]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
81819f0f CL |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpuset.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ctype.h> | |
3ac7fe5a | 29 | #include <linux/debugobjects.h> |
81819f0f | 30 | #include <linux/kallsyms.h> |
b89fb5ef | 31 | #include <linux/kfence.h> |
b9049e23 | 32 | #include <linux/memory.h> |
f8bd2258 | 33 | #include <linux/math64.h> |
773ff60e | 34 | #include <linux/fault-inject.h> |
bfa71457 | 35 | #include <linux/stacktrace.h> |
4de900b4 | 36 | #include <linux/prefetch.h> |
2633d7a0 | 37 | #include <linux/memcontrol.h> |
2482ddec | 38 | #include <linux/random.h> |
1f9f78b1 | 39 | #include <kunit/test.h> |
81819f0f | 40 | |
64dd6849 | 41 | #include <linux/debugfs.h> |
4a92379b RK |
42 | #include <trace/events/kmem.h> |
43 | ||
072bb0aa MG |
44 | #include "internal.h" |
45 | ||
81819f0f CL |
46 | /* |
47 | * Lock order: | |
18004c5d | 48 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
49 | * 2. node->list_lock (Spinlock) |
50 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
51 | * 4. slab_lock(page) (Only on some arches or for debugging) | |
52 | * 5. object_map_lock (Only for debugging) | |
81819f0f | 53 | * |
18004c5d | 54 | * slab_mutex |
881db7fb | 55 | * |
18004c5d | 56 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 57 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
58 | * Also synchronizes memory hotplug callbacks. |
59 | * | |
60 | * slab_lock | |
61 | * | |
62 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
63 | * spinlock. | |
881db7fb CL |
64 | * |
65 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 66 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 67 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
68 | * B. page->inuse -> Number of objects in use |
69 | * C. page->objects -> Number of objects in page | |
70 | * D. page->frozen -> frozen state | |
881db7fb | 71 | * |
bd0e7491 VB |
72 | * Frozen slabs |
73 | * | |
881db7fb | 74 | * If a slab is frozen then it is exempt from list management. It is not |
632b2ef0 LX |
75 | * on any list except per cpu partial list. The processor that froze the |
76 | * slab is the one who can perform list operations on the page. Other | |
77 | * processors may put objects onto the freelist but the processor that | |
78 | * froze the slab is the only one that can retrieve the objects from the | |
79 | * page's freelist. | |
81819f0f | 80 | * |
bd0e7491 VB |
81 | * list_lock |
82 | * | |
81819f0f CL |
83 | * The list_lock protects the partial and full list on each node and |
84 | * the partial slab counter. If taken then no new slabs may be added or | |
85 | * removed from the lists nor make the number of partial slabs be modified. | |
86 | * (Note that the total number of slabs is an atomic value that may be | |
87 | * modified without taking the list lock). | |
88 | * | |
89 | * The list_lock is a centralized lock and thus we avoid taking it as | |
90 | * much as possible. As long as SLUB does not have to handle partial | |
91 | * slabs, operations can continue without any centralized lock. F.e. | |
92 | * allocating a long series of objects that fill up slabs does not require | |
93 | * the list lock. | |
bd0e7491 VB |
94 | * |
95 | * cpu_slab->lock local lock | |
96 | * | |
97 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
98 | * except the stat counters. This is a percpu structure manipulated only by | |
99 | * the local cpu, so the lock protects against being preempted or interrupted | |
100 | * by an irq. Fast path operations rely on lockless operations instead. | |
101 | * On PREEMPT_RT, the local lock does not actually disable irqs (and thus | |
102 | * prevent the lockless operations), so fastpath operations also need to take | |
103 | * the lock and are no longer lockless. | |
104 | * | |
105 | * lockless fastpaths | |
106 | * | |
107 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
108 | * are fully lockless when satisfied from the percpu slab (and when | |
109 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
110 | * They also don't disable preemption or migration or irqs. They rely on | |
111 | * the transaction id (tid) field to detect being preempted or moved to | |
112 | * another cpu. | |
113 | * | |
114 | * irq, preemption, migration considerations | |
115 | * | |
116 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
117 | * around the slab_lock operation, in order to make the slab allocator safe | |
118 | * to use in the context of an irq. | |
119 | * | |
120 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
121 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
122 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
123 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
124 | * |
125 | * SLUB assigns one slab for allocation to each processor. | |
126 | * Allocations only occur from these slabs called cpu slabs. | |
127 | * | |
672bba3a CL |
128 | * Slabs with free elements are kept on a partial list and during regular |
129 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 130 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
131 | * We track full slabs for debugging purposes though because otherwise we |
132 | * cannot scan all objects. | |
81819f0f CL |
133 | * |
134 | * Slabs are freed when they become empty. Teardown and setup is | |
135 | * minimal so we rely on the page allocators per cpu caches for | |
136 | * fast frees and allocs. | |
137 | * | |
aed68148 | 138 | * page->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
139 | * This means that the slab is dedicated to a purpose |
140 | * such as satisfying allocations for a specific | |
141 | * processor. Objects may be freed in the slab while | |
142 | * it is frozen but slab_free will then skip the usual | |
143 | * list operations. It is up to the processor holding | |
144 | * the slab to integrate the slab into the slab lists | |
145 | * when the slab is no longer needed. | |
146 | * | |
147 | * One use of this flag is to mark slabs that are | |
148 | * used for allocations. Then such a slab becomes a cpu | |
149 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 150 | * freelist that allows lockless access to |
894b8788 CL |
151 | * free objects in addition to the regular freelist |
152 | * that requires the slab lock. | |
81819f0f | 153 | * |
aed68148 | 154 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 155 | * options set. This moves slab handling out of |
894b8788 | 156 | * the fast path and disables lockless freelists. |
81819f0f CL |
157 | */ |
158 | ||
25c00c50 VB |
159 | /* |
160 | * We could simply use migrate_disable()/enable() but as long as it's a | |
161 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
162 | */ | |
163 | #ifndef CONFIG_PREEMPT_RT | |
164 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) | |
165 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
166 | #else | |
167 | #define slub_get_cpu_ptr(var) \ | |
168 | ({ \ | |
169 | migrate_disable(); \ | |
170 | this_cpu_ptr(var); \ | |
171 | }) | |
172 | #define slub_put_cpu_ptr(var) \ | |
173 | do { \ | |
174 | (void)(var); \ | |
175 | migrate_enable(); \ | |
176 | } while (0) | |
177 | #endif | |
178 | ||
ca0cab65 VB |
179 | #ifdef CONFIG_SLUB_DEBUG |
180 | #ifdef CONFIG_SLUB_DEBUG_ON | |
181 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
182 | #else | |
183 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
184 | #endif | |
79270291 | 185 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 186 | |
59052e89 VB |
187 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
188 | { | |
189 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 190 | } |
5577bd8a | 191 | |
117d54df | 192 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 193 | { |
59052e89 | 194 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
195 | p += s->red_left_pad; |
196 | ||
197 | return p; | |
198 | } | |
199 | ||
345c905d JK |
200 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
201 | { | |
202 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
203 | return !kmem_cache_debug(s); | |
204 | #else | |
205 | return false; | |
206 | #endif | |
207 | } | |
208 | ||
81819f0f CL |
209 | /* |
210 | * Issues still to be resolved: | |
211 | * | |
81819f0f CL |
212 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
213 | * | |
81819f0f CL |
214 | * - Variable sizing of the per node arrays |
215 | */ | |
216 | ||
b789ef51 CL |
217 | /* Enable to log cmpxchg failures */ |
218 | #undef SLUB_DEBUG_CMPXCHG | |
219 | ||
2086d26a | 220 | /* |
dc84207d | 221 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
222 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
223 | */ | |
76be8950 | 224 | #define MIN_PARTIAL 5 |
e95eed57 | 225 | |
2086d26a CL |
226 | /* |
227 | * Maximum number of desirable partial slabs. | |
228 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 229 | * sort the partial list by the number of objects in use. |
2086d26a CL |
230 | */ |
231 | #define MAX_PARTIAL 10 | |
232 | ||
becfda68 | 233 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 234 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 235 | |
149daaf3 LA |
236 | /* |
237 | * These debug flags cannot use CMPXCHG because there might be consistency | |
238 | * issues when checking or reading debug information | |
239 | */ | |
240 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
241 | SLAB_TRACE) | |
242 | ||
243 | ||
fa5ec8a1 | 244 | /* |
3de47213 DR |
245 | * Debugging flags that require metadata to be stored in the slab. These get |
246 | * disabled when slub_debug=O is used and a cache's min order increases with | |
247 | * metadata. | |
fa5ec8a1 | 248 | */ |
3de47213 | 249 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 250 | |
210b5c06 CG |
251 | #define OO_SHIFT 16 |
252 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 253 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 254 | |
81819f0f | 255 | /* Internal SLUB flags */ |
d50112ed | 256 | /* Poison object */ |
4fd0b46e | 257 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 258 | /* Use cmpxchg_double */ |
4fd0b46e | 259 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 260 | |
02cbc874 CL |
261 | /* |
262 | * Tracking user of a slab. | |
263 | */ | |
d6543e39 | 264 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 265 | struct track { |
ce71e27c | 266 | unsigned long addr; /* Called from address */ |
ae14c63a LT |
267 | #ifdef CONFIG_STACKTRACE |
268 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
d6543e39 | 269 | #endif |
02cbc874 CL |
270 | int cpu; /* Was running on cpu */ |
271 | int pid; /* Pid context */ | |
272 | unsigned long when; /* When did the operation occur */ | |
273 | }; | |
274 | ||
275 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
276 | ||
ab4d5ed5 | 277 | #ifdef CONFIG_SYSFS |
81819f0f CL |
278 | static int sysfs_slab_add(struct kmem_cache *); |
279 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 280 | #else |
0c710013 CL |
281 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
282 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
283 | { return 0; } | |
81819f0f CL |
284 | #endif |
285 | ||
64dd6849 FM |
286 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
287 | static void debugfs_slab_add(struct kmem_cache *); | |
288 | #else | |
289 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
290 | #endif | |
291 | ||
4fdccdfb | 292 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
293 | { |
294 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
295 | /* |
296 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
297 | * avoid this_cpu_add()'s irq-disable overhead. | |
298 | */ | |
299 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
300 | #endif |
301 | } | |
302 | ||
7e1fa93d VB |
303 | /* |
304 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
305 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
306 | * differ during memory hotplug/hotremove operations. | |
307 | * Protected by slab_mutex. | |
308 | */ | |
309 | static nodemask_t slab_nodes; | |
310 | ||
81819f0f CL |
311 | /******************************************************************** |
312 | * Core slab cache functions | |
313 | *******************************************************************/ | |
314 | ||
2482ddec KC |
315 | /* |
316 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
317 | * with an XOR of the address where the pointer is held and a per-cache | |
318 | * random number. | |
319 | */ | |
320 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
321 | unsigned long ptr_addr) | |
322 | { | |
323 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 | 324 | /* |
aa1ef4d7 | 325 | * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. |
d36a63a9 AK |
326 | * Normally, this doesn't cause any issues, as both set_freepointer() |
327 | * and get_freepointer() are called with a pointer with the same tag. | |
328 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
329 | * example, when __free_slub() iterates over objects in a cache, it | |
330 | * passes untagged pointers to check_object(). check_object() in turns | |
331 | * calls get_freepointer() with an untagged pointer, which causes the | |
332 | * freepointer to be restored incorrectly. | |
333 | */ | |
334 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 335 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
336 | #else |
337 | return ptr; | |
338 | #endif | |
339 | } | |
340 | ||
341 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
342 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
343 | void *ptr_addr) | |
344 | { | |
345 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
346 | (unsigned long)ptr_addr); | |
347 | } | |
348 | ||
7656c72b CL |
349 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
350 | { | |
aa1ef4d7 | 351 | object = kasan_reset_tag(object); |
2482ddec | 352 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
353 | } |
354 | ||
0ad9500e ED |
355 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
356 | { | |
0882ff91 | 357 | prefetch(object + s->offset); |
0ad9500e ED |
358 | } |
359 | ||
1393d9a1 CL |
360 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
361 | { | |
2482ddec | 362 | unsigned long freepointer_addr; |
1393d9a1 CL |
363 | void *p; |
364 | ||
8e57f8ac | 365 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
366 | return get_freepointer(s, object); |
367 | ||
f70b0049 | 368 | object = kasan_reset_tag(object); |
2482ddec | 369 | freepointer_addr = (unsigned long)object + s->offset; |
fe557319 | 370 | copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); |
2482ddec | 371 | return freelist_ptr(s, p, freepointer_addr); |
1393d9a1 CL |
372 | } |
373 | ||
7656c72b CL |
374 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
375 | { | |
2482ddec KC |
376 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
377 | ||
ce6fa91b AP |
378 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
379 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
380 | #endif | |
381 | ||
aa1ef4d7 | 382 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
2482ddec | 383 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
384 | } |
385 | ||
386 | /* Loop over all objects in a slab */ | |
224a88be | 387 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
388 | for (__p = fixup_red_left(__s, __addr); \ |
389 | __p < (__addr) + (__objects) * (__s)->size; \ | |
390 | __p += (__s)->size) | |
7656c72b | 391 | |
9736d2a9 | 392 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 393 | { |
9736d2a9 | 394 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
395 | } |
396 | ||
19af27af | 397 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 398 | unsigned int size) |
834f3d11 CL |
399 | { |
400 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 401 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
402 | }; |
403 | ||
404 | return x; | |
405 | } | |
406 | ||
19af27af | 407 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 408 | { |
210b5c06 | 409 | return x.x >> OO_SHIFT; |
834f3d11 CL |
410 | } |
411 | ||
19af27af | 412 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 413 | { |
210b5c06 | 414 | return x.x & OO_MASK; |
834f3d11 CL |
415 | } |
416 | ||
881db7fb CL |
417 | /* |
418 | * Per slab locking using the pagelock | |
419 | */ | |
a2b4ae8b | 420 | static __always_inline void __slab_lock(struct page *page) |
881db7fb | 421 | { |
48c935ad | 422 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
423 | bit_spin_lock(PG_locked, &page->flags); |
424 | } | |
425 | ||
a2b4ae8b | 426 | static __always_inline void __slab_unlock(struct page *page) |
881db7fb | 427 | { |
48c935ad | 428 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
429 | __bit_spin_unlock(PG_locked, &page->flags); |
430 | } | |
431 | ||
a2b4ae8b VB |
432 | static __always_inline void slab_lock(struct page *page, unsigned long *flags) |
433 | { | |
434 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | |
435 | local_irq_save(*flags); | |
436 | __slab_lock(page); | |
437 | } | |
438 | ||
439 | static __always_inline void slab_unlock(struct page *page, unsigned long *flags) | |
440 | { | |
441 | __slab_unlock(page); | |
442 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | |
443 | local_irq_restore(*flags); | |
444 | } | |
445 | ||
446 | /* | |
447 | * Interrupts must be disabled (for the fallback code to work right), typically | |
448 | * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different | |
449 | * so we disable interrupts as part of slab_[un]lock(). | |
450 | */ | |
1d07171c CL |
451 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
452 | void *freelist_old, unsigned long counters_old, | |
453 | void *freelist_new, unsigned long counters_new, | |
454 | const char *n) | |
455 | { | |
a2b4ae8b VB |
456 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
457 | lockdep_assert_irqs_disabled(); | |
2565409f HC |
458 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
459 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 460 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 461 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
462 | freelist_old, counters_old, |
463 | freelist_new, counters_new)) | |
6f6528a1 | 464 | return true; |
1d07171c CL |
465 | } else |
466 | #endif | |
467 | { | |
a2b4ae8b VB |
468 | /* init to 0 to prevent spurious warnings */ |
469 | unsigned long flags = 0; | |
470 | ||
471 | slab_lock(page, &flags); | |
d0e0ac97 CG |
472 | if (page->freelist == freelist_old && |
473 | page->counters == counters_old) { | |
1d07171c | 474 | page->freelist = freelist_new; |
7d27a04b | 475 | page->counters = counters_new; |
a2b4ae8b | 476 | slab_unlock(page, &flags); |
6f6528a1 | 477 | return true; |
1d07171c | 478 | } |
a2b4ae8b | 479 | slab_unlock(page, &flags); |
1d07171c CL |
480 | } |
481 | ||
482 | cpu_relax(); | |
483 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
484 | ||
485 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 486 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
487 | #endif |
488 | ||
6f6528a1 | 489 | return false; |
1d07171c CL |
490 | } |
491 | ||
b789ef51 CL |
492 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
493 | void *freelist_old, unsigned long counters_old, | |
494 | void *freelist_new, unsigned long counters_new, | |
495 | const char *n) | |
496 | { | |
2565409f HC |
497 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
498 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 499 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 500 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
501 | freelist_old, counters_old, |
502 | freelist_new, counters_new)) | |
6f6528a1 | 503 | return true; |
b789ef51 CL |
504 | } else |
505 | #endif | |
506 | { | |
1d07171c CL |
507 | unsigned long flags; |
508 | ||
509 | local_irq_save(flags); | |
a2b4ae8b | 510 | __slab_lock(page); |
d0e0ac97 CG |
511 | if (page->freelist == freelist_old && |
512 | page->counters == counters_old) { | |
b789ef51 | 513 | page->freelist = freelist_new; |
7d27a04b | 514 | page->counters = counters_new; |
a2b4ae8b | 515 | __slab_unlock(page); |
1d07171c | 516 | local_irq_restore(flags); |
6f6528a1 | 517 | return true; |
b789ef51 | 518 | } |
a2b4ae8b | 519 | __slab_unlock(page); |
1d07171c | 520 | local_irq_restore(flags); |
b789ef51 CL |
521 | } |
522 | ||
523 | cpu_relax(); | |
524 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
525 | ||
526 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 527 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
528 | #endif |
529 | ||
6f6528a1 | 530 | return false; |
b789ef51 CL |
531 | } |
532 | ||
41ecc55b | 533 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 534 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
94ef0304 | 535 | static DEFINE_RAW_SPINLOCK(object_map_lock); |
90e9f6a6 | 536 | |
b3fd64e1 VB |
537 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
538 | struct page *page) | |
539 | { | |
540 | void *addr = page_address(page); | |
541 | void *p; | |
542 | ||
543 | bitmap_zero(obj_map, page->objects); | |
544 | ||
545 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
546 | set_bit(__obj_to_index(s, addr, p), obj_map); | |
547 | } | |
548 | ||
1f9f78b1 OG |
549 | #if IS_ENABLED(CONFIG_KUNIT) |
550 | static bool slab_add_kunit_errors(void) | |
551 | { | |
552 | struct kunit_resource *resource; | |
553 | ||
554 | if (likely(!current->kunit_test)) | |
555 | return false; | |
556 | ||
557 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
558 | if (!resource) | |
559 | return false; | |
560 | ||
561 | (*(int *)resource->data)++; | |
562 | kunit_put_resource(resource); | |
563 | return true; | |
564 | } | |
565 | #else | |
566 | static inline bool slab_add_kunit_errors(void) { return false; } | |
567 | #endif | |
568 | ||
5f80b13a CL |
569 | /* |
570 | * Determine a map of object in use on a page. | |
571 | * | |
881db7fb | 572 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
573 | * not vanish from under us. |
574 | */ | |
90e9f6a6 | 575 | static unsigned long *get_map(struct kmem_cache *s, struct page *page) |
31364c2e | 576 | __acquires(&object_map_lock) |
5f80b13a | 577 | { |
90e9f6a6 YZ |
578 | VM_BUG_ON(!irqs_disabled()); |
579 | ||
94ef0304 | 580 | raw_spin_lock(&object_map_lock); |
90e9f6a6 | 581 | |
b3fd64e1 | 582 | __fill_map(object_map, s, page); |
90e9f6a6 YZ |
583 | |
584 | return object_map; | |
585 | } | |
586 | ||
81aba9e0 | 587 | static void put_map(unsigned long *map) __releases(&object_map_lock) |
90e9f6a6 YZ |
588 | { |
589 | VM_BUG_ON(map != object_map); | |
94ef0304 | 590 | raw_spin_unlock(&object_map_lock); |
5f80b13a CL |
591 | } |
592 | ||
870b1fbb | 593 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
594 | { |
595 | if (s->flags & SLAB_RED_ZONE) | |
596 | return s->size - s->red_left_pad; | |
597 | ||
598 | return s->size; | |
599 | } | |
600 | ||
601 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
602 | { | |
603 | if (s->flags & SLAB_RED_ZONE) | |
604 | p -= s->red_left_pad; | |
605 | ||
606 | return p; | |
607 | } | |
608 | ||
41ecc55b CL |
609 | /* |
610 | * Debug settings: | |
611 | */ | |
89d3c87e | 612 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 613 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 614 | #else |
d50112ed | 615 | static slab_flags_t slub_debug; |
f0630fff | 616 | #endif |
41ecc55b | 617 | |
e17f1dfb | 618 | static char *slub_debug_string; |
fa5ec8a1 | 619 | static int disable_higher_order_debug; |
41ecc55b | 620 | |
a79316c6 AR |
621 | /* |
622 | * slub is about to manipulate internal object metadata. This memory lies | |
623 | * outside the range of the allocated object, so accessing it would normally | |
624 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
625 | * to tell kasan that these accesses are OK. | |
626 | */ | |
627 | static inline void metadata_access_enable(void) | |
628 | { | |
629 | kasan_disable_current(); | |
630 | } | |
631 | ||
632 | static inline void metadata_access_disable(void) | |
633 | { | |
634 | kasan_enable_current(); | |
635 | } | |
636 | ||
81819f0f CL |
637 | /* |
638 | * Object debugging | |
639 | */ | |
d86bd1be JK |
640 | |
641 | /* Verify that a pointer has an address that is valid within a slab page */ | |
642 | static inline int check_valid_pointer(struct kmem_cache *s, | |
643 | struct page *page, void *object) | |
644 | { | |
645 | void *base; | |
646 | ||
647 | if (!object) | |
648 | return 1; | |
649 | ||
650 | base = page_address(page); | |
338cfaad | 651 | object = kasan_reset_tag(object); |
d86bd1be JK |
652 | object = restore_red_left(s, object); |
653 | if (object < base || object >= base + page->objects * s->size || | |
654 | (object - base) % s->size) { | |
655 | return 0; | |
656 | } | |
657 | ||
658 | return 1; | |
659 | } | |
660 | ||
aa2efd5e DT |
661 | static void print_section(char *level, char *text, u8 *addr, |
662 | unsigned int length) | |
81819f0f | 663 | { |
a79316c6 | 664 | metadata_access_enable(); |
340caf17 KYL |
665 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
666 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 667 | metadata_access_disable(); |
81819f0f CL |
668 | } |
669 | ||
cbfc35a4 WL |
670 | /* |
671 | * See comment in calculate_sizes(). | |
672 | */ | |
673 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
674 | { | |
675 | return s->offset >= s->inuse; | |
676 | } | |
677 | ||
678 | /* | |
679 | * Return offset of the end of info block which is inuse + free pointer if | |
680 | * not overlapping with object. | |
681 | */ | |
682 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
683 | { | |
684 | if (freeptr_outside_object(s)) | |
685 | return s->inuse + sizeof(void *); | |
686 | else | |
687 | return s->inuse; | |
688 | } | |
689 | ||
81819f0f CL |
690 | static struct track *get_track(struct kmem_cache *s, void *object, |
691 | enum track_item alloc) | |
692 | { | |
693 | struct track *p; | |
694 | ||
cbfc35a4 | 695 | p = object + get_info_end(s); |
81819f0f | 696 | |
aa1ef4d7 | 697 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
698 | } |
699 | ||
700 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 701 | enum track_item alloc, unsigned long addr) |
81819f0f | 702 | { |
1a00df4a | 703 | struct track *p = get_track(s, object, alloc); |
81819f0f | 704 | |
81819f0f | 705 | if (addr) { |
ae14c63a LT |
706 | #ifdef CONFIG_STACKTRACE |
707 | unsigned int nr_entries; | |
708 | ||
709 | metadata_access_enable(); | |
710 | nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), | |
711 | TRACK_ADDRS_COUNT, 3); | |
712 | metadata_access_disable(); | |
713 | ||
714 | if (nr_entries < TRACK_ADDRS_COUNT) | |
715 | p->addrs[nr_entries] = 0; | |
d6543e39 | 716 | #endif |
81819f0f CL |
717 | p->addr = addr; |
718 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 719 | p->pid = current->pid; |
81819f0f | 720 | p->when = jiffies; |
b8ca7ff7 | 721 | } else { |
81819f0f | 722 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 723 | } |
81819f0f CL |
724 | } |
725 | ||
81819f0f CL |
726 | static void init_tracking(struct kmem_cache *s, void *object) |
727 | { | |
24922684 CL |
728 | if (!(s->flags & SLAB_STORE_USER)) |
729 | return; | |
730 | ||
ce71e27c EGM |
731 | set_track(s, object, TRACK_FREE, 0UL); |
732 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
733 | } |
734 | ||
86609d33 | 735 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
736 | { |
737 | if (!t->addr) | |
738 | return; | |
739 | ||
96b94abc | 740 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 741 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
ae14c63a | 742 | #ifdef CONFIG_STACKTRACE |
d6543e39 | 743 | { |
ae14c63a LT |
744 | int i; |
745 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
746 | if (t->addrs[i]) | |
747 | pr_err("\t%pS\n", (void *)t->addrs[i]); | |
748 | else | |
749 | break; | |
d6543e39 BG |
750 | } |
751 | #endif | |
24922684 CL |
752 | } |
753 | ||
e42f174e | 754 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 755 | { |
86609d33 | 756 | unsigned long pr_time = jiffies; |
24922684 CL |
757 | if (!(s->flags & SLAB_STORE_USER)) |
758 | return; | |
759 | ||
86609d33 CP |
760 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
761 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
762 | } |
763 | ||
764 | static void print_page_info(struct page *page) | |
765 | { | |
96b94abc | 766 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n", |
4a8ef190 YS |
767 | page, page->objects, page->inuse, page->freelist, |
768 | page->flags, &page->flags); | |
24922684 CL |
769 | |
770 | } | |
771 | ||
772 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
773 | { | |
ecc42fbe | 774 | struct va_format vaf; |
24922684 | 775 | va_list args; |
24922684 CL |
776 | |
777 | va_start(args, fmt); | |
ecc42fbe FF |
778 | vaf.fmt = fmt; |
779 | vaf.va = &args; | |
f9f58285 | 780 | pr_err("=============================================================================\n"); |
ecc42fbe | 781 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 782 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 783 | va_end(args); |
81819f0f CL |
784 | } |
785 | ||
582d1212 | 786 | __printf(2, 3) |
24922684 CL |
787 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
788 | { | |
ecc42fbe | 789 | struct va_format vaf; |
24922684 | 790 | va_list args; |
24922684 | 791 | |
1f9f78b1 OG |
792 | if (slab_add_kunit_errors()) |
793 | return; | |
794 | ||
24922684 | 795 | va_start(args, fmt); |
ecc42fbe FF |
796 | vaf.fmt = fmt; |
797 | vaf.va = &args; | |
798 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 799 | va_end(args); |
24922684 CL |
800 | } |
801 | ||
52f23478 | 802 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
dc07a728 | 803 | void **freelist, void *nextfree) |
52f23478 DZ |
804 | { |
805 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
dc07a728 ER |
806 | !check_valid_pointer(s, page, nextfree) && freelist) { |
807 | object_err(s, page, *freelist, "Freechain corrupt"); | |
808 | *freelist = NULL; | |
52f23478 DZ |
809 | slab_fix(s, "Isolate corrupted freechain"); |
810 | return true; | |
811 | } | |
812 | ||
813 | return false; | |
814 | } | |
815 | ||
24922684 | 816 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
81819f0f CL |
817 | { |
818 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 819 | u8 *addr = page_address(page); |
24922684 CL |
820 | |
821 | print_tracking(s, p); | |
822 | ||
823 | print_page_info(page); | |
824 | ||
96b94abc | 825 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 826 | p, p - addr, get_freepointer(s, p)); |
24922684 | 827 | |
d86bd1be | 828 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 829 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 830 | s->red_left_pad); |
d86bd1be | 831 | else if (p > addr + 16) |
aa2efd5e | 832 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 833 | |
8669dbab | 834 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 835 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 836 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 837 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 838 | s->inuse - s->object_size); |
81819f0f | 839 | |
cbfc35a4 | 840 | off = get_info_end(s); |
81819f0f | 841 | |
24922684 | 842 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 843 | off += 2 * sizeof(struct track); |
81819f0f | 844 | |
80a9201a AP |
845 | off += kasan_metadata_size(s); |
846 | ||
d86bd1be | 847 | if (off != size_from_object(s)) |
81819f0f | 848 | /* Beginning of the filler is the free pointer */ |
8669dbab | 849 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 850 | size_from_object(s) - off); |
24922684 CL |
851 | |
852 | dump_stack(); | |
81819f0f CL |
853 | } |
854 | ||
75c66def | 855 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
856 | u8 *object, char *reason) |
857 | { | |
1f9f78b1 OG |
858 | if (slab_add_kunit_errors()) |
859 | return; | |
860 | ||
3dc50637 | 861 | slab_bug(s, "%s", reason); |
24922684 | 862 | print_trailer(s, page, object); |
65ebdeef | 863 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
864 | } |
865 | ||
a38965bf | 866 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 867 | const char *fmt, ...) |
81819f0f CL |
868 | { |
869 | va_list args; | |
870 | char buf[100]; | |
871 | ||
1f9f78b1 OG |
872 | if (slab_add_kunit_errors()) |
873 | return; | |
874 | ||
24922684 CL |
875 | va_start(args, fmt); |
876 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 877 | va_end(args); |
3dc50637 | 878 | slab_bug(s, "%s", buf); |
24922684 | 879 | print_page_info(page); |
81819f0f | 880 | dump_stack(); |
65ebdeef | 881 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
882 | } |
883 | ||
f7cb1933 | 884 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 885 | { |
aa1ef4d7 | 886 | u8 *p = kasan_reset_tag(object); |
81819f0f | 887 | |
d86bd1be JK |
888 | if (s->flags & SLAB_RED_ZONE) |
889 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
890 | ||
81819f0f | 891 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
892 | memset(p, POISON_FREE, s->object_size - 1); |
893 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
894 | } |
895 | ||
896 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 897 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
898 | } |
899 | ||
24922684 CL |
900 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
901 | void *from, void *to) | |
902 | { | |
582d1212 | 903 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
904 | memset(from, data, to - from); |
905 | } | |
906 | ||
907 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
908 | u8 *object, char *what, | |
06428780 | 909 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
910 | { |
911 | u8 *fault; | |
912 | u8 *end; | |
e1b70dd1 | 913 | u8 *addr = page_address(page); |
24922684 | 914 | |
a79316c6 | 915 | metadata_access_enable(); |
aa1ef4d7 | 916 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 917 | metadata_access_disable(); |
24922684 CL |
918 | if (!fault) |
919 | return 1; | |
920 | ||
921 | end = start + bytes; | |
922 | while (end > fault && end[-1] == value) | |
923 | end--; | |
924 | ||
1f9f78b1 OG |
925 | if (slab_add_kunit_errors()) |
926 | goto skip_bug_print; | |
927 | ||
24922684 | 928 | slab_bug(s, "%s overwritten", what); |
96b94abc | 929 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
930 | fault, end - 1, fault - addr, |
931 | fault[0], value); | |
24922684 | 932 | print_trailer(s, page, object); |
65ebdeef | 933 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
24922684 | 934 | |
1f9f78b1 | 935 | skip_bug_print: |
24922684 CL |
936 | restore_bytes(s, what, value, fault, end); |
937 | return 0; | |
81819f0f CL |
938 | } |
939 | ||
81819f0f CL |
940 | /* |
941 | * Object layout: | |
942 | * | |
943 | * object address | |
944 | * Bytes of the object to be managed. | |
945 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 946 | * pointer is at the middle of the object. |
672bba3a | 947 | * |
81819f0f CL |
948 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
949 | * 0xa5 (POISON_END) | |
950 | * | |
3b0efdfa | 951 | * object + s->object_size |
81819f0f | 952 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 953 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 954 | * object_size == inuse. |
672bba3a | 955 | * |
81819f0f CL |
956 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
957 | * 0xcc (RED_ACTIVE) for objects in use. | |
958 | * | |
959 | * object + s->inuse | |
672bba3a CL |
960 | * Meta data starts here. |
961 | * | |
81819f0f CL |
962 | * A. Free pointer (if we cannot overwrite object on free) |
963 | * B. Tracking data for SLAB_STORE_USER | |
dc84207d | 964 | * C. Padding to reach required alignment boundary or at minimum |
6446faa2 | 965 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
966 | * before the word boundary. |
967 | * | |
968 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
969 | * |
970 | * object + s->size | |
672bba3a | 971 | * Nothing is used beyond s->size. |
81819f0f | 972 | * |
3b0efdfa | 973 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 974 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
975 | * may be used with merged slabcaches. |
976 | */ | |
977 | ||
81819f0f CL |
978 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
979 | { | |
cbfc35a4 | 980 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f CL |
981 | |
982 | if (s->flags & SLAB_STORE_USER) | |
983 | /* We also have user information there */ | |
984 | off += 2 * sizeof(struct track); | |
985 | ||
80a9201a AP |
986 | off += kasan_metadata_size(s); |
987 | ||
d86bd1be | 988 | if (size_from_object(s) == off) |
81819f0f CL |
989 | return 1; |
990 | ||
24922684 | 991 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 992 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
993 | } |
994 | ||
39b26464 | 995 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
996 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
997 | { | |
24922684 CL |
998 | u8 *start; |
999 | u8 *fault; | |
1000 | u8 *end; | |
5d682681 | 1001 | u8 *pad; |
24922684 CL |
1002 | int length; |
1003 | int remainder; | |
81819f0f CL |
1004 | |
1005 | if (!(s->flags & SLAB_POISON)) | |
1006 | return 1; | |
1007 | ||
a973e9dd | 1008 | start = page_address(page); |
a50b854e | 1009 | length = page_size(page); |
39b26464 CL |
1010 | end = start + length; |
1011 | remainder = length % s->size; | |
81819f0f CL |
1012 | if (!remainder) |
1013 | return 1; | |
1014 | ||
5d682681 | 1015 | pad = end - remainder; |
a79316c6 | 1016 | metadata_access_enable(); |
aa1ef4d7 | 1017 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1018 | metadata_access_disable(); |
24922684 CL |
1019 | if (!fault) |
1020 | return 1; | |
1021 | while (end > fault && end[-1] == POISON_INUSE) | |
1022 | end--; | |
1023 | ||
e1b70dd1 MC |
1024 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
1025 | fault, end - 1, fault - start); | |
5d682681 | 1026 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1027 | |
5d682681 | 1028 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 1029 | return 0; |
81819f0f CL |
1030 | } |
1031 | ||
1032 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1033 | void *object, u8 val) |
81819f0f CL |
1034 | { |
1035 | u8 *p = object; | |
3b0efdfa | 1036 | u8 *endobject = object + s->object_size; |
81819f0f CL |
1037 | |
1038 | if (s->flags & SLAB_RED_ZONE) { | |
8669dbab | 1039 | if (!check_bytes_and_report(s, page, object, "Left Redzone", |
d86bd1be JK |
1040 | object - s->red_left_pad, val, s->red_left_pad)) |
1041 | return 0; | |
1042 | ||
8669dbab | 1043 | if (!check_bytes_and_report(s, page, object, "Right Redzone", |
3b0efdfa | 1044 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 1045 | return 0; |
81819f0f | 1046 | } else { |
3b0efdfa | 1047 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 1048 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
1049 | endobject, POISON_INUSE, |
1050 | s->inuse - s->object_size); | |
3adbefee | 1051 | } |
81819f0f CL |
1052 | } |
1053 | ||
1054 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 1055 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 1056 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 1057 | POISON_FREE, s->object_size - 1) || |
8669dbab | 1058 | !check_bytes_and_report(s, page, p, "End Poison", |
3b0efdfa | 1059 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 1060 | return 0; |
81819f0f CL |
1061 | /* |
1062 | * check_pad_bytes cleans up on its own. | |
1063 | */ | |
1064 | check_pad_bytes(s, page, p); | |
1065 | } | |
1066 | ||
cbfc35a4 | 1067 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
1068 | /* |
1069 | * Object and freepointer overlap. Cannot check | |
1070 | * freepointer while object is allocated. | |
1071 | */ | |
1072 | return 1; | |
1073 | ||
1074 | /* Check free pointer validity */ | |
1075 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
1076 | object_err(s, page, p, "Freepointer corrupt"); | |
1077 | /* | |
9f6c708e | 1078 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1079 | * of the free objects in this slab. May cause |
672bba3a | 1080 | * another error because the object count is now wrong. |
81819f0f | 1081 | */ |
a973e9dd | 1082 | set_freepointer(s, p, NULL); |
81819f0f CL |
1083 | return 0; |
1084 | } | |
1085 | return 1; | |
1086 | } | |
1087 | ||
1088 | static int check_slab(struct kmem_cache *s, struct page *page) | |
1089 | { | |
39b26464 CL |
1090 | int maxobj; |
1091 | ||
81819f0f | 1092 | if (!PageSlab(page)) { |
24922684 | 1093 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
1094 | return 0; |
1095 | } | |
39b26464 | 1096 | |
9736d2a9 | 1097 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
1098 | if (page->objects > maxobj) { |
1099 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 1100 | page->objects, maxobj); |
39b26464 CL |
1101 | return 0; |
1102 | } | |
1103 | if (page->inuse > page->objects) { | |
24922684 | 1104 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 1105 | page->inuse, page->objects); |
81819f0f CL |
1106 | return 0; |
1107 | } | |
1108 | /* Slab_pad_check fixes things up after itself */ | |
1109 | slab_pad_check(s, page); | |
1110 | return 1; | |
1111 | } | |
1112 | ||
1113 | /* | |
672bba3a CL |
1114 | * Determine if a certain object on a page is on the freelist. Must hold the |
1115 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
1116 | */ |
1117 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
1118 | { | |
1119 | int nr = 0; | |
881db7fb | 1120 | void *fp; |
81819f0f | 1121 | void *object = NULL; |
f6edde9c | 1122 | int max_objects; |
81819f0f | 1123 | |
881db7fb | 1124 | fp = page->freelist; |
39b26464 | 1125 | while (fp && nr <= page->objects) { |
81819f0f CL |
1126 | if (fp == search) |
1127 | return 1; | |
1128 | if (!check_valid_pointer(s, page, fp)) { | |
1129 | if (object) { | |
1130 | object_err(s, page, object, | |
1131 | "Freechain corrupt"); | |
a973e9dd | 1132 | set_freepointer(s, object, NULL); |
81819f0f | 1133 | } else { |
24922684 | 1134 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 1135 | page->freelist = NULL; |
39b26464 | 1136 | page->inuse = page->objects; |
24922684 | 1137 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1138 | return 0; |
1139 | } | |
1140 | break; | |
1141 | } | |
1142 | object = fp; | |
1143 | fp = get_freepointer(s, object); | |
1144 | nr++; | |
1145 | } | |
1146 | ||
9736d2a9 | 1147 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
1148 | if (max_objects > MAX_OBJS_PER_PAGE) |
1149 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
1150 | |
1151 | if (page->objects != max_objects) { | |
756a025f JP |
1152 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
1153 | page->objects, max_objects); | |
224a88be | 1154 | page->objects = max_objects; |
582d1212 | 1155 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1156 | } |
39b26464 | 1157 | if (page->inuse != page->objects - nr) { |
756a025f JP |
1158 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
1159 | page->inuse, page->objects - nr); | |
39b26464 | 1160 | page->inuse = page->objects - nr; |
582d1212 | 1161 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1162 | } |
1163 | return search == NULL; | |
1164 | } | |
1165 | ||
0121c619 CL |
1166 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
1167 | int alloc) | |
3ec09742 CL |
1168 | { |
1169 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1170 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1171 | s->name, |
1172 | alloc ? "alloc" : "free", | |
1173 | object, page->inuse, | |
1174 | page->freelist); | |
1175 | ||
1176 | if (!alloc) | |
aa2efd5e | 1177 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1178 | s->object_size); |
3ec09742 CL |
1179 | |
1180 | dump_stack(); | |
1181 | } | |
1182 | } | |
1183 | ||
643b1138 | 1184 | /* |
672bba3a | 1185 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1186 | */ |
5cc6eee8 CL |
1187 | static void add_full(struct kmem_cache *s, |
1188 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1189 | { |
5cc6eee8 CL |
1190 | if (!(s->flags & SLAB_STORE_USER)) |
1191 | return; | |
1192 | ||
255d0884 | 1193 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1194 | list_add(&page->slab_list, &n->full); |
643b1138 CL |
1195 | } |
1196 | ||
c65c1877 | 1197 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1198 | { |
643b1138 CL |
1199 | if (!(s->flags & SLAB_STORE_USER)) |
1200 | return; | |
1201 | ||
255d0884 | 1202 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1203 | list_del(&page->slab_list); |
643b1138 CL |
1204 | } |
1205 | ||
0f389ec6 CL |
1206 | /* Tracking of the number of slabs for debugging purposes */ |
1207 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1208 | { | |
1209 | struct kmem_cache_node *n = get_node(s, node); | |
1210 | ||
1211 | return atomic_long_read(&n->nr_slabs); | |
1212 | } | |
1213 | ||
26c02cf0 AB |
1214 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1215 | { | |
1216 | return atomic_long_read(&n->nr_slabs); | |
1217 | } | |
1218 | ||
205ab99d | 1219 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1220 | { |
1221 | struct kmem_cache_node *n = get_node(s, node); | |
1222 | ||
1223 | /* | |
1224 | * May be called early in order to allocate a slab for the | |
1225 | * kmem_cache_node structure. Solve the chicken-egg | |
1226 | * dilemma by deferring the increment of the count during | |
1227 | * bootstrap (see early_kmem_cache_node_alloc). | |
1228 | */ | |
338b2642 | 1229 | if (likely(n)) { |
0f389ec6 | 1230 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1231 | atomic_long_add(objects, &n->total_objects); |
1232 | } | |
0f389ec6 | 1233 | } |
205ab99d | 1234 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1235 | { |
1236 | struct kmem_cache_node *n = get_node(s, node); | |
1237 | ||
1238 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1239 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1240 | } |
1241 | ||
1242 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1243 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1244 | void *object) | |
1245 | { | |
8fc8d666 | 1246 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1247 | return; |
1248 | ||
f7cb1933 | 1249 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1250 | init_tracking(s, object); |
1251 | } | |
1252 | ||
a50b854e MWO |
1253 | static |
1254 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) | |
a7101224 | 1255 | { |
8fc8d666 | 1256 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1257 | return; |
1258 | ||
1259 | metadata_access_enable(); | |
aa1ef4d7 | 1260 | memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); |
a7101224 AK |
1261 | metadata_access_disable(); |
1262 | } | |
1263 | ||
becfda68 | 1264 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
278d7756 | 1265 | struct page *page, void *object) |
81819f0f CL |
1266 | { |
1267 | if (!check_slab(s, page)) | |
becfda68 | 1268 | return 0; |
81819f0f | 1269 | |
81819f0f CL |
1270 | if (!check_valid_pointer(s, page, object)) { |
1271 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1272 | return 0; |
81819f0f CL |
1273 | } |
1274 | ||
f7cb1933 | 1275 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1276 | return 0; |
1277 | ||
1278 | return 1; | |
1279 | } | |
1280 | ||
1281 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1282 | struct page *page, | |
1283 | void *object, unsigned long addr) | |
1284 | { | |
1285 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
278d7756 | 1286 | if (!alloc_consistency_checks(s, page, object)) |
becfda68 LA |
1287 | goto bad; |
1288 | } | |
81819f0f | 1289 | |
3ec09742 CL |
1290 | /* Success perform special debug activities for allocs */ |
1291 | if (s->flags & SLAB_STORE_USER) | |
1292 | set_track(s, object, TRACK_ALLOC, addr); | |
1293 | trace(s, page, object, 1); | |
f7cb1933 | 1294 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1295 | return 1; |
3ec09742 | 1296 | |
81819f0f CL |
1297 | bad: |
1298 | if (PageSlab(page)) { | |
1299 | /* | |
1300 | * If this is a slab page then lets do the best we can | |
1301 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1302 | * as used avoids touching the remaining objects. |
81819f0f | 1303 | */ |
24922684 | 1304 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1305 | page->inuse = page->objects; |
a973e9dd | 1306 | page->freelist = NULL; |
81819f0f CL |
1307 | } |
1308 | return 0; | |
1309 | } | |
1310 | ||
becfda68 LA |
1311 | static inline int free_consistency_checks(struct kmem_cache *s, |
1312 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1313 | { |
81819f0f | 1314 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1315 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1316 | return 0; |
81819f0f CL |
1317 | } |
1318 | ||
1319 | if (on_freelist(s, page, object)) { | |
24922684 | 1320 | object_err(s, page, object, "Object already free"); |
becfda68 | 1321 | return 0; |
81819f0f CL |
1322 | } |
1323 | ||
f7cb1933 | 1324 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1325 | return 0; |
81819f0f | 1326 | |
1b4f59e3 | 1327 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1328 | if (!PageSlab(page)) { |
756a025f JP |
1329 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1330 | object); | |
1b4f59e3 | 1331 | } else if (!page->slab_cache) { |
f9f58285 FF |
1332 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1333 | object); | |
70d71228 | 1334 | dump_stack(); |
06428780 | 1335 | } else |
24922684 CL |
1336 | object_err(s, page, object, |
1337 | "page slab pointer corrupt."); | |
becfda68 LA |
1338 | return 0; |
1339 | } | |
1340 | return 1; | |
1341 | } | |
1342 | ||
1343 | /* Supports checking bulk free of a constructed freelist */ | |
1344 | static noinline int free_debug_processing( | |
1345 | struct kmem_cache *s, struct page *page, | |
1346 | void *head, void *tail, int bulk_cnt, | |
1347 | unsigned long addr) | |
1348 | { | |
1349 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1350 | void *object = head; | |
1351 | int cnt = 0; | |
a2b4ae8b | 1352 | unsigned long flags, flags2; |
becfda68 LA |
1353 | int ret = 0; |
1354 | ||
1355 | spin_lock_irqsave(&n->list_lock, flags); | |
a2b4ae8b | 1356 | slab_lock(page, &flags2); |
becfda68 LA |
1357 | |
1358 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1359 | if (!check_slab(s, page)) | |
1360 | goto out; | |
1361 | } | |
1362 | ||
1363 | next_object: | |
1364 | cnt++; | |
1365 | ||
1366 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1367 | if (!free_consistency_checks(s, page, object, addr)) | |
1368 | goto out; | |
81819f0f | 1369 | } |
3ec09742 | 1370 | |
3ec09742 CL |
1371 | if (s->flags & SLAB_STORE_USER) |
1372 | set_track(s, object, TRACK_FREE, addr); | |
1373 | trace(s, page, object, 0); | |
81084651 | 1374 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1375 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1376 | |
1377 | /* Reached end of constructed freelist yet? */ | |
1378 | if (object != tail) { | |
1379 | object = get_freepointer(s, object); | |
1380 | goto next_object; | |
1381 | } | |
804aa132 LA |
1382 | ret = 1; |
1383 | ||
5c2e4bbb | 1384 | out: |
81084651 JDB |
1385 | if (cnt != bulk_cnt) |
1386 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1387 | bulk_cnt, cnt); | |
1388 | ||
a2b4ae8b | 1389 | slab_unlock(page, &flags2); |
282acb43 | 1390 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1391 | if (!ret) |
1392 | slab_fix(s, "Object at 0x%p not freed", object); | |
1393 | return ret; | |
81819f0f CL |
1394 | } |
1395 | ||
e17f1dfb VB |
1396 | /* |
1397 | * Parse a block of slub_debug options. Blocks are delimited by ';' | |
1398 | * | |
1399 | * @str: start of block | |
1400 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1401 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1402 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1403 | * | |
1404 | * returns the start of next block if there's any, or NULL | |
1405 | */ | |
1406 | static char * | |
1407 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1408 | { |
e17f1dfb | 1409 | bool higher_order_disable = false; |
f0630fff | 1410 | |
e17f1dfb VB |
1411 | /* Skip any completely empty blocks */ |
1412 | while (*str && *str == ';') | |
1413 | str++; | |
1414 | ||
1415 | if (*str == ',') { | |
f0630fff CL |
1416 | /* |
1417 | * No options but restriction on slabs. This means full | |
1418 | * debugging for slabs matching a pattern. | |
1419 | */ | |
e17f1dfb | 1420 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1421 | goto check_slabs; |
e17f1dfb VB |
1422 | } |
1423 | *flags = 0; | |
f0630fff | 1424 | |
e17f1dfb VB |
1425 | /* Determine which debug features should be switched on */ |
1426 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1427 | switch (tolower(*str)) { |
e17f1dfb VB |
1428 | case '-': |
1429 | *flags = 0; | |
1430 | break; | |
f0630fff | 1431 | case 'f': |
e17f1dfb | 1432 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1433 | break; |
1434 | case 'z': | |
e17f1dfb | 1435 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1436 | break; |
1437 | case 'p': | |
e17f1dfb | 1438 | *flags |= SLAB_POISON; |
f0630fff CL |
1439 | break; |
1440 | case 'u': | |
e17f1dfb | 1441 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1442 | break; |
1443 | case 't': | |
e17f1dfb | 1444 | *flags |= SLAB_TRACE; |
f0630fff | 1445 | break; |
4c13dd3b | 1446 | case 'a': |
e17f1dfb | 1447 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1448 | break; |
08303a73 CA |
1449 | case 'o': |
1450 | /* | |
1451 | * Avoid enabling debugging on caches if its minimum | |
1452 | * order would increase as a result. | |
1453 | */ | |
e17f1dfb | 1454 | higher_order_disable = true; |
08303a73 | 1455 | break; |
f0630fff | 1456 | default: |
e17f1dfb VB |
1457 | if (init) |
1458 | pr_err("slub_debug option '%c' unknown. skipped\n", *str); | |
f0630fff | 1459 | } |
41ecc55b | 1460 | } |
f0630fff | 1461 | check_slabs: |
41ecc55b | 1462 | if (*str == ',') |
e17f1dfb VB |
1463 | *slabs = ++str; |
1464 | else | |
1465 | *slabs = NULL; | |
1466 | ||
1467 | /* Skip over the slab list */ | |
1468 | while (*str && *str != ';') | |
1469 | str++; | |
1470 | ||
1471 | /* Skip any completely empty blocks */ | |
1472 | while (*str && *str == ';') | |
1473 | str++; | |
1474 | ||
1475 | if (init && higher_order_disable) | |
1476 | disable_higher_order_debug = 1; | |
1477 | ||
1478 | if (*str) | |
1479 | return str; | |
1480 | else | |
1481 | return NULL; | |
1482 | } | |
1483 | ||
1484 | static int __init setup_slub_debug(char *str) | |
1485 | { | |
1486 | slab_flags_t flags; | |
a7f1d485 | 1487 | slab_flags_t global_flags; |
e17f1dfb VB |
1488 | char *saved_str; |
1489 | char *slab_list; | |
1490 | bool global_slub_debug_changed = false; | |
1491 | bool slab_list_specified = false; | |
1492 | ||
a7f1d485 | 1493 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1494 | if (*str++ != '=' || !*str) |
1495 | /* | |
1496 | * No options specified. Switch on full debugging. | |
1497 | */ | |
1498 | goto out; | |
1499 | ||
1500 | saved_str = str; | |
1501 | while (str) { | |
1502 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1503 | ||
1504 | if (!slab_list) { | |
a7f1d485 | 1505 | global_flags = flags; |
e17f1dfb VB |
1506 | global_slub_debug_changed = true; |
1507 | } else { | |
1508 | slab_list_specified = true; | |
1509 | } | |
1510 | } | |
1511 | ||
1512 | /* | |
1513 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 VB |
1514 | * slabs means debugging is only changed for those slabs, so the global |
1515 | * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending | |
1516 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as | |
e17f1dfb VB |
1517 | * long as there is no option specifying flags without a slab list. |
1518 | */ | |
1519 | if (slab_list_specified) { | |
1520 | if (!global_slub_debug_changed) | |
a7f1d485 | 1521 | global_flags = slub_debug; |
e17f1dfb VB |
1522 | slub_debug_string = saved_str; |
1523 | } | |
f0630fff | 1524 | out: |
a7f1d485 | 1525 | slub_debug = global_flags; |
ca0cab65 VB |
1526 | if (slub_debug != 0 || slub_debug_string) |
1527 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1528 | else |
1529 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1530 | if ((static_branch_unlikely(&init_on_alloc) || |
1531 | static_branch_unlikely(&init_on_free)) && | |
1532 | (slub_debug & SLAB_POISON)) | |
1533 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1534 | return 1; |
1535 | } | |
1536 | ||
1537 | __setup("slub_debug", setup_slub_debug); | |
1538 | ||
c5fd3ca0 AT |
1539 | /* |
1540 | * kmem_cache_flags - apply debugging options to the cache | |
1541 | * @object_size: the size of an object without meta data | |
1542 | * @flags: flags to set | |
1543 | * @name: name of the cache | |
c5fd3ca0 AT |
1544 | * |
1545 | * Debug option(s) are applied to @flags. In addition to the debug | |
1546 | * option(s), if a slab name (or multiple) is specified i.e. | |
1547 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1548 | * then only the select slabs will receive the debug option(s). | |
1549 | */ | |
0293d1fd | 1550 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1551 | slab_flags_t flags, const char *name) |
41ecc55b | 1552 | { |
c5fd3ca0 AT |
1553 | char *iter; |
1554 | size_t len; | |
e17f1dfb VB |
1555 | char *next_block; |
1556 | slab_flags_t block_flags; | |
ca220593 JB |
1557 | slab_flags_t slub_debug_local = slub_debug; |
1558 | ||
1559 | /* | |
1560 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1561 | * don't store user (stack trace) information by default, | |
1562 | * but let the user enable it via the command line below. | |
1563 | */ | |
1564 | if (flags & SLAB_NOLEAKTRACE) | |
1565 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1566 | |
c5fd3ca0 | 1567 | len = strlen(name); |
e17f1dfb VB |
1568 | next_block = slub_debug_string; |
1569 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1570 | while (next_block) { | |
1571 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1572 | if (!iter) | |
1573 | continue; | |
1574 | /* Found a block that has a slab list, search it */ | |
1575 | while (*iter) { | |
1576 | char *end, *glob; | |
1577 | size_t cmplen; | |
1578 | ||
1579 | end = strchrnul(iter, ','); | |
1580 | if (next_block && next_block < end) | |
1581 | end = next_block - 1; | |
1582 | ||
1583 | glob = strnchr(iter, end - iter, '*'); | |
1584 | if (glob) | |
1585 | cmplen = glob - iter; | |
1586 | else | |
1587 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1588 | |
e17f1dfb VB |
1589 | if (!strncmp(name, iter, cmplen)) { |
1590 | flags |= block_flags; | |
1591 | return flags; | |
1592 | } | |
c5fd3ca0 | 1593 | |
e17f1dfb VB |
1594 | if (!*end || *end == ';') |
1595 | break; | |
1596 | iter = end + 1; | |
c5fd3ca0 | 1597 | } |
c5fd3ca0 | 1598 | } |
ba0268a8 | 1599 | |
ca220593 | 1600 | return flags | slub_debug_local; |
41ecc55b | 1601 | } |
b4a64718 | 1602 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1603 | static inline void setup_object_debug(struct kmem_cache *s, |
1604 | struct page *page, void *object) {} | |
a50b854e MWO |
1605 | static inline |
1606 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} | |
41ecc55b | 1607 | |
3ec09742 | 1608 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1609 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1610 | |
282acb43 | 1611 | static inline int free_debug_processing( |
81084651 JDB |
1612 | struct kmem_cache *s, struct page *page, |
1613 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1614 | unsigned long addr) { return 0; } |
41ecc55b | 1615 | |
41ecc55b CL |
1616 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1617 | { return 1; } | |
1618 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1619 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1620 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1621 | struct page *page) {} | |
c65c1877 PZ |
1622 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1623 | struct page *page) {} | |
0293d1fd | 1624 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1625 | slab_flags_t flags, const char *name) |
ba0268a8 CL |
1626 | { |
1627 | return flags; | |
1628 | } | |
41ecc55b | 1629 | #define slub_debug 0 |
0f389ec6 | 1630 | |
fdaa45e9 IM |
1631 | #define disable_higher_order_debug 0 |
1632 | ||
0f389ec6 CL |
1633 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1634 | { return 0; } | |
26c02cf0 AB |
1635 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1636 | { return 0; } | |
205ab99d CL |
1637 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1638 | int objects) {} | |
1639 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1640 | int objects) {} | |
7d550c56 | 1641 | |
52f23478 | 1642 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
dc07a728 | 1643 | void **freelist, void *nextfree) |
52f23478 DZ |
1644 | { |
1645 | return false; | |
1646 | } | |
02e72cc6 AR |
1647 | #endif /* CONFIG_SLUB_DEBUG */ |
1648 | ||
1649 | /* | |
1650 | * Hooks for other subsystems that check memory allocations. In a typical | |
1651 | * production configuration these hooks all should produce no code at all. | |
1652 | */ | |
0116523c | 1653 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1654 | { |
53128245 | 1655 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1656 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1657 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1658 | return ptr; |
d56791b3 RB |
1659 | } |
1660 | ||
ee3ce779 | 1661 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1662 | { |
1663 | kmemleak_free(x); | |
027b37b5 | 1664 | kasan_kfree_large(x); |
d56791b3 RB |
1665 | } |
1666 | ||
d57a964e AK |
1667 | static __always_inline bool slab_free_hook(struct kmem_cache *s, |
1668 | void *x, bool init) | |
d56791b3 RB |
1669 | { |
1670 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1671 | |
84048039 | 1672 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 1673 | |
02e72cc6 AR |
1674 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1675 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1676 | |
cfbe1636 ME |
1677 | /* Use KCSAN to help debug racy use-after-free. */ |
1678 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
1679 | __kcsan_check_access(x, s->object_size, | |
1680 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
1681 | ||
d57a964e AK |
1682 | /* |
1683 | * As memory initialization might be integrated into KASAN, | |
1684 | * kasan_slab_free and initialization memset's must be | |
1685 | * kept together to avoid discrepancies in behavior. | |
1686 | * | |
1687 | * The initialization memset's clear the object and the metadata, | |
1688 | * but don't touch the SLAB redzone. | |
1689 | */ | |
1690 | if (init) { | |
1691 | int rsize; | |
1692 | ||
1693 | if (!kasan_has_integrated_init()) | |
1694 | memset(kasan_reset_tag(x), 0, s->object_size); | |
1695 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
1696 | memset((char *)kasan_reset_tag(x) + s->inuse, 0, | |
1697 | s->size - s->inuse - rsize); | |
1698 | } | |
1699 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
1700 | return kasan_slab_free(s, x, init); | |
02e72cc6 | 1701 | } |
205ab99d | 1702 | |
c3895391 AK |
1703 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1704 | void **head, void **tail) | |
81084651 | 1705 | { |
6471384a AP |
1706 | |
1707 | void *object; | |
1708 | void *next = *head; | |
1709 | void *old_tail = *tail ? *tail : *head; | |
6471384a | 1710 | |
b89fb5ef | 1711 | if (is_kfence_address(next)) { |
d57a964e | 1712 | slab_free_hook(s, next, false); |
b89fb5ef AP |
1713 | return true; |
1714 | } | |
1715 | ||
aea4df4c LA |
1716 | /* Head and tail of the reconstructed freelist */ |
1717 | *head = NULL; | |
1718 | *tail = NULL; | |
1b7e816f | 1719 | |
aea4df4c LA |
1720 | do { |
1721 | object = next; | |
1722 | next = get_freepointer(s, object); | |
1723 | ||
c3895391 | 1724 | /* If object's reuse doesn't have to be delayed */ |
d57a964e | 1725 | if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { |
c3895391 AK |
1726 | /* Move object to the new freelist */ |
1727 | set_freepointer(s, object, *head); | |
1728 | *head = object; | |
1729 | if (!*tail) | |
1730 | *tail = object; | |
1731 | } | |
1732 | } while (object != old_tail); | |
1733 | ||
1734 | if (*head == *tail) | |
1735 | *tail = NULL; | |
1736 | ||
1737 | return *head != NULL; | |
81084651 JDB |
1738 | } |
1739 | ||
4d176711 | 1740 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1741 | void *object) |
1742 | { | |
1743 | setup_object_debug(s, page, object); | |
4d176711 | 1744 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1745 | if (unlikely(s->ctor)) { |
1746 | kasan_unpoison_object_data(s, object); | |
1747 | s->ctor(object); | |
1748 | kasan_poison_object_data(s, object); | |
1749 | } | |
4d176711 | 1750 | return object; |
588f8ba9 TG |
1751 | } |
1752 | ||
81819f0f CL |
1753 | /* |
1754 | * Slab allocation and freeing | |
1755 | */ | |
5dfb4175 VD |
1756 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1757 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1758 | { |
5dfb4175 | 1759 | struct page *page; |
19af27af | 1760 | unsigned int order = oo_order(oo); |
65c3376a | 1761 | |
2154a336 | 1762 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1763 | page = alloc_pages(flags, order); |
65c3376a | 1764 | else |
96db800f | 1765 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1766 | |
5dfb4175 | 1767 | return page; |
65c3376a CL |
1768 | } |
1769 | ||
210e7a43 TG |
1770 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1771 | /* Pre-initialize the random sequence cache */ | |
1772 | static int init_cache_random_seq(struct kmem_cache *s) | |
1773 | { | |
19af27af | 1774 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1775 | int err; |
210e7a43 | 1776 | |
a810007a SR |
1777 | /* Bailout if already initialised */ |
1778 | if (s->random_seq) | |
1779 | return 0; | |
1780 | ||
210e7a43 TG |
1781 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1782 | if (err) { | |
1783 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1784 | s->name); | |
1785 | return err; | |
1786 | } | |
1787 | ||
1788 | /* Transform to an offset on the set of pages */ | |
1789 | if (s->random_seq) { | |
19af27af AD |
1790 | unsigned int i; |
1791 | ||
210e7a43 TG |
1792 | for (i = 0; i < count; i++) |
1793 | s->random_seq[i] *= s->size; | |
1794 | } | |
1795 | return 0; | |
1796 | } | |
1797 | ||
1798 | /* Initialize each random sequence freelist per cache */ | |
1799 | static void __init init_freelist_randomization(void) | |
1800 | { | |
1801 | struct kmem_cache *s; | |
1802 | ||
1803 | mutex_lock(&slab_mutex); | |
1804 | ||
1805 | list_for_each_entry(s, &slab_caches, list) | |
1806 | init_cache_random_seq(s); | |
1807 | ||
1808 | mutex_unlock(&slab_mutex); | |
1809 | } | |
1810 | ||
1811 | /* Get the next entry on the pre-computed freelist randomized */ | |
1812 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1813 | unsigned long *pos, void *start, | |
1814 | unsigned long page_limit, | |
1815 | unsigned long freelist_count) | |
1816 | { | |
1817 | unsigned int idx; | |
1818 | ||
1819 | /* | |
1820 | * If the target page allocation failed, the number of objects on the | |
1821 | * page might be smaller than the usual size defined by the cache. | |
1822 | */ | |
1823 | do { | |
1824 | idx = s->random_seq[*pos]; | |
1825 | *pos += 1; | |
1826 | if (*pos >= freelist_count) | |
1827 | *pos = 0; | |
1828 | } while (unlikely(idx >= page_limit)); | |
1829 | ||
1830 | return (char *)start + idx; | |
1831 | } | |
1832 | ||
1833 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1834 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1835 | { | |
1836 | void *start; | |
1837 | void *cur; | |
1838 | void *next; | |
1839 | unsigned long idx, pos, page_limit, freelist_count; | |
1840 | ||
1841 | if (page->objects < 2 || !s->random_seq) | |
1842 | return false; | |
1843 | ||
1844 | freelist_count = oo_objects(s->oo); | |
1845 | pos = get_random_int() % freelist_count; | |
1846 | ||
1847 | page_limit = page->objects * s->size; | |
1848 | start = fixup_red_left(s, page_address(page)); | |
1849 | ||
1850 | /* First entry is used as the base of the freelist */ | |
1851 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1852 | freelist_count); | |
4d176711 | 1853 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1854 | page->freelist = cur; |
1855 | ||
1856 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1857 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1858 | freelist_count); | |
4d176711 | 1859 | next = setup_object(s, page, next); |
210e7a43 TG |
1860 | set_freepointer(s, cur, next); |
1861 | cur = next; | |
1862 | } | |
210e7a43 TG |
1863 | set_freepointer(s, cur, NULL); |
1864 | ||
1865 | return true; | |
1866 | } | |
1867 | #else | |
1868 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1869 | { | |
1870 | return 0; | |
1871 | } | |
1872 | static inline void init_freelist_randomization(void) { } | |
1873 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1874 | { | |
1875 | return false; | |
1876 | } | |
1877 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1878 | ||
81819f0f CL |
1879 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1880 | { | |
06428780 | 1881 | struct page *page; |
834f3d11 | 1882 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1883 | gfp_t alloc_gfp; |
4d176711 | 1884 | void *start, *p, *next; |
a50b854e | 1885 | int idx; |
210e7a43 | 1886 | bool shuffle; |
81819f0f | 1887 | |
7e0528da CL |
1888 | flags &= gfp_allowed_mask; |
1889 | ||
b7a49f0d | 1890 | flags |= s->allocflags; |
e12ba74d | 1891 | |
ba52270d PE |
1892 | /* |
1893 | * Let the initial higher-order allocation fail under memory pressure | |
1894 | * so we fall-back to the minimum order allocation. | |
1895 | */ | |
1896 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1897 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1898 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1899 | |
5dfb4175 | 1900 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1901 | if (unlikely(!page)) { |
1902 | oo = s->min; | |
80c3a998 | 1903 | alloc_gfp = flags; |
65c3376a CL |
1904 | /* |
1905 | * Allocation may have failed due to fragmentation. | |
1906 | * Try a lower order alloc if possible | |
1907 | */ | |
5dfb4175 | 1908 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1909 | if (unlikely(!page)) |
1910 | goto out; | |
1911 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1912 | } |
5a896d9e | 1913 | |
834f3d11 | 1914 | page->objects = oo_objects(oo); |
81819f0f | 1915 | |
2e9bd483 | 1916 | account_slab_page(page, oo_order(oo), s, flags); |
1f3147b4 | 1917 | |
1b4f59e3 | 1918 | page->slab_cache = s; |
c03f94cc | 1919 | __SetPageSlab(page); |
2f064f34 | 1920 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1921 | SetPageSlabPfmemalloc(page); |
81819f0f | 1922 | |
a7101224 | 1923 | kasan_poison_slab(page); |
81819f0f | 1924 | |
a7101224 | 1925 | start = page_address(page); |
81819f0f | 1926 | |
a50b854e | 1927 | setup_page_debug(s, page, start); |
0316bec2 | 1928 | |
210e7a43 TG |
1929 | shuffle = shuffle_freelist(s, page); |
1930 | ||
1931 | if (!shuffle) { | |
4d176711 AK |
1932 | start = fixup_red_left(s, start); |
1933 | start = setup_object(s, page, start); | |
1934 | page->freelist = start; | |
18e50661 AK |
1935 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { |
1936 | next = p + s->size; | |
1937 | next = setup_object(s, page, next); | |
1938 | set_freepointer(s, p, next); | |
1939 | p = next; | |
1940 | } | |
1941 | set_freepointer(s, p, NULL); | |
81819f0f | 1942 | } |
81819f0f | 1943 | |
e6e82ea1 | 1944 | page->inuse = page->objects; |
8cb0a506 | 1945 | page->frozen = 1; |
588f8ba9 | 1946 | |
81819f0f | 1947 | out: |
588f8ba9 TG |
1948 | if (!page) |
1949 | return NULL; | |
1950 | ||
588f8ba9 TG |
1951 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1952 | ||
81819f0f CL |
1953 | return page; |
1954 | } | |
1955 | ||
588f8ba9 TG |
1956 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1957 | { | |
44405099 LL |
1958 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
1959 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 1960 | |
53a0de06 VB |
1961 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
1962 | ||
588f8ba9 TG |
1963 | return allocate_slab(s, |
1964 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1965 | } | |
1966 | ||
81819f0f CL |
1967 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1968 | { | |
834f3d11 CL |
1969 | int order = compound_order(page); |
1970 | int pages = 1 << order; | |
81819f0f | 1971 | |
8fc8d666 | 1972 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
81819f0f CL |
1973 | void *p; |
1974 | ||
1975 | slab_pad_check(s, page); | |
224a88be CL |
1976 | for_each_object(p, s, page_address(page), |
1977 | page->objects) | |
f7cb1933 | 1978 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1979 | } |
1980 | ||
072bb0aa | 1981 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1982 | __ClearPageSlab(page); |
0c06dd75 VB |
1983 | /* In union with page->mapping where page allocator expects NULL */ |
1984 | page->slab_cache = NULL; | |
1eb5ac64 NP |
1985 | if (current->reclaim_state) |
1986 | current->reclaim_state->reclaimed_slab += pages; | |
74d555be | 1987 | unaccount_slab_page(page, order, s); |
27ee57c9 | 1988 | __free_pages(page, order); |
81819f0f CL |
1989 | } |
1990 | ||
1991 | static void rcu_free_slab(struct rcu_head *h) | |
1992 | { | |
bf68c214 | 1993 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1994 | |
1b4f59e3 | 1995 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1996 | } |
1997 | ||
1998 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1999 | { | |
5f0d5a3a | 2000 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 2001 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
2002 | } else |
2003 | __free_slab(s, page); | |
2004 | } | |
2005 | ||
2006 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
2007 | { | |
205ab99d | 2008 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
2009 | free_slab(s, page); |
2010 | } | |
2011 | ||
2012 | /* | |
5cc6eee8 | 2013 | * Management of partially allocated slabs. |
81819f0f | 2014 | */ |
1e4dd946 SR |
2015 | static inline void |
2016 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 2017 | { |
e95eed57 | 2018 | n->nr_partial++; |
136333d1 | 2019 | if (tail == DEACTIVATE_TO_TAIL) |
916ac052 | 2020 | list_add_tail(&page->slab_list, &n->partial); |
7c2e132c | 2021 | else |
916ac052 | 2022 | list_add(&page->slab_list, &n->partial); |
81819f0f CL |
2023 | } |
2024 | ||
1e4dd946 SR |
2025 | static inline void add_partial(struct kmem_cache_node *n, |
2026 | struct page *page, int tail) | |
62e346a8 | 2027 | { |
c65c1877 | 2028 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
2029 | __add_partial(n, page, tail); |
2030 | } | |
c65c1877 | 2031 | |
1e4dd946 SR |
2032 | static inline void remove_partial(struct kmem_cache_node *n, |
2033 | struct page *page) | |
2034 | { | |
2035 | lockdep_assert_held(&n->list_lock); | |
916ac052 | 2036 | list_del(&page->slab_list); |
52b4b950 | 2037 | n->nr_partial--; |
1e4dd946 SR |
2038 | } |
2039 | ||
81819f0f | 2040 | /* |
7ced3719 CL |
2041 | * Remove slab from the partial list, freeze it and |
2042 | * return the pointer to the freelist. | |
81819f0f | 2043 | * |
497b66f2 | 2044 | * Returns a list of objects or NULL if it fails. |
81819f0f | 2045 | */ |
497b66f2 | 2046 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 2047 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 2048 | int mode, int *objects) |
81819f0f | 2049 | { |
2cfb7455 CL |
2050 | void *freelist; |
2051 | unsigned long counters; | |
2052 | struct page new; | |
2053 | ||
c65c1877 PZ |
2054 | lockdep_assert_held(&n->list_lock); |
2055 | ||
2cfb7455 CL |
2056 | /* |
2057 | * Zap the freelist and set the frozen bit. | |
2058 | * The old freelist is the list of objects for the | |
2059 | * per cpu allocation list. | |
2060 | */ | |
7ced3719 CL |
2061 | freelist = page->freelist; |
2062 | counters = page->counters; | |
2063 | new.counters = counters; | |
633b0764 | 2064 | *objects = new.objects - new.inuse; |
23910c50 | 2065 | if (mode) { |
7ced3719 | 2066 | new.inuse = page->objects; |
23910c50 PE |
2067 | new.freelist = NULL; |
2068 | } else { | |
2069 | new.freelist = freelist; | |
2070 | } | |
2cfb7455 | 2071 | |
a0132ac0 | 2072 | VM_BUG_ON(new.frozen); |
7ced3719 | 2073 | new.frozen = 1; |
2cfb7455 | 2074 | |
7ced3719 | 2075 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 2076 | freelist, counters, |
02d7633f | 2077 | new.freelist, new.counters, |
7ced3719 | 2078 | "acquire_slab")) |
7ced3719 | 2079 | return NULL; |
2cfb7455 CL |
2080 | |
2081 | remove_partial(n, page); | |
7ced3719 | 2082 | WARN_ON(!freelist); |
49e22585 | 2083 | return freelist; |
81819f0f CL |
2084 | } |
2085 | ||
e0a043aa | 2086 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
633b0764 | 2087 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
e0a043aa VB |
2088 | #else |
2089 | static inline void put_cpu_partial(struct kmem_cache *s, struct page *page, | |
2090 | int drain) { } | |
2091 | #endif | |
8ba00bb6 | 2092 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 2093 | |
81819f0f | 2094 | /* |
672bba3a | 2095 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2096 | */ |
8ba00bb6 | 2097 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
4b1f449d | 2098 | struct page **ret_page, gfp_t gfpflags) |
81819f0f | 2099 | { |
49e22585 CL |
2100 | struct page *page, *page2; |
2101 | void *object = NULL; | |
e5d9998f | 2102 | unsigned int available = 0; |
4b1f449d | 2103 | unsigned long flags; |
633b0764 | 2104 | int objects; |
81819f0f CL |
2105 | |
2106 | /* | |
2107 | * Racy check. If we mistakenly see no partial slabs then we | |
2108 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2109 | * partial slab and there is none available then get_partial() |
672bba3a | 2110 | * will return NULL. |
81819f0f CL |
2111 | */ |
2112 | if (!n || !n->nr_partial) | |
2113 | return NULL; | |
2114 | ||
4b1f449d | 2115 | spin_lock_irqsave(&n->list_lock, flags); |
916ac052 | 2116 | list_for_each_entry_safe(page, page2, &n->partial, slab_list) { |
8ba00bb6 | 2117 | void *t; |
49e22585 | 2118 | |
4b1f449d | 2119 | if (!pfmemalloc_match(page, gfpflags)) |
8ba00bb6 JK |
2120 | continue; |
2121 | ||
633b0764 | 2122 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 | 2123 | if (!t) |
9b1ea29b | 2124 | break; |
49e22585 | 2125 | |
633b0764 | 2126 | available += objects; |
12d79634 | 2127 | if (!object) { |
75c8ff28 | 2128 | *ret_page = page; |
49e22585 | 2129 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 2130 | object = t; |
49e22585 | 2131 | } else { |
633b0764 | 2132 | put_cpu_partial(s, page, 0); |
8028dcea | 2133 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 2134 | } |
345c905d | 2135 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 2136 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
2137 | break; |
2138 | ||
497b66f2 | 2139 | } |
4b1f449d | 2140 | spin_unlock_irqrestore(&n->list_lock, flags); |
497b66f2 | 2141 | return object; |
81819f0f CL |
2142 | } |
2143 | ||
2144 | /* | |
672bba3a | 2145 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 2146 | */ |
de3ec035 | 2147 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
75c8ff28 | 2148 | struct page **ret_page) |
81819f0f CL |
2149 | { |
2150 | #ifdef CONFIG_NUMA | |
2151 | struct zonelist *zonelist; | |
dd1a239f | 2152 | struct zoneref *z; |
54a6eb5c | 2153 | struct zone *zone; |
97a225e6 | 2154 | enum zone_type highest_zoneidx = gfp_zone(flags); |
497b66f2 | 2155 | void *object; |
cc9a6c87 | 2156 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2157 | |
2158 | /* | |
672bba3a CL |
2159 | * The defrag ratio allows a configuration of the tradeoffs between |
2160 | * inter node defragmentation and node local allocations. A lower | |
2161 | * defrag_ratio increases the tendency to do local allocations | |
2162 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2163 | * |
672bba3a CL |
2164 | * If the defrag_ratio is set to 0 then kmalloc() always |
2165 | * returns node local objects. If the ratio is higher then kmalloc() | |
2166 | * may return off node objects because partial slabs are obtained | |
2167 | * from other nodes and filled up. | |
81819f0f | 2168 | * |
43efd3ea LP |
2169 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2170 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2171 | * allocation will first attempt to defrag slab caches on other nodes. | |
2172 | * This means scanning over all nodes to look for partial slabs which | |
2173 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2174 | * with available objects. |
81819f0f | 2175 | */ |
9824601e CL |
2176 | if (!s->remote_node_defrag_ratio || |
2177 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2178 | return NULL; |
2179 | ||
cc9a6c87 | 2180 | do { |
d26914d1 | 2181 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 2182 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
97a225e6 | 2183 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2184 | struct kmem_cache_node *n; |
2185 | ||
2186 | n = get_node(s, zone_to_nid(zone)); | |
2187 | ||
dee2f8aa | 2188 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 2189 | n->nr_partial > s->min_partial) { |
75c8ff28 | 2190 | object = get_partial_node(s, n, ret_page, flags); |
cc9a6c87 MG |
2191 | if (object) { |
2192 | /* | |
d26914d1 MG |
2193 | * Don't check read_mems_allowed_retry() |
2194 | * here - if mems_allowed was updated in | |
2195 | * parallel, that was a harmless race | |
2196 | * between allocation and the cpuset | |
2197 | * update | |
cc9a6c87 | 2198 | */ |
cc9a6c87 MG |
2199 | return object; |
2200 | } | |
c0ff7453 | 2201 | } |
81819f0f | 2202 | } |
d26914d1 | 2203 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2204 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2205 | return NULL; |
2206 | } | |
2207 | ||
2208 | /* | |
2209 | * Get a partial page, lock it and return it. | |
2210 | */ | |
497b66f2 | 2211 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
75c8ff28 | 2212 | struct page **ret_page) |
81819f0f | 2213 | { |
497b66f2 | 2214 | void *object; |
a561ce00 JK |
2215 | int searchnode = node; |
2216 | ||
2217 | if (node == NUMA_NO_NODE) | |
2218 | searchnode = numa_mem_id(); | |
81819f0f | 2219 | |
75c8ff28 | 2220 | object = get_partial_node(s, get_node(s, searchnode), ret_page, flags); |
497b66f2 CL |
2221 | if (object || node != NUMA_NO_NODE) |
2222 | return object; | |
81819f0f | 2223 | |
75c8ff28 | 2224 | return get_any_partial(s, flags, ret_page); |
81819f0f CL |
2225 | } |
2226 | ||
923717cb | 2227 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2228 | /* |
0d645ed1 | 2229 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2230 | * during cmpxchg. The transactions start with the cpu number and are then |
2231 | * incremented by CONFIG_NR_CPUS. | |
2232 | */ | |
2233 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2234 | #else | |
2235 | /* | |
2236 | * No preemption supported therefore also no need to check for | |
2237 | * different cpus. | |
2238 | */ | |
2239 | #define TID_STEP 1 | |
2240 | #endif | |
2241 | ||
2242 | static inline unsigned long next_tid(unsigned long tid) | |
2243 | { | |
2244 | return tid + TID_STEP; | |
2245 | } | |
2246 | ||
9d5f0be0 | 2247 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2248 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2249 | { | |
2250 | return tid % TID_STEP; | |
2251 | } | |
2252 | ||
2253 | static inline unsigned long tid_to_event(unsigned long tid) | |
2254 | { | |
2255 | return tid / TID_STEP; | |
2256 | } | |
9d5f0be0 | 2257 | #endif |
8a5ec0ba CL |
2258 | |
2259 | static inline unsigned int init_tid(int cpu) | |
2260 | { | |
2261 | return cpu; | |
2262 | } | |
2263 | ||
2264 | static inline void note_cmpxchg_failure(const char *n, | |
2265 | const struct kmem_cache *s, unsigned long tid) | |
2266 | { | |
2267 | #ifdef SLUB_DEBUG_CMPXCHG | |
2268 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2269 | ||
f9f58285 | 2270 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2271 | |
923717cb | 2272 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2273 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2274 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2275 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2276 | else | |
2277 | #endif | |
2278 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2279 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2280 | tid_to_event(tid), tid_to_event(actual_tid)); |
2281 | else | |
f9f58285 | 2282 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2283 | actual_tid, tid, next_tid(tid)); |
2284 | #endif | |
4fdccdfb | 2285 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2286 | } |
2287 | ||
788e1aad | 2288 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2289 | { |
8a5ec0ba | 2290 | int cpu; |
bd0e7491 | 2291 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2292 | |
bd0e7491 VB |
2293 | for_each_possible_cpu(cpu) { |
2294 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2295 | local_lock_init(&c->lock); | |
2296 | c->tid = init_tid(cpu); | |
2297 | } | |
8a5ec0ba | 2298 | } |
2cfb7455 | 2299 | |
81819f0f | 2300 | /* |
a019d201 VB |
2301 | * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist, |
2302 | * unfreezes the slabs and puts it on the proper list. | |
2303 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2304 | * by the caller. | |
81819f0f | 2305 | */ |
d0e0ac97 | 2306 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
a019d201 | 2307 | void *freelist) |
81819f0f | 2308 | { |
2cfb7455 | 2309 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 | 2310 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
d930ff03 | 2311 | int lock = 0, free_delta = 0; |
2cfb7455 | 2312 | enum slab_modes l = M_NONE, m = M_NONE; |
d930ff03 | 2313 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2314 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2315 | unsigned long flags = 0; |
2cfb7455 CL |
2316 | struct page new; |
2317 | struct page old; | |
2318 | ||
2319 | if (page->freelist) { | |
84e554e6 | 2320 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2321 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2322 | } |
2323 | ||
894b8788 | 2324 | /* |
d930ff03 VB |
2325 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2326 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2327 | */ |
d930ff03 VB |
2328 | freelist_tail = NULL; |
2329 | freelist_iter = freelist; | |
2330 | while (freelist_iter) { | |
2331 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2332 | |
52f23478 DZ |
2333 | /* |
2334 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2335 | * 'freelist_iter' is already corrupted. So isolate all objects |
2336 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2337 | */ |
d930ff03 | 2338 | if (freelist_corrupted(s, page, &freelist_iter, nextfree)) |
52f23478 DZ |
2339 | break; |
2340 | ||
d930ff03 VB |
2341 | freelist_tail = freelist_iter; |
2342 | free_delta++; | |
2cfb7455 | 2343 | |
d930ff03 | 2344 | freelist_iter = nextfree; |
2cfb7455 CL |
2345 | } |
2346 | ||
894b8788 | 2347 | /* |
d930ff03 VB |
2348 | * Stage two: Unfreeze the page while splicing the per-cpu |
2349 | * freelist to the head of page's freelist. | |
2350 | * | |
2351 | * Ensure that the page is unfrozen while the list presence | |
2352 | * reflects the actual number of objects during unfreeze. | |
2cfb7455 CL |
2353 | * |
2354 | * We setup the list membership and then perform a cmpxchg | |
2355 | * with the count. If there is a mismatch then the page | |
2356 | * is not unfrozen but the page is on the wrong list. | |
2357 | * | |
2358 | * Then we restart the process which may have to remove | |
2359 | * the page from the list that we just put it on again | |
2360 | * because the number of objects in the slab may have | |
2361 | * changed. | |
894b8788 | 2362 | */ |
2cfb7455 | 2363 | redo: |
894b8788 | 2364 | |
d930ff03 VB |
2365 | old.freelist = READ_ONCE(page->freelist); |
2366 | old.counters = READ_ONCE(page->counters); | |
a0132ac0 | 2367 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2368 | |
2cfb7455 CL |
2369 | /* Determine target state of the slab */ |
2370 | new.counters = old.counters; | |
d930ff03 VB |
2371 | if (freelist_tail) { |
2372 | new.inuse -= free_delta; | |
2373 | set_freepointer(s, freelist_tail, old.freelist); | |
2cfb7455 CL |
2374 | new.freelist = freelist; |
2375 | } else | |
2376 | new.freelist = old.freelist; | |
2377 | ||
2378 | new.frozen = 0; | |
2379 | ||
8a5b20ae | 2380 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2381 | m = M_FREE; |
2382 | else if (new.freelist) { | |
2383 | m = M_PARTIAL; | |
2384 | if (!lock) { | |
2385 | lock = 1; | |
2386 | /* | |
8bb4e7a2 | 2387 | * Taking the spinlock removes the possibility |
2cfb7455 CL |
2388 | * that acquire_slab() will see a slab page that |
2389 | * is frozen | |
2390 | */ | |
3406e91b | 2391 | spin_lock_irqsave(&n->list_lock, flags); |
2cfb7455 CL |
2392 | } |
2393 | } else { | |
2394 | m = M_FULL; | |
965c4848 | 2395 | if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { |
2cfb7455 CL |
2396 | lock = 1; |
2397 | /* | |
2398 | * This also ensures that the scanning of full | |
2399 | * slabs from diagnostic functions will not see | |
2400 | * any frozen slabs. | |
2401 | */ | |
3406e91b | 2402 | spin_lock_irqsave(&n->list_lock, flags); |
2cfb7455 CL |
2403 | } |
2404 | } | |
2405 | ||
2406 | if (l != m) { | |
2cfb7455 | 2407 | if (l == M_PARTIAL) |
2cfb7455 | 2408 | remove_partial(n, page); |
2cfb7455 | 2409 | else if (l == M_FULL) |
c65c1877 | 2410 | remove_full(s, n, page); |
2cfb7455 | 2411 | |
88349a28 | 2412 | if (m == M_PARTIAL) |
2cfb7455 | 2413 | add_partial(n, page, tail); |
88349a28 | 2414 | else if (m == M_FULL) |
2cfb7455 | 2415 | add_full(s, n, page); |
2cfb7455 CL |
2416 | } |
2417 | ||
2418 | l = m; | |
3406e91b | 2419 | if (!cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2420 | old.freelist, old.counters, |
2421 | new.freelist, new.counters, | |
2422 | "unfreezing slab")) | |
2423 | goto redo; | |
2424 | ||
2cfb7455 | 2425 | if (lock) |
3406e91b | 2426 | spin_unlock_irqrestore(&n->list_lock, flags); |
2cfb7455 | 2427 | |
88349a28 WY |
2428 | if (m == M_PARTIAL) |
2429 | stat(s, tail); | |
2430 | else if (m == M_FULL) | |
2431 | stat(s, DEACTIVATE_FULL); | |
2432 | else if (m == M_FREE) { | |
2cfb7455 CL |
2433 | stat(s, DEACTIVATE_EMPTY); |
2434 | discard_slab(s, page); | |
2435 | stat(s, FREE_SLAB); | |
894b8788 | 2436 | } |
81819f0f CL |
2437 | } |
2438 | ||
345c905d | 2439 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
fc1455f4 VB |
2440 | static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page) |
2441 | { | |
43d77867 | 2442 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
fc1455f4 | 2443 | struct page *page, *discard_page = NULL; |
7cf9f3ba | 2444 | unsigned long flags = 0; |
49e22585 | 2445 | |
c2f973ba | 2446 | while (partial_page) { |
49e22585 CL |
2447 | struct page new; |
2448 | struct page old; | |
2449 | ||
c2f973ba VB |
2450 | page = partial_page; |
2451 | partial_page = page->next; | |
43d77867 JK |
2452 | |
2453 | n2 = get_node(s, page_to_nid(page)); | |
2454 | if (n != n2) { | |
2455 | if (n) | |
7cf9f3ba | 2456 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
2457 | |
2458 | n = n2; | |
7cf9f3ba | 2459 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 2460 | } |
49e22585 CL |
2461 | |
2462 | do { | |
2463 | ||
2464 | old.freelist = page->freelist; | |
2465 | old.counters = page->counters; | |
a0132ac0 | 2466 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2467 | |
2468 | new.counters = old.counters; | |
2469 | new.freelist = old.freelist; | |
2470 | ||
2471 | new.frozen = 0; | |
2472 | ||
d24ac77f | 2473 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2474 | old.freelist, old.counters, |
2475 | new.freelist, new.counters, | |
2476 | "unfreezing slab")); | |
2477 | ||
8a5b20ae | 2478 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2479 | page->next = discard_page; |
2480 | discard_page = page; | |
43d77867 JK |
2481 | } else { |
2482 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2483 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2484 | } |
2485 | } | |
2486 | ||
2487 | if (n) | |
7cf9f3ba | 2488 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 2489 | |
9ada1934 SL |
2490 | while (discard_page) { |
2491 | page = discard_page; | |
2492 | discard_page = discard_page->next; | |
2493 | ||
2494 | stat(s, DEACTIVATE_EMPTY); | |
2495 | discard_slab(s, page); | |
2496 | stat(s, FREE_SLAB); | |
2497 | } | |
fc1455f4 | 2498 | } |
f3ab8b6b | 2499 | |
fc1455f4 VB |
2500 | /* |
2501 | * Unfreeze all the cpu partial slabs. | |
2502 | */ | |
2503 | static void unfreeze_partials(struct kmem_cache *s) | |
2504 | { | |
2505 | struct page *partial_page; | |
2506 | unsigned long flags; | |
2507 | ||
bd0e7491 | 2508 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
fc1455f4 VB |
2509 | partial_page = this_cpu_read(s->cpu_slab->partial); |
2510 | this_cpu_write(s->cpu_slab->partial, NULL); | |
bd0e7491 | 2511 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 VB |
2512 | |
2513 | if (partial_page) | |
2514 | __unfreeze_partials(s, partial_page); | |
2515 | } | |
2516 | ||
2517 | static void unfreeze_partials_cpu(struct kmem_cache *s, | |
2518 | struct kmem_cache_cpu *c) | |
2519 | { | |
2520 | struct page *partial_page; | |
2521 | ||
2522 | partial_page = slub_percpu_partial(c); | |
2523 | c->partial = NULL; | |
2524 | ||
2525 | if (partial_page) | |
2526 | __unfreeze_partials(s, partial_page); | |
49e22585 CL |
2527 | } |
2528 | ||
2529 | /* | |
9234bae9 WY |
2530 | * Put a page that was just frozen (in __slab_free|get_partial_node) into a |
2531 | * partial page slot if available. | |
49e22585 CL |
2532 | * |
2533 | * If we did not find a slot then simply move all the partials to the | |
2534 | * per node partial list. | |
2535 | */ | |
633b0764 | 2536 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 CL |
2537 | { |
2538 | struct page *oldpage; | |
e0a043aa VB |
2539 | struct page *page_to_unfreeze = NULL; |
2540 | unsigned long flags; | |
2541 | int pages = 0; | |
2542 | int pobjects = 0; | |
49e22585 | 2543 | |
bd0e7491 | 2544 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 2545 | |
e0a043aa VB |
2546 | oldpage = this_cpu_read(s->cpu_slab->partial); |
2547 | ||
2548 | if (oldpage) { | |
2549 | if (drain && oldpage->pobjects > slub_cpu_partial(s)) { | |
2550 | /* | |
2551 | * Partial array is full. Move the existing set to the | |
2552 | * per node partial list. Postpone the actual unfreezing | |
2553 | * outside of the critical section. | |
2554 | */ | |
2555 | page_to_unfreeze = oldpage; | |
2556 | oldpage = NULL; | |
2557 | } else { | |
49e22585 CL |
2558 | pobjects = oldpage->pobjects; |
2559 | pages = oldpage->pages; | |
49e22585 | 2560 | } |
e0a043aa | 2561 | } |
49e22585 | 2562 | |
e0a043aa VB |
2563 | pages++; |
2564 | pobjects += page->objects - page->inuse; | |
49e22585 | 2565 | |
e0a043aa VB |
2566 | page->pages = pages; |
2567 | page->pobjects = pobjects; | |
2568 | page->next = oldpage; | |
49e22585 | 2569 | |
e0a043aa VB |
2570 | this_cpu_write(s->cpu_slab->partial, page); |
2571 | ||
bd0e7491 | 2572 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa VB |
2573 | |
2574 | if (page_to_unfreeze) { | |
2575 | __unfreeze_partials(s, page_to_unfreeze); | |
2576 | stat(s, CPU_PARTIAL_DRAIN); | |
2577 | } | |
49e22585 CL |
2578 | } |
2579 | ||
e0a043aa VB |
2580 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
2581 | ||
2582 | static inline void unfreeze_partials(struct kmem_cache *s) { } | |
2583 | static inline void unfreeze_partials_cpu(struct kmem_cache *s, | |
2584 | struct kmem_cache_cpu *c) { } | |
2585 | ||
2586 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
2587 | ||
dfb4f096 | 2588 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2589 | { |
5a836bf6 SAS |
2590 | unsigned long flags; |
2591 | struct page *page; | |
2592 | void *freelist; | |
2593 | ||
bd0e7491 | 2594 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 SAS |
2595 | |
2596 | page = c->page; | |
2597 | freelist = c->freelist; | |
c17dda40 | 2598 | |
a019d201 VB |
2599 | c->page = NULL; |
2600 | c->freelist = NULL; | |
c17dda40 | 2601 | c->tid = next_tid(c->tid); |
a019d201 | 2602 | |
bd0e7491 | 2603 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 2604 | |
5a836bf6 SAS |
2605 | if (page) { |
2606 | deactivate_slab(s, page, freelist); | |
2607 | stat(s, CPUSLAB_FLUSH); | |
2608 | } | |
81819f0f CL |
2609 | } |
2610 | ||
0c710013 | 2611 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2612 | { |
9dfc6e68 | 2613 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 VB |
2614 | void *freelist = c->freelist; |
2615 | struct page *page = c->page; | |
81819f0f | 2616 | |
08beb547 VB |
2617 | c->page = NULL; |
2618 | c->freelist = NULL; | |
2619 | c->tid = next_tid(c->tid); | |
2620 | ||
2621 | if (page) { | |
2622 | deactivate_slab(s, page, freelist); | |
2623 | stat(s, CPUSLAB_FLUSH); | |
2624 | } | |
49e22585 | 2625 | |
fc1455f4 | 2626 | unfreeze_partials_cpu(s, c); |
81819f0f CL |
2627 | } |
2628 | ||
5a836bf6 SAS |
2629 | struct slub_flush_work { |
2630 | struct work_struct work; | |
2631 | struct kmem_cache *s; | |
2632 | bool skip; | |
2633 | }; | |
2634 | ||
fc1455f4 VB |
2635 | /* |
2636 | * Flush cpu slab. | |
2637 | * | |
5a836bf6 | 2638 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 2639 | */ |
5a836bf6 | 2640 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 2641 | { |
5a836bf6 SAS |
2642 | struct kmem_cache *s; |
2643 | struct kmem_cache_cpu *c; | |
2644 | struct slub_flush_work *sfw; | |
2645 | ||
2646 | sfw = container_of(w, struct slub_flush_work, work); | |
2647 | ||
2648 | s = sfw->s; | |
2649 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 VB |
2650 | |
2651 | if (c->page) | |
2652 | flush_slab(s, c); | |
81819f0f | 2653 | |
fc1455f4 | 2654 | unfreeze_partials(s); |
81819f0f CL |
2655 | } |
2656 | ||
5a836bf6 | 2657 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 2658 | { |
a8364d55 GBY |
2659 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2660 | ||
a93cf07b | 2661 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2662 | } |
2663 | ||
5a836bf6 SAS |
2664 | static DEFINE_MUTEX(flush_lock); |
2665 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
2666 | ||
2667 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
2668 | { | |
2669 | struct slub_flush_work *sfw; | |
2670 | unsigned int cpu; | |
2671 | ||
2672 | lockdep_assert_cpus_held(); | |
2673 | mutex_lock(&flush_lock); | |
2674 | ||
2675 | for_each_online_cpu(cpu) { | |
2676 | sfw = &per_cpu(slub_flush, cpu); | |
2677 | if (!has_cpu_slab(cpu, s)) { | |
2678 | sfw->skip = true; | |
2679 | continue; | |
2680 | } | |
2681 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
2682 | sfw->skip = false; | |
2683 | sfw->s = s; | |
2684 | schedule_work_on(cpu, &sfw->work); | |
2685 | } | |
2686 | ||
2687 | for_each_online_cpu(cpu) { | |
2688 | sfw = &per_cpu(slub_flush, cpu); | |
2689 | if (sfw->skip) | |
2690 | continue; | |
2691 | flush_work(&sfw->work); | |
2692 | } | |
2693 | ||
2694 | mutex_unlock(&flush_lock); | |
2695 | } | |
2696 | ||
81819f0f CL |
2697 | static void flush_all(struct kmem_cache *s) |
2698 | { | |
5a836bf6 SAS |
2699 | cpus_read_lock(); |
2700 | flush_all_cpus_locked(s); | |
2701 | cpus_read_unlock(); | |
81819f0f CL |
2702 | } |
2703 | ||
a96a87bf SAS |
2704 | /* |
2705 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2706 | * necessary. | |
2707 | */ | |
2708 | static int slub_cpu_dead(unsigned int cpu) | |
2709 | { | |
2710 | struct kmem_cache *s; | |
a96a87bf SAS |
2711 | |
2712 | mutex_lock(&slab_mutex); | |
0e7ac738 | 2713 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 2714 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
2715 | mutex_unlock(&slab_mutex); |
2716 | return 0; | |
2717 | } | |
2718 | ||
dfb4f096 CL |
2719 | /* |
2720 | * Check if the objects in a per cpu structure fit numa | |
2721 | * locality expectations. | |
2722 | */ | |
57d437d2 | 2723 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2724 | { |
2725 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2726 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2727 | return 0; |
2728 | #endif | |
2729 | return 1; | |
2730 | } | |
2731 | ||
9a02d699 | 2732 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2733 | static int count_free(struct page *page) |
2734 | { | |
2735 | return page->objects - page->inuse; | |
2736 | } | |
2737 | ||
9a02d699 DR |
2738 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2739 | { | |
2740 | return atomic_long_read(&n->total_objects); | |
2741 | } | |
2742 | #endif /* CONFIG_SLUB_DEBUG */ | |
2743 | ||
2744 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2745 | static unsigned long count_partial(struct kmem_cache_node *n, |
2746 | int (*get_count)(struct page *)) | |
2747 | { | |
2748 | unsigned long flags; | |
2749 | unsigned long x = 0; | |
2750 | struct page *page; | |
2751 | ||
2752 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 2753 | list_for_each_entry(page, &n->partial, slab_list) |
781b2ba6 PE |
2754 | x += get_count(page); |
2755 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2756 | return x; | |
2757 | } | |
9a02d699 | 2758 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2759 | |
781b2ba6 PE |
2760 | static noinline void |
2761 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2762 | { | |
9a02d699 DR |
2763 | #ifdef CONFIG_SLUB_DEBUG |
2764 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2765 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2766 | int node; |
fa45dc25 | 2767 | struct kmem_cache_node *n; |
781b2ba6 | 2768 | |
9a02d699 DR |
2769 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2770 | return; | |
2771 | ||
5b3810e5 VB |
2772 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2773 | nid, gfpflags, &gfpflags); | |
19af27af | 2774 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2775 | s->name, s->object_size, s->size, oo_order(s->oo), |
2776 | oo_order(s->min)); | |
781b2ba6 | 2777 | |
3b0efdfa | 2778 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2779 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2780 | s->name); | |
fa5ec8a1 | 2781 | |
fa45dc25 | 2782 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2783 | unsigned long nr_slabs; |
2784 | unsigned long nr_objs; | |
2785 | unsigned long nr_free; | |
2786 | ||
26c02cf0 AB |
2787 | nr_free = count_partial(n, count_free); |
2788 | nr_slabs = node_nr_slabs(n); | |
2789 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2790 | |
f9f58285 | 2791 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2792 | node, nr_slabs, nr_objs, nr_free); |
2793 | } | |
9a02d699 | 2794 | #endif |
781b2ba6 PE |
2795 | } |
2796 | ||
072bb0aa MG |
2797 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2798 | { | |
2799 | if (unlikely(PageSlabPfmemalloc(page))) | |
2800 | return gfp_pfmemalloc_allowed(gfpflags); | |
2801 | ||
2802 | return true; | |
2803 | } | |
2804 | ||
0b303fb4 VB |
2805 | /* |
2806 | * A variant of pfmemalloc_match() that tests page flags without asserting | |
2807 | * PageSlab. Intended for opportunistic checks before taking a lock and | |
2808 | * rechecking that nobody else freed the page under us. | |
2809 | */ | |
2810 | static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags) | |
2811 | { | |
2812 | if (unlikely(__PageSlabPfmemalloc(page))) | |
2813 | return gfp_pfmemalloc_allowed(gfpflags); | |
2814 | ||
2815 | return true; | |
2816 | } | |
2817 | ||
213eeb9f | 2818 | /* |
d0e0ac97 CG |
2819 | * Check the page->freelist of a page and either transfer the freelist to the |
2820 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2821 | * |
2822 | * The page is still frozen if the return value is not NULL. | |
2823 | * | |
2824 | * If this function returns NULL then the page has been unfrozen. | |
2825 | */ | |
2826 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2827 | { | |
2828 | struct page new; | |
2829 | unsigned long counters; | |
2830 | void *freelist; | |
2831 | ||
bd0e7491 VB |
2832 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
2833 | ||
213eeb9f CL |
2834 | do { |
2835 | freelist = page->freelist; | |
2836 | counters = page->counters; | |
6faa6833 | 2837 | |
213eeb9f | 2838 | new.counters = counters; |
a0132ac0 | 2839 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2840 | |
2841 | new.inuse = page->objects; | |
2842 | new.frozen = freelist != NULL; | |
2843 | ||
d24ac77f | 2844 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2845 | freelist, counters, |
2846 | NULL, new.counters, | |
2847 | "get_freelist")); | |
2848 | ||
2849 | return freelist; | |
2850 | } | |
2851 | ||
81819f0f | 2852 | /* |
894b8788 CL |
2853 | * Slow path. The lockless freelist is empty or we need to perform |
2854 | * debugging duties. | |
2855 | * | |
894b8788 CL |
2856 | * Processing is still very fast if new objects have been freed to the |
2857 | * regular freelist. In that case we simply take over the regular freelist | |
2858 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2859 | * |
894b8788 CL |
2860 | * If that is not working then we fall back to the partial lists. We take the |
2861 | * first element of the freelist as the object to allocate now and move the | |
2862 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2863 | * |
894b8788 | 2864 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2865 | * we need to allocate a new slab. This is the slowest path since it involves |
2866 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 2867 | * |
e500059b | 2868 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 2869 | * already disabled (which is the case for bulk allocation). |
81819f0f | 2870 | */ |
a380a3c7 | 2871 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2872 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2873 | { |
6faa6833 | 2874 | void *freelist; |
f6e7def7 | 2875 | struct page *page; |
e500059b | 2876 | unsigned long flags; |
81819f0f | 2877 | |
9f986d99 AW |
2878 | stat(s, ALLOC_SLOWPATH); |
2879 | ||
0b303fb4 VB |
2880 | reread_page: |
2881 | ||
2882 | page = READ_ONCE(c->page); | |
0715e6c5 VB |
2883 | if (!page) { |
2884 | /* | |
2885 | * if the node is not online or has no normal memory, just | |
2886 | * ignore the node constraint | |
2887 | */ | |
2888 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 2889 | !node_isset(node, slab_nodes))) |
0715e6c5 | 2890 | node = NUMA_NO_NODE; |
81819f0f | 2891 | goto new_slab; |
0715e6c5 | 2892 | } |
49e22585 | 2893 | redo: |
6faa6833 | 2894 | |
57d437d2 | 2895 | if (unlikely(!node_match(page, node))) { |
0715e6c5 VB |
2896 | /* |
2897 | * same as above but node_match() being false already | |
2898 | * implies node != NUMA_NO_NODE | |
2899 | */ | |
7e1fa93d | 2900 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 VB |
2901 | node = NUMA_NO_NODE; |
2902 | goto redo; | |
2903 | } else { | |
a561ce00 | 2904 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 2905 | goto deactivate_slab; |
a561ce00 | 2906 | } |
fc59c053 | 2907 | } |
6446faa2 | 2908 | |
072bb0aa MG |
2909 | /* |
2910 | * By rights, we should be searching for a slab page that was | |
2911 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2912 | * information when the page leaves the per-cpu allocator | |
2913 | */ | |
0b303fb4 VB |
2914 | if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags))) |
2915 | goto deactivate_slab; | |
072bb0aa | 2916 | |
25c00c50 | 2917 | /* must check again c->page in case we got preempted and it changed */ |
bd0e7491 | 2918 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
0b303fb4 | 2919 | if (unlikely(page != c->page)) { |
bd0e7491 | 2920 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
0b303fb4 VB |
2921 | goto reread_page; |
2922 | } | |
6faa6833 CL |
2923 | freelist = c->freelist; |
2924 | if (freelist) | |
73736e03 | 2925 | goto load_freelist; |
03e404af | 2926 | |
f6e7def7 | 2927 | freelist = get_freelist(s, page); |
6446faa2 | 2928 | |
6faa6833 | 2929 | if (!freelist) { |
03e404af | 2930 | c->page = NULL; |
bd0e7491 | 2931 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 2932 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 2933 | goto new_slab; |
03e404af | 2934 | } |
6446faa2 | 2935 | |
84e554e6 | 2936 | stat(s, ALLOC_REFILL); |
6446faa2 | 2937 | |
894b8788 | 2938 | load_freelist: |
0b303fb4 | 2939 | |
bd0e7491 | 2940 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 2941 | |
507effea CL |
2942 | /* |
2943 | * freelist is pointing to the list of objects to be used. | |
2944 | * page is pointing to the page from which the objects are obtained. | |
2945 | * That page must be frozen for per cpu allocations to work. | |
2946 | */ | |
a0132ac0 | 2947 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2948 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2949 | c->tid = next_tid(c->tid); |
bd0e7491 | 2950 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 2951 | return freelist; |
81819f0f | 2952 | |
0b303fb4 VB |
2953 | deactivate_slab: |
2954 | ||
bd0e7491 | 2955 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
0b303fb4 | 2956 | if (page != c->page) { |
bd0e7491 | 2957 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
0b303fb4 VB |
2958 | goto reread_page; |
2959 | } | |
a019d201 VB |
2960 | freelist = c->freelist; |
2961 | c->page = NULL; | |
2962 | c->freelist = NULL; | |
bd0e7491 | 2963 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 2964 | deactivate_slab(s, page, freelist); |
0b303fb4 | 2965 | |
81819f0f | 2966 | new_slab: |
2cfb7455 | 2967 | |
a93cf07b | 2968 | if (slub_percpu_partial(c)) { |
bd0e7491 | 2969 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
fa417ab7 | 2970 | if (unlikely(c->page)) { |
bd0e7491 | 2971 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fa417ab7 VB |
2972 | goto reread_page; |
2973 | } | |
4b1f449d | 2974 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 2975 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
2976 | /* we were preempted and partial list got empty */ |
2977 | goto new_objects; | |
4b1f449d | 2978 | } |
fa417ab7 | 2979 | |
a93cf07b WY |
2980 | page = c->page = slub_percpu_partial(c); |
2981 | slub_set_percpu_partial(c, page); | |
bd0e7491 | 2982 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
49e22585 | 2983 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2984 | goto redo; |
81819f0f CL |
2985 | } |
2986 | ||
fa417ab7 VB |
2987 | new_objects: |
2988 | ||
75c8ff28 | 2989 | freelist = get_partial(s, gfpflags, node, &page); |
3f2b77e3 | 2990 | if (freelist) |
2a904905 VB |
2991 | goto check_new_page; |
2992 | ||
25c00c50 | 2993 | slub_put_cpu_ptr(s->cpu_slab); |
53a0de06 | 2994 | page = new_slab(s, gfpflags, node); |
25c00c50 | 2995 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 2996 | |
53a0de06 | 2997 | if (unlikely(!page)) { |
9a02d699 | 2998 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2999 | return NULL; |
81819f0f | 3000 | } |
2cfb7455 | 3001 | |
53a0de06 VB |
3002 | /* |
3003 | * No other reference to the page yet so we can | |
3004 | * muck around with it freely without cmpxchg | |
3005 | */ | |
3006 | freelist = page->freelist; | |
3007 | page->freelist = NULL; | |
3008 | ||
3009 | stat(s, ALLOC_SLAB); | |
53a0de06 | 3010 | |
2a904905 | 3011 | check_new_page: |
2cfb7455 | 3012 | |
1572df7c | 3013 | if (kmem_cache_debug(s)) { |
fa417ab7 | 3014 | if (!alloc_debug_processing(s, page, freelist, addr)) { |
1572df7c VB |
3015 | /* Slab failed checks. Next slab needed */ |
3016 | goto new_slab; | |
fa417ab7 | 3017 | } else { |
1572df7c VB |
3018 | /* |
3019 | * For debug case, we don't load freelist so that all | |
3020 | * allocations go through alloc_debug_processing() | |
3021 | */ | |
3022 | goto return_single; | |
fa417ab7 | 3023 | } |
1572df7c VB |
3024 | } |
3025 | ||
3026 | if (unlikely(!pfmemalloc_match(page, gfpflags))) | |
3027 | /* | |
3028 | * For !pfmemalloc_match() case we don't load freelist so that | |
3029 | * we don't make further mismatched allocations easier. | |
3030 | */ | |
3031 | goto return_single; | |
3032 | ||
cfdf836e VB |
3033 | retry_load_page: |
3034 | ||
bd0e7491 | 3035 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
cfdf836e VB |
3036 | if (unlikely(c->page)) { |
3037 | void *flush_freelist = c->freelist; | |
3038 | struct page *flush_page = c->page; | |
3039 | ||
3040 | c->page = NULL; | |
3041 | c->freelist = NULL; | |
3042 | c->tid = next_tid(c->tid); | |
3043 | ||
bd0e7491 | 3044 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e VB |
3045 | |
3046 | deactivate_slab(s, flush_page, flush_freelist); | |
3047 | ||
3048 | stat(s, CPUSLAB_FLUSH); | |
3049 | ||
3050 | goto retry_load_page; | |
3051 | } | |
3f2b77e3 VB |
3052 | c->page = page; |
3053 | ||
1572df7c VB |
3054 | goto load_freelist; |
3055 | ||
3056 | return_single: | |
894b8788 | 3057 | |
a019d201 | 3058 | deactivate_slab(s, page, get_freepointer(s, freelist)); |
6faa6833 | 3059 | return freelist; |
894b8788 CL |
3060 | } |
3061 | ||
a380a3c7 | 3062 | /* |
e500059b VB |
3063 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3064 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3065 | * pointer. | |
a380a3c7 CL |
3066 | */ |
3067 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
3068 | unsigned long addr, struct kmem_cache_cpu *c) | |
3069 | { | |
3070 | void *p; | |
a380a3c7 | 3071 | |
e500059b | 3072 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3073 | /* |
3074 | * We may have been preempted and rescheduled on a different | |
e500059b | 3075 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3076 | * pointer. |
3077 | */ | |
25c00c50 | 3078 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3079 | #endif |
3080 | ||
3081 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
e500059b | 3082 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3083 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3084 | #endif |
a380a3c7 CL |
3085 | return p; |
3086 | } | |
3087 | ||
0f181f9f AP |
3088 | /* |
3089 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3090 | * zeroing out freelist pointer. | |
3091 | */ | |
3092 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3093 | void *obj) | |
3094 | { | |
3095 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
ce5716c6 AK |
3096 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), |
3097 | 0, sizeof(void *)); | |
0f181f9f AP |
3098 | } |
3099 | ||
894b8788 CL |
3100 | /* |
3101 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
3102 | * have the fastpath folded into their functions. So no function call | |
3103 | * overhead for requests that can be satisfied on the fastpath. | |
3104 | * | |
3105 | * The fastpath works by first checking if the lockless freelist can be used. | |
3106 | * If not then __slab_alloc is called for slow processing. | |
3107 | * | |
3108 | * Otherwise we can simply pick the next object from the lockless free list. | |
3109 | */ | |
2b847c3c | 3110 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
b89fb5ef | 3111 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3112 | { |
03ec0ed5 | 3113 | void *object; |
dfb4f096 | 3114 | struct kmem_cache_cpu *c; |
57d437d2 | 3115 | struct page *page; |
8a5ec0ba | 3116 | unsigned long tid; |
964d4bd3 | 3117 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3118 | bool init = false; |
1f84260c | 3119 | |
964d4bd3 | 3120 | s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); |
8135be5a | 3121 | if (!s) |
773ff60e | 3122 | return NULL; |
b89fb5ef AP |
3123 | |
3124 | object = kfence_alloc(s, orig_size, gfpflags); | |
3125 | if (unlikely(object)) | |
3126 | goto out; | |
3127 | ||
8a5ec0ba | 3128 | redo: |
8a5ec0ba CL |
3129 | /* |
3130 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3131 | * enabled. We may switch back and forth between cpus while | |
3132 | * reading from one cpu area. That does not matter as long | |
3133 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3134 | * |
9b4bc85a VB |
3135 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3136 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3137 | * the tid. If we are preempted and switched to another cpu between the | |
3138 | * two reads, it's OK as the two are still associated with the same cpu | |
3139 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3140 | */ |
9b4bc85a VB |
3141 | c = raw_cpu_ptr(s->cpu_slab); |
3142 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3143 | |
3144 | /* | |
3145 | * Irqless object alloc/free algorithm used here depends on sequence | |
3146 | * of fetching cpu_slab's data. tid should be fetched before anything | |
3147 | * on c to guarantee that object and page associated with previous tid | |
3148 | * won't be used with current tid. If we fetch tid first, object and | |
3149 | * page could be one associated with next tid and our alloc/free | |
3150 | * request will be failed. In this case, we will retry. So, no problem. | |
3151 | */ | |
3152 | barrier(); | |
8a5ec0ba | 3153 | |
8a5ec0ba CL |
3154 | /* |
3155 | * The transaction ids are globally unique per cpu and per operation on | |
3156 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3157 | * occurs on the right processor and that there was no operation on the | |
3158 | * linked list in between. | |
3159 | */ | |
8a5ec0ba | 3160 | |
9dfc6e68 | 3161 | object = c->freelist; |
57d437d2 | 3162 | page = c->page; |
bd0e7491 VB |
3163 | /* |
3164 | * We cannot use the lockless fastpath on PREEMPT_RT because if a | |
3165 | * slowpath has taken the local_lock_irqsave(), it is not protected | |
3166 | * against a fast path operation in an irq handler. So we need to take | |
3167 | * the slow path which uses local_lock. It is still relatively fast if | |
3168 | * there is a suitable cpu freelist. | |
3169 | */ | |
3170 | if (IS_ENABLED(CONFIG_PREEMPT_RT) || | |
3171 | unlikely(!object || !page || !node_match(page, node))) { | |
dfb4f096 | 3172 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 | 3173 | } else { |
0ad9500e ED |
3174 | void *next_object = get_freepointer_safe(s, object); |
3175 | ||
8a5ec0ba | 3176 | /* |
25985edc | 3177 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3178 | * operation and if we are on the right processor. |
3179 | * | |
d0e0ac97 CG |
3180 | * The cmpxchg does the following atomically (without lock |
3181 | * semantics!) | |
8a5ec0ba CL |
3182 | * 1. Relocate first pointer to the current per cpu area. |
3183 | * 2. Verify that tid and freelist have not been changed | |
3184 | * 3. If they were not changed replace tid and freelist | |
3185 | * | |
d0e0ac97 CG |
3186 | * Since this is without lock semantics the protection is only |
3187 | * against code executing on this cpu *not* from access by | |
3188 | * other cpus. | |
8a5ec0ba | 3189 | */ |
933393f5 | 3190 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
3191 | s->cpu_slab->freelist, s->cpu_slab->tid, |
3192 | object, tid, | |
0ad9500e | 3193 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
3194 | |
3195 | note_cmpxchg_failure("slab_alloc", s, tid); | |
3196 | goto redo; | |
3197 | } | |
0ad9500e | 3198 | prefetch_freepointer(s, next_object); |
84e554e6 | 3199 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3200 | } |
0f181f9f | 3201 | |
ce5716c6 | 3202 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 3203 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 3204 | |
b89fb5ef | 3205 | out: |
da844b78 | 3206 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); |
5a896d9e | 3207 | |
894b8788 | 3208 | return object; |
81819f0f CL |
3209 | } |
3210 | ||
2b847c3c | 3211 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
b89fb5ef | 3212 | gfp_t gfpflags, unsigned long addr, size_t orig_size) |
2b847c3c | 3213 | { |
b89fb5ef | 3214 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); |
2b847c3c EG |
3215 | } |
3216 | ||
81819f0f CL |
3217 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
3218 | { | |
b89fb5ef | 3219 | void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); |
5b882be4 | 3220 | |
d0e0ac97 CG |
3221 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
3222 | s->size, gfpflags); | |
5b882be4 EGM |
3223 | |
3224 | return ret; | |
81819f0f CL |
3225 | } |
3226 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3227 | ||
0f24f128 | 3228 | #ifdef CONFIG_TRACING |
4a92379b RK |
3229 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
3230 | { | |
b89fb5ef | 3231 | void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); |
4a92379b | 3232 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 3233 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
3234 | return ret; |
3235 | } | |
3236 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
3237 | #endif |
3238 | ||
81819f0f CL |
3239 | #ifdef CONFIG_NUMA |
3240 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
3241 | { | |
b89fb5ef | 3242 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 3243 | |
ca2b84cb | 3244 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 3245 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
3246 | |
3247 | return ret; | |
81819f0f CL |
3248 | } |
3249 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 3250 | |
0f24f128 | 3251 | #ifdef CONFIG_TRACING |
4a92379b | 3252 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 3253 | gfp_t gfpflags, |
4a92379b | 3254 | int node, size_t size) |
5b882be4 | 3255 | { |
b89fb5ef | 3256 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); |
4a92379b RK |
3257 | |
3258 | trace_kmalloc_node(_RET_IP_, ret, | |
3259 | size, s->size, gfpflags, node); | |
0316bec2 | 3260 | |
0116523c | 3261 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 3262 | return ret; |
5b882be4 | 3263 | } |
4a92379b | 3264 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 3265 | #endif |
6dfd1b65 | 3266 | #endif /* CONFIG_NUMA */ |
5b882be4 | 3267 | |
81819f0f | 3268 | /* |
94e4d712 | 3269 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 3270 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 3271 | * |
894b8788 CL |
3272 | * So we still attempt to reduce cache line usage. Just take the slab |
3273 | * lock and free the item. If there is no additional partial page | |
3274 | * handling required then we can return immediately. | |
81819f0f | 3275 | */ |
894b8788 | 3276 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
3277 | void *head, void *tail, int cnt, |
3278 | unsigned long addr) | |
3279 | ||
81819f0f CL |
3280 | { |
3281 | void *prior; | |
2cfb7455 | 3282 | int was_frozen; |
2cfb7455 CL |
3283 | struct page new; |
3284 | unsigned long counters; | |
3285 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 3286 | unsigned long flags; |
81819f0f | 3287 | |
8a5ec0ba | 3288 | stat(s, FREE_SLOWPATH); |
81819f0f | 3289 | |
b89fb5ef AP |
3290 | if (kfence_free(head)) |
3291 | return; | |
3292 | ||
19c7ff9e | 3293 | if (kmem_cache_debug(s) && |
282acb43 | 3294 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 3295 | return; |
6446faa2 | 3296 | |
2cfb7455 | 3297 | do { |
837d678d JK |
3298 | if (unlikely(n)) { |
3299 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3300 | n = NULL; | |
3301 | } | |
2cfb7455 CL |
3302 | prior = page->freelist; |
3303 | counters = page->counters; | |
81084651 | 3304 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
3305 | new.counters = counters; |
3306 | was_frozen = new.frozen; | |
81084651 | 3307 | new.inuse -= cnt; |
837d678d | 3308 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 3309 | |
c65c1877 | 3310 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
3311 | |
3312 | /* | |
d0e0ac97 CG |
3313 | * Slab was on no list before and will be |
3314 | * partially empty | |
3315 | * We can defer the list move and instead | |
3316 | * freeze it. | |
49e22585 CL |
3317 | */ |
3318 | new.frozen = 1; | |
3319 | ||
c65c1877 | 3320 | } else { /* Needs to be taken off a list */ |
49e22585 | 3321 | |
b455def2 | 3322 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
3323 | /* |
3324 | * Speculatively acquire the list_lock. | |
3325 | * If the cmpxchg does not succeed then we may | |
3326 | * drop the list_lock without any processing. | |
3327 | * | |
3328 | * Otherwise the list_lock will synchronize with | |
3329 | * other processors updating the list of slabs. | |
3330 | */ | |
3331 | spin_lock_irqsave(&n->list_lock, flags); | |
3332 | ||
3333 | } | |
2cfb7455 | 3334 | } |
81819f0f | 3335 | |
2cfb7455 CL |
3336 | } while (!cmpxchg_double_slab(s, page, |
3337 | prior, counters, | |
81084651 | 3338 | head, new.counters, |
2cfb7455 | 3339 | "__slab_free")); |
81819f0f | 3340 | |
2cfb7455 | 3341 | if (likely(!n)) { |
49e22585 | 3342 | |
c270cf30 AW |
3343 | if (likely(was_frozen)) { |
3344 | /* | |
3345 | * The list lock was not taken therefore no list | |
3346 | * activity can be necessary. | |
3347 | */ | |
3348 | stat(s, FREE_FROZEN); | |
3349 | } else if (new.frozen) { | |
3350 | /* | |
3351 | * If we just froze the page then put it onto the | |
3352 | * per cpu partial list. | |
3353 | */ | |
49e22585 | 3354 | put_cpu_partial(s, page, 1); |
8028dcea AS |
3355 | stat(s, CPU_PARTIAL_FREE); |
3356 | } | |
c270cf30 | 3357 | |
b455def2 L |
3358 | return; |
3359 | } | |
81819f0f | 3360 | |
8a5b20ae | 3361 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
3362 | goto slab_empty; |
3363 | ||
81819f0f | 3364 | /* |
837d678d JK |
3365 | * Objects left in the slab. If it was not on the partial list before |
3366 | * then add it. | |
81819f0f | 3367 | */ |
345c905d | 3368 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
a4d3f891 | 3369 | remove_full(s, n, page); |
837d678d JK |
3370 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
3371 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 3372 | } |
80f08c19 | 3373 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
3374 | return; |
3375 | ||
3376 | slab_empty: | |
a973e9dd | 3377 | if (prior) { |
81819f0f | 3378 | /* |
6fbabb20 | 3379 | * Slab on the partial list. |
81819f0f | 3380 | */ |
5cc6eee8 | 3381 | remove_partial(n, page); |
84e554e6 | 3382 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 3383 | } else { |
6fbabb20 | 3384 | /* Slab must be on the full list */ |
c65c1877 PZ |
3385 | remove_full(s, n, page); |
3386 | } | |
2cfb7455 | 3387 | |
80f08c19 | 3388 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3389 | stat(s, FREE_SLAB); |
81819f0f | 3390 | discard_slab(s, page); |
81819f0f CL |
3391 | } |
3392 | ||
894b8788 CL |
3393 | /* |
3394 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3395 | * can perform fastpath freeing without additional function calls. | |
3396 | * | |
3397 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3398 | * of this processor. This typically the case if we have just allocated | |
3399 | * the item before. | |
3400 | * | |
3401 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3402 | * with all sorts of special processing. | |
81084651 JDB |
3403 | * |
3404 | * Bulk free of a freelist with several objects (all pointing to the | |
3405 | * same page) possible by specifying head and tail ptr, plus objects | |
3406 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 3407 | */ |
80a9201a AP |
3408 | static __always_inline void do_slab_free(struct kmem_cache *s, |
3409 | struct page *page, void *head, void *tail, | |
3410 | int cnt, unsigned long addr) | |
894b8788 | 3411 | { |
81084651 | 3412 | void *tail_obj = tail ? : head; |
dfb4f096 | 3413 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3414 | unsigned long tid; |
964d4bd3 | 3415 | |
d1b2cf6c | 3416 | memcg_slab_free_hook(s, &head, 1); |
8a5ec0ba CL |
3417 | redo: |
3418 | /* | |
3419 | * Determine the currently cpus per cpu slab. | |
3420 | * The cpu may change afterward. However that does not matter since | |
3421 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3422 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3423 | */ |
9b4bc85a VB |
3424 | c = raw_cpu_ptr(s->cpu_slab); |
3425 | tid = READ_ONCE(c->tid); | |
c016b0bd | 3426 | |
9aabf810 JK |
3427 | /* Same with comment on barrier() in slab_alloc_node() */ |
3428 | barrier(); | |
c016b0bd | 3429 | |
442b06bc | 3430 | if (likely(page == c->page)) { |
bd0e7491 | 3431 | #ifndef CONFIG_PREEMPT_RT |
5076190d LT |
3432 | void **freelist = READ_ONCE(c->freelist); |
3433 | ||
3434 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3435 | |
933393f5 | 3436 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3437 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3438 | freelist, tid, |
81084651 | 3439 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3440 | |
3441 | note_cmpxchg_failure("slab_free", s, tid); | |
3442 | goto redo; | |
3443 | } | |
bd0e7491 VB |
3444 | #else /* CONFIG_PREEMPT_RT */ |
3445 | /* | |
3446 | * We cannot use the lockless fastpath on PREEMPT_RT because if | |
3447 | * a slowpath has taken the local_lock_irqsave(), it is not | |
3448 | * protected against a fast path operation in an irq handler. So | |
3449 | * we need to take the local_lock. We shouldn't simply defer to | |
3450 | * __slab_free() as that wouldn't use the cpu freelist at all. | |
3451 | */ | |
3452 | void **freelist; | |
3453 | ||
3454 | local_lock(&s->cpu_slab->lock); | |
3455 | c = this_cpu_ptr(s->cpu_slab); | |
3456 | if (unlikely(page != c->page)) { | |
3457 | local_unlock(&s->cpu_slab->lock); | |
3458 | goto redo; | |
3459 | } | |
3460 | tid = c->tid; | |
3461 | freelist = c->freelist; | |
3462 | ||
3463 | set_freepointer(s, tail_obj, freelist); | |
3464 | c->freelist = head; | |
3465 | c->tid = next_tid(tid); | |
3466 | ||
3467 | local_unlock(&s->cpu_slab->lock); | |
3468 | #endif | |
84e554e6 | 3469 | stat(s, FREE_FASTPATH); |
894b8788 | 3470 | } else |
81084651 | 3471 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 3472 | |
894b8788 CL |
3473 | } |
3474 | ||
80a9201a AP |
3475 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
3476 | void *head, void *tail, int cnt, | |
3477 | unsigned long addr) | |
3478 | { | |
80a9201a | 3479 | /* |
c3895391 AK |
3480 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3481 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3482 | */ |
c3895391 AK |
3483 | if (slab_free_freelist_hook(s, &head, &tail)) |
3484 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
3485 | } |
3486 | ||
2bd926b4 | 3487 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3488 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3489 | { | |
3490 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3491 | } | |
3492 | #endif | |
3493 | ||
81819f0f CL |
3494 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3495 | { | |
b9ce5ef4 GC |
3496 | s = cache_from_obj(s, x); |
3497 | if (!s) | |
79576102 | 3498 | return; |
81084651 | 3499 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
3544de8e | 3500 | trace_kmem_cache_free(_RET_IP_, x, s->name); |
81819f0f CL |
3501 | } |
3502 | EXPORT_SYMBOL(kmem_cache_free); | |
3503 | ||
d0ecd894 | 3504 | struct detached_freelist { |
fbd02630 | 3505 | struct page *page; |
d0ecd894 JDB |
3506 | void *tail; |
3507 | void *freelist; | |
3508 | int cnt; | |
376bf125 | 3509 | struct kmem_cache *s; |
d0ecd894 | 3510 | }; |
fbd02630 | 3511 | |
1ed7ce57 | 3512 | static inline void free_nonslab_page(struct page *page, void *object) |
f227f0fa SB |
3513 | { |
3514 | unsigned int order = compound_order(page); | |
3515 | ||
3516 | VM_BUG_ON_PAGE(!PageCompound(page), page); | |
1ed7ce57 | 3517 | kfree_hook(object); |
f227f0fa SB |
3518 | mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order)); |
3519 | __free_pages(page, order); | |
3520 | } | |
3521 | ||
d0ecd894 JDB |
3522 | /* |
3523 | * This function progressively scans the array with free objects (with | |
3524 | * a limited look ahead) and extract objects belonging to the same | |
3525 | * page. It builds a detached freelist directly within the given | |
3526 | * page/objects. This can happen without any need for | |
3527 | * synchronization, because the objects are owned by running process. | |
3528 | * The freelist is build up as a single linked list in the objects. | |
3529 | * The idea is, that this detached freelist can then be bulk | |
3530 | * transferred to the real freelist(s), but only requiring a single | |
3531 | * synchronization primitive. Look ahead in the array is limited due | |
3532 | * to performance reasons. | |
3533 | */ | |
376bf125 JDB |
3534 | static inline |
3535 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3536 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3537 | { |
3538 | size_t first_skipped_index = 0; | |
3539 | int lookahead = 3; | |
3540 | void *object; | |
ca257195 | 3541 | struct page *page; |
fbd02630 | 3542 | |
d0ecd894 JDB |
3543 | /* Always re-init detached_freelist */ |
3544 | df->page = NULL; | |
fbd02630 | 3545 | |
d0ecd894 JDB |
3546 | do { |
3547 | object = p[--size]; | |
ca257195 | 3548 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3549 | } while (!object && size); |
3eed034d | 3550 | |
d0ecd894 JDB |
3551 | if (!object) |
3552 | return 0; | |
fbd02630 | 3553 | |
ca257195 JDB |
3554 | page = virt_to_head_page(object); |
3555 | if (!s) { | |
3556 | /* Handle kalloc'ed objects */ | |
3557 | if (unlikely(!PageSlab(page))) { | |
1ed7ce57 | 3558 | free_nonslab_page(page, object); |
ca257195 JDB |
3559 | p[size] = NULL; /* mark object processed */ |
3560 | return size; | |
3561 | } | |
3562 | /* Derive kmem_cache from object */ | |
3563 | df->s = page->slab_cache; | |
3564 | } else { | |
3565 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3566 | } | |
376bf125 | 3567 | |
b89fb5ef | 3568 | if (is_kfence_address(object)) { |
d57a964e | 3569 | slab_free_hook(df->s, object, false); |
b89fb5ef AP |
3570 | __kfence_free(object); |
3571 | p[size] = NULL; /* mark object processed */ | |
3572 | return size; | |
3573 | } | |
3574 | ||
d0ecd894 | 3575 | /* Start new detached freelist */ |
ca257195 | 3576 | df->page = page; |
376bf125 | 3577 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3578 | df->tail = object; |
3579 | df->freelist = object; | |
3580 | p[size] = NULL; /* mark object processed */ | |
3581 | df->cnt = 1; | |
3582 | ||
3583 | while (size) { | |
3584 | object = p[--size]; | |
3585 | if (!object) | |
3586 | continue; /* Skip processed objects */ | |
3587 | ||
3588 | /* df->page is always set at this point */ | |
3589 | if (df->page == virt_to_head_page(object)) { | |
3590 | /* Opportunity build freelist */ | |
376bf125 | 3591 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3592 | df->freelist = object; |
3593 | df->cnt++; | |
3594 | p[size] = NULL; /* mark object processed */ | |
3595 | ||
3596 | continue; | |
fbd02630 | 3597 | } |
d0ecd894 JDB |
3598 | |
3599 | /* Limit look ahead search */ | |
3600 | if (!--lookahead) | |
3601 | break; | |
3602 | ||
3603 | if (!first_skipped_index) | |
3604 | first_skipped_index = size + 1; | |
fbd02630 | 3605 | } |
d0ecd894 JDB |
3606 | |
3607 | return first_skipped_index; | |
3608 | } | |
3609 | ||
d0ecd894 | 3610 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3611 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3612 | { |
3613 | if (WARN_ON(!size)) | |
3614 | return; | |
3615 | ||
d1b2cf6c | 3616 | memcg_slab_free_hook(s, p, size); |
d0ecd894 JDB |
3617 | do { |
3618 | struct detached_freelist df; | |
3619 | ||
3620 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3621 | if (!df.page) |
d0ecd894 JDB |
3622 | continue; |
3623 | ||
457c82c3 | 3624 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); |
d0ecd894 | 3625 | } while (likely(size)); |
484748f0 CL |
3626 | } |
3627 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3628 | ||
994eb764 | 3629 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3630 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3631 | void **p) | |
484748f0 | 3632 | { |
994eb764 JDB |
3633 | struct kmem_cache_cpu *c; |
3634 | int i; | |
964d4bd3 | 3635 | struct obj_cgroup *objcg = NULL; |
994eb764 | 3636 | |
03ec0ed5 | 3637 | /* memcg and kmem_cache debug support */ |
964d4bd3 | 3638 | s = slab_pre_alloc_hook(s, &objcg, size, flags); |
03ec0ed5 JDB |
3639 | if (unlikely(!s)) |
3640 | return false; | |
994eb764 JDB |
3641 | /* |
3642 | * Drain objects in the per cpu slab, while disabling local | |
3643 | * IRQs, which protects against PREEMPT and interrupts | |
3644 | * handlers invoking normal fastpath. | |
3645 | */ | |
25c00c50 | 3646 | c = slub_get_cpu_ptr(s->cpu_slab); |
bd0e7491 | 3647 | local_lock_irq(&s->cpu_slab->lock); |
994eb764 JDB |
3648 | |
3649 | for (i = 0; i < size; i++) { | |
b89fb5ef | 3650 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 3651 | |
b89fb5ef AP |
3652 | if (unlikely(object)) { |
3653 | p[i] = object; | |
3654 | continue; | |
3655 | } | |
3656 | ||
3657 | object = c->freelist; | |
ebe909e0 | 3658 | if (unlikely(!object)) { |
fd4d9c7d JH |
3659 | /* |
3660 | * We may have removed an object from c->freelist using | |
3661 | * the fastpath in the previous iteration; in that case, | |
3662 | * c->tid has not been bumped yet. | |
3663 | * Since ___slab_alloc() may reenable interrupts while | |
3664 | * allocating memory, we should bump c->tid now. | |
3665 | */ | |
3666 | c->tid = next_tid(c->tid); | |
3667 | ||
bd0e7491 | 3668 | local_unlock_irq(&s->cpu_slab->lock); |
e500059b | 3669 | |
ebe909e0 JDB |
3670 | /* |
3671 | * Invoking slow path likely have side-effect | |
3672 | * of re-populating per CPU c->freelist | |
3673 | */ | |
87098373 | 3674 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3675 | _RET_IP_, c); |
87098373 CL |
3676 | if (unlikely(!p[i])) |
3677 | goto error; | |
3678 | ||
ebe909e0 | 3679 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3680 | maybe_wipe_obj_freeptr(s, p[i]); |
3681 | ||
bd0e7491 | 3682 | local_lock_irq(&s->cpu_slab->lock); |
e500059b | 3683 | |
ebe909e0 JDB |
3684 | continue; /* goto for-loop */ |
3685 | } | |
994eb764 JDB |
3686 | c->freelist = get_freepointer(s, object); |
3687 | p[i] = object; | |
0f181f9f | 3688 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3689 | } |
3690 | c->tid = next_tid(c->tid); | |
bd0e7491 | 3691 | local_unlock_irq(&s->cpu_slab->lock); |
25c00c50 | 3692 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 3693 | |
da844b78 AK |
3694 | /* |
3695 | * memcg and kmem_cache debug support and memory initialization. | |
3696 | * Done outside of the IRQ disabled fastpath loop. | |
3697 | */ | |
3698 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
3699 | slab_want_init_on_alloc(flags, s)); | |
865762a8 | 3700 | return i; |
87098373 | 3701 | error: |
25c00c50 | 3702 | slub_put_cpu_ptr(s->cpu_slab); |
da844b78 | 3703 | slab_post_alloc_hook(s, objcg, flags, i, p, false); |
03ec0ed5 | 3704 | __kmem_cache_free_bulk(s, i, p); |
865762a8 | 3705 | return 0; |
484748f0 CL |
3706 | } |
3707 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3708 | ||
3709 | ||
81819f0f | 3710 | /* |
672bba3a CL |
3711 | * Object placement in a slab is made very easy because we always start at |
3712 | * offset 0. If we tune the size of the object to the alignment then we can | |
3713 | * get the required alignment by putting one properly sized object after | |
3714 | * another. | |
81819f0f CL |
3715 | * |
3716 | * Notice that the allocation order determines the sizes of the per cpu | |
3717 | * caches. Each processor has always one slab available for allocations. | |
3718 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3719 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3720 | * locking overhead. |
81819f0f CL |
3721 | */ |
3722 | ||
3723 | /* | |
f0953a1b | 3724 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
3725 | * and slab fragmentation. A higher order reduces the number of partial slabs |
3726 | * and increases the number of allocations possible without having to | |
3727 | * take the list_lock. | |
3728 | */ | |
19af27af AD |
3729 | static unsigned int slub_min_order; |
3730 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3731 | static unsigned int slub_min_objects; | |
81819f0f | 3732 | |
81819f0f CL |
3733 | /* |
3734 | * Calculate the order of allocation given an slab object size. | |
3735 | * | |
672bba3a CL |
3736 | * The order of allocation has significant impact on performance and other |
3737 | * system components. Generally order 0 allocations should be preferred since | |
3738 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3739 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3740 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3741 | * would be wasted. |
3742 | * | |
3743 | * In order to reach satisfactory performance we must ensure that a minimum | |
3744 | * number of objects is in one slab. Otherwise we may generate too much | |
3745 | * activity on the partial lists which requires taking the list_lock. This is | |
3746 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3747 | * |
672bba3a CL |
3748 | * slub_max_order specifies the order where we begin to stop considering the |
3749 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3750 | * we try to keep the page order as low as possible. So we accept more waste | |
3751 | * of space in favor of a small page order. | |
81819f0f | 3752 | * |
672bba3a CL |
3753 | * Higher order allocations also allow the placement of more objects in a |
3754 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 3755 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 3756 | * the smallest order which will fit the object. |
81819f0f | 3757 | */ |
19af27af AD |
3758 | static inline unsigned int slab_order(unsigned int size, |
3759 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3760 | unsigned int fract_leftover) |
81819f0f | 3761 | { |
19af27af AD |
3762 | unsigned int min_order = slub_min_order; |
3763 | unsigned int order; | |
81819f0f | 3764 | |
9736d2a9 | 3765 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3766 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3767 | |
9736d2a9 | 3768 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3769 | order <= max_order; order++) { |
81819f0f | 3770 | |
19af27af AD |
3771 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3772 | unsigned int rem; | |
81819f0f | 3773 | |
9736d2a9 | 3774 | rem = slab_size % size; |
81819f0f | 3775 | |
5e6d444e | 3776 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3777 | break; |
81819f0f | 3778 | } |
672bba3a | 3779 | |
81819f0f CL |
3780 | return order; |
3781 | } | |
3782 | ||
9736d2a9 | 3783 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3784 | { |
19af27af AD |
3785 | unsigned int order; |
3786 | unsigned int min_objects; | |
3787 | unsigned int max_objects; | |
3286222f | 3788 | unsigned int nr_cpus; |
5e6d444e CL |
3789 | |
3790 | /* | |
3791 | * Attempt to find best configuration for a slab. This | |
3792 | * works by first attempting to generate a layout with | |
3793 | * the best configuration and backing off gradually. | |
3794 | * | |
422ff4d7 | 3795 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3796 | * we reduce the minimum objects required in a slab. |
3797 | */ | |
3798 | min_objects = slub_min_objects; | |
3286222f VB |
3799 | if (!min_objects) { |
3800 | /* | |
3801 | * Some architectures will only update present cpus when | |
3802 | * onlining them, so don't trust the number if it's just 1. But | |
3803 | * we also don't want to use nr_cpu_ids always, as on some other | |
3804 | * architectures, there can be many possible cpus, but never | |
3805 | * onlined. Here we compromise between trying to avoid too high | |
3806 | * order on systems that appear larger than they are, and too | |
3807 | * low order on systems that appear smaller than they are. | |
3808 | */ | |
3809 | nr_cpus = num_present_cpus(); | |
3810 | if (nr_cpus <= 1) | |
3811 | nr_cpus = nr_cpu_ids; | |
3812 | min_objects = 4 * (fls(nr_cpus) + 1); | |
3813 | } | |
9736d2a9 | 3814 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3815 | min_objects = min(min_objects, max_objects); |
3816 | ||
5e6d444e | 3817 | while (min_objects > 1) { |
19af27af AD |
3818 | unsigned int fraction; |
3819 | ||
c124f5b5 | 3820 | fraction = 16; |
5e6d444e CL |
3821 | while (fraction >= 4) { |
3822 | order = slab_order(size, min_objects, | |
9736d2a9 | 3823 | slub_max_order, fraction); |
5e6d444e CL |
3824 | if (order <= slub_max_order) |
3825 | return order; | |
3826 | fraction /= 2; | |
3827 | } | |
5086c389 | 3828 | min_objects--; |
5e6d444e CL |
3829 | } |
3830 | ||
3831 | /* | |
3832 | * We were unable to place multiple objects in a slab. Now | |
3833 | * lets see if we can place a single object there. | |
3834 | */ | |
9736d2a9 | 3835 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3836 | if (order <= slub_max_order) |
3837 | return order; | |
3838 | ||
3839 | /* | |
3840 | * Doh this slab cannot be placed using slub_max_order. | |
3841 | */ | |
9736d2a9 | 3842 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3843 | if (order < MAX_ORDER) |
5e6d444e CL |
3844 | return order; |
3845 | return -ENOSYS; | |
3846 | } | |
3847 | ||
5595cffc | 3848 | static void |
4053497d | 3849 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3850 | { |
3851 | n->nr_partial = 0; | |
81819f0f CL |
3852 | spin_lock_init(&n->list_lock); |
3853 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3854 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3855 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3856 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3857 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3858 | #endif |
81819f0f CL |
3859 | } |
3860 | ||
55136592 | 3861 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3862 | { |
6c182dc0 | 3863 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3864 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3865 | |
8a5ec0ba | 3866 | /* |
d4d84fef CM |
3867 | * Must align to double word boundary for the double cmpxchg |
3868 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3869 | */ |
d4d84fef CM |
3870 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3871 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3872 | |
3873 | if (!s->cpu_slab) | |
3874 | return 0; | |
3875 | ||
3876 | init_kmem_cache_cpus(s); | |
4c93c355 | 3877 | |
8a5ec0ba | 3878 | return 1; |
4c93c355 | 3879 | } |
4c93c355 | 3880 | |
51df1142 CL |
3881 | static struct kmem_cache *kmem_cache_node; |
3882 | ||
81819f0f CL |
3883 | /* |
3884 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3885 | * slab on the node for this slabcache. There are no concurrent accesses | |
3886 | * possible. | |
3887 | * | |
721ae22a ZYW |
3888 | * Note that this function only works on the kmem_cache_node |
3889 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3890 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3891 | */ |
55136592 | 3892 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3893 | { |
3894 | struct page *page; | |
3895 | struct kmem_cache_node *n; | |
3896 | ||
51df1142 | 3897 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3898 | |
51df1142 | 3899 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3900 | |
3901 | BUG_ON(!page); | |
a2f92ee7 | 3902 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3903 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3904 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3905 | } |
3906 | ||
81819f0f CL |
3907 | n = page->freelist; |
3908 | BUG_ON(!n); | |
8ab1372f | 3909 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3910 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3911 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3912 | #endif |
da844b78 | 3913 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
12b22386 AK |
3914 | page->freelist = get_freepointer(kmem_cache_node, n); |
3915 | page->inuse = 1; | |
3916 | page->frozen = 0; | |
3917 | kmem_cache_node->node[node] = n; | |
4053497d | 3918 | init_kmem_cache_node(n); |
51df1142 | 3919 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3920 | |
67b6c900 | 3921 | /* |
1e4dd946 SR |
3922 | * No locks need to be taken here as it has just been |
3923 | * initialized and there is no concurrent access. | |
67b6c900 | 3924 | */ |
1e4dd946 | 3925 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3926 | } |
3927 | ||
3928 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3929 | { | |
3930 | int node; | |
fa45dc25 | 3931 | struct kmem_cache_node *n; |
81819f0f | 3932 | |
fa45dc25 | 3933 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3934 | s->node[node] = NULL; |
ea37df54 | 3935 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3936 | } |
3937 | } | |
3938 | ||
52b4b950 DS |
3939 | void __kmem_cache_release(struct kmem_cache *s) |
3940 | { | |
210e7a43 | 3941 | cache_random_seq_destroy(s); |
52b4b950 DS |
3942 | free_percpu(s->cpu_slab); |
3943 | free_kmem_cache_nodes(s); | |
3944 | } | |
3945 | ||
55136592 | 3946 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3947 | { |
3948 | int node; | |
81819f0f | 3949 | |
7e1fa93d | 3950 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
3951 | struct kmem_cache_node *n; |
3952 | ||
73367bd8 | 3953 | if (slab_state == DOWN) { |
55136592 | 3954 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3955 | continue; |
3956 | } | |
51df1142 | 3957 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3958 | GFP_KERNEL, node); |
81819f0f | 3959 | |
73367bd8 AD |
3960 | if (!n) { |
3961 | free_kmem_cache_nodes(s); | |
3962 | return 0; | |
81819f0f | 3963 | } |
73367bd8 | 3964 | |
4053497d | 3965 | init_kmem_cache_node(n); |
ea37df54 | 3966 | s->node[node] = n; |
81819f0f CL |
3967 | } |
3968 | return 1; | |
3969 | } | |
81819f0f | 3970 | |
c0bdb232 | 3971 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3972 | { |
3973 | if (min < MIN_PARTIAL) | |
3974 | min = MIN_PARTIAL; | |
3975 | else if (min > MAX_PARTIAL) | |
3976 | min = MAX_PARTIAL; | |
3977 | s->min_partial = min; | |
3978 | } | |
3979 | ||
e6d0e1dc WY |
3980 | static void set_cpu_partial(struct kmem_cache *s) |
3981 | { | |
3982 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3983 | /* | |
3984 | * cpu_partial determined the maximum number of objects kept in the | |
3985 | * per cpu partial lists of a processor. | |
3986 | * | |
3987 | * Per cpu partial lists mainly contain slabs that just have one | |
3988 | * object freed. If they are used for allocation then they can be | |
3989 | * filled up again with minimal effort. The slab will never hit the | |
3990 | * per node partial lists and therefore no locking will be required. | |
3991 | * | |
3992 | * This setting also determines | |
3993 | * | |
3994 | * A) The number of objects from per cpu partial slabs dumped to the | |
3995 | * per node list when we reach the limit. | |
3996 | * B) The number of objects in cpu partial slabs to extract from the | |
3997 | * per node list when we run out of per cpu objects. We only fetch | |
3998 | * 50% to keep some capacity around for frees. | |
3999 | */ | |
4000 | if (!kmem_cache_has_cpu_partial(s)) | |
bbd4e305 | 4001 | slub_set_cpu_partial(s, 0); |
e6d0e1dc | 4002 | else if (s->size >= PAGE_SIZE) |
bbd4e305 | 4003 | slub_set_cpu_partial(s, 2); |
e6d0e1dc | 4004 | else if (s->size >= 1024) |
bbd4e305 | 4005 | slub_set_cpu_partial(s, 6); |
e6d0e1dc | 4006 | else if (s->size >= 256) |
bbd4e305 | 4007 | slub_set_cpu_partial(s, 13); |
e6d0e1dc | 4008 | else |
bbd4e305 | 4009 | slub_set_cpu_partial(s, 30); |
e6d0e1dc WY |
4010 | #endif |
4011 | } | |
4012 | ||
81819f0f CL |
4013 | /* |
4014 | * calculate_sizes() determines the order and the distribution of data within | |
4015 | * a slab object. | |
4016 | */ | |
06b285dc | 4017 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 4018 | { |
d50112ed | 4019 | slab_flags_t flags = s->flags; |
be4a7988 | 4020 | unsigned int size = s->object_size; |
19af27af | 4021 | unsigned int order; |
81819f0f | 4022 | |
d8b42bf5 CL |
4023 | /* |
4024 | * Round up object size to the next word boundary. We can only | |
4025 | * place the free pointer at word boundaries and this determines | |
4026 | * the possible location of the free pointer. | |
4027 | */ | |
4028 | size = ALIGN(size, sizeof(void *)); | |
4029 | ||
4030 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
4031 | /* |
4032 | * Determine if we can poison the object itself. If the user of | |
4033 | * the slab may touch the object after free or before allocation | |
4034 | * then we should never poison the object itself. | |
4035 | */ | |
5f0d5a3a | 4036 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 4037 | !s->ctor) |
81819f0f CL |
4038 | s->flags |= __OBJECT_POISON; |
4039 | else | |
4040 | s->flags &= ~__OBJECT_POISON; | |
4041 | ||
81819f0f CL |
4042 | |
4043 | /* | |
672bba3a | 4044 | * If we are Redzoning then check if there is some space between the |
81819f0f | 4045 | * end of the object and the free pointer. If not then add an |
672bba3a | 4046 | * additional word to have some bytes to store Redzone information. |
81819f0f | 4047 | */ |
3b0efdfa | 4048 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 4049 | size += sizeof(void *); |
41ecc55b | 4050 | #endif |
81819f0f CL |
4051 | |
4052 | /* | |
672bba3a | 4053 | * With that we have determined the number of bytes in actual use |
e41a49fa | 4054 | * by the object and redzoning. |
81819f0f CL |
4055 | */ |
4056 | s->inuse = size; | |
4057 | ||
74c1d3e0 KC |
4058 | if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
4059 | ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || | |
4060 | s->ctor) { | |
81819f0f CL |
4061 | /* |
4062 | * Relocate free pointer after the object if it is not | |
4063 | * permitted to overwrite the first word of the object on | |
4064 | * kmem_cache_free. | |
4065 | * | |
4066 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 KC |
4067 | * destructor, are poisoning the objects, or are |
4068 | * redzoning an object smaller than sizeof(void *). | |
cbfc35a4 WL |
4069 | * |
4070 | * The assumption that s->offset >= s->inuse means free | |
4071 | * pointer is outside of the object is used in the | |
4072 | * freeptr_outside_object() function. If that is no | |
4073 | * longer true, the function needs to be modified. | |
81819f0f CL |
4074 | */ |
4075 | s->offset = size; | |
4076 | size += sizeof(void *); | |
e41a49fa | 4077 | } else { |
3202fa62 KC |
4078 | /* |
4079 | * Store freelist pointer near middle of object to keep | |
4080 | * it away from the edges of the object to avoid small | |
4081 | * sized over/underflows from neighboring allocations. | |
4082 | */ | |
e41a49fa | 4083 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
4084 | } |
4085 | ||
c12b3c62 | 4086 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4087 | if (flags & SLAB_STORE_USER) |
4088 | /* | |
4089 | * Need to store information about allocs and frees after | |
4090 | * the object. | |
4091 | */ | |
4092 | size += 2 * sizeof(struct track); | |
80a9201a | 4093 | #endif |
81819f0f | 4094 | |
80a9201a AP |
4095 | kasan_cache_create(s, &size, &s->flags); |
4096 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 4097 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
4098 | /* |
4099 | * Add some empty padding so that we can catch | |
4100 | * overwrites from earlier objects rather than let | |
4101 | * tracking information or the free pointer be | |
0211a9c8 | 4102 | * corrupted if a user writes before the start |
81819f0f CL |
4103 | * of the object. |
4104 | */ | |
4105 | size += sizeof(void *); | |
d86bd1be JK |
4106 | |
4107 | s->red_left_pad = sizeof(void *); | |
4108 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
4109 | size += s->red_left_pad; | |
4110 | } | |
41ecc55b | 4111 | #endif |
672bba3a | 4112 | |
81819f0f CL |
4113 | /* |
4114 | * SLUB stores one object immediately after another beginning from | |
4115 | * offset 0. In order to align the objects we have to simply size | |
4116 | * each object to conform to the alignment. | |
4117 | */ | |
45906855 | 4118 | size = ALIGN(size, s->align); |
81819f0f | 4119 | s->size = size; |
4138fdfc | 4120 | s->reciprocal_size = reciprocal_value(size); |
06b285dc CL |
4121 | if (forced_order >= 0) |
4122 | order = forced_order; | |
4123 | else | |
9736d2a9 | 4124 | order = calculate_order(size); |
81819f0f | 4125 | |
19af27af | 4126 | if ((int)order < 0) |
81819f0f CL |
4127 | return 0; |
4128 | ||
b7a49f0d | 4129 | s->allocflags = 0; |
834f3d11 | 4130 | if (order) |
b7a49f0d CL |
4131 | s->allocflags |= __GFP_COMP; |
4132 | ||
4133 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 4134 | s->allocflags |= GFP_DMA; |
b7a49f0d | 4135 | |
6d6ea1e9 NB |
4136 | if (s->flags & SLAB_CACHE_DMA32) |
4137 | s->allocflags |= GFP_DMA32; | |
4138 | ||
b7a49f0d CL |
4139 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
4140 | s->allocflags |= __GFP_RECLAIMABLE; | |
4141 | ||
81819f0f CL |
4142 | /* |
4143 | * Determine the number of objects per slab | |
4144 | */ | |
9736d2a9 MW |
4145 | s->oo = oo_make(order, size); |
4146 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
4147 | if (oo_objects(s->oo) > oo_objects(s->max)) |
4148 | s->max = s->oo; | |
81819f0f | 4149 | |
834f3d11 | 4150 | return !!oo_objects(s->oo); |
81819f0f CL |
4151 | } |
4152 | ||
d50112ed | 4153 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 4154 | { |
37540008 | 4155 | s->flags = kmem_cache_flags(s->size, flags, s->name); |
2482ddec KC |
4156 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
4157 | s->random = get_random_long(); | |
4158 | #endif | |
81819f0f | 4159 | |
06b285dc | 4160 | if (!calculate_sizes(s, -1)) |
81819f0f | 4161 | goto error; |
3de47213 DR |
4162 | if (disable_higher_order_debug) { |
4163 | /* | |
4164 | * Disable debugging flags that store metadata if the min slab | |
4165 | * order increased. | |
4166 | */ | |
3b0efdfa | 4167 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
4168 | s->flags &= ~DEBUG_METADATA_FLAGS; |
4169 | s->offset = 0; | |
4170 | if (!calculate_sizes(s, -1)) | |
4171 | goto error; | |
4172 | } | |
4173 | } | |
81819f0f | 4174 | |
2565409f HC |
4175 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
4176 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 4177 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
4178 | /* Enable fast mode */ |
4179 | s->flags |= __CMPXCHG_DOUBLE; | |
4180 | #endif | |
4181 | ||
3b89d7d8 DR |
4182 | /* |
4183 | * The larger the object size is, the more pages we want on the partial | |
4184 | * list to avoid pounding the page allocator excessively. | |
4185 | */ | |
49e22585 CL |
4186 | set_min_partial(s, ilog2(s->size) / 2); |
4187 | ||
e6d0e1dc | 4188 | set_cpu_partial(s); |
49e22585 | 4189 | |
81819f0f | 4190 | #ifdef CONFIG_NUMA |
e2cb96b7 | 4191 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 4192 | #endif |
210e7a43 TG |
4193 | |
4194 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
4195 | if (slab_state >= UP) { | |
4196 | if (init_cache_random_seq(s)) | |
4197 | goto error; | |
4198 | } | |
4199 | ||
55136592 | 4200 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 4201 | goto error; |
81819f0f | 4202 | |
55136592 | 4203 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 4204 | return 0; |
ff12059e | 4205 | |
4c93c355 | 4206 | free_kmem_cache_nodes(s); |
81819f0f | 4207 | error: |
278b1bb1 | 4208 | return -EINVAL; |
81819f0f | 4209 | } |
81819f0f | 4210 | |
33b12c38 | 4211 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
55860d96 | 4212 | const char *text) |
33b12c38 CL |
4213 | { |
4214 | #ifdef CONFIG_SLUB_DEBUG | |
4215 | void *addr = page_address(page); | |
a2b4ae8b | 4216 | unsigned long flags; |
55860d96 | 4217 | unsigned long *map; |
33b12c38 | 4218 | void *p; |
aa456c7a | 4219 | |
945cf2b6 | 4220 | slab_err(s, page, text, s->name); |
a2b4ae8b | 4221 | slab_lock(page, &flags); |
33b12c38 | 4222 | |
90e9f6a6 | 4223 | map = get_map(s, page); |
33b12c38 CL |
4224 | for_each_object(p, s, addr, page->objects) { |
4225 | ||
4138fdfc | 4226 | if (!test_bit(__obj_to_index(s, addr, p), map)) { |
96b94abc | 4227 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
4228 | print_tracking(s, p); |
4229 | } | |
4230 | } | |
55860d96 | 4231 | put_map(map); |
a2b4ae8b | 4232 | slab_unlock(page, &flags); |
33b12c38 CL |
4233 | #endif |
4234 | } | |
4235 | ||
81819f0f | 4236 | /* |
599870b1 | 4237 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
4238 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
4239 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 4240 | */ |
599870b1 | 4241 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 4242 | { |
60398923 | 4243 | LIST_HEAD(discard); |
81819f0f CL |
4244 | struct page *page, *h; |
4245 | ||
52b4b950 DS |
4246 | BUG_ON(irqs_disabled()); |
4247 | spin_lock_irq(&n->list_lock); | |
916ac052 | 4248 | list_for_each_entry_safe(page, h, &n->partial, slab_list) { |
81819f0f | 4249 | if (!page->inuse) { |
52b4b950 | 4250 | remove_partial(n, page); |
916ac052 | 4251 | list_add(&page->slab_list, &discard); |
33b12c38 CL |
4252 | } else { |
4253 | list_slab_objects(s, page, | |
55860d96 | 4254 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 4255 | } |
33b12c38 | 4256 | } |
52b4b950 | 4257 | spin_unlock_irq(&n->list_lock); |
60398923 | 4258 | |
916ac052 | 4259 | list_for_each_entry_safe(page, h, &discard, slab_list) |
60398923 | 4260 | discard_slab(s, page); |
81819f0f CL |
4261 | } |
4262 | ||
f9e13c0a SB |
4263 | bool __kmem_cache_empty(struct kmem_cache *s) |
4264 | { | |
4265 | int node; | |
4266 | struct kmem_cache_node *n; | |
4267 | ||
4268 | for_each_kmem_cache_node(s, node, n) | |
4269 | if (n->nr_partial || slabs_node(s, node)) | |
4270 | return false; | |
4271 | return true; | |
4272 | } | |
4273 | ||
81819f0f | 4274 | /* |
672bba3a | 4275 | * Release all resources used by a slab cache. |
81819f0f | 4276 | */ |
52b4b950 | 4277 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
4278 | { |
4279 | int node; | |
fa45dc25 | 4280 | struct kmem_cache_node *n; |
81819f0f | 4281 | |
5a836bf6 | 4282 | flush_all_cpus_locked(s); |
81819f0f | 4283 | /* Attempt to free all objects */ |
fa45dc25 | 4284 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
4285 | free_partial(s, n); |
4286 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
4287 | return 1; |
4288 | } | |
81819f0f CL |
4289 | return 0; |
4290 | } | |
4291 | ||
5bb1bb35 | 4292 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
4293 | void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) |
4294 | { | |
4295 | void *base; | |
4296 | int __maybe_unused i; | |
4297 | unsigned int objnr; | |
4298 | void *objp; | |
4299 | void *objp0; | |
4300 | struct kmem_cache *s = page->slab_cache; | |
4301 | struct track __maybe_unused *trackp; | |
4302 | ||
4303 | kpp->kp_ptr = object; | |
4304 | kpp->kp_page = page; | |
4305 | kpp->kp_slab_cache = s; | |
4306 | base = page_address(page); | |
4307 | objp0 = kasan_reset_tag(object); | |
4308 | #ifdef CONFIG_SLUB_DEBUG | |
4309 | objp = restore_red_left(s, objp0); | |
4310 | #else | |
4311 | objp = objp0; | |
4312 | #endif | |
4313 | objnr = obj_to_index(s, page, objp); | |
4314 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); | |
4315 | objp = base + s->size * objnr; | |
4316 | kpp->kp_objp = objp; | |
4317 | if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || | |
4318 | !(s->flags & SLAB_STORE_USER)) | |
4319 | return; | |
4320 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 4321 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
4322 | trackp = get_track(s, objp, TRACK_ALLOC); |
4323 | kpp->kp_ret = (void *)trackp->addr; | |
ae14c63a LT |
4324 | #ifdef CONFIG_STACKTRACE |
4325 | for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { | |
4326 | kpp->kp_stack[i] = (void *)trackp->addrs[i]; | |
4327 | if (!kpp->kp_stack[i]) | |
4328 | break; | |
4329 | } | |
78869146 | 4330 | |
ae14c63a LT |
4331 | trackp = get_track(s, objp, TRACK_FREE); |
4332 | for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { | |
4333 | kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; | |
4334 | if (!kpp->kp_free_stack[i]) | |
4335 | break; | |
e548eaa1 | 4336 | } |
8e7f37f2 PM |
4337 | #endif |
4338 | #endif | |
4339 | } | |
5bb1bb35 | 4340 | #endif |
8e7f37f2 | 4341 | |
81819f0f CL |
4342 | /******************************************************************** |
4343 | * Kmalloc subsystem | |
4344 | *******************************************************************/ | |
4345 | ||
81819f0f CL |
4346 | static int __init setup_slub_min_order(char *str) |
4347 | { | |
19af27af | 4348 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
4349 | |
4350 | return 1; | |
4351 | } | |
4352 | ||
4353 | __setup("slub_min_order=", setup_slub_min_order); | |
4354 | ||
4355 | static int __init setup_slub_max_order(char *str) | |
4356 | { | |
19af27af AD |
4357 | get_option(&str, (int *)&slub_max_order); |
4358 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
4359 | |
4360 | return 1; | |
4361 | } | |
4362 | ||
4363 | __setup("slub_max_order=", setup_slub_max_order); | |
4364 | ||
4365 | static int __init setup_slub_min_objects(char *str) | |
4366 | { | |
19af27af | 4367 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
4368 | |
4369 | return 1; | |
4370 | } | |
4371 | ||
4372 | __setup("slub_min_objects=", setup_slub_min_objects); | |
4373 | ||
81819f0f CL |
4374 | void *__kmalloc(size_t size, gfp_t flags) |
4375 | { | |
aadb4bc4 | 4376 | struct kmem_cache *s; |
5b882be4 | 4377 | void *ret; |
81819f0f | 4378 | |
95a05b42 | 4379 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 4380 | return kmalloc_large(size, flags); |
aadb4bc4 | 4381 | |
2c59dd65 | 4382 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
4383 | |
4384 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
4385 | return s; |
4386 | ||
b89fb5ef | 4387 | ret = slab_alloc(s, flags, _RET_IP_, size); |
5b882be4 | 4388 | |
ca2b84cb | 4389 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 4390 | |
0116523c | 4391 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 4392 | |
5b882be4 | 4393 | return ret; |
81819f0f CL |
4394 | } |
4395 | EXPORT_SYMBOL(__kmalloc); | |
4396 | ||
5d1f57e4 | 4397 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
4398 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
4399 | { | |
b1eeab67 | 4400 | struct page *page; |
e4f7c0b4 | 4401 | void *ptr = NULL; |
6a486c0a | 4402 | unsigned int order = get_order(size); |
f619cfe1 | 4403 | |
75f296d9 | 4404 | flags |= __GFP_COMP; |
6a486c0a VB |
4405 | page = alloc_pages_node(node, flags, order); |
4406 | if (page) { | |
e4f7c0b4 | 4407 | ptr = page_address(page); |
96403bfe MS |
4408 | mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, |
4409 | PAGE_SIZE << order); | |
6a486c0a | 4410 | } |
e4f7c0b4 | 4411 | |
0116523c | 4412 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
4413 | } |
4414 | ||
81819f0f CL |
4415 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
4416 | { | |
aadb4bc4 | 4417 | struct kmem_cache *s; |
5b882be4 | 4418 | void *ret; |
81819f0f | 4419 | |
95a05b42 | 4420 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
4421 | ret = kmalloc_large_node(size, flags, node); |
4422 | ||
ca2b84cb EGM |
4423 | trace_kmalloc_node(_RET_IP_, ret, |
4424 | size, PAGE_SIZE << get_order(size), | |
4425 | flags, node); | |
5b882be4 EGM |
4426 | |
4427 | return ret; | |
4428 | } | |
aadb4bc4 | 4429 | |
2c59dd65 | 4430 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
4431 | |
4432 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
4433 | return s; |
4434 | ||
b89fb5ef | 4435 | ret = slab_alloc_node(s, flags, node, _RET_IP_, size); |
5b882be4 | 4436 | |
ca2b84cb | 4437 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 4438 | |
0116523c | 4439 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 4440 | |
5b882be4 | 4441 | return ret; |
81819f0f CL |
4442 | } |
4443 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 4444 | #endif /* CONFIG_NUMA */ |
81819f0f | 4445 | |
ed18adc1 KC |
4446 | #ifdef CONFIG_HARDENED_USERCOPY |
4447 | /* | |
afcc90f8 KC |
4448 | * Rejects incorrectly sized objects and objects that are to be copied |
4449 | * to/from userspace but do not fall entirely within the containing slab | |
4450 | * cache's usercopy region. | |
ed18adc1 KC |
4451 | * |
4452 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4453 | * to indicate an error. | |
4454 | */ | |
f4e6e289 KC |
4455 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
4456 | bool to_user) | |
ed18adc1 KC |
4457 | { |
4458 | struct kmem_cache *s; | |
44065b2e | 4459 | unsigned int offset; |
ed18adc1 | 4460 | size_t object_size; |
b89fb5ef | 4461 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 4462 | |
96fedce2 AK |
4463 | ptr = kasan_reset_tag(ptr); |
4464 | ||
ed18adc1 KC |
4465 | /* Find object and usable object size. */ |
4466 | s = page->slab_cache; | |
ed18adc1 KC |
4467 | |
4468 | /* Reject impossible pointers. */ | |
4469 | if (ptr < page_address(page)) | |
f4e6e289 KC |
4470 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
4471 | to_user, 0, n); | |
ed18adc1 KC |
4472 | |
4473 | /* Find offset within object. */ | |
b89fb5ef AP |
4474 | if (is_kfence) |
4475 | offset = ptr - kfence_object_start(ptr); | |
4476 | else | |
4477 | offset = (ptr - page_address(page)) % s->size; | |
ed18adc1 KC |
4478 | |
4479 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 4480 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 4481 | if (offset < s->red_left_pad) |
f4e6e289 KC |
4482 | usercopy_abort("SLUB object in left red zone", |
4483 | s->name, to_user, offset, n); | |
ed18adc1 KC |
4484 | offset -= s->red_left_pad; |
4485 | } | |
4486 | ||
afcc90f8 KC |
4487 | /* Allow address range falling entirely within usercopy region. */ |
4488 | if (offset >= s->useroffset && | |
4489 | offset - s->useroffset <= s->usersize && | |
4490 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4491 | return; |
ed18adc1 | 4492 | |
afcc90f8 KC |
4493 | /* |
4494 | * If the copy is still within the allocated object, produce | |
4495 | * a warning instead of rejecting the copy. This is intended | |
4496 | * to be a temporary method to find any missing usercopy | |
4497 | * whitelists. | |
4498 | */ | |
4499 | object_size = slab_ksize(s); | |
2d891fbc KC |
4500 | if (usercopy_fallback && |
4501 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
4502 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
4503 | return; | |
4504 | } | |
ed18adc1 | 4505 | |
f4e6e289 | 4506 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4507 | } |
4508 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4509 | ||
10d1f8cb | 4510 | size_t __ksize(const void *object) |
81819f0f | 4511 | { |
272c1d21 | 4512 | struct page *page; |
81819f0f | 4513 | |
ef8b4520 | 4514 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
4515 | return 0; |
4516 | ||
294a80a8 | 4517 | page = virt_to_head_page(object); |
294a80a8 | 4518 | |
76994412 PE |
4519 | if (unlikely(!PageSlab(page))) { |
4520 | WARN_ON(!PageCompound(page)); | |
a50b854e | 4521 | return page_size(page); |
76994412 | 4522 | } |
81819f0f | 4523 | |
1b4f59e3 | 4524 | return slab_ksize(page->slab_cache); |
81819f0f | 4525 | } |
10d1f8cb | 4526 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
4527 | |
4528 | void kfree(const void *x) | |
4529 | { | |
81819f0f | 4530 | struct page *page; |
5bb983b0 | 4531 | void *object = (void *)x; |
81819f0f | 4532 | |
2121db74 PE |
4533 | trace_kfree(_RET_IP_, x); |
4534 | ||
2408c550 | 4535 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
4536 | return; |
4537 | ||
b49af68f | 4538 | page = virt_to_head_page(x); |
aadb4bc4 | 4539 | if (unlikely(!PageSlab(page))) { |
1ed7ce57 | 4540 | free_nonslab_page(page, object); |
aadb4bc4 CL |
4541 | return; |
4542 | } | |
81084651 | 4543 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
4544 | } |
4545 | EXPORT_SYMBOL(kfree); | |
4546 | ||
832f37f5 VD |
4547 | #define SHRINK_PROMOTE_MAX 32 |
4548 | ||
2086d26a | 4549 | /* |
832f37f5 VD |
4550 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4551 | * up most to the head of the partial lists. New allocations will then | |
4552 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4553 | * |
4554 | * The slabs with the least items are placed last. This results in them | |
4555 | * being allocated from last increasing the chance that the last objects | |
4556 | * are freed in them. | |
2086d26a | 4557 | */ |
5a836bf6 | 4558 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
4559 | { |
4560 | int node; | |
4561 | int i; | |
4562 | struct kmem_cache_node *n; | |
4563 | struct page *page; | |
4564 | struct page *t; | |
832f37f5 VD |
4565 | struct list_head discard; |
4566 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4567 | unsigned long flags; |
ce3712d7 | 4568 | int ret = 0; |
2086d26a | 4569 | |
fa45dc25 | 4570 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4571 | INIT_LIST_HEAD(&discard); |
4572 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4573 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4574 | |
4575 | spin_lock_irqsave(&n->list_lock, flags); | |
4576 | ||
4577 | /* | |
832f37f5 | 4578 | * Build lists of slabs to discard or promote. |
2086d26a | 4579 | * |
672bba3a CL |
4580 | * Note that concurrent frees may occur while we hold the |
4581 | * list_lock. page->inuse here is the upper limit. | |
2086d26a | 4582 | */ |
916ac052 | 4583 | list_for_each_entry_safe(page, t, &n->partial, slab_list) { |
832f37f5 VD |
4584 | int free = page->objects - page->inuse; |
4585 | ||
4586 | /* Do not reread page->inuse */ | |
4587 | barrier(); | |
4588 | ||
4589 | /* We do not keep full slabs on the list */ | |
4590 | BUG_ON(free <= 0); | |
4591 | ||
4592 | if (free == page->objects) { | |
916ac052 | 4593 | list_move(&page->slab_list, &discard); |
69cb8e6b | 4594 | n->nr_partial--; |
832f37f5 | 4595 | } else if (free <= SHRINK_PROMOTE_MAX) |
916ac052 | 4596 | list_move(&page->slab_list, promote + free - 1); |
2086d26a CL |
4597 | } |
4598 | ||
2086d26a | 4599 | /* |
832f37f5 VD |
4600 | * Promote the slabs filled up most to the head of the |
4601 | * partial list. | |
2086d26a | 4602 | */ |
832f37f5 VD |
4603 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4604 | list_splice(promote + i, &n->partial); | |
2086d26a | 4605 | |
2086d26a | 4606 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4607 | |
4608 | /* Release empty slabs */ | |
916ac052 | 4609 | list_for_each_entry_safe(page, t, &discard, slab_list) |
69cb8e6b | 4610 | discard_slab(s, page); |
ce3712d7 VD |
4611 | |
4612 | if (slabs_node(s, node)) | |
4613 | ret = 1; | |
2086d26a CL |
4614 | } |
4615 | ||
ce3712d7 | 4616 | return ret; |
2086d26a | 4617 | } |
2086d26a | 4618 | |
5a836bf6 SAS |
4619 | int __kmem_cache_shrink(struct kmem_cache *s) |
4620 | { | |
4621 | flush_all(s); | |
4622 | return __kmem_cache_do_shrink(s); | |
4623 | } | |
4624 | ||
b9049e23 YG |
4625 | static int slab_mem_going_offline_callback(void *arg) |
4626 | { | |
4627 | struct kmem_cache *s; | |
4628 | ||
18004c5d | 4629 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
4630 | list_for_each_entry(s, &slab_caches, list) { |
4631 | flush_all_cpus_locked(s); | |
4632 | __kmem_cache_do_shrink(s); | |
4633 | } | |
18004c5d | 4634 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4635 | |
4636 | return 0; | |
4637 | } | |
4638 | ||
4639 | static void slab_mem_offline_callback(void *arg) | |
4640 | { | |
b9049e23 YG |
4641 | struct memory_notify *marg = arg; |
4642 | int offline_node; | |
4643 | ||
b9d5ab25 | 4644 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4645 | |
4646 | /* | |
4647 | * If the node still has available memory. we need kmem_cache_node | |
4648 | * for it yet. | |
4649 | */ | |
4650 | if (offline_node < 0) | |
4651 | return; | |
4652 | ||
18004c5d | 4653 | mutex_lock(&slab_mutex); |
7e1fa93d | 4654 | node_clear(offline_node, slab_nodes); |
666716fd VB |
4655 | /* |
4656 | * We no longer free kmem_cache_node structures here, as it would be | |
4657 | * racy with all get_node() users, and infeasible to protect them with | |
4658 | * slab_mutex. | |
4659 | */ | |
18004c5d | 4660 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4661 | } |
4662 | ||
4663 | static int slab_mem_going_online_callback(void *arg) | |
4664 | { | |
4665 | struct kmem_cache_node *n; | |
4666 | struct kmem_cache *s; | |
4667 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4668 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4669 | int ret = 0; |
4670 | ||
4671 | /* | |
4672 | * If the node's memory is already available, then kmem_cache_node is | |
4673 | * already created. Nothing to do. | |
4674 | */ | |
4675 | if (nid < 0) | |
4676 | return 0; | |
4677 | ||
4678 | /* | |
0121c619 | 4679 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4680 | * allocate a kmem_cache_node structure in order to bring the node |
4681 | * online. | |
4682 | */ | |
18004c5d | 4683 | mutex_lock(&slab_mutex); |
b9049e23 | 4684 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
4685 | /* |
4686 | * The structure may already exist if the node was previously | |
4687 | * onlined and offlined. | |
4688 | */ | |
4689 | if (get_node(s, nid)) | |
4690 | continue; | |
b9049e23 YG |
4691 | /* |
4692 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4693 | * since memory is not yet available from the node that | |
4694 | * is brought up. | |
4695 | */ | |
8de66a0c | 4696 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4697 | if (!n) { |
4698 | ret = -ENOMEM; | |
4699 | goto out; | |
4700 | } | |
4053497d | 4701 | init_kmem_cache_node(n); |
b9049e23 YG |
4702 | s->node[nid] = n; |
4703 | } | |
7e1fa93d VB |
4704 | /* |
4705 | * Any cache created after this point will also have kmem_cache_node | |
4706 | * initialized for the new node. | |
4707 | */ | |
4708 | node_set(nid, slab_nodes); | |
b9049e23 | 4709 | out: |
18004c5d | 4710 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4711 | return ret; |
4712 | } | |
4713 | ||
4714 | static int slab_memory_callback(struct notifier_block *self, | |
4715 | unsigned long action, void *arg) | |
4716 | { | |
4717 | int ret = 0; | |
4718 | ||
4719 | switch (action) { | |
4720 | case MEM_GOING_ONLINE: | |
4721 | ret = slab_mem_going_online_callback(arg); | |
4722 | break; | |
4723 | case MEM_GOING_OFFLINE: | |
4724 | ret = slab_mem_going_offline_callback(arg); | |
4725 | break; | |
4726 | case MEM_OFFLINE: | |
4727 | case MEM_CANCEL_ONLINE: | |
4728 | slab_mem_offline_callback(arg); | |
4729 | break; | |
4730 | case MEM_ONLINE: | |
4731 | case MEM_CANCEL_OFFLINE: | |
4732 | break; | |
4733 | } | |
dc19f9db KH |
4734 | if (ret) |
4735 | ret = notifier_from_errno(ret); | |
4736 | else | |
4737 | ret = NOTIFY_OK; | |
b9049e23 YG |
4738 | return ret; |
4739 | } | |
4740 | ||
3ac38faa AM |
4741 | static struct notifier_block slab_memory_callback_nb = { |
4742 | .notifier_call = slab_memory_callback, | |
4743 | .priority = SLAB_CALLBACK_PRI, | |
4744 | }; | |
b9049e23 | 4745 | |
81819f0f CL |
4746 | /******************************************************************** |
4747 | * Basic setup of slabs | |
4748 | *******************************************************************/ | |
4749 | ||
51df1142 CL |
4750 | /* |
4751 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4752 | * the page allocator. Allocate them properly then fix up the pointers |
4753 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4754 | */ |
4755 | ||
dffb4d60 | 4756 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4757 | { |
4758 | int node; | |
dffb4d60 | 4759 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4760 | struct kmem_cache_node *n; |
51df1142 | 4761 | |
dffb4d60 | 4762 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4763 | |
7d557b3c GC |
4764 | /* |
4765 | * This runs very early, and only the boot processor is supposed to be | |
4766 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4767 | * IPIs around. | |
4768 | */ | |
4769 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4770 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4771 | struct page *p; |
4772 | ||
916ac052 | 4773 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4774 | p->slab_cache = s; |
51df1142 | 4775 | |
607bf324 | 4776 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4777 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4778 | p->slab_cache = s; |
51df1142 | 4779 | #endif |
51df1142 | 4780 | } |
dffb4d60 CL |
4781 | list_add(&s->list, &slab_caches); |
4782 | return s; | |
51df1142 CL |
4783 | } |
4784 | ||
81819f0f CL |
4785 | void __init kmem_cache_init(void) |
4786 | { | |
dffb4d60 CL |
4787 | static __initdata struct kmem_cache boot_kmem_cache, |
4788 | boot_kmem_cache_node; | |
7e1fa93d | 4789 | int node; |
51df1142 | 4790 | |
fc8d8620 SG |
4791 | if (debug_guardpage_minorder()) |
4792 | slub_max_order = 0; | |
4793 | ||
79270291 SB |
4794 | /* Print slub debugging pointers without hashing */ |
4795 | if (__slub_debug_enabled()) | |
4796 | no_hash_pointers_enable(NULL); | |
4797 | ||
dffb4d60 CL |
4798 | kmem_cache_node = &boot_kmem_cache_node; |
4799 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4800 | |
7e1fa93d VB |
4801 | /* |
4802 | * Initialize the nodemask for which we will allocate per node | |
4803 | * structures. Here we don't need taking slab_mutex yet. | |
4804 | */ | |
4805 | for_each_node_state(node, N_NORMAL_MEMORY) | |
4806 | node_set(node, slab_nodes); | |
4807 | ||
dffb4d60 | 4808 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4809 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4810 | |
3ac38faa | 4811 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4812 | |
4813 | /* Able to allocate the per node structures */ | |
4814 | slab_state = PARTIAL; | |
4815 | ||
dffb4d60 CL |
4816 | create_boot_cache(kmem_cache, "kmem_cache", |
4817 | offsetof(struct kmem_cache, node) + | |
4818 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4819 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4820 | |
dffb4d60 | 4821 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4822 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4823 | |
4824 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4825 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4826 | create_kmalloc_caches(0); |
81819f0f | 4827 | |
210e7a43 TG |
4828 | /* Setup random freelists for each cache */ |
4829 | init_freelist_randomization(); | |
4830 | ||
a96a87bf SAS |
4831 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4832 | slub_cpu_dead); | |
81819f0f | 4833 | |
b9726c26 | 4834 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4835 | cache_line_size(), |
81819f0f CL |
4836 | slub_min_order, slub_max_order, slub_min_objects, |
4837 | nr_cpu_ids, nr_node_ids); | |
4838 | } | |
4839 | ||
7e85ee0c PE |
4840 | void __init kmem_cache_init_late(void) |
4841 | { | |
7e85ee0c PE |
4842 | } |
4843 | ||
2633d7a0 | 4844 | struct kmem_cache * |
f4957d5b | 4845 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4846 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4847 | { |
10befea9 | 4848 | struct kmem_cache *s; |
81819f0f | 4849 | |
a44cb944 | 4850 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4851 | if (s) { |
4852 | s->refcount++; | |
84d0ddd6 | 4853 | |
81819f0f CL |
4854 | /* |
4855 | * Adjust the object sizes so that we clear | |
4856 | * the complete object on kzalloc. | |
4857 | */ | |
1b473f29 | 4858 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4859 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4860 | |
7b8f3b66 | 4861 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4862 | s->refcount--; |
cbb79694 | 4863 | s = NULL; |
7b8f3b66 | 4864 | } |
a0e1d1be | 4865 | } |
6446faa2 | 4866 | |
cbb79694 CL |
4867 | return s; |
4868 | } | |
84c1cf62 | 4869 | |
d50112ed | 4870 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4871 | { |
aac3a166 PE |
4872 | int err; |
4873 | ||
4874 | err = kmem_cache_open(s, flags); | |
4875 | if (err) | |
4876 | return err; | |
20cea968 | 4877 | |
45530c44 CL |
4878 | /* Mutex is not taken during early boot */ |
4879 | if (slab_state <= UP) | |
4880 | return 0; | |
4881 | ||
aac3a166 | 4882 | err = sysfs_slab_add(s); |
aac3a166 | 4883 | if (err) |
52b4b950 | 4884 | __kmem_cache_release(s); |
20cea968 | 4885 | |
64dd6849 FM |
4886 | if (s->flags & SLAB_STORE_USER) |
4887 | debugfs_slab_add(s); | |
4888 | ||
aac3a166 | 4889 | return err; |
81819f0f | 4890 | } |
81819f0f | 4891 | |
ce71e27c | 4892 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4893 | { |
aadb4bc4 | 4894 | struct kmem_cache *s; |
94b528d0 | 4895 | void *ret; |
aadb4bc4 | 4896 | |
95a05b42 | 4897 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4898 | return kmalloc_large(size, gfpflags); |
4899 | ||
2c59dd65 | 4900 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4901 | |
2408c550 | 4902 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4903 | return s; |
81819f0f | 4904 | |
b89fb5ef | 4905 | ret = slab_alloc(s, gfpflags, caller, size); |
94b528d0 | 4906 | |
25985edc | 4907 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4908 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4909 | |
4910 | return ret; | |
81819f0f | 4911 | } |
fd7cb575 | 4912 | EXPORT_SYMBOL(__kmalloc_track_caller); |
81819f0f | 4913 | |
5d1f57e4 | 4914 | #ifdef CONFIG_NUMA |
81819f0f | 4915 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4916 | int node, unsigned long caller) |
81819f0f | 4917 | { |
aadb4bc4 | 4918 | struct kmem_cache *s; |
94b528d0 | 4919 | void *ret; |
aadb4bc4 | 4920 | |
95a05b42 | 4921 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4922 | ret = kmalloc_large_node(size, gfpflags, node); |
4923 | ||
4924 | trace_kmalloc_node(caller, ret, | |
4925 | size, PAGE_SIZE << get_order(size), | |
4926 | gfpflags, node); | |
4927 | ||
4928 | return ret; | |
4929 | } | |
eada35ef | 4930 | |
2c59dd65 | 4931 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4932 | |
2408c550 | 4933 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4934 | return s; |
81819f0f | 4935 | |
b89fb5ef | 4936 | ret = slab_alloc_node(s, gfpflags, node, caller, size); |
94b528d0 | 4937 | |
25985edc | 4938 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4939 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4940 | |
4941 | return ret; | |
81819f0f | 4942 | } |
fd7cb575 | 4943 | EXPORT_SYMBOL(__kmalloc_node_track_caller); |
5d1f57e4 | 4944 | #endif |
81819f0f | 4945 | |
ab4d5ed5 | 4946 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4947 | static int count_inuse(struct page *page) |
4948 | { | |
4949 | return page->inuse; | |
4950 | } | |
4951 | ||
4952 | static int count_total(struct page *page) | |
4953 | { | |
4954 | return page->objects; | |
4955 | } | |
ab4d5ed5 | 4956 | #endif |
205ab99d | 4957 | |
ab4d5ed5 | 4958 | #ifdef CONFIG_SLUB_DEBUG |
0a19e7dd VB |
4959 | static void validate_slab(struct kmem_cache *s, struct page *page, |
4960 | unsigned long *obj_map) | |
53e15af0 CL |
4961 | { |
4962 | void *p; | |
a973e9dd | 4963 | void *addr = page_address(page); |
a2b4ae8b | 4964 | unsigned long flags; |
90e9f6a6 | 4965 | |
a2b4ae8b | 4966 | slab_lock(page, &flags); |
53e15af0 | 4967 | |
dd98afd4 | 4968 | if (!check_slab(s, page) || !on_freelist(s, page, NULL)) |
90e9f6a6 | 4969 | goto unlock; |
53e15af0 CL |
4970 | |
4971 | /* Now we know that a valid freelist exists */ | |
0a19e7dd | 4972 | __fill_map(obj_map, s, page); |
5f80b13a | 4973 | for_each_object(p, s, addr, page->objects) { |
0a19e7dd | 4974 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 4975 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 4976 | |
dd98afd4 YZ |
4977 | if (!check_object(s, page, p, val)) |
4978 | break; | |
4979 | } | |
90e9f6a6 | 4980 | unlock: |
a2b4ae8b | 4981 | slab_unlock(page, &flags); |
53e15af0 CL |
4982 | } |
4983 | ||
434e245d | 4984 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 4985 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
4986 | { |
4987 | unsigned long count = 0; | |
4988 | struct page *page; | |
4989 | unsigned long flags; | |
4990 | ||
4991 | spin_lock_irqsave(&n->list_lock, flags); | |
4992 | ||
916ac052 | 4993 | list_for_each_entry(page, &n->partial, slab_list) { |
0a19e7dd | 4994 | validate_slab(s, page, obj_map); |
53e15af0 CL |
4995 | count++; |
4996 | } | |
1f9f78b1 | 4997 | if (count != n->nr_partial) { |
f9f58285 FF |
4998 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4999 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
5000 | slab_add_kunit_errors(); |
5001 | } | |
53e15af0 CL |
5002 | |
5003 | if (!(s->flags & SLAB_STORE_USER)) | |
5004 | goto out; | |
5005 | ||
916ac052 | 5006 | list_for_each_entry(page, &n->full, slab_list) { |
0a19e7dd | 5007 | validate_slab(s, page, obj_map); |
53e15af0 CL |
5008 | count++; |
5009 | } | |
1f9f78b1 | 5010 | if (count != atomic_long_read(&n->nr_slabs)) { |
f9f58285 FF |
5011 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
5012 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
1f9f78b1 OG |
5013 | slab_add_kunit_errors(); |
5014 | } | |
53e15af0 CL |
5015 | |
5016 | out: | |
5017 | spin_unlock_irqrestore(&n->list_lock, flags); | |
5018 | return count; | |
5019 | } | |
5020 | ||
1f9f78b1 | 5021 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
5022 | { |
5023 | int node; | |
5024 | unsigned long count = 0; | |
fa45dc25 | 5025 | struct kmem_cache_node *n; |
0a19e7dd VB |
5026 | unsigned long *obj_map; |
5027 | ||
5028 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
5029 | if (!obj_map) | |
5030 | return -ENOMEM; | |
53e15af0 CL |
5031 | |
5032 | flush_all(s); | |
fa45dc25 | 5033 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
5034 | count += validate_slab_node(s, n, obj_map); |
5035 | ||
5036 | bitmap_free(obj_map); | |
90e9f6a6 | 5037 | |
53e15af0 CL |
5038 | return count; |
5039 | } | |
1f9f78b1 OG |
5040 | EXPORT_SYMBOL(validate_slab_cache); |
5041 | ||
64dd6849 | 5042 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 5043 | /* |
672bba3a | 5044 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
5045 | * and freed. |
5046 | */ | |
5047 | ||
5048 | struct location { | |
5049 | unsigned long count; | |
ce71e27c | 5050 | unsigned long addr; |
45edfa58 CL |
5051 | long long sum_time; |
5052 | long min_time; | |
5053 | long max_time; | |
5054 | long min_pid; | |
5055 | long max_pid; | |
174596a0 | 5056 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 5057 | nodemask_t nodes; |
88a420e4 CL |
5058 | }; |
5059 | ||
5060 | struct loc_track { | |
5061 | unsigned long max; | |
5062 | unsigned long count; | |
5063 | struct location *loc; | |
5064 | }; | |
5065 | ||
64dd6849 FM |
5066 | static struct dentry *slab_debugfs_root; |
5067 | ||
88a420e4 CL |
5068 | static void free_loc_track(struct loc_track *t) |
5069 | { | |
5070 | if (t->max) | |
5071 | free_pages((unsigned long)t->loc, | |
5072 | get_order(sizeof(struct location) * t->max)); | |
5073 | } | |
5074 | ||
68dff6a9 | 5075 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
5076 | { |
5077 | struct location *l; | |
5078 | int order; | |
5079 | ||
88a420e4 CL |
5080 | order = get_order(sizeof(struct location) * max); |
5081 | ||
68dff6a9 | 5082 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
5083 | if (!l) |
5084 | return 0; | |
5085 | ||
5086 | if (t->count) { | |
5087 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
5088 | free_loc_track(t); | |
5089 | } | |
5090 | t->max = max; | |
5091 | t->loc = l; | |
5092 | return 1; | |
5093 | } | |
5094 | ||
5095 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 5096 | const struct track *track) |
88a420e4 CL |
5097 | { |
5098 | long start, end, pos; | |
5099 | struct location *l; | |
ce71e27c | 5100 | unsigned long caddr; |
45edfa58 | 5101 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
5102 | |
5103 | start = -1; | |
5104 | end = t->count; | |
5105 | ||
5106 | for ( ; ; ) { | |
5107 | pos = start + (end - start + 1) / 2; | |
5108 | ||
5109 | /* | |
5110 | * There is nothing at "end". If we end up there | |
5111 | * we need to add something to before end. | |
5112 | */ | |
5113 | if (pos == end) | |
5114 | break; | |
5115 | ||
5116 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
5117 | if (track->addr == caddr) { |
5118 | ||
5119 | l = &t->loc[pos]; | |
5120 | l->count++; | |
5121 | if (track->when) { | |
5122 | l->sum_time += age; | |
5123 | if (age < l->min_time) | |
5124 | l->min_time = age; | |
5125 | if (age > l->max_time) | |
5126 | l->max_time = age; | |
5127 | ||
5128 | if (track->pid < l->min_pid) | |
5129 | l->min_pid = track->pid; | |
5130 | if (track->pid > l->max_pid) | |
5131 | l->max_pid = track->pid; | |
5132 | ||
174596a0 RR |
5133 | cpumask_set_cpu(track->cpu, |
5134 | to_cpumask(l->cpus)); | |
45edfa58 CL |
5135 | } |
5136 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5137 | return 1; |
5138 | } | |
5139 | ||
45edfa58 | 5140 | if (track->addr < caddr) |
88a420e4 CL |
5141 | end = pos; |
5142 | else | |
5143 | start = pos; | |
5144 | } | |
5145 | ||
5146 | /* | |
672bba3a | 5147 | * Not found. Insert new tracking element. |
88a420e4 | 5148 | */ |
68dff6a9 | 5149 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
5150 | return 0; |
5151 | ||
5152 | l = t->loc + pos; | |
5153 | if (pos < t->count) | |
5154 | memmove(l + 1, l, | |
5155 | (t->count - pos) * sizeof(struct location)); | |
5156 | t->count++; | |
5157 | l->count = 1; | |
45edfa58 CL |
5158 | l->addr = track->addr; |
5159 | l->sum_time = age; | |
5160 | l->min_time = age; | |
5161 | l->max_time = age; | |
5162 | l->min_pid = track->pid; | |
5163 | l->max_pid = track->pid; | |
174596a0 RR |
5164 | cpumask_clear(to_cpumask(l->cpus)); |
5165 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
5166 | nodes_clear(l->nodes); |
5167 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5168 | return 1; |
5169 | } | |
5170 | ||
5171 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
b3fd64e1 VB |
5172 | struct page *page, enum track_item alloc, |
5173 | unsigned long *obj_map) | |
88a420e4 | 5174 | { |
a973e9dd | 5175 | void *addr = page_address(page); |
88a420e4 CL |
5176 | void *p; |
5177 | ||
b3fd64e1 VB |
5178 | __fill_map(obj_map, s, page); |
5179 | ||
224a88be | 5180 | for_each_object(p, s, addr, page->objects) |
b3fd64e1 | 5181 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
45edfa58 | 5182 | add_location(t, s, get_track(s, p, alloc)); |
88a420e4 | 5183 | } |
64dd6849 | 5184 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 5185 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 5186 | |
ab4d5ed5 | 5187 | #ifdef CONFIG_SYSFS |
81819f0f | 5188 | enum slab_stat_type { |
205ab99d CL |
5189 | SL_ALL, /* All slabs */ |
5190 | SL_PARTIAL, /* Only partially allocated slabs */ | |
5191 | SL_CPU, /* Only slabs used for cpu caches */ | |
5192 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
5193 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
5194 | }; |
5195 | ||
205ab99d | 5196 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
5197 | #define SO_PARTIAL (1 << SL_PARTIAL) |
5198 | #define SO_CPU (1 << SL_CPU) | |
5199 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 5200 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 5201 | |
62e5c4b4 | 5202 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 5203 | char *buf, unsigned long flags) |
81819f0f CL |
5204 | { |
5205 | unsigned long total = 0; | |
81819f0f CL |
5206 | int node; |
5207 | int x; | |
5208 | unsigned long *nodes; | |
bf16d19a | 5209 | int len = 0; |
81819f0f | 5210 | |
6396bb22 | 5211 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
5212 | if (!nodes) |
5213 | return -ENOMEM; | |
81819f0f | 5214 | |
205ab99d CL |
5215 | if (flags & SO_CPU) { |
5216 | int cpu; | |
81819f0f | 5217 | |
205ab99d | 5218 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
5219 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
5220 | cpu); | |
ec3ab083 | 5221 | int node; |
49e22585 | 5222 | struct page *page; |
dfb4f096 | 5223 | |
4db0c3c2 | 5224 | page = READ_ONCE(c->page); |
ec3ab083 CL |
5225 | if (!page) |
5226 | continue; | |
205ab99d | 5227 | |
ec3ab083 CL |
5228 | node = page_to_nid(page); |
5229 | if (flags & SO_TOTAL) | |
5230 | x = page->objects; | |
5231 | else if (flags & SO_OBJECTS) | |
5232 | x = page->inuse; | |
5233 | else | |
5234 | x = 1; | |
49e22585 | 5235 | |
ec3ab083 CL |
5236 | total += x; |
5237 | nodes[node] += x; | |
5238 | ||
a93cf07b | 5239 | page = slub_percpu_partial_read_once(c); |
49e22585 | 5240 | if (page) { |
8afb1474 LZ |
5241 | node = page_to_nid(page); |
5242 | if (flags & SO_TOTAL) | |
5243 | WARN_ON_ONCE(1); | |
5244 | else if (flags & SO_OBJECTS) | |
5245 | WARN_ON_ONCE(1); | |
5246 | else | |
5247 | x = page->pages; | |
bc6697d8 ED |
5248 | total += x; |
5249 | nodes[node] += x; | |
49e22585 | 5250 | } |
81819f0f CL |
5251 | } |
5252 | } | |
5253 | ||
e4f8e513 QC |
5254 | /* |
5255 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
5256 | * already held which will conflict with an existing lock order: | |
5257 | * | |
5258 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
5259 | * | |
5260 | * We don't really need mem_hotplug_lock (to hold off | |
5261 | * slab_mem_going_offline_callback) here because slab's memory hot | |
5262 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
5263 | */ | |
5264 | ||
ab4d5ed5 | 5265 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 5266 | if (flags & SO_ALL) { |
fa45dc25 CL |
5267 | struct kmem_cache_node *n; |
5268 | ||
5269 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 5270 | |
d0e0ac97 CG |
5271 | if (flags & SO_TOTAL) |
5272 | x = atomic_long_read(&n->total_objects); | |
5273 | else if (flags & SO_OBJECTS) | |
5274 | x = atomic_long_read(&n->total_objects) - | |
5275 | count_partial(n, count_free); | |
81819f0f | 5276 | else |
205ab99d | 5277 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
5278 | total += x; |
5279 | nodes[node] += x; | |
5280 | } | |
5281 | ||
ab4d5ed5 CL |
5282 | } else |
5283 | #endif | |
5284 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 5285 | struct kmem_cache_node *n; |
81819f0f | 5286 | |
fa45dc25 | 5287 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
5288 | if (flags & SO_TOTAL) |
5289 | x = count_partial(n, count_total); | |
5290 | else if (flags & SO_OBJECTS) | |
5291 | x = count_partial(n, count_inuse); | |
81819f0f | 5292 | else |
205ab99d | 5293 | x = n->nr_partial; |
81819f0f CL |
5294 | total += x; |
5295 | nodes[node] += x; | |
5296 | } | |
5297 | } | |
bf16d19a JP |
5298 | |
5299 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 5300 | #ifdef CONFIG_NUMA |
bf16d19a | 5301 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 5302 | if (nodes[node]) |
bf16d19a JP |
5303 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
5304 | node, nodes[node]); | |
5305 | } | |
81819f0f | 5306 | #endif |
bf16d19a | 5307 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 5308 | kfree(nodes); |
bf16d19a JP |
5309 | |
5310 | return len; | |
81819f0f CL |
5311 | } |
5312 | ||
81819f0f | 5313 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 5314 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5315 | |
5316 | struct slab_attribute { | |
5317 | struct attribute attr; | |
5318 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5319 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5320 | }; | |
5321 | ||
5322 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
5323 | static struct slab_attribute _name##_attr = \ |
5324 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
5325 | |
5326 | #define SLAB_ATTR(_name) \ | |
5327 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 5328 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 5329 | |
81819f0f CL |
5330 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5331 | { | |
bf16d19a | 5332 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
5333 | } |
5334 | SLAB_ATTR_RO(slab_size); | |
5335 | ||
5336 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5337 | { | |
bf16d19a | 5338 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
5339 | } |
5340 | SLAB_ATTR_RO(align); | |
5341 | ||
5342 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5343 | { | |
bf16d19a | 5344 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
5345 | } |
5346 | SLAB_ATTR_RO(object_size); | |
5347 | ||
5348 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5349 | { | |
bf16d19a | 5350 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5351 | } |
5352 | SLAB_ATTR_RO(objs_per_slab); | |
5353 | ||
5354 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
5355 | { | |
bf16d19a | 5356 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5357 | } |
32a6f409 | 5358 | SLAB_ATTR_RO(order); |
81819f0f | 5359 | |
73d342b1 DR |
5360 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5361 | { | |
bf16d19a | 5362 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
5363 | } |
5364 | ||
5365 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5366 | size_t length) | |
5367 | { | |
5368 | unsigned long min; | |
5369 | int err; | |
5370 | ||
3dbb95f7 | 5371 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5372 | if (err) |
5373 | return err; | |
5374 | ||
c0bdb232 | 5375 | set_min_partial(s, min); |
73d342b1 DR |
5376 | return length; |
5377 | } | |
5378 | SLAB_ATTR(min_partial); | |
5379 | ||
49e22585 CL |
5380 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5381 | { | |
bf16d19a | 5382 | return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
5383 | } |
5384 | ||
5385 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5386 | size_t length) | |
5387 | { | |
e5d9998f | 5388 | unsigned int objects; |
49e22585 CL |
5389 | int err; |
5390 | ||
e5d9998f | 5391 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5392 | if (err) |
5393 | return err; | |
345c905d | 5394 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5395 | return -EINVAL; |
49e22585 | 5396 | |
e6d0e1dc | 5397 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5398 | flush_all(s); |
5399 | return length; | |
5400 | } | |
5401 | SLAB_ATTR(cpu_partial); | |
5402 | ||
81819f0f CL |
5403 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5404 | { | |
62c70bce JP |
5405 | if (!s->ctor) |
5406 | return 0; | |
bf16d19a | 5407 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
5408 | } |
5409 | SLAB_ATTR_RO(ctor); | |
5410 | ||
81819f0f CL |
5411 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5412 | { | |
bf16d19a | 5413 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5414 | } |
5415 | SLAB_ATTR_RO(aliases); | |
5416 | ||
81819f0f CL |
5417 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5418 | { | |
d9acf4b7 | 5419 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5420 | } |
5421 | SLAB_ATTR_RO(partial); | |
5422 | ||
5423 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5424 | { | |
d9acf4b7 | 5425 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5426 | } |
5427 | SLAB_ATTR_RO(cpu_slabs); | |
5428 | ||
5429 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5430 | { | |
205ab99d | 5431 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5432 | } |
5433 | SLAB_ATTR_RO(objects); | |
5434 | ||
205ab99d CL |
5435 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5436 | { | |
5437 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5438 | } | |
5439 | SLAB_ATTR_RO(objects_partial); | |
5440 | ||
49e22585 CL |
5441 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5442 | { | |
5443 | int objects = 0; | |
5444 | int pages = 0; | |
5445 | int cpu; | |
bf16d19a | 5446 | int len = 0; |
49e22585 CL |
5447 | |
5448 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5449 | struct page *page; |
5450 | ||
5451 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5452 | |
5453 | if (page) { | |
5454 | pages += page->pages; | |
5455 | objects += page->pobjects; | |
5456 | } | |
5457 | } | |
5458 | ||
bf16d19a | 5459 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); |
49e22585 CL |
5460 | |
5461 | #ifdef CONFIG_SMP | |
5462 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5463 | struct page *page; |
5464 | ||
5465 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
bf16d19a JP |
5466 | if (page) |
5467 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", | |
5468 | cpu, page->pobjects, page->pages); | |
49e22585 CL |
5469 | } |
5470 | #endif | |
bf16d19a JP |
5471 | len += sysfs_emit_at(buf, len, "\n"); |
5472 | ||
5473 | return len; | |
49e22585 CL |
5474 | } |
5475 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5476 | ||
a5a84755 CL |
5477 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5478 | { | |
bf16d19a | 5479 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 5480 | } |
8f58119a | 5481 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
5482 | |
5483 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5484 | { | |
bf16d19a | 5485 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
5486 | } |
5487 | SLAB_ATTR_RO(hwcache_align); | |
5488 | ||
5489 | #ifdef CONFIG_ZONE_DMA | |
5490 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5491 | { | |
bf16d19a | 5492 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
5493 | } |
5494 | SLAB_ATTR_RO(cache_dma); | |
5495 | #endif | |
5496 | ||
8eb8284b DW |
5497 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5498 | { | |
bf16d19a | 5499 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
5500 | } |
5501 | SLAB_ATTR_RO(usersize); | |
5502 | ||
a5a84755 CL |
5503 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5504 | { | |
bf16d19a | 5505 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5506 | } |
5507 | SLAB_ATTR_RO(destroy_by_rcu); | |
5508 | ||
ab4d5ed5 | 5509 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5510 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5511 | { | |
5512 | return show_slab_objects(s, buf, SO_ALL); | |
5513 | } | |
5514 | SLAB_ATTR_RO(slabs); | |
5515 | ||
205ab99d CL |
5516 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5517 | { | |
5518 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5519 | } | |
5520 | SLAB_ATTR_RO(total_objects); | |
5521 | ||
81819f0f CL |
5522 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5523 | { | |
bf16d19a | 5524 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 5525 | } |
060807f8 | 5526 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
5527 | |
5528 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5529 | { | |
bf16d19a | 5530 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 5531 | } |
060807f8 | 5532 | SLAB_ATTR_RO(trace); |
81819f0f | 5533 | |
81819f0f CL |
5534 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5535 | { | |
bf16d19a | 5536 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
5537 | } |
5538 | ||
ad38b5b1 | 5539 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
5540 | |
5541 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5542 | { | |
bf16d19a | 5543 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
5544 | } |
5545 | ||
ad38b5b1 | 5546 | SLAB_ATTR_RO(poison); |
81819f0f CL |
5547 | |
5548 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5549 | { | |
bf16d19a | 5550 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
5551 | } |
5552 | ||
ad38b5b1 | 5553 | SLAB_ATTR_RO(store_user); |
81819f0f | 5554 | |
53e15af0 CL |
5555 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5556 | { | |
5557 | return 0; | |
5558 | } | |
5559 | ||
5560 | static ssize_t validate_store(struct kmem_cache *s, | |
5561 | const char *buf, size_t length) | |
5562 | { | |
434e245d CL |
5563 | int ret = -EINVAL; |
5564 | ||
5565 | if (buf[0] == '1') { | |
5566 | ret = validate_slab_cache(s); | |
5567 | if (ret >= 0) | |
5568 | ret = length; | |
5569 | } | |
5570 | return ret; | |
53e15af0 CL |
5571 | } |
5572 | SLAB_ATTR(validate); | |
a5a84755 | 5573 | |
a5a84755 CL |
5574 | #endif /* CONFIG_SLUB_DEBUG */ |
5575 | ||
5576 | #ifdef CONFIG_FAILSLAB | |
5577 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5578 | { | |
bf16d19a | 5579 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 5580 | } |
060807f8 | 5581 | SLAB_ATTR_RO(failslab); |
ab4d5ed5 | 5582 | #endif |
53e15af0 | 5583 | |
2086d26a CL |
5584 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5585 | { | |
5586 | return 0; | |
5587 | } | |
5588 | ||
5589 | static ssize_t shrink_store(struct kmem_cache *s, | |
5590 | const char *buf, size_t length) | |
5591 | { | |
832f37f5 | 5592 | if (buf[0] == '1') |
10befea9 | 5593 | kmem_cache_shrink(s); |
832f37f5 | 5594 | else |
2086d26a CL |
5595 | return -EINVAL; |
5596 | return length; | |
5597 | } | |
5598 | SLAB_ATTR(shrink); | |
5599 | ||
81819f0f | 5600 | #ifdef CONFIG_NUMA |
9824601e | 5601 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5602 | { |
bf16d19a | 5603 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5604 | } |
5605 | ||
9824601e | 5606 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5607 | const char *buf, size_t length) |
5608 | { | |
eb7235eb | 5609 | unsigned int ratio; |
0121c619 CL |
5610 | int err; |
5611 | ||
eb7235eb | 5612 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5613 | if (err) |
5614 | return err; | |
eb7235eb AD |
5615 | if (ratio > 100) |
5616 | return -ERANGE; | |
0121c619 | 5617 | |
eb7235eb | 5618 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5619 | |
81819f0f CL |
5620 | return length; |
5621 | } | |
9824601e | 5622 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5623 | #endif |
5624 | ||
8ff12cfc | 5625 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5626 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5627 | { | |
5628 | unsigned long sum = 0; | |
5629 | int cpu; | |
bf16d19a | 5630 | int len = 0; |
6da2ec56 | 5631 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5632 | |
5633 | if (!data) | |
5634 | return -ENOMEM; | |
5635 | ||
5636 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5637 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5638 | |
5639 | data[cpu] = x; | |
5640 | sum += x; | |
5641 | } | |
5642 | ||
bf16d19a | 5643 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 5644 | |
50ef37b9 | 5645 | #ifdef CONFIG_SMP |
8ff12cfc | 5646 | for_each_online_cpu(cpu) { |
bf16d19a JP |
5647 | if (data[cpu]) |
5648 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
5649 | cpu, data[cpu]); | |
8ff12cfc | 5650 | } |
50ef37b9 | 5651 | #endif |
8ff12cfc | 5652 | kfree(data); |
bf16d19a JP |
5653 | len += sysfs_emit_at(buf, len, "\n"); |
5654 | ||
5655 | return len; | |
8ff12cfc CL |
5656 | } |
5657 | ||
78eb00cc DR |
5658 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5659 | { | |
5660 | int cpu; | |
5661 | ||
5662 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5663 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5664 | } |
5665 | ||
8ff12cfc CL |
5666 | #define STAT_ATTR(si, text) \ |
5667 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5668 | { \ | |
5669 | return show_stat(s, buf, si); \ | |
5670 | } \ | |
78eb00cc DR |
5671 | static ssize_t text##_store(struct kmem_cache *s, \ |
5672 | const char *buf, size_t length) \ | |
5673 | { \ | |
5674 | if (buf[0] != '0') \ | |
5675 | return -EINVAL; \ | |
5676 | clear_stat(s, si); \ | |
5677 | return length; \ | |
5678 | } \ | |
5679 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5680 | |
5681 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5682 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5683 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5684 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5685 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5686 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5687 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5688 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5689 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5690 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5691 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5692 | STAT_ATTR(FREE_SLAB, free_slab); |
5693 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5694 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5695 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5696 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5697 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5698 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5699 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5700 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5701 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5702 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5703 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5704 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5705 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5706 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5707 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5708 | |
06428780 | 5709 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5710 | &slab_size_attr.attr, |
5711 | &object_size_attr.attr, | |
5712 | &objs_per_slab_attr.attr, | |
5713 | &order_attr.attr, | |
73d342b1 | 5714 | &min_partial_attr.attr, |
49e22585 | 5715 | &cpu_partial_attr.attr, |
81819f0f | 5716 | &objects_attr.attr, |
205ab99d | 5717 | &objects_partial_attr.attr, |
81819f0f CL |
5718 | &partial_attr.attr, |
5719 | &cpu_slabs_attr.attr, | |
5720 | &ctor_attr.attr, | |
81819f0f CL |
5721 | &aliases_attr.attr, |
5722 | &align_attr.attr, | |
81819f0f CL |
5723 | &hwcache_align_attr.attr, |
5724 | &reclaim_account_attr.attr, | |
5725 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5726 | &shrink_attr.attr, |
49e22585 | 5727 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5728 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5729 | &total_objects_attr.attr, |
5730 | &slabs_attr.attr, | |
5731 | &sanity_checks_attr.attr, | |
5732 | &trace_attr.attr, | |
81819f0f CL |
5733 | &red_zone_attr.attr, |
5734 | &poison_attr.attr, | |
5735 | &store_user_attr.attr, | |
53e15af0 | 5736 | &validate_attr.attr, |
ab4d5ed5 | 5737 | #endif |
81819f0f CL |
5738 | #ifdef CONFIG_ZONE_DMA |
5739 | &cache_dma_attr.attr, | |
5740 | #endif | |
5741 | #ifdef CONFIG_NUMA | |
9824601e | 5742 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5743 | #endif |
5744 | #ifdef CONFIG_SLUB_STATS | |
5745 | &alloc_fastpath_attr.attr, | |
5746 | &alloc_slowpath_attr.attr, | |
5747 | &free_fastpath_attr.attr, | |
5748 | &free_slowpath_attr.attr, | |
5749 | &free_frozen_attr.attr, | |
5750 | &free_add_partial_attr.attr, | |
5751 | &free_remove_partial_attr.attr, | |
5752 | &alloc_from_partial_attr.attr, | |
5753 | &alloc_slab_attr.attr, | |
5754 | &alloc_refill_attr.attr, | |
e36a2652 | 5755 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5756 | &free_slab_attr.attr, |
5757 | &cpuslab_flush_attr.attr, | |
5758 | &deactivate_full_attr.attr, | |
5759 | &deactivate_empty_attr.attr, | |
5760 | &deactivate_to_head_attr.attr, | |
5761 | &deactivate_to_tail_attr.attr, | |
5762 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5763 | &deactivate_bypass_attr.attr, |
65c3376a | 5764 | &order_fallback_attr.attr, |
b789ef51 CL |
5765 | &cmpxchg_double_fail_attr.attr, |
5766 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5767 | &cpu_partial_alloc_attr.attr, |
5768 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5769 | &cpu_partial_node_attr.attr, |
5770 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5771 | #endif |
4c13dd3b DM |
5772 | #ifdef CONFIG_FAILSLAB |
5773 | &failslab_attr.attr, | |
5774 | #endif | |
8eb8284b | 5775 | &usersize_attr.attr, |
4c13dd3b | 5776 | |
81819f0f CL |
5777 | NULL |
5778 | }; | |
5779 | ||
1fdaaa23 | 5780 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5781 | .attrs = slab_attrs, |
5782 | }; | |
5783 | ||
5784 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5785 | struct attribute *attr, | |
5786 | char *buf) | |
5787 | { | |
5788 | struct slab_attribute *attribute; | |
5789 | struct kmem_cache *s; | |
5790 | int err; | |
5791 | ||
5792 | attribute = to_slab_attr(attr); | |
5793 | s = to_slab(kobj); | |
5794 | ||
5795 | if (!attribute->show) | |
5796 | return -EIO; | |
5797 | ||
5798 | err = attribute->show(s, buf); | |
5799 | ||
5800 | return err; | |
5801 | } | |
5802 | ||
5803 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5804 | struct attribute *attr, | |
5805 | const char *buf, size_t len) | |
5806 | { | |
5807 | struct slab_attribute *attribute; | |
5808 | struct kmem_cache *s; | |
5809 | int err; | |
5810 | ||
5811 | attribute = to_slab_attr(attr); | |
5812 | s = to_slab(kobj); | |
5813 | ||
5814 | if (!attribute->store) | |
5815 | return -EIO; | |
5816 | ||
5817 | err = attribute->store(s, buf, len); | |
81819f0f CL |
5818 | return err; |
5819 | } | |
5820 | ||
41a21285 CL |
5821 | static void kmem_cache_release(struct kobject *k) |
5822 | { | |
5823 | slab_kmem_cache_release(to_slab(k)); | |
5824 | } | |
5825 | ||
52cf25d0 | 5826 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5827 | .show = slab_attr_show, |
5828 | .store = slab_attr_store, | |
5829 | }; | |
5830 | ||
5831 | static struct kobj_type slab_ktype = { | |
5832 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5833 | .release = kmem_cache_release, |
81819f0f CL |
5834 | }; |
5835 | ||
27c3a314 | 5836 | static struct kset *slab_kset; |
81819f0f | 5837 | |
9a41707b VD |
5838 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5839 | { | |
9a41707b VD |
5840 | return slab_kset; |
5841 | } | |
5842 | ||
81819f0f CL |
5843 | #define ID_STR_LENGTH 64 |
5844 | ||
5845 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5846 | * |
5847 | * Format :[flags-]size | |
81819f0f CL |
5848 | */ |
5849 | static char *create_unique_id(struct kmem_cache *s) | |
5850 | { | |
5851 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5852 | char *p = name; | |
5853 | ||
5854 | BUG_ON(!name); | |
5855 | ||
5856 | *p++ = ':'; | |
5857 | /* | |
5858 | * First flags affecting slabcache operations. We will only | |
5859 | * get here for aliasable slabs so we do not need to support | |
5860 | * too many flags. The flags here must cover all flags that | |
5861 | * are matched during merging to guarantee that the id is | |
5862 | * unique. | |
5863 | */ | |
5864 | if (s->flags & SLAB_CACHE_DMA) | |
5865 | *p++ = 'd'; | |
6d6ea1e9 NB |
5866 | if (s->flags & SLAB_CACHE_DMA32) |
5867 | *p++ = 'D'; | |
81819f0f CL |
5868 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5869 | *p++ = 'a'; | |
becfda68 | 5870 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5871 | *p++ = 'F'; |
230e9fc2 VD |
5872 | if (s->flags & SLAB_ACCOUNT) |
5873 | *p++ = 'A'; | |
81819f0f CL |
5874 | if (p != name + 1) |
5875 | *p++ = '-'; | |
44065b2e | 5876 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5877 | |
81819f0f CL |
5878 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5879 | return name; | |
5880 | } | |
5881 | ||
5882 | static int sysfs_slab_add(struct kmem_cache *s) | |
5883 | { | |
5884 | int err; | |
5885 | const char *name; | |
1663f26d | 5886 | struct kset *kset = cache_kset(s); |
45530c44 | 5887 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5888 | |
1663f26d TH |
5889 | if (!kset) { |
5890 | kobject_init(&s->kobj, &slab_ktype); | |
5891 | return 0; | |
5892 | } | |
5893 | ||
11066386 MC |
5894 | if (!unmergeable && disable_higher_order_debug && |
5895 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5896 | unmergeable = 1; | |
5897 | ||
81819f0f CL |
5898 | if (unmergeable) { |
5899 | /* | |
5900 | * Slabcache can never be merged so we can use the name proper. | |
5901 | * This is typically the case for debug situations. In that | |
5902 | * case we can catch duplicate names easily. | |
5903 | */ | |
27c3a314 | 5904 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5905 | name = s->name; |
5906 | } else { | |
5907 | /* | |
5908 | * Create a unique name for the slab as a target | |
5909 | * for the symlinks. | |
5910 | */ | |
5911 | name = create_unique_id(s); | |
5912 | } | |
5913 | ||
1663f26d | 5914 | s->kobj.kset = kset; |
26e4f205 | 5915 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 5916 | if (err) |
80da026a | 5917 | goto out; |
81819f0f CL |
5918 | |
5919 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5920 | if (err) |
5921 | goto out_del_kobj; | |
9a41707b | 5922 | |
81819f0f CL |
5923 | if (!unmergeable) { |
5924 | /* Setup first alias */ | |
5925 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5926 | } |
54b6a731 DJ |
5927 | out: |
5928 | if (!unmergeable) | |
5929 | kfree(name); | |
5930 | return err; | |
5931 | out_del_kobj: | |
5932 | kobject_del(&s->kobj); | |
54b6a731 | 5933 | goto out; |
81819f0f CL |
5934 | } |
5935 | ||
d50d82fa MP |
5936 | void sysfs_slab_unlink(struct kmem_cache *s) |
5937 | { | |
5938 | if (slab_state >= FULL) | |
5939 | kobject_del(&s->kobj); | |
5940 | } | |
5941 | ||
bf5eb3de TH |
5942 | void sysfs_slab_release(struct kmem_cache *s) |
5943 | { | |
5944 | if (slab_state >= FULL) | |
5945 | kobject_put(&s->kobj); | |
81819f0f CL |
5946 | } |
5947 | ||
5948 | /* | |
5949 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5950 | * available lest we lose that information. |
81819f0f CL |
5951 | */ |
5952 | struct saved_alias { | |
5953 | struct kmem_cache *s; | |
5954 | const char *name; | |
5955 | struct saved_alias *next; | |
5956 | }; | |
5957 | ||
5af328a5 | 5958 | static struct saved_alias *alias_list; |
81819f0f CL |
5959 | |
5960 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5961 | { | |
5962 | struct saved_alias *al; | |
5963 | ||
97d06609 | 5964 | if (slab_state == FULL) { |
81819f0f CL |
5965 | /* |
5966 | * If we have a leftover link then remove it. | |
5967 | */ | |
27c3a314 GKH |
5968 | sysfs_remove_link(&slab_kset->kobj, name); |
5969 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5970 | } |
5971 | ||
5972 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5973 | if (!al) | |
5974 | return -ENOMEM; | |
5975 | ||
5976 | al->s = s; | |
5977 | al->name = name; | |
5978 | al->next = alias_list; | |
5979 | alias_list = al; | |
5980 | return 0; | |
5981 | } | |
5982 | ||
5983 | static int __init slab_sysfs_init(void) | |
5984 | { | |
5b95a4ac | 5985 | struct kmem_cache *s; |
81819f0f CL |
5986 | int err; |
5987 | ||
18004c5d | 5988 | mutex_lock(&slab_mutex); |
2bce6485 | 5989 | |
d7660ce5 | 5990 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 5991 | if (!slab_kset) { |
18004c5d | 5992 | mutex_unlock(&slab_mutex); |
f9f58285 | 5993 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5994 | return -ENOSYS; |
5995 | } | |
5996 | ||
97d06609 | 5997 | slab_state = FULL; |
26a7bd03 | 5998 | |
5b95a4ac | 5999 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 6000 | err = sysfs_slab_add(s); |
5d540fb7 | 6001 | if (err) |
f9f58285 FF |
6002 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
6003 | s->name); | |
26a7bd03 | 6004 | } |
81819f0f CL |
6005 | |
6006 | while (alias_list) { | |
6007 | struct saved_alias *al = alias_list; | |
6008 | ||
6009 | alias_list = alias_list->next; | |
6010 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 6011 | if (err) |
f9f58285 FF |
6012 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
6013 | al->name); | |
81819f0f CL |
6014 | kfree(al); |
6015 | } | |
6016 | ||
18004c5d | 6017 | mutex_unlock(&slab_mutex); |
81819f0f CL |
6018 | return 0; |
6019 | } | |
6020 | ||
6021 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 6022 | #endif /* CONFIG_SYSFS */ |
57ed3eda | 6023 | |
64dd6849 FM |
6024 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
6025 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
6026 | { | |
6027 | ||
6028 | struct location *l; | |
6029 | unsigned int idx = *(unsigned int *)v; | |
6030 | struct loc_track *t = seq->private; | |
6031 | ||
6032 | if (idx < t->count) { | |
6033 | l = &t->loc[idx]; | |
6034 | ||
6035 | seq_printf(seq, "%7ld ", l->count); | |
6036 | ||
6037 | if (l->addr) | |
6038 | seq_printf(seq, "%pS", (void *)l->addr); | |
6039 | else | |
6040 | seq_puts(seq, "<not-available>"); | |
6041 | ||
6042 | if (l->sum_time != l->min_time) { | |
6043 | seq_printf(seq, " age=%ld/%llu/%ld", | |
6044 | l->min_time, div_u64(l->sum_time, l->count), | |
6045 | l->max_time); | |
6046 | } else | |
6047 | seq_printf(seq, " age=%ld", l->min_time); | |
6048 | ||
6049 | if (l->min_pid != l->max_pid) | |
6050 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
6051 | else | |
6052 | seq_printf(seq, " pid=%ld", | |
6053 | l->min_pid); | |
6054 | ||
6055 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
6056 | seq_printf(seq, " cpus=%*pbl", | |
6057 | cpumask_pr_args(to_cpumask(l->cpus))); | |
6058 | ||
6059 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
6060 | seq_printf(seq, " nodes=%*pbl", | |
6061 | nodemask_pr_args(&l->nodes)); | |
6062 | ||
6063 | seq_puts(seq, "\n"); | |
6064 | } | |
6065 | ||
6066 | if (!idx && !t->count) | |
6067 | seq_puts(seq, "No data\n"); | |
6068 | ||
6069 | return 0; | |
6070 | } | |
6071 | ||
6072 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
6073 | { | |
6074 | } | |
6075 | ||
6076 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
6077 | { | |
6078 | struct loc_track *t = seq->private; | |
6079 | ||
6080 | v = ppos; | |
6081 | ++*ppos; | |
6082 | if (*ppos <= t->count) | |
6083 | return v; | |
6084 | ||
6085 | return NULL; | |
6086 | } | |
6087 | ||
6088 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) | |
6089 | { | |
6090 | return ppos; | |
6091 | } | |
6092 | ||
6093 | static const struct seq_operations slab_debugfs_sops = { | |
6094 | .start = slab_debugfs_start, | |
6095 | .next = slab_debugfs_next, | |
6096 | .stop = slab_debugfs_stop, | |
6097 | .show = slab_debugfs_show, | |
6098 | }; | |
6099 | ||
6100 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
6101 | { | |
6102 | ||
6103 | struct kmem_cache_node *n; | |
6104 | enum track_item alloc; | |
6105 | int node; | |
6106 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
6107 | sizeof(struct loc_track)); | |
6108 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
6109 | unsigned long *obj_map; |
6110 | ||
6111 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
6112 | if (!obj_map) | |
6113 | return -ENOMEM; | |
64dd6849 FM |
6114 | |
6115 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
6116 | alloc = TRACK_ALLOC; | |
6117 | else | |
6118 | alloc = TRACK_FREE; | |
6119 | ||
b3fd64e1 VB |
6120 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
6121 | bitmap_free(obj_map); | |
64dd6849 | 6122 | return -ENOMEM; |
b3fd64e1 | 6123 | } |
64dd6849 | 6124 | |
64dd6849 FM |
6125 | for_each_kmem_cache_node(s, node, n) { |
6126 | unsigned long flags; | |
6127 | struct page *page; | |
6128 | ||
6129 | if (!atomic_long_read(&n->nr_slabs)) | |
6130 | continue; | |
6131 | ||
6132 | spin_lock_irqsave(&n->list_lock, flags); | |
6133 | list_for_each_entry(page, &n->partial, slab_list) | |
b3fd64e1 | 6134 | process_slab(t, s, page, alloc, obj_map); |
64dd6849 | 6135 | list_for_each_entry(page, &n->full, slab_list) |
b3fd64e1 | 6136 | process_slab(t, s, page, alloc, obj_map); |
64dd6849 FM |
6137 | spin_unlock_irqrestore(&n->list_lock, flags); |
6138 | } | |
6139 | ||
b3fd64e1 | 6140 | bitmap_free(obj_map); |
64dd6849 FM |
6141 | return 0; |
6142 | } | |
6143 | ||
6144 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
6145 | { | |
6146 | struct seq_file *seq = file->private_data; | |
6147 | struct loc_track *t = seq->private; | |
6148 | ||
6149 | free_loc_track(t); | |
6150 | return seq_release_private(inode, file); | |
6151 | } | |
6152 | ||
6153 | static const struct file_operations slab_debugfs_fops = { | |
6154 | .open = slab_debug_trace_open, | |
6155 | .read = seq_read, | |
6156 | .llseek = seq_lseek, | |
6157 | .release = slab_debug_trace_release, | |
6158 | }; | |
6159 | ||
6160 | static void debugfs_slab_add(struct kmem_cache *s) | |
6161 | { | |
6162 | struct dentry *slab_cache_dir; | |
6163 | ||
6164 | if (unlikely(!slab_debugfs_root)) | |
6165 | return; | |
6166 | ||
6167 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
6168 | ||
6169 | debugfs_create_file("alloc_traces", 0400, | |
6170 | slab_cache_dir, s, &slab_debugfs_fops); | |
6171 | ||
6172 | debugfs_create_file("free_traces", 0400, | |
6173 | slab_cache_dir, s, &slab_debugfs_fops); | |
6174 | } | |
6175 | ||
6176 | void debugfs_slab_release(struct kmem_cache *s) | |
6177 | { | |
6178 | debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); | |
6179 | } | |
6180 | ||
6181 | static int __init slab_debugfs_init(void) | |
6182 | { | |
6183 | struct kmem_cache *s; | |
6184 | ||
6185 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
6186 | ||
6187 | list_for_each_entry(s, &slab_caches, list) | |
6188 | if (s->flags & SLAB_STORE_USER) | |
6189 | debugfs_slab_add(s); | |
6190 | ||
6191 | return 0; | |
6192 | ||
6193 | } | |
6194 | __initcall(slab_debugfs_init); | |
6195 | #endif | |
57ed3eda PE |
6196 | /* |
6197 | * The /proc/slabinfo ABI | |
6198 | */ | |
5b365771 | 6199 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 6200 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 6201 | { |
57ed3eda | 6202 | unsigned long nr_slabs = 0; |
205ab99d CL |
6203 | unsigned long nr_objs = 0; |
6204 | unsigned long nr_free = 0; | |
57ed3eda | 6205 | int node; |
fa45dc25 | 6206 | struct kmem_cache_node *n; |
57ed3eda | 6207 | |
fa45dc25 | 6208 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
6209 | nr_slabs += node_nr_slabs(n); |
6210 | nr_objs += node_nr_objs(n); | |
205ab99d | 6211 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
6212 | } |
6213 | ||
0d7561c6 GC |
6214 | sinfo->active_objs = nr_objs - nr_free; |
6215 | sinfo->num_objs = nr_objs; | |
6216 | sinfo->active_slabs = nr_slabs; | |
6217 | sinfo->num_slabs = nr_slabs; | |
6218 | sinfo->objects_per_slab = oo_objects(s->oo); | |
6219 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
6220 | } |
6221 | ||
0d7561c6 | 6222 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 6223 | { |
7b3c3a50 AD |
6224 | } |
6225 | ||
b7454ad3 GC |
6226 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
6227 | size_t count, loff_t *ppos) | |
7b3c3a50 | 6228 | { |
b7454ad3 | 6229 | return -EIO; |
7b3c3a50 | 6230 | } |
5b365771 | 6231 | #endif /* CONFIG_SLUB_DEBUG */ |