]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
2482ddec | 36 | #include <linux/random.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 54 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 55 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
56 | * B. page->inuse -> Number of objects in use |
57 | * C. page->objects -> Number of objects in page | |
58 | * D. page->frozen -> frozen state | |
881db7fb CL |
59 | * |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
632b2ef0 LX |
61 | * on any list except per cpu partial list. The processor that froze the |
62 | * slab is the one who can perform list operations on the page. Other | |
63 | * processors may put objects onto the freelist but the processor that | |
64 | * froze the slab is the only one that can retrieve the objects from the | |
65 | * page's freelist. | |
81819f0f CL |
66 | * |
67 | * The list_lock protects the partial and full list on each node and | |
68 | * the partial slab counter. If taken then no new slabs may be added or | |
69 | * removed from the lists nor make the number of partial slabs be modified. | |
70 | * (Note that the total number of slabs is an atomic value that may be | |
71 | * modified without taking the list lock). | |
72 | * | |
73 | * The list_lock is a centralized lock and thus we avoid taking it as | |
74 | * much as possible. As long as SLUB does not have to handle partial | |
75 | * slabs, operations can continue without any centralized lock. F.e. | |
76 | * allocating a long series of objects that fill up slabs does not require | |
77 | * the list lock. | |
81819f0f CL |
78 | * Interrupts are disabled during allocation and deallocation in order to |
79 | * make the slab allocator safe to use in the context of an irq. In addition | |
80 | * interrupts are disabled to ensure that the processor does not change | |
81 | * while handling per_cpu slabs, due to kernel preemption. | |
82 | * | |
83 | * SLUB assigns one slab for allocation to each processor. | |
84 | * Allocations only occur from these slabs called cpu slabs. | |
85 | * | |
672bba3a CL |
86 | * Slabs with free elements are kept on a partial list and during regular |
87 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 88 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
89 | * We track full slabs for debugging purposes though because otherwise we |
90 | * cannot scan all objects. | |
81819f0f CL |
91 | * |
92 | * Slabs are freed when they become empty. Teardown and setup is | |
93 | * minimal so we rely on the page allocators per cpu caches for | |
94 | * fast frees and allocs. | |
95 | * | |
aed68148 | 96 | * page->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
97 | * This means that the slab is dedicated to a purpose |
98 | * such as satisfying allocations for a specific | |
99 | * processor. Objects may be freed in the slab while | |
100 | * it is frozen but slab_free will then skip the usual | |
101 | * list operations. It is up to the processor holding | |
102 | * the slab to integrate the slab into the slab lists | |
103 | * when the slab is no longer needed. | |
104 | * | |
105 | * One use of this flag is to mark slabs that are | |
106 | * used for allocations. Then such a slab becomes a cpu | |
107 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 108 | * freelist that allows lockless access to |
894b8788 CL |
109 | * free objects in addition to the regular freelist |
110 | * that requires the slab lock. | |
81819f0f | 111 | * |
aed68148 | 112 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 113 | * options set. This moves slab handling out of |
894b8788 | 114 | * the fast path and disables lockless freelists. |
81819f0f CL |
115 | */ |
116 | ||
af537b0a CL |
117 | static inline int kmem_cache_debug(struct kmem_cache *s) |
118 | { | |
5577bd8a | 119 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 120 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 121 | #else |
af537b0a | 122 | return 0; |
5577bd8a | 123 | #endif |
af537b0a | 124 | } |
5577bd8a | 125 | |
117d54df | 126 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
127 | { |
128 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
129 | p += s->red_left_pad; | |
130 | ||
131 | return p; | |
132 | } | |
133 | ||
345c905d JK |
134 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
135 | { | |
136 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
137 | return !kmem_cache_debug(s); | |
138 | #else | |
139 | return false; | |
140 | #endif | |
141 | } | |
142 | ||
81819f0f CL |
143 | /* |
144 | * Issues still to be resolved: | |
145 | * | |
81819f0f CL |
146 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
147 | * | |
81819f0f CL |
148 | * - Variable sizing of the per node arrays |
149 | */ | |
150 | ||
151 | /* Enable to test recovery from slab corruption on boot */ | |
152 | #undef SLUB_RESILIENCY_TEST | |
153 | ||
b789ef51 CL |
154 | /* Enable to log cmpxchg failures */ |
155 | #undef SLUB_DEBUG_CMPXCHG | |
156 | ||
2086d26a CL |
157 | /* |
158 | * Mininum number of partial slabs. These will be left on the partial | |
159 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
160 | */ | |
76be8950 | 161 | #define MIN_PARTIAL 5 |
e95eed57 | 162 | |
2086d26a CL |
163 | /* |
164 | * Maximum number of desirable partial slabs. | |
165 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 166 | * sort the partial list by the number of objects in use. |
2086d26a CL |
167 | */ |
168 | #define MAX_PARTIAL 10 | |
169 | ||
becfda68 | 170 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 171 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 172 | |
149daaf3 LA |
173 | /* |
174 | * These debug flags cannot use CMPXCHG because there might be consistency | |
175 | * issues when checking or reading debug information | |
176 | */ | |
177 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
178 | SLAB_TRACE) | |
179 | ||
180 | ||
fa5ec8a1 | 181 | /* |
3de47213 DR |
182 | * Debugging flags that require metadata to be stored in the slab. These get |
183 | * disabled when slub_debug=O is used and a cache's min order increases with | |
184 | * metadata. | |
fa5ec8a1 | 185 | */ |
3de47213 | 186 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 187 | |
210b5c06 CG |
188 | #define OO_SHIFT 16 |
189 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 190 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 191 | |
81819f0f | 192 | /* Internal SLUB flags */ |
d50112ed | 193 | /* Poison object */ |
4fd0b46e | 194 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 195 | /* Use cmpxchg_double */ |
4fd0b46e | 196 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 197 | |
02cbc874 CL |
198 | /* |
199 | * Tracking user of a slab. | |
200 | */ | |
d6543e39 | 201 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 202 | struct track { |
ce71e27c | 203 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
204 | #ifdef CONFIG_STACKTRACE |
205 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
206 | #endif | |
02cbc874 CL |
207 | int cpu; /* Was running on cpu */ |
208 | int pid; /* Pid context */ | |
209 | unsigned long when; /* When did the operation occur */ | |
210 | }; | |
211 | ||
212 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
213 | ||
ab4d5ed5 | 214 | #ifdef CONFIG_SYSFS |
81819f0f CL |
215 | static int sysfs_slab_add(struct kmem_cache *); |
216 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 217 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 218 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 219 | #else |
0c710013 CL |
220 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
221 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
222 | { return 0; } | |
107dab5c | 223 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 224 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
225 | #endif |
226 | ||
4fdccdfb | 227 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
228 | { |
229 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
230 | /* |
231 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
232 | * avoid this_cpu_add()'s irq-disable overhead. | |
233 | */ | |
234 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
235 | #endif |
236 | } | |
237 | ||
81819f0f CL |
238 | /******************************************************************** |
239 | * Core slab cache functions | |
240 | *******************************************************************/ | |
241 | ||
2482ddec KC |
242 | /* |
243 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
244 | * with an XOR of the address where the pointer is held and a per-cache | |
245 | * random number. | |
246 | */ | |
247 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
248 | unsigned long ptr_addr) | |
249 | { | |
250 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 AK |
251 | /* |
252 | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | |
253 | * Normally, this doesn't cause any issues, as both set_freepointer() | |
254 | * and get_freepointer() are called with a pointer with the same tag. | |
255 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
256 | * example, when __free_slub() iterates over objects in a cache, it | |
257 | * passes untagged pointers to check_object(). check_object() in turns | |
258 | * calls get_freepointer() with an untagged pointer, which causes the | |
259 | * freepointer to be restored incorrectly. | |
260 | */ | |
261 | return (void *)((unsigned long)ptr ^ s->random ^ | |
1ad53d9f | 262 | swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); |
2482ddec KC |
263 | #else |
264 | return ptr; | |
265 | #endif | |
266 | } | |
267 | ||
268 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
269 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
270 | void *ptr_addr) | |
271 | { | |
272 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
273 | (unsigned long)ptr_addr); | |
274 | } | |
275 | ||
7656c72b CL |
276 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
277 | { | |
2482ddec | 278 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
279 | } |
280 | ||
0ad9500e ED |
281 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
282 | { | |
0882ff91 | 283 | prefetch(object + s->offset); |
0ad9500e ED |
284 | } |
285 | ||
1393d9a1 CL |
286 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
287 | { | |
2482ddec | 288 | unsigned long freepointer_addr; |
1393d9a1 CL |
289 | void *p; |
290 | ||
8e57f8ac | 291 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
292 | return get_freepointer(s, object); |
293 | ||
2482ddec KC |
294 | freepointer_addr = (unsigned long)object + s->offset; |
295 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
296 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
297 | } |
298 | ||
7656c72b CL |
299 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
300 | { | |
2482ddec KC |
301 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
302 | ||
ce6fa91b AP |
303 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
304 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
305 | #endif | |
306 | ||
2482ddec | 307 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
308 | } |
309 | ||
310 | /* Loop over all objects in a slab */ | |
224a88be | 311 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
312 | for (__p = fixup_red_left(__s, __addr); \ |
313 | __p < (__addr) + (__objects) * (__s)->size; \ | |
314 | __p += (__s)->size) | |
7656c72b | 315 | |
7656c72b | 316 | /* Determine object index from a given position */ |
284b50dd | 317 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) |
7656c72b | 318 | { |
6373dca1 | 319 | return (kasan_reset_tag(p) - addr) / s->size; |
7656c72b CL |
320 | } |
321 | ||
9736d2a9 | 322 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 323 | { |
9736d2a9 | 324 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
325 | } |
326 | ||
19af27af | 327 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 328 | unsigned int size) |
834f3d11 CL |
329 | { |
330 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 331 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
332 | }; |
333 | ||
334 | return x; | |
335 | } | |
336 | ||
19af27af | 337 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 338 | { |
210b5c06 | 339 | return x.x >> OO_SHIFT; |
834f3d11 CL |
340 | } |
341 | ||
19af27af | 342 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 343 | { |
210b5c06 | 344 | return x.x & OO_MASK; |
834f3d11 CL |
345 | } |
346 | ||
881db7fb CL |
347 | /* |
348 | * Per slab locking using the pagelock | |
349 | */ | |
350 | static __always_inline void slab_lock(struct page *page) | |
351 | { | |
48c935ad | 352 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
353 | bit_spin_lock(PG_locked, &page->flags); |
354 | } | |
355 | ||
356 | static __always_inline void slab_unlock(struct page *page) | |
357 | { | |
48c935ad | 358 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
359 | __bit_spin_unlock(PG_locked, &page->flags); |
360 | } | |
361 | ||
1d07171c CL |
362 | /* Interrupts must be disabled (for the fallback code to work right) */ |
363 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
364 | void *freelist_old, unsigned long counters_old, | |
365 | void *freelist_new, unsigned long counters_new, | |
366 | const char *n) | |
367 | { | |
368 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
369 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
370 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 371 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 372 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
373 | freelist_old, counters_old, |
374 | freelist_new, counters_new)) | |
6f6528a1 | 375 | return true; |
1d07171c CL |
376 | } else |
377 | #endif | |
378 | { | |
379 | slab_lock(page); | |
d0e0ac97 CG |
380 | if (page->freelist == freelist_old && |
381 | page->counters == counters_old) { | |
1d07171c | 382 | page->freelist = freelist_new; |
7d27a04b | 383 | page->counters = counters_new; |
1d07171c | 384 | slab_unlock(page); |
6f6528a1 | 385 | return true; |
1d07171c CL |
386 | } |
387 | slab_unlock(page); | |
388 | } | |
389 | ||
390 | cpu_relax(); | |
391 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
392 | ||
393 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 394 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
395 | #endif |
396 | ||
6f6528a1 | 397 | return false; |
1d07171c CL |
398 | } |
399 | ||
b789ef51 CL |
400 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
401 | void *freelist_old, unsigned long counters_old, | |
402 | void *freelist_new, unsigned long counters_new, | |
403 | const char *n) | |
404 | { | |
2565409f HC |
405 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
406 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 407 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 408 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
409 | freelist_old, counters_old, |
410 | freelist_new, counters_new)) | |
6f6528a1 | 411 | return true; |
b789ef51 CL |
412 | } else |
413 | #endif | |
414 | { | |
1d07171c CL |
415 | unsigned long flags; |
416 | ||
417 | local_irq_save(flags); | |
881db7fb | 418 | slab_lock(page); |
d0e0ac97 CG |
419 | if (page->freelist == freelist_old && |
420 | page->counters == counters_old) { | |
b789ef51 | 421 | page->freelist = freelist_new; |
7d27a04b | 422 | page->counters = counters_new; |
881db7fb | 423 | slab_unlock(page); |
1d07171c | 424 | local_irq_restore(flags); |
6f6528a1 | 425 | return true; |
b789ef51 | 426 | } |
881db7fb | 427 | slab_unlock(page); |
1d07171c | 428 | local_irq_restore(flags); |
b789ef51 CL |
429 | } |
430 | ||
431 | cpu_relax(); | |
432 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
433 | ||
434 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 435 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
436 | #endif |
437 | ||
6f6528a1 | 438 | return false; |
b789ef51 CL |
439 | } |
440 | ||
41ecc55b | 441 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 YZ |
442 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
443 | static DEFINE_SPINLOCK(object_map_lock); | |
444 | ||
5f80b13a CL |
445 | /* |
446 | * Determine a map of object in use on a page. | |
447 | * | |
881db7fb | 448 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
449 | * not vanish from under us. |
450 | */ | |
90e9f6a6 | 451 | static unsigned long *get_map(struct kmem_cache *s, struct page *page) |
31364c2e | 452 | __acquires(&object_map_lock) |
5f80b13a CL |
453 | { |
454 | void *p; | |
455 | void *addr = page_address(page); | |
456 | ||
90e9f6a6 YZ |
457 | VM_BUG_ON(!irqs_disabled()); |
458 | ||
459 | spin_lock(&object_map_lock); | |
460 | ||
461 | bitmap_zero(object_map, page->objects); | |
462 | ||
5f80b13a | 463 | for (p = page->freelist; p; p = get_freepointer(s, p)) |
90e9f6a6 YZ |
464 | set_bit(slab_index(p, s, addr), object_map); |
465 | ||
466 | return object_map; | |
467 | } | |
468 | ||
81aba9e0 | 469 | static void put_map(unsigned long *map) __releases(&object_map_lock) |
90e9f6a6 YZ |
470 | { |
471 | VM_BUG_ON(map != object_map); | |
472 | lockdep_assert_held(&object_map_lock); | |
473 | ||
474 | spin_unlock(&object_map_lock); | |
5f80b13a CL |
475 | } |
476 | ||
870b1fbb | 477 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
478 | { |
479 | if (s->flags & SLAB_RED_ZONE) | |
480 | return s->size - s->red_left_pad; | |
481 | ||
482 | return s->size; | |
483 | } | |
484 | ||
485 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
486 | { | |
487 | if (s->flags & SLAB_RED_ZONE) | |
488 | p -= s->red_left_pad; | |
489 | ||
490 | return p; | |
491 | } | |
492 | ||
41ecc55b CL |
493 | /* |
494 | * Debug settings: | |
495 | */ | |
89d3c87e | 496 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 497 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 498 | #else |
d50112ed | 499 | static slab_flags_t slub_debug; |
f0630fff | 500 | #endif |
41ecc55b CL |
501 | |
502 | static char *slub_debug_slabs; | |
fa5ec8a1 | 503 | static int disable_higher_order_debug; |
41ecc55b | 504 | |
a79316c6 AR |
505 | /* |
506 | * slub is about to manipulate internal object metadata. This memory lies | |
507 | * outside the range of the allocated object, so accessing it would normally | |
508 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
509 | * to tell kasan that these accesses are OK. | |
510 | */ | |
511 | static inline void metadata_access_enable(void) | |
512 | { | |
513 | kasan_disable_current(); | |
514 | } | |
515 | ||
516 | static inline void metadata_access_disable(void) | |
517 | { | |
518 | kasan_enable_current(); | |
519 | } | |
520 | ||
81819f0f CL |
521 | /* |
522 | * Object debugging | |
523 | */ | |
d86bd1be JK |
524 | |
525 | /* Verify that a pointer has an address that is valid within a slab page */ | |
526 | static inline int check_valid_pointer(struct kmem_cache *s, | |
527 | struct page *page, void *object) | |
528 | { | |
529 | void *base; | |
530 | ||
531 | if (!object) | |
532 | return 1; | |
533 | ||
534 | base = page_address(page); | |
338cfaad | 535 | object = kasan_reset_tag(object); |
d86bd1be JK |
536 | object = restore_red_left(s, object); |
537 | if (object < base || object >= base + page->objects * s->size || | |
538 | (object - base) % s->size) { | |
539 | return 0; | |
540 | } | |
541 | ||
542 | return 1; | |
543 | } | |
544 | ||
aa2efd5e DT |
545 | static void print_section(char *level, char *text, u8 *addr, |
546 | unsigned int length) | |
81819f0f | 547 | { |
a79316c6 | 548 | metadata_access_enable(); |
aa2efd5e | 549 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 550 | length, 1); |
a79316c6 | 551 | metadata_access_disable(); |
81819f0f CL |
552 | } |
553 | ||
cbfc35a4 WL |
554 | /* |
555 | * See comment in calculate_sizes(). | |
556 | */ | |
557 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
558 | { | |
559 | return s->offset >= s->inuse; | |
560 | } | |
561 | ||
562 | /* | |
563 | * Return offset of the end of info block which is inuse + free pointer if | |
564 | * not overlapping with object. | |
565 | */ | |
566 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
567 | { | |
568 | if (freeptr_outside_object(s)) | |
569 | return s->inuse + sizeof(void *); | |
570 | else | |
571 | return s->inuse; | |
572 | } | |
573 | ||
81819f0f CL |
574 | static struct track *get_track(struct kmem_cache *s, void *object, |
575 | enum track_item alloc) | |
576 | { | |
577 | struct track *p; | |
578 | ||
cbfc35a4 | 579 | p = object + get_info_end(s); |
81819f0f CL |
580 | |
581 | return p + alloc; | |
582 | } | |
583 | ||
584 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 585 | enum track_item alloc, unsigned long addr) |
81819f0f | 586 | { |
1a00df4a | 587 | struct track *p = get_track(s, object, alloc); |
81819f0f | 588 | |
81819f0f | 589 | if (addr) { |
d6543e39 | 590 | #ifdef CONFIG_STACKTRACE |
79716799 | 591 | unsigned int nr_entries; |
d6543e39 | 592 | |
a79316c6 | 593 | metadata_access_enable(); |
79716799 | 594 | nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); |
a79316c6 | 595 | metadata_access_disable(); |
d6543e39 | 596 | |
79716799 TG |
597 | if (nr_entries < TRACK_ADDRS_COUNT) |
598 | p->addrs[nr_entries] = 0; | |
d6543e39 | 599 | #endif |
81819f0f CL |
600 | p->addr = addr; |
601 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 602 | p->pid = current->pid; |
81819f0f | 603 | p->when = jiffies; |
b8ca7ff7 | 604 | } else { |
81819f0f | 605 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 606 | } |
81819f0f CL |
607 | } |
608 | ||
81819f0f CL |
609 | static void init_tracking(struct kmem_cache *s, void *object) |
610 | { | |
24922684 CL |
611 | if (!(s->flags & SLAB_STORE_USER)) |
612 | return; | |
613 | ||
ce71e27c EGM |
614 | set_track(s, object, TRACK_FREE, 0UL); |
615 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
616 | } |
617 | ||
86609d33 | 618 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
619 | { |
620 | if (!t->addr) | |
621 | return; | |
622 | ||
f9f58285 | 623 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 624 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
625 | #ifdef CONFIG_STACKTRACE |
626 | { | |
627 | int i; | |
628 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
629 | if (t->addrs[i]) | |
f9f58285 | 630 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
631 | else |
632 | break; | |
633 | } | |
634 | #endif | |
24922684 CL |
635 | } |
636 | ||
637 | static void print_tracking(struct kmem_cache *s, void *object) | |
638 | { | |
86609d33 | 639 | unsigned long pr_time = jiffies; |
24922684 CL |
640 | if (!(s->flags & SLAB_STORE_USER)) |
641 | return; | |
642 | ||
86609d33 CP |
643 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
644 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
645 | } |
646 | ||
647 | static void print_page_info(struct page *page) | |
648 | { | |
f9f58285 | 649 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 650 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
651 | |
652 | } | |
653 | ||
654 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
655 | { | |
ecc42fbe | 656 | struct va_format vaf; |
24922684 | 657 | va_list args; |
24922684 CL |
658 | |
659 | va_start(args, fmt); | |
ecc42fbe FF |
660 | vaf.fmt = fmt; |
661 | vaf.va = &args; | |
f9f58285 | 662 | pr_err("=============================================================================\n"); |
ecc42fbe | 663 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 664 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 665 | |
373d4d09 | 666 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 667 | va_end(args); |
81819f0f CL |
668 | } |
669 | ||
24922684 CL |
670 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
671 | { | |
ecc42fbe | 672 | struct va_format vaf; |
24922684 | 673 | va_list args; |
24922684 CL |
674 | |
675 | va_start(args, fmt); | |
ecc42fbe FF |
676 | vaf.fmt = fmt; |
677 | vaf.va = &args; | |
678 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 679 | va_end(args); |
24922684 CL |
680 | } |
681 | ||
52f23478 DZ |
682 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
683 | void *freelist, void *nextfree) | |
684 | { | |
685 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
686 | !check_valid_pointer(s, page, nextfree)) { | |
687 | object_err(s, page, freelist, "Freechain corrupt"); | |
688 | freelist = NULL; | |
689 | slab_fix(s, "Isolate corrupted freechain"); | |
690 | return true; | |
691 | } | |
692 | ||
693 | return false; | |
694 | } | |
695 | ||
24922684 | 696 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
81819f0f CL |
697 | { |
698 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 699 | u8 *addr = page_address(page); |
24922684 CL |
700 | |
701 | print_tracking(s, p); | |
702 | ||
703 | print_page_info(page); | |
704 | ||
f9f58285 FF |
705 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
706 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 707 | |
d86bd1be | 708 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
709 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
710 | s->red_left_pad); | |
d86bd1be | 711 | else if (p > addr + 16) |
aa2efd5e | 712 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 713 | |
aa2efd5e | 714 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 715 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 716 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 717 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 718 | s->inuse - s->object_size); |
81819f0f | 719 | |
cbfc35a4 | 720 | off = get_info_end(s); |
81819f0f | 721 | |
24922684 | 722 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 723 | off += 2 * sizeof(struct track); |
81819f0f | 724 | |
80a9201a AP |
725 | off += kasan_metadata_size(s); |
726 | ||
d86bd1be | 727 | if (off != size_from_object(s)) |
81819f0f | 728 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
729 | print_section(KERN_ERR, "Padding ", p + off, |
730 | size_from_object(s) - off); | |
24922684 CL |
731 | |
732 | dump_stack(); | |
81819f0f CL |
733 | } |
734 | ||
75c66def | 735 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
736 | u8 *object, char *reason) |
737 | { | |
3dc50637 | 738 | slab_bug(s, "%s", reason); |
24922684 | 739 | print_trailer(s, page, object); |
81819f0f CL |
740 | } |
741 | ||
a38965bf | 742 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 743 | const char *fmt, ...) |
81819f0f CL |
744 | { |
745 | va_list args; | |
746 | char buf[100]; | |
747 | ||
24922684 CL |
748 | va_start(args, fmt); |
749 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 750 | va_end(args); |
3dc50637 | 751 | slab_bug(s, "%s", buf); |
24922684 | 752 | print_page_info(page); |
81819f0f CL |
753 | dump_stack(); |
754 | } | |
755 | ||
f7cb1933 | 756 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
757 | { |
758 | u8 *p = object; | |
759 | ||
d86bd1be JK |
760 | if (s->flags & SLAB_RED_ZONE) |
761 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
762 | ||
81819f0f | 763 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
764 | memset(p, POISON_FREE, s->object_size - 1); |
765 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
766 | } |
767 | ||
768 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 769 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
770 | } |
771 | ||
24922684 CL |
772 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
773 | void *from, void *to) | |
774 | { | |
775 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
776 | memset(from, data, to - from); | |
777 | } | |
778 | ||
779 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
780 | u8 *object, char *what, | |
06428780 | 781 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
782 | { |
783 | u8 *fault; | |
784 | u8 *end; | |
e1b70dd1 | 785 | u8 *addr = page_address(page); |
24922684 | 786 | |
a79316c6 | 787 | metadata_access_enable(); |
79824820 | 788 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 789 | metadata_access_disable(); |
24922684 CL |
790 | if (!fault) |
791 | return 1; | |
792 | ||
793 | end = start + bytes; | |
794 | while (end > fault && end[-1] == value) | |
795 | end--; | |
796 | ||
797 | slab_bug(s, "%s overwritten", what); | |
e1b70dd1 MC |
798 | pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
799 | fault, end - 1, fault - addr, | |
800 | fault[0], value); | |
24922684 CL |
801 | print_trailer(s, page, object); |
802 | ||
803 | restore_bytes(s, what, value, fault, end); | |
804 | return 0; | |
81819f0f CL |
805 | } |
806 | ||
81819f0f CL |
807 | /* |
808 | * Object layout: | |
809 | * | |
810 | * object address | |
811 | * Bytes of the object to be managed. | |
812 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 813 | * pointer is at the middle of the object. |
672bba3a | 814 | * |
81819f0f CL |
815 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
816 | * 0xa5 (POISON_END) | |
817 | * | |
3b0efdfa | 818 | * object + s->object_size |
81819f0f | 819 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 820 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 821 | * object_size == inuse. |
672bba3a | 822 | * |
81819f0f CL |
823 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
824 | * 0xcc (RED_ACTIVE) for objects in use. | |
825 | * | |
826 | * object + s->inuse | |
672bba3a CL |
827 | * Meta data starts here. |
828 | * | |
81819f0f CL |
829 | * A. Free pointer (if we cannot overwrite object on free) |
830 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 831 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 832 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
833 | * before the word boundary. |
834 | * | |
835 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
836 | * |
837 | * object + s->size | |
672bba3a | 838 | * Nothing is used beyond s->size. |
81819f0f | 839 | * |
3b0efdfa | 840 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 841 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
842 | * may be used with merged slabcaches. |
843 | */ | |
844 | ||
81819f0f CL |
845 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
846 | { | |
cbfc35a4 | 847 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f CL |
848 | |
849 | if (s->flags & SLAB_STORE_USER) | |
850 | /* We also have user information there */ | |
851 | off += 2 * sizeof(struct track); | |
852 | ||
80a9201a AP |
853 | off += kasan_metadata_size(s); |
854 | ||
d86bd1be | 855 | if (size_from_object(s) == off) |
81819f0f CL |
856 | return 1; |
857 | ||
24922684 | 858 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 859 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
860 | } |
861 | ||
39b26464 | 862 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
863 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
864 | { | |
24922684 CL |
865 | u8 *start; |
866 | u8 *fault; | |
867 | u8 *end; | |
5d682681 | 868 | u8 *pad; |
24922684 CL |
869 | int length; |
870 | int remainder; | |
81819f0f CL |
871 | |
872 | if (!(s->flags & SLAB_POISON)) | |
873 | return 1; | |
874 | ||
a973e9dd | 875 | start = page_address(page); |
a50b854e | 876 | length = page_size(page); |
39b26464 CL |
877 | end = start + length; |
878 | remainder = length % s->size; | |
81819f0f CL |
879 | if (!remainder) |
880 | return 1; | |
881 | ||
5d682681 | 882 | pad = end - remainder; |
a79316c6 | 883 | metadata_access_enable(); |
5d682681 | 884 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 885 | metadata_access_disable(); |
24922684 CL |
886 | if (!fault) |
887 | return 1; | |
888 | while (end > fault && end[-1] == POISON_INUSE) | |
889 | end--; | |
890 | ||
e1b70dd1 MC |
891 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
892 | fault, end - 1, fault - start); | |
5d682681 | 893 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 894 | |
5d682681 | 895 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 896 | return 0; |
81819f0f CL |
897 | } |
898 | ||
899 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 900 | void *object, u8 val) |
81819f0f CL |
901 | { |
902 | u8 *p = object; | |
3b0efdfa | 903 | u8 *endobject = object + s->object_size; |
81819f0f CL |
904 | |
905 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
906 | if (!check_bytes_and_report(s, page, object, "Redzone", |
907 | object - s->red_left_pad, val, s->red_left_pad)) | |
908 | return 0; | |
909 | ||
24922684 | 910 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 911 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 912 | return 0; |
81819f0f | 913 | } else { |
3b0efdfa | 914 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 915 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
916 | endobject, POISON_INUSE, |
917 | s->inuse - s->object_size); | |
3adbefee | 918 | } |
81819f0f CL |
919 | } |
920 | ||
921 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 922 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 923 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 924 | POISON_FREE, s->object_size - 1) || |
24922684 | 925 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 926 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 927 | return 0; |
81819f0f CL |
928 | /* |
929 | * check_pad_bytes cleans up on its own. | |
930 | */ | |
931 | check_pad_bytes(s, page, p); | |
932 | } | |
933 | ||
cbfc35a4 | 934 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
935 | /* |
936 | * Object and freepointer overlap. Cannot check | |
937 | * freepointer while object is allocated. | |
938 | */ | |
939 | return 1; | |
940 | ||
941 | /* Check free pointer validity */ | |
942 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
943 | object_err(s, page, p, "Freepointer corrupt"); | |
944 | /* | |
9f6c708e | 945 | * No choice but to zap it and thus lose the remainder |
81819f0f | 946 | * of the free objects in this slab. May cause |
672bba3a | 947 | * another error because the object count is now wrong. |
81819f0f | 948 | */ |
a973e9dd | 949 | set_freepointer(s, p, NULL); |
81819f0f CL |
950 | return 0; |
951 | } | |
952 | return 1; | |
953 | } | |
954 | ||
955 | static int check_slab(struct kmem_cache *s, struct page *page) | |
956 | { | |
39b26464 CL |
957 | int maxobj; |
958 | ||
81819f0f CL |
959 | VM_BUG_ON(!irqs_disabled()); |
960 | ||
961 | if (!PageSlab(page)) { | |
24922684 | 962 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
963 | return 0; |
964 | } | |
39b26464 | 965 | |
9736d2a9 | 966 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
967 | if (page->objects > maxobj) { |
968 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 969 | page->objects, maxobj); |
39b26464 CL |
970 | return 0; |
971 | } | |
972 | if (page->inuse > page->objects) { | |
24922684 | 973 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 974 | page->inuse, page->objects); |
81819f0f CL |
975 | return 0; |
976 | } | |
977 | /* Slab_pad_check fixes things up after itself */ | |
978 | slab_pad_check(s, page); | |
979 | return 1; | |
980 | } | |
981 | ||
982 | /* | |
672bba3a CL |
983 | * Determine if a certain object on a page is on the freelist. Must hold the |
984 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
985 | */ |
986 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
987 | { | |
988 | int nr = 0; | |
881db7fb | 989 | void *fp; |
81819f0f | 990 | void *object = NULL; |
f6edde9c | 991 | int max_objects; |
81819f0f | 992 | |
881db7fb | 993 | fp = page->freelist; |
39b26464 | 994 | while (fp && nr <= page->objects) { |
81819f0f CL |
995 | if (fp == search) |
996 | return 1; | |
997 | if (!check_valid_pointer(s, page, fp)) { | |
998 | if (object) { | |
999 | object_err(s, page, object, | |
1000 | "Freechain corrupt"); | |
a973e9dd | 1001 | set_freepointer(s, object, NULL); |
81819f0f | 1002 | } else { |
24922684 | 1003 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 1004 | page->freelist = NULL; |
39b26464 | 1005 | page->inuse = page->objects; |
24922684 | 1006 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1007 | return 0; |
1008 | } | |
1009 | break; | |
1010 | } | |
1011 | object = fp; | |
1012 | fp = get_freepointer(s, object); | |
1013 | nr++; | |
1014 | } | |
1015 | ||
9736d2a9 | 1016 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
1017 | if (max_objects > MAX_OBJS_PER_PAGE) |
1018 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
1019 | |
1020 | if (page->objects != max_objects) { | |
756a025f JP |
1021 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
1022 | page->objects, max_objects); | |
224a88be CL |
1023 | page->objects = max_objects; |
1024 | slab_fix(s, "Number of objects adjusted."); | |
1025 | } | |
39b26464 | 1026 | if (page->inuse != page->objects - nr) { |
756a025f JP |
1027 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
1028 | page->inuse, page->objects - nr); | |
39b26464 | 1029 | page->inuse = page->objects - nr; |
24922684 | 1030 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
1031 | } |
1032 | return search == NULL; | |
1033 | } | |
1034 | ||
0121c619 CL |
1035 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
1036 | int alloc) | |
3ec09742 CL |
1037 | { |
1038 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1039 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1040 | s->name, |
1041 | alloc ? "alloc" : "free", | |
1042 | object, page->inuse, | |
1043 | page->freelist); | |
1044 | ||
1045 | if (!alloc) | |
aa2efd5e | 1046 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1047 | s->object_size); |
3ec09742 CL |
1048 | |
1049 | dump_stack(); | |
1050 | } | |
1051 | } | |
1052 | ||
643b1138 | 1053 | /* |
672bba3a | 1054 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1055 | */ |
5cc6eee8 CL |
1056 | static void add_full(struct kmem_cache *s, |
1057 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1058 | { |
5cc6eee8 CL |
1059 | if (!(s->flags & SLAB_STORE_USER)) |
1060 | return; | |
1061 | ||
255d0884 | 1062 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1063 | list_add(&page->slab_list, &n->full); |
643b1138 CL |
1064 | } |
1065 | ||
c65c1877 | 1066 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1067 | { |
643b1138 CL |
1068 | if (!(s->flags & SLAB_STORE_USER)) |
1069 | return; | |
1070 | ||
255d0884 | 1071 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1072 | list_del(&page->slab_list); |
643b1138 CL |
1073 | } |
1074 | ||
0f389ec6 CL |
1075 | /* Tracking of the number of slabs for debugging purposes */ |
1076 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1077 | { | |
1078 | struct kmem_cache_node *n = get_node(s, node); | |
1079 | ||
1080 | return atomic_long_read(&n->nr_slabs); | |
1081 | } | |
1082 | ||
26c02cf0 AB |
1083 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1084 | { | |
1085 | return atomic_long_read(&n->nr_slabs); | |
1086 | } | |
1087 | ||
205ab99d | 1088 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1089 | { |
1090 | struct kmem_cache_node *n = get_node(s, node); | |
1091 | ||
1092 | /* | |
1093 | * May be called early in order to allocate a slab for the | |
1094 | * kmem_cache_node structure. Solve the chicken-egg | |
1095 | * dilemma by deferring the increment of the count during | |
1096 | * bootstrap (see early_kmem_cache_node_alloc). | |
1097 | */ | |
338b2642 | 1098 | if (likely(n)) { |
0f389ec6 | 1099 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1100 | atomic_long_add(objects, &n->total_objects); |
1101 | } | |
0f389ec6 | 1102 | } |
205ab99d | 1103 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1104 | { |
1105 | struct kmem_cache_node *n = get_node(s, node); | |
1106 | ||
1107 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1108 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1109 | } |
1110 | ||
1111 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1112 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1113 | void *object) | |
1114 | { | |
1115 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1116 | return; | |
1117 | ||
f7cb1933 | 1118 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1119 | init_tracking(s, object); |
1120 | } | |
1121 | ||
a50b854e MWO |
1122 | static |
1123 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) | |
a7101224 AK |
1124 | { |
1125 | if (!(s->flags & SLAB_POISON)) | |
1126 | return; | |
1127 | ||
1128 | metadata_access_enable(); | |
a50b854e | 1129 | memset(addr, POISON_INUSE, page_size(page)); |
a7101224 AK |
1130 | metadata_access_disable(); |
1131 | } | |
1132 | ||
becfda68 | 1133 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
278d7756 | 1134 | struct page *page, void *object) |
81819f0f CL |
1135 | { |
1136 | if (!check_slab(s, page)) | |
becfda68 | 1137 | return 0; |
81819f0f | 1138 | |
81819f0f CL |
1139 | if (!check_valid_pointer(s, page, object)) { |
1140 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1141 | return 0; |
81819f0f CL |
1142 | } |
1143 | ||
f7cb1933 | 1144 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1145 | return 0; |
1146 | ||
1147 | return 1; | |
1148 | } | |
1149 | ||
1150 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1151 | struct page *page, | |
1152 | void *object, unsigned long addr) | |
1153 | { | |
1154 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
278d7756 | 1155 | if (!alloc_consistency_checks(s, page, object)) |
becfda68 LA |
1156 | goto bad; |
1157 | } | |
81819f0f | 1158 | |
3ec09742 CL |
1159 | /* Success perform special debug activities for allocs */ |
1160 | if (s->flags & SLAB_STORE_USER) | |
1161 | set_track(s, object, TRACK_ALLOC, addr); | |
1162 | trace(s, page, object, 1); | |
f7cb1933 | 1163 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1164 | return 1; |
3ec09742 | 1165 | |
81819f0f CL |
1166 | bad: |
1167 | if (PageSlab(page)) { | |
1168 | /* | |
1169 | * If this is a slab page then lets do the best we can | |
1170 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1171 | * as used avoids touching the remaining objects. |
81819f0f | 1172 | */ |
24922684 | 1173 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1174 | page->inuse = page->objects; |
a973e9dd | 1175 | page->freelist = NULL; |
81819f0f CL |
1176 | } |
1177 | return 0; | |
1178 | } | |
1179 | ||
becfda68 LA |
1180 | static inline int free_consistency_checks(struct kmem_cache *s, |
1181 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1182 | { |
81819f0f | 1183 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1184 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1185 | return 0; |
81819f0f CL |
1186 | } |
1187 | ||
1188 | if (on_freelist(s, page, object)) { | |
24922684 | 1189 | object_err(s, page, object, "Object already free"); |
becfda68 | 1190 | return 0; |
81819f0f CL |
1191 | } |
1192 | ||
f7cb1933 | 1193 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1194 | return 0; |
81819f0f | 1195 | |
1b4f59e3 | 1196 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1197 | if (!PageSlab(page)) { |
756a025f JP |
1198 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1199 | object); | |
1b4f59e3 | 1200 | } else if (!page->slab_cache) { |
f9f58285 FF |
1201 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1202 | object); | |
70d71228 | 1203 | dump_stack(); |
06428780 | 1204 | } else |
24922684 CL |
1205 | object_err(s, page, object, |
1206 | "page slab pointer corrupt."); | |
becfda68 LA |
1207 | return 0; |
1208 | } | |
1209 | return 1; | |
1210 | } | |
1211 | ||
1212 | /* Supports checking bulk free of a constructed freelist */ | |
1213 | static noinline int free_debug_processing( | |
1214 | struct kmem_cache *s, struct page *page, | |
1215 | void *head, void *tail, int bulk_cnt, | |
1216 | unsigned long addr) | |
1217 | { | |
1218 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1219 | void *object = head; | |
1220 | int cnt = 0; | |
1221 | unsigned long uninitialized_var(flags); | |
1222 | int ret = 0; | |
1223 | ||
1224 | spin_lock_irqsave(&n->list_lock, flags); | |
1225 | slab_lock(page); | |
1226 | ||
1227 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1228 | if (!check_slab(s, page)) | |
1229 | goto out; | |
1230 | } | |
1231 | ||
1232 | next_object: | |
1233 | cnt++; | |
1234 | ||
1235 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1236 | if (!free_consistency_checks(s, page, object, addr)) | |
1237 | goto out; | |
81819f0f | 1238 | } |
3ec09742 | 1239 | |
3ec09742 CL |
1240 | if (s->flags & SLAB_STORE_USER) |
1241 | set_track(s, object, TRACK_FREE, addr); | |
1242 | trace(s, page, object, 0); | |
81084651 | 1243 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1244 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1245 | |
1246 | /* Reached end of constructed freelist yet? */ | |
1247 | if (object != tail) { | |
1248 | object = get_freepointer(s, object); | |
1249 | goto next_object; | |
1250 | } | |
804aa132 LA |
1251 | ret = 1; |
1252 | ||
5c2e4bbb | 1253 | out: |
81084651 JDB |
1254 | if (cnt != bulk_cnt) |
1255 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1256 | bulk_cnt, cnt); | |
1257 | ||
881db7fb | 1258 | slab_unlock(page); |
282acb43 | 1259 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1260 | if (!ret) |
1261 | slab_fix(s, "Object at 0x%p not freed", object); | |
1262 | return ret; | |
81819f0f CL |
1263 | } |
1264 | ||
41ecc55b CL |
1265 | static int __init setup_slub_debug(char *str) |
1266 | { | |
f0630fff CL |
1267 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1268 | if (*str++ != '=' || !*str) | |
1269 | /* | |
1270 | * No options specified. Switch on full debugging. | |
1271 | */ | |
1272 | goto out; | |
1273 | ||
1274 | if (*str == ',') | |
1275 | /* | |
1276 | * No options but restriction on slabs. This means full | |
1277 | * debugging for slabs matching a pattern. | |
1278 | */ | |
1279 | goto check_slabs; | |
1280 | ||
1281 | slub_debug = 0; | |
1282 | if (*str == '-') | |
1283 | /* | |
1284 | * Switch off all debugging measures. | |
1285 | */ | |
1286 | goto out; | |
1287 | ||
1288 | /* | |
1289 | * Determine which debug features should be switched on | |
1290 | */ | |
06428780 | 1291 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1292 | switch (tolower(*str)) { |
1293 | case 'f': | |
becfda68 | 1294 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1295 | break; |
1296 | case 'z': | |
1297 | slub_debug |= SLAB_RED_ZONE; | |
1298 | break; | |
1299 | case 'p': | |
1300 | slub_debug |= SLAB_POISON; | |
1301 | break; | |
1302 | case 'u': | |
1303 | slub_debug |= SLAB_STORE_USER; | |
1304 | break; | |
1305 | case 't': | |
1306 | slub_debug |= SLAB_TRACE; | |
1307 | break; | |
4c13dd3b DM |
1308 | case 'a': |
1309 | slub_debug |= SLAB_FAILSLAB; | |
1310 | break; | |
08303a73 CA |
1311 | case 'o': |
1312 | /* | |
1313 | * Avoid enabling debugging on caches if its minimum | |
1314 | * order would increase as a result. | |
1315 | */ | |
1316 | disable_higher_order_debug = 1; | |
1317 | break; | |
f0630fff | 1318 | default: |
f9f58285 FF |
1319 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1320 | *str); | |
f0630fff | 1321 | } |
41ecc55b CL |
1322 | } |
1323 | ||
f0630fff | 1324 | check_slabs: |
41ecc55b CL |
1325 | if (*str == ',') |
1326 | slub_debug_slabs = str + 1; | |
f0630fff | 1327 | out: |
6471384a AP |
1328 | if ((static_branch_unlikely(&init_on_alloc) || |
1329 | static_branch_unlikely(&init_on_free)) && | |
1330 | (slub_debug & SLAB_POISON)) | |
1331 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1332 | return 1; |
1333 | } | |
1334 | ||
1335 | __setup("slub_debug", setup_slub_debug); | |
1336 | ||
c5fd3ca0 AT |
1337 | /* |
1338 | * kmem_cache_flags - apply debugging options to the cache | |
1339 | * @object_size: the size of an object without meta data | |
1340 | * @flags: flags to set | |
1341 | * @name: name of the cache | |
1342 | * @ctor: constructor function | |
1343 | * | |
1344 | * Debug option(s) are applied to @flags. In addition to the debug | |
1345 | * option(s), if a slab name (or multiple) is specified i.e. | |
1346 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1347 | * then only the select slabs will receive the debug option(s). | |
1348 | */ | |
0293d1fd | 1349 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1350 | slab_flags_t flags, const char *name, |
51cc5068 | 1351 | void (*ctor)(void *)) |
41ecc55b | 1352 | { |
c5fd3ca0 AT |
1353 | char *iter; |
1354 | size_t len; | |
1355 | ||
1356 | /* If slub_debug = 0, it folds into the if conditional. */ | |
1357 | if (!slub_debug_slabs) | |
1358 | return flags | slub_debug; | |
1359 | ||
1360 | len = strlen(name); | |
1361 | iter = slub_debug_slabs; | |
1362 | while (*iter) { | |
1363 | char *end, *glob; | |
1364 | size_t cmplen; | |
1365 | ||
9cf3a8d8 | 1366 | end = strchrnul(iter, ','); |
c5fd3ca0 AT |
1367 | |
1368 | glob = strnchr(iter, end - iter, '*'); | |
1369 | if (glob) | |
1370 | cmplen = glob - iter; | |
1371 | else | |
1372 | cmplen = max_t(size_t, len, (end - iter)); | |
1373 | ||
1374 | if (!strncmp(name, iter, cmplen)) { | |
1375 | flags |= slub_debug; | |
1376 | break; | |
1377 | } | |
1378 | ||
1379 | if (!*end) | |
1380 | break; | |
1381 | iter = end + 1; | |
1382 | } | |
ba0268a8 CL |
1383 | |
1384 | return flags; | |
41ecc55b | 1385 | } |
b4a64718 | 1386 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1387 | static inline void setup_object_debug(struct kmem_cache *s, |
1388 | struct page *page, void *object) {} | |
a50b854e MWO |
1389 | static inline |
1390 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} | |
41ecc55b | 1391 | |
3ec09742 | 1392 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1393 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1394 | |
282acb43 | 1395 | static inline int free_debug_processing( |
81084651 JDB |
1396 | struct kmem_cache *s, struct page *page, |
1397 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1398 | unsigned long addr) { return 0; } |
41ecc55b | 1399 | |
41ecc55b CL |
1400 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1401 | { return 1; } | |
1402 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1403 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1404 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1405 | struct page *page) {} | |
c65c1877 PZ |
1406 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1407 | struct page *page) {} | |
0293d1fd | 1408 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1409 | slab_flags_t flags, const char *name, |
51cc5068 | 1410 | void (*ctor)(void *)) |
ba0268a8 CL |
1411 | { |
1412 | return flags; | |
1413 | } | |
41ecc55b | 1414 | #define slub_debug 0 |
0f389ec6 | 1415 | |
fdaa45e9 IM |
1416 | #define disable_higher_order_debug 0 |
1417 | ||
0f389ec6 CL |
1418 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1419 | { return 0; } | |
26c02cf0 AB |
1420 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1421 | { return 0; } | |
205ab99d CL |
1422 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1423 | int objects) {} | |
1424 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1425 | int objects) {} | |
7d550c56 | 1426 | |
52f23478 DZ |
1427 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, |
1428 | void *freelist, void *nextfree) | |
1429 | { | |
1430 | return false; | |
1431 | } | |
02e72cc6 AR |
1432 | #endif /* CONFIG_SLUB_DEBUG */ |
1433 | ||
1434 | /* | |
1435 | * Hooks for other subsystems that check memory allocations. In a typical | |
1436 | * production configuration these hooks all should produce no code at all. | |
1437 | */ | |
0116523c | 1438 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1439 | { |
53128245 | 1440 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1441 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1442 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1443 | return ptr; |
d56791b3 RB |
1444 | } |
1445 | ||
ee3ce779 | 1446 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1447 | { |
1448 | kmemleak_free(x); | |
ee3ce779 | 1449 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1450 | } |
1451 | ||
c3895391 | 1452 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1453 | { |
1454 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1455 | |
02e72cc6 AR |
1456 | /* |
1457 | * Trouble is that we may no longer disable interrupts in the fast path | |
1458 | * So in order to make the debug calls that expect irqs to be | |
1459 | * disabled we need to disable interrupts temporarily. | |
1460 | */ | |
4675ff05 | 1461 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1462 | { |
1463 | unsigned long flags; | |
1464 | ||
1465 | local_irq_save(flags); | |
02e72cc6 AR |
1466 | debug_check_no_locks_freed(x, s->object_size); |
1467 | local_irq_restore(flags); | |
1468 | } | |
1469 | #endif | |
1470 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1471 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1472 | |
c3895391 AK |
1473 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1474 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1475 | } |
205ab99d | 1476 | |
c3895391 AK |
1477 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1478 | void **head, void **tail) | |
81084651 | 1479 | { |
6471384a AP |
1480 | |
1481 | void *object; | |
1482 | void *next = *head; | |
1483 | void *old_tail = *tail ? *tail : *head; | |
1484 | int rsize; | |
1485 | ||
aea4df4c LA |
1486 | /* Head and tail of the reconstructed freelist */ |
1487 | *head = NULL; | |
1488 | *tail = NULL; | |
1b7e816f | 1489 | |
aea4df4c LA |
1490 | do { |
1491 | object = next; | |
1492 | next = get_freepointer(s, object); | |
1493 | ||
1494 | if (slab_want_init_on_free(s)) { | |
6471384a AP |
1495 | /* |
1496 | * Clear the object and the metadata, but don't touch | |
1497 | * the redzone. | |
1498 | */ | |
1499 | memset(object, 0, s->object_size); | |
1500 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | |
1501 | : 0; | |
1502 | memset((char *)object + s->inuse, 0, | |
1503 | s->size - s->inuse - rsize); | |
81084651 | 1504 | |
aea4df4c | 1505 | } |
c3895391 AK |
1506 | /* If object's reuse doesn't have to be delayed */ |
1507 | if (!slab_free_hook(s, object)) { | |
1508 | /* Move object to the new freelist */ | |
1509 | set_freepointer(s, object, *head); | |
1510 | *head = object; | |
1511 | if (!*tail) | |
1512 | *tail = object; | |
1513 | } | |
1514 | } while (object != old_tail); | |
1515 | ||
1516 | if (*head == *tail) | |
1517 | *tail = NULL; | |
1518 | ||
1519 | return *head != NULL; | |
81084651 JDB |
1520 | } |
1521 | ||
4d176711 | 1522 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1523 | void *object) |
1524 | { | |
1525 | setup_object_debug(s, page, object); | |
4d176711 | 1526 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1527 | if (unlikely(s->ctor)) { |
1528 | kasan_unpoison_object_data(s, object); | |
1529 | s->ctor(object); | |
1530 | kasan_poison_object_data(s, object); | |
1531 | } | |
4d176711 | 1532 | return object; |
588f8ba9 TG |
1533 | } |
1534 | ||
81819f0f CL |
1535 | /* |
1536 | * Slab allocation and freeing | |
1537 | */ | |
5dfb4175 VD |
1538 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1539 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1540 | { |
5dfb4175 | 1541 | struct page *page; |
19af27af | 1542 | unsigned int order = oo_order(oo); |
65c3376a | 1543 | |
2154a336 | 1544 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1545 | page = alloc_pages(flags, order); |
65c3376a | 1546 | else |
96db800f | 1547 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1548 | |
6cea1d56 | 1549 | if (page && charge_slab_page(page, flags, order, s)) { |
f3ccb2c4 VD |
1550 | __free_pages(page, order); |
1551 | page = NULL; | |
1552 | } | |
5dfb4175 VD |
1553 | |
1554 | return page; | |
65c3376a CL |
1555 | } |
1556 | ||
210e7a43 TG |
1557 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1558 | /* Pre-initialize the random sequence cache */ | |
1559 | static int init_cache_random_seq(struct kmem_cache *s) | |
1560 | { | |
19af27af | 1561 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1562 | int err; |
210e7a43 | 1563 | |
a810007a SR |
1564 | /* Bailout if already initialised */ |
1565 | if (s->random_seq) | |
1566 | return 0; | |
1567 | ||
210e7a43 TG |
1568 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1569 | if (err) { | |
1570 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1571 | s->name); | |
1572 | return err; | |
1573 | } | |
1574 | ||
1575 | /* Transform to an offset on the set of pages */ | |
1576 | if (s->random_seq) { | |
19af27af AD |
1577 | unsigned int i; |
1578 | ||
210e7a43 TG |
1579 | for (i = 0; i < count; i++) |
1580 | s->random_seq[i] *= s->size; | |
1581 | } | |
1582 | return 0; | |
1583 | } | |
1584 | ||
1585 | /* Initialize each random sequence freelist per cache */ | |
1586 | static void __init init_freelist_randomization(void) | |
1587 | { | |
1588 | struct kmem_cache *s; | |
1589 | ||
1590 | mutex_lock(&slab_mutex); | |
1591 | ||
1592 | list_for_each_entry(s, &slab_caches, list) | |
1593 | init_cache_random_seq(s); | |
1594 | ||
1595 | mutex_unlock(&slab_mutex); | |
1596 | } | |
1597 | ||
1598 | /* Get the next entry on the pre-computed freelist randomized */ | |
1599 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1600 | unsigned long *pos, void *start, | |
1601 | unsigned long page_limit, | |
1602 | unsigned long freelist_count) | |
1603 | { | |
1604 | unsigned int idx; | |
1605 | ||
1606 | /* | |
1607 | * If the target page allocation failed, the number of objects on the | |
1608 | * page might be smaller than the usual size defined by the cache. | |
1609 | */ | |
1610 | do { | |
1611 | idx = s->random_seq[*pos]; | |
1612 | *pos += 1; | |
1613 | if (*pos >= freelist_count) | |
1614 | *pos = 0; | |
1615 | } while (unlikely(idx >= page_limit)); | |
1616 | ||
1617 | return (char *)start + idx; | |
1618 | } | |
1619 | ||
1620 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1621 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1622 | { | |
1623 | void *start; | |
1624 | void *cur; | |
1625 | void *next; | |
1626 | unsigned long idx, pos, page_limit, freelist_count; | |
1627 | ||
1628 | if (page->objects < 2 || !s->random_seq) | |
1629 | return false; | |
1630 | ||
1631 | freelist_count = oo_objects(s->oo); | |
1632 | pos = get_random_int() % freelist_count; | |
1633 | ||
1634 | page_limit = page->objects * s->size; | |
1635 | start = fixup_red_left(s, page_address(page)); | |
1636 | ||
1637 | /* First entry is used as the base of the freelist */ | |
1638 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1639 | freelist_count); | |
4d176711 | 1640 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1641 | page->freelist = cur; |
1642 | ||
1643 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1644 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1645 | freelist_count); | |
4d176711 | 1646 | next = setup_object(s, page, next); |
210e7a43 TG |
1647 | set_freepointer(s, cur, next); |
1648 | cur = next; | |
1649 | } | |
210e7a43 TG |
1650 | set_freepointer(s, cur, NULL); |
1651 | ||
1652 | return true; | |
1653 | } | |
1654 | #else | |
1655 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1656 | { | |
1657 | return 0; | |
1658 | } | |
1659 | static inline void init_freelist_randomization(void) { } | |
1660 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1661 | { | |
1662 | return false; | |
1663 | } | |
1664 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1665 | ||
81819f0f CL |
1666 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1667 | { | |
06428780 | 1668 | struct page *page; |
834f3d11 | 1669 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1670 | gfp_t alloc_gfp; |
4d176711 | 1671 | void *start, *p, *next; |
a50b854e | 1672 | int idx; |
210e7a43 | 1673 | bool shuffle; |
81819f0f | 1674 | |
7e0528da CL |
1675 | flags &= gfp_allowed_mask; |
1676 | ||
d0164adc | 1677 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1678 | local_irq_enable(); |
1679 | ||
b7a49f0d | 1680 | flags |= s->allocflags; |
e12ba74d | 1681 | |
ba52270d PE |
1682 | /* |
1683 | * Let the initial higher-order allocation fail under memory pressure | |
1684 | * so we fall-back to the minimum order allocation. | |
1685 | */ | |
1686 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1687 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1688 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1689 | |
5dfb4175 | 1690 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1691 | if (unlikely(!page)) { |
1692 | oo = s->min; | |
80c3a998 | 1693 | alloc_gfp = flags; |
65c3376a CL |
1694 | /* |
1695 | * Allocation may have failed due to fragmentation. | |
1696 | * Try a lower order alloc if possible | |
1697 | */ | |
5dfb4175 | 1698 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1699 | if (unlikely(!page)) |
1700 | goto out; | |
1701 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1702 | } |
5a896d9e | 1703 | |
834f3d11 | 1704 | page->objects = oo_objects(oo); |
81819f0f | 1705 | |
1b4f59e3 | 1706 | page->slab_cache = s; |
c03f94cc | 1707 | __SetPageSlab(page); |
2f064f34 | 1708 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1709 | SetPageSlabPfmemalloc(page); |
81819f0f | 1710 | |
a7101224 | 1711 | kasan_poison_slab(page); |
81819f0f | 1712 | |
a7101224 | 1713 | start = page_address(page); |
81819f0f | 1714 | |
a50b854e | 1715 | setup_page_debug(s, page, start); |
0316bec2 | 1716 | |
210e7a43 TG |
1717 | shuffle = shuffle_freelist(s, page); |
1718 | ||
1719 | if (!shuffle) { | |
4d176711 AK |
1720 | start = fixup_red_left(s, start); |
1721 | start = setup_object(s, page, start); | |
1722 | page->freelist = start; | |
18e50661 AK |
1723 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { |
1724 | next = p + s->size; | |
1725 | next = setup_object(s, page, next); | |
1726 | set_freepointer(s, p, next); | |
1727 | p = next; | |
1728 | } | |
1729 | set_freepointer(s, p, NULL); | |
81819f0f | 1730 | } |
81819f0f | 1731 | |
e6e82ea1 | 1732 | page->inuse = page->objects; |
8cb0a506 | 1733 | page->frozen = 1; |
588f8ba9 | 1734 | |
81819f0f | 1735 | out: |
d0164adc | 1736 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1737 | local_irq_disable(); |
1738 | if (!page) | |
1739 | return NULL; | |
1740 | ||
588f8ba9 TG |
1741 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1742 | ||
81819f0f CL |
1743 | return page; |
1744 | } | |
1745 | ||
588f8ba9 TG |
1746 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1747 | { | |
1748 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1749 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1750 | flags &= ~GFP_SLAB_BUG_MASK; |
1751 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1752 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1753 | dump_stack(); |
588f8ba9 TG |
1754 | } |
1755 | ||
1756 | return allocate_slab(s, | |
1757 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1758 | } | |
1759 | ||
81819f0f CL |
1760 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1761 | { | |
834f3d11 CL |
1762 | int order = compound_order(page); |
1763 | int pages = 1 << order; | |
81819f0f | 1764 | |
becfda68 | 1765 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1766 | void *p; |
1767 | ||
1768 | slab_pad_check(s, page); | |
224a88be CL |
1769 | for_each_object(p, s, page_address(page), |
1770 | page->objects) | |
f7cb1933 | 1771 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1772 | } |
1773 | ||
072bb0aa | 1774 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1775 | __ClearPageSlab(page); |
1f458cbf | 1776 | |
d4fc5069 | 1777 | page->mapping = NULL; |
1eb5ac64 NP |
1778 | if (current->reclaim_state) |
1779 | current->reclaim_state->reclaimed_slab += pages; | |
6cea1d56 | 1780 | uncharge_slab_page(page, order, s); |
27ee57c9 | 1781 | __free_pages(page, order); |
81819f0f CL |
1782 | } |
1783 | ||
1784 | static void rcu_free_slab(struct rcu_head *h) | |
1785 | { | |
bf68c214 | 1786 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1787 | |
1b4f59e3 | 1788 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1789 | } |
1790 | ||
1791 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1792 | { | |
5f0d5a3a | 1793 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1794 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1795 | } else |
1796 | __free_slab(s, page); | |
1797 | } | |
1798 | ||
1799 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1800 | { | |
205ab99d | 1801 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1802 | free_slab(s, page); |
1803 | } | |
1804 | ||
1805 | /* | |
5cc6eee8 | 1806 | * Management of partially allocated slabs. |
81819f0f | 1807 | */ |
1e4dd946 SR |
1808 | static inline void |
1809 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1810 | { |
e95eed57 | 1811 | n->nr_partial++; |
136333d1 | 1812 | if (tail == DEACTIVATE_TO_TAIL) |
916ac052 | 1813 | list_add_tail(&page->slab_list, &n->partial); |
7c2e132c | 1814 | else |
916ac052 | 1815 | list_add(&page->slab_list, &n->partial); |
81819f0f CL |
1816 | } |
1817 | ||
1e4dd946 SR |
1818 | static inline void add_partial(struct kmem_cache_node *n, |
1819 | struct page *page, int tail) | |
62e346a8 | 1820 | { |
c65c1877 | 1821 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1822 | __add_partial(n, page, tail); |
1823 | } | |
c65c1877 | 1824 | |
1e4dd946 SR |
1825 | static inline void remove_partial(struct kmem_cache_node *n, |
1826 | struct page *page) | |
1827 | { | |
1828 | lockdep_assert_held(&n->list_lock); | |
916ac052 | 1829 | list_del(&page->slab_list); |
52b4b950 | 1830 | n->nr_partial--; |
1e4dd946 SR |
1831 | } |
1832 | ||
81819f0f | 1833 | /* |
7ced3719 CL |
1834 | * Remove slab from the partial list, freeze it and |
1835 | * return the pointer to the freelist. | |
81819f0f | 1836 | * |
497b66f2 | 1837 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1838 | */ |
497b66f2 | 1839 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1840 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1841 | int mode, int *objects) |
81819f0f | 1842 | { |
2cfb7455 CL |
1843 | void *freelist; |
1844 | unsigned long counters; | |
1845 | struct page new; | |
1846 | ||
c65c1877 PZ |
1847 | lockdep_assert_held(&n->list_lock); |
1848 | ||
2cfb7455 CL |
1849 | /* |
1850 | * Zap the freelist and set the frozen bit. | |
1851 | * The old freelist is the list of objects for the | |
1852 | * per cpu allocation list. | |
1853 | */ | |
7ced3719 CL |
1854 | freelist = page->freelist; |
1855 | counters = page->counters; | |
1856 | new.counters = counters; | |
633b0764 | 1857 | *objects = new.objects - new.inuse; |
23910c50 | 1858 | if (mode) { |
7ced3719 | 1859 | new.inuse = page->objects; |
23910c50 PE |
1860 | new.freelist = NULL; |
1861 | } else { | |
1862 | new.freelist = freelist; | |
1863 | } | |
2cfb7455 | 1864 | |
a0132ac0 | 1865 | VM_BUG_ON(new.frozen); |
7ced3719 | 1866 | new.frozen = 1; |
2cfb7455 | 1867 | |
7ced3719 | 1868 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1869 | freelist, counters, |
02d7633f | 1870 | new.freelist, new.counters, |
7ced3719 | 1871 | "acquire_slab")) |
7ced3719 | 1872 | return NULL; |
2cfb7455 CL |
1873 | |
1874 | remove_partial(n, page); | |
7ced3719 | 1875 | WARN_ON(!freelist); |
49e22585 | 1876 | return freelist; |
81819f0f CL |
1877 | } |
1878 | ||
633b0764 | 1879 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1880 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1881 | |
81819f0f | 1882 | /* |
672bba3a | 1883 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1884 | */ |
8ba00bb6 JK |
1885 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1886 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1887 | { |
49e22585 CL |
1888 | struct page *page, *page2; |
1889 | void *object = NULL; | |
e5d9998f | 1890 | unsigned int available = 0; |
633b0764 | 1891 | int objects; |
81819f0f CL |
1892 | |
1893 | /* | |
1894 | * Racy check. If we mistakenly see no partial slabs then we | |
1895 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1896 | * partial slab and there is none available then get_partials() |
1897 | * will return NULL. | |
81819f0f CL |
1898 | */ |
1899 | if (!n || !n->nr_partial) | |
1900 | return NULL; | |
1901 | ||
1902 | spin_lock(&n->list_lock); | |
916ac052 | 1903 | list_for_each_entry_safe(page, page2, &n->partial, slab_list) { |
8ba00bb6 | 1904 | void *t; |
49e22585 | 1905 | |
8ba00bb6 JK |
1906 | if (!pfmemalloc_match(page, flags)) |
1907 | continue; | |
1908 | ||
633b0764 | 1909 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1910 | if (!t) |
1911 | break; | |
1912 | ||
633b0764 | 1913 | available += objects; |
12d79634 | 1914 | if (!object) { |
49e22585 | 1915 | c->page = page; |
49e22585 | 1916 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1917 | object = t; |
49e22585 | 1918 | } else { |
633b0764 | 1919 | put_cpu_partial(s, page, 0); |
8028dcea | 1920 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1921 | } |
345c905d | 1922 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1923 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1924 | break; |
1925 | ||
497b66f2 | 1926 | } |
81819f0f | 1927 | spin_unlock(&n->list_lock); |
497b66f2 | 1928 | return object; |
81819f0f CL |
1929 | } |
1930 | ||
1931 | /* | |
672bba3a | 1932 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1933 | */ |
de3ec035 | 1934 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1935 | struct kmem_cache_cpu *c) |
81819f0f CL |
1936 | { |
1937 | #ifdef CONFIG_NUMA | |
1938 | struct zonelist *zonelist; | |
dd1a239f | 1939 | struct zoneref *z; |
54a6eb5c | 1940 | struct zone *zone; |
97a225e6 | 1941 | enum zone_type highest_zoneidx = gfp_zone(flags); |
497b66f2 | 1942 | void *object; |
cc9a6c87 | 1943 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1944 | |
1945 | /* | |
672bba3a CL |
1946 | * The defrag ratio allows a configuration of the tradeoffs between |
1947 | * inter node defragmentation and node local allocations. A lower | |
1948 | * defrag_ratio increases the tendency to do local allocations | |
1949 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1950 | * |
672bba3a CL |
1951 | * If the defrag_ratio is set to 0 then kmalloc() always |
1952 | * returns node local objects. If the ratio is higher then kmalloc() | |
1953 | * may return off node objects because partial slabs are obtained | |
1954 | * from other nodes and filled up. | |
81819f0f | 1955 | * |
43efd3ea LP |
1956 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1957 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1958 | * allocation will first attempt to defrag slab caches on other nodes. | |
1959 | * This means scanning over all nodes to look for partial slabs which | |
1960 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1961 | * with available objects. |
81819f0f | 1962 | */ |
9824601e CL |
1963 | if (!s->remote_node_defrag_ratio || |
1964 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1965 | return NULL; |
1966 | ||
cc9a6c87 | 1967 | do { |
d26914d1 | 1968 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1969 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
97a225e6 | 1970 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
1971 | struct kmem_cache_node *n; |
1972 | ||
1973 | n = get_node(s, zone_to_nid(zone)); | |
1974 | ||
dee2f8aa | 1975 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1976 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1977 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1978 | if (object) { |
1979 | /* | |
d26914d1 MG |
1980 | * Don't check read_mems_allowed_retry() |
1981 | * here - if mems_allowed was updated in | |
1982 | * parallel, that was a harmless race | |
1983 | * between allocation and the cpuset | |
1984 | * update | |
cc9a6c87 | 1985 | */ |
cc9a6c87 MG |
1986 | return object; |
1987 | } | |
c0ff7453 | 1988 | } |
81819f0f | 1989 | } |
d26914d1 | 1990 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 1991 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
1992 | return NULL; |
1993 | } | |
1994 | ||
1995 | /* | |
1996 | * Get a partial page, lock it and return it. | |
1997 | */ | |
497b66f2 | 1998 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1999 | struct kmem_cache_cpu *c) |
81819f0f | 2000 | { |
497b66f2 | 2001 | void *object; |
a561ce00 JK |
2002 | int searchnode = node; |
2003 | ||
2004 | if (node == NUMA_NO_NODE) | |
2005 | searchnode = numa_mem_id(); | |
81819f0f | 2006 | |
8ba00bb6 | 2007 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
2008 | if (object || node != NUMA_NO_NODE) |
2009 | return object; | |
81819f0f | 2010 | |
acd19fd1 | 2011 | return get_any_partial(s, flags, c); |
81819f0f CL |
2012 | } |
2013 | ||
923717cb | 2014 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2015 | /* |
0d645ed1 | 2016 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2017 | * during cmpxchg. The transactions start with the cpu number and are then |
2018 | * incremented by CONFIG_NR_CPUS. | |
2019 | */ | |
2020 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2021 | #else | |
2022 | /* | |
2023 | * No preemption supported therefore also no need to check for | |
2024 | * different cpus. | |
2025 | */ | |
2026 | #define TID_STEP 1 | |
2027 | #endif | |
2028 | ||
2029 | static inline unsigned long next_tid(unsigned long tid) | |
2030 | { | |
2031 | return tid + TID_STEP; | |
2032 | } | |
2033 | ||
9d5f0be0 | 2034 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2035 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2036 | { | |
2037 | return tid % TID_STEP; | |
2038 | } | |
2039 | ||
2040 | static inline unsigned long tid_to_event(unsigned long tid) | |
2041 | { | |
2042 | return tid / TID_STEP; | |
2043 | } | |
9d5f0be0 | 2044 | #endif |
8a5ec0ba CL |
2045 | |
2046 | static inline unsigned int init_tid(int cpu) | |
2047 | { | |
2048 | return cpu; | |
2049 | } | |
2050 | ||
2051 | static inline void note_cmpxchg_failure(const char *n, | |
2052 | const struct kmem_cache *s, unsigned long tid) | |
2053 | { | |
2054 | #ifdef SLUB_DEBUG_CMPXCHG | |
2055 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2056 | ||
f9f58285 | 2057 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2058 | |
923717cb | 2059 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2060 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2061 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2062 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2063 | else | |
2064 | #endif | |
2065 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2066 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2067 | tid_to_event(tid), tid_to_event(actual_tid)); |
2068 | else | |
f9f58285 | 2069 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2070 | actual_tid, tid, next_tid(tid)); |
2071 | #endif | |
4fdccdfb | 2072 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2073 | } |
2074 | ||
788e1aad | 2075 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2076 | { |
8a5ec0ba CL |
2077 | int cpu; |
2078 | ||
2079 | for_each_possible_cpu(cpu) | |
2080 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2081 | } |
2cfb7455 | 2082 | |
81819f0f CL |
2083 | /* |
2084 | * Remove the cpu slab | |
2085 | */ | |
d0e0ac97 | 2086 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2087 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2088 | { |
2cfb7455 | 2089 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2090 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2091 | int lock = 0; | |
2092 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2093 | void *nextfree; |
136333d1 | 2094 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2095 | struct page new; |
2096 | struct page old; | |
2097 | ||
2098 | if (page->freelist) { | |
84e554e6 | 2099 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2100 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2101 | } |
2102 | ||
894b8788 | 2103 | /* |
2cfb7455 CL |
2104 | * Stage one: Free all available per cpu objects back |
2105 | * to the page freelist while it is still frozen. Leave the | |
2106 | * last one. | |
2107 | * | |
2108 | * There is no need to take the list->lock because the page | |
2109 | * is still frozen. | |
2110 | */ | |
2111 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2112 | void *prior; | |
2113 | unsigned long counters; | |
2114 | ||
52f23478 DZ |
2115 | /* |
2116 | * If 'nextfree' is invalid, it is possible that the object at | |
2117 | * 'freelist' is already corrupted. So isolate all objects | |
2118 | * starting at 'freelist'. | |
2119 | */ | |
2120 | if (freelist_corrupted(s, page, freelist, nextfree)) | |
2121 | break; | |
2122 | ||
2cfb7455 CL |
2123 | do { |
2124 | prior = page->freelist; | |
2125 | counters = page->counters; | |
2126 | set_freepointer(s, freelist, prior); | |
2127 | new.counters = counters; | |
2128 | new.inuse--; | |
a0132ac0 | 2129 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2130 | |
1d07171c | 2131 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2132 | prior, counters, |
2133 | freelist, new.counters, | |
2134 | "drain percpu freelist")); | |
2135 | ||
2136 | freelist = nextfree; | |
2137 | } | |
2138 | ||
894b8788 | 2139 | /* |
2cfb7455 CL |
2140 | * Stage two: Ensure that the page is unfrozen while the |
2141 | * list presence reflects the actual number of objects | |
2142 | * during unfreeze. | |
2143 | * | |
2144 | * We setup the list membership and then perform a cmpxchg | |
2145 | * with the count. If there is a mismatch then the page | |
2146 | * is not unfrozen but the page is on the wrong list. | |
2147 | * | |
2148 | * Then we restart the process which may have to remove | |
2149 | * the page from the list that we just put it on again | |
2150 | * because the number of objects in the slab may have | |
2151 | * changed. | |
894b8788 | 2152 | */ |
2cfb7455 | 2153 | redo: |
894b8788 | 2154 | |
2cfb7455 CL |
2155 | old.freelist = page->freelist; |
2156 | old.counters = page->counters; | |
a0132ac0 | 2157 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2158 | |
2cfb7455 CL |
2159 | /* Determine target state of the slab */ |
2160 | new.counters = old.counters; | |
2161 | if (freelist) { | |
2162 | new.inuse--; | |
2163 | set_freepointer(s, freelist, old.freelist); | |
2164 | new.freelist = freelist; | |
2165 | } else | |
2166 | new.freelist = old.freelist; | |
2167 | ||
2168 | new.frozen = 0; | |
2169 | ||
8a5b20ae | 2170 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2171 | m = M_FREE; |
2172 | else if (new.freelist) { | |
2173 | m = M_PARTIAL; | |
2174 | if (!lock) { | |
2175 | lock = 1; | |
2176 | /* | |
8bb4e7a2 | 2177 | * Taking the spinlock removes the possibility |
2cfb7455 CL |
2178 | * that acquire_slab() will see a slab page that |
2179 | * is frozen | |
2180 | */ | |
2181 | spin_lock(&n->list_lock); | |
2182 | } | |
2183 | } else { | |
2184 | m = M_FULL; | |
2185 | if (kmem_cache_debug(s) && !lock) { | |
2186 | lock = 1; | |
2187 | /* | |
2188 | * This also ensures that the scanning of full | |
2189 | * slabs from diagnostic functions will not see | |
2190 | * any frozen slabs. | |
2191 | */ | |
2192 | spin_lock(&n->list_lock); | |
2193 | } | |
2194 | } | |
2195 | ||
2196 | if (l != m) { | |
2cfb7455 | 2197 | if (l == M_PARTIAL) |
2cfb7455 | 2198 | remove_partial(n, page); |
2cfb7455 | 2199 | else if (l == M_FULL) |
c65c1877 | 2200 | remove_full(s, n, page); |
2cfb7455 | 2201 | |
88349a28 | 2202 | if (m == M_PARTIAL) |
2cfb7455 | 2203 | add_partial(n, page, tail); |
88349a28 | 2204 | else if (m == M_FULL) |
2cfb7455 | 2205 | add_full(s, n, page); |
2cfb7455 CL |
2206 | } |
2207 | ||
2208 | l = m; | |
1d07171c | 2209 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2210 | old.freelist, old.counters, |
2211 | new.freelist, new.counters, | |
2212 | "unfreezing slab")) | |
2213 | goto redo; | |
2214 | ||
2cfb7455 CL |
2215 | if (lock) |
2216 | spin_unlock(&n->list_lock); | |
2217 | ||
88349a28 WY |
2218 | if (m == M_PARTIAL) |
2219 | stat(s, tail); | |
2220 | else if (m == M_FULL) | |
2221 | stat(s, DEACTIVATE_FULL); | |
2222 | else if (m == M_FREE) { | |
2cfb7455 CL |
2223 | stat(s, DEACTIVATE_EMPTY); |
2224 | discard_slab(s, page); | |
2225 | stat(s, FREE_SLAB); | |
894b8788 | 2226 | } |
d4ff6d35 WY |
2227 | |
2228 | c->page = NULL; | |
2229 | c->freelist = NULL; | |
81819f0f CL |
2230 | } |
2231 | ||
d24ac77f JK |
2232 | /* |
2233 | * Unfreeze all the cpu partial slabs. | |
2234 | * | |
59a09917 CL |
2235 | * This function must be called with interrupts disabled |
2236 | * for the cpu using c (or some other guarantee must be there | |
2237 | * to guarantee no concurrent accesses). | |
d24ac77f | 2238 | */ |
59a09917 CL |
2239 | static void unfreeze_partials(struct kmem_cache *s, |
2240 | struct kmem_cache_cpu *c) | |
49e22585 | 2241 | { |
345c905d | 2242 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2243 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2244 | struct page *page, *discard_page = NULL; |
49e22585 | 2245 | |
4c7ba22e | 2246 | while ((page = slub_percpu_partial(c))) { |
49e22585 CL |
2247 | struct page new; |
2248 | struct page old; | |
2249 | ||
4c7ba22e | 2250 | slub_set_percpu_partial(c, page); |
43d77867 JK |
2251 | |
2252 | n2 = get_node(s, page_to_nid(page)); | |
2253 | if (n != n2) { | |
2254 | if (n) | |
2255 | spin_unlock(&n->list_lock); | |
2256 | ||
2257 | n = n2; | |
2258 | spin_lock(&n->list_lock); | |
2259 | } | |
49e22585 CL |
2260 | |
2261 | do { | |
2262 | ||
2263 | old.freelist = page->freelist; | |
2264 | old.counters = page->counters; | |
a0132ac0 | 2265 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2266 | |
2267 | new.counters = old.counters; | |
2268 | new.freelist = old.freelist; | |
2269 | ||
2270 | new.frozen = 0; | |
2271 | ||
d24ac77f | 2272 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2273 | old.freelist, old.counters, |
2274 | new.freelist, new.counters, | |
2275 | "unfreezing slab")); | |
2276 | ||
8a5b20ae | 2277 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2278 | page->next = discard_page; |
2279 | discard_page = page; | |
43d77867 JK |
2280 | } else { |
2281 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2282 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2283 | } |
2284 | } | |
2285 | ||
2286 | if (n) | |
2287 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2288 | |
2289 | while (discard_page) { | |
2290 | page = discard_page; | |
2291 | discard_page = discard_page->next; | |
2292 | ||
2293 | stat(s, DEACTIVATE_EMPTY); | |
2294 | discard_slab(s, page); | |
2295 | stat(s, FREE_SLAB); | |
2296 | } | |
6dfd1b65 | 2297 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2298 | } |
2299 | ||
2300 | /* | |
9234bae9 WY |
2301 | * Put a page that was just frozen (in __slab_free|get_partial_node) into a |
2302 | * partial page slot if available. | |
49e22585 CL |
2303 | * |
2304 | * If we did not find a slot then simply move all the partials to the | |
2305 | * per node partial list. | |
2306 | */ | |
633b0764 | 2307 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2308 | { |
345c905d | 2309 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2310 | struct page *oldpage; |
2311 | int pages; | |
2312 | int pobjects; | |
2313 | ||
d6e0b7fa | 2314 | preempt_disable(); |
49e22585 CL |
2315 | do { |
2316 | pages = 0; | |
2317 | pobjects = 0; | |
2318 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2319 | ||
2320 | if (oldpage) { | |
2321 | pobjects = oldpage->pobjects; | |
2322 | pages = oldpage->pages; | |
bbd4e305 | 2323 | if (drain && pobjects > slub_cpu_partial(s)) { |
49e22585 CL |
2324 | unsigned long flags; |
2325 | /* | |
2326 | * partial array is full. Move the existing | |
2327 | * set to the per node partial list. | |
2328 | */ | |
2329 | local_irq_save(flags); | |
59a09917 | 2330 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2331 | local_irq_restore(flags); |
e24fc410 | 2332 | oldpage = NULL; |
49e22585 CL |
2333 | pobjects = 0; |
2334 | pages = 0; | |
8028dcea | 2335 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2336 | } |
2337 | } | |
2338 | ||
2339 | pages++; | |
2340 | pobjects += page->objects - page->inuse; | |
2341 | ||
2342 | page->pages = pages; | |
2343 | page->pobjects = pobjects; | |
2344 | page->next = oldpage; | |
2345 | ||
d0e0ac97 CG |
2346 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2347 | != oldpage); | |
bbd4e305 | 2348 | if (unlikely(!slub_cpu_partial(s))) { |
d6e0b7fa VD |
2349 | unsigned long flags; |
2350 | ||
2351 | local_irq_save(flags); | |
2352 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2353 | local_irq_restore(flags); | |
2354 | } | |
2355 | preempt_enable(); | |
6dfd1b65 | 2356 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2357 | } |
2358 | ||
dfb4f096 | 2359 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2360 | { |
84e554e6 | 2361 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2362 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2363 | |
2364 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2365 | } |
2366 | ||
2367 | /* | |
2368 | * Flush cpu slab. | |
6446faa2 | 2369 | * |
81819f0f CL |
2370 | * Called from IPI handler with interrupts disabled. |
2371 | */ | |
0c710013 | 2372 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2373 | { |
9dfc6e68 | 2374 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2375 | |
1265ef2d WY |
2376 | if (c->page) |
2377 | flush_slab(s, c); | |
49e22585 | 2378 | |
1265ef2d | 2379 | unfreeze_partials(s, c); |
81819f0f CL |
2380 | } |
2381 | ||
2382 | static void flush_cpu_slab(void *d) | |
2383 | { | |
2384 | struct kmem_cache *s = d; | |
81819f0f | 2385 | |
dfb4f096 | 2386 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2387 | } |
2388 | ||
a8364d55 GBY |
2389 | static bool has_cpu_slab(int cpu, void *info) |
2390 | { | |
2391 | struct kmem_cache *s = info; | |
2392 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2393 | ||
a93cf07b | 2394 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2395 | } |
2396 | ||
81819f0f CL |
2397 | static void flush_all(struct kmem_cache *s) |
2398 | { | |
cb923159 | 2399 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); |
81819f0f CL |
2400 | } |
2401 | ||
a96a87bf SAS |
2402 | /* |
2403 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2404 | * necessary. | |
2405 | */ | |
2406 | static int slub_cpu_dead(unsigned int cpu) | |
2407 | { | |
2408 | struct kmem_cache *s; | |
2409 | unsigned long flags; | |
2410 | ||
2411 | mutex_lock(&slab_mutex); | |
2412 | list_for_each_entry(s, &slab_caches, list) { | |
2413 | local_irq_save(flags); | |
2414 | __flush_cpu_slab(s, cpu); | |
2415 | local_irq_restore(flags); | |
2416 | } | |
2417 | mutex_unlock(&slab_mutex); | |
2418 | return 0; | |
2419 | } | |
2420 | ||
dfb4f096 CL |
2421 | /* |
2422 | * Check if the objects in a per cpu structure fit numa | |
2423 | * locality expectations. | |
2424 | */ | |
57d437d2 | 2425 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2426 | { |
2427 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2428 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2429 | return 0; |
2430 | #endif | |
2431 | return 1; | |
2432 | } | |
2433 | ||
9a02d699 | 2434 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2435 | static int count_free(struct page *page) |
2436 | { | |
2437 | return page->objects - page->inuse; | |
2438 | } | |
2439 | ||
9a02d699 DR |
2440 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2441 | { | |
2442 | return atomic_long_read(&n->total_objects); | |
2443 | } | |
2444 | #endif /* CONFIG_SLUB_DEBUG */ | |
2445 | ||
2446 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2447 | static unsigned long count_partial(struct kmem_cache_node *n, |
2448 | int (*get_count)(struct page *)) | |
2449 | { | |
2450 | unsigned long flags; | |
2451 | unsigned long x = 0; | |
2452 | struct page *page; | |
2453 | ||
2454 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 2455 | list_for_each_entry(page, &n->partial, slab_list) |
781b2ba6 PE |
2456 | x += get_count(page); |
2457 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2458 | return x; | |
2459 | } | |
9a02d699 | 2460 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2461 | |
781b2ba6 PE |
2462 | static noinline void |
2463 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2464 | { | |
9a02d699 DR |
2465 | #ifdef CONFIG_SLUB_DEBUG |
2466 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2467 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2468 | int node; |
fa45dc25 | 2469 | struct kmem_cache_node *n; |
781b2ba6 | 2470 | |
9a02d699 DR |
2471 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2472 | return; | |
2473 | ||
5b3810e5 VB |
2474 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2475 | nid, gfpflags, &gfpflags); | |
19af27af | 2476 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2477 | s->name, s->object_size, s->size, oo_order(s->oo), |
2478 | oo_order(s->min)); | |
781b2ba6 | 2479 | |
3b0efdfa | 2480 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2481 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2482 | s->name); | |
fa5ec8a1 | 2483 | |
fa45dc25 | 2484 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2485 | unsigned long nr_slabs; |
2486 | unsigned long nr_objs; | |
2487 | unsigned long nr_free; | |
2488 | ||
26c02cf0 AB |
2489 | nr_free = count_partial(n, count_free); |
2490 | nr_slabs = node_nr_slabs(n); | |
2491 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2492 | |
f9f58285 | 2493 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2494 | node, nr_slabs, nr_objs, nr_free); |
2495 | } | |
9a02d699 | 2496 | #endif |
781b2ba6 PE |
2497 | } |
2498 | ||
497b66f2 CL |
2499 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2500 | int node, struct kmem_cache_cpu **pc) | |
2501 | { | |
6faa6833 | 2502 | void *freelist; |
188fd063 CL |
2503 | struct kmem_cache_cpu *c = *pc; |
2504 | struct page *page; | |
497b66f2 | 2505 | |
128227e7 MW |
2506 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2507 | ||
188fd063 | 2508 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2509 | |
188fd063 CL |
2510 | if (freelist) |
2511 | return freelist; | |
2512 | ||
2513 | page = new_slab(s, flags, node); | |
497b66f2 | 2514 | if (page) { |
7c8e0181 | 2515 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2516 | if (c->page) |
2517 | flush_slab(s, c); | |
2518 | ||
2519 | /* | |
2520 | * No other reference to the page yet so we can | |
2521 | * muck around with it freely without cmpxchg | |
2522 | */ | |
6faa6833 | 2523 | freelist = page->freelist; |
497b66f2 CL |
2524 | page->freelist = NULL; |
2525 | ||
2526 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2527 | c->page = page; |
2528 | *pc = c; | |
edde82b6 | 2529 | } |
497b66f2 | 2530 | |
6faa6833 | 2531 | return freelist; |
497b66f2 CL |
2532 | } |
2533 | ||
072bb0aa MG |
2534 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2535 | { | |
2536 | if (unlikely(PageSlabPfmemalloc(page))) | |
2537 | return gfp_pfmemalloc_allowed(gfpflags); | |
2538 | ||
2539 | return true; | |
2540 | } | |
2541 | ||
213eeb9f | 2542 | /* |
d0e0ac97 CG |
2543 | * Check the page->freelist of a page and either transfer the freelist to the |
2544 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2545 | * |
2546 | * The page is still frozen if the return value is not NULL. | |
2547 | * | |
2548 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2549 | * |
2550 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2551 | */ |
2552 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2553 | { | |
2554 | struct page new; | |
2555 | unsigned long counters; | |
2556 | void *freelist; | |
2557 | ||
2558 | do { | |
2559 | freelist = page->freelist; | |
2560 | counters = page->counters; | |
6faa6833 | 2561 | |
213eeb9f | 2562 | new.counters = counters; |
a0132ac0 | 2563 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2564 | |
2565 | new.inuse = page->objects; | |
2566 | new.frozen = freelist != NULL; | |
2567 | ||
d24ac77f | 2568 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2569 | freelist, counters, |
2570 | NULL, new.counters, | |
2571 | "get_freelist")); | |
2572 | ||
2573 | return freelist; | |
2574 | } | |
2575 | ||
81819f0f | 2576 | /* |
894b8788 CL |
2577 | * Slow path. The lockless freelist is empty or we need to perform |
2578 | * debugging duties. | |
2579 | * | |
894b8788 CL |
2580 | * Processing is still very fast if new objects have been freed to the |
2581 | * regular freelist. In that case we simply take over the regular freelist | |
2582 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2583 | * |
894b8788 CL |
2584 | * If that is not working then we fall back to the partial lists. We take the |
2585 | * first element of the freelist as the object to allocate now and move the | |
2586 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2587 | * |
894b8788 | 2588 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2589 | * we need to allocate a new slab. This is the slowest path since it involves |
2590 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2591 | * |
2592 | * Version of __slab_alloc to use when we know that interrupts are | |
2593 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2594 | */ |
a380a3c7 | 2595 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2596 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2597 | { |
6faa6833 | 2598 | void *freelist; |
f6e7def7 | 2599 | struct page *page; |
81819f0f | 2600 | |
f6e7def7 | 2601 | page = c->page; |
0715e6c5 VB |
2602 | if (!page) { |
2603 | /* | |
2604 | * if the node is not online or has no normal memory, just | |
2605 | * ignore the node constraint | |
2606 | */ | |
2607 | if (unlikely(node != NUMA_NO_NODE && | |
2608 | !node_state(node, N_NORMAL_MEMORY))) | |
2609 | node = NUMA_NO_NODE; | |
81819f0f | 2610 | goto new_slab; |
0715e6c5 | 2611 | } |
49e22585 | 2612 | redo: |
6faa6833 | 2613 | |
57d437d2 | 2614 | if (unlikely(!node_match(page, node))) { |
0715e6c5 VB |
2615 | /* |
2616 | * same as above but node_match() being false already | |
2617 | * implies node != NUMA_NO_NODE | |
2618 | */ | |
2619 | if (!node_state(node, N_NORMAL_MEMORY)) { | |
2620 | node = NUMA_NO_NODE; | |
2621 | goto redo; | |
2622 | } else { | |
a561ce00 | 2623 | stat(s, ALLOC_NODE_MISMATCH); |
d4ff6d35 | 2624 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2625 | goto new_slab; |
2626 | } | |
fc59c053 | 2627 | } |
6446faa2 | 2628 | |
072bb0aa MG |
2629 | /* |
2630 | * By rights, we should be searching for a slab page that was | |
2631 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2632 | * information when the page leaves the per-cpu allocator | |
2633 | */ | |
2634 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2635 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2636 | goto new_slab; |
2637 | } | |
2638 | ||
73736e03 | 2639 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2640 | freelist = c->freelist; |
2641 | if (freelist) | |
73736e03 | 2642 | goto load_freelist; |
03e404af | 2643 | |
f6e7def7 | 2644 | freelist = get_freelist(s, page); |
6446faa2 | 2645 | |
6faa6833 | 2646 | if (!freelist) { |
03e404af CL |
2647 | c->page = NULL; |
2648 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2649 | goto new_slab; |
03e404af | 2650 | } |
6446faa2 | 2651 | |
84e554e6 | 2652 | stat(s, ALLOC_REFILL); |
6446faa2 | 2653 | |
894b8788 | 2654 | load_freelist: |
507effea CL |
2655 | /* |
2656 | * freelist is pointing to the list of objects to be used. | |
2657 | * page is pointing to the page from which the objects are obtained. | |
2658 | * That page must be frozen for per cpu allocations to work. | |
2659 | */ | |
a0132ac0 | 2660 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2661 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2662 | c->tid = next_tid(c->tid); |
6faa6833 | 2663 | return freelist; |
81819f0f | 2664 | |
81819f0f | 2665 | new_slab: |
2cfb7455 | 2666 | |
a93cf07b WY |
2667 | if (slub_percpu_partial(c)) { |
2668 | page = c->page = slub_percpu_partial(c); | |
2669 | slub_set_percpu_partial(c, page); | |
49e22585 | 2670 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2671 | goto redo; |
81819f0f CL |
2672 | } |
2673 | ||
188fd063 | 2674 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2675 | |
f4697436 | 2676 | if (unlikely(!freelist)) { |
9a02d699 | 2677 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2678 | return NULL; |
81819f0f | 2679 | } |
2cfb7455 | 2680 | |
f6e7def7 | 2681 | page = c->page; |
5091b74a | 2682 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2683 | goto load_freelist; |
2cfb7455 | 2684 | |
497b66f2 | 2685 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2686 | if (kmem_cache_debug(s) && |
2687 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2688 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2689 | |
d4ff6d35 | 2690 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2691 | return freelist; |
894b8788 CL |
2692 | } |
2693 | ||
a380a3c7 CL |
2694 | /* |
2695 | * Another one that disabled interrupt and compensates for possible | |
2696 | * cpu changes by refetching the per cpu area pointer. | |
2697 | */ | |
2698 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2699 | unsigned long addr, struct kmem_cache_cpu *c) | |
2700 | { | |
2701 | void *p; | |
2702 | unsigned long flags; | |
2703 | ||
2704 | local_irq_save(flags); | |
923717cb | 2705 | #ifdef CONFIG_PREEMPTION |
a380a3c7 CL |
2706 | /* |
2707 | * We may have been preempted and rescheduled on a different | |
2708 | * cpu before disabling interrupts. Need to reload cpu area | |
2709 | * pointer. | |
2710 | */ | |
2711 | c = this_cpu_ptr(s->cpu_slab); | |
2712 | #endif | |
2713 | ||
2714 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2715 | local_irq_restore(flags); | |
2716 | return p; | |
2717 | } | |
2718 | ||
0f181f9f AP |
2719 | /* |
2720 | * If the object has been wiped upon free, make sure it's fully initialized by | |
2721 | * zeroing out freelist pointer. | |
2722 | */ | |
2723 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
2724 | void *obj) | |
2725 | { | |
2726 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
2727 | memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); | |
2728 | } | |
2729 | ||
894b8788 CL |
2730 | /* |
2731 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2732 | * have the fastpath folded into their functions. So no function call | |
2733 | * overhead for requests that can be satisfied on the fastpath. | |
2734 | * | |
2735 | * The fastpath works by first checking if the lockless freelist can be used. | |
2736 | * If not then __slab_alloc is called for slow processing. | |
2737 | * | |
2738 | * Otherwise we can simply pick the next object from the lockless free list. | |
2739 | */ | |
2b847c3c | 2740 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2741 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2742 | { |
03ec0ed5 | 2743 | void *object; |
dfb4f096 | 2744 | struct kmem_cache_cpu *c; |
57d437d2 | 2745 | struct page *page; |
8a5ec0ba | 2746 | unsigned long tid; |
1f84260c | 2747 | |
8135be5a VD |
2748 | s = slab_pre_alloc_hook(s, gfpflags); |
2749 | if (!s) | |
773ff60e | 2750 | return NULL; |
8a5ec0ba | 2751 | redo: |
8a5ec0ba CL |
2752 | /* |
2753 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2754 | * enabled. We may switch back and forth between cpus while | |
2755 | * reading from one cpu area. That does not matter as long | |
2756 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2757 | * |
9aabf810 | 2758 | * We should guarantee that tid and kmem_cache are retrieved on |
923717cb | 2759 | * the same cpu. It could be different if CONFIG_PREEMPTION so we need |
9aabf810 | 2760 | * to check if it is matched or not. |
8a5ec0ba | 2761 | */ |
9aabf810 JK |
2762 | do { |
2763 | tid = this_cpu_read(s->cpu_slab->tid); | |
2764 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 2765 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 2766 | unlikely(tid != READ_ONCE(c->tid))); |
9aabf810 JK |
2767 | |
2768 | /* | |
2769 | * Irqless object alloc/free algorithm used here depends on sequence | |
2770 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2771 | * on c to guarantee that object and page associated with previous tid | |
2772 | * won't be used with current tid. If we fetch tid first, object and | |
2773 | * page could be one associated with next tid and our alloc/free | |
2774 | * request will be failed. In this case, we will retry. So, no problem. | |
2775 | */ | |
2776 | barrier(); | |
8a5ec0ba | 2777 | |
8a5ec0ba CL |
2778 | /* |
2779 | * The transaction ids are globally unique per cpu and per operation on | |
2780 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2781 | * occurs on the right processor and that there was no operation on the | |
2782 | * linked list in between. | |
2783 | */ | |
8a5ec0ba | 2784 | |
9dfc6e68 | 2785 | object = c->freelist; |
57d437d2 | 2786 | page = c->page; |
8eae1492 | 2787 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2788 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2789 | stat(s, ALLOC_SLOWPATH); |
2790 | } else { | |
0ad9500e ED |
2791 | void *next_object = get_freepointer_safe(s, object); |
2792 | ||
8a5ec0ba | 2793 | /* |
25985edc | 2794 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2795 | * operation and if we are on the right processor. |
2796 | * | |
d0e0ac97 CG |
2797 | * The cmpxchg does the following atomically (without lock |
2798 | * semantics!) | |
8a5ec0ba CL |
2799 | * 1. Relocate first pointer to the current per cpu area. |
2800 | * 2. Verify that tid and freelist have not been changed | |
2801 | * 3. If they were not changed replace tid and freelist | |
2802 | * | |
d0e0ac97 CG |
2803 | * Since this is without lock semantics the protection is only |
2804 | * against code executing on this cpu *not* from access by | |
2805 | * other cpus. | |
8a5ec0ba | 2806 | */ |
933393f5 | 2807 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2808 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2809 | object, tid, | |
0ad9500e | 2810 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2811 | |
2812 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2813 | goto redo; | |
2814 | } | |
0ad9500e | 2815 | prefetch_freepointer(s, next_object); |
84e554e6 | 2816 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2817 | } |
0f181f9f AP |
2818 | |
2819 | maybe_wipe_obj_freeptr(s, object); | |
8a5ec0ba | 2820 | |
6471384a | 2821 | if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) |
3b0efdfa | 2822 | memset(object, 0, s->object_size); |
d07dbea4 | 2823 | |
03ec0ed5 | 2824 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2825 | |
894b8788 | 2826 | return object; |
81819f0f CL |
2827 | } |
2828 | ||
2b847c3c EG |
2829 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2830 | gfp_t gfpflags, unsigned long addr) | |
2831 | { | |
2832 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2833 | } | |
2834 | ||
81819f0f CL |
2835 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2836 | { | |
2b847c3c | 2837 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2838 | |
d0e0ac97 CG |
2839 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2840 | s->size, gfpflags); | |
5b882be4 EGM |
2841 | |
2842 | return ret; | |
81819f0f CL |
2843 | } |
2844 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2845 | ||
0f24f128 | 2846 | #ifdef CONFIG_TRACING |
4a92379b RK |
2847 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2848 | { | |
2b847c3c | 2849 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2850 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 2851 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2852 | return ret; |
2853 | } | |
2854 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2855 | #endif |
2856 | ||
81819f0f CL |
2857 | #ifdef CONFIG_NUMA |
2858 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2859 | { | |
2b847c3c | 2860 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2861 | |
ca2b84cb | 2862 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2863 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2864 | |
2865 | return ret; | |
81819f0f CL |
2866 | } |
2867 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2868 | |
0f24f128 | 2869 | #ifdef CONFIG_TRACING |
4a92379b | 2870 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2871 | gfp_t gfpflags, |
4a92379b | 2872 | int node, size_t size) |
5b882be4 | 2873 | { |
2b847c3c | 2874 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2875 | |
2876 | trace_kmalloc_node(_RET_IP_, ret, | |
2877 | size, s->size, gfpflags, node); | |
0316bec2 | 2878 | |
0116523c | 2879 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2880 | return ret; |
5b882be4 | 2881 | } |
4a92379b | 2882 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2883 | #endif |
6dfd1b65 | 2884 | #endif /* CONFIG_NUMA */ |
5b882be4 | 2885 | |
81819f0f | 2886 | /* |
94e4d712 | 2887 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2888 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2889 | * |
894b8788 CL |
2890 | * So we still attempt to reduce cache line usage. Just take the slab |
2891 | * lock and free the item. If there is no additional partial page | |
2892 | * handling required then we can return immediately. | |
81819f0f | 2893 | */ |
894b8788 | 2894 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2895 | void *head, void *tail, int cnt, |
2896 | unsigned long addr) | |
2897 | ||
81819f0f CL |
2898 | { |
2899 | void *prior; | |
2cfb7455 | 2900 | int was_frozen; |
2cfb7455 CL |
2901 | struct page new; |
2902 | unsigned long counters; | |
2903 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2904 | unsigned long uninitialized_var(flags); |
81819f0f | 2905 | |
8a5ec0ba | 2906 | stat(s, FREE_SLOWPATH); |
81819f0f | 2907 | |
19c7ff9e | 2908 | if (kmem_cache_debug(s) && |
282acb43 | 2909 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2910 | return; |
6446faa2 | 2911 | |
2cfb7455 | 2912 | do { |
837d678d JK |
2913 | if (unlikely(n)) { |
2914 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2915 | n = NULL; | |
2916 | } | |
2cfb7455 CL |
2917 | prior = page->freelist; |
2918 | counters = page->counters; | |
81084651 | 2919 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2920 | new.counters = counters; |
2921 | was_frozen = new.frozen; | |
81084651 | 2922 | new.inuse -= cnt; |
837d678d | 2923 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2924 | |
c65c1877 | 2925 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2926 | |
2927 | /* | |
d0e0ac97 CG |
2928 | * Slab was on no list before and will be |
2929 | * partially empty | |
2930 | * We can defer the list move and instead | |
2931 | * freeze it. | |
49e22585 CL |
2932 | */ |
2933 | new.frozen = 1; | |
2934 | ||
c65c1877 | 2935 | } else { /* Needs to be taken off a list */ |
49e22585 | 2936 | |
b455def2 | 2937 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2938 | /* |
2939 | * Speculatively acquire the list_lock. | |
2940 | * If the cmpxchg does not succeed then we may | |
2941 | * drop the list_lock without any processing. | |
2942 | * | |
2943 | * Otherwise the list_lock will synchronize with | |
2944 | * other processors updating the list of slabs. | |
2945 | */ | |
2946 | spin_lock_irqsave(&n->list_lock, flags); | |
2947 | ||
2948 | } | |
2cfb7455 | 2949 | } |
81819f0f | 2950 | |
2cfb7455 CL |
2951 | } while (!cmpxchg_double_slab(s, page, |
2952 | prior, counters, | |
81084651 | 2953 | head, new.counters, |
2cfb7455 | 2954 | "__slab_free")); |
81819f0f | 2955 | |
2cfb7455 | 2956 | if (likely(!n)) { |
49e22585 CL |
2957 | |
2958 | /* | |
2959 | * If we just froze the page then put it onto the | |
2960 | * per cpu partial list. | |
2961 | */ | |
8028dcea | 2962 | if (new.frozen && !was_frozen) { |
49e22585 | 2963 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2964 | stat(s, CPU_PARTIAL_FREE); |
2965 | } | |
49e22585 | 2966 | /* |
2cfb7455 CL |
2967 | * The list lock was not taken therefore no list |
2968 | * activity can be necessary. | |
2969 | */ | |
b455def2 L |
2970 | if (was_frozen) |
2971 | stat(s, FREE_FROZEN); | |
2972 | return; | |
2973 | } | |
81819f0f | 2974 | |
8a5b20ae | 2975 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2976 | goto slab_empty; |
2977 | ||
81819f0f | 2978 | /* |
837d678d JK |
2979 | * Objects left in the slab. If it was not on the partial list before |
2980 | * then add it. | |
81819f0f | 2981 | */ |
345c905d | 2982 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
a4d3f891 | 2983 | remove_full(s, n, page); |
837d678d JK |
2984 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2985 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2986 | } |
80f08c19 | 2987 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2988 | return; |
2989 | ||
2990 | slab_empty: | |
a973e9dd | 2991 | if (prior) { |
81819f0f | 2992 | /* |
6fbabb20 | 2993 | * Slab on the partial list. |
81819f0f | 2994 | */ |
5cc6eee8 | 2995 | remove_partial(n, page); |
84e554e6 | 2996 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2997 | } else { |
6fbabb20 | 2998 | /* Slab must be on the full list */ |
c65c1877 PZ |
2999 | remove_full(s, n, page); |
3000 | } | |
2cfb7455 | 3001 | |
80f08c19 | 3002 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 3003 | stat(s, FREE_SLAB); |
81819f0f | 3004 | discard_slab(s, page); |
81819f0f CL |
3005 | } |
3006 | ||
894b8788 CL |
3007 | /* |
3008 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
3009 | * can perform fastpath freeing without additional function calls. | |
3010 | * | |
3011 | * The fastpath is only possible if we are freeing to the current cpu slab | |
3012 | * of this processor. This typically the case if we have just allocated | |
3013 | * the item before. | |
3014 | * | |
3015 | * If fastpath is not possible then fall back to __slab_free where we deal | |
3016 | * with all sorts of special processing. | |
81084651 JDB |
3017 | * |
3018 | * Bulk free of a freelist with several objects (all pointing to the | |
3019 | * same page) possible by specifying head and tail ptr, plus objects | |
3020 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 3021 | */ |
80a9201a AP |
3022 | static __always_inline void do_slab_free(struct kmem_cache *s, |
3023 | struct page *page, void *head, void *tail, | |
3024 | int cnt, unsigned long addr) | |
894b8788 | 3025 | { |
81084651 | 3026 | void *tail_obj = tail ? : head; |
dfb4f096 | 3027 | struct kmem_cache_cpu *c; |
8a5ec0ba | 3028 | unsigned long tid; |
8a5ec0ba CL |
3029 | redo: |
3030 | /* | |
3031 | * Determine the currently cpus per cpu slab. | |
3032 | * The cpu may change afterward. However that does not matter since | |
3033 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 3034 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 3035 | */ |
9aabf810 JK |
3036 | do { |
3037 | tid = this_cpu_read(s->cpu_slab->tid); | |
3038 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 3039 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 3040 | unlikely(tid != READ_ONCE(c->tid))); |
c016b0bd | 3041 | |
9aabf810 JK |
3042 | /* Same with comment on barrier() in slab_alloc_node() */ |
3043 | barrier(); | |
c016b0bd | 3044 | |
442b06bc | 3045 | if (likely(page == c->page)) { |
5076190d LT |
3046 | void **freelist = READ_ONCE(c->freelist); |
3047 | ||
3048 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3049 | |
933393f5 | 3050 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3051 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3052 | freelist, tid, |
81084651 | 3053 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3054 | |
3055 | note_cmpxchg_failure("slab_free", s, tid); | |
3056 | goto redo; | |
3057 | } | |
84e554e6 | 3058 | stat(s, FREE_FASTPATH); |
894b8788 | 3059 | } else |
81084651 | 3060 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 3061 | |
894b8788 CL |
3062 | } |
3063 | ||
80a9201a AP |
3064 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
3065 | void *head, void *tail, int cnt, | |
3066 | unsigned long addr) | |
3067 | { | |
80a9201a | 3068 | /* |
c3895391 AK |
3069 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3070 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3071 | */ |
c3895391 AK |
3072 | if (slab_free_freelist_hook(s, &head, &tail)) |
3073 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
3074 | } |
3075 | ||
2bd926b4 | 3076 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3077 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3078 | { | |
3079 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3080 | } | |
3081 | #endif | |
3082 | ||
81819f0f CL |
3083 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3084 | { | |
b9ce5ef4 GC |
3085 | s = cache_from_obj(s, x); |
3086 | if (!s) | |
79576102 | 3087 | return; |
81084651 | 3088 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3089 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3090 | } |
3091 | EXPORT_SYMBOL(kmem_cache_free); | |
3092 | ||
d0ecd894 | 3093 | struct detached_freelist { |
fbd02630 | 3094 | struct page *page; |
d0ecd894 JDB |
3095 | void *tail; |
3096 | void *freelist; | |
3097 | int cnt; | |
376bf125 | 3098 | struct kmem_cache *s; |
d0ecd894 | 3099 | }; |
fbd02630 | 3100 | |
d0ecd894 JDB |
3101 | /* |
3102 | * This function progressively scans the array with free objects (with | |
3103 | * a limited look ahead) and extract objects belonging to the same | |
3104 | * page. It builds a detached freelist directly within the given | |
3105 | * page/objects. This can happen without any need for | |
3106 | * synchronization, because the objects are owned by running process. | |
3107 | * The freelist is build up as a single linked list in the objects. | |
3108 | * The idea is, that this detached freelist can then be bulk | |
3109 | * transferred to the real freelist(s), but only requiring a single | |
3110 | * synchronization primitive. Look ahead in the array is limited due | |
3111 | * to performance reasons. | |
3112 | */ | |
376bf125 JDB |
3113 | static inline |
3114 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3115 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3116 | { |
3117 | size_t first_skipped_index = 0; | |
3118 | int lookahead = 3; | |
3119 | void *object; | |
ca257195 | 3120 | struct page *page; |
fbd02630 | 3121 | |
d0ecd894 JDB |
3122 | /* Always re-init detached_freelist */ |
3123 | df->page = NULL; | |
fbd02630 | 3124 | |
d0ecd894 JDB |
3125 | do { |
3126 | object = p[--size]; | |
ca257195 | 3127 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3128 | } while (!object && size); |
3eed034d | 3129 | |
d0ecd894 JDB |
3130 | if (!object) |
3131 | return 0; | |
fbd02630 | 3132 | |
ca257195 JDB |
3133 | page = virt_to_head_page(object); |
3134 | if (!s) { | |
3135 | /* Handle kalloc'ed objects */ | |
3136 | if (unlikely(!PageSlab(page))) { | |
3137 | BUG_ON(!PageCompound(page)); | |
3138 | kfree_hook(object); | |
4949148a | 3139 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3140 | p[size] = NULL; /* mark object processed */ |
3141 | return size; | |
3142 | } | |
3143 | /* Derive kmem_cache from object */ | |
3144 | df->s = page->slab_cache; | |
3145 | } else { | |
3146 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3147 | } | |
376bf125 | 3148 | |
d0ecd894 | 3149 | /* Start new detached freelist */ |
ca257195 | 3150 | df->page = page; |
376bf125 | 3151 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3152 | df->tail = object; |
3153 | df->freelist = object; | |
3154 | p[size] = NULL; /* mark object processed */ | |
3155 | df->cnt = 1; | |
3156 | ||
3157 | while (size) { | |
3158 | object = p[--size]; | |
3159 | if (!object) | |
3160 | continue; /* Skip processed objects */ | |
3161 | ||
3162 | /* df->page is always set at this point */ | |
3163 | if (df->page == virt_to_head_page(object)) { | |
3164 | /* Opportunity build freelist */ | |
376bf125 | 3165 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3166 | df->freelist = object; |
3167 | df->cnt++; | |
3168 | p[size] = NULL; /* mark object processed */ | |
3169 | ||
3170 | continue; | |
fbd02630 | 3171 | } |
d0ecd894 JDB |
3172 | |
3173 | /* Limit look ahead search */ | |
3174 | if (!--lookahead) | |
3175 | break; | |
3176 | ||
3177 | if (!first_skipped_index) | |
3178 | first_skipped_index = size + 1; | |
fbd02630 | 3179 | } |
d0ecd894 JDB |
3180 | |
3181 | return first_skipped_index; | |
3182 | } | |
3183 | ||
d0ecd894 | 3184 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3185 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3186 | { |
3187 | if (WARN_ON(!size)) | |
3188 | return; | |
3189 | ||
3190 | do { | |
3191 | struct detached_freelist df; | |
3192 | ||
3193 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3194 | if (!df.page) |
d0ecd894 JDB |
3195 | continue; |
3196 | ||
376bf125 | 3197 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3198 | } while (likely(size)); |
484748f0 CL |
3199 | } |
3200 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3201 | ||
994eb764 | 3202 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3203 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3204 | void **p) | |
484748f0 | 3205 | { |
994eb764 JDB |
3206 | struct kmem_cache_cpu *c; |
3207 | int i; | |
3208 | ||
03ec0ed5 JDB |
3209 | /* memcg and kmem_cache debug support */ |
3210 | s = slab_pre_alloc_hook(s, flags); | |
3211 | if (unlikely(!s)) | |
3212 | return false; | |
994eb764 JDB |
3213 | /* |
3214 | * Drain objects in the per cpu slab, while disabling local | |
3215 | * IRQs, which protects against PREEMPT and interrupts | |
3216 | * handlers invoking normal fastpath. | |
3217 | */ | |
3218 | local_irq_disable(); | |
3219 | c = this_cpu_ptr(s->cpu_slab); | |
3220 | ||
3221 | for (i = 0; i < size; i++) { | |
3222 | void *object = c->freelist; | |
3223 | ||
ebe909e0 | 3224 | if (unlikely(!object)) { |
fd4d9c7d JH |
3225 | /* |
3226 | * We may have removed an object from c->freelist using | |
3227 | * the fastpath in the previous iteration; in that case, | |
3228 | * c->tid has not been bumped yet. | |
3229 | * Since ___slab_alloc() may reenable interrupts while | |
3230 | * allocating memory, we should bump c->tid now. | |
3231 | */ | |
3232 | c->tid = next_tid(c->tid); | |
3233 | ||
ebe909e0 JDB |
3234 | /* |
3235 | * Invoking slow path likely have side-effect | |
3236 | * of re-populating per CPU c->freelist | |
3237 | */ | |
87098373 | 3238 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3239 | _RET_IP_, c); |
87098373 CL |
3240 | if (unlikely(!p[i])) |
3241 | goto error; | |
3242 | ||
ebe909e0 | 3243 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3244 | maybe_wipe_obj_freeptr(s, p[i]); |
3245 | ||
ebe909e0 JDB |
3246 | continue; /* goto for-loop */ |
3247 | } | |
994eb764 JDB |
3248 | c->freelist = get_freepointer(s, object); |
3249 | p[i] = object; | |
0f181f9f | 3250 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3251 | } |
3252 | c->tid = next_tid(c->tid); | |
3253 | local_irq_enable(); | |
3254 | ||
3255 | /* Clear memory outside IRQ disabled fastpath loop */ | |
6471384a | 3256 | if (unlikely(slab_want_init_on_alloc(flags, s))) { |
994eb764 JDB |
3257 | int j; |
3258 | ||
3259 | for (j = 0; j < i; j++) | |
3260 | memset(p[j], 0, s->object_size); | |
3261 | } | |
3262 | ||
03ec0ed5 JDB |
3263 | /* memcg and kmem_cache debug support */ |
3264 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3265 | return i; |
87098373 | 3266 | error: |
87098373 | 3267 | local_irq_enable(); |
03ec0ed5 JDB |
3268 | slab_post_alloc_hook(s, flags, i, p); |
3269 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3270 | return 0; |
484748f0 CL |
3271 | } |
3272 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3273 | ||
3274 | ||
81819f0f | 3275 | /* |
672bba3a CL |
3276 | * Object placement in a slab is made very easy because we always start at |
3277 | * offset 0. If we tune the size of the object to the alignment then we can | |
3278 | * get the required alignment by putting one properly sized object after | |
3279 | * another. | |
81819f0f CL |
3280 | * |
3281 | * Notice that the allocation order determines the sizes of the per cpu | |
3282 | * caches. Each processor has always one slab available for allocations. | |
3283 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3284 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3285 | * locking overhead. |
81819f0f CL |
3286 | */ |
3287 | ||
3288 | /* | |
3289 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3290 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3291 | * and increases the number of allocations possible without having to | |
3292 | * take the list_lock. | |
3293 | */ | |
19af27af AD |
3294 | static unsigned int slub_min_order; |
3295 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3296 | static unsigned int slub_min_objects; | |
81819f0f | 3297 | |
81819f0f CL |
3298 | /* |
3299 | * Calculate the order of allocation given an slab object size. | |
3300 | * | |
672bba3a CL |
3301 | * The order of allocation has significant impact on performance and other |
3302 | * system components. Generally order 0 allocations should be preferred since | |
3303 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3304 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3305 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3306 | * would be wasted. |
3307 | * | |
3308 | * In order to reach satisfactory performance we must ensure that a minimum | |
3309 | * number of objects is in one slab. Otherwise we may generate too much | |
3310 | * activity on the partial lists which requires taking the list_lock. This is | |
3311 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3312 | * |
672bba3a CL |
3313 | * slub_max_order specifies the order where we begin to stop considering the |
3314 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3315 | * we try to keep the page order as low as possible. So we accept more waste | |
3316 | * of space in favor of a small page order. | |
81819f0f | 3317 | * |
672bba3a CL |
3318 | * Higher order allocations also allow the placement of more objects in a |
3319 | * slab and thereby reduce object handling overhead. If the user has | |
3320 | * requested a higher mininum order then we start with that one instead of | |
3321 | * the smallest order which will fit the object. | |
81819f0f | 3322 | */ |
19af27af AD |
3323 | static inline unsigned int slab_order(unsigned int size, |
3324 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3325 | unsigned int fract_leftover) |
81819f0f | 3326 | { |
19af27af AD |
3327 | unsigned int min_order = slub_min_order; |
3328 | unsigned int order; | |
81819f0f | 3329 | |
9736d2a9 | 3330 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3331 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3332 | |
9736d2a9 | 3333 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3334 | order <= max_order; order++) { |
81819f0f | 3335 | |
19af27af AD |
3336 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3337 | unsigned int rem; | |
81819f0f | 3338 | |
9736d2a9 | 3339 | rem = slab_size % size; |
81819f0f | 3340 | |
5e6d444e | 3341 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3342 | break; |
81819f0f | 3343 | } |
672bba3a | 3344 | |
81819f0f CL |
3345 | return order; |
3346 | } | |
3347 | ||
9736d2a9 | 3348 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3349 | { |
19af27af AD |
3350 | unsigned int order; |
3351 | unsigned int min_objects; | |
3352 | unsigned int max_objects; | |
5e6d444e CL |
3353 | |
3354 | /* | |
3355 | * Attempt to find best configuration for a slab. This | |
3356 | * works by first attempting to generate a layout with | |
3357 | * the best configuration and backing off gradually. | |
3358 | * | |
422ff4d7 | 3359 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3360 | * we reduce the minimum objects required in a slab. |
3361 | */ | |
3362 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3363 | if (!min_objects) |
3364 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3365 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3366 | min_objects = min(min_objects, max_objects); |
3367 | ||
5e6d444e | 3368 | while (min_objects > 1) { |
19af27af AD |
3369 | unsigned int fraction; |
3370 | ||
c124f5b5 | 3371 | fraction = 16; |
5e6d444e CL |
3372 | while (fraction >= 4) { |
3373 | order = slab_order(size, min_objects, | |
9736d2a9 | 3374 | slub_max_order, fraction); |
5e6d444e CL |
3375 | if (order <= slub_max_order) |
3376 | return order; | |
3377 | fraction /= 2; | |
3378 | } | |
5086c389 | 3379 | min_objects--; |
5e6d444e CL |
3380 | } |
3381 | ||
3382 | /* | |
3383 | * We were unable to place multiple objects in a slab. Now | |
3384 | * lets see if we can place a single object there. | |
3385 | */ | |
9736d2a9 | 3386 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3387 | if (order <= slub_max_order) |
3388 | return order; | |
3389 | ||
3390 | /* | |
3391 | * Doh this slab cannot be placed using slub_max_order. | |
3392 | */ | |
9736d2a9 | 3393 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3394 | if (order < MAX_ORDER) |
5e6d444e CL |
3395 | return order; |
3396 | return -ENOSYS; | |
3397 | } | |
3398 | ||
5595cffc | 3399 | static void |
4053497d | 3400 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3401 | { |
3402 | n->nr_partial = 0; | |
81819f0f CL |
3403 | spin_lock_init(&n->list_lock); |
3404 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3405 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3406 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3407 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3408 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3409 | #endif |
81819f0f CL |
3410 | } |
3411 | ||
55136592 | 3412 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3413 | { |
6c182dc0 | 3414 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3415 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3416 | |
8a5ec0ba | 3417 | /* |
d4d84fef CM |
3418 | * Must align to double word boundary for the double cmpxchg |
3419 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3420 | */ |
d4d84fef CM |
3421 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3422 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3423 | |
3424 | if (!s->cpu_slab) | |
3425 | return 0; | |
3426 | ||
3427 | init_kmem_cache_cpus(s); | |
4c93c355 | 3428 | |
8a5ec0ba | 3429 | return 1; |
4c93c355 | 3430 | } |
4c93c355 | 3431 | |
51df1142 CL |
3432 | static struct kmem_cache *kmem_cache_node; |
3433 | ||
81819f0f CL |
3434 | /* |
3435 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3436 | * slab on the node for this slabcache. There are no concurrent accesses | |
3437 | * possible. | |
3438 | * | |
721ae22a ZYW |
3439 | * Note that this function only works on the kmem_cache_node |
3440 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3441 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3442 | */ |
55136592 | 3443 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3444 | { |
3445 | struct page *page; | |
3446 | struct kmem_cache_node *n; | |
3447 | ||
51df1142 | 3448 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3449 | |
51df1142 | 3450 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3451 | |
3452 | BUG_ON(!page); | |
a2f92ee7 | 3453 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3454 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3455 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3456 | } |
3457 | ||
81819f0f CL |
3458 | n = page->freelist; |
3459 | BUG_ON(!n); | |
8ab1372f | 3460 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3461 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3462 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3463 | #endif |
12b22386 | 3464 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
505f5dcb | 3465 | GFP_KERNEL); |
12b22386 AK |
3466 | page->freelist = get_freepointer(kmem_cache_node, n); |
3467 | page->inuse = 1; | |
3468 | page->frozen = 0; | |
3469 | kmem_cache_node->node[node] = n; | |
4053497d | 3470 | init_kmem_cache_node(n); |
51df1142 | 3471 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3472 | |
67b6c900 | 3473 | /* |
1e4dd946 SR |
3474 | * No locks need to be taken here as it has just been |
3475 | * initialized and there is no concurrent access. | |
67b6c900 | 3476 | */ |
1e4dd946 | 3477 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3478 | } |
3479 | ||
3480 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3481 | { | |
3482 | int node; | |
fa45dc25 | 3483 | struct kmem_cache_node *n; |
81819f0f | 3484 | |
fa45dc25 | 3485 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3486 | s->node[node] = NULL; |
ea37df54 | 3487 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3488 | } |
3489 | } | |
3490 | ||
52b4b950 DS |
3491 | void __kmem_cache_release(struct kmem_cache *s) |
3492 | { | |
210e7a43 | 3493 | cache_random_seq_destroy(s); |
52b4b950 DS |
3494 | free_percpu(s->cpu_slab); |
3495 | free_kmem_cache_nodes(s); | |
3496 | } | |
3497 | ||
55136592 | 3498 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3499 | { |
3500 | int node; | |
81819f0f | 3501 | |
f64dc58c | 3502 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3503 | struct kmem_cache_node *n; |
3504 | ||
73367bd8 | 3505 | if (slab_state == DOWN) { |
55136592 | 3506 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3507 | continue; |
3508 | } | |
51df1142 | 3509 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3510 | GFP_KERNEL, node); |
81819f0f | 3511 | |
73367bd8 AD |
3512 | if (!n) { |
3513 | free_kmem_cache_nodes(s); | |
3514 | return 0; | |
81819f0f | 3515 | } |
73367bd8 | 3516 | |
4053497d | 3517 | init_kmem_cache_node(n); |
ea37df54 | 3518 | s->node[node] = n; |
81819f0f CL |
3519 | } |
3520 | return 1; | |
3521 | } | |
81819f0f | 3522 | |
c0bdb232 | 3523 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3524 | { |
3525 | if (min < MIN_PARTIAL) | |
3526 | min = MIN_PARTIAL; | |
3527 | else if (min > MAX_PARTIAL) | |
3528 | min = MAX_PARTIAL; | |
3529 | s->min_partial = min; | |
3530 | } | |
3531 | ||
e6d0e1dc WY |
3532 | static void set_cpu_partial(struct kmem_cache *s) |
3533 | { | |
3534 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3535 | /* | |
3536 | * cpu_partial determined the maximum number of objects kept in the | |
3537 | * per cpu partial lists of a processor. | |
3538 | * | |
3539 | * Per cpu partial lists mainly contain slabs that just have one | |
3540 | * object freed. If they are used for allocation then they can be | |
3541 | * filled up again with minimal effort. The slab will never hit the | |
3542 | * per node partial lists and therefore no locking will be required. | |
3543 | * | |
3544 | * This setting also determines | |
3545 | * | |
3546 | * A) The number of objects from per cpu partial slabs dumped to the | |
3547 | * per node list when we reach the limit. | |
3548 | * B) The number of objects in cpu partial slabs to extract from the | |
3549 | * per node list when we run out of per cpu objects. We only fetch | |
3550 | * 50% to keep some capacity around for frees. | |
3551 | */ | |
3552 | if (!kmem_cache_has_cpu_partial(s)) | |
bbd4e305 | 3553 | slub_set_cpu_partial(s, 0); |
e6d0e1dc | 3554 | else if (s->size >= PAGE_SIZE) |
bbd4e305 | 3555 | slub_set_cpu_partial(s, 2); |
e6d0e1dc | 3556 | else if (s->size >= 1024) |
bbd4e305 | 3557 | slub_set_cpu_partial(s, 6); |
e6d0e1dc | 3558 | else if (s->size >= 256) |
bbd4e305 | 3559 | slub_set_cpu_partial(s, 13); |
e6d0e1dc | 3560 | else |
bbd4e305 | 3561 | slub_set_cpu_partial(s, 30); |
e6d0e1dc WY |
3562 | #endif |
3563 | } | |
3564 | ||
81819f0f CL |
3565 | /* |
3566 | * calculate_sizes() determines the order and the distribution of data within | |
3567 | * a slab object. | |
3568 | */ | |
06b285dc | 3569 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3570 | { |
d50112ed | 3571 | slab_flags_t flags = s->flags; |
be4a7988 | 3572 | unsigned int size = s->object_size; |
89b83f28 | 3573 | unsigned int freepointer_area; |
19af27af | 3574 | unsigned int order; |
81819f0f | 3575 | |
d8b42bf5 CL |
3576 | /* |
3577 | * Round up object size to the next word boundary. We can only | |
3578 | * place the free pointer at word boundaries and this determines | |
3579 | * the possible location of the free pointer. | |
3580 | */ | |
3581 | size = ALIGN(size, sizeof(void *)); | |
89b83f28 KC |
3582 | /* |
3583 | * This is the area of the object where a freepointer can be | |
3584 | * safely written. If redzoning adds more to the inuse size, we | |
3585 | * can't use that portion for writing the freepointer, so | |
3586 | * s->offset must be limited within this for the general case. | |
3587 | */ | |
3588 | freepointer_area = size; | |
d8b42bf5 CL |
3589 | |
3590 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3591 | /* |
3592 | * Determine if we can poison the object itself. If the user of | |
3593 | * the slab may touch the object after free or before allocation | |
3594 | * then we should never poison the object itself. | |
3595 | */ | |
5f0d5a3a | 3596 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3597 | !s->ctor) |
81819f0f CL |
3598 | s->flags |= __OBJECT_POISON; |
3599 | else | |
3600 | s->flags &= ~__OBJECT_POISON; | |
3601 | ||
81819f0f CL |
3602 | |
3603 | /* | |
672bba3a | 3604 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3605 | * end of the object and the free pointer. If not then add an |
672bba3a | 3606 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3607 | */ |
3b0efdfa | 3608 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3609 | size += sizeof(void *); |
41ecc55b | 3610 | #endif |
81819f0f CL |
3611 | |
3612 | /* | |
672bba3a CL |
3613 | * With that we have determined the number of bytes in actual use |
3614 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3615 | */ |
3616 | s->inuse = size; | |
3617 | ||
5f0d5a3a | 3618 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3619 | s->ctor)) { |
81819f0f CL |
3620 | /* |
3621 | * Relocate free pointer after the object if it is not | |
3622 | * permitted to overwrite the first word of the object on | |
3623 | * kmem_cache_free. | |
3624 | * | |
3625 | * This is the case if we do RCU, have a constructor or | |
3626 | * destructor or are poisoning the objects. | |
cbfc35a4 WL |
3627 | * |
3628 | * The assumption that s->offset >= s->inuse means free | |
3629 | * pointer is outside of the object is used in the | |
3630 | * freeptr_outside_object() function. If that is no | |
3631 | * longer true, the function needs to be modified. | |
81819f0f CL |
3632 | */ |
3633 | s->offset = size; | |
3634 | size += sizeof(void *); | |
89b83f28 | 3635 | } else if (freepointer_area > sizeof(void *)) { |
3202fa62 KC |
3636 | /* |
3637 | * Store freelist pointer near middle of object to keep | |
3638 | * it away from the edges of the object to avoid small | |
3639 | * sized over/underflows from neighboring allocations. | |
3640 | */ | |
89b83f28 | 3641 | s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); |
81819f0f CL |
3642 | } |
3643 | ||
c12b3c62 | 3644 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3645 | if (flags & SLAB_STORE_USER) |
3646 | /* | |
3647 | * Need to store information about allocs and frees after | |
3648 | * the object. | |
3649 | */ | |
3650 | size += 2 * sizeof(struct track); | |
80a9201a | 3651 | #endif |
81819f0f | 3652 | |
80a9201a AP |
3653 | kasan_cache_create(s, &size, &s->flags); |
3654 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3655 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3656 | /* |
3657 | * Add some empty padding so that we can catch | |
3658 | * overwrites from earlier objects rather than let | |
3659 | * tracking information or the free pointer be | |
0211a9c8 | 3660 | * corrupted if a user writes before the start |
81819f0f CL |
3661 | * of the object. |
3662 | */ | |
3663 | size += sizeof(void *); | |
d86bd1be JK |
3664 | |
3665 | s->red_left_pad = sizeof(void *); | |
3666 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3667 | size += s->red_left_pad; | |
3668 | } | |
41ecc55b | 3669 | #endif |
672bba3a | 3670 | |
81819f0f CL |
3671 | /* |
3672 | * SLUB stores one object immediately after another beginning from | |
3673 | * offset 0. In order to align the objects we have to simply size | |
3674 | * each object to conform to the alignment. | |
3675 | */ | |
45906855 | 3676 | size = ALIGN(size, s->align); |
81819f0f | 3677 | s->size = size; |
06b285dc CL |
3678 | if (forced_order >= 0) |
3679 | order = forced_order; | |
3680 | else | |
9736d2a9 | 3681 | order = calculate_order(size); |
81819f0f | 3682 | |
19af27af | 3683 | if ((int)order < 0) |
81819f0f CL |
3684 | return 0; |
3685 | ||
b7a49f0d | 3686 | s->allocflags = 0; |
834f3d11 | 3687 | if (order) |
b7a49f0d CL |
3688 | s->allocflags |= __GFP_COMP; |
3689 | ||
3690 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3691 | s->allocflags |= GFP_DMA; |
b7a49f0d | 3692 | |
6d6ea1e9 NB |
3693 | if (s->flags & SLAB_CACHE_DMA32) |
3694 | s->allocflags |= GFP_DMA32; | |
3695 | ||
b7a49f0d CL |
3696 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
3697 | s->allocflags |= __GFP_RECLAIMABLE; | |
3698 | ||
81819f0f CL |
3699 | /* |
3700 | * Determine the number of objects per slab | |
3701 | */ | |
9736d2a9 MW |
3702 | s->oo = oo_make(order, size); |
3703 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3704 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3705 | s->max = s->oo; | |
81819f0f | 3706 | |
834f3d11 | 3707 | return !!oo_objects(s->oo); |
81819f0f CL |
3708 | } |
3709 | ||
d50112ed | 3710 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3711 | { |
8a13a4cc | 3712 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3713 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3714 | s->random = get_random_long(); | |
3715 | #endif | |
81819f0f | 3716 | |
06b285dc | 3717 | if (!calculate_sizes(s, -1)) |
81819f0f | 3718 | goto error; |
3de47213 DR |
3719 | if (disable_higher_order_debug) { |
3720 | /* | |
3721 | * Disable debugging flags that store metadata if the min slab | |
3722 | * order increased. | |
3723 | */ | |
3b0efdfa | 3724 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3725 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3726 | s->offset = 0; | |
3727 | if (!calculate_sizes(s, -1)) | |
3728 | goto error; | |
3729 | } | |
3730 | } | |
81819f0f | 3731 | |
2565409f HC |
3732 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3733 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3734 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3735 | /* Enable fast mode */ |
3736 | s->flags |= __CMPXCHG_DOUBLE; | |
3737 | #endif | |
3738 | ||
3b89d7d8 DR |
3739 | /* |
3740 | * The larger the object size is, the more pages we want on the partial | |
3741 | * list to avoid pounding the page allocator excessively. | |
3742 | */ | |
49e22585 CL |
3743 | set_min_partial(s, ilog2(s->size) / 2); |
3744 | ||
e6d0e1dc | 3745 | set_cpu_partial(s); |
49e22585 | 3746 | |
81819f0f | 3747 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3748 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3749 | #endif |
210e7a43 TG |
3750 | |
3751 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3752 | if (slab_state >= UP) { | |
3753 | if (init_cache_random_seq(s)) | |
3754 | goto error; | |
3755 | } | |
3756 | ||
55136592 | 3757 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3758 | goto error; |
81819f0f | 3759 | |
55136592 | 3760 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3761 | return 0; |
ff12059e | 3762 | |
4c93c355 | 3763 | free_kmem_cache_nodes(s); |
81819f0f | 3764 | error: |
278b1bb1 | 3765 | return -EINVAL; |
81819f0f | 3766 | } |
81819f0f | 3767 | |
33b12c38 | 3768 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
aa456c7a | 3769 | const char *text, unsigned long *map) |
33b12c38 CL |
3770 | { |
3771 | #ifdef CONFIG_SLUB_DEBUG | |
3772 | void *addr = page_address(page); | |
3773 | void *p; | |
aa456c7a CL |
3774 | |
3775 | if (!map) | |
3776 | return; | |
90e9f6a6 | 3777 | |
945cf2b6 | 3778 | slab_err(s, page, text, s->name); |
33b12c38 | 3779 | slab_lock(page); |
33b12c38 | 3780 | |
90e9f6a6 | 3781 | map = get_map(s, page); |
33b12c38 CL |
3782 | for_each_object(p, s, addr, page->objects) { |
3783 | ||
3784 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3785 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3786 | print_tracking(s, p); |
3787 | } | |
3788 | } | |
3789 | slab_unlock(page); | |
3790 | #endif | |
3791 | } | |
3792 | ||
81819f0f | 3793 | /* |
599870b1 | 3794 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3795 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3796 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3797 | */ |
599870b1 | 3798 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3799 | { |
60398923 | 3800 | LIST_HEAD(discard); |
81819f0f | 3801 | struct page *page, *h; |
aa456c7a CL |
3802 | unsigned long *map = NULL; |
3803 | ||
3804 | #ifdef CONFIG_SLUB_DEBUG | |
3805 | map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); | |
3806 | #endif | |
81819f0f | 3807 | |
52b4b950 DS |
3808 | BUG_ON(irqs_disabled()); |
3809 | spin_lock_irq(&n->list_lock); | |
916ac052 | 3810 | list_for_each_entry_safe(page, h, &n->partial, slab_list) { |
81819f0f | 3811 | if (!page->inuse) { |
52b4b950 | 3812 | remove_partial(n, page); |
916ac052 | 3813 | list_add(&page->slab_list, &discard); |
33b12c38 CL |
3814 | } else { |
3815 | list_slab_objects(s, page, | |
aa456c7a CL |
3816 | "Objects remaining in %s on __kmem_cache_shutdown()", |
3817 | map); | |
599870b1 | 3818 | } |
33b12c38 | 3819 | } |
52b4b950 | 3820 | spin_unlock_irq(&n->list_lock); |
60398923 | 3821 | |
aa456c7a CL |
3822 | #ifdef CONFIG_SLUB_DEBUG |
3823 | bitmap_free(map); | |
3824 | #endif | |
3825 | ||
916ac052 | 3826 | list_for_each_entry_safe(page, h, &discard, slab_list) |
60398923 | 3827 | discard_slab(s, page); |
81819f0f CL |
3828 | } |
3829 | ||
f9e13c0a SB |
3830 | bool __kmem_cache_empty(struct kmem_cache *s) |
3831 | { | |
3832 | int node; | |
3833 | struct kmem_cache_node *n; | |
3834 | ||
3835 | for_each_kmem_cache_node(s, node, n) | |
3836 | if (n->nr_partial || slabs_node(s, node)) | |
3837 | return false; | |
3838 | return true; | |
3839 | } | |
3840 | ||
81819f0f | 3841 | /* |
672bba3a | 3842 | * Release all resources used by a slab cache. |
81819f0f | 3843 | */ |
52b4b950 | 3844 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3845 | { |
3846 | int node; | |
fa45dc25 | 3847 | struct kmem_cache_node *n; |
81819f0f CL |
3848 | |
3849 | flush_all(s); | |
81819f0f | 3850 | /* Attempt to free all objects */ |
fa45dc25 | 3851 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3852 | free_partial(s, n); |
3853 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3854 | return 1; |
3855 | } | |
bf5eb3de | 3856 | sysfs_slab_remove(s); |
81819f0f CL |
3857 | return 0; |
3858 | } | |
3859 | ||
81819f0f CL |
3860 | /******************************************************************** |
3861 | * Kmalloc subsystem | |
3862 | *******************************************************************/ | |
3863 | ||
81819f0f CL |
3864 | static int __init setup_slub_min_order(char *str) |
3865 | { | |
19af27af | 3866 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3867 | |
3868 | return 1; | |
3869 | } | |
3870 | ||
3871 | __setup("slub_min_order=", setup_slub_min_order); | |
3872 | ||
3873 | static int __init setup_slub_max_order(char *str) | |
3874 | { | |
19af27af AD |
3875 | get_option(&str, (int *)&slub_max_order); |
3876 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3877 | |
3878 | return 1; | |
3879 | } | |
3880 | ||
3881 | __setup("slub_max_order=", setup_slub_max_order); | |
3882 | ||
3883 | static int __init setup_slub_min_objects(char *str) | |
3884 | { | |
19af27af | 3885 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3886 | |
3887 | return 1; | |
3888 | } | |
3889 | ||
3890 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3891 | ||
81819f0f CL |
3892 | void *__kmalloc(size_t size, gfp_t flags) |
3893 | { | |
aadb4bc4 | 3894 | struct kmem_cache *s; |
5b882be4 | 3895 | void *ret; |
81819f0f | 3896 | |
95a05b42 | 3897 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3898 | return kmalloc_large(size, flags); |
aadb4bc4 | 3899 | |
2c59dd65 | 3900 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3901 | |
3902 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3903 | return s; |
3904 | ||
2b847c3c | 3905 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3906 | |
ca2b84cb | 3907 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3908 | |
0116523c | 3909 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3910 | |
5b882be4 | 3911 | return ret; |
81819f0f CL |
3912 | } |
3913 | EXPORT_SYMBOL(__kmalloc); | |
3914 | ||
5d1f57e4 | 3915 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3916 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3917 | { | |
b1eeab67 | 3918 | struct page *page; |
e4f7c0b4 | 3919 | void *ptr = NULL; |
6a486c0a | 3920 | unsigned int order = get_order(size); |
f619cfe1 | 3921 | |
75f296d9 | 3922 | flags |= __GFP_COMP; |
6a486c0a VB |
3923 | page = alloc_pages_node(node, flags, order); |
3924 | if (page) { | |
e4f7c0b4 | 3925 | ptr = page_address(page); |
6a486c0a VB |
3926 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, |
3927 | 1 << order); | |
3928 | } | |
e4f7c0b4 | 3929 | |
0116523c | 3930 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
3931 | } |
3932 | ||
81819f0f CL |
3933 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3934 | { | |
aadb4bc4 | 3935 | struct kmem_cache *s; |
5b882be4 | 3936 | void *ret; |
81819f0f | 3937 | |
95a05b42 | 3938 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3939 | ret = kmalloc_large_node(size, flags, node); |
3940 | ||
ca2b84cb EGM |
3941 | trace_kmalloc_node(_RET_IP_, ret, |
3942 | size, PAGE_SIZE << get_order(size), | |
3943 | flags, node); | |
5b882be4 EGM |
3944 | |
3945 | return ret; | |
3946 | } | |
aadb4bc4 | 3947 | |
2c59dd65 | 3948 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3949 | |
3950 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3951 | return s; |
3952 | ||
2b847c3c | 3953 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3954 | |
ca2b84cb | 3955 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3956 | |
0116523c | 3957 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3958 | |
5b882be4 | 3959 | return ret; |
81819f0f CL |
3960 | } |
3961 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 3962 | #endif /* CONFIG_NUMA */ |
81819f0f | 3963 | |
ed18adc1 KC |
3964 | #ifdef CONFIG_HARDENED_USERCOPY |
3965 | /* | |
afcc90f8 KC |
3966 | * Rejects incorrectly sized objects and objects that are to be copied |
3967 | * to/from userspace but do not fall entirely within the containing slab | |
3968 | * cache's usercopy region. | |
ed18adc1 KC |
3969 | * |
3970 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3971 | * to indicate an error. | |
3972 | */ | |
f4e6e289 KC |
3973 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
3974 | bool to_user) | |
ed18adc1 KC |
3975 | { |
3976 | struct kmem_cache *s; | |
44065b2e | 3977 | unsigned int offset; |
ed18adc1 KC |
3978 | size_t object_size; |
3979 | ||
96fedce2 AK |
3980 | ptr = kasan_reset_tag(ptr); |
3981 | ||
ed18adc1 KC |
3982 | /* Find object and usable object size. */ |
3983 | s = page->slab_cache; | |
ed18adc1 KC |
3984 | |
3985 | /* Reject impossible pointers. */ | |
3986 | if (ptr < page_address(page)) | |
f4e6e289 KC |
3987 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
3988 | to_user, 0, n); | |
ed18adc1 KC |
3989 | |
3990 | /* Find offset within object. */ | |
3991 | offset = (ptr - page_address(page)) % s->size; | |
3992 | ||
3993 | /* Adjust for redzone and reject if within the redzone. */ | |
3994 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3995 | if (offset < s->red_left_pad) | |
f4e6e289 KC |
3996 | usercopy_abort("SLUB object in left red zone", |
3997 | s->name, to_user, offset, n); | |
ed18adc1 KC |
3998 | offset -= s->red_left_pad; |
3999 | } | |
4000 | ||
afcc90f8 KC |
4001 | /* Allow address range falling entirely within usercopy region. */ |
4002 | if (offset >= s->useroffset && | |
4003 | offset - s->useroffset <= s->usersize && | |
4004 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 4005 | return; |
ed18adc1 | 4006 | |
afcc90f8 KC |
4007 | /* |
4008 | * If the copy is still within the allocated object, produce | |
4009 | * a warning instead of rejecting the copy. This is intended | |
4010 | * to be a temporary method to find any missing usercopy | |
4011 | * whitelists. | |
4012 | */ | |
4013 | object_size = slab_ksize(s); | |
2d891fbc KC |
4014 | if (usercopy_fallback && |
4015 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
4016 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
4017 | return; | |
4018 | } | |
ed18adc1 | 4019 | |
f4e6e289 | 4020 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
4021 | } |
4022 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4023 | ||
10d1f8cb | 4024 | size_t __ksize(const void *object) |
81819f0f | 4025 | { |
272c1d21 | 4026 | struct page *page; |
81819f0f | 4027 | |
ef8b4520 | 4028 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
4029 | return 0; |
4030 | ||
294a80a8 | 4031 | page = virt_to_head_page(object); |
294a80a8 | 4032 | |
76994412 PE |
4033 | if (unlikely(!PageSlab(page))) { |
4034 | WARN_ON(!PageCompound(page)); | |
a50b854e | 4035 | return page_size(page); |
76994412 | 4036 | } |
81819f0f | 4037 | |
1b4f59e3 | 4038 | return slab_ksize(page->slab_cache); |
81819f0f | 4039 | } |
10d1f8cb | 4040 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
4041 | |
4042 | void kfree(const void *x) | |
4043 | { | |
81819f0f | 4044 | struct page *page; |
5bb983b0 | 4045 | void *object = (void *)x; |
81819f0f | 4046 | |
2121db74 PE |
4047 | trace_kfree(_RET_IP_, x); |
4048 | ||
2408c550 | 4049 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
4050 | return; |
4051 | ||
b49af68f | 4052 | page = virt_to_head_page(x); |
aadb4bc4 | 4053 | if (unlikely(!PageSlab(page))) { |
6a486c0a VB |
4054 | unsigned int order = compound_order(page); |
4055 | ||
0937502a | 4056 | BUG_ON(!PageCompound(page)); |
47adccce | 4057 | kfree_hook(object); |
6a486c0a VB |
4058 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, |
4059 | -(1 << order)); | |
4060 | __free_pages(page, order); | |
aadb4bc4 CL |
4061 | return; |
4062 | } | |
81084651 | 4063 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
4064 | } |
4065 | EXPORT_SYMBOL(kfree); | |
4066 | ||
832f37f5 VD |
4067 | #define SHRINK_PROMOTE_MAX 32 |
4068 | ||
2086d26a | 4069 | /* |
832f37f5 VD |
4070 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4071 | * up most to the head of the partial lists. New allocations will then | |
4072 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4073 | * |
4074 | * The slabs with the least items are placed last. This results in them | |
4075 | * being allocated from last increasing the chance that the last objects | |
4076 | * are freed in them. | |
2086d26a | 4077 | */ |
c9fc5864 | 4078 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
4079 | { |
4080 | int node; | |
4081 | int i; | |
4082 | struct kmem_cache_node *n; | |
4083 | struct page *page; | |
4084 | struct page *t; | |
832f37f5 VD |
4085 | struct list_head discard; |
4086 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4087 | unsigned long flags; |
ce3712d7 | 4088 | int ret = 0; |
2086d26a | 4089 | |
2086d26a | 4090 | flush_all(s); |
fa45dc25 | 4091 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4092 | INIT_LIST_HEAD(&discard); |
4093 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4094 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4095 | |
4096 | spin_lock_irqsave(&n->list_lock, flags); | |
4097 | ||
4098 | /* | |
832f37f5 | 4099 | * Build lists of slabs to discard or promote. |
2086d26a | 4100 | * |
672bba3a CL |
4101 | * Note that concurrent frees may occur while we hold the |
4102 | * list_lock. page->inuse here is the upper limit. | |
2086d26a | 4103 | */ |
916ac052 | 4104 | list_for_each_entry_safe(page, t, &n->partial, slab_list) { |
832f37f5 VD |
4105 | int free = page->objects - page->inuse; |
4106 | ||
4107 | /* Do not reread page->inuse */ | |
4108 | barrier(); | |
4109 | ||
4110 | /* We do not keep full slabs on the list */ | |
4111 | BUG_ON(free <= 0); | |
4112 | ||
4113 | if (free == page->objects) { | |
916ac052 | 4114 | list_move(&page->slab_list, &discard); |
69cb8e6b | 4115 | n->nr_partial--; |
832f37f5 | 4116 | } else if (free <= SHRINK_PROMOTE_MAX) |
916ac052 | 4117 | list_move(&page->slab_list, promote + free - 1); |
2086d26a CL |
4118 | } |
4119 | ||
2086d26a | 4120 | /* |
832f37f5 VD |
4121 | * Promote the slabs filled up most to the head of the |
4122 | * partial list. | |
2086d26a | 4123 | */ |
832f37f5 VD |
4124 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4125 | list_splice(promote + i, &n->partial); | |
2086d26a | 4126 | |
2086d26a | 4127 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4128 | |
4129 | /* Release empty slabs */ | |
916ac052 | 4130 | list_for_each_entry_safe(page, t, &discard, slab_list) |
69cb8e6b | 4131 | discard_slab(s, page); |
ce3712d7 VD |
4132 | |
4133 | if (slabs_node(s, node)) | |
4134 | ret = 1; | |
2086d26a CL |
4135 | } |
4136 | ||
ce3712d7 | 4137 | return ret; |
2086d26a | 4138 | } |
2086d26a | 4139 | |
c9fc5864 | 4140 | #ifdef CONFIG_MEMCG |
43486694 | 4141 | void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) |
01fb58bc | 4142 | { |
50862ce7 TH |
4143 | /* |
4144 | * Called with all the locks held after a sched RCU grace period. | |
4145 | * Even if @s becomes empty after shrinking, we can't know that @s | |
4146 | * doesn't have allocations already in-flight and thus can't | |
4147 | * destroy @s until the associated memcg is released. | |
4148 | * | |
4149 | * However, let's remove the sysfs files for empty caches here. | |
4150 | * Each cache has a lot of interface files which aren't | |
4151 | * particularly useful for empty draining caches; otherwise, we can | |
4152 | * easily end up with millions of unnecessary sysfs files on | |
4153 | * systems which have a lot of memory and transient cgroups. | |
4154 | */ | |
4155 | if (!__kmem_cache_shrink(s)) | |
4156 | sysfs_slab_remove(s); | |
01fb58bc TH |
4157 | } |
4158 | ||
c9fc5864 TH |
4159 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4160 | { | |
4161 | /* | |
4162 | * Disable empty slabs caching. Used to avoid pinning offline | |
4163 | * memory cgroups by kmem pages that can be freed. | |
4164 | */ | |
e6d0e1dc | 4165 | slub_set_cpu_partial(s, 0); |
c9fc5864 | 4166 | s->min_partial = 0; |
c9fc5864 | 4167 | } |
6dfd1b65 | 4168 | #endif /* CONFIG_MEMCG */ |
c9fc5864 | 4169 | |
b9049e23 YG |
4170 | static int slab_mem_going_offline_callback(void *arg) |
4171 | { | |
4172 | struct kmem_cache *s; | |
4173 | ||
18004c5d | 4174 | mutex_lock(&slab_mutex); |
b9049e23 | 4175 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4176 | __kmem_cache_shrink(s); |
18004c5d | 4177 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4178 | |
4179 | return 0; | |
4180 | } | |
4181 | ||
4182 | static void slab_mem_offline_callback(void *arg) | |
4183 | { | |
4184 | struct kmem_cache_node *n; | |
4185 | struct kmem_cache *s; | |
4186 | struct memory_notify *marg = arg; | |
4187 | int offline_node; | |
4188 | ||
b9d5ab25 | 4189 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4190 | |
4191 | /* | |
4192 | * If the node still has available memory. we need kmem_cache_node | |
4193 | * for it yet. | |
4194 | */ | |
4195 | if (offline_node < 0) | |
4196 | return; | |
4197 | ||
18004c5d | 4198 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4199 | list_for_each_entry(s, &slab_caches, list) { |
4200 | n = get_node(s, offline_node); | |
4201 | if (n) { | |
4202 | /* | |
4203 | * if n->nr_slabs > 0, slabs still exist on the node | |
4204 | * that is going down. We were unable to free them, | |
c9404c9c | 4205 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4206 | * callback. So, we must fail. |
4207 | */ | |
0f389ec6 | 4208 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4209 | |
4210 | s->node[offline_node] = NULL; | |
8de66a0c | 4211 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4212 | } |
4213 | } | |
18004c5d | 4214 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4215 | } |
4216 | ||
4217 | static int slab_mem_going_online_callback(void *arg) | |
4218 | { | |
4219 | struct kmem_cache_node *n; | |
4220 | struct kmem_cache *s; | |
4221 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4222 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4223 | int ret = 0; |
4224 | ||
4225 | /* | |
4226 | * If the node's memory is already available, then kmem_cache_node is | |
4227 | * already created. Nothing to do. | |
4228 | */ | |
4229 | if (nid < 0) | |
4230 | return 0; | |
4231 | ||
4232 | /* | |
0121c619 | 4233 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4234 | * allocate a kmem_cache_node structure in order to bring the node |
4235 | * online. | |
4236 | */ | |
18004c5d | 4237 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4238 | list_for_each_entry(s, &slab_caches, list) { |
4239 | /* | |
4240 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4241 | * since memory is not yet available from the node that | |
4242 | * is brought up. | |
4243 | */ | |
8de66a0c | 4244 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4245 | if (!n) { |
4246 | ret = -ENOMEM; | |
4247 | goto out; | |
4248 | } | |
4053497d | 4249 | init_kmem_cache_node(n); |
b9049e23 YG |
4250 | s->node[nid] = n; |
4251 | } | |
4252 | out: | |
18004c5d | 4253 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4254 | return ret; |
4255 | } | |
4256 | ||
4257 | static int slab_memory_callback(struct notifier_block *self, | |
4258 | unsigned long action, void *arg) | |
4259 | { | |
4260 | int ret = 0; | |
4261 | ||
4262 | switch (action) { | |
4263 | case MEM_GOING_ONLINE: | |
4264 | ret = slab_mem_going_online_callback(arg); | |
4265 | break; | |
4266 | case MEM_GOING_OFFLINE: | |
4267 | ret = slab_mem_going_offline_callback(arg); | |
4268 | break; | |
4269 | case MEM_OFFLINE: | |
4270 | case MEM_CANCEL_ONLINE: | |
4271 | slab_mem_offline_callback(arg); | |
4272 | break; | |
4273 | case MEM_ONLINE: | |
4274 | case MEM_CANCEL_OFFLINE: | |
4275 | break; | |
4276 | } | |
dc19f9db KH |
4277 | if (ret) |
4278 | ret = notifier_from_errno(ret); | |
4279 | else | |
4280 | ret = NOTIFY_OK; | |
b9049e23 YG |
4281 | return ret; |
4282 | } | |
4283 | ||
3ac38faa AM |
4284 | static struct notifier_block slab_memory_callback_nb = { |
4285 | .notifier_call = slab_memory_callback, | |
4286 | .priority = SLAB_CALLBACK_PRI, | |
4287 | }; | |
b9049e23 | 4288 | |
81819f0f CL |
4289 | /******************************************************************** |
4290 | * Basic setup of slabs | |
4291 | *******************************************************************/ | |
4292 | ||
51df1142 CL |
4293 | /* |
4294 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4295 | * the page allocator. Allocate them properly then fix up the pointers |
4296 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4297 | */ |
4298 | ||
dffb4d60 | 4299 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4300 | { |
4301 | int node; | |
dffb4d60 | 4302 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4303 | struct kmem_cache_node *n; |
51df1142 | 4304 | |
dffb4d60 | 4305 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4306 | |
7d557b3c GC |
4307 | /* |
4308 | * This runs very early, and only the boot processor is supposed to be | |
4309 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4310 | * IPIs around. | |
4311 | */ | |
4312 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4313 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4314 | struct page *p; |
4315 | ||
916ac052 | 4316 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4317 | p->slab_cache = s; |
51df1142 | 4318 | |
607bf324 | 4319 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4320 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4321 | p->slab_cache = s; |
51df1142 | 4322 | #endif |
51df1142 | 4323 | } |
f7ce3190 | 4324 | slab_init_memcg_params(s); |
dffb4d60 | 4325 | list_add(&s->list, &slab_caches); |
c03914b7 | 4326 | memcg_link_cache(s, NULL); |
dffb4d60 | 4327 | return s; |
51df1142 CL |
4328 | } |
4329 | ||
81819f0f CL |
4330 | void __init kmem_cache_init(void) |
4331 | { | |
dffb4d60 CL |
4332 | static __initdata struct kmem_cache boot_kmem_cache, |
4333 | boot_kmem_cache_node; | |
51df1142 | 4334 | |
fc8d8620 SG |
4335 | if (debug_guardpage_minorder()) |
4336 | slub_max_order = 0; | |
4337 | ||
dffb4d60 CL |
4338 | kmem_cache_node = &boot_kmem_cache_node; |
4339 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4340 | |
dffb4d60 | 4341 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4342 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4343 | |
3ac38faa | 4344 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4345 | |
4346 | /* Able to allocate the per node structures */ | |
4347 | slab_state = PARTIAL; | |
4348 | ||
dffb4d60 CL |
4349 | create_boot_cache(kmem_cache, "kmem_cache", |
4350 | offsetof(struct kmem_cache, node) + | |
4351 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4352 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4353 | |
dffb4d60 | 4354 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4355 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4356 | |
4357 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4358 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4359 | create_kmalloc_caches(0); |
81819f0f | 4360 | |
210e7a43 TG |
4361 | /* Setup random freelists for each cache */ |
4362 | init_freelist_randomization(); | |
4363 | ||
a96a87bf SAS |
4364 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4365 | slub_cpu_dead); | |
81819f0f | 4366 | |
b9726c26 | 4367 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4368 | cache_line_size(), |
81819f0f CL |
4369 | slub_min_order, slub_max_order, slub_min_objects, |
4370 | nr_cpu_ids, nr_node_ids); | |
4371 | } | |
4372 | ||
7e85ee0c PE |
4373 | void __init kmem_cache_init_late(void) |
4374 | { | |
7e85ee0c PE |
4375 | } |
4376 | ||
2633d7a0 | 4377 | struct kmem_cache * |
f4957d5b | 4378 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4379 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4380 | { |
426589f5 | 4381 | struct kmem_cache *s, *c; |
81819f0f | 4382 | |
a44cb944 | 4383 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4384 | if (s) { |
4385 | s->refcount++; | |
84d0ddd6 | 4386 | |
81819f0f CL |
4387 | /* |
4388 | * Adjust the object sizes so that we clear | |
4389 | * the complete object on kzalloc. | |
4390 | */ | |
1b473f29 | 4391 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4392 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4393 | |
426589f5 | 4394 | for_each_memcg_cache(c, s) { |
84d0ddd6 | 4395 | c->object_size = s->object_size; |
52ee6d74 | 4396 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4397 | } |
4398 | ||
7b8f3b66 | 4399 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4400 | s->refcount--; |
cbb79694 | 4401 | s = NULL; |
7b8f3b66 | 4402 | } |
a0e1d1be | 4403 | } |
6446faa2 | 4404 | |
cbb79694 CL |
4405 | return s; |
4406 | } | |
84c1cf62 | 4407 | |
d50112ed | 4408 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4409 | { |
aac3a166 PE |
4410 | int err; |
4411 | ||
4412 | err = kmem_cache_open(s, flags); | |
4413 | if (err) | |
4414 | return err; | |
20cea968 | 4415 | |
45530c44 CL |
4416 | /* Mutex is not taken during early boot */ |
4417 | if (slab_state <= UP) | |
4418 | return 0; | |
4419 | ||
107dab5c | 4420 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4421 | err = sysfs_slab_add(s); |
aac3a166 | 4422 | if (err) |
52b4b950 | 4423 | __kmem_cache_release(s); |
20cea968 | 4424 | |
aac3a166 | 4425 | return err; |
81819f0f | 4426 | } |
81819f0f | 4427 | |
ce71e27c | 4428 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4429 | { |
aadb4bc4 | 4430 | struct kmem_cache *s; |
94b528d0 | 4431 | void *ret; |
aadb4bc4 | 4432 | |
95a05b42 | 4433 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4434 | return kmalloc_large(size, gfpflags); |
4435 | ||
2c59dd65 | 4436 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4437 | |
2408c550 | 4438 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4439 | return s; |
81819f0f | 4440 | |
2b847c3c | 4441 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4442 | |
25985edc | 4443 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4444 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4445 | |
4446 | return ret; | |
81819f0f | 4447 | } |
fd7cb575 | 4448 | EXPORT_SYMBOL(__kmalloc_track_caller); |
81819f0f | 4449 | |
5d1f57e4 | 4450 | #ifdef CONFIG_NUMA |
81819f0f | 4451 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4452 | int node, unsigned long caller) |
81819f0f | 4453 | { |
aadb4bc4 | 4454 | struct kmem_cache *s; |
94b528d0 | 4455 | void *ret; |
aadb4bc4 | 4456 | |
95a05b42 | 4457 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4458 | ret = kmalloc_large_node(size, gfpflags, node); |
4459 | ||
4460 | trace_kmalloc_node(caller, ret, | |
4461 | size, PAGE_SIZE << get_order(size), | |
4462 | gfpflags, node); | |
4463 | ||
4464 | return ret; | |
4465 | } | |
eada35ef | 4466 | |
2c59dd65 | 4467 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4468 | |
2408c550 | 4469 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4470 | return s; |
81819f0f | 4471 | |
2b847c3c | 4472 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4473 | |
25985edc | 4474 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4475 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4476 | |
4477 | return ret; | |
81819f0f | 4478 | } |
fd7cb575 | 4479 | EXPORT_SYMBOL(__kmalloc_node_track_caller); |
5d1f57e4 | 4480 | #endif |
81819f0f | 4481 | |
ab4d5ed5 | 4482 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4483 | static int count_inuse(struct page *page) |
4484 | { | |
4485 | return page->inuse; | |
4486 | } | |
4487 | ||
4488 | static int count_total(struct page *page) | |
4489 | { | |
4490 | return page->objects; | |
4491 | } | |
ab4d5ed5 | 4492 | #endif |
205ab99d | 4493 | |
ab4d5ed5 | 4494 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 4495 | static void validate_slab(struct kmem_cache *s, struct page *page) |
53e15af0 CL |
4496 | { |
4497 | void *p; | |
a973e9dd | 4498 | void *addr = page_address(page); |
90e9f6a6 YZ |
4499 | unsigned long *map; |
4500 | ||
4501 | slab_lock(page); | |
53e15af0 | 4502 | |
dd98afd4 | 4503 | if (!check_slab(s, page) || !on_freelist(s, page, NULL)) |
90e9f6a6 | 4504 | goto unlock; |
53e15af0 CL |
4505 | |
4506 | /* Now we know that a valid freelist exists */ | |
90e9f6a6 | 4507 | map = get_map(s, page); |
5f80b13a | 4508 | for_each_object(p, s, addr, page->objects) { |
dd98afd4 YZ |
4509 | u8 val = test_bit(slab_index(p, s, addr), map) ? |
4510 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; | |
53e15af0 | 4511 | |
dd98afd4 YZ |
4512 | if (!check_object(s, page, p, val)) |
4513 | break; | |
4514 | } | |
90e9f6a6 YZ |
4515 | put_map(map); |
4516 | unlock: | |
881db7fb | 4517 | slab_unlock(page); |
53e15af0 CL |
4518 | } |
4519 | ||
434e245d | 4520 | static int validate_slab_node(struct kmem_cache *s, |
90e9f6a6 | 4521 | struct kmem_cache_node *n) |
53e15af0 CL |
4522 | { |
4523 | unsigned long count = 0; | |
4524 | struct page *page; | |
4525 | unsigned long flags; | |
4526 | ||
4527 | spin_lock_irqsave(&n->list_lock, flags); | |
4528 | ||
916ac052 | 4529 | list_for_each_entry(page, &n->partial, slab_list) { |
90e9f6a6 | 4530 | validate_slab(s, page); |
53e15af0 CL |
4531 | count++; |
4532 | } | |
4533 | if (count != n->nr_partial) | |
f9f58285 FF |
4534 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4535 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4536 | |
4537 | if (!(s->flags & SLAB_STORE_USER)) | |
4538 | goto out; | |
4539 | ||
916ac052 | 4540 | list_for_each_entry(page, &n->full, slab_list) { |
90e9f6a6 | 4541 | validate_slab(s, page); |
53e15af0 CL |
4542 | count++; |
4543 | } | |
4544 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4545 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4546 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4547 | |
4548 | out: | |
4549 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4550 | return count; | |
4551 | } | |
4552 | ||
434e245d | 4553 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4554 | { |
4555 | int node; | |
4556 | unsigned long count = 0; | |
fa45dc25 | 4557 | struct kmem_cache_node *n; |
53e15af0 CL |
4558 | |
4559 | flush_all(s); | |
fa45dc25 | 4560 | for_each_kmem_cache_node(s, node, n) |
90e9f6a6 YZ |
4561 | count += validate_slab_node(s, n); |
4562 | ||
53e15af0 CL |
4563 | return count; |
4564 | } | |
88a420e4 | 4565 | /* |
672bba3a | 4566 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4567 | * and freed. |
4568 | */ | |
4569 | ||
4570 | struct location { | |
4571 | unsigned long count; | |
ce71e27c | 4572 | unsigned long addr; |
45edfa58 CL |
4573 | long long sum_time; |
4574 | long min_time; | |
4575 | long max_time; | |
4576 | long min_pid; | |
4577 | long max_pid; | |
174596a0 | 4578 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4579 | nodemask_t nodes; |
88a420e4 CL |
4580 | }; |
4581 | ||
4582 | struct loc_track { | |
4583 | unsigned long max; | |
4584 | unsigned long count; | |
4585 | struct location *loc; | |
4586 | }; | |
4587 | ||
4588 | static void free_loc_track(struct loc_track *t) | |
4589 | { | |
4590 | if (t->max) | |
4591 | free_pages((unsigned long)t->loc, | |
4592 | get_order(sizeof(struct location) * t->max)); | |
4593 | } | |
4594 | ||
68dff6a9 | 4595 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4596 | { |
4597 | struct location *l; | |
4598 | int order; | |
4599 | ||
88a420e4 CL |
4600 | order = get_order(sizeof(struct location) * max); |
4601 | ||
68dff6a9 | 4602 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4603 | if (!l) |
4604 | return 0; | |
4605 | ||
4606 | if (t->count) { | |
4607 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4608 | free_loc_track(t); | |
4609 | } | |
4610 | t->max = max; | |
4611 | t->loc = l; | |
4612 | return 1; | |
4613 | } | |
4614 | ||
4615 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4616 | const struct track *track) |
88a420e4 CL |
4617 | { |
4618 | long start, end, pos; | |
4619 | struct location *l; | |
ce71e27c | 4620 | unsigned long caddr; |
45edfa58 | 4621 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4622 | |
4623 | start = -1; | |
4624 | end = t->count; | |
4625 | ||
4626 | for ( ; ; ) { | |
4627 | pos = start + (end - start + 1) / 2; | |
4628 | ||
4629 | /* | |
4630 | * There is nothing at "end". If we end up there | |
4631 | * we need to add something to before end. | |
4632 | */ | |
4633 | if (pos == end) | |
4634 | break; | |
4635 | ||
4636 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4637 | if (track->addr == caddr) { |
4638 | ||
4639 | l = &t->loc[pos]; | |
4640 | l->count++; | |
4641 | if (track->when) { | |
4642 | l->sum_time += age; | |
4643 | if (age < l->min_time) | |
4644 | l->min_time = age; | |
4645 | if (age > l->max_time) | |
4646 | l->max_time = age; | |
4647 | ||
4648 | if (track->pid < l->min_pid) | |
4649 | l->min_pid = track->pid; | |
4650 | if (track->pid > l->max_pid) | |
4651 | l->max_pid = track->pid; | |
4652 | ||
174596a0 RR |
4653 | cpumask_set_cpu(track->cpu, |
4654 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4655 | } |
4656 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4657 | return 1; |
4658 | } | |
4659 | ||
45edfa58 | 4660 | if (track->addr < caddr) |
88a420e4 CL |
4661 | end = pos; |
4662 | else | |
4663 | start = pos; | |
4664 | } | |
4665 | ||
4666 | /* | |
672bba3a | 4667 | * Not found. Insert new tracking element. |
88a420e4 | 4668 | */ |
68dff6a9 | 4669 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4670 | return 0; |
4671 | ||
4672 | l = t->loc + pos; | |
4673 | if (pos < t->count) | |
4674 | memmove(l + 1, l, | |
4675 | (t->count - pos) * sizeof(struct location)); | |
4676 | t->count++; | |
4677 | l->count = 1; | |
45edfa58 CL |
4678 | l->addr = track->addr; |
4679 | l->sum_time = age; | |
4680 | l->min_time = age; | |
4681 | l->max_time = age; | |
4682 | l->min_pid = track->pid; | |
4683 | l->max_pid = track->pid; | |
174596a0 RR |
4684 | cpumask_clear(to_cpumask(l->cpus)); |
4685 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4686 | nodes_clear(l->nodes); |
4687 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4688 | return 1; |
4689 | } | |
4690 | ||
4691 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
90e9f6a6 | 4692 | struct page *page, enum track_item alloc) |
88a420e4 | 4693 | { |
a973e9dd | 4694 | void *addr = page_address(page); |
88a420e4 | 4695 | void *p; |
90e9f6a6 | 4696 | unsigned long *map; |
88a420e4 | 4697 | |
90e9f6a6 | 4698 | map = get_map(s, page); |
224a88be | 4699 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4700 | if (!test_bit(slab_index(p, s, addr), map)) |
4701 | add_location(t, s, get_track(s, p, alloc)); | |
90e9f6a6 | 4702 | put_map(map); |
88a420e4 CL |
4703 | } |
4704 | ||
4705 | static int list_locations(struct kmem_cache *s, char *buf, | |
4706 | enum track_item alloc) | |
4707 | { | |
e374d483 | 4708 | int len = 0; |
88a420e4 | 4709 | unsigned long i; |
68dff6a9 | 4710 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4711 | int node; |
fa45dc25 | 4712 | struct kmem_cache_node *n; |
88a420e4 | 4713 | |
90e9f6a6 YZ |
4714 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4715 | GFP_KERNEL)) { | |
68dff6a9 | 4716 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4717 | } |
88a420e4 CL |
4718 | /* Push back cpu slabs */ |
4719 | flush_all(s); | |
4720 | ||
fa45dc25 | 4721 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4722 | unsigned long flags; |
4723 | struct page *page; | |
4724 | ||
9e86943b | 4725 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4726 | continue; |
4727 | ||
4728 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 4729 | list_for_each_entry(page, &n->partial, slab_list) |
90e9f6a6 | 4730 | process_slab(&t, s, page, alloc); |
916ac052 | 4731 | list_for_each_entry(page, &n->full, slab_list) |
90e9f6a6 | 4732 | process_slab(&t, s, page, alloc); |
88a420e4 CL |
4733 | spin_unlock_irqrestore(&n->list_lock, flags); |
4734 | } | |
4735 | ||
4736 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4737 | struct location *l = &t.loc[i]; |
88a420e4 | 4738 | |
9c246247 | 4739 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4740 | break; |
e374d483 | 4741 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4742 | |
4743 | if (l->addr) | |
62c70bce | 4744 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4745 | else |
e374d483 | 4746 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4747 | |
4748 | if (l->sum_time != l->min_time) { | |
e374d483 | 4749 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4750 | l->min_time, |
4751 | (long)div_u64(l->sum_time, l->count), | |
4752 | l->max_time); | |
45edfa58 | 4753 | } else |
e374d483 | 4754 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4755 | l->min_time); |
4756 | ||
4757 | if (l->min_pid != l->max_pid) | |
e374d483 | 4758 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4759 | l->min_pid, l->max_pid); |
4760 | else | |
e374d483 | 4761 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4762 | l->min_pid); |
4763 | ||
174596a0 RR |
4764 | if (num_online_cpus() > 1 && |
4765 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4766 | len < PAGE_SIZE - 60) |
4767 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4768 | " cpus=%*pbl", | |
4769 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4770 | |
62bc62a8 | 4771 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4772 | len < PAGE_SIZE - 60) |
4773 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4774 | " nodes=%*pbl", | |
4775 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4776 | |
e374d483 | 4777 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4778 | } |
4779 | ||
4780 | free_loc_track(&t); | |
4781 | if (!t.count) | |
e374d483 HH |
4782 | len += sprintf(buf, "No data\n"); |
4783 | return len; | |
88a420e4 | 4784 | } |
6dfd1b65 | 4785 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 4786 | |
a5a84755 | 4787 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4788 | static void __init resiliency_test(void) |
a5a84755 CL |
4789 | { |
4790 | u8 *p; | |
cc252eae | 4791 | int type = KMALLOC_NORMAL; |
a5a84755 | 4792 | |
95a05b42 | 4793 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4794 | |
f9f58285 FF |
4795 | pr_err("SLUB resiliency testing\n"); |
4796 | pr_err("-----------------------\n"); | |
4797 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4798 | |
4799 | p = kzalloc(16, GFP_KERNEL); | |
4800 | p[16] = 0x12; | |
f9f58285 FF |
4801 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4802 | p + 16); | |
a5a84755 | 4803 | |
cc252eae | 4804 | validate_slab_cache(kmalloc_caches[type][4]); |
a5a84755 CL |
4805 | |
4806 | /* Hmmm... The next two are dangerous */ | |
4807 | p = kzalloc(32, GFP_KERNEL); | |
4808 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4809 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4810 | p); | |
4811 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 | 4812 | |
cc252eae | 4813 | validate_slab_cache(kmalloc_caches[type][5]); |
a5a84755 CL |
4814 | p = kzalloc(64, GFP_KERNEL); |
4815 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4816 | *p = 0x56; | |
f9f58285 FF |
4817 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4818 | p); | |
4819 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
cc252eae | 4820 | validate_slab_cache(kmalloc_caches[type][6]); |
a5a84755 | 4821 | |
f9f58285 | 4822 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4823 | p = kzalloc(128, GFP_KERNEL); |
4824 | kfree(p); | |
4825 | *p = 0x78; | |
f9f58285 | 4826 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
cc252eae | 4827 | validate_slab_cache(kmalloc_caches[type][7]); |
a5a84755 CL |
4828 | |
4829 | p = kzalloc(256, GFP_KERNEL); | |
4830 | kfree(p); | |
4831 | p[50] = 0x9a; | |
f9f58285 | 4832 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
cc252eae | 4833 | validate_slab_cache(kmalloc_caches[type][8]); |
a5a84755 CL |
4834 | |
4835 | p = kzalloc(512, GFP_KERNEL); | |
4836 | kfree(p); | |
4837 | p[512] = 0xab; | |
f9f58285 | 4838 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
cc252eae | 4839 | validate_slab_cache(kmalloc_caches[type][9]); |
a5a84755 CL |
4840 | } |
4841 | #else | |
4842 | #ifdef CONFIG_SYSFS | |
4843 | static void resiliency_test(void) {}; | |
4844 | #endif | |
6dfd1b65 | 4845 | #endif /* SLUB_RESILIENCY_TEST */ |
a5a84755 | 4846 | |
ab4d5ed5 | 4847 | #ifdef CONFIG_SYSFS |
81819f0f | 4848 | enum slab_stat_type { |
205ab99d CL |
4849 | SL_ALL, /* All slabs */ |
4850 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4851 | SL_CPU, /* Only slabs used for cpu caches */ | |
4852 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4853 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4854 | }; |
4855 | ||
205ab99d | 4856 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4857 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4858 | #define SO_CPU (1 << SL_CPU) | |
4859 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4860 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4861 | |
1663f26d TH |
4862 | #ifdef CONFIG_MEMCG |
4863 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4864 | ||
4865 | static int __init setup_slub_memcg_sysfs(char *str) | |
4866 | { | |
4867 | int v; | |
4868 | ||
4869 | if (get_option(&str, &v) > 0) | |
4870 | memcg_sysfs_enabled = v; | |
4871 | ||
4872 | return 1; | |
4873 | } | |
4874 | ||
4875 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4876 | #endif | |
4877 | ||
62e5c4b4 CG |
4878 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4879 | char *buf, unsigned long flags) | |
81819f0f CL |
4880 | { |
4881 | unsigned long total = 0; | |
81819f0f CL |
4882 | int node; |
4883 | int x; | |
4884 | unsigned long *nodes; | |
81819f0f | 4885 | |
6396bb22 | 4886 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4887 | if (!nodes) |
4888 | return -ENOMEM; | |
81819f0f | 4889 | |
205ab99d CL |
4890 | if (flags & SO_CPU) { |
4891 | int cpu; | |
81819f0f | 4892 | |
205ab99d | 4893 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4894 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4895 | cpu); | |
ec3ab083 | 4896 | int node; |
49e22585 | 4897 | struct page *page; |
dfb4f096 | 4898 | |
4db0c3c2 | 4899 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4900 | if (!page) |
4901 | continue; | |
205ab99d | 4902 | |
ec3ab083 CL |
4903 | node = page_to_nid(page); |
4904 | if (flags & SO_TOTAL) | |
4905 | x = page->objects; | |
4906 | else if (flags & SO_OBJECTS) | |
4907 | x = page->inuse; | |
4908 | else | |
4909 | x = 1; | |
49e22585 | 4910 | |
ec3ab083 CL |
4911 | total += x; |
4912 | nodes[node] += x; | |
4913 | ||
a93cf07b | 4914 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4915 | if (page) { |
8afb1474 LZ |
4916 | node = page_to_nid(page); |
4917 | if (flags & SO_TOTAL) | |
4918 | WARN_ON_ONCE(1); | |
4919 | else if (flags & SO_OBJECTS) | |
4920 | WARN_ON_ONCE(1); | |
4921 | else | |
4922 | x = page->pages; | |
bc6697d8 ED |
4923 | total += x; |
4924 | nodes[node] += x; | |
49e22585 | 4925 | } |
81819f0f CL |
4926 | } |
4927 | } | |
4928 | ||
e4f8e513 QC |
4929 | /* |
4930 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
4931 | * already held which will conflict with an existing lock order: | |
4932 | * | |
4933 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
4934 | * | |
4935 | * We don't really need mem_hotplug_lock (to hold off | |
4936 | * slab_mem_going_offline_callback) here because slab's memory hot | |
4937 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
4938 | */ | |
4939 | ||
ab4d5ed5 | 4940 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4941 | if (flags & SO_ALL) { |
fa45dc25 CL |
4942 | struct kmem_cache_node *n; |
4943 | ||
4944 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4945 | |
d0e0ac97 CG |
4946 | if (flags & SO_TOTAL) |
4947 | x = atomic_long_read(&n->total_objects); | |
4948 | else if (flags & SO_OBJECTS) | |
4949 | x = atomic_long_read(&n->total_objects) - | |
4950 | count_partial(n, count_free); | |
81819f0f | 4951 | else |
205ab99d | 4952 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4953 | total += x; |
4954 | nodes[node] += x; | |
4955 | } | |
4956 | ||
ab4d5ed5 CL |
4957 | } else |
4958 | #endif | |
4959 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4960 | struct kmem_cache_node *n; |
81819f0f | 4961 | |
fa45dc25 | 4962 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4963 | if (flags & SO_TOTAL) |
4964 | x = count_partial(n, count_total); | |
4965 | else if (flags & SO_OBJECTS) | |
4966 | x = count_partial(n, count_inuse); | |
81819f0f | 4967 | else |
205ab99d | 4968 | x = n->nr_partial; |
81819f0f CL |
4969 | total += x; |
4970 | nodes[node] += x; | |
4971 | } | |
4972 | } | |
81819f0f CL |
4973 | x = sprintf(buf, "%lu", total); |
4974 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4975 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4976 | if (nodes[node]) |
4977 | x += sprintf(buf + x, " N%d=%lu", | |
4978 | node, nodes[node]); | |
4979 | #endif | |
4980 | kfree(nodes); | |
4981 | return x + sprintf(buf + x, "\n"); | |
4982 | } | |
4983 | ||
ab4d5ed5 | 4984 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4985 | static int any_slab_objects(struct kmem_cache *s) |
4986 | { | |
4987 | int node; | |
fa45dc25 | 4988 | struct kmem_cache_node *n; |
81819f0f | 4989 | |
fa45dc25 | 4990 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4991 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4992 | return 1; |
fa45dc25 | 4993 | |
81819f0f CL |
4994 | return 0; |
4995 | } | |
ab4d5ed5 | 4996 | #endif |
81819f0f CL |
4997 | |
4998 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4999 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
5000 | |
5001 | struct slab_attribute { | |
5002 | struct attribute attr; | |
5003 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
5004 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
5005 | }; | |
5006 | ||
5007 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
5008 | static struct slab_attribute _name##_attr = \ |
5009 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
5010 | |
5011 | #define SLAB_ATTR(_name) \ | |
5012 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 5013 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 5014 | |
81819f0f CL |
5015 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
5016 | { | |
44065b2e | 5017 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
5018 | } |
5019 | SLAB_ATTR_RO(slab_size); | |
5020 | ||
5021 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
5022 | { | |
3a3791ec | 5023 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
5024 | } |
5025 | SLAB_ATTR_RO(align); | |
5026 | ||
5027 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
5028 | { | |
1b473f29 | 5029 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
5030 | } |
5031 | SLAB_ATTR_RO(object_size); | |
5032 | ||
5033 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
5034 | { | |
19af27af | 5035 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
5036 | } |
5037 | SLAB_ATTR_RO(objs_per_slab); | |
5038 | ||
06b285dc CL |
5039 | static ssize_t order_store(struct kmem_cache *s, |
5040 | const char *buf, size_t length) | |
5041 | { | |
19af27af | 5042 | unsigned int order; |
0121c619 CL |
5043 | int err; |
5044 | ||
19af27af | 5045 | err = kstrtouint(buf, 10, &order); |
0121c619 CL |
5046 | if (err) |
5047 | return err; | |
06b285dc CL |
5048 | |
5049 | if (order > slub_max_order || order < slub_min_order) | |
5050 | return -EINVAL; | |
5051 | ||
5052 | calculate_sizes(s, order); | |
5053 | return length; | |
5054 | } | |
5055 | ||
81819f0f CL |
5056 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
5057 | { | |
19af27af | 5058 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 5059 | } |
06b285dc | 5060 | SLAB_ATTR(order); |
81819f0f | 5061 | |
73d342b1 DR |
5062 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
5063 | { | |
5064 | return sprintf(buf, "%lu\n", s->min_partial); | |
5065 | } | |
5066 | ||
5067 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
5068 | size_t length) | |
5069 | { | |
5070 | unsigned long min; | |
5071 | int err; | |
5072 | ||
3dbb95f7 | 5073 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5074 | if (err) |
5075 | return err; | |
5076 | ||
c0bdb232 | 5077 | set_min_partial(s, min); |
73d342b1 DR |
5078 | return length; |
5079 | } | |
5080 | SLAB_ATTR(min_partial); | |
5081 | ||
49e22585 CL |
5082 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5083 | { | |
e6d0e1dc | 5084 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
5085 | } |
5086 | ||
5087 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5088 | size_t length) | |
5089 | { | |
e5d9998f | 5090 | unsigned int objects; |
49e22585 CL |
5091 | int err; |
5092 | ||
e5d9998f | 5093 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5094 | if (err) |
5095 | return err; | |
345c905d | 5096 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5097 | return -EINVAL; |
49e22585 | 5098 | |
e6d0e1dc | 5099 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5100 | flush_all(s); |
5101 | return length; | |
5102 | } | |
5103 | SLAB_ATTR(cpu_partial); | |
5104 | ||
81819f0f CL |
5105 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5106 | { | |
62c70bce JP |
5107 | if (!s->ctor) |
5108 | return 0; | |
5109 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
5110 | } |
5111 | SLAB_ATTR_RO(ctor); | |
5112 | ||
81819f0f CL |
5113 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5114 | { | |
4307c14f | 5115 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5116 | } |
5117 | SLAB_ATTR_RO(aliases); | |
5118 | ||
81819f0f CL |
5119 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5120 | { | |
d9acf4b7 | 5121 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5122 | } |
5123 | SLAB_ATTR_RO(partial); | |
5124 | ||
5125 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5126 | { | |
d9acf4b7 | 5127 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5128 | } |
5129 | SLAB_ATTR_RO(cpu_slabs); | |
5130 | ||
5131 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5132 | { | |
205ab99d | 5133 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5134 | } |
5135 | SLAB_ATTR_RO(objects); | |
5136 | ||
205ab99d CL |
5137 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5138 | { | |
5139 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5140 | } | |
5141 | SLAB_ATTR_RO(objects_partial); | |
5142 | ||
49e22585 CL |
5143 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5144 | { | |
5145 | int objects = 0; | |
5146 | int pages = 0; | |
5147 | int cpu; | |
5148 | int len; | |
5149 | ||
5150 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5151 | struct page *page; |
5152 | ||
5153 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5154 | |
5155 | if (page) { | |
5156 | pages += page->pages; | |
5157 | objects += page->pobjects; | |
5158 | } | |
5159 | } | |
5160 | ||
5161 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5162 | ||
5163 | #ifdef CONFIG_SMP | |
5164 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5165 | struct page *page; |
5166 | ||
5167 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5168 | |
5169 | if (page && len < PAGE_SIZE - 20) | |
5170 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5171 | page->pobjects, page->pages); | |
5172 | } | |
5173 | #endif | |
5174 | return len + sprintf(buf + len, "\n"); | |
5175 | } | |
5176 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5177 | ||
a5a84755 CL |
5178 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5179 | { | |
5180 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5181 | } | |
5182 | ||
5183 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5184 | const char *buf, size_t length) | |
5185 | { | |
5186 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5187 | if (buf[0] == '1') | |
5188 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5189 | return length; | |
5190 | } | |
5191 | SLAB_ATTR(reclaim_account); | |
5192 | ||
5193 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5194 | { | |
5195 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5196 | } | |
5197 | SLAB_ATTR_RO(hwcache_align); | |
5198 | ||
5199 | #ifdef CONFIG_ZONE_DMA | |
5200 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5201 | { | |
5202 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5203 | } | |
5204 | SLAB_ATTR_RO(cache_dma); | |
5205 | #endif | |
5206 | ||
8eb8284b DW |
5207 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5208 | { | |
7bbdb81e | 5209 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5210 | } |
5211 | SLAB_ATTR_RO(usersize); | |
5212 | ||
a5a84755 CL |
5213 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5214 | { | |
5f0d5a3a | 5215 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5216 | } |
5217 | SLAB_ATTR_RO(destroy_by_rcu); | |
5218 | ||
ab4d5ed5 | 5219 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5220 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5221 | { | |
5222 | return show_slab_objects(s, buf, SO_ALL); | |
5223 | } | |
5224 | SLAB_ATTR_RO(slabs); | |
5225 | ||
205ab99d CL |
5226 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5227 | { | |
5228 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5229 | } | |
5230 | SLAB_ATTR_RO(total_objects); | |
5231 | ||
81819f0f CL |
5232 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5233 | { | |
becfda68 | 5234 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5235 | } |
5236 | ||
5237 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5238 | const char *buf, size_t length) | |
5239 | { | |
becfda68 | 5240 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5241 | if (buf[0] == '1') { |
5242 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5243 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5244 | } |
81819f0f CL |
5245 | return length; |
5246 | } | |
5247 | SLAB_ATTR(sanity_checks); | |
5248 | ||
5249 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5250 | { | |
5251 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5252 | } | |
5253 | ||
5254 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5255 | size_t length) | |
5256 | { | |
c9e16131 CL |
5257 | /* |
5258 | * Tracing a merged cache is going to give confusing results | |
5259 | * as well as cause other issues like converting a mergeable | |
5260 | * cache into an umergeable one. | |
5261 | */ | |
5262 | if (s->refcount > 1) | |
5263 | return -EINVAL; | |
5264 | ||
81819f0f | 5265 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5266 | if (buf[0] == '1') { |
5267 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5268 | s->flags |= SLAB_TRACE; |
b789ef51 | 5269 | } |
81819f0f CL |
5270 | return length; |
5271 | } | |
5272 | SLAB_ATTR(trace); | |
5273 | ||
81819f0f CL |
5274 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5275 | { | |
5276 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5277 | } | |
5278 | ||
5279 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5280 | const char *buf, size_t length) | |
5281 | { | |
5282 | if (any_slab_objects(s)) | |
5283 | return -EBUSY; | |
5284 | ||
5285 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5286 | if (buf[0] == '1') { |
81819f0f | 5287 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5288 | } |
06b285dc | 5289 | calculate_sizes(s, -1); |
81819f0f CL |
5290 | return length; |
5291 | } | |
5292 | SLAB_ATTR(red_zone); | |
5293 | ||
5294 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5295 | { | |
5296 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5297 | } | |
5298 | ||
5299 | static ssize_t poison_store(struct kmem_cache *s, | |
5300 | const char *buf, size_t length) | |
5301 | { | |
5302 | if (any_slab_objects(s)) | |
5303 | return -EBUSY; | |
5304 | ||
5305 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5306 | if (buf[0] == '1') { |
81819f0f | 5307 | s->flags |= SLAB_POISON; |
b789ef51 | 5308 | } |
06b285dc | 5309 | calculate_sizes(s, -1); |
81819f0f CL |
5310 | return length; |
5311 | } | |
5312 | SLAB_ATTR(poison); | |
5313 | ||
5314 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5315 | { | |
5316 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5317 | } | |
5318 | ||
5319 | static ssize_t store_user_store(struct kmem_cache *s, | |
5320 | const char *buf, size_t length) | |
5321 | { | |
5322 | if (any_slab_objects(s)) | |
5323 | return -EBUSY; | |
5324 | ||
5325 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5326 | if (buf[0] == '1') { |
5327 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5328 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5329 | } |
06b285dc | 5330 | calculate_sizes(s, -1); |
81819f0f CL |
5331 | return length; |
5332 | } | |
5333 | SLAB_ATTR(store_user); | |
5334 | ||
53e15af0 CL |
5335 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5336 | { | |
5337 | return 0; | |
5338 | } | |
5339 | ||
5340 | static ssize_t validate_store(struct kmem_cache *s, | |
5341 | const char *buf, size_t length) | |
5342 | { | |
434e245d CL |
5343 | int ret = -EINVAL; |
5344 | ||
5345 | if (buf[0] == '1') { | |
5346 | ret = validate_slab_cache(s); | |
5347 | if (ret >= 0) | |
5348 | ret = length; | |
5349 | } | |
5350 | return ret; | |
53e15af0 CL |
5351 | } |
5352 | SLAB_ATTR(validate); | |
a5a84755 CL |
5353 | |
5354 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5355 | { | |
5356 | if (!(s->flags & SLAB_STORE_USER)) | |
5357 | return -ENOSYS; | |
5358 | return list_locations(s, buf, TRACK_ALLOC); | |
5359 | } | |
5360 | SLAB_ATTR_RO(alloc_calls); | |
5361 | ||
5362 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5363 | { | |
5364 | if (!(s->flags & SLAB_STORE_USER)) | |
5365 | return -ENOSYS; | |
5366 | return list_locations(s, buf, TRACK_FREE); | |
5367 | } | |
5368 | SLAB_ATTR_RO(free_calls); | |
5369 | #endif /* CONFIG_SLUB_DEBUG */ | |
5370 | ||
5371 | #ifdef CONFIG_FAILSLAB | |
5372 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5373 | { | |
5374 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5375 | } | |
5376 | ||
5377 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5378 | size_t length) | |
5379 | { | |
c9e16131 CL |
5380 | if (s->refcount > 1) |
5381 | return -EINVAL; | |
5382 | ||
a5a84755 CL |
5383 | s->flags &= ~SLAB_FAILSLAB; |
5384 | if (buf[0] == '1') | |
5385 | s->flags |= SLAB_FAILSLAB; | |
5386 | return length; | |
5387 | } | |
5388 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5389 | #endif |
53e15af0 | 5390 | |
2086d26a CL |
5391 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5392 | { | |
5393 | return 0; | |
5394 | } | |
5395 | ||
5396 | static ssize_t shrink_store(struct kmem_cache *s, | |
5397 | const char *buf, size_t length) | |
5398 | { | |
832f37f5 | 5399 | if (buf[0] == '1') |
04f768a3 | 5400 | kmem_cache_shrink_all(s); |
832f37f5 | 5401 | else |
2086d26a CL |
5402 | return -EINVAL; |
5403 | return length; | |
5404 | } | |
5405 | SLAB_ATTR(shrink); | |
5406 | ||
81819f0f | 5407 | #ifdef CONFIG_NUMA |
9824601e | 5408 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5409 | { |
eb7235eb | 5410 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5411 | } |
5412 | ||
9824601e | 5413 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5414 | const char *buf, size_t length) |
5415 | { | |
eb7235eb | 5416 | unsigned int ratio; |
0121c619 CL |
5417 | int err; |
5418 | ||
eb7235eb | 5419 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5420 | if (err) |
5421 | return err; | |
eb7235eb AD |
5422 | if (ratio > 100) |
5423 | return -ERANGE; | |
0121c619 | 5424 | |
eb7235eb | 5425 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5426 | |
81819f0f CL |
5427 | return length; |
5428 | } | |
9824601e | 5429 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5430 | #endif |
5431 | ||
8ff12cfc | 5432 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5433 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5434 | { | |
5435 | unsigned long sum = 0; | |
5436 | int cpu; | |
5437 | int len; | |
6da2ec56 | 5438 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5439 | |
5440 | if (!data) | |
5441 | return -ENOMEM; | |
5442 | ||
5443 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5444 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5445 | |
5446 | data[cpu] = x; | |
5447 | sum += x; | |
5448 | } | |
5449 | ||
5450 | len = sprintf(buf, "%lu", sum); | |
5451 | ||
50ef37b9 | 5452 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5453 | for_each_online_cpu(cpu) { |
5454 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5455 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5456 | } |
50ef37b9 | 5457 | #endif |
8ff12cfc CL |
5458 | kfree(data); |
5459 | return len + sprintf(buf + len, "\n"); | |
5460 | } | |
5461 | ||
78eb00cc DR |
5462 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5463 | { | |
5464 | int cpu; | |
5465 | ||
5466 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5467 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5468 | } |
5469 | ||
8ff12cfc CL |
5470 | #define STAT_ATTR(si, text) \ |
5471 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5472 | { \ | |
5473 | return show_stat(s, buf, si); \ | |
5474 | } \ | |
78eb00cc DR |
5475 | static ssize_t text##_store(struct kmem_cache *s, \ |
5476 | const char *buf, size_t length) \ | |
5477 | { \ | |
5478 | if (buf[0] != '0') \ | |
5479 | return -EINVAL; \ | |
5480 | clear_stat(s, si); \ | |
5481 | return length; \ | |
5482 | } \ | |
5483 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5484 | |
5485 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5486 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5487 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5488 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5489 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5490 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5491 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5492 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5493 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5494 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5495 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5496 | STAT_ATTR(FREE_SLAB, free_slab); |
5497 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5498 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5499 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5500 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5501 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5502 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5503 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5504 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5505 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5506 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5507 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5508 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5509 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5510 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5511 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5512 | |
06428780 | 5513 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5514 | &slab_size_attr.attr, |
5515 | &object_size_attr.attr, | |
5516 | &objs_per_slab_attr.attr, | |
5517 | &order_attr.attr, | |
73d342b1 | 5518 | &min_partial_attr.attr, |
49e22585 | 5519 | &cpu_partial_attr.attr, |
81819f0f | 5520 | &objects_attr.attr, |
205ab99d | 5521 | &objects_partial_attr.attr, |
81819f0f CL |
5522 | &partial_attr.attr, |
5523 | &cpu_slabs_attr.attr, | |
5524 | &ctor_attr.attr, | |
81819f0f CL |
5525 | &aliases_attr.attr, |
5526 | &align_attr.attr, | |
81819f0f CL |
5527 | &hwcache_align_attr.attr, |
5528 | &reclaim_account_attr.attr, | |
5529 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5530 | &shrink_attr.attr, |
49e22585 | 5531 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5532 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5533 | &total_objects_attr.attr, |
5534 | &slabs_attr.attr, | |
5535 | &sanity_checks_attr.attr, | |
5536 | &trace_attr.attr, | |
81819f0f CL |
5537 | &red_zone_attr.attr, |
5538 | &poison_attr.attr, | |
5539 | &store_user_attr.attr, | |
53e15af0 | 5540 | &validate_attr.attr, |
88a420e4 CL |
5541 | &alloc_calls_attr.attr, |
5542 | &free_calls_attr.attr, | |
ab4d5ed5 | 5543 | #endif |
81819f0f CL |
5544 | #ifdef CONFIG_ZONE_DMA |
5545 | &cache_dma_attr.attr, | |
5546 | #endif | |
5547 | #ifdef CONFIG_NUMA | |
9824601e | 5548 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5549 | #endif |
5550 | #ifdef CONFIG_SLUB_STATS | |
5551 | &alloc_fastpath_attr.attr, | |
5552 | &alloc_slowpath_attr.attr, | |
5553 | &free_fastpath_attr.attr, | |
5554 | &free_slowpath_attr.attr, | |
5555 | &free_frozen_attr.attr, | |
5556 | &free_add_partial_attr.attr, | |
5557 | &free_remove_partial_attr.attr, | |
5558 | &alloc_from_partial_attr.attr, | |
5559 | &alloc_slab_attr.attr, | |
5560 | &alloc_refill_attr.attr, | |
e36a2652 | 5561 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5562 | &free_slab_attr.attr, |
5563 | &cpuslab_flush_attr.attr, | |
5564 | &deactivate_full_attr.attr, | |
5565 | &deactivate_empty_attr.attr, | |
5566 | &deactivate_to_head_attr.attr, | |
5567 | &deactivate_to_tail_attr.attr, | |
5568 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5569 | &deactivate_bypass_attr.attr, |
65c3376a | 5570 | &order_fallback_attr.attr, |
b789ef51 CL |
5571 | &cmpxchg_double_fail_attr.attr, |
5572 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5573 | &cpu_partial_alloc_attr.attr, |
5574 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5575 | &cpu_partial_node_attr.attr, |
5576 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5577 | #endif |
4c13dd3b DM |
5578 | #ifdef CONFIG_FAILSLAB |
5579 | &failslab_attr.attr, | |
5580 | #endif | |
8eb8284b | 5581 | &usersize_attr.attr, |
4c13dd3b | 5582 | |
81819f0f CL |
5583 | NULL |
5584 | }; | |
5585 | ||
1fdaaa23 | 5586 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5587 | .attrs = slab_attrs, |
5588 | }; | |
5589 | ||
5590 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5591 | struct attribute *attr, | |
5592 | char *buf) | |
5593 | { | |
5594 | struct slab_attribute *attribute; | |
5595 | struct kmem_cache *s; | |
5596 | int err; | |
5597 | ||
5598 | attribute = to_slab_attr(attr); | |
5599 | s = to_slab(kobj); | |
5600 | ||
5601 | if (!attribute->show) | |
5602 | return -EIO; | |
5603 | ||
5604 | err = attribute->show(s, buf); | |
5605 | ||
5606 | return err; | |
5607 | } | |
5608 | ||
5609 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5610 | struct attribute *attr, | |
5611 | const char *buf, size_t len) | |
5612 | { | |
5613 | struct slab_attribute *attribute; | |
5614 | struct kmem_cache *s; | |
5615 | int err; | |
5616 | ||
5617 | attribute = to_slab_attr(attr); | |
5618 | s = to_slab(kobj); | |
5619 | ||
5620 | if (!attribute->store) | |
5621 | return -EIO; | |
5622 | ||
5623 | err = attribute->store(s, buf, len); | |
127424c8 | 5624 | #ifdef CONFIG_MEMCG |
107dab5c | 5625 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5626 | struct kmem_cache *c; |
81819f0f | 5627 | |
107dab5c GC |
5628 | mutex_lock(&slab_mutex); |
5629 | if (s->max_attr_size < len) | |
5630 | s->max_attr_size = len; | |
5631 | ||
ebe945c2 GC |
5632 | /* |
5633 | * This is a best effort propagation, so this function's return | |
5634 | * value will be determined by the parent cache only. This is | |
5635 | * basically because not all attributes will have a well | |
5636 | * defined semantics for rollbacks - most of the actions will | |
5637 | * have permanent effects. | |
5638 | * | |
5639 | * Returning the error value of any of the children that fail | |
5640 | * is not 100 % defined, in the sense that users seeing the | |
5641 | * error code won't be able to know anything about the state of | |
5642 | * the cache. | |
5643 | * | |
5644 | * Only returning the error code for the parent cache at least | |
5645 | * has well defined semantics. The cache being written to | |
5646 | * directly either failed or succeeded, in which case we loop | |
5647 | * through the descendants with best-effort propagation. | |
5648 | */ | |
426589f5 VD |
5649 | for_each_memcg_cache(c, s) |
5650 | attribute->store(c, buf, len); | |
107dab5c GC |
5651 | mutex_unlock(&slab_mutex); |
5652 | } | |
5653 | #endif | |
81819f0f CL |
5654 | return err; |
5655 | } | |
5656 | ||
107dab5c GC |
5657 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5658 | { | |
127424c8 | 5659 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5660 | int i; |
5661 | char *buffer = NULL; | |
93030d83 | 5662 | struct kmem_cache *root_cache; |
107dab5c | 5663 | |
93030d83 | 5664 | if (is_root_cache(s)) |
107dab5c GC |
5665 | return; |
5666 | ||
f7ce3190 | 5667 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5668 | |
107dab5c GC |
5669 | /* |
5670 | * This mean this cache had no attribute written. Therefore, no point | |
5671 | * in copying default values around | |
5672 | */ | |
93030d83 | 5673 | if (!root_cache->max_attr_size) |
107dab5c GC |
5674 | return; |
5675 | ||
5676 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5677 | char mbuf[64]; | |
5678 | char *buf; | |
5679 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5680 | ssize_t len; |
107dab5c GC |
5681 | |
5682 | if (!attr || !attr->store || !attr->show) | |
5683 | continue; | |
5684 | ||
5685 | /* | |
5686 | * It is really bad that we have to allocate here, so we will | |
5687 | * do it only as a fallback. If we actually allocate, though, | |
5688 | * we can just use the allocated buffer until the end. | |
5689 | * | |
5690 | * Most of the slub attributes will tend to be very small in | |
5691 | * size, but sysfs allows buffers up to a page, so they can | |
5692 | * theoretically happen. | |
5693 | */ | |
5694 | if (buffer) | |
5695 | buf = buffer; | |
a68ee057 QC |
5696 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) && |
5697 | !IS_ENABLED(CONFIG_SLUB_STATS)) | |
107dab5c GC |
5698 | buf = mbuf; |
5699 | else { | |
5700 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5701 | if (WARN_ON(!buffer)) | |
5702 | continue; | |
5703 | buf = buffer; | |
5704 | } | |
5705 | ||
478fe303 TG |
5706 | len = attr->show(root_cache, buf); |
5707 | if (len > 0) | |
5708 | attr->store(s, buf, len); | |
107dab5c GC |
5709 | } |
5710 | ||
5711 | if (buffer) | |
5712 | free_page((unsigned long)buffer); | |
6dfd1b65 | 5713 | #endif /* CONFIG_MEMCG */ |
107dab5c GC |
5714 | } |
5715 | ||
41a21285 CL |
5716 | static void kmem_cache_release(struct kobject *k) |
5717 | { | |
5718 | slab_kmem_cache_release(to_slab(k)); | |
5719 | } | |
5720 | ||
52cf25d0 | 5721 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5722 | .show = slab_attr_show, |
5723 | .store = slab_attr_store, | |
5724 | }; | |
5725 | ||
5726 | static struct kobj_type slab_ktype = { | |
5727 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5728 | .release = kmem_cache_release, |
81819f0f CL |
5729 | }; |
5730 | ||
27c3a314 | 5731 | static struct kset *slab_kset; |
81819f0f | 5732 | |
9a41707b VD |
5733 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5734 | { | |
127424c8 | 5735 | #ifdef CONFIG_MEMCG |
9a41707b | 5736 | if (!is_root_cache(s)) |
f7ce3190 | 5737 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5738 | #endif |
5739 | return slab_kset; | |
5740 | } | |
5741 | ||
81819f0f CL |
5742 | #define ID_STR_LENGTH 64 |
5743 | ||
5744 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5745 | * |
5746 | * Format :[flags-]size | |
81819f0f CL |
5747 | */ |
5748 | static char *create_unique_id(struct kmem_cache *s) | |
5749 | { | |
5750 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5751 | char *p = name; | |
5752 | ||
5753 | BUG_ON(!name); | |
5754 | ||
5755 | *p++ = ':'; | |
5756 | /* | |
5757 | * First flags affecting slabcache operations. We will only | |
5758 | * get here for aliasable slabs so we do not need to support | |
5759 | * too many flags. The flags here must cover all flags that | |
5760 | * are matched during merging to guarantee that the id is | |
5761 | * unique. | |
5762 | */ | |
5763 | if (s->flags & SLAB_CACHE_DMA) | |
5764 | *p++ = 'd'; | |
6d6ea1e9 NB |
5765 | if (s->flags & SLAB_CACHE_DMA32) |
5766 | *p++ = 'D'; | |
81819f0f CL |
5767 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5768 | *p++ = 'a'; | |
becfda68 | 5769 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5770 | *p++ = 'F'; |
230e9fc2 VD |
5771 | if (s->flags & SLAB_ACCOUNT) |
5772 | *p++ = 'A'; | |
81819f0f CL |
5773 | if (p != name + 1) |
5774 | *p++ = '-'; | |
44065b2e | 5775 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5776 | |
81819f0f CL |
5777 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5778 | return name; | |
5779 | } | |
5780 | ||
3b7b3140 TH |
5781 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5782 | { | |
5783 | struct kmem_cache *s = | |
5784 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5785 | ||
5786 | if (!s->kobj.state_in_sysfs) | |
5787 | /* | |
5788 | * For a memcg cache, this may be called during | |
5789 | * deactivation and again on shutdown. Remove only once. | |
5790 | * A cache is never shut down before deactivation is | |
5791 | * complete, so no need to worry about synchronization. | |
5792 | */ | |
f6ba4880 | 5793 | goto out; |
3b7b3140 TH |
5794 | |
5795 | #ifdef CONFIG_MEMCG | |
5796 | kset_unregister(s->memcg_kset); | |
5797 | #endif | |
f6ba4880 | 5798 | out: |
3b7b3140 TH |
5799 | kobject_put(&s->kobj); |
5800 | } | |
5801 | ||
81819f0f CL |
5802 | static int sysfs_slab_add(struct kmem_cache *s) |
5803 | { | |
5804 | int err; | |
5805 | const char *name; | |
1663f26d | 5806 | struct kset *kset = cache_kset(s); |
45530c44 | 5807 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5808 | |
3b7b3140 TH |
5809 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5810 | ||
1663f26d TH |
5811 | if (!kset) { |
5812 | kobject_init(&s->kobj, &slab_ktype); | |
5813 | return 0; | |
5814 | } | |
5815 | ||
11066386 MC |
5816 | if (!unmergeable && disable_higher_order_debug && |
5817 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5818 | unmergeable = 1; | |
5819 | ||
81819f0f CL |
5820 | if (unmergeable) { |
5821 | /* | |
5822 | * Slabcache can never be merged so we can use the name proper. | |
5823 | * This is typically the case for debug situations. In that | |
5824 | * case we can catch duplicate names easily. | |
5825 | */ | |
27c3a314 | 5826 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5827 | name = s->name; |
5828 | } else { | |
5829 | /* | |
5830 | * Create a unique name for the slab as a target | |
5831 | * for the symlinks. | |
5832 | */ | |
5833 | name = create_unique_id(s); | |
5834 | } | |
5835 | ||
1663f26d | 5836 | s->kobj.kset = kset; |
26e4f205 | 5837 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
dde3c6b7 WH |
5838 | if (err) { |
5839 | kobject_put(&s->kobj); | |
80da026a | 5840 | goto out; |
dde3c6b7 | 5841 | } |
81819f0f CL |
5842 | |
5843 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5844 | if (err) |
5845 | goto out_del_kobj; | |
9a41707b | 5846 | |
127424c8 | 5847 | #ifdef CONFIG_MEMCG |
1663f26d | 5848 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5849 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5850 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5851 | err = -ENOMEM; |
5852 | goto out_del_kobj; | |
9a41707b VD |
5853 | } |
5854 | } | |
5855 | #endif | |
5856 | ||
81819f0f CL |
5857 | if (!unmergeable) { |
5858 | /* Setup first alias */ | |
5859 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5860 | } |
54b6a731 DJ |
5861 | out: |
5862 | if (!unmergeable) | |
5863 | kfree(name); | |
5864 | return err; | |
5865 | out_del_kobj: | |
5866 | kobject_del(&s->kobj); | |
54b6a731 | 5867 | goto out; |
81819f0f CL |
5868 | } |
5869 | ||
bf5eb3de | 5870 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5871 | { |
97d06609 | 5872 | if (slab_state < FULL) |
2bce6485 CL |
5873 | /* |
5874 | * Sysfs has not been setup yet so no need to remove the | |
5875 | * cache from sysfs. | |
5876 | */ | |
5877 | return; | |
5878 | ||
3b7b3140 TH |
5879 | kobject_get(&s->kobj); |
5880 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5881 | } |
5882 | ||
d50d82fa MP |
5883 | void sysfs_slab_unlink(struct kmem_cache *s) |
5884 | { | |
5885 | if (slab_state >= FULL) | |
5886 | kobject_del(&s->kobj); | |
5887 | } | |
5888 | ||
bf5eb3de TH |
5889 | void sysfs_slab_release(struct kmem_cache *s) |
5890 | { | |
5891 | if (slab_state >= FULL) | |
5892 | kobject_put(&s->kobj); | |
81819f0f CL |
5893 | } |
5894 | ||
5895 | /* | |
5896 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5897 | * available lest we lose that information. |
81819f0f CL |
5898 | */ |
5899 | struct saved_alias { | |
5900 | struct kmem_cache *s; | |
5901 | const char *name; | |
5902 | struct saved_alias *next; | |
5903 | }; | |
5904 | ||
5af328a5 | 5905 | static struct saved_alias *alias_list; |
81819f0f CL |
5906 | |
5907 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5908 | { | |
5909 | struct saved_alias *al; | |
5910 | ||
97d06609 | 5911 | if (slab_state == FULL) { |
81819f0f CL |
5912 | /* |
5913 | * If we have a leftover link then remove it. | |
5914 | */ | |
27c3a314 GKH |
5915 | sysfs_remove_link(&slab_kset->kobj, name); |
5916 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5917 | } |
5918 | ||
5919 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5920 | if (!al) | |
5921 | return -ENOMEM; | |
5922 | ||
5923 | al->s = s; | |
5924 | al->name = name; | |
5925 | al->next = alias_list; | |
5926 | alias_list = al; | |
5927 | return 0; | |
5928 | } | |
5929 | ||
5930 | static int __init slab_sysfs_init(void) | |
5931 | { | |
5b95a4ac | 5932 | struct kmem_cache *s; |
81819f0f CL |
5933 | int err; |
5934 | ||
18004c5d | 5935 | mutex_lock(&slab_mutex); |
2bce6485 | 5936 | |
d7660ce5 | 5937 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 5938 | if (!slab_kset) { |
18004c5d | 5939 | mutex_unlock(&slab_mutex); |
f9f58285 | 5940 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5941 | return -ENOSYS; |
5942 | } | |
5943 | ||
97d06609 | 5944 | slab_state = FULL; |
26a7bd03 | 5945 | |
5b95a4ac | 5946 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5947 | err = sysfs_slab_add(s); |
5d540fb7 | 5948 | if (err) |
f9f58285 FF |
5949 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5950 | s->name); | |
26a7bd03 | 5951 | } |
81819f0f CL |
5952 | |
5953 | while (alias_list) { | |
5954 | struct saved_alias *al = alias_list; | |
5955 | ||
5956 | alias_list = alias_list->next; | |
5957 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5958 | if (err) |
f9f58285 FF |
5959 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5960 | al->name); | |
81819f0f CL |
5961 | kfree(al); |
5962 | } | |
5963 | ||
18004c5d | 5964 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5965 | resiliency_test(); |
5966 | return 0; | |
5967 | } | |
5968 | ||
5969 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5970 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5971 | |
5972 | /* | |
5973 | * The /proc/slabinfo ABI | |
5974 | */ | |
5b365771 | 5975 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5976 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5977 | { |
57ed3eda | 5978 | unsigned long nr_slabs = 0; |
205ab99d CL |
5979 | unsigned long nr_objs = 0; |
5980 | unsigned long nr_free = 0; | |
57ed3eda | 5981 | int node; |
fa45dc25 | 5982 | struct kmem_cache_node *n; |
57ed3eda | 5983 | |
fa45dc25 | 5984 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5985 | nr_slabs += node_nr_slabs(n); |
5986 | nr_objs += node_nr_objs(n); | |
205ab99d | 5987 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5988 | } |
5989 | ||
0d7561c6 GC |
5990 | sinfo->active_objs = nr_objs - nr_free; |
5991 | sinfo->num_objs = nr_objs; | |
5992 | sinfo->active_slabs = nr_slabs; | |
5993 | sinfo->num_slabs = nr_slabs; | |
5994 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5995 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5996 | } |
5997 | ||
0d7561c6 | 5998 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5999 | { |
7b3c3a50 AD |
6000 | } |
6001 | ||
b7454ad3 GC |
6002 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
6003 | size_t count, loff_t *ppos) | |
7b3c3a50 | 6004 | { |
b7454ad3 | 6005 | return -EIO; |
7b3c3a50 | 6006 | } |
5b365771 | 6007 | #endif /* CONFIG_SLUB_DEBUG */ |