]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
dc84207d | 6 | * The allocator synchronizes using per slab locks or atomic operations |
881db7fb | 7 | * and only uses a centralized lock to manage a pool of partial slabs. |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
c7b23b68 | 14 | #include <linux/swap.h> /* mm_account_reclaimed_pages() */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
1b3865d0 | 18 | #include <linux/swab.h> |
81819f0f CL |
19 | #include <linux/bitops.h> |
20 | #include <linux/slab.h> | |
97d06609 | 21 | #include "slab.h" |
7b3c3a50 | 22 | #include <linux/proc_fs.h> |
81819f0f | 23 | #include <linux/seq_file.h> |
a79316c6 | 24 | #include <linux/kasan.h> |
68ef169a | 25 | #include <linux/kmsan.h> |
81819f0f CL |
26 | #include <linux/cpu.h> |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/ctype.h> | |
5cf909c5 | 30 | #include <linux/stackdepot.h> |
3ac7fe5a | 31 | #include <linux/debugobjects.h> |
81819f0f | 32 | #include <linux/kallsyms.h> |
b89fb5ef | 33 | #include <linux/kfence.h> |
b9049e23 | 34 | #include <linux/memory.h> |
f8bd2258 | 35 | #include <linux/math64.h> |
773ff60e | 36 | #include <linux/fault-inject.h> |
6011be59 | 37 | #include <linux/kmemleak.h> |
bfa71457 | 38 | #include <linux/stacktrace.h> |
4de900b4 | 39 | #include <linux/prefetch.h> |
2633d7a0 | 40 | #include <linux/memcontrol.h> |
2482ddec | 41 | #include <linux/random.h> |
1f9f78b1 | 42 | #include <kunit/test.h> |
909c6475 | 43 | #include <kunit/test-bug.h> |
553c0369 | 44 | #include <linux/sort.h> |
81819f0f | 45 | |
64dd6849 | 46 | #include <linux/debugfs.h> |
4a92379b RK |
47 | #include <trace/events/kmem.h> |
48 | ||
072bb0aa MG |
49 | #include "internal.h" |
50 | ||
81819f0f CL |
51 | /* |
52 | * Lock order: | |
18004c5d | 53 | * 1. slab_mutex (Global Mutex) |
bd0e7491 VB |
54 | * 2. node->list_lock (Spinlock) |
55 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
41bec7c3 | 56 | * 4. slab_lock(slab) (Only on some arches) |
bd0e7491 | 57 | * 5. object_map_lock (Only for debugging) |
81819f0f | 58 | * |
18004c5d | 59 | * slab_mutex |
881db7fb | 60 | * |
18004c5d | 61 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb | 62 | * and to synchronize major metadata changes to slab cache structures. |
bd0e7491 VB |
63 | * Also synchronizes memory hotplug callbacks. |
64 | * | |
65 | * slab_lock | |
66 | * | |
67 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
68 | * spinlock. | |
881db7fb | 69 | * |
41bec7c3 VB |
70 | * The slab_lock is only used on arches that do not have the ability |
71 | * to do a cmpxchg_double. It only protects: | |
72 | * | |
c2092c12 VB |
73 | * A. slab->freelist -> List of free objects in a slab |
74 | * B. slab->inuse -> Number of objects in use | |
75 | * C. slab->objects -> Number of objects in slab | |
76 | * D. slab->frozen -> frozen state | |
881db7fb | 77 | * |
bd0e7491 VB |
78 | * Frozen slabs |
79 | * | |
31bda717 CZ |
80 | * If a slab is frozen then it is exempt from list management. It is |
81 | * the cpu slab which is actively allocated from by the processor that | |
82 | * froze it and it is not on any list. The processor that froze the | |
c2092c12 | 83 | * slab is the one who can perform list operations on the slab. Other |
632b2ef0 LX |
84 | * processors may put objects onto the freelist but the processor that |
85 | * froze the slab is the only one that can retrieve the objects from the | |
c2092c12 | 86 | * slab's freelist. |
81819f0f | 87 | * |
31bda717 CZ |
88 | * CPU partial slabs |
89 | * | |
90 | * The partially empty slabs cached on the CPU partial list are used | |
91 | * for performance reasons, which speeds up the allocation process. | |
92 | * These slabs are not frozen, but are also exempt from list management, | |
93 | * by clearing the PG_workingset flag when moving out of the node | |
94 | * partial list. Please see __slab_free() for more details. | |
95 | * | |
96 | * To sum up, the current scheme is: | |
97 | * - node partial slab: PG_Workingset && !frozen | |
98 | * - cpu partial slab: !PG_Workingset && !frozen | |
99 | * - cpu slab: !PG_Workingset && frozen | |
100 | * - full slab: !PG_Workingset && !frozen | |
101 | * | |
bd0e7491 VB |
102 | * list_lock |
103 | * | |
81819f0f CL |
104 | * The list_lock protects the partial and full list on each node and |
105 | * the partial slab counter. If taken then no new slabs may be added or | |
106 | * removed from the lists nor make the number of partial slabs be modified. | |
107 | * (Note that the total number of slabs is an atomic value that may be | |
108 | * modified without taking the list lock). | |
109 | * | |
110 | * The list_lock is a centralized lock and thus we avoid taking it as | |
111 | * much as possible. As long as SLUB does not have to handle partial | |
112 | * slabs, operations can continue without any centralized lock. F.e. | |
113 | * allocating a long series of objects that fill up slabs does not require | |
114 | * the list lock. | |
bd0e7491 | 115 | * |
41bec7c3 VB |
116 | * For debug caches, all allocations are forced to go through a list_lock |
117 | * protected region to serialize against concurrent validation. | |
118 | * | |
bd0e7491 VB |
119 | * cpu_slab->lock local lock |
120 | * | |
121 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
122 | * except the stat counters. This is a percpu structure manipulated only by | |
123 | * the local cpu, so the lock protects against being preempted or interrupted | |
124 | * by an irq. Fast path operations rely on lockless operations instead. | |
1f04b07d TG |
125 | * |
126 | * On PREEMPT_RT, the local lock neither disables interrupts nor preemption | |
127 | * which means the lockless fastpath cannot be used as it might interfere with | |
128 | * an in-progress slow path operations. In this case the local lock is always | |
129 | * taken but it still utilizes the freelist for the common operations. | |
bd0e7491 VB |
130 | * |
131 | * lockless fastpaths | |
132 | * | |
133 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
134 | * are fully lockless when satisfied from the percpu slab (and when | |
135 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
136 | * They also don't disable preemption or migration or irqs. They rely on | |
137 | * the transaction id (tid) field to detect being preempted or moved to | |
138 | * another cpu. | |
139 | * | |
140 | * irq, preemption, migration considerations | |
141 | * | |
142 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
143 | * around the slab_lock operation, in order to make the slab allocator safe | |
144 | * to use in the context of an irq. | |
145 | * | |
146 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
147 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
148 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
149 | * doesn't have to be revalidated in each section protected by the local lock. | |
81819f0f CL |
150 | * |
151 | * SLUB assigns one slab for allocation to each processor. | |
152 | * Allocations only occur from these slabs called cpu slabs. | |
153 | * | |
672bba3a CL |
154 | * Slabs with free elements are kept on a partial list and during regular |
155 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 156 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
157 | * We track full slabs for debugging purposes though because otherwise we |
158 | * cannot scan all objects. | |
81819f0f CL |
159 | * |
160 | * Slabs are freed when they become empty. Teardown and setup is | |
161 | * minimal so we rely on the page allocators per cpu caches for | |
162 | * fast frees and allocs. | |
163 | * | |
c2092c12 | 164 | * slab->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
165 | * This means that the slab is dedicated to a purpose |
166 | * such as satisfying allocations for a specific | |
167 | * processor. Objects may be freed in the slab while | |
168 | * it is frozen but slab_free will then skip the usual | |
169 | * list operations. It is up to the processor holding | |
170 | * the slab to integrate the slab into the slab lists | |
171 | * when the slab is no longer needed. | |
172 | * | |
173 | * One use of this flag is to mark slabs that are | |
174 | * used for allocations. Then such a slab becomes a cpu | |
175 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 176 | * freelist that allows lockless access to |
894b8788 CL |
177 | * free objects in addition to the regular freelist |
178 | * that requires the slab lock. | |
81819f0f | 179 | * |
aed68148 | 180 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 181 | * options set. This moves slab handling out of |
894b8788 | 182 | * the fast path and disables lockless freelists. |
81819f0f CL |
183 | */ |
184 | ||
25c00c50 VB |
185 | /* |
186 | * We could simply use migrate_disable()/enable() but as long as it's a | |
187 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
188 | */ | |
189 | #ifndef CONFIG_PREEMPT_RT | |
1f04b07d TG |
190 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) |
191 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
192 | #define USE_LOCKLESS_FAST_PATH() (true) | |
25c00c50 VB |
193 | #else |
194 | #define slub_get_cpu_ptr(var) \ | |
195 | ({ \ | |
196 | migrate_disable(); \ | |
197 | this_cpu_ptr(var); \ | |
198 | }) | |
199 | #define slub_put_cpu_ptr(var) \ | |
200 | do { \ | |
201 | (void)(var); \ | |
202 | migrate_enable(); \ | |
203 | } while (0) | |
1f04b07d | 204 | #define USE_LOCKLESS_FAST_PATH() (false) |
25c00c50 VB |
205 | #endif |
206 | ||
be784ba8 VB |
207 | #ifndef CONFIG_SLUB_TINY |
208 | #define __fastpath_inline __always_inline | |
209 | #else | |
210 | #define __fastpath_inline | |
211 | #endif | |
212 | ||
ca0cab65 VB |
213 | #ifdef CONFIG_SLUB_DEBUG |
214 | #ifdef CONFIG_SLUB_DEBUG_ON | |
215 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
216 | #else | |
217 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
218 | #endif | |
79270291 | 219 | #endif /* CONFIG_SLUB_DEBUG */ |
ca0cab65 | 220 | |
6edf2576 FT |
221 | /* Structure holding parameters for get_partial() call chain */ |
222 | struct partial_context { | |
6edf2576 FT |
223 | gfp_t flags; |
224 | unsigned int orig_size; | |
43c4c349 | 225 | void *object; |
6edf2576 FT |
226 | }; |
227 | ||
59052e89 VB |
228 | static inline bool kmem_cache_debug(struct kmem_cache *s) |
229 | { | |
230 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
af537b0a | 231 | } |
5577bd8a | 232 | |
6edf2576 FT |
233 | static inline bool slub_debug_orig_size(struct kmem_cache *s) |
234 | { | |
235 | return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && | |
236 | (s->flags & SLAB_KMALLOC)); | |
237 | } | |
238 | ||
117d54df | 239 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be | 240 | { |
59052e89 | 241 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) |
d86bd1be JK |
242 | p += s->red_left_pad; |
243 | ||
244 | return p; | |
245 | } | |
246 | ||
345c905d JK |
247 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
248 | { | |
249 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
250 | return !kmem_cache_debug(s); | |
251 | #else | |
252 | return false; | |
253 | #endif | |
254 | } | |
255 | ||
81819f0f CL |
256 | /* |
257 | * Issues still to be resolved: | |
258 | * | |
81819f0f CL |
259 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
260 | * | |
81819f0f CL |
261 | * - Variable sizing of the per node arrays |
262 | */ | |
263 | ||
b789ef51 CL |
264 | /* Enable to log cmpxchg failures */ |
265 | #undef SLUB_DEBUG_CMPXCHG | |
266 | ||
5a8a3c1f | 267 | #ifndef CONFIG_SLUB_TINY |
2086d26a | 268 | /* |
dc84207d | 269 | * Minimum number of partial slabs. These will be left on the partial |
2086d26a CL |
270 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
271 | */ | |
76be8950 | 272 | #define MIN_PARTIAL 5 |
e95eed57 | 273 | |
2086d26a CL |
274 | /* |
275 | * Maximum number of desirable partial slabs. | |
276 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 277 | * sort the partial list by the number of objects in use. |
2086d26a CL |
278 | */ |
279 | #define MAX_PARTIAL 10 | |
5a8a3c1f VB |
280 | #else |
281 | #define MIN_PARTIAL 0 | |
282 | #define MAX_PARTIAL 0 | |
283 | #endif | |
2086d26a | 284 | |
becfda68 | 285 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 286 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 287 | |
149daaf3 LA |
288 | /* |
289 | * These debug flags cannot use CMPXCHG because there might be consistency | |
290 | * issues when checking or reading debug information | |
291 | */ | |
292 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
293 | SLAB_TRACE) | |
294 | ||
295 | ||
fa5ec8a1 | 296 | /* |
3de47213 | 297 | * Debugging flags that require metadata to be stored in the slab. These get |
671776b3 | 298 | * disabled when slab_debug=O is used and a cache's min order increases with |
3de47213 | 299 | * metadata. |
fa5ec8a1 | 300 | */ |
3de47213 | 301 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 302 | |
210b5c06 CG |
303 | #define OO_SHIFT 16 |
304 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
c2092c12 | 305 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ |
210b5c06 | 306 | |
81819f0f | 307 | /* Internal SLUB flags */ |
d50112ed | 308 | /* Poison object */ |
cc61eb85 | 309 | #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) |
d50112ed | 310 | /* Use cmpxchg_double */ |
6801be4f PZ |
311 | |
312 | #ifdef system_has_freelist_aba | |
cc61eb85 | 313 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) |
6801be4f | 314 | #else |
cc61eb85 | 315 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED |
6801be4f | 316 | #endif |
81819f0f | 317 | |
02cbc874 CL |
318 | /* |
319 | * Tracking user of a slab. | |
320 | */ | |
d6543e39 | 321 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 322 | struct track { |
ce71e27c | 323 | unsigned long addr; /* Called from address */ |
5cf909c5 OG |
324 | #ifdef CONFIG_STACKDEPOT |
325 | depot_stack_handle_t handle; | |
d6543e39 | 326 | #endif |
02cbc874 CL |
327 | int cpu; /* Was running on cpu */ |
328 | int pid; /* Pid context */ | |
329 | unsigned long when; /* When did the operation occur */ | |
330 | }; | |
331 | ||
332 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
333 | ||
b1a413a3 | 334 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f CL |
335 | static int sysfs_slab_add(struct kmem_cache *); |
336 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
81819f0f | 337 | #else |
0c710013 CL |
338 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
339 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
340 | { return 0; } | |
81819f0f CL |
341 | #endif |
342 | ||
64dd6849 FM |
343 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
344 | static void debugfs_slab_add(struct kmem_cache *); | |
345 | #else | |
346 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
347 | #endif | |
348 | ||
7ef08ae8 VB |
349 | enum stat_item { |
350 | ALLOC_FASTPATH, /* Allocation from cpu slab */ | |
351 | ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ | |
352 | FREE_FASTPATH, /* Free to cpu slab */ | |
353 | FREE_SLOWPATH, /* Freeing not to cpu slab */ | |
354 | FREE_FROZEN, /* Freeing to frozen slab */ | |
355 | FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ | |
356 | FREE_REMOVE_PARTIAL, /* Freeing removes last object */ | |
357 | ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ | |
358 | ALLOC_SLAB, /* Cpu slab acquired from page allocator */ | |
359 | ALLOC_REFILL, /* Refill cpu slab from slab freelist */ | |
360 | ALLOC_NODE_MISMATCH, /* Switching cpu slab */ | |
361 | FREE_SLAB, /* Slab freed to the page allocator */ | |
362 | CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ | |
363 | DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ | |
364 | DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ | |
365 | DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ | |
366 | DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ | |
367 | DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ | |
368 | DEACTIVATE_BYPASS, /* Implicit deactivation */ | |
369 | ORDER_FALLBACK, /* Number of times fallback was necessary */ | |
370 | CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ | |
371 | CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ | |
372 | CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ | |
373 | CPU_PARTIAL_FREE, /* Refill cpu partial on free */ | |
374 | CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ | |
375 | CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ | |
376 | NR_SLUB_STAT_ITEMS | |
377 | }; | |
378 | ||
379 | #ifndef CONFIG_SLUB_TINY | |
380 | /* | |
381 | * When changing the layout, make sure freelist and tid are still compatible | |
382 | * with this_cpu_cmpxchg_double() alignment requirements. | |
383 | */ | |
384 | struct kmem_cache_cpu { | |
385 | union { | |
386 | struct { | |
387 | void **freelist; /* Pointer to next available object */ | |
388 | unsigned long tid; /* Globally unique transaction id */ | |
389 | }; | |
390 | freelist_aba_t freelist_tid; | |
391 | }; | |
392 | struct slab *slab; /* The slab from which we are allocating */ | |
393 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
c94d2224 | 394 | struct slab *partial; /* Partially allocated slabs */ |
7ef08ae8 VB |
395 | #endif |
396 | local_lock_t lock; /* Protects the fields above */ | |
397 | #ifdef CONFIG_SLUB_STATS | |
398 | unsigned int stat[NR_SLUB_STAT_ITEMS]; | |
399 | #endif | |
400 | }; | |
401 | #endif /* CONFIG_SLUB_TINY */ | |
402 | ||
4fdccdfb | 403 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
404 | { |
405 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
406 | /* |
407 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
408 | * avoid this_cpu_add()'s irq-disable overhead. | |
409 | */ | |
410 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
411 | #endif |
412 | } | |
413 | ||
6f3dd2c3 VB |
414 | static inline |
415 | void stat_add(const struct kmem_cache *s, enum stat_item si, int v) | |
416 | { | |
417 | #ifdef CONFIG_SLUB_STATS | |
418 | raw_cpu_add(s->cpu_slab->stat[si], v); | |
419 | #endif | |
420 | } | |
421 | ||
b52ef56e VB |
422 | /* |
423 | * The slab lists for all objects. | |
424 | */ | |
425 | struct kmem_cache_node { | |
426 | spinlock_t list_lock; | |
427 | unsigned long nr_partial; | |
428 | struct list_head partial; | |
429 | #ifdef CONFIG_SLUB_DEBUG | |
430 | atomic_long_t nr_slabs; | |
431 | atomic_long_t total_objects; | |
432 | struct list_head full; | |
433 | #endif | |
434 | }; | |
435 | ||
436 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
437 | { | |
438 | return s->node[node]; | |
439 | } | |
440 | ||
441 | /* | |
442 | * Iterator over all nodes. The body will be executed for each node that has | |
443 | * a kmem_cache_node structure allocated (which is true for all online nodes) | |
444 | */ | |
445 | #define for_each_kmem_cache_node(__s, __node, __n) \ | |
446 | for (__node = 0; __node < nr_node_ids; __node++) \ | |
447 | if ((__n = get_node(__s, __node))) | |
448 | ||
7e1fa93d VB |
449 | /* |
450 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
451 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
452 | * differ during memory hotplug/hotremove operations. | |
453 | * Protected by slab_mutex. | |
454 | */ | |
455 | static nodemask_t slab_nodes; | |
456 | ||
0af8489b | 457 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
458 | /* |
459 | * Workqueue used for flush_cpu_slab(). | |
460 | */ | |
461 | static struct workqueue_struct *flushwq; | |
0af8489b | 462 | #endif |
e45cc288 | 463 | |
81819f0f CL |
464 | /******************************************************************** |
465 | * Core slab cache functions | |
466 | *******************************************************************/ | |
467 | ||
44f6a42d JH |
468 | /* |
469 | * freeptr_t represents a SLUB freelist pointer, which might be encoded | |
470 | * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. | |
471 | */ | |
472 | typedef struct { unsigned long v; } freeptr_t; | |
473 | ||
2482ddec KC |
474 | /* |
475 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
476 | * with an XOR of the address where the pointer is held and a per-cache | |
477 | * random number. | |
478 | */ | |
44f6a42d JH |
479 | static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, |
480 | void *ptr, unsigned long ptr_addr) | |
2482ddec | 481 | { |
b06952cd VB |
482 | unsigned long encoded; |
483 | ||
2482ddec | 484 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
b06952cd | 485 | encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); |
44f6a42d | 486 | #else |
b06952cd | 487 | encoded = (unsigned long)ptr; |
44f6a42d | 488 | #endif |
b06952cd | 489 | return (freeptr_t){.v = encoded}; |
44f6a42d JH |
490 | } |
491 | ||
492 | static inline void *freelist_ptr_decode(const struct kmem_cache *s, | |
493 | freeptr_t ptr, unsigned long ptr_addr) | |
494 | { | |
495 | void *decoded; | |
496 | ||
497 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
b06952cd | 498 | decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); |
2482ddec | 499 | #else |
44f6a42d | 500 | decoded = (void *)ptr.v; |
2482ddec | 501 | #endif |
44f6a42d | 502 | return decoded; |
2482ddec KC |
503 | } |
504 | ||
7656c72b CL |
505 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
506 | { | |
1662b6c2 VB |
507 | unsigned long ptr_addr; |
508 | freeptr_t p; | |
509 | ||
aa1ef4d7 | 510 | object = kasan_reset_tag(object); |
1662b6c2 VB |
511 | ptr_addr = (unsigned long)object + s->offset; |
512 | p = *(freeptr_t *)(ptr_addr); | |
513 | return freelist_ptr_decode(s, p, ptr_addr); | |
7656c72b CL |
514 | } |
515 | ||
0af8489b | 516 | #ifndef CONFIG_SLUB_TINY |
0ad9500e ED |
517 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
518 | { | |
04b4b006 | 519 | prefetchw(object + s->offset); |
0ad9500e | 520 | } |
0af8489b | 521 | #endif |
0ad9500e | 522 | |
68ef169a AP |
523 | /* |
524 | * When running under KMSAN, get_freepointer_safe() may return an uninitialized | |
525 | * pointer value in the case the current thread loses the race for the next | |
526 | * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in | |
527 | * slab_alloc_node() will fail, so the uninitialized value won't be used, but | |
528 | * KMSAN will still check all arguments of cmpxchg because of imperfect | |
529 | * handling of inline assembly. | |
530 | * To work around this problem, we apply __no_kmsan_checks to ensure that | |
531 | * get_freepointer_safe() returns initialized memory. | |
532 | */ | |
533 | __no_kmsan_checks | |
1393d9a1 CL |
534 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
535 | { | |
2482ddec | 536 | unsigned long freepointer_addr; |
44f6a42d | 537 | freeptr_t p; |
1393d9a1 | 538 | |
8e57f8ac | 539 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
540 | return get_freepointer(s, object); |
541 | ||
f70b0049 | 542 | object = kasan_reset_tag(object); |
2482ddec | 543 | freepointer_addr = (unsigned long)object + s->offset; |
44f6a42d JH |
544 | copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); |
545 | return freelist_ptr_decode(s, p, freepointer_addr); | |
1393d9a1 CL |
546 | } |
547 | ||
7656c72b CL |
548 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
549 | { | |
2482ddec KC |
550 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
551 | ||
ce6fa91b AP |
552 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
553 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
554 | #endif | |
555 | ||
aa1ef4d7 | 556 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); |
44f6a42d | 557 | *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); |
7656c72b CL |
558 | } |
559 | ||
560 | /* Loop over all objects in a slab */ | |
224a88be | 561 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
562 | for (__p = fixup_red_left(__s, __addr); \ |
563 | __p < (__addr) + (__objects) * (__s)->size; \ | |
564 | __p += (__s)->size) | |
7656c72b | 565 | |
9736d2a9 | 566 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 567 | { |
9736d2a9 | 568 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
569 | } |
570 | ||
19af27af | 571 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 572 | unsigned int size) |
834f3d11 CL |
573 | { |
574 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 575 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
576 | }; |
577 | ||
578 | return x; | |
579 | } | |
580 | ||
19af27af | 581 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 582 | { |
210b5c06 | 583 | return x.x >> OO_SHIFT; |
834f3d11 CL |
584 | } |
585 | ||
19af27af | 586 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 587 | { |
210b5c06 | 588 | return x.x & OO_MASK; |
834f3d11 CL |
589 | } |
590 | ||
b47291ef VB |
591 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
592 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
593 | { | |
bb192ed9 | 594 | unsigned int nr_slabs; |
b47291ef VB |
595 | |
596 | s->cpu_partial = nr_objects; | |
597 | ||
598 | /* | |
599 | * We take the number of objects but actually limit the number of | |
c2092c12 VB |
600 | * slabs on the per cpu partial list, in order to limit excessive |
601 | * growth of the list. For simplicity we assume that the slabs will | |
b47291ef VB |
602 | * be half-full. |
603 | */ | |
bb192ed9 VB |
604 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); |
605 | s->cpu_partial_slabs = nr_slabs; | |
b47291ef VB |
606 | } |
607 | #else | |
608 | static inline void | |
609 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
610 | { | |
611 | } | |
612 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
613 | ||
881db7fb CL |
614 | /* |
615 | * Per slab locking using the pagelock | |
616 | */ | |
5875e598 | 617 | static __always_inline void slab_lock(struct slab *slab) |
881db7fb | 618 | { |
0393895b VB |
619 | struct page *page = slab_page(slab); |
620 | ||
48c935ad | 621 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
622 | bit_spin_lock(PG_locked, &page->flags); |
623 | } | |
624 | ||
5875e598 | 625 | static __always_inline void slab_unlock(struct slab *slab) |
881db7fb | 626 | { |
0393895b VB |
627 | struct page *page = slab_page(slab); |
628 | ||
48c935ad | 629 | VM_BUG_ON_PAGE(PageTail(page), page); |
8a399e2f | 630 | bit_spin_unlock(PG_locked, &page->flags); |
881db7fb CL |
631 | } |
632 | ||
6801be4f PZ |
633 | static inline bool |
634 | __update_freelist_fast(struct slab *slab, | |
635 | void *freelist_old, unsigned long counters_old, | |
636 | void *freelist_new, unsigned long counters_new) | |
637 | { | |
638 | #ifdef system_has_freelist_aba | |
639 | freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; | |
640 | freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; | |
641 | ||
642 | return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); | |
643 | #else | |
644 | return false; | |
645 | #endif | |
646 | } | |
647 | ||
648 | static inline bool | |
649 | __update_freelist_slow(struct slab *slab, | |
650 | void *freelist_old, unsigned long counters_old, | |
651 | void *freelist_new, unsigned long counters_new) | |
652 | { | |
653 | bool ret = false; | |
654 | ||
655 | slab_lock(slab); | |
656 | if (slab->freelist == freelist_old && | |
657 | slab->counters == counters_old) { | |
658 | slab->freelist = freelist_new; | |
659 | slab->counters = counters_new; | |
660 | ret = true; | |
661 | } | |
662 | slab_unlock(slab); | |
663 | ||
664 | return ret; | |
665 | } | |
666 | ||
a2b4ae8b VB |
667 | /* |
668 | * Interrupts must be disabled (for the fallback code to work right), typically | |
5875e598 VB |
669 | * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is |
670 | * part of bit_spin_lock(), is sufficient because the policy is not to allow any | |
671 | * allocation/ free operation in hardirq context. Therefore nothing can | |
672 | * interrupt the operation. | |
a2b4ae8b | 673 | */ |
6801be4f | 674 | static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
1d07171c CL |
675 | void *freelist_old, unsigned long counters_old, |
676 | void *freelist_new, unsigned long counters_new, | |
677 | const char *n) | |
678 | { | |
6801be4f PZ |
679 | bool ret; |
680 | ||
1f04b07d | 681 | if (USE_LOCKLESS_FAST_PATH()) |
a2b4ae8b | 682 | lockdep_assert_irqs_disabled(); |
6801be4f | 683 | |
1d07171c | 684 | if (s->flags & __CMPXCHG_DOUBLE) { |
6801be4f PZ |
685 | ret = __update_freelist_fast(slab, freelist_old, counters_old, |
686 | freelist_new, counters_new); | |
687 | } else { | |
688 | ret = __update_freelist_slow(slab, freelist_old, counters_old, | |
689 | freelist_new, counters_new); | |
1d07171c | 690 | } |
6801be4f PZ |
691 | if (likely(ret)) |
692 | return true; | |
1d07171c CL |
693 | |
694 | cpu_relax(); | |
695 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
696 | ||
697 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 698 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
699 | #endif |
700 | ||
6f6528a1 | 701 | return false; |
1d07171c CL |
702 | } |
703 | ||
6801be4f | 704 | static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, |
b789ef51 CL |
705 | void *freelist_old, unsigned long counters_old, |
706 | void *freelist_new, unsigned long counters_new, | |
707 | const char *n) | |
708 | { | |
6801be4f PZ |
709 | bool ret; |
710 | ||
b789ef51 | 711 | if (s->flags & __CMPXCHG_DOUBLE) { |
6801be4f PZ |
712 | ret = __update_freelist_fast(slab, freelist_old, counters_old, |
713 | freelist_new, counters_new); | |
714 | } else { | |
1d07171c CL |
715 | unsigned long flags; |
716 | ||
717 | local_irq_save(flags); | |
6801be4f PZ |
718 | ret = __update_freelist_slow(slab, freelist_old, counters_old, |
719 | freelist_new, counters_new); | |
1d07171c | 720 | local_irq_restore(flags); |
b789ef51 | 721 | } |
6801be4f PZ |
722 | if (likely(ret)) |
723 | return true; | |
b789ef51 CL |
724 | |
725 | cpu_relax(); | |
726 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
727 | ||
728 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 729 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
730 | #endif |
731 | ||
6f6528a1 | 732 | return false; |
b789ef51 CL |
733 | } |
734 | ||
41ecc55b | 735 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 736 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
4ef3f5a3 | 737 | static DEFINE_SPINLOCK(object_map_lock); |
90e9f6a6 | 738 | |
b3fd64e1 | 739 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, |
bb192ed9 | 740 | struct slab *slab) |
b3fd64e1 | 741 | { |
bb192ed9 | 742 | void *addr = slab_address(slab); |
b3fd64e1 VB |
743 | void *p; |
744 | ||
bb192ed9 | 745 | bitmap_zero(obj_map, slab->objects); |
b3fd64e1 | 746 | |
bb192ed9 | 747 | for (p = slab->freelist; p; p = get_freepointer(s, p)) |
b3fd64e1 VB |
748 | set_bit(__obj_to_index(s, addr, p), obj_map); |
749 | } | |
750 | ||
1f9f78b1 OG |
751 | #if IS_ENABLED(CONFIG_KUNIT) |
752 | static bool slab_add_kunit_errors(void) | |
753 | { | |
754 | struct kunit_resource *resource; | |
755 | ||
909c6475 | 756 | if (!kunit_get_current_test()) |
1f9f78b1 OG |
757 | return false; |
758 | ||
759 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
760 | if (!resource) | |
761 | return false; | |
762 | ||
763 | (*(int *)resource->data)++; | |
764 | kunit_put_resource(resource); | |
765 | return true; | |
766 | } | |
767 | #else | |
768 | static inline bool slab_add_kunit_errors(void) { return false; } | |
769 | #endif | |
770 | ||
870b1fbb | 771 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
772 | { |
773 | if (s->flags & SLAB_RED_ZONE) | |
774 | return s->size - s->red_left_pad; | |
775 | ||
776 | return s->size; | |
777 | } | |
778 | ||
779 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
780 | { | |
781 | if (s->flags & SLAB_RED_ZONE) | |
782 | p -= s->red_left_pad; | |
783 | ||
784 | return p; | |
785 | } | |
786 | ||
41ecc55b CL |
787 | /* |
788 | * Debug settings: | |
789 | */ | |
89d3c87e | 790 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 791 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 792 | #else |
d50112ed | 793 | static slab_flags_t slub_debug; |
f0630fff | 794 | #endif |
41ecc55b | 795 | |
e17f1dfb | 796 | static char *slub_debug_string; |
fa5ec8a1 | 797 | static int disable_higher_order_debug; |
41ecc55b | 798 | |
a79316c6 AR |
799 | /* |
800 | * slub is about to manipulate internal object metadata. This memory lies | |
801 | * outside the range of the allocated object, so accessing it would normally | |
802 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
803 | * to tell kasan that these accesses are OK. | |
804 | */ | |
805 | static inline void metadata_access_enable(void) | |
806 | { | |
807 | kasan_disable_current(); | |
808 | } | |
809 | ||
810 | static inline void metadata_access_disable(void) | |
811 | { | |
812 | kasan_enable_current(); | |
813 | } | |
814 | ||
81819f0f CL |
815 | /* |
816 | * Object debugging | |
817 | */ | |
d86bd1be JK |
818 | |
819 | /* Verify that a pointer has an address that is valid within a slab page */ | |
820 | static inline int check_valid_pointer(struct kmem_cache *s, | |
bb192ed9 | 821 | struct slab *slab, void *object) |
d86bd1be JK |
822 | { |
823 | void *base; | |
824 | ||
825 | if (!object) | |
826 | return 1; | |
827 | ||
bb192ed9 | 828 | base = slab_address(slab); |
338cfaad | 829 | object = kasan_reset_tag(object); |
d86bd1be | 830 | object = restore_red_left(s, object); |
bb192ed9 | 831 | if (object < base || object >= base + slab->objects * s->size || |
d86bd1be JK |
832 | (object - base) % s->size) { |
833 | return 0; | |
834 | } | |
835 | ||
836 | return 1; | |
837 | } | |
838 | ||
aa2efd5e DT |
839 | static void print_section(char *level, char *text, u8 *addr, |
840 | unsigned int length) | |
81819f0f | 841 | { |
a79316c6 | 842 | metadata_access_enable(); |
340caf17 KYL |
843 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, |
844 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
a79316c6 | 845 | metadata_access_disable(); |
81819f0f CL |
846 | } |
847 | ||
cbfc35a4 WL |
848 | /* |
849 | * See comment in calculate_sizes(). | |
850 | */ | |
851 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
852 | { | |
853 | return s->offset >= s->inuse; | |
854 | } | |
855 | ||
856 | /* | |
857 | * Return offset of the end of info block which is inuse + free pointer if | |
858 | * not overlapping with object. | |
859 | */ | |
860 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
861 | { | |
862 | if (freeptr_outside_object(s)) | |
863 | return s->inuse + sizeof(void *); | |
864 | else | |
865 | return s->inuse; | |
866 | } | |
867 | ||
81819f0f CL |
868 | static struct track *get_track(struct kmem_cache *s, void *object, |
869 | enum track_item alloc) | |
870 | { | |
871 | struct track *p; | |
872 | ||
cbfc35a4 | 873 | p = object + get_info_end(s); |
81819f0f | 874 | |
aa1ef4d7 | 875 | return kasan_reset_tag(p + alloc); |
81819f0f CL |
876 | } |
877 | ||
5cf909c5 | 878 | #ifdef CONFIG_STACKDEPOT |
c4cf6785 SAS |
879 | static noinline depot_stack_handle_t set_track_prepare(void) |
880 | { | |
881 | depot_stack_handle_t handle; | |
5cf909c5 | 882 | unsigned long entries[TRACK_ADDRS_COUNT]; |
0cd1a029 | 883 | unsigned int nr_entries; |
ae14c63a | 884 | |
5cf909c5 | 885 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); |
c4cf6785 SAS |
886 | handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); |
887 | ||
888 | return handle; | |
889 | } | |
890 | #else | |
891 | static inline depot_stack_handle_t set_track_prepare(void) | |
892 | { | |
893 | return 0; | |
894 | } | |
d6543e39 | 895 | #endif |
5cf909c5 | 896 | |
c4cf6785 SAS |
897 | static void set_track_update(struct kmem_cache *s, void *object, |
898 | enum track_item alloc, unsigned long addr, | |
899 | depot_stack_handle_t handle) | |
900 | { | |
901 | struct track *p = get_track(s, object, alloc); | |
902 | ||
903 | #ifdef CONFIG_STACKDEPOT | |
904 | p->handle = handle; | |
905 | #endif | |
0cd1a029 VB |
906 | p->addr = addr; |
907 | p->cpu = smp_processor_id(); | |
908 | p->pid = current->pid; | |
909 | p->when = jiffies; | |
81819f0f CL |
910 | } |
911 | ||
c4cf6785 SAS |
912 | static __always_inline void set_track(struct kmem_cache *s, void *object, |
913 | enum track_item alloc, unsigned long addr) | |
914 | { | |
915 | depot_stack_handle_t handle = set_track_prepare(); | |
916 | ||
917 | set_track_update(s, object, alloc, addr, handle); | |
918 | } | |
919 | ||
81819f0f CL |
920 | static void init_tracking(struct kmem_cache *s, void *object) |
921 | { | |
0cd1a029 VB |
922 | struct track *p; |
923 | ||
24922684 CL |
924 | if (!(s->flags & SLAB_STORE_USER)) |
925 | return; | |
926 | ||
0cd1a029 VB |
927 | p = get_track(s, object, TRACK_ALLOC); |
928 | memset(p, 0, 2*sizeof(struct track)); | |
81819f0f CL |
929 | } |
930 | ||
86609d33 | 931 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f | 932 | { |
5cf909c5 OG |
933 | depot_stack_handle_t handle __maybe_unused; |
934 | ||
81819f0f CL |
935 | if (!t->addr) |
936 | return; | |
937 | ||
96b94abc | 938 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 939 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
5cf909c5 OG |
940 | #ifdef CONFIG_STACKDEPOT |
941 | handle = READ_ONCE(t->handle); | |
942 | if (handle) | |
943 | stack_depot_print(handle); | |
944 | else | |
945 | pr_err("object allocation/free stack trace missing\n"); | |
d6543e39 | 946 | #endif |
24922684 CL |
947 | } |
948 | ||
e42f174e | 949 | void print_tracking(struct kmem_cache *s, void *object) |
24922684 | 950 | { |
86609d33 | 951 | unsigned long pr_time = jiffies; |
24922684 CL |
952 | if (!(s->flags & SLAB_STORE_USER)) |
953 | return; | |
954 | ||
86609d33 CP |
955 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
956 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
957 | } |
958 | ||
fb012e27 | 959 | static void print_slab_info(const struct slab *slab) |
24922684 | 960 | { |
fb012e27 | 961 | struct folio *folio = (struct folio *)slab_folio(slab); |
24922684 | 962 | |
fb012e27 MWO |
963 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", |
964 | slab, slab->objects, slab->inuse, slab->freelist, | |
965 | folio_flags(folio, 0)); | |
24922684 CL |
966 | } |
967 | ||
6edf2576 FT |
968 | /* |
969 | * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API | |
970 | * family will round up the real request size to these fixed ones, so | |
971 | * there could be an extra area than what is requested. Save the original | |
972 | * request size in the meta data area, for better debug and sanity check. | |
973 | */ | |
974 | static inline void set_orig_size(struct kmem_cache *s, | |
975 | void *object, unsigned int orig_size) | |
976 | { | |
977 | void *p = kasan_reset_tag(object); | |
2d552463 | 978 | unsigned int kasan_meta_size; |
6edf2576 FT |
979 | |
980 | if (!slub_debug_orig_size(s)) | |
981 | return; | |
982 | ||
946fa0db | 983 | /* |
2d552463 AK |
984 | * KASAN can save its free meta data inside of the object at offset 0. |
985 | * If this meta data size is larger than 'orig_size', it will overlap | |
986 | * the data redzone in [orig_size+1, object_size]. Thus, we adjust | |
987 | * 'orig_size' to be as at least as big as KASAN's meta data. | |
946fa0db | 988 | */ |
2d552463 AK |
989 | kasan_meta_size = kasan_metadata_size(s, true); |
990 | if (kasan_meta_size > orig_size) | |
991 | orig_size = kasan_meta_size; | |
946fa0db | 992 | |
6edf2576 FT |
993 | p += get_info_end(s); |
994 | p += sizeof(struct track) * 2; | |
995 | ||
996 | *(unsigned int *)p = orig_size; | |
997 | } | |
998 | ||
999 | static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) | |
1000 | { | |
1001 | void *p = kasan_reset_tag(object); | |
1002 | ||
1003 | if (!slub_debug_orig_size(s)) | |
1004 | return s->object_size; | |
1005 | ||
1006 | p += get_info_end(s); | |
1007 | p += sizeof(struct track) * 2; | |
1008 | ||
1009 | return *(unsigned int *)p; | |
1010 | } | |
1011 | ||
946fa0db FT |
1012 | void skip_orig_size_check(struct kmem_cache *s, const void *object) |
1013 | { | |
1014 | set_orig_size(s, (void *)object, s->object_size); | |
1015 | } | |
1016 | ||
24922684 CL |
1017 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
1018 | { | |
ecc42fbe | 1019 | struct va_format vaf; |
24922684 | 1020 | va_list args; |
24922684 CL |
1021 | |
1022 | va_start(args, fmt); | |
ecc42fbe FF |
1023 | vaf.fmt = fmt; |
1024 | vaf.va = &args; | |
f9f58285 | 1025 | pr_err("=============================================================================\n"); |
ecc42fbe | 1026 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 1027 | pr_err("-----------------------------------------------------------------------------\n\n"); |
ecc42fbe | 1028 | va_end(args); |
81819f0f CL |
1029 | } |
1030 | ||
582d1212 | 1031 | __printf(2, 3) |
24922684 CL |
1032 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
1033 | { | |
ecc42fbe | 1034 | struct va_format vaf; |
24922684 | 1035 | va_list args; |
24922684 | 1036 | |
1f9f78b1 OG |
1037 | if (slab_add_kunit_errors()) |
1038 | return; | |
1039 | ||
24922684 | 1040 | va_start(args, fmt); |
ecc42fbe FF |
1041 | vaf.fmt = fmt; |
1042 | vaf.va = &args; | |
1043 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 1044 | va_end(args); |
24922684 CL |
1045 | } |
1046 | ||
bb192ed9 | 1047 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f CL |
1048 | { |
1049 | unsigned int off; /* Offset of last byte */ | |
bb192ed9 | 1050 | u8 *addr = slab_address(slab); |
24922684 CL |
1051 | |
1052 | print_tracking(s, p); | |
1053 | ||
bb192ed9 | 1054 | print_slab_info(slab); |
24922684 | 1055 | |
96b94abc | 1056 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", |
f9f58285 | 1057 | p, p - addr, get_freepointer(s, p)); |
24922684 | 1058 | |
d86bd1be | 1059 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 1060 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
aa2efd5e | 1061 | s->red_left_pad); |
d86bd1be | 1062 | else if (p > addr + 16) |
aa2efd5e | 1063 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 1064 | |
8669dbab | 1065 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 1066 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 1067 | if (s->flags & SLAB_RED_ZONE) |
8669dbab | 1068 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 1069 | s->inuse - s->object_size); |
81819f0f | 1070 | |
cbfc35a4 | 1071 | off = get_info_end(s); |
81819f0f | 1072 | |
24922684 | 1073 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 1074 | off += 2 * sizeof(struct track); |
81819f0f | 1075 | |
6edf2576 FT |
1076 | if (slub_debug_orig_size(s)) |
1077 | off += sizeof(unsigned int); | |
1078 | ||
5d1ba310 | 1079 | off += kasan_metadata_size(s, false); |
80a9201a | 1080 | |
d86bd1be | 1081 | if (off != size_from_object(s)) |
81819f0f | 1082 | /* Beginning of the filler is the free pointer */ |
8669dbab | 1083 | print_section(KERN_ERR, "Padding ", p + off, |
aa2efd5e | 1084 | size_from_object(s) - off); |
24922684 CL |
1085 | |
1086 | dump_stack(); | |
81819f0f CL |
1087 | } |
1088 | ||
bb192ed9 | 1089 | static void object_err(struct kmem_cache *s, struct slab *slab, |
81819f0f CL |
1090 | u8 *object, char *reason) |
1091 | { | |
1f9f78b1 OG |
1092 | if (slab_add_kunit_errors()) |
1093 | return; | |
1094 | ||
3dc50637 | 1095 | slab_bug(s, "%s", reason); |
bb192ed9 | 1096 | print_trailer(s, slab, object); |
65ebdeef | 1097 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
1098 | } |
1099 | ||
bb192ed9 | 1100 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
ae16d059 VB |
1101 | void **freelist, void *nextfree) |
1102 | { | |
1103 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
bb192ed9 VB |
1104 | !check_valid_pointer(s, slab, nextfree) && freelist) { |
1105 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
ae16d059 VB |
1106 | *freelist = NULL; |
1107 | slab_fix(s, "Isolate corrupted freechain"); | |
1108 | return true; | |
1109 | } | |
1110 | ||
1111 | return false; | |
1112 | } | |
1113 | ||
bb192ed9 | 1114 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, |
d0e0ac97 | 1115 | const char *fmt, ...) |
81819f0f CL |
1116 | { |
1117 | va_list args; | |
1118 | char buf[100]; | |
1119 | ||
1f9f78b1 OG |
1120 | if (slab_add_kunit_errors()) |
1121 | return; | |
1122 | ||
24922684 CL |
1123 | va_start(args, fmt); |
1124 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 1125 | va_end(args); |
3dc50637 | 1126 | slab_bug(s, "%s", buf); |
bb192ed9 | 1127 | print_slab_info(slab); |
81819f0f | 1128 | dump_stack(); |
65ebdeef | 1129 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
1130 | } |
1131 | ||
f7cb1933 | 1132 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f | 1133 | { |
aa1ef4d7 | 1134 | u8 *p = kasan_reset_tag(object); |
946fa0db | 1135 | unsigned int poison_size = s->object_size; |
81819f0f | 1136 | |
946fa0db | 1137 | if (s->flags & SLAB_RED_ZONE) { |
d86bd1be JK |
1138 | memset(p - s->red_left_pad, val, s->red_left_pad); |
1139 | ||
946fa0db FT |
1140 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { |
1141 | /* | |
1142 | * Redzone the extra allocated space by kmalloc than | |
1143 | * requested, and the poison size will be limited to | |
1144 | * the original request size accordingly. | |
1145 | */ | |
1146 | poison_size = get_orig_size(s, object); | |
1147 | } | |
1148 | } | |
1149 | ||
81819f0f | 1150 | if (s->flags & __OBJECT_POISON) { |
946fa0db FT |
1151 | memset(p, POISON_FREE, poison_size - 1); |
1152 | p[poison_size - 1] = POISON_END; | |
81819f0f CL |
1153 | } |
1154 | ||
1155 | if (s->flags & SLAB_RED_ZONE) | |
946fa0db | 1156 | memset(p + poison_size, val, s->inuse - poison_size); |
81819f0f CL |
1157 | } |
1158 | ||
24922684 CL |
1159 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
1160 | void *from, void *to) | |
1161 | { | |
582d1212 | 1162 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); |
24922684 CL |
1163 | memset(from, data, to - from); |
1164 | } | |
1165 | ||
bb192ed9 | 1166 | static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, |
24922684 | 1167 | u8 *object, char *what, |
06428780 | 1168 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
1169 | { |
1170 | u8 *fault; | |
1171 | u8 *end; | |
bb192ed9 | 1172 | u8 *addr = slab_address(slab); |
24922684 | 1173 | |
a79316c6 | 1174 | metadata_access_enable(); |
aa1ef4d7 | 1175 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); |
a79316c6 | 1176 | metadata_access_disable(); |
24922684 CL |
1177 | if (!fault) |
1178 | return 1; | |
1179 | ||
1180 | end = start + bytes; | |
1181 | while (end > fault && end[-1] == value) | |
1182 | end--; | |
1183 | ||
1f9f78b1 OG |
1184 | if (slab_add_kunit_errors()) |
1185 | goto skip_bug_print; | |
1186 | ||
24922684 | 1187 | slab_bug(s, "%s overwritten", what); |
96b94abc | 1188 | pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
e1b70dd1 MC |
1189 | fault, end - 1, fault - addr, |
1190 | fault[0], value); | |
bb192ed9 | 1191 | print_trailer(s, slab, object); |
65ebdeef | 1192 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
24922684 | 1193 | |
1f9f78b1 | 1194 | skip_bug_print: |
24922684 CL |
1195 | restore_bytes(s, what, value, fault, end); |
1196 | return 0; | |
81819f0f CL |
1197 | } |
1198 | ||
81819f0f CL |
1199 | /* |
1200 | * Object layout: | |
1201 | * | |
1202 | * object address | |
1203 | * Bytes of the object to be managed. | |
1204 | * If the freepointer may overlay the object then the free | |
cbfc35a4 | 1205 | * pointer is at the middle of the object. |
672bba3a | 1206 | * |
81819f0f CL |
1207 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
1208 | * 0xa5 (POISON_END) | |
1209 | * | |
3b0efdfa | 1210 | * object + s->object_size |
81819f0f | 1211 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 1212 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 1213 | * object_size == inuse. |
672bba3a | 1214 | * |
81819f0f CL |
1215 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
1216 | * 0xcc (RED_ACTIVE) for objects in use. | |
1217 | * | |
1218 | * object + s->inuse | |
672bba3a CL |
1219 | * Meta data starts here. |
1220 | * | |
81819f0f CL |
1221 | * A. Free pointer (if we cannot overwrite object on free) |
1222 | * B. Tracking data for SLAB_STORE_USER | |
6edf2576 FT |
1223 | * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) |
1224 | * D. Padding to reach required alignment boundary or at minimum | |
6446faa2 | 1225 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
1226 | * before the word boundary. |
1227 | * | |
1228 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
1229 | * |
1230 | * object + s->size | |
672bba3a | 1231 | * Nothing is used beyond s->size. |
81819f0f | 1232 | * |
3b0efdfa | 1233 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 1234 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
1235 | * may be used with merged slabcaches. |
1236 | */ | |
1237 | ||
bb192ed9 | 1238 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) |
81819f0f | 1239 | { |
cbfc35a4 | 1240 | unsigned long off = get_info_end(s); /* The end of info */ |
81819f0f | 1241 | |
6edf2576 | 1242 | if (s->flags & SLAB_STORE_USER) { |
81819f0f CL |
1243 | /* We also have user information there */ |
1244 | off += 2 * sizeof(struct track); | |
1245 | ||
6edf2576 FT |
1246 | if (s->flags & SLAB_KMALLOC) |
1247 | off += sizeof(unsigned int); | |
1248 | } | |
1249 | ||
5d1ba310 | 1250 | off += kasan_metadata_size(s, false); |
80a9201a | 1251 | |
d86bd1be | 1252 | if (size_from_object(s) == off) |
81819f0f CL |
1253 | return 1; |
1254 | ||
bb192ed9 | 1255 | return check_bytes_and_report(s, slab, p, "Object padding", |
d86bd1be | 1256 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
1257 | } |
1258 | ||
39b26464 | 1259 | /* Check the pad bytes at the end of a slab page */ |
a204e6d6 | 1260 | static void slab_pad_check(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1261 | { |
24922684 CL |
1262 | u8 *start; |
1263 | u8 *fault; | |
1264 | u8 *end; | |
5d682681 | 1265 | u8 *pad; |
24922684 CL |
1266 | int length; |
1267 | int remainder; | |
81819f0f CL |
1268 | |
1269 | if (!(s->flags & SLAB_POISON)) | |
a204e6d6 | 1270 | return; |
81819f0f | 1271 | |
bb192ed9 VB |
1272 | start = slab_address(slab); |
1273 | length = slab_size(slab); | |
39b26464 CL |
1274 | end = start + length; |
1275 | remainder = length % s->size; | |
81819f0f | 1276 | if (!remainder) |
a204e6d6 | 1277 | return; |
81819f0f | 1278 | |
5d682681 | 1279 | pad = end - remainder; |
a79316c6 | 1280 | metadata_access_enable(); |
aa1ef4d7 | 1281 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); |
a79316c6 | 1282 | metadata_access_disable(); |
24922684 | 1283 | if (!fault) |
a204e6d6 | 1284 | return; |
24922684 CL |
1285 | while (end > fault && end[-1] == POISON_INUSE) |
1286 | end--; | |
1287 | ||
bb192ed9 | 1288 | slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
e1b70dd1 | 1289 | fault, end - 1, fault - start); |
5d682681 | 1290 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 1291 | |
5d682681 | 1292 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
81819f0f CL |
1293 | } |
1294 | ||
bb192ed9 | 1295 | static int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1296 | void *object, u8 val) |
81819f0f CL |
1297 | { |
1298 | u8 *p = object; | |
3b0efdfa | 1299 | u8 *endobject = object + s->object_size; |
2d552463 | 1300 | unsigned int orig_size, kasan_meta_size; |
81819f0f CL |
1301 | |
1302 | if (s->flags & SLAB_RED_ZONE) { | |
bb192ed9 | 1303 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", |
d86bd1be JK |
1304 | object - s->red_left_pad, val, s->red_left_pad)) |
1305 | return 0; | |
1306 | ||
bb192ed9 | 1307 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", |
3b0efdfa | 1308 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 1309 | return 0; |
946fa0db FT |
1310 | |
1311 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { | |
1312 | orig_size = get_orig_size(s, object); | |
1313 | ||
1314 | if (s->object_size > orig_size && | |
1315 | !check_bytes_and_report(s, slab, object, | |
1316 | "kmalloc Redzone", p + orig_size, | |
1317 | val, s->object_size - orig_size)) { | |
1318 | return 0; | |
1319 | } | |
1320 | } | |
81819f0f | 1321 | } else { |
3b0efdfa | 1322 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
bb192ed9 | 1323 | check_bytes_and_report(s, slab, p, "Alignment padding", |
d0e0ac97 CG |
1324 | endobject, POISON_INUSE, |
1325 | s->inuse - s->object_size); | |
3adbefee | 1326 | } |
81819f0f CL |
1327 | } |
1328 | ||
1329 | if (s->flags & SLAB_POISON) { | |
2d552463 AK |
1330 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { |
1331 | /* | |
1332 | * KASAN can save its free meta data inside of the | |
1333 | * object at offset 0. Thus, skip checking the part of | |
1334 | * the redzone that overlaps with the meta data. | |
1335 | */ | |
1336 | kasan_meta_size = kasan_metadata_size(s, true); | |
1337 | if (kasan_meta_size < s->object_size - 1 && | |
1338 | !check_bytes_and_report(s, slab, p, "Poison", | |
1339 | p + kasan_meta_size, POISON_FREE, | |
1340 | s->object_size - kasan_meta_size - 1)) | |
1341 | return 0; | |
1342 | if (kasan_meta_size < s->object_size && | |
1343 | !check_bytes_and_report(s, slab, p, "End Poison", | |
1344 | p + s->object_size - 1, POISON_END, 1)) | |
1345 | return 0; | |
1346 | } | |
81819f0f CL |
1347 | /* |
1348 | * check_pad_bytes cleans up on its own. | |
1349 | */ | |
bb192ed9 | 1350 | check_pad_bytes(s, slab, p); |
81819f0f CL |
1351 | } |
1352 | ||
cbfc35a4 | 1353 | if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) |
81819f0f CL |
1354 | /* |
1355 | * Object and freepointer overlap. Cannot check | |
1356 | * freepointer while object is allocated. | |
1357 | */ | |
1358 | return 1; | |
1359 | ||
1360 | /* Check free pointer validity */ | |
bb192ed9 VB |
1361 | if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { |
1362 | object_err(s, slab, p, "Freepointer corrupt"); | |
81819f0f | 1363 | /* |
9f6c708e | 1364 | * No choice but to zap it and thus lose the remainder |
81819f0f | 1365 | * of the free objects in this slab. May cause |
672bba3a | 1366 | * another error because the object count is now wrong. |
81819f0f | 1367 | */ |
a973e9dd | 1368 | set_freepointer(s, p, NULL); |
81819f0f CL |
1369 | return 0; |
1370 | } | |
1371 | return 1; | |
1372 | } | |
1373 | ||
bb192ed9 | 1374 | static int check_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 1375 | { |
39b26464 CL |
1376 | int maxobj; |
1377 | ||
bb192ed9 VB |
1378 | if (!folio_test_slab(slab_folio(slab))) { |
1379 | slab_err(s, slab, "Not a valid slab page"); | |
81819f0f CL |
1380 | return 0; |
1381 | } | |
39b26464 | 1382 | |
bb192ed9 VB |
1383 | maxobj = order_objects(slab_order(slab), s->size); |
1384 | if (slab->objects > maxobj) { | |
1385 | slab_err(s, slab, "objects %u > max %u", | |
1386 | slab->objects, maxobj); | |
39b26464 CL |
1387 | return 0; |
1388 | } | |
bb192ed9 VB |
1389 | if (slab->inuse > slab->objects) { |
1390 | slab_err(s, slab, "inuse %u > max %u", | |
1391 | slab->inuse, slab->objects); | |
81819f0f CL |
1392 | return 0; |
1393 | } | |
1394 | /* Slab_pad_check fixes things up after itself */ | |
bb192ed9 | 1395 | slab_pad_check(s, slab); |
81819f0f CL |
1396 | return 1; |
1397 | } | |
1398 | ||
1399 | /* | |
c2092c12 | 1400 | * Determine if a certain object in a slab is on the freelist. Must hold the |
672bba3a | 1401 | * slab lock to guarantee that the chains are in a consistent state. |
81819f0f | 1402 | */ |
bb192ed9 | 1403 | static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) |
81819f0f CL |
1404 | { |
1405 | int nr = 0; | |
881db7fb | 1406 | void *fp; |
81819f0f | 1407 | void *object = NULL; |
f6edde9c | 1408 | int max_objects; |
81819f0f | 1409 | |
bb192ed9 VB |
1410 | fp = slab->freelist; |
1411 | while (fp && nr <= slab->objects) { | |
81819f0f CL |
1412 | if (fp == search) |
1413 | return 1; | |
bb192ed9 | 1414 | if (!check_valid_pointer(s, slab, fp)) { |
81819f0f | 1415 | if (object) { |
bb192ed9 | 1416 | object_err(s, slab, object, |
81819f0f | 1417 | "Freechain corrupt"); |
a973e9dd | 1418 | set_freepointer(s, object, NULL); |
81819f0f | 1419 | } else { |
bb192ed9 VB |
1420 | slab_err(s, slab, "Freepointer corrupt"); |
1421 | slab->freelist = NULL; | |
1422 | slab->inuse = slab->objects; | |
24922684 | 1423 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
1424 | return 0; |
1425 | } | |
1426 | break; | |
1427 | } | |
1428 | object = fp; | |
1429 | fp = get_freepointer(s, object); | |
1430 | nr++; | |
1431 | } | |
1432 | ||
bb192ed9 | 1433 | max_objects = order_objects(slab_order(slab), s->size); |
210b5c06 CG |
1434 | if (max_objects > MAX_OBJS_PER_PAGE) |
1435 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be | 1436 | |
bb192ed9 VB |
1437 | if (slab->objects != max_objects) { |
1438 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1439 | slab->objects, max_objects); | |
1440 | slab->objects = max_objects; | |
582d1212 | 1441 | slab_fix(s, "Number of objects adjusted"); |
224a88be | 1442 | } |
bb192ed9 VB |
1443 | if (slab->inuse != slab->objects - nr) { |
1444 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1445 | slab->inuse, slab->objects - nr); | |
1446 | slab->inuse = slab->objects - nr; | |
582d1212 | 1447 | slab_fix(s, "Object count adjusted"); |
81819f0f CL |
1448 | } |
1449 | return search == NULL; | |
1450 | } | |
1451 | ||
bb192ed9 | 1452 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, |
0121c619 | 1453 | int alloc) |
3ec09742 CL |
1454 | { |
1455 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1456 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1457 | s->name, |
1458 | alloc ? "alloc" : "free", | |
bb192ed9 VB |
1459 | object, slab->inuse, |
1460 | slab->freelist); | |
3ec09742 CL |
1461 | |
1462 | if (!alloc) | |
aa2efd5e | 1463 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1464 | s->object_size); |
3ec09742 CL |
1465 | |
1466 | dump_stack(); | |
1467 | } | |
1468 | } | |
1469 | ||
643b1138 | 1470 | /* |
672bba3a | 1471 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1472 | */ |
5cc6eee8 | 1473 | static void add_full(struct kmem_cache *s, |
bb192ed9 | 1474 | struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1475 | { |
5cc6eee8 CL |
1476 | if (!(s->flags & SLAB_STORE_USER)) |
1477 | return; | |
1478 | ||
255d0884 | 1479 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1480 | list_add(&slab->slab_list, &n->full); |
643b1138 CL |
1481 | } |
1482 | ||
bb192ed9 | 1483 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) |
643b1138 | 1484 | { |
643b1138 CL |
1485 | if (!(s->flags & SLAB_STORE_USER)) |
1486 | return; | |
1487 | ||
255d0884 | 1488 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 1489 | list_del(&slab->slab_list); |
643b1138 CL |
1490 | } |
1491 | ||
26c02cf0 AB |
1492 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1493 | { | |
1494 | return atomic_long_read(&n->nr_slabs); | |
1495 | } | |
1496 | ||
205ab99d | 1497 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1498 | { |
1499 | struct kmem_cache_node *n = get_node(s, node); | |
1500 | ||
3dd549a5 CZ |
1501 | atomic_long_inc(&n->nr_slabs); |
1502 | atomic_long_add(objects, &n->total_objects); | |
0f389ec6 | 1503 | } |
205ab99d | 1504 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1505 | { |
1506 | struct kmem_cache_node *n = get_node(s, node); | |
1507 | ||
1508 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1509 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1510 | } |
1511 | ||
1512 | /* Object debug checks for alloc/free paths */ | |
c0f81a94 | 1513 | static void setup_object_debug(struct kmem_cache *s, void *object) |
3ec09742 | 1514 | { |
8fc8d666 | 1515 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) |
3ec09742 CL |
1516 | return; |
1517 | ||
f7cb1933 | 1518 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1519 | init_tracking(s, object); |
1520 | } | |
1521 | ||
a50b854e | 1522 | static |
bb192ed9 | 1523 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) |
a7101224 | 1524 | { |
8fc8d666 | 1525 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) |
a7101224 AK |
1526 | return; |
1527 | ||
1528 | metadata_access_enable(); | |
bb192ed9 | 1529 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); |
a7101224 AK |
1530 | metadata_access_disable(); |
1531 | } | |
1532 | ||
becfda68 | 1533 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1534 | struct slab *slab, void *object) |
81819f0f | 1535 | { |
bb192ed9 | 1536 | if (!check_slab(s, slab)) |
becfda68 | 1537 | return 0; |
81819f0f | 1538 | |
bb192ed9 VB |
1539 | if (!check_valid_pointer(s, slab, object)) { |
1540 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
becfda68 | 1541 | return 0; |
81819f0f CL |
1542 | } |
1543 | ||
bb192ed9 | 1544 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1545 | return 0; |
1546 | ||
1547 | return 1; | |
1548 | } | |
1549 | ||
fa9b88e4 | 1550 | static noinline bool alloc_debug_processing(struct kmem_cache *s, |
6edf2576 | 1551 | struct slab *slab, void *object, int orig_size) |
becfda68 LA |
1552 | { |
1553 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
bb192ed9 | 1554 | if (!alloc_consistency_checks(s, slab, object)) |
becfda68 LA |
1555 | goto bad; |
1556 | } | |
81819f0f | 1557 | |
c7323a5a | 1558 | /* Success. Perform special debug activities for allocs */ |
bb192ed9 | 1559 | trace(s, slab, object, 1); |
6edf2576 | 1560 | set_orig_size(s, object, orig_size); |
f7cb1933 | 1561 | init_object(s, object, SLUB_RED_ACTIVE); |
fa9b88e4 | 1562 | return true; |
3ec09742 | 1563 | |
81819f0f | 1564 | bad: |
bb192ed9 | 1565 | if (folio_test_slab(slab_folio(slab))) { |
81819f0f CL |
1566 | /* |
1567 | * If this is a slab page then lets do the best we can | |
1568 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1569 | * as used avoids touching the remaining objects. |
81819f0f | 1570 | */ |
24922684 | 1571 | slab_fix(s, "Marking all objects used"); |
bb192ed9 VB |
1572 | slab->inuse = slab->objects; |
1573 | slab->freelist = NULL; | |
81819f0f | 1574 | } |
fa9b88e4 | 1575 | return false; |
81819f0f CL |
1576 | } |
1577 | ||
becfda68 | 1578 | static inline int free_consistency_checks(struct kmem_cache *s, |
bb192ed9 | 1579 | struct slab *slab, void *object, unsigned long addr) |
81819f0f | 1580 | { |
bb192ed9 VB |
1581 | if (!check_valid_pointer(s, slab, object)) { |
1582 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
becfda68 | 1583 | return 0; |
81819f0f CL |
1584 | } |
1585 | ||
bb192ed9 VB |
1586 | if (on_freelist(s, slab, object)) { |
1587 | object_err(s, slab, object, "Object already free"); | |
becfda68 | 1588 | return 0; |
81819f0f CL |
1589 | } |
1590 | ||
bb192ed9 | 1591 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) |
becfda68 | 1592 | return 0; |
81819f0f | 1593 | |
bb192ed9 VB |
1594 | if (unlikely(s != slab->slab_cache)) { |
1595 | if (!folio_test_slab(slab_folio(slab))) { | |
1596 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
756a025f | 1597 | object); |
bb192ed9 | 1598 | } else if (!slab->slab_cache) { |
f9f58285 FF |
1599 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1600 | object); | |
70d71228 | 1601 | dump_stack(); |
06428780 | 1602 | } else |
bb192ed9 | 1603 | object_err(s, slab, object, |
24922684 | 1604 | "page slab pointer corrupt."); |
becfda68 LA |
1605 | return 0; |
1606 | } | |
1607 | return 1; | |
1608 | } | |
1609 | ||
e17f1dfb | 1610 | /* |
671776b3 | 1611 | * Parse a block of slab_debug options. Blocks are delimited by ';' |
e17f1dfb VB |
1612 | * |
1613 | * @str: start of block | |
1614 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1615 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1616 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1617 | * | |
1618 | * returns the start of next block if there's any, or NULL | |
1619 | */ | |
1620 | static char * | |
1621 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
41ecc55b | 1622 | { |
e17f1dfb | 1623 | bool higher_order_disable = false; |
f0630fff | 1624 | |
e17f1dfb VB |
1625 | /* Skip any completely empty blocks */ |
1626 | while (*str && *str == ';') | |
1627 | str++; | |
1628 | ||
1629 | if (*str == ',') { | |
f0630fff CL |
1630 | /* |
1631 | * No options but restriction on slabs. This means full | |
1632 | * debugging for slabs matching a pattern. | |
1633 | */ | |
e17f1dfb | 1634 | *flags = DEBUG_DEFAULT_FLAGS; |
f0630fff | 1635 | goto check_slabs; |
e17f1dfb VB |
1636 | } |
1637 | *flags = 0; | |
f0630fff | 1638 | |
e17f1dfb VB |
1639 | /* Determine which debug features should be switched on */ |
1640 | for (; *str && *str != ',' && *str != ';'; str++) { | |
f0630fff | 1641 | switch (tolower(*str)) { |
e17f1dfb VB |
1642 | case '-': |
1643 | *flags = 0; | |
1644 | break; | |
f0630fff | 1645 | case 'f': |
e17f1dfb | 1646 | *flags |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1647 | break; |
1648 | case 'z': | |
e17f1dfb | 1649 | *flags |= SLAB_RED_ZONE; |
f0630fff CL |
1650 | break; |
1651 | case 'p': | |
e17f1dfb | 1652 | *flags |= SLAB_POISON; |
f0630fff CL |
1653 | break; |
1654 | case 'u': | |
e17f1dfb | 1655 | *flags |= SLAB_STORE_USER; |
f0630fff CL |
1656 | break; |
1657 | case 't': | |
e17f1dfb | 1658 | *flags |= SLAB_TRACE; |
f0630fff | 1659 | break; |
4c13dd3b | 1660 | case 'a': |
e17f1dfb | 1661 | *flags |= SLAB_FAILSLAB; |
4c13dd3b | 1662 | break; |
08303a73 CA |
1663 | case 'o': |
1664 | /* | |
1665 | * Avoid enabling debugging on caches if its minimum | |
1666 | * order would increase as a result. | |
1667 | */ | |
e17f1dfb | 1668 | higher_order_disable = true; |
08303a73 | 1669 | break; |
f0630fff | 1670 | default: |
e17f1dfb | 1671 | if (init) |
671776b3 | 1672 | pr_err("slab_debug option '%c' unknown. skipped\n", *str); |
f0630fff | 1673 | } |
41ecc55b | 1674 | } |
f0630fff | 1675 | check_slabs: |
41ecc55b | 1676 | if (*str == ',') |
e17f1dfb VB |
1677 | *slabs = ++str; |
1678 | else | |
1679 | *slabs = NULL; | |
1680 | ||
1681 | /* Skip over the slab list */ | |
1682 | while (*str && *str != ';') | |
1683 | str++; | |
1684 | ||
1685 | /* Skip any completely empty blocks */ | |
1686 | while (*str && *str == ';') | |
1687 | str++; | |
1688 | ||
1689 | if (init && higher_order_disable) | |
1690 | disable_higher_order_debug = 1; | |
1691 | ||
1692 | if (*str) | |
1693 | return str; | |
1694 | else | |
1695 | return NULL; | |
1696 | } | |
1697 | ||
1698 | static int __init setup_slub_debug(char *str) | |
1699 | { | |
1700 | slab_flags_t flags; | |
a7f1d485 | 1701 | slab_flags_t global_flags; |
e17f1dfb VB |
1702 | char *saved_str; |
1703 | char *slab_list; | |
1704 | bool global_slub_debug_changed = false; | |
1705 | bool slab_list_specified = false; | |
1706 | ||
a7f1d485 | 1707 | global_flags = DEBUG_DEFAULT_FLAGS; |
e17f1dfb VB |
1708 | if (*str++ != '=' || !*str) |
1709 | /* | |
1710 | * No options specified. Switch on full debugging. | |
1711 | */ | |
1712 | goto out; | |
1713 | ||
1714 | saved_str = str; | |
1715 | while (str) { | |
1716 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1717 | ||
1718 | if (!slab_list) { | |
a7f1d485 | 1719 | global_flags = flags; |
e17f1dfb VB |
1720 | global_slub_debug_changed = true; |
1721 | } else { | |
1722 | slab_list_specified = true; | |
5cf909c5 | 1723 | if (flags & SLAB_STORE_USER) |
1c0310ad | 1724 | stack_depot_request_early_init(); |
e17f1dfb VB |
1725 | } |
1726 | } | |
1727 | ||
1728 | /* | |
1729 | * For backwards compatibility, a single list of flags with list of | |
a7f1d485 | 1730 | * slabs means debugging is only changed for those slabs, so the global |
671776b3 | 1731 | * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending |
a7f1d485 | 1732 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as |
e17f1dfb VB |
1733 | * long as there is no option specifying flags without a slab list. |
1734 | */ | |
1735 | if (slab_list_specified) { | |
1736 | if (!global_slub_debug_changed) | |
a7f1d485 | 1737 | global_flags = slub_debug; |
e17f1dfb VB |
1738 | slub_debug_string = saved_str; |
1739 | } | |
f0630fff | 1740 | out: |
a7f1d485 | 1741 | slub_debug = global_flags; |
5cf909c5 | 1742 | if (slub_debug & SLAB_STORE_USER) |
1c0310ad | 1743 | stack_depot_request_early_init(); |
ca0cab65 VB |
1744 | if (slub_debug != 0 || slub_debug_string) |
1745 | static_branch_enable(&slub_debug_enabled); | |
02ac47d0 SB |
1746 | else |
1747 | static_branch_disable(&slub_debug_enabled); | |
6471384a AP |
1748 | if ((static_branch_unlikely(&init_on_alloc) || |
1749 | static_branch_unlikely(&init_on_free)) && | |
1750 | (slub_debug & SLAB_POISON)) | |
1751 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1752 | return 1; |
1753 | } | |
1754 | ||
671776b3 XS |
1755 | __setup("slab_debug", setup_slub_debug); |
1756 | __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); | |
41ecc55b | 1757 | |
c5fd3ca0 AT |
1758 | /* |
1759 | * kmem_cache_flags - apply debugging options to the cache | |
c5fd3ca0 AT |
1760 | * @flags: flags to set |
1761 | * @name: name of the cache | |
c5fd3ca0 AT |
1762 | * |
1763 | * Debug option(s) are applied to @flags. In addition to the debug | |
1764 | * option(s), if a slab name (or multiple) is specified i.e. | |
671776b3 | 1765 | * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... |
c5fd3ca0 AT |
1766 | * then only the select slabs will receive the debug option(s). |
1767 | */ | |
303cd693 | 1768 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
41ecc55b | 1769 | { |
c5fd3ca0 AT |
1770 | char *iter; |
1771 | size_t len; | |
e17f1dfb VB |
1772 | char *next_block; |
1773 | slab_flags_t block_flags; | |
ca220593 JB |
1774 | slab_flags_t slub_debug_local = slub_debug; |
1775 | ||
a285909f HY |
1776 | if (flags & SLAB_NO_USER_FLAGS) |
1777 | return flags; | |
1778 | ||
ca220593 JB |
1779 | /* |
1780 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1781 | * don't store user (stack trace) information by default, | |
1782 | * but let the user enable it via the command line below. | |
1783 | */ | |
1784 | if (flags & SLAB_NOLEAKTRACE) | |
1785 | slub_debug_local &= ~SLAB_STORE_USER; | |
c5fd3ca0 | 1786 | |
c5fd3ca0 | 1787 | len = strlen(name); |
e17f1dfb VB |
1788 | next_block = slub_debug_string; |
1789 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1790 | while (next_block) { | |
1791 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1792 | if (!iter) | |
1793 | continue; | |
1794 | /* Found a block that has a slab list, search it */ | |
1795 | while (*iter) { | |
1796 | char *end, *glob; | |
1797 | size_t cmplen; | |
1798 | ||
1799 | end = strchrnul(iter, ','); | |
1800 | if (next_block && next_block < end) | |
1801 | end = next_block - 1; | |
1802 | ||
1803 | glob = strnchr(iter, end - iter, '*'); | |
1804 | if (glob) | |
1805 | cmplen = glob - iter; | |
1806 | else | |
1807 | cmplen = max_t(size_t, len, (end - iter)); | |
c5fd3ca0 | 1808 | |
e17f1dfb VB |
1809 | if (!strncmp(name, iter, cmplen)) { |
1810 | flags |= block_flags; | |
1811 | return flags; | |
1812 | } | |
c5fd3ca0 | 1813 | |
e17f1dfb VB |
1814 | if (!*end || *end == ';') |
1815 | break; | |
1816 | iter = end + 1; | |
c5fd3ca0 | 1817 | } |
c5fd3ca0 | 1818 | } |
ba0268a8 | 1819 | |
ca220593 | 1820 | return flags | slub_debug_local; |
41ecc55b | 1821 | } |
b4a64718 | 1822 | #else /* !CONFIG_SLUB_DEBUG */ |
c0f81a94 | 1823 | static inline void setup_object_debug(struct kmem_cache *s, void *object) {} |
a50b854e | 1824 | static inline |
bb192ed9 | 1825 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} |
41ecc55b | 1826 | |
fa9b88e4 VB |
1827 | static inline bool alloc_debug_processing(struct kmem_cache *s, |
1828 | struct slab *slab, void *object, int orig_size) { return true; } | |
41ecc55b | 1829 | |
fa9b88e4 VB |
1830 | static inline bool free_debug_processing(struct kmem_cache *s, |
1831 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
1832 | unsigned long addr, depot_stack_handle_t handle) { return true; } | |
41ecc55b | 1833 | |
a204e6d6 | 1834 | static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} |
bb192ed9 | 1835 | static inline int check_object(struct kmem_cache *s, struct slab *slab, |
f7cb1933 | 1836 | void *object, u8 val) { return 1; } |
fa9b88e4 | 1837 | static inline depot_stack_handle_t set_track_prepare(void) { return 0; } |
c7323a5a VB |
1838 | static inline void set_track(struct kmem_cache *s, void *object, |
1839 | enum track_item alloc, unsigned long addr) {} | |
5cc6eee8 | 1840 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1841 | struct slab *slab) {} |
c65c1877 | 1842 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
bb192ed9 | 1843 | struct slab *slab) {} |
303cd693 | 1844 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) |
ba0268a8 CL |
1845 | { |
1846 | return flags; | |
1847 | } | |
41ecc55b | 1848 | #define slub_debug 0 |
0f389ec6 | 1849 | |
fdaa45e9 IM |
1850 | #define disable_higher_order_debug 0 |
1851 | ||
26c02cf0 AB |
1852 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1853 | { return 0; } | |
205ab99d CL |
1854 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1855 | int objects) {} | |
1856 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1857 | int objects) {} | |
7d550c56 | 1858 | |
0af8489b | 1859 | #ifndef CONFIG_SLUB_TINY |
bb192ed9 | 1860 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, |
dc07a728 | 1861 | void **freelist, void *nextfree) |
52f23478 DZ |
1862 | { |
1863 | return false; | |
1864 | } | |
0af8489b | 1865 | #endif |
02e72cc6 AR |
1866 | #endif /* CONFIG_SLUB_DEBUG */ |
1867 | ||
0bedcc66 VB |
1868 | static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) |
1869 | { | |
1870 | return (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1871 | NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; | |
1872 | } | |
1873 | ||
1874 | #ifdef CONFIG_MEMCG_KMEM | |
1875 | static inline void memcg_free_slab_cgroups(struct slab *slab) | |
1876 | { | |
1877 | kfree(slab_objcgs(slab)); | |
1878 | slab->memcg_data = 0; | |
1879 | } | |
1880 | ||
1881 | static inline size_t obj_full_size(struct kmem_cache *s) | |
1882 | { | |
1883 | /* | |
1884 | * For each accounted object there is an extra space which is used | |
1885 | * to store obj_cgroup membership. Charge it too. | |
1886 | */ | |
1887 | return s->size + sizeof(struct obj_cgroup *); | |
1888 | } | |
1889 | ||
1890 | /* | |
1891 | * Returns false if the allocation should fail. | |
1892 | */ | |
3450a0e5 VB |
1893 | static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s, |
1894 | struct list_lru *lru, | |
1895 | struct obj_cgroup **objcgp, | |
1896 | size_t objects, gfp_t flags) | |
0bedcc66 | 1897 | { |
0bedcc66 VB |
1898 | /* |
1899 | * The obtained objcg pointer is safe to use within the current scope, | |
1900 | * defined by current task or set_active_memcg() pair. | |
1901 | * obj_cgroup_get() is used to get a permanent reference. | |
1902 | */ | |
3450a0e5 | 1903 | struct obj_cgroup *objcg = current_obj_cgroup(); |
0bedcc66 VB |
1904 | if (!objcg) |
1905 | return true; | |
1906 | ||
1907 | if (lru) { | |
1908 | int ret; | |
1909 | struct mem_cgroup *memcg; | |
1910 | ||
1911 | memcg = get_mem_cgroup_from_objcg(objcg); | |
1912 | ret = memcg_list_lru_alloc(memcg, lru, flags); | |
1913 | css_put(&memcg->css); | |
1914 | ||
1915 | if (ret) | |
1916 | return false; | |
1917 | } | |
1918 | ||
1919 | if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) | |
1920 | return false; | |
1921 | ||
1922 | *objcgp = objcg; | |
1923 | return true; | |
1924 | } | |
1925 | ||
3450a0e5 VB |
1926 | /* |
1927 | * Returns false if the allocation should fail. | |
1928 | */ | |
1929 | static __fastpath_inline | |
1930 | bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | |
1931 | struct obj_cgroup **objcgp, size_t objects, | |
1932 | gfp_t flags) | |
1933 | { | |
1934 | if (!memcg_kmem_online()) | |
1935 | return true; | |
1936 | ||
1937 | if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) | |
1938 | return true; | |
1939 | ||
1940 | return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects, | |
1941 | flags)); | |
1942 | } | |
1943 | ||
1944 | static void __memcg_slab_post_alloc_hook(struct kmem_cache *s, | |
1945 | struct obj_cgroup *objcg, | |
1946 | gfp_t flags, size_t size, | |
1947 | void **p) | |
0bedcc66 VB |
1948 | { |
1949 | struct slab *slab; | |
1950 | unsigned long off; | |
1951 | size_t i; | |
1952 | ||
3450a0e5 | 1953 | flags &= gfp_allowed_mask; |
0bedcc66 VB |
1954 | |
1955 | for (i = 0; i < size; i++) { | |
1956 | if (likely(p[i])) { | |
1957 | slab = virt_to_slab(p[i]); | |
1958 | ||
1959 | if (!slab_objcgs(slab) && | |
1960 | memcg_alloc_slab_cgroups(slab, s, flags, false)) { | |
1961 | obj_cgroup_uncharge(objcg, obj_full_size(s)); | |
1962 | continue; | |
1963 | } | |
1964 | ||
1965 | off = obj_to_index(s, slab, p[i]); | |
1966 | obj_cgroup_get(objcg); | |
1967 | slab_objcgs(slab)[off] = objcg; | |
1968 | mod_objcg_state(objcg, slab_pgdat(slab), | |
1969 | cache_vmstat_idx(s), obj_full_size(s)); | |
1970 | } else { | |
1971 | obj_cgroup_uncharge(objcg, obj_full_size(s)); | |
1972 | } | |
1973 | } | |
1974 | } | |
1975 | ||
3450a0e5 VB |
1976 | static __fastpath_inline |
1977 | void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, | |
1978 | gfp_t flags, size_t size, void **p) | |
1979 | { | |
1980 | if (likely(!memcg_kmem_online() || !objcg)) | |
1981 | return; | |
1982 | ||
1983 | return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p); | |
1984 | } | |
1985 | ||
ecf9a253 VB |
1986 | static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, |
1987 | void **p, int objects, | |
1988 | struct obj_cgroup **objcgs) | |
0bedcc66 | 1989 | { |
ecf9a253 | 1990 | for (int i = 0; i < objects; i++) { |
0bedcc66 VB |
1991 | struct obj_cgroup *objcg; |
1992 | unsigned int off; | |
1993 | ||
1994 | off = obj_to_index(s, slab, p[i]); | |
1995 | objcg = objcgs[off]; | |
1996 | if (!objcg) | |
1997 | continue; | |
1998 | ||
1999 | objcgs[off] = NULL; | |
2000 | obj_cgroup_uncharge(objcg, obj_full_size(s)); | |
2001 | mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), | |
2002 | -obj_full_size(s)); | |
2003 | obj_cgroup_put(objcg); | |
2004 | } | |
2005 | } | |
ecf9a253 VB |
2006 | |
2007 | static __fastpath_inline | |
2008 | void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2009 | int objects) | |
2010 | { | |
2011 | struct obj_cgroup **objcgs; | |
2012 | ||
2013 | if (!memcg_kmem_online()) | |
2014 | return; | |
2015 | ||
2016 | objcgs = slab_objcgs(slab); | |
2017 | if (likely(!objcgs)) | |
2018 | return; | |
2019 | ||
2020 | __memcg_slab_free_hook(s, slab, p, objects, objcgs); | |
2021 | } | |
520a688a VB |
2022 | |
2023 | static inline | |
2024 | void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, | |
2025 | struct obj_cgroup *objcg) | |
2026 | { | |
2027 | if (objcg) | |
2028 | obj_cgroup_uncharge(objcg, objects * obj_full_size(s)); | |
2029 | } | |
0bedcc66 | 2030 | #else /* CONFIG_MEMCG_KMEM */ |
0bedcc66 VB |
2031 | static inline void memcg_free_slab_cgroups(struct slab *slab) |
2032 | { | |
2033 | } | |
2034 | ||
2035 | static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, | |
2036 | struct list_lru *lru, | |
2037 | struct obj_cgroup **objcgp, | |
2038 | size_t objects, gfp_t flags) | |
2039 | { | |
2040 | return true; | |
2041 | } | |
2042 | ||
2043 | static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, | |
2044 | struct obj_cgroup *objcg, | |
2045 | gfp_t flags, size_t size, | |
2046 | void **p) | |
2047 | { | |
2048 | } | |
2049 | ||
2050 | static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | |
2051 | void **p, int objects) | |
2052 | { | |
2053 | } | |
520a688a VB |
2054 | |
2055 | static inline | |
2056 | void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, | |
2057 | struct obj_cgroup *objcg) | |
2058 | { | |
2059 | } | |
0bedcc66 VB |
2060 | #endif /* CONFIG_MEMCG_KMEM */ |
2061 | ||
02e72cc6 AR |
2062 | /* |
2063 | * Hooks for other subsystems that check memory allocations. In a typical | |
2064 | * production configuration these hooks all should produce no code at all. | |
284f17ac VB |
2065 | * |
2066 | * Returns true if freeing of the object can proceed, false if its reuse | |
782f8906 | 2067 | * was delayed by KASAN quarantine, or it was returned to KFENCE. |
02e72cc6 | 2068 | */ |
284f17ac VB |
2069 | static __always_inline |
2070 | bool slab_free_hook(struct kmem_cache *s, void *x, bool init) | |
d56791b3 RB |
2071 | { |
2072 | kmemleak_free_recursive(x, s->flags); | |
68ef169a | 2073 | kmsan_slab_free(s, x); |
7d550c56 | 2074 | |
84048039 | 2075 | debug_check_no_locks_freed(x, s->object_size); |
02e72cc6 | 2076 | |
02e72cc6 AR |
2077 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
2078 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 2079 | |
cfbe1636 ME |
2080 | /* Use KCSAN to help debug racy use-after-free. */ |
2081 | if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
2082 | __kcsan_check_access(x, s->object_size, | |
2083 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
2084 | ||
782f8906 VB |
2085 | if (kfence_free(x)) |
2086 | return false; | |
2087 | ||
d57a964e AK |
2088 | /* |
2089 | * As memory initialization might be integrated into KASAN, | |
2090 | * kasan_slab_free and initialization memset's must be | |
2091 | * kept together to avoid discrepancies in behavior. | |
2092 | * | |
2093 | * The initialization memset's clear the object and the metadata, | |
2094 | * but don't touch the SLAB redzone. | |
2095 | */ | |
ecf9a253 | 2096 | if (unlikely(init)) { |
d57a964e AK |
2097 | int rsize; |
2098 | ||
2099 | if (!kasan_has_integrated_init()) | |
2100 | memset(kasan_reset_tag(x), 0, s->object_size); | |
2101 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
2102 | memset((char *)kasan_reset_tag(x) + s->inuse, 0, | |
2103 | s->size - s->inuse - rsize); | |
2104 | } | |
2105 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
284f17ac | 2106 | return !kasan_slab_free(s, x, init); |
02e72cc6 | 2107 | } |
205ab99d | 2108 | |
c3895391 | 2109 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
899447f6 ML |
2110 | void **head, void **tail, |
2111 | int *cnt) | |
81084651 | 2112 | { |
6471384a AP |
2113 | |
2114 | void *object; | |
2115 | void *next = *head; | |
284f17ac | 2116 | void *old_tail = *tail; |
782f8906 | 2117 | bool init; |
6471384a | 2118 | |
b89fb5ef | 2119 | if (is_kfence_address(next)) { |
d57a964e | 2120 | slab_free_hook(s, next, false); |
782f8906 | 2121 | return false; |
b89fb5ef AP |
2122 | } |
2123 | ||
aea4df4c LA |
2124 | /* Head and tail of the reconstructed freelist */ |
2125 | *head = NULL; | |
2126 | *tail = NULL; | |
1b7e816f | 2127 | |
782f8906 VB |
2128 | init = slab_want_init_on_free(s); |
2129 | ||
aea4df4c LA |
2130 | do { |
2131 | object = next; | |
2132 | next = get_freepointer(s, object); | |
2133 | ||
c3895391 | 2134 | /* If object's reuse doesn't have to be delayed */ |
782f8906 | 2135 | if (likely(slab_free_hook(s, object, init))) { |
c3895391 AK |
2136 | /* Move object to the new freelist */ |
2137 | set_freepointer(s, object, *head); | |
2138 | *head = object; | |
2139 | if (!*tail) | |
2140 | *tail = object; | |
899447f6 ML |
2141 | } else { |
2142 | /* | |
2143 | * Adjust the reconstructed freelist depth | |
2144 | * accordingly if object's reuse is delayed. | |
2145 | */ | |
2146 | --(*cnt); | |
c3895391 AK |
2147 | } |
2148 | } while (object != old_tail); | |
2149 | ||
c3895391 | 2150 | return *head != NULL; |
81084651 JDB |
2151 | } |
2152 | ||
c0f81a94 | 2153 | static void *setup_object(struct kmem_cache *s, void *object) |
588f8ba9 | 2154 | { |
c0f81a94 | 2155 | setup_object_debug(s, object); |
4d176711 | 2156 | object = kasan_init_slab_obj(s, object); |
588f8ba9 | 2157 | if (unlikely(s->ctor)) { |
1ce9a052 | 2158 | kasan_unpoison_new_object(s, object); |
588f8ba9 | 2159 | s->ctor(object); |
1ce9a052 | 2160 | kasan_poison_new_object(s, object); |
588f8ba9 | 2161 | } |
4d176711 | 2162 | return object; |
588f8ba9 TG |
2163 | } |
2164 | ||
81819f0f CL |
2165 | /* |
2166 | * Slab allocation and freeing | |
2167 | */ | |
a485e1da XS |
2168 | static inline struct slab *alloc_slab_page(gfp_t flags, int node, |
2169 | struct kmem_cache_order_objects oo) | |
65c3376a | 2170 | { |
45387b8c VB |
2171 | struct folio *folio; |
2172 | struct slab *slab; | |
19af27af | 2173 | unsigned int order = oo_order(oo); |
65c3376a | 2174 | |
8014c46a | 2175 | folio = (struct folio *)alloc_pages_node(node, flags, order); |
45387b8c VB |
2176 | if (!folio) |
2177 | return NULL; | |
2178 | ||
2179 | slab = folio_slab(folio); | |
2180 | __folio_set_slab(folio); | |
8b881763 VB |
2181 | /* Make the flag visible before any changes to folio->mapping */ |
2182 | smp_wmb(); | |
02d65d6f | 2183 | if (folio_is_pfmemalloc(folio)) |
45387b8c VB |
2184 | slab_set_pfmemalloc(slab); |
2185 | ||
2186 | return slab; | |
65c3376a CL |
2187 | } |
2188 | ||
210e7a43 TG |
2189 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2190 | /* Pre-initialize the random sequence cache */ | |
2191 | static int init_cache_random_seq(struct kmem_cache *s) | |
2192 | { | |
19af27af | 2193 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 2194 | int err; |
210e7a43 | 2195 | |
a810007a SR |
2196 | /* Bailout if already initialised */ |
2197 | if (s->random_seq) | |
2198 | return 0; | |
2199 | ||
210e7a43 TG |
2200 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
2201 | if (err) { | |
2202 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
2203 | s->name); | |
2204 | return err; | |
2205 | } | |
2206 | ||
2207 | /* Transform to an offset on the set of pages */ | |
2208 | if (s->random_seq) { | |
19af27af AD |
2209 | unsigned int i; |
2210 | ||
210e7a43 TG |
2211 | for (i = 0; i < count; i++) |
2212 | s->random_seq[i] *= s->size; | |
2213 | } | |
2214 | return 0; | |
2215 | } | |
2216 | ||
2217 | /* Initialize each random sequence freelist per cache */ | |
2218 | static void __init init_freelist_randomization(void) | |
2219 | { | |
2220 | struct kmem_cache *s; | |
2221 | ||
2222 | mutex_lock(&slab_mutex); | |
2223 | ||
2224 | list_for_each_entry(s, &slab_caches, list) | |
2225 | init_cache_random_seq(s); | |
2226 | ||
2227 | mutex_unlock(&slab_mutex); | |
2228 | } | |
2229 | ||
2230 | /* Get the next entry on the pre-computed freelist randomized */ | |
c63349fc | 2231 | static void *next_freelist_entry(struct kmem_cache *s, |
210e7a43 TG |
2232 | unsigned long *pos, void *start, |
2233 | unsigned long page_limit, | |
2234 | unsigned long freelist_count) | |
2235 | { | |
2236 | unsigned int idx; | |
2237 | ||
2238 | /* | |
2239 | * If the target page allocation failed, the number of objects on the | |
2240 | * page might be smaller than the usual size defined by the cache. | |
2241 | */ | |
2242 | do { | |
2243 | idx = s->random_seq[*pos]; | |
2244 | *pos += 1; | |
2245 | if (*pos >= freelist_count) | |
2246 | *pos = 0; | |
2247 | } while (unlikely(idx >= page_limit)); | |
2248 | ||
2249 | return (char *)start + idx; | |
2250 | } | |
2251 | ||
2252 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
bb192ed9 | 2253 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
2254 | { |
2255 | void *start; | |
2256 | void *cur; | |
2257 | void *next; | |
2258 | unsigned long idx, pos, page_limit, freelist_count; | |
2259 | ||
bb192ed9 | 2260 | if (slab->objects < 2 || !s->random_seq) |
210e7a43 TG |
2261 | return false; |
2262 | ||
2263 | freelist_count = oo_objects(s->oo); | |
8032bf12 | 2264 | pos = get_random_u32_below(freelist_count); |
210e7a43 | 2265 | |
bb192ed9 VB |
2266 | page_limit = slab->objects * s->size; |
2267 | start = fixup_red_left(s, slab_address(slab)); | |
210e7a43 TG |
2268 | |
2269 | /* First entry is used as the base of the freelist */ | |
c63349fc | 2270 | cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); |
c0f81a94 | 2271 | cur = setup_object(s, cur); |
bb192ed9 | 2272 | slab->freelist = cur; |
210e7a43 | 2273 | |
bb192ed9 | 2274 | for (idx = 1; idx < slab->objects; idx++) { |
c63349fc | 2275 | next = next_freelist_entry(s, &pos, start, page_limit, |
210e7a43 | 2276 | freelist_count); |
c0f81a94 | 2277 | next = setup_object(s, next); |
210e7a43 TG |
2278 | set_freepointer(s, cur, next); |
2279 | cur = next; | |
2280 | } | |
210e7a43 TG |
2281 | set_freepointer(s, cur, NULL); |
2282 | ||
2283 | return true; | |
2284 | } | |
2285 | #else | |
2286 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
2287 | { | |
2288 | return 0; | |
2289 | } | |
2290 | static inline void init_freelist_randomization(void) { } | |
bb192ed9 | 2291 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) |
210e7a43 TG |
2292 | { |
2293 | return false; | |
2294 | } | |
2295 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2296 | ||
0bedcc66 VB |
2297 | static __always_inline void account_slab(struct slab *slab, int order, |
2298 | struct kmem_cache *s, gfp_t gfp) | |
2299 | { | |
2300 | if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) | |
2301 | memcg_alloc_slab_cgroups(slab, s, gfp, true); | |
2302 | ||
2303 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2304 | PAGE_SIZE << order); | |
2305 | } | |
2306 | ||
2307 | static __always_inline void unaccount_slab(struct slab *slab, int order, | |
2308 | struct kmem_cache *s) | |
2309 | { | |
2310 | if (memcg_kmem_online()) | |
2311 | memcg_free_slab_cgroups(slab); | |
2312 | ||
2313 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2314 | -(PAGE_SIZE << order)); | |
2315 | } | |
2316 | ||
bb192ed9 | 2317 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
81819f0f | 2318 | { |
bb192ed9 | 2319 | struct slab *slab; |
834f3d11 | 2320 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 2321 | gfp_t alloc_gfp; |
4d176711 | 2322 | void *start, *p, *next; |
a50b854e | 2323 | int idx; |
210e7a43 | 2324 | bool shuffle; |
81819f0f | 2325 | |
7e0528da CL |
2326 | flags &= gfp_allowed_mask; |
2327 | ||
b7a49f0d | 2328 | flags |= s->allocflags; |
e12ba74d | 2329 | |
ba52270d PE |
2330 | /* |
2331 | * Let the initial higher-order allocation fail under memory pressure | |
2332 | * so we fall-back to the minimum order allocation. | |
2333 | */ | |
2334 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 2335 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
27c08f75 | 2336 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; |
ba52270d | 2337 | |
a485e1da | 2338 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 2339 | if (unlikely(!slab)) { |
65c3376a | 2340 | oo = s->min; |
80c3a998 | 2341 | alloc_gfp = flags; |
65c3376a CL |
2342 | /* |
2343 | * Allocation may have failed due to fragmentation. | |
2344 | * Try a lower order alloc if possible | |
2345 | */ | |
a485e1da | 2346 | slab = alloc_slab_page(alloc_gfp, node, oo); |
bb192ed9 | 2347 | if (unlikely(!slab)) |
c7323a5a | 2348 | return NULL; |
588f8ba9 | 2349 | stat(s, ORDER_FALLBACK); |
65c3376a | 2350 | } |
5a896d9e | 2351 | |
bb192ed9 | 2352 | slab->objects = oo_objects(oo); |
c7323a5a VB |
2353 | slab->inuse = 0; |
2354 | slab->frozen = 0; | |
81819f0f | 2355 | |
bb192ed9 | 2356 | account_slab(slab, oo_order(oo), s, flags); |
1f3147b4 | 2357 | |
bb192ed9 | 2358 | slab->slab_cache = s; |
81819f0f | 2359 | |
6e48a966 | 2360 | kasan_poison_slab(slab); |
81819f0f | 2361 | |
bb192ed9 | 2362 | start = slab_address(slab); |
81819f0f | 2363 | |
bb192ed9 | 2364 | setup_slab_debug(s, slab, start); |
0316bec2 | 2365 | |
bb192ed9 | 2366 | shuffle = shuffle_freelist(s, slab); |
210e7a43 TG |
2367 | |
2368 | if (!shuffle) { | |
4d176711 | 2369 | start = fixup_red_left(s, start); |
c0f81a94 | 2370 | start = setup_object(s, start); |
bb192ed9 VB |
2371 | slab->freelist = start; |
2372 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
18e50661 | 2373 | next = p + s->size; |
c0f81a94 | 2374 | next = setup_object(s, next); |
18e50661 AK |
2375 | set_freepointer(s, p, next); |
2376 | p = next; | |
2377 | } | |
2378 | set_freepointer(s, p, NULL); | |
81819f0f | 2379 | } |
81819f0f | 2380 | |
bb192ed9 | 2381 | return slab; |
81819f0f CL |
2382 | } |
2383 | ||
bb192ed9 | 2384 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
588f8ba9 | 2385 | { |
44405099 LL |
2386 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2387 | flags = kmalloc_fix_flags(flags); | |
588f8ba9 | 2388 | |
53a0de06 VB |
2389 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2390 | ||
588f8ba9 TG |
2391 | return allocate_slab(s, |
2392 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2393 | } | |
2394 | ||
4020b4a2 | 2395 | static void __free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2396 | { |
4020b4a2 VB |
2397 | struct folio *folio = slab_folio(slab); |
2398 | int order = folio_order(folio); | |
834f3d11 | 2399 | int pages = 1 << order; |
81819f0f | 2400 | |
4020b4a2 | 2401 | __slab_clear_pfmemalloc(slab); |
4020b4a2 | 2402 | folio->mapping = NULL; |
8b881763 VB |
2403 | /* Make the mapping reset visible before clearing the flag */ |
2404 | smp_wmb(); | |
2405 | __folio_clear_slab(folio); | |
c7b23b68 | 2406 | mm_account_reclaimed_pages(pages); |
4020b4a2 | 2407 | unaccount_slab(slab, order, s); |
c034c6a4 | 2408 | __free_pages(&folio->page, order); |
81819f0f CL |
2409 | } |
2410 | ||
2411 | static void rcu_free_slab(struct rcu_head *h) | |
2412 | { | |
bb192ed9 | 2413 | struct slab *slab = container_of(h, struct slab, rcu_head); |
da9a638c | 2414 | |
bb192ed9 | 2415 | __free_slab(slab->slab_cache, slab); |
81819f0f CL |
2416 | } |
2417 | ||
bb192ed9 | 2418 | static void free_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2419 | { |
bc29d5bd VB |
2420 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { |
2421 | void *p; | |
2422 | ||
2423 | slab_pad_check(s, slab); | |
2424 | for_each_object(p, s, slab_address(slab), slab->objects) | |
2425 | check_object(s, slab, p, SLUB_RED_INACTIVE); | |
2426 | } | |
2427 | ||
2428 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
bb192ed9 | 2429 | call_rcu(&slab->rcu_head, rcu_free_slab); |
bc29d5bd | 2430 | else |
bb192ed9 | 2431 | __free_slab(s, slab); |
81819f0f CL |
2432 | } |
2433 | ||
bb192ed9 | 2434 | static void discard_slab(struct kmem_cache *s, struct slab *slab) |
81819f0f | 2435 | { |
bb192ed9 VB |
2436 | dec_slabs_node(s, slab_nid(slab), slab->objects); |
2437 | free_slab(s, slab); | |
81819f0f CL |
2438 | } |
2439 | ||
8a399e2f CZ |
2440 | /* |
2441 | * SLUB reuses PG_workingset bit to keep track of whether it's on | |
2442 | * the per-node partial list. | |
2443 | */ | |
2444 | static inline bool slab_test_node_partial(const struct slab *slab) | |
2445 | { | |
2446 | return folio_test_workingset((struct folio *)slab_folio(slab)); | |
2447 | } | |
2448 | ||
2449 | static inline void slab_set_node_partial(struct slab *slab) | |
2450 | { | |
2451 | set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2452 | } | |
2453 | ||
2454 | static inline void slab_clear_node_partial(struct slab *slab) | |
2455 | { | |
2456 | clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2457 | } | |
2458 | ||
81819f0f | 2459 | /* |
5cc6eee8 | 2460 | * Management of partially allocated slabs. |
81819f0f | 2461 | */ |
1e4dd946 | 2462 | static inline void |
bb192ed9 | 2463 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) |
81819f0f | 2464 | { |
e95eed57 | 2465 | n->nr_partial++; |
136333d1 | 2466 | if (tail == DEACTIVATE_TO_TAIL) |
bb192ed9 | 2467 | list_add_tail(&slab->slab_list, &n->partial); |
7c2e132c | 2468 | else |
bb192ed9 | 2469 | list_add(&slab->slab_list, &n->partial); |
8a399e2f | 2470 | slab_set_node_partial(slab); |
81819f0f CL |
2471 | } |
2472 | ||
1e4dd946 | 2473 | static inline void add_partial(struct kmem_cache_node *n, |
bb192ed9 | 2474 | struct slab *slab, int tail) |
62e346a8 | 2475 | { |
c65c1877 | 2476 | lockdep_assert_held(&n->list_lock); |
bb192ed9 | 2477 | __add_partial(n, slab, tail); |
1e4dd946 | 2478 | } |
c65c1877 | 2479 | |
1e4dd946 | 2480 | static inline void remove_partial(struct kmem_cache_node *n, |
bb192ed9 | 2481 | struct slab *slab) |
1e4dd946 SR |
2482 | { |
2483 | lockdep_assert_held(&n->list_lock); | |
bb192ed9 | 2484 | list_del(&slab->slab_list); |
8a399e2f | 2485 | slab_clear_node_partial(slab); |
52b4b950 | 2486 | n->nr_partial--; |
1e4dd946 SR |
2487 | } |
2488 | ||
c7323a5a | 2489 | /* |
8cd3fa42 | 2490 | * Called only for kmem_cache_debug() caches instead of remove_partial(), with a |
c7323a5a VB |
2491 | * slab from the n->partial list. Remove only a single object from the slab, do |
2492 | * the alloc_debug_processing() checks and leave the slab on the list, or move | |
2493 | * it to full list if it was the last free object. | |
2494 | */ | |
2495 | static void *alloc_single_from_partial(struct kmem_cache *s, | |
6edf2576 | 2496 | struct kmem_cache_node *n, struct slab *slab, int orig_size) |
c7323a5a VB |
2497 | { |
2498 | void *object; | |
2499 | ||
2500 | lockdep_assert_held(&n->list_lock); | |
2501 | ||
2502 | object = slab->freelist; | |
2503 | slab->freelist = get_freepointer(s, object); | |
2504 | slab->inuse++; | |
2505 | ||
6edf2576 | 2506 | if (!alloc_debug_processing(s, slab, object, orig_size)) { |
c7323a5a VB |
2507 | remove_partial(n, slab); |
2508 | return NULL; | |
2509 | } | |
2510 | ||
2511 | if (slab->inuse == slab->objects) { | |
2512 | remove_partial(n, slab); | |
2513 | add_full(s, n, slab); | |
2514 | } | |
2515 | ||
2516 | return object; | |
2517 | } | |
2518 | ||
2519 | /* | |
2520 | * Called only for kmem_cache_debug() caches to allocate from a freshly | |
2521 | * allocated slab. Allocate a single object instead of whole freelist | |
2522 | * and put the slab to the partial (or full) list. | |
2523 | */ | |
2524 | static void *alloc_single_from_new_slab(struct kmem_cache *s, | |
6edf2576 | 2525 | struct slab *slab, int orig_size) |
c7323a5a VB |
2526 | { |
2527 | int nid = slab_nid(slab); | |
2528 | struct kmem_cache_node *n = get_node(s, nid); | |
2529 | unsigned long flags; | |
2530 | void *object; | |
2531 | ||
2532 | ||
2533 | object = slab->freelist; | |
2534 | slab->freelist = get_freepointer(s, object); | |
2535 | slab->inuse = 1; | |
2536 | ||
6edf2576 | 2537 | if (!alloc_debug_processing(s, slab, object, orig_size)) |
c7323a5a VB |
2538 | /* |
2539 | * It's not really expected that this would fail on a | |
2540 | * freshly allocated slab, but a concurrent memory | |
2541 | * corruption in theory could cause that. | |
2542 | */ | |
2543 | return NULL; | |
2544 | ||
2545 | spin_lock_irqsave(&n->list_lock, flags); | |
2546 | ||
2547 | if (slab->inuse == slab->objects) | |
2548 | add_full(s, n, slab); | |
2549 | else | |
2550 | add_partial(n, slab, DEACTIVATE_TO_HEAD); | |
2551 | ||
2552 | inc_slabs_node(s, nid, slab->objects); | |
2553 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2554 | ||
2555 | return object; | |
2556 | } | |
2557 | ||
e0a043aa | 2558 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 | 2559 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); |
e0a043aa | 2560 | #else |
bb192ed9 | 2561 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, |
e0a043aa VB |
2562 | int drain) { } |
2563 | #endif | |
01b34d16 | 2564 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); |
49e22585 | 2565 | |
81819f0f | 2566 | /* |
672bba3a | 2567 | * Try to allocate a partial slab from a specific node. |
81819f0f | 2568 | */ |
43c4c349 CZ |
2569 | static struct slab *get_partial_node(struct kmem_cache *s, |
2570 | struct kmem_cache_node *n, | |
2571 | struct partial_context *pc) | |
81819f0f | 2572 | { |
43c4c349 | 2573 | struct slab *slab, *slab2, *partial = NULL; |
4b1f449d | 2574 | unsigned long flags; |
bb192ed9 | 2575 | unsigned int partial_slabs = 0; |
81819f0f CL |
2576 | |
2577 | /* | |
2578 | * Racy check. If we mistakenly see no partial slabs then we | |
2579 | * just allocate an empty slab. If we mistakenly try to get a | |
70b6d25e | 2580 | * partial slab and there is none available then get_partial() |
672bba3a | 2581 | * will return NULL. |
81819f0f CL |
2582 | */ |
2583 | if (!n || !n->nr_partial) | |
2584 | return NULL; | |
2585 | ||
4b1f449d | 2586 | spin_lock_irqsave(&n->list_lock, flags); |
bb192ed9 | 2587 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { |
6edf2576 | 2588 | if (!pfmemalloc_match(slab, pc->flags)) |
8ba00bb6 JK |
2589 | continue; |
2590 | ||
0af8489b | 2591 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
8cd3fa42 | 2592 | void *object = alloc_single_from_partial(s, n, slab, |
6edf2576 | 2593 | pc->orig_size); |
43c4c349 CZ |
2594 | if (object) { |
2595 | partial = slab; | |
2596 | pc->object = object; | |
c7323a5a | 2597 | break; |
43c4c349 | 2598 | } |
c7323a5a VB |
2599 | continue; |
2600 | } | |
2601 | ||
8cd3fa42 | 2602 | remove_partial(n, slab); |
49e22585 | 2603 | |
43c4c349 CZ |
2604 | if (!partial) { |
2605 | partial = slab; | |
49e22585 | 2606 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 2607 | } else { |
bb192ed9 | 2608 | put_cpu_partial(s, slab, 0); |
8028dcea | 2609 | stat(s, CPU_PARTIAL_NODE); |
bb192ed9 | 2610 | partial_slabs++; |
49e22585 | 2611 | } |
b47291ef | 2612 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
345c905d | 2613 | if (!kmem_cache_has_cpu_partial(s) |
bb192ed9 | 2614 | || partial_slabs > s->cpu_partial_slabs / 2) |
49e22585 | 2615 | break; |
b47291ef VB |
2616 | #else |
2617 | break; | |
2618 | #endif | |
49e22585 | 2619 | |
497b66f2 | 2620 | } |
4b1f449d | 2621 | spin_unlock_irqrestore(&n->list_lock, flags); |
43c4c349 | 2622 | return partial; |
81819f0f CL |
2623 | } |
2624 | ||
2625 | /* | |
c2092c12 | 2626 | * Get a slab from somewhere. Search in increasing NUMA distances. |
81819f0f | 2627 | */ |
43c4c349 CZ |
2628 | static struct slab *get_any_partial(struct kmem_cache *s, |
2629 | struct partial_context *pc) | |
81819f0f CL |
2630 | { |
2631 | #ifdef CONFIG_NUMA | |
2632 | struct zonelist *zonelist; | |
dd1a239f | 2633 | struct zoneref *z; |
54a6eb5c | 2634 | struct zone *zone; |
6edf2576 | 2635 | enum zone_type highest_zoneidx = gfp_zone(pc->flags); |
43c4c349 | 2636 | struct slab *slab; |
cc9a6c87 | 2637 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
2638 | |
2639 | /* | |
672bba3a CL |
2640 | * The defrag ratio allows a configuration of the tradeoffs between |
2641 | * inter node defragmentation and node local allocations. A lower | |
2642 | * defrag_ratio increases the tendency to do local allocations | |
2643 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 2644 | * |
672bba3a CL |
2645 | * If the defrag_ratio is set to 0 then kmalloc() always |
2646 | * returns node local objects. If the ratio is higher then kmalloc() | |
2647 | * may return off node objects because partial slabs are obtained | |
2648 | * from other nodes and filled up. | |
81819f0f | 2649 | * |
43efd3ea LP |
2650 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
2651 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2652 | * allocation will first attempt to defrag slab caches on other nodes. | |
2653 | * This means scanning over all nodes to look for partial slabs which | |
2654 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 2655 | * with available objects. |
81819f0f | 2656 | */ |
9824601e CL |
2657 | if (!s->remote_node_defrag_ratio || |
2658 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
2659 | return NULL; |
2660 | ||
cc9a6c87 | 2661 | do { |
d26914d1 | 2662 | cpuset_mems_cookie = read_mems_allowed_begin(); |
6edf2576 | 2663 | zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); |
97a225e6 | 2664 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
cc9a6c87 MG |
2665 | struct kmem_cache_node *n; |
2666 | ||
2667 | n = get_node(s, zone_to_nid(zone)); | |
2668 | ||
6edf2576 | 2669 | if (n && cpuset_zone_allowed(zone, pc->flags) && |
cc9a6c87 | 2670 | n->nr_partial > s->min_partial) { |
43c4c349 CZ |
2671 | slab = get_partial_node(s, n, pc); |
2672 | if (slab) { | |
cc9a6c87 | 2673 | /* |
d26914d1 MG |
2674 | * Don't check read_mems_allowed_retry() |
2675 | * here - if mems_allowed was updated in | |
2676 | * parallel, that was a harmless race | |
2677 | * between allocation and the cpuset | |
2678 | * update | |
cc9a6c87 | 2679 | */ |
43c4c349 | 2680 | return slab; |
cc9a6c87 | 2681 | } |
c0ff7453 | 2682 | } |
81819f0f | 2683 | } |
d26914d1 | 2684 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 2685 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
2686 | return NULL; |
2687 | } | |
2688 | ||
2689 | /* | |
c2092c12 | 2690 | * Get a partial slab, lock it and return it. |
81819f0f | 2691 | */ |
43c4c349 CZ |
2692 | static struct slab *get_partial(struct kmem_cache *s, int node, |
2693 | struct partial_context *pc) | |
81819f0f | 2694 | { |
43c4c349 | 2695 | struct slab *slab; |
a561ce00 JK |
2696 | int searchnode = node; |
2697 | ||
2698 | if (node == NUMA_NO_NODE) | |
2699 | searchnode = numa_mem_id(); | |
81819f0f | 2700 | |
43c4c349 CZ |
2701 | slab = get_partial_node(s, get_node(s, searchnode), pc); |
2702 | if (slab || node != NUMA_NO_NODE) | |
2703 | return slab; | |
81819f0f | 2704 | |
6edf2576 | 2705 | return get_any_partial(s, pc); |
81819f0f CL |
2706 | } |
2707 | ||
0af8489b VB |
2708 | #ifndef CONFIG_SLUB_TINY |
2709 | ||
923717cb | 2710 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2711 | /* |
0d645ed1 | 2712 | * Calculate the next globally unique transaction for disambiguation |
8a5ec0ba CL |
2713 | * during cmpxchg. The transactions start with the cpu number and are then |
2714 | * incremented by CONFIG_NR_CPUS. | |
2715 | */ | |
2716 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2717 | #else | |
2718 | /* | |
2719 | * No preemption supported therefore also no need to check for | |
2720 | * different cpus. | |
2721 | */ | |
2722 | #define TID_STEP 1 | |
0af8489b | 2723 | #endif /* CONFIG_PREEMPTION */ |
8a5ec0ba CL |
2724 | |
2725 | static inline unsigned long next_tid(unsigned long tid) | |
2726 | { | |
2727 | return tid + TID_STEP; | |
2728 | } | |
2729 | ||
9d5f0be0 | 2730 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2731 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2732 | { | |
2733 | return tid % TID_STEP; | |
2734 | } | |
2735 | ||
2736 | static inline unsigned long tid_to_event(unsigned long tid) | |
2737 | { | |
2738 | return tid / TID_STEP; | |
2739 | } | |
9d5f0be0 | 2740 | #endif |
8a5ec0ba CL |
2741 | |
2742 | static inline unsigned int init_tid(int cpu) | |
2743 | { | |
2744 | return cpu; | |
2745 | } | |
2746 | ||
2747 | static inline void note_cmpxchg_failure(const char *n, | |
2748 | const struct kmem_cache *s, unsigned long tid) | |
2749 | { | |
2750 | #ifdef SLUB_DEBUG_CMPXCHG | |
2751 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2752 | ||
f9f58285 | 2753 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2754 | |
923717cb | 2755 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2756 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2757 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2758 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2759 | else | |
2760 | #endif | |
2761 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2762 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2763 | tid_to_event(tid), tid_to_event(actual_tid)); |
2764 | else | |
f9f58285 | 2765 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2766 | actual_tid, tid, next_tid(tid)); |
2767 | #endif | |
4fdccdfb | 2768 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2769 | } |
2770 | ||
788e1aad | 2771 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2772 | { |
8a5ec0ba | 2773 | int cpu; |
bd0e7491 | 2774 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2775 | |
bd0e7491 VB |
2776 | for_each_possible_cpu(cpu) { |
2777 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
2778 | local_lock_init(&c->lock); | |
2779 | c->tid = init_tid(cpu); | |
2780 | } | |
8a5ec0ba | 2781 | } |
2cfb7455 | 2782 | |
81819f0f | 2783 | /* |
c2092c12 | 2784 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, |
a019d201 VB |
2785 | * unfreezes the slabs and puts it on the proper list. |
2786 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
2787 | * by the caller. | |
81819f0f | 2788 | */ |
bb192ed9 | 2789 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, |
a019d201 | 2790 | void *freelist) |
81819f0f | 2791 | { |
bb192ed9 | 2792 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); |
6d3a16d0 | 2793 | int free_delta = 0; |
d930ff03 | 2794 | void *nextfree, *freelist_iter, *freelist_tail; |
136333d1 | 2795 | int tail = DEACTIVATE_TO_HEAD; |
3406e91b | 2796 | unsigned long flags = 0; |
bb192ed9 VB |
2797 | struct slab new; |
2798 | struct slab old; | |
2cfb7455 | 2799 | |
bb192ed9 | 2800 | if (slab->freelist) { |
84e554e6 | 2801 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2802 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2803 | } |
2804 | ||
894b8788 | 2805 | /* |
d930ff03 VB |
2806 | * Stage one: Count the objects on cpu's freelist as free_delta and |
2807 | * remember the last object in freelist_tail for later splicing. | |
2cfb7455 | 2808 | */ |
d930ff03 VB |
2809 | freelist_tail = NULL; |
2810 | freelist_iter = freelist; | |
2811 | while (freelist_iter) { | |
2812 | nextfree = get_freepointer(s, freelist_iter); | |
2cfb7455 | 2813 | |
52f23478 DZ |
2814 | /* |
2815 | * If 'nextfree' is invalid, it is possible that the object at | |
d930ff03 VB |
2816 | * 'freelist_iter' is already corrupted. So isolate all objects |
2817 | * starting at 'freelist_iter' by skipping them. | |
52f23478 | 2818 | */ |
bb192ed9 | 2819 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) |
52f23478 DZ |
2820 | break; |
2821 | ||
d930ff03 VB |
2822 | freelist_tail = freelist_iter; |
2823 | free_delta++; | |
2cfb7455 | 2824 | |
d930ff03 | 2825 | freelist_iter = nextfree; |
2cfb7455 CL |
2826 | } |
2827 | ||
894b8788 | 2828 | /* |
c2092c12 VB |
2829 | * Stage two: Unfreeze the slab while splicing the per-cpu |
2830 | * freelist to the head of slab's freelist. | |
894b8788 | 2831 | */ |
00eb60c2 CZ |
2832 | do { |
2833 | old.freelist = READ_ONCE(slab->freelist); | |
2834 | old.counters = READ_ONCE(slab->counters); | |
2835 | VM_BUG_ON(!old.frozen); | |
2836 | ||
2837 | /* Determine target state of the slab */ | |
2838 | new.counters = old.counters; | |
2839 | new.frozen = 0; | |
2840 | if (freelist_tail) { | |
2841 | new.inuse -= free_delta; | |
2842 | set_freepointer(s, freelist_tail, old.freelist); | |
2843 | new.freelist = freelist; | |
2844 | } else { | |
2845 | new.freelist = old.freelist; | |
2846 | } | |
2847 | } while (!slab_update_freelist(s, slab, | |
2848 | old.freelist, old.counters, | |
2849 | new.freelist, new.counters, | |
2850 | "unfreezing slab")); | |
2cfb7455 | 2851 | |
00eb60c2 CZ |
2852 | /* |
2853 | * Stage three: Manipulate the slab list based on the updated state. | |
2854 | */ | |
6d3a16d0 | 2855 | if (!new.inuse && n->nr_partial >= s->min_partial) { |
00eb60c2 CZ |
2856 | stat(s, DEACTIVATE_EMPTY); |
2857 | discard_slab(s, slab); | |
2858 | stat(s, FREE_SLAB); | |
6d3a16d0 | 2859 | } else if (new.freelist) { |
6d3a16d0 | 2860 | spin_lock_irqsave(&n->list_lock, flags); |
6d3a16d0 HY |
2861 | add_partial(n, slab, tail); |
2862 | spin_unlock_irqrestore(&n->list_lock, flags); | |
88349a28 | 2863 | stat(s, tail); |
00eb60c2 | 2864 | } else { |
6d3a16d0 | 2865 | stat(s, DEACTIVATE_FULL); |
894b8788 | 2866 | } |
81819f0f CL |
2867 | } |
2868 | ||
345c905d | 2869 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
21316fdc | 2870 | static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) |
fc1455f4 | 2871 | { |
43d77867 | 2872 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
bb192ed9 | 2873 | struct slab *slab, *slab_to_discard = NULL; |
7cf9f3ba | 2874 | unsigned long flags = 0; |
49e22585 | 2875 | |
bb192ed9 | 2876 | while (partial_slab) { |
bb192ed9 VB |
2877 | slab = partial_slab; |
2878 | partial_slab = slab->next; | |
43d77867 | 2879 | |
bb192ed9 | 2880 | n2 = get_node(s, slab_nid(slab)); |
43d77867 JK |
2881 | if (n != n2) { |
2882 | if (n) | |
7cf9f3ba | 2883 | spin_unlock_irqrestore(&n->list_lock, flags); |
43d77867 JK |
2884 | |
2885 | n = n2; | |
7cf9f3ba | 2886 | spin_lock_irqsave(&n->list_lock, flags); |
43d77867 | 2887 | } |
49e22585 | 2888 | |
8cd3fa42 | 2889 | if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { |
bb192ed9 VB |
2890 | slab->next = slab_to_discard; |
2891 | slab_to_discard = slab; | |
43d77867 | 2892 | } else { |
bb192ed9 | 2893 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
43d77867 | 2894 | stat(s, FREE_ADD_PARTIAL); |
49e22585 CL |
2895 | } |
2896 | } | |
2897 | ||
2898 | if (n) | |
7cf9f3ba | 2899 | spin_unlock_irqrestore(&n->list_lock, flags); |
8de06a6f | 2900 | |
bb192ed9 VB |
2901 | while (slab_to_discard) { |
2902 | slab = slab_to_discard; | |
2903 | slab_to_discard = slab_to_discard->next; | |
9ada1934 SL |
2904 | |
2905 | stat(s, DEACTIVATE_EMPTY); | |
bb192ed9 | 2906 | discard_slab(s, slab); |
9ada1934 SL |
2907 | stat(s, FREE_SLAB); |
2908 | } | |
fc1455f4 | 2909 | } |
f3ab8b6b | 2910 | |
fc1455f4 | 2911 | /* |
21316fdc | 2912 | * Put all the cpu partial slabs to the node partial list. |
fc1455f4 | 2913 | */ |
21316fdc | 2914 | static void put_partials(struct kmem_cache *s) |
fc1455f4 | 2915 | { |
bb192ed9 | 2916 | struct slab *partial_slab; |
fc1455f4 VB |
2917 | unsigned long flags; |
2918 | ||
bd0e7491 | 2919 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 2920 | partial_slab = this_cpu_read(s->cpu_slab->partial); |
fc1455f4 | 2921 | this_cpu_write(s->cpu_slab->partial, NULL); |
bd0e7491 | 2922 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
fc1455f4 | 2923 | |
bb192ed9 | 2924 | if (partial_slab) |
21316fdc | 2925 | __put_partials(s, partial_slab); |
fc1455f4 VB |
2926 | } |
2927 | ||
21316fdc CZ |
2928 | static void put_partials_cpu(struct kmem_cache *s, |
2929 | struct kmem_cache_cpu *c) | |
fc1455f4 | 2930 | { |
bb192ed9 | 2931 | struct slab *partial_slab; |
fc1455f4 | 2932 | |
bb192ed9 | 2933 | partial_slab = slub_percpu_partial(c); |
fc1455f4 VB |
2934 | c->partial = NULL; |
2935 | ||
bb192ed9 | 2936 | if (partial_slab) |
21316fdc | 2937 | __put_partials(s, partial_slab); |
49e22585 CL |
2938 | } |
2939 | ||
2940 | /* | |
31bda717 | 2941 | * Put a slab into a partial slab slot if available. |
49e22585 CL |
2942 | * |
2943 | * If we did not find a slot then simply move all the partials to the | |
2944 | * per node partial list. | |
2945 | */ | |
bb192ed9 | 2946 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) |
49e22585 | 2947 | { |
bb192ed9 | 2948 | struct slab *oldslab; |
21316fdc | 2949 | struct slab *slab_to_put = NULL; |
e0a043aa | 2950 | unsigned long flags; |
bb192ed9 | 2951 | int slabs = 0; |
49e22585 | 2952 | |
bd0e7491 | 2953 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
49e22585 | 2954 | |
bb192ed9 | 2955 | oldslab = this_cpu_read(s->cpu_slab->partial); |
e0a043aa | 2956 | |
bb192ed9 VB |
2957 | if (oldslab) { |
2958 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
e0a043aa VB |
2959 | /* |
2960 | * Partial array is full. Move the existing set to the | |
2961 | * per node partial list. Postpone the actual unfreezing | |
2962 | * outside of the critical section. | |
2963 | */ | |
21316fdc | 2964 | slab_to_put = oldslab; |
bb192ed9 | 2965 | oldslab = NULL; |
e0a043aa | 2966 | } else { |
bb192ed9 | 2967 | slabs = oldslab->slabs; |
49e22585 | 2968 | } |
e0a043aa | 2969 | } |
49e22585 | 2970 | |
bb192ed9 | 2971 | slabs++; |
49e22585 | 2972 | |
bb192ed9 VB |
2973 | slab->slabs = slabs; |
2974 | slab->next = oldslab; | |
49e22585 | 2975 | |
bb192ed9 | 2976 | this_cpu_write(s->cpu_slab->partial, slab); |
e0a043aa | 2977 | |
bd0e7491 | 2978 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
e0a043aa | 2979 | |
21316fdc CZ |
2980 | if (slab_to_put) { |
2981 | __put_partials(s, slab_to_put); | |
e0a043aa VB |
2982 | stat(s, CPU_PARTIAL_DRAIN); |
2983 | } | |
49e22585 CL |
2984 | } |
2985 | ||
e0a043aa VB |
2986 | #else /* CONFIG_SLUB_CPU_PARTIAL */ |
2987 | ||
21316fdc CZ |
2988 | static inline void put_partials(struct kmem_cache *s) { } |
2989 | static inline void put_partials_cpu(struct kmem_cache *s, | |
2990 | struct kmem_cache_cpu *c) { } | |
e0a043aa VB |
2991 | |
2992 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
2993 | ||
dfb4f096 | 2994 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2995 | { |
5a836bf6 | 2996 | unsigned long flags; |
bb192ed9 | 2997 | struct slab *slab; |
5a836bf6 SAS |
2998 | void *freelist; |
2999 | ||
bd0e7491 | 3000 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
5a836bf6 | 3001 | |
bb192ed9 | 3002 | slab = c->slab; |
5a836bf6 | 3003 | freelist = c->freelist; |
c17dda40 | 3004 | |
bb192ed9 | 3005 | c->slab = NULL; |
a019d201 | 3006 | c->freelist = NULL; |
c17dda40 | 3007 | c->tid = next_tid(c->tid); |
a019d201 | 3008 | |
bd0e7491 | 3009 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
a019d201 | 3010 | |
bb192ed9 VB |
3011 | if (slab) { |
3012 | deactivate_slab(s, slab, freelist); | |
5a836bf6 SAS |
3013 | stat(s, CPUSLAB_FLUSH); |
3014 | } | |
81819f0f CL |
3015 | } |
3016 | ||
0c710013 | 3017 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 3018 | { |
9dfc6e68 | 3019 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
08beb547 | 3020 | void *freelist = c->freelist; |
bb192ed9 | 3021 | struct slab *slab = c->slab; |
81819f0f | 3022 | |
bb192ed9 | 3023 | c->slab = NULL; |
08beb547 VB |
3024 | c->freelist = NULL; |
3025 | c->tid = next_tid(c->tid); | |
3026 | ||
bb192ed9 VB |
3027 | if (slab) { |
3028 | deactivate_slab(s, slab, freelist); | |
08beb547 VB |
3029 | stat(s, CPUSLAB_FLUSH); |
3030 | } | |
49e22585 | 3031 | |
21316fdc | 3032 | put_partials_cpu(s, c); |
81819f0f CL |
3033 | } |
3034 | ||
5a836bf6 SAS |
3035 | struct slub_flush_work { |
3036 | struct work_struct work; | |
3037 | struct kmem_cache *s; | |
3038 | bool skip; | |
3039 | }; | |
3040 | ||
fc1455f4 VB |
3041 | /* |
3042 | * Flush cpu slab. | |
3043 | * | |
5a836bf6 | 3044 | * Called from CPU work handler with migration disabled. |
fc1455f4 | 3045 | */ |
5a836bf6 | 3046 | static void flush_cpu_slab(struct work_struct *w) |
81819f0f | 3047 | { |
5a836bf6 SAS |
3048 | struct kmem_cache *s; |
3049 | struct kmem_cache_cpu *c; | |
3050 | struct slub_flush_work *sfw; | |
3051 | ||
3052 | sfw = container_of(w, struct slub_flush_work, work); | |
3053 | ||
3054 | s = sfw->s; | |
3055 | c = this_cpu_ptr(s->cpu_slab); | |
fc1455f4 | 3056 | |
bb192ed9 | 3057 | if (c->slab) |
fc1455f4 | 3058 | flush_slab(s, c); |
81819f0f | 3059 | |
21316fdc | 3060 | put_partials(s); |
81819f0f CL |
3061 | } |
3062 | ||
5a836bf6 | 3063 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) |
a8364d55 | 3064 | { |
a8364d55 GBY |
3065 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
3066 | ||
bb192ed9 | 3067 | return c->slab || slub_percpu_partial(c); |
a8364d55 GBY |
3068 | } |
3069 | ||
5a836bf6 SAS |
3070 | static DEFINE_MUTEX(flush_lock); |
3071 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
3072 | ||
3073 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
3074 | { | |
3075 | struct slub_flush_work *sfw; | |
3076 | unsigned int cpu; | |
3077 | ||
3078 | lockdep_assert_cpus_held(); | |
3079 | mutex_lock(&flush_lock); | |
3080 | ||
3081 | for_each_online_cpu(cpu) { | |
3082 | sfw = &per_cpu(slub_flush, cpu); | |
3083 | if (!has_cpu_slab(cpu, s)) { | |
3084 | sfw->skip = true; | |
3085 | continue; | |
3086 | } | |
3087 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
3088 | sfw->skip = false; | |
3089 | sfw->s = s; | |
e45cc288 | 3090 | queue_work_on(cpu, flushwq, &sfw->work); |
5a836bf6 SAS |
3091 | } |
3092 | ||
3093 | for_each_online_cpu(cpu) { | |
3094 | sfw = &per_cpu(slub_flush, cpu); | |
3095 | if (sfw->skip) | |
3096 | continue; | |
3097 | flush_work(&sfw->work); | |
3098 | } | |
3099 | ||
3100 | mutex_unlock(&flush_lock); | |
3101 | } | |
3102 | ||
81819f0f CL |
3103 | static void flush_all(struct kmem_cache *s) |
3104 | { | |
5a836bf6 SAS |
3105 | cpus_read_lock(); |
3106 | flush_all_cpus_locked(s); | |
3107 | cpus_read_unlock(); | |
81819f0f CL |
3108 | } |
3109 | ||
a96a87bf SAS |
3110 | /* |
3111 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
3112 | * necessary. | |
3113 | */ | |
3114 | static int slub_cpu_dead(unsigned int cpu) | |
3115 | { | |
3116 | struct kmem_cache *s; | |
a96a87bf SAS |
3117 | |
3118 | mutex_lock(&slab_mutex); | |
0e7ac738 | 3119 | list_for_each_entry(s, &slab_caches, list) |
a96a87bf | 3120 | __flush_cpu_slab(s, cpu); |
a96a87bf SAS |
3121 | mutex_unlock(&slab_mutex); |
3122 | return 0; | |
3123 | } | |
3124 | ||
0af8489b VB |
3125 | #else /* CONFIG_SLUB_TINY */ |
3126 | static inline void flush_all_cpus_locked(struct kmem_cache *s) { } | |
3127 | static inline void flush_all(struct kmem_cache *s) { } | |
3128 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } | |
3129 | static inline int slub_cpu_dead(unsigned int cpu) { return 0; } | |
3130 | #endif /* CONFIG_SLUB_TINY */ | |
3131 | ||
dfb4f096 CL |
3132 | /* |
3133 | * Check if the objects in a per cpu structure fit numa | |
3134 | * locality expectations. | |
3135 | */ | |
bb192ed9 | 3136 | static inline int node_match(struct slab *slab, int node) |
dfb4f096 CL |
3137 | { |
3138 | #ifdef CONFIG_NUMA | |
bb192ed9 | 3139 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) |
dfb4f096 CL |
3140 | return 0; |
3141 | #endif | |
3142 | return 1; | |
3143 | } | |
3144 | ||
9a02d699 | 3145 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 3146 | static int count_free(struct slab *slab) |
781b2ba6 | 3147 | { |
bb192ed9 | 3148 | return slab->objects - slab->inuse; |
781b2ba6 PE |
3149 | } |
3150 | ||
9a02d699 DR |
3151 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
3152 | { | |
3153 | return atomic_long_read(&n->total_objects); | |
3154 | } | |
a579b056 VB |
3155 | |
3156 | /* Supports checking bulk free of a constructed freelist */ | |
fa9b88e4 VB |
3157 | static inline bool free_debug_processing(struct kmem_cache *s, |
3158 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
3159 | unsigned long addr, depot_stack_handle_t handle) | |
a579b056 | 3160 | { |
fa9b88e4 | 3161 | bool checks_ok = false; |
a579b056 VB |
3162 | void *object = head; |
3163 | int cnt = 0; | |
a579b056 VB |
3164 | |
3165 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3166 | if (!check_slab(s, slab)) | |
3167 | goto out; | |
3168 | } | |
3169 | ||
fa9b88e4 | 3170 | if (slab->inuse < *bulk_cnt) { |
c7323a5a | 3171 | slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", |
fa9b88e4 | 3172 | slab->inuse, *bulk_cnt); |
c7323a5a VB |
3173 | goto out; |
3174 | } | |
3175 | ||
a579b056 | 3176 | next_object: |
c7323a5a | 3177 | |
fa9b88e4 | 3178 | if (++cnt > *bulk_cnt) |
c7323a5a | 3179 | goto out_cnt; |
a579b056 VB |
3180 | |
3181 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3182 | if (!free_consistency_checks(s, slab, object, addr)) | |
3183 | goto out; | |
3184 | } | |
3185 | ||
3186 | if (s->flags & SLAB_STORE_USER) | |
3187 | set_track_update(s, object, TRACK_FREE, addr, handle); | |
3188 | trace(s, slab, object, 0); | |
3189 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | |
3190 | init_object(s, object, SLUB_RED_INACTIVE); | |
3191 | ||
3192 | /* Reached end of constructed freelist yet? */ | |
3193 | if (object != tail) { | |
3194 | object = get_freepointer(s, object); | |
3195 | goto next_object; | |
3196 | } | |
c7323a5a | 3197 | checks_ok = true; |
a579b056 | 3198 | |
c7323a5a | 3199 | out_cnt: |
fa9b88e4 | 3200 | if (cnt != *bulk_cnt) { |
c7323a5a | 3201 | slab_err(s, slab, "Bulk free expected %d objects but found %d\n", |
fa9b88e4 VB |
3202 | *bulk_cnt, cnt); |
3203 | *bulk_cnt = cnt; | |
c7323a5a VB |
3204 | } |
3205 | ||
fa9b88e4 | 3206 | out: |
c7323a5a VB |
3207 | |
3208 | if (!checks_ok) | |
a579b056 | 3209 | slab_fix(s, "Object at 0x%p not freed", object); |
c7323a5a | 3210 | |
fa9b88e4 | 3211 | return checks_ok; |
a579b056 | 3212 | } |
9a02d699 DR |
3213 | #endif /* CONFIG_SLUB_DEBUG */ |
3214 | ||
b1a413a3 | 3215 | #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) |
781b2ba6 | 3216 | static unsigned long count_partial(struct kmem_cache_node *n, |
bb192ed9 | 3217 | int (*get_count)(struct slab *)) |
781b2ba6 PE |
3218 | { |
3219 | unsigned long flags; | |
3220 | unsigned long x = 0; | |
bb192ed9 | 3221 | struct slab *slab; |
781b2ba6 PE |
3222 | |
3223 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
3224 | list_for_each_entry(slab, &n->partial, slab_list) |
3225 | x += get_count(slab); | |
781b2ba6 PE |
3226 | spin_unlock_irqrestore(&n->list_lock, flags); |
3227 | return x; | |
3228 | } | |
b1a413a3 | 3229 | #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ |
26c02cf0 | 3230 | |
56d5a2b9 | 3231 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
3232 | static noinline void |
3233 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
3234 | { | |
9a02d699 DR |
3235 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
3236 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 3237 | int node; |
fa45dc25 | 3238 | struct kmem_cache_node *n; |
781b2ba6 | 3239 | |
9a02d699 DR |
3240 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
3241 | return; | |
3242 | ||
5b3810e5 VB |
3243 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
3244 | nid, gfpflags, &gfpflags); | |
19af27af | 3245 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
3246 | s->name, s->object_size, s->size, oo_order(s->oo), |
3247 | oo_order(s->min)); | |
781b2ba6 | 3248 | |
3b0efdfa | 3249 | if (oo_order(s->min) > get_order(s->object_size)) |
671776b3 | 3250 | pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", |
f9f58285 | 3251 | s->name); |
fa5ec8a1 | 3252 | |
fa45dc25 | 3253 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
3254 | unsigned long nr_slabs; |
3255 | unsigned long nr_objs; | |
3256 | unsigned long nr_free; | |
3257 | ||
26c02cf0 AB |
3258 | nr_free = count_partial(n, count_free); |
3259 | nr_slabs = node_nr_slabs(n); | |
3260 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 3261 | |
f9f58285 | 3262 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
3263 | node, nr_slabs, nr_objs, nr_free); |
3264 | } | |
3265 | } | |
56d5a2b9 VB |
3266 | #else /* CONFIG_SLUB_DEBUG */ |
3267 | static inline void | |
3268 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } | |
3269 | #endif | |
781b2ba6 | 3270 | |
01b34d16 | 3271 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) |
072bb0aa | 3272 | { |
01b34d16 | 3273 | if (unlikely(slab_test_pfmemalloc(slab))) |
0b303fb4 VB |
3274 | return gfp_pfmemalloc_allowed(gfpflags); |
3275 | ||
3276 | return true; | |
3277 | } | |
3278 | ||
0af8489b | 3279 | #ifndef CONFIG_SLUB_TINY |
6801be4f PZ |
3280 | static inline bool |
3281 | __update_cpu_freelist_fast(struct kmem_cache *s, | |
3282 | void *freelist_old, void *freelist_new, | |
3283 | unsigned long tid) | |
3284 | { | |
3285 | freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; | |
3286 | freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; | |
3287 | ||
3288 | return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, | |
3289 | &old.full, new.full); | |
3290 | } | |
3291 | ||
213eeb9f | 3292 | /* |
c2092c12 VB |
3293 | * Check the slab->freelist and either transfer the freelist to the |
3294 | * per cpu freelist or deactivate the slab. | |
213eeb9f | 3295 | * |
c2092c12 | 3296 | * The slab is still frozen if the return value is not NULL. |
213eeb9f | 3297 | * |
c2092c12 | 3298 | * If this function returns NULL then the slab has been unfrozen. |
213eeb9f | 3299 | */ |
bb192ed9 | 3300 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) |
213eeb9f | 3301 | { |
bb192ed9 | 3302 | struct slab new; |
213eeb9f CL |
3303 | unsigned long counters; |
3304 | void *freelist; | |
3305 | ||
bd0e7491 VB |
3306 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
3307 | ||
213eeb9f | 3308 | do { |
bb192ed9 VB |
3309 | freelist = slab->freelist; |
3310 | counters = slab->counters; | |
6faa6833 | 3311 | |
213eeb9f | 3312 | new.counters = counters; |
213eeb9f | 3313 | |
bb192ed9 | 3314 | new.inuse = slab->objects; |
213eeb9f CL |
3315 | new.frozen = freelist != NULL; |
3316 | ||
6801be4f | 3317 | } while (!__slab_update_freelist(s, slab, |
213eeb9f CL |
3318 | freelist, counters, |
3319 | NULL, new.counters, | |
3320 | "get_freelist")); | |
3321 | ||
3322 | return freelist; | |
3323 | } | |
3324 | ||
213094b5 CZ |
3325 | /* |
3326 | * Freeze the partial slab and return the pointer to the freelist. | |
3327 | */ | |
3328 | static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) | |
3329 | { | |
3330 | struct slab new; | |
3331 | unsigned long counters; | |
3332 | void *freelist; | |
3333 | ||
3334 | do { | |
3335 | freelist = slab->freelist; | |
3336 | counters = slab->counters; | |
3337 | ||
3338 | new.counters = counters; | |
3339 | VM_BUG_ON(new.frozen); | |
3340 | ||
3341 | new.inuse = slab->objects; | |
3342 | new.frozen = 1; | |
3343 | ||
3344 | } while (!slab_update_freelist(s, slab, | |
3345 | freelist, counters, | |
3346 | NULL, new.counters, | |
3347 | "freeze_slab")); | |
3348 | ||
3349 | return freelist; | |
3350 | } | |
3351 | ||
81819f0f | 3352 | /* |
894b8788 CL |
3353 | * Slow path. The lockless freelist is empty or we need to perform |
3354 | * debugging duties. | |
3355 | * | |
894b8788 CL |
3356 | * Processing is still very fast if new objects have been freed to the |
3357 | * regular freelist. In that case we simply take over the regular freelist | |
3358 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 3359 | * |
894b8788 CL |
3360 | * If that is not working then we fall back to the partial lists. We take the |
3361 | * first element of the freelist as the object to allocate now and move the | |
3362 | * rest of the freelist to the lockless freelist. | |
81819f0f | 3363 | * |
894b8788 | 3364 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
3365 | * we need to allocate a new slab. This is the slowest path since it involves |
3366 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 | 3367 | * |
e500059b | 3368 | * Version of __slab_alloc to use when we know that preemption is |
a380a3c7 | 3369 | * already disabled (which is the case for bulk allocation). |
81819f0f | 3370 | */ |
a380a3c7 | 3371 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
6edf2576 | 3372 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
81819f0f | 3373 | { |
6faa6833 | 3374 | void *freelist; |
bb192ed9 | 3375 | struct slab *slab; |
e500059b | 3376 | unsigned long flags; |
6edf2576 | 3377 | struct partial_context pc; |
81819f0f | 3378 | |
9f986d99 AW |
3379 | stat(s, ALLOC_SLOWPATH); |
3380 | ||
c2092c12 | 3381 | reread_slab: |
0b303fb4 | 3382 | |
bb192ed9 VB |
3383 | slab = READ_ONCE(c->slab); |
3384 | if (!slab) { | |
0715e6c5 VB |
3385 | /* |
3386 | * if the node is not online or has no normal memory, just | |
3387 | * ignore the node constraint | |
3388 | */ | |
3389 | if (unlikely(node != NUMA_NO_NODE && | |
7e1fa93d | 3390 | !node_isset(node, slab_nodes))) |
0715e6c5 | 3391 | node = NUMA_NO_NODE; |
81819f0f | 3392 | goto new_slab; |
0715e6c5 | 3393 | } |
6faa6833 | 3394 | |
bb192ed9 | 3395 | if (unlikely(!node_match(slab, node))) { |
0715e6c5 VB |
3396 | /* |
3397 | * same as above but node_match() being false already | |
3398 | * implies node != NUMA_NO_NODE | |
3399 | */ | |
7e1fa93d | 3400 | if (!node_isset(node, slab_nodes)) { |
0715e6c5 | 3401 | node = NUMA_NO_NODE; |
0715e6c5 | 3402 | } else { |
a561ce00 | 3403 | stat(s, ALLOC_NODE_MISMATCH); |
0b303fb4 | 3404 | goto deactivate_slab; |
a561ce00 | 3405 | } |
fc59c053 | 3406 | } |
6446faa2 | 3407 | |
072bb0aa MG |
3408 | /* |
3409 | * By rights, we should be searching for a slab page that was | |
3410 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
3411 | * information when the page leaves the per-cpu allocator | |
3412 | */ | |
bb192ed9 | 3413 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) |
0b303fb4 | 3414 | goto deactivate_slab; |
072bb0aa | 3415 | |
c2092c12 | 3416 | /* must check again c->slab in case we got preempted and it changed */ |
bd0e7491 | 3417 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3418 | if (unlikely(slab != c->slab)) { |
bd0e7491 | 3419 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3420 | goto reread_slab; |
0b303fb4 | 3421 | } |
6faa6833 CL |
3422 | freelist = c->freelist; |
3423 | if (freelist) | |
73736e03 | 3424 | goto load_freelist; |
03e404af | 3425 | |
bb192ed9 | 3426 | freelist = get_freelist(s, slab); |
6446faa2 | 3427 | |
6faa6833 | 3428 | if (!freelist) { |
bb192ed9 | 3429 | c->slab = NULL; |
eeaa345e | 3430 | c->tid = next_tid(c->tid); |
bd0e7491 | 3431 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
03e404af | 3432 | stat(s, DEACTIVATE_BYPASS); |
fc59c053 | 3433 | goto new_slab; |
03e404af | 3434 | } |
6446faa2 | 3435 | |
84e554e6 | 3436 | stat(s, ALLOC_REFILL); |
6446faa2 | 3437 | |
894b8788 | 3438 | load_freelist: |
0b303fb4 | 3439 | |
bd0e7491 | 3440 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); |
0b303fb4 | 3441 | |
507effea CL |
3442 | /* |
3443 | * freelist is pointing to the list of objects to be used. | |
c2092c12 VB |
3444 | * slab is pointing to the slab from which the objects are obtained. |
3445 | * That slab must be frozen for per cpu allocations to work. | |
507effea | 3446 | */ |
bb192ed9 | 3447 | VM_BUG_ON(!c->slab->frozen); |
6faa6833 | 3448 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 3449 | c->tid = next_tid(c->tid); |
bd0e7491 | 3450 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
6faa6833 | 3451 | return freelist; |
81819f0f | 3452 | |
0b303fb4 VB |
3453 | deactivate_slab: |
3454 | ||
bd0e7491 | 3455 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3456 | if (slab != c->slab) { |
bd0e7491 | 3457 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3458 | goto reread_slab; |
0b303fb4 | 3459 | } |
a019d201 | 3460 | freelist = c->freelist; |
bb192ed9 | 3461 | c->slab = NULL; |
a019d201 | 3462 | c->freelist = NULL; |
eeaa345e | 3463 | c->tid = next_tid(c->tid); |
bd0e7491 | 3464 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
bb192ed9 | 3465 | deactivate_slab(s, slab, freelist); |
0b303fb4 | 3466 | |
81819f0f | 3467 | new_slab: |
2cfb7455 | 3468 | |
8cd3fa42 CZ |
3469 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
3470 | while (slub_percpu_partial(c)) { | |
bd0e7491 | 3471 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3472 | if (unlikely(c->slab)) { |
bd0e7491 | 3473 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
c2092c12 | 3474 | goto reread_slab; |
fa417ab7 | 3475 | } |
4b1f449d | 3476 | if (unlikely(!slub_percpu_partial(c))) { |
bd0e7491 | 3477 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
25c00c50 VB |
3478 | /* we were preempted and partial list got empty */ |
3479 | goto new_objects; | |
4b1f449d | 3480 | } |
fa417ab7 | 3481 | |
8cd3fa42 | 3482 | slab = slub_percpu_partial(c); |
bb192ed9 | 3483 | slub_set_percpu_partial(c, slab); |
8cd3fa42 | 3484 | |
90b1e566 CZ |
3485 | if (likely(node_match(slab, node) && |
3486 | pfmemalloc_match(slab, gfpflags))) { | |
3487 | c->slab = slab; | |
3488 | freelist = get_freelist(s, slab); | |
3489 | VM_BUG_ON(!freelist); | |
3490 | stat(s, CPU_PARTIAL_ALLOC); | |
3491 | goto load_freelist; | |
8cd3fa42 CZ |
3492 | } |
3493 | ||
90b1e566 CZ |
3494 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
3495 | ||
3496 | slab->next = NULL; | |
3497 | __put_partials(s, slab); | |
81819f0f | 3498 | } |
8cd3fa42 | 3499 | #endif |
81819f0f | 3500 | |
fa417ab7 VB |
3501 | new_objects: |
3502 | ||
6edf2576 | 3503 | pc.flags = gfpflags; |
6edf2576 | 3504 | pc.orig_size = orig_size; |
43c4c349 CZ |
3505 | slab = get_partial(s, node, &pc); |
3506 | if (slab) { | |
24c6a097 | 3507 | if (kmem_cache_debug(s)) { |
8cd3fa42 | 3508 | freelist = pc.object; |
24c6a097 CZ |
3509 | /* |
3510 | * For debug caches here we had to go through | |
3511 | * alloc_single_from_partial() so just store the | |
3512 | * tracking info and return the object. | |
3513 | */ | |
3514 | if (s->flags & SLAB_STORE_USER) | |
3515 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3516 | ||
3517 | return freelist; | |
3518 | } | |
3519 | ||
8cd3fa42 | 3520 | freelist = freeze_slab(s, slab); |
24c6a097 CZ |
3521 | goto retry_load_slab; |
3522 | } | |
2a904905 | 3523 | |
25c00c50 | 3524 | slub_put_cpu_ptr(s->cpu_slab); |
bb192ed9 | 3525 | slab = new_slab(s, gfpflags, node); |
25c00c50 | 3526 | c = slub_get_cpu_ptr(s->cpu_slab); |
01ad8a7b | 3527 | |
bb192ed9 | 3528 | if (unlikely(!slab)) { |
9a02d699 | 3529 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 3530 | return NULL; |
81819f0f | 3531 | } |
2cfb7455 | 3532 | |
c7323a5a VB |
3533 | stat(s, ALLOC_SLAB); |
3534 | ||
3535 | if (kmem_cache_debug(s)) { | |
6edf2576 | 3536 | freelist = alloc_single_from_new_slab(s, slab, orig_size); |
c7323a5a VB |
3537 | |
3538 | if (unlikely(!freelist)) | |
3539 | goto new_objects; | |
3540 | ||
3541 | if (s->flags & SLAB_STORE_USER) | |
3542 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3543 | ||
3544 | return freelist; | |
3545 | } | |
3546 | ||
53a0de06 | 3547 | /* |
c2092c12 | 3548 | * No other reference to the slab yet so we can |
53a0de06 VB |
3549 | * muck around with it freely without cmpxchg |
3550 | */ | |
bb192ed9 VB |
3551 | freelist = slab->freelist; |
3552 | slab->freelist = NULL; | |
c7323a5a VB |
3553 | slab->inuse = slab->objects; |
3554 | slab->frozen = 1; | |
53a0de06 | 3555 | |
c7323a5a | 3556 | inc_slabs_node(s, slab_nid(slab), slab->objects); |
53a0de06 | 3557 | |
c7323a5a | 3558 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) { |
1572df7c VB |
3559 | /* |
3560 | * For !pfmemalloc_match() case we don't load freelist so that | |
3561 | * we don't make further mismatched allocations easier. | |
3562 | */ | |
c7323a5a VB |
3563 | deactivate_slab(s, slab, get_freepointer(s, freelist)); |
3564 | return freelist; | |
3565 | } | |
1572df7c | 3566 | |
c2092c12 | 3567 | retry_load_slab: |
cfdf836e | 3568 | |
bd0e7491 | 3569 | local_lock_irqsave(&s->cpu_slab->lock, flags); |
bb192ed9 | 3570 | if (unlikely(c->slab)) { |
cfdf836e | 3571 | void *flush_freelist = c->freelist; |
bb192ed9 | 3572 | struct slab *flush_slab = c->slab; |
cfdf836e | 3573 | |
bb192ed9 | 3574 | c->slab = NULL; |
cfdf836e VB |
3575 | c->freelist = NULL; |
3576 | c->tid = next_tid(c->tid); | |
3577 | ||
bd0e7491 | 3578 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); |
cfdf836e | 3579 | |
bb192ed9 | 3580 | deactivate_slab(s, flush_slab, flush_freelist); |
cfdf836e VB |
3581 | |
3582 | stat(s, CPUSLAB_FLUSH); | |
3583 | ||
c2092c12 | 3584 | goto retry_load_slab; |
cfdf836e | 3585 | } |
bb192ed9 | 3586 | c->slab = slab; |
3f2b77e3 | 3587 | |
1572df7c | 3588 | goto load_freelist; |
894b8788 CL |
3589 | } |
3590 | ||
a380a3c7 | 3591 | /* |
e500059b VB |
3592 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet |
3593 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3594 | * pointer. | |
a380a3c7 CL |
3595 | */ |
3596 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
6edf2576 | 3597 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) |
a380a3c7 CL |
3598 | { |
3599 | void *p; | |
a380a3c7 | 3600 | |
e500059b | 3601 | #ifdef CONFIG_PREEMPT_COUNT |
a380a3c7 CL |
3602 | /* |
3603 | * We may have been preempted and rescheduled on a different | |
e500059b | 3604 | * cpu before disabling preemption. Need to reload cpu area |
a380a3c7 CL |
3605 | * pointer. |
3606 | */ | |
25c00c50 | 3607 | c = slub_get_cpu_ptr(s->cpu_slab); |
a380a3c7 CL |
3608 | #endif |
3609 | ||
6edf2576 | 3610 | p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); |
e500059b | 3611 | #ifdef CONFIG_PREEMPT_COUNT |
25c00c50 | 3612 | slub_put_cpu_ptr(s->cpu_slab); |
e500059b | 3613 | #endif |
a380a3c7 CL |
3614 | return p; |
3615 | } | |
3616 | ||
56d5a2b9 | 3617 | static __always_inline void *__slab_alloc_node(struct kmem_cache *s, |
b89fb5ef | 3618 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
894b8788 | 3619 | { |
dfb4f096 | 3620 | struct kmem_cache_cpu *c; |
bb192ed9 | 3621 | struct slab *slab; |
8a5ec0ba | 3622 | unsigned long tid; |
56d5a2b9 | 3623 | void *object; |
b89fb5ef | 3624 | |
8a5ec0ba | 3625 | redo: |
8a5ec0ba CL |
3626 | /* |
3627 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3628 | * enabled. We may switch back and forth between cpus while | |
3629 | * reading from one cpu area. That does not matter as long | |
3630 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 3631 | * |
9b4bc85a VB |
3632 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the |
3633 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3634 | * the tid. If we are preempted and switched to another cpu between the | |
3635 | * two reads, it's OK as the two are still associated with the same cpu | |
3636 | * and cmpxchg later will validate the cpu. | |
8a5ec0ba | 3637 | */ |
9b4bc85a VB |
3638 | c = raw_cpu_ptr(s->cpu_slab); |
3639 | tid = READ_ONCE(c->tid); | |
9aabf810 JK |
3640 | |
3641 | /* | |
3642 | * Irqless object alloc/free algorithm used here depends on sequence | |
3643 | * of fetching cpu_slab's data. tid should be fetched before anything | |
c2092c12 | 3644 | * on c to guarantee that object and slab associated with previous tid |
9aabf810 | 3645 | * won't be used with current tid. If we fetch tid first, object and |
c2092c12 | 3646 | * slab could be one associated with next tid and our alloc/free |
9aabf810 JK |
3647 | * request will be failed. In this case, we will retry. So, no problem. |
3648 | */ | |
3649 | barrier(); | |
8a5ec0ba | 3650 | |
8a5ec0ba CL |
3651 | /* |
3652 | * The transaction ids are globally unique per cpu and per operation on | |
3653 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3654 | * occurs on the right processor and that there was no operation on the | |
3655 | * linked list in between. | |
3656 | */ | |
8a5ec0ba | 3657 | |
9dfc6e68 | 3658 | object = c->freelist; |
bb192ed9 | 3659 | slab = c->slab; |
1f04b07d TG |
3660 | |
3661 | if (!USE_LOCKLESS_FAST_PATH() || | |
bb192ed9 | 3662 | unlikely(!object || !slab || !node_match(slab, node))) { |
6edf2576 | 3663 | object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); |
8eae1492 | 3664 | } else { |
0ad9500e ED |
3665 | void *next_object = get_freepointer_safe(s, object); |
3666 | ||
8a5ec0ba | 3667 | /* |
25985edc | 3668 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
3669 | * operation and if we are on the right processor. |
3670 | * | |
d0e0ac97 CG |
3671 | * The cmpxchg does the following atomically (without lock |
3672 | * semantics!) | |
8a5ec0ba CL |
3673 | * 1. Relocate first pointer to the current per cpu area. |
3674 | * 2. Verify that tid and freelist have not been changed | |
3675 | * 3. If they were not changed replace tid and freelist | |
3676 | * | |
d0e0ac97 CG |
3677 | * Since this is without lock semantics the protection is only |
3678 | * against code executing on this cpu *not* from access by | |
3679 | * other cpus. | |
8a5ec0ba | 3680 | */ |
6801be4f | 3681 | if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { |
8a5ec0ba CL |
3682 | note_cmpxchg_failure("slab_alloc", s, tid); |
3683 | goto redo; | |
3684 | } | |
0ad9500e | 3685 | prefetch_freepointer(s, next_object); |
84e554e6 | 3686 | stat(s, ALLOC_FASTPATH); |
894b8788 | 3687 | } |
0f181f9f | 3688 | |
56d5a2b9 VB |
3689 | return object; |
3690 | } | |
0af8489b VB |
3691 | #else /* CONFIG_SLUB_TINY */ |
3692 | static void *__slab_alloc_node(struct kmem_cache *s, | |
3693 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
3694 | { | |
3695 | struct partial_context pc; | |
3696 | struct slab *slab; | |
3697 | void *object; | |
3698 | ||
3699 | pc.flags = gfpflags; | |
0af8489b | 3700 | pc.orig_size = orig_size; |
43c4c349 | 3701 | slab = get_partial(s, node, &pc); |
0af8489b | 3702 | |
43c4c349 CZ |
3703 | if (slab) |
3704 | return pc.object; | |
0af8489b VB |
3705 | |
3706 | slab = new_slab(s, gfpflags, node); | |
3707 | if (unlikely(!slab)) { | |
3708 | slab_out_of_memory(s, gfpflags, node); | |
3709 | return NULL; | |
3710 | } | |
3711 | ||
3712 | object = alloc_single_from_new_slab(s, slab, orig_size); | |
3713 | ||
3714 | return object; | |
3715 | } | |
3716 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
3717 | |
3718 | /* | |
3719 | * If the object has been wiped upon free, make sure it's fully initialized by | |
3720 | * zeroing out freelist pointer. | |
3721 | */ | |
3722 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
3723 | void *obj) | |
3724 | { | |
3725 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
3726 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), | |
3727 | 0, sizeof(void *)); | |
3728 | } | |
3729 | ||
6011be59 VB |
3730 | noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) |
3731 | { | |
3732 | if (__should_failslab(s, gfpflags)) | |
3733 | return -ENOMEM; | |
3734 | return 0; | |
3735 | } | |
3736 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); | |
3737 | ||
3450a0e5 VB |
3738 | static __fastpath_inline |
3739 | struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, | |
3740 | struct list_lru *lru, | |
3741 | struct obj_cgroup **objcgp, | |
3742 | size_t size, gfp_t flags) | |
6011be59 VB |
3743 | { |
3744 | flags &= gfp_allowed_mask; | |
3745 | ||
3746 | might_alloc(flags); | |
3747 | ||
3450a0e5 | 3748 | if (unlikely(should_failslab(s, flags))) |
6011be59 VB |
3749 | return NULL; |
3750 | ||
3450a0e5 | 3751 | if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))) |
6011be59 VB |
3752 | return NULL; |
3753 | ||
3754 | return s; | |
3755 | } | |
3756 | ||
3450a0e5 VB |
3757 | static __fastpath_inline |
3758 | void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, | |
3759 | gfp_t flags, size_t size, void **p, bool init, | |
3760 | unsigned int orig_size) | |
6011be59 VB |
3761 | { |
3762 | unsigned int zero_size = s->object_size; | |
3763 | bool kasan_init = init; | |
3764 | size_t i; | |
3450a0e5 | 3765 | gfp_t init_flags = flags & gfp_allowed_mask; |
6011be59 VB |
3766 | |
3767 | /* | |
3768 | * For kmalloc object, the allocated memory size(object_size) is likely | |
3769 | * larger than the requested size(orig_size). If redzone check is | |
3770 | * enabled for the extra space, don't zero it, as it will be redzoned | |
3771 | * soon. The redzone operation for this extra space could be seen as a | |
3772 | * replacement of current poisoning under certain debug option, and | |
3773 | * won't break other sanity checks. | |
3774 | */ | |
3775 | if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && | |
3776 | (s->flags & SLAB_KMALLOC)) | |
3777 | zero_size = orig_size; | |
3778 | ||
3779 | /* | |
671776b3 | 3780 | * When slab_debug is enabled, avoid memory initialization integrated |
6011be59 VB |
3781 | * into KASAN and instead zero out the memory via the memset below with |
3782 | * the proper size. Otherwise, KASAN might overwrite SLUB redzones and | |
3783 | * cause false-positive reports. This does not lead to a performance | |
671776b3 | 3784 | * penalty on production builds, as slab_debug is not intended to be |
6011be59 VB |
3785 | * enabled there. |
3786 | */ | |
3787 | if (__slub_debug_enabled()) | |
3788 | kasan_init = false; | |
3789 | ||
3790 | /* | |
3791 | * As memory initialization might be integrated into KASAN, | |
3792 | * kasan_slab_alloc and initialization memset must be | |
3793 | * kept together to avoid discrepancies in behavior. | |
3794 | * | |
3795 | * As p[i] might get tagged, memset and kmemleak hook come after KASAN. | |
3796 | */ | |
3797 | for (i = 0; i < size; i++) { | |
3450a0e5 | 3798 | p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); |
6011be59 VB |
3799 | if (p[i] && init && (!kasan_init || |
3800 | !kasan_has_integrated_init())) | |
3801 | memset(p[i], 0, zero_size); | |
3802 | kmemleak_alloc_recursive(p[i], s->object_size, 1, | |
3450a0e5 VB |
3803 | s->flags, init_flags); |
3804 | kmsan_slab_alloc(s, p[i], init_flags); | |
6011be59 VB |
3805 | } |
3806 | ||
3807 | memcg_slab_post_alloc_hook(s, objcg, flags, size, p); | |
3808 | } | |
3809 | ||
56d5a2b9 VB |
3810 | /* |
3811 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
3812 | * have the fastpath folded into their functions. So no function call | |
3813 | * overhead for requests that can be satisfied on the fastpath. | |
3814 | * | |
3815 | * The fastpath works by first checking if the lockless freelist can be used. | |
3816 | * If not then __slab_alloc is called for slow processing. | |
3817 | * | |
3818 | * Otherwise we can simply pick the next object from the lockless free list. | |
3819 | */ | |
be784ba8 | 3820 | static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, |
56d5a2b9 VB |
3821 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) |
3822 | { | |
3823 | void *object; | |
3824 | struct obj_cgroup *objcg = NULL; | |
3825 | bool init = false; | |
3826 | ||
3827 | s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); | |
3450a0e5 | 3828 | if (unlikely(!s)) |
56d5a2b9 VB |
3829 | return NULL; |
3830 | ||
3831 | object = kfence_alloc(s, orig_size, gfpflags); | |
3832 | if (unlikely(object)) | |
3833 | goto out; | |
3834 | ||
3835 | object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); | |
3836 | ||
ce5716c6 | 3837 | maybe_wipe_obj_freeptr(s, object); |
da844b78 | 3838 | init = slab_want_init_on_alloc(gfpflags, s); |
d07dbea4 | 3839 | |
b89fb5ef | 3840 | out: |
9ce67395 FT |
3841 | /* |
3842 | * When init equals 'true', like for kzalloc() family, only | |
3843 | * @orig_size bytes might be zeroed instead of s->object_size | |
3844 | */ | |
3845 | slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); | |
5a896d9e | 3846 | |
894b8788 | 3847 | return object; |
81819f0f CL |
3848 | } |
3849 | ||
49378a05 | 3850 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2b847c3c | 3851 | { |
49378a05 VB |
3852 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, |
3853 | s->object_size); | |
5b882be4 | 3854 | |
2c1d697f | 3855 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
5b882be4 EGM |
3856 | |
3857 | return ret; | |
2b847c3c | 3858 | } |
81819f0f | 3859 | EXPORT_SYMBOL(kmem_cache_alloc); |
2b847c3c | 3860 | |
88f2ef73 MS |
3861 | void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, |
3862 | gfp_t gfpflags) | |
81819f0f | 3863 | { |
49378a05 VB |
3864 | void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, |
3865 | s->object_size); | |
5b882be4 | 3866 | |
2c1d697f | 3867 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); |
5b882be4 EGM |
3868 | |
3869 | return ret; | |
81819f0f | 3870 | } |
88f2ef73 | 3871 | EXPORT_SYMBOL(kmem_cache_alloc_lru); |
88f2ef73 | 3872 | |
0445ee00 VB |
3873 | /** |
3874 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3875 | * @s: The cache to allocate from. | |
3876 | * @gfpflags: See kmalloc(). | |
3877 | * @node: node number of the target node. | |
3878 | * | |
3879 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3880 | * node, which can improve the performance for cpu bound structures. | |
3881 | * | |
3882 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3883 | * | |
3884 | * Return: pointer to the new object or %NULL in case of error | |
3885 | */ | |
81819f0f CL |
3886 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
3887 | { | |
88f2ef73 | 3888 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); |
5b882be4 | 3889 | |
2c1d697f | 3890 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); |
5b882be4 EGM |
3891 | |
3892 | return ret; | |
81819f0f CL |
3893 | } |
3894 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 3895 | |
4862caa5 VB |
3896 | /* |
3897 | * To avoid unnecessary overhead, we pass through large allocation requests | |
3898 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
3899 | * know the allocation order to free the pages properly in kfree. | |
3900 | */ | |
3901 | static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) | |
88f2ef73 | 3902 | { |
fb46e22a | 3903 | struct folio *folio; |
4862caa5 VB |
3904 | void *ptr = NULL; |
3905 | unsigned int order = get_order(size); | |
3906 | ||
3907 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) | |
3908 | flags = kmalloc_fix_flags(flags); | |
3909 | ||
3910 | flags |= __GFP_COMP; | |
fb46e22a LT |
3911 | folio = (struct folio *)alloc_pages_node(node, flags, order); |
3912 | if (folio) { | |
3913 | ptr = folio_address(folio); | |
3914 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, | |
4862caa5 VB |
3915 | PAGE_SIZE << order); |
3916 | } | |
3917 | ||
3918 | ptr = kasan_kmalloc_large(ptr, size, flags); | |
3919 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ | |
3920 | kmemleak_alloc(ptr, size, 1, flags); | |
3921 | kmsan_kmalloc_large(ptr, size, flags); | |
3922 | ||
3923 | return ptr; | |
88f2ef73 | 3924 | } |
81819f0f | 3925 | |
4862caa5 | 3926 | void *kmalloc_large(size_t size, gfp_t flags) |
88f2ef73 | 3927 | { |
4862caa5 VB |
3928 | void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); |
3929 | ||
3930 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
3931 | flags, NUMA_NO_NODE); | |
3932 | return ret; | |
88f2ef73 | 3933 | } |
4862caa5 | 3934 | EXPORT_SYMBOL(kmalloc_large); |
88f2ef73 | 3935 | |
4862caa5 | 3936 | void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
4a92379b | 3937 | { |
4862caa5 VB |
3938 | void *ret = __kmalloc_large_node(size, flags, node); |
3939 | ||
3940 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
3941 | flags, node); | |
3942 | return ret; | |
4a92379b | 3943 | } |
4862caa5 | 3944 | EXPORT_SYMBOL(kmalloc_large_node); |
5b882be4 | 3945 | |
4862caa5 VB |
3946 | static __always_inline |
3947 | void *__do_kmalloc_node(size_t size, gfp_t flags, int node, | |
3948 | unsigned long caller) | |
81819f0f | 3949 | { |
4862caa5 VB |
3950 | struct kmem_cache *s; |
3951 | void *ret; | |
5b882be4 | 3952 | |
4862caa5 VB |
3953 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
3954 | ret = __kmalloc_large_node(size, flags, node); | |
3955 | trace_kmalloc(caller, ret, size, | |
3956 | PAGE_SIZE << get_order(size), flags, node); | |
3957 | return ret; | |
3958 | } | |
5b882be4 | 3959 | |
4862caa5 VB |
3960 | if (unlikely(!size)) |
3961 | return ZERO_SIZE_PTR; | |
3962 | ||
3963 | s = kmalloc_slab(size, flags, caller); | |
3964 | ||
3965 | ret = slab_alloc_node(s, NULL, flags, node, caller, size); | |
3966 | ret = kasan_kmalloc(s, ret, size, flags); | |
3967 | trace_kmalloc(caller, ret, size, s->size, flags, node); | |
5b882be4 | 3968 | return ret; |
81819f0f | 3969 | } |
4862caa5 VB |
3970 | |
3971 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3972 | { | |
3973 | return __do_kmalloc_node(size, flags, node, _RET_IP_); | |
3974 | } | |
3975 | EXPORT_SYMBOL(__kmalloc_node); | |
3976 | ||
3977 | void *__kmalloc(size_t size, gfp_t flags) | |
3978 | { | |
3979 | return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); | |
3980 | } | |
3981 | EXPORT_SYMBOL(__kmalloc); | |
3982 | ||
3983 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
3984 | int node, unsigned long caller) | |
3985 | { | |
3986 | return __do_kmalloc_node(size, flags, node, caller); | |
3987 | } | |
3988 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3989 | ||
3990 | void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | |
3991 | { | |
3992 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, | |
3993 | _RET_IP_, size); | |
3994 | ||
3995 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); | |
3996 | ||
3997 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
3998 | return ret; | |
3999 | } | |
4000 | EXPORT_SYMBOL(kmalloc_trace); | |
4001 | ||
4002 | void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, | |
4003 | int node, size_t size) | |
4004 | { | |
4005 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); | |
4006 | ||
4007 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); | |
4008 | ||
4009 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
4010 | return ret; | |
4011 | } | |
4012 | EXPORT_SYMBOL(kmalloc_node_trace); | |
81819f0f | 4013 | |
fa9b88e4 VB |
4014 | static noinline void free_to_partial_list( |
4015 | struct kmem_cache *s, struct slab *slab, | |
4016 | void *head, void *tail, int bulk_cnt, | |
4017 | unsigned long addr) | |
4018 | { | |
4019 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); | |
4020 | struct slab *slab_free = NULL; | |
4021 | int cnt = bulk_cnt; | |
4022 | unsigned long flags; | |
4023 | depot_stack_handle_t handle = 0; | |
4024 | ||
4025 | if (s->flags & SLAB_STORE_USER) | |
4026 | handle = set_track_prepare(); | |
4027 | ||
4028 | spin_lock_irqsave(&n->list_lock, flags); | |
4029 | ||
4030 | if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { | |
4031 | void *prior = slab->freelist; | |
4032 | ||
4033 | /* Perform the actual freeing while we still hold the locks */ | |
4034 | slab->inuse -= cnt; | |
4035 | set_freepointer(s, tail, prior); | |
4036 | slab->freelist = head; | |
4037 | ||
4038 | /* | |
4039 | * If the slab is empty, and node's partial list is full, | |
4040 | * it should be discarded anyway no matter it's on full or | |
4041 | * partial list. | |
4042 | */ | |
4043 | if (slab->inuse == 0 && n->nr_partial >= s->min_partial) | |
4044 | slab_free = slab; | |
4045 | ||
4046 | if (!prior) { | |
4047 | /* was on full list */ | |
4048 | remove_full(s, n, slab); | |
4049 | if (!slab_free) { | |
4050 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
4051 | stat(s, FREE_ADD_PARTIAL); | |
4052 | } | |
4053 | } else if (slab_free) { | |
4054 | remove_partial(n, slab); | |
4055 | stat(s, FREE_REMOVE_PARTIAL); | |
4056 | } | |
4057 | } | |
4058 | ||
4059 | if (slab_free) { | |
4060 | /* | |
4061 | * Update the counters while still holding n->list_lock to | |
4062 | * prevent spurious validation warnings | |
4063 | */ | |
4064 | dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); | |
4065 | } | |
4066 | ||
4067 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4068 | ||
4069 | if (slab_free) { | |
4070 | stat(s, FREE_SLAB); | |
4071 | free_slab(s, slab_free); | |
4072 | } | |
4073 | } | |
4074 | ||
81819f0f | 4075 | /* |
94e4d712 | 4076 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 4077 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 4078 | * |
894b8788 | 4079 | * So we still attempt to reduce cache line usage. Just take the slab |
c2092c12 | 4080 | * lock and free the item. If there is no additional partial slab |
894b8788 | 4081 | * handling required then we can return immediately. |
81819f0f | 4082 | */ |
bb192ed9 | 4083 | static void __slab_free(struct kmem_cache *s, struct slab *slab, |
81084651 JDB |
4084 | void *head, void *tail, int cnt, |
4085 | unsigned long addr) | |
4086 | ||
81819f0f CL |
4087 | { |
4088 | void *prior; | |
2cfb7455 | 4089 | int was_frozen; |
bb192ed9 | 4090 | struct slab new; |
2cfb7455 CL |
4091 | unsigned long counters; |
4092 | struct kmem_cache_node *n = NULL; | |
3f649ab7 | 4093 | unsigned long flags; |
422e7d54 | 4094 | bool on_node_partial; |
81819f0f | 4095 | |
8a5ec0ba | 4096 | stat(s, FREE_SLOWPATH); |
81819f0f | 4097 | |
0af8489b | 4098 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { |
fa9b88e4 | 4099 | free_to_partial_list(s, slab, head, tail, cnt, addr); |
80f08c19 | 4100 | return; |
c7323a5a | 4101 | } |
6446faa2 | 4102 | |
2cfb7455 | 4103 | do { |
837d678d JK |
4104 | if (unlikely(n)) { |
4105 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4106 | n = NULL; | |
4107 | } | |
bb192ed9 VB |
4108 | prior = slab->freelist; |
4109 | counters = slab->counters; | |
81084651 | 4110 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
4111 | new.counters = counters; |
4112 | was_frozen = new.frozen; | |
81084651 | 4113 | new.inuse -= cnt; |
837d678d | 4114 | if ((!new.inuse || !prior) && !was_frozen) { |
8cd3fa42 CZ |
4115 | /* Needs to be taken off a list */ |
4116 | if (!kmem_cache_has_cpu_partial(s) || prior) { | |
49e22585 | 4117 | |
bb192ed9 | 4118 | n = get_node(s, slab_nid(slab)); |
49e22585 CL |
4119 | /* |
4120 | * Speculatively acquire the list_lock. | |
4121 | * If the cmpxchg does not succeed then we may | |
4122 | * drop the list_lock without any processing. | |
4123 | * | |
4124 | * Otherwise the list_lock will synchronize with | |
4125 | * other processors updating the list of slabs. | |
4126 | */ | |
4127 | spin_lock_irqsave(&n->list_lock, flags); | |
4128 | ||
422e7d54 | 4129 | on_node_partial = slab_test_node_partial(slab); |
49e22585 | 4130 | } |
2cfb7455 | 4131 | } |
81819f0f | 4132 | |
6801be4f | 4133 | } while (!slab_update_freelist(s, slab, |
2cfb7455 | 4134 | prior, counters, |
81084651 | 4135 | head, new.counters, |
2cfb7455 | 4136 | "__slab_free")); |
81819f0f | 4137 | |
2cfb7455 | 4138 | if (likely(!n)) { |
49e22585 | 4139 | |
c270cf30 AW |
4140 | if (likely(was_frozen)) { |
4141 | /* | |
4142 | * The list lock was not taken therefore no list | |
4143 | * activity can be necessary. | |
4144 | */ | |
4145 | stat(s, FREE_FROZEN); | |
8cd3fa42 | 4146 | } else if (kmem_cache_has_cpu_partial(s) && !prior) { |
c270cf30 | 4147 | /* |
8cd3fa42 | 4148 | * If we started with a full slab then put it onto the |
c270cf30 AW |
4149 | * per cpu partial list. |
4150 | */ | |
bb192ed9 | 4151 | put_cpu_partial(s, slab, 1); |
8028dcea AS |
4152 | stat(s, CPU_PARTIAL_FREE); |
4153 | } | |
c270cf30 | 4154 | |
b455def2 L |
4155 | return; |
4156 | } | |
81819f0f | 4157 | |
422e7d54 CZ |
4158 | /* |
4159 | * This slab was partially empty but not on the per-node partial list, | |
4160 | * in which case we shouldn't manipulate its list, just return. | |
4161 | */ | |
4162 | if (prior && !on_node_partial) { | |
4163 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4164 | return; | |
4165 | } | |
4166 | ||
8a5b20ae | 4167 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
4168 | goto slab_empty; |
4169 | ||
81819f0f | 4170 | /* |
837d678d JK |
4171 | * Objects left in the slab. If it was not on the partial list before |
4172 | * then add it. | |
81819f0f | 4173 | */ |
345c905d | 4174 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
bb192ed9 | 4175 | add_partial(n, slab, DEACTIVATE_TO_TAIL); |
837d678d | 4176 | stat(s, FREE_ADD_PARTIAL); |
8ff12cfc | 4177 | } |
80f08c19 | 4178 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
4179 | return; |
4180 | ||
4181 | slab_empty: | |
a973e9dd | 4182 | if (prior) { |
81819f0f | 4183 | /* |
6fbabb20 | 4184 | * Slab on the partial list. |
81819f0f | 4185 | */ |
bb192ed9 | 4186 | remove_partial(n, slab); |
84e554e6 | 4187 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 4188 | } |
2cfb7455 | 4189 | |
80f08c19 | 4190 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 4191 | stat(s, FREE_SLAB); |
bb192ed9 | 4192 | discard_slab(s, slab); |
81819f0f CL |
4193 | } |
4194 | ||
0af8489b | 4195 | #ifndef CONFIG_SLUB_TINY |
894b8788 CL |
4196 | /* |
4197 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
4198 | * can perform fastpath freeing without additional function calls. | |
4199 | * | |
4200 | * The fastpath is only possible if we are freeing to the current cpu slab | |
4201 | * of this processor. This typically the case if we have just allocated | |
4202 | * the item before. | |
4203 | * | |
4204 | * If fastpath is not possible then fall back to __slab_free where we deal | |
4205 | * with all sorts of special processing. | |
81084651 JDB |
4206 | * |
4207 | * Bulk free of a freelist with several objects (all pointing to the | |
c2092c12 | 4208 | * same slab) possible by specifying head and tail ptr, plus objects |
81084651 | 4209 | * count (cnt). Bulk free indicated by tail pointer being set. |
894b8788 | 4210 | */ |
80a9201a | 4211 | static __always_inline void do_slab_free(struct kmem_cache *s, |
bb192ed9 | 4212 | struct slab *slab, void *head, void *tail, |
80a9201a | 4213 | int cnt, unsigned long addr) |
894b8788 | 4214 | { |
dfb4f096 | 4215 | struct kmem_cache_cpu *c; |
8a5ec0ba | 4216 | unsigned long tid; |
1f04b07d | 4217 | void **freelist; |
964d4bd3 | 4218 | |
8a5ec0ba CL |
4219 | redo: |
4220 | /* | |
4221 | * Determine the currently cpus per cpu slab. | |
4222 | * The cpu may change afterward. However that does not matter since | |
4223 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 4224 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 4225 | */ |
9b4bc85a VB |
4226 | c = raw_cpu_ptr(s->cpu_slab); |
4227 | tid = READ_ONCE(c->tid); | |
c016b0bd | 4228 | |
9aabf810 JK |
4229 | /* Same with comment on barrier() in slab_alloc_node() */ |
4230 | barrier(); | |
c016b0bd | 4231 | |
1f04b07d | 4232 | if (unlikely(slab != c->slab)) { |
284f17ac | 4233 | __slab_free(s, slab, head, tail, cnt, addr); |
1f04b07d TG |
4234 | return; |
4235 | } | |
4236 | ||
4237 | if (USE_LOCKLESS_FAST_PATH()) { | |
4238 | freelist = READ_ONCE(c->freelist); | |
5076190d | 4239 | |
284f17ac | 4240 | set_freepointer(s, tail, freelist); |
8a5ec0ba | 4241 | |
6801be4f | 4242 | if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { |
8a5ec0ba CL |
4243 | note_cmpxchg_failure("slab_free", s, tid); |
4244 | goto redo; | |
4245 | } | |
1f04b07d TG |
4246 | } else { |
4247 | /* Update the free list under the local lock */ | |
bd0e7491 VB |
4248 | local_lock(&s->cpu_slab->lock); |
4249 | c = this_cpu_ptr(s->cpu_slab); | |
bb192ed9 | 4250 | if (unlikely(slab != c->slab)) { |
bd0e7491 VB |
4251 | local_unlock(&s->cpu_slab->lock); |
4252 | goto redo; | |
4253 | } | |
4254 | tid = c->tid; | |
4255 | freelist = c->freelist; | |
4256 | ||
284f17ac | 4257 | set_freepointer(s, tail, freelist); |
bd0e7491 VB |
4258 | c->freelist = head; |
4259 | c->tid = next_tid(tid); | |
4260 | ||
4261 | local_unlock(&s->cpu_slab->lock); | |
1f04b07d | 4262 | } |
6f3dd2c3 | 4263 | stat_add(s, FREE_FASTPATH, cnt); |
894b8788 | 4264 | } |
0af8489b VB |
4265 | #else /* CONFIG_SLUB_TINY */ |
4266 | static void do_slab_free(struct kmem_cache *s, | |
4267 | struct slab *slab, void *head, void *tail, | |
4268 | int cnt, unsigned long addr) | |
4269 | { | |
284f17ac | 4270 | __slab_free(s, slab, head, tail, cnt, addr); |
0af8489b VB |
4271 | } |
4272 | #endif /* CONFIG_SLUB_TINY */ | |
894b8788 | 4273 | |
284f17ac VB |
4274 | static __fastpath_inline |
4275 | void slab_free(struct kmem_cache *s, struct slab *slab, void *object, | |
4276 | unsigned long addr) | |
4277 | { | |
284f17ac VB |
4278 | memcg_slab_free_hook(s, slab, &object, 1); |
4279 | ||
782f8906 | 4280 | if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) |
284f17ac VB |
4281 | do_slab_free(s, slab, object, object, 1, addr); |
4282 | } | |
4283 | ||
4284 | static __fastpath_inline | |
4285 | void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, | |
4286 | void *tail, void **p, int cnt, unsigned long addr) | |
80a9201a | 4287 | { |
b77d5b1b | 4288 | memcg_slab_free_hook(s, slab, p, cnt); |
80a9201a | 4289 | /* |
c3895391 AK |
4290 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
4291 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 4292 | */ |
ecf9a253 | 4293 | if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) |
bb192ed9 | 4294 | do_slab_free(s, slab, head, tail, cnt, addr); |
80a9201a AP |
4295 | } |
4296 | ||
2bd926b4 | 4297 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
4298 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
4299 | { | |
284f17ac | 4300 | do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); |
80a9201a AP |
4301 | } |
4302 | #endif | |
4303 | ||
0bedcc66 | 4304 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
ed4cd17e | 4305 | { |
0bedcc66 VB |
4306 | struct slab *slab; |
4307 | ||
4308 | slab = virt_to_slab(obj); | |
4309 | if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) | |
4310 | return NULL; | |
4311 | return slab->slab_cache; | |
ed4cd17e HY |
4312 | } |
4313 | ||
0bedcc66 VB |
4314 | static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
4315 | { | |
4316 | struct kmem_cache *cachep; | |
4317 | ||
4318 | if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
4319 | !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) | |
4320 | return s; | |
4321 | ||
4322 | cachep = virt_to_cache(x); | |
4323 | if (WARN(cachep && cachep != s, | |
4324 | "%s: Wrong slab cache. %s but object is from %s\n", | |
4325 | __func__, s->name, cachep->name)) | |
4326 | print_tracking(cachep, x); | |
4327 | return cachep; | |
4328 | } | |
4329 | ||
0445ee00 VB |
4330 | /** |
4331 | * kmem_cache_free - Deallocate an object | |
4332 | * @s: The cache the allocation was from. | |
4333 | * @x: The previously allocated object. | |
4334 | * | |
4335 | * Free an object which was previously allocated from this | |
4336 | * cache. | |
4337 | */ | |
81819f0f CL |
4338 | void kmem_cache_free(struct kmem_cache *s, void *x) |
4339 | { | |
b9ce5ef4 GC |
4340 | s = cache_from_obj(s, x); |
4341 | if (!s) | |
79576102 | 4342 | return; |
2c1d697f | 4343 | trace_kmem_cache_free(_RET_IP_, x, s); |
284f17ac | 4344 | slab_free(s, virt_to_slab(x), x, _RET_IP_); |
81819f0f CL |
4345 | } |
4346 | EXPORT_SYMBOL(kmem_cache_free); | |
4347 | ||
b774d3e3 VB |
4348 | static void free_large_kmalloc(struct folio *folio, void *object) |
4349 | { | |
4350 | unsigned int order = folio_order(folio); | |
4351 | ||
4352 | if (WARN_ON_ONCE(order == 0)) | |
4353 | pr_warn_once("object pointer: 0x%p\n", object); | |
4354 | ||
4355 | kmemleak_free(object); | |
4356 | kasan_kfree_large(object); | |
4357 | kmsan_kfree_large(object); | |
4358 | ||
fb46e22a | 4359 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, |
b774d3e3 | 4360 | -(PAGE_SIZE << order)); |
fb46e22a | 4361 | folio_put(folio); |
b774d3e3 VB |
4362 | } |
4363 | ||
4364 | /** | |
4365 | * kfree - free previously allocated memory | |
4366 | * @object: pointer returned by kmalloc() or kmem_cache_alloc() | |
4367 | * | |
4368 | * If @object is NULL, no operation is performed. | |
4369 | */ | |
4370 | void kfree(const void *object) | |
4371 | { | |
4372 | struct folio *folio; | |
4373 | struct slab *slab; | |
4374 | struct kmem_cache *s; | |
4375 | void *x = (void *)object; | |
4376 | ||
4377 | trace_kfree(_RET_IP_, object); | |
4378 | ||
4379 | if (unlikely(ZERO_OR_NULL_PTR(object))) | |
4380 | return; | |
4381 | ||
4382 | folio = virt_to_folio(object); | |
4383 | if (unlikely(!folio_test_slab(folio))) { | |
4384 | free_large_kmalloc(folio, (void *)object); | |
4385 | return; | |
4386 | } | |
4387 | ||
4388 | slab = folio_slab(folio); | |
4389 | s = slab->slab_cache; | |
284f17ac | 4390 | slab_free(s, slab, x, _RET_IP_); |
b774d3e3 VB |
4391 | } |
4392 | EXPORT_SYMBOL(kfree); | |
4393 | ||
d0ecd894 | 4394 | struct detached_freelist { |
cc465c3b | 4395 | struct slab *slab; |
d0ecd894 JDB |
4396 | void *tail; |
4397 | void *freelist; | |
4398 | int cnt; | |
376bf125 | 4399 | struct kmem_cache *s; |
d0ecd894 | 4400 | }; |
fbd02630 | 4401 | |
d0ecd894 JDB |
4402 | /* |
4403 | * This function progressively scans the array with free objects (with | |
4404 | * a limited look ahead) and extract objects belonging to the same | |
cc465c3b MWO |
4405 | * slab. It builds a detached freelist directly within the given |
4406 | * slab/objects. This can happen without any need for | |
d0ecd894 JDB |
4407 | * synchronization, because the objects are owned by running process. |
4408 | * The freelist is build up as a single linked list in the objects. | |
4409 | * The idea is, that this detached freelist can then be bulk | |
4410 | * transferred to the real freelist(s), but only requiring a single | |
4411 | * synchronization primitive. Look ahead in the array is limited due | |
4412 | * to performance reasons. | |
4413 | */ | |
376bf125 JDB |
4414 | static inline |
4415 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
4416 | void **p, struct detached_freelist *df) | |
d0ecd894 | 4417 | { |
d0ecd894 JDB |
4418 | int lookahead = 3; |
4419 | void *object; | |
cc465c3b | 4420 | struct folio *folio; |
b77d5b1b | 4421 | size_t same; |
fbd02630 | 4422 | |
b77d5b1b | 4423 | object = p[--size]; |
cc465c3b | 4424 | folio = virt_to_folio(object); |
ca257195 JDB |
4425 | if (!s) { |
4426 | /* Handle kalloc'ed objects */ | |
cc465c3b | 4427 | if (unlikely(!folio_test_slab(folio))) { |
d835eef4 | 4428 | free_large_kmalloc(folio, object); |
b77d5b1b | 4429 | df->slab = NULL; |
ca257195 JDB |
4430 | return size; |
4431 | } | |
4432 | /* Derive kmem_cache from object */ | |
b77d5b1b MS |
4433 | df->slab = folio_slab(folio); |
4434 | df->s = df->slab->slab_cache; | |
ca257195 | 4435 | } else { |
b77d5b1b | 4436 | df->slab = folio_slab(folio); |
ca257195 JDB |
4437 | df->s = cache_from_obj(s, object); /* Support for memcg */ |
4438 | } | |
376bf125 | 4439 | |
d0ecd894 | 4440 | /* Start new detached freelist */ |
d0ecd894 JDB |
4441 | df->tail = object; |
4442 | df->freelist = object; | |
d0ecd894 JDB |
4443 | df->cnt = 1; |
4444 | ||
b77d5b1b MS |
4445 | if (is_kfence_address(object)) |
4446 | return size; | |
4447 | ||
4448 | set_freepointer(df->s, object, NULL); | |
4449 | ||
4450 | same = size; | |
d0ecd894 JDB |
4451 | while (size) { |
4452 | object = p[--size]; | |
cc465c3b MWO |
4453 | /* df->slab is always set at this point */ |
4454 | if (df->slab == virt_to_slab(object)) { | |
d0ecd894 | 4455 | /* Opportunity build freelist */ |
376bf125 | 4456 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
4457 | df->freelist = object; |
4458 | df->cnt++; | |
b77d5b1b MS |
4459 | same--; |
4460 | if (size != same) | |
4461 | swap(p[size], p[same]); | |
d0ecd894 | 4462 | continue; |
fbd02630 | 4463 | } |
d0ecd894 JDB |
4464 | |
4465 | /* Limit look ahead search */ | |
4466 | if (!--lookahead) | |
4467 | break; | |
fbd02630 | 4468 | } |
d0ecd894 | 4469 | |
b77d5b1b | 4470 | return same; |
d0ecd894 JDB |
4471 | } |
4472 | ||
520a688a VB |
4473 | /* |
4474 | * Internal bulk free of objects that were not initialised by the post alloc | |
4475 | * hooks and thus should not be processed by the free hooks | |
4476 | */ | |
4477 | static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | |
4478 | { | |
4479 | if (!size) | |
4480 | return; | |
4481 | ||
4482 | do { | |
4483 | struct detached_freelist df; | |
4484 | ||
4485 | size = build_detached_freelist(s, size, p, &df); | |
4486 | if (!df.slab) | |
4487 | continue; | |
4488 | ||
4489 | do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, | |
4490 | _RET_IP_); | |
4491 | } while (likely(size)); | |
4492 | } | |
4493 | ||
d0ecd894 | 4494 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 4495 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 | 4496 | { |
2055e67b | 4497 | if (!size) |
d0ecd894 JDB |
4498 | return; |
4499 | ||
4500 | do { | |
4501 | struct detached_freelist df; | |
4502 | ||
4503 | size = build_detached_freelist(s, size, p, &df); | |
cc465c3b | 4504 | if (!df.slab) |
d0ecd894 JDB |
4505 | continue; |
4506 | ||
284f17ac VB |
4507 | slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], |
4508 | df.cnt, _RET_IP_); | |
d0ecd894 | 4509 | } while (likely(size)); |
484748f0 CL |
4510 | } |
4511 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
4512 | ||
0af8489b | 4513 | #ifndef CONFIG_SLUB_TINY |
520a688a VB |
4514 | static inline |
4515 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | |
4516 | void **p) | |
484748f0 | 4517 | { |
994eb764 | 4518 | struct kmem_cache_cpu *c; |
f5451547 | 4519 | unsigned long irqflags; |
994eb764 JDB |
4520 | int i; |
4521 | ||
994eb764 JDB |
4522 | /* |
4523 | * Drain objects in the per cpu slab, while disabling local | |
4524 | * IRQs, which protects against PREEMPT and interrupts | |
4525 | * handlers invoking normal fastpath. | |
4526 | */ | |
25c00c50 | 4527 | c = slub_get_cpu_ptr(s->cpu_slab); |
f5451547 | 4528 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
994eb764 JDB |
4529 | |
4530 | for (i = 0; i < size; i++) { | |
b89fb5ef | 4531 | void *object = kfence_alloc(s, s->object_size, flags); |
994eb764 | 4532 | |
b89fb5ef AP |
4533 | if (unlikely(object)) { |
4534 | p[i] = object; | |
4535 | continue; | |
4536 | } | |
4537 | ||
4538 | object = c->freelist; | |
ebe909e0 | 4539 | if (unlikely(!object)) { |
fd4d9c7d JH |
4540 | /* |
4541 | * We may have removed an object from c->freelist using | |
4542 | * the fastpath in the previous iteration; in that case, | |
4543 | * c->tid has not been bumped yet. | |
4544 | * Since ___slab_alloc() may reenable interrupts while | |
4545 | * allocating memory, we should bump c->tid now. | |
4546 | */ | |
4547 | c->tid = next_tid(c->tid); | |
4548 | ||
f5451547 | 4549 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
e500059b | 4550 | |
ebe909e0 JDB |
4551 | /* |
4552 | * Invoking slow path likely have side-effect | |
4553 | * of re-populating per CPU c->freelist | |
4554 | */ | |
87098373 | 4555 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
6edf2576 | 4556 | _RET_IP_, c, s->object_size); |
87098373 CL |
4557 | if (unlikely(!p[i])) |
4558 | goto error; | |
4559 | ||
ebe909e0 | 4560 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
4561 | maybe_wipe_obj_freeptr(s, p[i]); |
4562 | ||
f5451547 | 4563 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); |
e500059b | 4564 | |
ebe909e0 JDB |
4565 | continue; /* goto for-loop */ |
4566 | } | |
994eb764 JDB |
4567 | c->freelist = get_freepointer(s, object); |
4568 | p[i] = object; | |
0f181f9f | 4569 | maybe_wipe_obj_freeptr(s, p[i]); |
6f3dd2c3 | 4570 | stat(s, ALLOC_FASTPATH); |
994eb764 JDB |
4571 | } |
4572 | c->tid = next_tid(c->tid); | |
f5451547 | 4573 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); |
25c00c50 | 4574 | slub_put_cpu_ptr(s->cpu_slab); |
994eb764 | 4575 | |
865762a8 | 4576 | return i; |
56d5a2b9 | 4577 | |
87098373 | 4578 | error: |
25c00c50 | 4579 | slub_put_cpu_ptr(s->cpu_slab); |
520a688a | 4580 | __kmem_cache_free_bulk(s, i, p); |
865762a8 | 4581 | return 0; |
56d5a2b9 VB |
4582 | |
4583 | } | |
0af8489b VB |
4584 | #else /* CONFIG_SLUB_TINY */ |
4585 | static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, | |
520a688a | 4586 | size_t size, void **p) |
0af8489b VB |
4587 | { |
4588 | int i; | |
4589 | ||
4590 | for (i = 0; i < size; i++) { | |
4591 | void *object = kfence_alloc(s, s->object_size, flags); | |
4592 | ||
4593 | if (unlikely(object)) { | |
4594 | p[i] = object; | |
4595 | continue; | |
4596 | } | |
4597 | ||
4598 | p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, | |
4599 | _RET_IP_, s->object_size); | |
4600 | if (unlikely(!p[i])) | |
4601 | goto error; | |
4602 | ||
4603 | maybe_wipe_obj_freeptr(s, p[i]); | |
4604 | } | |
4605 | ||
4606 | return i; | |
4607 | ||
4608 | error: | |
520a688a | 4609 | __kmem_cache_free_bulk(s, i, p); |
0af8489b VB |
4610 | return 0; |
4611 | } | |
4612 | #endif /* CONFIG_SLUB_TINY */ | |
56d5a2b9 VB |
4613 | |
4614 | /* Note that interrupts must be enabled when calling this function. */ | |
4615 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | |
4616 | void **p) | |
4617 | { | |
4618 | int i; | |
4619 | struct obj_cgroup *objcg = NULL; | |
4620 | ||
4621 | if (!size) | |
4622 | return 0; | |
4623 | ||
4624 | /* memcg and kmem_cache debug support */ | |
4625 | s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); | |
4626 | if (unlikely(!s)) | |
4627 | return 0; | |
4628 | ||
520a688a | 4629 | i = __kmem_cache_alloc_bulk(s, flags, size, p); |
56d5a2b9 VB |
4630 | |
4631 | /* | |
4632 | * memcg and kmem_cache debug support and memory initialization. | |
4633 | * Done outside of the IRQ disabled fastpath loop. | |
4634 | */ | |
520a688a | 4635 | if (likely(i != 0)) { |
56d5a2b9 | 4636 | slab_post_alloc_hook(s, objcg, flags, size, p, |
dc19745a | 4637 | slab_want_init_on_alloc(flags, s), s->object_size); |
520a688a VB |
4638 | } else { |
4639 | memcg_slab_alloc_error_hook(s, size, objcg); | |
4640 | } | |
4641 | ||
56d5a2b9 | 4642 | return i; |
484748f0 CL |
4643 | } |
4644 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
4645 | ||
4646 | ||
81819f0f | 4647 | /* |
672bba3a CL |
4648 | * Object placement in a slab is made very easy because we always start at |
4649 | * offset 0. If we tune the size of the object to the alignment then we can | |
4650 | * get the required alignment by putting one properly sized object after | |
4651 | * another. | |
81819f0f CL |
4652 | * |
4653 | * Notice that the allocation order determines the sizes of the per cpu | |
4654 | * caches. Each processor has always one slab available for allocations. | |
4655 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 4656 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 4657 | * locking overhead. |
81819f0f CL |
4658 | */ |
4659 | ||
4660 | /* | |
f0953a1b | 4661 | * Minimum / Maximum order of slab pages. This influences locking overhead |
81819f0f CL |
4662 | * and slab fragmentation. A higher order reduces the number of partial slabs |
4663 | * and increases the number of allocations possible without having to | |
4664 | * take the list_lock. | |
4665 | */ | |
19af27af | 4666 | static unsigned int slub_min_order; |
90ce872c VB |
4667 | static unsigned int slub_max_order = |
4668 | IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; | |
19af27af | 4669 | static unsigned int slub_min_objects; |
81819f0f | 4670 | |
81819f0f CL |
4671 | /* |
4672 | * Calculate the order of allocation given an slab object size. | |
4673 | * | |
672bba3a CL |
4674 | * The order of allocation has significant impact on performance and other |
4675 | * system components. Generally order 0 allocations should be preferred since | |
4676 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
4677 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 4678 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
4679 | * would be wasted. |
4680 | * | |
4681 | * In order to reach satisfactory performance we must ensure that a minimum | |
4682 | * number of objects is in one slab. Otherwise we may generate too much | |
4683 | * activity on the partial lists which requires taking the list_lock. This is | |
4684 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 4685 | * |
671776b3 XS |
4686 | * slab_max_order specifies the order where we begin to stop considering the |
4687 | * number of objects in a slab as critical. If we reach slab_max_order then | |
672bba3a CL |
4688 | * we try to keep the page order as low as possible. So we accept more waste |
4689 | * of space in favor of a small page order. | |
81819f0f | 4690 | * |
672bba3a CL |
4691 | * Higher order allocations also allow the placement of more objects in a |
4692 | * slab and thereby reduce object handling overhead. If the user has | |
dc84207d | 4693 | * requested a higher minimum order then we start with that one instead of |
672bba3a | 4694 | * the smallest order which will fit the object. |
81819f0f | 4695 | */ |
d122019b | 4696 | static inline unsigned int calc_slab_order(unsigned int size, |
90f055df | 4697 | unsigned int min_order, unsigned int max_order, |
9736d2a9 | 4698 | unsigned int fract_leftover) |
81819f0f | 4699 | { |
19af27af | 4700 | unsigned int order; |
81819f0f | 4701 | |
90f055df | 4702 | for (order = min_order; order <= max_order; order++) { |
81819f0f | 4703 | |
19af27af AD |
4704 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
4705 | unsigned int rem; | |
81819f0f | 4706 | |
9736d2a9 | 4707 | rem = slab_size % size; |
81819f0f | 4708 | |
5e6d444e | 4709 | if (rem <= slab_size / fract_leftover) |
81819f0f | 4710 | break; |
81819f0f | 4711 | } |
672bba3a | 4712 | |
81819f0f CL |
4713 | return order; |
4714 | } | |
4715 | ||
9736d2a9 | 4716 | static inline int calculate_order(unsigned int size) |
5e6d444e | 4717 | { |
19af27af AD |
4718 | unsigned int order; |
4719 | unsigned int min_objects; | |
4720 | unsigned int max_objects; | |
90f055df | 4721 | unsigned int min_order; |
5e6d444e | 4722 | |
5e6d444e | 4723 | min_objects = slub_min_objects; |
3286222f VB |
4724 | if (!min_objects) { |
4725 | /* | |
4726 | * Some architectures will only update present cpus when | |
4727 | * onlining them, so don't trust the number if it's just 1. But | |
4728 | * we also don't want to use nr_cpu_ids always, as on some other | |
4729 | * architectures, there can be many possible cpus, but never | |
4730 | * onlined. Here we compromise between trying to avoid too high | |
4731 | * order on systems that appear larger than they are, and too | |
4732 | * low order on systems that appear smaller than they are. | |
4733 | */ | |
90f055df | 4734 | unsigned int nr_cpus = num_present_cpus(); |
3286222f VB |
4735 | if (nr_cpus <= 1) |
4736 | nr_cpus = nr_cpu_ids; | |
4737 | min_objects = 4 * (fls(nr_cpus) + 1); | |
4738 | } | |
90f055df VB |
4739 | /* min_objects can't be 0 because get_order(0) is undefined */ |
4740 | max_objects = max(order_objects(slub_max_order, size), 1U); | |
e8120ff1 ZY |
4741 | min_objects = min(min_objects, max_objects); |
4742 | ||
90f055df VB |
4743 | min_order = max_t(unsigned int, slub_min_order, |
4744 | get_order(min_objects * size)); | |
4745 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | |
4746 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | |
4747 | ||
0fe2735d VB |
4748 | /* |
4749 | * Attempt to find best configuration for a slab. This works by first | |
4750 | * attempting to generate a layout with the best possible configuration | |
4751 | * and backing off gradually. | |
4752 | * | |
4753 | * We start with accepting at most 1/16 waste and try to find the | |
671776b3 XS |
4754 | * smallest order from min_objects-derived/slab_min_order up to |
4755 | * slab_max_order that will satisfy the constraint. Note that increasing | |
0fe2735d VB |
4756 | * the order can only result in same or less fractional waste, not more. |
4757 | * | |
4758 | * If that fails, we increase the acceptable fraction of waste and try | |
5886fc82 VB |
4759 | * again. The last iteration with fraction of 1/2 would effectively |
4760 | * accept any waste and give us the order determined by min_objects, as | |
671776b3 | 4761 | * long as at least single object fits within slab_max_order. |
0fe2735d | 4762 | */ |
5886fc82 | 4763 | for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { |
90f055df | 4764 | order = calc_slab_order(size, min_order, slub_max_order, |
0fe2735d VB |
4765 | fraction); |
4766 | if (order <= slub_max_order) | |
4767 | return order; | |
5e6d444e CL |
4768 | } |
4769 | ||
5e6d444e | 4770 | /* |
671776b3 | 4771 | * Doh this slab cannot be placed using slab_max_order. |
5e6d444e | 4772 | */ |
c7355d75 | 4773 | order = get_order(size); |
5e0a760b | 4774 | if (order <= MAX_PAGE_ORDER) |
5e6d444e CL |
4775 | return order; |
4776 | return -ENOSYS; | |
4777 | } | |
4778 | ||
5595cffc | 4779 | static void |
4053497d | 4780 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
4781 | { |
4782 | n->nr_partial = 0; | |
81819f0f CL |
4783 | spin_lock_init(&n->list_lock); |
4784 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 4785 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 4786 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 4787 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 4788 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 4789 | #endif |
81819f0f CL |
4790 | } |
4791 | ||
0af8489b | 4792 | #ifndef CONFIG_SLUB_TINY |
55136592 | 4793 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 4794 | { |
6c182dc0 | 4795 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
a0dc161a BH |
4796 | NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * |
4797 | sizeof(struct kmem_cache_cpu)); | |
4c93c355 | 4798 | |
8a5ec0ba | 4799 | /* |
d4d84fef CM |
4800 | * Must align to double word boundary for the double cmpxchg |
4801 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 4802 | */ |
d4d84fef CM |
4803 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
4804 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
4805 | |
4806 | if (!s->cpu_slab) | |
4807 | return 0; | |
4808 | ||
4809 | init_kmem_cache_cpus(s); | |
4c93c355 | 4810 | |
8a5ec0ba | 4811 | return 1; |
4c93c355 | 4812 | } |
0af8489b VB |
4813 | #else |
4814 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | |
4815 | { | |
4816 | return 1; | |
4817 | } | |
4818 | #endif /* CONFIG_SLUB_TINY */ | |
4c93c355 | 4819 | |
51df1142 CL |
4820 | static struct kmem_cache *kmem_cache_node; |
4821 | ||
81819f0f CL |
4822 | /* |
4823 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
4824 | * slab on the node for this slabcache. There are no concurrent accesses | |
4825 | * possible. | |
4826 | * | |
721ae22a ZYW |
4827 | * Note that this function only works on the kmem_cache_node |
4828 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 4829 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 4830 | */ |
55136592 | 4831 | static void early_kmem_cache_node_alloc(int node) |
81819f0f | 4832 | { |
bb192ed9 | 4833 | struct slab *slab; |
81819f0f CL |
4834 | struct kmem_cache_node *n; |
4835 | ||
51df1142 | 4836 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 4837 | |
bb192ed9 | 4838 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f | 4839 | |
bb192ed9 VB |
4840 | BUG_ON(!slab); |
4841 | if (slab_nid(slab) != node) { | |
f9f58285 FF |
4842 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
4843 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
4844 | } |
4845 | ||
bb192ed9 | 4846 | n = slab->freelist; |
81819f0f | 4847 | BUG_ON(!n); |
8ab1372f | 4848 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 4849 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 4850 | init_tracking(kmem_cache_node, n); |
8ab1372f | 4851 | #endif |
da844b78 | 4852 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); |
bb192ed9 VB |
4853 | slab->freelist = get_freepointer(kmem_cache_node, n); |
4854 | slab->inuse = 1; | |
12b22386 | 4855 | kmem_cache_node->node[node] = n; |
4053497d | 4856 | init_kmem_cache_node(n); |
bb192ed9 | 4857 | inc_slabs_node(kmem_cache_node, node, slab->objects); |
6446faa2 | 4858 | |
67b6c900 | 4859 | /* |
1e4dd946 SR |
4860 | * No locks need to be taken here as it has just been |
4861 | * initialized and there is no concurrent access. | |
67b6c900 | 4862 | */ |
bb192ed9 | 4863 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); |
81819f0f CL |
4864 | } |
4865 | ||
4866 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
4867 | { | |
4868 | int node; | |
fa45dc25 | 4869 | struct kmem_cache_node *n; |
81819f0f | 4870 | |
fa45dc25 | 4871 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 4872 | s->node[node] = NULL; |
ea37df54 | 4873 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
4874 | } |
4875 | } | |
4876 | ||
52b4b950 DS |
4877 | void __kmem_cache_release(struct kmem_cache *s) |
4878 | { | |
210e7a43 | 4879 | cache_random_seq_destroy(s); |
0af8489b | 4880 | #ifndef CONFIG_SLUB_TINY |
52b4b950 | 4881 | free_percpu(s->cpu_slab); |
0af8489b | 4882 | #endif |
52b4b950 DS |
4883 | free_kmem_cache_nodes(s); |
4884 | } | |
4885 | ||
55136592 | 4886 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
4887 | { |
4888 | int node; | |
81819f0f | 4889 | |
7e1fa93d | 4890 | for_each_node_mask(node, slab_nodes) { |
81819f0f CL |
4891 | struct kmem_cache_node *n; |
4892 | ||
73367bd8 | 4893 | if (slab_state == DOWN) { |
55136592 | 4894 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
4895 | continue; |
4896 | } | |
51df1142 | 4897 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 4898 | GFP_KERNEL, node); |
81819f0f | 4899 | |
73367bd8 AD |
4900 | if (!n) { |
4901 | free_kmem_cache_nodes(s); | |
4902 | return 0; | |
81819f0f | 4903 | } |
73367bd8 | 4904 | |
4053497d | 4905 | init_kmem_cache_node(n); |
ea37df54 | 4906 | s->node[node] = n; |
81819f0f CL |
4907 | } |
4908 | return 1; | |
4909 | } | |
81819f0f | 4910 | |
e6d0e1dc WY |
4911 | static void set_cpu_partial(struct kmem_cache *s) |
4912 | { | |
4913 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
b47291ef VB |
4914 | unsigned int nr_objects; |
4915 | ||
e6d0e1dc WY |
4916 | /* |
4917 | * cpu_partial determined the maximum number of objects kept in the | |
4918 | * per cpu partial lists of a processor. | |
4919 | * | |
4920 | * Per cpu partial lists mainly contain slabs that just have one | |
4921 | * object freed. If they are used for allocation then they can be | |
4922 | * filled up again with minimal effort. The slab will never hit the | |
4923 | * per node partial lists and therefore no locking will be required. | |
4924 | * | |
b47291ef VB |
4925 | * For backwards compatibility reasons, this is determined as number |
4926 | * of objects, even though we now limit maximum number of pages, see | |
4927 | * slub_set_cpu_partial() | |
e6d0e1dc WY |
4928 | */ |
4929 | if (!kmem_cache_has_cpu_partial(s)) | |
b47291ef | 4930 | nr_objects = 0; |
e6d0e1dc | 4931 | else if (s->size >= PAGE_SIZE) |
b47291ef | 4932 | nr_objects = 6; |
e6d0e1dc | 4933 | else if (s->size >= 1024) |
23e98ad1 | 4934 | nr_objects = 24; |
e6d0e1dc | 4935 | else if (s->size >= 256) |
23e98ad1 | 4936 | nr_objects = 52; |
e6d0e1dc | 4937 | else |
23e98ad1 | 4938 | nr_objects = 120; |
b47291ef VB |
4939 | |
4940 | slub_set_cpu_partial(s, nr_objects); | |
e6d0e1dc WY |
4941 | #endif |
4942 | } | |
4943 | ||
81819f0f CL |
4944 | /* |
4945 | * calculate_sizes() determines the order and the distribution of data within | |
4946 | * a slab object. | |
4947 | */ | |
ae44d81d | 4948 | static int calculate_sizes(struct kmem_cache *s) |
81819f0f | 4949 | { |
d50112ed | 4950 | slab_flags_t flags = s->flags; |
be4a7988 | 4951 | unsigned int size = s->object_size; |
19af27af | 4952 | unsigned int order; |
81819f0f | 4953 | |
d8b42bf5 CL |
4954 | /* |
4955 | * Round up object size to the next word boundary. We can only | |
4956 | * place the free pointer at word boundaries and this determines | |
4957 | * the possible location of the free pointer. | |
4958 | */ | |
4959 | size = ALIGN(size, sizeof(void *)); | |
4960 | ||
4961 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
4962 | /* |
4963 | * Determine if we can poison the object itself. If the user of | |
4964 | * the slab may touch the object after free or before allocation | |
4965 | * then we should never poison the object itself. | |
4966 | */ | |
5f0d5a3a | 4967 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 4968 | !s->ctor) |
81819f0f CL |
4969 | s->flags |= __OBJECT_POISON; |
4970 | else | |
4971 | s->flags &= ~__OBJECT_POISON; | |
4972 | ||
81819f0f CL |
4973 | |
4974 | /* | |
672bba3a | 4975 | * If we are Redzoning then check if there is some space between the |
81819f0f | 4976 | * end of the object and the free pointer. If not then add an |
672bba3a | 4977 | * additional word to have some bytes to store Redzone information. |
81819f0f | 4978 | */ |
3b0efdfa | 4979 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 4980 | size += sizeof(void *); |
41ecc55b | 4981 | #endif |
81819f0f CL |
4982 | |
4983 | /* | |
672bba3a | 4984 | * With that we have determined the number of bytes in actual use |
e41a49fa | 4985 | * by the object and redzoning. |
81819f0f CL |
4986 | */ |
4987 | s->inuse = size; | |
4988 | ||
946fa0db FT |
4989 | if (slub_debug_orig_size(s) || |
4990 | (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | |
74c1d3e0 KC |
4991 | ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || |
4992 | s->ctor) { | |
81819f0f CL |
4993 | /* |
4994 | * Relocate free pointer after the object if it is not | |
4995 | * permitted to overwrite the first word of the object on | |
4996 | * kmem_cache_free. | |
4997 | * | |
4998 | * This is the case if we do RCU, have a constructor or | |
74c1d3e0 KC |
4999 | * destructor, are poisoning the objects, or are |
5000 | * redzoning an object smaller than sizeof(void *). | |
cbfc35a4 WL |
5001 | * |
5002 | * The assumption that s->offset >= s->inuse means free | |
5003 | * pointer is outside of the object is used in the | |
5004 | * freeptr_outside_object() function. If that is no | |
5005 | * longer true, the function needs to be modified. | |
81819f0f CL |
5006 | */ |
5007 | s->offset = size; | |
5008 | size += sizeof(void *); | |
e41a49fa | 5009 | } else { |
3202fa62 KC |
5010 | /* |
5011 | * Store freelist pointer near middle of object to keep | |
5012 | * it away from the edges of the object to avoid small | |
5013 | * sized over/underflows from neighboring allocations. | |
5014 | */ | |
e41a49fa | 5015 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); |
81819f0f CL |
5016 | } |
5017 | ||
c12b3c62 | 5018 | #ifdef CONFIG_SLUB_DEBUG |
6edf2576 | 5019 | if (flags & SLAB_STORE_USER) { |
81819f0f CL |
5020 | /* |
5021 | * Need to store information about allocs and frees after | |
5022 | * the object. | |
5023 | */ | |
5024 | size += 2 * sizeof(struct track); | |
6edf2576 FT |
5025 | |
5026 | /* Save the original kmalloc request size */ | |
5027 | if (flags & SLAB_KMALLOC) | |
5028 | size += sizeof(unsigned int); | |
5029 | } | |
80a9201a | 5030 | #endif |
81819f0f | 5031 | |
80a9201a AP |
5032 | kasan_cache_create(s, &size, &s->flags); |
5033 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 5034 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
5035 | /* |
5036 | * Add some empty padding so that we can catch | |
5037 | * overwrites from earlier objects rather than let | |
5038 | * tracking information or the free pointer be | |
0211a9c8 | 5039 | * corrupted if a user writes before the start |
81819f0f CL |
5040 | * of the object. |
5041 | */ | |
5042 | size += sizeof(void *); | |
d86bd1be JK |
5043 | |
5044 | s->red_left_pad = sizeof(void *); | |
5045 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
5046 | size += s->red_left_pad; | |
5047 | } | |
41ecc55b | 5048 | #endif |
672bba3a | 5049 | |
81819f0f CL |
5050 | /* |
5051 | * SLUB stores one object immediately after another beginning from | |
5052 | * offset 0. In order to align the objects we have to simply size | |
5053 | * each object to conform to the alignment. | |
5054 | */ | |
45906855 | 5055 | size = ALIGN(size, s->align); |
81819f0f | 5056 | s->size = size; |
4138fdfc | 5057 | s->reciprocal_size = reciprocal_value(size); |
ae44d81d | 5058 | order = calculate_order(size); |
81819f0f | 5059 | |
19af27af | 5060 | if ((int)order < 0) |
81819f0f CL |
5061 | return 0; |
5062 | ||
b7a49f0d | 5063 | s->allocflags = 0; |
834f3d11 | 5064 | if (order) |
b7a49f0d CL |
5065 | s->allocflags |= __GFP_COMP; |
5066 | ||
5067 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 5068 | s->allocflags |= GFP_DMA; |
b7a49f0d | 5069 | |
6d6ea1e9 NB |
5070 | if (s->flags & SLAB_CACHE_DMA32) |
5071 | s->allocflags |= GFP_DMA32; | |
5072 | ||
b7a49f0d CL |
5073 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5074 | s->allocflags |= __GFP_RECLAIMABLE; | |
5075 | ||
81819f0f CL |
5076 | /* |
5077 | * Determine the number of objects per slab | |
5078 | */ | |
9736d2a9 MW |
5079 | s->oo = oo_make(order, size); |
5080 | s->min = oo_make(get_order(size), size); | |
81819f0f | 5081 | |
834f3d11 | 5082 | return !!oo_objects(s->oo); |
81819f0f CL |
5083 | } |
5084 | ||
d50112ed | 5085 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 5086 | { |
303cd693 | 5087 | s->flags = kmem_cache_flags(flags, s->name); |
2482ddec KC |
5088 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
5089 | s->random = get_random_long(); | |
5090 | #endif | |
81819f0f | 5091 | |
ae44d81d | 5092 | if (!calculate_sizes(s)) |
81819f0f | 5093 | goto error; |
3de47213 DR |
5094 | if (disable_higher_order_debug) { |
5095 | /* | |
5096 | * Disable debugging flags that store metadata if the min slab | |
5097 | * order increased. | |
5098 | */ | |
3b0efdfa | 5099 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
5100 | s->flags &= ~DEBUG_METADATA_FLAGS; |
5101 | s->offset = 0; | |
ae44d81d | 5102 | if (!calculate_sizes(s)) |
3de47213 DR |
5103 | goto error; |
5104 | } | |
5105 | } | |
81819f0f | 5106 | |
6801be4f PZ |
5107 | #ifdef system_has_freelist_aba |
5108 | if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { | |
b789ef51 CL |
5109 | /* Enable fast mode */ |
5110 | s->flags |= __CMPXCHG_DOUBLE; | |
6801be4f | 5111 | } |
b789ef51 CL |
5112 | #endif |
5113 | ||
3b89d7d8 | 5114 | /* |
c2092c12 | 5115 | * The larger the object size is, the more slabs we want on the partial |
3b89d7d8 DR |
5116 | * list to avoid pounding the page allocator excessively. |
5117 | */ | |
5182f3c9 HY |
5118 | s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); |
5119 | s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); | |
49e22585 | 5120 | |
e6d0e1dc | 5121 | set_cpu_partial(s); |
49e22585 | 5122 | |
81819f0f | 5123 | #ifdef CONFIG_NUMA |
e2cb96b7 | 5124 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 5125 | #endif |
210e7a43 TG |
5126 | |
5127 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
5128 | if (slab_state >= UP) { | |
5129 | if (init_cache_random_seq(s)) | |
5130 | goto error; | |
5131 | } | |
5132 | ||
55136592 | 5133 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 5134 | goto error; |
81819f0f | 5135 | |
55136592 | 5136 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 5137 | return 0; |
ff12059e | 5138 | |
81819f0f | 5139 | error: |
9037c576 | 5140 | __kmem_cache_release(s); |
278b1bb1 | 5141 | return -EINVAL; |
81819f0f | 5142 | } |
81819f0f | 5143 | |
bb192ed9 | 5144 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab, |
55860d96 | 5145 | const char *text) |
33b12c38 CL |
5146 | { |
5147 | #ifdef CONFIG_SLUB_DEBUG | |
bb192ed9 | 5148 | void *addr = slab_address(slab); |
33b12c38 | 5149 | void *p; |
aa456c7a | 5150 | |
bb192ed9 | 5151 | slab_err(s, slab, text, s->name); |
33b12c38 | 5152 | |
4ef3f5a3 VB |
5153 | spin_lock(&object_map_lock); |
5154 | __fill_map(object_map, s, slab); | |
5155 | ||
bb192ed9 | 5156 | for_each_object(p, s, addr, slab->objects) { |
33b12c38 | 5157 | |
4ef3f5a3 | 5158 | if (!test_bit(__obj_to_index(s, addr, p), object_map)) { |
96b94abc | 5159 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
5160 | print_tracking(s, p); |
5161 | } | |
5162 | } | |
4ef3f5a3 | 5163 | spin_unlock(&object_map_lock); |
33b12c38 CL |
5164 | #endif |
5165 | } | |
5166 | ||
81819f0f | 5167 | /* |
599870b1 | 5168 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
5169 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
5170 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 5171 | */ |
599870b1 | 5172 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 5173 | { |
60398923 | 5174 | LIST_HEAD(discard); |
bb192ed9 | 5175 | struct slab *slab, *h; |
81819f0f | 5176 | |
52b4b950 DS |
5177 | BUG_ON(irqs_disabled()); |
5178 | spin_lock_irq(&n->list_lock); | |
bb192ed9 VB |
5179 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { |
5180 | if (!slab->inuse) { | |
5181 | remove_partial(n, slab); | |
5182 | list_add(&slab->slab_list, &discard); | |
33b12c38 | 5183 | } else { |
bb192ed9 | 5184 | list_slab_objects(s, slab, |
55860d96 | 5185 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 5186 | } |
33b12c38 | 5187 | } |
52b4b950 | 5188 | spin_unlock_irq(&n->list_lock); |
60398923 | 5189 | |
bb192ed9 VB |
5190 | list_for_each_entry_safe(slab, h, &discard, slab_list) |
5191 | discard_slab(s, slab); | |
81819f0f CL |
5192 | } |
5193 | ||
f9e13c0a SB |
5194 | bool __kmem_cache_empty(struct kmem_cache *s) |
5195 | { | |
5196 | int node; | |
5197 | struct kmem_cache_node *n; | |
5198 | ||
5199 | for_each_kmem_cache_node(s, node, n) | |
4f174a8b | 5200 | if (n->nr_partial || node_nr_slabs(n)) |
f9e13c0a SB |
5201 | return false; |
5202 | return true; | |
5203 | } | |
5204 | ||
81819f0f | 5205 | /* |
672bba3a | 5206 | * Release all resources used by a slab cache. |
81819f0f | 5207 | */ |
52b4b950 | 5208 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
5209 | { |
5210 | int node; | |
fa45dc25 | 5211 | struct kmem_cache_node *n; |
81819f0f | 5212 | |
5a836bf6 | 5213 | flush_all_cpus_locked(s); |
81819f0f | 5214 | /* Attempt to free all objects */ |
fa45dc25 | 5215 | for_each_kmem_cache_node(s, node, n) { |
599870b1 | 5216 | free_partial(s, n); |
4f174a8b | 5217 | if (n->nr_partial || node_nr_slabs(n)) |
81819f0f CL |
5218 | return 1; |
5219 | } | |
81819f0f CL |
5220 | return 0; |
5221 | } | |
5222 | ||
5bb1bb35 | 5223 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 5224 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
5225 | { |
5226 | void *base; | |
5227 | int __maybe_unused i; | |
5228 | unsigned int objnr; | |
5229 | void *objp; | |
5230 | void *objp0; | |
7213230a | 5231 | struct kmem_cache *s = slab->slab_cache; |
8e7f37f2 PM |
5232 | struct track __maybe_unused *trackp; |
5233 | ||
5234 | kpp->kp_ptr = object; | |
7213230a | 5235 | kpp->kp_slab = slab; |
8e7f37f2 | 5236 | kpp->kp_slab_cache = s; |
7213230a | 5237 | base = slab_address(slab); |
8e7f37f2 PM |
5238 | objp0 = kasan_reset_tag(object); |
5239 | #ifdef CONFIG_SLUB_DEBUG | |
5240 | objp = restore_red_left(s, objp0); | |
5241 | #else | |
5242 | objp = objp0; | |
5243 | #endif | |
40f3bf0c | 5244 | objnr = obj_to_index(s, slab, objp); |
8e7f37f2 PM |
5245 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); |
5246 | objp = base + s->size * objnr; | |
5247 | kpp->kp_objp = objp; | |
7213230a MWO |
5248 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size |
5249 | || (objp - base) % s->size) || | |
8e7f37f2 PM |
5250 | !(s->flags & SLAB_STORE_USER)) |
5251 | return; | |
5252 | #ifdef CONFIG_SLUB_DEBUG | |
0cbc124b | 5253 | objp = fixup_red_left(s, objp); |
8e7f37f2 PM |
5254 | trackp = get_track(s, objp, TRACK_ALLOC); |
5255 | kpp->kp_ret = (void *)trackp->addr; | |
5cf909c5 OG |
5256 | #ifdef CONFIG_STACKDEPOT |
5257 | { | |
5258 | depot_stack_handle_t handle; | |
5259 | unsigned long *entries; | |
5260 | unsigned int nr_entries; | |
78869146 | 5261 | |
5cf909c5 OG |
5262 | handle = READ_ONCE(trackp->handle); |
5263 | if (handle) { | |
5264 | nr_entries = stack_depot_fetch(handle, &entries); | |
5265 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5266 | kpp->kp_stack[i] = (void *)entries[i]; | |
5267 | } | |
78869146 | 5268 | |
5cf909c5 OG |
5269 | trackp = get_track(s, objp, TRACK_FREE); |
5270 | handle = READ_ONCE(trackp->handle); | |
5271 | if (handle) { | |
5272 | nr_entries = stack_depot_fetch(handle, &entries); | |
5273 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5274 | kpp->kp_free_stack[i] = (void *)entries[i]; | |
5275 | } | |
e548eaa1 | 5276 | } |
8e7f37f2 PM |
5277 | #endif |
5278 | #endif | |
5279 | } | |
5bb1bb35 | 5280 | #endif |
8e7f37f2 | 5281 | |
81819f0f CL |
5282 | /******************************************************************** |
5283 | * Kmalloc subsystem | |
5284 | *******************************************************************/ | |
5285 | ||
81819f0f CL |
5286 | static int __init setup_slub_min_order(char *str) |
5287 | { | |
19af27af | 5288 | get_option(&str, (int *)&slub_min_order); |
81819f0f | 5289 | |
e519ce7a FT |
5290 | if (slub_min_order > slub_max_order) |
5291 | slub_max_order = slub_min_order; | |
5292 | ||
81819f0f CL |
5293 | return 1; |
5294 | } | |
5295 | ||
671776b3 XS |
5296 | __setup("slab_min_order=", setup_slub_min_order); |
5297 | __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); | |
5298 | ||
81819f0f CL |
5299 | |
5300 | static int __init setup_slub_max_order(char *str) | |
5301 | { | |
19af27af | 5302 | get_option(&str, (int *)&slub_max_order); |
5e0a760b | 5303 | slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); |
81819f0f | 5304 | |
e519ce7a FT |
5305 | if (slub_min_order > slub_max_order) |
5306 | slub_min_order = slub_max_order; | |
5307 | ||
81819f0f CL |
5308 | return 1; |
5309 | } | |
5310 | ||
671776b3 XS |
5311 | __setup("slab_max_order=", setup_slub_max_order); |
5312 | __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); | |
81819f0f CL |
5313 | |
5314 | static int __init setup_slub_min_objects(char *str) | |
5315 | { | |
19af27af | 5316 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
5317 | |
5318 | return 1; | |
5319 | } | |
5320 | ||
671776b3 XS |
5321 | __setup("slab_min_objects=", setup_slub_min_objects); |
5322 | __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); | |
81819f0f | 5323 | |
ed18adc1 KC |
5324 | #ifdef CONFIG_HARDENED_USERCOPY |
5325 | /* | |
afcc90f8 KC |
5326 | * Rejects incorrectly sized objects and objects that are to be copied |
5327 | * to/from userspace but do not fall entirely within the containing slab | |
5328 | * cache's usercopy region. | |
ed18adc1 KC |
5329 | * |
5330 | * Returns NULL if check passes, otherwise const char * to name of cache | |
5331 | * to indicate an error. | |
5332 | */ | |
0b3eb091 MWO |
5333 | void __check_heap_object(const void *ptr, unsigned long n, |
5334 | const struct slab *slab, bool to_user) | |
ed18adc1 KC |
5335 | { |
5336 | struct kmem_cache *s; | |
44065b2e | 5337 | unsigned int offset; |
b89fb5ef | 5338 | bool is_kfence = is_kfence_address(ptr); |
ed18adc1 | 5339 | |
96fedce2 AK |
5340 | ptr = kasan_reset_tag(ptr); |
5341 | ||
ed18adc1 | 5342 | /* Find object and usable object size. */ |
0b3eb091 | 5343 | s = slab->slab_cache; |
ed18adc1 KC |
5344 | |
5345 | /* Reject impossible pointers. */ | |
0b3eb091 | 5346 | if (ptr < slab_address(slab)) |
f4e6e289 KC |
5347 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
5348 | to_user, 0, n); | |
ed18adc1 KC |
5349 | |
5350 | /* Find offset within object. */ | |
b89fb5ef AP |
5351 | if (is_kfence) |
5352 | offset = ptr - kfence_object_start(ptr); | |
5353 | else | |
0b3eb091 | 5354 | offset = (ptr - slab_address(slab)) % s->size; |
ed18adc1 KC |
5355 | |
5356 | /* Adjust for redzone and reject if within the redzone. */ | |
b89fb5ef | 5357 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { |
ed18adc1 | 5358 | if (offset < s->red_left_pad) |
f4e6e289 KC |
5359 | usercopy_abort("SLUB object in left red zone", |
5360 | s->name, to_user, offset, n); | |
ed18adc1 KC |
5361 | offset -= s->red_left_pad; |
5362 | } | |
5363 | ||
afcc90f8 KC |
5364 | /* Allow address range falling entirely within usercopy region. */ |
5365 | if (offset >= s->useroffset && | |
5366 | offset - s->useroffset <= s->usersize && | |
5367 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 5368 | return; |
ed18adc1 | 5369 | |
f4e6e289 | 5370 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
5371 | } |
5372 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
5373 | ||
832f37f5 VD |
5374 | #define SHRINK_PROMOTE_MAX 32 |
5375 | ||
2086d26a | 5376 | /* |
832f37f5 VD |
5377 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
5378 | * up most to the head of the partial lists. New allocations will then | |
5379 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
5380 | * |
5381 | * The slabs with the least items are placed last. This results in them | |
5382 | * being allocated from last increasing the chance that the last objects | |
5383 | * are freed in them. | |
2086d26a | 5384 | */ |
5a836bf6 | 5385 | static int __kmem_cache_do_shrink(struct kmem_cache *s) |
2086d26a CL |
5386 | { |
5387 | int node; | |
5388 | int i; | |
5389 | struct kmem_cache_node *n; | |
bb192ed9 VB |
5390 | struct slab *slab; |
5391 | struct slab *t; | |
832f37f5 VD |
5392 | struct list_head discard; |
5393 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 5394 | unsigned long flags; |
ce3712d7 | 5395 | int ret = 0; |
2086d26a | 5396 | |
fa45dc25 | 5397 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
5398 | INIT_LIST_HEAD(&discard); |
5399 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
5400 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
5401 | |
5402 | spin_lock_irqsave(&n->list_lock, flags); | |
5403 | ||
5404 | /* | |
832f37f5 | 5405 | * Build lists of slabs to discard or promote. |
2086d26a | 5406 | * |
672bba3a | 5407 | * Note that concurrent frees may occur while we hold the |
c2092c12 | 5408 | * list_lock. slab->inuse here is the upper limit. |
2086d26a | 5409 | */ |
bb192ed9 VB |
5410 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { |
5411 | int free = slab->objects - slab->inuse; | |
832f37f5 | 5412 | |
c2092c12 | 5413 | /* Do not reread slab->inuse */ |
832f37f5 VD |
5414 | barrier(); |
5415 | ||
5416 | /* We do not keep full slabs on the list */ | |
5417 | BUG_ON(free <= 0); | |
5418 | ||
bb192ed9 VB |
5419 | if (free == slab->objects) { |
5420 | list_move(&slab->slab_list, &discard); | |
8a399e2f | 5421 | slab_clear_node_partial(slab); |
69cb8e6b | 5422 | n->nr_partial--; |
c7323a5a | 5423 | dec_slabs_node(s, node, slab->objects); |
832f37f5 | 5424 | } else if (free <= SHRINK_PROMOTE_MAX) |
bb192ed9 | 5425 | list_move(&slab->slab_list, promote + free - 1); |
2086d26a CL |
5426 | } |
5427 | ||
2086d26a | 5428 | /* |
832f37f5 VD |
5429 | * Promote the slabs filled up most to the head of the |
5430 | * partial list. | |
2086d26a | 5431 | */ |
832f37f5 VD |
5432 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
5433 | list_splice(promote + i, &n->partial); | |
2086d26a | 5434 | |
2086d26a | 5435 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
5436 | |
5437 | /* Release empty slabs */ | |
bb192ed9 | 5438 | list_for_each_entry_safe(slab, t, &discard, slab_list) |
c7323a5a | 5439 | free_slab(s, slab); |
ce3712d7 | 5440 | |
4f174a8b | 5441 | if (node_nr_slabs(n)) |
ce3712d7 | 5442 | ret = 1; |
2086d26a CL |
5443 | } |
5444 | ||
ce3712d7 | 5445 | return ret; |
2086d26a | 5446 | } |
2086d26a | 5447 | |
5a836bf6 SAS |
5448 | int __kmem_cache_shrink(struct kmem_cache *s) |
5449 | { | |
5450 | flush_all(s); | |
5451 | return __kmem_cache_do_shrink(s); | |
5452 | } | |
5453 | ||
b9049e23 YG |
5454 | static int slab_mem_going_offline_callback(void *arg) |
5455 | { | |
5456 | struct kmem_cache *s; | |
5457 | ||
18004c5d | 5458 | mutex_lock(&slab_mutex); |
5a836bf6 SAS |
5459 | list_for_each_entry(s, &slab_caches, list) { |
5460 | flush_all_cpus_locked(s); | |
5461 | __kmem_cache_do_shrink(s); | |
5462 | } | |
18004c5d | 5463 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5464 | |
5465 | return 0; | |
5466 | } | |
5467 | ||
5468 | static void slab_mem_offline_callback(void *arg) | |
5469 | { | |
b9049e23 YG |
5470 | struct memory_notify *marg = arg; |
5471 | int offline_node; | |
5472 | ||
b9d5ab25 | 5473 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
5474 | |
5475 | /* | |
5476 | * If the node still has available memory. we need kmem_cache_node | |
5477 | * for it yet. | |
5478 | */ | |
5479 | if (offline_node < 0) | |
5480 | return; | |
5481 | ||
18004c5d | 5482 | mutex_lock(&slab_mutex); |
7e1fa93d | 5483 | node_clear(offline_node, slab_nodes); |
666716fd VB |
5484 | /* |
5485 | * We no longer free kmem_cache_node structures here, as it would be | |
5486 | * racy with all get_node() users, and infeasible to protect them with | |
5487 | * slab_mutex. | |
5488 | */ | |
18004c5d | 5489 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5490 | } |
5491 | ||
5492 | static int slab_mem_going_online_callback(void *arg) | |
5493 | { | |
5494 | struct kmem_cache_node *n; | |
5495 | struct kmem_cache *s; | |
5496 | struct memory_notify *marg = arg; | |
b9d5ab25 | 5497 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
5498 | int ret = 0; |
5499 | ||
5500 | /* | |
5501 | * If the node's memory is already available, then kmem_cache_node is | |
5502 | * already created. Nothing to do. | |
5503 | */ | |
5504 | if (nid < 0) | |
5505 | return 0; | |
5506 | ||
5507 | /* | |
0121c619 | 5508 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
5509 | * allocate a kmem_cache_node structure in order to bring the node |
5510 | * online. | |
5511 | */ | |
18004c5d | 5512 | mutex_lock(&slab_mutex); |
b9049e23 | 5513 | list_for_each_entry(s, &slab_caches, list) { |
666716fd VB |
5514 | /* |
5515 | * The structure may already exist if the node was previously | |
5516 | * onlined and offlined. | |
5517 | */ | |
5518 | if (get_node(s, nid)) | |
5519 | continue; | |
b9049e23 YG |
5520 | /* |
5521 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
5522 | * since memory is not yet available from the node that | |
5523 | * is brought up. | |
5524 | */ | |
8de66a0c | 5525 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
5526 | if (!n) { |
5527 | ret = -ENOMEM; | |
5528 | goto out; | |
5529 | } | |
4053497d | 5530 | init_kmem_cache_node(n); |
b9049e23 YG |
5531 | s->node[nid] = n; |
5532 | } | |
7e1fa93d VB |
5533 | /* |
5534 | * Any cache created after this point will also have kmem_cache_node | |
5535 | * initialized for the new node. | |
5536 | */ | |
5537 | node_set(nid, slab_nodes); | |
b9049e23 | 5538 | out: |
18004c5d | 5539 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
5540 | return ret; |
5541 | } | |
5542 | ||
5543 | static int slab_memory_callback(struct notifier_block *self, | |
5544 | unsigned long action, void *arg) | |
5545 | { | |
5546 | int ret = 0; | |
5547 | ||
5548 | switch (action) { | |
5549 | case MEM_GOING_ONLINE: | |
5550 | ret = slab_mem_going_online_callback(arg); | |
5551 | break; | |
5552 | case MEM_GOING_OFFLINE: | |
5553 | ret = slab_mem_going_offline_callback(arg); | |
5554 | break; | |
5555 | case MEM_OFFLINE: | |
5556 | case MEM_CANCEL_ONLINE: | |
5557 | slab_mem_offline_callback(arg); | |
5558 | break; | |
5559 | case MEM_ONLINE: | |
5560 | case MEM_CANCEL_OFFLINE: | |
5561 | break; | |
5562 | } | |
dc19f9db KH |
5563 | if (ret) |
5564 | ret = notifier_from_errno(ret); | |
5565 | else | |
5566 | ret = NOTIFY_OK; | |
b9049e23 YG |
5567 | return ret; |
5568 | } | |
5569 | ||
81819f0f CL |
5570 | /******************************************************************** |
5571 | * Basic setup of slabs | |
5572 | *******************************************************************/ | |
5573 | ||
51df1142 CL |
5574 | /* |
5575 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
5576 | * the page allocator. Allocate them properly then fix up the pointers |
5577 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
5578 | */ |
5579 | ||
dffb4d60 | 5580 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
5581 | { |
5582 | int node; | |
dffb4d60 | 5583 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 5584 | struct kmem_cache_node *n; |
51df1142 | 5585 | |
dffb4d60 | 5586 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 5587 | |
7d557b3c GC |
5588 | /* |
5589 | * This runs very early, and only the boot processor is supposed to be | |
5590 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
5591 | * IPIs around. | |
5592 | */ | |
5593 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 5594 | for_each_kmem_cache_node(s, node, n) { |
bb192ed9 | 5595 | struct slab *p; |
51df1142 | 5596 | |
916ac052 | 5597 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 5598 | p->slab_cache = s; |
51df1142 | 5599 | |
607bf324 | 5600 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 5601 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 5602 | p->slab_cache = s; |
51df1142 | 5603 | #endif |
51df1142 | 5604 | } |
dffb4d60 CL |
5605 | list_add(&s->list, &slab_caches); |
5606 | return s; | |
51df1142 CL |
5607 | } |
5608 | ||
81819f0f CL |
5609 | void __init kmem_cache_init(void) |
5610 | { | |
dffb4d60 CL |
5611 | static __initdata struct kmem_cache boot_kmem_cache, |
5612 | boot_kmem_cache_node; | |
7e1fa93d | 5613 | int node; |
51df1142 | 5614 | |
fc8d8620 SG |
5615 | if (debug_guardpage_minorder()) |
5616 | slub_max_order = 0; | |
5617 | ||
79270291 SB |
5618 | /* Print slub debugging pointers without hashing */ |
5619 | if (__slub_debug_enabled()) | |
5620 | no_hash_pointers_enable(NULL); | |
5621 | ||
dffb4d60 CL |
5622 | kmem_cache_node = &boot_kmem_cache_node; |
5623 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 5624 | |
7e1fa93d VB |
5625 | /* |
5626 | * Initialize the nodemask for which we will allocate per node | |
5627 | * structures. Here we don't need taking slab_mutex yet. | |
5628 | */ | |
5629 | for_each_node_state(node, N_NORMAL_MEMORY) | |
5630 | node_set(node, slab_nodes); | |
5631 | ||
dffb4d60 | 5632 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 5633 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 5634 | |
946d5f9c | 5635 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
5636 | |
5637 | /* Able to allocate the per node structures */ | |
5638 | slab_state = PARTIAL; | |
5639 | ||
dffb4d60 CL |
5640 | create_boot_cache(kmem_cache, "kmem_cache", |
5641 | offsetof(struct kmem_cache, node) + | |
5642 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 5643 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 5644 | |
dffb4d60 | 5645 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 5646 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
5647 | |
5648 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 5649 | setup_kmalloc_cache_index_table(); |
66b3dc1f | 5650 | create_kmalloc_caches(); |
81819f0f | 5651 | |
210e7a43 TG |
5652 | /* Setup random freelists for each cache */ |
5653 | init_freelist_randomization(); | |
5654 | ||
a96a87bf SAS |
5655 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
5656 | slub_cpu_dead); | |
81819f0f | 5657 | |
b9726c26 | 5658 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 5659 | cache_line_size(), |
81819f0f CL |
5660 | slub_min_order, slub_max_order, slub_min_objects, |
5661 | nr_cpu_ids, nr_node_ids); | |
5662 | } | |
5663 | ||
7e85ee0c PE |
5664 | void __init kmem_cache_init_late(void) |
5665 | { | |
0af8489b | 5666 | #ifndef CONFIG_SLUB_TINY |
e45cc288 ML |
5667 | flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); |
5668 | WARN_ON(!flushwq); | |
0af8489b | 5669 | #endif |
7e85ee0c PE |
5670 | } |
5671 | ||
2633d7a0 | 5672 | struct kmem_cache * |
f4957d5b | 5673 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 5674 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 5675 | { |
10befea9 | 5676 | struct kmem_cache *s; |
81819f0f | 5677 | |
a44cb944 | 5678 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 5679 | if (s) { |
efb93527 XS |
5680 | if (sysfs_slab_alias(s, name)) |
5681 | return NULL; | |
5682 | ||
81819f0f | 5683 | s->refcount++; |
84d0ddd6 | 5684 | |
81819f0f CL |
5685 | /* |
5686 | * Adjust the object sizes so that we clear | |
5687 | * the complete object on kzalloc. | |
5688 | */ | |
1b473f29 | 5689 | s->object_size = max(s->object_size, size); |
52ee6d74 | 5690 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 5691 | } |
6446faa2 | 5692 | |
cbb79694 CL |
5693 | return s; |
5694 | } | |
84c1cf62 | 5695 | |
d50112ed | 5696 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 5697 | { |
aac3a166 PE |
5698 | int err; |
5699 | ||
5700 | err = kmem_cache_open(s, flags); | |
5701 | if (err) | |
5702 | return err; | |
20cea968 | 5703 | |
45530c44 CL |
5704 | /* Mutex is not taken during early boot */ |
5705 | if (slab_state <= UP) | |
5706 | return 0; | |
5707 | ||
aac3a166 | 5708 | err = sysfs_slab_add(s); |
67823a54 | 5709 | if (err) { |
52b4b950 | 5710 | __kmem_cache_release(s); |
67823a54 ML |
5711 | return err; |
5712 | } | |
20cea968 | 5713 | |
64dd6849 FM |
5714 | if (s->flags & SLAB_STORE_USER) |
5715 | debugfs_slab_add(s); | |
5716 | ||
67823a54 | 5717 | return 0; |
81819f0f | 5718 | } |
81819f0f | 5719 | |
b1a413a3 | 5720 | #ifdef SLAB_SUPPORTS_SYSFS |
bb192ed9 | 5721 | static int count_inuse(struct slab *slab) |
205ab99d | 5722 | { |
bb192ed9 | 5723 | return slab->inuse; |
205ab99d CL |
5724 | } |
5725 | ||
bb192ed9 | 5726 | static int count_total(struct slab *slab) |
205ab99d | 5727 | { |
bb192ed9 | 5728 | return slab->objects; |
205ab99d | 5729 | } |
ab4d5ed5 | 5730 | #endif |
205ab99d | 5731 | |
ab4d5ed5 | 5732 | #ifdef CONFIG_SLUB_DEBUG |
bb192ed9 | 5733 | static void validate_slab(struct kmem_cache *s, struct slab *slab, |
0a19e7dd | 5734 | unsigned long *obj_map) |
53e15af0 CL |
5735 | { |
5736 | void *p; | |
bb192ed9 | 5737 | void *addr = slab_address(slab); |
53e15af0 | 5738 | |
bb192ed9 | 5739 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) |
41bec7c3 | 5740 | return; |
53e15af0 CL |
5741 | |
5742 | /* Now we know that a valid freelist exists */ | |
bb192ed9 VB |
5743 | __fill_map(obj_map, s, slab); |
5744 | for_each_object(p, s, addr, slab->objects) { | |
0a19e7dd | 5745 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? |
dd98afd4 | 5746 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; |
53e15af0 | 5747 | |
bb192ed9 | 5748 | if (!check_object(s, slab, p, val)) |
dd98afd4 YZ |
5749 | break; |
5750 | } | |
53e15af0 CL |
5751 | } |
5752 | ||
434e245d | 5753 | static int validate_slab_node(struct kmem_cache *s, |
0a19e7dd | 5754 | struct kmem_cache_node *n, unsigned long *obj_map) |
53e15af0 CL |
5755 | { |
5756 | unsigned long count = 0; | |
bb192ed9 | 5757 | struct slab *slab; |
53e15af0 CL |
5758 | unsigned long flags; |
5759 | ||
5760 | spin_lock_irqsave(&n->list_lock, flags); | |
5761 | ||
bb192ed9 VB |
5762 | list_for_each_entry(slab, &n->partial, slab_list) { |
5763 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5764 | count++; |
5765 | } | |
1f9f78b1 | 5766 | if (count != n->nr_partial) { |
f9f58285 FF |
5767 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
5768 | s->name, count, n->nr_partial); | |
1f9f78b1 OG |
5769 | slab_add_kunit_errors(); |
5770 | } | |
53e15af0 CL |
5771 | |
5772 | if (!(s->flags & SLAB_STORE_USER)) | |
5773 | goto out; | |
5774 | ||
bb192ed9 VB |
5775 | list_for_each_entry(slab, &n->full, slab_list) { |
5776 | validate_slab(s, slab, obj_map); | |
53e15af0 CL |
5777 | count++; |
5778 | } | |
8040cbf5 | 5779 | if (count != node_nr_slabs(n)) { |
f9f58285 | 5780 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
8040cbf5 | 5781 | s->name, count, node_nr_slabs(n)); |
1f9f78b1 OG |
5782 | slab_add_kunit_errors(); |
5783 | } | |
53e15af0 CL |
5784 | |
5785 | out: | |
5786 | spin_unlock_irqrestore(&n->list_lock, flags); | |
5787 | return count; | |
5788 | } | |
5789 | ||
1f9f78b1 | 5790 | long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
5791 | { |
5792 | int node; | |
5793 | unsigned long count = 0; | |
fa45dc25 | 5794 | struct kmem_cache_node *n; |
0a19e7dd VB |
5795 | unsigned long *obj_map; |
5796 | ||
5797 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
5798 | if (!obj_map) | |
5799 | return -ENOMEM; | |
53e15af0 CL |
5800 | |
5801 | flush_all(s); | |
fa45dc25 | 5802 | for_each_kmem_cache_node(s, node, n) |
0a19e7dd VB |
5803 | count += validate_slab_node(s, n, obj_map); |
5804 | ||
5805 | bitmap_free(obj_map); | |
90e9f6a6 | 5806 | |
53e15af0 CL |
5807 | return count; |
5808 | } | |
1f9f78b1 OG |
5809 | EXPORT_SYMBOL(validate_slab_cache); |
5810 | ||
64dd6849 | 5811 | #ifdef CONFIG_DEBUG_FS |
88a420e4 | 5812 | /* |
672bba3a | 5813 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
5814 | * and freed. |
5815 | */ | |
5816 | ||
5817 | struct location { | |
8ea9fb92 | 5818 | depot_stack_handle_t handle; |
88a420e4 | 5819 | unsigned long count; |
ce71e27c | 5820 | unsigned long addr; |
6edf2576 | 5821 | unsigned long waste; |
45edfa58 CL |
5822 | long long sum_time; |
5823 | long min_time; | |
5824 | long max_time; | |
5825 | long min_pid; | |
5826 | long max_pid; | |
174596a0 | 5827 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 5828 | nodemask_t nodes; |
88a420e4 CL |
5829 | }; |
5830 | ||
5831 | struct loc_track { | |
5832 | unsigned long max; | |
5833 | unsigned long count; | |
5834 | struct location *loc; | |
005a79e5 | 5835 | loff_t idx; |
88a420e4 CL |
5836 | }; |
5837 | ||
64dd6849 FM |
5838 | static struct dentry *slab_debugfs_root; |
5839 | ||
88a420e4 CL |
5840 | static void free_loc_track(struct loc_track *t) |
5841 | { | |
5842 | if (t->max) | |
5843 | free_pages((unsigned long)t->loc, | |
5844 | get_order(sizeof(struct location) * t->max)); | |
5845 | } | |
5846 | ||
68dff6a9 | 5847 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
5848 | { |
5849 | struct location *l; | |
5850 | int order; | |
5851 | ||
88a420e4 CL |
5852 | order = get_order(sizeof(struct location) * max); |
5853 | ||
68dff6a9 | 5854 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
5855 | if (!l) |
5856 | return 0; | |
5857 | ||
5858 | if (t->count) { | |
5859 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
5860 | free_loc_track(t); | |
5861 | } | |
5862 | t->max = max; | |
5863 | t->loc = l; | |
5864 | return 1; | |
5865 | } | |
5866 | ||
5867 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
6edf2576 FT |
5868 | const struct track *track, |
5869 | unsigned int orig_size) | |
88a420e4 CL |
5870 | { |
5871 | long start, end, pos; | |
5872 | struct location *l; | |
6edf2576 | 5873 | unsigned long caddr, chandle, cwaste; |
45edfa58 | 5874 | unsigned long age = jiffies - track->when; |
8ea9fb92 | 5875 | depot_stack_handle_t handle = 0; |
6edf2576 | 5876 | unsigned int waste = s->object_size - orig_size; |
88a420e4 | 5877 | |
8ea9fb92 OG |
5878 | #ifdef CONFIG_STACKDEPOT |
5879 | handle = READ_ONCE(track->handle); | |
5880 | #endif | |
88a420e4 CL |
5881 | start = -1; |
5882 | end = t->count; | |
5883 | ||
5884 | for ( ; ; ) { | |
5885 | pos = start + (end - start + 1) / 2; | |
5886 | ||
5887 | /* | |
5888 | * There is nothing at "end". If we end up there | |
5889 | * we need to add something to before end. | |
5890 | */ | |
5891 | if (pos == end) | |
5892 | break; | |
5893 | ||
6edf2576 FT |
5894 | l = &t->loc[pos]; |
5895 | caddr = l->addr; | |
5896 | chandle = l->handle; | |
5897 | cwaste = l->waste; | |
5898 | if ((track->addr == caddr) && (handle == chandle) && | |
5899 | (waste == cwaste)) { | |
45edfa58 | 5900 | |
45edfa58 CL |
5901 | l->count++; |
5902 | if (track->when) { | |
5903 | l->sum_time += age; | |
5904 | if (age < l->min_time) | |
5905 | l->min_time = age; | |
5906 | if (age > l->max_time) | |
5907 | l->max_time = age; | |
5908 | ||
5909 | if (track->pid < l->min_pid) | |
5910 | l->min_pid = track->pid; | |
5911 | if (track->pid > l->max_pid) | |
5912 | l->max_pid = track->pid; | |
5913 | ||
174596a0 RR |
5914 | cpumask_set_cpu(track->cpu, |
5915 | to_cpumask(l->cpus)); | |
45edfa58 CL |
5916 | } |
5917 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5918 | return 1; |
5919 | } | |
5920 | ||
45edfa58 | 5921 | if (track->addr < caddr) |
88a420e4 | 5922 | end = pos; |
8ea9fb92 OG |
5923 | else if (track->addr == caddr && handle < chandle) |
5924 | end = pos; | |
6edf2576 FT |
5925 | else if (track->addr == caddr && handle == chandle && |
5926 | waste < cwaste) | |
5927 | end = pos; | |
88a420e4 CL |
5928 | else |
5929 | start = pos; | |
5930 | } | |
5931 | ||
5932 | /* | |
672bba3a | 5933 | * Not found. Insert new tracking element. |
88a420e4 | 5934 | */ |
68dff6a9 | 5935 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
5936 | return 0; |
5937 | ||
5938 | l = t->loc + pos; | |
5939 | if (pos < t->count) | |
5940 | memmove(l + 1, l, | |
5941 | (t->count - pos) * sizeof(struct location)); | |
5942 | t->count++; | |
5943 | l->count = 1; | |
45edfa58 CL |
5944 | l->addr = track->addr; |
5945 | l->sum_time = age; | |
5946 | l->min_time = age; | |
5947 | l->max_time = age; | |
5948 | l->min_pid = track->pid; | |
5949 | l->max_pid = track->pid; | |
8ea9fb92 | 5950 | l->handle = handle; |
6edf2576 | 5951 | l->waste = waste; |
174596a0 RR |
5952 | cpumask_clear(to_cpumask(l->cpus)); |
5953 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
5954 | nodes_clear(l->nodes); |
5955 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
5956 | return 1; |
5957 | } | |
5958 | ||
5959 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bb192ed9 | 5960 | struct slab *slab, enum track_item alloc, |
b3fd64e1 | 5961 | unsigned long *obj_map) |
88a420e4 | 5962 | { |
bb192ed9 | 5963 | void *addr = slab_address(slab); |
6edf2576 | 5964 | bool is_alloc = (alloc == TRACK_ALLOC); |
88a420e4 CL |
5965 | void *p; |
5966 | ||
bb192ed9 | 5967 | __fill_map(obj_map, s, slab); |
b3fd64e1 | 5968 | |
bb192ed9 | 5969 | for_each_object(p, s, addr, slab->objects) |
b3fd64e1 | 5970 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) |
6edf2576 FT |
5971 | add_location(t, s, get_track(s, p, alloc), |
5972 | is_alloc ? get_orig_size(s, p) : | |
5973 | s->object_size); | |
88a420e4 | 5974 | } |
64dd6849 | 5975 | #endif /* CONFIG_DEBUG_FS */ |
6dfd1b65 | 5976 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 5977 | |
b1a413a3 | 5978 | #ifdef SLAB_SUPPORTS_SYSFS |
81819f0f | 5979 | enum slab_stat_type { |
205ab99d CL |
5980 | SL_ALL, /* All slabs */ |
5981 | SL_PARTIAL, /* Only partially allocated slabs */ | |
5982 | SL_CPU, /* Only slabs used for cpu caches */ | |
5983 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
5984 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
5985 | }; |
5986 | ||
205ab99d | 5987 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
5988 | #define SO_PARTIAL (1 << SL_PARTIAL) |
5989 | #define SO_CPU (1 << SL_CPU) | |
5990 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 5991 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 5992 | |
62e5c4b4 | 5993 | static ssize_t show_slab_objects(struct kmem_cache *s, |
bf16d19a | 5994 | char *buf, unsigned long flags) |
81819f0f CL |
5995 | { |
5996 | unsigned long total = 0; | |
81819f0f CL |
5997 | int node; |
5998 | int x; | |
5999 | unsigned long *nodes; | |
bf16d19a | 6000 | int len = 0; |
81819f0f | 6001 | |
6396bb22 | 6002 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
6003 | if (!nodes) |
6004 | return -ENOMEM; | |
81819f0f | 6005 | |
205ab99d CL |
6006 | if (flags & SO_CPU) { |
6007 | int cpu; | |
81819f0f | 6008 | |
205ab99d | 6009 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
6010 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
6011 | cpu); | |
ec3ab083 | 6012 | int node; |
bb192ed9 | 6013 | struct slab *slab; |
dfb4f096 | 6014 | |
bb192ed9 VB |
6015 | slab = READ_ONCE(c->slab); |
6016 | if (!slab) | |
ec3ab083 | 6017 | continue; |
205ab99d | 6018 | |
bb192ed9 | 6019 | node = slab_nid(slab); |
ec3ab083 | 6020 | if (flags & SO_TOTAL) |
bb192ed9 | 6021 | x = slab->objects; |
ec3ab083 | 6022 | else if (flags & SO_OBJECTS) |
bb192ed9 | 6023 | x = slab->inuse; |
ec3ab083 CL |
6024 | else |
6025 | x = 1; | |
49e22585 | 6026 | |
ec3ab083 CL |
6027 | total += x; |
6028 | nodes[node] += x; | |
6029 | ||
9c01e9af | 6030 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
bb192ed9 VB |
6031 | slab = slub_percpu_partial_read_once(c); |
6032 | if (slab) { | |
6033 | node = slab_nid(slab); | |
8afb1474 LZ |
6034 | if (flags & SO_TOTAL) |
6035 | WARN_ON_ONCE(1); | |
6036 | else if (flags & SO_OBJECTS) | |
6037 | WARN_ON_ONCE(1); | |
6038 | else | |
bb192ed9 | 6039 | x = slab->slabs; |
bc6697d8 ED |
6040 | total += x; |
6041 | nodes[node] += x; | |
49e22585 | 6042 | } |
9c01e9af | 6043 | #endif |
81819f0f CL |
6044 | } |
6045 | } | |
6046 | ||
e4f8e513 QC |
6047 | /* |
6048 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
6049 | * already held which will conflict with an existing lock order: | |
6050 | * | |
6051 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
6052 | * | |
6053 | * We don't really need mem_hotplug_lock (to hold off | |
6054 | * slab_mem_going_offline_callback) here because slab's memory hot | |
6055 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
6056 | */ | |
6057 | ||
ab4d5ed5 | 6058 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 6059 | if (flags & SO_ALL) { |
fa45dc25 CL |
6060 | struct kmem_cache_node *n; |
6061 | ||
6062 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 6063 | |
d0e0ac97 | 6064 | if (flags & SO_TOTAL) |
8040cbf5 | 6065 | x = node_nr_objs(n); |
d0e0ac97 | 6066 | else if (flags & SO_OBJECTS) |
8040cbf5 | 6067 | x = node_nr_objs(n) - count_partial(n, count_free); |
81819f0f | 6068 | else |
8040cbf5 | 6069 | x = node_nr_slabs(n); |
81819f0f CL |
6070 | total += x; |
6071 | nodes[node] += x; | |
6072 | } | |
6073 | ||
ab4d5ed5 CL |
6074 | } else |
6075 | #endif | |
6076 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 6077 | struct kmem_cache_node *n; |
81819f0f | 6078 | |
fa45dc25 | 6079 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
6080 | if (flags & SO_TOTAL) |
6081 | x = count_partial(n, count_total); | |
6082 | else if (flags & SO_OBJECTS) | |
6083 | x = count_partial(n, count_inuse); | |
81819f0f | 6084 | else |
205ab99d | 6085 | x = n->nr_partial; |
81819f0f CL |
6086 | total += x; |
6087 | nodes[node] += x; | |
6088 | } | |
6089 | } | |
bf16d19a JP |
6090 | |
6091 | len += sysfs_emit_at(buf, len, "%lu", total); | |
81819f0f | 6092 | #ifdef CONFIG_NUMA |
bf16d19a | 6093 | for (node = 0; node < nr_node_ids; node++) { |
81819f0f | 6094 | if (nodes[node]) |
bf16d19a JP |
6095 | len += sysfs_emit_at(buf, len, " N%d=%lu", |
6096 | node, nodes[node]); | |
6097 | } | |
81819f0f | 6098 | #endif |
bf16d19a | 6099 | len += sysfs_emit_at(buf, len, "\n"); |
81819f0f | 6100 | kfree(nodes); |
bf16d19a JP |
6101 | |
6102 | return len; | |
81819f0f CL |
6103 | } |
6104 | ||
81819f0f | 6105 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
497888cf | 6106 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
6107 | |
6108 | struct slab_attribute { | |
6109 | struct attribute attr; | |
6110 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
6111 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
6112 | }; | |
6113 | ||
6114 | #define SLAB_ATTR_RO(_name) \ | |
d1d28bd9 | 6115 | static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) |
81819f0f CL |
6116 | |
6117 | #define SLAB_ATTR(_name) \ | |
d1d28bd9 | 6118 | static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) |
81819f0f | 6119 | |
81819f0f CL |
6120 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
6121 | { | |
bf16d19a | 6122 | return sysfs_emit(buf, "%u\n", s->size); |
81819f0f CL |
6123 | } |
6124 | SLAB_ATTR_RO(slab_size); | |
6125 | ||
6126 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
6127 | { | |
bf16d19a | 6128 | return sysfs_emit(buf, "%u\n", s->align); |
81819f0f CL |
6129 | } |
6130 | SLAB_ATTR_RO(align); | |
6131 | ||
6132 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
6133 | { | |
bf16d19a | 6134 | return sysfs_emit(buf, "%u\n", s->object_size); |
81819f0f CL |
6135 | } |
6136 | SLAB_ATTR_RO(object_size); | |
6137 | ||
6138 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
6139 | { | |
bf16d19a | 6140 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
6141 | } |
6142 | SLAB_ATTR_RO(objs_per_slab); | |
6143 | ||
6144 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
6145 | { | |
bf16d19a | 6146 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 6147 | } |
32a6f409 | 6148 | SLAB_ATTR_RO(order); |
81819f0f | 6149 | |
73d342b1 DR |
6150 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
6151 | { | |
bf16d19a | 6152 | return sysfs_emit(buf, "%lu\n", s->min_partial); |
73d342b1 DR |
6153 | } |
6154 | ||
6155 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
6156 | size_t length) | |
6157 | { | |
6158 | unsigned long min; | |
6159 | int err; | |
6160 | ||
3dbb95f7 | 6161 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
6162 | if (err) |
6163 | return err; | |
6164 | ||
5182f3c9 | 6165 | s->min_partial = min; |
73d342b1 DR |
6166 | return length; |
6167 | } | |
6168 | SLAB_ATTR(min_partial); | |
6169 | ||
49e22585 CL |
6170 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
6171 | { | |
b47291ef VB |
6172 | unsigned int nr_partial = 0; |
6173 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
6174 | nr_partial = s->cpu_partial; | |
6175 | #endif | |
6176 | ||
6177 | return sysfs_emit(buf, "%u\n", nr_partial); | |
49e22585 CL |
6178 | } |
6179 | ||
6180 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
6181 | size_t length) | |
6182 | { | |
e5d9998f | 6183 | unsigned int objects; |
49e22585 CL |
6184 | int err; |
6185 | ||
e5d9998f | 6186 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
6187 | if (err) |
6188 | return err; | |
345c905d | 6189 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 6190 | return -EINVAL; |
49e22585 | 6191 | |
e6d0e1dc | 6192 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
6193 | flush_all(s); |
6194 | return length; | |
6195 | } | |
6196 | SLAB_ATTR(cpu_partial); | |
6197 | ||
81819f0f CL |
6198 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
6199 | { | |
62c70bce JP |
6200 | if (!s->ctor) |
6201 | return 0; | |
bf16d19a | 6202 | return sysfs_emit(buf, "%pS\n", s->ctor); |
81819f0f CL |
6203 | } |
6204 | SLAB_ATTR_RO(ctor); | |
6205 | ||
81819f0f CL |
6206 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
6207 | { | |
bf16d19a | 6208 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
6209 | } |
6210 | SLAB_ATTR_RO(aliases); | |
6211 | ||
81819f0f CL |
6212 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
6213 | { | |
d9acf4b7 | 6214 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
6215 | } |
6216 | SLAB_ATTR_RO(partial); | |
6217 | ||
6218 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
6219 | { | |
d9acf4b7 | 6220 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
6221 | } |
6222 | SLAB_ATTR_RO(cpu_slabs); | |
6223 | ||
205ab99d CL |
6224 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
6225 | { | |
6226 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
6227 | } | |
6228 | SLAB_ATTR_RO(objects_partial); | |
6229 | ||
49e22585 CL |
6230 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
6231 | { | |
6232 | int objects = 0; | |
bb192ed9 | 6233 | int slabs = 0; |
9c01e9af | 6234 | int cpu __maybe_unused; |
bf16d19a | 6235 | int len = 0; |
49e22585 | 6236 | |
9c01e9af | 6237 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 6238 | for_each_online_cpu(cpu) { |
bb192ed9 | 6239 | struct slab *slab; |
a93cf07b | 6240 | |
bb192ed9 | 6241 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
49e22585 | 6242 | |
bb192ed9 VB |
6243 | if (slab) |
6244 | slabs += slab->slabs; | |
49e22585 | 6245 | } |
9c01e9af | 6246 | #endif |
49e22585 | 6247 | |
c2092c12 | 6248 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ |
bb192ed9 VB |
6249 | objects = (slabs * oo_objects(s->oo)) / 2; |
6250 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
49e22585 | 6251 | |
c6c17c4d | 6252 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 | 6253 | for_each_online_cpu(cpu) { |
bb192ed9 | 6254 | struct slab *slab; |
a93cf07b | 6255 | |
bb192ed9 VB |
6256 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
6257 | if (slab) { | |
6258 | slabs = READ_ONCE(slab->slabs); | |
6259 | objects = (slabs * oo_objects(s->oo)) / 2; | |
bf16d19a | 6260 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", |
bb192ed9 | 6261 | cpu, objects, slabs); |
b47291ef | 6262 | } |
49e22585 CL |
6263 | } |
6264 | #endif | |
bf16d19a JP |
6265 | len += sysfs_emit_at(buf, len, "\n"); |
6266 | ||
6267 | return len; | |
49e22585 CL |
6268 | } |
6269 | SLAB_ATTR_RO(slabs_cpu_partial); | |
6270 | ||
a5a84755 CL |
6271 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
6272 | { | |
bf16d19a | 6273 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
a5a84755 | 6274 | } |
8f58119a | 6275 | SLAB_ATTR_RO(reclaim_account); |
a5a84755 CL |
6276 | |
6277 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
6278 | { | |
bf16d19a | 6279 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
a5a84755 CL |
6280 | } |
6281 | SLAB_ATTR_RO(hwcache_align); | |
6282 | ||
6283 | #ifdef CONFIG_ZONE_DMA | |
6284 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
6285 | { | |
bf16d19a | 6286 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
a5a84755 CL |
6287 | } |
6288 | SLAB_ATTR_RO(cache_dma); | |
6289 | #endif | |
6290 | ||
346907ce | 6291 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
6292 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
6293 | { | |
bf16d19a | 6294 | return sysfs_emit(buf, "%u\n", s->usersize); |
8eb8284b DW |
6295 | } |
6296 | SLAB_ATTR_RO(usersize); | |
346907ce | 6297 | #endif |
8eb8284b | 6298 | |
a5a84755 CL |
6299 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
6300 | { | |
bf16d19a | 6301 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
6302 | } |
6303 | SLAB_ATTR_RO(destroy_by_rcu); | |
6304 | ||
ab4d5ed5 | 6305 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
6306 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
6307 | { | |
6308 | return show_slab_objects(s, buf, SO_ALL); | |
6309 | } | |
6310 | SLAB_ATTR_RO(slabs); | |
6311 | ||
205ab99d CL |
6312 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
6313 | { | |
6314 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
6315 | } | |
6316 | SLAB_ATTR_RO(total_objects); | |
6317 | ||
81bd3179 XS |
6318 | static ssize_t objects_show(struct kmem_cache *s, char *buf) |
6319 | { | |
6320 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | |
6321 | } | |
6322 | SLAB_ATTR_RO(objects); | |
6323 | ||
81819f0f CL |
6324 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
6325 | { | |
bf16d19a | 6326 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f | 6327 | } |
060807f8 | 6328 | SLAB_ATTR_RO(sanity_checks); |
81819f0f CL |
6329 | |
6330 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
6331 | { | |
bf16d19a | 6332 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
81819f0f | 6333 | } |
060807f8 | 6334 | SLAB_ATTR_RO(trace); |
81819f0f | 6335 | |
81819f0f CL |
6336 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
6337 | { | |
bf16d19a | 6338 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
81819f0f CL |
6339 | } |
6340 | ||
ad38b5b1 | 6341 | SLAB_ATTR_RO(red_zone); |
81819f0f CL |
6342 | |
6343 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
6344 | { | |
bf16d19a | 6345 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
81819f0f CL |
6346 | } |
6347 | ||
ad38b5b1 | 6348 | SLAB_ATTR_RO(poison); |
81819f0f CL |
6349 | |
6350 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
6351 | { | |
bf16d19a | 6352 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
81819f0f CL |
6353 | } |
6354 | ||
ad38b5b1 | 6355 | SLAB_ATTR_RO(store_user); |
81819f0f | 6356 | |
53e15af0 CL |
6357 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
6358 | { | |
6359 | return 0; | |
6360 | } | |
6361 | ||
6362 | static ssize_t validate_store(struct kmem_cache *s, | |
6363 | const char *buf, size_t length) | |
6364 | { | |
434e245d CL |
6365 | int ret = -EINVAL; |
6366 | ||
c7323a5a | 6367 | if (buf[0] == '1' && kmem_cache_debug(s)) { |
434e245d CL |
6368 | ret = validate_slab_cache(s); |
6369 | if (ret >= 0) | |
6370 | ret = length; | |
6371 | } | |
6372 | return ret; | |
53e15af0 CL |
6373 | } |
6374 | SLAB_ATTR(validate); | |
a5a84755 | 6375 | |
a5a84755 CL |
6376 | #endif /* CONFIG_SLUB_DEBUG */ |
6377 | ||
6378 | #ifdef CONFIG_FAILSLAB | |
6379 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
6380 | { | |
bf16d19a | 6381 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
a5a84755 | 6382 | } |
7c82b3b3 AA |
6383 | |
6384 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
6385 | size_t length) | |
6386 | { | |
6387 | if (s->refcount > 1) | |
6388 | return -EINVAL; | |
6389 | ||
6390 | if (buf[0] == '1') | |
6391 | WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); | |
6392 | else | |
6393 | WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); | |
6394 | ||
6395 | return length; | |
6396 | } | |
6397 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 6398 | #endif |
53e15af0 | 6399 | |
2086d26a CL |
6400 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
6401 | { | |
6402 | return 0; | |
6403 | } | |
6404 | ||
6405 | static ssize_t shrink_store(struct kmem_cache *s, | |
6406 | const char *buf, size_t length) | |
6407 | { | |
832f37f5 | 6408 | if (buf[0] == '1') |
10befea9 | 6409 | kmem_cache_shrink(s); |
832f37f5 | 6410 | else |
2086d26a CL |
6411 | return -EINVAL; |
6412 | return length; | |
6413 | } | |
6414 | SLAB_ATTR(shrink); | |
6415 | ||
81819f0f | 6416 | #ifdef CONFIG_NUMA |
9824601e | 6417 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 6418 | { |
bf16d19a | 6419 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
6420 | } |
6421 | ||
9824601e | 6422 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
6423 | const char *buf, size_t length) |
6424 | { | |
eb7235eb | 6425 | unsigned int ratio; |
0121c619 CL |
6426 | int err; |
6427 | ||
eb7235eb | 6428 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
6429 | if (err) |
6430 | return err; | |
eb7235eb AD |
6431 | if (ratio > 100) |
6432 | return -ERANGE; | |
0121c619 | 6433 | |
eb7235eb | 6434 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 6435 | |
81819f0f CL |
6436 | return length; |
6437 | } | |
9824601e | 6438 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
6439 | #endif |
6440 | ||
8ff12cfc | 6441 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
6442 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
6443 | { | |
6444 | unsigned long sum = 0; | |
6445 | int cpu; | |
bf16d19a | 6446 | int len = 0; |
6da2ec56 | 6447 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
6448 | |
6449 | if (!data) | |
6450 | return -ENOMEM; | |
6451 | ||
6452 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 6453 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
6454 | |
6455 | data[cpu] = x; | |
6456 | sum += x; | |
6457 | } | |
6458 | ||
bf16d19a | 6459 | len += sysfs_emit_at(buf, len, "%lu", sum); |
8ff12cfc | 6460 | |
50ef37b9 | 6461 | #ifdef CONFIG_SMP |
8ff12cfc | 6462 | for_each_online_cpu(cpu) { |
bf16d19a JP |
6463 | if (data[cpu]) |
6464 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
6465 | cpu, data[cpu]); | |
8ff12cfc | 6466 | } |
50ef37b9 | 6467 | #endif |
8ff12cfc | 6468 | kfree(data); |
bf16d19a JP |
6469 | len += sysfs_emit_at(buf, len, "\n"); |
6470 | ||
6471 | return len; | |
8ff12cfc CL |
6472 | } |
6473 | ||
78eb00cc DR |
6474 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
6475 | { | |
6476 | int cpu; | |
6477 | ||
6478 | for_each_online_cpu(cpu) | |
9dfc6e68 | 6479 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
6480 | } |
6481 | ||
8ff12cfc CL |
6482 | #define STAT_ATTR(si, text) \ |
6483 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
6484 | { \ | |
6485 | return show_stat(s, buf, si); \ | |
6486 | } \ | |
78eb00cc DR |
6487 | static ssize_t text##_store(struct kmem_cache *s, \ |
6488 | const char *buf, size_t length) \ | |
6489 | { \ | |
6490 | if (buf[0] != '0') \ | |
6491 | return -EINVAL; \ | |
6492 | clear_stat(s, si); \ | |
6493 | return length; \ | |
6494 | } \ | |
6495 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
6496 | |
6497 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
6498 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
6499 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
6500 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
6501 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
6502 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
6503 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
6504 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
6505 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
6506 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 6507 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
6508 | STAT_ATTR(FREE_SLAB, free_slab); |
6509 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
6510 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
6511 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
6512 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
6513 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
6514 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 6515 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 6516 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
6517 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
6518 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
6519 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
6520 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
6521 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
6522 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 6523 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 6524 | |
b84e04f1 IK |
6525 | #ifdef CONFIG_KFENCE |
6526 | static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) | |
6527 | { | |
6528 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); | |
6529 | } | |
6530 | ||
6531 | static ssize_t skip_kfence_store(struct kmem_cache *s, | |
6532 | const char *buf, size_t length) | |
6533 | { | |
6534 | int ret = length; | |
6535 | ||
6536 | if (buf[0] == '0') | |
6537 | s->flags &= ~SLAB_SKIP_KFENCE; | |
6538 | else if (buf[0] == '1') | |
6539 | s->flags |= SLAB_SKIP_KFENCE; | |
6540 | else | |
6541 | ret = -EINVAL; | |
6542 | ||
6543 | return ret; | |
6544 | } | |
6545 | SLAB_ATTR(skip_kfence); | |
6546 | #endif | |
6547 | ||
06428780 | 6548 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
6549 | &slab_size_attr.attr, |
6550 | &object_size_attr.attr, | |
6551 | &objs_per_slab_attr.attr, | |
6552 | &order_attr.attr, | |
73d342b1 | 6553 | &min_partial_attr.attr, |
49e22585 | 6554 | &cpu_partial_attr.attr, |
205ab99d | 6555 | &objects_partial_attr.attr, |
81819f0f CL |
6556 | &partial_attr.attr, |
6557 | &cpu_slabs_attr.attr, | |
6558 | &ctor_attr.attr, | |
81819f0f CL |
6559 | &aliases_attr.attr, |
6560 | &align_attr.attr, | |
81819f0f CL |
6561 | &hwcache_align_attr.attr, |
6562 | &reclaim_account_attr.attr, | |
6563 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 6564 | &shrink_attr.attr, |
49e22585 | 6565 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 6566 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 | 6567 | &total_objects_attr.attr, |
81bd3179 | 6568 | &objects_attr.attr, |
a5a84755 CL |
6569 | &slabs_attr.attr, |
6570 | &sanity_checks_attr.attr, | |
6571 | &trace_attr.attr, | |
81819f0f CL |
6572 | &red_zone_attr.attr, |
6573 | &poison_attr.attr, | |
6574 | &store_user_attr.attr, | |
53e15af0 | 6575 | &validate_attr.attr, |
ab4d5ed5 | 6576 | #endif |
81819f0f CL |
6577 | #ifdef CONFIG_ZONE_DMA |
6578 | &cache_dma_attr.attr, | |
6579 | #endif | |
6580 | #ifdef CONFIG_NUMA | |
9824601e | 6581 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
6582 | #endif |
6583 | #ifdef CONFIG_SLUB_STATS | |
6584 | &alloc_fastpath_attr.attr, | |
6585 | &alloc_slowpath_attr.attr, | |
6586 | &free_fastpath_attr.attr, | |
6587 | &free_slowpath_attr.attr, | |
6588 | &free_frozen_attr.attr, | |
6589 | &free_add_partial_attr.attr, | |
6590 | &free_remove_partial_attr.attr, | |
6591 | &alloc_from_partial_attr.attr, | |
6592 | &alloc_slab_attr.attr, | |
6593 | &alloc_refill_attr.attr, | |
e36a2652 | 6594 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
6595 | &free_slab_attr.attr, |
6596 | &cpuslab_flush_attr.attr, | |
6597 | &deactivate_full_attr.attr, | |
6598 | &deactivate_empty_attr.attr, | |
6599 | &deactivate_to_head_attr.attr, | |
6600 | &deactivate_to_tail_attr.attr, | |
6601 | &deactivate_remote_frees_attr.attr, | |
03e404af | 6602 | &deactivate_bypass_attr.attr, |
65c3376a | 6603 | &order_fallback_attr.attr, |
b789ef51 CL |
6604 | &cmpxchg_double_fail_attr.attr, |
6605 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
6606 | &cpu_partial_alloc_attr.attr, |
6607 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
6608 | &cpu_partial_node_attr.attr, |
6609 | &cpu_partial_drain_attr.attr, | |
81819f0f | 6610 | #endif |
4c13dd3b DM |
6611 | #ifdef CONFIG_FAILSLAB |
6612 | &failslab_attr.attr, | |
6613 | #endif | |
346907ce | 6614 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b | 6615 | &usersize_attr.attr, |
346907ce | 6616 | #endif |
b84e04f1 IK |
6617 | #ifdef CONFIG_KFENCE |
6618 | &skip_kfence_attr.attr, | |
6619 | #endif | |
4c13dd3b | 6620 | |
81819f0f CL |
6621 | NULL |
6622 | }; | |
6623 | ||
1fdaaa23 | 6624 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
6625 | .attrs = slab_attrs, |
6626 | }; | |
6627 | ||
6628 | static ssize_t slab_attr_show(struct kobject *kobj, | |
6629 | struct attribute *attr, | |
6630 | char *buf) | |
6631 | { | |
6632 | struct slab_attribute *attribute; | |
6633 | struct kmem_cache *s; | |
81819f0f CL |
6634 | |
6635 | attribute = to_slab_attr(attr); | |
6636 | s = to_slab(kobj); | |
6637 | ||
6638 | if (!attribute->show) | |
6639 | return -EIO; | |
6640 | ||
2bfbb027 | 6641 | return attribute->show(s, buf); |
81819f0f CL |
6642 | } |
6643 | ||
6644 | static ssize_t slab_attr_store(struct kobject *kobj, | |
6645 | struct attribute *attr, | |
6646 | const char *buf, size_t len) | |
6647 | { | |
6648 | struct slab_attribute *attribute; | |
6649 | struct kmem_cache *s; | |
81819f0f CL |
6650 | |
6651 | attribute = to_slab_attr(attr); | |
6652 | s = to_slab(kobj); | |
6653 | ||
6654 | if (!attribute->store) | |
6655 | return -EIO; | |
6656 | ||
2bfbb027 | 6657 | return attribute->store(s, buf, len); |
81819f0f CL |
6658 | } |
6659 | ||
41a21285 CL |
6660 | static void kmem_cache_release(struct kobject *k) |
6661 | { | |
6662 | slab_kmem_cache_release(to_slab(k)); | |
6663 | } | |
6664 | ||
52cf25d0 | 6665 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
6666 | .show = slab_attr_show, |
6667 | .store = slab_attr_store, | |
6668 | }; | |
6669 | ||
9ebe720e | 6670 | static const struct kobj_type slab_ktype = { |
81819f0f | 6671 | .sysfs_ops = &slab_sysfs_ops, |
41a21285 | 6672 | .release = kmem_cache_release, |
81819f0f CL |
6673 | }; |
6674 | ||
27c3a314 | 6675 | static struct kset *slab_kset; |
81819f0f | 6676 | |
9a41707b VD |
6677 | static inline struct kset *cache_kset(struct kmem_cache *s) |
6678 | { | |
9a41707b VD |
6679 | return slab_kset; |
6680 | } | |
6681 | ||
d65360f2 | 6682 | #define ID_STR_LENGTH 32 |
81819f0f CL |
6683 | |
6684 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
6685 | * |
6686 | * Format :[flags-]size | |
81819f0f CL |
6687 | */ |
6688 | static char *create_unique_id(struct kmem_cache *s) | |
6689 | { | |
6690 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
6691 | char *p = name; | |
6692 | ||
7e9c323c CY |
6693 | if (!name) |
6694 | return ERR_PTR(-ENOMEM); | |
81819f0f CL |
6695 | |
6696 | *p++ = ':'; | |
6697 | /* | |
6698 | * First flags affecting slabcache operations. We will only | |
6699 | * get here for aliasable slabs so we do not need to support | |
6700 | * too many flags. The flags here must cover all flags that | |
6701 | * are matched during merging to guarantee that the id is | |
6702 | * unique. | |
6703 | */ | |
6704 | if (s->flags & SLAB_CACHE_DMA) | |
6705 | *p++ = 'd'; | |
6d6ea1e9 NB |
6706 | if (s->flags & SLAB_CACHE_DMA32) |
6707 | *p++ = 'D'; | |
81819f0f CL |
6708 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
6709 | *p++ = 'a'; | |
becfda68 | 6710 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 6711 | *p++ = 'F'; |
230e9fc2 VD |
6712 | if (s->flags & SLAB_ACCOUNT) |
6713 | *p++ = 'A'; | |
81819f0f CL |
6714 | if (p != name + 1) |
6715 | *p++ = '-'; | |
d65360f2 | 6716 | p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); |
2633d7a0 | 6717 | |
d65360f2 CY |
6718 | if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { |
6719 | kfree(name); | |
6720 | return ERR_PTR(-EINVAL); | |
6721 | } | |
68ef169a | 6722 | kmsan_unpoison_memory(name, p - name); |
81819f0f CL |
6723 | return name; |
6724 | } | |
6725 | ||
6726 | static int sysfs_slab_add(struct kmem_cache *s) | |
6727 | { | |
6728 | int err; | |
6729 | const char *name; | |
1663f26d | 6730 | struct kset *kset = cache_kset(s); |
45530c44 | 6731 | int unmergeable = slab_unmergeable(s); |
81819f0f | 6732 | |
11066386 MC |
6733 | if (!unmergeable && disable_higher_order_debug && |
6734 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
6735 | unmergeable = 1; | |
6736 | ||
81819f0f CL |
6737 | if (unmergeable) { |
6738 | /* | |
6739 | * Slabcache can never be merged so we can use the name proper. | |
6740 | * This is typically the case for debug situations. In that | |
6741 | * case we can catch duplicate names easily. | |
6742 | */ | |
27c3a314 | 6743 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
6744 | name = s->name; |
6745 | } else { | |
6746 | /* | |
6747 | * Create a unique name for the slab as a target | |
6748 | * for the symlinks. | |
6749 | */ | |
6750 | name = create_unique_id(s); | |
7e9c323c CY |
6751 | if (IS_ERR(name)) |
6752 | return PTR_ERR(name); | |
81819f0f CL |
6753 | } |
6754 | ||
1663f26d | 6755 | s->kobj.kset = kset; |
26e4f205 | 6756 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
757fed1d | 6757 | if (err) |
80da026a | 6758 | goto out; |
81819f0f CL |
6759 | |
6760 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
6761 | if (err) |
6762 | goto out_del_kobj; | |
9a41707b | 6763 | |
81819f0f CL |
6764 | if (!unmergeable) { |
6765 | /* Setup first alias */ | |
6766 | sysfs_slab_alias(s, s->name); | |
81819f0f | 6767 | } |
54b6a731 DJ |
6768 | out: |
6769 | if (!unmergeable) | |
6770 | kfree(name); | |
6771 | return err; | |
6772 | out_del_kobj: | |
6773 | kobject_del(&s->kobj); | |
54b6a731 | 6774 | goto out; |
81819f0f CL |
6775 | } |
6776 | ||
d50d82fa MP |
6777 | void sysfs_slab_unlink(struct kmem_cache *s) |
6778 | { | |
011568eb | 6779 | kobject_del(&s->kobj); |
d50d82fa MP |
6780 | } |
6781 | ||
bf5eb3de TH |
6782 | void sysfs_slab_release(struct kmem_cache *s) |
6783 | { | |
011568eb | 6784 | kobject_put(&s->kobj); |
81819f0f CL |
6785 | } |
6786 | ||
6787 | /* | |
6788 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 6789 | * available lest we lose that information. |
81819f0f CL |
6790 | */ |
6791 | struct saved_alias { | |
6792 | struct kmem_cache *s; | |
6793 | const char *name; | |
6794 | struct saved_alias *next; | |
6795 | }; | |
6796 | ||
5af328a5 | 6797 | static struct saved_alias *alias_list; |
81819f0f CL |
6798 | |
6799 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
6800 | { | |
6801 | struct saved_alias *al; | |
6802 | ||
97d06609 | 6803 | if (slab_state == FULL) { |
81819f0f CL |
6804 | /* |
6805 | * If we have a leftover link then remove it. | |
6806 | */ | |
27c3a314 GKH |
6807 | sysfs_remove_link(&slab_kset->kobj, name); |
6808 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
6809 | } |
6810 | ||
6811 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
6812 | if (!al) | |
6813 | return -ENOMEM; | |
6814 | ||
6815 | al->s = s; | |
6816 | al->name = name; | |
6817 | al->next = alias_list; | |
6818 | alias_list = al; | |
68ef169a | 6819 | kmsan_unpoison_memory(al, sizeof(*al)); |
81819f0f CL |
6820 | return 0; |
6821 | } | |
6822 | ||
6823 | static int __init slab_sysfs_init(void) | |
6824 | { | |
5b95a4ac | 6825 | struct kmem_cache *s; |
81819f0f CL |
6826 | int err; |
6827 | ||
18004c5d | 6828 | mutex_lock(&slab_mutex); |
2bce6485 | 6829 | |
d7660ce5 | 6830 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); |
27c3a314 | 6831 | if (!slab_kset) { |
18004c5d | 6832 | mutex_unlock(&slab_mutex); |
f9f58285 | 6833 | pr_err("Cannot register slab subsystem.\n"); |
35973232 | 6834 | return -ENOMEM; |
81819f0f CL |
6835 | } |
6836 | ||
97d06609 | 6837 | slab_state = FULL; |
26a7bd03 | 6838 | |
5b95a4ac | 6839 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 6840 | err = sysfs_slab_add(s); |
5d540fb7 | 6841 | if (err) |
f9f58285 FF |
6842 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
6843 | s->name); | |
26a7bd03 | 6844 | } |
81819f0f CL |
6845 | |
6846 | while (alias_list) { | |
6847 | struct saved_alias *al = alias_list; | |
6848 | ||
6849 | alias_list = alias_list->next; | |
6850 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 6851 | if (err) |
f9f58285 FF |
6852 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
6853 | al->name); | |
81819f0f CL |
6854 | kfree(al); |
6855 | } | |
6856 | ||
18004c5d | 6857 | mutex_unlock(&slab_mutex); |
81819f0f CL |
6858 | return 0; |
6859 | } | |
1a5ad30b | 6860 | late_initcall(slab_sysfs_init); |
b1a413a3 | 6861 | #endif /* SLAB_SUPPORTS_SYSFS */ |
57ed3eda | 6862 | |
64dd6849 FM |
6863 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) |
6864 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
6865 | { | |
64dd6849 | 6866 | struct loc_track *t = seq->private; |
005a79e5 GS |
6867 | struct location *l; |
6868 | unsigned long idx; | |
64dd6849 | 6869 | |
005a79e5 | 6870 | idx = (unsigned long) t->idx; |
64dd6849 FM |
6871 | if (idx < t->count) { |
6872 | l = &t->loc[idx]; | |
6873 | ||
6874 | seq_printf(seq, "%7ld ", l->count); | |
6875 | ||
6876 | if (l->addr) | |
6877 | seq_printf(seq, "%pS", (void *)l->addr); | |
6878 | else | |
6879 | seq_puts(seq, "<not-available>"); | |
6880 | ||
6edf2576 FT |
6881 | if (l->waste) |
6882 | seq_printf(seq, " waste=%lu/%lu", | |
6883 | l->count * l->waste, l->waste); | |
6884 | ||
64dd6849 FM |
6885 | if (l->sum_time != l->min_time) { |
6886 | seq_printf(seq, " age=%ld/%llu/%ld", | |
6887 | l->min_time, div_u64(l->sum_time, l->count), | |
6888 | l->max_time); | |
6889 | } else | |
6890 | seq_printf(seq, " age=%ld", l->min_time); | |
6891 | ||
6892 | if (l->min_pid != l->max_pid) | |
6893 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
6894 | else | |
6895 | seq_printf(seq, " pid=%ld", | |
6896 | l->min_pid); | |
6897 | ||
6898 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
6899 | seq_printf(seq, " cpus=%*pbl", | |
6900 | cpumask_pr_args(to_cpumask(l->cpus))); | |
6901 | ||
6902 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
6903 | seq_printf(seq, " nodes=%*pbl", | |
6904 | nodemask_pr_args(&l->nodes)); | |
6905 | ||
8ea9fb92 OG |
6906 | #ifdef CONFIG_STACKDEPOT |
6907 | { | |
6908 | depot_stack_handle_t handle; | |
6909 | unsigned long *entries; | |
6910 | unsigned int nr_entries, j; | |
6911 | ||
6912 | handle = READ_ONCE(l->handle); | |
6913 | if (handle) { | |
6914 | nr_entries = stack_depot_fetch(handle, &entries); | |
6915 | seq_puts(seq, "\n"); | |
6916 | for (j = 0; j < nr_entries; j++) | |
6917 | seq_printf(seq, " %pS\n", (void *)entries[j]); | |
6918 | } | |
6919 | } | |
6920 | #endif | |
64dd6849 FM |
6921 | seq_puts(seq, "\n"); |
6922 | } | |
6923 | ||
6924 | if (!idx && !t->count) | |
6925 | seq_puts(seq, "No data\n"); | |
6926 | ||
6927 | return 0; | |
6928 | } | |
6929 | ||
6930 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
6931 | { | |
6932 | } | |
6933 | ||
6934 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
6935 | { | |
6936 | struct loc_track *t = seq->private; | |
6937 | ||
005a79e5 | 6938 | t->idx = ++(*ppos); |
64dd6849 | 6939 | if (*ppos <= t->count) |
005a79e5 | 6940 | return ppos; |
64dd6849 FM |
6941 | |
6942 | return NULL; | |
6943 | } | |
6944 | ||
553c0369 OG |
6945 | static int cmp_loc_by_count(const void *a, const void *b, const void *data) |
6946 | { | |
6947 | struct location *loc1 = (struct location *)a; | |
6948 | struct location *loc2 = (struct location *)b; | |
6949 | ||
6950 | if (loc1->count > loc2->count) | |
6951 | return -1; | |
6952 | else | |
6953 | return 1; | |
6954 | } | |
6955 | ||
64dd6849 FM |
6956 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) |
6957 | { | |
005a79e5 GS |
6958 | struct loc_track *t = seq->private; |
6959 | ||
6960 | t->idx = *ppos; | |
64dd6849 FM |
6961 | return ppos; |
6962 | } | |
6963 | ||
6964 | static const struct seq_operations slab_debugfs_sops = { | |
6965 | .start = slab_debugfs_start, | |
6966 | .next = slab_debugfs_next, | |
6967 | .stop = slab_debugfs_stop, | |
6968 | .show = slab_debugfs_show, | |
6969 | }; | |
6970 | ||
6971 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
6972 | { | |
6973 | ||
6974 | struct kmem_cache_node *n; | |
6975 | enum track_item alloc; | |
6976 | int node; | |
6977 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
6978 | sizeof(struct loc_track)); | |
6979 | struct kmem_cache *s = file_inode(filep)->i_private; | |
b3fd64e1 VB |
6980 | unsigned long *obj_map; |
6981 | ||
2127d225 ML |
6982 | if (!t) |
6983 | return -ENOMEM; | |
6984 | ||
b3fd64e1 | 6985 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); |
2127d225 ML |
6986 | if (!obj_map) { |
6987 | seq_release_private(inode, filep); | |
b3fd64e1 | 6988 | return -ENOMEM; |
2127d225 | 6989 | } |
64dd6849 FM |
6990 | |
6991 | if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) | |
6992 | alloc = TRACK_ALLOC; | |
6993 | else | |
6994 | alloc = TRACK_FREE; | |
6995 | ||
b3fd64e1 VB |
6996 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { |
6997 | bitmap_free(obj_map); | |
2127d225 | 6998 | seq_release_private(inode, filep); |
64dd6849 | 6999 | return -ENOMEM; |
b3fd64e1 | 7000 | } |
64dd6849 | 7001 | |
64dd6849 FM |
7002 | for_each_kmem_cache_node(s, node, n) { |
7003 | unsigned long flags; | |
bb192ed9 | 7004 | struct slab *slab; |
64dd6849 | 7005 | |
8040cbf5 | 7006 | if (!node_nr_slabs(n)) |
64dd6849 FM |
7007 | continue; |
7008 | ||
7009 | spin_lock_irqsave(&n->list_lock, flags); | |
bb192ed9 VB |
7010 | list_for_each_entry(slab, &n->partial, slab_list) |
7011 | process_slab(t, s, slab, alloc, obj_map); | |
7012 | list_for_each_entry(slab, &n->full, slab_list) | |
7013 | process_slab(t, s, slab, alloc, obj_map); | |
64dd6849 FM |
7014 | spin_unlock_irqrestore(&n->list_lock, flags); |
7015 | } | |
7016 | ||
553c0369 OG |
7017 | /* Sort locations by count */ |
7018 | sort_r(t->loc, t->count, sizeof(struct location), | |
7019 | cmp_loc_by_count, NULL, NULL); | |
7020 | ||
b3fd64e1 | 7021 | bitmap_free(obj_map); |
64dd6849 FM |
7022 | return 0; |
7023 | } | |
7024 | ||
7025 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
7026 | { | |
7027 | struct seq_file *seq = file->private_data; | |
7028 | struct loc_track *t = seq->private; | |
7029 | ||
7030 | free_loc_track(t); | |
7031 | return seq_release_private(inode, file); | |
7032 | } | |
7033 | ||
7034 | static const struct file_operations slab_debugfs_fops = { | |
7035 | .open = slab_debug_trace_open, | |
7036 | .read = seq_read, | |
7037 | .llseek = seq_lseek, | |
7038 | .release = slab_debug_trace_release, | |
7039 | }; | |
7040 | ||
7041 | static void debugfs_slab_add(struct kmem_cache *s) | |
7042 | { | |
7043 | struct dentry *slab_cache_dir; | |
7044 | ||
7045 | if (unlikely(!slab_debugfs_root)) | |
7046 | return; | |
7047 | ||
7048 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
7049 | ||
7050 | debugfs_create_file("alloc_traces", 0400, | |
7051 | slab_cache_dir, s, &slab_debugfs_fops); | |
7052 | ||
7053 | debugfs_create_file("free_traces", 0400, | |
7054 | slab_cache_dir, s, &slab_debugfs_fops); | |
7055 | } | |
7056 | ||
7057 | void debugfs_slab_release(struct kmem_cache *s) | |
7058 | { | |
aa4a8605 | 7059 | debugfs_lookup_and_remove(s->name, slab_debugfs_root); |
64dd6849 FM |
7060 | } |
7061 | ||
7062 | static int __init slab_debugfs_init(void) | |
7063 | { | |
7064 | struct kmem_cache *s; | |
7065 | ||
7066 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
7067 | ||
7068 | list_for_each_entry(s, &slab_caches, list) | |
7069 | if (s->flags & SLAB_STORE_USER) | |
7070 | debugfs_slab_add(s); | |
7071 | ||
7072 | return 0; | |
7073 | ||
7074 | } | |
7075 | __initcall(slab_debugfs_init); | |
7076 | #endif | |
57ed3eda PE |
7077 | /* |
7078 | * The /proc/slabinfo ABI | |
7079 | */ | |
5b365771 | 7080 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 7081 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 7082 | { |
57ed3eda | 7083 | unsigned long nr_slabs = 0; |
205ab99d CL |
7084 | unsigned long nr_objs = 0; |
7085 | unsigned long nr_free = 0; | |
57ed3eda | 7086 | int node; |
fa45dc25 | 7087 | struct kmem_cache_node *n; |
57ed3eda | 7088 | |
fa45dc25 | 7089 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
7090 | nr_slabs += node_nr_slabs(n); |
7091 | nr_objs += node_nr_objs(n); | |
205ab99d | 7092 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
7093 | } |
7094 | ||
0d7561c6 GC |
7095 | sinfo->active_objs = nr_objs - nr_free; |
7096 | sinfo->num_objs = nr_objs; | |
7097 | sinfo->active_slabs = nr_slabs; | |
7098 | sinfo->num_slabs = nr_slabs; | |
7099 | sinfo->objects_per_slab = oo_objects(s->oo); | |
7100 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
7101 | } |
7102 | ||
0d7561c6 | 7103 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 7104 | { |
7b3c3a50 AD |
7105 | } |
7106 | ||
b7454ad3 GC |
7107 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
7108 | size_t count, loff_t *ppos) | |
7b3c3a50 | 7109 | { |
b7454ad3 | 7110 | return -EIO; |
7b3c3a50 | 7111 | } |
5b365771 | 7112 | #endif /* CONFIG_SLUB_DEBUG */ |