]> Git Repo - linux.git/blame - mm/slub.c
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 221static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 222static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 223#else
0c710013
CL
224static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
225static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
226 { return 0; }
107dab5c 227static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 228static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
229#endif
230
4fdccdfb 231static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
232{
233#ifdef CONFIG_SLUB_STATS
88da03a6
CL
234 /*
235 * The rmw is racy on a preemptible kernel but this is acceptable, so
236 * avoid this_cpu_add()'s irq-disable overhead.
237 */
238 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
239#endif
240}
241
81819f0f
CL
242/********************************************************************
243 * Core slab cache functions
244 *******************************************************************/
245
2482ddec
KC
246/*
247 * Returns freelist pointer (ptr). With hardening, this is obfuscated
248 * with an XOR of the address where the pointer is held and a per-cache
249 * random number.
250 */
251static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
252 unsigned long ptr_addr)
253{
254#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
255 /*
256 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
257 * Normally, this doesn't cause any issues, as both set_freepointer()
258 * and get_freepointer() are called with a pointer with the same tag.
259 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
260 * example, when __free_slub() iterates over objects in a cache, it
261 * passes untagged pointers to check_object(). check_object() in turns
262 * calls get_freepointer() with an untagged pointer, which causes the
263 * freepointer to be restored incorrectly.
264 */
265 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 266 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
267#else
268 return ptr;
269#endif
270}
271
272/* Returns the freelist pointer recorded at location ptr_addr. */
273static inline void *freelist_dereference(const struct kmem_cache *s,
274 void *ptr_addr)
275{
276 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
277 (unsigned long)ptr_addr);
278}
279
7656c72b
CL
280static inline void *get_freepointer(struct kmem_cache *s, void *object)
281{
2482ddec 282 return freelist_dereference(s, object + s->offset);
7656c72b
CL
283}
284
0ad9500e
ED
285static void prefetch_freepointer(const struct kmem_cache *s, void *object)
286{
0882ff91 287 prefetch(object + s->offset);
0ad9500e
ED
288}
289
1393d9a1
CL
290static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
291{
2482ddec 292 unsigned long freepointer_addr;
1393d9a1
CL
293 void *p;
294
8e57f8ac 295 if (!debug_pagealloc_enabled_static())
922d566c
JK
296 return get_freepointer(s, object);
297
2482ddec 298 freepointer_addr = (unsigned long)object + s->offset;
fe557319 299 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 300 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
301}
302
7656c72b
CL
303static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
304{
2482ddec
KC
305 unsigned long freeptr_addr = (unsigned long)object + s->offset;
306
ce6fa91b
AP
307#ifdef CONFIG_SLAB_FREELIST_HARDENED
308 BUG_ON(object == fp); /* naive detection of double free or corruption */
309#endif
310
2482ddec 311 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
312}
313
314/* Loop over all objects in a slab */
224a88be 315#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
316 for (__p = fixup_red_left(__s, __addr); \
317 __p < (__addr) + (__objects) * (__s)->size; \
318 __p += (__s)->size)
7656c72b 319
9736d2a9 320static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 321{
9736d2a9 322 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
323}
324
19af27af 325static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 326 unsigned int size)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
9736d2a9 329 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
330 };
331
332 return x;
333}
334
19af27af 335static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
19af27af 340static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
48c935ad 350 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
351 bit_spin_lock(PG_locked, &page->flags);
352}
353
354static __always_inline void slab_unlock(struct page *page)
355{
48c935ad 356 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
357 __bit_spin_unlock(PG_locked, &page->flags);
358}
359
1d07171c
CL
360/* Interrupts must be disabled (for the fallback code to work right) */
361static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
362 void *freelist_old, unsigned long counters_old,
363 void *freelist_new, unsigned long counters_new,
364 const char *n)
365{
366 VM_BUG_ON(!irqs_disabled());
2565409f
HC
367#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
368 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 369 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 370 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
371 freelist_old, counters_old,
372 freelist_new, counters_new))
6f6528a1 373 return true;
1d07171c
CL
374 } else
375#endif
376 {
377 slab_lock(page);
d0e0ac97
CG
378 if (page->freelist == freelist_old &&
379 page->counters == counters_old) {
1d07171c 380 page->freelist = freelist_new;
7d27a04b 381 page->counters = counters_new;
1d07171c 382 slab_unlock(page);
6f6528a1 383 return true;
1d07171c
CL
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 392 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
393#endif
394
6f6528a1 395 return false;
1d07171c
CL
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
2565409f
HC
403#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
404 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 405 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 406 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
407 freelist_old, counters_old,
408 freelist_new, counters_new))
6f6528a1 409 return true;
b789ef51
CL
410 } else
411#endif
412 {
1d07171c
CL
413 unsigned long flags;
414
415 local_irq_save(flags);
881db7fb 416 slab_lock(page);
d0e0ac97
CG
417 if (page->freelist == freelist_old &&
418 page->counters == counters_old) {
b789ef51 419 page->freelist = freelist_new;
7d27a04b 420 page->counters = counters_new;
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
6f6528a1 423 return true;
b789ef51 424 }
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
b789ef51
CL
427 }
428
429 cpu_relax();
430 stat(s, CMPXCHG_DOUBLE_FAIL);
431
432#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 433 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
434#endif
435
6f6528a1 436 return false;
b789ef51
CL
437}
438
41ecc55b 439#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
440static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
441static DEFINE_SPINLOCK(object_map_lock);
442
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
90e9f6a6 449static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 450 __acquires(&object_map_lock)
5f80b13a
CL
451{
452 void *p;
453 void *addr = page_address(page);
454
90e9f6a6
YZ
455 VM_BUG_ON(!irqs_disabled());
456
457 spin_lock(&object_map_lock);
458
459 bitmap_zero(object_map, page->objects);
460
5f80b13a 461 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 462 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
463
464 return object_map;
465}
466
81aba9e0 467static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
468{
469 VM_BUG_ON(map != object_map);
90e9f6a6 470 spin_unlock(&object_map_lock);
5f80b13a
CL
471}
472
870b1fbb 473static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
474{
475 if (s->flags & SLAB_RED_ZONE)
476 return s->size - s->red_left_pad;
477
478 return s->size;
479}
480
481static inline void *restore_red_left(struct kmem_cache *s, void *p)
482{
483 if (s->flags & SLAB_RED_ZONE)
484 p -= s->red_left_pad;
485
486 return p;
487}
488
41ecc55b
CL
489/*
490 * Debug settings:
491 */
89d3c87e 492#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 493static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 494#else
d50112ed 495static slab_flags_t slub_debug;
f0630fff 496#endif
41ecc55b 497
e17f1dfb 498static char *slub_debug_string;
fa5ec8a1 499static int disable_higher_order_debug;
41ecc55b 500
a79316c6
AR
501/*
502 * slub is about to manipulate internal object metadata. This memory lies
503 * outside the range of the allocated object, so accessing it would normally
504 * be reported by kasan as a bounds error. metadata_access_enable() is used
505 * to tell kasan that these accesses are OK.
506 */
507static inline void metadata_access_enable(void)
508{
509 kasan_disable_current();
510}
511
512static inline void metadata_access_disable(void)
513{
514 kasan_enable_current();
515}
516
81819f0f
CL
517/*
518 * Object debugging
519 */
d86bd1be
JK
520
521/* Verify that a pointer has an address that is valid within a slab page */
522static inline int check_valid_pointer(struct kmem_cache *s,
523 struct page *page, void *object)
524{
525 void *base;
526
527 if (!object)
528 return 1;
529
530 base = page_address(page);
338cfaad 531 object = kasan_reset_tag(object);
d86bd1be
JK
532 object = restore_red_left(s, object);
533 if (object < base || object >= base + page->objects * s->size ||
534 (object - base) % s->size) {
535 return 0;
536 }
537
538 return 1;
539}
540
aa2efd5e
DT
541static void print_section(char *level, char *text, u8 *addr,
542 unsigned int length)
81819f0f 543{
a79316c6 544 metadata_access_enable();
aa2efd5e 545 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 546 length, 1);
a79316c6 547 metadata_access_disable();
81819f0f
CL
548}
549
cbfc35a4
WL
550/*
551 * See comment in calculate_sizes().
552 */
553static inline bool freeptr_outside_object(struct kmem_cache *s)
554{
555 return s->offset >= s->inuse;
556}
557
558/*
559 * Return offset of the end of info block which is inuse + free pointer if
560 * not overlapping with object.
561 */
562static inline unsigned int get_info_end(struct kmem_cache *s)
563{
564 if (freeptr_outside_object(s))
565 return s->inuse + sizeof(void *);
566 else
567 return s->inuse;
568}
569
81819f0f
CL
570static struct track *get_track(struct kmem_cache *s, void *object,
571 enum track_item alloc)
572{
573 struct track *p;
574
cbfc35a4 575 p = object + get_info_end(s);
81819f0f
CL
576
577 return p + alloc;
578}
579
580static void set_track(struct kmem_cache *s, void *object,
ce71e27c 581 enum track_item alloc, unsigned long addr)
81819f0f 582{
1a00df4a 583 struct track *p = get_track(s, object, alloc);
81819f0f 584
81819f0f 585 if (addr) {
d6543e39 586#ifdef CONFIG_STACKTRACE
79716799 587 unsigned int nr_entries;
d6543e39 588
a79316c6 589 metadata_access_enable();
79716799 590 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 591 metadata_access_disable();
d6543e39 592
79716799
TG
593 if (nr_entries < TRACK_ADDRS_COUNT)
594 p->addrs[nr_entries] = 0;
d6543e39 595#endif
81819f0f
CL
596 p->addr = addr;
597 p->cpu = smp_processor_id();
88e4ccf2 598 p->pid = current->pid;
81819f0f 599 p->when = jiffies;
b8ca7ff7 600 } else {
81819f0f 601 memset(p, 0, sizeof(struct track));
b8ca7ff7 602 }
81819f0f
CL
603}
604
81819f0f
CL
605static void init_tracking(struct kmem_cache *s, void *object)
606{
24922684
CL
607 if (!(s->flags & SLAB_STORE_USER))
608 return;
609
ce71e27c
EGM
610 set_track(s, object, TRACK_FREE, 0UL);
611 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
612}
613
86609d33 614static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
615{
616 if (!t->addr)
617 return;
618
f9f58285 619 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 620 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
621#ifdef CONFIG_STACKTRACE
622 {
623 int i;
624 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
625 if (t->addrs[i])
f9f58285 626 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
627 else
628 break;
629 }
630#endif
24922684
CL
631}
632
e42f174e 633void print_tracking(struct kmem_cache *s, void *object)
24922684 634{
86609d33 635 unsigned long pr_time = jiffies;
24922684
CL
636 if (!(s->flags & SLAB_STORE_USER))
637 return;
638
86609d33
CP
639 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
640 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
641}
642
643static void print_page_info(struct page *page)
644{
f9f58285 645 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 646 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
647
648}
649
650static void slab_bug(struct kmem_cache *s, char *fmt, ...)
651{
ecc42fbe 652 struct va_format vaf;
24922684 653 va_list args;
24922684
CL
654
655 va_start(args, fmt);
ecc42fbe
FF
656 vaf.fmt = fmt;
657 vaf.va = &args;
f9f58285 658 pr_err("=============================================================================\n");
ecc42fbe 659 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 660 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 661
373d4d09 662 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 663 va_end(args);
81819f0f
CL
664}
665
24922684
CL
666static void slab_fix(struct kmem_cache *s, char *fmt, ...)
667{
ecc42fbe 668 struct va_format vaf;
24922684 669 va_list args;
24922684
CL
670
671 va_start(args, fmt);
ecc42fbe
FF
672 vaf.fmt = fmt;
673 vaf.va = &args;
674 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 675 va_end(args);
24922684
CL
676}
677
52f23478
DZ
678static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
679 void *freelist, void *nextfree)
680{
681 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
682 !check_valid_pointer(s, page, nextfree)) {
683 object_err(s, page, freelist, "Freechain corrupt");
684 freelist = NULL;
685 slab_fix(s, "Isolate corrupted freechain");
686 return true;
687 }
688
689 return false;
690}
691
24922684 692static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
693{
694 unsigned int off; /* Offset of last byte */
a973e9dd 695 u8 *addr = page_address(page);
24922684
CL
696
697 print_tracking(s, p);
698
699 print_page_info(page);
700
f9f58285
FF
701 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
702 p, p - addr, get_freepointer(s, p));
24922684 703
d86bd1be 704 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
705 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
706 s->red_left_pad);
d86bd1be 707 else if (p > addr + 16)
aa2efd5e 708 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 709
aa2efd5e 710 print_section(KERN_ERR, "Object ", p,
1b473f29 711 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 712 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 713 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 714 s->inuse - s->object_size);
81819f0f 715
cbfc35a4 716 off = get_info_end(s);
81819f0f 717
24922684 718 if (s->flags & SLAB_STORE_USER)
81819f0f 719 off += 2 * sizeof(struct track);
81819f0f 720
80a9201a
AP
721 off += kasan_metadata_size(s);
722
d86bd1be 723 if (off != size_from_object(s))
81819f0f 724 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
725 print_section(KERN_ERR, "Padding ", p + off,
726 size_from_object(s) - off);
24922684
CL
727
728 dump_stack();
81819f0f
CL
729}
730
75c66def 731void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
732 u8 *object, char *reason)
733{
3dc50637 734 slab_bug(s, "%s", reason);
24922684 735 print_trailer(s, page, object);
81819f0f
CL
736}
737
a38965bf 738static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 739 const char *fmt, ...)
81819f0f
CL
740{
741 va_list args;
742 char buf[100];
743
24922684
CL
744 va_start(args, fmt);
745 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 746 va_end(args);
3dc50637 747 slab_bug(s, "%s", buf);
24922684 748 print_page_info(page);
81819f0f
CL
749 dump_stack();
750}
751
f7cb1933 752static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
753{
754 u8 *p = object;
755
d86bd1be
JK
756 if (s->flags & SLAB_RED_ZONE)
757 memset(p - s->red_left_pad, val, s->red_left_pad);
758
81819f0f 759 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
760 memset(p, POISON_FREE, s->object_size - 1);
761 p[s->object_size - 1] = POISON_END;
81819f0f
CL
762 }
763
764 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 765 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
766}
767
24922684
CL
768static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
769 void *from, void *to)
770{
771 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
772 memset(from, data, to - from);
773}
774
775static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
776 u8 *object, char *what,
06428780 777 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
778{
779 u8 *fault;
780 u8 *end;
e1b70dd1 781 u8 *addr = page_address(page);
24922684 782
a79316c6 783 metadata_access_enable();
79824820 784 fault = memchr_inv(start, value, bytes);
a79316c6 785 metadata_access_disable();
24922684
CL
786 if (!fault)
787 return 1;
788
789 end = start + bytes;
790 while (end > fault && end[-1] == value)
791 end--;
792
793 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
794 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
795 fault, end - 1, fault - addr,
796 fault[0], value);
24922684
CL
797 print_trailer(s, page, object);
798
799 restore_bytes(s, what, value, fault, end);
800 return 0;
81819f0f
CL
801}
802
81819f0f
CL
803/*
804 * Object layout:
805 *
806 * object address
807 * Bytes of the object to be managed.
808 * If the freepointer may overlay the object then the free
cbfc35a4 809 * pointer is at the middle of the object.
672bba3a 810 *
81819f0f
CL
811 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
812 * 0xa5 (POISON_END)
813 *
3b0efdfa 814 * object + s->object_size
81819f0f 815 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 816 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 817 * object_size == inuse.
672bba3a 818 *
81819f0f
CL
819 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
820 * 0xcc (RED_ACTIVE) for objects in use.
821 *
822 * object + s->inuse
672bba3a
CL
823 * Meta data starts here.
824 *
81819f0f
CL
825 * A. Free pointer (if we cannot overwrite object on free)
826 * B. Tracking data for SLAB_STORE_USER
672bba3a 827 * C. Padding to reach required alignment boundary or at mininum
6446faa2 828 * one word if debugging is on to be able to detect writes
672bba3a
CL
829 * before the word boundary.
830 *
831 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
832 *
833 * object + s->size
672bba3a 834 * Nothing is used beyond s->size.
81819f0f 835 *
3b0efdfa 836 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 837 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
838 * may be used with merged slabcaches.
839 */
840
81819f0f
CL
841static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
842{
cbfc35a4 843 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
844
845 if (s->flags & SLAB_STORE_USER)
846 /* We also have user information there */
847 off += 2 * sizeof(struct track);
848
80a9201a
AP
849 off += kasan_metadata_size(s);
850
d86bd1be 851 if (size_from_object(s) == off)
81819f0f
CL
852 return 1;
853
24922684 854 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 855 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
856}
857
39b26464 858/* Check the pad bytes at the end of a slab page */
81819f0f
CL
859static int slab_pad_check(struct kmem_cache *s, struct page *page)
860{
24922684
CL
861 u8 *start;
862 u8 *fault;
863 u8 *end;
5d682681 864 u8 *pad;
24922684
CL
865 int length;
866 int remainder;
81819f0f
CL
867
868 if (!(s->flags & SLAB_POISON))
869 return 1;
870
a973e9dd 871 start = page_address(page);
a50b854e 872 length = page_size(page);
39b26464
CL
873 end = start + length;
874 remainder = length % s->size;
81819f0f
CL
875 if (!remainder)
876 return 1;
877
5d682681 878 pad = end - remainder;
a79316c6 879 metadata_access_enable();
5d682681 880 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 881 metadata_access_disable();
24922684
CL
882 if (!fault)
883 return 1;
884 while (end > fault && end[-1] == POISON_INUSE)
885 end--;
886
e1b70dd1
MC
887 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
888 fault, end - 1, fault - start);
5d682681 889 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 890
5d682681 891 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 892 return 0;
81819f0f
CL
893}
894
895static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 896 void *object, u8 val)
81819f0f
CL
897{
898 u8 *p = object;
3b0efdfa 899 u8 *endobject = object + s->object_size;
81819f0f
CL
900
901 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
902 if (!check_bytes_and_report(s, page, object, "Redzone",
903 object - s->red_left_pad, val, s->red_left_pad))
904 return 0;
905
24922684 906 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 907 endobject, val, s->inuse - s->object_size))
81819f0f 908 return 0;
81819f0f 909 } else {
3b0efdfa 910 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 911 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
912 endobject, POISON_INUSE,
913 s->inuse - s->object_size);
3adbefee 914 }
81819f0f
CL
915 }
916
917 if (s->flags & SLAB_POISON) {
f7cb1933 918 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 919 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 920 POISON_FREE, s->object_size - 1) ||
24922684 921 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 922 p + s->object_size - 1, POISON_END, 1)))
81819f0f 923 return 0;
81819f0f
CL
924 /*
925 * check_pad_bytes cleans up on its own.
926 */
927 check_pad_bytes(s, page, p);
928 }
929
cbfc35a4 930 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
931 /*
932 * Object and freepointer overlap. Cannot check
933 * freepointer while object is allocated.
934 */
935 return 1;
936
937 /* Check free pointer validity */
938 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
939 object_err(s, page, p, "Freepointer corrupt");
940 /*
9f6c708e 941 * No choice but to zap it and thus lose the remainder
81819f0f 942 * of the free objects in this slab. May cause
672bba3a 943 * another error because the object count is now wrong.
81819f0f 944 */
a973e9dd 945 set_freepointer(s, p, NULL);
81819f0f
CL
946 return 0;
947 }
948 return 1;
949}
950
951static int check_slab(struct kmem_cache *s, struct page *page)
952{
39b26464
CL
953 int maxobj;
954
81819f0f
CL
955 VM_BUG_ON(!irqs_disabled());
956
957 if (!PageSlab(page)) {
24922684 958 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
959 return 0;
960 }
39b26464 961
9736d2a9 962 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
963 if (page->objects > maxobj) {
964 slab_err(s, page, "objects %u > max %u",
f6edde9c 965 page->objects, maxobj);
39b26464
CL
966 return 0;
967 }
968 if (page->inuse > page->objects) {
24922684 969 slab_err(s, page, "inuse %u > max %u",
f6edde9c 970 page->inuse, page->objects);
81819f0f
CL
971 return 0;
972 }
973 /* Slab_pad_check fixes things up after itself */
974 slab_pad_check(s, page);
975 return 1;
976}
977
978/*
672bba3a
CL
979 * Determine if a certain object on a page is on the freelist. Must hold the
980 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
981 */
982static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
983{
984 int nr = 0;
881db7fb 985 void *fp;
81819f0f 986 void *object = NULL;
f6edde9c 987 int max_objects;
81819f0f 988
881db7fb 989 fp = page->freelist;
39b26464 990 while (fp && nr <= page->objects) {
81819f0f
CL
991 if (fp == search)
992 return 1;
993 if (!check_valid_pointer(s, page, fp)) {
994 if (object) {
995 object_err(s, page, object,
996 "Freechain corrupt");
a973e9dd 997 set_freepointer(s, object, NULL);
81819f0f 998 } else {
24922684 999 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1000 page->freelist = NULL;
39b26464 1001 page->inuse = page->objects;
24922684 1002 slab_fix(s, "Freelist cleared");
81819f0f
CL
1003 return 0;
1004 }
1005 break;
1006 }
1007 object = fp;
1008 fp = get_freepointer(s, object);
1009 nr++;
1010 }
1011
9736d2a9 1012 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1013 if (max_objects > MAX_OBJS_PER_PAGE)
1014 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1015
1016 if (page->objects != max_objects) {
756a025f
JP
1017 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1018 page->objects, max_objects);
224a88be
CL
1019 page->objects = max_objects;
1020 slab_fix(s, "Number of objects adjusted.");
1021 }
39b26464 1022 if (page->inuse != page->objects - nr) {
756a025f
JP
1023 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1024 page->inuse, page->objects - nr);
39b26464 1025 page->inuse = page->objects - nr;
24922684 1026 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1027 }
1028 return search == NULL;
1029}
1030
0121c619
CL
1031static void trace(struct kmem_cache *s, struct page *page, void *object,
1032 int alloc)
3ec09742
CL
1033{
1034 if (s->flags & SLAB_TRACE) {
f9f58285 1035 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1036 s->name,
1037 alloc ? "alloc" : "free",
1038 object, page->inuse,
1039 page->freelist);
1040
1041 if (!alloc)
aa2efd5e 1042 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1043 s->object_size);
3ec09742
CL
1044
1045 dump_stack();
1046 }
1047}
1048
643b1138 1049/*
672bba3a 1050 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1051 */
5cc6eee8
CL
1052static void add_full(struct kmem_cache *s,
1053 struct kmem_cache_node *n, struct page *page)
643b1138 1054{
5cc6eee8
CL
1055 if (!(s->flags & SLAB_STORE_USER))
1056 return;
1057
255d0884 1058 lockdep_assert_held(&n->list_lock);
916ac052 1059 list_add(&page->slab_list, &n->full);
643b1138
CL
1060}
1061
c65c1877 1062static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1063{
643b1138
CL
1064 if (!(s->flags & SLAB_STORE_USER))
1065 return;
1066
255d0884 1067 lockdep_assert_held(&n->list_lock);
916ac052 1068 list_del(&page->slab_list);
643b1138
CL
1069}
1070
0f389ec6
CL
1071/* Tracking of the number of slabs for debugging purposes */
1072static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1073{
1074 struct kmem_cache_node *n = get_node(s, node);
1075
1076 return atomic_long_read(&n->nr_slabs);
1077}
1078
26c02cf0
AB
1079static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1080{
1081 return atomic_long_read(&n->nr_slabs);
1082}
1083
205ab99d 1084static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1085{
1086 struct kmem_cache_node *n = get_node(s, node);
1087
1088 /*
1089 * May be called early in order to allocate a slab for the
1090 * kmem_cache_node structure. Solve the chicken-egg
1091 * dilemma by deferring the increment of the count during
1092 * bootstrap (see early_kmem_cache_node_alloc).
1093 */
338b2642 1094 if (likely(n)) {
0f389ec6 1095 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1096 atomic_long_add(objects, &n->total_objects);
1097 }
0f389ec6 1098}
205ab99d 1099static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1100{
1101 struct kmem_cache_node *n = get_node(s, node);
1102
1103 atomic_long_dec(&n->nr_slabs);
205ab99d 1104 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1105}
1106
1107/* Object debug checks for alloc/free paths */
3ec09742
CL
1108static void setup_object_debug(struct kmem_cache *s, struct page *page,
1109 void *object)
1110{
8fc8d666 1111 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1112 return;
1113
f7cb1933 1114 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1115 init_tracking(s, object);
1116}
1117
a50b854e
MWO
1118static
1119void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1120{
8fc8d666 1121 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1122 return;
1123
1124 metadata_access_enable();
a50b854e 1125 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1126 metadata_access_disable();
1127}
1128
becfda68 1129static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1130 struct page *page, void *object)
81819f0f
CL
1131{
1132 if (!check_slab(s, page))
becfda68 1133 return 0;
81819f0f 1134
81819f0f
CL
1135 if (!check_valid_pointer(s, page, object)) {
1136 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1137 return 0;
81819f0f
CL
1138 }
1139
f7cb1933 1140 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1141 return 0;
1142
1143 return 1;
1144}
1145
1146static noinline int alloc_debug_processing(struct kmem_cache *s,
1147 struct page *page,
1148 void *object, unsigned long addr)
1149{
1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1151 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1152 goto bad;
1153 }
81819f0f 1154
3ec09742
CL
1155 /* Success perform special debug activities for allocs */
1156 if (s->flags & SLAB_STORE_USER)
1157 set_track(s, object, TRACK_ALLOC, addr);
1158 trace(s, page, object, 1);
f7cb1933 1159 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1160 return 1;
3ec09742 1161
81819f0f
CL
1162bad:
1163 if (PageSlab(page)) {
1164 /*
1165 * If this is a slab page then lets do the best we can
1166 * to avoid issues in the future. Marking all objects
672bba3a 1167 * as used avoids touching the remaining objects.
81819f0f 1168 */
24922684 1169 slab_fix(s, "Marking all objects used");
39b26464 1170 page->inuse = page->objects;
a973e9dd 1171 page->freelist = NULL;
81819f0f
CL
1172 }
1173 return 0;
1174}
1175
becfda68
LA
1176static inline int free_consistency_checks(struct kmem_cache *s,
1177 struct page *page, void *object, unsigned long addr)
81819f0f 1178{
81819f0f 1179 if (!check_valid_pointer(s, page, object)) {
70d71228 1180 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1181 return 0;
81819f0f
CL
1182 }
1183
1184 if (on_freelist(s, page, object)) {
24922684 1185 object_err(s, page, object, "Object already free");
becfda68 1186 return 0;
81819f0f
CL
1187 }
1188
f7cb1933 1189 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1190 return 0;
81819f0f 1191
1b4f59e3 1192 if (unlikely(s != page->slab_cache)) {
3adbefee 1193 if (!PageSlab(page)) {
756a025f
JP
1194 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1195 object);
1b4f59e3 1196 } else if (!page->slab_cache) {
f9f58285
FF
1197 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1198 object);
70d71228 1199 dump_stack();
06428780 1200 } else
24922684
CL
1201 object_err(s, page, object,
1202 "page slab pointer corrupt.");
becfda68
LA
1203 return 0;
1204 }
1205 return 1;
1206}
1207
1208/* Supports checking bulk free of a constructed freelist */
1209static noinline int free_debug_processing(
1210 struct kmem_cache *s, struct page *page,
1211 void *head, void *tail, int bulk_cnt,
1212 unsigned long addr)
1213{
1214 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1215 void *object = head;
1216 int cnt = 0;
3f649ab7 1217 unsigned long flags;
becfda68
LA
1218 int ret = 0;
1219
1220 spin_lock_irqsave(&n->list_lock, flags);
1221 slab_lock(page);
1222
1223 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1224 if (!check_slab(s, page))
1225 goto out;
1226 }
1227
1228next_object:
1229 cnt++;
1230
1231 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1232 if (!free_consistency_checks(s, page, object, addr))
1233 goto out;
81819f0f 1234 }
3ec09742 1235
3ec09742
CL
1236 if (s->flags & SLAB_STORE_USER)
1237 set_track(s, object, TRACK_FREE, addr);
1238 trace(s, page, object, 0);
81084651 1239 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1240 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1241
1242 /* Reached end of constructed freelist yet? */
1243 if (object != tail) {
1244 object = get_freepointer(s, object);
1245 goto next_object;
1246 }
804aa132
LA
1247 ret = 1;
1248
5c2e4bbb 1249out:
81084651
JDB
1250 if (cnt != bulk_cnt)
1251 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1252 bulk_cnt, cnt);
1253
881db7fb 1254 slab_unlock(page);
282acb43 1255 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1256 if (!ret)
1257 slab_fix(s, "Object at 0x%p not freed", object);
1258 return ret;
81819f0f
CL
1259}
1260
e17f1dfb
VB
1261/*
1262 * Parse a block of slub_debug options. Blocks are delimited by ';'
1263 *
1264 * @str: start of block
1265 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1266 * @slabs: return start of list of slabs, or NULL when there's no list
1267 * @init: assume this is initial parsing and not per-kmem-create parsing
1268 *
1269 * returns the start of next block if there's any, or NULL
1270 */
1271static char *
1272parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1273{
e17f1dfb 1274 bool higher_order_disable = false;
f0630fff 1275
e17f1dfb
VB
1276 /* Skip any completely empty blocks */
1277 while (*str && *str == ';')
1278 str++;
1279
1280 if (*str == ',') {
f0630fff
CL
1281 /*
1282 * No options but restriction on slabs. This means full
1283 * debugging for slabs matching a pattern.
1284 */
e17f1dfb 1285 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1286 goto check_slabs;
e17f1dfb
VB
1287 }
1288 *flags = 0;
f0630fff 1289
e17f1dfb
VB
1290 /* Determine which debug features should be switched on */
1291 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1292 switch (tolower(*str)) {
e17f1dfb
VB
1293 case '-':
1294 *flags = 0;
1295 break;
f0630fff 1296 case 'f':
e17f1dfb 1297 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1298 break;
1299 case 'z':
e17f1dfb 1300 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1301 break;
1302 case 'p':
e17f1dfb 1303 *flags |= SLAB_POISON;
f0630fff
CL
1304 break;
1305 case 'u':
e17f1dfb 1306 *flags |= SLAB_STORE_USER;
f0630fff
CL
1307 break;
1308 case 't':
e17f1dfb 1309 *flags |= SLAB_TRACE;
f0630fff 1310 break;
4c13dd3b 1311 case 'a':
e17f1dfb 1312 *flags |= SLAB_FAILSLAB;
4c13dd3b 1313 break;
08303a73
CA
1314 case 'o':
1315 /*
1316 * Avoid enabling debugging on caches if its minimum
1317 * order would increase as a result.
1318 */
e17f1dfb 1319 higher_order_disable = true;
08303a73 1320 break;
f0630fff 1321 default:
e17f1dfb
VB
1322 if (init)
1323 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1324 }
41ecc55b 1325 }
f0630fff 1326check_slabs:
41ecc55b 1327 if (*str == ',')
e17f1dfb
VB
1328 *slabs = ++str;
1329 else
1330 *slabs = NULL;
1331
1332 /* Skip over the slab list */
1333 while (*str && *str != ';')
1334 str++;
1335
1336 /* Skip any completely empty blocks */
1337 while (*str && *str == ';')
1338 str++;
1339
1340 if (init && higher_order_disable)
1341 disable_higher_order_debug = 1;
1342
1343 if (*str)
1344 return str;
1345 else
1346 return NULL;
1347}
1348
1349static int __init setup_slub_debug(char *str)
1350{
1351 slab_flags_t flags;
1352 char *saved_str;
1353 char *slab_list;
1354 bool global_slub_debug_changed = false;
1355 bool slab_list_specified = false;
1356
1357 slub_debug = DEBUG_DEFAULT_FLAGS;
1358 if (*str++ != '=' || !*str)
1359 /*
1360 * No options specified. Switch on full debugging.
1361 */
1362 goto out;
1363
1364 saved_str = str;
1365 while (str) {
1366 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1367
1368 if (!slab_list) {
1369 slub_debug = flags;
1370 global_slub_debug_changed = true;
1371 } else {
1372 slab_list_specified = true;
1373 }
1374 }
1375
1376 /*
1377 * For backwards compatibility, a single list of flags with list of
1378 * slabs means debugging is only enabled for those slabs, so the global
1379 * slub_debug should be 0. We can extended that to multiple lists as
1380 * long as there is no option specifying flags without a slab list.
1381 */
1382 if (slab_list_specified) {
1383 if (!global_slub_debug_changed)
1384 slub_debug = 0;
1385 slub_debug_string = saved_str;
1386 }
f0630fff 1387out:
ca0cab65
VB
1388 if (slub_debug != 0 || slub_debug_string)
1389 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1390 if ((static_branch_unlikely(&init_on_alloc) ||
1391 static_branch_unlikely(&init_on_free)) &&
1392 (slub_debug & SLAB_POISON))
1393 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1394 return 1;
1395}
1396
1397__setup("slub_debug", setup_slub_debug);
1398
c5fd3ca0
AT
1399/*
1400 * kmem_cache_flags - apply debugging options to the cache
1401 * @object_size: the size of an object without meta data
1402 * @flags: flags to set
1403 * @name: name of the cache
1404 * @ctor: constructor function
1405 *
1406 * Debug option(s) are applied to @flags. In addition to the debug
1407 * option(s), if a slab name (or multiple) is specified i.e.
1408 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1409 * then only the select slabs will receive the debug option(s).
1410 */
0293d1fd 1411slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1412 slab_flags_t flags, const char *name,
51cc5068 1413 void (*ctor)(void *))
41ecc55b 1414{
c5fd3ca0
AT
1415 char *iter;
1416 size_t len;
e17f1dfb
VB
1417 char *next_block;
1418 slab_flags_t block_flags;
c5fd3ca0
AT
1419
1420 /* If slub_debug = 0, it folds into the if conditional. */
e17f1dfb 1421 if (!slub_debug_string)
c5fd3ca0
AT
1422 return flags | slub_debug;
1423
1424 len = strlen(name);
e17f1dfb
VB
1425 next_block = slub_debug_string;
1426 /* Go through all blocks of debug options, see if any matches our slab's name */
1427 while (next_block) {
1428 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1429 if (!iter)
1430 continue;
1431 /* Found a block that has a slab list, search it */
1432 while (*iter) {
1433 char *end, *glob;
1434 size_t cmplen;
1435
1436 end = strchrnul(iter, ',');
1437 if (next_block && next_block < end)
1438 end = next_block - 1;
1439
1440 glob = strnchr(iter, end - iter, '*');
1441 if (glob)
1442 cmplen = glob - iter;
1443 else
1444 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1445
e17f1dfb
VB
1446 if (!strncmp(name, iter, cmplen)) {
1447 flags |= block_flags;
1448 return flags;
1449 }
c5fd3ca0 1450
e17f1dfb
VB
1451 if (!*end || *end == ';')
1452 break;
1453 iter = end + 1;
c5fd3ca0 1454 }
c5fd3ca0 1455 }
ba0268a8 1456
e17f1dfb 1457 return slub_debug;
41ecc55b 1458}
b4a64718 1459#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1460static inline void setup_object_debug(struct kmem_cache *s,
1461 struct page *page, void *object) {}
a50b854e
MWO
1462static inline
1463void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1464
3ec09742 1465static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1466 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1467
282acb43 1468static inline int free_debug_processing(
81084651
JDB
1469 struct kmem_cache *s, struct page *page,
1470 void *head, void *tail, int bulk_cnt,
282acb43 1471 unsigned long addr) { return 0; }
41ecc55b 1472
41ecc55b
CL
1473static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1474 { return 1; }
1475static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1476 void *object, u8 val) { return 1; }
5cc6eee8
CL
1477static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1478 struct page *page) {}
c65c1877
PZ
1479static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1480 struct page *page) {}
0293d1fd 1481slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1482 slab_flags_t flags, const char *name,
51cc5068 1483 void (*ctor)(void *))
ba0268a8
CL
1484{
1485 return flags;
1486}
41ecc55b 1487#define slub_debug 0
0f389ec6 1488
fdaa45e9
IM
1489#define disable_higher_order_debug 0
1490
0f389ec6
CL
1491static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1492 { return 0; }
26c02cf0
AB
1493static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1494 { return 0; }
205ab99d
CL
1495static inline void inc_slabs_node(struct kmem_cache *s, int node,
1496 int objects) {}
1497static inline void dec_slabs_node(struct kmem_cache *s, int node,
1498 int objects) {}
7d550c56 1499
52f23478
DZ
1500static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1501 void *freelist, void *nextfree)
1502{
1503 return false;
1504}
02e72cc6
AR
1505#endif /* CONFIG_SLUB_DEBUG */
1506
1507/*
1508 * Hooks for other subsystems that check memory allocations. In a typical
1509 * production configuration these hooks all should produce no code at all.
1510 */
0116523c 1511static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1512{
53128245 1513 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1514 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1515 kmemleak_alloc(ptr, size, 1, flags);
53128245 1516 return ptr;
d56791b3
RB
1517}
1518
ee3ce779 1519static __always_inline void kfree_hook(void *x)
d56791b3
RB
1520{
1521 kmemleak_free(x);
ee3ce779 1522 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1523}
1524
c3895391 1525static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1526{
1527 kmemleak_free_recursive(x, s->flags);
7d550c56 1528
02e72cc6
AR
1529 /*
1530 * Trouble is that we may no longer disable interrupts in the fast path
1531 * So in order to make the debug calls that expect irqs to be
1532 * disabled we need to disable interrupts temporarily.
1533 */
4675ff05 1534#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1535 {
1536 unsigned long flags;
1537
1538 local_irq_save(flags);
02e72cc6
AR
1539 debug_check_no_locks_freed(x, s->object_size);
1540 local_irq_restore(flags);
1541 }
1542#endif
1543 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1544 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1545
cfbe1636
ME
1546 /* Use KCSAN to help debug racy use-after-free. */
1547 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1548 __kcsan_check_access(x, s->object_size,
1549 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1550
c3895391
AK
1551 /* KASAN might put x into memory quarantine, delaying its reuse */
1552 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1553}
205ab99d 1554
c3895391
AK
1555static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1556 void **head, void **tail)
81084651 1557{
6471384a
AP
1558
1559 void *object;
1560 void *next = *head;
1561 void *old_tail = *tail ? *tail : *head;
1562 int rsize;
1563
aea4df4c
LA
1564 /* Head and tail of the reconstructed freelist */
1565 *head = NULL;
1566 *tail = NULL;
1b7e816f 1567
aea4df4c
LA
1568 do {
1569 object = next;
1570 next = get_freepointer(s, object);
1571
1572 if (slab_want_init_on_free(s)) {
6471384a
AP
1573 /*
1574 * Clear the object and the metadata, but don't touch
1575 * the redzone.
1576 */
1577 memset(object, 0, s->object_size);
1578 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1579 : 0;
1580 memset((char *)object + s->inuse, 0,
1581 s->size - s->inuse - rsize);
81084651 1582
aea4df4c 1583 }
c3895391
AK
1584 /* If object's reuse doesn't have to be delayed */
1585 if (!slab_free_hook(s, object)) {
1586 /* Move object to the new freelist */
1587 set_freepointer(s, object, *head);
1588 *head = object;
1589 if (!*tail)
1590 *tail = object;
1591 }
1592 } while (object != old_tail);
1593
1594 if (*head == *tail)
1595 *tail = NULL;
1596
1597 return *head != NULL;
81084651
JDB
1598}
1599
4d176711 1600static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1601 void *object)
1602{
1603 setup_object_debug(s, page, object);
4d176711 1604 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1605 if (unlikely(s->ctor)) {
1606 kasan_unpoison_object_data(s, object);
1607 s->ctor(object);
1608 kasan_poison_object_data(s, object);
1609 }
4d176711 1610 return object;
588f8ba9
TG
1611}
1612
81819f0f
CL
1613/*
1614 * Slab allocation and freeing
1615 */
5dfb4175
VD
1616static inline struct page *alloc_slab_page(struct kmem_cache *s,
1617 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1618{
5dfb4175 1619 struct page *page;
19af27af 1620 unsigned int order = oo_order(oo);
65c3376a 1621
2154a336 1622 if (node == NUMA_NO_NODE)
5dfb4175 1623 page = alloc_pages(flags, order);
65c3376a 1624 else
96db800f 1625 page = __alloc_pages_node(node, flags, order);
5dfb4175 1626
6cea1d56 1627 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1628 __free_pages(page, order);
1629 page = NULL;
1630 }
5dfb4175
VD
1631
1632 return page;
65c3376a
CL
1633}
1634
210e7a43
TG
1635#ifdef CONFIG_SLAB_FREELIST_RANDOM
1636/* Pre-initialize the random sequence cache */
1637static int init_cache_random_seq(struct kmem_cache *s)
1638{
19af27af 1639 unsigned int count = oo_objects(s->oo);
210e7a43 1640 int err;
210e7a43 1641
a810007a
SR
1642 /* Bailout if already initialised */
1643 if (s->random_seq)
1644 return 0;
1645
210e7a43
TG
1646 err = cache_random_seq_create(s, count, GFP_KERNEL);
1647 if (err) {
1648 pr_err("SLUB: Unable to initialize free list for %s\n",
1649 s->name);
1650 return err;
1651 }
1652
1653 /* Transform to an offset on the set of pages */
1654 if (s->random_seq) {
19af27af
AD
1655 unsigned int i;
1656
210e7a43
TG
1657 for (i = 0; i < count; i++)
1658 s->random_seq[i] *= s->size;
1659 }
1660 return 0;
1661}
1662
1663/* Initialize each random sequence freelist per cache */
1664static void __init init_freelist_randomization(void)
1665{
1666 struct kmem_cache *s;
1667
1668 mutex_lock(&slab_mutex);
1669
1670 list_for_each_entry(s, &slab_caches, list)
1671 init_cache_random_seq(s);
1672
1673 mutex_unlock(&slab_mutex);
1674}
1675
1676/* Get the next entry on the pre-computed freelist randomized */
1677static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1678 unsigned long *pos, void *start,
1679 unsigned long page_limit,
1680 unsigned long freelist_count)
1681{
1682 unsigned int idx;
1683
1684 /*
1685 * If the target page allocation failed, the number of objects on the
1686 * page might be smaller than the usual size defined by the cache.
1687 */
1688 do {
1689 idx = s->random_seq[*pos];
1690 *pos += 1;
1691 if (*pos >= freelist_count)
1692 *pos = 0;
1693 } while (unlikely(idx >= page_limit));
1694
1695 return (char *)start + idx;
1696}
1697
1698/* Shuffle the single linked freelist based on a random pre-computed sequence */
1699static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1700{
1701 void *start;
1702 void *cur;
1703 void *next;
1704 unsigned long idx, pos, page_limit, freelist_count;
1705
1706 if (page->objects < 2 || !s->random_seq)
1707 return false;
1708
1709 freelist_count = oo_objects(s->oo);
1710 pos = get_random_int() % freelist_count;
1711
1712 page_limit = page->objects * s->size;
1713 start = fixup_red_left(s, page_address(page));
1714
1715 /* First entry is used as the base of the freelist */
1716 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1717 freelist_count);
4d176711 1718 cur = setup_object(s, page, cur);
210e7a43
TG
1719 page->freelist = cur;
1720
1721 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1722 next = next_freelist_entry(s, page, &pos, start, page_limit,
1723 freelist_count);
4d176711 1724 next = setup_object(s, page, next);
210e7a43
TG
1725 set_freepointer(s, cur, next);
1726 cur = next;
1727 }
210e7a43
TG
1728 set_freepointer(s, cur, NULL);
1729
1730 return true;
1731}
1732#else
1733static inline int init_cache_random_seq(struct kmem_cache *s)
1734{
1735 return 0;
1736}
1737static inline void init_freelist_randomization(void) { }
1738static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1739{
1740 return false;
1741}
1742#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1743
81819f0f
CL
1744static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1745{
06428780 1746 struct page *page;
834f3d11 1747 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1748 gfp_t alloc_gfp;
4d176711 1749 void *start, *p, *next;
a50b854e 1750 int idx;
210e7a43 1751 bool shuffle;
81819f0f 1752
7e0528da
CL
1753 flags &= gfp_allowed_mask;
1754
d0164adc 1755 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1756 local_irq_enable();
1757
b7a49f0d 1758 flags |= s->allocflags;
e12ba74d 1759
ba52270d
PE
1760 /*
1761 * Let the initial higher-order allocation fail under memory pressure
1762 * so we fall-back to the minimum order allocation.
1763 */
1764 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1765 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1766 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1767
5dfb4175 1768 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1769 if (unlikely(!page)) {
1770 oo = s->min;
80c3a998 1771 alloc_gfp = flags;
65c3376a
CL
1772 /*
1773 * Allocation may have failed due to fragmentation.
1774 * Try a lower order alloc if possible
1775 */
5dfb4175 1776 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1777 if (unlikely(!page))
1778 goto out;
1779 stat(s, ORDER_FALLBACK);
65c3376a 1780 }
5a896d9e 1781
834f3d11 1782 page->objects = oo_objects(oo);
81819f0f 1783
1b4f59e3 1784 page->slab_cache = s;
c03f94cc 1785 __SetPageSlab(page);
2f064f34 1786 if (page_is_pfmemalloc(page))
072bb0aa 1787 SetPageSlabPfmemalloc(page);
81819f0f 1788
a7101224 1789 kasan_poison_slab(page);
81819f0f 1790
a7101224 1791 start = page_address(page);
81819f0f 1792
a50b854e 1793 setup_page_debug(s, page, start);
0316bec2 1794
210e7a43
TG
1795 shuffle = shuffle_freelist(s, page);
1796
1797 if (!shuffle) {
4d176711
AK
1798 start = fixup_red_left(s, start);
1799 start = setup_object(s, page, start);
1800 page->freelist = start;
18e50661
AK
1801 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1802 next = p + s->size;
1803 next = setup_object(s, page, next);
1804 set_freepointer(s, p, next);
1805 p = next;
1806 }
1807 set_freepointer(s, p, NULL);
81819f0f 1808 }
81819f0f 1809
e6e82ea1 1810 page->inuse = page->objects;
8cb0a506 1811 page->frozen = 1;
588f8ba9 1812
81819f0f 1813out:
d0164adc 1814 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1815 local_irq_disable();
1816 if (!page)
1817 return NULL;
1818
588f8ba9
TG
1819 inc_slabs_node(s, page_to_nid(page), page->objects);
1820
81819f0f
CL
1821 return page;
1822}
1823
588f8ba9
TG
1824static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1825{
44405099
LL
1826 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1827 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1828
1829 return allocate_slab(s,
1830 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1831}
1832
81819f0f
CL
1833static void __free_slab(struct kmem_cache *s, struct page *page)
1834{
834f3d11
CL
1835 int order = compound_order(page);
1836 int pages = 1 << order;
81819f0f 1837
8fc8d666 1838 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1839 void *p;
1840
1841 slab_pad_check(s, page);
224a88be
CL
1842 for_each_object(p, s, page_address(page),
1843 page->objects)
f7cb1933 1844 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1845 }
1846
072bb0aa 1847 __ClearPageSlabPfmemalloc(page);
49bd5221 1848 __ClearPageSlab(page);
1f458cbf 1849
d4fc5069 1850 page->mapping = NULL;
1eb5ac64
NP
1851 if (current->reclaim_state)
1852 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1853 uncharge_slab_page(page, order, s);
27ee57c9 1854 __free_pages(page, order);
81819f0f
CL
1855}
1856
1857static void rcu_free_slab(struct rcu_head *h)
1858{
bf68c214 1859 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1860
1b4f59e3 1861 __free_slab(page->slab_cache, page);
81819f0f
CL
1862}
1863
1864static void free_slab(struct kmem_cache *s, struct page *page)
1865{
5f0d5a3a 1866 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1867 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1868 } else
1869 __free_slab(s, page);
1870}
1871
1872static void discard_slab(struct kmem_cache *s, struct page *page)
1873{
205ab99d 1874 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1875 free_slab(s, page);
1876}
1877
1878/*
5cc6eee8 1879 * Management of partially allocated slabs.
81819f0f 1880 */
1e4dd946
SR
1881static inline void
1882__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1883{
e95eed57 1884 n->nr_partial++;
136333d1 1885 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1886 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1887 else
916ac052 1888 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1889}
1890
1e4dd946
SR
1891static inline void add_partial(struct kmem_cache_node *n,
1892 struct page *page, int tail)
62e346a8 1893{
c65c1877 1894 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1895 __add_partial(n, page, tail);
1896}
c65c1877 1897
1e4dd946
SR
1898static inline void remove_partial(struct kmem_cache_node *n,
1899 struct page *page)
1900{
1901 lockdep_assert_held(&n->list_lock);
916ac052 1902 list_del(&page->slab_list);
52b4b950 1903 n->nr_partial--;
1e4dd946
SR
1904}
1905
81819f0f 1906/*
7ced3719
CL
1907 * Remove slab from the partial list, freeze it and
1908 * return the pointer to the freelist.
81819f0f 1909 *
497b66f2 1910 * Returns a list of objects or NULL if it fails.
81819f0f 1911 */
497b66f2 1912static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1913 struct kmem_cache_node *n, struct page *page,
633b0764 1914 int mode, int *objects)
81819f0f 1915{
2cfb7455
CL
1916 void *freelist;
1917 unsigned long counters;
1918 struct page new;
1919
c65c1877
PZ
1920 lockdep_assert_held(&n->list_lock);
1921
2cfb7455
CL
1922 /*
1923 * Zap the freelist and set the frozen bit.
1924 * The old freelist is the list of objects for the
1925 * per cpu allocation list.
1926 */
7ced3719
CL
1927 freelist = page->freelist;
1928 counters = page->counters;
1929 new.counters = counters;
633b0764 1930 *objects = new.objects - new.inuse;
23910c50 1931 if (mode) {
7ced3719 1932 new.inuse = page->objects;
23910c50
PE
1933 new.freelist = NULL;
1934 } else {
1935 new.freelist = freelist;
1936 }
2cfb7455 1937
a0132ac0 1938 VM_BUG_ON(new.frozen);
7ced3719 1939 new.frozen = 1;
2cfb7455 1940
7ced3719 1941 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1942 freelist, counters,
02d7633f 1943 new.freelist, new.counters,
7ced3719 1944 "acquire_slab"))
7ced3719 1945 return NULL;
2cfb7455
CL
1946
1947 remove_partial(n, page);
7ced3719 1948 WARN_ON(!freelist);
49e22585 1949 return freelist;
81819f0f
CL
1950}
1951
633b0764 1952static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1953static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1954
81819f0f 1955/*
672bba3a 1956 * Try to allocate a partial slab from a specific node.
81819f0f 1957 */
8ba00bb6
JK
1958static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1959 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1960{
49e22585
CL
1961 struct page *page, *page2;
1962 void *object = NULL;
e5d9998f 1963 unsigned int available = 0;
633b0764 1964 int objects;
81819f0f
CL
1965
1966 /*
1967 * Racy check. If we mistakenly see no partial slabs then we
1968 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1969 * partial slab and there is none available then get_partials()
1970 * will return NULL.
81819f0f
CL
1971 */
1972 if (!n || !n->nr_partial)
1973 return NULL;
1974
1975 spin_lock(&n->list_lock);
916ac052 1976 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1977 void *t;
49e22585 1978
8ba00bb6
JK
1979 if (!pfmemalloc_match(page, flags))
1980 continue;
1981
633b0764 1982 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1983 if (!t)
1984 break;
1985
633b0764 1986 available += objects;
12d79634 1987 if (!object) {
49e22585 1988 c->page = page;
49e22585 1989 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1990 object = t;
49e22585 1991 } else {
633b0764 1992 put_cpu_partial(s, page, 0);
8028dcea 1993 stat(s, CPU_PARTIAL_NODE);
49e22585 1994 }
345c905d 1995 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1996 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1997 break;
1998
497b66f2 1999 }
81819f0f 2000 spin_unlock(&n->list_lock);
497b66f2 2001 return object;
81819f0f
CL
2002}
2003
2004/*
672bba3a 2005 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2006 */
de3ec035 2007static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2008 struct kmem_cache_cpu *c)
81819f0f
CL
2009{
2010#ifdef CONFIG_NUMA
2011 struct zonelist *zonelist;
dd1a239f 2012 struct zoneref *z;
54a6eb5c 2013 struct zone *zone;
97a225e6 2014 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2015 void *object;
cc9a6c87 2016 unsigned int cpuset_mems_cookie;
81819f0f
CL
2017
2018 /*
672bba3a
CL
2019 * The defrag ratio allows a configuration of the tradeoffs between
2020 * inter node defragmentation and node local allocations. A lower
2021 * defrag_ratio increases the tendency to do local allocations
2022 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2023 *
672bba3a
CL
2024 * If the defrag_ratio is set to 0 then kmalloc() always
2025 * returns node local objects. If the ratio is higher then kmalloc()
2026 * may return off node objects because partial slabs are obtained
2027 * from other nodes and filled up.
81819f0f 2028 *
43efd3ea
LP
2029 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2030 * (which makes defrag_ratio = 1000) then every (well almost)
2031 * allocation will first attempt to defrag slab caches on other nodes.
2032 * This means scanning over all nodes to look for partial slabs which
2033 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2034 * with available objects.
81819f0f 2035 */
9824601e
CL
2036 if (!s->remote_node_defrag_ratio ||
2037 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2038 return NULL;
2039
cc9a6c87 2040 do {
d26914d1 2041 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2042 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2043 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2044 struct kmem_cache_node *n;
2045
2046 n = get_node(s, zone_to_nid(zone));
2047
dee2f8aa 2048 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2049 n->nr_partial > s->min_partial) {
8ba00bb6 2050 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2051 if (object) {
2052 /*
d26914d1
MG
2053 * Don't check read_mems_allowed_retry()
2054 * here - if mems_allowed was updated in
2055 * parallel, that was a harmless race
2056 * between allocation and the cpuset
2057 * update
cc9a6c87 2058 */
cc9a6c87
MG
2059 return object;
2060 }
c0ff7453 2061 }
81819f0f 2062 }
d26914d1 2063 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2064#endif /* CONFIG_NUMA */
81819f0f
CL
2065 return NULL;
2066}
2067
2068/*
2069 * Get a partial page, lock it and return it.
2070 */
497b66f2 2071static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2072 struct kmem_cache_cpu *c)
81819f0f 2073{
497b66f2 2074 void *object;
a561ce00
JK
2075 int searchnode = node;
2076
2077 if (node == NUMA_NO_NODE)
2078 searchnode = numa_mem_id();
81819f0f 2079
8ba00bb6 2080 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2081 if (object || node != NUMA_NO_NODE)
2082 return object;
81819f0f 2083
acd19fd1 2084 return get_any_partial(s, flags, c);
81819f0f
CL
2085}
2086
923717cb 2087#ifdef CONFIG_PREEMPTION
8a5ec0ba 2088/*
0d645ed1 2089 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2090 * during cmpxchg. The transactions start with the cpu number and are then
2091 * incremented by CONFIG_NR_CPUS.
2092 */
2093#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2094#else
2095/*
2096 * No preemption supported therefore also no need to check for
2097 * different cpus.
2098 */
2099#define TID_STEP 1
2100#endif
2101
2102static inline unsigned long next_tid(unsigned long tid)
2103{
2104 return tid + TID_STEP;
2105}
2106
9d5f0be0 2107#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2108static inline unsigned int tid_to_cpu(unsigned long tid)
2109{
2110 return tid % TID_STEP;
2111}
2112
2113static inline unsigned long tid_to_event(unsigned long tid)
2114{
2115 return tid / TID_STEP;
2116}
9d5f0be0 2117#endif
8a5ec0ba
CL
2118
2119static inline unsigned int init_tid(int cpu)
2120{
2121 return cpu;
2122}
2123
2124static inline void note_cmpxchg_failure(const char *n,
2125 const struct kmem_cache *s, unsigned long tid)
2126{
2127#ifdef SLUB_DEBUG_CMPXCHG
2128 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2129
f9f58285 2130 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2131
923717cb 2132#ifdef CONFIG_PREEMPTION
8a5ec0ba 2133 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2134 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2135 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2136 else
2137#endif
2138 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2139 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2140 tid_to_event(tid), tid_to_event(actual_tid));
2141 else
f9f58285 2142 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2143 actual_tid, tid, next_tid(tid));
2144#endif
4fdccdfb 2145 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2146}
2147
788e1aad 2148static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2149{
8a5ec0ba
CL
2150 int cpu;
2151
2152 for_each_possible_cpu(cpu)
2153 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2154}
2cfb7455 2155
81819f0f
CL
2156/*
2157 * Remove the cpu slab
2158 */
d0e0ac97 2159static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2160 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2161{
2cfb7455 2162 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2163 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2164 int lock = 0;
2165 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2166 void *nextfree;
136333d1 2167 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2168 struct page new;
2169 struct page old;
2170
2171 if (page->freelist) {
84e554e6 2172 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2173 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2174 }
2175
894b8788 2176 /*
2cfb7455
CL
2177 * Stage one: Free all available per cpu objects back
2178 * to the page freelist while it is still frozen. Leave the
2179 * last one.
2180 *
2181 * There is no need to take the list->lock because the page
2182 * is still frozen.
2183 */
2184 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2185 void *prior;
2186 unsigned long counters;
2187
52f23478
DZ
2188 /*
2189 * If 'nextfree' is invalid, it is possible that the object at
2190 * 'freelist' is already corrupted. So isolate all objects
2191 * starting at 'freelist'.
2192 */
2193 if (freelist_corrupted(s, page, freelist, nextfree))
2194 break;
2195
2cfb7455
CL
2196 do {
2197 prior = page->freelist;
2198 counters = page->counters;
2199 set_freepointer(s, freelist, prior);
2200 new.counters = counters;
2201 new.inuse--;
a0132ac0 2202 VM_BUG_ON(!new.frozen);
2cfb7455 2203
1d07171c 2204 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2205 prior, counters,
2206 freelist, new.counters,
2207 "drain percpu freelist"));
2208
2209 freelist = nextfree;
2210 }
2211
894b8788 2212 /*
2cfb7455
CL
2213 * Stage two: Ensure that the page is unfrozen while the
2214 * list presence reflects the actual number of objects
2215 * during unfreeze.
2216 *
2217 * We setup the list membership and then perform a cmpxchg
2218 * with the count. If there is a mismatch then the page
2219 * is not unfrozen but the page is on the wrong list.
2220 *
2221 * Then we restart the process which may have to remove
2222 * the page from the list that we just put it on again
2223 * because the number of objects in the slab may have
2224 * changed.
894b8788 2225 */
2cfb7455 2226redo:
894b8788 2227
2cfb7455
CL
2228 old.freelist = page->freelist;
2229 old.counters = page->counters;
a0132ac0 2230 VM_BUG_ON(!old.frozen);
7c2e132c 2231
2cfb7455
CL
2232 /* Determine target state of the slab */
2233 new.counters = old.counters;
2234 if (freelist) {
2235 new.inuse--;
2236 set_freepointer(s, freelist, old.freelist);
2237 new.freelist = freelist;
2238 } else
2239 new.freelist = old.freelist;
2240
2241 new.frozen = 0;
2242
8a5b20ae 2243 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2244 m = M_FREE;
2245 else if (new.freelist) {
2246 m = M_PARTIAL;
2247 if (!lock) {
2248 lock = 1;
2249 /*
8bb4e7a2 2250 * Taking the spinlock removes the possibility
2cfb7455
CL
2251 * that acquire_slab() will see a slab page that
2252 * is frozen
2253 */
2254 spin_lock(&n->list_lock);
2255 }
2256 } else {
2257 m = M_FULL;
2258 if (kmem_cache_debug(s) && !lock) {
2259 lock = 1;
2260 /*
2261 * This also ensures that the scanning of full
2262 * slabs from diagnostic functions will not see
2263 * any frozen slabs.
2264 */
2265 spin_lock(&n->list_lock);
2266 }
2267 }
2268
2269 if (l != m) {
2cfb7455 2270 if (l == M_PARTIAL)
2cfb7455 2271 remove_partial(n, page);
2cfb7455 2272 else if (l == M_FULL)
c65c1877 2273 remove_full(s, n, page);
2cfb7455 2274
88349a28 2275 if (m == M_PARTIAL)
2cfb7455 2276 add_partial(n, page, tail);
88349a28 2277 else if (m == M_FULL)
2cfb7455 2278 add_full(s, n, page);
2cfb7455
CL
2279 }
2280
2281 l = m;
1d07171c 2282 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2283 old.freelist, old.counters,
2284 new.freelist, new.counters,
2285 "unfreezing slab"))
2286 goto redo;
2287
2cfb7455
CL
2288 if (lock)
2289 spin_unlock(&n->list_lock);
2290
88349a28
WY
2291 if (m == M_PARTIAL)
2292 stat(s, tail);
2293 else if (m == M_FULL)
2294 stat(s, DEACTIVATE_FULL);
2295 else if (m == M_FREE) {
2cfb7455
CL
2296 stat(s, DEACTIVATE_EMPTY);
2297 discard_slab(s, page);
2298 stat(s, FREE_SLAB);
894b8788 2299 }
d4ff6d35
WY
2300
2301 c->page = NULL;
2302 c->freelist = NULL;
81819f0f
CL
2303}
2304
d24ac77f
JK
2305/*
2306 * Unfreeze all the cpu partial slabs.
2307 *
59a09917
CL
2308 * This function must be called with interrupts disabled
2309 * for the cpu using c (or some other guarantee must be there
2310 * to guarantee no concurrent accesses).
d24ac77f 2311 */
59a09917
CL
2312static void unfreeze_partials(struct kmem_cache *s,
2313 struct kmem_cache_cpu *c)
49e22585 2314{
345c905d 2315#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2316 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2317 struct page *page, *discard_page = NULL;
49e22585 2318
4c7ba22e 2319 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2320 struct page new;
2321 struct page old;
2322
4c7ba22e 2323 slub_set_percpu_partial(c, page);
43d77867
JK
2324
2325 n2 = get_node(s, page_to_nid(page));
2326 if (n != n2) {
2327 if (n)
2328 spin_unlock(&n->list_lock);
2329
2330 n = n2;
2331 spin_lock(&n->list_lock);
2332 }
49e22585
CL
2333
2334 do {
2335
2336 old.freelist = page->freelist;
2337 old.counters = page->counters;
a0132ac0 2338 VM_BUG_ON(!old.frozen);
49e22585
CL
2339
2340 new.counters = old.counters;
2341 new.freelist = old.freelist;
2342
2343 new.frozen = 0;
2344
d24ac77f 2345 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2346 old.freelist, old.counters,
2347 new.freelist, new.counters,
2348 "unfreezing slab"));
2349
8a5b20ae 2350 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2351 page->next = discard_page;
2352 discard_page = page;
43d77867
JK
2353 } else {
2354 add_partial(n, page, DEACTIVATE_TO_TAIL);
2355 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2356 }
2357 }
2358
2359 if (n)
2360 spin_unlock(&n->list_lock);
9ada1934
SL
2361
2362 while (discard_page) {
2363 page = discard_page;
2364 discard_page = discard_page->next;
2365
2366 stat(s, DEACTIVATE_EMPTY);
2367 discard_slab(s, page);
2368 stat(s, FREE_SLAB);
2369 }
6dfd1b65 2370#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2371}
2372
2373/*
9234bae9
WY
2374 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2375 * partial page slot if available.
49e22585
CL
2376 *
2377 * If we did not find a slot then simply move all the partials to the
2378 * per node partial list.
2379 */
633b0764 2380static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2381{
345c905d 2382#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2383 struct page *oldpage;
2384 int pages;
2385 int pobjects;
2386
d6e0b7fa 2387 preempt_disable();
49e22585
CL
2388 do {
2389 pages = 0;
2390 pobjects = 0;
2391 oldpage = this_cpu_read(s->cpu_slab->partial);
2392
2393 if (oldpage) {
2394 pobjects = oldpage->pobjects;
2395 pages = oldpage->pages;
bbd4e305 2396 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2397 unsigned long flags;
2398 /*
2399 * partial array is full. Move the existing
2400 * set to the per node partial list.
2401 */
2402 local_irq_save(flags);
59a09917 2403 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2404 local_irq_restore(flags);
e24fc410 2405 oldpage = NULL;
49e22585
CL
2406 pobjects = 0;
2407 pages = 0;
8028dcea 2408 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2409 }
2410 }
2411
2412 pages++;
2413 pobjects += page->objects - page->inuse;
2414
2415 page->pages = pages;
2416 page->pobjects = pobjects;
2417 page->next = oldpage;
2418
d0e0ac97
CG
2419 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2420 != oldpage);
bbd4e305 2421 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2422 unsigned long flags;
2423
2424 local_irq_save(flags);
2425 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2426 local_irq_restore(flags);
2427 }
2428 preempt_enable();
6dfd1b65 2429#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2430}
2431
dfb4f096 2432static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2433{
84e554e6 2434 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2435 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2436
2437 c->tid = next_tid(c->tid);
81819f0f
CL
2438}
2439
2440/*
2441 * Flush cpu slab.
6446faa2 2442 *
81819f0f
CL
2443 * Called from IPI handler with interrupts disabled.
2444 */
0c710013 2445static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2446{
9dfc6e68 2447 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2448
1265ef2d
WY
2449 if (c->page)
2450 flush_slab(s, c);
49e22585 2451
1265ef2d 2452 unfreeze_partials(s, c);
81819f0f
CL
2453}
2454
2455static void flush_cpu_slab(void *d)
2456{
2457 struct kmem_cache *s = d;
81819f0f 2458
dfb4f096 2459 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2460}
2461
a8364d55
GBY
2462static bool has_cpu_slab(int cpu, void *info)
2463{
2464 struct kmem_cache *s = info;
2465 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2466
a93cf07b 2467 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2468}
2469
81819f0f
CL
2470static void flush_all(struct kmem_cache *s)
2471{
cb923159 2472 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2473}
2474
a96a87bf
SAS
2475/*
2476 * Use the cpu notifier to insure that the cpu slabs are flushed when
2477 * necessary.
2478 */
2479static int slub_cpu_dead(unsigned int cpu)
2480{
2481 struct kmem_cache *s;
2482 unsigned long flags;
2483
2484 mutex_lock(&slab_mutex);
2485 list_for_each_entry(s, &slab_caches, list) {
2486 local_irq_save(flags);
2487 __flush_cpu_slab(s, cpu);
2488 local_irq_restore(flags);
2489 }
2490 mutex_unlock(&slab_mutex);
2491 return 0;
2492}
2493
dfb4f096
CL
2494/*
2495 * Check if the objects in a per cpu structure fit numa
2496 * locality expectations.
2497 */
57d437d2 2498static inline int node_match(struct page *page, int node)
dfb4f096
CL
2499{
2500#ifdef CONFIG_NUMA
6159d0f5 2501 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2502 return 0;
2503#endif
2504 return 1;
2505}
2506
9a02d699 2507#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2508static int count_free(struct page *page)
2509{
2510 return page->objects - page->inuse;
2511}
2512
9a02d699
DR
2513static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2514{
2515 return atomic_long_read(&n->total_objects);
2516}
2517#endif /* CONFIG_SLUB_DEBUG */
2518
2519#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2520static unsigned long count_partial(struct kmem_cache_node *n,
2521 int (*get_count)(struct page *))
2522{
2523 unsigned long flags;
2524 unsigned long x = 0;
2525 struct page *page;
2526
2527 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2528 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2529 x += get_count(page);
2530 spin_unlock_irqrestore(&n->list_lock, flags);
2531 return x;
2532}
9a02d699 2533#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2534
781b2ba6
PE
2535static noinline void
2536slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2537{
9a02d699
DR
2538#ifdef CONFIG_SLUB_DEBUG
2539 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2540 DEFAULT_RATELIMIT_BURST);
781b2ba6 2541 int node;
fa45dc25 2542 struct kmem_cache_node *n;
781b2ba6 2543
9a02d699
DR
2544 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2545 return;
2546
5b3810e5
VB
2547 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2548 nid, gfpflags, &gfpflags);
19af27af 2549 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2550 s->name, s->object_size, s->size, oo_order(s->oo),
2551 oo_order(s->min));
781b2ba6 2552
3b0efdfa 2553 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2554 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2555 s->name);
fa5ec8a1 2556
fa45dc25 2557 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2558 unsigned long nr_slabs;
2559 unsigned long nr_objs;
2560 unsigned long nr_free;
2561
26c02cf0
AB
2562 nr_free = count_partial(n, count_free);
2563 nr_slabs = node_nr_slabs(n);
2564 nr_objs = node_nr_objs(n);
781b2ba6 2565
f9f58285 2566 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2567 node, nr_slabs, nr_objs, nr_free);
2568 }
9a02d699 2569#endif
781b2ba6
PE
2570}
2571
497b66f2
CL
2572static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2573 int node, struct kmem_cache_cpu **pc)
2574{
6faa6833 2575 void *freelist;
188fd063
CL
2576 struct kmem_cache_cpu *c = *pc;
2577 struct page *page;
497b66f2 2578
128227e7
MW
2579 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2580
188fd063 2581 freelist = get_partial(s, flags, node, c);
497b66f2 2582
188fd063
CL
2583 if (freelist)
2584 return freelist;
2585
2586 page = new_slab(s, flags, node);
497b66f2 2587 if (page) {
7c8e0181 2588 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2589 if (c->page)
2590 flush_slab(s, c);
2591
2592 /*
2593 * No other reference to the page yet so we can
2594 * muck around with it freely without cmpxchg
2595 */
6faa6833 2596 freelist = page->freelist;
497b66f2
CL
2597 page->freelist = NULL;
2598
2599 stat(s, ALLOC_SLAB);
497b66f2
CL
2600 c->page = page;
2601 *pc = c;
edde82b6 2602 }
497b66f2 2603
6faa6833 2604 return freelist;
497b66f2
CL
2605}
2606
072bb0aa
MG
2607static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2608{
2609 if (unlikely(PageSlabPfmemalloc(page)))
2610 return gfp_pfmemalloc_allowed(gfpflags);
2611
2612 return true;
2613}
2614
213eeb9f 2615/*
d0e0ac97
CG
2616 * Check the page->freelist of a page and either transfer the freelist to the
2617 * per cpu freelist or deactivate the page.
213eeb9f
CL
2618 *
2619 * The page is still frozen if the return value is not NULL.
2620 *
2621 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2622 *
2623 * This function must be called with interrupt disabled.
213eeb9f
CL
2624 */
2625static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2626{
2627 struct page new;
2628 unsigned long counters;
2629 void *freelist;
2630
2631 do {
2632 freelist = page->freelist;
2633 counters = page->counters;
6faa6833 2634
213eeb9f 2635 new.counters = counters;
a0132ac0 2636 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2637
2638 new.inuse = page->objects;
2639 new.frozen = freelist != NULL;
2640
d24ac77f 2641 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2642 freelist, counters,
2643 NULL, new.counters,
2644 "get_freelist"));
2645
2646 return freelist;
2647}
2648
81819f0f 2649/*
894b8788
CL
2650 * Slow path. The lockless freelist is empty or we need to perform
2651 * debugging duties.
2652 *
894b8788
CL
2653 * Processing is still very fast if new objects have been freed to the
2654 * regular freelist. In that case we simply take over the regular freelist
2655 * as the lockless freelist and zap the regular freelist.
81819f0f 2656 *
894b8788
CL
2657 * If that is not working then we fall back to the partial lists. We take the
2658 * first element of the freelist as the object to allocate now and move the
2659 * rest of the freelist to the lockless freelist.
81819f0f 2660 *
894b8788 2661 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2662 * we need to allocate a new slab. This is the slowest path since it involves
2663 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2664 *
2665 * Version of __slab_alloc to use when we know that interrupts are
2666 * already disabled (which is the case for bulk allocation).
81819f0f 2667 */
a380a3c7 2668static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2669 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2670{
6faa6833 2671 void *freelist;
f6e7def7 2672 struct page *page;
81819f0f 2673
f6e7def7 2674 page = c->page;
0715e6c5
VB
2675 if (!page) {
2676 /*
2677 * if the node is not online or has no normal memory, just
2678 * ignore the node constraint
2679 */
2680 if (unlikely(node != NUMA_NO_NODE &&
2681 !node_state(node, N_NORMAL_MEMORY)))
2682 node = NUMA_NO_NODE;
81819f0f 2683 goto new_slab;
0715e6c5 2684 }
49e22585 2685redo:
6faa6833 2686
57d437d2 2687 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2688 /*
2689 * same as above but node_match() being false already
2690 * implies node != NUMA_NO_NODE
2691 */
2692 if (!node_state(node, N_NORMAL_MEMORY)) {
2693 node = NUMA_NO_NODE;
2694 goto redo;
2695 } else {
a561ce00 2696 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2697 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2698 goto new_slab;
2699 }
fc59c053 2700 }
6446faa2 2701
072bb0aa
MG
2702 /*
2703 * By rights, we should be searching for a slab page that was
2704 * PFMEMALLOC but right now, we are losing the pfmemalloc
2705 * information when the page leaves the per-cpu allocator
2706 */
2707 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2708 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2709 goto new_slab;
2710 }
2711
73736e03 2712 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2713 freelist = c->freelist;
2714 if (freelist)
73736e03 2715 goto load_freelist;
03e404af 2716
f6e7def7 2717 freelist = get_freelist(s, page);
6446faa2 2718
6faa6833 2719 if (!freelist) {
03e404af
CL
2720 c->page = NULL;
2721 stat(s, DEACTIVATE_BYPASS);
fc59c053 2722 goto new_slab;
03e404af 2723 }
6446faa2 2724
84e554e6 2725 stat(s, ALLOC_REFILL);
6446faa2 2726
894b8788 2727load_freelist:
507effea
CL
2728 /*
2729 * freelist is pointing to the list of objects to be used.
2730 * page is pointing to the page from which the objects are obtained.
2731 * That page must be frozen for per cpu allocations to work.
2732 */
a0132ac0 2733 VM_BUG_ON(!c->page->frozen);
6faa6833 2734 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2735 c->tid = next_tid(c->tid);
6faa6833 2736 return freelist;
81819f0f 2737
81819f0f 2738new_slab:
2cfb7455 2739
a93cf07b
WY
2740 if (slub_percpu_partial(c)) {
2741 page = c->page = slub_percpu_partial(c);
2742 slub_set_percpu_partial(c, page);
49e22585 2743 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2744 goto redo;
81819f0f
CL
2745 }
2746
188fd063 2747 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2748
f4697436 2749 if (unlikely(!freelist)) {
9a02d699 2750 slab_out_of_memory(s, gfpflags, node);
f4697436 2751 return NULL;
81819f0f 2752 }
2cfb7455 2753
f6e7def7 2754 page = c->page;
5091b74a 2755 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2756 goto load_freelist;
2cfb7455 2757
497b66f2 2758 /* Only entered in the debug case */
d0e0ac97
CG
2759 if (kmem_cache_debug(s) &&
2760 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2761 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2762
d4ff6d35 2763 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2764 return freelist;
894b8788
CL
2765}
2766
a380a3c7
CL
2767/*
2768 * Another one that disabled interrupt and compensates for possible
2769 * cpu changes by refetching the per cpu area pointer.
2770 */
2771static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2772 unsigned long addr, struct kmem_cache_cpu *c)
2773{
2774 void *p;
2775 unsigned long flags;
2776
2777 local_irq_save(flags);
923717cb 2778#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2779 /*
2780 * We may have been preempted and rescheduled on a different
2781 * cpu before disabling interrupts. Need to reload cpu area
2782 * pointer.
2783 */
2784 c = this_cpu_ptr(s->cpu_slab);
2785#endif
2786
2787 p = ___slab_alloc(s, gfpflags, node, addr, c);
2788 local_irq_restore(flags);
2789 return p;
2790}
2791
0f181f9f
AP
2792/*
2793 * If the object has been wiped upon free, make sure it's fully initialized by
2794 * zeroing out freelist pointer.
2795 */
2796static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2797 void *obj)
2798{
2799 if (unlikely(slab_want_init_on_free(s)) && obj)
2800 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2801}
2802
894b8788
CL
2803/*
2804 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2805 * have the fastpath folded into their functions. So no function call
2806 * overhead for requests that can be satisfied on the fastpath.
2807 *
2808 * The fastpath works by first checking if the lockless freelist can be used.
2809 * If not then __slab_alloc is called for slow processing.
2810 *
2811 * Otherwise we can simply pick the next object from the lockless free list.
2812 */
2b847c3c 2813static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2814 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2815{
03ec0ed5 2816 void *object;
dfb4f096 2817 struct kmem_cache_cpu *c;
57d437d2 2818 struct page *page;
8a5ec0ba 2819 unsigned long tid;
964d4bd3 2820 struct obj_cgroup *objcg = NULL;
1f84260c 2821
964d4bd3 2822 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2823 if (!s)
773ff60e 2824 return NULL;
8a5ec0ba 2825redo:
8a5ec0ba
CL
2826 /*
2827 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2828 * enabled. We may switch back and forth between cpus while
2829 * reading from one cpu area. That does not matter as long
2830 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2831 *
9aabf810 2832 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2833 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2834 * to check if it is matched or not.
8a5ec0ba 2835 */
9aabf810
JK
2836 do {
2837 tid = this_cpu_read(s->cpu_slab->tid);
2838 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2839 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2840 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2841
2842 /*
2843 * Irqless object alloc/free algorithm used here depends on sequence
2844 * of fetching cpu_slab's data. tid should be fetched before anything
2845 * on c to guarantee that object and page associated with previous tid
2846 * won't be used with current tid. If we fetch tid first, object and
2847 * page could be one associated with next tid and our alloc/free
2848 * request will be failed. In this case, we will retry. So, no problem.
2849 */
2850 barrier();
8a5ec0ba 2851
8a5ec0ba
CL
2852 /*
2853 * The transaction ids are globally unique per cpu and per operation on
2854 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2855 * occurs on the right processor and that there was no operation on the
2856 * linked list in between.
2857 */
8a5ec0ba 2858
9dfc6e68 2859 object = c->freelist;
57d437d2 2860 page = c->page;
8eae1492 2861 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2862 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2863 stat(s, ALLOC_SLOWPATH);
2864 } else {
0ad9500e
ED
2865 void *next_object = get_freepointer_safe(s, object);
2866
8a5ec0ba 2867 /*
25985edc 2868 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2869 * operation and if we are on the right processor.
2870 *
d0e0ac97
CG
2871 * The cmpxchg does the following atomically (without lock
2872 * semantics!)
8a5ec0ba
CL
2873 * 1. Relocate first pointer to the current per cpu area.
2874 * 2. Verify that tid and freelist have not been changed
2875 * 3. If they were not changed replace tid and freelist
2876 *
d0e0ac97
CG
2877 * Since this is without lock semantics the protection is only
2878 * against code executing on this cpu *not* from access by
2879 * other cpus.
8a5ec0ba 2880 */
933393f5 2881 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2882 s->cpu_slab->freelist, s->cpu_slab->tid,
2883 object, tid,
0ad9500e 2884 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2885
2886 note_cmpxchg_failure("slab_alloc", s, tid);
2887 goto redo;
2888 }
0ad9500e 2889 prefetch_freepointer(s, next_object);
84e554e6 2890 stat(s, ALLOC_FASTPATH);
894b8788 2891 }
0f181f9f
AP
2892
2893 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2894
6471384a 2895 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2896 memset(object, 0, s->object_size);
d07dbea4 2897
964d4bd3 2898 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2899
894b8788 2900 return object;
81819f0f
CL
2901}
2902
2b847c3c
EG
2903static __always_inline void *slab_alloc(struct kmem_cache *s,
2904 gfp_t gfpflags, unsigned long addr)
2905{
2906 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2907}
2908
81819f0f
CL
2909void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2910{
2b847c3c 2911 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2912
d0e0ac97
CG
2913 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2914 s->size, gfpflags);
5b882be4
EGM
2915
2916 return ret;
81819f0f
CL
2917}
2918EXPORT_SYMBOL(kmem_cache_alloc);
2919
0f24f128 2920#ifdef CONFIG_TRACING
4a92379b
RK
2921void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2922{
2b847c3c 2923 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2924 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2925 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2926 return ret;
2927}
2928EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2929#endif
2930
81819f0f
CL
2931#ifdef CONFIG_NUMA
2932void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2933{
2b847c3c 2934 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2935
ca2b84cb 2936 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2937 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2938
2939 return ret;
81819f0f
CL
2940}
2941EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2942
0f24f128 2943#ifdef CONFIG_TRACING
4a92379b 2944void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2945 gfp_t gfpflags,
4a92379b 2946 int node, size_t size)
5b882be4 2947{
2b847c3c 2948 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2949
2950 trace_kmalloc_node(_RET_IP_, ret,
2951 size, s->size, gfpflags, node);
0316bec2 2952
0116523c 2953 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2954 return ret;
5b882be4 2955}
4a92379b 2956EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2957#endif
6dfd1b65 2958#endif /* CONFIG_NUMA */
5b882be4 2959
81819f0f 2960/*
94e4d712 2961 * Slow path handling. This may still be called frequently since objects
894b8788 2962 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2963 *
894b8788
CL
2964 * So we still attempt to reduce cache line usage. Just take the slab
2965 * lock and free the item. If there is no additional partial page
2966 * handling required then we can return immediately.
81819f0f 2967 */
894b8788 2968static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2969 void *head, void *tail, int cnt,
2970 unsigned long addr)
2971
81819f0f
CL
2972{
2973 void *prior;
2cfb7455 2974 int was_frozen;
2cfb7455
CL
2975 struct page new;
2976 unsigned long counters;
2977 struct kmem_cache_node *n = NULL;
3f649ab7 2978 unsigned long flags;
81819f0f 2979
8a5ec0ba 2980 stat(s, FREE_SLOWPATH);
81819f0f 2981
19c7ff9e 2982 if (kmem_cache_debug(s) &&
282acb43 2983 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2984 return;
6446faa2 2985
2cfb7455 2986 do {
837d678d
JK
2987 if (unlikely(n)) {
2988 spin_unlock_irqrestore(&n->list_lock, flags);
2989 n = NULL;
2990 }
2cfb7455
CL
2991 prior = page->freelist;
2992 counters = page->counters;
81084651 2993 set_freepointer(s, tail, prior);
2cfb7455
CL
2994 new.counters = counters;
2995 was_frozen = new.frozen;
81084651 2996 new.inuse -= cnt;
837d678d 2997 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2998
c65c1877 2999 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3000
3001 /*
d0e0ac97
CG
3002 * Slab was on no list before and will be
3003 * partially empty
3004 * We can defer the list move and instead
3005 * freeze it.
49e22585
CL
3006 */
3007 new.frozen = 1;
3008
c65c1877 3009 } else { /* Needs to be taken off a list */
49e22585 3010
b455def2 3011 n = get_node(s, page_to_nid(page));
49e22585
CL
3012 /*
3013 * Speculatively acquire the list_lock.
3014 * If the cmpxchg does not succeed then we may
3015 * drop the list_lock without any processing.
3016 *
3017 * Otherwise the list_lock will synchronize with
3018 * other processors updating the list of slabs.
3019 */
3020 spin_lock_irqsave(&n->list_lock, flags);
3021
3022 }
2cfb7455 3023 }
81819f0f 3024
2cfb7455
CL
3025 } while (!cmpxchg_double_slab(s, page,
3026 prior, counters,
81084651 3027 head, new.counters,
2cfb7455 3028 "__slab_free"));
81819f0f 3029
2cfb7455 3030 if (likely(!n)) {
49e22585
CL
3031
3032 /*
3033 * If we just froze the page then put it onto the
3034 * per cpu partial list.
3035 */
8028dcea 3036 if (new.frozen && !was_frozen) {
49e22585 3037 put_cpu_partial(s, page, 1);
8028dcea
AS
3038 stat(s, CPU_PARTIAL_FREE);
3039 }
49e22585 3040 /*
2cfb7455
CL
3041 * The list lock was not taken therefore no list
3042 * activity can be necessary.
3043 */
b455def2
L
3044 if (was_frozen)
3045 stat(s, FREE_FROZEN);
3046 return;
3047 }
81819f0f 3048
8a5b20ae 3049 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3050 goto slab_empty;
3051
81819f0f 3052 /*
837d678d
JK
3053 * Objects left in the slab. If it was not on the partial list before
3054 * then add it.
81819f0f 3055 */
345c905d 3056 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3057 remove_full(s, n, page);
837d678d
JK
3058 add_partial(n, page, DEACTIVATE_TO_TAIL);
3059 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3060 }
80f08c19 3061 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3062 return;
3063
3064slab_empty:
a973e9dd 3065 if (prior) {
81819f0f 3066 /*
6fbabb20 3067 * Slab on the partial list.
81819f0f 3068 */
5cc6eee8 3069 remove_partial(n, page);
84e554e6 3070 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3071 } else {
6fbabb20 3072 /* Slab must be on the full list */
c65c1877
PZ
3073 remove_full(s, n, page);
3074 }
2cfb7455 3075
80f08c19 3076 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3077 stat(s, FREE_SLAB);
81819f0f 3078 discard_slab(s, page);
81819f0f
CL
3079}
3080
894b8788
CL
3081/*
3082 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3083 * can perform fastpath freeing without additional function calls.
3084 *
3085 * The fastpath is only possible if we are freeing to the current cpu slab
3086 * of this processor. This typically the case if we have just allocated
3087 * the item before.
3088 *
3089 * If fastpath is not possible then fall back to __slab_free where we deal
3090 * with all sorts of special processing.
81084651
JDB
3091 *
3092 * Bulk free of a freelist with several objects (all pointing to the
3093 * same page) possible by specifying head and tail ptr, plus objects
3094 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3095 */
80a9201a
AP
3096static __always_inline void do_slab_free(struct kmem_cache *s,
3097 struct page *page, void *head, void *tail,
3098 int cnt, unsigned long addr)
894b8788 3099{
81084651 3100 void *tail_obj = tail ? : head;
dfb4f096 3101 struct kmem_cache_cpu *c;
8a5ec0ba 3102 unsigned long tid;
964d4bd3
RG
3103
3104 memcg_slab_free_hook(s, page, head);
8a5ec0ba
CL
3105redo:
3106 /*
3107 * Determine the currently cpus per cpu slab.
3108 * The cpu may change afterward. However that does not matter since
3109 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3110 * during the cmpxchg then the free will succeed.
8a5ec0ba 3111 */
9aabf810
JK
3112 do {
3113 tid = this_cpu_read(s->cpu_slab->tid);
3114 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3115 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3116 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3117
9aabf810
JK
3118 /* Same with comment on barrier() in slab_alloc_node() */
3119 barrier();
c016b0bd 3120
442b06bc 3121 if (likely(page == c->page)) {
5076190d
LT
3122 void **freelist = READ_ONCE(c->freelist);
3123
3124 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3125
933393f5 3126 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3127 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3128 freelist, tid,
81084651 3129 head, next_tid(tid)))) {
8a5ec0ba
CL
3130
3131 note_cmpxchg_failure("slab_free", s, tid);
3132 goto redo;
3133 }
84e554e6 3134 stat(s, FREE_FASTPATH);
894b8788 3135 } else
81084651 3136 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3137
894b8788
CL
3138}
3139
80a9201a
AP
3140static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3141 void *head, void *tail, int cnt,
3142 unsigned long addr)
3143{
80a9201a 3144 /*
c3895391
AK
3145 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3146 * to remove objects, whose reuse must be delayed.
80a9201a 3147 */
c3895391
AK
3148 if (slab_free_freelist_hook(s, &head, &tail))
3149 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3150}
3151
2bd926b4 3152#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3153void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3154{
3155 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3156}
3157#endif
3158
81819f0f
CL
3159void kmem_cache_free(struct kmem_cache *s, void *x)
3160{
b9ce5ef4
GC
3161 s = cache_from_obj(s, x);
3162 if (!s)
79576102 3163 return;
81084651 3164 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3165 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3166}
3167EXPORT_SYMBOL(kmem_cache_free);
3168
d0ecd894 3169struct detached_freelist {
fbd02630 3170 struct page *page;
d0ecd894
JDB
3171 void *tail;
3172 void *freelist;
3173 int cnt;
376bf125 3174 struct kmem_cache *s;
d0ecd894 3175};
fbd02630 3176
d0ecd894
JDB
3177/*
3178 * This function progressively scans the array with free objects (with
3179 * a limited look ahead) and extract objects belonging to the same
3180 * page. It builds a detached freelist directly within the given
3181 * page/objects. This can happen without any need for
3182 * synchronization, because the objects are owned by running process.
3183 * The freelist is build up as a single linked list in the objects.
3184 * The idea is, that this detached freelist can then be bulk
3185 * transferred to the real freelist(s), but only requiring a single
3186 * synchronization primitive. Look ahead in the array is limited due
3187 * to performance reasons.
3188 */
376bf125
JDB
3189static inline
3190int build_detached_freelist(struct kmem_cache *s, size_t size,
3191 void **p, struct detached_freelist *df)
d0ecd894
JDB
3192{
3193 size_t first_skipped_index = 0;
3194 int lookahead = 3;
3195 void *object;
ca257195 3196 struct page *page;
fbd02630 3197
d0ecd894
JDB
3198 /* Always re-init detached_freelist */
3199 df->page = NULL;
fbd02630 3200
d0ecd894
JDB
3201 do {
3202 object = p[--size];
ca257195 3203 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3204 } while (!object && size);
3eed034d 3205
d0ecd894
JDB
3206 if (!object)
3207 return 0;
fbd02630 3208
ca257195
JDB
3209 page = virt_to_head_page(object);
3210 if (!s) {
3211 /* Handle kalloc'ed objects */
3212 if (unlikely(!PageSlab(page))) {
3213 BUG_ON(!PageCompound(page));
3214 kfree_hook(object);
4949148a 3215 __free_pages(page, compound_order(page));
ca257195
JDB
3216 p[size] = NULL; /* mark object processed */
3217 return size;
3218 }
3219 /* Derive kmem_cache from object */
3220 df->s = page->slab_cache;
3221 } else {
3222 df->s = cache_from_obj(s, object); /* Support for memcg */
3223 }
376bf125 3224
d0ecd894 3225 /* Start new detached freelist */
ca257195 3226 df->page = page;
376bf125 3227 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3228 df->tail = object;
3229 df->freelist = object;
3230 p[size] = NULL; /* mark object processed */
3231 df->cnt = 1;
3232
3233 while (size) {
3234 object = p[--size];
3235 if (!object)
3236 continue; /* Skip processed objects */
3237
3238 /* df->page is always set at this point */
3239 if (df->page == virt_to_head_page(object)) {
3240 /* Opportunity build freelist */
376bf125 3241 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3242 df->freelist = object;
3243 df->cnt++;
3244 p[size] = NULL; /* mark object processed */
3245
3246 continue;
fbd02630 3247 }
d0ecd894
JDB
3248
3249 /* Limit look ahead search */
3250 if (!--lookahead)
3251 break;
3252
3253 if (!first_skipped_index)
3254 first_skipped_index = size + 1;
fbd02630 3255 }
d0ecd894
JDB
3256
3257 return first_skipped_index;
3258}
3259
d0ecd894 3260/* Note that interrupts must be enabled when calling this function. */
376bf125 3261void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3262{
3263 if (WARN_ON(!size))
3264 return;
3265
3266 do {
3267 struct detached_freelist df;
3268
3269 size = build_detached_freelist(s, size, p, &df);
84582c8a 3270 if (!df.page)
d0ecd894
JDB
3271 continue;
3272
376bf125 3273 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3274 } while (likely(size));
484748f0
CL
3275}
3276EXPORT_SYMBOL(kmem_cache_free_bulk);
3277
994eb764 3278/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3279int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3280 void **p)
484748f0 3281{
994eb764
JDB
3282 struct kmem_cache_cpu *c;
3283 int i;
964d4bd3 3284 struct obj_cgroup *objcg = NULL;
994eb764 3285
03ec0ed5 3286 /* memcg and kmem_cache debug support */
964d4bd3 3287 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3288 if (unlikely(!s))
3289 return false;
994eb764
JDB
3290 /*
3291 * Drain objects in the per cpu slab, while disabling local
3292 * IRQs, which protects against PREEMPT and interrupts
3293 * handlers invoking normal fastpath.
3294 */
3295 local_irq_disable();
3296 c = this_cpu_ptr(s->cpu_slab);
3297
3298 for (i = 0; i < size; i++) {
3299 void *object = c->freelist;
3300
ebe909e0 3301 if (unlikely(!object)) {
fd4d9c7d
JH
3302 /*
3303 * We may have removed an object from c->freelist using
3304 * the fastpath in the previous iteration; in that case,
3305 * c->tid has not been bumped yet.
3306 * Since ___slab_alloc() may reenable interrupts while
3307 * allocating memory, we should bump c->tid now.
3308 */
3309 c->tid = next_tid(c->tid);
3310
ebe909e0
JDB
3311 /*
3312 * Invoking slow path likely have side-effect
3313 * of re-populating per CPU c->freelist
3314 */
87098373 3315 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3316 _RET_IP_, c);
87098373
CL
3317 if (unlikely(!p[i]))
3318 goto error;
3319
ebe909e0 3320 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3321 maybe_wipe_obj_freeptr(s, p[i]);
3322
ebe909e0
JDB
3323 continue; /* goto for-loop */
3324 }
994eb764
JDB
3325 c->freelist = get_freepointer(s, object);
3326 p[i] = object;
0f181f9f 3327 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3328 }
3329 c->tid = next_tid(c->tid);
3330 local_irq_enable();
3331
3332 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3333 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3334 int j;
3335
3336 for (j = 0; j < i; j++)
3337 memset(p[j], 0, s->object_size);
3338 }
3339
03ec0ed5 3340 /* memcg and kmem_cache debug support */
964d4bd3 3341 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3342 return i;
87098373 3343error:
87098373 3344 local_irq_enable();
964d4bd3 3345 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3346 __kmem_cache_free_bulk(s, i, p);
865762a8 3347 return 0;
484748f0
CL
3348}
3349EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3350
3351
81819f0f 3352/*
672bba3a
CL
3353 * Object placement in a slab is made very easy because we always start at
3354 * offset 0. If we tune the size of the object to the alignment then we can
3355 * get the required alignment by putting one properly sized object after
3356 * another.
81819f0f
CL
3357 *
3358 * Notice that the allocation order determines the sizes of the per cpu
3359 * caches. Each processor has always one slab available for allocations.
3360 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3361 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3362 * locking overhead.
81819f0f
CL
3363 */
3364
3365/*
3366 * Mininum / Maximum order of slab pages. This influences locking overhead
3367 * and slab fragmentation. A higher order reduces the number of partial slabs
3368 * and increases the number of allocations possible without having to
3369 * take the list_lock.
3370 */
19af27af
AD
3371static unsigned int slub_min_order;
3372static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3373static unsigned int slub_min_objects;
81819f0f 3374
81819f0f
CL
3375/*
3376 * Calculate the order of allocation given an slab object size.
3377 *
672bba3a
CL
3378 * The order of allocation has significant impact on performance and other
3379 * system components. Generally order 0 allocations should be preferred since
3380 * order 0 does not cause fragmentation in the page allocator. Larger objects
3381 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3382 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3383 * would be wasted.
3384 *
3385 * In order to reach satisfactory performance we must ensure that a minimum
3386 * number of objects is in one slab. Otherwise we may generate too much
3387 * activity on the partial lists which requires taking the list_lock. This is
3388 * less a concern for large slabs though which are rarely used.
81819f0f 3389 *
672bba3a
CL
3390 * slub_max_order specifies the order where we begin to stop considering the
3391 * number of objects in a slab as critical. If we reach slub_max_order then
3392 * we try to keep the page order as low as possible. So we accept more waste
3393 * of space in favor of a small page order.
81819f0f 3394 *
672bba3a
CL
3395 * Higher order allocations also allow the placement of more objects in a
3396 * slab and thereby reduce object handling overhead. If the user has
3397 * requested a higher mininum order then we start with that one instead of
3398 * the smallest order which will fit the object.
81819f0f 3399 */
19af27af
AD
3400static inline unsigned int slab_order(unsigned int size,
3401 unsigned int min_objects, unsigned int max_order,
9736d2a9 3402 unsigned int fract_leftover)
81819f0f 3403{
19af27af
AD
3404 unsigned int min_order = slub_min_order;
3405 unsigned int order;
81819f0f 3406
9736d2a9 3407 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3408 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3409
9736d2a9 3410 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3411 order <= max_order; order++) {
81819f0f 3412
19af27af
AD
3413 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3414 unsigned int rem;
81819f0f 3415
9736d2a9 3416 rem = slab_size % size;
81819f0f 3417
5e6d444e 3418 if (rem <= slab_size / fract_leftover)
81819f0f 3419 break;
81819f0f 3420 }
672bba3a 3421
81819f0f
CL
3422 return order;
3423}
3424
9736d2a9 3425static inline int calculate_order(unsigned int size)
5e6d444e 3426{
19af27af
AD
3427 unsigned int order;
3428 unsigned int min_objects;
3429 unsigned int max_objects;
5e6d444e
CL
3430
3431 /*
3432 * Attempt to find best configuration for a slab. This
3433 * works by first attempting to generate a layout with
3434 * the best configuration and backing off gradually.
3435 *
422ff4d7 3436 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3437 * we reduce the minimum objects required in a slab.
3438 */
3439 min_objects = slub_min_objects;
9b2cd506
CL
3440 if (!min_objects)
3441 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3442 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3443 min_objects = min(min_objects, max_objects);
3444
5e6d444e 3445 while (min_objects > 1) {
19af27af
AD
3446 unsigned int fraction;
3447
c124f5b5 3448 fraction = 16;
5e6d444e
CL
3449 while (fraction >= 4) {
3450 order = slab_order(size, min_objects,
9736d2a9 3451 slub_max_order, fraction);
5e6d444e
CL
3452 if (order <= slub_max_order)
3453 return order;
3454 fraction /= 2;
3455 }
5086c389 3456 min_objects--;
5e6d444e
CL
3457 }
3458
3459 /*
3460 * We were unable to place multiple objects in a slab. Now
3461 * lets see if we can place a single object there.
3462 */
9736d2a9 3463 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3464 if (order <= slub_max_order)
3465 return order;
3466
3467 /*
3468 * Doh this slab cannot be placed using slub_max_order.
3469 */
9736d2a9 3470 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3471 if (order < MAX_ORDER)
5e6d444e
CL
3472 return order;
3473 return -ENOSYS;
3474}
3475
5595cffc 3476static void
4053497d 3477init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3478{
3479 n->nr_partial = 0;
81819f0f
CL
3480 spin_lock_init(&n->list_lock);
3481 INIT_LIST_HEAD(&n->partial);
8ab1372f 3482#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3483 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3484 atomic_long_set(&n->total_objects, 0);
643b1138 3485 INIT_LIST_HEAD(&n->full);
8ab1372f 3486#endif
81819f0f
CL
3487}
3488
55136592 3489static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3490{
6c182dc0 3491 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3492 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3493
8a5ec0ba 3494 /*
d4d84fef
CM
3495 * Must align to double word boundary for the double cmpxchg
3496 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3497 */
d4d84fef
CM
3498 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3499 2 * sizeof(void *));
8a5ec0ba
CL
3500
3501 if (!s->cpu_slab)
3502 return 0;
3503
3504 init_kmem_cache_cpus(s);
4c93c355 3505
8a5ec0ba 3506 return 1;
4c93c355 3507}
4c93c355 3508
51df1142
CL
3509static struct kmem_cache *kmem_cache_node;
3510
81819f0f
CL
3511/*
3512 * No kmalloc_node yet so do it by hand. We know that this is the first
3513 * slab on the node for this slabcache. There are no concurrent accesses
3514 * possible.
3515 *
721ae22a
ZYW
3516 * Note that this function only works on the kmem_cache_node
3517 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3518 * memory on a fresh node that has no slab structures yet.
81819f0f 3519 */
55136592 3520static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3521{
3522 struct page *page;
3523 struct kmem_cache_node *n;
3524
51df1142 3525 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3526
51df1142 3527 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3528
3529 BUG_ON(!page);
a2f92ee7 3530 if (page_to_nid(page) != node) {
f9f58285
FF
3531 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3532 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3533 }
3534
81819f0f
CL
3535 n = page->freelist;
3536 BUG_ON(!n);
8ab1372f 3537#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3538 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3539 init_tracking(kmem_cache_node, n);
8ab1372f 3540#endif
12b22386 3541 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3542 GFP_KERNEL);
12b22386
AK
3543 page->freelist = get_freepointer(kmem_cache_node, n);
3544 page->inuse = 1;
3545 page->frozen = 0;
3546 kmem_cache_node->node[node] = n;
4053497d 3547 init_kmem_cache_node(n);
51df1142 3548 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3549
67b6c900 3550 /*
1e4dd946
SR
3551 * No locks need to be taken here as it has just been
3552 * initialized and there is no concurrent access.
67b6c900 3553 */
1e4dd946 3554 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3555}
3556
3557static void free_kmem_cache_nodes(struct kmem_cache *s)
3558{
3559 int node;
fa45dc25 3560 struct kmem_cache_node *n;
81819f0f 3561
fa45dc25 3562 for_each_kmem_cache_node(s, node, n) {
81819f0f 3563 s->node[node] = NULL;
ea37df54 3564 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3565 }
3566}
3567
52b4b950
DS
3568void __kmem_cache_release(struct kmem_cache *s)
3569{
210e7a43 3570 cache_random_seq_destroy(s);
52b4b950
DS
3571 free_percpu(s->cpu_slab);
3572 free_kmem_cache_nodes(s);
3573}
3574
55136592 3575static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3576{
3577 int node;
81819f0f 3578
f64dc58c 3579 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3580 struct kmem_cache_node *n;
3581
73367bd8 3582 if (slab_state == DOWN) {
55136592 3583 early_kmem_cache_node_alloc(node);
73367bd8
AD
3584 continue;
3585 }
51df1142 3586 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3587 GFP_KERNEL, node);
81819f0f 3588
73367bd8
AD
3589 if (!n) {
3590 free_kmem_cache_nodes(s);
3591 return 0;
81819f0f 3592 }
73367bd8 3593
4053497d 3594 init_kmem_cache_node(n);
ea37df54 3595 s->node[node] = n;
81819f0f
CL
3596 }
3597 return 1;
3598}
81819f0f 3599
c0bdb232 3600static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3601{
3602 if (min < MIN_PARTIAL)
3603 min = MIN_PARTIAL;
3604 else if (min > MAX_PARTIAL)
3605 min = MAX_PARTIAL;
3606 s->min_partial = min;
3607}
3608
e6d0e1dc
WY
3609static void set_cpu_partial(struct kmem_cache *s)
3610{
3611#ifdef CONFIG_SLUB_CPU_PARTIAL
3612 /*
3613 * cpu_partial determined the maximum number of objects kept in the
3614 * per cpu partial lists of a processor.
3615 *
3616 * Per cpu partial lists mainly contain slabs that just have one
3617 * object freed. If they are used for allocation then they can be
3618 * filled up again with minimal effort. The slab will never hit the
3619 * per node partial lists and therefore no locking will be required.
3620 *
3621 * This setting also determines
3622 *
3623 * A) The number of objects from per cpu partial slabs dumped to the
3624 * per node list when we reach the limit.
3625 * B) The number of objects in cpu partial slabs to extract from the
3626 * per node list when we run out of per cpu objects. We only fetch
3627 * 50% to keep some capacity around for frees.
3628 */
3629 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3630 slub_set_cpu_partial(s, 0);
e6d0e1dc 3631 else if (s->size >= PAGE_SIZE)
bbd4e305 3632 slub_set_cpu_partial(s, 2);
e6d0e1dc 3633 else if (s->size >= 1024)
bbd4e305 3634 slub_set_cpu_partial(s, 6);
e6d0e1dc 3635 else if (s->size >= 256)
bbd4e305 3636 slub_set_cpu_partial(s, 13);
e6d0e1dc 3637 else
bbd4e305 3638 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3639#endif
3640}
3641
81819f0f
CL
3642/*
3643 * calculate_sizes() determines the order and the distribution of data within
3644 * a slab object.
3645 */
06b285dc 3646static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3647{
d50112ed 3648 slab_flags_t flags = s->flags;
be4a7988 3649 unsigned int size = s->object_size;
89b83f28 3650 unsigned int freepointer_area;
19af27af 3651 unsigned int order;
81819f0f 3652
d8b42bf5
CL
3653 /*
3654 * Round up object size to the next word boundary. We can only
3655 * place the free pointer at word boundaries and this determines
3656 * the possible location of the free pointer.
3657 */
3658 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3659 /*
3660 * This is the area of the object where a freepointer can be
3661 * safely written. If redzoning adds more to the inuse size, we
3662 * can't use that portion for writing the freepointer, so
3663 * s->offset must be limited within this for the general case.
3664 */
3665 freepointer_area = size;
d8b42bf5
CL
3666
3667#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3668 /*
3669 * Determine if we can poison the object itself. If the user of
3670 * the slab may touch the object after free or before allocation
3671 * then we should never poison the object itself.
3672 */
5f0d5a3a 3673 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3674 !s->ctor)
81819f0f
CL
3675 s->flags |= __OBJECT_POISON;
3676 else
3677 s->flags &= ~__OBJECT_POISON;
3678
81819f0f
CL
3679
3680 /*
672bba3a 3681 * If we are Redzoning then check if there is some space between the
81819f0f 3682 * end of the object and the free pointer. If not then add an
672bba3a 3683 * additional word to have some bytes to store Redzone information.
81819f0f 3684 */
3b0efdfa 3685 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3686 size += sizeof(void *);
41ecc55b 3687#endif
81819f0f
CL
3688
3689 /*
672bba3a
CL
3690 * With that we have determined the number of bytes in actual use
3691 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3692 */
3693 s->inuse = size;
3694
5f0d5a3a 3695 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3696 s->ctor)) {
81819f0f
CL
3697 /*
3698 * Relocate free pointer after the object if it is not
3699 * permitted to overwrite the first word of the object on
3700 * kmem_cache_free.
3701 *
3702 * This is the case if we do RCU, have a constructor or
3703 * destructor or are poisoning the objects.
cbfc35a4
WL
3704 *
3705 * The assumption that s->offset >= s->inuse means free
3706 * pointer is outside of the object is used in the
3707 * freeptr_outside_object() function. If that is no
3708 * longer true, the function needs to be modified.
81819f0f
CL
3709 */
3710 s->offset = size;
3711 size += sizeof(void *);
89b83f28 3712 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3713 /*
3714 * Store freelist pointer near middle of object to keep
3715 * it away from the edges of the object to avoid small
3716 * sized over/underflows from neighboring allocations.
3717 */
89b83f28 3718 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3719 }
3720
c12b3c62 3721#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3722 if (flags & SLAB_STORE_USER)
3723 /*
3724 * Need to store information about allocs and frees after
3725 * the object.
3726 */
3727 size += 2 * sizeof(struct track);
80a9201a 3728#endif
81819f0f 3729
80a9201a
AP
3730 kasan_cache_create(s, &size, &s->flags);
3731#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3732 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3733 /*
3734 * Add some empty padding so that we can catch
3735 * overwrites from earlier objects rather than let
3736 * tracking information or the free pointer be
0211a9c8 3737 * corrupted if a user writes before the start
81819f0f
CL
3738 * of the object.
3739 */
3740 size += sizeof(void *);
d86bd1be
JK
3741
3742 s->red_left_pad = sizeof(void *);
3743 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3744 size += s->red_left_pad;
3745 }
41ecc55b 3746#endif
672bba3a 3747
81819f0f
CL
3748 /*
3749 * SLUB stores one object immediately after another beginning from
3750 * offset 0. In order to align the objects we have to simply size
3751 * each object to conform to the alignment.
3752 */
45906855 3753 size = ALIGN(size, s->align);
81819f0f 3754 s->size = size;
4138fdfc 3755 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3756 if (forced_order >= 0)
3757 order = forced_order;
3758 else
9736d2a9 3759 order = calculate_order(size);
81819f0f 3760
19af27af 3761 if ((int)order < 0)
81819f0f
CL
3762 return 0;
3763
b7a49f0d 3764 s->allocflags = 0;
834f3d11 3765 if (order)
b7a49f0d
CL
3766 s->allocflags |= __GFP_COMP;
3767
3768 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3769 s->allocflags |= GFP_DMA;
b7a49f0d 3770
6d6ea1e9
NB
3771 if (s->flags & SLAB_CACHE_DMA32)
3772 s->allocflags |= GFP_DMA32;
3773
b7a49f0d
CL
3774 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3775 s->allocflags |= __GFP_RECLAIMABLE;
3776
81819f0f
CL
3777 /*
3778 * Determine the number of objects per slab
3779 */
9736d2a9
MW
3780 s->oo = oo_make(order, size);
3781 s->min = oo_make(get_order(size), size);
205ab99d
CL
3782 if (oo_objects(s->oo) > oo_objects(s->max))
3783 s->max = s->oo;
81819f0f 3784
834f3d11 3785 return !!oo_objects(s->oo);
81819f0f
CL
3786}
3787
d50112ed 3788static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3789{
8a13a4cc 3790 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3791#ifdef CONFIG_SLAB_FREELIST_HARDENED
3792 s->random = get_random_long();
3793#endif
81819f0f 3794
06b285dc 3795 if (!calculate_sizes(s, -1))
81819f0f 3796 goto error;
3de47213
DR
3797 if (disable_higher_order_debug) {
3798 /*
3799 * Disable debugging flags that store metadata if the min slab
3800 * order increased.
3801 */
3b0efdfa 3802 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3803 s->flags &= ~DEBUG_METADATA_FLAGS;
3804 s->offset = 0;
3805 if (!calculate_sizes(s, -1))
3806 goto error;
3807 }
3808 }
81819f0f 3809
2565409f
HC
3810#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3811 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3812 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3813 /* Enable fast mode */
3814 s->flags |= __CMPXCHG_DOUBLE;
3815#endif
3816
3b89d7d8
DR
3817 /*
3818 * The larger the object size is, the more pages we want on the partial
3819 * list to avoid pounding the page allocator excessively.
3820 */
49e22585
CL
3821 set_min_partial(s, ilog2(s->size) / 2);
3822
e6d0e1dc 3823 set_cpu_partial(s);
49e22585 3824
81819f0f 3825#ifdef CONFIG_NUMA
e2cb96b7 3826 s->remote_node_defrag_ratio = 1000;
81819f0f 3827#endif
210e7a43
TG
3828
3829 /* Initialize the pre-computed randomized freelist if slab is up */
3830 if (slab_state >= UP) {
3831 if (init_cache_random_seq(s))
3832 goto error;
3833 }
3834
55136592 3835 if (!init_kmem_cache_nodes(s))
dfb4f096 3836 goto error;
81819f0f 3837
55136592 3838 if (alloc_kmem_cache_cpus(s))
278b1bb1 3839 return 0;
ff12059e 3840
4c93c355 3841 free_kmem_cache_nodes(s);
81819f0f 3842error:
278b1bb1 3843 return -EINVAL;
81819f0f 3844}
81819f0f 3845
33b12c38 3846static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3847 const char *text)
33b12c38
CL
3848{
3849#ifdef CONFIG_SLUB_DEBUG
3850 void *addr = page_address(page);
55860d96 3851 unsigned long *map;
33b12c38 3852 void *p;
aa456c7a 3853
945cf2b6 3854 slab_err(s, page, text, s->name);
33b12c38 3855 slab_lock(page);
33b12c38 3856
90e9f6a6 3857 map = get_map(s, page);
33b12c38
CL
3858 for_each_object(p, s, addr, page->objects) {
3859
4138fdfc 3860 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3861 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3862 print_tracking(s, p);
3863 }
3864 }
55860d96 3865 put_map(map);
33b12c38
CL
3866 slab_unlock(page);
3867#endif
3868}
3869
81819f0f 3870/*
599870b1 3871 * Attempt to free all partial slabs on a node.
52b4b950
DS
3872 * This is called from __kmem_cache_shutdown(). We must take list_lock
3873 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3874 */
599870b1 3875static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3876{
60398923 3877 LIST_HEAD(discard);
81819f0f
CL
3878 struct page *page, *h;
3879
52b4b950
DS
3880 BUG_ON(irqs_disabled());
3881 spin_lock_irq(&n->list_lock);
916ac052 3882 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3883 if (!page->inuse) {
52b4b950 3884 remove_partial(n, page);
916ac052 3885 list_add(&page->slab_list, &discard);
33b12c38
CL
3886 } else {
3887 list_slab_objects(s, page,
55860d96 3888 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3889 }
33b12c38 3890 }
52b4b950 3891 spin_unlock_irq(&n->list_lock);
60398923 3892
916ac052 3893 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3894 discard_slab(s, page);
81819f0f
CL
3895}
3896
f9e13c0a
SB
3897bool __kmem_cache_empty(struct kmem_cache *s)
3898{
3899 int node;
3900 struct kmem_cache_node *n;
3901
3902 for_each_kmem_cache_node(s, node, n)
3903 if (n->nr_partial || slabs_node(s, node))
3904 return false;
3905 return true;
3906}
3907
81819f0f 3908/*
672bba3a 3909 * Release all resources used by a slab cache.
81819f0f 3910 */
52b4b950 3911int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3912{
3913 int node;
fa45dc25 3914 struct kmem_cache_node *n;
81819f0f
CL
3915
3916 flush_all(s);
81819f0f 3917 /* Attempt to free all objects */
fa45dc25 3918 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3919 free_partial(s, n);
3920 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3921 return 1;
3922 }
bf5eb3de 3923 sysfs_slab_remove(s);
81819f0f
CL
3924 return 0;
3925}
3926
81819f0f
CL
3927/********************************************************************
3928 * Kmalloc subsystem
3929 *******************************************************************/
3930
81819f0f
CL
3931static int __init setup_slub_min_order(char *str)
3932{
19af27af 3933 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3934
3935 return 1;
3936}
3937
3938__setup("slub_min_order=", setup_slub_min_order);
3939
3940static int __init setup_slub_max_order(char *str)
3941{
19af27af
AD
3942 get_option(&str, (int *)&slub_max_order);
3943 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3944
3945 return 1;
3946}
3947
3948__setup("slub_max_order=", setup_slub_max_order);
3949
3950static int __init setup_slub_min_objects(char *str)
3951{
19af27af 3952 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3953
3954 return 1;
3955}
3956
3957__setup("slub_min_objects=", setup_slub_min_objects);
3958
81819f0f
CL
3959void *__kmalloc(size_t size, gfp_t flags)
3960{
aadb4bc4 3961 struct kmem_cache *s;
5b882be4 3962 void *ret;
81819f0f 3963
95a05b42 3964 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3965 return kmalloc_large(size, flags);
aadb4bc4 3966
2c59dd65 3967 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3968
3969 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3970 return s;
3971
2b847c3c 3972 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3973
ca2b84cb 3974 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3975
0116523c 3976 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3977
5b882be4 3978 return ret;
81819f0f
CL
3979}
3980EXPORT_SYMBOL(__kmalloc);
3981
5d1f57e4 3982#ifdef CONFIG_NUMA
f619cfe1
CL
3983static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3984{
b1eeab67 3985 struct page *page;
e4f7c0b4 3986 void *ptr = NULL;
6a486c0a 3987 unsigned int order = get_order(size);
f619cfe1 3988
75f296d9 3989 flags |= __GFP_COMP;
6a486c0a
VB
3990 page = alloc_pages_node(node, flags, order);
3991 if (page) {
e4f7c0b4 3992 ptr = page_address(page);
d42f3245
RG
3993 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3994 PAGE_SIZE << order);
6a486c0a 3995 }
e4f7c0b4 3996
0116523c 3997 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3998}
3999
81819f0f
CL
4000void *__kmalloc_node(size_t size, gfp_t flags, int node)
4001{
aadb4bc4 4002 struct kmem_cache *s;
5b882be4 4003 void *ret;
81819f0f 4004
95a05b42 4005 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4006 ret = kmalloc_large_node(size, flags, node);
4007
ca2b84cb
EGM
4008 trace_kmalloc_node(_RET_IP_, ret,
4009 size, PAGE_SIZE << get_order(size),
4010 flags, node);
5b882be4
EGM
4011
4012 return ret;
4013 }
aadb4bc4 4014
2c59dd65 4015 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4016
4017 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4018 return s;
4019
2b847c3c 4020 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4021
ca2b84cb 4022 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4023
0116523c 4024 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4025
5b882be4 4026 return ret;
81819f0f
CL
4027}
4028EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4029#endif /* CONFIG_NUMA */
81819f0f 4030
ed18adc1
KC
4031#ifdef CONFIG_HARDENED_USERCOPY
4032/*
afcc90f8
KC
4033 * Rejects incorrectly sized objects and objects that are to be copied
4034 * to/from userspace but do not fall entirely within the containing slab
4035 * cache's usercopy region.
ed18adc1
KC
4036 *
4037 * Returns NULL if check passes, otherwise const char * to name of cache
4038 * to indicate an error.
4039 */
f4e6e289
KC
4040void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4041 bool to_user)
ed18adc1
KC
4042{
4043 struct kmem_cache *s;
44065b2e 4044 unsigned int offset;
ed18adc1
KC
4045 size_t object_size;
4046
96fedce2
AK
4047 ptr = kasan_reset_tag(ptr);
4048
ed18adc1
KC
4049 /* Find object and usable object size. */
4050 s = page->slab_cache;
ed18adc1
KC
4051
4052 /* Reject impossible pointers. */
4053 if (ptr < page_address(page))
f4e6e289
KC
4054 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4055 to_user, 0, n);
ed18adc1
KC
4056
4057 /* Find offset within object. */
4058 offset = (ptr - page_address(page)) % s->size;
4059
4060 /* Adjust for redzone and reject if within the redzone. */
59052e89 4061 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4062 if (offset < s->red_left_pad)
f4e6e289
KC
4063 usercopy_abort("SLUB object in left red zone",
4064 s->name, to_user, offset, n);
ed18adc1
KC
4065 offset -= s->red_left_pad;
4066 }
4067
afcc90f8
KC
4068 /* Allow address range falling entirely within usercopy region. */
4069 if (offset >= s->useroffset &&
4070 offset - s->useroffset <= s->usersize &&
4071 n <= s->useroffset - offset + s->usersize)
f4e6e289 4072 return;
ed18adc1 4073
afcc90f8
KC
4074 /*
4075 * If the copy is still within the allocated object, produce
4076 * a warning instead of rejecting the copy. This is intended
4077 * to be a temporary method to find any missing usercopy
4078 * whitelists.
4079 */
4080 object_size = slab_ksize(s);
2d891fbc
KC
4081 if (usercopy_fallback &&
4082 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4083 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4084 return;
4085 }
ed18adc1 4086
f4e6e289 4087 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4088}
4089#endif /* CONFIG_HARDENED_USERCOPY */
4090
10d1f8cb 4091size_t __ksize(const void *object)
81819f0f 4092{
272c1d21 4093 struct page *page;
81819f0f 4094
ef8b4520 4095 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4096 return 0;
4097
294a80a8 4098 page = virt_to_head_page(object);
294a80a8 4099
76994412
PE
4100 if (unlikely(!PageSlab(page))) {
4101 WARN_ON(!PageCompound(page));
a50b854e 4102 return page_size(page);
76994412 4103 }
81819f0f 4104
1b4f59e3 4105 return slab_ksize(page->slab_cache);
81819f0f 4106}
10d1f8cb 4107EXPORT_SYMBOL(__ksize);
81819f0f
CL
4108
4109void kfree(const void *x)
4110{
81819f0f 4111 struct page *page;
5bb983b0 4112 void *object = (void *)x;
81819f0f 4113
2121db74
PE
4114 trace_kfree(_RET_IP_, x);
4115
2408c550 4116 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4117 return;
4118
b49af68f 4119 page = virt_to_head_page(x);
aadb4bc4 4120 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4121 unsigned int order = compound_order(page);
4122
0937502a 4123 BUG_ON(!PageCompound(page));
47adccce 4124 kfree_hook(object);
d42f3245
RG
4125 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4126 -(PAGE_SIZE << order));
6a486c0a 4127 __free_pages(page, order);
aadb4bc4
CL
4128 return;
4129 }
81084651 4130 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4131}
4132EXPORT_SYMBOL(kfree);
4133
832f37f5
VD
4134#define SHRINK_PROMOTE_MAX 32
4135
2086d26a 4136/*
832f37f5
VD
4137 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4138 * up most to the head of the partial lists. New allocations will then
4139 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4140 *
4141 * The slabs with the least items are placed last. This results in them
4142 * being allocated from last increasing the chance that the last objects
4143 * are freed in them.
2086d26a 4144 */
c9fc5864 4145int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4146{
4147 int node;
4148 int i;
4149 struct kmem_cache_node *n;
4150 struct page *page;
4151 struct page *t;
832f37f5
VD
4152 struct list_head discard;
4153 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4154 unsigned long flags;
ce3712d7 4155 int ret = 0;
2086d26a 4156
2086d26a 4157 flush_all(s);
fa45dc25 4158 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4159 INIT_LIST_HEAD(&discard);
4160 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4161 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4162
4163 spin_lock_irqsave(&n->list_lock, flags);
4164
4165 /*
832f37f5 4166 * Build lists of slabs to discard or promote.
2086d26a 4167 *
672bba3a
CL
4168 * Note that concurrent frees may occur while we hold the
4169 * list_lock. page->inuse here is the upper limit.
2086d26a 4170 */
916ac052 4171 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4172 int free = page->objects - page->inuse;
4173
4174 /* Do not reread page->inuse */
4175 barrier();
4176
4177 /* We do not keep full slabs on the list */
4178 BUG_ON(free <= 0);
4179
4180 if (free == page->objects) {
916ac052 4181 list_move(&page->slab_list, &discard);
69cb8e6b 4182 n->nr_partial--;
832f37f5 4183 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4184 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4185 }
4186
2086d26a 4187 /*
832f37f5
VD
4188 * Promote the slabs filled up most to the head of the
4189 * partial list.
2086d26a 4190 */
832f37f5
VD
4191 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4192 list_splice(promote + i, &n->partial);
2086d26a 4193
2086d26a 4194 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4195
4196 /* Release empty slabs */
916ac052 4197 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4198 discard_slab(s, page);
ce3712d7
VD
4199
4200 if (slabs_node(s, node))
4201 ret = 1;
2086d26a
CL
4202 }
4203
ce3712d7 4204 return ret;
2086d26a 4205}
2086d26a 4206
b9049e23
YG
4207static int slab_mem_going_offline_callback(void *arg)
4208{
4209 struct kmem_cache *s;
4210
18004c5d 4211 mutex_lock(&slab_mutex);
b9049e23 4212 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4213 __kmem_cache_shrink(s);
18004c5d 4214 mutex_unlock(&slab_mutex);
b9049e23
YG
4215
4216 return 0;
4217}
4218
4219static void slab_mem_offline_callback(void *arg)
4220{
4221 struct kmem_cache_node *n;
4222 struct kmem_cache *s;
4223 struct memory_notify *marg = arg;
4224 int offline_node;
4225
b9d5ab25 4226 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4227
4228 /*
4229 * If the node still has available memory. we need kmem_cache_node
4230 * for it yet.
4231 */
4232 if (offline_node < 0)
4233 return;
4234
18004c5d 4235 mutex_lock(&slab_mutex);
b9049e23
YG
4236 list_for_each_entry(s, &slab_caches, list) {
4237 n = get_node(s, offline_node);
4238 if (n) {
4239 /*
4240 * if n->nr_slabs > 0, slabs still exist on the node
4241 * that is going down. We were unable to free them,
c9404c9c 4242 * and offline_pages() function shouldn't call this
b9049e23
YG
4243 * callback. So, we must fail.
4244 */
0f389ec6 4245 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4246
4247 s->node[offline_node] = NULL;
8de66a0c 4248 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4249 }
4250 }
18004c5d 4251 mutex_unlock(&slab_mutex);
b9049e23
YG
4252}
4253
4254static int slab_mem_going_online_callback(void *arg)
4255{
4256 struct kmem_cache_node *n;
4257 struct kmem_cache *s;
4258 struct memory_notify *marg = arg;
b9d5ab25 4259 int nid = marg->status_change_nid_normal;
b9049e23
YG
4260 int ret = 0;
4261
4262 /*
4263 * If the node's memory is already available, then kmem_cache_node is
4264 * already created. Nothing to do.
4265 */
4266 if (nid < 0)
4267 return 0;
4268
4269 /*
0121c619 4270 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4271 * allocate a kmem_cache_node structure in order to bring the node
4272 * online.
4273 */
18004c5d 4274 mutex_lock(&slab_mutex);
b9049e23
YG
4275 list_for_each_entry(s, &slab_caches, list) {
4276 /*
4277 * XXX: kmem_cache_alloc_node will fallback to other nodes
4278 * since memory is not yet available from the node that
4279 * is brought up.
4280 */
8de66a0c 4281 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4282 if (!n) {
4283 ret = -ENOMEM;
4284 goto out;
4285 }
4053497d 4286 init_kmem_cache_node(n);
b9049e23
YG
4287 s->node[nid] = n;
4288 }
4289out:
18004c5d 4290 mutex_unlock(&slab_mutex);
b9049e23
YG
4291 return ret;
4292}
4293
4294static int slab_memory_callback(struct notifier_block *self,
4295 unsigned long action, void *arg)
4296{
4297 int ret = 0;
4298
4299 switch (action) {
4300 case MEM_GOING_ONLINE:
4301 ret = slab_mem_going_online_callback(arg);
4302 break;
4303 case MEM_GOING_OFFLINE:
4304 ret = slab_mem_going_offline_callback(arg);
4305 break;
4306 case MEM_OFFLINE:
4307 case MEM_CANCEL_ONLINE:
4308 slab_mem_offline_callback(arg);
4309 break;
4310 case MEM_ONLINE:
4311 case MEM_CANCEL_OFFLINE:
4312 break;
4313 }
dc19f9db
KH
4314 if (ret)
4315 ret = notifier_from_errno(ret);
4316 else
4317 ret = NOTIFY_OK;
b9049e23
YG
4318 return ret;
4319}
4320
3ac38faa
AM
4321static struct notifier_block slab_memory_callback_nb = {
4322 .notifier_call = slab_memory_callback,
4323 .priority = SLAB_CALLBACK_PRI,
4324};
b9049e23 4325
81819f0f
CL
4326/********************************************************************
4327 * Basic setup of slabs
4328 *******************************************************************/
4329
51df1142
CL
4330/*
4331 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4332 * the page allocator. Allocate them properly then fix up the pointers
4333 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4334 */
4335
dffb4d60 4336static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4337{
4338 int node;
dffb4d60 4339 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4340 struct kmem_cache_node *n;
51df1142 4341
dffb4d60 4342 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4343
7d557b3c
GC
4344 /*
4345 * This runs very early, and only the boot processor is supposed to be
4346 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4347 * IPIs around.
4348 */
4349 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4350 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4351 struct page *p;
4352
916ac052 4353 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4354 p->slab_cache = s;
51df1142 4355
607bf324 4356#ifdef CONFIG_SLUB_DEBUG
916ac052 4357 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4358 p->slab_cache = s;
51df1142 4359#endif
51df1142 4360 }
f7ce3190 4361 slab_init_memcg_params(s);
dffb4d60 4362 list_add(&s->list, &slab_caches);
9855609b 4363 memcg_link_cache(s);
dffb4d60 4364 return s;
51df1142
CL
4365}
4366
81819f0f
CL
4367void __init kmem_cache_init(void)
4368{
dffb4d60
CL
4369 static __initdata struct kmem_cache boot_kmem_cache,
4370 boot_kmem_cache_node;
51df1142 4371
fc8d8620
SG
4372 if (debug_guardpage_minorder())
4373 slub_max_order = 0;
4374
dffb4d60
CL
4375 kmem_cache_node = &boot_kmem_cache_node;
4376 kmem_cache = &boot_kmem_cache;
51df1142 4377
dffb4d60 4378 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4379 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4380
3ac38faa 4381 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4382
4383 /* Able to allocate the per node structures */
4384 slab_state = PARTIAL;
4385
dffb4d60
CL
4386 create_boot_cache(kmem_cache, "kmem_cache",
4387 offsetof(struct kmem_cache, node) +
4388 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4389 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4390
dffb4d60 4391 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4392 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4393
4394 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4395 setup_kmalloc_cache_index_table();
f97d5f63 4396 create_kmalloc_caches(0);
81819f0f 4397
210e7a43
TG
4398 /* Setup random freelists for each cache */
4399 init_freelist_randomization();
4400
a96a87bf
SAS
4401 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4402 slub_cpu_dead);
81819f0f 4403
b9726c26 4404 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4405 cache_line_size(),
81819f0f
CL
4406 slub_min_order, slub_max_order, slub_min_objects,
4407 nr_cpu_ids, nr_node_ids);
4408}
4409
7e85ee0c
PE
4410void __init kmem_cache_init_late(void)
4411{
7e85ee0c
PE
4412}
4413
2633d7a0 4414struct kmem_cache *
f4957d5b 4415__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4416 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4417{
426589f5 4418 struct kmem_cache *s, *c;
81819f0f 4419
a44cb944 4420 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4421 if (s) {
4422 s->refcount++;
84d0ddd6 4423
81819f0f
CL
4424 /*
4425 * Adjust the object sizes so that we clear
4426 * the complete object on kzalloc.
4427 */
1b473f29 4428 s->object_size = max(s->object_size, size);
52ee6d74 4429 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4430
9855609b
RG
4431 c = memcg_cache(s);
4432 if (c) {
84d0ddd6 4433 c->object_size = s->object_size;
52ee6d74 4434 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4435 }
4436
7b8f3b66 4437 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4438 s->refcount--;
cbb79694 4439 s = NULL;
7b8f3b66 4440 }
a0e1d1be 4441 }
6446faa2 4442
cbb79694
CL
4443 return s;
4444}
84c1cf62 4445
d50112ed 4446int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4447{
aac3a166
PE
4448 int err;
4449
4450 err = kmem_cache_open(s, flags);
4451 if (err)
4452 return err;
20cea968 4453
45530c44
CL
4454 /* Mutex is not taken during early boot */
4455 if (slab_state <= UP)
4456 return 0;
4457
107dab5c 4458 memcg_propagate_slab_attrs(s);
aac3a166 4459 err = sysfs_slab_add(s);
aac3a166 4460 if (err)
52b4b950 4461 __kmem_cache_release(s);
20cea968 4462
aac3a166 4463 return err;
81819f0f 4464}
81819f0f 4465
ce71e27c 4466void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4467{
aadb4bc4 4468 struct kmem_cache *s;
94b528d0 4469 void *ret;
aadb4bc4 4470
95a05b42 4471 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4472 return kmalloc_large(size, gfpflags);
4473
2c59dd65 4474 s = kmalloc_slab(size, gfpflags);
81819f0f 4475
2408c550 4476 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4477 return s;
81819f0f 4478
2b847c3c 4479 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4480
25985edc 4481 /* Honor the call site pointer we received. */
ca2b84cb 4482 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4483
4484 return ret;
81819f0f 4485}
fd7cb575 4486EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4487
5d1f57e4 4488#ifdef CONFIG_NUMA
81819f0f 4489void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4490 int node, unsigned long caller)
81819f0f 4491{
aadb4bc4 4492 struct kmem_cache *s;
94b528d0 4493 void *ret;
aadb4bc4 4494
95a05b42 4495 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4496 ret = kmalloc_large_node(size, gfpflags, node);
4497
4498 trace_kmalloc_node(caller, ret,
4499 size, PAGE_SIZE << get_order(size),
4500 gfpflags, node);
4501
4502 return ret;
4503 }
eada35ef 4504
2c59dd65 4505 s = kmalloc_slab(size, gfpflags);
81819f0f 4506
2408c550 4507 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4508 return s;
81819f0f 4509
2b847c3c 4510 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4511
25985edc 4512 /* Honor the call site pointer we received. */
ca2b84cb 4513 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4514
4515 return ret;
81819f0f 4516}
fd7cb575 4517EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4518#endif
81819f0f 4519
ab4d5ed5 4520#ifdef CONFIG_SYSFS
205ab99d
CL
4521static int count_inuse(struct page *page)
4522{
4523 return page->inuse;
4524}
4525
4526static int count_total(struct page *page)
4527{
4528 return page->objects;
4529}
ab4d5ed5 4530#endif
205ab99d 4531
ab4d5ed5 4532#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4533static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4534{
4535 void *p;
a973e9dd 4536 void *addr = page_address(page);
90e9f6a6
YZ
4537 unsigned long *map;
4538
4539 slab_lock(page);
53e15af0 4540
dd98afd4 4541 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4542 goto unlock;
53e15af0
CL
4543
4544 /* Now we know that a valid freelist exists */
90e9f6a6 4545 map = get_map(s, page);
5f80b13a 4546 for_each_object(p, s, addr, page->objects) {
4138fdfc 4547 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4548 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4549
dd98afd4
YZ
4550 if (!check_object(s, page, p, val))
4551 break;
4552 }
90e9f6a6
YZ
4553 put_map(map);
4554unlock:
881db7fb 4555 slab_unlock(page);
53e15af0
CL
4556}
4557
434e245d 4558static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4559 struct kmem_cache_node *n)
53e15af0
CL
4560{
4561 unsigned long count = 0;
4562 struct page *page;
4563 unsigned long flags;
4564
4565 spin_lock_irqsave(&n->list_lock, flags);
4566
916ac052 4567 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4568 validate_slab(s, page);
53e15af0
CL
4569 count++;
4570 }
4571 if (count != n->nr_partial)
f9f58285
FF
4572 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4573 s->name, count, n->nr_partial);
53e15af0
CL
4574
4575 if (!(s->flags & SLAB_STORE_USER))
4576 goto out;
4577
916ac052 4578 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4579 validate_slab(s, page);
53e15af0
CL
4580 count++;
4581 }
4582 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4583 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4584 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4585
4586out:
4587 spin_unlock_irqrestore(&n->list_lock, flags);
4588 return count;
4589}
4590
434e245d 4591static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4592{
4593 int node;
4594 unsigned long count = 0;
fa45dc25 4595 struct kmem_cache_node *n;
53e15af0
CL
4596
4597 flush_all(s);
fa45dc25 4598 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4599 count += validate_slab_node(s, n);
4600
53e15af0
CL
4601 return count;
4602}
88a420e4 4603/*
672bba3a 4604 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4605 * and freed.
4606 */
4607
4608struct location {
4609 unsigned long count;
ce71e27c 4610 unsigned long addr;
45edfa58
CL
4611 long long sum_time;
4612 long min_time;
4613 long max_time;
4614 long min_pid;
4615 long max_pid;
174596a0 4616 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4617 nodemask_t nodes;
88a420e4
CL
4618};
4619
4620struct loc_track {
4621 unsigned long max;
4622 unsigned long count;
4623 struct location *loc;
4624};
4625
4626static void free_loc_track(struct loc_track *t)
4627{
4628 if (t->max)
4629 free_pages((unsigned long)t->loc,
4630 get_order(sizeof(struct location) * t->max));
4631}
4632
68dff6a9 4633static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4634{
4635 struct location *l;
4636 int order;
4637
88a420e4
CL
4638 order = get_order(sizeof(struct location) * max);
4639
68dff6a9 4640 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4641 if (!l)
4642 return 0;
4643
4644 if (t->count) {
4645 memcpy(l, t->loc, sizeof(struct location) * t->count);
4646 free_loc_track(t);
4647 }
4648 t->max = max;
4649 t->loc = l;
4650 return 1;
4651}
4652
4653static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4654 const struct track *track)
88a420e4
CL
4655{
4656 long start, end, pos;
4657 struct location *l;
ce71e27c 4658 unsigned long caddr;
45edfa58 4659 unsigned long age = jiffies - track->when;
88a420e4
CL
4660
4661 start = -1;
4662 end = t->count;
4663
4664 for ( ; ; ) {
4665 pos = start + (end - start + 1) / 2;
4666
4667 /*
4668 * There is nothing at "end". If we end up there
4669 * we need to add something to before end.
4670 */
4671 if (pos == end)
4672 break;
4673
4674 caddr = t->loc[pos].addr;
45edfa58
CL
4675 if (track->addr == caddr) {
4676
4677 l = &t->loc[pos];
4678 l->count++;
4679 if (track->when) {
4680 l->sum_time += age;
4681 if (age < l->min_time)
4682 l->min_time = age;
4683 if (age > l->max_time)
4684 l->max_time = age;
4685
4686 if (track->pid < l->min_pid)
4687 l->min_pid = track->pid;
4688 if (track->pid > l->max_pid)
4689 l->max_pid = track->pid;
4690
174596a0
RR
4691 cpumask_set_cpu(track->cpu,
4692 to_cpumask(l->cpus));
45edfa58
CL
4693 }
4694 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4695 return 1;
4696 }
4697
45edfa58 4698 if (track->addr < caddr)
88a420e4
CL
4699 end = pos;
4700 else
4701 start = pos;
4702 }
4703
4704 /*
672bba3a 4705 * Not found. Insert new tracking element.
88a420e4 4706 */
68dff6a9 4707 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4708 return 0;
4709
4710 l = t->loc + pos;
4711 if (pos < t->count)
4712 memmove(l + 1, l,
4713 (t->count - pos) * sizeof(struct location));
4714 t->count++;
4715 l->count = 1;
45edfa58
CL
4716 l->addr = track->addr;
4717 l->sum_time = age;
4718 l->min_time = age;
4719 l->max_time = age;
4720 l->min_pid = track->pid;
4721 l->max_pid = track->pid;
174596a0
RR
4722 cpumask_clear(to_cpumask(l->cpus));
4723 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4724 nodes_clear(l->nodes);
4725 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4726 return 1;
4727}
4728
4729static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4730 struct page *page, enum track_item alloc)
88a420e4 4731{
a973e9dd 4732 void *addr = page_address(page);
88a420e4 4733 void *p;
90e9f6a6 4734 unsigned long *map;
88a420e4 4735
90e9f6a6 4736 map = get_map(s, page);
224a88be 4737 for_each_object(p, s, addr, page->objects)
4138fdfc 4738 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4739 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4740 put_map(map);
88a420e4
CL
4741}
4742
4743static int list_locations(struct kmem_cache *s, char *buf,
4744 enum track_item alloc)
4745{
e374d483 4746 int len = 0;
88a420e4 4747 unsigned long i;
68dff6a9 4748 struct loc_track t = { 0, 0, NULL };
88a420e4 4749 int node;
fa45dc25 4750 struct kmem_cache_node *n;
88a420e4 4751
90e9f6a6
YZ
4752 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4753 GFP_KERNEL)) {
68dff6a9 4754 return sprintf(buf, "Out of memory\n");
bbd7d57b 4755 }
88a420e4
CL
4756 /* Push back cpu slabs */
4757 flush_all(s);
4758
fa45dc25 4759 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4760 unsigned long flags;
4761 struct page *page;
4762
9e86943b 4763 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4764 continue;
4765
4766 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4767 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4768 process_slab(&t, s, page, alloc);
916ac052 4769 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4770 process_slab(&t, s, page, alloc);
88a420e4
CL
4771 spin_unlock_irqrestore(&n->list_lock, flags);
4772 }
4773
4774 for (i = 0; i < t.count; i++) {
45edfa58 4775 struct location *l = &t.loc[i];
88a420e4 4776
9c246247 4777 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4778 break;
e374d483 4779 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4780
4781 if (l->addr)
62c70bce 4782 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4783 else
e374d483 4784 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4785
4786 if (l->sum_time != l->min_time) {
e374d483 4787 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4788 l->min_time,
4789 (long)div_u64(l->sum_time, l->count),
4790 l->max_time);
45edfa58 4791 } else
e374d483 4792 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4793 l->min_time);
4794
4795 if (l->min_pid != l->max_pid)
e374d483 4796 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4797 l->min_pid, l->max_pid);
4798 else
e374d483 4799 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4800 l->min_pid);
4801
174596a0
RR
4802 if (num_online_cpus() > 1 &&
4803 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4804 len < PAGE_SIZE - 60)
4805 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4806 " cpus=%*pbl",
4807 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4808
62bc62a8 4809 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4810 len < PAGE_SIZE - 60)
4811 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4812 " nodes=%*pbl",
4813 nodemask_pr_args(&l->nodes));
45edfa58 4814
e374d483 4815 len += sprintf(buf + len, "\n");
88a420e4
CL
4816 }
4817
4818 free_loc_track(&t);
4819 if (!t.count)
e374d483
HH
4820 len += sprintf(buf, "No data\n");
4821 return len;
88a420e4 4822}
6dfd1b65 4823#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4824
a5a84755 4825#ifdef SLUB_RESILIENCY_TEST
c07b8183 4826static void __init resiliency_test(void)
a5a84755
CL
4827{
4828 u8 *p;
cc252eae 4829 int type = KMALLOC_NORMAL;
a5a84755 4830
95a05b42 4831 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4832
f9f58285
FF
4833 pr_err("SLUB resiliency testing\n");
4834 pr_err("-----------------------\n");
4835 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4836
4837 p = kzalloc(16, GFP_KERNEL);
4838 p[16] = 0x12;
f9f58285
FF
4839 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4840 p + 16);
a5a84755 4841
cc252eae 4842 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4843
4844 /* Hmmm... The next two are dangerous */
4845 p = kzalloc(32, GFP_KERNEL);
4846 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4847 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4848 p);
4849 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4850
cc252eae 4851 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4852 p = kzalloc(64, GFP_KERNEL);
4853 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4854 *p = 0x56;
f9f58285
FF
4855 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4856 p);
4857 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4858 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4859
f9f58285 4860 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4861 p = kzalloc(128, GFP_KERNEL);
4862 kfree(p);
4863 *p = 0x78;
f9f58285 4864 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4865 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4866
4867 p = kzalloc(256, GFP_KERNEL);
4868 kfree(p);
4869 p[50] = 0x9a;
f9f58285 4870 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4871 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4872
4873 p = kzalloc(512, GFP_KERNEL);
4874 kfree(p);
4875 p[512] = 0xab;
f9f58285 4876 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4877 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4878}
4879#else
4880#ifdef CONFIG_SYSFS
4881static void resiliency_test(void) {};
4882#endif
6dfd1b65 4883#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4884
ab4d5ed5 4885#ifdef CONFIG_SYSFS
81819f0f 4886enum slab_stat_type {
205ab99d
CL
4887 SL_ALL, /* All slabs */
4888 SL_PARTIAL, /* Only partially allocated slabs */
4889 SL_CPU, /* Only slabs used for cpu caches */
4890 SL_OBJECTS, /* Determine allocated objects not slabs */
4891 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4892};
4893
205ab99d 4894#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4895#define SO_PARTIAL (1 << SL_PARTIAL)
4896#define SO_CPU (1 << SL_CPU)
4897#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4898#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4899
1663f26d
TH
4900#ifdef CONFIG_MEMCG
4901static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4902
4903static int __init setup_slub_memcg_sysfs(char *str)
4904{
4905 int v;
4906
4907 if (get_option(&str, &v) > 0)
4908 memcg_sysfs_enabled = v;
4909
4910 return 1;
4911}
4912
4913__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4914#endif
4915
62e5c4b4
CG
4916static ssize_t show_slab_objects(struct kmem_cache *s,
4917 char *buf, unsigned long flags)
81819f0f
CL
4918{
4919 unsigned long total = 0;
81819f0f
CL
4920 int node;
4921 int x;
4922 unsigned long *nodes;
81819f0f 4923
6396bb22 4924 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4925 if (!nodes)
4926 return -ENOMEM;
81819f0f 4927
205ab99d
CL
4928 if (flags & SO_CPU) {
4929 int cpu;
81819f0f 4930
205ab99d 4931 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4932 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4933 cpu);
ec3ab083 4934 int node;
49e22585 4935 struct page *page;
dfb4f096 4936
4db0c3c2 4937 page = READ_ONCE(c->page);
ec3ab083
CL
4938 if (!page)
4939 continue;
205ab99d 4940
ec3ab083
CL
4941 node = page_to_nid(page);
4942 if (flags & SO_TOTAL)
4943 x = page->objects;
4944 else if (flags & SO_OBJECTS)
4945 x = page->inuse;
4946 else
4947 x = 1;
49e22585 4948
ec3ab083
CL
4949 total += x;
4950 nodes[node] += x;
4951
a93cf07b 4952 page = slub_percpu_partial_read_once(c);
49e22585 4953 if (page) {
8afb1474
LZ
4954 node = page_to_nid(page);
4955 if (flags & SO_TOTAL)
4956 WARN_ON_ONCE(1);
4957 else if (flags & SO_OBJECTS)
4958 WARN_ON_ONCE(1);
4959 else
4960 x = page->pages;
bc6697d8
ED
4961 total += x;
4962 nodes[node] += x;
49e22585 4963 }
81819f0f
CL
4964 }
4965 }
4966
e4f8e513
QC
4967 /*
4968 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4969 * already held which will conflict with an existing lock order:
4970 *
4971 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4972 *
4973 * We don't really need mem_hotplug_lock (to hold off
4974 * slab_mem_going_offline_callback) here because slab's memory hot
4975 * unplug code doesn't destroy the kmem_cache->node[] data.
4976 */
4977
ab4d5ed5 4978#ifdef CONFIG_SLUB_DEBUG
205ab99d 4979 if (flags & SO_ALL) {
fa45dc25
CL
4980 struct kmem_cache_node *n;
4981
4982 for_each_kmem_cache_node(s, node, n) {
205ab99d 4983
d0e0ac97
CG
4984 if (flags & SO_TOTAL)
4985 x = atomic_long_read(&n->total_objects);
4986 else if (flags & SO_OBJECTS)
4987 x = atomic_long_read(&n->total_objects) -
4988 count_partial(n, count_free);
81819f0f 4989 else
205ab99d 4990 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4991 total += x;
4992 nodes[node] += x;
4993 }
4994
ab4d5ed5
CL
4995 } else
4996#endif
4997 if (flags & SO_PARTIAL) {
fa45dc25 4998 struct kmem_cache_node *n;
81819f0f 4999
fa45dc25 5000 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5001 if (flags & SO_TOTAL)
5002 x = count_partial(n, count_total);
5003 else if (flags & SO_OBJECTS)
5004 x = count_partial(n, count_inuse);
81819f0f 5005 else
205ab99d 5006 x = n->nr_partial;
81819f0f
CL
5007 total += x;
5008 nodes[node] += x;
5009 }
5010 }
81819f0f
CL
5011 x = sprintf(buf, "%lu", total);
5012#ifdef CONFIG_NUMA
fa45dc25 5013 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
5014 if (nodes[node])
5015 x += sprintf(buf + x, " N%d=%lu",
5016 node, nodes[node]);
5017#endif
5018 kfree(nodes);
5019 return x + sprintf(buf + x, "\n");
5020}
5021
81819f0f 5022#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5023#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5024
5025struct slab_attribute {
5026 struct attribute attr;
5027 ssize_t (*show)(struct kmem_cache *s, char *buf);
5028 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5029};
5030
5031#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5032 static struct slab_attribute _name##_attr = \
5033 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5034
5035#define SLAB_ATTR(_name) \
5036 static struct slab_attribute _name##_attr = \
ab067e99 5037 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5038
81819f0f
CL
5039static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5040{
44065b2e 5041 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5042}
5043SLAB_ATTR_RO(slab_size);
5044
5045static ssize_t align_show(struct kmem_cache *s, char *buf)
5046{
3a3791ec 5047 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5048}
5049SLAB_ATTR_RO(align);
5050
5051static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5052{
1b473f29 5053 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5054}
5055SLAB_ATTR_RO(object_size);
5056
5057static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5058{
19af27af 5059 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5060}
5061SLAB_ATTR_RO(objs_per_slab);
5062
5063static ssize_t order_show(struct kmem_cache *s, char *buf)
5064{
19af27af 5065 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5066}
32a6f409 5067SLAB_ATTR_RO(order);
81819f0f 5068
73d342b1
DR
5069static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5070{
5071 return sprintf(buf, "%lu\n", s->min_partial);
5072}
5073
5074static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5075 size_t length)
5076{
5077 unsigned long min;
5078 int err;
5079
3dbb95f7 5080 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5081 if (err)
5082 return err;
5083
c0bdb232 5084 set_min_partial(s, min);
73d342b1
DR
5085 return length;
5086}
5087SLAB_ATTR(min_partial);
5088
49e22585
CL
5089static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5090{
e6d0e1dc 5091 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5092}
5093
5094static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5095 size_t length)
5096{
e5d9998f 5097 unsigned int objects;
49e22585
CL
5098 int err;
5099
e5d9998f 5100 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5101 if (err)
5102 return err;
345c905d 5103 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5104 return -EINVAL;
49e22585 5105
e6d0e1dc 5106 slub_set_cpu_partial(s, objects);
49e22585
CL
5107 flush_all(s);
5108 return length;
5109}
5110SLAB_ATTR(cpu_partial);
5111
81819f0f
CL
5112static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5113{
62c70bce
JP
5114 if (!s->ctor)
5115 return 0;
5116 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5117}
5118SLAB_ATTR_RO(ctor);
5119
81819f0f
CL
5120static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5121{
4307c14f 5122 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5123}
5124SLAB_ATTR_RO(aliases);
5125
81819f0f
CL
5126static ssize_t partial_show(struct kmem_cache *s, char *buf)
5127{
d9acf4b7 5128 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5129}
5130SLAB_ATTR_RO(partial);
5131
5132static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5133{
d9acf4b7 5134 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5135}
5136SLAB_ATTR_RO(cpu_slabs);
5137
5138static ssize_t objects_show(struct kmem_cache *s, char *buf)
5139{
205ab99d 5140 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5141}
5142SLAB_ATTR_RO(objects);
5143
205ab99d
CL
5144static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5145{
5146 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5147}
5148SLAB_ATTR_RO(objects_partial);
5149
49e22585
CL
5150static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5151{
5152 int objects = 0;
5153 int pages = 0;
5154 int cpu;
5155 int len;
5156
5157 for_each_online_cpu(cpu) {
a93cf07b
WY
5158 struct page *page;
5159
5160 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5161
5162 if (page) {
5163 pages += page->pages;
5164 objects += page->pobjects;
5165 }
5166 }
5167
5168 len = sprintf(buf, "%d(%d)", objects, pages);
5169
5170#ifdef CONFIG_SMP
5171 for_each_online_cpu(cpu) {
a93cf07b
WY
5172 struct page *page;
5173
5174 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5175
5176 if (page && len < PAGE_SIZE - 20)
5177 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5178 page->pobjects, page->pages);
5179 }
5180#endif
5181 return len + sprintf(buf + len, "\n");
5182}
5183SLAB_ATTR_RO(slabs_cpu_partial);
5184
a5a84755
CL
5185static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5186{
5187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5188}
8f58119a 5189SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5190
5191static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5192{
5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5194}
5195SLAB_ATTR_RO(hwcache_align);
5196
5197#ifdef CONFIG_ZONE_DMA
5198static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5199{
5200 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5201}
5202SLAB_ATTR_RO(cache_dma);
5203#endif
5204
8eb8284b
DW
5205static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5206{
7bbdb81e 5207 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5208}
5209SLAB_ATTR_RO(usersize);
5210
a5a84755
CL
5211static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5212{
5f0d5a3a 5213 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5214}
5215SLAB_ATTR_RO(destroy_by_rcu);
5216
ab4d5ed5 5217#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5218static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5219{
5220 return show_slab_objects(s, buf, SO_ALL);
5221}
5222SLAB_ATTR_RO(slabs);
5223
205ab99d
CL
5224static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5225{
5226 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5227}
5228SLAB_ATTR_RO(total_objects);
5229
81819f0f
CL
5230static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5231{
becfda68 5232 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5233}
060807f8 5234SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5235
5236static ssize_t trace_show(struct kmem_cache *s, char *buf)
5237{
5238 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5239}
060807f8 5240SLAB_ATTR_RO(trace);
81819f0f 5241
81819f0f
CL
5242static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5243{
5244 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5245}
5246
ad38b5b1 5247SLAB_ATTR_RO(red_zone);
81819f0f
CL
5248
5249static ssize_t poison_show(struct kmem_cache *s, char *buf)
5250{
5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5252}
5253
ad38b5b1 5254SLAB_ATTR_RO(poison);
81819f0f
CL
5255
5256static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5257{
5258 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5259}
5260
ad38b5b1 5261SLAB_ATTR_RO(store_user);
81819f0f 5262
53e15af0
CL
5263static ssize_t validate_show(struct kmem_cache *s, char *buf)
5264{
5265 return 0;
5266}
5267
5268static ssize_t validate_store(struct kmem_cache *s,
5269 const char *buf, size_t length)
5270{
434e245d
CL
5271 int ret = -EINVAL;
5272
5273 if (buf[0] == '1') {
5274 ret = validate_slab_cache(s);
5275 if (ret >= 0)
5276 ret = length;
5277 }
5278 return ret;
53e15af0
CL
5279}
5280SLAB_ATTR(validate);
a5a84755
CL
5281
5282static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5283{
5284 if (!(s->flags & SLAB_STORE_USER))
5285 return -ENOSYS;
5286 return list_locations(s, buf, TRACK_ALLOC);
5287}
5288SLAB_ATTR_RO(alloc_calls);
5289
5290static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5291{
5292 if (!(s->flags & SLAB_STORE_USER))
5293 return -ENOSYS;
5294 return list_locations(s, buf, TRACK_FREE);
5295}
5296SLAB_ATTR_RO(free_calls);
5297#endif /* CONFIG_SLUB_DEBUG */
5298
5299#ifdef CONFIG_FAILSLAB
5300static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5301{
5302 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5303}
060807f8 5304SLAB_ATTR_RO(failslab);
ab4d5ed5 5305#endif
53e15af0 5306
2086d26a
CL
5307static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5308{
5309 return 0;
5310}
5311
5312static ssize_t shrink_store(struct kmem_cache *s,
5313 const char *buf, size_t length)
5314{
832f37f5 5315 if (buf[0] == '1')
04f768a3 5316 kmem_cache_shrink_all(s);
832f37f5 5317 else
2086d26a
CL
5318 return -EINVAL;
5319 return length;
5320}
5321SLAB_ATTR(shrink);
5322
81819f0f 5323#ifdef CONFIG_NUMA
9824601e 5324static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5325{
eb7235eb 5326 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5327}
5328
9824601e 5329static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5330 const char *buf, size_t length)
5331{
eb7235eb 5332 unsigned int ratio;
0121c619
CL
5333 int err;
5334
eb7235eb 5335 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5336 if (err)
5337 return err;
eb7235eb
AD
5338 if (ratio > 100)
5339 return -ERANGE;
0121c619 5340
eb7235eb 5341 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5342
81819f0f
CL
5343 return length;
5344}
9824601e 5345SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5346#endif
5347
8ff12cfc 5348#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5349static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5350{
5351 unsigned long sum = 0;
5352 int cpu;
5353 int len;
6da2ec56 5354 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5355
5356 if (!data)
5357 return -ENOMEM;
5358
5359 for_each_online_cpu(cpu) {
9dfc6e68 5360 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5361
5362 data[cpu] = x;
5363 sum += x;
5364 }
5365
5366 len = sprintf(buf, "%lu", sum);
5367
50ef37b9 5368#ifdef CONFIG_SMP
8ff12cfc
CL
5369 for_each_online_cpu(cpu) {
5370 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5371 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5372 }
50ef37b9 5373#endif
8ff12cfc
CL
5374 kfree(data);
5375 return len + sprintf(buf + len, "\n");
5376}
5377
78eb00cc
DR
5378static void clear_stat(struct kmem_cache *s, enum stat_item si)
5379{
5380 int cpu;
5381
5382 for_each_online_cpu(cpu)
9dfc6e68 5383 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5384}
5385
8ff12cfc
CL
5386#define STAT_ATTR(si, text) \
5387static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5388{ \
5389 return show_stat(s, buf, si); \
5390} \
78eb00cc
DR
5391static ssize_t text##_store(struct kmem_cache *s, \
5392 const char *buf, size_t length) \
5393{ \
5394 if (buf[0] != '0') \
5395 return -EINVAL; \
5396 clear_stat(s, si); \
5397 return length; \
5398} \
5399SLAB_ATTR(text); \
8ff12cfc
CL
5400
5401STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5402STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5403STAT_ATTR(FREE_FASTPATH, free_fastpath);
5404STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5405STAT_ATTR(FREE_FROZEN, free_frozen);
5406STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5407STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5408STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5409STAT_ATTR(ALLOC_SLAB, alloc_slab);
5410STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5411STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5412STAT_ATTR(FREE_SLAB, free_slab);
5413STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5414STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5415STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5416STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5417STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5418STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5419STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5420STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5421STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5422STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5423STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5424STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5425STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5426STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5427#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5428
06428780 5429static struct attribute *slab_attrs[] = {
81819f0f
CL
5430 &slab_size_attr.attr,
5431 &object_size_attr.attr,
5432 &objs_per_slab_attr.attr,
5433 &order_attr.attr,
73d342b1 5434 &min_partial_attr.attr,
49e22585 5435 &cpu_partial_attr.attr,
81819f0f 5436 &objects_attr.attr,
205ab99d 5437 &objects_partial_attr.attr,
81819f0f
CL
5438 &partial_attr.attr,
5439 &cpu_slabs_attr.attr,
5440 &ctor_attr.attr,
81819f0f
CL
5441 &aliases_attr.attr,
5442 &align_attr.attr,
81819f0f
CL
5443 &hwcache_align_attr.attr,
5444 &reclaim_account_attr.attr,
5445 &destroy_by_rcu_attr.attr,
a5a84755 5446 &shrink_attr.attr,
49e22585 5447 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5448#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5449 &total_objects_attr.attr,
5450 &slabs_attr.attr,
5451 &sanity_checks_attr.attr,
5452 &trace_attr.attr,
81819f0f
CL
5453 &red_zone_attr.attr,
5454 &poison_attr.attr,
5455 &store_user_attr.attr,
53e15af0 5456 &validate_attr.attr,
88a420e4
CL
5457 &alloc_calls_attr.attr,
5458 &free_calls_attr.attr,
ab4d5ed5 5459#endif
81819f0f
CL
5460#ifdef CONFIG_ZONE_DMA
5461 &cache_dma_attr.attr,
5462#endif
5463#ifdef CONFIG_NUMA
9824601e 5464 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5465#endif
5466#ifdef CONFIG_SLUB_STATS
5467 &alloc_fastpath_attr.attr,
5468 &alloc_slowpath_attr.attr,
5469 &free_fastpath_attr.attr,
5470 &free_slowpath_attr.attr,
5471 &free_frozen_attr.attr,
5472 &free_add_partial_attr.attr,
5473 &free_remove_partial_attr.attr,
5474 &alloc_from_partial_attr.attr,
5475 &alloc_slab_attr.attr,
5476 &alloc_refill_attr.attr,
e36a2652 5477 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5478 &free_slab_attr.attr,
5479 &cpuslab_flush_attr.attr,
5480 &deactivate_full_attr.attr,
5481 &deactivate_empty_attr.attr,
5482 &deactivate_to_head_attr.attr,
5483 &deactivate_to_tail_attr.attr,
5484 &deactivate_remote_frees_attr.attr,
03e404af 5485 &deactivate_bypass_attr.attr,
65c3376a 5486 &order_fallback_attr.attr,
b789ef51
CL
5487 &cmpxchg_double_fail_attr.attr,
5488 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5489 &cpu_partial_alloc_attr.attr,
5490 &cpu_partial_free_attr.attr,
8028dcea
AS
5491 &cpu_partial_node_attr.attr,
5492 &cpu_partial_drain_attr.attr,
81819f0f 5493#endif
4c13dd3b
DM
5494#ifdef CONFIG_FAILSLAB
5495 &failslab_attr.attr,
5496#endif
8eb8284b 5497 &usersize_attr.attr,
4c13dd3b 5498
81819f0f
CL
5499 NULL
5500};
5501
1fdaaa23 5502static const struct attribute_group slab_attr_group = {
81819f0f
CL
5503 .attrs = slab_attrs,
5504};
5505
5506static ssize_t slab_attr_show(struct kobject *kobj,
5507 struct attribute *attr,
5508 char *buf)
5509{
5510 struct slab_attribute *attribute;
5511 struct kmem_cache *s;
5512 int err;
5513
5514 attribute = to_slab_attr(attr);
5515 s = to_slab(kobj);
5516
5517 if (!attribute->show)
5518 return -EIO;
5519
5520 err = attribute->show(s, buf);
5521
5522 return err;
5523}
5524
5525static ssize_t slab_attr_store(struct kobject *kobj,
5526 struct attribute *attr,
5527 const char *buf, size_t len)
5528{
5529 struct slab_attribute *attribute;
5530 struct kmem_cache *s;
5531 int err;
5532
5533 attribute = to_slab_attr(attr);
5534 s = to_slab(kobj);
5535
5536 if (!attribute->store)
5537 return -EIO;
5538
5539 err = attribute->store(s, buf, len);
127424c8 5540#ifdef CONFIG_MEMCG
107dab5c 5541 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5542 struct kmem_cache *c;
81819f0f 5543
107dab5c
GC
5544 mutex_lock(&slab_mutex);
5545 if (s->max_attr_size < len)
5546 s->max_attr_size = len;
5547
ebe945c2
GC
5548 /*
5549 * This is a best effort propagation, so this function's return
5550 * value will be determined by the parent cache only. This is
5551 * basically because not all attributes will have a well
5552 * defined semantics for rollbacks - most of the actions will
5553 * have permanent effects.
5554 *
5555 * Returning the error value of any of the children that fail
5556 * is not 100 % defined, in the sense that users seeing the
5557 * error code won't be able to know anything about the state of
5558 * the cache.
5559 *
5560 * Only returning the error code for the parent cache at least
5561 * has well defined semantics. The cache being written to
5562 * directly either failed or succeeded, in which case we loop
5563 * through the descendants with best-effort propagation.
5564 */
9855609b
RG
5565 c = memcg_cache(s);
5566 if (c)
426589f5 5567 attribute->store(c, buf, len);
107dab5c
GC
5568 mutex_unlock(&slab_mutex);
5569 }
5570#endif
81819f0f
CL
5571 return err;
5572}
5573
107dab5c
GC
5574static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5575{
127424c8 5576#ifdef CONFIG_MEMCG
107dab5c
GC
5577 int i;
5578 char *buffer = NULL;
93030d83 5579 struct kmem_cache *root_cache;
107dab5c 5580
93030d83 5581 if (is_root_cache(s))
107dab5c
GC
5582 return;
5583
f7ce3190 5584 root_cache = s->memcg_params.root_cache;
93030d83 5585
107dab5c
GC
5586 /*
5587 * This mean this cache had no attribute written. Therefore, no point
5588 * in copying default values around
5589 */
93030d83 5590 if (!root_cache->max_attr_size)
107dab5c
GC
5591 return;
5592
5593 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5594 char mbuf[64];
5595 char *buf;
5596 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5597 ssize_t len;
107dab5c
GC
5598
5599 if (!attr || !attr->store || !attr->show)
5600 continue;
5601
5602 /*
5603 * It is really bad that we have to allocate here, so we will
5604 * do it only as a fallback. If we actually allocate, though,
5605 * we can just use the allocated buffer until the end.
5606 *
5607 * Most of the slub attributes will tend to be very small in
5608 * size, but sysfs allows buffers up to a page, so they can
5609 * theoretically happen.
5610 */
5611 if (buffer)
5612 buf = buffer;
a68ee057
QC
5613 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5614 !IS_ENABLED(CONFIG_SLUB_STATS))
107dab5c
GC
5615 buf = mbuf;
5616 else {
5617 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5618 if (WARN_ON(!buffer))
5619 continue;
5620 buf = buffer;
5621 }
5622
478fe303
TG
5623 len = attr->show(root_cache, buf);
5624 if (len > 0)
5625 attr->store(s, buf, len);
107dab5c
GC
5626 }
5627
5628 if (buffer)
5629 free_page((unsigned long)buffer);
6dfd1b65 5630#endif /* CONFIG_MEMCG */
107dab5c
GC
5631}
5632
41a21285
CL
5633static void kmem_cache_release(struct kobject *k)
5634{
5635 slab_kmem_cache_release(to_slab(k));
5636}
5637
52cf25d0 5638static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5639 .show = slab_attr_show,
5640 .store = slab_attr_store,
5641};
5642
5643static struct kobj_type slab_ktype = {
5644 .sysfs_ops = &slab_sysfs_ops,
41a21285 5645 .release = kmem_cache_release,
81819f0f
CL
5646};
5647
27c3a314 5648static struct kset *slab_kset;
81819f0f 5649
9a41707b
VD
5650static inline struct kset *cache_kset(struct kmem_cache *s)
5651{
127424c8 5652#ifdef CONFIG_MEMCG
9a41707b 5653 if (!is_root_cache(s))
f7ce3190 5654 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5655#endif
5656 return slab_kset;
5657}
5658
81819f0f
CL
5659#define ID_STR_LENGTH 64
5660
5661/* Create a unique string id for a slab cache:
6446faa2
CL
5662 *
5663 * Format :[flags-]size
81819f0f
CL
5664 */
5665static char *create_unique_id(struct kmem_cache *s)
5666{
5667 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5668 char *p = name;
5669
5670 BUG_ON(!name);
5671
5672 *p++ = ':';
5673 /*
5674 * First flags affecting slabcache operations. We will only
5675 * get here for aliasable slabs so we do not need to support
5676 * too many flags. The flags here must cover all flags that
5677 * are matched during merging to guarantee that the id is
5678 * unique.
5679 */
5680 if (s->flags & SLAB_CACHE_DMA)
5681 *p++ = 'd';
6d6ea1e9
NB
5682 if (s->flags & SLAB_CACHE_DMA32)
5683 *p++ = 'D';
81819f0f
CL
5684 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5685 *p++ = 'a';
becfda68 5686 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5687 *p++ = 'F';
230e9fc2
VD
5688 if (s->flags & SLAB_ACCOUNT)
5689 *p++ = 'A';
81819f0f
CL
5690 if (p != name + 1)
5691 *p++ = '-';
44065b2e 5692 p += sprintf(p, "%07u", s->size);
2633d7a0 5693
81819f0f
CL
5694 BUG_ON(p > name + ID_STR_LENGTH - 1);
5695 return name;
5696}
5697
3b7b3140
TH
5698static void sysfs_slab_remove_workfn(struct work_struct *work)
5699{
5700 struct kmem_cache *s =
5701 container_of(work, struct kmem_cache, kobj_remove_work);
5702
5703 if (!s->kobj.state_in_sysfs)
5704 /*
5705 * For a memcg cache, this may be called during
5706 * deactivation and again on shutdown. Remove only once.
5707 * A cache is never shut down before deactivation is
5708 * complete, so no need to worry about synchronization.
5709 */
f6ba4880 5710 goto out;
3b7b3140
TH
5711
5712#ifdef CONFIG_MEMCG
5713 kset_unregister(s->memcg_kset);
5714#endif
f6ba4880 5715out:
3b7b3140
TH
5716 kobject_put(&s->kobj);
5717}
5718
81819f0f
CL
5719static int sysfs_slab_add(struct kmem_cache *s)
5720{
5721 int err;
5722 const char *name;
1663f26d 5723 struct kset *kset = cache_kset(s);
45530c44 5724 int unmergeable = slab_unmergeable(s);
81819f0f 5725
3b7b3140
TH
5726 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5727
1663f26d
TH
5728 if (!kset) {
5729 kobject_init(&s->kobj, &slab_ktype);
5730 return 0;
5731 }
5732
11066386
MC
5733 if (!unmergeable && disable_higher_order_debug &&
5734 (slub_debug & DEBUG_METADATA_FLAGS))
5735 unmergeable = 1;
5736
81819f0f
CL
5737 if (unmergeable) {
5738 /*
5739 * Slabcache can never be merged so we can use the name proper.
5740 * This is typically the case for debug situations. In that
5741 * case we can catch duplicate names easily.
5742 */
27c3a314 5743 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5744 name = s->name;
5745 } else {
5746 /*
5747 * Create a unique name for the slab as a target
5748 * for the symlinks.
5749 */
5750 name = create_unique_id(s);
5751 }
5752
1663f26d 5753 s->kobj.kset = kset;
26e4f205 5754 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5755 if (err) {
5756 kobject_put(&s->kobj);
80da026a 5757 goto out;
dde3c6b7 5758 }
81819f0f
CL
5759
5760 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5761 if (err)
5762 goto out_del_kobj;
9a41707b 5763
127424c8 5764#ifdef CONFIG_MEMCG
1663f26d 5765 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5766 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5767 if (!s->memcg_kset) {
54b6a731
DJ
5768 err = -ENOMEM;
5769 goto out_del_kobj;
9a41707b
VD
5770 }
5771 }
5772#endif
5773
81819f0f
CL
5774 if (!unmergeable) {
5775 /* Setup first alias */
5776 sysfs_slab_alias(s, s->name);
81819f0f 5777 }
54b6a731
DJ
5778out:
5779 if (!unmergeable)
5780 kfree(name);
5781 return err;
5782out_del_kobj:
5783 kobject_del(&s->kobj);
54b6a731 5784 goto out;
81819f0f
CL
5785}
5786
bf5eb3de 5787static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5788{
97d06609 5789 if (slab_state < FULL)
2bce6485
CL
5790 /*
5791 * Sysfs has not been setup yet so no need to remove the
5792 * cache from sysfs.
5793 */
5794 return;
5795
3b7b3140
TH
5796 kobject_get(&s->kobj);
5797 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5798}
5799
d50d82fa
MP
5800void sysfs_slab_unlink(struct kmem_cache *s)
5801{
5802 if (slab_state >= FULL)
5803 kobject_del(&s->kobj);
5804}
5805
bf5eb3de
TH
5806void sysfs_slab_release(struct kmem_cache *s)
5807{
5808 if (slab_state >= FULL)
5809 kobject_put(&s->kobj);
81819f0f
CL
5810}
5811
5812/*
5813 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5814 * available lest we lose that information.
81819f0f
CL
5815 */
5816struct saved_alias {
5817 struct kmem_cache *s;
5818 const char *name;
5819 struct saved_alias *next;
5820};
5821
5af328a5 5822static struct saved_alias *alias_list;
81819f0f
CL
5823
5824static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5825{
5826 struct saved_alias *al;
5827
97d06609 5828 if (slab_state == FULL) {
81819f0f
CL
5829 /*
5830 * If we have a leftover link then remove it.
5831 */
27c3a314
GKH
5832 sysfs_remove_link(&slab_kset->kobj, name);
5833 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5834 }
5835
5836 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5837 if (!al)
5838 return -ENOMEM;
5839
5840 al->s = s;
5841 al->name = name;
5842 al->next = alias_list;
5843 alias_list = al;
5844 return 0;
5845}
5846
5847static int __init slab_sysfs_init(void)
5848{
5b95a4ac 5849 struct kmem_cache *s;
81819f0f
CL
5850 int err;
5851
18004c5d 5852 mutex_lock(&slab_mutex);
2bce6485 5853
d7660ce5 5854 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5855 if (!slab_kset) {
18004c5d 5856 mutex_unlock(&slab_mutex);
f9f58285 5857 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5858 return -ENOSYS;
5859 }
5860
97d06609 5861 slab_state = FULL;
26a7bd03 5862
5b95a4ac 5863 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5864 err = sysfs_slab_add(s);
5d540fb7 5865 if (err)
f9f58285
FF
5866 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5867 s->name);
26a7bd03 5868 }
81819f0f
CL
5869
5870 while (alias_list) {
5871 struct saved_alias *al = alias_list;
5872
5873 alias_list = alias_list->next;
5874 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5875 if (err)
f9f58285
FF
5876 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 al->name);
81819f0f
CL
5878 kfree(al);
5879 }
5880
18004c5d 5881 mutex_unlock(&slab_mutex);
81819f0f
CL
5882 resiliency_test();
5883 return 0;
5884}
5885
5886__initcall(slab_sysfs_init);
ab4d5ed5 5887#endif /* CONFIG_SYSFS */
57ed3eda
PE
5888
5889/*
5890 * The /proc/slabinfo ABI
5891 */
5b365771 5892#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5893void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5894{
57ed3eda 5895 unsigned long nr_slabs = 0;
205ab99d
CL
5896 unsigned long nr_objs = 0;
5897 unsigned long nr_free = 0;
57ed3eda 5898 int node;
fa45dc25 5899 struct kmem_cache_node *n;
57ed3eda 5900
fa45dc25 5901 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5902 nr_slabs += node_nr_slabs(n);
5903 nr_objs += node_nr_objs(n);
205ab99d 5904 nr_free += count_partial(n, count_free);
57ed3eda
PE
5905 }
5906
0d7561c6
GC
5907 sinfo->active_objs = nr_objs - nr_free;
5908 sinfo->num_objs = nr_objs;
5909 sinfo->active_slabs = nr_slabs;
5910 sinfo->num_slabs = nr_slabs;
5911 sinfo->objects_per_slab = oo_objects(s->oo);
5912 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5913}
5914
0d7561c6 5915void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5916{
7b3c3a50
AD
5917}
5918
b7454ad3
GC
5919ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5920 size_t count, loff_t *ppos)
7b3c3a50 5921{
b7454ad3 5922 return -EIO;
7b3c3a50 5923}
5b365771 5924#endif /* CONFIG_SLUB_DEBUG */
This page took 2.621827 seconds and 4 git commands to generate.