]> Git Repo - linux.git/blame - mm/slub.c
mm: add optional close() to struct vm_special_mapping
[linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
6011be59 37#include <linux/kmemleak.h>
bfa71457 38#include <linux/stacktrace.h>
4de900b4 39#include <linux/prefetch.h>
2633d7a0 40#include <linux/memcontrol.h>
2482ddec 41#include <linux/random.h>
1f9f78b1 42#include <kunit/test.h>
909c6475 43#include <kunit/test-bug.h>
553c0369 44#include <linux/sort.h>
81819f0f 45
64dd6849 46#include <linux/debugfs.h>
4a92379b
RK
47#include <trace/events/kmem.h>
48
072bb0aa
MG
49#include "internal.h"
50
81819f0f
CL
51/*
52 * Lock order:
18004c5d 53 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 56 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 57 * 5. object_map_lock (Only for debugging)
81819f0f 58 *
18004c5d 59 * slab_mutex
881db7fb 60 *
18004c5d 61 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 62 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
881db7fb 69 *
41bec7c3
VB
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
c2092c12
VB
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
881db7fb 77 *
bd0e7491
VB
78 * Frozen slabs
79 *
31bda717
CZ
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
c2092c12 83 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
c2092c12 86 * slab's freelist.
81819f0f 87 *
31bda717
CZ
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
bd0e7491
VB
102 * list_lock
103 *
81819f0f
CL
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
bd0e7491 115 *
41bec7c3
VB
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
bd0e7491
VB
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
672bba3a
CL
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 156 * freed then the slab will show up again on the partial lists.
672bba3a
CL
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
81819f0f
CL
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
c2092c12 164 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
dfb4f096 176 * freelist that allows lockless access to
894b8788
CL
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
81819f0f 179 *
aed68148 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 181 * options set. This moves slab handling out of
894b8788 182 * the fast path and disables lockless freelists.
81819f0f
CL
183 */
184
25c00c50
VB
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
1f04b07d 204#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
205#endif
206
be784ba8
VB
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
ca0cab65
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
79270291 219#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 220
6edf2576
FT
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
6edf2576
FT
223 gfp_t flags;
224 unsigned int orig_size;
43c4c349 225 void *object;
6edf2576
FT
226};
227
59052e89
VB
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 231}
5577bd8a 232
6edf2576
FT
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
117d54df 239void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 240{
59052e89 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
242 p += s->red_left_pad;
243
244 return p;
245}
246
345c905d
JK
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
81819f0f
CL
256/*
257 * Issues still to be resolved:
258 *
81819f0f
CL
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
81819f0f
CL
261 * - Variable sizing of the per node arrays
262 */
263
b789ef51
CL
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
5a8a3c1f 267#ifndef CONFIG_SLUB_TINY
2086d26a 268/*
dc84207d 269 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
76be8950 272#define MIN_PARTIAL 5
e95eed57 273
2086d26a
CL
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 277 * sort the partial list by the number of objects in use.
2086d26a
CL
278 */
279#define MAX_PARTIAL 10
5a8a3c1f
VB
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
2086d26a 284
becfda68 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 286 SLAB_POISON | SLAB_STORE_USER)
672bba3a 287
149daaf3
LA
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
fa5ec8a1 296/*
3de47213 297 * Debugging flags that require metadata to be stored in the slab. These get
671776b3 298 * disabled when slab_debug=O is used and a cache's min order increases with
3de47213 299 * metadata.
fa5ec8a1 300 */
3de47213 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 302
210b5c06
CG
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 306
81819f0f 307/* Internal SLUB flags */
d50112ed 308/* Poison object */
cc61eb85 309#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
d50112ed 310/* Use cmpxchg_double */
6801be4f
PZ
311
312#ifdef system_has_freelist_aba
cc61eb85 313#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
6801be4f 314#else
cc61eb85 315#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
6801be4f 316#endif
81819f0f 317
02cbc874
CL
318/*
319 * Tracking user of a slab.
320 */
d6543e39 321#define TRACK_ADDRS_COUNT 16
02cbc874 322struct track {
ce71e27c 323 unsigned long addr; /* Called from address */
5cf909c5
OG
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
d6543e39 326#endif
02cbc874
CL
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
b1a413a3 334#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 337#else
0c710013
CL
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
81819f0f
CL
341#endif
342
64dd6849
FM
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
7ef08ae8
VB
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
c94d2224 394 struct slab *partial; /* Partially allocated slabs */
7ef08ae8
VB
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
4fdccdfb 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
404{
405#ifdef CONFIG_SLUB_STATS
88da03a6
CL
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
411#endif
412}
413
6f3dd2c3
VB
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
b52ef56e
VB
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
7e1fa93d
VB
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
0af8489b 457#ifndef CONFIG_SLUB_TINY
e45cc288
ML
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
0af8489b 462#endif
e45cc288 463
81819f0f
CL
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
44f6a42d
JH
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
2482ddec
KC
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
44f6a42d
JH
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
2482ddec 481{
b06952cd
VB
482 unsigned long encoded;
483
2482ddec 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 486#else
b06952cd 487 encoded = (unsigned long)ptr;
44f6a42d 488#endif
b06952cd 489 return (freeptr_t){.v = encoded};
44f6a42d
JH
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 499#else
44f6a42d 500 decoded = (void *)ptr.v;
2482ddec 501#endif
44f6a42d 502 return decoded;
2482ddec
KC
503}
504
7656c72b
CL
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
1662b6c2
VB
507 unsigned long ptr_addr;
508 freeptr_t p;
509
aa1ef4d7 510 object = kasan_reset_tag(object);
1662b6c2
VB
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
514}
515
0af8489b 516#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
04b4b006 519 prefetchw(object + s->offset);
0ad9500e 520}
0af8489b 521#endif
0ad9500e 522
68ef169a
AP
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
1393d9a1
CL
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
2482ddec 536 unsigned long freepointer_addr;
44f6a42d 537 freeptr_t p;
1393d9a1 538
8e57f8ac 539 if (!debug_pagealloc_enabled_static())
922d566c
JK
540 return get_freepointer(s, object);
541
f70b0049 542 object = kasan_reset_tag(object);
2482ddec 543 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
546}
547
7656c72b
CL
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
2482ddec
KC
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
ce6fa91b
AP
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
aa1ef4d7 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
558}
559
8f828aa4
NB
560/*
561 * See comment in calculate_sizes().
562 */
563static inline bool freeptr_outside_object(struct kmem_cache *s)
564{
565 return s->offset >= s->inuse;
566}
567
568/*
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
571 */
572static inline unsigned int get_info_end(struct kmem_cache *s)
573{
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
576 else
577 return s->inuse;
578}
579
7656c72b 580/* Loop over all objects in a slab */
224a88be 581#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
584 __p += (__s)->size)
7656c72b 585
9736d2a9 586static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 587{
9736d2a9 588 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
589}
590
19af27af 591static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 592 unsigned int size)
834f3d11
CL
593{
594 struct kmem_cache_order_objects x = {
9736d2a9 595 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
596 };
597
598 return x;
599}
600
19af27af 601static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 602{
210b5c06 603 return x.x >> OO_SHIFT;
834f3d11
CL
604}
605
19af27af 606static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 607{
210b5c06 608 return x.x & OO_MASK;
834f3d11
CL
609}
610
b47291ef
VB
611#ifdef CONFIG_SLUB_CPU_PARTIAL
612static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613{
bb192ed9 614 unsigned int nr_slabs;
b47291ef
VB
615
616 s->cpu_partial = nr_objects;
617
618 /*
619 * We take the number of objects but actually limit the number of
c2092c12
VB
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
622 * be half-full.
623 */
bb192ed9
VB
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
b47291ef 626}
721a2f8b
XS
627
628static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629{
630 return s->cpu_partial_slabs;
631}
b47291ef
VB
632#else
633static inline void
634slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635{
636}
721a2f8b
XS
637
638static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639{
640 return 0;
641}
b47291ef
VB
642#endif /* CONFIG_SLUB_CPU_PARTIAL */
643
881db7fb
CL
644/*
645 * Per slab locking using the pagelock
646 */
5875e598 647static __always_inline void slab_lock(struct slab *slab)
881db7fb 648{
5e0debe0 649 bit_spin_lock(PG_locked, &slab->__page_flags);
881db7fb
CL
650}
651
5875e598 652static __always_inline void slab_unlock(struct slab *slab)
881db7fb 653{
5e0debe0 654 bit_spin_unlock(PG_locked, &slab->__page_flags);
881db7fb
CL
655}
656
6801be4f
PZ
657static inline bool
658__update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
661{
662#ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667#else
668 return false;
669#endif
670}
671
672static inline bool
673__update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
676{
677 bool ret = false;
678
679 slab_lock(slab);
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
684 ret = true;
685 }
686 slab_unlock(slab);
687
688 return ret;
689}
690
a2b4ae8b
VB
691/*
692 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
a2b4ae8b 697 */
6801be4f 698static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
701 const char *n)
702{
6801be4f
PZ
703 bool ret;
704
1f04b07d 705 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 706 lockdep_assert_irqs_disabled();
6801be4f 707
1d07171c 708 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
711 } else {
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
1d07171c 714 }
6801be4f
PZ
715 if (likely(ret))
716 return true;
1d07171c
CL
717
718 cpu_relax();
719 stat(s, CMPXCHG_DOUBLE_FAIL);
720
721#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
723#endif
724
6f6528a1 725 return false;
1d07171c
CL
726}
727
6801be4f 728static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
731 const char *n)
732{
6801be4f
PZ
733 bool ret;
734
b789ef51 735 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 } else {
1d07171c
CL
739 unsigned long flags;
740
741 local_irq_save(flags);
6801be4f
PZ
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
1d07171c 744 local_irq_restore(flags);
b789ef51 745 }
6801be4f
PZ
746 if (likely(ret))
747 return true;
b789ef51
CL
748
749 cpu_relax();
750 stat(s, CMPXCHG_DOUBLE_FAIL);
751
752#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
754#endif
755
6f6528a1 756 return false;
b789ef51
CL
757}
758
41ecc55b 759#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 760static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 761static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 762
b3fd64e1 763static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 764 struct slab *slab)
b3fd64e1 765{
bb192ed9 766 void *addr = slab_address(slab);
b3fd64e1
VB
767 void *p;
768
bb192ed9 769 bitmap_zero(obj_map, slab->objects);
b3fd64e1 770
bb192ed9 771 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
772 set_bit(__obj_to_index(s, addr, p), obj_map);
773}
774
1f9f78b1
OG
775#if IS_ENABLED(CONFIG_KUNIT)
776static bool slab_add_kunit_errors(void)
777{
778 struct kunit_resource *resource;
779
909c6475 780 if (!kunit_get_current_test())
1f9f78b1
OG
781 return false;
782
783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 if (!resource)
785 return false;
786
787 (*(int *)resource->data)++;
788 kunit_put_resource(resource);
789 return true;
790}
47d911b0
CZ
791
792static bool slab_in_kunit_test(void)
793{
794 struct kunit_resource *resource;
795
796 if (!kunit_get_current_test())
797 return false;
798
799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
800 if (!resource)
801 return false;
802
803 kunit_put_resource(resource);
804 return true;
805}
1f9f78b1
OG
806#else
807static inline bool slab_add_kunit_errors(void) { return false; }
47d911b0 808static inline bool slab_in_kunit_test(void) { return false; }
1f9f78b1
OG
809#endif
810
870b1fbb 811static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
812{
813 if (s->flags & SLAB_RED_ZONE)
814 return s->size - s->red_left_pad;
815
816 return s->size;
817}
818
819static inline void *restore_red_left(struct kmem_cache *s, void *p)
820{
821 if (s->flags & SLAB_RED_ZONE)
822 p -= s->red_left_pad;
823
824 return p;
825}
826
41ecc55b
CL
827/*
828 * Debug settings:
829 */
89d3c87e 830#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 831static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 832#else
d50112ed 833static slab_flags_t slub_debug;
f0630fff 834#endif
41ecc55b 835
e17f1dfb 836static char *slub_debug_string;
fa5ec8a1 837static int disable_higher_order_debug;
41ecc55b 838
a79316c6
AR
839/*
840 * slub is about to manipulate internal object metadata. This memory lies
841 * outside the range of the allocated object, so accessing it would normally
842 * be reported by kasan as a bounds error. metadata_access_enable() is used
843 * to tell kasan that these accesses are OK.
844 */
845static inline void metadata_access_enable(void)
846{
847 kasan_disable_current();
0e9a8550 848 kmsan_disable_current();
a79316c6
AR
849}
850
851static inline void metadata_access_disable(void)
852{
0e9a8550 853 kmsan_enable_current();
a79316c6
AR
854 kasan_enable_current();
855}
856
81819f0f
CL
857/*
858 * Object debugging
859 */
d86bd1be
JK
860
861/* Verify that a pointer has an address that is valid within a slab page */
862static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 863 struct slab *slab, void *object)
d86bd1be
JK
864{
865 void *base;
866
867 if (!object)
868 return 1;
869
bb192ed9 870 base = slab_address(slab);
338cfaad 871 object = kasan_reset_tag(object);
d86bd1be 872 object = restore_red_left(s, object);
bb192ed9 873 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
874 (object - base) % s->size) {
875 return 0;
876 }
877
878 return 1;
879}
880
aa2efd5e
DT
881static void print_section(char *level, char *text, u8 *addr,
882 unsigned int length)
81819f0f 883{
a79316c6 884 metadata_access_enable();
340caf17
KYL
885 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 887 metadata_access_disable();
81819f0f
CL
888}
889
81819f0f
CL
890static struct track *get_track(struct kmem_cache *s, void *object,
891 enum track_item alloc)
892{
893 struct track *p;
894
cbfc35a4 895 p = object + get_info_end(s);
81819f0f 896
aa1ef4d7 897 return kasan_reset_tag(p + alloc);
81819f0f
CL
898}
899
5cf909c5 900#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
901static noinline depot_stack_handle_t set_track_prepare(void)
902{
903 depot_stack_handle_t handle;
5cf909c5 904 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 905 unsigned int nr_entries;
ae14c63a 906
5cf909c5 907 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
908 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
909
910 return handle;
911}
912#else
913static inline depot_stack_handle_t set_track_prepare(void)
914{
915 return 0;
916}
d6543e39 917#endif
5cf909c5 918
c4cf6785
SAS
919static void set_track_update(struct kmem_cache *s, void *object,
920 enum track_item alloc, unsigned long addr,
921 depot_stack_handle_t handle)
922{
923 struct track *p = get_track(s, object, alloc);
924
925#ifdef CONFIG_STACKDEPOT
926 p->handle = handle;
927#endif
0cd1a029
VB
928 p->addr = addr;
929 p->cpu = smp_processor_id();
930 p->pid = current->pid;
931 p->when = jiffies;
81819f0f
CL
932}
933
c4cf6785
SAS
934static __always_inline void set_track(struct kmem_cache *s, void *object,
935 enum track_item alloc, unsigned long addr)
936{
937 depot_stack_handle_t handle = set_track_prepare();
938
939 set_track_update(s, object, alloc, addr, handle);
940}
941
81819f0f
CL
942static void init_tracking(struct kmem_cache *s, void *object)
943{
0cd1a029
VB
944 struct track *p;
945
24922684
CL
946 if (!(s->flags & SLAB_STORE_USER))
947 return;
948
0cd1a029
VB
949 p = get_track(s, object, TRACK_ALLOC);
950 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
951}
952
86609d33 953static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 954{
5cf909c5
OG
955 depot_stack_handle_t handle __maybe_unused;
956
81819f0f
CL
957 if (!t->addr)
958 return;
959
96b94abc 960 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 961 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
962#ifdef CONFIG_STACKDEPOT
963 handle = READ_ONCE(t->handle);
964 if (handle)
965 stack_depot_print(handle);
966 else
967 pr_err("object allocation/free stack trace missing\n");
d6543e39 968#endif
24922684
CL
969}
970
e42f174e 971void print_tracking(struct kmem_cache *s, void *object)
24922684 972{
86609d33 973 unsigned long pr_time = jiffies;
24922684
CL
974 if (!(s->flags & SLAB_STORE_USER))
975 return;
976
86609d33
CP
977 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
979}
980
fb012e27 981static void print_slab_info(const struct slab *slab)
24922684 982{
fb012e27
MWO
983 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 slab, slab->objects, slab->inuse, slab->freelist,
4d2bcefa 985 &slab->__page_flags);
24922684
CL
986}
987
6edf2576
FT
988/*
989 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990 * family will round up the real request size to these fixed ones, so
991 * there could be an extra area than what is requested. Save the original
992 * request size in the meta data area, for better debug and sanity check.
993 */
994static inline void set_orig_size(struct kmem_cache *s,
995 void *object, unsigned int orig_size)
996{
997 void *p = kasan_reset_tag(object);
2d552463 998 unsigned int kasan_meta_size;
6edf2576
FT
999
1000 if (!slub_debug_orig_size(s))
1001 return;
1002
946fa0db 1003 /*
2d552463
AK
1004 * KASAN can save its free meta data inside of the object at offset 0.
1005 * If this meta data size is larger than 'orig_size', it will overlap
1006 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 * 'orig_size' to be as at least as big as KASAN's meta data.
946fa0db 1008 */
2d552463
AK
1009 kasan_meta_size = kasan_metadata_size(s, true);
1010 if (kasan_meta_size > orig_size)
1011 orig_size = kasan_meta_size;
946fa0db 1012
6edf2576
FT
1013 p += get_info_end(s);
1014 p += sizeof(struct track) * 2;
1015
1016 *(unsigned int *)p = orig_size;
1017}
1018
1019static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1020{
1021 void *p = kasan_reset_tag(object);
1022
1023 if (!slub_debug_orig_size(s))
1024 return s->object_size;
1025
1026 p += get_info_end(s);
1027 p += sizeof(struct track) * 2;
1028
1029 return *(unsigned int *)p;
1030}
1031
946fa0db
FT
1032void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033{
1034 set_orig_size(s, (void *)object, s->object_size);
1035}
1036
24922684
CL
1037static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038{
ecc42fbe 1039 struct va_format vaf;
24922684 1040 va_list args;
24922684
CL
1041
1042 va_start(args, fmt);
ecc42fbe
FF
1043 vaf.fmt = fmt;
1044 vaf.va = &args;
f9f58285 1045 pr_err("=============================================================================\n");
ecc42fbe 1046 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 1047 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 1048 va_end(args);
81819f0f
CL
1049}
1050
582d1212 1051__printf(2, 3)
24922684
CL
1052static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053{
ecc42fbe 1054 struct va_format vaf;
24922684 1055 va_list args;
24922684 1056
1f9f78b1
OG
1057 if (slab_add_kunit_errors())
1058 return;
1059
24922684 1060 va_start(args, fmt);
ecc42fbe
FF
1061 vaf.fmt = fmt;
1062 vaf.va = &args;
1063 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 1064 va_end(args);
24922684
CL
1065}
1066
bb192ed9 1067static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
1068{
1069 unsigned int off; /* Offset of last byte */
bb192ed9 1070 u8 *addr = slab_address(slab);
24922684
CL
1071
1072 print_tracking(s, p);
1073
bb192ed9 1074 print_slab_info(slab);
24922684 1075
96b94abc 1076 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 1077 p, p - addr, get_freepointer(s, p));
24922684 1078
d86bd1be 1079 if (s->flags & SLAB_RED_ZONE)
8669dbab 1080 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 1081 s->red_left_pad);
d86bd1be 1082 else if (p > addr + 16)
aa2efd5e 1083 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 1084
8669dbab 1085 print_section(KERN_ERR, "Object ", p,
1b473f29 1086 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 1087 if (s->flags & SLAB_RED_ZONE)
8669dbab 1088 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 1089 s->inuse - s->object_size);
81819f0f 1090
cbfc35a4 1091 off = get_info_end(s);
81819f0f 1092
24922684 1093 if (s->flags & SLAB_STORE_USER)
81819f0f 1094 off += 2 * sizeof(struct track);
81819f0f 1095
6edf2576
FT
1096 if (slub_debug_orig_size(s))
1097 off += sizeof(unsigned int);
1098
5d1ba310 1099 off += kasan_metadata_size(s, false);
80a9201a 1100
d86bd1be 1101 if (off != size_from_object(s))
81819f0f 1102 /* Beginning of the filler is the free pointer */
8669dbab 1103 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 1104 size_from_object(s) - off);
24922684
CL
1105
1106 dump_stack();
81819f0f
CL
1107}
1108
bb192ed9 1109static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
1110 u8 *object, char *reason)
1111{
1f9f78b1
OG
1112 if (slab_add_kunit_errors())
1113 return;
1114
3dc50637 1115 slab_bug(s, "%s", reason);
bb192ed9 1116 print_trailer(s, slab, object);
65ebdeef 1117 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1118}
1119
bb192ed9 1120static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
1121 void **freelist, void *nextfree)
1122{
1123 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
1124 !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1126 *freelist = NULL;
1127 slab_fix(s, "Isolate corrupted freechain");
1128 return true;
1129 }
1130
1131 return false;
1132}
1133
bb192ed9 1134static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1135 const char *fmt, ...)
81819f0f
CL
1136{
1137 va_list args;
1138 char buf[100];
1139
1f9f78b1
OG
1140 if (slab_add_kunit_errors())
1141 return;
1142
24922684
CL
1143 va_start(args, fmt);
1144 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1145 va_end(args);
3dc50637 1146 slab_bug(s, "%s", buf);
bb192ed9 1147 print_slab_info(slab);
81819f0f 1148 dump_stack();
65ebdeef 1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1150}
1151
f7cb1933 1152static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1153{
aa1ef4d7 1154 u8 *p = kasan_reset_tag(object);
946fa0db 1155 unsigned int poison_size = s->object_size;
81819f0f 1156
946fa0db 1157 if (s->flags & SLAB_RED_ZONE) {
f4168171
IL
1158 /*
1159 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 * the shadow makes it possible to distinguish uninit-value
1161 * from use-after-free.
1162 */
1163 memset_no_sanitize_memory(p - s->red_left_pad, val,
1164 s->red_left_pad);
d86bd1be 1165
946fa0db
FT
1166 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167 /*
1168 * Redzone the extra allocated space by kmalloc than
1169 * requested, and the poison size will be limited to
1170 * the original request size accordingly.
1171 */
1172 poison_size = get_orig_size(s, object);
1173 }
1174 }
1175
81819f0f 1176 if (s->flags & __OBJECT_POISON) {
f4168171
IL
1177 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
81819f0f
CL
1179 }
1180
1181 if (s->flags & SLAB_RED_ZONE)
f4168171
IL
1182 memset_no_sanitize_memory(p + poison_size, val,
1183 s->inuse - poison_size);
81819f0f
CL
1184}
1185
24922684
CL
1186static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 void *from, void *to)
1188{
582d1212 1189 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1190 memset(from, data, to - from);
1191}
1192
adea9876
IL
1193#ifdef CONFIG_KMSAN
1194#define pad_check_attributes noinline __no_kmsan_checks
1195#else
1196#define pad_check_attributes
1197#endif
1198
1199static pad_check_attributes int
1200check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 u8 *object, char *what,
1202 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1203{
1204 u8 *fault;
1205 u8 *end;
bb192ed9 1206 u8 *addr = slab_address(slab);
24922684 1207
a79316c6 1208 metadata_access_enable();
aa1ef4d7 1209 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1210 metadata_access_disable();
24922684
CL
1211 if (!fault)
1212 return 1;
1213
1214 end = start + bytes;
1215 while (end > fault && end[-1] == value)
1216 end--;
1217
1f9f78b1
OG
1218 if (slab_add_kunit_errors())
1219 goto skip_bug_print;
1220
24922684 1221 slab_bug(s, "%s overwritten", what);
96b94abc 1222 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1223 fault, end - 1, fault - addr,
1224 fault[0], value);
24922684 1225
1f9f78b1 1226skip_bug_print:
24922684
CL
1227 restore_bytes(s, what, value, fault, end);
1228 return 0;
81819f0f
CL
1229}
1230
81819f0f
CL
1231/*
1232 * Object layout:
1233 *
1234 * object address
1235 * Bytes of the object to be managed.
1236 * If the freepointer may overlay the object then the free
cbfc35a4 1237 * pointer is at the middle of the object.
672bba3a 1238 *
81819f0f
CL
1239 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240 * 0xa5 (POISON_END)
1241 *
3b0efdfa 1242 * object + s->object_size
81819f0f 1243 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1244 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1245 * object_size == inuse.
672bba3a 1246 *
4a24bbab
CZ
1247 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
81819f0f
CL
1249 *
1250 * object + s->inuse
672bba3a
CL
1251 * Meta data starts here.
1252 *
81819f0f
CL
1253 * A. Free pointer (if we cannot overwrite object on free)
1254 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1255 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1257 * one word if debugging is on to be able to detect writes
672bba3a
CL
1258 * before the word boundary.
1259 *
1260 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1261 *
1262 * object + s->size
672bba3a 1263 * Nothing is used beyond s->size.
81819f0f 1264 *
3b0efdfa 1265 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1266 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1267 * may be used with merged slabcaches.
1268 */
1269
bb192ed9 1270static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1271{
cbfc35a4 1272 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1273
6edf2576 1274 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1275 /* We also have user information there */
1276 off += 2 * sizeof(struct track);
1277
6edf2576
FT
1278 if (s->flags & SLAB_KMALLOC)
1279 off += sizeof(unsigned int);
1280 }
1281
5d1ba310 1282 off += kasan_metadata_size(s, false);
80a9201a 1283
d86bd1be 1284 if (size_from_object(s) == off)
81819f0f
CL
1285 return 1;
1286
bb192ed9 1287 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1288 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1289}
1290
39b26464 1291/* Check the pad bytes at the end of a slab page */
adea9876
IL
1292static pad_check_attributes void
1293slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1294{
24922684
CL
1295 u8 *start;
1296 u8 *fault;
1297 u8 *end;
5d682681 1298 u8 *pad;
24922684
CL
1299 int length;
1300 int remainder;
81819f0f
CL
1301
1302 if (!(s->flags & SLAB_POISON))
a204e6d6 1303 return;
81819f0f 1304
bb192ed9
VB
1305 start = slab_address(slab);
1306 length = slab_size(slab);
39b26464
CL
1307 end = start + length;
1308 remainder = length % s->size;
81819f0f 1309 if (!remainder)
a204e6d6 1310 return;
81819f0f 1311
5d682681 1312 pad = end - remainder;
a79316c6 1313 metadata_access_enable();
aa1ef4d7 1314 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1315 metadata_access_disable();
24922684 1316 if (!fault)
a204e6d6 1317 return;
24922684
CL
1318 while (end > fault && end[-1] == POISON_INUSE)
1319 end--;
1320
bb192ed9 1321 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1322 fault, end - 1, fault - start);
5d682681 1323 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1324
5d682681 1325 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1326}
1327
bb192ed9 1328static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1329 void *object, u8 val)
81819f0f
CL
1330{
1331 u8 *p = object;
3b0efdfa 1332 u8 *endobject = object + s->object_size;
2d552463 1333 unsigned int orig_size, kasan_meta_size;
47d911b0 1334 int ret = 1;
81819f0f
CL
1335
1336 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1337 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be 1338 object - s->red_left_pad, val, s->red_left_pad))
47d911b0 1339 ret = 0;
d86bd1be 1340
bb192ed9 1341 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1342 endobject, val, s->inuse - s->object_size))
47d911b0 1343 ret = 0;
946fa0db
FT
1344
1345 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 orig_size = get_orig_size(s, object);
1347
1348 if (s->object_size > orig_size &&
1349 !check_bytes_and_report(s, slab, object,
1350 "kmalloc Redzone", p + orig_size,
1351 val, s->object_size - orig_size)) {
47d911b0 1352 ret = 0;
946fa0db
FT
1353 }
1354 }
81819f0f 1355 } else {
3b0efdfa 1356 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
47d911b0 1357 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97 1358 endobject, POISON_INUSE,
47d911b0
CZ
1359 s->inuse - s->object_size))
1360 ret = 0;
3adbefee 1361 }
81819f0f
CL
1362 }
1363
1364 if (s->flags & SLAB_POISON) {
2d552463
AK
1365 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366 /*
1367 * KASAN can save its free meta data inside of the
1368 * object at offset 0. Thus, skip checking the part of
1369 * the redzone that overlaps with the meta data.
1370 */
1371 kasan_meta_size = kasan_metadata_size(s, true);
1372 if (kasan_meta_size < s->object_size - 1 &&
1373 !check_bytes_and_report(s, slab, p, "Poison",
1374 p + kasan_meta_size, POISON_FREE,
1375 s->object_size - kasan_meta_size - 1))
47d911b0 1376 ret = 0;
2d552463
AK
1377 if (kasan_meta_size < s->object_size &&
1378 !check_bytes_and_report(s, slab, p, "End Poison",
1379 p + s->object_size - 1, POISON_END, 1))
47d911b0 1380 ret = 0;
2d552463 1381 }
81819f0f
CL
1382 /*
1383 * check_pad_bytes cleans up on its own.
1384 */
47d911b0
CZ
1385 if (!check_pad_bytes(s, slab, p))
1386 ret = 0;
81819f0f
CL
1387 }
1388
47d911b0
CZ
1389 /*
1390 * Cannot check freepointer while object is allocated if
1391 * object and freepointer overlap.
1392 */
1393 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
bb192ed9 1395 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1396 /*
9f6c708e 1397 * No choice but to zap it and thus lose the remainder
81819f0f 1398 * of the free objects in this slab. May cause
672bba3a 1399 * another error because the object count is now wrong.
81819f0f 1400 */
a973e9dd 1401 set_freepointer(s, p, NULL);
47d911b0 1402 ret = 0;
81819f0f 1403 }
47d911b0
CZ
1404
1405 if (!ret && !slab_in_kunit_test()) {
1406 print_trailer(s, slab, object);
1407 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408 }
1409
1410 return ret;
81819f0f
CL
1411}
1412
bb192ed9 1413static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1414{
39b26464
CL
1415 int maxobj;
1416
bb192ed9
VB
1417 if (!folio_test_slab(slab_folio(slab))) {
1418 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1419 return 0;
1420 }
39b26464 1421
bb192ed9
VB
1422 maxobj = order_objects(slab_order(slab), s->size);
1423 if (slab->objects > maxobj) {
1424 slab_err(s, slab, "objects %u > max %u",
1425 slab->objects, maxobj);
39b26464
CL
1426 return 0;
1427 }
bb192ed9
VB
1428 if (slab->inuse > slab->objects) {
1429 slab_err(s, slab, "inuse %u > max %u",
1430 slab->inuse, slab->objects);
81819f0f
CL
1431 return 0;
1432 }
1433 /* Slab_pad_check fixes things up after itself */
bb192ed9 1434 slab_pad_check(s, slab);
81819f0f
CL
1435 return 1;
1436}
1437
1438/*
c2092c12 1439 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1440 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1441 */
bb192ed9 1442static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1443{
1444 int nr = 0;
881db7fb 1445 void *fp;
81819f0f 1446 void *object = NULL;
f6edde9c 1447 int max_objects;
81819f0f 1448
bb192ed9
VB
1449 fp = slab->freelist;
1450 while (fp && nr <= slab->objects) {
81819f0f
CL
1451 if (fp == search)
1452 return 1;
bb192ed9 1453 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1454 if (object) {
bb192ed9 1455 object_err(s, slab, object,
81819f0f 1456 "Freechain corrupt");
a973e9dd 1457 set_freepointer(s, object, NULL);
81819f0f 1458 } else {
bb192ed9
VB
1459 slab_err(s, slab, "Freepointer corrupt");
1460 slab->freelist = NULL;
1461 slab->inuse = slab->objects;
24922684 1462 slab_fix(s, "Freelist cleared");
81819f0f
CL
1463 return 0;
1464 }
1465 break;
1466 }
1467 object = fp;
1468 fp = get_freepointer(s, object);
1469 nr++;
1470 }
1471
bb192ed9 1472 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1473 if (max_objects > MAX_OBJS_PER_PAGE)
1474 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1475
bb192ed9
VB
1476 if (slab->objects != max_objects) {
1477 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 slab->objects, max_objects);
1479 slab->objects = max_objects;
582d1212 1480 slab_fix(s, "Number of objects adjusted");
224a88be 1481 }
bb192ed9
VB
1482 if (slab->inuse != slab->objects - nr) {
1483 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 slab->inuse, slab->objects - nr);
1485 slab->inuse = slab->objects - nr;
582d1212 1486 slab_fix(s, "Object count adjusted");
81819f0f
CL
1487 }
1488 return search == NULL;
1489}
1490
bb192ed9 1491static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1492 int alloc)
3ec09742
CL
1493{
1494 if (s->flags & SLAB_TRACE) {
f9f58285 1495 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1496 s->name,
1497 alloc ? "alloc" : "free",
bb192ed9
VB
1498 object, slab->inuse,
1499 slab->freelist);
3ec09742
CL
1500
1501 if (!alloc)
aa2efd5e 1502 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1503 s->object_size);
3ec09742
CL
1504
1505 dump_stack();
1506 }
1507}
1508
643b1138 1509/*
672bba3a 1510 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1511 */
5cc6eee8 1512static void add_full(struct kmem_cache *s,
bb192ed9 1513 struct kmem_cache_node *n, struct slab *slab)
643b1138 1514{
5cc6eee8
CL
1515 if (!(s->flags & SLAB_STORE_USER))
1516 return;
1517
255d0884 1518 lockdep_assert_held(&n->list_lock);
bb192ed9 1519 list_add(&slab->slab_list, &n->full);
643b1138
CL
1520}
1521
bb192ed9 1522static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1523{
643b1138
CL
1524 if (!(s->flags & SLAB_STORE_USER))
1525 return;
1526
255d0884 1527 lockdep_assert_held(&n->list_lock);
bb192ed9 1528 list_del(&slab->slab_list);
643b1138
CL
1529}
1530
26c02cf0
AB
1531static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532{
1533 return atomic_long_read(&n->nr_slabs);
1534}
1535
205ab99d 1536static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1537{
1538 struct kmem_cache_node *n = get_node(s, node);
1539
3dd549a5
CZ
1540 atomic_long_inc(&n->nr_slabs);
1541 atomic_long_add(objects, &n->total_objects);
0f389ec6 1542}
205ab99d 1543static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1544{
1545 struct kmem_cache_node *n = get_node(s, node);
1546
1547 atomic_long_dec(&n->nr_slabs);
205ab99d 1548 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1549}
1550
1551/* Object debug checks for alloc/free paths */
c0f81a94 1552static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1553{
8fc8d666 1554 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1555 return;
1556
f7cb1933 1557 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1558 init_tracking(s, object);
1559}
1560
a50b854e 1561static
bb192ed9 1562void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1563{
8fc8d666 1564 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1565 return;
1566
1567 metadata_access_enable();
bb192ed9 1568 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1569 metadata_access_disable();
1570}
1571
becfda68 1572static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1573 struct slab *slab, void *object)
81819f0f 1574{
bb192ed9 1575 if (!check_slab(s, slab))
becfda68 1576 return 0;
81819f0f 1577
bb192ed9
VB
1578 if (!check_valid_pointer(s, slab, object)) {
1579 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1580 return 0;
81819f0f
CL
1581 }
1582
bb192ed9 1583 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1584 return 0;
1585
1586 return 1;
1587}
1588
fa9b88e4 1589static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1590 struct slab *slab, void *object, int orig_size)
becfda68
LA
1591{
1592 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1593 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1594 goto bad;
1595 }
81819f0f 1596
c7323a5a 1597 /* Success. Perform special debug activities for allocs */
bb192ed9 1598 trace(s, slab, object, 1);
6edf2576 1599 set_orig_size(s, object, orig_size);
f7cb1933 1600 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1601 return true;
3ec09742 1602
81819f0f 1603bad:
bb192ed9 1604 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1605 /*
1606 * If this is a slab page then lets do the best we can
1607 * to avoid issues in the future. Marking all objects
672bba3a 1608 * as used avoids touching the remaining objects.
81819f0f 1609 */
24922684 1610 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1611 slab->inuse = slab->objects;
1612 slab->freelist = NULL;
81819f0f 1613 }
fa9b88e4 1614 return false;
81819f0f
CL
1615}
1616
becfda68 1617static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1618 struct slab *slab, void *object, unsigned long addr)
81819f0f 1619{
bb192ed9
VB
1620 if (!check_valid_pointer(s, slab, object)) {
1621 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1622 return 0;
81819f0f
CL
1623 }
1624
bb192ed9
VB
1625 if (on_freelist(s, slab, object)) {
1626 object_err(s, slab, object, "Object already free");
becfda68 1627 return 0;
81819f0f
CL
1628 }
1629
bb192ed9 1630 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1631 return 0;
81819f0f 1632
bb192ed9
VB
1633 if (unlikely(s != slab->slab_cache)) {
1634 if (!folio_test_slab(slab_folio(slab))) {
1635 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1636 object);
bb192ed9 1637 } else if (!slab->slab_cache) {
f9f58285
FF
1638 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639 object);
70d71228 1640 dump_stack();
06428780 1641 } else
bb192ed9 1642 object_err(s, slab, object,
24922684 1643 "page slab pointer corrupt.");
becfda68
LA
1644 return 0;
1645 }
1646 return 1;
1647}
1648
e17f1dfb 1649/*
671776b3 1650 * Parse a block of slab_debug options. Blocks are delimited by ';'
e17f1dfb
VB
1651 *
1652 * @str: start of block
1653 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654 * @slabs: return start of list of slabs, or NULL when there's no list
1655 * @init: assume this is initial parsing and not per-kmem-create parsing
1656 *
1657 * returns the start of next block if there's any, or NULL
1658 */
1659static char *
1660parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1661{
e17f1dfb 1662 bool higher_order_disable = false;
f0630fff 1663
e17f1dfb
VB
1664 /* Skip any completely empty blocks */
1665 while (*str && *str == ';')
1666 str++;
1667
1668 if (*str == ',') {
f0630fff
CL
1669 /*
1670 * No options but restriction on slabs. This means full
1671 * debugging for slabs matching a pattern.
1672 */
e17f1dfb 1673 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1674 goto check_slabs;
e17f1dfb
VB
1675 }
1676 *flags = 0;
f0630fff 1677
e17f1dfb
VB
1678 /* Determine which debug features should be switched on */
1679 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1680 switch (tolower(*str)) {
e17f1dfb
VB
1681 case '-':
1682 *flags = 0;
1683 break;
f0630fff 1684 case 'f':
e17f1dfb 1685 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1686 break;
1687 case 'z':
e17f1dfb 1688 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1689 break;
1690 case 'p':
e17f1dfb 1691 *flags |= SLAB_POISON;
f0630fff
CL
1692 break;
1693 case 'u':
e17f1dfb 1694 *flags |= SLAB_STORE_USER;
f0630fff
CL
1695 break;
1696 case 't':
e17f1dfb 1697 *flags |= SLAB_TRACE;
f0630fff 1698 break;
4c13dd3b 1699 case 'a':
e17f1dfb 1700 *flags |= SLAB_FAILSLAB;
4c13dd3b 1701 break;
08303a73
CA
1702 case 'o':
1703 /*
1704 * Avoid enabling debugging on caches if its minimum
1705 * order would increase as a result.
1706 */
e17f1dfb 1707 higher_order_disable = true;
08303a73 1708 break;
f0630fff 1709 default:
e17f1dfb 1710 if (init)
671776b3 1711 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
f0630fff 1712 }
41ecc55b 1713 }
f0630fff 1714check_slabs:
41ecc55b 1715 if (*str == ',')
e17f1dfb
VB
1716 *slabs = ++str;
1717 else
1718 *slabs = NULL;
1719
1720 /* Skip over the slab list */
1721 while (*str && *str != ';')
1722 str++;
1723
1724 /* Skip any completely empty blocks */
1725 while (*str && *str == ';')
1726 str++;
1727
1728 if (init && higher_order_disable)
1729 disable_higher_order_debug = 1;
1730
1731 if (*str)
1732 return str;
1733 else
1734 return NULL;
1735}
1736
1737static int __init setup_slub_debug(char *str)
1738{
1739 slab_flags_t flags;
a7f1d485 1740 slab_flags_t global_flags;
e17f1dfb
VB
1741 char *saved_str;
1742 char *slab_list;
1743 bool global_slub_debug_changed = false;
1744 bool slab_list_specified = false;
1745
a7f1d485 1746 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1747 if (*str++ != '=' || !*str)
1748 /*
1749 * No options specified. Switch on full debugging.
1750 */
1751 goto out;
1752
1753 saved_str = str;
1754 while (str) {
1755 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756
1757 if (!slab_list) {
a7f1d485 1758 global_flags = flags;
e17f1dfb
VB
1759 global_slub_debug_changed = true;
1760 } else {
1761 slab_list_specified = true;
5cf909c5 1762 if (flags & SLAB_STORE_USER)
1c0310ad 1763 stack_depot_request_early_init();
e17f1dfb
VB
1764 }
1765 }
1766
1767 /*
1768 * For backwards compatibility, a single list of flags with list of
a7f1d485 1769 * slabs means debugging is only changed for those slabs, so the global
671776b3 1770 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
a7f1d485 1771 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1772 * long as there is no option specifying flags without a slab list.
1773 */
1774 if (slab_list_specified) {
1775 if (!global_slub_debug_changed)
a7f1d485 1776 global_flags = slub_debug;
e17f1dfb
VB
1777 slub_debug_string = saved_str;
1778 }
f0630fff 1779out:
a7f1d485 1780 slub_debug = global_flags;
5cf909c5 1781 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1782 stack_depot_request_early_init();
ca0cab65
VB
1783 if (slub_debug != 0 || slub_debug_string)
1784 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1785 else
1786 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1787 if ((static_branch_unlikely(&init_on_alloc) ||
1788 static_branch_unlikely(&init_on_free)) &&
1789 (slub_debug & SLAB_POISON))
1790 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1791 return 1;
1792}
1793
671776b3
XS
1794__setup("slab_debug", setup_slub_debug);
1795__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
41ecc55b 1796
c5fd3ca0
AT
1797/*
1798 * kmem_cache_flags - apply debugging options to the cache
c5fd3ca0
AT
1799 * @flags: flags to set
1800 * @name: name of the cache
c5fd3ca0
AT
1801 *
1802 * Debug option(s) are applied to @flags. In addition to the debug
1803 * option(s), if a slab name (or multiple) is specified i.e.
671776b3 1804 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
c5fd3ca0
AT
1805 * then only the select slabs will receive the debug option(s).
1806 */
303cd693 1807slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
41ecc55b 1808{
c5fd3ca0
AT
1809 char *iter;
1810 size_t len;
e17f1dfb
VB
1811 char *next_block;
1812 slab_flags_t block_flags;
ca220593
JB
1813 slab_flags_t slub_debug_local = slub_debug;
1814
a285909f
HY
1815 if (flags & SLAB_NO_USER_FLAGS)
1816 return flags;
1817
ca220593
JB
1818 /*
1819 * If the slab cache is for debugging (e.g. kmemleak) then
1820 * don't store user (stack trace) information by default,
1821 * but let the user enable it via the command line below.
1822 */
1823 if (flags & SLAB_NOLEAKTRACE)
1824 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1825
c5fd3ca0 1826 len = strlen(name);
e17f1dfb
VB
1827 next_block = slub_debug_string;
1828 /* Go through all blocks of debug options, see if any matches our slab's name */
1829 while (next_block) {
1830 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831 if (!iter)
1832 continue;
1833 /* Found a block that has a slab list, search it */
1834 while (*iter) {
1835 char *end, *glob;
1836 size_t cmplen;
1837
1838 end = strchrnul(iter, ',');
1839 if (next_block && next_block < end)
1840 end = next_block - 1;
1841
1842 glob = strnchr(iter, end - iter, '*');
1843 if (glob)
1844 cmplen = glob - iter;
1845 else
1846 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1847
e17f1dfb
VB
1848 if (!strncmp(name, iter, cmplen)) {
1849 flags |= block_flags;
1850 return flags;
1851 }
c5fd3ca0 1852
e17f1dfb
VB
1853 if (!*end || *end == ';')
1854 break;
1855 iter = end + 1;
c5fd3ca0 1856 }
c5fd3ca0 1857 }
ba0268a8 1858
ca220593 1859 return flags | slub_debug_local;
41ecc55b 1860}
b4a64718 1861#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1862static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1863static inline
bb192ed9 1864void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1865
fa9b88e4
VB
1866static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1868
fa9b88e4
VB
1869static inline bool free_debug_processing(struct kmem_cache *s,
1870 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1872
a204e6d6 1873static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1874static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1875 void *object, u8 val) { return 1; }
fa9b88e4 1876static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1877static inline void set_track(struct kmem_cache *s, void *object,
1878 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1879static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1880 struct slab *slab) {}
c65c1877 1881static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1882 struct slab *slab) {}
303cd693 1883slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
ba0268a8
CL
1884{
1885 return flags;
1886}
41ecc55b 1887#define slub_debug 0
0f389ec6 1888
fdaa45e9
IM
1889#define disable_higher_order_debug 0
1890
26c02cf0
AB
1891static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892 { return 0; }
205ab99d
CL
1893static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894 int objects) {}
1895static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896 int objects) {}
7d550c56 1897
0af8489b 1898#ifndef CONFIG_SLUB_TINY
bb192ed9 1899static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1900 void **freelist, void *nextfree)
52f23478
DZ
1901{
1902 return false;
1903}
0af8489b 1904#endif
02e72cc6
AR
1905#endif /* CONFIG_SLUB_DEBUG */
1906
21c690a3
SB
1907#ifdef CONFIG_SLAB_OBJ_EXT
1908
239d6c96
SB
1909#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910
1911static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
0bedcc66 1912{
239d6c96
SB
1913 struct slabobj_ext *slab_exts;
1914 struct slab *obj_exts_slab;
1915
1916 obj_exts_slab = virt_to_slab(obj_exts);
1917 slab_exts = slab_obj_exts(obj_exts_slab);
1918 if (slab_exts) {
1919 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 obj_exts_slab, obj_exts);
1921 /* codetag should be NULL */
1922 WARN_ON(slab_exts[offs].ref.ct);
1923 set_codetag_empty(&slab_exts[offs].ref);
1924 }
0bedcc66
VB
1925}
1926
09c46563 1927static inline void mark_failed_objexts_alloc(struct slab *slab)
0bedcc66 1928{
09c46563 1929 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
0bedcc66
VB
1930}
1931
09c46563
SB
1932static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 struct slabobj_ext *vec, unsigned int objects)
0bedcc66
VB
1934{
1935 /*
09c46563
SB
1936 * If vector previously failed to allocate then we have live
1937 * objects with no tag reference. Mark all references in this
1938 * vector as empty to avoid warnings later on.
0bedcc66 1939 */
09c46563
SB
1940 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1941 unsigned int i;
1942
1943 for (i = 0; i < objects; i++)
1944 set_codetag_empty(&vec[i].ref);
1945 }
0bedcc66
VB
1946}
1947
239d6c96
SB
1948#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949
1950static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
09c46563
SB
1951static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 struct slabobj_ext *vec, unsigned int objects) {}
239d6c96
SB
1954
1955#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1956
0bedcc66 1957/*
21c690a3
SB
1958 * The allocated objcg pointers array is not accounted directly.
1959 * Moreover, it should not come from DMA buffer and is not readily
1960 * reclaimable. So those GFP bits should be masked off.
0bedcc66 1961 */
21c690a3
SB
1962#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1963 __GFP_ACCOUNT | __GFP_NOFAIL)
1964
e6100a45
VB
1965int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 gfp_t gfp, bool new_slab)
21c690a3
SB
1967{
1968 unsigned int objects = objs_per_slab(s, slab);
09c46563
SB
1969 unsigned long new_exts;
1970 unsigned long old_exts;
1971 struct slabobj_ext *vec;
21c690a3
SB
1972
1973 gfp &= ~OBJCGS_CLEAR_MASK;
768c33be
SB
1974 /* Prevent recursive extension vector allocation */
1975 gfp |= __GFP_NO_OBJ_EXT;
21c690a3
SB
1976 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1977 slab_nid(slab));
09c46563
SB
1978 if (!vec) {
1979 /* Mark vectors which failed to allocate */
1980 if (new_slab)
1981 mark_failed_objexts_alloc(slab);
1982
21c690a3 1983 return -ENOMEM;
09c46563 1984 }
21c690a3 1985
09c46563 1986 new_exts = (unsigned long)vec;
21c690a3 1987#ifdef CONFIG_MEMCG
09c46563 1988 new_exts |= MEMCG_DATA_OBJEXTS;
21c690a3 1989#endif
3f0c44c8 1990 old_exts = READ_ONCE(slab->obj_exts);
09c46563 1991 handle_failed_objexts_alloc(old_exts, vec, objects);
21c690a3
SB
1992 if (new_slab) {
1993 /*
1994 * If the slab is brand new and nobody can yet access its
1995 * obj_exts, no synchronization is required and obj_exts can
1996 * be simply assigned.
1997 */
09c46563 1998 slab->obj_exts = new_exts;
3f0c44c8
TLSC
1999 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
21c690a3
SB
2001 /*
2002 * If the slab is already in use, somebody can allocate and
2003 * assign slabobj_exts in parallel. In this case the existing
2004 * objcg vector should be reused.
2005 */
239d6c96 2006 mark_objexts_empty(vec);
21c690a3
SB
2007 kfree(vec);
2008 return 0;
2009 }
2010
2011 kmemleak_not_leak(vec);
2012 return 0;
2013}
2014
2015static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 2016{
21c690a3
SB
2017 struct slabobj_ext *obj_exts;
2018
2019 obj_exts = slab_obj_exts(slab);
2020 if (!obj_exts)
2021 return;
2022
0bedcc66 2023 /*
239d6c96
SB
2024 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 * warning if slab has extensions but the extension of an object is
2027 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 * the extension for obj_exts is expected to be NULL.
0bedcc66 2029 */
239d6c96 2030 mark_objexts_empty(obj_exts);
21c690a3
SB
2031 kfree(obj_exts);
2032 slab->obj_exts = 0;
2033}
4b873696
SB
2034
2035static inline bool need_slab_obj_ext(void)
2036{
2037 if (mem_alloc_profiling_enabled())
0bedcc66
VB
2038 return true;
2039
4b873696 2040 /*
3a3b7fec 2041 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
4b873696
SB
2042 * inside memcg_slab_post_alloc_hook. No other users for now.
2043 */
2044 return false;
2045}
0bedcc66 2046
7b1fdf2b
SB
2047#else /* CONFIG_SLAB_OBJ_EXT */
2048
2049static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 gfp_t gfp, bool new_slab)
2051{
2052 return 0;
2053}
2054
2055static inline void free_slab_obj_exts(struct slab *slab)
2056{
2057}
2058
2059static inline bool need_slab_obj_ext(void)
2060{
2061 return false;
2062}
2063
2064#endif /* CONFIG_SLAB_OBJ_EXT */
2065
2066#ifdef CONFIG_MEM_ALLOC_PROFILING
2067
4b873696
SB
2068static inline struct slabobj_ext *
2069prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070{
2071 struct slab *slab;
0bedcc66 2072
4b873696
SB
2073 if (!p)
2074 return NULL;
0bedcc66 2075
3b89ec41 2076 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
4b873696 2077 return NULL;
0bedcc66 2078
4b873696
SB
2079 if (flags & __GFP_NO_OBJ_EXT)
2080 return NULL;
2081
2082 slab = virt_to_slab(p);
2083 if (!slab_obj_exts(slab) &&
2084 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 "%s, %s: Failed to create slab extension vector!\n",
2086 __func__, s->name))
2087 return NULL;
2088
2089 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
0bedcc66
VB
2090}
2091
302a3ea3
SB
2092static inline void
2093alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094{
2095 if (need_slab_obj_ext()) {
2096 struct slabobj_ext *obj_exts;
2097
2098 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 /*
2100 * Currently obj_exts is used only for allocation profiling.
2101 * If other users appear then mem_alloc_profiling_enabled()
2102 * check should be added before alloc_tag_add().
2103 */
2104 if (likely(obj_exts))
2105 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2106 }
2107}
2108
4b873696
SB
2109static inline void
2110alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2111 int objects)
3450a0e5 2112{
4b873696
SB
2113 struct slabobj_ext *obj_exts;
2114 int i;
3450a0e5 2115
4b873696
SB
2116 if (!mem_alloc_profiling_enabled())
2117 return;
3450a0e5 2118
4b873696
SB
2119 obj_exts = slab_obj_exts(slab);
2120 if (!obj_exts)
2121 return;
2122
2123 for (i = 0; i < objects; i++) {
2124 unsigned int off = obj_to_index(s, slab, p[i]);
2125
2126 alloc_tag_sub(&obj_exts[off].ref, s->size);
2127 }
0bedcc66 2128}
0bedcc66 2129
302a3ea3 2130#else /* CONFIG_MEM_ALLOC_PROFILING */
0bedcc66 2131
302a3ea3
SB
2132static inline void
2133alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
4b873696 2134{
4b873696 2135}
0bedcc66 2136
4b873696
SB
2137static inline void
2138alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2139 int objects)
2140{
0bedcc66
VB
2141}
2142
302a3ea3
SB
2143#endif /* CONFIG_MEM_ALLOC_PROFILING */
2144
0bedcc66 2145
3a3b7fec 2146#ifdef CONFIG_MEMCG
0bedcc66 2147
9f9796b4
VB
2148static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2149
3450a0e5 2150static __fastpath_inline
9f9796b4 2151bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
2152 gfp_t flags, size_t size, void **p)
2153{
9f9796b4 2154 if (likely(!memcg_kmem_online()))
3450a0e5 2155 return true;
3450a0e5 2156
3450a0e5
VB
2157 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2158 return true;
0bedcc66 2159
9f9796b4
VB
2160 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2161 return true;
0bedcc66 2162
9f9796b4
VB
2163 if (likely(size == 1)) {
2164 memcg_alloc_abort_single(s, *p);
2165 *p = NULL;
2166 } else {
2167 kmem_cache_free_bulk(s, size, p);
0bedcc66 2168 }
3450a0e5 2169
9f9796b4 2170 return false;
0bedcc66 2171}
ecf9a253
VB
2172
2173static __fastpath_inline
2174void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2175 int objects)
2176{
21c690a3 2177 struct slabobj_ext *obj_exts;
ecf9a253
VB
2178
2179 if (!memcg_kmem_online())
2180 return;
2181
21c690a3
SB
2182 obj_exts = slab_obj_exts(slab);
2183 if (likely(!obj_exts))
ecf9a253
VB
2184 return;
2185
21c690a3 2186 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
520a688a 2187}
3a3b7fec 2188#else /* CONFIG_MEMCG */
9f9796b4
VB
2189static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2190 struct list_lru *lru,
0bedcc66
VB
2191 gfp_t flags, size_t size,
2192 void **p)
2193{
9f9796b4 2194 return true;
0bedcc66
VB
2195}
2196
2197static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2198 void **p, int objects)
2199{
2200}
3a3b7fec 2201#endif /* CONFIG_MEMCG */
0bedcc66 2202
02e72cc6
AR
2203/*
2204 * Hooks for other subsystems that check memory allocations. In a typical
2205 * production configuration these hooks all should produce no code at all.
284f17ac
VB
2206 *
2207 * Returns true if freeing of the object can proceed, false if its reuse
782f8906 2208 * was delayed by KASAN quarantine, or it was returned to KFENCE.
02e72cc6 2209 */
284f17ac
VB
2210static __always_inline
2211bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
d56791b3
RB
2212{
2213 kmemleak_free_recursive(x, s->flags);
68ef169a 2214 kmsan_slab_free(s, x);
7d550c56 2215
84048039 2216 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 2217
02e72cc6
AR
2218 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2219 debug_check_no_obj_freed(x, s->object_size);
0316bec2 2220
cfbe1636
ME
2221 /* Use KCSAN to help debug racy use-after-free. */
2222 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2223 __kcsan_check_access(x, s->object_size,
2224 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2225
782f8906
VB
2226 if (kfence_free(x))
2227 return false;
2228
d57a964e
AK
2229 /*
2230 * As memory initialization might be integrated into KASAN,
2231 * kasan_slab_free and initialization memset's must be
2232 * kept together to avoid discrepancies in behavior.
2233 *
2234 * The initialization memset's clear the object and the metadata,
2235 * but don't touch the SLAB redzone.
8f828aa4
NB
2236 *
2237 * The object's freepointer is also avoided if stored outside the
2238 * object.
d57a964e 2239 */
ecf9a253 2240 if (unlikely(init)) {
d57a964e 2241 int rsize;
8f828aa4 2242 unsigned int inuse;
d57a964e 2243
8f828aa4 2244 inuse = get_info_end(s);
d57a964e
AK
2245 if (!kasan_has_integrated_init())
2246 memset(kasan_reset_tag(x), 0, s->object_size);
2247 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
8f828aa4
NB
2248 memset((char *)kasan_reset_tag(x) + inuse, 0,
2249 s->size - inuse - rsize);
d57a964e
AK
2250 }
2251 /* KASAN might put x into memory quarantine, delaying its reuse. */
284f17ac 2252 return !kasan_slab_free(s, x, init);
02e72cc6 2253}
205ab99d 2254
9ea9cd8e
KO
2255static __fastpath_inline
2256bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2257 int *cnt)
81084651 2258{
6471384a
AP
2259
2260 void *object;
2261 void *next = *head;
284f17ac 2262 void *old_tail = *tail;
782f8906 2263 bool init;
6471384a 2264
b89fb5ef 2265 if (is_kfence_address(next)) {
d57a964e 2266 slab_free_hook(s, next, false);
782f8906 2267 return false;
b89fb5ef
AP
2268 }
2269
aea4df4c
LA
2270 /* Head and tail of the reconstructed freelist */
2271 *head = NULL;
2272 *tail = NULL;
1b7e816f 2273
782f8906
VB
2274 init = slab_want_init_on_free(s);
2275
aea4df4c
LA
2276 do {
2277 object = next;
2278 next = get_freepointer(s, object);
2279
c3895391 2280 /* If object's reuse doesn't have to be delayed */
782f8906 2281 if (likely(slab_free_hook(s, object, init))) {
c3895391
AK
2282 /* Move object to the new freelist */
2283 set_freepointer(s, object, *head);
2284 *head = object;
2285 if (!*tail)
2286 *tail = object;
899447f6
ML
2287 } else {
2288 /*
2289 * Adjust the reconstructed freelist depth
2290 * accordingly if object's reuse is delayed.
2291 */
2292 --(*cnt);
c3895391
AK
2293 }
2294 } while (object != old_tail);
2295
c3895391 2296 return *head != NULL;
81084651
JDB
2297}
2298
c0f81a94 2299static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 2300{
c0f81a94 2301 setup_object_debug(s, object);
4d176711 2302 object = kasan_init_slab_obj(s, object);
588f8ba9 2303 if (unlikely(s->ctor)) {
1ce9a052 2304 kasan_unpoison_new_object(s, object);
588f8ba9 2305 s->ctor(object);
1ce9a052 2306 kasan_poison_new_object(s, object);
588f8ba9 2307 }
4d176711 2308 return object;
588f8ba9
TG
2309}
2310
81819f0f
CL
2311/*
2312 * Slab allocation and freeing
2313 */
a485e1da
XS
2314static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2315 struct kmem_cache_order_objects oo)
65c3376a 2316{
45387b8c
VB
2317 struct folio *folio;
2318 struct slab *slab;
19af27af 2319 unsigned int order = oo_order(oo);
65c3376a 2320
8014c46a 2321 folio = (struct folio *)alloc_pages_node(node, flags, order);
45387b8c
VB
2322 if (!folio)
2323 return NULL;
2324
2325 slab = folio_slab(folio);
2326 __folio_set_slab(folio);
8b881763
VB
2327 /* Make the flag visible before any changes to folio->mapping */
2328 smp_wmb();
02d65d6f 2329 if (folio_is_pfmemalloc(folio))
45387b8c
VB
2330 slab_set_pfmemalloc(slab);
2331
2332 return slab;
65c3376a
CL
2333}
2334
210e7a43
TG
2335#ifdef CONFIG_SLAB_FREELIST_RANDOM
2336/* Pre-initialize the random sequence cache */
2337static int init_cache_random_seq(struct kmem_cache *s)
2338{
19af27af 2339 unsigned int count = oo_objects(s->oo);
210e7a43 2340 int err;
210e7a43 2341
a810007a
SR
2342 /* Bailout if already initialised */
2343 if (s->random_seq)
2344 return 0;
2345
210e7a43
TG
2346 err = cache_random_seq_create(s, count, GFP_KERNEL);
2347 if (err) {
2348 pr_err("SLUB: Unable to initialize free list for %s\n",
2349 s->name);
2350 return err;
2351 }
2352
2353 /* Transform to an offset on the set of pages */
2354 if (s->random_seq) {
19af27af
AD
2355 unsigned int i;
2356
210e7a43
TG
2357 for (i = 0; i < count; i++)
2358 s->random_seq[i] *= s->size;
2359 }
2360 return 0;
2361}
2362
2363/* Initialize each random sequence freelist per cache */
2364static void __init init_freelist_randomization(void)
2365{
2366 struct kmem_cache *s;
2367
2368 mutex_lock(&slab_mutex);
2369
2370 list_for_each_entry(s, &slab_caches, list)
2371 init_cache_random_seq(s);
2372
2373 mutex_unlock(&slab_mutex);
2374}
2375
2376/* Get the next entry on the pre-computed freelist randomized */
c63349fc 2377static void *next_freelist_entry(struct kmem_cache *s,
210e7a43
TG
2378 unsigned long *pos, void *start,
2379 unsigned long page_limit,
2380 unsigned long freelist_count)
2381{
2382 unsigned int idx;
2383
2384 /*
2385 * If the target page allocation failed, the number of objects on the
2386 * page might be smaller than the usual size defined by the cache.
2387 */
2388 do {
2389 idx = s->random_seq[*pos];
2390 *pos += 1;
2391 if (*pos >= freelist_count)
2392 *pos = 0;
2393 } while (unlikely(idx >= page_limit));
2394
2395 return (char *)start + idx;
2396}
2397
2398/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 2399static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2400{
2401 void *start;
2402 void *cur;
2403 void *next;
2404 unsigned long idx, pos, page_limit, freelist_count;
2405
bb192ed9 2406 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
2407 return false;
2408
2409 freelist_count = oo_objects(s->oo);
8032bf12 2410 pos = get_random_u32_below(freelist_count);
210e7a43 2411
bb192ed9
VB
2412 page_limit = slab->objects * s->size;
2413 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
2414
2415 /* First entry is used as the base of the freelist */
c63349fc 2416 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
c0f81a94 2417 cur = setup_object(s, cur);
bb192ed9 2418 slab->freelist = cur;
210e7a43 2419
bb192ed9 2420 for (idx = 1; idx < slab->objects; idx++) {
c63349fc 2421 next = next_freelist_entry(s, &pos, start, page_limit,
210e7a43 2422 freelist_count);
c0f81a94 2423 next = setup_object(s, next);
210e7a43
TG
2424 set_freepointer(s, cur, next);
2425 cur = next;
2426 }
210e7a43
TG
2427 set_freepointer(s, cur, NULL);
2428
2429 return true;
2430}
2431#else
2432static inline int init_cache_random_seq(struct kmem_cache *s)
2433{
2434 return 0;
2435}
2436static inline void init_freelist_randomization(void) { }
bb192ed9 2437static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2438{
2439 return false;
2440}
2441#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2442
0bedcc66
VB
2443static __always_inline void account_slab(struct slab *slab, int order,
2444 struct kmem_cache *s, gfp_t gfp)
2445{
2446 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
21c690a3 2447 alloc_slab_obj_exts(slab, s, gfp, true);
0bedcc66
VB
2448
2449 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2450 PAGE_SIZE << order);
2451}
2452
2453static __always_inline void unaccount_slab(struct slab *slab, int order,
2454 struct kmem_cache *s)
2455{
4b873696 2456 if (memcg_kmem_online() || need_slab_obj_ext())
21c690a3 2457 free_slab_obj_exts(slab);
0bedcc66
VB
2458
2459 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2460 -(PAGE_SIZE << order));
2461}
2462
bb192ed9 2463static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 2464{
bb192ed9 2465 struct slab *slab;
834f3d11 2466 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2467 gfp_t alloc_gfp;
4d176711 2468 void *start, *p, *next;
a50b854e 2469 int idx;
210e7a43 2470 bool shuffle;
81819f0f 2471
7e0528da
CL
2472 flags &= gfp_allowed_mask;
2473
b7a49f0d 2474 flags |= s->allocflags;
e12ba74d 2475
ba52270d
PE
2476 /*
2477 * Let the initial higher-order allocation fail under memory pressure
2478 * so we fall-back to the minimum order allocation.
2479 */
2480 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2481 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2482 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2483
a485e1da 2484 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2485 if (unlikely(!slab)) {
65c3376a 2486 oo = s->min;
80c3a998 2487 alloc_gfp = flags;
65c3376a
CL
2488 /*
2489 * Allocation may have failed due to fragmentation.
2490 * Try a lower order alloc if possible
2491 */
a485e1da 2492 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2493 if (unlikely(!slab))
c7323a5a 2494 return NULL;
588f8ba9 2495 stat(s, ORDER_FALLBACK);
65c3376a 2496 }
5a896d9e 2497
bb192ed9 2498 slab->objects = oo_objects(oo);
c7323a5a
VB
2499 slab->inuse = 0;
2500 slab->frozen = 0;
81819f0f 2501
bb192ed9 2502 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2503
bb192ed9 2504 slab->slab_cache = s;
81819f0f 2505
6e48a966 2506 kasan_poison_slab(slab);
81819f0f 2507
bb192ed9 2508 start = slab_address(slab);
81819f0f 2509
bb192ed9 2510 setup_slab_debug(s, slab, start);
0316bec2 2511
bb192ed9 2512 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2513
2514 if (!shuffle) {
4d176711 2515 start = fixup_red_left(s, start);
c0f81a94 2516 start = setup_object(s, start);
bb192ed9
VB
2517 slab->freelist = start;
2518 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2519 next = p + s->size;
c0f81a94 2520 next = setup_object(s, next);
18e50661
AK
2521 set_freepointer(s, p, next);
2522 p = next;
2523 }
2524 set_freepointer(s, p, NULL);
81819f0f 2525 }
81819f0f 2526
bb192ed9 2527 return slab;
81819f0f
CL
2528}
2529
bb192ed9 2530static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2531{
44405099
LL
2532 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2533 flags = kmalloc_fix_flags(flags);
588f8ba9 2534
53a0de06
VB
2535 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2536
588f8ba9
TG
2537 return allocate_slab(s,
2538 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2539}
2540
4020b4a2 2541static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2542{
4020b4a2
VB
2543 struct folio *folio = slab_folio(slab);
2544 int order = folio_order(folio);
834f3d11 2545 int pages = 1 << order;
81819f0f 2546
4020b4a2 2547 __slab_clear_pfmemalloc(slab);
4020b4a2 2548 folio->mapping = NULL;
8b881763
VB
2549 /* Make the mapping reset visible before clearing the flag */
2550 smp_wmb();
2551 __folio_clear_slab(folio);
c7b23b68 2552 mm_account_reclaimed_pages(pages);
4020b4a2 2553 unaccount_slab(slab, order, s);
c034c6a4 2554 __free_pages(&folio->page, order);
81819f0f
CL
2555}
2556
2557static void rcu_free_slab(struct rcu_head *h)
2558{
bb192ed9 2559 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2560
bb192ed9 2561 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2562}
2563
bb192ed9 2564static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2565{
bc29d5bd
VB
2566 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2567 void *p;
2568
2569 slab_pad_check(s, slab);
2570 for_each_object(p, s, slab_address(slab), slab->objects)
2571 check_object(s, slab, p, SLUB_RED_INACTIVE);
2572 }
2573
2574 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2575 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2576 else
bb192ed9 2577 __free_slab(s, slab);
81819f0f
CL
2578}
2579
bb192ed9 2580static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2581{
bb192ed9
VB
2582 dec_slabs_node(s, slab_nid(slab), slab->objects);
2583 free_slab(s, slab);
81819f0f
CL
2584}
2585
8a399e2f
CZ
2586/*
2587 * SLUB reuses PG_workingset bit to keep track of whether it's on
2588 * the per-node partial list.
2589 */
2590static inline bool slab_test_node_partial(const struct slab *slab)
2591{
4d2bcefa 2592 return folio_test_workingset(slab_folio(slab));
8a399e2f
CZ
2593}
2594
2595static inline void slab_set_node_partial(struct slab *slab)
2596{
2597 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2598}
2599
2600static inline void slab_clear_node_partial(struct slab *slab)
2601{
2602 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2603}
2604
81819f0f 2605/*
5cc6eee8 2606 * Management of partially allocated slabs.
81819f0f 2607 */
1e4dd946 2608static inline void
bb192ed9 2609__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2610{
e95eed57 2611 n->nr_partial++;
136333d1 2612 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2613 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2614 else
bb192ed9 2615 list_add(&slab->slab_list, &n->partial);
8a399e2f 2616 slab_set_node_partial(slab);
81819f0f
CL
2617}
2618
1e4dd946 2619static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2620 struct slab *slab, int tail)
62e346a8 2621{
c65c1877 2622 lockdep_assert_held(&n->list_lock);
bb192ed9 2623 __add_partial(n, slab, tail);
1e4dd946 2624}
c65c1877 2625
1e4dd946 2626static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2627 struct slab *slab)
1e4dd946
SR
2628{
2629 lockdep_assert_held(&n->list_lock);
bb192ed9 2630 list_del(&slab->slab_list);
8a399e2f 2631 slab_clear_node_partial(slab);
52b4b950 2632 n->nr_partial--;
1e4dd946
SR
2633}
2634
c7323a5a 2635/*
8cd3fa42 2636 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
c7323a5a
VB
2637 * slab from the n->partial list. Remove only a single object from the slab, do
2638 * the alloc_debug_processing() checks and leave the slab on the list, or move
2639 * it to full list if it was the last free object.
2640 */
2641static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2642 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2643{
2644 void *object;
2645
2646 lockdep_assert_held(&n->list_lock);
2647
2648 object = slab->freelist;
2649 slab->freelist = get_freepointer(s, object);
2650 slab->inuse++;
2651
6edf2576 2652 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2653 remove_partial(n, slab);
2654 return NULL;
2655 }
2656
2657 if (slab->inuse == slab->objects) {
2658 remove_partial(n, slab);
2659 add_full(s, n, slab);
2660 }
2661
2662 return object;
2663}
2664
2665/*
2666 * Called only for kmem_cache_debug() caches to allocate from a freshly
2667 * allocated slab. Allocate a single object instead of whole freelist
2668 * and put the slab to the partial (or full) list.
2669 */
2670static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2671 struct slab *slab, int orig_size)
c7323a5a
VB
2672{
2673 int nid = slab_nid(slab);
2674 struct kmem_cache_node *n = get_node(s, nid);
2675 unsigned long flags;
2676 void *object;
2677
2678
2679 object = slab->freelist;
2680 slab->freelist = get_freepointer(s, object);
2681 slab->inuse = 1;
2682
6edf2576 2683 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2684 /*
2685 * It's not really expected that this would fail on a
2686 * freshly allocated slab, but a concurrent memory
2687 * corruption in theory could cause that.
2688 */
2689 return NULL;
2690
2691 spin_lock_irqsave(&n->list_lock, flags);
2692
2693 if (slab->inuse == slab->objects)
2694 add_full(s, n, slab);
2695 else
2696 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2697
2698 inc_slabs_node(s, nid, slab->objects);
2699 spin_unlock_irqrestore(&n->list_lock, flags);
2700
2701 return object;
2702}
2703
e0a043aa 2704#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2705static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2706#else
bb192ed9 2707static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2708 int drain) { }
2709#endif
01b34d16 2710static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2711
81819f0f 2712/*
672bba3a 2713 * Try to allocate a partial slab from a specific node.
81819f0f 2714 */
43c4c349
CZ
2715static struct slab *get_partial_node(struct kmem_cache *s,
2716 struct kmem_cache_node *n,
2717 struct partial_context *pc)
81819f0f 2718{
43c4c349 2719 struct slab *slab, *slab2, *partial = NULL;
4b1f449d 2720 unsigned long flags;
bb192ed9 2721 unsigned int partial_slabs = 0;
81819f0f
CL
2722
2723 /*
2724 * Racy check. If we mistakenly see no partial slabs then we
2725 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2726 * partial slab and there is none available then get_partial()
672bba3a 2727 * will return NULL.
81819f0f
CL
2728 */
2729 if (!n || !n->nr_partial)
2730 return NULL;
2731
4b1f449d 2732 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2733 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
6edf2576 2734 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2735 continue;
2736
0af8489b 2737 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
8cd3fa42 2738 void *object = alloc_single_from_partial(s, n, slab,
6edf2576 2739 pc->orig_size);
43c4c349
CZ
2740 if (object) {
2741 partial = slab;
2742 pc->object = object;
c7323a5a 2743 break;
43c4c349 2744 }
c7323a5a
VB
2745 continue;
2746 }
2747
8cd3fa42 2748 remove_partial(n, slab);
49e22585 2749
43c4c349
CZ
2750 if (!partial) {
2751 partial = slab;
49e22585 2752 stat(s, ALLOC_FROM_PARTIAL);
ff99b18f
XS
2753
2754 if ((slub_get_cpu_partial(s) == 0)) {
2755 break;
2756 }
49e22585 2757 } else {
bb192ed9 2758 put_cpu_partial(s, slab, 0);
8028dcea 2759 stat(s, CPU_PARTIAL_NODE);
49e22585 2760
ff99b18f
XS
2761 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2762 break;
2763 }
2764 }
497b66f2 2765 }
4b1f449d 2766 spin_unlock_irqrestore(&n->list_lock, flags);
43c4c349 2767 return partial;
81819f0f
CL
2768}
2769
2770/*
c2092c12 2771 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2772 */
43c4c349
CZ
2773static struct slab *get_any_partial(struct kmem_cache *s,
2774 struct partial_context *pc)
81819f0f
CL
2775{
2776#ifdef CONFIG_NUMA
2777 struct zonelist *zonelist;
dd1a239f 2778 struct zoneref *z;
54a6eb5c 2779 struct zone *zone;
6edf2576 2780 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
43c4c349 2781 struct slab *slab;
cc9a6c87 2782 unsigned int cpuset_mems_cookie;
81819f0f
CL
2783
2784 /*
672bba3a
CL
2785 * The defrag ratio allows a configuration of the tradeoffs between
2786 * inter node defragmentation and node local allocations. A lower
2787 * defrag_ratio increases the tendency to do local allocations
2788 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2789 *
672bba3a
CL
2790 * If the defrag_ratio is set to 0 then kmalloc() always
2791 * returns node local objects. If the ratio is higher then kmalloc()
2792 * may return off node objects because partial slabs are obtained
2793 * from other nodes and filled up.
81819f0f 2794 *
43efd3ea
LP
2795 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2796 * (which makes defrag_ratio = 1000) then every (well almost)
2797 * allocation will first attempt to defrag slab caches on other nodes.
2798 * This means scanning over all nodes to look for partial slabs which
2799 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2800 * with available objects.
81819f0f 2801 */
9824601e
CL
2802 if (!s->remote_node_defrag_ratio ||
2803 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2804 return NULL;
2805
cc9a6c87 2806 do {
d26914d1 2807 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2808 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2809 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2810 struct kmem_cache_node *n;
2811
2812 n = get_node(s, zone_to_nid(zone));
2813
6edf2576 2814 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2815 n->nr_partial > s->min_partial) {
43c4c349
CZ
2816 slab = get_partial_node(s, n, pc);
2817 if (slab) {
cc9a6c87 2818 /*
d26914d1
MG
2819 * Don't check read_mems_allowed_retry()
2820 * here - if mems_allowed was updated in
2821 * parallel, that was a harmless race
2822 * between allocation and the cpuset
2823 * update
cc9a6c87 2824 */
43c4c349 2825 return slab;
cc9a6c87 2826 }
c0ff7453 2827 }
81819f0f 2828 }
d26914d1 2829 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2830#endif /* CONFIG_NUMA */
81819f0f
CL
2831 return NULL;
2832}
2833
2834/*
c2092c12 2835 * Get a partial slab, lock it and return it.
81819f0f 2836 */
43c4c349
CZ
2837static struct slab *get_partial(struct kmem_cache *s, int node,
2838 struct partial_context *pc)
81819f0f 2839{
43c4c349 2840 struct slab *slab;
a561ce00
JK
2841 int searchnode = node;
2842
2843 if (node == NUMA_NO_NODE)
2844 searchnode = numa_mem_id();
81819f0f 2845
43c4c349 2846 slab = get_partial_node(s, get_node(s, searchnode), pc);
9198ffbd 2847 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
43c4c349 2848 return slab;
81819f0f 2849
6edf2576 2850 return get_any_partial(s, pc);
81819f0f
CL
2851}
2852
0af8489b
VB
2853#ifndef CONFIG_SLUB_TINY
2854
923717cb 2855#ifdef CONFIG_PREEMPTION
8a5ec0ba 2856/*
0d645ed1 2857 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2858 * during cmpxchg. The transactions start with the cpu number and are then
2859 * incremented by CONFIG_NR_CPUS.
2860 */
2861#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2862#else
2863/*
2864 * No preemption supported therefore also no need to check for
2865 * different cpus.
2866 */
2867#define TID_STEP 1
0af8489b 2868#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2869
2870static inline unsigned long next_tid(unsigned long tid)
2871{
2872 return tid + TID_STEP;
2873}
2874
9d5f0be0 2875#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2876static inline unsigned int tid_to_cpu(unsigned long tid)
2877{
2878 return tid % TID_STEP;
2879}
2880
2881static inline unsigned long tid_to_event(unsigned long tid)
2882{
2883 return tid / TID_STEP;
2884}
9d5f0be0 2885#endif
8a5ec0ba
CL
2886
2887static inline unsigned int init_tid(int cpu)
2888{
2889 return cpu;
2890}
2891
2892static inline void note_cmpxchg_failure(const char *n,
2893 const struct kmem_cache *s, unsigned long tid)
2894{
2895#ifdef SLUB_DEBUG_CMPXCHG
2896 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2897
f9f58285 2898 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2899
923717cb 2900#ifdef CONFIG_PREEMPTION
8a5ec0ba 2901 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2902 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2903 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2904 else
2905#endif
2906 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2907 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2908 tid_to_event(tid), tid_to_event(actual_tid));
2909 else
f9f58285 2910 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2911 actual_tid, tid, next_tid(tid));
2912#endif
4fdccdfb 2913 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2914}
2915
788e1aad 2916static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2917{
8a5ec0ba 2918 int cpu;
bd0e7491 2919 struct kmem_cache_cpu *c;
8a5ec0ba 2920
bd0e7491
VB
2921 for_each_possible_cpu(cpu) {
2922 c = per_cpu_ptr(s->cpu_slab, cpu);
2923 local_lock_init(&c->lock);
2924 c->tid = init_tid(cpu);
2925 }
8a5ec0ba 2926}
2cfb7455 2927
81819f0f 2928/*
c2092c12 2929 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2930 * unfreezes the slabs and puts it on the proper list.
2931 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2932 * by the caller.
81819f0f 2933 */
bb192ed9 2934static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2935 void *freelist)
81819f0f 2936{
bb192ed9 2937 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0 2938 int free_delta = 0;
d930ff03 2939 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2940 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2941 unsigned long flags = 0;
bb192ed9
VB
2942 struct slab new;
2943 struct slab old;
2cfb7455 2944
844776cb 2945 if (READ_ONCE(slab->freelist)) {
84e554e6 2946 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2947 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2948 }
2949
894b8788 2950 /*
d930ff03
VB
2951 * Stage one: Count the objects on cpu's freelist as free_delta and
2952 * remember the last object in freelist_tail for later splicing.
2cfb7455 2953 */
d930ff03
VB
2954 freelist_tail = NULL;
2955 freelist_iter = freelist;
2956 while (freelist_iter) {
2957 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2958
52f23478
DZ
2959 /*
2960 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2961 * 'freelist_iter' is already corrupted. So isolate all objects
2962 * starting at 'freelist_iter' by skipping them.
52f23478 2963 */
bb192ed9 2964 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2965 break;
2966
d930ff03
VB
2967 freelist_tail = freelist_iter;
2968 free_delta++;
2cfb7455 2969
d930ff03 2970 freelist_iter = nextfree;
2cfb7455
CL
2971 }
2972
894b8788 2973 /*
c2092c12
VB
2974 * Stage two: Unfreeze the slab while splicing the per-cpu
2975 * freelist to the head of slab's freelist.
894b8788 2976 */
00eb60c2
CZ
2977 do {
2978 old.freelist = READ_ONCE(slab->freelist);
2979 old.counters = READ_ONCE(slab->counters);
2980 VM_BUG_ON(!old.frozen);
2981
2982 /* Determine target state of the slab */
2983 new.counters = old.counters;
2984 new.frozen = 0;
2985 if (freelist_tail) {
2986 new.inuse -= free_delta;
2987 set_freepointer(s, freelist_tail, old.freelist);
2988 new.freelist = freelist;
2989 } else {
2990 new.freelist = old.freelist;
2991 }
2992 } while (!slab_update_freelist(s, slab,
2993 old.freelist, old.counters,
2994 new.freelist, new.counters,
2995 "unfreezing slab"));
2cfb7455 2996
00eb60c2
CZ
2997 /*
2998 * Stage three: Manipulate the slab list based on the updated state.
2999 */
6d3a16d0 3000 if (!new.inuse && n->nr_partial >= s->min_partial) {
00eb60c2
CZ
3001 stat(s, DEACTIVATE_EMPTY);
3002 discard_slab(s, slab);
3003 stat(s, FREE_SLAB);
6d3a16d0 3004 } else if (new.freelist) {
6d3a16d0 3005 spin_lock_irqsave(&n->list_lock, flags);
6d3a16d0
HY
3006 add_partial(n, slab, tail);
3007 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 3008 stat(s, tail);
00eb60c2 3009 } else {
6d3a16d0 3010 stat(s, DEACTIVATE_FULL);
894b8788 3011 }
81819f0f
CL
3012}
3013
345c905d 3014#ifdef CONFIG_SLUB_CPU_PARTIAL
21316fdc 3015static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 3016{
43d77867 3017 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 3018 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 3019 unsigned long flags = 0;
49e22585 3020
bb192ed9 3021 while (partial_slab) {
bb192ed9
VB
3022 slab = partial_slab;
3023 partial_slab = slab->next;
43d77867 3024
bb192ed9 3025 n2 = get_node(s, slab_nid(slab));
43d77867
JK
3026 if (n != n2) {
3027 if (n)
7cf9f3ba 3028 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
3029
3030 n = n2;
7cf9f3ba 3031 spin_lock_irqsave(&n->list_lock, flags);
43d77867 3032 }
49e22585 3033
8cd3fa42 3034 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
3035 slab->next = slab_to_discard;
3036 slab_to_discard = slab;
43d77867 3037 } else {
bb192ed9 3038 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 3039 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
3040 }
3041 }
3042
3043 if (n)
7cf9f3ba 3044 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 3045
bb192ed9
VB
3046 while (slab_to_discard) {
3047 slab = slab_to_discard;
3048 slab_to_discard = slab_to_discard->next;
9ada1934
SL
3049
3050 stat(s, DEACTIVATE_EMPTY);
bb192ed9 3051 discard_slab(s, slab);
9ada1934
SL
3052 stat(s, FREE_SLAB);
3053 }
fc1455f4 3054}
f3ab8b6b 3055
fc1455f4 3056/*
21316fdc 3057 * Put all the cpu partial slabs to the node partial list.
fc1455f4 3058 */
21316fdc 3059static void put_partials(struct kmem_cache *s)
fc1455f4 3060{
bb192ed9 3061 struct slab *partial_slab;
fc1455f4
VB
3062 unsigned long flags;
3063
bd0e7491 3064 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3065 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 3066 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 3067 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 3068
bb192ed9 3069 if (partial_slab)
21316fdc 3070 __put_partials(s, partial_slab);
fc1455f4
VB
3071}
3072
21316fdc
CZ
3073static void put_partials_cpu(struct kmem_cache *s,
3074 struct kmem_cache_cpu *c)
fc1455f4 3075{
bb192ed9 3076 struct slab *partial_slab;
fc1455f4 3077
bb192ed9 3078 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
3079 c->partial = NULL;
3080
bb192ed9 3081 if (partial_slab)
21316fdc 3082 __put_partials(s, partial_slab);
49e22585
CL
3083}
3084
3085/*
31bda717 3086 * Put a slab into a partial slab slot if available.
49e22585
CL
3087 *
3088 * If we did not find a slot then simply move all the partials to the
3089 * per node partial list.
3090 */
bb192ed9 3091static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 3092{
bb192ed9 3093 struct slab *oldslab;
21316fdc 3094 struct slab *slab_to_put = NULL;
e0a043aa 3095 unsigned long flags;
bb192ed9 3096 int slabs = 0;
49e22585 3097
bd0e7491 3098 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 3099
bb192ed9 3100 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 3101
bb192ed9
VB
3102 if (oldslab) {
3103 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
3104 /*
3105 * Partial array is full. Move the existing set to the
3106 * per node partial list. Postpone the actual unfreezing
3107 * outside of the critical section.
3108 */
21316fdc 3109 slab_to_put = oldslab;
bb192ed9 3110 oldslab = NULL;
e0a043aa 3111 } else {
bb192ed9 3112 slabs = oldslab->slabs;
49e22585 3113 }
e0a043aa 3114 }
49e22585 3115
bb192ed9 3116 slabs++;
49e22585 3117
bb192ed9
VB
3118 slab->slabs = slabs;
3119 slab->next = oldslab;
49e22585 3120
bb192ed9 3121 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 3122
bd0e7491 3123 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 3124
21316fdc
CZ
3125 if (slab_to_put) {
3126 __put_partials(s, slab_to_put);
e0a043aa
VB
3127 stat(s, CPU_PARTIAL_DRAIN);
3128 }
49e22585
CL
3129}
3130
e0a043aa
VB
3131#else /* CONFIG_SLUB_CPU_PARTIAL */
3132
21316fdc
CZ
3133static inline void put_partials(struct kmem_cache *s) { }
3134static inline void put_partials_cpu(struct kmem_cache *s,
3135 struct kmem_cache_cpu *c) { }
e0a043aa
VB
3136
3137#endif /* CONFIG_SLUB_CPU_PARTIAL */
3138
dfb4f096 3139static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 3140{
5a836bf6 3141 unsigned long flags;
bb192ed9 3142 struct slab *slab;
5a836bf6
SAS
3143 void *freelist;
3144
bd0e7491 3145 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 3146
bb192ed9 3147 slab = c->slab;
5a836bf6 3148 freelist = c->freelist;
c17dda40 3149
bb192ed9 3150 c->slab = NULL;
a019d201 3151 c->freelist = NULL;
c17dda40 3152 c->tid = next_tid(c->tid);
a019d201 3153
bd0e7491 3154 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 3155
bb192ed9
VB
3156 if (slab) {
3157 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
3158 stat(s, CPUSLAB_FLUSH);
3159 }
81819f0f
CL
3160}
3161
0c710013 3162static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 3163{
9dfc6e68 3164 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 3165 void *freelist = c->freelist;
bb192ed9 3166 struct slab *slab = c->slab;
81819f0f 3167
bb192ed9 3168 c->slab = NULL;
08beb547
VB
3169 c->freelist = NULL;
3170 c->tid = next_tid(c->tid);
3171
bb192ed9
VB
3172 if (slab) {
3173 deactivate_slab(s, slab, freelist);
08beb547
VB
3174 stat(s, CPUSLAB_FLUSH);
3175 }
49e22585 3176
21316fdc 3177 put_partials_cpu(s, c);
81819f0f
CL
3178}
3179
5a836bf6
SAS
3180struct slub_flush_work {
3181 struct work_struct work;
3182 struct kmem_cache *s;
3183 bool skip;
3184};
3185
fc1455f4
VB
3186/*
3187 * Flush cpu slab.
3188 *
5a836bf6 3189 * Called from CPU work handler with migration disabled.
fc1455f4 3190 */
5a836bf6 3191static void flush_cpu_slab(struct work_struct *w)
81819f0f 3192{
5a836bf6
SAS
3193 struct kmem_cache *s;
3194 struct kmem_cache_cpu *c;
3195 struct slub_flush_work *sfw;
3196
3197 sfw = container_of(w, struct slub_flush_work, work);
3198
3199 s = sfw->s;
3200 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 3201
bb192ed9 3202 if (c->slab)
fc1455f4 3203 flush_slab(s, c);
81819f0f 3204
21316fdc 3205 put_partials(s);
81819f0f
CL
3206}
3207
5a836bf6 3208static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 3209{
a8364d55
GBY
3210 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3211
bb192ed9 3212 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
3213}
3214
5a836bf6
SAS
3215static DEFINE_MUTEX(flush_lock);
3216static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3217
3218static void flush_all_cpus_locked(struct kmem_cache *s)
3219{
3220 struct slub_flush_work *sfw;
3221 unsigned int cpu;
3222
3223 lockdep_assert_cpus_held();
3224 mutex_lock(&flush_lock);
3225
3226 for_each_online_cpu(cpu) {
3227 sfw = &per_cpu(slub_flush, cpu);
3228 if (!has_cpu_slab(cpu, s)) {
3229 sfw->skip = true;
3230 continue;
3231 }
3232 INIT_WORK(&sfw->work, flush_cpu_slab);
3233 sfw->skip = false;
3234 sfw->s = s;
e45cc288 3235 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
3236 }
3237
3238 for_each_online_cpu(cpu) {
3239 sfw = &per_cpu(slub_flush, cpu);
3240 if (sfw->skip)
3241 continue;
3242 flush_work(&sfw->work);
3243 }
3244
3245 mutex_unlock(&flush_lock);
3246}
3247
81819f0f
CL
3248static void flush_all(struct kmem_cache *s)
3249{
5a836bf6
SAS
3250 cpus_read_lock();
3251 flush_all_cpus_locked(s);
3252 cpus_read_unlock();
81819f0f
CL
3253}
3254
a96a87bf
SAS
3255/*
3256 * Use the cpu notifier to insure that the cpu slabs are flushed when
3257 * necessary.
3258 */
3259static int slub_cpu_dead(unsigned int cpu)
3260{
3261 struct kmem_cache *s;
a96a87bf
SAS
3262
3263 mutex_lock(&slab_mutex);
0e7ac738 3264 list_for_each_entry(s, &slab_caches, list)
a96a87bf 3265 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
3266 mutex_unlock(&slab_mutex);
3267 return 0;
3268}
3269
0af8489b
VB
3270#else /* CONFIG_SLUB_TINY */
3271static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3272static inline void flush_all(struct kmem_cache *s) { }
3273static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3274static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3275#endif /* CONFIG_SLUB_TINY */
3276
dfb4f096
CL
3277/*
3278 * Check if the objects in a per cpu structure fit numa
3279 * locality expectations.
3280 */
bb192ed9 3281static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
3282{
3283#ifdef CONFIG_NUMA
bb192ed9 3284 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
3285 return 0;
3286#endif
3287 return 1;
3288}
3289
9a02d699 3290#ifdef CONFIG_SLUB_DEBUG
bb192ed9 3291static int count_free(struct slab *slab)
781b2ba6 3292{
bb192ed9 3293 return slab->objects - slab->inuse;
781b2ba6
PE
3294}
3295
9a02d699
DR
3296static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3297{
3298 return atomic_long_read(&n->total_objects);
3299}
a579b056
VB
3300
3301/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
3302static inline bool free_debug_processing(struct kmem_cache *s,
3303 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3304 unsigned long addr, depot_stack_handle_t handle)
a579b056 3305{
fa9b88e4 3306 bool checks_ok = false;
a579b056
VB
3307 void *object = head;
3308 int cnt = 0;
a579b056
VB
3309
3310 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3311 if (!check_slab(s, slab))
3312 goto out;
3313 }
3314
fa9b88e4 3315 if (slab->inuse < *bulk_cnt) {
c7323a5a 3316 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 3317 slab->inuse, *bulk_cnt);
c7323a5a
VB
3318 goto out;
3319 }
3320
a579b056 3321next_object:
c7323a5a 3322
fa9b88e4 3323 if (++cnt > *bulk_cnt)
c7323a5a 3324 goto out_cnt;
a579b056
VB
3325
3326 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3327 if (!free_consistency_checks(s, slab, object, addr))
3328 goto out;
3329 }
3330
3331 if (s->flags & SLAB_STORE_USER)
3332 set_track_update(s, object, TRACK_FREE, addr, handle);
3333 trace(s, slab, object, 0);
3334 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3335 init_object(s, object, SLUB_RED_INACTIVE);
3336
3337 /* Reached end of constructed freelist yet? */
3338 if (object != tail) {
3339 object = get_freepointer(s, object);
3340 goto next_object;
3341 }
c7323a5a 3342 checks_ok = true;
a579b056 3343
c7323a5a 3344out_cnt:
fa9b88e4 3345 if (cnt != *bulk_cnt) {
c7323a5a 3346 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
3347 *bulk_cnt, cnt);
3348 *bulk_cnt = cnt;
c7323a5a
VB
3349 }
3350
fa9b88e4 3351out:
c7323a5a
VB
3352
3353 if (!checks_ok)
a579b056 3354 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 3355
fa9b88e4 3356 return checks_ok;
a579b056 3357}
9a02d699
DR
3358#endif /* CONFIG_SLUB_DEBUG */
3359
b1a413a3 3360#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 3361static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 3362 int (*get_count)(struct slab *))
781b2ba6
PE
3363{
3364 unsigned long flags;
3365 unsigned long x = 0;
bb192ed9 3366 struct slab *slab;
781b2ba6
PE
3367
3368 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
3369 list_for_each_entry(slab, &n->partial, slab_list)
3370 x += get_count(slab);
781b2ba6
PE
3371 spin_unlock_irqrestore(&n->list_lock, flags);
3372 return x;
3373}
b1a413a3 3374#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 3375
56d5a2b9 3376#ifdef CONFIG_SLUB_DEBUG
046f4c69
JW
3377#define MAX_PARTIAL_TO_SCAN 10000
3378
3379static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3380{
3381 unsigned long flags;
3382 unsigned long x = 0;
3383 struct slab *slab;
3384
3385 spin_lock_irqsave(&n->list_lock, flags);
3386 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3387 list_for_each_entry(slab, &n->partial, slab_list)
3388 x += slab->objects - slab->inuse;
3389 } else {
3390 /*
3391 * For a long list, approximate the total count of objects in
3392 * it to meet the limit on the number of slabs to scan.
3393 * Scan from both the list's head and tail for better accuracy.
3394 */
3395 unsigned long scanned = 0;
3396
3397 list_for_each_entry(slab, &n->partial, slab_list) {
3398 x += slab->objects - slab->inuse;
3399 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3400 break;
3401 }
3402 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3403 x += slab->objects - slab->inuse;
3404 if (++scanned == MAX_PARTIAL_TO_SCAN)
3405 break;
3406 }
3407 x = mult_frac(x, n->nr_partial, scanned);
3408 x = min(x, node_nr_objs(n));
3409 }
3410 spin_unlock_irqrestore(&n->list_lock, flags);
3411 return x;
3412}
3413
781b2ba6
PE
3414static noinline void
3415slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3416{
9a02d699
DR
3417 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3418 DEFAULT_RATELIMIT_BURST);
781b2ba6 3419 int node;
fa45dc25 3420 struct kmem_cache_node *n;
781b2ba6 3421
9a02d699
DR
3422 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3423 return;
3424
5b3810e5
VB
3425 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3426 nid, gfpflags, &gfpflags);
19af27af 3427 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
3428 s->name, s->object_size, s->size, oo_order(s->oo),
3429 oo_order(s->min));
781b2ba6 3430
3b0efdfa 3431 if (oo_order(s->min) > get_order(s->object_size))
671776b3 3432 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
f9f58285 3433 s->name);
fa5ec8a1 3434
fa45dc25 3435 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3436 unsigned long nr_slabs;
3437 unsigned long nr_objs;
3438 unsigned long nr_free;
3439
b3d8a8e8 3440 nr_free = count_partial_free_approx(n);
26c02cf0
AB
3441 nr_slabs = node_nr_slabs(n);
3442 nr_objs = node_nr_objs(n);
781b2ba6 3443
f9f58285 3444 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3445 node, nr_slabs, nr_objs, nr_free);
3446 }
3447}
56d5a2b9
VB
3448#else /* CONFIG_SLUB_DEBUG */
3449static inline void
3450slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3451#endif
781b2ba6 3452
01b34d16 3453static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3454{
01b34d16 3455 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3456 return gfp_pfmemalloc_allowed(gfpflags);
3457
3458 return true;
3459}
3460
0af8489b 3461#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3462static inline bool
3463__update_cpu_freelist_fast(struct kmem_cache *s,
3464 void *freelist_old, void *freelist_new,
3465 unsigned long tid)
3466{
3467 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3468 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3469
3470 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3471 &old.full, new.full);
3472}
3473
213eeb9f 3474/*
c2092c12
VB
3475 * Check the slab->freelist and either transfer the freelist to the
3476 * per cpu freelist or deactivate the slab.
213eeb9f 3477 *
c2092c12 3478 * The slab is still frozen if the return value is not NULL.
213eeb9f 3479 *
c2092c12 3480 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3481 */
bb192ed9 3482static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3483{
bb192ed9 3484 struct slab new;
213eeb9f
CL
3485 unsigned long counters;
3486 void *freelist;
3487
bd0e7491
VB
3488 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3489
213eeb9f 3490 do {
bb192ed9
VB
3491 freelist = slab->freelist;
3492 counters = slab->counters;
6faa6833 3493
213eeb9f 3494 new.counters = counters;
213eeb9f 3495
bb192ed9 3496 new.inuse = slab->objects;
213eeb9f
CL
3497 new.frozen = freelist != NULL;
3498
6801be4f 3499 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3500 freelist, counters,
3501 NULL, new.counters,
3502 "get_freelist"));
3503
3504 return freelist;
3505}
3506
213094b5
CZ
3507/*
3508 * Freeze the partial slab and return the pointer to the freelist.
3509 */
3510static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3511{
3512 struct slab new;
3513 unsigned long counters;
3514 void *freelist;
3515
3516 do {
3517 freelist = slab->freelist;
3518 counters = slab->counters;
3519
3520 new.counters = counters;
3521 VM_BUG_ON(new.frozen);
3522
3523 new.inuse = slab->objects;
3524 new.frozen = 1;
3525
3526 } while (!slab_update_freelist(s, slab,
3527 freelist, counters,
3528 NULL, new.counters,
3529 "freeze_slab"));
3530
3531 return freelist;
3532}
3533
81819f0f 3534/*
894b8788
CL
3535 * Slow path. The lockless freelist is empty or we need to perform
3536 * debugging duties.
3537 *
894b8788
CL
3538 * Processing is still very fast if new objects have been freed to the
3539 * regular freelist. In that case we simply take over the regular freelist
3540 * as the lockless freelist and zap the regular freelist.
81819f0f 3541 *
894b8788
CL
3542 * If that is not working then we fall back to the partial lists. We take the
3543 * first element of the freelist as the object to allocate now and move the
3544 * rest of the freelist to the lockless freelist.
81819f0f 3545 *
894b8788 3546 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3547 * we need to allocate a new slab. This is the slowest path since it involves
3548 * a call to the page allocator and the setup of a new slab.
a380a3c7 3549 *
e500059b 3550 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3551 * already disabled (which is the case for bulk allocation).
81819f0f 3552 */
a380a3c7 3553static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3554 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3555{
6faa6833 3556 void *freelist;
bb192ed9 3557 struct slab *slab;
e500059b 3558 unsigned long flags;
6edf2576 3559 struct partial_context pc;
9198ffbd 3560 bool try_thisnode = true;
81819f0f 3561
9f986d99
AW
3562 stat(s, ALLOC_SLOWPATH);
3563
c2092c12 3564reread_slab:
0b303fb4 3565
bb192ed9
VB
3566 slab = READ_ONCE(c->slab);
3567 if (!slab) {
0715e6c5
VB
3568 /*
3569 * if the node is not online or has no normal memory, just
3570 * ignore the node constraint
3571 */
3572 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3573 !node_isset(node, slab_nodes)))
0715e6c5 3574 node = NUMA_NO_NODE;
81819f0f 3575 goto new_slab;
0715e6c5 3576 }
6faa6833 3577
bb192ed9 3578 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3579 /*
3580 * same as above but node_match() being false already
3581 * implies node != NUMA_NO_NODE
3582 */
7e1fa93d 3583 if (!node_isset(node, slab_nodes)) {
0715e6c5 3584 node = NUMA_NO_NODE;
0715e6c5 3585 } else {
a561ce00 3586 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3587 goto deactivate_slab;
a561ce00 3588 }
fc59c053 3589 }
6446faa2 3590
072bb0aa
MG
3591 /*
3592 * By rights, we should be searching for a slab page that was
3593 * PFMEMALLOC but right now, we are losing the pfmemalloc
3594 * information when the page leaves the per-cpu allocator
3595 */
bb192ed9 3596 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3597 goto deactivate_slab;
072bb0aa 3598
c2092c12 3599 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3600 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3601 if (unlikely(slab != c->slab)) {
bd0e7491 3602 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3603 goto reread_slab;
0b303fb4 3604 }
6faa6833
CL
3605 freelist = c->freelist;
3606 if (freelist)
73736e03 3607 goto load_freelist;
03e404af 3608
bb192ed9 3609 freelist = get_freelist(s, slab);
6446faa2 3610
6faa6833 3611 if (!freelist) {
bb192ed9 3612 c->slab = NULL;
eeaa345e 3613 c->tid = next_tid(c->tid);
bd0e7491 3614 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3615 stat(s, DEACTIVATE_BYPASS);
fc59c053 3616 goto new_slab;
03e404af 3617 }
6446faa2 3618
84e554e6 3619 stat(s, ALLOC_REFILL);
6446faa2 3620
894b8788 3621load_freelist:
0b303fb4 3622
bd0e7491 3623 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3624
507effea
CL
3625 /*
3626 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3627 * slab is pointing to the slab from which the objects are obtained.
3628 * That slab must be frozen for per cpu allocations to work.
507effea 3629 */
bb192ed9 3630 VM_BUG_ON(!c->slab->frozen);
6faa6833 3631 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3632 c->tid = next_tid(c->tid);
bd0e7491 3633 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3634 return freelist;
81819f0f 3635
0b303fb4
VB
3636deactivate_slab:
3637
bd0e7491 3638 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3639 if (slab != c->slab) {
bd0e7491 3640 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3641 goto reread_slab;
0b303fb4 3642 }
a019d201 3643 freelist = c->freelist;
bb192ed9 3644 c->slab = NULL;
a019d201 3645 c->freelist = NULL;
eeaa345e 3646 c->tid = next_tid(c->tid);
bd0e7491 3647 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3648 deactivate_slab(s, slab, freelist);
0b303fb4 3649
81819f0f 3650new_slab:
2cfb7455 3651
8cd3fa42
CZ
3652#ifdef CONFIG_SLUB_CPU_PARTIAL
3653 while (slub_percpu_partial(c)) {
bd0e7491 3654 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3655 if (unlikely(c->slab)) {
bd0e7491 3656 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3657 goto reread_slab;
fa417ab7 3658 }
4b1f449d 3659 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3660 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3661 /* we were preempted and partial list got empty */
3662 goto new_objects;
4b1f449d 3663 }
fa417ab7 3664
8cd3fa42 3665 slab = slub_percpu_partial(c);
bb192ed9 3666 slub_set_percpu_partial(c, slab);
8cd3fa42 3667
90b1e566
CZ
3668 if (likely(node_match(slab, node) &&
3669 pfmemalloc_match(slab, gfpflags))) {
3670 c->slab = slab;
3671 freelist = get_freelist(s, slab);
3672 VM_BUG_ON(!freelist);
3673 stat(s, CPU_PARTIAL_ALLOC);
3674 goto load_freelist;
8cd3fa42
CZ
3675 }
3676
90b1e566
CZ
3677 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3678
3679 slab->next = NULL;
3680 __put_partials(s, slab);
81819f0f 3681 }
8cd3fa42 3682#endif
81819f0f 3683
fa417ab7
VB
3684new_objects:
3685
6edf2576 3686 pc.flags = gfpflags;
9198ffbd
CJ
3687 /*
3688 * When a preferred node is indicated but no __GFP_THISNODE
3689 *
3690 * 1) try to get a partial slab from target node only by having
3691 * __GFP_THISNODE in pc.flags for get_partial()
3692 * 2) if 1) failed, try to allocate a new slab from target node with
3693 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3694 * 3) if 2) failed, retry with original gfpflags which will allow
3695 * get_partial() try partial lists of other nodes before potentially
3696 * allocating new page from other nodes
3697 */
3698 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3699 && try_thisnode))
3700 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3701
6edf2576 3702 pc.orig_size = orig_size;
43c4c349
CZ
3703 slab = get_partial(s, node, &pc);
3704 if (slab) {
24c6a097 3705 if (kmem_cache_debug(s)) {
8cd3fa42 3706 freelist = pc.object;
24c6a097
CZ
3707 /*
3708 * For debug caches here we had to go through
3709 * alloc_single_from_partial() so just store the
3710 * tracking info and return the object.
3711 */
3712 if (s->flags & SLAB_STORE_USER)
3713 set_track(s, freelist, TRACK_ALLOC, addr);
3714
3715 return freelist;
3716 }
3717
8cd3fa42 3718 freelist = freeze_slab(s, slab);
24c6a097
CZ
3719 goto retry_load_slab;
3720 }
2a904905 3721
25c00c50 3722 slub_put_cpu_ptr(s->cpu_slab);
9198ffbd 3723 slab = new_slab(s, pc.flags, node);
25c00c50 3724 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3725
bb192ed9 3726 if (unlikely(!slab)) {
9198ffbd
CJ
3727 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3728 && try_thisnode) {
3729 try_thisnode = false;
3730 goto new_objects;
3731 }
9a02d699 3732 slab_out_of_memory(s, gfpflags, node);
f4697436 3733 return NULL;
81819f0f 3734 }
2cfb7455 3735
c7323a5a
VB
3736 stat(s, ALLOC_SLAB);
3737
3738 if (kmem_cache_debug(s)) {
6edf2576 3739 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3740
3741 if (unlikely(!freelist))
3742 goto new_objects;
3743
3744 if (s->flags & SLAB_STORE_USER)
3745 set_track(s, freelist, TRACK_ALLOC, addr);
3746
3747 return freelist;
3748 }
3749
53a0de06 3750 /*
c2092c12 3751 * No other reference to the slab yet so we can
53a0de06
VB
3752 * muck around with it freely without cmpxchg
3753 */
bb192ed9
VB
3754 freelist = slab->freelist;
3755 slab->freelist = NULL;
c7323a5a
VB
3756 slab->inuse = slab->objects;
3757 slab->frozen = 1;
53a0de06 3758
c7323a5a 3759 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3760
c7323a5a 3761 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3762 /*
3763 * For !pfmemalloc_match() case we don't load freelist so that
3764 * we don't make further mismatched allocations easier.
3765 */
c7323a5a
VB
3766 deactivate_slab(s, slab, get_freepointer(s, freelist));
3767 return freelist;
3768 }
1572df7c 3769
c2092c12 3770retry_load_slab:
cfdf836e 3771
bd0e7491 3772 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3773 if (unlikely(c->slab)) {
cfdf836e 3774 void *flush_freelist = c->freelist;
bb192ed9 3775 struct slab *flush_slab = c->slab;
cfdf836e 3776
bb192ed9 3777 c->slab = NULL;
cfdf836e
VB
3778 c->freelist = NULL;
3779 c->tid = next_tid(c->tid);
3780
bd0e7491 3781 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3782
bb192ed9 3783 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3784
3785 stat(s, CPUSLAB_FLUSH);
3786
c2092c12 3787 goto retry_load_slab;
cfdf836e 3788 }
bb192ed9 3789 c->slab = slab;
3f2b77e3 3790
1572df7c 3791 goto load_freelist;
894b8788
CL
3792}
3793
a380a3c7 3794/*
e500059b
VB
3795 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3796 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3797 * pointer.
a380a3c7
CL
3798 */
3799static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3800 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3801{
3802 void *p;
a380a3c7 3803
e500059b 3804#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3805 /*
3806 * We may have been preempted and rescheduled on a different
e500059b 3807 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3808 * pointer.
3809 */
25c00c50 3810 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3811#endif
3812
6edf2576 3813 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3814#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3815 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3816#endif
a380a3c7
CL
3817 return p;
3818}
3819
56d5a2b9 3820static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3821 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3822{
dfb4f096 3823 struct kmem_cache_cpu *c;
bb192ed9 3824 struct slab *slab;
8a5ec0ba 3825 unsigned long tid;
56d5a2b9 3826 void *object;
b89fb5ef 3827
8a5ec0ba 3828redo:
8a5ec0ba
CL
3829 /*
3830 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3831 * enabled. We may switch back and forth between cpus while
3832 * reading from one cpu area. That does not matter as long
3833 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3834 *
9b4bc85a
VB
3835 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3836 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3837 * the tid. If we are preempted and switched to another cpu between the
3838 * two reads, it's OK as the two are still associated with the same cpu
3839 * and cmpxchg later will validate the cpu.
8a5ec0ba 3840 */
9b4bc85a
VB
3841 c = raw_cpu_ptr(s->cpu_slab);
3842 tid = READ_ONCE(c->tid);
9aabf810
JK
3843
3844 /*
3845 * Irqless object alloc/free algorithm used here depends on sequence
3846 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3847 * on c to guarantee that object and slab associated with previous tid
9aabf810 3848 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3849 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3850 * request will be failed. In this case, we will retry. So, no problem.
3851 */
3852 barrier();
8a5ec0ba 3853
8a5ec0ba
CL
3854 /*
3855 * The transaction ids are globally unique per cpu and per operation on
3856 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3857 * occurs on the right processor and that there was no operation on the
3858 * linked list in between.
3859 */
8a5ec0ba 3860
9dfc6e68 3861 object = c->freelist;
bb192ed9 3862 slab = c->slab;
1f04b07d
TG
3863
3864 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3865 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3866 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3867 } else {
0ad9500e
ED
3868 void *next_object = get_freepointer_safe(s, object);
3869
8a5ec0ba 3870 /*
25985edc 3871 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3872 * operation and if we are on the right processor.
3873 *
d0e0ac97
CG
3874 * The cmpxchg does the following atomically (without lock
3875 * semantics!)
8a5ec0ba
CL
3876 * 1. Relocate first pointer to the current per cpu area.
3877 * 2. Verify that tid and freelist have not been changed
3878 * 3. If they were not changed replace tid and freelist
3879 *
d0e0ac97
CG
3880 * Since this is without lock semantics the protection is only
3881 * against code executing on this cpu *not* from access by
3882 * other cpus.
8a5ec0ba 3883 */
6801be4f 3884 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3885 note_cmpxchg_failure("slab_alloc", s, tid);
3886 goto redo;
3887 }
0ad9500e 3888 prefetch_freepointer(s, next_object);
84e554e6 3889 stat(s, ALLOC_FASTPATH);
894b8788 3890 }
0f181f9f 3891
56d5a2b9
VB
3892 return object;
3893}
0af8489b
VB
3894#else /* CONFIG_SLUB_TINY */
3895static void *__slab_alloc_node(struct kmem_cache *s,
3896 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3897{
3898 struct partial_context pc;
3899 struct slab *slab;
3900 void *object;
3901
3902 pc.flags = gfpflags;
0af8489b 3903 pc.orig_size = orig_size;
43c4c349 3904 slab = get_partial(s, node, &pc);
0af8489b 3905
43c4c349
CZ
3906 if (slab)
3907 return pc.object;
0af8489b
VB
3908
3909 slab = new_slab(s, gfpflags, node);
3910 if (unlikely(!slab)) {
3911 slab_out_of_memory(s, gfpflags, node);
3912 return NULL;
3913 }
3914
3915 object = alloc_single_from_new_slab(s, slab, orig_size);
3916
3917 return object;
3918}
3919#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3920
3921/*
3922 * If the object has been wiped upon free, make sure it's fully initialized by
3923 * zeroing out freelist pointer.
3924 */
3925static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3926 void *obj)
3927{
8f828aa4
NB
3928 if (unlikely(slab_want_init_on_free(s)) && obj &&
3929 !freeptr_outside_object(s))
56d5a2b9
VB
3930 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3931 0, sizeof(void *));
3932}
3933
3450a0e5 3934static __fastpath_inline
9f9796b4 3935struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
6011be59
VB
3936{
3937 flags &= gfp_allowed_mask;
3938
3939 might_alloc(flags);
3940
3450a0e5 3941 if (unlikely(should_failslab(s, flags)))
6011be59
VB
3942 return NULL;
3943
6011be59
VB
3944 return s;
3945}
3946
3450a0e5 3947static __fastpath_inline
9f9796b4 3948bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
3949 gfp_t flags, size_t size, void **p, bool init,
3950 unsigned int orig_size)
6011be59
VB
3951{
3952 unsigned int zero_size = s->object_size;
3953 bool kasan_init = init;
3954 size_t i;
3450a0e5 3955 gfp_t init_flags = flags & gfp_allowed_mask;
6011be59
VB
3956
3957 /*
3958 * For kmalloc object, the allocated memory size(object_size) is likely
3959 * larger than the requested size(orig_size). If redzone check is
3960 * enabled for the extra space, don't zero it, as it will be redzoned
3961 * soon. The redzone operation for this extra space could be seen as a
3962 * replacement of current poisoning under certain debug option, and
3963 * won't break other sanity checks.
3964 */
3965 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3966 (s->flags & SLAB_KMALLOC))
3967 zero_size = orig_size;
3968
3969 /*
671776b3 3970 * When slab_debug is enabled, avoid memory initialization integrated
6011be59
VB
3971 * into KASAN and instead zero out the memory via the memset below with
3972 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3973 * cause false-positive reports. This does not lead to a performance
671776b3 3974 * penalty on production builds, as slab_debug is not intended to be
6011be59
VB
3975 * enabled there.
3976 */
3977 if (__slub_debug_enabled())
3978 kasan_init = false;
3979
3980 /*
3981 * As memory initialization might be integrated into KASAN,
3982 * kasan_slab_alloc and initialization memset must be
3983 * kept together to avoid discrepancies in behavior.
3984 *
3985 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3986 */
3987 for (i = 0; i < size; i++) {
3450a0e5 3988 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
6011be59
VB
3989 if (p[i] && init && (!kasan_init ||
3990 !kasan_has_integrated_init()))
3991 memset(p[i], 0, zero_size);
3992 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3450a0e5
VB
3993 s->flags, init_flags);
3994 kmsan_slab_alloc(s, p[i], init_flags);
302a3ea3 3995 alloc_tagging_slab_alloc_hook(s, p[i], flags);
6011be59
VB
3996 }
3997
9f9796b4 3998 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
6011be59
VB
3999}
4000
56d5a2b9
VB
4001/*
4002 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4003 * have the fastpath folded into their functions. So no function call
4004 * overhead for requests that can be satisfied on the fastpath.
4005 *
4006 * The fastpath works by first checking if the lockless freelist can be used.
4007 * If not then __slab_alloc is called for slow processing.
4008 *
4009 * Otherwise we can simply pick the next object from the lockless free list.
4010 */
be784ba8 4011static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
4012 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4013{
4014 void *object;
56d5a2b9
VB
4015 bool init = false;
4016
9f9796b4 4017 s = slab_pre_alloc_hook(s, gfpflags);
3450a0e5 4018 if (unlikely(!s))
56d5a2b9
VB
4019 return NULL;
4020
4021 object = kfence_alloc(s, orig_size, gfpflags);
4022 if (unlikely(object))
4023 goto out;
4024
4025 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4026
ce5716c6 4027 maybe_wipe_obj_freeptr(s, object);
da844b78 4028 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 4029
b89fb5ef 4030out:
9ce67395
FT
4031 /*
4032 * When init equals 'true', like for kzalloc() family, only
4033 * @orig_size bytes might be zeroed instead of s->object_size
9f9796b4
VB
4034 * In case this fails due to memcg_slab_post_alloc_hook(),
4035 * object is set to NULL
9ce67395 4036 */
9f9796b4 4037 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5a896d9e 4038
894b8788 4039 return object;
81819f0f
CL
4040}
4041
7bd230a2 4042void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
2b847c3c 4043{
49378a05
VB
4044 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4045 s->object_size);
5b882be4 4046
2c1d697f 4047 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4048
4049 return ret;
2b847c3c 4050}
7bd230a2 4051EXPORT_SYMBOL(kmem_cache_alloc_noprof);
2b847c3c 4052
7bd230a2 4053void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
88f2ef73 4054 gfp_t gfpflags)
81819f0f 4055{
49378a05
VB
4056 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4057 s->object_size);
5b882be4 4058
2c1d697f 4059 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4060
4061 return ret;
81819f0f 4062}
7bd230a2 4063EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
88f2ef73 4064
0445ee00
VB
4065/**
4066 * kmem_cache_alloc_node - Allocate an object on the specified node
4067 * @s: The cache to allocate from.
4068 * @gfpflags: See kmalloc().
4069 * @node: node number of the target node.
4070 *
4071 * Identical to kmem_cache_alloc but it will allocate memory on the given
4072 * node, which can improve the performance for cpu bound structures.
4073 *
4074 * Fallback to other node is possible if __GFP_THISNODE is not set.
4075 *
4076 * Return: pointer to the new object or %NULL in case of error
4077 */
7bd230a2 4078void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
81819f0f 4079{
88f2ef73 4080 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 4081
2c1d697f 4082 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
4083
4084 return ret;
81819f0f 4085}
7bd230a2 4086EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
81819f0f 4087
4862caa5
VB
4088/*
4089 * To avoid unnecessary overhead, we pass through large allocation requests
4090 * directly to the page allocator. We use __GFP_COMP, because we will need to
4091 * know the allocation order to free the pages properly in kfree.
4092 */
a0a44d91 4093static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
88f2ef73 4094{
fb46e22a 4095 struct folio *folio;
4862caa5
VB
4096 void *ptr = NULL;
4097 unsigned int order = get_order(size);
4098
4099 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4100 flags = kmalloc_fix_flags(flags);
4101
4102 flags |= __GFP_COMP;
7bd230a2 4103 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
fb46e22a
LT
4104 if (folio) {
4105 ptr = folio_address(folio);
4106 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4862caa5
VB
4107 PAGE_SIZE << order);
4108 }
4109
4110 ptr = kasan_kmalloc_large(ptr, size, flags);
4111 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4112 kmemleak_alloc(ptr, size, 1, flags);
4113 kmsan_kmalloc_large(ptr, size, flags);
4114
4115 return ptr;
88f2ef73 4116}
81819f0f 4117
a0a44d91 4118void *__kmalloc_large_noprof(size_t size, gfp_t flags)
88f2ef73 4119{
a0a44d91 4120 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4862caa5
VB
4121
4122 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4123 flags, NUMA_NO_NODE);
4124 return ret;
88f2ef73 4125}
a0a44d91 4126EXPORT_SYMBOL(__kmalloc_large_noprof);
88f2ef73 4127
a0a44d91 4128void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4a92379b 4129{
a0a44d91 4130 void *ret = ___kmalloc_large_node(size, flags, node);
4862caa5
VB
4131
4132 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4133 flags, node);
4134 return ret;
4a92379b 4135}
a0a44d91 4136EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5b882be4 4137
4862caa5 4138static __always_inline
67f2df3b 4139void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4862caa5 4140 unsigned long caller)
81819f0f 4141{
4862caa5
VB
4142 struct kmem_cache *s;
4143 void *ret;
5b882be4 4144
4862caa5 4145 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
a0a44d91 4146 ret = __kmalloc_large_node_noprof(size, flags, node);
4862caa5
VB
4147 trace_kmalloc(caller, ret, size,
4148 PAGE_SIZE << get_order(size), flags, node);
4149 return ret;
4150 }
5b882be4 4151
4862caa5
VB
4152 if (unlikely(!size))
4153 return ZERO_SIZE_PTR;
4154
67f2df3b 4155 s = kmalloc_slab(size, b, flags, caller);
4862caa5
VB
4156
4157 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4158 ret = kasan_kmalloc(s, ret, size, flags);
4159 trace_kmalloc(caller, ret, size, s->size, flags, node);
5b882be4 4160 return ret;
81819f0f 4161}
67f2df3b 4162void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4862caa5 4163{
67f2df3b 4164 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4862caa5 4165}
7bd230a2 4166EXPORT_SYMBOL(__kmalloc_node_noprof);
4862caa5 4167
7bd230a2 4168void *__kmalloc_noprof(size_t size, gfp_t flags)
4862caa5 4169{
67f2df3b 4170 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4862caa5 4171}
7bd230a2 4172EXPORT_SYMBOL(__kmalloc_noprof);
4862caa5 4173
67f2df3b
KC
4174void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4175 int node, unsigned long caller)
4862caa5 4176{
67f2df3b
KC
4177 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4178
4862caa5 4179}
67f2df3b 4180EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4862caa5 4181
a0a44d91 4182void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4862caa5
VB
4183{
4184 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4185 _RET_IP_, size);
4186
4187 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4188
4189 ret = kasan_kmalloc(s, ret, size, gfpflags);
4190 return ret;
4191}
a0a44d91 4192EXPORT_SYMBOL(__kmalloc_cache_noprof);
4862caa5 4193
a0a44d91
VB
4194void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4195 int node, size_t size)
4862caa5
VB
4196{
4197 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4198
4199 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4200
4201 ret = kasan_kmalloc(s, ret, size, gfpflags);
4202 return ret;
4203}
a0a44d91 4204EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
81819f0f 4205
fa9b88e4
VB
4206static noinline void free_to_partial_list(
4207 struct kmem_cache *s, struct slab *slab,
4208 void *head, void *tail, int bulk_cnt,
4209 unsigned long addr)
4210{
4211 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4212 struct slab *slab_free = NULL;
4213 int cnt = bulk_cnt;
4214 unsigned long flags;
4215 depot_stack_handle_t handle = 0;
4216
4217 if (s->flags & SLAB_STORE_USER)
4218 handle = set_track_prepare();
4219
4220 spin_lock_irqsave(&n->list_lock, flags);
4221
4222 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4223 void *prior = slab->freelist;
4224
4225 /* Perform the actual freeing while we still hold the locks */
4226 slab->inuse -= cnt;
4227 set_freepointer(s, tail, prior);
4228 slab->freelist = head;
4229
4230 /*
4231 * If the slab is empty, and node's partial list is full,
4232 * it should be discarded anyway no matter it's on full or
4233 * partial list.
4234 */
4235 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4236 slab_free = slab;
4237
4238 if (!prior) {
4239 /* was on full list */
4240 remove_full(s, n, slab);
4241 if (!slab_free) {
4242 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4243 stat(s, FREE_ADD_PARTIAL);
4244 }
4245 } else if (slab_free) {
4246 remove_partial(n, slab);
4247 stat(s, FREE_REMOVE_PARTIAL);
4248 }
4249 }
4250
4251 if (slab_free) {
4252 /*
4253 * Update the counters while still holding n->list_lock to
4254 * prevent spurious validation warnings
4255 */
4256 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4257 }
4258
4259 spin_unlock_irqrestore(&n->list_lock, flags);
4260
4261 if (slab_free) {
4262 stat(s, FREE_SLAB);
4263 free_slab(s, slab_free);
4264 }
4265}
4266
81819f0f 4267/*
94e4d712 4268 * Slow path handling. This may still be called frequently since objects
894b8788 4269 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 4270 *
894b8788 4271 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 4272 * lock and free the item. If there is no additional partial slab
894b8788 4273 * handling required then we can return immediately.
81819f0f 4274 */
bb192ed9 4275static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
4276 void *head, void *tail, int cnt,
4277 unsigned long addr)
4278
81819f0f
CL
4279{
4280 void *prior;
2cfb7455 4281 int was_frozen;
bb192ed9 4282 struct slab new;
2cfb7455
CL
4283 unsigned long counters;
4284 struct kmem_cache_node *n = NULL;
3f649ab7 4285 unsigned long flags;
422e7d54 4286 bool on_node_partial;
81819f0f 4287
8a5ec0ba 4288 stat(s, FREE_SLOWPATH);
81819f0f 4289
0af8489b 4290 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 4291 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 4292 return;
c7323a5a 4293 }
6446faa2 4294
2cfb7455 4295 do {
837d678d
JK
4296 if (unlikely(n)) {
4297 spin_unlock_irqrestore(&n->list_lock, flags);
4298 n = NULL;
4299 }
bb192ed9
VB
4300 prior = slab->freelist;
4301 counters = slab->counters;
81084651 4302 set_freepointer(s, tail, prior);
2cfb7455
CL
4303 new.counters = counters;
4304 was_frozen = new.frozen;
81084651 4305 new.inuse -= cnt;
837d678d 4306 if ((!new.inuse || !prior) && !was_frozen) {
8cd3fa42
CZ
4307 /* Needs to be taken off a list */
4308 if (!kmem_cache_has_cpu_partial(s) || prior) {
49e22585 4309
bb192ed9 4310 n = get_node(s, slab_nid(slab));
49e22585
CL
4311 /*
4312 * Speculatively acquire the list_lock.
4313 * If the cmpxchg does not succeed then we may
4314 * drop the list_lock without any processing.
4315 *
4316 * Otherwise the list_lock will synchronize with
4317 * other processors updating the list of slabs.
4318 */
4319 spin_lock_irqsave(&n->list_lock, flags);
4320
422e7d54 4321 on_node_partial = slab_test_node_partial(slab);
49e22585 4322 }
2cfb7455 4323 }
81819f0f 4324
6801be4f 4325 } while (!slab_update_freelist(s, slab,
2cfb7455 4326 prior, counters,
81084651 4327 head, new.counters,
2cfb7455 4328 "__slab_free"));
81819f0f 4329
2cfb7455 4330 if (likely(!n)) {
49e22585 4331
c270cf30
AW
4332 if (likely(was_frozen)) {
4333 /*
4334 * The list lock was not taken therefore no list
4335 * activity can be necessary.
4336 */
4337 stat(s, FREE_FROZEN);
8cd3fa42 4338 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
c270cf30 4339 /*
8cd3fa42 4340 * If we started with a full slab then put it onto the
c270cf30
AW
4341 * per cpu partial list.
4342 */
bb192ed9 4343 put_cpu_partial(s, slab, 1);
8028dcea
AS
4344 stat(s, CPU_PARTIAL_FREE);
4345 }
c270cf30 4346
b455def2
L
4347 return;
4348 }
81819f0f 4349
422e7d54
CZ
4350 /*
4351 * This slab was partially empty but not on the per-node partial list,
4352 * in which case we shouldn't manipulate its list, just return.
4353 */
4354 if (prior && !on_node_partial) {
4355 spin_unlock_irqrestore(&n->list_lock, flags);
4356 return;
4357 }
4358
8a5b20ae 4359 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
4360 goto slab_empty;
4361
81819f0f 4362 /*
837d678d
JK
4363 * Objects left in the slab. If it was not on the partial list before
4364 * then add it.
81819f0f 4365 */
345c905d 4366 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9 4367 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 4368 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 4369 }
80f08c19 4370 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
4371 return;
4372
4373slab_empty:
a973e9dd 4374 if (prior) {
81819f0f 4375 /*
6fbabb20 4376 * Slab on the partial list.
81819f0f 4377 */
bb192ed9 4378 remove_partial(n, slab);
84e554e6 4379 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 4380 }
2cfb7455 4381
80f08c19 4382 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 4383 stat(s, FREE_SLAB);
bb192ed9 4384 discard_slab(s, slab);
81819f0f
CL
4385}
4386
0af8489b 4387#ifndef CONFIG_SLUB_TINY
894b8788
CL
4388/*
4389 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4390 * can perform fastpath freeing without additional function calls.
4391 *
4392 * The fastpath is only possible if we are freeing to the current cpu slab
4393 * of this processor. This typically the case if we have just allocated
4394 * the item before.
4395 *
4396 * If fastpath is not possible then fall back to __slab_free where we deal
4397 * with all sorts of special processing.
81084651
JDB
4398 *
4399 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 4400 * same slab) possible by specifying head and tail ptr, plus objects
81084651 4401 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 4402 */
80a9201a 4403static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 4404 struct slab *slab, void *head, void *tail,
80a9201a 4405 int cnt, unsigned long addr)
894b8788 4406{
dfb4f096 4407 struct kmem_cache_cpu *c;
8a5ec0ba 4408 unsigned long tid;
1f04b07d 4409 void **freelist;
964d4bd3 4410
8a5ec0ba
CL
4411redo:
4412 /*
4413 * Determine the currently cpus per cpu slab.
4414 * The cpu may change afterward. However that does not matter since
4415 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 4416 * during the cmpxchg then the free will succeed.
8a5ec0ba 4417 */
9b4bc85a
VB
4418 c = raw_cpu_ptr(s->cpu_slab);
4419 tid = READ_ONCE(c->tid);
c016b0bd 4420
b062539c 4421 /* Same with comment on barrier() in __slab_alloc_node() */
9aabf810 4422 barrier();
c016b0bd 4423
1f04b07d 4424 if (unlikely(slab != c->slab)) {
284f17ac 4425 __slab_free(s, slab, head, tail, cnt, addr);
1f04b07d
TG
4426 return;
4427 }
4428
4429 if (USE_LOCKLESS_FAST_PATH()) {
4430 freelist = READ_ONCE(c->freelist);
5076190d 4431
284f17ac 4432 set_freepointer(s, tail, freelist);
8a5ec0ba 4433
6801be4f 4434 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
4435 note_cmpxchg_failure("slab_free", s, tid);
4436 goto redo;
4437 }
1f04b07d
TG
4438 } else {
4439 /* Update the free list under the local lock */
bd0e7491
VB
4440 local_lock(&s->cpu_slab->lock);
4441 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 4442 if (unlikely(slab != c->slab)) {
bd0e7491
VB
4443 local_unlock(&s->cpu_slab->lock);
4444 goto redo;
4445 }
4446 tid = c->tid;
4447 freelist = c->freelist;
4448
284f17ac 4449 set_freepointer(s, tail, freelist);
bd0e7491
VB
4450 c->freelist = head;
4451 c->tid = next_tid(tid);
4452
4453 local_unlock(&s->cpu_slab->lock);
1f04b07d 4454 }
6f3dd2c3 4455 stat_add(s, FREE_FASTPATH, cnt);
894b8788 4456}
0af8489b
VB
4457#else /* CONFIG_SLUB_TINY */
4458static void do_slab_free(struct kmem_cache *s,
4459 struct slab *slab, void *head, void *tail,
4460 int cnt, unsigned long addr)
4461{
284f17ac 4462 __slab_free(s, slab, head, tail, cnt, addr);
0af8489b
VB
4463}
4464#endif /* CONFIG_SLUB_TINY */
894b8788 4465
284f17ac
VB
4466static __fastpath_inline
4467void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4468 unsigned long addr)
4469{
284f17ac 4470 memcg_slab_free_hook(s, slab, &object, 1);
4b873696 4471 alloc_tagging_slab_free_hook(s, slab, &object, 1);
284f17ac 4472
782f8906 4473 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
284f17ac
VB
4474 do_slab_free(s, slab, object, object, 1, addr);
4475}
4476
3a3b7fec 4477#ifdef CONFIG_MEMCG
9f9796b4
VB
4478/* Do not inline the rare memcg charging failed path into the allocation path */
4479static noinline
4480void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4481{
4482 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4483 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4484}
4485#endif
4486
284f17ac
VB
4487static __fastpath_inline
4488void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4489 void *tail, void **p, int cnt, unsigned long addr)
80a9201a 4490{
b77d5b1b 4491 memcg_slab_free_hook(s, slab, p, cnt);
4b873696 4492 alloc_tagging_slab_free_hook(s, slab, p, cnt);
80a9201a 4493 /*
c3895391
AK
4494 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4495 * to remove objects, whose reuse must be delayed.
80a9201a 4496 */
ecf9a253 4497 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
bb192ed9 4498 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
4499}
4500
2bd926b4 4501#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
4502void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4503{
284f17ac 4504 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
80a9201a
AP
4505}
4506#endif
4507
0bedcc66 4508static inline struct kmem_cache *virt_to_cache(const void *obj)
ed4cd17e 4509{
0bedcc66
VB
4510 struct slab *slab;
4511
4512 slab = virt_to_slab(obj);
4513 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4514 return NULL;
4515 return slab->slab_cache;
ed4cd17e
HY
4516}
4517
0bedcc66
VB
4518static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4519{
4520 struct kmem_cache *cachep;
4521
4522 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4523 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4524 return s;
4525
4526 cachep = virt_to_cache(x);
4527 if (WARN(cachep && cachep != s,
4528 "%s: Wrong slab cache. %s but object is from %s\n",
4529 __func__, s->name, cachep->name))
4530 print_tracking(cachep, x);
4531 return cachep;
4532}
4533
0445ee00
VB
4534/**
4535 * kmem_cache_free - Deallocate an object
4536 * @s: The cache the allocation was from.
4537 * @x: The previously allocated object.
4538 *
4539 * Free an object which was previously allocated from this
4540 * cache.
4541 */
81819f0f
CL
4542void kmem_cache_free(struct kmem_cache *s, void *x)
4543{
b9ce5ef4
GC
4544 s = cache_from_obj(s, x);
4545 if (!s)
79576102 4546 return;
2c1d697f 4547 trace_kmem_cache_free(_RET_IP_, x, s);
284f17ac 4548 slab_free(s, virt_to_slab(x), x, _RET_IP_);
81819f0f
CL
4549}
4550EXPORT_SYMBOL(kmem_cache_free);
4551
b774d3e3
VB
4552static void free_large_kmalloc(struct folio *folio, void *object)
4553{
4554 unsigned int order = folio_order(folio);
4555
4556 if (WARN_ON_ONCE(order == 0))
4557 pr_warn_once("object pointer: 0x%p\n", object);
4558
4559 kmemleak_free(object);
4560 kasan_kfree_large(object);
4561 kmsan_kfree_large(object);
4562
fb46e22a 4563 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
b774d3e3 4564 -(PAGE_SIZE << order));
fb46e22a 4565 folio_put(folio);
b774d3e3
VB
4566}
4567
4568/**
4569 * kfree - free previously allocated memory
4570 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4571 *
4572 * If @object is NULL, no operation is performed.
4573 */
4574void kfree(const void *object)
4575{
4576 struct folio *folio;
4577 struct slab *slab;
4578 struct kmem_cache *s;
4579 void *x = (void *)object;
4580
4581 trace_kfree(_RET_IP_, object);
4582
4583 if (unlikely(ZERO_OR_NULL_PTR(object)))
4584 return;
4585
4586 folio = virt_to_folio(object);
4587 if (unlikely(!folio_test_slab(folio))) {
4588 free_large_kmalloc(folio, (void *)object);
4589 return;
4590 }
4591
4592 slab = folio_slab(folio);
4593 s = slab->slab_cache;
284f17ac 4594 slab_free(s, slab, x, _RET_IP_);
b774d3e3
VB
4595}
4596EXPORT_SYMBOL(kfree);
4597
d0ecd894 4598struct detached_freelist {
cc465c3b 4599 struct slab *slab;
d0ecd894
JDB
4600 void *tail;
4601 void *freelist;
4602 int cnt;
376bf125 4603 struct kmem_cache *s;
d0ecd894 4604};
fbd02630 4605
d0ecd894
JDB
4606/*
4607 * This function progressively scans the array with free objects (with
4608 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
4609 * slab. It builds a detached freelist directly within the given
4610 * slab/objects. This can happen without any need for
d0ecd894
JDB
4611 * synchronization, because the objects are owned by running process.
4612 * The freelist is build up as a single linked list in the objects.
4613 * The idea is, that this detached freelist can then be bulk
4614 * transferred to the real freelist(s), but only requiring a single
4615 * synchronization primitive. Look ahead in the array is limited due
4616 * to performance reasons.
4617 */
376bf125
JDB
4618static inline
4619int build_detached_freelist(struct kmem_cache *s, size_t size,
4620 void **p, struct detached_freelist *df)
d0ecd894 4621{
d0ecd894
JDB
4622 int lookahead = 3;
4623 void *object;
cc465c3b 4624 struct folio *folio;
b77d5b1b 4625 size_t same;
fbd02630 4626
b77d5b1b 4627 object = p[--size];
cc465c3b 4628 folio = virt_to_folio(object);
ca257195
JDB
4629 if (!s) {
4630 /* Handle kalloc'ed objects */
cc465c3b 4631 if (unlikely(!folio_test_slab(folio))) {
d835eef4 4632 free_large_kmalloc(folio, object);
b77d5b1b 4633 df->slab = NULL;
ca257195
JDB
4634 return size;
4635 }
4636 /* Derive kmem_cache from object */
b77d5b1b
MS
4637 df->slab = folio_slab(folio);
4638 df->s = df->slab->slab_cache;
ca257195 4639 } else {
b77d5b1b 4640 df->slab = folio_slab(folio);
ca257195
JDB
4641 df->s = cache_from_obj(s, object); /* Support for memcg */
4642 }
376bf125 4643
d0ecd894 4644 /* Start new detached freelist */
d0ecd894
JDB
4645 df->tail = object;
4646 df->freelist = object;
d0ecd894
JDB
4647 df->cnt = 1;
4648
b77d5b1b
MS
4649 if (is_kfence_address(object))
4650 return size;
4651
4652 set_freepointer(df->s, object, NULL);
4653
4654 same = size;
d0ecd894
JDB
4655 while (size) {
4656 object = p[--size];
cc465c3b
MWO
4657 /* df->slab is always set at this point */
4658 if (df->slab == virt_to_slab(object)) {
d0ecd894 4659 /* Opportunity build freelist */
376bf125 4660 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
4661 df->freelist = object;
4662 df->cnt++;
b77d5b1b
MS
4663 same--;
4664 if (size != same)
4665 swap(p[size], p[same]);
d0ecd894 4666 continue;
fbd02630 4667 }
d0ecd894
JDB
4668
4669 /* Limit look ahead search */
4670 if (!--lookahead)
4671 break;
fbd02630 4672 }
d0ecd894 4673
b77d5b1b 4674 return same;
d0ecd894
JDB
4675}
4676
520a688a
VB
4677/*
4678 * Internal bulk free of objects that were not initialised by the post alloc
4679 * hooks and thus should not be processed by the free hooks
4680 */
4681static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4682{
4683 if (!size)
4684 return;
4685
4686 do {
4687 struct detached_freelist df;
4688
4689 size = build_detached_freelist(s, size, p, &df);
4690 if (!df.slab)
4691 continue;
4692
a371d558
RR
4693 if (kfence_free(df.freelist))
4694 continue;
4695
520a688a
VB
4696 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4697 _RET_IP_);
4698 } while (likely(size));
4699}
4700
d0ecd894 4701/* Note that interrupts must be enabled when calling this function. */
376bf125 4702void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 4703{
2055e67b 4704 if (!size)
d0ecd894
JDB
4705 return;
4706
4707 do {
4708 struct detached_freelist df;
4709
4710 size = build_detached_freelist(s, size, p, &df);
cc465c3b 4711 if (!df.slab)
d0ecd894
JDB
4712 continue;
4713
284f17ac
VB
4714 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4715 df.cnt, _RET_IP_);
d0ecd894 4716 } while (likely(size));
484748f0
CL
4717}
4718EXPORT_SYMBOL(kmem_cache_free_bulk);
4719
0af8489b 4720#ifndef CONFIG_SLUB_TINY
520a688a
VB
4721static inline
4722int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4723 void **p)
484748f0 4724{
994eb764 4725 struct kmem_cache_cpu *c;
f5451547 4726 unsigned long irqflags;
994eb764
JDB
4727 int i;
4728
994eb764
JDB
4729 /*
4730 * Drain objects in the per cpu slab, while disabling local
4731 * IRQs, which protects against PREEMPT and interrupts
4732 * handlers invoking normal fastpath.
4733 */
25c00c50 4734 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 4735 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
4736
4737 for (i = 0; i < size; i++) {
b89fb5ef 4738 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 4739
b89fb5ef
AP
4740 if (unlikely(object)) {
4741 p[i] = object;
4742 continue;
4743 }
4744
4745 object = c->freelist;
ebe909e0 4746 if (unlikely(!object)) {
fd4d9c7d
JH
4747 /*
4748 * We may have removed an object from c->freelist using
4749 * the fastpath in the previous iteration; in that case,
4750 * c->tid has not been bumped yet.
4751 * Since ___slab_alloc() may reenable interrupts while
4752 * allocating memory, we should bump c->tid now.
4753 */
4754 c->tid = next_tid(c->tid);
4755
f5451547 4756 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 4757
ebe909e0
JDB
4758 /*
4759 * Invoking slow path likely have side-effect
4760 * of re-populating per CPU c->freelist
4761 */
87098373 4762 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 4763 _RET_IP_, c, s->object_size);
87098373
CL
4764 if (unlikely(!p[i]))
4765 goto error;
4766
ebe909e0 4767 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
4768 maybe_wipe_obj_freeptr(s, p[i]);
4769
f5451547 4770 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 4771
ebe909e0
JDB
4772 continue; /* goto for-loop */
4773 }
994eb764
JDB
4774 c->freelist = get_freepointer(s, object);
4775 p[i] = object;
0f181f9f 4776 maybe_wipe_obj_freeptr(s, p[i]);
6f3dd2c3 4777 stat(s, ALLOC_FASTPATH);
994eb764
JDB
4778 }
4779 c->tid = next_tid(c->tid);
f5451547 4780 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 4781 slub_put_cpu_ptr(s->cpu_slab);
994eb764 4782
865762a8 4783 return i;
56d5a2b9 4784
87098373 4785error:
25c00c50 4786 slub_put_cpu_ptr(s->cpu_slab);
520a688a 4787 __kmem_cache_free_bulk(s, i, p);
865762a8 4788 return 0;
56d5a2b9
VB
4789
4790}
0af8489b
VB
4791#else /* CONFIG_SLUB_TINY */
4792static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
520a688a 4793 size_t size, void **p)
0af8489b
VB
4794{
4795 int i;
4796
4797 for (i = 0; i < size; i++) {
4798 void *object = kfence_alloc(s, s->object_size, flags);
4799
4800 if (unlikely(object)) {
4801 p[i] = object;
4802 continue;
4803 }
4804
4805 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4806 _RET_IP_, s->object_size);
4807 if (unlikely(!p[i]))
4808 goto error;
4809
4810 maybe_wipe_obj_freeptr(s, p[i]);
4811 }
4812
4813 return i;
4814
4815error:
520a688a 4816 __kmem_cache_free_bulk(s, i, p);
0af8489b
VB
4817 return 0;
4818}
4819#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4820
4821/* Note that interrupts must be enabled when calling this function. */
7bd230a2
SB
4822int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4823 void **p)
56d5a2b9
VB
4824{
4825 int i;
56d5a2b9
VB
4826
4827 if (!size)
4828 return 0;
4829
9f9796b4 4830 s = slab_pre_alloc_hook(s, flags);
56d5a2b9
VB
4831 if (unlikely(!s))
4832 return 0;
4833
520a688a 4834 i = __kmem_cache_alloc_bulk(s, flags, size, p);
9f9796b4
VB
4835 if (unlikely(i == 0))
4836 return 0;
56d5a2b9
VB
4837
4838 /*
4839 * memcg and kmem_cache debug support and memory initialization.
4840 * Done outside of the IRQ disabled fastpath loop.
4841 */
9f9796b4
VB
4842 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4843 slab_want_init_on_alloc(flags, s), s->object_size))) {
4844 return 0;
520a688a 4845 }
56d5a2b9 4846 return i;
484748f0 4847}
7bd230a2 4848EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
484748f0
CL
4849
4850
81819f0f 4851/*
672bba3a
CL
4852 * Object placement in a slab is made very easy because we always start at
4853 * offset 0. If we tune the size of the object to the alignment then we can
4854 * get the required alignment by putting one properly sized object after
4855 * another.
81819f0f
CL
4856 *
4857 * Notice that the allocation order determines the sizes of the per cpu
4858 * caches. Each processor has always one slab available for allocations.
4859 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4860 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4861 * locking overhead.
81819f0f
CL
4862 */
4863
4864/*
f0953a1b 4865 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4866 * and slab fragmentation. A higher order reduces the number of partial slabs
4867 * and increases the number of allocations possible without having to
4868 * take the list_lock.
4869 */
19af27af 4870static unsigned int slub_min_order;
90ce872c
VB
4871static unsigned int slub_max_order =
4872 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4873static unsigned int slub_min_objects;
81819f0f 4874
81819f0f
CL
4875/*
4876 * Calculate the order of allocation given an slab object size.
4877 *
672bba3a
CL
4878 * The order of allocation has significant impact on performance and other
4879 * system components. Generally order 0 allocations should be preferred since
4880 * order 0 does not cause fragmentation in the page allocator. Larger objects
4881 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4882 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4883 * would be wasted.
4884 *
4885 * In order to reach satisfactory performance we must ensure that a minimum
4886 * number of objects is in one slab. Otherwise we may generate too much
4887 * activity on the partial lists which requires taking the list_lock. This is
4888 * less a concern for large slabs though which are rarely used.
81819f0f 4889 *
671776b3
XS
4890 * slab_max_order specifies the order where we begin to stop considering the
4891 * number of objects in a slab as critical. If we reach slab_max_order then
672bba3a
CL
4892 * we try to keep the page order as low as possible. So we accept more waste
4893 * of space in favor of a small page order.
81819f0f 4894 *
672bba3a
CL
4895 * Higher order allocations also allow the placement of more objects in a
4896 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4897 * requested a higher minimum order then we start with that one instead of
672bba3a 4898 * the smallest order which will fit the object.
81819f0f 4899 */
d122019b 4900static inline unsigned int calc_slab_order(unsigned int size,
90f055df 4901 unsigned int min_order, unsigned int max_order,
9736d2a9 4902 unsigned int fract_leftover)
81819f0f 4903{
19af27af 4904 unsigned int order;
81819f0f 4905
90f055df 4906 for (order = min_order; order <= max_order; order++) {
81819f0f 4907
19af27af
AD
4908 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4909 unsigned int rem;
81819f0f 4910
9736d2a9 4911 rem = slab_size % size;
81819f0f 4912
5e6d444e 4913 if (rem <= slab_size / fract_leftover)
81819f0f 4914 break;
81819f0f 4915 }
672bba3a 4916
81819f0f
CL
4917 return order;
4918}
4919
9736d2a9 4920static inline int calculate_order(unsigned int size)
5e6d444e 4921{
19af27af
AD
4922 unsigned int order;
4923 unsigned int min_objects;
4924 unsigned int max_objects;
90f055df 4925 unsigned int min_order;
5e6d444e 4926
5e6d444e 4927 min_objects = slub_min_objects;
3286222f
VB
4928 if (!min_objects) {
4929 /*
4930 * Some architectures will only update present cpus when
4931 * onlining them, so don't trust the number if it's just 1. But
4932 * we also don't want to use nr_cpu_ids always, as on some other
4933 * architectures, there can be many possible cpus, but never
4934 * onlined. Here we compromise between trying to avoid too high
4935 * order on systems that appear larger than they are, and too
4936 * low order on systems that appear smaller than they are.
4937 */
90f055df 4938 unsigned int nr_cpus = num_present_cpus();
3286222f
VB
4939 if (nr_cpus <= 1)
4940 nr_cpus = nr_cpu_ids;
4941 min_objects = 4 * (fls(nr_cpus) + 1);
4942 }
90f055df
VB
4943 /* min_objects can't be 0 because get_order(0) is undefined */
4944 max_objects = max(order_objects(slub_max_order, size), 1U);
e8120ff1
ZY
4945 min_objects = min(min_objects, max_objects);
4946
90f055df
VB
4947 min_order = max_t(unsigned int, slub_min_order,
4948 get_order(min_objects * size));
4949 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4950 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4951
0fe2735d
VB
4952 /*
4953 * Attempt to find best configuration for a slab. This works by first
4954 * attempting to generate a layout with the best possible configuration
4955 * and backing off gradually.
4956 *
4957 * We start with accepting at most 1/16 waste and try to find the
671776b3
XS
4958 * smallest order from min_objects-derived/slab_min_order up to
4959 * slab_max_order that will satisfy the constraint. Note that increasing
0fe2735d
VB
4960 * the order can only result in same or less fractional waste, not more.
4961 *
4962 * If that fails, we increase the acceptable fraction of waste and try
5886fc82
VB
4963 * again. The last iteration with fraction of 1/2 would effectively
4964 * accept any waste and give us the order determined by min_objects, as
671776b3 4965 * long as at least single object fits within slab_max_order.
0fe2735d 4966 */
5886fc82 4967 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
90f055df 4968 order = calc_slab_order(size, min_order, slub_max_order,
0fe2735d
VB
4969 fraction);
4970 if (order <= slub_max_order)
4971 return order;
5e6d444e
CL
4972 }
4973
5e6d444e 4974 /*
671776b3 4975 * Doh this slab cannot be placed using slab_max_order.
5e6d444e 4976 */
c7355d75 4977 order = get_order(size);
5e0a760b 4978 if (order <= MAX_PAGE_ORDER)
5e6d444e
CL
4979 return order;
4980 return -ENOSYS;
4981}
4982
5595cffc 4983static void
4053497d 4984init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4985{
4986 n->nr_partial = 0;
81819f0f
CL
4987 spin_lock_init(&n->list_lock);
4988 INIT_LIST_HEAD(&n->partial);
8ab1372f 4989#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4990 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4991 atomic_long_set(&n->total_objects, 0);
643b1138 4992 INIT_LIST_HEAD(&n->full);
8ab1372f 4993#endif
81819f0f
CL
4994}
4995
0af8489b 4996#ifndef CONFIG_SLUB_TINY
55136592 4997static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4998{
6c182dc0 4999 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
5000 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5001 sizeof(struct kmem_cache_cpu));
4c93c355 5002
8a5ec0ba 5003 /*
d4d84fef
CM
5004 * Must align to double word boundary for the double cmpxchg
5005 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 5006 */
d4d84fef
CM
5007 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5008 2 * sizeof(void *));
8a5ec0ba
CL
5009
5010 if (!s->cpu_slab)
5011 return 0;
5012
5013 init_kmem_cache_cpus(s);
4c93c355 5014
8a5ec0ba 5015 return 1;
4c93c355 5016}
0af8489b
VB
5017#else
5018static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5019{
5020 return 1;
5021}
5022#endif /* CONFIG_SLUB_TINY */
4c93c355 5023
51df1142
CL
5024static struct kmem_cache *kmem_cache_node;
5025
81819f0f
CL
5026/*
5027 * No kmalloc_node yet so do it by hand. We know that this is the first
5028 * slab on the node for this slabcache. There are no concurrent accesses
5029 * possible.
5030 *
721ae22a
ZYW
5031 * Note that this function only works on the kmem_cache_node
5032 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 5033 * memory on a fresh node that has no slab structures yet.
81819f0f 5034 */
55136592 5035static void early_kmem_cache_node_alloc(int node)
81819f0f 5036{
bb192ed9 5037 struct slab *slab;
81819f0f
CL
5038 struct kmem_cache_node *n;
5039
51df1142 5040 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 5041
bb192ed9 5042 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 5043
bb192ed9
VB
5044 BUG_ON(!slab);
5045 if (slab_nid(slab) != node) {
f9f58285
FF
5046 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5047 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
5048 }
5049
bb192ed9 5050 n = slab->freelist;
81819f0f 5051 BUG_ON(!n);
8ab1372f 5052#ifdef CONFIG_SLUB_DEBUG
f7cb1933 5053 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
8ab1372f 5054#endif
da844b78 5055 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
5056 slab->freelist = get_freepointer(kmem_cache_node, n);
5057 slab->inuse = 1;
12b22386 5058 kmem_cache_node->node[node] = n;
4053497d 5059 init_kmem_cache_node(n);
bb192ed9 5060 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 5061
67b6c900 5062 /*
1e4dd946
SR
5063 * No locks need to be taken here as it has just been
5064 * initialized and there is no concurrent access.
67b6c900 5065 */
bb192ed9 5066 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
5067}
5068
5069static void free_kmem_cache_nodes(struct kmem_cache *s)
5070{
5071 int node;
fa45dc25 5072 struct kmem_cache_node *n;
81819f0f 5073
fa45dc25 5074 for_each_kmem_cache_node(s, node, n) {
81819f0f 5075 s->node[node] = NULL;
ea37df54 5076 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
5077 }
5078}
5079
52b4b950
DS
5080void __kmem_cache_release(struct kmem_cache *s)
5081{
210e7a43 5082 cache_random_seq_destroy(s);
0af8489b 5083#ifndef CONFIG_SLUB_TINY
52b4b950 5084 free_percpu(s->cpu_slab);
0af8489b 5085#endif
52b4b950
DS
5086 free_kmem_cache_nodes(s);
5087}
5088
55136592 5089static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
5090{
5091 int node;
81819f0f 5092
7e1fa93d 5093 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
5094 struct kmem_cache_node *n;
5095
73367bd8 5096 if (slab_state == DOWN) {
55136592 5097 early_kmem_cache_node_alloc(node);
73367bd8
AD
5098 continue;
5099 }
51df1142 5100 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 5101 GFP_KERNEL, node);
81819f0f 5102
73367bd8
AD
5103 if (!n) {
5104 free_kmem_cache_nodes(s);
5105 return 0;
81819f0f 5106 }
73367bd8 5107
4053497d 5108 init_kmem_cache_node(n);
ea37df54 5109 s->node[node] = n;
81819f0f
CL
5110 }
5111 return 1;
5112}
81819f0f 5113
e6d0e1dc
WY
5114static void set_cpu_partial(struct kmem_cache *s)
5115{
5116#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
5117 unsigned int nr_objects;
5118
e6d0e1dc
WY
5119 /*
5120 * cpu_partial determined the maximum number of objects kept in the
5121 * per cpu partial lists of a processor.
5122 *
5123 * Per cpu partial lists mainly contain slabs that just have one
5124 * object freed. If they are used for allocation then they can be
5125 * filled up again with minimal effort. The slab will never hit the
5126 * per node partial lists and therefore no locking will be required.
5127 *
b47291ef
VB
5128 * For backwards compatibility reasons, this is determined as number
5129 * of objects, even though we now limit maximum number of pages, see
5130 * slub_set_cpu_partial()
e6d0e1dc
WY
5131 */
5132 if (!kmem_cache_has_cpu_partial(s))
b47291ef 5133 nr_objects = 0;
e6d0e1dc 5134 else if (s->size >= PAGE_SIZE)
b47291ef 5135 nr_objects = 6;
e6d0e1dc 5136 else if (s->size >= 1024)
23e98ad1 5137 nr_objects = 24;
e6d0e1dc 5138 else if (s->size >= 256)
23e98ad1 5139 nr_objects = 52;
e6d0e1dc 5140 else
23e98ad1 5141 nr_objects = 120;
b47291ef
VB
5142
5143 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
5144#endif
5145}
5146
81819f0f
CL
5147/*
5148 * calculate_sizes() determines the order and the distribution of data within
5149 * a slab object.
5150 */
ae44d81d 5151static int calculate_sizes(struct kmem_cache *s)
81819f0f 5152{
d50112ed 5153 slab_flags_t flags = s->flags;
be4a7988 5154 unsigned int size = s->object_size;
19af27af 5155 unsigned int order;
81819f0f 5156
d8b42bf5
CL
5157 /*
5158 * Round up object size to the next word boundary. We can only
5159 * place the free pointer at word boundaries and this determines
5160 * the possible location of the free pointer.
5161 */
5162 size = ALIGN(size, sizeof(void *));
5163
5164#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
5165 /*
5166 * Determine if we can poison the object itself. If the user of
5167 * the slab may touch the object after free or before allocation
5168 * then we should never poison the object itself.
5169 */
5f0d5a3a 5170 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 5171 !s->ctor)
81819f0f
CL
5172 s->flags |= __OBJECT_POISON;
5173 else
5174 s->flags &= ~__OBJECT_POISON;
5175
81819f0f
CL
5176
5177 /*
672bba3a 5178 * If we are Redzoning then check if there is some space between the
81819f0f 5179 * end of the object and the free pointer. If not then add an
672bba3a 5180 * additional word to have some bytes to store Redzone information.
81819f0f 5181 */
3b0efdfa 5182 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 5183 size += sizeof(void *);
41ecc55b 5184#endif
81819f0f
CL
5185
5186 /*
672bba3a 5187 * With that we have determined the number of bytes in actual use
e41a49fa 5188 * by the object and redzoning.
81819f0f
CL
5189 */
5190 s->inuse = size;
5191
adef2aea
CZ
5192 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5193 ((flags & SLAB_RED_ZONE) &&
5194 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
81819f0f
CL
5195 /*
5196 * Relocate free pointer after the object if it is not
5197 * permitted to overwrite the first word of the object on
5198 * kmem_cache_free.
5199 *
5200 * This is the case if we do RCU, have a constructor or
74c1d3e0 5201 * destructor, are poisoning the objects, or are
adef2aea
CZ
5202 * redzoning an object smaller than sizeof(void *) or are
5203 * redzoning an object with slub_debug_orig_size() enabled,
5204 * in which case the right redzone may be extended.
cbfc35a4
WL
5205 *
5206 * The assumption that s->offset >= s->inuse means free
5207 * pointer is outside of the object is used in the
5208 * freeptr_outside_object() function. If that is no
5209 * longer true, the function needs to be modified.
81819f0f
CL
5210 */
5211 s->offset = size;
5212 size += sizeof(void *);
e41a49fa 5213 } else {
3202fa62
KC
5214 /*
5215 * Store freelist pointer near middle of object to keep
5216 * it away from the edges of the object to avoid small
5217 * sized over/underflows from neighboring allocations.
5218 */
e41a49fa 5219 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
5220 }
5221
c12b3c62 5222#ifdef CONFIG_SLUB_DEBUG
6edf2576 5223 if (flags & SLAB_STORE_USER) {
81819f0f
CL
5224 /*
5225 * Need to store information about allocs and frees after
5226 * the object.
5227 */
5228 size += 2 * sizeof(struct track);
6edf2576
FT
5229
5230 /* Save the original kmalloc request size */
5231 if (flags & SLAB_KMALLOC)
5232 size += sizeof(unsigned int);
5233 }
80a9201a 5234#endif
81819f0f 5235
80a9201a
AP
5236 kasan_cache_create(s, &size, &s->flags);
5237#ifdef CONFIG_SLUB_DEBUG
d86bd1be 5238 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
5239 /*
5240 * Add some empty padding so that we can catch
5241 * overwrites from earlier objects rather than let
5242 * tracking information or the free pointer be
0211a9c8 5243 * corrupted if a user writes before the start
81819f0f
CL
5244 * of the object.
5245 */
5246 size += sizeof(void *);
d86bd1be
JK
5247
5248 s->red_left_pad = sizeof(void *);
5249 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5250 size += s->red_left_pad;
5251 }
41ecc55b 5252#endif
672bba3a 5253
81819f0f
CL
5254 /*
5255 * SLUB stores one object immediately after another beginning from
5256 * offset 0. In order to align the objects we have to simply size
5257 * each object to conform to the alignment.
5258 */
45906855 5259 size = ALIGN(size, s->align);
81819f0f 5260 s->size = size;
4138fdfc 5261 s->reciprocal_size = reciprocal_value(size);
ae44d81d 5262 order = calculate_order(size);
81819f0f 5263
19af27af 5264 if ((int)order < 0)
81819f0f
CL
5265 return 0;
5266
5b15f3fb 5267 s->allocflags = __GFP_COMP;
b7a49f0d
CL
5268
5269 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 5270 s->allocflags |= GFP_DMA;
b7a49f0d 5271
6d6ea1e9
NB
5272 if (s->flags & SLAB_CACHE_DMA32)
5273 s->allocflags |= GFP_DMA32;
5274
b7a49f0d
CL
5275 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5276 s->allocflags |= __GFP_RECLAIMABLE;
5277
81819f0f
CL
5278 /*
5279 * Determine the number of objects per slab
5280 */
9736d2a9
MW
5281 s->oo = oo_make(order, size);
5282 s->min = oo_make(get_order(size), size);
81819f0f 5283
834f3d11 5284 return !!oo_objects(s->oo);
81819f0f
CL
5285}
5286
d50112ed 5287static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 5288{
303cd693 5289 s->flags = kmem_cache_flags(flags, s->name);
2482ddec
KC
5290#ifdef CONFIG_SLAB_FREELIST_HARDENED
5291 s->random = get_random_long();
5292#endif
81819f0f 5293
ae44d81d 5294 if (!calculate_sizes(s))
81819f0f 5295 goto error;
3de47213
DR
5296 if (disable_higher_order_debug) {
5297 /*
5298 * Disable debugging flags that store metadata if the min slab
5299 * order increased.
5300 */
3b0efdfa 5301 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
5302 s->flags &= ~DEBUG_METADATA_FLAGS;
5303 s->offset = 0;
ae44d81d 5304 if (!calculate_sizes(s))
3de47213
DR
5305 goto error;
5306 }
5307 }
81819f0f 5308
6801be4f
PZ
5309#ifdef system_has_freelist_aba
5310 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
5311 /* Enable fast mode */
5312 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 5313 }
b789ef51
CL
5314#endif
5315
3b89d7d8 5316 /*
c2092c12 5317 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
5318 * list to avoid pounding the page allocator excessively.
5319 */
5182f3c9
HY
5320 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5321 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 5322
e6d0e1dc 5323 set_cpu_partial(s);
49e22585 5324
81819f0f 5325#ifdef CONFIG_NUMA
e2cb96b7 5326 s->remote_node_defrag_ratio = 1000;
81819f0f 5327#endif
210e7a43
TG
5328
5329 /* Initialize the pre-computed randomized freelist if slab is up */
5330 if (slab_state >= UP) {
5331 if (init_cache_random_seq(s))
5332 goto error;
5333 }
5334
55136592 5335 if (!init_kmem_cache_nodes(s))
dfb4f096 5336 goto error;
81819f0f 5337
55136592 5338 if (alloc_kmem_cache_cpus(s))
278b1bb1 5339 return 0;
ff12059e 5340
81819f0f 5341error:
9037c576 5342 __kmem_cache_release(s);
278b1bb1 5343 return -EINVAL;
81819f0f 5344}
81819f0f 5345
bb192ed9 5346static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 5347 const char *text)
33b12c38
CL
5348{
5349#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5350 void *addr = slab_address(slab);
33b12c38 5351 void *p;
aa456c7a 5352
bb192ed9 5353 slab_err(s, slab, text, s->name);
33b12c38 5354
4ef3f5a3
VB
5355 spin_lock(&object_map_lock);
5356 __fill_map(object_map, s, slab);
5357
bb192ed9 5358 for_each_object(p, s, addr, slab->objects) {
33b12c38 5359
4ef3f5a3 5360 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 5361 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
5362 print_tracking(s, p);
5363 }
5364 }
4ef3f5a3 5365 spin_unlock(&object_map_lock);
33b12c38
CL
5366#endif
5367}
5368
81819f0f 5369/*
599870b1 5370 * Attempt to free all partial slabs on a node.
52b4b950
DS
5371 * This is called from __kmem_cache_shutdown(). We must take list_lock
5372 * because sysfs file might still access partial list after the shutdowning.
81819f0f 5373 */
599870b1 5374static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 5375{
60398923 5376 LIST_HEAD(discard);
bb192ed9 5377 struct slab *slab, *h;
81819f0f 5378
52b4b950
DS
5379 BUG_ON(irqs_disabled());
5380 spin_lock_irq(&n->list_lock);
bb192ed9
VB
5381 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5382 if (!slab->inuse) {
5383 remove_partial(n, slab);
5384 list_add(&slab->slab_list, &discard);
33b12c38 5385 } else {
bb192ed9 5386 list_slab_objects(s, slab,
55860d96 5387 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 5388 }
33b12c38 5389 }
52b4b950 5390 spin_unlock_irq(&n->list_lock);
60398923 5391
bb192ed9
VB
5392 list_for_each_entry_safe(slab, h, &discard, slab_list)
5393 discard_slab(s, slab);
81819f0f
CL
5394}
5395
f9e13c0a
SB
5396bool __kmem_cache_empty(struct kmem_cache *s)
5397{
5398 int node;
5399 struct kmem_cache_node *n;
5400
5401 for_each_kmem_cache_node(s, node, n)
4f174a8b 5402 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
5403 return false;
5404 return true;
5405}
5406
81819f0f 5407/*
672bba3a 5408 * Release all resources used by a slab cache.
81819f0f 5409 */
52b4b950 5410int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
5411{
5412 int node;
fa45dc25 5413 struct kmem_cache_node *n;
81819f0f 5414
5a836bf6 5415 flush_all_cpus_locked(s);
81819f0f 5416 /* Attempt to free all objects */
fa45dc25 5417 for_each_kmem_cache_node(s, node, n) {
599870b1 5418 free_partial(s, n);
4f174a8b 5419 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
5420 return 1;
5421 }
81819f0f
CL
5422 return 0;
5423}
5424
5bb1bb35 5425#ifdef CONFIG_PRINTK
2dfe63e6 5426void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
5427{
5428 void *base;
5429 int __maybe_unused i;
5430 unsigned int objnr;
5431 void *objp;
5432 void *objp0;
7213230a 5433 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
5434 struct track __maybe_unused *trackp;
5435
5436 kpp->kp_ptr = object;
7213230a 5437 kpp->kp_slab = slab;
8e7f37f2 5438 kpp->kp_slab_cache = s;
7213230a 5439 base = slab_address(slab);
8e7f37f2
PM
5440 objp0 = kasan_reset_tag(object);
5441#ifdef CONFIG_SLUB_DEBUG
5442 objp = restore_red_left(s, objp0);
5443#else
5444 objp = objp0;
5445#endif
40f3bf0c 5446 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
5447 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5448 objp = base + s->size * objnr;
5449 kpp->kp_objp = objp;
7213230a
MWO
5450 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5451 || (objp - base) % s->size) ||
8e7f37f2
PM
5452 !(s->flags & SLAB_STORE_USER))
5453 return;
5454#ifdef CONFIG_SLUB_DEBUG
0cbc124b 5455 objp = fixup_red_left(s, objp);
8e7f37f2
PM
5456 trackp = get_track(s, objp, TRACK_ALLOC);
5457 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
5458#ifdef CONFIG_STACKDEPOT
5459 {
5460 depot_stack_handle_t handle;
5461 unsigned long *entries;
5462 unsigned int nr_entries;
78869146 5463
5cf909c5
OG
5464 handle = READ_ONCE(trackp->handle);
5465 if (handle) {
5466 nr_entries = stack_depot_fetch(handle, &entries);
5467 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5468 kpp->kp_stack[i] = (void *)entries[i];
5469 }
78869146 5470
5cf909c5
OG
5471 trackp = get_track(s, objp, TRACK_FREE);
5472 handle = READ_ONCE(trackp->handle);
5473 if (handle) {
5474 nr_entries = stack_depot_fetch(handle, &entries);
5475 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5476 kpp->kp_free_stack[i] = (void *)entries[i];
5477 }
e548eaa1 5478 }
8e7f37f2
PM
5479#endif
5480#endif
5481}
5bb1bb35 5482#endif
8e7f37f2 5483
81819f0f
CL
5484/********************************************************************
5485 * Kmalloc subsystem
5486 *******************************************************************/
5487
81819f0f
CL
5488static int __init setup_slub_min_order(char *str)
5489{
19af27af 5490 get_option(&str, (int *)&slub_min_order);
81819f0f 5491
e519ce7a
FT
5492 if (slub_min_order > slub_max_order)
5493 slub_max_order = slub_min_order;
5494
81819f0f
CL
5495 return 1;
5496}
5497
671776b3
XS
5498__setup("slab_min_order=", setup_slub_min_order);
5499__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5500
81819f0f
CL
5501
5502static int __init setup_slub_max_order(char *str)
5503{
19af27af 5504 get_option(&str, (int *)&slub_max_order);
5e0a760b 5505 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
81819f0f 5506
e519ce7a
FT
5507 if (slub_min_order > slub_max_order)
5508 slub_min_order = slub_max_order;
5509
81819f0f
CL
5510 return 1;
5511}
5512
671776b3
XS
5513__setup("slab_max_order=", setup_slub_max_order);
5514__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
81819f0f
CL
5515
5516static int __init setup_slub_min_objects(char *str)
5517{
19af27af 5518 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
5519
5520 return 1;
5521}
5522
671776b3
XS
5523__setup("slab_min_objects=", setup_slub_min_objects);
5524__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
81819f0f 5525
ed18adc1
KC
5526#ifdef CONFIG_HARDENED_USERCOPY
5527/*
afcc90f8
KC
5528 * Rejects incorrectly sized objects and objects that are to be copied
5529 * to/from userspace but do not fall entirely within the containing slab
5530 * cache's usercopy region.
ed18adc1
KC
5531 *
5532 * Returns NULL if check passes, otherwise const char * to name of cache
5533 * to indicate an error.
5534 */
0b3eb091
MWO
5535void __check_heap_object(const void *ptr, unsigned long n,
5536 const struct slab *slab, bool to_user)
ed18adc1
KC
5537{
5538 struct kmem_cache *s;
44065b2e 5539 unsigned int offset;
b89fb5ef 5540 bool is_kfence = is_kfence_address(ptr);
ed18adc1 5541
96fedce2
AK
5542 ptr = kasan_reset_tag(ptr);
5543
ed18adc1 5544 /* Find object and usable object size. */
0b3eb091 5545 s = slab->slab_cache;
ed18adc1
KC
5546
5547 /* Reject impossible pointers. */
0b3eb091 5548 if (ptr < slab_address(slab))
f4e6e289
KC
5549 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5550 to_user, 0, n);
ed18adc1
KC
5551
5552 /* Find offset within object. */
b89fb5ef
AP
5553 if (is_kfence)
5554 offset = ptr - kfence_object_start(ptr);
5555 else
0b3eb091 5556 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
5557
5558 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 5559 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 5560 if (offset < s->red_left_pad)
f4e6e289
KC
5561 usercopy_abort("SLUB object in left red zone",
5562 s->name, to_user, offset, n);
ed18adc1
KC
5563 offset -= s->red_left_pad;
5564 }
5565
afcc90f8
KC
5566 /* Allow address range falling entirely within usercopy region. */
5567 if (offset >= s->useroffset &&
5568 offset - s->useroffset <= s->usersize &&
5569 n <= s->useroffset - offset + s->usersize)
f4e6e289 5570 return;
ed18adc1 5571
f4e6e289 5572 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
5573}
5574#endif /* CONFIG_HARDENED_USERCOPY */
5575
832f37f5
VD
5576#define SHRINK_PROMOTE_MAX 32
5577
2086d26a 5578/*
832f37f5
VD
5579 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5580 * up most to the head of the partial lists. New allocations will then
5581 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
5582 *
5583 * The slabs with the least items are placed last. This results in them
5584 * being allocated from last increasing the chance that the last objects
5585 * are freed in them.
2086d26a 5586 */
5a836bf6 5587static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
5588{
5589 int node;
5590 int i;
5591 struct kmem_cache_node *n;
bb192ed9
VB
5592 struct slab *slab;
5593 struct slab *t;
832f37f5
VD
5594 struct list_head discard;
5595 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 5596 unsigned long flags;
ce3712d7 5597 int ret = 0;
2086d26a 5598
fa45dc25 5599 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
5600 INIT_LIST_HEAD(&discard);
5601 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5602 INIT_LIST_HEAD(promote + i);
2086d26a
CL
5603
5604 spin_lock_irqsave(&n->list_lock, flags);
5605
5606 /*
832f37f5 5607 * Build lists of slabs to discard or promote.
2086d26a 5608 *
672bba3a 5609 * Note that concurrent frees may occur while we hold the
c2092c12 5610 * list_lock. slab->inuse here is the upper limit.
2086d26a 5611 */
bb192ed9
VB
5612 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5613 int free = slab->objects - slab->inuse;
832f37f5 5614
c2092c12 5615 /* Do not reread slab->inuse */
832f37f5
VD
5616 barrier();
5617
5618 /* We do not keep full slabs on the list */
5619 BUG_ON(free <= 0);
5620
bb192ed9
VB
5621 if (free == slab->objects) {
5622 list_move(&slab->slab_list, &discard);
8a399e2f 5623 slab_clear_node_partial(slab);
69cb8e6b 5624 n->nr_partial--;
c7323a5a 5625 dec_slabs_node(s, node, slab->objects);
832f37f5 5626 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 5627 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
5628 }
5629
2086d26a 5630 /*
832f37f5
VD
5631 * Promote the slabs filled up most to the head of the
5632 * partial list.
2086d26a 5633 */
832f37f5
VD
5634 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5635 list_splice(promote + i, &n->partial);
2086d26a 5636
2086d26a 5637 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
5638
5639 /* Release empty slabs */
bb192ed9 5640 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 5641 free_slab(s, slab);
ce3712d7 5642
4f174a8b 5643 if (node_nr_slabs(n))
ce3712d7 5644 ret = 1;
2086d26a
CL
5645 }
5646
ce3712d7 5647 return ret;
2086d26a 5648}
2086d26a 5649
5a836bf6
SAS
5650int __kmem_cache_shrink(struct kmem_cache *s)
5651{
5652 flush_all(s);
5653 return __kmem_cache_do_shrink(s);
5654}
5655
b9049e23
YG
5656static int slab_mem_going_offline_callback(void *arg)
5657{
5658 struct kmem_cache *s;
5659
18004c5d 5660 mutex_lock(&slab_mutex);
5a836bf6
SAS
5661 list_for_each_entry(s, &slab_caches, list) {
5662 flush_all_cpus_locked(s);
5663 __kmem_cache_do_shrink(s);
5664 }
18004c5d 5665 mutex_unlock(&slab_mutex);
b9049e23
YG
5666
5667 return 0;
5668}
5669
5670static void slab_mem_offline_callback(void *arg)
5671{
b9049e23
YG
5672 struct memory_notify *marg = arg;
5673 int offline_node;
5674
b9d5ab25 5675 offline_node = marg->status_change_nid_normal;
b9049e23
YG
5676
5677 /*
5678 * If the node still has available memory. we need kmem_cache_node
5679 * for it yet.
5680 */
5681 if (offline_node < 0)
5682 return;
5683
18004c5d 5684 mutex_lock(&slab_mutex);
7e1fa93d 5685 node_clear(offline_node, slab_nodes);
666716fd
VB
5686 /*
5687 * We no longer free kmem_cache_node structures here, as it would be
5688 * racy with all get_node() users, and infeasible to protect them with
5689 * slab_mutex.
5690 */
18004c5d 5691 mutex_unlock(&slab_mutex);
b9049e23
YG
5692}
5693
5694static int slab_mem_going_online_callback(void *arg)
5695{
5696 struct kmem_cache_node *n;
5697 struct kmem_cache *s;
5698 struct memory_notify *marg = arg;
b9d5ab25 5699 int nid = marg->status_change_nid_normal;
b9049e23
YG
5700 int ret = 0;
5701
5702 /*
5703 * If the node's memory is already available, then kmem_cache_node is
5704 * already created. Nothing to do.
5705 */
5706 if (nid < 0)
5707 return 0;
5708
5709 /*
0121c619 5710 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
5711 * allocate a kmem_cache_node structure in order to bring the node
5712 * online.
5713 */
18004c5d 5714 mutex_lock(&slab_mutex);
b9049e23 5715 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
5716 /*
5717 * The structure may already exist if the node was previously
5718 * onlined and offlined.
5719 */
5720 if (get_node(s, nid))
5721 continue;
b9049e23
YG
5722 /*
5723 * XXX: kmem_cache_alloc_node will fallback to other nodes
5724 * since memory is not yet available from the node that
5725 * is brought up.
5726 */
8de66a0c 5727 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
5728 if (!n) {
5729 ret = -ENOMEM;
5730 goto out;
5731 }
4053497d 5732 init_kmem_cache_node(n);
b9049e23
YG
5733 s->node[nid] = n;
5734 }
7e1fa93d
VB
5735 /*
5736 * Any cache created after this point will also have kmem_cache_node
5737 * initialized for the new node.
5738 */
5739 node_set(nid, slab_nodes);
b9049e23 5740out:
18004c5d 5741 mutex_unlock(&slab_mutex);
b9049e23
YG
5742 return ret;
5743}
5744
5745static int slab_memory_callback(struct notifier_block *self,
5746 unsigned long action, void *arg)
5747{
5748 int ret = 0;
5749
5750 switch (action) {
5751 case MEM_GOING_ONLINE:
5752 ret = slab_mem_going_online_callback(arg);
5753 break;
5754 case MEM_GOING_OFFLINE:
5755 ret = slab_mem_going_offline_callback(arg);
5756 break;
5757 case MEM_OFFLINE:
5758 case MEM_CANCEL_ONLINE:
5759 slab_mem_offline_callback(arg);
5760 break;
5761 case MEM_ONLINE:
5762 case MEM_CANCEL_OFFLINE:
5763 break;
5764 }
dc19f9db
KH
5765 if (ret)
5766 ret = notifier_from_errno(ret);
5767 else
5768 ret = NOTIFY_OK;
b9049e23
YG
5769 return ret;
5770}
5771
81819f0f
CL
5772/********************************************************************
5773 * Basic setup of slabs
5774 *******************************************************************/
5775
51df1142
CL
5776/*
5777 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
5778 * the page allocator. Allocate them properly then fix up the pointers
5779 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
5780 */
5781
dffb4d60 5782static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
5783{
5784 int node;
dffb4d60 5785 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 5786 struct kmem_cache_node *n;
51df1142 5787
dffb4d60 5788 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5789
7d557b3c
GC
5790 /*
5791 * This runs very early, and only the boot processor is supposed to be
5792 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5793 * IPIs around.
5794 */
5795 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5796 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5797 struct slab *p;
51df1142 5798
916ac052 5799 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5800 p->slab_cache = s;
51df1142 5801
607bf324 5802#ifdef CONFIG_SLUB_DEBUG
916ac052 5803 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5804 p->slab_cache = s;
51df1142 5805#endif
51df1142 5806 }
dffb4d60
CL
5807 list_add(&s->list, &slab_caches);
5808 return s;
51df1142
CL
5809}
5810
81819f0f
CL
5811void __init kmem_cache_init(void)
5812{
dffb4d60
CL
5813 static __initdata struct kmem_cache boot_kmem_cache,
5814 boot_kmem_cache_node;
7e1fa93d 5815 int node;
51df1142 5816
fc8d8620
SG
5817 if (debug_guardpage_minorder())
5818 slub_max_order = 0;
5819
79270291
SB
5820 /* Print slub debugging pointers without hashing */
5821 if (__slub_debug_enabled())
5822 no_hash_pointers_enable(NULL);
5823
dffb4d60
CL
5824 kmem_cache_node = &boot_kmem_cache_node;
5825 kmem_cache = &boot_kmem_cache;
51df1142 5826
7e1fa93d
VB
5827 /*
5828 * Initialize the nodemask for which we will allocate per node
5829 * structures. Here we don't need taking slab_mutex yet.
5830 */
5831 for_each_node_state(node, N_NORMAL_MEMORY)
5832 node_set(node, slab_nodes);
5833
dffb4d60 5834 create_boot_cache(kmem_cache_node, "kmem_cache_node",
45012241
SB
5835 sizeof(struct kmem_cache_node),
5836 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
b9049e23 5837
946d5f9c 5838 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5839
5840 /* Able to allocate the per node structures */
5841 slab_state = PARTIAL;
5842
dffb4d60
CL
5843 create_boot_cache(kmem_cache, "kmem_cache",
5844 offsetof(struct kmem_cache, node) +
5845 nr_node_ids * sizeof(struct kmem_cache_node *),
45012241 5846 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8a13a4cc 5847
dffb4d60 5848 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5849 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5850
5851 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5852 setup_kmalloc_cache_index_table();
66b3dc1f 5853 create_kmalloc_caches();
81819f0f 5854
210e7a43
TG
5855 /* Setup random freelists for each cache */
5856 init_freelist_randomization();
5857
a96a87bf
SAS
5858 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5859 slub_cpu_dead);
81819f0f 5860
b9726c26 5861 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5862 cache_line_size(),
81819f0f
CL
5863 slub_min_order, slub_max_order, slub_min_objects,
5864 nr_cpu_ids, nr_node_ids);
5865}
5866
7e85ee0c
PE
5867void __init kmem_cache_init_late(void)
5868{
0af8489b 5869#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5870 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5871 WARN_ON(!flushwq);
0af8489b 5872#endif
7e85ee0c
PE
5873}
5874
2633d7a0 5875struct kmem_cache *
f4957d5b 5876__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5877 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5878{
10befea9 5879 struct kmem_cache *s;
81819f0f 5880
a44cb944 5881 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5882 if (s) {
efb93527
XS
5883 if (sysfs_slab_alias(s, name))
5884 return NULL;
5885
81819f0f 5886 s->refcount++;
84d0ddd6 5887
81819f0f
CL
5888 /*
5889 * Adjust the object sizes so that we clear
5890 * the complete object on kzalloc.
5891 */
1b473f29 5892 s->object_size = max(s->object_size, size);
52ee6d74 5893 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5894 }
6446faa2 5895
cbb79694
CL
5896 return s;
5897}
84c1cf62 5898
d50112ed 5899int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5900{
aac3a166
PE
5901 int err;
5902
5903 err = kmem_cache_open(s, flags);
5904 if (err)
5905 return err;
20cea968 5906
45530c44
CL
5907 /* Mutex is not taken during early boot */
5908 if (slab_state <= UP)
5909 return 0;
5910
aac3a166 5911 err = sysfs_slab_add(s);
67823a54 5912 if (err) {
52b4b950 5913 __kmem_cache_release(s);
67823a54
ML
5914 return err;
5915 }
20cea968 5916
64dd6849
FM
5917 if (s->flags & SLAB_STORE_USER)
5918 debugfs_slab_add(s);
5919
67823a54 5920 return 0;
81819f0f 5921}
81819f0f 5922
b1a413a3 5923#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5924static int count_inuse(struct slab *slab)
205ab99d 5925{
bb192ed9 5926 return slab->inuse;
205ab99d
CL
5927}
5928
bb192ed9 5929static int count_total(struct slab *slab)
205ab99d 5930{
bb192ed9 5931 return slab->objects;
205ab99d 5932}
ab4d5ed5 5933#endif
205ab99d 5934
ab4d5ed5 5935#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5936static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5937 unsigned long *obj_map)
53e15af0
CL
5938{
5939 void *p;
bb192ed9 5940 void *addr = slab_address(slab);
53e15af0 5941
bb192ed9 5942 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5943 return;
53e15af0
CL
5944
5945 /* Now we know that a valid freelist exists */
bb192ed9
VB
5946 __fill_map(obj_map, s, slab);
5947 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5948 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5949 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5950
bb192ed9 5951 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5952 break;
5953 }
53e15af0
CL
5954}
5955
434e245d 5956static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5957 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5958{
5959 unsigned long count = 0;
bb192ed9 5960 struct slab *slab;
53e15af0
CL
5961 unsigned long flags;
5962
5963 spin_lock_irqsave(&n->list_lock, flags);
5964
bb192ed9
VB
5965 list_for_each_entry(slab, &n->partial, slab_list) {
5966 validate_slab(s, slab, obj_map);
53e15af0
CL
5967 count++;
5968 }
1f9f78b1 5969 if (count != n->nr_partial) {
f9f58285
FF
5970 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5971 s->name, count, n->nr_partial);
1f9f78b1
OG
5972 slab_add_kunit_errors();
5973 }
53e15af0
CL
5974
5975 if (!(s->flags & SLAB_STORE_USER))
5976 goto out;
5977
bb192ed9
VB
5978 list_for_each_entry(slab, &n->full, slab_list) {
5979 validate_slab(s, slab, obj_map);
53e15af0
CL
5980 count++;
5981 }
8040cbf5 5982 if (count != node_nr_slabs(n)) {
f9f58285 5983 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5984 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5985 slab_add_kunit_errors();
5986 }
53e15af0
CL
5987
5988out:
5989 spin_unlock_irqrestore(&n->list_lock, flags);
5990 return count;
5991}
5992
1f9f78b1 5993long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5994{
5995 int node;
5996 unsigned long count = 0;
fa45dc25 5997 struct kmem_cache_node *n;
0a19e7dd
VB
5998 unsigned long *obj_map;
5999
6000 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6001 if (!obj_map)
6002 return -ENOMEM;
53e15af0
CL
6003
6004 flush_all(s);
fa45dc25 6005 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
6006 count += validate_slab_node(s, n, obj_map);
6007
6008 bitmap_free(obj_map);
90e9f6a6 6009
53e15af0
CL
6010 return count;
6011}
1f9f78b1
OG
6012EXPORT_SYMBOL(validate_slab_cache);
6013
64dd6849 6014#ifdef CONFIG_DEBUG_FS
88a420e4 6015/*
672bba3a 6016 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
6017 * and freed.
6018 */
6019
6020struct location {
8ea9fb92 6021 depot_stack_handle_t handle;
88a420e4 6022 unsigned long count;
ce71e27c 6023 unsigned long addr;
6edf2576 6024 unsigned long waste;
45edfa58
CL
6025 long long sum_time;
6026 long min_time;
6027 long max_time;
6028 long min_pid;
6029 long max_pid;
174596a0 6030 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 6031 nodemask_t nodes;
88a420e4
CL
6032};
6033
6034struct loc_track {
6035 unsigned long max;
6036 unsigned long count;
6037 struct location *loc;
005a79e5 6038 loff_t idx;
88a420e4
CL
6039};
6040
64dd6849
FM
6041static struct dentry *slab_debugfs_root;
6042
88a420e4
CL
6043static void free_loc_track(struct loc_track *t)
6044{
6045 if (t->max)
6046 free_pages((unsigned long)t->loc,
6047 get_order(sizeof(struct location) * t->max));
6048}
6049
68dff6a9 6050static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
6051{
6052 struct location *l;
6053 int order;
6054
88a420e4
CL
6055 order = get_order(sizeof(struct location) * max);
6056
68dff6a9 6057 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
6058 if (!l)
6059 return 0;
6060
6061 if (t->count) {
6062 memcpy(l, t->loc, sizeof(struct location) * t->count);
6063 free_loc_track(t);
6064 }
6065 t->max = max;
6066 t->loc = l;
6067 return 1;
6068}
6069
6070static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
6071 const struct track *track,
6072 unsigned int orig_size)
88a420e4
CL
6073{
6074 long start, end, pos;
6075 struct location *l;
6edf2576 6076 unsigned long caddr, chandle, cwaste;
45edfa58 6077 unsigned long age = jiffies - track->when;
8ea9fb92 6078 depot_stack_handle_t handle = 0;
6edf2576 6079 unsigned int waste = s->object_size - orig_size;
88a420e4 6080
8ea9fb92
OG
6081#ifdef CONFIG_STACKDEPOT
6082 handle = READ_ONCE(track->handle);
6083#endif
88a420e4
CL
6084 start = -1;
6085 end = t->count;
6086
6087 for ( ; ; ) {
6088 pos = start + (end - start + 1) / 2;
6089
6090 /*
6091 * There is nothing at "end". If we end up there
6092 * we need to add something to before end.
6093 */
6094 if (pos == end)
6095 break;
6096
6edf2576
FT
6097 l = &t->loc[pos];
6098 caddr = l->addr;
6099 chandle = l->handle;
6100 cwaste = l->waste;
6101 if ((track->addr == caddr) && (handle == chandle) &&
6102 (waste == cwaste)) {
45edfa58 6103
45edfa58
CL
6104 l->count++;
6105 if (track->when) {
6106 l->sum_time += age;
6107 if (age < l->min_time)
6108 l->min_time = age;
6109 if (age > l->max_time)
6110 l->max_time = age;
6111
6112 if (track->pid < l->min_pid)
6113 l->min_pid = track->pid;
6114 if (track->pid > l->max_pid)
6115 l->max_pid = track->pid;
6116
174596a0
RR
6117 cpumask_set_cpu(track->cpu,
6118 to_cpumask(l->cpus));
45edfa58
CL
6119 }
6120 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6121 return 1;
6122 }
6123
45edfa58 6124 if (track->addr < caddr)
88a420e4 6125 end = pos;
8ea9fb92
OG
6126 else if (track->addr == caddr && handle < chandle)
6127 end = pos;
6edf2576
FT
6128 else if (track->addr == caddr && handle == chandle &&
6129 waste < cwaste)
6130 end = pos;
88a420e4
CL
6131 else
6132 start = pos;
6133 }
6134
6135 /*
672bba3a 6136 * Not found. Insert new tracking element.
88a420e4 6137 */
68dff6a9 6138 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
6139 return 0;
6140
6141 l = t->loc + pos;
6142 if (pos < t->count)
6143 memmove(l + 1, l,
6144 (t->count - pos) * sizeof(struct location));
6145 t->count++;
6146 l->count = 1;
45edfa58
CL
6147 l->addr = track->addr;
6148 l->sum_time = age;
6149 l->min_time = age;
6150 l->max_time = age;
6151 l->min_pid = track->pid;
6152 l->max_pid = track->pid;
8ea9fb92 6153 l->handle = handle;
6edf2576 6154 l->waste = waste;
174596a0
RR
6155 cpumask_clear(to_cpumask(l->cpus));
6156 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
6157 nodes_clear(l->nodes);
6158 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6159 return 1;
6160}
6161
6162static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 6163 struct slab *slab, enum track_item alloc,
b3fd64e1 6164 unsigned long *obj_map)
88a420e4 6165{
bb192ed9 6166 void *addr = slab_address(slab);
6edf2576 6167 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
6168 void *p;
6169
bb192ed9 6170 __fill_map(obj_map, s, slab);
b3fd64e1 6171
bb192ed9 6172 for_each_object(p, s, addr, slab->objects)
b3fd64e1 6173 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
6174 add_location(t, s, get_track(s, p, alloc),
6175 is_alloc ? get_orig_size(s, p) :
6176 s->object_size);
88a420e4 6177}
64dd6849 6178#endif /* CONFIG_DEBUG_FS */
6dfd1b65 6179#endif /* CONFIG_SLUB_DEBUG */
88a420e4 6180
b1a413a3 6181#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 6182enum slab_stat_type {
205ab99d
CL
6183 SL_ALL, /* All slabs */
6184 SL_PARTIAL, /* Only partially allocated slabs */
6185 SL_CPU, /* Only slabs used for cpu caches */
6186 SL_OBJECTS, /* Determine allocated objects not slabs */
6187 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
6188};
6189
205ab99d 6190#define SO_ALL (1 << SL_ALL)
81819f0f
CL
6191#define SO_PARTIAL (1 << SL_PARTIAL)
6192#define SO_CPU (1 << SL_CPU)
6193#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 6194#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 6195
62e5c4b4 6196static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 6197 char *buf, unsigned long flags)
81819f0f
CL
6198{
6199 unsigned long total = 0;
81819f0f
CL
6200 int node;
6201 int x;
6202 unsigned long *nodes;
bf16d19a 6203 int len = 0;
81819f0f 6204
6396bb22 6205 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
6206 if (!nodes)
6207 return -ENOMEM;
81819f0f 6208
205ab99d
CL
6209 if (flags & SO_CPU) {
6210 int cpu;
81819f0f 6211
205ab99d 6212 for_each_possible_cpu(cpu) {
d0e0ac97
CG
6213 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6214 cpu);
ec3ab083 6215 int node;
bb192ed9 6216 struct slab *slab;
dfb4f096 6217
bb192ed9
VB
6218 slab = READ_ONCE(c->slab);
6219 if (!slab)
ec3ab083 6220 continue;
205ab99d 6221
bb192ed9 6222 node = slab_nid(slab);
ec3ab083 6223 if (flags & SO_TOTAL)
bb192ed9 6224 x = slab->objects;
ec3ab083 6225 else if (flags & SO_OBJECTS)
bb192ed9 6226 x = slab->inuse;
ec3ab083
CL
6227 else
6228 x = 1;
49e22585 6229
ec3ab083
CL
6230 total += x;
6231 nodes[node] += x;
6232
9c01e9af 6233#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
6234 slab = slub_percpu_partial_read_once(c);
6235 if (slab) {
6236 node = slab_nid(slab);
8afb1474
LZ
6237 if (flags & SO_TOTAL)
6238 WARN_ON_ONCE(1);
6239 else if (flags & SO_OBJECTS)
6240 WARN_ON_ONCE(1);
6241 else
87654cf7 6242 x = data_race(slab->slabs);
bc6697d8
ED
6243 total += x;
6244 nodes[node] += x;
49e22585 6245 }
9c01e9af 6246#endif
81819f0f
CL
6247 }
6248 }
6249
e4f8e513
QC
6250 /*
6251 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6252 * already held which will conflict with an existing lock order:
6253 *
6254 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6255 *
6256 * We don't really need mem_hotplug_lock (to hold off
6257 * slab_mem_going_offline_callback) here because slab's memory hot
6258 * unplug code doesn't destroy the kmem_cache->node[] data.
6259 */
6260
ab4d5ed5 6261#ifdef CONFIG_SLUB_DEBUG
205ab99d 6262 if (flags & SO_ALL) {
fa45dc25
CL
6263 struct kmem_cache_node *n;
6264
6265 for_each_kmem_cache_node(s, node, n) {
205ab99d 6266
d0e0ac97 6267 if (flags & SO_TOTAL)
8040cbf5 6268 x = node_nr_objs(n);
d0e0ac97 6269 else if (flags & SO_OBJECTS)
8040cbf5 6270 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 6271 else
8040cbf5 6272 x = node_nr_slabs(n);
81819f0f
CL
6273 total += x;
6274 nodes[node] += x;
6275 }
6276
ab4d5ed5
CL
6277 } else
6278#endif
6279 if (flags & SO_PARTIAL) {
fa45dc25 6280 struct kmem_cache_node *n;
81819f0f 6281
fa45dc25 6282 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
6283 if (flags & SO_TOTAL)
6284 x = count_partial(n, count_total);
6285 else if (flags & SO_OBJECTS)
6286 x = count_partial(n, count_inuse);
81819f0f 6287 else
205ab99d 6288 x = n->nr_partial;
81819f0f
CL
6289 total += x;
6290 nodes[node] += x;
6291 }
6292 }
bf16d19a
JP
6293
6294 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 6295#ifdef CONFIG_NUMA
bf16d19a 6296 for (node = 0; node < nr_node_ids; node++) {
81819f0f 6297 if (nodes[node])
bf16d19a
JP
6298 len += sysfs_emit_at(buf, len, " N%d=%lu",
6299 node, nodes[node]);
6300 }
81819f0f 6301#endif
bf16d19a 6302 len += sysfs_emit_at(buf, len, "\n");
81819f0f 6303 kfree(nodes);
bf16d19a
JP
6304
6305 return len;
81819f0f
CL
6306}
6307
81819f0f 6308#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 6309#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
6310
6311struct slab_attribute {
6312 struct attribute attr;
6313 ssize_t (*show)(struct kmem_cache *s, char *buf);
6314 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6315};
6316
6317#define SLAB_ATTR_RO(_name) \
d1d28bd9 6318 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
6319
6320#define SLAB_ATTR(_name) \
d1d28bd9 6321 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 6322
81819f0f
CL
6323static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6324{
bf16d19a 6325 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
6326}
6327SLAB_ATTR_RO(slab_size);
6328
6329static ssize_t align_show(struct kmem_cache *s, char *buf)
6330{
bf16d19a 6331 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
6332}
6333SLAB_ATTR_RO(align);
6334
6335static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6336{
bf16d19a 6337 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
6338}
6339SLAB_ATTR_RO(object_size);
6340
6341static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6342{
bf16d19a 6343 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
6344}
6345SLAB_ATTR_RO(objs_per_slab);
6346
6347static ssize_t order_show(struct kmem_cache *s, char *buf)
6348{
bf16d19a 6349 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 6350}
32a6f409 6351SLAB_ATTR_RO(order);
81819f0f 6352
73d342b1
DR
6353static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6354{
bf16d19a 6355 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
6356}
6357
6358static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6359 size_t length)
6360{
6361 unsigned long min;
6362 int err;
6363
3dbb95f7 6364 err = kstrtoul(buf, 10, &min);
73d342b1
DR
6365 if (err)
6366 return err;
6367
5182f3c9 6368 s->min_partial = min;
73d342b1
DR
6369 return length;
6370}
6371SLAB_ATTR(min_partial);
6372
49e22585
CL
6373static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6374{
b47291ef
VB
6375 unsigned int nr_partial = 0;
6376#ifdef CONFIG_SLUB_CPU_PARTIAL
6377 nr_partial = s->cpu_partial;
6378#endif
6379
6380 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
6381}
6382
6383static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6384 size_t length)
6385{
e5d9998f 6386 unsigned int objects;
49e22585
CL
6387 int err;
6388
e5d9998f 6389 err = kstrtouint(buf, 10, &objects);
49e22585
CL
6390 if (err)
6391 return err;
345c905d 6392 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 6393 return -EINVAL;
49e22585 6394
e6d0e1dc 6395 slub_set_cpu_partial(s, objects);
49e22585
CL
6396 flush_all(s);
6397 return length;
6398}
6399SLAB_ATTR(cpu_partial);
6400
81819f0f
CL
6401static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6402{
62c70bce
JP
6403 if (!s->ctor)
6404 return 0;
bf16d19a 6405 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
6406}
6407SLAB_ATTR_RO(ctor);
6408
81819f0f
CL
6409static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6410{
bf16d19a 6411 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
6412}
6413SLAB_ATTR_RO(aliases);
6414
81819f0f
CL
6415static ssize_t partial_show(struct kmem_cache *s, char *buf)
6416{
d9acf4b7 6417 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
6418}
6419SLAB_ATTR_RO(partial);
6420
6421static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6422{
d9acf4b7 6423 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
6424}
6425SLAB_ATTR_RO(cpu_slabs);
6426
205ab99d
CL
6427static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6428{
6429 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6430}
6431SLAB_ATTR_RO(objects_partial);
6432
49e22585
CL
6433static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6434{
6435 int objects = 0;
bb192ed9 6436 int slabs = 0;
9c01e9af 6437 int cpu __maybe_unused;
bf16d19a 6438 int len = 0;
49e22585 6439
9c01e9af 6440#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6441 for_each_online_cpu(cpu) {
bb192ed9 6442 struct slab *slab;
a93cf07b 6443
bb192ed9 6444 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 6445
bb192ed9 6446 if (slab)
87654cf7 6447 slabs += data_race(slab->slabs);
49e22585 6448 }
9c01e9af 6449#endif
49e22585 6450
c2092c12 6451 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
6452 objects = (slabs * oo_objects(s->oo)) / 2;
6453 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 6454
c6c17c4d 6455#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6456 for_each_online_cpu(cpu) {
bb192ed9 6457 struct slab *slab;
a93cf07b 6458
bb192ed9
VB
6459 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6460 if (slab) {
87654cf7 6461 slabs = data_race(slab->slabs);
bb192ed9 6462 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 6463 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 6464 cpu, objects, slabs);
b47291ef 6465 }
49e22585
CL
6466 }
6467#endif
bf16d19a
JP
6468 len += sysfs_emit_at(buf, len, "\n");
6469
6470 return len;
49e22585
CL
6471}
6472SLAB_ATTR_RO(slabs_cpu_partial);
6473
a5a84755
CL
6474static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6475{
bf16d19a 6476 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 6477}
8f58119a 6478SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
6479
6480static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6481{
bf16d19a 6482 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
6483}
6484SLAB_ATTR_RO(hwcache_align);
6485
6486#ifdef CONFIG_ZONE_DMA
6487static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6488{
bf16d19a 6489 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
6490}
6491SLAB_ATTR_RO(cache_dma);
6492#endif
6493
346907ce 6494#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
6495static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6496{
bf16d19a 6497 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
6498}
6499SLAB_ATTR_RO(usersize);
346907ce 6500#endif
8eb8284b 6501
a5a84755
CL
6502static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6503{
bf16d19a 6504 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
6505}
6506SLAB_ATTR_RO(destroy_by_rcu);
6507
ab4d5ed5 6508#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
6509static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6510{
6511 return show_slab_objects(s, buf, SO_ALL);
6512}
6513SLAB_ATTR_RO(slabs);
6514
205ab99d
CL
6515static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6516{
6517 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6518}
6519SLAB_ATTR_RO(total_objects);
6520
81bd3179
XS
6521static ssize_t objects_show(struct kmem_cache *s, char *buf)
6522{
6523 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6524}
6525SLAB_ATTR_RO(objects);
6526
81819f0f
CL
6527static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6528{
bf16d19a 6529 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 6530}
060807f8 6531SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
6532
6533static ssize_t trace_show(struct kmem_cache *s, char *buf)
6534{
bf16d19a 6535 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 6536}
060807f8 6537SLAB_ATTR_RO(trace);
81819f0f 6538
81819f0f
CL
6539static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6540{
bf16d19a 6541 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
6542}
6543
ad38b5b1 6544SLAB_ATTR_RO(red_zone);
81819f0f
CL
6545
6546static ssize_t poison_show(struct kmem_cache *s, char *buf)
6547{
bf16d19a 6548 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
6549}
6550
ad38b5b1 6551SLAB_ATTR_RO(poison);
81819f0f
CL
6552
6553static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6554{
bf16d19a 6555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
6556}
6557
ad38b5b1 6558SLAB_ATTR_RO(store_user);
81819f0f 6559
53e15af0
CL
6560static ssize_t validate_show(struct kmem_cache *s, char *buf)
6561{
6562 return 0;
6563}
6564
6565static ssize_t validate_store(struct kmem_cache *s,
6566 const char *buf, size_t length)
6567{
434e245d
CL
6568 int ret = -EINVAL;
6569
c7323a5a 6570 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
6571 ret = validate_slab_cache(s);
6572 if (ret >= 0)
6573 ret = length;
6574 }
6575 return ret;
53e15af0
CL
6576}
6577SLAB_ATTR(validate);
a5a84755 6578
a5a84755
CL
6579#endif /* CONFIG_SLUB_DEBUG */
6580
6581#ifdef CONFIG_FAILSLAB
6582static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6583{
bf16d19a 6584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 6585}
7c82b3b3
AA
6586
6587static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6588 size_t length)
6589{
6590 if (s->refcount > 1)
6591 return -EINVAL;
6592
6593 if (buf[0] == '1')
6594 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6595 else
6596 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6597
6598 return length;
6599}
6600SLAB_ATTR(failslab);
ab4d5ed5 6601#endif
53e15af0 6602
2086d26a
CL
6603static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6604{
6605 return 0;
6606}
6607
6608static ssize_t shrink_store(struct kmem_cache *s,
6609 const char *buf, size_t length)
6610{
832f37f5 6611 if (buf[0] == '1')
10befea9 6612 kmem_cache_shrink(s);
832f37f5 6613 else
2086d26a
CL
6614 return -EINVAL;
6615 return length;
6616}
6617SLAB_ATTR(shrink);
6618
81819f0f 6619#ifdef CONFIG_NUMA
9824601e 6620static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 6621{
bf16d19a 6622 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
6623}
6624
9824601e 6625static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
6626 const char *buf, size_t length)
6627{
eb7235eb 6628 unsigned int ratio;
0121c619
CL
6629 int err;
6630
eb7235eb 6631 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
6632 if (err)
6633 return err;
eb7235eb
AD
6634 if (ratio > 100)
6635 return -ERANGE;
0121c619 6636
eb7235eb 6637 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 6638
81819f0f
CL
6639 return length;
6640}
9824601e 6641SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
6642#endif
6643
8ff12cfc 6644#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
6645static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6646{
6647 unsigned long sum = 0;
6648 int cpu;
bf16d19a 6649 int len = 0;
6da2ec56 6650 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
6651
6652 if (!data)
6653 return -ENOMEM;
6654
6655 for_each_online_cpu(cpu) {
9dfc6e68 6656 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
6657
6658 data[cpu] = x;
6659 sum += x;
6660 }
6661
bf16d19a 6662 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 6663
50ef37b9 6664#ifdef CONFIG_SMP
8ff12cfc 6665 for_each_online_cpu(cpu) {
bf16d19a
JP
6666 if (data[cpu])
6667 len += sysfs_emit_at(buf, len, " C%d=%u",
6668 cpu, data[cpu]);
8ff12cfc 6669 }
50ef37b9 6670#endif
8ff12cfc 6671 kfree(data);
bf16d19a
JP
6672 len += sysfs_emit_at(buf, len, "\n");
6673
6674 return len;
8ff12cfc
CL
6675}
6676
78eb00cc
DR
6677static void clear_stat(struct kmem_cache *s, enum stat_item si)
6678{
6679 int cpu;
6680
6681 for_each_online_cpu(cpu)
9dfc6e68 6682 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
6683}
6684
8ff12cfc
CL
6685#define STAT_ATTR(si, text) \
6686static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6687{ \
6688 return show_stat(s, buf, si); \
6689} \
78eb00cc
DR
6690static ssize_t text##_store(struct kmem_cache *s, \
6691 const char *buf, size_t length) \
6692{ \
6693 if (buf[0] != '0') \
6694 return -EINVAL; \
6695 clear_stat(s, si); \
6696 return length; \
6697} \
6698SLAB_ATTR(text); \
8ff12cfc
CL
6699
6700STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6701STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6702STAT_ATTR(FREE_FASTPATH, free_fastpath);
6703STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6704STAT_ATTR(FREE_FROZEN, free_frozen);
6705STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6706STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6707STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6708STAT_ATTR(ALLOC_SLAB, alloc_slab);
6709STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 6710STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
6711STAT_ATTR(FREE_SLAB, free_slab);
6712STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6713STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6714STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6715STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6716STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6717STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 6718STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 6719STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
6720STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6721STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
6722STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6723STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
6724STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6725STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 6726#endif /* CONFIG_SLUB_STATS */
8ff12cfc 6727
b84e04f1
IK
6728#ifdef CONFIG_KFENCE
6729static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6730{
6731 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6732}
6733
6734static ssize_t skip_kfence_store(struct kmem_cache *s,
6735 const char *buf, size_t length)
6736{
6737 int ret = length;
6738
6739 if (buf[0] == '0')
6740 s->flags &= ~SLAB_SKIP_KFENCE;
6741 else if (buf[0] == '1')
6742 s->flags |= SLAB_SKIP_KFENCE;
6743 else
6744 ret = -EINVAL;
6745
6746 return ret;
6747}
6748SLAB_ATTR(skip_kfence);
6749#endif
6750
06428780 6751static struct attribute *slab_attrs[] = {
81819f0f
CL
6752 &slab_size_attr.attr,
6753 &object_size_attr.attr,
6754 &objs_per_slab_attr.attr,
6755 &order_attr.attr,
73d342b1 6756 &min_partial_attr.attr,
49e22585 6757 &cpu_partial_attr.attr,
205ab99d 6758 &objects_partial_attr.attr,
81819f0f
CL
6759 &partial_attr.attr,
6760 &cpu_slabs_attr.attr,
6761 &ctor_attr.attr,
81819f0f
CL
6762 &aliases_attr.attr,
6763 &align_attr.attr,
81819f0f
CL
6764 &hwcache_align_attr.attr,
6765 &reclaim_account_attr.attr,
6766 &destroy_by_rcu_attr.attr,
a5a84755 6767 &shrink_attr.attr,
49e22585 6768 &slabs_cpu_partial_attr.attr,
ab4d5ed5 6769#ifdef CONFIG_SLUB_DEBUG
a5a84755 6770 &total_objects_attr.attr,
81bd3179 6771 &objects_attr.attr,
a5a84755
CL
6772 &slabs_attr.attr,
6773 &sanity_checks_attr.attr,
6774 &trace_attr.attr,
81819f0f
CL
6775 &red_zone_attr.attr,
6776 &poison_attr.attr,
6777 &store_user_attr.attr,
53e15af0 6778 &validate_attr.attr,
ab4d5ed5 6779#endif
81819f0f
CL
6780#ifdef CONFIG_ZONE_DMA
6781 &cache_dma_attr.attr,
6782#endif
6783#ifdef CONFIG_NUMA
9824601e 6784 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
6785#endif
6786#ifdef CONFIG_SLUB_STATS
6787 &alloc_fastpath_attr.attr,
6788 &alloc_slowpath_attr.attr,
6789 &free_fastpath_attr.attr,
6790 &free_slowpath_attr.attr,
6791 &free_frozen_attr.attr,
6792 &free_add_partial_attr.attr,
6793 &free_remove_partial_attr.attr,
6794 &alloc_from_partial_attr.attr,
6795 &alloc_slab_attr.attr,
6796 &alloc_refill_attr.attr,
e36a2652 6797 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6798 &free_slab_attr.attr,
6799 &cpuslab_flush_attr.attr,
6800 &deactivate_full_attr.attr,
6801 &deactivate_empty_attr.attr,
6802 &deactivate_to_head_attr.attr,
6803 &deactivate_to_tail_attr.attr,
6804 &deactivate_remote_frees_attr.attr,
03e404af 6805 &deactivate_bypass_attr.attr,
65c3376a 6806 &order_fallback_attr.attr,
b789ef51
CL
6807 &cmpxchg_double_fail_attr.attr,
6808 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6809 &cpu_partial_alloc_attr.attr,
6810 &cpu_partial_free_attr.attr,
8028dcea
AS
6811 &cpu_partial_node_attr.attr,
6812 &cpu_partial_drain_attr.attr,
81819f0f 6813#endif
4c13dd3b
DM
6814#ifdef CONFIG_FAILSLAB
6815 &failslab_attr.attr,
6816#endif
346907ce 6817#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6818 &usersize_attr.attr,
346907ce 6819#endif
b84e04f1
IK
6820#ifdef CONFIG_KFENCE
6821 &skip_kfence_attr.attr,
6822#endif
4c13dd3b 6823
81819f0f
CL
6824 NULL
6825};
6826
1fdaaa23 6827static const struct attribute_group slab_attr_group = {
81819f0f
CL
6828 .attrs = slab_attrs,
6829};
6830
6831static ssize_t slab_attr_show(struct kobject *kobj,
6832 struct attribute *attr,
6833 char *buf)
6834{
6835 struct slab_attribute *attribute;
6836 struct kmem_cache *s;
81819f0f
CL
6837
6838 attribute = to_slab_attr(attr);
6839 s = to_slab(kobj);
6840
6841 if (!attribute->show)
6842 return -EIO;
6843
2bfbb027 6844 return attribute->show(s, buf);
81819f0f
CL
6845}
6846
6847static ssize_t slab_attr_store(struct kobject *kobj,
6848 struct attribute *attr,
6849 const char *buf, size_t len)
6850{
6851 struct slab_attribute *attribute;
6852 struct kmem_cache *s;
81819f0f
CL
6853
6854 attribute = to_slab_attr(attr);
6855 s = to_slab(kobj);
6856
6857 if (!attribute->store)
6858 return -EIO;
6859
2bfbb027 6860 return attribute->store(s, buf, len);
81819f0f
CL
6861}
6862
41a21285
CL
6863static void kmem_cache_release(struct kobject *k)
6864{
6865 slab_kmem_cache_release(to_slab(k));
6866}
6867
52cf25d0 6868static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6869 .show = slab_attr_show,
6870 .store = slab_attr_store,
6871};
6872
9ebe720e 6873static const struct kobj_type slab_ktype = {
81819f0f 6874 .sysfs_ops = &slab_sysfs_ops,
41a21285 6875 .release = kmem_cache_release,
81819f0f
CL
6876};
6877
27c3a314 6878static struct kset *slab_kset;
81819f0f 6879
9a41707b
VD
6880static inline struct kset *cache_kset(struct kmem_cache *s)
6881{
9a41707b
VD
6882 return slab_kset;
6883}
6884
d65360f2 6885#define ID_STR_LENGTH 32
81819f0f
CL
6886
6887/* Create a unique string id for a slab cache:
6446faa2
CL
6888 *
6889 * Format :[flags-]size
81819f0f
CL
6890 */
6891static char *create_unique_id(struct kmem_cache *s)
6892{
6893 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6894 char *p = name;
6895
7e9c323c
CY
6896 if (!name)
6897 return ERR_PTR(-ENOMEM);
81819f0f
CL
6898
6899 *p++ = ':';
6900 /*
6901 * First flags affecting slabcache operations. We will only
6902 * get here for aliasable slabs so we do not need to support
6903 * too many flags. The flags here must cover all flags that
6904 * are matched during merging to guarantee that the id is
6905 * unique.
6906 */
6907 if (s->flags & SLAB_CACHE_DMA)
6908 *p++ = 'd';
6d6ea1e9
NB
6909 if (s->flags & SLAB_CACHE_DMA32)
6910 *p++ = 'D';
81819f0f
CL
6911 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6912 *p++ = 'a';
becfda68 6913 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6914 *p++ = 'F';
230e9fc2
VD
6915 if (s->flags & SLAB_ACCOUNT)
6916 *p++ = 'A';
81819f0f
CL
6917 if (p != name + 1)
6918 *p++ = '-';
d65360f2 6919 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6920
d65360f2
CY
6921 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6922 kfree(name);
6923 return ERR_PTR(-EINVAL);
6924 }
68ef169a 6925 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6926 return name;
6927}
6928
6929static int sysfs_slab_add(struct kmem_cache *s)
6930{
6931 int err;
6932 const char *name;
1663f26d 6933 struct kset *kset = cache_kset(s);
45530c44 6934 int unmergeable = slab_unmergeable(s);
81819f0f 6935
11066386
MC
6936 if (!unmergeable && disable_higher_order_debug &&
6937 (slub_debug & DEBUG_METADATA_FLAGS))
6938 unmergeable = 1;
6939
81819f0f
CL
6940 if (unmergeable) {
6941 /*
6942 * Slabcache can never be merged so we can use the name proper.
6943 * This is typically the case for debug situations. In that
6944 * case we can catch duplicate names easily.
6945 */
27c3a314 6946 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6947 name = s->name;
6948 } else {
6949 /*
6950 * Create a unique name for the slab as a target
6951 * for the symlinks.
6952 */
6953 name = create_unique_id(s);
7e9c323c
CY
6954 if (IS_ERR(name))
6955 return PTR_ERR(name);
81819f0f
CL
6956 }
6957
1663f26d 6958 s->kobj.kset = kset;
26e4f205 6959 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6960 if (err)
80da026a 6961 goto out;
81819f0f
CL
6962
6963 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6964 if (err)
6965 goto out_del_kobj;
9a41707b 6966
81819f0f
CL
6967 if (!unmergeable) {
6968 /* Setup first alias */
6969 sysfs_slab_alias(s, s->name);
81819f0f 6970 }
54b6a731
DJ
6971out:
6972 if (!unmergeable)
6973 kfree(name);
6974 return err;
6975out_del_kobj:
6976 kobject_del(&s->kobj);
54b6a731 6977 goto out;
81819f0f
CL
6978}
6979
d50d82fa
MP
6980void sysfs_slab_unlink(struct kmem_cache *s)
6981{
011568eb 6982 kobject_del(&s->kobj);
d50d82fa
MP
6983}
6984
bf5eb3de
TH
6985void sysfs_slab_release(struct kmem_cache *s)
6986{
011568eb 6987 kobject_put(&s->kobj);
81819f0f
CL
6988}
6989
6990/*
6991 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6992 * available lest we lose that information.
81819f0f
CL
6993 */
6994struct saved_alias {
6995 struct kmem_cache *s;
6996 const char *name;
6997 struct saved_alias *next;
6998};
6999
5af328a5 7000static struct saved_alias *alias_list;
81819f0f
CL
7001
7002static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7003{
7004 struct saved_alias *al;
7005
97d06609 7006 if (slab_state == FULL) {
81819f0f
CL
7007 /*
7008 * If we have a leftover link then remove it.
7009 */
27c3a314
GKH
7010 sysfs_remove_link(&slab_kset->kobj, name);
7011 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
7012 }
7013
7014 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7015 if (!al)
7016 return -ENOMEM;
7017
7018 al->s = s;
7019 al->name = name;
7020 al->next = alias_list;
7021 alias_list = al;
68ef169a 7022 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
7023 return 0;
7024}
7025
7026static int __init slab_sysfs_init(void)
7027{
5b95a4ac 7028 struct kmem_cache *s;
81819f0f
CL
7029 int err;
7030
18004c5d 7031 mutex_lock(&slab_mutex);
2bce6485 7032
d7660ce5 7033 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 7034 if (!slab_kset) {
18004c5d 7035 mutex_unlock(&slab_mutex);
f9f58285 7036 pr_err("Cannot register slab subsystem.\n");
35973232 7037 return -ENOMEM;
81819f0f
CL
7038 }
7039
97d06609 7040 slab_state = FULL;
26a7bd03 7041
5b95a4ac 7042 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 7043 err = sysfs_slab_add(s);
5d540fb7 7044 if (err)
f9f58285
FF
7045 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7046 s->name);
26a7bd03 7047 }
81819f0f
CL
7048
7049 while (alias_list) {
7050 struct saved_alias *al = alias_list;
7051
7052 alias_list = alias_list->next;
7053 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 7054 if (err)
f9f58285
FF
7055 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7056 al->name);
81819f0f
CL
7057 kfree(al);
7058 }
7059
18004c5d 7060 mutex_unlock(&slab_mutex);
81819f0f
CL
7061 return 0;
7062}
1a5ad30b 7063late_initcall(slab_sysfs_init);
b1a413a3 7064#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 7065
64dd6849
FM
7066#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7067static int slab_debugfs_show(struct seq_file *seq, void *v)
7068{
64dd6849 7069 struct loc_track *t = seq->private;
005a79e5
GS
7070 struct location *l;
7071 unsigned long idx;
64dd6849 7072
005a79e5 7073 idx = (unsigned long) t->idx;
64dd6849
FM
7074 if (idx < t->count) {
7075 l = &t->loc[idx];
7076
7077 seq_printf(seq, "%7ld ", l->count);
7078
7079 if (l->addr)
7080 seq_printf(seq, "%pS", (void *)l->addr);
7081 else
7082 seq_puts(seq, "<not-available>");
7083
6edf2576
FT
7084 if (l->waste)
7085 seq_printf(seq, " waste=%lu/%lu",
7086 l->count * l->waste, l->waste);
7087
64dd6849
FM
7088 if (l->sum_time != l->min_time) {
7089 seq_printf(seq, " age=%ld/%llu/%ld",
7090 l->min_time, div_u64(l->sum_time, l->count),
7091 l->max_time);
7092 } else
7093 seq_printf(seq, " age=%ld", l->min_time);
7094
7095 if (l->min_pid != l->max_pid)
7096 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7097 else
7098 seq_printf(seq, " pid=%ld",
7099 l->min_pid);
7100
7101 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7102 seq_printf(seq, " cpus=%*pbl",
7103 cpumask_pr_args(to_cpumask(l->cpus)));
7104
7105 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7106 seq_printf(seq, " nodes=%*pbl",
7107 nodemask_pr_args(&l->nodes));
7108
8ea9fb92
OG
7109#ifdef CONFIG_STACKDEPOT
7110 {
7111 depot_stack_handle_t handle;
7112 unsigned long *entries;
7113 unsigned int nr_entries, j;
7114
7115 handle = READ_ONCE(l->handle);
7116 if (handle) {
7117 nr_entries = stack_depot_fetch(handle, &entries);
7118 seq_puts(seq, "\n");
7119 for (j = 0; j < nr_entries; j++)
7120 seq_printf(seq, " %pS\n", (void *)entries[j]);
7121 }
7122 }
7123#endif
64dd6849
FM
7124 seq_puts(seq, "\n");
7125 }
7126
7127 if (!idx && !t->count)
7128 seq_puts(seq, "No data\n");
7129
7130 return 0;
7131}
7132
7133static void slab_debugfs_stop(struct seq_file *seq, void *v)
7134{
7135}
7136
7137static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7138{
7139 struct loc_track *t = seq->private;
7140
005a79e5 7141 t->idx = ++(*ppos);
64dd6849 7142 if (*ppos <= t->count)
005a79e5 7143 return ppos;
64dd6849
FM
7144
7145 return NULL;
7146}
7147
553c0369
OG
7148static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7149{
7150 struct location *loc1 = (struct location *)a;
7151 struct location *loc2 = (struct location *)b;
7152
7153 if (loc1->count > loc2->count)
7154 return -1;
7155 else
7156 return 1;
7157}
7158
64dd6849
FM
7159static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7160{
005a79e5
GS
7161 struct loc_track *t = seq->private;
7162
7163 t->idx = *ppos;
64dd6849
FM
7164 return ppos;
7165}
7166
7167static const struct seq_operations slab_debugfs_sops = {
7168 .start = slab_debugfs_start,
7169 .next = slab_debugfs_next,
7170 .stop = slab_debugfs_stop,
7171 .show = slab_debugfs_show,
7172};
7173
7174static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7175{
7176
7177 struct kmem_cache_node *n;
7178 enum track_item alloc;
7179 int node;
7180 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7181 sizeof(struct loc_track));
7182 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
7183 unsigned long *obj_map;
7184
2127d225
ML
7185 if (!t)
7186 return -ENOMEM;
7187
b3fd64e1 7188 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
7189 if (!obj_map) {
7190 seq_release_private(inode, filep);
b3fd64e1 7191 return -ENOMEM;
2127d225 7192 }
64dd6849
FM
7193
7194 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7195 alloc = TRACK_ALLOC;
7196 else
7197 alloc = TRACK_FREE;
7198
b3fd64e1
VB
7199 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7200 bitmap_free(obj_map);
2127d225 7201 seq_release_private(inode, filep);
64dd6849 7202 return -ENOMEM;
b3fd64e1 7203 }
64dd6849 7204
64dd6849
FM
7205 for_each_kmem_cache_node(s, node, n) {
7206 unsigned long flags;
bb192ed9 7207 struct slab *slab;
64dd6849 7208
8040cbf5 7209 if (!node_nr_slabs(n))
64dd6849
FM
7210 continue;
7211
7212 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
7213 list_for_each_entry(slab, &n->partial, slab_list)
7214 process_slab(t, s, slab, alloc, obj_map);
7215 list_for_each_entry(slab, &n->full, slab_list)
7216 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
7217 spin_unlock_irqrestore(&n->list_lock, flags);
7218 }
7219
553c0369
OG
7220 /* Sort locations by count */
7221 sort_r(t->loc, t->count, sizeof(struct location),
7222 cmp_loc_by_count, NULL, NULL);
7223
b3fd64e1 7224 bitmap_free(obj_map);
64dd6849
FM
7225 return 0;
7226}
7227
7228static int slab_debug_trace_release(struct inode *inode, struct file *file)
7229{
7230 struct seq_file *seq = file->private_data;
7231 struct loc_track *t = seq->private;
7232
7233 free_loc_track(t);
7234 return seq_release_private(inode, file);
7235}
7236
7237static const struct file_operations slab_debugfs_fops = {
7238 .open = slab_debug_trace_open,
7239 .read = seq_read,
7240 .llseek = seq_lseek,
7241 .release = slab_debug_trace_release,
7242};
7243
7244static void debugfs_slab_add(struct kmem_cache *s)
7245{
7246 struct dentry *slab_cache_dir;
7247
7248 if (unlikely(!slab_debugfs_root))
7249 return;
7250
7251 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7252
7253 debugfs_create_file("alloc_traces", 0400,
7254 slab_cache_dir, s, &slab_debugfs_fops);
7255
7256 debugfs_create_file("free_traces", 0400,
7257 slab_cache_dir, s, &slab_debugfs_fops);
7258}
7259
7260void debugfs_slab_release(struct kmem_cache *s)
7261{
aa4a8605 7262 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
7263}
7264
7265static int __init slab_debugfs_init(void)
7266{
7267 struct kmem_cache *s;
7268
7269 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7270
7271 list_for_each_entry(s, &slab_caches, list)
7272 if (s->flags & SLAB_STORE_USER)
7273 debugfs_slab_add(s);
7274
7275 return 0;
7276
7277}
7278__initcall(slab_debugfs_init);
7279#endif
57ed3eda
PE
7280/*
7281 * The /proc/slabinfo ABI
7282 */
5b365771 7283#ifdef CONFIG_SLUB_DEBUG
0d7561c6 7284void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 7285{
57ed3eda 7286 unsigned long nr_slabs = 0;
205ab99d
CL
7287 unsigned long nr_objs = 0;
7288 unsigned long nr_free = 0;
57ed3eda 7289 int node;
fa45dc25 7290 struct kmem_cache_node *n;
57ed3eda 7291
fa45dc25 7292 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
7293 nr_slabs += node_nr_slabs(n);
7294 nr_objs += node_nr_objs(n);
046f4c69 7295 nr_free += count_partial_free_approx(n);
57ed3eda
PE
7296 }
7297
0d7561c6
GC
7298 sinfo->active_objs = nr_objs - nr_free;
7299 sinfo->num_objs = nr_objs;
7300 sinfo->active_slabs = nr_slabs;
7301 sinfo->num_slabs = nr_slabs;
7302 sinfo->objects_per_slab = oo_objects(s->oo);
7303 sinfo->cache_order = oo_order(s->oo);
57ed3eda 7304}
5b365771 7305#endif /* CONFIG_SLUB_DEBUG */
This page took 3.463523 seconds and 4 git commands to generate.