0132ac0 | 1938 | VM_BUG_ON(new.frozen); |
7ced3719 | 1939 | new.frozen = 1; |
2cfb7455 | 1940 | |
7ced3719 | 1941 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1942 | freelist, counters, |
02d7633f | 1943 | new.freelist, new.counters, |
7ced3719 | 1944 | "acquire_slab")) |
7ced3719 | 1945 | return NULL; |
2cfb7455 CL |
1946 | |
1947 | remove_partial(n, page); | |
7ced3719 | 1948 | WARN_ON(!freelist); |
49e22585 | 1949 | return freelist; |
81819f0f CL |
1950 | } |
1951 | ||
633b0764 | 1952 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1953 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1954 | |
81819f0f | 1955 | /* |
672bba3a | 1956 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1957 | */ |
8ba00bb6 JK |
1958 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1959 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1960 | { |
49e22585 CL |
1961 | struct page *page, *page2; |
1962 | void *object = NULL; | |
e5d9998f | 1963 | unsigned int available = 0; |
633b0764 | 1964 | int objects; |
81819f0f CL |
1965 | |
1966 | /* | |
1967 | * Racy check. If we mistakenly see no partial slabs then we | |
1968 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1969 | * partial slab and there is none available then get_partials() |
1970 | * will return NULL. | |
81819f0f CL |
1971 | */ |
1972 | if (!n || !n->nr_partial) | |
1973 | return NULL; | |
1974 | ||
1975 | spin_lock(&n->list_lock); | |
916ac052 | 1976 | list_for_each_entry_safe(page, page2, &n->partial, slab_list) { |
8ba00bb6 | 1977 | void *t; |
49e22585 | 1978 | |
8ba00bb6 JK |
1979 | if (!pfmemalloc_match(page, flags)) |
1980 | continue; | |
1981 | ||
633b0764 | 1982 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1983 | if (!t) |
1984 | break; | |
1985 | ||
633b0764 | 1986 | available += objects; |
12d79634 | 1987 | if (!object) { |
49e22585 | 1988 | c->page = page; |
49e22585 | 1989 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1990 | object = t; |
49e22585 | 1991 | } else { |
633b0764 | 1992 | put_cpu_partial(s, page, 0); |
8028dcea | 1993 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1994 | } |
345c905d | 1995 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1996 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1997 | break; |
1998 | ||
497b66f2 | 1999 | } |
81819f0f | 2000 | spin_unlock(&n->list_lock); |
497b66f2 | 2001 | return object; |
81819f0f CL |
2002 | } |
2003 | ||
2004 | /* | |
672bba3a | 2005 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 2006 | */ |
de3ec035 | 2007 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 2008 | struct kmem_cache_cpu *c) |
81819f0f CL |
2009 | { |
2010 | #ifdef CONFIG_NUMA | |
2011 | struct zonelist *zonelist; | |
dd1a239f | 2012 | struct zoneref *z; |
54a6eb5c | 2013 | struct zone *zone; |
97a225e6 | 2014 | enum zone_type highest_zoneidx = gfp_zone(flags); |
497b66f2 | 2015 | void *object; |
cc9a6c87 | 2016 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2017 | |
2018 | /* | |
672bba3a CL |
2019 | * The defrag ratio allows a configuration of the tradeoffs between |
2020 | * inter node defragmentation and node local allocations. A lower | |
2021 | * defrag_ratio increases the tendency to do local allocations | |
2022 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2023 | * |
672bba3a CL |
2024 | * If the defrag_ratio is set to 0 then kmalloc() always |
2025 | * returns node local objects. If the ratio is higher then kmalloc() | |
2026 | * may return off node objects because partial slabs are obtained | |
2027 | * from other nodes and filled up. | |
81819f0f | 2028 | * |
43efd3ea LP |
2029 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2030 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2031 | * allocation will first attempt to defrag slab caches on other nodes. | |
2032 | * This means scanning over all nodes to look for partial slabs which | |
2033 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2034 | * with available objects. |
81819f0f | 2035 | */ |
9824601e CL |
2036 | if (!s->remote_node_defrag_ratio || |
2037 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2038 | return NULL; |
2039 | ||
cc9a6c87 | 2040 | do { |
d26914d1 | 2041 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 2042 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
97a225e6 | 2043 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2044 | struct kmem_cache_node *n; |
2045 | ||
2046 | n = get_node(s, zone_to_nid(zone)); | |
2047 | ||
dee2f8aa | 2048 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 2049 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 2050 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
2051 | if (object) { |
2052 | /* | |
d26914d1 MG |
2053 | * Don't check read_mems_allowed_retry() |
2054 | * here - if mems_allowed was updated in | |
2055 | * parallel, that was a harmless race | |
2056 | * between allocation and the cpuset | |
2057 | * update | |
cc9a6c87 | 2058 | */ |
cc9a6c87 MG |
2059 | return object; |
2060 | } | |
c0ff7453 | 2061 | } |
81819f0f | 2062 | } |
d26914d1 | 2063 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2064 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2065 | return NULL; |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | * Get a partial page, lock it and return it. | |
2070 | */ | |
497b66f2 | 2071 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 2072 | struct kmem_cache_cpu *c) |
81819f0f | 2073 | { |
497b66f2 | 2074 | void *object; |
a561ce00 JK |
2075 | int searchnode = node; |
2076 | ||
2077 | if (node == NUMA_NO_NODE) | |
2078 | searchnode = numa_mem_id(); | |
81819f0f | 2079 | |
8ba00bb6 | 2080 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
2081 | if (object || node != NUMA_NO_NODE) |
2082 | return object; | |
81819f0f | 2083 | |
acd19fd1 | 2084 | return get_any_partial(s, flags, c); |
81819f0f CL |
2085 | } |
2086 | ||
923717cb | 2087 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2088 | /* |
0d645ed1 | 2089 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2090 | * during cmpxchg. The transactions start with the cpu number and are then |
2091 | * incremented by CONFIG_NR_CPUS. | |
2092 | */ | |
2093 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2094 | #else | |
2095 | /* | |
2096 | * No preemption supported therefore also no need to check for | |
2097 | * different cpus. | |
2098 | */ | |
2099 | #define TID_STEP 1 | |
2100 | #endif | |
2101 | ||
2102 | static inline unsigned long next_tid(unsigned long tid) | |
2103 | { | |
2104 | return tid + TID_STEP; | |
2105 | } | |
2106 | ||
9d5f0be0 | 2107 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2108 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2109 | { | |
2110 | return tid % TID_STEP; | |
2111 | } | |
2112 | ||
2113 | static inline unsigned long tid_to_event(unsigned long tid) | |
2114 | { | |
2115 | return tid / TID_STEP; | |
2116 | } | |
9d5f0be0 | 2117 | #endif |
8a5ec0ba CL |
2118 | |
2119 | static inline unsigned int init_tid(int cpu) | |
2120 | { | |
2121 | return cpu; | |
2122 | } | |
2123 | ||
2124 | static inline void note_cmpxchg_failure(const char *n, | |
2125 | const struct kmem_cache *s, unsigned long tid) | |
2126 | { | |
2127 | #ifdef SLUB_DEBUG_CMPXCHG | |
2128 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2129 | ||
f9f58285 | 2130 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2131 | |
923717cb | 2132 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2133 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2134 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2135 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2136 | else | |
2137 | #endif | |
2138 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2139 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2140 | tid_to_event(tid), tid_to_event(actual_tid)); |
2141 | else | |
f9f58285 | 2142 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2143 | actual_tid, tid, next_tid(tid)); |
2144 | #endif | |
4fdccdfb | 2145 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2146 | } |
2147 | ||
788e1aad | 2148 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2149 | { |
8a5ec0ba CL |
2150 | int cpu; |
2151 | ||
2152 | for_each_possible_cpu(cpu) | |
2153 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2154 | } |
2cfb7455 | 2155 | |
81819f0f CL |
2156 | /* |
2157 | * Remove the cpu slab | |
2158 | */ | |
d0e0ac97 | 2159 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2160 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2161 | { |
2cfb7455 | 2162 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2163 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2164 | int lock = 0; | |
2165 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2166 | void *nextfree; |
136333d1 | 2167 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2168 | struct page new; |
2169 | struct page old; | |
2170 | ||
2171 | if (page->freelist) { | |
84e554e6 | 2172 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2173 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2174 | } |
2175 | ||
894b8788 | 2176 | /* |
2cfb7455 CL |
2177 | * Stage one: Free all available per cpu objects back |
2178 | * to the page freelist while it is still frozen. Leave the | |
2179 | * last one. | |
2180 | * | |
2181 | * There is no need to take the list->lock because the page | |
2182 | * is still frozen. | |
2183 | */ | |
2184 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2185 | void *prior; | |
2186 | unsigned long counters; | |
2187 | ||
52f23478 DZ |
2188 | /* |
2189 | * If 'nextfree' is invalid, it is possible that the object at | |
2190 | * 'freelist' is already corrupted. So isolate all objects | |
2191 | * starting at 'freelist'. | |
2192 | */ | |
2193 | if (freelist_corrupted(s, page, freelist, nextfree)) | |
2194 | break; | |
2195 | ||
2cfb7455 CL |
2196 | do { |
2197 | prior = page->freelist; | |
2198 | counters = page->counters; | |
2199 | set_freepointer(s, freelist, prior); | |
2200 | new.counters = counters; | |
2201 | new.inuse--; | |
a0132ac0 | 2202 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2203 | |
1d07171c | 2204 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2205 | prior, counters, |
2206 | freelist, new.counters, | |
2207 | "drain percpu freelist")); | |
2208 | ||
2209 | freelist = nextfree; | |
2210 | } | |
2211 | ||
894b8788 | 2212 | /* |
2cfb7455 CL |
2213 | * Stage two: Ensure that the page is unfrozen while the |
2214 | * list presence reflects the actual number of objects | |
2215 | * during unfreeze. | |
2216 | * | |
2217 | * We setup the list membership and then perform a cmpxchg | |
2218 | * with the count. If there is a mismatch then the page | |
2219 | * is not unfrozen but the page is on the wrong list. | |
2220 | * | |
2221 | * Then we restart the process which may have to remove | |
2222 | * the page from the list that we just put it on again | |
2223 | * because the number of objects in the slab may have | |
2224 | * changed. | |
894b8788 | 2225 | */ |
2cfb7455 | 2226 | redo: |
894b8788 | 2227 | |
2cfb7455 CL |
2228 | old.freelist = page->freelist; |
2229 | old.counters = page->counters; | |
a0132ac0 | 2230 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2231 | |
2cfb7455 CL |
2232 | /* Determine target state of the slab */ |
2233 | new.counters = old.counters; | |
2234 | if (freelist) { | |
2235 | new.inuse--; | |
2236 | set_freepointer(s, freelist, old.freelist); | |
2237 | new.freelist = freelist; | |
2238 | } else | |
2239 | new.freelist = old.freelist; | |
2240 | ||
2241 | new.frozen = 0; | |
2242 | ||
8a5b20ae | 2243 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2244 | m = M_FREE; |
2245 | else if (new.freelist) { | |
2246 | m = M_PARTIAL; | |
2247 | if (!lock) { | |
2248 | lock = 1; | |
2249 | /* | |
8bb4e7a2 | 2250 | * Taking the spinlock removes the possibility |
2cfb7455 CL |
2251 | * that acquire_slab() will see a slab page that |
2252 | * is frozen | |
2253 | */ | |
2254 | spin_lock(&n->list_lock); | |
2255 | } | |
2256 | } else { | |
2257 | m = M_FULL; | |
2258 | if (kmem_cache_debug(s) && !lock) { | |
2259 | lock = 1; | |
2260 | /* | |
2261 | * This also ensures that the scanning of full | |
2262 | * slabs from diagnostic functions will not see | |
2263 | * any frozen slabs. | |
2264 | */ | |
2265 | spin_lock(&n->list_lock); | |
2266 | } | |
2267 | } | |
2268 | ||
2269 | if (l != m) { | |
2cfb7455 | 2270 | if (l == M_PARTIAL) |
2cfb7455 | 2271 | remove_partial(n, page); |
2cfb7455 | 2272 | else if (l == M_FULL) |
c65c1877 | 2273 | remove_full(s, n, page); |
2cfb7455 | 2274 | |
88349a28 | 2275 | if (m == M_PARTIAL) |
2cfb7455 | 2276 | add_partial(n, page, tail); |
88349a28 | 2277 | else if (m == M_FULL) |
2cfb7455 | 2278 | add_full(s, n, page); |
2cfb7455 CL |
2279 | } |
2280 | ||
2281 | l = m; | |
1d07171c | 2282 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2283 | old.freelist, old.counters, |
2284 | new.freelist, new.counters, | |
2285 | "unfreezing slab")) | |
2286 | goto redo; | |
2287 | ||
2cfb7455 CL |
2288 | if (lock) |
2289 | spin_unlock(&n->list_lock); | |
2290 | ||
88349a28 WY |
2291 | if (m == M_PARTIAL) |
2292 | stat(s, tail); | |
2293 | else if (m == M_FULL) | |
2294 | stat(s, DEACTIVATE_FULL); | |
2295 | else if (m == M_FREE) { | |
2cfb7455 CL |
2296 | stat(s, DEACTIVATE_EMPTY); |
2297 | discard_slab(s, page); | |
2298 | stat(s, FREE_SLAB); | |
894b8788 | 2299 | } |
d4ff6d35 WY |
2300 | |
2301 | c->page = NULL; | |
2302 | c->freelist = NULL; | |
81819f0f CL |
2303 | } |
2304 | ||
d24ac77f JK |
2305 | /* |
2306 | * Unfreeze all the cpu partial slabs. | |
2307 | * | |
59a09917 CL |
2308 | * This function must be called with interrupts disabled |
2309 | * for the cpu using c (or some other guarantee must be there | |
2310 | * to guarantee no concurrent accesses). | |
d24ac77f | 2311 | */ |
59a09917 CL |
2312 | static void unfreeze_partials(struct kmem_cache *s, |
2313 | struct kmem_cache_cpu *c) | |
49e22585 | 2314 | { |
345c905d | 2315 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2316 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2317 | struct page *page, *discard_page = NULL; |
49e22585 | 2318 | |
4c7ba22e | 2319 | while ((page = slub_percpu_partial(c))) { |
49e22585 CL |
2320 | struct page new; |
2321 | struct page old; | |
2322 | ||
4c7ba22e | 2323 | slub_set_percpu_partial(c, page); |
43d77867 JK |
2324 | |
2325 | n2 = get_node(s, page_to_nid(page)); | |
2326 | if (n != n2) { | |
2327 | if (n) | |
2328 | spin_unlock(&n->list_lock); | |
2329 | ||
2330 | n = n2; | |
2331 | spin_lock(&n->list_lock); | |
2332 | } | |
49e22585 CL |
2333 | |
2334 | do { | |
2335 | ||
2336 | old.freelist = page->freelist; | |
2337 | old.counters = page->counters; | |
a0132ac0 | 2338 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2339 | |
2340 | new.counters = old.counters; | |
2341 | new.freelist = old.freelist; | |
2342 | ||
2343 | new.frozen = 0; | |
2344 | ||
d24ac77f | 2345 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2346 | old.freelist, old.counters, |
2347 | new.freelist, new.counters, | |
2348 | "unfreezing slab")); | |
2349 | ||
8a5b20ae | 2350 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2351 | page->next = discard_page; |
2352 | discard_page = page; | |
43d77867 JK |
2353 | } else { |
2354 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2355 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2356 | } |
2357 | } | |
2358 | ||
2359 | if (n) | |
2360 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2361 | |
2362 | while (discard_page) { | |
2363 | page = discard_page; | |
2364 | discard_page = discard_page->next; | |
2365 | ||
2366 | stat(s, DEACTIVATE_EMPTY); | |
2367 | discard_slab(s, page); | |
2368 | stat(s, FREE_SLAB); | |
2369 | } | |
6dfd1b65 | 2370 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2371 | } |
2372 | ||
2373 | /* | |
9234bae9 WY |
2374 | * Put a page that was just frozen (in __slab_free|get_partial_node) into a |
2375 | * partial page slot if available. | |
49e22585 CL |
2376 | * |
2377 | * If we did not find a slot then simply move all the partials to the | |
2378 | * per node partial list. | |
2379 | */ | |
633b0764 | 2380 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2381 | { |
345c905d | 2382 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2383 | struct page *oldpage; |
2384 | int pages; | |
2385 | int pobjects; | |
2386 | ||
d6e0b7fa | 2387 | preempt_disable(); |
49e22585 CL |
2388 | do { |
2389 | pages = 0; | |
2390 | pobjects = 0; | |
2391 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2392 | ||
2393 | if (oldpage) { | |
2394 | pobjects = oldpage->pobjects; | |
2395 | pages = oldpage->pages; | |
bbd4e305 | 2396 | if (drain && pobjects > slub_cpu_partial(s)) { |
49e22585 CL |
2397 | unsigned long flags; |
2398 | /* | |
2399 | * partial array is full. Move the existing | |
2400 | * set to the per node partial list. | |
2401 | */ | |
2402 | local_irq_save(flags); | |
59a09917 | 2403 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2404 | local_irq_restore(flags); |
e24fc410 | 2405 | oldpage = NULL; |
49e22585 CL |
2406 | pobjects = 0; |
2407 | pages = 0; | |
8028dcea | 2408 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2409 | } |
2410 | } | |
2411 | ||
2412 | pages++; | |
2413 | pobjects += page->objects - page->inuse; | |
2414 | ||
2415 | page->pages = pages; | |
2416 | page->pobjects = pobjects; | |
2417 | page->next = oldpage; | |
2418 | ||
d0e0ac97 CG |
2419 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2420 | != oldpage); | |
bbd4e305 | 2421 | if (unlikely(!slub_cpu_partial(s))) { |
d6e0b7fa VD |
2422 | unsigned long flags; |
2423 | ||
2424 | local_irq_save(flags); | |
2425 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2426 | local_irq_restore(flags); | |
2427 | } | |
2428 | preempt_enable(); | |
6dfd1b65 | 2429 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2430 | } |
2431 | ||
dfb4f096 | 2432 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2433 | { |
84e554e6 | 2434 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2435 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2436 | |
2437 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2438 | } |
2439 | ||
2440 | /* | |
2441 | * Flush cpu slab. | |
6446faa2 | 2442 | * |
81819f0f CL |
2443 | * Called from IPI handler with interrupts disabled. |
2444 | */ | |
0c710013 | 2445 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2446 | { |
9dfc6e68 | 2447 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2448 | |
1265ef2d WY |
2449 | if (c->page) |
2450 | flush_slab(s, c); | |
49e22585 | 2451 | |
1265ef2d | 2452 | unfreeze_partials(s, c); |
81819f0f CL |
2453 | } |
2454 | ||
2455 | static void flush_cpu_slab(void *d) | |
2456 | { | |
2457 | struct kmem_cache *s = d; | |
81819f0f | 2458 | |
dfb4f096 | 2459 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2460 | } |
2461 | ||
a8364d55 GBY |
2462 | static bool has_cpu_slab(int cpu, void *info) |
2463 | { | |
2464 | struct kmem_cache *s = info; | |
2465 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2466 | ||
a93cf07b | 2467 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2468 | } |
2469 | ||
81819f0f CL |
2470 | static void flush_all(struct kmem_cache *s) |
2471 | { | |
cb923159 | 2472 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); |
81819f0f CL |
2473 | } |
2474 | ||
a96a87bf SAS |
2475 | /* |
2476 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2477 | * necessary. | |
2478 | */ | |
2479 | static int slub_cpu_dead(unsigned int cpu) | |
2480 | { | |
2481 | struct kmem_cache *s; | |
2482 | unsigned long flags; | |
2483 | ||
2484 | mutex_lock(&slab_mutex); | |
2485 | list_for_each_entry(s, &slab_caches, list) { | |
2486 | local_irq_save(flags); | |
2487 | __flush_cpu_slab(s, cpu); | |
2488 | local_irq_restore(flags); | |
2489 | } | |
2490 | mutex_unlock(&slab_mutex); | |
2491 | return 0; | |
2492 | } | |
2493 | ||
dfb4f096 CL |
2494 | /* |
2495 | * Check if the objects in a per cpu structure fit numa | |
2496 | * locality expectations. | |
2497 | */ | |
57d437d2 | 2498 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2499 | { |
2500 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2501 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2502 | return 0; |
2503 | #endif | |
2504 | return 1; | |
2505 | } | |
2506 | ||
9a02d699 | 2507 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2508 | static int count_free(struct page *page) |
2509 | { | |
2510 | return page->objects - page->inuse; | |
2511 | } | |
2512 | ||
9a02d699 DR |
2513 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2514 | { | |
2515 | return atomic_long_read(&n->total_objects); | |
2516 | } | |
2517 | #endif /* CONFIG_SLUB_DEBUG */ | |
2518 | ||
2519 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2520 | static unsigned long count_partial(struct kmem_cache_node *n, |
2521 | int (*get_count)(struct page *)) | |
2522 | { | |
2523 | unsigned long flags; | |
2524 | unsigned long x = 0; | |
2525 | struct page *page; | |
2526 | ||
2527 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 2528 | list_for_each_entry(page, &n->partial, slab_list) |
781b2ba6 PE |
2529 | x += get_count(page); |
2530 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2531 | return x; | |
2532 | } | |
9a02d699 | 2533 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2534 | |
781b2ba6 PE |
2535 | static noinline void |
2536 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2537 | { | |
9a02d699 DR |
2538 | #ifdef CONFIG_SLUB_DEBUG |
2539 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2540 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2541 | int node; |
fa45dc25 | 2542 | struct kmem_cache_node *n; |
781b2ba6 | 2543 | |
9a02d699 DR |
2544 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2545 | return; | |
2546 | ||
5b3810e5 VB |
2547 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2548 | nid, gfpflags, &gfpflags); | |
19af27af | 2549 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2550 | s->name, s->object_size, s->size, oo_order(s->oo), |
2551 | oo_order(s->min)); | |
781b2ba6 | 2552 | |
3b0efdfa | 2553 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2554 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2555 | s->name); | |
fa5ec8a1 | 2556 | |
fa45dc25 | 2557 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2558 | unsigned long nr_slabs; |
2559 | unsigned long nr_objs; | |
2560 | unsigned long nr_free; | |
2561 | ||
26c02cf0 AB |
2562 | nr_free = count_partial(n, count_free); |
2563 | nr_slabs = node_nr_slabs(n); | |
2564 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2565 | |
f9f58285 | 2566 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2567 | node, nr_slabs, nr_objs, nr_free); |
2568 | } | |
9a02d699 | 2569 | #endif |
781b2ba6 PE |
2570 | } |
2571 | ||
497b66f2 CL |
2572 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2573 | int node, struct kmem_cache_cpu **pc) | |
2574 | { | |
6faa6833 | 2575 | void *freelist; |
188fd063 CL |
2576 | struct kmem_cache_cpu *c = *pc; |
2577 | struct page *page; | |
497b66f2 | 2578 | |
128227e7 MW |
2579 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2580 | ||
188fd063 | 2581 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2582 | |
188fd063 CL |
2583 | if (freelist) |
2584 | return freelist; | |
2585 | ||
2586 | page = new_slab(s, flags, node); | |
497b66f2 | 2587 | if (page) { |
7c8e0181 | 2588 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2589 | if (c->page) |
2590 | flush_slab(s, c); | |
2591 | ||
2592 | /* | |
2593 | * No other reference to the page yet so we can | |
2594 | * muck around with it freely without cmpxchg | |
2595 | */ | |
6faa6833 | 2596 | freelist = page->freelist; |
497b66f2 CL |
2597 | page->freelist = NULL; |
2598 | ||
2599 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2600 | c->page = page; |
2601 | *pc = c; | |
edde82b6 | 2602 | } |
497b66f2 | 2603 | |
6faa6833 | 2604 | return freelist; |
497b66f2 CL |
2605 | } |
2606 | ||
072bb0aa MG |
2607 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2608 | { | |
2609 | if (unlikely(PageSlabPfmemalloc(page))) | |
2610 | return gfp_pfmemalloc_allowed(gfpflags); | |
2611 | ||
2612 | return true; | |
2613 | } | |
2614 | ||
213eeb9f | 2615 | /* |
d0e0ac97 CG |
2616 | * Check the page->freelist of a page and either transfer the freelist to the |
2617 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2618 | * |
2619 | * The page is still frozen if the return value is not NULL. | |
2620 | * | |
2621 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2622 | * |
2623 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2624 | */ |
2625 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2626 | { | |
2627 | struct page new; | |
2628 | unsigned long counters; | |
2629 | void *freelist; | |
2630 | ||
2631 | do { | |
2632 | freelist = page->freelist; | |
2633 | counters = page->counters; | |
6faa6833 | 2634 | |
213eeb9f | 2635 | new.counters = counters; |
a0132ac0 | 2636 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2637 | |
2638 | new.inuse = page->objects; | |
2639 | new.frozen = freelist != NULL; | |
2640 | ||
d24ac77f | 2641 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2642 | freelist, counters, |
2643 | NULL, new.counters, | |
2644 | "get_freelist")); | |
2645 | ||
2646 | return freelist; | |
2647 | } | |
2648 | ||
81819f0f | 2649 | /* |
894b8788 CL |
2650 | * Slow path. The lockless freelist is empty or we need to perform |
2651 | * debugging duties. | |
2652 | * | |
894b8788 CL |
2653 | * Processing is still very fast if new objects have been freed to the |
2654 | * regular freelist. In that case we simply take over the regular freelist | |
2655 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2656 | * |
894b8788 CL |
2657 | * If that is not working then we fall back to the partial lists. We take the |
2658 | * first element of the freelist as the object to allocate now and move the | |
2659 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2660 | * |
894b8788 | 2661 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2662 | * we need to allocate a new slab. This is the slowest path since it involves |
2663 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2664 | * |
2665 | * Version of __slab_alloc to use when we know that interrupts are | |
2666 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2667 | */ |
a380a3c7 | 2668 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2669 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2670 | { |
6faa6833 | 2671 | void *freelist; |
f6e7def7 | 2672 | struct page *page; |
81819f0f | 2673 | |
f6e7def7 | 2674 | page = c->page; |
0715e6c5 VB |
2675 | if (!page) { |
2676 | /* | |
2677 | * if the node is not online or has no normal memory, just | |
2678 | * ignore the node constraint | |
2679 | */ | |
2680 | if (unlikely(node != NUMA_NO_NODE && | |
2681 | !node_state(node, N_NORMAL_MEMORY))) | |
2682 | node = NUMA_NO_NODE; | |
81819f0f | 2683 | goto new_slab; |
0715e6c5 | 2684 | } |
49e22585 | 2685 | redo: |
6faa6833 | 2686 | |
57d437d2 | 2687 | if (unlikely(!node_match(page, node))) { |
0715e6c5 VB |
2688 | /* |
2689 | * same as above but node_match() being false already | |
2690 | * implies node != NUMA_NO_NODE | |
2691 | */ | |
2692 | if (!node_state(node, N_NORMAL_MEMORY)) { | |
2693 | node = NUMA_NO_NODE; | |
2694 | goto redo; | |
2695 | } else { | |
a561ce00 | 2696 | stat(s, ALLOC_NODE_MISMATCH); |
d4ff6d35 | 2697 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2698 | goto new_slab; |
2699 | } | |
fc59c053 | 2700 | } |
6446faa2 | 2701 | |
072bb0aa MG |
2702 | /* |
2703 | * By rights, we should be searching for a slab page that was | |
2704 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2705 | * information when the page leaves the per-cpu allocator | |
2706 | */ | |
2707 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2708 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2709 | goto new_slab; |
2710 | } | |
2711 | ||
73736e03 | 2712 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2713 | freelist = c->freelist; |
2714 | if (freelist) | |
73736e03 | 2715 | goto load_freelist; |
03e404af | 2716 | |
f6e7def7 | 2717 | freelist = get_freelist(s, page); |
6446faa2 | 2718 | |
6faa6833 | 2719 | if (!freelist) { |
03e404af CL |
2720 | c->page = NULL; |
2721 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2722 | goto new_slab; |
03e404af | 2723 | } |
6446faa2 | 2724 | |
84e554e6 | 2725 | stat(s, ALLOC_REFILL); |
6446faa2 | 2726 | |
894b8788 | 2727 | load_freelist: |
507effea CL |
2728 | /* |
2729 | * freelist is pointing to the list of objects to be used. | |
2730 | * page is pointing to the page from which the objects are obtained. | |
2731 | * That page must be frozen for per cpu allocations to work. | |
2732 | */ | |
a0132ac0 | 2733 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2734 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2735 | c->tid = next_tid(c->tid); |
6faa6833 | 2736 | return freelist; |
81819f0f | 2737 | |
81819f0f | 2738 | new_slab: |
2cfb7455 | 2739 | |
a93cf07b WY |
2740 | if (slub_percpu_partial(c)) { |
2741 | page = c->page = slub_percpu_partial(c); | |
2742 | slub_set_percpu_partial(c, page); | |
49e22585 | 2743 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2744 | goto redo; |
81819f0f CL |
2745 | } |
2746 | ||
188fd063 | 2747 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2748 | |
f4697436 | 2749 | if (unlikely(!freelist)) { |
9a02d699 | 2750 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2751 | return NULL; |
81819f0f | 2752 | } |
2cfb7455 | 2753 | |
f6e7def7 | 2754 | page = c->page; |
5091b74a | 2755 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2756 | goto load_freelist; |
2cfb7455 | 2757 | |
497b66f2 | 2758 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2759 | if (kmem_cache_debug(s) && |
2760 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2761 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2762 | |
d4ff6d35 | 2763 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2764 | return freelist; |
894b8788 CL |
2765 | } |
2766 | ||
a380a3c7 CL |
2767 | /* |
2768 | * Another one that disabled interrupt and compensates for possible | |
2769 | * cpu changes by refetching the per cpu area pointer. | |
2770 | */ | |
2771 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2772 | unsigned long addr, struct kmem_cache_cpu *c) | |
2773 | { | |
2774 | void *p; | |
2775 | unsigned long flags; | |
2776 | ||
2777 | local_irq_save(flags); | |
923717cb | 2778 | #ifdef CONFIG_PREEMPTION |
a380a3c7 CL |
2779 | /* |
2780 | * We may have been preempted and rescheduled on a different | |
2781 | * cpu before disabling interrupts. Need to reload cpu area | |
2782 | * pointer. | |
2783 | */ | |
2784 | c = this_cpu_ptr(s->cpu_slab); | |
2785 | #endif | |
2786 | ||
2787 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2788 | local_irq_restore(flags); | |
2789 | return p; | |
2790 | } | |
2791 | ||
0f181f9f AP |
2792 | /* |
2793 | * If the object has been wiped upon free, make sure it's fully initialized by | |
2794 | * zeroing out freelist pointer. | |
2795 | */ | |
2796 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
2797 | void *obj) | |
2798 | { | |
2799 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
2800 | memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); | |
2801 | } | |
2802 | ||
894b8788 CL |
2803 | /* |
2804 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2805 | * have the fastpath folded into their functions. So no function call | |
2806 | * overhead for requests that can be satisfied on the fastpath. | |
2807 | * | |
2808 | * The fastpath works by first checking if the lockless freelist can be used. | |
2809 | * If not then __slab_alloc is called for slow processing. | |
2810 | * | |
2811 | * Otherwise we can simply pick the next object from the lockless free list. | |
2812 | */ | |
2b847c3c | 2813 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2814 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2815 | { |
03ec0ed5 | 2816 | void *object; |
dfb4f096 | 2817 | struct kmem_cache_cpu *c; |
57d437d2 | 2818 | struct page *page; |
8a5ec0ba | 2819 | unsigned long tid; |
964d4bd3 | 2820 | struct obj_cgroup *objcg = NULL; |
1f84260c | 2821 | |
964d4bd3 | 2822 | s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); |
8135be5a | 2823 | if (!s) |
773ff60e | 2824 | return NULL; |
8a5ec0ba | 2825 | redo: |
8a5ec0ba CL |
2826 | /* |
2827 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2828 | * enabled. We may switch back and forth between cpus while | |
2829 | * reading from one cpu area. That does not matter as long | |
2830 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2831 | * |
9aabf810 | 2832 | * We should guarantee that tid and kmem_cache are retrieved on |
923717cb | 2833 | * the same cpu. It could be different if CONFIG_PREEMPTION so we need |
9aabf810 | 2834 | * to check if it is matched or not. |
8a5ec0ba | 2835 | */ |
9aabf810 JK |
2836 | do { |
2837 | tid = this_cpu_read(s->cpu_slab->tid); | |
2838 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 2839 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 2840 | unlikely(tid != READ_ONCE(c->tid))); |
9aabf810 JK |
2841 | |
2842 | /* | |
2843 | * Irqless object alloc/free algorithm used here depends on sequence | |
2844 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2845 | * on c to guarantee that object and page associated with previous tid | |
2846 | * won't be used with current tid. If we fetch tid first, object and | |
2847 | * page could be one associated with next tid and our alloc/free | |
2848 | * request will be failed. In this case, we will retry. So, no problem. | |
2849 | */ | |
2850 | barrier(); | |
8a5ec0ba | 2851 | |
8a5ec0ba CL |
2852 | /* |
2853 | * The transaction ids are globally unique per cpu and per operation on | |
2854 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2855 | * occurs on the right processor and that there was no operation on the | |
2856 | * linked list in between. | |
2857 | */ | |
8a5ec0ba | 2858 | |
9dfc6e68 | 2859 | object = c->freelist; |
57d437d2 | 2860 | page = c->page; |
8eae1492 | 2861 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2862 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2863 | stat(s, ALLOC_SLOWPATH); |
2864 | } else { | |
0ad9500e ED |
2865 | void *next_object = get_freepointer_safe(s, object); |
2866 | ||
8a5ec0ba | 2867 | /* |
25985edc | 2868 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2869 | * operation and if we are on the right processor. |
2870 | * | |
d0e0ac97 CG |
2871 | * The cmpxchg does the following atomically (without lock |
2872 | * semantics!) | |
8a5ec0ba CL |
2873 | * 1. Relocate first pointer to the current per cpu area. |
2874 | * 2. Verify that tid and freelist have not been changed | |
2875 | * 3. If they were not changed replace tid and freelist | |
2876 | * | |
d0e0ac97 CG |
2877 | * Since this is without lock semantics the protection is only |
2878 | * against code executing on this cpu *not* from access by | |
2879 | * other cpus. | |
8a5ec0ba | 2880 | */ |
933393f5 | 2881 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2882 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2883 | object, tid, | |
0ad9500e | 2884 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2885 | |
2886 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2887 | goto redo; | |
2888 | } | |
0ad9500e | 2889 | prefetch_freepointer(s, next_object); |
84e554e6 | 2890 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2891 | } |
0f181f9f AP |
2892 | |
2893 | maybe_wipe_obj_freeptr(s, object); | |
8a5ec0ba | 2894 | |
6471384a | 2895 | if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) |
3b0efdfa | 2896 | memset(object, 0, s->object_size); |
d07dbea4 | 2897 | |
964d4bd3 | 2898 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); |
5a896d9e | 2899 | |
894b8788 | 2900 | return object; |
81819f0f CL |
2901 | } |
2902 | ||
2b847c3c EG |
2903 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2904 | gfp_t gfpflags, unsigned long addr) | |
2905 | { | |
2906 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2907 | } | |
2908 | ||
81819f0f CL |
2909 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2910 | { | |
2b847c3c | 2911 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2912 | |
d0e0ac97 CG |
2913 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2914 | s->size, gfpflags); | |
5b882be4 EGM |
2915 | |
2916 | return ret; | |
81819f0f CL |
2917 | } |
2918 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2919 | ||
0f24f128 | 2920 | #ifdef CONFIG_TRACING |
4a92379b RK |
2921 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2922 | { | |
2b847c3c | 2923 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2924 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 2925 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2926 | return ret; |
2927 | } | |
2928 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2929 | #endif |
2930 | ||
81819f0f CL |
2931 | #ifdef CONFIG_NUMA |
2932 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2933 | { | |
2b847c3c | 2934 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2935 | |
ca2b84cb | 2936 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2937 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2938 | |
2939 | return ret; | |
81819f0f CL |
2940 | } |
2941 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2942 | |
0f24f128 | 2943 | #ifdef CONFIG_TRACING |
4a92379b | 2944 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2945 | gfp_t gfpflags, |
4a92379b | 2946 | int node, size_t size) |
5b882be4 | 2947 | { |
2b847c3c | 2948 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2949 | |
2950 | trace_kmalloc_node(_RET_IP_, ret, | |
2951 | size, s->size, gfpflags, node); | |
0316bec2 | 2952 | |
0116523c | 2953 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2954 | return ret; |
5b882be4 | 2955 | } |
4a92379b | 2956 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2957 | #endif |
6dfd1b65 | 2958 | #endif /* CONFIG_NUMA */ |
5b882be4 | 2959 | |
81819f0f | 2960 | /* |
94e4d712 | 2961 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2962 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2963 | * |
894b8788 CL |
2964 | * So we still attempt to reduce cache line usage. Just take the slab |
2965 | * lock and free the item. If there is no additional partial page | |
2966 | * handling required then we can return immediately. | |
81819f0f | 2967 | */ |
894b8788 | 2968 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2969 | void *head, void *tail, int cnt, |
2970 | unsigned long addr) | |
2971 | ||
81819f0f CL |
2972 | { |
2973 | void *prior; | |
2cfb7455 | 2974 | int was_frozen; |
2cfb7455 CL |
2975 | struct page new; |
2976 | unsigned long counters; | |
2977 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 2978 | unsigned long flags; |
81819f0f | 2979 | |
8a5ec0ba | 2980 | stat(s, FREE_SLOWPATH); |
81819f0f | 2981 | |
19c7ff9e | 2982 | if (kmem_cache_debug(s) && |
282acb43 | 2983 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2984 | return; |
6446faa2 | 2985 | |
2cfb7455 | 2986 | do { |
837d678d JK |
2987 | if (unlikely(n)) { |
2988 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2989 | n = NULL; | |
2990 | } | |
2cfb7455 CL |
2991 | prior = page->freelist; |
2992 | counters = page->counters; | |
81084651 | 2993 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2994 | new.counters = counters; |
2995 | was_frozen = new.frozen; | |
81084651 | 2996 | new.inuse -= cnt; |
837d678d | 2997 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2998 | |
c65c1877 | 2999 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
3000 | |
3001 | /* | |
d0e0ac97 CG |
3002 | * Slab was on no list before and will be |
3003 | * partially empty | |
3004 | * We can defer the list move and instead | |
3005 | * freeze it. | |
49e22585 CL |
3006 | */ |
3007 | new.frozen = 1; | |
3008 | ||
c65c1877 | 3009 | } else { /* Needs to be taken off a list */ |
49e22585 | 3010 | |
b455def2 | 3011 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
3012 | /* |
3013 | * Speculatively acquire the list_lock. | |
3014 | * If the cmpxchg does not succeed then we may | |
3015 | * drop the list_lock without any processing. | |
3016 | * | |
3017 | * Otherwise the list_lock will synchronize with | |
3018 | * other processors updating the list of slabs. | |
3019 | */ | |
3020 | spin_lock_irqsave(&n->list_lock, flags); | |
3021 | ||
3022 | } | |
2cfb7455 | 3023 | } |
81819f0f | 3024 | |
2cfb7455 CL |
3025 | } while (!cmpxchg_double_slab(s, page, |
3026 | prior, counters, | |
81084651 | 3027 | head, new.counters, |
2cfb7455 | 3028 | "__slab_free")); |
81819f0f | 3029 | |
2cfb7455 | 3030 | if (likely(!n)) { |
49e22585 CL |
3031 | |
3032 | /* | |
3033 | * If we just froze the page then put it onto the | |
3034 | * per cpu partial list. | |
3035 | */ | |
8028dcea | 3036 | if (new.frozen && !was_frozen) { |
49e22585 | 3037 | put_cpu_partial(s, page, 1); |
8028dcea AS |
3038 | stat(s, CPU_PARTIAL_FREE); |
3039 | } | |
49e22585 | 3040 | /* |
2cfb7455 CL |
3041 | * The list lock was not taken therefore no list |
3042 | * activity can be necessary. | |
3043 | */ | |
b455def2 L |
3044 | if (was_frozen) |
3045 | stat(s, FREE_FROZEN); | |
3046 | return; | |
3047 | } | |
81819f0f | 3048 | |
8a5b20ae | 3049 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
3050 | goto slab_empty; |
3051 | ||
81819f0f | 3052 | /* |
837d678d JK |
3053 | * Objects left in the slab. If it was not on the partial list before |
3054 | * then add it. | |
81819f0f | 3055 | */ |
345c905d | 3056 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
a4d3f891 | 3057 | remove_full(s, n, page); |
837d678d JK |
3058 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
3059 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 3060 | } |
80f08c19 | 3061 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
3062 | return; |
3063 | ||
3064 | slab_empty: | |
a973e9dd | 3065 | if (prior) { |
81819f0f | 3066 | /* |
6fbabb20 | 3067 | * Slab on the partial list. |
81819f0f | 3068 | */ |
5cc6eee8 | 3069 | remove_partial(n, page); |
84e554e6 | 3070 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 3071 | } else { |
6fbabb20 | 3072 | /* Slab must be on the full list */ |
c65c1877 PZ |
3073 | remove_full(s, n, page); |
3074 | } | |
2cfb7455 | 3075 | |
80f08c19 | 3076 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3077 | stat(s, FREE_SLAB); |
81819f0f | 3078 | discard_slab(s, page); |
81819f0f CL |
3079 | } |
3080 | ||
894b8788 CL |
3081 | /* |
3082 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3083 | * can perform fastpath freeing without additional function calls. | |
3084 | * | |
3085 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3086 | * of this processor. This typically the case if we have just allocated | |
3087 | * the item before. | |
3088 | * | |
3089 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3090 | * with all sorts of special processing. | |
81084651 JDB |
3091 | * |
3092 | * Bulk free of a freelist with several objects (all pointing to the | |
3093 | * same page) possible by specifying head and tail ptr, plus objects | |
3094 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 3095 | */ |
80a9201a AP |
3096 | static __always_inline void do_slab_free(struct kmem_cache *s, |
3097 | struct page *page, void *head, void *tail, | |
3098 | int cnt, unsigned long addr) | |
894b8788 | 3099 | { |
81084651 | 3100 | void *tail_obj = tail ? : head; |
dfb4f096 | 3101 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3102 | unsigned long tid; |
964d4bd3 RG |
3103 | |
3104 | memcg_slab_free_hook(s, page, head); | |
8a5ec0ba CL |
3105 | redo: |
3106 | /* | |
3107 | * Determine the currently cpus per cpu slab. | |
3108 | * The cpu may change afterward. However that does not matter since | |
3109 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3110 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3111 | */ |
9aabf810 JK |
3112 | do { |
3113 | tid = this_cpu_read(s->cpu_slab->tid); | |
3114 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 3115 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 3116 | unlikely(tid != READ_ONCE(c->tid))); |
c016b0bd | 3117 | |
9aabf810 JK |
3118 | /* Same with comment on barrier() in slab_alloc_node() */ |
3119 | barrier(); | |
c016b0bd | 3120 | |
442b06bc | 3121 | if (likely(page == c->page)) { |
5076190d LT |
3122 | void **freelist = READ_ONCE(c->freelist); |
3123 | ||
3124 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3125 | |
933393f5 | 3126 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3127 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3128 | freelist, tid, |
81084651 | 3129 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3130 | |
3131 | note_cmpxchg_failure("slab_free", s, tid); | |
3132 | goto redo; | |
3133 | } | |
84e554e6 | 3134 | stat(s, FREE_FASTPATH); |
894b8788 | 3135 | } else |
81084651 | 3136 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 3137 | |
894b8788 CL |
3138 | } |
3139 | ||
80a9201a AP |
3140 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
3141 | void *head, void *tail, int cnt, | |
3142 | unsigned long addr) | |
3143 | { | |
80a9201a | 3144 | /* |
c3895391 AK |
3145 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3146 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3147 | */ |
c3895391 AK |
3148 | if (slab_free_freelist_hook(s, &head, &tail)) |
3149 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
3150 | } |
3151 | ||
2bd926b4 | 3152 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3153 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3154 | { | |
3155 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3156 | } | |
3157 | #endif | |
3158 | ||
81819f0f CL |
3159 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3160 | { | |
b9ce5ef4 GC |
3161 | s = cache_from_obj(s, x); |
3162 | if (!s) | |
79576102 | 3163 | return; |
81084651 | 3164 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3165 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3166 | } |
3167 | EXPORT_SYMBOL(kmem_cache_free); | |
3168 | ||
d0ecd894 | 3169 | struct detached_freelist { |
fbd02630 | 3170 | struct page *page; |
d0ecd894 JDB |
3171 | void *tail; |
3172 | void *freelist; | |
3173 | int cnt; | |
376bf125 | 3174 | struct kmem_cache *s; |
d0ecd894 | 3175 | }; |
fbd02630 | 3176 | |
d0ecd894 JDB |
3177 | /* |
3178 | * This function progressively scans the array with free objects (with | |
3179 | * a limited look ahead) and extract objects belonging to the same | |
3180 | * page. It builds a detached freelist directly within the given | |
3181 | * page/objects. This can happen without any need for | |
3182 | * synchronization, because the objects are owned by running process. | |
3183 | * The freelist is build up as a single linked list in the objects. | |
3184 | * The idea is, that this detached freelist can then be bulk | |
3185 | * transferred to the real freelist(s), but only requiring a single | |
3186 | * synchronization primitive. Look ahead in the array is limited due | |
3187 | * to performance reasons. | |
3188 | */ | |
376bf125 JDB |
3189 | static inline |
3190 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3191 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3192 | { |
3193 | size_t first_skipped_index = 0; | |
3194 | int lookahead = 3; | |
3195 | void *object; | |
ca257195 | 3196 | struct page *page; |
fbd02630 | 3197 | |
d0ecd894 JDB |
3198 | /* Always re-init detached_freelist */ |
3199 | df->page = NULL; | |
fbd02630 | 3200 | |
d0ecd894 JDB |
3201 | do { |
3202 | object = p[--size]; | |
ca257195 | 3203 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3204 | } while (!object && size); |
3eed034d | 3205 | |
d0ecd894 JDB |
3206 | if (!object) |
3207 | return 0; | |
fbd02630 | 3208 | |
ca257195 JDB |
3209 | page = virt_to_head_page(object); |
3210 | if (!s) { | |
3211 | /* Handle kalloc'ed objects */ | |
3212 | if (unlikely(!PageSlab(page))) { | |
3213 | BUG_ON(!PageCompound(page)); | |
3214 | kfree_hook(object); | |
4949148a | 3215 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3216 | p[size] = NULL; /* mark object processed */ |
3217 | return size; | |
3218 | } | |
3219 | /* Derive kmem_cache from object */ | |
3220 | df->s = page->slab_cache; | |
3221 | } else { | |
3222 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3223 | } | |
376bf125 | 3224 | |
d0ecd894 | 3225 | /* Start new detached freelist */ |
ca257195 | 3226 | df->page = page; |
376bf125 | 3227 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3228 | df->tail = object; |
3229 | df->freelist = object; | |
3230 | p[size] = NULL; /* mark object processed */ | |
3231 | df->cnt = 1; | |
3232 | ||
3233 | while (size) { | |
3234 | object = p[--size]; | |
3235 | if (!object) | |
3236 | continue; /* Skip processed objects */ | |
3237 | ||
3238 | /* df->page is always set at this point */ | |
3239 | if (df->page == virt_to_head_page(object)) { | |
3240 | /* Opportunity build freelist */ | |
376bf125 | 3241 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3242 | df->freelist = object; |
3243 | df->cnt++; | |
3244 | p[size] = NULL; /* mark object processed */ | |
3245 | ||
3246 | continue; | |
fbd02630 | 3247 | } |
d0ecd894 JDB |
3248 | |
3249 | /* Limit look ahead search */ | |
3250 | if (!--lookahead) | |
3251 | break; | |
3252 | ||
3253 | if (!first_skipped_index) | |
3254 | first_skipped_index = size + 1; | |
fbd02630 | 3255 | } |
d0ecd894 JDB |
3256 | |
3257 | return first_skipped_index; | |
3258 | } | |
3259 | ||
d0ecd894 | 3260 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3261 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3262 | { |
3263 | if (WARN_ON(!size)) | |
3264 | return; | |
3265 | ||
3266 | do { | |
3267 | struct detached_freelist df; | |
3268 | ||
3269 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3270 | if (!df.page) |
d0ecd894 JDB |
3271 | continue; |
3272 | ||
376bf125 | 3273 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3274 | } while (likely(size)); |
484748f0 CL |
3275 | } |
3276 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3277 | ||
994eb764 | 3278 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3279 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3280 | void **p) | |
484748f0 | 3281 | { |
994eb764 JDB |
3282 | struct kmem_cache_cpu *c; |
3283 | int i; | |
964d4bd3 | 3284 | struct obj_cgroup *objcg = NULL; |
994eb764 | 3285 | |
03ec0ed5 | 3286 | /* memcg and kmem_cache debug support */ |
964d4bd3 | 3287 | s = slab_pre_alloc_hook(s, &objcg, size, flags); |
03ec0ed5 JDB |
3288 | if (unlikely(!s)) |
3289 | return false; | |
994eb764 JDB |
3290 | /* |
3291 | * Drain objects in the per cpu slab, while disabling local | |
3292 | * IRQs, which protects against PREEMPT and interrupts | |
3293 | * handlers invoking normal fastpath. | |
3294 | */ | |
3295 | local_irq_disable(); | |
3296 | c = this_cpu_ptr(s->cpu_slab); | |
3297 | ||
3298 | for (i = 0; i < size; i++) { | |
3299 | void *object = c->freelist; | |
3300 | ||
ebe909e0 | 3301 | if (unlikely(!object)) { |
fd4d9c7d JH |
3302 | /* |
3303 | * We may have removed an object from c->freelist using | |
3304 | * the fastpath in the previous iteration; in that case, | |
3305 | * c->tid has not been bumped yet. | |
3306 | * Since ___slab_alloc() may reenable interrupts while | |
3307 | * allocating memory, we should bump c->tid now. | |
3308 | */ | |
3309 | c->tid = next_tid(c->tid); | |
3310 | ||
ebe909e0 JDB |
3311 | /* |
3312 | * Invoking slow path likely have side-effect | |
3313 | * of re-populating per CPU c->freelist | |
3314 | */ | |
87098373 | 3315 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3316 | _RET_IP_, c); |
87098373 CL |
3317 | if (unlikely(!p[i])) |
3318 | goto error; | |
3319 | ||
ebe909e0 | 3320 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3321 | maybe_wipe_obj_freeptr(s, p[i]); |
3322 | ||
ebe909e0 JDB |
3323 | continue; /* goto for-loop */ |
3324 | } | |
994eb764 JDB |
3325 | c->freelist = get_freepointer(s, object); |
3326 | p[i] = object; | |
0f181f9f | 3327 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3328 | } |
3329 | c->tid = next_tid(c->tid); | |
3330 | local_irq_enable(); | |
3331 | ||
3332 | /* Clear memory outside IRQ disabled fastpath loop */ | |
6471384a | 3333 | if (unlikely(slab_want_init_on_alloc(flags, s))) { |
994eb764 JDB |
3334 | int j; |
3335 | ||
3336 | for (j = 0; j < i; j++) | |
3337 | memset(p[j], 0, s->object_size); | |
3338 | } | |
3339 | ||
03ec0ed5 | 3340 | /* memcg and kmem_cache debug support */ |
964d4bd3 | 3341 | slab_post_alloc_hook(s, objcg, flags, size, p); |
865762a8 | 3342 | return i; |
87098373 | 3343 | error: |
87098373 | 3344 | local_irq_enable(); |
964d4bd3 | 3345 | slab_post_alloc_hook(s, objcg, flags, i, p); |
03ec0ed5 | 3346 | __kmem_cache_free_bulk(s, i, p); |
865762a8 | 3347 | return 0; |
484748f0 CL |
3348 | } |
3349 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3350 | ||
3351 | ||
81819f0f | 3352 | /* |
672bba3a CL |
3353 | * Object placement in a slab is made very easy because we always start at |
3354 | * offset 0. If we tune the size of the object to the alignment then we can | |
3355 | * get the required alignment by putting one properly sized object after | |
3356 | * another. | |
81819f0f CL |
3357 | * |
3358 | * Notice that the allocation order determines the sizes of the per cpu | |
3359 | * caches. Each processor has always one slab available for allocations. | |
3360 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3361 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3362 | * locking overhead. |
81819f0f CL |
3363 | */ |
3364 | ||
3365 | /* | |
3366 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3367 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3368 | * and increases the number of allocations possible without having to | |
3369 | * take the list_lock. | |
3370 | */ | |
19af27af AD |
3371 | static unsigned int slub_min_order; |
3372 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3373 | static unsigned int slub_min_objects; | |
81819f0f | 3374 | |
81819f0f CL |
3375 | /* |
3376 | * Calculate the order of allocation given an slab object size. | |
3377 | * | |
672bba3a CL |
3378 | * The order of allocation has significant impact on performance and other |
3379 | * system components. Generally order 0 allocations should be preferred since | |
3380 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3381 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3382 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3383 | * would be wasted. |
3384 | * | |
3385 | * In order to reach satisfactory performance we must ensure that a minimum | |
3386 | * number of objects is in one slab. Otherwise we may generate too much | |
3387 | * activity on the partial lists which requires taking the list_lock. This is | |
3388 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3389 | * |
672bba3a CL |
3390 | * slub_max_order specifies the order where we begin to stop considering the |
3391 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3392 | * we try to keep the page order as low as possible. So we accept more waste | |
3393 | * of space in favor of a small page order. | |
81819f0f | 3394 | * |
672bba3a CL |
3395 | * Higher order allocations also allow the placement of more objects in a |
3396 | * slab and thereby reduce object handling overhead. If the user has | |
3397 | * requested a higher mininum order then we start with that one instead of | |
3398 | * the smallest order which will fit the object. | |
81819f0f | 3399 | */ |
19af27af AD |
3400 | static inline unsigned int slab_order(unsigned int size, |
3401 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3402 | unsigned int fract_leftover) |
81819f0f | 3403 | { |
19af27af AD |
3404 | unsigned int min_order = slub_min_order; |
3405 | unsigned int order; | |
81819f0f | 3406 | |
9736d2a9 | 3407 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3408 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3409 | |
9736d2a9 | 3410 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3411 | order <= max_order; order++) { |
81819f0f | 3412 | |
19af27af AD |
3413 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3414 | unsigned int rem; | |
81819f0f | 3415 | |
9736d2a9 | 3416 | rem = slab_size % size; |
81819f0f | 3417 | |
5e6d444e | 3418 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3419 | break; |
81819f0f | 3420 | } |
672bba3a | 3421 | |
81819f0f CL |
3422 | return order; |
3423 | } | |
3424 | ||
9736d2a9 | 3425 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3426 | { |
19af27af AD |
3427 | unsigned int order; |
3428 | unsigned int min_objects; | |
3429 | unsigned int max_objects; | |
5e6d444e CL |
3430 | |
3431 | /* | |
3432 | * Attempt to find best configuration for a slab. This | |
3433 | * works by first attempting to generate a layout with | |
3434 | * the best configuration and backing off gradually. | |
3435 | * | |
422ff4d7 | 3436 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3437 | * we reduce the minimum objects required in a slab. |
3438 | */ | |
3439 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3440 | if (!min_objects) |
3441 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3442 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3443 | min_objects = min(min_objects, max_objects); |
3444 | ||
5e6d444e | 3445 | while (min_objects > 1) { |
19af27af AD |
3446 | unsigned int fraction; |
3447 | ||
c124f5b5 | 3448 | fraction = 16; |
5e6d444e CL |
3449 | while (fraction >= 4) { |
3450 | order = slab_order(size, min_objects, | |
9736d2a9 | 3451 | slub_max_order, fraction); |
5e6d444e CL |
3452 | if (order <= slub_max_order) |
3453 | return order; | |
3454 | fraction /= 2; | |
3455 | } | |
5086c389 | 3456 | min_objects--; |
5e6d444e CL |
3457 | } |
3458 | ||
3459 | /* | |
3460 | * We were unable to place multiple objects in a slab. Now | |
3461 | * lets see if we can place a single object there. | |
3462 | */ | |
9736d2a9 | 3463 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3464 | if (order <= slub_max_order) |
3465 | return order; | |
3466 | ||
3467 | /* | |
3468 | * Doh this slab cannot be placed using slub_max_order. | |
3469 | */ | |
9736d2a9 | 3470 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3471 | if (order < MAX_ORDER) |
5e6d444e CL |
3472 | return order; |
3473 | return -ENOSYS; | |
3474 | } | |
3475 | ||
5595cffc | 3476 | static void |
4053497d | 3477 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3478 | { |
3479 | n->nr_partial = 0; | |
81819f0f CL |
3480 | spin_lock_init(&n->list_lock); |
3481 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3482 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3483 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3484 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3485 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3486 | #endif |
81819f0f CL |
3487 | } |
3488 | ||
55136592 | 3489 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3490 | { |
6c182dc0 | 3491 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3492 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3493 | |
8a5ec0ba | 3494 | /* |
d4d84fef CM |
3495 | * Must align to double word boundary for the double cmpxchg |
3496 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3497 | */ |
d4d84fef CM |
3498 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3499 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3500 | |
3501 | if (!s->cpu_slab) | |
3502 | return 0; | |
3503 | ||
3504 | init_kmem_cache_cpus(s); | |
4c93c355 | 3505 | |
8a5ec0ba | 3506 | return 1; |
4c93c355 | 3507 | } |
4c93c355 | 3508 | |
51df1142 CL |
3509 | static struct kmem_cache *kmem_cache_node; |
3510 | ||
81819f0f CL |
3511 | /* |
3512 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3513 | * slab on the node for this slabcache. There are no concurrent accesses | |
3514 | * possible. | |
3515 | * | |
721ae22a ZYW |
3516 | * Note that this function only works on the kmem_cache_node |
3517 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3518 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3519 | */ |
55136592 | 3520 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3521 | { |
3522 | struct page *page; | |
3523 | struct kmem_cache_node *n; | |
3524 | ||
51df1142 | 3525 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3526 | |
51df1142 | 3527 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3528 | |
3529 | BUG_ON(!page); | |
a2f92ee7 | 3530 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3531 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3532 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3533 | } |
3534 | ||
81819f0f CL |
3535 | n = page->freelist; |
3536 | BUG_ON(!n); | |
8ab1372f | 3537 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3538 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3539 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3540 | #endif |
12b22386 | 3541 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
505f5dcb | 3542 | GFP_KERNEL); |
12b22386 AK |
3543 | page->freelist = get_freepointer(kmem_cache_node, n); |
3544 | page->inuse = 1; | |
3545 | page->frozen = 0; | |
3546 | kmem_cache_node->node[node] = n; | |
4053497d | 3547 | init_kmem_cache_node(n); |
51df1142 | 3548 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3549 | |
67b6c900 | 3550 | /* |
1e4dd946 SR |
3551 | * No locks need to be taken here as it has just been |
3552 | * initialized and there is no concurrent access. | |
67b6c900 | 3553 | */ |
1e4dd946 | 3554 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3555 | } |
3556 | ||
3557 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3558 | { | |
3559 | int node; | |
fa45dc25 | 3560 | struct kmem_cache_node *n; |
81819f0f | 3561 | |
fa45dc25 | 3562 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3563 | s->node[node] = NULL; |
ea37df54 | 3564 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3565 | } |
3566 | } | |
3567 | ||
52b4b950 DS |
3568 | void __kmem_cache_release(struct kmem_cache *s) |
3569 | { | |
210e7a43 | 3570 | cache_random_seq_destroy(s); |
52b4b950 DS |
3571 | free_percpu(s->cpu_slab); |
3572 | free_kmem_cache_nodes(s); | |
3573 | } | |
3574 | ||
55136592 | 3575 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3576 | { |
3577 | int node; | |
81819f0f | 3578 | |
f64dc58c | 3579 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3580 | struct kmem_cache_node *n; |
3581 | ||
73367bd8 | 3582 | if (slab_state == DOWN) { |
55136592 | 3583 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3584 | continue; |
3585 | } | |
51df1142 | 3586 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3587 | GFP_KERNEL, node); |
81819f0f | 3588 | |
73367bd8 AD |
3589 | if (!n) { |
3590 | free_kmem_cache_nodes(s); | |
3591 | return 0; | |
81819f0f | 3592 | } |
73367bd8 | 3593 | |
4053497d | 3594 | init_kmem_cache_node(n); |
ea37df54 | 3595 | s->node[node] = n; |
81819f0f CL |
3596 | } |
3597 | return 1; | |
3598 | } | |
81819f0f | 3599 | |
c0bdb232 | 3600 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3601 | { |
3602 | if (min < MIN_PARTIAL) | |
3603 | min = MIN_PARTIAL; | |
3604 | else if (min > MAX_PARTIAL) | |
3605 | min = MAX_PARTIAL; | |
3606 | s->min_partial = min; | |
3607 | } | |
3608 | ||
e6d0e1dc WY |
3609 | static void set_cpu_partial(struct kmem_cache *s) |
3610 | { | |
3611 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3612 | /* | |
3613 | * cpu_partial determined the maximum number of objects kept in the | |
3614 | * per cpu partial lists of a processor. | |
3615 | * | |
3616 | * Per cpu partial lists mainly contain slabs that just have one | |
3617 | * object freed. If they are used for allocation then they can be | |
3618 | * filled up again with minimal effort. The slab will never hit the | |
3619 | * per node partial lists and therefore no locking will be required. | |
3620 | * | |
3621 | * This setting also determines | |
3622 | * | |
3623 | * A) The number of objects from per cpu partial slabs dumped to the | |
3624 | * per node list when we reach the limit. | |
3625 | * B) The number of objects in cpu partial slabs to extract from the | |
3626 | * per node list when we run out of per cpu objects. We only fetch | |
3627 | * 50% to keep some capacity around for frees. | |
3628 | */ | |
3629 | if (!kmem_cache_has_cpu_partial(s)) | |
bbd4e305 | 3630 | slub_set_cpu_partial(s, 0); |
e6d0e1dc | 3631 | else if (s->size >= PAGE_SIZE) |
bbd4e305 | 3632 | slub_set_cpu_partial(s, 2); |
e6d0e1dc | 3633 | else if (s->size >= 1024) |
bbd4e305 | 3634 | slub_set_cpu_partial(s, 6); |
e6d0e1dc | 3635 | else if (s->size >= 256) |
bbd4e305 | 3636 | slub_set_cpu_partial(s, 13); |
e6d0e1dc | 3637 | else |
bbd4e305 | 3638 | slub_set_cpu_partial(s, 30); |
e6d0e1dc WY |
3639 | #endif |
3640 | } | |
3641 | ||
81819f0f CL |
3642 | /* |
3643 | * calculate_sizes() determines the order and the distribution of data within | |
3644 | * a slab object. | |
3645 | */ | |
06b285dc | 3646 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3647 | { |
d50112ed | 3648 | slab_flags_t flags = s->flags; |
be4a7988 | 3649 | unsigned int size = s->object_size; |
89b83f28 | 3650 | unsigned int freepointer_area; |
19af27af | 3651 | unsigned int order; |
81819f0f | 3652 | |
d8b42bf5 CL |
3653 | /* |
3654 | * Round up object size to the next word boundary. We can only | |
3655 | * place the free pointer at word boundaries and this determines | |
3656 | * the possible location of the free pointer. | |
3657 | */ | |
3658 | size = ALIGN(size, sizeof(void *)); | |
89b83f28 KC |
3659 | /* |
3660 | * This is the area of the object where a freepointer can be | |
3661 | * safely written. If redzoning adds more to the inuse size, we | |
3662 | * can't use that portion for writing the freepointer, so | |
3663 | * s->offset must be limited within this for the general case. | |
3664 | */ | |
3665 | freepointer_area = size; | |
d8b42bf5 CL |
3666 | |
3667 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3668 | /* |
3669 | * Determine if we can poison the object itself. If the user of | |
3670 | * the slab may touch the object after free or before allocation | |
3671 | * then we should never poison the object itself. | |
3672 | */ | |
5f0d5a3a | 3673 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3674 | !s->ctor) |
81819f0f CL |
3675 | s->flags |= __OBJECT_POISON; |
3676 | else | |
3677 | s->flags &= ~__OBJECT_POISON; | |
3678 | ||
81819f0f CL |
3679 | |
3680 | /* | |
672bba3a | 3681 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3682 | * end of the object and the free pointer. If not then add an |
672bba3a | 3683 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3684 | */ |
3b0efdfa | 3685 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3686 | size += sizeof(void *); |
41ecc55b | 3687 | #endif |
81819f0f CL |
3688 | |
3689 | /* | |
672bba3a CL |
3690 | * With that we have determined the number of bytes in actual use |
3691 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3692 | */ |
3693 | s->inuse = size; | |
3694 | ||
5f0d5a3a | 3695 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3696 | s->ctor)) { |
81819f0f CL |
3697 | /* |
3698 | * Relocate free pointer after the object if it is not | |
3699 | * permitted to overwrite the first word of the object on | |
3700 | * kmem_cache_free. | |
3701 | * | |
3702 | * This is the case if we do RCU, have a constructor or | |
3703 | * destructor or are poisoning the objects. | |
cbfc35a4 WL |
3704 | * |
3705 | * The assumption that s->offset >= s->inuse means free | |
3706 | * pointer is outside of the object is used in the | |
3707 | * freeptr_outside_object() function. If that is no | |
3708 | * longer true, the function needs to be modified. | |
81819f0f CL |
3709 | */ |
3710 | s->offset = size; | |
3711 | size += sizeof(void *); | |
89b83f28 | 3712 | } else if (freepointer_area > sizeof(void *)) { |
3202fa62 KC |
3713 | /* |
3714 | * Store freelist pointer near middle of object to keep | |
3715 | * it away from the edges of the object to avoid small | |
3716 | * sized over/underflows from neighboring allocations. | |
3717 | */ | |
89b83f28 | 3718 | s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); |
81819f0f CL |
3719 | } |
3720 | ||
c12b3c62 | 3721 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3722 | if (flags & SLAB_STORE_USER) |
3723 | /* | |
3724 | * Need to store information about allocs and frees after | |
3725 | * the object. | |
3726 | */ | |
3727 | size += 2 * sizeof(struct track); | |
80a9201a | 3728 | #endif |
81819f0f | 3729 | |
80a9201a AP |
3730 | kasan_cache_create(s, &size, &s->flags); |
3731 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3732 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3733 | /* |
3734 | * Add some empty padding so that we can catch | |
3735 | * overwrites from earlier objects rather than let | |
3736 | * tracking information or the free pointer be | |
0211a9c8 | 3737 | * corrupted if a user writes before the start |
81819f0f CL |
3738 | * of the object. |
3739 | */ | |
3740 | size += sizeof(void *); | |
d86bd1be JK |
3741 | |
3742 | s->red_left_pad = sizeof(void *); | |
3743 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3744 | size += s->red_left_pad; | |
3745 | } | |
41ecc55b | 3746 | #endif |
672bba3a | 3747 | |
81819f0f CL |
3748 | /* |
3749 | * SLUB stores one object immediately after another beginning from | |
3750 | * offset 0. In order to align the objects we have to simply size | |
3751 | * each object to conform to the alignment. | |
3752 | */ | |
45906855 | 3753 | size = ALIGN(size, s->align); |
81819f0f | 3754 | s->size = size; |
4138fdfc | 3755 | s->reciprocal_size = reciprocal_value(size); |
06b285dc CL |
3756 | if (forced_order >= 0) |
3757 | order = forced_order; | |
3758 | else | |
9736d2a9 | 3759 | order = calculate_order(size); |
81819f0f | 3760 | |
19af27af | 3761 | if ((int)order < 0) |
81819f0f CL |
3762 | return 0; |
3763 | ||
b7a49f0d | 3764 | s->allocflags = 0; |
834f3d11 | 3765 | if (order) |
b7a49f0d CL |
3766 | s->allocflags |= __GFP_COMP; |
3767 | ||
3768 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3769 | s->allocflags |= GFP_DMA; |
b7a49f0d | 3770 | |
6d6ea1e9 NB |
3771 | if (s->flags & SLAB_CACHE_DMA32) |
3772 | s->allocflags |= GFP_DMA32; | |
3773 | ||
b7a49f0d CL |
3774 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
3775 | s->allocflags |= __GFP_RECLAIMABLE; | |
3776 | ||
81819f0f CL |
3777 | /* |
3778 | * Determine the number of objects per slab | |
3779 | */ | |
9736d2a9 MW |
3780 | s->oo = oo_make(order, size); |
3781 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3782 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3783 | s->max = s->oo; | |
81819f0f | 3784 | |
834f3d11 | 3785 | return !!oo_objects(s->oo); |
81819f0f CL |
3786 | } |
3787 | ||
d50112ed | 3788 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3789 | { |
8a13a4cc | 3790 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3791 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3792 | s->random = get_random_long(); | |
3793 | #endif | |
81819f0f | 3794 | |
06b285dc | 3795 | if (!calculate_sizes(s, -1)) |
81819f0f | 3796 | goto error; |
3de47213 DR |
3797 | if (disable_higher_order_debug) { |
3798 | /* | |
3799 | * Disable debugging flags that store metadata if the min slab | |
3800 | * order increased. | |
3801 | */ | |
3b0efdfa | 3802 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3803 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3804 | s->offset = 0; | |
3805 | if (!calculate_sizes(s, -1)) | |
3806 | goto error; | |
3807 | } | |
3808 | } | |
81819f0f | 3809 | |
2565409f HC |
3810 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3811 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3812 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3813 | /* Enable fast mode */ |
3814 | s->flags |= __CMPXCHG_DOUBLE; | |
3815 | #endif | |
3816 | ||
3b89d7d8 DR |
3817 | /* |
3818 | * The larger the object size is, the more pages we want on the partial | |
3819 | * list to avoid pounding the page allocator excessively. | |
3820 | */ | |
49e22585 CL |
3821 | set_min_partial(s, ilog2(s->size) / 2); |
3822 | ||
e6d0e1dc | 3823 | set_cpu_partial(s); |
49e22585 | 3824 | |
81819f0f | 3825 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3826 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3827 | #endif |
210e7a43 TG |
3828 | |
3829 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3830 | if (slab_state >= UP) { | |
3831 | if (init_cache_random_seq(s)) | |
3832 | goto error; | |
3833 | } | |
3834 | ||
55136592 | 3835 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3836 | goto error; |
81819f0f | 3837 | |
55136592 | 3838 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3839 | return 0; |
ff12059e | 3840 | |
4c93c355 | 3841 | free_kmem_cache_nodes(s); |
81819f0f | 3842 | error: |
278b1bb1 | 3843 | return -EINVAL; |
81819f0f | 3844 | } |
81819f0f | 3845 | |
33b12c38 | 3846 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
55860d96 | 3847 | const char *text) |
33b12c38 CL |
3848 | { |
3849 | #ifdef CONFIG_SLUB_DEBUG | |
3850 | void *addr = page_address(page); | |
55860d96 | 3851 | unsigned long *map; |
33b12c38 | 3852 | void *p; |
aa456c7a | 3853 | |
945cf2b6 | 3854 | slab_err(s, page, text, s->name); |
33b12c38 | 3855 | slab_lock(page); |
33b12c38 | 3856 | |
90e9f6a6 | 3857 | map = get_map(s, page); |
33b12c38 CL |
3858 | for_each_object(p, s, addr, page->objects) { |
3859 | ||
4138fdfc | 3860 | if (!test_bit(__obj_to_index(s, addr, p), map)) { |
f9f58285 | 3861 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3862 | print_tracking(s, p); |
3863 | } | |
3864 | } | |
55860d96 | 3865 | put_map(map); |
33b12c38 CL |
3866 | slab_unlock(page); |
3867 | #endif | |
3868 | } | |
3869 | ||
81819f0f | 3870 | /* |
599870b1 | 3871 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3872 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3873 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3874 | */ |
599870b1 | 3875 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3876 | { |
60398923 | 3877 | LIST_HEAD(discard); |
81819f0f CL |
3878 | struct page *page, *h; |
3879 | ||
52b4b950 DS |
3880 | BUG_ON(irqs_disabled()); |
3881 | spin_lock_irq(&n->list_lock); | |
916ac052 | 3882 | list_for_each_entry_safe(page, h, &n->partial, slab_list) { |
81819f0f | 3883 | if (!page->inuse) { |
52b4b950 | 3884 | remove_partial(n, page); |
916ac052 | 3885 | list_add(&page->slab_list, &discard); |
33b12c38 CL |
3886 | } else { |
3887 | list_slab_objects(s, page, | |
55860d96 | 3888 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3889 | } |
33b12c38 | 3890 | } |
52b4b950 | 3891 | spin_unlock_irq(&n->list_lock); |
60398923 | 3892 | |
916ac052 | 3893 | list_for_each_entry_safe(page, h, &discard, slab_list) |
60398923 | 3894 | discard_slab(s, page); |
81819f0f CL |
3895 | } |
3896 | ||
f9e13c0a SB |
3897 | bool __kmem_cache_empty(struct kmem_cache *s) |
3898 | { | |
3899 | int node; | |
3900 | struct kmem_cache_node *n; | |
3901 | ||
3902 | for_each_kmem_cache_node(s, node, n) | |
3903 | if (n->nr_partial || slabs_node(s, node)) | |
3904 | return false; | |
3905 | return true; | |
3906 | } | |
3907 | ||
81819f0f | 3908 | /* |
672bba3a | 3909 | * Release all resources used by a slab cache. |
81819f0f | 3910 | */ |
52b4b950 | 3911 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3912 | { |
3913 | int node; | |
fa45dc25 | 3914 | struct kmem_cache_node *n; |
81819f0f CL |
3915 | |
3916 | flush_all(s); | |
81819f0f | 3917 | /* Attempt to free all objects */ |
fa45dc25 | 3918 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3919 | free_partial(s, n); |
3920 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3921 | return 1; |
3922 | } | |
bf5eb3de | 3923 | sysfs_slab_remove(s); |
81819f0f CL |
3924 | return 0; |
3925 | } | |
3926 | ||
81819f0f CL |
3927 | /******************************************************************** |
3928 | * Kmalloc subsystem | |
3929 | *******************************************************************/ | |
3930 | ||
81819f0f CL |
3931 | static int __init setup_slub_min_order(char *str) |
3932 | { | |
19af27af | 3933 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3934 | |
3935 | return 1; | |
3936 | } | |
3937 | ||
3938 | __setup("slub_min_order=", setup_slub_min_order); | |
3939 | ||
3940 | static int __init setup_slub_max_order(char *str) | |
3941 | { | |
19af27af AD |
3942 | get_option(&str, (int *)&slub_max_order); |
3943 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3944 | |
3945 | return 1; | |
3946 | } | |
3947 | ||
3948 | __setup("slub_max_order=", setup_slub_max_order); | |
3949 | ||
3950 | static int __init setup_slub_min_objects(char *str) | |
3951 | { | |
19af27af | 3952 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3953 | |
3954 | return 1; | |
3955 | } | |
3956 | ||
3957 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3958 | ||
81819f0f CL |
3959 | void *__kmalloc(size_t size, gfp_t flags) |
3960 | { | |
aadb4bc4 | 3961 | struct kmem_cache *s; |
5b882be4 | 3962 | void *ret; |
81819f0f | 3963 | |
95a05b42 | 3964 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3965 | return kmalloc_large(size, flags); |
aadb4bc4 | 3966 | |
2c59dd65 | 3967 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3968 | |
3969 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3970 | return s; |
3971 | ||
2b847c3c | 3972 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3973 | |
ca2b84cb | 3974 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3975 | |
0116523c | 3976 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3977 | |
5b882be4 | 3978 | return ret; |
81819f0f CL |
3979 | } |
3980 | EXPORT_SYMBOL(__kmalloc); | |
3981 | ||
5d1f57e4 | 3982 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3983 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3984 | { | |
b1eeab67 | 3985 | struct page *page; |
e4f7c0b4 | 3986 | void *ptr = NULL; |
6a486c0a | 3987 | unsigned int order = get_order(size); |
f619cfe1 | 3988 | |
75f296d9 | 3989 | flags |= __GFP_COMP; |
6a486c0a VB |
3990 | page = alloc_pages_node(node, flags, order); |
3991 | if (page) { | |
e4f7c0b4 | 3992 | ptr = page_address(page); |
d42f3245 RG |
3993 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, |
3994 | PAGE_SIZE << order); | |
6a486c0a | 3995 | } |
e4f7c0b4 | 3996 | |
0116523c | 3997 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
3998 | } |
3999 | ||
81819f0f CL |
4000 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
4001 | { | |
aadb4bc4 | 4002 | struct kmem_cache *s; |
5b882be4 | 4003 | void *ret; |
81819f0f | 4004 | |
95a05b42 | 4005 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
4006 | ret = kmalloc_large_node(size, flags, node); |
4007 | ||
ca2b84cb EGM |
4008 | trace_kmalloc_node(_RET_IP_, ret, |
4009 | size, PAGE_SIZE << get_order(size), | |
4010 | flags, node); | |
5b882be4 EGM |
4011 | |
4012 | return ret; | |
4013 | } | |
aadb4bc4 | 4014 | |
2c59dd65 | 4015 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
4016 | |
4017 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
4018 | return s; |
4019 | ||
2b847c3c | 4020 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 4021 | |
ca2b84cb | 4022 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 4023 | |
0116523c | 4024 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 4025 | |
5b882be4 | 4026 | return ret; |
81819f0f CL |
4027 | } |
4028 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 4029 | #endif /* CONFIG_NUMA */ |
81819f0f | 4030 | |
ed18adc1 KC |
4031 | #ifdef CONFIG_HARDENED_USERCOPY |
4032 | /* | |
afcc90f8 KC |
4033 | * Rejects incorrectly sized objects and objects that are to be copied |
4034 | * to/from userspace but do not fall entirely within the containing slab | |
4035 | * cache's usercopy region. | |
ed18adc1 KC |
4036 | * |
4037 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4038 | * to indicate an error. | |
4039 | */ | |
f4e6e289 KC |
4040 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
4041 | bool to_user) | |
ed18adc1 KC |
4042 | { |
4043 | struct kmem_cache *s; | |
44065b2e | 4044 | unsigned int offset; |
ed18adc1 KC |
4045 | size_t object_size; |
4046 | ||
96fedce2 AK |
4047 | ptr = kasan_reset_tag(ptr); |
4048 | ||
ed18adc1 KC |
4049 | /* Find object and usable object size. */ |
4050 | s = page->slab_cache; | |
ed18adc1 KC |
4051 | |
4052 | /* Reject impossible pointers. */ | |
4053 | if (ptr < page_address(page)) | |
f4e6e289 KC |
4054 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
4055 | to_user, 0, n); | |
ed18adc1 KC |
4056 | |
4057 | /* Find offset within object. */ | |
4058 | offset = (ptr - page_address(page)) % s->size; | |
4059 | ||
4060 | /* Adjust for redzone and reject if within the redzone. */ | |
59052e89 | 4061 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 4062 | if (offset < s->red_left_pad) |
f4e6e289 KC |
4063 | usercopy_abort("SLUB object in left red zone", |
4064 | s->name, to_user, offset, n); | |
ed18adc1 KC |
4065 | offset -= s->red_left_pad; |
4066 | } | |
4067 | ||
afcc90f8 KC |
4068 | /* Allow address range falling entirely within usercopy region. */ |
4069 | if (offset >= s->useroffset && | |
4070 | offset - s->useroffset <= s->usersize && | |
4071 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4072 | return; |
ed18adc1 | 4073 | |
afcc90f8 KC |
4074 | /* |
4075 | * If the copy is still within the allocated object, produce | |
4076 | * a warning instead of rejecting the copy. This is intended | |
4077 | * to be a temporary method to find any missing usercopy | |
4078 | * whitelists. | |
4079 | */ | |
4080 | object_size = slab_ksize(s); | |
2d891fbc KC |
4081 | if (usercopy_fallback && |
4082 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
4083 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
4084 | return; | |
4085 | } | |
ed18adc1 | 4086 | |
f4e6e289 | 4087 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4088 | } |
4089 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4090 | ||
10d1f8cb | 4091 | size_t __ksize(const void *object) |
81819f0f | 4092 | { |
272c1d21 | 4093 | struct page *page; |
81819f0f | 4094 | |
ef8b4520 | 4095 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
4096 | return 0; |
4097 | ||
294a80a8 | 4098 | page = virt_to_head_page(object); |
294a80a8 | 4099 | |
76994412 PE |
4100 | if (unlikely(!PageSlab(page))) { |
4101 | WARN_ON(!PageCompound(page)); | |
a50b854e | 4102 | return page_size(page); |
76994412 | 4103 | } |
81819f0f | 4104 | |
1b4f59e3 | 4105 | return slab_ksize(page->slab_cache); |
81819f0f | 4106 | } |
10d1f8cb | 4107 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
4108 | |
4109 | void kfree(const void *x) | |
4110 | { | |
81819f0f | 4111 | struct page *page; |
5bb983b0 | 4112 | void *object = (void *)x; |
81819f0f | 4113 | |
2121db74 PE |
4114 | trace_kfree(_RET_IP_, x); |
4115 | ||
2408c550 | 4116 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
4117 | return; |
4118 | ||
b49af68f | 4119 | page = virt_to_head_page(x); |
aadb4bc4 | 4120 | if (unlikely(!PageSlab(page))) { |
6a486c0a VB |
4121 | unsigned int order = compound_order(page); |
4122 | ||
0937502a | 4123 | BUG_ON(!PageCompound(page)); |
47adccce | 4124 | kfree_hook(object); |
d42f3245 RG |
4125 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, |
4126 | -(PAGE_SIZE << order)); | |
6a486c0a | 4127 | __free_pages(page, order); |
aadb4bc4 CL |
4128 | return; |
4129 | } | |
81084651 | 4130 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
4131 | } |
4132 | EXPORT_SYMBOL(kfree); | |
4133 | ||
832f37f5 VD |
4134 | #define SHRINK_PROMOTE_MAX 32 |
4135 | ||
2086d26a | 4136 | /* |
832f37f5 VD |
4137 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4138 | * up most to the head of the partial lists. New allocations will then | |
4139 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4140 | * |
4141 | * The slabs with the least items are placed last. This results in them | |
4142 | * being allocated from last increasing the chance that the last objects | |
4143 | * are freed in them. | |
2086d26a | 4144 | */ |
c9fc5864 | 4145 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
4146 | { |
4147 | int node; | |
4148 | int i; | |
4149 | struct kmem_cache_node *n; | |
4150 | struct page *page; | |
4151 | struct page *t; | |
832f37f5 VD |
4152 | struct list_head discard; |
4153 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4154 | unsigned long flags; |
ce3712d7 | 4155 | int ret = 0; |
2086d26a | 4156 | |
2086d26a | 4157 | flush_all(s); |
fa45dc25 | 4158 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4159 | INIT_LIST_HEAD(&discard); |
4160 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4161 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4162 | |
4163 | spin_lock_irqsave(&n->list_lock, flags); | |
4164 | ||
4165 | /* | |
832f37f5 | 4166 | * Build lists of slabs to discard or promote. |
2086d26a | 4167 | * |
672bba3a CL |
4168 | * Note that concurrent frees may occur while we hold the |
4169 | * list_lock. page->inuse here is the upper limit. | |
2086d26a | 4170 | */ |
916ac052 | 4171 | list_for_each_entry_safe(page, t, &n->partial, slab_list) { |
832f37f5 VD |
4172 | int free = page->objects - page->inuse; |
4173 | ||
4174 | /* Do not reread page->inuse */ | |
4175 | barrier(); | |
4176 | ||
4177 | /* We do not keep full slabs on the list */ | |
4178 | BUG_ON(free <= 0); | |
4179 | ||
4180 | if (free == page->objects) { | |
916ac052 | 4181 | list_move(&page->slab_list, &discard); |
69cb8e6b | 4182 | n->nr_partial--; |
832f37f5 | 4183 | } else if (free <= SHRINK_PROMOTE_MAX) |
916ac052 | 4184 | list_move(&page->slab_list, promote + free - 1); |
2086d26a CL |
4185 | } |
4186 | ||
2086d26a | 4187 | /* |
832f37f5 VD |
4188 | * Promote the slabs filled up most to the head of the |
4189 | * partial list. | |
2086d26a | 4190 | */ |
832f37f5 VD |
4191 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4192 | list_splice(promote + i, &n->partial); | |
2086d26a | 4193 | |
2086d26a | 4194 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4195 | |
4196 | /* Release empty slabs */ | |
916ac052 | 4197 | list_for_each_entry_safe(page, t, &discard, slab_list) |
69cb8e6b | 4198 | discard_slab(s, page); |
ce3712d7 VD |
4199 | |
4200 | if (slabs_node(s, node)) | |
4201 | ret = 1; | |
2086d26a CL |
4202 | } |
4203 | ||
ce3712d7 | 4204 | return ret; |
2086d26a | 4205 | } |
2086d26a | 4206 | |
b9049e23 YG |
4207 | static int slab_mem_going_offline_callback(void *arg) |
4208 | { | |
4209 | struct kmem_cache *s; | |
4210 | ||
18004c5d | 4211 | mutex_lock(&slab_mutex); |
b9049e23 | 4212 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4213 | __kmem_cache_shrink(s); |
18004c5d | 4214 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4215 | |
4216 | return 0; | |
4217 | } | |
4218 | ||
4219 | static void slab_mem_offline_callback(void *arg) | |
4220 | { | |
4221 | struct kmem_cache_node *n; | |
4222 | struct kmem_cache *s; | |
4223 | struct memory_notify *marg = arg; | |
4224 | int offline_node; | |
4225 | ||
b9d5ab25 | 4226 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4227 | |
4228 | /* | |
4229 | * If the node still has available memory. we need kmem_cache_node | |
4230 | * for it yet. | |
4231 | */ | |
4232 | if (offline_node < 0) | |
4233 | return; | |
4234 | ||
18004c5d | 4235 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4236 | list_for_each_entry(s, &slab_caches, list) { |
4237 | n = get_node(s, offline_node); | |
4238 | if (n) { | |
4239 | /* | |
4240 | * if n->nr_slabs > 0, slabs still exist on the node | |
4241 | * that is going down. We were unable to free them, | |
c9404c9c | 4242 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4243 | * callback. So, we must fail. |
4244 | */ | |
0f389ec6 | 4245 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4246 | |
4247 | s->node[offline_node] = NULL; | |
8de66a0c | 4248 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4249 | } |
4250 | } | |
18004c5d | 4251 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4252 | } |
4253 | ||
4254 | static int slab_mem_going_online_callback(void *arg) | |
4255 | { | |
4256 | struct kmem_cache_node *n; | |
4257 | struct kmem_cache *s; | |
4258 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4259 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4260 | int ret = 0; |
4261 | ||
4262 | /* | |
4263 | * If the node's memory is already available, then kmem_cache_node is | |
4264 | * already created. Nothing to do. | |
4265 | */ | |
4266 | if (nid < 0) | |
4267 | return 0; | |
4268 | ||
4269 | /* | |
0121c619 | 4270 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4271 | * allocate a kmem_cache_node structure in order to bring the node |
4272 | * online. | |
4273 | */ | |
18004c5d | 4274 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4275 | list_for_each_entry(s, &slab_caches, list) { |
4276 | /* | |
4277 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4278 | * since memory is not yet available from the node that | |
4279 | * is brought up. | |
4280 | */ | |
8de66a0c | 4281 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4282 | if (!n) { |
4283 | ret = -ENOMEM; | |
4284 | goto out; | |
4285 | } | |
4053497d | 4286 | init_kmem_cache_node(n); |
b9049e23 YG |
4287 | s->node[nid] = n; |
4288 | } | |
4289 | out: | |
18004c5d | 4290 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4291 | return ret; |
4292 | } | |
4293 | ||
4294 | static int slab_memory_callback(struct notifier_block *self, | |
4295 | unsigned long action, void *arg) | |
4296 | { | |
4297 | int ret = 0; | |
4298 | ||
4299 | switch (action) { | |
4300 | case MEM_GOING_ONLINE: | |
4301 | ret = slab_mem_going_online_callback(arg); | |
4302 | break; | |
4303 | case MEM_GOING_OFFLINE: | |
4304 | ret = slab_mem_going_offline_callback(arg); | |
4305 | break; | |
4306 | case MEM_OFFLINE: | |
4307 | case MEM_CANCEL_ONLINE: | |
4308 | slab_mem_offline_callback(arg); | |
4309 | break; | |
4310 | case MEM_ONLINE: | |
4311 | case MEM_CANCEL_OFFLINE: | |
4312 | break; | |
4313 | } | |
dc19f9db KH |
4314 | if (ret) |
4315 | ret = notifier_from_errno(ret); | |
4316 | else | |
4317 | ret = NOTIFY_OK; | |
b9049e23 YG |
4318 | return ret; |
4319 | } | |
4320 | ||
3ac38faa AM |
4321 | static struct notifier_block slab_memory_callback_nb = { |
4322 | .notifier_call = slab_memory_callback, | |
4323 | .priority = SLAB_CALLBACK_PRI, | |
4324 | }; | |
b9049e23 | 4325 | |
81819f0f CL |
4326 | /******************************************************************** |
4327 | * Basic setup of slabs | |
4328 | *******************************************************************/ | |
4329 | ||
51df1142 CL |
4330 | /* |
4331 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4332 | * the page allocator. Allocate them properly then fix up the pointers |
4333 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4334 | */ |
4335 | ||
dffb4d60 | 4336 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4337 | { |
4338 | int node; | |
dffb4d60 | 4339 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4340 | struct kmem_cache_node *n; |
51df1142 | 4341 | |
dffb4d60 | 4342 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4343 | |
7d557b3c GC |
4344 | /* |
4345 | * This runs very early, and only the boot processor is supposed to be | |
4346 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4347 | * IPIs around. | |
4348 | */ | |
4349 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4350 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4351 | struct page *p; |
4352 | ||
916ac052 | 4353 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4354 | p->slab_cache = s; |
51df1142 | 4355 | |
607bf324 | 4356 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4357 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4358 | p->slab_cache = s; |
51df1142 | 4359 | #endif |
51df1142 | 4360 | } |
f7ce3190 | 4361 | slab_init_memcg_params(s); |
dffb4d60 | 4362 | list_add(&s->list, &slab_caches); |
9855609b | 4363 | memcg_link_cache(s); |
dffb4d60 | 4364 | return s; |
51df1142 CL |
4365 | } |
4366 | ||
81819f0f CL |
4367 | void __init kmem_cache_init(void) |
4368 | { | |
dffb4d60 CL |
4369 | static __initdata struct kmem_cache boot_kmem_cache, |
4370 | boot_kmem_cache_node; | |
51df1142 | 4371 | |
fc8d8620 SG |
4372 | if (debug_guardpage_minorder()) |
4373 | slub_max_order = 0; | |
4374 | ||
dffb4d60 CL |
4375 | kmem_cache_node = &boot_kmem_cache_node; |
4376 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4377 | |
dffb4d60 | 4378 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4379 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4380 | |
3ac38faa | 4381 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4382 | |
4383 | /* Able to allocate the per node structures */ | |
4384 | slab_state = PARTIAL; | |
4385 | ||
dffb4d60 CL |
4386 | create_boot_cache(kmem_cache, "kmem_cache", |
4387 | offsetof(struct kmem_cache, node) + | |
4388 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4389 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4390 | |
dffb4d60 | 4391 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4392 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4393 | |
4394 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4395 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4396 | create_kmalloc_caches(0); |
81819f0f | 4397 | |
210e7a43 TG |
4398 | /* Setup random freelists for each cache */ |
4399 | init_freelist_randomization(); | |
4400 | ||
a96a87bf SAS |
4401 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4402 | slub_cpu_dead); | |
81819f0f | 4403 | |
b9726c26 | 4404 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4405 | cache_line_size(), |
81819f0f CL |
4406 | slub_min_order, slub_max_order, slub_min_objects, |
4407 | nr_cpu_ids, nr_node_ids); | |
4408 | } | |
4409 | ||
7e85ee0c PE |
4410 | void __init kmem_cache_init_late(void) |
4411 | { | |
7e85ee0c PE |
4412 | } |
4413 | ||
2633d7a0 | 4414 | struct kmem_cache * |
f4957d5b | 4415 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4416 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4417 | { |
426589f5 | 4418 | struct kmem_cache *s, *c; |
81819f0f | 4419 | |
a44cb944 | 4420 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4421 | if (s) { |
4422 | s->refcount++; | |
84d0ddd6 | 4423 | |
81819f0f CL |
4424 | /* |
4425 | * Adjust the object sizes so that we clear | |
4426 | * the complete object on kzalloc. | |
4427 | */ | |
1b473f29 | 4428 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4429 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4430 | |
9855609b RG |
4431 | c = memcg_cache(s); |
4432 | if (c) { | |
84d0ddd6 | 4433 | c->object_size = s->object_size; |
52ee6d74 | 4434 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4435 | } |
4436 | ||
7b8f3b66 | 4437 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4438 | s->refcount--; |
cbb79694 | 4439 | s = NULL; |
7b8f3b66 | 4440 | } |
a0e1d1be | 4441 | } |
6446faa2 | 4442 | |
cbb79694 CL |
4443 | return s; |
4444 | } | |
84c1cf62 | 4445 | |
d50112ed | 4446 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4447 | { |
aac3a166 PE |
4448 | int err; |
4449 | ||
4450 | err = kmem_cache_open(s, flags); | |
4451 | if (err) | |
4452 | return err; | |
20cea968 | 4453 | |
45530c44 CL |
4454 | /* Mutex is not taken during early boot */ |
4455 | if (slab_state <= UP) | |
4456 | return 0; | |
4457 | ||
107dab5c | 4458 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4459 | err = sysfs_slab_add(s); |
aac3a166 | 4460 | if (err) |
52b4b950 | 4461 | __kmem_cache_release(s); |
20cea968 | 4462 | |
aac3a166 | 4463 | return err; |
81819f0f | 4464 | } |
81819f0f | 4465 | |
ce71e27c | 4466 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4467 | { |
aadb4bc4 | 4468 | struct kmem_cache *s; |
94b528d0 | 4469 | void *ret; |
aadb4bc4 | 4470 | |
95a05b42 | 4471 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4472 | return kmalloc_large(size, gfpflags); |
4473 | ||
2c59dd65 | 4474 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4475 | |
2408c550 | 4476 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4477 | return s; |
81819f0f | 4478 | |
2b847c3c | 4479 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4480 | |
25985edc | 4481 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4482 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4483 | |
4484 | return ret; | |
81819f0f | 4485 | } |
fd7cb575 | 4486 | EXPORT_SYMBOL(__kmalloc_track_caller); |
81819f0f | 4487 | |
5d1f57e4 | 4488 | #ifdef CONFIG_NUMA |
81819f0f | 4489 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4490 | int node, unsigned long caller) |
81819f0f | 4491 | { |
aadb4bc4 | 4492 | struct kmem_cache *s; |
94b528d0 | 4493 | void *ret; |
aadb4bc4 | 4494 | |
95a05b42 | 4495 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4496 | ret = kmalloc_large_node(size, gfpflags, node); |
4497 | ||
4498 | trace_kmalloc_node(caller, ret, | |
4499 | size, PAGE_SIZE << get_order(size), | |
4500 | gfpflags, node); | |
4501 | ||
4502 | return ret; | |
4503 | } | |
eada35ef | 4504 | |
2c59dd65 | 4505 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4506 | |
2408c550 | 4507 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4508 | return s; |
81819f0f | 4509 | |
2b847c3c | 4510 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4511 | |
25985edc | 4512 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4513 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4514 | |
4515 | return ret; | |
81819f0f | 4516 | } |
fd7cb575 | 4517 | EXPORT_SYMBOL(__kmalloc_node_track_caller); |
5d1f57e4 | 4518 | #endif |
81819f0f | 4519 | |
ab4d5ed5 | 4520 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4521 | static int count_inuse(struct page *page) |
4522 | { | |
4523 | return page->inuse; | |
4524 | } | |
4525 | ||
4526 | static int count_total(struct page *page) | |
4527 | { | |
4528 | return page->objects; | |
4529 | } | |
ab4d5ed5 | 4530 | #endif |
205ab99d | 4531 | |
ab4d5ed5 | 4532 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 4533 | static void validate_slab(struct kmem_cache *s, struct page *page) |
53e15af0 CL |
4534 | { |
4535 | void *p; | |
a973e9dd | 4536 | void *addr = page_address(page); |
90e9f6a6 YZ |
4537 | unsigned long *map; |
4538 | ||
4539 | slab_lock(page); | |
53e15af0 | 4540 | |
dd98afd4 | 4541 | if (!check_slab(s, page) || !on_freelist(s, page, NULL)) |
90e9f6a6 | 4542 | goto unlock; |
53e15af0 CL |
4543 | |
4544 | /* Now we know that a valid freelist exists */ | |
90e9f6a6 | 4545 | map = get_map(s, page); |
5f80b13a | 4546 | for_each_object(p, s, addr, page->objects) { |
4138fdfc | 4547 | u8 val = test_bit(__obj_to_index(s, addr, p), map) ? |
dd98afd4 | 4548 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 4549 | |
dd98afd4 YZ |
4550 | if (!check_object(s, page, p, val)) |
4551 | break; | |
4552 | } | |
90e9f6a6 YZ |
4553 | put_map(map); |
4554 | unlock: | |
881db7fb | 4555 | slab_unlock(page); |
53e15af0 CL |
4556 | } |
4557 | ||
434e245d | 4558 | static int validate_slab_node(struct kmem_cache *s, |
90e9f6a6 | 4559 | struct kmem_cache_node *n) |
53e15af0 CL |
4560 | { |
4561 | unsigned long count = 0; | |
4562 | struct page *page; | |
4563 | unsigned long flags; | |
4564 | ||
4565 | spin_lock_irqsave(&n->list_lock, flags); | |
4566 | ||
916ac052 | 4567 | list_for_each_entry(page, &n->partial, slab_list) { |
90e9f6a6 | 4568 | validate_slab(s, page); |
53e15af0 CL |
4569 | count++; |
4570 | } | |
4571 | if (count != n->nr_partial) | |
f9f58285 FF |
4572 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4573 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4574 | |
4575 | if (!(s->flags & SLAB_STORE_USER)) | |
4576 | goto out; | |
4577 | ||
916ac052 | 4578 | list_for_each_entry(page, &n->full, slab_list) { |
90e9f6a6 | 4579 | validate_slab(s, page); |
53e15af0 CL |
4580 | count++; |
4581 | } | |
4582 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4583 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4584 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4585 | |
4586 | out: | |
4587 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4588 | return count; | |
4589 | } | |
4590 | ||
434e245d | 4591 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4592 | { |
4593 | int node; | |
4594 | unsigned long count = 0; | |
fa45dc25 | 4595 | struct kmem_cache_node *n; |
53e15af0 CL |
4596 | |
4597 | flush_all(s); | |
fa45dc25 | 4598 | for_each_kmem_cache_node(s, node, n) |
90e9f6a6 YZ |
4599 | count += validate_slab_node(s, n); |
4600 | ||
53e15af0 CL |
4601 | return count; |
4602 | } | |
88a420e4 | 4603 | /* |
672bba3a | 4604 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4605 | * and freed. |
4606 | */ | |
4607 | ||
4608 | struct location { | |
4609 | unsigned long count; | |
ce71e27c | 4610 | unsigned long addr; |
45edfa58 CL |
4611 | long long sum_time; |
4612 | long min_time; | |
4613 | long max_time; | |
4614 | long min_pid; | |
4615 | long max_pid; | |
174596a0 | 4616 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4617 | nodemask_t nodes; |
88a420e4 CL |
4618 | }; |
4619 | ||
4620 | struct loc_track { | |
4621 | unsigned long max; | |
4622 | unsigned long count; | |
4623 | struct location *loc; | |
4624 | }; | |
4625 | ||
4626 | static void free_loc_track(struct loc_track *t) | |
4627 | { | |
4628 | if (t->max) | |
4629 | free_pages((unsigned long)t->loc, | |
4630 | get_order(sizeof(struct location) * t->max)); | |
4631 | } | |
4632 | ||
68dff6a9 | 4633 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4634 | { |
4635 | struct location *l; | |
4636 | int order; | |
4637 | ||
88a420e4 CL |
4638 | order = get_order(sizeof(struct location) * max); |
4639 | ||
68dff6a9 | 4640 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4641 | if (!l) |
4642 | return 0; | |
4643 | ||
4644 | if (t->count) { | |
4645 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4646 | free_loc_track(t); | |
4647 | } | |
4648 | t->max = max; | |
4649 | t->loc = l; | |
4650 | return 1; | |
4651 | } | |
4652 | ||
4653 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4654 | const struct track *track) |
88a420e4 CL |
4655 | { |
4656 | long start, end, pos; | |
4657 | struct location *l; | |
ce71e27c | 4658 | unsigned long caddr; |
45edfa58 | 4659 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4660 | |
4661 | start = -1; | |
4662 | end = t->count; | |
4663 | ||
4664 | for ( ; ; ) { | |
4665 | pos = start + (end - start + 1) / 2; | |
4666 | ||
4667 | /* | |
4668 | * There is nothing at "end". If we end up there | |
4669 | * we need to add something to before end. | |
4670 | */ | |
4671 | if (pos == end) | |
4672 | break; | |
4673 | ||
4674 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4675 | if (track->addr == caddr) { |
4676 | ||
4677 | l = &t->loc[pos]; | |
4678 | l->count++; | |
4679 | if (track->when) { | |
4680 | l->sum_time += age; | |
4681 | if (age < l->min_time) | |
4682 | l->min_time = age; | |
4683 | if (age > l->max_time) | |
4684 | l->max_time = age; | |
4685 | ||
4686 | if (track->pid < l->min_pid) | |
4687 | l->min_pid = track->pid; | |
4688 | if (track->pid > l->max_pid) | |
4689 | l->max_pid = track->pid; | |
4690 | ||
174596a0 RR |
4691 | cpumask_set_cpu(track->cpu, |
4692 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4693 | } |
4694 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4695 | return 1; |
4696 | } | |
4697 | ||
45edfa58 | 4698 | if (track->addr < caddr) |
88a420e4 CL |
4699 | end = pos; |
4700 | else | |
4701 | start = pos; | |
4702 | } | |
4703 | ||
4704 | /* | |
672bba3a | 4705 | * Not found. Insert new tracking element. |
88a420e4 | 4706 | */ |
68dff6a9 | 4707 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4708 | return 0; |
4709 | ||
4710 | l = t->loc + pos; | |
4711 | if (pos < t->count) | |
4712 | memmove(l + 1, l, | |
4713 | (t->count - pos) * sizeof(struct location)); | |
4714 | t->count++; | |
4715 | l->count = 1; | |
45edfa58 CL |
4716 | l->addr = track->addr; |
4717 | l->sum_time = age; | |
4718 | l->min_time = age; | |
4719 | l->max_time = age; | |
4720 | l->min_pid = track->pid; | |
4721 | l->max_pid = track->pid; | |
174596a0 RR |
4722 | cpumask_clear(to_cpumask(l->cpus)); |
4723 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4724 | nodes_clear(l->nodes); |
4725 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4726 | return 1; |
4727 | } | |
4728 | ||
4729 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
90e9f6a6 | 4730 | struct page *page, enum track_item alloc) |
88a420e4 | 4731 | { |
a973e9dd | 4732 | void *addr = page_address(page); |
88a420e4 | 4733 | void *p; |
90e9f6a6 | 4734 | unsigned long *map; |
88a420e4 | 4735 | |
90e9f6a6 | 4736 | map = get_map(s, page); |
224a88be | 4737 | for_each_object(p, s, addr, page->objects) |
4138fdfc | 4738 | if (!test_bit(__obj_to_index(s, addr, p), map)) |
45edfa58 | 4739 | add_location(t, s, get_track(s, p, alloc)); |
90e9f6a6 | 4740 | put_map(map); |
88a420e4 CL |
4741 | } |
4742 | ||
4743 | static int list_locations(struct kmem_cache *s, char *buf, | |
4744 | enum track_item alloc) | |
4745 | { | |
e374d483 | 4746 | int len = 0; |
88a420e4 | 4747 | unsigned long i; |
68dff6a9 | 4748 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4749 | int node; |
fa45dc25 | 4750 | struct kmem_cache_node *n; |
88a420e4 | 4751 | |
90e9f6a6 YZ |
4752 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4753 | GFP_KERNEL)) { | |
68dff6a9 | 4754 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4755 | } |
88a420e4 CL |
4756 | /* Push back cpu slabs */ |
4757 | flush_all(s); | |
4758 | ||
fa45dc25 | 4759 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4760 | unsigned long flags; |
4761 | struct page *page; | |
4762 | ||
9e86943b | 4763 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4764 | continue; |
4765 | ||
4766 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 4767 | list_for_each_entry(page, &n->partial, slab_list) |
90e9f6a6 | 4768 | process_slab(&t, s, page, alloc); |
916ac052 | 4769 | list_for_each_entry(page, &n->full, slab_list) |
90e9f6a6 | 4770 | process_slab(&t, s, page, alloc); |
88a420e4 CL |
4771 | spin_unlock_irqrestore(&n->list_lock, flags); |
4772 | } | |
4773 | ||
4774 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4775 | struct location *l = &t.loc[i]; |
88a420e4 | 4776 | |
9c246247 | 4777 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4778 | break; |
e374d483 | 4779 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4780 | |
4781 | if (l->addr) | |
62c70bce | 4782 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4783 | else |
e374d483 | 4784 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4785 | |
4786 | if (l->sum_time != l->min_time) { | |
e374d483 | 4787 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4788 | l->min_time, |
4789 | (long)div_u64(l->sum_time, l->count), | |
4790 | l->max_time); | |
45edfa58 | 4791 | } else |
e374d483 | 4792 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4793 | l->min_time); |
4794 | ||
4795 | if (l->min_pid != l->max_pid) | |
e374d483 | 4796 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4797 | l->min_pid, l->max_pid); |
4798 | else | |
e374d483 | 4799 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4800 | l->min_pid); |
4801 | ||
174596a0 RR |
4802 | if (num_online_cpus() > 1 && |
4803 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4804 | len < PAGE_SIZE - 60) |
4805 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4806 | " cpus=%*pbl", | |
4807 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4808 | |
62bc62a8 | 4809 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4810 | len < PAGE_SIZE - 60) |
4811 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4812 | " nodes=%*pbl", | |
4813 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4814 | |
e374d483 | 4815 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4816 | } |
4817 | ||
4818 | free_loc_track(&t); | |
4819 | if (!t.count) | |
e374d483 HH |
4820 | len += sprintf(buf, "No data\n"); |
4821 | return len; | |
88a420e4 | 4822 | } |
6dfd1b65 | 4823 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 4824 | |
a5a84755 | 4825 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4826 | static void __init resiliency_test(void) |
a5a84755 CL |
4827 | { |
4828 | u8 *p; | |
cc252eae | 4829 | int type = KMALLOC_NORMAL; |
a5a84755 | 4830 | |
95a05b42 | 4831 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4832 | |
f9f58285 FF |
4833 | pr_err("SLUB resiliency testing\n"); |
4834 | pr_err("-----------------------\n"); | |
4835 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4836 | |
4837 | p = kzalloc(16, GFP_KERNEL); | |
4838 | p[16] = 0x12; | |
f9f58285 FF |
4839 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4840 | p + 16); | |
a5a84755 | 4841 | |
cc252eae | 4842 | validate_slab_cache(kmalloc_caches[type][4]); |
a5a84755 CL |
4843 | |
4844 | /* Hmmm... The next two are dangerous */ | |
4845 | p = kzalloc(32, GFP_KERNEL); | |
4846 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4847 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4848 | p); | |
4849 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 | 4850 | |
cc252eae | 4851 | validate_slab_cache(kmalloc_caches[type][5]); |
a5a84755 CL |
4852 | p = kzalloc(64, GFP_KERNEL); |
4853 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4854 | *p = 0x56; | |
f9f58285 FF |
4855 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4856 | p); | |
4857 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
cc252eae | 4858 | validate_slab_cache(kmalloc_caches[type][6]); |
a5a84755 | 4859 | |
f9f58285 | 4860 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4861 | p = kzalloc(128, GFP_KERNEL); |
4862 | kfree(p); | |
4863 | *p = 0x78; | |
f9f58285 | 4864 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
cc252eae | 4865 | validate_slab_cache(kmalloc_caches[type][7]); |
a5a84755 CL |
4866 | |
4867 | p = kzalloc(256, GFP_KERNEL); | |
4868 | kfree(p); | |
4869 | p[50] = 0x9a; | |
f9f58285 | 4870 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
cc252eae | 4871 | validate_slab_cache(kmalloc_caches[type][8]); |
a5a84755 CL |
4872 | |
4873 | p = kzalloc(512, GFP_KERNEL); | |
4874 | kfree(p); | |
4875 | p[512] = 0xab; | |
f9f58285 | 4876 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
cc252eae | 4877 | validate_slab_cache(kmalloc_caches[type][9]); |
a5a84755 CL |
4878 | } |
4879 | #else | |
4880 | #ifdef CONFIG_SYSFS | |
4881 | static void resiliency_test(void) {}; | |
4882 | #endif | |
6dfd1b65 | 4883 | #endif /* SLUB_RESILIENCY_TEST */ |
a5a84755 | 4884 | |
ab4d5ed5 | 4885 | #ifdef CONFIG_SYSFS |
81819f0f | 4886 | enum slab_stat_type { |
205ab99d CL |
4887 | SL_ALL, /* All slabs */ |
4888 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4889 | SL_CPU, /* Only slabs used for cpu caches */ | |
4890 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4891 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4892 | }; |
4893 | ||
205ab99d | 4894 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4895 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4896 | #define SO_CPU (1 << SL_CPU) | |
4897 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4898 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4899 | |
1663f26d TH |
4900 | #ifdef CONFIG_MEMCG |
4901 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4902 | ||
4903 | static int __init setup_slub_memcg_sysfs(char *str) | |
4904 | { | |
4905 | int v; | |
4906 | ||
4907 | if (get_option(&str, &v) > 0) | |
4908 | memcg_sysfs_enabled = v; | |
4909 | ||
4910 | return 1; | |
4911 | } | |
4912 | ||
4913 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4914 | #endif | |
4915 | ||
62e5c4b4 CG |
4916 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4917 | char *buf, unsigned long flags) | |
81819f0f CL |
4918 | { |
4919 | unsigned long total = 0; | |
81819f0f CL |
4920 | int node; |
4921 | int x; | |
4922 | unsigned long *nodes; | |
81819f0f | 4923 | |
6396bb22 | 4924 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4925 | if (!nodes) |
4926 | return -ENOMEM; | |
81819f0f | 4927 | |
205ab99d CL |
4928 | if (flags & SO_CPU) { |
4929 | int cpu; | |
81819f0f | 4930 | |
205ab99d | 4931 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4932 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4933 | cpu); | |
ec3ab083 | 4934 | int node; |
49e22585 | 4935 | struct page *page; |
dfb4f096 | 4936 | |
4db0c3c2 | 4937 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4938 | if (!page) |
4939 | continue; | |
205ab99d | 4940 | |
ec3ab083 CL |
4941 | node = page_to_nid(page); |
4942 | if (flags & SO_TOTAL) | |
4943 | x = page->objects; | |
4944 | else if (flags & SO_OBJECTS) | |
4945 | x = page->inuse; | |
4946 | else | |
4947 | x = 1; | |
49e22585 | 4948 | |
ec3ab083 CL |
4949 | total += x; |
4950 | nodes[node] += x; | |
4951 | ||
a93cf07b | 4952 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4953 | if (page) { |
8afb1474 LZ |
4954 | node = page_to_nid(page); |
4955 | if (flags & SO_TOTAL) | |
4956 | WARN_ON_ONCE(1); | |
4957 | else if (flags & SO_OBJECTS) | |
4958 | WARN_ON_ONCE(1); | |
4959 | else | |
4960 | x = page->pages; | |
bc6697d8 ED |
4961 | total += x; |
4962 | nodes[node] += x; | |
49e22585 | 4963 | } |
81819f0f CL |
4964 | } |
4965 | } | |
4966 | ||
e4f8e513 QC |
4967 | /* |
4968 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
4969 | * already held which will conflict with an existing lock order: | |
4970 | * | |
4971 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
4972 | * | |
4973 | * We don't really need mem_hotplug_lock (to hold off | |
4974 | * slab_mem_going_offline_callback) here because slab's memory hot | |
4975 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
4976 | */ | |
4977 | ||
ab4d5ed5 | 4978 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4979 | if (flags & SO_ALL) { |
fa45dc25 CL |
4980 | struct kmem_cache_node *n; |
4981 | ||
4982 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4983 | |
d0e0ac97 CG |
4984 | if (flags & SO_TOTAL) |
4985 | x = atomic_long_read(&n->total_objects); | |
4986 | else if (flags & SO_OBJECTS) | |
4987 | x = atomic_long_read(&n->total_objects) - | |
4988 | count_partial(n, count_free); | |
81819f0f | 4989 | else |
205ab99d | 4990 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4991 | total += x; |
4992 | nodes[node] += x; | |
4993 | } | |
4994 | ||
ab4d5ed5 CL |
4995 | } else |
4996 | #endif | |
4997 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4998 | struct kmem_cache_node *n; |
81819f0f | 4999 | |
fa45dc25 | 5000 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
5001 | if (flags & SO_TOTAL) |
5002 | x = count_partial(n, count_total); | |
5003 | else if (flags & SO_OBJECTS) | |
5004 | x = count_partial(n, count_inuse); | |
81819f0f | 5005 | else |
205ab99d | 5006 | x = n->nr_partial; |
81819f0f CL |
5007 | total += x; |
5008 | nodes[node] += x; | |
5009 | } | |
5010 | } | |
81819f0f CL |
5011 | x = sprintf(buf, "%lu", total); |
5012 | #ifdef CONFIG_NUMA | |
fa45dc25 | 5013 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
5014 | if (nodes[node]) |
5015 | x += sprintf(buf + x, " N%d=%lu", | |
5016 | node, nodes[node]); | |
5017 | #endif | |
5018 | kfree(nodes); | |
5019 | return x + sprintf(buf + x, "\n"); | |
5020 | } | |
5021 | ||
81819f0f | 5022 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 5023 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5024 | |
5025 | struct slab_attribute { | |
5026 | struct attribute attr; | |
5027 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5028 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5029 | }; | |
5030 | ||
5031 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
5032 | static struct slab_attribute _name##_attr = \ |
5033 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
5034 | |
5035 | #define SLAB_ATTR(_name) \ | |
5036 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 5037 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 5038 | |
81819f0f CL |
5039 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5040 | { | |
44065b2e | 5041 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
5042 | } |
5043 | SLAB_ATTR_RO(slab_size); | |
5044 | ||
5045 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5046 | { | |
3a3791ec | 5047 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
5048 | } |
5049 | SLAB_ATTR_RO(align); | |
5050 | ||
5051 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5052 | { | |
1b473f29 | 5053 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
5054 | } |
5055 | SLAB_ATTR_RO(object_size); | |
5056 | ||
5057 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5058 | { | |
19af27af | 5059 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5060 | } |
5061 | SLAB_ATTR_RO(objs_per_slab); | |
5062 | ||
5063 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
5064 | { | |
19af27af | 5065 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5066 | } |
32a6f409 | 5067 | SLAB_ATTR_RO(order); |
81819f0f | 5068 | |
73d342b1 DR |
5069 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5070 | { | |
5071 | return sprintf(buf, "%lu\n", s->min_partial); | |
5072 | } | |
5073 | ||
5074 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5075 | size_t length) | |
5076 | { | |
5077 | unsigned long min; | |
5078 | int err; | |
5079 | ||
3dbb95f7 | 5080 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5081 | if (err) |
5082 | return err; | |
5083 | ||
c0bdb232 | 5084 | set_min_partial(s, min); |
73d342b1 DR |
5085 | return length; |
5086 | } | |
5087 | SLAB_ATTR(min_partial); | |
5088 | ||
49e22585 CL |
5089 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5090 | { | |
e6d0e1dc | 5091 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
5092 | } |
5093 | ||
5094 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5095 | size_t length) | |
5096 | { | |
e5d9998f | 5097 | unsigned int objects; |
49e22585 CL |
5098 | int err; |
5099 | ||
e5d9998f | 5100 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5101 | if (err) |
5102 | return err; | |
345c905d | 5103 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5104 | return -EINVAL; |
49e22585 | 5105 | |
e6d0e1dc | 5106 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5107 | flush_all(s); |
5108 | return length; | |
5109 | } | |
5110 | SLAB_ATTR(cpu_partial); | |
5111 | ||
81819f0f CL |
5112 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5113 | { | |
62c70bce JP |
5114 | if (!s->ctor) |
5115 | return 0; | |
5116 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
5117 | } |
5118 | SLAB_ATTR_RO(ctor); | |
5119 | ||
81819f0f CL |
5120 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5121 | { | |
4307c14f | 5122 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5123 | } |
5124 | SLAB_ATTR_RO(aliases); | |
5125 | ||
81819f0f CL |
5126 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5127 | { | |
d9acf4b7 | 5128 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5129 | } |
5130 | SLAB_ATTR_RO(partial); | |
5131 | ||
5132 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5133 | { | |
d9acf4b7 | 5134 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5135 | } |
5136 | SLAB_ATTR_RO(cpu_slabs); | |
5137 | ||
5138 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5139 | { | |
205ab99d | 5140 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5141 | } |
5142 | SLAB_ATTR_RO(objects); | |
5143 | ||
205ab99d CL |
5144 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5145 | { | |
5146 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5147 | } | |
5148 | SLAB_ATTR_RO(objects_partial); | |
5149 | ||
49e22585 CL |
5150 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5151 | { | |
5152 | int objects = 0; | |
5153 | int pages = 0; | |
5154 | int cpu; | |
5155 | int len; | |
5156 | ||
5157 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5158 | struct page *page; |
5159 | ||
5160 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5161 | |
5162 | if (page) { | |
5163 | pages += page->pages; | |
5164 | objects += page->pobjects; | |
5165 | } | |
5166 | } | |
5167 | ||
5168 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5169 | ||
5170 | #ifdef CONFIG_SMP | |
5171 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5172 | struct page *page; |
5173 | ||
5174 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5175 | |
5176 | if (page && len < PAGE_SIZE - 20) | |
5177 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5178 | page->pobjects, page->pages); | |
5179 | } | |
5180 | #endif | |
5181 | return len + sprintf(buf + len, "\n"); | |
5182 | } | |
5183 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5184 | ||
a5a84755 CL |
5185 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5186 | { | |
5187 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5188 | } | |
8f58119a | 5189 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
5190 | |
5191 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5192 | { | |
5193 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5194 | } | |
5195 | SLAB_ATTR_RO(hwcache_align); | |
5196 | ||
5197 | #ifdef CONFIG_ZONE_DMA | |
5198 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5199 | { | |
5200 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5201 | } | |
5202 | SLAB_ATTR_RO(cache_dma); | |
5203 | #endif | |
5204 | ||
8eb8284b DW |
5205 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5206 | { | |
7bbdb81e | 5207 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5208 | } |
5209 | SLAB_ATTR_RO(usersize); | |
5210 | ||
a5a84755 CL |
5211 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5212 | { | |
5f0d5a3a | 5213 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5214 | } |
5215 | SLAB_ATTR_RO(destroy_by_rcu); | |
5216 | ||
ab4d5ed5 | 5217 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5218 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5219 | { | |
5220 | return show_slab_objects(s, buf, SO_ALL); | |
5221 | } | |
5222 | SLAB_ATTR_RO(slabs); | |
5223 | ||
205ab99d CL |
5224 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5225 | { | |
5226 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5227 | } | |
5228 | SLAB_ATTR_RO(total_objects); | |
5229 | ||
81819f0f CL |
5230 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5231 | { | |
becfda68 | 5232 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 5233 | } |
060807f8 | 5234 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
5235 | |
5236 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5237 | { | |
5238 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5239 | } | |
060807f8 | 5240 | SLAB_ATTR_RO(trace); |
81819f0f | 5241 | |
81819f0f CL |
5242 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5243 | { | |
5244 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5245 | } | |
5246 | ||
ad38b5b1 | 5247 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
5248 | |
5249 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5250 | { | |
5251 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5252 | } | |
5253 | ||
ad38b5b1 | 5254 | SLAB_ATTR_RO(poison); |
81819f0f CL |
5255 | |
5256 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5257 | { | |
5258 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5259 | } | |
5260 | ||
ad38b5b1 | 5261 | SLAB_ATTR_RO(store_user); |
81819f0f | 5262 | |
53e15af0 CL |
5263 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5264 | { | |
5265 | return 0; | |
5266 | } | |
5267 | ||
5268 | static ssize_t validate_store(struct kmem_cache *s, | |
5269 | const char *buf, size_t length) | |
5270 | { | |
434e245d CL |
5271 | int ret = -EINVAL; |
5272 | ||
5273 | if (buf[0] == '1') { | |
5274 | ret = validate_slab_cache(s); | |
5275 | if (ret >= 0) | |
5276 | ret = length; | |
5277 | } | |
5278 | return ret; | |
53e15af0 CL |
5279 | } |
5280 | SLAB_ATTR(validate); | |
a5a84755 CL |
5281 | |
5282 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5283 | { | |
5284 | if (!(s->flags & SLAB_STORE_USER)) | |
5285 | return -ENOSYS; | |
5286 | return list_locations(s, buf, TRACK_ALLOC); | |
5287 | } | |
5288 | SLAB_ATTR_RO(alloc_calls); | |
5289 | ||
5290 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5291 | { | |
5292 | if (!(s->flags & SLAB_STORE_USER)) | |
5293 | return -ENOSYS; | |
5294 | return list_locations(s, buf, TRACK_FREE); | |
5295 | } | |
5296 | SLAB_ATTR_RO(free_calls); | |
5297 | #endif /* CONFIG_SLUB_DEBUG */ | |
5298 | ||
5299 | #ifdef CONFIG_FAILSLAB | |
5300 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5301 | { | |
5302 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5303 | } | |
060807f8 | 5304 | SLAB_ATTR_RO(failslab); |
ab4d5ed5 | 5305 | #endif |
53e15af0 | 5306 | |
2086d26a CL |
5307 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5308 | { | |
5309 | return 0; | |
5310 | } | |
5311 | ||
5312 | static ssize_t shrink_store(struct kmem_cache *s, | |
5313 | const char *buf, size_t length) | |
5314 | { | |
832f37f5 | 5315 | if (buf[0] == '1') |
04f768a3 | 5316 | kmem_cache_shrink_all(s); |
832f37f5 | 5317 | else |
2086d26a CL |
5318 | return -EINVAL; |
5319 | return length; | |
5320 | } | |
5321 | SLAB_ATTR(shrink); | |
5322 | ||
81819f0f | 5323 | #ifdef CONFIG_NUMA |
9824601e | 5324 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5325 | { |
eb7235eb | 5326 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5327 | } |
5328 | ||
9824601e | 5329 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5330 | const char *buf, size_t length) |
5331 | { | |
eb7235eb | 5332 | unsigned int ratio; |
0121c619 CL |
5333 | int err; |
5334 | ||
eb7235eb | 5335 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5336 | if (err) |
5337 | return err; | |
eb7235eb AD |
5338 | if (ratio > 100) |
5339 | return -ERANGE; | |
0121c619 | 5340 | |
eb7235eb | 5341 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5342 | |
81819f0f CL |
5343 | return length; |
5344 | } | |
9824601e | 5345 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5346 | #endif |
5347 | ||
8ff12cfc | 5348 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5349 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5350 | { | |
5351 | unsigned long sum = 0; | |
5352 | int cpu; | |
5353 | int len; | |
6da2ec56 | 5354 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5355 | |
5356 | if (!data) | |
5357 | return -ENOMEM; | |
5358 | ||
5359 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5360 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5361 | |
5362 | data[cpu] = x; | |
5363 | sum += x; | |
5364 | } | |
5365 | ||
5366 | len = sprintf(buf, "%lu", sum); | |
5367 | ||
50ef37b9 | 5368 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5369 | for_each_online_cpu(cpu) { |
5370 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5371 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5372 | } |
50ef37b9 | 5373 | #endif |
8ff12cfc CL |
5374 | kfree(data); |
5375 | return len + sprintf(buf + len, "\n"); | |
5376 | } | |
5377 | ||
78eb00cc DR |
5378 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5379 | { | |
5380 | int cpu; | |
5381 | ||
5382 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5383 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5384 | } |
5385 | ||
8ff12cfc CL |
5386 | #define STAT_ATTR(si, text) \ |
5387 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5388 | { \ | |
5389 | return show_stat(s, buf, si); \ | |
5390 | } \ | |
78eb00cc DR |
5391 | static ssize_t text##_store(struct kmem_cache *s, \ |
5392 | const char *buf, size_t length) \ | |
5393 | { \ | |
5394 | if (buf[0] != '0') \ | |
5395 | return -EINVAL; \ | |
5396 | clear_stat(s, si); \ | |
5397 | return length; \ | |
5398 | } \ | |
5399 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5400 | |
5401 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5402 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5403 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5404 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5405 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5406 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5407 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5408 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5409 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5410 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5411 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5412 | STAT_ATTR(FREE_SLAB, free_slab); |
5413 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5414 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5415 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5416 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5417 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5418 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5419 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5420 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5421 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5422 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5423 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5424 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5425 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5426 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5427 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5428 | |
06428780 | 5429 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5430 | &slab_size_attr.attr, |
5431 | &object_size_attr.attr, | |
5432 | &objs_per_slab_attr.attr, | |
5433 | &order_attr.attr, | |
73d342b1 | 5434 | &min_partial_attr.attr, |
49e22585 | 5435 | &cpu_partial_attr.attr, |
81819f0f | 5436 | &objects_attr.attr, |
205ab99d | 5437 | &objects_partial_attr.attr, |
81819f0f CL |
5438 | &partial_attr.attr, |
5439 | &cpu_slabs_attr.attr, | |
5440 | &ctor_attr.attr, | |
81819f0f CL |
5441 | &aliases_attr.attr, |
5442 | &align_attr.attr, | |
81819f0f CL |
5443 | &hwcache_align_attr.attr, |
5444 | &reclaim_account_attr.attr, | |
5445 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5446 | &shrink_attr.attr, |
49e22585 | 5447 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5448 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5449 | &total_objects_attr.attr, |
5450 | &slabs_attr.attr, | |
5451 | &sanity_checks_attr.attr, | |
5452 | &trace_attr.attr, | |
81819f0f CL |
5453 | &red_zone_attr.attr, |
5454 | &poison_attr.attr, | |
5455 | &store_user_attr.attr, | |
53e15af0 | 5456 | &validate_attr.attr, |
88a420e4 CL |
5457 | &alloc_calls_attr.attr, |
5458 | &free_calls_attr.attr, | |
ab4d5ed5 | 5459 | #endif |
81819f0f CL |
5460 | #ifdef CONFIG_ZONE_DMA |
5461 | &cache_dma_attr.attr, | |
5462 | #endif | |
5463 | #ifdef CONFIG_NUMA | |
9824601e | 5464 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5465 | #endif |
5466 | #ifdef CONFIG_SLUB_STATS | |
5467 | &alloc_fastpath_attr.attr, | |
5468 | &alloc_slowpath_attr.attr, | |
5469 | &free_fastpath_attr.attr, | |
5470 | &free_slowpath_attr.attr, | |
5471 | &free_frozen_attr.attr, | |
5472 | &free_add_partial_attr.attr, | |
5473 | &free_remove_partial_attr.attr, | |
5474 | &alloc_from_partial_attr.attr, | |
5475 | &alloc_slab_attr.attr, | |
5476 | &alloc_refill_attr.attr, | |
e36a2652 | 5477 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5478 | &free_slab_attr.attr, |
5479 | &cpuslab_flush_attr.attr, | |
5480 | &deactivate_full_attr.attr, | |
5481 | &deactivate_empty_attr.attr, | |
5482 | &deactivate_to_head_attr.attr, | |
5483 | &deactivate_to_tail_attr.attr, | |
5484 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5485 | &deactivate_bypass_attr.attr, |
65c3376a | 5486 | &order_fallback_attr.attr, |
b789ef51 CL |
5487 | &cmpxchg_double_fail_attr.attr, |
5488 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5489 | &cpu_partial_alloc_attr.attr, |
5490 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5491 | &cpu_partial_node_attr.attr, |
5492 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5493 | #endif |
4c13dd3b DM |
5494 | #ifdef CONFIG_FAILSLAB |
5495 | &failslab_attr.attr, | |
5496 | #endif | |
8eb8284b | 5497 | &usersize_attr.attr, |
4c13dd3b | 5498 | |
81819f0f CL |
5499 | NULL |
5500 | }; | |
5501 | ||
1fdaaa23 | 5502 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5503 | .attrs = slab_attrs, |
5504 | }; | |
5505 | ||
5506 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5507 | struct attribute *attr, | |
5508 | char *buf) | |
5509 | { | |
5510 | struct slab_attribute *attribute; | |
5511 | struct kmem_cache *s; | |
5512 | int err; | |
5513 | ||
5514 | attribute = to_slab_attr(attr); | |
5515 | s = to_slab(kobj); | |
5516 | ||
5517 | if (!attribute->show) | |
5518 | return -EIO; | |
5519 | ||
5520 | err = attribute->show(s, buf); | |
5521 | ||
5522 | return err; | |
5523 | } | |
5524 | ||
5525 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5526 | struct attribute *attr, | |
5527 | const char *buf, size_t len) | |
5528 | { | |
5529 | struct slab_attribute *attribute; | |
5530 | struct kmem_cache *s; | |
5531 | int err; | |
5532 | ||
5533 | attribute = to_slab_attr(attr); | |
5534 | s = to_slab(kobj); | |
5535 | ||
5536 | if (!attribute->store) | |
5537 | return -EIO; | |
5538 | ||
5539 | err = attribute->store(s, buf, len); | |
127424c8 | 5540 | #ifdef CONFIG_MEMCG |
107dab5c | 5541 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5542 | struct kmem_cache *c; |
81819f0f | 5543 | |
107dab5c GC |
5544 | mutex_lock(&slab_mutex); |
5545 | if (s->max_attr_size < len) | |
5546 | s->max_attr_size = len; | |
5547 | ||
ebe945c2 GC |
5548 | /* |
5549 | * This is a best effort propagation, so this function's return | |
5550 | * value will be determined by the parent cache only. This is | |
5551 | * basically because not all attributes will have a well | |
5552 | * defined semantics for rollbacks - most of the actions will | |
5553 | * have permanent effects. | |
5554 | * | |
5555 | * Returning the error value of any of the children that fail | |
5556 | * is not 100 % defined, in the sense that users seeing the | |
5557 | * error code won't be able to know anything about the state of | |
5558 | * the cache. | |
5559 | * | |
5560 | * Only returning the error code for the parent cache at least | |
5561 | * has well defined semantics. The cache being written to | |
5562 | * directly either failed or succeeded, in which case we loop | |
5563 | * through the descendants with best-effort propagation. | |
5564 | */ | |
9855609b RG |
5565 | c = memcg_cache(s); |
5566 | if (c) | |
426589f5 | 5567 | attribute->store(c, buf, len); |
107dab5c GC |
5568 | mutex_unlock(&slab_mutex); |
5569 | } | |
5570 | #endif | |
81819f0f CL |
5571 | return err; |
5572 | } | |
5573 | ||
107dab5c GC |
5574 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5575 | { | |
127424c8 | 5576 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5577 | int i; |
5578 | char *buffer = NULL; | |
93030d83 | 5579 | struct kmem_cache *root_cache; |
107dab5c | 5580 | |
93030d83 | 5581 | if (is_root_cache(s)) |
107dab5c GC |
5582 | return; |
5583 | ||
f7ce3190 | 5584 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5585 | |
107dab5c GC |
5586 | /* |
5587 | * This mean this cache had no attribute written. Therefore, no point | |
5588 | * in copying default values around | |
5589 | */ | |
93030d83 | 5590 | if (!root_cache->max_attr_size) |
107dab5c GC |
5591 | return; |
5592 | ||
5593 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5594 | char mbuf[64]; | |
5595 | char *buf; | |
5596 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5597 | ssize_t len; |
107dab5c GC |
5598 | |
5599 | if (!attr || !attr->store || !attr->show) | |
5600 | continue; | |
5601 | ||
5602 | /* | |
5603 | * It is really bad that we have to allocate here, so we will | |
5604 | * do it only as a fallback. If we actually allocate, though, | |
5605 | * we can just use the allocated buffer until the end. | |
5606 | * | |
5607 | * Most of the slub attributes will tend to be very small in | |
5608 | * size, but sysfs allows buffers up to a page, so they can | |
5609 | * theoretically happen. | |
5610 | */ | |
5611 | if (buffer) | |
5612 | buf = buffer; | |
a68ee057 QC |
5613 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) && |
5614 | !IS_ENABLED(CONFIG_SLUB_STATS)) | |
107dab5c GC |
5615 | buf = mbuf; |
5616 | else { | |
5617 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5618 | if (WARN_ON(!buffer)) | |
5619 | continue; | |
5620 | buf = buffer; | |
5621 | } | |
5622 | ||
478fe303 TG |
5623 | len = attr->show(root_cache, buf); |
5624 | if (len > 0) | |
5625 | attr->store(s, buf, len); | |
107dab5c GC |
5626 | } |
5627 | ||
5628 | if (buffer) | |
5629 | free_page((unsigned long)buffer); | |
6dfd1b65 | 5630 | #endif /* CONFIG_MEMCG */ |
107dab5c GC |
5631 | } |
5632 | ||
41a21285 CL |
5633 | static void kmem_cache_release(struct kobject *k) |
5634 | { | |
5635 | slab_kmem_cache_release(to_slab(k)); | |
5636 | } | |
5637 | ||
52cf25d0 | 5638 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5639 | .show = slab_attr_show, |
5640 | .store = slab_attr_store, | |
5641 | }; | |
5642 | ||
5643 | static struct kobj_type slab_ktype = { | |
5644 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5645 | .release = kmem_cache_release, |
81819f0f CL |
5646 | }; |
5647 | ||
27c3a314 | 5648 | static struct kset *slab_kset; |
81819f0f | 5649 | |
9a41707b VD |
5650 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5651 | { | |
127424c8 | 5652 | #ifdef CONFIG_MEMCG |
9a41707b | 5653 | if (!is_root_cache(s)) |
f7ce3190 | 5654 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5655 | #endif |
5656 | return slab_kset; | |
5657 | } | |
5658 | ||
81819f0f CL |
5659 | #define ID_STR_LENGTH 64 |
5660 | ||
5661 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5662 | * |
5663 | * Format :[flags-]size | |
81819f0f CL |
5664 | */ |
5665 | static char *create_unique_id(struct kmem_cache *s) | |
5666 | { | |
5667 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5668 | char *p = name; | |
5669 | ||
5670 | BUG_ON(!name); | |
5671 | ||
5672 | *p++ = ':'; | |
5673 | /* | |
5674 | * First flags affecting slabcache operations. We will only | |
5675 | * get here for aliasable slabs so we do not need to support | |
5676 | * too many flags. The flags here must cover all flags that | |
5677 | * are matched during merging to guarantee that the id is | |
5678 | * unique. | |
5679 | */ | |
5680 | if (s->flags & SLAB_CACHE_DMA) | |
5681 | *p++ = 'd'; | |
6d6ea1e9 NB |
5682 | if (s->flags & SLAB_CACHE_DMA32) |
5683 | *p++ = 'D'; | |
81819f0f CL |
5684 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5685 | *p++ = 'a'; | |
becfda68 | 5686 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5687 | *p++ = 'F'; |
230e9fc2 VD |
5688 | if (s->flags & SLAB_ACCOUNT) |
5689 | *p++ = 'A'; | |
81819f0f CL |
5690 | if (p != name + 1) |
5691 | *p++ = '-'; | |
44065b2e | 5692 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5693 | |
81819f0f CL |
5694 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5695 | return name; | |
5696 | } | |
5697 | ||
3b7b3140 TH |
5698 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5699 | { | |
5700 | struct kmem_cache *s = | |
5701 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5702 | ||
5703 | if (!s->kobj.state_in_sysfs) | |
5704 | /* | |
5705 | * For a memcg cache, this may be called during | |
5706 | * deactivation and again on shutdown. Remove only once. | |
5707 | * A cache is never shut down before deactivation is | |
5708 | * complete, so no need to worry about synchronization. | |
5709 | */ | |
f6ba4880 | 5710 | goto out; |
3b7b3140 TH |
5711 | |
5712 | #ifdef CONFIG_MEMCG | |
5713 | kset_unregister(s->memcg_kset); | |
5714 | #endif | |
f6ba4880 | 5715 | out: |
3b7b3140 TH |
5716 | kobject_put(&s->kobj); |
5717 | } | |
5718 | ||
81819f0f CL |
5719 | static int sysfs_slab_add(struct kmem_cache *s) |
5720 | { | |
5721 | int err; | |
5722 | const char *name; | |
1663f26d | 5723 | struct kset *kset = cache_kset(s); |
45530c44 | 5724 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5725 | |
3b7b3140 TH |
5726 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5727 | ||
1663f26d TH |
5728 | if (!kset) { |
5729 | kobject_init(&s->kobj, &slab_ktype); | |
5730 | return 0; | |
5731 | } | |
5732 | ||
11066386 MC |
5733 | if (!unmergeable && disable_higher_order_debug && |
5734 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5735 | unmergeable = 1; | |
5736 | ||
81819f0f CL |
5737 | if (unmergeable) { |
5738 | /* | |
5739 | * Slabcache can never be merged so we can use the name proper. | |
5740 | * This is typically the case for debug situations. In that | |
5741 | * case we can catch duplicate names easily. | |
5742 | */ | |
27c3a314 | 5743 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5744 | name = s->name; |
5745 | } else { | |
5746 | /* | |
5747 | * Create a unique name for the slab as a target | |
5748 | * for the symlinks. | |
5749 | */ | |
5750 | name = create_unique_id(s); | |
5751 | } | |
5752 | ||
1663f26d | 5753 | s->kobj.kset = kset; |
26e4f205 | 5754 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
dde3c6b7 WH |
5755 | if (err) { |
5756 | kobject_put(&s->kobj); | |
80da026a | 5757 | goto out; |
dde3c6b7 | 5758 | } |
81819f0f CL |
5759 | |
5760 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5761 | if (err) |
5762 | goto out_del_kobj; | |
9a41707b | 5763 | |
127424c8 | 5764 | #ifdef CONFIG_MEMCG |
1663f26d | 5765 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5766 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5767 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5768 | err = -ENOMEM; |
5769 | goto out_del_kobj; | |
9a41707b VD |
5770 | } |
5771 | } | |
5772 | #endif | |
5773 | ||
81819f0f CL |
5774 | if (!unmergeable) { |
5775 | /* Setup first alias */ | |
5776 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5777 | } |
54b6a731 DJ |
5778 | out: |
5779 | if (!unmergeable) | |
5780 | kfree(name); | |
5781 | return err; | |
5782 | out_del_kobj: | |
5783 | kobject_del(&s->kobj); | |
54b6a731 | 5784 | goto out; |
81819f0f CL |
5785 | } |
5786 | ||
bf5eb3de | 5787 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5788 | { |
97d06609 | 5789 | if (slab_state < FULL) |
2bce6485 CL |
5790 | /* |
5791 | * Sysfs has not been setup yet so no need to remove the | |
5792 | * cache from sysfs. | |
5793 | */ | |
5794 | return; | |
5795 | ||
3b7b3140 TH |
5796 | kobject_get(&s->kobj); |
5797 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5798 | } |
5799 | ||
d50d82fa MP |
5800 | void sysfs_slab_unlink(struct kmem_cache *s) |
5801 | { | |
5802 | if (slab_state >= FULL) | |
5803 | kobject_del(&s->kobj); | |
5804 | } | |
5805 | ||
bf5eb3de TH |
5806 | void sysfs_slab_release(struct kmem_cache *s) |
5807 | { | |
5808 | if (slab_state >= FULL) | |
5809 | kobject_put(&s->kobj); | |
81819f0f CL |
5810 | } |
5811 | ||
5812 | /* | |
5813 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5814 | * available lest we lose that information. |
81819f0f CL |
5815 | */ |
5816 | struct saved_alias { | |
5817 | struct kmem_cache *s; | |
5818 | const char *name; | |
5819 | struct saved_alias *next; | |
5820 | }; | |
5821 | ||
5af328a5 | 5822 | static struct saved_alias *alias_list; |
81819f0f CL |
5823 | |
5824 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5825 | { | |
5826 | struct saved_alias *al; | |
5827 | ||
97d06609 | 5828 | if (slab_state == FULL) { |
81819f0f CL |
5829 | /* |
5830 | * If we have a leftover link then remove it. | |
5831 | */ | |
27c3a314 GKH |
5832 | sysfs_remove_link(&slab_kset->kobj, name); |
5833 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5834 | } |
5835 | ||
5836 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5837 | if (!al) | |
5838 | return -ENOMEM; | |
5839 | ||
5840 | al->s = s; | |
5841 | al->name = name; | |
5842 | al->next = alias_list; | |
5843 | alias_list = al; | |
5844 | return 0; | |
5845 | } | |
5846 | ||
5847 | static int __init slab_sysfs_init(void) | |
5848 | { | |
5b95a4ac | 5849 | struct kmem_cache *s; |
81819f0f CL |
5850 | int err; |
5851 | ||
18004c5d | 5852 | mutex_lock(&slab_mutex); |
2bce6485 | 5853 | |
d7660ce5 | 5854 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 5855 | if (!slab_kset) { |
18004c5d | 5856 | mutex_unlock(&slab_mutex); |
f9f58285 | 5857 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5858 | return -ENOSYS; |
5859 | } | |
5860 | ||
97d06609 | 5861 | slab_state = FULL; |
26a7bd03 | 5862 | |
5b95a4ac | 5863 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5864 | err = sysfs_slab_add(s); |
5d540fb7 | 5865 | if (err) |
f9f58285 FF |
5866 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5867 | s->name); | |
26a7bd03 | 5868 | } |
81819f0f CL |
5869 | |
5870 | while (alias_list) { | |
5871 | struct saved_alias *al = alias_list; | |
5872 | ||
5873 | alias_list = alias_list->next; | |
5874 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5875 | if (err) |
f9f58285 FF |
5876 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5877 | al->name); | |
81819f0f CL |
5878 | kfree(al); |
5879 | } | |
5880 | ||
18004c5d | 5881 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5882 | resiliency_test(); |
5883 | return 0; | |
5884 | } | |
5885 | ||
5886 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5887 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5888 | |
5889 | /* | |
5890 | * The /proc/slabinfo ABI | |
5891 | */ | |
5b365771 | 5892 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5893 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5894 | { |
57ed3eda | 5895 | unsigned long nr_slabs = 0; |
205ab99d CL |
5896 | unsigned long nr_objs = 0; |
5897 | unsigned long nr_free = 0; | |
57ed3eda | 5898 | int node; |
fa45dc25 | 5899 | struct kmem_cache_node *n; |
57ed3eda | 5900 | |
fa45dc25 | 5901 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5902 | nr_slabs += node_nr_slabs(n); |
5903 | nr_objs += node_nr_objs(n); | |
205ab99d | 5904 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5905 | } |
5906 | ||
0d7561c6 GC |
5907 | sinfo->active_objs = nr_objs - nr_free; |
5908 | sinfo->num_objs = nr_objs; | |
5909 | sinfo->active_slabs = nr_slabs; | |
5910 | sinfo->num_slabs = nr_slabs; | |
5911 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5912 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5913 | } |
5914 | ||
0d7561c6 | 5915 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5916 | { |
7b3c3a50 AD |
5917 | } |
5918 | ||
b7454ad3 GC |
5919 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5920 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5921 | { |
b7454ad3 | 5922 | return -EIO; |
7b3c3a50 | 5923 | } |
5b365771 | 5924 | #endif /* CONFIG_SLUB_DEBUG */ |