]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
c7b23b68 | 14 | #include <linux/swap.h> /* mm_account_reclaimed_pages() */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
68ef169a | 25 | #include <linux/kmsan.h> |
81819f0f CL |
26 | #include <linux/cpu.h> |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/ctype.h> | |
5cf909c5 | 30 | #include <linux/stackdepot.h> |
3ac7fe5a | 31 | #include <linux/debugobjects.h> |
81819f0f | 32 | #include <linux/kallsyms.h> |
b89fb5ef | 33 | #include <linux/kfence.h> |
b9049e23 | 34 | #include <linux/memory.h> |
f8bd2258 | 35 | #include <linux/math64.h> |
773ff60e | 36 | #include <linux/fault-inject.h> |
6011be59 | 37 | #include <linux/kmemleak.h> |
bfa71457 | 38 | #include <linux/stacktrace.h> |
4de900b4 | 39 | #include <linux/prefetch.h> |
2633d7a0 | 40 | #include <linux/memcontrol.h> |
2482ddec | 41 | #include <linux/random.h> |
1f9f78b1 | 42 | #include <kunit/test.h> |
909c6475 | 43 | #include <kunit/test-bug.h> |
553c0369 | 44 | #include <linux/sort.h> |
81819f0f | 45 | |
64dd6849 | 46 | #include <linux/debugfs.h> |
4a92379b RK |
47 | #include <trace/events/kmem.h> |
48 | ||
072bb0aa MG |
49 | #include "internal.h" |
50 | ||
81819f0f CL |
51 | /* |
52 | * Lock order: | |
18004c5d | 53 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
54 | * 2. node->list_lock (Spinlock) |
55 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
41bec7c3 | 56 | * 4. slab_lock(slab) (Only on some arches) |
bd0e7491 | 57 | * 5. object_map_lock (Only for debugging) |
81819f0f | 58 | * |
18004c5d | 59 | * slab_mutex |
881db7fb | 60 | * |
18004c5d | 61 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 62 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
63 | * Also synchronizes memory hotplug callbacks. |
64 | * | |
65 | * slab_lock | |
66 | * | |
67 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
68 | * spinlock. | |
881db7fb | 69 | * |
41bec7c3 VB |
70 | * The slab_lock is only used on arches that do not have the ability |
71 | * to do a cmpxchg_double. It only protects: | |
72 | * | |
c2092c12 VB |
73 | * A. slab->freelist -> List of free objects in a slab |
74 | * B. slab->inuse -> Number of objects in use | |
75 | * C. slab->objects -> Number of objects in slab | |
76 | * D. slab->frozen -> frozen state | |
881db7fb | 77 | * |
bd0e7491 VB |
78 | * Frozen slabs |
79 | * | |
31bda717 CZ |
80 | * If a slab is frozen then it is exempt from list management. It is |
81 | * the cpu slab which is actively allocated from by the processor that | |
82 | * froze it and it is not on any list. The processor that froze the | |
c2092c12 | 83 | * slab is the one who can perform list operations on the slab. Other |
632b2ef0 LX |
84 | * processors may put objects onto the freelist but the processor that |
85 | * froze the slab is the only one that can retrieve the objects from the | |
c2092c12 | 86 | * slab's freelist. |
81819f0f | 87 | * |
31bda717 CZ |
88 | * CPU partial slabs |
89 | * | |
90 | * The partially empty slabs cached on the CPU partial list are used | |
91 | * for performance reasons, which speeds up the allocation process. | |
92 | * These slabs are not frozen, but are also exempt from list management, | |
93 | * by clearing the PG_workingset flag when moving out of the node | |
94 | * partial list. Please see __slab_free() for more details. | |
95 | * | |
96 | * To sum up, the current scheme is: | |
97 | * - node partial slab: PG_Workingset && !frozen | |
98 | * - cpu partial slab: !PG_Workingset && !frozen | |
99 | * - cpu slab: !PG_Workingset && frozen | |
100 | * - full slab: !PG_Workingset && !frozen | |
101 | * | |
bd0e7491 VB |
102 | * list_lock |
103 | * | |
81819f0f CL |
104 | * The list_lock protects the partial and full list on each node and |
105 | * the partial slab counter. If taken then no new slabs may be added or | |
106 | * removed from the lists nor make the number of partial slabs be modified. | |
107 | * (Note that the total number of slabs is an atomic value that may be | |
108 | * modified without taking the list lock). | |
109 | * | |
110 | * The list_lock is a centralized lock and thus we avoid taking it as | |
111 | * much as possible. As long as SLUB does not have to handle partial | |
112 | * slabs, operations can continue without any centralized lock. F.e. | |
113 | * allocating a long series of objects that fill up slabs does not require | |
114 | * the list lock. | |
bd0e7491 | 115 | * |
41bec7c3 VB |
116 | * For debug caches, all allocations are forced to go through a list_lock |
117 | * protected region to serialize against concurrent validation. | |
118 | * | |
bd0e7491 VB |
119 | * cpu_slab->lock local lock |
120 | * | |
121 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
122 | * except the stat counters. This is a percpu structure manipulated only by | |
123 | * the local cpu, so the lock protects against being preempted or interrupted | |
124 | * by an irq. Fast path operations rely on lockless operations instead. | |
1f04b07d TG |
125 | * |
126 | * On PREEMPT_RT, the local lock neither disables interrupts nor preemption | |
127 | * which means the lockless fastpath cannot be used as it might interfere with | |
128 | * an in-progress slow path operations. In this case the local lock is always | |
129 | * taken but it still utilizes the freelist for the common operations. | |
bd0e7491 VB |
130 | * |
131 | * lockless fastpaths | |
132 | * | |
133 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
134 | * are fully lockless when satisfied from the percpu slab (and when | |
135 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
136 | * They also don't disable preemption or migration or irqs. They rely on | |
137 | * the transaction id (tid) field to detect being preempted or moved to | |
138 | * another cpu. | |
139 | * | |
140 | * irq, preemption, migration considerations | |
141 | * | |
142 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
143 | * around the slab_lock operation, in order to make the slab allocator safe | |
144 | * to use in the context of an irq. | |
145 | * | |
146 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
147 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
148 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
149 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
150 | * |
151 | * SLUB assigns one slab for allocation to each processor. | |
152 | * Allocations only occur from these slabs called cpu slabs. | |
153 | * | |
672bba3a CL |
154 | * Slabs with free elements are kept on a partial list and during regular |
155 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 156 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
157 | * We track full slabs for debugging purposes though because otherwise we |
158 | * cannot scan all objects. | |
81819f0f CL |
159 | * |
160 | * Slabs are freed when they become empty. Teardown and setup is | |
161 | * minimal so we rely on the page allocators per cpu caches for | |
162 | * fast frees and allocs. | |
163 | * | |
c2092c12 | 164 | * slab->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
165 | * This means that the slab is dedicated to a purpose |
166 | * such as satisfying allocations for a specific | |
167 | * processor. Objects may be freed in the slab while | |
168 | * it is frozen but slab_free will then skip the usual | |
169 | * list operations. It is up to the processor holding | |
170 | * the slab to integrate the slab into the slab lists | |
171 | * when the slab is no longer needed. | |
172 | * | |
173 | * One use of this flag is to mark slabs that are | |
174 | * used for allocations. Then such a slab becomes a cpu | |
175 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 176 | * freelist that allows lockless access to |
894b8788 CL |
177 | * free objects in addition to the regular freelist |
178 | * that requires the slab lock. | |
81819f0f | 179 | * |
aed68148 | 180 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 181 | * options set. This moves slab handling out of |
894b8788 | 182 | * the fast path and disables lockless freelists. |
81819f0f CL |
183 | */ |
184 | ||
25c00c50 VB |
185 | /* |
186 | * We could simply use migrate_disable()/enable() but as long as it's a | |
187 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
188 | */ | |
189 | #ifndef CONFIG_PREEMPT_RT | |
1f04b07d TG |
190 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) |
191 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
192 | #define USE_LOCKLESS_FAST_PATH() (true) | |
25c00c50 VB |
193 | #else |
194 | #define slub_get_cpu_ptr(var) \ | |
195 | ({ \ | |
196 | migrate_disable(); \ | |
197 | this_cpu_ptr(var); \ | |
198 | }) | |
199 | #define slub_put_cpu_ptr(var) \ | |
200 | do { \ | |
201 | (void)(var); \ | |
202 | migrate_enable(); \ | |
203 | } while (0) | |
1f04b07d | 204 | #define USE_LOCKLESS_FAST_PATH() (false) |
25c00c50 VB |
205 | #endif |
206 | ||
be784ba8 VB |
207 | #ifndef CONFIG_SLUB_TINY |
208 | #define __fastpath_inline __always_inline | |
209 | #else | |
210 | #define __fastpath_inline | |
211 | #endif | |
212 | ||
ca0cab65 VB |
213 | #ifdef CONFIG_SLUB_DEBUG |
214 | #ifdef CONFIG_SLUB_DEBUG_ON | |
215 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
216 | #else | |
217 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
218 | #endif | |
79270291 | 219 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 220 | |
6edf2576 FT |
221 | /* Structure holding parameters for get_partial() call chain */ |
222 | struct partial_context { | |
6edf2576 FT |
223 | gfp_t flags; |
224 | unsigned int orig_size; | |
43c4c349 | 225 | void *object; |
6edf2576 FT |
226 | }; |
227 | ||
59052e89 VB |
228 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
229 | { | |
230 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 231 | } |
5577bd8a | 232 | |
6edf2576 FT |
233 | static inline bool slub_debug_orig_size(struct kmem_cache *s) |
234 | { | |
235 | return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && | |
236 | (s->flags & SLAB_KMALLOC)); | |
237 | } | |
238 | ||
117d54df | 239 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 240 | { |
59052e89 | 241 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
242 | p += s->red_left_pad; |
243 | ||
244 | return p; | |
245 | } | |
246 | ||
345c905d JK |
247 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
248 | { | |
249 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
250 | return !kmem_cache_debug(s); | |
251 | #else | |
252 | return false; | |
253 | #endif | |
254 | } | |
255 | ||
81819f0f CL |
256 | /* |
257 | * Issues still to be resolved: | |
258 | * | |
81819f0f CL |
259 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
260 | * | |
81819f0f CL |
261 | * - Variable sizing of the per node arrays |
262 | */ | |
263 | ||
b789ef51 CL |
264 | /* Enable to log cmpxchg failures */ |
265 | #undef SLUB_DEBUG_CMPXCHG | |
266 | ||
5a8a3c1f | 267 | #ifndef CONFIG_SLUB_TINY |
2086d26a | 268 | /* |
dc84207d | 269 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
270 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
271 | */ | |
76be8950 | 272 | #define MIN_PARTIAL 5 |
e95eed57 | 273 | |
2086d26a CL |
274 | /* |
275 | * Maximum number of desirable partial slabs. | |
276 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 277 | * sort the partial list by the number of objects in use. |
2086d26a CL |
278 | */ |
279 | #define MAX_PARTIAL 10 | |
5a8a3c1f VB |
280 | #else |
281 | #define MIN_PARTIAL 0 | |
282 | #define MAX_PARTIAL 0 | |
283 | #endif | |
2086d26a | 284 | |
becfda68 | 285 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 286 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 287 | |
149daaf3 LA |
288 | /* |
289 | * These debug flags cannot use CMPXCHG because there might be consistency | |
290 | * issues when checking or reading debug information | |
291 | */ | |
292 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
293 | SLAB_TRACE) | |
294 | ||
295 | ||
fa5ec8a1 | 296 | /* |
3de47213 | 297 | * Debugging flags that require metadata to be stored in the slab. These get |
671776b3 | 298 | * disabled when slab_debug=O is used and a cache's min order increases with |
3de47213 | 299 | * metadata. |
fa5ec8a1 | 300 | */ |
3de47213 | 301 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 302 | |
210b5c06 CG |
303 | #define OO_SHIFT 16 |
304 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
c2092c12 | 305 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
210b5c06 | 306 | |
81819f0f | 307 | /* Internal SLUB flags */ |
d50112ed | 308 | /* Poison object */ |
cc61eb85 | 309 | #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) |
d50112ed | 310 | /* Use cmpxchg_double */ |
6801be4f PZ |
311 | |
312 | #ifdef system_has_freelist_aba | |
cc61eb85 | 313 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) |
6801be4f | 314 | #else |
cc61eb85 | 315 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED |
6801be4f | 316 | #endif |
81819f0f | 317 | |
02cbc874 CL |
318 | /* |
319 | * Tracking user of a slab. | |
320 | */ | |
d6543e39 | 321 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 322 | struct track { |
ce71e27c | 323 | unsigned long addr; /* Called from address */ |
5cf909c5 OG |
324 | #ifdef CONFIG_STACKDEPOT |
325 | depot_stack_handle_t handle; | |
d6543e39 | 326 | #endif |
02cbc874 CL |
327 | int cpu; /* Was running on cpu */ |
328 | int pid; /* Pid context */ | |
329 | unsigned long when; /* When did the operation occur */ | |
330 | }; | |
331 | ||
332 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
333 | ||
b1a413a3 | 334 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f CL |
335 | static int sysfs_slab_add(struct kmem_cache *); |
336 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 337 | #else |
0c710013 CL |
338 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
339 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
340 | { return 0; } | |
81819f0f CL |
341 | #endif |
342 | ||
64dd6849 FM |
343 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
344 | static void debugfs_slab_add(struct kmem_cache *); | |
345 | #else | |
346 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
347 | #endif | |
348 | ||
7ef08ae8 VB |
349 | enum stat_item { |
350 | ALLOC_FASTPATH, /* Allocation from cpu slab */ | |
351 | ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ | |
352 | FREE_FASTPATH, /* Free to cpu slab */ | |
353 | FREE_SLOWPATH, /* Freeing not to cpu slab */ | |
354 | FREE_FROZEN, /* Freeing to frozen slab */ | |
355 | FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ | |
356 | FREE_REMOVE_PARTIAL, /* Freeing removes last object */ | |
357 | ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ | |
358 | ALLOC_SLAB, /* Cpu slab acquired from page allocator */ | |
359 | ALLOC_REFILL, /* Refill cpu slab from slab freelist */ | |
360 | ALLOC_NODE_MISMATCH, /* Switching cpu slab */ | |
361 | FREE_SLAB, /* Slab freed to the page allocator */ | |
362 | CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ | |
363 | DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ | |
364 | DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ | |
365 | DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ | |
366 | DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ | |
367 | DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ | |
368 | DEACTIVATE_BYPASS, /* Implicit deactivation */ | |
369 | ORDER_FALLBACK, /* Number of times fallback was necessary */ | |
370 | CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ | |
371 | CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ | |
372 | CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ | |
373 | CPU_PARTIAL_FREE, /* Refill cpu partial on free */ | |
374 | CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ | |
375 | CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ | |
376 | NR_SLUB_STAT_ITEMS | |
377 | }; | |
378 | ||
379 | #ifndef CONFIG_SLUB_TINY | |
380 | /* | |
381 | * When changing the layout, make sure freelist and tid are still compatible | |
382 | * with this_cpu_cmpxchg_double() alignment requirements. | |
383 | */ | |
384 | struct kmem_cache_cpu { | |
385 | union { | |
386 | struct { | |
387 | void **freelist; /* Pointer to next available object */ | |
388 | unsigned long tid; /* Globally unique transaction id */ | |
389 | }; | |
390 | freelist_aba_t freelist_tid; | |
391 | }; | |
392 | struct slab *slab; /* The slab from which we are allocating */ | |
393 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
c94d2224 | 394 | struct slab *partial; /* Partially allocated slabs */ |
7ef08ae8 VB |
395 | #endif |
396 | local_lock_t lock; /* Protects the fields above */ | |
397 | #ifdef CONFIG_SLUB_STATS | |
398 | unsigned int stat[NR_SLUB_STAT_ITEMS]; | |
399 | #endif | |
400 | }; | |
401 | #endif /* CONFIG_SLUB_TINY */ | |
402 | ||
4fdccdfb | 403 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
404 | { |
405 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
406 | /* |
407 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
408 | * avoid this_cpu_add()'s irq-disable overhead. | |
409 | */ | |
410 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
411 | #endif |
412 | } | |
413 | ||
6f3dd2c3 VB |
414 | static inline |
415 | void stat_add(const struct kmem_cache *s, enum stat_item si, int v) | |
416 | { | |
417 | #ifdef CONFIG_SLUB_STATS | |
418 | raw_cpu_add(s->cpu_slab->stat[si], v); | |
419 | #endif | |
420 | } | |
421 | ||
b52ef56e VB |
422 | /* |
423 | * The slab lists for all objects. | |
424 | */ | |
425 | struct kmem_cache_node { | |
426 | spinlock_t list_lock; | |
427 | unsigned long nr_partial; | |
428 | struct list_head partial; | |
429 | #ifdef CONFIG_SLUB_DEBUG | |
430 | atomic_long_t nr_slabs; | |
431 | atomic_long_t total_objects; | |
432 | struct list_head full; | |
433 | #endif | |
434 | }; | |
435 | ||
436 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
437 | { | |
438 | return s->node[node]; | |
439 | } | |
440 | ||
441 | /* | |
442 | * Iterator over all nodes. The body will be executed for each node that has | |
443 | * a kmem_cache_node structure allocated (which is true for all online nodes) | |
444 | */ | |
445 | #define for_each_kmem_cache_node(__s, __node, __n) \ | |
446 | for (__node = 0; __node < nr_node_ids; __node++) \ | |
447 | if ((__n = get_node(__s, __node))) | |
448 | ||
7e1fa93d VB |
449 | /* |
450 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
451 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
452 | * differ during memory hotplug/hotremove operations. | |
453 | * Protected by slab_mutex. | |
454 | */ | |
455 | static nodemask_t slab_nodes; | |
456 | ||
0af8489b | 457 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
458 | /* |
459 | * Workqueue used for flush_cpu_slab(). | |
460 | */ | |
461 | static struct workqueue_struct *flushwq; | |
0af8489b | 462 | #endif |
e45cc288 | 463 | |
81819f0f CL |
464 | /******************************************************************** |
465 | * Core slab cache functions | |
466 | *******************************************************************/ | |
467 | ||
44f6a42d JH |
468 | /* |
469 | * freeptr_t represents a SLUB freelist pointer, which might be encoded | |
470 | * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. | |
471 | */ | |
472 | typedef struct { unsigned long v; } freeptr_t; | |
473 | ||
2482ddec KC |
474 | /* |
475 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
476 | * with an XOR of the address where the pointer is held and a per-cache | |
477 | * random number. | |
478 | */ | |
44f6a42d JH |
479 | static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, |
480 | void *ptr, unsigned long ptr_addr) | |
2482ddec | 481 | { |
b06952cd VB |
482 | unsigned long encoded; |
483 | ||
2482ddec | 484 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
b06952cd | 485 | encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); |
44f6a42d | 486 | #else |
b06952cd | 487 | encoded = (unsigned long)ptr; |
44f6a42d | 488 | #endif |
b06952cd | 489 | return (freeptr_t){.v = encoded}; |
44f6a42d JH |
490 | } |
491 | ||
492 | static inline void *freelist_ptr_decode(const struct kmem_cache *s, | |
493 | freeptr_t ptr, unsigned long ptr_addr) | |
494 | { | |
495 | void *decoded; | |
496 | ||
497 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
b06952cd | 498 | decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); |
2482ddec | 499 | #else |
44f6a42d | 500 | decoded = (void *)ptr.v; |
2482ddec | 501 | #endif |
44f6a42d | 502 | return decoded; |
2482ddec KC |
503 | } |
504 | ||
7656c72b CL |
505 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
506 | { | |
1662b6c2 VB |
507 | unsigned long ptr_addr; |
508 | freeptr_t p; | |
509 | ||
aa1ef4d7 | 510 | object = kasan_reset_tag(object); |
1662b6c2 VB |
511 | ptr_addr = (unsigned long)object + s->offset; |
512 | p = *(freeptr_t *)(ptr_addr); | |
513 | return freelist_ptr_decode(s, p, ptr_addr); | |
7656c72b CL |
514 | } |
515 | ||
0af8489b | 516 | #ifndef CONFIG_SLUB_TINY |
0ad9500e ED |
517 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
518 | { | |
04b4b006 | 519 | prefetchw(object + s->offset); |
0ad9500e | 520 | } |
0af8489b | 521 | #endif |
0ad9500e | 522 | |
68ef169a AP |
523 | /* |
524 | * When running under KMSAN, get_freepointer_safe() may return an uninitialized | |
525 | * pointer value in the case the current thread loses the race for the next | |
526 | * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in | |
527 | * slab_alloc_node() will fail, so the uninitialized value won't be used, but | |
528 | * KMSAN will still check all arguments of cmpxchg because of imperfect | |
529 | * handling of inline assembly. | |
530 | * To work around this problem, we apply __no_kmsan_checks to ensure that | |
531 | * get_freepointer_safe() returns initialized memory. | |
532 | */ | |
533 | __no_kmsan_checks | |
1393d9a1 CL |
534 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
535 | { | |
2482ddec | 536 | unsigned long freepointer_addr; |
44f6a42d | 537 | freeptr_t p; |
1393d9a1 | 538 | |
8e57f8ac | 539 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
540 | return get_freepointer(s, object); |
541 | ||
f70b0049 | 542 | object = kasan_reset_tag(object); |
2482ddec | 543 | freepointer_addr = (unsigned long)object + s->offset; |
44f6a42d JH |
544 | copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); |
545 | return freelist_ptr_decode(s, p, freepointer_addr); | |
1393d9a1 CL |
546 | } |
547 | ||
7656c72b CL |
548 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
549 | { | |
2482ddec KC |
550 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
551 | ||
ce6fa91b AP |
552 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
553 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
554 | #endif | |
555 | ||
aa1ef4d7 | 556 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
44f6a42d | 557 | *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); |
7656c72b CL |
558 | } |
559 | ||
8f828aa4 NB |
560 | /* |
561 | * See comment in calculate_sizes(). | |
562 | */ | |
563 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
564 | { | |
565 | return s->offset >= s->inuse; | |
566 | } | |
567 | ||
568 | /* | |
569 | * Return offset of the end of info block which is inuse + free pointer if | |
570 | * not overlapping with object. | |
571 | */ | |
572 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
573 | { | |
574 | if (freeptr_outside_object(s)) | |
575 | return s->inuse + sizeof(void *); | |
576 | else | |
577 | return s->inuse; | |
578 | } | |
579 | ||
7656c72b | 580 | /* Loop over all objects in a slab */ |
224a88be | 581 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
582 | for (__p = fixup_red_left(__s, __addr); \ |
583 | __p < (__addr) + (__objects) * (__s)->size; \ | |
584 | __p += (__s)->size) | |
7656c72b | 585 | |
9736d2a9 | 586 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 587 | { |
9736d2a9 | 588 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
589 | } |
590 | ||
19af27af | 591 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 592 | unsigned int size) |
834f3d11 CL |
593 | { |
594 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 595 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
596 | }; |
597 | ||
598 | return x; | |
599 | } | |
600 | ||
19af27af | 601 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 602 | { |
210b5c06 | 603 | return x.x >> OO_SHIFT; |
834f3d11 CL |
604 | } |
605 | ||
19af27af | 606 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 607 | { |
210b5c06 | 608 | return x.x & OO_MASK; |
834f3d11 CL |
609 | } |
610 | ||
b47291ef VB |
611 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
612 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
613 | { | |
bb192ed9 | 614 | unsigned int nr_slabs; |
b47291ef VB |
615 | |
616 | s->cpu_partial = nr_objects; | |
617 | ||
618 | /* | |
619 | * We take the number of objects but actually limit the number of | |
c2092c12 VB |
620 | * slabs on the per cpu partial list, in order to limit excessive |
621 | * growth of the list. For simplicity we assume that the slabs will | |
b47291ef VB |
622 | * be half-full. |
623 | */ | |
bb192ed9 VB |
624 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
625 | s->cpu_partial_slabs = nr_slabs; | |
b47291ef | 626 | } |
721a2f8b XS |
627 | |
628 | static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) | |
629 | { | |
630 | return s->cpu_partial_slabs; | |
631 | } | |
b47291ef VB |
632 | #else |
633 | static inline void | |
634 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
635 | { | |
636 | } | |
721a2f8b XS |
637 | |
638 | static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) | |
639 | { | |
640 | return 0; | |
641 | } | |
b47291ef VB |
642 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
643 | ||
881db7fb CL |
644 | /* |
645 | * Per slab locking using the pagelock | |
646 | */ | |
5875e598 | 647 | static __always_inline void slab_lock(struct slab *slab) |
881db7fb | 648 | { |
5e0debe0 | 649 | bit_spin_lock(PG_locked, &slab->__page_flags); |
881db7fb CL |
650 | } |
651 | ||
5875e598 | 652 | static __always_inline void slab_unlock(struct slab *slab) |
881db7fb | 653 | { |
5e0debe0 | 654 | bit_spin_unlock(PG_locked, &slab->__page_flags); |
881db7fb CL |
655 | } |
656 | ||
6801be4f PZ |
657 | static inline bool |
658 | __update_freelist_fast(struct slab *slab, | |
659 | void *freelist_old, unsigned long counters_old, | |
660 | void *freelist_new, unsigned long counters_new) | |
661 | { | |
662 | #ifdef system_has_freelist_aba | |
663 | freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; | |
664 | freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; | |
665 | ||
666 | return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); | |
667 | #else | |
668 | return false; | |
669 | #endif | |
670 | } | |
671 | ||
672 | static inline bool | |
673 | __update_freelist_slow(struct slab *slab, | |
674 | void *freelist_old, unsigned long counters_old, | |
675 | void *freelist_new, unsigned long counters_new) | |
676 | { | |
677 | bool ret = false; | |
678 | ||
679 | slab_lock(slab); | |
680 | if (slab->freelist == freelist_old && | |
681 | slab->counters == counters_old) { | |
682 | slab->freelist = freelist_new; | |
683 | slab->counters = counters_new; | |
684 | ret = true; | |
685 | } | |
686 | slab_unlock(slab); | |
687 | ||
688 | return ret; | |
689 | } | |
690 | ||
a2b4ae8b VB |
691 | /* |
692 | * Interrupts must be disabled (for the fallback code to work right), typically | |
5875e598 VB |
693 | * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is |
694 | * part of bit_spin_lock(), is sufficient because the policy is not to allow any | |
695 | * allocation/ free operation in hardirq context. Therefore nothing can | |
696 | * interrupt the operation. | |
a2b4ae8b | 697 | */ |
6801be4f | 698 | static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
1d07171c CL |
699 | void *freelist_old, unsigned long counters_old, |
700 | void *freelist_new, unsigned long counters_new, | |
701 | const char *n) | |
702 | { | |
6801be4f PZ |
703 | bool ret; |
704 | ||
1f04b07d | 705 | if (USE_LOCKLESS_FAST_PATH()) |
a2b4ae8b | 706 | lockdep_assert_irqs_disabled(); |
6801be4f | 707 | |
1d07171c | 708 | if (s->flags & __CMPXCHG_DOUBLE) { |
6801be4f PZ |
709 | ret = __update_freelist_fast(slab, freelist_old, counters_old, |
710 | freelist_new, counters_new); | |
711 | } else { | |
712 | ret = __update_freelist_slow(slab, freelist_old, counters_old, | |
713 | freelist_new, counters_new); | |
1d07171c | 714 | } |
6801be4f PZ |
715 | if (likely(ret)) |
716 | return true; | |
1d07171c CL |
717 | |
718 | cpu_relax(); | |
719 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
720 | ||
721 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 722 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
723 | #endif |
724 | ||
6f6528a1 | 725 | return false; |
1d07171c CL |
726 | } |
727 | ||
6801be4f | 728 | static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
b789ef51 CL |
729 | void *freelist_old, unsigned long counters_old, |
730 | void *freelist_new, unsigned long counters_new, | |
731 | const char *n) | |
732 | { | |
6801be4f PZ |
733 | bool ret; |
734 | ||
b789ef51 | 735 | if (s->flags & __CMPXCHG_DOUBLE) { |
6801be4f PZ |
736 | ret = __update_freelist_fast(slab, freelist_old, counters_old, |
737 | freelist_new, counters_new); | |
738 | } else { | |
1d07171c CL |
739 | unsigned long flags; |
740 | ||
741 | local_irq_save(flags); | |
6801be4f PZ |
742 | ret = __update_freelist_slow(slab, freelist_old, counters_old, |
743 | freelist_new, counters_new); | |
1d07171c | 744 | local_irq_restore(flags); |
b789ef51 | 745 | } |
6801be4f PZ |
746 | if (likely(ret)) |
747 | return true; | |
b789ef51 CL |
748 | |
749 | cpu_relax(); | |
750 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
751 | ||
752 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 753 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
754 | #endif |
755 | ||
6f6528a1 | 756 | return false; |
b789ef51 CL |
757 | } |
758 | ||
41ecc55b | 759 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 760 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
4ef3f5a3 | 761 | static DEFINE_SPINLOCK(object_map_lock); |
90e9f6a6 | 762 | |
b3fd64e1 | 763 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
bb192ed9 | 764 | struct slab *slab) |
b3fd64e1 | 765 | { |
bb192ed9 | 766 | void *addr = slab_address(slab); |
b3fd64e1 VB |
767 | void *p; |
768 | ||
bb192ed9 | 769 | bitmap_zero(obj_map, slab->objects); |
b3fd64e1 | 770 | |
bb192ed9 | 771 | for (p = slab->freelist; p; p = get_freepointer(s, p)) |
b3fd64e1 VB |
772 | set_bit(__obj_to_index(s, addr, p), obj_map); |
773 | } | |
774 | ||
1f9f78b1 OG |
775 | #if IS_ENABLED(CONFIG_KUNIT) |
776 | static bool slab_add_kunit_errors(void) | |
777 | { | |
778 | struct kunit_resource *resource; | |
779 | ||
909c6475 | 780 | if (!kunit_get_current_test()) |
1f9f78b1 OG |
781 | return false; |
782 | ||
783 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
784 | if (!resource) | |
785 | return false; | |
786 | ||
787 | (*(int *)resource->data)++; | |
788 | kunit_put_resource(resource); | |
789 | return true; | |
790 | } | |
47d911b0 CZ |
791 | |
792 | static bool slab_in_kunit_test(void) | |
793 | { | |
794 | struct kunit_resource *resource; | |
795 | ||
796 | if (!kunit_get_current_test()) | |
797 | return false; | |
798 | ||
799 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
800 | if (!resource) | |
801 | return false; | |
802 | ||
803 | kunit_put_resource(resource); | |
804 | return true; | |
805 | } | |
1f9f78b1 OG |
806 | #else |
807 | static inline bool slab_add_kunit_errors(void) { return false; } | |
47d911b0 | 808 | static inline bool slab_in_kunit_test(void) { return false; } |
1f9f78b1 OG |
809 | #endif |
810 | ||
870b1fbb | 811 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
812 | { |
813 | if (s->flags & SLAB_RED_ZONE) | |
814 | return s->size - s->red_left_pad; | |
815 | ||
816 | return s->size; | |
817 | } | |
818 | ||
819 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
820 | { | |
821 | if (s->flags & SLAB_RED_ZONE) | |
822 | p -= s->red_left_pad; | |
823 | ||
824 | return p; | |
825 | } | |
826 | ||
41ecc55b CL |
827 | /* |
828 | * Debug settings: | |
829 | */ | |
89d3c87e | 830 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 831 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 832 | #else |
d50112ed | 833 | static slab_flags_t slub_debug; |
f0630fff | 834 | #endif |
41ecc55b | 835 | |
e17f1dfb | 836 | static char *slub_debug_string; |
fa5ec8a1 | 837 | static int disable_higher_order_debug; |
41ecc55b | 838 | |
a79316c6 AR |
839 | /* |
840 | * slub is about to manipulate internal object metadata. This memory lies | |
841 | * outside the range of the allocated object, so accessing it would normally | |
842 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
843 | * to tell kasan that these accesses are OK. | |
844 | */ | |
845 | static inline void metadata_access_enable(void) | |
846 | { | |
847 | kasan_disable_current(); | |
0e9a8550 | 848 | kmsan_disable_current(); |
a79316c6 AR |
849 | } |
850 | ||
851 | static inline void metadata_access_disable(void) | |
852 | { | |
0e9a8550 | 853 | kmsan_enable_current(); |
a79316c6 AR |
854 | kasan_enable_current(); |
855 | } | |
856 | ||
81819f0f CL |
857 | /* |
858 | * Object debugging | |
859 | */ | |
d86bd1be JK |
860 | |
861 | /* Verify that a pointer has an address that is valid within a slab page */ | |
862 | static inline int check_valid_pointer(struct kmem_cache *s, | |
bb192ed9 | 863 | struct slab *slab, void *object) |
d86bd1be JK |
864 | { |
865 | void *base; | |
866 | ||
867 | if (!object) | |
868 | return 1; | |
869 | ||
bb192ed9 | 870 | base = slab_address(slab); |
338cfaad | 871 | object = kasan_reset_tag(object); |
d86bd1be | 872 | object = restore_red_left(s, object); |
bb192ed9 | 873 | if (object < base || object >= base + slab->objects * s->size || |
d86bd1be JK |
874 | (object - base) % s->size) { |
875 | return 0; | |
876 | } | |
877 | ||
878 | return 1; | |
879 | } | |
880 | ||
aa2efd5e DT |
881 | static void print_section(char *level, char *text, u8 *addr, |
882 | unsigned int length) | |
81819f0f | 883 | { |
a79316c6 | 884 | metadata_access_enable(); |
340caf17 KYL |
885 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
886 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 887 | metadata_access_disable(); |
81819f0f CL |
888 | } |
889 | ||
81819f0f CL |
890 | static struct track *get_track(struct kmem_cache *s, void *object, |
891 | enum track_item alloc) | |
892 | { | |
893 | struct track *p; | |
894 | ||
cbfc35a4 | 895 | p = object + get_info_end(s); |
81819f0f | 896 | |
aa1ef4d7 | 897 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
898 | } |
899 | ||
5cf909c5 | 900 | #ifdef CONFIG_STACKDEPOT |
c4cf6785 SAS |
901 | static noinline depot_stack_handle_t set_track_prepare(void) |
902 | { | |
903 | depot_stack_handle_t handle; | |
5cf909c5 | 904 | unsigned long entries[TRACK_ADDRS_COUNT]; |
0cd1a029 | 905 | unsigned int nr_entries; |
ae14c63a | 906 | |
5cf909c5 | 907 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
c4cf6785 SAS |
908 | handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
909 | ||
910 | return handle; | |
911 | } | |
912 | #else | |
913 | static inline depot_stack_handle_t set_track_prepare(void) | |
914 | { | |
915 | return 0; | |
916 | } | |
d6543e39 | 917 | #endif |
5cf909c5 | 918 | |
c4cf6785 SAS |
919 | static void set_track_update(struct kmem_cache *s, void *object, |
920 | enum track_item alloc, unsigned long addr, | |
921 | depot_stack_handle_t handle) | |
922 | { | |
923 | struct track *p = get_track(s, object, alloc); | |
924 | ||
925 | #ifdef CONFIG_STACKDEPOT | |
926 | p->handle = handle; | |
927 | #endif | |
0cd1a029 VB |
928 | p->addr = addr; |
929 | p->cpu = smp_processor_id(); | |
930 | p->pid = current->pid; | |
931 | p->when = jiffies; | |
81819f0f CL |
932 | } |
933 | ||
c4cf6785 SAS |
934 | static __always_inline void set_track(struct kmem_cache *s, void *object, |
935 | enum track_item alloc, unsigned long addr) | |
936 | { | |
937 | depot_stack_handle_t handle = set_track_prepare(); | |
938 | ||
939 | set_track_update(s, object, alloc, addr, handle); | |
940 | } | |
941 | ||
81819f0f CL |
942 | static void init_tracking(struct kmem_cache *s, void *object) |
943 | { | |
0cd1a029 VB |
944 | struct track *p; |
945 | ||
24922684 CL |
946 | if (!(s->flags & SLAB_STORE_USER)) |
947 | return; | |
948 | ||
0cd1a029 VB |
949 | p = get_track(s, object, TRACK_ALLOC); |
950 | memset(p, 0, 2*sizeof(struct track)); | |
81819f0f CL |
951 | } |
952 | ||
86609d33 | 953 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f | 954 | { |
5cf909c5 OG |
955 | depot_stack_handle_t handle __maybe_unused; |
956 | ||
81819f0f CL |
957 | if (!t->addr) |
958 | return; | |
959 | ||
96b94abc | 960 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 961 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
5cf909c5 OG |
962 | #ifdef CONFIG_STACKDEPOT |
963 | handle = READ_ONCE(t->handle); | |
964 | if (handle) | |
965 | stack_depot_print(handle); | |
966 | else | |
967 | pr_err("object allocation/free stack trace missing\n"); | |
d6543e39 | 968 | #endif |
24922684 CL |
969 | } |
970 | ||
e42f174e | 971 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 972 | { |
86609d33 | 973 | unsigned long pr_time = jiffies; |
24922684 CL |
974 | if (!(s->flags & SLAB_STORE_USER)) |
975 | return; | |
976 | ||
86609d33 CP |
977 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
978 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
979 | } |
980 | ||
fb012e27 | 981 | static void print_slab_info(const struct slab *slab) |
24922684 | 982 | { |
fb012e27 MWO |
983 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
984 | slab, slab->objects, slab->inuse, slab->freelist, | |
4d2bcefa | 985 | &slab->__page_flags); |
24922684 CL |
986 | } |
987 | ||
6edf2576 FT |
988 | /* |
989 | * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API | |
990 | * family will round up the real request size to these fixed ones, so | |
991 | * there could be an extra area than what is requested. Save the original | |
992 | * request size in the meta data area, for better debug and sanity check. | |
993 | */ | |
994 | static inline void set_orig_size(struct kmem_cache *s, | |
995 | void *object, unsigned int orig_size) | |
996 | { | |
997 | void *p = kasan_reset_tag(object); | |
2d552463 | 998 | unsigned int kasan_meta_size; |
6edf2576 FT |
999 | |
1000 | if (!slub_debug_orig_size(s)) | |
1001 | return; | |
1002 | ||
946fa0db | 1003 | /* |
2d552463 AK |
1004 | * KASAN can save its free meta data inside of the object at offset 0. |
1005 | * If this meta data size is larger than 'orig_size', it will overlap | |
1006 | * the data redzone in [orig_size+1, object_size]. Thus, we adjust | |
1007 | * 'orig_size' to be as at least as big as KASAN's meta data. | |
946fa0db | 1008 | */ |
2d552463 AK |
1009 | kasan_meta_size = kasan_metadata_size(s, true); |
1010 | if (kasan_meta_size > orig_size) | |
1011 | orig_size = kasan_meta_size; | |
946fa0db | 1012 | |
6edf2576 FT |
1013 | p += get_info_end(s); |
1014 | p += sizeof(struct track) * 2; | |
1015 | ||
1016 | *(unsigned int *)p = orig_size; | |
1017 | } | |
1018 | ||
1019 | static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) | |
1020 | { | |
1021 | void *p = kasan_reset_tag(object); | |
1022 | ||
1023 | if (!slub_debug_orig_size(s)) | |
1024 | return s->object_size; | |
1025 | ||
1026 | p += get_info_end(s); | |
1027 | p += sizeof(struct track) * 2; | |
1028 | ||
1029 | return *(unsigned int *)p; | |
1030 | } | |
1031 | ||
946fa0db FT |
1032 | void skip_orig_size_check(struct kmem_cache *s, const void *object) |
1033 | { | |
1034 | set_orig_size(s, (void *)object, s->object_size); | |
1035 | } | |
1036 | ||
24922684 CL |
1037 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
1038 | { | |
ecc42fbe | 1039 | struct va_format vaf; |
24922684 | 1040 | va_list args; |
24922684 CL |
1041 | |
1042 | va_start(args, fmt); | |
ecc42fbe FF |
1043 | vaf.fmt = fmt; |
1044 | vaf.va = &args; | |
f9f58285 | 1045 | pr_err("=============================================================================\n"); |
ecc42fbe | 1046 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 1047 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 1048 | va_end(args); |
81819f0f CL |
1049 | } |
1050 | ||
582d1212 | 1051 | __printf(2, 3) |
24922684 CL |
1052 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
1053 | { | |
ecc42fbe | 1054 | struct va_format vaf; |
24922684 | 1055 | va_list args; |
24922684 | 1056 | |
1f9f78b1 OG |
1057 | if (slab_add_kunit_errors()) |
1058 | return; | |
1059 | ||
24922684 | 1060 | va_start(args, fmt); |
ecc42fbe FF |
1061 | vaf.fmt = fmt; |
1062 | vaf.va = &args; | |
1063 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 1064 | va_end(args); |
24922684 CL |
1065 | } |
1066 | ||
bb192ed9 | 1067 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f CL |
1068 | { |
1069 | unsigned int off; /* Offset of last byte */ | |
bb192ed9 | 1070 | u8 *addr = slab_address(slab); |
24922684 CL |
1071 | |
1072 | print_tracking(s, p); | |
1073 | ||
bb192ed9 | 1074 | print_slab_info(slab); |
24922684 | 1075 | |
96b94abc | 1076 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 1077 | p, p - addr, get_freepointer(s, p)); |
24922684 | 1078 | |
d86bd1be | 1079 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 1080 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 1081 | s->red_left_pad); |
d86bd1be | 1082 | else if (p > addr + 16) |
aa2efd5e | 1083 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 1084 | |
8669dbab | 1085 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 1086 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 1087 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 1088 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 1089 | s->inuse - s->object_size); |
81819f0f | 1090 | |
cbfc35a4 | 1091 | off = get_info_end(s); |
81819f0f | 1092 | |
24922684 | 1093 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 1094 | off += 2 * sizeof(struct track); |
81819f0f | 1095 | |
6edf2576 FT |
1096 | if (slub_debug_orig_size(s)) |
1097 | off += sizeof(unsigned int); | |
1098 | ||
5d1ba310 | 1099 | off += kasan_metadata_size(s, false); |
80a9201a | 1100 | |
d86bd1be | 1101 | if (off != size_from_object(s)) |
81819f0f | 1102 | /* Beginning of the filler is the free pointer */ |
8669dbab | 1103 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 1104 | size_from_object(s) - off); |
24922684 CL |
1105 | |
1106 | dump_stack(); | |
81819f0f CL |
1107 | } |
1108 | ||
bb192ed9 | 1109 | static void object_err(struct kmem_cache *s, struct slab *slab, |
81819f0f CL |
1110 | u8 *object, char *reason) |
1111 | { | |
1f9f78b1 OG |
1112 | if (slab_add_kunit_errors()) |
1113 | return; | |
1114 | ||
3dc50637 | 1115 | slab_bug(s, "%s", reason); |
bb192ed9 | 1116 | print_trailer(s, slab, object); |
65ebdeef | 1117 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
1118 | } |
1119 | ||
bb192ed9 | 1120 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
ae16d059 VB |
1121 | void **freelist, void *nextfree) |
1122 | { | |
1123 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
bb192ed9 VB |
1124 | !check_valid_pointer(s, slab, nextfree) && freelist) { |
1125 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
ae16d059 VB |
1126 | *freelist = NULL; |
1127 | slab_fix(s, "Isolate corrupted freechain"); | |
1128 | return true; | |
1129 | } | |
1130 | ||
1131 | return false; | |
1132 | } | |
1133 | ||
bb192ed9 | 1134 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
d0e0ac97 | 1135 | const char *fmt, ...) |
81819f0f CL |
1136 | { |
1137 | va_list args; | |
1138 | char buf[100]; | |
1139 | ||
1f9f78b1 OG |
1140 | if (slab_add_kunit_errors()) |
1141 | return; | |
1142 | ||
24922684 CL |
1143 | va_start(args, fmt); |
1144 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 1145 | va_end(args); |
3dc50637 | 1146 | slab_bug(s, "%s", buf); |
bb192ed9 | 1147 | print_slab_info(slab); |
81819f0f | 1148 | dump_stack(); |
65ebdeef | 1149 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
1150 | } |
1151 | ||
f7cb1933 | 1152 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 1153 | { |
aa1ef4d7 | 1154 | u8 *p = kasan_reset_tag(object); |
946fa0db | 1155 | unsigned int poison_size = s->object_size; |
81819f0f | 1156 | |
946fa0db | 1157 | if (s->flags & SLAB_RED_ZONE) { |
f4168171 IL |
1158 | /* |
1159 | * Here and below, avoid overwriting the KMSAN shadow. Keeping | |
1160 | * the shadow makes it possible to distinguish uninit-value | |
1161 | * from use-after-free. | |
1162 | */ | |
1163 | memset_no_sanitize_memory(p - s->red_left_pad, val, | |
1164 | s->red_left_pad); | |
d86bd1be | 1165 | |
946fa0db FT |
1166 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { |
1167 | /* | |
1168 | * Redzone the extra allocated space by kmalloc than | |
1169 | * requested, and the poison size will be limited to | |
1170 | * the original request size accordingly. | |
1171 | */ | |
1172 | poison_size = get_orig_size(s, object); | |
1173 | } | |
1174 | } | |
1175 | ||
81819f0f | 1176 | if (s->flags & __OBJECT_POISON) { |
f4168171 IL |
1177 | memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); |
1178 | memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); | |
81819f0f CL |
1179 | } |
1180 | ||
1181 | if (s->flags & SLAB_RED_ZONE) | |
f4168171 IL |
1182 | memset_no_sanitize_memory(p + poison_size, val, |
1183 | s->inuse - poison_size); | |
81819f0f CL |
1184 | } |
1185 | ||
24922684 CL |
1186 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
1187 | void *from, void *to) | |
1188 | { | |
582d1212 | 1189 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
1190 | memset(from, data, to - from); |
1191 | } | |
1192 | ||
adea9876 IL |
1193 | #ifdef CONFIG_KMSAN |
1194 | #define pad_check_attributes noinline __no_kmsan_checks | |
1195 | #else | |
1196 | #define pad_check_attributes | |
1197 | #endif | |
1198 | ||
1199 | static pad_check_attributes int | |
1200 | check_bytes_and_report(struct kmem_cache *s, struct slab *slab, | |
1201 | u8 *object, char *what, | |
1202 | u8 *start, unsigned int value, unsigned int bytes) | |
24922684 CL |
1203 | { |
1204 | u8 *fault; | |
1205 | u8 *end; | |
bb192ed9 | 1206 | u8 *addr = slab_address(slab); |
24922684 | 1207 | |
a79316c6 | 1208 | metadata_access_enable(); |
aa1ef4d7 | 1209 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 1210 | metadata_access_disable(); |
24922684 CL |
1211 | if (!fault) |
1212 | return 1; | |
1213 | ||
1214 | end = start + bytes; | |
1215 | while (end > fault && end[-1] == value) | |
1216 | end--; | |
1217 | ||
1f9f78b1 OG |
1218 | if (slab_add_kunit_errors()) |
1219 | goto skip_bug_print; | |
1220 | ||
24922684 | 1221 | slab_bug(s, "%s overwritten", what); |
96b94abc | 1222 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
1223 | fault, end - 1, fault - addr, |
1224 | fault[0], value); | |
24922684 | 1225 | |
1f9f78b1 | 1226 | skip_bug_print: |
24922684 CL |
1227 | restore_bytes(s, what, value, fault, end); |
1228 | return 0; | |
81819f0f CL |
1229 | } |
1230 | ||
81819f0f CL |
1231 | /* |
1232 | * Object layout: | |
1233 | * | |
1234 | * object address | |
1235 | * Bytes of the object to be managed. | |
1236 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 1237 | * pointer is at the middle of the object. |
672bba3a | 1238 | * |
81819f0f CL |
1239 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
1240 | * 0xa5 (POISON_END) | |
1241 | * | |
3b0efdfa | 1242 | * object + s->object_size |
81819f0f | 1243 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 1244 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 1245 | * object_size == inuse. |
672bba3a | 1246 | * |
4a24bbab CZ |
1247 | * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with |
1248 | * 0xcc (SLUB_RED_ACTIVE) for objects in use. | |
81819f0f CL |
1249 | * |
1250 | * object + s->inuse | |
672bba3a CL |
1251 | * Meta data starts here. |
1252 | * | |
81819f0f CL |
1253 | * A. Free pointer (if we cannot overwrite object on free) |
1254 | * B. Tracking data for SLAB_STORE_USER | |
6edf2576 FT |
1255 | * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) |
1256 | * D. Padding to reach required alignment boundary or at minimum | |
6446faa2 | 1257 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
1258 | * before the word boundary. |
1259 | * | |
1260 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
1261 | * |
1262 | * object + s->size | |
672bba3a | 1263 | * Nothing is used beyond s->size. |
81819f0f | 1264 | * |
3b0efdfa | 1265 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 1266 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
1267 | * may be used with merged slabcaches. |
1268 | */ | |
1269 | ||
bb192ed9 | 1270 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f | 1271 | { |
cbfc35a4 | 1272 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f | 1273 | |
6edf2576 | 1274 | if (s->flags & SLAB_STORE_USER) { |
81819f0f CL |
1275 | /* We also have user information there */ |
1276 | off += 2 * sizeof(struct track); | |
1277 | ||
6edf2576 FT |
1278 | if (s->flags & SLAB_KMALLOC) |
1279 | off += sizeof(unsigned int); | |
1280 | } | |
1281 | ||
5d1ba310 | 1282 | off += kasan_metadata_size(s, false); |
80a9201a | 1283 | |
d86bd1be | 1284 | if (size_from_object(s) == off) |
81819f0f CL |
1285 | return 1; |
1286 | ||
bb192ed9 | 1287 | return check_bytes_and_report(s, slab, p, "Object padding", |
d86bd1be | 1288 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
1289 | } |
1290 | ||
39b26464 | 1291 | /* Check the pad bytes at the end of a slab page */ |
adea9876 IL |
1292 | static pad_check_attributes void |
1293 | slab_pad_check(struct kmem_cache *s, struct slab *slab) | |
81819f0f | 1294 | { |
24922684 CL |
1295 | u8 *start; |
1296 | u8 *fault; | |
1297 | u8 *end; | |
5d682681 | 1298 | u8 *pad; |
24922684 CL |
1299 | int length; |
1300 | int remainder; | |
81819f0f CL |
1301 | |
1302 | if (!(s->flags & SLAB_POISON)) | |
a204e6d6 | 1303 | return; |
81819f0f | 1304 | |
bb192ed9 VB |
1305 | start = slab_address(slab); |
1306 | length = slab_size(slab); | |
39b26464 CL |
1307 | end = start + length; |
1308 | remainder = length % s->size; | |
81819f0f | 1309 | if (!remainder) |
a204e6d6 | 1310 | return; |
81819f0f | 1311 | |
5d682681 | 1312 | pad = end - remainder; |
a79316c6 | 1313 | metadata_access_enable(); |
aa1ef4d7 | 1314 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1315 | metadata_access_disable(); |
24922684 | 1316 | if (!fault) |
a204e6d6 | 1317 | return; |
24922684 CL |
1318 | while (end > fault && end[-1] == POISON_INUSE) |
1319 | end--; | |
1320 | ||
bb192ed9 | 1321 | slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
e1b70dd1 | 1322 | fault, end - 1, fault - start); |
5d682681 | 1323 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1324 | |
5d682681 | 1325 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
81819f0f CL |
1326 | } |
1327 | ||
bb192ed9 | 1328 | static int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1329 | void *object, u8 val) |
81819f0f CL |
1330 | { |
1331 | u8 *p = object; | |
3b0efdfa | 1332 | u8 *endobject = object + s->object_size; |
2d552463 | 1333 | unsigned int orig_size, kasan_meta_size; |
47d911b0 | 1334 | int ret = 1; |
81819f0f CL |
1335 | |
1336 | if (s->flags & SLAB_RED_ZONE) { | |
bb192ed9 | 1337 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
d86bd1be | 1338 | object - s->red_left_pad, val, s->red_left_pad)) |
47d911b0 | 1339 | ret = 0; |
d86bd1be | 1340 | |
bb192ed9 | 1341 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
3b0efdfa | 1342 | endobject, val, s->inuse - s->object_size)) |
47d911b0 | 1343 | ret = 0; |
946fa0db FT |
1344 | |
1345 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { | |
1346 | orig_size = get_orig_size(s, object); | |
1347 | ||
1348 | if (s->object_size > orig_size && | |
1349 | !check_bytes_and_report(s, slab, object, | |
1350 | "kmalloc Redzone", p + orig_size, | |
1351 | val, s->object_size - orig_size)) { | |
47d911b0 | 1352 | ret = 0; |
946fa0db FT |
1353 | } |
1354 | } | |
81819f0f | 1355 | } else { |
3b0efdfa | 1356 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
47d911b0 | 1357 | if (!check_bytes_and_report(s, slab, p, "Alignment padding", |
d0e0ac97 | 1358 | endobject, POISON_INUSE, |
47d911b0 CZ |
1359 | s->inuse - s->object_size)) |
1360 | ret = 0; | |
3adbefee | 1361 | } |
81819f0f CL |
1362 | } |
1363 | ||
1364 | if (s->flags & SLAB_POISON) { | |
2d552463 AK |
1365 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { |
1366 | /* | |
1367 | * KASAN can save its free meta data inside of the | |
1368 | * object at offset 0. Thus, skip checking the part of | |
1369 | * the redzone that overlaps with the meta data. | |
1370 | */ | |
1371 | kasan_meta_size = kasan_metadata_size(s, true); | |
1372 | if (kasan_meta_size < s->object_size - 1 && | |
1373 | !check_bytes_and_report(s, slab, p, "Poison", | |
1374 | p + kasan_meta_size, POISON_FREE, | |
1375 | s->object_size - kasan_meta_size - 1)) | |
47d911b0 | 1376 | ret = 0; |
2d552463 AK |
1377 | if (kasan_meta_size < s->object_size && |
1378 | !check_bytes_and_report(s, slab, p, "End Poison", | |
1379 | p + s->object_size - 1, POISON_END, 1)) | |
47d911b0 | 1380 | ret = 0; |
2d552463 | 1381 | } |
81819f0f CL |
1382 | /* |
1383 | * check_pad_bytes cleans up on its own. | |
1384 | */ | |
47d911b0 CZ |
1385 | if (!check_pad_bytes(s, slab, p)) |
1386 | ret = 0; | |
81819f0f CL |
1387 | } |
1388 | ||
47d911b0 CZ |
1389 | /* |
1390 | * Cannot check freepointer while object is allocated if | |
1391 | * object and freepointer overlap. | |
1392 | */ | |
1393 | if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && | |
1394 | !check_valid_pointer(s, slab, get_freepointer(s, p))) { | |
bb192ed9 | 1395 | object_err(s, slab, p, "Freepointer corrupt"); |
81819f0f | 1396 | /* |
9f6c708e | 1397 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1398 | * of the free objects in this slab. May cause |
672bba3a | 1399 | * another error because the object count is now wrong. |
81819f0f | 1400 | */ |
a973e9dd | 1401 | set_freepointer(s, p, NULL); |
47d911b0 | 1402 | ret = 0; |
81819f0f | 1403 | } |
47d911b0 CZ |
1404 | |
1405 | if (!ret && !slab_in_kunit_test()) { | |
1406 | print_trailer(s, slab, object); | |
1407 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
1408 | } | |
1409 | ||
1410 | return ret; | |
81819f0f CL |
1411 | } |
1412 | ||
bb192ed9 | 1413 | static int check_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1414 | { |
39b26464 CL |
1415 | int maxobj; |
1416 | ||
bb192ed9 VB |
1417 | if (!folio_test_slab(slab_folio(slab))) { |
1418 | slab_err(s, slab, "Not a valid slab page"); | |
81819f0f CL |
1419 | return 0; |
1420 | } | |
39b26464 | 1421 | |
bb192ed9 VB |
1422 | maxobj = order_objects(slab_order(slab), s->size); |
1423 | if (slab->objects > maxobj) { | |
1424 | slab_err(s, slab, "objects %u > max %u", | |
1425 | slab->objects, maxobj); | |
39b26464 CL |
1426 | return 0; |
1427 | } | |
bb192ed9 VB |
1428 | if (slab->inuse > slab->objects) { |
1429 | slab_err(s, slab, "inuse %u > max %u", | |
1430 | slab->inuse, slab->objects); | |
81819f0f CL |
1431 | return 0; |
1432 | } | |
1433 | /* Slab_pad_check fixes things up after itself */ | |
bb192ed9 | 1434 | slab_pad_check(s, slab); |
81819f0f CL |
1435 | return 1; |
1436 | } | |
1437 | ||
1438 | /* | |
c2092c12 | 1439 | * Determine if a certain object in a slab is on the freelist. Must hold the |
672bba3a | 1440 | * slab lock to guarantee that the chains are in a consistent state. |
81819f0f | 1441 | */ |
bb192ed9 | 1442 | static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
81819f0f CL |
1443 | { |
1444 | int nr = 0; | |
881db7fb | 1445 | void *fp; |
81819f0f | 1446 | void *object = NULL; |
f6edde9c | 1447 | int max_objects; |
81819f0f | 1448 | |
bb192ed9 VB |
1449 | fp = slab->freelist; |
1450 | while (fp && nr <= slab->objects) { | |
81819f0f CL |
1451 | if (fp == search) |
1452 | return 1; | |
bb192ed9 | 1453 | if (!check_valid_pointer(s, slab, fp)) { |
81819f0f | 1454 | if (object) { |
bb192ed9 | 1455 | object_err(s, slab, object, |
81819f0f | 1456 | "Freechain corrupt"); |
a973e9dd | 1457 | set_freepointer(s, object, NULL); |
81819f0f | 1458 | } else { |
bb192ed9 VB |
1459 | slab_err(s, slab, "Freepointer corrupt"); |
1460 | slab->freelist = NULL; | |
1461 | slab->inuse = slab->objects; | |
24922684 | 1462 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1463 | return 0; |
1464 | } | |
1465 | break; | |
1466 | } | |
1467 | object = fp; | |
1468 | fp = get_freepointer(s, object); | |
1469 | nr++; | |
1470 | } | |
1471 | ||
bb192ed9 | 1472 | max_objects = order_objects(slab_order(slab), s->size); |
210b5c06 CG |
1473 | if (max_objects > MAX_OBJS_PER_PAGE) |
1474 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be | 1475 | |
bb192ed9 VB |
1476 | if (slab->objects != max_objects) { |
1477 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1478 | slab->objects, max_objects); | |
1479 | slab->objects = max_objects; | |
582d1212 | 1480 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1481 | } |
bb192ed9 VB |
1482 | if (slab->inuse != slab->objects - nr) { |
1483 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1484 | slab->inuse, slab->objects - nr); | |
1485 | slab->inuse = slab->objects - nr; | |
582d1212 | 1486 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1487 | } |
1488 | return search == NULL; | |
1489 | } | |
1490 | ||
bb192ed9 | 1491 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
0121c619 | 1492 | int alloc) |
3ec09742 CL |
1493 | { |
1494 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1495 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1496 | s->name, |
1497 | alloc ? "alloc" : "free", | |
bb192ed9 VB |
1498 | object, slab->inuse, |
1499 | slab->freelist); | |
3ec09742 CL |
1500 | |
1501 | if (!alloc) | |
aa2efd5e | 1502 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1503 | s->object_size); |
3ec09742 CL |
1504 | |
1505 | dump_stack(); | |
1506 | } | |
1507 | } | |
1508 | ||
643b1138 | 1509 | /* |
672bba3a | 1510 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1511 | */ |
5cc6eee8 | 1512 | static void add_full(struct kmem_cache *s, |
bb192ed9 | 1513 | struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1514 | { |
5cc6eee8 CL |
1515 | if (!(s->flags & SLAB_STORE_USER)) |
1516 | return; | |
1517 | ||
255d0884 | 1518 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1519 | list_add(&slab->slab_list, &n->full); |
643b1138 CL |
1520 | } |
1521 | ||
bb192ed9 | 1522 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1523 | { |
643b1138 CL |
1524 | if (!(s->flags & SLAB_STORE_USER)) |
1525 | return; | |
1526 | ||
255d0884 | 1527 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1528 | list_del(&slab->slab_list); |
643b1138 CL |
1529 | } |
1530 | ||
26c02cf0 AB |
1531 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1532 | { | |
1533 | return atomic_long_read(&n->nr_slabs); | |
1534 | } | |
1535 | ||
205ab99d | 1536 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1537 | { |
1538 | struct kmem_cache_node *n = get_node(s, node); | |
1539 | ||
3dd549a5 CZ |
1540 | atomic_long_inc(&n->nr_slabs); |
1541 | atomic_long_add(objects, &n->total_objects); | |
0f389ec6 | 1542 | } |
205ab99d | 1543 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1544 | { |
1545 | struct kmem_cache_node *n = get_node(s, node); | |
1546 | ||
1547 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1548 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1549 | } |
1550 | ||
1551 | /* Object debug checks for alloc/free paths */ | |
c0f81a94 | 1552 | static void setup_object_debug(struct kmem_cache *s, void *object) |
3ec09742 | 1553 | { |
8fc8d666 | 1554 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1555 | return; |
1556 | ||
f7cb1933 | 1557 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1558 | init_tracking(s, object); |
1559 | } | |
1560 | ||
a50b854e | 1561 | static |
bb192ed9 | 1562 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
a7101224 | 1563 | { |
8fc8d666 | 1564 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1565 | return; |
1566 | ||
1567 | metadata_access_enable(); | |
bb192ed9 | 1568 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
a7101224 AK |
1569 | metadata_access_disable(); |
1570 | } | |
1571 | ||
becfda68 | 1572 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1573 | struct slab *slab, void *object) |
81819f0f | 1574 | { |
bb192ed9 | 1575 | if (!check_slab(s, slab)) |
becfda68 | 1576 | return 0; |
81819f0f | 1577 | |
bb192ed9 VB |
1578 | if (!check_valid_pointer(s, slab, object)) { |
1579 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
becfda68 | 1580 | return 0; |
81819f0f CL |
1581 | } |
1582 | ||
bb192ed9 | 1583 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1584 | return 0; |
1585 | ||
1586 | return 1; | |
1587 | } | |
1588 | ||
fa9b88e4 | 1589 | static noinline bool alloc_debug_processing(struct kmem_cache *s, |
6edf2576 | 1590 | struct slab *slab, void *object, int orig_size) |
becfda68 LA |
1591 | { |
1592 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1593 | if (!alloc_consistency_checks(s, slab, object)) |
becfda68 LA |
1594 | goto bad; |
1595 | } | |
81819f0f | 1596 | |
c7323a5a | 1597 | /* Success. Perform special debug activities for allocs */ |
bb192ed9 | 1598 | trace(s, slab, object, 1); |
6edf2576 | 1599 | set_orig_size(s, object, orig_size); |
f7cb1933 | 1600 | init_object(s, object, SLUB_RED_ACTIVE); |
fa9b88e4 | 1601 | return true; |
3ec09742 | 1602 | |
81819f0f | 1603 | bad: |
bb192ed9 | 1604 | if (folio_test_slab(slab_folio(slab))) { |
81819f0f CL |
1605 | /* |
1606 | * If this is a slab page then lets do the best we can | |
1607 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1608 | * as used avoids touching the remaining objects. |
81819f0f | 1609 | */ |
24922684 | 1610 | slab_fix(s, "Marking all objects used"); |
bb192ed9 VB |
1611 | slab->inuse = slab->objects; |
1612 | slab->freelist = NULL; | |
81819f0f | 1613 | } |
fa9b88e4 | 1614 | return false; |
81819f0f CL |
1615 | } |
1616 | ||
becfda68 | 1617 | static inline int free_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1618 | struct slab *slab, void *object, unsigned long addr) |
81819f0f | 1619 | { |
bb192ed9 VB |
1620 | if (!check_valid_pointer(s, slab, object)) { |
1621 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
becfda68 | 1622 | return 0; |
81819f0f CL |
1623 | } |
1624 | ||
bb192ed9 VB |
1625 | if (on_freelist(s, slab, object)) { |
1626 | object_err(s, slab, object, "Object already free"); | |
becfda68 | 1627 | return 0; |
81819f0f CL |
1628 | } |
1629 | ||
bb192ed9 | 1630 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
becfda68 | 1631 | return 0; |
81819f0f | 1632 | |
bb192ed9 VB |
1633 | if (unlikely(s != slab->slab_cache)) { |
1634 | if (!folio_test_slab(slab_folio(slab))) { | |
1635 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
756a025f | 1636 | object); |
bb192ed9 | 1637 | } else if (!slab->slab_cache) { |
f9f58285 FF |
1638 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1639 | object); | |
70d71228 | 1640 | dump_stack(); |
06428780 | 1641 | } else |
bb192ed9 | 1642 | object_err(s, slab, object, |
24922684 | 1643 | "page slab pointer corrupt."); |
becfda68 LA |
1644 | return 0; |
1645 | } | |
1646 | return 1; | |
1647 | } | |
1648 | ||
e17f1dfb | 1649 | /* |
671776b3 | 1650 | * Parse a block of slab_debug options. Blocks are delimited by ';' |
e17f1dfb VB |
1651 | * |
1652 | * @str: start of block | |
1653 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1654 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1655 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1656 | * | |
1657 | * returns the start of next block if there's any, or NULL | |
1658 | */ | |
1659 | static char * | |
1660 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1661 | { |
e17f1dfb | 1662 | bool higher_order_disable = false; |
f0630fff | 1663 | |
e17f1dfb VB |
1664 | /* Skip any completely empty blocks */ |
1665 | while (*str && *str == ';') | |
1666 | str++; | |
1667 | ||
1668 | if (*str == ',') { | |
f0630fff CL |
1669 | /* |
1670 | * No options but restriction on slabs. This means full | |
1671 | * debugging for slabs matching a pattern. | |
1672 | */ | |
e17f1dfb | 1673 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1674 | goto check_slabs; |
e17f1dfb VB |
1675 | } |
1676 | *flags = 0; | |
f0630fff | 1677 | |
e17f1dfb VB |
1678 | /* Determine which debug features should be switched on */ |
1679 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1680 | switch (tolower(*str)) { |
e17f1dfb VB |
1681 | case '-': |
1682 | *flags = 0; | |
1683 | break; | |
f0630fff | 1684 | case 'f': |
e17f1dfb | 1685 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1686 | break; |
1687 | case 'z': | |
e17f1dfb | 1688 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1689 | break; |
1690 | case 'p': | |
e17f1dfb | 1691 | *flags |= SLAB_POISON; |
f0630fff CL |
1692 | break; |
1693 | case 'u': | |
e17f1dfb | 1694 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1695 | break; |
1696 | case 't': | |
e17f1dfb | 1697 | *flags |= SLAB_TRACE; |
f0630fff | 1698 | break; |
4c13dd3b | 1699 | case 'a': |
e17f1dfb | 1700 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1701 | break; |
08303a73 CA |
1702 | case 'o': |
1703 | /* | |
1704 | * Avoid enabling debugging on caches if its minimum | |
1705 | * order would increase as a result. | |
1706 | */ | |
e17f1dfb | 1707 | higher_order_disable = true; |
08303a73 | 1708 | break; |
f0630fff | 1709 | default: |
e17f1dfb | 1710 | if (init) |
671776b3 | 1711 | pr_err("slab_debug option '%c' unknown. skipped\n", *str); |
f0630fff | 1712 | } |
41ecc55b | 1713 | } |
f0630fff | 1714 | check_slabs: |
41ecc55b | 1715 | if (*str == ',') |
e17f1dfb VB |
1716 | *slabs = ++str; |
1717 | else | |
1718 | *slabs = NULL; | |
1719 | ||
1720 | /* Skip over the slab list */ | |
1721 | while (*str && *str != ';') | |
1722 | str++; | |
1723 | ||
1724 | /* Skip any completely empty blocks */ | |
1725 | while (*str && *str == ';') | |
1726 | str++; | |
1727 | ||
1728 | if (init && higher_order_disable) | |
1729 | disable_higher_order_debug = 1; | |
1730 | ||
1731 | if (*str) | |
1732 | return str; | |
1733 | else | |
1734 | return NULL; | |
1735 | } | |
1736 | ||
1737 | static int __init setup_slub_debug(char *str) | |
1738 | { | |
1739 | slab_flags_t flags; | |
a7f1d485 | 1740 | slab_flags_t global_flags; |
e17f1dfb VB |
1741 | char *saved_str; |
1742 | char *slab_list; | |
1743 | bool global_slub_debug_changed = false; | |
1744 | bool slab_list_specified = false; | |
1745 | ||
a7f1d485 | 1746 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1747 | if (*str++ != '=' || !*str) |
1748 | /* | |
1749 | * No options specified. Switch on full debugging. | |
1750 | */ | |
1751 | goto out; | |
1752 | ||
1753 | saved_str = str; | |
1754 | while (str) { | |
1755 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1756 | ||
1757 | if (!slab_list) { | |
a7f1d485 | 1758 | global_flags = flags; |
e17f1dfb VB |
1759 | global_slub_debug_changed = true; |
1760 | } else { | |
1761 | slab_list_specified = true; | |
5cf909c5 | 1762 | if (flags & SLAB_STORE_USER) |
1c0310ad | 1763 | stack_depot_request_early_init(); |
e17f1dfb VB |
1764 | } |
1765 | } | |
1766 | ||
1767 | /* | |
1768 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 | 1769 | * slabs means debugging is only changed for those slabs, so the global |
671776b3 | 1770 | * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending |
a7f1d485 | 1771 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as |
e17f1dfb VB |
1772 | * long as there is no option specifying flags without a slab list. |
1773 | */ | |
1774 | if (slab_list_specified) { | |
1775 | if (!global_slub_debug_changed) | |
a7f1d485 | 1776 | global_flags = slub_debug; |
e17f1dfb VB |
1777 | slub_debug_string = saved_str; |
1778 | } | |
f0630fff | 1779 | out: |
a7f1d485 | 1780 | slub_debug = global_flags; |
5cf909c5 | 1781 | if (slub_debug & SLAB_STORE_USER) |
1c0310ad | 1782 | stack_depot_request_early_init(); |
ca0cab65 VB |
1783 | if (slub_debug != 0 || slub_debug_string) |
1784 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1785 | else |
1786 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1787 | if ((static_branch_unlikely(&init_on_alloc) || |
1788 | static_branch_unlikely(&init_on_free)) && | |
1789 | (slub_debug & SLAB_POISON)) | |
1790 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1791 | return 1; |
1792 | } | |
1793 | ||
671776b3 XS |
1794 | __setup("slab_debug", setup_slub_debug); |
1795 | __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); | |
41ecc55b | 1796 | |
c5fd3ca0 AT |
1797 | /* |
1798 | * kmem_cache_flags - apply debugging options to the cache | |
c5fd3ca0 AT |
1799 | * @flags: flags to set |
1800 | * @name: name of the cache | |
c5fd3ca0 AT |
1801 | * |
1802 | * Debug option(s) are applied to @flags. In addition to the debug | |
1803 | * option(s), if a slab name (or multiple) is specified i.e. | |
671776b3 | 1804 | * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... |
c5fd3ca0 AT |
1805 | * then only the select slabs will receive the debug option(s). |
1806 | */ | |
303cd693 | 1807 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
41ecc55b | 1808 | { |
c5fd3ca0 AT |
1809 | char *iter; |
1810 | size_t len; | |
e17f1dfb VB |
1811 | char *next_block; |
1812 | slab_flags_t block_flags; | |
ca220593 JB |
1813 | slab_flags_t slub_debug_local = slub_debug; |
1814 | ||
a285909f HY |
1815 | if (flags & SLAB_NO_USER_FLAGS) |
1816 | return flags; | |
1817 | ||
ca220593 JB |
1818 | /* |
1819 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1820 | * don't store user (stack trace) information by default, | |
1821 | * but let the user enable it via the command line below. | |
1822 | */ | |
1823 | if (flags & SLAB_NOLEAKTRACE) | |
1824 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1825 | |
c5fd3ca0 | 1826 | len = strlen(name); |
e17f1dfb VB |
1827 | next_block = slub_debug_string; |
1828 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1829 | while (next_block) { | |
1830 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1831 | if (!iter) | |
1832 | continue; | |
1833 | /* Found a block that has a slab list, search it */ | |
1834 | while (*iter) { | |
1835 | char *end, *glob; | |
1836 | size_t cmplen; | |
1837 | ||
1838 | end = strchrnul(iter, ','); | |
1839 | if (next_block && next_block < end) | |
1840 | end = next_block - 1; | |
1841 | ||
1842 | glob = strnchr(iter, end - iter, '*'); | |
1843 | if (glob) | |
1844 | cmplen = glob - iter; | |
1845 | else | |
1846 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1847 | |
e17f1dfb VB |
1848 | if (!strncmp(name, iter, cmplen)) { |
1849 | flags |= block_flags; | |
1850 | return flags; | |
1851 | } | |
c5fd3ca0 | 1852 | |
e17f1dfb VB |
1853 | if (!*end || *end == ';') |
1854 | break; | |
1855 | iter = end + 1; | |
c5fd3ca0 | 1856 | } |
c5fd3ca0 | 1857 | } |
ba0268a8 | 1858 | |
ca220593 | 1859 | return flags | slub_debug_local; |
41ecc55b | 1860 | } |
b4a64718 | 1861 | #else /* !CONFIG_SLUB_DEBUG */ |
c0f81a94 | 1862 | static inline void setup_object_debug(struct kmem_cache *s, void *object) {} |
a50b854e | 1863 | static inline |
bb192ed9 | 1864 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
41ecc55b | 1865 | |
fa9b88e4 VB |
1866 | static inline bool alloc_debug_processing(struct kmem_cache *s, |
1867 | struct slab *slab, void *object, int orig_size) { return true; } | |
41ecc55b | 1868 | |
fa9b88e4 VB |
1869 | static inline bool free_debug_processing(struct kmem_cache *s, |
1870 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
1871 | unsigned long addr, depot_stack_handle_t handle) { return true; } | |
41ecc55b | 1872 | |
a204e6d6 | 1873 | static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} |
bb192ed9 | 1874 | static inline int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1875 | void *object, u8 val) { return 1; } |
fa9b88e4 | 1876 | static inline depot_stack_handle_t set_track_prepare(void) { return 0; } |
c7323a5a VB |
1877 | static inline void set_track(struct kmem_cache *s, void *object, |
1878 | enum track_item alloc, unsigned long addr) {} | |
5cc6eee8 | 1879 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1880 | struct slab *slab) {} |
c65c1877 | 1881 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1882 | struct slab *slab) {} |
303cd693 | 1883 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
ba0268a8 CL |
1884 | { |
1885 | return flags; | |
1886 | } | |
41ecc55b | 1887 | #define slub_debug 0 |
0f389ec6 | 1888 | |
fdaa45e9 IM |
1889 | #define disable_higher_order_debug 0 |
1890 | ||
26c02cf0 AB |
1891 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1892 | { return 0; } | |
205ab99d CL |
1893 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1894 | int objects) {} | |
1895 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1896 | int objects) {} | |
7d550c56 | 1897 | |
0af8489b | 1898 | #ifndef CONFIG_SLUB_TINY |
bb192ed9 | 1899 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
dc07a728 | 1900 | void **freelist, void *nextfree) |
52f23478 DZ |
1901 | { |
1902 | return false; | |
1903 | } | |
0af8489b | 1904 | #endif |
02e72cc6 AR |
1905 | #endif /* CONFIG_SLUB_DEBUG */ |
1906 | ||
21c690a3 SB |
1907 | #ifdef CONFIG_SLAB_OBJ_EXT |
1908 | ||
239d6c96 SB |
1909 | #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG |
1910 | ||
1911 | static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) | |
0bedcc66 | 1912 | { |
239d6c96 SB |
1913 | struct slabobj_ext *slab_exts; |
1914 | struct slab *obj_exts_slab; | |
1915 | ||
1916 | obj_exts_slab = virt_to_slab(obj_exts); | |
1917 | slab_exts = slab_obj_exts(obj_exts_slab); | |
1918 | if (slab_exts) { | |
1919 | unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, | |
1920 | obj_exts_slab, obj_exts); | |
1921 | /* codetag should be NULL */ | |
1922 | WARN_ON(slab_exts[offs].ref.ct); | |
1923 | set_codetag_empty(&slab_exts[offs].ref); | |
1924 | } | |
0bedcc66 VB |
1925 | } |
1926 | ||
09c46563 | 1927 | static inline void mark_failed_objexts_alloc(struct slab *slab) |
0bedcc66 | 1928 | { |
09c46563 | 1929 | slab->obj_exts = OBJEXTS_ALLOC_FAIL; |
0bedcc66 VB |
1930 | } |
1931 | ||
09c46563 SB |
1932 | static inline void handle_failed_objexts_alloc(unsigned long obj_exts, |
1933 | struct slabobj_ext *vec, unsigned int objects) | |
0bedcc66 VB |
1934 | { |
1935 | /* | |
09c46563 SB |
1936 | * If vector previously failed to allocate then we have live |
1937 | * objects with no tag reference. Mark all references in this | |
1938 | * vector as empty to avoid warnings later on. | |
0bedcc66 | 1939 | */ |
09c46563 SB |
1940 | if (obj_exts & OBJEXTS_ALLOC_FAIL) { |
1941 | unsigned int i; | |
1942 | ||
1943 | for (i = 0; i < objects; i++) | |
1944 | set_codetag_empty(&vec[i].ref); | |
1945 | } | |
0bedcc66 VB |
1946 | } |
1947 | ||
239d6c96 SB |
1948 | #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ |
1949 | ||
1950 | static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} | |
09c46563 SB |
1951 | static inline void mark_failed_objexts_alloc(struct slab *slab) {} |
1952 | static inline void handle_failed_objexts_alloc(unsigned long obj_exts, | |
1953 | struct slabobj_ext *vec, unsigned int objects) {} | |
239d6c96 SB |
1954 | |
1955 | #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ | |
1956 | ||
0bedcc66 | 1957 | /* |
21c690a3 SB |
1958 | * The allocated objcg pointers array is not accounted directly. |
1959 | * Moreover, it should not come from DMA buffer and is not readily | |
1960 | * reclaimable. So those GFP bits should be masked off. | |
0bedcc66 | 1961 | */ |
21c690a3 SB |
1962 | #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ |
1963 | __GFP_ACCOUNT | __GFP_NOFAIL) | |
1964 | ||
e6100a45 VB |
1965 | int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, |
1966 | gfp_t gfp, bool new_slab) | |
21c690a3 SB |
1967 | { |
1968 | unsigned int objects = objs_per_slab(s, slab); | |
09c46563 SB |
1969 | unsigned long new_exts; |
1970 | unsigned long old_exts; | |
1971 | struct slabobj_ext *vec; | |
21c690a3 SB |
1972 | |
1973 | gfp &= ~OBJCGS_CLEAR_MASK; | |
768c33be SB |
1974 | /* Prevent recursive extension vector allocation */ |
1975 | gfp |= __GFP_NO_OBJ_EXT; | |
21c690a3 SB |
1976 | vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, |
1977 | slab_nid(slab)); | |
09c46563 SB |
1978 | if (!vec) { |
1979 | /* Mark vectors which failed to allocate */ | |
1980 | if (new_slab) | |
1981 | mark_failed_objexts_alloc(slab); | |
1982 | ||
21c690a3 | 1983 | return -ENOMEM; |
09c46563 | 1984 | } |
21c690a3 | 1985 | |
09c46563 | 1986 | new_exts = (unsigned long)vec; |
21c690a3 | 1987 | #ifdef CONFIG_MEMCG |
09c46563 | 1988 | new_exts |= MEMCG_DATA_OBJEXTS; |
21c690a3 | 1989 | #endif |
3f0c44c8 | 1990 | old_exts = READ_ONCE(slab->obj_exts); |
09c46563 | 1991 | handle_failed_objexts_alloc(old_exts, vec, objects); |
21c690a3 SB |
1992 | if (new_slab) { |
1993 | /* | |
1994 | * If the slab is brand new and nobody can yet access its | |
1995 | * obj_exts, no synchronization is required and obj_exts can | |
1996 | * be simply assigned. | |
1997 | */ | |
09c46563 | 1998 | slab->obj_exts = new_exts; |
3f0c44c8 TLSC |
1999 | } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || |
2000 | cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { | |
21c690a3 SB |
2001 | /* |
2002 | * If the slab is already in use, somebody can allocate and | |
2003 | * assign slabobj_exts in parallel. In this case the existing | |
2004 | * objcg vector should be reused. | |
2005 | */ | |
239d6c96 | 2006 | mark_objexts_empty(vec); |
21c690a3 SB |
2007 | kfree(vec); |
2008 | return 0; | |
2009 | } | |
2010 | ||
2011 | kmemleak_not_leak(vec); | |
2012 | return 0; | |
2013 | } | |
2014 | ||
2015 | static inline void free_slab_obj_exts(struct slab *slab) | |
0bedcc66 | 2016 | { |
21c690a3 SB |
2017 | struct slabobj_ext *obj_exts; |
2018 | ||
2019 | obj_exts = slab_obj_exts(slab); | |
2020 | if (!obj_exts) | |
2021 | return; | |
2022 | ||
0bedcc66 | 2023 | /* |
239d6c96 SB |
2024 | * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its |
2025 | * corresponding extension will be NULL. alloc_tag_sub() will throw a | |
2026 | * warning if slab has extensions but the extension of an object is | |
2027 | * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that | |
2028 | * the extension for obj_exts is expected to be NULL. | |
0bedcc66 | 2029 | */ |
239d6c96 | 2030 | mark_objexts_empty(obj_exts); |
21c690a3 SB |
2031 | kfree(obj_exts); |
2032 | slab->obj_exts = 0; | |
2033 | } | |
4b873696 SB |
2034 | |
2035 | static inline bool need_slab_obj_ext(void) | |
2036 | { | |
2037 | if (mem_alloc_profiling_enabled()) | |
0bedcc66 VB |
2038 | return true; |
2039 | ||
4b873696 | 2040 | /* |
3a3b7fec | 2041 | * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally |
4b873696 SB |
2042 | * inside memcg_slab_post_alloc_hook. No other users for now. |
2043 | */ | |
2044 | return false; | |
2045 | } | |
0bedcc66 | 2046 | |
7b1fdf2b SB |
2047 | #else /* CONFIG_SLAB_OBJ_EXT */ |
2048 | ||
2049 | static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, | |
2050 | gfp_t gfp, bool new_slab) | |
2051 | { | |
2052 | return 0; | |
2053 | } | |
2054 | ||
2055 | static inline void free_slab_obj_exts(struct slab *slab) | |
2056 | { | |
2057 | } | |
2058 | ||
2059 | static inline bool need_slab_obj_ext(void) | |
2060 | { | |
2061 | return false; | |
2062 | } | |
2063 | ||
2064 | #endif /* CONFIG_SLAB_OBJ_EXT */ | |
2065 | ||
2066 | #ifdef CONFIG_MEM_ALLOC_PROFILING | |
2067 | ||
4b873696 SB |
2068 | static inline struct slabobj_ext * |
2069 | prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) | |
2070 | { | |
2071 | struct slab *slab; | |
0bedcc66 | 2072 | |
4b873696 SB |
2073 | if (!p) |
2074 | return NULL; | |
0bedcc66 | 2075 | |
3b89ec41 | 2076 | if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) |
4b873696 | 2077 | return NULL; |
0bedcc66 | 2078 | |
4b873696 SB |
2079 | if (flags & __GFP_NO_OBJ_EXT) |
2080 | return NULL; | |
2081 | ||
2082 | slab = virt_to_slab(p); | |
2083 | if (!slab_obj_exts(slab) && | |
2084 | WARN(alloc_slab_obj_exts(slab, s, flags, false), | |
2085 | "%s, %s: Failed to create slab extension vector!\n", | |
2086 | __func__, s->name)) | |
2087 | return NULL; | |
2088 | ||
2089 | return slab_obj_exts(slab) + obj_to_index(s, slab, p); | |
0bedcc66 VB |
2090 | } |
2091 | ||
302a3ea3 SB |
2092 | static inline void |
2093 | alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) | |
2094 | { | |
2095 | if (need_slab_obj_ext()) { | |
2096 | struct slabobj_ext *obj_exts; | |
2097 | ||
2098 | obj_exts = prepare_slab_obj_exts_hook(s, flags, object); | |
2099 | /* | |
2100 | * Currently obj_exts is used only for allocation profiling. | |
2101 | * If other users appear then mem_alloc_profiling_enabled() | |
2102 | * check should be added before alloc_tag_add(). | |
2103 | */ | |
2104 | if (likely(obj_exts)) | |
2105 | alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); | |
2106 | } | |
2107 | } | |
2108 | ||
4b873696 SB |
2109 | static inline void |
2110 | alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2111 | int objects) | |
3450a0e5 | 2112 | { |
4b873696 SB |
2113 | struct slabobj_ext *obj_exts; |
2114 | int i; | |
3450a0e5 | 2115 | |
4b873696 SB |
2116 | if (!mem_alloc_profiling_enabled()) |
2117 | return; | |
3450a0e5 | 2118 | |
ab7ca095 HG |
2119 | /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ |
2120 | if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) | |
2121 | return; | |
2122 | ||
4b873696 SB |
2123 | obj_exts = slab_obj_exts(slab); |
2124 | if (!obj_exts) | |
2125 | return; | |
2126 | ||
2127 | for (i = 0; i < objects; i++) { | |
2128 | unsigned int off = obj_to_index(s, slab, p[i]); | |
2129 | ||
2130 | alloc_tag_sub(&obj_exts[off].ref, s->size); | |
2131 | } | |
0bedcc66 | 2132 | } |
0bedcc66 | 2133 | |
302a3ea3 | 2134 | #else /* CONFIG_MEM_ALLOC_PROFILING */ |
0bedcc66 | 2135 | |
302a3ea3 SB |
2136 | static inline void |
2137 | alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) | |
4b873696 | 2138 | { |
4b873696 | 2139 | } |
0bedcc66 | 2140 | |
4b873696 SB |
2141 | static inline void |
2142 | alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2143 | int objects) | |
2144 | { | |
0bedcc66 VB |
2145 | } |
2146 | ||
302a3ea3 SB |
2147 | #endif /* CONFIG_MEM_ALLOC_PROFILING */ |
2148 | ||
0bedcc66 | 2149 | |
3a3b7fec | 2150 | #ifdef CONFIG_MEMCG |
0bedcc66 | 2151 | |
9f9796b4 VB |
2152 | static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); |
2153 | ||
3450a0e5 | 2154 | static __fastpath_inline |
9f9796b4 | 2155 | bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
3450a0e5 VB |
2156 | gfp_t flags, size_t size, void **p) |
2157 | { | |
9f9796b4 | 2158 | if (likely(!memcg_kmem_online())) |
3450a0e5 | 2159 | return true; |
3450a0e5 | 2160 | |
3450a0e5 VB |
2161 | if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) |
2162 | return true; | |
0bedcc66 | 2163 | |
9f9796b4 VB |
2164 | if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) |
2165 | return true; | |
0bedcc66 | 2166 | |
9f9796b4 VB |
2167 | if (likely(size == 1)) { |
2168 | memcg_alloc_abort_single(s, *p); | |
2169 | *p = NULL; | |
2170 | } else { | |
2171 | kmem_cache_free_bulk(s, size, p); | |
0bedcc66 | 2172 | } |
3450a0e5 | 2173 | |
9f9796b4 | 2174 | return false; |
0bedcc66 | 2175 | } |
ecf9a253 VB |
2176 | |
2177 | static __fastpath_inline | |
2178 | void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2179 | int objects) | |
2180 | { | |
21c690a3 | 2181 | struct slabobj_ext *obj_exts; |
ecf9a253 VB |
2182 | |
2183 | if (!memcg_kmem_online()) | |
2184 | return; | |
2185 | ||
21c690a3 SB |
2186 | obj_exts = slab_obj_exts(slab); |
2187 | if (likely(!obj_exts)) | |
ecf9a253 VB |
2188 | return; |
2189 | ||
21c690a3 | 2190 | __memcg_slab_free_hook(s, slab, p, objects, obj_exts); |
520a688a | 2191 | } |
3a3b7fec | 2192 | #else /* CONFIG_MEMCG */ |
9f9796b4 VB |
2193 | static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, |
2194 | struct list_lru *lru, | |
0bedcc66 VB |
2195 | gfp_t flags, size_t size, |
2196 | void **p) | |
2197 | { | |
9f9796b4 | 2198 | return true; |
0bedcc66 VB |
2199 | } |
2200 | ||
2201 | static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | |
2202 | void **p, int objects) | |
2203 | { | |
2204 | } | |
3a3b7fec | 2205 | #endif /* CONFIG_MEMCG */ |
0bedcc66 | 2206 | |
02e72cc6 AR |
2207 | /* |
2208 | * Hooks for other subsystems that check memory allocations. In a typical | |
2209 | * production configuration these hooks all should produce no code at all. | |
284f17ac VB |
2210 | * |
2211 | * Returns true if freeing of the object can proceed, false if its reuse | |
782f8906 | 2212 | * was delayed by KASAN quarantine, or it was returned to KFENCE. |
02e72cc6 | 2213 | */ |
284f17ac VB |
2214 | static __always_inline |
2215 | bool slab_free_hook(struct kmem_cache *s, void *x, bool init) | |
d56791b3 RB |
2216 | { |
2217 | kmemleak_free_recursive(x, s->flags); | |
68ef169a | 2218 | kmsan_slab_free(s, x); |
7d550c56 | 2219 | |
84048039 | 2220 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 2221 | |
02e72cc6 AR |
2222 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
2223 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 2224 | |
cfbe1636 ME |
2225 | /* Use KCSAN to help debug racy use-after-free. */ |
2226 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
2227 | __kcsan_check_access(x, s->object_size, | |
2228 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
2229 | ||
782f8906 VB |
2230 | if (kfence_free(x)) |
2231 | return false; | |
2232 | ||
d57a964e AK |
2233 | /* |
2234 | * As memory initialization might be integrated into KASAN, | |
2235 | * kasan_slab_free and initialization memset's must be | |
2236 | * kept together to avoid discrepancies in behavior. | |
2237 | * | |
2238 | * The initialization memset's clear the object and the metadata, | |
2239 | * but don't touch the SLAB redzone. | |
8f828aa4 NB |
2240 | * |
2241 | * The object's freepointer is also avoided if stored outside the | |
2242 | * object. | |
d57a964e | 2243 | */ |
ecf9a253 | 2244 | if (unlikely(init)) { |
d57a964e | 2245 | int rsize; |
8f828aa4 | 2246 | unsigned int inuse; |
d57a964e | 2247 | |
8f828aa4 | 2248 | inuse = get_info_end(s); |
d57a964e AK |
2249 | if (!kasan_has_integrated_init()) |
2250 | memset(kasan_reset_tag(x), 0, s->object_size); | |
2251 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
8f828aa4 NB |
2252 | memset((char *)kasan_reset_tag(x) + inuse, 0, |
2253 | s->size - inuse - rsize); | |
d57a964e AK |
2254 | } |
2255 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
284f17ac | 2256 | return !kasan_slab_free(s, x, init); |
02e72cc6 | 2257 | } |
205ab99d | 2258 | |
9ea9cd8e KO |
2259 | static __fastpath_inline |
2260 | bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, | |
2261 | int *cnt) | |
81084651 | 2262 | { |
6471384a AP |
2263 | |
2264 | void *object; | |
2265 | void *next = *head; | |
284f17ac | 2266 | void *old_tail = *tail; |
782f8906 | 2267 | bool init; |
6471384a | 2268 | |
b89fb5ef | 2269 | if (is_kfence_address(next)) { |
d57a964e | 2270 | slab_free_hook(s, next, false); |
782f8906 | 2271 | return false; |
b89fb5ef AP |
2272 | } |
2273 | ||
aea4df4c LA |
2274 | /* Head and tail of the reconstructed freelist */ |
2275 | *head = NULL; | |
2276 | *tail = NULL; | |
1b7e816f | 2277 | |
782f8906 VB |
2278 | init = slab_want_init_on_free(s); |
2279 | ||
aea4df4c LA |
2280 | do { |
2281 | object = next; | |
2282 | next = get_freepointer(s, object); | |
2283 | ||
c3895391 | 2284 | /* If object's reuse doesn't have to be delayed */ |
782f8906 | 2285 | if (likely(slab_free_hook(s, object, init))) { |
c3895391 AK |
2286 | /* Move object to the new freelist */ |
2287 | set_freepointer(s, object, *head); | |
2288 | *head = object; | |
2289 | if (!*tail) | |
2290 | *tail = object; | |
899447f6 ML |
2291 | } else { |
2292 | /* | |
2293 | * Adjust the reconstructed freelist depth | |
2294 | * accordingly if object's reuse is delayed. | |
2295 | */ | |
2296 | --(*cnt); | |
c3895391 AK |
2297 | } |
2298 | } while (object != old_tail); | |
2299 | ||
c3895391 | 2300 | return *head != NULL; |
81084651 JDB |
2301 | } |
2302 | ||
c0f81a94 | 2303 | static void *setup_object(struct kmem_cache *s, void *object) |
588f8ba9 | 2304 | { |
c0f81a94 | 2305 | setup_object_debug(s, object); |
4d176711 | 2306 | object = kasan_init_slab_obj(s, object); |
588f8ba9 | 2307 | if (unlikely(s->ctor)) { |
1ce9a052 | 2308 | kasan_unpoison_new_object(s, object); |
588f8ba9 | 2309 | s->ctor(object); |
1ce9a052 | 2310 | kasan_poison_new_object(s, object); |
588f8ba9 | 2311 | } |
4d176711 | 2312 | return object; |
588f8ba9 TG |
2313 | } |
2314 | ||
81819f0f CL |
2315 | /* |
2316 | * Slab allocation and freeing | |
2317 | */ | |
a485e1da XS |
2318 | static inline struct slab *alloc_slab_page(gfp_t flags, int node, |
2319 | struct kmem_cache_order_objects oo) | |
65c3376a | 2320 | { |
45387b8c VB |
2321 | struct folio *folio; |
2322 | struct slab *slab; | |
19af27af | 2323 | unsigned int order = oo_order(oo); |
65c3376a | 2324 | |
8014c46a | 2325 | folio = (struct folio *)alloc_pages_node(node, flags, order); |
45387b8c VB |
2326 | if (!folio) |
2327 | return NULL; | |
2328 | ||
2329 | slab = folio_slab(folio); | |
2330 | __folio_set_slab(folio); | |
8b881763 VB |
2331 | /* Make the flag visible before any changes to folio->mapping */ |
2332 | smp_wmb(); | |
02d65d6f | 2333 | if (folio_is_pfmemalloc(folio)) |
45387b8c VB |
2334 | slab_set_pfmemalloc(slab); |
2335 | ||
2336 | return slab; | |
65c3376a CL |
2337 | } |
2338 | ||
210e7a43 TG |
2339 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2340 | /* Pre-initialize the random sequence cache */ | |
2341 | static int init_cache_random_seq(struct kmem_cache *s) | |
2342 | { | |
19af27af | 2343 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 2344 | int err; |
210e7a43 | 2345 | |
a810007a SR |
2346 | /* Bailout if already initialised */ |
2347 | if (s->random_seq) | |
2348 | return 0; | |
2349 | ||
210e7a43 TG |
2350 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
2351 | if (err) { | |
2352 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
2353 | s->name); | |
2354 | return err; | |
2355 | } | |
2356 | ||
2357 | /* Transform to an offset on the set of pages */ | |
2358 | if (s->random_seq) { | |
19af27af AD |
2359 | unsigned int i; |
2360 | ||
210e7a43 TG |
2361 | for (i = 0; i < count; i++) |
2362 | s->random_seq[i] *= s->size; | |
2363 | } | |
2364 | return 0; | |
2365 | } | |
2366 | ||
2367 | /* Initialize each random sequence freelist per cache */ | |
2368 | static void __init init_freelist_randomization(void) | |
2369 | { | |
2370 | struct kmem_cache *s; | |
2371 | ||
2372 | mutex_lock(&slab_mutex); | |
2373 | ||
2374 | list_for_each_entry(s, &slab_caches, list) | |
2375 | init_cache_random_seq(s); | |
2376 | ||
2377 | mutex_unlock(&slab_mutex); | |
2378 | } | |
2379 | ||
2380 | /* Get the next entry on the pre-computed freelist randomized */ | |
c63349fc | 2381 | static void *next_freelist_entry(struct kmem_cache *s, |
210e7a43 TG |
2382 | unsigned long *pos, void *start, |
2383 | unsigned long page_limit, | |
2384 | unsigned long freelist_count) | |
2385 | { | |
2386 | unsigned int idx; | |
2387 | ||
2388 | /* | |
2389 | * If the target page allocation failed, the number of objects on the | |
2390 | * page might be smaller than the usual size defined by the cache. | |
2391 | */ | |
2392 | do { | |
2393 | idx = s->random_seq[*pos]; | |
2394 | *pos += 1; | |
2395 | if (*pos >= freelist_count) | |
2396 | *pos = 0; | |
2397 | } while (unlikely(idx >= page_limit)); | |
2398 | ||
2399 | return (char *)start + idx; | |
2400 | } | |
2401 | ||
2402 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
bb192ed9 | 2403 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
2404 | { |
2405 | void *start; | |
2406 | void *cur; | |
2407 | void *next; | |
2408 | unsigned long idx, pos, page_limit, freelist_count; | |
2409 | ||
bb192ed9 | 2410 | if (slab->objects < 2 || !s->random_seq) |
210e7a43 TG |
2411 | return false; |
2412 | ||
2413 | freelist_count = oo_objects(s->oo); | |
8032bf12 | 2414 | pos = get_random_u32_below(freelist_count); |
210e7a43 | 2415 | |
bb192ed9 VB |
2416 | page_limit = slab->objects * s->size; |
2417 | start = fixup_red_left(s, slab_address(slab)); | |
210e7a43 TG |
2418 | |
2419 | /* First entry is used as the base of the freelist */ | |
c63349fc | 2420 | cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); |
c0f81a94 | 2421 | cur = setup_object(s, cur); |
bb192ed9 | 2422 | slab->freelist = cur; |
210e7a43 | 2423 | |
bb192ed9 | 2424 | for (idx = 1; idx < slab->objects; idx++) { |
c63349fc | 2425 | next = next_freelist_entry(s, &pos, start, page_limit, |
210e7a43 | 2426 | freelist_count); |
c0f81a94 | 2427 | next = setup_object(s, next); |
210e7a43 TG |
2428 | set_freepointer(s, cur, next); |
2429 | cur = next; | |
2430 | } | |
210e7a43 TG |
2431 | set_freepointer(s, cur, NULL); |
2432 | ||
2433 | return true; | |
2434 | } | |
2435 | #else | |
2436 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
2437 | { | |
2438 | return 0; | |
2439 | } | |
2440 | static inline void init_freelist_randomization(void) { } | |
bb192ed9 | 2441 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
2442 | { |
2443 | return false; | |
2444 | } | |
2445 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2446 | ||
0bedcc66 VB |
2447 | static __always_inline void account_slab(struct slab *slab, int order, |
2448 | struct kmem_cache *s, gfp_t gfp) | |
2449 | { | |
2450 | if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) | |
21c690a3 | 2451 | alloc_slab_obj_exts(slab, s, gfp, true); |
0bedcc66 VB |
2452 | |
2453 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2454 | PAGE_SIZE << order); | |
2455 | } | |
2456 | ||
2457 | static __always_inline void unaccount_slab(struct slab *slab, int order, | |
2458 | struct kmem_cache *s) | |
2459 | { | |
4b873696 | 2460 | if (memcg_kmem_online() || need_slab_obj_ext()) |
21c690a3 | 2461 | free_slab_obj_exts(slab); |
0bedcc66 VB |
2462 | |
2463 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2464 | -(PAGE_SIZE << order)); | |
2465 | } | |
2466 | ||
bb192ed9 | 2467 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
81819f0f | 2468 | { |
bb192ed9 | 2469 | struct slab *slab; |
834f3d11 | 2470 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 2471 | gfp_t alloc_gfp; |
4d176711 | 2472 | void *start, *p, *next; |
a50b854e | 2473 | int idx; |
210e7a43 | 2474 | bool shuffle; |
81819f0f | 2475 | |
7e0528da CL |
2476 | flags &= gfp_allowed_mask; |
2477 | ||
b7a49f0d | 2478 | flags |= s->allocflags; |
e12ba74d | 2479 | |
ba52270d PE |
2480 | /* |
2481 | * Let the initial higher-order allocation fail under memory pressure | |
2482 | * so we fall-back to the minimum order allocation. | |
2483 | */ | |
2484 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 2485 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
27c08f75 | 2486 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; |
ba52270d | 2487 | |
a485e1da | 2488 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 2489 | if (unlikely(!slab)) { |
65c3376a | 2490 | oo = s->min; |
80c3a998 | 2491 | alloc_gfp = flags; |
65c3376a CL |
2492 | /* |
2493 | * Allocation may have failed due to fragmentation. | |
2494 | * Try a lower order alloc if possible | |
2495 | */ | |
a485e1da | 2496 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 2497 | if (unlikely(!slab)) |
c7323a5a | 2498 | return NULL; |
588f8ba9 | 2499 | stat(s, ORDER_FALLBACK); |
65c3376a | 2500 | } |
5a896d9e | 2501 | |
bb192ed9 | 2502 | slab->objects = oo_objects(oo); |
c7323a5a VB |
2503 | slab->inuse = 0; |
2504 | slab->frozen = 0; | |
81819f0f | 2505 | |
bb192ed9 | 2506 | account_slab(slab, oo_order(oo), s, flags); |
1f3147b4 | 2507 | |
bb192ed9 | 2508 | slab->slab_cache = s; |
81819f0f | 2509 | |
6e48a966 | 2510 | kasan_poison_slab(slab); |
81819f0f | 2511 | |
bb192ed9 | 2512 | start = slab_address(slab); |
81819f0f | 2513 | |
bb192ed9 | 2514 | setup_slab_debug(s, slab, start); |
0316bec2 | 2515 | |
bb192ed9 | 2516 | shuffle = shuffle_freelist(s, slab); |
210e7a43 TG |
2517 | |
2518 | if (!shuffle) { | |
4d176711 | 2519 | start = fixup_red_left(s, start); |
c0f81a94 | 2520 | start = setup_object(s, start); |
bb192ed9 VB |
2521 | slab->freelist = start; |
2522 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
18e50661 | 2523 | next = p + s->size; |
c0f81a94 | 2524 | next = setup_object(s, next); |
18e50661 AK |
2525 | set_freepointer(s, p, next); |
2526 | p = next; | |
2527 | } | |
2528 | set_freepointer(s, p, NULL); | |
81819f0f | 2529 | } |
81819f0f | 2530 | |
bb192ed9 | 2531 | return slab; |
81819f0f CL |
2532 | } |
2533 | ||
bb192ed9 | 2534 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
588f8ba9 | 2535 | { |
44405099 LL |
2536 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2537 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 2538 | |
53a0de06 VB |
2539 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2540 | ||
588f8ba9 TG |
2541 | return allocate_slab(s, |
2542 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2543 | } | |
2544 | ||
4020b4a2 | 2545 | static void __free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2546 | { |
4020b4a2 VB |
2547 | struct folio *folio = slab_folio(slab); |
2548 | int order = folio_order(folio); | |
834f3d11 | 2549 | int pages = 1 << order; |
81819f0f | 2550 | |
4020b4a2 | 2551 | __slab_clear_pfmemalloc(slab); |
4020b4a2 | 2552 | folio->mapping = NULL; |
8b881763 VB |
2553 | /* Make the mapping reset visible before clearing the flag */ |
2554 | smp_wmb(); | |
2555 | __folio_clear_slab(folio); | |
c7b23b68 | 2556 | mm_account_reclaimed_pages(pages); |
4020b4a2 | 2557 | unaccount_slab(slab, order, s); |
c034c6a4 | 2558 | __free_pages(&folio->page, order); |
81819f0f CL |
2559 | } |
2560 | ||
2561 | static void rcu_free_slab(struct rcu_head *h) | |
2562 | { | |
bb192ed9 | 2563 | struct slab *slab = container_of(h, struct slab, rcu_head); |
da9a638c | 2564 | |
bb192ed9 | 2565 | __free_slab(slab->slab_cache, slab); |
81819f0f CL |
2566 | } |
2567 | ||
bb192ed9 | 2568 | static void free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2569 | { |
bc29d5bd VB |
2570 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
2571 | void *p; | |
2572 | ||
2573 | slab_pad_check(s, slab); | |
2574 | for_each_object(p, s, slab_address(slab), slab->objects) | |
2575 | check_object(s, slab, p, SLUB_RED_INACTIVE); | |
2576 | } | |
2577 | ||
2578 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
bb192ed9 | 2579 | call_rcu(&slab->rcu_head, rcu_free_slab); |
bc29d5bd | 2580 | else |
bb192ed9 | 2581 | __free_slab(s, slab); |
81819f0f CL |
2582 | } |
2583 | ||
bb192ed9 | 2584 | static void discard_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2585 | { |
bb192ed9 VB |
2586 | dec_slabs_node(s, slab_nid(slab), slab->objects); |
2587 | free_slab(s, slab); | |
81819f0f CL |
2588 | } |
2589 | ||
8a399e2f CZ |
2590 | /* |
2591 | * SLUB reuses PG_workingset bit to keep track of whether it's on | |
2592 | * the per-node partial list. | |
2593 | */ | |
2594 | static inline bool slab_test_node_partial(const struct slab *slab) | |
2595 | { | |
4d2bcefa | 2596 | return folio_test_workingset(slab_folio(slab)); |
8a399e2f CZ |
2597 | } |
2598 | ||
2599 | static inline void slab_set_node_partial(struct slab *slab) | |
2600 | { | |
2601 | set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2602 | } | |
2603 | ||
2604 | static inline void slab_clear_node_partial(struct slab *slab) | |
2605 | { | |
2606 | clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2607 | } | |
2608 | ||
81819f0f | 2609 | /* |
5cc6eee8 | 2610 | * Management of partially allocated slabs. |
81819f0f | 2611 | */ |
1e4dd946 | 2612 | static inline void |
bb192ed9 | 2613 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
81819f0f | 2614 | { |
e95eed57 | 2615 | n->nr_partial++; |
136333d1 | 2616 | if (tail == DEACTIVATE_TO_TAIL) |
bb192ed9 | 2617 | list_add_tail(&slab->slab_list, &n->partial); |
7c2e132c | 2618 | else |
bb192ed9 | 2619 | list_add(&slab->slab_list, &n->partial); |
8a399e2f | 2620 | slab_set_node_partial(slab); |
81819f0f CL |
2621 | } |
2622 | ||
1e4dd946 | 2623 | static inline void add_partial(struct kmem_cache_node *n, |
bb192ed9 | 2624 | struct slab *slab, int tail) |
62e346a8 | 2625 | { |
c65c1877 | 2626 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 2627 | __add_partial(n, slab, tail); |
1e4dd946 | 2628 | } |
c65c1877 | 2629 | |
1e4dd946 | 2630 | static inline void remove_partial(struct kmem_cache_node *n, |
bb192ed9 | 2631 | struct slab *slab) |
1e4dd946 SR |
2632 | { |
2633 | lockdep_assert_held(&n->list_lock); | |
bb192ed9 | 2634 | list_del(&slab->slab_list); |
8a399e2f | 2635 | slab_clear_node_partial(slab); |
52b4b950 | 2636 | n->nr_partial--; |
1e4dd946 SR |
2637 | } |
2638 | ||
c7323a5a | 2639 | /* |
8cd3fa42 | 2640 | * Called only for kmem_cache_debug() caches instead of remove_partial(), with a |
c7323a5a VB |
2641 | * slab from the n->partial list. Remove only a single object from the slab, do |
2642 | * the alloc_debug_processing() checks and leave the slab on the list, or move | |
2643 | * it to full list if it was the last free object. | |
2644 | */ | |
2645 | static void *alloc_single_from_partial(struct kmem_cache *s, | |
6edf2576 | 2646 | struct kmem_cache_node *n, struct slab *slab, int orig_size) |
c7323a5a VB |
2647 | { |
2648 | void *object; | |
2649 | ||
2650 | lockdep_assert_held(&n->list_lock); | |
2651 | ||
2652 | object = slab->freelist; | |
2653 | slab->freelist = get_freepointer(s, object); | |
2654 | slab->inuse++; | |
2655 | ||
6edf2576 | 2656 | if (!alloc_debug_processing(s, slab, object, orig_size)) { |
c7323a5a VB |
2657 | remove_partial(n, slab); |
2658 | return NULL; | |
2659 | } | |
2660 | ||
2661 | if (slab->inuse == slab->objects) { | |
2662 | remove_partial(n, slab); | |
2663 | add_full(s, n, slab); | |
2664 | } | |
2665 | ||
2666 | return object; | |
2667 | } | |
2668 | ||
2669 | /* | |
2670 | * Called only for kmem_cache_debug() caches to allocate from a freshly | |
2671 | * allocated slab. Allocate a single object instead of whole freelist | |
2672 | * and put the slab to the partial (or full) list. | |
2673 | */ | |
2674 | static void *alloc_single_from_new_slab(struct kmem_cache *s, | |
6edf2576 | 2675 | struct slab *slab, int orig_size) |
c7323a5a VB |
2676 | { |
2677 | int nid = slab_nid(slab); | |
2678 | struct kmem_cache_node *n = get_node(s, nid); | |
2679 | unsigned long flags; | |
2680 | void *object; | |
2681 | ||
2682 | ||
2683 | object = slab->freelist; | |
2684 | slab->freelist = get_freepointer(s, object); | |
2685 | slab->inuse = 1; | |
2686 | ||
6edf2576 | 2687 | if (!alloc_debug_processing(s, slab, object, orig_size)) |
c7323a5a VB |
2688 | /* |
2689 | * It's not really expected that this would fail on a | |
2690 | * freshly allocated slab, but a concurrent memory | |
2691 | * corruption in theory could cause that. | |
2692 | */ | |
2693 | return NULL; | |
2694 | ||
2695 | spin_lock_irqsave(&n->list_lock, flags); | |
2696 | ||
2697 | if (slab->inuse == slab->objects) | |
2698 | add_full(s, n, slab); | |
2699 | else | |
2700 | add_partial(n, slab, DEACTIVATE_TO_HEAD); | |
2701 | ||
2702 | inc_slabs_node(s, nid, slab->objects); | |
2703 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2704 | ||
2705 | return object; | |
2706 | } | |
2707 | ||
e0a043aa | 2708 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2709 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
e0a043aa | 2710 | #else |
bb192ed9 | 2711 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
e0a043aa VB |
2712 | int drain) { } |
2713 | #endif | |
01b34d16 | 2714 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
49e22585 | 2715 | |
81819f0f | 2716 | /* |
672bba3a | 2717 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2718 | */ |
43c4c349 CZ |
2719 | static struct slab *get_partial_node(struct kmem_cache *s, |
2720 | struct kmem_cache_node *n, | |
2721 | struct partial_context *pc) | |
81819f0f | 2722 | { |
43c4c349 | 2723 | struct slab *slab, *slab2, *partial = NULL; |
4b1f449d | 2724 | unsigned long flags; |
bb192ed9 | 2725 | unsigned int partial_slabs = 0; |
81819f0f CL |
2726 | |
2727 | /* | |
2728 | * Racy check. If we mistakenly see no partial slabs then we | |
2729 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2730 | * partial slab and there is none available then get_partial() |
672bba3a | 2731 | * will return NULL. |
81819f0f CL |
2732 | */ |
2733 | if (!n || !n->nr_partial) | |
2734 | return NULL; | |
2735 | ||
4b1f449d | 2736 | spin_lock_irqsave(&n->list_lock, flags); |
bb192ed9 | 2737 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
6edf2576 | 2738 | if (!pfmemalloc_match(slab, pc->flags)) |
8ba00bb6 JK |
2739 | continue; |
2740 | ||
0af8489b | 2741 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
8cd3fa42 | 2742 | void *object = alloc_single_from_partial(s, n, slab, |
6edf2576 | 2743 | pc->orig_size); |
43c4c349 CZ |
2744 | if (object) { |
2745 | partial = slab; | |
2746 | pc->object = object; | |
c7323a5a | 2747 | break; |
43c4c349 | 2748 | } |
c7323a5a VB |
2749 | continue; |
2750 | } | |
2751 | ||
8cd3fa42 | 2752 | remove_partial(n, slab); |
49e22585 | 2753 | |
43c4c349 CZ |
2754 | if (!partial) { |
2755 | partial = slab; | |
49e22585 | 2756 | stat(s, ALLOC_FROM_PARTIAL); |
ff99b18f XS |
2757 | |
2758 | if ((slub_get_cpu_partial(s) == 0)) { | |
2759 | break; | |
2760 | } | |
49e22585 | 2761 | } else { |
bb192ed9 | 2762 | put_cpu_partial(s, slab, 0); |
8028dcea | 2763 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 2764 | |
ff99b18f XS |
2765 | if (++partial_slabs > slub_get_cpu_partial(s) / 2) { |
2766 | break; | |
2767 | } | |
2768 | } | |
497b66f2 | 2769 | } |
4b1f449d | 2770 | spin_unlock_irqrestore(&n->list_lock, flags); |
43c4c349 | 2771 | return partial; |
81819f0f CL |
2772 | } |
2773 | ||
2774 | /* | |
c2092c12 | 2775 | * Get a slab from somewhere. Search in increasing NUMA distances. |
81819f0f | 2776 | */ |
43c4c349 CZ |
2777 | static struct slab *get_any_partial(struct kmem_cache *s, |
2778 | struct partial_context *pc) | |
81819f0f CL |
2779 | { |
2780 | #ifdef CONFIG_NUMA | |
2781 | struct zonelist *zonelist; | |
dd1a239f | 2782 | struct zoneref *z; |
54a6eb5c | 2783 | struct zone *zone; |
6edf2576 | 2784 | enum zone_type highest_zoneidx = gfp_zone(pc->flags); |
43c4c349 | 2785 | struct slab *slab; |
cc9a6c87 | 2786 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2787 | |
2788 | /* | |
672bba3a CL |
2789 | * The defrag ratio allows a configuration of the tradeoffs between |
2790 | * inter node defragmentation and node local allocations. A lower | |
2791 | * defrag_ratio increases the tendency to do local allocations | |
2792 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2793 | * |
672bba3a CL |
2794 | * If the defrag_ratio is set to 0 then kmalloc() always |
2795 | * returns node local objects. If the ratio is higher then kmalloc() | |
2796 | * may return off node objects because partial slabs are obtained | |
2797 | * from other nodes and filled up. | |
81819f0f | 2798 | * |
43efd3ea LP |
2799 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2800 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2801 | * allocation will first attempt to defrag slab caches on other nodes. | |
2802 | * This means scanning over all nodes to look for partial slabs which | |
2803 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2804 | * with available objects. |
81819f0f | 2805 | */ |
9824601e CL |
2806 | if (!s->remote_node_defrag_ratio || |
2807 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2808 | return NULL; |
2809 | ||
cc9a6c87 | 2810 | do { |
d26914d1 | 2811 | cpuset_mems_cookie = read_mems_allowed_begin(); |
6edf2576 | 2812 | zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); |
97a225e6 | 2813 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2814 | struct kmem_cache_node *n; |
2815 | ||
2816 | n = get_node(s, zone_to_nid(zone)); | |
2817 | ||
6edf2576 | 2818 | if (n && cpuset_zone_allowed(zone, pc->flags) && |
cc9a6c87 | 2819 | n->nr_partial > s->min_partial) { |
43c4c349 CZ |
2820 | slab = get_partial_node(s, n, pc); |
2821 | if (slab) { | |
cc9a6c87 | 2822 | /* |
d26914d1 MG |
2823 | * Don't check read_mems_allowed_retry() |
2824 | * here - if mems_allowed was updated in | |
2825 | * parallel, that was a harmless race | |
2826 | * between allocation and the cpuset | |
2827 | * update | |
cc9a6c87 | 2828 | */ |
43c4c349 | 2829 | return slab; |
cc9a6c87 | 2830 | } |
c0ff7453 | 2831 | } |
81819f0f | 2832 | } |
d26914d1 | 2833 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2834 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2835 | return NULL; |
2836 | } | |
2837 | ||
2838 | /* | |
c2092c12 | 2839 | * Get a partial slab, lock it and return it. |
81819f0f | 2840 | */ |
43c4c349 CZ |
2841 | static struct slab *get_partial(struct kmem_cache *s, int node, |
2842 | struct partial_context *pc) | |
81819f0f | 2843 | { |
43c4c349 | 2844 | struct slab *slab; |
a561ce00 JK |
2845 | int searchnode = node; |
2846 | ||
2847 | if (node == NUMA_NO_NODE) | |
2848 | searchnode = numa_mem_id(); | |
81819f0f | 2849 | |
43c4c349 | 2850 | slab = get_partial_node(s, get_node(s, searchnode), pc); |
9198ffbd | 2851 | if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) |
43c4c349 | 2852 | return slab; |
81819f0f | 2853 | |
6edf2576 | 2854 | return get_any_partial(s, pc); |
81819f0f CL |
2855 | } |
2856 | ||
0af8489b VB |
2857 | #ifndef CONFIG_SLUB_TINY |
2858 | ||
923717cb | 2859 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2860 | /* |
0d645ed1 | 2861 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2862 | * during cmpxchg. The transactions start with the cpu number and are then |
2863 | * incremented by CONFIG_NR_CPUS. | |
2864 | */ | |
2865 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2866 | #else | |
2867 | /* | |
2868 | * No preemption supported therefore also no need to check for | |
2869 | * different cpus. | |
2870 | */ | |
2871 | #define TID_STEP 1 | |
0af8489b | 2872 | #endif /* CONFIG_PREEMPTION */ |
8a5ec0ba CL |
2873 | |
2874 | static inline unsigned long next_tid(unsigned long tid) | |
2875 | { | |
2876 | return tid + TID_STEP; | |
2877 | } | |
2878 | ||
9d5f0be0 | 2879 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2880 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2881 | { | |
2882 | return tid % TID_STEP; | |
2883 | } | |
2884 | ||
2885 | static inline unsigned long tid_to_event(unsigned long tid) | |
2886 | { | |
2887 | return tid / TID_STEP; | |
2888 | } | |
9d5f0be0 | 2889 | #endif |
8a5ec0ba CL |
2890 | |
2891 | static inline unsigned int init_tid(int cpu) | |
2892 | { | |
2893 | return cpu; | |
2894 | } | |
2895 | ||
2896 | static inline void note_cmpxchg_failure(const char *n, | |
2897 | const struct kmem_cache *s, unsigned long tid) | |
2898 | { | |
2899 | #ifdef SLUB_DEBUG_CMPXCHG | |
2900 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2901 | ||
f9f58285 | 2902 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2903 | |
923717cb | 2904 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2905 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2906 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2907 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2908 | else | |
2909 | #endif | |
2910 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2911 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2912 | tid_to_event(tid), tid_to_event(actual_tid)); |
2913 | else | |
f9f58285 | 2914 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2915 | actual_tid, tid, next_tid(tid)); |
2916 | #endif | |
4fdccdfb | 2917 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2918 | } |
2919 | ||
788e1aad | 2920 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2921 | { |
8a5ec0ba | 2922 | int cpu; |
bd0e7491 | 2923 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2924 | |
bd0e7491 VB |
2925 | for_each_possible_cpu(cpu) { |
2926 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2927 | local_lock_init(&c->lock); | |
2928 | c->tid = init_tid(cpu); | |
2929 | } | |
8a5ec0ba | 2930 | } |
2cfb7455 | 2931 | |
81819f0f | 2932 | /* |
c2092c12 | 2933 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
a019d201 VB |
2934 | * unfreezes the slabs and puts it on the proper list. |
2935 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2936 | * by the caller. | |
81819f0f | 2937 | */ |
bb192ed9 | 2938 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
a019d201 | 2939 | void *freelist) |
81819f0f | 2940 | { |
bb192ed9 | 2941 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
6d3a16d0 | 2942 | int free_delta = 0; |
d930ff03 | 2943 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2944 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2945 | unsigned long flags = 0; |
bb192ed9 VB |
2946 | struct slab new; |
2947 | struct slab old; | |
2cfb7455 | 2948 | |
844776cb | 2949 | if (READ_ONCE(slab->freelist)) { |
84e554e6 | 2950 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2951 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2952 | } |
2953 | ||
894b8788 | 2954 | /* |
d930ff03 VB |
2955 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2956 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2957 | */ |
d930ff03 VB |
2958 | freelist_tail = NULL; |
2959 | freelist_iter = freelist; | |
2960 | while (freelist_iter) { | |
2961 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2962 | |
52f23478 DZ |
2963 | /* |
2964 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2965 | * 'freelist_iter' is already corrupted. So isolate all objects |
2966 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2967 | */ |
bb192ed9 | 2968 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
52f23478 DZ |
2969 | break; |
2970 | ||
d930ff03 VB |
2971 | freelist_tail = freelist_iter; |
2972 | free_delta++; | |
2cfb7455 | 2973 | |
d930ff03 | 2974 | freelist_iter = nextfree; |
2cfb7455 CL |
2975 | } |
2976 | ||
894b8788 | 2977 | /* |
c2092c12 VB |
2978 | * Stage two: Unfreeze the slab while splicing the per-cpu |
2979 | * freelist to the head of slab's freelist. | |
894b8788 | 2980 | */ |
00eb60c2 CZ |
2981 | do { |
2982 | old.freelist = READ_ONCE(slab->freelist); | |
2983 | old.counters = READ_ONCE(slab->counters); | |
2984 | VM_BUG_ON(!old.frozen); | |
2985 | ||
2986 | /* Determine target state of the slab */ | |
2987 | new.counters = old.counters; | |
2988 | new.frozen = 0; | |
2989 | if (freelist_tail) { | |
2990 | new.inuse -= free_delta; | |
2991 | set_freepointer(s, freelist_tail, old.freelist); | |
2992 | new.freelist = freelist; | |
2993 | } else { | |
2994 | new.freelist = old.freelist; | |
2995 | } | |
2996 | } while (!slab_update_freelist(s, slab, | |
2997 | old.freelist, old.counters, | |
2998 | new.freelist, new.counters, | |
2999 | "unfreezing slab")); | |
2cfb7455 | 3000 | |
00eb60c2 CZ |
3001 | /* |
3002 | * Stage three: Manipulate the slab list based on the updated state. | |
3003 | */ | |
6d3a16d0 | 3004 | if (!new.inuse && n->nr_partial >= s->min_partial) { |
00eb60c2 CZ |
3005 | stat(s, DEACTIVATE_EMPTY); |
3006 | discard_slab(s, slab); | |
3007 | stat(s, FREE_SLAB); | |
6d3a16d0 | 3008 | } else if (new.freelist) { |
6d3a16d0 | 3009 | spin_lock_irqsave(&n->list_lock, flags); |
6d3a16d0 HY |
3010 | add_partial(n, slab, tail); |
3011 | spin_unlock_irqrestore(&n->list_lock, flags); | |
88349a28 | 3012 | stat(s, tail); |
00eb60c2 | 3013 | } else { |
6d3a16d0 | 3014 | stat(s, DEACTIVATE_FULL); |
894b8788 | 3015 | } |
81819f0f CL |
3016 | } |
3017 | ||
345c905d | 3018 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
21316fdc | 3019 | static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) |
fc1455f4 | 3020 | { |
43d77867 | 3021 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
bb192ed9 | 3022 | struct slab *slab, *slab_to_discard = NULL; |
7cf9f3ba | 3023 | unsigned long flags = 0; |
49e22585 | 3024 | |
bb192ed9 | 3025 | while (partial_slab) { |
bb192ed9 VB |
3026 | slab = partial_slab; |
3027 | partial_slab = slab->next; | |
43d77867 | 3028 | |
bb192ed9 | 3029 | n2 = get_node(s, slab_nid(slab)); |
43d77867 JK |
3030 | if (n != n2) { |
3031 | if (n) | |
7cf9f3ba | 3032 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
3033 | |
3034 | n = n2; | |
7cf9f3ba | 3035 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 3036 | } |
49e22585 | 3037 | |
8cd3fa42 | 3038 | if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { |
bb192ed9 VB |
3039 | slab->next = slab_to_discard; |
3040 | slab_to_discard = slab; | |
43d77867 | 3041 | } else { |
bb192ed9 | 3042 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
43d77867 | 3043 | stat(s, FREE_ADD_PARTIAL); |
49e22585 CL |
3044 | } |
3045 | } | |
3046 | ||
3047 | if (n) | |
7cf9f3ba | 3048 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 3049 | |
bb192ed9 VB |
3050 | while (slab_to_discard) { |
3051 | slab = slab_to_discard; | |
3052 | slab_to_discard = slab_to_discard->next; | |
9ada1934 SL |
3053 | |
3054 | stat(s, DEACTIVATE_EMPTY); | |
bb192ed9 | 3055 | discard_slab(s, slab); |
9ada1934 SL |
3056 | stat(s, FREE_SLAB); |
3057 | } | |
fc1455f4 | 3058 | } |
f3ab8b6b | 3059 | |
fc1455f4 | 3060 | /* |
21316fdc | 3061 | * Put all the cpu partial slabs to the node partial list. |
fc1455f4 | 3062 | */ |
21316fdc | 3063 | static void put_partials(struct kmem_cache *s) |
fc1455f4 | 3064 | { |
bb192ed9 | 3065 | struct slab *partial_slab; |
fc1455f4 VB |
3066 | unsigned long flags; |
3067 | ||
bd0e7491 | 3068 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3069 | partial_slab = this_cpu_read(s->cpu_slab->partial); |
fc1455f4 | 3070 | this_cpu_write(s->cpu_slab->partial, NULL); |
bd0e7491 | 3071 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 | 3072 | |
bb192ed9 | 3073 | if (partial_slab) |
21316fdc | 3074 | __put_partials(s, partial_slab); |
fc1455f4 VB |
3075 | } |
3076 | ||
21316fdc CZ |
3077 | static void put_partials_cpu(struct kmem_cache *s, |
3078 | struct kmem_cache_cpu *c) | |
fc1455f4 | 3079 | { |
bb192ed9 | 3080 | struct slab *partial_slab; |
fc1455f4 | 3081 | |
bb192ed9 | 3082 | partial_slab = slub_percpu_partial(c); |
fc1455f4 VB |
3083 | c->partial = NULL; |
3084 | ||
bb192ed9 | 3085 | if (partial_slab) |
21316fdc | 3086 | __put_partials(s, partial_slab); |
49e22585 CL |
3087 | } |
3088 | ||
3089 | /* | |
31bda717 | 3090 | * Put a slab into a partial slab slot if available. |
49e22585 CL |
3091 | * |
3092 | * If we did not find a slot then simply move all the partials to the | |
3093 | * per node partial list. | |
3094 | */ | |
bb192ed9 | 3095 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
49e22585 | 3096 | { |
bb192ed9 | 3097 | struct slab *oldslab; |
21316fdc | 3098 | struct slab *slab_to_put = NULL; |
e0a043aa | 3099 | unsigned long flags; |
bb192ed9 | 3100 | int slabs = 0; |
49e22585 | 3101 | |
bd0e7491 | 3102 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 3103 | |
bb192ed9 | 3104 | oldslab = this_cpu_read(s->cpu_slab->partial); |
e0a043aa | 3105 | |
bb192ed9 VB |
3106 | if (oldslab) { |
3107 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
e0a043aa VB |
3108 | /* |
3109 | * Partial array is full. Move the existing set to the | |
3110 | * per node partial list. Postpone the actual unfreezing | |
3111 | * outside of the critical section. | |
3112 | */ | |
21316fdc | 3113 | slab_to_put = oldslab; |
bb192ed9 | 3114 | oldslab = NULL; |
e0a043aa | 3115 | } else { |
bb192ed9 | 3116 | slabs = oldslab->slabs; |
49e22585 | 3117 | } |
e0a043aa | 3118 | } |
49e22585 | 3119 | |
bb192ed9 | 3120 | slabs++; |
49e22585 | 3121 | |
bb192ed9 VB |
3122 | slab->slabs = slabs; |
3123 | slab->next = oldslab; | |
49e22585 | 3124 | |
bb192ed9 | 3125 | this_cpu_write(s->cpu_slab->partial, slab); |
e0a043aa | 3126 | |
bd0e7491 | 3127 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa | 3128 | |
21316fdc CZ |
3129 | if (slab_to_put) { |
3130 | __put_partials(s, slab_to_put); | |
e0a043aa VB |
3131 | stat(s, CPU_PARTIAL_DRAIN); |
3132 | } | |
49e22585 CL |
3133 | } |
3134 | ||
e0a043aa VB |
3135 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
3136 | ||
21316fdc CZ |
3137 | static inline void put_partials(struct kmem_cache *s) { } |
3138 | static inline void put_partials_cpu(struct kmem_cache *s, | |
3139 | struct kmem_cache_cpu *c) { } | |
e0a043aa VB |
3140 | |
3141 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
3142 | ||
dfb4f096 | 3143 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 3144 | { |
5a836bf6 | 3145 | unsigned long flags; |
bb192ed9 | 3146 | struct slab *slab; |
5a836bf6 SAS |
3147 | void *freelist; |
3148 | ||
bd0e7491 | 3149 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 | 3150 | |
bb192ed9 | 3151 | slab = c->slab; |
5a836bf6 | 3152 | freelist = c->freelist; |
c17dda40 | 3153 | |
bb192ed9 | 3154 | c->slab = NULL; |
a019d201 | 3155 | c->freelist = NULL; |
c17dda40 | 3156 | c->tid = next_tid(c->tid); |
a019d201 | 3157 | |
bd0e7491 | 3158 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 3159 | |
bb192ed9 VB |
3160 | if (slab) { |
3161 | deactivate_slab(s, slab, freelist); | |
5a836bf6 SAS |
3162 | stat(s, CPUSLAB_FLUSH); |
3163 | } | |
81819f0f CL |
3164 | } |
3165 | ||
0c710013 | 3166 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 3167 | { |
9dfc6e68 | 3168 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 | 3169 | void *freelist = c->freelist; |
bb192ed9 | 3170 | struct slab *slab = c->slab; |
81819f0f | 3171 | |
bb192ed9 | 3172 | c->slab = NULL; |
08beb547 VB |
3173 | c->freelist = NULL; |
3174 | c->tid = next_tid(c->tid); | |
3175 | ||
bb192ed9 VB |
3176 | if (slab) { |
3177 | deactivate_slab(s, slab, freelist); | |
08beb547 VB |
3178 | stat(s, CPUSLAB_FLUSH); |
3179 | } | |
49e22585 | 3180 | |
21316fdc | 3181 | put_partials_cpu(s, c); |
81819f0f CL |
3182 | } |
3183 | ||
5a836bf6 SAS |
3184 | struct slub_flush_work { |
3185 | struct work_struct work; | |
3186 | struct kmem_cache *s; | |
3187 | bool skip; | |
3188 | }; | |
3189 | ||
fc1455f4 VB |
3190 | /* |
3191 | * Flush cpu slab. | |
3192 | * | |
5a836bf6 | 3193 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 3194 | */ |
5a836bf6 | 3195 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 3196 | { |
5a836bf6 SAS |
3197 | struct kmem_cache *s; |
3198 | struct kmem_cache_cpu *c; | |
3199 | struct slub_flush_work *sfw; | |
3200 | ||
3201 | sfw = container_of(w, struct slub_flush_work, work); | |
3202 | ||
3203 | s = sfw->s; | |
3204 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 | 3205 | |
bb192ed9 | 3206 | if (c->slab) |
fc1455f4 | 3207 | flush_slab(s, c); |
81819f0f | 3208 | |
21316fdc | 3209 | put_partials(s); |
81819f0f CL |
3210 | } |
3211 | ||
5a836bf6 | 3212 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 3213 | { |
a8364d55 GBY |
3214 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
3215 | ||
bb192ed9 | 3216 | return c->slab || slub_percpu_partial(c); |
a8364d55 GBY |
3217 | } |
3218 | ||
5a836bf6 SAS |
3219 | static DEFINE_MUTEX(flush_lock); |
3220 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
3221 | ||
3222 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
3223 | { | |
3224 | struct slub_flush_work *sfw; | |
3225 | unsigned int cpu; | |
3226 | ||
3227 | lockdep_assert_cpus_held(); | |
3228 | mutex_lock(&flush_lock); | |
3229 | ||
3230 | for_each_online_cpu(cpu) { | |
3231 | sfw = &per_cpu(slub_flush, cpu); | |
3232 | if (!has_cpu_slab(cpu, s)) { | |
3233 | sfw->skip = true; | |
3234 | continue; | |
3235 | } | |
3236 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
3237 | sfw->skip = false; | |
3238 | sfw->s = s; | |
e45cc288 | 3239 | queue_work_on(cpu, flushwq, &sfw->work); |
5a836bf6 SAS |
3240 | } |
3241 | ||
3242 | for_each_online_cpu(cpu) { | |
3243 | sfw = &per_cpu(slub_flush, cpu); | |
3244 | if (sfw->skip) | |
3245 | continue; | |
3246 | flush_work(&sfw->work); | |
3247 | } | |
3248 | ||
3249 | mutex_unlock(&flush_lock); | |
3250 | } | |
3251 | ||
81819f0f CL |
3252 | static void flush_all(struct kmem_cache *s) |
3253 | { | |
5a836bf6 SAS |
3254 | cpus_read_lock(); |
3255 | flush_all_cpus_locked(s); | |
3256 | cpus_read_unlock(); | |
81819f0f CL |
3257 | } |
3258 | ||
a96a87bf SAS |
3259 | /* |
3260 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
3261 | * necessary. | |
3262 | */ | |
3263 | static int slub_cpu_dead(unsigned int cpu) | |
3264 | { | |
3265 | struct kmem_cache *s; | |
a96a87bf SAS |
3266 | |
3267 | mutex_lock(&slab_mutex); | |
0e7ac738 | 3268 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 3269 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
3270 | mutex_unlock(&slab_mutex); |
3271 | return 0; | |
3272 | } | |
3273 | ||
0af8489b VB |
3274 | #else /* CONFIG_SLUB_TINY */ |
3275 | static inline void flush_all_cpus_locked(struct kmem_cache *s) { } | |
3276 | static inline void flush_all(struct kmem_cache *s) { } | |
3277 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } | |
3278 | static inline int slub_cpu_dead(unsigned int cpu) { return 0; } | |
3279 | #endif /* CONFIG_SLUB_TINY */ | |
3280 | ||
dfb4f096 CL |
3281 | /* |
3282 | * Check if the objects in a per cpu structure fit numa | |
3283 | * locality expectations. | |
3284 | */ | |
bb192ed9 | 3285 | static inline int node_match(struct slab *slab, int node) |
dfb4f096 CL |
3286 | { |
3287 | #ifdef CONFIG_NUMA | |
bb192ed9 | 3288 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
dfb4f096 CL |
3289 | return 0; |
3290 | #endif | |
3291 | return 1; | |
3292 | } | |
3293 | ||
9a02d699 | 3294 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 3295 | static int count_free(struct slab *slab) |
781b2ba6 | 3296 | { |
bb192ed9 | 3297 | return slab->objects - slab->inuse; |
781b2ba6 PE |
3298 | } |
3299 | ||
9a02d699 DR |
3300 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
3301 | { | |
3302 | return atomic_long_read(&n->total_objects); | |
3303 | } | |
a579b056 VB |
3304 | |
3305 | /* Supports checking bulk free of a constructed freelist */ | |
fa9b88e4 VB |
3306 | static inline bool free_debug_processing(struct kmem_cache *s, |
3307 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
3308 | unsigned long addr, depot_stack_handle_t handle) | |
a579b056 | 3309 | { |
fa9b88e4 | 3310 | bool checks_ok = false; |
a579b056 VB |
3311 | void *object = head; |
3312 | int cnt = 0; | |
a579b056 VB |
3313 | |
3314 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3315 | if (!check_slab(s, slab)) | |
3316 | goto out; | |
3317 | } | |
3318 | ||
fa9b88e4 | 3319 | if (slab->inuse < *bulk_cnt) { |
c7323a5a | 3320 | slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", |
fa9b88e4 | 3321 | slab->inuse, *bulk_cnt); |
c7323a5a VB |
3322 | goto out; |
3323 | } | |
3324 | ||
a579b056 | 3325 | next_object: |
c7323a5a | 3326 | |
fa9b88e4 | 3327 | if (++cnt > *bulk_cnt) |
c7323a5a | 3328 | goto out_cnt; |
a579b056 VB |
3329 | |
3330 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3331 | if (!free_consistency_checks(s, slab, object, addr)) | |
3332 | goto out; | |
3333 | } | |
3334 | ||
3335 | if (s->flags & SLAB_STORE_USER) | |
3336 | set_track_update(s, object, TRACK_FREE, addr, handle); | |
3337 | trace(s, slab, object, 0); | |
3338 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | |
3339 | init_object(s, object, SLUB_RED_INACTIVE); | |
3340 | ||
3341 | /* Reached end of constructed freelist yet? */ | |
3342 | if (object != tail) { | |
3343 | object = get_freepointer(s, object); | |
3344 | goto next_object; | |
3345 | } | |
c7323a5a | 3346 | checks_ok = true; |
a579b056 | 3347 | |
c7323a5a | 3348 | out_cnt: |
fa9b88e4 | 3349 | if (cnt != *bulk_cnt) { |
c7323a5a | 3350 | slab_err(s, slab, "Bulk free expected %d objects but found %d\n", |
fa9b88e4 VB |
3351 | *bulk_cnt, cnt); |
3352 | *bulk_cnt = cnt; | |
c7323a5a VB |
3353 | } |
3354 | ||
fa9b88e4 | 3355 | out: |
c7323a5a VB |
3356 | |
3357 | if (!checks_ok) | |
a579b056 | 3358 | slab_fix(s, "Object at 0x%p not freed", object); |
c7323a5a | 3359 | |
fa9b88e4 | 3360 | return checks_ok; |
a579b056 | 3361 | } |
9a02d699 DR |
3362 | #endif /* CONFIG_SLUB_DEBUG */ |
3363 | ||
b1a413a3 | 3364 | #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) |
781b2ba6 | 3365 | static unsigned long count_partial(struct kmem_cache_node *n, |
bb192ed9 | 3366 | int (*get_count)(struct slab *)) |
781b2ba6 PE |
3367 | { |
3368 | unsigned long flags; | |
3369 | unsigned long x = 0; | |
bb192ed9 | 3370 | struct slab *slab; |
781b2ba6 PE |
3371 | |
3372 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
3373 | list_for_each_entry(slab, &n->partial, slab_list) |
3374 | x += get_count(slab); | |
781b2ba6 PE |
3375 | spin_unlock_irqrestore(&n->list_lock, flags); |
3376 | return x; | |
3377 | } | |
b1a413a3 | 3378 | #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ |
26c02cf0 | 3379 | |
56d5a2b9 | 3380 | #ifdef CONFIG_SLUB_DEBUG |
046f4c69 JW |
3381 | #define MAX_PARTIAL_TO_SCAN 10000 |
3382 | ||
3383 | static unsigned long count_partial_free_approx(struct kmem_cache_node *n) | |
3384 | { | |
3385 | unsigned long flags; | |
3386 | unsigned long x = 0; | |
3387 | struct slab *slab; | |
3388 | ||
3389 | spin_lock_irqsave(&n->list_lock, flags); | |
3390 | if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { | |
3391 | list_for_each_entry(slab, &n->partial, slab_list) | |
3392 | x += slab->objects - slab->inuse; | |
3393 | } else { | |
3394 | /* | |
3395 | * For a long list, approximate the total count of objects in | |
3396 | * it to meet the limit on the number of slabs to scan. | |
3397 | * Scan from both the list's head and tail for better accuracy. | |
3398 | */ | |
3399 | unsigned long scanned = 0; | |
3400 | ||
3401 | list_for_each_entry(slab, &n->partial, slab_list) { | |
3402 | x += slab->objects - slab->inuse; | |
3403 | if (++scanned == MAX_PARTIAL_TO_SCAN / 2) | |
3404 | break; | |
3405 | } | |
3406 | list_for_each_entry_reverse(slab, &n->partial, slab_list) { | |
3407 | x += slab->objects - slab->inuse; | |
3408 | if (++scanned == MAX_PARTIAL_TO_SCAN) | |
3409 | break; | |
3410 | } | |
3411 | x = mult_frac(x, n->nr_partial, scanned); | |
3412 | x = min(x, node_nr_objs(n)); | |
3413 | } | |
3414 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3415 | return x; | |
3416 | } | |
3417 | ||
781b2ba6 PE |
3418 | static noinline void |
3419 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
3420 | { | |
9a02d699 DR |
3421 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
3422 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 3423 | int node; |
fa45dc25 | 3424 | struct kmem_cache_node *n; |
781b2ba6 | 3425 | |
9a02d699 DR |
3426 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
3427 | return; | |
3428 | ||
5b3810e5 VB |
3429 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
3430 | nid, gfpflags, &gfpflags); | |
19af27af | 3431 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
3432 | s->name, s->object_size, s->size, oo_order(s->oo), |
3433 | oo_order(s->min)); | |
781b2ba6 | 3434 | |
3b0efdfa | 3435 | if (oo_order(s->min) > get_order(s->object_size)) |
671776b3 | 3436 | pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", |
f9f58285 | 3437 | s->name); |
fa5ec8a1 | 3438 | |
fa45dc25 | 3439 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
3440 | unsigned long nr_slabs; |
3441 | unsigned long nr_objs; | |
3442 | unsigned long nr_free; | |
3443 | ||
b3d8a8e8 | 3444 | nr_free = count_partial_free_approx(n); |
26c02cf0 AB |
3445 | nr_slabs = node_nr_slabs(n); |
3446 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 3447 | |
f9f58285 | 3448 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
3449 | node, nr_slabs, nr_objs, nr_free); |
3450 | } | |
3451 | } | |
56d5a2b9 VB |
3452 | #else /* CONFIG_SLUB_DEBUG */ |
3453 | static inline void | |
3454 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } | |
3455 | #endif | |
781b2ba6 | 3456 | |
01b34d16 | 3457 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
072bb0aa | 3458 | { |
01b34d16 | 3459 | if (unlikely(slab_test_pfmemalloc(slab))) |
0b303fb4 VB |
3460 | return gfp_pfmemalloc_allowed(gfpflags); |
3461 | ||
3462 | return true; | |
3463 | } | |
3464 | ||
0af8489b | 3465 | #ifndef CONFIG_SLUB_TINY |
6801be4f PZ |
3466 | static inline bool |
3467 | __update_cpu_freelist_fast(struct kmem_cache *s, | |
3468 | void *freelist_old, void *freelist_new, | |
3469 | unsigned long tid) | |
3470 | { | |
3471 | freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; | |
3472 | freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; | |
3473 | ||
3474 | return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, | |
3475 | &old.full, new.full); | |
3476 | } | |
3477 | ||
213eeb9f | 3478 | /* |
c2092c12 VB |
3479 | * Check the slab->freelist and either transfer the freelist to the |
3480 | * per cpu freelist or deactivate the slab. | |
213eeb9f | 3481 | * |
c2092c12 | 3482 | * The slab is still frozen if the return value is not NULL. |
213eeb9f | 3483 | * |
c2092c12 | 3484 | * If this function returns NULL then the slab has been unfrozen. |
213eeb9f | 3485 | */ |
bb192ed9 | 3486 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
213eeb9f | 3487 | { |
bb192ed9 | 3488 | struct slab new; |
213eeb9f CL |
3489 | unsigned long counters; |
3490 | void *freelist; | |
3491 | ||
bd0e7491 VB |
3492 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
3493 | ||
213eeb9f | 3494 | do { |
bb192ed9 VB |
3495 | freelist = slab->freelist; |
3496 | counters = slab->counters; | |
6faa6833 | 3497 | |
213eeb9f | 3498 | new.counters = counters; |
213eeb9f | 3499 | |
bb192ed9 | 3500 | new.inuse = slab->objects; |
213eeb9f CL |
3501 | new.frozen = freelist != NULL; |
3502 | ||
6801be4f | 3503 | } while (!__slab_update_freelist(s, slab, |
213eeb9f CL |
3504 | freelist, counters, |
3505 | NULL, new.counters, | |
3506 | "get_freelist")); | |
3507 | ||
3508 | return freelist; | |
3509 | } | |
3510 | ||
213094b5 CZ |
3511 | /* |
3512 | * Freeze the partial slab and return the pointer to the freelist. | |
3513 | */ | |
3514 | static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) | |
3515 | { | |
3516 | struct slab new; | |
3517 | unsigned long counters; | |
3518 | void *freelist; | |
3519 | ||
3520 | do { | |
3521 | freelist = slab->freelist; | |
3522 | counters = slab->counters; | |
3523 | ||
3524 | new.counters = counters; | |
3525 | VM_BUG_ON(new.frozen); | |
3526 | ||
3527 | new.inuse = slab->objects; | |
3528 | new.frozen = 1; | |
3529 | ||
3530 | } while (!slab_update_freelist(s, slab, | |
3531 | freelist, counters, | |
3532 | NULL, new.counters, | |
3533 | "freeze_slab")); | |
3534 | ||
3535 | return freelist; | |
3536 | } | |
3537 | ||
81819f0f | 3538 | /* |
894b8788 CL |
3539 | * Slow path. The lockless freelist is empty or we need to perform |
3540 | * debugging duties. | |
3541 | * | |
894b8788 CL |
3542 | * Processing is still very fast if new objects have been freed to the |
3543 | * regular freelist. In that case we simply take over the regular freelist | |
3544 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 3545 | * |
894b8788 CL |
3546 | * If that is not working then we fall back to the partial lists. We take the |
3547 | * first element of the freelist as the object to allocate now and move the | |
3548 | * rest of the freelist to the lockless freelist. | |
81819f0f | 3549 | * |
894b8788 | 3550 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
3551 | * we need to allocate a new slab. This is the slowest path since it involves |
3552 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 3553 | * |
e500059b | 3554 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 3555 | * already disabled (which is the case for bulk allocation). |
81819f0f | 3556 | */ |
a380a3c7 | 3557 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
6edf2576 | 3558 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
81819f0f | 3559 | { |
6faa6833 | 3560 | void *freelist; |
bb192ed9 | 3561 | struct slab *slab; |
e500059b | 3562 | unsigned long flags; |
6edf2576 | 3563 | struct partial_context pc; |
9198ffbd | 3564 | bool try_thisnode = true; |
81819f0f | 3565 | |
9f986d99 AW |
3566 | stat(s, ALLOC_SLOWPATH); |
3567 | ||
c2092c12 | 3568 | reread_slab: |
0b303fb4 | 3569 | |
bb192ed9 VB |
3570 | slab = READ_ONCE(c->slab); |
3571 | if (!slab) { | |
0715e6c5 VB |
3572 | /* |
3573 | * if the node is not online or has no normal memory, just | |
3574 | * ignore the node constraint | |
3575 | */ | |
3576 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 3577 | !node_isset(node, slab_nodes))) |
0715e6c5 | 3578 | node = NUMA_NO_NODE; |
81819f0f | 3579 | goto new_slab; |
0715e6c5 | 3580 | } |
6faa6833 | 3581 | |
bb192ed9 | 3582 | if (unlikely(!node_match(slab, node))) { |
0715e6c5 VB |
3583 | /* |
3584 | * same as above but node_match() being false already | |
3585 | * implies node != NUMA_NO_NODE | |
3586 | */ | |
7e1fa93d | 3587 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 | 3588 | node = NUMA_NO_NODE; |
0715e6c5 | 3589 | } else { |
a561ce00 | 3590 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 3591 | goto deactivate_slab; |
a561ce00 | 3592 | } |
fc59c053 | 3593 | } |
6446faa2 | 3594 | |
072bb0aa MG |
3595 | /* |
3596 | * By rights, we should be searching for a slab page that was | |
3597 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
3598 | * information when the page leaves the per-cpu allocator | |
3599 | */ | |
bb192ed9 | 3600 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
0b303fb4 | 3601 | goto deactivate_slab; |
072bb0aa | 3602 | |
c2092c12 | 3603 | /* must check again c->slab in case we got preempted and it changed */ |
bd0e7491 | 3604 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3605 | if (unlikely(slab != c->slab)) { |
bd0e7491 | 3606 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3607 | goto reread_slab; |
0b303fb4 | 3608 | } |
6faa6833 CL |
3609 | freelist = c->freelist; |
3610 | if (freelist) | |
73736e03 | 3611 | goto load_freelist; |
03e404af | 3612 | |
bb192ed9 | 3613 | freelist = get_freelist(s, slab); |
6446faa2 | 3614 | |
6faa6833 | 3615 | if (!freelist) { |
bb192ed9 | 3616 | c->slab = NULL; |
eeaa345e | 3617 | c->tid = next_tid(c->tid); |
bd0e7491 | 3618 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 3619 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 3620 | goto new_slab; |
03e404af | 3621 | } |
6446faa2 | 3622 | |
84e554e6 | 3623 | stat(s, ALLOC_REFILL); |
6446faa2 | 3624 | |
894b8788 | 3625 | load_freelist: |
0b303fb4 | 3626 | |
bd0e7491 | 3627 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 3628 | |
507effea CL |
3629 | /* |
3630 | * freelist is pointing to the list of objects to be used. | |
c2092c12 VB |
3631 | * slab is pointing to the slab from which the objects are obtained. |
3632 | * That slab must be frozen for per cpu allocations to work. | |
507effea | 3633 | */ |
bb192ed9 | 3634 | VM_BUG_ON(!c->slab->frozen); |
6faa6833 | 3635 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 3636 | c->tid = next_tid(c->tid); |
bd0e7491 | 3637 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 3638 | return freelist; |
81819f0f | 3639 | |
0b303fb4 VB |
3640 | deactivate_slab: |
3641 | ||
bd0e7491 | 3642 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3643 | if (slab != c->slab) { |
bd0e7491 | 3644 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3645 | goto reread_slab; |
0b303fb4 | 3646 | } |
a019d201 | 3647 | freelist = c->freelist; |
bb192ed9 | 3648 | c->slab = NULL; |
a019d201 | 3649 | c->freelist = NULL; |
eeaa345e | 3650 | c->tid = next_tid(c->tid); |
bd0e7491 | 3651 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
bb192ed9 | 3652 | deactivate_slab(s, slab, freelist); |
0b303fb4 | 3653 | |
81819f0f | 3654 | new_slab: |
2cfb7455 | 3655 | |
8cd3fa42 CZ |
3656 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
3657 | while (slub_percpu_partial(c)) { | |
bd0e7491 | 3658 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3659 | if (unlikely(c->slab)) { |
bd0e7491 | 3660 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3661 | goto reread_slab; |
fa417ab7 | 3662 | } |
4b1f449d | 3663 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 3664 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
3665 | /* we were preempted and partial list got empty */ |
3666 | goto new_objects; | |
4b1f449d | 3667 | } |
fa417ab7 | 3668 | |
8cd3fa42 | 3669 | slab = slub_percpu_partial(c); |
bb192ed9 | 3670 | slub_set_percpu_partial(c, slab); |
8cd3fa42 | 3671 | |
90b1e566 CZ |
3672 | if (likely(node_match(slab, node) && |
3673 | pfmemalloc_match(slab, gfpflags))) { | |
3674 | c->slab = slab; | |
3675 | freelist = get_freelist(s, slab); | |
3676 | VM_BUG_ON(!freelist); | |
3677 | stat(s, CPU_PARTIAL_ALLOC); | |
3678 | goto load_freelist; | |
8cd3fa42 CZ |
3679 | } |
3680 | ||
90b1e566 CZ |
3681 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
3682 | ||
3683 | slab->next = NULL; | |
3684 | __put_partials(s, slab); | |
81819f0f | 3685 | } |
8cd3fa42 | 3686 | #endif |
81819f0f | 3687 | |
fa417ab7 VB |
3688 | new_objects: |
3689 | ||
6edf2576 | 3690 | pc.flags = gfpflags; |
9198ffbd CJ |
3691 | /* |
3692 | * When a preferred node is indicated but no __GFP_THISNODE | |
3693 | * | |
3694 | * 1) try to get a partial slab from target node only by having | |
3695 | * __GFP_THISNODE in pc.flags for get_partial() | |
3696 | * 2) if 1) failed, try to allocate a new slab from target node with | |
3697 | * GPF_NOWAIT | __GFP_THISNODE opportunistically | |
3698 | * 3) if 2) failed, retry with original gfpflags which will allow | |
3699 | * get_partial() try partial lists of other nodes before potentially | |
3700 | * allocating new page from other nodes | |
3701 | */ | |
3702 | if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) | |
3703 | && try_thisnode)) | |
3704 | pc.flags = GFP_NOWAIT | __GFP_THISNODE; | |
3705 | ||
6edf2576 | 3706 | pc.orig_size = orig_size; |
43c4c349 CZ |
3707 | slab = get_partial(s, node, &pc); |
3708 | if (slab) { | |
24c6a097 | 3709 | if (kmem_cache_debug(s)) { |
8cd3fa42 | 3710 | freelist = pc.object; |
24c6a097 CZ |
3711 | /* |
3712 | * For debug caches here we had to go through | |
3713 | * alloc_single_from_partial() so just store the | |
3714 | * tracking info and return the object. | |
3715 | */ | |
3716 | if (s->flags & SLAB_STORE_USER) | |
3717 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3718 | ||
3719 | return freelist; | |
3720 | } | |
3721 | ||
8cd3fa42 | 3722 | freelist = freeze_slab(s, slab); |
24c6a097 CZ |
3723 | goto retry_load_slab; |
3724 | } | |
2a904905 | 3725 | |
25c00c50 | 3726 | slub_put_cpu_ptr(s->cpu_slab); |
9198ffbd | 3727 | slab = new_slab(s, pc.flags, node); |
25c00c50 | 3728 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 3729 | |
bb192ed9 | 3730 | if (unlikely(!slab)) { |
9198ffbd CJ |
3731 | if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) |
3732 | && try_thisnode) { | |
3733 | try_thisnode = false; | |
3734 | goto new_objects; | |
3735 | } | |
9a02d699 | 3736 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 3737 | return NULL; |
81819f0f | 3738 | } |
2cfb7455 | 3739 | |
c7323a5a VB |
3740 | stat(s, ALLOC_SLAB); |
3741 | ||
3742 | if (kmem_cache_debug(s)) { | |
6edf2576 | 3743 | freelist = alloc_single_from_new_slab(s, slab, orig_size); |
c7323a5a VB |
3744 | |
3745 | if (unlikely(!freelist)) | |
3746 | goto new_objects; | |
3747 | ||
3748 | if (s->flags & SLAB_STORE_USER) | |
3749 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3750 | ||
3751 | return freelist; | |
3752 | } | |
3753 | ||
53a0de06 | 3754 | /* |
c2092c12 | 3755 | * No other reference to the slab yet so we can |
53a0de06 VB |
3756 | * muck around with it freely without cmpxchg |
3757 | */ | |
bb192ed9 VB |
3758 | freelist = slab->freelist; |
3759 | slab->freelist = NULL; | |
c7323a5a VB |
3760 | slab->inuse = slab->objects; |
3761 | slab->frozen = 1; | |
53a0de06 | 3762 | |
c7323a5a | 3763 | inc_slabs_node(s, slab_nid(slab), slab->objects); |
53a0de06 | 3764 | |
c7323a5a | 3765 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) { |
1572df7c VB |
3766 | /* |
3767 | * For !pfmemalloc_match() case we don't load freelist so that | |
3768 | * we don't make further mismatched allocations easier. | |
3769 | */ | |
c7323a5a VB |
3770 | deactivate_slab(s, slab, get_freepointer(s, freelist)); |
3771 | return freelist; | |
3772 | } | |
1572df7c | 3773 | |
c2092c12 | 3774 | retry_load_slab: |
cfdf836e | 3775 | |
bd0e7491 | 3776 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3777 | if (unlikely(c->slab)) { |
cfdf836e | 3778 | void *flush_freelist = c->freelist; |
bb192ed9 | 3779 | struct slab *flush_slab = c->slab; |
cfdf836e | 3780 | |
bb192ed9 | 3781 | c->slab = NULL; |
cfdf836e VB |
3782 | c->freelist = NULL; |
3783 | c->tid = next_tid(c->tid); | |
3784 | ||
bd0e7491 | 3785 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 3786 | |
bb192ed9 | 3787 | deactivate_slab(s, flush_slab, flush_freelist); |
cfdf836e VB |
3788 | |
3789 | stat(s, CPUSLAB_FLUSH); | |
3790 | ||
c2092c12 | 3791 | goto retry_load_slab; |
cfdf836e | 3792 | } |
bb192ed9 | 3793 | c->slab = slab; |
3f2b77e3 | 3794 | |
1572df7c | 3795 | goto load_freelist; |
894b8788 CL |
3796 | } |
3797 | ||
a380a3c7 | 3798 | /* |
e500059b VB |
3799 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3800 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3801 | * pointer. | |
a380a3c7 CL |
3802 | */ |
3803 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
6edf2576 | 3804 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
a380a3c7 CL |
3805 | { |
3806 | void *p; | |
a380a3c7 | 3807 | |
e500059b | 3808 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3809 | /* |
3810 | * We may have been preempted and rescheduled on a different | |
e500059b | 3811 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3812 | * pointer. |
3813 | */ | |
25c00c50 | 3814 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3815 | #endif |
3816 | ||
6edf2576 | 3817 | p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); |
e500059b | 3818 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3819 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3820 | #endif |
a380a3c7 CL |
3821 | return p; |
3822 | } | |
3823 | ||
56d5a2b9 | 3824 | static __always_inline void *__slab_alloc_node(struct kmem_cache *s, |
b89fb5ef | 3825 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3826 | { |
dfb4f096 | 3827 | struct kmem_cache_cpu *c; |
bb192ed9 | 3828 | struct slab *slab; |
8a5ec0ba | 3829 | unsigned long tid; |
56d5a2b9 | 3830 | void *object; |
b89fb5ef | 3831 | |
8a5ec0ba | 3832 | redo: |
8a5ec0ba CL |
3833 | /* |
3834 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3835 | * enabled. We may switch back and forth between cpus while | |
3836 | * reading from one cpu area. That does not matter as long | |
3837 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3838 | * |
9b4bc85a VB |
3839 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3840 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3841 | * the tid. If we are preempted and switched to another cpu between the | |
3842 | * two reads, it's OK as the two are still associated with the same cpu | |
3843 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3844 | */ |
9b4bc85a VB |
3845 | c = raw_cpu_ptr(s->cpu_slab); |
3846 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3847 | |
3848 | /* | |
3849 | * Irqless object alloc/free algorithm used here depends on sequence | |
3850 | * of fetching cpu_slab's data. tid should be fetched before anything | |
c2092c12 | 3851 | * on c to guarantee that object and slab associated with previous tid |
9aabf810 | 3852 | * won't be used with current tid. If we fetch tid first, object and |
c2092c12 | 3853 | * slab could be one associated with next tid and our alloc/free |
9aabf810 JK |
3854 | * request will be failed. In this case, we will retry. So, no problem. |
3855 | */ | |
3856 | barrier(); | |
8a5ec0ba | 3857 | |
8a5ec0ba CL |
3858 | /* |
3859 | * The transaction ids are globally unique per cpu and per operation on | |
3860 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3861 | * occurs on the right processor and that there was no operation on the | |
3862 | * linked list in between. | |
3863 | */ | |
8a5ec0ba | 3864 | |
9dfc6e68 | 3865 | object = c->freelist; |
bb192ed9 | 3866 | slab = c->slab; |
1f04b07d TG |
3867 | |
3868 | if (!USE_LOCKLESS_FAST_PATH() || | |
bb192ed9 | 3869 | unlikely(!object || !slab || !node_match(slab, node))) { |
6edf2576 | 3870 | object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); |
8eae1492 | 3871 | } else { |
0ad9500e ED |
3872 | void *next_object = get_freepointer_safe(s, object); |
3873 | ||
8a5ec0ba | 3874 | /* |
25985edc | 3875 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3876 | * operation and if we are on the right processor. |
3877 | * | |
d0e0ac97 CG |
3878 | * The cmpxchg does the following atomically (without lock |
3879 | * semantics!) | |
8a5ec0ba CL |
3880 | * 1. Relocate first pointer to the current per cpu area. |
3881 | * 2. Verify that tid and freelist have not been changed | |
3882 | * 3. If they were not changed replace tid and freelist | |
3883 | * | |
d0e0ac97 CG |
3884 | * Since this is without lock semantics the protection is only |
3885 | * against code executing on this cpu *not* from access by | |
3886 | * other cpus. | |
8a5ec0ba | 3887 | */ |
6801be4f | 3888 | if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { |
8a5ec0ba CL |
3889 | note_cmpxchg_failure("slab_alloc", s, tid); |
3890 | goto redo; | |
3891 | } | |
0ad9500e | 3892 | prefetch_freepointer(s, next_object); |
84e554e6 | 3893 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3894 | } |
0f181f9f | 3895 | |
56d5a2b9 VB |
3896 | return object; |
3897 | } | |
0af8489b VB |
3898 | #else /* CONFIG_SLUB_TINY */ |
3899 | static void *__slab_alloc_node(struct kmem_cache *s, | |
3900 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
3901 | { | |
3902 | struct partial_context pc; | |
3903 | struct slab *slab; | |
3904 | void *object; | |
3905 | ||
3906 | pc.flags = gfpflags; | |
0af8489b | 3907 | pc.orig_size = orig_size; |
43c4c349 | 3908 | slab = get_partial(s, node, &pc); |
0af8489b | 3909 | |
43c4c349 CZ |
3910 | if (slab) |
3911 | return pc.object; | |
0af8489b VB |
3912 | |
3913 | slab = new_slab(s, gfpflags, node); | |
3914 | if (unlikely(!slab)) { | |
3915 | slab_out_of_memory(s, gfpflags, node); | |
3916 | return NULL; | |
3917 | } | |
3918 | ||
3919 | object = alloc_single_from_new_slab(s, slab, orig_size); | |
3920 | ||
3921 | return object; | |
3922 | } | |
3923 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
3924 | |
3925 | /* | |
3926 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3927 | * zeroing out freelist pointer. | |
3928 | */ | |
3929 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3930 | void *obj) | |
3931 | { | |
8f828aa4 NB |
3932 | if (unlikely(slab_want_init_on_free(s)) && obj && |
3933 | !freeptr_outside_object(s)) | |
56d5a2b9 VB |
3934 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), |
3935 | 0, sizeof(void *)); | |
3936 | } | |
3937 | ||
3450a0e5 | 3938 | static __fastpath_inline |
9f9796b4 | 3939 | struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) |
6011be59 VB |
3940 | { |
3941 | flags &= gfp_allowed_mask; | |
3942 | ||
3943 | might_alloc(flags); | |
3944 | ||
3450a0e5 | 3945 | if (unlikely(should_failslab(s, flags))) |
6011be59 VB |
3946 | return NULL; |
3947 | ||
6011be59 VB |
3948 | return s; |
3949 | } | |
3950 | ||
3450a0e5 | 3951 | static __fastpath_inline |
9f9796b4 | 3952 | bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
3450a0e5 VB |
3953 | gfp_t flags, size_t size, void **p, bool init, |
3954 | unsigned int orig_size) | |
6011be59 VB |
3955 | { |
3956 | unsigned int zero_size = s->object_size; | |
3957 | bool kasan_init = init; | |
3958 | size_t i; | |
3450a0e5 | 3959 | gfp_t init_flags = flags & gfp_allowed_mask; |
6011be59 VB |
3960 | |
3961 | /* | |
3962 | * For kmalloc object, the allocated memory size(object_size) is likely | |
3963 | * larger than the requested size(orig_size). If redzone check is | |
3964 | * enabled for the extra space, don't zero it, as it will be redzoned | |
3965 | * soon. The redzone operation for this extra space could be seen as a | |
3966 | * replacement of current poisoning under certain debug option, and | |
3967 | * won't break other sanity checks. | |
3968 | */ | |
3969 | if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && | |
3970 | (s->flags & SLAB_KMALLOC)) | |
3971 | zero_size = orig_size; | |
3972 | ||
3973 | /* | |
671776b3 | 3974 | * When slab_debug is enabled, avoid memory initialization integrated |
6011be59 VB |
3975 | * into KASAN and instead zero out the memory via the memset below with |
3976 | * the proper size. Otherwise, KASAN might overwrite SLUB redzones and | |
3977 | * cause false-positive reports. This does not lead to a performance | |
671776b3 | 3978 | * penalty on production builds, as slab_debug is not intended to be |
6011be59 VB |
3979 | * enabled there. |
3980 | */ | |
3981 | if (__slub_debug_enabled()) | |
3982 | kasan_init = false; | |
3983 | ||
3984 | /* | |
3985 | * As memory initialization might be integrated into KASAN, | |
3986 | * kasan_slab_alloc and initialization memset must be | |
3987 | * kept together to avoid discrepancies in behavior. | |
3988 | * | |
3989 | * As p[i] might get tagged, memset and kmemleak hook come after KASAN. | |
3990 | */ | |
3991 | for (i = 0; i < size; i++) { | |
3450a0e5 | 3992 | p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); |
6011be59 VB |
3993 | if (p[i] && init && (!kasan_init || |
3994 | !kasan_has_integrated_init())) | |
3995 | memset(p[i], 0, zero_size); | |
3996 | kmemleak_alloc_recursive(p[i], s->object_size, 1, | |
3450a0e5 VB |
3997 | s->flags, init_flags); |
3998 | kmsan_slab_alloc(s, p[i], init_flags); | |
302a3ea3 | 3999 | alloc_tagging_slab_alloc_hook(s, p[i], flags); |
6011be59 VB |
4000 | } |
4001 | ||
9f9796b4 | 4002 | return memcg_slab_post_alloc_hook(s, lru, flags, size, p); |
6011be59 VB |
4003 | } |
4004 | ||
56d5a2b9 VB |
4005 | /* |
4006 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
4007 | * have the fastpath folded into their functions. So no function call | |
4008 | * overhead for requests that can be satisfied on the fastpath. | |
4009 | * | |
4010 | * The fastpath works by first checking if the lockless freelist can be used. | |
4011 | * If not then __slab_alloc is called for slow processing. | |
4012 | * | |
4013 | * Otherwise we can simply pick the next object from the lockless free list. | |
4014 | */ | |
be784ba8 | 4015 | static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, |
56d5a2b9 VB |
4016 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
4017 | { | |
4018 | void *object; | |
56d5a2b9 VB |
4019 | bool init = false; |
4020 | ||
9f9796b4 | 4021 | s = slab_pre_alloc_hook(s, gfpflags); |
3450a0e5 | 4022 | if (unlikely(!s)) |
56d5a2b9 VB |
4023 | return NULL; |
4024 | ||
4025 | object = kfence_alloc(s, orig_size, gfpflags); | |
4026 | if (unlikely(object)) | |
4027 | goto out; | |
4028 | ||
4029 | object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); | |
4030 | ||
ce5716c6 | 4031 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 4032 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 4033 | |
b89fb5ef | 4034 | out: |
9ce67395 FT |
4035 | /* |
4036 | * When init equals 'true', like for kzalloc() family, only | |
4037 | * @orig_size bytes might be zeroed instead of s->object_size | |
9f9796b4 VB |
4038 | * In case this fails due to memcg_slab_post_alloc_hook(), |
4039 | * object is set to NULL | |
9ce67395 | 4040 | */ |
9f9796b4 | 4041 | slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); |
5a896d9e | 4042 | |
894b8788 | 4043 | return object; |
81819f0f CL |
4044 | } |
4045 | ||
7bd230a2 | 4046 | void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) |
2b847c3c | 4047 | { |
49378a05 VB |
4048 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, |
4049 | s->object_size); | |
5b882be4 | 4050 | |
2c1d697f | 4051 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
5b882be4 EGM |
4052 | |
4053 | return ret; | |
2b847c3c | 4054 | } |
7bd230a2 | 4055 | EXPORT_SYMBOL(kmem_cache_alloc_noprof); |
2b847c3c | 4056 | |
7bd230a2 | 4057 | void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, |
88f2ef73 | 4058 | gfp_t gfpflags) |
81819f0f | 4059 | { |
49378a05 VB |
4060 | void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, |
4061 | s->object_size); | |
5b882be4 | 4062 | |
2c1d697f | 4063 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
5b882be4 EGM |
4064 | |
4065 | return ret; | |
81819f0f | 4066 | } |
7bd230a2 | 4067 | EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); |
88f2ef73 | 4068 | |
0445ee00 VB |
4069 | /** |
4070 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
4071 | * @s: The cache to allocate from. | |
4072 | * @gfpflags: See kmalloc(). | |
4073 | * @node: node number of the target node. | |
4074 | * | |
4075 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
4076 | * node, which can improve the performance for cpu bound structures. | |
4077 | * | |
4078 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
4079 | * | |
4080 | * Return: pointer to the new object or %NULL in case of error | |
4081 | */ | |
7bd230a2 | 4082 | void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) |
81819f0f | 4083 | { |
88f2ef73 | 4084 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 4085 | |
2c1d697f | 4086 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); |
5b882be4 EGM |
4087 | |
4088 | return ret; | |
81819f0f | 4089 | } |
7bd230a2 | 4090 | EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); |
81819f0f | 4091 | |
4862caa5 VB |
4092 | /* |
4093 | * To avoid unnecessary overhead, we pass through large allocation requests | |
4094 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
4095 | * know the allocation order to free the pages properly in kfree. | |
4096 | */ | |
a0a44d91 | 4097 | static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) |
88f2ef73 | 4098 | { |
fb46e22a | 4099 | struct folio *folio; |
4862caa5 VB |
4100 | void *ptr = NULL; |
4101 | unsigned int order = get_order(size); | |
4102 | ||
4103 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) | |
4104 | flags = kmalloc_fix_flags(flags); | |
4105 | ||
4106 | flags |= __GFP_COMP; | |
7bd230a2 | 4107 | folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); |
fb46e22a LT |
4108 | if (folio) { |
4109 | ptr = folio_address(folio); | |
4110 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, | |
4862caa5 VB |
4111 | PAGE_SIZE << order); |
4112 | } | |
4113 | ||
4114 | ptr = kasan_kmalloc_large(ptr, size, flags); | |
4115 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ | |
4116 | kmemleak_alloc(ptr, size, 1, flags); | |
4117 | kmsan_kmalloc_large(ptr, size, flags); | |
4118 | ||
4119 | return ptr; | |
88f2ef73 | 4120 | } |
81819f0f | 4121 | |
a0a44d91 | 4122 | void *__kmalloc_large_noprof(size_t size, gfp_t flags) |
88f2ef73 | 4123 | { |
a0a44d91 | 4124 | void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); |
4862caa5 VB |
4125 | |
4126 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
4127 | flags, NUMA_NO_NODE); | |
4128 | return ret; | |
88f2ef73 | 4129 | } |
a0a44d91 | 4130 | EXPORT_SYMBOL(__kmalloc_large_noprof); |
88f2ef73 | 4131 | |
a0a44d91 | 4132 | void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) |
4a92379b | 4133 | { |
a0a44d91 | 4134 | void *ret = ___kmalloc_large_node(size, flags, node); |
4862caa5 VB |
4135 | |
4136 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
4137 | flags, node); | |
4138 | return ret; | |
4a92379b | 4139 | } |
a0a44d91 | 4140 | EXPORT_SYMBOL(__kmalloc_large_node_noprof); |
5b882be4 | 4141 | |
4862caa5 | 4142 | static __always_inline |
67f2df3b | 4143 | void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, |
4862caa5 | 4144 | unsigned long caller) |
81819f0f | 4145 | { |
4862caa5 VB |
4146 | struct kmem_cache *s; |
4147 | void *ret; | |
5b882be4 | 4148 | |
4862caa5 | 4149 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
a0a44d91 | 4150 | ret = __kmalloc_large_node_noprof(size, flags, node); |
4862caa5 VB |
4151 | trace_kmalloc(caller, ret, size, |
4152 | PAGE_SIZE << get_order(size), flags, node); | |
4153 | return ret; | |
4154 | } | |
5b882be4 | 4155 | |
4862caa5 VB |
4156 | if (unlikely(!size)) |
4157 | return ZERO_SIZE_PTR; | |
4158 | ||
67f2df3b | 4159 | s = kmalloc_slab(size, b, flags, caller); |
4862caa5 VB |
4160 | |
4161 | ret = slab_alloc_node(s, NULL, flags, node, caller, size); | |
4162 | ret = kasan_kmalloc(s, ret, size, flags); | |
4163 | trace_kmalloc(caller, ret, size, s->size, flags, node); | |
5b882be4 | 4164 | return ret; |
81819f0f | 4165 | } |
67f2df3b | 4166 | void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) |
4862caa5 | 4167 | { |
67f2df3b | 4168 | return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); |
4862caa5 | 4169 | } |
7bd230a2 | 4170 | EXPORT_SYMBOL(__kmalloc_node_noprof); |
4862caa5 | 4171 | |
7bd230a2 | 4172 | void *__kmalloc_noprof(size_t size, gfp_t flags) |
4862caa5 | 4173 | { |
67f2df3b | 4174 | return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); |
4862caa5 | 4175 | } |
7bd230a2 | 4176 | EXPORT_SYMBOL(__kmalloc_noprof); |
4862caa5 | 4177 | |
67f2df3b KC |
4178 | void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, |
4179 | int node, unsigned long caller) | |
4862caa5 | 4180 | { |
67f2df3b KC |
4181 | return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); |
4182 | ||
4862caa5 | 4183 | } |
67f2df3b | 4184 | EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); |
4862caa5 | 4185 | |
a0a44d91 | 4186 | void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
4862caa5 VB |
4187 | { |
4188 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, | |
4189 | _RET_IP_, size); | |
4190 | ||
4191 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); | |
4192 | ||
4193 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
4194 | return ret; | |
4195 | } | |
a0a44d91 | 4196 | EXPORT_SYMBOL(__kmalloc_cache_noprof); |
4862caa5 | 4197 | |
a0a44d91 VB |
4198 | void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, |
4199 | int node, size_t size) | |
4862caa5 VB |
4200 | { |
4201 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); | |
4202 | ||
4203 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); | |
4204 | ||
4205 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
4206 | return ret; | |
4207 | } | |
a0a44d91 | 4208 | EXPORT_SYMBOL(__kmalloc_cache_node_noprof); |
81819f0f | 4209 | |
fa9b88e4 VB |
4210 | static noinline void free_to_partial_list( |
4211 | struct kmem_cache *s, struct slab *slab, | |
4212 | void *head, void *tail, int bulk_cnt, | |
4213 | unsigned long addr) | |
4214 | { | |
4215 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); | |
4216 | struct slab *slab_free = NULL; | |
4217 | int cnt = bulk_cnt; | |
4218 | unsigned long flags; | |
4219 | depot_stack_handle_t handle = 0; | |
4220 | ||
4221 | if (s->flags & SLAB_STORE_USER) | |
4222 | handle = set_track_prepare(); | |
4223 | ||
4224 | spin_lock_irqsave(&n->list_lock, flags); | |
4225 | ||
4226 | if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { | |
4227 | void *prior = slab->freelist; | |
4228 | ||
4229 | /* Perform the actual freeing while we still hold the locks */ | |
4230 | slab->inuse -= cnt; | |
4231 | set_freepointer(s, tail, prior); | |
4232 | slab->freelist = head; | |
4233 | ||
4234 | /* | |
4235 | * If the slab is empty, and node's partial list is full, | |
4236 | * it should be discarded anyway no matter it's on full or | |
4237 | * partial list. | |
4238 | */ | |
4239 | if (slab->inuse == 0 && n->nr_partial >= s->min_partial) | |
4240 | slab_free = slab; | |
4241 | ||
4242 | if (!prior) { | |
4243 | /* was on full list */ | |
4244 | remove_full(s, n, slab); | |
4245 | if (!slab_free) { | |
4246 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
4247 | stat(s, FREE_ADD_PARTIAL); | |
4248 | } | |
4249 | } else if (slab_free) { | |
4250 | remove_partial(n, slab); | |
4251 | stat(s, FREE_REMOVE_PARTIAL); | |
4252 | } | |
4253 | } | |
4254 | ||
4255 | if (slab_free) { | |
4256 | /* | |
4257 | * Update the counters while still holding n->list_lock to | |
4258 | * prevent spurious validation warnings | |
4259 | */ | |
4260 | dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); | |
4261 | } | |
4262 | ||
4263 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4264 | ||
4265 | if (slab_free) { | |
4266 | stat(s, FREE_SLAB); | |
4267 | free_slab(s, slab_free); | |
4268 | } | |
4269 | } | |
4270 | ||
81819f0f | 4271 | /* |
94e4d712 | 4272 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 4273 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 4274 | * |
894b8788 | 4275 | * So we still attempt to reduce cache line usage. Just take the slab |
c2092c12 | 4276 | * lock and free the item. If there is no additional partial slab |
894b8788 | 4277 | * handling required then we can return immediately. |
81819f0f | 4278 | */ |
bb192ed9 | 4279 | static void __slab_free(struct kmem_cache *s, struct slab *slab, |
81084651 JDB |
4280 | void *head, void *tail, int cnt, |
4281 | unsigned long addr) | |
4282 | ||
81819f0f CL |
4283 | { |
4284 | void *prior; | |
2cfb7455 | 4285 | int was_frozen; |
bb192ed9 | 4286 | struct slab new; |
2cfb7455 CL |
4287 | unsigned long counters; |
4288 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 4289 | unsigned long flags; |
422e7d54 | 4290 | bool on_node_partial; |
81819f0f | 4291 | |
8a5ec0ba | 4292 | stat(s, FREE_SLOWPATH); |
81819f0f | 4293 | |
0af8489b | 4294 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
fa9b88e4 | 4295 | free_to_partial_list(s, slab, head, tail, cnt, addr); |
80f08c19 | 4296 | return; |
c7323a5a | 4297 | } |
6446faa2 | 4298 | |
2cfb7455 | 4299 | do { |
837d678d JK |
4300 | if (unlikely(n)) { |
4301 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4302 | n = NULL; | |
4303 | } | |
bb192ed9 VB |
4304 | prior = slab->freelist; |
4305 | counters = slab->counters; | |
81084651 | 4306 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
4307 | new.counters = counters; |
4308 | was_frozen = new.frozen; | |
81084651 | 4309 | new.inuse -= cnt; |
837d678d | 4310 | if ((!new.inuse || !prior) && !was_frozen) { |
8cd3fa42 CZ |
4311 | /* Needs to be taken off a list */ |
4312 | if (!kmem_cache_has_cpu_partial(s) || prior) { | |
49e22585 | 4313 | |
bb192ed9 | 4314 | n = get_node(s, slab_nid(slab)); |
49e22585 CL |
4315 | /* |
4316 | * Speculatively acquire the list_lock. | |
4317 | * If the cmpxchg does not succeed then we may | |
4318 | * drop the list_lock without any processing. | |
4319 | * | |
4320 | * Otherwise the list_lock will synchronize with | |
4321 | * other processors updating the list of slabs. | |
4322 | */ | |
4323 | spin_lock_irqsave(&n->list_lock, flags); | |
4324 | ||
422e7d54 | 4325 | on_node_partial = slab_test_node_partial(slab); |
49e22585 | 4326 | } |
2cfb7455 | 4327 | } |
81819f0f | 4328 | |
6801be4f | 4329 | } while (!slab_update_freelist(s, slab, |
2cfb7455 | 4330 | prior, counters, |
81084651 | 4331 | head, new.counters, |
2cfb7455 | 4332 | "__slab_free")); |
81819f0f | 4333 | |
2cfb7455 | 4334 | if (likely(!n)) { |
49e22585 | 4335 | |
c270cf30 AW |
4336 | if (likely(was_frozen)) { |
4337 | /* | |
4338 | * The list lock was not taken therefore no list | |
4339 | * activity can be necessary. | |
4340 | */ | |
4341 | stat(s, FREE_FROZEN); | |
8cd3fa42 | 4342 | } else if (kmem_cache_has_cpu_partial(s) && !prior) { |
c270cf30 | 4343 | /* |
8cd3fa42 | 4344 | * If we started with a full slab then put it onto the |
c270cf30 AW |
4345 | * per cpu partial list. |
4346 | */ | |
bb192ed9 | 4347 | put_cpu_partial(s, slab, 1); |
8028dcea AS |
4348 | stat(s, CPU_PARTIAL_FREE); |
4349 | } | |
c270cf30 | 4350 | |
b455def2 L |
4351 | return; |
4352 | } | |
81819f0f | 4353 | |
422e7d54 CZ |
4354 | /* |
4355 | * This slab was partially empty but not on the per-node partial list, | |
4356 | * in which case we shouldn't manipulate its list, just return. | |
4357 | */ | |
4358 | if (prior && !on_node_partial) { | |
4359 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4360 | return; | |
4361 | } | |
4362 | ||
8a5b20ae | 4363 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
4364 | goto slab_empty; |
4365 | ||
81819f0f | 4366 | /* |
837d678d JK |
4367 | * Objects left in the slab. If it was not on the partial list before |
4368 | * then add it. | |
81819f0f | 4369 | */ |
345c905d | 4370 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
bb192ed9 | 4371 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
837d678d | 4372 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 4373 | } |
80f08c19 | 4374 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
4375 | return; |
4376 | ||
4377 | slab_empty: | |
a973e9dd | 4378 | if (prior) { |
81819f0f | 4379 | /* |
6fbabb20 | 4380 | * Slab on the partial list. |
81819f0f | 4381 | */ |
bb192ed9 | 4382 | remove_partial(n, slab); |
84e554e6 | 4383 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 4384 | } |
2cfb7455 | 4385 | |
80f08c19 | 4386 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 4387 | stat(s, FREE_SLAB); |
bb192ed9 | 4388 | discard_slab(s, slab); |
81819f0f CL |
4389 | } |
4390 | ||
0af8489b | 4391 | #ifndef CONFIG_SLUB_TINY |
894b8788 CL |
4392 | /* |
4393 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
4394 | * can perform fastpath freeing without additional function calls. | |
4395 | * | |
4396 | * The fastpath is only possible if we are freeing to the current cpu slab | |
4397 | * of this processor. This typically the case if we have just allocated | |
4398 | * the item before. | |
4399 | * | |
4400 | * If fastpath is not possible then fall back to __slab_free where we deal | |
4401 | * with all sorts of special processing. | |
81084651 JDB |
4402 | * |
4403 | * Bulk free of a freelist with several objects (all pointing to the | |
c2092c12 | 4404 | * same slab) possible by specifying head and tail ptr, plus objects |
81084651 | 4405 | * count (cnt). Bulk free indicated by tail pointer being set. |
894b8788 | 4406 | */ |
80a9201a | 4407 | static __always_inline void do_slab_free(struct kmem_cache *s, |
bb192ed9 | 4408 | struct slab *slab, void *head, void *tail, |
80a9201a | 4409 | int cnt, unsigned long addr) |
894b8788 | 4410 | { |
dfb4f096 | 4411 | struct kmem_cache_cpu *c; |
8a5ec0ba | 4412 | unsigned long tid; |
1f04b07d | 4413 | void **freelist; |
964d4bd3 | 4414 | |
8a5ec0ba CL |
4415 | redo: |
4416 | /* | |
4417 | * Determine the currently cpus per cpu slab. | |
4418 | * The cpu may change afterward. However that does not matter since | |
4419 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 4420 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 4421 | */ |
9b4bc85a VB |
4422 | c = raw_cpu_ptr(s->cpu_slab); |
4423 | tid = READ_ONCE(c->tid); | |
c016b0bd | 4424 | |
b062539c | 4425 | /* Same with comment on barrier() in __slab_alloc_node() */ |
9aabf810 | 4426 | barrier(); |
c016b0bd | 4427 | |
1f04b07d | 4428 | if (unlikely(slab != c->slab)) { |
284f17ac | 4429 | __slab_free(s, slab, head, tail, cnt, addr); |
1f04b07d TG |
4430 | return; |
4431 | } | |
4432 | ||
4433 | if (USE_LOCKLESS_FAST_PATH()) { | |
4434 | freelist = READ_ONCE(c->freelist); | |
5076190d | 4435 | |
284f17ac | 4436 | set_freepointer(s, tail, freelist); |
8a5ec0ba | 4437 | |
6801be4f | 4438 | if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { |
8a5ec0ba CL |
4439 | note_cmpxchg_failure("slab_free", s, tid); |
4440 | goto redo; | |
4441 | } | |
1f04b07d TG |
4442 | } else { |
4443 | /* Update the free list under the local lock */ | |
bd0e7491 VB |
4444 | local_lock(&s->cpu_slab->lock); |
4445 | c = this_cpu_ptr(s->cpu_slab); | |
bb192ed9 | 4446 | if (unlikely(slab != c->slab)) { |
bd0e7491 VB |
4447 | local_unlock(&s->cpu_slab->lock); |
4448 | goto redo; | |
4449 | } | |
4450 | tid = c->tid; | |
4451 | freelist = c->freelist; | |
4452 | ||
284f17ac | 4453 | set_freepointer(s, tail, freelist); |
bd0e7491 VB |
4454 | c->freelist = head; |
4455 | c->tid = next_tid(tid); | |
4456 | ||
4457 | local_unlock(&s->cpu_slab->lock); | |
1f04b07d | 4458 | } |
6f3dd2c3 | 4459 | stat_add(s, FREE_FASTPATH, cnt); |
894b8788 | 4460 | } |
0af8489b VB |
4461 | #else /* CONFIG_SLUB_TINY */ |
4462 | static void do_slab_free(struct kmem_cache *s, | |
4463 | struct slab *slab, void *head, void *tail, | |
4464 | int cnt, unsigned long addr) | |
4465 | { | |
284f17ac | 4466 | __slab_free(s, slab, head, tail, cnt, addr); |
0af8489b VB |
4467 | } |
4468 | #endif /* CONFIG_SLUB_TINY */ | |
894b8788 | 4469 | |
284f17ac VB |
4470 | static __fastpath_inline |
4471 | void slab_free(struct kmem_cache *s, struct slab *slab, void *object, | |
4472 | unsigned long addr) | |
4473 | { | |
284f17ac | 4474 | memcg_slab_free_hook(s, slab, &object, 1); |
4b873696 | 4475 | alloc_tagging_slab_free_hook(s, slab, &object, 1); |
284f17ac | 4476 | |
782f8906 | 4477 | if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) |
284f17ac VB |
4478 | do_slab_free(s, slab, object, object, 1, addr); |
4479 | } | |
4480 | ||
3a3b7fec | 4481 | #ifdef CONFIG_MEMCG |
9f9796b4 VB |
4482 | /* Do not inline the rare memcg charging failed path into the allocation path */ |
4483 | static noinline | |
4484 | void memcg_alloc_abort_single(struct kmem_cache *s, void *object) | |
4485 | { | |
4486 | if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) | |
4487 | do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); | |
4488 | } | |
4489 | #endif | |
4490 | ||
284f17ac VB |
4491 | static __fastpath_inline |
4492 | void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, | |
4493 | void *tail, void **p, int cnt, unsigned long addr) | |
80a9201a | 4494 | { |
b77d5b1b | 4495 | memcg_slab_free_hook(s, slab, p, cnt); |
4b873696 | 4496 | alloc_tagging_slab_free_hook(s, slab, p, cnt); |
80a9201a | 4497 | /* |
c3895391 AK |
4498 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
4499 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 4500 | */ |
ecf9a253 | 4501 | if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) |
bb192ed9 | 4502 | do_slab_free(s, slab, head, tail, cnt, addr); |
80a9201a AP |
4503 | } |
4504 | ||
2bd926b4 | 4505 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
4506 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
4507 | { | |
284f17ac | 4508 | do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); |
80a9201a AP |
4509 | } |
4510 | #endif | |
4511 | ||
0bedcc66 | 4512 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
ed4cd17e | 4513 | { |
0bedcc66 VB |
4514 | struct slab *slab; |
4515 | ||
4516 | slab = virt_to_slab(obj); | |
4517 | if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) | |
4518 | return NULL; | |
4519 | return slab->slab_cache; | |
ed4cd17e HY |
4520 | } |
4521 | ||
0bedcc66 VB |
4522 | static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
4523 | { | |
4524 | struct kmem_cache *cachep; | |
4525 | ||
4526 | if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
4527 | !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) | |
4528 | return s; | |
4529 | ||
4530 | cachep = virt_to_cache(x); | |
4531 | if (WARN(cachep && cachep != s, | |
4532 | "%s: Wrong slab cache. %s but object is from %s\n", | |
4533 | __func__, s->name, cachep->name)) | |
4534 | print_tracking(cachep, x); | |
4535 | return cachep; | |
4536 | } | |
4537 | ||
0445ee00 VB |
4538 | /** |
4539 | * kmem_cache_free - Deallocate an object | |
4540 | * @s: The cache the allocation was from. | |
4541 | * @x: The previously allocated object. | |
4542 | * | |
4543 | * Free an object which was previously allocated from this | |
4544 | * cache. | |
4545 | */ | |
81819f0f CL |
4546 | void kmem_cache_free(struct kmem_cache *s, void *x) |
4547 | { | |
b9ce5ef4 GC |
4548 | s = cache_from_obj(s, x); |
4549 | if (!s) | |
79576102 | 4550 | return; |
2c1d697f | 4551 | trace_kmem_cache_free(_RET_IP_, x, s); |
284f17ac | 4552 | slab_free(s, virt_to_slab(x), x, _RET_IP_); |
81819f0f CL |
4553 | } |
4554 | EXPORT_SYMBOL(kmem_cache_free); | |
4555 | ||
b774d3e3 VB |
4556 | static void free_large_kmalloc(struct folio *folio, void *object) |
4557 | { | |
4558 | unsigned int order = folio_order(folio); | |
4559 | ||
4560 | if (WARN_ON_ONCE(order == 0)) | |
4561 | pr_warn_once("object pointer: 0x%p\n", object); | |
4562 | ||
4563 | kmemleak_free(object); | |
4564 | kasan_kfree_large(object); | |
4565 | kmsan_kfree_large(object); | |
4566 | ||
fb46e22a | 4567 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, |
b774d3e3 | 4568 | -(PAGE_SIZE << order)); |
fb46e22a | 4569 | folio_put(folio); |
b774d3e3 VB |
4570 | } |
4571 | ||
4572 | /** | |
4573 | * kfree - free previously allocated memory | |
4574 | * @object: pointer returned by kmalloc() or kmem_cache_alloc() | |
4575 | * | |
4576 | * If @object is NULL, no operation is performed. | |
4577 | */ | |
4578 | void kfree(const void *object) | |
4579 | { | |
4580 | struct folio *folio; | |
4581 | struct slab *slab; | |
4582 | struct kmem_cache *s; | |
4583 | void *x = (void *)object; | |
4584 | ||
4585 | trace_kfree(_RET_IP_, object); | |
4586 | ||
4587 | if (unlikely(ZERO_OR_NULL_PTR(object))) | |
4588 | return; | |
4589 | ||
4590 | folio = virt_to_folio(object); | |
4591 | if (unlikely(!folio_test_slab(folio))) { | |
4592 | free_large_kmalloc(folio, (void *)object); | |
4593 | return; | |
4594 | } | |
4595 | ||
4596 | slab = folio_slab(folio); | |
4597 | s = slab->slab_cache; | |
284f17ac | 4598 | slab_free(s, slab, x, _RET_IP_); |
b774d3e3 VB |
4599 | } |
4600 | EXPORT_SYMBOL(kfree); | |
4601 | ||
d0ecd894 | 4602 | struct detached_freelist { |
cc465c3b | 4603 | struct slab *slab; |
d0ecd894 JDB |
4604 | void *tail; |
4605 | void *freelist; | |
4606 | int cnt; | |
376bf125 | 4607 | struct kmem_cache *s; |
d0ecd894 | 4608 | }; |
fbd02630 | 4609 | |
d0ecd894 JDB |
4610 | /* |
4611 | * This function progressively scans the array with free objects (with | |
4612 | * a limited look ahead) and extract objects belonging to the same | |
cc465c3b MWO |
4613 | * slab. It builds a detached freelist directly within the given |
4614 | * slab/objects. This can happen without any need for | |
d0ecd894 JDB |
4615 | * synchronization, because the objects are owned by running process. |
4616 | * The freelist is build up as a single linked list in the objects. | |
4617 | * The idea is, that this detached freelist can then be bulk | |
4618 | * transferred to the real freelist(s), but only requiring a single | |
4619 | * synchronization primitive. Look ahead in the array is limited due | |
4620 | * to performance reasons. | |
4621 | */ | |
376bf125 JDB |
4622 | static inline |
4623 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
4624 | void **p, struct detached_freelist *df) | |
d0ecd894 | 4625 | { |
d0ecd894 JDB |
4626 | int lookahead = 3; |
4627 | void *object; | |
cc465c3b | 4628 | struct folio *folio; |
b77d5b1b | 4629 | size_t same; |
fbd02630 | 4630 | |
b77d5b1b | 4631 | object = p[--size]; |
cc465c3b | 4632 | folio = virt_to_folio(object); |
ca257195 JDB |
4633 | if (!s) { |
4634 | /* Handle kalloc'ed objects */ | |
cc465c3b | 4635 | if (unlikely(!folio_test_slab(folio))) { |
d835eef4 | 4636 | free_large_kmalloc(folio, object); |
b77d5b1b | 4637 | df->slab = NULL; |
ca257195 JDB |
4638 | return size; |
4639 | } | |
4640 | /* Derive kmem_cache from object */ | |
b77d5b1b MS |
4641 | df->slab = folio_slab(folio); |
4642 | df->s = df->slab->slab_cache; | |
ca257195 | 4643 | } else { |
b77d5b1b | 4644 | df->slab = folio_slab(folio); |
ca257195 JDB |
4645 | df->s = cache_from_obj(s, object); /* Support for memcg */ |
4646 | } | |
376bf125 | 4647 | |
d0ecd894 | 4648 | /* Start new detached freelist */ |
d0ecd894 JDB |
4649 | df->tail = object; |
4650 | df->freelist = object; | |
d0ecd894 JDB |
4651 | df->cnt = 1; |
4652 | ||
b77d5b1b MS |
4653 | if (is_kfence_address(object)) |
4654 | return size; | |
4655 | ||
4656 | set_freepointer(df->s, object, NULL); | |
4657 | ||
4658 | same = size; | |
d0ecd894 JDB |
4659 | while (size) { |
4660 | object = p[--size]; | |
cc465c3b MWO |
4661 | /* df->slab is always set at this point */ |
4662 | if (df->slab == virt_to_slab(object)) { | |
d0ecd894 | 4663 | /* Opportunity build freelist */ |
376bf125 | 4664 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
4665 | df->freelist = object; |
4666 | df->cnt++; | |
b77d5b1b MS |
4667 | same--; |
4668 | if (size != same) | |
4669 | swap(p[size], p[same]); | |
d0ecd894 | 4670 | continue; |
fbd02630 | 4671 | } |
d0ecd894 JDB |
4672 | |
4673 | /* Limit look ahead search */ | |
4674 | if (!--lookahead) | |
4675 | break; | |
fbd02630 | 4676 | } |
d0ecd894 | 4677 | |
b77d5b1b | 4678 | return same; |
d0ecd894 JDB |
4679 | } |
4680 | ||
520a688a VB |
4681 | /* |
4682 | * Internal bulk free of objects that were not initialised by the post alloc | |
4683 | * hooks and thus should not be processed by the free hooks | |
4684 | */ | |
4685 | static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | |
4686 | { | |
4687 | if (!size) | |
4688 | return; | |
4689 | ||
4690 | do { | |
4691 | struct detached_freelist df; | |
4692 | ||
4693 | size = build_detached_freelist(s, size, p, &df); | |
4694 | if (!df.slab) | |
4695 | continue; | |
4696 | ||
a371d558 RR |
4697 | if (kfence_free(df.freelist)) |
4698 | continue; | |
4699 | ||
520a688a VB |
4700 | do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, |
4701 | _RET_IP_); | |
4702 | } while (likely(size)); | |
4703 | } | |
4704 | ||
d0ecd894 | 4705 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 4706 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 | 4707 | { |
2055e67b | 4708 | if (!size) |
d0ecd894 JDB |
4709 | return; |
4710 | ||
4711 | do { | |
4712 | struct detached_freelist df; | |
4713 | ||
4714 | size = build_detached_freelist(s, size, p, &df); | |
cc465c3b | 4715 | if (!df.slab) |
d0ecd894 JDB |
4716 | continue; |
4717 | ||
284f17ac VB |
4718 | slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], |
4719 | df.cnt, _RET_IP_); | |
d0ecd894 | 4720 | } while (likely(size)); |
484748f0 CL |
4721 | } |
4722 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
4723 | ||
0af8489b | 4724 | #ifndef CONFIG_SLUB_TINY |
520a688a VB |
4725 | static inline |
4726 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | |
4727 | void **p) | |
484748f0 | 4728 | { |
994eb764 | 4729 | struct kmem_cache_cpu *c; |
f5451547 | 4730 | unsigned long irqflags; |
994eb764 JDB |
4731 | int i; |
4732 | ||
994eb764 JDB |
4733 | /* |
4734 | * Drain objects in the per cpu slab, while disabling local | |
4735 | * IRQs, which protects against PREEMPT and interrupts | |
4736 | * handlers invoking normal fastpath. | |
4737 | */ | |
25c00c50 | 4738 | c = slub_get_cpu_ptr(s->cpu_slab); |
f5451547 | 4739 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
994eb764 JDB |
4740 | |
4741 | for (i = 0; i < size; i++) { | |
b89fb5ef | 4742 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 4743 | |
b89fb5ef AP |
4744 | if (unlikely(object)) { |
4745 | p[i] = object; | |
4746 | continue; | |
4747 | } | |
4748 | ||
4749 | object = c->freelist; | |
ebe909e0 | 4750 | if (unlikely(!object)) { |
fd4d9c7d JH |
4751 | /* |
4752 | * We may have removed an object from c->freelist using | |
4753 | * the fastpath in the previous iteration; in that case, | |
4754 | * c->tid has not been bumped yet. | |
4755 | * Since ___slab_alloc() may reenable interrupts while | |
4756 | * allocating memory, we should bump c->tid now. | |
4757 | */ | |
4758 | c->tid = next_tid(c->tid); | |
4759 | ||
f5451547 | 4760 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
e500059b | 4761 | |
ebe909e0 JDB |
4762 | /* |
4763 | * Invoking slow path likely have side-effect | |
4764 | * of re-populating per CPU c->freelist | |
4765 | */ | |
87098373 | 4766 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
6edf2576 | 4767 | _RET_IP_, c, s->object_size); |
87098373 CL |
4768 | if (unlikely(!p[i])) |
4769 | goto error; | |
4770 | ||
ebe909e0 | 4771 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
4772 | maybe_wipe_obj_freeptr(s, p[i]); |
4773 | ||
f5451547 | 4774 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
e500059b | 4775 | |
ebe909e0 JDB |
4776 | continue; /* goto for-loop */ |
4777 | } | |
994eb764 JDB |
4778 | c->freelist = get_freepointer(s, object); |
4779 | p[i] = object; | |
0f181f9f | 4780 | maybe_wipe_obj_freeptr(s, p[i]); |
6f3dd2c3 | 4781 | stat(s, ALLOC_FASTPATH); |
994eb764 JDB |
4782 | } |
4783 | c->tid = next_tid(c->tid); | |
f5451547 | 4784 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
25c00c50 | 4785 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 4786 | |
865762a8 | 4787 | return i; |
56d5a2b9 | 4788 | |
87098373 | 4789 | error: |
25c00c50 | 4790 | slub_put_cpu_ptr(s->cpu_slab); |
520a688a | 4791 | __kmem_cache_free_bulk(s, i, p); |
865762a8 | 4792 | return 0; |
56d5a2b9 VB |
4793 | |
4794 | } | |
0af8489b VB |
4795 | #else /* CONFIG_SLUB_TINY */ |
4796 | static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, | |
520a688a | 4797 | size_t size, void **p) |
0af8489b VB |
4798 | { |
4799 | int i; | |
4800 | ||
4801 | for (i = 0; i < size; i++) { | |
4802 | void *object = kfence_alloc(s, s->object_size, flags); | |
4803 | ||
4804 | if (unlikely(object)) { | |
4805 | p[i] = object; | |
4806 | continue; | |
4807 | } | |
4808 | ||
4809 | p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, | |
4810 | _RET_IP_, s->object_size); | |
4811 | if (unlikely(!p[i])) | |
4812 | goto error; | |
4813 | ||
4814 | maybe_wipe_obj_freeptr(s, p[i]); | |
4815 | } | |
4816 | ||
4817 | return i; | |
4818 | ||
4819 | error: | |
520a688a | 4820 | __kmem_cache_free_bulk(s, i, p); |
0af8489b VB |
4821 | return 0; |
4822 | } | |
4823 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
4824 | |
4825 | /* Note that interrupts must be enabled when calling this function. */ | |
7bd230a2 SB |
4826 | int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, |
4827 | void **p) | |
56d5a2b9 VB |
4828 | { |
4829 | int i; | |
56d5a2b9 VB |
4830 | |
4831 | if (!size) | |
4832 | return 0; | |
4833 | ||
9f9796b4 | 4834 | s = slab_pre_alloc_hook(s, flags); |
56d5a2b9 VB |
4835 | if (unlikely(!s)) |
4836 | return 0; | |
4837 | ||
520a688a | 4838 | i = __kmem_cache_alloc_bulk(s, flags, size, p); |
9f9796b4 VB |
4839 | if (unlikely(i == 0)) |
4840 | return 0; | |
56d5a2b9 VB |
4841 | |
4842 | /* | |
4843 | * memcg and kmem_cache debug support and memory initialization. | |
4844 | * Done outside of the IRQ disabled fastpath loop. | |
4845 | */ | |
9f9796b4 VB |
4846 | if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, |
4847 | slab_want_init_on_alloc(flags, s), s->object_size))) { | |
4848 | return 0; | |
520a688a | 4849 | } |
56d5a2b9 | 4850 | return i; |
484748f0 | 4851 | } |
7bd230a2 | 4852 | EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); |
484748f0 CL |
4853 | |
4854 | ||
81819f0f | 4855 | /* |
672bba3a CL |
4856 | * Object placement in a slab is made very easy because we always start at |
4857 | * offset 0. If we tune the size of the object to the alignment then we can | |
4858 | * get the required alignment by putting one properly sized object after | |
4859 | * another. | |
81819f0f CL |
4860 | * |
4861 | * Notice that the allocation order determines the sizes of the per cpu | |
4862 | * caches. Each processor has always one slab available for allocations. | |
4863 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 4864 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 4865 | * locking overhead. |
81819f0f CL |
4866 | */ |
4867 | ||
4868 | /* | |
f0953a1b | 4869 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
4870 | * and slab fragmentation. A higher order reduces the number of partial slabs |
4871 | * and increases the number of allocations possible without having to | |
4872 | * take the list_lock. | |
4873 | */ | |
19af27af | 4874 | static unsigned int slub_min_order; |
90ce872c VB |
4875 | static unsigned int slub_max_order = |
4876 | IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; | |
19af27af | 4877 | static unsigned int slub_min_objects; |
81819f0f | 4878 | |
81819f0f CL |
4879 | /* |
4880 | * Calculate the order of allocation given an slab object size. | |
4881 | * | |
672bba3a CL |
4882 | * The order of allocation has significant impact on performance and other |
4883 | * system components. Generally order 0 allocations should be preferred since | |
4884 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
4885 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 4886 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
4887 | * would be wasted. |
4888 | * | |
4889 | * In order to reach satisfactory performance we must ensure that a minimum | |
4890 | * number of objects is in one slab. Otherwise we may generate too much | |
4891 | * activity on the partial lists which requires taking the list_lock. This is | |
4892 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 4893 | * |
671776b3 XS |
4894 | * slab_max_order specifies the order where we begin to stop considering the |
4895 | * number of objects in a slab as critical. If we reach slab_max_order then | |
672bba3a CL |
4896 | * we try to keep the page order as low as possible. So we accept more waste |
4897 | * of space in favor of a small page order. | |
81819f0f | 4898 | * |
672bba3a CL |
4899 | * Higher order allocations also allow the placement of more objects in a |
4900 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 4901 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 4902 | * the smallest order which will fit the object. |
81819f0f | 4903 | */ |
d122019b | 4904 | static inline unsigned int calc_slab_order(unsigned int size, |
90f055df | 4905 | unsigned int min_order, unsigned int max_order, |
9736d2a9 | 4906 | unsigned int fract_leftover) |
81819f0f | 4907 | { |
19af27af | 4908 | unsigned int order; |
81819f0f | 4909 | |
90f055df | 4910 | for (order = min_order; order <= max_order; order++) { |
81819f0f | 4911 | |
19af27af AD |
4912 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
4913 | unsigned int rem; | |
81819f0f | 4914 | |
9736d2a9 | 4915 | rem = slab_size % size; |
81819f0f | 4916 | |
5e6d444e | 4917 | if (rem <= slab_size / fract_leftover) |
81819f0f | 4918 | break; |
81819f0f | 4919 | } |
672bba3a | 4920 | |
81819f0f CL |
4921 | return order; |
4922 | } | |
4923 | ||
9736d2a9 | 4924 | static inline int calculate_order(unsigned int size) |
5e6d444e | 4925 | { |
19af27af AD |
4926 | unsigned int order; |
4927 | unsigned int min_objects; | |
4928 | unsigned int max_objects; | |
90f055df | 4929 | unsigned int min_order; |
5e6d444e | 4930 | |
5e6d444e | 4931 | min_objects = slub_min_objects; |
3286222f VB |
4932 | if (!min_objects) { |
4933 | /* | |
4934 | * Some architectures will only update present cpus when | |
4935 | * onlining them, so don't trust the number if it's just 1. But | |
4936 | * we also don't want to use nr_cpu_ids always, as on some other | |
4937 | * architectures, there can be many possible cpus, but never | |
4938 | * onlined. Here we compromise between trying to avoid too high | |
4939 | * order on systems that appear larger than they are, and too | |
4940 | * low order on systems that appear smaller than they are. | |
4941 | */ | |
90f055df | 4942 | unsigned int nr_cpus = num_present_cpus(); |
3286222f VB |
4943 | if (nr_cpus <= 1) |
4944 | nr_cpus = nr_cpu_ids; | |
4945 | min_objects = 4 * (fls(nr_cpus) + 1); | |
4946 | } | |
90f055df VB |
4947 | /* min_objects can't be 0 because get_order(0) is undefined */ |
4948 | max_objects = max(order_objects(slub_max_order, size), 1U); | |
e8120ff1 ZY |
4949 | min_objects = min(min_objects, max_objects); |
4950 | ||
90f055df VB |
4951 | min_order = max_t(unsigned int, slub_min_order, |
4952 | get_order(min_objects * size)); | |
4953 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | |
4954 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | |
4955 | ||
0fe2735d VB |
4956 | /* |
4957 | * Attempt to find best configuration for a slab. This works by first | |
4958 | * attempting to generate a layout with the best possible configuration | |
4959 | * and backing off gradually. | |
4960 | * | |
4961 | * We start with accepting at most 1/16 waste and try to find the | |
671776b3 XS |
4962 | * smallest order from min_objects-derived/slab_min_order up to |
4963 | * slab_max_order that will satisfy the constraint. Note that increasing | |
0fe2735d VB |
4964 | * the order can only result in same or less fractional waste, not more. |
4965 | * | |
4966 | * If that fails, we increase the acceptable fraction of waste and try | |
5886fc82 VB |
4967 | * again. The last iteration with fraction of 1/2 would effectively |
4968 | * accept any waste and give us the order determined by min_objects, as | |
671776b3 | 4969 | * long as at least single object fits within slab_max_order. |
0fe2735d | 4970 | */ |
5886fc82 | 4971 | for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { |
90f055df | 4972 | order = calc_slab_order(size, min_order, slub_max_order, |
0fe2735d VB |
4973 | fraction); |
4974 | if (order <= slub_max_order) | |
4975 | return order; | |
5e6d444e CL |
4976 | } |
4977 | ||
5e6d444e | 4978 | /* |
671776b3 | 4979 | * Doh this slab cannot be placed using slab_max_order. |
5e6d444e | 4980 | */ |
c7355d75 | 4981 | order = get_order(size); |
5e0a760b | 4982 | if (order <= MAX_PAGE_ORDER) |
5e6d444e CL |
4983 | return order; |
4984 | return -ENOSYS; | |
4985 | } | |
4986 | ||
5595cffc | 4987 | static void |
4053497d | 4988 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
4989 | { |
4990 | n->nr_partial = 0; | |
81819f0f CL |
4991 | spin_lock_init(&n->list_lock); |
4992 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 4993 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 4994 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 4995 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 4996 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 4997 | #endif |
81819f0f CL |
4998 | } |
4999 | ||
0af8489b | 5000 | #ifndef CONFIG_SLUB_TINY |
55136592 | 5001 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 5002 | { |
6c182dc0 | 5003 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
a0dc161a BH |
5004 | NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * |
5005 | sizeof(struct kmem_cache_cpu)); | |
4c93c355 | 5006 | |
8a5ec0ba | 5007 | /* |
d4d84fef CM |
5008 | * Must align to double word boundary for the double cmpxchg |
5009 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 5010 | */ |
d4d84fef CM |
5011 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
5012 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
5013 | |
5014 | if (!s->cpu_slab) | |
5015 | return 0; | |
5016 | ||
5017 | init_kmem_cache_cpus(s); | |
4c93c355 | 5018 | |
8a5ec0ba | 5019 | return 1; |
4c93c355 | 5020 | } |
0af8489b VB |
5021 | #else |
5022 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | |
5023 | { | |
5024 | return 1; | |
5025 | } | |
5026 | #endif /* CONFIG_SLUB_TINY */ | |
4c93c355 | 5027 | |
51df1142 CL |
5028 | static struct kmem_cache *kmem_cache_node; |
5029 | ||
81819f0f CL |
5030 | /* |
5031 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
5032 | * slab on the node for this slabcache. There are no concurrent accesses | |
5033 | * possible. | |
5034 | * | |
721ae22a ZYW |
5035 | * Note that this function only works on the kmem_cache_node |
5036 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 5037 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 5038 | */ |
55136592 | 5039 | static void early_kmem_cache_node_alloc(int node) |
81819f0f | 5040 | { |
bb192ed9 | 5041 | struct slab *slab; |
81819f0f CL |
5042 | struct kmem_cache_node *n; |
5043 | ||
51df1142 | 5044 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 5045 | |
bb192ed9 | 5046 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f | 5047 | |
bb192ed9 VB |
5048 | BUG_ON(!slab); |
5049 | if (slab_nid(slab) != node) { | |
f9f58285 FF |
5050 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
5051 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
5052 | } |
5053 | ||
bb192ed9 | 5054 | n = slab->freelist; |
81819f0f | 5055 | BUG_ON(!n); |
8ab1372f | 5056 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 5057 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
8ab1372f | 5058 | #endif |
da844b78 | 5059 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
bb192ed9 VB |
5060 | slab->freelist = get_freepointer(kmem_cache_node, n); |
5061 | slab->inuse = 1; | |
12b22386 | 5062 | kmem_cache_node->node[node] = n; |
4053497d | 5063 | init_kmem_cache_node(n); |
bb192ed9 | 5064 | inc_slabs_node(kmem_cache_node, node, slab->objects); |
6446faa2 | 5065 | |
67b6c900 | 5066 | /* |
1e4dd946 SR |
5067 | * No locks need to be taken here as it has just been |
5068 | * initialized and there is no concurrent access. | |
67b6c900 | 5069 | */ |
bb192ed9 | 5070 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
81819f0f CL |
5071 | } |
5072 | ||
5073 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
5074 | { | |
5075 | int node; | |
fa45dc25 | 5076 | struct kmem_cache_node *n; |
81819f0f | 5077 | |
fa45dc25 | 5078 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 5079 | s->node[node] = NULL; |
ea37df54 | 5080 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
5081 | } |
5082 | } | |
5083 | ||
52b4b950 DS |
5084 | void __kmem_cache_release(struct kmem_cache *s) |
5085 | { | |
210e7a43 | 5086 | cache_random_seq_destroy(s); |
0af8489b | 5087 | #ifndef CONFIG_SLUB_TINY |
52b4b950 | 5088 | free_percpu(s->cpu_slab); |
0af8489b | 5089 | #endif |
52b4b950 DS |
5090 | free_kmem_cache_nodes(s); |
5091 | } | |
5092 | ||
55136592 | 5093 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
5094 | { |
5095 | int node; | |
81819f0f | 5096 | |
7e1fa93d | 5097 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
5098 | struct kmem_cache_node *n; |
5099 | ||
73367bd8 | 5100 | if (slab_state == DOWN) { |
55136592 | 5101 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
5102 | continue; |
5103 | } | |
51df1142 | 5104 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 5105 | GFP_KERNEL, node); |
81819f0f | 5106 | |
73367bd8 AD |
5107 | if (!n) { |
5108 | free_kmem_cache_nodes(s); | |
5109 | return 0; | |
81819f0f | 5110 | } |
73367bd8 | 5111 | |
4053497d | 5112 | init_kmem_cache_node(n); |
ea37df54 | 5113 | s->node[node] = n; |
81819f0f CL |
5114 | } |
5115 | return 1; | |
5116 | } | |
81819f0f | 5117 | |
e6d0e1dc WY |
5118 | static void set_cpu_partial(struct kmem_cache *s) |
5119 | { | |
5120 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
b47291ef VB |
5121 | unsigned int nr_objects; |
5122 | ||
e6d0e1dc WY |
5123 | /* |
5124 | * cpu_partial determined the maximum number of objects kept in the | |
5125 | * per cpu partial lists of a processor. | |
5126 | * | |
5127 | * Per cpu partial lists mainly contain slabs that just have one | |
5128 | * object freed. If they are used for allocation then they can be | |
5129 | * filled up again with minimal effort. The slab will never hit the | |
5130 | * per node partial lists and therefore no locking will be required. | |
5131 | * | |
b47291ef VB |
5132 | * For backwards compatibility reasons, this is determined as number |
5133 | * of objects, even though we now limit maximum number of pages, see | |
5134 | * slub_set_cpu_partial() | |
e6d0e1dc WY |
5135 | */ |
5136 | if (!kmem_cache_has_cpu_partial(s)) | |
b47291ef | 5137 | nr_objects = 0; |
e6d0e1dc | 5138 | else if (s->size >= PAGE_SIZE) |
b47291ef | 5139 | nr_objects = 6; |
e6d0e1dc | 5140 | else if (s->size >= 1024) |
23e98ad1 | 5141 | nr_objects = 24; |
e6d0e1dc | 5142 | else if (s->size >= 256) |
23e98ad1 | 5143 | nr_objects = 52; |
e6d0e1dc | 5144 | else |
23e98ad1 | 5145 | nr_objects = 120; |
b47291ef VB |
5146 | |
5147 | slub_set_cpu_partial(s, nr_objects); | |
e6d0e1dc WY |
5148 | #endif |
5149 | } | |
5150 | ||
81819f0f CL |
5151 | /* |
5152 | * calculate_sizes() determines the order and the distribution of data within | |
5153 | * a slab object. | |
5154 | */ | |
ae44d81d | 5155 | static int calculate_sizes(struct kmem_cache *s) |
81819f0f | 5156 | { |
d50112ed | 5157 | slab_flags_t flags = s->flags; |
be4a7988 | 5158 | unsigned int size = s->object_size; |
19af27af | 5159 | unsigned int order; |
81819f0f | 5160 | |
d8b42bf5 CL |
5161 | /* |
5162 | * Round up object size to the next word boundary. We can only | |
5163 | * place the free pointer at word boundaries and this determines | |
5164 | * the possible location of the free pointer. | |
5165 | */ | |
5166 | size = ALIGN(size, sizeof(void *)); | |
5167 | ||
5168 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
5169 | /* |
5170 | * Determine if we can poison the object itself. If the user of | |
5171 | * the slab may touch the object after free or before allocation | |
5172 | * then we should never poison the object itself. | |
5173 | */ | |
5f0d5a3a | 5174 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 5175 | !s->ctor) |
81819f0f CL |
5176 | s->flags |= __OBJECT_POISON; |
5177 | else | |
5178 | s->flags &= ~__OBJECT_POISON; | |
5179 | ||
81819f0f CL |
5180 | |
5181 | /* | |
672bba3a | 5182 | * If we are Redzoning then check if there is some space between the |
81819f0f | 5183 | * end of the object and the free pointer. If not then add an |
672bba3a | 5184 | * additional word to have some bytes to store Redzone information. |
81819f0f | 5185 | */ |
3b0efdfa | 5186 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 5187 | size += sizeof(void *); |
41ecc55b | 5188 | #endif |
81819f0f CL |
5189 | |
5190 | /* | |
672bba3a | 5191 | * With that we have determined the number of bytes in actual use |
e41a49fa | 5192 | * by the object and redzoning. |
81819f0f CL |
5193 | */ |
5194 | s->inuse = size; | |
5195 | ||
adef2aea CZ |
5196 | if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor || |
5197 | ((flags & SLAB_RED_ZONE) && | |
5198 | (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { | |
81819f0f CL |
5199 | /* |
5200 | * Relocate free pointer after the object if it is not | |
5201 | * permitted to overwrite the first word of the object on | |
5202 | * kmem_cache_free. | |
5203 | * | |
5204 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 | 5205 | * destructor, are poisoning the objects, or are |
adef2aea CZ |
5206 | * redzoning an object smaller than sizeof(void *) or are |
5207 | * redzoning an object with slub_debug_orig_size() enabled, | |
5208 | * in which case the right redzone may be extended. | |
cbfc35a4 WL |
5209 | * |
5210 | * The assumption that s->offset >= s->inuse means free | |
5211 | * pointer is outside of the object is used in the | |
5212 | * freeptr_outside_object() function. If that is no | |
5213 | * longer true, the function needs to be modified. | |
81819f0f CL |
5214 | */ |
5215 | s->offset = size; | |
5216 | size += sizeof(void *); | |
e41a49fa | 5217 | } else { |
3202fa62 KC |
5218 | /* |
5219 | * Store freelist pointer near middle of object to keep | |
5220 | * it away from the edges of the object to avoid small | |
5221 | * sized over/underflows from neighboring allocations. | |
5222 | */ | |
e41a49fa | 5223 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
5224 | } |
5225 | ||
c12b3c62 | 5226 | #ifdef CONFIG_SLUB_DEBUG |
6edf2576 | 5227 | if (flags & SLAB_STORE_USER) { |
81819f0f CL |
5228 | /* |
5229 | * Need to store information about allocs and frees after | |
5230 | * the object. | |
5231 | */ | |
5232 | size += 2 * sizeof(struct track); | |
6edf2576 FT |
5233 | |
5234 | /* Save the original kmalloc request size */ | |
5235 | if (flags & SLAB_KMALLOC) | |
5236 | size += sizeof(unsigned int); | |
5237 | } | |
80a9201a | 5238 | #endif |
81819f0f | 5239 | |
80a9201a AP |
5240 | kasan_cache_create(s, &size, &s->flags); |
5241 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 5242 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
5243 | /* |
5244 | * Add some empty padding so that we can catch | |
5245 | * overwrites from earlier objects rather than let | |
5246 | * tracking information or the free pointer be | |
0211a9c8 | 5247 | * corrupted if a user writes before the start |
81819f0f CL |
5248 | * of the object. |
5249 | */ | |
5250 | size += sizeof(void *); | |
d86bd1be JK |
5251 | |
5252 | s->red_left_pad = sizeof(void *); | |
5253 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
5254 | size += s->red_left_pad; | |
5255 | } | |
41ecc55b | 5256 | #endif |
672bba3a | 5257 | |
81819f0f CL |
5258 | /* |
5259 | * SLUB stores one object immediately after another beginning from | |
5260 | * offset 0. In order to align the objects we have to simply size | |
5261 | * each object to conform to the alignment. | |
5262 | */ | |
45906855 | 5263 | size = ALIGN(size, s->align); |
81819f0f | 5264 | s->size = size; |
4138fdfc | 5265 | s->reciprocal_size = reciprocal_value(size); |
ae44d81d | 5266 | order = calculate_order(size); |
81819f0f | 5267 | |
19af27af | 5268 | if ((int)order < 0) |
81819f0f CL |
5269 | return 0; |
5270 | ||
5b15f3fb | 5271 | s->allocflags = __GFP_COMP; |
b7a49f0d CL |
5272 | |
5273 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 5274 | s->allocflags |= GFP_DMA; |
b7a49f0d | 5275 | |
6d6ea1e9 NB |
5276 | if (s->flags & SLAB_CACHE_DMA32) |
5277 | s->allocflags |= GFP_DMA32; | |
5278 | ||
b7a49f0d CL |
5279 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5280 | s->allocflags |= __GFP_RECLAIMABLE; | |
5281 | ||
81819f0f CL |
5282 | /* |
5283 | * Determine the number of objects per slab | |
5284 | */ | |
9736d2a9 MW |
5285 | s->oo = oo_make(order, size); |
5286 | s->min = oo_make(get_order(size), size); | |
81819f0f | 5287 | |
834f3d11 | 5288 | return !!oo_objects(s->oo); |
81819f0f CL |
5289 | } |
5290 | ||
d50112ed | 5291 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 5292 | { |
303cd693 | 5293 | s->flags = kmem_cache_flags(flags, s->name); |
2482ddec KC |
5294 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
5295 | s->random = get_random_long(); | |
5296 | #endif | |
81819f0f | 5297 | |
ae44d81d | 5298 | if (!calculate_sizes(s)) |
81819f0f | 5299 | goto error; |
3de47213 DR |
5300 | if (disable_higher_order_debug) { |
5301 | /* | |
5302 | * Disable debugging flags that store metadata if the min slab | |
5303 | * order increased. | |
5304 | */ | |
3b0efdfa | 5305 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
5306 | s->flags &= ~DEBUG_METADATA_FLAGS; |
5307 | s->offset = 0; | |
ae44d81d | 5308 | if (!calculate_sizes(s)) |
3de47213 DR |
5309 | goto error; |
5310 | } | |
5311 | } | |
81819f0f | 5312 | |
6801be4f PZ |
5313 | #ifdef system_has_freelist_aba |
5314 | if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { | |
b789ef51 CL |
5315 | /* Enable fast mode */ |
5316 | s->flags |= __CMPXCHG_DOUBLE; | |
6801be4f | 5317 | } |
b789ef51 CL |
5318 | #endif |
5319 | ||
3b89d7d8 | 5320 | /* |
c2092c12 | 5321 | * The larger the object size is, the more slabs we want on the partial |
3b89d7d8 DR |
5322 | * list to avoid pounding the page allocator excessively. |
5323 | */ | |
5182f3c9 HY |
5324 | s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); |
5325 | s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); | |
49e22585 | 5326 | |
e6d0e1dc | 5327 | set_cpu_partial(s); |
49e22585 | 5328 | |
81819f0f | 5329 | #ifdef CONFIG_NUMA |
e2cb96b7 | 5330 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 5331 | #endif |
210e7a43 TG |
5332 | |
5333 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
5334 | if (slab_state >= UP) { | |
5335 | if (init_cache_random_seq(s)) | |
5336 | goto error; | |
5337 | } | |
5338 | ||
55136592 | 5339 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 5340 | goto error; |
81819f0f | 5341 | |
55136592 | 5342 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 5343 | return 0; |
ff12059e | 5344 | |
81819f0f | 5345 | error: |
9037c576 | 5346 | __kmem_cache_release(s); |
278b1bb1 | 5347 | return -EINVAL; |
81819f0f | 5348 | } |
81819f0f | 5349 | |
bb192ed9 | 5350 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
55860d96 | 5351 | const char *text) |
33b12c38 CL |
5352 | { |
5353 | #ifdef CONFIG_SLUB_DEBUG | |
bb192ed9 | 5354 | void *addr = slab_address(slab); |
33b12c38 | 5355 | void *p; |
aa456c7a | 5356 | |
bb192ed9 | 5357 | slab_err(s, slab, text, s->name); |
33b12c38 | 5358 | |
4ef3f5a3 VB |
5359 | spin_lock(&object_map_lock); |
5360 | __fill_map(object_map, s, slab); | |
5361 | ||
bb192ed9 | 5362 | for_each_object(p, s, addr, slab->objects) { |
33b12c38 | 5363 | |
4ef3f5a3 | 5364 | if (!test_bit(__obj_to_index(s, addr, p), object_map)) { |
96b94abc | 5365 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
5366 | print_tracking(s, p); |
5367 | } | |
5368 | } | |
4ef3f5a3 | 5369 | spin_unlock(&object_map_lock); |
33b12c38 CL |
5370 | #endif |
5371 | } | |
5372 | ||
81819f0f | 5373 | /* |
599870b1 | 5374 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
5375 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
5376 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 5377 | */ |
599870b1 | 5378 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 5379 | { |
60398923 | 5380 | LIST_HEAD(discard); |
bb192ed9 | 5381 | struct slab *slab, *h; |
81819f0f | 5382 | |
52b4b950 DS |
5383 | BUG_ON(irqs_disabled()); |
5384 | spin_lock_irq(&n->list_lock); | |
bb192ed9 VB |
5385 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
5386 | if (!slab->inuse) { | |
5387 | remove_partial(n, slab); | |
5388 | list_add(&slab->slab_list, &discard); | |
33b12c38 | 5389 | } else { |
bb192ed9 | 5390 | list_slab_objects(s, slab, |
55860d96 | 5391 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 5392 | } |
33b12c38 | 5393 | } |
52b4b950 | 5394 | spin_unlock_irq(&n->list_lock); |
60398923 | 5395 | |
bb192ed9 VB |
5396 | list_for_each_entry_safe(slab, h, &discard, slab_list) |
5397 | discard_slab(s, slab); | |
81819f0f CL |
5398 | } |
5399 | ||
f9e13c0a SB |
5400 | bool __kmem_cache_empty(struct kmem_cache *s) |
5401 | { | |
5402 | int node; | |
5403 | struct kmem_cache_node *n; | |
5404 | ||
5405 | for_each_kmem_cache_node(s, node, n) | |
4f174a8b | 5406 | if (n->nr_partial || node_nr_slabs(n)) |
f9e13c0a SB |
5407 | return false; |
5408 | return true; | |
5409 | } | |
5410 | ||
81819f0f | 5411 | /* |
672bba3a | 5412 | * Release all resources used by a slab cache. |
81819f0f | 5413 | */ |
52b4b950 | 5414 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
5415 | { |
5416 | int node; | |
fa45dc25 | 5417 | struct kmem_cache_node *n; |
81819f0f | 5418 | |
5a836bf6 | 5419 | flush_all_cpus_locked(s); |
81819f0f | 5420 | /* Attempt to free all objects */ |
fa45dc25 | 5421 | for_each_kmem_cache_node(s, node, n) { |
599870b1 | 5422 | free_partial(s, n); |
4f174a8b | 5423 | if (n->nr_partial || node_nr_slabs(n)) |
81819f0f CL |
5424 | return 1; |
5425 | } | |
81819f0f CL |
5426 | return 0; |
5427 | } | |
5428 | ||
5bb1bb35 | 5429 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 5430 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
5431 | { |
5432 | void *base; | |
5433 | int __maybe_unused i; | |
5434 | unsigned int objnr; | |
5435 | void *objp; | |
5436 | void *objp0; | |
7213230a | 5437 | struct kmem_cache *s = slab->slab_cache; |
8e7f37f2 PM |
5438 | struct track __maybe_unused *trackp; |
5439 | ||
5440 | kpp->kp_ptr = object; | |
7213230a | 5441 | kpp->kp_slab = slab; |
8e7f37f2 | 5442 | kpp->kp_slab_cache = s; |
7213230a | 5443 | base = slab_address(slab); |
8e7f37f2 PM |
5444 | objp0 = kasan_reset_tag(object); |
5445 | #ifdef CONFIG_SLUB_DEBUG | |
5446 | objp = restore_red_left(s, objp0); | |
5447 | #else | |
5448 | objp = objp0; | |
5449 | #endif | |
40f3bf0c | 5450 | objnr = obj_to_index(s, slab, objp); |
8e7f37f2 PM |
5451 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
5452 | objp = base + s->size * objnr; | |
5453 | kpp->kp_objp = objp; | |
7213230a MWO |
5454 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
5455 | || (objp - base) % s->size) || | |
8e7f37f2 PM |
5456 | !(s->flags & SLAB_STORE_USER)) |
5457 | return; | |
5458 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 5459 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
5460 | trackp = get_track(s, objp, TRACK_ALLOC); |
5461 | kpp->kp_ret = (void *)trackp->addr; | |
5cf909c5 OG |
5462 | #ifdef CONFIG_STACKDEPOT |
5463 | { | |
5464 | depot_stack_handle_t handle; | |
5465 | unsigned long *entries; | |
5466 | unsigned int nr_entries; | |
78869146 | 5467 | |
5cf909c5 OG |
5468 | handle = READ_ONCE(trackp->handle); |
5469 | if (handle) { | |
5470 | nr_entries = stack_depot_fetch(handle, &entries); | |
5471 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5472 | kpp->kp_stack[i] = (void *)entries[i]; | |
5473 | } | |
78869146 | 5474 | |
5cf909c5 OG |
5475 | trackp = get_track(s, objp, TRACK_FREE); |
5476 | handle = READ_ONCE(trackp->handle); | |
5477 | if (handle) { | |
5478 | nr_entries = stack_depot_fetch(handle, &entries); | |
5479 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5480 | kpp->kp_free_stack[i] = (void *)entries[i]; | |
5481 | } | |
e548eaa1 | 5482 | } |
8e7f37f2 PM |
5483 | #endif |
5484 | #endif | |
5485 | } | |
5bb1bb35 | 5486 | #endif |
8e7f37f2 | 5487 | |
81819f0f CL |
5488 | /******************************************************************** |
5489 | * Kmalloc subsystem | |
5490 | *******************************************************************/ | |
5491 | ||
81819f0f CL |
5492 | static int __init setup_slub_min_order(char *str) |
5493 | { | |
19af27af | 5494 | get_option(&str, (int *)&slub_min_order); |
81819f0f | 5495 | |
e519ce7a FT |
5496 | if (slub_min_order > slub_max_order) |
5497 | slub_max_order = slub_min_order; | |
5498 | ||
81819f0f CL |
5499 | return 1; |
5500 | } | |
5501 | ||
671776b3 XS |
5502 | __setup("slab_min_order=", setup_slub_min_order); |
5503 | __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); | |
5504 | ||
81819f0f CL |
5505 | |
5506 | static int __init setup_slub_max_order(char *str) | |
5507 | { | |
19af27af | 5508 | get_option(&str, (int *)&slub_max_order); |
5e0a760b | 5509 | slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); |
81819f0f | 5510 | |
e519ce7a FT |
5511 | if (slub_min_order > slub_max_order) |
5512 | slub_min_order = slub_max_order; | |
5513 | ||
81819f0f CL |
5514 | return 1; |
5515 | } | |
5516 | ||
671776b3 XS |
5517 | __setup("slab_max_order=", setup_slub_max_order); |
5518 | __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); | |
81819f0f CL |
5519 | |
5520 | static int __init setup_slub_min_objects(char *str) | |
5521 | { | |
19af27af | 5522 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
5523 | |
5524 | return 1; | |
5525 | } | |
5526 | ||
671776b3 XS |
5527 | __setup("slab_min_objects=", setup_slub_min_objects); |
5528 | __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); | |
81819f0f | 5529 | |
ed18adc1 KC |
5530 | #ifdef CONFIG_HARDENED_USERCOPY |
5531 | /* | |
afcc90f8 KC |
5532 | * Rejects incorrectly sized objects and objects that are to be copied |
5533 | * to/from userspace but do not fall entirely within the containing slab | |
5534 | * cache's usercopy region. | |
ed18adc1 KC |
5535 | * |
5536 | * Returns NULL if check passes, otherwise const char * to name of cache | |
5537 | * to indicate an error. | |
5538 | */ | |
0b3eb091 MWO |
5539 | void __check_heap_object(const void *ptr, unsigned long n, |
5540 | const struct slab *slab, bool to_user) | |
ed18adc1 KC |
5541 | { |
5542 | struct kmem_cache *s; | |
44065b2e | 5543 | unsigned int offset; |
b89fb5ef | 5544 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 5545 | |
96fedce2 AK |
5546 | ptr = kasan_reset_tag(ptr); |
5547 | ||
ed18adc1 | 5548 | /* Find object and usable object size. */ |
0b3eb091 | 5549 | s = slab->slab_cache; |
ed18adc1 KC |
5550 | |
5551 | /* Reject impossible pointers. */ | |
0b3eb091 | 5552 | if (ptr < slab_address(slab)) |
f4e6e289 KC |
5553 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
5554 | to_user, 0, n); | |
ed18adc1 KC |
5555 | |
5556 | /* Find offset within object. */ | |
b89fb5ef AP |
5557 | if (is_kfence) |
5558 | offset = ptr - kfence_object_start(ptr); | |
5559 | else | |
0b3eb091 | 5560 | offset = (ptr - slab_address(slab)) % s->size; |
ed18adc1 KC |
5561 | |
5562 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 5563 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 5564 | if (offset < s->red_left_pad) |
f4e6e289 KC |
5565 | usercopy_abort("SLUB object in left red zone", |
5566 | s->name, to_user, offset, n); | |
ed18adc1 KC |
5567 | offset -= s->red_left_pad; |
5568 | } | |
5569 | ||
afcc90f8 KC |
5570 | /* Allow address range falling entirely within usercopy region. */ |
5571 | if (offset >= s->useroffset && | |
5572 | offset - s->useroffset <= s->usersize && | |
5573 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 5574 | return; |
ed18adc1 | 5575 | |
f4e6e289 | 5576 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
5577 | } |
5578 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
5579 | ||
832f37f5 VD |
5580 | #define SHRINK_PROMOTE_MAX 32 |
5581 | ||
2086d26a | 5582 | /* |
832f37f5 VD |
5583 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
5584 | * up most to the head of the partial lists. New allocations will then | |
5585 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
5586 | * |
5587 | * The slabs with the least items are placed last. This results in them | |
5588 | * being allocated from last increasing the chance that the last objects | |
5589 | * are freed in them. | |
2086d26a | 5590 | */ |
5a836bf6 | 5591 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
5592 | { |
5593 | int node; | |
5594 | int i; | |
5595 | struct kmem_cache_node *n; | |
bb192ed9 VB |
5596 | struct slab *slab; |
5597 | struct slab *t; | |
832f37f5 VD |
5598 | struct list_head discard; |
5599 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 5600 | unsigned long flags; |
ce3712d7 | 5601 | int ret = 0; |
2086d26a | 5602 | |
fa45dc25 | 5603 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
5604 | INIT_LIST_HEAD(&discard); |
5605 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
5606 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
5607 | |
5608 | spin_lock_irqsave(&n->list_lock, flags); | |
5609 | ||
5610 | /* | |
832f37f5 | 5611 | * Build lists of slabs to discard or promote. |
2086d26a | 5612 | * |
672bba3a | 5613 | * Note that concurrent frees may occur while we hold the |
c2092c12 | 5614 | * list_lock. slab->inuse here is the upper limit. |
2086d26a | 5615 | */ |
bb192ed9 VB |
5616 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
5617 | int free = slab->objects - slab->inuse; | |
832f37f5 | 5618 | |
c2092c12 | 5619 | /* Do not reread slab->inuse */ |
832f37f5 VD |
5620 | barrier(); |
5621 | ||
5622 | /* We do not keep full slabs on the list */ | |
5623 | BUG_ON(free <= 0); | |
5624 | ||
bb192ed9 VB |
5625 | if (free == slab->objects) { |
5626 | list_move(&slab->slab_list, &discard); | |
8a399e2f | 5627 | slab_clear_node_partial(slab); |
69cb8e6b | 5628 | n->nr_partial--; |
c7323a5a | 5629 | dec_slabs_node(s, node, slab->objects); |
832f37f5 | 5630 | } else if (free <= SHRINK_PROMOTE_MAX) |
bb192ed9 | 5631 | list_move(&slab->slab_list, promote + free - 1); |
2086d26a CL |
5632 | } |
5633 | ||
2086d26a | 5634 | /* |
832f37f5 VD |
5635 | * Promote the slabs filled up most to the head of the |
5636 | * partial list. | |
2086d26a | 5637 | */ |
832f37f5 VD |
5638 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
5639 | list_splice(promote + i, &n->partial); | |
2086d26a | 5640 | |
2086d26a | 5641 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
5642 | |
5643 | /* Release empty slabs */ | |
bb192ed9 | 5644 | list_for_each_entry_safe(slab, t, &discard, slab_list) |
c7323a5a | 5645 | free_slab(s, slab); |
ce3712d7 | 5646 | |
4f174a8b | 5647 | if (node_nr_slabs(n)) |
ce3712d7 | 5648 | ret = 1; |
2086d26a CL |
5649 | } |
5650 | ||
ce3712d7 | 5651 | return ret; |
2086d26a | 5652 | } |
2086d26a | 5653 | |
5a836bf6 SAS |
5654 | int __kmem_cache_shrink(struct kmem_cache *s) |
5655 | { | |
5656 | flush_all(s); | |
5657 | return __kmem_cache_do_shrink(s); | |
5658 | } | |
5659 | ||
b9049e23 YG |
5660 | static int slab_mem_going_offline_callback(void *arg) |
5661 | { | |
5662 | struct kmem_cache *s; | |
5663 | ||
18004c5d | 5664 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
5665 | list_for_each_entry(s, &slab_caches, list) { |
5666 | flush_all_cpus_locked(s); | |
5667 | __kmem_cache_do_shrink(s); | |
5668 | } | |
18004c5d | 5669 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5670 | |
5671 | return 0; | |
5672 | } | |
5673 | ||
5674 | static void slab_mem_offline_callback(void *arg) | |
5675 | { | |
b9049e23 YG |
5676 | struct memory_notify *marg = arg; |
5677 | int offline_node; | |
5678 | ||
b9d5ab25 | 5679 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
5680 | |
5681 | /* | |
5682 | * If the node still has available memory. we need kmem_cache_node | |
5683 | * for it yet. | |
5684 | */ | |
5685 | if (offline_node < 0) | |
5686 | return; | |
5687 | ||
18004c5d | 5688 | mutex_lock(&slab_mutex); |
7e1fa93d | 5689 | node_clear(offline_node, slab_nodes); |
666716fd VB |
5690 | /* |
5691 | * We no longer free kmem_cache_node structures here, as it would be | |
5692 | * racy with all get_node() users, and infeasible to protect them with | |
5693 | * slab_mutex. | |
5694 | */ | |
18004c5d | 5695 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5696 | } |
5697 | ||
5698 | static int slab_mem_going_online_callback(void *arg) | |
5699 | { | |
5700 | struct kmem_cache_node *n; | |
5701 | struct kmem_cache *s; | |
5702 | struct memory_notify *marg = arg; | |
b9d5ab25 | 5703 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
5704 | int ret = 0; |
5705 | ||
5706 | /* | |
5707 | * If the node's memory is already available, then kmem_cache_node is | |
5708 | * already created. Nothing to do. | |
5709 | */ | |
5710 | if (nid < 0) | |
5711 | return 0; | |
5712 | ||
5713 | /* | |
0121c619 | 5714 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
5715 | * allocate a kmem_cache_node structure in order to bring the node |
5716 | * online. | |
5717 | */ | |
18004c5d | 5718 | mutex_lock(&slab_mutex); |
b9049e23 | 5719 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
5720 | /* |
5721 | * The structure may already exist if the node was previously | |
5722 | * onlined and offlined. | |
5723 | */ | |
5724 | if (get_node(s, nid)) | |
5725 | continue; | |
b9049e23 YG |
5726 | /* |
5727 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
5728 | * since memory is not yet available from the node that | |
5729 | * is brought up. | |
5730 | */ | |
8de66a0c | 5731 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
5732 | if (!n) { |
5733 | ret = -ENOMEM; | |
5734 | goto out; | |
5735 | } | |
4053497d | 5736 | init_kmem_cache_node(n); |
b9049e23 YG |
5737 | s->node[nid] = n; |
5738 | } | |
7e1fa93d VB |
5739 | /* |
5740 | * Any cache created after this point will also have kmem_cache_node | |
5741 | * initialized for the new node. | |
5742 | */ | |
5743 | node_set(nid, slab_nodes); | |
b9049e23 | 5744 | out: |
18004c5d | 5745 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5746 | return ret; |
5747 | } | |
5748 | ||
5749 | static int slab_memory_callback(struct notifier_block *self, | |
5750 | unsigned long action, void *arg) | |
5751 | { | |
5752 | int ret = 0; | |
5753 | ||
5754 | switch (action) { | |
5755 | case MEM_GOING_ONLINE: | |
5756 | ret = slab_mem_going_online_callback(arg); | |
5757 | break; | |
5758 | case MEM_GOING_OFFLINE: | |
5759 | ret = slab_mem_going_offline_callback(arg); | |
5760 | break; | |
5761 | case MEM_OFFLINE: | |
5762 | case MEM_CANCEL_ONLINE: | |
5763 | slab_mem_offline_callback(arg); | |
5764 | break; | |
5765 | case MEM_ONLINE: | |
5766 | case MEM_CANCEL_OFFLINE: | |
5767 | break; | |
5768 | } | |
dc19f9db KH |
5769 | if (ret) |
5770 | ret = notifier_from_errno(ret); | |
5771 | else | |
5772 | ret = NOTIFY_OK; | |
b9049e23 YG |
5773 | return ret; |
5774 | } | |
5775 | ||
81819f0f CL |
5776 | /******************************************************************** |
5777 | * Basic setup of slabs | |
5778 | *******************************************************************/ | |
5779 | ||
51df1142 CL |
5780 | /* |
5781 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
5782 | * the page allocator. Allocate them properly then fix up the pointers |
5783 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
5784 | */ |
5785 | ||
dffb4d60 | 5786 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
5787 | { |
5788 | int node; | |
dffb4d60 | 5789 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 5790 | struct kmem_cache_node *n; |
51df1142 | 5791 | |
dffb4d60 | 5792 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 5793 | |
7d557b3c GC |
5794 | /* |
5795 | * This runs very early, and only the boot processor is supposed to be | |
5796 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
5797 | * IPIs around. | |
5798 | */ | |
5799 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 5800 | for_each_kmem_cache_node(s, node, n) { |
bb192ed9 | 5801 | struct slab *p; |
51df1142 | 5802 | |
916ac052 | 5803 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 5804 | p->slab_cache = s; |
51df1142 | 5805 | |
607bf324 | 5806 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 5807 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 5808 | p->slab_cache = s; |
51df1142 | 5809 | #endif |
51df1142 | 5810 | } |
dffb4d60 CL |
5811 | list_add(&s->list, &slab_caches); |
5812 | return s; | |
51df1142 CL |
5813 | } |
5814 | ||
81819f0f CL |
5815 | void __init kmem_cache_init(void) |
5816 | { | |
dffb4d60 CL |
5817 | static __initdata struct kmem_cache boot_kmem_cache, |
5818 | boot_kmem_cache_node; | |
7e1fa93d | 5819 | int node; |
51df1142 | 5820 | |
fc8d8620 SG |
5821 | if (debug_guardpage_minorder()) |
5822 | slub_max_order = 0; | |
5823 | ||
79270291 SB |
5824 | /* Print slub debugging pointers without hashing */ |
5825 | if (__slub_debug_enabled()) | |
5826 | no_hash_pointers_enable(NULL); | |
5827 | ||
dffb4d60 CL |
5828 | kmem_cache_node = &boot_kmem_cache_node; |
5829 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 5830 | |
7e1fa93d VB |
5831 | /* |
5832 | * Initialize the nodemask for which we will allocate per node | |
5833 | * structures. Here we don't need taking slab_mutex yet. | |
5834 | */ | |
5835 | for_each_node_state(node, N_NORMAL_MEMORY) | |
5836 | node_set(node, slab_nodes); | |
5837 | ||
dffb4d60 | 5838 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
45012241 SB |
5839 | sizeof(struct kmem_cache_node), |
5840 | SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); | |
b9049e23 | 5841 | |
946d5f9c | 5842 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
5843 | |
5844 | /* Able to allocate the per node structures */ | |
5845 | slab_state = PARTIAL; | |
5846 | ||
dffb4d60 CL |
5847 | create_boot_cache(kmem_cache, "kmem_cache", |
5848 | offsetof(struct kmem_cache, node) + | |
5849 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
45012241 | 5850 | SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); |
8a13a4cc | 5851 | |
dffb4d60 | 5852 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 5853 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
5854 | |
5855 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 5856 | setup_kmalloc_cache_index_table(); |
66b3dc1f | 5857 | create_kmalloc_caches(); |
81819f0f | 5858 | |
210e7a43 TG |
5859 | /* Setup random freelists for each cache */ |
5860 | init_freelist_randomization(); | |
5861 | ||
a96a87bf SAS |
5862 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
5863 | slub_cpu_dead); | |
81819f0f | 5864 | |
b9726c26 | 5865 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 5866 | cache_line_size(), |
81819f0f CL |
5867 | slub_min_order, slub_max_order, slub_min_objects, |
5868 | nr_cpu_ids, nr_node_ids); | |
5869 | } | |
5870 | ||
7e85ee0c PE |
5871 | void __init kmem_cache_init_late(void) |
5872 | { | |
0af8489b | 5873 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
5874 | flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); |
5875 | WARN_ON(!flushwq); | |
0af8489b | 5876 | #endif |
7e85ee0c PE |
5877 | } |
5878 | ||
2633d7a0 | 5879 | struct kmem_cache * |
f4957d5b | 5880 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 5881 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 5882 | { |
10befea9 | 5883 | struct kmem_cache *s; |
81819f0f | 5884 | |
a44cb944 | 5885 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 5886 | if (s) { |
efb93527 XS |
5887 | if (sysfs_slab_alias(s, name)) |
5888 | return NULL; | |
5889 | ||
81819f0f | 5890 | s->refcount++; |
84d0ddd6 | 5891 | |
81819f0f CL |
5892 | /* |
5893 | * Adjust the object sizes so that we clear | |
5894 | * the complete object on kzalloc. | |
5895 | */ | |
1b473f29 | 5896 | s->object_size = max(s->object_size, size); |
52ee6d74 | 5897 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 5898 | } |
6446faa2 | 5899 | |
cbb79694 CL |
5900 | return s; |
5901 | } | |
84c1cf62 | 5902 | |
d50112ed | 5903 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 5904 | { |
aac3a166 PE |
5905 | int err; |
5906 | ||
5907 | err = kmem_cache_open(s, flags); | |
5908 | if (err) | |
5909 | return err; | |
20cea968 | 5910 | |
45530c44 CL |
5911 | /* Mutex is not taken during early boot */ |
5912 | if (slab_state <= UP) | |
5913 | return 0; | |
5914 | ||
aac3a166 | 5915 | err = sysfs_slab_add(s); |
67823a54 | 5916 | if (err) { |
52b4b950 | 5917 | __kmem_cache_release(s); |
67823a54 ML |
5918 | return err; |
5919 | } | |
20cea968 | 5920 | |
64dd6849 FM |
5921 | if (s->flags & SLAB_STORE_USER) |
5922 | debugfs_slab_add(s); | |
5923 | ||
67823a54 | 5924 | return 0; |
81819f0f | 5925 | } |
81819f0f | 5926 | |
b1a413a3 | 5927 | #ifdef SLAB_SUPPORTS_SYSFS |
bb192ed9 | 5928 | static int count_inuse(struct slab *slab) |
205ab99d | 5929 | { |
bb192ed9 | 5930 | return slab->inuse; |
205ab99d CL |
5931 | } |
5932 | ||
bb192ed9 | 5933 | static int count_total(struct slab *slab) |
205ab99d | 5934 | { |
bb192ed9 | 5935 | return slab->objects; |
205ab99d | 5936 | } |
ab4d5ed5 | 5937 | #endif |
205ab99d | 5938 | |
ab4d5ed5 | 5939 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 5940 | static void validate_slab(struct kmem_cache *s, struct slab *slab, |
0a19e7dd | 5941 | unsigned long *obj_map) |
53e15af0 CL |
5942 | { |
5943 | void *p; | |
bb192ed9 | 5944 | void *addr = slab_address(slab); |
53e15af0 | 5945 | |
bb192ed9 | 5946 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
41bec7c3 | 5947 | return; |
53e15af0 CL |
5948 | |
5949 | /* Now we know that a valid freelist exists */ | |
bb192ed9 VB |
5950 | __fill_map(obj_map, s, slab); |
5951 | for_each_object(p, s, addr, slab->objects) { | |
0a19e7dd | 5952 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 5953 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 5954 | |
bb192ed9 | 5955 | if (!check_object(s, slab, p, val)) |
dd98afd4 YZ |
5956 | break; |
5957 | } | |
53e15af0 CL |
5958 | } |
5959 | ||
434e245d | 5960 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 5961 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
5962 | { |
5963 | unsigned long count = 0; | |
bb192ed9 | 5964 | struct slab *slab; |
53e15af0 CL |
5965 | unsigned long flags; |
5966 | ||
5967 | spin_lock_irqsave(&n->list_lock, flags); | |
5968 | ||
bb192ed9 VB |
5969 | list_for_each_entry(slab, &n->partial, slab_list) { |
5970 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5971 | count++; |
5972 | } | |
1f9f78b1 | 5973 | if (count != n->nr_partial) { |
f9f58285 FF |
5974 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
5975 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
5976 | slab_add_kunit_errors(); |
5977 | } | |
53e15af0 CL |
5978 | |
5979 | if (!(s->flags & SLAB_STORE_USER)) | |
5980 | goto out; | |
5981 | ||
bb192ed9 VB |
5982 | list_for_each_entry(slab, &n->full, slab_list) { |
5983 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5984 | count++; |
5985 | } | |
8040cbf5 | 5986 | if (count != node_nr_slabs(n)) { |
f9f58285 | 5987 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
8040cbf5 | 5988 | s->name, count, node_nr_slabs(n)); |
1f9f78b1 OG |
5989 | slab_add_kunit_errors(); |
5990 | } | |
53e15af0 CL |
5991 | |
5992 | out: | |
5993 | spin_unlock_irqrestore(&n->list_lock, flags); | |
5994 | return count; | |
5995 | } | |
5996 | ||
1f9f78b1 | 5997 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
5998 | { |
5999 | int node; | |
6000 | unsigned long count = 0; | |
fa45dc25 | 6001 | struct kmem_cache_node *n; |
0a19e7dd VB |
6002 | unsigned long *obj_map; |
6003 | ||
6004 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
6005 | if (!obj_map) | |
6006 | return -ENOMEM; | |
53e15af0 CL |
6007 | |
6008 | flush_all(s); | |
fa45dc25 | 6009 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
6010 | count += validate_slab_node(s, n, obj_map); |
6011 | ||
6012 | bitmap_free(obj_map); | |
90e9f6a6 | 6013 | |
53e15af0 CL |
6014 | return count; |
6015 | } | |
1f9f78b1 OG |
6016 | EXPORT_SYMBOL(validate_slab_cache); |
6017 | ||
64dd6849 | 6018 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 6019 | /* |
672bba3a | 6020 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
6021 | * and freed. |
6022 | */ | |
6023 | ||
6024 | struct location { | |
8ea9fb92 | 6025 | depot_stack_handle_t handle; |
88a420e4 | 6026 | unsigned long count; |
ce71e27c | 6027 | unsigned long addr; |
6edf2576 | 6028 | unsigned long waste; |
45edfa58 CL |
6029 | long long sum_time; |
6030 | long min_time; | |
6031 | long max_time; | |
6032 | long min_pid; | |
6033 | long max_pid; | |
174596a0 | 6034 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 6035 | nodemask_t nodes; |
88a420e4 CL |
6036 | }; |
6037 | ||
6038 | struct loc_track { | |
6039 | unsigned long max; | |
6040 | unsigned long count; | |
6041 | struct location *loc; | |
005a79e5 | 6042 | loff_t idx; |
88a420e4 CL |
6043 | }; |
6044 | ||
64dd6849 FM |
6045 | static struct dentry *slab_debugfs_root; |
6046 | ||
88a420e4 CL |
6047 | static void free_loc_track(struct loc_track *t) |
6048 | { | |
6049 | if (t->max) | |
6050 | free_pages((unsigned long)t->loc, | |
6051 | get_order(sizeof(struct location) * t->max)); | |
6052 | } | |
6053 | ||
68dff6a9 | 6054 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
6055 | { |
6056 | struct location *l; | |
6057 | int order; | |
6058 | ||
88a420e4 CL |
6059 | order = get_order(sizeof(struct location) * max); |
6060 | ||
68dff6a9 | 6061 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
6062 | if (!l) |
6063 | return 0; | |
6064 | ||
6065 | if (t->count) { | |
6066 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
6067 | free_loc_track(t); | |
6068 | } | |
6069 | t->max = max; | |
6070 | t->loc = l; | |
6071 | return 1; | |
6072 | } | |
6073 | ||
6074 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
6edf2576 FT |
6075 | const struct track *track, |
6076 | unsigned int orig_size) | |
88a420e4 CL |
6077 | { |
6078 | long start, end, pos; | |
6079 | struct location *l; | |
6edf2576 | 6080 | unsigned long caddr, chandle, cwaste; |
45edfa58 | 6081 | unsigned long age = jiffies - track->when; |
8ea9fb92 | 6082 | depot_stack_handle_t handle = 0; |
6edf2576 | 6083 | unsigned int waste = s->object_size - orig_size; |
88a420e4 | 6084 | |
8ea9fb92 OG |
6085 | #ifdef CONFIG_STACKDEPOT |
6086 | handle = READ_ONCE(track->handle); | |
6087 | #endif | |
88a420e4 CL |
6088 | start = -1; |
6089 | end = t->count; | |
6090 | ||
6091 | for ( ; ; ) { | |
6092 | pos = start + (end - start + 1) / 2; | |
6093 | ||
6094 | /* | |
6095 | * There is nothing at "end". If we end up there | |
6096 | * we need to add something to before end. | |
6097 | */ | |
6098 | if (pos == end) | |
6099 | break; | |
6100 | ||
6edf2576 FT |
6101 | l = &t->loc[pos]; |
6102 | caddr = l->addr; | |
6103 | chandle = l->handle; | |
6104 | cwaste = l->waste; | |
6105 | if ((track->addr == caddr) && (handle == chandle) && | |
6106 | (waste == cwaste)) { | |
45edfa58 | 6107 | |
45edfa58 CL |
6108 | l->count++; |
6109 | if (track->when) { | |
6110 | l->sum_time += age; | |
6111 | if (age < l->min_time) | |
6112 | l->min_time = age; | |
6113 | if (age > l->max_time) | |
6114 | l->max_time = age; | |
6115 | ||
6116 | if (track->pid < l->min_pid) | |
6117 | l->min_pid = track->pid; | |
6118 | if (track->pid > l->max_pid) | |
6119 | l->max_pid = track->pid; | |
6120 | ||
174596a0 RR |
6121 | cpumask_set_cpu(track->cpu, |
6122 | to_cpumask(l->cpus)); | |
45edfa58 CL |
6123 | } |
6124 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
6125 | return 1; |
6126 | } | |
6127 | ||
45edfa58 | 6128 | if (track->addr < caddr) |
88a420e4 | 6129 | end = pos; |
8ea9fb92 OG |
6130 | else if (track->addr == caddr && handle < chandle) |
6131 | end = pos; | |
6edf2576 FT |
6132 | else if (track->addr == caddr && handle == chandle && |
6133 | waste < cwaste) | |
6134 | end = pos; | |
88a420e4 CL |
6135 | else |
6136 | start = pos; | |
6137 | } | |
6138 | ||
6139 | /* | |
672bba3a | 6140 | * Not found. Insert new tracking element. |
88a420e4 | 6141 | */ |
68dff6a9 | 6142 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
6143 | return 0; |
6144 | ||
6145 | l = t->loc + pos; | |
6146 | if (pos < t->count) | |
6147 | memmove(l + 1, l, | |
6148 | (t->count - pos) * sizeof(struct location)); | |
6149 | t->count++; | |
6150 | l->count = 1; | |
45edfa58 CL |
6151 | l->addr = track->addr; |
6152 | l->sum_time = age; | |
6153 | l->min_time = age; | |
6154 | l->max_time = age; | |
6155 | l->min_pid = track->pid; | |
6156 | l->max_pid = track->pid; | |
8ea9fb92 | 6157 | l->handle = handle; |
6edf2576 | 6158 | l->waste = waste; |
174596a0 RR |
6159 | cpumask_clear(to_cpumask(l->cpus)); |
6160 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
6161 | nodes_clear(l->nodes); |
6162 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
6163 | return 1; |
6164 | } | |
6165 | ||
6166 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bb192ed9 | 6167 | struct slab *slab, enum track_item alloc, |
b3fd64e1 | 6168 | unsigned long *obj_map) |
88a420e4 | 6169 | { |
bb192ed9 | 6170 | void *addr = slab_address(slab); |
6edf2576 | 6171 | bool is_alloc = (alloc == TRACK_ALLOC); |
88a420e4 CL |
6172 | void *p; |
6173 | ||
bb192ed9 | 6174 | __fill_map(obj_map, s, slab); |
b3fd64e1 | 6175 | |
bb192ed9 | 6176 | for_each_object(p, s, addr, slab->objects) |
b3fd64e1 | 6177 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
6edf2576 FT |
6178 | add_location(t, s, get_track(s, p, alloc), |
6179 | is_alloc ? get_orig_size(s, p) : | |
6180 | s->object_size); | |
88a420e4 | 6181 | } |
64dd6849 | 6182 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 6183 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 6184 | |
b1a413a3 | 6185 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f | 6186 | enum slab_stat_type { |
205ab99d CL |
6187 | SL_ALL, /* All slabs */ |
6188 | SL_PARTIAL, /* Only partially allocated slabs */ | |
6189 | SL_CPU, /* Only slabs used for cpu caches */ | |
6190 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
6191 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
6192 | }; |
6193 | ||
205ab99d | 6194 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
6195 | #define SO_PARTIAL (1 << SL_PARTIAL) |
6196 | #define SO_CPU (1 << SL_CPU) | |
6197 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 6198 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 6199 | |
62e5c4b4 | 6200 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 6201 | char *buf, unsigned long flags) |
81819f0f CL |
6202 | { |
6203 | unsigned long total = 0; | |
81819f0f CL |
6204 | int node; |
6205 | int x; | |
6206 | unsigned long *nodes; | |
bf16d19a | 6207 | int len = 0; |
81819f0f | 6208 | |
6396bb22 | 6209 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
6210 | if (!nodes) |
6211 | return -ENOMEM; | |
81819f0f | 6212 | |
205ab99d CL |
6213 | if (flags & SO_CPU) { |
6214 | int cpu; | |
81819f0f | 6215 | |
205ab99d | 6216 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
6217 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
6218 | cpu); | |
ec3ab083 | 6219 | int node; |
bb192ed9 | 6220 | struct slab *slab; |
dfb4f096 | 6221 | |
bb192ed9 VB |
6222 | slab = READ_ONCE(c->slab); |
6223 | if (!slab) | |
ec3ab083 | 6224 | continue; |
205ab99d | 6225 | |
bb192ed9 | 6226 | node = slab_nid(slab); |
ec3ab083 | 6227 | if (flags & SO_TOTAL) |
bb192ed9 | 6228 | x = slab->objects; |
ec3ab083 | 6229 | else if (flags & SO_OBJECTS) |
bb192ed9 | 6230 | x = slab->inuse; |
ec3ab083 CL |
6231 | else |
6232 | x = 1; | |
49e22585 | 6233 | |
ec3ab083 CL |
6234 | total += x; |
6235 | nodes[node] += x; | |
6236 | ||
9c01e9af | 6237 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 VB |
6238 | slab = slub_percpu_partial_read_once(c); |
6239 | if (slab) { | |
6240 | node = slab_nid(slab); | |
8afb1474 LZ |
6241 | if (flags & SO_TOTAL) |
6242 | WARN_ON_ONCE(1); | |
6243 | else if (flags & SO_OBJECTS) | |
6244 | WARN_ON_ONCE(1); | |
6245 | else | |
87654cf7 | 6246 | x = data_race(slab->slabs); |
bc6697d8 ED |
6247 | total += x; |
6248 | nodes[node] += x; | |
49e22585 | 6249 | } |
9c01e9af | 6250 | #endif |
81819f0f CL |
6251 | } |
6252 | } | |
6253 | ||
e4f8e513 QC |
6254 | /* |
6255 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
6256 | * already held which will conflict with an existing lock order: | |
6257 | * | |
6258 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
6259 | * | |
6260 | * We don't really need mem_hotplug_lock (to hold off | |
6261 | * slab_mem_going_offline_callback) here because slab's memory hot | |
6262 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
6263 | */ | |
6264 | ||
ab4d5ed5 | 6265 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 6266 | if (flags & SO_ALL) { |
fa45dc25 CL |
6267 | struct kmem_cache_node *n; |
6268 | ||
6269 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 6270 | |
d0e0ac97 | 6271 | if (flags & SO_TOTAL) |
8040cbf5 | 6272 | x = node_nr_objs(n); |
d0e0ac97 | 6273 | else if (flags & SO_OBJECTS) |
8040cbf5 | 6274 | x = node_nr_objs(n) - count_partial(n, count_free); |
81819f0f | 6275 | else |
8040cbf5 | 6276 | x = node_nr_slabs(n); |
81819f0f CL |
6277 | total += x; |
6278 | nodes[node] += x; | |
6279 | } | |
6280 | ||
ab4d5ed5 CL |
6281 | } else |
6282 | #endif | |
6283 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 6284 | struct kmem_cache_node *n; |
81819f0f | 6285 | |
fa45dc25 | 6286 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
6287 | if (flags & SO_TOTAL) |
6288 | x = count_partial(n, count_total); | |
6289 | else if (flags & SO_OBJECTS) | |
6290 | x = count_partial(n, count_inuse); | |
81819f0f | 6291 | else |
205ab99d | 6292 | x = n->nr_partial; |
81819f0f CL |
6293 | total += x; |
6294 | nodes[node] += x; | |
6295 | } | |
6296 | } | |
bf16d19a JP |
6297 | |
6298 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 6299 | #ifdef CONFIG_NUMA |
bf16d19a | 6300 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 6301 | if (nodes[node]) |
bf16d19a JP |
6302 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
6303 | node, nodes[node]); | |
6304 | } | |
81819f0f | 6305 | #endif |
bf16d19a | 6306 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 6307 | kfree(nodes); |
bf16d19a JP |
6308 | |
6309 | return len; | |
81819f0f CL |
6310 | } |
6311 | ||
81819f0f | 6312 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 6313 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
6314 | |
6315 | struct slab_attribute { | |
6316 | struct attribute attr; | |
6317 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
6318 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
6319 | }; | |
6320 | ||
6321 | #define SLAB_ATTR_RO(_name) \ | |
d1d28bd9 | 6322 | static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) |
81819f0f CL |
6323 | |
6324 | #define SLAB_ATTR(_name) \ | |
d1d28bd9 | 6325 | static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) |
81819f0f | 6326 | |
81819f0f CL |
6327 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
6328 | { | |
bf16d19a | 6329 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
6330 | } |
6331 | SLAB_ATTR_RO(slab_size); | |
6332 | ||
6333 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
6334 | { | |
bf16d19a | 6335 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
6336 | } |
6337 | SLAB_ATTR_RO(align); | |
6338 | ||
6339 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
6340 | { | |
bf16d19a | 6341 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
6342 | } |
6343 | SLAB_ATTR_RO(object_size); | |
6344 | ||
6345 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
6346 | { | |
bf16d19a | 6347 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
6348 | } |
6349 | SLAB_ATTR_RO(objs_per_slab); | |
6350 | ||
6351 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
6352 | { | |
bf16d19a | 6353 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 6354 | } |
32a6f409 | 6355 | SLAB_ATTR_RO(order); |
81819f0f | 6356 | |
73d342b1 DR |
6357 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
6358 | { | |
bf16d19a | 6359 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
6360 | } |
6361 | ||
6362 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
6363 | size_t length) | |
6364 | { | |
6365 | unsigned long min; | |
6366 | int err; | |
6367 | ||
3dbb95f7 | 6368 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
6369 | if (err) |
6370 | return err; | |
6371 | ||
5182f3c9 | 6372 | s->min_partial = min; |
73d342b1 DR |
6373 | return length; |
6374 | } | |
6375 | SLAB_ATTR(min_partial); | |
6376 | ||
49e22585 CL |
6377 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
6378 | { | |
b47291ef VB |
6379 | unsigned int nr_partial = 0; |
6380 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
6381 | nr_partial = s->cpu_partial; | |
6382 | #endif | |
6383 | ||
6384 | return sysfs_emit(buf, "%u\n", nr_partial); | |
49e22585 CL |
6385 | } |
6386 | ||
6387 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
6388 | size_t length) | |
6389 | { | |
e5d9998f | 6390 | unsigned int objects; |
49e22585 CL |
6391 | int err; |
6392 | ||
e5d9998f | 6393 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
6394 | if (err) |
6395 | return err; | |
345c905d | 6396 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 6397 | return -EINVAL; |
49e22585 | 6398 | |
e6d0e1dc | 6399 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
6400 | flush_all(s); |
6401 | return length; | |
6402 | } | |
6403 | SLAB_ATTR(cpu_partial); | |
6404 | ||
81819f0f CL |
6405 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
6406 | { | |
62c70bce JP |
6407 | if (!s->ctor) |
6408 | return 0; | |
bf16d19a | 6409 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
6410 | } |
6411 | SLAB_ATTR_RO(ctor); | |
6412 | ||
81819f0f CL |
6413 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
6414 | { | |
bf16d19a | 6415 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
6416 | } |
6417 | SLAB_ATTR_RO(aliases); | |
6418 | ||
81819f0f CL |
6419 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
6420 | { | |
d9acf4b7 | 6421 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
6422 | } |
6423 | SLAB_ATTR_RO(partial); | |
6424 | ||
6425 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
6426 | { | |
d9acf4b7 | 6427 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
6428 | } |
6429 | SLAB_ATTR_RO(cpu_slabs); | |
6430 | ||
205ab99d CL |
6431 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
6432 | { | |
6433 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
6434 | } | |
6435 | SLAB_ATTR_RO(objects_partial); | |
6436 | ||
49e22585 CL |
6437 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
6438 | { | |
6439 | int objects = 0; | |
bb192ed9 | 6440 | int slabs = 0; |
9c01e9af | 6441 | int cpu __maybe_unused; |
bf16d19a | 6442 | int len = 0; |
49e22585 | 6443 | |
9c01e9af | 6444 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 6445 | for_each_online_cpu(cpu) { |
bb192ed9 | 6446 | struct slab *slab; |
a93cf07b | 6447 | |
bb192ed9 | 6448 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
49e22585 | 6449 | |
bb192ed9 | 6450 | if (slab) |
87654cf7 | 6451 | slabs += data_race(slab->slabs); |
49e22585 | 6452 | } |
9c01e9af | 6453 | #endif |
49e22585 | 6454 | |
c2092c12 | 6455 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
bb192ed9 VB |
6456 | objects = (slabs * oo_objects(s->oo)) / 2; |
6457 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
49e22585 | 6458 | |
c6c17c4d | 6459 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 6460 | for_each_online_cpu(cpu) { |
bb192ed9 | 6461 | struct slab *slab; |
a93cf07b | 6462 | |
bb192ed9 VB |
6463 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
6464 | if (slab) { | |
87654cf7 | 6465 | slabs = data_race(slab->slabs); |
bb192ed9 | 6466 | objects = (slabs * oo_objects(s->oo)) / 2; |
bf16d19a | 6467 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
bb192ed9 | 6468 | cpu, objects, slabs); |
b47291ef | 6469 | } |
49e22585 CL |
6470 | } |
6471 | #endif | |
bf16d19a JP |
6472 | len += sysfs_emit_at(buf, len, "\n"); |
6473 | ||
6474 | return len; | |
49e22585 CL |
6475 | } |
6476 | SLAB_ATTR_RO(slabs_cpu_partial); | |
6477 | ||
a5a84755 CL |
6478 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
6479 | { | |
bf16d19a | 6480 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 6481 | } |
8f58119a | 6482 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
6483 | |
6484 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
6485 | { | |
bf16d19a | 6486 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
6487 | } |
6488 | SLAB_ATTR_RO(hwcache_align); | |
6489 | ||
6490 | #ifdef CONFIG_ZONE_DMA | |
6491 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
6492 | { | |
bf16d19a | 6493 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
6494 | } |
6495 | SLAB_ATTR_RO(cache_dma); | |
6496 | #endif | |
6497 | ||
346907ce | 6498 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
6499 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
6500 | { | |
bf16d19a | 6501 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
6502 | } |
6503 | SLAB_ATTR_RO(usersize); | |
346907ce | 6504 | #endif |
8eb8284b | 6505 | |
a5a84755 CL |
6506 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
6507 | { | |
bf16d19a | 6508 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
6509 | } |
6510 | SLAB_ATTR_RO(destroy_by_rcu); | |
6511 | ||
ab4d5ed5 | 6512 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
6513 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
6514 | { | |
6515 | return show_slab_objects(s, buf, SO_ALL); | |
6516 | } | |
6517 | SLAB_ATTR_RO(slabs); | |
6518 | ||
205ab99d CL |
6519 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
6520 | { | |
6521 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
6522 | } | |
6523 | SLAB_ATTR_RO(total_objects); | |
6524 | ||
81bd3179 XS |
6525 | static ssize_t objects_show(struct kmem_cache *s, char *buf) |
6526 | { | |
6527 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | |
6528 | } | |
6529 | SLAB_ATTR_RO(objects); | |
6530 | ||
81819f0f CL |
6531 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
6532 | { | |
bf16d19a | 6533 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 6534 | } |
060807f8 | 6535 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
6536 | |
6537 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
6538 | { | |
bf16d19a | 6539 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 6540 | } |
060807f8 | 6541 | SLAB_ATTR_RO(trace); |
81819f0f | 6542 | |
81819f0f CL |
6543 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
6544 | { | |
bf16d19a | 6545 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
6546 | } |
6547 | ||
ad38b5b1 | 6548 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
6549 | |
6550 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
6551 | { | |
bf16d19a | 6552 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
6553 | } |
6554 | ||
ad38b5b1 | 6555 | SLAB_ATTR_RO(poison); |
81819f0f CL |
6556 | |
6557 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
6558 | { | |
bf16d19a | 6559 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
6560 | } |
6561 | ||
ad38b5b1 | 6562 | SLAB_ATTR_RO(store_user); |
81819f0f | 6563 | |
53e15af0 CL |
6564 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
6565 | { | |
6566 | return 0; | |
6567 | } | |
6568 | ||
6569 | static ssize_t validate_store(struct kmem_cache *s, | |
6570 | const char *buf, size_t length) | |
6571 | { | |
434e245d CL |
6572 | int ret = -EINVAL; |
6573 | ||
c7323a5a | 6574 | if (buf[0] == '1' && kmem_cache_debug(s)) { |
434e245d CL |
6575 | ret = validate_slab_cache(s); |
6576 | if (ret >= 0) | |
6577 | ret = length; | |
6578 | } | |
6579 | return ret; | |
53e15af0 CL |
6580 | } |
6581 | SLAB_ATTR(validate); | |
a5a84755 | 6582 | |
a5a84755 CL |
6583 | #endif /* CONFIG_SLUB_DEBUG */ |
6584 | ||
6585 | #ifdef CONFIG_FAILSLAB | |
6586 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
6587 | { | |
bf16d19a | 6588 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 6589 | } |
7c82b3b3 AA |
6590 | |
6591 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
6592 | size_t length) | |
6593 | { | |
6594 | if (s->refcount > 1) | |
6595 | return -EINVAL; | |
6596 | ||
6597 | if (buf[0] == '1') | |
6598 | WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); | |
6599 | else | |
6600 | WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); | |
6601 | ||
6602 | return length; | |
6603 | } | |
6604 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 6605 | #endif |
53e15af0 | 6606 | |
2086d26a CL |
6607 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
6608 | { | |
6609 | return 0; | |
6610 | } | |
6611 | ||
6612 | static ssize_t shrink_store(struct kmem_cache *s, | |
6613 | const char *buf, size_t length) | |
6614 | { | |
832f37f5 | 6615 | if (buf[0] == '1') |
10befea9 | 6616 | kmem_cache_shrink(s); |
832f37f5 | 6617 | else |
2086d26a CL |
6618 | return -EINVAL; |
6619 | return length; | |
6620 | } | |
6621 | SLAB_ATTR(shrink); | |
6622 | ||
81819f0f | 6623 | #ifdef CONFIG_NUMA |
9824601e | 6624 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 6625 | { |
bf16d19a | 6626 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
6627 | } |
6628 | ||
9824601e | 6629 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
6630 | const char *buf, size_t length) |
6631 | { | |
eb7235eb | 6632 | unsigned int ratio; |
0121c619 CL |
6633 | int err; |
6634 | ||
eb7235eb | 6635 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
6636 | if (err) |
6637 | return err; | |
eb7235eb AD |
6638 | if (ratio > 100) |
6639 | return -ERANGE; | |
0121c619 | 6640 | |
eb7235eb | 6641 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 6642 | |
81819f0f CL |
6643 | return length; |
6644 | } | |
9824601e | 6645 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
6646 | #endif |
6647 | ||
8ff12cfc | 6648 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
6649 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
6650 | { | |
6651 | unsigned long sum = 0; | |
6652 | int cpu; | |
bf16d19a | 6653 | int len = 0; |
6da2ec56 | 6654 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
6655 | |
6656 | if (!data) | |
6657 | return -ENOMEM; | |
6658 | ||
6659 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 6660 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
6661 | |
6662 | data[cpu] = x; | |
6663 | sum += x; | |
6664 | } | |
6665 | ||
bf16d19a | 6666 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 6667 | |
50ef37b9 | 6668 | #ifdef CONFIG_SMP |
8ff12cfc | 6669 | for_each_online_cpu(cpu) { |
bf16d19a JP |
6670 | if (data[cpu]) |
6671 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
6672 | cpu, data[cpu]); | |
8ff12cfc | 6673 | } |
50ef37b9 | 6674 | #endif |
8ff12cfc | 6675 | kfree(data); |
bf16d19a JP |
6676 | len += sysfs_emit_at(buf, len, "\n"); |
6677 | ||
6678 | return len; | |
8ff12cfc CL |
6679 | } |
6680 | ||
78eb00cc DR |
6681 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
6682 | { | |
6683 | int cpu; | |
6684 | ||
6685 | for_each_online_cpu(cpu) | |
9dfc6e68 | 6686 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
6687 | } |
6688 | ||
8ff12cfc CL |
6689 | #define STAT_ATTR(si, text) \ |
6690 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
6691 | { \ | |
6692 | return show_stat(s, buf, si); \ | |
6693 | } \ | |
78eb00cc DR |
6694 | static ssize_t text##_store(struct kmem_cache *s, \ |
6695 | const char *buf, size_t length) \ | |
6696 | { \ | |
6697 | if (buf[0] != '0') \ | |
6698 | return -EINVAL; \ | |
6699 | clear_stat(s, si); \ | |
6700 | return length; \ | |
6701 | } \ | |
6702 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
6703 | |
6704 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
6705 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
6706 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
6707 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
6708 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
6709 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
6710 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
6711 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
6712 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
6713 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 6714 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
6715 | STAT_ATTR(FREE_SLAB, free_slab); |
6716 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
6717 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
6718 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
6719 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
6720 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
6721 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 6722 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 6723 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
6724 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
6725 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
6726 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
6727 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
6728 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
6729 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 6730 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 6731 | |
b84e04f1 IK |
6732 | #ifdef CONFIG_KFENCE |
6733 | static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) | |
6734 | { | |
6735 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); | |
6736 | } | |
6737 | ||
6738 | static ssize_t skip_kfence_store(struct kmem_cache *s, | |
6739 | const char *buf, size_t length) | |
6740 | { | |
6741 | int ret = length; | |
6742 | ||
6743 | if (buf[0] == '0') | |
6744 | s->flags &= ~SLAB_SKIP_KFENCE; | |
6745 | else if (buf[0] == '1') | |
6746 | s->flags |= SLAB_SKIP_KFENCE; | |
6747 | else | |
6748 | ret = -EINVAL; | |
6749 | ||
6750 | return ret; | |
6751 | } | |
6752 | SLAB_ATTR(skip_kfence); | |
6753 | #endif | |
6754 | ||
06428780 | 6755 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
6756 | &slab_size_attr.attr, |
6757 | &object_size_attr.attr, | |
6758 | &objs_per_slab_attr.attr, | |
6759 | &order_attr.attr, | |
73d342b1 | 6760 | &min_partial_attr.attr, |
49e22585 | 6761 | &cpu_partial_attr.attr, |
205ab99d | 6762 | &objects_partial_attr.attr, |
81819f0f CL |
6763 | &partial_attr.attr, |
6764 | &cpu_slabs_attr.attr, | |
6765 | &ctor_attr.attr, | |
81819f0f CL |
6766 | &aliases_attr.attr, |
6767 | &align_attr.attr, | |
81819f0f CL |
6768 | &hwcache_align_attr.attr, |
6769 | &reclaim_account_attr.attr, | |
6770 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 6771 | &shrink_attr.attr, |
49e22585 | 6772 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 6773 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 | 6774 | &total_objects_attr.attr, |
81bd3179 | 6775 | &objects_attr.attr, |
a5a84755 CL |
6776 | &slabs_attr.attr, |
6777 | &sanity_checks_attr.attr, | |
6778 | &trace_attr.attr, | |
81819f0f CL |
6779 | &red_zone_attr.attr, |
6780 | &poison_attr.attr, | |
6781 | &store_user_attr.attr, | |
53e15af0 | 6782 | &validate_attr.attr, |
ab4d5ed5 | 6783 | #endif |
81819f0f CL |
6784 | #ifdef CONFIG_ZONE_DMA |
6785 | &cache_dma_attr.attr, | |
6786 | #endif | |
6787 | #ifdef CONFIG_NUMA | |
9824601e | 6788 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
6789 | #endif |
6790 | #ifdef CONFIG_SLUB_STATS | |
6791 | &alloc_fastpath_attr.attr, | |
6792 | &alloc_slowpath_attr.attr, | |
6793 | &free_fastpath_attr.attr, | |
6794 | &free_slowpath_attr.attr, | |
6795 | &free_frozen_attr.attr, | |
6796 | &free_add_partial_attr.attr, | |
6797 | &free_remove_partial_attr.attr, | |
6798 | &alloc_from_partial_attr.attr, | |
6799 | &alloc_slab_attr.attr, | |
6800 | &alloc_refill_attr.attr, | |
e36a2652 | 6801 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
6802 | &free_slab_attr.attr, |
6803 | &cpuslab_flush_attr.attr, | |
6804 | &deactivate_full_attr.attr, | |
6805 | &deactivate_empty_attr.attr, | |
6806 | &deactivate_to_head_attr.attr, | |
6807 | &deactivate_to_tail_attr.attr, | |
6808 | &deactivate_remote_frees_attr.attr, | |
03e404af | 6809 | &deactivate_bypass_attr.attr, |
65c3376a | 6810 | &order_fallback_attr.attr, |
b789ef51 CL |
6811 | &cmpxchg_double_fail_attr.attr, |
6812 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
6813 | &cpu_partial_alloc_attr.attr, |
6814 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
6815 | &cpu_partial_node_attr.attr, |
6816 | &cpu_partial_drain_attr.attr, | |
81819f0f | 6817 | #endif |
4c13dd3b DM |
6818 | #ifdef CONFIG_FAILSLAB |
6819 | &failslab_attr.attr, | |
6820 | #endif | |
346907ce | 6821 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b | 6822 | &usersize_attr.attr, |
346907ce | 6823 | #endif |
b84e04f1 IK |
6824 | #ifdef CONFIG_KFENCE |
6825 | &skip_kfence_attr.attr, | |
6826 | #endif | |
4c13dd3b | 6827 | |
81819f0f CL |
6828 | NULL |
6829 | }; | |
6830 | ||
1fdaaa23 | 6831 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
6832 | .attrs = slab_attrs, |
6833 | }; | |
6834 | ||
6835 | static ssize_t slab_attr_show(struct kobject *kobj, | |
6836 | struct attribute *attr, | |
6837 | char *buf) | |
6838 | { | |
6839 | struct slab_attribute *attribute; | |
6840 | struct kmem_cache *s; | |
81819f0f CL |
6841 | |
6842 | attribute = to_slab_attr(attr); | |
6843 | s = to_slab(kobj); | |
6844 | ||
6845 | if (!attribute->show) | |
6846 | return -EIO; | |
6847 | ||
2bfbb027 | 6848 | return attribute->show(s, buf); |
81819f0f CL |
6849 | } |
6850 | ||
6851 | static ssize_t slab_attr_store(struct kobject *kobj, | |
6852 | struct attribute *attr, | |
6853 | const char *buf, size_t len) | |
6854 | { | |
6855 | struct slab_attribute *attribute; | |
6856 | struct kmem_cache *s; | |
81819f0f CL |
6857 | |
6858 | attribute = to_slab_attr(attr); | |
6859 | s = to_slab(kobj); | |
6860 | ||
6861 | if (!attribute->store) | |
6862 | return -EIO; | |
6863 | ||
2bfbb027 | 6864 | return attribute->store(s, buf, len); |
81819f0f CL |
6865 | } |
6866 | ||
41a21285 CL |
6867 | static void kmem_cache_release(struct kobject *k) |
6868 | { | |
6869 | slab_kmem_cache_release(to_slab(k)); | |
6870 | } | |
6871 | ||
52cf25d0 | 6872 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
6873 | .show = slab_attr_show, |
6874 | .store = slab_attr_store, | |
6875 | }; | |
6876 | ||
9ebe720e | 6877 | static const struct kobj_type slab_ktype = { |
81819f0f | 6878 | .sysfs_ops = &slab_sysfs_ops, |
41a21285 | 6879 | .release = kmem_cache_release, |
81819f0f CL |
6880 | }; |
6881 | ||
27c3a314 | 6882 | static struct kset *slab_kset; |
81819f0f | 6883 | |
9a41707b VD |
6884 | static inline struct kset *cache_kset(struct kmem_cache *s) |
6885 | { | |
9a41707b VD |
6886 | return slab_kset; |
6887 | } | |
6888 | ||
d65360f2 | 6889 | #define ID_STR_LENGTH 32 |
81819f0f CL |
6890 | |
6891 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
6892 | * |
6893 | * Format :[flags-]size | |
81819f0f CL |
6894 | */ |
6895 | static char *create_unique_id(struct kmem_cache *s) | |
6896 | { | |
6897 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
6898 | char *p = name; | |
6899 | ||
7e9c323c CY |
6900 | if (!name) |
6901 | return ERR_PTR(-ENOMEM); | |
81819f0f CL |
6902 | |
6903 | *p++ = ':'; | |
6904 | /* | |
6905 | * First flags affecting slabcache operations. We will only | |
6906 | * get here for aliasable slabs so we do not need to support | |
6907 | * too many flags. The flags here must cover all flags that | |
6908 | * are matched during merging to guarantee that the id is | |
6909 | * unique. | |
6910 | */ | |
6911 | if (s->flags & SLAB_CACHE_DMA) | |
6912 | *p++ = 'd'; | |
6d6ea1e9 NB |
6913 | if (s->flags & SLAB_CACHE_DMA32) |
6914 | *p++ = 'D'; | |
81819f0f CL |
6915 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
6916 | *p++ = 'a'; | |
becfda68 | 6917 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 6918 | *p++ = 'F'; |
230e9fc2 VD |
6919 | if (s->flags & SLAB_ACCOUNT) |
6920 | *p++ = 'A'; | |
81819f0f CL |
6921 | if (p != name + 1) |
6922 | *p++ = '-'; | |
d65360f2 | 6923 | p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); |
2633d7a0 | 6924 | |
d65360f2 CY |
6925 | if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { |
6926 | kfree(name); | |
6927 | return ERR_PTR(-EINVAL); | |
6928 | } | |
68ef169a | 6929 | kmsan_unpoison_memory(name, p - name); |
81819f0f CL |
6930 | return name; |
6931 | } | |
6932 | ||
6933 | static int sysfs_slab_add(struct kmem_cache *s) | |
6934 | { | |
6935 | int err; | |
6936 | const char *name; | |
1663f26d | 6937 | struct kset *kset = cache_kset(s); |
45530c44 | 6938 | int unmergeable = slab_unmergeable(s); |
81819f0f | 6939 | |
11066386 MC |
6940 | if (!unmergeable && disable_higher_order_debug && |
6941 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
6942 | unmergeable = 1; | |
6943 | ||
81819f0f CL |
6944 | if (unmergeable) { |
6945 | /* | |
6946 | * Slabcache can never be merged so we can use the name proper. | |
6947 | * This is typically the case for debug situations. In that | |
6948 | * case we can catch duplicate names easily. | |
6949 | */ | |
27c3a314 | 6950 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
6951 | name = s->name; |
6952 | } else { | |
6953 | /* | |
6954 | * Create a unique name for the slab as a target | |
6955 | * for the symlinks. | |
6956 | */ | |
6957 | name = create_unique_id(s); | |
7e9c323c CY |
6958 | if (IS_ERR(name)) |
6959 | return PTR_ERR(name); | |
81819f0f CL |
6960 | } |
6961 | ||
1663f26d | 6962 | s->kobj.kset = kset; |
26e4f205 | 6963 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 6964 | if (err) |
80da026a | 6965 | goto out; |
81819f0f CL |
6966 | |
6967 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
6968 | if (err) |
6969 | goto out_del_kobj; | |
9a41707b | 6970 | |
81819f0f CL |
6971 | if (!unmergeable) { |
6972 | /* Setup first alias */ | |
6973 | sysfs_slab_alias(s, s->name); | |
81819f0f | 6974 | } |
54b6a731 DJ |
6975 | out: |
6976 | if (!unmergeable) | |
6977 | kfree(name); | |
6978 | return err; | |
6979 | out_del_kobj: | |
6980 | kobject_del(&s->kobj); | |
54b6a731 | 6981 | goto out; |
81819f0f CL |
6982 | } |
6983 | ||
d50d82fa MP |
6984 | void sysfs_slab_unlink(struct kmem_cache *s) |
6985 | { | |
011568eb | 6986 | kobject_del(&s->kobj); |
d50d82fa MP |
6987 | } |
6988 | ||
bf5eb3de TH |
6989 | void sysfs_slab_release(struct kmem_cache *s) |
6990 | { | |
011568eb | 6991 | kobject_put(&s->kobj); |
81819f0f CL |
6992 | } |
6993 | ||
6994 | /* | |
6995 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 6996 | * available lest we lose that information. |
81819f0f CL |
6997 | */ |
6998 | struct saved_alias { | |
6999 | struct kmem_cache *s; | |
7000 | const char *name; | |
7001 | struct saved_alias *next; | |
7002 | }; | |
7003 | ||
5af328a5 | 7004 | static struct saved_alias *alias_list; |
81819f0f CL |
7005 | |
7006 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
7007 | { | |
7008 | struct saved_alias *al; | |
7009 | ||
97d06609 | 7010 | if (slab_state == FULL) { |
81819f0f CL |
7011 | /* |
7012 | * If we have a leftover link then remove it. | |
7013 | */ | |
27c3a314 GKH |
7014 | sysfs_remove_link(&slab_kset->kobj, name); |
7015 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
7016 | } |
7017 | ||
7018 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
7019 | if (!al) | |
7020 | return -ENOMEM; | |
7021 | ||
7022 | al->s = s; | |
7023 | al->name = name; | |
7024 | al->next = alias_list; | |
7025 | alias_list = al; | |
68ef169a | 7026 | kmsan_unpoison_memory(al, sizeof(*al)); |
81819f0f CL |
7027 | return 0; |
7028 | } | |
7029 | ||
7030 | static int __init slab_sysfs_init(void) | |
7031 | { | |
5b95a4ac | 7032 | struct kmem_cache *s; |
81819f0f CL |
7033 | int err; |
7034 | ||
18004c5d | 7035 | mutex_lock(&slab_mutex); |
2bce6485 | 7036 | |
d7660ce5 | 7037 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 7038 | if (!slab_kset) { |
18004c5d | 7039 | mutex_unlock(&slab_mutex); |
f9f58285 | 7040 | pr_err("Cannot register slab subsystem.\n"); |
35973232 | 7041 | return -ENOMEM; |
81819f0f CL |
7042 | } |
7043 | ||
97d06609 | 7044 | slab_state = FULL; |
26a7bd03 | 7045 | |
5b95a4ac | 7046 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 7047 | err = sysfs_slab_add(s); |
5d540fb7 | 7048 | if (err) |
f9f58285 FF |
7049 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
7050 | s->name); | |
26a7bd03 | 7051 | } |
81819f0f CL |
7052 | |
7053 | while (alias_list) { | |
7054 | struct saved_alias *al = alias_list; | |
7055 | ||
7056 | alias_list = alias_list->next; | |
7057 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 7058 | if (err) |
f9f58285 FF |
7059 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
7060 | al->name); | |
81819f0f CL |
7061 | kfree(al); |
7062 | } | |
7063 | ||
18004c5d | 7064 | mutex_unlock(&slab_mutex); |
81819f0f CL |
7065 | return 0; |
7066 | } | |
1a5ad30b | 7067 | late_initcall(slab_sysfs_init); |
b1a413a3 | 7068 | #endif /* SLAB_SUPPORTS_SYSFS */ |
57ed3eda | 7069 | |
64dd6849 FM |
7070 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
7071 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
7072 | { | |
64dd6849 | 7073 | struct loc_track *t = seq->private; |
005a79e5 GS |
7074 | struct location *l; |
7075 | unsigned long idx; | |
64dd6849 | 7076 | |
005a79e5 | 7077 | idx = (unsigned long) t->idx; |
64dd6849 FM |
7078 | if (idx < t->count) { |
7079 | l = &t->loc[idx]; | |
7080 | ||
7081 | seq_printf(seq, "%7ld ", l->count); | |
7082 | ||
7083 | if (l->addr) | |
7084 | seq_printf(seq, "%pS", (void *)l->addr); | |
7085 | else | |
7086 | seq_puts(seq, "<not-available>"); | |
7087 | ||
6edf2576 FT |
7088 | if (l->waste) |
7089 | seq_printf(seq, " waste=%lu/%lu", | |
7090 | l->count * l->waste, l->waste); | |
7091 | ||
64dd6849 FM |
7092 | if (l->sum_time != l->min_time) { |
7093 | seq_printf(seq, " age=%ld/%llu/%ld", | |
7094 | l->min_time, div_u64(l->sum_time, l->count), | |
7095 | l->max_time); | |
7096 | } else | |
7097 | seq_printf(seq, " age=%ld", l->min_time); | |
7098 | ||
7099 | if (l->min_pid != l->max_pid) | |
7100 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
7101 | else | |
7102 | seq_printf(seq, " pid=%ld", | |
7103 | l->min_pid); | |
7104 | ||
7105 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
7106 | seq_printf(seq, " cpus=%*pbl", | |
7107 | cpumask_pr_args(to_cpumask(l->cpus))); | |
7108 | ||
7109 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
7110 | seq_printf(seq, " nodes=%*pbl", | |
7111 | nodemask_pr_args(&l->nodes)); | |
7112 | ||
8ea9fb92 OG |
7113 | #ifdef CONFIG_STACKDEPOT |
7114 | { | |
7115 | depot_stack_handle_t handle; | |
7116 | unsigned long *entries; | |
7117 | unsigned int nr_entries, j; | |
7118 | ||
7119 | handle = READ_ONCE(l->handle); | |
7120 | if (handle) { | |
7121 | nr_entries = stack_depot_fetch(handle, &entries); | |
7122 | seq_puts(seq, "\n"); | |
7123 | for (j = 0; j < nr_entries; j++) | |
7124 | seq_printf(seq, " %pS\n", (void *)entries[j]); | |
7125 | } | |
7126 | } | |
7127 | #endif | |
64dd6849 FM |
7128 | seq_puts(seq, "\n"); |
7129 | } | |
7130 | ||
7131 | if (!idx && !t->count) | |
7132 | seq_puts(seq, "No data\n"); | |
7133 | ||
7134 | return 0; | |
7135 | } | |
7136 | ||
7137 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
7138 | { | |
7139 | } | |
7140 | ||
7141 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
7142 | { | |
7143 | struct loc_track *t = seq->private; | |
7144 | ||
005a79e5 | 7145 | t->idx = ++(*ppos); |
64dd6849 | 7146 | if (*ppos <= t->count) |
005a79e5 | 7147 | return ppos; |
64dd6849 FM |
7148 | |
7149 | return NULL; | |
7150 | } | |
7151 | ||
553c0369 OG |
7152 | static int cmp_loc_by_count(const void *a, const void *b, const void *data) |
7153 | { | |
7154 | struct location *loc1 = (struct location *)a; | |
7155 | struct location *loc2 = (struct location *)b; | |
7156 | ||
7157 | if (loc1->count > loc2->count) | |
7158 | return -1; | |
7159 | else | |
7160 | return 1; | |
7161 | } | |
7162 | ||
64dd6849 FM |
7163 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) |
7164 | { | |
005a79e5 GS |
7165 | struct loc_track *t = seq->private; |
7166 | ||
7167 | t->idx = *ppos; | |
64dd6849 FM |
7168 | return ppos; |
7169 | } | |
7170 | ||
7171 | static const struct seq_operations slab_debugfs_sops = { | |
7172 | .start = slab_debugfs_start, | |
7173 | .next = slab_debugfs_next, | |
7174 | .stop = slab_debugfs_stop, | |
7175 | .show = slab_debugfs_show, | |
7176 | }; | |
7177 | ||
7178 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
7179 | { | |
7180 | ||
7181 | struct kmem_cache_node *n; | |
7182 | enum track_item alloc; | |
7183 | int node; | |
7184 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
7185 | sizeof(struct loc_track)); | |
7186 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
7187 | unsigned long *obj_map; |
7188 | ||
2127d225 ML |
7189 | if (!t) |
7190 | return -ENOMEM; | |
7191 | ||
b3fd64e1 | 7192 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
2127d225 ML |
7193 | if (!obj_map) { |
7194 | seq_release_private(inode, filep); | |
b3fd64e1 | 7195 | return -ENOMEM; |
2127d225 | 7196 | } |
64dd6849 FM |
7197 | |
7198 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
7199 | alloc = TRACK_ALLOC; | |
7200 | else | |
7201 | alloc = TRACK_FREE; | |
7202 | ||
b3fd64e1 VB |
7203 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
7204 | bitmap_free(obj_map); | |
2127d225 | 7205 | seq_release_private(inode, filep); |
64dd6849 | 7206 | return -ENOMEM; |
b3fd64e1 | 7207 | } |
64dd6849 | 7208 | |
64dd6849 FM |
7209 | for_each_kmem_cache_node(s, node, n) { |
7210 | unsigned long flags; | |
bb192ed9 | 7211 | struct slab *slab; |
64dd6849 | 7212 | |
8040cbf5 | 7213 | if (!node_nr_slabs(n)) |
64dd6849 FM |
7214 | continue; |
7215 | ||
7216 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
7217 | list_for_each_entry(slab, &n->partial, slab_list) |
7218 | process_slab(t, s, slab, alloc, obj_map); | |
7219 | list_for_each_entry(slab, &n->full, slab_list) | |
7220 | process_slab(t, s, slab, alloc, obj_map); | |
64dd6849 FM |
7221 | spin_unlock_irqrestore(&n->list_lock, flags); |
7222 | } | |
7223 | ||
553c0369 OG |
7224 | /* Sort locations by count */ |
7225 | sort_r(t->loc, t->count, sizeof(struct location), | |
7226 | cmp_loc_by_count, NULL, NULL); | |
7227 | ||
b3fd64e1 | 7228 | bitmap_free(obj_map); |
64dd6849 FM |
7229 | return 0; |
7230 | } | |
7231 | ||
7232 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
7233 | { | |
7234 | struct seq_file *seq = file->private_data; | |
7235 | struct loc_track *t = seq->private; | |
7236 | ||
7237 | free_loc_track(t); | |
7238 | return seq_release_private(inode, file); | |
7239 | } | |
7240 | ||
7241 | static const struct file_operations slab_debugfs_fops = { | |
7242 | .open = slab_debug_trace_open, | |
7243 | .read = seq_read, | |
7244 | .llseek = seq_lseek, | |
7245 | .release = slab_debug_trace_release, | |
7246 | }; | |
7247 | ||
7248 | static void debugfs_slab_add(struct kmem_cache *s) | |
7249 | { | |
7250 | struct dentry *slab_cache_dir; | |
7251 | ||
7252 | if (unlikely(!slab_debugfs_root)) | |
7253 | return; | |
7254 | ||
7255 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
7256 | ||
7257 | debugfs_create_file("alloc_traces", 0400, | |
7258 | slab_cache_dir, s, &slab_debugfs_fops); | |
7259 | ||
7260 | debugfs_create_file("free_traces", 0400, | |
7261 | slab_cache_dir, s, &slab_debugfs_fops); | |
7262 | } | |
7263 | ||
7264 | void debugfs_slab_release(struct kmem_cache *s) | |
7265 | { | |
aa4a8605 | 7266 | debugfs_lookup_and_remove(s->name, slab_debugfs_root); |
64dd6849 FM |
7267 | } |
7268 | ||
7269 | static int __init slab_debugfs_init(void) | |
7270 | { | |
7271 | struct kmem_cache *s; | |
7272 | ||
7273 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
7274 | ||
7275 | list_for_each_entry(s, &slab_caches, list) | |
7276 | if (s->flags & SLAB_STORE_USER) | |
7277 | debugfs_slab_add(s); | |
7278 | ||
7279 | return 0; | |
7280 | ||
7281 | } | |
7282 | __initcall(slab_debugfs_init); | |
7283 | #endif | |
57ed3eda PE |
7284 | /* |
7285 | * The /proc/slabinfo ABI | |
7286 | */ | |
5b365771 | 7287 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 7288 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 7289 | { |
57ed3eda | 7290 | unsigned long nr_slabs = 0; |
205ab99d CL |
7291 | unsigned long nr_objs = 0; |
7292 | unsigned long nr_free = 0; | |
57ed3eda | 7293 | int node; |
fa45dc25 | 7294 | struct kmem_cache_node *n; |
57ed3eda | 7295 | |
fa45dc25 | 7296 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
7297 | nr_slabs += node_nr_slabs(n); |
7298 | nr_objs += node_nr_objs(n); | |
046f4c69 | 7299 | nr_free += count_partial_free_approx(n); |
57ed3eda PE |
7300 | } |
7301 | ||
0d7561c6 GC |
7302 | sinfo->active_objs = nr_objs - nr_free; |
7303 | sinfo->num_objs = nr_objs; | |
7304 | sinfo->active_slabs = nr_slabs; | |
7305 | sinfo->num_slabs = nr_slabs; | |
7306 | sinfo->objects_per_slab = oo_objects(s->oo); | |
7307 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda | 7308 | } |
5b365771 | 7309 | #endif /* CONFIG_SLUB_DEBUG */ |