]> Git Repo - linux.git/blame - mm/slub.c
drm/vc4: Run DRM default client setup
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
6011be59 37#include <linux/kmemleak.h>
bfa71457 38#include <linux/stacktrace.h>
4de900b4 39#include <linux/prefetch.h>
2633d7a0 40#include <linux/memcontrol.h>
2482ddec 41#include <linux/random.h>
1f9f78b1 42#include <kunit/test.h>
909c6475 43#include <kunit/test-bug.h>
553c0369 44#include <linux/sort.h>
81819f0f 45
64dd6849 46#include <linux/debugfs.h>
4a92379b
RK
47#include <trace/events/kmem.h>
48
072bb0aa
MG
49#include "internal.h"
50
81819f0f
CL
51/*
52 * Lock order:
18004c5d 53 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 56 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 57 * 5. object_map_lock (Only for debugging)
81819f0f 58 *
18004c5d 59 * slab_mutex
881db7fb 60 *
18004c5d 61 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 62 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
881db7fb 69 *
41bec7c3
VB
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
c2092c12
VB
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
881db7fb 77 *
bd0e7491
VB
78 * Frozen slabs
79 *
31bda717
CZ
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
c2092c12 83 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
c2092c12 86 * slab's freelist.
81819f0f 87 *
31bda717
CZ
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
bd0e7491
VB
102 * list_lock
103 *
81819f0f
CL
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
bd0e7491 115 *
41bec7c3
VB
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
bd0e7491
VB
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
672bba3a
CL
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 156 * freed then the slab will show up again on the partial lists.
672bba3a
CL
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
81819f0f
CL
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
c2092c12 164 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
dfb4f096 176 * freelist that allows lockless access to
894b8788
CL
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
81819f0f 179 *
aed68148 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 181 * options set. This moves slab handling out of
894b8788 182 * the fast path and disables lockless freelists.
81819f0f
CL
183 */
184
25c00c50
VB
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
1f04b07d 204#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
205#endif
206
be784ba8
VB
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
ca0cab65
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
79270291 219#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 220
6edf2576
FT
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
6edf2576
FT
223 gfp_t flags;
224 unsigned int orig_size;
43c4c349 225 void *object;
6edf2576
FT
226};
227
59052e89
VB
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 231}
5577bd8a 232
6edf2576
FT
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
117d54df 239void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 240{
59052e89 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
242 p += s->red_left_pad;
243
244 return p;
245}
246
345c905d
JK
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
81819f0f
CL
256/*
257 * Issues still to be resolved:
258 *
81819f0f
CL
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
81819f0f
CL
261 * - Variable sizing of the per node arrays
262 */
263
b789ef51
CL
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
5a8a3c1f 267#ifndef CONFIG_SLUB_TINY
2086d26a 268/*
dc84207d 269 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
76be8950 272#define MIN_PARTIAL 5
e95eed57 273
2086d26a
CL
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 277 * sort the partial list by the number of objects in use.
2086d26a
CL
278 */
279#define MAX_PARTIAL 10
5a8a3c1f
VB
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
2086d26a 284
becfda68 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 286 SLAB_POISON | SLAB_STORE_USER)
672bba3a 287
149daaf3
LA
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
fa5ec8a1 296/*
3de47213 297 * Debugging flags that require metadata to be stored in the slab. These get
671776b3 298 * disabled when slab_debug=O is used and a cache's min order increases with
3de47213 299 * metadata.
fa5ec8a1 300 */
3de47213 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 302
210b5c06
CG
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 306
81819f0f 307/* Internal SLUB flags */
d50112ed 308/* Poison object */
cc61eb85 309#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
d50112ed 310/* Use cmpxchg_double */
6801be4f
PZ
311
312#ifdef system_has_freelist_aba
cc61eb85 313#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
6801be4f 314#else
cc61eb85 315#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
6801be4f 316#endif
81819f0f 317
02cbc874
CL
318/*
319 * Tracking user of a slab.
320 */
d6543e39 321#define TRACK_ADDRS_COUNT 16
02cbc874 322struct track {
ce71e27c 323 unsigned long addr; /* Called from address */
5cf909c5
OG
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
d6543e39 326#endif
02cbc874
CL
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
b1a413a3 334#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 337#else
0c710013
CL
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
81819f0f
CL
341#endif
342
64dd6849
FM
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
7ef08ae8
VB
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
c94d2224 394 struct slab *partial; /* Partially allocated slabs */
7ef08ae8
VB
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
4fdccdfb 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
404{
405#ifdef CONFIG_SLUB_STATS
88da03a6
CL
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
411#endif
412}
413
6f3dd2c3
VB
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
b52ef56e
VB
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
7e1fa93d
VB
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
0af8489b 457#ifndef CONFIG_SLUB_TINY
e45cc288
ML
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
0af8489b 462#endif
e45cc288 463
81819f0f
CL
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
44f6a42d
JH
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
2482ddec
KC
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
44f6a42d
JH
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
2482ddec 481{
b06952cd
VB
482 unsigned long encoded;
483
2482ddec 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 486#else
b06952cd 487 encoded = (unsigned long)ptr;
44f6a42d 488#endif
b06952cd 489 return (freeptr_t){.v = encoded};
44f6a42d
JH
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 499#else
44f6a42d 500 decoded = (void *)ptr.v;
2482ddec 501#endif
44f6a42d 502 return decoded;
2482ddec
KC
503}
504
7656c72b
CL
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
1662b6c2
VB
507 unsigned long ptr_addr;
508 freeptr_t p;
509
aa1ef4d7 510 object = kasan_reset_tag(object);
1662b6c2
VB
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
514}
515
0af8489b 516#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
04b4b006 519 prefetchw(object + s->offset);
0ad9500e 520}
0af8489b 521#endif
0ad9500e 522
68ef169a
AP
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
1393d9a1
CL
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
2482ddec 536 unsigned long freepointer_addr;
44f6a42d 537 freeptr_t p;
1393d9a1 538
8e57f8ac 539 if (!debug_pagealloc_enabled_static())
922d566c
JK
540 return get_freepointer(s, object);
541
f70b0049 542 object = kasan_reset_tag(object);
2482ddec 543 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
546}
547
7656c72b
CL
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
2482ddec
KC
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
ce6fa91b
AP
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
aa1ef4d7 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
558}
559
8f828aa4
NB
560/*
561 * See comment in calculate_sizes().
562 */
563static inline bool freeptr_outside_object(struct kmem_cache *s)
564{
565 return s->offset >= s->inuse;
566}
567
568/*
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
571 */
572static inline unsigned int get_info_end(struct kmem_cache *s)
573{
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
576 else
577 return s->inuse;
578}
579
7656c72b 580/* Loop over all objects in a slab */
224a88be 581#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
584 __p += (__s)->size)
7656c72b 585
9736d2a9 586static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 587{
9736d2a9 588 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
589}
590
19af27af 591static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 592 unsigned int size)
834f3d11
CL
593{
594 struct kmem_cache_order_objects x = {
9736d2a9 595 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
596 };
597
598 return x;
599}
600
19af27af 601static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 602{
210b5c06 603 return x.x >> OO_SHIFT;
834f3d11
CL
604}
605
19af27af 606static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 607{
210b5c06 608 return x.x & OO_MASK;
834f3d11
CL
609}
610
b47291ef
VB
611#ifdef CONFIG_SLUB_CPU_PARTIAL
612static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613{
bb192ed9 614 unsigned int nr_slabs;
b47291ef
VB
615
616 s->cpu_partial = nr_objects;
617
618 /*
619 * We take the number of objects but actually limit the number of
c2092c12
VB
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
622 * be half-full.
623 */
bb192ed9
VB
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
b47291ef 626}
721a2f8b
XS
627
628static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629{
630 return s->cpu_partial_slabs;
631}
b47291ef
VB
632#else
633static inline void
634slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635{
636}
721a2f8b
XS
637
638static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639{
640 return 0;
641}
b47291ef
VB
642#endif /* CONFIG_SLUB_CPU_PARTIAL */
643
881db7fb
CL
644/*
645 * Per slab locking using the pagelock
646 */
5875e598 647static __always_inline void slab_lock(struct slab *slab)
881db7fb 648{
5e0debe0 649 bit_spin_lock(PG_locked, &slab->__page_flags);
881db7fb
CL
650}
651
5875e598 652static __always_inline void slab_unlock(struct slab *slab)
881db7fb 653{
5e0debe0 654 bit_spin_unlock(PG_locked, &slab->__page_flags);
881db7fb
CL
655}
656
6801be4f
PZ
657static inline bool
658__update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
661{
662#ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667#else
668 return false;
669#endif
670}
671
672static inline bool
673__update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
676{
677 bool ret = false;
678
679 slab_lock(slab);
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
684 ret = true;
685 }
686 slab_unlock(slab);
687
688 return ret;
689}
690
a2b4ae8b
VB
691/*
692 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
a2b4ae8b 697 */
6801be4f 698static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
701 const char *n)
702{
6801be4f
PZ
703 bool ret;
704
1f04b07d 705 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 706 lockdep_assert_irqs_disabled();
6801be4f 707
1d07171c 708 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
711 } else {
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
1d07171c 714 }
6801be4f
PZ
715 if (likely(ret))
716 return true;
1d07171c
CL
717
718 cpu_relax();
719 stat(s, CMPXCHG_DOUBLE_FAIL);
720
721#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
723#endif
724
6f6528a1 725 return false;
1d07171c
CL
726}
727
6801be4f 728static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
731 const char *n)
732{
6801be4f
PZ
733 bool ret;
734
b789ef51 735 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 } else {
1d07171c
CL
739 unsigned long flags;
740
741 local_irq_save(flags);
6801be4f
PZ
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
1d07171c 744 local_irq_restore(flags);
b789ef51 745 }
6801be4f
PZ
746 if (likely(ret))
747 return true;
b789ef51
CL
748
749 cpu_relax();
750 stat(s, CMPXCHG_DOUBLE_FAIL);
751
752#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
754#endif
755
6f6528a1 756 return false;
b789ef51
CL
757}
758
41ecc55b 759#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 760static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 761static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 762
b3fd64e1 763static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 764 struct slab *slab)
b3fd64e1 765{
bb192ed9 766 void *addr = slab_address(slab);
b3fd64e1
VB
767 void *p;
768
bb192ed9 769 bitmap_zero(obj_map, slab->objects);
b3fd64e1 770
bb192ed9 771 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
772 set_bit(__obj_to_index(s, addr, p), obj_map);
773}
774
1f9f78b1
OG
775#if IS_ENABLED(CONFIG_KUNIT)
776static bool slab_add_kunit_errors(void)
777{
778 struct kunit_resource *resource;
779
909c6475 780 if (!kunit_get_current_test())
1f9f78b1
OG
781 return false;
782
783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 if (!resource)
785 return false;
786
787 (*(int *)resource->data)++;
788 kunit_put_resource(resource);
789 return true;
790}
47d911b0
CZ
791
792static bool slab_in_kunit_test(void)
793{
794 struct kunit_resource *resource;
795
796 if (!kunit_get_current_test())
797 return false;
798
799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
800 if (!resource)
801 return false;
802
803 kunit_put_resource(resource);
804 return true;
805}
1f9f78b1
OG
806#else
807static inline bool slab_add_kunit_errors(void) { return false; }
47d911b0 808static inline bool slab_in_kunit_test(void) { return false; }
1f9f78b1
OG
809#endif
810
870b1fbb 811static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
812{
813 if (s->flags & SLAB_RED_ZONE)
814 return s->size - s->red_left_pad;
815
816 return s->size;
817}
818
819static inline void *restore_red_left(struct kmem_cache *s, void *p)
820{
821 if (s->flags & SLAB_RED_ZONE)
822 p -= s->red_left_pad;
823
824 return p;
825}
826
41ecc55b
CL
827/*
828 * Debug settings:
829 */
89d3c87e 830#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 831static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 832#else
d50112ed 833static slab_flags_t slub_debug;
f0630fff 834#endif
41ecc55b 835
e17f1dfb 836static char *slub_debug_string;
fa5ec8a1 837static int disable_higher_order_debug;
41ecc55b 838
a79316c6
AR
839/*
840 * slub is about to manipulate internal object metadata. This memory lies
841 * outside the range of the allocated object, so accessing it would normally
842 * be reported by kasan as a bounds error. metadata_access_enable() is used
843 * to tell kasan that these accesses are OK.
844 */
845static inline void metadata_access_enable(void)
846{
847 kasan_disable_current();
0e9a8550 848 kmsan_disable_current();
a79316c6
AR
849}
850
851static inline void metadata_access_disable(void)
852{
0e9a8550 853 kmsan_enable_current();
a79316c6
AR
854 kasan_enable_current();
855}
856
81819f0f
CL
857/*
858 * Object debugging
859 */
d86bd1be
JK
860
861/* Verify that a pointer has an address that is valid within a slab page */
862static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 863 struct slab *slab, void *object)
d86bd1be
JK
864{
865 void *base;
866
867 if (!object)
868 return 1;
869
bb192ed9 870 base = slab_address(slab);
338cfaad 871 object = kasan_reset_tag(object);
d86bd1be 872 object = restore_red_left(s, object);
bb192ed9 873 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
874 (object - base) % s->size) {
875 return 0;
876 }
877
878 return 1;
879}
880
aa2efd5e
DT
881static void print_section(char *level, char *text, u8 *addr,
882 unsigned int length)
81819f0f 883{
a79316c6 884 metadata_access_enable();
340caf17
KYL
885 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 887 metadata_access_disable();
81819f0f
CL
888}
889
81819f0f
CL
890static struct track *get_track(struct kmem_cache *s, void *object,
891 enum track_item alloc)
892{
893 struct track *p;
894
cbfc35a4 895 p = object + get_info_end(s);
81819f0f 896
aa1ef4d7 897 return kasan_reset_tag(p + alloc);
81819f0f
CL
898}
899
5cf909c5 900#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
901static noinline depot_stack_handle_t set_track_prepare(void)
902{
903 depot_stack_handle_t handle;
5cf909c5 904 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 905 unsigned int nr_entries;
ae14c63a 906
5cf909c5 907 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
908 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
909
910 return handle;
911}
912#else
913static inline depot_stack_handle_t set_track_prepare(void)
914{
915 return 0;
916}
d6543e39 917#endif
5cf909c5 918
c4cf6785
SAS
919static void set_track_update(struct kmem_cache *s, void *object,
920 enum track_item alloc, unsigned long addr,
921 depot_stack_handle_t handle)
922{
923 struct track *p = get_track(s, object, alloc);
924
925#ifdef CONFIG_STACKDEPOT
926 p->handle = handle;
927#endif
0cd1a029
VB
928 p->addr = addr;
929 p->cpu = smp_processor_id();
930 p->pid = current->pid;
931 p->when = jiffies;
81819f0f
CL
932}
933
c4cf6785
SAS
934static __always_inline void set_track(struct kmem_cache *s, void *object,
935 enum track_item alloc, unsigned long addr)
936{
937 depot_stack_handle_t handle = set_track_prepare();
938
939 set_track_update(s, object, alloc, addr, handle);
940}
941
81819f0f
CL
942static void init_tracking(struct kmem_cache *s, void *object)
943{
0cd1a029
VB
944 struct track *p;
945
24922684
CL
946 if (!(s->flags & SLAB_STORE_USER))
947 return;
948
0cd1a029
VB
949 p = get_track(s, object, TRACK_ALLOC);
950 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
951}
952
86609d33 953static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 954{
5cf909c5
OG
955 depot_stack_handle_t handle __maybe_unused;
956
81819f0f
CL
957 if (!t->addr)
958 return;
959
96b94abc 960 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 961 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
962#ifdef CONFIG_STACKDEPOT
963 handle = READ_ONCE(t->handle);
964 if (handle)
965 stack_depot_print(handle);
966 else
967 pr_err("object allocation/free stack trace missing\n");
d6543e39 968#endif
24922684
CL
969}
970
e42f174e 971void print_tracking(struct kmem_cache *s, void *object)
24922684 972{
86609d33 973 unsigned long pr_time = jiffies;
24922684
CL
974 if (!(s->flags & SLAB_STORE_USER))
975 return;
976
86609d33
CP
977 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
979}
980
fb012e27 981static void print_slab_info(const struct slab *slab)
24922684 982{
fb012e27
MWO
983 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 slab, slab->objects, slab->inuse, slab->freelist,
4d2bcefa 985 &slab->__page_flags);
24922684
CL
986}
987
6edf2576
FT
988/*
989 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990 * family will round up the real request size to these fixed ones, so
991 * there could be an extra area than what is requested. Save the original
992 * request size in the meta data area, for better debug and sanity check.
993 */
994static inline void set_orig_size(struct kmem_cache *s,
995 void *object, unsigned int orig_size)
996{
997 void *p = kasan_reset_tag(object);
2d552463 998 unsigned int kasan_meta_size;
6edf2576
FT
999
1000 if (!slub_debug_orig_size(s))
1001 return;
1002
946fa0db 1003 /*
2d552463
AK
1004 * KASAN can save its free meta data inside of the object at offset 0.
1005 * If this meta data size is larger than 'orig_size', it will overlap
1006 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 * 'orig_size' to be as at least as big as KASAN's meta data.
946fa0db 1008 */
2d552463
AK
1009 kasan_meta_size = kasan_metadata_size(s, true);
1010 if (kasan_meta_size > orig_size)
1011 orig_size = kasan_meta_size;
946fa0db 1012
6edf2576
FT
1013 p += get_info_end(s);
1014 p += sizeof(struct track) * 2;
1015
1016 *(unsigned int *)p = orig_size;
1017}
1018
1019static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1020{
1021 void *p = kasan_reset_tag(object);
1022
1023 if (!slub_debug_orig_size(s))
1024 return s->object_size;
1025
1026 p += get_info_end(s);
1027 p += sizeof(struct track) * 2;
1028
1029 return *(unsigned int *)p;
1030}
1031
946fa0db
FT
1032void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033{
1034 set_orig_size(s, (void *)object, s->object_size);
1035}
1036
24922684
CL
1037static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038{
ecc42fbe 1039 struct va_format vaf;
24922684 1040 va_list args;
24922684
CL
1041
1042 va_start(args, fmt);
ecc42fbe
FF
1043 vaf.fmt = fmt;
1044 vaf.va = &args;
f9f58285 1045 pr_err("=============================================================================\n");
ecc42fbe 1046 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 1047 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 1048 va_end(args);
81819f0f
CL
1049}
1050
582d1212 1051__printf(2, 3)
24922684
CL
1052static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053{
ecc42fbe 1054 struct va_format vaf;
24922684 1055 va_list args;
24922684 1056
1f9f78b1
OG
1057 if (slab_add_kunit_errors())
1058 return;
1059
24922684 1060 va_start(args, fmt);
ecc42fbe
FF
1061 vaf.fmt = fmt;
1062 vaf.va = &args;
1063 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 1064 va_end(args);
24922684
CL
1065}
1066
bb192ed9 1067static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
1068{
1069 unsigned int off; /* Offset of last byte */
bb192ed9 1070 u8 *addr = slab_address(slab);
24922684
CL
1071
1072 print_tracking(s, p);
1073
bb192ed9 1074 print_slab_info(slab);
24922684 1075
96b94abc 1076 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 1077 p, p - addr, get_freepointer(s, p));
24922684 1078
d86bd1be 1079 if (s->flags & SLAB_RED_ZONE)
8669dbab 1080 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 1081 s->red_left_pad);
d86bd1be 1082 else if (p > addr + 16)
aa2efd5e 1083 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 1084
8669dbab 1085 print_section(KERN_ERR, "Object ", p,
1b473f29 1086 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 1087 if (s->flags & SLAB_RED_ZONE)
8669dbab 1088 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 1089 s->inuse - s->object_size);
81819f0f 1090
cbfc35a4 1091 off = get_info_end(s);
81819f0f 1092
24922684 1093 if (s->flags & SLAB_STORE_USER)
81819f0f 1094 off += 2 * sizeof(struct track);
81819f0f 1095
6edf2576
FT
1096 if (slub_debug_orig_size(s))
1097 off += sizeof(unsigned int);
1098
5d1ba310 1099 off += kasan_metadata_size(s, false);
80a9201a 1100
d86bd1be 1101 if (off != size_from_object(s))
81819f0f 1102 /* Beginning of the filler is the free pointer */
8669dbab 1103 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 1104 size_from_object(s) - off);
24922684
CL
1105
1106 dump_stack();
81819f0f
CL
1107}
1108
bb192ed9 1109static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
1110 u8 *object, char *reason)
1111{
1f9f78b1
OG
1112 if (slab_add_kunit_errors())
1113 return;
1114
3dc50637 1115 slab_bug(s, "%s", reason);
bb192ed9 1116 print_trailer(s, slab, object);
65ebdeef 1117 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1118}
1119
bb192ed9 1120static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
1121 void **freelist, void *nextfree)
1122{
1123 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
1124 !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1126 *freelist = NULL;
1127 slab_fix(s, "Isolate corrupted freechain");
1128 return true;
1129 }
1130
1131 return false;
1132}
1133
bb192ed9 1134static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1135 const char *fmt, ...)
81819f0f
CL
1136{
1137 va_list args;
1138 char buf[100];
1139
1f9f78b1
OG
1140 if (slab_add_kunit_errors())
1141 return;
1142
24922684
CL
1143 va_start(args, fmt);
1144 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1145 va_end(args);
3dc50637 1146 slab_bug(s, "%s", buf);
bb192ed9 1147 print_slab_info(slab);
81819f0f 1148 dump_stack();
65ebdeef 1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1150}
1151
f7cb1933 1152static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1153{
aa1ef4d7 1154 u8 *p = kasan_reset_tag(object);
946fa0db 1155 unsigned int poison_size = s->object_size;
81819f0f 1156
946fa0db 1157 if (s->flags & SLAB_RED_ZONE) {
f4168171
IL
1158 /*
1159 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 * the shadow makes it possible to distinguish uninit-value
1161 * from use-after-free.
1162 */
1163 memset_no_sanitize_memory(p - s->red_left_pad, val,
1164 s->red_left_pad);
d86bd1be 1165
946fa0db
FT
1166 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167 /*
1168 * Redzone the extra allocated space by kmalloc than
1169 * requested, and the poison size will be limited to
1170 * the original request size accordingly.
1171 */
1172 poison_size = get_orig_size(s, object);
1173 }
1174 }
1175
81819f0f 1176 if (s->flags & __OBJECT_POISON) {
f4168171
IL
1177 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
81819f0f
CL
1179 }
1180
1181 if (s->flags & SLAB_RED_ZONE)
f4168171
IL
1182 memset_no_sanitize_memory(p + poison_size, val,
1183 s->inuse - poison_size);
81819f0f
CL
1184}
1185
24922684
CL
1186static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 void *from, void *to)
1188{
582d1212 1189 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1190 memset(from, data, to - from);
1191}
1192
adea9876
IL
1193#ifdef CONFIG_KMSAN
1194#define pad_check_attributes noinline __no_kmsan_checks
1195#else
1196#define pad_check_attributes
1197#endif
1198
1199static pad_check_attributes int
1200check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 u8 *object, char *what,
1202 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1203{
1204 u8 *fault;
1205 u8 *end;
bb192ed9 1206 u8 *addr = slab_address(slab);
24922684 1207
a79316c6 1208 metadata_access_enable();
aa1ef4d7 1209 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1210 metadata_access_disable();
24922684
CL
1211 if (!fault)
1212 return 1;
1213
1214 end = start + bytes;
1215 while (end > fault && end[-1] == value)
1216 end--;
1217
1f9f78b1
OG
1218 if (slab_add_kunit_errors())
1219 goto skip_bug_print;
1220
24922684 1221 slab_bug(s, "%s overwritten", what);
96b94abc 1222 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1223 fault, end - 1, fault - addr,
1224 fault[0], value);
24922684 1225
1f9f78b1 1226skip_bug_print:
24922684
CL
1227 restore_bytes(s, what, value, fault, end);
1228 return 0;
81819f0f
CL
1229}
1230
81819f0f
CL
1231/*
1232 * Object layout:
1233 *
1234 * object address
1235 * Bytes of the object to be managed.
1236 * If the freepointer may overlay the object then the free
cbfc35a4 1237 * pointer is at the middle of the object.
672bba3a 1238 *
81819f0f
CL
1239 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240 * 0xa5 (POISON_END)
1241 *
3b0efdfa 1242 * object + s->object_size
81819f0f 1243 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1244 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1245 * object_size == inuse.
672bba3a 1246 *
4a24bbab
CZ
1247 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
81819f0f
CL
1249 *
1250 * object + s->inuse
672bba3a
CL
1251 * Meta data starts here.
1252 *
81819f0f
CL
1253 * A. Free pointer (if we cannot overwrite object on free)
1254 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1255 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1257 * one word if debugging is on to be able to detect writes
672bba3a
CL
1258 * before the word boundary.
1259 *
1260 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1261 *
1262 * object + s->size
672bba3a 1263 * Nothing is used beyond s->size.
81819f0f 1264 *
3b0efdfa 1265 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1266 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1267 * may be used with merged slabcaches.
1268 */
1269
bb192ed9 1270static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1271{
cbfc35a4 1272 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1273
6edf2576 1274 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1275 /* We also have user information there */
1276 off += 2 * sizeof(struct track);
1277
6edf2576
FT
1278 if (s->flags & SLAB_KMALLOC)
1279 off += sizeof(unsigned int);
1280 }
1281
5d1ba310 1282 off += kasan_metadata_size(s, false);
80a9201a 1283
d86bd1be 1284 if (size_from_object(s) == off)
81819f0f
CL
1285 return 1;
1286
bb192ed9 1287 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1288 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1289}
1290
39b26464 1291/* Check the pad bytes at the end of a slab page */
adea9876
IL
1292static pad_check_attributes void
1293slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1294{
24922684
CL
1295 u8 *start;
1296 u8 *fault;
1297 u8 *end;
5d682681 1298 u8 *pad;
24922684
CL
1299 int length;
1300 int remainder;
81819f0f
CL
1301
1302 if (!(s->flags & SLAB_POISON))
a204e6d6 1303 return;
81819f0f 1304
bb192ed9
VB
1305 start = slab_address(slab);
1306 length = slab_size(slab);
39b26464
CL
1307 end = start + length;
1308 remainder = length % s->size;
81819f0f 1309 if (!remainder)
a204e6d6 1310 return;
81819f0f 1311
5d682681 1312 pad = end - remainder;
a79316c6 1313 metadata_access_enable();
aa1ef4d7 1314 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1315 metadata_access_disable();
24922684 1316 if (!fault)
a204e6d6 1317 return;
24922684
CL
1318 while (end > fault && end[-1] == POISON_INUSE)
1319 end--;
1320
bb192ed9 1321 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1322 fault, end - 1, fault - start);
5d682681 1323 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1324
5d682681 1325 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1326}
1327
bb192ed9 1328static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1329 void *object, u8 val)
81819f0f
CL
1330{
1331 u8 *p = object;
3b0efdfa 1332 u8 *endobject = object + s->object_size;
2d552463 1333 unsigned int orig_size, kasan_meta_size;
47d911b0 1334 int ret = 1;
81819f0f
CL
1335
1336 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1337 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be 1338 object - s->red_left_pad, val, s->red_left_pad))
47d911b0 1339 ret = 0;
d86bd1be 1340
bb192ed9 1341 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1342 endobject, val, s->inuse - s->object_size))
47d911b0 1343 ret = 0;
946fa0db
FT
1344
1345 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 orig_size = get_orig_size(s, object);
1347
1348 if (s->object_size > orig_size &&
1349 !check_bytes_and_report(s, slab, object,
1350 "kmalloc Redzone", p + orig_size,
1351 val, s->object_size - orig_size)) {
47d911b0 1352 ret = 0;
946fa0db
FT
1353 }
1354 }
81819f0f 1355 } else {
3b0efdfa 1356 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
47d911b0 1357 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97 1358 endobject, POISON_INUSE,
47d911b0
CZ
1359 s->inuse - s->object_size))
1360 ret = 0;
3adbefee 1361 }
81819f0f
CL
1362 }
1363
1364 if (s->flags & SLAB_POISON) {
2d552463
AK
1365 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366 /*
1367 * KASAN can save its free meta data inside of the
1368 * object at offset 0. Thus, skip checking the part of
1369 * the redzone that overlaps with the meta data.
1370 */
1371 kasan_meta_size = kasan_metadata_size(s, true);
1372 if (kasan_meta_size < s->object_size - 1 &&
1373 !check_bytes_and_report(s, slab, p, "Poison",
1374 p + kasan_meta_size, POISON_FREE,
1375 s->object_size - kasan_meta_size - 1))
47d911b0 1376 ret = 0;
2d552463
AK
1377 if (kasan_meta_size < s->object_size &&
1378 !check_bytes_and_report(s, slab, p, "End Poison",
1379 p + s->object_size - 1, POISON_END, 1))
47d911b0 1380 ret = 0;
2d552463 1381 }
81819f0f
CL
1382 /*
1383 * check_pad_bytes cleans up on its own.
1384 */
47d911b0
CZ
1385 if (!check_pad_bytes(s, slab, p))
1386 ret = 0;
81819f0f
CL
1387 }
1388
47d911b0
CZ
1389 /*
1390 * Cannot check freepointer while object is allocated if
1391 * object and freepointer overlap.
1392 */
1393 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
bb192ed9 1395 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1396 /*
9f6c708e 1397 * No choice but to zap it and thus lose the remainder
81819f0f 1398 * of the free objects in this slab. May cause
672bba3a 1399 * another error because the object count is now wrong.
81819f0f 1400 */
a973e9dd 1401 set_freepointer(s, p, NULL);
47d911b0 1402 ret = 0;
81819f0f 1403 }
47d911b0
CZ
1404
1405 if (!ret && !slab_in_kunit_test()) {
1406 print_trailer(s, slab, object);
1407 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408 }
1409
1410 return ret;
81819f0f
CL
1411}
1412
bb192ed9 1413static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1414{
39b26464
CL
1415 int maxobj;
1416
bb192ed9
VB
1417 if (!folio_test_slab(slab_folio(slab))) {
1418 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1419 return 0;
1420 }
39b26464 1421
bb192ed9
VB
1422 maxobj = order_objects(slab_order(slab), s->size);
1423 if (slab->objects > maxobj) {
1424 slab_err(s, slab, "objects %u > max %u",
1425 slab->objects, maxobj);
39b26464
CL
1426 return 0;
1427 }
bb192ed9
VB
1428 if (slab->inuse > slab->objects) {
1429 slab_err(s, slab, "inuse %u > max %u",
1430 slab->inuse, slab->objects);
81819f0f
CL
1431 return 0;
1432 }
1433 /* Slab_pad_check fixes things up after itself */
bb192ed9 1434 slab_pad_check(s, slab);
81819f0f
CL
1435 return 1;
1436}
1437
1438/*
c2092c12 1439 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1440 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1441 */
bb192ed9 1442static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1443{
1444 int nr = 0;
881db7fb 1445 void *fp;
81819f0f 1446 void *object = NULL;
f6edde9c 1447 int max_objects;
81819f0f 1448
bb192ed9
VB
1449 fp = slab->freelist;
1450 while (fp && nr <= slab->objects) {
81819f0f
CL
1451 if (fp == search)
1452 return 1;
bb192ed9 1453 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1454 if (object) {
bb192ed9 1455 object_err(s, slab, object,
81819f0f 1456 "Freechain corrupt");
a973e9dd 1457 set_freepointer(s, object, NULL);
81819f0f 1458 } else {
bb192ed9
VB
1459 slab_err(s, slab, "Freepointer corrupt");
1460 slab->freelist = NULL;
1461 slab->inuse = slab->objects;
24922684 1462 slab_fix(s, "Freelist cleared");
81819f0f
CL
1463 return 0;
1464 }
1465 break;
1466 }
1467 object = fp;
1468 fp = get_freepointer(s, object);
1469 nr++;
1470 }
1471
bb192ed9 1472 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1473 if (max_objects > MAX_OBJS_PER_PAGE)
1474 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1475
bb192ed9
VB
1476 if (slab->objects != max_objects) {
1477 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 slab->objects, max_objects);
1479 slab->objects = max_objects;
582d1212 1480 slab_fix(s, "Number of objects adjusted");
224a88be 1481 }
bb192ed9
VB
1482 if (slab->inuse != slab->objects - nr) {
1483 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 slab->inuse, slab->objects - nr);
1485 slab->inuse = slab->objects - nr;
582d1212 1486 slab_fix(s, "Object count adjusted");
81819f0f
CL
1487 }
1488 return search == NULL;
1489}
1490
bb192ed9 1491static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1492 int alloc)
3ec09742
CL
1493{
1494 if (s->flags & SLAB_TRACE) {
f9f58285 1495 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1496 s->name,
1497 alloc ? "alloc" : "free",
bb192ed9
VB
1498 object, slab->inuse,
1499 slab->freelist);
3ec09742
CL
1500
1501 if (!alloc)
aa2efd5e 1502 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1503 s->object_size);
3ec09742
CL
1504
1505 dump_stack();
1506 }
1507}
1508
643b1138 1509/*
672bba3a 1510 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1511 */
5cc6eee8 1512static void add_full(struct kmem_cache *s,
bb192ed9 1513 struct kmem_cache_node *n, struct slab *slab)
643b1138 1514{
5cc6eee8
CL
1515 if (!(s->flags & SLAB_STORE_USER))
1516 return;
1517
255d0884 1518 lockdep_assert_held(&n->list_lock);
bb192ed9 1519 list_add(&slab->slab_list, &n->full);
643b1138
CL
1520}
1521
bb192ed9 1522static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1523{
643b1138
CL
1524 if (!(s->flags & SLAB_STORE_USER))
1525 return;
1526
255d0884 1527 lockdep_assert_held(&n->list_lock);
bb192ed9 1528 list_del(&slab->slab_list);
643b1138
CL
1529}
1530
26c02cf0
AB
1531static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532{
1533 return atomic_long_read(&n->nr_slabs);
1534}
1535
205ab99d 1536static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1537{
1538 struct kmem_cache_node *n = get_node(s, node);
1539
3dd549a5
CZ
1540 atomic_long_inc(&n->nr_slabs);
1541 atomic_long_add(objects, &n->total_objects);
0f389ec6 1542}
205ab99d 1543static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1544{
1545 struct kmem_cache_node *n = get_node(s, node);
1546
1547 atomic_long_dec(&n->nr_slabs);
205ab99d 1548 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1549}
1550
1551/* Object debug checks for alloc/free paths */
c0f81a94 1552static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1553{
8fc8d666 1554 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1555 return;
1556
f7cb1933 1557 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1558 init_tracking(s, object);
1559}
1560
a50b854e 1561static
bb192ed9 1562void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1563{
8fc8d666 1564 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1565 return;
1566
1567 metadata_access_enable();
bb192ed9 1568 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1569 metadata_access_disable();
1570}
1571
becfda68 1572static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1573 struct slab *slab, void *object)
81819f0f 1574{
bb192ed9 1575 if (!check_slab(s, slab))
becfda68 1576 return 0;
81819f0f 1577
bb192ed9
VB
1578 if (!check_valid_pointer(s, slab, object)) {
1579 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1580 return 0;
81819f0f
CL
1581 }
1582
bb192ed9 1583 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1584 return 0;
1585
1586 return 1;
1587}
1588
fa9b88e4 1589static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1590 struct slab *slab, void *object, int orig_size)
becfda68
LA
1591{
1592 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1593 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1594 goto bad;
1595 }
81819f0f 1596
c7323a5a 1597 /* Success. Perform special debug activities for allocs */
bb192ed9 1598 trace(s, slab, object, 1);
6edf2576 1599 set_orig_size(s, object, orig_size);
f7cb1933 1600 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1601 return true;
3ec09742 1602
81819f0f 1603bad:
bb192ed9 1604 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1605 /*
1606 * If this is a slab page then lets do the best we can
1607 * to avoid issues in the future. Marking all objects
672bba3a 1608 * as used avoids touching the remaining objects.
81819f0f 1609 */
24922684 1610 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1611 slab->inuse = slab->objects;
1612 slab->freelist = NULL;
81819f0f 1613 }
fa9b88e4 1614 return false;
81819f0f
CL
1615}
1616
becfda68 1617static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1618 struct slab *slab, void *object, unsigned long addr)
81819f0f 1619{
bb192ed9
VB
1620 if (!check_valid_pointer(s, slab, object)) {
1621 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1622 return 0;
81819f0f
CL
1623 }
1624
bb192ed9
VB
1625 if (on_freelist(s, slab, object)) {
1626 object_err(s, slab, object, "Object already free");
becfda68 1627 return 0;
81819f0f
CL
1628 }
1629
bb192ed9 1630 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1631 return 0;
81819f0f 1632
bb192ed9
VB
1633 if (unlikely(s != slab->slab_cache)) {
1634 if (!folio_test_slab(slab_folio(slab))) {
1635 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1636 object);
bb192ed9 1637 } else if (!slab->slab_cache) {
f9f58285
FF
1638 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639 object);
70d71228 1640 dump_stack();
06428780 1641 } else
bb192ed9 1642 object_err(s, slab, object,
24922684 1643 "page slab pointer corrupt.");
becfda68
LA
1644 return 0;
1645 }
1646 return 1;
1647}
1648
e17f1dfb 1649/*
671776b3 1650 * Parse a block of slab_debug options. Blocks are delimited by ';'
e17f1dfb
VB
1651 *
1652 * @str: start of block
1653 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654 * @slabs: return start of list of slabs, or NULL when there's no list
1655 * @init: assume this is initial parsing and not per-kmem-create parsing
1656 *
1657 * returns the start of next block if there's any, or NULL
1658 */
1659static char *
1660parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1661{
e17f1dfb 1662 bool higher_order_disable = false;
f0630fff 1663
e17f1dfb
VB
1664 /* Skip any completely empty blocks */
1665 while (*str && *str == ';')
1666 str++;
1667
1668 if (*str == ',') {
f0630fff
CL
1669 /*
1670 * No options but restriction on slabs. This means full
1671 * debugging for slabs matching a pattern.
1672 */
e17f1dfb 1673 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1674 goto check_slabs;
e17f1dfb
VB
1675 }
1676 *flags = 0;
f0630fff 1677
e17f1dfb
VB
1678 /* Determine which debug features should be switched on */
1679 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1680 switch (tolower(*str)) {
e17f1dfb
VB
1681 case '-':
1682 *flags = 0;
1683 break;
f0630fff 1684 case 'f':
e17f1dfb 1685 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1686 break;
1687 case 'z':
e17f1dfb 1688 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1689 break;
1690 case 'p':
e17f1dfb 1691 *flags |= SLAB_POISON;
f0630fff
CL
1692 break;
1693 case 'u':
e17f1dfb 1694 *flags |= SLAB_STORE_USER;
f0630fff
CL
1695 break;
1696 case 't':
e17f1dfb 1697 *flags |= SLAB_TRACE;
f0630fff 1698 break;
4c13dd3b 1699 case 'a':
e17f1dfb 1700 *flags |= SLAB_FAILSLAB;
4c13dd3b 1701 break;
08303a73
CA
1702 case 'o':
1703 /*
1704 * Avoid enabling debugging on caches if its minimum
1705 * order would increase as a result.
1706 */
e17f1dfb 1707 higher_order_disable = true;
08303a73 1708 break;
f0630fff 1709 default:
e17f1dfb 1710 if (init)
671776b3 1711 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
f0630fff 1712 }
41ecc55b 1713 }
f0630fff 1714check_slabs:
41ecc55b 1715 if (*str == ',')
e17f1dfb
VB
1716 *slabs = ++str;
1717 else
1718 *slabs = NULL;
1719
1720 /* Skip over the slab list */
1721 while (*str && *str != ';')
1722 str++;
1723
1724 /* Skip any completely empty blocks */
1725 while (*str && *str == ';')
1726 str++;
1727
1728 if (init && higher_order_disable)
1729 disable_higher_order_debug = 1;
1730
1731 if (*str)
1732 return str;
1733 else
1734 return NULL;
1735}
1736
1737static int __init setup_slub_debug(char *str)
1738{
1739 slab_flags_t flags;
a7f1d485 1740 slab_flags_t global_flags;
e17f1dfb
VB
1741 char *saved_str;
1742 char *slab_list;
1743 bool global_slub_debug_changed = false;
1744 bool slab_list_specified = false;
1745
a7f1d485 1746 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1747 if (*str++ != '=' || !*str)
1748 /*
1749 * No options specified. Switch on full debugging.
1750 */
1751 goto out;
1752
1753 saved_str = str;
1754 while (str) {
1755 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756
1757 if (!slab_list) {
a7f1d485 1758 global_flags = flags;
e17f1dfb
VB
1759 global_slub_debug_changed = true;
1760 } else {
1761 slab_list_specified = true;
5cf909c5 1762 if (flags & SLAB_STORE_USER)
1c0310ad 1763 stack_depot_request_early_init();
e17f1dfb
VB
1764 }
1765 }
1766
1767 /*
1768 * For backwards compatibility, a single list of flags with list of
a7f1d485 1769 * slabs means debugging is only changed for those slabs, so the global
671776b3 1770 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
a7f1d485 1771 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1772 * long as there is no option specifying flags without a slab list.
1773 */
1774 if (slab_list_specified) {
1775 if (!global_slub_debug_changed)
a7f1d485 1776 global_flags = slub_debug;
e17f1dfb
VB
1777 slub_debug_string = saved_str;
1778 }
f0630fff 1779out:
a7f1d485 1780 slub_debug = global_flags;
5cf909c5 1781 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1782 stack_depot_request_early_init();
ca0cab65
VB
1783 if (slub_debug != 0 || slub_debug_string)
1784 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1785 else
1786 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1787 if ((static_branch_unlikely(&init_on_alloc) ||
1788 static_branch_unlikely(&init_on_free)) &&
1789 (slub_debug & SLAB_POISON))
1790 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1791 return 1;
1792}
1793
671776b3
XS
1794__setup("slab_debug", setup_slub_debug);
1795__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
41ecc55b 1796
c5fd3ca0
AT
1797/*
1798 * kmem_cache_flags - apply debugging options to the cache
c5fd3ca0
AT
1799 * @flags: flags to set
1800 * @name: name of the cache
c5fd3ca0
AT
1801 *
1802 * Debug option(s) are applied to @flags. In addition to the debug
1803 * option(s), if a slab name (or multiple) is specified i.e.
671776b3 1804 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
c5fd3ca0
AT
1805 * then only the select slabs will receive the debug option(s).
1806 */
303cd693 1807slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
41ecc55b 1808{
c5fd3ca0
AT
1809 char *iter;
1810 size_t len;
e17f1dfb
VB
1811 char *next_block;
1812 slab_flags_t block_flags;
ca220593
JB
1813 slab_flags_t slub_debug_local = slub_debug;
1814
a285909f
HY
1815 if (flags & SLAB_NO_USER_FLAGS)
1816 return flags;
1817
ca220593
JB
1818 /*
1819 * If the slab cache is for debugging (e.g. kmemleak) then
1820 * don't store user (stack trace) information by default,
1821 * but let the user enable it via the command line below.
1822 */
1823 if (flags & SLAB_NOLEAKTRACE)
1824 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1825
c5fd3ca0 1826 len = strlen(name);
e17f1dfb
VB
1827 next_block = slub_debug_string;
1828 /* Go through all blocks of debug options, see if any matches our slab's name */
1829 while (next_block) {
1830 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831 if (!iter)
1832 continue;
1833 /* Found a block that has a slab list, search it */
1834 while (*iter) {
1835 char *end, *glob;
1836 size_t cmplen;
1837
1838 end = strchrnul(iter, ',');
1839 if (next_block && next_block < end)
1840 end = next_block - 1;
1841
1842 glob = strnchr(iter, end - iter, '*');
1843 if (glob)
1844 cmplen = glob - iter;
1845 else
1846 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1847
e17f1dfb
VB
1848 if (!strncmp(name, iter, cmplen)) {
1849 flags |= block_flags;
1850 return flags;
1851 }
c5fd3ca0 1852
e17f1dfb
VB
1853 if (!*end || *end == ';')
1854 break;
1855 iter = end + 1;
c5fd3ca0 1856 }
c5fd3ca0 1857 }
ba0268a8 1858
ca220593 1859 return flags | slub_debug_local;
41ecc55b 1860}
b4a64718 1861#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1862static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1863static inline
bb192ed9 1864void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1865
fa9b88e4
VB
1866static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1868
fa9b88e4
VB
1869static inline bool free_debug_processing(struct kmem_cache *s,
1870 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1872
a204e6d6 1873static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1874static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1875 void *object, u8 val) { return 1; }
fa9b88e4 1876static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1877static inline void set_track(struct kmem_cache *s, void *object,
1878 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1879static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1880 struct slab *slab) {}
c65c1877 1881static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1882 struct slab *slab) {}
303cd693 1883slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
ba0268a8
CL
1884{
1885 return flags;
1886}
41ecc55b 1887#define slub_debug 0
0f389ec6 1888
fdaa45e9
IM
1889#define disable_higher_order_debug 0
1890
26c02cf0
AB
1891static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892 { return 0; }
205ab99d
CL
1893static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894 int objects) {}
1895static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896 int objects) {}
7d550c56 1897
0af8489b 1898#ifndef CONFIG_SLUB_TINY
bb192ed9 1899static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1900 void **freelist, void *nextfree)
52f23478
DZ
1901{
1902 return false;
1903}
0af8489b 1904#endif
02e72cc6
AR
1905#endif /* CONFIG_SLUB_DEBUG */
1906
21c690a3
SB
1907#ifdef CONFIG_SLAB_OBJ_EXT
1908
239d6c96
SB
1909#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910
1911static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
0bedcc66 1912{
239d6c96
SB
1913 struct slabobj_ext *slab_exts;
1914 struct slab *obj_exts_slab;
1915
1916 obj_exts_slab = virt_to_slab(obj_exts);
1917 slab_exts = slab_obj_exts(obj_exts_slab);
1918 if (slab_exts) {
1919 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 obj_exts_slab, obj_exts);
1921 /* codetag should be NULL */
1922 WARN_ON(slab_exts[offs].ref.ct);
1923 set_codetag_empty(&slab_exts[offs].ref);
1924 }
0bedcc66
VB
1925}
1926
09c46563 1927static inline void mark_failed_objexts_alloc(struct slab *slab)
0bedcc66 1928{
09c46563 1929 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
0bedcc66
VB
1930}
1931
09c46563
SB
1932static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 struct slabobj_ext *vec, unsigned int objects)
0bedcc66
VB
1934{
1935 /*
09c46563
SB
1936 * If vector previously failed to allocate then we have live
1937 * objects with no tag reference. Mark all references in this
1938 * vector as empty to avoid warnings later on.
0bedcc66 1939 */
09c46563
SB
1940 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1941 unsigned int i;
1942
1943 for (i = 0; i < objects; i++)
1944 set_codetag_empty(&vec[i].ref);
1945 }
0bedcc66
VB
1946}
1947
239d6c96
SB
1948#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949
1950static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
09c46563
SB
1951static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 struct slabobj_ext *vec, unsigned int objects) {}
239d6c96
SB
1954
1955#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1956
0bedcc66 1957/*
21c690a3
SB
1958 * The allocated objcg pointers array is not accounted directly.
1959 * Moreover, it should not come from DMA buffer and is not readily
1960 * reclaimable. So those GFP bits should be masked off.
0bedcc66 1961 */
21c690a3
SB
1962#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1963 __GFP_ACCOUNT | __GFP_NOFAIL)
1964
e6100a45
VB
1965int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 gfp_t gfp, bool new_slab)
21c690a3
SB
1967{
1968 unsigned int objects = objs_per_slab(s, slab);
09c46563
SB
1969 unsigned long new_exts;
1970 unsigned long old_exts;
1971 struct slabobj_ext *vec;
21c690a3
SB
1972
1973 gfp &= ~OBJCGS_CLEAR_MASK;
768c33be
SB
1974 /* Prevent recursive extension vector allocation */
1975 gfp |= __GFP_NO_OBJ_EXT;
21c690a3
SB
1976 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1977 slab_nid(slab));
09c46563
SB
1978 if (!vec) {
1979 /* Mark vectors which failed to allocate */
1980 if (new_slab)
1981 mark_failed_objexts_alloc(slab);
1982
21c690a3 1983 return -ENOMEM;
09c46563 1984 }
21c690a3 1985
09c46563 1986 new_exts = (unsigned long)vec;
21c690a3 1987#ifdef CONFIG_MEMCG
09c46563 1988 new_exts |= MEMCG_DATA_OBJEXTS;
21c690a3 1989#endif
3f0c44c8 1990 old_exts = READ_ONCE(slab->obj_exts);
09c46563 1991 handle_failed_objexts_alloc(old_exts, vec, objects);
21c690a3
SB
1992 if (new_slab) {
1993 /*
1994 * If the slab is brand new and nobody can yet access its
1995 * obj_exts, no synchronization is required and obj_exts can
1996 * be simply assigned.
1997 */
09c46563 1998 slab->obj_exts = new_exts;
3f0c44c8
TLSC
1999 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
21c690a3
SB
2001 /*
2002 * If the slab is already in use, somebody can allocate and
2003 * assign slabobj_exts in parallel. In this case the existing
2004 * objcg vector should be reused.
2005 */
239d6c96 2006 mark_objexts_empty(vec);
21c690a3
SB
2007 kfree(vec);
2008 return 0;
2009 }
2010
2011 kmemleak_not_leak(vec);
2012 return 0;
2013}
2014
2015static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 2016{
21c690a3
SB
2017 struct slabobj_ext *obj_exts;
2018
2019 obj_exts = slab_obj_exts(slab);
2020 if (!obj_exts)
2021 return;
2022
0bedcc66 2023 /*
239d6c96
SB
2024 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 * warning if slab has extensions but the extension of an object is
2027 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 * the extension for obj_exts is expected to be NULL.
0bedcc66 2029 */
239d6c96 2030 mark_objexts_empty(obj_exts);
21c690a3
SB
2031 kfree(obj_exts);
2032 slab->obj_exts = 0;
2033}
4b873696
SB
2034
2035static inline bool need_slab_obj_ext(void)
2036{
2037 if (mem_alloc_profiling_enabled())
0bedcc66
VB
2038 return true;
2039
4b873696 2040 /*
3a3b7fec 2041 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
4b873696
SB
2042 * inside memcg_slab_post_alloc_hook. No other users for now.
2043 */
2044 return false;
2045}
0bedcc66 2046
7b1fdf2b
SB
2047#else /* CONFIG_SLAB_OBJ_EXT */
2048
2049static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 gfp_t gfp, bool new_slab)
2051{
2052 return 0;
2053}
2054
2055static inline void free_slab_obj_exts(struct slab *slab)
2056{
2057}
2058
2059static inline bool need_slab_obj_ext(void)
2060{
2061 return false;
2062}
2063
2064#endif /* CONFIG_SLAB_OBJ_EXT */
2065
2066#ifdef CONFIG_MEM_ALLOC_PROFILING
2067
4b873696
SB
2068static inline struct slabobj_ext *
2069prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070{
2071 struct slab *slab;
0bedcc66 2072
4b873696
SB
2073 if (!p)
2074 return NULL;
0bedcc66 2075
3b89ec41 2076 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
4b873696 2077 return NULL;
0bedcc66 2078
4b873696
SB
2079 if (flags & __GFP_NO_OBJ_EXT)
2080 return NULL;
2081
2082 slab = virt_to_slab(p);
2083 if (!slab_obj_exts(slab) &&
2084 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 "%s, %s: Failed to create slab extension vector!\n",
2086 __func__, s->name))
2087 return NULL;
2088
2089 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
0bedcc66
VB
2090}
2091
302a3ea3
SB
2092static inline void
2093alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094{
2095 if (need_slab_obj_ext()) {
2096 struct slabobj_ext *obj_exts;
2097
2098 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 /*
2100 * Currently obj_exts is used only for allocation profiling.
2101 * If other users appear then mem_alloc_profiling_enabled()
2102 * check should be added before alloc_tag_add().
2103 */
2104 if (likely(obj_exts))
2105 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2106 }
2107}
2108
4b873696
SB
2109static inline void
2110alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2111 int objects)
3450a0e5 2112{
4b873696
SB
2113 struct slabobj_ext *obj_exts;
2114 int i;
3450a0e5 2115
4b873696
SB
2116 if (!mem_alloc_profiling_enabled())
2117 return;
3450a0e5 2118
ab7ca095
HG
2119 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2120 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2121 return;
2122
4b873696
SB
2123 obj_exts = slab_obj_exts(slab);
2124 if (!obj_exts)
2125 return;
2126
2127 for (i = 0; i < objects; i++) {
2128 unsigned int off = obj_to_index(s, slab, p[i]);
2129
2130 alloc_tag_sub(&obj_exts[off].ref, s->size);
2131 }
0bedcc66 2132}
0bedcc66 2133
302a3ea3 2134#else /* CONFIG_MEM_ALLOC_PROFILING */
0bedcc66 2135
302a3ea3
SB
2136static inline void
2137alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
4b873696 2138{
4b873696 2139}
0bedcc66 2140
4b873696
SB
2141static inline void
2142alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2143 int objects)
2144{
0bedcc66
VB
2145}
2146
302a3ea3
SB
2147#endif /* CONFIG_MEM_ALLOC_PROFILING */
2148
0bedcc66 2149
3a3b7fec 2150#ifdef CONFIG_MEMCG
0bedcc66 2151
9f9796b4
VB
2152static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2153
3450a0e5 2154static __fastpath_inline
9f9796b4 2155bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
2156 gfp_t flags, size_t size, void **p)
2157{
9f9796b4 2158 if (likely(!memcg_kmem_online()))
3450a0e5 2159 return true;
3450a0e5 2160
3450a0e5
VB
2161 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2162 return true;
0bedcc66 2163
9f9796b4
VB
2164 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2165 return true;
0bedcc66 2166
9f9796b4
VB
2167 if (likely(size == 1)) {
2168 memcg_alloc_abort_single(s, *p);
2169 *p = NULL;
2170 } else {
2171 kmem_cache_free_bulk(s, size, p);
0bedcc66 2172 }
3450a0e5 2173
9f9796b4 2174 return false;
0bedcc66 2175}
ecf9a253
VB
2176
2177static __fastpath_inline
2178void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2179 int objects)
2180{
21c690a3 2181 struct slabobj_ext *obj_exts;
ecf9a253
VB
2182
2183 if (!memcg_kmem_online())
2184 return;
2185
21c690a3
SB
2186 obj_exts = slab_obj_exts(slab);
2187 if (likely(!obj_exts))
ecf9a253
VB
2188 return;
2189
21c690a3 2190 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
520a688a 2191}
3a3b7fec 2192#else /* CONFIG_MEMCG */
9f9796b4
VB
2193static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2194 struct list_lru *lru,
0bedcc66
VB
2195 gfp_t flags, size_t size,
2196 void **p)
2197{
9f9796b4 2198 return true;
0bedcc66
VB
2199}
2200
2201static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2202 void **p, int objects)
2203{
2204}
3a3b7fec 2205#endif /* CONFIG_MEMCG */
0bedcc66 2206
02e72cc6
AR
2207/*
2208 * Hooks for other subsystems that check memory allocations. In a typical
2209 * production configuration these hooks all should produce no code at all.
284f17ac
VB
2210 *
2211 * Returns true if freeing of the object can proceed, false if its reuse
782f8906 2212 * was delayed by KASAN quarantine, or it was returned to KFENCE.
02e72cc6 2213 */
284f17ac
VB
2214static __always_inline
2215bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
d56791b3
RB
2216{
2217 kmemleak_free_recursive(x, s->flags);
68ef169a 2218 kmsan_slab_free(s, x);
7d550c56 2219
84048039 2220 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 2221
02e72cc6
AR
2222 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2223 debug_check_no_obj_freed(x, s->object_size);
0316bec2 2224
cfbe1636
ME
2225 /* Use KCSAN to help debug racy use-after-free. */
2226 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2227 __kcsan_check_access(x, s->object_size,
2228 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2229
782f8906
VB
2230 if (kfence_free(x))
2231 return false;
2232
d57a964e
AK
2233 /*
2234 * As memory initialization might be integrated into KASAN,
2235 * kasan_slab_free and initialization memset's must be
2236 * kept together to avoid discrepancies in behavior.
2237 *
2238 * The initialization memset's clear the object and the metadata,
2239 * but don't touch the SLAB redzone.
8f828aa4
NB
2240 *
2241 * The object's freepointer is also avoided if stored outside the
2242 * object.
d57a964e 2243 */
ecf9a253 2244 if (unlikely(init)) {
d57a964e 2245 int rsize;
8f828aa4 2246 unsigned int inuse;
d57a964e 2247
8f828aa4 2248 inuse = get_info_end(s);
d57a964e
AK
2249 if (!kasan_has_integrated_init())
2250 memset(kasan_reset_tag(x), 0, s->object_size);
2251 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
8f828aa4
NB
2252 memset((char *)kasan_reset_tag(x) + inuse, 0,
2253 s->size - inuse - rsize);
d57a964e
AK
2254 }
2255 /* KASAN might put x into memory quarantine, delaying its reuse. */
284f17ac 2256 return !kasan_slab_free(s, x, init);
02e72cc6 2257}
205ab99d 2258
9ea9cd8e
KO
2259static __fastpath_inline
2260bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2261 int *cnt)
81084651 2262{
6471384a
AP
2263
2264 void *object;
2265 void *next = *head;
284f17ac 2266 void *old_tail = *tail;
782f8906 2267 bool init;
6471384a 2268
b89fb5ef 2269 if (is_kfence_address(next)) {
d57a964e 2270 slab_free_hook(s, next, false);
782f8906 2271 return false;
b89fb5ef
AP
2272 }
2273
aea4df4c
LA
2274 /* Head and tail of the reconstructed freelist */
2275 *head = NULL;
2276 *tail = NULL;
1b7e816f 2277
782f8906
VB
2278 init = slab_want_init_on_free(s);
2279
aea4df4c
LA
2280 do {
2281 object = next;
2282 next = get_freepointer(s, object);
2283
c3895391 2284 /* If object's reuse doesn't have to be delayed */
782f8906 2285 if (likely(slab_free_hook(s, object, init))) {
c3895391
AK
2286 /* Move object to the new freelist */
2287 set_freepointer(s, object, *head);
2288 *head = object;
2289 if (!*tail)
2290 *tail = object;
899447f6
ML
2291 } else {
2292 /*
2293 * Adjust the reconstructed freelist depth
2294 * accordingly if object's reuse is delayed.
2295 */
2296 --(*cnt);
c3895391
AK
2297 }
2298 } while (object != old_tail);
2299
c3895391 2300 return *head != NULL;
81084651
JDB
2301}
2302
c0f81a94 2303static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 2304{
c0f81a94 2305 setup_object_debug(s, object);
4d176711 2306 object = kasan_init_slab_obj(s, object);
588f8ba9 2307 if (unlikely(s->ctor)) {
1ce9a052 2308 kasan_unpoison_new_object(s, object);
588f8ba9 2309 s->ctor(object);
1ce9a052 2310 kasan_poison_new_object(s, object);
588f8ba9 2311 }
4d176711 2312 return object;
588f8ba9
TG
2313}
2314
81819f0f
CL
2315/*
2316 * Slab allocation and freeing
2317 */
a485e1da
XS
2318static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2319 struct kmem_cache_order_objects oo)
65c3376a 2320{
45387b8c
VB
2321 struct folio *folio;
2322 struct slab *slab;
19af27af 2323 unsigned int order = oo_order(oo);
65c3376a 2324
8014c46a 2325 folio = (struct folio *)alloc_pages_node(node, flags, order);
45387b8c
VB
2326 if (!folio)
2327 return NULL;
2328
2329 slab = folio_slab(folio);
2330 __folio_set_slab(folio);
8b881763
VB
2331 /* Make the flag visible before any changes to folio->mapping */
2332 smp_wmb();
02d65d6f 2333 if (folio_is_pfmemalloc(folio))
45387b8c
VB
2334 slab_set_pfmemalloc(slab);
2335
2336 return slab;
65c3376a
CL
2337}
2338
210e7a43
TG
2339#ifdef CONFIG_SLAB_FREELIST_RANDOM
2340/* Pre-initialize the random sequence cache */
2341static int init_cache_random_seq(struct kmem_cache *s)
2342{
19af27af 2343 unsigned int count = oo_objects(s->oo);
210e7a43 2344 int err;
210e7a43 2345
a810007a
SR
2346 /* Bailout if already initialised */
2347 if (s->random_seq)
2348 return 0;
2349
210e7a43
TG
2350 err = cache_random_seq_create(s, count, GFP_KERNEL);
2351 if (err) {
2352 pr_err("SLUB: Unable to initialize free list for %s\n",
2353 s->name);
2354 return err;
2355 }
2356
2357 /* Transform to an offset on the set of pages */
2358 if (s->random_seq) {
19af27af
AD
2359 unsigned int i;
2360
210e7a43
TG
2361 for (i = 0; i < count; i++)
2362 s->random_seq[i] *= s->size;
2363 }
2364 return 0;
2365}
2366
2367/* Initialize each random sequence freelist per cache */
2368static void __init init_freelist_randomization(void)
2369{
2370 struct kmem_cache *s;
2371
2372 mutex_lock(&slab_mutex);
2373
2374 list_for_each_entry(s, &slab_caches, list)
2375 init_cache_random_seq(s);
2376
2377 mutex_unlock(&slab_mutex);
2378}
2379
2380/* Get the next entry on the pre-computed freelist randomized */
c63349fc 2381static void *next_freelist_entry(struct kmem_cache *s,
210e7a43
TG
2382 unsigned long *pos, void *start,
2383 unsigned long page_limit,
2384 unsigned long freelist_count)
2385{
2386 unsigned int idx;
2387
2388 /*
2389 * If the target page allocation failed, the number of objects on the
2390 * page might be smaller than the usual size defined by the cache.
2391 */
2392 do {
2393 idx = s->random_seq[*pos];
2394 *pos += 1;
2395 if (*pos >= freelist_count)
2396 *pos = 0;
2397 } while (unlikely(idx >= page_limit));
2398
2399 return (char *)start + idx;
2400}
2401
2402/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 2403static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2404{
2405 void *start;
2406 void *cur;
2407 void *next;
2408 unsigned long idx, pos, page_limit, freelist_count;
2409
bb192ed9 2410 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
2411 return false;
2412
2413 freelist_count = oo_objects(s->oo);
8032bf12 2414 pos = get_random_u32_below(freelist_count);
210e7a43 2415
bb192ed9
VB
2416 page_limit = slab->objects * s->size;
2417 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
2418
2419 /* First entry is used as the base of the freelist */
c63349fc 2420 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
c0f81a94 2421 cur = setup_object(s, cur);
bb192ed9 2422 slab->freelist = cur;
210e7a43 2423
bb192ed9 2424 for (idx = 1; idx < slab->objects; idx++) {
c63349fc 2425 next = next_freelist_entry(s, &pos, start, page_limit,
210e7a43 2426 freelist_count);
c0f81a94 2427 next = setup_object(s, next);
210e7a43
TG
2428 set_freepointer(s, cur, next);
2429 cur = next;
2430 }
210e7a43
TG
2431 set_freepointer(s, cur, NULL);
2432
2433 return true;
2434}
2435#else
2436static inline int init_cache_random_seq(struct kmem_cache *s)
2437{
2438 return 0;
2439}
2440static inline void init_freelist_randomization(void) { }
bb192ed9 2441static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2442{
2443 return false;
2444}
2445#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2446
0bedcc66
VB
2447static __always_inline void account_slab(struct slab *slab, int order,
2448 struct kmem_cache *s, gfp_t gfp)
2449{
2450 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
21c690a3 2451 alloc_slab_obj_exts(slab, s, gfp, true);
0bedcc66
VB
2452
2453 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2454 PAGE_SIZE << order);
2455}
2456
2457static __always_inline void unaccount_slab(struct slab *slab, int order,
2458 struct kmem_cache *s)
2459{
4b873696 2460 if (memcg_kmem_online() || need_slab_obj_ext())
21c690a3 2461 free_slab_obj_exts(slab);
0bedcc66
VB
2462
2463 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2464 -(PAGE_SIZE << order));
2465}
2466
bb192ed9 2467static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 2468{
bb192ed9 2469 struct slab *slab;
834f3d11 2470 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2471 gfp_t alloc_gfp;
4d176711 2472 void *start, *p, *next;
a50b854e 2473 int idx;
210e7a43 2474 bool shuffle;
81819f0f 2475
7e0528da
CL
2476 flags &= gfp_allowed_mask;
2477
b7a49f0d 2478 flags |= s->allocflags;
e12ba74d 2479
ba52270d
PE
2480 /*
2481 * Let the initial higher-order allocation fail under memory pressure
2482 * so we fall-back to the minimum order allocation.
2483 */
2484 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2485 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2486 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2487
a485e1da 2488 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2489 if (unlikely(!slab)) {
65c3376a 2490 oo = s->min;
80c3a998 2491 alloc_gfp = flags;
65c3376a
CL
2492 /*
2493 * Allocation may have failed due to fragmentation.
2494 * Try a lower order alloc if possible
2495 */
a485e1da 2496 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2497 if (unlikely(!slab))
c7323a5a 2498 return NULL;
588f8ba9 2499 stat(s, ORDER_FALLBACK);
65c3376a 2500 }
5a896d9e 2501
bb192ed9 2502 slab->objects = oo_objects(oo);
c7323a5a
VB
2503 slab->inuse = 0;
2504 slab->frozen = 0;
81819f0f 2505
bb192ed9 2506 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2507
bb192ed9 2508 slab->slab_cache = s;
81819f0f 2509
6e48a966 2510 kasan_poison_slab(slab);
81819f0f 2511
bb192ed9 2512 start = slab_address(slab);
81819f0f 2513
bb192ed9 2514 setup_slab_debug(s, slab, start);
0316bec2 2515
bb192ed9 2516 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2517
2518 if (!shuffle) {
4d176711 2519 start = fixup_red_left(s, start);
c0f81a94 2520 start = setup_object(s, start);
bb192ed9
VB
2521 slab->freelist = start;
2522 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2523 next = p + s->size;
c0f81a94 2524 next = setup_object(s, next);
18e50661
AK
2525 set_freepointer(s, p, next);
2526 p = next;
2527 }
2528 set_freepointer(s, p, NULL);
81819f0f 2529 }
81819f0f 2530
bb192ed9 2531 return slab;
81819f0f
CL
2532}
2533
bb192ed9 2534static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2535{
44405099
LL
2536 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2537 flags = kmalloc_fix_flags(flags);
588f8ba9 2538
53a0de06
VB
2539 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2540
588f8ba9
TG
2541 return allocate_slab(s,
2542 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2543}
2544
4020b4a2 2545static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2546{
4020b4a2
VB
2547 struct folio *folio = slab_folio(slab);
2548 int order = folio_order(folio);
834f3d11 2549 int pages = 1 << order;
81819f0f 2550
4020b4a2 2551 __slab_clear_pfmemalloc(slab);
4020b4a2 2552 folio->mapping = NULL;
8b881763
VB
2553 /* Make the mapping reset visible before clearing the flag */
2554 smp_wmb();
2555 __folio_clear_slab(folio);
c7b23b68 2556 mm_account_reclaimed_pages(pages);
4020b4a2 2557 unaccount_slab(slab, order, s);
c034c6a4 2558 __free_pages(&folio->page, order);
81819f0f
CL
2559}
2560
2561static void rcu_free_slab(struct rcu_head *h)
2562{
bb192ed9 2563 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2564
bb192ed9 2565 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2566}
2567
bb192ed9 2568static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2569{
bc29d5bd
VB
2570 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2571 void *p;
2572
2573 slab_pad_check(s, slab);
2574 for_each_object(p, s, slab_address(slab), slab->objects)
2575 check_object(s, slab, p, SLUB_RED_INACTIVE);
2576 }
2577
2578 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2579 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2580 else
bb192ed9 2581 __free_slab(s, slab);
81819f0f
CL
2582}
2583
bb192ed9 2584static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2585{
bb192ed9
VB
2586 dec_slabs_node(s, slab_nid(slab), slab->objects);
2587 free_slab(s, slab);
81819f0f
CL
2588}
2589
8a399e2f
CZ
2590/*
2591 * SLUB reuses PG_workingset bit to keep track of whether it's on
2592 * the per-node partial list.
2593 */
2594static inline bool slab_test_node_partial(const struct slab *slab)
2595{
4d2bcefa 2596 return folio_test_workingset(slab_folio(slab));
8a399e2f
CZ
2597}
2598
2599static inline void slab_set_node_partial(struct slab *slab)
2600{
2601 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2602}
2603
2604static inline void slab_clear_node_partial(struct slab *slab)
2605{
2606 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2607}
2608
81819f0f 2609/*
5cc6eee8 2610 * Management of partially allocated slabs.
81819f0f 2611 */
1e4dd946 2612static inline void
bb192ed9 2613__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2614{
e95eed57 2615 n->nr_partial++;
136333d1 2616 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2617 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2618 else
bb192ed9 2619 list_add(&slab->slab_list, &n->partial);
8a399e2f 2620 slab_set_node_partial(slab);
81819f0f
CL
2621}
2622
1e4dd946 2623static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2624 struct slab *slab, int tail)
62e346a8 2625{
c65c1877 2626 lockdep_assert_held(&n->list_lock);
bb192ed9 2627 __add_partial(n, slab, tail);
1e4dd946 2628}
c65c1877 2629
1e4dd946 2630static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2631 struct slab *slab)
1e4dd946
SR
2632{
2633 lockdep_assert_held(&n->list_lock);
bb192ed9 2634 list_del(&slab->slab_list);
8a399e2f 2635 slab_clear_node_partial(slab);
52b4b950 2636 n->nr_partial--;
1e4dd946
SR
2637}
2638
c7323a5a 2639/*
8cd3fa42 2640 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
c7323a5a
VB
2641 * slab from the n->partial list. Remove only a single object from the slab, do
2642 * the alloc_debug_processing() checks and leave the slab on the list, or move
2643 * it to full list if it was the last free object.
2644 */
2645static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2646 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2647{
2648 void *object;
2649
2650 lockdep_assert_held(&n->list_lock);
2651
2652 object = slab->freelist;
2653 slab->freelist = get_freepointer(s, object);
2654 slab->inuse++;
2655
6edf2576 2656 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2657 remove_partial(n, slab);
2658 return NULL;
2659 }
2660
2661 if (slab->inuse == slab->objects) {
2662 remove_partial(n, slab);
2663 add_full(s, n, slab);
2664 }
2665
2666 return object;
2667}
2668
2669/*
2670 * Called only for kmem_cache_debug() caches to allocate from a freshly
2671 * allocated slab. Allocate a single object instead of whole freelist
2672 * and put the slab to the partial (or full) list.
2673 */
2674static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2675 struct slab *slab, int orig_size)
c7323a5a
VB
2676{
2677 int nid = slab_nid(slab);
2678 struct kmem_cache_node *n = get_node(s, nid);
2679 unsigned long flags;
2680 void *object;
2681
2682
2683 object = slab->freelist;
2684 slab->freelist = get_freepointer(s, object);
2685 slab->inuse = 1;
2686
6edf2576 2687 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2688 /*
2689 * It's not really expected that this would fail on a
2690 * freshly allocated slab, but a concurrent memory
2691 * corruption in theory could cause that.
2692 */
2693 return NULL;
2694
2695 spin_lock_irqsave(&n->list_lock, flags);
2696
2697 if (slab->inuse == slab->objects)
2698 add_full(s, n, slab);
2699 else
2700 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2701
2702 inc_slabs_node(s, nid, slab->objects);
2703 spin_unlock_irqrestore(&n->list_lock, flags);
2704
2705 return object;
2706}
2707
e0a043aa 2708#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2709static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2710#else
bb192ed9 2711static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2712 int drain) { }
2713#endif
01b34d16 2714static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2715
81819f0f 2716/*
672bba3a 2717 * Try to allocate a partial slab from a specific node.
81819f0f 2718 */
43c4c349
CZ
2719static struct slab *get_partial_node(struct kmem_cache *s,
2720 struct kmem_cache_node *n,
2721 struct partial_context *pc)
81819f0f 2722{
43c4c349 2723 struct slab *slab, *slab2, *partial = NULL;
4b1f449d 2724 unsigned long flags;
bb192ed9 2725 unsigned int partial_slabs = 0;
81819f0f
CL
2726
2727 /*
2728 * Racy check. If we mistakenly see no partial slabs then we
2729 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2730 * partial slab and there is none available then get_partial()
672bba3a 2731 * will return NULL.
81819f0f
CL
2732 */
2733 if (!n || !n->nr_partial)
2734 return NULL;
2735
4b1f449d 2736 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2737 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
6edf2576 2738 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2739 continue;
2740
0af8489b 2741 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
8cd3fa42 2742 void *object = alloc_single_from_partial(s, n, slab,
6edf2576 2743 pc->orig_size);
43c4c349
CZ
2744 if (object) {
2745 partial = slab;
2746 pc->object = object;
c7323a5a 2747 break;
43c4c349 2748 }
c7323a5a
VB
2749 continue;
2750 }
2751
8cd3fa42 2752 remove_partial(n, slab);
49e22585 2753
43c4c349
CZ
2754 if (!partial) {
2755 partial = slab;
49e22585 2756 stat(s, ALLOC_FROM_PARTIAL);
ff99b18f
XS
2757
2758 if ((slub_get_cpu_partial(s) == 0)) {
2759 break;
2760 }
49e22585 2761 } else {
bb192ed9 2762 put_cpu_partial(s, slab, 0);
8028dcea 2763 stat(s, CPU_PARTIAL_NODE);
49e22585 2764
ff99b18f
XS
2765 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2766 break;
2767 }
2768 }
497b66f2 2769 }
4b1f449d 2770 spin_unlock_irqrestore(&n->list_lock, flags);
43c4c349 2771 return partial;
81819f0f
CL
2772}
2773
2774/*
c2092c12 2775 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2776 */
43c4c349
CZ
2777static struct slab *get_any_partial(struct kmem_cache *s,
2778 struct partial_context *pc)
81819f0f
CL
2779{
2780#ifdef CONFIG_NUMA
2781 struct zonelist *zonelist;
dd1a239f 2782 struct zoneref *z;
54a6eb5c 2783 struct zone *zone;
6edf2576 2784 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
43c4c349 2785 struct slab *slab;
cc9a6c87 2786 unsigned int cpuset_mems_cookie;
81819f0f
CL
2787
2788 /*
672bba3a
CL
2789 * The defrag ratio allows a configuration of the tradeoffs between
2790 * inter node defragmentation and node local allocations. A lower
2791 * defrag_ratio increases the tendency to do local allocations
2792 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2793 *
672bba3a
CL
2794 * If the defrag_ratio is set to 0 then kmalloc() always
2795 * returns node local objects. If the ratio is higher then kmalloc()
2796 * may return off node objects because partial slabs are obtained
2797 * from other nodes and filled up.
81819f0f 2798 *
43efd3ea
LP
2799 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2800 * (which makes defrag_ratio = 1000) then every (well almost)
2801 * allocation will first attempt to defrag slab caches on other nodes.
2802 * This means scanning over all nodes to look for partial slabs which
2803 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2804 * with available objects.
81819f0f 2805 */
9824601e
CL
2806 if (!s->remote_node_defrag_ratio ||
2807 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2808 return NULL;
2809
cc9a6c87 2810 do {
d26914d1 2811 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2812 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2813 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2814 struct kmem_cache_node *n;
2815
2816 n = get_node(s, zone_to_nid(zone));
2817
6edf2576 2818 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2819 n->nr_partial > s->min_partial) {
43c4c349
CZ
2820 slab = get_partial_node(s, n, pc);
2821 if (slab) {
cc9a6c87 2822 /*
d26914d1
MG
2823 * Don't check read_mems_allowed_retry()
2824 * here - if mems_allowed was updated in
2825 * parallel, that was a harmless race
2826 * between allocation and the cpuset
2827 * update
cc9a6c87 2828 */
43c4c349 2829 return slab;
cc9a6c87 2830 }
c0ff7453 2831 }
81819f0f 2832 }
d26914d1 2833 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2834#endif /* CONFIG_NUMA */
81819f0f
CL
2835 return NULL;
2836}
2837
2838/*
c2092c12 2839 * Get a partial slab, lock it and return it.
81819f0f 2840 */
43c4c349
CZ
2841static struct slab *get_partial(struct kmem_cache *s, int node,
2842 struct partial_context *pc)
81819f0f 2843{
43c4c349 2844 struct slab *slab;
a561ce00
JK
2845 int searchnode = node;
2846
2847 if (node == NUMA_NO_NODE)
2848 searchnode = numa_mem_id();
81819f0f 2849
43c4c349 2850 slab = get_partial_node(s, get_node(s, searchnode), pc);
9198ffbd 2851 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
43c4c349 2852 return slab;
81819f0f 2853
6edf2576 2854 return get_any_partial(s, pc);
81819f0f
CL
2855}
2856
0af8489b
VB
2857#ifndef CONFIG_SLUB_TINY
2858
923717cb 2859#ifdef CONFIG_PREEMPTION
8a5ec0ba 2860/*
0d645ed1 2861 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2862 * during cmpxchg. The transactions start with the cpu number and are then
2863 * incremented by CONFIG_NR_CPUS.
2864 */
2865#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2866#else
2867/*
2868 * No preemption supported therefore also no need to check for
2869 * different cpus.
2870 */
2871#define TID_STEP 1
0af8489b 2872#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2873
2874static inline unsigned long next_tid(unsigned long tid)
2875{
2876 return tid + TID_STEP;
2877}
2878
9d5f0be0 2879#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2880static inline unsigned int tid_to_cpu(unsigned long tid)
2881{
2882 return tid % TID_STEP;
2883}
2884
2885static inline unsigned long tid_to_event(unsigned long tid)
2886{
2887 return tid / TID_STEP;
2888}
9d5f0be0 2889#endif
8a5ec0ba
CL
2890
2891static inline unsigned int init_tid(int cpu)
2892{
2893 return cpu;
2894}
2895
2896static inline void note_cmpxchg_failure(const char *n,
2897 const struct kmem_cache *s, unsigned long tid)
2898{
2899#ifdef SLUB_DEBUG_CMPXCHG
2900 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2901
f9f58285 2902 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2903
923717cb 2904#ifdef CONFIG_PREEMPTION
8a5ec0ba 2905 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2906 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2907 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2908 else
2909#endif
2910 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2911 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2912 tid_to_event(tid), tid_to_event(actual_tid));
2913 else
f9f58285 2914 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2915 actual_tid, tid, next_tid(tid));
2916#endif
4fdccdfb 2917 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2918}
2919
788e1aad 2920static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2921{
8a5ec0ba 2922 int cpu;
bd0e7491 2923 struct kmem_cache_cpu *c;
8a5ec0ba 2924
bd0e7491
VB
2925 for_each_possible_cpu(cpu) {
2926 c = per_cpu_ptr(s->cpu_slab, cpu);
2927 local_lock_init(&c->lock);
2928 c->tid = init_tid(cpu);
2929 }
8a5ec0ba 2930}
2cfb7455 2931
81819f0f 2932/*
c2092c12 2933 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2934 * unfreezes the slabs and puts it on the proper list.
2935 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2936 * by the caller.
81819f0f 2937 */
bb192ed9 2938static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2939 void *freelist)
81819f0f 2940{
bb192ed9 2941 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0 2942 int free_delta = 0;
d930ff03 2943 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2944 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2945 unsigned long flags = 0;
bb192ed9
VB
2946 struct slab new;
2947 struct slab old;
2cfb7455 2948
844776cb 2949 if (READ_ONCE(slab->freelist)) {
84e554e6 2950 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2951 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2952 }
2953
894b8788 2954 /*
d930ff03
VB
2955 * Stage one: Count the objects on cpu's freelist as free_delta and
2956 * remember the last object in freelist_tail for later splicing.
2cfb7455 2957 */
d930ff03
VB
2958 freelist_tail = NULL;
2959 freelist_iter = freelist;
2960 while (freelist_iter) {
2961 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2962
52f23478
DZ
2963 /*
2964 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2965 * 'freelist_iter' is already corrupted. So isolate all objects
2966 * starting at 'freelist_iter' by skipping them.
52f23478 2967 */
bb192ed9 2968 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2969 break;
2970
d930ff03
VB
2971 freelist_tail = freelist_iter;
2972 free_delta++;
2cfb7455 2973
d930ff03 2974 freelist_iter = nextfree;
2cfb7455
CL
2975 }
2976
894b8788 2977 /*
c2092c12
VB
2978 * Stage two: Unfreeze the slab while splicing the per-cpu
2979 * freelist to the head of slab's freelist.
894b8788 2980 */
00eb60c2
CZ
2981 do {
2982 old.freelist = READ_ONCE(slab->freelist);
2983 old.counters = READ_ONCE(slab->counters);
2984 VM_BUG_ON(!old.frozen);
2985
2986 /* Determine target state of the slab */
2987 new.counters = old.counters;
2988 new.frozen = 0;
2989 if (freelist_tail) {
2990 new.inuse -= free_delta;
2991 set_freepointer(s, freelist_tail, old.freelist);
2992 new.freelist = freelist;
2993 } else {
2994 new.freelist = old.freelist;
2995 }
2996 } while (!slab_update_freelist(s, slab,
2997 old.freelist, old.counters,
2998 new.freelist, new.counters,
2999 "unfreezing slab"));
2cfb7455 3000
00eb60c2
CZ
3001 /*
3002 * Stage three: Manipulate the slab list based on the updated state.
3003 */
6d3a16d0 3004 if (!new.inuse && n->nr_partial >= s->min_partial) {
00eb60c2
CZ
3005 stat(s, DEACTIVATE_EMPTY);
3006 discard_slab(s, slab);
3007 stat(s, FREE_SLAB);
6d3a16d0 3008 } else if (new.freelist) {
6d3a16d0 3009 spin_lock_irqsave(&n->list_lock, flags);
6d3a16d0
HY
3010 add_partial(n, slab, tail);
3011 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 3012 stat(s, tail);
00eb60c2 3013 } else {
6d3a16d0 3014 stat(s, DEACTIVATE_FULL);
894b8788 3015 }
81819f0f
CL
3016}
3017
345c905d 3018#ifdef CONFIG_SLUB_CPU_PARTIAL
21316fdc 3019static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 3020{
43d77867 3021 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 3022 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 3023 unsigned long flags = 0;
49e22585 3024
bb192ed9 3025 while (partial_slab) {
bb192ed9
VB
3026 slab = partial_slab;
3027 partial_slab = slab->next;
43d77867 3028
bb192ed9 3029 n2 = get_node(s, slab_nid(slab));
43d77867
JK
3030 if (n != n2) {
3031 if (n)
7cf9f3ba 3032 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
3033
3034 n = n2;
7cf9f3ba 3035 spin_lock_irqsave(&n->list_lock, flags);
43d77867 3036 }
49e22585 3037
8cd3fa42 3038 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
3039 slab->next = slab_to_discard;
3040 slab_to_discard = slab;
43d77867 3041 } else {
bb192ed9 3042 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 3043 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
3044 }
3045 }
3046
3047 if (n)
7cf9f3ba 3048 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 3049
bb192ed9
VB
3050 while (slab_to_discard) {
3051 slab = slab_to_discard;
3052 slab_to_discard = slab_to_discard->next;
9ada1934
SL
3053
3054 stat(s, DEACTIVATE_EMPTY);
bb192ed9 3055 discard_slab(s, slab);
9ada1934
SL
3056 stat(s, FREE_SLAB);
3057 }
fc1455f4 3058}
f3ab8b6b 3059
fc1455f4 3060/*
21316fdc 3061 * Put all the cpu partial slabs to the node partial list.
fc1455f4 3062 */
21316fdc 3063static void put_partials(struct kmem_cache *s)
fc1455f4 3064{
bb192ed9 3065 struct slab *partial_slab;
fc1455f4
VB
3066 unsigned long flags;
3067
bd0e7491 3068 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3069 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 3070 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 3071 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 3072
bb192ed9 3073 if (partial_slab)
21316fdc 3074 __put_partials(s, partial_slab);
fc1455f4
VB
3075}
3076
21316fdc
CZ
3077static void put_partials_cpu(struct kmem_cache *s,
3078 struct kmem_cache_cpu *c)
fc1455f4 3079{
bb192ed9 3080 struct slab *partial_slab;
fc1455f4 3081
bb192ed9 3082 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
3083 c->partial = NULL;
3084
bb192ed9 3085 if (partial_slab)
21316fdc 3086 __put_partials(s, partial_slab);
49e22585
CL
3087}
3088
3089/*
31bda717 3090 * Put a slab into a partial slab slot if available.
49e22585
CL
3091 *
3092 * If we did not find a slot then simply move all the partials to the
3093 * per node partial list.
3094 */
bb192ed9 3095static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 3096{
bb192ed9 3097 struct slab *oldslab;
21316fdc 3098 struct slab *slab_to_put = NULL;
e0a043aa 3099 unsigned long flags;
bb192ed9 3100 int slabs = 0;
49e22585 3101
bd0e7491 3102 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 3103
bb192ed9 3104 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 3105
bb192ed9
VB
3106 if (oldslab) {
3107 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
3108 /*
3109 * Partial array is full. Move the existing set to the
3110 * per node partial list. Postpone the actual unfreezing
3111 * outside of the critical section.
3112 */
21316fdc 3113 slab_to_put = oldslab;
bb192ed9 3114 oldslab = NULL;
e0a043aa 3115 } else {
bb192ed9 3116 slabs = oldslab->slabs;
49e22585 3117 }
e0a043aa 3118 }
49e22585 3119
bb192ed9 3120 slabs++;
49e22585 3121
bb192ed9
VB
3122 slab->slabs = slabs;
3123 slab->next = oldslab;
49e22585 3124
bb192ed9 3125 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 3126
bd0e7491 3127 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 3128
21316fdc
CZ
3129 if (slab_to_put) {
3130 __put_partials(s, slab_to_put);
e0a043aa
VB
3131 stat(s, CPU_PARTIAL_DRAIN);
3132 }
49e22585
CL
3133}
3134
e0a043aa
VB
3135#else /* CONFIG_SLUB_CPU_PARTIAL */
3136
21316fdc
CZ
3137static inline void put_partials(struct kmem_cache *s) { }
3138static inline void put_partials_cpu(struct kmem_cache *s,
3139 struct kmem_cache_cpu *c) { }
e0a043aa
VB
3140
3141#endif /* CONFIG_SLUB_CPU_PARTIAL */
3142
dfb4f096 3143static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 3144{
5a836bf6 3145 unsigned long flags;
bb192ed9 3146 struct slab *slab;
5a836bf6
SAS
3147 void *freelist;
3148
bd0e7491 3149 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 3150
bb192ed9 3151 slab = c->slab;
5a836bf6 3152 freelist = c->freelist;
c17dda40 3153
bb192ed9 3154 c->slab = NULL;
a019d201 3155 c->freelist = NULL;
c17dda40 3156 c->tid = next_tid(c->tid);
a019d201 3157
bd0e7491 3158 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 3159
bb192ed9
VB
3160 if (slab) {
3161 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
3162 stat(s, CPUSLAB_FLUSH);
3163 }
81819f0f
CL
3164}
3165
0c710013 3166static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 3167{
9dfc6e68 3168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 3169 void *freelist = c->freelist;
bb192ed9 3170 struct slab *slab = c->slab;
81819f0f 3171
bb192ed9 3172 c->slab = NULL;
08beb547
VB
3173 c->freelist = NULL;
3174 c->tid = next_tid(c->tid);
3175
bb192ed9
VB
3176 if (slab) {
3177 deactivate_slab(s, slab, freelist);
08beb547
VB
3178 stat(s, CPUSLAB_FLUSH);
3179 }
49e22585 3180
21316fdc 3181 put_partials_cpu(s, c);
81819f0f
CL
3182}
3183
5a836bf6
SAS
3184struct slub_flush_work {
3185 struct work_struct work;
3186 struct kmem_cache *s;
3187 bool skip;
3188};
3189
fc1455f4
VB
3190/*
3191 * Flush cpu slab.
3192 *
5a836bf6 3193 * Called from CPU work handler with migration disabled.
fc1455f4 3194 */
5a836bf6 3195static void flush_cpu_slab(struct work_struct *w)
81819f0f 3196{
5a836bf6
SAS
3197 struct kmem_cache *s;
3198 struct kmem_cache_cpu *c;
3199 struct slub_flush_work *sfw;
3200
3201 sfw = container_of(w, struct slub_flush_work, work);
3202
3203 s = sfw->s;
3204 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 3205
bb192ed9 3206 if (c->slab)
fc1455f4 3207 flush_slab(s, c);
81819f0f 3208
21316fdc 3209 put_partials(s);
81819f0f
CL
3210}
3211
5a836bf6 3212static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 3213{
a8364d55
GBY
3214 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3215
bb192ed9 3216 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
3217}
3218
5a836bf6
SAS
3219static DEFINE_MUTEX(flush_lock);
3220static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3221
3222static void flush_all_cpus_locked(struct kmem_cache *s)
3223{
3224 struct slub_flush_work *sfw;
3225 unsigned int cpu;
3226
3227 lockdep_assert_cpus_held();
3228 mutex_lock(&flush_lock);
3229
3230 for_each_online_cpu(cpu) {
3231 sfw = &per_cpu(slub_flush, cpu);
3232 if (!has_cpu_slab(cpu, s)) {
3233 sfw->skip = true;
3234 continue;
3235 }
3236 INIT_WORK(&sfw->work, flush_cpu_slab);
3237 sfw->skip = false;
3238 sfw->s = s;
e45cc288 3239 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
3240 }
3241
3242 for_each_online_cpu(cpu) {
3243 sfw = &per_cpu(slub_flush, cpu);
3244 if (sfw->skip)
3245 continue;
3246 flush_work(&sfw->work);
3247 }
3248
3249 mutex_unlock(&flush_lock);
3250}
3251
81819f0f
CL
3252static void flush_all(struct kmem_cache *s)
3253{
5a836bf6
SAS
3254 cpus_read_lock();
3255 flush_all_cpus_locked(s);
3256 cpus_read_unlock();
81819f0f
CL
3257}
3258
a96a87bf
SAS
3259/*
3260 * Use the cpu notifier to insure that the cpu slabs are flushed when
3261 * necessary.
3262 */
3263static int slub_cpu_dead(unsigned int cpu)
3264{
3265 struct kmem_cache *s;
a96a87bf
SAS
3266
3267 mutex_lock(&slab_mutex);
0e7ac738 3268 list_for_each_entry(s, &slab_caches, list)
a96a87bf 3269 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
3270 mutex_unlock(&slab_mutex);
3271 return 0;
3272}
3273
0af8489b
VB
3274#else /* CONFIG_SLUB_TINY */
3275static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3276static inline void flush_all(struct kmem_cache *s) { }
3277static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3278static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3279#endif /* CONFIG_SLUB_TINY */
3280
dfb4f096
CL
3281/*
3282 * Check if the objects in a per cpu structure fit numa
3283 * locality expectations.
3284 */
bb192ed9 3285static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
3286{
3287#ifdef CONFIG_NUMA
bb192ed9 3288 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
3289 return 0;
3290#endif
3291 return 1;
3292}
3293
9a02d699 3294#ifdef CONFIG_SLUB_DEBUG
bb192ed9 3295static int count_free(struct slab *slab)
781b2ba6 3296{
bb192ed9 3297 return slab->objects - slab->inuse;
781b2ba6
PE
3298}
3299
9a02d699
DR
3300static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3301{
3302 return atomic_long_read(&n->total_objects);
3303}
a579b056
VB
3304
3305/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
3306static inline bool free_debug_processing(struct kmem_cache *s,
3307 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3308 unsigned long addr, depot_stack_handle_t handle)
a579b056 3309{
fa9b88e4 3310 bool checks_ok = false;
a579b056
VB
3311 void *object = head;
3312 int cnt = 0;
a579b056
VB
3313
3314 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3315 if (!check_slab(s, slab))
3316 goto out;
3317 }
3318
fa9b88e4 3319 if (slab->inuse < *bulk_cnt) {
c7323a5a 3320 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 3321 slab->inuse, *bulk_cnt);
c7323a5a
VB
3322 goto out;
3323 }
3324
a579b056 3325next_object:
c7323a5a 3326
fa9b88e4 3327 if (++cnt > *bulk_cnt)
c7323a5a 3328 goto out_cnt;
a579b056
VB
3329
3330 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3331 if (!free_consistency_checks(s, slab, object, addr))
3332 goto out;
3333 }
3334
3335 if (s->flags & SLAB_STORE_USER)
3336 set_track_update(s, object, TRACK_FREE, addr, handle);
3337 trace(s, slab, object, 0);
3338 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3339 init_object(s, object, SLUB_RED_INACTIVE);
3340
3341 /* Reached end of constructed freelist yet? */
3342 if (object != tail) {
3343 object = get_freepointer(s, object);
3344 goto next_object;
3345 }
c7323a5a 3346 checks_ok = true;
a579b056 3347
c7323a5a 3348out_cnt:
fa9b88e4 3349 if (cnt != *bulk_cnt) {
c7323a5a 3350 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
3351 *bulk_cnt, cnt);
3352 *bulk_cnt = cnt;
c7323a5a
VB
3353 }
3354
fa9b88e4 3355out:
c7323a5a
VB
3356
3357 if (!checks_ok)
a579b056 3358 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 3359
fa9b88e4 3360 return checks_ok;
a579b056 3361}
9a02d699
DR
3362#endif /* CONFIG_SLUB_DEBUG */
3363
b1a413a3 3364#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 3365static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 3366 int (*get_count)(struct slab *))
781b2ba6
PE
3367{
3368 unsigned long flags;
3369 unsigned long x = 0;
bb192ed9 3370 struct slab *slab;
781b2ba6
PE
3371
3372 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
3373 list_for_each_entry(slab, &n->partial, slab_list)
3374 x += get_count(slab);
781b2ba6
PE
3375 spin_unlock_irqrestore(&n->list_lock, flags);
3376 return x;
3377}
b1a413a3 3378#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 3379
56d5a2b9 3380#ifdef CONFIG_SLUB_DEBUG
046f4c69
JW
3381#define MAX_PARTIAL_TO_SCAN 10000
3382
3383static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3384{
3385 unsigned long flags;
3386 unsigned long x = 0;
3387 struct slab *slab;
3388
3389 spin_lock_irqsave(&n->list_lock, flags);
3390 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3391 list_for_each_entry(slab, &n->partial, slab_list)
3392 x += slab->objects - slab->inuse;
3393 } else {
3394 /*
3395 * For a long list, approximate the total count of objects in
3396 * it to meet the limit on the number of slabs to scan.
3397 * Scan from both the list's head and tail for better accuracy.
3398 */
3399 unsigned long scanned = 0;
3400
3401 list_for_each_entry(slab, &n->partial, slab_list) {
3402 x += slab->objects - slab->inuse;
3403 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3404 break;
3405 }
3406 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3407 x += slab->objects - slab->inuse;
3408 if (++scanned == MAX_PARTIAL_TO_SCAN)
3409 break;
3410 }
3411 x = mult_frac(x, n->nr_partial, scanned);
3412 x = min(x, node_nr_objs(n));
3413 }
3414 spin_unlock_irqrestore(&n->list_lock, flags);
3415 return x;
3416}
3417
781b2ba6
PE
3418static noinline void
3419slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3420{
9a02d699
DR
3421 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3422 DEFAULT_RATELIMIT_BURST);
781b2ba6 3423 int node;
fa45dc25 3424 struct kmem_cache_node *n;
781b2ba6 3425
9a02d699
DR
3426 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3427 return;
3428
5b3810e5
VB
3429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3430 nid, gfpflags, &gfpflags);
19af27af 3431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
3432 s->name, s->object_size, s->size, oo_order(s->oo),
3433 oo_order(s->min));
781b2ba6 3434
3b0efdfa 3435 if (oo_order(s->min) > get_order(s->object_size))
671776b3 3436 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
f9f58285 3437 s->name);
fa5ec8a1 3438
fa45dc25 3439 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3440 unsigned long nr_slabs;
3441 unsigned long nr_objs;
3442 unsigned long nr_free;
3443
b3d8a8e8 3444 nr_free = count_partial_free_approx(n);
26c02cf0
AB
3445 nr_slabs = node_nr_slabs(n);
3446 nr_objs = node_nr_objs(n);
781b2ba6 3447
f9f58285 3448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3449 node, nr_slabs, nr_objs, nr_free);
3450 }
3451}
56d5a2b9
VB
3452#else /* CONFIG_SLUB_DEBUG */
3453static inline void
3454slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3455#endif
781b2ba6 3456
01b34d16 3457static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3458{
01b34d16 3459 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3460 return gfp_pfmemalloc_allowed(gfpflags);
3461
3462 return true;
3463}
3464
0af8489b 3465#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3466static inline bool
3467__update_cpu_freelist_fast(struct kmem_cache *s,
3468 void *freelist_old, void *freelist_new,
3469 unsigned long tid)
3470{
3471 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3472 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3473
3474 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3475 &old.full, new.full);
3476}
3477
213eeb9f 3478/*
c2092c12
VB
3479 * Check the slab->freelist and either transfer the freelist to the
3480 * per cpu freelist or deactivate the slab.
213eeb9f 3481 *
c2092c12 3482 * The slab is still frozen if the return value is not NULL.
213eeb9f 3483 *
c2092c12 3484 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3485 */
bb192ed9 3486static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3487{
bb192ed9 3488 struct slab new;
213eeb9f
CL
3489 unsigned long counters;
3490 void *freelist;
3491
bd0e7491
VB
3492 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3493
213eeb9f 3494 do {
bb192ed9
VB
3495 freelist = slab->freelist;
3496 counters = slab->counters;
6faa6833 3497
213eeb9f 3498 new.counters = counters;
213eeb9f 3499
bb192ed9 3500 new.inuse = slab->objects;
213eeb9f
CL
3501 new.frozen = freelist != NULL;
3502
6801be4f 3503 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3504 freelist, counters,
3505 NULL, new.counters,
3506 "get_freelist"));
3507
3508 return freelist;
3509}
3510
213094b5
CZ
3511/*
3512 * Freeze the partial slab and return the pointer to the freelist.
3513 */
3514static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3515{
3516 struct slab new;
3517 unsigned long counters;
3518 void *freelist;
3519
3520 do {
3521 freelist = slab->freelist;
3522 counters = slab->counters;
3523
3524 new.counters = counters;
3525 VM_BUG_ON(new.frozen);
3526
3527 new.inuse = slab->objects;
3528 new.frozen = 1;
3529
3530 } while (!slab_update_freelist(s, slab,
3531 freelist, counters,
3532 NULL, new.counters,
3533 "freeze_slab"));
3534
3535 return freelist;
3536}
3537
81819f0f 3538/*
894b8788
CL
3539 * Slow path. The lockless freelist is empty or we need to perform
3540 * debugging duties.
3541 *
894b8788
CL
3542 * Processing is still very fast if new objects have been freed to the
3543 * regular freelist. In that case we simply take over the regular freelist
3544 * as the lockless freelist and zap the regular freelist.
81819f0f 3545 *
894b8788
CL
3546 * If that is not working then we fall back to the partial lists. We take the
3547 * first element of the freelist as the object to allocate now and move the
3548 * rest of the freelist to the lockless freelist.
81819f0f 3549 *
894b8788 3550 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3551 * we need to allocate a new slab. This is the slowest path since it involves
3552 * a call to the page allocator and the setup of a new slab.
a380a3c7 3553 *
e500059b 3554 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3555 * already disabled (which is the case for bulk allocation).
81819f0f 3556 */
a380a3c7 3557static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3558 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3559{
6faa6833 3560 void *freelist;
bb192ed9 3561 struct slab *slab;
e500059b 3562 unsigned long flags;
6edf2576 3563 struct partial_context pc;
9198ffbd 3564 bool try_thisnode = true;
81819f0f 3565
9f986d99
AW
3566 stat(s, ALLOC_SLOWPATH);
3567
c2092c12 3568reread_slab:
0b303fb4 3569
bb192ed9
VB
3570 slab = READ_ONCE(c->slab);
3571 if (!slab) {
0715e6c5
VB
3572 /*
3573 * if the node is not online or has no normal memory, just
3574 * ignore the node constraint
3575 */
3576 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3577 !node_isset(node, slab_nodes)))
0715e6c5 3578 node = NUMA_NO_NODE;
81819f0f 3579 goto new_slab;
0715e6c5 3580 }
6faa6833 3581
bb192ed9 3582 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3583 /*
3584 * same as above but node_match() being false already
3585 * implies node != NUMA_NO_NODE
3586 */
7e1fa93d 3587 if (!node_isset(node, slab_nodes)) {
0715e6c5 3588 node = NUMA_NO_NODE;
0715e6c5 3589 } else {
a561ce00 3590 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3591 goto deactivate_slab;
a561ce00 3592 }
fc59c053 3593 }
6446faa2 3594
072bb0aa
MG
3595 /*
3596 * By rights, we should be searching for a slab page that was
3597 * PFMEMALLOC but right now, we are losing the pfmemalloc
3598 * information when the page leaves the per-cpu allocator
3599 */
bb192ed9 3600 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3601 goto deactivate_slab;
072bb0aa 3602
c2092c12 3603 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3604 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3605 if (unlikely(slab != c->slab)) {
bd0e7491 3606 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3607 goto reread_slab;
0b303fb4 3608 }
6faa6833
CL
3609 freelist = c->freelist;
3610 if (freelist)
73736e03 3611 goto load_freelist;
03e404af 3612
bb192ed9 3613 freelist = get_freelist(s, slab);
6446faa2 3614
6faa6833 3615 if (!freelist) {
bb192ed9 3616 c->slab = NULL;
eeaa345e 3617 c->tid = next_tid(c->tid);
bd0e7491 3618 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3619 stat(s, DEACTIVATE_BYPASS);
fc59c053 3620 goto new_slab;
03e404af 3621 }
6446faa2 3622
84e554e6 3623 stat(s, ALLOC_REFILL);
6446faa2 3624
894b8788 3625load_freelist:
0b303fb4 3626
bd0e7491 3627 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3628
507effea
CL
3629 /*
3630 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3631 * slab is pointing to the slab from which the objects are obtained.
3632 * That slab must be frozen for per cpu allocations to work.
507effea 3633 */
bb192ed9 3634 VM_BUG_ON(!c->slab->frozen);
6faa6833 3635 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3636 c->tid = next_tid(c->tid);
bd0e7491 3637 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3638 return freelist;
81819f0f 3639
0b303fb4
VB
3640deactivate_slab:
3641
bd0e7491 3642 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3643 if (slab != c->slab) {
bd0e7491 3644 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3645 goto reread_slab;
0b303fb4 3646 }
a019d201 3647 freelist = c->freelist;
bb192ed9 3648 c->slab = NULL;
a019d201 3649 c->freelist = NULL;
eeaa345e 3650 c->tid = next_tid(c->tid);
bd0e7491 3651 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3652 deactivate_slab(s, slab, freelist);
0b303fb4 3653
81819f0f 3654new_slab:
2cfb7455 3655
8cd3fa42
CZ
3656#ifdef CONFIG_SLUB_CPU_PARTIAL
3657 while (slub_percpu_partial(c)) {
bd0e7491 3658 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3659 if (unlikely(c->slab)) {
bd0e7491 3660 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3661 goto reread_slab;
fa417ab7 3662 }
4b1f449d 3663 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3664 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3665 /* we were preempted and partial list got empty */
3666 goto new_objects;
4b1f449d 3667 }
fa417ab7 3668
8cd3fa42 3669 slab = slub_percpu_partial(c);
bb192ed9 3670 slub_set_percpu_partial(c, slab);
8cd3fa42 3671
90b1e566
CZ
3672 if (likely(node_match(slab, node) &&
3673 pfmemalloc_match(slab, gfpflags))) {
3674 c->slab = slab;
3675 freelist = get_freelist(s, slab);
3676 VM_BUG_ON(!freelist);
3677 stat(s, CPU_PARTIAL_ALLOC);
3678 goto load_freelist;
8cd3fa42
CZ
3679 }
3680
90b1e566
CZ
3681 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3682
3683 slab->next = NULL;
3684 __put_partials(s, slab);
81819f0f 3685 }
8cd3fa42 3686#endif
81819f0f 3687
fa417ab7
VB
3688new_objects:
3689
6edf2576 3690 pc.flags = gfpflags;
9198ffbd
CJ
3691 /*
3692 * When a preferred node is indicated but no __GFP_THISNODE
3693 *
3694 * 1) try to get a partial slab from target node only by having
3695 * __GFP_THISNODE in pc.flags for get_partial()
3696 * 2) if 1) failed, try to allocate a new slab from target node with
3697 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3698 * 3) if 2) failed, retry with original gfpflags which will allow
3699 * get_partial() try partial lists of other nodes before potentially
3700 * allocating new page from other nodes
3701 */
3702 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3703 && try_thisnode))
3704 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3705
6edf2576 3706 pc.orig_size = orig_size;
43c4c349
CZ
3707 slab = get_partial(s, node, &pc);
3708 if (slab) {
24c6a097 3709 if (kmem_cache_debug(s)) {
8cd3fa42 3710 freelist = pc.object;
24c6a097
CZ
3711 /*
3712 * For debug caches here we had to go through
3713 * alloc_single_from_partial() so just store the
3714 * tracking info and return the object.
3715 */
3716 if (s->flags & SLAB_STORE_USER)
3717 set_track(s, freelist, TRACK_ALLOC, addr);
3718
3719 return freelist;
3720 }
3721
8cd3fa42 3722 freelist = freeze_slab(s, slab);
24c6a097
CZ
3723 goto retry_load_slab;
3724 }
2a904905 3725
25c00c50 3726 slub_put_cpu_ptr(s->cpu_slab);
9198ffbd 3727 slab = new_slab(s, pc.flags, node);
25c00c50 3728 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3729
bb192ed9 3730 if (unlikely(!slab)) {
9198ffbd
CJ
3731 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3732 && try_thisnode) {
3733 try_thisnode = false;
3734 goto new_objects;
3735 }
9a02d699 3736 slab_out_of_memory(s, gfpflags, node);
f4697436 3737 return NULL;
81819f0f 3738 }
2cfb7455 3739
c7323a5a
VB
3740 stat(s, ALLOC_SLAB);
3741
3742 if (kmem_cache_debug(s)) {
6edf2576 3743 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3744
3745 if (unlikely(!freelist))
3746 goto new_objects;
3747
3748 if (s->flags & SLAB_STORE_USER)
3749 set_track(s, freelist, TRACK_ALLOC, addr);
3750
3751 return freelist;
3752 }
3753
53a0de06 3754 /*
c2092c12 3755 * No other reference to the slab yet so we can
53a0de06
VB
3756 * muck around with it freely without cmpxchg
3757 */
bb192ed9
VB
3758 freelist = slab->freelist;
3759 slab->freelist = NULL;
c7323a5a
VB
3760 slab->inuse = slab->objects;
3761 slab->frozen = 1;
53a0de06 3762
c7323a5a 3763 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3764
c7323a5a 3765 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3766 /*
3767 * For !pfmemalloc_match() case we don't load freelist so that
3768 * we don't make further mismatched allocations easier.
3769 */
c7323a5a
VB
3770 deactivate_slab(s, slab, get_freepointer(s, freelist));
3771 return freelist;
3772 }
1572df7c 3773
c2092c12 3774retry_load_slab:
cfdf836e 3775
bd0e7491 3776 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3777 if (unlikely(c->slab)) {
cfdf836e 3778 void *flush_freelist = c->freelist;
bb192ed9 3779 struct slab *flush_slab = c->slab;
cfdf836e 3780
bb192ed9 3781 c->slab = NULL;
cfdf836e
VB
3782 c->freelist = NULL;
3783 c->tid = next_tid(c->tid);
3784
bd0e7491 3785 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3786
bb192ed9 3787 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3788
3789 stat(s, CPUSLAB_FLUSH);
3790
c2092c12 3791 goto retry_load_slab;
cfdf836e 3792 }
bb192ed9 3793 c->slab = slab;
3f2b77e3 3794
1572df7c 3795 goto load_freelist;
894b8788
CL
3796}
3797
a380a3c7 3798/*
e500059b
VB
3799 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3800 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3801 * pointer.
a380a3c7
CL
3802 */
3803static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3804 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3805{
3806 void *p;
a380a3c7 3807
e500059b 3808#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3809 /*
3810 * We may have been preempted and rescheduled on a different
e500059b 3811 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3812 * pointer.
3813 */
25c00c50 3814 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3815#endif
3816
6edf2576 3817 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3818#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3819 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3820#endif
a380a3c7
CL
3821 return p;
3822}
3823
56d5a2b9 3824static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3825 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3826{
dfb4f096 3827 struct kmem_cache_cpu *c;
bb192ed9 3828 struct slab *slab;
8a5ec0ba 3829 unsigned long tid;
56d5a2b9 3830 void *object;
b89fb5ef 3831
8a5ec0ba 3832redo:
8a5ec0ba
CL
3833 /*
3834 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3835 * enabled. We may switch back and forth between cpus while
3836 * reading from one cpu area. That does not matter as long
3837 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3838 *
9b4bc85a
VB
3839 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3840 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3841 * the tid. If we are preempted and switched to another cpu between the
3842 * two reads, it's OK as the two are still associated with the same cpu
3843 * and cmpxchg later will validate the cpu.
8a5ec0ba 3844 */
9b4bc85a
VB
3845 c = raw_cpu_ptr(s->cpu_slab);
3846 tid = READ_ONCE(c->tid);
9aabf810
JK
3847
3848 /*
3849 * Irqless object alloc/free algorithm used here depends on sequence
3850 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3851 * on c to guarantee that object and slab associated with previous tid
9aabf810 3852 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3853 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3854 * request will be failed. In this case, we will retry. So, no problem.
3855 */
3856 barrier();
8a5ec0ba 3857
8a5ec0ba
CL
3858 /*
3859 * The transaction ids are globally unique per cpu and per operation on
3860 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3861 * occurs on the right processor and that there was no operation on the
3862 * linked list in between.
3863 */
8a5ec0ba 3864
9dfc6e68 3865 object = c->freelist;
bb192ed9 3866 slab = c->slab;
1f04b07d
TG
3867
3868 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3869 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3870 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3871 } else {
0ad9500e
ED
3872 void *next_object = get_freepointer_safe(s, object);
3873
8a5ec0ba 3874 /*
25985edc 3875 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3876 * operation and if we are on the right processor.
3877 *
d0e0ac97
CG
3878 * The cmpxchg does the following atomically (without lock
3879 * semantics!)
8a5ec0ba
CL
3880 * 1. Relocate first pointer to the current per cpu area.
3881 * 2. Verify that tid and freelist have not been changed
3882 * 3. If they were not changed replace tid and freelist
3883 *
d0e0ac97
CG
3884 * Since this is without lock semantics the protection is only
3885 * against code executing on this cpu *not* from access by
3886 * other cpus.
8a5ec0ba 3887 */
6801be4f 3888 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3889 note_cmpxchg_failure("slab_alloc", s, tid);
3890 goto redo;
3891 }
0ad9500e 3892 prefetch_freepointer(s, next_object);
84e554e6 3893 stat(s, ALLOC_FASTPATH);
894b8788 3894 }
0f181f9f 3895
56d5a2b9
VB
3896 return object;
3897}
0af8489b
VB
3898#else /* CONFIG_SLUB_TINY */
3899static void *__slab_alloc_node(struct kmem_cache *s,
3900 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3901{
3902 struct partial_context pc;
3903 struct slab *slab;
3904 void *object;
3905
3906 pc.flags = gfpflags;
0af8489b 3907 pc.orig_size = orig_size;
43c4c349 3908 slab = get_partial(s, node, &pc);
0af8489b 3909
43c4c349
CZ
3910 if (slab)
3911 return pc.object;
0af8489b
VB
3912
3913 slab = new_slab(s, gfpflags, node);
3914 if (unlikely(!slab)) {
3915 slab_out_of_memory(s, gfpflags, node);
3916 return NULL;
3917 }
3918
3919 object = alloc_single_from_new_slab(s, slab, orig_size);
3920
3921 return object;
3922}
3923#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3924
3925/*
3926 * If the object has been wiped upon free, make sure it's fully initialized by
3927 * zeroing out freelist pointer.
3928 */
3929static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3930 void *obj)
3931{
8f828aa4
NB
3932 if (unlikely(slab_want_init_on_free(s)) && obj &&
3933 !freeptr_outside_object(s))
56d5a2b9
VB
3934 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3935 0, sizeof(void *));
3936}
3937
3450a0e5 3938static __fastpath_inline
9f9796b4 3939struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
6011be59
VB
3940{
3941 flags &= gfp_allowed_mask;
3942
3943 might_alloc(flags);
3944
3450a0e5 3945 if (unlikely(should_failslab(s, flags)))
6011be59
VB
3946 return NULL;
3947
6011be59
VB
3948 return s;
3949}
3950
3450a0e5 3951static __fastpath_inline
9f9796b4 3952bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
3953 gfp_t flags, size_t size, void **p, bool init,
3954 unsigned int orig_size)
6011be59
VB
3955{
3956 unsigned int zero_size = s->object_size;
3957 bool kasan_init = init;
3958 size_t i;
3450a0e5 3959 gfp_t init_flags = flags & gfp_allowed_mask;
6011be59
VB
3960
3961 /*
3962 * For kmalloc object, the allocated memory size(object_size) is likely
3963 * larger than the requested size(orig_size). If redzone check is
3964 * enabled for the extra space, don't zero it, as it will be redzoned
3965 * soon. The redzone operation for this extra space could be seen as a
3966 * replacement of current poisoning under certain debug option, and
3967 * won't break other sanity checks.
3968 */
3969 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3970 (s->flags & SLAB_KMALLOC))
3971 zero_size = orig_size;
3972
3973 /*
671776b3 3974 * When slab_debug is enabled, avoid memory initialization integrated
6011be59
VB
3975 * into KASAN and instead zero out the memory via the memset below with
3976 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3977 * cause false-positive reports. This does not lead to a performance
671776b3 3978 * penalty on production builds, as slab_debug is not intended to be
6011be59
VB
3979 * enabled there.
3980 */
3981 if (__slub_debug_enabled())
3982 kasan_init = false;
3983
3984 /*
3985 * As memory initialization might be integrated into KASAN,
3986 * kasan_slab_alloc and initialization memset must be
3987 * kept together to avoid discrepancies in behavior.
3988 *
3989 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3990 */
3991 for (i = 0; i < size; i++) {
3450a0e5 3992 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
6011be59
VB
3993 if (p[i] && init && (!kasan_init ||
3994 !kasan_has_integrated_init()))
3995 memset(p[i], 0, zero_size);
3996 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3450a0e5
VB
3997 s->flags, init_flags);
3998 kmsan_slab_alloc(s, p[i], init_flags);
302a3ea3 3999 alloc_tagging_slab_alloc_hook(s, p[i], flags);
6011be59
VB
4000 }
4001
9f9796b4 4002 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
6011be59
VB
4003}
4004
56d5a2b9
VB
4005/*
4006 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4007 * have the fastpath folded into their functions. So no function call
4008 * overhead for requests that can be satisfied on the fastpath.
4009 *
4010 * The fastpath works by first checking if the lockless freelist can be used.
4011 * If not then __slab_alloc is called for slow processing.
4012 *
4013 * Otherwise we can simply pick the next object from the lockless free list.
4014 */
be784ba8 4015static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
4016 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4017{
4018 void *object;
56d5a2b9
VB
4019 bool init = false;
4020
9f9796b4 4021 s = slab_pre_alloc_hook(s, gfpflags);
3450a0e5 4022 if (unlikely(!s))
56d5a2b9
VB
4023 return NULL;
4024
4025 object = kfence_alloc(s, orig_size, gfpflags);
4026 if (unlikely(object))
4027 goto out;
4028
4029 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4030
ce5716c6 4031 maybe_wipe_obj_freeptr(s, object);
da844b78 4032 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 4033
b89fb5ef 4034out:
9ce67395
FT
4035 /*
4036 * When init equals 'true', like for kzalloc() family, only
4037 * @orig_size bytes might be zeroed instead of s->object_size
9f9796b4
VB
4038 * In case this fails due to memcg_slab_post_alloc_hook(),
4039 * object is set to NULL
9ce67395 4040 */
9f9796b4 4041 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5a896d9e 4042
894b8788 4043 return object;
81819f0f
CL
4044}
4045
7bd230a2 4046void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
2b847c3c 4047{
49378a05
VB
4048 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4049 s->object_size);
5b882be4 4050
2c1d697f 4051 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4052
4053 return ret;
2b847c3c 4054}
7bd230a2 4055EXPORT_SYMBOL(kmem_cache_alloc_noprof);
2b847c3c 4056
7bd230a2 4057void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
88f2ef73 4058 gfp_t gfpflags)
81819f0f 4059{
49378a05
VB
4060 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4061 s->object_size);
5b882be4 4062
2c1d697f 4063 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4064
4065 return ret;
81819f0f 4066}
7bd230a2 4067EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
88f2ef73 4068
0445ee00
VB
4069/**
4070 * kmem_cache_alloc_node - Allocate an object on the specified node
4071 * @s: The cache to allocate from.
4072 * @gfpflags: See kmalloc().
4073 * @node: node number of the target node.
4074 *
4075 * Identical to kmem_cache_alloc but it will allocate memory on the given
4076 * node, which can improve the performance for cpu bound structures.
4077 *
4078 * Fallback to other node is possible if __GFP_THISNODE is not set.
4079 *
4080 * Return: pointer to the new object or %NULL in case of error
4081 */
7bd230a2 4082void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
81819f0f 4083{
88f2ef73 4084 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 4085
2c1d697f 4086 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
4087
4088 return ret;
81819f0f 4089}
7bd230a2 4090EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
81819f0f 4091
4862caa5
VB
4092/*
4093 * To avoid unnecessary overhead, we pass through large allocation requests
4094 * directly to the page allocator. We use __GFP_COMP, because we will need to
4095 * know the allocation order to free the pages properly in kfree.
4096 */
a0a44d91 4097static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
88f2ef73 4098{
fb46e22a 4099 struct folio *folio;
4862caa5
VB
4100 void *ptr = NULL;
4101 unsigned int order = get_order(size);
4102
4103 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4104 flags = kmalloc_fix_flags(flags);
4105
4106 flags |= __GFP_COMP;
7bd230a2 4107 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
fb46e22a
LT
4108 if (folio) {
4109 ptr = folio_address(folio);
4110 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4862caa5
VB
4111 PAGE_SIZE << order);
4112 }
4113
4114 ptr = kasan_kmalloc_large(ptr, size, flags);
4115 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4116 kmemleak_alloc(ptr, size, 1, flags);
4117 kmsan_kmalloc_large(ptr, size, flags);
4118
4119 return ptr;
88f2ef73 4120}
81819f0f 4121
a0a44d91 4122void *__kmalloc_large_noprof(size_t size, gfp_t flags)
88f2ef73 4123{
a0a44d91 4124 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4862caa5
VB
4125
4126 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4127 flags, NUMA_NO_NODE);
4128 return ret;
88f2ef73 4129}
a0a44d91 4130EXPORT_SYMBOL(__kmalloc_large_noprof);
88f2ef73 4131
a0a44d91 4132void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4a92379b 4133{
a0a44d91 4134 void *ret = ___kmalloc_large_node(size, flags, node);
4862caa5
VB
4135
4136 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4137 flags, node);
4138 return ret;
4a92379b 4139}
a0a44d91 4140EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5b882be4 4141
4862caa5 4142static __always_inline
67f2df3b 4143void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4862caa5 4144 unsigned long caller)
81819f0f 4145{
4862caa5
VB
4146 struct kmem_cache *s;
4147 void *ret;
5b882be4 4148
4862caa5 4149 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
a0a44d91 4150 ret = __kmalloc_large_node_noprof(size, flags, node);
4862caa5
VB
4151 trace_kmalloc(caller, ret, size,
4152 PAGE_SIZE << get_order(size), flags, node);
4153 return ret;
4154 }
5b882be4 4155
4862caa5
VB
4156 if (unlikely(!size))
4157 return ZERO_SIZE_PTR;
4158
67f2df3b 4159 s = kmalloc_slab(size, b, flags, caller);
4862caa5
VB
4160
4161 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4162 ret = kasan_kmalloc(s, ret, size, flags);
4163 trace_kmalloc(caller, ret, size, s->size, flags, node);
5b882be4 4164 return ret;
81819f0f 4165}
67f2df3b 4166void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4862caa5 4167{
67f2df3b 4168 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4862caa5 4169}
7bd230a2 4170EXPORT_SYMBOL(__kmalloc_node_noprof);
4862caa5 4171
7bd230a2 4172void *__kmalloc_noprof(size_t size, gfp_t flags)
4862caa5 4173{
67f2df3b 4174 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4862caa5 4175}
7bd230a2 4176EXPORT_SYMBOL(__kmalloc_noprof);
4862caa5 4177
67f2df3b
KC
4178void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4179 int node, unsigned long caller)
4862caa5 4180{
67f2df3b
KC
4181 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4182
4862caa5 4183}
67f2df3b 4184EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4862caa5 4185
a0a44d91 4186void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4862caa5
VB
4187{
4188 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4189 _RET_IP_, size);
4190
4191 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4192
4193 ret = kasan_kmalloc(s, ret, size, gfpflags);
4194 return ret;
4195}
a0a44d91 4196EXPORT_SYMBOL(__kmalloc_cache_noprof);
4862caa5 4197
a0a44d91
VB
4198void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4199 int node, size_t size)
4862caa5
VB
4200{
4201 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4202
4203 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4204
4205 ret = kasan_kmalloc(s, ret, size, gfpflags);
4206 return ret;
4207}
a0a44d91 4208EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
81819f0f 4209
fa9b88e4
VB
4210static noinline void free_to_partial_list(
4211 struct kmem_cache *s, struct slab *slab,
4212 void *head, void *tail, int bulk_cnt,
4213 unsigned long addr)
4214{
4215 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4216 struct slab *slab_free = NULL;
4217 int cnt = bulk_cnt;
4218 unsigned long flags;
4219 depot_stack_handle_t handle = 0;
4220
4221 if (s->flags & SLAB_STORE_USER)
4222 handle = set_track_prepare();
4223
4224 spin_lock_irqsave(&n->list_lock, flags);
4225
4226 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4227 void *prior = slab->freelist;
4228
4229 /* Perform the actual freeing while we still hold the locks */
4230 slab->inuse -= cnt;
4231 set_freepointer(s, tail, prior);
4232 slab->freelist = head;
4233
4234 /*
4235 * If the slab is empty, and node's partial list is full,
4236 * it should be discarded anyway no matter it's on full or
4237 * partial list.
4238 */
4239 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4240 slab_free = slab;
4241
4242 if (!prior) {
4243 /* was on full list */
4244 remove_full(s, n, slab);
4245 if (!slab_free) {
4246 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4247 stat(s, FREE_ADD_PARTIAL);
4248 }
4249 } else if (slab_free) {
4250 remove_partial(n, slab);
4251 stat(s, FREE_REMOVE_PARTIAL);
4252 }
4253 }
4254
4255 if (slab_free) {
4256 /*
4257 * Update the counters while still holding n->list_lock to
4258 * prevent spurious validation warnings
4259 */
4260 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4261 }
4262
4263 spin_unlock_irqrestore(&n->list_lock, flags);
4264
4265 if (slab_free) {
4266 stat(s, FREE_SLAB);
4267 free_slab(s, slab_free);
4268 }
4269}
4270
81819f0f 4271/*
94e4d712 4272 * Slow path handling. This may still be called frequently since objects
894b8788 4273 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 4274 *
894b8788 4275 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 4276 * lock and free the item. If there is no additional partial slab
894b8788 4277 * handling required then we can return immediately.
81819f0f 4278 */
bb192ed9 4279static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
4280 void *head, void *tail, int cnt,
4281 unsigned long addr)
4282
81819f0f
CL
4283{
4284 void *prior;
2cfb7455 4285 int was_frozen;
bb192ed9 4286 struct slab new;
2cfb7455
CL
4287 unsigned long counters;
4288 struct kmem_cache_node *n = NULL;
3f649ab7 4289 unsigned long flags;
422e7d54 4290 bool on_node_partial;
81819f0f 4291
8a5ec0ba 4292 stat(s, FREE_SLOWPATH);
81819f0f 4293
0af8489b 4294 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 4295 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 4296 return;
c7323a5a 4297 }
6446faa2 4298
2cfb7455 4299 do {
837d678d
JK
4300 if (unlikely(n)) {
4301 spin_unlock_irqrestore(&n->list_lock, flags);
4302 n = NULL;
4303 }
bb192ed9
VB
4304 prior = slab->freelist;
4305 counters = slab->counters;
81084651 4306 set_freepointer(s, tail, prior);
2cfb7455
CL
4307 new.counters = counters;
4308 was_frozen = new.frozen;
81084651 4309 new.inuse -= cnt;
837d678d 4310 if ((!new.inuse || !prior) && !was_frozen) {
8cd3fa42
CZ
4311 /* Needs to be taken off a list */
4312 if (!kmem_cache_has_cpu_partial(s) || prior) {
49e22585 4313
bb192ed9 4314 n = get_node(s, slab_nid(slab));
49e22585
CL
4315 /*
4316 * Speculatively acquire the list_lock.
4317 * If the cmpxchg does not succeed then we may
4318 * drop the list_lock without any processing.
4319 *
4320 * Otherwise the list_lock will synchronize with
4321 * other processors updating the list of slabs.
4322 */
4323 spin_lock_irqsave(&n->list_lock, flags);
4324
422e7d54 4325 on_node_partial = slab_test_node_partial(slab);
49e22585 4326 }
2cfb7455 4327 }
81819f0f 4328
6801be4f 4329 } while (!slab_update_freelist(s, slab,
2cfb7455 4330 prior, counters,
81084651 4331 head, new.counters,
2cfb7455 4332 "__slab_free"));
81819f0f 4333
2cfb7455 4334 if (likely(!n)) {
49e22585 4335
c270cf30
AW
4336 if (likely(was_frozen)) {
4337 /*
4338 * The list lock was not taken therefore no list
4339 * activity can be necessary.
4340 */
4341 stat(s, FREE_FROZEN);
8cd3fa42 4342 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
c270cf30 4343 /*
8cd3fa42 4344 * If we started with a full slab then put it onto the
c270cf30
AW
4345 * per cpu partial list.
4346 */
bb192ed9 4347 put_cpu_partial(s, slab, 1);
8028dcea
AS
4348 stat(s, CPU_PARTIAL_FREE);
4349 }
c270cf30 4350
b455def2
L
4351 return;
4352 }
81819f0f 4353
422e7d54
CZ
4354 /*
4355 * This slab was partially empty but not on the per-node partial list,
4356 * in which case we shouldn't manipulate its list, just return.
4357 */
4358 if (prior && !on_node_partial) {
4359 spin_unlock_irqrestore(&n->list_lock, flags);
4360 return;
4361 }
4362
8a5b20ae 4363 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
4364 goto slab_empty;
4365
81819f0f 4366 /*
837d678d
JK
4367 * Objects left in the slab. If it was not on the partial list before
4368 * then add it.
81819f0f 4369 */
345c905d 4370 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9 4371 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 4372 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 4373 }
80f08c19 4374 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
4375 return;
4376
4377slab_empty:
a973e9dd 4378 if (prior) {
81819f0f 4379 /*
6fbabb20 4380 * Slab on the partial list.
81819f0f 4381 */
bb192ed9 4382 remove_partial(n, slab);
84e554e6 4383 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 4384 }
2cfb7455 4385
80f08c19 4386 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 4387 stat(s, FREE_SLAB);
bb192ed9 4388 discard_slab(s, slab);
81819f0f
CL
4389}
4390
0af8489b 4391#ifndef CONFIG_SLUB_TINY
894b8788
CL
4392/*
4393 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4394 * can perform fastpath freeing without additional function calls.
4395 *
4396 * The fastpath is only possible if we are freeing to the current cpu slab
4397 * of this processor. This typically the case if we have just allocated
4398 * the item before.
4399 *
4400 * If fastpath is not possible then fall back to __slab_free where we deal
4401 * with all sorts of special processing.
81084651
JDB
4402 *
4403 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 4404 * same slab) possible by specifying head and tail ptr, plus objects
81084651 4405 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 4406 */
80a9201a 4407static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 4408 struct slab *slab, void *head, void *tail,
80a9201a 4409 int cnt, unsigned long addr)
894b8788 4410{
dfb4f096 4411 struct kmem_cache_cpu *c;
8a5ec0ba 4412 unsigned long tid;
1f04b07d 4413 void **freelist;
964d4bd3 4414
8a5ec0ba
CL
4415redo:
4416 /*
4417 * Determine the currently cpus per cpu slab.
4418 * The cpu may change afterward. However that does not matter since
4419 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 4420 * during the cmpxchg then the free will succeed.
8a5ec0ba 4421 */
9b4bc85a
VB
4422 c = raw_cpu_ptr(s->cpu_slab);
4423 tid = READ_ONCE(c->tid);
c016b0bd 4424
b062539c 4425 /* Same with comment on barrier() in __slab_alloc_node() */
9aabf810 4426 barrier();
c016b0bd 4427
1f04b07d 4428 if (unlikely(slab != c->slab)) {
284f17ac 4429 __slab_free(s, slab, head, tail, cnt, addr);
1f04b07d
TG
4430 return;
4431 }
4432
4433 if (USE_LOCKLESS_FAST_PATH()) {
4434 freelist = READ_ONCE(c->freelist);
5076190d 4435
284f17ac 4436 set_freepointer(s, tail, freelist);
8a5ec0ba 4437
6801be4f 4438 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
4439 note_cmpxchg_failure("slab_free", s, tid);
4440 goto redo;
4441 }
1f04b07d
TG
4442 } else {
4443 /* Update the free list under the local lock */
bd0e7491
VB
4444 local_lock(&s->cpu_slab->lock);
4445 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 4446 if (unlikely(slab != c->slab)) {
bd0e7491
VB
4447 local_unlock(&s->cpu_slab->lock);
4448 goto redo;
4449 }
4450 tid = c->tid;
4451 freelist = c->freelist;
4452
284f17ac 4453 set_freepointer(s, tail, freelist);
bd0e7491
VB
4454 c->freelist = head;
4455 c->tid = next_tid(tid);
4456
4457 local_unlock(&s->cpu_slab->lock);
1f04b07d 4458 }
6f3dd2c3 4459 stat_add(s, FREE_FASTPATH, cnt);
894b8788 4460}
0af8489b
VB
4461#else /* CONFIG_SLUB_TINY */
4462static void do_slab_free(struct kmem_cache *s,
4463 struct slab *slab, void *head, void *tail,
4464 int cnt, unsigned long addr)
4465{
284f17ac 4466 __slab_free(s, slab, head, tail, cnt, addr);
0af8489b
VB
4467}
4468#endif /* CONFIG_SLUB_TINY */
894b8788 4469
284f17ac
VB
4470static __fastpath_inline
4471void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4472 unsigned long addr)
4473{
284f17ac 4474 memcg_slab_free_hook(s, slab, &object, 1);
4b873696 4475 alloc_tagging_slab_free_hook(s, slab, &object, 1);
284f17ac 4476
782f8906 4477 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
284f17ac
VB
4478 do_slab_free(s, slab, object, object, 1, addr);
4479}
4480
3a3b7fec 4481#ifdef CONFIG_MEMCG
9f9796b4
VB
4482/* Do not inline the rare memcg charging failed path into the allocation path */
4483static noinline
4484void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4485{
4486 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4487 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4488}
4489#endif
4490
284f17ac
VB
4491static __fastpath_inline
4492void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4493 void *tail, void **p, int cnt, unsigned long addr)
80a9201a 4494{
b77d5b1b 4495 memcg_slab_free_hook(s, slab, p, cnt);
4b873696 4496 alloc_tagging_slab_free_hook(s, slab, p, cnt);
80a9201a 4497 /*
c3895391
AK
4498 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4499 * to remove objects, whose reuse must be delayed.
80a9201a 4500 */
ecf9a253 4501 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
bb192ed9 4502 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
4503}
4504
2bd926b4 4505#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
4506void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4507{
284f17ac 4508 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
80a9201a
AP
4509}
4510#endif
4511
0bedcc66 4512static inline struct kmem_cache *virt_to_cache(const void *obj)
ed4cd17e 4513{
0bedcc66
VB
4514 struct slab *slab;
4515
4516 slab = virt_to_slab(obj);
4517 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4518 return NULL;
4519 return slab->slab_cache;
ed4cd17e
HY
4520}
4521
0bedcc66
VB
4522static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4523{
4524 struct kmem_cache *cachep;
4525
4526 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4527 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4528 return s;
4529
4530 cachep = virt_to_cache(x);
4531 if (WARN(cachep && cachep != s,
4532 "%s: Wrong slab cache. %s but object is from %s\n",
4533 __func__, s->name, cachep->name))
4534 print_tracking(cachep, x);
4535 return cachep;
4536}
4537
0445ee00
VB
4538/**
4539 * kmem_cache_free - Deallocate an object
4540 * @s: The cache the allocation was from.
4541 * @x: The previously allocated object.
4542 *
4543 * Free an object which was previously allocated from this
4544 * cache.
4545 */
81819f0f
CL
4546void kmem_cache_free(struct kmem_cache *s, void *x)
4547{
b9ce5ef4
GC
4548 s = cache_from_obj(s, x);
4549 if (!s)
79576102 4550 return;
2c1d697f 4551 trace_kmem_cache_free(_RET_IP_, x, s);
284f17ac 4552 slab_free(s, virt_to_slab(x), x, _RET_IP_);
81819f0f
CL
4553}
4554EXPORT_SYMBOL(kmem_cache_free);
4555
b774d3e3
VB
4556static void free_large_kmalloc(struct folio *folio, void *object)
4557{
4558 unsigned int order = folio_order(folio);
4559
4560 if (WARN_ON_ONCE(order == 0))
4561 pr_warn_once("object pointer: 0x%p\n", object);
4562
4563 kmemleak_free(object);
4564 kasan_kfree_large(object);
4565 kmsan_kfree_large(object);
4566
fb46e22a 4567 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
b774d3e3 4568 -(PAGE_SIZE << order));
fb46e22a 4569 folio_put(folio);
b774d3e3
VB
4570}
4571
4572/**
4573 * kfree - free previously allocated memory
4574 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4575 *
4576 * If @object is NULL, no operation is performed.
4577 */
4578void kfree(const void *object)
4579{
4580 struct folio *folio;
4581 struct slab *slab;
4582 struct kmem_cache *s;
4583 void *x = (void *)object;
4584
4585 trace_kfree(_RET_IP_, object);
4586
4587 if (unlikely(ZERO_OR_NULL_PTR(object)))
4588 return;
4589
4590 folio = virt_to_folio(object);
4591 if (unlikely(!folio_test_slab(folio))) {
4592 free_large_kmalloc(folio, (void *)object);
4593 return;
4594 }
4595
4596 slab = folio_slab(folio);
4597 s = slab->slab_cache;
284f17ac 4598 slab_free(s, slab, x, _RET_IP_);
b774d3e3
VB
4599}
4600EXPORT_SYMBOL(kfree);
4601
d0ecd894 4602struct detached_freelist {
cc465c3b 4603 struct slab *slab;
d0ecd894
JDB
4604 void *tail;
4605 void *freelist;
4606 int cnt;
376bf125 4607 struct kmem_cache *s;
d0ecd894 4608};
fbd02630 4609
d0ecd894
JDB
4610/*
4611 * This function progressively scans the array with free objects (with
4612 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
4613 * slab. It builds a detached freelist directly within the given
4614 * slab/objects. This can happen without any need for
d0ecd894
JDB
4615 * synchronization, because the objects are owned by running process.
4616 * The freelist is build up as a single linked list in the objects.
4617 * The idea is, that this detached freelist can then be bulk
4618 * transferred to the real freelist(s), but only requiring a single
4619 * synchronization primitive. Look ahead in the array is limited due
4620 * to performance reasons.
4621 */
376bf125
JDB
4622static inline
4623int build_detached_freelist(struct kmem_cache *s, size_t size,
4624 void **p, struct detached_freelist *df)
d0ecd894 4625{
d0ecd894
JDB
4626 int lookahead = 3;
4627 void *object;
cc465c3b 4628 struct folio *folio;
b77d5b1b 4629 size_t same;
fbd02630 4630
b77d5b1b 4631 object = p[--size];
cc465c3b 4632 folio = virt_to_folio(object);
ca257195
JDB
4633 if (!s) {
4634 /* Handle kalloc'ed objects */
cc465c3b 4635 if (unlikely(!folio_test_slab(folio))) {
d835eef4 4636 free_large_kmalloc(folio, object);
b77d5b1b 4637 df->slab = NULL;
ca257195
JDB
4638 return size;
4639 }
4640 /* Derive kmem_cache from object */
b77d5b1b
MS
4641 df->slab = folio_slab(folio);
4642 df->s = df->slab->slab_cache;
ca257195 4643 } else {
b77d5b1b 4644 df->slab = folio_slab(folio);
ca257195
JDB
4645 df->s = cache_from_obj(s, object); /* Support for memcg */
4646 }
376bf125 4647
d0ecd894 4648 /* Start new detached freelist */
d0ecd894
JDB
4649 df->tail = object;
4650 df->freelist = object;
d0ecd894
JDB
4651 df->cnt = 1;
4652
b77d5b1b
MS
4653 if (is_kfence_address(object))
4654 return size;
4655
4656 set_freepointer(df->s, object, NULL);
4657
4658 same = size;
d0ecd894
JDB
4659 while (size) {
4660 object = p[--size];
cc465c3b
MWO
4661 /* df->slab is always set at this point */
4662 if (df->slab == virt_to_slab(object)) {
d0ecd894 4663 /* Opportunity build freelist */
376bf125 4664 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
4665 df->freelist = object;
4666 df->cnt++;
b77d5b1b
MS
4667 same--;
4668 if (size != same)
4669 swap(p[size], p[same]);
d0ecd894 4670 continue;
fbd02630 4671 }
d0ecd894
JDB
4672
4673 /* Limit look ahead search */
4674 if (!--lookahead)
4675 break;
fbd02630 4676 }
d0ecd894 4677
b77d5b1b 4678 return same;
d0ecd894
JDB
4679}
4680
520a688a
VB
4681/*
4682 * Internal bulk free of objects that were not initialised by the post alloc
4683 * hooks and thus should not be processed by the free hooks
4684 */
4685static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4686{
4687 if (!size)
4688 return;
4689
4690 do {
4691 struct detached_freelist df;
4692
4693 size = build_detached_freelist(s, size, p, &df);
4694 if (!df.slab)
4695 continue;
4696
a371d558
RR
4697 if (kfence_free(df.freelist))
4698 continue;
4699
520a688a
VB
4700 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4701 _RET_IP_);
4702 } while (likely(size));
4703}
4704
d0ecd894 4705/* Note that interrupts must be enabled when calling this function. */
376bf125 4706void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 4707{
2055e67b 4708 if (!size)
d0ecd894
JDB
4709 return;
4710
4711 do {
4712 struct detached_freelist df;
4713
4714 size = build_detached_freelist(s, size, p, &df);
cc465c3b 4715 if (!df.slab)
d0ecd894
JDB
4716 continue;
4717
284f17ac
VB
4718 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4719 df.cnt, _RET_IP_);
d0ecd894 4720 } while (likely(size));
484748f0
CL
4721}
4722EXPORT_SYMBOL(kmem_cache_free_bulk);
4723
0af8489b 4724#ifndef CONFIG_SLUB_TINY
520a688a
VB
4725static inline
4726int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4727 void **p)
484748f0 4728{
994eb764 4729 struct kmem_cache_cpu *c;
f5451547 4730 unsigned long irqflags;
994eb764
JDB
4731 int i;
4732
994eb764
JDB
4733 /*
4734 * Drain objects in the per cpu slab, while disabling local
4735 * IRQs, which protects against PREEMPT and interrupts
4736 * handlers invoking normal fastpath.
4737 */
25c00c50 4738 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 4739 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
4740
4741 for (i = 0; i < size; i++) {
b89fb5ef 4742 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 4743
b89fb5ef
AP
4744 if (unlikely(object)) {
4745 p[i] = object;
4746 continue;
4747 }
4748
4749 object = c->freelist;
ebe909e0 4750 if (unlikely(!object)) {
fd4d9c7d
JH
4751 /*
4752 * We may have removed an object from c->freelist using
4753 * the fastpath in the previous iteration; in that case,
4754 * c->tid has not been bumped yet.
4755 * Since ___slab_alloc() may reenable interrupts while
4756 * allocating memory, we should bump c->tid now.
4757 */
4758 c->tid = next_tid(c->tid);
4759
f5451547 4760 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 4761
ebe909e0
JDB
4762 /*
4763 * Invoking slow path likely have side-effect
4764 * of re-populating per CPU c->freelist
4765 */
87098373 4766 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 4767 _RET_IP_, c, s->object_size);
87098373
CL
4768 if (unlikely(!p[i]))
4769 goto error;
4770
ebe909e0 4771 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
4772 maybe_wipe_obj_freeptr(s, p[i]);
4773
f5451547 4774 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 4775
ebe909e0
JDB
4776 continue; /* goto for-loop */
4777 }
994eb764
JDB
4778 c->freelist = get_freepointer(s, object);
4779 p[i] = object;
0f181f9f 4780 maybe_wipe_obj_freeptr(s, p[i]);
6f3dd2c3 4781 stat(s, ALLOC_FASTPATH);
994eb764
JDB
4782 }
4783 c->tid = next_tid(c->tid);
f5451547 4784 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 4785 slub_put_cpu_ptr(s->cpu_slab);
994eb764 4786
865762a8 4787 return i;
56d5a2b9 4788
87098373 4789error:
25c00c50 4790 slub_put_cpu_ptr(s->cpu_slab);
520a688a 4791 __kmem_cache_free_bulk(s, i, p);
865762a8 4792 return 0;
56d5a2b9
VB
4793
4794}
0af8489b
VB
4795#else /* CONFIG_SLUB_TINY */
4796static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
520a688a 4797 size_t size, void **p)
0af8489b
VB
4798{
4799 int i;
4800
4801 for (i = 0; i < size; i++) {
4802 void *object = kfence_alloc(s, s->object_size, flags);
4803
4804 if (unlikely(object)) {
4805 p[i] = object;
4806 continue;
4807 }
4808
4809 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4810 _RET_IP_, s->object_size);
4811 if (unlikely(!p[i]))
4812 goto error;
4813
4814 maybe_wipe_obj_freeptr(s, p[i]);
4815 }
4816
4817 return i;
4818
4819error:
520a688a 4820 __kmem_cache_free_bulk(s, i, p);
0af8489b
VB
4821 return 0;
4822}
4823#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4824
4825/* Note that interrupts must be enabled when calling this function. */
7bd230a2
SB
4826int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4827 void **p)
56d5a2b9
VB
4828{
4829 int i;
56d5a2b9
VB
4830
4831 if (!size)
4832 return 0;
4833
9f9796b4 4834 s = slab_pre_alloc_hook(s, flags);
56d5a2b9
VB
4835 if (unlikely(!s))
4836 return 0;
4837
520a688a 4838 i = __kmem_cache_alloc_bulk(s, flags, size, p);
9f9796b4
VB
4839 if (unlikely(i == 0))
4840 return 0;
56d5a2b9
VB
4841
4842 /*
4843 * memcg and kmem_cache debug support and memory initialization.
4844 * Done outside of the IRQ disabled fastpath loop.
4845 */
9f9796b4
VB
4846 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4847 slab_want_init_on_alloc(flags, s), s->object_size))) {
4848 return 0;
520a688a 4849 }
56d5a2b9 4850 return i;
484748f0 4851}
7bd230a2 4852EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
484748f0
CL
4853
4854
81819f0f 4855/*
672bba3a
CL
4856 * Object placement in a slab is made very easy because we always start at
4857 * offset 0. If we tune the size of the object to the alignment then we can
4858 * get the required alignment by putting one properly sized object after
4859 * another.
81819f0f
CL
4860 *
4861 * Notice that the allocation order determines the sizes of the per cpu
4862 * caches. Each processor has always one slab available for allocations.
4863 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4864 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4865 * locking overhead.
81819f0f
CL
4866 */
4867
4868/*
f0953a1b 4869 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4870 * and slab fragmentation. A higher order reduces the number of partial slabs
4871 * and increases the number of allocations possible without having to
4872 * take the list_lock.
4873 */
19af27af 4874static unsigned int slub_min_order;
90ce872c
VB
4875static unsigned int slub_max_order =
4876 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4877static unsigned int slub_min_objects;
81819f0f 4878
81819f0f
CL
4879/*
4880 * Calculate the order of allocation given an slab object size.
4881 *
672bba3a
CL
4882 * The order of allocation has significant impact on performance and other
4883 * system components. Generally order 0 allocations should be preferred since
4884 * order 0 does not cause fragmentation in the page allocator. Larger objects
4885 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4886 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4887 * would be wasted.
4888 *
4889 * In order to reach satisfactory performance we must ensure that a minimum
4890 * number of objects is in one slab. Otherwise we may generate too much
4891 * activity on the partial lists which requires taking the list_lock. This is
4892 * less a concern for large slabs though which are rarely used.
81819f0f 4893 *
671776b3
XS
4894 * slab_max_order specifies the order where we begin to stop considering the
4895 * number of objects in a slab as critical. If we reach slab_max_order then
672bba3a
CL
4896 * we try to keep the page order as low as possible. So we accept more waste
4897 * of space in favor of a small page order.
81819f0f 4898 *
672bba3a
CL
4899 * Higher order allocations also allow the placement of more objects in a
4900 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4901 * requested a higher minimum order then we start with that one instead of
672bba3a 4902 * the smallest order which will fit the object.
81819f0f 4903 */
d122019b 4904static inline unsigned int calc_slab_order(unsigned int size,
90f055df 4905 unsigned int min_order, unsigned int max_order,
9736d2a9 4906 unsigned int fract_leftover)
81819f0f 4907{
19af27af 4908 unsigned int order;
81819f0f 4909
90f055df 4910 for (order = min_order; order <= max_order; order++) {
81819f0f 4911
19af27af
AD
4912 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4913 unsigned int rem;
81819f0f 4914
9736d2a9 4915 rem = slab_size % size;
81819f0f 4916
5e6d444e 4917 if (rem <= slab_size / fract_leftover)
81819f0f 4918 break;
81819f0f 4919 }
672bba3a 4920
81819f0f
CL
4921 return order;
4922}
4923
9736d2a9 4924static inline int calculate_order(unsigned int size)
5e6d444e 4925{
19af27af
AD
4926 unsigned int order;
4927 unsigned int min_objects;
4928 unsigned int max_objects;
90f055df 4929 unsigned int min_order;
5e6d444e 4930
5e6d444e 4931 min_objects = slub_min_objects;
3286222f
VB
4932 if (!min_objects) {
4933 /*
4934 * Some architectures will only update present cpus when
4935 * onlining them, so don't trust the number if it's just 1. But
4936 * we also don't want to use nr_cpu_ids always, as on some other
4937 * architectures, there can be many possible cpus, but never
4938 * onlined. Here we compromise between trying to avoid too high
4939 * order on systems that appear larger than they are, and too
4940 * low order on systems that appear smaller than they are.
4941 */
90f055df 4942 unsigned int nr_cpus = num_present_cpus();
3286222f
VB
4943 if (nr_cpus <= 1)
4944 nr_cpus = nr_cpu_ids;
4945 min_objects = 4 * (fls(nr_cpus) + 1);
4946 }
90f055df
VB
4947 /* min_objects can't be 0 because get_order(0) is undefined */
4948 max_objects = max(order_objects(slub_max_order, size), 1U);
e8120ff1
ZY
4949 min_objects = min(min_objects, max_objects);
4950
90f055df
VB
4951 min_order = max_t(unsigned int, slub_min_order,
4952 get_order(min_objects * size));
4953 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4955
0fe2735d
VB
4956 /*
4957 * Attempt to find best configuration for a slab. This works by first
4958 * attempting to generate a layout with the best possible configuration
4959 * and backing off gradually.
4960 *
4961 * We start with accepting at most 1/16 waste and try to find the
671776b3
XS
4962 * smallest order from min_objects-derived/slab_min_order up to
4963 * slab_max_order that will satisfy the constraint. Note that increasing
0fe2735d
VB
4964 * the order can only result in same or less fractional waste, not more.
4965 *
4966 * If that fails, we increase the acceptable fraction of waste and try
5886fc82
VB
4967 * again. The last iteration with fraction of 1/2 would effectively
4968 * accept any waste and give us the order determined by min_objects, as
671776b3 4969 * long as at least single object fits within slab_max_order.
0fe2735d 4970 */
5886fc82 4971 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
90f055df 4972 order = calc_slab_order(size, min_order, slub_max_order,
0fe2735d
VB
4973 fraction);
4974 if (order <= slub_max_order)
4975 return order;
5e6d444e
CL
4976 }
4977
5e6d444e 4978 /*
671776b3 4979 * Doh this slab cannot be placed using slab_max_order.
5e6d444e 4980 */
c7355d75 4981 order = get_order(size);
5e0a760b 4982 if (order <= MAX_PAGE_ORDER)
5e6d444e
CL
4983 return order;
4984 return -ENOSYS;
4985}
4986
5595cffc 4987static void
4053497d 4988init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4989{
4990 n->nr_partial = 0;
81819f0f
CL
4991 spin_lock_init(&n->list_lock);
4992 INIT_LIST_HEAD(&n->partial);
8ab1372f 4993#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4994 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4995 atomic_long_set(&n->total_objects, 0);
643b1138 4996 INIT_LIST_HEAD(&n->full);
8ab1372f 4997#endif
81819f0f
CL
4998}
4999
0af8489b 5000#ifndef CONFIG_SLUB_TINY
55136592 5001static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 5002{
6c182dc0 5003 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
5004 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5005 sizeof(struct kmem_cache_cpu));
4c93c355 5006
8a5ec0ba 5007 /*
d4d84fef
CM
5008 * Must align to double word boundary for the double cmpxchg
5009 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 5010 */
d4d84fef
CM
5011 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5012 2 * sizeof(void *));
8a5ec0ba
CL
5013
5014 if (!s->cpu_slab)
5015 return 0;
5016
5017 init_kmem_cache_cpus(s);
4c93c355 5018
8a5ec0ba 5019 return 1;
4c93c355 5020}
0af8489b
VB
5021#else
5022static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5023{
5024 return 1;
5025}
5026#endif /* CONFIG_SLUB_TINY */
4c93c355 5027
51df1142
CL
5028static struct kmem_cache *kmem_cache_node;
5029
81819f0f
CL
5030/*
5031 * No kmalloc_node yet so do it by hand. We know that this is the first
5032 * slab on the node for this slabcache. There are no concurrent accesses
5033 * possible.
5034 *
721ae22a
ZYW
5035 * Note that this function only works on the kmem_cache_node
5036 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 5037 * memory on a fresh node that has no slab structures yet.
81819f0f 5038 */
55136592 5039static void early_kmem_cache_node_alloc(int node)
81819f0f 5040{
bb192ed9 5041 struct slab *slab;
81819f0f
CL
5042 struct kmem_cache_node *n;
5043
51df1142 5044 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 5045
bb192ed9 5046 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 5047
bb192ed9
VB
5048 BUG_ON(!slab);
5049 if (slab_nid(slab) != node) {
f9f58285
FF
5050 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5051 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
5052 }
5053
bb192ed9 5054 n = slab->freelist;
81819f0f 5055 BUG_ON(!n);
8ab1372f 5056#ifdef CONFIG_SLUB_DEBUG
f7cb1933 5057 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
8ab1372f 5058#endif
da844b78 5059 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
5060 slab->freelist = get_freepointer(kmem_cache_node, n);
5061 slab->inuse = 1;
12b22386 5062 kmem_cache_node->node[node] = n;
4053497d 5063 init_kmem_cache_node(n);
bb192ed9 5064 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 5065
67b6c900 5066 /*
1e4dd946
SR
5067 * No locks need to be taken here as it has just been
5068 * initialized and there is no concurrent access.
67b6c900 5069 */
bb192ed9 5070 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
5071}
5072
5073static void free_kmem_cache_nodes(struct kmem_cache *s)
5074{
5075 int node;
fa45dc25 5076 struct kmem_cache_node *n;
81819f0f 5077
fa45dc25 5078 for_each_kmem_cache_node(s, node, n) {
81819f0f 5079 s->node[node] = NULL;
ea37df54 5080 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
5081 }
5082}
5083
52b4b950
DS
5084void __kmem_cache_release(struct kmem_cache *s)
5085{
210e7a43 5086 cache_random_seq_destroy(s);
0af8489b 5087#ifndef CONFIG_SLUB_TINY
52b4b950 5088 free_percpu(s->cpu_slab);
0af8489b 5089#endif
52b4b950
DS
5090 free_kmem_cache_nodes(s);
5091}
5092
55136592 5093static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
5094{
5095 int node;
81819f0f 5096
7e1fa93d 5097 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
5098 struct kmem_cache_node *n;
5099
73367bd8 5100 if (slab_state == DOWN) {
55136592 5101 early_kmem_cache_node_alloc(node);
73367bd8
AD
5102 continue;
5103 }
51df1142 5104 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 5105 GFP_KERNEL, node);
81819f0f 5106
73367bd8
AD
5107 if (!n) {
5108 free_kmem_cache_nodes(s);
5109 return 0;
81819f0f 5110 }
73367bd8 5111
4053497d 5112 init_kmem_cache_node(n);
ea37df54 5113 s->node[node] = n;
81819f0f
CL
5114 }
5115 return 1;
5116}
81819f0f 5117
e6d0e1dc
WY
5118static void set_cpu_partial(struct kmem_cache *s)
5119{
5120#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
5121 unsigned int nr_objects;
5122
e6d0e1dc
WY
5123 /*
5124 * cpu_partial determined the maximum number of objects kept in the
5125 * per cpu partial lists of a processor.
5126 *
5127 * Per cpu partial lists mainly contain slabs that just have one
5128 * object freed. If they are used for allocation then they can be
5129 * filled up again with minimal effort. The slab will never hit the
5130 * per node partial lists and therefore no locking will be required.
5131 *
b47291ef
VB
5132 * For backwards compatibility reasons, this is determined as number
5133 * of objects, even though we now limit maximum number of pages, see
5134 * slub_set_cpu_partial()
e6d0e1dc
WY
5135 */
5136 if (!kmem_cache_has_cpu_partial(s))
b47291ef 5137 nr_objects = 0;
e6d0e1dc 5138 else if (s->size >= PAGE_SIZE)
b47291ef 5139 nr_objects = 6;
e6d0e1dc 5140 else if (s->size >= 1024)
23e98ad1 5141 nr_objects = 24;
e6d0e1dc 5142 else if (s->size >= 256)
23e98ad1 5143 nr_objects = 52;
e6d0e1dc 5144 else
23e98ad1 5145 nr_objects = 120;
b47291ef
VB
5146
5147 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
5148#endif
5149}
5150
81819f0f
CL
5151/*
5152 * calculate_sizes() determines the order and the distribution of data within
5153 * a slab object.
5154 */
ae44d81d 5155static int calculate_sizes(struct kmem_cache *s)
81819f0f 5156{
d50112ed 5157 slab_flags_t flags = s->flags;
be4a7988 5158 unsigned int size = s->object_size;
19af27af 5159 unsigned int order;
81819f0f 5160
d8b42bf5
CL
5161 /*
5162 * Round up object size to the next word boundary. We can only
5163 * place the free pointer at word boundaries and this determines
5164 * the possible location of the free pointer.
5165 */
5166 size = ALIGN(size, sizeof(void *));
5167
5168#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
5169 /*
5170 * Determine if we can poison the object itself. If the user of
5171 * the slab may touch the object after free or before allocation
5172 * then we should never poison the object itself.
5173 */
5f0d5a3a 5174 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 5175 !s->ctor)
81819f0f
CL
5176 s->flags |= __OBJECT_POISON;
5177 else
5178 s->flags &= ~__OBJECT_POISON;
5179
81819f0f
CL
5180
5181 /*
672bba3a 5182 * If we are Redzoning then check if there is some space between the
81819f0f 5183 * end of the object and the free pointer. If not then add an
672bba3a 5184 * additional word to have some bytes to store Redzone information.
81819f0f 5185 */
3b0efdfa 5186 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 5187 size += sizeof(void *);
41ecc55b 5188#endif
81819f0f
CL
5189
5190 /*
672bba3a 5191 * With that we have determined the number of bytes in actual use
e41a49fa 5192 * by the object and redzoning.
81819f0f
CL
5193 */
5194 s->inuse = size;
5195
adef2aea
CZ
5196 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5197 ((flags & SLAB_RED_ZONE) &&
5198 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
81819f0f
CL
5199 /*
5200 * Relocate free pointer after the object if it is not
5201 * permitted to overwrite the first word of the object on
5202 * kmem_cache_free.
5203 *
5204 * This is the case if we do RCU, have a constructor or
74c1d3e0 5205 * destructor, are poisoning the objects, or are
adef2aea
CZ
5206 * redzoning an object smaller than sizeof(void *) or are
5207 * redzoning an object with slub_debug_orig_size() enabled,
5208 * in which case the right redzone may be extended.
cbfc35a4
WL
5209 *
5210 * The assumption that s->offset >= s->inuse means free
5211 * pointer is outside of the object is used in the
5212 * freeptr_outside_object() function. If that is no
5213 * longer true, the function needs to be modified.
81819f0f
CL
5214 */
5215 s->offset = size;
5216 size += sizeof(void *);
e41a49fa 5217 } else {
3202fa62
KC
5218 /*
5219 * Store freelist pointer near middle of object to keep
5220 * it away from the edges of the object to avoid small
5221 * sized over/underflows from neighboring allocations.
5222 */
e41a49fa 5223 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
5224 }
5225
c12b3c62 5226#ifdef CONFIG_SLUB_DEBUG
6edf2576 5227 if (flags & SLAB_STORE_USER) {
81819f0f
CL
5228 /*
5229 * Need to store information about allocs and frees after
5230 * the object.
5231 */
5232 size += 2 * sizeof(struct track);
6edf2576
FT
5233
5234 /* Save the original kmalloc request size */
5235 if (flags & SLAB_KMALLOC)
5236 size += sizeof(unsigned int);
5237 }
80a9201a 5238#endif
81819f0f 5239
80a9201a
AP
5240 kasan_cache_create(s, &size, &s->flags);
5241#ifdef CONFIG_SLUB_DEBUG
d86bd1be 5242 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
5243 /*
5244 * Add some empty padding so that we can catch
5245 * overwrites from earlier objects rather than let
5246 * tracking information or the free pointer be
0211a9c8 5247 * corrupted if a user writes before the start
81819f0f
CL
5248 * of the object.
5249 */
5250 size += sizeof(void *);
d86bd1be
JK
5251
5252 s->red_left_pad = sizeof(void *);
5253 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5254 size += s->red_left_pad;
5255 }
41ecc55b 5256#endif
672bba3a 5257
81819f0f
CL
5258 /*
5259 * SLUB stores one object immediately after another beginning from
5260 * offset 0. In order to align the objects we have to simply size
5261 * each object to conform to the alignment.
5262 */
45906855 5263 size = ALIGN(size, s->align);
81819f0f 5264 s->size = size;
4138fdfc 5265 s->reciprocal_size = reciprocal_value(size);
ae44d81d 5266 order = calculate_order(size);
81819f0f 5267
19af27af 5268 if ((int)order < 0)
81819f0f
CL
5269 return 0;
5270
5b15f3fb 5271 s->allocflags = __GFP_COMP;
b7a49f0d
CL
5272
5273 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 5274 s->allocflags |= GFP_DMA;
b7a49f0d 5275
6d6ea1e9
NB
5276 if (s->flags & SLAB_CACHE_DMA32)
5277 s->allocflags |= GFP_DMA32;
5278
b7a49f0d
CL
5279 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5280 s->allocflags |= __GFP_RECLAIMABLE;
5281
81819f0f
CL
5282 /*
5283 * Determine the number of objects per slab
5284 */
9736d2a9
MW
5285 s->oo = oo_make(order, size);
5286 s->min = oo_make(get_order(size), size);
81819f0f 5287
834f3d11 5288 return !!oo_objects(s->oo);
81819f0f
CL
5289}
5290
d50112ed 5291static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 5292{
303cd693 5293 s->flags = kmem_cache_flags(flags, s->name);
2482ddec
KC
5294#ifdef CONFIG_SLAB_FREELIST_HARDENED
5295 s->random = get_random_long();
5296#endif
81819f0f 5297
ae44d81d 5298 if (!calculate_sizes(s))
81819f0f 5299 goto error;
3de47213
DR
5300 if (disable_higher_order_debug) {
5301 /*
5302 * Disable debugging flags that store metadata if the min slab
5303 * order increased.
5304 */
3b0efdfa 5305 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
5306 s->flags &= ~DEBUG_METADATA_FLAGS;
5307 s->offset = 0;
ae44d81d 5308 if (!calculate_sizes(s))
3de47213
DR
5309 goto error;
5310 }
5311 }
81819f0f 5312
6801be4f
PZ
5313#ifdef system_has_freelist_aba
5314 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
5315 /* Enable fast mode */
5316 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 5317 }
b789ef51
CL
5318#endif
5319
3b89d7d8 5320 /*
c2092c12 5321 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
5322 * list to avoid pounding the page allocator excessively.
5323 */
5182f3c9
HY
5324 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5325 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 5326
e6d0e1dc 5327 set_cpu_partial(s);
49e22585 5328
81819f0f 5329#ifdef CONFIG_NUMA
e2cb96b7 5330 s->remote_node_defrag_ratio = 1000;
81819f0f 5331#endif
210e7a43
TG
5332
5333 /* Initialize the pre-computed randomized freelist if slab is up */
5334 if (slab_state >= UP) {
5335 if (init_cache_random_seq(s))
5336 goto error;
5337 }
5338
55136592 5339 if (!init_kmem_cache_nodes(s))
dfb4f096 5340 goto error;
81819f0f 5341
55136592 5342 if (alloc_kmem_cache_cpus(s))
278b1bb1 5343 return 0;
ff12059e 5344
81819f0f 5345error:
9037c576 5346 __kmem_cache_release(s);
278b1bb1 5347 return -EINVAL;
81819f0f 5348}
81819f0f 5349
bb192ed9 5350static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 5351 const char *text)
33b12c38
CL
5352{
5353#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5354 void *addr = slab_address(slab);
33b12c38 5355 void *p;
aa456c7a 5356
bb192ed9 5357 slab_err(s, slab, text, s->name);
33b12c38 5358
4ef3f5a3
VB
5359 spin_lock(&object_map_lock);
5360 __fill_map(object_map, s, slab);
5361
bb192ed9 5362 for_each_object(p, s, addr, slab->objects) {
33b12c38 5363
4ef3f5a3 5364 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 5365 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
5366 print_tracking(s, p);
5367 }
5368 }
4ef3f5a3 5369 spin_unlock(&object_map_lock);
33b12c38
CL
5370#endif
5371}
5372
81819f0f 5373/*
599870b1 5374 * Attempt to free all partial slabs on a node.
52b4b950
DS
5375 * This is called from __kmem_cache_shutdown(). We must take list_lock
5376 * because sysfs file might still access partial list after the shutdowning.
81819f0f 5377 */
599870b1 5378static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 5379{
60398923 5380 LIST_HEAD(discard);
bb192ed9 5381 struct slab *slab, *h;
81819f0f 5382
52b4b950
DS
5383 BUG_ON(irqs_disabled());
5384 spin_lock_irq(&n->list_lock);
bb192ed9
VB
5385 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5386 if (!slab->inuse) {
5387 remove_partial(n, slab);
5388 list_add(&slab->slab_list, &discard);
33b12c38 5389 } else {
bb192ed9 5390 list_slab_objects(s, slab,
55860d96 5391 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 5392 }
33b12c38 5393 }
52b4b950 5394 spin_unlock_irq(&n->list_lock);
60398923 5395
bb192ed9
VB
5396 list_for_each_entry_safe(slab, h, &discard, slab_list)
5397 discard_slab(s, slab);
81819f0f
CL
5398}
5399
f9e13c0a
SB
5400bool __kmem_cache_empty(struct kmem_cache *s)
5401{
5402 int node;
5403 struct kmem_cache_node *n;
5404
5405 for_each_kmem_cache_node(s, node, n)
4f174a8b 5406 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
5407 return false;
5408 return true;
5409}
5410
81819f0f 5411/*
672bba3a 5412 * Release all resources used by a slab cache.
81819f0f 5413 */
52b4b950 5414int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
5415{
5416 int node;
fa45dc25 5417 struct kmem_cache_node *n;
81819f0f 5418
5a836bf6 5419 flush_all_cpus_locked(s);
81819f0f 5420 /* Attempt to free all objects */
fa45dc25 5421 for_each_kmem_cache_node(s, node, n) {
599870b1 5422 free_partial(s, n);
4f174a8b 5423 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
5424 return 1;
5425 }
81819f0f
CL
5426 return 0;
5427}
5428
5bb1bb35 5429#ifdef CONFIG_PRINTK
2dfe63e6 5430void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
5431{
5432 void *base;
5433 int __maybe_unused i;
5434 unsigned int objnr;
5435 void *objp;
5436 void *objp0;
7213230a 5437 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
5438 struct track __maybe_unused *trackp;
5439
5440 kpp->kp_ptr = object;
7213230a 5441 kpp->kp_slab = slab;
8e7f37f2 5442 kpp->kp_slab_cache = s;
7213230a 5443 base = slab_address(slab);
8e7f37f2
PM
5444 objp0 = kasan_reset_tag(object);
5445#ifdef CONFIG_SLUB_DEBUG
5446 objp = restore_red_left(s, objp0);
5447#else
5448 objp = objp0;
5449#endif
40f3bf0c 5450 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
5451 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5452 objp = base + s->size * objnr;
5453 kpp->kp_objp = objp;
7213230a
MWO
5454 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5455 || (objp - base) % s->size) ||
8e7f37f2
PM
5456 !(s->flags & SLAB_STORE_USER))
5457 return;
5458#ifdef CONFIG_SLUB_DEBUG
0cbc124b 5459 objp = fixup_red_left(s, objp);
8e7f37f2
PM
5460 trackp = get_track(s, objp, TRACK_ALLOC);
5461 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
5462#ifdef CONFIG_STACKDEPOT
5463 {
5464 depot_stack_handle_t handle;
5465 unsigned long *entries;
5466 unsigned int nr_entries;
78869146 5467
5cf909c5
OG
5468 handle = READ_ONCE(trackp->handle);
5469 if (handle) {
5470 nr_entries = stack_depot_fetch(handle, &entries);
5471 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5472 kpp->kp_stack[i] = (void *)entries[i];
5473 }
78869146 5474
5cf909c5
OG
5475 trackp = get_track(s, objp, TRACK_FREE);
5476 handle = READ_ONCE(trackp->handle);
5477 if (handle) {
5478 nr_entries = stack_depot_fetch(handle, &entries);
5479 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5480 kpp->kp_free_stack[i] = (void *)entries[i];
5481 }
e548eaa1 5482 }
8e7f37f2
PM
5483#endif
5484#endif
5485}
5bb1bb35 5486#endif
8e7f37f2 5487
81819f0f
CL
5488/********************************************************************
5489 * Kmalloc subsystem
5490 *******************************************************************/
5491
81819f0f
CL
5492static int __init setup_slub_min_order(char *str)
5493{
19af27af 5494 get_option(&str, (int *)&slub_min_order);
81819f0f 5495
e519ce7a
FT
5496 if (slub_min_order > slub_max_order)
5497 slub_max_order = slub_min_order;
5498
81819f0f
CL
5499 return 1;
5500}
5501
671776b3
XS
5502__setup("slab_min_order=", setup_slub_min_order);
5503__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5504
81819f0f
CL
5505
5506static int __init setup_slub_max_order(char *str)
5507{
19af27af 5508 get_option(&str, (int *)&slub_max_order);
5e0a760b 5509 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
81819f0f 5510
e519ce7a
FT
5511 if (slub_min_order > slub_max_order)
5512 slub_min_order = slub_max_order;
5513
81819f0f
CL
5514 return 1;
5515}
5516
671776b3
XS
5517__setup("slab_max_order=", setup_slub_max_order);
5518__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
81819f0f
CL
5519
5520static int __init setup_slub_min_objects(char *str)
5521{
19af27af 5522 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
5523
5524 return 1;
5525}
5526
671776b3
XS
5527__setup("slab_min_objects=", setup_slub_min_objects);
5528__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
81819f0f 5529
ed18adc1
KC
5530#ifdef CONFIG_HARDENED_USERCOPY
5531/*
afcc90f8
KC
5532 * Rejects incorrectly sized objects and objects that are to be copied
5533 * to/from userspace but do not fall entirely within the containing slab
5534 * cache's usercopy region.
ed18adc1
KC
5535 *
5536 * Returns NULL if check passes, otherwise const char * to name of cache
5537 * to indicate an error.
5538 */
0b3eb091
MWO
5539void __check_heap_object(const void *ptr, unsigned long n,
5540 const struct slab *slab, bool to_user)
ed18adc1
KC
5541{
5542 struct kmem_cache *s;
44065b2e 5543 unsigned int offset;
b89fb5ef 5544 bool is_kfence = is_kfence_address(ptr);
ed18adc1 5545
96fedce2
AK
5546 ptr = kasan_reset_tag(ptr);
5547
ed18adc1 5548 /* Find object and usable object size. */
0b3eb091 5549 s = slab->slab_cache;
ed18adc1
KC
5550
5551 /* Reject impossible pointers. */
0b3eb091 5552 if (ptr < slab_address(slab))
f4e6e289
KC
5553 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5554 to_user, 0, n);
ed18adc1
KC
5555
5556 /* Find offset within object. */
b89fb5ef
AP
5557 if (is_kfence)
5558 offset = ptr - kfence_object_start(ptr);
5559 else
0b3eb091 5560 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
5561
5562 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 5563 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 5564 if (offset < s->red_left_pad)
f4e6e289
KC
5565 usercopy_abort("SLUB object in left red zone",
5566 s->name, to_user, offset, n);
ed18adc1
KC
5567 offset -= s->red_left_pad;
5568 }
5569
afcc90f8
KC
5570 /* Allow address range falling entirely within usercopy region. */
5571 if (offset >= s->useroffset &&
5572 offset - s->useroffset <= s->usersize &&
5573 n <= s->useroffset - offset + s->usersize)
f4e6e289 5574 return;
ed18adc1 5575
f4e6e289 5576 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
5577}
5578#endif /* CONFIG_HARDENED_USERCOPY */
5579
832f37f5
VD
5580#define SHRINK_PROMOTE_MAX 32
5581
2086d26a 5582/*
832f37f5
VD
5583 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5584 * up most to the head of the partial lists. New allocations will then
5585 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
5586 *
5587 * The slabs with the least items are placed last. This results in them
5588 * being allocated from last increasing the chance that the last objects
5589 * are freed in them.
2086d26a 5590 */
5a836bf6 5591static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
5592{
5593 int node;
5594 int i;
5595 struct kmem_cache_node *n;
bb192ed9
VB
5596 struct slab *slab;
5597 struct slab *t;
832f37f5
VD
5598 struct list_head discard;
5599 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 5600 unsigned long flags;
ce3712d7 5601 int ret = 0;
2086d26a 5602
fa45dc25 5603 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
5604 INIT_LIST_HEAD(&discard);
5605 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5606 INIT_LIST_HEAD(promote + i);
2086d26a
CL
5607
5608 spin_lock_irqsave(&n->list_lock, flags);
5609
5610 /*
832f37f5 5611 * Build lists of slabs to discard or promote.
2086d26a 5612 *
672bba3a 5613 * Note that concurrent frees may occur while we hold the
c2092c12 5614 * list_lock. slab->inuse here is the upper limit.
2086d26a 5615 */
bb192ed9
VB
5616 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5617 int free = slab->objects - slab->inuse;
832f37f5 5618
c2092c12 5619 /* Do not reread slab->inuse */
832f37f5
VD
5620 barrier();
5621
5622 /* We do not keep full slabs on the list */
5623 BUG_ON(free <= 0);
5624
bb192ed9
VB
5625 if (free == slab->objects) {
5626 list_move(&slab->slab_list, &discard);
8a399e2f 5627 slab_clear_node_partial(slab);
69cb8e6b 5628 n->nr_partial--;
c7323a5a 5629 dec_slabs_node(s, node, slab->objects);
832f37f5 5630 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 5631 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
5632 }
5633
2086d26a 5634 /*
832f37f5
VD
5635 * Promote the slabs filled up most to the head of the
5636 * partial list.
2086d26a 5637 */
832f37f5
VD
5638 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5639 list_splice(promote + i, &n->partial);
2086d26a 5640
2086d26a 5641 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
5642
5643 /* Release empty slabs */
bb192ed9 5644 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 5645 free_slab(s, slab);
ce3712d7 5646
4f174a8b 5647 if (node_nr_slabs(n))
ce3712d7 5648 ret = 1;
2086d26a
CL
5649 }
5650
ce3712d7 5651 return ret;
2086d26a 5652}
2086d26a 5653
5a836bf6
SAS
5654int __kmem_cache_shrink(struct kmem_cache *s)
5655{
5656 flush_all(s);
5657 return __kmem_cache_do_shrink(s);
5658}
5659
b9049e23
YG
5660static int slab_mem_going_offline_callback(void *arg)
5661{
5662 struct kmem_cache *s;
5663
18004c5d 5664 mutex_lock(&slab_mutex);
5a836bf6
SAS
5665 list_for_each_entry(s, &slab_caches, list) {
5666 flush_all_cpus_locked(s);
5667 __kmem_cache_do_shrink(s);
5668 }
18004c5d 5669 mutex_unlock(&slab_mutex);
b9049e23
YG
5670
5671 return 0;
5672}
5673
5674static void slab_mem_offline_callback(void *arg)
5675{
b9049e23
YG
5676 struct memory_notify *marg = arg;
5677 int offline_node;
5678
b9d5ab25 5679 offline_node = marg->status_change_nid_normal;
b9049e23
YG
5680
5681 /*
5682 * If the node still has available memory. we need kmem_cache_node
5683 * for it yet.
5684 */
5685 if (offline_node < 0)
5686 return;
5687
18004c5d 5688 mutex_lock(&slab_mutex);
7e1fa93d 5689 node_clear(offline_node, slab_nodes);
666716fd
VB
5690 /*
5691 * We no longer free kmem_cache_node structures here, as it would be
5692 * racy with all get_node() users, and infeasible to protect them with
5693 * slab_mutex.
5694 */
18004c5d 5695 mutex_unlock(&slab_mutex);
b9049e23
YG
5696}
5697
5698static int slab_mem_going_online_callback(void *arg)
5699{
5700 struct kmem_cache_node *n;
5701 struct kmem_cache *s;
5702 struct memory_notify *marg = arg;
b9d5ab25 5703 int nid = marg->status_change_nid_normal;
b9049e23
YG
5704 int ret = 0;
5705
5706 /*
5707 * If the node's memory is already available, then kmem_cache_node is
5708 * already created. Nothing to do.
5709 */
5710 if (nid < 0)
5711 return 0;
5712
5713 /*
0121c619 5714 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
5715 * allocate a kmem_cache_node structure in order to bring the node
5716 * online.
5717 */
18004c5d 5718 mutex_lock(&slab_mutex);
b9049e23 5719 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
5720 /*
5721 * The structure may already exist if the node was previously
5722 * onlined and offlined.
5723 */
5724 if (get_node(s, nid))
5725 continue;
b9049e23
YG
5726 /*
5727 * XXX: kmem_cache_alloc_node will fallback to other nodes
5728 * since memory is not yet available from the node that
5729 * is brought up.
5730 */
8de66a0c 5731 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
5732 if (!n) {
5733 ret = -ENOMEM;
5734 goto out;
5735 }
4053497d 5736 init_kmem_cache_node(n);
b9049e23
YG
5737 s->node[nid] = n;
5738 }
7e1fa93d
VB
5739 /*
5740 * Any cache created after this point will also have kmem_cache_node
5741 * initialized for the new node.
5742 */
5743 node_set(nid, slab_nodes);
b9049e23 5744out:
18004c5d 5745 mutex_unlock(&slab_mutex);
b9049e23
YG
5746 return ret;
5747}
5748
5749static int slab_memory_callback(struct notifier_block *self,
5750 unsigned long action, void *arg)
5751{
5752 int ret = 0;
5753
5754 switch (action) {
5755 case MEM_GOING_ONLINE:
5756 ret = slab_mem_going_online_callback(arg);
5757 break;
5758 case MEM_GOING_OFFLINE:
5759 ret = slab_mem_going_offline_callback(arg);
5760 break;
5761 case MEM_OFFLINE:
5762 case MEM_CANCEL_ONLINE:
5763 slab_mem_offline_callback(arg);
5764 break;
5765 case MEM_ONLINE:
5766 case MEM_CANCEL_OFFLINE:
5767 break;
5768 }
dc19f9db
KH
5769 if (ret)
5770 ret = notifier_from_errno(ret);
5771 else
5772 ret = NOTIFY_OK;
b9049e23
YG
5773 return ret;
5774}
5775
81819f0f
CL
5776/********************************************************************
5777 * Basic setup of slabs
5778 *******************************************************************/
5779
51df1142
CL
5780/*
5781 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
5782 * the page allocator. Allocate them properly then fix up the pointers
5783 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
5784 */
5785
dffb4d60 5786static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
5787{
5788 int node;
dffb4d60 5789 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 5790 struct kmem_cache_node *n;
51df1142 5791
dffb4d60 5792 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5793
7d557b3c
GC
5794 /*
5795 * This runs very early, and only the boot processor is supposed to be
5796 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5797 * IPIs around.
5798 */
5799 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5800 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5801 struct slab *p;
51df1142 5802
916ac052 5803 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5804 p->slab_cache = s;
51df1142 5805
607bf324 5806#ifdef CONFIG_SLUB_DEBUG
916ac052 5807 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5808 p->slab_cache = s;
51df1142 5809#endif
51df1142 5810 }
dffb4d60
CL
5811 list_add(&s->list, &slab_caches);
5812 return s;
51df1142
CL
5813}
5814
81819f0f
CL
5815void __init kmem_cache_init(void)
5816{
dffb4d60
CL
5817 static __initdata struct kmem_cache boot_kmem_cache,
5818 boot_kmem_cache_node;
7e1fa93d 5819 int node;
51df1142 5820
fc8d8620
SG
5821 if (debug_guardpage_minorder())
5822 slub_max_order = 0;
5823
79270291
SB
5824 /* Print slub debugging pointers without hashing */
5825 if (__slub_debug_enabled())
5826 no_hash_pointers_enable(NULL);
5827
dffb4d60
CL
5828 kmem_cache_node = &boot_kmem_cache_node;
5829 kmem_cache = &boot_kmem_cache;
51df1142 5830
7e1fa93d
VB
5831 /*
5832 * Initialize the nodemask for which we will allocate per node
5833 * structures. Here we don't need taking slab_mutex yet.
5834 */
5835 for_each_node_state(node, N_NORMAL_MEMORY)
5836 node_set(node, slab_nodes);
5837
dffb4d60 5838 create_boot_cache(kmem_cache_node, "kmem_cache_node",
45012241
SB
5839 sizeof(struct kmem_cache_node),
5840 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
b9049e23 5841
946d5f9c 5842 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5843
5844 /* Able to allocate the per node structures */
5845 slab_state = PARTIAL;
5846
dffb4d60
CL
5847 create_boot_cache(kmem_cache, "kmem_cache",
5848 offsetof(struct kmem_cache, node) +
5849 nr_node_ids * sizeof(struct kmem_cache_node *),
45012241 5850 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8a13a4cc 5851
dffb4d60 5852 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5853 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5854
5855 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5856 setup_kmalloc_cache_index_table();
66b3dc1f 5857 create_kmalloc_caches();
81819f0f 5858
210e7a43
TG
5859 /* Setup random freelists for each cache */
5860 init_freelist_randomization();
5861
a96a87bf
SAS
5862 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5863 slub_cpu_dead);
81819f0f 5864
b9726c26 5865 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5866 cache_line_size(),
81819f0f
CL
5867 slub_min_order, slub_max_order, slub_min_objects,
5868 nr_cpu_ids, nr_node_ids);
5869}
5870
7e85ee0c
PE
5871void __init kmem_cache_init_late(void)
5872{
0af8489b 5873#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5874 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5875 WARN_ON(!flushwq);
0af8489b 5876#endif
7e85ee0c
PE
5877}
5878
2633d7a0 5879struct kmem_cache *
f4957d5b 5880__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5881 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5882{
10befea9 5883 struct kmem_cache *s;
81819f0f 5884
a44cb944 5885 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5886 if (s) {
efb93527
XS
5887 if (sysfs_slab_alias(s, name))
5888 return NULL;
5889
81819f0f 5890 s->refcount++;
84d0ddd6 5891
81819f0f
CL
5892 /*
5893 * Adjust the object sizes so that we clear
5894 * the complete object on kzalloc.
5895 */
1b473f29 5896 s->object_size = max(s->object_size, size);
52ee6d74 5897 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5898 }
6446faa2 5899
cbb79694
CL
5900 return s;
5901}
84c1cf62 5902
d50112ed 5903int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5904{
aac3a166
PE
5905 int err;
5906
5907 err = kmem_cache_open(s, flags);
5908 if (err)
5909 return err;
20cea968 5910
45530c44
CL
5911 /* Mutex is not taken during early boot */
5912 if (slab_state <= UP)
5913 return 0;
5914
aac3a166 5915 err = sysfs_slab_add(s);
67823a54 5916 if (err) {
52b4b950 5917 __kmem_cache_release(s);
67823a54
ML
5918 return err;
5919 }
20cea968 5920
64dd6849
FM
5921 if (s->flags & SLAB_STORE_USER)
5922 debugfs_slab_add(s);
5923
67823a54 5924 return 0;
81819f0f 5925}
81819f0f 5926
b1a413a3 5927#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5928static int count_inuse(struct slab *slab)
205ab99d 5929{
bb192ed9 5930 return slab->inuse;
205ab99d
CL
5931}
5932
bb192ed9 5933static int count_total(struct slab *slab)
205ab99d 5934{
bb192ed9 5935 return slab->objects;
205ab99d 5936}
ab4d5ed5 5937#endif
205ab99d 5938
ab4d5ed5 5939#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5940static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5941 unsigned long *obj_map)
53e15af0
CL
5942{
5943 void *p;
bb192ed9 5944 void *addr = slab_address(slab);
53e15af0 5945
bb192ed9 5946 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5947 return;
53e15af0
CL
5948
5949 /* Now we know that a valid freelist exists */
bb192ed9
VB
5950 __fill_map(obj_map, s, slab);
5951 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5952 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5953 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5954
bb192ed9 5955 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5956 break;
5957 }
53e15af0
CL
5958}
5959
434e245d 5960static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5961 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5962{
5963 unsigned long count = 0;
bb192ed9 5964 struct slab *slab;
53e15af0
CL
5965 unsigned long flags;
5966
5967 spin_lock_irqsave(&n->list_lock, flags);
5968
bb192ed9
VB
5969 list_for_each_entry(slab, &n->partial, slab_list) {
5970 validate_slab(s, slab, obj_map);
53e15af0
CL
5971 count++;
5972 }
1f9f78b1 5973 if (count != n->nr_partial) {
f9f58285
FF
5974 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5975 s->name, count, n->nr_partial);
1f9f78b1
OG
5976 slab_add_kunit_errors();
5977 }
53e15af0
CL
5978
5979 if (!(s->flags & SLAB_STORE_USER))
5980 goto out;
5981
bb192ed9
VB
5982 list_for_each_entry(slab, &n->full, slab_list) {
5983 validate_slab(s, slab, obj_map);
53e15af0
CL
5984 count++;
5985 }
8040cbf5 5986 if (count != node_nr_slabs(n)) {
f9f58285 5987 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5988 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5989 slab_add_kunit_errors();
5990 }
53e15af0
CL
5991
5992out:
5993 spin_unlock_irqrestore(&n->list_lock, flags);
5994 return count;
5995}
5996
1f9f78b1 5997long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5998{
5999 int node;
6000 unsigned long count = 0;
fa45dc25 6001 struct kmem_cache_node *n;
0a19e7dd
VB
6002 unsigned long *obj_map;
6003
6004 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6005 if (!obj_map)
6006 return -ENOMEM;
53e15af0
CL
6007
6008 flush_all(s);
fa45dc25 6009 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
6010 count += validate_slab_node(s, n, obj_map);
6011
6012 bitmap_free(obj_map);
90e9f6a6 6013
53e15af0
CL
6014 return count;
6015}
1f9f78b1
OG
6016EXPORT_SYMBOL(validate_slab_cache);
6017
64dd6849 6018#ifdef CONFIG_DEBUG_FS
88a420e4 6019/*
672bba3a 6020 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
6021 * and freed.
6022 */
6023
6024struct location {
8ea9fb92 6025 depot_stack_handle_t handle;
88a420e4 6026 unsigned long count;
ce71e27c 6027 unsigned long addr;
6edf2576 6028 unsigned long waste;
45edfa58
CL
6029 long long sum_time;
6030 long min_time;
6031 long max_time;
6032 long min_pid;
6033 long max_pid;
174596a0 6034 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 6035 nodemask_t nodes;
88a420e4
CL
6036};
6037
6038struct loc_track {
6039 unsigned long max;
6040 unsigned long count;
6041 struct location *loc;
005a79e5 6042 loff_t idx;
88a420e4
CL
6043};
6044
64dd6849
FM
6045static struct dentry *slab_debugfs_root;
6046
88a420e4
CL
6047static void free_loc_track(struct loc_track *t)
6048{
6049 if (t->max)
6050 free_pages((unsigned long)t->loc,
6051 get_order(sizeof(struct location) * t->max));
6052}
6053
68dff6a9 6054static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
6055{
6056 struct location *l;
6057 int order;
6058
88a420e4
CL
6059 order = get_order(sizeof(struct location) * max);
6060
68dff6a9 6061 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
6062 if (!l)
6063 return 0;
6064
6065 if (t->count) {
6066 memcpy(l, t->loc, sizeof(struct location) * t->count);
6067 free_loc_track(t);
6068 }
6069 t->max = max;
6070 t->loc = l;
6071 return 1;
6072}
6073
6074static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
6075 const struct track *track,
6076 unsigned int orig_size)
88a420e4
CL
6077{
6078 long start, end, pos;
6079 struct location *l;
6edf2576 6080 unsigned long caddr, chandle, cwaste;
45edfa58 6081 unsigned long age = jiffies - track->when;
8ea9fb92 6082 depot_stack_handle_t handle = 0;
6edf2576 6083 unsigned int waste = s->object_size - orig_size;
88a420e4 6084
8ea9fb92
OG
6085#ifdef CONFIG_STACKDEPOT
6086 handle = READ_ONCE(track->handle);
6087#endif
88a420e4
CL
6088 start = -1;
6089 end = t->count;
6090
6091 for ( ; ; ) {
6092 pos = start + (end - start + 1) / 2;
6093
6094 /*
6095 * There is nothing at "end". If we end up there
6096 * we need to add something to before end.
6097 */
6098 if (pos == end)
6099 break;
6100
6edf2576
FT
6101 l = &t->loc[pos];
6102 caddr = l->addr;
6103 chandle = l->handle;
6104 cwaste = l->waste;
6105 if ((track->addr == caddr) && (handle == chandle) &&
6106 (waste == cwaste)) {
45edfa58 6107
45edfa58
CL
6108 l->count++;
6109 if (track->when) {
6110 l->sum_time += age;
6111 if (age < l->min_time)
6112 l->min_time = age;
6113 if (age > l->max_time)
6114 l->max_time = age;
6115
6116 if (track->pid < l->min_pid)
6117 l->min_pid = track->pid;
6118 if (track->pid > l->max_pid)
6119 l->max_pid = track->pid;
6120
174596a0
RR
6121 cpumask_set_cpu(track->cpu,
6122 to_cpumask(l->cpus));
45edfa58
CL
6123 }
6124 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6125 return 1;
6126 }
6127
45edfa58 6128 if (track->addr < caddr)
88a420e4 6129 end = pos;
8ea9fb92
OG
6130 else if (track->addr == caddr && handle < chandle)
6131 end = pos;
6edf2576
FT
6132 else if (track->addr == caddr && handle == chandle &&
6133 waste < cwaste)
6134 end = pos;
88a420e4
CL
6135 else
6136 start = pos;
6137 }
6138
6139 /*
672bba3a 6140 * Not found. Insert new tracking element.
88a420e4 6141 */
68dff6a9 6142 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
6143 return 0;
6144
6145 l = t->loc + pos;
6146 if (pos < t->count)
6147 memmove(l + 1, l,
6148 (t->count - pos) * sizeof(struct location));
6149 t->count++;
6150 l->count = 1;
45edfa58
CL
6151 l->addr = track->addr;
6152 l->sum_time = age;
6153 l->min_time = age;
6154 l->max_time = age;
6155 l->min_pid = track->pid;
6156 l->max_pid = track->pid;
8ea9fb92 6157 l->handle = handle;
6edf2576 6158 l->waste = waste;
174596a0
RR
6159 cpumask_clear(to_cpumask(l->cpus));
6160 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
6161 nodes_clear(l->nodes);
6162 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6163 return 1;
6164}
6165
6166static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 6167 struct slab *slab, enum track_item alloc,
b3fd64e1 6168 unsigned long *obj_map)
88a420e4 6169{
bb192ed9 6170 void *addr = slab_address(slab);
6edf2576 6171 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
6172 void *p;
6173
bb192ed9 6174 __fill_map(obj_map, s, slab);
b3fd64e1 6175
bb192ed9 6176 for_each_object(p, s, addr, slab->objects)
b3fd64e1 6177 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
6178 add_location(t, s, get_track(s, p, alloc),
6179 is_alloc ? get_orig_size(s, p) :
6180 s->object_size);
88a420e4 6181}
64dd6849 6182#endif /* CONFIG_DEBUG_FS */
6dfd1b65 6183#endif /* CONFIG_SLUB_DEBUG */
88a420e4 6184
b1a413a3 6185#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 6186enum slab_stat_type {
205ab99d
CL
6187 SL_ALL, /* All slabs */
6188 SL_PARTIAL, /* Only partially allocated slabs */
6189 SL_CPU, /* Only slabs used for cpu caches */
6190 SL_OBJECTS, /* Determine allocated objects not slabs */
6191 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
6192};
6193
205ab99d 6194#define SO_ALL (1 << SL_ALL)
81819f0f
CL
6195#define SO_PARTIAL (1 << SL_PARTIAL)
6196#define SO_CPU (1 << SL_CPU)
6197#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 6198#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 6199
62e5c4b4 6200static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 6201 char *buf, unsigned long flags)
81819f0f
CL
6202{
6203 unsigned long total = 0;
81819f0f
CL
6204 int node;
6205 int x;
6206 unsigned long *nodes;
bf16d19a 6207 int len = 0;
81819f0f 6208
6396bb22 6209 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
6210 if (!nodes)
6211 return -ENOMEM;
81819f0f 6212
205ab99d
CL
6213 if (flags & SO_CPU) {
6214 int cpu;
81819f0f 6215
205ab99d 6216 for_each_possible_cpu(cpu) {
d0e0ac97
CG
6217 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6218 cpu);
ec3ab083 6219 int node;
bb192ed9 6220 struct slab *slab;
dfb4f096 6221
bb192ed9
VB
6222 slab = READ_ONCE(c->slab);
6223 if (!slab)
ec3ab083 6224 continue;
205ab99d 6225
bb192ed9 6226 node = slab_nid(slab);
ec3ab083 6227 if (flags & SO_TOTAL)
bb192ed9 6228 x = slab->objects;
ec3ab083 6229 else if (flags & SO_OBJECTS)
bb192ed9 6230 x = slab->inuse;
ec3ab083
CL
6231 else
6232 x = 1;
49e22585 6233
ec3ab083
CL
6234 total += x;
6235 nodes[node] += x;
6236
9c01e9af 6237#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
6238 slab = slub_percpu_partial_read_once(c);
6239 if (slab) {
6240 node = slab_nid(slab);
8afb1474
LZ
6241 if (flags & SO_TOTAL)
6242 WARN_ON_ONCE(1);
6243 else if (flags & SO_OBJECTS)
6244 WARN_ON_ONCE(1);
6245 else
87654cf7 6246 x = data_race(slab->slabs);
bc6697d8
ED
6247 total += x;
6248 nodes[node] += x;
49e22585 6249 }
9c01e9af 6250#endif
81819f0f
CL
6251 }
6252 }
6253
e4f8e513
QC
6254 /*
6255 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6256 * already held which will conflict with an existing lock order:
6257 *
6258 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6259 *
6260 * We don't really need mem_hotplug_lock (to hold off
6261 * slab_mem_going_offline_callback) here because slab's memory hot
6262 * unplug code doesn't destroy the kmem_cache->node[] data.
6263 */
6264
ab4d5ed5 6265#ifdef CONFIG_SLUB_DEBUG
205ab99d 6266 if (flags & SO_ALL) {
fa45dc25
CL
6267 struct kmem_cache_node *n;
6268
6269 for_each_kmem_cache_node(s, node, n) {
205ab99d 6270
d0e0ac97 6271 if (flags & SO_TOTAL)
8040cbf5 6272 x = node_nr_objs(n);
d0e0ac97 6273 else if (flags & SO_OBJECTS)
8040cbf5 6274 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 6275 else
8040cbf5 6276 x = node_nr_slabs(n);
81819f0f
CL
6277 total += x;
6278 nodes[node] += x;
6279 }
6280
ab4d5ed5
CL
6281 } else
6282#endif
6283 if (flags & SO_PARTIAL) {
fa45dc25 6284 struct kmem_cache_node *n;
81819f0f 6285
fa45dc25 6286 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
6287 if (flags & SO_TOTAL)
6288 x = count_partial(n, count_total);
6289 else if (flags & SO_OBJECTS)
6290 x = count_partial(n, count_inuse);
81819f0f 6291 else
205ab99d 6292 x = n->nr_partial;
81819f0f
CL
6293 total += x;
6294 nodes[node] += x;
6295 }
6296 }
bf16d19a
JP
6297
6298 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 6299#ifdef CONFIG_NUMA
bf16d19a 6300 for (node = 0; node < nr_node_ids; node++) {
81819f0f 6301 if (nodes[node])
bf16d19a
JP
6302 len += sysfs_emit_at(buf, len, " N%d=%lu",
6303 node, nodes[node]);
6304 }
81819f0f 6305#endif
bf16d19a 6306 len += sysfs_emit_at(buf, len, "\n");
81819f0f 6307 kfree(nodes);
bf16d19a
JP
6308
6309 return len;
81819f0f
CL
6310}
6311
81819f0f 6312#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 6313#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
6314
6315struct slab_attribute {
6316 struct attribute attr;
6317 ssize_t (*show)(struct kmem_cache *s, char *buf);
6318 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6319};
6320
6321#define SLAB_ATTR_RO(_name) \
d1d28bd9 6322 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
6323
6324#define SLAB_ATTR(_name) \
d1d28bd9 6325 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 6326
81819f0f
CL
6327static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6328{
bf16d19a 6329 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
6330}
6331SLAB_ATTR_RO(slab_size);
6332
6333static ssize_t align_show(struct kmem_cache *s, char *buf)
6334{
bf16d19a 6335 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
6336}
6337SLAB_ATTR_RO(align);
6338
6339static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6340{
bf16d19a 6341 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
6342}
6343SLAB_ATTR_RO(object_size);
6344
6345static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6346{
bf16d19a 6347 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
6348}
6349SLAB_ATTR_RO(objs_per_slab);
6350
6351static ssize_t order_show(struct kmem_cache *s, char *buf)
6352{
bf16d19a 6353 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 6354}
32a6f409 6355SLAB_ATTR_RO(order);
81819f0f 6356
73d342b1
DR
6357static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6358{
bf16d19a 6359 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
6360}
6361
6362static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6363 size_t length)
6364{
6365 unsigned long min;
6366 int err;
6367
3dbb95f7 6368 err = kstrtoul(buf, 10, &min);
73d342b1
DR
6369 if (err)
6370 return err;
6371
5182f3c9 6372 s->min_partial = min;
73d342b1
DR
6373 return length;
6374}
6375SLAB_ATTR(min_partial);
6376
49e22585
CL
6377static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6378{
b47291ef
VB
6379 unsigned int nr_partial = 0;
6380#ifdef CONFIG_SLUB_CPU_PARTIAL
6381 nr_partial = s->cpu_partial;
6382#endif
6383
6384 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
6385}
6386
6387static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6388 size_t length)
6389{
e5d9998f 6390 unsigned int objects;
49e22585
CL
6391 int err;
6392
e5d9998f 6393 err = kstrtouint(buf, 10, &objects);
49e22585
CL
6394 if (err)
6395 return err;
345c905d 6396 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 6397 return -EINVAL;
49e22585 6398
e6d0e1dc 6399 slub_set_cpu_partial(s, objects);
49e22585
CL
6400 flush_all(s);
6401 return length;
6402}
6403SLAB_ATTR(cpu_partial);
6404
81819f0f
CL
6405static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6406{
62c70bce
JP
6407 if (!s->ctor)
6408 return 0;
bf16d19a 6409 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
6410}
6411SLAB_ATTR_RO(ctor);
6412
81819f0f
CL
6413static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6414{
bf16d19a 6415 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
6416}
6417SLAB_ATTR_RO(aliases);
6418
81819f0f
CL
6419static ssize_t partial_show(struct kmem_cache *s, char *buf)
6420{
d9acf4b7 6421 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
6422}
6423SLAB_ATTR_RO(partial);
6424
6425static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6426{
d9acf4b7 6427 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
6428}
6429SLAB_ATTR_RO(cpu_slabs);
6430
205ab99d
CL
6431static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6432{
6433 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6434}
6435SLAB_ATTR_RO(objects_partial);
6436
49e22585
CL
6437static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6438{
6439 int objects = 0;
bb192ed9 6440 int slabs = 0;
9c01e9af 6441 int cpu __maybe_unused;
bf16d19a 6442 int len = 0;
49e22585 6443
9c01e9af 6444#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6445 for_each_online_cpu(cpu) {
bb192ed9 6446 struct slab *slab;
a93cf07b 6447
bb192ed9 6448 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 6449
bb192ed9 6450 if (slab)
87654cf7 6451 slabs += data_race(slab->slabs);
49e22585 6452 }
9c01e9af 6453#endif
49e22585 6454
c2092c12 6455 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
6456 objects = (slabs * oo_objects(s->oo)) / 2;
6457 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 6458
c6c17c4d 6459#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6460 for_each_online_cpu(cpu) {
bb192ed9 6461 struct slab *slab;
a93cf07b 6462
bb192ed9
VB
6463 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6464 if (slab) {
87654cf7 6465 slabs = data_race(slab->slabs);
bb192ed9 6466 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 6467 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 6468 cpu, objects, slabs);
b47291ef 6469 }
49e22585
CL
6470 }
6471#endif
bf16d19a
JP
6472 len += sysfs_emit_at(buf, len, "\n");
6473
6474 return len;
49e22585
CL
6475}
6476SLAB_ATTR_RO(slabs_cpu_partial);
6477
a5a84755
CL
6478static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6479{
bf16d19a 6480 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 6481}
8f58119a 6482SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
6483
6484static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6485{
bf16d19a 6486 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
6487}
6488SLAB_ATTR_RO(hwcache_align);
6489
6490#ifdef CONFIG_ZONE_DMA
6491static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6492{
bf16d19a 6493 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
6494}
6495SLAB_ATTR_RO(cache_dma);
6496#endif
6497
346907ce 6498#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
6499static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6500{
bf16d19a 6501 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
6502}
6503SLAB_ATTR_RO(usersize);
346907ce 6504#endif
8eb8284b 6505
a5a84755
CL
6506static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6507{
bf16d19a 6508 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
6509}
6510SLAB_ATTR_RO(destroy_by_rcu);
6511
ab4d5ed5 6512#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
6513static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6514{
6515 return show_slab_objects(s, buf, SO_ALL);
6516}
6517SLAB_ATTR_RO(slabs);
6518
205ab99d
CL
6519static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6520{
6521 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6522}
6523SLAB_ATTR_RO(total_objects);
6524
81bd3179
XS
6525static ssize_t objects_show(struct kmem_cache *s, char *buf)
6526{
6527 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6528}
6529SLAB_ATTR_RO(objects);
6530
81819f0f
CL
6531static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6532{
bf16d19a 6533 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 6534}
060807f8 6535SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
6536
6537static ssize_t trace_show(struct kmem_cache *s, char *buf)
6538{
bf16d19a 6539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 6540}
060807f8 6541SLAB_ATTR_RO(trace);
81819f0f 6542
81819f0f
CL
6543static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6544{
bf16d19a 6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
6546}
6547
ad38b5b1 6548SLAB_ATTR_RO(red_zone);
81819f0f
CL
6549
6550static ssize_t poison_show(struct kmem_cache *s, char *buf)
6551{
bf16d19a 6552 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
6553}
6554
ad38b5b1 6555SLAB_ATTR_RO(poison);
81819f0f
CL
6556
6557static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6558{
bf16d19a 6559 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
6560}
6561
ad38b5b1 6562SLAB_ATTR_RO(store_user);
81819f0f 6563
53e15af0
CL
6564static ssize_t validate_show(struct kmem_cache *s, char *buf)
6565{
6566 return 0;
6567}
6568
6569static ssize_t validate_store(struct kmem_cache *s,
6570 const char *buf, size_t length)
6571{
434e245d
CL
6572 int ret = -EINVAL;
6573
c7323a5a 6574 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
6575 ret = validate_slab_cache(s);
6576 if (ret >= 0)
6577 ret = length;
6578 }
6579 return ret;
53e15af0
CL
6580}
6581SLAB_ATTR(validate);
a5a84755 6582
a5a84755
CL
6583#endif /* CONFIG_SLUB_DEBUG */
6584
6585#ifdef CONFIG_FAILSLAB
6586static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6587{
bf16d19a 6588 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 6589}
7c82b3b3
AA
6590
6591static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6592 size_t length)
6593{
6594 if (s->refcount > 1)
6595 return -EINVAL;
6596
6597 if (buf[0] == '1')
6598 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6599 else
6600 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6601
6602 return length;
6603}
6604SLAB_ATTR(failslab);
ab4d5ed5 6605#endif
53e15af0 6606
2086d26a
CL
6607static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6608{
6609 return 0;
6610}
6611
6612static ssize_t shrink_store(struct kmem_cache *s,
6613 const char *buf, size_t length)
6614{
832f37f5 6615 if (buf[0] == '1')
10befea9 6616 kmem_cache_shrink(s);
832f37f5 6617 else
2086d26a
CL
6618 return -EINVAL;
6619 return length;
6620}
6621SLAB_ATTR(shrink);
6622
81819f0f 6623#ifdef CONFIG_NUMA
9824601e 6624static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 6625{
bf16d19a 6626 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
6627}
6628
9824601e 6629static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
6630 const char *buf, size_t length)
6631{
eb7235eb 6632 unsigned int ratio;
0121c619
CL
6633 int err;
6634
eb7235eb 6635 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
6636 if (err)
6637 return err;
eb7235eb
AD
6638 if (ratio > 100)
6639 return -ERANGE;
0121c619 6640
eb7235eb 6641 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 6642
81819f0f
CL
6643 return length;
6644}
9824601e 6645SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
6646#endif
6647
8ff12cfc 6648#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
6649static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6650{
6651 unsigned long sum = 0;
6652 int cpu;
bf16d19a 6653 int len = 0;
6da2ec56 6654 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
6655
6656 if (!data)
6657 return -ENOMEM;
6658
6659 for_each_online_cpu(cpu) {
9dfc6e68 6660 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
6661
6662 data[cpu] = x;
6663 sum += x;
6664 }
6665
bf16d19a 6666 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 6667
50ef37b9 6668#ifdef CONFIG_SMP
8ff12cfc 6669 for_each_online_cpu(cpu) {
bf16d19a
JP
6670 if (data[cpu])
6671 len += sysfs_emit_at(buf, len, " C%d=%u",
6672 cpu, data[cpu]);
8ff12cfc 6673 }
50ef37b9 6674#endif
8ff12cfc 6675 kfree(data);
bf16d19a
JP
6676 len += sysfs_emit_at(buf, len, "\n");
6677
6678 return len;
8ff12cfc
CL
6679}
6680
78eb00cc
DR
6681static void clear_stat(struct kmem_cache *s, enum stat_item si)
6682{
6683 int cpu;
6684
6685 for_each_online_cpu(cpu)
9dfc6e68 6686 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
6687}
6688
8ff12cfc
CL
6689#define STAT_ATTR(si, text) \
6690static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6691{ \
6692 return show_stat(s, buf, si); \
6693} \
78eb00cc
DR
6694static ssize_t text##_store(struct kmem_cache *s, \
6695 const char *buf, size_t length) \
6696{ \
6697 if (buf[0] != '0') \
6698 return -EINVAL; \
6699 clear_stat(s, si); \
6700 return length; \
6701} \
6702SLAB_ATTR(text); \
8ff12cfc
CL
6703
6704STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6705STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6706STAT_ATTR(FREE_FASTPATH, free_fastpath);
6707STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6708STAT_ATTR(FREE_FROZEN, free_frozen);
6709STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6710STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6711STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6712STAT_ATTR(ALLOC_SLAB, alloc_slab);
6713STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 6714STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
6715STAT_ATTR(FREE_SLAB, free_slab);
6716STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6717STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6718STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6719STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6720STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6721STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 6722STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 6723STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
6724STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6725STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
6726STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6727STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
6728STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6729STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 6730#endif /* CONFIG_SLUB_STATS */
8ff12cfc 6731
b84e04f1
IK
6732#ifdef CONFIG_KFENCE
6733static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6734{
6735 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6736}
6737
6738static ssize_t skip_kfence_store(struct kmem_cache *s,
6739 const char *buf, size_t length)
6740{
6741 int ret = length;
6742
6743 if (buf[0] == '0')
6744 s->flags &= ~SLAB_SKIP_KFENCE;
6745 else if (buf[0] == '1')
6746 s->flags |= SLAB_SKIP_KFENCE;
6747 else
6748 ret = -EINVAL;
6749
6750 return ret;
6751}
6752SLAB_ATTR(skip_kfence);
6753#endif
6754
06428780 6755static struct attribute *slab_attrs[] = {
81819f0f
CL
6756 &slab_size_attr.attr,
6757 &object_size_attr.attr,
6758 &objs_per_slab_attr.attr,
6759 &order_attr.attr,
73d342b1 6760 &min_partial_attr.attr,
49e22585 6761 &cpu_partial_attr.attr,
205ab99d 6762 &objects_partial_attr.attr,
81819f0f
CL
6763 &partial_attr.attr,
6764 &cpu_slabs_attr.attr,
6765 &ctor_attr.attr,
81819f0f
CL
6766 &aliases_attr.attr,
6767 &align_attr.attr,
81819f0f
CL
6768 &hwcache_align_attr.attr,
6769 &reclaim_account_attr.attr,
6770 &destroy_by_rcu_attr.attr,
a5a84755 6771 &shrink_attr.attr,
49e22585 6772 &slabs_cpu_partial_attr.attr,
ab4d5ed5 6773#ifdef CONFIG_SLUB_DEBUG
a5a84755 6774 &total_objects_attr.attr,
81bd3179 6775 &objects_attr.attr,
a5a84755
CL
6776 &slabs_attr.attr,
6777 &sanity_checks_attr.attr,
6778 &trace_attr.attr,
81819f0f
CL
6779 &red_zone_attr.attr,
6780 &poison_attr.attr,
6781 &store_user_attr.attr,
53e15af0 6782 &validate_attr.attr,
ab4d5ed5 6783#endif
81819f0f
CL
6784#ifdef CONFIG_ZONE_DMA
6785 &cache_dma_attr.attr,
6786#endif
6787#ifdef CONFIG_NUMA
9824601e 6788 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
6789#endif
6790#ifdef CONFIG_SLUB_STATS
6791 &alloc_fastpath_attr.attr,
6792 &alloc_slowpath_attr.attr,
6793 &free_fastpath_attr.attr,
6794 &free_slowpath_attr.attr,
6795 &free_frozen_attr.attr,
6796 &free_add_partial_attr.attr,
6797 &free_remove_partial_attr.attr,
6798 &alloc_from_partial_attr.attr,
6799 &alloc_slab_attr.attr,
6800 &alloc_refill_attr.attr,
e36a2652 6801 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6802 &free_slab_attr.attr,
6803 &cpuslab_flush_attr.attr,
6804 &deactivate_full_attr.attr,
6805 &deactivate_empty_attr.attr,
6806 &deactivate_to_head_attr.attr,
6807 &deactivate_to_tail_attr.attr,
6808 &deactivate_remote_frees_attr.attr,
03e404af 6809 &deactivate_bypass_attr.attr,
65c3376a 6810 &order_fallback_attr.attr,
b789ef51
CL
6811 &cmpxchg_double_fail_attr.attr,
6812 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6813 &cpu_partial_alloc_attr.attr,
6814 &cpu_partial_free_attr.attr,
8028dcea
AS
6815 &cpu_partial_node_attr.attr,
6816 &cpu_partial_drain_attr.attr,
81819f0f 6817#endif
4c13dd3b
DM
6818#ifdef CONFIG_FAILSLAB
6819 &failslab_attr.attr,
6820#endif
346907ce 6821#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6822 &usersize_attr.attr,
346907ce 6823#endif
b84e04f1
IK
6824#ifdef CONFIG_KFENCE
6825 &skip_kfence_attr.attr,
6826#endif
4c13dd3b 6827
81819f0f
CL
6828 NULL
6829};
6830
1fdaaa23 6831static const struct attribute_group slab_attr_group = {
81819f0f
CL
6832 .attrs = slab_attrs,
6833};
6834
6835static ssize_t slab_attr_show(struct kobject *kobj,
6836 struct attribute *attr,
6837 char *buf)
6838{
6839 struct slab_attribute *attribute;
6840 struct kmem_cache *s;
81819f0f
CL
6841
6842 attribute = to_slab_attr(attr);
6843 s = to_slab(kobj);
6844
6845 if (!attribute->show)
6846 return -EIO;
6847
2bfbb027 6848 return attribute->show(s, buf);
81819f0f
CL
6849}
6850
6851static ssize_t slab_attr_store(struct kobject *kobj,
6852 struct attribute *attr,
6853 const char *buf, size_t len)
6854{
6855 struct slab_attribute *attribute;
6856 struct kmem_cache *s;
81819f0f
CL
6857
6858 attribute = to_slab_attr(attr);
6859 s = to_slab(kobj);
6860
6861 if (!attribute->store)
6862 return -EIO;
6863
2bfbb027 6864 return attribute->store(s, buf, len);
81819f0f
CL
6865}
6866
41a21285
CL
6867static void kmem_cache_release(struct kobject *k)
6868{
6869 slab_kmem_cache_release(to_slab(k));
6870}
6871
52cf25d0 6872static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6873 .show = slab_attr_show,
6874 .store = slab_attr_store,
6875};
6876
9ebe720e 6877static const struct kobj_type slab_ktype = {
81819f0f 6878 .sysfs_ops = &slab_sysfs_ops,
41a21285 6879 .release = kmem_cache_release,
81819f0f
CL
6880};
6881
27c3a314 6882static struct kset *slab_kset;
81819f0f 6883
9a41707b
VD
6884static inline struct kset *cache_kset(struct kmem_cache *s)
6885{
9a41707b
VD
6886 return slab_kset;
6887}
6888
d65360f2 6889#define ID_STR_LENGTH 32
81819f0f
CL
6890
6891/* Create a unique string id for a slab cache:
6446faa2
CL
6892 *
6893 * Format :[flags-]size
81819f0f
CL
6894 */
6895static char *create_unique_id(struct kmem_cache *s)
6896{
6897 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6898 char *p = name;
6899
7e9c323c
CY
6900 if (!name)
6901 return ERR_PTR(-ENOMEM);
81819f0f
CL
6902
6903 *p++ = ':';
6904 /*
6905 * First flags affecting slabcache operations. We will only
6906 * get here for aliasable slabs so we do not need to support
6907 * too many flags. The flags here must cover all flags that
6908 * are matched during merging to guarantee that the id is
6909 * unique.
6910 */
6911 if (s->flags & SLAB_CACHE_DMA)
6912 *p++ = 'd';
6d6ea1e9
NB
6913 if (s->flags & SLAB_CACHE_DMA32)
6914 *p++ = 'D';
81819f0f
CL
6915 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6916 *p++ = 'a';
becfda68 6917 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6918 *p++ = 'F';
230e9fc2
VD
6919 if (s->flags & SLAB_ACCOUNT)
6920 *p++ = 'A';
81819f0f
CL
6921 if (p != name + 1)
6922 *p++ = '-';
d65360f2 6923 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6924
d65360f2
CY
6925 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6926 kfree(name);
6927 return ERR_PTR(-EINVAL);
6928 }
68ef169a 6929 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6930 return name;
6931}
6932
6933static int sysfs_slab_add(struct kmem_cache *s)
6934{
6935 int err;
6936 const char *name;
1663f26d 6937 struct kset *kset = cache_kset(s);
45530c44 6938 int unmergeable = slab_unmergeable(s);
81819f0f 6939
11066386
MC
6940 if (!unmergeable && disable_higher_order_debug &&
6941 (slub_debug & DEBUG_METADATA_FLAGS))
6942 unmergeable = 1;
6943
81819f0f
CL
6944 if (unmergeable) {
6945 /*
6946 * Slabcache can never be merged so we can use the name proper.
6947 * This is typically the case for debug situations. In that
6948 * case we can catch duplicate names easily.
6949 */
27c3a314 6950 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6951 name = s->name;
6952 } else {
6953 /*
6954 * Create a unique name for the slab as a target
6955 * for the symlinks.
6956 */
6957 name = create_unique_id(s);
7e9c323c
CY
6958 if (IS_ERR(name))
6959 return PTR_ERR(name);
81819f0f
CL
6960 }
6961
1663f26d 6962 s->kobj.kset = kset;
26e4f205 6963 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6964 if (err)
80da026a 6965 goto out;
81819f0f
CL
6966
6967 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6968 if (err)
6969 goto out_del_kobj;
9a41707b 6970
81819f0f
CL
6971 if (!unmergeable) {
6972 /* Setup first alias */
6973 sysfs_slab_alias(s, s->name);
81819f0f 6974 }
54b6a731
DJ
6975out:
6976 if (!unmergeable)
6977 kfree(name);
6978 return err;
6979out_del_kobj:
6980 kobject_del(&s->kobj);
54b6a731 6981 goto out;
81819f0f
CL
6982}
6983
d50d82fa
MP
6984void sysfs_slab_unlink(struct kmem_cache *s)
6985{
011568eb 6986 kobject_del(&s->kobj);
d50d82fa
MP
6987}
6988
bf5eb3de
TH
6989void sysfs_slab_release(struct kmem_cache *s)
6990{
011568eb 6991 kobject_put(&s->kobj);
81819f0f
CL
6992}
6993
6994/*
6995 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6996 * available lest we lose that information.
81819f0f
CL
6997 */
6998struct saved_alias {
6999 struct kmem_cache *s;
7000 const char *name;
7001 struct saved_alias *next;
7002};
7003
5af328a5 7004static struct saved_alias *alias_list;
81819f0f
CL
7005
7006static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7007{
7008 struct saved_alias *al;
7009
97d06609 7010 if (slab_state == FULL) {
81819f0f
CL
7011 /*
7012 * If we have a leftover link then remove it.
7013 */
27c3a314
GKH
7014 sysfs_remove_link(&slab_kset->kobj, name);
7015 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
7016 }
7017
7018 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7019 if (!al)
7020 return -ENOMEM;
7021
7022 al->s = s;
7023 al->name = name;
7024 al->next = alias_list;
7025 alias_list = al;
68ef169a 7026 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
7027 return 0;
7028}
7029
7030static int __init slab_sysfs_init(void)
7031{
5b95a4ac 7032 struct kmem_cache *s;
81819f0f
CL
7033 int err;
7034
18004c5d 7035 mutex_lock(&slab_mutex);
2bce6485 7036
d7660ce5 7037 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 7038 if (!slab_kset) {
18004c5d 7039 mutex_unlock(&slab_mutex);
f9f58285 7040 pr_err("Cannot register slab subsystem.\n");
35973232 7041 return -ENOMEM;
81819f0f
CL
7042 }
7043
97d06609 7044 slab_state = FULL;
26a7bd03 7045
5b95a4ac 7046 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 7047 err = sysfs_slab_add(s);
5d540fb7 7048 if (err)
f9f58285
FF
7049 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7050 s->name);
26a7bd03 7051 }
81819f0f
CL
7052
7053 while (alias_list) {
7054 struct saved_alias *al = alias_list;
7055
7056 alias_list = alias_list->next;
7057 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 7058 if (err)
f9f58285
FF
7059 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7060 al->name);
81819f0f
CL
7061 kfree(al);
7062 }
7063
18004c5d 7064 mutex_unlock(&slab_mutex);
81819f0f
CL
7065 return 0;
7066}
1a5ad30b 7067late_initcall(slab_sysfs_init);
b1a413a3 7068#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 7069
64dd6849
FM
7070#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7071static int slab_debugfs_show(struct seq_file *seq, void *v)
7072{
64dd6849 7073 struct loc_track *t = seq->private;
005a79e5
GS
7074 struct location *l;
7075 unsigned long idx;
64dd6849 7076
005a79e5 7077 idx = (unsigned long) t->idx;
64dd6849
FM
7078 if (idx < t->count) {
7079 l = &t->loc[idx];
7080
7081 seq_printf(seq, "%7ld ", l->count);
7082
7083 if (l->addr)
7084 seq_printf(seq, "%pS", (void *)l->addr);
7085 else
7086 seq_puts(seq, "<not-available>");
7087
6edf2576
FT
7088 if (l->waste)
7089 seq_printf(seq, " waste=%lu/%lu",
7090 l->count * l->waste, l->waste);
7091
64dd6849
FM
7092 if (l->sum_time != l->min_time) {
7093 seq_printf(seq, " age=%ld/%llu/%ld",
7094 l->min_time, div_u64(l->sum_time, l->count),
7095 l->max_time);
7096 } else
7097 seq_printf(seq, " age=%ld", l->min_time);
7098
7099 if (l->min_pid != l->max_pid)
7100 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7101 else
7102 seq_printf(seq, " pid=%ld",
7103 l->min_pid);
7104
7105 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7106 seq_printf(seq, " cpus=%*pbl",
7107 cpumask_pr_args(to_cpumask(l->cpus)));
7108
7109 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7110 seq_printf(seq, " nodes=%*pbl",
7111 nodemask_pr_args(&l->nodes));
7112
8ea9fb92
OG
7113#ifdef CONFIG_STACKDEPOT
7114 {
7115 depot_stack_handle_t handle;
7116 unsigned long *entries;
7117 unsigned int nr_entries, j;
7118
7119 handle = READ_ONCE(l->handle);
7120 if (handle) {
7121 nr_entries = stack_depot_fetch(handle, &entries);
7122 seq_puts(seq, "\n");
7123 for (j = 0; j < nr_entries; j++)
7124 seq_printf(seq, " %pS\n", (void *)entries[j]);
7125 }
7126 }
7127#endif
64dd6849
FM
7128 seq_puts(seq, "\n");
7129 }
7130
7131 if (!idx && !t->count)
7132 seq_puts(seq, "No data\n");
7133
7134 return 0;
7135}
7136
7137static void slab_debugfs_stop(struct seq_file *seq, void *v)
7138{
7139}
7140
7141static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7142{
7143 struct loc_track *t = seq->private;
7144
005a79e5 7145 t->idx = ++(*ppos);
64dd6849 7146 if (*ppos <= t->count)
005a79e5 7147 return ppos;
64dd6849
FM
7148
7149 return NULL;
7150}
7151
553c0369
OG
7152static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7153{
7154 struct location *loc1 = (struct location *)a;
7155 struct location *loc2 = (struct location *)b;
7156
7157 if (loc1->count > loc2->count)
7158 return -1;
7159 else
7160 return 1;
7161}
7162
64dd6849
FM
7163static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7164{
005a79e5
GS
7165 struct loc_track *t = seq->private;
7166
7167 t->idx = *ppos;
64dd6849
FM
7168 return ppos;
7169}
7170
7171static const struct seq_operations slab_debugfs_sops = {
7172 .start = slab_debugfs_start,
7173 .next = slab_debugfs_next,
7174 .stop = slab_debugfs_stop,
7175 .show = slab_debugfs_show,
7176};
7177
7178static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7179{
7180
7181 struct kmem_cache_node *n;
7182 enum track_item alloc;
7183 int node;
7184 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7185 sizeof(struct loc_track));
7186 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
7187 unsigned long *obj_map;
7188
2127d225
ML
7189 if (!t)
7190 return -ENOMEM;
7191
b3fd64e1 7192 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
7193 if (!obj_map) {
7194 seq_release_private(inode, filep);
b3fd64e1 7195 return -ENOMEM;
2127d225 7196 }
64dd6849
FM
7197
7198 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7199 alloc = TRACK_ALLOC;
7200 else
7201 alloc = TRACK_FREE;
7202
b3fd64e1
VB
7203 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7204 bitmap_free(obj_map);
2127d225 7205 seq_release_private(inode, filep);
64dd6849 7206 return -ENOMEM;
b3fd64e1 7207 }
64dd6849 7208
64dd6849
FM
7209 for_each_kmem_cache_node(s, node, n) {
7210 unsigned long flags;
bb192ed9 7211 struct slab *slab;
64dd6849 7212
8040cbf5 7213 if (!node_nr_slabs(n))
64dd6849
FM
7214 continue;
7215
7216 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
7217 list_for_each_entry(slab, &n->partial, slab_list)
7218 process_slab(t, s, slab, alloc, obj_map);
7219 list_for_each_entry(slab, &n->full, slab_list)
7220 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
7221 spin_unlock_irqrestore(&n->list_lock, flags);
7222 }
7223
553c0369
OG
7224 /* Sort locations by count */
7225 sort_r(t->loc, t->count, sizeof(struct location),
7226 cmp_loc_by_count, NULL, NULL);
7227
b3fd64e1 7228 bitmap_free(obj_map);
64dd6849
FM
7229 return 0;
7230}
7231
7232static int slab_debug_trace_release(struct inode *inode, struct file *file)
7233{
7234 struct seq_file *seq = file->private_data;
7235 struct loc_track *t = seq->private;
7236
7237 free_loc_track(t);
7238 return seq_release_private(inode, file);
7239}
7240
7241static const struct file_operations slab_debugfs_fops = {
7242 .open = slab_debug_trace_open,
7243 .read = seq_read,
7244 .llseek = seq_lseek,
7245 .release = slab_debug_trace_release,
7246};
7247
7248static void debugfs_slab_add(struct kmem_cache *s)
7249{
7250 struct dentry *slab_cache_dir;
7251
7252 if (unlikely(!slab_debugfs_root))
7253 return;
7254
7255 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7256
7257 debugfs_create_file("alloc_traces", 0400,
7258 slab_cache_dir, s, &slab_debugfs_fops);
7259
7260 debugfs_create_file("free_traces", 0400,
7261 slab_cache_dir, s, &slab_debugfs_fops);
7262}
7263
7264void debugfs_slab_release(struct kmem_cache *s)
7265{
aa4a8605 7266 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
7267}
7268
7269static int __init slab_debugfs_init(void)
7270{
7271 struct kmem_cache *s;
7272
7273 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7274
7275 list_for_each_entry(s, &slab_caches, list)
7276 if (s->flags & SLAB_STORE_USER)
7277 debugfs_slab_add(s);
7278
7279 return 0;
7280
7281}
7282__initcall(slab_debugfs_init);
7283#endif
57ed3eda
PE
7284/*
7285 * The /proc/slabinfo ABI
7286 */
5b365771 7287#ifdef CONFIG_SLUB_DEBUG
0d7561c6 7288void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 7289{
57ed3eda 7290 unsigned long nr_slabs = 0;
205ab99d
CL
7291 unsigned long nr_objs = 0;
7292 unsigned long nr_free = 0;
57ed3eda 7293 int node;
fa45dc25 7294 struct kmem_cache_node *n;
57ed3eda 7295
fa45dc25 7296 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
7297 nr_slabs += node_nr_slabs(n);
7298 nr_objs += node_nr_objs(n);
046f4c69 7299 nr_free += count_partial_free_approx(n);
57ed3eda
PE
7300 }
7301
0d7561c6
GC
7302 sinfo->active_objs = nr_objs - nr_free;
7303 sinfo->num_objs = nr_objs;
7304 sinfo->active_slabs = nr_slabs;
7305 sinfo->num_slabs = nr_slabs;
7306 sinfo->objects_per_slab = oo_objects(s->oo);
7307 sinfo->cache_order = oo_order(s->oo);
57ed3eda 7308}
5b365771 7309#endif /* CONFIG_SLUB_DEBUG */
This page took 3.541263 seconds and 4 git commands to generate.