]> Git Repo - linux.git/blame - mm/slub.c
gfs2: check context in gfs2_glock_put
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
49 * 2. node->list_lock (Spinlock)
50 * 3. kmem_cache->cpu_slab->lock (Local lock)
51 * 4. slab_lock(page) (Only on some arches or for debugging)
52 * 5. object_map_lock (Only for debugging)
81819f0f 53 *
18004c5d 54 * slab_mutex
881db7fb 55 *
18004c5d 56 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 57 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
58 * Also synchronizes memory hotplug callbacks.
59 *
60 * slab_lock
61 *
62 * The slab_lock is a wrapper around the page lock, thus it is a bit
63 * spinlock.
881db7fb
CL
64 *
65 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 66 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 67 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
68 * B. page->inuse -> Number of objects in use
69 * C. page->objects -> Number of objects in page
70 * D. page->frozen -> frozen state
881db7fb 71 *
bd0e7491
VB
72 * Frozen slabs
73 *
881db7fb 74 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
75 * on any list except per cpu partial list. The processor that froze the
76 * slab is the one who can perform list operations on the page. Other
77 * processors may put objects onto the freelist but the processor that
78 * froze the slab is the only one that can retrieve the objects from the
79 * page's freelist.
81819f0f 80 *
bd0e7491
VB
81 * list_lock
82 *
81819f0f
CL
83 * The list_lock protects the partial and full list on each node and
84 * the partial slab counter. If taken then no new slabs may be added or
85 * removed from the lists nor make the number of partial slabs be modified.
86 * (Note that the total number of slabs is an atomic value that may be
87 * modified without taking the list lock).
88 *
89 * The list_lock is a centralized lock and thus we avoid taking it as
90 * much as possible. As long as SLUB does not have to handle partial
91 * slabs, operations can continue without any centralized lock. F.e.
92 * allocating a long series of objects that fill up slabs does not require
93 * the list lock.
bd0e7491
VB
94 *
95 * cpu_slab->lock local lock
96 *
97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
98 * except the stat counters. This is a percpu structure manipulated only by
99 * the local cpu, so the lock protects against being preempted or interrupted
100 * by an irq. Fast path operations rely on lockless operations instead.
101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102 * prevent the lockless operations), so fastpath operations also need to take
103 * the lock and are no longer lockless.
104 *
105 * lockless fastpaths
106 *
107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108 * are fully lockless when satisfied from the percpu slab (and when
109 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
110 * They also don't disable preemption or migration or irqs. They rely on
111 * the transaction id (tid) field to detect being preempted or moved to
112 * another cpu.
113 *
114 * irq, preemption, migration considerations
115 *
116 * Interrupts are disabled as part of list_lock or local_lock operations, or
117 * around the slab_lock operation, in order to make the slab allocator safe
118 * to use in the context of an irq.
119 *
120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
124 *
125 * SLUB assigns one slab for allocation to each processor.
126 * Allocations only occur from these slabs called cpu slabs.
127 *
672bba3a
CL
128 * Slabs with free elements are kept on a partial list and during regular
129 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 130 * freed then the slab will show up again on the partial lists.
672bba3a
CL
131 * We track full slabs for debugging purposes though because otherwise we
132 * cannot scan all objects.
81819f0f
CL
133 *
134 * Slabs are freed when they become empty. Teardown and setup is
135 * minimal so we rely on the page allocators per cpu caches for
136 * fast frees and allocs.
137 *
aed68148 138 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
139 * This means that the slab is dedicated to a purpose
140 * such as satisfying allocations for a specific
141 * processor. Objects may be freed in the slab while
142 * it is frozen but slab_free will then skip the usual
143 * list operations. It is up to the processor holding
144 * the slab to integrate the slab into the slab lists
145 * when the slab is no longer needed.
146 *
147 * One use of this flag is to mark slabs that are
148 * used for allocations. Then such a slab becomes a cpu
149 * slab. The cpu slab may be equipped with an additional
dfb4f096 150 * freelist that allows lockless access to
894b8788
CL
151 * free objects in addition to the regular freelist
152 * that requires the slab lock.
81819f0f 153 *
aed68148 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 155 * options set. This moves slab handling out of
894b8788 156 * the fast path and disables lockless freelists.
81819f0f
CL
157 */
158
25c00c50
VB
159/*
160 * We could simply use migrate_disable()/enable() but as long as it's a
161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162 */
163#ifndef CONFIG_PREEMPT_RT
164#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
165#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
166#else
167#define slub_get_cpu_ptr(var) \
168({ \
169 migrate_disable(); \
170 this_cpu_ptr(var); \
171})
172#define slub_put_cpu_ptr(var) \
173do { \
174 (void)(var); \
175 migrate_enable(); \
176} while (0)
177#endif
178
ca0cab65
VB
179#ifdef CONFIG_SLUB_DEBUG
180#ifdef CONFIG_SLUB_DEBUG_ON
181DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182#else
183DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184#endif
79270291 185#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 186
59052e89
VB
187static inline bool kmem_cache_debug(struct kmem_cache *s)
188{
189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 190}
5577bd8a 191
117d54df 192void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 193{
59052e89 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
195 p += s->red_left_pad;
196
197 return p;
198}
199
345c905d
JK
200static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201{
202#ifdef CONFIG_SLUB_CPU_PARTIAL
203 return !kmem_cache_debug(s);
204#else
205 return false;
206#endif
207}
208
81819f0f
CL
209/*
210 * Issues still to be resolved:
211 *
81819f0f
CL
212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213 *
81819f0f
CL
214 * - Variable sizing of the per node arrays
215 */
216
b789ef51
CL
217/* Enable to log cmpxchg failures */
218#undef SLUB_DEBUG_CMPXCHG
219
2086d26a 220/*
dc84207d 221 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
223 */
76be8950 224#define MIN_PARTIAL 5
e95eed57 225
2086d26a
CL
226/*
227 * Maximum number of desirable partial slabs.
228 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 229 * sort the partial list by the number of objects in use.
2086d26a
CL
230 */
231#define MAX_PARTIAL 10
232
becfda68 233#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 234 SLAB_POISON | SLAB_STORE_USER)
672bba3a 235
149daaf3
LA
236/*
237 * These debug flags cannot use CMPXCHG because there might be consistency
238 * issues when checking or reading debug information
239 */
240#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 SLAB_TRACE)
242
243
fa5ec8a1 244/*
3de47213
DR
245 * Debugging flags that require metadata to be stored in the slab. These get
246 * disabled when slub_debug=O is used and a cache's min order increases with
247 * metadata.
fa5ec8a1 248 */
3de47213 249#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 250
210b5c06
CG
251#define OO_SHIFT 16
252#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 253#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 254
81819f0f 255/* Internal SLUB flags */
d50112ed 256/* Poison object */
4fd0b46e 257#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 258/* Use cmpxchg_double */
4fd0b46e 259#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 260
02cbc874
CL
261/*
262 * Tracking user of a slab.
263 */
d6543e39 264#define TRACK_ADDRS_COUNT 16
02cbc874 265struct track {
ce71e27c 266 unsigned long addr; /* Called from address */
ae14c63a
LT
267#ifdef CONFIG_STACKTRACE
268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 269#endif
02cbc874
CL
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
273};
274
275enum track_item { TRACK_ALLOC, TRACK_FREE };
276
ab4d5ed5 277#ifdef CONFIG_SYSFS
81819f0f
CL
278static int sysfs_slab_add(struct kmem_cache *);
279static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 280#else
0c710013
CL
281static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 { return 0; }
81819f0f
CL
284#endif
285
64dd6849
FM
286#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287static void debugfs_slab_add(struct kmem_cache *);
288#else
289static inline void debugfs_slab_add(struct kmem_cache *s) { }
290#endif
291
4fdccdfb 292static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
293{
294#ifdef CONFIG_SLUB_STATS
88da03a6
CL
295 /*
296 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 * avoid this_cpu_add()'s irq-disable overhead.
298 */
299 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
300#endif
301}
302
7e1fa93d
VB
303/*
304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306 * differ during memory hotplug/hotremove operations.
307 * Protected by slab_mutex.
308 */
309static nodemask_t slab_nodes;
310
81819f0f
CL
311/********************************************************************
312 * Core slab cache functions
313 *******************************************************************/
314
2482ddec
KC
315/*
316 * Returns freelist pointer (ptr). With hardening, this is obfuscated
317 * with an XOR of the address where the pointer is held and a per-cache
318 * random number.
319 */
320static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 unsigned long ptr_addr)
322{
323#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 324 /*
aa1ef4d7 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
326 * Normally, this doesn't cause any issues, as both set_freepointer()
327 * and get_freepointer() are called with a pointer with the same tag.
328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 * example, when __free_slub() iterates over objects in a cache, it
330 * passes untagged pointers to check_object(). check_object() in turns
331 * calls get_freepointer() with an untagged pointer, which causes the
332 * freepointer to be restored incorrectly.
333 */
334 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
336#else
337 return ptr;
338#endif
339}
340
341/* Returns the freelist pointer recorded at location ptr_addr. */
342static inline void *freelist_dereference(const struct kmem_cache *s,
343 void *ptr_addr)
344{
345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 (unsigned long)ptr_addr);
347}
348
7656c72b
CL
349static inline void *get_freepointer(struct kmem_cache *s, void *object)
350{
aa1ef4d7 351 object = kasan_reset_tag(object);
2482ddec 352 return freelist_dereference(s, object + s->offset);
7656c72b
CL
353}
354
0ad9500e
ED
355static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356{
0882ff91 357 prefetch(object + s->offset);
0ad9500e
ED
358}
359
1393d9a1
CL
360static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361{
2482ddec 362 unsigned long freepointer_addr;
1393d9a1
CL
363 void *p;
364
8e57f8ac 365 if (!debug_pagealloc_enabled_static())
922d566c
JK
366 return get_freepointer(s, object);
367
f70b0049 368 object = kasan_reset_tag(object);
2482ddec 369 freepointer_addr = (unsigned long)object + s->offset;
fe557319 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 371 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
372}
373
7656c72b
CL
374static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375{
2482ddec
KC
376 unsigned long freeptr_addr = (unsigned long)object + s->offset;
377
ce6fa91b
AP
378#ifdef CONFIG_SLAB_FREELIST_HARDENED
379 BUG_ON(object == fp); /* naive detection of double free or corruption */
380#endif
381
aa1ef4d7 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
384}
385
386/* Loop over all objects in a slab */
224a88be 387#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
388 for (__p = fixup_red_left(__s, __addr); \
389 __p < (__addr) + (__objects) * (__s)->size; \
390 __p += (__s)->size)
7656c72b 391
9736d2a9 392static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 393{
9736d2a9 394 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
395}
396
19af27af 397static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 398 unsigned int size)
834f3d11
CL
399{
400 struct kmem_cache_order_objects x = {
9736d2a9 401 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
402 };
403
404 return x;
405}
406
19af27af 407static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 408{
210b5c06 409 return x.x >> OO_SHIFT;
834f3d11
CL
410}
411
19af27af 412static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 413{
210b5c06 414 return x.x & OO_MASK;
834f3d11
CL
415}
416
881db7fb
CL
417/*
418 * Per slab locking using the pagelock
419 */
a2b4ae8b 420static __always_inline void __slab_lock(struct page *page)
881db7fb 421{
48c935ad 422 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
423 bit_spin_lock(PG_locked, &page->flags);
424}
425
a2b4ae8b 426static __always_inline void __slab_unlock(struct page *page)
881db7fb 427{
48c935ad 428 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
429 __bit_spin_unlock(PG_locked, &page->flags);
430}
431
a2b4ae8b
VB
432static __always_inline void slab_lock(struct page *page, unsigned long *flags)
433{
434 if (IS_ENABLED(CONFIG_PREEMPT_RT))
435 local_irq_save(*flags);
436 __slab_lock(page);
437}
438
439static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
440{
441 __slab_unlock(page);
442 if (IS_ENABLED(CONFIG_PREEMPT_RT))
443 local_irq_restore(*flags);
444}
445
446/*
447 * Interrupts must be disabled (for the fallback code to work right), typically
448 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
449 * so we disable interrupts as part of slab_[un]lock().
450 */
1d07171c
CL
451static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
452 void *freelist_old, unsigned long counters_old,
453 void *freelist_new, unsigned long counters_new,
454 const char *n)
455{
a2b4ae8b
VB
456 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
457 lockdep_assert_irqs_disabled();
2565409f
HC
458#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
459 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 460 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 461 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
462 freelist_old, counters_old,
463 freelist_new, counters_new))
6f6528a1 464 return true;
1d07171c
CL
465 } else
466#endif
467 {
a2b4ae8b
VB
468 /* init to 0 to prevent spurious warnings */
469 unsigned long flags = 0;
470
471 slab_lock(page, &flags);
d0e0ac97
CG
472 if (page->freelist == freelist_old &&
473 page->counters == counters_old) {
1d07171c 474 page->freelist = freelist_new;
7d27a04b 475 page->counters = counters_new;
a2b4ae8b 476 slab_unlock(page, &flags);
6f6528a1 477 return true;
1d07171c 478 }
a2b4ae8b 479 slab_unlock(page, &flags);
1d07171c
CL
480 }
481
482 cpu_relax();
483 stat(s, CMPXCHG_DOUBLE_FAIL);
484
485#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 486 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
487#endif
488
6f6528a1 489 return false;
1d07171c
CL
490}
491
b789ef51
CL
492static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
493 void *freelist_old, unsigned long counters_old,
494 void *freelist_new, unsigned long counters_new,
495 const char *n)
496{
2565409f
HC
497#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
498 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 499 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 500 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
501 freelist_old, counters_old,
502 freelist_new, counters_new))
6f6528a1 503 return true;
b789ef51
CL
504 } else
505#endif
506 {
1d07171c
CL
507 unsigned long flags;
508
509 local_irq_save(flags);
a2b4ae8b 510 __slab_lock(page);
d0e0ac97
CG
511 if (page->freelist == freelist_old &&
512 page->counters == counters_old) {
b789ef51 513 page->freelist = freelist_new;
7d27a04b 514 page->counters = counters_new;
a2b4ae8b 515 __slab_unlock(page);
1d07171c 516 local_irq_restore(flags);
6f6528a1 517 return true;
b789ef51 518 }
a2b4ae8b 519 __slab_unlock(page);
1d07171c 520 local_irq_restore(flags);
b789ef51
CL
521 }
522
523 cpu_relax();
524 stat(s, CMPXCHG_DOUBLE_FAIL);
525
526#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 527 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
528#endif
529
6f6528a1 530 return false;
b789ef51
CL
531}
532
41ecc55b 533#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 534static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 535static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 536
b3fd64e1
VB
537static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
538 struct page *page)
539{
540 void *addr = page_address(page);
541 void *p;
542
543 bitmap_zero(obj_map, page->objects);
544
545 for (p = page->freelist; p; p = get_freepointer(s, p))
546 set_bit(__obj_to_index(s, addr, p), obj_map);
547}
548
1f9f78b1
OG
549#if IS_ENABLED(CONFIG_KUNIT)
550static bool slab_add_kunit_errors(void)
551{
552 struct kunit_resource *resource;
553
554 if (likely(!current->kunit_test))
555 return false;
556
557 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
558 if (!resource)
559 return false;
560
561 (*(int *)resource->data)++;
562 kunit_put_resource(resource);
563 return true;
564}
565#else
566static inline bool slab_add_kunit_errors(void) { return false; }
567#endif
568
5f80b13a
CL
569/*
570 * Determine a map of object in use on a page.
571 *
881db7fb 572 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
573 * not vanish from under us.
574 */
90e9f6a6 575static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 576 __acquires(&object_map_lock)
5f80b13a 577{
90e9f6a6
YZ
578 VM_BUG_ON(!irqs_disabled());
579
94ef0304 580 raw_spin_lock(&object_map_lock);
90e9f6a6 581
b3fd64e1 582 __fill_map(object_map, s, page);
90e9f6a6
YZ
583
584 return object_map;
585}
586
81aba9e0 587static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
588{
589 VM_BUG_ON(map != object_map);
94ef0304 590 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
591}
592
870b1fbb 593static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
594{
595 if (s->flags & SLAB_RED_ZONE)
596 return s->size - s->red_left_pad;
597
598 return s->size;
599}
600
601static inline void *restore_red_left(struct kmem_cache *s, void *p)
602{
603 if (s->flags & SLAB_RED_ZONE)
604 p -= s->red_left_pad;
605
606 return p;
607}
608
41ecc55b
CL
609/*
610 * Debug settings:
611 */
89d3c87e 612#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 613static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 614#else
d50112ed 615static slab_flags_t slub_debug;
f0630fff 616#endif
41ecc55b 617
e17f1dfb 618static char *slub_debug_string;
fa5ec8a1 619static int disable_higher_order_debug;
41ecc55b 620
a79316c6
AR
621/*
622 * slub is about to manipulate internal object metadata. This memory lies
623 * outside the range of the allocated object, so accessing it would normally
624 * be reported by kasan as a bounds error. metadata_access_enable() is used
625 * to tell kasan that these accesses are OK.
626 */
627static inline void metadata_access_enable(void)
628{
629 kasan_disable_current();
630}
631
632static inline void metadata_access_disable(void)
633{
634 kasan_enable_current();
635}
636
81819f0f
CL
637/*
638 * Object debugging
639 */
d86bd1be
JK
640
641/* Verify that a pointer has an address that is valid within a slab page */
642static inline int check_valid_pointer(struct kmem_cache *s,
643 struct page *page, void *object)
644{
645 void *base;
646
647 if (!object)
648 return 1;
649
650 base = page_address(page);
338cfaad 651 object = kasan_reset_tag(object);
d86bd1be
JK
652 object = restore_red_left(s, object);
653 if (object < base || object >= base + page->objects * s->size ||
654 (object - base) % s->size) {
655 return 0;
656 }
657
658 return 1;
659}
660
aa2efd5e
DT
661static void print_section(char *level, char *text, u8 *addr,
662 unsigned int length)
81819f0f 663{
a79316c6 664 metadata_access_enable();
340caf17
KYL
665 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
666 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 667 metadata_access_disable();
81819f0f
CL
668}
669
cbfc35a4
WL
670/*
671 * See comment in calculate_sizes().
672 */
673static inline bool freeptr_outside_object(struct kmem_cache *s)
674{
675 return s->offset >= s->inuse;
676}
677
678/*
679 * Return offset of the end of info block which is inuse + free pointer if
680 * not overlapping with object.
681 */
682static inline unsigned int get_info_end(struct kmem_cache *s)
683{
684 if (freeptr_outside_object(s))
685 return s->inuse + sizeof(void *);
686 else
687 return s->inuse;
688}
689
81819f0f
CL
690static struct track *get_track(struct kmem_cache *s, void *object,
691 enum track_item alloc)
692{
693 struct track *p;
694
cbfc35a4 695 p = object + get_info_end(s);
81819f0f 696
aa1ef4d7 697 return kasan_reset_tag(p + alloc);
81819f0f
CL
698}
699
700static void set_track(struct kmem_cache *s, void *object,
ce71e27c 701 enum track_item alloc, unsigned long addr)
81819f0f 702{
1a00df4a 703 struct track *p = get_track(s, object, alloc);
81819f0f 704
81819f0f 705 if (addr) {
ae14c63a
LT
706#ifdef CONFIG_STACKTRACE
707 unsigned int nr_entries;
708
709 metadata_access_enable();
710 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
711 TRACK_ADDRS_COUNT, 3);
712 metadata_access_disable();
713
714 if (nr_entries < TRACK_ADDRS_COUNT)
715 p->addrs[nr_entries] = 0;
d6543e39 716#endif
81819f0f
CL
717 p->addr = addr;
718 p->cpu = smp_processor_id();
88e4ccf2 719 p->pid = current->pid;
81819f0f 720 p->when = jiffies;
b8ca7ff7 721 } else {
81819f0f 722 memset(p, 0, sizeof(struct track));
b8ca7ff7 723 }
81819f0f
CL
724}
725
81819f0f
CL
726static void init_tracking(struct kmem_cache *s, void *object)
727{
24922684
CL
728 if (!(s->flags & SLAB_STORE_USER))
729 return;
730
ce71e27c
EGM
731 set_track(s, object, TRACK_FREE, 0UL);
732 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
733}
734
86609d33 735static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
736{
737 if (!t->addr)
738 return;
739
96b94abc 740 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 741 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 742#ifdef CONFIG_STACKTRACE
d6543e39 743 {
ae14c63a
LT
744 int i;
745 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
746 if (t->addrs[i])
747 pr_err("\t%pS\n", (void *)t->addrs[i]);
748 else
749 break;
d6543e39
BG
750 }
751#endif
24922684
CL
752}
753
e42f174e 754void print_tracking(struct kmem_cache *s, void *object)
24922684 755{
86609d33 756 unsigned long pr_time = jiffies;
24922684
CL
757 if (!(s->flags & SLAB_STORE_USER))
758 return;
759
86609d33
CP
760 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
761 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
762}
763
764static void print_page_info(struct page *page)
765{
96b94abc 766 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
767 page, page->objects, page->inuse, page->freelist,
768 page->flags, &page->flags);
24922684
CL
769
770}
771
772static void slab_bug(struct kmem_cache *s, char *fmt, ...)
773{
ecc42fbe 774 struct va_format vaf;
24922684 775 va_list args;
24922684
CL
776
777 va_start(args, fmt);
ecc42fbe
FF
778 vaf.fmt = fmt;
779 vaf.va = &args;
f9f58285 780 pr_err("=============================================================================\n");
ecc42fbe 781 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 782 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 783 va_end(args);
81819f0f
CL
784}
785
582d1212 786__printf(2, 3)
24922684
CL
787static void slab_fix(struct kmem_cache *s, char *fmt, ...)
788{
ecc42fbe 789 struct va_format vaf;
24922684 790 va_list args;
24922684 791
1f9f78b1
OG
792 if (slab_add_kunit_errors())
793 return;
794
24922684 795 va_start(args, fmt);
ecc42fbe
FF
796 vaf.fmt = fmt;
797 vaf.va = &args;
798 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 799 va_end(args);
24922684
CL
800}
801
52f23478 802static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 803 void **freelist, void *nextfree)
52f23478
DZ
804{
805 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
806 !check_valid_pointer(s, page, nextfree) && freelist) {
807 object_err(s, page, *freelist, "Freechain corrupt");
808 *freelist = NULL;
52f23478
DZ
809 slab_fix(s, "Isolate corrupted freechain");
810 return true;
811 }
812
813 return false;
814}
815
24922684 816static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
817{
818 unsigned int off; /* Offset of last byte */
a973e9dd 819 u8 *addr = page_address(page);
24922684
CL
820
821 print_tracking(s, p);
822
823 print_page_info(page);
824
96b94abc 825 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 826 p, p - addr, get_freepointer(s, p));
24922684 827
d86bd1be 828 if (s->flags & SLAB_RED_ZONE)
8669dbab 829 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 830 s->red_left_pad);
d86bd1be 831 else if (p > addr + 16)
aa2efd5e 832 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 833
8669dbab 834 print_section(KERN_ERR, "Object ", p,
1b473f29 835 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 836 if (s->flags & SLAB_RED_ZONE)
8669dbab 837 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 838 s->inuse - s->object_size);
81819f0f 839
cbfc35a4 840 off = get_info_end(s);
81819f0f 841
24922684 842 if (s->flags & SLAB_STORE_USER)
81819f0f 843 off += 2 * sizeof(struct track);
81819f0f 844
80a9201a
AP
845 off += kasan_metadata_size(s);
846
d86bd1be 847 if (off != size_from_object(s))
81819f0f 848 /* Beginning of the filler is the free pointer */
8669dbab 849 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 850 size_from_object(s) - off);
24922684
CL
851
852 dump_stack();
81819f0f
CL
853}
854
75c66def 855void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
856 u8 *object, char *reason)
857{
1f9f78b1
OG
858 if (slab_add_kunit_errors())
859 return;
860
3dc50637 861 slab_bug(s, "%s", reason);
24922684 862 print_trailer(s, page, object);
65ebdeef 863 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
864}
865
a38965bf 866static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 867 const char *fmt, ...)
81819f0f
CL
868{
869 va_list args;
870 char buf[100];
871
1f9f78b1
OG
872 if (slab_add_kunit_errors())
873 return;
874
24922684
CL
875 va_start(args, fmt);
876 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 877 va_end(args);
3dc50637 878 slab_bug(s, "%s", buf);
24922684 879 print_page_info(page);
81819f0f 880 dump_stack();
65ebdeef 881 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
882}
883
f7cb1933 884static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 885{
aa1ef4d7 886 u8 *p = kasan_reset_tag(object);
81819f0f 887
d86bd1be
JK
888 if (s->flags & SLAB_RED_ZONE)
889 memset(p - s->red_left_pad, val, s->red_left_pad);
890
81819f0f 891 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
892 memset(p, POISON_FREE, s->object_size - 1);
893 p[s->object_size - 1] = POISON_END;
81819f0f
CL
894 }
895
896 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 897 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
898}
899
24922684
CL
900static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
901 void *from, void *to)
902{
582d1212 903 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
904 memset(from, data, to - from);
905}
906
907static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
908 u8 *object, char *what,
06428780 909 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
910{
911 u8 *fault;
912 u8 *end;
e1b70dd1 913 u8 *addr = page_address(page);
24922684 914
a79316c6 915 metadata_access_enable();
aa1ef4d7 916 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 917 metadata_access_disable();
24922684
CL
918 if (!fault)
919 return 1;
920
921 end = start + bytes;
922 while (end > fault && end[-1] == value)
923 end--;
924
1f9f78b1
OG
925 if (slab_add_kunit_errors())
926 goto skip_bug_print;
927
24922684 928 slab_bug(s, "%s overwritten", what);
96b94abc 929 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
930 fault, end - 1, fault - addr,
931 fault[0], value);
24922684 932 print_trailer(s, page, object);
65ebdeef 933 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 934
1f9f78b1 935skip_bug_print:
24922684
CL
936 restore_bytes(s, what, value, fault, end);
937 return 0;
81819f0f
CL
938}
939
81819f0f
CL
940/*
941 * Object layout:
942 *
943 * object address
944 * Bytes of the object to be managed.
945 * If the freepointer may overlay the object then the free
cbfc35a4 946 * pointer is at the middle of the object.
672bba3a 947 *
81819f0f
CL
948 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
949 * 0xa5 (POISON_END)
950 *
3b0efdfa 951 * object + s->object_size
81819f0f 952 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 953 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 954 * object_size == inuse.
672bba3a 955 *
81819f0f
CL
956 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
957 * 0xcc (RED_ACTIVE) for objects in use.
958 *
959 * object + s->inuse
672bba3a
CL
960 * Meta data starts here.
961 *
81819f0f
CL
962 * A. Free pointer (if we cannot overwrite object on free)
963 * B. Tracking data for SLAB_STORE_USER
dc84207d 964 * C. Padding to reach required alignment boundary or at minimum
6446faa2 965 * one word if debugging is on to be able to detect writes
672bba3a
CL
966 * before the word boundary.
967 *
968 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
969 *
970 * object + s->size
672bba3a 971 * Nothing is used beyond s->size.
81819f0f 972 *
3b0efdfa 973 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 974 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
975 * may be used with merged slabcaches.
976 */
977
81819f0f
CL
978static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
979{
cbfc35a4 980 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
981
982 if (s->flags & SLAB_STORE_USER)
983 /* We also have user information there */
984 off += 2 * sizeof(struct track);
985
80a9201a
AP
986 off += kasan_metadata_size(s);
987
d86bd1be 988 if (size_from_object(s) == off)
81819f0f
CL
989 return 1;
990
24922684 991 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 992 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
993}
994
39b26464 995/* Check the pad bytes at the end of a slab page */
81819f0f
CL
996static int slab_pad_check(struct kmem_cache *s, struct page *page)
997{
24922684
CL
998 u8 *start;
999 u8 *fault;
1000 u8 *end;
5d682681 1001 u8 *pad;
24922684
CL
1002 int length;
1003 int remainder;
81819f0f
CL
1004
1005 if (!(s->flags & SLAB_POISON))
1006 return 1;
1007
a973e9dd 1008 start = page_address(page);
a50b854e 1009 length = page_size(page);
39b26464
CL
1010 end = start + length;
1011 remainder = length % s->size;
81819f0f
CL
1012 if (!remainder)
1013 return 1;
1014
5d682681 1015 pad = end - remainder;
a79316c6 1016 metadata_access_enable();
aa1ef4d7 1017 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1018 metadata_access_disable();
24922684
CL
1019 if (!fault)
1020 return 1;
1021 while (end > fault && end[-1] == POISON_INUSE)
1022 end--;
1023
e1b70dd1
MC
1024 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1025 fault, end - 1, fault - start);
5d682681 1026 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1027
5d682681 1028 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 1029 return 0;
81819f0f
CL
1030}
1031
1032static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1033 void *object, u8 val)
81819f0f
CL
1034{
1035 u8 *p = object;
3b0efdfa 1036 u8 *endobject = object + s->object_size;
81819f0f
CL
1037
1038 if (s->flags & SLAB_RED_ZONE) {
8669dbab 1039 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
1040 object - s->red_left_pad, val, s->red_left_pad))
1041 return 0;
1042
8669dbab 1043 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 1044 endobject, val, s->inuse - s->object_size))
81819f0f 1045 return 0;
81819f0f 1046 } else {
3b0efdfa 1047 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 1048 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
1049 endobject, POISON_INUSE,
1050 s->inuse - s->object_size);
3adbefee 1051 }
81819f0f
CL
1052 }
1053
1054 if (s->flags & SLAB_POISON) {
f7cb1933 1055 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 1056 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 1057 POISON_FREE, s->object_size - 1) ||
8669dbab 1058 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 1059 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1060 return 0;
81819f0f
CL
1061 /*
1062 * check_pad_bytes cleans up on its own.
1063 */
1064 check_pad_bytes(s, page, p);
1065 }
1066
cbfc35a4 1067 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1068 /*
1069 * Object and freepointer overlap. Cannot check
1070 * freepointer while object is allocated.
1071 */
1072 return 1;
1073
1074 /* Check free pointer validity */
1075 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1076 object_err(s, page, p, "Freepointer corrupt");
1077 /*
9f6c708e 1078 * No choice but to zap it and thus lose the remainder
81819f0f 1079 * of the free objects in this slab. May cause
672bba3a 1080 * another error because the object count is now wrong.
81819f0f 1081 */
a973e9dd 1082 set_freepointer(s, p, NULL);
81819f0f
CL
1083 return 0;
1084 }
1085 return 1;
1086}
1087
1088static int check_slab(struct kmem_cache *s, struct page *page)
1089{
39b26464
CL
1090 int maxobj;
1091
81819f0f 1092 if (!PageSlab(page)) {
24922684 1093 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1094 return 0;
1095 }
39b26464 1096
9736d2a9 1097 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1098 if (page->objects > maxobj) {
1099 slab_err(s, page, "objects %u > max %u",
f6edde9c 1100 page->objects, maxobj);
39b26464
CL
1101 return 0;
1102 }
1103 if (page->inuse > page->objects) {
24922684 1104 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1105 page->inuse, page->objects);
81819f0f
CL
1106 return 0;
1107 }
1108 /* Slab_pad_check fixes things up after itself */
1109 slab_pad_check(s, page);
1110 return 1;
1111}
1112
1113/*
672bba3a
CL
1114 * Determine if a certain object on a page is on the freelist. Must hold the
1115 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1116 */
1117static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1118{
1119 int nr = 0;
881db7fb 1120 void *fp;
81819f0f 1121 void *object = NULL;
f6edde9c 1122 int max_objects;
81819f0f 1123
881db7fb 1124 fp = page->freelist;
39b26464 1125 while (fp && nr <= page->objects) {
81819f0f
CL
1126 if (fp == search)
1127 return 1;
1128 if (!check_valid_pointer(s, page, fp)) {
1129 if (object) {
1130 object_err(s, page, object,
1131 "Freechain corrupt");
a973e9dd 1132 set_freepointer(s, object, NULL);
81819f0f 1133 } else {
24922684 1134 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1135 page->freelist = NULL;
39b26464 1136 page->inuse = page->objects;
24922684 1137 slab_fix(s, "Freelist cleared");
81819f0f
CL
1138 return 0;
1139 }
1140 break;
1141 }
1142 object = fp;
1143 fp = get_freepointer(s, object);
1144 nr++;
1145 }
1146
9736d2a9 1147 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1148 if (max_objects > MAX_OBJS_PER_PAGE)
1149 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1150
1151 if (page->objects != max_objects) {
756a025f
JP
1152 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1153 page->objects, max_objects);
224a88be 1154 page->objects = max_objects;
582d1212 1155 slab_fix(s, "Number of objects adjusted");
224a88be 1156 }
39b26464 1157 if (page->inuse != page->objects - nr) {
756a025f
JP
1158 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1159 page->inuse, page->objects - nr);
39b26464 1160 page->inuse = page->objects - nr;
582d1212 1161 slab_fix(s, "Object count adjusted");
81819f0f
CL
1162 }
1163 return search == NULL;
1164}
1165
0121c619
CL
1166static void trace(struct kmem_cache *s, struct page *page, void *object,
1167 int alloc)
3ec09742
CL
1168{
1169 if (s->flags & SLAB_TRACE) {
f9f58285 1170 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1171 s->name,
1172 alloc ? "alloc" : "free",
1173 object, page->inuse,
1174 page->freelist);
1175
1176 if (!alloc)
aa2efd5e 1177 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1178 s->object_size);
3ec09742
CL
1179
1180 dump_stack();
1181 }
1182}
1183
643b1138 1184/*
672bba3a 1185 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1186 */
5cc6eee8
CL
1187static void add_full(struct kmem_cache *s,
1188 struct kmem_cache_node *n, struct page *page)
643b1138 1189{
5cc6eee8
CL
1190 if (!(s->flags & SLAB_STORE_USER))
1191 return;
1192
255d0884 1193 lockdep_assert_held(&n->list_lock);
916ac052 1194 list_add(&page->slab_list, &n->full);
643b1138
CL
1195}
1196
c65c1877 1197static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1198{
643b1138
CL
1199 if (!(s->flags & SLAB_STORE_USER))
1200 return;
1201
255d0884 1202 lockdep_assert_held(&n->list_lock);
916ac052 1203 list_del(&page->slab_list);
643b1138
CL
1204}
1205
0f389ec6
CL
1206/* Tracking of the number of slabs for debugging purposes */
1207static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1208{
1209 struct kmem_cache_node *n = get_node(s, node);
1210
1211 return atomic_long_read(&n->nr_slabs);
1212}
1213
26c02cf0
AB
1214static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1215{
1216 return atomic_long_read(&n->nr_slabs);
1217}
1218
205ab99d 1219static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1220{
1221 struct kmem_cache_node *n = get_node(s, node);
1222
1223 /*
1224 * May be called early in order to allocate a slab for the
1225 * kmem_cache_node structure. Solve the chicken-egg
1226 * dilemma by deferring the increment of the count during
1227 * bootstrap (see early_kmem_cache_node_alloc).
1228 */
338b2642 1229 if (likely(n)) {
0f389ec6 1230 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1231 atomic_long_add(objects, &n->total_objects);
1232 }
0f389ec6 1233}
205ab99d 1234static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1235{
1236 struct kmem_cache_node *n = get_node(s, node);
1237
1238 atomic_long_dec(&n->nr_slabs);
205ab99d 1239 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1240}
1241
1242/* Object debug checks for alloc/free paths */
3ec09742
CL
1243static void setup_object_debug(struct kmem_cache *s, struct page *page,
1244 void *object)
1245{
8fc8d666 1246 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1247 return;
1248
f7cb1933 1249 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1250 init_tracking(s, object);
1251}
1252
a50b854e
MWO
1253static
1254void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1255{
8fc8d666 1256 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1257 return;
1258
1259 metadata_access_enable();
aa1ef4d7 1260 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1261 metadata_access_disable();
1262}
1263
becfda68 1264static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1265 struct page *page, void *object)
81819f0f
CL
1266{
1267 if (!check_slab(s, page))
becfda68 1268 return 0;
81819f0f 1269
81819f0f
CL
1270 if (!check_valid_pointer(s, page, object)) {
1271 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1272 return 0;
81819f0f
CL
1273 }
1274
f7cb1933 1275 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1276 return 0;
1277
1278 return 1;
1279}
1280
1281static noinline int alloc_debug_processing(struct kmem_cache *s,
1282 struct page *page,
1283 void *object, unsigned long addr)
1284{
1285 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1286 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1287 goto bad;
1288 }
81819f0f 1289
3ec09742
CL
1290 /* Success perform special debug activities for allocs */
1291 if (s->flags & SLAB_STORE_USER)
1292 set_track(s, object, TRACK_ALLOC, addr);
1293 trace(s, page, object, 1);
f7cb1933 1294 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1295 return 1;
3ec09742 1296
81819f0f
CL
1297bad:
1298 if (PageSlab(page)) {
1299 /*
1300 * If this is a slab page then lets do the best we can
1301 * to avoid issues in the future. Marking all objects
672bba3a 1302 * as used avoids touching the remaining objects.
81819f0f 1303 */
24922684 1304 slab_fix(s, "Marking all objects used");
39b26464 1305 page->inuse = page->objects;
a973e9dd 1306 page->freelist = NULL;
81819f0f
CL
1307 }
1308 return 0;
1309}
1310
becfda68
LA
1311static inline int free_consistency_checks(struct kmem_cache *s,
1312 struct page *page, void *object, unsigned long addr)
81819f0f 1313{
81819f0f 1314 if (!check_valid_pointer(s, page, object)) {
70d71228 1315 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1316 return 0;
81819f0f
CL
1317 }
1318
1319 if (on_freelist(s, page, object)) {
24922684 1320 object_err(s, page, object, "Object already free");
becfda68 1321 return 0;
81819f0f
CL
1322 }
1323
f7cb1933 1324 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1325 return 0;
81819f0f 1326
1b4f59e3 1327 if (unlikely(s != page->slab_cache)) {
3adbefee 1328 if (!PageSlab(page)) {
756a025f
JP
1329 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1330 object);
1b4f59e3 1331 } else if (!page->slab_cache) {
f9f58285
FF
1332 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1333 object);
70d71228 1334 dump_stack();
06428780 1335 } else
24922684
CL
1336 object_err(s, page, object,
1337 "page slab pointer corrupt.");
becfda68
LA
1338 return 0;
1339 }
1340 return 1;
1341}
1342
1343/* Supports checking bulk free of a constructed freelist */
1344static noinline int free_debug_processing(
1345 struct kmem_cache *s, struct page *page,
1346 void *head, void *tail, int bulk_cnt,
1347 unsigned long addr)
1348{
1349 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1350 void *object = head;
1351 int cnt = 0;
a2b4ae8b 1352 unsigned long flags, flags2;
becfda68
LA
1353 int ret = 0;
1354
1355 spin_lock_irqsave(&n->list_lock, flags);
a2b4ae8b 1356 slab_lock(page, &flags2);
becfda68
LA
1357
1358 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1359 if (!check_slab(s, page))
1360 goto out;
1361 }
1362
1363next_object:
1364 cnt++;
1365
1366 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1367 if (!free_consistency_checks(s, page, object, addr))
1368 goto out;
81819f0f 1369 }
3ec09742 1370
3ec09742
CL
1371 if (s->flags & SLAB_STORE_USER)
1372 set_track(s, object, TRACK_FREE, addr);
1373 trace(s, page, object, 0);
81084651 1374 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1375 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1376
1377 /* Reached end of constructed freelist yet? */
1378 if (object != tail) {
1379 object = get_freepointer(s, object);
1380 goto next_object;
1381 }
804aa132
LA
1382 ret = 1;
1383
5c2e4bbb 1384out:
81084651
JDB
1385 if (cnt != bulk_cnt)
1386 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1387 bulk_cnt, cnt);
1388
a2b4ae8b 1389 slab_unlock(page, &flags2);
282acb43 1390 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1391 if (!ret)
1392 slab_fix(s, "Object at 0x%p not freed", object);
1393 return ret;
81819f0f
CL
1394}
1395
e17f1dfb
VB
1396/*
1397 * Parse a block of slub_debug options. Blocks are delimited by ';'
1398 *
1399 * @str: start of block
1400 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1401 * @slabs: return start of list of slabs, or NULL when there's no list
1402 * @init: assume this is initial parsing and not per-kmem-create parsing
1403 *
1404 * returns the start of next block if there's any, or NULL
1405 */
1406static char *
1407parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1408{
e17f1dfb 1409 bool higher_order_disable = false;
f0630fff 1410
e17f1dfb
VB
1411 /* Skip any completely empty blocks */
1412 while (*str && *str == ';')
1413 str++;
1414
1415 if (*str == ',') {
f0630fff
CL
1416 /*
1417 * No options but restriction on slabs. This means full
1418 * debugging for slabs matching a pattern.
1419 */
e17f1dfb 1420 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1421 goto check_slabs;
e17f1dfb
VB
1422 }
1423 *flags = 0;
f0630fff 1424
e17f1dfb
VB
1425 /* Determine which debug features should be switched on */
1426 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1427 switch (tolower(*str)) {
e17f1dfb
VB
1428 case '-':
1429 *flags = 0;
1430 break;
f0630fff 1431 case 'f':
e17f1dfb 1432 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1433 break;
1434 case 'z':
e17f1dfb 1435 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1436 break;
1437 case 'p':
e17f1dfb 1438 *flags |= SLAB_POISON;
f0630fff
CL
1439 break;
1440 case 'u':
e17f1dfb 1441 *flags |= SLAB_STORE_USER;
f0630fff
CL
1442 break;
1443 case 't':
e17f1dfb 1444 *flags |= SLAB_TRACE;
f0630fff 1445 break;
4c13dd3b 1446 case 'a':
e17f1dfb 1447 *flags |= SLAB_FAILSLAB;
4c13dd3b 1448 break;
08303a73
CA
1449 case 'o':
1450 /*
1451 * Avoid enabling debugging on caches if its minimum
1452 * order would increase as a result.
1453 */
e17f1dfb 1454 higher_order_disable = true;
08303a73 1455 break;
f0630fff 1456 default:
e17f1dfb
VB
1457 if (init)
1458 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1459 }
41ecc55b 1460 }
f0630fff 1461check_slabs:
41ecc55b 1462 if (*str == ',')
e17f1dfb
VB
1463 *slabs = ++str;
1464 else
1465 *slabs = NULL;
1466
1467 /* Skip over the slab list */
1468 while (*str && *str != ';')
1469 str++;
1470
1471 /* Skip any completely empty blocks */
1472 while (*str && *str == ';')
1473 str++;
1474
1475 if (init && higher_order_disable)
1476 disable_higher_order_debug = 1;
1477
1478 if (*str)
1479 return str;
1480 else
1481 return NULL;
1482}
1483
1484static int __init setup_slub_debug(char *str)
1485{
1486 slab_flags_t flags;
a7f1d485 1487 slab_flags_t global_flags;
e17f1dfb
VB
1488 char *saved_str;
1489 char *slab_list;
1490 bool global_slub_debug_changed = false;
1491 bool slab_list_specified = false;
1492
a7f1d485 1493 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1494 if (*str++ != '=' || !*str)
1495 /*
1496 * No options specified. Switch on full debugging.
1497 */
1498 goto out;
1499
1500 saved_str = str;
1501 while (str) {
1502 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1503
1504 if (!slab_list) {
a7f1d485 1505 global_flags = flags;
e17f1dfb
VB
1506 global_slub_debug_changed = true;
1507 } else {
1508 slab_list_specified = true;
1509 }
1510 }
1511
1512 /*
1513 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1514 * slabs means debugging is only changed for those slabs, so the global
1515 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1516 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1517 * long as there is no option specifying flags without a slab list.
1518 */
1519 if (slab_list_specified) {
1520 if (!global_slub_debug_changed)
a7f1d485 1521 global_flags = slub_debug;
e17f1dfb
VB
1522 slub_debug_string = saved_str;
1523 }
f0630fff 1524out:
a7f1d485 1525 slub_debug = global_flags;
ca0cab65
VB
1526 if (slub_debug != 0 || slub_debug_string)
1527 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1528 else
1529 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1530 if ((static_branch_unlikely(&init_on_alloc) ||
1531 static_branch_unlikely(&init_on_free)) &&
1532 (slub_debug & SLAB_POISON))
1533 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1534 return 1;
1535}
1536
1537__setup("slub_debug", setup_slub_debug);
1538
c5fd3ca0
AT
1539/*
1540 * kmem_cache_flags - apply debugging options to the cache
1541 * @object_size: the size of an object without meta data
1542 * @flags: flags to set
1543 * @name: name of the cache
c5fd3ca0
AT
1544 *
1545 * Debug option(s) are applied to @flags. In addition to the debug
1546 * option(s), if a slab name (or multiple) is specified i.e.
1547 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1548 * then only the select slabs will receive the debug option(s).
1549 */
0293d1fd 1550slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1551 slab_flags_t flags, const char *name)
41ecc55b 1552{
c5fd3ca0
AT
1553 char *iter;
1554 size_t len;
e17f1dfb
VB
1555 char *next_block;
1556 slab_flags_t block_flags;
ca220593
JB
1557 slab_flags_t slub_debug_local = slub_debug;
1558
1559 /*
1560 * If the slab cache is for debugging (e.g. kmemleak) then
1561 * don't store user (stack trace) information by default,
1562 * but let the user enable it via the command line below.
1563 */
1564 if (flags & SLAB_NOLEAKTRACE)
1565 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1566
c5fd3ca0 1567 len = strlen(name);
e17f1dfb
VB
1568 next_block = slub_debug_string;
1569 /* Go through all blocks of debug options, see if any matches our slab's name */
1570 while (next_block) {
1571 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1572 if (!iter)
1573 continue;
1574 /* Found a block that has a slab list, search it */
1575 while (*iter) {
1576 char *end, *glob;
1577 size_t cmplen;
1578
1579 end = strchrnul(iter, ',');
1580 if (next_block && next_block < end)
1581 end = next_block - 1;
1582
1583 glob = strnchr(iter, end - iter, '*');
1584 if (glob)
1585 cmplen = glob - iter;
1586 else
1587 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1588
e17f1dfb
VB
1589 if (!strncmp(name, iter, cmplen)) {
1590 flags |= block_flags;
1591 return flags;
1592 }
c5fd3ca0 1593
e17f1dfb
VB
1594 if (!*end || *end == ';')
1595 break;
1596 iter = end + 1;
c5fd3ca0 1597 }
c5fd3ca0 1598 }
ba0268a8 1599
ca220593 1600 return flags | slub_debug_local;
41ecc55b 1601}
b4a64718 1602#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1603static inline void setup_object_debug(struct kmem_cache *s,
1604 struct page *page, void *object) {}
a50b854e
MWO
1605static inline
1606void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1607
3ec09742 1608static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1609 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1610
282acb43 1611static inline int free_debug_processing(
81084651
JDB
1612 struct kmem_cache *s, struct page *page,
1613 void *head, void *tail, int bulk_cnt,
282acb43 1614 unsigned long addr) { return 0; }
41ecc55b 1615
41ecc55b
CL
1616static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1617 { return 1; }
1618static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1619 void *object, u8 val) { return 1; }
5cc6eee8
CL
1620static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1621 struct page *page) {}
c65c1877
PZ
1622static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1623 struct page *page) {}
0293d1fd 1624slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1625 slab_flags_t flags, const char *name)
ba0268a8
CL
1626{
1627 return flags;
1628}
41ecc55b 1629#define slub_debug 0
0f389ec6 1630
fdaa45e9
IM
1631#define disable_higher_order_debug 0
1632
0f389ec6
CL
1633static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1634 { return 0; }
26c02cf0
AB
1635static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1636 { return 0; }
205ab99d
CL
1637static inline void inc_slabs_node(struct kmem_cache *s, int node,
1638 int objects) {}
1639static inline void dec_slabs_node(struct kmem_cache *s, int node,
1640 int objects) {}
7d550c56 1641
52f23478 1642static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1643 void **freelist, void *nextfree)
52f23478
DZ
1644{
1645 return false;
1646}
02e72cc6
AR
1647#endif /* CONFIG_SLUB_DEBUG */
1648
1649/*
1650 * Hooks for other subsystems that check memory allocations. In a typical
1651 * production configuration these hooks all should produce no code at all.
1652 */
0116523c 1653static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1654{
53128245 1655 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1656 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1657 kmemleak_alloc(ptr, size, 1, flags);
53128245 1658 return ptr;
d56791b3
RB
1659}
1660
ee3ce779 1661static __always_inline void kfree_hook(void *x)
d56791b3
RB
1662{
1663 kmemleak_free(x);
027b37b5 1664 kasan_kfree_large(x);
d56791b3
RB
1665}
1666
d57a964e
AK
1667static __always_inline bool slab_free_hook(struct kmem_cache *s,
1668 void *x, bool init)
d56791b3
RB
1669{
1670 kmemleak_free_recursive(x, s->flags);
7d550c56 1671
84048039 1672 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1673
02e72cc6
AR
1674 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1675 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1676
cfbe1636
ME
1677 /* Use KCSAN to help debug racy use-after-free. */
1678 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1679 __kcsan_check_access(x, s->object_size,
1680 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1681
d57a964e
AK
1682 /*
1683 * As memory initialization might be integrated into KASAN,
1684 * kasan_slab_free and initialization memset's must be
1685 * kept together to avoid discrepancies in behavior.
1686 *
1687 * The initialization memset's clear the object and the metadata,
1688 * but don't touch the SLAB redzone.
1689 */
1690 if (init) {
1691 int rsize;
1692
1693 if (!kasan_has_integrated_init())
1694 memset(kasan_reset_tag(x), 0, s->object_size);
1695 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1696 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1697 s->size - s->inuse - rsize);
1698 }
1699 /* KASAN might put x into memory quarantine, delaying its reuse. */
1700 return kasan_slab_free(s, x, init);
02e72cc6 1701}
205ab99d 1702
c3895391
AK
1703static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1704 void **head, void **tail)
81084651 1705{
6471384a
AP
1706
1707 void *object;
1708 void *next = *head;
1709 void *old_tail = *tail ? *tail : *head;
6471384a 1710
b89fb5ef 1711 if (is_kfence_address(next)) {
d57a964e 1712 slab_free_hook(s, next, false);
b89fb5ef
AP
1713 return true;
1714 }
1715
aea4df4c
LA
1716 /* Head and tail of the reconstructed freelist */
1717 *head = NULL;
1718 *tail = NULL;
1b7e816f 1719
aea4df4c
LA
1720 do {
1721 object = next;
1722 next = get_freepointer(s, object);
1723
c3895391 1724 /* If object's reuse doesn't have to be delayed */
d57a964e 1725 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1726 /* Move object to the new freelist */
1727 set_freepointer(s, object, *head);
1728 *head = object;
1729 if (!*tail)
1730 *tail = object;
1731 }
1732 } while (object != old_tail);
1733
1734 if (*head == *tail)
1735 *tail = NULL;
1736
1737 return *head != NULL;
81084651
JDB
1738}
1739
4d176711 1740static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1741 void *object)
1742{
1743 setup_object_debug(s, page, object);
4d176711 1744 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1745 if (unlikely(s->ctor)) {
1746 kasan_unpoison_object_data(s, object);
1747 s->ctor(object);
1748 kasan_poison_object_data(s, object);
1749 }
4d176711 1750 return object;
588f8ba9
TG
1751}
1752
81819f0f
CL
1753/*
1754 * Slab allocation and freeing
1755 */
5dfb4175
VD
1756static inline struct page *alloc_slab_page(struct kmem_cache *s,
1757 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1758{
5dfb4175 1759 struct page *page;
19af27af 1760 unsigned int order = oo_order(oo);
65c3376a 1761
2154a336 1762 if (node == NUMA_NO_NODE)
5dfb4175 1763 page = alloc_pages(flags, order);
65c3376a 1764 else
96db800f 1765 page = __alloc_pages_node(node, flags, order);
5dfb4175 1766
5dfb4175 1767 return page;
65c3376a
CL
1768}
1769
210e7a43
TG
1770#ifdef CONFIG_SLAB_FREELIST_RANDOM
1771/* Pre-initialize the random sequence cache */
1772static int init_cache_random_seq(struct kmem_cache *s)
1773{
19af27af 1774 unsigned int count = oo_objects(s->oo);
210e7a43 1775 int err;
210e7a43 1776
a810007a
SR
1777 /* Bailout if already initialised */
1778 if (s->random_seq)
1779 return 0;
1780
210e7a43
TG
1781 err = cache_random_seq_create(s, count, GFP_KERNEL);
1782 if (err) {
1783 pr_err("SLUB: Unable to initialize free list for %s\n",
1784 s->name);
1785 return err;
1786 }
1787
1788 /* Transform to an offset on the set of pages */
1789 if (s->random_seq) {
19af27af
AD
1790 unsigned int i;
1791
210e7a43
TG
1792 for (i = 0; i < count; i++)
1793 s->random_seq[i] *= s->size;
1794 }
1795 return 0;
1796}
1797
1798/* Initialize each random sequence freelist per cache */
1799static void __init init_freelist_randomization(void)
1800{
1801 struct kmem_cache *s;
1802
1803 mutex_lock(&slab_mutex);
1804
1805 list_for_each_entry(s, &slab_caches, list)
1806 init_cache_random_seq(s);
1807
1808 mutex_unlock(&slab_mutex);
1809}
1810
1811/* Get the next entry on the pre-computed freelist randomized */
1812static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1813 unsigned long *pos, void *start,
1814 unsigned long page_limit,
1815 unsigned long freelist_count)
1816{
1817 unsigned int idx;
1818
1819 /*
1820 * If the target page allocation failed, the number of objects on the
1821 * page might be smaller than the usual size defined by the cache.
1822 */
1823 do {
1824 idx = s->random_seq[*pos];
1825 *pos += 1;
1826 if (*pos >= freelist_count)
1827 *pos = 0;
1828 } while (unlikely(idx >= page_limit));
1829
1830 return (char *)start + idx;
1831}
1832
1833/* Shuffle the single linked freelist based on a random pre-computed sequence */
1834static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1835{
1836 void *start;
1837 void *cur;
1838 void *next;
1839 unsigned long idx, pos, page_limit, freelist_count;
1840
1841 if (page->objects < 2 || !s->random_seq)
1842 return false;
1843
1844 freelist_count = oo_objects(s->oo);
1845 pos = get_random_int() % freelist_count;
1846
1847 page_limit = page->objects * s->size;
1848 start = fixup_red_left(s, page_address(page));
1849
1850 /* First entry is used as the base of the freelist */
1851 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1852 freelist_count);
4d176711 1853 cur = setup_object(s, page, cur);
210e7a43
TG
1854 page->freelist = cur;
1855
1856 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1857 next = next_freelist_entry(s, page, &pos, start, page_limit,
1858 freelist_count);
4d176711 1859 next = setup_object(s, page, next);
210e7a43
TG
1860 set_freepointer(s, cur, next);
1861 cur = next;
1862 }
210e7a43
TG
1863 set_freepointer(s, cur, NULL);
1864
1865 return true;
1866}
1867#else
1868static inline int init_cache_random_seq(struct kmem_cache *s)
1869{
1870 return 0;
1871}
1872static inline void init_freelist_randomization(void) { }
1873static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1874{
1875 return false;
1876}
1877#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1878
81819f0f
CL
1879static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1880{
06428780 1881 struct page *page;
834f3d11 1882 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1883 gfp_t alloc_gfp;
4d176711 1884 void *start, *p, *next;
a50b854e 1885 int idx;
210e7a43 1886 bool shuffle;
81819f0f 1887
7e0528da
CL
1888 flags &= gfp_allowed_mask;
1889
b7a49f0d 1890 flags |= s->allocflags;
e12ba74d 1891
ba52270d
PE
1892 /*
1893 * Let the initial higher-order allocation fail under memory pressure
1894 * so we fall-back to the minimum order allocation.
1895 */
1896 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1897 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1898 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1899
5dfb4175 1900 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1901 if (unlikely(!page)) {
1902 oo = s->min;
80c3a998 1903 alloc_gfp = flags;
65c3376a
CL
1904 /*
1905 * Allocation may have failed due to fragmentation.
1906 * Try a lower order alloc if possible
1907 */
5dfb4175 1908 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1909 if (unlikely(!page))
1910 goto out;
1911 stat(s, ORDER_FALLBACK);
65c3376a 1912 }
5a896d9e 1913
834f3d11 1914 page->objects = oo_objects(oo);
81819f0f 1915
2e9bd483 1916 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1917
1b4f59e3 1918 page->slab_cache = s;
c03f94cc 1919 __SetPageSlab(page);
2f064f34 1920 if (page_is_pfmemalloc(page))
072bb0aa 1921 SetPageSlabPfmemalloc(page);
81819f0f 1922
a7101224 1923 kasan_poison_slab(page);
81819f0f 1924
a7101224 1925 start = page_address(page);
81819f0f 1926
a50b854e 1927 setup_page_debug(s, page, start);
0316bec2 1928
210e7a43
TG
1929 shuffle = shuffle_freelist(s, page);
1930
1931 if (!shuffle) {
4d176711
AK
1932 start = fixup_red_left(s, start);
1933 start = setup_object(s, page, start);
1934 page->freelist = start;
18e50661
AK
1935 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1936 next = p + s->size;
1937 next = setup_object(s, page, next);
1938 set_freepointer(s, p, next);
1939 p = next;
1940 }
1941 set_freepointer(s, p, NULL);
81819f0f 1942 }
81819f0f 1943
e6e82ea1 1944 page->inuse = page->objects;
8cb0a506 1945 page->frozen = 1;
588f8ba9 1946
81819f0f 1947out:
588f8ba9
TG
1948 if (!page)
1949 return NULL;
1950
588f8ba9
TG
1951 inc_slabs_node(s, page_to_nid(page), page->objects);
1952
81819f0f
CL
1953 return page;
1954}
1955
588f8ba9
TG
1956static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1957{
44405099
LL
1958 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1959 flags = kmalloc_fix_flags(flags);
588f8ba9 1960
53a0de06
VB
1961 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1962
588f8ba9
TG
1963 return allocate_slab(s,
1964 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1965}
1966
81819f0f
CL
1967static void __free_slab(struct kmem_cache *s, struct page *page)
1968{
834f3d11
CL
1969 int order = compound_order(page);
1970 int pages = 1 << order;
81819f0f 1971
8fc8d666 1972 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1973 void *p;
1974
1975 slab_pad_check(s, page);
224a88be
CL
1976 for_each_object(p, s, page_address(page),
1977 page->objects)
f7cb1933 1978 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1979 }
1980
072bb0aa 1981 __ClearPageSlabPfmemalloc(page);
49bd5221 1982 __ClearPageSlab(page);
0c06dd75
VB
1983 /* In union with page->mapping where page allocator expects NULL */
1984 page->slab_cache = NULL;
1eb5ac64
NP
1985 if (current->reclaim_state)
1986 current->reclaim_state->reclaimed_slab += pages;
74d555be 1987 unaccount_slab_page(page, order, s);
27ee57c9 1988 __free_pages(page, order);
81819f0f
CL
1989}
1990
1991static void rcu_free_slab(struct rcu_head *h)
1992{
bf68c214 1993 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1994
1b4f59e3 1995 __free_slab(page->slab_cache, page);
81819f0f
CL
1996}
1997
1998static void free_slab(struct kmem_cache *s, struct page *page)
1999{
5f0d5a3a 2000 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 2001 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
2002 } else
2003 __free_slab(s, page);
2004}
2005
2006static void discard_slab(struct kmem_cache *s, struct page *page)
2007{
205ab99d 2008 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
2009 free_slab(s, page);
2010}
2011
2012/*
5cc6eee8 2013 * Management of partially allocated slabs.
81819f0f 2014 */
1e4dd946
SR
2015static inline void
2016__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 2017{
e95eed57 2018 n->nr_partial++;
136333d1 2019 if (tail == DEACTIVATE_TO_TAIL)
916ac052 2020 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 2021 else
916ac052 2022 list_add(&page->slab_list, &n->partial);
81819f0f
CL
2023}
2024
1e4dd946
SR
2025static inline void add_partial(struct kmem_cache_node *n,
2026 struct page *page, int tail)
62e346a8 2027{
c65c1877 2028 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
2029 __add_partial(n, page, tail);
2030}
c65c1877 2031
1e4dd946
SR
2032static inline void remove_partial(struct kmem_cache_node *n,
2033 struct page *page)
2034{
2035 lockdep_assert_held(&n->list_lock);
916ac052 2036 list_del(&page->slab_list);
52b4b950 2037 n->nr_partial--;
1e4dd946
SR
2038}
2039
81819f0f 2040/*
7ced3719
CL
2041 * Remove slab from the partial list, freeze it and
2042 * return the pointer to the freelist.
81819f0f 2043 *
497b66f2 2044 * Returns a list of objects or NULL if it fails.
81819f0f 2045 */
497b66f2 2046static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 2047 struct kmem_cache_node *n, struct page *page,
633b0764 2048 int mode, int *objects)
81819f0f 2049{
2cfb7455
CL
2050 void *freelist;
2051 unsigned long counters;
2052 struct page new;
2053
c65c1877
PZ
2054 lockdep_assert_held(&n->list_lock);
2055
2cfb7455
CL
2056 /*
2057 * Zap the freelist and set the frozen bit.
2058 * The old freelist is the list of objects for the
2059 * per cpu allocation list.
2060 */
7ced3719
CL
2061 freelist = page->freelist;
2062 counters = page->counters;
2063 new.counters = counters;
633b0764 2064 *objects = new.objects - new.inuse;
23910c50 2065 if (mode) {
7ced3719 2066 new.inuse = page->objects;
23910c50
PE
2067 new.freelist = NULL;
2068 } else {
2069 new.freelist = freelist;
2070 }
2cfb7455 2071
a0132ac0 2072 VM_BUG_ON(new.frozen);
7ced3719 2073 new.frozen = 1;
2cfb7455 2074
7ced3719 2075 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2076 freelist, counters,
02d7633f 2077 new.freelist, new.counters,
7ced3719 2078 "acquire_slab"))
7ced3719 2079 return NULL;
2cfb7455
CL
2080
2081 remove_partial(n, page);
7ced3719 2082 WARN_ON(!freelist);
49e22585 2083 return freelist;
81819f0f
CL
2084}
2085
e0a043aa 2086#ifdef CONFIG_SLUB_CPU_PARTIAL
633b0764 2087static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
e0a043aa
VB
2088#else
2089static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2090 int drain) { }
2091#endif
8ba00bb6 2092static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2093
81819f0f 2094/*
672bba3a 2095 * Try to allocate a partial slab from a specific node.
81819f0f 2096 */
8ba00bb6 2097static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
4b1f449d 2098 struct page **ret_page, gfp_t gfpflags)
81819f0f 2099{
49e22585
CL
2100 struct page *page, *page2;
2101 void *object = NULL;
e5d9998f 2102 unsigned int available = 0;
4b1f449d 2103 unsigned long flags;
633b0764 2104 int objects;
81819f0f
CL
2105
2106 /*
2107 * Racy check. If we mistakenly see no partial slabs then we
2108 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2109 * partial slab and there is none available then get_partial()
672bba3a 2110 * will return NULL.
81819f0f
CL
2111 */
2112 if (!n || !n->nr_partial)
2113 return NULL;
2114
4b1f449d 2115 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2116 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2117 void *t;
49e22585 2118
4b1f449d 2119 if (!pfmemalloc_match(page, gfpflags))
8ba00bb6
JK
2120 continue;
2121
633b0764 2122 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2123 if (!t)
9b1ea29b 2124 break;
49e22585 2125
633b0764 2126 available += objects;
12d79634 2127 if (!object) {
75c8ff28 2128 *ret_page = page;
49e22585 2129 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2130 object = t;
49e22585 2131 } else {
633b0764 2132 put_cpu_partial(s, page, 0);
8028dcea 2133 stat(s, CPU_PARTIAL_NODE);
49e22585 2134 }
345c905d 2135 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2136 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2137 break;
2138
497b66f2 2139 }
4b1f449d 2140 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2141 return object;
81819f0f
CL
2142}
2143
2144/*
672bba3a 2145 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2146 */
de3ec035 2147static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
75c8ff28 2148 struct page **ret_page)
81819f0f
CL
2149{
2150#ifdef CONFIG_NUMA
2151 struct zonelist *zonelist;
dd1a239f 2152 struct zoneref *z;
54a6eb5c 2153 struct zone *zone;
97a225e6 2154 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2155 void *object;
cc9a6c87 2156 unsigned int cpuset_mems_cookie;
81819f0f
CL
2157
2158 /*
672bba3a
CL
2159 * The defrag ratio allows a configuration of the tradeoffs between
2160 * inter node defragmentation and node local allocations. A lower
2161 * defrag_ratio increases the tendency to do local allocations
2162 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2163 *
672bba3a
CL
2164 * If the defrag_ratio is set to 0 then kmalloc() always
2165 * returns node local objects. If the ratio is higher then kmalloc()
2166 * may return off node objects because partial slabs are obtained
2167 * from other nodes and filled up.
81819f0f 2168 *
43efd3ea
LP
2169 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2170 * (which makes defrag_ratio = 1000) then every (well almost)
2171 * allocation will first attempt to defrag slab caches on other nodes.
2172 * This means scanning over all nodes to look for partial slabs which
2173 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2174 * with available objects.
81819f0f 2175 */
9824601e
CL
2176 if (!s->remote_node_defrag_ratio ||
2177 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2178 return NULL;
2179
cc9a6c87 2180 do {
d26914d1 2181 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2182 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2183 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2184 struct kmem_cache_node *n;
2185
2186 n = get_node(s, zone_to_nid(zone));
2187
dee2f8aa 2188 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2189 n->nr_partial > s->min_partial) {
75c8ff28 2190 object = get_partial_node(s, n, ret_page, flags);
cc9a6c87
MG
2191 if (object) {
2192 /*
d26914d1
MG
2193 * Don't check read_mems_allowed_retry()
2194 * here - if mems_allowed was updated in
2195 * parallel, that was a harmless race
2196 * between allocation and the cpuset
2197 * update
cc9a6c87 2198 */
cc9a6c87
MG
2199 return object;
2200 }
c0ff7453 2201 }
81819f0f 2202 }
d26914d1 2203 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2204#endif /* CONFIG_NUMA */
81819f0f
CL
2205 return NULL;
2206}
2207
2208/*
2209 * Get a partial page, lock it and return it.
2210 */
497b66f2 2211static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
75c8ff28 2212 struct page **ret_page)
81819f0f 2213{
497b66f2 2214 void *object;
a561ce00
JK
2215 int searchnode = node;
2216
2217 if (node == NUMA_NO_NODE)
2218 searchnode = numa_mem_id();
81819f0f 2219
75c8ff28 2220 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
497b66f2
CL
2221 if (object || node != NUMA_NO_NODE)
2222 return object;
81819f0f 2223
75c8ff28 2224 return get_any_partial(s, flags, ret_page);
81819f0f
CL
2225}
2226
923717cb 2227#ifdef CONFIG_PREEMPTION
8a5ec0ba 2228/*
0d645ed1 2229 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2230 * during cmpxchg. The transactions start with the cpu number and are then
2231 * incremented by CONFIG_NR_CPUS.
2232 */
2233#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2234#else
2235/*
2236 * No preemption supported therefore also no need to check for
2237 * different cpus.
2238 */
2239#define TID_STEP 1
2240#endif
2241
2242static inline unsigned long next_tid(unsigned long tid)
2243{
2244 return tid + TID_STEP;
2245}
2246
9d5f0be0 2247#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2248static inline unsigned int tid_to_cpu(unsigned long tid)
2249{
2250 return tid % TID_STEP;
2251}
2252
2253static inline unsigned long tid_to_event(unsigned long tid)
2254{
2255 return tid / TID_STEP;
2256}
9d5f0be0 2257#endif
8a5ec0ba
CL
2258
2259static inline unsigned int init_tid(int cpu)
2260{
2261 return cpu;
2262}
2263
2264static inline void note_cmpxchg_failure(const char *n,
2265 const struct kmem_cache *s, unsigned long tid)
2266{
2267#ifdef SLUB_DEBUG_CMPXCHG
2268 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2269
f9f58285 2270 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2271
923717cb 2272#ifdef CONFIG_PREEMPTION
8a5ec0ba 2273 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2274 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2275 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2276 else
2277#endif
2278 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2279 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2280 tid_to_event(tid), tid_to_event(actual_tid));
2281 else
f9f58285 2282 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2283 actual_tid, tid, next_tid(tid));
2284#endif
4fdccdfb 2285 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2286}
2287
788e1aad 2288static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2289{
8a5ec0ba 2290 int cpu;
bd0e7491 2291 struct kmem_cache_cpu *c;
8a5ec0ba 2292
bd0e7491
VB
2293 for_each_possible_cpu(cpu) {
2294 c = per_cpu_ptr(s->cpu_slab, cpu);
2295 local_lock_init(&c->lock);
2296 c->tid = init_tid(cpu);
2297 }
8a5ec0ba 2298}
2cfb7455 2299
81819f0f 2300/*
a019d201
VB
2301 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2302 * unfreezes the slabs and puts it on the proper list.
2303 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2304 * by the caller.
81819f0f 2305 */
d0e0ac97 2306static void deactivate_slab(struct kmem_cache *s, struct page *page,
a019d201 2307 void *freelist)
81819f0f 2308{
2cfb7455 2309 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2310 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2311 int lock = 0, free_delta = 0;
2cfb7455 2312 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2313 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2314 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2315 unsigned long flags = 0;
2cfb7455
CL
2316 struct page new;
2317 struct page old;
2318
2319 if (page->freelist) {
84e554e6 2320 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2321 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2322 }
2323
894b8788 2324 /*
d930ff03
VB
2325 * Stage one: Count the objects on cpu's freelist as free_delta and
2326 * remember the last object in freelist_tail for later splicing.
2cfb7455 2327 */
d930ff03
VB
2328 freelist_tail = NULL;
2329 freelist_iter = freelist;
2330 while (freelist_iter) {
2331 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2332
52f23478
DZ
2333 /*
2334 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2335 * 'freelist_iter' is already corrupted. So isolate all objects
2336 * starting at 'freelist_iter' by skipping them.
52f23478 2337 */
d930ff03 2338 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2339 break;
2340
d930ff03
VB
2341 freelist_tail = freelist_iter;
2342 free_delta++;
2cfb7455 2343
d930ff03 2344 freelist_iter = nextfree;
2cfb7455
CL
2345 }
2346
894b8788 2347 /*
d930ff03
VB
2348 * Stage two: Unfreeze the page while splicing the per-cpu
2349 * freelist to the head of page's freelist.
2350 *
2351 * Ensure that the page is unfrozen while the list presence
2352 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2353 *
2354 * We setup the list membership and then perform a cmpxchg
2355 * with the count. If there is a mismatch then the page
2356 * is not unfrozen but the page is on the wrong list.
2357 *
2358 * Then we restart the process which may have to remove
2359 * the page from the list that we just put it on again
2360 * because the number of objects in the slab may have
2361 * changed.
894b8788 2362 */
2cfb7455 2363redo:
894b8788 2364
d930ff03
VB
2365 old.freelist = READ_ONCE(page->freelist);
2366 old.counters = READ_ONCE(page->counters);
a0132ac0 2367 VM_BUG_ON(!old.frozen);
7c2e132c 2368
2cfb7455
CL
2369 /* Determine target state of the slab */
2370 new.counters = old.counters;
d930ff03
VB
2371 if (freelist_tail) {
2372 new.inuse -= free_delta;
2373 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2374 new.freelist = freelist;
2375 } else
2376 new.freelist = old.freelist;
2377
2378 new.frozen = 0;
2379
8a5b20ae 2380 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2381 m = M_FREE;
2382 else if (new.freelist) {
2383 m = M_PARTIAL;
2384 if (!lock) {
2385 lock = 1;
2386 /*
8bb4e7a2 2387 * Taking the spinlock removes the possibility
2cfb7455
CL
2388 * that acquire_slab() will see a slab page that
2389 * is frozen
2390 */
3406e91b 2391 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2392 }
2393 } else {
2394 m = M_FULL;
965c4848 2395 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2396 lock = 1;
2397 /*
2398 * This also ensures that the scanning of full
2399 * slabs from diagnostic functions will not see
2400 * any frozen slabs.
2401 */
3406e91b 2402 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2403 }
2404 }
2405
2406 if (l != m) {
2cfb7455 2407 if (l == M_PARTIAL)
2cfb7455 2408 remove_partial(n, page);
2cfb7455 2409 else if (l == M_FULL)
c65c1877 2410 remove_full(s, n, page);
2cfb7455 2411
88349a28 2412 if (m == M_PARTIAL)
2cfb7455 2413 add_partial(n, page, tail);
88349a28 2414 else if (m == M_FULL)
2cfb7455 2415 add_full(s, n, page);
2cfb7455
CL
2416 }
2417
2418 l = m;
3406e91b 2419 if (!cmpxchg_double_slab(s, page,
2cfb7455
CL
2420 old.freelist, old.counters,
2421 new.freelist, new.counters,
2422 "unfreezing slab"))
2423 goto redo;
2424
2cfb7455 2425 if (lock)
3406e91b 2426 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2427
88349a28
WY
2428 if (m == M_PARTIAL)
2429 stat(s, tail);
2430 else if (m == M_FULL)
2431 stat(s, DEACTIVATE_FULL);
2432 else if (m == M_FREE) {
2cfb7455
CL
2433 stat(s, DEACTIVATE_EMPTY);
2434 discard_slab(s, page);
2435 stat(s, FREE_SLAB);
894b8788 2436 }
81819f0f
CL
2437}
2438
345c905d 2439#ifdef CONFIG_SLUB_CPU_PARTIAL
fc1455f4
VB
2440static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2441{
43d77867 2442 struct kmem_cache_node *n = NULL, *n2 = NULL;
fc1455f4 2443 struct page *page, *discard_page = NULL;
7cf9f3ba 2444 unsigned long flags = 0;
49e22585 2445
c2f973ba 2446 while (partial_page) {
49e22585
CL
2447 struct page new;
2448 struct page old;
2449
c2f973ba
VB
2450 page = partial_page;
2451 partial_page = page->next;
43d77867
JK
2452
2453 n2 = get_node(s, page_to_nid(page));
2454 if (n != n2) {
2455 if (n)
7cf9f3ba 2456 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2457
2458 n = n2;
7cf9f3ba 2459 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2460 }
49e22585
CL
2461
2462 do {
2463
2464 old.freelist = page->freelist;
2465 old.counters = page->counters;
a0132ac0 2466 VM_BUG_ON(!old.frozen);
49e22585
CL
2467
2468 new.counters = old.counters;
2469 new.freelist = old.freelist;
2470
2471 new.frozen = 0;
2472
d24ac77f 2473 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2474 old.freelist, old.counters,
2475 new.freelist, new.counters,
2476 "unfreezing slab"));
2477
8a5b20ae 2478 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2479 page->next = discard_page;
2480 discard_page = page;
43d77867
JK
2481 } else {
2482 add_partial(n, page, DEACTIVATE_TO_TAIL);
2483 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2484 }
2485 }
2486
2487 if (n)
7cf9f3ba 2488 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2489
9ada1934
SL
2490 while (discard_page) {
2491 page = discard_page;
2492 discard_page = discard_page->next;
2493
2494 stat(s, DEACTIVATE_EMPTY);
2495 discard_slab(s, page);
2496 stat(s, FREE_SLAB);
2497 }
fc1455f4 2498}
f3ab8b6b 2499
fc1455f4
VB
2500/*
2501 * Unfreeze all the cpu partial slabs.
2502 */
2503static void unfreeze_partials(struct kmem_cache *s)
2504{
2505 struct page *partial_page;
2506 unsigned long flags;
2507
bd0e7491 2508 local_lock_irqsave(&s->cpu_slab->lock, flags);
fc1455f4
VB
2509 partial_page = this_cpu_read(s->cpu_slab->partial);
2510 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2511 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4
VB
2512
2513 if (partial_page)
2514 __unfreeze_partials(s, partial_page);
2515}
2516
2517static void unfreeze_partials_cpu(struct kmem_cache *s,
2518 struct kmem_cache_cpu *c)
2519{
2520 struct page *partial_page;
2521
2522 partial_page = slub_percpu_partial(c);
2523 c->partial = NULL;
2524
2525 if (partial_page)
2526 __unfreeze_partials(s, partial_page);
49e22585
CL
2527}
2528
2529/*
9234bae9
WY
2530 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2531 * partial page slot if available.
49e22585
CL
2532 *
2533 * If we did not find a slot then simply move all the partials to the
2534 * per node partial list.
2535 */
633b0764 2536static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
2537{
2538 struct page *oldpage;
e0a043aa
VB
2539 struct page *page_to_unfreeze = NULL;
2540 unsigned long flags;
2541 int pages = 0;
2542 int pobjects = 0;
49e22585 2543
bd0e7491 2544 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2545
e0a043aa
VB
2546 oldpage = this_cpu_read(s->cpu_slab->partial);
2547
2548 if (oldpage) {
2549 if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2550 /*
2551 * Partial array is full. Move the existing set to the
2552 * per node partial list. Postpone the actual unfreezing
2553 * outside of the critical section.
2554 */
2555 page_to_unfreeze = oldpage;
2556 oldpage = NULL;
2557 } else {
49e22585
CL
2558 pobjects = oldpage->pobjects;
2559 pages = oldpage->pages;
49e22585 2560 }
e0a043aa 2561 }
49e22585 2562
e0a043aa
VB
2563 pages++;
2564 pobjects += page->objects - page->inuse;
49e22585 2565
e0a043aa
VB
2566 page->pages = pages;
2567 page->pobjects = pobjects;
2568 page->next = oldpage;
49e22585 2569
e0a043aa
VB
2570 this_cpu_write(s->cpu_slab->partial, page);
2571
bd0e7491 2572 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa
VB
2573
2574 if (page_to_unfreeze) {
2575 __unfreeze_partials(s, page_to_unfreeze);
2576 stat(s, CPU_PARTIAL_DRAIN);
2577 }
49e22585
CL
2578}
2579
e0a043aa
VB
2580#else /* CONFIG_SLUB_CPU_PARTIAL */
2581
2582static inline void unfreeze_partials(struct kmem_cache *s) { }
2583static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2584 struct kmem_cache_cpu *c) { }
2585
2586#endif /* CONFIG_SLUB_CPU_PARTIAL */
2587
dfb4f096 2588static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2589{
5a836bf6
SAS
2590 unsigned long flags;
2591 struct page *page;
2592 void *freelist;
2593
bd0e7491 2594 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6
SAS
2595
2596 page = c->page;
2597 freelist = c->freelist;
c17dda40 2598
a019d201
VB
2599 c->page = NULL;
2600 c->freelist = NULL;
c17dda40 2601 c->tid = next_tid(c->tid);
a019d201 2602
bd0e7491 2603 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2604
5a836bf6
SAS
2605 if (page) {
2606 deactivate_slab(s, page, freelist);
2607 stat(s, CPUSLAB_FLUSH);
2608 }
81819f0f
CL
2609}
2610
0c710013 2611static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2612{
9dfc6e68 2613 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547
VB
2614 void *freelist = c->freelist;
2615 struct page *page = c->page;
81819f0f 2616
08beb547
VB
2617 c->page = NULL;
2618 c->freelist = NULL;
2619 c->tid = next_tid(c->tid);
2620
2621 if (page) {
2622 deactivate_slab(s, page, freelist);
2623 stat(s, CPUSLAB_FLUSH);
2624 }
49e22585 2625
fc1455f4 2626 unfreeze_partials_cpu(s, c);
81819f0f
CL
2627}
2628
5a836bf6
SAS
2629struct slub_flush_work {
2630 struct work_struct work;
2631 struct kmem_cache *s;
2632 bool skip;
2633};
2634
fc1455f4
VB
2635/*
2636 * Flush cpu slab.
2637 *
5a836bf6 2638 * Called from CPU work handler with migration disabled.
fc1455f4 2639 */
5a836bf6 2640static void flush_cpu_slab(struct work_struct *w)
81819f0f 2641{
5a836bf6
SAS
2642 struct kmem_cache *s;
2643 struct kmem_cache_cpu *c;
2644 struct slub_flush_work *sfw;
2645
2646 sfw = container_of(w, struct slub_flush_work, work);
2647
2648 s = sfw->s;
2649 c = this_cpu_ptr(s->cpu_slab);
fc1455f4
VB
2650
2651 if (c->page)
2652 flush_slab(s, c);
81819f0f 2653
fc1455f4 2654 unfreeze_partials(s);
81819f0f
CL
2655}
2656
5a836bf6 2657static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2658{
a8364d55
GBY
2659 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2660
a93cf07b 2661 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2662}
2663
5a836bf6
SAS
2664static DEFINE_MUTEX(flush_lock);
2665static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2666
2667static void flush_all_cpus_locked(struct kmem_cache *s)
2668{
2669 struct slub_flush_work *sfw;
2670 unsigned int cpu;
2671
2672 lockdep_assert_cpus_held();
2673 mutex_lock(&flush_lock);
2674
2675 for_each_online_cpu(cpu) {
2676 sfw = &per_cpu(slub_flush, cpu);
2677 if (!has_cpu_slab(cpu, s)) {
2678 sfw->skip = true;
2679 continue;
2680 }
2681 INIT_WORK(&sfw->work, flush_cpu_slab);
2682 sfw->skip = false;
2683 sfw->s = s;
2684 schedule_work_on(cpu, &sfw->work);
2685 }
2686
2687 for_each_online_cpu(cpu) {
2688 sfw = &per_cpu(slub_flush, cpu);
2689 if (sfw->skip)
2690 continue;
2691 flush_work(&sfw->work);
2692 }
2693
2694 mutex_unlock(&flush_lock);
2695}
2696
81819f0f
CL
2697static void flush_all(struct kmem_cache *s)
2698{
5a836bf6
SAS
2699 cpus_read_lock();
2700 flush_all_cpus_locked(s);
2701 cpus_read_unlock();
81819f0f
CL
2702}
2703
a96a87bf
SAS
2704/*
2705 * Use the cpu notifier to insure that the cpu slabs are flushed when
2706 * necessary.
2707 */
2708static int slub_cpu_dead(unsigned int cpu)
2709{
2710 struct kmem_cache *s;
a96a87bf
SAS
2711
2712 mutex_lock(&slab_mutex);
0e7ac738 2713 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2714 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2715 mutex_unlock(&slab_mutex);
2716 return 0;
2717}
2718
dfb4f096
CL
2719/*
2720 * Check if the objects in a per cpu structure fit numa
2721 * locality expectations.
2722 */
57d437d2 2723static inline int node_match(struct page *page, int node)
dfb4f096
CL
2724{
2725#ifdef CONFIG_NUMA
6159d0f5 2726 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2727 return 0;
2728#endif
2729 return 1;
2730}
2731
9a02d699 2732#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2733static int count_free(struct page *page)
2734{
2735 return page->objects - page->inuse;
2736}
2737
9a02d699
DR
2738static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2739{
2740 return atomic_long_read(&n->total_objects);
2741}
2742#endif /* CONFIG_SLUB_DEBUG */
2743
2744#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2745static unsigned long count_partial(struct kmem_cache_node *n,
2746 int (*get_count)(struct page *))
2747{
2748 unsigned long flags;
2749 unsigned long x = 0;
2750 struct page *page;
2751
2752 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2753 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2754 x += get_count(page);
2755 spin_unlock_irqrestore(&n->list_lock, flags);
2756 return x;
2757}
9a02d699 2758#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2759
781b2ba6
PE
2760static noinline void
2761slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2762{
9a02d699
DR
2763#ifdef CONFIG_SLUB_DEBUG
2764 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2765 DEFAULT_RATELIMIT_BURST);
781b2ba6 2766 int node;
fa45dc25 2767 struct kmem_cache_node *n;
781b2ba6 2768
9a02d699
DR
2769 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2770 return;
2771
5b3810e5
VB
2772 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2773 nid, gfpflags, &gfpflags);
19af27af 2774 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2775 s->name, s->object_size, s->size, oo_order(s->oo),
2776 oo_order(s->min));
781b2ba6 2777
3b0efdfa 2778 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2779 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2780 s->name);
fa5ec8a1 2781
fa45dc25 2782 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2783 unsigned long nr_slabs;
2784 unsigned long nr_objs;
2785 unsigned long nr_free;
2786
26c02cf0
AB
2787 nr_free = count_partial(n, count_free);
2788 nr_slabs = node_nr_slabs(n);
2789 nr_objs = node_nr_objs(n);
781b2ba6 2790
f9f58285 2791 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2792 node, nr_slabs, nr_objs, nr_free);
2793 }
9a02d699 2794#endif
781b2ba6
PE
2795}
2796
072bb0aa
MG
2797static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2798{
2799 if (unlikely(PageSlabPfmemalloc(page)))
2800 return gfp_pfmemalloc_allowed(gfpflags);
2801
2802 return true;
2803}
2804
0b303fb4
VB
2805/*
2806 * A variant of pfmemalloc_match() that tests page flags without asserting
2807 * PageSlab. Intended for opportunistic checks before taking a lock and
2808 * rechecking that nobody else freed the page under us.
2809 */
2810static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2811{
2812 if (unlikely(__PageSlabPfmemalloc(page)))
2813 return gfp_pfmemalloc_allowed(gfpflags);
2814
2815 return true;
2816}
2817
213eeb9f 2818/*
d0e0ac97
CG
2819 * Check the page->freelist of a page and either transfer the freelist to the
2820 * per cpu freelist or deactivate the page.
213eeb9f
CL
2821 *
2822 * The page is still frozen if the return value is not NULL.
2823 *
2824 * If this function returns NULL then the page has been unfrozen.
2825 */
2826static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2827{
2828 struct page new;
2829 unsigned long counters;
2830 void *freelist;
2831
bd0e7491
VB
2832 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2833
213eeb9f
CL
2834 do {
2835 freelist = page->freelist;
2836 counters = page->counters;
6faa6833 2837
213eeb9f 2838 new.counters = counters;
a0132ac0 2839 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2840
2841 new.inuse = page->objects;
2842 new.frozen = freelist != NULL;
2843
d24ac77f 2844 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2845 freelist, counters,
2846 NULL, new.counters,
2847 "get_freelist"));
2848
2849 return freelist;
2850}
2851
81819f0f 2852/*
894b8788
CL
2853 * Slow path. The lockless freelist is empty or we need to perform
2854 * debugging duties.
2855 *
894b8788
CL
2856 * Processing is still very fast if new objects have been freed to the
2857 * regular freelist. In that case we simply take over the regular freelist
2858 * as the lockless freelist and zap the regular freelist.
81819f0f 2859 *
894b8788
CL
2860 * If that is not working then we fall back to the partial lists. We take the
2861 * first element of the freelist as the object to allocate now and move the
2862 * rest of the freelist to the lockless freelist.
81819f0f 2863 *
894b8788 2864 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2865 * we need to allocate a new slab. This is the slowest path since it involves
2866 * a call to the page allocator and the setup of a new slab.
a380a3c7 2867 *
e500059b 2868 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2869 * already disabled (which is the case for bulk allocation).
81819f0f 2870 */
a380a3c7 2871static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2872 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2873{
6faa6833 2874 void *freelist;
f6e7def7 2875 struct page *page;
e500059b 2876 unsigned long flags;
81819f0f 2877
9f986d99
AW
2878 stat(s, ALLOC_SLOWPATH);
2879
0b303fb4
VB
2880reread_page:
2881
2882 page = READ_ONCE(c->page);
0715e6c5
VB
2883 if (!page) {
2884 /*
2885 * if the node is not online or has no normal memory, just
2886 * ignore the node constraint
2887 */
2888 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2889 !node_isset(node, slab_nodes)))
0715e6c5 2890 node = NUMA_NO_NODE;
81819f0f 2891 goto new_slab;
0715e6c5 2892 }
49e22585 2893redo:
6faa6833 2894
57d437d2 2895 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2896 /*
2897 * same as above but node_match() being false already
2898 * implies node != NUMA_NO_NODE
2899 */
7e1fa93d 2900 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2901 node = NUMA_NO_NODE;
2902 goto redo;
2903 } else {
a561ce00 2904 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2905 goto deactivate_slab;
a561ce00 2906 }
fc59c053 2907 }
6446faa2 2908
072bb0aa
MG
2909 /*
2910 * By rights, we should be searching for a slab page that was
2911 * PFMEMALLOC but right now, we are losing the pfmemalloc
2912 * information when the page leaves the per-cpu allocator
2913 */
0b303fb4
VB
2914 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2915 goto deactivate_slab;
072bb0aa 2916
25c00c50 2917 /* must check again c->page in case we got preempted and it changed */
bd0e7491 2918 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2919 if (unlikely(page != c->page)) {
bd0e7491 2920 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2921 goto reread_page;
2922 }
6faa6833
CL
2923 freelist = c->freelist;
2924 if (freelist)
73736e03 2925 goto load_freelist;
03e404af 2926
f6e7def7 2927 freelist = get_freelist(s, page);
6446faa2 2928
6faa6833 2929 if (!freelist) {
03e404af 2930 c->page = NULL;
bd0e7491 2931 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2932 stat(s, DEACTIVATE_BYPASS);
fc59c053 2933 goto new_slab;
03e404af 2934 }
6446faa2 2935
84e554e6 2936 stat(s, ALLOC_REFILL);
6446faa2 2937
894b8788 2938load_freelist:
0b303fb4 2939
bd0e7491 2940 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2941
507effea
CL
2942 /*
2943 * freelist is pointing to the list of objects to be used.
2944 * page is pointing to the page from which the objects are obtained.
2945 * That page must be frozen for per cpu allocations to work.
2946 */
a0132ac0 2947 VM_BUG_ON(!c->page->frozen);
6faa6833 2948 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2949 c->tid = next_tid(c->tid);
bd0e7491 2950 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2951 return freelist;
81819f0f 2952
0b303fb4
VB
2953deactivate_slab:
2954
bd0e7491 2955 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2956 if (page != c->page) {
bd0e7491 2957 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2958 goto reread_page;
2959 }
a019d201
VB
2960 freelist = c->freelist;
2961 c->page = NULL;
2962 c->freelist = NULL;
bd0e7491 2963 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 2964 deactivate_slab(s, page, freelist);
0b303fb4 2965
81819f0f 2966new_slab:
2cfb7455 2967
a93cf07b 2968 if (slub_percpu_partial(c)) {
bd0e7491 2969 local_lock_irqsave(&s->cpu_slab->lock, flags);
fa417ab7 2970 if (unlikely(c->page)) {
bd0e7491 2971 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fa417ab7
VB
2972 goto reread_page;
2973 }
4b1f449d 2974 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 2975 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
2976 /* we were preempted and partial list got empty */
2977 goto new_objects;
4b1f449d 2978 }
fa417ab7 2979
a93cf07b
WY
2980 page = c->page = slub_percpu_partial(c);
2981 slub_set_percpu_partial(c, page);
bd0e7491 2982 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 2983 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2984 goto redo;
81819f0f
CL
2985 }
2986
fa417ab7
VB
2987new_objects:
2988
75c8ff28 2989 freelist = get_partial(s, gfpflags, node, &page);
3f2b77e3 2990 if (freelist)
2a904905
VB
2991 goto check_new_page;
2992
25c00c50 2993 slub_put_cpu_ptr(s->cpu_slab);
53a0de06 2994 page = new_slab(s, gfpflags, node);
25c00c50 2995 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 2996
53a0de06 2997 if (unlikely(!page)) {
9a02d699 2998 slab_out_of_memory(s, gfpflags, node);
f4697436 2999 return NULL;
81819f0f 3000 }
2cfb7455 3001
53a0de06
VB
3002 /*
3003 * No other reference to the page yet so we can
3004 * muck around with it freely without cmpxchg
3005 */
3006 freelist = page->freelist;
3007 page->freelist = NULL;
3008
3009 stat(s, ALLOC_SLAB);
53a0de06 3010
2a904905 3011check_new_page:
2cfb7455 3012
1572df7c 3013 if (kmem_cache_debug(s)) {
fa417ab7 3014 if (!alloc_debug_processing(s, page, freelist, addr)) {
1572df7c
VB
3015 /* Slab failed checks. Next slab needed */
3016 goto new_slab;
fa417ab7 3017 } else {
1572df7c
VB
3018 /*
3019 * For debug case, we don't load freelist so that all
3020 * allocations go through alloc_debug_processing()
3021 */
3022 goto return_single;
fa417ab7 3023 }
1572df7c
VB
3024 }
3025
3026 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3027 /*
3028 * For !pfmemalloc_match() case we don't load freelist so that
3029 * we don't make further mismatched allocations easier.
3030 */
3031 goto return_single;
3032
cfdf836e
VB
3033retry_load_page:
3034
bd0e7491 3035 local_lock_irqsave(&s->cpu_slab->lock, flags);
cfdf836e
VB
3036 if (unlikely(c->page)) {
3037 void *flush_freelist = c->freelist;
3038 struct page *flush_page = c->page;
3039
3040 c->page = NULL;
3041 c->freelist = NULL;
3042 c->tid = next_tid(c->tid);
3043
bd0e7491 3044 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e
VB
3045
3046 deactivate_slab(s, flush_page, flush_freelist);
3047
3048 stat(s, CPUSLAB_FLUSH);
3049
3050 goto retry_load_page;
3051 }
3f2b77e3
VB
3052 c->page = page;
3053
1572df7c
VB
3054 goto load_freelist;
3055
3056return_single:
894b8788 3057
a019d201 3058 deactivate_slab(s, page, get_freepointer(s, freelist));
6faa6833 3059 return freelist;
894b8788
CL
3060}
3061
a380a3c7 3062/*
e500059b
VB
3063 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3064 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3065 * pointer.
a380a3c7
CL
3066 */
3067static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3068 unsigned long addr, struct kmem_cache_cpu *c)
3069{
3070 void *p;
a380a3c7 3071
e500059b 3072#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3073 /*
3074 * We may have been preempted and rescheduled on a different
e500059b 3075 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3076 * pointer.
3077 */
25c00c50 3078 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3079#endif
3080
3081 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3082#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3083 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3084#endif
a380a3c7
CL
3085 return p;
3086}
3087
0f181f9f
AP
3088/*
3089 * If the object has been wiped upon free, make sure it's fully initialized by
3090 * zeroing out freelist pointer.
3091 */
3092static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3093 void *obj)
3094{
3095 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3096 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3097 0, sizeof(void *));
0f181f9f
AP
3098}
3099
894b8788
CL
3100/*
3101 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3102 * have the fastpath folded into their functions. So no function call
3103 * overhead for requests that can be satisfied on the fastpath.
3104 *
3105 * The fastpath works by first checking if the lockless freelist can be used.
3106 * If not then __slab_alloc is called for slow processing.
3107 *
3108 * Otherwise we can simply pick the next object from the lockless free list.
3109 */
2b847c3c 3110static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3111 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3112{
03ec0ed5 3113 void *object;
dfb4f096 3114 struct kmem_cache_cpu *c;
57d437d2 3115 struct page *page;
8a5ec0ba 3116 unsigned long tid;
964d4bd3 3117 struct obj_cgroup *objcg = NULL;
da844b78 3118 bool init = false;
1f84260c 3119
964d4bd3 3120 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 3121 if (!s)
773ff60e 3122 return NULL;
b89fb5ef
AP
3123
3124 object = kfence_alloc(s, orig_size, gfpflags);
3125 if (unlikely(object))
3126 goto out;
3127
8a5ec0ba 3128redo:
8a5ec0ba
CL
3129 /*
3130 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3131 * enabled. We may switch back and forth between cpus while
3132 * reading from one cpu area. That does not matter as long
3133 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3134 *
9b4bc85a
VB
3135 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3136 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3137 * the tid. If we are preempted and switched to another cpu between the
3138 * two reads, it's OK as the two are still associated with the same cpu
3139 * and cmpxchg later will validate the cpu.
8a5ec0ba 3140 */
9b4bc85a
VB
3141 c = raw_cpu_ptr(s->cpu_slab);
3142 tid = READ_ONCE(c->tid);
9aabf810
JK
3143
3144 /*
3145 * Irqless object alloc/free algorithm used here depends on sequence
3146 * of fetching cpu_slab's data. tid should be fetched before anything
3147 * on c to guarantee that object and page associated with previous tid
3148 * won't be used with current tid. If we fetch tid first, object and
3149 * page could be one associated with next tid and our alloc/free
3150 * request will be failed. In this case, we will retry. So, no problem.
3151 */
3152 barrier();
8a5ec0ba 3153
8a5ec0ba
CL
3154 /*
3155 * The transaction ids are globally unique per cpu and per operation on
3156 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3157 * occurs on the right processor and that there was no operation on the
3158 * linked list in between.
3159 */
8a5ec0ba 3160
9dfc6e68 3161 object = c->freelist;
57d437d2 3162 page = c->page;
bd0e7491
VB
3163 /*
3164 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3165 * slowpath has taken the local_lock_irqsave(), it is not protected
3166 * against a fast path operation in an irq handler. So we need to take
3167 * the slow path which uses local_lock. It is still relatively fast if
3168 * there is a suitable cpu freelist.
3169 */
3170 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3171 unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 3172 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3173 } else {
0ad9500e
ED
3174 void *next_object = get_freepointer_safe(s, object);
3175
8a5ec0ba 3176 /*
25985edc 3177 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3178 * operation and if we are on the right processor.
3179 *
d0e0ac97
CG
3180 * The cmpxchg does the following atomically (without lock
3181 * semantics!)
8a5ec0ba
CL
3182 * 1. Relocate first pointer to the current per cpu area.
3183 * 2. Verify that tid and freelist have not been changed
3184 * 3. If they were not changed replace tid and freelist
3185 *
d0e0ac97
CG
3186 * Since this is without lock semantics the protection is only
3187 * against code executing on this cpu *not* from access by
3188 * other cpus.
8a5ec0ba 3189 */
933393f5 3190 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3191 s->cpu_slab->freelist, s->cpu_slab->tid,
3192 object, tid,
0ad9500e 3193 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3194
3195 note_cmpxchg_failure("slab_alloc", s, tid);
3196 goto redo;
3197 }
0ad9500e 3198 prefetch_freepointer(s, next_object);
84e554e6 3199 stat(s, ALLOC_FASTPATH);
894b8788 3200 }
0f181f9f 3201
ce5716c6 3202 maybe_wipe_obj_freeptr(s, object);
da844b78 3203 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3204
b89fb5ef 3205out:
da844b78 3206 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3207
894b8788 3208 return object;
81819f0f
CL
3209}
3210
2b847c3c 3211static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 3212 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3213{
b89fb5ef 3214 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3215}
3216
81819f0f
CL
3217void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3218{
b89fb5ef 3219 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 3220
d0e0ac97
CG
3221 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3222 s->size, gfpflags);
5b882be4
EGM
3223
3224 return ret;
81819f0f
CL
3225}
3226EXPORT_SYMBOL(kmem_cache_alloc);
3227
0f24f128 3228#ifdef CONFIG_TRACING
4a92379b
RK
3229void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3230{
b89fb5ef 3231 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 3232 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 3233 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3234 return ret;
3235}
3236EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3237#endif
3238
81819f0f
CL
3239#ifdef CONFIG_NUMA
3240void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3241{
b89fb5ef 3242 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3243
ca2b84cb 3244 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3245 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3246
3247 return ret;
81819f0f
CL
3248}
3249EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3250
0f24f128 3251#ifdef CONFIG_TRACING
4a92379b 3252void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3253 gfp_t gfpflags,
4a92379b 3254 int node, size_t size)
5b882be4 3255{
b89fb5ef 3256 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3257
3258 trace_kmalloc_node(_RET_IP_, ret,
3259 size, s->size, gfpflags, node);
0316bec2 3260
0116523c 3261 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3262 return ret;
5b882be4 3263}
4a92379b 3264EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3265#endif
6dfd1b65 3266#endif /* CONFIG_NUMA */
5b882be4 3267
81819f0f 3268/*
94e4d712 3269 * Slow path handling. This may still be called frequently since objects
894b8788 3270 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3271 *
894b8788
CL
3272 * So we still attempt to reduce cache line usage. Just take the slab
3273 * lock and free the item. If there is no additional partial page
3274 * handling required then we can return immediately.
81819f0f 3275 */
894b8788 3276static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3277 void *head, void *tail, int cnt,
3278 unsigned long addr)
3279
81819f0f
CL
3280{
3281 void *prior;
2cfb7455 3282 int was_frozen;
2cfb7455
CL
3283 struct page new;
3284 unsigned long counters;
3285 struct kmem_cache_node *n = NULL;
3f649ab7 3286 unsigned long flags;
81819f0f 3287
8a5ec0ba 3288 stat(s, FREE_SLOWPATH);
81819f0f 3289
b89fb5ef
AP
3290 if (kfence_free(head))
3291 return;
3292
19c7ff9e 3293 if (kmem_cache_debug(s) &&
282acb43 3294 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3295 return;
6446faa2 3296
2cfb7455 3297 do {
837d678d
JK
3298 if (unlikely(n)) {
3299 spin_unlock_irqrestore(&n->list_lock, flags);
3300 n = NULL;
3301 }
2cfb7455
CL
3302 prior = page->freelist;
3303 counters = page->counters;
81084651 3304 set_freepointer(s, tail, prior);
2cfb7455
CL
3305 new.counters = counters;
3306 was_frozen = new.frozen;
81084651 3307 new.inuse -= cnt;
837d678d 3308 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3309
c65c1877 3310 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3311
3312 /*
d0e0ac97
CG
3313 * Slab was on no list before and will be
3314 * partially empty
3315 * We can defer the list move and instead
3316 * freeze it.
49e22585
CL
3317 */
3318 new.frozen = 1;
3319
c65c1877 3320 } else { /* Needs to be taken off a list */
49e22585 3321
b455def2 3322 n = get_node(s, page_to_nid(page));
49e22585
CL
3323 /*
3324 * Speculatively acquire the list_lock.
3325 * If the cmpxchg does not succeed then we may
3326 * drop the list_lock without any processing.
3327 *
3328 * Otherwise the list_lock will synchronize with
3329 * other processors updating the list of slabs.
3330 */
3331 spin_lock_irqsave(&n->list_lock, flags);
3332
3333 }
2cfb7455 3334 }
81819f0f 3335
2cfb7455
CL
3336 } while (!cmpxchg_double_slab(s, page,
3337 prior, counters,
81084651 3338 head, new.counters,
2cfb7455 3339 "__slab_free"));
81819f0f 3340
2cfb7455 3341 if (likely(!n)) {
49e22585 3342
c270cf30
AW
3343 if (likely(was_frozen)) {
3344 /*
3345 * The list lock was not taken therefore no list
3346 * activity can be necessary.
3347 */
3348 stat(s, FREE_FROZEN);
3349 } else if (new.frozen) {
3350 /*
3351 * If we just froze the page then put it onto the
3352 * per cpu partial list.
3353 */
49e22585 3354 put_cpu_partial(s, page, 1);
8028dcea
AS
3355 stat(s, CPU_PARTIAL_FREE);
3356 }
c270cf30 3357
b455def2
L
3358 return;
3359 }
81819f0f 3360
8a5b20ae 3361 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3362 goto slab_empty;
3363
81819f0f 3364 /*
837d678d
JK
3365 * Objects left in the slab. If it was not on the partial list before
3366 * then add it.
81819f0f 3367 */
345c905d 3368 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3369 remove_full(s, n, page);
837d678d
JK
3370 add_partial(n, page, DEACTIVATE_TO_TAIL);
3371 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3372 }
80f08c19 3373 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3374 return;
3375
3376slab_empty:
a973e9dd 3377 if (prior) {
81819f0f 3378 /*
6fbabb20 3379 * Slab on the partial list.
81819f0f 3380 */
5cc6eee8 3381 remove_partial(n, page);
84e554e6 3382 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3383 } else {
6fbabb20 3384 /* Slab must be on the full list */
c65c1877
PZ
3385 remove_full(s, n, page);
3386 }
2cfb7455 3387
80f08c19 3388 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3389 stat(s, FREE_SLAB);
81819f0f 3390 discard_slab(s, page);
81819f0f
CL
3391}
3392
894b8788
CL
3393/*
3394 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3395 * can perform fastpath freeing without additional function calls.
3396 *
3397 * The fastpath is only possible if we are freeing to the current cpu slab
3398 * of this processor. This typically the case if we have just allocated
3399 * the item before.
3400 *
3401 * If fastpath is not possible then fall back to __slab_free where we deal
3402 * with all sorts of special processing.
81084651
JDB
3403 *
3404 * Bulk free of a freelist with several objects (all pointing to the
3405 * same page) possible by specifying head and tail ptr, plus objects
3406 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3407 */
80a9201a
AP
3408static __always_inline void do_slab_free(struct kmem_cache *s,
3409 struct page *page, void *head, void *tail,
3410 int cnt, unsigned long addr)
894b8788 3411{
81084651 3412 void *tail_obj = tail ? : head;
dfb4f096 3413 struct kmem_cache_cpu *c;
8a5ec0ba 3414 unsigned long tid;
964d4bd3 3415
d1b2cf6c 3416 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3417redo:
3418 /*
3419 * Determine the currently cpus per cpu slab.
3420 * The cpu may change afterward. However that does not matter since
3421 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3422 * during the cmpxchg then the free will succeed.
8a5ec0ba 3423 */
9b4bc85a
VB
3424 c = raw_cpu_ptr(s->cpu_slab);
3425 tid = READ_ONCE(c->tid);
c016b0bd 3426
9aabf810
JK
3427 /* Same with comment on barrier() in slab_alloc_node() */
3428 barrier();
c016b0bd 3429
442b06bc 3430 if (likely(page == c->page)) {
bd0e7491 3431#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3432 void **freelist = READ_ONCE(c->freelist);
3433
3434 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3435
933393f5 3436 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3437 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3438 freelist, tid,
81084651 3439 head, next_tid(tid)))) {
8a5ec0ba
CL
3440
3441 note_cmpxchg_failure("slab_free", s, tid);
3442 goto redo;
3443 }
bd0e7491
VB
3444#else /* CONFIG_PREEMPT_RT */
3445 /*
3446 * We cannot use the lockless fastpath on PREEMPT_RT because if
3447 * a slowpath has taken the local_lock_irqsave(), it is not
3448 * protected against a fast path operation in an irq handler. So
3449 * we need to take the local_lock. We shouldn't simply defer to
3450 * __slab_free() as that wouldn't use the cpu freelist at all.
3451 */
3452 void **freelist;
3453
3454 local_lock(&s->cpu_slab->lock);
3455 c = this_cpu_ptr(s->cpu_slab);
3456 if (unlikely(page != c->page)) {
3457 local_unlock(&s->cpu_slab->lock);
3458 goto redo;
3459 }
3460 tid = c->tid;
3461 freelist = c->freelist;
3462
3463 set_freepointer(s, tail_obj, freelist);
3464 c->freelist = head;
3465 c->tid = next_tid(tid);
3466
3467 local_unlock(&s->cpu_slab->lock);
3468#endif
84e554e6 3469 stat(s, FREE_FASTPATH);
894b8788 3470 } else
81084651 3471 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3472
894b8788
CL
3473}
3474
80a9201a
AP
3475static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3476 void *head, void *tail, int cnt,
3477 unsigned long addr)
3478{
80a9201a 3479 /*
c3895391
AK
3480 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3481 * to remove objects, whose reuse must be delayed.
80a9201a 3482 */
c3895391
AK
3483 if (slab_free_freelist_hook(s, &head, &tail))
3484 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3485}
3486
2bd926b4 3487#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3488void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3489{
3490 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3491}
3492#endif
3493
81819f0f
CL
3494void kmem_cache_free(struct kmem_cache *s, void *x)
3495{
b9ce5ef4
GC
3496 s = cache_from_obj(s, x);
3497 if (!s)
79576102 3498 return;
81084651 3499 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3500 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3501}
3502EXPORT_SYMBOL(kmem_cache_free);
3503
d0ecd894 3504struct detached_freelist {
fbd02630 3505 struct page *page;
d0ecd894
JDB
3506 void *tail;
3507 void *freelist;
3508 int cnt;
376bf125 3509 struct kmem_cache *s;
d0ecd894 3510};
fbd02630 3511
1ed7ce57 3512static inline void free_nonslab_page(struct page *page, void *object)
f227f0fa
SB
3513{
3514 unsigned int order = compound_order(page);
3515
3516 VM_BUG_ON_PAGE(!PageCompound(page), page);
1ed7ce57 3517 kfree_hook(object);
f227f0fa
SB
3518 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3519 __free_pages(page, order);
3520}
3521
d0ecd894
JDB
3522/*
3523 * This function progressively scans the array with free objects (with
3524 * a limited look ahead) and extract objects belonging to the same
3525 * page. It builds a detached freelist directly within the given
3526 * page/objects. This can happen without any need for
3527 * synchronization, because the objects are owned by running process.
3528 * The freelist is build up as a single linked list in the objects.
3529 * The idea is, that this detached freelist can then be bulk
3530 * transferred to the real freelist(s), but only requiring a single
3531 * synchronization primitive. Look ahead in the array is limited due
3532 * to performance reasons.
3533 */
376bf125
JDB
3534static inline
3535int build_detached_freelist(struct kmem_cache *s, size_t size,
3536 void **p, struct detached_freelist *df)
d0ecd894
JDB
3537{
3538 size_t first_skipped_index = 0;
3539 int lookahead = 3;
3540 void *object;
ca257195 3541 struct page *page;
fbd02630 3542
d0ecd894
JDB
3543 /* Always re-init detached_freelist */
3544 df->page = NULL;
fbd02630 3545
d0ecd894
JDB
3546 do {
3547 object = p[--size];
ca257195 3548 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3549 } while (!object && size);
3eed034d 3550
d0ecd894
JDB
3551 if (!object)
3552 return 0;
fbd02630 3553
ca257195
JDB
3554 page = virt_to_head_page(object);
3555 if (!s) {
3556 /* Handle kalloc'ed objects */
3557 if (unlikely(!PageSlab(page))) {
1ed7ce57 3558 free_nonslab_page(page, object);
ca257195
JDB
3559 p[size] = NULL; /* mark object processed */
3560 return size;
3561 }
3562 /* Derive kmem_cache from object */
3563 df->s = page->slab_cache;
3564 } else {
3565 df->s = cache_from_obj(s, object); /* Support for memcg */
3566 }
376bf125 3567
b89fb5ef 3568 if (is_kfence_address(object)) {
d57a964e 3569 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3570 __kfence_free(object);
3571 p[size] = NULL; /* mark object processed */
3572 return size;
3573 }
3574
d0ecd894 3575 /* Start new detached freelist */
ca257195 3576 df->page = page;
376bf125 3577 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3578 df->tail = object;
3579 df->freelist = object;
3580 p[size] = NULL; /* mark object processed */
3581 df->cnt = 1;
3582
3583 while (size) {
3584 object = p[--size];
3585 if (!object)
3586 continue; /* Skip processed objects */
3587
3588 /* df->page is always set at this point */
3589 if (df->page == virt_to_head_page(object)) {
3590 /* Opportunity build freelist */
376bf125 3591 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3592 df->freelist = object;
3593 df->cnt++;
3594 p[size] = NULL; /* mark object processed */
3595
3596 continue;
fbd02630 3597 }
d0ecd894
JDB
3598
3599 /* Limit look ahead search */
3600 if (!--lookahead)
3601 break;
3602
3603 if (!first_skipped_index)
3604 first_skipped_index = size + 1;
fbd02630 3605 }
d0ecd894
JDB
3606
3607 return first_skipped_index;
3608}
3609
d0ecd894 3610/* Note that interrupts must be enabled when calling this function. */
376bf125 3611void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3612{
3613 if (WARN_ON(!size))
3614 return;
3615
d1b2cf6c 3616 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3617 do {
3618 struct detached_freelist df;
3619
3620 size = build_detached_freelist(s, size, p, &df);
84582c8a 3621 if (!df.page)
d0ecd894
JDB
3622 continue;
3623
457c82c3 3624 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3625 } while (likely(size));
484748f0
CL
3626}
3627EXPORT_SYMBOL(kmem_cache_free_bulk);
3628
994eb764 3629/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3630int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3631 void **p)
484748f0 3632{
994eb764
JDB
3633 struct kmem_cache_cpu *c;
3634 int i;
964d4bd3 3635 struct obj_cgroup *objcg = NULL;
994eb764 3636
03ec0ed5 3637 /* memcg and kmem_cache debug support */
964d4bd3 3638 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3639 if (unlikely(!s))
3640 return false;
994eb764
JDB
3641 /*
3642 * Drain objects in the per cpu slab, while disabling local
3643 * IRQs, which protects against PREEMPT and interrupts
3644 * handlers invoking normal fastpath.
3645 */
25c00c50 3646 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3647 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3648
3649 for (i = 0; i < size; i++) {
b89fb5ef 3650 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3651
b89fb5ef
AP
3652 if (unlikely(object)) {
3653 p[i] = object;
3654 continue;
3655 }
3656
3657 object = c->freelist;
ebe909e0 3658 if (unlikely(!object)) {
fd4d9c7d
JH
3659 /*
3660 * We may have removed an object from c->freelist using
3661 * the fastpath in the previous iteration; in that case,
3662 * c->tid has not been bumped yet.
3663 * Since ___slab_alloc() may reenable interrupts while
3664 * allocating memory, we should bump c->tid now.
3665 */
3666 c->tid = next_tid(c->tid);
3667
bd0e7491 3668 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3669
ebe909e0
JDB
3670 /*
3671 * Invoking slow path likely have side-effect
3672 * of re-populating per CPU c->freelist
3673 */
87098373 3674 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3675 _RET_IP_, c);
87098373
CL
3676 if (unlikely(!p[i]))
3677 goto error;
3678
ebe909e0 3679 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3680 maybe_wipe_obj_freeptr(s, p[i]);
3681
bd0e7491 3682 local_lock_irq(&s->cpu_slab->lock);
e500059b 3683
ebe909e0
JDB
3684 continue; /* goto for-loop */
3685 }
994eb764
JDB
3686 c->freelist = get_freepointer(s, object);
3687 p[i] = object;
0f181f9f 3688 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3689 }
3690 c->tid = next_tid(c->tid);
bd0e7491 3691 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3692 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3693
da844b78
AK
3694 /*
3695 * memcg and kmem_cache debug support and memory initialization.
3696 * Done outside of the IRQ disabled fastpath loop.
3697 */
3698 slab_post_alloc_hook(s, objcg, flags, size, p,
3699 slab_want_init_on_alloc(flags, s));
865762a8 3700 return i;
87098373 3701error:
25c00c50 3702 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3703 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3704 __kmem_cache_free_bulk(s, i, p);
865762a8 3705 return 0;
484748f0
CL
3706}
3707EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3708
3709
81819f0f 3710/*
672bba3a
CL
3711 * Object placement in a slab is made very easy because we always start at
3712 * offset 0. If we tune the size of the object to the alignment then we can
3713 * get the required alignment by putting one properly sized object after
3714 * another.
81819f0f
CL
3715 *
3716 * Notice that the allocation order determines the sizes of the per cpu
3717 * caches. Each processor has always one slab available for allocations.
3718 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3719 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3720 * locking overhead.
81819f0f
CL
3721 */
3722
3723/*
f0953a1b 3724 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3725 * and slab fragmentation. A higher order reduces the number of partial slabs
3726 * and increases the number of allocations possible without having to
3727 * take the list_lock.
3728 */
19af27af
AD
3729static unsigned int slub_min_order;
3730static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3731static unsigned int slub_min_objects;
81819f0f 3732
81819f0f
CL
3733/*
3734 * Calculate the order of allocation given an slab object size.
3735 *
672bba3a
CL
3736 * The order of allocation has significant impact on performance and other
3737 * system components. Generally order 0 allocations should be preferred since
3738 * order 0 does not cause fragmentation in the page allocator. Larger objects
3739 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3740 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3741 * would be wasted.
3742 *
3743 * In order to reach satisfactory performance we must ensure that a minimum
3744 * number of objects is in one slab. Otherwise we may generate too much
3745 * activity on the partial lists which requires taking the list_lock. This is
3746 * less a concern for large slabs though which are rarely used.
81819f0f 3747 *
672bba3a
CL
3748 * slub_max_order specifies the order where we begin to stop considering the
3749 * number of objects in a slab as critical. If we reach slub_max_order then
3750 * we try to keep the page order as low as possible. So we accept more waste
3751 * of space in favor of a small page order.
81819f0f 3752 *
672bba3a
CL
3753 * Higher order allocations also allow the placement of more objects in a
3754 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3755 * requested a higher minimum order then we start with that one instead of
672bba3a 3756 * the smallest order which will fit the object.
81819f0f 3757 */
19af27af
AD
3758static inline unsigned int slab_order(unsigned int size,
3759 unsigned int min_objects, unsigned int max_order,
9736d2a9 3760 unsigned int fract_leftover)
81819f0f 3761{
19af27af
AD
3762 unsigned int min_order = slub_min_order;
3763 unsigned int order;
81819f0f 3764
9736d2a9 3765 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3766 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3767
9736d2a9 3768 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3769 order <= max_order; order++) {
81819f0f 3770
19af27af
AD
3771 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3772 unsigned int rem;
81819f0f 3773
9736d2a9 3774 rem = slab_size % size;
81819f0f 3775
5e6d444e 3776 if (rem <= slab_size / fract_leftover)
81819f0f 3777 break;
81819f0f 3778 }
672bba3a 3779
81819f0f
CL
3780 return order;
3781}
3782
9736d2a9 3783static inline int calculate_order(unsigned int size)
5e6d444e 3784{
19af27af
AD
3785 unsigned int order;
3786 unsigned int min_objects;
3787 unsigned int max_objects;
3286222f 3788 unsigned int nr_cpus;
5e6d444e
CL
3789
3790 /*
3791 * Attempt to find best configuration for a slab. This
3792 * works by first attempting to generate a layout with
3793 * the best configuration and backing off gradually.
3794 *
422ff4d7 3795 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3796 * we reduce the minimum objects required in a slab.
3797 */
3798 min_objects = slub_min_objects;
3286222f
VB
3799 if (!min_objects) {
3800 /*
3801 * Some architectures will only update present cpus when
3802 * onlining them, so don't trust the number if it's just 1. But
3803 * we also don't want to use nr_cpu_ids always, as on some other
3804 * architectures, there can be many possible cpus, but never
3805 * onlined. Here we compromise between trying to avoid too high
3806 * order on systems that appear larger than they are, and too
3807 * low order on systems that appear smaller than they are.
3808 */
3809 nr_cpus = num_present_cpus();
3810 if (nr_cpus <= 1)
3811 nr_cpus = nr_cpu_ids;
3812 min_objects = 4 * (fls(nr_cpus) + 1);
3813 }
9736d2a9 3814 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3815 min_objects = min(min_objects, max_objects);
3816
5e6d444e 3817 while (min_objects > 1) {
19af27af
AD
3818 unsigned int fraction;
3819
c124f5b5 3820 fraction = 16;
5e6d444e
CL
3821 while (fraction >= 4) {
3822 order = slab_order(size, min_objects,
9736d2a9 3823 slub_max_order, fraction);
5e6d444e
CL
3824 if (order <= slub_max_order)
3825 return order;
3826 fraction /= 2;
3827 }
5086c389 3828 min_objects--;
5e6d444e
CL
3829 }
3830
3831 /*
3832 * We were unable to place multiple objects in a slab. Now
3833 * lets see if we can place a single object there.
3834 */
9736d2a9 3835 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3836 if (order <= slub_max_order)
3837 return order;
3838
3839 /*
3840 * Doh this slab cannot be placed using slub_max_order.
3841 */
9736d2a9 3842 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3843 if (order < MAX_ORDER)
5e6d444e
CL
3844 return order;
3845 return -ENOSYS;
3846}
3847
5595cffc 3848static void
4053497d 3849init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3850{
3851 n->nr_partial = 0;
81819f0f
CL
3852 spin_lock_init(&n->list_lock);
3853 INIT_LIST_HEAD(&n->partial);
8ab1372f 3854#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3855 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3856 atomic_long_set(&n->total_objects, 0);
643b1138 3857 INIT_LIST_HEAD(&n->full);
8ab1372f 3858#endif
81819f0f
CL
3859}
3860
55136592 3861static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3862{
6c182dc0 3863 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3864 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3865
8a5ec0ba 3866 /*
d4d84fef
CM
3867 * Must align to double word boundary for the double cmpxchg
3868 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3869 */
d4d84fef
CM
3870 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3871 2 * sizeof(void *));
8a5ec0ba
CL
3872
3873 if (!s->cpu_slab)
3874 return 0;
3875
3876 init_kmem_cache_cpus(s);
4c93c355 3877
8a5ec0ba 3878 return 1;
4c93c355 3879}
4c93c355 3880
51df1142
CL
3881static struct kmem_cache *kmem_cache_node;
3882
81819f0f
CL
3883/*
3884 * No kmalloc_node yet so do it by hand. We know that this is the first
3885 * slab on the node for this slabcache. There are no concurrent accesses
3886 * possible.
3887 *
721ae22a
ZYW
3888 * Note that this function only works on the kmem_cache_node
3889 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3890 * memory on a fresh node that has no slab structures yet.
81819f0f 3891 */
55136592 3892static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3893{
3894 struct page *page;
3895 struct kmem_cache_node *n;
3896
51df1142 3897 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3898
51df1142 3899 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3900
3901 BUG_ON(!page);
a2f92ee7 3902 if (page_to_nid(page) != node) {
f9f58285
FF
3903 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3904 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3905 }
3906
81819f0f
CL
3907 n = page->freelist;
3908 BUG_ON(!n);
8ab1372f 3909#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3910 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3911 init_tracking(kmem_cache_node, n);
8ab1372f 3912#endif
da844b78 3913 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3914 page->freelist = get_freepointer(kmem_cache_node, n);
3915 page->inuse = 1;
3916 page->frozen = 0;
3917 kmem_cache_node->node[node] = n;
4053497d 3918 init_kmem_cache_node(n);
51df1142 3919 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3920
67b6c900 3921 /*
1e4dd946
SR
3922 * No locks need to be taken here as it has just been
3923 * initialized and there is no concurrent access.
67b6c900 3924 */
1e4dd946 3925 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3926}
3927
3928static void free_kmem_cache_nodes(struct kmem_cache *s)
3929{
3930 int node;
fa45dc25 3931 struct kmem_cache_node *n;
81819f0f 3932
fa45dc25 3933 for_each_kmem_cache_node(s, node, n) {
81819f0f 3934 s->node[node] = NULL;
ea37df54 3935 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3936 }
3937}
3938
52b4b950
DS
3939void __kmem_cache_release(struct kmem_cache *s)
3940{
210e7a43 3941 cache_random_seq_destroy(s);
52b4b950
DS
3942 free_percpu(s->cpu_slab);
3943 free_kmem_cache_nodes(s);
3944}
3945
55136592 3946static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3947{
3948 int node;
81819f0f 3949
7e1fa93d 3950 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3951 struct kmem_cache_node *n;
3952
73367bd8 3953 if (slab_state == DOWN) {
55136592 3954 early_kmem_cache_node_alloc(node);
73367bd8
AD
3955 continue;
3956 }
51df1142 3957 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3958 GFP_KERNEL, node);
81819f0f 3959
73367bd8
AD
3960 if (!n) {
3961 free_kmem_cache_nodes(s);
3962 return 0;
81819f0f 3963 }
73367bd8 3964
4053497d 3965 init_kmem_cache_node(n);
ea37df54 3966 s->node[node] = n;
81819f0f
CL
3967 }
3968 return 1;
3969}
81819f0f 3970
c0bdb232 3971static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3972{
3973 if (min < MIN_PARTIAL)
3974 min = MIN_PARTIAL;
3975 else if (min > MAX_PARTIAL)
3976 min = MAX_PARTIAL;
3977 s->min_partial = min;
3978}
3979
e6d0e1dc
WY
3980static void set_cpu_partial(struct kmem_cache *s)
3981{
3982#ifdef CONFIG_SLUB_CPU_PARTIAL
3983 /*
3984 * cpu_partial determined the maximum number of objects kept in the
3985 * per cpu partial lists of a processor.
3986 *
3987 * Per cpu partial lists mainly contain slabs that just have one
3988 * object freed. If they are used for allocation then they can be
3989 * filled up again with minimal effort. The slab will never hit the
3990 * per node partial lists and therefore no locking will be required.
3991 *
3992 * This setting also determines
3993 *
3994 * A) The number of objects from per cpu partial slabs dumped to the
3995 * per node list when we reach the limit.
3996 * B) The number of objects in cpu partial slabs to extract from the
3997 * per node list when we run out of per cpu objects. We only fetch
3998 * 50% to keep some capacity around for frees.
3999 */
4000 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 4001 slub_set_cpu_partial(s, 0);
e6d0e1dc 4002 else if (s->size >= PAGE_SIZE)
bbd4e305 4003 slub_set_cpu_partial(s, 2);
e6d0e1dc 4004 else if (s->size >= 1024)
bbd4e305 4005 slub_set_cpu_partial(s, 6);
e6d0e1dc 4006 else if (s->size >= 256)
bbd4e305 4007 slub_set_cpu_partial(s, 13);
e6d0e1dc 4008 else
bbd4e305 4009 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
4010#endif
4011}
4012
81819f0f
CL
4013/*
4014 * calculate_sizes() determines the order and the distribution of data within
4015 * a slab object.
4016 */
06b285dc 4017static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 4018{
d50112ed 4019 slab_flags_t flags = s->flags;
be4a7988 4020 unsigned int size = s->object_size;
19af27af 4021 unsigned int order;
81819f0f 4022
d8b42bf5
CL
4023 /*
4024 * Round up object size to the next word boundary. We can only
4025 * place the free pointer at word boundaries and this determines
4026 * the possible location of the free pointer.
4027 */
4028 size = ALIGN(size, sizeof(void *));
4029
4030#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4031 /*
4032 * Determine if we can poison the object itself. If the user of
4033 * the slab may touch the object after free or before allocation
4034 * then we should never poison the object itself.
4035 */
5f0d5a3a 4036 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4037 !s->ctor)
81819f0f
CL
4038 s->flags |= __OBJECT_POISON;
4039 else
4040 s->flags &= ~__OBJECT_POISON;
4041
81819f0f
CL
4042
4043 /*
672bba3a 4044 * If we are Redzoning then check if there is some space between the
81819f0f 4045 * end of the object and the free pointer. If not then add an
672bba3a 4046 * additional word to have some bytes to store Redzone information.
81819f0f 4047 */
3b0efdfa 4048 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4049 size += sizeof(void *);
41ecc55b 4050#endif
81819f0f
CL
4051
4052 /*
672bba3a 4053 * With that we have determined the number of bytes in actual use
e41a49fa 4054 * by the object and redzoning.
81819f0f
CL
4055 */
4056 s->inuse = size;
4057
74c1d3e0
KC
4058 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4059 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4060 s->ctor) {
81819f0f
CL
4061 /*
4062 * Relocate free pointer after the object if it is not
4063 * permitted to overwrite the first word of the object on
4064 * kmem_cache_free.
4065 *
4066 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4067 * destructor, are poisoning the objects, or are
4068 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4069 *
4070 * The assumption that s->offset >= s->inuse means free
4071 * pointer is outside of the object is used in the
4072 * freeptr_outside_object() function. If that is no
4073 * longer true, the function needs to be modified.
81819f0f
CL
4074 */
4075 s->offset = size;
4076 size += sizeof(void *);
e41a49fa 4077 } else {
3202fa62
KC
4078 /*
4079 * Store freelist pointer near middle of object to keep
4080 * it away from the edges of the object to avoid small
4081 * sized over/underflows from neighboring allocations.
4082 */
e41a49fa 4083 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4084 }
4085
c12b3c62 4086#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4087 if (flags & SLAB_STORE_USER)
4088 /*
4089 * Need to store information about allocs and frees after
4090 * the object.
4091 */
4092 size += 2 * sizeof(struct track);
80a9201a 4093#endif
81819f0f 4094
80a9201a
AP
4095 kasan_cache_create(s, &size, &s->flags);
4096#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4097 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4098 /*
4099 * Add some empty padding so that we can catch
4100 * overwrites from earlier objects rather than let
4101 * tracking information or the free pointer be
0211a9c8 4102 * corrupted if a user writes before the start
81819f0f
CL
4103 * of the object.
4104 */
4105 size += sizeof(void *);
d86bd1be
JK
4106
4107 s->red_left_pad = sizeof(void *);
4108 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4109 size += s->red_left_pad;
4110 }
41ecc55b 4111#endif
672bba3a 4112
81819f0f
CL
4113 /*
4114 * SLUB stores one object immediately after another beginning from
4115 * offset 0. In order to align the objects we have to simply size
4116 * each object to conform to the alignment.
4117 */
45906855 4118 size = ALIGN(size, s->align);
81819f0f 4119 s->size = size;
4138fdfc 4120 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
4121 if (forced_order >= 0)
4122 order = forced_order;
4123 else
9736d2a9 4124 order = calculate_order(size);
81819f0f 4125
19af27af 4126 if ((int)order < 0)
81819f0f
CL
4127 return 0;
4128
b7a49f0d 4129 s->allocflags = 0;
834f3d11 4130 if (order)
b7a49f0d
CL
4131 s->allocflags |= __GFP_COMP;
4132
4133 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4134 s->allocflags |= GFP_DMA;
b7a49f0d 4135
6d6ea1e9
NB
4136 if (s->flags & SLAB_CACHE_DMA32)
4137 s->allocflags |= GFP_DMA32;
4138
b7a49f0d
CL
4139 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4140 s->allocflags |= __GFP_RECLAIMABLE;
4141
81819f0f
CL
4142 /*
4143 * Determine the number of objects per slab
4144 */
9736d2a9
MW
4145 s->oo = oo_make(order, size);
4146 s->min = oo_make(get_order(size), size);
205ab99d
CL
4147 if (oo_objects(s->oo) > oo_objects(s->max))
4148 s->max = s->oo;
81819f0f 4149
834f3d11 4150 return !!oo_objects(s->oo);
81819f0f
CL
4151}
4152
d50112ed 4153static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4154{
37540008 4155 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4156#ifdef CONFIG_SLAB_FREELIST_HARDENED
4157 s->random = get_random_long();
4158#endif
81819f0f 4159
06b285dc 4160 if (!calculate_sizes(s, -1))
81819f0f 4161 goto error;
3de47213
DR
4162 if (disable_higher_order_debug) {
4163 /*
4164 * Disable debugging flags that store metadata if the min slab
4165 * order increased.
4166 */
3b0efdfa 4167 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4168 s->flags &= ~DEBUG_METADATA_FLAGS;
4169 s->offset = 0;
4170 if (!calculate_sizes(s, -1))
4171 goto error;
4172 }
4173 }
81819f0f 4174
2565409f
HC
4175#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4176 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4177 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4178 /* Enable fast mode */
4179 s->flags |= __CMPXCHG_DOUBLE;
4180#endif
4181
3b89d7d8
DR
4182 /*
4183 * The larger the object size is, the more pages we want on the partial
4184 * list to avoid pounding the page allocator excessively.
4185 */
49e22585
CL
4186 set_min_partial(s, ilog2(s->size) / 2);
4187
e6d0e1dc 4188 set_cpu_partial(s);
49e22585 4189
81819f0f 4190#ifdef CONFIG_NUMA
e2cb96b7 4191 s->remote_node_defrag_ratio = 1000;
81819f0f 4192#endif
210e7a43
TG
4193
4194 /* Initialize the pre-computed randomized freelist if slab is up */
4195 if (slab_state >= UP) {
4196 if (init_cache_random_seq(s))
4197 goto error;
4198 }
4199
55136592 4200 if (!init_kmem_cache_nodes(s))
dfb4f096 4201 goto error;
81819f0f 4202
55136592 4203 if (alloc_kmem_cache_cpus(s))
278b1bb1 4204 return 0;
ff12059e 4205
4c93c355 4206 free_kmem_cache_nodes(s);
81819f0f 4207error:
278b1bb1 4208 return -EINVAL;
81819f0f 4209}
81819f0f 4210
33b12c38 4211static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 4212 const char *text)
33b12c38
CL
4213{
4214#ifdef CONFIG_SLUB_DEBUG
4215 void *addr = page_address(page);
a2b4ae8b 4216 unsigned long flags;
55860d96 4217 unsigned long *map;
33b12c38 4218 void *p;
aa456c7a 4219
945cf2b6 4220 slab_err(s, page, text, s->name);
a2b4ae8b 4221 slab_lock(page, &flags);
33b12c38 4222
90e9f6a6 4223 map = get_map(s, page);
33b12c38
CL
4224 for_each_object(p, s, addr, page->objects) {
4225
4138fdfc 4226 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4227 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4228 print_tracking(s, p);
4229 }
4230 }
55860d96 4231 put_map(map);
a2b4ae8b 4232 slab_unlock(page, &flags);
33b12c38
CL
4233#endif
4234}
4235
81819f0f 4236/*
599870b1 4237 * Attempt to free all partial slabs on a node.
52b4b950
DS
4238 * This is called from __kmem_cache_shutdown(). We must take list_lock
4239 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4240 */
599870b1 4241static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4242{
60398923 4243 LIST_HEAD(discard);
81819f0f
CL
4244 struct page *page, *h;
4245
52b4b950
DS
4246 BUG_ON(irqs_disabled());
4247 spin_lock_irq(&n->list_lock);
916ac052 4248 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 4249 if (!page->inuse) {
52b4b950 4250 remove_partial(n, page);
916ac052 4251 list_add(&page->slab_list, &discard);
33b12c38
CL
4252 } else {
4253 list_slab_objects(s, page,
55860d96 4254 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4255 }
33b12c38 4256 }
52b4b950 4257 spin_unlock_irq(&n->list_lock);
60398923 4258
916ac052 4259 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 4260 discard_slab(s, page);
81819f0f
CL
4261}
4262
f9e13c0a
SB
4263bool __kmem_cache_empty(struct kmem_cache *s)
4264{
4265 int node;
4266 struct kmem_cache_node *n;
4267
4268 for_each_kmem_cache_node(s, node, n)
4269 if (n->nr_partial || slabs_node(s, node))
4270 return false;
4271 return true;
4272}
4273
81819f0f 4274/*
672bba3a 4275 * Release all resources used by a slab cache.
81819f0f 4276 */
52b4b950 4277int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4278{
4279 int node;
fa45dc25 4280 struct kmem_cache_node *n;
81819f0f 4281
5a836bf6 4282 flush_all_cpus_locked(s);
81819f0f 4283 /* Attempt to free all objects */
fa45dc25 4284 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4285 free_partial(s, n);
4286 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4287 return 1;
4288 }
81819f0f
CL
4289 return 0;
4290}
4291
5bb1bb35 4292#ifdef CONFIG_PRINTK
8e7f37f2
PM
4293void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4294{
4295 void *base;
4296 int __maybe_unused i;
4297 unsigned int objnr;
4298 void *objp;
4299 void *objp0;
4300 struct kmem_cache *s = page->slab_cache;
4301 struct track __maybe_unused *trackp;
4302
4303 kpp->kp_ptr = object;
4304 kpp->kp_page = page;
4305 kpp->kp_slab_cache = s;
4306 base = page_address(page);
4307 objp0 = kasan_reset_tag(object);
4308#ifdef CONFIG_SLUB_DEBUG
4309 objp = restore_red_left(s, objp0);
4310#else
4311 objp = objp0;
4312#endif
4313 objnr = obj_to_index(s, page, objp);
4314 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4315 objp = base + s->size * objnr;
4316 kpp->kp_objp = objp;
4317 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4318 !(s->flags & SLAB_STORE_USER))
4319 return;
4320#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4321 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4322 trackp = get_track(s, objp, TRACK_ALLOC);
4323 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4324#ifdef CONFIG_STACKTRACE
4325 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4326 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4327 if (!kpp->kp_stack[i])
4328 break;
4329 }
78869146 4330
ae14c63a
LT
4331 trackp = get_track(s, objp, TRACK_FREE);
4332 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4333 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4334 if (!kpp->kp_free_stack[i])
4335 break;
e548eaa1 4336 }
8e7f37f2
PM
4337#endif
4338#endif
4339}
5bb1bb35 4340#endif
8e7f37f2 4341
81819f0f
CL
4342/********************************************************************
4343 * Kmalloc subsystem
4344 *******************************************************************/
4345
81819f0f
CL
4346static int __init setup_slub_min_order(char *str)
4347{
19af27af 4348 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4349
4350 return 1;
4351}
4352
4353__setup("slub_min_order=", setup_slub_min_order);
4354
4355static int __init setup_slub_max_order(char *str)
4356{
19af27af
AD
4357 get_option(&str, (int *)&slub_max_order);
4358 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4359
4360 return 1;
4361}
4362
4363__setup("slub_max_order=", setup_slub_max_order);
4364
4365static int __init setup_slub_min_objects(char *str)
4366{
19af27af 4367 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4368
4369 return 1;
4370}
4371
4372__setup("slub_min_objects=", setup_slub_min_objects);
4373
81819f0f
CL
4374void *__kmalloc(size_t size, gfp_t flags)
4375{
aadb4bc4 4376 struct kmem_cache *s;
5b882be4 4377 void *ret;
81819f0f 4378
95a05b42 4379 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4380 return kmalloc_large(size, flags);
aadb4bc4 4381
2c59dd65 4382 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4383
4384 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4385 return s;
4386
b89fb5ef 4387 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4388
ca2b84cb 4389 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4390
0116523c 4391 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4392
5b882be4 4393 return ret;
81819f0f
CL
4394}
4395EXPORT_SYMBOL(__kmalloc);
4396
5d1f57e4 4397#ifdef CONFIG_NUMA
f619cfe1
CL
4398static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4399{
b1eeab67 4400 struct page *page;
e4f7c0b4 4401 void *ptr = NULL;
6a486c0a 4402 unsigned int order = get_order(size);
f619cfe1 4403
75f296d9 4404 flags |= __GFP_COMP;
6a486c0a
VB
4405 page = alloc_pages_node(node, flags, order);
4406 if (page) {
e4f7c0b4 4407 ptr = page_address(page);
96403bfe
MS
4408 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4409 PAGE_SIZE << order);
6a486c0a 4410 }
e4f7c0b4 4411
0116523c 4412 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4413}
4414
81819f0f
CL
4415void *__kmalloc_node(size_t size, gfp_t flags, int node)
4416{
aadb4bc4 4417 struct kmem_cache *s;
5b882be4 4418 void *ret;
81819f0f 4419
95a05b42 4420 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4421 ret = kmalloc_large_node(size, flags, node);
4422
ca2b84cb
EGM
4423 trace_kmalloc_node(_RET_IP_, ret,
4424 size, PAGE_SIZE << get_order(size),
4425 flags, node);
5b882be4
EGM
4426
4427 return ret;
4428 }
aadb4bc4 4429
2c59dd65 4430 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4431
4432 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4433 return s;
4434
b89fb5ef 4435 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4436
ca2b84cb 4437 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4438
0116523c 4439 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4440
5b882be4 4441 return ret;
81819f0f
CL
4442}
4443EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4444#endif /* CONFIG_NUMA */
81819f0f 4445
ed18adc1
KC
4446#ifdef CONFIG_HARDENED_USERCOPY
4447/*
afcc90f8
KC
4448 * Rejects incorrectly sized objects and objects that are to be copied
4449 * to/from userspace but do not fall entirely within the containing slab
4450 * cache's usercopy region.
ed18adc1
KC
4451 *
4452 * Returns NULL if check passes, otherwise const char * to name of cache
4453 * to indicate an error.
4454 */
f4e6e289
KC
4455void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4456 bool to_user)
ed18adc1
KC
4457{
4458 struct kmem_cache *s;
44065b2e 4459 unsigned int offset;
ed18adc1 4460 size_t object_size;
b89fb5ef 4461 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4462
96fedce2
AK
4463 ptr = kasan_reset_tag(ptr);
4464
ed18adc1
KC
4465 /* Find object and usable object size. */
4466 s = page->slab_cache;
ed18adc1
KC
4467
4468 /* Reject impossible pointers. */
4469 if (ptr < page_address(page))
f4e6e289
KC
4470 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4471 to_user, 0, n);
ed18adc1
KC
4472
4473 /* Find offset within object. */
b89fb5ef
AP
4474 if (is_kfence)
4475 offset = ptr - kfence_object_start(ptr);
4476 else
4477 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4478
4479 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4480 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4481 if (offset < s->red_left_pad)
f4e6e289
KC
4482 usercopy_abort("SLUB object in left red zone",
4483 s->name, to_user, offset, n);
ed18adc1
KC
4484 offset -= s->red_left_pad;
4485 }
4486
afcc90f8
KC
4487 /* Allow address range falling entirely within usercopy region. */
4488 if (offset >= s->useroffset &&
4489 offset - s->useroffset <= s->usersize &&
4490 n <= s->useroffset - offset + s->usersize)
f4e6e289 4491 return;
ed18adc1 4492
afcc90f8
KC
4493 /*
4494 * If the copy is still within the allocated object, produce
4495 * a warning instead of rejecting the copy. This is intended
4496 * to be a temporary method to find any missing usercopy
4497 * whitelists.
4498 */
4499 object_size = slab_ksize(s);
2d891fbc
KC
4500 if (usercopy_fallback &&
4501 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4502 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4503 return;
4504 }
ed18adc1 4505
f4e6e289 4506 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4507}
4508#endif /* CONFIG_HARDENED_USERCOPY */
4509
10d1f8cb 4510size_t __ksize(const void *object)
81819f0f 4511{
272c1d21 4512 struct page *page;
81819f0f 4513
ef8b4520 4514 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4515 return 0;
4516
294a80a8 4517 page = virt_to_head_page(object);
294a80a8 4518
76994412
PE
4519 if (unlikely(!PageSlab(page))) {
4520 WARN_ON(!PageCompound(page));
a50b854e 4521 return page_size(page);
76994412 4522 }
81819f0f 4523
1b4f59e3 4524 return slab_ksize(page->slab_cache);
81819f0f 4525}
10d1f8cb 4526EXPORT_SYMBOL(__ksize);
81819f0f
CL
4527
4528void kfree(const void *x)
4529{
81819f0f 4530 struct page *page;
5bb983b0 4531 void *object = (void *)x;
81819f0f 4532
2121db74
PE
4533 trace_kfree(_RET_IP_, x);
4534
2408c550 4535 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4536 return;
4537
b49af68f 4538 page = virt_to_head_page(x);
aadb4bc4 4539 if (unlikely(!PageSlab(page))) {
1ed7ce57 4540 free_nonslab_page(page, object);
aadb4bc4
CL
4541 return;
4542 }
81084651 4543 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4544}
4545EXPORT_SYMBOL(kfree);
4546
832f37f5
VD
4547#define SHRINK_PROMOTE_MAX 32
4548
2086d26a 4549/*
832f37f5
VD
4550 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4551 * up most to the head of the partial lists. New allocations will then
4552 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4553 *
4554 * The slabs with the least items are placed last. This results in them
4555 * being allocated from last increasing the chance that the last objects
4556 * are freed in them.
2086d26a 4557 */
5a836bf6 4558static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4559{
4560 int node;
4561 int i;
4562 struct kmem_cache_node *n;
4563 struct page *page;
4564 struct page *t;
832f37f5
VD
4565 struct list_head discard;
4566 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4567 unsigned long flags;
ce3712d7 4568 int ret = 0;
2086d26a 4569
fa45dc25 4570 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4571 INIT_LIST_HEAD(&discard);
4572 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4573 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4574
4575 spin_lock_irqsave(&n->list_lock, flags);
4576
4577 /*
832f37f5 4578 * Build lists of slabs to discard or promote.
2086d26a 4579 *
672bba3a
CL
4580 * Note that concurrent frees may occur while we hold the
4581 * list_lock. page->inuse here is the upper limit.
2086d26a 4582 */
916ac052 4583 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4584 int free = page->objects - page->inuse;
4585
4586 /* Do not reread page->inuse */
4587 barrier();
4588
4589 /* We do not keep full slabs on the list */
4590 BUG_ON(free <= 0);
4591
4592 if (free == page->objects) {
916ac052 4593 list_move(&page->slab_list, &discard);
69cb8e6b 4594 n->nr_partial--;
832f37f5 4595 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4596 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4597 }
4598
2086d26a 4599 /*
832f37f5
VD
4600 * Promote the slabs filled up most to the head of the
4601 * partial list.
2086d26a 4602 */
832f37f5
VD
4603 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4604 list_splice(promote + i, &n->partial);
2086d26a 4605
2086d26a 4606 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4607
4608 /* Release empty slabs */
916ac052 4609 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4610 discard_slab(s, page);
ce3712d7
VD
4611
4612 if (slabs_node(s, node))
4613 ret = 1;
2086d26a
CL
4614 }
4615
ce3712d7 4616 return ret;
2086d26a 4617}
2086d26a 4618
5a836bf6
SAS
4619int __kmem_cache_shrink(struct kmem_cache *s)
4620{
4621 flush_all(s);
4622 return __kmem_cache_do_shrink(s);
4623}
4624
b9049e23
YG
4625static int slab_mem_going_offline_callback(void *arg)
4626{
4627 struct kmem_cache *s;
4628
18004c5d 4629 mutex_lock(&slab_mutex);
5a836bf6
SAS
4630 list_for_each_entry(s, &slab_caches, list) {
4631 flush_all_cpus_locked(s);
4632 __kmem_cache_do_shrink(s);
4633 }
18004c5d 4634 mutex_unlock(&slab_mutex);
b9049e23
YG
4635
4636 return 0;
4637}
4638
4639static void slab_mem_offline_callback(void *arg)
4640{
b9049e23
YG
4641 struct memory_notify *marg = arg;
4642 int offline_node;
4643
b9d5ab25 4644 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4645
4646 /*
4647 * If the node still has available memory. we need kmem_cache_node
4648 * for it yet.
4649 */
4650 if (offline_node < 0)
4651 return;
4652
18004c5d 4653 mutex_lock(&slab_mutex);
7e1fa93d 4654 node_clear(offline_node, slab_nodes);
666716fd
VB
4655 /*
4656 * We no longer free kmem_cache_node structures here, as it would be
4657 * racy with all get_node() users, and infeasible to protect them with
4658 * slab_mutex.
4659 */
18004c5d 4660 mutex_unlock(&slab_mutex);
b9049e23
YG
4661}
4662
4663static int slab_mem_going_online_callback(void *arg)
4664{
4665 struct kmem_cache_node *n;
4666 struct kmem_cache *s;
4667 struct memory_notify *marg = arg;
b9d5ab25 4668 int nid = marg->status_change_nid_normal;
b9049e23
YG
4669 int ret = 0;
4670
4671 /*
4672 * If the node's memory is already available, then kmem_cache_node is
4673 * already created. Nothing to do.
4674 */
4675 if (nid < 0)
4676 return 0;
4677
4678 /*
0121c619 4679 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4680 * allocate a kmem_cache_node structure in order to bring the node
4681 * online.
4682 */
18004c5d 4683 mutex_lock(&slab_mutex);
b9049e23 4684 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4685 /*
4686 * The structure may already exist if the node was previously
4687 * onlined and offlined.
4688 */
4689 if (get_node(s, nid))
4690 continue;
b9049e23
YG
4691 /*
4692 * XXX: kmem_cache_alloc_node will fallback to other nodes
4693 * since memory is not yet available from the node that
4694 * is brought up.
4695 */
8de66a0c 4696 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4697 if (!n) {
4698 ret = -ENOMEM;
4699 goto out;
4700 }
4053497d 4701 init_kmem_cache_node(n);
b9049e23
YG
4702 s->node[nid] = n;
4703 }
7e1fa93d
VB
4704 /*
4705 * Any cache created after this point will also have kmem_cache_node
4706 * initialized for the new node.
4707 */
4708 node_set(nid, slab_nodes);
b9049e23 4709out:
18004c5d 4710 mutex_unlock(&slab_mutex);
b9049e23
YG
4711 return ret;
4712}
4713
4714static int slab_memory_callback(struct notifier_block *self,
4715 unsigned long action, void *arg)
4716{
4717 int ret = 0;
4718
4719 switch (action) {
4720 case MEM_GOING_ONLINE:
4721 ret = slab_mem_going_online_callback(arg);
4722 break;
4723 case MEM_GOING_OFFLINE:
4724 ret = slab_mem_going_offline_callback(arg);
4725 break;
4726 case MEM_OFFLINE:
4727 case MEM_CANCEL_ONLINE:
4728 slab_mem_offline_callback(arg);
4729 break;
4730 case MEM_ONLINE:
4731 case MEM_CANCEL_OFFLINE:
4732 break;
4733 }
dc19f9db
KH
4734 if (ret)
4735 ret = notifier_from_errno(ret);
4736 else
4737 ret = NOTIFY_OK;
b9049e23
YG
4738 return ret;
4739}
4740
3ac38faa
AM
4741static struct notifier_block slab_memory_callback_nb = {
4742 .notifier_call = slab_memory_callback,
4743 .priority = SLAB_CALLBACK_PRI,
4744};
b9049e23 4745
81819f0f
CL
4746/********************************************************************
4747 * Basic setup of slabs
4748 *******************************************************************/
4749
51df1142
CL
4750/*
4751 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4752 * the page allocator. Allocate them properly then fix up the pointers
4753 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4754 */
4755
dffb4d60 4756static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4757{
4758 int node;
dffb4d60 4759 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4760 struct kmem_cache_node *n;
51df1142 4761
dffb4d60 4762 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4763
7d557b3c
GC
4764 /*
4765 * This runs very early, and only the boot processor is supposed to be
4766 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4767 * IPIs around.
4768 */
4769 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4770 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4771 struct page *p;
4772
916ac052 4773 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4774 p->slab_cache = s;
51df1142 4775
607bf324 4776#ifdef CONFIG_SLUB_DEBUG
916ac052 4777 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4778 p->slab_cache = s;
51df1142 4779#endif
51df1142 4780 }
dffb4d60
CL
4781 list_add(&s->list, &slab_caches);
4782 return s;
51df1142
CL
4783}
4784
81819f0f
CL
4785void __init kmem_cache_init(void)
4786{
dffb4d60
CL
4787 static __initdata struct kmem_cache boot_kmem_cache,
4788 boot_kmem_cache_node;
7e1fa93d 4789 int node;
51df1142 4790
fc8d8620
SG
4791 if (debug_guardpage_minorder())
4792 slub_max_order = 0;
4793
79270291
SB
4794 /* Print slub debugging pointers without hashing */
4795 if (__slub_debug_enabled())
4796 no_hash_pointers_enable(NULL);
4797
dffb4d60
CL
4798 kmem_cache_node = &boot_kmem_cache_node;
4799 kmem_cache = &boot_kmem_cache;
51df1142 4800
7e1fa93d
VB
4801 /*
4802 * Initialize the nodemask for which we will allocate per node
4803 * structures. Here we don't need taking slab_mutex yet.
4804 */
4805 for_each_node_state(node, N_NORMAL_MEMORY)
4806 node_set(node, slab_nodes);
4807
dffb4d60 4808 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4809 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4810
3ac38faa 4811 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4812
4813 /* Able to allocate the per node structures */
4814 slab_state = PARTIAL;
4815
dffb4d60
CL
4816 create_boot_cache(kmem_cache, "kmem_cache",
4817 offsetof(struct kmem_cache, node) +
4818 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4819 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4820
dffb4d60 4821 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4822 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4823
4824 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4825 setup_kmalloc_cache_index_table();
f97d5f63 4826 create_kmalloc_caches(0);
81819f0f 4827
210e7a43
TG
4828 /* Setup random freelists for each cache */
4829 init_freelist_randomization();
4830
a96a87bf
SAS
4831 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4832 slub_cpu_dead);
81819f0f 4833
b9726c26 4834 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4835 cache_line_size(),
81819f0f
CL
4836 slub_min_order, slub_max_order, slub_min_objects,
4837 nr_cpu_ids, nr_node_ids);
4838}
4839
7e85ee0c
PE
4840void __init kmem_cache_init_late(void)
4841{
7e85ee0c
PE
4842}
4843
2633d7a0 4844struct kmem_cache *
f4957d5b 4845__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4846 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4847{
10befea9 4848 struct kmem_cache *s;
81819f0f 4849
a44cb944 4850 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4851 if (s) {
4852 s->refcount++;
84d0ddd6 4853
81819f0f
CL
4854 /*
4855 * Adjust the object sizes so that we clear
4856 * the complete object on kzalloc.
4857 */
1b473f29 4858 s->object_size = max(s->object_size, size);
52ee6d74 4859 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4860
7b8f3b66 4861 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4862 s->refcount--;
cbb79694 4863 s = NULL;
7b8f3b66 4864 }
a0e1d1be 4865 }
6446faa2 4866
cbb79694
CL
4867 return s;
4868}
84c1cf62 4869
d50112ed 4870int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4871{
aac3a166
PE
4872 int err;
4873
4874 err = kmem_cache_open(s, flags);
4875 if (err)
4876 return err;
20cea968 4877
45530c44
CL
4878 /* Mutex is not taken during early boot */
4879 if (slab_state <= UP)
4880 return 0;
4881
aac3a166 4882 err = sysfs_slab_add(s);
aac3a166 4883 if (err)
52b4b950 4884 __kmem_cache_release(s);
20cea968 4885
64dd6849
FM
4886 if (s->flags & SLAB_STORE_USER)
4887 debugfs_slab_add(s);
4888
aac3a166 4889 return err;
81819f0f 4890}
81819f0f 4891
ce71e27c 4892void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4893{
aadb4bc4 4894 struct kmem_cache *s;
94b528d0 4895 void *ret;
aadb4bc4 4896
95a05b42 4897 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4898 return kmalloc_large(size, gfpflags);
4899
2c59dd65 4900 s = kmalloc_slab(size, gfpflags);
81819f0f 4901
2408c550 4902 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4903 return s;
81819f0f 4904
b89fb5ef 4905 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4906
25985edc 4907 /* Honor the call site pointer we received. */
ca2b84cb 4908 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4909
4910 return ret;
81819f0f 4911}
fd7cb575 4912EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4913
5d1f57e4 4914#ifdef CONFIG_NUMA
81819f0f 4915void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4916 int node, unsigned long caller)
81819f0f 4917{
aadb4bc4 4918 struct kmem_cache *s;
94b528d0 4919 void *ret;
aadb4bc4 4920
95a05b42 4921 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4922 ret = kmalloc_large_node(size, gfpflags, node);
4923
4924 trace_kmalloc_node(caller, ret,
4925 size, PAGE_SIZE << get_order(size),
4926 gfpflags, node);
4927
4928 return ret;
4929 }
eada35ef 4930
2c59dd65 4931 s = kmalloc_slab(size, gfpflags);
81819f0f 4932
2408c550 4933 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4934 return s;
81819f0f 4935
b89fb5ef 4936 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4937
25985edc 4938 /* Honor the call site pointer we received. */
ca2b84cb 4939 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4940
4941 return ret;
81819f0f 4942}
fd7cb575 4943EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4944#endif
81819f0f 4945
ab4d5ed5 4946#ifdef CONFIG_SYSFS
205ab99d
CL
4947static int count_inuse(struct page *page)
4948{
4949 return page->inuse;
4950}
4951
4952static int count_total(struct page *page)
4953{
4954 return page->objects;
4955}
ab4d5ed5 4956#endif
205ab99d 4957
ab4d5ed5 4958#ifdef CONFIG_SLUB_DEBUG
0a19e7dd
VB
4959static void validate_slab(struct kmem_cache *s, struct page *page,
4960 unsigned long *obj_map)
53e15af0
CL
4961{
4962 void *p;
a973e9dd 4963 void *addr = page_address(page);
a2b4ae8b 4964 unsigned long flags;
90e9f6a6 4965
a2b4ae8b 4966 slab_lock(page, &flags);
53e15af0 4967
dd98afd4 4968 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4969 goto unlock;
53e15af0
CL
4970
4971 /* Now we know that a valid freelist exists */
0a19e7dd 4972 __fill_map(obj_map, s, page);
5f80b13a 4973 for_each_object(p, s, addr, page->objects) {
0a19e7dd 4974 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4975 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4976
dd98afd4
YZ
4977 if (!check_object(s, page, p, val))
4978 break;
4979 }
90e9f6a6 4980unlock:
a2b4ae8b 4981 slab_unlock(page, &flags);
53e15af0
CL
4982}
4983
434e245d 4984static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 4985 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
4986{
4987 unsigned long count = 0;
4988 struct page *page;
4989 unsigned long flags;
4990
4991 spin_lock_irqsave(&n->list_lock, flags);
4992
916ac052 4993 list_for_each_entry(page, &n->partial, slab_list) {
0a19e7dd 4994 validate_slab(s, page, obj_map);
53e15af0
CL
4995 count++;
4996 }
1f9f78b1 4997 if (count != n->nr_partial) {
f9f58285
FF
4998 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4999 s->name, count, n->nr_partial);
1f9f78b1
OG
5000 slab_add_kunit_errors();
5001 }
53e15af0
CL
5002
5003 if (!(s->flags & SLAB_STORE_USER))
5004 goto out;
5005
916ac052 5006 list_for_each_entry(page, &n->full, slab_list) {
0a19e7dd 5007 validate_slab(s, page, obj_map);
53e15af0
CL
5008 count++;
5009 }
1f9f78b1 5010 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
5011 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5012 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
5013 slab_add_kunit_errors();
5014 }
53e15af0
CL
5015
5016out:
5017 spin_unlock_irqrestore(&n->list_lock, flags);
5018 return count;
5019}
5020
1f9f78b1 5021long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5022{
5023 int node;
5024 unsigned long count = 0;
fa45dc25 5025 struct kmem_cache_node *n;
0a19e7dd
VB
5026 unsigned long *obj_map;
5027
5028 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5029 if (!obj_map)
5030 return -ENOMEM;
53e15af0
CL
5031
5032 flush_all(s);
fa45dc25 5033 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5034 count += validate_slab_node(s, n, obj_map);
5035
5036 bitmap_free(obj_map);
90e9f6a6 5037
53e15af0
CL
5038 return count;
5039}
1f9f78b1
OG
5040EXPORT_SYMBOL(validate_slab_cache);
5041
64dd6849 5042#ifdef CONFIG_DEBUG_FS
88a420e4 5043/*
672bba3a 5044 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5045 * and freed.
5046 */
5047
5048struct location {
5049 unsigned long count;
ce71e27c 5050 unsigned long addr;
45edfa58
CL
5051 long long sum_time;
5052 long min_time;
5053 long max_time;
5054 long min_pid;
5055 long max_pid;
174596a0 5056 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5057 nodemask_t nodes;
88a420e4
CL
5058};
5059
5060struct loc_track {
5061 unsigned long max;
5062 unsigned long count;
5063 struct location *loc;
5064};
5065
64dd6849
FM
5066static struct dentry *slab_debugfs_root;
5067
88a420e4
CL
5068static void free_loc_track(struct loc_track *t)
5069{
5070 if (t->max)
5071 free_pages((unsigned long)t->loc,
5072 get_order(sizeof(struct location) * t->max));
5073}
5074
68dff6a9 5075static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5076{
5077 struct location *l;
5078 int order;
5079
88a420e4
CL
5080 order = get_order(sizeof(struct location) * max);
5081
68dff6a9 5082 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5083 if (!l)
5084 return 0;
5085
5086 if (t->count) {
5087 memcpy(l, t->loc, sizeof(struct location) * t->count);
5088 free_loc_track(t);
5089 }
5090 t->max = max;
5091 t->loc = l;
5092 return 1;
5093}
5094
5095static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 5096 const struct track *track)
88a420e4
CL
5097{
5098 long start, end, pos;
5099 struct location *l;
ce71e27c 5100 unsigned long caddr;
45edfa58 5101 unsigned long age = jiffies - track->when;
88a420e4
CL
5102
5103 start = -1;
5104 end = t->count;
5105
5106 for ( ; ; ) {
5107 pos = start + (end - start + 1) / 2;
5108
5109 /*
5110 * There is nothing at "end". If we end up there
5111 * we need to add something to before end.
5112 */
5113 if (pos == end)
5114 break;
5115
5116 caddr = t->loc[pos].addr;
45edfa58
CL
5117 if (track->addr == caddr) {
5118
5119 l = &t->loc[pos];
5120 l->count++;
5121 if (track->when) {
5122 l->sum_time += age;
5123 if (age < l->min_time)
5124 l->min_time = age;
5125 if (age > l->max_time)
5126 l->max_time = age;
5127
5128 if (track->pid < l->min_pid)
5129 l->min_pid = track->pid;
5130 if (track->pid > l->max_pid)
5131 l->max_pid = track->pid;
5132
174596a0
RR
5133 cpumask_set_cpu(track->cpu,
5134 to_cpumask(l->cpus));
45edfa58
CL
5135 }
5136 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5137 return 1;
5138 }
5139
45edfa58 5140 if (track->addr < caddr)
88a420e4
CL
5141 end = pos;
5142 else
5143 start = pos;
5144 }
5145
5146 /*
672bba3a 5147 * Not found. Insert new tracking element.
88a420e4 5148 */
68dff6a9 5149 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5150 return 0;
5151
5152 l = t->loc + pos;
5153 if (pos < t->count)
5154 memmove(l + 1, l,
5155 (t->count - pos) * sizeof(struct location));
5156 t->count++;
5157 l->count = 1;
45edfa58
CL
5158 l->addr = track->addr;
5159 l->sum_time = age;
5160 l->min_time = age;
5161 l->max_time = age;
5162 l->min_pid = track->pid;
5163 l->max_pid = track->pid;
174596a0
RR
5164 cpumask_clear(to_cpumask(l->cpus));
5165 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5166 nodes_clear(l->nodes);
5167 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5168 return 1;
5169}
5170
5171static void process_slab(struct loc_track *t, struct kmem_cache *s,
b3fd64e1
VB
5172 struct page *page, enum track_item alloc,
5173 unsigned long *obj_map)
88a420e4 5174{
a973e9dd 5175 void *addr = page_address(page);
88a420e4
CL
5176 void *p;
5177
b3fd64e1
VB
5178 __fill_map(obj_map, s, page);
5179
224a88be 5180 for_each_object(p, s, addr, page->objects)
b3fd64e1 5181 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5182 add_location(t, s, get_track(s, p, alloc));
88a420e4 5183}
64dd6849 5184#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5185#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5186
ab4d5ed5 5187#ifdef CONFIG_SYSFS
81819f0f 5188enum slab_stat_type {
205ab99d
CL
5189 SL_ALL, /* All slabs */
5190 SL_PARTIAL, /* Only partially allocated slabs */
5191 SL_CPU, /* Only slabs used for cpu caches */
5192 SL_OBJECTS, /* Determine allocated objects not slabs */
5193 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5194};
5195
205ab99d 5196#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5197#define SO_PARTIAL (1 << SL_PARTIAL)
5198#define SO_CPU (1 << SL_CPU)
5199#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5200#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5201
62e5c4b4 5202static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5203 char *buf, unsigned long flags)
81819f0f
CL
5204{
5205 unsigned long total = 0;
81819f0f
CL
5206 int node;
5207 int x;
5208 unsigned long *nodes;
bf16d19a 5209 int len = 0;
81819f0f 5210
6396bb22 5211 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5212 if (!nodes)
5213 return -ENOMEM;
81819f0f 5214
205ab99d
CL
5215 if (flags & SO_CPU) {
5216 int cpu;
81819f0f 5217
205ab99d 5218 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5219 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5220 cpu);
ec3ab083 5221 int node;
49e22585 5222 struct page *page;
dfb4f096 5223
4db0c3c2 5224 page = READ_ONCE(c->page);
ec3ab083
CL
5225 if (!page)
5226 continue;
205ab99d 5227
ec3ab083
CL
5228 node = page_to_nid(page);
5229 if (flags & SO_TOTAL)
5230 x = page->objects;
5231 else if (flags & SO_OBJECTS)
5232 x = page->inuse;
5233 else
5234 x = 1;
49e22585 5235
ec3ab083
CL
5236 total += x;
5237 nodes[node] += x;
5238
a93cf07b 5239 page = slub_percpu_partial_read_once(c);
49e22585 5240 if (page) {
8afb1474
LZ
5241 node = page_to_nid(page);
5242 if (flags & SO_TOTAL)
5243 WARN_ON_ONCE(1);
5244 else if (flags & SO_OBJECTS)
5245 WARN_ON_ONCE(1);
5246 else
5247 x = page->pages;
bc6697d8
ED
5248 total += x;
5249 nodes[node] += x;
49e22585 5250 }
81819f0f
CL
5251 }
5252 }
5253
e4f8e513
QC
5254 /*
5255 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5256 * already held which will conflict with an existing lock order:
5257 *
5258 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5259 *
5260 * We don't really need mem_hotplug_lock (to hold off
5261 * slab_mem_going_offline_callback) here because slab's memory hot
5262 * unplug code doesn't destroy the kmem_cache->node[] data.
5263 */
5264
ab4d5ed5 5265#ifdef CONFIG_SLUB_DEBUG
205ab99d 5266 if (flags & SO_ALL) {
fa45dc25
CL
5267 struct kmem_cache_node *n;
5268
5269 for_each_kmem_cache_node(s, node, n) {
205ab99d 5270
d0e0ac97
CG
5271 if (flags & SO_TOTAL)
5272 x = atomic_long_read(&n->total_objects);
5273 else if (flags & SO_OBJECTS)
5274 x = atomic_long_read(&n->total_objects) -
5275 count_partial(n, count_free);
81819f0f 5276 else
205ab99d 5277 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5278 total += x;
5279 nodes[node] += x;
5280 }
5281
ab4d5ed5
CL
5282 } else
5283#endif
5284 if (flags & SO_PARTIAL) {
fa45dc25 5285 struct kmem_cache_node *n;
81819f0f 5286
fa45dc25 5287 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5288 if (flags & SO_TOTAL)
5289 x = count_partial(n, count_total);
5290 else if (flags & SO_OBJECTS)
5291 x = count_partial(n, count_inuse);
81819f0f 5292 else
205ab99d 5293 x = n->nr_partial;
81819f0f
CL
5294 total += x;
5295 nodes[node] += x;
5296 }
5297 }
bf16d19a
JP
5298
5299 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5300#ifdef CONFIG_NUMA
bf16d19a 5301 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5302 if (nodes[node])
bf16d19a
JP
5303 len += sysfs_emit_at(buf, len, " N%d=%lu",
5304 node, nodes[node]);
5305 }
81819f0f 5306#endif
bf16d19a 5307 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5308 kfree(nodes);
bf16d19a
JP
5309
5310 return len;
81819f0f
CL
5311}
5312
81819f0f 5313#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5314#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5315
5316struct slab_attribute {
5317 struct attribute attr;
5318 ssize_t (*show)(struct kmem_cache *s, char *buf);
5319 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5320};
5321
5322#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5323 static struct slab_attribute _name##_attr = \
5324 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5325
5326#define SLAB_ATTR(_name) \
5327 static struct slab_attribute _name##_attr = \
ab067e99 5328 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5329
81819f0f
CL
5330static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5331{
bf16d19a 5332 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5333}
5334SLAB_ATTR_RO(slab_size);
5335
5336static ssize_t align_show(struct kmem_cache *s, char *buf)
5337{
bf16d19a 5338 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5339}
5340SLAB_ATTR_RO(align);
5341
5342static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5343{
bf16d19a 5344 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5345}
5346SLAB_ATTR_RO(object_size);
5347
5348static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5349{
bf16d19a 5350 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5351}
5352SLAB_ATTR_RO(objs_per_slab);
5353
5354static ssize_t order_show(struct kmem_cache *s, char *buf)
5355{
bf16d19a 5356 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5357}
32a6f409 5358SLAB_ATTR_RO(order);
81819f0f 5359
73d342b1
DR
5360static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5361{
bf16d19a 5362 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5363}
5364
5365static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5366 size_t length)
5367{
5368 unsigned long min;
5369 int err;
5370
3dbb95f7 5371 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5372 if (err)
5373 return err;
5374
c0bdb232 5375 set_min_partial(s, min);
73d342b1
DR
5376 return length;
5377}
5378SLAB_ATTR(min_partial);
5379
49e22585
CL
5380static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5381{
bf16d19a 5382 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5383}
5384
5385static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5386 size_t length)
5387{
e5d9998f 5388 unsigned int objects;
49e22585
CL
5389 int err;
5390
e5d9998f 5391 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5392 if (err)
5393 return err;
345c905d 5394 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5395 return -EINVAL;
49e22585 5396
e6d0e1dc 5397 slub_set_cpu_partial(s, objects);
49e22585
CL
5398 flush_all(s);
5399 return length;
5400}
5401SLAB_ATTR(cpu_partial);
5402
81819f0f
CL
5403static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5404{
62c70bce
JP
5405 if (!s->ctor)
5406 return 0;
bf16d19a 5407 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5408}
5409SLAB_ATTR_RO(ctor);
5410
81819f0f
CL
5411static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5412{
bf16d19a 5413 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5414}
5415SLAB_ATTR_RO(aliases);
5416
81819f0f
CL
5417static ssize_t partial_show(struct kmem_cache *s, char *buf)
5418{
d9acf4b7 5419 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5420}
5421SLAB_ATTR_RO(partial);
5422
5423static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5424{
d9acf4b7 5425 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5426}
5427SLAB_ATTR_RO(cpu_slabs);
5428
5429static ssize_t objects_show(struct kmem_cache *s, char *buf)
5430{
205ab99d 5431 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5432}
5433SLAB_ATTR_RO(objects);
5434
205ab99d
CL
5435static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5436{
5437 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5438}
5439SLAB_ATTR_RO(objects_partial);
5440
49e22585
CL
5441static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5442{
5443 int objects = 0;
5444 int pages = 0;
5445 int cpu;
bf16d19a 5446 int len = 0;
49e22585
CL
5447
5448 for_each_online_cpu(cpu) {
a93cf07b
WY
5449 struct page *page;
5450
5451 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5452
5453 if (page) {
5454 pages += page->pages;
5455 objects += page->pobjects;
5456 }
5457 }
5458
bf16d19a 5459 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5460
5461#ifdef CONFIG_SMP
5462 for_each_online_cpu(cpu) {
a93cf07b
WY
5463 struct page *page;
5464
5465 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5466 if (page)
5467 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5468 cpu, page->pobjects, page->pages);
49e22585
CL
5469 }
5470#endif
bf16d19a
JP
5471 len += sysfs_emit_at(buf, len, "\n");
5472
5473 return len;
49e22585
CL
5474}
5475SLAB_ATTR_RO(slabs_cpu_partial);
5476
a5a84755
CL
5477static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5478{
bf16d19a 5479 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5480}
8f58119a 5481SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5482
5483static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5484{
bf16d19a 5485 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5486}
5487SLAB_ATTR_RO(hwcache_align);
5488
5489#ifdef CONFIG_ZONE_DMA
5490static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5491{
bf16d19a 5492 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5493}
5494SLAB_ATTR_RO(cache_dma);
5495#endif
5496
8eb8284b
DW
5497static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5498{
bf16d19a 5499 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5500}
5501SLAB_ATTR_RO(usersize);
5502
a5a84755
CL
5503static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5504{
bf16d19a 5505 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5506}
5507SLAB_ATTR_RO(destroy_by_rcu);
5508
ab4d5ed5 5509#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5510static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5511{
5512 return show_slab_objects(s, buf, SO_ALL);
5513}
5514SLAB_ATTR_RO(slabs);
5515
205ab99d
CL
5516static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5517{
5518 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5519}
5520SLAB_ATTR_RO(total_objects);
5521
81819f0f
CL
5522static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5523{
bf16d19a 5524 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5525}
060807f8 5526SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5527
5528static ssize_t trace_show(struct kmem_cache *s, char *buf)
5529{
bf16d19a 5530 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5531}
060807f8 5532SLAB_ATTR_RO(trace);
81819f0f 5533
81819f0f
CL
5534static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5535{
bf16d19a 5536 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5537}
5538
ad38b5b1 5539SLAB_ATTR_RO(red_zone);
81819f0f
CL
5540
5541static ssize_t poison_show(struct kmem_cache *s, char *buf)
5542{
bf16d19a 5543 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5544}
5545
ad38b5b1 5546SLAB_ATTR_RO(poison);
81819f0f
CL
5547
5548static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5549{
bf16d19a 5550 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5551}
5552
ad38b5b1 5553SLAB_ATTR_RO(store_user);
81819f0f 5554
53e15af0
CL
5555static ssize_t validate_show(struct kmem_cache *s, char *buf)
5556{
5557 return 0;
5558}
5559
5560static ssize_t validate_store(struct kmem_cache *s,
5561 const char *buf, size_t length)
5562{
434e245d
CL
5563 int ret = -EINVAL;
5564
5565 if (buf[0] == '1') {
5566 ret = validate_slab_cache(s);
5567 if (ret >= 0)
5568 ret = length;
5569 }
5570 return ret;
53e15af0
CL
5571}
5572SLAB_ATTR(validate);
a5a84755 5573
a5a84755
CL
5574#endif /* CONFIG_SLUB_DEBUG */
5575
5576#ifdef CONFIG_FAILSLAB
5577static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5578{
bf16d19a 5579 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5580}
060807f8 5581SLAB_ATTR_RO(failslab);
ab4d5ed5 5582#endif
53e15af0 5583
2086d26a
CL
5584static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5585{
5586 return 0;
5587}
5588
5589static ssize_t shrink_store(struct kmem_cache *s,
5590 const char *buf, size_t length)
5591{
832f37f5 5592 if (buf[0] == '1')
10befea9 5593 kmem_cache_shrink(s);
832f37f5 5594 else
2086d26a
CL
5595 return -EINVAL;
5596 return length;
5597}
5598SLAB_ATTR(shrink);
5599
81819f0f 5600#ifdef CONFIG_NUMA
9824601e 5601static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5602{
bf16d19a 5603 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5604}
5605
9824601e 5606static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5607 const char *buf, size_t length)
5608{
eb7235eb 5609 unsigned int ratio;
0121c619
CL
5610 int err;
5611
eb7235eb 5612 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5613 if (err)
5614 return err;
eb7235eb
AD
5615 if (ratio > 100)
5616 return -ERANGE;
0121c619 5617
eb7235eb 5618 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5619
81819f0f
CL
5620 return length;
5621}
9824601e 5622SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5623#endif
5624
8ff12cfc 5625#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5626static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5627{
5628 unsigned long sum = 0;
5629 int cpu;
bf16d19a 5630 int len = 0;
6da2ec56 5631 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5632
5633 if (!data)
5634 return -ENOMEM;
5635
5636 for_each_online_cpu(cpu) {
9dfc6e68 5637 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5638
5639 data[cpu] = x;
5640 sum += x;
5641 }
5642
bf16d19a 5643 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5644
50ef37b9 5645#ifdef CONFIG_SMP
8ff12cfc 5646 for_each_online_cpu(cpu) {
bf16d19a
JP
5647 if (data[cpu])
5648 len += sysfs_emit_at(buf, len, " C%d=%u",
5649 cpu, data[cpu]);
8ff12cfc 5650 }
50ef37b9 5651#endif
8ff12cfc 5652 kfree(data);
bf16d19a
JP
5653 len += sysfs_emit_at(buf, len, "\n");
5654
5655 return len;
8ff12cfc
CL
5656}
5657
78eb00cc
DR
5658static void clear_stat(struct kmem_cache *s, enum stat_item si)
5659{
5660 int cpu;
5661
5662 for_each_online_cpu(cpu)
9dfc6e68 5663 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5664}
5665
8ff12cfc
CL
5666#define STAT_ATTR(si, text) \
5667static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5668{ \
5669 return show_stat(s, buf, si); \
5670} \
78eb00cc
DR
5671static ssize_t text##_store(struct kmem_cache *s, \
5672 const char *buf, size_t length) \
5673{ \
5674 if (buf[0] != '0') \
5675 return -EINVAL; \
5676 clear_stat(s, si); \
5677 return length; \
5678} \
5679SLAB_ATTR(text); \
8ff12cfc
CL
5680
5681STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5682STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5683STAT_ATTR(FREE_FASTPATH, free_fastpath);
5684STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5685STAT_ATTR(FREE_FROZEN, free_frozen);
5686STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5687STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5688STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5689STAT_ATTR(ALLOC_SLAB, alloc_slab);
5690STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5691STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5692STAT_ATTR(FREE_SLAB, free_slab);
5693STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5694STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5695STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5696STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5697STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5698STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5699STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5700STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5701STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5702STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5703STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5704STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5705STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5706STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5707#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5708
06428780 5709static struct attribute *slab_attrs[] = {
81819f0f
CL
5710 &slab_size_attr.attr,
5711 &object_size_attr.attr,
5712 &objs_per_slab_attr.attr,
5713 &order_attr.attr,
73d342b1 5714 &min_partial_attr.attr,
49e22585 5715 &cpu_partial_attr.attr,
81819f0f 5716 &objects_attr.attr,
205ab99d 5717 &objects_partial_attr.attr,
81819f0f
CL
5718 &partial_attr.attr,
5719 &cpu_slabs_attr.attr,
5720 &ctor_attr.attr,
81819f0f
CL
5721 &aliases_attr.attr,
5722 &align_attr.attr,
81819f0f
CL
5723 &hwcache_align_attr.attr,
5724 &reclaim_account_attr.attr,
5725 &destroy_by_rcu_attr.attr,
a5a84755 5726 &shrink_attr.attr,
49e22585 5727 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5728#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5729 &total_objects_attr.attr,
5730 &slabs_attr.attr,
5731 &sanity_checks_attr.attr,
5732 &trace_attr.attr,
81819f0f
CL
5733 &red_zone_attr.attr,
5734 &poison_attr.attr,
5735 &store_user_attr.attr,
53e15af0 5736 &validate_attr.attr,
ab4d5ed5 5737#endif
81819f0f
CL
5738#ifdef CONFIG_ZONE_DMA
5739 &cache_dma_attr.attr,
5740#endif
5741#ifdef CONFIG_NUMA
9824601e 5742 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5743#endif
5744#ifdef CONFIG_SLUB_STATS
5745 &alloc_fastpath_attr.attr,
5746 &alloc_slowpath_attr.attr,
5747 &free_fastpath_attr.attr,
5748 &free_slowpath_attr.attr,
5749 &free_frozen_attr.attr,
5750 &free_add_partial_attr.attr,
5751 &free_remove_partial_attr.attr,
5752 &alloc_from_partial_attr.attr,
5753 &alloc_slab_attr.attr,
5754 &alloc_refill_attr.attr,
e36a2652 5755 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5756 &free_slab_attr.attr,
5757 &cpuslab_flush_attr.attr,
5758 &deactivate_full_attr.attr,
5759 &deactivate_empty_attr.attr,
5760 &deactivate_to_head_attr.attr,
5761 &deactivate_to_tail_attr.attr,
5762 &deactivate_remote_frees_attr.attr,
03e404af 5763 &deactivate_bypass_attr.attr,
65c3376a 5764 &order_fallback_attr.attr,
b789ef51
CL
5765 &cmpxchg_double_fail_attr.attr,
5766 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5767 &cpu_partial_alloc_attr.attr,
5768 &cpu_partial_free_attr.attr,
8028dcea
AS
5769 &cpu_partial_node_attr.attr,
5770 &cpu_partial_drain_attr.attr,
81819f0f 5771#endif
4c13dd3b
DM
5772#ifdef CONFIG_FAILSLAB
5773 &failslab_attr.attr,
5774#endif
8eb8284b 5775 &usersize_attr.attr,
4c13dd3b 5776
81819f0f
CL
5777 NULL
5778};
5779
1fdaaa23 5780static const struct attribute_group slab_attr_group = {
81819f0f
CL
5781 .attrs = slab_attrs,
5782};
5783
5784static ssize_t slab_attr_show(struct kobject *kobj,
5785 struct attribute *attr,
5786 char *buf)
5787{
5788 struct slab_attribute *attribute;
5789 struct kmem_cache *s;
5790 int err;
5791
5792 attribute = to_slab_attr(attr);
5793 s = to_slab(kobj);
5794
5795 if (!attribute->show)
5796 return -EIO;
5797
5798 err = attribute->show(s, buf);
5799
5800 return err;
5801}
5802
5803static ssize_t slab_attr_store(struct kobject *kobj,
5804 struct attribute *attr,
5805 const char *buf, size_t len)
5806{
5807 struct slab_attribute *attribute;
5808 struct kmem_cache *s;
5809 int err;
5810
5811 attribute = to_slab_attr(attr);
5812 s = to_slab(kobj);
5813
5814 if (!attribute->store)
5815 return -EIO;
5816
5817 err = attribute->store(s, buf, len);
81819f0f
CL
5818 return err;
5819}
5820
41a21285
CL
5821static void kmem_cache_release(struct kobject *k)
5822{
5823 slab_kmem_cache_release(to_slab(k));
5824}
5825
52cf25d0 5826static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5827 .show = slab_attr_show,
5828 .store = slab_attr_store,
5829};
5830
5831static struct kobj_type slab_ktype = {
5832 .sysfs_ops = &slab_sysfs_ops,
41a21285 5833 .release = kmem_cache_release,
81819f0f
CL
5834};
5835
27c3a314 5836static struct kset *slab_kset;
81819f0f 5837
9a41707b
VD
5838static inline struct kset *cache_kset(struct kmem_cache *s)
5839{
9a41707b
VD
5840 return slab_kset;
5841}
5842
81819f0f
CL
5843#define ID_STR_LENGTH 64
5844
5845/* Create a unique string id for a slab cache:
6446faa2
CL
5846 *
5847 * Format :[flags-]size
81819f0f
CL
5848 */
5849static char *create_unique_id(struct kmem_cache *s)
5850{
5851 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5852 char *p = name;
5853
5854 BUG_ON(!name);
5855
5856 *p++ = ':';
5857 /*
5858 * First flags affecting slabcache operations. We will only
5859 * get here for aliasable slabs so we do not need to support
5860 * too many flags. The flags here must cover all flags that
5861 * are matched during merging to guarantee that the id is
5862 * unique.
5863 */
5864 if (s->flags & SLAB_CACHE_DMA)
5865 *p++ = 'd';
6d6ea1e9
NB
5866 if (s->flags & SLAB_CACHE_DMA32)
5867 *p++ = 'D';
81819f0f
CL
5868 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5869 *p++ = 'a';
becfda68 5870 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5871 *p++ = 'F';
230e9fc2
VD
5872 if (s->flags & SLAB_ACCOUNT)
5873 *p++ = 'A';
81819f0f
CL
5874 if (p != name + 1)
5875 *p++ = '-';
44065b2e 5876 p += sprintf(p, "%07u", s->size);
2633d7a0 5877
81819f0f
CL
5878 BUG_ON(p > name + ID_STR_LENGTH - 1);
5879 return name;
5880}
5881
5882static int sysfs_slab_add(struct kmem_cache *s)
5883{
5884 int err;
5885 const char *name;
1663f26d 5886 struct kset *kset = cache_kset(s);
45530c44 5887 int unmergeable = slab_unmergeable(s);
81819f0f 5888
1663f26d
TH
5889 if (!kset) {
5890 kobject_init(&s->kobj, &slab_ktype);
5891 return 0;
5892 }
5893
11066386
MC
5894 if (!unmergeable && disable_higher_order_debug &&
5895 (slub_debug & DEBUG_METADATA_FLAGS))
5896 unmergeable = 1;
5897
81819f0f
CL
5898 if (unmergeable) {
5899 /*
5900 * Slabcache can never be merged so we can use the name proper.
5901 * This is typically the case for debug situations. In that
5902 * case we can catch duplicate names easily.
5903 */
27c3a314 5904 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5905 name = s->name;
5906 } else {
5907 /*
5908 * Create a unique name for the slab as a target
5909 * for the symlinks.
5910 */
5911 name = create_unique_id(s);
5912 }
5913
1663f26d 5914 s->kobj.kset = kset;
26e4f205 5915 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5916 if (err)
80da026a 5917 goto out;
81819f0f
CL
5918
5919 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5920 if (err)
5921 goto out_del_kobj;
9a41707b 5922
81819f0f
CL
5923 if (!unmergeable) {
5924 /* Setup first alias */
5925 sysfs_slab_alias(s, s->name);
81819f0f 5926 }
54b6a731
DJ
5927out:
5928 if (!unmergeable)
5929 kfree(name);
5930 return err;
5931out_del_kobj:
5932 kobject_del(&s->kobj);
54b6a731 5933 goto out;
81819f0f
CL
5934}
5935
d50d82fa
MP
5936void sysfs_slab_unlink(struct kmem_cache *s)
5937{
5938 if (slab_state >= FULL)
5939 kobject_del(&s->kobj);
5940}
5941
bf5eb3de
TH
5942void sysfs_slab_release(struct kmem_cache *s)
5943{
5944 if (slab_state >= FULL)
5945 kobject_put(&s->kobj);
81819f0f
CL
5946}
5947
5948/*
5949 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5950 * available lest we lose that information.
81819f0f
CL
5951 */
5952struct saved_alias {
5953 struct kmem_cache *s;
5954 const char *name;
5955 struct saved_alias *next;
5956};
5957
5af328a5 5958static struct saved_alias *alias_list;
81819f0f
CL
5959
5960static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5961{
5962 struct saved_alias *al;
5963
97d06609 5964 if (slab_state == FULL) {
81819f0f
CL
5965 /*
5966 * If we have a leftover link then remove it.
5967 */
27c3a314
GKH
5968 sysfs_remove_link(&slab_kset->kobj, name);
5969 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5970 }
5971
5972 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5973 if (!al)
5974 return -ENOMEM;
5975
5976 al->s = s;
5977 al->name = name;
5978 al->next = alias_list;
5979 alias_list = al;
5980 return 0;
5981}
5982
5983static int __init slab_sysfs_init(void)
5984{
5b95a4ac 5985 struct kmem_cache *s;
81819f0f
CL
5986 int err;
5987
18004c5d 5988 mutex_lock(&slab_mutex);
2bce6485 5989
d7660ce5 5990 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5991 if (!slab_kset) {
18004c5d 5992 mutex_unlock(&slab_mutex);
f9f58285 5993 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5994 return -ENOSYS;
5995 }
5996
97d06609 5997 slab_state = FULL;
26a7bd03 5998
5b95a4ac 5999 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6000 err = sysfs_slab_add(s);
5d540fb7 6001 if (err)
f9f58285
FF
6002 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6003 s->name);
26a7bd03 6004 }
81819f0f
CL
6005
6006 while (alias_list) {
6007 struct saved_alias *al = alias_list;
6008
6009 alias_list = alias_list->next;
6010 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6011 if (err)
f9f58285
FF
6012 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6013 al->name);
81819f0f
CL
6014 kfree(al);
6015 }
6016
18004c5d 6017 mutex_unlock(&slab_mutex);
81819f0f
CL
6018 return 0;
6019}
6020
6021__initcall(slab_sysfs_init);
ab4d5ed5 6022#endif /* CONFIG_SYSFS */
57ed3eda 6023
64dd6849
FM
6024#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6025static int slab_debugfs_show(struct seq_file *seq, void *v)
6026{
6027
6028 struct location *l;
6029 unsigned int idx = *(unsigned int *)v;
6030 struct loc_track *t = seq->private;
6031
6032 if (idx < t->count) {
6033 l = &t->loc[idx];
6034
6035 seq_printf(seq, "%7ld ", l->count);
6036
6037 if (l->addr)
6038 seq_printf(seq, "%pS", (void *)l->addr);
6039 else
6040 seq_puts(seq, "<not-available>");
6041
6042 if (l->sum_time != l->min_time) {
6043 seq_printf(seq, " age=%ld/%llu/%ld",
6044 l->min_time, div_u64(l->sum_time, l->count),
6045 l->max_time);
6046 } else
6047 seq_printf(seq, " age=%ld", l->min_time);
6048
6049 if (l->min_pid != l->max_pid)
6050 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6051 else
6052 seq_printf(seq, " pid=%ld",
6053 l->min_pid);
6054
6055 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6056 seq_printf(seq, " cpus=%*pbl",
6057 cpumask_pr_args(to_cpumask(l->cpus)));
6058
6059 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6060 seq_printf(seq, " nodes=%*pbl",
6061 nodemask_pr_args(&l->nodes));
6062
6063 seq_puts(seq, "\n");
6064 }
6065
6066 if (!idx && !t->count)
6067 seq_puts(seq, "No data\n");
6068
6069 return 0;
6070}
6071
6072static void slab_debugfs_stop(struct seq_file *seq, void *v)
6073{
6074}
6075
6076static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6077{
6078 struct loc_track *t = seq->private;
6079
6080 v = ppos;
6081 ++*ppos;
6082 if (*ppos <= t->count)
6083 return v;
6084
6085 return NULL;
6086}
6087
6088static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6089{
6090 return ppos;
6091}
6092
6093static const struct seq_operations slab_debugfs_sops = {
6094 .start = slab_debugfs_start,
6095 .next = slab_debugfs_next,
6096 .stop = slab_debugfs_stop,
6097 .show = slab_debugfs_show,
6098};
6099
6100static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6101{
6102
6103 struct kmem_cache_node *n;
6104 enum track_item alloc;
6105 int node;
6106 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6107 sizeof(struct loc_track));
6108 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6109 unsigned long *obj_map;
6110
6111 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6112 if (!obj_map)
6113 return -ENOMEM;
64dd6849
FM
6114
6115 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6116 alloc = TRACK_ALLOC;
6117 else
6118 alloc = TRACK_FREE;
6119
b3fd64e1
VB
6120 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6121 bitmap_free(obj_map);
64dd6849 6122 return -ENOMEM;
b3fd64e1 6123 }
64dd6849 6124
64dd6849
FM
6125 for_each_kmem_cache_node(s, node, n) {
6126 unsigned long flags;
6127 struct page *page;
6128
6129 if (!atomic_long_read(&n->nr_slabs))
6130 continue;
6131
6132 spin_lock_irqsave(&n->list_lock, flags);
6133 list_for_each_entry(page, &n->partial, slab_list)
b3fd64e1 6134 process_slab(t, s, page, alloc, obj_map);
64dd6849 6135 list_for_each_entry(page, &n->full, slab_list)
b3fd64e1 6136 process_slab(t, s, page, alloc, obj_map);
64dd6849
FM
6137 spin_unlock_irqrestore(&n->list_lock, flags);
6138 }
6139
b3fd64e1 6140 bitmap_free(obj_map);
64dd6849
FM
6141 return 0;
6142}
6143
6144static int slab_debug_trace_release(struct inode *inode, struct file *file)
6145{
6146 struct seq_file *seq = file->private_data;
6147 struct loc_track *t = seq->private;
6148
6149 free_loc_track(t);
6150 return seq_release_private(inode, file);
6151}
6152
6153static const struct file_operations slab_debugfs_fops = {
6154 .open = slab_debug_trace_open,
6155 .read = seq_read,
6156 .llseek = seq_lseek,
6157 .release = slab_debug_trace_release,
6158};
6159
6160static void debugfs_slab_add(struct kmem_cache *s)
6161{
6162 struct dentry *slab_cache_dir;
6163
6164 if (unlikely(!slab_debugfs_root))
6165 return;
6166
6167 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6168
6169 debugfs_create_file("alloc_traces", 0400,
6170 slab_cache_dir, s, &slab_debugfs_fops);
6171
6172 debugfs_create_file("free_traces", 0400,
6173 slab_cache_dir, s, &slab_debugfs_fops);
6174}
6175
6176void debugfs_slab_release(struct kmem_cache *s)
6177{
6178 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6179}
6180
6181static int __init slab_debugfs_init(void)
6182{
6183 struct kmem_cache *s;
6184
6185 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6186
6187 list_for_each_entry(s, &slab_caches, list)
6188 if (s->flags & SLAB_STORE_USER)
6189 debugfs_slab_add(s);
6190
6191 return 0;
6192
6193}
6194__initcall(slab_debugfs_init);
6195#endif
57ed3eda
PE
6196/*
6197 * The /proc/slabinfo ABI
6198 */
5b365771 6199#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6200void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6201{
57ed3eda 6202 unsigned long nr_slabs = 0;
205ab99d
CL
6203 unsigned long nr_objs = 0;
6204 unsigned long nr_free = 0;
57ed3eda 6205 int node;
fa45dc25 6206 struct kmem_cache_node *n;
57ed3eda 6207
fa45dc25 6208 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6209 nr_slabs += node_nr_slabs(n);
6210 nr_objs += node_nr_objs(n);
205ab99d 6211 nr_free += count_partial(n, count_free);
57ed3eda
PE
6212 }
6213
0d7561c6
GC
6214 sinfo->active_objs = nr_objs - nr_free;
6215 sinfo->num_objs = nr_objs;
6216 sinfo->active_slabs = nr_slabs;
6217 sinfo->num_slabs = nr_slabs;
6218 sinfo->objects_per_slab = oo_objects(s->oo);
6219 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6220}
6221
0d7561c6 6222void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6223{
7b3c3a50
AD
6224}
6225
b7454ad3
GC
6226ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6227 size_t count, loff_t *ppos)
7b3c3a50 6228{
b7454ad3 6229 return -EIO;
7b3c3a50 6230}
5b365771 6231#endif /* CONFIG_SLUB_DEBUG */
This page took 2.931057 seconds and 4 git commands to generate.