]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> | |
37 | #include <linux/sysctl.h> | |
38 | #include <linux/cpu.h> | |
39 | #include <linux/cpuset.h> | |
bdc8cb98 | 40 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> | |
a6cccdc3 | 43 | #include <linux/vmstat.h> |
4be38e35 | 44 | #include <linux/mempolicy.h> |
6811378e | 45 | #include <linux/stop_machine.h> |
c713216d MG |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> | |
3fcfab16 | 48 | #include <linux/backing-dev.h> |
933e312e | 49 | #include <linux/fault-inject.h> |
a5d76b54 | 50 | #include <linux/page-isolation.h> |
52d4b9ac | 51 | #include <linux/page_cgroup.h> |
3ac7fe5a | 52 | #include <linux/debugobjects.h> |
dbb1f81c | 53 | #include <linux/kmemleak.h> |
56de7263 | 54 | #include <linux/compaction.h> |
0d3d062a | 55 | #include <trace/events/kmem.h> |
718a3821 | 56 | #include <linux/ftrace_event.h> |
f212ad7c | 57 | #include <linux/memcontrol.h> |
268bb0ce | 58 | #include <linux/prefetch.h> |
041d3a8c | 59 | #include <linux/migrate.h> |
c0a32fc5 | 60 | #include <linux/page-debug-flags.h> |
1da177e4 LT |
61 | |
62 | #include <asm/tlbflush.h> | |
ac924c60 | 63 | #include <asm/div64.h> |
1da177e4 LT |
64 | #include "internal.h" |
65 | ||
72812019 LS |
66 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
67 | DEFINE_PER_CPU(int, numa_node); | |
68 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
69 | #endif | |
70 | ||
7aac7898 LS |
71 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
72 | /* | |
73 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
74 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
75 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
76 | * defined in <linux/topology.h>. | |
77 | */ | |
78 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
79 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
80 | #endif | |
81 | ||
1da177e4 | 82 | /* |
13808910 | 83 | * Array of node states. |
1da177e4 | 84 | */ |
13808910 CL |
85 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
86 | [N_POSSIBLE] = NODE_MASK_ALL, | |
87 | [N_ONLINE] = { { [0] = 1UL } }, | |
88 | #ifndef CONFIG_NUMA | |
89 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
90 | #ifdef CONFIG_HIGHMEM | |
91 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
92 | #endif | |
93 | [N_CPU] = { { [0] = 1UL } }, | |
94 | #endif /* NUMA */ | |
95 | }; | |
96 | EXPORT_SYMBOL(node_states); | |
97 | ||
6c231b7b | 98 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 99 | unsigned long totalreserve_pages __read_mostly; |
ab8fabd4 JW |
100 | /* |
101 | * When calculating the number of globally allowed dirty pages, there | |
102 | * is a certain number of per-zone reserves that should not be | |
103 | * considered dirtyable memory. This is the sum of those reserves | |
104 | * over all existing zones that contribute dirtyable memory. | |
105 | */ | |
106 | unsigned long dirty_balance_reserve __read_mostly; | |
107 | ||
1b76b02f | 108 | int percpu_pagelist_fraction; |
dcce284a | 109 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 110 | |
452aa699 RW |
111 | #ifdef CONFIG_PM_SLEEP |
112 | /* | |
113 | * The following functions are used by the suspend/hibernate code to temporarily | |
114 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
115 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
116 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
117 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
118 | * guaranteed not to run in parallel with that modification). | |
119 | */ | |
c9e664f1 RW |
120 | |
121 | static gfp_t saved_gfp_mask; | |
122 | ||
123 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
124 | { |
125 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
126 | if (saved_gfp_mask) { |
127 | gfp_allowed_mask = saved_gfp_mask; | |
128 | saved_gfp_mask = 0; | |
129 | } | |
452aa699 RW |
130 | } |
131 | ||
c9e664f1 | 132 | void pm_restrict_gfp_mask(void) |
452aa699 | 133 | { |
452aa699 | 134 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
135 | WARN_ON(saved_gfp_mask); |
136 | saved_gfp_mask = gfp_allowed_mask; | |
137 | gfp_allowed_mask &= ~GFP_IOFS; | |
452aa699 | 138 | } |
f90ac398 MG |
139 | |
140 | bool pm_suspended_storage(void) | |
141 | { | |
142 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | |
143 | return false; | |
144 | return true; | |
145 | } | |
452aa699 RW |
146 | #endif /* CONFIG_PM_SLEEP */ |
147 | ||
d9c23400 MG |
148 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
149 | int pageblock_order __read_mostly; | |
150 | #endif | |
151 | ||
d98c7a09 | 152 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 153 | |
1da177e4 LT |
154 | /* |
155 | * results with 256, 32 in the lowmem_reserve sysctl: | |
156 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
157 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
158 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
159 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
160 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
a2f1b424 AK |
161 | * |
162 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
163 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 164 | */ |
2f1b6248 | 165 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 166 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 167 | 256, |
4b51d669 | 168 | #endif |
fb0e7942 | 169 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 170 | 256, |
fb0e7942 | 171 | #endif |
e53ef38d | 172 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 173 | 32, |
e53ef38d | 174 | #endif |
2a1e274a | 175 | 32, |
2f1b6248 | 176 | }; |
1da177e4 LT |
177 | |
178 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 179 | |
15ad7cdc | 180 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 181 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 182 | "DMA", |
4b51d669 | 183 | #endif |
fb0e7942 | 184 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 185 | "DMA32", |
fb0e7942 | 186 | #endif |
2f1b6248 | 187 | "Normal", |
e53ef38d | 188 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 189 | "HighMem", |
e53ef38d | 190 | #endif |
2a1e274a | 191 | "Movable", |
2f1b6248 CL |
192 | }; |
193 | ||
1da177e4 LT |
194 | int min_free_kbytes = 1024; |
195 | ||
2c85f51d JB |
196 | static unsigned long __meminitdata nr_kernel_pages; |
197 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 198 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 199 | |
0ee332c1 TH |
200 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
201 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
202 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
203 | static unsigned long __initdata required_kernelcore; | |
204 | static unsigned long __initdata required_movablecore; | |
205 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
206 | ||
207 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
208 | int movable_zone; | |
209 | EXPORT_SYMBOL(movable_zone); | |
210 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 211 | |
418508c1 MS |
212 | #if MAX_NUMNODES > 1 |
213 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 214 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 215 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 216 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
217 | #endif |
218 | ||
9ef9acb0 MG |
219 | int page_group_by_mobility_disabled __read_mostly; |
220 | ||
702d1a6e MK |
221 | /* |
222 | * NOTE: | |
223 | * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. | |
224 | * Instead, use {un}set_pageblock_isolate. | |
225 | */ | |
ee6f509c | 226 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 227 | { |
49255c61 MG |
228 | |
229 | if (unlikely(page_group_by_mobility_disabled)) | |
230 | migratetype = MIGRATE_UNMOVABLE; | |
231 | ||
b2a0ac88 MG |
232 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
233 | PB_migrate, PB_migrate_end); | |
234 | } | |
235 | ||
7f33d49a RW |
236 | bool oom_killer_disabled __read_mostly; |
237 | ||
13e7444b | 238 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 239 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 240 | { |
bdc8cb98 DH |
241 | int ret = 0; |
242 | unsigned seq; | |
243 | unsigned long pfn = page_to_pfn(page); | |
c6a57e19 | 244 | |
bdc8cb98 DH |
245 | do { |
246 | seq = zone_span_seqbegin(zone); | |
247 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
248 | ret = 1; | |
249 | else if (pfn < zone->zone_start_pfn) | |
250 | ret = 1; | |
251 | } while (zone_span_seqretry(zone, seq)); | |
252 | ||
253 | return ret; | |
c6a57e19 DH |
254 | } |
255 | ||
256 | static int page_is_consistent(struct zone *zone, struct page *page) | |
257 | { | |
14e07298 | 258 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 259 | return 0; |
1da177e4 | 260 | if (zone != page_zone(page)) |
c6a57e19 DH |
261 | return 0; |
262 | ||
263 | return 1; | |
264 | } | |
265 | /* | |
266 | * Temporary debugging check for pages not lying within a given zone. | |
267 | */ | |
268 | static int bad_range(struct zone *zone, struct page *page) | |
269 | { | |
270 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 271 | return 1; |
c6a57e19 DH |
272 | if (!page_is_consistent(zone, page)) |
273 | return 1; | |
274 | ||
1da177e4 LT |
275 | return 0; |
276 | } | |
13e7444b NP |
277 | #else |
278 | static inline int bad_range(struct zone *zone, struct page *page) | |
279 | { | |
280 | return 0; | |
281 | } | |
282 | #endif | |
283 | ||
224abf92 | 284 | static void bad_page(struct page *page) |
1da177e4 | 285 | { |
d936cf9b HD |
286 | static unsigned long resume; |
287 | static unsigned long nr_shown; | |
288 | static unsigned long nr_unshown; | |
289 | ||
2a7684a2 WF |
290 | /* Don't complain about poisoned pages */ |
291 | if (PageHWPoison(page)) { | |
ef2b4b95 | 292 | reset_page_mapcount(page); /* remove PageBuddy */ |
2a7684a2 WF |
293 | return; |
294 | } | |
295 | ||
d936cf9b HD |
296 | /* |
297 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
298 | * or allow a steady drip of one report per second. | |
299 | */ | |
300 | if (nr_shown == 60) { | |
301 | if (time_before(jiffies, resume)) { | |
302 | nr_unshown++; | |
303 | goto out; | |
304 | } | |
305 | if (nr_unshown) { | |
1e9e6365 HD |
306 | printk(KERN_ALERT |
307 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
308 | nr_unshown); |
309 | nr_unshown = 0; | |
310 | } | |
311 | nr_shown = 0; | |
312 | } | |
313 | if (nr_shown++ == 0) | |
314 | resume = jiffies + 60 * HZ; | |
315 | ||
1e9e6365 | 316 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 317 | current->comm, page_to_pfn(page)); |
718a3821 | 318 | dump_page(page); |
3dc14741 | 319 | |
4f31888c | 320 | print_modules(); |
1da177e4 | 321 | dump_stack(); |
d936cf9b | 322 | out: |
8cc3b392 | 323 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
ef2b4b95 | 324 | reset_page_mapcount(page); /* remove PageBuddy */ |
9f158333 | 325 | add_taint(TAINT_BAD_PAGE); |
1da177e4 LT |
326 | } |
327 | ||
1da177e4 LT |
328 | /* |
329 | * Higher-order pages are called "compound pages". They are structured thusly: | |
330 | * | |
331 | * The first PAGE_SIZE page is called the "head page". | |
332 | * | |
333 | * The remaining PAGE_SIZE pages are called "tail pages". | |
334 | * | |
6416b9fa WSH |
335 | * All pages have PG_compound set. All tail pages have their ->first_page |
336 | * pointing at the head page. | |
1da177e4 | 337 | * |
41d78ba5 HD |
338 | * The first tail page's ->lru.next holds the address of the compound page's |
339 | * put_page() function. Its ->lru.prev holds the order of allocation. | |
340 | * This usage means that zero-order pages may not be compound. | |
1da177e4 | 341 | */ |
d98c7a09 HD |
342 | |
343 | static void free_compound_page(struct page *page) | |
344 | { | |
d85f3385 | 345 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
346 | } |
347 | ||
01ad1c08 | 348 | void prep_compound_page(struct page *page, unsigned long order) |
18229df5 AW |
349 | { |
350 | int i; | |
351 | int nr_pages = 1 << order; | |
352 | ||
353 | set_compound_page_dtor(page, free_compound_page); | |
354 | set_compound_order(page, order); | |
355 | __SetPageHead(page); | |
356 | for (i = 1; i < nr_pages; i++) { | |
357 | struct page *p = page + i; | |
18229df5 | 358 | __SetPageTail(p); |
58a84aa9 | 359 | set_page_count(p, 0); |
18229df5 AW |
360 | p->first_page = page; |
361 | } | |
362 | } | |
363 | ||
59ff4216 | 364 | /* update __split_huge_page_refcount if you change this function */ |
8cc3b392 | 365 | static int destroy_compound_page(struct page *page, unsigned long order) |
1da177e4 LT |
366 | { |
367 | int i; | |
368 | int nr_pages = 1 << order; | |
8cc3b392 | 369 | int bad = 0; |
1da177e4 | 370 | |
8cc3b392 HD |
371 | if (unlikely(compound_order(page) != order) || |
372 | unlikely(!PageHead(page))) { | |
224abf92 | 373 | bad_page(page); |
8cc3b392 HD |
374 | bad++; |
375 | } | |
1da177e4 | 376 | |
6d777953 | 377 | __ClearPageHead(page); |
8cc3b392 | 378 | |
18229df5 AW |
379 | for (i = 1; i < nr_pages; i++) { |
380 | struct page *p = page + i; | |
1da177e4 | 381 | |
e713a21d | 382 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
224abf92 | 383 | bad_page(page); |
8cc3b392 HD |
384 | bad++; |
385 | } | |
d85f3385 | 386 | __ClearPageTail(p); |
1da177e4 | 387 | } |
8cc3b392 HD |
388 | |
389 | return bad; | |
1da177e4 | 390 | } |
1da177e4 | 391 | |
17cf4406 NP |
392 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
393 | { | |
394 | int i; | |
395 | ||
6626c5d5 AM |
396 | /* |
397 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | |
398 | * and __GFP_HIGHMEM from hard or soft interrupt context. | |
399 | */ | |
725d704e | 400 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
17cf4406 NP |
401 | for (i = 0; i < (1 << order); i++) |
402 | clear_highpage(page + i); | |
403 | } | |
404 | ||
c0a32fc5 SG |
405 | #ifdef CONFIG_DEBUG_PAGEALLOC |
406 | unsigned int _debug_guardpage_minorder; | |
407 | ||
408 | static int __init debug_guardpage_minorder_setup(char *buf) | |
409 | { | |
410 | unsigned long res; | |
411 | ||
412 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
413 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
414 | return 0; | |
415 | } | |
416 | _debug_guardpage_minorder = res; | |
417 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
418 | return 0; | |
419 | } | |
420 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
421 | ||
422 | static inline void set_page_guard_flag(struct page *page) | |
423 | { | |
424 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
425 | } | |
426 | ||
427 | static inline void clear_page_guard_flag(struct page *page) | |
428 | { | |
429 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
430 | } | |
431 | #else | |
432 | static inline void set_page_guard_flag(struct page *page) { } | |
433 | static inline void clear_page_guard_flag(struct page *page) { } | |
434 | #endif | |
435 | ||
6aa3001b AM |
436 | static inline void set_page_order(struct page *page, int order) |
437 | { | |
4c21e2f2 | 438 | set_page_private(page, order); |
676165a8 | 439 | __SetPageBuddy(page); |
1da177e4 LT |
440 | } |
441 | ||
442 | static inline void rmv_page_order(struct page *page) | |
443 | { | |
676165a8 | 444 | __ClearPageBuddy(page); |
4c21e2f2 | 445 | set_page_private(page, 0); |
1da177e4 LT |
446 | } |
447 | ||
448 | /* | |
449 | * Locate the struct page for both the matching buddy in our | |
450 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
451 | * | |
452 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
453 | * the following equation: | |
454 | * B2 = B1 ^ (1 << O) | |
455 | * For example, if the starting buddy (buddy2) is #8 its order | |
456 | * 1 buddy is #10: | |
457 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
458 | * | |
459 | * 2) Any buddy B will have an order O+1 parent P which | |
460 | * satisfies the following equation: | |
461 | * P = B & ~(1 << O) | |
462 | * | |
d6e05edc | 463 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
1da177e4 | 464 | */ |
1da177e4 | 465 | static inline unsigned long |
43506fad | 466 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
1da177e4 | 467 | { |
43506fad | 468 | return page_idx ^ (1 << order); |
1da177e4 LT |
469 | } |
470 | ||
471 | /* | |
472 | * This function checks whether a page is free && is the buddy | |
473 | * we can do coalesce a page and its buddy if | |
13e7444b | 474 | * (a) the buddy is not in a hole && |
676165a8 | 475 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
476 | * (c) a page and its buddy have the same order && |
477 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 478 | * |
5f24ce5f AA |
479 | * For recording whether a page is in the buddy system, we set ->_mapcount -2. |
480 | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. | |
1da177e4 | 481 | * |
676165a8 | 482 | * For recording page's order, we use page_private(page). |
1da177e4 | 483 | */ |
cb2b95e1 AW |
484 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
485 | int order) | |
1da177e4 | 486 | { |
14e07298 | 487 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 488 | return 0; |
13e7444b | 489 | |
cb2b95e1 AW |
490 | if (page_zone_id(page) != page_zone_id(buddy)) |
491 | return 0; | |
492 | ||
c0a32fc5 SG |
493 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
494 | VM_BUG_ON(page_count(buddy) != 0); | |
495 | return 1; | |
496 | } | |
497 | ||
cb2b95e1 | 498 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
a3af9c38 | 499 | VM_BUG_ON(page_count(buddy) != 0); |
6aa3001b | 500 | return 1; |
676165a8 | 501 | } |
6aa3001b | 502 | return 0; |
1da177e4 LT |
503 | } |
504 | ||
505 | /* | |
506 | * Freeing function for a buddy system allocator. | |
507 | * | |
508 | * The concept of a buddy system is to maintain direct-mapped table | |
509 | * (containing bit values) for memory blocks of various "orders". | |
510 | * The bottom level table contains the map for the smallest allocatable | |
511 | * units of memory (here, pages), and each level above it describes | |
512 | * pairs of units from the levels below, hence, "buddies". | |
513 | * At a high level, all that happens here is marking the table entry | |
514 | * at the bottom level available, and propagating the changes upward | |
515 | * as necessary, plus some accounting needed to play nicely with other | |
516 | * parts of the VM system. | |
517 | * At each level, we keep a list of pages, which are heads of continuous | |
5f24ce5f | 518 | * free pages of length of (1 << order) and marked with _mapcount -2. Page's |
4c21e2f2 | 519 | * order is recorded in page_private(page) field. |
1da177e4 | 520 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
521 | * other. That is, if we allocate a small block, and both were |
522 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 523 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 524 | * triggers coalescing into a block of larger size. |
1da177e4 LT |
525 | * |
526 | * -- wli | |
527 | */ | |
528 | ||
48db57f8 | 529 | static inline void __free_one_page(struct page *page, |
ed0ae21d MG |
530 | struct zone *zone, unsigned int order, |
531 | int migratetype) | |
1da177e4 LT |
532 | { |
533 | unsigned long page_idx; | |
6dda9d55 | 534 | unsigned long combined_idx; |
43506fad | 535 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 536 | struct page *buddy; |
1da177e4 | 537 | |
224abf92 | 538 | if (unlikely(PageCompound(page))) |
8cc3b392 HD |
539 | if (unlikely(destroy_compound_page(page, order))) |
540 | return; | |
1da177e4 | 541 | |
ed0ae21d MG |
542 | VM_BUG_ON(migratetype == -1); |
543 | ||
1da177e4 LT |
544 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
545 | ||
f2260e6b | 546 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
725d704e | 547 | VM_BUG_ON(bad_range(zone, page)); |
1da177e4 | 548 | |
1da177e4 | 549 | while (order < MAX_ORDER-1) { |
43506fad KC |
550 | buddy_idx = __find_buddy_index(page_idx, order); |
551 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 552 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 553 | break; |
c0a32fc5 SG |
554 | /* |
555 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
556 | * merge with it and move up one order. | |
557 | */ | |
558 | if (page_is_guard(buddy)) { | |
559 | clear_page_guard_flag(buddy); | |
560 | set_page_private(page, 0); | |
561 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); | |
562 | } else { | |
563 | list_del(&buddy->lru); | |
564 | zone->free_area[order].nr_free--; | |
565 | rmv_page_order(buddy); | |
566 | } | |
43506fad | 567 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
568 | page = page + (combined_idx - page_idx); |
569 | page_idx = combined_idx; | |
570 | order++; | |
571 | } | |
572 | set_page_order(page, order); | |
6dda9d55 CZ |
573 | |
574 | /* | |
575 | * If this is not the largest possible page, check if the buddy | |
576 | * of the next-highest order is free. If it is, it's possible | |
577 | * that pages are being freed that will coalesce soon. In case, | |
578 | * that is happening, add the free page to the tail of the list | |
579 | * so it's less likely to be used soon and more likely to be merged | |
580 | * as a higher order page | |
581 | */ | |
b7f50cfa | 582 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 583 | struct page *higher_page, *higher_buddy; |
43506fad KC |
584 | combined_idx = buddy_idx & page_idx; |
585 | higher_page = page + (combined_idx - page_idx); | |
586 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
587 | higher_buddy = page + (buddy_idx - combined_idx); | |
6dda9d55 CZ |
588 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
589 | list_add_tail(&page->lru, | |
590 | &zone->free_area[order].free_list[migratetype]); | |
591 | goto out; | |
592 | } | |
593 | } | |
594 | ||
595 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
596 | out: | |
1da177e4 LT |
597 | zone->free_area[order].nr_free++; |
598 | } | |
599 | ||
092cead6 KM |
600 | /* |
601 | * free_page_mlock() -- clean up attempts to free and mlocked() page. | |
602 | * Page should not be on lru, so no need to fix that up. | |
603 | * free_pages_check() will verify... | |
604 | */ | |
605 | static inline void free_page_mlock(struct page *page) | |
606 | { | |
092cead6 KM |
607 | __dec_zone_page_state(page, NR_MLOCK); |
608 | __count_vm_event(UNEVICTABLE_MLOCKFREED); | |
609 | } | |
092cead6 | 610 | |
224abf92 | 611 | static inline int free_pages_check(struct page *page) |
1da177e4 | 612 | { |
92be2e33 NP |
613 | if (unlikely(page_mapcount(page) | |
614 | (page->mapping != NULL) | | |
a3af9c38 | 615 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
616 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | |
617 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 618 | bad_page(page); |
79f4b7bf | 619 | return 1; |
8cc3b392 | 620 | } |
79f4b7bf HD |
621 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
622 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
623 | return 0; | |
1da177e4 LT |
624 | } |
625 | ||
626 | /* | |
5f8dcc21 | 627 | * Frees a number of pages from the PCP lists |
1da177e4 | 628 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 629 | * count is the number of pages to free. |
1da177e4 LT |
630 | * |
631 | * If the zone was previously in an "all pages pinned" state then look to | |
632 | * see if this freeing clears that state. | |
633 | * | |
634 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
635 | * pinned" detection logic. | |
636 | */ | |
5f8dcc21 MG |
637 | static void free_pcppages_bulk(struct zone *zone, int count, |
638 | struct per_cpu_pages *pcp) | |
1da177e4 | 639 | { |
5f8dcc21 | 640 | int migratetype = 0; |
a6f9edd6 | 641 | int batch_free = 0; |
72853e29 | 642 | int to_free = count; |
5f8dcc21 | 643 | |
c54ad30c | 644 | spin_lock(&zone->lock); |
93e4a89a | 645 | zone->all_unreclaimable = 0; |
1da177e4 | 646 | zone->pages_scanned = 0; |
f2260e6b | 647 | |
72853e29 | 648 | while (to_free) { |
48db57f8 | 649 | struct page *page; |
5f8dcc21 MG |
650 | struct list_head *list; |
651 | ||
652 | /* | |
a6f9edd6 MG |
653 | * Remove pages from lists in a round-robin fashion. A |
654 | * batch_free count is maintained that is incremented when an | |
655 | * empty list is encountered. This is so more pages are freed | |
656 | * off fuller lists instead of spinning excessively around empty | |
657 | * lists | |
5f8dcc21 MG |
658 | */ |
659 | do { | |
a6f9edd6 | 660 | batch_free++; |
5f8dcc21 MG |
661 | if (++migratetype == MIGRATE_PCPTYPES) |
662 | migratetype = 0; | |
663 | list = &pcp->lists[migratetype]; | |
664 | } while (list_empty(list)); | |
48db57f8 | 665 | |
1d16871d NK |
666 | /* This is the only non-empty list. Free them all. */ |
667 | if (batch_free == MIGRATE_PCPTYPES) | |
668 | batch_free = to_free; | |
669 | ||
a6f9edd6 MG |
670 | do { |
671 | page = list_entry(list->prev, struct page, lru); | |
672 | /* must delete as __free_one_page list manipulates */ | |
673 | list_del(&page->lru); | |
a7016235 HD |
674 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
675 | __free_one_page(page, zone, 0, page_private(page)); | |
676 | trace_mm_page_pcpu_drain(page, 0, page_private(page)); | |
72853e29 | 677 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 678 | } |
72853e29 | 679 | __mod_zone_page_state(zone, NR_FREE_PAGES, count); |
c54ad30c | 680 | spin_unlock(&zone->lock); |
1da177e4 LT |
681 | } |
682 | ||
ed0ae21d MG |
683 | static void free_one_page(struct zone *zone, struct page *page, int order, |
684 | int migratetype) | |
1da177e4 | 685 | { |
006d22d9 | 686 | spin_lock(&zone->lock); |
93e4a89a | 687 | zone->all_unreclaimable = 0; |
006d22d9 | 688 | zone->pages_scanned = 0; |
f2260e6b | 689 | |
ed0ae21d | 690 | __free_one_page(page, zone, order, migratetype); |
72853e29 | 691 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); |
006d22d9 | 692 | spin_unlock(&zone->lock); |
48db57f8 NP |
693 | } |
694 | ||
ec95f53a | 695 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 696 | { |
1da177e4 | 697 | int i; |
8cc3b392 | 698 | int bad = 0; |
1da177e4 | 699 | |
b413d48a | 700 | trace_mm_page_free(page, order); |
b1eeab67 VN |
701 | kmemcheck_free_shadow(page, order); |
702 | ||
8dd60a3a AA |
703 | if (PageAnon(page)) |
704 | page->mapping = NULL; | |
705 | for (i = 0; i < (1 << order); i++) | |
706 | bad += free_pages_check(page + i); | |
8cc3b392 | 707 | if (bad) |
ec95f53a | 708 | return false; |
689bcebf | 709 | |
3ac7fe5a | 710 | if (!PageHighMem(page)) { |
9858db50 | 711 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
3ac7fe5a TG |
712 | debug_check_no_obj_freed(page_address(page), |
713 | PAGE_SIZE << order); | |
714 | } | |
dafb1367 | 715 | arch_free_page(page, order); |
48db57f8 | 716 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 717 | |
ec95f53a KM |
718 | return true; |
719 | } | |
720 | ||
721 | static void __free_pages_ok(struct page *page, unsigned int order) | |
722 | { | |
723 | unsigned long flags; | |
724 | int wasMlocked = __TestClearPageMlocked(page); | |
725 | ||
726 | if (!free_pages_prepare(page, order)) | |
727 | return; | |
728 | ||
c54ad30c | 729 | local_irq_save(flags); |
c277331d | 730 | if (unlikely(wasMlocked)) |
da456f14 | 731 | free_page_mlock(page); |
f8891e5e | 732 | __count_vm_events(PGFREE, 1 << order); |
ed0ae21d MG |
733 | free_one_page(page_zone(page), page, order, |
734 | get_pageblock_migratetype(page)); | |
c54ad30c | 735 | local_irq_restore(flags); |
1da177e4 LT |
736 | } |
737 | ||
af370fb8 | 738 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
a226f6c8 | 739 | { |
c3993076 JW |
740 | unsigned int nr_pages = 1 << order; |
741 | unsigned int loop; | |
a226f6c8 | 742 | |
c3993076 JW |
743 | prefetchw(page); |
744 | for (loop = 0; loop < nr_pages; loop++) { | |
745 | struct page *p = &page[loop]; | |
746 | ||
747 | if (loop + 1 < nr_pages) | |
748 | prefetchw(p + 1); | |
749 | __ClearPageReserved(p); | |
750 | set_page_count(p, 0); | |
a226f6c8 | 751 | } |
c3993076 JW |
752 | |
753 | set_page_refcounted(page); | |
754 | __free_pages(page, order); | |
a226f6c8 DH |
755 | } |
756 | ||
47118af0 MN |
757 | #ifdef CONFIG_CMA |
758 | /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ | |
759 | void __init init_cma_reserved_pageblock(struct page *page) | |
760 | { | |
761 | unsigned i = pageblock_nr_pages; | |
762 | struct page *p = page; | |
763 | ||
764 | do { | |
765 | __ClearPageReserved(p); | |
766 | set_page_count(p, 0); | |
767 | } while (++p, --i); | |
768 | ||
769 | set_page_refcounted(page); | |
770 | set_pageblock_migratetype(page, MIGRATE_CMA); | |
771 | __free_pages(page, pageblock_order); | |
772 | totalram_pages += pageblock_nr_pages; | |
773 | } | |
774 | #endif | |
1da177e4 LT |
775 | |
776 | /* | |
777 | * The order of subdivision here is critical for the IO subsystem. | |
778 | * Please do not alter this order without good reasons and regression | |
779 | * testing. Specifically, as large blocks of memory are subdivided, | |
780 | * the order in which smaller blocks are delivered depends on the order | |
781 | * they're subdivided in this function. This is the primary factor | |
782 | * influencing the order in which pages are delivered to the IO | |
783 | * subsystem according to empirical testing, and this is also justified | |
784 | * by considering the behavior of a buddy system containing a single | |
785 | * large block of memory acted on by a series of small allocations. | |
786 | * This behavior is a critical factor in sglist merging's success. | |
787 | * | |
788 | * -- wli | |
789 | */ | |
085cc7d5 | 790 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
791 | int low, int high, struct free_area *area, |
792 | int migratetype) | |
1da177e4 LT |
793 | { |
794 | unsigned long size = 1 << high; | |
795 | ||
796 | while (high > low) { | |
797 | area--; | |
798 | high--; | |
799 | size >>= 1; | |
725d704e | 800 | VM_BUG_ON(bad_range(zone, &page[size])); |
c0a32fc5 SG |
801 | |
802 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
803 | if (high < debug_guardpage_minorder()) { | |
804 | /* | |
805 | * Mark as guard pages (or page), that will allow to | |
806 | * merge back to allocator when buddy will be freed. | |
807 | * Corresponding page table entries will not be touched, | |
808 | * pages will stay not present in virtual address space | |
809 | */ | |
810 | INIT_LIST_HEAD(&page[size].lru); | |
811 | set_page_guard_flag(&page[size]); | |
812 | set_page_private(&page[size], high); | |
813 | /* Guard pages are not available for any usage */ | |
814 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); | |
815 | continue; | |
816 | } | |
817 | #endif | |
b2a0ac88 | 818 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
819 | area->nr_free++; |
820 | set_page_order(&page[size], high); | |
821 | } | |
1da177e4 LT |
822 | } |
823 | ||
1da177e4 LT |
824 | /* |
825 | * This page is about to be returned from the page allocator | |
826 | */ | |
2a7684a2 | 827 | static inline int check_new_page(struct page *page) |
1da177e4 | 828 | { |
92be2e33 NP |
829 | if (unlikely(page_mapcount(page) | |
830 | (page->mapping != NULL) | | |
a3af9c38 | 831 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
832 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | |
833 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 834 | bad_page(page); |
689bcebf | 835 | return 1; |
8cc3b392 | 836 | } |
2a7684a2 WF |
837 | return 0; |
838 | } | |
839 | ||
840 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | |
841 | { | |
842 | int i; | |
843 | ||
844 | for (i = 0; i < (1 << order); i++) { | |
845 | struct page *p = page + i; | |
846 | if (unlikely(check_new_page(p))) | |
847 | return 1; | |
848 | } | |
689bcebf | 849 | |
4c21e2f2 | 850 | set_page_private(page, 0); |
7835e98b | 851 | set_page_refcounted(page); |
cc102509 NP |
852 | |
853 | arch_alloc_page(page, order); | |
1da177e4 | 854 | kernel_map_pages(page, 1 << order, 1); |
17cf4406 NP |
855 | |
856 | if (gfp_flags & __GFP_ZERO) | |
857 | prep_zero_page(page, order, gfp_flags); | |
858 | ||
859 | if (order && (gfp_flags & __GFP_COMP)) | |
860 | prep_compound_page(page, order); | |
861 | ||
689bcebf | 862 | return 0; |
1da177e4 LT |
863 | } |
864 | ||
56fd56b8 MG |
865 | /* |
866 | * Go through the free lists for the given migratetype and remove | |
867 | * the smallest available page from the freelists | |
868 | */ | |
728ec980 MG |
869 | static inline |
870 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
871 | int migratetype) |
872 | { | |
873 | unsigned int current_order; | |
874 | struct free_area * area; | |
875 | struct page *page; | |
876 | ||
877 | /* Find a page of the appropriate size in the preferred list */ | |
878 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
879 | area = &(zone->free_area[current_order]); | |
880 | if (list_empty(&area->free_list[migratetype])) | |
881 | continue; | |
882 | ||
883 | page = list_entry(area->free_list[migratetype].next, | |
884 | struct page, lru); | |
885 | list_del(&page->lru); | |
886 | rmv_page_order(page); | |
887 | area->nr_free--; | |
56fd56b8 MG |
888 | expand(zone, page, order, current_order, area, migratetype); |
889 | return page; | |
890 | } | |
891 | ||
892 | return NULL; | |
893 | } | |
894 | ||
895 | ||
b2a0ac88 MG |
896 | /* |
897 | * This array describes the order lists are fallen back to when | |
898 | * the free lists for the desirable migrate type are depleted | |
899 | */ | |
47118af0 MN |
900 | static int fallbacks[MIGRATE_TYPES][4] = { |
901 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
902 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
903 | #ifdef CONFIG_CMA | |
904 | [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
905 | [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ | |
906 | #else | |
907 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
908 | #endif | |
6d4a4916 MN |
909 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ |
910 | [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ | |
b2a0ac88 MG |
911 | }; |
912 | ||
c361be55 MG |
913 | /* |
914 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 915 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
916 | * boundary. If alignment is required, use move_freepages_block() |
917 | */ | |
b69a7288 AB |
918 | static int move_freepages(struct zone *zone, |
919 | struct page *start_page, struct page *end_page, | |
920 | int migratetype) | |
c361be55 MG |
921 | { |
922 | struct page *page; | |
923 | unsigned long order; | |
d100313f | 924 | int pages_moved = 0; |
c361be55 MG |
925 | |
926 | #ifndef CONFIG_HOLES_IN_ZONE | |
927 | /* | |
928 | * page_zone is not safe to call in this context when | |
929 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
930 | * anyway as we check zone boundaries in move_freepages_block(). | |
931 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 932 | * grouping pages by mobility |
c361be55 MG |
933 | */ |
934 | BUG_ON(page_zone(start_page) != page_zone(end_page)); | |
935 | #endif | |
936 | ||
937 | for (page = start_page; page <= end_page;) { | |
344c790e AL |
938 | /* Make sure we are not inadvertently changing nodes */ |
939 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | |
940 | ||
c361be55 MG |
941 | if (!pfn_valid_within(page_to_pfn(page))) { |
942 | page++; | |
943 | continue; | |
944 | } | |
945 | ||
946 | if (!PageBuddy(page)) { | |
947 | page++; | |
948 | continue; | |
949 | } | |
950 | ||
951 | order = page_order(page); | |
84be48d8 KS |
952 | list_move(&page->lru, |
953 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 954 | page += 1 << order; |
d100313f | 955 | pages_moved += 1 << order; |
c361be55 MG |
956 | } |
957 | ||
d100313f | 958 | return pages_moved; |
c361be55 MG |
959 | } |
960 | ||
ee6f509c | 961 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 962 | int migratetype) |
c361be55 MG |
963 | { |
964 | unsigned long start_pfn, end_pfn; | |
965 | struct page *start_page, *end_page; | |
966 | ||
967 | start_pfn = page_to_pfn(page); | |
d9c23400 | 968 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 969 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
970 | end_page = start_page + pageblock_nr_pages - 1; |
971 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
972 | |
973 | /* Do not cross zone boundaries */ | |
974 | if (start_pfn < zone->zone_start_pfn) | |
975 | start_page = page; | |
976 | if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
977 | return 0; | |
978 | ||
979 | return move_freepages(zone, start_page, end_page, migratetype); | |
980 | } | |
981 | ||
2f66a68f MG |
982 | static void change_pageblock_range(struct page *pageblock_page, |
983 | int start_order, int migratetype) | |
984 | { | |
985 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
986 | ||
987 | while (nr_pageblocks--) { | |
988 | set_pageblock_migratetype(pageblock_page, migratetype); | |
989 | pageblock_page += pageblock_nr_pages; | |
990 | } | |
991 | } | |
992 | ||
b2a0ac88 | 993 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 MG |
994 | static inline struct page * |
995 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | |
b2a0ac88 MG |
996 | { |
997 | struct free_area * area; | |
998 | int current_order; | |
999 | struct page *page; | |
1000 | int migratetype, i; | |
1001 | ||
1002 | /* Find the largest possible block of pages in the other list */ | |
1003 | for (current_order = MAX_ORDER-1; current_order >= order; | |
1004 | --current_order) { | |
6d4a4916 | 1005 | for (i = 0;; i++) { |
b2a0ac88 MG |
1006 | migratetype = fallbacks[start_migratetype][i]; |
1007 | ||
56fd56b8 MG |
1008 | /* MIGRATE_RESERVE handled later if necessary */ |
1009 | if (migratetype == MIGRATE_RESERVE) | |
6d4a4916 | 1010 | break; |
e010487d | 1011 | |
b2a0ac88 MG |
1012 | area = &(zone->free_area[current_order]); |
1013 | if (list_empty(&area->free_list[migratetype])) | |
1014 | continue; | |
1015 | ||
1016 | page = list_entry(area->free_list[migratetype].next, | |
1017 | struct page, lru); | |
1018 | area->nr_free--; | |
1019 | ||
1020 | /* | |
c361be55 | 1021 | * If breaking a large block of pages, move all free |
46dafbca MG |
1022 | * pages to the preferred allocation list. If falling |
1023 | * back for a reclaimable kernel allocation, be more | |
25985edc | 1024 | * aggressive about taking ownership of free pages |
47118af0 MN |
1025 | * |
1026 | * On the other hand, never change migration | |
1027 | * type of MIGRATE_CMA pageblocks nor move CMA | |
1028 | * pages on different free lists. We don't | |
1029 | * want unmovable pages to be allocated from | |
1030 | * MIGRATE_CMA areas. | |
b2a0ac88 | 1031 | */ |
47118af0 MN |
1032 | if (!is_migrate_cma(migratetype) && |
1033 | (unlikely(current_order >= pageblock_order / 2) || | |
1034 | start_migratetype == MIGRATE_RECLAIMABLE || | |
1035 | page_group_by_mobility_disabled)) { | |
1036 | int pages; | |
46dafbca MG |
1037 | pages = move_freepages_block(zone, page, |
1038 | start_migratetype); | |
1039 | ||
1040 | /* Claim the whole block if over half of it is free */ | |
dd5d241e MG |
1041 | if (pages >= (1 << (pageblock_order-1)) || |
1042 | page_group_by_mobility_disabled) | |
46dafbca MG |
1043 | set_pageblock_migratetype(page, |
1044 | start_migratetype); | |
1045 | ||
b2a0ac88 | 1046 | migratetype = start_migratetype; |
c361be55 | 1047 | } |
b2a0ac88 MG |
1048 | |
1049 | /* Remove the page from the freelists */ | |
1050 | list_del(&page->lru); | |
1051 | rmv_page_order(page); | |
b2a0ac88 | 1052 | |
2f66a68f | 1053 | /* Take ownership for orders >= pageblock_order */ |
47118af0 MN |
1054 | if (current_order >= pageblock_order && |
1055 | !is_migrate_cma(migratetype)) | |
2f66a68f | 1056 | change_pageblock_range(page, current_order, |
b2a0ac88 MG |
1057 | start_migratetype); |
1058 | ||
47118af0 MN |
1059 | expand(zone, page, order, current_order, area, |
1060 | is_migrate_cma(migratetype) | |
1061 | ? migratetype : start_migratetype); | |
e0fff1bd MG |
1062 | |
1063 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
1064 | start_migratetype, migratetype); | |
1065 | ||
b2a0ac88 MG |
1066 | return page; |
1067 | } | |
1068 | } | |
1069 | ||
728ec980 | 1070 | return NULL; |
b2a0ac88 MG |
1071 | } |
1072 | ||
56fd56b8 | 1073 | /* |
1da177e4 LT |
1074 | * Do the hard work of removing an element from the buddy allocator. |
1075 | * Call me with the zone->lock already held. | |
1076 | */ | |
b2a0ac88 MG |
1077 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1078 | int migratetype) | |
1da177e4 | 1079 | { |
1da177e4 LT |
1080 | struct page *page; |
1081 | ||
728ec980 | 1082 | retry_reserve: |
56fd56b8 | 1083 | page = __rmqueue_smallest(zone, order, migratetype); |
b2a0ac88 | 1084 | |
728ec980 | 1085 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
56fd56b8 | 1086 | page = __rmqueue_fallback(zone, order, migratetype); |
b2a0ac88 | 1087 | |
728ec980 MG |
1088 | /* |
1089 | * Use MIGRATE_RESERVE rather than fail an allocation. goto | |
1090 | * is used because __rmqueue_smallest is an inline function | |
1091 | * and we want just one call site | |
1092 | */ | |
1093 | if (!page) { | |
1094 | migratetype = MIGRATE_RESERVE; | |
1095 | goto retry_reserve; | |
1096 | } | |
1097 | } | |
1098 | ||
0d3d062a | 1099 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1100 | return page; |
1da177e4 LT |
1101 | } |
1102 | ||
5f63b720 | 1103 | /* |
1da177e4 LT |
1104 | * Obtain a specified number of elements from the buddy allocator, all under |
1105 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1106 | * Returns the number of new pages which were placed at *list. | |
1107 | */ | |
5f63b720 | 1108 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 1109 | unsigned long count, struct list_head *list, |
e084b2d9 | 1110 | int migratetype, int cold) |
1da177e4 | 1111 | { |
47118af0 | 1112 | int mt = migratetype, i; |
5f63b720 | 1113 | |
c54ad30c | 1114 | spin_lock(&zone->lock); |
1da177e4 | 1115 | for (i = 0; i < count; ++i) { |
b2a0ac88 | 1116 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 1117 | if (unlikely(page == NULL)) |
1da177e4 | 1118 | break; |
81eabcbe MG |
1119 | |
1120 | /* | |
1121 | * Split buddy pages returned by expand() are received here | |
1122 | * in physical page order. The page is added to the callers and | |
1123 | * list and the list head then moves forward. From the callers | |
1124 | * perspective, the linked list is ordered by page number in | |
1125 | * some conditions. This is useful for IO devices that can | |
1126 | * merge IO requests if the physical pages are ordered | |
1127 | * properly. | |
1128 | */ | |
e084b2d9 MG |
1129 | if (likely(cold == 0)) |
1130 | list_add(&page->lru, list); | |
1131 | else | |
1132 | list_add_tail(&page->lru, list); | |
47118af0 MN |
1133 | if (IS_ENABLED(CONFIG_CMA)) { |
1134 | mt = get_pageblock_migratetype(page); | |
1135 | if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) | |
1136 | mt = migratetype; | |
1137 | } | |
1138 | set_page_private(page, mt); | |
81eabcbe | 1139 | list = &page->lru; |
1da177e4 | 1140 | } |
f2260e6b | 1141 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1142 | spin_unlock(&zone->lock); |
085cc7d5 | 1143 | return i; |
1da177e4 LT |
1144 | } |
1145 | ||
4ae7c039 | 1146 | #ifdef CONFIG_NUMA |
8fce4d8e | 1147 | /* |
4037d452 CL |
1148 | * Called from the vmstat counter updater to drain pagesets of this |
1149 | * currently executing processor on remote nodes after they have | |
1150 | * expired. | |
1151 | * | |
879336c3 CL |
1152 | * Note that this function must be called with the thread pinned to |
1153 | * a single processor. | |
8fce4d8e | 1154 | */ |
4037d452 | 1155 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1156 | { |
4ae7c039 | 1157 | unsigned long flags; |
4037d452 | 1158 | int to_drain; |
4ae7c039 | 1159 | |
4037d452 CL |
1160 | local_irq_save(flags); |
1161 | if (pcp->count >= pcp->batch) | |
1162 | to_drain = pcp->batch; | |
1163 | else | |
1164 | to_drain = pcp->count; | |
2a13515c KM |
1165 | if (to_drain > 0) { |
1166 | free_pcppages_bulk(zone, to_drain, pcp); | |
1167 | pcp->count -= to_drain; | |
1168 | } | |
4037d452 | 1169 | local_irq_restore(flags); |
4ae7c039 CL |
1170 | } |
1171 | #endif | |
1172 | ||
9f8f2172 CL |
1173 | /* |
1174 | * Drain pages of the indicated processor. | |
1175 | * | |
1176 | * The processor must either be the current processor and the | |
1177 | * thread pinned to the current processor or a processor that | |
1178 | * is not online. | |
1179 | */ | |
1180 | static void drain_pages(unsigned int cpu) | |
1da177e4 | 1181 | { |
c54ad30c | 1182 | unsigned long flags; |
1da177e4 | 1183 | struct zone *zone; |
1da177e4 | 1184 | |
ee99c71c | 1185 | for_each_populated_zone(zone) { |
1da177e4 | 1186 | struct per_cpu_pageset *pset; |
3dfa5721 | 1187 | struct per_cpu_pages *pcp; |
1da177e4 | 1188 | |
99dcc3e5 CL |
1189 | local_irq_save(flags); |
1190 | pset = per_cpu_ptr(zone->pageset, cpu); | |
3dfa5721 CL |
1191 | |
1192 | pcp = &pset->pcp; | |
2ff754fa DR |
1193 | if (pcp->count) { |
1194 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1195 | pcp->count = 0; | |
1196 | } | |
3dfa5721 | 1197 | local_irq_restore(flags); |
1da177e4 LT |
1198 | } |
1199 | } | |
1da177e4 | 1200 | |
9f8f2172 CL |
1201 | /* |
1202 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
1203 | */ | |
1204 | void drain_local_pages(void *arg) | |
1205 | { | |
1206 | drain_pages(smp_processor_id()); | |
1207 | } | |
1208 | ||
1209 | /* | |
74046494 GBY |
1210 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1211 | * | |
1212 | * Note that this code is protected against sending an IPI to an offline | |
1213 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1214 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1215 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1216 | * before the call to on_each_cpu_mask(). | |
9f8f2172 CL |
1217 | */ |
1218 | void drain_all_pages(void) | |
1219 | { | |
74046494 GBY |
1220 | int cpu; |
1221 | struct per_cpu_pageset *pcp; | |
1222 | struct zone *zone; | |
1223 | ||
1224 | /* | |
1225 | * Allocate in the BSS so we wont require allocation in | |
1226 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1227 | */ | |
1228 | static cpumask_t cpus_with_pcps; | |
1229 | ||
1230 | /* | |
1231 | * We don't care about racing with CPU hotplug event | |
1232 | * as offline notification will cause the notified | |
1233 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1234 | * disables preemption as part of its processing | |
1235 | */ | |
1236 | for_each_online_cpu(cpu) { | |
1237 | bool has_pcps = false; | |
1238 | for_each_populated_zone(zone) { | |
1239 | pcp = per_cpu_ptr(zone->pageset, cpu); | |
1240 | if (pcp->pcp.count) { | |
1241 | has_pcps = true; | |
1242 | break; | |
1243 | } | |
1244 | } | |
1245 | if (has_pcps) | |
1246 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
1247 | else | |
1248 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
1249 | } | |
1250 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); | |
9f8f2172 CL |
1251 | } |
1252 | ||
296699de | 1253 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
1254 | |
1255 | void mark_free_pages(struct zone *zone) | |
1256 | { | |
f623f0db RW |
1257 | unsigned long pfn, max_zone_pfn; |
1258 | unsigned long flags; | |
b2a0ac88 | 1259 | int order, t; |
1da177e4 LT |
1260 | struct list_head *curr; |
1261 | ||
1262 | if (!zone->spanned_pages) | |
1263 | return; | |
1264 | ||
1265 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db RW |
1266 | |
1267 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | |
1268 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | |
1269 | if (pfn_valid(pfn)) { | |
1270 | struct page *page = pfn_to_page(pfn); | |
1271 | ||
7be98234 RW |
1272 | if (!swsusp_page_is_forbidden(page)) |
1273 | swsusp_unset_page_free(page); | |
f623f0db | 1274 | } |
1da177e4 | 1275 | |
b2a0ac88 MG |
1276 | for_each_migratetype_order(order, t) { |
1277 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 1278 | unsigned long i; |
1da177e4 | 1279 | |
f623f0db RW |
1280 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1281 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 1282 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 1283 | } |
b2a0ac88 | 1284 | } |
1da177e4 LT |
1285 | spin_unlock_irqrestore(&zone->lock, flags); |
1286 | } | |
e2c55dc8 | 1287 | #endif /* CONFIG_PM */ |
1da177e4 | 1288 | |
1da177e4 LT |
1289 | /* |
1290 | * Free a 0-order page | |
fc91668e | 1291 | * cold == 1 ? free a cold page : free a hot page |
1da177e4 | 1292 | */ |
fc91668e | 1293 | void free_hot_cold_page(struct page *page, int cold) |
1da177e4 LT |
1294 | { |
1295 | struct zone *zone = page_zone(page); | |
1296 | struct per_cpu_pages *pcp; | |
1297 | unsigned long flags; | |
5f8dcc21 | 1298 | int migratetype; |
451ea25d | 1299 | int wasMlocked = __TestClearPageMlocked(page); |
1da177e4 | 1300 | |
ec95f53a | 1301 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
1302 | return; |
1303 | ||
5f8dcc21 MG |
1304 | migratetype = get_pageblock_migratetype(page); |
1305 | set_page_private(page, migratetype); | |
1da177e4 | 1306 | local_irq_save(flags); |
c277331d | 1307 | if (unlikely(wasMlocked)) |
da456f14 | 1308 | free_page_mlock(page); |
f8891e5e | 1309 | __count_vm_event(PGFREE); |
da456f14 | 1310 | |
5f8dcc21 MG |
1311 | /* |
1312 | * We only track unmovable, reclaimable and movable on pcp lists. | |
1313 | * Free ISOLATE pages back to the allocator because they are being | |
1314 | * offlined but treat RESERVE as movable pages so we can get those | |
1315 | * areas back if necessary. Otherwise, we may have to free | |
1316 | * excessively into the page allocator | |
1317 | */ | |
1318 | if (migratetype >= MIGRATE_PCPTYPES) { | |
1319 | if (unlikely(migratetype == MIGRATE_ISOLATE)) { | |
1320 | free_one_page(zone, page, 0, migratetype); | |
1321 | goto out; | |
1322 | } | |
1323 | migratetype = MIGRATE_MOVABLE; | |
1324 | } | |
1325 | ||
99dcc3e5 | 1326 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
3dfa5721 | 1327 | if (cold) |
5f8dcc21 | 1328 | list_add_tail(&page->lru, &pcp->lists[migratetype]); |
3dfa5721 | 1329 | else |
5f8dcc21 | 1330 | list_add(&page->lru, &pcp->lists[migratetype]); |
1da177e4 | 1331 | pcp->count++; |
48db57f8 | 1332 | if (pcp->count >= pcp->high) { |
5f8dcc21 | 1333 | free_pcppages_bulk(zone, pcp->batch, pcp); |
48db57f8 NP |
1334 | pcp->count -= pcp->batch; |
1335 | } | |
5f8dcc21 MG |
1336 | |
1337 | out: | |
1da177e4 | 1338 | local_irq_restore(flags); |
1da177e4 LT |
1339 | } |
1340 | ||
cc59850e KK |
1341 | /* |
1342 | * Free a list of 0-order pages | |
1343 | */ | |
1344 | void free_hot_cold_page_list(struct list_head *list, int cold) | |
1345 | { | |
1346 | struct page *page, *next; | |
1347 | ||
1348 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 1349 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
1350 | free_hot_cold_page(page, cold); |
1351 | } | |
1352 | } | |
1353 | ||
8dfcc9ba NP |
1354 | /* |
1355 | * split_page takes a non-compound higher-order page, and splits it into | |
1356 | * n (1<<order) sub-pages: page[0..n] | |
1357 | * Each sub-page must be freed individually. | |
1358 | * | |
1359 | * Note: this is probably too low level an operation for use in drivers. | |
1360 | * Please consult with lkml before using this in your driver. | |
1361 | */ | |
1362 | void split_page(struct page *page, unsigned int order) | |
1363 | { | |
1364 | int i; | |
1365 | ||
725d704e NP |
1366 | VM_BUG_ON(PageCompound(page)); |
1367 | VM_BUG_ON(!page_count(page)); | |
b1eeab67 VN |
1368 | |
1369 | #ifdef CONFIG_KMEMCHECK | |
1370 | /* | |
1371 | * Split shadow pages too, because free(page[0]) would | |
1372 | * otherwise free the whole shadow. | |
1373 | */ | |
1374 | if (kmemcheck_page_is_tracked(page)) | |
1375 | split_page(virt_to_page(page[0].shadow), order); | |
1376 | #endif | |
1377 | ||
7835e98b NP |
1378 | for (i = 1; i < (1 << order); i++) |
1379 | set_page_refcounted(page + i); | |
8dfcc9ba | 1380 | } |
8dfcc9ba | 1381 | |
748446bb MG |
1382 | /* |
1383 | * Similar to split_page except the page is already free. As this is only | |
1384 | * being used for migration, the migratetype of the block also changes. | |
1385 | * As this is called with interrupts disabled, the caller is responsible | |
1386 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
1387 | * are enabled. | |
1388 | * | |
1389 | * Note: this is probably too low level an operation for use in drivers. | |
1390 | * Please consult with lkml before using this in your driver. | |
1391 | */ | |
1392 | int split_free_page(struct page *page) | |
1393 | { | |
1394 | unsigned int order; | |
1395 | unsigned long watermark; | |
1396 | struct zone *zone; | |
1397 | ||
1398 | BUG_ON(!PageBuddy(page)); | |
1399 | ||
1400 | zone = page_zone(page); | |
1401 | order = page_order(page); | |
1402 | ||
1403 | /* Obey watermarks as if the page was being allocated */ | |
1404 | watermark = low_wmark_pages(zone) + (1 << order); | |
1405 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
1406 | return 0; | |
1407 | ||
1408 | /* Remove page from free list */ | |
1409 | list_del(&page->lru); | |
1410 | zone->free_area[order].nr_free--; | |
1411 | rmv_page_order(page); | |
1412 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); | |
1413 | ||
1414 | /* Split into individual pages */ | |
1415 | set_page_refcounted(page); | |
1416 | split_page(page, order); | |
1417 | ||
1418 | if (order >= pageblock_order - 1) { | |
1419 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
1420 | for (; page < endpage; page += pageblock_nr_pages) { |
1421 | int mt = get_pageblock_migratetype(page); | |
1422 | if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) | |
1423 | set_pageblock_migratetype(page, | |
1424 | MIGRATE_MOVABLE); | |
1425 | } | |
748446bb MG |
1426 | } |
1427 | ||
1428 | return 1 << order; | |
1429 | } | |
1430 | ||
1da177e4 LT |
1431 | /* |
1432 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
1433 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
1434 | * or two. | |
1435 | */ | |
0a15c3e9 MG |
1436 | static inline |
1437 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
3dd28266 MG |
1438 | struct zone *zone, int order, gfp_t gfp_flags, |
1439 | int migratetype) | |
1da177e4 LT |
1440 | { |
1441 | unsigned long flags; | |
689bcebf | 1442 | struct page *page; |
1da177e4 LT |
1443 | int cold = !!(gfp_flags & __GFP_COLD); |
1444 | ||
689bcebf | 1445 | again: |
48db57f8 | 1446 | if (likely(order == 0)) { |
1da177e4 | 1447 | struct per_cpu_pages *pcp; |
5f8dcc21 | 1448 | struct list_head *list; |
1da177e4 | 1449 | |
1da177e4 | 1450 | local_irq_save(flags); |
99dcc3e5 CL |
1451 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1452 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 1453 | if (list_empty(list)) { |
535131e6 | 1454 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 1455 | pcp->batch, list, |
e084b2d9 | 1456 | migratetype, cold); |
5f8dcc21 | 1457 | if (unlikely(list_empty(list))) |
6fb332fa | 1458 | goto failed; |
535131e6 | 1459 | } |
b92a6edd | 1460 | |
5f8dcc21 MG |
1461 | if (cold) |
1462 | page = list_entry(list->prev, struct page, lru); | |
1463 | else | |
1464 | page = list_entry(list->next, struct page, lru); | |
1465 | ||
b92a6edd MG |
1466 | list_del(&page->lru); |
1467 | pcp->count--; | |
7fb1d9fc | 1468 | } else { |
dab48dab AM |
1469 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1470 | /* | |
1471 | * __GFP_NOFAIL is not to be used in new code. | |
1472 | * | |
1473 | * All __GFP_NOFAIL callers should be fixed so that they | |
1474 | * properly detect and handle allocation failures. | |
1475 | * | |
1476 | * We most definitely don't want callers attempting to | |
4923abf9 | 1477 | * allocate greater than order-1 page units with |
dab48dab AM |
1478 | * __GFP_NOFAIL. |
1479 | */ | |
4923abf9 | 1480 | WARN_ON_ONCE(order > 1); |
dab48dab | 1481 | } |
1da177e4 | 1482 | spin_lock_irqsave(&zone->lock, flags); |
b2a0ac88 | 1483 | page = __rmqueue(zone, order, migratetype); |
a74609fa NP |
1484 | spin_unlock(&zone->lock); |
1485 | if (!page) | |
1486 | goto failed; | |
6ccf80eb | 1487 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); |
1da177e4 LT |
1488 | } |
1489 | ||
f8891e5e | 1490 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 1491 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 1492 | local_irq_restore(flags); |
1da177e4 | 1493 | |
725d704e | 1494 | VM_BUG_ON(bad_range(zone, page)); |
17cf4406 | 1495 | if (prep_new_page(page, order, gfp_flags)) |
a74609fa | 1496 | goto again; |
1da177e4 | 1497 | return page; |
a74609fa NP |
1498 | |
1499 | failed: | |
1500 | local_irq_restore(flags); | |
a74609fa | 1501 | return NULL; |
1da177e4 LT |
1502 | } |
1503 | ||
41858966 MG |
1504 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
1505 | #define ALLOC_WMARK_MIN WMARK_MIN | |
1506 | #define ALLOC_WMARK_LOW WMARK_LOW | |
1507 | #define ALLOC_WMARK_HIGH WMARK_HIGH | |
1508 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ | |
1509 | ||
1510 | /* Mask to get the watermark bits */ | |
1511 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) | |
1512 | ||
3148890b NP |
1513 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
1514 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ | |
1515 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ | |
7fb1d9fc | 1516 | |
933e312e AM |
1517 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1518 | ||
b2588c4b | 1519 | static struct { |
933e312e AM |
1520 | struct fault_attr attr; |
1521 | ||
1522 | u32 ignore_gfp_highmem; | |
1523 | u32 ignore_gfp_wait; | |
54114994 | 1524 | u32 min_order; |
933e312e AM |
1525 | } fail_page_alloc = { |
1526 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 DM |
1527 | .ignore_gfp_wait = 1, |
1528 | .ignore_gfp_highmem = 1, | |
54114994 | 1529 | .min_order = 1, |
933e312e AM |
1530 | }; |
1531 | ||
1532 | static int __init setup_fail_page_alloc(char *str) | |
1533 | { | |
1534 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
1535 | } | |
1536 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
1537 | ||
deaf386e | 1538 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1539 | { |
54114994 | 1540 | if (order < fail_page_alloc.min_order) |
deaf386e | 1541 | return false; |
933e312e | 1542 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 1543 | return false; |
933e312e | 1544 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 1545 | return false; |
933e312e | 1546 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) |
deaf386e | 1547 | return false; |
933e312e AM |
1548 | |
1549 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
1550 | } | |
1551 | ||
1552 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1553 | ||
1554 | static int __init fail_page_alloc_debugfs(void) | |
1555 | { | |
f4ae40a6 | 1556 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 1557 | struct dentry *dir; |
933e312e | 1558 | |
dd48c085 AM |
1559 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1560 | &fail_page_alloc.attr); | |
1561 | if (IS_ERR(dir)) | |
1562 | return PTR_ERR(dir); | |
933e312e | 1563 | |
b2588c4b AM |
1564 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1565 | &fail_page_alloc.ignore_gfp_wait)) | |
1566 | goto fail; | |
1567 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
1568 | &fail_page_alloc.ignore_gfp_highmem)) | |
1569 | goto fail; | |
1570 | if (!debugfs_create_u32("min-order", mode, dir, | |
1571 | &fail_page_alloc.min_order)) | |
1572 | goto fail; | |
1573 | ||
1574 | return 0; | |
1575 | fail: | |
dd48c085 | 1576 | debugfs_remove_recursive(dir); |
933e312e | 1577 | |
b2588c4b | 1578 | return -ENOMEM; |
933e312e AM |
1579 | } |
1580 | ||
1581 | late_initcall(fail_page_alloc_debugfs); | |
1582 | ||
1583 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1584 | ||
1585 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
1586 | ||
deaf386e | 1587 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1588 | { |
deaf386e | 1589 | return false; |
933e312e AM |
1590 | } |
1591 | ||
1592 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
1593 | ||
1da177e4 | 1594 | /* |
88f5acf8 | 1595 | * Return true if free pages are above 'mark'. This takes into account the order |
1da177e4 LT |
1596 | * of the allocation. |
1597 | */ | |
88f5acf8 MG |
1598 | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1599 | int classzone_idx, int alloc_flags, long free_pages) | |
1da177e4 LT |
1600 | { |
1601 | /* free_pages my go negative - that's OK */ | |
d23ad423 | 1602 | long min = mark; |
2cfed075 | 1603 | long lowmem_reserve = z->lowmem_reserve[classzone_idx]; |
1da177e4 LT |
1604 | int o; |
1605 | ||
df0a6daa | 1606 | free_pages -= (1 << order) - 1; |
7fb1d9fc | 1607 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 1608 | min -= min / 2; |
7fb1d9fc | 1609 | if (alloc_flags & ALLOC_HARDER) |
1da177e4 LT |
1610 | min -= min / 4; |
1611 | ||
2cfed075 | 1612 | if (free_pages <= min + lowmem_reserve) |
88f5acf8 | 1613 | return false; |
1da177e4 LT |
1614 | for (o = 0; o < order; o++) { |
1615 | /* At the next order, this order's pages become unavailable */ | |
1616 | free_pages -= z->free_area[o].nr_free << o; | |
1617 | ||
1618 | /* Require fewer higher order pages to be free */ | |
1619 | min >>= 1; | |
1620 | ||
1621 | if (free_pages <= min) | |
88f5acf8 | 1622 | return false; |
1da177e4 | 1623 | } |
88f5acf8 MG |
1624 | return true; |
1625 | } | |
1626 | ||
702d1a6e MK |
1627 | #ifdef CONFIG_MEMORY_ISOLATION |
1628 | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) | |
1629 | { | |
1630 | if (unlikely(zone->nr_pageblock_isolate)) | |
1631 | return zone->nr_pageblock_isolate * pageblock_nr_pages; | |
1632 | return 0; | |
1633 | } | |
1634 | #else | |
1635 | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) | |
1636 | { | |
1637 | return 0; | |
1638 | } | |
1639 | #endif | |
1640 | ||
88f5acf8 MG |
1641 | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1642 | int classzone_idx, int alloc_flags) | |
1643 | { | |
1644 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1645 | zone_page_state(z, NR_FREE_PAGES)); | |
1646 | } | |
1647 | ||
1648 | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, | |
1649 | int classzone_idx, int alloc_flags) | |
1650 | { | |
1651 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
1652 | ||
1653 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
1654 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
1655 | ||
702d1a6e MK |
1656 | /* |
1657 | * If the zone has MIGRATE_ISOLATE type free pages, we should consider | |
1658 | * it. nr_zone_isolate_freepages is never accurate so kswapd might not | |
1659 | * sleep although it could do so. But this is more desirable for memory | |
1660 | * hotplug than sleeping which can cause a livelock in the direct | |
1661 | * reclaim path. | |
1662 | */ | |
1663 | free_pages -= nr_zone_isolate_freepages(z); | |
88f5acf8 MG |
1664 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, |
1665 | free_pages); | |
1da177e4 LT |
1666 | } |
1667 | ||
9276b1bc PJ |
1668 | #ifdef CONFIG_NUMA |
1669 | /* | |
1670 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | |
1671 | * skip over zones that are not allowed by the cpuset, or that have | |
1672 | * been recently (in last second) found to be nearly full. See further | |
1673 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | |
183ff22b | 1674 | * that have to skip over a lot of full or unallowed zones. |
9276b1bc PJ |
1675 | * |
1676 | * If the zonelist cache is present in the passed in zonelist, then | |
1677 | * returns a pointer to the allowed node mask (either the current | |
37b07e41 | 1678 | * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) |
9276b1bc PJ |
1679 | * |
1680 | * If the zonelist cache is not available for this zonelist, does | |
1681 | * nothing and returns NULL. | |
1682 | * | |
1683 | * If the fullzones BITMAP in the zonelist cache is stale (more than | |
1684 | * a second since last zap'd) then we zap it out (clear its bits.) | |
1685 | * | |
1686 | * We hold off even calling zlc_setup, until after we've checked the | |
1687 | * first zone in the zonelist, on the theory that most allocations will | |
1688 | * be satisfied from that first zone, so best to examine that zone as | |
1689 | * quickly as we can. | |
1690 | */ | |
1691 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1692 | { | |
1693 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1694 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | |
1695 | ||
1696 | zlc = zonelist->zlcache_ptr; | |
1697 | if (!zlc) | |
1698 | return NULL; | |
1699 | ||
f05111f5 | 1700 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
9276b1bc PJ |
1701 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1702 | zlc->last_full_zap = jiffies; | |
1703 | } | |
1704 | ||
1705 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | |
1706 | &cpuset_current_mems_allowed : | |
37b07e41 | 1707 | &node_states[N_HIGH_MEMORY]; |
9276b1bc PJ |
1708 | return allowednodes; |
1709 | } | |
1710 | ||
1711 | /* | |
1712 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | |
1713 | * if it is worth looking at further for free memory: | |
1714 | * 1) Check that the zone isn't thought to be full (doesn't have its | |
1715 | * bit set in the zonelist_cache fullzones BITMAP). | |
1716 | * 2) Check that the zones node (obtained from the zonelist_cache | |
1717 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | |
1718 | * Return true (non-zero) if zone is worth looking at further, or | |
1719 | * else return false (zero) if it is not. | |
1720 | * | |
1721 | * This check -ignores- the distinction between various watermarks, | |
1722 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | |
1723 | * found to be full for any variation of these watermarks, it will | |
1724 | * be considered full for up to one second by all requests, unless | |
1725 | * we are so low on memory on all allowed nodes that we are forced | |
1726 | * into the second scan of the zonelist. | |
1727 | * | |
1728 | * In the second scan we ignore this zonelist cache and exactly | |
1729 | * apply the watermarks to all zones, even it is slower to do so. | |
1730 | * We are low on memory in the second scan, and should leave no stone | |
1731 | * unturned looking for a free page. | |
1732 | */ | |
dd1a239f | 1733 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1734 | nodemask_t *allowednodes) |
1735 | { | |
1736 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1737 | int i; /* index of *z in zonelist zones */ | |
1738 | int n; /* node that zone *z is on */ | |
1739 | ||
1740 | zlc = zonelist->zlcache_ptr; | |
1741 | if (!zlc) | |
1742 | return 1; | |
1743 | ||
dd1a239f | 1744 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1745 | n = zlc->z_to_n[i]; |
1746 | ||
1747 | /* This zone is worth trying if it is allowed but not full */ | |
1748 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | |
1749 | } | |
1750 | ||
1751 | /* | |
1752 | * Given 'z' scanning a zonelist, set the corresponding bit in | |
1753 | * zlc->fullzones, so that subsequent attempts to allocate a page | |
1754 | * from that zone don't waste time re-examining it. | |
1755 | */ | |
dd1a239f | 1756 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1757 | { |
1758 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1759 | int i; /* index of *z in zonelist zones */ | |
1760 | ||
1761 | zlc = zonelist->zlcache_ptr; | |
1762 | if (!zlc) | |
1763 | return; | |
1764 | ||
dd1a239f | 1765 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1766 | |
1767 | set_bit(i, zlc->fullzones); | |
1768 | } | |
1769 | ||
76d3fbf8 MG |
1770 | /* |
1771 | * clear all zones full, called after direct reclaim makes progress so that | |
1772 | * a zone that was recently full is not skipped over for up to a second | |
1773 | */ | |
1774 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1775 | { | |
1776 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1777 | ||
1778 | zlc = zonelist->zlcache_ptr; | |
1779 | if (!zlc) | |
1780 | return; | |
1781 | ||
1782 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
1783 | } | |
1784 | ||
9276b1bc PJ |
1785 | #else /* CONFIG_NUMA */ |
1786 | ||
1787 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1788 | { | |
1789 | return NULL; | |
1790 | } | |
1791 | ||
dd1a239f | 1792 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1793 | nodemask_t *allowednodes) |
1794 | { | |
1795 | return 1; | |
1796 | } | |
1797 | ||
dd1a239f | 1798 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1799 | { |
1800 | } | |
76d3fbf8 MG |
1801 | |
1802 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1803 | { | |
1804 | } | |
9276b1bc PJ |
1805 | #endif /* CONFIG_NUMA */ |
1806 | ||
7fb1d9fc | 1807 | /* |
0798e519 | 1808 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
1809 | * a page. |
1810 | */ | |
1811 | static struct page * | |
19770b32 | 1812 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
5117f45d | 1813 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
3dd28266 | 1814 | struct zone *preferred_zone, int migratetype) |
753ee728 | 1815 | { |
dd1a239f | 1816 | struct zoneref *z; |
7fb1d9fc | 1817 | struct page *page = NULL; |
54a6eb5c | 1818 | int classzone_idx; |
5117f45d | 1819 | struct zone *zone; |
9276b1bc PJ |
1820 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1821 | int zlc_active = 0; /* set if using zonelist_cache */ | |
1822 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | |
54a6eb5c | 1823 | |
19770b32 | 1824 | classzone_idx = zone_idx(preferred_zone); |
9276b1bc | 1825 | zonelist_scan: |
7fb1d9fc | 1826 | /* |
9276b1bc | 1827 | * Scan zonelist, looking for a zone with enough free. |
7fb1d9fc RS |
1828 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1829 | */ | |
19770b32 MG |
1830 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1831 | high_zoneidx, nodemask) { | |
9276b1bc PJ |
1832 | if (NUMA_BUILD && zlc_active && |
1833 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | |
1834 | continue; | |
7fb1d9fc | 1835 | if ((alloc_flags & ALLOC_CPUSET) && |
02a0e53d | 1836 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
cd38b115 | 1837 | continue; |
a756cf59 JW |
1838 | /* |
1839 | * When allocating a page cache page for writing, we | |
1840 | * want to get it from a zone that is within its dirty | |
1841 | * limit, such that no single zone holds more than its | |
1842 | * proportional share of globally allowed dirty pages. | |
1843 | * The dirty limits take into account the zone's | |
1844 | * lowmem reserves and high watermark so that kswapd | |
1845 | * should be able to balance it without having to | |
1846 | * write pages from its LRU list. | |
1847 | * | |
1848 | * This may look like it could increase pressure on | |
1849 | * lower zones by failing allocations in higher zones | |
1850 | * before they are full. But the pages that do spill | |
1851 | * over are limited as the lower zones are protected | |
1852 | * by this very same mechanism. It should not become | |
1853 | * a practical burden to them. | |
1854 | * | |
1855 | * XXX: For now, allow allocations to potentially | |
1856 | * exceed the per-zone dirty limit in the slowpath | |
1857 | * (ALLOC_WMARK_LOW unset) before going into reclaim, | |
1858 | * which is important when on a NUMA setup the allowed | |
1859 | * zones are together not big enough to reach the | |
1860 | * global limit. The proper fix for these situations | |
1861 | * will require awareness of zones in the | |
1862 | * dirty-throttling and the flusher threads. | |
1863 | */ | |
1864 | if ((alloc_flags & ALLOC_WMARK_LOW) && | |
1865 | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) | |
1866 | goto this_zone_full; | |
7fb1d9fc | 1867 | |
41858966 | 1868 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
7fb1d9fc | 1869 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
3148890b | 1870 | unsigned long mark; |
fa5e084e MG |
1871 | int ret; |
1872 | ||
41858966 | 1873 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
fa5e084e MG |
1874 | if (zone_watermark_ok(zone, order, mark, |
1875 | classzone_idx, alloc_flags)) | |
1876 | goto try_this_zone; | |
1877 | ||
cd38b115 MG |
1878 | if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { |
1879 | /* | |
1880 | * we do zlc_setup if there are multiple nodes | |
1881 | * and before considering the first zone allowed | |
1882 | * by the cpuset. | |
1883 | */ | |
1884 | allowednodes = zlc_setup(zonelist, alloc_flags); | |
1885 | zlc_active = 1; | |
1886 | did_zlc_setup = 1; | |
1887 | } | |
1888 | ||
fa5e084e MG |
1889 | if (zone_reclaim_mode == 0) |
1890 | goto this_zone_full; | |
1891 | ||
cd38b115 MG |
1892 | /* |
1893 | * As we may have just activated ZLC, check if the first | |
1894 | * eligible zone has failed zone_reclaim recently. | |
1895 | */ | |
1896 | if (NUMA_BUILD && zlc_active && | |
1897 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | |
1898 | continue; | |
1899 | ||
fa5e084e MG |
1900 | ret = zone_reclaim(zone, gfp_mask, order); |
1901 | switch (ret) { | |
1902 | case ZONE_RECLAIM_NOSCAN: | |
1903 | /* did not scan */ | |
cd38b115 | 1904 | continue; |
fa5e084e MG |
1905 | case ZONE_RECLAIM_FULL: |
1906 | /* scanned but unreclaimable */ | |
cd38b115 | 1907 | continue; |
fa5e084e MG |
1908 | default: |
1909 | /* did we reclaim enough */ | |
1910 | if (!zone_watermark_ok(zone, order, mark, | |
1911 | classzone_idx, alloc_flags)) | |
9276b1bc | 1912 | goto this_zone_full; |
0798e519 | 1913 | } |
7fb1d9fc RS |
1914 | } |
1915 | ||
fa5e084e | 1916 | try_this_zone: |
3dd28266 MG |
1917 | page = buffered_rmqueue(preferred_zone, zone, order, |
1918 | gfp_mask, migratetype); | |
0798e519 | 1919 | if (page) |
7fb1d9fc | 1920 | break; |
9276b1bc PJ |
1921 | this_zone_full: |
1922 | if (NUMA_BUILD) | |
1923 | zlc_mark_zone_full(zonelist, z); | |
54a6eb5c | 1924 | } |
9276b1bc PJ |
1925 | |
1926 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { | |
1927 | /* Disable zlc cache for second zonelist scan */ | |
1928 | zlc_active = 0; | |
1929 | goto zonelist_scan; | |
1930 | } | |
7fb1d9fc | 1931 | return page; |
753ee728 MH |
1932 | } |
1933 | ||
29423e77 DR |
1934 | /* |
1935 | * Large machines with many possible nodes should not always dump per-node | |
1936 | * meminfo in irq context. | |
1937 | */ | |
1938 | static inline bool should_suppress_show_mem(void) | |
1939 | { | |
1940 | bool ret = false; | |
1941 | ||
1942 | #if NODES_SHIFT > 8 | |
1943 | ret = in_interrupt(); | |
1944 | #endif | |
1945 | return ret; | |
1946 | } | |
1947 | ||
a238ab5b DH |
1948 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
1949 | DEFAULT_RATELIMIT_INTERVAL, | |
1950 | DEFAULT_RATELIMIT_BURST); | |
1951 | ||
1952 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | |
1953 | { | |
a238ab5b DH |
1954 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
1955 | ||
c0a32fc5 SG |
1956 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
1957 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
1958 | return; |
1959 | ||
1960 | /* | |
1961 | * This documents exceptions given to allocations in certain | |
1962 | * contexts that are allowed to allocate outside current's set | |
1963 | * of allowed nodes. | |
1964 | */ | |
1965 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
1966 | if (test_thread_flag(TIF_MEMDIE) || | |
1967 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
1968 | filter &= ~SHOW_MEM_FILTER_NODES; | |
1969 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | |
1970 | filter &= ~SHOW_MEM_FILTER_NODES; | |
1971 | ||
1972 | if (fmt) { | |
3ee9a4f0 JP |
1973 | struct va_format vaf; |
1974 | va_list args; | |
1975 | ||
a238ab5b | 1976 | va_start(args, fmt); |
3ee9a4f0 JP |
1977 | |
1978 | vaf.fmt = fmt; | |
1979 | vaf.va = &args; | |
1980 | ||
1981 | pr_warn("%pV", &vaf); | |
1982 | ||
a238ab5b DH |
1983 | va_end(args); |
1984 | } | |
1985 | ||
3ee9a4f0 JP |
1986 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
1987 | current->comm, order, gfp_mask); | |
a238ab5b DH |
1988 | |
1989 | dump_stack(); | |
1990 | if (!should_suppress_show_mem()) | |
1991 | show_mem(filter); | |
1992 | } | |
1993 | ||
11e33f6a MG |
1994 | static inline int |
1995 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | |
f90ac398 | 1996 | unsigned long did_some_progress, |
11e33f6a | 1997 | unsigned long pages_reclaimed) |
1da177e4 | 1998 | { |
11e33f6a MG |
1999 | /* Do not loop if specifically requested */ |
2000 | if (gfp_mask & __GFP_NORETRY) | |
2001 | return 0; | |
1da177e4 | 2002 | |
f90ac398 MG |
2003 | /* Always retry if specifically requested */ |
2004 | if (gfp_mask & __GFP_NOFAIL) | |
2005 | return 1; | |
2006 | ||
2007 | /* | |
2008 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | |
2009 | * making forward progress without invoking OOM. Suspend also disables | |
2010 | * storage devices so kswapd will not help. Bail if we are suspending. | |
2011 | */ | |
2012 | if (!did_some_progress && pm_suspended_storage()) | |
2013 | return 0; | |
2014 | ||
11e33f6a MG |
2015 | /* |
2016 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | |
2017 | * means __GFP_NOFAIL, but that may not be true in other | |
2018 | * implementations. | |
2019 | */ | |
2020 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
2021 | return 1; | |
2022 | ||
2023 | /* | |
2024 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | |
2025 | * specified, then we retry until we no longer reclaim any pages | |
2026 | * (above), or we've reclaimed an order of pages at least as | |
2027 | * large as the allocation's order. In both cases, if the | |
2028 | * allocation still fails, we stop retrying. | |
2029 | */ | |
2030 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | |
2031 | return 1; | |
cf40bd16 | 2032 | |
11e33f6a MG |
2033 | return 0; |
2034 | } | |
933e312e | 2035 | |
11e33f6a MG |
2036 | static inline struct page * |
2037 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
2038 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2039 | nodemask_t *nodemask, struct zone *preferred_zone, |
2040 | int migratetype) | |
11e33f6a MG |
2041 | { |
2042 | struct page *page; | |
2043 | ||
2044 | /* Acquire the OOM killer lock for the zones in zonelist */ | |
ff321fea | 2045 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
11e33f6a | 2046 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
2047 | return NULL; |
2048 | } | |
6b1de916 | 2049 | |
11e33f6a MG |
2050 | /* |
2051 | * Go through the zonelist yet one more time, keep very high watermark | |
2052 | * here, this is only to catch a parallel oom killing, we must fail if | |
2053 | * we're still under heavy pressure. | |
2054 | */ | |
2055 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | |
2056 | order, zonelist, high_zoneidx, | |
5117f45d | 2057 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
3dd28266 | 2058 | preferred_zone, migratetype); |
7fb1d9fc | 2059 | if (page) |
11e33f6a MG |
2060 | goto out; |
2061 | ||
4365a567 KH |
2062 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2063 | /* The OOM killer will not help higher order allocs */ | |
2064 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2065 | goto out; | |
03668b3c DR |
2066 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
2067 | if (high_zoneidx < ZONE_NORMAL) | |
2068 | goto out; | |
4365a567 KH |
2069 | /* |
2070 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | |
2071 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | |
2072 | * The caller should handle page allocation failure by itself if | |
2073 | * it specifies __GFP_THISNODE. | |
2074 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. | |
2075 | */ | |
2076 | if (gfp_mask & __GFP_THISNODE) | |
2077 | goto out; | |
2078 | } | |
11e33f6a | 2079 | /* Exhausted what can be done so it's blamo time */ |
08ab9b10 | 2080 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
11e33f6a MG |
2081 | |
2082 | out: | |
2083 | clear_zonelist_oom(zonelist, gfp_mask); | |
2084 | return page; | |
2085 | } | |
2086 | ||
56de7263 MG |
2087 | #ifdef CONFIG_COMPACTION |
2088 | /* Try memory compaction for high-order allocations before reclaim */ | |
2089 | static struct page * | |
2090 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2091 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2092 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 MG |
2093 | int migratetype, bool sync_migration, |
2094 | bool *deferred_compaction, | |
2095 | unsigned long *did_some_progress) | |
56de7263 MG |
2096 | { |
2097 | struct page *page; | |
2098 | ||
66199712 | 2099 | if (!order) |
56de7263 MG |
2100 | return NULL; |
2101 | ||
aff62249 | 2102 | if (compaction_deferred(preferred_zone, order)) { |
66199712 MG |
2103 | *deferred_compaction = true; |
2104 | return NULL; | |
2105 | } | |
2106 | ||
c06b1fca | 2107 | current->flags |= PF_MEMALLOC; |
56de7263 | 2108 | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, |
77f1fe6b | 2109 | nodemask, sync_migration); |
c06b1fca | 2110 | current->flags &= ~PF_MEMALLOC; |
56de7263 MG |
2111 | if (*did_some_progress != COMPACT_SKIPPED) { |
2112 | ||
2113 | /* Page migration frees to the PCP lists but we want merging */ | |
2114 | drain_pages(get_cpu()); | |
2115 | put_cpu(); | |
2116 | ||
2117 | page = get_page_from_freelist(gfp_mask, nodemask, | |
2118 | order, zonelist, high_zoneidx, | |
cfd19c5a MG |
2119 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2120 | preferred_zone, migratetype); | |
56de7263 | 2121 | if (page) { |
4f92e258 MG |
2122 | preferred_zone->compact_considered = 0; |
2123 | preferred_zone->compact_defer_shift = 0; | |
aff62249 RR |
2124 | if (order >= preferred_zone->compact_order_failed) |
2125 | preferred_zone->compact_order_failed = order + 1; | |
56de7263 MG |
2126 | count_vm_event(COMPACTSUCCESS); |
2127 | return page; | |
2128 | } | |
2129 | ||
2130 | /* | |
2131 | * It's bad if compaction run occurs and fails. | |
2132 | * The most likely reason is that pages exist, | |
2133 | * but not enough to satisfy watermarks. | |
2134 | */ | |
2135 | count_vm_event(COMPACTFAIL); | |
66199712 MG |
2136 | |
2137 | /* | |
2138 | * As async compaction considers a subset of pageblocks, only | |
2139 | * defer if the failure was a sync compaction failure. | |
2140 | */ | |
2141 | if (sync_migration) | |
aff62249 | 2142 | defer_compaction(preferred_zone, order); |
56de7263 MG |
2143 | |
2144 | cond_resched(); | |
2145 | } | |
2146 | ||
2147 | return NULL; | |
2148 | } | |
2149 | #else | |
2150 | static inline struct page * | |
2151 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2152 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2153 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 MG |
2154 | int migratetype, bool sync_migration, |
2155 | bool *deferred_compaction, | |
2156 | unsigned long *did_some_progress) | |
56de7263 MG |
2157 | { |
2158 | return NULL; | |
2159 | } | |
2160 | #endif /* CONFIG_COMPACTION */ | |
2161 | ||
bba90710 MS |
2162 | /* Perform direct synchronous page reclaim */ |
2163 | static int | |
2164 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, | |
2165 | nodemask_t *nodemask) | |
11e33f6a | 2166 | { |
11e33f6a | 2167 | struct reclaim_state reclaim_state; |
bba90710 | 2168 | int progress; |
11e33f6a MG |
2169 | |
2170 | cond_resched(); | |
2171 | ||
2172 | /* We now go into synchronous reclaim */ | |
2173 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2174 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2175 | lockdep_set_current_reclaim_state(gfp_mask); |
2176 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2177 | current->reclaim_state = &reclaim_state; |
11e33f6a | 2178 | |
bba90710 | 2179 | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); |
11e33f6a | 2180 | |
c06b1fca | 2181 | current->reclaim_state = NULL; |
11e33f6a | 2182 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2183 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2184 | |
2185 | cond_resched(); | |
2186 | ||
bba90710 MS |
2187 | return progress; |
2188 | } | |
2189 | ||
2190 | /* The really slow allocator path where we enter direct reclaim */ | |
2191 | static inline struct page * | |
2192 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
2193 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2194 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
2195 | int migratetype, unsigned long *did_some_progress) | |
2196 | { | |
2197 | struct page *page = NULL; | |
2198 | bool drained = false; | |
2199 | ||
2200 | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, | |
2201 | nodemask); | |
9ee493ce MG |
2202 | if (unlikely(!(*did_some_progress))) |
2203 | return NULL; | |
11e33f6a | 2204 | |
76d3fbf8 MG |
2205 | /* After successful reclaim, reconsider all zones for allocation */ |
2206 | if (NUMA_BUILD) | |
2207 | zlc_clear_zones_full(zonelist); | |
2208 | ||
9ee493ce MG |
2209 | retry: |
2210 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2211 | zonelist, high_zoneidx, |
cfd19c5a MG |
2212 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2213 | preferred_zone, migratetype); | |
9ee493ce MG |
2214 | |
2215 | /* | |
2216 | * If an allocation failed after direct reclaim, it could be because | |
2217 | * pages are pinned on the per-cpu lists. Drain them and try again | |
2218 | */ | |
2219 | if (!page && !drained) { | |
2220 | drain_all_pages(); | |
2221 | drained = true; | |
2222 | goto retry; | |
2223 | } | |
2224 | ||
11e33f6a MG |
2225 | return page; |
2226 | } | |
2227 | ||
1da177e4 | 2228 | /* |
11e33f6a MG |
2229 | * This is called in the allocator slow-path if the allocation request is of |
2230 | * sufficient urgency to ignore watermarks and take other desperate measures | |
1da177e4 | 2231 | */ |
11e33f6a MG |
2232 | static inline struct page * |
2233 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |
2234 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2235 | nodemask_t *nodemask, struct zone *preferred_zone, |
2236 | int migratetype) | |
11e33f6a MG |
2237 | { |
2238 | struct page *page; | |
2239 | ||
2240 | do { | |
2241 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2242 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
3dd28266 | 2243 | preferred_zone, migratetype); |
11e33f6a MG |
2244 | |
2245 | if (!page && gfp_mask & __GFP_NOFAIL) | |
0e093d99 | 2246 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
11e33f6a MG |
2247 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2248 | ||
2249 | return page; | |
2250 | } | |
2251 | ||
2252 | static inline | |
2253 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, | |
99504748 MG |
2254 | enum zone_type high_zoneidx, |
2255 | enum zone_type classzone_idx) | |
1da177e4 | 2256 | { |
dd1a239f MG |
2257 | struct zoneref *z; |
2258 | struct zone *zone; | |
1da177e4 | 2259 | |
11e33f6a | 2260 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
99504748 | 2261 | wakeup_kswapd(zone, order, classzone_idx); |
11e33f6a | 2262 | } |
cf40bd16 | 2263 | |
341ce06f PZ |
2264 | static inline int |
2265 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2266 | { | |
341ce06f PZ |
2267 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
2268 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
1da177e4 | 2269 | |
a56f57ff | 2270 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2271 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2272 | |
341ce06f PZ |
2273 | /* |
2274 | * The caller may dip into page reserves a bit more if the caller | |
2275 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2276 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
2277 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | |
2278 | */ | |
e6223a3b | 2279 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2280 | |
341ce06f | 2281 | if (!wait) { |
5c3240d9 AA |
2282 | /* |
2283 | * Not worth trying to allocate harder for | |
2284 | * __GFP_NOMEMALLOC even if it can't schedule. | |
2285 | */ | |
2286 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2287 | alloc_flags |= ALLOC_HARDER; | |
523b9458 | 2288 | /* |
341ce06f PZ |
2289 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
2290 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | |
523b9458 | 2291 | */ |
341ce06f | 2292 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2293 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2294 | alloc_flags |= ALLOC_HARDER; |
2295 | ||
b37f1dd0 MG |
2296 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2297 | if (gfp_mask & __GFP_MEMALLOC) | |
2298 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
907aed48 MG |
2299 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2300 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
2301 | else if (!in_interrupt() && | |
2302 | ((current->flags & PF_MEMALLOC) || | |
2303 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
341ce06f | 2304 | alloc_flags |= ALLOC_NO_WATERMARKS; |
1da177e4 | 2305 | } |
6b1de916 | 2306 | |
341ce06f PZ |
2307 | return alloc_flags; |
2308 | } | |
2309 | ||
072bb0aa MG |
2310 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2311 | { | |
b37f1dd0 | 2312 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
072bb0aa MG |
2313 | } |
2314 | ||
11e33f6a MG |
2315 | static inline struct page * |
2316 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
2317 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2318 | nodemask_t *nodemask, struct zone *preferred_zone, |
2319 | int migratetype) | |
11e33f6a MG |
2320 | { |
2321 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
2322 | struct page *page = NULL; | |
2323 | int alloc_flags; | |
2324 | unsigned long pages_reclaimed = 0; | |
2325 | unsigned long did_some_progress; | |
77f1fe6b | 2326 | bool sync_migration = false; |
66199712 | 2327 | bool deferred_compaction = false; |
1da177e4 | 2328 | |
72807a74 MG |
2329 | /* |
2330 | * In the slowpath, we sanity check order to avoid ever trying to | |
2331 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
2332 | * be using allocators in order of preference for an area that is | |
2333 | * too large. | |
2334 | */ | |
1fc28b70 MG |
2335 | if (order >= MAX_ORDER) { |
2336 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 2337 | return NULL; |
1fc28b70 | 2338 | } |
1da177e4 | 2339 | |
952f3b51 CL |
2340 | /* |
2341 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | |
2342 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | |
2343 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | |
2344 | * using a larger set of nodes after it has established that the | |
2345 | * allowed per node queues are empty and that nodes are | |
2346 | * over allocated. | |
2347 | */ | |
2348 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | |
2349 | goto nopage; | |
2350 | ||
cc4a6851 | 2351 | restart: |
32dba98e AA |
2352 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
2353 | wake_all_kswapd(order, zonelist, high_zoneidx, | |
99504748 | 2354 | zone_idx(preferred_zone)); |
1da177e4 | 2355 | |
9bf2229f | 2356 | /* |
7fb1d9fc RS |
2357 | * OK, we're below the kswapd watermark and have kicked background |
2358 | * reclaim. Now things get more complex, so set up alloc_flags according | |
2359 | * to how we want to proceed. | |
9bf2229f | 2360 | */ |
341ce06f | 2361 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 2362 | |
f33261d7 DR |
2363 | /* |
2364 | * Find the true preferred zone if the allocation is unconstrained by | |
2365 | * cpusets. | |
2366 | */ | |
2367 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) | |
2368 | first_zones_zonelist(zonelist, high_zoneidx, NULL, | |
2369 | &preferred_zone); | |
2370 | ||
cfa54a0f | 2371 | rebalance: |
341ce06f | 2372 | /* This is the last chance, in general, before the goto nopage. */ |
19770b32 | 2373 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
341ce06f PZ |
2374 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
2375 | preferred_zone, migratetype); | |
7fb1d9fc RS |
2376 | if (page) |
2377 | goto got_pg; | |
1da177e4 | 2378 | |
11e33f6a | 2379 | /* Allocate without watermarks if the context allows */ |
341ce06f PZ |
2380 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
2381 | page = __alloc_pages_high_priority(gfp_mask, order, | |
2382 | zonelist, high_zoneidx, nodemask, | |
2383 | preferred_zone, migratetype); | |
cfd19c5a MG |
2384 | if (page) { |
2385 | /* | |
2386 | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was | |
2387 | * necessary to allocate the page. The expectation is | |
2388 | * that the caller is taking steps that will free more | |
2389 | * memory. The caller should avoid the page being used | |
2390 | * for !PFMEMALLOC purposes. | |
2391 | */ | |
2392 | page->pfmemalloc = true; | |
341ce06f | 2393 | goto got_pg; |
cfd19c5a | 2394 | } |
1da177e4 LT |
2395 | } |
2396 | ||
2397 | /* Atomic allocations - we can't balance anything */ | |
2398 | if (!wait) | |
2399 | goto nopage; | |
2400 | ||
341ce06f | 2401 | /* Avoid recursion of direct reclaim */ |
c06b1fca | 2402 | if (current->flags & PF_MEMALLOC) |
341ce06f PZ |
2403 | goto nopage; |
2404 | ||
6583bb64 DR |
2405 | /* Avoid allocations with no watermarks from looping endlessly */ |
2406 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
2407 | goto nopage; | |
2408 | ||
77f1fe6b MG |
2409 | /* |
2410 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
2411 | * attempts after direct reclaim are synchronous | |
2412 | */ | |
56de7263 MG |
2413 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2414 | zonelist, high_zoneidx, | |
2415 | nodemask, | |
2416 | alloc_flags, preferred_zone, | |
66199712 MG |
2417 | migratetype, sync_migration, |
2418 | &deferred_compaction, | |
2419 | &did_some_progress); | |
56de7263 MG |
2420 | if (page) |
2421 | goto got_pg; | |
c6a140bf | 2422 | sync_migration = true; |
56de7263 | 2423 | |
66199712 MG |
2424 | /* |
2425 | * If compaction is deferred for high-order allocations, it is because | |
2426 | * sync compaction recently failed. In this is the case and the caller | |
2427 | * has requested the system not be heavily disrupted, fail the | |
2428 | * allocation now instead of entering direct reclaim | |
2429 | */ | |
2430 | if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) | |
2431 | goto nopage; | |
2432 | ||
11e33f6a MG |
2433 | /* Try direct reclaim and then allocating */ |
2434 | page = __alloc_pages_direct_reclaim(gfp_mask, order, | |
2435 | zonelist, high_zoneidx, | |
2436 | nodemask, | |
5117f45d | 2437 | alloc_flags, preferred_zone, |
3dd28266 | 2438 | migratetype, &did_some_progress); |
11e33f6a MG |
2439 | if (page) |
2440 | goto got_pg; | |
1da177e4 | 2441 | |
e33c3b5e | 2442 | /* |
11e33f6a MG |
2443 | * If we failed to make any progress reclaiming, then we are |
2444 | * running out of options and have to consider going OOM | |
e33c3b5e | 2445 | */ |
11e33f6a MG |
2446 | if (!did_some_progress) { |
2447 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
7f33d49a RW |
2448 | if (oom_killer_disabled) |
2449 | goto nopage; | |
29fd66d2 DR |
2450 | /* Coredumps can quickly deplete all memory reserves */ |
2451 | if ((current->flags & PF_DUMPCORE) && | |
2452 | !(gfp_mask & __GFP_NOFAIL)) | |
2453 | goto nopage; | |
11e33f6a MG |
2454 | page = __alloc_pages_may_oom(gfp_mask, order, |
2455 | zonelist, high_zoneidx, | |
3dd28266 MG |
2456 | nodemask, preferred_zone, |
2457 | migratetype); | |
11e33f6a MG |
2458 | if (page) |
2459 | goto got_pg; | |
1da177e4 | 2460 | |
03668b3c DR |
2461 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2462 | /* | |
2463 | * The oom killer is not called for high-order | |
2464 | * allocations that may fail, so if no progress | |
2465 | * is being made, there are no other options and | |
2466 | * retrying is unlikely to help. | |
2467 | */ | |
2468 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2469 | goto nopage; | |
2470 | /* | |
2471 | * The oom killer is not called for lowmem | |
2472 | * allocations to prevent needlessly killing | |
2473 | * innocent tasks. | |
2474 | */ | |
2475 | if (high_zoneidx < ZONE_NORMAL) | |
2476 | goto nopage; | |
2477 | } | |
e2c55dc8 | 2478 | |
ff0ceb9d DR |
2479 | goto restart; |
2480 | } | |
1da177e4 LT |
2481 | } |
2482 | ||
11e33f6a | 2483 | /* Check if we should retry the allocation */ |
a41f24ea | 2484 | pages_reclaimed += did_some_progress; |
f90ac398 MG |
2485 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2486 | pages_reclaimed)) { | |
11e33f6a | 2487 | /* Wait for some write requests to complete then retry */ |
0e093d99 | 2488 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
1da177e4 | 2489 | goto rebalance; |
3e7d3449 MG |
2490 | } else { |
2491 | /* | |
2492 | * High-order allocations do not necessarily loop after | |
2493 | * direct reclaim and reclaim/compaction depends on compaction | |
2494 | * being called after reclaim so call directly if necessary | |
2495 | */ | |
2496 | page = __alloc_pages_direct_compact(gfp_mask, order, | |
2497 | zonelist, high_zoneidx, | |
2498 | nodemask, | |
2499 | alloc_flags, preferred_zone, | |
66199712 MG |
2500 | migratetype, sync_migration, |
2501 | &deferred_compaction, | |
2502 | &did_some_progress); | |
3e7d3449 MG |
2503 | if (page) |
2504 | goto got_pg; | |
1da177e4 LT |
2505 | } |
2506 | ||
2507 | nopage: | |
a238ab5b | 2508 | warn_alloc_failed(gfp_mask, order, NULL); |
b1eeab67 | 2509 | return page; |
1da177e4 | 2510 | got_pg: |
b1eeab67 VN |
2511 | if (kmemcheck_enabled) |
2512 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
11e33f6a | 2513 | |
072bb0aa | 2514 | return page; |
1da177e4 | 2515 | } |
11e33f6a MG |
2516 | |
2517 | /* | |
2518 | * This is the 'heart' of the zoned buddy allocator. | |
2519 | */ | |
2520 | struct page * | |
2521 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
2522 | struct zonelist *zonelist, nodemask_t *nodemask) | |
2523 | { | |
2524 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5117f45d | 2525 | struct zone *preferred_zone; |
cc9a6c87 | 2526 | struct page *page = NULL; |
3dd28266 | 2527 | int migratetype = allocflags_to_migratetype(gfp_mask); |
cc9a6c87 | 2528 | unsigned int cpuset_mems_cookie; |
11e33f6a | 2529 | |
dcce284a BH |
2530 | gfp_mask &= gfp_allowed_mask; |
2531 | ||
11e33f6a MG |
2532 | lockdep_trace_alloc(gfp_mask); |
2533 | ||
2534 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
2535 | ||
2536 | if (should_fail_alloc_page(gfp_mask, order)) | |
2537 | return NULL; | |
2538 | ||
2539 | /* | |
2540 | * Check the zones suitable for the gfp_mask contain at least one | |
2541 | * valid zone. It's possible to have an empty zonelist as a result | |
2542 | * of GFP_THISNODE and a memoryless node | |
2543 | */ | |
2544 | if (unlikely(!zonelist->_zonerefs->zone)) | |
2545 | return NULL; | |
2546 | ||
cc9a6c87 MG |
2547 | retry_cpuset: |
2548 | cpuset_mems_cookie = get_mems_allowed(); | |
2549 | ||
5117f45d | 2550 | /* The preferred zone is used for statistics later */ |
f33261d7 DR |
2551 | first_zones_zonelist(zonelist, high_zoneidx, |
2552 | nodemask ? : &cpuset_current_mems_allowed, | |
2553 | &preferred_zone); | |
cc9a6c87 MG |
2554 | if (!preferred_zone) |
2555 | goto out; | |
5117f45d MG |
2556 | |
2557 | /* First allocation attempt */ | |
11e33f6a | 2558 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
5117f45d | 2559 | zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, |
3dd28266 | 2560 | preferred_zone, migratetype); |
11e33f6a MG |
2561 | if (unlikely(!page)) |
2562 | page = __alloc_pages_slowpath(gfp_mask, order, | |
5117f45d | 2563 | zonelist, high_zoneidx, nodemask, |
3dd28266 | 2564 | preferred_zone, migratetype); |
072bb0aa MG |
2565 | else |
2566 | page->pfmemalloc = false; | |
11e33f6a | 2567 | |
4b4f278c | 2568 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
cc9a6c87 MG |
2569 | |
2570 | out: | |
2571 | /* | |
2572 | * When updating a task's mems_allowed, it is possible to race with | |
2573 | * parallel threads in such a way that an allocation can fail while | |
2574 | * the mask is being updated. If a page allocation is about to fail, | |
2575 | * check if the cpuset changed during allocation and if so, retry. | |
2576 | */ | |
2577 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) | |
2578 | goto retry_cpuset; | |
2579 | ||
11e33f6a | 2580 | return page; |
1da177e4 | 2581 | } |
d239171e | 2582 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
2583 | |
2584 | /* | |
2585 | * Common helper functions. | |
2586 | */ | |
920c7a5d | 2587 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 2588 | { |
945a1113 AM |
2589 | struct page *page; |
2590 | ||
2591 | /* | |
2592 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
2593 | * a highmem page | |
2594 | */ | |
2595 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
2596 | ||
1da177e4 LT |
2597 | page = alloc_pages(gfp_mask, order); |
2598 | if (!page) | |
2599 | return 0; | |
2600 | return (unsigned long) page_address(page); | |
2601 | } | |
1da177e4 LT |
2602 | EXPORT_SYMBOL(__get_free_pages); |
2603 | ||
920c7a5d | 2604 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 2605 | { |
945a1113 | 2606 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 2607 | } |
1da177e4 LT |
2608 | EXPORT_SYMBOL(get_zeroed_page); |
2609 | ||
920c7a5d | 2610 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 2611 | { |
b5810039 | 2612 | if (put_page_testzero(page)) { |
1da177e4 | 2613 | if (order == 0) |
fc91668e | 2614 | free_hot_cold_page(page, 0); |
1da177e4 LT |
2615 | else |
2616 | __free_pages_ok(page, order); | |
2617 | } | |
2618 | } | |
2619 | ||
2620 | EXPORT_SYMBOL(__free_pages); | |
2621 | ||
920c7a5d | 2622 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
2623 | { |
2624 | if (addr != 0) { | |
725d704e | 2625 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
2626 | __free_pages(virt_to_page((void *)addr), order); |
2627 | } | |
2628 | } | |
2629 | ||
2630 | EXPORT_SYMBOL(free_pages); | |
2631 | ||
ee85c2e1 AK |
2632 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2633 | { | |
2634 | if (addr) { | |
2635 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
2636 | unsigned long used = addr + PAGE_ALIGN(size); | |
2637 | ||
2638 | split_page(virt_to_page((void *)addr), order); | |
2639 | while (used < alloc_end) { | |
2640 | free_page(used); | |
2641 | used += PAGE_SIZE; | |
2642 | } | |
2643 | } | |
2644 | return (void *)addr; | |
2645 | } | |
2646 | ||
2be0ffe2 TT |
2647 | /** |
2648 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
2649 | * @size: the number of bytes to allocate | |
2650 | * @gfp_mask: GFP flags for the allocation | |
2651 | * | |
2652 | * This function is similar to alloc_pages(), except that it allocates the | |
2653 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
2654 | * allocate memory in power-of-two pages. | |
2655 | * | |
2656 | * This function is also limited by MAX_ORDER. | |
2657 | * | |
2658 | * Memory allocated by this function must be released by free_pages_exact(). | |
2659 | */ | |
2660 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
2661 | { | |
2662 | unsigned int order = get_order(size); | |
2663 | unsigned long addr; | |
2664 | ||
2665 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 2666 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
2667 | } |
2668 | EXPORT_SYMBOL(alloc_pages_exact); | |
2669 | ||
ee85c2e1 AK |
2670 | /** |
2671 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
2672 | * pages on a node. | |
b5e6ab58 | 2673 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
2674 | * @size: the number of bytes to allocate |
2675 | * @gfp_mask: GFP flags for the allocation | |
2676 | * | |
2677 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
2678 | * back. | |
2679 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, | |
2680 | * but is not exact. | |
2681 | */ | |
2682 | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | |
2683 | { | |
2684 | unsigned order = get_order(size); | |
2685 | struct page *p = alloc_pages_node(nid, gfp_mask, order); | |
2686 | if (!p) | |
2687 | return NULL; | |
2688 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
2689 | } | |
2690 | EXPORT_SYMBOL(alloc_pages_exact_nid); | |
2691 | ||
2be0ffe2 TT |
2692 | /** |
2693 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
2694 | * @virt: the value returned by alloc_pages_exact. | |
2695 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
2696 | * | |
2697 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
2698 | */ | |
2699 | void free_pages_exact(void *virt, size_t size) | |
2700 | { | |
2701 | unsigned long addr = (unsigned long)virt; | |
2702 | unsigned long end = addr + PAGE_ALIGN(size); | |
2703 | ||
2704 | while (addr < end) { | |
2705 | free_page(addr); | |
2706 | addr += PAGE_SIZE; | |
2707 | } | |
2708 | } | |
2709 | EXPORT_SYMBOL(free_pages_exact); | |
2710 | ||
1da177e4 LT |
2711 | static unsigned int nr_free_zone_pages(int offset) |
2712 | { | |
dd1a239f | 2713 | struct zoneref *z; |
54a6eb5c MG |
2714 | struct zone *zone; |
2715 | ||
e310fd43 | 2716 | /* Just pick one node, since fallback list is circular */ |
1da177e4 LT |
2717 | unsigned int sum = 0; |
2718 | ||
0e88460d | 2719 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 2720 | |
54a6eb5c | 2721 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
e310fd43 | 2722 | unsigned long size = zone->present_pages; |
41858966 | 2723 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
2724 | if (size > high) |
2725 | sum += size - high; | |
1da177e4 LT |
2726 | } |
2727 | ||
2728 | return sum; | |
2729 | } | |
2730 | ||
2731 | /* | |
2732 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | |
2733 | */ | |
2734 | unsigned int nr_free_buffer_pages(void) | |
2735 | { | |
af4ca457 | 2736 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 2737 | } |
c2f1a551 | 2738 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 LT |
2739 | |
2740 | /* | |
2741 | * Amount of free RAM allocatable within all zones | |
2742 | */ | |
2743 | unsigned int nr_free_pagecache_pages(void) | |
2744 | { | |
2a1e274a | 2745 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 2746 | } |
08e0f6a9 CL |
2747 | |
2748 | static inline void show_node(struct zone *zone) | |
1da177e4 | 2749 | { |
08e0f6a9 | 2750 | if (NUMA_BUILD) |
25ba77c1 | 2751 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 2752 | } |
1da177e4 | 2753 | |
1da177e4 LT |
2754 | void si_meminfo(struct sysinfo *val) |
2755 | { | |
2756 | val->totalram = totalram_pages; | |
2757 | val->sharedram = 0; | |
d23ad423 | 2758 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 2759 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
2760 | val->totalhigh = totalhigh_pages; |
2761 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
2762 | val->mem_unit = PAGE_SIZE; |
2763 | } | |
2764 | ||
2765 | EXPORT_SYMBOL(si_meminfo); | |
2766 | ||
2767 | #ifdef CONFIG_NUMA | |
2768 | void si_meminfo_node(struct sysinfo *val, int nid) | |
2769 | { | |
2770 | pg_data_t *pgdat = NODE_DATA(nid); | |
2771 | ||
2772 | val->totalram = pgdat->node_present_pages; | |
d23ad423 | 2773 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 2774 | #ifdef CONFIG_HIGHMEM |
1da177e4 | 2775 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
d23ad423 CL |
2776 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2777 | NR_FREE_PAGES); | |
98d2b0eb CL |
2778 | #else |
2779 | val->totalhigh = 0; | |
2780 | val->freehigh = 0; | |
2781 | #endif | |
1da177e4 LT |
2782 | val->mem_unit = PAGE_SIZE; |
2783 | } | |
2784 | #endif | |
2785 | ||
ddd588b5 | 2786 | /* |
7bf02ea2 DR |
2787 | * Determine whether the node should be displayed or not, depending on whether |
2788 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 2789 | */ |
7bf02ea2 | 2790 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
2791 | { |
2792 | bool ret = false; | |
cc9a6c87 | 2793 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
2794 | |
2795 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
2796 | goto out; | |
2797 | ||
cc9a6c87 MG |
2798 | do { |
2799 | cpuset_mems_cookie = get_mems_allowed(); | |
2800 | ret = !node_isset(nid, cpuset_current_mems_allowed); | |
2801 | } while (!put_mems_allowed(cpuset_mems_cookie)); | |
ddd588b5 DR |
2802 | out: |
2803 | return ret; | |
2804 | } | |
2805 | ||
1da177e4 LT |
2806 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
2807 | ||
2808 | /* | |
2809 | * Show free area list (used inside shift_scroll-lock stuff) | |
2810 | * We also calculate the percentage fragmentation. We do this by counting the | |
2811 | * memory on each free list with the exception of the first item on the list. | |
ddd588b5 DR |
2812 | * Suppresses nodes that are not allowed by current's cpuset if |
2813 | * SHOW_MEM_FILTER_NODES is passed. | |
1da177e4 | 2814 | */ |
7bf02ea2 | 2815 | void show_free_areas(unsigned int filter) |
1da177e4 | 2816 | { |
c7241913 | 2817 | int cpu; |
1da177e4 LT |
2818 | struct zone *zone; |
2819 | ||
ee99c71c | 2820 | for_each_populated_zone(zone) { |
7bf02ea2 | 2821 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2822 | continue; |
c7241913 JS |
2823 | show_node(zone); |
2824 | printk("%s per-cpu:\n", zone->name); | |
1da177e4 | 2825 | |
6b482c67 | 2826 | for_each_online_cpu(cpu) { |
1da177e4 LT |
2827 | struct per_cpu_pageset *pageset; |
2828 | ||
99dcc3e5 | 2829 | pageset = per_cpu_ptr(zone->pageset, cpu); |
1da177e4 | 2830 | |
3dfa5721 CL |
2831 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
2832 | cpu, pageset->pcp.high, | |
2833 | pageset->pcp.batch, pageset->pcp.count); | |
1da177e4 LT |
2834 | } |
2835 | } | |
2836 | ||
a731286d KM |
2837 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
2838 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
7b854121 | 2839 | " unevictable:%lu" |
b76146ed | 2840 | " dirty:%lu writeback:%lu unstable:%lu\n" |
3701b033 | 2841 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
4b02108a | 2842 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", |
4f98a2fe | 2843 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 2844 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
2845 | global_page_state(NR_ISOLATED_ANON), |
2846 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 2847 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 2848 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 2849 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 2850 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 2851 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 2852 | global_page_state(NR_UNSTABLE_NFS), |
d23ad423 | 2853 | global_page_state(NR_FREE_PAGES), |
3701b033 KM |
2854 | global_page_state(NR_SLAB_RECLAIMABLE), |
2855 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 2856 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 2857 | global_page_state(NR_SHMEM), |
a25700a5 AM |
2858 | global_page_state(NR_PAGETABLE), |
2859 | global_page_state(NR_BOUNCE)); | |
1da177e4 | 2860 | |
ee99c71c | 2861 | for_each_populated_zone(zone) { |
1da177e4 LT |
2862 | int i; |
2863 | ||
7bf02ea2 | 2864 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2865 | continue; |
1da177e4 LT |
2866 | show_node(zone); |
2867 | printk("%s" | |
2868 | " free:%lukB" | |
2869 | " min:%lukB" | |
2870 | " low:%lukB" | |
2871 | " high:%lukB" | |
4f98a2fe RR |
2872 | " active_anon:%lukB" |
2873 | " inactive_anon:%lukB" | |
2874 | " active_file:%lukB" | |
2875 | " inactive_file:%lukB" | |
7b854121 | 2876 | " unevictable:%lukB" |
a731286d KM |
2877 | " isolated(anon):%lukB" |
2878 | " isolated(file):%lukB" | |
1da177e4 | 2879 | " present:%lukB" |
4a0aa73f KM |
2880 | " mlocked:%lukB" |
2881 | " dirty:%lukB" | |
2882 | " writeback:%lukB" | |
2883 | " mapped:%lukB" | |
4b02108a | 2884 | " shmem:%lukB" |
4a0aa73f KM |
2885 | " slab_reclaimable:%lukB" |
2886 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 2887 | " kernel_stack:%lukB" |
4a0aa73f KM |
2888 | " pagetables:%lukB" |
2889 | " unstable:%lukB" | |
2890 | " bounce:%lukB" | |
2891 | " writeback_tmp:%lukB" | |
1da177e4 LT |
2892 | " pages_scanned:%lu" |
2893 | " all_unreclaimable? %s" | |
2894 | "\n", | |
2895 | zone->name, | |
88f5acf8 | 2896 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
2897 | K(min_wmark_pages(zone)), |
2898 | K(low_wmark_pages(zone)), | |
2899 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
2900 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
2901 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
2902 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
2903 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 2904 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
2905 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
2906 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 2907 | K(zone->present_pages), |
4a0aa73f KM |
2908 | K(zone_page_state(zone, NR_MLOCK)), |
2909 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
2910 | K(zone_page_state(zone, NR_WRITEBACK)), | |
2911 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 2912 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
2913 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
2914 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
2915 | zone_page_state(zone, NR_KERNEL_STACK) * |
2916 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
2917 | K(zone_page_state(zone, NR_PAGETABLE)), |
2918 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
2919 | K(zone_page_state(zone, NR_BOUNCE)), | |
2920 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), | |
1da177e4 | 2921 | zone->pages_scanned, |
93e4a89a | 2922 | (zone->all_unreclaimable ? "yes" : "no") |
1da177e4 LT |
2923 | ); |
2924 | printk("lowmem_reserve[]:"); | |
2925 | for (i = 0; i < MAX_NR_ZONES; i++) | |
2926 | printk(" %lu", zone->lowmem_reserve[i]); | |
2927 | printk("\n"); | |
2928 | } | |
2929 | ||
ee99c71c | 2930 | for_each_populated_zone(zone) { |
8f9de51a | 2931 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
1da177e4 | 2932 | |
7bf02ea2 | 2933 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2934 | continue; |
1da177e4 LT |
2935 | show_node(zone); |
2936 | printk("%s: ", zone->name); | |
1da177e4 LT |
2937 | |
2938 | spin_lock_irqsave(&zone->lock, flags); | |
2939 | for (order = 0; order < MAX_ORDER; order++) { | |
8f9de51a KK |
2940 | nr[order] = zone->free_area[order].nr_free; |
2941 | total += nr[order] << order; | |
1da177e4 LT |
2942 | } |
2943 | spin_unlock_irqrestore(&zone->lock, flags); | |
8f9de51a KK |
2944 | for (order = 0; order < MAX_ORDER; order++) |
2945 | printk("%lu*%lukB ", nr[order], K(1UL) << order); | |
1da177e4 LT |
2946 | printk("= %lukB\n", K(total)); |
2947 | } | |
2948 | ||
e6f3602d LW |
2949 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
2950 | ||
1da177e4 LT |
2951 | show_swap_cache_info(); |
2952 | } | |
2953 | ||
19770b32 MG |
2954 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
2955 | { | |
2956 | zoneref->zone = zone; | |
2957 | zoneref->zone_idx = zone_idx(zone); | |
2958 | } | |
2959 | ||
1da177e4 LT |
2960 | /* |
2961 | * Builds allocation fallback zone lists. | |
1a93205b CL |
2962 | * |
2963 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 2964 | */ |
f0c0b2b8 KH |
2965 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
2966 | int nr_zones, enum zone_type zone_type) | |
1da177e4 | 2967 | { |
1a93205b CL |
2968 | struct zone *zone; |
2969 | ||
98d2b0eb | 2970 | BUG_ON(zone_type >= MAX_NR_ZONES); |
2f6726e5 | 2971 | zone_type++; |
02a68a5e CL |
2972 | |
2973 | do { | |
2f6726e5 | 2974 | zone_type--; |
070f8032 | 2975 | zone = pgdat->node_zones + zone_type; |
1a93205b | 2976 | if (populated_zone(zone)) { |
dd1a239f MG |
2977 | zoneref_set_zone(zone, |
2978 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 2979 | check_highest_zone(zone_type); |
1da177e4 | 2980 | } |
02a68a5e | 2981 | |
2f6726e5 | 2982 | } while (zone_type); |
070f8032 | 2983 | return nr_zones; |
1da177e4 LT |
2984 | } |
2985 | ||
f0c0b2b8 KH |
2986 | |
2987 | /* | |
2988 | * zonelist_order: | |
2989 | * 0 = automatic detection of better ordering. | |
2990 | * 1 = order by ([node] distance, -zonetype) | |
2991 | * 2 = order by (-zonetype, [node] distance) | |
2992 | * | |
2993 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
2994 | * the same zonelist. So only NUMA can configure this param. | |
2995 | */ | |
2996 | #define ZONELIST_ORDER_DEFAULT 0 | |
2997 | #define ZONELIST_ORDER_NODE 1 | |
2998 | #define ZONELIST_ORDER_ZONE 2 | |
2999 | ||
3000 | /* zonelist order in the kernel. | |
3001 | * set_zonelist_order() will set this to NODE or ZONE. | |
3002 | */ | |
3003 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3004 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
3005 | ||
3006 | ||
1da177e4 | 3007 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
3008 | /* The value user specified ....changed by config */ |
3009 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3010 | /* string for sysctl */ | |
3011 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
3012 | char numa_zonelist_order[16] = "default"; | |
3013 | ||
3014 | /* | |
3015 | * interface for configure zonelist ordering. | |
3016 | * command line option "numa_zonelist_order" | |
3017 | * = "[dD]efault - default, automatic configuration. | |
3018 | * = "[nN]ode - order by node locality, then by zone within node | |
3019 | * = "[zZ]one - order by zone, then by locality within zone | |
3020 | */ | |
3021 | ||
3022 | static int __parse_numa_zonelist_order(char *s) | |
3023 | { | |
3024 | if (*s == 'd' || *s == 'D') { | |
3025 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3026 | } else if (*s == 'n' || *s == 'N') { | |
3027 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
3028 | } else if (*s == 'z' || *s == 'Z') { | |
3029 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
3030 | } else { | |
3031 | printk(KERN_WARNING | |
3032 | "Ignoring invalid numa_zonelist_order value: " | |
3033 | "%s\n", s); | |
3034 | return -EINVAL; | |
3035 | } | |
3036 | return 0; | |
3037 | } | |
3038 | ||
3039 | static __init int setup_numa_zonelist_order(char *s) | |
3040 | { | |
ecb256f8 VL |
3041 | int ret; |
3042 | ||
3043 | if (!s) | |
3044 | return 0; | |
3045 | ||
3046 | ret = __parse_numa_zonelist_order(s); | |
3047 | if (ret == 0) | |
3048 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
3049 | ||
3050 | return ret; | |
f0c0b2b8 KH |
3051 | } |
3052 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
3053 | ||
3054 | /* | |
3055 | * sysctl handler for numa_zonelist_order | |
3056 | */ | |
3057 | int numa_zonelist_order_handler(ctl_table *table, int write, | |
8d65af78 | 3058 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
3059 | loff_t *ppos) |
3060 | { | |
3061 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
3062 | int ret; | |
443c6f14 | 3063 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 3064 | |
443c6f14 | 3065 | mutex_lock(&zl_order_mutex); |
f0c0b2b8 | 3066 | if (write) |
443c6f14 | 3067 | strcpy(saved_string, (char*)table->data); |
8d65af78 | 3068 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 3069 | if (ret) |
443c6f14 | 3070 | goto out; |
f0c0b2b8 KH |
3071 | if (write) { |
3072 | int oldval = user_zonelist_order; | |
3073 | if (__parse_numa_zonelist_order((char*)table->data)) { | |
3074 | /* | |
3075 | * bogus value. restore saved string | |
3076 | */ | |
3077 | strncpy((char*)table->data, saved_string, | |
3078 | NUMA_ZONELIST_ORDER_LEN); | |
3079 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
3080 | } else if (oldval != user_zonelist_order) { |
3081 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 3082 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
3083 | mutex_unlock(&zonelists_mutex); |
3084 | } | |
f0c0b2b8 | 3085 | } |
443c6f14 AK |
3086 | out: |
3087 | mutex_unlock(&zl_order_mutex); | |
3088 | return ret; | |
f0c0b2b8 KH |
3089 | } |
3090 | ||
3091 | ||
62bc62a8 | 3092 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
3093 | static int node_load[MAX_NUMNODES]; |
3094 | ||
1da177e4 | 3095 | /** |
4dc3b16b | 3096 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
3097 | * @node: node whose fallback list we're appending |
3098 | * @used_node_mask: nodemask_t of already used nodes | |
3099 | * | |
3100 | * We use a number of factors to determine which is the next node that should | |
3101 | * appear on a given node's fallback list. The node should not have appeared | |
3102 | * already in @node's fallback list, and it should be the next closest node | |
3103 | * according to the distance array (which contains arbitrary distance values | |
3104 | * from each node to each node in the system), and should also prefer nodes | |
3105 | * with no CPUs, since presumably they'll have very little allocation pressure | |
3106 | * on them otherwise. | |
3107 | * It returns -1 if no node is found. | |
3108 | */ | |
f0c0b2b8 | 3109 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 3110 | { |
4cf808eb | 3111 | int n, val; |
1da177e4 LT |
3112 | int min_val = INT_MAX; |
3113 | int best_node = -1; | |
a70f7302 | 3114 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 3115 | |
4cf808eb LT |
3116 | /* Use the local node if we haven't already */ |
3117 | if (!node_isset(node, *used_node_mask)) { | |
3118 | node_set(node, *used_node_mask); | |
3119 | return node; | |
3120 | } | |
1da177e4 | 3121 | |
37b07e41 | 3122 | for_each_node_state(n, N_HIGH_MEMORY) { |
1da177e4 LT |
3123 | |
3124 | /* Don't want a node to appear more than once */ | |
3125 | if (node_isset(n, *used_node_mask)) | |
3126 | continue; | |
3127 | ||
1da177e4 LT |
3128 | /* Use the distance array to find the distance */ |
3129 | val = node_distance(node, n); | |
3130 | ||
4cf808eb LT |
3131 | /* Penalize nodes under us ("prefer the next node") */ |
3132 | val += (n < node); | |
3133 | ||
1da177e4 | 3134 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
3135 | tmp = cpumask_of_node(n); |
3136 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
3137 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3138 | ||
3139 | /* Slight preference for less loaded node */ | |
3140 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
3141 | val += node_load[n]; | |
3142 | ||
3143 | if (val < min_val) { | |
3144 | min_val = val; | |
3145 | best_node = n; | |
3146 | } | |
3147 | } | |
3148 | ||
3149 | if (best_node >= 0) | |
3150 | node_set(best_node, *used_node_mask); | |
3151 | ||
3152 | return best_node; | |
3153 | } | |
3154 | ||
f0c0b2b8 KH |
3155 | |
3156 | /* | |
3157 | * Build zonelists ordered by node and zones within node. | |
3158 | * This results in maximum locality--normal zone overflows into local | |
3159 | * DMA zone, if any--but risks exhausting DMA zone. | |
3160 | */ | |
3161 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 3162 | { |
f0c0b2b8 | 3163 | int j; |
1da177e4 | 3164 | struct zonelist *zonelist; |
f0c0b2b8 | 3165 | |
54a6eb5c | 3166 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 3167 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c MG |
3168 | ; |
3169 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3170 | MAX_NR_ZONES - 1); | |
dd1a239f MG |
3171 | zonelist->_zonerefs[j].zone = NULL; |
3172 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
3173 | } |
3174 | ||
523b9458 CL |
3175 | /* |
3176 | * Build gfp_thisnode zonelists | |
3177 | */ | |
3178 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
3179 | { | |
523b9458 CL |
3180 | int j; |
3181 | struct zonelist *zonelist; | |
3182 | ||
54a6eb5c MG |
3183 | zonelist = &pgdat->node_zonelists[1]; |
3184 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
dd1a239f MG |
3185 | zonelist->_zonerefs[j].zone = NULL; |
3186 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
3187 | } |
3188 | ||
f0c0b2b8 KH |
3189 | /* |
3190 | * Build zonelists ordered by zone and nodes within zones. | |
3191 | * This results in conserving DMA zone[s] until all Normal memory is | |
3192 | * exhausted, but results in overflowing to remote node while memory | |
3193 | * may still exist in local DMA zone. | |
3194 | */ | |
3195 | static int node_order[MAX_NUMNODES]; | |
3196 | ||
3197 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
3198 | { | |
f0c0b2b8 KH |
3199 | int pos, j, node; |
3200 | int zone_type; /* needs to be signed */ | |
3201 | struct zone *z; | |
3202 | struct zonelist *zonelist; | |
3203 | ||
54a6eb5c MG |
3204 | zonelist = &pgdat->node_zonelists[0]; |
3205 | pos = 0; | |
3206 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
3207 | for (j = 0; j < nr_nodes; j++) { | |
3208 | node = node_order[j]; | |
3209 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
3210 | if (populated_zone(z)) { | |
dd1a239f MG |
3211 | zoneref_set_zone(z, |
3212 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 3213 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
3214 | } |
3215 | } | |
f0c0b2b8 | 3216 | } |
dd1a239f MG |
3217 | zonelist->_zonerefs[pos].zone = NULL; |
3218 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
3219 | } |
3220 | ||
3221 | static int default_zonelist_order(void) | |
3222 | { | |
3223 | int nid, zone_type; | |
3224 | unsigned long low_kmem_size,total_size; | |
3225 | struct zone *z; | |
3226 | int average_size; | |
3227 | /* | |
88393161 | 3228 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
f0c0b2b8 KH |
3229 | * If they are really small and used heavily, the system can fall |
3230 | * into OOM very easily. | |
e325c90f | 3231 | * This function detect ZONE_DMA/DMA32 size and configures zone order. |
f0c0b2b8 KH |
3232 | */ |
3233 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ | |
3234 | low_kmem_size = 0; | |
3235 | total_size = 0; | |
3236 | for_each_online_node(nid) { | |
3237 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3238 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3239 | if (populated_zone(z)) { | |
3240 | if (zone_type < ZONE_NORMAL) | |
3241 | low_kmem_size += z->present_pages; | |
3242 | total_size += z->present_pages; | |
e325c90f DR |
3243 | } else if (zone_type == ZONE_NORMAL) { |
3244 | /* | |
3245 | * If any node has only lowmem, then node order | |
3246 | * is preferred to allow kernel allocations | |
3247 | * locally; otherwise, they can easily infringe | |
3248 | * on other nodes when there is an abundance of | |
3249 | * lowmem available to allocate from. | |
3250 | */ | |
3251 | return ZONELIST_ORDER_NODE; | |
f0c0b2b8 KH |
3252 | } |
3253 | } | |
3254 | } | |
3255 | if (!low_kmem_size || /* there are no DMA area. */ | |
3256 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ | |
3257 | return ZONELIST_ORDER_NODE; | |
3258 | /* | |
3259 | * look into each node's config. | |
3260 | * If there is a node whose DMA/DMA32 memory is very big area on | |
3261 | * local memory, NODE_ORDER may be suitable. | |
3262 | */ | |
37b07e41 LS |
3263 | average_size = total_size / |
3264 | (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); | |
f0c0b2b8 KH |
3265 | for_each_online_node(nid) { |
3266 | low_kmem_size = 0; | |
3267 | total_size = 0; | |
3268 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3269 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3270 | if (populated_zone(z)) { | |
3271 | if (zone_type < ZONE_NORMAL) | |
3272 | low_kmem_size += z->present_pages; | |
3273 | total_size += z->present_pages; | |
3274 | } | |
3275 | } | |
3276 | if (low_kmem_size && | |
3277 | total_size > average_size && /* ignore small node */ | |
3278 | low_kmem_size > total_size * 70/100) | |
3279 | return ZONELIST_ORDER_NODE; | |
3280 | } | |
3281 | return ZONELIST_ORDER_ZONE; | |
3282 | } | |
3283 | ||
3284 | static void set_zonelist_order(void) | |
3285 | { | |
3286 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
3287 | current_zonelist_order = default_zonelist_order(); | |
3288 | else | |
3289 | current_zonelist_order = user_zonelist_order; | |
3290 | } | |
3291 | ||
3292 | static void build_zonelists(pg_data_t *pgdat) | |
3293 | { | |
3294 | int j, node, load; | |
3295 | enum zone_type i; | |
1da177e4 | 3296 | nodemask_t used_mask; |
f0c0b2b8 KH |
3297 | int local_node, prev_node; |
3298 | struct zonelist *zonelist; | |
3299 | int order = current_zonelist_order; | |
1da177e4 LT |
3300 | |
3301 | /* initialize zonelists */ | |
523b9458 | 3302 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 3303 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
3304 | zonelist->_zonerefs[0].zone = NULL; |
3305 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
3306 | } |
3307 | ||
3308 | /* NUMA-aware ordering of nodes */ | |
3309 | local_node = pgdat->node_id; | |
62bc62a8 | 3310 | load = nr_online_nodes; |
1da177e4 LT |
3311 | prev_node = local_node; |
3312 | nodes_clear(used_mask); | |
f0c0b2b8 | 3313 | |
f0c0b2b8 KH |
3314 | memset(node_order, 0, sizeof(node_order)); |
3315 | j = 0; | |
3316 | ||
1da177e4 | 3317 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
9eeff239 CL |
3318 | int distance = node_distance(local_node, node); |
3319 | ||
3320 | /* | |
3321 | * If another node is sufficiently far away then it is better | |
3322 | * to reclaim pages in a zone before going off node. | |
3323 | */ | |
3324 | if (distance > RECLAIM_DISTANCE) | |
3325 | zone_reclaim_mode = 1; | |
3326 | ||
1da177e4 LT |
3327 | /* |
3328 | * We don't want to pressure a particular node. | |
3329 | * So adding penalty to the first node in same | |
3330 | * distance group to make it round-robin. | |
3331 | */ | |
9eeff239 | 3332 | if (distance != node_distance(local_node, prev_node)) |
f0c0b2b8 KH |
3333 | node_load[node] = load; |
3334 | ||
1da177e4 LT |
3335 | prev_node = node; |
3336 | load--; | |
f0c0b2b8 KH |
3337 | if (order == ZONELIST_ORDER_NODE) |
3338 | build_zonelists_in_node_order(pgdat, node); | |
3339 | else | |
3340 | node_order[j++] = node; /* remember order */ | |
3341 | } | |
1da177e4 | 3342 | |
f0c0b2b8 KH |
3343 | if (order == ZONELIST_ORDER_ZONE) { |
3344 | /* calculate node order -- i.e., DMA last! */ | |
3345 | build_zonelists_in_zone_order(pgdat, j); | |
1da177e4 | 3346 | } |
523b9458 CL |
3347 | |
3348 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
3349 | } |
3350 | ||
9276b1bc | 3351 | /* Construct the zonelist performance cache - see further mmzone.h */ |
f0c0b2b8 | 3352 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3353 | { |
54a6eb5c MG |
3354 | struct zonelist *zonelist; |
3355 | struct zonelist_cache *zlc; | |
dd1a239f | 3356 | struct zoneref *z; |
9276b1bc | 3357 | |
54a6eb5c MG |
3358 | zonelist = &pgdat->node_zonelists[0]; |
3359 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | |
3360 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
dd1a239f MG |
3361 | for (z = zonelist->_zonerefs; z->zone; z++) |
3362 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | |
9276b1bc PJ |
3363 | } |
3364 | ||
7aac7898 LS |
3365 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3366 | /* | |
3367 | * Return node id of node used for "local" allocations. | |
3368 | * I.e., first node id of first zone in arg node's generic zonelist. | |
3369 | * Used for initializing percpu 'numa_mem', which is used primarily | |
3370 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
3371 | */ | |
3372 | int local_memory_node(int node) | |
3373 | { | |
3374 | struct zone *zone; | |
3375 | ||
3376 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
3377 | gfp_zone(GFP_KERNEL), | |
3378 | NULL, | |
3379 | &zone); | |
3380 | return zone->node; | |
3381 | } | |
3382 | #endif | |
f0c0b2b8 | 3383 | |
1da177e4 LT |
3384 | #else /* CONFIG_NUMA */ |
3385 | ||
f0c0b2b8 KH |
3386 | static void set_zonelist_order(void) |
3387 | { | |
3388 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
3389 | } | |
3390 | ||
3391 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 3392 | { |
19655d34 | 3393 | int node, local_node; |
54a6eb5c MG |
3394 | enum zone_type j; |
3395 | struct zonelist *zonelist; | |
1da177e4 LT |
3396 | |
3397 | local_node = pgdat->node_id; | |
1da177e4 | 3398 | |
54a6eb5c MG |
3399 | zonelist = &pgdat->node_zonelists[0]; |
3400 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
1da177e4 | 3401 | |
54a6eb5c MG |
3402 | /* |
3403 | * Now we build the zonelist so that it contains the zones | |
3404 | * of all the other nodes. | |
3405 | * We don't want to pressure a particular node, so when | |
3406 | * building the zones for node N, we make sure that the | |
3407 | * zones coming right after the local ones are those from | |
3408 | * node N+1 (modulo N) | |
3409 | */ | |
3410 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
3411 | if (!node_online(node)) | |
3412 | continue; | |
3413 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3414 | MAX_NR_ZONES - 1); | |
1da177e4 | 3415 | } |
54a6eb5c MG |
3416 | for (node = 0; node < local_node; node++) { |
3417 | if (!node_online(node)) | |
3418 | continue; | |
3419 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3420 | MAX_NR_ZONES - 1); | |
3421 | } | |
3422 | ||
dd1a239f MG |
3423 | zonelist->_zonerefs[j].zone = NULL; |
3424 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
3425 | } |
3426 | ||
9276b1bc | 3427 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
f0c0b2b8 | 3428 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3429 | { |
54a6eb5c | 3430 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
9276b1bc PJ |
3431 | } |
3432 | ||
1da177e4 LT |
3433 | #endif /* CONFIG_NUMA */ |
3434 | ||
99dcc3e5 CL |
3435 | /* |
3436 | * Boot pageset table. One per cpu which is going to be used for all | |
3437 | * zones and all nodes. The parameters will be set in such a way | |
3438 | * that an item put on a list will immediately be handed over to | |
3439 | * the buddy list. This is safe since pageset manipulation is done | |
3440 | * with interrupts disabled. | |
3441 | * | |
3442 | * The boot_pagesets must be kept even after bootup is complete for | |
3443 | * unused processors and/or zones. They do play a role for bootstrapping | |
3444 | * hotplugged processors. | |
3445 | * | |
3446 | * zoneinfo_show() and maybe other functions do | |
3447 | * not check if the processor is online before following the pageset pointer. | |
3448 | * Other parts of the kernel may not check if the zone is available. | |
3449 | */ | |
3450 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
3451 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 3452 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 3453 | |
4eaf3f64 HL |
3454 | /* |
3455 | * Global mutex to protect against size modification of zonelists | |
3456 | * as well as to serialize pageset setup for the new populated zone. | |
3457 | */ | |
3458 | DEFINE_MUTEX(zonelists_mutex); | |
3459 | ||
9b1a4d38 | 3460 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 3461 | static int __build_all_zonelists(void *data) |
1da177e4 | 3462 | { |
6811378e | 3463 | int nid; |
99dcc3e5 | 3464 | int cpu; |
9adb62a5 | 3465 | pg_data_t *self = data; |
9276b1bc | 3466 | |
7f9cfb31 BL |
3467 | #ifdef CONFIG_NUMA |
3468 | memset(node_load, 0, sizeof(node_load)); | |
3469 | #endif | |
9adb62a5 JL |
3470 | |
3471 | if (self && !node_online(self->node_id)) { | |
3472 | build_zonelists(self); | |
3473 | build_zonelist_cache(self); | |
3474 | } | |
3475 | ||
9276b1bc | 3476 | for_each_online_node(nid) { |
7ea1530a CL |
3477 | pg_data_t *pgdat = NODE_DATA(nid); |
3478 | ||
3479 | build_zonelists(pgdat); | |
3480 | build_zonelist_cache(pgdat); | |
9276b1bc | 3481 | } |
99dcc3e5 CL |
3482 | |
3483 | /* | |
3484 | * Initialize the boot_pagesets that are going to be used | |
3485 | * for bootstrapping processors. The real pagesets for | |
3486 | * each zone will be allocated later when the per cpu | |
3487 | * allocator is available. | |
3488 | * | |
3489 | * boot_pagesets are used also for bootstrapping offline | |
3490 | * cpus if the system is already booted because the pagesets | |
3491 | * are needed to initialize allocators on a specific cpu too. | |
3492 | * F.e. the percpu allocator needs the page allocator which | |
3493 | * needs the percpu allocator in order to allocate its pagesets | |
3494 | * (a chicken-egg dilemma). | |
3495 | */ | |
7aac7898 | 3496 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
3497 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3498 | ||
7aac7898 LS |
3499 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3500 | /* | |
3501 | * We now know the "local memory node" for each node-- | |
3502 | * i.e., the node of the first zone in the generic zonelist. | |
3503 | * Set up numa_mem percpu variable for on-line cpus. During | |
3504 | * boot, only the boot cpu should be on-line; we'll init the | |
3505 | * secondary cpus' numa_mem as they come on-line. During | |
3506 | * node/memory hotplug, we'll fixup all on-line cpus. | |
3507 | */ | |
3508 | if (cpu_online(cpu)) | |
3509 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
3510 | #endif | |
3511 | } | |
3512 | ||
6811378e YG |
3513 | return 0; |
3514 | } | |
3515 | ||
4eaf3f64 HL |
3516 | /* |
3517 | * Called with zonelists_mutex held always | |
3518 | * unless system_state == SYSTEM_BOOTING. | |
3519 | */ | |
9adb62a5 | 3520 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 3521 | { |
f0c0b2b8 KH |
3522 | set_zonelist_order(); |
3523 | ||
6811378e | 3524 | if (system_state == SYSTEM_BOOTING) { |
423b41d7 | 3525 | __build_all_zonelists(NULL); |
68ad8df4 | 3526 | mminit_verify_zonelist(); |
6811378e YG |
3527 | cpuset_init_current_mems_allowed(); |
3528 | } else { | |
183ff22b | 3529 | /* we have to stop all cpus to guarantee there is no user |
6811378e | 3530 | of zonelist */ |
e9959f0f | 3531 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
3532 | if (zone) |
3533 | setup_zone_pageset(zone); | |
e9959f0f | 3534 | #endif |
9adb62a5 | 3535 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
3536 | /* cpuset refresh routine should be here */ |
3537 | } | |
bd1e22b8 | 3538 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
3539 | /* |
3540 | * Disable grouping by mobility if the number of pages in the | |
3541 | * system is too low to allow the mechanism to work. It would be | |
3542 | * more accurate, but expensive to check per-zone. This check is | |
3543 | * made on memory-hotadd so a system can start with mobility | |
3544 | * disabled and enable it later | |
3545 | */ | |
d9c23400 | 3546 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
3547 | page_group_by_mobility_disabled = 1; |
3548 | else | |
3549 | page_group_by_mobility_disabled = 0; | |
3550 | ||
3551 | printk("Built %i zonelists in %s order, mobility grouping %s. " | |
3552 | "Total pages: %ld\n", | |
62bc62a8 | 3553 | nr_online_nodes, |
f0c0b2b8 | 3554 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 3555 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
3556 | vm_total_pages); |
3557 | #ifdef CONFIG_NUMA | |
3558 | printk("Policy zone: %s\n", zone_names[policy_zone]); | |
3559 | #endif | |
1da177e4 LT |
3560 | } |
3561 | ||
3562 | /* | |
3563 | * Helper functions to size the waitqueue hash table. | |
3564 | * Essentially these want to choose hash table sizes sufficiently | |
3565 | * large so that collisions trying to wait on pages are rare. | |
3566 | * But in fact, the number of active page waitqueues on typical | |
3567 | * systems is ridiculously low, less than 200. So this is even | |
3568 | * conservative, even though it seems large. | |
3569 | * | |
3570 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
3571 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
3572 | */ | |
3573 | #define PAGES_PER_WAITQUEUE 256 | |
3574 | ||
cca448fe | 3575 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 3576 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
3577 | { |
3578 | unsigned long size = 1; | |
3579 | ||
3580 | pages /= PAGES_PER_WAITQUEUE; | |
3581 | ||
3582 | while (size < pages) | |
3583 | size <<= 1; | |
3584 | ||
3585 | /* | |
3586 | * Once we have dozens or even hundreds of threads sleeping | |
3587 | * on IO we've got bigger problems than wait queue collision. | |
3588 | * Limit the size of the wait table to a reasonable size. | |
3589 | */ | |
3590 | size = min(size, 4096UL); | |
3591 | ||
3592 | return max(size, 4UL); | |
3593 | } | |
cca448fe YG |
3594 | #else |
3595 | /* | |
3596 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
3597 | * a suitable size for its wait_table. So we use the maximum size now. | |
3598 | * | |
3599 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
3600 | * | |
3601 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
3602 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
3603 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
3604 | * | |
3605 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
3606 | * or more by the traditional way. (See above). It equals: | |
3607 | * | |
3608 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
3609 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
3610 | * powerpc (64K page size) : = (32G +16M)byte. | |
3611 | */ | |
3612 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
3613 | { | |
3614 | return 4096UL; | |
3615 | } | |
3616 | #endif | |
1da177e4 LT |
3617 | |
3618 | /* | |
3619 | * This is an integer logarithm so that shifts can be used later | |
3620 | * to extract the more random high bits from the multiplicative | |
3621 | * hash function before the remainder is taken. | |
3622 | */ | |
3623 | static inline unsigned long wait_table_bits(unsigned long size) | |
3624 | { | |
3625 | return ffz(~size); | |
3626 | } | |
3627 | ||
3628 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
3629 | ||
6d3163ce AH |
3630 | /* |
3631 | * Check if a pageblock contains reserved pages | |
3632 | */ | |
3633 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | |
3634 | { | |
3635 | unsigned long pfn; | |
3636 | ||
3637 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
3638 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | |
3639 | return 1; | |
3640 | } | |
3641 | return 0; | |
3642 | } | |
3643 | ||
56fd56b8 | 3644 | /* |
d9c23400 | 3645 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
41858966 MG |
3646 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3647 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | |
56fd56b8 MG |
3648 | * higher will lead to a bigger reserve which will get freed as contiguous |
3649 | * blocks as reclaim kicks in | |
3650 | */ | |
3651 | static void setup_zone_migrate_reserve(struct zone *zone) | |
3652 | { | |
6d3163ce | 3653 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
56fd56b8 | 3654 | struct page *page; |
78986a67 MG |
3655 | unsigned long block_migratetype; |
3656 | int reserve; | |
56fd56b8 | 3657 | |
d0215638 MH |
3658 | /* |
3659 | * Get the start pfn, end pfn and the number of blocks to reserve | |
3660 | * We have to be careful to be aligned to pageblock_nr_pages to | |
3661 | * make sure that we always check pfn_valid for the first page in | |
3662 | * the block. | |
3663 | */ | |
56fd56b8 MG |
3664 | start_pfn = zone->zone_start_pfn; |
3665 | end_pfn = start_pfn + zone->spanned_pages; | |
d0215638 | 3666 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
41858966 | 3667 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
d9c23400 | 3668 | pageblock_order; |
56fd56b8 | 3669 | |
78986a67 MG |
3670 | /* |
3671 | * Reserve blocks are generally in place to help high-order atomic | |
3672 | * allocations that are short-lived. A min_free_kbytes value that | |
3673 | * would result in more than 2 reserve blocks for atomic allocations | |
3674 | * is assumed to be in place to help anti-fragmentation for the | |
3675 | * future allocation of hugepages at runtime. | |
3676 | */ | |
3677 | reserve = min(2, reserve); | |
3678 | ||
d9c23400 | 3679 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
56fd56b8 MG |
3680 | if (!pfn_valid(pfn)) |
3681 | continue; | |
3682 | page = pfn_to_page(pfn); | |
3683 | ||
344c790e AL |
3684 | /* Watch out for overlapping nodes */ |
3685 | if (page_to_nid(page) != zone_to_nid(zone)) | |
3686 | continue; | |
3687 | ||
56fd56b8 MG |
3688 | block_migratetype = get_pageblock_migratetype(page); |
3689 | ||
938929f1 MG |
3690 | /* Only test what is necessary when the reserves are not met */ |
3691 | if (reserve > 0) { | |
3692 | /* | |
3693 | * Blocks with reserved pages will never free, skip | |
3694 | * them. | |
3695 | */ | |
3696 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | |
3697 | if (pageblock_is_reserved(pfn, block_end_pfn)) | |
3698 | continue; | |
56fd56b8 | 3699 | |
938929f1 MG |
3700 | /* If this block is reserved, account for it */ |
3701 | if (block_migratetype == MIGRATE_RESERVE) { | |
3702 | reserve--; | |
3703 | continue; | |
3704 | } | |
3705 | ||
3706 | /* Suitable for reserving if this block is movable */ | |
3707 | if (block_migratetype == MIGRATE_MOVABLE) { | |
3708 | set_pageblock_migratetype(page, | |
3709 | MIGRATE_RESERVE); | |
3710 | move_freepages_block(zone, page, | |
3711 | MIGRATE_RESERVE); | |
3712 | reserve--; | |
3713 | continue; | |
3714 | } | |
56fd56b8 MG |
3715 | } |
3716 | ||
3717 | /* | |
3718 | * If the reserve is met and this is a previous reserved block, | |
3719 | * take it back | |
3720 | */ | |
3721 | if (block_migratetype == MIGRATE_RESERVE) { | |
3722 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
3723 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
3724 | } | |
3725 | } | |
3726 | } | |
ac0e5b7a | 3727 | |
1da177e4 LT |
3728 | /* |
3729 | * Initially all pages are reserved - free ones are freed | |
3730 | * up by free_all_bootmem() once the early boot process is | |
3731 | * done. Non-atomic initialization, single-pass. | |
3732 | */ | |
c09b4240 | 3733 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 3734 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 3735 | { |
1da177e4 | 3736 | struct page *page; |
29751f69 AW |
3737 | unsigned long end_pfn = start_pfn + size; |
3738 | unsigned long pfn; | |
86051ca5 | 3739 | struct zone *z; |
1da177e4 | 3740 | |
22b31eec HD |
3741 | if (highest_memmap_pfn < end_pfn - 1) |
3742 | highest_memmap_pfn = end_pfn - 1; | |
3743 | ||
86051ca5 | 3744 | z = &NODE_DATA(nid)->node_zones[zone]; |
cbe8dd4a | 3745 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
3746 | /* |
3747 | * There can be holes in boot-time mem_map[]s | |
3748 | * handed to this function. They do not | |
3749 | * exist on hotplugged memory. | |
3750 | */ | |
3751 | if (context == MEMMAP_EARLY) { | |
3752 | if (!early_pfn_valid(pfn)) | |
3753 | continue; | |
3754 | if (!early_pfn_in_nid(pfn, nid)) | |
3755 | continue; | |
3756 | } | |
d41dee36 AW |
3757 | page = pfn_to_page(pfn); |
3758 | set_page_links(page, zone, nid, pfn); | |
708614e6 | 3759 | mminit_verify_page_links(page, zone, nid, pfn); |
7835e98b | 3760 | init_page_count(page); |
1da177e4 LT |
3761 | reset_page_mapcount(page); |
3762 | SetPageReserved(page); | |
b2a0ac88 MG |
3763 | /* |
3764 | * Mark the block movable so that blocks are reserved for | |
3765 | * movable at startup. This will force kernel allocations | |
3766 | * to reserve their blocks rather than leaking throughout | |
3767 | * the address space during boot when many long-lived | |
56fd56b8 MG |
3768 | * kernel allocations are made. Later some blocks near |
3769 | * the start are marked MIGRATE_RESERVE by | |
3770 | * setup_zone_migrate_reserve() | |
86051ca5 KH |
3771 | * |
3772 | * bitmap is created for zone's valid pfn range. but memmap | |
3773 | * can be created for invalid pages (for alignment) | |
3774 | * check here not to call set_pageblock_migratetype() against | |
3775 | * pfn out of zone. | |
b2a0ac88 | 3776 | */ |
86051ca5 KH |
3777 | if ((z->zone_start_pfn <= pfn) |
3778 | && (pfn < z->zone_start_pfn + z->spanned_pages) | |
3779 | && !(pfn & (pageblock_nr_pages - 1))) | |
56fd56b8 | 3780 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
b2a0ac88 | 3781 | |
1da177e4 LT |
3782 | INIT_LIST_HEAD(&page->lru); |
3783 | #ifdef WANT_PAGE_VIRTUAL | |
3784 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
3785 | if (!is_highmem_idx(zone)) | |
3212c6be | 3786 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 3787 | #endif |
1da177e4 LT |
3788 | } |
3789 | } | |
3790 | ||
1e548deb | 3791 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 3792 | { |
b2a0ac88 MG |
3793 | int order, t; |
3794 | for_each_migratetype_order(order, t) { | |
3795 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
3796 | zone->free_area[order].nr_free = 0; |
3797 | } | |
3798 | } | |
3799 | ||
3800 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
3801 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 3802 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
3803 | #endif |
3804 | ||
4ed7e022 | 3805 | static int __meminit zone_batchsize(struct zone *zone) |
e7c8d5c9 | 3806 | { |
3a6be87f | 3807 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
3808 | int batch; |
3809 | ||
3810 | /* | |
3811 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 3812 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
3813 | * |
3814 | * OK, so we don't know how big the cache is. So guess. | |
3815 | */ | |
3816 | batch = zone->present_pages / 1024; | |
ba56e91c SR |
3817 | if (batch * PAGE_SIZE > 512 * 1024) |
3818 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
3819 | batch /= 4; /* We effectively *= 4 below */ |
3820 | if (batch < 1) | |
3821 | batch = 1; | |
3822 | ||
3823 | /* | |
0ceaacc9 NP |
3824 | * Clamp the batch to a 2^n - 1 value. Having a power |
3825 | * of 2 value was found to be more likely to have | |
3826 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 3827 | * |
0ceaacc9 NP |
3828 | * For example if 2 tasks are alternately allocating |
3829 | * batches of pages, one task can end up with a lot | |
3830 | * of pages of one half of the possible page colors | |
3831 | * and the other with pages of the other colors. | |
e7c8d5c9 | 3832 | */ |
9155203a | 3833 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 3834 | |
e7c8d5c9 | 3835 | return batch; |
3a6be87f DH |
3836 | |
3837 | #else | |
3838 | /* The deferral and batching of frees should be suppressed under NOMMU | |
3839 | * conditions. | |
3840 | * | |
3841 | * The problem is that NOMMU needs to be able to allocate large chunks | |
3842 | * of contiguous memory as there's no hardware page translation to | |
3843 | * assemble apparent contiguous memory from discontiguous pages. | |
3844 | * | |
3845 | * Queueing large contiguous runs of pages for batching, however, | |
3846 | * causes the pages to actually be freed in smaller chunks. As there | |
3847 | * can be a significant delay between the individual batches being | |
3848 | * recycled, this leads to the once large chunks of space being | |
3849 | * fragmented and becoming unavailable for high-order allocations. | |
3850 | */ | |
3851 | return 0; | |
3852 | #endif | |
e7c8d5c9 CL |
3853 | } |
3854 | ||
b69a7288 | 3855 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
2caaad41 CL |
3856 | { |
3857 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 3858 | int migratetype; |
2caaad41 | 3859 | |
1c6fe946 MD |
3860 | memset(p, 0, sizeof(*p)); |
3861 | ||
3dfa5721 | 3862 | pcp = &p->pcp; |
2caaad41 | 3863 | pcp->count = 0; |
2caaad41 CL |
3864 | pcp->high = 6 * batch; |
3865 | pcp->batch = max(1UL, 1 * batch); | |
5f8dcc21 MG |
3866 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
3867 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
3868 | } |
3869 | ||
8ad4b1fb RS |
3870 | /* |
3871 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | |
3872 | * to the value high for the pageset p. | |
3873 | */ | |
3874 | ||
3875 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | |
3876 | unsigned long high) | |
3877 | { | |
3878 | struct per_cpu_pages *pcp; | |
3879 | ||
3dfa5721 | 3880 | pcp = &p->pcp; |
8ad4b1fb RS |
3881 | pcp->high = high; |
3882 | pcp->batch = max(1UL, high/4); | |
3883 | if ((high/4) > (PAGE_SHIFT * 8)) | |
3884 | pcp->batch = PAGE_SHIFT * 8; | |
3885 | } | |
3886 | ||
4ed7e022 | 3887 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
3888 | { |
3889 | int cpu; | |
3890 | ||
3891 | zone->pageset = alloc_percpu(struct per_cpu_pageset); | |
3892 | ||
3893 | for_each_possible_cpu(cpu) { | |
3894 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
3895 | ||
3896 | setup_pageset(pcp, zone_batchsize(zone)); | |
3897 | ||
3898 | if (percpu_pagelist_fraction) | |
3899 | setup_pagelist_highmark(pcp, | |
3900 | (zone->present_pages / | |
3901 | percpu_pagelist_fraction)); | |
3902 | } | |
3903 | } | |
3904 | ||
2caaad41 | 3905 | /* |
99dcc3e5 CL |
3906 | * Allocate per cpu pagesets and initialize them. |
3907 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 3908 | */ |
99dcc3e5 | 3909 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 3910 | { |
99dcc3e5 | 3911 | struct zone *zone; |
e7c8d5c9 | 3912 | |
319774e2 WF |
3913 | for_each_populated_zone(zone) |
3914 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
3915 | } |
3916 | ||
577a32f6 | 3917 | static noinline __init_refok |
cca448fe | 3918 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
3919 | { |
3920 | int i; | |
3921 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe | 3922 | size_t alloc_size; |
ed8ece2e DH |
3923 | |
3924 | /* | |
3925 | * The per-page waitqueue mechanism uses hashed waitqueues | |
3926 | * per zone. | |
3927 | */ | |
02b694de YG |
3928 | zone->wait_table_hash_nr_entries = |
3929 | wait_table_hash_nr_entries(zone_size_pages); | |
3930 | zone->wait_table_bits = | |
3931 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
3932 | alloc_size = zone->wait_table_hash_nr_entries |
3933 | * sizeof(wait_queue_head_t); | |
3934 | ||
cd94b9db | 3935 | if (!slab_is_available()) { |
cca448fe | 3936 | zone->wait_table = (wait_queue_head_t *) |
8f389a99 | 3937 | alloc_bootmem_node_nopanic(pgdat, alloc_size); |
cca448fe YG |
3938 | } else { |
3939 | /* | |
3940 | * This case means that a zone whose size was 0 gets new memory | |
3941 | * via memory hot-add. | |
3942 | * But it may be the case that a new node was hot-added. In | |
3943 | * this case vmalloc() will not be able to use this new node's | |
3944 | * memory - this wait_table must be initialized to use this new | |
3945 | * node itself as well. | |
3946 | * To use this new node's memory, further consideration will be | |
3947 | * necessary. | |
3948 | */ | |
8691f3a7 | 3949 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
3950 | } |
3951 | if (!zone->wait_table) | |
3952 | return -ENOMEM; | |
ed8ece2e | 3953 | |
02b694de | 3954 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 3955 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
3956 | |
3957 | return 0; | |
ed8ece2e DH |
3958 | } |
3959 | ||
c09b4240 | 3960 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 3961 | { |
99dcc3e5 CL |
3962 | /* |
3963 | * per cpu subsystem is not up at this point. The following code | |
3964 | * relies on the ability of the linker to provide the | |
3965 | * offset of a (static) per cpu variable into the per cpu area. | |
3966 | */ | |
3967 | zone->pageset = &boot_pageset; | |
ed8ece2e | 3968 | |
f5335c0f | 3969 | if (zone->present_pages) |
99dcc3e5 CL |
3970 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
3971 | zone->name, zone->present_pages, | |
3972 | zone_batchsize(zone)); | |
ed8ece2e DH |
3973 | } |
3974 | ||
4ed7e022 | 3975 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 3976 | unsigned long zone_start_pfn, |
a2f3aa02 DH |
3977 | unsigned long size, |
3978 | enum memmap_context context) | |
ed8ece2e DH |
3979 | { |
3980 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
3981 | int ret; |
3982 | ret = zone_wait_table_init(zone, size); | |
3983 | if (ret) | |
3984 | return ret; | |
ed8ece2e DH |
3985 | pgdat->nr_zones = zone_idx(zone) + 1; |
3986 | ||
ed8ece2e DH |
3987 | zone->zone_start_pfn = zone_start_pfn; |
3988 | ||
708614e6 MG |
3989 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3990 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
3991 | pgdat->node_id, | |
3992 | (unsigned long)zone_idx(zone), | |
3993 | zone_start_pfn, (zone_start_pfn + size)); | |
3994 | ||
1e548deb | 3995 | zone_init_free_lists(zone); |
718127cc YG |
3996 | |
3997 | return 0; | |
ed8ece2e DH |
3998 | } |
3999 | ||
0ee332c1 | 4000 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d MG |
4001 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
4002 | /* | |
4003 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
4004 | * Architectures may implement their own version but if add_active_range() | |
4005 | * was used and there are no special requirements, this is a convenient | |
4006 | * alternative | |
4007 | */ | |
f2dbcfa7 | 4008 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
c713216d | 4009 | { |
c13291a5 TH |
4010 | unsigned long start_pfn, end_pfn; |
4011 | int i, nid; | |
c713216d | 4012 | |
c13291a5 | 4013 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
c713216d | 4014 | if (start_pfn <= pfn && pfn < end_pfn) |
c13291a5 | 4015 | return nid; |
cc2559bc KH |
4016 | /* This is a memory hole */ |
4017 | return -1; | |
c713216d MG |
4018 | } |
4019 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
4020 | ||
f2dbcfa7 KH |
4021 | int __meminit early_pfn_to_nid(unsigned long pfn) |
4022 | { | |
cc2559bc KH |
4023 | int nid; |
4024 | ||
4025 | nid = __early_pfn_to_nid(pfn); | |
4026 | if (nid >= 0) | |
4027 | return nid; | |
4028 | /* just returns 0 */ | |
4029 | return 0; | |
f2dbcfa7 KH |
4030 | } |
4031 | ||
cc2559bc KH |
4032 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
4033 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
4034 | { | |
4035 | int nid; | |
4036 | ||
4037 | nid = __early_pfn_to_nid(pfn); | |
4038 | if (nid >= 0 && nid != node) | |
4039 | return false; | |
4040 | return true; | |
4041 | } | |
4042 | #endif | |
f2dbcfa7 | 4043 | |
c713216d MG |
4044 | /** |
4045 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | |
88ca3b94 RD |
4046 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
4047 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | |
c713216d MG |
4048 | * |
4049 | * If an architecture guarantees that all ranges registered with | |
4050 | * add_active_ranges() contain no holes and may be freed, this | |
4051 | * this function may be used instead of calling free_bootmem() manually. | |
4052 | */ | |
c13291a5 | 4053 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 4054 | { |
c13291a5 TH |
4055 | unsigned long start_pfn, end_pfn; |
4056 | int i, this_nid; | |
edbe7d23 | 4057 | |
c13291a5 TH |
4058 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4059 | start_pfn = min(start_pfn, max_low_pfn); | |
4060 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 4061 | |
c13291a5 TH |
4062 | if (start_pfn < end_pfn) |
4063 | free_bootmem_node(NODE_DATA(this_nid), | |
4064 | PFN_PHYS(start_pfn), | |
4065 | (end_pfn - start_pfn) << PAGE_SHIFT); | |
edbe7d23 | 4066 | } |
edbe7d23 | 4067 | } |
edbe7d23 | 4068 | |
c713216d MG |
4069 | /** |
4070 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 4071 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d MG |
4072 | * |
4073 | * If an architecture guarantees that all ranges registered with | |
4074 | * add_active_ranges() contain no holes and may be freed, this | |
88ca3b94 | 4075 | * function may be used instead of calling memory_present() manually. |
c713216d MG |
4076 | */ |
4077 | void __init sparse_memory_present_with_active_regions(int nid) | |
4078 | { | |
c13291a5 TH |
4079 | unsigned long start_pfn, end_pfn; |
4080 | int i, this_nid; | |
c713216d | 4081 | |
c13291a5 TH |
4082 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4083 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
4084 | } |
4085 | ||
4086 | /** | |
4087 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4088 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4089 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4090 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4091 | * |
4092 | * It returns the start and end page frame of a node based on information | |
4093 | * provided by an arch calling add_active_range(). If called for a node | |
4094 | * with no available memory, a warning is printed and the start and end | |
88ca3b94 | 4095 | * PFNs will be 0. |
c713216d | 4096 | */ |
a3142c8e | 4097 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4098 | unsigned long *start_pfn, unsigned long *end_pfn) |
4099 | { | |
c13291a5 | 4100 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4101 | int i; |
c13291a5 | 4102 | |
c713216d MG |
4103 | *start_pfn = -1UL; |
4104 | *end_pfn = 0; | |
4105 | ||
c13291a5 TH |
4106 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4107 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4108 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4109 | } |
4110 | ||
633c0666 | 4111 | if (*start_pfn == -1UL) |
c713216d | 4112 | *start_pfn = 0; |
c713216d MG |
4113 | } |
4114 | ||
2a1e274a MG |
4115 | /* |
4116 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4117 | * assumption is made that zones within a node are ordered in monotonic | |
4118 | * increasing memory addresses so that the "highest" populated zone is used | |
4119 | */ | |
b69a7288 | 4120 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4121 | { |
4122 | int zone_index; | |
4123 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4124 | if (zone_index == ZONE_MOVABLE) | |
4125 | continue; | |
4126 | ||
4127 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4128 | arch_zone_lowest_possible_pfn[zone_index]) | |
4129 | break; | |
4130 | } | |
4131 | ||
4132 | VM_BUG_ON(zone_index == -1); | |
4133 | movable_zone = zone_index; | |
4134 | } | |
4135 | ||
4136 | /* | |
4137 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4138 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4139 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4140 | * in each node depending on the size of each node and how evenly kernelcore | |
4141 | * is distributed. This helper function adjusts the zone ranges | |
4142 | * provided by the architecture for a given node by using the end of the | |
4143 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4144 | * zones within a node are in order of monotonic increases memory addresses | |
4145 | */ | |
b69a7288 | 4146 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4147 | unsigned long zone_type, |
4148 | unsigned long node_start_pfn, | |
4149 | unsigned long node_end_pfn, | |
4150 | unsigned long *zone_start_pfn, | |
4151 | unsigned long *zone_end_pfn) | |
4152 | { | |
4153 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4154 | if (zone_movable_pfn[nid]) { | |
4155 | /* Size ZONE_MOVABLE */ | |
4156 | if (zone_type == ZONE_MOVABLE) { | |
4157 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4158 | *zone_end_pfn = min(node_end_pfn, | |
4159 | arch_zone_highest_possible_pfn[movable_zone]); | |
4160 | ||
4161 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
4162 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
4163 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
4164 | *zone_end_pfn = zone_movable_pfn[nid]; | |
4165 | ||
4166 | /* Check if this whole range is within ZONE_MOVABLE */ | |
4167 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4168 | *zone_start_pfn = *zone_end_pfn; | |
4169 | } | |
4170 | } | |
4171 | ||
c713216d MG |
4172 | /* |
4173 | * Return the number of pages a zone spans in a node, including holes | |
4174 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4175 | */ | |
6ea6e688 | 4176 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
4177 | unsigned long zone_type, |
4178 | unsigned long *ignored) | |
4179 | { | |
4180 | unsigned long node_start_pfn, node_end_pfn; | |
4181 | unsigned long zone_start_pfn, zone_end_pfn; | |
4182 | ||
4183 | /* Get the start and end of the node and zone */ | |
4184 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
4185 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | |
4186 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
4187 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4188 | node_start_pfn, node_end_pfn, | |
4189 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
4190 | |
4191 | /* Check that this node has pages within the zone's required range */ | |
4192 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
4193 | return 0; | |
4194 | ||
4195 | /* Move the zone boundaries inside the node if necessary */ | |
4196 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
4197 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
4198 | ||
4199 | /* Return the spanned pages */ | |
4200 | return zone_end_pfn - zone_start_pfn; | |
4201 | } | |
4202 | ||
4203 | /* | |
4204 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 4205 | * then all holes in the requested range will be accounted for. |
c713216d | 4206 | */ |
32996250 | 4207 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
4208 | unsigned long range_start_pfn, |
4209 | unsigned long range_end_pfn) | |
4210 | { | |
96e907d1 TH |
4211 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4212 | unsigned long start_pfn, end_pfn; | |
4213 | int i; | |
c713216d | 4214 | |
96e907d1 TH |
4215 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4216 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
4217 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
4218 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 4219 | } |
96e907d1 | 4220 | return nr_absent; |
c713216d MG |
4221 | } |
4222 | ||
4223 | /** | |
4224 | * absent_pages_in_range - Return number of page frames in holes within a range | |
4225 | * @start_pfn: The start PFN to start searching for holes | |
4226 | * @end_pfn: The end PFN to stop searching for holes | |
4227 | * | |
88ca3b94 | 4228 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
4229 | */ |
4230 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
4231 | unsigned long end_pfn) | |
4232 | { | |
4233 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
4234 | } | |
4235 | ||
4236 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 4237 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
4238 | unsigned long zone_type, |
4239 | unsigned long *ignored) | |
4240 | { | |
96e907d1 TH |
4241 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4242 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 MG |
4243 | unsigned long node_start_pfn, node_end_pfn; |
4244 | unsigned long zone_start_pfn, zone_end_pfn; | |
4245 | ||
4246 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
96e907d1 TH |
4247 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4248 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 4249 | |
2a1e274a MG |
4250 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4251 | node_start_pfn, node_end_pfn, | |
4252 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 4253 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 4254 | } |
0e0b864e | 4255 | |
0ee332c1 | 4256 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 4257 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
4258 | unsigned long zone_type, |
4259 | unsigned long *zones_size) | |
4260 | { | |
4261 | return zones_size[zone_type]; | |
4262 | } | |
4263 | ||
6ea6e688 | 4264 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
4265 | unsigned long zone_type, |
4266 | unsigned long *zholes_size) | |
4267 | { | |
4268 | if (!zholes_size) | |
4269 | return 0; | |
4270 | ||
4271 | return zholes_size[zone_type]; | |
4272 | } | |
0e0b864e | 4273 | |
0ee332c1 | 4274 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4275 | |
a3142c8e | 4276 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
c713216d MG |
4277 | unsigned long *zones_size, unsigned long *zholes_size) |
4278 | { | |
4279 | unsigned long realtotalpages, totalpages = 0; | |
4280 | enum zone_type i; | |
4281 | ||
4282 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4283 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | |
4284 | zones_size); | |
4285 | pgdat->node_spanned_pages = totalpages; | |
4286 | ||
4287 | realtotalpages = totalpages; | |
4288 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4289 | realtotalpages -= | |
4290 | zone_absent_pages_in_node(pgdat->node_id, i, | |
4291 | zholes_size); | |
4292 | pgdat->node_present_pages = realtotalpages; | |
4293 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
4294 | realtotalpages); | |
4295 | } | |
4296 | ||
835c134e MG |
4297 | #ifndef CONFIG_SPARSEMEM |
4298 | /* | |
4299 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
4300 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4301 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
4302 | * round what is now in bits to nearest long in bits, then return it in |
4303 | * bytes. | |
4304 | */ | |
4305 | static unsigned long __init usemap_size(unsigned long zonesize) | |
4306 | { | |
4307 | unsigned long usemapsize; | |
4308 | ||
d9c23400 MG |
4309 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4310 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
4311 | usemapsize *= NR_PAGEBLOCK_BITS; |
4312 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
4313 | ||
4314 | return usemapsize / 8; | |
4315 | } | |
4316 | ||
4317 | static void __init setup_usemap(struct pglist_data *pgdat, | |
4318 | struct zone *zone, unsigned long zonesize) | |
4319 | { | |
4320 | unsigned long usemapsize = usemap_size(zonesize); | |
4321 | zone->pageblock_flags = NULL; | |
58a01a45 | 4322 | if (usemapsize) |
8f389a99 YL |
4323 | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, |
4324 | usemapsize); | |
835c134e MG |
4325 | } |
4326 | #else | |
fa9f90be | 4327 | static inline void setup_usemap(struct pglist_data *pgdat, |
835c134e MG |
4328 | struct zone *zone, unsigned long zonesize) {} |
4329 | #endif /* CONFIG_SPARSEMEM */ | |
4330 | ||
d9c23400 | 4331 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 4332 | |
d9c23400 | 4333 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
ca57df79 | 4334 | void __init set_pageblock_order(void) |
d9c23400 | 4335 | { |
955c1cd7 AM |
4336 | unsigned int order; |
4337 | ||
d9c23400 MG |
4338 | /* Check that pageblock_nr_pages has not already been setup */ |
4339 | if (pageblock_order) | |
4340 | return; | |
4341 | ||
955c1cd7 AM |
4342 | if (HPAGE_SHIFT > PAGE_SHIFT) |
4343 | order = HUGETLB_PAGE_ORDER; | |
4344 | else | |
4345 | order = MAX_ORDER - 1; | |
4346 | ||
d9c23400 MG |
4347 | /* |
4348 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
4349 | * This value may be variable depending on boot parameters on IA64 and |
4350 | * powerpc. | |
d9c23400 MG |
4351 | */ |
4352 | pageblock_order = order; | |
4353 | } | |
4354 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4355 | ||
ba72cb8c MG |
4356 | /* |
4357 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
4358 | * is unused as pageblock_order is set at compile-time. See |
4359 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
4360 | * the kernel config | |
ba72cb8c | 4361 | */ |
ca57df79 | 4362 | void __init set_pageblock_order(void) |
ba72cb8c | 4363 | { |
ba72cb8c | 4364 | } |
d9c23400 MG |
4365 | |
4366 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4367 | ||
1da177e4 LT |
4368 | /* |
4369 | * Set up the zone data structures: | |
4370 | * - mark all pages reserved | |
4371 | * - mark all memory queues empty | |
4372 | * - clear the memory bitmaps | |
4373 | */ | |
b5a0e011 | 4374 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
1da177e4 LT |
4375 | unsigned long *zones_size, unsigned long *zholes_size) |
4376 | { | |
2f1b6248 | 4377 | enum zone_type j; |
ed8ece2e | 4378 | int nid = pgdat->node_id; |
1da177e4 | 4379 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 4380 | int ret; |
1da177e4 | 4381 | |
208d54e5 | 4382 | pgdat_resize_init(pgdat); |
1da177e4 LT |
4383 | pgdat->nr_zones = 0; |
4384 | init_waitqueue_head(&pgdat->kswapd_wait); | |
4385 | pgdat->kswapd_max_order = 0; | |
52d4b9ac | 4386 | pgdat_page_cgroup_init(pgdat); |
5f63b720 | 4387 | |
1da177e4 LT |
4388 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4389 | struct zone *zone = pgdat->node_zones + j; | |
0e0b864e | 4390 | unsigned long size, realsize, memmap_pages; |
1da177e4 | 4391 | |
c713216d MG |
4392 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
4393 | realsize = size - zone_absent_pages_in_node(nid, j, | |
4394 | zholes_size); | |
1da177e4 | 4395 | |
0e0b864e MG |
4396 | /* |
4397 | * Adjust realsize so that it accounts for how much memory | |
4398 | * is used by this zone for memmap. This affects the watermark | |
4399 | * and per-cpu initialisations | |
4400 | */ | |
f7232154 JW |
4401 | memmap_pages = |
4402 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | |
0e0b864e MG |
4403 | if (realsize >= memmap_pages) { |
4404 | realsize -= memmap_pages; | |
5594c8c8 YL |
4405 | if (memmap_pages) |
4406 | printk(KERN_DEBUG | |
4407 | " %s zone: %lu pages used for memmap\n", | |
4408 | zone_names[j], memmap_pages); | |
0e0b864e MG |
4409 | } else |
4410 | printk(KERN_WARNING | |
4411 | " %s zone: %lu pages exceeds realsize %lu\n", | |
4412 | zone_names[j], memmap_pages, realsize); | |
4413 | ||
6267276f CL |
4414 | /* Account for reserved pages */ |
4415 | if (j == 0 && realsize > dma_reserve) { | |
0e0b864e | 4416 | realsize -= dma_reserve; |
d903ef9f | 4417 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 4418 | zone_names[0], dma_reserve); |
0e0b864e MG |
4419 | } |
4420 | ||
98d2b0eb | 4421 | if (!is_highmem_idx(j)) |
1da177e4 LT |
4422 | nr_kernel_pages += realsize; |
4423 | nr_all_pages += realsize; | |
4424 | ||
4425 | zone->spanned_pages = size; | |
4426 | zone->present_pages = realsize; | |
7db8889a RR |
4427 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
4428 | zone->compact_cached_free_pfn = zone->zone_start_pfn + | |
4429 | zone->spanned_pages; | |
4430 | zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1); | |
4431 | #endif | |
9614634f | 4432 | #ifdef CONFIG_NUMA |
d5f541ed | 4433 | zone->node = nid; |
8417bba4 | 4434 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) |
9614634f | 4435 | / 100; |
0ff38490 | 4436 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; |
9614634f | 4437 | #endif |
1da177e4 LT |
4438 | zone->name = zone_names[j]; |
4439 | spin_lock_init(&zone->lock); | |
4440 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 4441 | zone_seqlock_init(zone); |
1da177e4 | 4442 | zone->zone_pgdat = pgdat; |
1da177e4 | 4443 | |
ed8ece2e | 4444 | zone_pcp_init(zone); |
7f5e86c2 | 4445 | lruvec_init(&zone->lruvec, zone); |
2244b95a | 4446 | zap_zone_vm_stats(zone); |
e815af95 | 4447 | zone->flags = 0; |
702d1a6e MK |
4448 | #ifdef CONFIG_MEMORY_ISOLATION |
4449 | zone->nr_pageblock_isolate = 0; | |
4450 | #endif | |
1da177e4 LT |
4451 | if (!size) |
4452 | continue; | |
4453 | ||
955c1cd7 | 4454 | set_pageblock_order(); |
835c134e | 4455 | setup_usemap(pgdat, zone, size); |
a2f3aa02 DH |
4456 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4457 | size, MEMMAP_EARLY); | |
718127cc | 4458 | BUG_ON(ret); |
76cdd58e | 4459 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 4460 | zone_start_pfn += size; |
1da177e4 LT |
4461 | } |
4462 | } | |
4463 | ||
577a32f6 | 4464 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 4465 | { |
1da177e4 LT |
4466 | /* Skip empty nodes */ |
4467 | if (!pgdat->node_spanned_pages) | |
4468 | return; | |
4469 | ||
d41dee36 | 4470 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
4471 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4472 | if (!pgdat->node_mem_map) { | |
e984bb43 | 4473 | unsigned long size, start, end; |
d41dee36 AW |
4474 | struct page *map; |
4475 | ||
e984bb43 BP |
4476 | /* |
4477 | * The zone's endpoints aren't required to be MAX_ORDER | |
4478 | * aligned but the node_mem_map endpoints must be in order | |
4479 | * for the buddy allocator to function correctly. | |
4480 | */ | |
4481 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
4482 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | |
4483 | end = ALIGN(end, MAX_ORDER_NR_PAGES); | |
4484 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
4485 | map = alloc_remap(pgdat->node_id, size); |
4486 | if (!map) | |
8f389a99 | 4487 | map = alloc_bootmem_node_nopanic(pgdat, size); |
e984bb43 | 4488 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
1da177e4 | 4489 | } |
12d810c1 | 4490 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
4491 | /* |
4492 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
4493 | */ | |
c713216d | 4494 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 4495 | mem_map = NODE_DATA(0)->node_mem_map; |
0ee332c1 | 4496 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4497 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
467bc461 | 4498 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
0ee332c1 | 4499 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4500 | } |
1da177e4 | 4501 | #endif |
d41dee36 | 4502 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
4503 | } |
4504 | ||
9109fb7b JW |
4505 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4506 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 4507 | { |
9109fb7b JW |
4508 | pg_data_t *pgdat = NODE_DATA(nid); |
4509 | ||
1da177e4 LT |
4510 | pgdat->node_id = nid; |
4511 | pgdat->node_start_pfn = node_start_pfn; | |
c713216d | 4512 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
1da177e4 LT |
4513 | |
4514 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
4515 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4516 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
4517 | nid, (unsigned long)pgdat, | |
4518 | (unsigned long)pgdat->node_mem_map); | |
4519 | #endif | |
1da177e4 LT |
4520 | |
4521 | free_area_init_core(pgdat, zones_size, zholes_size); | |
4522 | } | |
4523 | ||
0ee332c1 | 4524 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
4525 | |
4526 | #if MAX_NUMNODES > 1 | |
4527 | /* | |
4528 | * Figure out the number of possible node ids. | |
4529 | */ | |
4530 | static void __init setup_nr_node_ids(void) | |
4531 | { | |
4532 | unsigned int node; | |
4533 | unsigned int highest = 0; | |
4534 | ||
4535 | for_each_node_mask(node, node_possible_map) | |
4536 | highest = node; | |
4537 | nr_node_ids = highest + 1; | |
4538 | } | |
4539 | #else | |
4540 | static inline void setup_nr_node_ids(void) | |
4541 | { | |
4542 | } | |
4543 | #endif | |
4544 | ||
1e01979c TH |
4545 | /** |
4546 | * node_map_pfn_alignment - determine the maximum internode alignment | |
4547 | * | |
4548 | * This function should be called after node map is populated and sorted. | |
4549 | * It calculates the maximum power of two alignment which can distinguish | |
4550 | * all the nodes. | |
4551 | * | |
4552 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
4553 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
4554 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
4555 | * shifted, 1GiB is enough and this function will indicate so. | |
4556 | * | |
4557 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
4558 | * model has fine enough granularity to avoid incorrect mapping for the | |
4559 | * populated node map. | |
4560 | * | |
4561 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
4562 | * requirement (single node). | |
4563 | */ | |
4564 | unsigned long __init node_map_pfn_alignment(void) | |
4565 | { | |
4566 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 4567 | unsigned long start, end, mask; |
1e01979c | 4568 | int last_nid = -1; |
c13291a5 | 4569 | int i, nid; |
1e01979c | 4570 | |
c13291a5 | 4571 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
4572 | if (!start || last_nid < 0 || last_nid == nid) { |
4573 | last_nid = nid; | |
4574 | last_end = end; | |
4575 | continue; | |
4576 | } | |
4577 | ||
4578 | /* | |
4579 | * Start with a mask granular enough to pin-point to the | |
4580 | * start pfn and tick off bits one-by-one until it becomes | |
4581 | * too coarse to separate the current node from the last. | |
4582 | */ | |
4583 | mask = ~((1 << __ffs(start)) - 1); | |
4584 | while (mask && last_end <= (start & (mask << 1))) | |
4585 | mask <<= 1; | |
4586 | ||
4587 | /* accumulate all internode masks */ | |
4588 | accl_mask |= mask; | |
4589 | } | |
4590 | ||
4591 | /* convert mask to number of pages */ | |
4592 | return ~accl_mask + 1; | |
4593 | } | |
4594 | ||
a6af2bc3 | 4595 | /* Find the lowest pfn for a node */ |
b69a7288 | 4596 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 4597 | { |
a6af2bc3 | 4598 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
4599 | unsigned long start_pfn; |
4600 | int i; | |
1abbfb41 | 4601 | |
c13291a5 TH |
4602 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
4603 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 4604 | |
a6af2bc3 MG |
4605 | if (min_pfn == ULONG_MAX) { |
4606 | printk(KERN_WARNING | |
2bc0d261 | 4607 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
4608 | return 0; |
4609 | } | |
4610 | ||
4611 | return min_pfn; | |
c713216d MG |
4612 | } |
4613 | ||
4614 | /** | |
4615 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
4616 | * | |
4617 | * It returns the minimum PFN based on information provided via | |
88ca3b94 | 4618 | * add_active_range(). |
c713216d MG |
4619 | */ |
4620 | unsigned long __init find_min_pfn_with_active_regions(void) | |
4621 | { | |
4622 | return find_min_pfn_for_node(MAX_NUMNODES); | |
4623 | } | |
4624 | ||
37b07e41 LS |
4625 | /* |
4626 | * early_calculate_totalpages() | |
4627 | * Sum pages in active regions for movable zone. | |
4628 | * Populate N_HIGH_MEMORY for calculating usable_nodes. | |
4629 | */ | |
484f51f8 | 4630 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 4631 | { |
7e63efef | 4632 | unsigned long totalpages = 0; |
c13291a5 TH |
4633 | unsigned long start_pfn, end_pfn; |
4634 | int i, nid; | |
4635 | ||
4636 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
4637 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 4638 | |
37b07e41 LS |
4639 | totalpages += pages; |
4640 | if (pages) | |
c13291a5 | 4641 | node_set_state(nid, N_HIGH_MEMORY); |
37b07e41 LS |
4642 | } |
4643 | return totalpages; | |
7e63efef MG |
4644 | } |
4645 | ||
2a1e274a MG |
4646 | /* |
4647 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
4648 | * is spread evenly between nodes as long as the nodes have enough | |
4649 | * memory. When they don't, some nodes will have more kernelcore than | |
4650 | * others | |
4651 | */ | |
b224ef85 | 4652 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
4653 | { |
4654 | int i, nid; | |
4655 | unsigned long usable_startpfn; | |
4656 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd YL |
4657 | /* save the state before borrow the nodemask */ |
4658 | nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; | |
37b07e41 LS |
4659 | unsigned long totalpages = early_calculate_totalpages(); |
4660 | int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); | |
2a1e274a | 4661 | |
7e63efef MG |
4662 | /* |
4663 | * If movablecore was specified, calculate what size of | |
4664 | * kernelcore that corresponds so that memory usable for | |
4665 | * any allocation type is evenly spread. If both kernelcore | |
4666 | * and movablecore are specified, then the value of kernelcore | |
4667 | * will be used for required_kernelcore if it's greater than | |
4668 | * what movablecore would have allowed. | |
4669 | */ | |
4670 | if (required_movablecore) { | |
7e63efef MG |
4671 | unsigned long corepages; |
4672 | ||
4673 | /* | |
4674 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
4675 | * was requested by the user | |
4676 | */ | |
4677 | required_movablecore = | |
4678 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
4679 | corepages = totalpages - required_movablecore; | |
4680 | ||
4681 | required_kernelcore = max(required_kernelcore, corepages); | |
4682 | } | |
4683 | ||
2a1e274a MG |
4684 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4685 | if (!required_kernelcore) | |
66918dcd | 4686 | goto out; |
2a1e274a MG |
4687 | |
4688 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
4689 | find_usable_zone_for_movable(); | |
4690 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | |
4691 | ||
4692 | restart: | |
4693 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
4694 | kernelcore_node = required_kernelcore / usable_nodes; | |
37b07e41 | 4695 | for_each_node_state(nid, N_HIGH_MEMORY) { |
c13291a5 TH |
4696 | unsigned long start_pfn, end_pfn; |
4697 | ||
2a1e274a MG |
4698 | /* |
4699 | * Recalculate kernelcore_node if the division per node | |
4700 | * now exceeds what is necessary to satisfy the requested | |
4701 | * amount of memory for the kernel | |
4702 | */ | |
4703 | if (required_kernelcore < kernelcore_node) | |
4704 | kernelcore_node = required_kernelcore / usable_nodes; | |
4705 | ||
4706 | /* | |
4707 | * As the map is walked, we track how much memory is usable | |
4708 | * by the kernel using kernelcore_remaining. When it is | |
4709 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
4710 | */ | |
4711 | kernelcore_remaining = kernelcore_node; | |
4712 | ||
4713 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 4714 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
4715 | unsigned long size_pages; |
4716 | ||
c13291a5 | 4717 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
4718 | if (start_pfn >= end_pfn) |
4719 | continue; | |
4720 | ||
4721 | /* Account for what is only usable for kernelcore */ | |
4722 | if (start_pfn < usable_startpfn) { | |
4723 | unsigned long kernel_pages; | |
4724 | kernel_pages = min(end_pfn, usable_startpfn) | |
4725 | - start_pfn; | |
4726 | ||
4727 | kernelcore_remaining -= min(kernel_pages, | |
4728 | kernelcore_remaining); | |
4729 | required_kernelcore -= min(kernel_pages, | |
4730 | required_kernelcore); | |
4731 | ||
4732 | /* Continue if range is now fully accounted */ | |
4733 | if (end_pfn <= usable_startpfn) { | |
4734 | ||
4735 | /* | |
4736 | * Push zone_movable_pfn to the end so | |
4737 | * that if we have to rebalance | |
4738 | * kernelcore across nodes, we will | |
4739 | * not double account here | |
4740 | */ | |
4741 | zone_movable_pfn[nid] = end_pfn; | |
4742 | continue; | |
4743 | } | |
4744 | start_pfn = usable_startpfn; | |
4745 | } | |
4746 | ||
4747 | /* | |
4748 | * The usable PFN range for ZONE_MOVABLE is from | |
4749 | * start_pfn->end_pfn. Calculate size_pages as the | |
4750 | * number of pages used as kernelcore | |
4751 | */ | |
4752 | size_pages = end_pfn - start_pfn; | |
4753 | if (size_pages > kernelcore_remaining) | |
4754 | size_pages = kernelcore_remaining; | |
4755 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
4756 | ||
4757 | /* | |
4758 | * Some kernelcore has been met, update counts and | |
4759 | * break if the kernelcore for this node has been | |
4760 | * satisified | |
4761 | */ | |
4762 | required_kernelcore -= min(required_kernelcore, | |
4763 | size_pages); | |
4764 | kernelcore_remaining -= size_pages; | |
4765 | if (!kernelcore_remaining) | |
4766 | break; | |
4767 | } | |
4768 | } | |
4769 | ||
4770 | /* | |
4771 | * If there is still required_kernelcore, we do another pass with one | |
4772 | * less node in the count. This will push zone_movable_pfn[nid] further | |
4773 | * along on the nodes that still have memory until kernelcore is | |
4774 | * satisified | |
4775 | */ | |
4776 | usable_nodes--; | |
4777 | if (usable_nodes && required_kernelcore > usable_nodes) | |
4778 | goto restart; | |
4779 | ||
4780 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
4781 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
4782 | zone_movable_pfn[nid] = | |
4783 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd YL |
4784 | |
4785 | out: | |
4786 | /* restore the node_state */ | |
4787 | node_states[N_HIGH_MEMORY] = saved_node_state; | |
2a1e274a MG |
4788 | } |
4789 | ||
37b07e41 | 4790 | /* Any regular memory on that node ? */ |
4ed7e022 | 4791 | static void __init check_for_regular_memory(pg_data_t *pgdat) |
37b07e41 LS |
4792 | { |
4793 | #ifdef CONFIG_HIGHMEM | |
4794 | enum zone_type zone_type; | |
4795 | ||
4796 | for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { | |
4797 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
d0048b0e | 4798 | if (zone->present_pages) { |
37b07e41 | 4799 | node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); |
d0048b0e BL |
4800 | break; |
4801 | } | |
37b07e41 LS |
4802 | } |
4803 | #endif | |
4804 | } | |
4805 | ||
c713216d MG |
4806 | /** |
4807 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 4808 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
4809 | * |
4810 | * This will call free_area_init_node() for each active node in the system. | |
4811 | * Using the page ranges provided by add_active_range(), the size of each | |
4812 | * zone in each node and their holes is calculated. If the maximum PFN | |
4813 | * between two adjacent zones match, it is assumed that the zone is empty. | |
4814 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
4815 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
4816 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
4817 | * at arch_max_dma_pfn. | |
4818 | */ | |
4819 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
4820 | { | |
c13291a5 TH |
4821 | unsigned long start_pfn, end_pfn; |
4822 | int i, nid; | |
a6af2bc3 | 4823 | |
c713216d MG |
4824 | /* Record where the zone boundaries are */ |
4825 | memset(arch_zone_lowest_possible_pfn, 0, | |
4826 | sizeof(arch_zone_lowest_possible_pfn)); | |
4827 | memset(arch_zone_highest_possible_pfn, 0, | |
4828 | sizeof(arch_zone_highest_possible_pfn)); | |
4829 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
4830 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
4831 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
4832 | if (i == ZONE_MOVABLE) |
4833 | continue; | |
c713216d MG |
4834 | arch_zone_lowest_possible_pfn[i] = |
4835 | arch_zone_highest_possible_pfn[i-1]; | |
4836 | arch_zone_highest_possible_pfn[i] = | |
4837 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
4838 | } | |
2a1e274a MG |
4839 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
4840 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
4841 | ||
4842 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
4843 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 4844 | find_zone_movable_pfns_for_nodes(); |
c713216d | 4845 | |
c713216d | 4846 | /* Print out the zone ranges */ |
a62e2f4f | 4847 | printk("Zone ranges:\n"); |
2a1e274a MG |
4848 | for (i = 0; i < MAX_NR_ZONES; i++) { |
4849 | if (i == ZONE_MOVABLE) | |
4850 | continue; | |
155cbfc8 | 4851 | printk(KERN_CONT " %-8s ", zone_names[i]); |
72f0ba02 DR |
4852 | if (arch_zone_lowest_possible_pfn[i] == |
4853 | arch_zone_highest_possible_pfn[i]) | |
155cbfc8 | 4854 | printk(KERN_CONT "empty\n"); |
72f0ba02 | 4855 | else |
a62e2f4f BH |
4856 | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", |
4857 | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, | |
4858 | (arch_zone_highest_possible_pfn[i] | |
4859 | << PAGE_SHIFT) - 1); | |
2a1e274a MG |
4860 | } |
4861 | ||
4862 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
a62e2f4f | 4863 | printk("Movable zone start for each node\n"); |
2a1e274a MG |
4864 | for (i = 0; i < MAX_NUMNODES; i++) { |
4865 | if (zone_movable_pfn[i]) | |
a62e2f4f BH |
4866 | printk(" Node %d: %#010lx\n", i, |
4867 | zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 4868 | } |
c713216d MG |
4869 | |
4870 | /* Print out the early_node_map[] */ | |
a62e2f4f | 4871 | printk("Early memory node ranges\n"); |
c13291a5 | 4872 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
a62e2f4f BH |
4873 | printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, |
4874 | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
4875 | |
4876 | /* Initialise every node */ | |
708614e6 | 4877 | mminit_verify_pageflags_layout(); |
8ef82866 | 4878 | setup_nr_node_ids(); |
c713216d MG |
4879 | for_each_online_node(nid) { |
4880 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 4881 | free_area_init_node(nid, NULL, |
c713216d | 4882 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
4883 | |
4884 | /* Any memory on that node */ | |
4885 | if (pgdat->node_present_pages) | |
4886 | node_set_state(nid, N_HIGH_MEMORY); | |
4887 | check_for_regular_memory(pgdat); | |
c713216d MG |
4888 | } |
4889 | } | |
2a1e274a | 4890 | |
7e63efef | 4891 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
4892 | { |
4893 | unsigned long long coremem; | |
4894 | if (!p) | |
4895 | return -EINVAL; | |
4896 | ||
4897 | coremem = memparse(p, &p); | |
7e63efef | 4898 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 4899 | |
7e63efef | 4900 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
4901 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
4902 | ||
4903 | return 0; | |
4904 | } | |
ed7ed365 | 4905 | |
7e63efef MG |
4906 | /* |
4907 | * kernelcore=size sets the amount of memory for use for allocations that | |
4908 | * cannot be reclaimed or migrated. | |
4909 | */ | |
4910 | static int __init cmdline_parse_kernelcore(char *p) | |
4911 | { | |
4912 | return cmdline_parse_core(p, &required_kernelcore); | |
4913 | } | |
4914 | ||
4915 | /* | |
4916 | * movablecore=size sets the amount of memory for use for allocations that | |
4917 | * can be reclaimed or migrated. | |
4918 | */ | |
4919 | static int __init cmdline_parse_movablecore(char *p) | |
4920 | { | |
4921 | return cmdline_parse_core(p, &required_movablecore); | |
4922 | } | |
4923 | ||
ed7ed365 | 4924 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 4925 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 4926 | |
0ee332c1 | 4927 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4928 | |
0e0b864e | 4929 | /** |
88ca3b94 RD |
4930 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
4931 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e MG |
4932 | * |
4933 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | |
4934 | * In the DMA zone, a significant percentage may be consumed by kernel image | |
4935 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
4936 | * function may optionally be used to account for unfreeable pages in the |
4937 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
4938 | * smaller per-cpu batchsize. | |
0e0b864e MG |
4939 | */ |
4940 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
4941 | { | |
4942 | dma_reserve = new_dma_reserve; | |
4943 | } | |
4944 | ||
1da177e4 LT |
4945 | void __init free_area_init(unsigned long *zones_size) |
4946 | { | |
9109fb7b | 4947 | free_area_init_node(0, zones_size, |
1da177e4 LT |
4948 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
4949 | } | |
1da177e4 | 4950 | |
1da177e4 LT |
4951 | static int page_alloc_cpu_notify(struct notifier_block *self, |
4952 | unsigned long action, void *hcpu) | |
4953 | { | |
4954 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 4955 | |
8bb78442 | 4956 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 4957 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
4958 | drain_pages(cpu); |
4959 | ||
4960 | /* | |
4961 | * Spill the event counters of the dead processor | |
4962 | * into the current processors event counters. | |
4963 | * This artificially elevates the count of the current | |
4964 | * processor. | |
4965 | */ | |
f8891e5e | 4966 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
4967 | |
4968 | /* | |
4969 | * Zero the differential counters of the dead processor | |
4970 | * so that the vm statistics are consistent. | |
4971 | * | |
4972 | * This is only okay since the processor is dead and cannot | |
4973 | * race with what we are doing. | |
4974 | */ | |
2244b95a | 4975 | refresh_cpu_vm_stats(cpu); |
1da177e4 LT |
4976 | } |
4977 | return NOTIFY_OK; | |
4978 | } | |
1da177e4 LT |
4979 | |
4980 | void __init page_alloc_init(void) | |
4981 | { | |
4982 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
4983 | } | |
4984 | ||
cb45b0e9 HA |
4985 | /* |
4986 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | |
4987 | * or min_free_kbytes changes. | |
4988 | */ | |
4989 | static void calculate_totalreserve_pages(void) | |
4990 | { | |
4991 | struct pglist_data *pgdat; | |
4992 | unsigned long reserve_pages = 0; | |
2f6726e5 | 4993 | enum zone_type i, j; |
cb45b0e9 HA |
4994 | |
4995 | for_each_online_pgdat(pgdat) { | |
4996 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
4997 | struct zone *zone = pgdat->node_zones + i; | |
4998 | unsigned long max = 0; | |
4999 | ||
5000 | /* Find valid and maximum lowmem_reserve in the zone */ | |
5001 | for (j = i; j < MAX_NR_ZONES; j++) { | |
5002 | if (zone->lowmem_reserve[j] > max) | |
5003 | max = zone->lowmem_reserve[j]; | |
5004 | } | |
5005 | ||
41858966 MG |
5006 | /* we treat the high watermark as reserved pages. */ |
5007 | max += high_wmark_pages(zone); | |
cb45b0e9 HA |
5008 | |
5009 | if (max > zone->present_pages) | |
5010 | max = zone->present_pages; | |
5011 | reserve_pages += max; | |
ab8fabd4 JW |
5012 | /* |
5013 | * Lowmem reserves are not available to | |
5014 | * GFP_HIGHUSER page cache allocations and | |
5015 | * kswapd tries to balance zones to their high | |
5016 | * watermark. As a result, neither should be | |
5017 | * regarded as dirtyable memory, to prevent a | |
5018 | * situation where reclaim has to clean pages | |
5019 | * in order to balance the zones. | |
5020 | */ | |
5021 | zone->dirty_balance_reserve = max; | |
cb45b0e9 HA |
5022 | } |
5023 | } | |
ab8fabd4 | 5024 | dirty_balance_reserve = reserve_pages; |
cb45b0e9 HA |
5025 | totalreserve_pages = reserve_pages; |
5026 | } | |
5027 | ||
1da177e4 LT |
5028 | /* |
5029 | * setup_per_zone_lowmem_reserve - called whenever | |
5030 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
5031 | * has a correct pages reserved value, so an adequate number of | |
5032 | * pages are left in the zone after a successful __alloc_pages(). | |
5033 | */ | |
5034 | static void setup_per_zone_lowmem_reserve(void) | |
5035 | { | |
5036 | struct pglist_data *pgdat; | |
2f6726e5 | 5037 | enum zone_type j, idx; |
1da177e4 | 5038 | |
ec936fc5 | 5039 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
5040 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5041 | struct zone *zone = pgdat->node_zones + j; | |
5042 | unsigned long present_pages = zone->present_pages; | |
5043 | ||
5044 | zone->lowmem_reserve[j] = 0; | |
5045 | ||
2f6726e5 CL |
5046 | idx = j; |
5047 | while (idx) { | |
1da177e4 LT |
5048 | struct zone *lower_zone; |
5049 | ||
2f6726e5 CL |
5050 | idx--; |
5051 | ||
1da177e4 LT |
5052 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5053 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
5054 | ||
5055 | lower_zone = pgdat->node_zones + idx; | |
5056 | lower_zone->lowmem_reserve[j] = present_pages / | |
5057 | sysctl_lowmem_reserve_ratio[idx]; | |
5058 | present_pages += lower_zone->present_pages; | |
5059 | } | |
5060 | } | |
5061 | } | |
cb45b0e9 HA |
5062 | |
5063 | /* update totalreserve_pages */ | |
5064 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5065 | } |
5066 | ||
cfd3da1e | 5067 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
5068 | { |
5069 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
5070 | unsigned long lowmem_pages = 0; | |
5071 | struct zone *zone; | |
5072 | unsigned long flags; | |
5073 | ||
5074 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
5075 | for_each_zone(zone) { | |
5076 | if (!is_highmem(zone)) | |
5077 | lowmem_pages += zone->present_pages; | |
5078 | } | |
5079 | ||
5080 | for_each_zone(zone) { | |
ac924c60 AM |
5081 | u64 tmp; |
5082 | ||
1125b4e3 | 5083 | spin_lock_irqsave(&zone->lock, flags); |
ac924c60 AM |
5084 | tmp = (u64)pages_min * zone->present_pages; |
5085 | do_div(tmp, lowmem_pages); | |
1da177e4 LT |
5086 | if (is_highmem(zone)) { |
5087 | /* | |
669ed175 NP |
5088 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5089 | * need highmem pages, so cap pages_min to a small | |
5090 | * value here. | |
5091 | * | |
41858966 | 5092 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
669ed175 NP |
5093 | * deltas controls asynch page reclaim, and so should |
5094 | * not be capped for highmem. | |
1da177e4 LT |
5095 | */ |
5096 | int min_pages; | |
5097 | ||
5098 | min_pages = zone->present_pages / 1024; | |
5099 | if (min_pages < SWAP_CLUSTER_MAX) | |
5100 | min_pages = SWAP_CLUSTER_MAX; | |
5101 | if (min_pages > 128) | |
5102 | min_pages = 128; | |
41858966 | 5103 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 5104 | } else { |
669ed175 NP |
5105 | /* |
5106 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
5107 | * proportionate to the zone's size. |
5108 | */ | |
41858966 | 5109 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
5110 | } |
5111 | ||
41858966 MG |
5112 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5113 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
49f223a9 MS |
5114 | |
5115 | zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); | |
5116 | zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); | |
5117 | zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); | |
5118 | ||
56fd56b8 | 5119 | setup_zone_migrate_reserve(zone); |
1125b4e3 | 5120 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 5121 | } |
cb45b0e9 HA |
5122 | |
5123 | /* update totalreserve_pages */ | |
5124 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5125 | } |
5126 | ||
cfd3da1e MG |
5127 | /** |
5128 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
5129 | * or when memory is hot-{added|removed} | |
5130 | * | |
5131 | * Ensures that the watermark[min,low,high] values for each zone are set | |
5132 | * correctly with respect to min_free_kbytes. | |
5133 | */ | |
5134 | void setup_per_zone_wmarks(void) | |
5135 | { | |
5136 | mutex_lock(&zonelists_mutex); | |
5137 | __setup_per_zone_wmarks(); | |
5138 | mutex_unlock(&zonelists_mutex); | |
5139 | } | |
5140 | ||
55a4462a | 5141 | /* |
556adecb RR |
5142 | * The inactive anon list should be small enough that the VM never has to |
5143 | * do too much work, but large enough that each inactive page has a chance | |
5144 | * to be referenced again before it is swapped out. | |
5145 | * | |
5146 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
5147 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
5148 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
5149 | * the anonymous pages are kept on the inactive list. | |
5150 | * | |
5151 | * total target max | |
5152 | * memory ratio inactive anon | |
5153 | * ------------------------------------- | |
5154 | * 10MB 1 5MB | |
5155 | * 100MB 1 50MB | |
5156 | * 1GB 3 250MB | |
5157 | * 10GB 10 0.9GB | |
5158 | * 100GB 31 3GB | |
5159 | * 1TB 101 10GB | |
5160 | * 10TB 320 32GB | |
5161 | */ | |
1b79acc9 | 5162 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 5163 | { |
96cb4df5 | 5164 | unsigned int gb, ratio; |
556adecb | 5165 | |
96cb4df5 MK |
5166 | /* Zone size in gigabytes */ |
5167 | gb = zone->present_pages >> (30 - PAGE_SHIFT); | |
5168 | if (gb) | |
556adecb | 5169 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
5170 | else |
5171 | ratio = 1; | |
556adecb | 5172 | |
96cb4df5 MK |
5173 | zone->inactive_ratio = ratio; |
5174 | } | |
556adecb | 5175 | |
839a4fcc | 5176 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
5177 | { |
5178 | struct zone *zone; | |
5179 | ||
5180 | for_each_zone(zone) | |
5181 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
5182 | } |
5183 | ||
1da177e4 LT |
5184 | /* |
5185 | * Initialise min_free_kbytes. | |
5186 | * | |
5187 | * For small machines we want it small (128k min). For large machines | |
5188 | * we want it large (64MB max). But it is not linear, because network | |
5189 | * bandwidth does not increase linearly with machine size. We use | |
5190 | * | |
5191 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
5192 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
5193 | * | |
5194 | * which yields | |
5195 | * | |
5196 | * 16MB: 512k | |
5197 | * 32MB: 724k | |
5198 | * 64MB: 1024k | |
5199 | * 128MB: 1448k | |
5200 | * 256MB: 2048k | |
5201 | * 512MB: 2896k | |
5202 | * 1024MB: 4096k | |
5203 | * 2048MB: 5792k | |
5204 | * 4096MB: 8192k | |
5205 | * 8192MB: 11584k | |
5206 | * 16384MB: 16384k | |
5207 | */ | |
1b79acc9 | 5208 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
5209 | { |
5210 | unsigned long lowmem_kbytes; | |
5211 | ||
5212 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5213 | ||
5214 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
5215 | if (min_free_kbytes < 128) | |
5216 | min_free_kbytes = 128; | |
5217 | if (min_free_kbytes > 65536) | |
5218 | min_free_kbytes = 65536; | |
bc75d33f | 5219 | setup_per_zone_wmarks(); |
a6cccdc3 | 5220 | refresh_zone_stat_thresholds(); |
1da177e4 | 5221 | setup_per_zone_lowmem_reserve(); |
556adecb | 5222 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
5223 | return 0; |
5224 | } | |
bc75d33f | 5225 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
5226 | |
5227 | /* | |
5228 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
5229 | * that we can call two helper functions whenever min_free_kbytes | |
5230 | * changes. | |
5231 | */ | |
5232 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5233 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5234 | { |
8d65af78 | 5235 | proc_dointvec(table, write, buffer, length, ppos); |
3b1d92c5 | 5236 | if (write) |
bc75d33f | 5237 | setup_per_zone_wmarks(); |
1da177e4 LT |
5238 | return 0; |
5239 | } | |
5240 | ||
9614634f CL |
5241 | #ifdef CONFIG_NUMA |
5242 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5243 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
5244 | { |
5245 | struct zone *zone; | |
5246 | int rc; | |
5247 | ||
8d65af78 | 5248 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
5249 | if (rc) |
5250 | return rc; | |
5251 | ||
5252 | for_each_zone(zone) | |
8417bba4 | 5253 | zone->min_unmapped_pages = (zone->present_pages * |
9614634f CL |
5254 | sysctl_min_unmapped_ratio) / 100; |
5255 | return 0; | |
5256 | } | |
0ff38490 CL |
5257 | |
5258 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5259 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
5260 | { |
5261 | struct zone *zone; | |
5262 | int rc; | |
5263 | ||
8d65af78 | 5264 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
5265 | if (rc) |
5266 | return rc; | |
5267 | ||
5268 | for_each_zone(zone) | |
5269 | zone->min_slab_pages = (zone->present_pages * | |
5270 | sysctl_min_slab_ratio) / 100; | |
5271 | return 0; | |
5272 | } | |
9614634f CL |
5273 | #endif |
5274 | ||
1da177e4 LT |
5275 | /* |
5276 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
5277 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
5278 | * whenever sysctl_lowmem_reserve_ratio changes. | |
5279 | * | |
5280 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 5281 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
5282 | * if in function of the boot time zone sizes. |
5283 | */ | |
5284 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5285 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5286 | { |
8d65af78 | 5287 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
5288 | setup_per_zone_lowmem_reserve(); |
5289 | return 0; | |
5290 | } | |
5291 | ||
8ad4b1fb RS |
5292 | /* |
5293 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
5294 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist | |
5295 | * can have before it gets flushed back to buddy allocator. | |
5296 | */ | |
5297 | ||
5298 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5299 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
5300 | { |
5301 | struct zone *zone; | |
5302 | unsigned int cpu; | |
5303 | int ret; | |
5304 | ||
8d65af78 | 5305 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
93278814 | 5306 | if (!write || (ret < 0)) |
8ad4b1fb | 5307 | return ret; |
364df0eb | 5308 | for_each_populated_zone(zone) { |
99dcc3e5 | 5309 | for_each_possible_cpu(cpu) { |
8ad4b1fb RS |
5310 | unsigned long high; |
5311 | high = zone->present_pages / percpu_pagelist_fraction; | |
99dcc3e5 CL |
5312 | setup_pagelist_highmark( |
5313 | per_cpu_ptr(zone->pageset, cpu), high); | |
8ad4b1fb RS |
5314 | } |
5315 | } | |
5316 | return 0; | |
5317 | } | |
5318 | ||
f034b5d4 | 5319 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 LT |
5320 | |
5321 | #ifdef CONFIG_NUMA | |
5322 | static int __init set_hashdist(char *str) | |
5323 | { | |
5324 | if (!str) | |
5325 | return 0; | |
5326 | hashdist = simple_strtoul(str, &str, 0); | |
5327 | return 1; | |
5328 | } | |
5329 | __setup("hashdist=", set_hashdist); | |
5330 | #endif | |
5331 | ||
5332 | /* | |
5333 | * allocate a large system hash table from bootmem | |
5334 | * - it is assumed that the hash table must contain an exact power-of-2 | |
5335 | * quantity of entries | |
5336 | * - limit is the number of hash buckets, not the total allocation size | |
5337 | */ | |
5338 | void *__init alloc_large_system_hash(const char *tablename, | |
5339 | unsigned long bucketsize, | |
5340 | unsigned long numentries, | |
5341 | int scale, | |
5342 | int flags, | |
5343 | unsigned int *_hash_shift, | |
5344 | unsigned int *_hash_mask, | |
31fe62b9 TB |
5345 | unsigned long low_limit, |
5346 | unsigned long high_limit) | |
1da177e4 | 5347 | { |
31fe62b9 | 5348 | unsigned long long max = high_limit; |
1da177e4 LT |
5349 | unsigned long log2qty, size; |
5350 | void *table = NULL; | |
5351 | ||
5352 | /* allow the kernel cmdline to have a say */ | |
5353 | if (!numentries) { | |
5354 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 5355 | numentries = nr_kernel_pages; |
1da177e4 LT |
5356 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
5357 | numentries >>= 20 - PAGE_SHIFT; | |
5358 | numentries <<= 20 - PAGE_SHIFT; | |
5359 | ||
5360 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
5361 | if (scale > PAGE_SHIFT) | |
5362 | numentries >>= (scale - PAGE_SHIFT); | |
5363 | else | |
5364 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
5365 | |
5366 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
5367 | if (unlikely(flags & HASH_SMALL)) { |
5368 | /* Makes no sense without HASH_EARLY */ | |
5369 | WARN_ON(!(flags & HASH_EARLY)); | |
5370 | if (!(numentries >> *_hash_shift)) { | |
5371 | numentries = 1UL << *_hash_shift; | |
5372 | BUG_ON(!numentries); | |
5373 | } | |
5374 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 5375 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 5376 | } |
6e692ed3 | 5377 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
5378 | |
5379 | /* limit allocation size to 1/16 total memory by default */ | |
5380 | if (max == 0) { | |
5381 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
5382 | do_div(max, bucketsize); | |
5383 | } | |
074b8517 | 5384 | max = min(max, 0x80000000ULL); |
1da177e4 | 5385 | |
31fe62b9 TB |
5386 | if (numentries < low_limit) |
5387 | numentries = low_limit; | |
1da177e4 LT |
5388 | if (numentries > max) |
5389 | numentries = max; | |
5390 | ||
f0d1b0b3 | 5391 | log2qty = ilog2(numentries); |
1da177e4 LT |
5392 | |
5393 | do { | |
5394 | size = bucketsize << log2qty; | |
5395 | if (flags & HASH_EARLY) | |
74768ed8 | 5396 | table = alloc_bootmem_nopanic(size); |
1da177e4 LT |
5397 | else if (hashdist) |
5398 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
5399 | else { | |
1037b83b ED |
5400 | /* |
5401 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
5402 | * some pages at the end of hash table which |
5403 | * alloc_pages_exact() automatically does | |
1037b83b | 5404 | */ |
264ef8a9 | 5405 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 5406 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
5407 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
5408 | } | |
1da177e4 LT |
5409 | } |
5410 | } while (!table && size > PAGE_SIZE && --log2qty); | |
5411 | ||
5412 | if (!table) | |
5413 | panic("Failed to allocate %s hash table\n", tablename); | |
5414 | ||
f241e660 | 5415 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 5416 | tablename, |
f241e660 | 5417 | (1UL << log2qty), |
f0d1b0b3 | 5418 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
5419 | size); |
5420 | ||
5421 | if (_hash_shift) | |
5422 | *_hash_shift = log2qty; | |
5423 | if (_hash_mask) | |
5424 | *_hash_mask = (1 << log2qty) - 1; | |
5425 | ||
5426 | return table; | |
5427 | } | |
a117e66e | 5428 | |
835c134e MG |
5429 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
5430 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
5431 | unsigned long pfn) | |
5432 | { | |
5433 | #ifdef CONFIG_SPARSEMEM | |
5434 | return __pfn_to_section(pfn)->pageblock_flags; | |
5435 | #else | |
5436 | return zone->pageblock_flags; | |
5437 | #endif /* CONFIG_SPARSEMEM */ | |
5438 | } | |
5439 | ||
5440 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
5441 | { | |
5442 | #ifdef CONFIG_SPARSEMEM | |
5443 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 5444 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
5445 | #else |
5446 | pfn = pfn - zone->zone_start_pfn; | |
d9c23400 | 5447 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
5448 | #endif /* CONFIG_SPARSEMEM */ |
5449 | } | |
5450 | ||
5451 | /** | |
d9c23400 | 5452 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e MG |
5453 | * @page: The page within the block of interest |
5454 | * @start_bitidx: The first bit of interest to retrieve | |
5455 | * @end_bitidx: The last bit of interest | |
5456 | * returns pageblock_bits flags | |
5457 | */ | |
5458 | unsigned long get_pageblock_flags_group(struct page *page, | |
5459 | int start_bitidx, int end_bitidx) | |
5460 | { | |
5461 | struct zone *zone; | |
5462 | unsigned long *bitmap; | |
5463 | unsigned long pfn, bitidx; | |
5464 | unsigned long flags = 0; | |
5465 | unsigned long value = 1; | |
5466 | ||
5467 | zone = page_zone(page); | |
5468 | pfn = page_to_pfn(page); | |
5469 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5470 | bitidx = pfn_to_bitidx(zone, pfn); | |
5471 | ||
5472 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5473 | if (test_bit(bitidx + start_bitidx, bitmap)) | |
5474 | flags |= value; | |
6220ec78 | 5475 | |
835c134e MG |
5476 | return flags; |
5477 | } | |
5478 | ||
5479 | /** | |
d9c23400 | 5480 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e MG |
5481 | * @page: The page within the block of interest |
5482 | * @start_bitidx: The first bit of interest | |
5483 | * @end_bitidx: The last bit of interest | |
5484 | * @flags: The flags to set | |
5485 | */ | |
5486 | void set_pageblock_flags_group(struct page *page, unsigned long flags, | |
5487 | int start_bitidx, int end_bitidx) | |
5488 | { | |
5489 | struct zone *zone; | |
5490 | unsigned long *bitmap; | |
5491 | unsigned long pfn, bitidx; | |
5492 | unsigned long value = 1; | |
5493 | ||
5494 | zone = page_zone(page); | |
5495 | pfn = page_to_pfn(page); | |
5496 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5497 | bitidx = pfn_to_bitidx(zone, pfn); | |
86051ca5 KH |
5498 | VM_BUG_ON(pfn < zone->zone_start_pfn); |
5499 | VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); | |
835c134e MG |
5500 | |
5501 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5502 | if (flags & value) | |
5503 | __set_bit(bitidx + start_bitidx, bitmap); | |
5504 | else | |
5505 | __clear_bit(bitidx + start_bitidx, bitmap); | |
5506 | } | |
a5d76b54 KH |
5507 | |
5508 | /* | |
80934513 MK |
5509 | * This function checks whether pageblock includes unmovable pages or not. |
5510 | * If @count is not zero, it is okay to include less @count unmovable pages | |
5511 | * | |
5512 | * PageLRU check wihtout isolation or lru_lock could race so that | |
5513 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't | |
5514 | * expect this function should be exact. | |
a5d76b54 | 5515 | */ |
ee6f509c | 5516 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count) |
49ac8255 KH |
5517 | { |
5518 | unsigned long pfn, iter, found; | |
47118af0 MN |
5519 | int mt; |
5520 | ||
49ac8255 KH |
5521 | /* |
5522 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 5523 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
5524 | */ |
5525 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 5526 | return false; |
47118af0 MN |
5527 | mt = get_pageblock_migratetype(page); |
5528 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 5529 | return false; |
49ac8255 KH |
5530 | |
5531 | pfn = page_to_pfn(page); | |
5532 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
5533 | unsigned long check = pfn + iter; | |
5534 | ||
29723fcc | 5535 | if (!pfn_valid_within(check)) |
49ac8255 | 5536 | continue; |
29723fcc | 5537 | |
49ac8255 | 5538 | page = pfn_to_page(check); |
97d255c8 MK |
5539 | /* |
5540 | * We can't use page_count without pin a page | |
5541 | * because another CPU can free compound page. | |
5542 | * This check already skips compound tails of THP | |
5543 | * because their page->_count is zero at all time. | |
5544 | */ | |
5545 | if (!atomic_read(&page->_count)) { | |
49ac8255 KH |
5546 | if (PageBuddy(page)) |
5547 | iter += (1 << page_order(page)) - 1; | |
5548 | continue; | |
5549 | } | |
97d255c8 | 5550 | |
49ac8255 KH |
5551 | if (!PageLRU(page)) |
5552 | found++; | |
5553 | /* | |
5554 | * If there are RECLAIMABLE pages, we need to check it. | |
5555 | * But now, memory offline itself doesn't call shrink_slab() | |
5556 | * and it still to be fixed. | |
5557 | */ | |
5558 | /* | |
5559 | * If the page is not RAM, page_count()should be 0. | |
5560 | * we don't need more check. This is an _used_ not-movable page. | |
5561 | * | |
5562 | * The problematic thing here is PG_reserved pages. PG_reserved | |
5563 | * is set to both of a memory hole page and a _used_ kernel | |
5564 | * page at boot. | |
5565 | */ | |
5566 | if (found > count) | |
80934513 | 5567 | return true; |
49ac8255 | 5568 | } |
80934513 | 5569 | return false; |
49ac8255 KH |
5570 | } |
5571 | ||
5572 | bool is_pageblock_removable_nolock(struct page *page) | |
5573 | { | |
656a0706 MH |
5574 | struct zone *zone; |
5575 | unsigned long pfn; | |
687875fb MH |
5576 | |
5577 | /* | |
5578 | * We have to be careful here because we are iterating over memory | |
5579 | * sections which are not zone aware so we might end up outside of | |
5580 | * the zone but still within the section. | |
656a0706 MH |
5581 | * We have to take care about the node as well. If the node is offline |
5582 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 5583 | */ |
656a0706 MH |
5584 | if (!node_online(page_to_nid(page))) |
5585 | return false; | |
5586 | ||
5587 | zone = page_zone(page); | |
5588 | pfn = page_to_pfn(page); | |
5589 | if (zone->zone_start_pfn > pfn || | |
687875fb MH |
5590 | zone->zone_start_pfn + zone->spanned_pages <= pfn) |
5591 | return false; | |
5592 | ||
ee6f509c | 5593 | return !has_unmovable_pages(zone, page, 0); |
a5d76b54 | 5594 | } |
0c0e6195 | 5595 | |
041d3a8c MN |
5596 | #ifdef CONFIG_CMA |
5597 | ||
5598 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
5599 | { | |
5600 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
5601 | pageblock_nr_pages) - 1); | |
5602 | } | |
5603 | ||
5604 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
5605 | { | |
5606 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
5607 | pageblock_nr_pages)); | |
5608 | } | |
5609 | ||
5610 | static struct page * | |
5611 | __alloc_contig_migrate_alloc(struct page *page, unsigned long private, | |
5612 | int **resultp) | |
5613 | { | |
6a6dccba RV |
5614 | gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; |
5615 | ||
5616 | if (PageHighMem(page)) | |
5617 | gfp_mask |= __GFP_HIGHMEM; | |
5618 | ||
5619 | return alloc_page(gfp_mask); | |
041d3a8c MN |
5620 | } |
5621 | ||
5622 | /* [start, end) must belong to a single zone. */ | |
5623 | static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) | |
5624 | { | |
5625 | /* This function is based on compact_zone() from compaction.c. */ | |
5626 | ||
5627 | unsigned long pfn = start; | |
5628 | unsigned int tries = 0; | |
5629 | int ret = 0; | |
5630 | ||
5631 | struct compact_control cc = { | |
5632 | .nr_migratepages = 0, | |
5633 | .order = -1, | |
5634 | .zone = page_zone(pfn_to_page(start)), | |
68e3e926 | 5635 | .sync = true, |
041d3a8c MN |
5636 | }; |
5637 | INIT_LIST_HEAD(&cc.migratepages); | |
5638 | ||
5639 | migrate_prep_local(); | |
5640 | ||
5641 | while (pfn < end || !list_empty(&cc.migratepages)) { | |
5642 | if (fatal_signal_pending(current)) { | |
5643 | ret = -EINTR; | |
5644 | break; | |
5645 | } | |
5646 | ||
5647 | if (list_empty(&cc.migratepages)) { | |
5648 | cc.nr_migratepages = 0; | |
5649 | pfn = isolate_migratepages_range(cc.zone, &cc, | |
5650 | pfn, end); | |
5651 | if (!pfn) { | |
5652 | ret = -EINTR; | |
5653 | break; | |
5654 | } | |
5655 | tries = 0; | |
5656 | } else if (++tries == 5) { | |
5657 | ret = ret < 0 ? ret : -EBUSY; | |
5658 | break; | |
5659 | } | |
5660 | ||
5661 | ret = migrate_pages(&cc.migratepages, | |
5662 | __alloc_contig_migrate_alloc, | |
58f42fd5 | 5663 | 0, false, MIGRATE_SYNC); |
041d3a8c MN |
5664 | } |
5665 | ||
5666 | putback_lru_pages(&cc.migratepages); | |
5667 | return ret > 0 ? 0 : ret; | |
5668 | } | |
5669 | ||
49f223a9 MS |
5670 | /* |
5671 | * Update zone's cma pages counter used for watermark level calculation. | |
5672 | */ | |
5673 | static inline void __update_cma_watermarks(struct zone *zone, int count) | |
5674 | { | |
5675 | unsigned long flags; | |
5676 | spin_lock_irqsave(&zone->lock, flags); | |
5677 | zone->min_cma_pages += count; | |
5678 | spin_unlock_irqrestore(&zone->lock, flags); | |
5679 | setup_per_zone_wmarks(); | |
5680 | } | |
5681 | ||
5682 | /* | |
5683 | * Trigger memory pressure bump to reclaim some pages in order to be able to | |
5684 | * allocate 'count' pages in single page units. Does similar work as | |
5685 | *__alloc_pages_slowpath() function. | |
5686 | */ | |
5687 | static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) | |
5688 | { | |
5689 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5690 | struct zonelist *zonelist = node_zonelist(0, gfp_mask); | |
5691 | int did_some_progress = 0; | |
5692 | int order = 1; | |
5693 | ||
5694 | /* | |
5695 | * Increase level of watermarks to force kswapd do his job | |
5696 | * to stabilise at new watermark level. | |
5697 | */ | |
5698 | __update_cma_watermarks(zone, count); | |
5699 | ||
5700 | /* Obey watermarks as if the page was being allocated */ | |
5701 | while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { | |
5702 | wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); | |
5703 | ||
5704 | did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, | |
5705 | NULL); | |
5706 | if (!did_some_progress) { | |
5707 | /* Exhausted what can be done so it's blamo time */ | |
5708 | out_of_memory(zonelist, gfp_mask, order, NULL, false); | |
5709 | } | |
5710 | } | |
5711 | ||
5712 | /* Restore original watermark levels. */ | |
5713 | __update_cma_watermarks(zone, -count); | |
5714 | ||
5715 | return count; | |
5716 | } | |
5717 | ||
041d3a8c MN |
5718 | /** |
5719 | * alloc_contig_range() -- tries to allocate given range of pages | |
5720 | * @start: start PFN to allocate | |
5721 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
5722 | * @migratetype: migratetype of the underlaying pageblocks (either |
5723 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
5724 | * in range must have the same migratetype and it must | |
5725 | * be either of the two. | |
041d3a8c MN |
5726 | * |
5727 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
5728 | * aligned, however it's the caller's responsibility to guarantee that | |
5729 | * we are the only thread that changes migrate type of pageblocks the | |
5730 | * pages fall in. | |
5731 | * | |
5732 | * The PFN range must belong to a single zone. | |
5733 | * | |
5734 | * Returns zero on success or negative error code. On success all | |
5735 | * pages which PFN is in [start, end) are allocated for the caller and | |
5736 | * need to be freed with free_contig_range(). | |
5737 | */ | |
0815f3d8 MN |
5738 | int alloc_contig_range(unsigned long start, unsigned long end, |
5739 | unsigned migratetype) | |
041d3a8c MN |
5740 | { |
5741 | struct zone *zone = page_zone(pfn_to_page(start)); | |
5742 | unsigned long outer_start, outer_end; | |
5743 | int ret = 0, order; | |
5744 | ||
5745 | /* | |
5746 | * What we do here is we mark all pageblocks in range as | |
5747 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
5748 | * have different sizes, and due to the way page allocator | |
5749 | * work, we align the range to biggest of the two pages so | |
5750 | * that page allocator won't try to merge buddies from | |
5751 | * different pageblocks and change MIGRATE_ISOLATE to some | |
5752 | * other migration type. | |
5753 | * | |
5754 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
5755 | * migrate the pages from an unaligned range (ie. pages that | |
5756 | * we are interested in). This will put all the pages in | |
5757 | * range back to page allocator as MIGRATE_ISOLATE. | |
5758 | * | |
5759 | * When this is done, we take the pages in range from page | |
5760 | * allocator removing them from the buddy system. This way | |
5761 | * page allocator will never consider using them. | |
5762 | * | |
5763 | * This lets us mark the pageblocks back as | |
5764 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
5765 | * aligned range but not in the unaligned, original range are | |
5766 | * put back to page allocator so that buddy can use them. | |
5767 | */ | |
5768 | ||
5769 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 5770 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
5771 | if (ret) |
5772 | goto done; | |
5773 | ||
5774 | ret = __alloc_contig_migrate_range(start, end); | |
5775 | if (ret) | |
5776 | goto done; | |
5777 | ||
5778 | /* | |
5779 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
5780 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
5781 | * more, all pages in [start, end) are free in page allocator. | |
5782 | * What we are going to do is to allocate all pages from | |
5783 | * [start, end) (that is remove them from page allocator). | |
5784 | * | |
5785 | * The only problem is that pages at the beginning and at the | |
5786 | * end of interesting range may be not aligned with pages that | |
5787 | * page allocator holds, ie. they can be part of higher order | |
5788 | * pages. Because of this, we reserve the bigger range and | |
5789 | * once this is done free the pages we are not interested in. | |
5790 | * | |
5791 | * We don't have to hold zone->lock here because the pages are | |
5792 | * isolated thus they won't get removed from buddy. | |
5793 | */ | |
5794 | ||
5795 | lru_add_drain_all(); | |
5796 | drain_all_pages(); | |
5797 | ||
5798 | order = 0; | |
5799 | outer_start = start; | |
5800 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
5801 | if (++order >= MAX_ORDER) { | |
5802 | ret = -EBUSY; | |
5803 | goto done; | |
5804 | } | |
5805 | outer_start &= ~0UL << order; | |
5806 | } | |
5807 | ||
5808 | /* Make sure the range is really isolated. */ | |
5809 | if (test_pages_isolated(outer_start, end)) { | |
5810 | pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", | |
5811 | outer_start, end); | |
5812 | ret = -EBUSY; | |
5813 | goto done; | |
5814 | } | |
5815 | ||
49f223a9 MS |
5816 | /* |
5817 | * Reclaim enough pages to make sure that contiguous allocation | |
5818 | * will not starve the system. | |
5819 | */ | |
5820 | __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); | |
5821 | ||
5822 | /* Grab isolated pages from freelists. */ | |
041d3a8c MN |
5823 | outer_end = isolate_freepages_range(outer_start, end); |
5824 | if (!outer_end) { | |
5825 | ret = -EBUSY; | |
5826 | goto done; | |
5827 | } | |
5828 | ||
5829 | /* Free head and tail (if any) */ | |
5830 | if (start != outer_start) | |
5831 | free_contig_range(outer_start, start - outer_start); | |
5832 | if (end != outer_end) | |
5833 | free_contig_range(end, outer_end - end); | |
5834 | ||
5835 | done: | |
5836 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 5837 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
5838 | return ret; |
5839 | } | |
5840 | ||
5841 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
5842 | { | |
5843 | for (; nr_pages--; ++pfn) | |
5844 | __free_page(pfn_to_page(pfn)); | |
5845 | } | |
5846 | #endif | |
5847 | ||
4ed7e022 JL |
5848 | #ifdef CONFIG_MEMORY_HOTPLUG |
5849 | static int __meminit __zone_pcp_update(void *data) | |
5850 | { | |
5851 | struct zone *zone = data; | |
5852 | int cpu; | |
5853 | unsigned long batch = zone_batchsize(zone), flags; | |
5854 | ||
5855 | for_each_possible_cpu(cpu) { | |
5856 | struct per_cpu_pageset *pset; | |
5857 | struct per_cpu_pages *pcp; | |
5858 | ||
5859 | pset = per_cpu_ptr(zone->pageset, cpu); | |
5860 | pcp = &pset->pcp; | |
5861 | ||
5862 | local_irq_save(flags); | |
5863 | if (pcp->count > 0) | |
5864 | free_pcppages_bulk(zone, pcp->count, pcp); | |
5865 | setup_pageset(pset, batch); | |
5866 | local_irq_restore(flags); | |
5867 | } | |
5868 | return 0; | |
5869 | } | |
5870 | ||
5871 | void __meminit zone_pcp_update(struct zone *zone) | |
5872 | { | |
5873 | stop_machine(__zone_pcp_update, zone, NULL); | |
5874 | } | |
5875 | #endif | |
5876 | ||
0c0e6195 | 5877 | #ifdef CONFIG_MEMORY_HOTREMOVE |
340175b7 JL |
5878 | void zone_pcp_reset(struct zone *zone) |
5879 | { | |
5880 | unsigned long flags; | |
5881 | ||
5882 | /* avoid races with drain_pages() */ | |
5883 | local_irq_save(flags); | |
5884 | if (zone->pageset != &boot_pageset) { | |
5885 | free_percpu(zone->pageset); | |
5886 | zone->pageset = &boot_pageset; | |
5887 | } | |
5888 | local_irq_restore(flags); | |
5889 | } | |
5890 | ||
0c0e6195 KH |
5891 | /* |
5892 | * All pages in the range must be isolated before calling this. | |
5893 | */ | |
5894 | void | |
5895 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
5896 | { | |
5897 | struct page *page; | |
5898 | struct zone *zone; | |
5899 | int order, i; | |
5900 | unsigned long pfn; | |
5901 | unsigned long flags; | |
5902 | /* find the first valid pfn */ | |
5903 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
5904 | if (pfn_valid(pfn)) | |
5905 | break; | |
5906 | if (pfn == end_pfn) | |
5907 | return; | |
5908 | zone = page_zone(pfn_to_page(pfn)); | |
5909 | spin_lock_irqsave(&zone->lock, flags); | |
5910 | pfn = start_pfn; | |
5911 | while (pfn < end_pfn) { | |
5912 | if (!pfn_valid(pfn)) { | |
5913 | pfn++; | |
5914 | continue; | |
5915 | } | |
5916 | page = pfn_to_page(pfn); | |
5917 | BUG_ON(page_count(page)); | |
5918 | BUG_ON(!PageBuddy(page)); | |
5919 | order = page_order(page); | |
5920 | #ifdef CONFIG_DEBUG_VM | |
5921 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
5922 | pfn, 1 << order, end_pfn); | |
5923 | #endif | |
5924 | list_del(&page->lru); | |
5925 | rmv_page_order(page); | |
5926 | zone->free_area[order].nr_free--; | |
5927 | __mod_zone_page_state(zone, NR_FREE_PAGES, | |
5928 | - (1UL << order)); | |
5929 | for (i = 0; i < (1 << order); i++) | |
5930 | SetPageReserved((page+i)); | |
5931 | pfn += (1 << order); | |
5932 | } | |
5933 | spin_unlock_irqrestore(&zone->lock, flags); | |
5934 | } | |
5935 | #endif | |
8d22ba1b WF |
5936 | |
5937 | #ifdef CONFIG_MEMORY_FAILURE | |
5938 | bool is_free_buddy_page(struct page *page) | |
5939 | { | |
5940 | struct zone *zone = page_zone(page); | |
5941 | unsigned long pfn = page_to_pfn(page); | |
5942 | unsigned long flags; | |
5943 | int order; | |
5944 | ||
5945 | spin_lock_irqsave(&zone->lock, flags); | |
5946 | for (order = 0; order < MAX_ORDER; order++) { | |
5947 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
5948 | ||
5949 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
5950 | break; | |
5951 | } | |
5952 | spin_unlock_irqrestore(&zone->lock, flags); | |
5953 | ||
5954 | return order < MAX_ORDER; | |
5955 | } | |
5956 | #endif | |
718a3821 | 5957 | |
51300cef | 5958 | static const struct trace_print_flags pageflag_names[] = { |
718a3821 WF |
5959 | {1UL << PG_locked, "locked" }, |
5960 | {1UL << PG_error, "error" }, | |
5961 | {1UL << PG_referenced, "referenced" }, | |
5962 | {1UL << PG_uptodate, "uptodate" }, | |
5963 | {1UL << PG_dirty, "dirty" }, | |
5964 | {1UL << PG_lru, "lru" }, | |
5965 | {1UL << PG_active, "active" }, | |
5966 | {1UL << PG_slab, "slab" }, | |
5967 | {1UL << PG_owner_priv_1, "owner_priv_1" }, | |
5968 | {1UL << PG_arch_1, "arch_1" }, | |
5969 | {1UL << PG_reserved, "reserved" }, | |
5970 | {1UL << PG_private, "private" }, | |
5971 | {1UL << PG_private_2, "private_2" }, | |
5972 | {1UL << PG_writeback, "writeback" }, | |
5973 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | |
5974 | {1UL << PG_head, "head" }, | |
5975 | {1UL << PG_tail, "tail" }, | |
5976 | #else | |
5977 | {1UL << PG_compound, "compound" }, | |
5978 | #endif | |
5979 | {1UL << PG_swapcache, "swapcache" }, | |
5980 | {1UL << PG_mappedtodisk, "mappedtodisk" }, | |
5981 | {1UL << PG_reclaim, "reclaim" }, | |
718a3821 WF |
5982 | {1UL << PG_swapbacked, "swapbacked" }, |
5983 | {1UL << PG_unevictable, "unevictable" }, | |
5984 | #ifdef CONFIG_MMU | |
5985 | {1UL << PG_mlocked, "mlocked" }, | |
5986 | #endif | |
5987 | #ifdef CONFIG_ARCH_USES_PG_UNCACHED | |
5988 | {1UL << PG_uncached, "uncached" }, | |
5989 | #endif | |
5990 | #ifdef CONFIG_MEMORY_FAILURE | |
5991 | {1UL << PG_hwpoison, "hwpoison" }, | |
be9cd873 GS |
5992 | #endif |
5993 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5994 | {1UL << PG_compound_lock, "compound_lock" }, | |
718a3821 | 5995 | #endif |
718a3821 WF |
5996 | }; |
5997 | ||
5998 | static void dump_page_flags(unsigned long flags) | |
5999 | { | |
6000 | const char *delim = ""; | |
6001 | unsigned long mask; | |
6002 | int i; | |
6003 | ||
51300cef | 6004 | BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); |
acc50c11 | 6005 | |
718a3821 WF |
6006 | printk(KERN_ALERT "page flags: %#lx(", flags); |
6007 | ||
6008 | /* remove zone id */ | |
6009 | flags &= (1UL << NR_PAGEFLAGS) - 1; | |
6010 | ||
51300cef | 6011 | for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { |
718a3821 WF |
6012 | |
6013 | mask = pageflag_names[i].mask; | |
6014 | if ((flags & mask) != mask) | |
6015 | continue; | |
6016 | ||
6017 | flags &= ~mask; | |
6018 | printk("%s%s", delim, pageflag_names[i].name); | |
6019 | delim = "|"; | |
6020 | } | |
6021 | ||
6022 | /* check for left over flags */ | |
6023 | if (flags) | |
6024 | printk("%s%#lx", delim, flags); | |
6025 | ||
6026 | printk(")\n"); | |
6027 | } | |
6028 | ||
6029 | void dump_page(struct page *page) | |
6030 | { | |
6031 | printk(KERN_ALERT | |
6032 | "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", | |
4e9f64c4 | 6033 | page, atomic_read(&page->_count), page_mapcount(page), |
718a3821 WF |
6034 | page->mapping, page->index); |
6035 | dump_page_flags(page->flags); | |
f212ad7c | 6036 | mem_cgroup_print_bad_page(page); |
718a3821 | 6037 | } |