]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
ca79b0c2 | 19 | #include <linux/highmem.h> |
1da177e4 LT |
20 | #include <linux/swap.h> |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/pagemap.h> | |
10ed273f | 23 | #include <linux/jiffies.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b8c73fc2 | 27 | #include <linux/kasan.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/topology.h> |
36 | #include <linux/sysctl.h> | |
37 | #include <linux/cpu.h> | |
38 | #include <linux/cpuset.h> | |
bdc8cb98 | 39 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
40 | #include <linux/nodemask.h> |
41 | #include <linux/vmalloc.h> | |
a6cccdc3 | 42 | #include <linux/vmstat.h> |
4be38e35 | 43 | #include <linux/mempolicy.h> |
4b94ffdc | 44 | #include <linux/memremap.h> |
6811378e | 45 | #include <linux/stop_machine.h> |
c713216d MG |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> | |
3fcfab16 | 48 | #include <linux/backing-dev.h> |
933e312e | 49 | #include <linux/fault-inject.h> |
a5d76b54 | 50 | #include <linux/page-isolation.h> |
eefa864b | 51 | #include <linux/page_ext.h> |
3ac7fe5a | 52 | #include <linux/debugobjects.h> |
dbb1f81c | 53 | #include <linux/kmemleak.h> |
56de7263 | 54 | #include <linux/compaction.h> |
0d3d062a | 55 | #include <trace/events/kmem.h> |
d379f01d | 56 | #include <trace/events/oom.h> |
268bb0ce | 57 | #include <linux/prefetch.h> |
6e543d57 | 58 | #include <linux/mm_inline.h> |
041d3a8c | 59 | #include <linux/migrate.h> |
949f7ec5 | 60 | #include <linux/hugetlb.h> |
8bd75c77 | 61 | #include <linux/sched/rt.h> |
5b3cc15a | 62 | #include <linux/sched/mm.h> |
48c96a36 | 63 | #include <linux/page_owner.h> |
0e1cc95b | 64 | #include <linux/kthread.h> |
4949148a | 65 | #include <linux/memcontrol.h> |
42c269c8 | 66 | #include <linux/ftrace.h> |
d92a8cfc | 67 | #include <linux/lockdep.h> |
556b969a | 68 | #include <linux/nmi.h> |
eb414681 | 69 | #include <linux/psi.h> |
1da177e4 | 70 | |
7ee3d4e8 | 71 | #include <asm/sections.h> |
1da177e4 | 72 | #include <asm/tlbflush.h> |
ac924c60 | 73 | #include <asm/div64.h> |
1da177e4 LT |
74 | #include "internal.h" |
75 | ||
c8e251fa CS |
76 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
77 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 78 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 79 | |
72812019 LS |
80 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
81 | DEFINE_PER_CPU(int, numa_node); | |
82 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
83 | #endif | |
84 | ||
4518085e KW |
85 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
86 | ||
7aac7898 LS |
87 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
88 | /* | |
89 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
90 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
91 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
92 | * defined in <linux/topology.h>. | |
93 | */ | |
94 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
95 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 96 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
97 | #endif |
98 | ||
bd233f53 | 99 | /* work_structs for global per-cpu drains */ |
d9367bd0 WY |
100 | struct pcpu_drain { |
101 | struct zone *zone; | |
102 | struct work_struct work; | |
103 | }; | |
bd233f53 | 104 | DEFINE_MUTEX(pcpu_drain_mutex); |
d9367bd0 | 105 | DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); |
bd233f53 | 106 | |
38addce8 | 107 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
58bea414 | 108 | volatile unsigned long latent_entropy __latent_entropy; |
38addce8 ER |
109 | EXPORT_SYMBOL(latent_entropy); |
110 | #endif | |
111 | ||
1da177e4 | 112 | /* |
13808910 | 113 | * Array of node states. |
1da177e4 | 114 | */ |
13808910 CL |
115 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
116 | [N_POSSIBLE] = NODE_MASK_ALL, | |
117 | [N_ONLINE] = { { [0] = 1UL } }, | |
118 | #ifndef CONFIG_NUMA | |
119 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
120 | #ifdef CONFIG_HIGHMEM | |
121 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b | 122 | #endif |
20b2f52b | 123 | [N_MEMORY] = { { [0] = 1UL } }, |
13808910 CL |
124 | [N_CPU] = { { [0] = 1UL } }, |
125 | #endif /* NUMA */ | |
126 | }; | |
127 | EXPORT_SYMBOL(node_states); | |
128 | ||
ca79b0c2 AK |
129 | atomic_long_t _totalram_pages __read_mostly; |
130 | EXPORT_SYMBOL(_totalram_pages); | |
cb45b0e9 | 131 | unsigned long totalreserve_pages __read_mostly; |
e48322ab | 132 | unsigned long totalcma_pages __read_mostly; |
ab8fabd4 | 133 | |
1b76b02f | 134 | int percpu_pagelist_fraction; |
dcce284a | 135 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 136 | |
bb14c2c7 VB |
137 | /* |
138 | * A cached value of the page's pageblock's migratetype, used when the page is | |
139 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | |
140 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | |
141 | * Also the migratetype set in the page does not necessarily match the pcplist | |
142 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | |
143 | * other index - this ensures that it will be put on the correct CMA freelist. | |
144 | */ | |
145 | static inline int get_pcppage_migratetype(struct page *page) | |
146 | { | |
147 | return page->index; | |
148 | } | |
149 | ||
150 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | |
151 | { | |
152 | page->index = migratetype; | |
153 | } | |
154 | ||
452aa699 RW |
155 | #ifdef CONFIG_PM_SLEEP |
156 | /* | |
157 | * The following functions are used by the suspend/hibernate code to temporarily | |
158 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
159 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
55f2503c PL |
160 | * they should always be called with system_transition_mutex held |
161 | * (gfp_allowed_mask also should only be modified with system_transition_mutex | |
162 | * held, unless the suspend/hibernate code is guaranteed not to run in parallel | |
163 | * with that modification). | |
452aa699 | 164 | */ |
c9e664f1 RW |
165 | |
166 | static gfp_t saved_gfp_mask; | |
167 | ||
168 | void pm_restore_gfp_mask(void) | |
452aa699 | 169 | { |
55f2503c | 170 | WARN_ON(!mutex_is_locked(&system_transition_mutex)); |
c9e664f1 RW |
171 | if (saved_gfp_mask) { |
172 | gfp_allowed_mask = saved_gfp_mask; | |
173 | saved_gfp_mask = 0; | |
174 | } | |
452aa699 RW |
175 | } |
176 | ||
c9e664f1 | 177 | void pm_restrict_gfp_mask(void) |
452aa699 | 178 | { |
55f2503c | 179 | WARN_ON(!mutex_is_locked(&system_transition_mutex)); |
c9e664f1 RW |
180 | WARN_ON(saved_gfp_mask); |
181 | saved_gfp_mask = gfp_allowed_mask; | |
d0164adc | 182 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
452aa699 | 183 | } |
f90ac398 MG |
184 | |
185 | bool pm_suspended_storage(void) | |
186 | { | |
d0164adc | 187 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
f90ac398 MG |
188 | return false; |
189 | return true; | |
190 | } | |
452aa699 RW |
191 | #endif /* CONFIG_PM_SLEEP */ |
192 | ||
d9c23400 | 193 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 194 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
195 | #endif |
196 | ||
d98c7a09 | 197 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 198 | |
1da177e4 LT |
199 | /* |
200 | * results with 256, 32 in the lowmem_reserve sysctl: | |
201 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
202 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
203 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
204 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 205 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
206 | * |
207 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
208 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 209 | */ |
d3cda233 | 210 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { |
4b51d669 | 211 | #ifdef CONFIG_ZONE_DMA |
d3cda233 | 212 | [ZONE_DMA] = 256, |
4b51d669 | 213 | #endif |
fb0e7942 | 214 | #ifdef CONFIG_ZONE_DMA32 |
d3cda233 | 215 | [ZONE_DMA32] = 256, |
fb0e7942 | 216 | #endif |
d3cda233 | 217 | [ZONE_NORMAL] = 32, |
e53ef38d | 218 | #ifdef CONFIG_HIGHMEM |
d3cda233 | 219 | [ZONE_HIGHMEM] = 0, |
e53ef38d | 220 | #endif |
d3cda233 | 221 | [ZONE_MOVABLE] = 0, |
2f1b6248 | 222 | }; |
1da177e4 LT |
223 | |
224 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 225 | |
15ad7cdc | 226 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 227 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 228 | "DMA", |
4b51d669 | 229 | #endif |
fb0e7942 | 230 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 231 | "DMA32", |
fb0e7942 | 232 | #endif |
2f1b6248 | 233 | "Normal", |
e53ef38d | 234 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 235 | "HighMem", |
e53ef38d | 236 | #endif |
2a1e274a | 237 | "Movable", |
033fbae9 DW |
238 | #ifdef CONFIG_ZONE_DEVICE |
239 | "Device", | |
240 | #endif | |
2f1b6248 CL |
241 | }; |
242 | ||
c999fbd3 | 243 | const char * const migratetype_names[MIGRATE_TYPES] = { |
60f30350 VB |
244 | "Unmovable", |
245 | "Movable", | |
246 | "Reclaimable", | |
247 | "HighAtomic", | |
248 | #ifdef CONFIG_CMA | |
249 | "CMA", | |
250 | #endif | |
251 | #ifdef CONFIG_MEMORY_ISOLATION | |
252 | "Isolate", | |
253 | #endif | |
254 | }; | |
255 | ||
f1e61557 KS |
256 | compound_page_dtor * const compound_page_dtors[] = { |
257 | NULL, | |
258 | free_compound_page, | |
259 | #ifdef CONFIG_HUGETLB_PAGE | |
260 | free_huge_page, | |
261 | #endif | |
9a982250 KS |
262 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
263 | free_transhuge_page, | |
264 | #endif | |
f1e61557 KS |
265 | }; |
266 | ||
1da177e4 | 267 | int min_free_kbytes = 1024; |
42aa83cb | 268 | int user_min_free_kbytes = -1; |
1c30844d | 269 | int watermark_boost_factor __read_mostly = 15000; |
795ae7a0 | 270 | int watermark_scale_factor = 10; |
1da177e4 | 271 | |
bbe5d993 OS |
272 | static unsigned long nr_kernel_pages __initdata; |
273 | static unsigned long nr_all_pages __initdata; | |
274 | static unsigned long dma_reserve __initdata; | |
1da177e4 | 275 | |
0ee332c1 | 276 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
bbe5d993 OS |
277 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; |
278 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | |
7f16f91f | 279 | static unsigned long required_kernelcore __initdata; |
a5c6d650 | 280 | static unsigned long required_kernelcore_percent __initdata; |
7f16f91f | 281 | static unsigned long required_movablecore __initdata; |
a5c6d650 | 282 | static unsigned long required_movablecore_percent __initdata; |
bbe5d993 | 283 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; |
7f16f91f | 284 | static bool mirrored_kernelcore __meminitdata; |
0ee332c1 TH |
285 | |
286 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
287 | int movable_zone; | |
288 | EXPORT_SYMBOL(movable_zone); | |
289 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 290 | |
418508c1 MS |
291 | #if MAX_NUMNODES > 1 |
292 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 293 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 294 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 295 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
296 | #endif |
297 | ||
9ef9acb0 MG |
298 | int page_group_by_mobility_disabled __read_mostly; |
299 | ||
3a80a7fa | 300 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
3c0c12cc WL |
301 | /* |
302 | * During boot we initialize deferred pages on-demand, as needed, but once | |
303 | * page_alloc_init_late() has finished, the deferred pages are all initialized, | |
304 | * and we can permanently disable that path. | |
305 | */ | |
306 | static DEFINE_STATIC_KEY_TRUE(deferred_pages); | |
307 | ||
308 | /* | |
309 | * Calling kasan_free_pages() only after deferred memory initialization | |
310 | * has completed. Poisoning pages during deferred memory init will greatly | |
311 | * lengthen the process and cause problem in large memory systems as the | |
312 | * deferred pages initialization is done with interrupt disabled. | |
313 | * | |
314 | * Assuming that there will be no reference to those newly initialized | |
315 | * pages before they are ever allocated, this should have no effect on | |
316 | * KASAN memory tracking as the poison will be properly inserted at page | |
317 | * allocation time. The only corner case is when pages are allocated by | |
318 | * on-demand allocation and then freed again before the deferred pages | |
319 | * initialization is done, but this is not likely to happen. | |
320 | */ | |
321 | static inline void kasan_free_nondeferred_pages(struct page *page, int order) | |
322 | { | |
323 | if (!static_branch_unlikely(&deferred_pages)) | |
324 | kasan_free_pages(page, order); | |
325 | } | |
326 | ||
3a80a7fa | 327 | /* Returns true if the struct page for the pfn is uninitialised */ |
0e1cc95b | 328 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
3a80a7fa | 329 | { |
ef70b6f4 MG |
330 | int nid = early_pfn_to_nid(pfn); |
331 | ||
332 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | |
3a80a7fa MG |
333 | return true; |
334 | ||
335 | return false; | |
336 | } | |
337 | ||
338 | /* | |
d3035be4 | 339 | * Returns true when the remaining initialisation should be deferred until |
3a80a7fa MG |
340 | * later in the boot cycle when it can be parallelised. |
341 | */ | |
d3035be4 PT |
342 | static bool __meminit |
343 | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | |
3a80a7fa | 344 | { |
d3035be4 PT |
345 | static unsigned long prev_end_pfn, nr_initialised; |
346 | ||
347 | /* | |
348 | * prev_end_pfn static that contains the end of previous zone | |
349 | * No need to protect because called very early in boot before smp_init. | |
350 | */ | |
351 | if (prev_end_pfn != end_pfn) { | |
352 | prev_end_pfn = end_pfn; | |
353 | nr_initialised = 0; | |
354 | } | |
355 | ||
3c2c6488 | 356 | /* Always populate low zones for address-constrained allocations */ |
d3035be4 | 357 | if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) |
3a80a7fa | 358 | return false; |
23b68cfa WY |
359 | |
360 | /* | |
361 | * We start only with one section of pages, more pages are added as | |
362 | * needed until the rest of deferred pages are initialized. | |
363 | */ | |
d3035be4 | 364 | nr_initialised++; |
23b68cfa | 365 | if ((nr_initialised > PAGES_PER_SECTION) && |
d3035be4 PT |
366 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { |
367 | NODE_DATA(nid)->first_deferred_pfn = pfn; | |
368 | return true; | |
3a80a7fa | 369 | } |
d3035be4 | 370 | return false; |
3a80a7fa MG |
371 | } |
372 | #else | |
3c0c12cc WL |
373 | #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) |
374 | ||
3a80a7fa MG |
375 | static inline bool early_page_uninitialised(unsigned long pfn) |
376 | { | |
377 | return false; | |
378 | } | |
379 | ||
d3035be4 | 380 | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) |
3a80a7fa | 381 | { |
d3035be4 | 382 | return false; |
3a80a7fa MG |
383 | } |
384 | #endif | |
385 | ||
0b423ca2 MG |
386 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
387 | static inline unsigned long *get_pageblock_bitmap(struct page *page, | |
388 | unsigned long pfn) | |
389 | { | |
390 | #ifdef CONFIG_SPARSEMEM | |
391 | return __pfn_to_section(pfn)->pageblock_flags; | |
392 | #else | |
393 | return page_zone(page)->pageblock_flags; | |
394 | #endif /* CONFIG_SPARSEMEM */ | |
395 | } | |
396 | ||
397 | static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) | |
398 | { | |
399 | #ifdef CONFIG_SPARSEMEM | |
400 | pfn &= (PAGES_PER_SECTION-1); | |
401 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
402 | #else | |
403 | pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); | |
404 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
405 | #endif /* CONFIG_SPARSEMEM */ | |
406 | } | |
407 | ||
408 | /** | |
409 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | |
410 | * @page: The page within the block of interest | |
411 | * @pfn: The target page frame number | |
412 | * @end_bitidx: The last bit of interest to retrieve | |
413 | * @mask: mask of bits that the caller is interested in | |
414 | * | |
415 | * Return: pageblock_bits flags | |
416 | */ | |
417 | static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, | |
418 | unsigned long pfn, | |
419 | unsigned long end_bitidx, | |
420 | unsigned long mask) | |
421 | { | |
422 | unsigned long *bitmap; | |
423 | unsigned long bitidx, word_bitidx; | |
424 | unsigned long word; | |
425 | ||
426 | bitmap = get_pageblock_bitmap(page, pfn); | |
427 | bitidx = pfn_to_bitidx(page, pfn); | |
428 | word_bitidx = bitidx / BITS_PER_LONG; | |
429 | bitidx &= (BITS_PER_LONG-1); | |
430 | ||
431 | word = bitmap[word_bitidx]; | |
432 | bitidx += end_bitidx; | |
433 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
434 | } | |
435 | ||
436 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | |
437 | unsigned long end_bitidx, | |
438 | unsigned long mask) | |
439 | { | |
440 | return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); | |
441 | } | |
442 | ||
443 | static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) | |
444 | { | |
445 | return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); | |
446 | } | |
447 | ||
448 | /** | |
449 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | |
450 | * @page: The page within the block of interest | |
451 | * @flags: The flags to set | |
452 | * @pfn: The target page frame number | |
453 | * @end_bitidx: The last bit of interest | |
454 | * @mask: mask of bits that the caller is interested in | |
455 | */ | |
456 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | |
457 | unsigned long pfn, | |
458 | unsigned long end_bitidx, | |
459 | unsigned long mask) | |
460 | { | |
461 | unsigned long *bitmap; | |
462 | unsigned long bitidx, word_bitidx; | |
463 | unsigned long old_word, word; | |
464 | ||
465 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
125b860b | 466 | BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); |
0b423ca2 MG |
467 | |
468 | bitmap = get_pageblock_bitmap(page, pfn); | |
469 | bitidx = pfn_to_bitidx(page, pfn); | |
470 | word_bitidx = bitidx / BITS_PER_LONG; | |
471 | bitidx &= (BITS_PER_LONG-1); | |
472 | ||
473 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | |
474 | ||
475 | bitidx += end_bitidx; | |
476 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
477 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
478 | ||
479 | word = READ_ONCE(bitmap[word_bitidx]); | |
480 | for (;;) { | |
481 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
482 | if (word == old_word) | |
483 | break; | |
484 | word = old_word; | |
485 | } | |
486 | } | |
3a80a7fa | 487 | |
ee6f509c | 488 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 489 | { |
5d0f3f72 KM |
490 | if (unlikely(page_group_by_mobility_disabled && |
491 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
492 | migratetype = MIGRATE_UNMOVABLE; |
493 | ||
b2a0ac88 MG |
494 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
495 | PB_migrate, PB_migrate_end); | |
496 | } | |
497 | ||
13e7444b | 498 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 499 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 500 | { |
bdc8cb98 DH |
501 | int ret = 0; |
502 | unsigned seq; | |
503 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 504 | unsigned long sp, start_pfn; |
c6a57e19 | 505 | |
bdc8cb98 DH |
506 | do { |
507 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
508 | start_pfn = zone->zone_start_pfn; |
509 | sp = zone->spanned_pages; | |
108bcc96 | 510 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
511 | ret = 1; |
512 | } while (zone_span_seqretry(zone, seq)); | |
513 | ||
b5e6a5a2 | 514 | if (ret) |
613813e8 DH |
515 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
516 | pfn, zone_to_nid(zone), zone->name, | |
517 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 518 | |
bdc8cb98 | 519 | return ret; |
c6a57e19 DH |
520 | } |
521 | ||
522 | static int page_is_consistent(struct zone *zone, struct page *page) | |
523 | { | |
14e07298 | 524 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 525 | return 0; |
1da177e4 | 526 | if (zone != page_zone(page)) |
c6a57e19 DH |
527 | return 0; |
528 | ||
529 | return 1; | |
530 | } | |
531 | /* | |
532 | * Temporary debugging check for pages not lying within a given zone. | |
533 | */ | |
d73d3c9f | 534 | static int __maybe_unused bad_range(struct zone *zone, struct page *page) |
c6a57e19 DH |
535 | { |
536 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 537 | return 1; |
c6a57e19 DH |
538 | if (!page_is_consistent(zone, page)) |
539 | return 1; | |
540 | ||
1da177e4 LT |
541 | return 0; |
542 | } | |
13e7444b | 543 | #else |
d73d3c9f | 544 | static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) |
13e7444b NP |
545 | { |
546 | return 0; | |
547 | } | |
548 | #endif | |
549 | ||
d230dec1 KS |
550 | static void bad_page(struct page *page, const char *reason, |
551 | unsigned long bad_flags) | |
1da177e4 | 552 | { |
d936cf9b HD |
553 | static unsigned long resume; |
554 | static unsigned long nr_shown; | |
555 | static unsigned long nr_unshown; | |
556 | ||
557 | /* | |
558 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
559 | * or allow a steady drip of one report per second. | |
560 | */ | |
561 | if (nr_shown == 60) { | |
562 | if (time_before(jiffies, resume)) { | |
563 | nr_unshown++; | |
564 | goto out; | |
565 | } | |
566 | if (nr_unshown) { | |
ff8e8116 | 567 | pr_alert( |
1e9e6365 | 568 | "BUG: Bad page state: %lu messages suppressed\n", |
d936cf9b HD |
569 | nr_unshown); |
570 | nr_unshown = 0; | |
571 | } | |
572 | nr_shown = 0; | |
573 | } | |
574 | if (nr_shown++ == 0) | |
575 | resume = jiffies + 60 * HZ; | |
576 | ||
ff8e8116 | 577 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 578 | current->comm, page_to_pfn(page)); |
ff8e8116 VB |
579 | __dump_page(page, reason); |
580 | bad_flags &= page->flags; | |
581 | if (bad_flags) | |
582 | pr_alert("bad because of flags: %#lx(%pGp)\n", | |
583 | bad_flags, &bad_flags); | |
4e462112 | 584 | dump_page_owner(page); |
3dc14741 | 585 | |
4f31888c | 586 | print_modules(); |
1da177e4 | 587 | dump_stack(); |
d936cf9b | 588 | out: |
8cc3b392 | 589 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 590 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 591 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
592 | } |
593 | ||
1da177e4 LT |
594 | /* |
595 | * Higher-order pages are called "compound pages". They are structured thusly: | |
596 | * | |
1d798ca3 | 597 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 598 | * |
1d798ca3 KS |
599 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
600 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 601 | * |
1d798ca3 KS |
602 | * The first tail page's ->compound_dtor holds the offset in array of compound |
603 | * page destructors. See compound_page_dtors. | |
1da177e4 | 604 | * |
1d798ca3 | 605 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 606 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 607 | */ |
d98c7a09 | 608 | |
9a982250 | 609 | void free_compound_page(struct page *page) |
d98c7a09 | 610 | { |
d85f3385 | 611 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
612 | } |
613 | ||
d00181b9 | 614 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
615 | { |
616 | int i; | |
617 | int nr_pages = 1 << order; | |
618 | ||
f1e61557 | 619 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
18229df5 AW |
620 | set_compound_order(page, order); |
621 | __SetPageHead(page); | |
622 | for (i = 1; i < nr_pages; i++) { | |
623 | struct page *p = page + i; | |
58a84aa9 | 624 | set_page_count(p, 0); |
1c290f64 | 625 | p->mapping = TAIL_MAPPING; |
1d798ca3 | 626 | set_compound_head(p, page); |
18229df5 | 627 | } |
53f9263b | 628 | atomic_set(compound_mapcount_ptr(page), -1); |
18229df5 AW |
629 | } |
630 | ||
c0a32fc5 SG |
631 | #ifdef CONFIG_DEBUG_PAGEALLOC |
632 | unsigned int _debug_guardpage_minorder; | |
ea6eabb0 CB |
633 | bool _debug_pagealloc_enabled __read_mostly |
634 | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | |
505f6d22 | 635 | EXPORT_SYMBOL(_debug_pagealloc_enabled); |
e30825f1 JK |
636 | bool _debug_guardpage_enabled __read_mostly; |
637 | ||
031bc574 JK |
638 | static int __init early_debug_pagealloc(char *buf) |
639 | { | |
640 | if (!buf) | |
641 | return -EINVAL; | |
2a138dc7 | 642 | return kstrtobool(buf, &_debug_pagealloc_enabled); |
031bc574 JK |
643 | } |
644 | early_param("debug_pagealloc", early_debug_pagealloc); | |
645 | ||
e30825f1 JK |
646 | static bool need_debug_guardpage(void) |
647 | { | |
031bc574 JK |
648 | /* If we don't use debug_pagealloc, we don't need guard page */ |
649 | if (!debug_pagealloc_enabled()) | |
650 | return false; | |
651 | ||
f1c1e9f7 JK |
652 | if (!debug_guardpage_minorder()) |
653 | return false; | |
654 | ||
e30825f1 JK |
655 | return true; |
656 | } | |
657 | ||
658 | static void init_debug_guardpage(void) | |
659 | { | |
031bc574 JK |
660 | if (!debug_pagealloc_enabled()) |
661 | return; | |
662 | ||
f1c1e9f7 JK |
663 | if (!debug_guardpage_minorder()) |
664 | return; | |
665 | ||
e30825f1 JK |
666 | _debug_guardpage_enabled = true; |
667 | } | |
668 | ||
669 | struct page_ext_operations debug_guardpage_ops = { | |
670 | .need = need_debug_guardpage, | |
671 | .init = init_debug_guardpage, | |
672 | }; | |
c0a32fc5 SG |
673 | |
674 | static int __init debug_guardpage_minorder_setup(char *buf) | |
675 | { | |
676 | unsigned long res; | |
677 | ||
678 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
1170532b | 679 | pr_err("Bad debug_guardpage_minorder value\n"); |
c0a32fc5 SG |
680 | return 0; |
681 | } | |
682 | _debug_guardpage_minorder = res; | |
1170532b | 683 | pr_info("Setting debug_guardpage_minorder to %lu\n", res); |
c0a32fc5 SG |
684 | return 0; |
685 | } | |
f1c1e9f7 | 686 | early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); |
c0a32fc5 | 687 | |
acbc15a4 | 688 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
2847cf95 | 689 | unsigned int order, int migratetype) |
c0a32fc5 | 690 | { |
e30825f1 JK |
691 | struct page_ext *page_ext; |
692 | ||
693 | if (!debug_guardpage_enabled()) | |
acbc15a4 JK |
694 | return false; |
695 | ||
696 | if (order >= debug_guardpage_minorder()) | |
697 | return false; | |
e30825f1 JK |
698 | |
699 | page_ext = lookup_page_ext(page); | |
f86e4271 | 700 | if (unlikely(!page_ext)) |
acbc15a4 | 701 | return false; |
f86e4271 | 702 | |
e30825f1 JK |
703 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
704 | ||
2847cf95 JK |
705 | INIT_LIST_HEAD(&page->lru); |
706 | set_page_private(page, order); | |
707 | /* Guard pages are not available for any usage */ | |
708 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | |
acbc15a4 JK |
709 | |
710 | return true; | |
c0a32fc5 SG |
711 | } |
712 | ||
2847cf95 JK |
713 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
714 | unsigned int order, int migratetype) | |
c0a32fc5 | 715 | { |
e30825f1 JK |
716 | struct page_ext *page_ext; |
717 | ||
718 | if (!debug_guardpage_enabled()) | |
719 | return; | |
720 | ||
721 | page_ext = lookup_page_ext(page); | |
f86e4271 YS |
722 | if (unlikely(!page_ext)) |
723 | return; | |
724 | ||
e30825f1 JK |
725 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
726 | ||
2847cf95 JK |
727 | set_page_private(page, 0); |
728 | if (!is_migrate_isolate(migratetype)) | |
729 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | |
c0a32fc5 SG |
730 | } |
731 | #else | |
980ac167 | 732 | struct page_ext_operations debug_guardpage_ops; |
acbc15a4 JK |
733 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
734 | unsigned int order, int migratetype) { return false; } | |
2847cf95 JK |
735 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
736 | unsigned int order, int migratetype) {} | |
c0a32fc5 SG |
737 | #endif |
738 | ||
7aeb09f9 | 739 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 740 | { |
4c21e2f2 | 741 | set_page_private(page, order); |
676165a8 | 742 | __SetPageBuddy(page); |
1da177e4 LT |
743 | } |
744 | ||
745 | static inline void rmv_page_order(struct page *page) | |
746 | { | |
676165a8 | 747 | __ClearPageBuddy(page); |
4c21e2f2 | 748 | set_page_private(page, 0); |
1da177e4 LT |
749 | } |
750 | ||
1da177e4 LT |
751 | /* |
752 | * This function checks whether a page is free && is the buddy | |
6e292b9b | 753 | * we can coalesce a page and its buddy if |
13ad59df | 754 | * (a) the buddy is not in a hole (check before calling!) && |
676165a8 | 755 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
756 | * (c) a page and its buddy have the same order && |
757 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 758 | * |
6e292b9b MW |
759 | * For recording whether a page is in the buddy system, we set PageBuddy. |
760 | * Setting, clearing, and testing PageBuddy is serialized by zone->lock. | |
1da177e4 | 761 | * |
676165a8 | 762 | * For recording page's order, we use page_private(page). |
1da177e4 | 763 | */ |
cb2b95e1 | 764 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 765 | unsigned int order) |
1da177e4 | 766 | { |
c0a32fc5 | 767 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
768 | if (page_zone_id(page) != page_zone_id(buddy)) |
769 | return 0; | |
770 | ||
4c5018ce WY |
771 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
772 | ||
c0a32fc5 SG |
773 | return 1; |
774 | } | |
775 | ||
cb2b95e1 | 776 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
777 | /* |
778 | * zone check is done late to avoid uselessly | |
779 | * calculating zone/node ids for pages that could | |
780 | * never merge. | |
781 | */ | |
782 | if (page_zone_id(page) != page_zone_id(buddy)) | |
783 | return 0; | |
784 | ||
4c5018ce WY |
785 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
786 | ||
6aa3001b | 787 | return 1; |
676165a8 | 788 | } |
6aa3001b | 789 | return 0; |
1da177e4 LT |
790 | } |
791 | ||
792 | /* | |
793 | * Freeing function for a buddy system allocator. | |
794 | * | |
795 | * The concept of a buddy system is to maintain direct-mapped table | |
796 | * (containing bit values) for memory blocks of various "orders". | |
797 | * The bottom level table contains the map for the smallest allocatable | |
798 | * units of memory (here, pages), and each level above it describes | |
799 | * pairs of units from the levels below, hence, "buddies". | |
800 | * At a high level, all that happens here is marking the table entry | |
801 | * at the bottom level available, and propagating the changes upward | |
802 | * as necessary, plus some accounting needed to play nicely with other | |
803 | * parts of the VM system. | |
804 | * At each level, we keep a list of pages, which are heads of continuous | |
6e292b9b MW |
805 | * free pages of length of (1 << order) and marked with PageBuddy. |
806 | * Page's order is recorded in page_private(page) field. | |
1da177e4 | 807 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
808 | * other. That is, if we allocate a small block, and both were |
809 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 810 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 811 | * triggers coalescing into a block of larger size. |
1da177e4 | 812 | * |
6d49e352 | 813 | * -- nyc |
1da177e4 LT |
814 | */ |
815 | ||
48db57f8 | 816 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 817 | unsigned long pfn, |
ed0ae21d MG |
818 | struct zone *zone, unsigned int order, |
819 | int migratetype) | |
1da177e4 | 820 | { |
76741e77 VB |
821 | unsigned long combined_pfn; |
822 | unsigned long uninitialized_var(buddy_pfn); | |
6dda9d55 | 823 | struct page *buddy; |
d9dddbf5 VB |
824 | unsigned int max_order; |
825 | ||
826 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); | |
1da177e4 | 827 | |
d29bb978 | 828 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 829 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 830 | |
ed0ae21d | 831 | VM_BUG_ON(migratetype == -1); |
d9dddbf5 | 832 | if (likely(!is_migrate_isolate(migratetype))) |
8f82b55d | 833 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
ed0ae21d | 834 | |
76741e77 | 835 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
309381fe | 836 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 837 | |
d9dddbf5 | 838 | continue_merging: |
3c605096 | 839 | while (order < max_order - 1) { |
76741e77 VB |
840 | buddy_pfn = __find_buddy_pfn(pfn, order); |
841 | buddy = page + (buddy_pfn - pfn); | |
13ad59df VB |
842 | |
843 | if (!pfn_valid_within(buddy_pfn)) | |
844 | goto done_merging; | |
cb2b95e1 | 845 | if (!page_is_buddy(page, buddy, order)) |
d9dddbf5 | 846 | goto done_merging; |
c0a32fc5 SG |
847 | /* |
848 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
849 | * merge with it and move up one order. | |
850 | */ | |
851 | if (page_is_guard(buddy)) { | |
2847cf95 | 852 | clear_page_guard(zone, buddy, order, migratetype); |
c0a32fc5 SG |
853 | } else { |
854 | list_del(&buddy->lru); | |
855 | zone->free_area[order].nr_free--; | |
856 | rmv_page_order(buddy); | |
857 | } | |
76741e77 VB |
858 | combined_pfn = buddy_pfn & pfn; |
859 | page = page + (combined_pfn - pfn); | |
860 | pfn = combined_pfn; | |
1da177e4 LT |
861 | order++; |
862 | } | |
d9dddbf5 VB |
863 | if (max_order < MAX_ORDER) { |
864 | /* If we are here, it means order is >= pageblock_order. | |
865 | * We want to prevent merge between freepages on isolate | |
866 | * pageblock and normal pageblock. Without this, pageblock | |
867 | * isolation could cause incorrect freepage or CMA accounting. | |
868 | * | |
869 | * We don't want to hit this code for the more frequent | |
870 | * low-order merging. | |
871 | */ | |
872 | if (unlikely(has_isolate_pageblock(zone))) { | |
873 | int buddy_mt; | |
874 | ||
76741e77 VB |
875 | buddy_pfn = __find_buddy_pfn(pfn, order); |
876 | buddy = page + (buddy_pfn - pfn); | |
d9dddbf5 VB |
877 | buddy_mt = get_pageblock_migratetype(buddy); |
878 | ||
879 | if (migratetype != buddy_mt | |
880 | && (is_migrate_isolate(migratetype) || | |
881 | is_migrate_isolate(buddy_mt))) | |
882 | goto done_merging; | |
883 | } | |
884 | max_order++; | |
885 | goto continue_merging; | |
886 | } | |
887 | ||
888 | done_merging: | |
1da177e4 | 889 | set_page_order(page, order); |
6dda9d55 CZ |
890 | |
891 | /* | |
892 | * If this is not the largest possible page, check if the buddy | |
893 | * of the next-highest order is free. If it is, it's possible | |
894 | * that pages are being freed that will coalesce soon. In case, | |
895 | * that is happening, add the free page to the tail of the list | |
896 | * so it's less likely to be used soon and more likely to be merged | |
897 | * as a higher order page | |
898 | */ | |
13ad59df | 899 | if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { |
6dda9d55 | 900 | struct page *higher_page, *higher_buddy; |
76741e77 VB |
901 | combined_pfn = buddy_pfn & pfn; |
902 | higher_page = page + (combined_pfn - pfn); | |
903 | buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); | |
904 | higher_buddy = higher_page + (buddy_pfn - combined_pfn); | |
b4fb8f66 TL |
905 | if (pfn_valid_within(buddy_pfn) && |
906 | page_is_buddy(higher_page, higher_buddy, order + 1)) { | |
6dda9d55 CZ |
907 | list_add_tail(&page->lru, |
908 | &zone->free_area[order].free_list[migratetype]); | |
909 | goto out; | |
910 | } | |
911 | } | |
912 | ||
913 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
914 | out: | |
1da177e4 LT |
915 | zone->free_area[order].nr_free++; |
916 | } | |
917 | ||
7bfec6f4 MG |
918 | /* |
919 | * A bad page could be due to a number of fields. Instead of multiple branches, | |
920 | * try and check multiple fields with one check. The caller must do a detailed | |
921 | * check if necessary. | |
922 | */ | |
923 | static inline bool page_expected_state(struct page *page, | |
924 | unsigned long check_flags) | |
925 | { | |
926 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
927 | return false; | |
928 | ||
929 | if (unlikely((unsigned long)page->mapping | | |
930 | page_ref_count(page) | | |
931 | #ifdef CONFIG_MEMCG | |
932 | (unsigned long)page->mem_cgroup | | |
933 | #endif | |
934 | (page->flags & check_flags))) | |
935 | return false; | |
936 | ||
937 | return true; | |
938 | } | |
939 | ||
bb552ac6 | 940 | static void free_pages_check_bad(struct page *page) |
1da177e4 | 941 | { |
7bfec6f4 MG |
942 | const char *bad_reason; |
943 | unsigned long bad_flags; | |
944 | ||
7bfec6f4 MG |
945 | bad_reason = NULL; |
946 | bad_flags = 0; | |
f0b791a3 | 947 | |
53f9263b | 948 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
949 | bad_reason = "nonzero mapcount"; |
950 | if (unlikely(page->mapping != NULL)) | |
951 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 952 | if (unlikely(page_ref_count(page) != 0)) |
0139aa7b | 953 | bad_reason = "nonzero _refcount"; |
f0b791a3 DH |
954 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { |
955 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
956 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
957 | } | |
9edad6ea JW |
958 | #ifdef CONFIG_MEMCG |
959 | if (unlikely(page->mem_cgroup)) | |
960 | bad_reason = "page still charged to cgroup"; | |
961 | #endif | |
7bfec6f4 | 962 | bad_page(page, bad_reason, bad_flags); |
bb552ac6 MG |
963 | } |
964 | ||
965 | static inline int free_pages_check(struct page *page) | |
966 | { | |
da838d4f | 967 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
bb552ac6 | 968 | return 0; |
bb552ac6 MG |
969 | |
970 | /* Something has gone sideways, find it */ | |
971 | free_pages_check_bad(page); | |
7bfec6f4 | 972 | return 1; |
1da177e4 LT |
973 | } |
974 | ||
4db7548c MG |
975 | static int free_tail_pages_check(struct page *head_page, struct page *page) |
976 | { | |
977 | int ret = 1; | |
978 | ||
979 | /* | |
980 | * We rely page->lru.next never has bit 0 set, unless the page | |
981 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
982 | */ | |
983 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
984 | ||
985 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | |
986 | ret = 0; | |
987 | goto out; | |
988 | } | |
989 | switch (page - head_page) { | |
990 | case 1: | |
4da1984e | 991 | /* the first tail page: ->mapping may be compound_mapcount() */ |
4db7548c MG |
992 | if (unlikely(compound_mapcount(page))) { |
993 | bad_page(page, "nonzero compound_mapcount", 0); | |
994 | goto out; | |
995 | } | |
996 | break; | |
997 | case 2: | |
998 | /* | |
999 | * the second tail page: ->mapping is | |
fa3015b7 | 1000 | * deferred_list.next -- ignore value. |
4db7548c MG |
1001 | */ |
1002 | break; | |
1003 | default: | |
1004 | if (page->mapping != TAIL_MAPPING) { | |
1005 | bad_page(page, "corrupted mapping in tail page", 0); | |
1006 | goto out; | |
1007 | } | |
1008 | break; | |
1009 | } | |
1010 | if (unlikely(!PageTail(page))) { | |
1011 | bad_page(page, "PageTail not set", 0); | |
1012 | goto out; | |
1013 | } | |
1014 | if (unlikely(compound_head(page) != head_page)) { | |
1015 | bad_page(page, "compound_head not consistent", 0); | |
1016 | goto out; | |
1017 | } | |
1018 | ret = 0; | |
1019 | out: | |
1020 | page->mapping = NULL; | |
1021 | clear_compound_head(page); | |
1022 | return ret; | |
1023 | } | |
1024 | ||
e2769dbd MG |
1025 | static __always_inline bool free_pages_prepare(struct page *page, |
1026 | unsigned int order, bool check_free) | |
4db7548c | 1027 | { |
e2769dbd | 1028 | int bad = 0; |
4db7548c | 1029 | |
4db7548c MG |
1030 | VM_BUG_ON_PAGE(PageTail(page), page); |
1031 | ||
e2769dbd | 1032 | trace_mm_page_free(page, order); |
e2769dbd MG |
1033 | |
1034 | /* | |
1035 | * Check tail pages before head page information is cleared to | |
1036 | * avoid checking PageCompound for order-0 pages. | |
1037 | */ | |
1038 | if (unlikely(order)) { | |
1039 | bool compound = PageCompound(page); | |
1040 | int i; | |
1041 | ||
1042 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | |
4db7548c | 1043 | |
9a73f61b KS |
1044 | if (compound) |
1045 | ClearPageDoubleMap(page); | |
e2769dbd MG |
1046 | for (i = 1; i < (1 << order); i++) { |
1047 | if (compound) | |
1048 | bad += free_tail_pages_check(page, page + i); | |
1049 | if (unlikely(free_pages_check(page + i))) { | |
1050 | bad++; | |
1051 | continue; | |
1052 | } | |
1053 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1054 | } | |
1055 | } | |
bda807d4 | 1056 | if (PageMappingFlags(page)) |
4db7548c | 1057 | page->mapping = NULL; |
c4159a75 | 1058 | if (memcg_kmem_enabled() && PageKmemcg(page)) |
4949148a | 1059 | memcg_kmem_uncharge(page, order); |
e2769dbd MG |
1060 | if (check_free) |
1061 | bad += free_pages_check(page); | |
1062 | if (bad) | |
1063 | return false; | |
4db7548c | 1064 | |
e2769dbd MG |
1065 | page_cpupid_reset_last(page); |
1066 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1067 | reset_page_owner(page, order); | |
4db7548c MG |
1068 | |
1069 | if (!PageHighMem(page)) { | |
1070 | debug_check_no_locks_freed(page_address(page), | |
e2769dbd | 1071 | PAGE_SIZE << order); |
4db7548c | 1072 | debug_check_no_obj_freed(page_address(page), |
e2769dbd | 1073 | PAGE_SIZE << order); |
4db7548c | 1074 | } |
e2769dbd MG |
1075 | arch_free_page(page, order); |
1076 | kernel_poison_pages(page, 1 << order, 0); | |
1077 | kernel_map_pages(page, 1 << order, 0); | |
3c0c12cc | 1078 | kasan_free_nondeferred_pages(page, order); |
4db7548c | 1079 | |
4db7548c MG |
1080 | return true; |
1081 | } | |
1082 | ||
e2769dbd MG |
1083 | #ifdef CONFIG_DEBUG_VM |
1084 | static inline bool free_pcp_prepare(struct page *page) | |
1085 | { | |
1086 | return free_pages_prepare(page, 0, true); | |
1087 | } | |
1088 | ||
1089 | static inline bool bulkfree_pcp_prepare(struct page *page) | |
1090 | { | |
1091 | return false; | |
1092 | } | |
1093 | #else | |
1094 | static bool free_pcp_prepare(struct page *page) | |
1095 | { | |
1096 | return free_pages_prepare(page, 0, false); | |
1097 | } | |
1098 | ||
4db7548c MG |
1099 | static bool bulkfree_pcp_prepare(struct page *page) |
1100 | { | |
1101 | return free_pages_check(page); | |
1102 | } | |
1103 | #endif /* CONFIG_DEBUG_VM */ | |
1104 | ||
97334162 AL |
1105 | static inline void prefetch_buddy(struct page *page) |
1106 | { | |
1107 | unsigned long pfn = page_to_pfn(page); | |
1108 | unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); | |
1109 | struct page *buddy = page + (buddy_pfn - pfn); | |
1110 | ||
1111 | prefetch(buddy); | |
1112 | } | |
1113 | ||
1da177e4 | 1114 | /* |
5f8dcc21 | 1115 | * Frees a number of pages from the PCP lists |
1da177e4 | 1116 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 1117 | * count is the number of pages to free. |
1da177e4 LT |
1118 | * |
1119 | * If the zone was previously in an "all pages pinned" state then look to | |
1120 | * see if this freeing clears that state. | |
1121 | * | |
1122 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
1123 | * pinned" detection logic. | |
1124 | */ | |
5f8dcc21 MG |
1125 | static void free_pcppages_bulk(struct zone *zone, int count, |
1126 | struct per_cpu_pages *pcp) | |
1da177e4 | 1127 | { |
5f8dcc21 | 1128 | int migratetype = 0; |
a6f9edd6 | 1129 | int batch_free = 0; |
97334162 | 1130 | int prefetch_nr = 0; |
3777999d | 1131 | bool isolated_pageblocks; |
0a5f4e5b AL |
1132 | struct page *page, *tmp; |
1133 | LIST_HEAD(head); | |
f2260e6b | 1134 | |
e5b31ac2 | 1135 | while (count) { |
5f8dcc21 MG |
1136 | struct list_head *list; |
1137 | ||
1138 | /* | |
a6f9edd6 MG |
1139 | * Remove pages from lists in a round-robin fashion. A |
1140 | * batch_free count is maintained that is incremented when an | |
1141 | * empty list is encountered. This is so more pages are freed | |
1142 | * off fuller lists instead of spinning excessively around empty | |
1143 | * lists | |
5f8dcc21 MG |
1144 | */ |
1145 | do { | |
a6f9edd6 | 1146 | batch_free++; |
5f8dcc21 MG |
1147 | if (++migratetype == MIGRATE_PCPTYPES) |
1148 | migratetype = 0; | |
1149 | list = &pcp->lists[migratetype]; | |
1150 | } while (list_empty(list)); | |
48db57f8 | 1151 | |
1d16871d NK |
1152 | /* This is the only non-empty list. Free them all. */ |
1153 | if (batch_free == MIGRATE_PCPTYPES) | |
e5b31ac2 | 1154 | batch_free = count; |
1d16871d | 1155 | |
a6f9edd6 | 1156 | do { |
a16601c5 | 1157 | page = list_last_entry(list, struct page, lru); |
0a5f4e5b | 1158 | /* must delete to avoid corrupting pcp list */ |
a6f9edd6 | 1159 | list_del(&page->lru); |
77ba9062 | 1160 | pcp->count--; |
aa016d14 | 1161 | |
4db7548c MG |
1162 | if (bulkfree_pcp_prepare(page)) |
1163 | continue; | |
1164 | ||
0a5f4e5b | 1165 | list_add_tail(&page->lru, &head); |
97334162 AL |
1166 | |
1167 | /* | |
1168 | * We are going to put the page back to the global | |
1169 | * pool, prefetch its buddy to speed up later access | |
1170 | * under zone->lock. It is believed the overhead of | |
1171 | * an additional test and calculating buddy_pfn here | |
1172 | * can be offset by reduced memory latency later. To | |
1173 | * avoid excessive prefetching due to large count, only | |
1174 | * prefetch buddy for the first pcp->batch nr of pages. | |
1175 | */ | |
1176 | if (prefetch_nr++ < pcp->batch) | |
1177 | prefetch_buddy(page); | |
e5b31ac2 | 1178 | } while (--count && --batch_free && !list_empty(list)); |
1da177e4 | 1179 | } |
0a5f4e5b AL |
1180 | |
1181 | spin_lock(&zone->lock); | |
1182 | isolated_pageblocks = has_isolate_pageblock(zone); | |
1183 | ||
1184 | /* | |
1185 | * Use safe version since after __free_one_page(), | |
1186 | * page->lru.next will not point to original list. | |
1187 | */ | |
1188 | list_for_each_entry_safe(page, tmp, &head, lru) { | |
1189 | int mt = get_pcppage_migratetype(page); | |
1190 | /* MIGRATE_ISOLATE page should not go to pcplists */ | |
1191 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | |
1192 | /* Pageblock could have been isolated meanwhile */ | |
1193 | if (unlikely(isolated_pageblocks)) | |
1194 | mt = get_pageblock_migratetype(page); | |
1195 | ||
1196 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); | |
1197 | trace_mm_page_pcpu_drain(page, 0, mt); | |
1198 | } | |
d34b0733 | 1199 | spin_unlock(&zone->lock); |
1da177e4 LT |
1200 | } |
1201 | ||
dc4b0caf MG |
1202 | static void free_one_page(struct zone *zone, |
1203 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 1204 | unsigned int order, |
ed0ae21d | 1205 | int migratetype) |
1da177e4 | 1206 | { |
d34b0733 | 1207 | spin_lock(&zone->lock); |
ad53f92e JK |
1208 | if (unlikely(has_isolate_pageblock(zone) || |
1209 | is_migrate_isolate(migratetype))) { | |
1210 | migratetype = get_pfnblock_migratetype(page, pfn); | |
ad53f92e | 1211 | } |
dc4b0caf | 1212 | __free_one_page(page, pfn, zone, order, migratetype); |
d34b0733 | 1213 | spin_unlock(&zone->lock); |
48db57f8 NP |
1214 | } |
1215 | ||
1e8ce83c | 1216 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
d0dc12e8 | 1217 | unsigned long zone, int nid) |
1e8ce83c | 1218 | { |
d0dc12e8 | 1219 | mm_zero_struct_page(page); |
1e8ce83c | 1220 | set_page_links(page, zone, nid, pfn); |
1e8ce83c RH |
1221 | init_page_count(page); |
1222 | page_mapcount_reset(page); | |
1223 | page_cpupid_reset_last(page); | |
2813b9c0 | 1224 | page_kasan_tag_reset(page); |
1e8ce83c | 1225 | |
1e8ce83c RH |
1226 | INIT_LIST_HEAD(&page->lru); |
1227 | #ifdef WANT_PAGE_VIRTUAL | |
1228 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
1229 | if (!is_highmem_idx(zone)) | |
1230 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
1231 | #endif | |
1232 | } | |
1233 | ||
7e18adb4 | 1234 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
57148a64 | 1235 | static void __meminit init_reserved_page(unsigned long pfn) |
7e18adb4 MG |
1236 | { |
1237 | pg_data_t *pgdat; | |
1238 | int nid, zid; | |
1239 | ||
1240 | if (!early_page_uninitialised(pfn)) | |
1241 | return; | |
1242 | ||
1243 | nid = early_pfn_to_nid(pfn); | |
1244 | pgdat = NODE_DATA(nid); | |
1245 | ||
1246 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1247 | struct zone *zone = &pgdat->node_zones[zid]; | |
1248 | ||
1249 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | |
1250 | break; | |
1251 | } | |
d0dc12e8 | 1252 | __init_single_page(pfn_to_page(pfn), pfn, zid, nid); |
7e18adb4 MG |
1253 | } |
1254 | #else | |
1255 | static inline void init_reserved_page(unsigned long pfn) | |
1256 | { | |
1257 | } | |
1258 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
1259 | ||
92923ca3 NZ |
1260 | /* |
1261 | * Initialised pages do not have PageReserved set. This function is | |
1262 | * called for each range allocated by the bootmem allocator and | |
1263 | * marks the pages PageReserved. The remaining valid pages are later | |
1264 | * sent to the buddy page allocator. | |
1265 | */ | |
4b50bcc7 | 1266 | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) |
92923ca3 NZ |
1267 | { |
1268 | unsigned long start_pfn = PFN_DOWN(start); | |
1269 | unsigned long end_pfn = PFN_UP(end); | |
1270 | ||
7e18adb4 MG |
1271 | for (; start_pfn < end_pfn; start_pfn++) { |
1272 | if (pfn_valid(start_pfn)) { | |
1273 | struct page *page = pfn_to_page(start_pfn); | |
1274 | ||
1275 | init_reserved_page(start_pfn); | |
1d798ca3 KS |
1276 | |
1277 | /* Avoid false-positive PageTail() */ | |
1278 | INIT_LIST_HEAD(&page->lru); | |
1279 | ||
d483da5b AD |
1280 | /* |
1281 | * no need for atomic set_bit because the struct | |
1282 | * page is not visible yet so nobody should | |
1283 | * access it yet. | |
1284 | */ | |
1285 | __SetPageReserved(page); | |
7e18adb4 MG |
1286 | } |
1287 | } | |
92923ca3 NZ |
1288 | } |
1289 | ||
ec95f53a KM |
1290 | static void __free_pages_ok(struct page *page, unsigned int order) |
1291 | { | |
d34b0733 | 1292 | unsigned long flags; |
95e34412 | 1293 | int migratetype; |
dc4b0caf | 1294 | unsigned long pfn = page_to_pfn(page); |
ec95f53a | 1295 | |
e2769dbd | 1296 | if (!free_pages_prepare(page, order, true)) |
ec95f53a KM |
1297 | return; |
1298 | ||
cfc47a28 | 1299 | migratetype = get_pfnblock_migratetype(page, pfn); |
d34b0733 MG |
1300 | local_irq_save(flags); |
1301 | __count_vm_events(PGFREE, 1 << order); | |
dc4b0caf | 1302 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
d34b0733 | 1303 | local_irq_restore(flags); |
1da177e4 LT |
1304 | } |
1305 | ||
949698a3 | 1306 | static void __init __free_pages_boot_core(struct page *page, unsigned int order) |
a226f6c8 | 1307 | { |
c3993076 | 1308 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1309 | struct page *p = page; |
c3993076 | 1310 | unsigned int loop; |
a226f6c8 | 1311 | |
e2d0bd2b YL |
1312 | prefetchw(p); |
1313 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1314 | prefetchw(p + 1); | |
c3993076 JW |
1315 | __ClearPageReserved(p); |
1316 | set_page_count(p, 0); | |
a226f6c8 | 1317 | } |
e2d0bd2b YL |
1318 | __ClearPageReserved(p); |
1319 | set_page_count(p, 0); | |
c3993076 | 1320 | |
9705bea5 | 1321 | atomic_long_add(nr_pages, &page_zone(page)->managed_pages); |
c3993076 JW |
1322 | set_page_refcounted(page); |
1323 | __free_pages(page, order); | |
a226f6c8 DH |
1324 | } |
1325 | ||
75a592a4 MG |
1326 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ |
1327 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | |
7ace9917 | 1328 | |
75a592a4 MG |
1329 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
1330 | ||
1331 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
1332 | { | |
7ace9917 | 1333 | static DEFINE_SPINLOCK(early_pfn_lock); |
75a592a4 MG |
1334 | int nid; |
1335 | ||
7ace9917 | 1336 | spin_lock(&early_pfn_lock); |
75a592a4 | 1337 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
7ace9917 | 1338 | if (nid < 0) |
e4568d38 | 1339 | nid = first_online_node; |
7ace9917 MG |
1340 | spin_unlock(&early_pfn_lock); |
1341 | ||
1342 | return nid; | |
75a592a4 MG |
1343 | } |
1344 | #endif | |
1345 | ||
1346 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | |
d73d3c9f MK |
1347 | static inline bool __meminit __maybe_unused |
1348 | meminit_pfn_in_nid(unsigned long pfn, int node, | |
1349 | struct mminit_pfnnid_cache *state) | |
75a592a4 MG |
1350 | { |
1351 | int nid; | |
1352 | ||
1353 | nid = __early_pfn_to_nid(pfn, state); | |
1354 | if (nid >= 0 && nid != node) | |
1355 | return false; | |
1356 | return true; | |
1357 | } | |
1358 | ||
1359 | /* Only safe to use early in boot when initialisation is single-threaded */ | |
1360 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1361 | { | |
1362 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | |
1363 | } | |
1364 | ||
1365 | #else | |
1366 | ||
1367 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1368 | { | |
1369 | return true; | |
1370 | } | |
d73d3c9f MK |
1371 | static inline bool __meminit __maybe_unused |
1372 | meminit_pfn_in_nid(unsigned long pfn, int node, | |
1373 | struct mminit_pfnnid_cache *state) | |
75a592a4 MG |
1374 | { |
1375 | return true; | |
1376 | } | |
1377 | #endif | |
1378 | ||
1379 | ||
7c2ee349 | 1380 | void __init memblock_free_pages(struct page *page, unsigned long pfn, |
3a80a7fa MG |
1381 | unsigned int order) |
1382 | { | |
1383 | if (early_page_uninitialised(pfn)) | |
1384 | return; | |
949698a3 | 1385 | return __free_pages_boot_core(page, order); |
3a80a7fa MG |
1386 | } |
1387 | ||
7cf91a98 JK |
1388 | /* |
1389 | * Check that the whole (or subset of) a pageblock given by the interval of | |
1390 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | |
1391 | * with the migration of free compaction scanner. The scanners then need to | |
1392 | * use only pfn_valid_within() check for arches that allow holes within | |
1393 | * pageblocks. | |
1394 | * | |
1395 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | |
1396 | * | |
1397 | * It's possible on some configurations to have a setup like node0 node1 node0 | |
1398 | * i.e. it's possible that all pages within a zones range of pages do not | |
1399 | * belong to a single zone. We assume that a border between node0 and node1 | |
1400 | * can occur within a single pageblock, but not a node0 node1 node0 | |
1401 | * interleaving within a single pageblock. It is therefore sufficient to check | |
1402 | * the first and last page of a pageblock and avoid checking each individual | |
1403 | * page in a pageblock. | |
1404 | */ | |
1405 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | |
1406 | unsigned long end_pfn, struct zone *zone) | |
1407 | { | |
1408 | struct page *start_page; | |
1409 | struct page *end_page; | |
1410 | ||
1411 | /* end_pfn is one past the range we are checking */ | |
1412 | end_pfn--; | |
1413 | ||
1414 | if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | |
1415 | return NULL; | |
1416 | ||
2d070eab MH |
1417 | start_page = pfn_to_online_page(start_pfn); |
1418 | if (!start_page) | |
1419 | return NULL; | |
7cf91a98 JK |
1420 | |
1421 | if (page_zone(start_page) != zone) | |
1422 | return NULL; | |
1423 | ||
1424 | end_page = pfn_to_page(end_pfn); | |
1425 | ||
1426 | /* This gives a shorter code than deriving page_zone(end_page) */ | |
1427 | if (page_zone_id(start_page) != page_zone_id(end_page)) | |
1428 | return NULL; | |
1429 | ||
1430 | return start_page; | |
1431 | } | |
1432 | ||
1433 | void set_zone_contiguous(struct zone *zone) | |
1434 | { | |
1435 | unsigned long block_start_pfn = zone->zone_start_pfn; | |
1436 | unsigned long block_end_pfn; | |
1437 | ||
1438 | block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); | |
1439 | for (; block_start_pfn < zone_end_pfn(zone); | |
1440 | block_start_pfn = block_end_pfn, | |
1441 | block_end_pfn += pageblock_nr_pages) { | |
1442 | ||
1443 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | |
1444 | ||
1445 | if (!__pageblock_pfn_to_page(block_start_pfn, | |
1446 | block_end_pfn, zone)) | |
1447 | return; | |
1448 | } | |
1449 | ||
1450 | /* We confirm that there is no hole */ | |
1451 | zone->contiguous = true; | |
1452 | } | |
1453 | ||
1454 | void clear_zone_contiguous(struct zone *zone) | |
1455 | { | |
1456 | zone->contiguous = false; | |
1457 | } | |
1458 | ||
7e18adb4 | 1459 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
2f47a91f PT |
1460 | static void __init deferred_free_range(unsigned long pfn, |
1461 | unsigned long nr_pages) | |
a4de83dd | 1462 | { |
2f47a91f PT |
1463 | struct page *page; |
1464 | unsigned long i; | |
a4de83dd | 1465 | |
2f47a91f | 1466 | if (!nr_pages) |
a4de83dd MG |
1467 | return; |
1468 | ||
2f47a91f PT |
1469 | page = pfn_to_page(pfn); |
1470 | ||
a4de83dd | 1471 | /* Free a large naturally-aligned chunk if possible */ |
e780149b XQ |
1472 | if (nr_pages == pageblock_nr_pages && |
1473 | (pfn & (pageblock_nr_pages - 1)) == 0) { | |
ac5d2539 | 1474 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
e780149b | 1475 | __free_pages_boot_core(page, pageblock_order); |
a4de83dd MG |
1476 | return; |
1477 | } | |
1478 | ||
e780149b XQ |
1479 | for (i = 0; i < nr_pages; i++, page++, pfn++) { |
1480 | if ((pfn & (pageblock_nr_pages - 1)) == 0) | |
1481 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
949698a3 | 1482 | __free_pages_boot_core(page, 0); |
e780149b | 1483 | } |
a4de83dd MG |
1484 | } |
1485 | ||
d3cd131d NS |
1486 | /* Completion tracking for deferred_init_memmap() threads */ |
1487 | static atomic_t pgdat_init_n_undone __initdata; | |
1488 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1489 | ||
1490 | static inline void __init pgdat_init_report_one_done(void) | |
1491 | { | |
1492 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1493 | complete(&pgdat_init_all_done_comp); | |
1494 | } | |
0e1cc95b | 1495 | |
2f47a91f | 1496 | /* |
80b1f41c PT |
1497 | * Returns true if page needs to be initialized or freed to buddy allocator. |
1498 | * | |
1499 | * First we check if pfn is valid on architectures where it is possible to have | |
1500 | * holes within pageblock_nr_pages. On systems where it is not possible, this | |
1501 | * function is optimized out. | |
1502 | * | |
1503 | * Then, we check if a current large page is valid by only checking the validity | |
1504 | * of the head pfn. | |
1505 | * | |
1506 | * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave | |
1507 | * within a node: a pfn is between start and end of a node, but does not belong | |
1508 | * to this memory node. | |
2f47a91f | 1509 | */ |
80b1f41c PT |
1510 | static inline bool __init |
1511 | deferred_pfn_valid(int nid, unsigned long pfn, | |
1512 | struct mminit_pfnnid_cache *nid_init_state) | |
2f47a91f | 1513 | { |
80b1f41c PT |
1514 | if (!pfn_valid_within(pfn)) |
1515 | return false; | |
1516 | if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) | |
1517 | return false; | |
1518 | if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) | |
1519 | return false; | |
1520 | return true; | |
1521 | } | |
2f47a91f | 1522 | |
80b1f41c PT |
1523 | /* |
1524 | * Free pages to buddy allocator. Try to free aligned pages in | |
1525 | * pageblock_nr_pages sizes. | |
1526 | */ | |
1527 | static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, | |
1528 | unsigned long end_pfn) | |
1529 | { | |
1530 | struct mminit_pfnnid_cache nid_init_state = { }; | |
1531 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | |
1532 | unsigned long nr_free = 0; | |
2f47a91f | 1533 | |
80b1f41c PT |
1534 | for (; pfn < end_pfn; pfn++) { |
1535 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | |
1536 | deferred_free_range(pfn - nr_free, nr_free); | |
1537 | nr_free = 0; | |
1538 | } else if (!(pfn & nr_pgmask)) { | |
1539 | deferred_free_range(pfn - nr_free, nr_free); | |
1540 | nr_free = 1; | |
3a2d7fa8 | 1541 | touch_nmi_watchdog(); |
80b1f41c PT |
1542 | } else { |
1543 | nr_free++; | |
1544 | } | |
1545 | } | |
1546 | /* Free the last block of pages to allocator */ | |
1547 | deferred_free_range(pfn - nr_free, nr_free); | |
2f47a91f PT |
1548 | } |
1549 | ||
80b1f41c PT |
1550 | /* |
1551 | * Initialize struct pages. We minimize pfn page lookups and scheduler checks | |
1552 | * by performing it only once every pageblock_nr_pages. | |
1553 | * Return number of pages initialized. | |
1554 | */ | |
1555 | static unsigned long __init deferred_init_pages(int nid, int zid, | |
1556 | unsigned long pfn, | |
1557 | unsigned long end_pfn) | |
2f47a91f PT |
1558 | { |
1559 | struct mminit_pfnnid_cache nid_init_state = { }; | |
1560 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | |
2f47a91f | 1561 | unsigned long nr_pages = 0; |
2f47a91f | 1562 | struct page *page = NULL; |
2f47a91f | 1563 | |
80b1f41c PT |
1564 | for (; pfn < end_pfn; pfn++) { |
1565 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | |
1566 | page = NULL; | |
2f47a91f | 1567 | continue; |
80b1f41c | 1568 | } else if (!page || !(pfn & nr_pgmask)) { |
2f47a91f | 1569 | page = pfn_to_page(pfn); |
3a2d7fa8 | 1570 | touch_nmi_watchdog(); |
80b1f41c PT |
1571 | } else { |
1572 | page++; | |
2f47a91f | 1573 | } |
d0dc12e8 | 1574 | __init_single_page(page, pfn, zid, nid); |
80b1f41c | 1575 | nr_pages++; |
2f47a91f | 1576 | } |
80b1f41c | 1577 | return (nr_pages); |
2f47a91f PT |
1578 | } |
1579 | ||
7e18adb4 | 1580 | /* Initialise remaining memory on a node */ |
0e1cc95b | 1581 | static int __init deferred_init_memmap(void *data) |
7e18adb4 | 1582 | { |
0e1cc95b MG |
1583 | pg_data_t *pgdat = data; |
1584 | int nid = pgdat->node_id; | |
7e18adb4 MG |
1585 | unsigned long start = jiffies; |
1586 | unsigned long nr_pages = 0; | |
3a2d7fa8 | 1587 | unsigned long spfn, epfn, first_init_pfn, flags; |
2f47a91f PT |
1588 | phys_addr_t spa, epa; |
1589 | int zid; | |
7e18adb4 | 1590 | struct zone *zone; |
0e1cc95b | 1591 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
2f47a91f | 1592 | u64 i; |
7e18adb4 | 1593 | |
3a2d7fa8 PT |
1594 | /* Bind memory initialisation thread to a local node if possible */ |
1595 | if (!cpumask_empty(cpumask)) | |
1596 | set_cpus_allowed_ptr(current, cpumask); | |
1597 | ||
1598 | pgdat_resize_lock(pgdat, &flags); | |
1599 | first_init_pfn = pgdat->first_deferred_pfn; | |
0e1cc95b | 1600 | if (first_init_pfn == ULONG_MAX) { |
3a2d7fa8 | 1601 | pgdat_resize_unlock(pgdat, &flags); |
d3cd131d | 1602 | pgdat_init_report_one_done(); |
0e1cc95b MG |
1603 | return 0; |
1604 | } | |
1605 | ||
7e18adb4 MG |
1606 | /* Sanity check boundaries */ |
1607 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
1608 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
1609 | pgdat->first_deferred_pfn = ULONG_MAX; | |
1610 | ||
1611 | /* Only the highest zone is deferred so find it */ | |
1612 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1613 | zone = pgdat->node_zones + zid; | |
1614 | if (first_init_pfn < zone_end_pfn(zone)) | |
1615 | break; | |
1616 | } | |
2f47a91f | 1617 | first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); |
7e18adb4 | 1618 | |
80b1f41c PT |
1619 | /* |
1620 | * Initialize and free pages. We do it in two loops: first we initialize | |
1621 | * struct page, than free to buddy allocator, because while we are | |
1622 | * freeing pages we can access pages that are ahead (computing buddy | |
1623 | * page in __free_one_page()). | |
1624 | */ | |
1625 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | |
1626 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1627 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | |
1628 | nr_pages += deferred_init_pages(nid, zid, spfn, epfn); | |
1629 | } | |
2f47a91f PT |
1630 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { |
1631 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1632 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | |
80b1f41c | 1633 | deferred_free_pages(nid, zid, spfn, epfn); |
7e18adb4 | 1634 | } |
3a2d7fa8 | 1635 | pgdat_resize_unlock(pgdat, &flags); |
7e18adb4 MG |
1636 | |
1637 | /* Sanity check that the next zone really is unpopulated */ | |
1638 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
1639 | ||
0e1cc95b | 1640 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, |
7e18adb4 | 1641 | jiffies_to_msecs(jiffies - start)); |
d3cd131d NS |
1642 | |
1643 | pgdat_init_report_one_done(); | |
0e1cc95b MG |
1644 | return 0; |
1645 | } | |
c9e97a19 | 1646 | |
c9e97a19 PT |
1647 | /* |
1648 | * If this zone has deferred pages, try to grow it by initializing enough | |
1649 | * deferred pages to satisfy the allocation specified by order, rounded up to | |
1650 | * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments | |
1651 | * of SECTION_SIZE bytes by initializing struct pages in increments of | |
1652 | * PAGES_PER_SECTION * sizeof(struct page) bytes. | |
1653 | * | |
1654 | * Return true when zone was grown, otherwise return false. We return true even | |
1655 | * when we grow less than requested, to let the caller decide if there are | |
1656 | * enough pages to satisfy the allocation. | |
1657 | * | |
1658 | * Note: We use noinline because this function is needed only during boot, and | |
1659 | * it is called from a __ref function _deferred_grow_zone. This way we are | |
1660 | * making sure that it is not inlined into permanent text section. | |
1661 | */ | |
1662 | static noinline bool __init | |
1663 | deferred_grow_zone(struct zone *zone, unsigned int order) | |
1664 | { | |
1665 | int zid = zone_idx(zone); | |
1666 | int nid = zone_to_nid(zone); | |
1667 | pg_data_t *pgdat = NODE_DATA(nid); | |
1668 | unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | |
1669 | unsigned long nr_pages = 0; | |
1670 | unsigned long first_init_pfn, spfn, epfn, t, flags; | |
1671 | unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | |
1672 | phys_addr_t spa, epa; | |
1673 | u64 i; | |
1674 | ||
1675 | /* Only the last zone may have deferred pages */ | |
1676 | if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | |
1677 | return false; | |
1678 | ||
1679 | pgdat_resize_lock(pgdat, &flags); | |
1680 | ||
1681 | /* | |
1682 | * If deferred pages have been initialized while we were waiting for | |
1683 | * the lock, return true, as the zone was grown. The caller will retry | |
1684 | * this zone. We won't return to this function since the caller also | |
1685 | * has this static branch. | |
1686 | */ | |
1687 | if (!static_branch_unlikely(&deferred_pages)) { | |
1688 | pgdat_resize_unlock(pgdat, &flags); | |
1689 | return true; | |
1690 | } | |
1691 | ||
1692 | /* | |
1693 | * If someone grew this zone while we were waiting for spinlock, return | |
1694 | * true, as there might be enough pages already. | |
1695 | */ | |
1696 | if (first_deferred_pfn != pgdat->first_deferred_pfn) { | |
1697 | pgdat_resize_unlock(pgdat, &flags); | |
1698 | return true; | |
1699 | } | |
1700 | ||
1701 | first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); | |
1702 | ||
1703 | if (first_init_pfn >= pgdat_end_pfn(pgdat)) { | |
1704 | pgdat_resize_unlock(pgdat, &flags); | |
1705 | return false; | |
1706 | } | |
1707 | ||
1708 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | |
1709 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1710 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | |
1711 | ||
1712 | while (spfn < epfn && nr_pages < nr_pages_needed) { | |
1713 | t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); | |
1714 | first_deferred_pfn = min(t, epfn); | |
1715 | nr_pages += deferred_init_pages(nid, zid, spfn, | |
1716 | first_deferred_pfn); | |
1717 | spfn = first_deferred_pfn; | |
1718 | } | |
1719 | ||
1720 | if (nr_pages >= nr_pages_needed) | |
1721 | break; | |
1722 | } | |
1723 | ||
1724 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | |
1725 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | |
1726 | epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); | |
1727 | deferred_free_pages(nid, zid, spfn, epfn); | |
1728 | ||
1729 | if (first_deferred_pfn == epfn) | |
1730 | break; | |
1731 | } | |
1732 | pgdat->first_deferred_pfn = first_deferred_pfn; | |
1733 | pgdat_resize_unlock(pgdat, &flags); | |
1734 | ||
1735 | return nr_pages > 0; | |
1736 | } | |
1737 | ||
1738 | /* | |
1739 | * deferred_grow_zone() is __init, but it is called from | |
1740 | * get_page_from_freelist() during early boot until deferred_pages permanently | |
1741 | * disables this call. This is why we have refdata wrapper to avoid warning, | |
1742 | * and to ensure that the function body gets unloaded. | |
1743 | */ | |
1744 | static bool __ref | |
1745 | _deferred_grow_zone(struct zone *zone, unsigned int order) | |
1746 | { | |
1747 | return deferred_grow_zone(zone, order); | |
1748 | } | |
1749 | ||
7cf91a98 | 1750 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
0e1cc95b MG |
1751 | |
1752 | void __init page_alloc_init_late(void) | |
1753 | { | |
7cf91a98 JK |
1754 | struct zone *zone; |
1755 | ||
1756 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
0e1cc95b MG |
1757 | int nid; |
1758 | ||
d3cd131d NS |
1759 | /* There will be num_node_state(N_MEMORY) threads */ |
1760 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
0e1cc95b | 1761 | for_each_node_state(nid, N_MEMORY) { |
0e1cc95b MG |
1762 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
1763 | } | |
1764 | ||
1765 | /* Block until all are initialised */ | |
d3cd131d | 1766 | wait_for_completion(&pgdat_init_all_done_comp); |
4248b0da | 1767 | |
c9e97a19 PT |
1768 | /* |
1769 | * We initialized the rest of the deferred pages. Permanently disable | |
1770 | * on-demand struct page initialization. | |
1771 | */ | |
1772 | static_branch_disable(&deferred_pages); | |
1773 | ||
4248b0da MG |
1774 | /* Reinit limits that are based on free pages after the kernel is up */ |
1775 | files_maxfiles_init(); | |
7cf91a98 | 1776 | #endif |
3010f876 PT |
1777 | #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK |
1778 | /* Discard memblock private memory */ | |
1779 | memblock_discard(); | |
1780 | #endif | |
7cf91a98 JK |
1781 | |
1782 | for_each_populated_zone(zone) | |
1783 | set_zone_contiguous(zone); | |
7e18adb4 | 1784 | } |
7e18adb4 | 1785 | |
47118af0 | 1786 | #ifdef CONFIG_CMA |
9cf510a5 | 1787 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
1788 | void __init init_cma_reserved_pageblock(struct page *page) |
1789 | { | |
1790 | unsigned i = pageblock_nr_pages; | |
1791 | struct page *p = page; | |
1792 | ||
1793 | do { | |
1794 | __ClearPageReserved(p); | |
1795 | set_page_count(p, 0); | |
d883c6cf | 1796 | } while (++p, --i); |
47118af0 | 1797 | |
47118af0 | 1798 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
1799 | |
1800 | if (pageblock_order >= MAX_ORDER) { | |
1801 | i = pageblock_nr_pages; | |
1802 | p = page; | |
1803 | do { | |
1804 | set_page_refcounted(p); | |
1805 | __free_pages(p, MAX_ORDER - 1); | |
1806 | p += MAX_ORDER_NR_PAGES; | |
1807 | } while (i -= MAX_ORDER_NR_PAGES); | |
1808 | } else { | |
1809 | set_page_refcounted(page); | |
1810 | __free_pages(page, pageblock_order); | |
1811 | } | |
1812 | ||
3dcc0571 | 1813 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
1814 | } |
1815 | #endif | |
1da177e4 LT |
1816 | |
1817 | /* | |
1818 | * The order of subdivision here is critical for the IO subsystem. | |
1819 | * Please do not alter this order without good reasons and regression | |
1820 | * testing. Specifically, as large blocks of memory are subdivided, | |
1821 | * the order in which smaller blocks are delivered depends on the order | |
1822 | * they're subdivided in this function. This is the primary factor | |
1823 | * influencing the order in which pages are delivered to the IO | |
1824 | * subsystem according to empirical testing, and this is also justified | |
1825 | * by considering the behavior of a buddy system containing a single | |
1826 | * large block of memory acted on by a series of small allocations. | |
1827 | * This behavior is a critical factor in sglist merging's success. | |
1828 | * | |
6d49e352 | 1829 | * -- nyc |
1da177e4 | 1830 | */ |
085cc7d5 | 1831 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
1832 | int low, int high, struct free_area *area, |
1833 | int migratetype) | |
1da177e4 LT |
1834 | { |
1835 | unsigned long size = 1 << high; | |
1836 | ||
1837 | while (high > low) { | |
1838 | area--; | |
1839 | high--; | |
1840 | size >>= 1; | |
309381fe | 1841 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 | 1842 | |
acbc15a4 JK |
1843 | /* |
1844 | * Mark as guard pages (or page), that will allow to | |
1845 | * merge back to allocator when buddy will be freed. | |
1846 | * Corresponding page table entries will not be touched, | |
1847 | * pages will stay not present in virtual address space | |
1848 | */ | |
1849 | if (set_page_guard(zone, &page[size], high, migratetype)) | |
c0a32fc5 | 1850 | continue; |
acbc15a4 | 1851 | |
b2a0ac88 | 1852 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
1853 | area->nr_free++; |
1854 | set_page_order(&page[size], high); | |
1855 | } | |
1da177e4 LT |
1856 | } |
1857 | ||
4e611801 | 1858 | static void check_new_page_bad(struct page *page) |
1da177e4 | 1859 | { |
4e611801 VB |
1860 | const char *bad_reason = NULL; |
1861 | unsigned long bad_flags = 0; | |
7bfec6f4 | 1862 | |
53f9263b | 1863 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
1864 | bad_reason = "nonzero mapcount"; |
1865 | if (unlikely(page->mapping != NULL)) | |
1866 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 1867 | if (unlikely(page_ref_count(page) != 0)) |
f0b791a3 | 1868 | bad_reason = "nonzero _count"; |
f4c18e6f NH |
1869 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1870 | bad_reason = "HWPoisoned (hardware-corrupted)"; | |
1871 | bad_flags = __PG_HWPOISON; | |
e570f56c NH |
1872 | /* Don't complain about hwpoisoned pages */ |
1873 | page_mapcount_reset(page); /* remove PageBuddy */ | |
1874 | return; | |
f4c18e6f | 1875 | } |
f0b791a3 DH |
1876 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { |
1877 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
1878 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
1879 | } | |
9edad6ea JW |
1880 | #ifdef CONFIG_MEMCG |
1881 | if (unlikely(page->mem_cgroup)) | |
1882 | bad_reason = "page still charged to cgroup"; | |
1883 | #endif | |
4e611801 VB |
1884 | bad_page(page, bad_reason, bad_flags); |
1885 | } | |
1886 | ||
1887 | /* | |
1888 | * This page is about to be returned from the page allocator | |
1889 | */ | |
1890 | static inline int check_new_page(struct page *page) | |
1891 | { | |
1892 | if (likely(page_expected_state(page, | |
1893 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | |
1894 | return 0; | |
1895 | ||
1896 | check_new_page_bad(page); | |
1897 | return 1; | |
2a7684a2 WF |
1898 | } |
1899 | ||
bd33ef36 | 1900 | static inline bool free_pages_prezeroed(void) |
1414c7f4 LA |
1901 | { |
1902 | return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && | |
bd33ef36 | 1903 | page_poisoning_enabled(); |
1414c7f4 LA |
1904 | } |
1905 | ||
479f854a MG |
1906 | #ifdef CONFIG_DEBUG_VM |
1907 | static bool check_pcp_refill(struct page *page) | |
1908 | { | |
1909 | return false; | |
1910 | } | |
1911 | ||
1912 | static bool check_new_pcp(struct page *page) | |
1913 | { | |
1914 | return check_new_page(page); | |
1915 | } | |
1916 | #else | |
1917 | static bool check_pcp_refill(struct page *page) | |
1918 | { | |
1919 | return check_new_page(page); | |
1920 | } | |
1921 | static bool check_new_pcp(struct page *page) | |
1922 | { | |
1923 | return false; | |
1924 | } | |
1925 | #endif /* CONFIG_DEBUG_VM */ | |
1926 | ||
1927 | static bool check_new_pages(struct page *page, unsigned int order) | |
1928 | { | |
1929 | int i; | |
1930 | for (i = 0; i < (1 << order); i++) { | |
1931 | struct page *p = page + i; | |
1932 | ||
1933 | if (unlikely(check_new_page(p))) | |
1934 | return true; | |
1935 | } | |
1936 | ||
1937 | return false; | |
1938 | } | |
1939 | ||
46f24fd8 JK |
1940 | inline void post_alloc_hook(struct page *page, unsigned int order, |
1941 | gfp_t gfp_flags) | |
1942 | { | |
1943 | set_page_private(page, 0); | |
1944 | set_page_refcounted(page); | |
1945 | ||
1946 | arch_alloc_page(page, order); | |
1947 | kernel_map_pages(page, 1 << order, 1); | |
1948 | kernel_poison_pages(page, 1 << order, 1); | |
1949 | kasan_alloc_pages(page, order); | |
1950 | set_page_owner(page, order, gfp_flags); | |
1951 | } | |
1952 | ||
479f854a | 1953 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
c603844b | 1954 | unsigned int alloc_flags) |
2a7684a2 WF |
1955 | { |
1956 | int i; | |
689bcebf | 1957 | |
46f24fd8 | 1958 | post_alloc_hook(page, order, gfp_flags); |
17cf4406 | 1959 | |
bd33ef36 | 1960 | if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) |
f4d2897b AA |
1961 | for (i = 0; i < (1 << order); i++) |
1962 | clear_highpage(page + i); | |
17cf4406 NP |
1963 | |
1964 | if (order && (gfp_flags & __GFP_COMP)) | |
1965 | prep_compound_page(page, order); | |
1966 | ||
75379191 | 1967 | /* |
2f064f34 | 1968 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1969 | * allocate the page. The expectation is that the caller is taking |
1970 | * steps that will free more memory. The caller should avoid the page | |
1971 | * being used for !PFMEMALLOC purposes. | |
1972 | */ | |
2f064f34 MH |
1973 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1974 | set_page_pfmemalloc(page); | |
1975 | else | |
1976 | clear_page_pfmemalloc(page); | |
1da177e4 LT |
1977 | } |
1978 | ||
56fd56b8 MG |
1979 | /* |
1980 | * Go through the free lists for the given migratetype and remove | |
1981 | * the smallest available page from the freelists | |
1982 | */ | |
85ccc8fa | 1983 | static __always_inline |
728ec980 | 1984 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
56fd56b8 MG |
1985 | int migratetype) |
1986 | { | |
1987 | unsigned int current_order; | |
b8af2941 | 1988 | struct free_area *area; |
56fd56b8 MG |
1989 | struct page *page; |
1990 | ||
1991 | /* Find a page of the appropriate size in the preferred list */ | |
1992 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
1993 | area = &(zone->free_area[current_order]); | |
a16601c5 | 1994 | page = list_first_entry_or_null(&area->free_list[migratetype], |
56fd56b8 | 1995 | struct page, lru); |
a16601c5 GT |
1996 | if (!page) |
1997 | continue; | |
56fd56b8 MG |
1998 | list_del(&page->lru); |
1999 | rmv_page_order(page); | |
2000 | area->nr_free--; | |
56fd56b8 | 2001 | expand(zone, page, order, current_order, area, migratetype); |
bb14c2c7 | 2002 | set_pcppage_migratetype(page, migratetype); |
56fd56b8 MG |
2003 | return page; |
2004 | } | |
2005 | ||
2006 | return NULL; | |
2007 | } | |
2008 | ||
2009 | ||
b2a0ac88 MG |
2010 | /* |
2011 | * This array describes the order lists are fallen back to when | |
2012 | * the free lists for the desirable migrate type are depleted | |
2013 | */ | |
47118af0 | 2014 | static int fallbacks[MIGRATE_TYPES][4] = { |
974a786e | 2015 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
974a786e | 2016 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, |
7ead3342 | 2017 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
47118af0 | 2018 | #ifdef CONFIG_CMA |
974a786e | 2019 | [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ |
47118af0 | 2020 | #endif |
194159fb | 2021 | #ifdef CONFIG_MEMORY_ISOLATION |
974a786e | 2022 | [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ |
194159fb | 2023 | #endif |
b2a0ac88 MG |
2024 | }; |
2025 | ||
dc67647b | 2026 | #ifdef CONFIG_CMA |
85ccc8fa | 2027 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
dc67647b JK |
2028 | unsigned int order) |
2029 | { | |
2030 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
2031 | } | |
2032 | #else | |
2033 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
2034 | unsigned int order) { return NULL; } | |
2035 | #endif | |
2036 | ||
c361be55 MG |
2037 | /* |
2038 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 2039 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
2040 | * boundary. If alignment is required, use move_freepages_block() |
2041 | */ | |
02aa0cdd | 2042 | static int move_freepages(struct zone *zone, |
b69a7288 | 2043 | struct page *start_page, struct page *end_page, |
02aa0cdd | 2044 | int migratetype, int *num_movable) |
c361be55 MG |
2045 | { |
2046 | struct page *page; | |
d00181b9 | 2047 | unsigned int order; |
d100313f | 2048 | int pages_moved = 0; |
c361be55 MG |
2049 | |
2050 | #ifndef CONFIG_HOLES_IN_ZONE | |
2051 | /* | |
2052 | * page_zone is not safe to call in this context when | |
2053 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
2054 | * anyway as we check zone boundaries in move_freepages_block(). | |
2055 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 2056 | * grouping pages by mobility |
c361be55 | 2057 | */ |
3e04040d AB |
2058 | VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && |
2059 | pfn_valid(page_to_pfn(end_page)) && | |
2060 | page_zone(start_page) != page_zone(end_page)); | |
c361be55 | 2061 | #endif |
c361be55 MG |
2062 | for (page = start_page; page <= end_page;) { |
2063 | if (!pfn_valid_within(page_to_pfn(page))) { | |
2064 | page++; | |
2065 | continue; | |
2066 | } | |
2067 | ||
f073bdc5 AB |
2068 | /* Make sure we are not inadvertently changing nodes */ |
2069 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | |
2070 | ||
c361be55 | 2071 | if (!PageBuddy(page)) { |
02aa0cdd VB |
2072 | /* |
2073 | * We assume that pages that could be isolated for | |
2074 | * migration are movable. But we don't actually try | |
2075 | * isolating, as that would be expensive. | |
2076 | */ | |
2077 | if (num_movable && | |
2078 | (PageLRU(page) || __PageMovable(page))) | |
2079 | (*num_movable)++; | |
2080 | ||
c361be55 MG |
2081 | page++; |
2082 | continue; | |
2083 | } | |
2084 | ||
2085 | order = page_order(page); | |
84be48d8 KS |
2086 | list_move(&page->lru, |
2087 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 2088 | page += 1 << order; |
d100313f | 2089 | pages_moved += 1 << order; |
c361be55 MG |
2090 | } |
2091 | ||
d100313f | 2092 | return pages_moved; |
c361be55 MG |
2093 | } |
2094 | ||
ee6f509c | 2095 | int move_freepages_block(struct zone *zone, struct page *page, |
02aa0cdd | 2096 | int migratetype, int *num_movable) |
c361be55 MG |
2097 | { |
2098 | unsigned long start_pfn, end_pfn; | |
2099 | struct page *start_page, *end_page; | |
2100 | ||
4a222127 DR |
2101 | if (num_movable) |
2102 | *num_movable = 0; | |
2103 | ||
c361be55 | 2104 | start_pfn = page_to_pfn(page); |
d9c23400 | 2105 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 2106 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
2107 | end_page = start_page + pageblock_nr_pages - 1; |
2108 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
2109 | |
2110 | /* Do not cross zone boundaries */ | |
108bcc96 | 2111 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 2112 | start_page = page; |
108bcc96 | 2113 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
2114 | return 0; |
2115 | ||
02aa0cdd VB |
2116 | return move_freepages(zone, start_page, end_page, migratetype, |
2117 | num_movable); | |
c361be55 MG |
2118 | } |
2119 | ||
2f66a68f MG |
2120 | static void change_pageblock_range(struct page *pageblock_page, |
2121 | int start_order, int migratetype) | |
2122 | { | |
2123 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
2124 | ||
2125 | while (nr_pageblocks--) { | |
2126 | set_pageblock_migratetype(pageblock_page, migratetype); | |
2127 | pageblock_page += pageblock_nr_pages; | |
2128 | } | |
2129 | } | |
2130 | ||
fef903ef | 2131 | /* |
9c0415eb VB |
2132 | * When we are falling back to another migratetype during allocation, try to |
2133 | * steal extra free pages from the same pageblocks to satisfy further | |
2134 | * allocations, instead of polluting multiple pageblocks. | |
2135 | * | |
2136 | * If we are stealing a relatively large buddy page, it is likely there will | |
2137 | * be more free pages in the pageblock, so try to steal them all. For | |
2138 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
2139 | * as fragmentation caused by those allocations polluting movable pageblocks | |
2140 | * is worse than movable allocations stealing from unmovable and reclaimable | |
2141 | * pageblocks. | |
fef903ef | 2142 | */ |
4eb7dce6 JK |
2143 | static bool can_steal_fallback(unsigned int order, int start_mt) |
2144 | { | |
2145 | /* | |
2146 | * Leaving this order check is intended, although there is | |
2147 | * relaxed order check in next check. The reason is that | |
2148 | * we can actually steal whole pageblock if this condition met, | |
2149 | * but, below check doesn't guarantee it and that is just heuristic | |
2150 | * so could be changed anytime. | |
2151 | */ | |
2152 | if (order >= pageblock_order) | |
2153 | return true; | |
2154 | ||
2155 | if (order >= pageblock_order / 2 || | |
2156 | start_mt == MIGRATE_RECLAIMABLE || | |
2157 | start_mt == MIGRATE_UNMOVABLE || | |
2158 | page_group_by_mobility_disabled) | |
2159 | return true; | |
2160 | ||
2161 | return false; | |
2162 | } | |
2163 | ||
1c30844d MG |
2164 | static inline void boost_watermark(struct zone *zone) |
2165 | { | |
2166 | unsigned long max_boost; | |
2167 | ||
2168 | if (!watermark_boost_factor) | |
2169 | return; | |
2170 | ||
2171 | max_boost = mult_frac(zone->_watermark[WMARK_HIGH], | |
2172 | watermark_boost_factor, 10000); | |
2173 | max_boost = max(pageblock_nr_pages, max_boost); | |
2174 | ||
2175 | zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, | |
2176 | max_boost); | |
2177 | } | |
2178 | ||
4eb7dce6 JK |
2179 | /* |
2180 | * This function implements actual steal behaviour. If order is large enough, | |
2181 | * we can steal whole pageblock. If not, we first move freepages in this | |
02aa0cdd VB |
2182 | * pageblock to our migratetype and determine how many already-allocated pages |
2183 | * are there in the pageblock with a compatible migratetype. If at least half | |
2184 | * of pages are free or compatible, we can change migratetype of the pageblock | |
2185 | * itself, so pages freed in the future will be put on the correct free list. | |
4eb7dce6 JK |
2186 | */ |
2187 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | |
1c30844d | 2188 | unsigned int alloc_flags, int start_type, bool whole_block) |
fef903ef | 2189 | { |
d00181b9 | 2190 | unsigned int current_order = page_order(page); |
3bc48f96 | 2191 | struct free_area *area; |
02aa0cdd VB |
2192 | int free_pages, movable_pages, alike_pages; |
2193 | int old_block_type; | |
2194 | ||
2195 | old_block_type = get_pageblock_migratetype(page); | |
fef903ef | 2196 | |
3bc48f96 VB |
2197 | /* |
2198 | * This can happen due to races and we want to prevent broken | |
2199 | * highatomic accounting. | |
2200 | */ | |
02aa0cdd | 2201 | if (is_migrate_highatomic(old_block_type)) |
3bc48f96 VB |
2202 | goto single_page; |
2203 | ||
fef903ef SB |
2204 | /* Take ownership for orders >= pageblock_order */ |
2205 | if (current_order >= pageblock_order) { | |
2206 | change_pageblock_range(page, current_order, start_type); | |
3bc48f96 | 2207 | goto single_page; |
fef903ef SB |
2208 | } |
2209 | ||
1c30844d MG |
2210 | /* |
2211 | * Boost watermarks to increase reclaim pressure to reduce the | |
2212 | * likelihood of future fallbacks. Wake kswapd now as the node | |
2213 | * may be balanced overall and kswapd will not wake naturally. | |
2214 | */ | |
2215 | boost_watermark(zone); | |
2216 | if (alloc_flags & ALLOC_KSWAPD) | |
73444bc4 | 2217 | set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
1c30844d | 2218 | |
3bc48f96 VB |
2219 | /* We are not allowed to try stealing from the whole block */ |
2220 | if (!whole_block) | |
2221 | goto single_page; | |
2222 | ||
02aa0cdd VB |
2223 | free_pages = move_freepages_block(zone, page, start_type, |
2224 | &movable_pages); | |
2225 | /* | |
2226 | * Determine how many pages are compatible with our allocation. | |
2227 | * For movable allocation, it's the number of movable pages which | |
2228 | * we just obtained. For other types it's a bit more tricky. | |
2229 | */ | |
2230 | if (start_type == MIGRATE_MOVABLE) { | |
2231 | alike_pages = movable_pages; | |
2232 | } else { | |
2233 | /* | |
2234 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | |
2235 | * to MOVABLE pageblock, consider all non-movable pages as | |
2236 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | |
2237 | * vice versa, be conservative since we can't distinguish the | |
2238 | * exact migratetype of non-movable pages. | |
2239 | */ | |
2240 | if (old_block_type == MIGRATE_MOVABLE) | |
2241 | alike_pages = pageblock_nr_pages | |
2242 | - (free_pages + movable_pages); | |
2243 | else | |
2244 | alike_pages = 0; | |
2245 | } | |
2246 | ||
3bc48f96 | 2247 | /* moving whole block can fail due to zone boundary conditions */ |
02aa0cdd | 2248 | if (!free_pages) |
3bc48f96 | 2249 | goto single_page; |
fef903ef | 2250 | |
02aa0cdd VB |
2251 | /* |
2252 | * If a sufficient number of pages in the block are either free or of | |
2253 | * comparable migratability as our allocation, claim the whole block. | |
2254 | */ | |
2255 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | |
4eb7dce6 JK |
2256 | page_group_by_mobility_disabled) |
2257 | set_pageblock_migratetype(page, start_type); | |
3bc48f96 VB |
2258 | |
2259 | return; | |
2260 | ||
2261 | single_page: | |
2262 | area = &zone->free_area[current_order]; | |
2263 | list_move(&page->lru, &area->free_list[start_type]); | |
4eb7dce6 JK |
2264 | } |
2265 | ||
2149cdae JK |
2266 | /* |
2267 | * Check whether there is a suitable fallback freepage with requested order. | |
2268 | * If only_stealable is true, this function returns fallback_mt only if | |
2269 | * we can steal other freepages all together. This would help to reduce | |
2270 | * fragmentation due to mixed migratetype pages in one pageblock. | |
2271 | */ | |
2272 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
2273 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
2274 | { |
2275 | int i; | |
2276 | int fallback_mt; | |
2277 | ||
2278 | if (area->nr_free == 0) | |
2279 | return -1; | |
2280 | ||
2281 | *can_steal = false; | |
2282 | for (i = 0;; i++) { | |
2283 | fallback_mt = fallbacks[migratetype][i]; | |
974a786e | 2284 | if (fallback_mt == MIGRATE_TYPES) |
4eb7dce6 JK |
2285 | break; |
2286 | ||
2287 | if (list_empty(&area->free_list[fallback_mt])) | |
2288 | continue; | |
fef903ef | 2289 | |
4eb7dce6 JK |
2290 | if (can_steal_fallback(order, migratetype)) |
2291 | *can_steal = true; | |
2292 | ||
2149cdae JK |
2293 | if (!only_stealable) |
2294 | return fallback_mt; | |
2295 | ||
2296 | if (*can_steal) | |
2297 | return fallback_mt; | |
fef903ef | 2298 | } |
4eb7dce6 JK |
2299 | |
2300 | return -1; | |
fef903ef SB |
2301 | } |
2302 | ||
0aaa29a5 MG |
2303 | /* |
2304 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | |
2305 | * there are no empty page blocks that contain a page with a suitable order | |
2306 | */ | |
2307 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | |
2308 | unsigned int alloc_order) | |
2309 | { | |
2310 | int mt; | |
2311 | unsigned long max_managed, flags; | |
2312 | ||
2313 | /* | |
2314 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | |
2315 | * Check is race-prone but harmless. | |
2316 | */ | |
9705bea5 | 2317 | max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; |
0aaa29a5 MG |
2318 | if (zone->nr_reserved_highatomic >= max_managed) |
2319 | return; | |
2320 | ||
2321 | spin_lock_irqsave(&zone->lock, flags); | |
2322 | ||
2323 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
2324 | if (zone->nr_reserved_highatomic >= max_managed) | |
2325 | goto out_unlock; | |
2326 | ||
2327 | /* Yoink! */ | |
2328 | mt = get_pageblock_migratetype(page); | |
a6ffdc07 XQ |
2329 | if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) |
2330 | && !is_migrate_cma(mt)) { | |
0aaa29a5 MG |
2331 | zone->nr_reserved_highatomic += pageblock_nr_pages; |
2332 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | |
02aa0cdd | 2333 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); |
0aaa29a5 MG |
2334 | } |
2335 | ||
2336 | out_unlock: | |
2337 | spin_unlock_irqrestore(&zone->lock, flags); | |
2338 | } | |
2339 | ||
2340 | /* | |
2341 | * Used when an allocation is about to fail under memory pressure. This | |
2342 | * potentially hurts the reliability of high-order allocations when under | |
2343 | * intense memory pressure but failed atomic allocations should be easier | |
2344 | * to recover from than an OOM. | |
29fac03b MK |
2345 | * |
2346 | * If @force is true, try to unreserve a pageblock even though highatomic | |
2347 | * pageblock is exhausted. | |
0aaa29a5 | 2348 | */ |
29fac03b MK |
2349 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
2350 | bool force) | |
0aaa29a5 MG |
2351 | { |
2352 | struct zonelist *zonelist = ac->zonelist; | |
2353 | unsigned long flags; | |
2354 | struct zoneref *z; | |
2355 | struct zone *zone; | |
2356 | struct page *page; | |
2357 | int order; | |
04c8716f | 2358 | bool ret; |
0aaa29a5 MG |
2359 | |
2360 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | |
2361 | ac->nodemask) { | |
29fac03b MK |
2362 | /* |
2363 | * Preserve at least one pageblock unless memory pressure | |
2364 | * is really high. | |
2365 | */ | |
2366 | if (!force && zone->nr_reserved_highatomic <= | |
2367 | pageblock_nr_pages) | |
0aaa29a5 MG |
2368 | continue; |
2369 | ||
2370 | spin_lock_irqsave(&zone->lock, flags); | |
2371 | for (order = 0; order < MAX_ORDER; order++) { | |
2372 | struct free_area *area = &(zone->free_area[order]); | |
2373 | ||
a16601c5 GT |
2374 | page = list_first_entry_or_null( |
2375 | &area->free_list[MIGRATE_HIGHATOMIC], | |
2376 | struct page, lru); | |
2377 | if (!page) | |
0aaa29a5 MG |
2378 | continue; |
2379 | ||
0aaa29a5 | 2380 | /* |
4855e4a7 MK |
2381 | * In page freeing path, migratetype change is racy so |
2382 | * we can counter several free pages in a pageblock | |
2383 | * in this loop althoug we changed the pageblock type | |
2384 | * from highatomic to ac->migratetype. So we should | |
2385 | * adjust the count once. | |
0aaa29a5 | 2386 | */ |
a6ffdc07 | 2387 | if (is_migrate_highatomic_page(page)) { |
4855e4a7 MK |
2388 | /* |
2389 | * It should never happen but changes to | |
2390 | * locking could inadvertently allow a per-cpu | |
2391 | * drain to add pages to MIGRATE_HIGHATOMIC | |
2392 | * while unreserving so be safe and watch for | |
2393 | * underflows. | |
2394 | */ | |
2395 | zone->nr_reserved_highatomic -= min( | |
2396 | pageblock_nr_pages, | |
2397 | zone->nr_reserved_highatomic); | |
2398 | } | |
0aaa29a5 MG |
2399 | |
2400 | /* | |
2401 | * Convert to ac->migratetype and avoid the normal | |
2402 | * pageblock stealing heuristics. Minimally, the caller | |
2403 | * is doing the work and needs the pages. More | |
2404 | * importantly, if the block was always converted to | |
2405 | * MIGRATE_UNMOVABLE or another type then the number | |
2406 | * of pageblocks that cannot be completely freed | |
2407 | * may increase. | |
2408 | */ | |
2409 | set_pageblock_migratetype(page, ac->migratetype); | |
02aa0cdd VB |
2410 | ret = move_freepages_block(zone, page, ac->migratetype, |
2411 | NULL); | |
29fac03b MK |
2412 | if (ret) { |
2413 | spin_unlock_irqrestore(&zone->lock, flags); | |
2414 | return ret; | |
2415 | } | |
0aaa29a5 MG |
2416 | } |
2417 | spin_unlock_irqrestore(&zone->lock, flags); | |
2418 | } | |
04c8716f MK |
2419 | |
2420 | return false; | |
0aaa29a5 MG |
2421 | } |
2422 | ||
3bc48f96 VB |
2423 | /* |
2424 | * Try finding a free buddy page on the fallback list and put it on the free | |
2425 | * list of requested migratetype, possibly along with other pages from the same | |
2426 | * block, depending on fragmentation avoidance heuristics. Returns true if | |
2427 | * fallback was found so that __rmqueue_smallest() can grab it. | |
b002529d RV |
2428 | * |
2429 | * The use of signed ints for order and current_order is a deliberate | |
2430 | * deviation from the rest of this file, to make the for loop | |
2431 | * condition simpler. | |
3bc48f96 | 2432 | */ |
85ccc8fa | 2433 | static __always_inline bool |
6bb15450 MG |
2434 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, |
2435 | unsigned int alloc_flags) | |
b2a0ac88 | 2436 | { |
b8af2941 | 2437 | struct free_area *area; |
b002529d | 2438 | int current_order; |
6bb15450 | 2439 | int min_order = order; |
b2a0ac88 | 2440 | struct page *page; |
4eb7dce6 JK |
2441 | int fallback_mt; |
2442 | bool can_steal; | |
b2a0ac88 | 2443 | |
6bb15450 MG |
2444 | /* |
2445 | * Do not steal pages from freelists belonging to other pageblocks | |
2446 | * i.e. orders < pageblock_order. If there are no local zones free, | |
2447 | * the zonelists will be reiterated without ALLOC_NOFRAGMENT. | |
2448 | */ | |
2449 | if (alloc_flags & ALLOC_NOFRAGMENT) | |
2450 | min_order = pageblock_order; | |
2451 | ||
7a8f58f3 VB |
2452 | /* |
2453 | * Find the largest available free page in the other list. This roughly | |
2454 | * approximates finding the pageblock with the most free pages, which | |
2455 | * would be too costly to do exactly. | |
2456 | */ | |
6bb15450 | 2457 | for (current_order = MAX_ORDER - 1; current_order >= min_order; |
7aeb09f9 | 2458 | --current_order) { |
4eb7dce6 JK |
2459 | area = &(zone->free_area[current_order]); |
2460 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 2461 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
2462 | if (fallback_mt == -1) |
2463 | continue; | |
b2a0ac88 | 2464 | |
7a8f58f3 VB |
2465 | /* |
2466 | * We cannot steal all free pages from the pageblock and the | |
2467 | * requested migratetype is movable. In that case it's better to | |
2468 | * steal and split the smallest available page instead of the | |
2469 | * largest available page, because even if the next movable | |
2470 | * allocation falls back into a different pageblock than this | |
2471 | * one, it won't cause permanent fragmentation. | |
2472 | */ | |
2473 | if (!can_steal && start_migratetype == MIGRATE_MOVABLE | |
2474 | && current_order > order) | |
2475 | goto find_smallest; | |
b2a0ac88 | 2476 | |
7a8f58f3 VB |
2477 | goto do_steal; |
2478 | } | |
e0fff1bd | 2479 | |
7a8f58f3 | 2480 | return false; |
e0fff1bd | 2481 | |
7a8f58f3 VB |
2482 | find_smallest: |
2483 | for (current_order = order; current_order < MAX_ORDER; | |
2484 | current_order++) { | |
2485 | area = &(zone->free_area[current_order]); | |
2486 | fallback_mt = find_suitable_fallback(area, current_order, | |
2487 | start_migratetype, false, &can_steal); | |
2488 | if (fallback_mt != -1) | |
2489 | break; | |
b2a0ac88 MG |
2490 | } |
2491 | ||
7a8f58f3 VB |
2492 | /* |
2493 | * This should not happen - we already found a suitable fallback | |
2494 | * when looking for the largest page. | |
2495 | */ | |
2496 | VM_BUG_ON(current_order == MAX_ORDER); | |
2497 | ||
2498 | do_steal: | |
2499 | page = list_first_entry(&area->free_list[fallback_mt], | |
2500 | struct page, lru); | |
2501 | ||
1c30844d MG |
2502 | steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, |
2503 | can_steal); | |
7a8f58f3 VB |
2504 | |
2505 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
2506 | start_migratetype, fallback_mt); | |
2507 | ||
2508 | return true; | |
2509 | ||
b2a0ac88 MG |
2510 | } |
2511 | ||
56fd56b8 | 2512 | /* |
1da177e4 LT |
2513 | * Do the hard work of removing an element from the buddy allocator. |
2514 | * Call me with the zone->lock already held. | |
2515 | */ | |
85ccc8fa | 2516 | static __always_inline struct page * |
6bb15450 MG |
2517 | __rmqueue(struct zone *zone, unsigned int order, int migratetype, |
2518 | unsigned int alloc_flags) | |
1da177e4 | 2519 | { |
1da177e4 LT |
2520 | struct page *page; |
2521 | ||
3bc48f96 | 2522 | retry: |
56fd56b8 | 2523 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 2524 | if (unlikely(!page)) { |
dc67647b JK |
2525 | if (migratetype == MIGRATE_MOVABLE) |
2526 | page = __rmqueue_cma_fallback(zone, order); | |
2527 | ||
6bb15450 MG |
2528 | if (!page && __rmqueue_fallback(zone, order, migratetype, |
2529 | alloc_flags)) | |
3bc48f96 | 2530 | goto retry; |
728ec980 MG |
2531 | } |
2532 | ||
0d3d062a | 2533 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 2534 | return page; |
1da177e4 LT |
2535 | } |
2536 | ||
5f63b720 | 2537 | /* |
1da177e4 LT |
2538 | * Obtain a specified number of elements from the buddy allocator, all under |
2539 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
2540 | * Returns the number of new pages which were placed at *list. | |
2541 | */ | |
5f63b720 | 2542 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 2543 | unsigned long count, struct list_head *list, |
6bb15450 | 2544 | int migratetype, unsigned int alloc_flags) |
1da177e4 | 2545 | { |
a6de734b | 2546 | int i, alloced = 0; |
5f63b720 | 2547 | |
d34b0733 | 2548 | spin_lock(&zone->lock); |
1da177e4 | 2549 | for (i = 0; i < count; ++i) { |
6bb15450 MG |
2550 | struct page *page = __rmqueue(zone, order, migratetype, |
2551 | alloc_flags); | |
085cc7d5 | 2552 | if (unlikely(page == NULL)) |
1da177e4 | 2553 | break; |
81eabcbe | 2554 | |
479f854a MG |
2555 | if (unlikely(check_pcp_refill(page))) |
2556 | continue; | |
2557 | ||
81eabcbe | 2558 | /* |
0fac3ba5 VB |
2559 | * Split buddy pages returned by expand() are received here in |
2560 | * physical page order. The page is added to the tail of | |
2561 | * caller's list. From the callers perspective, the linked list | |
2562 | * is ordered by page number under some conditions. This is | |
2563 | * useful for IO devices that can forward direction from the | |
2564 | * head, thus also in the physical page order. This is useful | |
2565 | * for IO devices that can merge IO requests if the physical | |
2566 | * pages are ordered properly. | |
81eabcbe | 2567 | */ |
0fac3ba5 | 2568 | list_add_tail(&page->lru, list); |
a6de734b | 2569 | alloced++; |
bb14c2c7 | 2570 | if (is_migrate_cma(get_pcppage_migratetype(page))) |
d1ce749a BZ |
2571 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
2572 | -(1 << order)); | |
1da177e4 | 2573 | } |
a6de734b MG |
2574 | |
2575 | /* | |
2576 | * i pages were removed from the buddy list even if some leak due | |
2577 | * to check_pcp_refill failing so adjust NR_FREE_PAGES based | |
2578 | * on i. Do not confuse with 'alloced' which is the number of | |
2579 | * pages added to the pcp list. | |
2580 | */ | |
f2260e6b | 2581 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
d34b0733 | 2582 | spin_unlock(&zone->lock); |
a6de734b | 2583 | return alloced; |
1da177e4 LT |
2584 | } |
2585 | ||
4ae7c039 | 2586 | #ifdef CONFIG_NUMA |
8fce4d8e | 2587 | /* |
4037d452 CL |
2588 | * Called from the vmstat counter updater to drain pagesets of this |
2589 | * currently executing processor on remote nodes after they have | |
2590 | * expired. | |
2591 | * | |
879336c3 CL |
2592 | * Note that this function must be called with the thread pinned to |
2593 | * a single processor. | |
8fce4d8e | 2594 | */ |
4037d452 | 2595 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 2596 | { |
4ae7c039 | 2597 | unsigned long flags; |
7be12fc9 | 2598 | int to_drain, batch; |
4ae7c039 | 2599 | |
4037d452 | 2600 | local_irq_save(flags); |
4db0c3c2 | 2601 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 2602 | to_drain = min(pcp->count, batch); |
77ba9062 | 2603 | if (to_drain > 0) |
2a13515c | 2604 | free_pcppages_bulk(zone, to_drain, pcp); |
4037d452 | 2605 | local_irq_restore(flags); |
4ae7c039 CL |
2606 | } |
2607 | #endif | |
2608 | ||
9f8f2172 | 2609 | /* |
93481ff0 | 2610 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 CL |
2611 | * |
2612 | * The processor must either be the current processor and the | |
2613 | * thread pinned to the current processor or a processor that | |
2614 | * is not online. | |
2615 | */ | |
93481ff0 | 2616 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 2617 | { |
c54ad30c | 2618 | unsigned long flags; |
93481ff0 VB |
2619 | struct per_cpu_pageset *pset; |
2620 | struct per_cpu_pages *pcp; | |
1da177e4 | 2621 | |
93481ff0 VB |
2622 | local_irq_save(flags); |
2623 | pset = per_cpu_ptr(zone->pageset, cpu); | |
1da177e4 | 2624 | |
93481ff0 | 2625 | pcp = &pset->pcp; |
77ba9062 | 2626 | if (pcp->count) |
93481ff0 | 2627 | free_pcppages_bulk(zone, pcp->count, pcp); |
93481ff0 VB |
2628 | local_irq_restore(flags); |
2629 | } | |
3dfa5721 | 2630 | |
93481ff0 VB |
2631 | /* |
2632 | * Drain pcplists of all zones on the indicated processor. | |
2633 | * | |
2634 | * The processor must either be the current processor and the | |
2635 | * thread pinned to the current processor or a processor that | |
2636 | * is not online. | |
2637 | */ | |
2638 | static void drain_pages(unsigned int cpu) | |
2639 | { | |
2640 | struct zone *zone; | |
2641 | ||
2642 | for_each_populated_zone(zone) { | |
2643 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
2644 | } |
2645 | } | |
1da177e4 | 2646 | |
9f8f2172 CL |
2647 | /* |
2648 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
93481ff0 VB |
2649 | * |
2650 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | |
2651 | * the single zone's pages. | |
9f8f2172 | 2652 | */ |
93481ff0 | 2653 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 2654 | { |
93481ff0 VB |
2655 | int cpu = smp_processor_id(); |
2656 | ||
2657 | if (zone) | |
2658 | drain_pages_zone(cpu, zone); | |
2659 | else | |
2660 | drain_pages(cpu); | |
9f8f2172 CL |
2661 | } |
2662 | ||
0ccce3b9 MG |
2663 | static void drain_local_pages_wq(struct work_struct *work) |
2664 | { | |
d9367bd0 WY |
2665 | struct pcpu_drain *drain; |
2666 | ||
2667 | drain = container_of(work, struct pcpu_drain, work); | |
2668 | ||
a459eeb7 MH |
2669 | /* |
2670 | * drain_all_pages doesn't use proper cpu hotplug protection so | |
2671 | * we can race with cpu offline when the WQ can move this from | |
2672 | * a cpu pinned worker to an unbound one. We can operate on a different | |
2673 | * cpu which is allright but we also have to make sure to not move to | |
2674 | * a different one. | |
2675 | */ | |
2676 | preempt_disable(); | |
d9367bd0 | 2677 | drain_local_pages(drain->zone); |
a459eeb7 | 2678 | preempt_enable(); |
0ccce3b9 MG |
2679 | } |
2680 | ||
9f8f2172 | 2681 | /* |
74046494 GBY |
2682 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
2683 | * | |
93481ff0 VB |
2684 | * When zone parameter is non-NULL, spill just the single zone's pages. |
2685 | * | |
0ccce3b9 | 2686 | * Note that this can be extremely slow as the draining happens in a workqueue. |
9f8f2172 | 2687 | */ |
93481ff0 | 2688 | void drain_all_pages(struct zone *zone) |
9f8f2172 | 2689 | { |
74046494 | 2690 | int cpu; |
74046494 GBY |
2691 | |
2692 | /* | |
2693 | * Allocate in the BSS so we wont require allocation in | |
2694 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
2695 | */ | |
2696 | static cpumask_t cpus_with_pcps; | |
2697 | ||
ce612879 MH |
2698 | /* |
2699 | * Make sure nobody triggers this path before mm_percpu_wq is fully | |
2700 | * initialized. | |
2701 | */ | |
2702 | if (WARN_ON_ONCE(!mm_percpu_wq)) | |
2703 | return; | |
2704 | ||
bd233f53 MG |
2705 | /* |
2706 | * Do not drain if one is already in progress unless it's specific to | |
2707 | * a zone. Such callers are primarily CMA and memory hotplug and need | |
2708 | * the drain to be complete when the call returns. | |
2709 | */ | |
2710 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | |
2711 | if (!zone) | |
2712 | return; | |
2713 | mutex_lock(&pcpu_drain_mutex); | |
2714 | } | |
0ccce3b9 | 2715 | |
74046494 GBY |
2716 | /* |
2717 | * We don't care about racing with CPU hotplug event | |
2718 | * as offline notification will cause the notified | |
2719 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
2720 | * disables preemption as part of its processing | |
2721 | */ | |
2722 | for_each_online_cpu(cpu) { | |
93481ff0 VB |
2723 | struct per_cpu_pageset *pcp; |
2724 | struct zone *z; | |
74046494 | 2725 | bool has_pcps = false; |
93481ff0 VB |
2726 | |
2727 | if (zone) { | |
74046494 | 2728 | pcp = per_cpu_ptr(zone->pageset, cpu); |
93481ff0 | 2729 | if (pcp->pcp.count) |
74046494 | 2730 | has_pcps = true; |
93481ff0 VB |
2731 | } else { |
2732 | for_each_populated_zone(z) { | |
2733 | pcp = per_cpu_ptr(z->pageset, cpu); | |
2734 | if (pcp->pcp.count) { | |
2735 | has_pcps = true; | |
2736 | break; | |
2737 | } | |
74046494 GBY |
2738 | } |
2739 | } | |
93481ff0 | 2740 | |
74046494 GBY |
2741 | if (has_pcps) |
2742 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2743 | else | |
2744 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2745 | } | |
0ccce3b9 | 2746 | |
bd233f53 | 2747 | for_each_cpu(cpu, &cpus_with_pcps) { |
d9367bd0 WY |
2748 | struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); |
2749 | ||
2750 | drain->zone = zone; | |
2751 | INIT_WORK(&drain->work, drain_local_pages_wq); | |
2752 | queue_work_on(cpu, mm_percpu_wq, &drain->work); | |
0ccce3b9 | 2753 | } |
bd233f53 | 2754 | for_each_cpu(cpu, &cpus_with_pcps) |
d9367bd0 | 2755 | flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); |
bd233f53 MG |
2756 | |
2757 | mutex_unlock(&pcpu_drain_mutex); | |
9f8f2172 CL |
2758 | } |
2759 | ||
296699de | 2760 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 2761 | |
556b969a CY |
2762 | /* |
2763 | * Touch the watchdog for every WD_PAGE_COUNT pages. | |
2764 | */ | |
2765 | #define WD_PAGE_COUNT (128*1024) | |
2766 | ||
1da177e4 LT |
2767 | void mark_free_pages(struct zone *zone) |
2768 | { | |
556b969a | 2769 | unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; |
f623f0db | 2770 | unsigned long flags; |
7aeb09f9 | 2771 | unsigned int order, t; |
86760a2c | 2772 | struct page *page; |
1da177e4 | 2773 | |
8080fc03 | 2774 | if (zone_is_empty(zone)) |
1da177e4 LT |
2775 | return; |
2776 | ||
2777 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 2778 | |
108bcc96 | 2779 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
2780 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
2781 | if (pfn_valid(pfn)) { | |
86760a2c | 2782 | page = pfn_to_page(pfn); |
ba6b0979 | 2783 | |
556b969a CY |
2784 | if (!--page_count) { |
2785 | touch_nmi_watchdog(); | |
2786 | page_count = WD_PAGE_COUNT; | |
2787 | } | |
2788 | ||
ba6b0979 JK |
2789 | if (page_zone(page) != zone) |
2790 | continue; | |
2791 | ||
7be98234 RW |
2792 | if (!swsusp_page_is_forbidden(page)) |
2793 | swsusp_unset_page_free(page); | |
f623f0db | 2794 | } |
1da177e4 | 2795 | |
b2a0ac88 | 2796 | for_each_migratetype_order(order, t) { |
86760a2c GT |
2797 | list_for_each_entry(page, |
2798 | &zone->free_area[order].free_list[t], lru) { | |
f623f0db | 2799 | unsigned long i; |
1da177e4 | 2800 | |
86760a2c | 2801 | pfn = page_to_pfn(page); |
556b969a CY |
2802 | for (i = 0; i < (1UL << order); i++) { |
2803 | if (!--page_count) { | |
2804 | touch_nmi_watchdog(); | |
2805 | page_count = WD_PAGE_COUNT; | |
2806 | } | |
7be98234 | 2807 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
556b969a | 2808 | } |
f623f0db | 2809 | } |
b2a0ac88 | 2810 | } |
1da177e4 LT |
2811 | spin_unlock_irqrestore(&zone->lock, flags); |
2812 | } | |
e2c55dc8 | 2813 | #endif /* CONFIG_PM */ |
1da177e4 | 2814 | |
2d4894b5 | 2815 | static bool free_unref_page_prepare(struct page *page, unsigned long pfn) |
1da177e4 | 2816 | { |
5f8dcc21 | 2817 | int migratetype; |
1da177e4 | 2818 | |
4db7548c | 2819 | if (!free_pcp_prepare(page)) |
9cca35d4 | 2820 | return false; |
689bcebf | 2821 | |
dc4b0caf | 2822 | migratetype = get_pfnblock_migratetype(page, pfn); |
bb14c2c7 | 2823 | set_pcppage_migratetype(page, migratetype); |
9cca35d4 MG |
2824 | return true; |
2825 | } | |
2826 | ||
2d4894b5 | 2827 | static void free_unref_page_commit(struct page *page, unsigned long pfn) |
9cca35d4 MG |
2828 | { |
2829 | struct zone *zone = page_zone(page); | |
2830 | struct per_cpu_pages *pcp; | |
2831 | int migratetype; | |
2832 | ||
2833 | migratetype = get_pcppage_migratetype(page); | |
d34b0733 | 2834 | __count_vm_event(PGFREE); |
da456f14 | 2835 | |
5f8dcc21 MG |
2836 | /* |
2837 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2838 | * Free ISOLATE pages back to the allocator because they are being | |
a6ffdc07 | 2839 | * offlined but treat HIGHATOMIC as movable pages so we can get those |
5f8dcc21 MG |
2840 | * areas back if necessary. Otherwise, we may have to free |
2841 | * excessively into the page allocator | |
2842 | */ | |
2843 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 2844 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 2845 | free_one_page(zone, page, pfn, 0, migratetype); |
9cca35d4 | 2846 | return; |
5f8dcc21 MG |
2847 | } |
2848 | migratetype = MIGRATE_MOVABLE; | |
2849 | } | |
2850 | ||
99dcc3e5 | 2851 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
2d4894b5 | 2852 | list_add(&page->lru, &pcp->lists[migratetype]); |
1da177e4 | 2853 | pcp->count++; |
48db57f8 | 2854 | if (pcp->count >= pcp->high) { |
4db0c3c2 | 2855 | unsigned long batch = READ_ONCE(pcp->batch); |
998d39cb | 2856 | free_pcppages_bulk(zone, batch, pcp); |
48db57f8 | 2857 | } |
9cca35d4 | 2858 | } |
5f8dcc21 | 2859 | |
9cca35d4 MG |
2860 | /* |
2861 | * Free a 0-order page | |
9cca35d4 | 2862 | */ |
2d4894b5 | 2863 | void free_unref_page(struct page *page) |
9cca35d4 MG |
2864 | { |
2865 | unsigned long flags; | |
2866 | unsigned long pfn = page_to_pfn(page); | |
2867 | ||
2d4894b5 | 2868 | if (!free_unref_page_prepare(page, pfn)) |
9cca35d4 MG |
2869 | return; |
2870 | ||
2871 | local_irq_save(flags); | |
2d4894b5 | 2872 | free_unref_page_commit(page, pfn); |
d34b0733 | 2873 | local_irq_restore(flags); |
1da177e4 LT |
2874 | } |
2875 | ||
cc59850e KK |
2876 | /* |
2877 | * Free a list of 0-order pages | |
2878 | */ | |
2d4894b5 | 2879 | void free_unref_page_list(struct list_head *list) |
cc59850e KK |
2880 | { |
2881 | struct page *page, *next; | |
9cca35d4 | 2882 | unsigned long flags, pfn; |
c24ad77d | 2883 | int batch_count = 0; |
9cca35d4 MG |
2884 | |
2885 | /* Prepare pages for freeing */ | |
2886 | list_for_each_entry_safe(page, next, list, lru) { | |
2887 | pfn = page_to_pfn(page); | |
2d4894b5 | 2888 | if (!free_unref_page_prepare(page, pfn)) |
9cca35d4 MG |
2889 | list_del(&page->lru); |
2890 | set_page_private(page, pfn); | |
2891 | } | |
cc59850e | 2892 | |
9cca35d4 | 2893 | local_irq_save(flags); |
cc59850e | 2894 | list_for_each_entry_safe(page, next, list, lru) { |
9cca35d4 MG |
2895 | unsigned long pfn = page_private(page); |
2896 | ||
2897 | set_page_private(page, 0); | |
2d4894b5 MG |
2898 | trace_mm_page_free_batched(page); |
2899 | free_unref_page_commit(page, pfn); | |
c24ad77d LS |
2900 | |
2901 | /* | |
2902 | * Guard against excessive IRQ disabled times when we get | |
2903 | * a large list of pages to free. | |
2904 | */ | |
2905 | if (++batch_count == SWAP_CLUSTER_MAX) { | |
2906 | local_irq_restore(flags); | |
2907 | batch_count = 0; | |
2908 | local_irq_save(flags); | |
2909 | } | |
cc59850e | 2910 | } |
9cca35d4 | 2911 | local_irq_restore(flags); |
cc59850e KK |
2912 | } |
2913 | ||
8dfcc9ba NP |
2914 | /* |
2915 | * split_page takes a non-compound higher-order page, and splits it into | |
2916 | * n (1<<order) sub-pages: page[0..n] | |
2917 | * Each sub-page must be freed individually. | |
2918 | * | |
2919 | * Note: this is probably too low level an operation for use in drivers. | |
2920 | * Please consult with lkml before using this in your driver. | |
2921 | */ | |
2922 | void split_page(struct page *page, unsigned int order) | |
2923 | { | |
2924 | int i; | |
2925 | ||
309381fe SL |
2926 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2927 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 | 2928 | |
a9627bc5 | 2929 | for (i = 1; i < (1 << order); i++) |
7835e98b | 2930 | set_page_refcounted(page + i); |
a9627bc5 | 2931 | split_page_owner(page, order); |
8dfcc9ba | 2932 | } |
5853ff23 | 2933 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2934 | |
3c605096 | 2935 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2936 | { |
748446bb MG |
2937 | unsigned long watermark; |
2938 | struct zone *zone; | |
2139cbe6 | 2939 | int mt; |
748446bb MG |
2940 | |
2941 | BUG_ON(!PageBuddy(page)); | |
2942 | ||
2943 | zone = page_zone(page); | |
2e30abd1 | 2944 | mt = get_pageblock_migratetype(page); |
748446bb | 2945 | |
194159fb | 2946 | if (!is_migrate_isolate(mt)) { |
8348faf9 VB |
2947 | /* |
2948 | * Obey watermarks as if the page was being allocated. We can | |
2949 | * emulate a high-order watermark check with a raised order-0 | |
2950 | * watermark, because we already know our high-order page | |
2951 | * exists. | |
2952 | */ | |
2953 | watermark = min_wmark_pages(zone) + (1UL << order); | |
d883c6cf | 2954 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
2e30abd1 MS |
2955 | return 0; |
2956 | ||
8fb74b9f | 2957 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 2958 | } |
748446bb MG |
2959 | |
2960 | /* Remove page from free list */ | |
2961 | list_del(&page->lru); | |
2962 | zone->free_area[order].nr_free--; | |
2963 | rmv_page_order(page); | |
2139cbe6 | 2964 | |
400bc7fd | 2965 | /* |
2966 | * Set the pageblock if the isolated page is at least half of a | |
2967 | * pageblock | |
2968 | */ | |
748446bb MG |
2969 | if (order >= pageblock_order - 1) { |
2970 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2971 | for (; page < endpage; page += pageblock_nr_pages) { |
2972 | int mt = get_pageblock_migratetype(page); | |
88ed365e | 2973 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) |
a6ffdc07 | 2974 | && !is_migrate_highatomic(mt)) |
47118af0 MN |
2975 | set_pageblock_migratetype(page, |
2976 | MIGRATE_MOVABLE); | |
2977 | } | |
748446bb MG |
2978 | } |
2979 | ||
f3a14ced | 2980 | |
8fb74b9f | 2981 | return 1UL << order; |
1fb3f8ca MG |
2982 | } |
2983 | ||
060e7417 MG |
2984 | /* |
2985 | * Update NUMA hit/miss statistics | |
2986 | * | |
2987 | * Must be called with interrupts disabled. | |
060e7417 | 2988 | */ |
41b6167e | 2989 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) |
060e7417 MG |
2990 | { |
2991 | #ifdef CONFIG_NUMA | |
3a321d2a | 2992 | enum numa_stat_item local_stat = NUMA_LOCAL; |
060e7417 | 2993 | |
4518085e KW |
2994 | /* skip numa counters update if numa stats is disabled */ |
2995 | if (!static_branch_likely(&vm_numa_stat_key)) | |
2996 | return; | |
2997 | ||
c1093b74 | 2998 | if (zone_to_nid(z) != numa_node_id()) |
060e7417 | 2999 | local_stat = NUMA_OTHER; |
060e7417 | 3000 | |
c1093b74 | 3001 | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) |
3a321d2a | 3002 | __inc_numa_state(z, NUMA_HIT); |
2df26639 | 3003 | else { |
3a321d2a KW |
3004 | __inc_numa_state(z, NUMA_MISS); |
3005 | __inc_numa_state(preferred_zone, NUMA_FOREIGN); | |
060e7417 | 3006 | } |
3a321d2a | 3007 | __inc_numa_state(z, local_stat); |
060e7417 MG |
3008 | #endif |
3009 | } | |
3010 | ||
066b2393 MG |
3011 | /* Remove page from the per-cpu list, caller must protect the list */ |
3012 | static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, | |
6bb15450 | 3013 | unsigned int alloc_flags, |
453f85d4 | 3014 | struct per_cpu_pages *pcp, |
066b2393 MG |
3015 | struct list_head *list) |
3016 | { | |
3017 | struct page *page; | |
3018 | ||
3019 | do { | |
3020 | if (list_empty(list)) { | |
3021 | pcp->count += rmqueue_bulk(zone, 0, | |
3022 | pcp->batch, list, | |
6bb15450 | 3023 | migratetype, alloc_flags); |
066b2393 MG |
3024 | if (unlikely(list_empty(list))) |
3025 | return NULL; | |
3026 | } | |
3027 | ||
453f85d4 | 3028 | page = list_first_entry(list, struct page, lru); |
066b2393 MG |
3029 | list_del(&page->lru); |
3030 | pcp->count--; | |
3031 | } while (check_new_pcp(page)); | |
3032 | ||
3033 | return page; | |
3034 | } | |
3035 | ||
3036 | /* Lock and remove page from the per-cpu list */ | |
3037 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | |
3038 | struct zone *zone, unsigned int order, | |
6bb15450 MG |
3039 | gfp_t gfp_flags, int migratetype, |
3040 | unsigned int alloc_flags) | |
066b2393 MG |
3041 | { |
3042 | struct per_cpu_pages *pcp; | |
3043 | struct list_head *list; | |
066b2393 | 3044 | struct page *page; |
d34b0733 | 3045 | unsigned long flags; |
066b2393 | 3046 | |
d34b0733 | 3047 | local_irq_save(flags); |
066b2393 MG |
3048 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
3049 | list = &pcp->lists[migratetype]; | |
6bb15450 | 3050 | page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); |
066b2393 MG |
3051 | if (page) { |
3052 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | |
3053 | zone_statistics(preferred_zone, zone); | |
3054 | } | |
d34b0733 | 3055 | local_irq_restore(flags); |
066b2393 MG |
3056 | return page; |
3057 | } | |
3058 | ||
1da177e4 | 3059 | /* |
75379191 | 3060 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
1da177e4 | 3061 | */ |
0a15c3e9 | 3062 | static inline |
066b2393 | 3063 | struct page *rmqueue(struct zone *preferred_zone, |
7aeb09f9 | 3064 | struct zone *zone, unsigned int order, |
c603844b MG |
3065 | gfp_t gfp_flags, unsigned int alloc_flags, |
3066 | int migratetype) | |
1da177e4 LT |
3067 | { |
3068 | unsigned long flags; | |
689bcebf | 3069 | struct page *page; |
1da177e4 | 3070 | |
d34b0733 | 3071 | if (likely(order == 0)) { |
066b2393 | 3072 | page = rmqueue_pcplist(preferred_zone, zone, order, |
6bb15450 | 3073 | gfp_flags, migratetype, alloc_flags); |
066b2393 MG |
3074 | goto out; |
3075 | } | |
83b9355b | 3076 | |
066b2393 MG |
3077 | /* |
3078 | * We most definitely don't want callers attempting to | |
3079 | * allocate greater than order-1 page units with __GFP_NOFAIL. | |
3080 | */ | |
3081 | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | |
3082 | spin_lock_irqsave(&zone->lock, flags); | |
0aaa29a5 | 3083 | |
066b2393 MG |
3084 | do { |
3085 | page = NULL; | |
3086 | if (alloc_flags & ALLOC_HARDER) { | |
3087 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
3088 | if (page) | |
3089 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | |
3090 | } | |
a74609fa | 3091 | if (!page) |
6bb15450 | 3092 | page = __rmqueue(zone, order, migratetype, alloc_flags); |
066b2393 MG |
3093 | } while (page && check_new_pages(page, order)); |
3094 | spin_unlock(&zone->lock); | |
3095 | if (!page) | |
3096 | goto failed; | |
3097 | __mod_zone_freepage_state(zone, -(1 << order), | |
3098 | get_pcppage_migratetype(page)); | |
1da177e4 | 3099 | |
16709d1d | 3100 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
41b6167e | 3101 | zone_statistics(preferred_zone, zone); |
a74609fa | 3102 | local_irq_restore(flags); |
1da177e4 | 3103 | |
066b2393 | 3104 | out: |
73444bc4 MG |
3105 | /* Separate test+clear to avoid unnecessary atomics */ |
3106 | if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { | |
3107 | clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | |
3108 | wakeup_kswapd(zone, 0, 0, zone_idx(zone)); | |
3109 | } | |
3110 | ||
066b2393 | 3111 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); |
1da177e4 | 3112 | return page; |
a74609fa NP |
3113 | |
3114 | failed: | |
3115 | local_irq_restore(flags); | |
a74609fa | 3116 | return NULL; |
1da177e4 LT |
3117 | } |
3118 | ||
933e312e AM |
3119 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
3120 | ||
b2588c4b | 3121 | static struct { |
933e312e AM |
3122 | struct fault_attr attr; |
3123 | ||
621a5f7a | 3124 | bool ignore_gfp_highmem; |
71baba4b | 3125 | bool ignore_gfp_reclaim; |
54114994 | 3126 | u32 min_order; |
933e312e AM |
3127 | } fail_page_alloc = { |
3128 | .attr = FAULT_ATTR_INITIALIZER, | |
71baba4b | 3129 | .ignore_gfp_reclaim = true, |
621a5f7a | 3130 | .ignore_gfp_highmem = true, |
54114994 | 3131 | .min_order = 1, |
933e312e AM |
3132 | }; |
3133 | ||
3134 | static int __init setup_fail_page_alloc(char *str) | |
3135 | { | |
3136 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
3137 | } | |
3138 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
3139 | ||
af3b8544 | 3140 | static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 3141 | { |
54114994 | 3142 | if (order < fail_page_alloc.min_order) |
deaf386e | 3143 | return false; |
933e312e | 3144 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 3145 | return false; |
933e312e | 3146 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 3147 | return false; |
71baba4b MG |
3148 | if (fail_page_alloc.ignore_gfp_reclaim && |
3149 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | |
deaf386e | 3150 | return false; |
933e312e AM |
3151 | |
3152 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
3153 | } | |
3154 | ||
3155 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
3156 | ||
3157 | static int __init fail_page_alloc_debugfs(void) | |
3158 | { | |
0825a6f9 | 3159 | umode_t mode = S_IFREG | 0600; |
933e312e | 3160 | struct dentry *dir; |
933e312e | 3161 | |
dd48c085 AM |
3162 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
3163 | &fail_page_alloc.attr); | |
3164 | if (IS_ERR(dir)) | |
3165 | return PTR_ERR(dir); | |
933e312e | 3166 | |
b2588c4b | 3167 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
71baba4b | 3168 | &fail_page_alloc.ignore_gfp_reclaim)) |
b2588c4b AM |
3169 | goto fail; |
3170 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
3171 | &fail_page_alloc.ignore_gfp_highmem)) | |
3172 | goto fail; | |
3173 | if (!debugfs_create_u32("min-order", mode, dir, | |
3174 | &fail_page_alloc.min_order)) | |
3175 | goto fail; | |
3176 | ||
3177 | return 0; | |
3178 | fail: | |
dd48c085 | 3179 | debugfs_remove_recursive(dir); |
933e312e | 3180 | |
b2588c4b | 3181 | return -ENOMEM; |
933e312e AM |
3182 | } |
3183 | ||
3184 | late_initcall(fail_page_alloc_debugfs); | |
3185 | ||
3186 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
3187 | ||
3188 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
3189 | ||
af3b8544 | 3190 | static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 3191 | { |
deaf386e | 3192 | return false; |
933e312e AM |
3193 | } |
3194 | ||
3195 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
3196 | ||
af3b8544 BP |
3197 | static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
3198 | { | |
3199 | return __should_fail_alloc_page(gfp_mask, order); | |
3200 | } | |
3201 | ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); | |
3202 | ||
1da177e4 | 3203 | /* |
97a16fc8 MG |
3204 | * Return true if free base pages are above 'mark'. For high-order checks it |
3205 | * will return true of the order-0 watermark is reached and there is at least | |
3206 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
3207 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 3208 | */ |
86a294a8 MH |
3209 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
3210 | int classzone_idx, unsigned int alloc_flags, | |
3211 | long free_pages) | |
1da177e4 | 3212 | { |
d23ad423 | 3213 | long min = mark; |
1da177e4 | 3214 | int o; |
cd04ae1e | 3215 | const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); |
1da177e4 | 3216 | |
0aaa29a5 | 3217 | /* free_pages may go negative - that's OK */ |
df0a6daa | 3218 | free_pages -= (1 << order) - 1; |
0aaa29a5 | 3219 | |
7fb1d9fc | 3220 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 3221 | min -= min / 2; |
0aaa29a5 MG |
3222 | |
3223 | /* | |
3224 | * If the caller does not have rights to ALLOC_HARDER then subtract | |
3225 | * the high-atomic reserves. This will over-estimate the size of the | |
3226 | * atomic reserve but it avoids a search. | |
3227 | */ | |
cd04ae1e | 3228 | if (likely(!alloc_harder)) { |
0aaa29a5 | 3229 | free_pages -= z->nr_reserved_highatomic; |
cd04ae1e MH |
3230 | } else { |
3231 | /* | |
3232 | * OOM victims can try even harder than normal ALLOC_HARDER | |
3233 | * users on the grounds that it's definitely going to be in | |
3234 | * the exit path shortly and free memory. Any allocation it | |
3235 | * makes during the free path will be small and short-lived. | |
3236 | */ | |
3237 | if (alloc_flags & ALLOC_OOM) | |
3238 | min -= min / 2; | |
3239 | else | |
3240 | min -= min / 4; | |
3241 | } | |
3242 | ||
e2b19197 | 3243 | |
d883c6cf JK |
3244 | #ifdef CONFIG_CMA |
3245 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3246 | if (!(alloc_flags & ALLOC_CMA)) | |
3247 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); | |
3248 | #endif | |
3249 | ||
97a16fc8 MG |
3250 | /* |
3251 | * Check watermarks for an order-0 allocation request. If these | |
3252 | * are not met, then a high-order request also cannot go ahead | |
3253 | * even if a suitable page happened to be free. | |
3254 | */ | |
3255 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 3256 | return false; |
1da177e4 | 3257 | |
97a16fc8 MG |
3258 | /* If this is an order-0 request then the watermark is fine */ |
3259 | if (!order) | |
3260 | return true; | |
3261 | ||
3262 | /* For a high-order request, check at least one suitable page is free */ | |
3263 | for (o = order; o < MAX_ORDER; o++) { | |
3264 | struct free_area *area = &z->free_area[o]; | |
3265 | int mt; | |
3266 | ||
3267 | if (!area->nr_free) | |
3268 | continue; | |
3269 | ||
97a16fc8 MG |
3270 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
3271 | if (!list_empty(&area->free_list[mt])) | |
3272 | return true; | |
3273 | } | |
3274 | ||
3275 | #ifdef CONFIG_CMA | |
d883c6cf JK |
3276 | if ((alloc_flags & ALLOC_CMA) && |
3277 | !list_empty(&area->free_list[MIGRATE_CMA])) { | |
97a16fc8 | 3278 | return true; |
d883c6cf | 3279 | } |
97a16fc8 | 3280 | #endif |
b050e376 VB |
3281 | if (alloc_harder && |
3282 | !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) | |
3283 | return true; | |
1da177e4 | 3284 | } |
97a16fc8 | 3285 | return false; |
88f5acf8 MG |
3286 | } |
3287 | ||
7aeb09f9 | 3288 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
c603844b | 3289 | int classzone_idx, unsigned int alloc_flags) |
88f5acf8 MG |
3290 | { |
3291 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
3292 | zone_page_state(z, NR_FREE_PAGES)); | |
3293 | } | |
3294 | ||
48ee5f36 MG |
3295 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
3296 | unsigned long mark, int classzone_idx, unsigned int alloc_flags) | |
3297 | { | |
3298 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
d883c6cf JK |
3299 | long cma_pages = 0; |
3300 | ||
3301 | #ifdef CONFIG_CMA | |
3302 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3303 | if (!(alloc_flags & ALLOC_CMA)) | |
3304 | cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); | |
3305 | #endif | |
48ee5f36 MG |
3306 | |
3307 | /* | |
3308 | * Fast check for order-0 only. If this fails then the reserves | |
3309 | * need to be calculated. There is a corner case where the check | |
3310 | * passes but only the high-order atomic reserve are free. If | |
3311 | * the caller is !atomic then it'll uselessly search the free | |
3312 | * list. That corner case is then slower but it is harmless. | |
3313 | */ | |
d883c6cf | 3314 | if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) |
48ee5f36 MG |
3315 | return true; |
3316 | ||
3317 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
3318 | free_pages); | |
3319 | } | |
3320 | ||
7aeb09f9 | 3321 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
e2b19197 | 3322 | unsigned long mark, int classzone_idx) |
88f5acf8 MG |
3323 | { |
3324 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
3325 | ||
3326 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
3327 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
3328 | ||
e2b19197 | 3329 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, |
88f5acf8 | 3330 | free_pages); |
1da177e4 LT |
3331 | } |
3332 | ||
9276b1bc | 3333 | #ifdef CONFIG_NUMA |
957f822a DR |
3334 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3335 | { | |
e02dc017 | 3336 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
5f7a75ac | 3337 | RECLAIM_DISTANCE; |
957f822a | 3338 | } |
9276b1bc | 3339 | #else /* CONFIG_NUMA */ |
957f822a DR |
3340 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3341 | { | |
3342 | return true; | |
3343 | } | |
9276b1bc PJ |
3344 | #endif /* CONFIG_NUMA */ |
3345 | ||
6bb15450 MG |
3346 | /* |
3347 | * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid | |
3348 | * fragmentation is subtle. If the preferred zone was HIGHMEM then | |
3349 | * premature use of a lower zone may cause lowmem pressure problems that | |
3350 | * are worse than fragmentation. If the next zone is ZONE_DMA then it is | |
3351 | * probably too small. It only makes sense to spread allocations to avoid | |
3352 | * fragmentation between the Normal and DMA32 zones. | |
3353 | */ | |
3354 | static inline unsigned int | |
0a79cdad | 3355 | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) |
6bb15450 | 3356 | { |
0a79cdad MG |
3357 | unsigned int alloc_flags = 0; |
3358 | ||
3359 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) | |
3360 | alloc_flags |= ALLOC_KSWAPD; | |
3361 | ||
3362 | #ifdef CONFIG_ZONE_DMA32 | |
6bb15450 | 3363 | if (zone_idx(zone) != ZONE_NORMAL) |
0a79cdad | 3364 | goto out; |
6bb15450 MG |
3365 | |
3366 | /* | |
3367 | * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and | |
3368 | * the pointer is within zone->zone_pgdat->node_zones[]. Also assume | |
3369 | * on UMA that if Normal is populated then so is DMA32. | |
3370 | */ | |
3371 | BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); | |
3372 | if (nr_online_nodes > 1 && !populated_zone(--zone)) | |
0a79cdad | 3373 | goto out; |
6bb15450 | 3374 | |
0a79cdad MG |
3375 | out: |
3376 | #endif /* CONFIG_ZONE_DMA32 */ | |
3377 | return alloc_flags; | |
6bb15450 | 3378 | } |
6bb15450 | 3379 | |
7fb1d9fc | 3380 | /* |
0798e519 | 3381 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
3382 | * a page. |
3383 | */ | |
3384 | static struct page * | |
a9263751 VB |
3385 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
3386 | const struct alloc_context *ac) | |
753ee728 | 3387 | { |
6bb15450 | 3388 | struct zoneref *z; |
5117f45d | 3389 | struct zone *zone; |
3b8c0be4 | 3390 | struct pglist_data *last_pgdat_dirty_limit = NULL; |
6bb15450 | 3391 | bool no_fallback; |
3b8c0be4 | 3392 | |
6bb15450 | 3393 | retry: |
7fb1d9fc | 3394 | /* |
9276b1bc | 3395 | * Scan zonelist, looking for a zone with enough free. |
344736f2 | 3396 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. |
7fb1d9fc | 3397 | */ |
6bb15450 MG |
3398 | no_fallback = alloc_flags & ALLOC_NOFRAGMENT; |
3399 | z = ac->preferred_zoneref; | |
c33d6c06 | 3400 | for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, |
a9263751 | 3401 | ac->nodemask) { |
be06af00 | 3402 | struct page *page; |
e085dbc5 JW |
3403 | unsigned long mark; |
3404 | ||
664eedde MG |
3405 | if (cpusets_enabled() && |
3406 | (alloc_flags & ALLOC_CPUSET) && | |
002f2906 | 3407 | !__cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 3408 | continue; |
a756cf59 JW |
3409 | /* |
3410 | * When allocating a page cache page for writing, we | |
281e3726 MG |
3411 | * want to get it from a node that is within its dirty |
3412 | * limit, such that no single node holds more than its | |
a756cf59 | 3413 | * proportional share of globally allowed dirty pages. |
281e3726 | 3414 | * The dirty limits take into account the node's |
a756cf59 JW |
3415 | * lowmem reserves and high watermark so that kswapd |
3416 | * should be able to balance it without having to | |
3417 | * write pages from its LRU list. | |
3418 | * | |
a756cf59 | 3419 | * XXX: For now, allow allocations to potentially |
281e3726 | 3420 | * exceed the per-node dirty limit in the slowpath |
c9ab0c4f | 3421 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 | 3422 | * which is important when on a NUMA setup the allowed |
281e3726 | 3423 | * nodes are together not big enough to reach the |
a756cf59 | 3424 | * global limit. The proper fix for these situations |
281e3726 | 3425 | * will require awareness of nodes in the |
a756cf59 JW |
3426 | * dirty-throttling and the flusher threads. |
3427 | */ | |
3b8c0be4 MG |
3428 | if (ac->spread_dirty_pages) { |
3429 | if (last_pgdat_dirty_limit == zone->zone_pgdat) | |
3430 | continue; | |
3431 | ||
3432 | if (!node_dirty_ok(zone->zone_pgdat)) { | |
3433 | last_pgdat_dirty_limit = zone->zone_pgdat; | |
3434 | continue; | |
3435 | } | |
3436 | } | |
7fb1d9fc | 3437 | |
6bb15450 MG |
3438 | if (no_fallback && nr_online_nodes > 1 && |
3439 | zone != ac->preferred_zoneref->zone) { | |
3440 | int local_nid; | |
3441 | ||
3442 | /* | |
3443 | * If moving to a remote node, retry but allow | |
3444 | * fragmenting fallbacks. Locality is more important | |
3445 | * than fragmentation avoidance. | |
3446 | */ | |
3447 | local_nid = zone_to_nid(ac->preferred_zoneref->zone); | |
3448 | if (zone_to_nid(zone) != local_nid) { | |
3449 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3450 | goto retry; | |
3451 | } | |
3452 | } | |
3453 | ||
a9214443 | 3454 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); |
48ee5f36 | 3455 | if (!zone_watermark_fast(zone, order, mark, |
93ea9964 | 3456 | ac_classzone_idx(ac), alloc_flags)) { |
fa5e084e MG |
3457 | int ret; |
3458 | ||
c9e97a19 PT |
3459 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
3460 | /* | |
3461 | * Watermark failed for this zone, but see if we can | |
3462 | * grow this zone if it contains deferred pages. | |
3463 | */ | |
3464 | if (static_branch_unlikely(&deferred_pages)) { | |
3465 | if (_deferred_grow_zone(zone, order)) | |
3466 | goto try_this_zone; | |
3467 | } | |
3468 | #endif | |
5dab2911 MG |
3469 | /* Checked here to keep the fast path fast */ |
3470 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
3471 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
3472 | goto try_this_zone; | |
3473 | ||
a5f5f91d | 3474 | if (node_reclaim_mode == 0 || |
c33d6c06 | 3475 | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
cd38b115 MG |
3476 | continue; |
3477 | ||
a5f5f91d | 3478 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
fa5e084e | 3479 | switch (ret) { |
a5f5f91d | 3480 | case NODE_RECLAIM_NOSCAN: |
fa5e084e | 3481 | /* did not scan */ |
cd38b115 | 3482 | continue; |
a5f5f91d | 3483 | case NODE_RECLAIM_FULL: |
fa5e084e | 3484 | /* scanned but unreclaimable */ |
cd38b115 | 3485 | continue; |
fa5e084e MG |
3486 | default: |
3487 | /* did we reclaim enough */ | |
fed2719e | 3488 | if (zone_watermark_ok(zone, order, mark, |
93ea9964 | 3489 | ac_classzone_idx(ac), alloc_flags)) |
fed2719e MG |
3490 | goto try_this_zone; |
3491 | ||
fed2719e | 3492 | continue; |
0798e519 | 3493 | } |
7fb1d9fc RS |
3494 | } |
3495 | ||
fa5e084e | 3496 | try_this_zone: |
066b2393 | 3497 | page = rmqueue(ac->preferred_zoneref->zone, zone, order, |
0aaa29a5 | 3498 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 | 3499 | if (page) { |
479f854a | 3500 | prep_new_page(page, order, gfp_mask, alloc_flags); |
0aaa29a5 MG |
3501 | |
3502 | /* | |
3503 | * If this is a high-order atomic allocation then check | |
3504 | * if the pageblock should be reserved for the future | |
3505 | */ | |
3506 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | |
3507 | reserve_highatomic_pageblock(page, zone, order); | |
3508 | ||
75379191 | 3509 | return page; |
c9e97a19 PT |
3510 | } else { |
3511 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
3512 | /* Try again if zone has deferred pages */ | |
3513 | if (static_branch_unlikely(&deferred_pages)) { | |
3514 | if (_deferred_grow_zone(zone, order)) | |
3515 | goto try_this_zone; | |
3516 | } | |
3517 | #endif | |
75379191 | 3518 | } |
54a6eb5c | 3519 | } |
9276b1bc | 3520 | |
6bb15450 MG |
3521 | /* |
3522 | * It's possible on a UMA machine to get through all zones that are | |
3523 | * fragmented. If avoiding fragmentation, reset and try again. | |
3524 | */ | |
3525 | if (no_fallback) { | |
3526 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3527 | goto retry; | |
3528 | } | |
3529 | ||
4ffeaf35 | 3530 | return NULL; |
753ee728 MH |
3531 | } |
3532 | ||
9af744d7 | 3533 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
a238ab5b | 3534 | { |
a238ab5b | 3535 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
aa187507 | 3536 | static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); |
a238ab5b | 3537 | |
2c029a1e | 3538 | if (!__ratelimit(&show_mem_rs)) |
a238ab5b DH |
3539 | return; |
3540 | ||
3541 | /* | |
3542 | * This documents exceptions given to allocations in certain | |
3543 | * contexts that are allowed to allocate outside current's set | |
3544 | * of allowed nodes. | |
3545 | */ | |
3546 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
cd04ae1e | 3547 | if (tsk_is_oom_victim(current) || |
a238ab5b DH |
3548 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
3549 | filter &= ~SHOW_MEM_FILTER_NODES; | |
d0164adc | 3550 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
3551 | filter &= ~SHOW_MEM_FILTER_NODES; |
3552 | ||
9af744d7 | 3553 | show_mem(filter, nodemask); |
aa187507 MH |
3554 | } |
3555 | ||
a8e99259 | 3556 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
aa187507 MH |
3557 | { |
3558 | struct va_format vaf; | |
3559 | va_list args; | |
3560 | static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, | |
3561 | DEFAULT_RATELIMIT_BURST); | |
3562 | ||
0f7896f1 | 3563 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) |
aa187507 MH |
3564 | return; |
3565 | ||
7877cdcc MH |
3566 | va_start(args, fmt); |
3567 | vaf.fmt = fmt; | |
3568 | vaf.va = &args; | |
ef8444ea | 3569 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", |
0205f755 MH |
3570 | current->comm, &vaf, gfp_mask, &gfp_mask, |
3571 | nodemask_pr_args(nodemask)); | |
7877cdcc | 3572 | va_end(args); |
3ee9a4f0 | 3573 | |
a8e99259 | 3574 | cpuset_print_current_mems_allowed(); |
ef8444ea | 3575 | pr_cont("\n"); |
a238ab5b | 3576 | dump_stack(); |
685dbf6f | 3577 | warn_alloc_show_mem(gfp_mask, nodemask); |
a238ab5b DH |
3578 | } |
3579 | ||
6c18ba7a MH |
3580 | static inline struct page * |
3581 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | |
3582 | unsigned int alloc_flags, | |
3583 | const struct alloc_context *ac) | |
3584 | { | |
3585 | struct page *page; | |
3586 | ||
3587 | page = get_page_from_freelist(gfp_mask, order, | |
3588 | alloc_flags|ALLOC_CPUSET, ac); | |
3589 | /* | |
3590 | * fallback to ignore cpuset restriction if our nodes | |
3591 | * are depleted | |
3592 | */ | |
3593 | if (!page) | |
3594 | page = get_page_from_freelist(gfp_mask, order, | |
3595 | alloc_flags, ac); | |
3596 | ||
3597 | return page; | |
3598 | } | |
3599 | ||
11e33f6a MG |
3600 | static inline struct page * |
3601 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3602 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 3603 | { |
6e0fc46d DR |
3604 | struct oom_control oc = { |
3605 | .zonelist = ac->zonelist, | |
3606 | .nodemask = ac->nodemask, | |
2a966b77 | 3607 | .memcg = NULL, |
6e0fc46d DR |
3608 | .gfp_mask = gfp_mask, |
3609 | .order = order, | |
6e0fc46d | 3610 | }; |
11e33f6a MG |
3611 | struct page *page; |
3612 | ||
9879de73 JW |
3613 | *did_some_progress = 0; |
3614 | ||
9879de73 | 3615 | /* |
dc56401f JW |
3616 | * Acquire the oom lock. If that fails, somebody else is |
3617 | * making progress for us. | |
9879de73 | 3618 | */ |
dc56401f | 3619 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 3620 | *did_some_progress = 1; |
11e33f6a | 3621 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
3622 | return NULL; |
3623 | } | |
6b1de916 | 3624 | |
11e33f6a MG |
3625 | /* |
3626 | * Go through the zonelist yet one more time, keep very high watermark | |
3627 | * here, this is only to catch a parallel oom killing, we must fail if | |
e746bf73 TH |
3628 | * we're still under heavy pressure. But make sure that this reclaim |
3629 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | |
3630 | * allocation which will never fail due to oom_lock already held. | |
11e33f6a | 3631 | */ |
e746bf73 TH |
3632 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
3633 | ~__GFP_DIRECT_RECLAIM, order, | |
3634 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 3635 | if (page) |
11e33f6a MG |
3636 | goto out; |
3637 | ||
06ad276a MH |
3638 | /* Coredumps can quickly deplete all memory reserves */ |
3639 | if (current->flags & PF_DUMPCORE) | |
3640 | goto out; | |
3641 | /* The OOM killer will not help higher order allocs */ | |
3642 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3643 | goto out; | |
dcda9b04 MH |
3644 | /* |
3645 | * We have already exhausted all our reclaim opportunities without any | |
3646 | * success so it is time to admit defeat. We will skip the OOM killer | |
3647 | * because it is very likely that the caller has a more reasonable | |
3648 | * fallback than shooting a random task. | |
3649 | */ | |
3650 | if (gfp_mask & __GFP_RETRY_MAYFAIL) | |
3651 | goto out; | |
06ad276a MH |
3652 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
3653 | if (ac->high_zoneidx < ZONE_NORMAL) | |
3654 | goto out; | |
3655 | if (pm_suspended_storage()) | |
3656 | goto out; | |
3657 | /* | |
3658 | * XXX: GFP_NOFS allocations should rather fail than rely on | |
3659 | * other request to make a forward progress. | |
3660 | * We are in an unfortunate situation where out_of_memory cannot | |
3661 | * do much for this context but let's try it to at least get | |
3662 | * access to memory reserved if the current task is killed (see | |
3663 | * out_of_memory). Once filesystems are ready to handle allocation | |
3664 | * failures more gracefully we should just bail out here. | |
3665 | */ | |
3666 | ||
3667 | /* The OOM killer may not free memory on a specific node */ | |
3668 | if (gfp_mask & __GFP_THISNODE) | |
3669 | goto out; | |
3da88fb3 | 3670 | |
3c2c6488 | 3671 | /* Exhausted what can be done so it's blame time */ |
5020e285 | 3672 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { |
c32b3cbe | 3673 | *did_some_progress = 1; |
5020e285 | 3674 | |
6c18ba7a MH |
3675 | /* |
3676 | * Help non-failing allocations by giving them access to memory | |
3677 | * reserves | |
3678 | */ | |
3679 | if (gfp_mask & __GFP_NOFAIL) | |
3680 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | |
5020e285 | 3681 | ALLOC_NO_WATERMARKS, ac); |
5020e285 | 3682 | } |
11e33f6a | 3683 | out: |
dc56401f | 3684 | mutex_unlock(&oom_lock); |
11e33f6a MG |
3685 | return page; |
3686 | } | |
3687 | ||
33c2d214 MH |
3688 | /* |
3689 | * Maximum number of compaction retries wit a progress before OOM | |
3690 | * killer is consider as the only way to move forward. | |
3691 | */ | |
3692 | #define MAX_COMPACT_RETRIES 16 | |
3693 | ||
56de7263 MG |
3694 | #ifdef CONFIG_COMPACTION |
3695 | /* Try memory compaction for high-order allocations before reclaim */ | |
3696 | static struct page * | |
3697 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3698 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3699 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3700 | { |
98dd3b48 | 3701 | struct page *page; |
eb414681 | 3702 | unsigned long pflags; |
499118e9 | 3703 | unsigned int noreclaim_flag; |
53853e2d VB |
3704 | |
3705 | if (!order) | |
66199712 | 3706 | return NULL; |
66199712 | 3707 | |
eb414681 | 3708 | psi_memstall_enter(&pflags); |
499118e9 | 3709 | noreclaim_flag = memalloc_noreclaim_save(); |
eb414681 | 3710 | |
c5d01d0d | 3711 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
c3486f53 | 3712 | prio); |
eb414681 | 3713 | |
499118e9 | 3714 | memalloc_noreclaim_restore(noreclaim_flag); |
eb414681 | 3715 | psi_memstall_leave(&pflags); |
56de7263 | 3716 | |
c5d01d0d | 3717 | if (*compact_result <= COMPACT_INACTIVE) |
98dd3b48 | 3718 | return NULL; |
53853e2d | 3719 | |
98dd3b48 VB |
3720 | /* |
3721 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
3722 | * count a compaction stall | |
3723 | */ | |
3724 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 3725 | |
31a6c190 | 3726 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
53853e2d | 3727 | |
98dd3b48 VB |
3728 | if (page) { |
3729 | struct zone *zone = page_zone(page); | |
53853e2d | 3730 | |
98dd3b48 VB |
3731 | zone->compact_blockskip_flush = false; |
3732 | compaction_defer_reset(zone, order, true); | |
3733 | count_vm_event(COMPACTSUCCESS); | |
3734 | return page; | |
3735 | } | |
56de7263 | 3736 | |
98dd3b48 VB |
3737 | /* |
3738 | * It's bad if compaction run occurs and fails. The most likely reason | |
3739 | * is that pages exist, but not enough to satisfy watermarks. | |
3740 | */ | |
3741 | count_vm_event(COMPACTFAIL); | |
66199712 | 3742 | |
98dd3b48 | 3743 | cond_resched(); |
56de7263 MG |
3744 | |
3745 | return NULL; | |
3746 | } | |
33c2d214 | 3747 | |
3250845d VB |
3748 | static inline bool |
3749 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | |
3750 | enum compact_result compact_result, | |
3751 | enum compact_priority *compact_priority, | |
d9436498 | 3752 | int *compaction_retries) |
3250845d VB |
3753 | { |
3754 | int max_retries = MAX_COMPACT_RETRIES; | |
c2033b00 | 3755 | int min_priority; |
65190cff MH |
3756 | bool ret = false; |
3757 | int retries = *compaction_retries; | |
3758 | enum compact_priority priority = *compact_priority; | |
3250845d VB |
3759 | |
3760 | if (!order) | |
3761 | return false; | |
3762 | ||
d9436498 VB |
3763 | if (compaction_made_progress(compact_result)) |
3764 | (*compaction_retries)++; | |
3765 | ||
3250845d VB |
3766 | /* |
3767 | * compaction considers all the zone as desperately out of memory | |
3768 | * so it doesn't really make much sense to retry except when the | |
3769 | * failure could be caused by insufficient priority | |
3770 | */ | |
d9436498 VB |
3771 | if (compaction_failed(compact_result)) |
3772 | goto check_priority; | |
3250845d VB |
3773 | |
3774 | /* | |
3775 | * make sure the compaction wasn't deferred or didn't bail out early | |
3776 | * due to locks contention before we declare that we should give up. | |
3777 | * But do not retry if the given zonelist is not suitable for | |
3778 | * compaction. | |
3779 | */ | |
65190cff MH |
3780 | if (compaction_withdrawn(compact_result)) { |
3781 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); | |
3782 | goto out; | |
3783 | } | |
3250845d VB |
3784 | |
3785 | /* | |
dcda9b04 | 3786 | * !costly requests are much more important than __GFP_RETRY_MAYFAIL |
3250845d VB |
3787 | * costly ones because they are de facto nofail and invoke OOM |
3788 | * killer to move on while costly can fail and users are ready | |
3789 | * to cope with that. 1/4 retries is rather arbitrary but we | |
3790 | * would need much more detailed feedback from compaction to | |
3791 | * make a better decision. | |
3792 | */ | |
3793 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3794 | max_retries /= 4; | |
65190cff MH |
3795 | if (*compaction_retries <= max_retries) { |
3796 | ret = true; | |
3797 | goto out; | |
3798 | } | |
3250845d | 3799 | |
d9436498 VB |
3800 | /* |
3801 | * Make sure there are attempts at the highest priority if we exhausted | |
3802 | * all retries or failed at the lower priorities. | |
3803 | */ | |
3804 | check_priority: | |
c2033b00 VB |
3805 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
3806 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | |
65190cff | 3807 | |
c2033b00 | 3808 | if (*compact_priority > min_priority) { |
d9436498 VB |
3809 | (*compact_priority)--; |
3810 | *compaction_retries = 0; | |
65190cff | 3811 | ret = true; |
d9436498 | 3812 | } |
65190cff MH |
3813 | out: |
3814 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | |
3815 | return ret; | |
3250845d | 3816 | } |
56de7263 MG |
3817 | #else |
3818 | static inline struct page * | |
3819 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3820 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3821 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3822 | { |
33c2d214 | 3823 | *compact_result = COMPACT_SKIPPED; |
56de7263 MG |
3824 | return NULL; |
3825 | } | |
33c2d214 MH |
3826 | |
3827 | static inline bool | |
86a294a8 MH |
3828 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
3829 | enum compact_result compact_result, | |
a5508cd8 | 3830 | enum compact_priority *compact_priority, |
d9436498 | 3831 | int *compaction_retries) |
33c2d214 | 3832 | { |
31e49bfd MH |
3833 | struct zone *zone; |
3834 | struct zoneref *z; | |
3835 | ||
3836 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | |
3837 | return false; | |
3838 | ||
3839 | /* | |
3840 | * There are setups with compaction disabled which would prefer to loop | |
3841 | * inside the allocator rather than hit the oom killer prematurely. | |
3842 | * Let's give them a good hope and keep retrying while the order-0 | |
3843 | * watermarks are OK. | |
3844 | */ | |
3845 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
3846 | ac->nodemask) { | |
3847 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | |
3848 | ac_classzone_idx(ac), alloc_flags)) | |
3849 | return true; | |
3850 | } | |
33c2d214 MH |
3851 | return false; |
3852 | } | |
3250845d | 3853 | #endif /* CONFIG_COMPACTION */ |
56de7263 | 3854 | |
d92a8cfc | 3855 | #ifdef CONFIG_LOCKDEP |
93781325 | 3856 | static struct lockdep_map __fs_reclaim_map = |
d92a8cfc PZ |
3857 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); |
3858 | ||
3859 | static bool __need_fs_reclaim(gfp_t gfp_mask) | |
3860 | { | |
3861 | gfp_mask = current_gfp_context(gfp_mask); | |
3862 | ||
3863 | /* no reclaim without waiting on it */ | |
3864 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | |
3865 | return false; | |
3866 | ||
3867 | /* this guy won't enter reclaim */ | |
2e517d68 | 3868 | if (current->flags & PF_MEMALLOC) |
d92a8cfc PZ |
3869 | return false; |
3870 | ||
3871 | /* We're only interested __GFP_FS allocations for now */ | |
3872 | if (!(gfp_mask & __GFP_FS)) | |
3873 | return false; | |
3874 | ||
3875 | if (gfp_mask & __GFP_NOLOCKDEP) | |
3876 | return false; | |
3877 | ||
3878 | return true; | |
3879 | } | |
3880 | ||
93781325 OS |
3881 | void __fs_reclaim_acquire(void) |
3882 | { | |
3883 | lock_map_acquire(&__fs_reclaim_map); | |
3884 | } | |
3885 | ||
3886 | void __fs_reclaim_release(void) | |
3887 | { | |
3888 | lock_map_release(&__fs_reclaim_map); | |
3889 | } | |
3890 | ||
d92a8cfc PZ |
3891 | void fs_reclaim_acquire(gfp_t gfp_mask) |
3892 | { | |
3893 | if (__need_fs_reclaim(gfp_mask)) | |
93781325 | 3894 | __fs_reclaim_acquire(); |
d92a8cfc PZ |
3895 | } |
3896 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | |
3897 | ||
3898 | void fs_reclaim_release(gfp_t gfp_mask) | |
3899 | { | |
3900 | if (__need_fs_reclaim(gfp_mask)) | |
93781325 | 3901 | __fs_reclaim_release(); |
d92a8cfc PZ |
3902 | } |
3903 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | |
3904 | #endif | |
3905 | ||
bba90710 MS |
3906 | /* Perform direct synchronous page reclaim */ |
3907 | static int | |
a9263751 VB |
3908 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
3909 | const struct alloc_context *ac) | |
11e33f6a | 3910 | { |
11e33f6a | 3911 | struct reclaim_state reclaim_state; |
bba90710 | 3912 | int progress; |
499118e9 | 3913 | unsigned int noreclaim_flag; |
eb414681 | 3914 | unsigned long pflags; |
11e33f6a MG |
3915 | |
3916 | cond_resched(); | |
3917 | ||
3918 | /* We now go into synchronous reclaim */ | |
3919 | cpuset_memory_pressure_bump(); | |
eb414681 | 3920 | psi_memstall_enter(&pflags); |
d92a8cfc | 3921 | fs_reclaim_acquire(gfp_mask); |
93781325 | 3922 | noreclaim_flag = memalloc_noreclaim_save(); |
11e33f6a | 3923 | reclaim_state.reclaimed_slab = 0; |
c06b1fca | 3924 | current->reclaim_state = &reclaim_state; |
11e33f6a | 3925 | |
a9263751 VB |
3926 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
3927 | ac->nodemask); | |
11e33f6a | 3928 | |
c06b1fca | 3929 | current->reclaim_state = NULL; |
499118e9 | 3930 | memalloc_noreclaim_restore(noreclaim_flag); |
93781325 | 3931 | fs_reclaim_release(gfp_mask); |
eb414681 | 3932 | psi_memstall_leave(&pflags); |
11e33f6a MG |
3933 | |
3934 | cond_resched(); | |
3935 | ||
bba90710 MS |
3936 | return progress; |
3937 | } | |
3938 | ||
3939 | /* The really slow allocator path where we enter direct reclaim */ | |
3940 | static inline struct page * | |
3941 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3942 | unsigned int alloc_flags, const struct alloc_context *ac, |
a9263751 | 3943 | unsigned long *did_some_progress) |
bba90710 MS |
3944 | { |
3945 | struct page *page = NULL; | |
3946 | bool drained = false; | |
3947 | ||
a9263751 | 3948 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce MG |
3949 | if (unlikely(!(*did_some_progress))) |
3950 | return NULL; | |
11e33f6a | 3951 | |
9ee493ce | 3952 | retry: |
31a6c190 | 3953 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
9ee493ce MG |
3954 | |
3955 | /* | |
3956 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 MG |
3957 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
3958 | * Shrink them them and try again | |
9ee493ce MG |
3959 | */ |
3960 | if (!page && !drained) { | |
29fac03b | 3961 | unreserve_highatomic_pageblock(ac, false); |
93481ff0 | 3962 | drain_all_pages(NULL); |
9ee493ce MG |
3963 | drained = true; |
3964 | goto retry; | |
3965 | } | |
3966 | ||
11e33f6a MG |
3967 | return page; |
3968 | } | |
3969 | ||
5ecd9d40 DR |
3970 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, |
3971 | const struct alloc_context *ac) | |
3a025760 JW |
3972 | { |
3973 | struct zoneref *z; | |
3974 | struct zone *zone; | |
e1a55637 | 3975 | pg_data_t *last_pgdat = NULL; |
5ecd9d40 | 3976 | enum zone_type high_zoneidx = ac->high_zoneidx; |
3a025760 | 3977 | |
5ecd9d40 DR |
3978 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, |
3979 | ac->nodemask) { | |
e1a55637 | 3980 | if (last_pgdat != zone->zone_pgdat) |
5ecd9d40 | 3981 | wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); |
e1a55637 MG |
3982 | last_pgdat = zone->zone_pgdat; |
3983 | } | |
3a025760 JW |
3984 | } |
3985 | ||
c603844b | 3986 | static inline unsigned int |
341ce06f PZ |
3987 | gfp_to_alloc_flags(gfp_t gfp_mask) |
3988 | { | |
c603844b | 3989 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 3990 | |
a56f57ff | 3991 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 3992 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 3993 | |
341ce06f PZ |
3994 | /* |
3995 | * The caller may dip into page reserves a bit more if the caller | |
3996 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
3997 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
d0164adc | 3998 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 3999 | */ |
e6223a3b | 4000 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 4001 | |
d0164adc | 4002 | if (gfp_mask & __GFP_ATOMIC) { |
5c3240d9 | 4003 | /* |
b104a35d DR |
4004 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
4005 | * if it can't schedule. | |
5c3240d9 | 4006 | */ |
b104a35d | 4007 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 4008 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 4009 | /* |
b104a35d | 4010 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
344736f2 | 4011 | * comment for __cpuset_node_allowed(). |
523b9458 | 4012 | */ |
341ce06f | 4013 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 4014 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
4015 | alloc_flags |= ALLOC_HARDER; |
4016 | ||
0a79cdad MG |
4017 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
4018 | alloc_flags |= ALLOC_KSWAPD; | |
4019 | ||
d883c6cf JK |
4020 | #ifdef CONFIG_CMA |
4021 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | |
4022 | alloc_flags |= ALLOC_CMA; | |
4023 | #endif | |
341ce06f PZ |
4024 | return alloc_flags; |
4025 | } | |
4026 | ||
cd04ae1e | 4027 | static bool oom_reserves_allowed(struct task_struct *tsk) |
072bb0aa | 4028 | { |
cd04ae1e MH |
4029 | if (!tsk_is_oom_victim(tsk)) |
4030 | return false; | |
4031 | ||
4032 | /* | |
4033 | * !MMU doesn't have oom reaper so give access to memory reserves | |
4034 | * only to the thread with TIF_MEMDIE set | |
4035 | */ | |
4036 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | |
31a6c190 VB |
4037 | return false; |
4038 | ||
cd04ae1e MH |
4039 | return true; |
4040 | } | |
4041 | ||
4042 | /* | |
4043 | * Distinguish requests which really need access to full memory | |
4044 | * reserves from oom victims which can live with a portion of it | |
4045 | */ | |
4046 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | |
4047 | { | |
4048 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | |
4049 | return 0; | |
31a6c190 | 4050 | if (gfp_mask & __GFP_MEMALLOC) |
cd04ae1e | 4051 | return ALLOC_NO_WATERMARKS; |
31a6c190 | 4052 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
cd04ae1e MH |
4053 | return ALLOC_NO_WATERMARKS; |
4054 | if (!in_interrupt()) { | |
4055 | if (current->flags & PF_MEMALLOC) | |
4056 | return ALLOC_NO_WATERMARKS; | |
4057 | else if (oom_reserves_allowed(current)) | |
4058 | return ALLOC_OOM; | |
4059 | } | |
31a6c190 | 4060 | |
cd04ae1e MH |
4061 | return 0; |
4062 | } | |
4063 | ||
4064 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | |
4065 | { | |
4066 | return !!__gfp_pfmemalloc_flags(gfp_mask); | |
072bb0aa MG |
4067 | } |
4068 | ||
0a0337e0 MH |
4069 | /* |
4070 | * Checks whether it makes sense to retry the reclaim to make a forward progress | |
4071 | * for the given allocation request. | |
491d79ae JW |
4072 | * |
4073 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | |
4074 | * without success, or when we couldn't even meet the watermark if we | |
4075 | * reclaimed all remaining pages on the LRU lists. | |
0a0337e0 MH |
4076 | * |
4077 | * Returns true if a retry is viable or false to enter the oom path. | |
4078 | */ | |
4079 | static inline bool | |
4080 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | |
4081 | struct alloc_context *ac, int alloc_flags, | |
423b452e | 4082 | bool did_some_progress, int *no_progress_loops) |
0a0337e0 MH |
4083 | { |
4084 | struct zone *zone; | |
4085 | struct zoneref *z; | |
15f570bf | 4086 | bool ret = false; |
0a0337e0 | 4087 | |
423b452e VB |
4088 | /* |
4089 | * Costly allocations might have made a progress but this doesn't mean | |
4090 | * their order will become available due to high fragmentation so | |
4091 | * always increment the no progress counter for them | |
4092 | */ | |
4093 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | |
4094 | *no_progress_loops = 0; | |
4095 | else | |
4096 | (*no_progress_loops)++; | |
4097 | ||
0a0337e0 MH |
4098 | /* |
4099 | * Make sure we converge to OOM if we cannot make any progress | |
4100 | * several times in the row. | |
4101 | */ | |
04c8716f MK |
4102 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) { |
4103 | /* Before OOM, exhaust highatomic_reserve */ | |
29fac03b | 4104 | return unreserve_highatomic_pageblock(ac, true); |
04c8716f | 4105 | } |
0a0337e0 | 4106 | |
bca67592 MG |
4107 | /* |
4108 | * Keep reclaiming pages while there is a chance this will lead | |
4109 | * somewhere. If none of the target zones can satisfy our allocation | |
4110 | * request even if all reclaimable pages are considered then we are | |
4111 | * screwed and have to go OOM. | |
0a0337e0 MH |
4112 | */ |
4113 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
4114 | ac->nodemask) { | |
4115 | unsigned long available; | |
ede37713 | 4116 | unsigned long reclaimable; |
d379f01d MH |
4117 | unsigned long min_wmark = min_wmark_pages(zone); |
4118 | bool wmark; | |
0a0337e0 | 4119 | |
5a1c84b4 | 4120 | available = reclaimable = zone_reclaimable_pages(zone); |
5a1c84b4 | 4121 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
0a0337e0 MH |
4122 | |
4123 | /* | |
491d79ae JW |
4124 | * Would the allocation succeed if we reclaimed all |
4125 | * reclaimable pages? | |
0a0337e0 | 4126 | */ |
d379f01d MH |
4127 | wmark = __zone_watermark_ok(zone, order, min_wmark, |
4128 | ac_classzone_idx(ac), alloc_flags, available); | |
4129 | trace_reclaim_retry_zone(z, order, reclaimable, | |
4130 | available, min_wmark, *no_progress_loops, wmark); | |
4131 | if (wmark) { | |
ede37713 MH |
4132 | /* |
4133 | * If we didn't make any progress and have a lot of | |
4134 | * dirty + writeback pages then we should wait for | |
4135 | * an IO to complete to slow down the reclaim and | |
4136 | * prevent from pre mature OOM | |
4137 | */ | |
4138 | if (!did_some_progress) { | |
11fb9989 | 4139 | unsigned long write_pending; |
ede37713 | 4140 | |
5a1c84b4 MG |
4141 | write_pending = zone_page_state_snapshot(zone, |
4142 | NR_ZONE_WRITE_PENDING); | |
ede37713 | 4143 | |
11fb9989 | 4144 | if (2 * write_pending > reclaimable) { |
ede37713 MH |
4145 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
4146 | return true; | |
4147 | } | |
4148 | } | |
5a1c84b4 | 4149 | |
15f570bf MH |
4150 | ret = true; |
4151 | goto out; | |
0a0337e0 MH |
4152 | } |
4153 | } | |
4154 | ||
15f570bf MH |
4155 | out: |
4156 | /* | |
4157 | * Memory allocation/reclaim might be called from a WQ context and the | |
4158 | * current implementation of the WQ concurrency control doesn't | |
4159 | * recognize that a particular WQ is congested if the worker thread is | |
4160 | * looping without ever sleeping. Therefore we have to do a short sleep | |
4161 | * here rather than calling cond_resched(). | |
4162 | */ | |
4163 | if (current->flags & PF_WQ_WORKER) | |
4164 | schedule_timeout_uninterruptible(1); | |
4165 | else | |
4166 | cond_resched(); | |
4167 | return ret; | |
0a0337e0 MH |
4168 | } |
4169 | ||
902b6281 VB |
4170 | static inline bool |
4171 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | |
4172 | { | |
4173 | /* | |
4174 | * It's possible that cpuset's mems_allowed and the nodemask from | |
4175 | * mempolicy don't intersect. This should be normally dealt with by | |
4176 | * policy_nodemask(), but it's possible to race with cpuset update in | |
4177 | * such a way the check therein was true, and then it became false | |
4178 | * before we got our cpuset_mems_cookie here. | |
4179 | * This assumes that for all allocations, ac->nodemask can come only | |
4180 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | |
4181 | * when it does not intersect with the cpuset restrictions) or the | |
4182 | * caller can deal with a violated nodemask. | |
4183 | */ | |
4184 | if (cpusets_enabled() && ac->nodemask && | |
4185 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | |
4186 | ac->nodemask = NULL; | |
4187 | return true; | |
4188 | } | |
4189 | ||
4190 | /* | |
4191 | * When updating a task's mems_allowed or mempolicy nodemask, it is | |
4192 | * possible to race with parallel threads in such a way that our | |
4193 | * allocation can fail while the mask is being updated. If we are about | |
4194 | * to fail, check if the cpuset changed during allocation and if so, | |
4195 | * retry. | |
4196 | */ | |
4197 | if (read_mems_allowed_retry(cpuset_mems_cookie)) | |
4198 | return true; | |
4199 | ||
4200 | return false; | |
4201 | } | |
4202 | ||
11e33f6a MG |
4203 | static inline struct page * |
4204 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 4205 | struct alloc_context *ac) |
11e33f6a | 4206 | { |
d0164adc | 4207 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
282722b0 | 4208 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
11e33f6a | 4209 | struct page *page = NULL; |
c603844b | 4210 | unsigned int alloc_flags; |
11e33f6a | 4211 | unsigned long did_some_progress; |
5ce9bfef | 4212 | enum compact_priority compact_priority; |
c5d01d0d | 4213 | enum compact_result compact_result; |
5ce9bfef VB |
4214 | int compaction_retries; |
4215 | int no_progress_loops; | |
5ce9bfef | 4216 | unsigned int cpuset_mems_cookie; |
cd04ae1e | 4217 | int reserve_flags; |
1da177e4 | 4218 | |
d0164adc MG |
4219 | /* |
4220 | * We also sanity check to catch abuse of atomic reserves being used by | |
4221 | * callers that are not in atomic context. | |
4222 | */ | |
4223 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | |
4224 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | |
4225 | gfp_mask &= ~__GFP_ATOMIC; | |
4226 | ||
5ce9bfef VB |
4227 | retry_cpuset: |
4228 | compaction_retries = 0; | |
4229 | no_progress_loops = 0; | |
4230 | compact_priority = DEF_COMPACT_PRIORITY; | |
4231 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
9a67f648 MH |
4232 | |
4233 | /* | |
4234 | * The fast path uses conservative alloc_flags to succeed only until | |
4235 | * kswapd needs to be woken up, and to avoid the cost of setting up | |
4236 | * alloc_flags precisely. So we do that now. | |
4237 | */ | |
4238 | alloc_flags = gfp_to_alloc_flags(gfp_mask); | |
4239 | ||
e47483bc VB |
4240 | /* |
4241 | * We need to recalculate the starting point for the zonelist iterator | |
4242 | * because we might have used different nodemask in the fast path, or | |
4243 | * there was a cpuset modification and we are retrying - otherwise we | |
4244 | * could end up iterating over non-eligible zones endlessly. | |
4245 | */ | |
4246 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
4247 | ac->high_zoneidx, ac->nodemask); | |
4248 | if (!ac->preferred_zoneref->zone) | |
4249 | goto nopage; | |
4250 | ||
0a79cdad | 4251 | if (alloc_flags & ALLOC_KSWAPD) |
5ecd9d40 | 4252 | wake_all_kswapds(order, gfp_mask, ac); |
23771235 VB |
4253 | |
4254 | /* | |
4255 | * The adjusted alloc_flags might result in immediate success, so try | |
4256 | * that first | |
4257 | */ | |
4258 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
4259 | if (page) | |
4260 | goto got_pg; | |
4261 | ||
a8161d1e VB |
4262 | /* |
4263 | * For costly allocations, try direct compaction first, as it's likely | |
282722b0 VB |
4264 | * that we have enough base pages and don't need to reclaim. For non- |
4265 | * movable high-order allocations, do that as well, as compaction will | |
4266 | * try prevent permanent fragmentation by migrating from blocks of the | |
4267 | * same migratetype. | |
4268 | * Don't try this for allocations that are allowed to ignore | |
4269 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | |
a8161d1e | 4270 | */ |
282722b0 VB |
4271 | if (can_direct_reclaim && |
4272 | (costly_order || | |
4273 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | |
4274 | && !gfp_pfmemalloc_allowed(gfp_mask)) { | |
a8161d1e VB |
4275 | page = __alloc_pages_direct_compact(gfp_mask, order, |
4276 | alloc_flags, ac, | |
a5508cd8 | 4277 | INIT_COMPACT_PRIORITY, |
a8161d1e VB |
4278 | &compact_result); |
4279 | if (page) | |
4280 | goto got_pg; | |
4281 | ||
3eb2771b VB |
4282 | /* |
4283 | * Checks for costly allocations with __GFP_NORETRY, which | |
4284 | * includes THP page fault allocations | |
4285 | */ | |
282722b0 | 4286 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { |
a8161d1e VB |
4287 | /* |
4288 | * If compaction is deferred for high-order allocations, | |
4289 | * it is because sync compaction recently failed. If | |
4290 | * this is the case and the caller requested a THP | |
4291 | * allocation, we do not want to heavily disrupt the | |
4292 | * system, so we fail the allocation instead of entering | |
4293 | * direct reclaim. | |
4294 | */ | |
4295 | if (compact_result == COMPACT_DEFERRED) | |
4296 | goto nopage; | |
4297 | ||
a8161d1e | 4298 | /* |
3eb2771b VB |
4299 | * Looks like reclaim/compaction is worth trying, but |
4300 | * sync compaction could be very expensive, so keep | |
25160354 | 4301 | * using async compaction. |
a8161d1e | 4302 | */ |
a5508cd8 | 4303 | compact_priority = INIT_COMPACT_PRIORITY; |
a8161d1e VB |
4304 | } |
4305 | } | |
23771235 | 4306 | |
31a6c190 | 4307 | retry: |
23771235 | 4308 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
0a79cdad | 4309 | if (alloc_flags & ALLOC_KSWAPD) |
5ecd9d40 | 4310 | wake_all_kswapds(order, gfp_mask, ac); |
31a6c190 | 4311 | |
cd04ae1e MH |
4312 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
4313 | if (reserve_flags) | |
4314 | alloc_flags = reserve_flags; | |
23771235 | 4315 | |
e46e7b77 | 4316 | /* |
d6a24df0 VB |
4317 | * Reset the nodemask and zonelist iterators if memory policies can be |
4318 | * ignored. These allocations are high priority and system rather than | |
4319 | * user oriented. | |
e46e7b77 | 4320 | */ |
cd04ae1e | 4321 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
d6a24df0 | 4322 | ac->nodemask = NULL; |
e46e7b77 MG |
4323 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
4324 | ac->high_zoneidx, ac->nodemask); | |
4325 | } | |
4326 | ||
23771235 | 4327 | /* Attempt with potentially adjusted zonelist and alloc_flags */ |
31a6c190 | 4328 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
7fb1d9fc RS |
4329 | if (page) |
4330 | goto got_pg; | |
1da177e4 | 4331 | |
d0164adc | 4332 | /* Caller is not willing to reclaim, we can't balance anything */ |
9a67f648 | 4333 | if (!can_direct_reclaim) |
1da177e4 LT |
4334 | goto nopage; |
4335 | ||
9a67f648 MH |
4336 | /* Avoid recursion of direct reclaim */ |
4337 | if (current->flags & PF_MEMALLOC) | |
6583bb64 DR |
4338 | goto nopage; |
4339 | ||
a8161d1e VB |
4340 | /* Try direct reclaim and then allocating */ |
4341 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | |
4342 | &did_some_progress); | |
4343 | if (page) | |
4344 | goto got_pg; | |
4345 | ||
4346 | /* Try direct compaction and then allocating */ | |
a9263751 | 4347 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
a5508cd8 | 4348 | compact_priority, &compact_result); |
56de7263 MG |
4349 | if (page) |
4350 | goto got_pg; | |
75f30861 | 4351 | |
9083905a JW |
4352 | /* Do not loop if specifically requested */ |
4353 | if (gfp_mask & __GFP_NORETRY) | |
a8161d1e | 4354 | goto nopage; |
9083905a | 4355 | |
0a0337e0 MH |
4356 | /* |
4357 | * Do not retry costly high order allocations unless they are | |
dcda9b04 | 4358 | * __GFP_RETRY_MAYFAIL |
0a0337e0 | 4359 | */ |
dcda9b04 | 4360 | if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) |
a8161d1e | 4361 | goto nopage; |
0a0337e0 | 4362 | |
0a0337e0 | 4363 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
423b452e | 4364 | did_some_progress > 0, &no_progress_loops)) |
0a0337e0 MH |
4365 | goto retry; |
4366 | ||
33c2d214 MH |
4367 | /* |
4368 | * It doesn't make any sense to retry for the compaction if the order-0 | |
4369 | * reclaim is not able to make any progress because the current | |
4370 | * implementation of the compaction depends on the sufficient amount | |
4371 | * of free memory (see __compaction_suitable) | |
4372 | */ | |
4373 | if (did_some_progress > 0 && | |
86a294a8 | 4374 | should_compact_retry(ac, order, alloc_flags, |
a5508cd8 | 4375 | compact_result, &compact_priority, |
d9436498 | 4376 | &compaction_retries)) |
33c2d214 MH |
4377 | goto retry; |
4378 | ||
902b6281 VB |
4379 | |
4380 | /* Deal with possible cpuset update races before we start OOM killing */ | |
4381 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | |
e47483bc VB |
4382 | goto retry_cpuset; |
4383 | ||
9083905a JW |
4384 | /* Reclaim has failed us, start killing things */ |
4385 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
4386 | if (page) | |
4387 | goto got_pg; | |
4388 | ||
9a67f648 | 4389 | /* Avoid allocations with no watermarks from looping endlessly */ |
cd04ae1e MH |
4390 | if (tsk_is_oom_victim(current) && |
4391 | (alloc_flags == ALLOC_OOM || | |
c288983d | 4392 | (gfp_mask & __GFP_NOMEMALLOC))) |
9a67f648 MH |
4393 | goto nopage; |
4394 | ||
9083905a | 4395 | /* Retry as long as the OOM killer is making progress */ |
0a0337e0 MH |
4396 | if (did_some_progress) { |
4397 | no_progress_loops = 0; | |
9083905a | 4398 | goto retry; |
0a0337e0 | 4399 | } |
9083905a | 4400 | |
1da177e4 | 4401 | nopage: |
902b6281 VB |
4402 | /* Deal with possible cpuset update races before we fail */ |
4403 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | |
5ce9bfef VB |
4404 | goto retry_cpuset; |
4405 | ||
9a67f648 MH |
4406 | /* |
4407 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | |
4408 | * we always retry | |
4409 | */ | |
4410 | if (gfp_mask & __GFP_NOFAIL) { | |
4411 | /* | |
4412 | * All existing users of the __GFP_NOFAIL are blockable, so warn | |
4413 | * of any new users that actually require GFP_NOWAIT | |
4414 | */ | |
4415 | if (WARN_ON_ONCE(!can_direct_reclaim)) | |
4416 | goto fail; | |
4417 | ||
4418 | /* | |
4419 | * PF_MEMALLOC request from this context is rather bizarre | |
4420 | * because we cannot reclaim anything and only can loop waiting | |
4421 | * for somebody to do a work for us | |
4422 | */ | |
4423 | WARN_ON_ONCE(current->flags & PF_MEMALLOC); | |
4424 | ||
4425 | /* | |
4426 | * non failing costly orders are a hard requirement which we | |
4427 | * are not prepared for much so let's warn about these users | |
4428 | * so that we can identify them and convert them to something | |
4429 | * else. | |
4430 | */ | |
4431 | WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); | |
4432 | ||
6c18ba7a MH |
4433 | /* |
4434 | * Help non-failing allocations by giving them access to memory | |
4435 | * reserves but do not use ALLOC_NO_WATERMARKS because this | |
4436 | * could deplete whole memory reserves which would just make | |
4437 | * the situation worse | |
4438 | */ | |
4439 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); | |
4440 | if (page) | |
4441 | goto got_pg; | |
4442 | ||
9a67f648 MH |
4443 | cond_resched(); |
4444 | goto retry; | |
4445 | } | |
4446 | fail: | |
a8e99259 | 4447 | warn_alloc(gfp_mask, ac->nodemask, |
7877cdcc | 4448 | "page allocation failure: order:%u", order); |
1da177e4 | 4449 | got_pg: |
072bb0aa | 4450 | return page; |
1da177e4 | 4451 | } |
11e33f6a | 4452 | |
9cd75558 | 4453 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
04ec6264 | 4454 | int preferred_nid, nodemask_t *nodemask, |
9cd75558 MG |
4455 | struct alloc_context *ac, gfp_t *alloc_mask, |
4456 | unsigned int *alloc_flags) | |
11e33f6a | 4457 | { |
9cd75558 | 4458 | ac->high_zoneidx = gfp_zone(gfp_mask); |
04ec6264 | 4459 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
9cd75558 MG |
4460 | ac->nodemask = nodemask; |
4461 | ac->migratetype = gfpflags_to_migratetype(gfp_mask); | |
11e33f6a | 4462 | |
682a3385 | 4463 | if (cpusets_enabled()) { |
9cd75558 | 4464 | *alloc_mask |= __GFP_HARDWALL; |
9cd75558 MG |
4465 | if (!ac->nodemask) |
4466 | ac->nodemask = &cpuset_current_mems_allowed; | |
51047820 VB |
4467 | else |
4468 | *alloc_flags |= ALLOC_CPUSET; | |
682a3385 MG |
4469 | } |
4470 | ||
d92a8cfc PZ |
4471 | fs_reclaim_acquire(gfp_mask); |
4472 | fs_reclaim_release(gfp_mask); | |
11e33f6a | 4473 | |
d0164adc | 4474 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
11e33f6a MG |
4475 | |
4476 | if (should_fail_alloc_page(gfp_mask, order)) | |
9cd75558 | 4477 | return false; |
11e33f6a | 4478 | |
d883c6cf JK |
4479 | if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) |
4480 | *alloc_flags |= ALLOC_CMA; | |
4481 | ||
9cd75558 MG |
4482 | return true; |
4483 | } | |
21bb9bd1 | 4484 | |
9cd75558 | 4485 | /* Determine whether to spread dirty pages and what the first usable zone */ |
a380b40a | 4486 | static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) |
9cd75558 | 4487 | { |
c9ab0c4f | 4488 | /* Dirty zone balancing only done in the fast path */ |
9cd75558 | 4489 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
c9ab0c4f | 4490 | |
e46e7b77 MG |
4491 | /* |
4492 | * The preferred zone is used for statistics but crucially it is | |
4493 | * also used as the starting point for the zonelist iterator. It | |
4494 | * may get reset for allocations that ignore memory policies. | |
4495 | */ | |
9cd75558 MG |
4496 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
4497 | ac->high_zoneidx, ac->nodemask); | |
4498 | } | |
4499 | ||
4500 | /* | |
4501 | * This is the 'heart' of the zoned buddy allocator. | |
4502 | */ | |
4503 | struct page * | |
04ec6264 VB |
4504 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, |
4505 | nodemask_t *nodemask) | |
9cd75558 MG |
4506 | { |
4507 | struct page *page; | |
4508 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
f19360f0 | 4509 | gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ |
9cd75558 MG |
4510 | struct alloc_context ac = { }; |
4511 | ||
c63ae43b MH |
4512 | /* |
4513 | * There are several places where we assume that the order value is sane | |
4514 | * so bail out early if the request is out of bound. | |
4515 | */ | |
4516 | if (unlikely(order >= MAX_ORDER)) { | |
4517 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
4518 | return NULL; | |
4519 | } | |
4520 | ||
9cd75558 | 4521 | gfp_mask &= gfp_allowed_mask; |
f19360f0 | 4522 | alloc_mask = gfp_mask; |
04ec6264 | 4523 | if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) |
9cd75558 MG |
4524 | return NULL; |
4525 | ||
a380b40a | 4526 | finalise_ac(gfp_mask, &ac); |
5bb1b169 | 4527 | |
6bb15450 MG |
4528 | /* |
4529 | * Forbid the first pass from falling back to types that fragment | |
4530 | * memory until all local zones are considered. | |
4531 | */ | |
0a79cdad | 4532 | alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); |
6bb15450 | 4533 | |
5117f45d | 4534 | /* First allocation attempt */ |
a9263751 | 4535 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); |
4fcb0971 MG |
4536 | if (likely(page)) |
4537 | goto out; | |
11e33f6a | 4538 | |
4fcb0971 | 4539 | /* |
7dea19f9 MH |
4540 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS |
4541 | * resp. GFP_NOIO which has to be inherited for all allocation requests | |
4542 | * from a particular context which has been marked by | |
4543 | * memalloc_no{fs,io}_{save,restore}. | |
4fcb0971 | 4544 | */ |
7dea19f9 | 4545 | alloc_mask = current_gfp_context(gfp_mask); |
4fcb0971 | 4546 | ac.spread_dirty_pages = false; |
23f086f9 | 4547 | |
4741526b MG |
4548 | /* |
4549 | * Restore the original nodemask if it was potentially replaced with | |
4550 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | |
4551 | */ | |
e47483bc | 4552 | if (unlikely(ac.nodemask != nodemask)) |
4741526b | 4553 | ac.nodemask = nodemask; |
16096c25 | 4554 | |
4fcb0971 | 4555 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); |
cc9a6c87 | 4556 | |
4fcb0971 | 4557 | out: |
c4159a75 VD |
4558 | if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && |
4559 | unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { | |
4560 | __free_pages(page, order); | |
4561 | page = NULL; | |
4949148a VD |
4562 | } |
4563 | ||
4fcb0971 MG |
4564 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); |
4565 | ||
11e33f6a | 4566 | return page; |
1da177e4 | 4567 | } |
d239171e | 4568 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
4569 | |
4570 | /* | |
9ea9a680 MH |
4571 | * Common helper functions. Never use with __GFP_HIGHMEM because the returned |
4572 | * address cannot represent highmem pages. Use alloc_pages and then kmap if | |
4573 | * you need to access high mem. | |
1da177e4 | 4574 | */ |
920c7a5d | 4575 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 4576 | { |
945a1113 AM |
4577 | struct page *page; |
4578 | ||
9ea9a680 | 4579 | page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); |
1da177e4 LT |
4580 | if (!page) |
4581 | return 0; | |
4582 | return (unsigned long) page_address(page); | |
4583 | } | |
1da177e4 LT |
4584 | EXPORT_SYMBOL(__get_free_pages); |
4585 | ||
920c7a5d | 4586 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 4587 | { |
945a1113 | 4588 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 4589 | } |
1da177e4 LT |
4590 | EXPORT_SYMBOL(get_zeroed_page); |
4591 | ||
742aa7fb | 4592 | static inline void free_the_page(struct page *page, unsigned int order) |
1da177e4 | 4593 | { |
742aa7fb AL |
4594 | if (order == 0) /* Via pcp? */ |
4595 | free_unref_page(page); | |
4596 | else | |
4597 | __free_pages_ok(page, order); | |
1da177e4 LT |
4598 | } |
4599 | ||
742aa7fb AL |
4600 | void __free_pages(struct page *page, unsigned int order) |
4601 | { | |
4602 | if (put_page_testzero(page)) | |
4603 | free_the_page(page, order); | |
4604 | } | |
1da177e4 LT |
4605 | EXPORT_SYMBOL(__free_pages); |
4606 | ||
920c7a5d | 4607 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
4608 | { |
4609 | if (addr != 0) { | |
725d704e | 4610 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
4611 | __free_pages(virt_to_page((void *)addr), order); |
4612 | } | |
4613 | } | |
4614 | ||
4615 | EXPORT_SYMBOL(free_pages); | |
4616 | ||
b63ae8ca AD |
4617 | /* |
4618 | * Page Fragment: | |
4619 | * An arbitrary-length arbitrary-offset area of memory which resides | |
4620 | * within a 0 or higher order page. Multiple fragments within that page | |
4621 | * are individually refcounted, in the page's reference counter. | |
4622 | * | |
4623 | * The page_frag functions below provide a simple allocation framework for | |
4624 | * page fragments. This is used by the network stack and network device | |
4625 | * drivers to provide a backing region of memory for use as either an | |
4626 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
4627 | */ | |
2976db80 AD |
4628 | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, |
4629 | gfp_t gfp_mask) | |
b63ae8ca AD |
4630 | { |
4631 | struct page *page = NULL; | |
4632 | gfp_t gfp = gfp_mask; | |
4633 | ||
4634 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4635 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | |
4636 | __GFP_NOMEMALLOC; | |
4637 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | |
4638 | PAGE_FRAG_CACHE_MAX_ORDER); | |
4639 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
4640 | #endif | |
4641 | if (unlikely(!page)) | |
4642 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
4643 | ||
4644 | nc->va = page ? page_address(page) : NULL; | |
4645 | ||
4646 | return page; | |
4647 | } | |
4648 | ||
2976db80 | 4649 | void __page_frag_cache_drain(struct page *page, unsigned int count) |
44fdffd7 AD |
4650 | { |
4651 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | |
4652 | ||
742aa7fb AL |
4653 | if (page_ref_sub_and_test(page, count)) |
4654 | free_the_page(page, compound_order(page)); | |
44fdffd7 | 4655 | } |
2976db80 | 4656 | EXPORT_SYMBOL(__page_frag_cache_drain); |
44fdffd7 | 4657 | |
8c2dd3e4 AD |
4658 | void *page_frag_alloc(struct page_frag_cache *nc, |
4659 | unsigned int fragsz, gfp_t gfp_mask) | |
b63ae8ca AD |
4660 | { |
4661 | unsigned int size = PAGE_SIZE; | |
4662 | struct page *page; | |
4663 | int offset; | |
4664 | ||
4665 | if (unlikely(!nc->va)) { | |
4666 | refill: | |
2976db80 | 4667 | page = __page_frag_cache_refill(nc, gfp_mask); |
b63ae8ca AD |
4668 | if (!page) |
4669 | return NULL; | |
4670 | ||
4671 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4672 | /* if size can vary use size else just use PAGE_SIZE */ | |
4673 | size = nc->size; | |
4674 | #endif | |
4675 | /* Even if we own the page, we do not use atomic_set(). | |
4676 | * This would break get_page_unless_zero() users. | |
4677 | */ | |
fe896d18 | 4678 | page_ref_add(page, size - 1); |
b63ae8ca AD |
4679 | |
4680 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 4681 | nc->pfmemalloc = page_is_pfmemalloc(page); |
b63ae8ca AD |
4682 | nc->pagecnt_bias = size; |
4683 | nc->offset = size; | |
4684 | } | |
4685 | ||
4686 | offset = nc->offset - fragsz; | |
4687 | if (unlikely(offset < 0)) { | |
4688 | page = virt_to_page(nc->va); | |
4689 | ||
fe896d18 | 4690 | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
b63ae8ca AD |
4691 | goto refill; |
4692 | ||
4693 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4694 | /* if size can vary use size else just use PAGE_SIZE */ | |
4695 | size = nc->size; | |
4696 | #endif | |
4697 | /* OK, page count is 0, we can safely set it */ | |
fe896d18 | 4698 | set_page_count(page, size); |
b63ae8ca AD |
4699 | |
4700 | /* reset page count bias and offset to start of new frag */ | |
4701 | nc->pagecnt_bias = size; | |
4702 | offset = size - fragsz; | |
4703 | } | |
4704 | ||
4705 | nc->pagecnt_bias--; | |
4706 | nc->offset = offset; | |
4707 | ||
4708 | return nc->va + offset; | |
4709 | } | |
8c2dd3e4 | 4710 | EXPORT_SYMBOL(page_frag_alloc); |
b63ae8ca AD |
4711 | |
4712 | /* | |
4713 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
4714 | */ | |
8c2dd3e4 | 4715 | void page_frag_free(void *addr) |
b63ae8ca AD |
4716 | { |
4717 | struct page *page = virt_to_head_page(addr); | |
4718 | ||
742aa7fb AL |
4719 | if (unlikely(put_page_testzero(page))) |
4720 | free_the_page(page, compound_order(page)); | |
b63ae8ca | 4721 | } |
8c2dd3e4 | 4722 | EXPORT_SYMBOL(page_frag_free); |
b63ae8ca | 4723 | |
d00181b9 KS |
4724 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
4725 | size_t size) | |
ee85c2e1 AK |
4726 | { |
4727 | if (addr) { | |
4728 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
4729 | unsigned long used = addr + PAGE_ALIGN(size); | |
4730 | ||
4731 | split_page(virt_to_page((void *)addr), order); | |
4732 | while (used < alloc_end) { | |
4733 | free_page(used); | |
4734 | used += PAGE_SIZE; | |
4735 | } | |
4736 | } | |
4737 | return (void *)addr; | |
4738 | } | |
4739 | ||
2be0ffe2 TT |
4740 | /** |
4741 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
4742 | * @size: the number of bytes to allocate | |
4743 | * @gfp_mask: GFP flags for the allocation | |
4744 | * | |
4745 | * This function is similar to alloc_pages(), except that it allocates the | |
4746 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
4747 | * allocate memory in power-of-two pages. | |
4748 | * | |
4749 | * This function is also limited by MAX_ORDER. | |
4750 | * | |
4751 | * Memory allocated by this function must be released by free_pages_exact(). | |
4752 | */ | |
4753 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
4754 | { | |
4755 | unsigned int order = get_order(size); | |
4756 | unsigned long addr; | |
4757 | ||
4758 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 4759 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
4760 | } |
4761 | EXPORT_SYMBOL(alloc_pages_exact); | |
4762 | ||
ee85c2e1 AK |
4763 | /** |
4764 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
4765 | * pages on a node. | |
b5e6ab58 | 4766 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
4767 | * @size: the number of bytes to allocate |
4768 | * @gfp_mask: GFP flags for the allocation | |
4769 | * | |
4770 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
4771 | * back. | |
ee85c2e1 | 4772 | */ |
e1931811 | 4773 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 4774 | { |
d00181b9 | 4775 | unsigned int order = get_order(size); |
ee85c2e1 AK |
4776 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
4777 | if (!p) | |
4778 | return NULL; | |
4779 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
4780 | } | |
ee85c2e1 | 4781 | |
2be0ffe2 TT |
4782 | /** |
4783 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
4784 | * @virt: the value returned by alloc_pages_exact. | |
4785 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
4786 | * | |
4787 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
4788 | */ | |
4789 | void free_pages_exact(void *virt, size_t size) | |
4790 | { | |
4791 | unsigned long addr = (unsigned long)virt; | |
4792 | unsigned long end = addr + PAGE_ALIGN(size); | |
4793 | ||
4794 | while (addr < end) { | |
4795 | free_page(addr); | |
4796 | addr += PAGE_SIZE; | |
4797 | } | |
4798 | } | |
4799 | EXPORT_SYMBOL(free_pages_exact); | |
4800 | ||
e0fb5815 ZY |
4801 | /** |
4802 | * nr_free_zone_pages - count number of pages beyond high watermark | |
4803 | * @offset: The zone index of the highest zone | |
4804 | * | |
4805 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
4806 | * high watermark within all zones at or below a given zone index. For each | |
4807 | * zone, the number of pages is calculated as: | |
0e056eb5 MCC |
4808 | * |
4809 | * nr_free_zone_pages = managed_pages - high_pages | |
e0fb5815 | 4810 | */ |
ebec3862 | 4811 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 4812 | { |
dd1a239f | 4813 | struct zoneref *z; |
54a6eb5c MG |
4814 | struct zone *zone; |
4815 | ||
e310fd43 | 4816 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 4817 | unsigned long sum = 0; |
1da177e4 | 4818 | |
0e88460d | 4819 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 4820 | |
54a6eb5c | 4821 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
9705bea5 | 4822 | unsigned long size = zone_managed_pages(zone); |
41858966 | 4823 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
4824 | if (size > high) |
4825 | sum += size - high; | |
1da177e4 LT |
4826 | } |
4827 | ||
4828 | return sum; | |
4829 | } | |
4830 | ||
e0fb5815 ZY |
4831 | /** |
4832 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
4833 | * | |
4834 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
4835 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 4836 | */ |
ebec3862 | 4837 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 4838 | { |
af4ca457 | 4839 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 4840 | } |
c2f1a551 | 4841 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 4842 | |
e0fb5815 ZY |
4843 | /** |
4844 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
4845 | * | |
4846 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
4847 | * high watermark within all zones. | |
1da177e4 | 4848 | */ |
ebec3862 | 4849 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 4850 | { |
2a1e274a | 4851 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 4852 | } |
08e0f6a9 CL |
4853 | |
4854 | static inline void show_node(struct zone *zone) | |
1da177e4 | 4855 | { |
e5adfffc | 4856 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 4857 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 4858 | } |
1da177e4 | 4859 | |
d02bd27b IR |
4860 | long si_mem_available(void) |
4861 | { | |
4862 | long available; | |
4863 | unsigned long pagecache; | |
4864 | unsigned long wmark_low = 0; | |
4865 | unsigned long pages[NR_LRU_LISTS]; | |
b29940c1 | 4866 | unsigned long reclaimable; |
d02bd27b IR |
4867 | struct zone *zone; |
4868 | int lru; | |
4869 | ||
4870 | for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | |
2f95ff90 | 4871 | pages[lru] = global_node_page_state(NR_LRU_BASE + lru); |
d02bd27b IR |
4872 | |
4873 | for_each_zone(zone) | |
a9214443 | 4874 | wmark_low += low_wmark_pages(zone); |
d02bd27b IR |
4875 | |
4876 | /* | |
4877 | * Estimate the amount of memory available for userspace allocations, | |
4878 | * without causing swapping. | |
4879 | */ | |
c41f012a | 4880 | available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; |
d02bd27b IR |
4881 | |
4882 | /* | |
4883 | * Not all the page cache can be freed, otherwise the system will | |
4884 | * start swapping. Assume at least half of the page cache, or the | |
4885 | * low watermark worth of cache, needs to stay. | |
4886 | */ | |
4887 | pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | |
4888 | pagecache -= min(pagecache / 2, wmark_low); | |
4889 | available += pagecache; | |
4890 | ||
4891 | /* | |
b29940c1 VB |
4892 | * Part of the reclaimable slab and other kernel memory consists of |
4893 | * items that are in use, and cannot be freed. Cap this estimate at the | |
4894 | * low watermark. | |
d02bd27b | 4895 | */ |
b29940c1 VB |
4896 | reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + |
4897 | global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); | |
4898 | available += reclaimable - min(reclaimable / 2, wmark_low); | |
034ebf65 | 4899 | |
d02bd27b IR |
4900 | if (available < 0) |
4901 | available = 0; | |
4902 | return available; | |
4903 | } | |
4904 | EXPORT_SYMBOL_GPL(si_mem_available); | |
4905 | ||
1da177e4 LT |
4906 | void si_meminfo(struct sysinfo *val) |
4907 | { | |
ca79b0c2 | 4908 | val->totalram = totalram_pages(); |
11fb9989 | 4909 | val->sharedram = global_node_page_state(NR_SHMEM); |
c41f012a | 4910 | val->freeram = global_zone_page_state(NR_FREE_PAGES); |
1da177e4 | 4911 | val->bufferram = nr_blockdev_pages(); |
ca79b0c2 | 4912 | val->totalhigh = totalhigh_pages(); |
1da177e4 | 4913 | val->freehigh = nr_free_highpages(); |
1da177e4 LT |
4914 | val->mem_unit = PAGE_SIZE; |
4915 | } | |
4916 | ||
4917 | EXPORT_SYMBOL(si_meminfo); | |
4918 | ||
4919 | #ifdef CONFIG_NUMA | |
4920 | void si_meminfo_node(struct sysinfo *val, int nid) | |
4921 | { | |
cdd91a77 JL |
4922 | int zone_type; /* needs to be signed */ |
4923 | unsigned long managed_pages = 0; | |
fc2bd799 JK |
4924 | unsigned long managed_highpages = 0; |
4925 | unsigned long free_highpages = 0; | |
1da177e4 LT |
4926 | pg_data_t *pgdat = NODE_DATA(nid); |
4927 | ||
cdd91a77 | 4928 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
9705bea5 | 4929 | managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); |
cdd91a77 | 4930 | val->totalram = managed_pages; |
11fb9989 | 4931 | val->sharedram = node_page_state(pgdat, NR_SHMEM); |
75ef7184 | 4932 | val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 4933 | #ifdef CONFIG_HIGHMEM |
fc2bd799 JK |
4934 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
4935 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
4936 | ||
4937 | if (is_highmem(zone)) { | |
9705bea5 | 4938 | managed_highpages += zone_managed_pages(zone); |
fc2bd799 JK |
4939 | free_highpages += zone_page_state(zone, NR_FREE_PAGES); |
4940 | } | |
4941 | } | |
4942 | val->totalhigh = managed_highpages; | |
4943 | val->freehigh = free_highpages; | |
98d2b0eb | 4944 | #else |
fc2bd799 JK |
4945 | val->totalhigh = managed_highpages; |
4946 | val->freehigh = free_highpages; | |
98d2b0eb | 4947 | #endif |
1da177e4 LT |
4948 | val->mem_unit = PAGE_SIZE; |
4949 | } | |
4950 | #endif | |
4951 | ||
ddd588b5 | 4952 | /* |
7bf02ea2 DR |
4953 | * Determine whether the node should be displayed or not, depending on whether |
4954 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 4955 | */ |
9af744d7 | 4956 | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) |
ddd588b5 | 4957 | { |
ddd588b5 | 4958 | if (!(flags & SHOW_MEM_FILTER_NODES)) |
9af744d7 | 4959 | return false; |
ddd588b5 | 4960 | |
9af744d7 MH |
4961 | /* |
4962 | * no node mask - aka implicit memory numa policy. Do not bother with | |
4963 | * the synchronization - read_mems_allowed_begin - because we do not | |
4964 | * have to be precise here. | |
4965 | */ | |
4966 | if (!nodemask) | |
4967 | nodemask = &cpuset_current_mems_allowed; | |
4968 | ||
4969 | return !node_isset(nid, *nodemask); | |
ddd588b5 DR |
4970 | } |
4971 | ||
1da177e4 LT |
4972 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
4973 | ||
377e4f16 RV |
4974 | static void show_migration_types(unsigned char type) |
4975 | { | |
4976 | static const char types[MIGRATE_TYPES] = { | |
4977 | [MIGRATE_UNMOVABLE] = 'U', | |
377e4f16 | 4978 | [MIGRATE_MOVABLE] = 'M', |
475a2f90 VB |
4979 | [MIGRATE_RECLAIMABLE] = 'E', |
4980 | [MIGRATE_HIGHATOMIC] = 'H', | |
377e4f16 RV |
4981 | #ifdef CONFIG_CMA |
4982 | [MIGRATE_CMA] = 'C', | |
4983 | #endif | |
194159fb | 4984 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 4985 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 4986 | #endif |
377e4f16 RV |
4987 | }; |
4988 | char tmp[MIGRATE_TYPES + 1]; | |
4989 | char *p = tmp; | |
4990 | int i; | |
4991 | ||
4992 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
4993 | if (type & (1 << i)) | |
4994 | *p++ = types[i]; | |
4995 | } | |
4996 | ||
4997 | *p = '\0'; | |
1f84a18f | 4998 | printk(KERN_CONT "(%s) ", tmp); |
377e4f16 RV |
4999 | } |
5000 | ||
1da177e4 LT |
5001 | /* |
5002 | * Show free area list (used inside shift_scroll-lock stuff) | |
5003 | * We also calculate the percentage fragmentation. We do this by counting the | |
5004 | * memory on each free list with the exception of the first item on the list. | |
d1bfcdb8 KK |
5005 | * |
5006 | * Bits in @filter: | |
5007 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | |
5008 | * cpuset. | |
1da177e4 | 5009 | */ |
9af744d7 | 5010 | void show_free_areas(unsigned int filter, nodemask_t *nodemask) |
1da177e4 | 5011 | { |
d1bfcdb8 | 5012 | unsigned long free_pcp = 0; |
c7241913 | 5013 | int cpu; |
1da177e4 | 5014 | struct zone *zone; |
599d0c95 | 5015 | pg_data_t *pgdat; |
1da177e4 | 5016 | |
ee99c71c | 5017 | for_each_populated_zone(zone) { |
9af744d7 | 5018 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 5019 | continue; |
d1bfcdb8 | 5020 | |
761b0677 KK |
5021 | for_each_online_cpu(cpu) |
5022 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
1da177e4 LT |
5023 | } |
5024 | ||
a731286d KM |
5025 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
5026 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
d1bfcdb8 KK |
5027 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" |
5028 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | |
d1ce749a | 5029 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
d1bfcdb8 | 5030 | " free:%lu free_pcp:%lu free_cma:%lu\n", |
599d0c95 MG |
5031 | global_node_page_state(NR_ACTIVE_ANON), |
5032 | global_node_page_state(NR_INACTIVE_ANON), | |
5033 | global_node_page_state(NR_ISOLATED_ANON), | |
5034 | global_node_page_state(NR_ACTIVE_FILE), | |
5035 | global_node_page_state(NR_INACTIVE_FILE), | |
5036 | global_node_page_state(NR_ISOLATED_FILE), | |
5037 | global_node_page_state(NR_UNEVICTABLE), | |
11fb9989 MG |
5038 | global_node_page_state(NR_FILE_DIRTY), |
5039 | global_node_page_state(NR_WRITEBACK), | |
5040 | global_node_page_state(NR_UNSTABLE_NFS), | |
d507e2eb JW |
5041 | global_node_page_state(NR_SLAB_RECLAIMABLE), |
5042 | global_node_page_state(NR_SLAB_UNRECLAIMABLE), | |
50658e2e | 5043 | global_node_page_state(NR_FILE_MAPPED), |
11fb9989 | 5044 | global_node_page_state(NR_SHMEM), |
c41f012a MH |
5045 | global_zone_page_state(NR_PAGETABLE), |
5046 | global_zone_page_state(NR_BOUNCE), | |
5047 | global_zone_page_state(NR_FREE_PAGES), | |
d1bfcdb8 | 5048 | free_pcp, |
c41f012a | 5049 | global_zone_page_state(NR_FREE_CMA_PAGES)); |
1da177e4 | 5050 | |
599d0c95 | 5051 | for_each_online_pgdat(pgdat) { |
9af744d7 | 5052 | if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) |
c02e50bb MH |
5053 | continue; |
5054 | ||
599d0c95 MG |
5055 | printk("Node %d" |
5056 | " active_anon:%lukB" | |
5057 | " inactive_anon:%lukB" | |
5058 | " active_file:%lukB" | |
5059 | " inactive_file:%lukB" | |
5060 | " unevictable:%lukB" | |
5061 | " isolated(anon):%lukB" | |
5062 | " isolated(file):%lukB" | |
50658e2e | 5063 | " mapped:%lukB" |
11fb9989 MG |
5064 | " dirty:%lukB" |
5065 | " writeback:%lukB" | |
5066 | " shmem:%lukB" | |
5067 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5068 | " shmem_thp: %lukB" | |
5069 | " shmem_pmdmapped: %lukB" | |
5070 | " anon_thp: %lukB" | |
5071 | #endif | |
5072 | " writeback_tmp:%lukB" | |
5073 | " unstable:%lukB" | |
599d0c95 MG |
5074 | " all_unreclaimable? %s" |
5075 | "\n", | |
5076 | pgdat->node_id, | |
5077 | K(node_page_state(pgdat, NR_ACTIVE_ANON)), | |
5078 | K(node_page_state(pgdat, NR_INACTIVE_ANON)), | |
5079 | K(node_page_state(pgdat, NR_ACTIVE_FILE)), | |
5080 | K(node_page_state(pgdat, NR_INACTIVE_FILE)), | |
5081 | K(node_page_state(pgdat, NR_UNEVICTABLE)), | |
5082 | K(node_page_state(pgdat, NR_ISOLATED_ANON)), | |
5083 | K(node_page_state(pgdat, NR_ISOLATED_FILE)), | |
50658e2e | 5084 | K(node_page_state(pgdat, NR_FILE_MAPPED)), |
11fb9989 MG |
5085 | K(node_page_state(pgdat, NR_FILE_DIRTY)), |
5086 | K(node_page_state(pgdat, NR_WRITEBACK)), | |
1f06b81a | 5087 | K(node_page_state(pgdat, NR_SHMEM)), |
11fb9989 MG |
5088 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
5089 | K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), | |
5090 | K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) | |
5091 | * HPAGE_PMD_NR), | |
5092 | K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), | |
5093 | #endif | |
11fb9989 MG |
5094 | K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), |
5095 | K(node_page_state(pgdat, NR_UNSTABLE_NFS)), | |
c73322d0 JW |
5096 | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? |
5097 | "yes" : "no"); | |
599d0c95 MG |
5098 | } |
5099 | ||
ee99c71c | 5100 | for_each_populated_zone(zone) { |
1da177e4 LT |
5101 | int i; |
5102 | ||
9af744d7 | 5103 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 5104 | continue; |
d1bfcdb8 KK |
5105 | |
5106 | free_pcp = 0; | |
5107 | for_each_online_cpu(cpu) | |
5108 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
5109 | ||
1da177e4 | 5110 | show_node(zone); |
1f84a18f JP |
5111 | printk(KERN_CONT |
5112 | "%s" | |
1da177e4 LT |
5113 | " free:%lukB" |
5114 | " min:%lukB" | |
5115 | " low:%lukB" | |
5116 | " high:%lukB" | |
71c799f4 MK |
5117 | " active_anon:%lukB" |
5118 | " inactive_anon:%lukB" | |
5119 | " active_file:%lukB" | |
5120 | " inactive_file:%lukB" | |
5121 | " unevictable:%lukB" | |
5a1c84b4 | 5122 | " writepending:%lukB" |
1da177e4 | 5123 | " present:%lukB" |
9feedc9d | 5124 | " managed:%lukB" |
4a0aa73f | 5125 | " mlocked:%lukB" |
c6a7f572 | 5126 | " kernel_stack:%lukB" |
4a0aa73f | 5127 | " pagetables:%lukB" |
4a0aa73f | 5128 | " bounce:%lukB" |
d1bfcdb8 KK |
5129 | " free_pcp:%lukB" |
5130 | " local_pcp:%ukB" | |
d1ce749a | 5131 | " free_cma:%lukB" |
1da177e4 LT |
5132 | "\n", |
5133 | zone->name, | |
88f5acf8 | 5134 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
5135 | K(min_wmark_pages(zone)), |
5136 | K(low_wmark_pages(zone)), | |
5137 | K(high_wmark_pages(zone)), | |
71c799f4 MK |
5138 | K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), |
5139 | K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | |
5140 | K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | |
5141 | K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | |
5142 | K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | |
5a1c84b4 | 5143 | K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), |
1da177e4 | 5144 | K(zone->present_pages), |
9705bea5 | 5145 | K(zone_managed_pages(zone)), |
4a0aa73f | 5146 | K(zone_page_state(zone, NR_MLOCK)), |
d30dd8be | 5147 | zone_page_state(zone, NR_KERNEL_STACK_KB), |
4a0aa73f | 5148 | K(zone_page_state(zone, NR_PAGETABLE)), |
4a0aa73f | 5149 | K(zone_page_state(zone, NR_BOUNCE)), |
d1bfcdb8 KK |
5150 | K(free_pcp), |
5151 | K(this_cpu_read(zone->pageset->pcp.count)), | |
33e077bd | 5152 | K(zone_page_state(zone, NR_FREE_CMA_PAGES))); |
1da177e4 LT |
5153 | printk("lowmem_reserve[]:"); |
5154 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1f84a18f JP |
5155 | printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); |
5156 | printk(KERN_CONT "\n"); | |
1da177e4 LT |
5157 | } |
5158 | ||
ee99c71c | 5159 | for_each_populated_zone(zone) { |
d00181b9 KS |
5160 | unsigned int order; |
5161 | unsigned long nr[MAX_ORDER], flags, total = 0; | |
377e4f16 | 5162 | unsigned char types[MAX_ORDER]; |
1da177e4 | 5163 | |
9af744d7 | 5164 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
ddd588b5 | 5165 | continue; |
1da177e4 | 5166 | show_node(zone); |
1f84a18f | 5167 | printk(KERN_CONT "%s: ", zone->name); |
1da177e4 LT |
5168 | |
5169 | spin_lock_irqsave(&zone->lock, flags); | |
5170 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
5171 | struct free_area *area = &zone->free_area[order]; |
5172 | int type; | |
5173 | ||
5174 | nr[order] = area->nr_free; | |
8f9de51a | 5175 | total += nr[order] << order; |
377e4f16 RV |
5176 | |
5177 | types[order] = 0; | |
5178 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
5179 | if (!list_empty(&area->free_list[type])) | |
5180 | types[order] |= 1 << type; | |
5181 | } | |
1da177e4 LT |
5182 | } |
5183 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 5184 | for (order = 0; order < MAX_ORDER; order++) { |
1f84a18f JP |
5185 | printk(KERN_CONT "%lu*%lukB ", |
5186 | nr[order], K(1UL) << order); | |
377e4f16 RV |
5187 | if (nr[order]) |
5188 | show_migration_types(types[order]); | |
5189 | } | |
1f84a18f | 5190 | printk(KERN_CONT "= %lukB\n", K(total)); |
1da177e4 LT |
5191 | } |
5192 | ||
949f7ec5 DR |
5193 | hugetlb_show_meminfo(); |
5194 | ||
11fb9989 | 5195 | printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); |
e6f3602d | 5196 | |
1da177e4 LT |
5197 | show_swap_cache_info(); |
5198 | } | |
5199 | ||
19770b32 MG |
5200 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
5201 | { | |
5202 | zoneref->zone = zone; | |
5203 | zoneref->zone_idx = zone_idx(zone); | |
5204 | } | |
5205 | ||
1da177e4 LT |
5206 | /* |
5207 | * Builds allocation fallback zone lists. | |
1a93205b CL |
5208 | * |
5209 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 5210 | */ |
9d3be21b | 5211 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
1da177e4 | 5212 | { |
1a93205b | 5213 | struct zone *zone; |
bc732f1d | 5214 | enum zone_type zone_type = MAX_NR_ZONES; |
9d3be21b | 5215 | int nr_zones = 0; |
02a68a5e CL |
5216 | |
5217 | do { | |
2f6726e5 | 5218 | zone_type--; |
070f8032 | 5219 | zone = pgdat->node_zones + zone_type; |
6aa303de | 5220 | if (managed_zone(zone)) { |
9d3be21b | 5221 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
070f8032 | 5222 | check_highest_zone(zone_type); |
1da177e4 | 5223 | } |
2f6726e5 | 5224 | } while (zone_type); |
bc732f1d | 5225 | |
070f8032 | 5226 | return nr_zones; |
1da177e4 LT |
5227 | } |
5228 | ||
5229 | #ifdef CONFIG_NUMA | |
f0c0b2b8 KH |
5230 | |
5231 | static int __parse_numa_zonelist_order(char *s) | |
5232 | { | |
c9bff3ee MH |
5233 | /* |
5234 | * We used to support different zonlists modes but they turned | |
5235 | * out to be just not useful. Let's keep the warning in place | |
5236 | * if somebody still use the cmd line parameter so that we do | |
5237 | * not fail it silently | |
5238 | */ | |
5239 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | |
5240 | pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); | |
f0c0b2b8 KH |
5241 | return -EINVAL; |
5242 | } | |
5243 | return 0; | |
5244 | } | |
5245 | ||
5246 | static __init int setup_numa_zonelist_order(char *s) | |
5247 | { | |
ecb256f8 VL |
5248 | if (!s) |
5249 | return 0; | |
5250 | ||
c9bff3ee | 5251 | return __parse_numa_zonelist_order(s); |
f0c0b2b8 KH |
5252 | } |
5253 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
5254 | ||
c9bff3ee MH |
5255 | char numa_zonelist_order[] = "Node"; |
5256 | ||
f0c0b2b8 KH |
5257 | /* |
5258 | * sysctl handler for numa_zonelist_order | |
5259 | */ | |
cccad5b9 | 5260 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 5261 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
5262 | loff_t *ppos) |
5263 | { | |
c9bff3ee | 5264 | char *str; |
f0c0b2b8 KH |
5265 | int ret; |
5266 | ||
c9bff3ee MH |
5267 | if (!write) |
5268 | return proc_dostring(table, write, buffer, length, ppos); | |
5269 | str = memdup_user_nul(buffer, 16); | |
5270 | if (IS_ERR(str)) | |
5271 | return PTR_ERR(str); | |
dacbde09 | 5272 | |
c9bff3ee MH |
5273 | ret = __parse_numa_zonelist_order(str); |
5274 | kfree(str); | |
443c6f14 | 5275 | return ret; |
f0c0b2b8 KH |
5276 | } |
5277 | ||
5278 | ||
62bc62a8 | 5279 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
5280 | static int node_load[MAX_NUMNODES]; |
5281 | ||
1da177e4 | 5282 | /** |
4dc3b16b | 5283 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
5284 | * @node: node whose fallback list we're appending |
5285 | * @used_node_mask: nodemask_t of already used nodes | |
5286 | * | |
5287 | * We use a number of factors to determine which is the next node that should | |
5288 | * appear on a given node's fallback list. The node should not have appeared | |
5289 | * already in @node's fallback list, and it should be the next closest node | |
5290 | * according to the distance array (which contains arbitrary distance values | |
5291 | * from each node to each node in the system), and should also prefer nodes | |
5292 | * with no CPUs, since presumably they'll have very little allocation pressure | |
5293 | * on them otherwise. | |
5294 | * It returns -1 if no node is found. | |
5295 | */ | |
f0c0b2b8 | 5296 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 5297 | { |
4cf808eb | 5298 | int n, val; |
1da177e4 | 5299 | int min_val = INT_MAX; |
00ef2d2f | 5300 | int best_node = NUMA_NO_NODE; |
a70f7302 | 5301 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 5302 | |
4cf808eb LT |
5303 | /* Use the local node if we haven't already */ |
5304 | if (!node_isset(node, *used_node_mask)) { | |
5305 | node_set(node, *used_node_mask); | |
5306 | return node; | |
5307 | } | |
1da177e4 | 5308 | |
4b0ef1fe | 5309 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
5310 | |
5311 | /* Don't want a node to appear more than once */ | |
5312 | if (node_isset(n, *used_node_mask)) | |
5313 | continue; | |
5314 | ||
1da177e4 LT |
5315 | /* Use the distance array to find the distance */ |
5316 | val = node_distance(node, n); | |
5317 | ||
4cf808eb LT |
5318 | /* Penalize nodes under us ("prefer the next node") */ |
5319 | val += (n < node); | |
5320 | ||
1da177e4 | 5321 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
5322 | tmp = cpumask_of_node(n); |
5323 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
5324 | val += PENALTY_FOR_NODE_WITH_CPUS; |
5325 | ||
5326 | /* Slight preference for less loaded node */ | |
5327 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
5328 | val += node_load[n]; | |
5329 | ||
5330 | if (val < min_val) { | |
5331 | min_val = val; | |
5332 | best_node = n; | |
5333 | } | |
5334 | } | |
5335 | ||
5336 | if (best_node >= 0) | |
5337 | node_set(best_node, *used_node_mask); | |
5338 | ||
5339 | return best_node; | |
5340 | } | |
5341 | ||
f0c0b2b8 KH |
5342 | |
5343 | /* | |
5344 | * Build zonelists ordered by node and zones within node. | |
5345 | * This results in maximum locality--normal zone overflows into local | |
5346 | * DMA zone, if any--but risks exhausting DMA zone. | |
5347 | */ | |
9d3be21b MH |
5348 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
5349 | unsigned nr_nodes) | |
1da177e4 | 5350 | { |
9d3be21b MH |
5351 | struct zoneref *zonerefs; |
5352 | int i; | |
5353 | ||
5354 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | |
5355 | ||
5356 | for (i = 0; i < nr_nodes; i++) { | |
5357 | int nr_zones; | |
5358 | ||
5359 | pg_data_t *node = NODE_DATA(node_order[i]); | |
f0c0b2b8 | 5360 | |
9d3be21b MH |
5361 | nr_zones = build_zonerefs_node(node, zonerefs); |
5362 | zonerefs += nr_zones; | |
5363 | } | |
5364 | zonerefs->zone = NULL; | |
5365 | zonerefs->zone_idx = 0; | |
f0c0b2b8 KH |
5366 | } |
5367 | ||
523b9458 CL |
5368 | /* |
5369 | * Build gfp_thisnode zonelists | |
5370 | */ | |
5371 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
5372 | { | |
9d3be21b MH |
5373 | struct zoneref *zonerefs; |
5374 | int nr_zones; | |
523b9458 | 5375 | |
9d3be21b MH |
5376 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
5377 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5378 | zonerefs += nr_zones; | |
5379 | zonerefs->zone = NULL; | |
5380 | zonerefs->zone_idx = 0; | |
523b9458 CL |
5381 | } |
5382 | ||
f0c0b2b8 KH |
5383 | /* |
5384 | * Build zonelists ordered by zone and nodes within zones. | |
5385 | * This results in conserving DMA zone[s] until all Normal memory is | |
5386 | * exhausted, but results in overflowing to remote node while memory | |
5387 | * may still exist in local DMA zone. | |
5388 | */ | |
f0c0b2b8 | 5389 | |
f0c0b2b8 KH |
5390 | static void build_zonelists(pg_data_t *pgdat) |
5391 | { | |
9d3be21b MH |
5392 | static int node_order[MAX_NUMNODES]; |
5393 | int node, load, nr_nodes = 0; | |
1da177e4 | 5394 | nodemask_t used_mask; |
f0c0b2b8 | 5395 | int local_node, prev_node; |
1da177e4 LT |
5396 | |
5397 | /* NUMA-aware ordering of nodes */ | |
5398 | local_node = pgdat->node_id; | |
62bc62a8 | 5399 | load = nr_online_nodes; |
1da177e4 LT |
5400 | prev_node = local_node; |
5401 | nodes_clear(used_mask); | |
f0c0b2b8 | 5402 | |
f0c0b2b8 | 5403 | memset(node_order, 0, sizeof(node_order)); |
1da177e4 LT |
5404 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
5405 | /* | |
5406 | * We don't want to pressure a particular node. | |
5407 | * So adding penalty to the first node in same | |
5408 | * distance group to make it round-robin. | |
5409 | */ | |
957f822a DR |
5410 | if (node_distance(local_node, node) != |
5411 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
5412 | node_load[node] = load; |
5413 | ||
9d3be21b | 5414 | node_order[nr_nodes++] = node; |
1da177e4 LT |
5415 | prev_node = node; |
5416 | load--; | |
1da177e4 | 5417 | } |
523b9458 | 5418 | |
9d3be21b | 5419 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
523b9458 | 5420 | build_thisnode_zonelists(pgdat); |
1da177e4 LT |
5421 | } |
5422 | ||
7aac7898 LS |
5423 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5424 | /* | |
5425 | * Return node id of node used for "local" allocations. | |
5426 | * I.e., first node id of first zone in arg node's generic zonelist. | |
5427 | * Used for initializing percpu 'numa_mem', which is used primarily | |
5428 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
5429 | */ | |
5430 | int local_memory_node(int node) | |
5431 | { | |
c33d6c06 | 5432 | struct zoneref *z; |
7aac7898 | 5433 | |
c33d6c06 | 5434 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
7aac7898 | 5435 | gfp_zone(GFP_KERNEL), |
c33d6c06 | 5436 | NULL); |
c1093b74 | 5437 | return zone_to_nid(z->zone); |
7aac7898 LS |
5438 | } |
5439 | #endif | |
f0c0b2b8 | 5440 | |
6423aa81 JK |
5441 | static void setup_min_unmapped_ratio(void); |
5442 | static void setup_min_slab_ratio(void); | |
1da177e4 LT |
5443 | #else /* CONFIG_NUMA */ |
5444 | ||
f0c0b2b8 | 5445 | static void build_zonelists(pg_data_t *pgdat) |
1da177e4 | 5446 | { |
19655d34 | 5447 | int node, local_node; |
9d3be21b MH |
5448 | struct zoneref *zonerefs; |
5449 | int nr_zones; | |
1da177e4 LT |
5450 | |
5451 | local_node = pgdat->node_id; | |
1da177e4 | 5452 | |
9d3be21b MH |
5453 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
5454 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5455 | zonerefs += nr_zones; | |
1da177e4 | 5456 | |
54a6eb5c MG |
5457 | /* |
5458 | * Now we build the zonelist so that it contains the zones | |
5459 | * of all the other nodes. | |
5460 | * We don't want to pressure a particular node, so when | |
5461 | * building the zones for node N, we make sure that the | |
5462 | * zones coming right after the local ones are those from | |
5463 | * node N+1 (modulo N) | |
5464 | */ | |
5465 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
5466 | if (!node_online(node)) | |
5467 | continue; | |
9d3be21b MH |
5468 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
5469 | zonerefs += nr_zones; | |
1da177e4 | 5470 | } |
54a6eb5c MG |
5471 | for (node = 0; node < local_node; node++) { |
5472 | if (!node_online(node)) | |
5473 | continue; | |
9d3be21b MH |
5474 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
5475 | zonerefs += nr_zones; | |
54a6eb5c MG |
5476 | } |
5477 | ||
9d3be21b MH |
5478 | zonerefs->zone = NULL; |
5479 | zonerefs->zone_idx = 0; | |
1da177e4 LT |
5480 | } |
5481 | ||
5482 | #endif /* CONFIG_NUMA */ | |
5483 | ||
99dcc3e5 CL |
5484 | /* |
5485 | * Boot pageset table. One per cpu which is going to be used for all | |
5486 | * zones and all nodes. The parameters will be set in such a way | |
5487 | * that an item put on a list will immediately be handed over to | |
5488 | * the buddy list. This is safe since pageset manipulation is done | |
5489 | * with interrupts disabled. | |
5490 | * | |
5491 | * The boot_pagesets must be kept even after bootup is complete for | |
5492 | * unused processors and/or zones. They do play a role for bootstrapping | |
5493 | * hotplugged processors. | |
5494 | * | |
5495 | * zoneinfo_show() and maybe other functions do | |
5496 | * not check if the processor is online before following the pageset pointer. | |
5497 | * Other parts of the kernel may not check if the zone is available. | |
5498 | */ | |
5499 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
5500 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
385386cf | 5501 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); |
99dcc3e5 | 5502 | |
11cd8638 | 5503 | static void __build_all_zonelists(void *data) |
1da177e4 | 5504 | { |
6811378e | 5505 | int nid; |
afb6ebb3 | 5506 | int __maybe_unused cpu; |
9adb62a5 | 5507 | pg_data_t *self = data; |
b93e0f32 MH |
5508 | static DEFINE_SPINLOCK(lock); |
5509 | ||
5510 | spin_lock(&lock); | |
9276b1bc | 5511 | |
7f9cfb31 BL |
5512 | #ifdef CONFIG_NUMA |
5513 | memset(node_load, 0, sizeof(node_load)); | |
5514 | #endif | |
9adb62a5 | 5515 | |
c1152583 WY |
5516 | /* |
5517 | * This node is hotadded and no memory is yet present. So just | |
5518 | * building zonelists is fine - no need to touch other nodes. | |
5519 | */ | |
9adb62a5 JL |
5520 | if (self && !node_online(self->node_id)) { |
5521 | build_zonelists(self); | |
c1152583 WY |
5522 | } else { |
5523 | for_each_online_node(nid) { | |
5524 | pg_data_t *pgdat = NODE_DATA(nid); | |
7ea1530a | 5525 | |
c1152583 WY |
5526 | build_zonelists(pgdat); |
5527 | } | |
99dcc3e5 | 5528 | |
7aac7898 LS |
5529 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5530 | /* | |
5531 | * We now know the "local memory node" for each node-- | |
5532 | * i.e., the node of the first zone in the generic zonelist. | |
5533 | * Set up numa_mem percpu variable for on-line cpus. During | |
5534 | * boot, only the boot cpu should be on-line; we'll init the | |
5535 | * secondary cpus' numa_mem as they come on-line. During | |
5536 | * node/memory hotplug, we'll fixup all on-line cpus. | |
5537 | */ | |
d9c9a0b9 | 5538 | for_each_online_cpu(cpu) |
7aac7898 | 5539 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
afb6ebb3 | 5540 | #endif |
d9c9a0b9 | 5541 | } |
b93e0f32 MH |
5542 | |
5543 | spin_unlock(&lock); | |
6811378e YG |
5544 | } |
5545 | ||
061f67bc RV |
5546 | static noinline void __init |
5547 | build_all_zonelists_init(void) | |
5548 | { | |
afb6ebb3 MH |
5549 | int cpu; |
5550 | ||
061f67bc | 5551 | __build_all_zonelists(NULL); |
afb6ebb3 MH |
5552 | |
5553 | /* | |
5554 | * Initialize the boot_pagesets that are going to be used | |
5555 | * for bootstrapping processors. The real pagesets for | |
5556 | * each zone will be allocated later when the per cpu | |
5557 | * allocator is available. | |
5558 | * | |
5559 | * boot_pagesets are used also for bootstrapping offline | |
5560 | * cpus if the system is already booted because the pagesets | |
5561 | * are needed to initialize allocators on a specific cpu too. | |
5562 | * F.e. the percpu allocator needs the page allocator which | |
5563 | * needs the percpu allocator in order to allocate its pagesets | |
5564 | * (a chicken-egg dilemma). | |
5565 | */ | |
5566 | for_each_possible_cpu(cpu) | |
5567 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); | |
5568 | ||
061f67bc RV |
5569 | mminit_verify_zonelist(); |
5570 | cpuset_init_current_mems_allowed(); | |
5571 | } | |
5572 | ||
4eaf3f64 | 5573 | /* |
4eaf3f64 | 5574 | * unless system_state == SYSTEM_BOOTING. |
061f67bc | 5575 | * |
72675e13 | 5576 | * __ref due to call of __init annotated helper build_all_zonelists_init |
061f67bc | 5577 | * [protected by SYSTEM_BOOTING]. |
4eaf3f64 | 5578 | */ |
72675e13 | 5579 | void __ref build_all_zonelists(pg_data_t *pgdat) |
6811378e YG |
5580 | { |
5581 | if (system_state == SYSTEM_BOOTING) { | |
061f67bc | 5582 | build_all_zonelists_init(); |
6811378e | 5583 | } else { |
11cd8638 | 5584 | __build_all_zonelists(pgdat); |
6811378e YG |
5585 | /* cpuset refresh routine should be here */ |
5586 | } | |
bd1e22b8 | 5587 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
5588 | /* |
5589 | * Disable grouping by mobility if the number of pages in the | |
5590 | * system is too low to allow the mechanism to work. It would be | |
5591 | * more accurate, but expensive to check per-zone. This check is | |
5592 | * made on memory-hotadd so a system can start with mobility | |
5593 | * disabled and enable it later | |
5594 | */ | |
d9c23400 | 5595 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
5596 | page_group_by_mobility_disabled = 1; |
5597 | else | |
5598 | page_group_by_mobility_disabled = 0; | |
5599 | ||
c9bff3ee | 5600 | pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", |
756a025f | 5601 | nr_online_nodes, |
756a025f JP |
5602 | page_group_by_mobility_disabled ? "off" : "on", |
5603 | vm_total_pages); | |
f0c0b2b8 | 5604 | #ifdef CONFIG_NUMA |
f88dfff5 | 5605 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 5606 | #endif |
1da177e4 LT |
5607 | } |
5608 | ||
a9a9e77f PT |
5609 | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ |
5610 | static bool __meminit | |
5611 | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | |
5612 | { | |
5613 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | |
5614 | static struct memblock_region *r; | |
5615 | ||
5616 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
5617 | if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | |
5618 | for_each_memblock(memory, r) { | |
5619 | if (*pfn < memblock_region_memory_end_pfn(r)) | |
5620 | break; | |
5621 | } | |
5622 | } | |
5623 | if (*pfn >= memblock_region_memory_base_pfn(r) && | |
5624 | memblock_is_mirror(r)) { | |
5625 | *pfn = memblock_region_memory_end_pfn(r); | |
5626 | return true; | |
5627 | } | |
5628 | } | |
5629 | #endif | |
5630 | return false; | |
5631 | } | |
5632 | ||
1da177e4 LT |
5633 | /* |
5634 | * Initially all pages are reserved - free ones are freed | |
c6ffc5ca | 5635 | * up by memblock_free_all() once the early boot process is |
1da177e4 LT |
5636 | * done. Non-atomic initialization, single-pass. |
5637 | */ | |
c09b4240 | 5638 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a99583e7 CH |
5639 | unsigned long start_pfn, enum memmap_context context, |
5640 | struct vmem_altmap *altmap) | |
1da177e4 | 5641 | { |
a9a9e77f | 5642 | unsigned long pfn, end_pfn = start_pfn + size; |
d0dc12e8 | 5643 | struct page *page; |
1da177e4 | 5644 | |
22b31eec HD |
5645 | if (highest_memmap_pfn < end_pfn - 1) |
5646 | highest_memmap_pfn = end_pfn - 1; | |
5647 | ||
966cf44f | 5648 | #ifdef CONFIG_ZONE_DEVICE |
4b94ffdc DW |
5649 | /* |
5650 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
966cf44f AD |
5651 | * memory. We limit the total number of pages to initialize to just |
5652 | * those that might contain the memory mapping. We will defer the | |
5653 | * ZONE_DEVICE page initialization until after we have released | |
5654 | * the hotplug lock. | |
4b94ffdc | 5655 | */ |
966cf44f AD |
5656 | if (zone == ZONE_DEVICE) { |
5657 | if (!altmap) | |
5658 | return; | |
5659 | ||
5660 | if (start_pfn == altmap->base_pfn) | |
5661 | start_pfn += altmap->reserve; | |
5662 | end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
5663 | } | |
5664 | #endif | |
4b94ffdc | 5665 | |
cbe8dd4a | 5666 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 | 5667 | /* |
b72d0ffb AM |
5668 | * There can be holes in boot-time mem_map[]s handed to this |
5669 | * function. They do not exist on hotplugged memory. | |
a2f3aa02 | 5670 | */ |
a9a9e77f PT |
5671 | if (context == MEMMAP_EARLY) { |
5672 | if (!early_pfn_valid(pfn)) | |
b72d0ffb | 5673 | continue; |
a9a9e77f PT |
5674 | if (!early_pfn_in_nid(pfn, nid)) |
5675 | continue; | |
5676 | if (overlap_memmap_init(zone, &pfn)) | |
5677 | continue; | |
5678 | if (defer_init(nid, pfn, end_pfn)) | |
5679 | break; | |
a2f3aa02 | 5680 | } |
ac5d2539 | 5681 | |
d0dc12e8 PT |
5682 | page = pfn_to_page(pfn); |
5683 | __init_single_page(page, pfn, zone, nid); | |
5684 | if (context == MEMMAP_HOTPLUG) | |
d483da5b | 5685 | __SetPageReserved(page); |
d0dc12e8 | 5686 | |
ac5d2539 MG |
5687 | /* |
5688 | * Mark the block movable so that blocks are reserved for | |
5689 | * movable at startup. This will force kernel allocations | |
5690 | * to reserve their blocks rather than leaking throughout | |
5691 | * the address space during boot when many long-lived | |
974a786e | 5692 | * kernel allocations are made. |
ac5d2539 MG |
5693 | * |
5694 | * bitmap is created for zone's valid pfn range. but memmap | |
5695 | * can be created for invalid pages (for alignment) | |
5696 | * check here not to call set_pageblock_migratetype() against | |
5697 | * pfn out of zone. | |
5698 | */ | |
5699 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
ac5d2539 | 5700 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
9b6e63cb | 5701 | cond_resched(); |
ac5d2539 | 5702 | } |
1da177e4 LT |
5703 | } |
5704 | } | |
5705 | ||
966cf44f AD |
5706 | #ifdef CONFIG_ZONE_DEVICE |
5707 | void __ref memmap_init_zone_device(struct zone *zone, | |
5708 | unsigned long start_pfn, | |
5709 | unsigned long size, | |
5710 | struct dev_pagemap *pgmap) | |
5711 | { | |
5712 | unsigned long pfn, end_pfn = start_pfn + size; | |
5713 | struct pglist_data *pgdat = zone->zone_pgdat; | |
5714 | unsigned long zone_idx = zone_idx(zone); | |
5715 | unsigned long start = jiffies; | |
5716 | int nid = pgdat->node_id; | |
5717 | ||
5718 | if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) | |
5719 | return; | |
5720 | ||
5721 | /* | |
5722 | * The call to memmap_init_zone should have already taken care | |
5723 | * of the pages reserved for the memmap, so we can just jump to | |
5724 | * the end of that region and start processing the device pages. | |
5725 | */ | |
5726 | if (pgmap->altmap_valid) { | |
5727 | struct vmem_altmap *altmap = &pgmap->altmap; | |
5728 | ||
5729 | start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
5730 | size = end_pfn - start_pfn; | |
5731 | } | |
5732 | ||
5733 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
5734 | struct page *page = pfn_to_page(pfn); | |
5735 | ||
5736 | __init_single_page(page, pfn, zone_idx, nid); | |
5737 | ||
5738 | /* | |
5739 | * Mark page reserved as it will need to wait for onlining | |
5740 | * phase for it to be fully associated with a zone. | |
5741 | * | |
5742 | * We can use the non-atomic __set_bit operation for setting | |
5743 | * the flag as we are still initializing the pages. | |
5744 | */ | |
5745 | __SetPageReserved(page); | |
5746 | ||
5747 | /* | |
5748 | * ZONE_DEVICE pages union ->lru with a ->pgmap back | |
5749 | * pointer and hmm_data. It is a bug if a ZONE_DEVICE | |
5750 | * page is ever freed or placed on a driver-private list. | |
5751 | */ | |
5752 | page->pgmap = pgmap; | |
5753 | page->hmm_data = 0; | |
5754 | ||
5755 | /* | |
5756 | * Mark the block movable so that blocks are reserved for | |
5757 | * movable at startup. This will force kernel allocations | |
5758 | * to reserve their blocks rather than leaking throughout | |
5759 | * the address space during boot when many long-lived | |
5760 | * kernel allocations are made. | |
5761 | * | |
5762 | * bitmap is created for zone's valid pfn range. but memmap | |
5763 | * can be created for invalid pages (for alignment) | |
5764 | * check here not to call set_pageblock_migratetype() against | |
5765 | * pfn out of zone. | |
5766 | * | |
5767 | * Please note that MEMMAP_HOTPLUG path doesn't clear memmap | |
5768 | * because this is done early in sparse_add_one_section | |
5769 | */ | |
5770 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
5771 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
5772 | cond_resched(); | |
5773 | } | |
5774 | } | |
5775 | ||
5776 | pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), | |
5777 | size, jiffies_to_msecs(jiffies - start)); | |
5778 | } | |
5779 | ||
5780 | #endif | |
1e548deb | 5781 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 5782 | { |
7aeb09f9 | 5783 | unsigned int order, t; |
b2a0ac88 MG |
5784 | for_each_migratetype_order(order, t) { |
5785 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
5786 | zone->free_area[order].nr_free = 0; |
5787 | } | |
5788 | } | |
5789 | ||
dfb3ccd0 PT |
5790 | void __meminit __weak memmap_init(unsigned long size, int nid, |
5791 | unsigned long zone, unsigned long start_pfn) | |
5792 | { | |
5793 | memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); | |
5794 | } | |
1da177e4 | 5795 | |
7cd2b0a3 | 5796 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 5797 | { |
3a6be87f | 5798 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
5799 | int batch; |
5800 | ||
5801 | /* | |
5802 | * The per-cpu-pages pools are set to around 1000th of the | |
d8a759b5 | 5803 | * size of the zone. |
e7c8d5c9 | 5804 | */ |
9705bea5 | 5805 | batch = zone_managed_pages(zone) / 1024; |
d8a759b5 AL |
5806 | /* But no more than a meg. */ |
5807 | if (batch * PAGE_SIZE > 1024 * 1024) | |
5808 | batch = (1024 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
5809 | batch /= 4; /* We effectively *= 4 below */ |
5810 | if (batch < 1) | |
5811 | batch = 1; | |
5812 | ||
5813 | /* | |
0ceaacc9 NP |
5814 | * Clamp the batch to a 2^n - 1 value. Having a power |
5815 | * of 2 value was found to be more likely to have | |
5816 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 5817 | * |
0ceaacc9 NP |
5818 | * For example if 2 tasks are alternately allocating |
5819 | * batches of pages, one task can end up with a lot | |
5820 | * of pages of one half of the possible page colors | |
5821 | * and the other with pages of the other colors. | |
e7c8d5c9 | 5822 | */ |
9155203a | 5823 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 5824 | |
e7c8d5c9 | 5825 | return batch; |
3a6be87f DH |
5826 | |
5827 | #else | |
5828 | /* The deferral and batching of frees should be suppressed under NOMMU | |
5829 | * conditions. | |
5830 | * | |
5831 | * The problem is that NOMMU needs to be able to allocate large chunks | |
5832 | * of contiguous memory as there's no hardware page translation to | |
5833 | * assemble apparent contiguous memory from discontiguous pages. | |
5834 | * | |
5835 | * Queueing large contiguous runs of pages for batching, however, | |
5836 | * causes the pages to actually be freed in smaller chunks. As there | |
5837 | * can be a significant delay between the individual batches being | |
5838 | * recycled, this leads to the once large chunks of space being | |
5839 | * fragmented and becoming unavailable for high-order allocations. | |
5840 | */ | |
5841 | return 0; | |
5842 | #endif | |
e7c8d5c9 CL |
5843 | } |
5844 | ||
8d7a8fa9 CS |
5845 | /* |
5846 | * pcp->high and pcp->batch values are related and dependent on one another: | |
5847 | * ->batch must never be higher then ->high. | |
5848 | * The following function updates them in a safe manner without read side | |
5849 | * locking. | |
5850 | * | |
5851 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
5852 | * those fields changing asynchronously (acording the the above rule). | |
5853 | * | |
5854 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
5855 | * outside of boot time (or some other assurance that no concurrent updaters | |
5856 | * exist). | |
5857 | */ | |
5858 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
5859 | unsigned long batch) | |
5860 | { | |
5861 | /* start with a fail safe value for batch */ | |
5862 | pcp->batch = 1; | |
5863 | smp_wmb(); | |
5864 | ||
5865 | /* Update high, then batch, in order */ | |
5866 | pcp->high = high; | |
5867 | smp_wmb(); | |
5868 | ||
5869 | pcp->batch = batch; | |
5870 | } | |
5871 | ||
3664033c | 5872 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
5873 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
5874 | { | |
8d7a8fa9 | 5875 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
5876 | } |
5877 | ||
88c90dbc | 5878 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
5879 | { |
5880 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 5881 | int migratetype; |
2caaad41 | 5882 | |
1c6fe946 MD |
5883 | memset(p, 0, sizeof(*p)); |
5884 | ||
3dfa5721 | 5885 | pcp = &p->pcp; |
5f8dcc21 MG |
5886 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
5887 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
5888 | } |
5889 | ||
88c90dbc CS |
5890 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
5891 | { | |
5892 | pageset_init(p); | |
5893 | pageset_set_batch(p, batch); | |
5894 | } | |
5895 | ||
8ad4b1fb | 5896 | /* |
3664033c | 5897 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
5898 | * to the value high for the pageset p. |
5899 | */ | |
3664033c | 5900 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
5901 | unsigned long high) |
5902 | { | |
8d7a8fa9 CS |
5903 | unsigned long batch = max(1UL, high / 4); |
5904 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
5905 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 5906 | |
8d7a8fa9 | 5907 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
5908 | } |
5909 | ||
7cd2b0a3 DR |
5910 | static void pageset_set_high_and_batch(struct zone *zone, |
5911 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 5912 | { |
56cef2b8 | 5913 | if (percpu_pagelist_fraction) |
3664033c | 5914 | pageset_set_high(pcp, |
9705bea5 | 5915 | (zone_managed_pages(zone) / |
56cef2b8 CS |
5916 | percpu_pagelist_fraction)); |
5917 | else | |
5918 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
5919 | } | |
5920 | ||
169f6c19 CS |
5921 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
5922 | { | |
5923 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
5924 | ||
5925 | pageset_init(pcp); | |
5926 | pageset_set_high_and_batch(zone, pcp); | |
5927 | } | |
5928 | ||
72675e13 | 5929 | void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
5930 | { |
5931 | int cpu; | |
319774e2 | 5932 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
5933 | for_each_possible_cpu(cpu) |
5934 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
5935 | } |
5936 | ||
2caaad41 | 5937 | /* |
99dcc3e5 CL |
5938 | * Allocate per cpu pagesets and initialize them. |
5939 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 5940 | */ |
99dcc3e5 | 5941 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 5942 | { |
b4911ea2 | 5943 | struct pglist_data *pgdat; |
99dcc3e5 | 5944 | struct zone *zone; |
e7c8d5c9 | 5945 | |
319774e2 WF |
5946 | for_each_populated_zone(zone) |
5947 | setup_zone_pageset(zone); | |
b4911ea2 MG |
5948 | |
5949 | for_each_online_pgdat(pgdat) | |
5950 | pgdat->per_cpu_nodestats = | |
5951 | alloc_percpu(struct per_cpu_nodestat); | |
e7c8d5c9 CL |
5952 | } |
5953 | ||
c09b4240 | 5954 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 5955 | { |
99dcc3e5 CL |
5956 | /* |
5957 | * per cpu subsystem is not up at this point. The following code | |
5958 | * relies on the ability of the linker to provide the | |
5959 | * offset of a (static) per cpu variable into the per cpu area. | |
5960 | */ | |
5961 | zone->pageset = &boot_pageset; | |
ed8ece2e | 5962 | |
b38a8725 | 5963 | if (populated_zone(zone)) |
99dcc3e5 CL |
5964 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
5965 | zone->name, zone->present_pages, | |
5966 | zone_batchsize(zone)); | |
ed8ece2e DH |
5967 | } |
5968 | ||
dc0bbf3b | 5969 | void __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 5970 | unsigned long zone_start_pfn, |
b171e409 | 5971 | unsigned long size) |
ed8ece2e DH |
5972 | { |
5973 | struct pglist_data *pgdat = zone->zone_pgdat; | |
8f416836 | 5974 | int zone_idx = zone_idx(zone) + 1; |
9dcb8b68 | 5975 | |
8f416836 WY |
5976 | if (zone_idx > pgdat->nr_zones) |
5977 | pgdat->nr_zones = zone_idx; | |
ed8ece2e | 5978 | |
ed8ece2e DH |
5979 | zone->zone_start_pfn = zone_start_pfn; |
5980 | ||
708614e6 MG |
5981 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
5982 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
5983 | pgdat->node_id, | |
5984 | (unsigned long)zone_idx(zone), | |
5985 | zone_start_pfn, (zone_start_pfn + size)); | |
5986 | ||
1e548deb | 5987 | zone_init_free_lists(zone); |
9dcb8b68 | 5988 | zone->initialized = 1; |
ed8ece2e DH |
5989 | } |
5990 | ||
0ee332c1 | 5991 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 5992 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
8a942fde | 5993 | |
c713216d MG |
5994 | /* |
5995 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 5996 | */ |
8a942fde MG |
5997 | int __meminit __early_pfn_to_nid(unsigned long pfn, |
5998 | struct mminit_pfnnid_cache *state) | |
c713216d | 5999 | { |
c13291a5 | 6000 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 6001 | int nid; |
7c243c71 | 6002 | |
8a942fde MG |
6003 | if (state->last_start <= pfn && pfn < state->last_end) |
6004 | return state->last_nid; | |
c713216d | 6005 | |
e76b63f8 YL |
6006 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
6007 | if (nid != -1) { | |
8a942fde MG |
6008 | state->last_start = start_pfn; |
6009 | state->last_end = end_pfn; | |
6010 | state->last_nid = nid; | |
e76b63f8 YL |
6011 | } |
6012 | ||
6013 | return nid; | |
c713216d MG |
6014 | } |
6015 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
6016 | ||
c713216d | 6017 | /** |
6782832e | 6018 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 6019 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 6020 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 6021 | * |
7d018176 ZZ |
6022 | * If an architecture guarantees that all ranges registered contain no holes |
6023 | * and may be freed, this this function may be used instead of calling | |
6024 | * memblock_free_early_nid() manually. | |
c713216d | 6025 | */ |
c13291a5 | 6026 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 6027 | { |
c13291a5 TH |
6028 | unsigned long start_pfn, end_pfn; |
6029 | int i, this_nid; | |
edbe7d23 | 6030 | |
c13291a5 TH |
6031 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
6032 | start_pfn = min(start_pfn, max_low_pfn); | |
6033 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 6034 | |
c13291a5 | 6035 | if (start_pfn < end_pfn) |
6782832e SS |
6036 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
6037 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
6038 | this_nid); | |
edbe7d23 | 6039 | } |
edbe7d23 | 6040 | } |
edbe7d23 | 6041 | |
c713216d MG |
6042 | /** |
6043 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 6044 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 6045 | * |
7d018176 ZZ |
6046 | * If an architecture guarantees that all ranges registered contain no holes and may |
6047 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
6048 | */ |
6049 | void __init sparse_memory_present_with_active_regions(int nid) | |
6050 | { | |
c13291a5 TH |
6051 | unsigned long start_pfn, end_pfn; |
6052 | int i, this_nid; | |
c713216d | 6053 | |
c13291a5 TH |
6054 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
6055 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
6056 | } |
6057 | ||
6058 | /** | |
6059 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
6060 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
6061 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
6062 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
6063 | * |
6064 | * It returns the start and end page frame of a node based on information | |
7d018176 | 6065 | * provided by memblock_set_node(). If called for a node |
c713216d | 6066 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 6067 | * PFNs will be 0. |
c713216d | 6068 | */ |
bbe5d993 | 6069 | void __init get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
6070 | unsigned long *start_pfn, unsigned long *end_pfn) |
6071 | { | |
c13291a5 | 6072 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 6073 | int i; |
c13291a5 | 6074 | |
c713216d MG |
6075 | *start_pfn = -1UL; |
6076 | *end_pfn = 0; | |
6077 | ||
c13291a5 TH |
6078 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
6079 | *start_pfn = min(*start_pfn, this_start_pfn); | |
6080 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
6081 | } |
6082 | ||
633c0666 | 6083 | if (*start_pfn == -1UL) |
c713216d | 6084 | *start_pfn = 0; |
c713216d MG |
6085 | } |
6086 | ||
2a1e274a MG |
6087 | /* |
6088 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
6089 | * assumption is made that zones within a node are ordered in monotonic | |
6090 | * increasing memory addresses so that the "highest" populated zone is used | |
6091 | */ | |
b69a7288 | 6092 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
6093 | { |
6094 | int zone_index; | |
6095 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
6096 | if (zone_index == ZONE_MOVABLE) | |
6097 | continue; | |
6098 | ||
6099 | if (arch_zone_highest_possible_pfn[zone_index] > | |
6100 | arch_zone_lowest_possible_pfn[zone_index]) | |
6101 | break; | |
6102 | } | |
6103 | ||
6104 | VM_BUG_ON(zone_index == -1); | |
6105 | movable_zone = zone_index; | |
6106 | } | |
6107 | ||
6108 | /* | |
6109 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 6110 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
6111 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
6112 | * in each node depending on the size of each node and how evenly kernelcore | |
6113 | * is distributed. This helper function adjusts the zone ranges | |
6114 | * provided by the architecture for a given node by using the end of the | |
6115 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
6116 | * zones within a node are in order of monotonic increases memory addresses | |
6117 | */ | |
bbe5d993 | 6118 | static void __init adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
6119 | unsigned long zone_type, |
6120 | unsigned long node_start_pfn, | |
6121 | unsigned long node_end_pfn, | |
6122 | unsigned long *zone_start_pfn, | |
6123 | unsigned long *zone_end_pfn) | |
6124 | { | |
6125 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
6126 | if (zone_movable_pfn[nid]) { | |
6127 | /* Size ZONE_MOVABLE */ | |
6128 | if (zone_type == ZONE_MOVABLE) { | |
6129 | *zone_start_pfn = zone_movable_pfn[nid]; | |
6130 | *zone_end_pfn = min(node_end_pfn, | |
6131 | arch_zone_highest_possible_pfn[movable_zone]); | |
6132 | ||
e506b996 XQ |
6133 | /* Adjust for ZONE_MOVABLE starting within this range */ |
6134 | } else if (!mirrored_kernelcore && | |
6135 | *zone_start_pfn < zone_movable_pfn[nid] && | |
6136 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
6137 | *zone_end_pfn = zone_movable_pfn[nid]; | |
6138 | ||
2a1e274a MG |
6139 | /* Check if this whole range is within ZONE_MOVABLE */ |
6140 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
6141 | *zone_start_pfn = *zone_end_pfn; | |
6142 | } | |
6143 | } | |
6144 | ||
c713216d MG |
6145 | /* |
6146 | * Return the number of pages a zone spans in a node, including holes | |
6147 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
6148 | */ | |
bbe5d993 | 6149 | static unsigned long __init zone_spanned_pages_in_node(int nid, |
c713216d | 6150 | unsigned long zone_type, |
7960aedd ZY |
6151 | unsigned long node_start_pfn, |
6152 | unsigned long node_end_pfn, | |
d91749c1 TI |
6153 | unsigned long *zone_start_pfn, |
6154 | unsigned long *zone_end_pfn, | |
c713216d MG |
6155 | unsigned long *ignored) |
6156 | { | |
b5685e92 | 6157 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
6158 | if (!node_start_pfn && !node_end_pfn) |
6159 | return 0; | |
6160 | ||
7960aedd | 6161 | /* Get the start and end of the zone */ |
d91749c1 TI |
6162 | *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
6163 | *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
6164 | adjust_zone_range_for_zone_movable(nid, zone_type, |
6165 | node_start_pfn, node_end_pfn, | |
d91749c1 | 6166 | zone_start_pfn, zone_end_pfn); |
c713216d MG |
6167 | |
6168 | /* Check that this node has pages within the zone's required range */ | |
d91749c1 | 6169 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
c713216d MG |
6170 | return 0; |
6171 | ||
6172 | /* Move the zone boundaries inside the node if necessary */ | |
d91749c1 TI |
6173 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
6174 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
c713216d MG |
6175 | |
6176 | /* Return the spanned pages */ | |
d91749c1 | 6177 | return *zone_end_pfn - *zone_start_pfn; |
c713216d MG |
6178 | } |
6179 | ||
6180 | /* | |
6181 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 6182 | * then all holes in the requested range will be accounted for. |
c713216d | 6183 | */ |
bbe5d993 | 6184 | unsigned long __init __absent_pages_in_range(int nid, |
c713216d MG |
6185 | unsigned long range_start_pfn, |
6186 | unsigned long range_end_pfn) | |
6187 | { | |
96e907d1 TH |
6188 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
6189 | unsigned long start_pfn, end_pfn; | |
6190 | int i; | |
c713216d | 6191 | |
96e907d1 TH |
6192 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
6193 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
6194 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
6195 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 6196 | } |
96e907d1 | 6197 | return nr_absent; |
c713216d MG |
6198 | } |
6199 | ||
6200 | /** | |
6201 | * absent_pages_in_range - Return number of page frames in holes within a range | |
6202 | * @start_pfn: The start PFN to start searching for holes | |
6203 | * @end_pfn: The end PFN to stop searching for holes | |
6204 | * | |
88ca3b94 | 6205 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
6206 | */ |
6207 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
6208 | unsigned long end_pfn) | |
6209 | { | |
6210 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
6211 | } | |
6212 | ||
6213 | /* Return the number of page frames in holes in a zone on a node */ | |
bbe5d993 | 6214 | static unsigned long __init zone_absent_pages_in_node(int nid, |
c713216d | 6215 | unsigned long zone_type, |
7960aedd ZY |
6216 | unsigned long node_start_pfn, |
6217 | unsigned long node_end_pfn, | |
c713216d MG |
6218 | unsigned long *ignored) |
6219 | { | |
96e907d1 TH |
6220 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
6221 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 | 6222 | unsigned long zone_start_pfn, zone_end_pfn; |
342332e6 | 6223 | unsigned long nr_absent; |
9c7cd687 | 6224 | |
b5685e92 | 6225 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
6226 | if (!node_start_pfn && !node_end_pfn) |
6227 | return 0; | |
6228 | ||
96e907d1 TH |
6229 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
6230 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 6231 | |
2a1e274a MG |
6232 | adjust_zone_range_for_zone_movable(nid, zone_type, |
6233 | node_start_pfn, node_end_pfn, | |
6234 | &zone_start_pfn, &zone_end_pfn); | |
342332e6 TI |
6235 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
6236 | ||
6237 | /* | |
6238 | * ZONE_MOVABLE handling. | |
6239 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
6240 | * and vice versa. | |
6241 | */ | |
e506b996 XQ |
6242 | if (mirrored_kernelcore && zone_movable_pfn[nid]) { |
6243 | unsigned long start_pfn, end_pfn; | |
6244 | struct memblock_region *r; | |
6245 | ||
6246 | for_each_memblock(memory, r) { | |
6247 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
6248 | zone_start_pfn, zone_end_pfn); | |
6249 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
6250 | zone_start_pfn, zone_end_pfn); | |
6251 | ||
6252 | if (zone_type == ZONE_MOVABLE && | |
6253 | memblock_is_mirror(r)) | |
6254 | nr_absent += end_pfn - start_pfn; | |
6255 | ||
6256 | if (zone_type == ZONE_NORMAL && | |
6257 | !memblock_is_mirror(r)) | |
6258 | nr_absent += end_pfn - start_pfn; | |
342332e6 TI |
6259 | } |
6260 | } | |
6261 | ||
6262 | return nr_absent; | |
c713216d | 6263 | } |
0e0b864e | 6264 | |
0ee332c1 | 6265 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
bbe5d993 | 6266 | static inline unsigned long __init zone_spanned_pages_in_node(int nid, |
c713216d | 6267 | unsigned long zone_type, |
7960aedd ZY |
6268 | unsigned long node_start_pfn, |
6269 | unsigned long node_end_pfn, | |
d91749c1 TI |
6270 | unsigned long *zone_start_pfn, |
6271 | unsigned long *zone_end_pfn, | |
c713216d MG |
6272 | unsigned long *zones_size) |
6273 | { | |
d91749c1 TI |
6274 | unsigned int zone; |
6275 | ||
6276 | *zone_start_pfn = node_start_pfn; | |
6277 | for (zone = 0; zone < zone_type; zone++) | |
6278 | *zone_start_pfn += zones_size[zone]; | |
6279 | ||
6280 | *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; | |
6281 | ||
c713216d MG |
6282 | return zones_size[zone_type]; |
6283 | } | |
6284 | ||
bbe5d993 | 6285 | static inline unsigned long __init zone_absent_pages_in_node(int nid, |
c713216d | 6286 | unsigned long zone_type, |
7960aedd ZY |
6287 | unsigned long node_start_pfn, |
6288 | unsigned long node_end_pfn, | |
c713216d MG |
6289 | unsigned long *zholes_size) |
6290 | { | |
6291 | if (!zholes_size) | |
6292 | return 0; | |
6293 | ||
6294 | return zholes_size[zone_type]; | |
6295 | } | |
20e6926d | 6296 | |
0ee332c1 | 6297 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 6298 | |
bbe5d993 | 6299 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
6300 | unsigned long node_start_pfn, |
6301 | unsigned long node_end_pfn, | |
6302 | unsigned long *zones_size, | |
6303 | unsigned long *zholes_size) | |
c713216d | 6304 | { |
febd5949 | 6305 | unsigned long realtotalpages = 0, totalpages = 0; |
c713216d MG |
6306 | enum zone_type i; |
6307 | ||
febd5949 GZ |
6308 | for (i = 0; i < MAX_NR_ZONES; i++) { |
6309 | struct zone *zone = pgdat->node_zones + i; | |
d91749c1 | 6310 | unsigned long zone_start_pfn, zone_end_pfn; |
febd5949 | 6311 | unsigned long size, real_size; |
c713216d | 6312 | |
febd5949 GZ |
6313 | size = zone_spanned_pages_in_node(pgdat->node_id, i, |
6314 | node_start_pfn, | |
6315 | node_end_pfn, | |
d91749c1 TI |
6316 | &zone_start_pfn, |
6317 | &zone_end_pfn, | |
febd5949 GZ |
6318 | zones_size); |
6319 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
6320 | node_start_pfn, node_end_pfn, |
6321 | zholes_size); | |
d91749c1 TI |
6322 | if (size) |
6323 | zone->zone_start_pfn = zone_start_pfn; | |
6324 | else | |
6325 | zone->zone_start_pfn = 0; | |
febd5949 GZ |
6326 | zone->spanned_pages = size; |
6327 | zone->present_pages = real_size; | |
6328 | ||
6329 | totalpages += size; | |
6330 | realtotalpages += real_size; | |
6331 | } | |
6332 | ||
6333 | pgdat->node_spanned_pages = totalpages; | |
c713216d MG |
6334 | pgdat->node_present_pages = realtotalpages; |
6335 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
6336 | realtotalpages); | |
6337 | } | |
6338 | ||
835c134e MG |
6339 | #ifndef CONFIG_SPARSEMEM |
6340 | /* | |
6341 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
6342 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
6343 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
6344 | * round what is now in bits to nearest long in bits, then return it in |
6345 | * bytes. | |
6346 | */ | |
7c45512d | 6347 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
6348 | { |
6349 | unsigned long usemapsize; | |
6350 | ||
7c45512d | 6351 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
6352 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
6353 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
6354 | usemapsize *= NR_PAGEBLOCK_BITS; |
6355 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
6356 | ||
6357 | return usemapsize / 8; | |
6358 | } | |
6359 | ||
7cc2a959 | 6360 | static void __ref setup_usemap(struct pglist_data *pgdat, |
7c45512d LT |
6361 | struct zone *zone, |
6362 | unsigned long zone_start_pfn, | |
6363 | unsigned long zonesize) | |
835c134e | 6364 | { |
7c45512d | 6365 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 6366 | zone->pageblock_flags = NULL; |
58a01a45 | 6367 | if (usemapsize) |
6782832e | 6368 | zone->pageblock_flags = |
eb31d559 | 6369 | memblock_alloc_node_nopanic(usemapsize, |
6782832e | 6370 | pgdat->node_id); |
835c134e MG |
6371 | } |
6372 | #else | |
7c45512d LT |
6373 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
6374 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
6375 | #endif /* CONFIG_SPARSEMEM */ |
6376 | ||
d9c23400 | 6377 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 6378 | |
d9c23400 | 6379 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
03e85f9d | 6380 | void __init set_pageblock_order(void) |
d9c23400 | 6381 | { |
955c1cd7 AM |
6382 | unsigned int order; |
6383 | ||
d9c23400 MG |
6384 | /* Check that pageblock_nr_pages has not already been setup */ |
6385 | if (pageblock_order) | |
6386 | return; | |
6387 | ||
955c1cd7 AM |
6388 | if (HPAGE_SHIFT > PAGE_SHIFT) |
6389 | order = HUGETLB_PAGE_ORDER; | |
6390 | else | |
6391 | order = MAX_ORDER - 1; | |
6392 | ||
d9c23400 MG |
6393 | /* |
6394 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
6395 | * This value may be variable depending on boot parameters on IA64 and |
6396 | * powerpc. | |
d9c23400 MG |
6397 | */ |
6398 | pageblock_order = order; | |
6399 | } | |
6400 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
6401 | ||
ba72cb8c MG |
6402 | /* |
6403 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
6404 | * is unused as pageblock_order is set at compile-time. See |
6405 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
6406 | * the kernel config | |
ba72cb8c | 6407 | */ |
03e85f9d | 6408 | void __init set_pageblock_order(void) |
ba72cb8c | 6409 | { |
ba72cb8c | 6410 | } |
d9c23400 MG |
6411 | |
6412 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
6413 | ||
03e85f9d | 6414 | static unsigned long __init calc_memmap_size(unsigned long spanned_pages, |
7cc2a959 | 6415 | unsigned long present_pages) |
01cefaef JL |
6416 | { |
6417 | unsigned long pages = spanned_pages; | |
6418 | ||
6419 | /* | |
6420 | * Provide a more accurate estimation if there are holes within | |
6421 | * the zone and SPARSEMEM is in use. If there are holes within the | |
6422 | * zone, each populated memory region may cost us one or two extra | |
6423 | * memmap pages due to alignment because memmap pages for each | |
89d790ab | 6424 | * populated regions may not be naturally aligned on page boundary. |
01cefaef JL |
6425 | * So the (present_pages >> 4) heuristic is a tradeoff for that. |
6426 | */ | |
6427 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
6428 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
6429 | pages = present_pages; | |
6430 | ||
6431 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
6432 | } | |
6433 | ||
ace1db39 OS |
6434 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6435 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | |
6436 | { | |
6437 | spin_lock_init(&pgdat->split_queue_lock); | |
6438 | INIT_LIST_HEAD(&pgdat->split_queue); | |
6439 | pgdat->split_queue_len = 0; | |
6440 | } | |
6441 | #else | |
6442 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | |
6443 | #endif | |
6444 | ||
6445 | #ifdef CONFIG_COMPACTION | |
6446 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | |
6447 | { | |
6448 | init_waitqueue_head(&pgdat->kcompactd_wait); | |
6449 | } | |
6450 | #else | |
6451 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | |
6452 | #endif | |
6453 | ||
03e85f9d | 6454 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) |
1da177e4 | 6455 | { |
208d54e5 | 6456 | pgdat_resize_init(pgdat); |
ace1db39 | 6457 | |
ace1db39 OS |
6458 | pgdat_init_split_queue(pgdat); |
6459 | pgdat_init_kcompactd(pgdat); | |
6460 | ||
1da177e4 | 6461 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 6462 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
ace1db39 | 6463 | |
eefa864b | 6464 | pgdat_page_ext_init(pgdat); |
a52633d8 | 6465 | spin_lock_init(&pgdat->lru_lock); |
a9dd0a83 | 6466 | lruvec_init(node_lruvec(pgdat)); |
03e85f9d OS |
6467 | } |
6468 | ||
6469 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | |
6470 | unsigned long remaining_pages) | |
6471 | { | |
9705bea5 | 6472 | atomic_long_set(&zone->managed_pages, remaining_pages); |
03e85f9d OS |
6473 | zone_set_nid(zone, nid); |
6474 | zone->name = zone_names[idx]; | |
6475 | zone->zone_pgdat = NODE_DATA(nid); | |
6476 | spin_lock_init(&zone->lock); | |
6477 | zone_seqlock_init(zone); | |
6478 | zone_pcp_init(zone); | |
6479 | } | |
6480 | ||
6481 | /* | |
6482 | * Set up the zone data structures | |
6483 | * - init pgdat internals | |
6484 | * - init all zones belonging to this node | |
6485 | * | |
6486 | * NOTE: this function is only called during memory hotplug | |
6487 | */ | |
6488 | #ifdef CONFIG_MEMORY_HOTPLUG | |
6489 | void __ref free_area_init_core_hotplug(int nid) | |
6490 | { | |
6491 | enum zone_type z; | |
6492 | pg_data_t *pgdat = NODE_DATA(nid); | |
6493 | ||
6494 | pgdat_init_internals(pgdat); | |
6495 | for (z = 0; z < MAX_NR_ZONES; z++) | |
6496 | zone_init_internals(&pgdat->node_zones[z], z, nid, 0); | |
6497 | } | |
6498 | #endif | |
6499 | ||
6500 | /* | |
6501 | * Set up the zone data structures: | |
6502 | * - mark all pages reserved | |
6503 | * - mark all memory queues empty | |
6504 | * - clear the memory bitmaps | |
6505 | * | |
6506 | * NOTE: pgdat should get zeroed by caller. | |
6507 | * NOTE: this function is only called during early init. | |
6508 | */ | |
6509 | static void __init free_area_init_core(struct pglist_data *pgdat) | |
6510 | { | |
6511 | enum zone_type j; | |
6512 | int nid = pgdat->node_id; | |
5f63b720 | 6513 | |
03e85f9d | 6514 | pgdat_init_internals(pgdat); |
385386cf JW |
6515 | pgdat->per_cpu_nodestats = &boot_nodestats; |
6516 | ||
1da177e4 LT |
6517 | for (j = 0; j < MAX_NR_ZONES; j++) { |
6518 | struct zone *zone = pgdat->node_zones + j; | |
e6943859 | 6519 | unsigned long size, freesize, memmap_pages; |
d91749c1 | 6520 | unsigned long zone_start_pfn = zone->zone_start_pfn; |
1da177e4 | 6521 | |
febd5949 | 6522 | size = zone->spanned_pages; |
e6943859 | 6523 | freesize = zone->present_pages; |
1da177e4 | 6524 | |
0e0b864e | 6525 | /* |
9feedc9d | 6526 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
6527 | * is used by this zone for memmap. This affects the watermark |
6528 | * and per-cpu initialisations | |
6529 | */ | |
e6943859 | 6530 | memmap_pages = calc_memmap_size(size, freesize); |
ba914f48 ZH |
6531 | if (!is_highmem_idx(j)) { |
6532 | if (freesize >= memmap_pages) { | |
6533 | freesize -= memmap_pages; | |
6534 | if (memmap_pages) | |
6535 | printk(KERN_DEBUG | |
6536 | " %s zone: %lu pages used for memmap\n", | |
6537 | zone_names[j], memmap_pages); | |
6538 | } else | |
1170532b | 6539 | pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", |
ba914f48 ZH |
6540 | zone_names[j], memmap_pages, freesize); |
6541 | } | |
0e0b864e | 6542 | |
6267276f | 6543 | /* Account for reserved pages */ |
9feedc9d JL |
6544 | if (j == 0 && freesize > dma_reserve) { |
6545 | freesize -= dma_reserve; | |
d903ef9f | 6546 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 6547 | zone_names[0], dma_reserve); |
0e0b864e MG |
6548 | } |
6549 | ||
98d2b0eb | 6550 | if (!is_highmem_idx(j)) |
9feedc9d | 6551 | nr_kernel_pages += freesize; |
01cefaef JL |
6552 | /* Charge for highmem memmap if there are enough kernel pages */ |
6553 | else if (nr_kernel_pages > memmap_pages * 2) | |
6554 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 6555 | nr_all_pages += freesize; |
1da177e4 | 6556 | |
9feedc9d JL |
6557 | /* |
6558 | * Set an approximate value for lowmem here, it will be adjusted | |
6559 | * when the bootmem allocator frees pages into the buddy system. | |
6560 | * And all highmem pages will be managed by the buddy system. | |
6561 | */ | |
03e85f9d | 6562 | zone_init_internals(zone, j, nid, freesize); |
81c0a2bb | 6563 | |
d883c6cf | 6564 | if (!size) |
1da177e4 LT |
6565 | continue; |
6566 | ||
955c1cd7 | 6567 | set_pageblock_order(); |
d883c6cf JK |
6568 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
6569 | init_currently_empty_zone(zone, zone_start_pfn, size); | |
76cdd58e | 6570 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 LT |
6571 | } |
6572 | } | |
6573 | ||
0cd842f9 | 6574 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bd721ea7 | 6575 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 6576 | { |
b0aeba74 | 6577 | unsigned long __maybe_unused start = 0; |
a1c34a3b LA |
6578 | unsigned long __maybe_unused offset = 0; |
6579 | ||
1da177e4 LT |
6580 | /* Skip empty nodes */ |
6581 | if (!pgdat->node_spanned_pages) | |
6582 | return; | |
6583 | ||
b0aeba74 TL |
6584 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
6585 | offset = pgdat->node_start_pfn - start; | |
1da177e4 LT |
6586 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
6587 | if (!pgdat->node_mem_map) { | |
b0aeba74 | 6588 | unsigned long size, end; |
d41dee36 AW |
6589 | struct page *map; |
6590 | ||
e984bb43 BP |
6591 | /* |
6592 | * The zone's endpoints aren't required to be MAX_ORDER | |
6593 | * aligned but the node_mem_map endpoints must be in order | |
6594 | * for the buddy allocator to function correctly. | |
6595 | */ | |
108bcc96 | 6596 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
6597 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
6598 | size = (end - start) * sizeof(struct page); | |
eb31d559 | 6599 | map = memblock_alloc_node_nopanic(size, pgdat->node_id); |
a1c34a3b | 6600 | pgdat->node_mem_map = map + offset; |
1da177e4 | 6601 | } |
0cd842f9 OS |
6602 | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", |
6603 | __func__, pgdat->node_id, (unsigned long)pgdat, | |
6604 | (unsigned long)pgdat->node_mem_map); | |
12d810c1 | 6605 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
6606 | /* |
6607 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
6608 | */ | |
c713216d | 6609 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 6610 | mem_map = NODE_DATA(0)->node_mem_map; |
a1c34a3b | 6611 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) |
c713216d | 6612 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
a1c34a3b | 6613 | mem_map -= offset; |
0ee332c1 | 6614 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 6615 | } |
1da177e4 LT |
6616 | #endif |
6617 | } | |
0cd842f9 OS |
6618 | #else |
6619 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } | |
6620 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | |
1da177e4 | 6621 | |
0188dc98 OS |
6622 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
6623 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | |
6624 | { | |
0188dc98 OS |
6625 | pgdat->first_deferred_pfn = ULONG_MAX; |
6626 | } | |
6627 | #else | |
6628 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | |
6629 | #endif | |
6630 | ||
03e85f9d | 6631 | void __init free_area_init_node(int nid, unsigned long *zones_size, |
7cc2a959 PT |
6632 | unsigned long node_start_pfn, |
6633 | unsigned long *zholes_size) | |
1da177e4 | 6634 | { |
9109fb7b | 6635 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
6636 | unsigned long start_pfn = 0; |
6637 | unsigned long end_pfn = 0; | |
9109fb7b | 6638 | |
88fdf75d | 6639 | /* pg_data_t should be reset to zero when it's allocated */ |
38087d9b | 6640 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); |
88fdf75d | 6641 | |
1da177e4 LT |
6642 | pgdat->node_id = nid; |
6643 | pgdat->node_start_pfn = node_start_pfn; | |
75ef7184 | 6644 | pgdat->per_cpu_nodestats = NULL; |
7960aedd ZY |
6645 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
6646 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8d29e18a | 6647 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
4ada0c5a ZL |
6648 | (u64)start_pfn << PAGE_SHIFT, |
6649 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
d91749c1 TI |
6650 | #else |
6651 | start_pfn = node_start_pfn; | |
7960aedd ZY |
6652 | #endif |
6653 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
6654 | zones_size, zholes_size); | |
1da177e4 LT |
6655 | |
6656 | alloc_node_mem_map(pgdat); | |
0188dc98 | 6657 | pgdat_set_deferred_range(pgdat); |
1da177e4 | 6658 | |
7f3eb55b | 6659 | free_area_init_core(pgdat); |
1da177e4 LT |
6660 | } |
6661 | ||
aca52c39 | 6662 | #if !defined(CONFIG_FLAT_NODE_MEM_MAP) |
ec393a0f PT |
6663 | /* |
6664 | * Zero all valid struct pages in range [spfn, epfn), return number of struct | |
6665 | * pages zeroed | |
6666 | */ | |
6667 | static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) | |
6668 | { | |
6669 | unsigned long pfn; | |
6670 | u64 pgcnt = 0; | |
6671 | ||
6672 | for (pfn = spfn; pfn < epfn; pfn++) { | |
6673 | if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { | |
6674 | pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) | |
6675 | + pageblock_nr_pages - 1; | |
6676 | continue; | |
6677 | } | |
6678 | mm_zero_struct_page(pfn_to_page(pfn)); | |
6679 | pgcnt++; | |
6680 | } | |
6681 | ||
6682 | return pgcnt; | |
6683 | } | |
6684 | ||
a4a3ede2 PT |
6685 | /* |
6686 | * Only struct pages that are backed by physical memory are zeroed and | |
6687 | * initialized by going through __init_single_page(). But, there are some | |
6688 | * struct pages which are reserved in memblock allocator and their fields | |
6689 | * may be accessed (for example page_to_pfn() on some configuration accesses | |
6690 | * flags). We must explicitly zero those struct pages. | |
907ec5fc NH |
6691 | * |
6692 | * This function also addresses a similar issue where struct pages are left | |
6693 | * uninitialized because the physical address range is not covered by | |
6694 | * memblock.memory or memblock.reserved. That could happen when memblock | |
6695 | * layout is manually configured via memmap=. | |
a4a3ede2 | 6696 | */ |
03e85f9d | 6697 | void __init zero_resv_unavail(void) |
a4a3ede2 PT |
6698 | { |
6699 | phys_addr_t start, end; | |
a4a3ede2 | 6700 | u64 i, pgcnt; |
907ec5fc | 6701 | phys_addr_t next = 0; |
a4a3ede2 PT |
6702 | |
6703 | /* | |
907ec5fc | 6704 | * Loop through unavailable ranges not covered by memblock.memory. |
a4a3ede2 PT |
6705 | */ |
6706 | pgcnt = 0; | |
907ec5fc NH |
6707 | for_each_mem_range(i, &memblock.memory, NULL, |
6708 | NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { | |
ec393a0f PT |
6709 | if (next < start) |
6710 | pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); | |
907ec5fc NH |
6711 | next = end; |
6712 | } | |
ec393a0f | 6713 | pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); |
907ec5fc | 6714 | |
a4a3ede2 PT |
6715 | /* |
6716 | * Struct pages that do not have backing memory. This could be because | |
6717 | * firmware is using some of this memory, or for some other reasons. | |
a4a3ede2 PT |
6718 | */ |
6719 | if (pgcnt) | |
907ec5fc | 6720 | pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); |
a4a3ede2 | 6721 | } |
aca52c39 | 6722 | #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ |
a4a3ede2 | 6723 | |
0ee332c1 | 6724 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
6725 | |
6726 | #if MAX_NUMNODES > 1 | |
6727 | /* | |
6728 | * Figure out the number of possible node ids. | |
6729 | */ | |
f9872caf | 6730 | void __init setup_nr_node_ids(void) |
418508c1 | 6731 | { |
904a9553 | 6732 | unsigned int highest; |
418508c1 | 6733 | |
904a9553 | 6734 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
418508c1 MS |
6735 | nr_node_ids = highest + 1; |
6736 | } | |
418508c1 MS |
6737 | #endif |
6738 | ||
1e01979c TH |
6739 | /** |
6740 | * node_map_pfn_alignment - determine the maximum internode alignment | |
6741 | * | |
6742 | * This function should be called after node map is populated and sorted. | |
6743 | * It calculates the maximum power of two alignment which can distinguish | |
6744 | * all the nodes. | |
6745 | * | |
6746 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
6747 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
6748 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
6749 | * shifted, 1GiB is enough and this function will indicate so. | |
6750 | * | |
6751 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
6752 | * model has fine enough granularity to avoid incorrect mapping for the | |
6753 | * populated node map. | |
6754 | * | |
6755 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
6756 | * requirement (single node). | |
6757 | */ | |
6758 | unsigned long __init node_map_pfn_alignment(void) | |
6759 | { | |
6760 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 6761 | unsigned long start, end, mask; |
1e01979c | 6762 | int last_nid = -1; |
c13291a5 | 6763 | int i, nid; |
1e01979c | 6764 | |
c13291a5 | 6765 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
6766 | if (!start || last_nid < 0 || last_nid == nid) { |
6767 | last_nid = nid; | |
6768 | last_end = end; | |
6769 | continue; | |
6770 | } | |
6771 | ||
6772 | /* | |
6773 | * Start with a mask granular enough to pin-point to the | |
6774 | * start pfn and tick off bits one-by-one until it becomes | |
6775 | * too coarse to separate the current node from the last. | |
6776 | */ | |
6777 | mask = ~((1 << __ffs(start)) - 1); | |
6778 | while (mask && last_end <= (start & (mask << 1))) | |
6779 | mask <<= 1; | |
6780 | ||
6781 | /* accumulate all internode masks */ | |
6782 | accl_mask |= mask; | |
6783 | } | |
6784 | ||
6785 | /* convert mask to number of pages */ | |
6786 | return ~accl_mask + 1; | |
6787 | } | |
6788 | ||
a6af2bc3 | 6789 | /* Find the lowest pfn for a node */ |
b69a7288 | 6790 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 6791 | { |
a6af2bc3 | 6792 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
6793 | unsigned long start_pfn; |
6794 | int i; | |
1abbfb41 | 6795 | |
c13291a5 TH |
6796 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
6797 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 6798 | |
a6af2bc3 | 6799 | if (min_pfn == ULONG_MAX) { |
1170532b | 6800 | pr_warn("Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
6801 | return 0; |
6802 | } | |
6803 | ||
6804 | return min_pfn; | |
c713216d MG |
6805 | } |
6806 | ||
6807 | /** | |
6808 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
6809 | * | |
6810 | * It returns the minimum PFN based on information provided via | |
7d018176 | 6811 | * memblock_set_node(). |
c713216d MG |
6812 | */ |
6813 | unsigned long __init find_min_pfn_with_active_regions(void) | |
6814 | { | |
6815 | return find_min_pfn_for_node(MAX_NUMNODES); | |
6816 | } | |
6817 | ||
37b07e41 LS |
6818 | /* |
6819 | * early_calculate_totalpages() | |
6820 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 6821 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 6822 | */ |
484f51f8 | 6823 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 6824 | { |
7e63efef | 6825 | unsigned long totalpages = 0; |
c13291a5 TH |
6826 | unsigned long start_pfn, end_pfn; |
6827 | int i, nid; | |
6828 | ||
6829 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
6830 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 6831 | |
37b07e41 LS |
6832 | totalpages += pages; |
6833 | if (pages) | |
4b0ef1fe | 6834 | node_set_state(nid, N_MEMORY); |
37b07e41 | 6835 | } |
b8af2941 | 6836 | return totalpages; |
7e63efef MG |
6837 | } |
6838 | ||
2a1e274a MG |
6839 | /* |
6840 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
6841 | * is spread evenly between nodes as long as the nodes have enough | |
6842 | * memory. When they don't, some nodes will have more kernelcore than | |
6843 | * others | |
6844 | */ | |
b224ef85 | 6845 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
6846 | { |
6847 | int i, nid; | |
6848 | unsigned long usable_startpfn; | |
6849 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 6850 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 6851 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 6852 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 6853 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 6854 | struct memblock_region *r; |
b2f3eebe TC |
6855 | |
6856 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
6857 | find_usable_zone_for_movable(); | |
6858 | ||
6859 | /* | |
6860 | * If movable_node is specified, ignore kernelcore and movablecore | |
6861 | * options. | |
6862 | */ | |
6863 | if (movable_node_is_enabled()) { | |
136199f0 EM |
6864 | for_each_memblock(memory, r) { |
6865 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
6866 | continue; |
6867 | ||
136199f0 | 6868 | nid = r->nid; |
b2f3eebe | 6869 | |
136199f0 | 6870 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
6871 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
6872 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6873 | usable_startpfn; | |
6874 | } | |
6875 | ||
6876 | goto out2; | |
6877 | } | |
2a1e274a | 6878 | |
342332e6 TI |
6879 | /* |
6880 | * If kernelcore=mirror is specified, ignore movablecore option | |
6881 | */ | |
6882 | if (mirrored_kernelcore) { | |
6883 | bool mem_below_4gb_not_mirrored = false; | |
6884 | ||
6885 | for_each_memblock(memory, r) { | |
6886 | if (memblock_is_mirror(r)) | |
6887 | continue; | |
6888 | ||
6889 | nid = r->nid; | |
6890 | ||
6891 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
6892 | ||
6893 | if (usable_startpfn < 0x100000) { | |
6894 | mem_below_4gb_not_mirrored = true; | |
6895 | continue; | |
6896 | } | |
6897 | ||
6898 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
6899 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6900 | usable_startpfn; | |
6901 | } | |
6902 | ||
6903 | if (mem_below_4gb_not_mirrored) | |
6904 | pr_warn("This configuration results in unmirrored kernel memory."); | |
6905 | ||
6906 | goto out2; | |
6907 | } | |
6908 | ||
7e63efef | 6909 | /* |
a5c6d650 DR |
6910 | * If kernelcore=nn% or movablecore=nn% was specified, calculate the |
6911 | * amount of necessary memory. | |
6912 | */ | |
6913 | if (required_kernelcore_percent) | |
6914 | required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | |
6915 | 10000UL; | |
6916 | if (required_movablecore_percent) | |
6917 | required_movablecore = (totalpages * 100 * required_movablecore_percent) / | |
6918 | 10000UL; | |
6919 | ||
6920 | /* | |
6921 | * If movablecore= was specified, calculate what size of | |
7e63efef MG |
6922 | * kernelcore that corresponds so that memory usable for |
6923 | * any allocation type is evenly spread. If both kernelcore | |
6924 | * and movablecore are specified, then the value of kernelcore | |
6925 | * will be used for required_kernelcore if it's greater than | |
6926 | * what movablecore would have allowed. | |
6927 | */ | |
6928 | if (required_movablecore) { | |
7e63efef MG |
6929 | unsigned long corepages; |
6930 | ||
6931 | /* | |
6932 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
6933 | * was requested by the user | |
6934 | */ | |
6935 | required_movablecore = | |
6936 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
9fd745d4 | 6937 | required_movablecore = min(totalpages, required_movablecore); |
7e63efef MG |
6938 | corepages = totalpages - required_movablecore; |
6939 | ||
6940 | required_kernelcore = max(required_kernelcore, corepages); | |
6941 | } | |
6942 | ||
bde304bd XQ |
6943 | /* |
6944 | * If kernelcore was not specified or kernelcore size is larger | |
6945 | * than totalpages, there is no ZONE_MOVABLE. | |
6946 | */ | |
6947 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
66918dcd | 6948 | goto out; |
2a1e274a MG |
6949 | |
6950 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
6951 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
6952 | ||
6953 | restart: | |
6954 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
6955 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 6956 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
6957 | unsigned long start_pfn, end_pfn; |
6958 | ||
2a1e274a MG |
6959 | /* |
6960 | * Recalculate kernelcore_node if the division per node | |
6961 | * now exceeds what is necessary to satisfy the requested | |
6962 | * amount of memory for the kernel | |
6963 | */ | |
6964 | if (required_kernelcore < kernelcore_node) | |
6965 | kernelcore_node = required_kernelcore / usable_nodes; | |
6966 | ||
6967 | /* | |
6968 | * As the map is walked, we track how much memory is usable | |
6969 | * by the kernel using kernelcore_remaining. When it is | |
6970 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
6971 | */ | |
6972 | kernelcore_remaining = kernelcore_node; | |
6973 | ||
6974 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 6975 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
6976 | unsigned long size_pages; |
6977 | ||
c13291a5 | 6978 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
6979 | if (start_pfn >= end_pfn) |
6980 | continue; | |
6981 | ||
6982 | /* Account for what is only usable for kernelcore */ | |
6983 | if (start_pfn < usable_startpfn) { | |
6984 | unsigned long kernel_pages; | |
6985 | kernel_pages = min(end_pfn, usable_startpfn) | |
6986 | - start_pfn; | |
6987 | ||
6988 | kernelcore_remaining -= min(kernel_pages, | |
6989 | kernelcore_remaining); | |
6990 | required_kernelcore -= min(kernel_pages, | |
6991 | required_kernelcore); | |
6992 | ||
6993 | /* Continue if range is now fully accounted */ | |
6994 | if (end_pfn <= usable_startpfn) { | |
6995 | ||
6996 | /* | |
6997 | * Push zone_movable_pfn to the end so | |
6998 | * that if we have to rebalance | |
6999 | * kernelcore across nodes, we will | |
7000 | * not double account here | |
7001 | */ | |
7002 | zone_movable_pfn[nid] = end_pfn; | |
7003 | continue; | |
7004 | } | |
7005 | start_pfn = usable_startpfn; | |
7006 | } | |
7007 | ||
7008 | /* | |
7009 | * The usable PFN range for ZONE_MOVABLE is from | |
7010 | * start_pfn->end_pfn. Calculate size_pages as the | |
7011 | * number of pages used as kernelcore | |
7012 | */ | |
7013 | size_pages = end_pfn - start_pfn; | |
7014 | if (size_pages > kernelcore_remaining) | |
7015 | size_pages = kernelcore_remaining; | |
7016 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
7017 | ||
7018 | /* | |
7019 | * Some kernelcore has been met, update counts and | |
7020 | * break if the kernelcore for this node has been | |
b8af2941 | 7021 | * satisfied |
2a1e274a MG |
7022 | */ |
7023 | required_kernelcore -= min(required_kernelcore, | |
7024 | size_pages); | |
7025 | kernelcore_remaining -= size_pages; | |
7026 | if (!kernelcore_remaining) | |
7027 | break; | |
7028 | } | |
7029 | } | |
7030 | ||
7031 | /* | |
7032 | * If there is still required_kernelcore, we do another pass with one | |
7033 | * less node in the count. This will push zone_movable_pfn[nid] further | |
7034 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 7035 | * satisfied |
2a1e274a MG |
7036 | */ |
7037 | usable_nodes--; | |
7038 | if (usable_nodes && required_kernelcore > usable_nodes) | |
7039 | goto restart; | |
7040 | ||
b2f3eebe | 7041 | out2: |
2a1e274a MG |
7042 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
7043 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
7044 | zone_movable_pfn[nid] = | |
7045 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 7046 | |
20e6926d | 7047 | out: |
66918dcd | 7048 | /* restore the node_state */ |
4b0ef1fe | 7049 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
7050 | } |
7051 | ||
4b0ef1fe LJ |
7052 | /* Any regular or high memory on that node ? */ |
7053 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 7054 | { |
37b07e41 LS |
7055 | enum zone_type zone_type; |
7056 | ||
4b0ef1fe | 7057 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { |
37b07e41 | 7058 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 7059 | if (populated_zone(zone)) { |
7b0e0c0e OS |
7060 | if (IS_ENABLED(CONFIG_HIGHMEM)) |
7061 | node_set_state(nid, N_HIGH_MEMORY); | |
7062 | if (zone_type <= ZONE_NORMAL) | |
4b0ef1fe | 7063 | node_set_state(nid, N_NORMAL_MEMORY); |
d0048b0e BL |
7064 | break; |
7065 | } | |
37b07e41 | 7066 | } |
37b07e41 LS |
7067 | } |
7068 | ||
c713216d MG |
7069 | /** |
7070 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 7071 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
7072 | * |
7073 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 7074 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
7075 | * zone in each node and their holes is calculated. If the maximum PFN |
7076 | * between two adjacent zones match, it is assumed that the zone is empty. | |
7077 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
7078 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
7079 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
7080 | * at arch_max_dma_pfn. | |
7081 | */ | |
7082 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
7083 | { | |
c13291a5 TH |
7084 | unsigned long start_pfn, end_pfn; |
7085 | int i, nid; | |
a6af2bc3 | 7086 | |
c713216d MG |
7087 | /* Record where the zone boundaries are */ |
7088 | memset(arch_zone_lowest_possible_pfn, 0, | |
7089 | sizeof(arch_zone_lowest_possible_pfn)); | |
7090 | memset(arch_zone_highest_possible_pfn, 0, | |
7091 | sizeof(arch_zone_highest_possible_pfn)); | |
90cae1fe OH |
7092 | |
7093 | start_pfn = find_min_pfn_with_active_regions(); | |
7094 | ||
7095 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
7096 | if (i == ZONE_MOVABLE) |
7097 | continue; | |
90cae1fe OH |
7098 | |
7099 | end_pfn = max(max_zone_pfn[i], start_pfn); | |
7100 | arch_zone_lowest_possible_pfn[i] = start_pfn; | |
7101 | arch_zone_highest_possible_pfn[i] = end_pfn; | |
7102 | ||
7103 | start_pfn = end_pfn; | |
c713216d | 7104 | } |
2a1e274a MG |
7105 | |
7106 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
7107 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 7108 | find_zone_movable_pfns_for_nodes(); |
c713216d | 7109 | |
c713216d | 7110 | /* Print out the zone ranges */ |
f88dfff5 | 7111 | pr_info("Zone ranges:\n"); |
2a1e274a MG |
7112 | for (i = 0; i < MAX_NR_ZONES; i++) { |
7113 | if (i == ZONE_MOVABLE) | |
7114 | continue; | |
f88dfff5 | 7115 | pr_info(" %-8s ", zone_names[i]); |
72f0ba02 DR |
7116 | if (arch_zone_lowest_possible_pfn[i] == |
7117 | arch_zone_highest_possible_pfn[i]) | |
f88dfff5 | 7118 | pr_cont("empty\n"); |
72f0ba02 | 7119 | else |
8d29e18a JG |
7120 | pr_cont("[mem %#018Lx-%#018Lx]\n", |
7121 | (u64)arch_zone_lowest_possible_pfn[i] | |
7122 | << PAGE_SHIFT, | |
7123 | ((u64)arch_zone_highest_possible_pfn[i] | |
a62e2f4f | 7124 | << PAGE_SHIFT) - 1); |
2a1e274a MG |
7125 | } |
7126 | ||
7127 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
f88dfff5 | 7128 | pr_info("Movable zone start for each node\n"); |
2a1e274a MG |
7129 | for (i = 0; i < MAX_NUMNODES; i++) { |
7130 | if (zone_movable_pfn[i]) | |
8d29e18a JG |
7131 | pr_info(" Node %d: %#018Lx\n", i, |
7132 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 7133 | } |
c713216d | 7134 | |
f2d52fe5 | 7135 | /* Print out the early node map */ |
f88dfff5 | 7136 | pr_info("Early memory node ranges\n"); |
c13291a5 | 7137 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
8d29e18a JG |
7138 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
7139 | (u64)start_pfn << PAGE_SHIFT, | |
7140 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
7141 | |
7142 | /* Initialise every node */ | |
708614e6 | 7143 | mminit_verify_pageflags_layout(); |
8ef82866 | 7144 | setup_nr_node_ids(); |
e181ae0c | 7145 | zero_resv_unavail(); |
c713216d MG |
7146 | for_each_online_node(nid) { |
7147 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 7148 | free_area_init_node(nid, NULL, |
c713216d | 7149 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
7150 | |
7151 | /* Any memory on that node */ | |
7152 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
7153 | node_set_state(nid, N_MEMORY); |
7154 | check_for_memory(pgdat, nid); | |
c713216d MG |
7155 | } |
7156 | } | |
2a1e274a | 7157 | |
a5c6d650 DR |
7158 | static int __init cmdline_parse_core(char *p, unsigned long *core, |
7159 | unsigned long *percent) | |
2a1e274a MG |
7160 | { |
7161 | unsigned long long coremem; | |
a5c6d650 DR |
7162 | char *endptr; |
7163 | ||
2a1e274a MG |
7164 | if (!p) |
7165 | return -EINVAL; | |
7166 | ||
a5c6d650 DR |
7167 | /* Value may be a percentage of total memory, otherwise bytes */ |
7168 | coremem = simple_strtoull(p, &endptr, 0); | |
7169 | if (*endptr == '%') { | |
7170 | /* Paranoid check for percent values greater than 100 */ | |
7171 | WARN_ON(coremem > 100); | |
2a1e274a | 7172 | |
a5c6d650 DR |
7173 | *percent = coremem; |
7174 | } else { | |
7175 | coremem = memparse(p, &p); | |
7176 | /* Paranoid check that UL is enough for the coremem value */ | |
7177 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | |
2a1e274a | 7178 | |
a5c6d650 DR |
7179 | *core = coremem >> PAGE_SHIFT; |
7180 | *percent = 0UL; | |
7181 | } | |
2a1e274a MG |
7182 | return 0; |
7183 | } | |
ed7ed365 | 7184 | |
7e63efef MG |
7185 | /* |
7186 | * kernelcore=size sets the amount of memory for use for allocations that | |
7187 | * cannot be reclaimed or migrated. | |
7188 | */ | |
7189 | static int __init cmdline_parse_kernelcore(char *p) | |
7190 | { | |
342332e6 TI |
7191 | /* parse kernelcore=mirror */ |
7192 | if (parse_option_str(p, "mirror")) { | |
7193 | mirrored_kernelcore = true; | |
7194 | return 0; | |
7195 | } | |
7196 | ||
a5c6d650 DR |
7197 | return cmdline_parse_core(p, &required_kernelcore, |
7198 | &required_kernelcore_percent); | |
7e63efef MG |
7199 | } |
7200 | ||
7201 | /* | |
7202 | * movablecore=size sets the amount of memory for use for allocations that | |
7203 | * can be reclaimed or migrated. | |
7204 | */ | |
7205 | static int __init cmdline_parse_movablecore(char *p) | |
7206 | { | |
a5c6d650 DR |
7207 | return cmdline_parse_core(p, &required_movablecore, |
7208 | &required_movablecore_percent); | |
7e63efef MG |
7209 | } |
7210 | ||
ed7ed365 | 7211 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 7212 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 7213 | |
0ee332c1 | 7214 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 7215 | |
c3d5f5f0 JL |
7216 | void adjust_managed_page_count(struct page *page, long count) |
7217 | { | |
9705bea5 | 7218 | atomic_long_add(count, &page_zone(page)->managed_pages); |
ca79b0c2 | 7219 | totalram_pages_add(count); |
3dcc0571 JL |
7220 | #ifdef CONFIG_HIGHMEM |
7221 | if (PageHighMem(page)) | |
ca79b0c2 | 7222 | totalhigh_pages_add(count); |
3dcc0571 | 7223 | #endif |
c3d5f5f0 | 7224 | } |
3dcc0571 | 7225 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 7226 | |
e5cb113f | 7227 | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) |
69afade7 | 7228 | { |
11199692 JL |
7229 | void *pos; |
7230 | unsigned long pages = 0; | |
69afade7 | 7231 | |
11199692 JL |
7232 | start = (void *)PAGE_ALIGN((unsigned long)start); |
7233 | end = (void *)((unsigned long)end & PAGE_MASK); | |
7234 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
0d834328 DH |
7235 | struct page *page = virt_to_page(pos); |
7236 | void *direct_map_addr; | |
7237 | ||
7238 | /* | |
7239 | * 'direct_map_addr' might be different from 'pos' | |
7240 | * because some architectures' virt_to_page() | |
7241 | * work with aliases. Getting the direct map | |
7242 | * address ensures that we get a _writeable_ | |
7243 | * alias for the memset(). | |
7244 | */ | |
7245 | direct_map_addr = page_address(page); | |
dbe67df4 | 7246 | if ((unsigned int)poison <= 0xFF) |
0d834328 DH |
7247 | memset(direct_map_addr, poison, PAGE_SIZE); |
7248 | ||
7249 | free_reserved_page(page); | |
69afade7 JL |
7250 | } |
7251 | ||
7252 | if (pages && s) | |
adb1fe9a JP |
7253 | pr_info("Freeing %s memory: %ldK\n", |
7254 | s, pages << (PAGE_SHIFT - 10)); | |
69afade7 JL |
7255 | |
7256 | return pages; | |
7257 | } | |
11199692 | 7258 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 7259 | |
cfa11e08 JL |
7260 | #ifdef CONFIG_HIGHMEM |
7261 | void free_highmem_page(struct page *page) | |
7262 | { | |
7263 | __free_reserved_page(page); | |
ca79b0c2 | 7264 | totalram_pages_inc(); |
9705bea5 | 7265 | atomic_long_inc(&page_zone(page)->managed_pages); |
ca79b0c2 | 7266 | totalhigh_pages_inc(); |
cfa11e08 JL |
7267 | } |
7268 | #endif | |
7269 | ||
7ee3d4e8 JL |
7270 | |
7271 | void __init mem_init_print_info(const char *str) | |
7272 | { | |
7273 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
7274 | unsigned long init_code_size, init_data_size; | |
7275 | ||
7276 | physpages = get_num_physpages(); | |
7277 | codesize = _etext - _stext; | |
7278 | datasize = _edata - _sdata; | |
7279 | rosize = __end_rodata - __start_rodata; | |
7280 | bss_size = __bss_stop - __bss_start; | |
7281 | init_data_size = __init_end - __init_begin; | |
7282 | init_code_size = _einittext - _sinittext; | |
7283 | ||
7284 | /* | |
7285 | * Detect special cases and adjust section sizes accordingly: | |
7286 | * 1) .init.* may be embedded into .data sections | |
7287 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
7288 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
7289 | * 3) .rodata.* may be embedded into .text or .data sections. | |
7290 | */ | |
7291 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
7292 | do { \ |
7293 | if (start <= pos && pos < end && size > adj) \ | |
7294 | size -= adj; \ | |
7295 | } while (0) | |
7ee3d4e8 JL |
7296 | |
7297 | adj_init_size(__init_begin, __init_end, init_data_size, | |
7298 | _sinittext, init_code_size); | |
7299 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
7300 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
7301 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
7302 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
7303 | ||
7304 | #undef adj_init_size | |
7305 | ||
756a025f | 7306 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" |
7ee3d4e8 | 7307 | #ifdef CONFIG_HIGHMEM |
756a025f | 7308 | ", %luK highmem" |
7ee3d4e8 | 7309 | #endif |
756a025f JP |
7310 | "%s%s)\n", |
7311 | nr_free_pages() << (PAGE_SHIFT - 10), | |
7312 | physpages << (PAGE_SHIFT - 10), | |
7313 | codesize >> 10, datasize >> 10, rosize >> 10, | |
7314 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
ca79b0c2 | 7315 | (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), |
756a025f | 7316 | totalcma_pages << (PAGE_SHIFT - 10), |
7ee3d4e8 | 7317 | #ifdef CONFIG_HIGHMEM |
ca79b0c2 | 7318 | totalhigh_pages() << (PAGE_SHIFT - 10), |
7ee3d4e8 | 7319 | #endif |
756a025f | 7320 | str ? ", " : "", str ? str : ""); |
7ee3d4e8 JL |
7321 | } |
7322 | ||
0e0b864e | 7323 | /** |
88ca3b94 RD |
7324 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
7325 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e | 7326 | * |
013110a7 | 7327 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
0e0b864e MG |
7328 | * In the DMA zone, a significant percentage may be consumed by kernel image |
7329 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
7330 | * function may optionally be used to account for unfreeable pages in the |
7331 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
7332 | * smaller per-cpu batchsize. | |
0e0b864e MG |
7333 | */ |
7334 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
7335 | { | |
7336 | dma_reserve = new_dma_reserve; | |
7337 | } | |
7338 | ||
1da177e4 LT |
7339 | void __init free_area_init(unsigned long *zones_size) |
7340 | { | |
e181ae0c | 7341 | zero_resv_unavail(); |
9109fb7b | 7342 | free_area_init_node(0, zones_size, |
1da177e4 LT |
7343 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
7344 | } | |
1da177e4 | 7345 | |
005fd4bb | 7346 | static int page_alloc_cpu_dead(unsigned int cpu) |
1da177e4 | 7347 | { |
1da177e4 | 7348 | |
005fd4bb SAS |
7349 | lru_add_drain_cpu(cpu); |
7350 | drain_pages(cpu); | |
9f8f2172 | 7351 | |
005fd4bb SAS |
7352 | /* |
7353 | * Spill the event counters of the dead processor | |
7354 | * into the current processors event counters. | |
7355 | * This artificially elevates the count of the current | |
7356 | * processor. | |
7357 | */ | |
7358 | vm_events_fold_cpu(cpu); | |
9f8f2172 | 7359 | |
005fd4bb SAS |
7360 | /* |
7361 | * Zero the differential counters of the dead processor | |
7362 | * so that the vm statistics are consistent. | |
7363 | * | |
7364 | * This is only okay since the processor is dead and cannot | |
7365 | * race with what we are doing. | |
7366 | */ | |
7367 | cpu_vm_stats_fold(cpu); | |
7368 | return 0; | |
1da177e4 | 7369 | } |
1da177e4 LT |
7370 | |
7371 | void __init page_alloc_init(void) | |
7372 | { | |
005fd4bb SAS |
7373 | int ret; |
7374 | ||
7375 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, | |
7376 | "mm/page_alloc:dead", NULL, | |
7377 | page_alloc_cpu_dead); | |
7378 | WARN_ON(ret < 0); | |
1da177e4 LT |
7379 | } |
7380 | ||
cb45b0e9 | 7381 | /* |
34b10060 | 7382 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
7383 | * or min_free_kbytes changes. |
7384 | */ | |
7385 | static void calculate_totalreserve_pages(void) | |
7386 | { | |
7387 | struct pglist_data *pgdat; | |
7388 | unsigned long reserve_pages = 0; | |
2f6726e5 | 7389 | enum zone_type i, j; |
cb45b0e9 HA |
7390 | |
7391 | for_each_online_pgdat(pgdat) { | |
281e3726 MG |
7392 | |
7393 | pgdat->totalreserve_pages = 0; | |
7394 | ||
cb45b0e9 HA |
7395 | for (i = 0; i < MAX_NR_ZONES; i++) { |
7396 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 7397 | long max = 0; |
9705bea5 | 7398 | unsigned long managed_pages = zone_managed_pages(zone); |
cb45b0e9 HA |
7399 | |
7400 | /* Find valid and maximum lowmem_reserve in the zone */ | |
7401 | for (j = i; j < MAX_NR_ZONES; j++) { | |
7402 | if (zone->lowmem_reserve[j] > max) | |
7403 | max = zone->lowmem_reserve[j]; | |
7404 | } | |
7405 | ||
41858966 MG |
7406 | /* we treat the high watermark as reserved pages. */ |
7407 | max += high_wmark_pages(zone); | |
cb45b0e9 | 7408 | |
3d6357de AK |
7409 | if (max > managed_pages) |
7410 | max = managed_pages; | |
a8d01437 | 7411 | |
281e3726 | 7412 | pgdat->totalreserve_pages += max; |
a8d01437 | 7413 | |
cb45b0e9 HA |
7414 | reserve_pages += max; |
7415 | } | |
7416 | } | |
7417 | totalreserve_pages = reserve_pages; | |
7418 | } | |
7419 | ||
1da177e4 LT |
7420 | /* |
7421 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 7422 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
7423 | * has a correct pages reserved value, so an adequate number of |
7424 | * pages are left in the zone after a successful __alloc_pages(). | |
7425 | */ | |
7426 | static void setup_per_zone_lowmem_reserve(void) | |
7427 | { | |
7428 | struct pglist_data *pgdat; | |
2f6726e5 | 7429 | enum zone_type j, idx; |
1da177e4 | 7430 | |
ec936fc5 | 7431 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
7432 | for (j = 0; j < MAX_NR_ZONES; j++) { |
7433 | struct zone *zone = pgdat->node_zones + j; | |
9705bea5 | 7434 | unsigned long managed_pages = zone_managed_pages(zone); |
1da177e4 LT |
7435 | |
7436 | zone->lowmem_reserve[j] = 0; | |
7437 | ||
2f6726e5 CL |
7438 | idx = j; |
7439 | while (idx) { | |
1da177e4 LT |
7440 | struct zone *lower_zone; |
7441 | ||
2f6726e5 | 7442 | idx--; |
1da177e4 | 7443 | lower_zone = pgdat->node_zones + idx; |
d3cda233 JK |
7444 | |
7445 | if (sysctl_lowmem_reserve_ratio[idx] < 1) { | |
7446 | sysctl_lowmem_reserve_ratio[idx] = 0; | |
7447 | lower_zone->lowmem_reserve[j] = 0; | |
7448 | } else { | |
7449 | lower_zone->lowmem_reserve[j] = | |
7450 | managed_pages / sysctl_lowmem_reserve_ratio[idx]; | |
7451 | } | |
9705bea5 | 7452 | managed_pages += zone_managed_pages(lower_zone); |
1da177e4 LT |
7453 | } |
7454 | } | |
7455 | } | |
cb45b0e9 HA |
7456 | |
7457 | /* update totalreserve_pages */ | |
7458 | calculate_totalreserve_pages(); | |
1da177e4 LT |
7459 | } |
7460 | ||
cfd3da1e | 7461 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
7462 | { |
7463 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
7464 | unsigned long lowmem_pages = 0; | |
7465 | struct zone *zone; | |
7466 | unsigned long flags; | |
7467 | ||
7468 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
7469 | for_each_zone(zone) { | |
7470 | if (!is_highmem(zone)) | |
9705bea5 | 7471 | lowmem_pages += zone_managed_pages(zone); |
1da177e4 LT |
7472 | } |
7473 | ||
7474 | for_each_zone(zone) { | |
ac924c60 AM |
7475 | u64 tmp; |
7476 | ||
1125b4e3 | 7477 | spin_lock_irqsave(&zone->lock, flags); |
9705bea5 | 7478 | tmp = (u64)pages_min * zone_managed_pages(zone); |
ac924c60 | 7479 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
7480 | if (is_highmem(zone)) { |
7481 | /* | |
669ed175 NP |
7482 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
7483 | * need highmem pages, so cap pages_min to a small | |
7484 | * value here. | |
7485 | * | |
41858966 | 7486 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
42ff2703 | 7487 | * deltas control asynch page reclaim, and so should |
669ed175 | 7488 | * not be capped for highmem. |
1da177e4 | 7489 | */ |
90ae8d67 | 7490 | unsigned long min_pages; |
1da177e4 | 7491 | |
9705bea5 | 7492 | min_pages = zone_managed_pages(zone) / 1024; |
90ae8d67 | 7493 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
a9214443 | 7494 | zone->_watermark[WMARK_MIN] = min_pages; |
1da177e4 | 7495 | } else { |
669ed175 NP |
7496 | /* |
7497 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
7498 | * proportionate to the zone's size. |
7499 | */ | |
a9214443 | 7500 | zone->_watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
7501 | } |
7502 | ||
795ae7a0 JW |
7503 | /* |
7504 | * Set the kswapd watermarks distance according to the | |
7505 | * scale factor in proportion to available memory, but | |
7506 | * ensure a minimum size on small systems. | |
7507 | */ | |
7508 | tmp = max_t(u64, tmp >> 2, | |
9705bea5 | 7509 | mult_frac(zone_managed_pages(zone), |
795ae7a0 JW |
7510 | watermark_scale_factor, 10000)); |
7511 | ||
a9214443 MG |
7512 | zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; |
7513 | zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; | |
1c30844d | 7514 | zone->watermark_boost = 0; |
49f223a9 | 7515 | |
1125b4e3 | 7516 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 7517 | } |
cb45b0e9 HA |
7518 | |
7519 | /* update totalreserve_pages */ | |
7520 | calculate_totalreserve_pages(); | |
1da177e4 LT |
7521 | } |
7522 | ||
cfd3da1e MG |
7523 | /** |
7524 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
7525 | * or when memory is hot-{added|removed} | |
7526 | * | |
7527 | * Ensures that the watermark[min,low,high] values for each zone are set | |
7528 | * correctly with respect to min_free_kbytes. | |
7529 | */ | |
7530 | void setup_per_zone_wmarks(void) | |
7531 | { | |
b93e0f32 MH |
7532 | static DEFINE_SPINLOCK(lock); |
7533 | ||
7534 | spin_lock(&lock); | |
cfd3da1e | 7535 | __setup_per_zone_wmarks(); |
b93e0f32 | 7536 | spin_unlock(&lock); |
cfd3da1e MG |
7537 | } |
7538 | ||
1da177e4 LT |
7539 | /* |
7540 | * Initialise min_free_kbytes. | |
7541 | * | |
7542 | * For small machines we want it small (128k min). For large machines | |
7543 | * we want it large (64MB max). But it is not linear, because network | |
7544 | * bandwidth does not increase linearly with machine size. We use | |
7545 | * | |
b8af2941 | 7546 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
7547 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
7548 | * | |
7549 | * which yields | |
7550 | * | |
7551 | * 16MB: 512k | |
7552 | * 32MB: 724k | |
7553 | * 64MB: 1024k | |
7554 | * 128MB: 1448k | |
7555 | * 256MB: 2048k | |
7556 | * 512MB: 2896k | |
7557 | * 1024MB: 4096k | |
7558 | * 2048MB: 5792k | |
7559 | * 4096MB: 8192k | |
7560 | * 8192MB: 11584k | |
7561 | * 16384MB: 16384k | |
7562 | */ | |
1b79acc9 | 7563 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
7564 | { |
7565 | unsigned long lowmem_kbytes; | |
5f12733e | 7566 | int new_min_free_kbytes; |
1da177e4 LT |
7567 | |
7568 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
7569 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
7570 | ||
7571 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
7572 | min_free_kbytes = new_min_free_kbytes; | |
7573 | if (min_free_kbytes < 128) | |
7574 | min_free_kbytes = 128; | |
7575 | if (min_free_kbytes > 65536) | |
7576 | min_free_kbytes = 65536; | |
7577 | } else { | |
7578 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
7579 | new_min_free_kbytes, user_min_free_kbytes); | |
7580 | } | |
bc75d33f | 7581 | setup_per_zone_wmarks(); |
a6cccdc3 | 7582 | refresh_zone_stat_thresholds(); |
1da177e4 | 7583 | setup_per_zone_lowmem_reserve(); |
6423aa81 JK |
7584 | |
7585 | #ifdef CONFIG_NUMA | |
7586 | setup_min_unmapped_ratio(); | |
7587 | setup_min_slab_ratio(); | |
7588 | #endif | |
7589 | ||
1da177e4 LT |
7590 | return 0; |
7591 | } | |
bc22af74 | 7592 | core_initcall(init_per_zone_wmark_min) |
1da177e4 LT |
7593 | |
7594 | /* | |
b8af2941 | 7595 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
7596 | * that we can call two helper functions whenever min_free_kbytes |
7597 | * changes. | |
7598 | */ | |
cccad5b9 | 7599 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7600 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 7601 | { |
da8c757b HP |
7602 | int rc; |
7603 | ||
7604 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7605 | if (rc) | |
7606 | return rc; | |
7607 | ||
5f12733e MH |
7608 | if (write) { |
7609 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 7610 | setup_per_zone_wmarks(); |
5f12733e | 7611 | } |
1da177e4 LT |
7612 | return 0; |
7613 | } | |
7614 | ||
1c30844d MG |
7615 | int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, |
7616 | void __user *buffer, size_t *length, loff_t *ppos) | |
7617 | { | |
7618 | int rc; | |
7619 | ||
7620 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7621 | if (rc) | |
7622 | return rc; | |
7623 | ||
7624 | return 0; | |
7625 | } | |
7626 | ||
795ae7a0 JW |
7627 | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
7628 | void __user *buffer, size_t *length, loff_t *ppos) | |
7629 | { | |
7630 | int rc; | |
7631 | ||
7632 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7633 | if (rc) | |
7634 | return rc; | |
7635 | ||
7636 | if (write) | |
7637 | setup_per_zone_wmarks(); | |
7638 | ||
7639 | return 0; | |
7640 | } | |
7641 | ||
9614634f | 7642 | #ifdef CONFIG_NUMA |
6423aa81 | 7643 | static void setup_min_unmapped_ratio(void) |
9614634f | 7644 | { |
6423aa81 | 7645 | pg_data_t *pgdat; |
9614634f | 7646 | struct zone *zone; |
9614634f | 7647 | |
a5f5f91d | 7648 | for_each_online_pgdat(pgdat) |
81cbcbc2 | 7649 | pgdat->min_unmapped_pages = 0; |
a5f5f91d | 7650 | |
9614634f | 7651 | for_each_zone(zone) |
9705bea5 AK |
7652 | zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * |
7653 | sysctl_min_unmapped_ratio) / 100; | |
9614634f | 7654 | } |
0ff38490 | 7655 | |
6423aa81 JK |
7656 | |
7657 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | |
8d65af78 | 7658 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 | 7659 | { |
0ff38490 CL |
7660 | int rc; |
7661 | ||
8d65af78 | 7662 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
7663 | if (rc) |
7664 | return rc; | |
7665 | ||
6423aa81 JK |
7666 | setup_min_unmapped_ratio(); |
7667 | ||
7668 | return 0; | |
7669 | } | |
7670 | ||
7671 | static void setup_min_slab_ratio(void) | |
7672 | { | |
7673 | pg_data_t *pgdat; | |
7674 | struct zone *zone; | |
7675 | ||
a5f5f91d MG |
7676 | for_each_online_pgdat(pgdat) |
7677 | pgdat->min_slab_pages = 0; | |
7678 | ||
0ff38490 | 7679 | for_each_zone(zone) |
9705bea5 AK |
7680 | zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * |
7681 | sysctl_min_slab_ratio) / 100; | |
6423aa81 JK |
7682 | } |
7683 | ||
7684 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | |
7685 | void __user *buffer, size_t *length, loff_t *ppos) | |
7686 | { | |
7687 | int rc; | |
7688 | ||
7689 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
7690 | if (rc) | |
7691 | return rc; | |
7692 | ||
7693 | setup_min_slab_ratio(); | |
7694 | ||
0ff38490 CL |
7695 | return 0; |
7696 | } | |
9614634f CL |
7697 | #endif |
7698 | ||
1da177e4 LT |
7699 | /* |
7700 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
7701 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
7702 | * whenever sysctl_lowmem_reserve_ratio changes. | |
7703 | * | |
7704 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 7705 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
7706 | * if in function of the boot time zone sizes. |
7707 | */ | |
cccad5b9 | 7708 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7709 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 7710 | { |
8d65af78 | 7711 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
7712 | setup_per_zone_lowmem_reserve(); |
7713 | return 0; | |
7714 | } | |
7715 | ||
8ad4b1fb RS |
7716 | /* |
7717 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
7718 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
7719 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 7720 | */ |
cccad5b9 | 7721 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 7722 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
7723 | { |
7724 | struct zone *zone; | |
7cd2b0a3 | 7725 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
7726 | int ret; |
7727 | ||
7cd2b0a3 DR |
7728 | mutex_lock(&pcp_batch_high_lock); |
7729 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
7730 | ||
8d65af78 | 7731 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
7732 | if (!write || ret < 0) |
7733 | goto out; | |
7734 | ||
7735 | /* Sanity checking to avoid pcp imbalance */ | |
7736 | if (percpu_pagelist_fraction && | |
7737 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
7738 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
7739 | ret = -EINVAL; | |
7740 | goto out; | |
7741 | } | |
7742 | ||
7743 | /* No change? */ | |
7744 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
7745 | goto out; | |
c8e251fa | 7746 | |
364df0eb | 7747 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
7748 | unsigned int cpu; |
7749 | ||
22a7f12b | 7750 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
7751 | pageset_set_high_and_batch(zone, |
7752 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 7753 | } |
7cd2b0a3 | 7754 | out: |
c8e251fa | 7755 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 7756 | return ret; |
8ad4b1fb RS |
7757 | } |
7758 | ||
a9919c79 | 7759 | #ifdef CONFIG_NUMA |
f034b5d4 | 7760 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 | 7761 | |
1da177e4 LT |
7762 | static int __init set_hashdist(char *str) |
7763 | { | |
7764 | if (!str) | |
7765 | return 0; | |
7766 | hashdist = simple_strtoul(str, &str, 0); | |
7767 | return 1; | |
7768 | } | |
7769 | __setup("hashdist=", set_hashdist); | |
7770 | #endif | |
7771 | ||
f6f34b43 SD |
7772 | #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES |
7773 | /* | |
7774 | * Returns the number of pages that arch has reserved but | |
7775 | * is not known to alloc_large_system_hash(). | |
7776 | */ | |
7777 | static unsigned long __init arch_reserved_kernel_pages(void) | |
7778 | { | |
7779 | return 0; | |
7780 | } | |
7781 | #endif | |
7782 | ||
9017217b PT |
7783 | /* |
7784 | * Adaptive scale is meant to reduce sizes of hash tables on large memory | |
7785 | * machines. As memory size is increased the scale is also increased but at | |
7786 | * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory | |
7787 | * quadruples the scale is increased by one, which means the size of hash table | |
7788 | * only doubles, instead of quadrupling as well. | |
7789 | * Because 32-bit systems cannot have large physical memory, where this scaling | |
7790 | * makes sense, it is disabled on such platforms. | |
7791 | */ | |
7792 | #if __BITS_PER_LONG > 32 | |
7793 | #define ADAPT_SCALE_BASE (64ul << 30) | |
7794 | #define ADAPT_SCALE_SHIFT 2 | |
7795 | #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) | |
7796 | #endif | |
7797 | ||
1da177e4 LT |
7798 | /* |
7799 | * allocate a large system hash table from bootmem | |
7800 | * - it is assumed that the hash table must contain an exact power-of-2 | |
7801 | * quantity of entries | |
7802 | * - limit is the number of hash buckets, not the total allocation size | |
7803 | */ | |
7804 | void *__init alloc_large_system_hash(const char *tablename, | |
7805 | unsigned long bucketsize, | |
7806 | unsigned long numentries, | |
7807 | int scale, | |
7808 | int flags, | |
7809 | unsigned int *_hash_shift, | |
7810 | unsigned int *_hash_mask, | |
31fe62b9 TB |
7811 | unsigned long low_limit, |
7812 | unsigned long high_limit) | |
1da177e4 | 7813 | { |
31fe62b9 | 7814 | unsigned long long max = high_limit; |
1da177e4 LT |
7815 | unsigned long log2qty, size; |
7816 | void *table = NULL; | |
3749a8f0 | 7817 | gfp_t gfp_flags; |
1da177e4 LT |
7818 | |
7819 | /* allow the kernel cmdline to have a say */ | |
7820 | if (!numentries) { | |
7821 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 7822 | numentries = nr_kernel_pages; |
f6f34b43 | 7823 | numentries -= arch_reserved_kernel_pages(); |
a7e83318 JZ |
7824 | |
7825 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
7826 | if (PAGE_SHIFT < 20) | |
7827 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 | 7828 | |
9017217b PT |
7829 | #if __BITS_PER_LONG > 32 |
7830 | if (!high_limit) { | |
7831 | unsigned long adapt; | |
7832 | ||
7833 | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | |
7834 | adapt <<= ADAPT_SCALE_SHIFT) | |
7835 | scale++; | |
7836 | } | |
7837 | #endif | |
7838 | ||
1da177e4 LT |
7839 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
7840 | if (scale > PAGE_SHIFT) | |
7841 | numentries >>= (scale - PAGE_SHIFT); | |
7842 | else | |
7843 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
7844 | |
7845 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
7846 | if (unlikely(flags & HASH_SMALL)) { |
7847 | /* Makes no sense without HASH_EARLY */ | |
7848 | WARN_ON(!(flags & HASH_EARLY)); | |
7849 | if (!(numentries >> *_hash_shift)) { | |
7850 | numentries = 1UL << *_hash_shift; | |
7851 | BUG_ON(!numentries); | |
7852 | } | |
7853 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 7854 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 7855 | } |
6e692ed3 | 7856 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
7857 | |
7858 | /* limit allocation size to 1/16 total memory by default */ | |
7859 | if (max == 0) { | |
7860 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
7861 | do_div(max, bucketsize); | |
7862 | } | |
074b8517 | 7863 | max = min(max, 0x80000000ULL); |
1da177e4 | 7864 | |
31fe62b9 TB |
7865 | if (numentries < low_limit) |
7866 | numentries = low_limit; | |
1da177e4 LT |
7867 | if (numentries > max) |
7868 | numentries = max; | |
7869 | ||
f0d1b0b3 | 7870 | log2qty = ilog2(numentries); |
1da177e4 | 7871 | |
3749a8f0 | 7872 | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; |
1da177e4 LT |
7873 | do { |
7874 | size = bucketsize << log2qty; | |
ea1f5f37 PT |
7875 | if (flags & HASH_EARLY) { |
7876 | if (flags & HASH_ZERO) | |
7e1c4e27 MR |
7877 | table = memblock_alloc_nopanic(size, |
7878 | SMP_CACHE_BYTES); | |
ea1f5f37 | 7879 | else |
7e1c4e27 MR |
7880 | table = memblock_alloc_raw(size, |
7881 | SMP_CACHE_BYTES); | |
ea1f5f37 | 7882 | } else if (hashdist) { |
3749a8f0 | 7883 | table = __vmalloc(size, gfp_flags, PAGE_KERNEL); |
ea1f5f37 | 7884 | } else { |
1037b83b ED |
7885 | /* |
7886 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
7887 | * some pages at the end of hash table which |
7888 | * alloc_pages_exact() automatically does | |
1037b83b | 7889 | */ |
264ef8a9 | 7890 | if (get_order(size) < MAX_ORDER) { |
3749a8f0 PT |
7891 | table = alloc_pages_exact(size, gfp_flags); |
7892 | kmemleak_alloc(table, size, 1, gfp_flags); | |
264ef8a9 | 7893 | } |
1da177e4 LT |
7894 | } |
7895 | } while (!table && size > PAGE_SIZE && --log2qty); | |
7896 | ||
7897 | if (!table) | |
7898 | panic("Failed to allocate %s hash table\n", tablename); | |
7899 | ||
1170532b JP |
7900 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", |
7901 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); | |
1da177e4 LT |
7902 | |
7903 | if (_hash_shift) | |
7904 | *_hash_shift = log2qty; | |
7905 | if (_hash_mask) | |
7906 | *_hash_mask = (1 << log2qty) - 1; | |
7907 | ||
7908 | return table; | |
7909 | } | |
a117e66e | 7910 | |
a5d76b54 | 7911 | /* |
80934513 MK |
7912 | * This function checks whether pageblock includes unmovable pages or not. |
7913 | * If @count is not zero, it is okay to include less @count unmovable pages | |
7914 | * | |
b8af2941 | 7915 | * PageLRU check without isolation or lru_lock could race so that |
0efadf48 YX |
7916 | * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable |
7917 | * check without lock_page also may miss some movable non-lru pages at | |
7918 | * race condition. So you can't expect this function should be exact. | |
a5d76b54 | 7919 | */ |
b023f468 | 7920 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
d381c547 | 7921 | int migratetype, int flags) |
49ac8255 KH |
7922 | { |
7923 | unsigned long pfn, iter, found; | |
47118af0 | 7924 | |
49ac8255 | 7925 | /* |
15c30bc0 MH |
7926 | * TODO we could make this much more efficient by not checking every |
7927 | * page in the range if we know all of them are in MOVABLE_ZONE and | |
7928 | * that the movable zone guarantees that pages are migratable but | |
7929 | * the later is not the case right now unfortunatelly. E.g. movablecore | |
7930 | * can still lead to having bootmem allocations in zone_movable. | |
49ac8255 | 7931 | */ |
49ac8255 | 7932 | |
4da2ce25 MH |
7933 | /* |
7934 | * CMA allocations (alloc_contig_range) really need to mark isolate | |
7935 | * CMA pageblocks even when they are not movable in fact so consider | |
7936 | * them movable here. | |
7937 | */ | |
7938 | if (is_migrate_cma(migratetype) && | |
7939 | is_migrate_cma(get_pageblock_migratetype(page))) | |
7940 | return false; | |
7941 | ||
49ac8255 KH |
7942 | pfn = page_to_pfn(page); |
7943 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
7944 | unsigned long check = pfn + iter; | |
7945 | ||
29723fcc | 7946 | if (!pfn_valid_within(check)) |
49ac8255 | 7947 | continue; |
29723fcc | 7948 | |
49ac8255 | 7949 | page = pfn_to_page(check); |
c8721bbb | 7950 | |
d7ab3672 | 7951 | if (PageReserved(page)) |
15c30bc0 | 7952 | goto unmovable; |
d7ab3672 | 7953 | |
9d789999 MH |
7954 | /* |
7955 | * If the zone is movable and we have ruled out all reserved | |
7956 | * pages then it should be reasonably safe to assume the rest | |
7957 | * is movable. | |
7958 | */ | |
7959 | if (zone_idx(zone) == ZONE_MOVABLE) | |
7960 | continue; | |
7961 | ||
c8721bbb NH |
7962 | /* |
7963 | * Hugepages are not in LRU lists, but they're movable. | |
7964 | * We need not scan over tail pages bacause we don't | |
7965 | * handle each tail page individually in migration. | |
7966 | */ | |
7967 | if (PageHuge(page)) { | |
17e2e7d7 OS |
7968 | struct page *head = compound_head(page); |
7969 | unsigned int skip_pages; | |
464c7ffb | 7970 | |
17e2e7d7 | 7971 | if (!hugepage_migration_supported(page_hstate(head))) |
464c7ffb AK |
7972 | goto unmovable; |
7973 | ||
17e2e7d7 OS |
7974 | skip_pages = (1 << compound_order(head)) - (page - head); |
7975 | iter += skip_pages - 1; | |
c8721bbb NH |
7976 | continue; |
7977 | } | |
7978 | ||
97d255c8 MK |
7979 | /* |
7980 | * We can't use page_count without pin a page | |
7981 | * because another CPU can free compound page. | |
7982 | * This check already skips compound tails of THP | |
0139aa7b | 7983 | * because their page->_refcount is zero at all time. |
97d255c8 | 7984 | */ |
fe896d18 | 7985 | if (!page_ref_count(page)) { |
49ac8255 KH |
7986 | if (PageBuddy(page)) |
7987 | iter += (1 << page_order(page)) - 1; | |
7988 | continue; | |
7989 | } | |
97d255c8 | 7990 | |
b023f468 WC |
7991 | /* |
7992 | * The HWPoisoned page may be not in buddy system, and | |
7993 | * page_count() is not 0. | |
7994 | */ | |
d381c547 | 7995 | if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) |
b023f468 WC |
7996 | continue; |
7997 | ||
0efadf48 YX |
7998 | if (__PageMovable(page)) |
7999 | continue; | |
8000 | ||
49ac8255 KH |
8001 | if (!PageLRU(page)) |
8002 | found++; | |
8003 | /* | |
6b4f7799 JW |
8004 | * If there are RECLAIMABLE pages, we need to check |
8005 | * it. But now, memory offline itself doesn't call | |
8006 | * shrink_node_slabs() and it still to be fixed. | |
49ac8255 KH |
8007 | */ |
8008 | /* | |
8009 | * If the page is not RAM, page_count()should be 0. | |
8010 | * we don't need more check. This is an _used_ not-movable page. | |
8011 | * | |
8012 | * The problematic thing here is PG_reserved pages. PG_reserved | |
8013 | * is set to both of a memory hole page and a _used_ kernel | |
8014 | * page at boot. | |
8015 | */ | |
8016 | if (found > count) | |
15c30bc0 | 8017 | goto unmovable; |
49ac8255 | 8018 | } |
80934513 | 8019 | return false; |
15c30bc0 MH |
8020 | unmovable: |
8021 | WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); | |
d381c547 MH |
8022 | if (flags & REPORT_FAILURE) |
8023 | dump_page(pfn_to_page(pfn+iter), "unmovable page"); | |
15c30bc0 | 8024 | return true; |
49ac8255 KH |
8025 | } |
8026 | ||
080fe206 | 8027 | #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) |
041d3a8c MN |
8028 | |
8029 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
8030 | { | |
8031 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
8032 | pageblock_nr_pages) - 1); | |
8033 | } | |
8034 | ||
8035 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
8036 | { | |
8037 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
8038 | pageblock_nr_pages)); | |
8039 | } | |
8040 | ||
041d3a8c | 8041 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
8042 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
8043 | unsigned long start, unsigned long end) | |
041d3a8c MN |
8044 | { |
8045 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 8046 | unsigned long nr_reclaimed; |
041d3a8c MN |
8047 | unsigned long pfn = start; |
8048 | unsigned int tries = 0; | |
8049 | int ret = 0; | |
8050 | ||
be49a6e1 | 8051 | migrate_prep(); |
041d3a8c | 8052 | |
bb13ffeb | 8053 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
8054 | if (fatal_signal_pending(current)) { |
8055 | ret = -EINTR; | |
8056 | break; | |
8057 | } | |
8058 | ||
bb13ffeb MG |
8059 | if (list_empty(&cc->migratepages)) { |
8060 | cc->nr_migratepages = 0; | |
edc2ca61 | 8061 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
8062 | if (!pfn) { |
8063 | ret = -EINTR; | |
8064 | break; | |
8065 | } | |
8066 | tries = 0; | |
8067 | } else if (++tries == 5) { | |
8068 | ret = ret < 0 ? ret : -EBUSY; | |
8069 | break; | |
8070 | } | |
8071 | ||
beb51eaa MK |
8072 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
8073 | &cc->migratepages); | |
8074 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 8075 | |
9c620e2b | 8076 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
31025351 | 8077 | NULL, 0, cc->mode, MR_CONTIG_RANGE); |
041d3a8c | 8078 | } |
2a6f5124 SP |
8079 | if (ret < 0) { |
8080 | putback_movable_pages(&cc->migratepages); | |
8081 | return ret; | |
8082 | } | |
8083 | return 0; | |
041d3a8c MN |
8084 | } |
8085 | ||
8086 | /** | |
8087 | * alloc_contig_range() -- tries to allocate given range of pages | |
8088 | * @start: start PFN to allocate | |
8089 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
8090 | * @migratetype: migratetype of the underlaying pageblocks (either |
8091 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
8092 | * in range must have the same migratetype and it must | |
8093 | * be either of the two. | |
ca96b625 | 8094 | * @gfp_mask: GFP mask to use during compaction |
041d3a8c MN |
8095 | * |
8096 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
2c7452a0 | 8097 | * aligned. The PFN range must belong to a single zone. |
041d3a8c | 8098 | * |
2c7452a0 MK |
8099 | * The first thing this routine does is attempt to MIGRATE_ISOLATE all |
8100 | * pageblocks in the range. Once isolated, the pageblocks should not | |
8101 | * be modified by others. | |
041d3a8c MN |
8102 | * |
8103 | * Returns zero on success or negative error code. On success all | |
8104 | * pages which PFN is in [start, end) are allocated for the caller and | |
8105 | * need to be freed with free_contig_range(). | |
8106 | */ | |
0815f3d8 | 8107 | int alloc_contig_range(unsigned long start, unsigned long end, |
ca96b625 | 8108 | unsigned migratetype, gfp_t gfp_mask) |
041d3a8c | 8109 | { |
041d3a8c | 8110 | unsigned long outer_start, outer_end; |
d00181b9 KS |
8111 | unsigned int order; |
8112 | int ret = 0; | |
041d3a8c | 8113 | |
bb13ffeb MG |
8114 | struct compact_control cc = { |
8115 | .nr_migratepages = 0, | |
8116 | .order = -1, | |
8117 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 8118 | .mode = MIGRATE_SYNC, |
bb13ffeb | 8119 | .ignore_skip_hint = true, |
2583d671 | 8120 | .no_set_skip_hint = true, |
7dea19f9 | 8121 | .gfp_mask = current_gfp_context(gfp_mask), |
bb13ffeb MG |
8122 | }; |
8123 | INIT_LIST_HEAD(&cc.migratepages); | |
8124 | ||
041d3a8c MN |
8125 | /* |
8126 | * What we do here is we mark all pageblocks in range as | |
8127 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
8128 | * have different sizes, and due to the way page allocator | |
8129 | * work, we align the range to biggest of the two pages so | |
8130 | * that page allocator won't try to merge buddies from | |
8131 | * different pageblocks and change MIGRATE_ISOLATE to some | |
8132 | * other migration type. | |
8133 | * | |
8134 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
8135 | * migrate the pages from an unaligned range (ie. pages that | |
8136 | * we are interested in). This will put all the pages in | |
8137 | * range back to page allocator as MIGRATE_ISOLATE. | |
8138 | * | |
8139 | * When this is done, we take the pages in range from page | |
8140 | * allocator removing them from the buddy system. This way | |
8141 | * page allocator will never consider using them. | |
8142 | * | |
8143 | * This lets us mark the pageblocks back as | |
8144 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
8145 | * aligned range but not in the unaligned, original range are | |
8146 | * put back to page allocator so that buddy can use them. | |
8147 | */ | |
8148 | ||
8149 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
d381c547 | 8150 | pfn_max_align_up(end), migratetype, 0); |
041d3a8c | 8151 | if (ret) |
86a595f9 | 8152 | return ret; |
041d3a8c | 8153 | |
8ef5849f JK |
8154 | /* |
8155 | * In case of -EBUSY, we'd like to know which page causes problem. | |
63cd4489 MK |
8156 | * So, just fall through. test_pages_isolated() has a tracepoint |
8157 | * which will report the busy page. | |
8158 | * | |
8159 | * It is possible that busy pages could become available before | |
8160 | * the call to test_pages_isolated, and the range will actually be | |
8161 | * allocated. So, if we fall through be sure to clear ret so that | |
8162 | * -EBUSY is not accidentally used or returned to caller. | |
8ef5849f | 8163 | */ |
bb13ffeb | 8164 | ret = __alloc_contig_migrate_range(&cc, start, end); |
8ef5849f | 8165 | if (ret && ret != -EBUSY) |
041d3a8c | 8166 | goto done; |
63cd4489 | 8167 | ret =0; |
041d3a8c MN |
8168 | |
8169 | /* | |
8170 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
8171 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
8172 | * more, all pages in [start, end) are free in page allocator. | |
8173 | * What we are going to do is to allocate all pages from | |
8174 | * [start, end) (that is remove them from page allocator). | |
8175 | * | |
8176 | * The only problem is that pages at the beginning and at the | |
8177 | * end of interesting range may be not aligned with pages that | |
8178 | * page allocator holds, ie. they can be part of higher order | |
8179 | * pages. Because of this, we reserve the bigger range and | |
8180 | * once this is done free the pages we are not interested in. | |
8181 | * | |
8182 | * We don't have to hold zone->lock here because the pages are | |
8183 | * isolated thus they won't get removed from buddy. | |
8184 | */ | |
8185 | ||
8186 | lru_add_drain_all(); | |
510f5507 | 8187 | drain_all_pages(cc.zone); |
041d3a8c MN |
8188 | |
8189 | order = 0; | |
8190 | outer_start = start; | |
8191 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
8192 | if (++order >= MAX_ORDER) { | |
8ef5849f JK |
8193 | outer_start = start; |
8194 | break; | |
041d3a8c MN |
8195 | } |
8196 | outer_start &= ~0UL << order; | |
8197 | } | |
8198 | ||
8ef5849f JK |
8199 | if (outer_start != start) { |
8200 | order = page_order(pfn_to_page(outer_start)); | |
8201 | ||
8202 | /* | |
8203 | * outer_start page could be small order buddy page and | |
8204 | * it doesn't include start page. Adjust outer_start | |
8205 | * in this case to report failed page properly | |
8206 | * on tracepoint in test_pages_isolated() | |
8207 | */ | |
8208 | if (outer_start + (1UL << order) <= start) | |
8209 | outer_start = start; | |
8210 | } | |
8211 | ||
041d3a8c | 8212 | /* Make sure the range is really isolated. */ |
b023f468 | 8213 | if (test_pages_isolated(outer_start, end, false)) { |
75dddef3 | 8214 | pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", |
dae803e1 | 8215 | __func__, outer_start, end); |
041d3a8c MN |
8216 | ret = -EBUSY; |
8217 | goto done; | |
8218 | } | |
8219 | ||
49f223a9 | 8220 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 8221 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
8222 | if (!outer_end) { |
8223 | ret = -EBUSY; | |
8224 | goto done; | |
8225 | } | |
8226 | ||
8227 | /* Free head and tail (if any) */ | |
8228 | if (start != outer_start) | |
8229 | free_contig_range(outer_start, start - outer_start); | |
8230 | if (end != outer_end) | |
8231 | free_contig_range(end, outer_end - end); | |
8232 | ||
8233 | done: | |
8234 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 8235 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
8236 | return ret; |
8237 | } | |
8238 | ||
8239 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
8240 | { | |
bcc2b02f MS |
8241 | unsigned int count = 0; |
8242 | ||
8243 | for (; nr_pages--; pfn++) { | |
8244 | struct page *page = pfn_to_page(pfn); | |
8245 | ||
8246 | count += page_count(page) != 1; | |
8247 | __free_page(page); | |
8248 | } | |
8249 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
8250 | } |
8251 | #endif | |
8252 | ||
d883c6cf | 8253 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
8254 | /* |
8255 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
8256 | * page high values need to be recalulated. | |
8257 | */ | |
4ed7e022 JL |
8258 | void __meminit zone_pcp_update(struct zone *zone) |
8259 | { | |
0a647f38 | 8260 | unsigned cpu; |
c8e251fa | 8261 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 8262 | for_each_possible_cpu(cpu) |
169f6c19 CS |
8263 | pageset_set_high_and_batch(zone, |
8264 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 8265 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
8266 | } |
8267 | #endif | |
8268 | ||
340175b7 JL |
8269 | void zone_pcp_reset(struct zone *zone) |
8270 | { | |
8271 | unsigned long flags; | |
5a883813 MK |
8272 | int cpu; |
8273 | struct per_cpu_pageset *pset; | |
340175b7 JL |
8274 | |
8275 | /* avoid races with drain_pages() */ | |
8276 | local_irq_save(flags); | |
8277 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
8278 | for_each_online_cpu(cpu) { |
8279 | pset = per_cpu_ptr(zone->pageset, cpu); | |
8280 | drain_zonestat(zone, pset); | |
8281 | } | |
340175b7 JL |
8282 | free_percpu(zone->pageset); |
8283 | zone->pageset = &boot_pageset; | |
8284 | } | |
8285 | local_irq_restore(flags); | |
8286 | } | |
8287 | ||
6dcd73d7 | 8288 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 | 8289 | /* |
b9eb6319 JK |
8290 | * All pages in the range must be in a single zone and isolated |
8291 | * before calling this. | |
0c0e6195 KH |
8292 | */ |
8293 | void | |
8294 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
8295 | { | |
8296 | struct page *page; | |
8297 | struct zone *zone; | |
7aeb09f9 | 8298 | unsigned int order, i; |
0c0e6195 KH |
8299 | unsigned long pfn; |
8300 | unsigned long flags; | |
8301 | /* find the first valid pfn */ | |
8302 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
8303 | if (pfn_valid(pfn)) | |
8304 | break; | |
8305 | if (pfn == end_pfn) | |
8306 | return; | |
2d070eab | 8307 | offline_mem_sections(pfn, end_pfn); |
0c0e6195 KH |
8308 | zone = page_zone(pfn_to_page(pfn)); |
8309 | spin_lock_irqsave(&zone->lock, flags); | |
8310 | pfn = start_pfn; | |
8311 | while (pfn < end_pfn) { | |
8312 | if (!pfn_valid(pfn)) { | |
8313 | pfn++; | |
8314 | continue; | |
8315 | } | |
8316 | page = pfn_to_page(pfn); | |
b023f468 WC |
8317 | /* |
8318 | * The HWPoisoned page may be not in buddy system, and | |
8319 | * page_count() is not 0. | |
8320 | */ | |
8321 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
8322 | pfn++; | |
8323 | SetPageReserved(page); | |
8324 | continue; | |
8325 | } | |
8326 | ||
0c0e6195 KH |
8327 | BUG_ON(page_count(page)); |
8328 | BUG_ON(!PageBuddy(page)); | |
8329 | order = page_order(page); | |
8330 | #ifdef CONFIG_DEBUG_VM | |
1170532b JP |
8331 | pr_info("remove from free list %lx %d %lx\n", |
8332 | pfn, 1 << order, end_pfn); | |
0c0e6195 KH |
8333 | #endif |
8334 | list_del(&page->lru); | |
8335 | rmv_page_order(page); | |
8336 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
8337 | for (i = 0; i < (1 << order); i++) |
8338 | SetPageReserved((page+i)); | |
8339 | pfn += (1 << order); | |
8340 | } | |
8341 | spin_unlock_irqrestore(&zone->lock, flags); | |
8342 | } | |
8343 | #endif | |
8d22ba1b | 8344 | |
8d22ba1b WF |
8345 | bool is_free_buddy_page(struct page *page) |
8346 | { | |
8347 | struct zone *zone = page_zone(page); | |
8348 | unsigned long pfn = page_to_pfn(page); | |
8349 | unsigned long flags; | |
7aeb09f9 | 8350 | unsigned int order; |
8d22ba1b WF |
8351 | |
8352 | spin_lock_irqsave(&zone->lock, flags); | |
8353 | for (order = 0; order < MAX_ORDER; order++) { | |
8354 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
8355 | ||
8356 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
8357 | break; | |
8358 | } | |
8359 | spin_unlock_irqrestore(&zone->lock, flags); | |
8360 | ||
8361 | return order < MAX_ORDER; | |
8362 | } | |
d4ae9916 NH |
8363 | |
8364 | #ifdef CONFIG_MEMORY_FAILURE | |
8365 | /* | |
8366 | * Set PG_hwpoison flag if a given page is confirmed to be a free page. This | |
8367 | * test is performed under the zone lock to prevent a race against page | |
8368 | * allocation. | |
8369 | */ | |
8370 | bool set_hwpoison_free_buddy_page(struct page *page) | |
8371 | { | |
8372 | struct zone *zone = page_zone(page); | |
8373 | unsigned long pfn = page_to_pfn(page); | |
8374 | unsigned long flags; | |
8375 | unsigned int order; | |
8376 | bool hwpoisoned = false; | |
8377 | ||
8378 | spin_lock_irqsave(&zone->lock, flags); | |
8379 | for (order = 0; order < MAX_ORDER; order++) { | |
8380 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
8381 | ||
8382 | if (PageBuddy(page_head) && page_order(page_head) >= order) { | |
8383 | if (!TestSetPageHWPoison(page)) | |
8384 | hwpoisoned = true; | |
8385 | break; | |
8386 | } | |
8387 | } | |
8388 | spin_unlock_irqrestore(&zone->lock, flags); | |
8389 | ||
8390 | return hwpoisoned; | |
8391 | } | |
8392 | #endif |