]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
2482ddec | 36 | #include <linux/random.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 54 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 55 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
56 | * B. page->inuse -> Number of objects in use |
57 | * C. page->objects -> Number of objects in page | |
58 | * D. page->frozen -> frozen state | |
881db7fb CL |
59 | * |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
61 | * on any list. The processor that froze the slab is the one who can | |
62 | * perform list operations on the page. Other processors may put objects | |
63 | * onto the freelist but the processor that froze the slab is the only | |
64 | * one that can retrieve the objects from the page's freelist. | |
81819f0f CL |
65 | * |
66 | * The list_lock protects the partial and full list on each node and | |
67 | * the partial slab counter. If taken then no new slabs may be added or | |
68 | * removed from the lists nor make the number of partial slabs be modified. | |
69 | * (Note that the total number of slabs is an atomic value that may be | |
70 | * modified without taking the list lock). | |
71 | * | |
72 | * The list_lock is a centralized lock and thus we avoid taking it as | |
73 | * much as possible. As long as SLUB does not have to handle partial | |
74 | * slabs, operations can continue without any centralized lock. F.e. | |
75 | * allocating a long series of objects that fill up slabs does not require | |
76 | * the list lock. | |
81819f0f CL |
77 | * Interrupts are disabled during allocation and deallocation in order to |
78 | * make the slab allocator safe to use in the context of an irq. In addition | |
79 | * interrupts are disabled to ensure that the processor does not change | |
80 | * while handling per_cpu slabs, due to kernel preemption. | |
81 | * | |
82 | * SLUB assigns one slab for allocation to each processor. | |
83 | * Allocations only occur from these slabs called cpu slabs. | |
84 | * | |
672bba3a CL |
85 | * Slabs with free elements are kept on a partial list and during regular |
86 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 87 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
88 | * We track full slabs for debugging purposes though because otherwise we |
89 | * cannot scan all objects. | |
81819f0f CL |
90 | * |
91 | * Slabs are freed when they become empty. Teardown and setup is | |
92 | * minimal so we rely on the page allocators per cpu caches for | |
93 | * fast frees and allocs. | |
94 | * | |
95 | * Overloading of page flags that are otherwise used for LRU management. | |
96 | * | |
4b6f0750 CL |
97 | * PageActive The slab is frozen and exempt from list processing. |
98 | * This means that the slab is dedicated to a purpose | |
99 | * such as satisfying allocations for a specific | |
100 | * processor. Objects may be freed in the slab while | |
101 | * it is frozen but slab_free will then skip the usual | |
102 | * list operations. It is up to the processor holding | |
103 | * the slab to integrate the slab into the slab lists | |
104 | * when the slab is no longer needed. | |
105 | * | |
106 | * One use of this flag is to mark slabs that are | |
107 | * used for allocations. Then such a slab becomes a cpu | |
108 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 109 | * freelist that allows lockless access to |
894b8788 CL |
110 | * free objects in addition to the regular freelist |
111 | * that requires the slab lock. | |
81819f0f CL |
112 | * |
113 | * PageError Slab requires special handling due to debug | |
114 | * options set. This moves slab handling out of | |
894b8788 | 115 | * the fast path and disables lockless freelists. |
81819f0f CL |
116 | */ |
117 | ||
af537b0a CL |
118 | static inline int kmem_cache_debug(struct kmem_cache *s) |
119 | { | |
5577bd8a | 120 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 121 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 122 | #else |
af537b0a | 123 | return 0; |
5577bd8a | 124 | #endif |
af537b0a | 125 | } |
5577bd8a | 126 | |
117d54df | 127 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
128 | { |
129 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
130 | p += s->red_left_pad; | |
131 | ||
132 | return p; | |
133 | } | |
134 | ||
345c905d JK |
135 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
136 | { | |
137 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
138 | return !kmem_cache_debug(s); | |
139 | #else | |
140 | return false; | |
141 | #endif | |
142 | } | |
143 | ||
81819f0f CL |
144 | /* |
145 | * Issues still to be resolved: | |
146 | * | |
81819f0f CL |
147 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
148 | * | |
81819f0f CL |
149 | * - Variable sizing of the per node arrays |
150 | */ | |
151 | ||
152 | /* Enable to test recovery from slab corruption on boot */ | |
153 | #undef SLUB_RESILIENCY_TEST | |
154 | ||
b789ef51 CL |
155 | /* Enable to log cmpxchg failures */ |
156 | #undef SLUB_DEBUG_CMPXCHG | |
157 | ||
2086d26a CL |
158 | /* |
159 | * Mininum number of partial slabs. These will be left on the partial | |
160 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
161 | */ | |
76be8950 | 162 | #define MIN_PARTIAL 5 |
e95eed57 | 163 | |
2086d26a CL |
164 | /* |
165 | * Maximum number of desirable partial slabs. | |
166 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 167 | * sort the partial list by the number of objects in use. |
2086d26a CL |
168 | */ |
169 | #define MAX_PARTIAL 10 | |
170 | ||
becfda68 | 171 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 172 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 173 | |
149daaf3 LA |
174 | /* |
175 | * These debug flags cannot use CMPXCHG because there might be consistency | |
176 | * issues when checking or reading debug information | |
177 | */ | |
178 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
179 | SLAB_TRACE) | |
180 | ||
181 | ||
fa5ec8a1 | 182 | /* |
3de47213 DR |
183 | * Debugging flags that require metadata to be stored in the slab. These get |
184 | * disabled when slub_debug=O is used and a cache's min order increases with | |
185 | * metadata. | |
fa5ec8a1 | 186 | */ |
3de47213 | 187 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 188 | |
210b5c06 CG |
189 | #define OO_SHIFT 16 |
190 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 191 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 192 | |
81819f0f | 193 | /* Internal SLUB flags */ |
d50112ed | 194 | /* Poison object */ |
4fd0b46e | 195 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 196 | /* Use cmpxchg_double */ |
4fd0b46e | 197 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 198 | |
02cbc874 CL |
199 | /* |
200 | * Tracking user of a slab. | |
201 | */ | |
d6543e39 | 202 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 203 | struct track { |
ce71e27c | 204 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
205 | #ifdef CONFIG_STACKTRACE |
206 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
207 | #endif | |
02cbc874 CL |
208 | int cpu; /* Was running on cpu */ |
209 | int pid; /* Pid context */ | |
210 | unsigned long when; /* When did the operation occur */ | |
211 | }; | |
212 | ||
213 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
214 | ||
ab4d5ed5 | 215 | #ifdef CONFIG_SYSFS |
81819f0f CL |
216 | static int sysfs_slab_add(struct kmem_cache *); |
217 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 218 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 219 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 220 | #else |
0c710013 CL |
221 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
222 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
223 | { return 0; } | |
107dab5c | 224 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 225 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
226 | #endif |
227 | ||
4fdccdfb | 228 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
229 | { |
230 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
231 | /* |
232 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
233 | * avoid this_cpu_add()'s irq-disable overhead. | |
234 | */ | |
235 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
236 | #endif |
237 | } | |
238 | ||
81819f0f CL |
239 | /******************************************************************** |
240 | * Core slab cache functions | |
241 | *******************************************************************/ | |
242 | ||
2482ddec KC |
243 | /* |
244 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
245 | * with an XOR of the address where the pointer is held and a per-cache | |
246 | * random number. | |
247 | */ | |
248 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
249 | unsigned long ptr_addr) | |
250 | { | |
251 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
252 | return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); | |
253 | #else | |
254 | return ptr; | |
255 | #endif | |
256 | } | |
257 | ||
258 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
259 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
260 | void *ptr_addr) | |
261 | { | |
262 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
263 | (unsigned long)ptr_addr); | |
264 | } | |
265 | ||
7656c72b CL |
266 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
267 | { | |
2482ddec | 268 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
269 | } |
270 | ||
0ad9500e ED |
271 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
272 | { | |
0882ff91 | 273 | prefetch(object + s->offset); |
0ad9500e ED |
274 | } |
275 | ||
1393d9a1 CL |
276 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
277 | { | |
2482ddec | 278 | unsigned long freepointer_addr; |
1393d9a1 CL |
279 | void *p; |
280 | ||
922d566c JK |
281 | if (!debug_pagealloc_enabled()) |
282 | return get_freepointer(s, object); | |
283 | ||
2482ddec KC |
284 | freepointer_addr = (unsigned long)object + s->offset; |
285 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
286 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
287 | } |
288 | ||
7656c72b CL |
289 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
290 | { | |
2482ddec KC |
291 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
292 | ||
ce6fa91b AP |
293 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
294 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
295 | #endif | |
296 | ||
2482ddec | 297 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
298 | } |
299 | ||
300 | /* Loop over all objects in a slab */ | |
224a88be | 301 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
302 | for (__p = fixup_red_left(__s, __addr); \ |
303 | __p < (__addr) + (__objects) * (__s)->size; \ | |
304 | __p += (__s)->size) | |
7656c72b | 305 | |
54266640 | 306 | #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ |
d86bd1be JK |
307 | for (__p = fixup_red_left(__s, __addr), __idx = 1; \ |
308 | __idx <= __objects; \ | |
309 | __p += (__s)->size, __idx++) | |
54266640 | 310 | |
7656c72b | 311 | /* Determine object index from a given position */ |
284b50dd | 312 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) |
7656c72b CL |
313 | { |
314 | return (p - addr) / s->size; | |
315 | } | |
316 | ||
9736d2a9 | 317 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 318 | { |
9736d2a9 | 319 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
320 | } |
321 | ||
19af27af | 322 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 323 | unsigned int size) |
834f3d11 CL |
324 | { |
325 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 326 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
327 | }; |
328 | ||
329 | return x; | |
330 | } | |
331 | ||
19af27af | 332 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 333 | { |
210b5c06 | 334 | return x.x >> OO_SHIFT; |
834f3d11 CL |
335 | } |
336 | ||
19af27af | 337 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 338 | { |
210b5c06 | 339 | return x.x & OO_MASK; |
834f3d11 CL |
340 | } |
341 | ||
881db7fb CL |
342 | /* |
343 | * Per slab locking using the pagelock | |
344 | */ | |
345 | static __always_inline void slab_lock(struct page *page) | |
346 | { | |
48c935ad | 347 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
348 | bit_spin_lock(PG_locked, &page->flags); |
349 | } | |
350 | ||
351 | static __always_inline void slab_unlock(struct page *page) | |
352 | { | |
48c935ad | 353 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
354 | __bit_spin_unlock(PG_locked, &page->flags); |
355 | } | |
356 | ||
1d07171c CL |
357 | /* Interrupts must be disabled (for the fallback code to work right) */ |
358 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
359 | void *freelist_old, unsigned long counters_old, | |
360 | void *freelist_new, unsigned long counters_new, | |
361 | const char *n) | |
362 | { | |
363 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
364 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
365 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 366 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 367 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
368 | freelist_old, counters_old, |
369 | freelist_new, counters_new)) | |
6f6528a1 | 370 | return true; |
1d07171c CL |
371 | } else |
372 | #endif | |
373 | { | |
374 | slab_lock(page); | |
d0e0ac97 CG |
375 | if (page->freelist == freelist_old && |
376 | page->counters == counters_old) { | |
1d07171c | 377 | page->freelist = freelist_new; |
7d27a04b | 378 | page->counters = counters_new; |
1d07171c | 379 | slab_unlock(page); |
6f6528a1 | 380 | return true; |
1d07171c CL |
381 | } |
382 | slab_unlock(page); | |
383 | } | |
384 | ||
385 | cpu_relax(); | |
386 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
387 | ||
388 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 389 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
390 | #endif |
391 | ||
6f6528a1 | 392 | return false; |
1d07171c CL |
393 | } |
394 | ||
b789ef51 CL |
395 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
396 | void *freelist_old, unsigned long counters_old, | |
397 | void *freelist_new, unsigned long counters_new, | |
398 | const char *n) | |
399 | { | |
2565409f HC |
400 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
401 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 402 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 403 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
404 | freelist_old, counters_old, |
405 | freelist_new, counters_new)) | |
6f6528a1 | 406 | return true; |
b789ef51 CL |
407 | } else |
408 | #endif | |
409 | { | |
1d07171c CL |
410 | unsigned long flags; |
411 | ||
412 | local_irq_save(flags); | |
881db7fb | 413 | slab_lock(page); |
d0e0ac97 CG |
414 | if (page->freelist == freelist_old && |
415 | page->counters == counters_old) { | |
b789ef51 | 416 | page->freelist = freelist_new; |
7d27a04b | 417 | page->counters = counters_new; |
881db7fb | 418 | slab_unlock(page); |
1d07171c | 419 | local_irq_restore(flags); |
6f6528a1 | 420 | return true; |
b789ef51 | 421 | } |
881db7fb | 422 | slab_unlock(page); |
1d07171c | 423 | local_irq_restore(flags); |
b789ef51 CL |
424 | } |
425 | ||
426 | cpu_relax(); | |
427 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
428 | ||
429 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 430 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
431 | #endif |
432 | ||
6f6528a1 | 433 | return false; |
b789ef51 CL |
434 | } |
435 | ||
41ecc55b | 436 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
437 | /* |
438 | * Determine a map of object in use on a page. | |
439 | * | |
881db7fb | 440 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
441 | * not vanish from under us. |
442 | */ | |
443 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
444 | { | |
445 | void *p; | |
446 | void *addr = page_address(page); | |
447 | ||
448 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
449 | set_bit(slab_index(p, s, addr), map); | |
450 | } | |
451 | ||
870b1fbb | 452 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
453 | { |
454 | if (s->flags & SLAB_RED_ZONE) | |
455 | return s->size - s->red_left_pad; | |
456 | ||
457 | return s->size; | |
458 | } | |
459 | ||
460 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
461 | { | |
462 | if (s->flags & SLAB_RED_ZONE) | |
463 | p -= s->red_left_pad; | |
464 | ||
465 | return p; | |
466 | } | |
467 | ||
41ecc55b CL |
468 | /* |
469 | * Debug settings: | |
470 | */ | |
89d3c87e | 471 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 472 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 473 | #else |
d50112ed | 474 | static slab_flags_t slub_debug; |
f0630fff | 475 | #endif |
41ecc55b CL |
476 | |
477 | static char *slub_debug_slabs; | |
fa5ec8a1 | 478 | static int disable_higher_order_debug; |
41ecc55b | 479 | |
a79316c6 AR |
480 | /* |
481 | * slub is about to manipulate internal object metadata. This memory lies | |
482 | * outside the range of the allocated object, so accessing it would normally | |
483 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
484 | * to tell kasan that these accesses are OK. | |
485 | */ | |
486 | static inline void metadata_access_enable(void) | |
487 | { | |
488 | kasan_disable_current(); | |
489 | } | |
490 | ||
491 | static inline void metadata_access_disable(void) | |
492 | { | |
493 | kasan_enable_current(); | |
494 | } | |
495 | ||
81819f0f CL |
496 | /* |
497 | * Object debugging | |
498 | */ | |
d86bd1be JK |
499 | |
500 | /* Verify that a pointer has an address that is valid within a slab page */ | |
501 | static inline int check_valid_pointer(struct kmem_cache *s, | |
502 | struct page *page, void *object) | |
503 | { | |
504 | void *base; | |
505 | ||
506 | if (!object) | |
507 | return 1; | |
508 | ||
509 | base = page_address(page); | |
510 | object = restore_red_left(s, object); | |
511 | if (object < base || object >= base + page->objects * s->size || | |
512 | (object - base) % s->size) { | |
513 | return 0; | |
514 | } | |
515 | ||
516 | return 1; | |
517 | } | |
518 | ||
aa2efd5e DT |
519 | static void print_section(char *level, char *text, u8 *addr, |
520 | unsigned int length) | |
81819f0f | 521 | { |
a79316c6 | 522 | metadata_access_enable(); |
aa2efd5e | 523 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 524 | length, 1); |
a79316c6 | 525 | metadata_access_disable(); |
81819f0f CL |
526 | } |
527 | ||
81819f0f CL |
528 | static struct track *get_track(struct kmem_cache *s, void *object, |
529 | enum track_item alloc) | |
530 | { | |
531 | struct track *p; | |
532 | ||
533 | if (s->offset) | |
534 | p = object + s->offset + sizeof(void *); | |
535 | else | |
536 | p = object + s->inuse; | |
537 | ||
538 | return p + alloc; | |
539 | } | |
540 | ||
541 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 542 | enum track_item alloc, unsigned long addr) |
81819f0f | 543 | { |
1a00df4a | 544 | struct track *p = get_track(s, object, alloc); |
81819f0f | 545 | |
81819f0f | 546 | if (addr) { |
d6543e39 BG |
547 | #ifdef CONFIG_STACKTRACE |
548 | struct stack_trace trace; | |
549 | int i; | |
550 | ||
551 | trace.nr_entries = 0; | |
552 | trace.max_entries = TRACK_ADDRS_COUNT; | |
553 | trace.entries = p->addrs; | |
554 | trace.skip = 3; | |
a79316c6 | 555 | metadata_access_enable(); |
d6543e39 | 556 | save_stack_trace(&trace); |
a79316c6 | 557 | metadata_access_disable(); |
d6543e39 BG |
558 | |
559 | /* See rant in lockdep.c */ | |
560 | if (trace.nr_entries != 0 && | |
561 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | |
562 | trace.nr_entries--; | |
563 | ||
564 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | |
565 | p->addrs[i] = 0; | |
566 | #endif | |
81819f0f CL |
567 | p->addr = addr; |
568 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 569 | p->pid = current->pid; |
81819f0f CL |
570 | p->when = jiffies; |
571 | } else | |
572 | memset(p, 0, sizeof(struct track)); | |
573 | } | |
574 | ||
81819f0f CL |
575 | static void init_tracking(struct kmem_cache *s, void *object) |
576 | { | |
24922684 CL |
577 | if (!(s->flags & SLAB_STORE_USER)) |
578 | return; | |
579 | ||
ce71e27c EGM |
580 | set_track(s, object, TRACK_FREE, 0UL); |
581 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
582 | } |
583 | ||
86609d33 | 584 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
585 | { |
586 | if (!t->addr) | |
587 | return; | |
588 | ||
f9f58285 | 589 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 590 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
591 | #ifdef CONFIG_STACKTRACE |
592 | { | |
593 | int i; | |
594 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
595 | if (t->addrs[i]) | |
f9f58285 | 596 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
597 | else |
598 | break; | |
599 | } | |
600 | #endif | |
24922684 CL |
601 | } |
602 | ||
603 | static void print_tracking(struct kmem_cache *s, void *object) | |
604 | { | |
86609d33 | 605 | unsigned long pr_time = jiffies; |
24922684 CL |
606 | if (!(s->flags & SLAB_STORE_USER)) |
607 | return; | |
608 | ||
86609d33 CP |
609 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
610 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
611 | } |
612 | ||
613 | static void print_page_info(struct page *page) | |
614 | { | |
f9f58285 | 615 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 616 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
617 | |
618 | } | |
619 | ||
620 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
621 | { | |
ecc42fbe | 622 | struct va_format vaf; |
24922684 | 623 | va_list args; |
24922684 CL |
624 | |
625 | va_start(args, fmt); | |
ecc42fbe FF |
626 | vaf.fmt = fmt; |
627 | vaf.va = &args; | |
f9f58285 | 628 | pr_err("=============================================================================\n"); |
ecc42fbe | 629 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 630 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 631 | |
373d4d09 | 632 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 633 | va_end(args); |
81819f0f CL |
634 | } |
635 | ||
24922684 CL |
636 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
637 | { | |
ecc42fbe | 638 | struct va_format vaf; |
24922684 | 639 | va_list args; |
24922684 CL |
640 | |
641 | va_start(args, fmt); | |
ecc42fbe FF |
642 | vaf.fmt = fmt; |
643 | vaf.va = &args; | |
644 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 645 | va_end(args); |
24922684 CL |
646 | } |
647 | ||
648 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
649 | { |
650 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 651 | u8 *addr = page_address(page); |
24922684 CL |
652 | |
653 | print_tracking(s, p); | |
654 | ||
655 | print_page_info(page); | |
656 | ||
f9f58285 FF |
657 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
658 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 659 | |
d86bd1be | 660 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
661 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
662 | s->red_left_pad); | |
d86bd1be | 663 | else if (p > addr + 16) |
aa2efd5e | 664 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 665 | |
aa2efd5e | 666 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 667 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 668 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 669 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 670 | s->inuse - s->object_size); |
81819f0f | 671 | |
81819f0f CL |
672 | if (s->offset) |
673 | off = s->offset + sizeof(void *); | |
674 | else | |
675 | off = s->inuse; | |
676 | ||
24922684 | 677 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 678 | off += 2 * sizeof(struct track); |
81819f0f | 679 | |
80a9201a AP |
680 | off += kasan_metadata_size(s); |
681 | ||
d86bd1be | 682 | if (off != size_from_object(s)) |
81819f0f | 683 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
684 | print_section(KERN_ERR, "Padding ", p + off, |
685 | size_from_object(s) - off); | |
24922684 CL |
686 | |
687 | dump_stack(); | |
81819f0f CL |
688 | } |
689 | ||
75c66def | 690 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
691 | u8 *object, char *reason) |
692 | { | |
3dc50637 | 693 | slab_bug(s, "%s", reason); |
24922684 | 694 | print_trailer(s, page, object); |
81819f0f CL |
695 | } |
696 | ||
a38965bf | 697 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 698 | const char *fmt, ...) |
81819f0f CL |
699 | { |
700 | va_list args; | |
701 | char buf[100]; | |
702 | ||
24922684 CL |
703 | va_start(args, fmt); |
704 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 705 | va_end(args); |
3dc50637 | 706 | slab_bug(s, "%s", buf); |
24922684 | 707 | print_page_info(page); |
81819f0f CL |
708 | dump_stack(); |
709 | } | |
710 | ||
f7cb1933 | 711 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
712 | { |
713 | u8 *p = object; | |
714 | ||
d86bd1be JK |
715 | if (s->flags & SLAB_RED_ZONE) |
716 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
717 | ||
81819f0f | 718 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
719 | memset(p, POISON_FREE, s->object_size - 1); |
720 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
721 | } |
722 | ||
723 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 724 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
725 | } |
726 | ||
24922684 CL |
727 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
728 | void *from, void *to) | |
729 | { | |
730 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
731 | memset(from, data, to - from); | |
732 | } | |
733 | ||
734 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
735 | u8 *object, char *what, | |
06428780 | 736 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
737 | { |
738 | u8 *fault; | |
739 | u8 *end; | |
740 | ||
a79316c6 | 741 | metadata_access_enable(); |
79824820 | 742 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 743 | metadata_access_disable(); |
24922684 CL |
744 | if (!fault) |
745 | return 1; | |
746 | ||
747 | end = start + bytes; | |
748 | while (end > fault && end[-1] == value) | |
749 | end--; | |
750 | ||
751 | slab_bug(s, "%s overwritten", what); | |
f9f58285 | 752 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
24922684 CL |
753 | fault, end - 1, fault[0], value); |
754 | print_trailer(s, page, object); | |
755 | ||
756 | restore_bytes(s, what, value, fault, end); | |
757 | return 0; | |
81819f0f CL |
758 | } |
759 | ||
81819f0f CL |
760 | /* |
761 | * Object layout: | |
762 | * | |
763 | * object address | |
764 | * Bytes of the object to be managed. | |
765 | * If the freepointer may overlay the object then the free | |
766 | * pointer is the first word of the object. | |
672bba3a | 767 | * |
81819f0f CL |
768 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
769 | * 0xa5 (POISON_END) | |
770 | * | |
3b0efdfa | 771 | * object + s->object_size |
81819f0f | 772 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 773 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 774 | * object_size == inuse. |
672bba3a | 775 | * |
81819f0f CL |
776 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
777 | * 0xcc (RED_ACTIVE) for objects in use. | |
778 | * | |
779 | * object + s->inuse | |
672bba3a CL |
780 | * Meta data starts here. |
781 | * | |
81819f0f CL |
782 | * A. Free pointer (if we cannot overwrite object on free) |
783 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 784 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 785 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
786 | * before the word boundary. |
787 | * | |
788 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
789 | * |
790 | * object + s->size | |
672bba3a | 791 | * Nothing is used beyond s->size. |
81819f0f | 792 | * |
3b0efdfa | 793 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 794 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
795 | * may be used with merged slabcaches. |
796 | */ | |
797 | ||
81819f0f CL |
798 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
799 | { | |
800 | unsigned long off = s->inuse; /* The end of info */ | |
801 | ||
802 | if (s->offset) | |
803 | /* Freepointer is placed after the object. */ | |
804 | off += sizeof(void *); | |
805 | ||
806 | if (s->flags & SLAB_STORE_USER) | |
807 | /* We also have user information there */ | |
808 | off += 2 * sizeof(struct track); | |
809 | ||
80a9201a AP |
810 | off += kasan_metadata_size(s); |
811 | ||
d86bd1be | 812 | if (size_from_object(s) == off) |
81819f0f CL |
813 | return 1; |
814 | ||
24922684 | 815 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 816 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
817 | } |
818 | ||
39b26464 | 819 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
820 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
821 | { | |
24922684 CL |
822 | u8 *start; |
823 | u8 *fault; | |
824 | u8 *end; | |
5d682681 | 825 | u8 *pad; |
24922684 CL |
826 | int length; |
827 | int remainder; | |
81819f0f CL |
828 | |
829 | if (!(s->flags & SLAB_POISON)) | |
830 | return 1; | |
831 | ||
a973e9dd | 832 | start = page_address(page); |
9736d2a9 | 833 | length = PAGE_SIZE << compound_order(page); |
39b26464 CL |
834 | end = start + length; |
835 | remainder = length % s->size; | |
81819f0f CL |
836 | if (!remainder) |
837 | return 1; | |
838 | ||
5d682681 | 839 | pad = end - remainder; |
a79316c6 | 840 | metadata_access_enable(); |
5d682681 | 841 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 842 | metadata_access_disable(); |
24922684 CL |
843 | if (!fault) |
844 | return 1; | |
845 | while (end > fault && end[-1] == POISON_INUSE) | |
846 | end--; | |
847 | ||
848 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
5d682681 | 849 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 850 | |
5d682681 | 851 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 852 | return 0; |
81819f0f CL |
853 | } |
854 | ||
855 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 856 | void *object, u8 val) |
81819f0f CL |
857 | { |
858 | u8 *p = object; | |
3b0efdfa | 859 | u8 *endobject = object + s->object_size; |
81819f0f CL |
860 | |
861 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
862 | if (!check_bytes_and_report(s, page, object, "Redzone", |
863 | object - s->red_left_pad, val, s->red_left_pad)) | |
864 | return 0; | |
865 | ||
24922684 | 866 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 867 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 868 | return 0; |
81819f0f | 869 | } else { |
3b0efdfa | 870 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 871 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
872 | endobject, POISON_INUSE, |
873 | s->inuse - s->object_size); | |
3adbefee | 874 | } |
81819f0f CL |
875 | } |
876 | ||
877 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 878 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 879 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 880 | POISON_FREE, s->object_size - 1) || |
24922684 | 881 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 882 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 883 | return 0; |
81819f0f CL |
884 | /* |
885 | * check_pad_bytes cleans up on its own. | |
886 | */ | |
887 | check_pad_bytes(s, page, p); | |
888 | } | |
889 | ||
f7cb1933 | 890 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
891 | /* |
892 | * Object and freepointer overlap. Cannot check | |
893 | * freepointer while object is allocated. | |
894 | */ | |
895 | return 1; | |
896 | ||
897 | /* Check free pointer validity */ | |
898 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
899 | object_err(s, page, p, "Freepointer corrupt"); | |
900 | /* | |
9f6c708e | 901 | * No choice but to zap it and thus lose the remainder |
81819f0f | 902 | * of the free objects in this slab. May cause |
672bba3a | 903 | * another error because the object count is now wrong. |
81819f0f | 904 | */ |
a973e9dd | 905 | set_freepointer(s, p, NULL); |
81819f0f CL |
906 | return 0; |
907 | } | |
908 | return 1; | |
909 | } | |
910 | ||
911 | static int check_slab(struct kmem_cache *s, struct page *page) | |
912 | { | |
39b26464 CL |
913 | int maxobj; |
914 | ||
81819f0f CL |
915 | VM_BUG_ON(!irqs_disabled()); |
916 | ||
917 | if (!PageSlab(page)) { | |
24922684 | 918 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
919 | return 0; |
920 | } | |
39b26464 | 921 | |
9736d2a9 | 922 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
923 | if (page->objects > maxobj) { |
924 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 925 | page->objects, maxobj); |
39b26464 CL |
926 | return 0; |
927 | } | |
928 | if (page->inuse > page->objects) { | |
24922684 | 929 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 930 | page->inuse, page->objects); |
81819f0f CL |
931 | return 0; |
932 | } | |
933 | /* Slab_pad_check fixes things up after itself */ | |
934 | slab_pad_check(s, page); | |
935 | return 1; | |
936 | } | |
937 | ||
938 | /* | |
672bba3a CL |
939 | * Determine if a certain object on a page is on the freelist. Must hold the |
940 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
941 | */ |
942 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
943 | { | |
944 | int nr = 0; | |
881db7fb | 945 | void *fp; |
81819f0f | 946 | void *object = NULL; |
f6edde9c | 947 | int max_objects; |
81819f0f | 948 | |
881db7fb | 949 | fp = page->freelist; |
39b26464 | 950 | while (fp && nr <= page->objects) { |
81819f0f CL |
951 | if (fp == search) |
952 | return 1; | |
953 | if (!check_valid_pointer(s, page, fp)) { | |
954 | if (object) { | |
955 | object_err(s, page, object, | |
956 | "Freechain corrupt"); | |
a973e9dd | 957 | set_freepointer(s, object, NULL); |
81819f0f | 958 | } else { |
24922684 | 959 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 960 | page->freelist = NULL; |
39b26464 | 961 | page->inuse = page->objects; |
24922684 | 962 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
963 | return 0; |
964 | } | |
965 | break; | |
966 | } | |
967 | object = fp; | |
968 | fp = get_freepointer(s, object); | |
969 | nr++; | |
970 | } | |
971 | ||
9736d2a9 | 972 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
973 | if (max_objects > MAX_OBJS_PER_PAGE) |
974 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
975 | |
976 | if (page->objects != max_objects) { | |
756a025f JP |
977 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
978 | page->objects, max_objects); | |
224a88be CL |
979 | page->objects = max_objects; |
980 | slab_fix(s, "Number of objects adjusted."); | |
981 | } | |
39b26464 | 982 | if (page->inuse != page->objects - nr) { |
756a025f JP |
983 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
984 | page->inuse, page->objects - nr); | |
39b26464 | 985 | page->inuse = page->objects - nr; |
24922684 | 986 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
987 | } |
988 | return search == NULL; | |
989 | } | |
990 | ||
0121c619 CL |
991 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
992 | int alloc) | |
3ec09742 CL |
993 | { |
994 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 995 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
996 | s->name, |
997 | alloc ? "alloc" : "free", | |
998 | object, page->inuse, | |
999 | page->freelist); | |
1000 | ||
1001 | if (!alloc) | |
aa2efd5e | 1002 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1003 | s->object_size); |
3ec09742 CL |
1004 | |
1005 | dump_stack(); | |
1006 | } | |
1007 | } | |
1008 | ||
643b1138 | 1009 | /* |
672bba3a | 1010 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1011 | */ |
5cc6eee8 CL |
1012 | static void add_full(struct kmem_cache *s, |
1013 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1014 | { |
5cc6eee8 CL |
1015 | if (!(s->flags & SLAB_STORE_USER)) |
1016 | return; | |
1017 | ||
255d0884 | 1018 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1019 | list_add(&page->lru, &n->full); |
643b1138 CL |
1020 | } |
1021 | ||
c65c1877 | 1022 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1023 | { |
643b1138 CL |
1024 | if (!(s->flags & SLAB_STORE_USER)) |
1025 | return; | |
1026 | ||
255d0884 | 1027 | lockdep_assert_held(&n->list_lock); |
643b1138 | 1028 | list_del(&page->lru); |
643b1138 CL |
1029 | } |
1030 | ||
0f389ec6 CL |
1031 | /* Tracking of the number of slabs for debugging purposes */ |
1032 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1033 | { | |
1034 | struct kmem_cache_node *n = get_node(s, node); | |
1035 | ||
1036 | return atomic_long_read(&n->nr_slabs); | |
1037 | } | |
1038 | ||
26c02cf0 AB |
1039 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1040 | { | |
1041 | return atomic_long_read(&n->nr_slabs); | |
1042 | } | |
1043 | ||
205ab99d | 1044 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1045 | { |
1046 | struct kmem_cache_node *n = get_node(s, node); | |
1047 | ||
1048 | /* | |
1049 | * May be called early in order to allocate a slab for the | |
1050 | * kmem_cache_node structure. Solve the chicken-egg | |
1051 | * dilemma by deferring the increment of the count during | |
1052 | * bootstrap (see early_kmem_cache_node_alloc). | |
1053 | */ | |
338b2642 | 1054 | if (likely(n)) { |
0f389ec6 | 1055 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1056 | atomic_long_add(objects, &n->total_objects); |
1057 | } | |
0f389ec6 | 1058 | } |
205ab99d | 1059 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1060 | { |
1061 | struct kmem_cache_node *n = get_node(s, node); | |
1062 | ||
1063 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1064 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1065 | } |
1066 | ||
1067 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1068 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1069 | void *object) | |
1070 | { | |
1071 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1072 | return; | |
1073 | ||
f7cb1933 | 1074 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1075 | init_tracking(s, object); |
1076 | } | |
1077 | ||
becfda68 | 1078 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
d0e0ac97 | 1079 | struct page *page, |
ce71e27c | 1080 | void *object, unsigned long addr) |
81819f0f CL |
1081 | { |
1082 | if (!check_slab(s, page)) | |
becfda68 | 1083 | return 0; |
81819f0f | 1084 | |
81819f0f CL |
1085 | if (!check_valid_pointer(s, page, object)) { |
1086 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1087 | return 0; |
81819f0f CL |
1088 | } |
1089 | ||
f7cb1933 | 1090 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1091 | return 0; |
1092 | ||
1093 | return 1; | |
1094 | } | |
1095 | ||
1096 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1097 | struct page *page, | |
1098 | void *object, unsigned long addr) | |
1099 | { | |
1100 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1101 | if (!alloc_consistency_checks(s, page, object, addr)) | |
1102 | goto bad; | |
1103 | } | |
81819f0f | 1104 | |
3ec09742 CL |
1105 | /* Success perform special debug activities for allocs */ |
1106 | if (s->flags & SLAB_STORE_USER) | |
1107 | set_track(s, object, TRACK_ALLOC, addr); | |
1108 | trace(s, page, object, 1); | |
f7cb1933 | 1109 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1110 | return 1; |
3ec09742 | 1111 | |
81819f0f CL |
1112 | bad: |
1113 | if (PageSlab(page)) { | |
1114 | /* | |
1115 | * If this is a slab page then lets do the best we can | |
1116 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1117 | * as used avoids touching the remaining objects. |
81819f0f | 1118 | */ |
24922684 | 1119 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1120 | page->inuse = page->objects; |
a973e9dd | 1121 | page->freelist = NULL; |
81819f0f CL |
1122 | } |
1123 | return 0; | |
1124 | } | |
1125 | ||
becfda68 LA |
1126 | static inline int free_consistency_checks(struct kmem_cache *s, |
1127 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1128 | { |
81819f0f | 1129 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1130 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1131 | return 0; |
81819f0f CL |
1132 | } |
1133 | ||
1134 | if (on_freelist(s, page, object)) { | |
24922684 | 1135 | object_err(s, page, object, "Object already free"); |
becfda68 | 1136 | return 0; |
81819f0f CL |
1137 | } |
1138 | ||
f7cb1933 | 1139 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1140 | return 0; |
81819f0f | 1141 | |
1b4f59e3 | 1142 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1143 | if (!PageSlab(page)) { |
756a025f JP |
1144 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1145 | object); | |
1b4f59e3 | 1146 | } else if (!page->slab_cache) { |
f9f58285 FF |
1147 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1148 | object); | |
70d71228 | 1149 | dump_stack(); |
06428780 | 1150 | } else |
24922684 CL |
1151 | object_err(s, page, object, |
1152 | "page slab pointer corrupt."); | |
becfda68 LA |
1153 | return 0; |
1154 | } | |
1155 | return 1; | |
1156 | } | |
1157 | ||
1158 | /* Supports checking bulk free of a constructed freelist */ | |
1159 | static noinline int free_debug_processing( | |
1160 | struct kmem_cache *s, struct page *page, | |
1161 | void *head, void *tail, int bulk_cnt, | |
1162 | unsigned long addr) | |
1163 | { | |
1164 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1165 | void *object = head; | |
1166 | int cnt = 0; | |
1167 | unsigned long uninitialized_var(flags); | |
1168 | int ret = 0; | |
1169 | ||
1170 | spin_lock_irqsave(&n->list_lock, flags); | |
1171 | slab_lock(page); | |
1172 | ||
1173 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1174 | if (!check_slab(s, page)) | |
1175 | goto out; | |
1176 | } | |
1177 | ||
1178 | next_object: | |
1179 | cnt++; | |
1180 | ||
1181 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1182 | if (!free_consistency_checks(s, page, object, addr)) | |
1183 | goto out; | |
81819f0f | 1184 | } |
3ec09742 | 1185 | |
3ec09742 CL |
1186 | if (s->flags & SLAB_STORE_USER) |
1187 | set_track(s, object, TRACK_FREE, addr); | |
1188 | trace(s, page, object, 0); | |
81084651 | 1189 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1190 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1191 | |
1192 | /* Reached end of constructed freelist yet? */ | |
1193 | if (object != tail) { | |
1194 | object = get_freepointer(s, object); | |
1195 | goto next_object; | |
1196 | } | |
804aa132 LA |
1197 | ret = 1; |
1198 | ||
5c2e4bbb | 1199 | out: |
81084651 JDB |
1200 | if (cnt != bulk_cnt) |
1201 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1202 | bulk_cnt, cnt); | |
1203 | ||
881db7fb | 1204 | slab_unlock(page); |
282acb43 | 1205 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1206 | if (!ret) |
1207 | slab_fix(s, "Object at 0x%p not freed", object); | |
1208 | return ret; | |
81819f0f CL |
1209 | } |
1210 | ||
41ecc55b CL |
1211 | static int __init setup_slub_debug(char *str) |
1212 | { | |
f0630fff CL |
1213 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1214 | if (*str++ != '=' || !*str) | |
1215 | /* | |
1216 | * No options specified. Switch on full debugging. | |
1217 | */ | |
1218 | goto out; | |
1219 | ||
1220 | if (*str == ',') | |
1221 | /* | |
1222 | * No options but restriction on slabs. This means full | |
1223 | * debugging for slabs matching a pattern. | |
1224 | */ | |
1225 | goto check_slabs; | |
1226 | ||
1227 | slub_debug = 0; | |
1228 | if (*str == '-') | |
1229 | /* | |
1230 | * Switch off all debugging measures. | |
1231 | */ | |
1232 | goto out; | |
1233 | ||
1234 | /* | |
1235 | * Determine which debug features should be switched on | |
1236 | */ | |
06428780 | 1237 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1238 | switch (tolower(*str)) { |
1239 | case 'f': | |
becfda68 | 1240 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1241 | break; |
1242 | case 'z': | |
1243 | slub_debug |= SLAB_RED_ZONE; | |
1244 | break; | |
1245 | case 'p': | |
1246 | slub_debug |= SLAB_POISON; | |
1247 | break; | |
1248 | case 'u': | |
1249 | slub_debug |= SLAB_STORE_USER; | |
1250 | break; | |
1251 | case 't': | |
1252 | slub_debug |= SLAB_TRACE; | |
1253 | break; | |
4c13dd3b DM |
1254 | case 'a': |
1255 | slub_debug |= SLAB_FAILSLAB; | |
1256 | break; | |
08303a73 CA |
1257 | case 'o': |
1258 | /* | |
1259 | * Avoid enabling debugging on caches if its minimum | |
1260 | * order would increase as a result. | |
1261 | */ | |
1262 | disable_higher_order_debug = 1; | |
1263 | break; | |
f0630fff | 1264 | default: |
f9f58285 FF |
1265 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1266 | *str); | |
f0630fff | 1267 | } |
41ecc55b CL |
1268 | } |
1269 | ||
f0630fff | 1270 | check_slabs: |
41ecc55b CL |
1271 | if (*str == ',') |
1272 | slub_debug_slabs = str + 1; | |
f0630fff | 1273 | out: |
41ecc55b CL |
1274 | return 1; |
1275 | } | |
1276 | ||
1277 | __setup("slub_debug", setup_slub_debug); | |
1278 | ||
c5fd3ca0 AT |
1279 | /* |
1280 | * kmem_cache_flags - apply debugging options to the cache | |
1281 | * @object_size: the size of an object without meta data | |
1282 | * @flags: flags to set | |
1283 | * @name: name of the cache | |
1284 | * @ctor: constructor function | |
1285 | * | |
1286 | * Debug option(s) are applied to @flags. In addition to the debug | |
1287 | * option(s), if a slab name (or multiple) is specified i.e. | |
1288 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1289 | * then only the select slabs will receive the debug option(s). | |
1290 | */ | |
0293d1fd | 1291 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1292 | slab_flags_t flags, const char *name, |
51cc5068 | 1293 | void (*ctor)(void *)) |
41ecc55b | 1294 | { |
c5fd3ca0 AT |
1295 | char *iter; |
1296 | size_t len; | |
1297 | ||
1298 | /* If slub_debug = 0, it folds into the if conditional. */ | |
1299 | if (!slub_debug_slabs) | |
1300 | return flags | slub_debug; | |
1301 | ||
1302 | len = strlen(name); | |
1303 | iter = slub_debug_slabs; | |
1304 | while (*iter) { | |
1305 | char *end, *glob; | |
1306 | size_t cmplen; | |
1307 | ||
1308 | end = strchr(iter, ','); | |
1309 | if (!end) | |
1310 | end = iter + strlen(iter); | |
1311 | ||
1312 | glob = strnchr(iter, end - iter, '*'); | |
1313 | if (glob) | |
1314 | cmplen = glob - iter; | |
1315 | else | |
1316 | cmplen = max_t(size_t, len, (end - iter)); | |
1317 | ||
1318 | if (!strncmp(name, iter, cmplen)) { | |
1319 | flags |= slub_debug; | |
1320 | break; | |
1321 | } | |
1322 | ||
1323 | if (!*end) | |
1324 | break; | |
1325 | iter = end + 1; | |
1326 | } | |
ba0268a8 CL |
1327 | |
1328 | return flags; | |
41ecc55b | 1329 | } |
b4a64718 | 1330 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1331 | static inline void setup_object_debug(struct kmem_cache *s, |
1332 | struct page *page, void *object) {} | |
41ecc55b | 1333 | |
3ec09742 | 1334 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1335 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1336 | |
282acb43 | 1337 | static inline int free_debug_processing( |
81084651 JDB |
1338 | struct kmem_cache *s, struct page *page, |
1339 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1340 | unsigned long addr) { return 0; } |
41ecc55b | 1341 | |
41ecc55b CL |
1342 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1343 | { return 1; } | |
1344 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1345 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1346 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1347 | struct page *page) {} | |
c65c1877 PZ |
1348 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1349 | struct page *page) {} | |
0293d1fd | 1350 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1351 | slab_flags_t flags, const char *name, |
51cc5068 | 1352 | void (*ctor)(void *)) |
ba0268a8 CL |
1353 | { |
1354 | return flags; | |
1355 | } | |
41ecc55b | 1356 | #define slub_debug 0 |
0f389ec6 | 1357 | |
fdaa45e9 IM |
1358 | #define disable_higher_order_debug 0 |
1359 | ||
0f389ec6 CL |
1360 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1361 | { return 0; } | |
26c02cf0 AB |
1362 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1363 | { return 0; } | |
205ab99d CL |
1364 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1365 | int objects) {} | |
1366 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1367 | int objects) {} | |
7d550c56 | 1368 | |
02e72cc6 AR |
1369 | #endif /* CONFIG_SLUB_DEBUG */ |
1370 | ||
1371 | /* | |
1372 | * Hooks for other subsystems that check memory allocations. In a typical | |
1373 | * production configuration these hooks all should produce no code at all. | |
1374 | */ | |
0116523c | 1375 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 RB |
1376 | { |
1377 | kmemleak_alloc(ptr, size, 1, flags); | |
0116523c | 1378 | return kasan_kmalloc_large(ptr, size, flags); |
d56791b3 RB |
1379 | } |
1380 | ||
ee3ce779 | 1381 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1382 | { |
1383 | kmemleak_free(x); | |
ee3ce779 | 1384 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1385 | } |
1386 | ||
c3895391 | 1387 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1388 | { |
1389 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1390 | |
02e72cc6 AR |
1391 | /* |
1392 | * Trouble is that we may no longer disable interrupts in the fast path | |
1393 | * So in order to make the debug calls that expect irqs to be | |
1394 | * disabled we need to disable interrupts temporarily. | |
1395 | */ | |
4675ff05 | 1396 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1397 | { |
1398 | unsigned long flags; | |
1399 | ||
1400 | local_irq_save(flags); | |
02e72cc6 AR |
1401 | debug_check_no_locks_freed(x, s->object_size); |
1402 | local_irq_restore(flags); | |
1403 | } | |
1404 | #endif | |
1405 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1406 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1407 | |
c3895391 AK |
1408 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1409 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1410 | } |
205ab99d | 1411 | |
c3895391 AK |
1412 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1413 | void **head, void **tail) | |
81084651 JDB |
1414 | { |
1415 | /* | |
1416 | * Compiler cannot detect this function can be removed if slab_free_hook() | |
1417 | * evaluates to nothing. Thus, catch all relevant config debug options here. | |
1418 | */ | |
4675ff05 | 1419 | #if defined(CONFIG_LOCKDEP) || \ |
81084651 JDB |
1420 | defined(CONFIG_DEBUG_KMEMLEAK) || \ |
1421 | defined(CONFIG_DEBUG_OBJECTS_FREE) || \ | |
1422 | defined(CONFIG_KASAN) | |
1423 | ||
c3895391 AK |
1424 | void *object; |
1425 | void *next = *head; | |
1426 | void *old_tail = *tail ? *tail : *head; | |
1427 | ||
1428 | /* Head and tail of the reconstructed freelist */ | |
1429 | *head = NULL; | |
1430 | *tail = NULL; | |
81084651 JDB |
1431 | |
1432 | do { | |
c3895391 AK |
1433 | object = next; |
1434 | next = get_freepointer(s, object); | |
1435 | /* If object's reuse doesn't have to be delayed */ | |
1436 | if (!slab_free_hook(s, object)) { | |
1437 | /* Move object to the new freelist */ | |
1438 | set_freepointer(s, object, *head); | |
1439 | *head = object; | |
1440 | if (!*tail) | |
1441 | *tail = object; | |
1442 | } | |
1443 | } while (object != old_tail); | |
1444 | ||
1445 | if (*head == *tail) | |
1446 | *tail = NULL; | |
1447 | ||
1448 | return *head != NULL; | |
1449 | #else | |
1450 | return true; | |
81084651 JDB |
1451 | #endif |
1452 | } | |
1453 | ||
4d176711 | 1454 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1455 | void *object) |
1456 | { | |
1457 | setup_object_debug(s, page, object); | |
4d176711 | 1458 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1459 | if (unlikely(s->ctor)) { |
1460 | kasan_unpoison_object_data(s, object); | |
1461 | s->ctor(object); | |
1462 | kasan_poison_object_data(s, object); | |
1463 | } | |
4d176711 | 1464 | return object; |
588f8ba9 TG |
1465 | } |
1466 | ||
81819f0f CL |
1467 | /* |
1468 | * Slab allocation and freeing | |
1469 | */ | |
5dfb4175 VD |
1470 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1471 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1472 | { |
5dfb4175 | 1473 | struct page *page; |
19af27af | 1474 | unsigned int order = oo_order(oo); |
65c3376a | 1475 | |
2154a336 | 1476 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1477 | page = alloc_pages(flags, order); |
65c3376a | 1478 | else |
96db800f | 1479 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1480 | |
f3ccb2c4 VD |
1481 | if (page && memcg_charge_slab(page, flags, order, s)) { |
1482 | __free_pages(page, order); | |
1483 | page = NULL; | |
1484 | } | |
5dfb4175 VD |
1485 | |
1486 | return page; | |
65c3376a CL |
1487 | } |
1488 | ||
210e7a43 TG |
1489 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1490 | /* Pre-initialize the random sequence cache */ | |
1491 | static int init_cache_random_seq(struct kmem_cache *s) | |
1492 | { | |
19af27af | 1493 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1494 | int err; |
210e7a43 | 1495 | |
a810007a SR |
1496 | /* Bailout if already initialised */ |
1497 | if (s->random_seq) | |
1498 | return 0; | |
1499 | ||
210e7a43 TG |
1500 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1501 | if (err) { | |
1502 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1503 | s->name); | |
1504 | return err; | |
1505 | } | |
1506 | ||
1507 | /* Transform to an offset on the set of pages */ | |
1508 | if (s->random_seq) { | |
19af27af AD |
1509 | unsigned int i; |
1510 | ||
210e7a43 TG |
1511 | for (i = 0; i < count; i++) |
1512 | s->random_seq[i] *= s->size; | |
1513 | } | |
1514 | return 0; | |
1515 | } | |
1516 | ||
1517 | /* Initialize each random sequence freelist per cache */ | |
1518 | static void __init init_freelist_randomization(void) | |
1519 | { | |
1520 | struct kmem_cache *s; | |
1521 | ||
1522 | mutex_lock(&slab_mutex); | |
1523 | ||
1524 | list_for_each_entry(s, &slab_caches, list) | |
1525 | init_cache_random_seq(s); | |
1526 | ||
1527 | mutex_unlock(&slab_mutex); | |
1528 | } | |
1529 | ||
1530 | /* Get the next entry on the pre-computed freelist randomized */ | |
1531 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1532 | unsigned long *pos, void *start, | |
1533 | unsigned long page_limit, | |
1534 | unsigned long freelist_count) | |
1535 | { | |
1536 | unsigned int idx; | |
1537 | ||
1538 | /* | |
1539 | * If the target page allocation failed, the number of objects on the | |
1540 | * page might be smaller than the usual size defined by the cache. | |
1541 | */ | |
1542 | do { | |
1543 | idx = s->random_seq[*pos]; | |
1544 | *pos += 1; | |
1545 | if (*pos >= freelist_count) | |
1546 | *pos = 0; | |
1547 | } while (unlikely(idx >= page_limit)); | |
1548 | ||
1549 | return (char *)start + idx; | |
1550 | } | |
1551 | ||
1552 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1553 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1554 | { | |
1555 | void *start; | |
1556 | void *cur; | |
1557 | void *next; | |
1558 | unsigned long idx, pos, page_limit, freelist_count; | |
1559 | ||
1560 | if (page->objects < 2 || !s->random_seq) | |
1561 | return false; | |
1562 | ||
1563 | freelist_count = oo_objects(s->oo); | |
1564 | pos = get_random_int() % freelist_count; | |
1565 | ||
1566 | page_limit = page->objects * s->size; | |
1567 | start = fixup_red_left(s, page_address(page)); | |
1568 | ||
1569 | /* First entry is used as the base of the freelist */ | |
1570 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1571 | freelist_count); | |
4d176711 | 1572 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1573 | page->freelist = cur; |
1574 | ||
1575 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1576 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1577 | freelist_count); | |
4d176711 | 1578 | next = setup_object(s, page, next); |
210e7a43 TG |
1579 | set_freepointer(s, cur, next); |
1580 | cur = next; | |
1581 | } | |
210e7a43 TG |
1582 | set_freepointer(s, cur, NULL); |
1583 | ||
1584 | return true; | |
1585 | } | |
1586 | #else | |
1587 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1588 | { | |
1589 | return 0; | |
1590 | } | |
1591 | static inline void init_freelist_randomization(void) { } | |
1592 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1593 | { | |
1594 | return false; | |
1595 | } | |
1596 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1597 | ||
81819f0f CL |
1598 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1599 | { | |
06428780 | 1600 | struct page *page; |
834f3d11 | 1601 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1602 | gfp_t alloc_gfp; |
4d176711 | 1603 | void *start, *p, *next; |
588f8ba9 | 1604 | int idx, order; |
210e7a43 | 1605 | bool shuffle; |
81819f0f | 1606 | |
7e0528da CL |
1607 | flags &= gfp_allowed_mask; |
1608 | ||
d0164adc | 1609 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1610 | local_irq_enable(); |
1611 | ||
b7a49f0d | 1612 | flags |= s->allocflags; |
e12ba74d | 1613 | |
ba52270d PE |
1614 | /* |
1615 | * Let the initial higher-order allocation fail under memory pressure | |
1616 | * so we fall-back to the minimum order allocation. | |
1617 | */ | |
1618 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1619 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1620 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1621 | |
5dfb4175 | 1622 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1623 | if (unlikely(!page)) { |
1624 | oo = s->min; | |
80c3a998 | 1625 | alloc_gfp = flags; |
65c3376a CL |
1626 | /* |
1627 | * Allocation may have failed due to fragmentation. | |
1628 | * Try a lower order alloc if possible | |
1629 | */ | |
5dfb4175 | 1630 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1631 | if (unlikely(!page)) |
1632 | goto out; | |
1633 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1634 | } |
5a896d9e | 1635 | |
834f3d11 | 1636 | page->objects = oo_objects(oo); |
81819f0f | 1637 | |
1f458cbf | 1638 | order = compound_order(page); |
1b4f59e3 | 1639 | page->slab_cache = s; |
c03f94cc | 1640 | __SetPageSlab(page); |
2f064f34 | 1641 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1642 | SetPageSlabPfmemalloc(page); |
81819f0f CL |
1643 | |
1644 | start = page_address(page); | |
81819f0f CL |
1645 | |
1646 | if (unlikely(s->flags & SLAB_POISON)) | |
1f458cbf | 1647 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
81819f0f | 1648 | |
0316bec2 AR |
1649 | kasan_poison_slab(page); |
1650 | ||
210e7a43 TG |
1651 | shuffle = shuffle_freelist(s, page); |
1652 | ||
1653 | if (!shuffle) { | |
1654 | for_each_object_idx(p, idx, s, start, page->objects) { | |
4d176711 AK |
1655 | if (likely(idx < page->objects)) { |
1656 | next = p + s->size; | |
1657 | next = setup_object(s, page, next); | |
1658 | set_freepointer(s, p, next); | |
1659 | } else | |
210e7a43 TG |
1660 | set_freepointer(s, p, NULL); |
1661 | } | |
4d176711 AK |
1662 | start = fixup_red_left(s, start); |
1663 | start = setup_object(s, page, start); | |
1664 | page->freelist = start; | |
81819f0f | 1665 | } |
81819f0f | 1666 | |
e6e82ea1 | 1667 | page->inuse = page->objects; |
8cb0a506 | 1668 | page->frozen = 1; |
588f8ba9 | 1669 | |
81819f0f | 1670 | out: |
d0164adc | 1671 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1672 | local_irq_disable(); |
1673 | if (!page) | |
1674 | return NULL; | |
1675 | ||
7779f212 | 1676 | mod_lruvec_page_state(page, |
588f8ba9 TG |
1677 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1678 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1679 | 1 << oo_order(oo)); | |
1680 | ||
1681 | inc_slabs_node(s, page_to_nid(page), page->objects); | |
1682 | ||
81819f0f CL |
1683 | return page; |
1684 | } | |
1685 | ||
588f8ba9 TG |
1686 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1687 | { | |
1688 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1689 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1690 | flags &= ~GFP_SLAB_BUG_MASK; |
1691 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1692 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1693 | dump_stack(); |
588f8ba9 TG |
1694 | } |
1695 | ||
1696 | return allocate_slab(s, | |
1697 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1698 | } | |
1699 | ||
81819f0f CL |
1700 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1701 | { | |
834f3d11 CL |
1702 | int order = compound_order(page); |
1703 | int pages = 1 << order; | |
81819f0f | 1704 | |
becfda68 | 1705 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1706 | void *p; |
1707 | ||
1708 | slab_pad_check(s, page); | |
224a88be CL |
1709 | for_each_object(p, s, page_address(page), |
1710 | page->objects) | |
f7cb1933 | 1711 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1712 | } |
1713 | ||
7779f212 | 1714 | mod_lruvec_page_state(page, |
81819f0f CL |
1715 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1716 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1717 | -pages); |
81819f0f | 1718 | |
072bb0aa | 1719 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1720 | __ClearPageSlab(page); |
1f458cbf | 1721 | |
d4fc5069 | 1722 | page->mapping = NULL; |
1eb5ac64 NP |
1723 | if (current->reclaim_state) |
1724 | current->reclaim_state->reclaimed_slab += pages; | |
27ee57c9 VD |
1725 | memcg_uncharge_slab(page, order, s); |
1726 | __free_pages(page, order); | |
81819f0f CL |
1727 | } |
1728 | ||
1729 | static void rcu_free_slab(struct rcu_head *h) | |
1730 | { | |
bf68c214 | 1731 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1732 | |
1b4f59e3 | 1733 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1734 | } |
1735 | ||
1736 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1737 | { | |
5f0d5a3a | 1738 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1739 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1740 | } else |
1741 | __free_slab(s, page); | |
1742 | } | |
1743 | ||
1744 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1745 | { | |
205ab99d | 1746 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1747 | free_slab(s, page); |
1748 | } | |
1749 | ||
1750 | /* | |
5cc6eee8 | 1751 | * Management of partially allocated slabs. |
81819f0f | 1752 | */ |
1e4dd946 SR |
1753 | static inline void |
1754 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1755 | { |
e95eed57 | 1756 | n->nr_partial++; |
136333d1 | 1757 | if (tail == DEACTIVATE_TO_TAIL) |
7c2e132c CL |
1758 | list_add_tail(&page->lru, &n->partial); |
1759 | else | |
1760 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1761 | } |
1762 | ||
1e4dd946 SR |
1763 | static inline void add_partial(struct kmem_cache_node *n, |
1764 | struct page *page, int tail) | |
62e346a8 | 1765 | { |
c65c1877 | 1766 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1767 | __add_partial(n, page, tail); |
1768 | } | |
c65c1877 | 1769 | |
1e4dd946 SR |
1770 | static inline void remove_partial(struct kmem_cache_node *n, |
1771 | struct page *page) | |
1772 | { | |
1773 | lockdep_assert_held(&n->list_lock); | |
52b4b950 DS |
1774 | list_del(&page->lru); |
1775 | n->nr_partial--; | |
1e4dd946 SR |
1776 | } |
1777 | ||
81819f0f | 1778 | /* |
7ced3719 CL |
1779 | * Remove slab from the partial list, freeze it and |
1780 | * return the pointer to the freelist. | |
81819f0f | 1781 | * |
497b66f2 | 1782 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1783 | */ |
497b66f2 | 1784 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1785 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1786 | int mode, int *objects) |
81819f0f | 1787 | { |
2cfb7455 CL |
1788 | void *freelist; |
1789 | unsigned long counters; | |
1790 | struct page new; | |
1791 | ||
c65c1877 PZ |
1792 | lockdep_assert_held(&n->list_lock); |
1793 | ||
2cfb7455 CL |
1794 | /* |
1795 | * Zap the freelist and set the frozen bit. | |
1796 | * The old freelist is the list of objects for the | |
1797 | * per cpu allocation list. | |
1798 | */ | |
7ced3719 CL |
1799 | freelist = page->freelist; |
1800 | counters = page->counters; | |
1801 | new.counters = counters; | |
633b0764 | 1802 | *objects = new.objects - new.inuse; |
23910c50 | 1803 | if (mode) { |
7ced3719 | 1804 | new.inuse = page->objects; |
23910c50 PE |
1805 | new.freelist = NULL; |
1806 | } else { | |
1807 | new.freelist = freelist; | |
1808 | } | |
2cfb7455 | 1809 | |
a0132ac0 | 1810 | VM_BUG_ON(new.frozen); |
7ced3719 | 1811 | new.frozen = 1; |
2cfb7455 | 1812 | |
7ced3719 | 1813 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1814 | freelist, counters, |
02d7633f | 1815 | new.freelist, new.counters, |
7ced3719 | 1816 | "acquire_slab")) |
7ced3719 | 1817 | return NULL; |
2cfb7455 CL |
1818 | |
1819 | remove_partial(n, page); | |
7ced3719 | 1820 | WARN_ON(!freelist); |
49e22585 | 1821 | return freelist; |
81819f0f CL |
1822 | } |
1823 | ||
633b0764 | 1824 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1825 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1826 | |
81819f0f | 1827 | /* |
672bba3a | 1828 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1829 | */ |
8ba00bb6 JK |
1830 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1831 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1832 | { |
49e22585 CL |
1833 | struct page *page, *page2; |
1834 | void *object = NULL; | |
e5d9998f | 1835 | unsigned int available = 0; |
633b0764 | 1836 | int objects; |
81819f0f CL |
1837 | |
1838 | /* | |
1839 | * Racy check. If we mistakenly see no partial slabs then we | |
1840 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1841 | * partial slab and there is none available then get_partials() |
1842 | * will return NULL. | |
81819f0f CL |
1843 | */ |
1844 | if (!n || !n->nr_partial) | |
1845 | return NULL; | |
1846 | ||
1847 | spin_lock(&n->list_lock); | |
49e22585 | 1848 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
8ba00bb6 | 1849 | void *t; |
49e22585 | 1850 | |
8ba00bb6 JK |
1851 | if (!pfmemalloc_match(page, flags)) |
1852 | continue; | |
1853 | ||
633b0764 | 1854 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1855 | if (!t) |
1856 | break; | |
1857 | ||
633b0764 | 1858 | available += objects; |
12d79634 | 1859 | if (!object) { |
49e22585 | 1860 | c->page = page; |
49e22585 | 1861 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1862 | object = t; |
49e22585 | 1863 | } else { |
633b0764 | 1864 | put_cpu_partial(s, page, 0); |
8028dcea | 1865 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1866 | } |
345c905d | 1867 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1868 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1869 | break; |
1870 | ||
497b66f2 | 1871 | } |
81819f0f | 1872 | spin_unlock(&n->list_lock); |
497b66f2 | 1873 | return object; |
81819f0f CL |
1874 | } |
1875 | ||
1876 | /* | |
672bba3a | 1877 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1878 | */ |
de3ec035 | 1879 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1880 | struct kmem_cache_cpu *c) |
81819f0f CL |
1881 | { |
1882 | #ifdef CONFIG_NUMA | |
1883 | struct zonelist *zonelist; | |
dd1a239f | 1884 | struct zoneref *z; |
54a6eb5c MG |
1885 | struct zone *zone; |
1886 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1887 | void *object; |
cc9a6c87 | 1888 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1889 | |
1890 | /* | |
672bba3a CL |
1891 | * The defrag ratio allows a configuration of the tradeoffs between |
1892 | * inter node defragmentation and node local allocations. A lower | |
1893 | * defrag_ratio increases the tendency to do local allocations | |
1894 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1895 | * |
672bba3a CL |
1896 | * If the defrag_ratio is set to 0 then kmalloc() always |
1897 | * returns node local objects. If the ratio is higher then kmalloc() | |
1898 | * may return off node objects because partial slabs are obtained | |
1899 | * from other nodes and filled up. | |
81819f0f | 1900 | * |
43efd3ea LP |
1901 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1902 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1903 | * allocation will first attempt to defrag slab caches on other nodes. | |
1904 | * This means scanning over all nodes to look for partial slabs which | |
1905 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1906 | * with available objects. |
81819f0f | 1907 | */ |
9824601e CL |
1908 | if (!s->remote_node_defrag_ratio || |
1909 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1910 | return NULL; |
1911 | ||
cc9a6c87 | 1912 | do { |
d26914d1 | 1913 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1914 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1915 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1916 | struct kmem_cache_node *n; | |
1917 | ||
1918 | n = get_node(s, zone_to_nid(zone)); | |
1919 | ||
dee2f8aa | 1920 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1921 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1922 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1923 | if (object) { |
1924 | /* | |
d26914d1 MG |
1925 | * Don't check read_mems_allowed_retry() |
1926 | * here - if mems_allowed was updated in | |
1927 | * parallel, that was a harmless race | |
1928 | * between allocation and the cpuset | |
1929 | * update | |
cc9a6c87 | 1930 | */ |
cc9a6c87 MG |
1931 | return object; |
1932 | } | |
c0ff7453 | 1933 | } |
81819f0f | 1934 | } |
d26914d1 | 1935 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
81819f0f CL |
1936 | #endif |
1937 | return NULL; | |
1938 | } | |
1939 | ||
1940 | /* | |
1941 | * Get a partial page, lock it and return it. | |
1942 | */ | |
497b66f2 | 1943 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1944 | struct kmem_cache_cpu *c) |
81819f0f | 1945 | { |
497b66f2 | 1946 | void *object; |
a561ce00 JK |
1947 | int searchnode = node; |
1948 | ||
1949 | if (node == NUMA_NO_NODE) | |
1950 | searchnode = numa_mem_id(); | |
1951 | else if (!node_present_pages(node)) | |
1952 | searchnode = node_to_mem_node(node); | |
81819f0f | 1953 | |
8ba00bb6 | 1954 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1955 | if (object || node != NUMA_NO_NODE) |
1956 | return object; | |
81819f0f | 1957 | |
acd19fd1 | 1958 | return get_any_partial(s, flags, c); |
81819f0f CL |
1959 | } |
1960 | ||
8a5ec0ba CL |
1961 | #ifdef CONFIG_PREEMPT |
1962 | /* | |
1963 | * Calculate the next globally unique transaction for disambiguiation | |
1964 | * during cmpxchg. The transactions start with the cpu number and are then | |
1965 | * incremented by CONFIG_NR_CPUS. | |
1966 | */ | |
1967 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1968 | #else | |
1969 | /* | |
1970 | * No preemption supported therefore also no need to check for | |
1971 | * different cpus. | |
1972 | */ | |
1973 | #define TID_STEP 1 | |
1974 | #endif | |
1975 | ||
1976 | static inline unsigned long next_tid(unsigned long tid) | |
1977 | { | |
1978 | return tid + TID_STEP; | |
1979 | } | |
1980 | ||
1981 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1982 | { | |
1983 | return tid % TID_STEP; | |
1984 | } | |
1985 | ||
1986 | static inline unsigned long tid_to_event(unsigned long tid) | |
1987 | { | |
1988 | return tid / TID_STEP; | |
1989 | } | |
1990 | ||
1991 | static inline unsigned int init_tid(int cpu) | |
1992 | { | |
1993 | return cpu; | |
1994 | } | |
1995 | ||
1996 | static inline void note_cmpxchg_failure(const char *n, | |
1997 | const struct kmem_cache *s, unsigned long tid) | |
1998 | { | |
1999 | #ifdef SLUB_DEBUG_CMPXCHG | |
2000 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2001 | ||
f9f58285 | 2002 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba CL |
2003 | |
2004 | #ifdef CONFIG_PREEMPT | |
2005 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
f9f58285 | 2006 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2007 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2008 | else | |
2009 | #endif | |
2010 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2011 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2012 | tid_to_event(tid), tid_to_event(actual_tid)); |
2013 | else | |
f9f58285 | 2014 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2015 | actual_tid, tid, next_tid(tid)); |
2016 | #endif | |
4fdccdfb | 2017 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2018 | } |
2019 | ||
788e1aad | 2020 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2021 | { |
8a5ec0ba CL |
2022 | int cpu; |
2023 | ||
2024 | for_each_possible_cpu(cpu) | |
2025 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2026 | } |
2cfb7455 | 2027 | |
81819f0f CL |
2028 | /* |
2029 | * Remove the cpu slab | |
2030 | */ | |
d0e0ac97 | 2031 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2032 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2033 | { |
2cfb7455 | 2034 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2035 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2036 | int lock = 0; | |
2037 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2038 | void *nextfree; |
136333d1 | 2039 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2040 | struct page new; |
2041 | struct page old; | |
2042 | ||
2043 | if (page->freelist) { | |
84e554e6 | 2044 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2045 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2046 | } |
2047 | ||
894b8788 | 2048 | /* |
2cfb7455 CL |
2049 | * Stage one: Free all available per cpu objects back |
2050 | * to the page freelist while it is still frozen. Leave the | |
2051 | * last one. | |
2052 | * | |
2053 | * There is no need to take the list->lock because the page | |
2054 | * is still frozen. | |
2055 | */ | |
2056 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2057 | void *prior; | |
2058 | unsigned long counters; | |
2059 | ||
2060 | do { | |
2061 | prior = page->freelist; | |
2062 | counters = page->counters; | |
2063 | set_freepointer(s, freelist, prior); | |
2064 | new.counters = counters; | |
2065 | new.inuse--; | |
a0132ac0 | 2066 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2067 | |
1d07171c | 2068 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2069 | prior, counters, |
2070 | freelist, new.counters, | |
2071 | "drain percpu freelist")); | |
2072 | ||
2073 | freelist = nextfree; | |
2074 | } | |
2075 | ||
894b8788 | 2076 | /* |
2cfb7455 CL |
2077 | * Stage two: Ensure that the page is unfrozen while the |
2078 | * list presence reflects the actual number of objects | |
2079 | * during unfreeze. | |
2080 | * | |
2081 | * We setup the list membership and then perform a cmpxchg | |
2082 | * with the count. If there is a mismatch then the page | |
2083 | * is not unfrozen but the page is on the wrong list. | |
2084 | * | |
2085 | * Then we restart the process which may have to remove | |
2086 | * the page from the list that we just put it on again | |
2087 | * because the number of objects in the slab may have | |
2088 | * changed. | |
894b8788 | 2089 | */ |
2cfb7455 | 2090 | redo: |
894b8788 | 2091 | |
2cfb7455 CL |
2092 | old.freelist = page->freelist; |
2093 | old.counters = page->counters; | |
a0132ac0 | 2094 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2095 | |
2cfb7455 CL |
2096 | /* Determine target state of the slab */ |
2097 | new.counters = old.counters; | |
2098 | if (freelist) { | |
2099 | new.inuse--; | |
2100 | set_freepointer(s, freelist, old.freelist); | |
2101 | new.freelist = freelist; | |
2102 | } else | |
2103 | new.freelist = old.freelist; | |
2104 | ||
2105 | new.frozen = 0; | |
2106 | ||
8a5b20ae | 2107 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2108 | m = M_FREE; |
2109 | else if (new.freelist) { | |
2110 | m = M_PARTIAL; | |
2111 | if (!lock) { | |
2112 | lock = 1; | |
2113 | /* | |
2114 | * Taking the spinlock removes the possiblity | |
2115 | * that acquire_slab() will see a slab page that | |
2116 | * is frozen | |
2117 | */ | |
2118 | spin_lock(&n->list_lock); | |
2119 | } | |
2120 | } else { | |
2121 | m = M_FULL; | |
2122 | if (kmem_cache_debug(s) && !lock) { | |
2123 | lock = 1; | |
2124 | /* | |
2125 | * This also ensures that the scanning of full | |
2126 | * slabs from diagnostic functions will not see | |
2127 | * any frozen slabs. | |
2128 | */ | |
2129 | spin_lock(&n->list_lock); | |
2130 | } | |
2131 | } | |
2132 | ||
2133 | if (l != m) { | |
2cfb7455 | 2134 | if (l == M_PARTIAL) |
2cfb7455 | 2135 | remove_partial(n, page); |
2cfb7455 | 2136 | else if (l == M_FULL) |
c65c1877 | 2137 | remove_full(s, n, page); |
2cfb7455 | 2138 | |
88349a28 | 2139 | if (m == M_PARTIAL) |
2cfb7455 | 2140 | add_partial(n, page, tail); |
88349a28 | 2141 | else if (m == M_FULL) |
2cfb7455 | 2142 | add_full(s, n, page); |
2cfb7455 CL |
2143 | } |
2144 | ||
2145 | l = m; | |
1d07171c | 2146 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2147 | old.freelist, old.counters, |
2148 | new.freelist, new.counters, | |
2149 | "unfreezing slab")) | |
2150 | goto redo; | |
2151 | ||
2cfb7455 CL |
2152 | if (lock) |
2153 | spin_unlock(&n->list_lock); | |
2154 | ||
88349a28 WY |
2155 | if (m == M_PARTIAL) |
2156 | stat(s, tail); | |
2157 | else if (m == M_FULL) | |
2158 | stat(s, DEACTIVATE_FULL); | |
2159 | else if (m == M_FREE) { | |
2cfb7455 CL |
2160 | stat(s, DEACTIVATE_EMPTY); |
2161 | discard_slab(s, page); | |
2162 | stat(s, FREE_SLAB); | |
894b8788 | 2163 | } |
d4ff6d35 WY |
2164 | |
2165 | c->page = NULL; | |
2166 | c->freelist = NULL; | |
81819f0f CL |
2167 | } |
2168 | ||
d24ac77f JK |
2169 | /* |
2170 | * Unfreeze all the cpu partial slabs. | |
2171 | * | |
59a09917 CL |
2172 | * This function must be called with interrupts disabled |
2173 | * for the cpu using c (or some other guarantee must be there | |
2174 | * to guarantee no concurrent accesses). | |
d24ac77f | 2175 | */ |
59a09917 CL |
2176 | static void unfreeze_partials(struct kmem_cache *s, |
2177 | struct kmem_cache_cpu *c) | |
49e22585 | 2178 | { |
345c905d | 2179 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2180 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2181 | struct page *page, *discard_page = NULL; |
49e22585 CL |
2182 | |
2183 | while ((page = c->partial)) { | |
49e22585 CL |
2184 | struct page new; |
2185 | struct page old; | |
2186 | ||
2187 | c->partial = page->next; | |
43d77867 JK |
2188 | |
2189 | n2 = get_node(s, page_to_nid(page)); | |
2190 | if (n != n2) { | |
2191 | if (n) | |
2192 | spin_unlock(&n->list_lock); | |
2193 | ||
2194 | n = n2; | |
2195 | spin_lock(&n->list_lock); | |
2196 | } | |
49e22585 CL |
2197 | |
2198 | do { | |
2199 | ||
2200 | old.freelist = page->freelist; | |
2201 | old.counters = page->counters; | |
a0132ac0 | 2202 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2203 | |
2204 | new.counters = old.counters; | |
2205 | new.freelist = old.freelist; | |
2206 | ||
2207 | new.frozen = 0; | |
2208 | ||
d24ac77f | 2209 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2210 | old.freelist, old.counters, |
2211 | new.freelist, new.counters, | |
2212 | "unfreezing slab")); | |
2213 | ||
8a5b20ae | 2214 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2215 | page->next = discard_page; |
2216 | discard_page = page; | |
43d77867 JK |
2217 | } else { |
2218 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2219 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2220 | } |
2221 | } | |
2222 | ||
2223 | if (n) | |
2224 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2225 | |
2226 | while (discard_page) { | |
2227 | page = discard_page; | |
2228 | discard_page = discard_page->next; | |
2229 | ||
2230 | stat(s, DEACTIVATE_EMPTY); | |
2231 | discard_slab(s, page); | |
2232 | stat(s, FREE_SLAB); | |
2233 | } | |
345c905d | 2234 | #endif |
49e22585 CL |
2235 | } |
2236 | ||
2237 | /* | |
2238 | * Put a page that was just frozen (in __slab_free) into a partial page | |
0d2d5d40 | 2239 | * slot if available. |
49e22585 CL |
2240 | * |
2241 | * If we did not find a slot then simply move all the partials to the | |
2242 | * per node partial list. | |
2243 | */ | |
633b0764 | 2244 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2245 | { |
345c905d | 2246 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2247 | struct page *oldpage; |
2248 | int pages; | |
2249 | int pobjects; | |
2250 | ||
d6e0b7fa | 2251 | preempt_disable(); |
49e22585 CL |
2252 | do { |
2253 | pages = 0; | |
2254 | pobjects = 0; | |
2255 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2256 | ||
2257 | if (oldpage) { | |
2258 | pobjects = oldpage->pobjects; | |
2259 | pages = oldpage->pages; | |
2260 | if (drain && pobjects > s->cpu_partial) { | |
2261 | unsigned long flags; | |
2262 | /* | |
2263 | * partial array is full. Move the existing | |
2264 | * set to the per node partial list. | |
2265 | */ | |
2266 | local_irq_save(flags); | |
59a09917 | 2267 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2268 | local_irq_restore(flags); |
e24fc410 | 2269 | oldpage = NULL; |
49e22585 CL |
2270 | pobjects = 0; |
2271 | pages = 0; | |
8028dcea | 2272 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2273 | } |
2274 | } | |
2275 | ||
2276 | pages++; | |
2277 | pobjects += page->objects - page->inuse; | |
2278 | ||
2279 | page->pages = pages; | |
2280 | page->pobjects = pobjects; | |
2281 | page->next = oldpage; | |
2282 | ||
d0e0ac97 CG |
2283 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2284 | != oldpage); | |
d6e0b7fa VD |
2285 | if (unlikely(!s->cpu_partial)) { |
2286 | unsigned long flags; | |
2287 | ||
2288 | local_irq_save(flags); | |
2289 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2290 | local_irq_restore(flags); | |
2291 | } | |
2292 | preempt_enable(); | |
345c905d | 2293 | #endif |
49e22585 CL |
2294 | } |
2295 | ||
dfb4f096 | 2296 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2297 | { |
84e554e6 | 2298 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2299 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2300 | |
2301 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2302 | } |
2303 | ||
2304 | /* | |
2305 | * Flush cpu slab. | |
6446faa2 | 2306 | * |
81819f0f CL |
2307 | * Called from IPI handler with interrupts disabled. |
2308 | */ | |
0c710013 | 2309 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2310 | { |
9dfc6e68 | 2311 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2312 | |
1265ef2d WY |
2313 | if (c->page) |
2314 | flush_slab(s, c); | |
49e22585 | 2315 | |
1265ef2d | 2316 | unfreeze_partials(s, c); |
81819f0f CL |
2317 | } |
2318 | ||
2319 | static void flush_cpu_slab(void *d) | |
2320 | { | |
2321 | struct kmem_cache *s = d; | |
81819f0f | 2322 | |
dfb4f096 | 2323 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2324 | } |
2325 | ||
a8364d55 GBY |
2326 | static bool has_cpu_slab(int cpu, void *info) |
2327 | { | |
2328 | struct kmem_cache *s = info; | |
2329 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2330 | ||
a93cf07b | 2331 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2332 | } |
2333 | ||
81819f0f CL |
2334 | static void flush_all(struct kmem_cache *s) |
2335 | { | |
a8364d55 | 2336 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2337 | } |
2338 | ||
a96a87bf SAS |
2339 | /* |
2340 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2341 | * necessary. | |
2342 | */ | |
2343 | static int slub_cpu_dead(unsigned int cpu) | |
2344 | { | |
2345 | struct kmem_cache *s; | |
2346 | unsigned long flags; | |
2347 | ||
2348 | mutex_lock(&slab_mutex); | |
2349 | list_for_each_entry(s, &slab_caches, list) { | |
2350 | local_irq_save(flags); | |
2351 | __flush_cpu_slab(s, cpu); | |
2352 | local_irq_restore(flags); | |
2353 | } | |
2354 | mutex_unlock(&slab_mutex); | |
2355 | return 0; | |
2356 | } | |
2357 | ||
dfb4f096 CL |
2358 | /* |
2359 | * Check if the objects in a per cpu structure fit numa | |
2360 | * locality expectations. | |
2361 | */ | |
57d437d2 | 2362 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2363 | { |
2364 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2365 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2366 | return 0; |
2367 | #endif | |
2368 | return 1; | |
2369 | } | |
2370 | ||
9a02d699 | 2371 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2372 | static int count_free(struct page *page) |
2373 | { | |
2374 | return page->objects - page->inuse; | |
2375 | } | |
2376 | ||
9a02d699 DR |
2377 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2378 | { | |
2379 | return atomic_long_read(&n->total_objects); | |
2380 | } | |
2381 | #endif /* CONFIG_SLUB_DEBUG */ | |
2382 | ||
2383 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2384 | static unsigned long count_partial(struct kmem_cache_node *n, |
2385 | int (*get_count)(struct page *)) | |
2386 | { | |
2387 | unsigned long flags; | |
2388 | unsigned long x = 0; | |
2389 | struct page *page; | |
2390 | ||
2391 | spin_lock_irqsave(&n->list_lock, flags); | |
2392 | list_for_each_entry(page, &n->partial, lru) | |
2393 | x += get_count(page); | |
2394 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2395 | return x; | |
2396 | } | |
9a02d699 | 2397 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2398 | |
781b2ba6 PE |
2399 | static noinline void |
2400 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2401 | { | |
9a02d699 DR |
2402 | #ifdef CONFIG_SLUB_DEBUG |
2403 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2404 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2405 | int node; |
fa45dc25 | 2406 | struct kmem_cache_node *n; |
781b2ba6 | 2407 | |
9a02d699 DR |
2408 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2409 | return; | |
2410 | ||
5b3810e5 VB |
2411 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2412 | nid, gfpflags, &gfpflags); | |
19af27af | 2413 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2414 | s->name, s->object_size, s->size, oo_order(s->oo), |
2415 | oo_order(s->min)); | |
781b2ba6 | 2416 | |
3b0efdfa | 2417 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2418 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2419 | s->name); | |
fa5ec8a1 | 2420 | |
fa45dc25 | 2421 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2422 | unsigned long nr_slabs; |
2423 | unsigned long nr_objs; | |
2424 | unsigned long nr_free; | |
2425 | ||
26c02cf0 AB |
2426 | nr_free = count_partial(n, count_free); |
2427 | nr_slabs = node_nr_slabs(n); | |
2428 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2429 | |
f9f58285 | 2430 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2431 | node, nr_slabs, nr_objs, nr_free); |
2432 | } | |
9a02d699 | 2433 | #endif |
781b2ba6 PE |
2434 | } |
2435 | ||
497b66f2 CL |
2436 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2437 | int node, struct kmem_cache_cpu **pc) | |
2438 | { | |
6faa6833 | 2439 | void *freelist; |
188fd063 CL |
2440 | struct kmem_cache_cpu *c = *pc; |
2441 | struct page *page; | |
497b66f2 | 2442 | |
128227e7 MW |
2443 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2444 | ||
188fd063 | 2445 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2446 | |
188fd063 CL |
2447 | if (freelist) |
2448 | return freelist; | |
2449 | ||
2450 | page = new_slab(s, flags, node); | |
497b66f2 | 2451 | if (page) { |
7c8e0181 | 2452 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2453 | if (c->page) |
2454 | flush_slab(s, c); | |
2455 | ||
2456 | /* | |
2457 | * No other reference to the page yet so we can | |
2458 | * muck around with it freely without cmpxchg | |
2459 | */ | |
6faa6833 | 2460 | freelist = page->freelist; |
497b66f2 CL |
2461 | page->freelist = NULL; |
2462 | ||
2463 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2464 | c->page = page; |
2465 | *pc = c; | |
2466 | } else | |
6faa6833 | 2467 | freelist = NULL; |
497b66f2 | 2468 | |
6faa6833 | 2469 | return freelist; |
497b66f2 CL |
2470 | } |
2471 | ||
072bb0aa MG |
2472 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2473 | { | |
2474 | if (unlikely(PageSlabPfmemalloc(page))) | |
2475 | return gfp_pfmemalloc_allowed(gfpflags); | |
2476 | ||
2477 | return true; | |
2478 | } | |
2479 | ||
213eeb9f | 2480 | /* |
d0e0ac97 CG |
2481 | * Check the page->freelist of a page and either transfer the freelist to the |
2482 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2483 | * |
2484 | * The page is still frozen if the return value is not NULL. | |
2485 | * | |
2486 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2487 | * |
2488 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2489 | */ |
2490 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2491 | { | |
2492 | struct page new; | |
2493 | unsigned long counters; | |
2494 | void *freelist; | |
2495 | ||
2496 | do { | |
2497 | freelist = page->freelist; | |
2498 | counters = page->counters; | |
6faa6833 | 2499 | |
213eeb9f | 2500 | new.counters = counters; |
a0132ac0 | 2501 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2502 | |
2503 | new.inuse = page->objects; | |
2504 | new.frozen = freelist != NULL; | |
2505 | ||
d24ac77f | 2506 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2507 | freelist, counters, |
2508 | NULL, new.counters, | |
2509 | "get_freelist")); | |
2510 | ||
2511 | return freelist; | |
2512 | } | |
2513 | ||
81819f0f | 2514 | /* |
894b8788 CL |
2515 | * Slow path. The lockless freelist is empty or we need to perform |
2516 | * debugging duties. | |
2517 | * | |
894b8788 CL |
2518 | * Processing is still very fast if new objects have been freed to the |
2519 | * regular freelist. In that case we simply take over the regular freelist | |
2520 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2521 | * |
894b8788 CL |
2522 | * If that is not working then we fall back to the partial lists. We take the |
2523 | * first element of the freelist as the object to allocate now and move the | |
2524 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2525 | * |
894b8788 | 2526 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2527 | * we need to allocate a new slab. This is the slowest path since it involves |
2528 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2529 | * |
2530 | * Version of __slab_alloc to use when we know that interrupts are | |
2531 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2532 | */ |
a380a3c7 | 2533 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2534 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2535 | { |
6faa6833 | 2536 | void *freelist; |
f6e7def7 | 2537 | struct page *page; |
81819f0f | 2538 | |
f6e7def7 CL |
2539 | page = c->page; |
2540 | if (!page) | |
81819f0f | 2541 | goto new_slab; |
49e22585 | 2542 | redo: |
6faa6833 | 2543 | |
57d437d2 | 2544 | if (unlikely(!node_match(page, node))) { |
a561ce00 JK |
2545 | int searchnode = node; |
2546 | ||
2547 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | |
2548 | searchnode = node_to_mem_node(node); | |
2549 | ||
2550 | if (unlikely(!node_match(page, searchnode))) { | |
2551 | stat(s, ALLOC_NODE_MISMATCH); | |
d4ff6d35 | 2552 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2553 | goto new_slab; |
2554 | } | |
fc59c053 | 2555 | } |
6446faa2 | 2556 | |
072bb0aa MG |
2557 | /* |
2558 | * By rights, we should be searching for a slab page that was | |
2559 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2560 | * information when the page leaves the per-cpu allocator | |
2561 | */ | |
2562 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2563 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2564 | goto new_slab; |
2565 | } | |
2566 | ||
73736e03 | 2567 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2568 | freelist = c->freelist; |
2569 | if (freelist) | |
73736e03 | 2570 | goto load_freelist; |
03e404af | 2571 | |
f6e7def7 | 2572 | freelist = get_freelist(s, page); |
6446faa2 | 2573 | |
6faa6833 | 2574 | if (!freelist) { |
03e404af CL |
2575 | c->page = NULL; |
2576 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2577 | goto new_slab; |
03e404af | 2578 | } |
6446faa2 | 2579 | |
84e554e6 | 2580 | stat(s, ALLOC_REFILL); |
6446faa2 | 2581 | |
894b8788 | 2582 | load_freelist: |
507effea CL |
2583 | /* |
2584 | * freelist is pointing to the list of objects to be used. | |
2585 | * page is pointing to the page from which the objects are obtained. | |
2586 | * That page must be frozen for per cpu allocations to work. | |
2587 | */ | |
a0132ac0 | 2588 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2589 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2590 | c->tid = next_tid(c->tid); |
6faa6833 | 2591 | return freelist; |
81819f0f | 2592 | |
81819f0f | 2593 | new_slab: |
2cfb7455 | 2594 | |
a93cf07b WY |
2595 | if (slub_percpu_partial(c)) { |
2596 | page = c->page = slub_percpu_partial(c); | |
2597 | slub_set_percpu_partial(c, page); | |
49e22585 | 2598 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2599 | goto redo; |
81819f0f CL |
2600 | } |
2601 | ||
188fd063 | 2602 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2603 | |
f4697436 | 2604 | if (unlikely(!freelist)) { |
9a02d699 | 2605 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2606 | return NULL; |
81819f0f | 2607 | } |
2cfb7455 | 2608 | |
f6e7def7 | 2609 | page = c->page; |
5091b74a | 2610 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2611 | goto load_freelist; |
2cfb7455 | 2612 | |
497b66f2 | 2613 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2614 | if (kmem_cache_debug(s) && |
2615 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2616 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2617 | |
d4ff6d35 | 2618 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2619 | return freelist; |
894b8788 CL |
2620 | } |
2621 | ||
a380a3c7 CL |
2622 | /* |
2623 | * Another one that disabled interrupt and compensates for possible | |
2624 | * cpu changes by refetching the per cpu area pointer. | |
2625 | */ | |
2626 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2627 | unsigned long addr, struct kmem_cache_cpu *c) | |
2628 | { | |
2629 | void *p; | |
2630 | unsigned long flags; | |
2631 | ||
2632 | local_irq_save(flags); | |
2633 | #ifdef CONFIG_PREEMPT | |
2634 | /* | |
2635 | * We may have been preempted and rescheduled on a different | |
2636 | * cpu before disabling interrupts. Need to reload cpu area | |
2637 | * pointer. | |
2638 | */ | |
2639 | c = this_cpu_ptr(s->cpu_slab); | |
2640 | #endif | |
2641 | ||
2642 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2643 | local_irq_restore(flags); | |
2644 | return p; | |
2645 | } | |
2646 | ||
894b8788 CL |
2647 | /* |
2648 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2649 | * have the fastpath folded into their functions. So no function call | |
2650 | * overhead for requests that can be satisfied on the fastpath. | |
2651 | * | |
2652 | * The fastpath works by first checking if the lockless freelist can be used. | |
2653 | * If not then __slab_alloc is called for slow processing. | |
2654 | * | |
2655 | * Otherwise we can simply pick the next object from the lockless free list. | |
2656 | */ | |
2b847c3c | 2657 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2658 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2659 | { |
03ec0ed5 | 2660 | void *object; |
dfb4f096 | 2661 | struct kmem_cache_cpu *c; |
57d437d2 | 2662 | struct page *page; |
8a5ec0ba | 2663 | unsigned long tid; |
1f84260c | 2664 | |
8135be5a VD |
2665 | s = slab_pre_alloc_hook(s, gfpflags); |
2666 | if (!s) | |
773ff60e | 2667 | return NULL; |
8a5ec0ba | 2668 | redo: |
8a5ec0ba CL |
2669 | /* |
2670 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2671 | * enabled. We may switch back and forth between cpus while | |
2672 | * reading from one cpu area. That does not matter as long | |
2673 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2674 | * |
9aabf810 JK |
2675 | * We should guarantee that tid and kmem_cache are retrieved on |
2676 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | |
2677 | * to check if it is matched or not. | |
8a5ec0ba | 2678 | */ |
9aabf810 JK |
2679 | do { |
2680 | tid = this_cpu_read(s->cpu_slab->tid); | |
2681 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2682 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2683 | unlikely(tid != READ_ONCE(c->tid))); | |
9aabf810 JK |
2684 | |
2685 | /* | |
2686 | * Irqless object alloc/free algorithm used here depends on sequence | |
2687 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2688 | * on c to guarantee that object and page associated with previous tid | |
2689 | * won't be used with current tid. If we fetch tid first, object and | |
2690 | * page could be one associated with next tid and our alloc/free | |
2691 | * request will be failed. In this case, we will retry. So, no problem. | |
2692 | */ | |
2693 | barrier(); | |
8a5ec0ba | 2694 | |
8a5ec0ba CL |
2695 | /* |
2696 | * The transaction ids are globally unique per cpu and per operation on | |
2697 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2698 | * occurs on the right processor and that there was no operation on the | |
2699 | * linked list in between. | |
2700 | */ | |
8a5ec0ba | 2701 | |
9dfc6e68 | 2702 | object = c->freelist; |
57d437d2 | 2703 | page = c->page; |
8eae1492 | 2704 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2705 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2706 | stat(s, ALLOC_SLOWPATH); |
2707 | } else { | |
0ad9500e ED |
2708 | void *next_object = get_freepointer_safe(s, object); |
2709 | ||
8a5ec0ba | 2710 | /* |
25985edc | 2711 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2712 | * operation and if we are on the right processor. |
2713 | * | |
d0e0ac97 CG |
2714 | * The cmpxchg does the following atomically (without lock |
2715 | * semantics!) | |
8a5ec0ba CL |
2716 | * 1. Relocate first pointer to the current per cpu area. |
2717 | * 2. Verify that tid and freelist have not been changed | |
2718 | * 3. If they were not changed replace tid and freelist | |
2719 | * | |
d0e0ac97 CG |
2720 | * Since this is without lock semantics the protection is only |
2721 | * against code executing on this cpu *not* from access by | |
2722 | * other cpus. | |
8a5ec0ba | 2723 | */ |
933393f5 | 2724 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2725 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2726 | object, tid, | |
0ad9500e | 2727 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2728 | |
2729 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2730 | goto redo; | |
2731 | } | |
0ad9500e | 2732 | prefetch_freepointer(s, next_object); |
84e554e6 | 2733 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2734 | } |
8a5ec0ba | 2735 | |
74e2134f | 2736 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2737 | memset(object, 0, s->object_size); |
d07dbea4 | 2738 | |
03ec0ed5 | 2739 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2740 | |
894b8788 | 2741 | return object; |
81819f0f CL |
2742 | } |
2743 | ||
2b847c3c EG |
2744 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2745 | gfp_t gfpflags, unsigned long addr) | |
2746 | { | |
2747 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2748 | } | |
2749 | ||
81819f0f CL |
2750 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2751 | { | |
2b847c3c | 2752 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2753 | |
d0e0ac97 CG |
2754 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2755 | s->size, gfpflags); | |
5b882be4 EGM |
2756 | |
2757 | return ret; | |
81819f0f CL |
2758 | } |
2759 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2760 | ||
0f24f128 | 2761 | #ifdef CONFIG_TRACING |
4a92379b RK |
2762 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2763 | { | |
2b847c3c | 2764 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2765 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 2766 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2767 | return ret; |
2768 | } | |
2769 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2770 | #endif |
2771 | ||
81819f0f CL |
2772 | #ifdef CONFIG_NUMA |
2773 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2774 | { | |
2b847c3c | 2775 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2776 | |
ca2b84cb | 2777 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2778 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2779 | |
2780 | return ret; | |
81819f0f CL |
2781 | } |
2782 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2783 | |
0f24f128 | 2784 | #ifdef CONFIG_TRACING |
4a92379b | 2785 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2786 | gfp_t gfpflags, |
4a92379b | 2787 | int node, size_t size) |
5b882be4 | 2788 | { |
2b847c3c | 2789 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2790 | |
2791 | trace_kmalloc_node(_RET_IP_, ret, | |
2792 | size, s->size, gfpflags, node); | |
0316bec2 | 2793 | |
0116523c | 2794 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2795 | return ret; |
5b882be4 | 2796 | } |
4a92379b | 2797 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2798 | #endif |
5d1f57e4 | 2799 | #endif |
5b882be4 | 2800 | |
81819f0f | 2801 | /* |
94e4d712 | 2802 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2803 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2804 | * |
894b8788 CL |
2805 | * So we still attempt to reduce cache line usage. Just take the slab |
2806 | * lock and free the item. If there is no additional partial page | |
2807 | * handling required then we can return immediately. | |
81819f0f | 2808 | */ |
894b8788 | 2809 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2810 | void *head, void *tail, int cnt, |
2811 | unsigned long addr) | |
2812 | ||
81819f0f CL |
2813 | { |
2814 | void *prior; | |
2cfb7455 | 2815 | int was_frozen; |
2cfb7455 CL |
2816 | struct page new; |
2817 | unsigned long counters; | |
2818 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2819 | unsigned long uninitialized_var(flags); |
81819f0f | 2820 | |
8a5ec0ba | 2821 | stat(s, FREE_SLOWPATH); |
81819f0f | 2822 | |
19c7ff9e | 2823 | if (kmem_cache_debug(s) && |
282acb43 | 2824 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2825 | return; |
6446faa2 | 2826 | |
2cfb7455 | 2827 | do { |
837d678d JK |
2828 | if (unlikely(n)) { |
2829 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2830 | n = NULL; | |
2831 | } | |
2cfb7455 CL |
2832 | prior = page->freelist; |
2833 | counters = page->counters; | |
81084651 | 2834 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2835 | new.counters = counters; |
2836 | was_frozen = new.frozen; | |
81084651 | 2837 | new.inuse -= cnt; |
837d678d | 2838 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2839 | |
c65c1877 | 2840 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2841 | |
2842 | /* | |
d0e0ac97 CG |
2843 | * Slab was on no list before and will be |
2844 | * partially empty | |
2845 | * We can defer the list move and instead | |
2846 | * freeze it. | |
49e22585 CL |
2847 | */ |
2848 | new.frozen = 1; | |
2849 | ||
c65c1877 | 2850 | } else { /* Needs to be taken off a list */ |
49e22585 | 2851 | |
b455def2 | 2852 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2853 | /* |
2854 | * Speculatively acquire the list_lock. | |
2855 | * If the cmpxchg does not succeed then we may | |
2856 | * drop the list_lock without any processing. | |
2857 | * | |
2858 | * Otherwise the list_lock will synchronize with | |
2859 | * other processors updating the list of slabs. | |
2860 | */ | |
2861 | spin_lock_irqsave(&n->list_lock, flags); | |
2862 | ||
2863 | } | |
2cfb7455 | 2864 | } |
81819f0f | 2865 | |
2cfb7455 CL |
2866 | } while (!cmpxchg_double_slab(s, page, |
2867 | prior, counters, | |
81084651 | 2868 | head, new.counters, |
2cfb7455 | 2869 | "__slab_free")); |
81819f0f | 2870 | |
2cfb7455 | 2871 | if (likely(!n)) { |
49e22585 CL |
2872 | |
2873 | /* | |
2874 | * If we just froze the page then put it onto the | |
2875 | * per cpu partial list. | |
2876 | */ | |
8028dcea | 2877 | if (new.frozen && !was_frozen) { |
49e22585 | 2878 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2879 | stat(s, CPU_PARTIAL_FREE); |
2880 | } | |
49e22585 | 2881 | /* |
2cfb7455 CL |
2882 | * The list lock was not taken therefore no list |
2883 | * activity can be necessary. | |
2884 | */ | |
b455def2 L |
2885 | if (was_frozen) |
2886 | stat(s, FREE_FROZEN); | |
2887 | return; | |
2888 | } | |
81819f0f | 2889 | |
8a5b20ae | 2890 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2891 | goto slab_empty; |
2892 | ||
81819f0f | 2893 | /* |
837d678d JK |
2894 | * Objects left in the slab. If it was not on the partial list before |
2895 | * then add it. | |
81819f0f | 2896 | */ |
345c905d JK |
2897 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
2898 | if (kmem_cache_debug(s)) | |
c65c1877 | 2899 | remove_full(s, n, page); |
837d678d JK |
2900 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2901 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2902 | } |
80f08c19 | 2903 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2904 | return; |
2905 | ||
2906 | slab_empty: | |
a973e9dd | 2907 | if (prior) { |
81819f0f | 2908 | /* |
6fbabb20 | 2909 | * Slab on the partial list. |
81819f0f | 2910 | */ |
5cc6eee8 | 2911 | remove_partial(n, page); |
84e554e6 | 2912 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2913 | } else { |
6fbabb20 | 2914 | /* Slab must be on the full list */ |
c65c1877 PZ |
2915 | remove_full(s, n, page); |
2916 | } | |
2cfb7455 | 2917 | |
80f08c19 | 2918 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2919 | stat(s, FREE_SLAB); |
81819f0f | 2920 | discard_slab(s, page); |
81819f0f CL |
2921 | } |
2922 | ||
894b8788 CL |
2923 | /* |
2924 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2925 | * can perform fastpath freeing without additional function calls. | |
2926 | * | |
2927 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2928 | * of this processor. This typically the case if we have just allocated | |
2929 | * the item before. | |
2930 | * | |
2931 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2932 | * with all sorts of special processing. | |
81084651 JDB |
2933 | * |
2934 | * Bulk free of a freelist with several objects (all pointing to the | |
2935 | * same page) possible by specifying head and tail ptr, plus objects | |
2936 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2937 | */ |
80a9201a AP |
2938 | static __always_inline void do_slab_free(struct kmem_cache *s, |
2939 | struct page *page, void *head, void *tail, | |
2940 | int cnt, unsigned long addr) | |
894b8788 | 2941 | { |
81084651 | 2942 | void *tail_obj = tail ? : head; |
dfb4f096 | 2943 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2944 | unsigned long tid; |
8a5ec0ba CL |
2945 | redo: |
2946 | /* | |
2947 | * Determine the currently cpus per cpu slab. | |
2948 | * The cpu may change afterward. However that does not matter since | |
2949 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2950 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2951 | */ |
9aabf810 JK |
2952 | do { |
2953 | tid = this_cpu_read(s->cpu_slab->tid); | |
2954 | c = raw_cpu_ptr(s->cpu_slab); | |
859b7a0e MR |
2955 | } while (IS_ENABLED(CONFIG_PREEMPT) && |
2956 | unlikely(tid != READ_ONCE(c->tid))); | |
c016b0bd | 2957 | |
9aabf810 JK |
2958 | /* Same with comment on barrier() in slab_alloc_node() */ |
2959 | barrier(); | |
c016b0bd | 2960 | |
442b06bc | 2961 | if (likely(page == c->page)) { |
81084651 | 2962 | set_freepointer(s, tail_obj, c->freelist); |
8a5ec0ba | 2963 | |
933393f5 | 2964 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2965 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2966 | c->freelist, tid, | |
81084651 | 2967 | head, next_tid(tid)))) { |
8a5ec0ba CL |
2968 | |
2969 | note_cmpxchg_failure("slab_free", s, tid); | |
2970 | goto redo; | |
2971 | } | |
84e554e6 | 2972 | stat(s, FREE_FASTPATH); |
894b8788 | 2973 | } else |
81084651 | 2974 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 2975 | |
894b8788 CL |
2976 | } |
2977 | ||
80a9201a AP |
2978 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
2979 | void *head, void *tail, int cnt, | |
2980 | unsigned long addr) | |
2981 | { | |
80a9201a | 2982 | /* |
c3895391 AK |
2983 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
2984 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 2985 | */ |
c3895391 AK |
2986 | if (slab_free_freelist_hook(s, &head, &tail)) |
2987 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
2988 | } |
2989 | ||
2bd926b4 | 2990 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
2991 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
2992 | { | |
2993 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
2994 | } | |
2995 | #endif | |
2996 | ||
81819f0f CL |
2997 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2998 | { | |
b9ce5ef4 GC |
2999 | s = cache_from_obj(s, x); |
3000 | if (!s) | |
79576102 | 3001 | return; |
81084651 | 3002 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3003 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3004 | } |
3005 | EXPORT_SYMBOL(kmem_cache_free); | |
3006 | ||
d0ecd894 | 3007 | struct detached_freelist { |
fbd02630 | 3008 | struct page *page; |
d0ecd894 JDB |
3009 | void *tail; |
3010 | void *freelist; | |
3011 | int cnt; | |
376bf125 | 3012 | struct kmem_cache *s; |
d0ecd894 | 3013 | }; |
fbd02630 | 3014 | |
d0ecd894 JDB |
3015 | /* |
3016 | * This function progressively scans the array with free objects (with | |
3017 | * a limited look ahead) and extract objects belonging to the same | |
3018 | * page. It builds a detached freelist directly within the given | |
3019 | * page/objects. This can happen without any need for | |
3020 | * synchronization, because the objects are owned by running process. | |
3021 | * The freelist is build up as a single linked list in the objects. | |
3022 | * The idea is, that this detached freelist can then be bulk | |
3023 | * transferred to the real freelist(s), but only requiring a single | |
3024 | * synchronization primitive. Look ahead in the array is limited due | |
3025 | * to performance reasons. | |
3026 | */ | |
376bf125 JDB |
3027 | static inline |
3028 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3029 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3030 | { |
3031 | size_t first_skipped_index = 0; | |
3032 | int lookahead = 3; | |
3033 | void *object; | |
ca257195 | 3034 | struct page *page; |
fbd02630 | 3035 | |
d0ecd894 JDB |
3036 | /* Always re-init detached_freelist */ |
3037 | df->page = NULL; | |
fbd02630 | 3038 | |
d0ecd894 JDB |
3039 | do { |
3040 | object = p[--size]; | |
ca257195 | 3041 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3042 | } while (!object && size); |
3eed034d | 3043 | |
d0ecd894 JDB |
3044 | if (!object) |
3045 | return 0; | |
fbd02630 | 3046 | |
ca257195 JDB |
3047 | page = virt_to_head_page(object); |
3048 | if (!s) { | |
3049 | /* Handle kalloc'ed objects */ | |
3050 | if (unlikely(!PageSlab(page))) { | |
3051 | BUG_ON(!PageCompound(page)); | |
3052 | kfree_hook(object); | |
4949148a | 3053 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3054 | p[size] = NULL; /* mark object processed */ |
3055 | return size; | |
3056 | } | |
3057 | /* Derive kmem_cache from object */ | |
3058 | df->s = page->slab_cache; | |
3059 | } else { | |
3060 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3061 | } | |
376bf125 | 3062 | |
d0ecd894 | 3063 | /* Start new detached freelist */ |
ca257195 | 3064 | df->page = page; |
376bf125 | 3065 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3066 | df->tail = object; |
3067 | df->freelist = object; | |
3068 | p[size] = NULL; /* mark object processed */ | |
3069 | df->cnt = 1; | |
3070 | ||
3071 | while (size) { | |
3072 | object = p[--size]; | |
3073 | if (!object) | |
3074 | continue; /* Skip processed objects */ | |
3075 | ||
3076 | /* df->page is always set at this point */ | |
3077 | if (df->page == virt_to_head_page(object)) { | |
3078 | /* Opportunity build freelist */ | |
376bf125 | 3079 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3080 | df->freelist = object; |
3081 | df->cnt++; | |
3082 | p[size] = NULL; /* mark object processed */ | |
3083 | ||
3084 | continue; | |
fbd02630 | 3085 | } |
d0ecd894 JDB |
3086 | |
3087 | /* Limit look ahead search */ | |
3088 | if (!--lookahead) | |
3089 | break; | |
3090 | ||
3091 | if (!first_skipped_index) | |
3092 | first_skipped_index = size + 1; | |
fbd02630 | 3093 | } |
d0ecd894 JDB |
3094 | |
3095 | return first_skipped_index; | |
3096 | } | |
3097 | ||
d0ecd894 | 3098 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3099 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3100 | { |
3101 | if (WARN_ON(!size)) | |
3102 | return; | |
3103 | ||
3104 | do { | |
3105 | struct detached_freelist df; | |
3106 | ||
3107 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3108 | if (!df.page) |
d0ecd894 JDB |
3109 | continue; |
3110 | ||
376bf125 | 3111 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3112 | } while (likely(size)); |
484748f0 CL |
3113 | } |
3114 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3115 | ||
994eb764 | 3116 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3117 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3118 | void **p) | |
484748f0 | 3119 | { |
994eb764 JDB |
3120 | struct kmem_cache_cpu *c; |
3121 | int i; | |
3122 | ||
03ec0ed5 JDB |
3123 | /* memcg and kmem_cache debug support */ |
3124 | s = slab_pre_alloc_hook(s, flags); | |
3125 | if (unlikely(!s)) | |
3126 | return false; | |
994eb764 JDB |
3127 | /* |
3128 | * Drain objects in the per cpu slab, while disabling local | |
3129 | * IRQs, which protects against PREEMPT and interrupts | |
3130 | * handlers invoking normal fastpath. | |
3131 | */ | |
3132 | local_irq_disable(); | |
3133 | c = this_cpu_ptr(s->cpu_slab); | |
3134 | ||
3135 | for (i = 0; i < size; i++) { | |
3136 | void *object = c->freelist; | |
3137 | ||
ebe909e0 | 3138 | if (unlikely(!object)) { |
ebe909e0 JDB |
3139 | /* |
3140 | * Invoking slow path likely have side-effect | |
3141 | * of re-populating per CPU c->freelist | |
3142 | */ | |
87098373 | 3143 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3144 | _RET_IP_, c); |
87098373 CL |
3145 | if (unlikely(!p[i])) |
3146 | goto error; | |
3147 | ||
ebe909e0 JDB |
3148 | c = this_cpu_ptr(s->cpu_slab); |
3149 | continue; /* goto for-loop */ | |
3150 | } | |
994eb764 JDB |
3151 | c->freelist = get_freepointer(s, object); |
3152 | p[i] = object; | |
3153 | } | |
3154 | c->tid = next_tid(c->tid); | |
3155 | local_irq_enable(); | |
3156 | ||
3157 | /* Clear memory outside IRQ disabled fastpath loop */ | |
3158 | if (unlikely(flags & __GFP_ZERO)) { | |
3159 | int j; | |
3160 | ||
3161 | for (j = 0; j < i; j++) | |
3162 | memset(p[j], 0, s->object_size); | |
3163 | } | |
3164 | ||
03ec0ed5 JDB |
3165 | /* memcg and kmem_cache debug support */ |
3166 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3167 | return i; |
87098373 | 3168 | error: |
87098373 | 3169 | local_irq_enable(); |
03ec0ed5 JDB |
3170 | slab_post_alloc_hook(s, flags, i, p); |
3171 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3172 | return 0; |
484748f0 CL |
3173 | } |
3174 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3175 | ||
3176 | ||
81819f0f | 3177 | /* |
672bba3a CL |
3178 | * Object placement in a slab is made very easy because we always start at |
3179 | * offset 0. If we tune the size of the object to the alignment then we can | |
3180 | * get the required alignment by putting one properly sized object after | |
3181 | * another. | |
81819f0f CL |
3182 | * |
3183 | * Notice that the allocation order determines the sizes of the per cpu | |
3184 | * caches. Each processor has always one slab available for allocations. | |
3185 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3186 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3187 | * locking overhead. |
81819f0f CL |
3188 | */ |
3189 | ||
3190 | /* | |
3191 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3192 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3193 | * and increases the number of allocations possible without having to | |
3194 | * take the list_lock. | |
3195 | */ | |
19af27af AD |
3196 | static unsigned int slub_min_order; |
3197 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3198 | static unsigned int slub_min_objects; | |
81819f0f | 3199 | |
81819f0f CL |
3200 | /* |
3201 | * Calculate the order of allocation given an slab object size. | |
3202 | * | |
672bba3a CL |
3203 | * The order of allocation has significant impact on performance and other |
3204 | * system components. Generally order 0 allocations should be preferred since | |
3205 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3206 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3207 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3208 | * would be wasted. |
3209 | * | |
3210 | * In order to reach satisfactory performance we must ensure that a minimum | |
3211 | * number of objects is in one slab. Otherwise we may generate too much | |
3212 | * activity on the partial lists which requires taking the list_lock. This is | |
3213 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3214 | * |
672bba3a CL |
3215 | * slub_max_order specifies the order where we begin to stop considering the |
3216 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3217 | * we try to keep the page order as low as possible. So we accept more waste | |
3218 | * of space in favor of a small page order. | |
81819f0f | 3219 | * |
672bba3a CL |
3220 | * Higher order allocations also allow the placement of more objects in a |
3221 | * slab and thereby reduce object handling overhead. If the user has | |
3222 | * requested a higher mininum order then we start with that one instead of | |
3223 | * the smallest order which will fit the object. | |
81819f0f | 3224 | */ |
19af27af AD |
3225 | static inline unsigned int slab_order(unsigned int size, |
3226 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3227 | unsigned int fract_leftover) |
81819f0f | 3228 | { |
19af27af AD |
3229 | unsigned int min_order = slub_min_order; |
3230 | unsigned int order; | |
81819f0f | 3231 | |
9736d2a9 | 3232 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3233 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3234 | |
9736d2a9 | 3235 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3236 | order <= max_order; order++) { |
81819f0f | 3237 | |
19af27af AD |
3238 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3239 | unsigned int rem; | |
81819f0f | 3240 | |
9736d2a9 | 3241 | rem = slab_size % size; |
81819f0f | 3242 | |
5e6d444e | 3243 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3244 | break; |
81819f0f | 3245 | } |
672bba3a | 3246 | |
81819f0f CL |
3247 | return order; |
3248 | } | |
3249 | ||
9736d2a9 | 3250 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3251 | { |
19af27af AD |
3252 | unsigned int order; |
3253 | unsigned int min_objects; | |
3254 | unsigned int max_objects; | |
5e6d444e CL |
3255 | |
3256 | /* | |
3257 | * Attempt to find best configuration for a slab. This | |
3258 | * works by first attempting to generate a layout with | |
3259 | * the best configuration and backing off gradually. | |
3260 | * | |
422ff4d7 | 3261 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3262 | * we reduce the minimum objects required in a slab. |
3263 | */ | |
3264 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3265 | if (!min_objects) |
3266 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3267 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3268 | min_objects = min(min_objects, max_objects); |
3269 | ||
5e6d444e | 3270 | while (min_objects > 1) { |
19af27af AD |
3271 | unsigned int fraction; |
3272 | ||
c124f5b5 | 3273 | fraction = 16; |
5e6d444e CL |
3274 | while (fraction >= 4) { |
3275 | order = slab_order(size, min_objects, | |
9736d2a9 | 3276 | slub_max_order, fraction); |
5e6d444e CL |
3277 | if (order <= slub_max_order) |
3278 | return order; | |
3279 | fraction /= 2; | |
3280 | } | |
5086c389 | 3281 | min_objects--; |
5e6d444e CL |
3282 | } |
3283 | ||
3284 | /* | |
3285 | * We were unable to place multiple objects in a slab. Now | |
3286 | * lets see if we can place a single object there. | |
3287 | */ | |
9736d2a9 | 3288 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3289 | if (order <= slub_max_order) |
3290 | return order; | |
3291 | ||
3292 | /* | |
3293 | * Doh this slab cannot be placed using slub_max_order. | |
3294 | */ | |
9736d2a9 | 3295 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3296 | if (order < MAX_ORDER) |
5e6d444e CL |
3297 | return order; |
3298 | return -ENOSYS; | |
3299 | } | |
3300 | ||
5595cffc | 3301 | static void |
4053497d | 3302 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3303 | { |
3304 | n->nr_partial = 0; | |
81819f0f CL |
3305 | spin_lock_init(&n->list_lock); |
3306 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3307 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3308 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3309 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3310 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3311 | #endif |
81819f0f CL |
3312 | } |
3313 | ||
55136592 | 3314 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3315 | { |
6c182dc0 | 3316 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3317 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3318 | |
8a5ec0ba | 3319 | /* |
d4d84fef CM |
3320 | * Must align to double word boundary for the double cmpxchg |
3321 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3322 | */ |
d4d84fef CM |
3323 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3324 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3325 | |
3326 | if (!s->cpu_slab) | |
3327 | return 0; | |
3328 | ||
3329 | init_kmem_cache_cpus(s); | |
4c93c355 | 3330 | |
8a5ec0ba | 3331 | return 1; |
4c93c355 | 3332 | } |
4c93c355 | 3333 | |
51df1142 CL |
3334 | static struct kmem_cache *kmem_cache_node; |
3335 | ||
81819f0f CL |
3336 | /* |
3337 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3338 | * slab on the node for this slabcache. There are no concurrent accesses | |
3339 | * possible. | |
3340 | * | |
721ae22a ZYW |
3341 | * Note that this function only works on the kmem_cache_node |
3342 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3343 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3344 | */ |
55136592 | 3345 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3346 | { |
3347 | struct page *page; | |
3348 | struct kmem_cache_node *n; | |
3349 | ||
51df1142 | 3350 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3351 | |
51df1142 | 3352 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3353 | |
3354 | BUG_ON(!page); | |
a2f92ee7 | 3355 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3356 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3357 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3358 | } |
3359 | ||
81819f0f CL |
3360 | n = page->freelist; |
3361 | BUG_ON(!n); | |
8ab1372f | 3362 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3363 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3364 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3365 | #endif |
12b22386 | 3366 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
505f5dcb | 3367 | GFP_KERNEL); |
12b22386 AK |
3368 | page->freelist = get_freepointer(kmem_cache_node, n); |
3369 | page->inuse = 1; | |
3370 | page->frozen = 0; | |
3371 | kmem_cache_node->node[node] = n; | |
4053497d | 3372 | init_kmem_cache_node(n); |
51df1142 | 3373 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3374 | |
67b6c900 | 3375 | /* |
1e4dd946 SR |
3376 | * No locks need to be taken here as it has just been |
3377 | * initialized and there is no concurrent access. | |
67b6c900 | 3378 | */ |
1e4dd946 | 3379 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3380 | } |
3381 | ||
3382 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3383 | { | |
3384 | int node; | |
fa45dc25 | 3385 | struct kmem_cache_node *n; |
81819f0f | 3386 | |
fa45dc25 | 3387 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3388 | s->node[node] = NULL; |
ea37df54 | 3389 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3390 | } |
3391 | } | |
3392 | ||
52b4b950 DS |
3393 | void __kmem_cache_release(struct kmem_cache *s) |
3394 | { | |
210e7a43 | 3395 | cache_random_seq_destroy(s); |
52b4b950 DS |
3396 | free_percpu(s->cpu_slab); |
3397 | free_kmem_cache_nodes(s); | |
3398 | } | |
3399 | ||
55136592 | 3400 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3401 | { |
3402 | int node; | |
81819f0f | 3403 | |
f64dc58c | 3404 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3405 | struct kmem_cache_node *n; |
3406 | ||
73367bd8 | 3407 | if (slab_state == DOWN) { |
55136592 | 3408 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3409 | continue; |
3410 | } | |
51df1142 | 3411 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3412 | GFP_KERNEL, node); |
81819f0f | 3413 | |
73367bd8 AD |
3414 | if (!n) { |
3415 | free_kmem_cache_nodes(s); | |
3416 | return 0; | |
81819f0f | 3417 | } |
73367bd8 | 3418 | |
4053497d | 3419 | init_kmem_cache_node(n); |
ea37df54 | 3420 | s->node[node] = n; |
81819f0f CL |
3421 | } |
3422 | return 1; | |
3423 | } | |
81819f0f | 3424 | |
c0bdb232 | 3425 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3426 | { |
3427 | if (min < MIN_PARTIAL) | |
3428 | min = MIN_PARTIAL; | |
3429 | else if (min > MAX_PARTIAL) | |
3430 | min = MAX_PARTIAL; | |
3431 | s->min_partial = min; | |
3432 | } | |
3433 | ||
e6d0e1dc WY |
3434 | static void set_cpu_partial(struct kmem_cache *s) |
3435 | { | |
3436 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3437 | /* | |
3438 | * cpu_partial determined the maximum number of objects kept in the | |
3439 | * per cpu partial lists of a processor. | |
3440 | * | |
3441 | * Per cpu partial lists mainly contain slabs that just have one | |
3442 | * object freed. If they are used for allocation then they can be | |
3443 | * filled up again with minimal effort. The slab will never hit the | |
3444 | * per node partial lists and therefore no locking will be required. | |
3445 | * | |
3446 | * This setting also determines | |
3447 | * | |
3448 | * A) The number of objects from per cpu partial slabs dumped to the | |
3449 | * per node list when we reach the limit. | |
3450 | * B) The number of objects in cpu partial slabs to extract from the | |
3451 | * per node list when we run out of per cpu objects. We only fetch | |
3452 | * 50% to keep some capacity around for frees. | |
3453 | */ | |
3454 | if (!kmem_cache_has_cpu_partial(s)) | |
3455 | s->cpu_partial = 0; | |
3456 | else if (s->size >= PAGE_SIZE) | |
3457 | s->cpu_partial = 2; | |
3458 | else if (s->size >= 1024) | |
3459 | s->cpu_partial = 6; | |
3460 | else if (s->size >= 256) | |
3461 | s->cpu_partial = 13; | |
3462 | else | |
3463 | s->cpu_partial = 30; | |
3464 | #endif | |
3465 | } | |
3466 | ||
81819f0f CL |
3467 | /* |
3468 | * calculate_sizes() determines the order and the distribution of data within | |
3469 | * a slab object. | |
3470 | */ | |
06b285dc | 3471 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3472 | { |
d50112ed | 3473 | slab_flags_t flags = s->flags; |
be4a7988 | 3474 | unsigned int size = s->object_size; |
19af27af | 3475 | unsigned int order; |
81819f0f | 3476 | |
d8b42bf5 CL |
3477 | /* |
3478 | * Round up object size to the next word boundary. We can only | |
3479 | * place the free pointer at word boundaries and this determines | |
3480 | * the possible location of the free pointer. | |
3481 | */ | |
3482 | size = ALIGN(size, sizeof(void *)); | |
3483 | ||
3484 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3485 | /* |
3486 | * Determine if we can poison the object itself. If the user of | |
3487 | * the slab may touch the object after free or before allocation | |
3488 | * then we should never poison the object itself. | |
3489 | */ | |
5f0d5a3a | 3490 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3491 | !s->ctor) |
81819f0f CL |
3492 | s->flags |= __OBJECT_POISON; |
3493 | else | |
3494 | s->flags &= ~__OBJECT_POISON; | |
3495 | ||
81819f0f CL |
3496 | |
3497 | /* | |
672bba3a | 3498 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3499 | * end of the object and the free pointer. If not then add an |
672bba3a | 3500 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3501 | */ |
3b0efdfa | 3502 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3503 | size += sizeof(void *); |
41ecc55b | 3504 | #endif |
81819f0f CL |
3505 | |
3506 | /* | |
672bba3a CL |
3507 | * With that we have determined the number of bytes in actual use |
3508 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3509 | */ |
3510 | s->inuse = size; | |
3511 | ||
5f0d5a3a | 3512 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3513 | s->ctor)) { |
81819f0f CL |
3514 | /* |
3515 | * Relocate free pointer after the object if it is not | |
3516 | * permitted to overwrite the first word of the object on | |
3517 | * kmem_cache_free. | |
3518 | * | |
3519 | * This is the case if we do RCU, have a constructor or | |
3520 | * destructor or are poisoning the objects. | |
3521 | */ | |
3522 | s->offset = size; | |
3523 | size += sizeof(void *); | |
3524 | } | |
3525 | ||
c12b3c62 | 3526 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3527 | if (flags & SLAB_STORE_USER) |
3528 | /* | |
3529 | * Need to store information about allocs and frees after | |
3530 | * the object. | |
3531 | */ | |
3532 | size += 2 * sizeof(struct track); | |
80a9201a | 3533 | #endif |
81819f0f | 3534 | |
80a9201a AP |
3535 | kasan_cache_create(s, &size, &s->flags); |
3536 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3537 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3538 | /* |
3539 | * Add some empty padding so that we can catch | |
3540 | * overwrites from earlier objects rather than let | |
3541 | * tracking information or the free pointer be | |
0211a9c8 | 3542 | * corrupted if a user writes before the start |
81819f0f CL |
3543 | * of the object. |
3544 | */ | |
3545 | size += sizeof(void *); | |
d86bd1be JK |
3546 | |
3547 | s->red_left_pad = sizeof(void *); | |
3548 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3549 | size += s->red_left_pad; | |
3550 | } | |
41ecc55b | 3551 | #endif |
672bba3a | 3552 | |
81819f0f CL |
3553 | /* |
3554 | * SLUB stores one object immediately after another beginning from | |
3555 | * offset 0. In order to align the objects we have to simply size | |
3556 | * each object to conform to the alignment. | |
3557 | */ | |
45906855 | 3558 | size = ALIGN(size, s->align); |
81819f0f | 3559 | s->size = size; |
06b285dc CL |
3560 | if (forced_order >= 0) |
3561 | order = forced_order; | |
3562 | else | |
9736d2a9 | 3563 | order = calculate_order(size); |
81819f0f | 3564 | |
19af27af | 3565 | if ((int)order < 0) |
81819f0f CL |
3566 | return 0; |
3567 | ||
b7a49f0d | 3568 | s->allocflags = 0; |
834f3d11 | 3569 | if (order) |
b7a49f0d CL |
3570 | s->allocflags |= __GFP_COMP; |
3571 | ||
3572 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3573 | s->allocflags |= GFP_DMA; |
b7a49f0d CL |
3574 | |
3575 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3576 | s->allocflags |= __GFP_RECLAIMABLE; | |
3577 | ||
81819f0f CL |
3578 | /* |
3579 | * Determine the number of objects per slab | |
3580 | */ | |
9736d2a9 MW |
3581 | s->oo = oo_make(order, size); |
3582 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3583 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3584 | s->max = s->oo; | |
81819f0f | 3585 | |
834f3d11 | 3586 | return !!oo_objects(s->oo); |
81819f0f CL |
3587 | } |
3588 | ||
d50112ed | 3589 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3590 | { |
8a13a4cc | 3591 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3592 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3593 | s->random = get_random_long(); | |
3594 | #endif | |
81819f0f | 3595 | |
06b285dc | 3596 | if (!calculate_sizes(s, -1)) |
81819f0f | 3597 | goto error; |
3de47213 DR |
3598 | if (disable_higher_order_debug) { |
3599 | /* | |
3600 | * Disable debugging flags that store metadata if the min slab | |
3601 | * order increased. | |
3602 | */ | |
3b0efdfa | 3603 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3604 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3605 | s->offset = 0; | |
3606 | if (!calculate_sizes(s, -1)) | |
3607 | goto error; | |
3608 | } | |
3609 | } | |
81819f0f | 3610 | |
2565409f HC |
3611 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3612 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3613 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3614 | /* Enable fast mode */ |
3615 | s->flags |= __CMPXCHG_DOUBLE; | |
3616 | #endif | |
3617 | ||
3b89d7d8 DR |
3618 | /* |
3619 | * The larger the object size is, the more pages we want on the partial | |
3620 | * list to avoid pounding the page allocator excessively. | |
3621 | */ | |
49e22585 CL |
3622 | set_min_partial(s, ilog2(s->size) / 2); |
3623 | ||
e6d0e1dc | 3624 | set_cpu_partial(s); |
49e22585 | 3625 | |
81819f0f | 3626 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3627 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3628 | #endif |
210e7a43 TG |
3629 | |
3630 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3631 | if (slab_state >= UP) { | |
3632 | if (init_cache_random_seq(s)) | |
3633 | goto error; | |
3634 | } | |
3635 | ||
55136592 | 3636 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3637 | goto error; |
81819f0f | 3638 | |
55136592 | 3639 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3640 | return 0; |
ff12059e | 3641 | |
4c93c355 | 3642 | free_kmem_cache_nodes(s); |
81819f0f CL |
3643 | error: |
3644 | if (flags & SLAB_PANIC) | |
44065b2e AD |
3645 | panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", |
3646 | s->name, s->size, s->size, | |
4fd0b46e | 3647 | oo_order(s->oo), s->offset, (unsigned long)flags); |
278b1bb1 | 3648 | return -EINVAL; |
81819f0f | 3649 | } |
81819f0f | 3650 | |
33b12c38 CL |
3651 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3652 | const char *text) | |
3653 | { | |
3654 | #ifdef CONFIG_SLUB_DEBUG | |
3655 | void *addr = page_address(page); | |
3656 | void *p; | |
0684e652 | 3657 | unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); |
bbd7d57b ED |
3658 | if (!map) |
3659 | return; | |
945cf2b6 | 3660 | slab_err(s, page, text, s->name); |
33b12c38 | 3661 | slab_lock(page); |
33b12c38 | 3662 | |
5f80b13a | 3663 | get_map(s, page, map); |
33b12c38 CL |
3664 | for_each_object(p, s, addr, page->objects) { |
3665 | ||
3666 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3667 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3668 | print_tracking(s, p); |
3669 | } | |
3670 | } | |
3671 | slab_unlock(page); | |
0684e652 | 3672 | bitmap_free(map); |
33b12c38 CL |
3673 | #endif |
3674 | } | |
3675 | ||
81819f0f | 3676 | /* |
599870b1 | 3677 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3678 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3679 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3680 | */ |
599870b1 | 3681 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3682 | { |
60398923 | 3683 | LIST_HEAD(discard); |
81819f0f CL |
3684 | struct page *page, *h; |
3685 | ||
52b4b950 DS |
3686 | BUG_ON(irqs_disabled()); |
3687 | spin_lock_irq(&n->list_lock); | |
33b12c38 | 3688 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 3689 | if (!page->inuse) { |
52b4b950 | 3690 | remove_partial(n, page); |
60398923 | 3691 | list_add(&page->lru, &discard); |
33b12c38 CL |
3692 | } else { |
3693 | list_slab_objects(s, page, | |
52b4b950 | 3694 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3695 | } |
33b12c38 | 3696 | } |
52b4b950 | 3697 | spin_unlock_irq(&n->list_lock); |
60398923 CW |
3698 | |
3699 | list_for_each_entry_safe(page, h, &discard, lru) | |
3700 | discard_slab(s, page); | |
81819f0f CL |
3701 | } |
3702 | ||
f9e13c0a SB |
3703 | bool __kmem_cache_empty(struct kmem_cache *s) |
3704 | { | |
3705 | int node; | |
3706 | struct kmem_cache_node *n; | |
3707 | ||
3708 | for_each_kmem_cache_node(s, node, n) | |
3709 | if (n->nr_partial || slabs_node(s, node)) | |
3710 | return false; | |
3711 | return true; | |
3712 | } | |
3713 | ||
81819f0f | 3714 | /* |
672bba3a | 3715 | * Release all resources used by a slab cache. |
81819f0f | 3716 | */ |
52b4b950 | 3717 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3718 | { |
3719 | int node; | |
fa45dc25 | 3720 | struct kmem_cache_node *n; |
81819f0f CL |
3721 | |
3722 | flush_all(s); | |
81819f0f | 3723 | /* Attempt to free all objects */ |
fa45dc25 | 3724 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3725 | free_partial(s, n); |
3726 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3727 | return 1; |
3728 | } | |
bf5eb3de | 3729 | sysfs_slab_remove(s); |
81819f0f CL |
3730 | return 0; |
3731 | } | |
3732 | ||
81819f0f CL |
3733 | /******************************************************************** |
3734 | * Kmalloc subsystem | |
3735 | *******************************************************************/ | |
3736 | ||
81819f0f CL |
3737 | static int __init setup_slub_min_order(char *str) |
3738 | { | |
19af27af | 3739 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3740 | |
3741 | return 1; | |
3742 | } | |
3743 | ||
3744 | __setup("slub_min_order=", setup_slub_min_order); | |
3745 | ||
3746 | static int __init setup_slub_max_order(char *str) | |
3747 | { | |
19af27af AD |
3748 | get_option(&str, (int *)&slub_max_order); |
3749 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3750 | |
3751 | return 1; | |
3752 | } | |
3753 | ||
3754 | __setup("slub_max_order=", setup_slub_max_order); | |
3755 | ||
3756 | static int __init setup_slub_min_objects(char *str) | |
3757 | { | |
19af27af | 3758 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3759 | |
3760 | return 1; | |
3761 | } | |
3762 | ||
3763 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3764 | ||
81819f0f CL |
3765 | void *__kmalloc(size_t size, gfp_t flags) |
3766 | { | |
aadb4bc4 | 3767 | struct kmem_cache *s; |
5b882be4 | 3768 | void *ret; |
81819f0f | 3769 | |
95a05b42 | 3770 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3771 | return kmalloc_large(size, flags); |
aadb4bc4 | 3772 | |
2c59dd65 | 3773 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3774 | |
3775 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3776 | return s; |
3777 | ||
2b847c3c | 3778 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3779 | |
ca2b84cb | 3780 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3781 | |
0116523c | 3782 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3783 | |
5b882be4 | 3784 | return ret; |
81819f0f CL |
3785 | } |
3786 | EXPORT_SYMBOL(__kmalloc); | |
3787 | ||
5d1f57e4 | 3788 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3789 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3790 | { | |
b1eeab67 | 3791 | struct page *page; |
e4f7c0b4 | 3792 | void *ptr = NULL; |
f619cfe1 | 3793 | |
75f296d9 | 3794 | flags |= __GFP_COMP; |
4949148a | 3795 | page = alloc_pages_node(node, flags, get_order(size)); |
f619cfe1 | 3796 | if (page) |
e4f7c0b4 CM |
3797 | ptr = page_address(page); |
3798 | ||
0116523c | 3799 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
3800 | } |
3801 | ||
81819f0f CL |
3802 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3803 | { | |
aadb4bc4 | 3804 | struct kmem_cache *s; |
5b882be4 | 3805 | void *ret; |
81819f0f | 3806 | |
95a05b42 | 3807 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3808 | ret = kmalloc_large_node(size, flags, node); |
3809 | ||
ca2b84cb EGM |
3810 | trace_kmalloc_node(_RET_IP_, ret, |
3811 | size, PAGE_SIZE << get_order(size), | |
3812 | flags, node); | |
5b882be4 EGM |
3813 | |
3814 | return ret; | |
3815 | } | |
aadb4bc4 | 3816 | |
2c59dd65 | 3817 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3818 | |
3819 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3820 | return s; |
3821 | ||
2b847c3c | 3822 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3823 | |
ca2b84cb | 3824 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3825 | |
0116523c | 3826 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3827 | |
5b882be4 | 3828 | return ret; |
81819f0f CL |
3829 | } |
3830 | EXPORT_SYMBOL(__kmalloc_node); | |
3831 | #endif | |
3832 | ||
ed18adc1 KC |
3833 | #ifdef CONFIG_HARDENED_USERCOPY |
3834 | /* | |
afcc90f8 KC |
3835 | * Rejects incorrectly sized objects and objects that are to be copied |
3836 | * to/from userspace but do not fall entirely within the containing slab | |
3837 | * cache's usercopy region. | |
ed18adc1 KC |
3838 | * |
3839 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3840 | * to indicate an error. | |
3841 | */ | |
f4e6e289 KC |
3842 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
3843 | bool to_user) | |
ed18adc1 KC |
3844 | { |
3845 | struct kmem_cache *s; | |
44065b2e | 3846 | unsigned int offset; |
ed18adc1 KC |
3847 | size_t object_size; |
3848 | ||
96fedce2 AK |
3849 | ptr = kasan_reset_tag(ptr); |
3850 | ||
ed18adc1 KC |
3851 | /* Find object and usable object size. */ |
3852 | s = page->slab_cache; | |
ed18adc1 KC |
3853 | |
3854 | /* Reject impossible pointers. */ | |
3855 | if (ptr < page_address(page)) | |
f4e6e289 KC |
3856 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
3857 | to_user, 0, n); | |
ed18adc1 KC |
3858 | |
3859 | /* Find offset within object. */ | |
3860 | offset = (ptr - page_address(page)) % s->size; | |
3861 | ||
3862 | /* Adjust for redzone and reject if within the redzone. */ | |
3863 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3864 | if (offset < s->red_left_pad) | |
f4e6e289 KC |
3865 | usercopy_abort("SLUB object in left red zone", |
3866 | s->name, to_user, offset, n); | |
ed18adc1 KC |
3867 | offset -= s->red_left_pad; |
3868 | } | |
3869 | ||
afcc90f8 KC |
3870 | /* Allow address range falling entirely within usercopy region. */ |
3871 | if (offset >= s->useroffset && | |
3872 | offset - s->useroffset <= s->usersize && | |
3873 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 3874 | return; |
ed18adc1 | 3875 | |
afcc90f8 KC |
3876 | /* |
3877 | * If the copy is still within the allocated object, produce | |
3878 | * a warning instead of rejecting the copy. This is intended | |
3879 | * to be a temporary method to find any missing usercopy | |
3880 | * whitelists. | |
3881 | */ | |
3882 | object_size = slab_ksize(s); | |
2d891fbc KC |
3883 | if (usercopy_fallback && |
3884 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
3885 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
3886 | return; | |
3887 | } | |
ed18adc1 | 3888 | |
f4e6e289 | 3889 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
3890 | } |
3891 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
3892 | ||
0316bec2 | 3893 | static size_t __ksize(const void *object) |
81819f0f | 3894 | { |
272c1d21 | 3895 | struct page *page; |
81819f0f | 3896 | |
ef8b4520 | 3897 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3898 | return 0; |
3899 | ||
294a80a8 | 3900 | page = virt_to_head_page(object); |
294a80a8 | 3901 | |
76994412 PE |
3902 | if (unlikely(!PageSlab(page))) { |
3903 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3904 | return PAGE_SIZE << compound_order(page); |
76994412 | 3905 | } |
81819f0f | 3906 | |
1b4f59e3 | 3907 | return slab_ksize(page->slab_cache); |
81819f0f | 3908 | } |
0316bec2 AR |
3909 | |
3910 | size_t ksize(const void *object) | |
3911 | { | |
3912 | size_t size = __ksize(object); | |
3913 | /* We assume that ksize callers could use whole allocated area, | |
4ebb31a4 AP |
3914 | * so we need to unpoison this area. |
3915 | */ | |
3916 | kasan_unpoison_shadow(object, size); | |
0316bec2 AR |
3917 | return size; |
3918 | } | |
b1aabecd | 3919 | EXPORT_SYMBOL(ksize); |
81819f0f CL |
3920 | |
3921 | void kfree(const void *x) | |
3922 | { | |
81819f0f | 3923 | struct page *page; |
5bb983b0 | 3924 | void *object = (void *)x; |
81819f0f | 3925 | |
2121db74 PE |
3926 | trace_kfree(_RET_IP_, x); |
3927 | ||
2408c550 | 3928 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3929 | return; |
3930 | ||
b49af68f | 3931 | page = virt_to_head_page(x); |
aadb4bc4 | 3932 | if (unlikely(!PageSlab(page))) { |
0937502a | 3933 | BUG_ON(!PageCompound(page)); |
47adccce | 3934 | kfree_hook(object); |
4949148a | 3935 | __free_pages(page, compound_order(page)); |
aadb4bc4 CL |
3936 | return; |
3937 | } | |
81084651 | 3938 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3939 | } |
3940 | EXPORT_SYMBOL(kfree); | |
3941 | ||
832f37f5 VD |
3942 | #define SHRINK_PROMOTE_MAX 32 |
3943 | ||
2086d26a | 3944 | /* |
832f37f5 VD |
3945 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
3946 | * up most to the head of the partial lists. New allocations will then | |
3947 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
3948 | * |
3949 | * The slabs with the least items are placed last. This results in them | |
3950 | * being allocated from last increasing the chance that the last objects | |
3951 | * are freed in them. | |
2086d26a | 3952 | */ |
c9fc5864 | 3953 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
3954 | { |
3955 | int node; | |
3956 | int i; | |
3957 | struct kmem_cache_node *n; | |
3958 | struct page *page; | |
3959 | struct page *t; | |
832f37f5 VD |
3960 | struct list_head discard; |
3961 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 3962 | unsigned long flags; |
ce3712d7 | 3963 | int ret = 0; |
2086d26a | 3964 | |
2086d26a | 3965 | flush_all(s); |
fa45dc25 | 3966 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
3967 | INIT_LIST_HEAD(&discard); |
3968 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
3969 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
3970 | |
3971 | spin_lock_irqsave(&n->list_lock, flags); | |
3972 | ||
3973 | /* | |
832f37f5 | 3974 | * Build lists of slabs to discard or promote. |
2086d26a | 3975 | * |
672bba3a CL |
3976 | * Note that concurrent frees may occur while we hold the |
3977 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3978 | */ |
3979 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
832f37f5 VD |
3980 | int free = page->objects - page->inuse; |
3981 | ||
3982 | /* Do not reread page->inuse */ | |
3983 | barrier(); | |
3984 | ||
3985 | /* We do not keep full slabs on the list */ | |
3986 | BUG_ON(free <= 0); | |
3987 | ||
3988 | if (free == page->objects) { | |
3989 | list_move(&page->lru, &discard); | |
69cb8e6b | 3990 | n->nr_partial--; |
832f37f5 VD |
3991 | } else if (free <= SHRINK_PROMOTE_MAX) |
3992 | list_move(&page->lru, promote + free - 1); | |
2086d26a CL |
3993 | } |
3994 | ||
2086d26a | 3995 | /* |
832f37f5 VD |
3996 | * Promote the slabs filled up most to the head of the |
3997 | * partial list. | |
2086d26a | 3998 | */ |
832f37f5 VD |
3999 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4000 | list_splice(promote + i, &n->partial); | |
2086d26a | 4001 | |
2086d26a | 4002 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4003 | |
4004 | /* Release empty slabs */ | |
832f37f5 | 4005 | list_for_each_entry_safe(page, t, &discard, lru) |
69cb8e6b | 4006 | discard_slab(s, page); |
ce3712d7 VD |
4007 | |
4008 | if (slabs_node(s, node)) | |
4009 | ret = 1; | |
2086d26a CL |
4010 | } |
4011 | ||
ce3712d7 | 4012 | return ret; |
2086d26a | 4013 | } |
2086d26a | 4014 | |
c9fc5864 | 4015 | #ifdef CONFIG_MEMCG |
01fb58bc TH |
4016 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) |
4017 | { | |
50862ce7 TH |
4018 | /* |
4019 | * Called with all the locks held after a sched RCU grace period. | |
4020 | * Even if @s becomes empty after shrinking, we can't know that @s | |
4021 | * doesn't have allocations already in-flight and thus can't | |
4022 | * destroy @s until the associated memcg is released. | |
4023 | * | |
4024 | * However, let's remove the sysfs files for empty caches here. | |
4025 | * Each cache has a lot of interface files which aren't | |
4026 | * particularly useful for empty draining caches; otherwise, we can | |
4027 | * easily end up with millions of unnecessary sysfs files on | |
4028 | * systems which have a lot of memory and transient cgroups. | |
4029 | */ | |
4030 | if (!__kmem_cache_shrink(s)) | |
4031 | sysfs_slab_remove(s); | |
01fb58bc TH |
4032 | } |
4033 | ||
c9fc5864 TH |
4034 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4035 | { | |
4036 | /* | |
4037 | * Disable empty slabs caching. Used to avoid pinning offline | |
4038 | * memory cgroups by kmem pages that can be freed. | |
4039 | */ | |
e6d0e1dc | 4040 | slub_set_cpu_partial(s, 0); |
c9fc5864 TH |
4041 | s->min_partial = 0; |
4042 | ||
4043 | /* | |
4044 | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | |
01fb58bc | 4045 | * we have to make sure the change is visible before shrinking. |
c9fc5864 | 4046 | */ |
01fb58bc | 4047 | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); |
c9fc5864 TH |
4048 | } |
4049 | #endif | |
4050 | ||
b9049e23 YG |
4051 | static int slab_mem_going_offline_callback(void *arg) |
4052 | { | |
4053 | struct kmem_cache *s; | |
4054 | ||
18004c5d | 4055 | mutex_lock(&slab_mutex); |
b9049e23 | 4056 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4057 | __kmem_cache_shrink(s); |
18004c5d | 4058 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4059 | |
4060 | return 0; | |
4061 | } | |
4062 | ||
4063 | static void slab_mem_offline_callback(void *arg) | |
4064 | { | |
4065 | struct kmem_cache_node *n; | |
4066 | struct kmem_cache *s; | |
4067 | struct memory_notify *marg = arg; | |
4068 | int offline_node; | |
4069 | ||
b9d5ab25 | 4070 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4071 | |
4072 | /* | |
4073 | * If the node still has available memory. we need kmem_cache_node | |
4074 | * for it yet. | |
4075 | */ | |
4076 | if (offline_node < 0) | |
4077 | return; | |
4078 | ||
18004c5d | 4079 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4080 | list_for_each_entry(s, &slab_caches, list) { |
4081 | n = get_node(s, offline_node); | |
4082 | if (n) { | |
4083 | /* | |
4084 | * if n->nr_slabs > 0, slabs still exist on the node | |
4085 | * that is going down. We were unable to free them, | |
c9404c9c | 4086 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4087 | * callback. So, we must fail. |
4088 | */ | |
0f389ec6 | 4089 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4090 | |
4091 | s->node[offline_node] = NULL; | |
8de66a0c | 4092 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4093 | } |
4094 | } | |
18004c5d | 4095 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4096 | } |
4097 | ||
4098 | static int slab_mem_going_online_callback(void *arg) | |
4099 | { | |
4100 | struct kmem_cache_node *n; | |
4101 | struct kmem_cache *s; | |
4102 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4103 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4104 | int ret = 0; |
4105 | ||
4106 | /* | |
4107 | * If the node's memory is already available, then kmem_cache_node is | |
4108 | * already created. Nothing to do. | |
4109 | */ | |
4110 | if (nid < 0) | |
4111 | return 0; | |
4112 | ||
4113 | /* | |
0121c619 | 4114 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4115 | * allocate a kmem_cache_node structure in order to bring the node |
4116 | * online. | |
4117 | */ | |
18004c5d | 4118 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4119 | list_for_each_entry(s, &slab_caches, list) { |
4120 | /* | |
4121 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4122 | * since memory is not yet available from the node that | |
4123 | * is brought up. | |
4124 | */ | |
8de66a0c | 4125 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4126 | if (!n) { |
4127 | ret = -ENOMEM; | |
4128 | goto out; | |
4129 | } | |
4053497d | 4130 | init_kmem_cache_node(n); |
b9049e23 YG |
4131 | s->node[nid] = n; |
4132 | } | |
4133 | out: | |
18004c5d | 4134 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4135 | return ret; |
4136 | } | |
4137 | ||
4138 | static int slab_memory_callback(struct notifier_block *self, | |
4139 | unsigned long action, void *arg) | |
4140 | { | |
4141 | int ret = 0; | |
4142 | ||
4143 | switch (action) { | |
4144 | case MEM_GOING_ONLINE: | |
4145 | ret = slab_mem_going_online_callback(arg); | |
4146 | break; | |
4147 | case MEM_GOING_OFFLINE: | |
4148 | ret = slab_mem_going_offline_callback(arg); | |
4149 | break; | |
4150 | case MEM_OFFLINE: | |
4151 | case MEM_CANCEL_ONLINE: | |
4152 | slab_mem_offline_callback(arg); | |
4153 | break; | |
4154 | case MEM_ONLINE: | |
4155 | case MEM_CANCEL_OFFLINE: | |
4156 | break; | |
4157 | } | |
dc19f9db KH |
4158 | if (ret) |
4159 | ret = notifier_from_errno(ret); | |
4160 | else | |
4161 | ret = NOTIFY_OK; | |
b9049e23 YG |
4162 | return ret; |
4163 | } | |
4164 | ||
3ac38faa AM |
4165 | static struct notifier_block slab_memory_callback_nb = { |
4166 | .notifier_call = slab_memory_callback, | |
4167 | .priority = SLAB_CALLBACK_PRI, | |
4168 | }; | |
b9049e23 | 4169 | |
81819f0f CL |
4170 | /******************************************************************** |
4171 | * Basic setup of slabs | |
4172 | *******************************************************************/ | |
4173 | ||
51df1142 CL |
4174 | /* |
4175 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4176 | * the page allocator. Allocate them properly then fix up the pointers |
4177 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4178 | */ |
4179 | ||
dffb4d60 | 4180 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4181 | { |
4182 | int node; | |
dffb4d60 | 4183 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4184 | struct kmem_cache_node *n; |
51df1142 | 4185 | |
dffb4d60 | 4186 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4187 | |
7d557b3c GC |
4188 | /* |
4189 | * This runs very early, and only the boot processor is supposed to be | |
4190 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4191 | * IPIs around. | |
4192 | */ | |
4193 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4194 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4195 | struct page *p; |
4196 | ||
fa45dc25 CL |
4197 | list_for_each_entry(p, &n->partial, lru) |
4198 | p->slab_cache = s; | |
51df1142 | 4199 | |
607bf324 | 4200 | #ifdef CONFIG_SLUB_DEBUG |
fa45dc25 CL |
4201 | list_for_each_entry(p, &n->full, lru) |
4202 | p->slab_cache = s; | |
51df1142 | 4203 | #endif |
51df1142 | 4204 | } |
f7ce3190 | 4205 | slab_init_memcg_params(s); |
dffb4d60 | 4206 | list_add(&s->list, &slab_caches); |
510ded33 | 4207 | memcg_link_cache(s); |
dffb4d60 | 4208 | return s; |
51df1142 CL |
4209 | } |
4210 | ||
81819f0f CL |
4211 | void __init kmem_cache_init(void) |
4212 | { | |
dffb4d60 CL |
4213 | static __initdata struct kmem_cache boot_kmem_cache, |
4214 | boot_kmem_cache_node; | |
51df1142 | 4215 | |
fc8d8620 SG |
4216 | if (debug_guardpage_minorder()) |
4217 | slub_max_order = 0; | |
4218 | ||
dffb4d60 CL |
4219 | kmem_cache_node = &boot_kmem_cache_node; |
4220 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4221 | |
dffb4d60 | 4222 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4223 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4224 | |
3ac38faa | 4225 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4226 | |
4227 | /* Able to allocate the per node structures */ | |
4228 | slab_state = PARTIAL; | |
4229 | ||
dffb4d60 CL |
4230 | create_boot_cache(kmem_cache, "kmem_cache", |
4231 | offsetof(struct kmem_cache, node) + | |
4232 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4233 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4234 | |
dffb4d60 | 4235 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4236 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4237 | |
4238 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4239 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4240 | create_kmalloc_caches(0); |
81819f0f | 4241 | |
210e7a43 TG |
4242 | /* Setup random freelists for each cache */ |
4243 | init_freelist_randomization(); | |
4244 | ||
a96a87bf SAS |
4245 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4246 | slub_cpu_dead); | |
81819f0f | 4247 | |
19af27af | 4248 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", |
f97d5f63 | 4249 | cache_line_size(), |
81819f0f CL |
4250 | slub_min_order, slub_max_order, slub_min_objects, |
4251 | nr_cpu_ids, nr_node_ids); | |
4252 | } | |
4253 | ||
7e85ee0c PE |
4254 | void __init kmem_cache_init_late(void) |
4255 | { | |
7e85ee0c PE |
4256 | } |
4257 | ||
2633d7a0 | 4258 | struct kmem_cache * |
f4957d5b | 4259 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4260 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4261 | { |
426589f5 | 4262 | struct kmem_cache *s, *c; |
81819f0f | 4263 | |
a44cb944 | 4264 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4265 | if (s) { |
4266 | s->refcount++; | |
84d0ddd6 | 4267 | |
81819f0f CL |
4268 | /* |
4269 | * Adjust the object sizes so that we clear | |
4270 | * the complete object on kzalloc. | |
4271 | */ | |
1b473f29 | 4272 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4273 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4274 | |
426589f5 | 4275 | for_each_memcg_cache(c, s) { |
84d0ddd6 | 4276 | c->object_size = s->object_size; |
52ee6d74 | 4277 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4278 | } |
4279 | ||
7b8f3b66 | 4280 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4281 | s->refcount--; |
cbb79694 | 4282 | s = NULL; |
7b8f3b66 | 4283 | } |
a0e1d1be | 4284 | } |
6446faa2 | 4285 | |
cbb79694 CL |
4286 | return s; |
4287 | } | |
84c1cf62 | 4288 | |
d50112ed | 4289 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4290 | { |
aac3a166 PE |
4291 | int err; |
4292 | ||
4293 | err = kmem_cache_open(s, flags); | |
4294 | if (err) | |
4295 | return err; | |
20cea968 | 4296 | |
45530c44 CL |
4297 | /* Mutex is not taken during early boot */ |
4298 | if (slab_state <= UP) | |
4299 | return 0; | |
4300 | ||
107dab5c | 4301 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4302 | err = sysfs_slab_add(s); |
aac3a166 | 4303 | if (err) |
52b4b950 | 4304 | __kmem_cache_release(s); |
20cea968 | 4305 | |
aac3a166 | 4306 | return err; |
81819f0f | 4307 | } |
81819f0f | 4308 | |
ce71e27c | 4309 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4310 | { |
aadb4bc4 | 4311 | struct kmem_cache *s; |
94b528d0 | 4312 | void *ret; |
aadb4bc4 | 4313 | |
95a05b42 | 4314 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4315 | return kmalloc_large(size, gfpflags); |
4316 | ||
2c59dd65 | 4317 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4318 | |
2408c550 | 4319 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4320 | return s; |
81819f0f | 4321 | |
2b847c3c | 4322 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4323 | |
25985edc | 4324 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4325 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4326 | |
4327 | return ret; | |
81819f0f CL |
4328 | } |
4329 | ||
5d1f57e4 | 4330 | #ifdef CONFIG_NUMA |
81819f0f | 4331 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4332 | int node, unsigned long caller) |
81819f0f | 4333 | { |
aadb4bc4 | 4334 | struct kmem_cache *s; |
94b528d0 | 4335 | void *ret; |
aadb4bc4 | 4336 | |
95a05b42 | 4337 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4338 | ret = kmalloc_large_node(size, gfpflags, node); |
4339 | ||
4340 | trace_kmalloc_node(caller, ret, | |
4341 | size, PAGE_SIZE << get_order(size), | |
4342 | gfpflags, node); | |
4343 | ||
4344 | return ret; | |
4345 | } | |
eada35ef | 4346 | |
2c59dd65 | 4347 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4348 | |
2408c550 | 4349 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4350 | return s; |
81819f0f | 4351 | |
2b847c3c | 4352 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4353 | |
25985edc | 4354 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4355 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4356 | |
4357 | return ret; | |
81819f0f | 4358 | } |
5d1f57e4 | 4359 | #endif |
81819f0f | 4360 | |
ab4d5ed5 | 4361 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4362 | static int count_inuse(struct page *page) |
4363 | { | |
4364 | return page->inuse; | |
4365 | } | |
4366 | ||
4367 | static int count_total(struct page *page) | |
4368 | { | |
4369 | return page->objects; | |
4370 | } | |
ab4d5ed5 | 4371 | #endif |
205ab99d | 4372 | |
ab4d5ed5 | 4373 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
4374 | static int validate_slab(struct kmem_cache *s, struct page *page, |
4375 | unsigned long *map) | |
53e15af0 CL |
4376 | { |
4377 | void *p; | |
a973e9dd | 4378 | void *addr = page_address(page); |
53e15af0 CL |
4379 | |
4380 | if (!check_slab(s, page) || | |
4381 | !on_freelist(s, page, NULL)) | |
4382 | return 0; | |
4383 | ||
4384 | /* Now we know that a valid freelist exists */ | |
39b26464 | 4385 | bitmap_zero(map, page->objects); |
53e15af0 | 4386 | |
5f80b13a CL |
4387 | get_map(s, page, map); |
4388 | for_each_object(p, s, addr, page->objects) { | |
4389 | if (test_bit(slab_index(p, s, addr), map)) | |
4390 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
4391 | return 0; | |
53e15af0 CL |
4392 | } |
4393 | ||
224a88be | 4394 | for_each_object(p, s, addr, page->objects) |
7656c72b | 4395 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 4396 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
4397 | return 0; |
4398 | return 1; | |
4399 | } | |
4400 | ||
434e245d CL |
4401 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4402 | unsigned long *map) | |
53e15af0 | 4403 | { |
881db7fb CL |
4404 | slab_lock(page); |
4405 | validate_slab(s, page, map); | |
4406 | slab_unlock(page); | |
53e15af0 CL |
4407 | } |
4408 | ||
434e245d CL |
4409 | static int validate_slab_node(struct kmem_cache *s, |
4410 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
4411 | { |
4412 | unsigned long count = 0; | |
4413 | struct page *page; | |
4414 | unsigned long flags; | |
4415 | ||
4416 | spin_lock_irqsave(&n->list_lock, flags); | |
4417 | ||
4418 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 4419 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4420 | count++; |
4421 | } | |
4422 | if (count != n->nr_partial) | |
f9f58285 FF |
4423 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4424 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4425 | |
4426 | if (!(s->flags & SLAB_STORE_USER)) | |
4427 | goto out; | |
4428 | ||
4429 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 4430 | validate_slab_slab(s, page, map); |
53e15af0 CL |
4431 | count++; |
4432 | } | |
4433 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4434 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4435 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4436 | |
4437 | out: | |
4438 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4439 | return count; | |
4440 | } | |
4441 | ||
434e245d | 4442 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4443 | { |
4444 | int node; | |
4445 | unsigned long count = 0; | |
fa45dc25 | 4446 | struct kmem_cache_node *n; |
0684e652 | 4447 | unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); |
434e245d CL |
4448 | |
4449 | if (!map) | |
4450 | return -ENOMEM; | |
53e15af0 CL |
4451 | |
4452 | flush_all(s); | |
fa45dc25 | 4453 | for_each_kmem_cache_node(s, node, n) |
434e245d | 4454 | count += validate_slab_node(s, n, map); |
0684e652 | 4455 | bitmap_free(map); |
53e15af0 CL |
4456 | return count; |
4457 | } | |
88a420e4 | 4458 | /* |
672bba3a | 4459 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4460 | * and freed. |
4461 | */ | |
4462 | ||
4463 | struct location { | |
4464 | unsigned long count; | |
ce71e27c | 4465 | unsigned long addr; |
45edfa58 CL |
4466 | long long sum_time; |
4467 | long min_time; | |
4468 | long max_time; | |
4469 | long min_pid; | |
4470 | long max_pid; | |
174596a0 | 4471 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4472 | nodemask_t nodes; |
88a420e4 CL |
4473 | }; |
4474 | ||
4475 | struct loc_track { | |
4476 | unsigned long max; | |
4477 | unsigned long count; | |
4478 | struct location *loc; | |
4479 | }; | |
4480 | ||
4481 | static void free_loc_track(struct loc_track *t) | |
4482 | { | |
4483 | if (t->max) | |
4484 | free_pages((unsigned long)t->loc, | |
4485 | get_order(sizeof(struct location) * t->max)); | |
4486 | } | |
4487 | ||
68dff6a9 | 4488 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4489 | { |
4490 | struct location *l; | |
4491 | int order; | |
4492 | ||
88a420e4 CL |
4493 | order = get_order(sizeof(struct location) * max); |
4494 | ||
68dff6a9 | 4495 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4496 | if (!l) |
4497 | return 0; | |
4498 | ||
4499 | if (t->count) { | |
4500 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4501 | free_loc_track(t); | |
4502 | } | |
4503 | t->max = max; | |
4504 | t->loc = l; | |
4505 | return 1; | |
4506 | } | |
4507 | ||
4508 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4509 | const struct track *track) |
88a420e4 CL |
4510 | { |
4511 | long start, end, pos; | |
4512 | struct location *l; | |
ce71e27c | 4513 | unsigned long caddr; |
45edfa58 | 4514 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4515 | |
4516 | start = -1; | |
4517 | end = t->count; | |
4518 | ||
4519 | for ( ; ; ) { | |
4520 | pos = start + (end - start + 1) / 2; | |
4521 | ||
4522 | /* | |
4523 | * There is nothing at "end". If we end up there | |
4524 | * we need to add something to before end. | |
4525 | */ | |
4526 | if (pos == end) | |
4527 | break; | |
4528 | ||
4529 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4530 | if (track->addr == caddr) { |
4531 | ||
4532 | l = &t->loc[pos]; | |
4533 | l->count++; | |
4534 | if (track->when) { | |
4535 | l->sum_time += age; | |
4536 | if (age < l->min_time) | |
4537 | l->min_time = age; | |
4538 | if (age > l->max_time) | |
4539 | l->max_time = age; | |
4540 | ||
4541 | if (track->pid < l->min_pid) | |
4542 | l->min_pid = track->pid; | |
4543 | if (track->pid > l->max_pid) | |
4544 | l->max_pid = track->pid; | |
4545 | ||
174596a0 RR |
4546 | cpumask_set_cpu(track->cpu, |
4547 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4548 | } |
4549 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4550 | return 1; |
4551 | } | |
4552 | ||
45edfa58 | 4553 | if (track->addr < caddr) |
88a420e4 CL |
4554 | end = pos; |
4555 | else | |
4556 | start = pos; | |
4557 | } | |
4558 | ||
4559 | /* | |
672bba3a | 4560 | * Not found. Insert new tracking element. |
88a420e4 | 4561 | */ |
68dff6a9 | 4562 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4563 | return 0; |
4564 | ||
4565 | l = t->loc + pos; | |
4566 | if (pos < t->count) | |
4567 | memmove(l + 1, l, | |
4568 | (t->count - pos) * sizeof(struct location)); | |
4569 | t->count++; | |
4570 | l->count = 1; | |
45edfa58 CL |
4571 | l->addr = track->addr; |
4572 | l->sum_time = age; | |
4573 | l->min_time = age; | |
4574 | l->max_time = age; | |
4575 | l->min_pid = track->pid; | |
4576 | l->max_pid = track->pid; | |
174596a0 RR |
4577 | cpumask_clear(to_cpumask(l->cpus)); |
4578 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4579 | nodes_clear(l->nodes); |
4580 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4581 | return 1; |
4582 | } | |
4583 | ||
4584 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4585 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4586 | unsigned long *map) |
88a420e4 | 4587 | { |
a973e9dd | 4588 | void *addr = page_address(page); |
88a420e4 CL |
4589 | void *p; |
4590 | ||
39b26464 | 4591 | bitmap_zero(map, page->objects); |
5f80b13a | 4592 | get_map(s, page, map); |
88a420e4 | 4593 | |
224a88be | 4594 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4595 | if (!test_bit(slab_index(p, s, addr), map)) |
4596 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4597 | } |
4598 | ||
4599 | static int list_locations(struct kmem_cache *s, char *buf, | |
4600 | enum track_item alloc) | |
4601 | { | |
e374d483 | 4602 | int len = 0; |
88a420e4 | 4603 | unsigned long i; |
68dff6a9 | 4604 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4605 | int node; |
fa45dc25 | 4606 | struct kmem_cache_node *n; |
0684e652 | 4607 | unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); |
88a420e4 | 4608 | |
bbd7d57b | 4609 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
0ee931c4 | 4610 | GFP_KERNEL)) { |
0684e652 | 4611 | bitmap_free(map); |
68dff6a9 | 4612 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4613 | } |
88a420e4 CL |
4614 | /* Push back cpu slabs */ |
4615 | flush_all(s); | |
4616 | ||
fa45dc25 | 4617 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4618 | unsigned long flags; |
4619 | struct page *page; | |
4620 | ||
9e86943b | 4621 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4622 | continue; |
4623 | ||
4624 | spin_lock_irqsave(&n->list_lock, flags); | |
4625 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4626 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4627 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4628 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4629 | spin_unlock_irqrestore(&n->list_lock, flags); |
4630 | } | |
4631 | ||
4632 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4633 | struct location *l = &t.loc[i]; |
88a420e4 | 4634 | |
9c246247 | 4635 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4636 | break; |
e374d483 | 4637 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4638 | |
4639 | if (l->addr) | |
62c70bce | 4640 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4641 | else |
e374d483 | 4642 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4643 | |
4644 | if (l->sum_time != l->min_time) { | |
e374d483 | 4645 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4646 | l->min_time, |
4647 | (long)div_u64(l->sum_time, l->count), | |
4648 | l->max_time); | |
45edfa58 | 4649 | } else |
e374d483 | 4650 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4651 | l->min_time); |
4652 | ||
4653 | if (l->min_pid != l->max_pid) | |
e374d483 | 4654 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4655 | l->min_pid, l->max_pid); |
4656 | else | |
e374d483 | 4657 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4658 | l->min_pid); |
4659 | ||
174596a0 RR |
4660 | if (num_online_cpus() > 1 && |
4661 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4662 | len < PAGE_SIZE - 60) |
4663 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4664 | " cpus=%*pbl", | |
4665 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4666 | |
62bc62a8 | 4667 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4668 | len < PAGE_SIZE - 60) |
4669 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4670 | " nodes=%*pbl", | |
4671 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4672 | |
e374d483 | 4673 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4674 | } |
4675 | ||
4676 | free_loc_track(&t); | |
0684e652 | 4677 | bitmap_free(map); |
88a420e4 | 4678 | if (!t.count) |
e374d483 HH |
4679 | len += sprintf(buf, "No data\n"); |
4680 | return len; | |
88a420e4 | 4681 | } |
ab4d5ed5 | 4682 | #endif |
88a420e4 | 4683 | |
a5a84755 | 4684 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4685 | static void __init resiliency_test(void) |
a5a84755 CL |
4686 | { |
4687 | u8 *p; | |
cc252eae | 4688 | int type = KMALLOC_NORMAL; |
a5a84755 | 4689 | |
95a05b42 | 4690 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4691 | |
f9f58285 FF |
4692 | pr_err("SLUB resiliency testing\n"); |
4693 | pr_err("-----------------------\n"); | |
4694 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4695 | |
4696 | p = kzalloc(16, GFP_KERNEL); | |
4697 | p[16] = 0x12; | |
f9f58285 FF |
4698 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4699 | p + 16); | |
a5a84755 | 4700 | |
cc252eae | 4701 | validate_slab_cache(kmalloc_caches[type][4]); |
a5a84755 CL |
4702 | |
4703 | /* Hmmm... The next two are dangerous */ | |
4704 | p = kzalloc(32, GFP_KERNEL); | |
4705 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4706 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4707 | p); | |
4708 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 | 4709 | |
cc252eae | 4710 | validate_slab_cache(kmalloc_caches[type][5]); |
a5a84755 CL |
4711 | p = kzalloc(64, GFP_KERNEL); |
4712 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4713 | *p = 0x56; | |
f9f58285 FF |
4714 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4715 | p); | |
4716 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
cc252eae | 4717 | validate_slab_cache(kmalloc_caches[type][6]); |
a5a84755 | 4718 | |
f9f58285 | 4719 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4720 | p = kzalloc(128, GFP_KERNEL); |
4721 | kfree(p); | |
4722 | *p = 0x78; | |
f9f58285 | 4723 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
cc252eae | 4724 | validate_slab_cache(kmalloc_caches[type][7]); |
a5a84755 CL |
4725 | |
4726 | p = kzalloc(256, GFP_KERNEL); | |
4727 | kfree(p); | |
4728 | p[50] = 0x9a; | |
f9f58285 | 4729 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
cc252eae | 4730 | validate_slab_cache(kmalloc_caches[type][8]); |
a5a84755 CL |
4731 | |
4732 | p = kzalloc(512, GFP_KERNEL); | |
4733 | kfree(p); | |
4734 | p[512] = 0xab; | |
f9f58285 | 4735 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
cc252eae | 4736 | validate_slab_cache(kmalloc_caches[type][9]); |
a5a84755 CL |
4737 | } |
4738 | #else | |
4739 | #ifdef CONFIG_SYSFS | |
4740 | static void resiliency_test(void) {}; | |
4741 | #endif | |
4742 | #endif | |
4743 | ||
ab4d5ed5 | 4744 | #ifdef CONFIG_SYSFS |
81819f0f | 4745 | enum slab_stat_type { |
205ab99d CL |
4746 | SL_ALL, /* All slabs */ |
4747 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4748 | SL_CPU, /* Only slabs used for cpu caches */ | |
4749 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4750 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4751 | }; |
4752 | ||
205ab99d | 4753 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4754 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4755 | #define SO_CPU (1 << SL_CPU) | |
4756 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4757 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4758 | |
1663f26d TH |
4759 | #ifdef CONFIG_MEMCG |
4760 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4761 | ||
4762 | static int __init setup_slub_memcg_sysfs(char *str) | |
4763 | { | |
4764 | int v; | |
4765 | ||
4766 | if (get_option(&str, &v) > 0) | |
4767 | memcg_sysfs_enabled = v; | |
4768 | ||
4769 | return 1; | |
4770 | } | |
4771 | ||
4772 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4773 | #endif | |
4774 | ||
62e5c4b4 CG |
4775 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4776 | char *buf, unsigned long flags) | |
81819f0f CL |
4777 | { |
4778 | unsigned long total = 0; | |
81819f0f CL |
4779 | int node; |
4780 | int x; | |
4781 | unsigned long *nodes; | |
81819f0f | 4782 | |
6396bb22 | 4783 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4784 | if (!nodes) |
4785 | return -ENOMEM; | |
81819f0f | 4786 | |
205ab99d CL |
4787 | if (flags & SO_CPU) { |
4788 | int cpu; | |
81819f0f | 4789 | |
205ab99d | 4790 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4791 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4792 | cpu); | |
ec3ab083 | 4793 | int node; |
49e22585 | 4794 | struct page *page; |
dfb4f096 | 4795 | |
4db0c3c2 | 4796 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4797 | if (!page) |
4798 | continue; | |
205ab99d | 4799 | |
ec3ab083 CL |
4800 | node = page_to_nid(page); |
4801 | if (flags & SO_TOTAL) | |
4802 | x = page->objects; | |
4803 | else if (flags & SO_OBJECTS) | |
4804 | x = page->inuse; | |
4805 | else | |
4806 | x = 1; | |
49e22585 | 4807 | |
ec3ab083 CL |
4808 | total += x; |
4809 | nodes[node] += x; | |
4810 | ||
a93cf07b | 4811 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4812 | if (page) { |
8afb1474 LZ |
4813 | node = page_to_nid(page); |
4814 | if (flags & SO_TOTAL) | |
4815 | WARN_ON_ONCE(1); | |
4816 | else if (flags & SO_OBJECTS) | |
4817 | WARN_ON_ONCE(1); | |
4818 | else | |
4819 | x = page->pages; | |
bc6697d8 ED |
4820 | total += x; |
4821 | nodes[node] += x; | |
49e22585 | 4822 | } |
81819f0f CL |
4823 | } |
4824 | } | |
4825 | ||
bfc8c901 | 4826 | get_online_mems(); |
ab4d5ed5 | 4827 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4828 | if (flags & SO_ALL) { |
fa45dc25 CL |
4829 | struct kmem_cache_node *n; |
4830 | ||
4831 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4832 | |
d0e0ac97 CG |
4833 | if (flags & SO_TOTAL) |
4834 | x = atomic_long_read(&n->total_objects); | |
4835 | else if (flags & SO_OBJECTS) | |
4836 | x = atomic_long_read(&n->total_objects) - | |
4837 | count_partial(n, count_free); | |
81819f0f | 4838 | else |
205ab99d | 4839 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4840 | total += x; |
4841 | nodes[node] += x; | |
4842 | } | |
4843 | ||
ab4d5ed5 CL |
4844 | } else |
4845 | #endif | |
4846 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4847 | struct kmem_cache_node *n; |
81819f0f | 4848 | |
fa45dc25 | 4849 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4850 | if (flags & SO_TOTAL) |
4851 | x = count_partial(n, count_total); | |
4852 | else if (flags & SO_OBJECTS) | |
4853 | x = count_partial(n, count_inuse); | |
81819f0f | 4854 | else |
205ab99d | 4855 | x = n->nr_partial; |
81819f0f CL |
4856 | total += x; |
4857 | nodes[node] += x; | |
4858 | } | |
4859 | } | |
81819f0f CL |
4860 | x = sprintf(buf, "%lu", total); |
4861 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4862 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4863 | if (nodes[node]) |
4864 | x += sprintf(buf + x, " N%d=%lu", | |
4865 | node, nodes[node]); | |
4866 | #endif | |
bfc8c901 | 4867 | put_online_mems(); |
81819f0f CL |
4868 | kfree(nodes); |
4869 | return x + sprintf(buf + x, "\n"); | |
4870 | } | |
4871 | ||
ab4d5ed5 | 4872 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4873 | static int any_slab_objects(struct kmem_cache *s) |
4874 | { | |
4875 | int node; | |
fa45dc25 | 4876 | struct kmem_cache_node *n; |
81819f0f | 4877 | |
fa45dc25 | 4878 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4879 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4880 | return 1; |
fa45dc25 | 4881 | |
81819f0f CL |
4882 | return 0; |
4883 | } | |
ab4d5ed5 | 4884 | #endif |
81819f0f CL |
4885 | |
4886 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4887 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4888 | |
4889 | struct slab_attribute { | |
4890 | struct attribute attr; | |
4891 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4892 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4893 | }; | |
4894 | ||
4895 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4896 | static struct slab_attribute _name##_attr = \ |
4897 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4898 | |
4899 | #define SLAB_ATTR(_name) \ | |
4900 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4901 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4902 | |
81819f0f CL |
4903 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4904 | { | |
44065b2e | 4905 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
4906 | } |
4907 | SLAB_ATTR_RO(slab_size); | |
4908 | ||
4909 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4910 | { | |
3a3791ec | 4911 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
4912 | } |
4913 | SLAB_ATTR_RO(align); | |
4914 | ||
4915 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4916 | { | |
1b473f29 | 4917 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
4918 | } |
4919 | SLAB_ATTR_RO(object_size); | |
4920 | ||
4921 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4922 | { | |
19af27af | 4923 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
4924 | } |
4925 | SLAB_ATTR_RO(objs_per_slab); | |
4926 | ||
06b285dc CL |
4927 | static ssize_t order_store(struct kmem_cache *s, |
4928 | const char *buf, size_t length) | |
4929 | { | |
19af27af | 4930 | unsigned int order; |
0121c619 CL |
4931 | int err; |
4932 | ||
19af27af | 4933 | err = kstrtouint(buf, 10, &order); |
0121c619 CL |
4934 | if (err) |
4935 | return err; | |
06b285dc CL |
4936 | |
4937 | if (order > slub_max_order || order < slub_min_order) | |
4938 | return -EINVAL; | |
4939 | ||
4940 | calculate_sizes(s, order); | |
4941 | return length; | |
4942 | } | |
4943 | ||
81819f0f CL |
4944 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4945 | { | |
19af27af | 4946 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 4947 | } |
06b285dc | 4948 | SLAB_ATTR(order); |
81819f0f | 4949 | |
73d342b1 DR |
4950 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4951 | { | |
4952 | return sprintf(buf, "%lu\n", s->min_partial); | |
4953 | } | |
4954 | ||
4955 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4956 | size_t length) | |
4957 | { | |
4958 | unsigned long min; | |
4959 | int err; | |
4960 | ||
3dbb95f7 | 4961 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
4962 | if (err) |
4963 | return err; | |
4964 | ||
c0bdb232 | 4965 | set_min_partial(s, min); |
73d342b1 DR |
4966 | return length; |
4967 | } | |
4968 | SLAB_ATTR(min_partial); | |
4969 | ||
49e22585 CL |
4970 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4971 | { | |
e6d0e1dc | 4972 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
4973 | } |
4974 | ||
4975 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4976 | size_t length) | |
4977 | { | |
e5d9998f | 4978 | unsigned int objects; |
49e22585 CL |
4979 | int err; |
4980 | ||
e5d9998f | 4981 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
4982 | if (err) |
4983 | return err; | |
345c905d | 4984 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4985 | return -EINVAL; |
49e22585 | 4986 | |
e6d0e1dc | 4987 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
4988 | flush_all(s); |
4989 | return length; | |
4990 | } | |
4991 | SLAB_ATTR(cpu_partial); | |
4992 | ||
81819f0f CL |
4993 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4994 | { | |
62c70bce JP |
4995 | if (!s->ctor) |
4996 | return 0; | |
4997 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4998 | } |
4999 | SLAB_ATTR_RO(ctor); | |
5000 | ||
81819f0f CL |
5001 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5002 | { | |
4307c14f | 5003 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5004 | } |
5005 | SLAB_ATTR_RO(aliases); | |
5006 | ||
81819f0f CL |
5007 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5008 | { | |
d9acf4b7 | 5009 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5010 | } |
5011 | SLAB_ATTR_RO(partial); | |
5012 | ||
5013 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5014 | { | |
d9acf4b7 | 5015 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5016 | } |
5017 | SLAB_ATTR_RO(cpu_slabs); | |
5018 | ||
5019 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5020 | { | |
205ab99d | 5021 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5022 | } |
5023 | SLAB_ATTR_RO(objects); | |
5024 | ||
205ab99d CL |
5025 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5026 | { | |
5027 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5028 | } | |
5029 | SLAB_ATTR_RO(objects_partial); | |
5030 | ||
49e22585 CL |
5031 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5032 | { | |
5033 | int objects = 0; | |
5034 | int pages = 0; | |
5035 | int cpu; | |
5036 | int len; | |
5037 | ||
5038 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5039 | struct page *page; |
5040 | ||
5041 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5042 | |
5043 | if (page) { | |
5044 | pages += page->pages; | |
5045 | objects += page->pobjects; | |
5046 | } | |
5047 | } | |
5048 | ||
5049 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5050 | ||
5051 | #ifdef CONFIG_SMP | |
5052 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5053 | struct page *page; |
5054 | ||
5055 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5056 | |
5057 | if (page && len < PAGE_SIZE - 20) | |
5058 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5059 | page->pobjects, page->pages); | |
5060 | } | |
5061 | #endif | |
5062 | return len + sprintf(buf + len, "\n"); | |
5063 | } | |
5064 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5065 | ||
a5a84755 CL |
5066 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5067 | { | |
5068 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5069 | } | |
5070 | ||
5071 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5072 | const char *buf, size_t length) | |
5073 | { | |
5074 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5075 | if (buf[0] == '1') | |
5076 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5077 | return length; | |
5078 | } | |
5079 | SLAB_ATTR(reclaim_account); | |
5080 | ||
5081 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5082 | { | |
5083 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5084 | } | |
5085 | SLAB_ATTR_RO(hwcache_align); | |
5086 | ||
5087 | #ifdef CONFIG_ZONE_DMA | |
5088 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5089 | { | |
5090 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5091 | } | |
5092 | SLAB_ATTR_RO(cache_dma); | |
5093 | #endif | |
5094 | ||
8eb8284b DW |
5095 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5096 | { | |
7bbdb81e | 5097 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5098 | } |
5099 | SLAB_ATTR_RO(usersize); | |
5100 | ||
a5a84755 CL |
5101 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5102 | { | |
5f0d5a3a | 5103 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5104 | } |
5105 | SLAB_ATTR_RO(destroy_by_rcu); | |
5106 | ||
ab4d5ed5 | 5107 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5108 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5109 | { | |
5110 | return show_slab_objects(s, buf, SO_ALL); | |
5111 | } | |
5112 | SLAB_ATTR_RO(slabs); | |
5113 | ||
205ab99d CL |
5114 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5115 | { | |
5116 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5117 | } | |
5118 | SLAB_ATTR_RO(total_objects); | |
5119 | ||
81819f0f CL |
5120 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5121 | { | |
becfda68 | 5122 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5123 | } |
5124 | ||
5125 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5126 | const char *buf, size_t length) | |
5127 | { | |
becfda68 | 5128 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5129 | if (buf[0] == '1') { |
5130 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5131 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5132 | } |
81819f0f CL |
5133 | return length; |
5134 | } | |
5135 | SLAB_ATTR(sanity_checks); | |
5136 | ||
5137 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5138 | { | |
5139 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5140 | } | |
5141 | ||
5142 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5143 | size_t length) | |
5144 | { | |
c9e16131 CL |
5145 | /* |
5146 | * Tracing a merged cache is going to give confusing results | |
5147 | * as well as cause other issues like converting a mergeable | |
5148 | * cache into an umergeable one. | |
5149 | */ | |
5150 | if (s->refcount > 1) | |
5151 | return -EINVAL; | |
5152 | ||
81819f0f | 5153 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5154 | if (buf[0] == '1') { |
5155 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5156 | s->flags |= SLAB_TRACE; |
b789ef51 | 5157 | } |
81819f0f CL |
5158 | return length; |
5159 | } | |
5160 | SLAB_ATTR(trace); | |
5161 | ||
81819f0f CL |
5162 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5163 | { | |
5164 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5165 | } | |
5166 | ||
5167 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5168 | const char *buf, size_t length) | |
5169 | { | |
5170 | if (any_slab_objects(s)) | |
5171 | return -EBUSY; | |
5172 | ||
5173 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5174 | if (buf[0] == '1') { |
81819f0f | 5175 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5176 | } |
06b285dc | 5177 | calculate_sizes(s, -1); |
81819f0f CL |
5178 | return length; |
5179 | } | |
5180 | SLAB_ATTR(red_zone); | |
5181 | ||
5182 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5183 | { | |
5184 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5185 | } | |
5186 | ||
5187 | static ssize_t poison_store(struct kmem_cache *s, | |
5188 | const char *buf, size_t length) | |
5189 | { | |
5190 | if (any_slab_objects(s)) | |
5191 | return -EBUSY; | |
5192 | ||
5193 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5194 | if (buf[0] == '1') { |
81819f0f | 5195 | s->flags |= SLAB_POISON; |
b789ef51 | 5196 | } |
06b285dc | 5197 | calculate_sizes(s, -1); |
81819f0f CL |
5198 | return length; |
5199 | } | |
5200 | SLAB_ATTR(poison); | |
5201 | ||
5202 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5203 | { | |
5204 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5205 | } | |
5206 | ||
5207 | static ssize_t store_user_store(struct kmem_cache *s, | |
5208 | const char *buf, size_t length) | |
5209 | { | |
5210 | if (any_slab_objects(s)) | |
5211 | return -EBUSY; | |
5212 | ||
5213 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5214 | if (buf[0] == '1') { |
5215 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5216 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5217 | } |
06b285dc | 5218 | calculate_sizes(s, -1); |
81819f0f CL |
5219 | return length; |
5220 | } | |
5221 | SLAB_ATTR(store_user); | |
5222 | ||
53e15af0 CL |
5223 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5224 | { | |
5225 | return 0; | |
5226 | } | |
5227 | ||
5228 | static ssize_t validate_store(struct kmem_cache *s, | |
5229 | const char *buf, size_t length) | |
5230 | { | |
434e245d CL |
5231 | int ret = -EINVAL; |
5232 | ||
5233 | if (buf[0] == '1') { | |
5234 | ret = validate_slab_cache(s); | |
5235 | if (ret >= 0) | |
5236 | ret = length; | |
5237 | } | |
5238 | return ret; | |
53e15af0 CL |
5239 | } |
5240 | SLAB_ATTR(validate); | |
a5a84755 CL |
5241 | |
5242 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5243 | { | |
5244 | if (!(s->flags & SLAB_STORE_USER)) | |
5245 | return -ENOSYS; | |
5246 | return list_locations(s, buf, TRACK_ALLOC); | |
5247 | } | |
5248 | SLAB_ATTR_RO(alloc_calls); | |
5249 | ||
5250 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5251 | { | |
5252 | if (!(s->flags & SLAB_STORE_USER)) | |
5253 | return -ENOSYS; | |
5254 | return list_locations(s, buf, TRACK_FREE); | |
5255 | } | |
5256 | SLAB_ATTR_RO(free_calls); | |
5257 | #endif /* CONFIG_SLUB_DEBUG */ | |
5258 | ||
5259 | #ifdef CONFIG_FAILSLAB | |
5260 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5261 | { | |
5262 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5263 | } | |
5264 | ||
5265 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5266 | size_t length) | |
5267 | { | |
c9e16131 CL |
5268 | if (s->refcount > 1) |
5269 | return -EINVAL; | |
5270 | ||
a5a84755 CL |
5271 | s->flags &= ~SLAB_FAILSLAB; |
5272 | if (buf[0] == '1') | |
5273 | s->flags |= SLAB_FAILSLAB; | |
5274 | return length; | |
5275 | } | |
5276 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5277 | #endif |
53e15af0 | 5278 | |
2086d26a CL |
5279 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5280 | { | |
5281 | return 0; | |
5282 | } | |
5283 | ||
5284 | static ssize_t shrink_store(struct kmem_cache *s, | |
5285 | const char *buf, size_t length) | |
5286 | { | |
832f37f5 VD |
5287 | if (buf[0] == '1') |
5288 | kmem_cache_shrink(s); | |
5289 | else | |
2086d26a CL |
5290 | return -EINVAL; |
5291 | return length; | |
5292 | } | |
5293 | SLAB_ATTR(shrink); | |
5294 | ||
81819f0f | 5295 | #ifdef CONFIG_NUMA |
9824601e | 5296 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5297 | { |
eb7235eb | 5298 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5299 | } |
5300 | ||
9824601e | 5301 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5302 | const char *buf, size_t length) |
5303 | { | |
eb7235eb | 5304 | unsigned int ratio; |
0121c619 CL |
5305 | int err; |
5306 | ||
eb7235eb | 5307 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5308 | if (err) |
5309 | return err; | |
eb7235eb AD |
5310 | if (ratio > 100) |
5311 | return -ERANGE; | |
0121c619 | 5312 | |
eb7235eb | 5313 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5314 | |
81819f0f CL |
5315 | return length; |
5316 | } | |
9824601e | 5317 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5318 | #endif |
5319 | ||
8ff12cfc | 5320 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5321 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5322 | { | |
5323 | unsigned long sum = 0; | |
5324 | int cpu; | |
5325 | int len; | |
6da2ec56 | 5326 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5327 | |
5328 | if (!data) | |
5329 | return -ENOMEM; | |
5330 | ||
5331 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5332 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5333 | |
5334 | data[cpu] = x; | |
5335 | sum += x; | |
5336 | } | |
5337 | ||
5338 | len = sprintf(buf, "%lu", sum); | |
5339 | ||
50ef37b9 | 5340 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5341 | for_each_online_cpu(cpu) { |
5342 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5343 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5344 | } |
50ef37b9 | 5345 | #endif |
8ff12cfc CL |
5346 | kfree(data); |
5347 | return len + sprintf(buf + len, "\n"); | |
5348 | } | |
5349 | ||
78eb00cc DR |
5350 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5351 | { | |
5352 | int cpu; | |
5353 | ||
5354 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5355 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5356 | } |
5357 | ||
8ff12cfc CL |
5358 | #define STAT_ATTR(si, text) \ |
5359 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5360 | { \ | |
5361 | return show_stat(s, buf, si); \ | |
5362 | } \ | |
78eb00cc DR |
5363 | static ssize_t text##_store(struct kmem_cache *s, \ |
5364 | const char *buf, size_t length) \ | |
5365 | { \ | |
5366 | if (buf[0] != '0') \ | |
5367 | return -EINVAL; \ | |
5368 | clear_stat(s, si); \ | |
5369 | return length; \ | |
5370 | } \ | |
5371 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5372 | |
5373 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5374 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5375 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5376 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5377 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5378 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5379 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5380 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5381 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5382 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5383 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5384 | STAT_ATTR(FREE_SLAB, free_slab); |
5385 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5386 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5387 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5388 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5389 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5390 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5391 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5392 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5393 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5394 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5395 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5396 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5397 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5398 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
8ff12cfc CL |
5399 | #endif |
5400 | ||
06428780 | 5401 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5402 | &slab_size_attr.attr, |
5403 | &object_size_attr.attr, | |
5404 | &objs_per_slab_attr.attr, | |
5405 | &order_attr.attr, | |
73d342b1 | 5406 | &min_partial_attr.attr, |
49e22585 | 5407 | &cpu_partial_attr.attr, |
81819f0f | 5408 | &objects_attr.attr, |
205ab99d | 5409 | &objects_partial_attr.attr, |
81819f0f CL |
5410 | &partial_attr.attr, |
5411 | &cpu_slabs_attr.attr, | |
5412 | &ctor_attr.attr, | |
81819f0f CL |
5413 | &aliases_attr.attr, |
5414 | &align_attr.attr, | |
81819f0f CL |
5415 | &hwcache_align_attr.attr, |
5416 | &reclaim_account_attr.attr, | |
5417 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5418 | &shrink_attr.attr, |
49e22585 | 5419 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5420 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5421 | &total_objects_attr.attr, |
5422 | &slabs_attr.attr, | |
5423 | &sanity_checks_attr.attr, | |
5424 | &trace_attr.attr, | |
81819f0f CL |
5425 | &red_zone_attr.attr, |
5426 | &poison_attr.attr, | |
5427 | &store_user_attr.attr, | |
53e15af0 | 5428 | &validate_attr.attr, |
88a420e4 CL |
5429 | &alloc_calls_attr.attr, |
5430 | &free_calls_attr.attr, | |
ab4d5ed5 | 5431 | #endif |
81819f0f CL |
5432 | #ifdef CONFIG_ZONE_DMA |
5433 | &cache_dma_attr.attr, | |
5434 | #endif | |
5435 | #ifdef CONFIG_NUMA | |
9824601e | 5436 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5437 | #endif |
5438 | #ifdef CONFIG_SLUB_STATS | |
5439 | &alloc_fastpath_attr.attr, | |
5440 | &alloc_slowpath_attr.attr, | |
5441 | &free_fastpath_attr.attr, | |
5442 | &free_slowpath_attr.attr, | |
5443 | &free_frozen_attr.attr, | |
5444 | &free_add_partial_attr.attr, | |
5445 | &free_remove_partial_attr.attr, | |
5446 | &alloc_from_partial_attr.attr, | |
5447 | &alloc_slab_attr.attr, | |
5448 | &alloc_refill_attr.attr, | |
e36a2652 | 5449 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5450 | &free_slab_attr.attr, |
5451 | &cpuslab_flush_attr.attr, | |
5452 | &deactivate_full_attr.attr, | |
5453 | &deactivate_empty_attr.attr, | |
5454 | &deactivate_to_head_attr.attr, | |
5455 | &deactivate_to_tail_attr.attr, | |
5456 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5457 | &deactivate_bypass_attr.attr, |
65c3376a | 5458 | &order_fallback_attr.attr, |
b789ef51 CL |
5459 | &cmpxchg_double_fail_attr.attr, |
5460 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5461 | &cpu_partial_alloc_attr.attr, |
5462 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5463 | &cpu_partial_node_attr.attr, |
5464 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5465 | #endif |
4c13dd3b DM |
5466 | #ifdef CONFIG_FAILSLAB |
5467 | &failslab_attr.attr, | |
5468 | #endif | |
8eb8284b | 5469 | &usersize_attr.attr, |
4c13dd3b | 5470 | |
81819f0f CL |
5471 | NULL |
5472 | }; | |
5473 | ||
1fdaaa23 | 5474 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5475 | .attrs = slab_attrs, |
5476 | }; | |
5477 | ||
5478 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5479 | struct attribute *attr, | |
5480 | char *buf) | |
5481 | { | |
5482 | struct slab_attribute *attribute; | |
5483 | struct kmem_cache *s; | |
5484 | int err; | |
5485 | ||
5486 | attribute = to_slab_attr(attr); | |
5487 | s = to_slab(kobj); | |
5488 | ||
5489 | if (!attribute->show) | |
5490 | return -EIO; | |
5491 | ||
5492 | err = attribute->show(s, buf); | |
5493 | ||
5494 | return err; | |
5495 | } | |
5496 | ||
5497 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5498 | struct attribute *attr, | |
5499 | const char *buf, size_t len) | |
5500 | { | |
5501 | struct slab_attribute *attribute; | |
5502 | struct kmem_cache *s; | |
5503 | int err; | |
5504 | ||
5505 | attribute = to_slab_attr(attr); | |
5506 | s = to_slab(kobj); | |
5507 | ||
5508 | if (!attribute->store) | |
5509 | return -EIO; | |
5510 | ||
5511 | err = attribute->store(s, buf, len); | |
127424c8 | 5512 | #ifdef CONFIG_MEMCG |
107dab5c | 5513 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5514 | struct kmem_cache *c; |
81819f0f | 5515 | |
107dab5c GC |
5516 | mutex_lock(&slab_mutex); |
5517 | if (s->max_attr_size < len) | |
5518 | s->max_attr_size = len; | |
5519 | ||
ebe945c2 GC |
5520 | /* |
5521 | * This is a best effort propagation, so this function's return | |
5522 | * value will be determined by the parent cache only. This is | |
5523 | * basically because not all attributes will have a well | |
5524 | * defined semantics for rollbacks - most of the actions will | |
5525 | * have permanent effects. | |
5526 | * | |
5527 | * Returning the error value of any of the children that fail | |
5528 | * is not 100 % defined, in the sense that users seeing the | |
5529 | * error code won't be able to know anything about the state of | |
5530 | * the cache. | |
5531 | * | |
5532 | * Only returning the error code for the parent cache at least | |
5533 | * has well defined semantics. The cache being written to | |
5534 | * directly either failed or succeeded, in which case we loop | |
5535 | * through the descendants with best-effort propagation. | |
5536 | */ | |
426589f5 VD |
5537 | for_each_memcg_cache(c, s) |
5538 | attribute->store(c, buf, len); | |
107dab5c GC |
5539 | mutex_unlock(&slab_mutex); |
5540 | } | |
5541 | #endif | |
81819f0f CL |
5542 | return err; |
5543 | } | |
5544 | ||
107dab5c GC |
5545 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5546 | { | |
127424c8 | 5547 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5548 | int i; |
5549 | char *buffer = NULL; | |
93030d83 | 5550 | struct kmem_cache *root_cache; |
107dab5c | 5551 | |
93030d83 | 5552 | if (is_root_cache(s)) |
107dab5c GC |
5553 | return; |
5554 | ||
f7ce3190 | 5555 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5556 | |
107dab5c GC |
5557 | /* |
5558 | * This mean this cache had no attribute written. Therefore, no point | |
5559 | * in copying default values around | |
5560 | */ | |
93030d83 | 5561 | if (!root_cache->max_attr_size) |
107dab5c GC |
5562 | return; |
5563 | ||
5564 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5565 | char mbuf[64]; | |
5566 | char *buf; | |
5567 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5568 | ssize_t len; |
107dab5c GC |
5569 | |
5570 | if (!attr || !attr->store || !attr->show) | |
5571 | continue; | |
5572 | ||
5573 | /* | |
5574 | * It is really bad that we have to allocate here, so we will | |
5575 | * do it only as a fallback. If we actually allocate, though, | |
5576 | * we can just use the allocated buffer until the end. | |
5577 | * | |
5578 | * Most of the slub attributes will tend to be very small in | |
5579 | * size, but sysfs allows buffers up to a page, so they can | |
5580 | * theoretically happen. | |
5581 | */ | |
5582 | if (buffer) | |
5583 | buf = buffer; | |
93030d83 | 5584 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5585 | buf = mbuf; |
5586 | else { | |
5587 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5588 | if (WARN_ON(!buffer)) | |
5589 | continue; | |
5590 | buf = buffer; | |
5591 | } | |
5592 | ||
478fe303 TG |
5593 | len = attr->show(root_cache, buf); |
5594 | if (len > 0) | |
5595 | attr->store(s, buf, len); | |
107dab5c GC |
5596 | } |
5597 | ||
5598 | if (buffer) | |
5599 | free_page((unsigned long)buffer); | |
5600 | #endif | |
5601 | } | |
5602 | ||
41a21285 CL |
5603 | static void kmem_cache_release(struct kobject *k) |
5604 | { | |
5605 | slab_kmem_cache_release(to_slab(k)); | |
5606 | } | |
5607 | ||
52cf25d0 | 5608 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5609 | .show = slab_attr_show, |
5610 | .store = slab_attr_store, | |
5611 | }; | |
5612 | ||
5613 | static struct kobj_type slab_ktype = { | |
5614 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5615 | .release = kmem_cache_release, |
81819f0f CL |
5616 | }; |
5617 | ||
5618 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5619 | { | |
5620 | struct kobj_type *ktype = get_ktype(kobj); | |
5621 | ||
5622 | if (ktype == &slab_ktype) | |
5623 | return 1; | |
5624 | return 0; | |
5625 | } | |
5626 | ||
9cd43611 | 5627 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5628 | .filter = uevent_filter, |
5629 | }; | |
5630 | ||
27c3a314 | 5631 | static struct kset *slab_kset; |
81819f0f | 5632 | |
9a41707b VD |
5633 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5634 | { | |
127424c8 | 5635 | #ifdef CONFIG_MEMCG |
9a41707b | 5636 | if (!is_root_cache(s)) |
f7ce3190 | 5637 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5638 | #endif |
5639 | return slab_kset; | |
5640 | } | |
5641 | ||
81819f0f CL |
5642 | #define ID_STR_LENGTH 64 |
5643 | ||
5644 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5645 | * |
5646 | * Format :[flags-]size | |
81819f0f CL |
5647 | */ |
5648 | static char *create_unique_id(struct kmem_cache *s) | |
5649 | { | |
5650 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5651 | char *p = name; | |
5652 | ||
5653 | BUG_ON(!name); | |
5654 | ||
5655 | *p++ = ':'; | |
5656 | /* | |
5657 | * First flags affecting slabcache operations. We will only | |
5658 | * get here for aliasable slabs so we do not need to support | |
5659 | * too many flags. The flags here must cover all flags that | |
5660 | * are matched during merging to guarantee that the id is | |
5661 | * unique. | |
5662 | */ | |
5663 | if (s->flags & SLAB_CACHE_DMA) | |
5664 | *p++ = 'd'; | |
5665 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5666 | *p++ = 'a'; | |
becfda68 | 5667 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5668 | *p++ = 'F'; |
230e9fc2 VD |
5669 | if (s->flags & SLAB_ACCOUNT) |
5670 | *p++ = 'A'; | |
81819f0f CL |
5671 | if (p != name + 1) |
5672 | *p++ = '-'; | |
44065b2e | 5673 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5674 | |
81819f0f CL |
5675 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5676 | return name; | |
5677 | } | |
5678 | ||
3b7b3140 TH |
5679 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5680 | { | |
5681 | struct kmem_cache *s = | |
5682 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5683 | ||
5684 | if (!s->kobj.state_in_sysfs) | |
5685 | /* | |
5686 | * For a memcg cache, this may be called during | |
5687 | * deactivation and again on shutdown. Remove only once. | |
5688 | * A cache is never shut down before deactivation is | |
5689 | * complete, so no need to worry about synchronization. | |
5690 | */ | |
f6ba4880 | 5691 | goto out; |
3b7b3140 TH |
5692 | |
5693 | #ifdef CONFIG_MEMCG | |
5694 | kset_unregister(s->memcg_kset); | |
5695 | #endif | |
5696 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
f6ba4880 | 5697 | out: |
3b7b3140 TH |
5698 | kobject_put(&s->kobj); |
5699 | } | |
5700 | ||
81819f0f CL |
5701 | static int sysfs_slab_add(struct kmem_cache *s) |
5702 | { | |
5703 | int err; | |
5704 | const char *name; | |
1663f26d | 5705 | struct kset *kset = cache_kset(s); |
45530c44 | 5706 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5707 | |
3b7b3140 TH |
5708 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5709 | ||
1663f26d TH |
5710 | if (!kset) { |
5711 | kobject_init(&s->kobj, &slab_ktype); | |
5712 | return 0; | |
5713 | } | |
5714 | ||
11066386 MC |
5715 | if (!unmergeable && disable_higher_order_debug && |
5716 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5717 | unmergeable = 1; | |
5718 | ||
81819f0f CL |
5719 | if (unmergeable) { |
5720 | /* | |
5721 | * Slabcache can never be merged so we can use the name proper. | |
5722 | * This is typically the case for debug situations. In that | |
5723 | * case we can catch duplicate names easily. | |
5724 | */ | |
27c3a314 | 5725 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5726 | name = s->name; |
5727 | } else { | |
5728 | /* | |
5729 | * Create a unique name for the slab as a target | |
5730 | * for the symlinks. | |
5731 | */ | |
5732 | name = create_unique_id(s); | |
5733 | } | |
5734 | ||
1663f26d | 5735 | s->kobj.kset = kset; |
26e4f205 | 5736 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5737 | if (err) |
80da026a | 5738 | goto out; |
81819f0f CL |
5739 | |
5740 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5741 | if (err) |
5742 | goto out_del_kobj; | |
9a41707b | 5743 | |
127424c8 | 5744 | #ifdef CONFIG_MEMCG |
1663f26d | 5745 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5746 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5747 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5748 | err = -ENOMEM; |
5749 | goto out_del_kobj; | |
9a41707b VD |
5750 | } |
5751 | } | |
5752 | #endif | |
5753 | ||
81819f0f CL |
5754 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5755 | if (!unmergeable) { | |
5756 | /* Setup first alias */ | |
5757 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5758 | } |
54b6a731 DJ |
5759 | out: |
5760 | if (!unmergeable) | |
5761 | kfree(name); | |
5762 | return err; | |
5763 | out_del_kobj: | |
5764 | kobject_del(&s->kobj); | |
54b6a731 | 5765 | goto out; |
81819f0f CL |
5766 | } |
5767 | ||
bf5eb3de | 5768 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5769 | { |
97d06609 | 5770 | if (slab_state < FULL) |
2bce6485 CL |
5771 | /* |
5772 | * Sysfs has not been setup yet so no need to remove the | |
5773 | * cache from sysfs. | |
5774 | */ | |
5775 | return; | |
5776 | ||
3b7b3140 TH |
5777 | kobject_get(&s->kobj); |
5778 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5779 | } |
5780 | ||
d50d82fa MP |
5781 | void sysfs_slab_unlink(struct kmem_cache *s) |
5782 | { | |
5783 | if (slab_state >= FULL) | |
5784 | kobject_del(&s->kobj); | |
5785 | } | |
5786 | ||
bf5eb3de TH |
5787 | void sysfs_slab_release(struct kmem_cache *s) |
5788 | { | |
5789 | if (slab_state >= FULL) | |
5790 | kobject_put(&s->kobj); | |
81819f0f CL |
5791 | } |
5792 | ||
5793 | /* | |
5794 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5795 | * available lest we lose that information. |
81819f0f CL |
5796 | */ |
5797 | struct saved_alias { | |
5798 | struct kmem_cache *s; | |
5799 | const char *name; | |
5800 | struct saved_alias *next; | |
5801 | }; | |
5802 | ||
5af328a5 | 5803 | static struct saved_alias *alias_list; |
81819f0f CL |
5804 | |
5805 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5806 | { | |
5807 | struct saved_alias *al; | |
5808 | ||
97d06609 | 5809 | if (slab_state == FULL) { |
81819f0f CL |
5810 | /* |
5811 | * If we have a leftover link then remove it. | |
5812 | */ | |
27c3a314 GKH |
5813 | sysfs_remove_link(&slab_kset->kobj, name); |
5814 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5815 | } |
5816 | ||
5817 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5818 | if (!al) | |
5819 | return -ENOMEM; | |
5820 | ||
5821 | al->s = s; | |
5822 | al->name = name; | |
5823 | al->next = alias_list; | |
5824 | alias_list = al; | |
5825 | return 0; | |
5826 | } | |
5827 | ||
5828 | static int __init slab_sysfs_init(void) | |
5829 | { | |
5b95a4ac | 5830 | struct kmem_cache *s; |
81819f0f CL |
5831 | int err; |
5832 | ||
18004c5d | 5833 | mutex_lock(&slab_mutex); |
2bce6485 | 5834 | |
0ff21e46 | 5835 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5836 | if (!slab_kset) { |
18004c5d | 5837 | mutex_unlock(&slab_mutex); |
f9f58285 | 5838 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5839 | return -ENOSYS; |
5840 | } | |
5841 | ||
97d06609 | 5842 | slab_state = FULL; |
26a7bd03 | 5843 | |
5b95a4ac | 5844 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5845 | err = sysfs_slab_add(s); |
5d540fb7 | 5846 | if (err) |
f9f58285 FF |
5847 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5848 | s->name); | |
26a7bd03 | 5849 | } |
81819f0f CL |
5850 | |
5851 | while (alias_list) { | |
5852 | struct saved_alias *al = alias_list; | |
5853 | ||
5854 | alias_list = alias_list->next; | |
5855 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5856 | if (err) |
f9f58285 FF |
5857 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5858 | al->name); | |
81819f0f CL |
5859 | kfree(al); |
5860 | } | |
5861 | ||
18004c5d | 5862 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5863 | resiliency_test(); |
5864 | return 0; | |
5865 | } | |
5866 | ||
5867 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5868 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5869 | |
5870 | /* | |
5871 | * The /proc/slabinfo ABI | |
5872 | */ | |
5b365771 | 5873 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5874 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5875 | { |
57ed3eda | 5876 | unsigned long nr_slabs = 0; |
205ab99d CL |
5877 | unsigned long nr_objs = 0; |
5878 | unsigned long nr_free = 0; | |
57ed3eda | 5879 | int node; |
fa45dc25 | 5880 | struct kmem_cache_node *n; |
57ed3eda | 5881 | |
fa45dc25 | 5882 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5883 | nr_slabs += node_nr_slabs(n); |
5884 | nr_objs += node_nr_objs(n); | |
205ab99d | 5885 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5886 | } |
5887 | ||
0d7561c6 GC |
5888 | sinfo->active_objs = nr_objs - nr_free; |
5889 | sinfo->num_objs = nr_objs; | |
5890 | sinfo->active_slabs = nr_slabs; | |
5891 | sinfo->num_slabs = nr_slabs; | |
5892 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5893 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5894 | } |
5895 | ||
0d7561c6 | 5896 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5897 | { |
7b3c3a50 AD |
5898 | } |
5899 | ||
b7454ad3 GC |
5900 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5901 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5902 | { |
b7454ad3 | 5903 | return -EIO; |
7b3c3a50 | 5904 | } |
5b365771 | 5905 | #endif /* CONFIG_SLUB_DEBUG */ |