]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
81819f0f CL |
2 | /* |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
881db7fb CL |
6 | * The allocator synchronizes using per slab locks or atomic operatios |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 8 | * |
cde53535 | 9 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 10 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
1eb5ac64 | 14 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
15 | #include <linux/module.h> |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/bitops.h> | |
19 | #include <linux/slab.h> | |
97d06609 | 20 | #include "slab.h" |
7b3c3a50 | 21 | #include <linux/proc_fs.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
a79316c6 | 23 | #include <linux/kasan.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
2482ddec | 36 | #include <linux/random.h> |
81819f0f | 37 | |
4a92379b RK |
38 | #include <trace/events/kmem.h> |
39 | ||
072bb0aa MG |
40 | #include "internal.h" |
41 | ||
81819f0f CL |
42 | /* |
43 | * Lock order: | |
18004c5d | 44 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
45 | * 2. node->list_lock |
46 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 47 | * |
18004c5d | 48 | * slab_mutex |
881db7fb | 49 | * |
18004c5d | 50 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
51 | * and to synchronize major metadata changes to slab cache structures. |
52 | * | |
53 | * The slab_lock is only used for debugging and on arches that do not | |
b7ccc7f8 | 54 | * have the ability to do a cmpxchg_double. It only protects: |
881db7fb | 55 | * A. page->freelist -> List of object free in a page |
b7ccc7f8 MW |
56 | * B. page->inuse -> Number of objects in use |
57 | * C. page->objects -> Number of objects in page | |
58 | * D. page->frozen -> frozen state | |
881db7fb CL |
59 | * |
60 | * If a slab is frozen then it is exempt from list management. It is not | |
632b2ef0 LX |
61 | * on any list except per cpu partial list. The processor that froze the |
62 | * slab is the one who can perform list operations on the page. Other | |
63 | * processors may put objects onto the freelist but the processor that | |
64 | * froze the slab is the only one that can retrieve the objects from the | |
65 | * page's freelist. | |
81819f0f CL |
66 | * |
67 | * The list_lock protects the partial and full list on each node and | |
68 | * the partial slab counter. If taken then no new slabs may be added or | |
69 | * removed from the lists nor make the number of partial slabs be modified. | |
70 | * (Note that the total number of slabs is an atomic value that may be | |
71 | * modified without taking the list lock). | |
72 | * | |
73 | * The list_lock is a centralized lock and thus we avoid taking it as | |
74 | * much as possible. As long as SLUB does not have to handle partial | |
75 | * slabs, operations can continue without any centralized lock. F.e. | |
76 | * allocating a long series of objects that fill up slabs does not require | |
77 | * the list lock. | |
81819f0f CL |
78 | * Interrupts are disabled during allocation and deallocation in order to |
79 | * make the slab allocator safe to use in the context of an irq. In addition | |
80 | * interrupts are disabled to ensure that the processor does not change | |
81 | * while handling per_cpu slabs, due to kernel preemption. | |
82 | * | |
83 | * SLUB assigns one slab for allocation to each processor. | |
84 | * Allocations only occur from these slabs called cpu slabs. | |
85 | * | |
672bba3a CL |
86 | * Slabs with free elements are kept on a partial list and during regular |
87 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 88 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
89 | * We track full slabs for debugging purposes though because otherwise we |
90 | * cannot scan all objects. | |
81819f0f CL |
91 | * |
92 | * Slabs are freed when they become empty. Teardown and setup is | |
93 | * minimal so we rely on the page allocators per cpu caches for | |
94 | * fast frees and allocs. | |
95 | * | |
aed68148 | 96 | * page->frozen The slab is frozen and exempt from list processing. |
4b6f0750 CL |
97 | * This means that the slab is dedicated to a purpose |
98 | * such as satisfying allocations for a specific | |
99 | * processor. Objects may be freed in the slab while | |
100 | * it is frozen but slab_free will then skip the usual | |
101 | * list operations. It is up to the processor holding | |
102 | * the slab to integrate the slab into the slab lists | |
103 | * when the slab is no longer needed. | |
104 | * | |
105 | * One use of this flag is to mark slabs that are | |
106 | * used for allocations. Then such a slab becomes a cpu | |
107 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 108 | * freelist that allows lockless access to |
894b8788 CL |
109 | * free objects in addition to the regular freelist |
110 | * that requires the slab lock. | |
81819f0f | 111 | * |
aed68148 | 112 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug |
81819f0f | 113 | * options set. This moves slab handling out of |
894b8788 | 114 | * the fast path and disables lockless freelists. |
81819f0f CL |
115 | */ |
116 | ||
af537b0a CL |
117 | static inline int kmem_cache_debug(struct kmem_cache *s) |
118 | { | |
5577bd8a | 119 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 120 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 121 | #else |
af537b0a | 122 | return 0; |
5577bd8a | 123 | #endif |
af537b0a | 124 | } |
5577bd8a | 125 | |
117d54df | 126 | void *fixup_red_left(struct kmem_cache *s, void *p) |
d86bd1be JK |
127 | { |
128 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | |
129 | p += s->red_left_pad; | |
130 | ||
131 | return p; | |
132 | } | |
133 | ||
345c905d JK |
134 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
135 | { | |
136 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
137 | return !kmem_cache_debug(s); | |
138 | #else | |
139 | return false; | |
140 | #endif | |
141 | } | |
142 | ||
81819f0f CL |
143 | /* |
144 | * Issues still to be resolved: | |
145 | * | |
81819f0f CL |
146 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
147 | * | |
81819f0f CL |
148 | * - Variable sizing of the per node arrays |
149 | */ | |
150 | ||
151 | /* Enable to test recovery from slab corruption on boot */ | |
152 | #undef SLUB_RESILIENCY_TEST | |
153 | ||
b789ef51 CL |
154 | /* Enable to log cmpxchg failures */ |
155 | #undef SLUB_DEBUG_CMPXCHG | |
156 | ||
2086d26a CL |
157 | /* |
158 | * Mininum number of partial slabs. These will be left on the partial | |
159 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
160 | */ | |
76be8950 | 161 | #define MIN_PARTIAL 5 |
e95eed57 | 162 | |
2086d26a CL |
163 | /* |
164 | * Maximum number of desirable partial slabs. | |
165 | * The existence of more partial slabs makes kmem_cache_shrink | |
721ae22a | 166 | * sort the partial list by the number of objects in use. |
2086d26a CL |
167 | */ |
168 | #define MAX_PARTIAL 10 | |
169 | ||
becfda68 | 170 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
81819f0f | 171 | SLAB_POISON | SLAB_STORE_USER) |
672bba3a | 172 | |
149daaf3 LA |
173 | /* |
174 | * These debug flags cannot use CMPXCHG because there might be consistency | |
175 | * issues when checking or reading debug information | |
176 | */ | |
177 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
178 | SLAB_TRACE) | |
179 | ||
180 | ||
fa5ec8a1 | 181 | /* |
3de47213 DR |
182 | * Debugging flags that require metadata to be stored in the slab. These get |
183 | * disabled when slub_debug=O is used and a cache's min order increases with | |
184 | * metadata. | |
fa5ec8a1 | 185 | */ |
3de47213 | 186 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 187 | |
210b5c06 CG |
188 | #define OO_SHIFT 16 |
189 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 190 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 191 | |
81819f0f | 192 | /* Internal SLUB flags */ |
d50112ed | 193 | /* Poison object */ |
4fd0b46e | 194 | #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) |
d50112ed | 195 | /* Use cmpxchg_double */ |
4fd0b46e | 196 | #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) |
81819f0f | 197 | |
02cbc874 CL |
198 | /* |
199 | * Tracking user of a slab. | |
200 | */ | |
d6543e39 | 201 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 202 | struct track { |
ce71e27c | 203 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
204 | #ifdef CONFIG_STACKTRACE |
205 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
206 | #endif | |
02cbc874 CL |
207 | int cpu; /* Was running on cpu */ |
208 | int pid; /* Pid context */ | |
209 | unsigned long when; /* When did the operation occur */ | |
210 | }; | |
211 | ||
212 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
213 | ||
ab4d5ed5 | 214 | #ifdef CONFIG_SYSFS |
81819f0f CL |
215 | static int sysfs_slab_add(struct kmem_cache *); |
216 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
107dab5c | 217 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
bf5eb3de | 218 | static void sysfs_slab_remove(struct kmem_cache *s); |
81819f0f | 219 | #else |
0c710013 CL |
220 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
221 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
222 | { return 0; } | |
107dab5c | 223 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
bf5eb3de | 224 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
81819f0f CL |
225 | #endif |
226 | ||
4fdccdfb | 227 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
228 | { |
229 | #ifdef CONFIG_SLUB_STATS | |
88da03a6 CL |
230 | /* |
231 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
232 | * avoid this_cpu_add()'s irq-disable overhead. | |
233 | */ | |
234 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
8ff12cfc CL |
235 | #endif |
236 | } | |
237 | ||
81819f0f CL |
238 | /******************************************************************** |
239 | * Core slab cache functions | |
240 | *******************************************************************/ | |
241 | ||
2482ddec KC |
242 | /* |
243 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
244 | * with an XOR of the address where the pointer is held and a per-cache | |
245 | * random number. | |
246 | */ | |
247 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | |
248 | unsigned long ptr_addr) | |
249 | { | |
250 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
d36a63a9 AK |
251 | /* |
252 | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | |
253 | * Normally, this doesn't cause any issues, as both set_freepointer() | |
254 | * and get_freepointer() are called with a pointer with the same tag. | |
255 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | |
256 | * example, when __free_slub() iterates over objects in a cache, it | |
257 | * passes untagged pointers to check_object(). check_object() in turns | |
258 | * calls get_freepointer() with an untagged pointer, which causes the | |
259 | * freepointer to be restored incorrectly. | |
260 | */ | |
261 | return (void *)((unsigned long)ptr ^ s->random ^ | |
262 | (unsigned long)kasan_reset_tag((void *)ptr_addr)); | |
2482ddec KC |
263 | #else |
264 | return ptr; | |
265 | #endif | |
266 | } | |
267 | ||
268 | /* Returns the freelist pointer recorded at location ptr_addr. */ | |
269 | static inline void *freelist_dereference(const struct kmem_cache *s, | |
270 | void *ptr_addr) | |
271 | { | |
272 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | |
273 | (unsigned long)ptr_addr); | |
274 | } | |
275 | ||
7656c72b CL |
276 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
277 | { | |
2482ddec | 278 | return freelist_dereference(s, object + s->offset); |
7656c72b CL |
279 | } |
280 | ||
0ad9500e ED |
281 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
282 | { | |
0882ff91 | 283 | prefetch(object + s->offset); |
0ad9500e ED |
284 | } |
285 | ||
1393d9a1 CL |
286 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
287 | { | |
2482ddec | 288 | unsigned long freepointer_addr; |
1393d9a1 CL |
289 | void *p; |
290 | ||
8e57f8ac | 291 | if (!debug_pagealloc_enabled_static()) |
922d566c JK |
292 | return get_freepointer(s, object); |
293 | ||
2482ddec KC |
294 | freepointer_addr = (unsigned long)object + s->offset; |
295 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | |
296 | return freelist_ptr(s, p, freepointer_addr); | |
1393d9a1 CL |
297 | } |
298 | ||
7656c72b CL |
299 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
300 | { | |
2482ddec KC |
301 | unsigned long freeptr_addr = (unsigned long)object + s->offset; |
302 | ||
ce6fa91b AP |
303 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
304 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
305 | #endif | |
306 | ||
2482ddec | 307 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
7656c72b CL |
308 | } |
309 | ||
310 | /* Loop over all objects in a slab */ | |
224a88be | 311 | #define for_each_object(__p, __s, __addr, __objects) \ |
d86bd1be JK |
312 | for (__p = fixup_red_left(__s, __addr); \ |
313 | __p < (__addr) + (__objects) * (__s)->size; \ | |
314 | __p += (__s)->size) | |
7656c72b | 315 | |
7656c72b | 316 | /* Determine object index from a given position */ |
284b50dd | 317 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) |
7656c72b | 318 | { |
6373dca1 | 319 | return (kasan_reset_tag(p) - addr) / s->size; |
7656c72b CL |
320 | } |
321 | ||
9736d2a9 | 322 | static inline unsigned int order_objects(unsigned int order, unsigned int size) |
ab9a0f19 | 323 | { |
9736d2a9 | 324 | return ((unsigned int)PAGE_SIZE << order) / size; |
ab9a0f19 LJ |
325 | } |
326 | ||
19af27af | 327 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, |
9736d2a9 | 328 | unsigned int size) |
834f3d11 CL |
329 | { |
330 | struct kmem_cache_order_objects x = { | |
9736d2a9 | 331 | (order << OO_SHIFT) + order_objects(order, size) |
834f3d11 CL |
332 | }; |
333 | ||
334 | return x; | |
335 | } | |
336 | ||
19af27af | 337 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) |
834f3d11 | 338 | { |
210b5c06 | 339 | return x.x >> OO_SHIFT; |
834f3d11 CL |
340 | } |
341 | ||
19af27af | 342 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) |
834f3d11 | 343 | { |
210b5c06 | 344 | return x.x & OO_MASK; |
834f3d11 CL |
345 | } |
346 | ||
881db7fb CL |
347 | /* |
348 | * Per slab locking using the pagelock | |
349 | */ | |
350 | static __always_inline void slab_lock(struct page *page) | |
351 | { | |
48c935ad | 352 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
353 | bit_spin_lock(PG_locked, &page->flags); |
354 | } | |
355 | ||
356 | static __always_inline void slab_unlock(struct page *page) | |
357 | { | |
48c935ad | 358 | VM_BUG_ON_PAGE(PageTail(page), page); |
881db7fb CL |
359 | __bit_spin_unlock(PG_locked, &page->flags); |
360 | } | |
361 | ||
1d07171c CL |
362 | /* Interrupts must be disabled (for the fallback code to work right) */ |
363 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
364 | void *freelist_old, unsigned long counters_old, | |
365 | void *freelist_new, unsigned long counters_new, | |
366 | const char *n) | |
367 | { | |
368 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
369 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
370 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 371 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 372 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
373 | freelist_old, counters_old, |
374 | freelist_new, counters_new)) | |
6f6528a1 | 375 | return true; |
1d07171c CL |
376 | } else |
377 | #endif | |
378 | { | |
379 | slab_lock(page); | |
d0e0ac97 CG |
380 | if (page->freelist == freelist_old && |
381 | page->counters == counters_old) { | |
1d07171c | 382 | page->freelist = freelist_new; |
7d27a04b | 383 | page->counters = counters_new; |
1d07171c | 384 | slab_unlock(page); |
6f6528a1 | 385 | return true; |
1d07171c CL |
386 | } |
387 | slab_unlock(page); | |
388 | } | |
389 | ||
390 | cpu_relax(); | |
391 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
392 | ||
393 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 394 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
1d07171c CL |
395 | #endif |
396 | ||
6f6528a1 | 397 | return false; |
1d07171c CL |
398 | } |
399 | ||
b789ef51 CL |
400 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
401 | void *freelist_old, unsigned long counters_old, | |
402 | void *freelist_new, unsigned long counters_new, | |
403 | const char *n) | |
404 | { | |
2565409f HC |
405 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
406 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 407 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 408 | if (cmpxchg_double(&page->freelist, &page->counters, |
0aa9a13d DC |
409 | freelist_old, counters_old, |
410 | freelist_new, counters_new)) | |
6f6528a1 | 411 | return true; |
b789ef51 CL |
412 | } else |
413 | #endif | |
414 | { | |
1d07171c CL |
415 | unsigned long flags; |
416 | ||
417 | local_irq_save(flags); | |
881db7fb | 418 | slab_lock(page); |
d0e0ac97 CG |
419 | if (page->freelist == freelist_old && |
420 | page->counters == counters_old) { | |
b789ef51 | 421 | page->freelist = freelist_new; |
7d27a04b | 422 | page->counters = counters_new; |
881db7fb | 423 | slab_unlock(page); |
1d07171c | 424 | local_irq_restore(flags); |
6f6528a1 | 425 | return true; |
b789ef51 | 426 | } |
881db7fb | 427 | slab_unlock(page); |
1d07171c | 428 | local_irq_restore(flags); |
b789ef51 CL |
429 | } |
430 | ||
431 | cpu_relax(); | |
432 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
433 | ||
434 | #ifdef SLUB_DEBUG_CMPXCHG | |
f9f58285 | 435 | pr_info("%s %s: cmpxchg double redo ", n, s->name); |
b789ef51 CL |
436 | #endif |
437 | ||
6f6528a1 | 438 | return false; |
b789ef51 CL |
439 | } |
440 | ||
41ecc55b | 441 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 YZ |
442 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; |
443 | static DEFINE_SPINLOCK(object_map_lock); | |
444 | ||
5f80b13a CL |
445 | /* |
446 | * Determine a map of object in use on a page. | |
447 | * | |
881db7fb | 448 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
449 | * not vanish from under us. |
450 | */ | |
90e9f6a6 | 451 | static unsigned long *get_map(struct kmem_cache *s, struct page *page) |
5f80b13a CL |
452 | { |
453 | void *p; | |
454 | void *addr = page_address(page); | |
455 | ||
90e9f6a6 YZ |
456 | VM_BUG_ON(!irqs_disabled()); |
457 | ||
458 | spin_lock(&object_map_lock); | |
459 | ||
460 | bitmap_zero(object_map, page->objects); | |
461 | ||
5f80b13a | 462 | for (p = page->freelist; p; p = get_freepointer(s, p)) |
90e9f6a6 YZ |
463 | set_bit(slab_index(p, s, addr), object_map); |
464 | ||
465 | return object_map; | |
466 | } | |
467 | ||
468 | static void put_map(unsigned long *map) | |
469 | { | |
470 | VM_BUG_ON(map != object_map); | |
471 | lockdep_assert_held(&object_map_lock); | |
472 | ||
473 | spin_unlock(&object_map_lock); | |
5f80b13a CL |
474 | } |
475 | ||
870b1fbb | 476 | static inline unsigned int size_from_object(struct kmem_cache *s) |
d86bd1be JK |
477 | { |
478 | if (s->flags & SLAB_RED_ZONE) | |
479 | return s->size - s->red_left_pad; | |
480 | ||
481 | return s->size; | |
482 | } | |
483 | ||
484 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
485 | { | |
486 | if (s->flags & SLAB_RED_ZONE) | |
487 | p -= s->red_left_pad; | |
488 | ||
489 | return p; | |
490 | } | |
491 | ||
41ecc55b CL |
492 | /* |
493 | * Debug settings: | |
494 | */ | |
89d3c87e | 495 | #if defined(CONFIG_SLUB_DEBUG_ON) |
d50112ed | 496 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; |
f0630fff | 497 | #else |
d50112ed | 498 | static slab_flags_t slub_debug; |
f0630fff | 499 | #endif |
41ecc55b CL |
500 | |
501 | static char *slub_debug_slabs; | |
fa5ec8a1 | 502 | static int disable_higher_order_debug; |
41ecc55b | 503 | |
a79316c6 AR |
504 | /* |
505 | * slub is about to manipulate internal object metadata. This memory lies | |
506 | * outside the range of the allocated object, so accessing it would normally | |
507 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
508 | * to tell kasan that these accesses are OK. | |
509 | */ | |
510 | static inline void metadata_access_enable(void) | |
511 | { | |
512 | kasan_disable_current(); | |
513 | } | |
514 | ||
515 | static inline void metadata_access_disable(void) | |
516 | { | |
517 | kasan_enable_current(); | |
518 | } | |
519 | ||
81819f0f CL |
520 | /* |
521 | * Object debugging | |
522 | */ | |
d86bd1be JK |
523 | |
524 | /* Verify that a pointer has an address that is valid within a slab page */ | |
525 | static inline int check_valid_pointer(struct kmem_cache *s, | |
526 | struct page *page, void *object) | |
527 | { | |
528 | void *base; | |
529 | ||
530 | if (!object) | |
531 | return 1; | |
532 | ||
533 | base = page_address(page); | |
338cfaad | 534 | object = kasan_reset_tag(object); |
d86bd1be JK |
535 | object = restore_red_left(s, object); |
536 | if (object < base || object >= base + page->objects * s->size || | |
537 | (object - base) % s->size) { | |
538 | return 0; | |
539 | } | |
540 | ||
541 | return 1; | |
542 | } | |
543 | ||
aa2efd5e DT |
544 | static void print_section(char *level, char *text, u8 *addr, |
545 | unsigned int length) | |
81819f0f | 546 | { |
a79316c6 | 547 | metadata_access_enable(); |
aa2efd5e | 548 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
ffc79d28 | 549 | length, 1); |
a79316c6 | 550 | metadata_access_disable(); |
81819f0f CL |
551 | } |
552 | ||
81819f0f CL |
553 | static struct track *get_track(struct kmem_cache *s, void *object, |
554 | enum track_item alloc) | |
555 | { | |
556 | struct track *p; | |
557 | ||
558 | if (s->offset) | |
559 | p = object + s->offset + sizeof(void *); | |
560 | else | |
561 | p = object + s->inuse; | |
562 | ||
563 | return p + alloc; | |
564 | } | |
565 | ||
566 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 567 | enum track_item alloc, unsigned long addr) |
81819f0f | 568 | { |
1a00df4a | 569 | struct track *p = get_track(s, object, alloc); |
81819f0f | 570 | |
81819f0f | 571 | if (addr) { |
d6543e39 | 572 | #ifdef CONFIG_STACKTRACE |
79716799 | 573 | unsigned int nr_entries; |
d6543e39 | 574 | |
a79316c6 | 575 | metadata_access_enable(); |
79716799 | 576 | nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); |
a79316c6 | 577 | metadata_access_disable(); |
d6543e39 | 578 | |
79716799 TG |
579 | if (nr_entries < TRACK_ADDRS_COUNT) |
580 | p->addrs[nr_entries] = 0; | |
d6543e39 | 581 | #endif |
81819f0f CL |
582 | p->addr = addr; |
583 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 584 | p->pid = current->pid; |
81819f0f | 585 | p->when = jiffies; |
b8ca7ff7 | 586 | } else { |
81819f0f | 587 | memset(p, 0, sizeof(struct track)); |
b8ca7ff7 | 588 | } |
81819f0f CL |
589 | } |
590 | ||
81819f0f CL |
591 | static void init_tracking(struct kmem_cache *s, void *object) |
592 | { | |
24922684 CL |
593 | if (!(s->flags & SLAB_STORE_USER)) |
594 | return; | |
595 | ||
ce71e27c EGM |
596 | set_track(s, object, TRACK_FREE, 0UL); |
597 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
598 | } |
599 | ||
86609d33 | 600 | static void print_track(const char *s, struct track *t, unsigned long pr_time) |
81819f0f CL |
601 | { |
602 | if (!t->addr) | |
603 | return; | |
604 | ||
f9f58285 | 605 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
86609d33 | 606 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); |
d6543e39 BG |
607 | #ifdef CONFIG_STACKTRACE |
608 | { | |
609 | int i; | |
610 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
611 | if (t->addrs[i]) | |
f9f58285 | 612 | pr_err("\t%pS\n", (void *)t->addrs[i]); |
d6543e39 BG |
613 | else |
614 | break; | |
615 | } | |
616 | #endif | |
24922684 CL |
617 | } |
618 | ||
619 | static void print_tracking(struct kmem_cache *s, void *object) | |
620 | { | |
86609d33 | 621 | unsigned long pr_time = jiffies; |
24922684 CL |
622 | if (!(s->flags & SLAB_STORE_USER)) |
623 | return; | |
624 | ||
86609d33 CP |
625 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); |
626 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
24922684 CL |
627 | } |
628 | ||
629 | static void print_page_info(struct page *page) | |
630 | { | |
f9f58285 | 631 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
d0e0ac97 | 632 | page, page->objects, page->inuse, page->freelist, page->flags); |
24922684 CL |
633 | |
634 | } | |
635 | ||
636 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
637 | { | |
ecc42fbe | 638 | struct va_format vaf; |
24922684 | 639 | va_list args; |
24922684 CL |
640 | |
641 | va_start(args, fmt); | |
ecc42fbe FF |
642 | vaf.fmt = fmt; |
643 | vaf.va = &args; | |
f9f58285 | 644 | pr_err("=============================================================================\n"); |
ecc42fbe | 645 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
f9f58285 | 646 | pr_err("-----------------------------------------------------------------------------\n\n"); |
645df230 | 647 | |
373d4d09 | 648 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
ecc42fbe | 649 | va_end(args); |
81819f0f CL |
650 | } |
651 | ||
24922684 CL |
652 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
653 | { | |
ecc42fbe | 654 | struct va_format vaf; |
24922684 | 655 | va_list args; |
24922684 CL |
656 | |
657 | va_start(args, fmt); | |
ecc42fbe FF |
658 | vaf.fmt = fmt; |
659 | vaf.va = &args; | |
660 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
24922684 | 661 | va_end(args); |
24922684 CL |
662 | } |
663 | ||
664 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
665 | { |
666 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 667 | u8 *addr = page_address(page); |
24922684 CL |
668 | |
669 | print_tracking(s, p); | |
670 | ||
671 | print_page_info(page); | |
672 | ||
f9f58285 FF |
673 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
674 | p, p - addr, get_freepointer(s, p)); | |
24922684 | 675 | |
d86bd1be | 676 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e DT |
677 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
678 | s->red_left_pad); | |
d86bd1be | 679 | else if (p > addr + 16) |
aa2efd5e | 680 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
81819f0f | 681 | |
aa2efd5e | 682 | print_section(KERN_ERR, "Object ", p, |
1b473f29 | 683 | min_t(unsigned int, s->object_size, PAGE_SIZE)); |
81819f0f | 684 | if (s->flags & SLAB_RED_ZONE) |
aa2efd5e | 685 | print_section(KERN_ERR, "Redzone ", p + s->object_size, |
3b0efdfa | 686 | s->inuse - s->object_size); |
81819f0f | 687 | |
81819f0f CL |
688 | if (s->offset) |
689 | off = s->offset + sizeof(void *); | |
690 | else | |
691 | off = s->inuse; | |
692 | ||
24922684 | 693 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 694 | off += 2 * sizeof(struct track); |
81819f0f | 695 | |
80a9201a AP |
696 | off += kasan_metadata_size(s); |
697 | ||
d86bd1be | 698 | if (off != size_from_object(s)) |
81819f0f | 699 | /* Beginning of the filler is the free pointer */ |
aa2efd5e DT |
700 | print_section(KERN_ERR, "Padding ", p + off, |
701 | size_from_object(s) - off); | |
24922684 CL |
702 | |
703 | dump_stack(); | |
81819f0f CL |
704 | } |
705 | ||
75c66def | 706 | void object_err(struct kmem_cache *s, struct page *page, |
81819f0f CL |
707 | u8 *object, char *reason) |
708 | { | |
3dc50637 | 709 | slab_bug(s, "%s", reason); |
24922684 | 710 | print_trailer(s, page, object); |
81819f0f CL |
711 | } |
712 | ||
a38965bf | 713 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
d0e0ac97 | 714 | const char *fmt, ...) |
81819f0f CL |
715 | { |
716 | va_list args; | |
717 | char buf[100]; | |
718 | ||
24922684 CL |
719 | va_start(args, fmt); |
720 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 721 | va_end(args); |
3dc50637 | 722 | slab_bug(s, "%s", buf); |
24922684 | 723 | print_page_info(page); |
81819f0f CL |
724 | dump_stack(); |
725 | } | |
726 | ||
f7cb1933 | 727 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
728 | { |
729 | u8 *p = object; | |
730 | ||
d86bd1be JK |
731 | if (s->flags & SLAB_RED_ZONE) |
732 | memset(p - s->red_left_pad, val, s->red_left_pad); | |
733 | ||
81819f0f | 734 | if (s->flags & __OBJECT_POISON) { |
3b0efdfa CL |
735 | memset(p, POISON_FREE, s->object_size - 1); |
736 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
737 | } |
738 | ||
739 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 740 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
741 | } |
742 | ||
24922684 CL |
743 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
744 | void *from, void *to) | |
745 | { | |
746 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
747 | memset(from, data, to - from); | |
748 | } | |
749 | ||
750 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
751 | u8 *object, char *what, | |
06428780 | 752 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
753 | { |
754 | u8 *fault; | |
755 | u8 *end; | |
e1b70dd1 | 756 | u8 *addr = page_address(page); |
24922684 | 757 | |
a79316c6 | 758 | metadata_access_enable(); |
79824820 | 759 | fault = memchr_inv(start, value, bytes); |
a79316c6 | 760 | metadata_access_disable(); |
24922684 CL |
761 | if (!fault) |
762 | return 1; | |
763 | ||
764 | end = start + bytes; | |
765 | while (end > fault && end[-1] == value) | |
766 | end--; | |
767 | ||
768 | slab_bug(s, "%s overwritten", what); | |
e1b70dd1 MC |
769 | pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", |
770 | fault, end - 1, fault - addr, | |
771 | fault[0], value); | |
24922684 CL |
772 | print_trailer(s, page, object); |
773 | ||
774 | restore_bytes(s, what, value, fault, end); | |
775 | return 0; | |
81819f0f CL |
776 | } |
777 | ||
81819f0f CL |
778 | /* |
779 | * Object layout: | |
780 | * | |
781 | * object address | |
782 | * Bytes of the object to be managed. | |
783 | * If the freepointer may overlay the object then the free | |
784 | * pointer is the first word of the object. | |
672bba3a | 785 | * |
81819f0f CL |
786 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
787 | * 0xa5 (POISON_END) | |
788 | * | |
3b0efdfa | 789 | * object + s->object_size |
81819f0f | 790 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 791 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 792 | * object_size == inuse. |
672bba3a | 793 | * |
81819f0f CL |
794 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
795 | * 0xcc (RED_ACTIVE) for objects in use. | |
796 | * | |
797 | * object + s->inuse | |
672bba3a CL |
798 | * Meta data starts here. |
799 | * | |
81819f0f CL |
800 | * A. Free pointer (if we cannot overwrite object on free) |
801 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 802 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 803 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
804 | * before the word boundary. |
805 | * | |
806 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
807 | * |
808 | * object + s->size | |
672bba3a | 809 | * Nothing is used beyond s->size. |
81819f0f | 810 | * |
3b0efdfa | 811 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 812 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
813 | * may be used with merged slabcaches. |
814 | */ | |
815 | ||
81819f0f CL |
816 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
817 | { | |
818 | unsigned long off = s->inuse; /* The end of info */ | |
819 | ||
820 | if (s->offset) | |
821 | /* Freepointer is placed after the object. */ | |
822 | off += sizeof(void *); | |
823 | ||
824 | if (s->flags & SLAB_STORE_USER) | |
825 | /* We also have user information there */ | |
826 | off += 2 * sizeof(struct track); | |
827 | ||
80a9201a AP |
828 | off += kasan_metadata_size(s); |
829 | ||
d86bd1be | 830 | if (size_from_object(s) == off) |
81819f0f CL |
831 | return 1; |
832 | ||
24922684 | 833 | return check_bytes_and_report(s, page, p, "Object padding", |
d86bd1be | 834 | p + off, POISON_INUSE, size_from_object(s) - off); |
81819f0f CL |
835 | } |
836 | ||
39b26464 | 837 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
838 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
839 | { | |
24922684 CL |
840 | u8 *start; |
841 | u8 *fault; | |
842 | u8 *end; | |
5d682681 | 843 | u8 *pad; |
24922684 CL |
844 | int length; |
845 | int remainder; | |
81819f0f CL |
846 | |
847 | if (!(s->flags & SLAB_POISON)) | |
848 | return 1; | |
849 | ||
a973e9dd | 850 | start = page_address(page); |
a50b854e | 851 | length = page_size(page); |
39b26464 CL |
852 | end = start + length; |
853 | remainder = length % s->size; | |
81819f0f CL |
854 | if (!remainder) |
855 | return 1; | |
856 | ||
5d682681 | 857 | pad = end - remainder; |
a79316c6 | 858 | metadata_access_enable(); |
5d682681 | 859 | fault = memchr_inv(pad, POISON_INUSE, remainder); |
a79316c6 | 860 | metadata_access_disable(); |
24922684 CL |
861 | if (!fault) |
862 | return 1; | |
863 | while (end > fault && end[-1] == POISON_INUSE) | |
864 | end--; | |
865 | ||
e1b70dd1 MC |
866 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", |
867 | fault, end - 1, fault - start); | |
5d682681 | 868 | print_section(KERN_ERR, "Padding ", pad, remainder); |
24922684 | 869 | |
5d682681 | 870 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); |
24922684 | 871 | return 0; |
81819f0f CL |
872 | } |
873 | ||
874 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 875 | void *object, u8 val) |
81819f0f CL |
876 | { |
877 | u8 *p = object; | |
3b0efdfa | 878 | u8 *endobject = object + s->object_size; |
81819f0f CL |
879 | |
880 | if (s->flags & SLAB_RED_ZONE) { | |
d86bd1be JK |
881 | if (!check_bytes_and_report(s, page, object, "Redzone", |
882 | object - s->red_left_pad, val, s->red_left_pad)) | |
883 | return 0; | |
884 | ||
24922684 | 885 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 886 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 887 | return 0; |
81819f0f | 888 | } else { |
3b0efdfa | 889 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 890 | check_bytes_and_report(s, page, p, "Alignment padding", |
d0e0ac97 CG |
891 | endobject, POISON_INUSE, |
892 | s->inuse - s->object_size); | |
3adbefee | 893 | } |
81819f0f CL |
894 | } |
895 | ||
896 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 897 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 898 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 899 | POISON_FREE, s->object_size - 1) || |
24922684 | 900 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 901 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 902 | return 0; |
81819f0f CL |
903 | /* |
904 | * check_pad_bytes cleans up on its own. | |
905 | */ | |
906 | check_pad_bytes(s, page, p); | |
907 | } | |
908 | ||
f7cb1933 | 909 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
910 | /* |
911 | * Object and freepointer overlap. Cannot check | |
912 | * freepointer while object is allocated. | |
913 | */ | |
914 | return 1; | |
915 | ||
916 | /* Check free pointer validity */ | |
917 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
918 | object_err(s, page, p, "Freepointer corrupt"); | |
919 | /* | |
9f6c708e | 920 | * No choice but to zap it and thus lose the remainder |
81819f0f | 921 | * of the free objects in this slab. May cause |
672bba3a | 922 | * another error because the object count is now wrong. |
81819f0f | 923 | */ |
a973e9dd | 924 | set_freepointer(s, p, NULL); |
81819f0f CL |
925 | return 0; |
926 | } | |
927 | return 1; | |
928 | } | |
929 | ||
930 | static int check_slab(struct kmem_cache *s, struct page *page) | |
931 | { | |
39b26464 CL |
932 | int maxobj; |
933 | ||
81819f0f CL |
934 | VM_BUG_ON(!irqs_disabled()); |
935 | ||
936 | if (!PageSlab(page)) { | |
24922684 | 937 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
938 | return 0; |
939 | } | |
39b26464 | 940 | |
9736d2a9 | 941 | maxobj = order_objects(compound_order(page), s->size); |
39b26464 CL |
942 | if (page->objects > maxobj) { |
943 | slab_err(s, page, "objects %u > max %u", | |
f6edde9c | 944 | page->objects, maxobj); |
39b26464 CL |
945 | return 0; |
946 | } | |
947 | if (page->inuse > page->objects) { | |
24922684 | 948 | slab_err(s, page, "inuse %u > max %u", |
f6edde9c | 949 | page->inuse, page->objects); |
81819f0f CL |
950 | return 0; |
951 | } | |
952 | /* Slab_pad_check fixes things up after itself */ | |
953 | slab_pad_check(s, page); | |
954 | return 1; | |
955 | } | |
956 | ||
957 | /* | |
672bba3a CL |
958 | * Determine if a certain object on a page is on the freelist. Must hold the |
959 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
960 | */ |
961 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
962 | { | |
963 | int nr = 0; | |
881db7fb | 964 | void *fp; |
81819f0f | 965 | void *object = NULL; |
f6edde9c | 966 | int max_objects; |
81819f0f | 967 | |
881db7fb | 968 | fp = page->freelist; |
39b26464 | 969 | while (fp && nr <= page->objects) { |
81819f0f CL |
970 | if (fp == search) |
971 | return 1; | |
972 | if (!check_valid_pointer(s, page, fp)) { | |
973 | if (object) { | |
974 | object_err(s, page, object, | |
975 | "Freechain corrupt"); | |
a973e9dd | 976 | set_freepointer(s, object, NULL); |
81819f0f | 977 | } else { |
24922684 | 978 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 979 | page->freelist = NULL; |
39b26464 | 980 | page->inuse = page->objects; |
24922684 | 981 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
982 | return 0; |
983 | } | |
984 | break; | |
985 | } | |
986 | object = fp; | |
987 | fp = get_freepointer(s, object); | |
988 | nr++; | |
989 | } | |
990 | ||
9736d2a9 | 991 | max_objects = order_objects(compound_order(page), s->size); |
210b5c06 CG |
992 | if (max_objects > MAX_OBJS_PER_PAGE) |
993 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
994 | |
995 | if (page->objects != max_objects) { | |
756a025f JP |
996 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
997 | page->objects, max_objects); | |
224a88be CL |
998 | page->objects = max_objects; |
999 | slab_fix(s, "Number of objects adjusted."); | |
1000 | } | |
39b26464 | 1001 | if (page->inuse != page->objects - nr) { |
756a025f JP |
1002 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
1003 | page->inuse, page->objects - nr); | |
39b26464 | 1004 | page->inuse = page->objects - nr; |
24922684 | 1005 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
1006 | } |
1007 | return search == NULL; | |
1008 | } | |
1009 | ||
0121c619 CL |
1010 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
1011 | int alloc) | |
3ec09742 CL |
1012 | { |
1013 | if (s->flags & SLAB_TRACE) { | |
f9f58285 | 1014 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
3ec09742 CL |
1015 | s->name, |
1016 | alloc ? "alloc" : "free", | |
1017 | object, page->inuse, | |
1018 | page->freelist); | |
1019 | ||
1020 | if (!alloc) | |
aa2efd5e | 1021 | print_section(KERN_INFO, "Object ", (void *)object, |
d0e0ac97 | 1022 | s->object_size); |
3ec09742 CL |
1023 | |
1024 | dump_stack(); | |
1025 | } | |
1026 | } | |
1027 | ||
643b1138 | 1028 | /* |
672bba3a | 1029 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 1030 | */ |
5cc6eee8 CL |
1031 | static void add_full(struct kmem_cache *s, |
1032 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 1033 | { |
5cc6eee8 CL |
1034 | if (!(s->flags & SLAB_STORE_USER)) |
1035 | return; | |
1036 | ||
255d0884 | 1037 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1038 | list_add(&page->slab_list, &n->full); |
643b1138 CL |
1039 | } |
1040 | ||
c65c1877 | 1041 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
643b1138 | 1042 | { |
643b1138 CL |
1043 | if (!(s->flags & SLAB_STORE_USER)) |
1044 | return; | |
1045 | ||
255d0884 | 1046 | lockdep_assert_held(&n->list_lock); |
916ac052 | 1047 | list_del(&page->slab_list); |
643b1138 CL |
1048 | } |
1049 | ||
0f389ec6 CL |
1050 | /* Tracking of the number of slabs for debugging purposes */ |
1051 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1052 | { | |
1053 | struct kmem_cache_node *n = get_node(s, node); | |
1054 | ||
1055 | return atomic_long_read(&n->nr_slabs); | |
1056 | } | |
1057 | ||
26c02cf0 AB |
1058 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1059 | { | |
1060 | return atomic_long_read(&n->nr_slabs); | |
1061 | } | |
1062 | ||
205ab99d | 1063 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1064 | { |
1065 | struct kmem_cache_node *n = get_node(s, node); | |
1066 | ||
1067 | /* | |
1068 | * May be called early in order to allocate a slab for the | |
1069 | * kmem_cache_node structure. Solve the chicken-egg | |
1070 | * dilemma by deferring the increment of the count during | |
1071 | * bootstrap (see early_kmem_cache_node_alloc). | |
1072 | */ | |
338b2642 | 1073 | if (likely(n)) { |
0f389ec6 | 1074 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1075 | atomic_long_add(objects, &n->total_objects); |
1076 | } | |
0f389ec6 | 1077 | } |
205ab99d | 1078 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1079 | { |
1080 | struct kmem_cache_node *n = get_node(s, node); | |
1081 | ||
1082 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1083 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1084 | } |
1085 | ||
1086 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1087 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1088 | void *object) | |
1089 | { | |
1090 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1091 | return; | |
1092 | ||
f7cb1933 | 1093 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1094 | init_tracking(s, object); |
1095 | } | |
1096 | ||
a50b854e MWO |
1097 | static |
1098 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) | |
a7101224 AK |
1099 | { |
1100 | if (!(s->flags & SLAB_POISON)) | |
1101 | return; | |
1102 | ||
1103 | metadata_access_enable(); | |
a50b854e | 1104 | memset(addr, POISON_INUSE, page_size(page)); |
a7101224 AK |
1105 | metadata_access_disable(); |
1106 | } | |
1107 | ||
becfda68 | 1108 | static inline int alloc_consistency_checks(struct kmem_cache *s, |
278d7756 | 1109 | struct page *page, void *object) |
81819f0f CL |
1110 | { |
1111 | if (!check_slab(s, page)) | |
becfda68 | 1112 | return 0; |
81819f0f | 1113 | |
81819f0f CL |
1114 | if (!check_valid_pointer(s, page, object)) { |
1115 | object_err(s, page, object, "Freelist Pointer check fails"); | |
becfda68 | 1116 | return 0; |
81819f0f CL |
1117 | } |
1118 | ||
f7cb1933 | 1119 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
becfda68 LA |
1120 | return 0; |
1121 | ||
1122 | return 1; | |
1123 | } | |
1124 | ||
1125 | static noinline int alloc_debug_processing(struct kmem_cache *s, | |
1126 | struct page *page, | |
1127 | void *object, unsigned long addr) | |
1128 | { | |
1129 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
278d7756 | 1130 | if (!alloc_consistency_checks(s, page, object)) |
becfda68 LA |
1131 | goto bad; |
1132 | } | |
81819f0f | 1133 | |
3ec09742 CL |
1134 | /* Success perform special debug activities for allocs */ |
1135 | if (s->flags & SLAB_STORE_USER) | |
1136 | set_track(s, object, TRACK_ALLOC, addr); | |
1137 | trace(s, page, object, 1); | |
f7cb1933 | 1138 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1139 | return 1; |
3ec09742 | 1140 | |
81819f0f CL |
1141 | bad: |
1142 | if (PageSlab(page)) { | |
1143 | /* | |
1144 | * If this is a slab page then lets do the best we can | |
1145 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1146 | * as used avoids touching the remaining objects. |
81819f0f | 1147 | */ |
24922684 | 1148 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1149 | page->inuse = page->objects; |
a973e9dd | 1150 | page->freelist = NULL; |
81819f0f CL |
1151 | } |
1152 | return 0; | |
1153 | } | |
1154 | ||
becfda68 LA |
1155 | static inline int free_consistency_checks(struct kmem_cache *s, |
1156 | struct page *page, void *object, unsigned long addr) | |
81819f0f | 1157 | { |
81819f0f | 1158 | if (!check_valid_pointer(s, page, object)) { |
70d71228 | 1159 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
becfda68 | 1160 | return 0; |
81819f0f CL |
1161 | } |
1162 | ||
1163 | if (on_freelist(s, page, object)) { | |
24922684 | 1164 | object_err(s, page, object, "Object already free"); |
becfda68 | 1165 | return 0; |
81819f0f CL |
1166 | } |
1167 | ||
f7cb1933 | 1168 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
becfda68 | 1169 | return 0; |
81819f0f | 1170 | |
1b4f59e3 | 1171 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1172 | if (!PageSlab(page)) { |
756a025f JP |
1173 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
1174 | object); | |
1b4f59e3 | 1175 | } else if (!page->slab_cache) { |
f9f58285 FF |
1176 | pr_err("SLUB <none>: no slab for object 0x%p.\n", |
1177 | object); | |
70d71228 | 1178 | dump_stack(); |
06428780 | 1179 | } else |
24922684 CL |
1180 | object_err(s, page, object, |
1181 | "page slab pointer corrupt."); | |
becfda68 LA |
1182 | return 0; |
1183 | } | |
1184 | return 1; | |
1185 | } | |
1186 | ||
1187 | /* Supports checking bulk free of a constructed freelist */ | |
1188 | static noinline int free_debug_processing( | |
1189 | struct kmem_cache *s, struct page *page, | |
1190 | void *head, void *tail, int bulk_cnt, | |
1191 | unsigned long addr) | |
1192 | { | |
1193 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1194 | void *object = head; | |
1195 | int cnt = 0; | |
1196 | unsigned long uninitialized_var(flags); | |
1197 | int ret = 0; | |
1198 | ||
1199 | spin_lock_irqsave(&n->list_lock, flags); | |
1200 | slab_lock(page); | |
1201 | ||
1202 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1203 | if (!check_slab(s, page)) | |
1204 | goto out; | |
1205 | } | |
1206 | ||
1207 | next_object: | |
1208 | cnt++; | |
1209 | ||
1210 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1211 | if (!free_consistency_checks(s, page, object, addr)) | |
1212 | goto out; | |
81819f0f | 1213 | } |
3ec09742 | 1214 | |
3ec09742 CL |
1215 | if (s->flags & SLAB_STORE_USER) |
1216 | set_track(s, object, TRACK_FREE, addr); | |
1217 | trace(s, page, object, 0); | |
81084651 | 1218 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
f7cb1933 | 1219 | init_object(s, object, SLUB_RED_INACTIVE); |
81084651 JDB |
1220 | |
1221 | /* Reached end of constructed freelist yet? */ | |
1222 | if (object != tail) { | |
1223 | object = get_freepointer(s, object); | |
1224 | goto next_object; | |
1225 | } | |
804aa132 LA |
1226 | ret = 1; |
1227 | ||
5c2e4bbb | 1228 | out: |
81084651 JDB |
1229 | if (cnt != bulk_cnt) |
1230 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | |
1231 | bulk_cnt, cnt); | |
1232 | ||
881db7fb | 1233 | slab_unlock(page); |
282acb43 | 1234 | spin_unlock_irqrestore(&n->list_lock, flags); |
804aa132 LA |
1235 | if (!ret) |
1236 | slab_fix(s, "Object at 0x%p not freed", object); | |
1237 | return ret; | |
81819f0f CL |
1238 | } |
1239 | ||
41ecc55b CL |
1240 | static int __init setup_slub_debug(char *str) |
1241 | { | |
f0630fff CL |
1242 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1243 | if (*str++ != '=' || !*str) | |
1244 | /* | |
1245 | * No options specified. Switch on full debugging. | |
1246 | */ | |
1247 | goto out; | |
1248 | ||
1249 | if (*str == ',') | |
1250 | /* | |
1251 | * No options but restriction on slabs. This means full | |
1252 | * debugging for slabs matching a pattern. | |
1253 | */ | |
1254 | goto check_slabs; | |
1255 | ||
1256 | slub_debug = 0; | |
1257 | if (*str == '-') | |
1258 | /* | |
1259 | * Switch off all debugging measures. | |
1260 | */ | |
1261 | goto out; | |
1262 | ||
1263 | /* | |
1264 | * Determine which debug features should be switched on | |
1265 | */ | |
06428780 | 1266 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1267 | switch (tolower(*str)) { |
1268 | case 'f': | |
becfda68 | 1269 | slub_debug |= SLAB_CONSISTENCY_CHECKS; |
f0630fff CL |
1270 | break; |
1271 | case 'z': | |
1272 | slub_debug |= SLAB_RED_ZONE; | |
1273 | break; | |
1274 | case 'p': | |
1275 | slub_debug |= SLAB_POISON; | |
1276 | break; | |
1277 | case 'u': | |
1278 | slub_debug |= SLAB_STORE_USER; | |
1279 | break; | |
1280 | case 't': | |
1281 | slub_debug |= SLAB_TRACE; | |
1282 | break; | |
4c13dd3b DM |
1283 | case 'a': |
1284 | slub_debug |= SLAB_FAILSLAB; | |
1285 | break; | |
08303a73 CA |
1286 | case 'o': |
1287 | /* | |
1288 | * Avoid enabling debugging on caches if its minimum | |
1289 | * order would increase as a result. | |
1290 | */ | |
1291 | disable_higher_order_debug = 1; | |
1292 | break; | |
f0630fff | 1293 | default: |
f9f58285 FF |
1294 | pr_err("slub_debug option '%c' unknown. skipped\n", |
1295 | *str); | |
f0630fff | 1296 | } |
41ecc55b CL |
1297 | } |
1298 | ||
f0630fff | 1299 | check_slabs: |
41ecc55b CL |
1300 | if (*str == ',') |
1301 | slub_debug_slabs = str + 1; | |
f0630fff | 1302 | out: |
6471384a AP |
1303 | if ((static_branch_unlikely(&init_on_alloc) || |
1304 | static_branch_unlikely(&init_on_free)) && | |
1305 | (slub_debug & SLAB_POISON)) | |
1306 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
41ecc55b CL |
1307 | return 1; |
1308 | } | |
1309 | ||
1310 | __setup("slub_debug", setup_slub_debug); | |
1311 | ||
c5fd3ca0 AT |
1312 | /* |
1313 | * kmem_cache_flags - apply debugging options to the cache | |
1314 | * @object_size: the size of an object without meta data | |
1315 | * @flags: flags to set | |
1316 | * @name: name of the cache | |
1317 | * @ctor: constructor function | |
1318 | * | |
1319 | * Debug option(s) are applied to @flags. In addition to the debug | |
1320 | * option(s), if a slab name (or multiple) is specified i.e. | |
1321 | * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1322 | * then only the select slabs will receive the debug option(s). | |
1323 | */ | |
0293d1fd | 1324 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1325 | slab_flags_t flags, const char *name, |
51cc5068 | 1326 | void (*ctor)(void *)) |
41ecc55b | 1327 | { |
c5fd3ca0 AT |
1328 | char *iter; |
1329 | size_t len; | |
1330 | ||
1331 | /* If slub_debug = 0, it folds into the if conditional. */ | |
1332 | if (!slub_debug_slabs) | |
1333 | return flags | slub_debug; | |
1334 | ||
1335 | len = strlen(name); | |
1336 | iter = slub_debug_slabs; | |
1337 | while (*iter) { | |
1338 | char *end, *glob; | |
1339 | size_t cmplen; | |
1340 | ||
9cf3a8d8 | 1341 | end = strchrnul(iter, ','); |
c5fd3ca0 AT |
1342 | |
1343 | glob = strnchr(iter, end - iter, '*'); | |
1344 | if (glob) | |
1345 | cmplen = glob - iter; | |
1346 | else | |
1347 | cmplen = max_t(size_t, len, (end - iter)); | |
1348 | ||
1349 | if (!strncmp(name, iter, cmplen)) { | |
1350 | flags |= slub_debug; | |
1351 | break; | |
1352 | } | |
1353 | ||
1354 | if (!*end) | |
1355 | break; | |
1356 | iter = end + 1; | |
1357 | } | |
ba0268a8 CL |
1358 | |
1359 | return flags; | |
41ecc55b | 1360 | } |
b4a64718 | 1361 | #else /* !CONFIG_SLUB_DEBUG */ |
3ec09742 CL |
1362 | static inline void setup_object_debug(struct kmem_cache *s, |
1363 | struct page *page, void *object) {} | |
a50b854e MWO |
1364 | static inline |
1365 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} | |
41ecc55b | 1366 | |
3ec09742 | 1367 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1368 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1369 | |
282acb43 | 1370 | static inline int free_debug_processing( |
81084651 JDB |
1371 | struct kmem_cache *s, struct page *page, |
1372 | void *head, void *tail, int bulk_cnt, | |
282acb43 | 1373 | unsigned long addr) { return 0; } |
41ecc55b | 1374 | |
41ecc55b CL |
1375 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1376 | { return 1; } | |
1377 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1378 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1379 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1380 | struct page *page) {} | |
c65c1877 PZ |
1381 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1382 | struct page *page) {} | |
0293d1fd | 1383 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 1384 | slab_flags_t flags, const char *name, |
51cc5068 | 1385 | void (*ctor)(void *)) |
ba0268a8 CL |
1386 | { |
1387 | return flags; | |
1388 | } | |
41ecc55b | 1389 | #define slub_debug 0 |
0f389ec6 | 1390 | |
fdaa45e9 IM |
1391 | #define disable_higher_order_debug 0 |
1392 | ||
0f389ec6 CL |
1393 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1394 | { return 0; } | |
26c02cf0 AB |
1395 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1396 | { return 0; } | |
205ab99d CL |
1397 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1398 | int objects) {} | |
1399 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1400 | int objects) {} | |
7d550c56 | 1401 | |
02e72cc6 AR |
1402 | #endif /* CONFIG_SLUB_DEBUG */ |
1403 | ||
1404 | /* | |
1405 | * Hooks for other subsystems that check memory allocations. In a typical | |
1406 | * production configuration these hooks all should produce no code at all. | |
1407 | */ | |
0116523c | 1408 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
d56791b3 | 1409 | { |
53128245 | 1410 | ptr = kasan_kmalloc_large(ptr, size, flags); |
a2f77575 | 1411 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ |
d56791b3 | 1412 | kmemleak_alloc(ptr, size, 1, flags); |
53128245 | 1413 | return ptr; |
d56791b3 RB |
1414 | } |
1415 | ||
ee3ce779 | 1416 | static __always_inline void kfree_hook(void *x) |
d56791b3 RB |
1417 | { |
1418 | kmemleak_free(x); | |
ee3ce779 | 1419 | kasan_kfree_large(x, _RET_IP_); |
d56791b3 RB |
1420 | } |
1421 | ||
c3895391 | 1422 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) |
d56791b3 RB |
1423 | { |
1424 | kmemleak_free_recursive(x, s->flags); | |
7d550c56 | 1425 | |
02e72cc6 AR |
1426 | /* |
1427 | * Trouble is that we may no longer disable interrupts in the fast path | |
1428 | * So in order to make the debug calls that expect irqs to be | |
1429 | * disabled we need to disable interrupts temporarily. | |
1430 | */ | |
4675ff05 | 1431 | #ifdef CONFIG_LOCKDEP |
02e72cc6 AR |
1432 | { |
1433 | unsigned long flags; | |
1434 | ||
1435 | local_irq_save(flags); | |
02e72cc6 AR |
1436 | debug_check_no_locks_freed(x, s->object_size); |
1437 | local_irq_restore(flags); | |
1438 | } | |
1439 | #endif | |
1440 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
1441 | debug_check_no_obj_freed(x, s->object_size); | |
0316bec2 | 1442 | |
c3895391 AK |
1443 | /* KASAN might put x into memory quarantine, delaying its reuse */ |
1444 | return kasan_slab_free(s, x, _RET_IP_); | |
02e72cc6 | 1445 | } |
205ab99d | 1446 | |
c3895391 AK |
1447 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, |
1448 | void **head, void **tail) | |
81084651 | 1449 | { |
6471384a AP |
1450 | |
1451 | void *object; | |
1452 | void *next = *head; | |
1453 | void *old_tail = *tail ? *tail : *head; | |
1454 | int rsize; | |
1455 | ||
aea4df4c LA |
1456 | /* Head and tail of the reconstructed freelist */ |
1457 | *head = NULL; | |
1458 | *tail = NULL; | |
1b7e816f | 1459 | |
aea4df4c LA |
1460 | do { |
1461 | object = next; | |
1462 | next = get_freepointer(s, object); | |
1463 | ||
1464 | if (slab_want_init_on_free(s)) { | |
6471384a AP |
1465 | /* |
1466 | * Clear the object and the metadata, but don't touch | |
1467 | * the redzone. | |
1468 | */ | |
1469 | memset(object, 0, s->object_size); | |
1470 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | |
1471 | : 0; | |
1472 | memset((char *)object + s->inuse, 0, | |
1473 | s->size - s->inuse - rsize); | |
81084651 | 1474 | |
aea4df4c | 1475 | } |
c3895391 AK |
1476 | /* If object's reuse doesn't have to be delayed */ |
1477 | if (!slab_free_hook(s, object)) { | |
1478 | /* Move object to the new freelist */ | |
1479 | set_freepointer(s, object, *head); | |
1480 | *head = object; | |
1481 | if (!*tail) | |
1482 | *tail = object; | |
1483 | } | |
1484 | } while (object != old_tail); | |
1485 | ||
1486 | if (*head == *tail) | |
1487 | *tail = NULL; | |
1488 | ||
1489 | return *head != NULL; | |
81084651 JDB |
1490 | } |
1491 | ||
4d176711 | 1492 | static void *setup_object(struct kmem_cache *s, struct page *page, |
588f8ba9 TG |
1493 | void *object) |
1494 | { | |
1495 | setup_object_debug(s, page, object); | |
4d176711 | 1496 | object = kasan_init_slab_obj(s, object); |
588f8ba9 TG |
1497 | if (unlikely(s->ctor)) { |
1498 | kasan_unpoison_object_data(s, object); | |
1499 | s->ctor(object); | |
1500 | kasan_poison_object_data(s, object); | |
1501 | } | |
4d176711 | 1502 | return object; |
588f8ba9 TG |
1503 | } |
1504 | ||
81819f0f CL |
1505 | /* |
1506 | * Slab allocation and freeing | |
1507 | */ | |
5dfb4175 VD |
1508 | static inline struct page *alloc_slab_page(struct kmem_cache *s, |
1509 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | |
65c3376a | 1510 | { |
5dfb4175 | 1511 | struct page *page; |
19af27af | 1512 | unsigned int order = oo_order(oo); |
65c3376a | 1513 | |
2154a336 | 1514 | if (node == NUMA_NO_NODE) |
5dfb4175 | 1515 | page = alloc_pages(flags, order); |
65c3376a | 1516 | else |
96db800f | 1517 | page = __alloc_pages_node(node, flags, order); |
5dfb4175 | 1518 | |
6cea1d56 | 1519 | if (page && charge_slab_page(page, flags, order, s)) { |
f3ccb2c4 VD |
1520 | __free_pages(page, order); |
1521 | page = NULL; | |
1522 | } | |
5dfb4175 VD |
1523 | |
1524 | return page; | |
65c3376a CL |
1525 | } |
1526 | ||
210e7a43 TG |
1527 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1528 | /* Pre-initialize the random sequence cache */ | |
1529 | static int init_cache_random_seq(struct kmem_cache *s) | |
1530 | { | |
19af27af | 1531 | unsigned int count = oo_objects(s->oo); |
210e7a43 | 1532 | int err; |
210e7a43 | 1533 | |
a810007a SR |
1534 | /* Bailout if already initialised */ |
1535 | if (s->random_seq) | |
1536 | return 0; | |
1537 | ||
210e7a43 TG |
1538 | err = cache_random_seq_create(s, count, GFP_KERNEL); |
1539 | if (err) { | |
1540 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
1541 | s->name); | |
1542 | return err; | |
1543 | } | |
1544 | ||
1545 | /* Transform to an offset on the set of pages */ | |
1546 | if (s->random_seq) { | |
19af27af AD |
1547 | unsigned int i; |
1548 | ||
210e7a43 TG |
1549 | for (i = 0; i < count; i++) |
1550 | s->random_seq[i] *= s->size; | |
1551 | } | |
1552 | return 0; | |
1553 | } | |
1554 | ||
1555 | /* Initialize each random sequence freelist per cache */ | |
1556 | static void __init init_freelist_randomization(void) | |
1557 | { | |
1558 | struct kmem_cache *s; | |
1559 | ||
1560 | mutex_lock(&slab_mutex); | |
1561 | ||
1562 | list_for_each_entry(s, &slab_caches, list) | |
1563 | init_cache_random_seq(s); | |
1564 | ||
1565 | mutex_unlock(&slab_mutex); | |
1566 | } | |
1567 | ||
1568 | /* Get the next entry on the pre-computed freelist randomized */ | |
1569 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | |
1570 | unsigned long *pos, void *start, | |
1571 | unsigned long page_limit, | |
1572 | unsigned long freelist_count) | |
1573 | { | |
1574 | unsigned int idx; | |
1575 | ||
1576 | /* | |
1577 | * If the target page allocation failed, the number of objects on the | |
1578 | * page might be smaller than the usual size defined by the cache. | |
1579 | */ | |
1580 | do { | |
1581 | idx = s->random_seq[*pos]; | |
1582 | *pos += 1; | |
1583 | if (*pos >= freelist_count) | |
1584 | *pos = 0; | |
1585 | } while (unlikely(idx >= page_limit)); | |
1586 | ||
1587 | return (char *)start + idx; | |
1588 | } | |
1589 | ||
1590 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
1591 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1592 | { | |
1593 | void *start; | |
1594 | void *cur; | |
1595 | void *next; | |
1596 | unsigned long idx, pos, page_limit, freelist_count; | |
1597 | ||
1598 | if (page->objects < 2 || !s->random_seq) | |
1599 | return false; | |
1600 | ||
1601 | freelist_count = oo_objects(s->oo); | |
1602 | pos = get_random_int() % freelist_count; | |
1603 | ||
1604 | page_limit = page->objects * s->size; | |
1605 | start = fixup_red_left(s, page_address(page)); | |
1606 | ||
1607 | /* First entry is used as the base of the freelist */ | |
1608 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | |
1609 | freelist_count); | |
4d176711 | 1610 | cur = setup_object(s, page, cur); |
210e7a43 TG |
1611 | page->freelist = cur; |
1612 | ||
1613 | for (idx = 1; idx < page->objects; idx++) { | |
210e7a43 TG |
1614 | next = next_freelist_entry(s, page, &pos, start, page_limit, |
1615 | freelist_count); | |
4d176711 | 1616 | next = setup_object(s, page, next); |
210e7a43 TG |
1617 | set_freepointer(s, cur, next); |
1618 | cur = next; | |
1619 | } | |
210e7a43 TG |
1620 | set_freepointer(s, cur, NULL); |
1621 | ||
1622 | return true; | |
1623 | } | |
1624 | #else | |
1625 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
1626 | { | |
1627 | return 0; | |
1628 | } | |
1629 | static inline void init_freelist_randomization(void) { } | |
1630 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | |
1631 | { | |
1632 | return false; | |
1633 | } | |
1634 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1635 | ||
81819f0f CL |
1636 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1637 | { | |
06428780 | 1638 | struct page *page; |
834f3d11 | 1639 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1640 | gfp_t alloc_gfp; |
4d176711 | 1641 | void *start, *p, *next; |
a50b854e | 1642 | int idx; |
210e7a43 | 1643 | bool shuffle; |
81819f0f | 1644 | |
7e0528da CL |
1645 | flags &= gfp_allowed_mask; |
1646 | ||
d0164adc | 1647 | if (gfpflags_allow_blocking(flags)) |
7e0528da CL |
1648 | local_irq_enable(); |
1649 | ||
b7a49f0d | 1650 | flags |= s->allocflags; |
e12ba74d | 1651 | |
ba52270d PE |
1652 | /* |
1653 | * Let the initial higher-order allocation fail under memory pressure | |
1654 | * so we fall-back to the minimum order allocation. | |
1655 | */ | |
1656 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
d0164adc | 1657 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
444eb2a4 | 1658 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
ba52270d | 1659 | |
5dfb4175 | 1660 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
65c3376a CL |
1661 | if (unlikely(!page)) { |
1662 | oo = s->min; | |
80c3a998 | 1663 | alloc_gfp = flags; |
65c3376a CL |
1664 | /* |
1665 | * Allocation may have failed due to fragmentation. | |
1666 | * Try a lower order alloc if possible | |
1667 | */ | |
5dfb4175 | 1668 | page = alloc_slab_page(s, alloc_gfp, node, oo); |
588f8ba9 TG |
1669 | if (unlikely(!page)) |
1670 | goto out; | |
1671 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1672 | } |
5a896d9e | 1673 | |
834f3d11 | 1674 | page->objects = oo_objects(oo); |
81819f0f | 1675 | |
1b4f59e3 | 1676 | page->slab_cache = s; |
c03f94cc | 1677 | __SetPageSlab(page); |
2f064f34 | 1678 | if (page_is_pfmemalloc(page)) |
072bb0aa | 1679 | SetPageSlabPfmemalloc(page); |
81819f0f | 1680 | |
a7101224 | 1681 | kasan_poison_slab(page); |
81819f0f | 1682 | |
a7101224 | 1683 | start = page_address(page); |
81819f0f | 1684 | |
a50b854e | 1685 | setup_page_debug(s, page, start); |
0316bec2 | 1686 | |
210e7a43 TG |
1687 | shuffle = shuffle_freelist(s, page); |
1688 | ||
1689 | if (!shuffle) { | |
4d176711 AK |
1690 | start = fixup_red_left(s, start); |
1691 | start = setup_object(s, page, start); | |
1692 | page->freelist = start; | |
18e50661 AK |
1693 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { |
1694 | next = p + s->size; | |
1695 | next = setup_object(s, page, next); | |
1696 | set_freepointer(s, p, next); | |
1697 | p = next; | |
1698 | } | |
1699 | set_freepointer(s, p, NULL); | |
81819f0f | 1700 | } |
81819f0f | 1701 | |
e6e82ea1 | 1702 | page->inuse = page->objects; |
8cb0a506 | 1703 | page->frozen = 1; |
588f8ba9 | 1704 | |
81819f0f | 1705 | out: |
d0164adc | 1706 | if (gfpflags_allow_blocking(flags)) |
588f8ba9 TG |
1707 | local_irq_disable(); |
1708 | if (!page) | |
1709 | return NULL; | |
1710 | ||
588f8ba9 TG |
1711 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1712 | ||
81819f0f CL |
1713 | return page; |
1714 | } | |
1715 | ||
588f8ba9 TG |
1716 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1717 | { | |
1718 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | |
bacdcb34 | 1719 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
1720 | flags &= ~GFP_SLAB_BUG_MASK; |
1721 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1722 | invalid_mask, &invalid_mask, flags, &flags); | |
65b9de75 | 1723 | dump_stack(); |
588f8ba9 TG |
1724 | } |
1725 | ||
1726 | return allocate_slab(s, | |
1727 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
1728 | } | |
1729 | ||
81819f0f CL |
1730 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1731 | { | |
834f3d11 CL |
1732 | int order = compound_order(page); |
1733 | int pages = 1 << order; | |
81819f0f | 1734 | |
becfda68 | 1735 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
81819f0f CL |
1736 | void *p; |
1737 | ||
1738 | slab_pad_check(s, page); | |
224a88be CL |
1739 | for_each_object(p, s, page_address(page), |
1740 | page->objects) | |
f7cb1933 | 1741 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1742 | } |
1743 | ||
072bb0aa | 1744 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1745 | __ClearPageSlab(page); |
1f458cbf | 1746 | |
d4fc5069 | 1747 | page->mapping = NULL; |
1eb5ac64 NP |
1748 | if (current->reclaim_state) |
1749 | current->reclaim_state->reclaimed_slab += pages; | |
6cea1d56 | 1750 | uncharge_slab_page(page, order, s); |
27ee57c9 | 1751 | __free_pages(page, order); |
81819f0f CL |
1752 | } |
1753 | ||
1754 | static void rcu_free_slab(struct rcu_head *h) | |
1755 | { | |
bf68c214 | 1756 | struct page *page = container_of(h, struct page, rcu_head); |
da9a638c | 1757 | |
1b4f59e3 | 1758 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1759 | } |
1760 | ||
1761 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1762 | { | |
5f0d5a3a | 1763 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
bf68c214 | 1764 | call_rcu(&page->rcu_head, rcu_free_slab); |
81819f0f CL |
1765 | } else |
1766 | __free_slab(s, page); | |
1767 | } | |
1768 | ||
1769 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1770 | { | |
205ab99d | 1771 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1772 | free_slab(s, page); |
1773 | } | |
1774 | ||
1775 | /* | |
5cc6eee8 | 1776 | * Management of partially allocated slabs. |
81819f0f | 1777 | */ |
1e4dd946 SR |
1778 | static inline void |
1779 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | |
81819f0f | 1780 | { |
e95eed57 | 1781 | n->nr_partial++; |
136333d1 | 1782 | if (tail == DEACTIVATE_TO_TAIL) |
916ac052 | 1783 | list_add_tail(&page->slab_list, &n->partial); |
7c2e132c | 1784 | else |
916ac052 | 1785 | list_add(&page->slab_list, &n->partial); |
81819f0f CL |
1786 | } |
1787 | ||
1e4dd946 SR |
1788 | static inline void add_partial(struct kmem_cache_node *n, |
1789 | struct page *page, int tail) | |
62e346a8 | 1790 | { |
c65c1877 | 1791 | lockdep_assert_held(&n->list_lock); |
1e4dd946 SR |
1792 | __add_partial(n, page, tail); |
1793 | } | |
c65c1877 | 1794 | |
1e4dd946 SR |
1795 | static inline void remove_partial(struct kmem_cache_node *n, |
1796 | struct page *page) | |
1797 | { | |
1798 | lockdep_assert_held(&n->list_lock); | |
916ac052 | 1799 | list_del(&page->slab_list); |
52b4b950 | 1800 | n->nr_partial--; |
1e4dd946 SR |
1801 | } |
1802 | ||
81819f0f | 1803 | /* |
7ced3719 CL |
1804 | * Remove slab from the partial list, freeze it and |
1805 | * return the pointer to the freelist. | |
81819f0f | 1806 | * |
497b66f2 | 1807 | * Returns a list of objects or NULL if it fails. |
81819f0f | 1808 | */ |
497b66f2 | 1809 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1810 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1811 | int mode, int *objects) |
81819f0f | 1812 | { |
2cfb7455 CL |
1813 | void *freelist; |
1814 | unsigned long counters; | |
1815 | struct page new; | |
1816 | ||
c65c1877 PZ |
1817 | lockdep_assert_held(&n->list_lock); |
1818 | ||
2cfb7455 CL |
1819 | /* |
1820 | * Zap the freelist and set the frozen bit. | |
1821 | * The old freelist is the list of objects for the | |
1822 | * per cpu allocation list. | |
1823 | */ | |
7ced3719 CL |
1824 | freelist = page->freelist; |
1825 | counters = page->counters; | |
1826 | new.counters = counters; | |
633b0764 | 1827 | *objects = new.objects - new.inuse; |
23910c50 | 1828 | if (mode) { |
7ced3719 | 1829 | new.inuse = page->objects; |
23910c50 PE |
1830 | new.freelist = NULL; |
1831 | } else { | |
1832 | new.freelist = freelist; | |
1833 | } | |
2cfb7455 | 1834 | |
a0132ac0 | 1835 | VM_BUG_ON(new.frozen); |
7ced3719 | 1836 | new.frozen = 1; |
2cfb7455 | 1837 | |
7ced3719 | 1838 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1839 | freelist, counters, |
02d7633f | 1840 | new.freelist, new.counters, |
7ced3719 | 1841 | "acquire_slab")) |
7ced3719 | 1842 | return NULL; |
2cfb7455 CL |
1843 | |
1844 | remove_partial(n, page); | |
7ced3719 | 1845 | WARN_ON(!freelist); |
49e22585 | 1846 | return freelist; |
81819f0f CL |
1847 | } |
1848 | ||
633b0764 | 1849 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1850 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1851 | |
81819f0f | 1852 | /* |
672bba3a | 1853 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1854 | */ |
8ba00bb6 JK |
1855 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1856 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1857 | { |
49e22585 CL |
1858 | struct page *page, *page2; |
1859 | void *object = NULL; | |
e5d9998f | 1860 | unsigned int available = 0; |
633b0764 | 1861 | int objects; |
81819f0f CL |
1862 | |
1863 | /* | |
1864 | * Racy check. If we mistakenly see no partial slabs then we | |
1865 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1866 | * partial slab and there is none available then get_partials() |
1867 | * will return NULL. | |
81819f0f CL |
1868 | */ |
1869 | if (!n || !n->nr_partial) | |
1870 | return NULL; | |
1871 | ||
1872 | spin_lock(&n->list_lock); | |
916ac052 | 1873 | list_for_each_entry_safe(page, page2, &n->partial, slab_list) { |
8ba00bb6 | 1874 | void *t; |
49e22585 | 1875 | |
8ba00bb6 JK |
1876 | if (!pfmemalloc_match(page, flags)) |
1877 | continue; | |
1878 | ||
633b0764 | 1879 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1880 | if (!t) |
1881 | break; | |
1882 | ||
633b0764 | 1883 | available += objects; |
12d79634 | 1884 | if (!object) { |
49e22585 | 1885 | c->page = page; |
49e22585 | 1886 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1887 | object = t; |
49e22585 | 1888 | } else { |
633b0764 | 1889 | put_cpu_partial(s, page, 0); |
8028dcea | 1890 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1891 | } |
345c905d | 1892 | if (!kmem_cache_has_cpu_partial(s) |
e6d0e1dc | 1893 | || available > slub_cpu_partial(s) / 2) |
49e22585 CL |
1894 | break; |
1895 | ||
497b66f2 | 1896 | } |
81819f0f | 1897 | spin_unlock(&n->list_lock); |
497b66f2 | 1898 | return object; |
81819f0f CL |
1899 | } |
1900 | ||
1901 | /* | |
672bba3a | 1902 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1903 | */ |
de3ec035 | 1904 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1905 | struct kmem_cache_cpu *c) |
81819f0f CL |
1906 | { |
1907 | #ifdef CONFIG_NUMA | |
1908 | struct zonelist *zonelist; | |
dd1a239f | 1909 | struct zoneref *z; |
54a6eb5c MG |
1910 | struct zone *zone; |
1911 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1912 | void *object; |
cc9a6c87 | 1913 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1914 | |
1915 | /* | |
672bba3a CL |
1916 | * The defrag ratio allows a configuration of the tradeoffs between |
1917 | * inter node defragmentation and node local allocations. A lower | |
1918 | * defrag_ratio increases the tendency to do local allocations | |
1919 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1920 | * |
672bba3a CL |
1921 | * If the defrag_ratio is set to 0 then kmalloc() always |
1922 | * returns node local objects. If the ratio is higher then kmalloc() | |
1923 | * may return off node objects because partial slabs are obtained | |
1924 | * from other nodes and filled up. | |
81819f0f | 1925 | * |
43efd3ea LP |
1926 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
1927 | * (which makes defrag_ratio = 1000) then every (well almost) | |
1928 | * allocation will first attempt to defrag slab caches on other nodes. | |
1929 | * This means scanning over all nodes to look for partial slabs which | |
1930 | * may be expensive if we do it every time we are trying to find a slab | |
672bba3a | 1931 | * with available objects. |
81819f0f | 1932 | */ |
9824601e CL |
1933 | if (!s->remote_node_defrag_ratio || |
1934 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1935 | return NULL; |
1936 | ||
cc9a6c87 | 1937 | do { |
d26914d1 | 1938 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 1939 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 MG |
1940 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1941 | struct kmem_cache_node *n; | |
1942 | ||
1943 | n = get_node(s, zone_to_nid(zone)); | |
1944 | ||
dee2f8aa | 1945 | if (n && cpuset_zone_allowed(zone, flags) && |
cc9a6c87 | 1946 | n->nr_partial > s->min_partial) { |
8ba00bb6 | 1947 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1948 | if (object) { |
1949 | /* | |
d26914d1 MG |
1950 | * Don't check read_mems_allowed_retry() |
1951 | * here - if mems_allowed was updated in | |
1952 | * parallel, that was a harmless race | |
1953 | * between allocation and the cpuset | |
1954 | * update | |
cc9a6c87 | 1955 | */ |
cc9a6c87 MG |
1956 | return object; |
1957 | } | |
c0ff7453 | 1958 | } |
81819f0f | 1959 | } |
d26914d1 | 1960 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
6dfd1b65 | 1961 | #endif /* CONFIG_NUMA */ |
81819f0f CL |
1962 | return NULL; |
1963 | } | |
1964 | ||
1965 | /* | |
1966 | * Get a partial page, lock it and return it. | |
1967 | */ | |
497b66f2 | 1968 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1969 | struct kmem_cache_cpu *c) |
81819f0f | 1970 | { |
497b66f2 | 1971 | void *object; |
a561ce00 JK |
1972 | int searchnode = node; |
1973 | ||
1974 | if (node == NUMA_NO_NODE) | |
1975 | searchnode = numa_mem_id(); | |
81819f0f | 1976 | |
8ba00bb6 | 1977 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1978 | if (object || node != NUMA_NO_NODE) |
1979 | return object; | |
81819f0f | 1980 | |
acd19fd1 | 1981 | return get_any_partial(s, flags, c); |
81819f0f CL |
1982 | } |
1983 | ||
923717cb | 1984 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba CL |
1985 | /* |
1986 | * Calculate the next globally unique transaction for disambiguiation | |
1987 | * during cmpxchg. The transactions start with the cpu number and are then | |
1988 | * incremented by CONFIG_NR_CPUS. | |
1989 | */ | |
1990 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1991 | #else | |
1992 | /* | |
1993 | * No preemption supported therefore also no need to check for | |
1994 | * different cpus. | |
1995 | */ | |
1996 | #define TID_STEP 1 | |
1997 | #endif | |
1998 | ||
1999 | static inline unsigned long next_tid(unsigned long tid) | |
2000 | { | |
2001 | return tid + TID_STEP; | |
2002 | } | |
2003 | ||
9d5f0be0 | 2004 | #ifdef SLUB_DEBUG_CMPXCHG |
8a5ec0ba CL |
2005 | static inline unsigned int tid_to_cpu(unsigned long tid) |
2006 | { | |
2007 | return tid % TID_STEP; | |
2008 | } | |
2009 | ||
2010 | static inline unsigned long tid_to_event(unsigned long tid) | |
2011 | { | |
2012 | return tid / TID_STEP; | |
2013 | } | |
9d5f0be0 | 2014 | #endif |
8a5ec0ba CL |
2015 | |
2016 | static inline unsigned int init_tid(int cpu) | |
2017 | { | |
2018 | return cpu; | |
2019 | } | |
2020 | ||
2021 | static inline void note_cmpxchg_failure(const char *n, | |
2022 | const struct kmem_cache *s, unsigned long tid) | |
2023 | { | |
2024 | #ifdef SLUB_DEBUG_CMPXCHG | |
2025 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
2026 | ||
f9f58285 | 2027 | pr_info("%s %s: cmpxchg redo ", n, s->name); |
8a5ec0ba | 2028 | |
923717cb | 2029 | #ifdef CONFIG_PREEMPTION |
8a5ec0ba | 2030 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
f9f58285 | 2031 | pr_warn("due to cpu change %d -> %d\n", |
8a5ec0ba CL |
2032 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
2033 | else | |
2034 | #endif | |
2035 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
f9f58285 | 2036 | pr_warn("due to cpu running other code. Event %ld->%ld\n", |
8a5ec0ba CL |
2037 | tid_to_event(tid), tid_to_event(actual_tid)); |
2038 | else | |
f9f58285 | 2039 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
8a5ec0ba CL |
2040 | actual_tid, tid, next_tid(tid)); |
2041 | #endif | |
4fdccdfb | 2042 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
2043 | } |
2044 | ||
788e1aad | 2045 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 2046 | { |
8a5ec0ba CL |
2047 | int cpu; |
2048 | ||
2049 | for_each_possible_cpu(cpu) | |
2050 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 2051 | } |
2cfb7455 | 2052 | |
81819f0f CL |
2053 | /* |
2054 | * Remove the cpu slab | |
2055 | */ | |
d0e0ac97 | 2056 | static void deactivate_slab(struct kmem_cache *s, struct page *page, |
d4ff6d35 | 2057 | void *freelist, struct kmem_cache_cpu *c) |
81819f0f | 2058 | { |
2cfb7455 | 2059 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
2060 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
2061 | int lock = 0; | |
2062 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 2063 | void *nextfree; |
136333d1 | 2064 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
2065 | struct page new; |
2066 | struct page old; | |
2067 | ||
2068 | if (page->freelist) { | |
84e554e6 | 2069 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 2070 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
2071 | } |
2072 | ||
894b8788 | 2073 | /* |
2cfb7455 CL |
2074 | * Stage one: Free all available per cpu objects back |
2075 | * to the page freelist while it is still frozen. Leave the | |
2076 | * last one. | |
2077 | * | |
2078 | * There is no need to take the list->lock because the page | |
2079 | * is still frozen. | |
2080 | */ | |
2081 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
2082 | void *prior; | |
2083 | unsigned long counters; | |
2084 | ||
2085 | do { | |
2086 | prior = page->freelist; | |
2087 | counters = page->counters; | |
2088 | set_freepointer(s, freelist, prior); | |
2089 | new.counters = counters; | |
2090 | new.inuse--; | |
a0132ac0 | 2091 | VM_BUG_ON(!new.frozen); |
2cfb7455 | 2092 | |
1d07171c | 2093 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2094 | prior, counters, |
2095 | freelist, new.counters, | |
2096 | "drain percpu freelist")); | |
2097 | ||
2098 | freelist = nextfree; | |
2099 | } | |
2100 | ||
894b8788 | 2101 | /* |
2cfb7455 CL |
2102 | * Stage two: Ensure that the page is unfrozen while the |
2103 | * list presence reflects the actual number of objects | |
2104 | * during unfreeze. | |
2105 | * | |
2106 | * We setup the list membership and then perform a cmpxchg | |
2107 | * with the count. If there is a mismatch then the page | |
2108 | * is not unfrozen but the page is on the wrong list. | |
2109 | * | |
2110 | * Then we restart the process which may have to remove | |
2111 | * the page from the list that we just put it on again | |
2112 | * because the number of objects in the slab may have | |
2113 | * changed. | |
894b8788 | 2114 | */ |
2cfb7455 | 2115 | redo: |
894b8788 | 2116 | |
2cfb7455 CL |
2117 | old.freelist = page->freelist; |
2118 | old.counters = page->counters; | |
a0132ac0 | 2119 | VM_BUG_ON(!old.frozen); |
7c2e132c | 2120 | |
2cfb7455 CL |
2121 | /* Determine target state of the slab */ |
2122 | new.counters = old.counters; | |
2123 | if (freelist) { | |
2124 | new.inuse--; | |
2125 | set_freepointer(s, freelist, old.freelist); | |
2126 | new.freelist = freelist; | |
2127 | } else | |
2128 | new.freelist = old.freelist; | |
2129 | ||
2130 | new.frozen = 0; | |
2131 | ||
8a5b20ae | 2132 | if (!new.inuse && n->nr_partial >= s->min_partial) |
2cfb7455 CL |
2133 | m = M_FREE; |
2134 | else if (new.freelist) { | |
2135 | m = M_PARTIAL; | |
2136 | if (!lock) { | |
2137 | lock = 1; | |
2138 | /* | |
8bb4e7a2 | 2139 | * Taking the spinlock removes the possibility |
2cfb7455 CL |
2140 | * that acquire_slab() will see a slab page that |
2141 | * is frozen | |
2142 | */ | |
2143 | spin_lock(&n->list_lock); | |
2144 | } | |
2145 | } else { | |
2146 | m = M_FULL; | |
2147 | if (kmem_cache_debug(s) && !lock) { | |
2148 | lock = 1; | |
2149 | /* | |
2150 | * This also ensures that the scanning of full | |
2151 | * slabs from diagnostic functions will not see | |
2152 | * any frozen slabs. | |
2153 | */ | |
2154 | spin_lock(&n->list_lock); | |
2155 | } | |
2156 | } | |
2157 | ||
2158 | if (l != m) { | |
2cfb7455 | 2159 | if (l == M_PARTIAL) |
2cfb7455 | 2160 | remove_partial(n, page); |
2cfb7455 | 2161 | else if (l == M_FULL) |
c65c1877 | 2162 | remove_full(s, n, page); |
2cfb7455 | 2163 | |
88349a28 | 2164 | if (m == M_PARTIAL) |
2cfb7455 | 2165 | add_partial(n, page, tail); |
88349a28 | 2166 | else if (m == M_FULL) |
2cfb7455 | 2167 | add_full(s, n, page); |
2cfb7455 CL |
2168 | } |
2169 | ||
2170 | l = m; | |
1d07171c | 2171 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
2172 | old.freelist, old.counters, |
2173 | new.freelist, new.counters, | |
2174 | "unfreezing slab")) | |
2175 | goto redo; | |
2176 | ||
2cfb7455 CL |
2177 | if (lock) |
2178 | spin_unlock(&n->list_lock); | |
2179 | ||
88349a28 WY |
2180 | if (m == M_PARTIAL) |
2181 | stat(s, tail); | |
2182 | else if (m == M_FULL) | |
2183 | stat(s, DEACTIVATE_FULL); | |
2184 | else if (m == M_FREE) { | |
2cfb7455 CL |
2185 | stat(s, DEACTIVATE_EMPTY); |
2186 | discard_slab(s, page); | |
2187 | stat(s, FREE_SLAB); | |
894b8788 | 2188 | } |
d4ff6d35 WY |
2189 | |
2190 | c->page = NULL; | |
2191 | c->freelist = NULL; | |
81819f0f CL |
2192 | } |
2193 | ||
d24ac77f JK |
2194 | /* |
2195 | * Unfreeze all the cpu partial slabs. | |
2196 | * | |
59a09917 CL |
2197 | * This function must be called with interrupts disabled |
2198 | * for the cpu using c (or some other guarantee must be there | |
2199 | * to guarantee no concurrent accesses). | |
d24ac77f | 2200 | */ |
59a09917 CL |
2201 | static void unfreeze_partials(struct kmem_cache *s, |
2202 | struct kmem_cache_cpu *c) | |
49e22585 | 2203 | { |
345c905d | 2204 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 2205 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 2206 | struct page *page, *discard_page = NULL; |
49e22585 CL |
2207 | |
2208 | while ((page = c->partial)) { | |
49e22585 CL |
2209 | struct page new; |
2210 | struct page old; | |
2211 | ||
2212 | c->partial = page->next; | |
43d77867 JK |
2213 | |
2214 | n2 = get_node(s, page_to_nid(page)); | |
2215 | if (n != n2) { | |
2216 | if (n) | |
2217 | spin_unlock(&n->list_lock); | |
2218 | ||
2219 | n = n2; | |
2220 | spin_lock(&n->list_lock); | |
2221 | } | |
49e22585 CL |
2222 | |
2223 | do { | |
2224 | ||
2225 | old.freelist = page->freelist; | |
2226 | old.counters = page->counters; | |
a0132ac0 | 2227 | VM_BUG_ON(!old.frozen); |
49e22585 CL |
2228 | |
2229 | new.counters = old.counters; | |
2230 | new.freelist = old.freelist; | |
2231 | ||
2232 | new.frozen = 0; | |
2233 | ||
d24ac77f | 2234 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
2235 | old.freelist, old.counters, |
2236 | new.freelist, new.counters, | |
2237 | "unfreezing slab")); | |
2238 | ||
8a5b20ae | 2239 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
9ada1934 SL |
2240 | page->next = discard_page; |
2241 | discard_page = page; | |
43d77867 JK |
2242 | } else { |
2243 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
2244 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
2245 | } |
2246 | } | |
2247 | ||
2248 | if (n) | |
2249 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
2250 | |
2251 | while (discard_page) { | |
2252 | page = discard_page; | |
2253 | discard_page = discard_page->next; | |
2254 | ||
2255 | stat(s, DEACTIVATE_EMPTY); | |
2256 | discard_slab(s, page); | |
2257 | stat(s, FREE_SLAB); | |
2258 | } | |
6dfd1b65 | 2259 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2260 | } |
2261 | ||
2262 | /* | |
9234bae9 WY |
2263 | * Put a page that was just frozen (in __slab_free|get_partial_node) into a |
2264 | * partial page slot if available. | |
49e22585 CL |
2265 | * |
2266 | * If we did not find a slot then simply move all the partials to the | |
2267 | * per node partial list. | |
2268 | */ | |
633b0764 | 2269 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 2270 | { |
345c905d | 2271 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
2272 | struct page *oldpage; |
2273 | int pages; | |
2274 | int pobjects; | |
2275 | ||
d6e0b7fa | 2276 | preempt_disable(); |
49e22585 CL |
2277 | do { |
2278 | pages = 0; | |
2279 | pobjects = 0; | |
2280 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
2281 | ||
2282 | if (oldpage) { | |
2283 | pobjects = oldpage->pobjects; | |
2284 | pages = oldpage->pages; | |
2285 | if (drain && pobjects > s->cpu_partial) { | |
2286 | unsigned long flags; | |
2287 | /* | |
2288 | * partial array is full. Move the existing | |
2289 | * set to the per node partial list. | |
2290 | */ | |
2291 | local_irq_save(flags); | |
59a09917 | 2292 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 2293 | local_irq_restore(flags); |
e24fc410 | 2294 | oldpage = NULL; |
49e22585 CL |
2295 | pobjects = 0; |
2296 | pages = 0; | |
8028dcea | 2297 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
2298 | } |
2299 | } | |
2300 | ||
2301 | pages++; | |
2302 | pobjects += page->objects - page->inuse; | |
2303 | ||
2304 | page->pages = pages; | |
2305 | page->pobjects = pobjects; | |
2306 | page->next = oldpage; | |
2307 | ||
d0e0ac97 CG |
2308 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
2309 | != oldpage); | |
d6e0b7fa VD |
2310 | if (unlikely(!s->cpu_partial)) { |
2311 | unsigned long flags; | |
2312 | ||
2313 | local_irq_save(flags); | |
2314 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | |
2315 | local_irq_restore(flags); | |
2316 | } | |
2317 | preempt_enable(); | |
6dfd1b65 | 2318 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ |
49e22585 CL |
2319 | } |
2320 | ||
dfb4f096 | 2321 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2322 | { |
84e554e6 | 2323 | stat(s, CPUSLAB_FLUSH); |
d4ff6d35 | 2324 | deactivate_slab(s, c->page, c->freelist, c); |
c17dda40 CL |
2325 | |
2326 | c->tid = next_tid(c->tid); | |
81819f0f CL |
2327 | } |
2328 | ||
2329 | /* | |
2330 | * Flush cpu slab. | |
6446faa2 | 2331 | * |
81819f0f CL |
2332 | * Called from IPI handler with interrupts disabled. |
2333 | */ | |
0c710013 | 2334 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2335 | { |
9dfc6e68 | 2336 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2337 | |
1265ef2d WY |
2338 | if (c->page) |
2339 | flush_slab(s, c); | |
49e22585 | 2340 | |
1265ef2d | 2341 | unfreeze_partials(s, c); |
81819f0f CL |
2342 | } |
2343 | ||
2344 | static void flush_cpu_slab(void *d) | |
2345 | { | |
2346 | struct kmem_cache *s = d; | |
81819f0f | 2347 | |
dfb4f096 | 2348 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2349 | } |
2350 | ||
a8364d55 GBY |
2351 | static bool has_cpu_slab(int cpu, void *info) |
2352 | { | |
2353 | struct kmem_cache *s = info; | |
2354 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2355 | ||
a93cf07b | 2356 | return c->page || slub_percpu_partial(c); |
a8364d55 GBY |
2357 | } |
2358 | ||
81819f0f CL |
2359 | static void flush_all(struct kmem_cache *s) |
2360 | { | |
cb923159 | 2361 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); |
81819f0f CL |
2362 | } |
2363 | ||
a96a87bf SAS |
2364 | /* |
2365 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
2366 | * necessary. | |
2367 | */ | |
2368 | static int slub_cpu_dead(unsigned int cpu) | |
2369 | { | |
2370 | struct kmem_cache *s; | |
2371 | unsigned long flags; | |
2372 | ||
2373 | mutex_lock(&slab_mutex); | |
2374 | list_for_each_entry(s, &slab_caches, list) { | |
2375 | local_irq_save(flags); | |
2376 | __flush_cpu_slab(s, cpu); | |
2377 | local_irq_restore(flags); | |
2378 | } | |
2379 | mutex_unlock(&slab_mutex); | |
2380 | return 0; | |
2381 | } | |
2382 | ||
dfb4f096 CL |
2383 | /* |
2384 | * Check if the objects in a per cpu structure fit numa | |
2385 | * locality expectations. | |
2386 | */ | |
57d437d2 | 2387 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2388 | { |
2389 | #ifdef CONFIG_NUMA | |
6159d0f5 | 2390 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
dfb4f096 CL |
2391 | return 0; |
2392 | #endif | |
2393 | return 1; | |
2394 | } | |
2395 | ||
9a02d699 | 2396 | #ifdef CONFIG_SLUB_DEBUG |
781b2ba6 PE |
2397 | static int count_free(struct page *page) |
2398 | { | |
2399 | return page->objects - page->inuse; | |
2400 | } | |
2401 | ||
9a02d699 DR |
2402 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2403 | { | |
2404 | return atomic_long_read(&n->total_objects); | |
2405 | } | |
2406 | #endif /* CONFIG_SLUB_DEBUG */ | |
2407 | ||
2408 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | |
781b2ba6 PE |
2409 | static unsigned long count_partial(struct kmem_cache_node *n, |
2410 | int (*get_count)(struct page *)) | |
2411 | { | |
2412 | unsigned long flags; | |
2413 | unsigned long x = 0; | |
2414 | struct page *page; | |
2415 | ||
2416 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 2417 | list_for_each_entry(page, &n->partial, slab_list) |
781b2ba6 PE |
2418 | x += get_count(page); |
2419 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2420 | return x; | |
2421 | } | |
9a02d699 | 2422 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
26c02cf0 | 2423 | |
781b2ba6 PE |
2424 | static noinline void |
2425 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2426 | { | |
9a02d699 DR |
2427 | #ifdef CONFIG_SLUB_DEBUG |
2428 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
2429 | DEFAULT_RATELIMIT_BURST); | |
781b2ba6 | 2430 | int node; |
fa45dc25 | 2431 | struct kmem_cache_node *n; |
781b2ba6 | 2432 | |
9a02d699 DR |
2433 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
2434 | return; | |
2435 | ||
5b3810e5 VB |
2436 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
2437 | nid, gfpflags, &gfpflags); | |
19af27af | 2438 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", |
f9f58285 FF |
2439 | s->name, s->object_size, s->size, oo_order(s->oo), |
2440 | oo_order(s->min)); | |
781b2ba6 | 2441 | |
3b0efdfa | 2442 | if (oo_order(s->min) > get_order(s->object_size)) |
f9f58285 FF |
2443 | pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
2444 | s->name); | |
fa5ec8a1 | 2445 | |
fa45dc25 | 2446 | for_each_kmem_cache_node(s, node, n) { |
781b2ba6 PE |
2447 | unsigned long nr_slabs; |
2448 | unsigned long nr_objs; | |
2449 | unsigned long nr_free; | |
2450 | ||
26c02cf0 AB |
2451 | nr_free = count_partial(n, count_free); |
2452 | nr_slabs = node_nr_slabs(n); | |
2453 | nr_objs = node_nr_objs(n); | |
781b2ba6 | 2454 | |
f9f58285 | 2455 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
781b2ba6 PE |
2456 | node, nr_slabs, nr_objs, nr_free); |
2457 | } | |
9a02d699 | 2458 | #endif |
781b2ba6 PE |
2459 | } |
2460 | ||
497b66f2 CL |
2461 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2462 | int node, struct kmem_cache_cpu **pc) | |
2463 | { | |
6faa6833 | 2464 | void *freelist; |
188fd063 CL |
2465 | struct kmem_cache_cpu *c = *pc; |
2466 | struct page *page; | |
497b66f2 | 2467 | |
128227e7 MW |
2468 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); |
2469 | ||
188fd063 | 2470 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2471 | |
188fd063 CL |
2472 | if (freelist) |
2473 | return freelist; | |
2474 | ||
2475 | page = new_slab(s, flags, node); | |
497b66f2 | 2476 | if (page) { |
7c8e0181 | 2477 | c = raw_cpu_ptr(s->cpu_slab); |
497b66f2 CL |
2478 | if (c->page) |
2479 | flush_slab(s, c); | |
2480 | ||
2481 | /* | |
2482 | * No other reference to the page yet so we can | |
2483 | * muck around with it freely without cmpxchg | |
2484 | */ | |
6faa6833 | 2485 | freelist = page->freelist; |
497b66f2 CL |
2486 | page->freelist = NULL; |
2487 | ||
2488 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2489 | c->page = page; |
2490 | *pc = c; | |
edde82b6 | 2491 | } |
497b66f2 | 2492 | |
6faa6833 | 2493 | return freelist; |
497b66f2 CL |
2494 | } |
2495 | ||
072bb0aa MG |
2496 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2497 | { | |
2498 | if (unlikely(PageSlabPfmemalloc(page))) | |
2499 | return gfp_pfmemalloc_allowed(gfpflags); | |
2500 | ||
2501 | return true; | |
2502 | } | |
2503 | ||
213eeb9f | 2504 | /* |
d0e0ac97 CG |
2505 | * Check the page->freelist of a page and either transfer the freelist to the |
2506 | * per cpu freelist or deactivate the page. | |
213eeb9f CL |
2507 | * |
2508 | * The page is still frozen if the return value is not NULL. | |
2509 | * | |
2510 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2511 | * |
2512 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2513 | */ |
2514 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2515 | { | |
2516 | struct page new; | |
2517 | unsigned long counters; | |
2518 | void *freelist; | |
2519 | ||
2520 | do { | |
2521 | freelist = page->freelist; | |
2522 | counters = page->counters; | |
6faa6833 | 2523 | |
213eeb9f | 2524 | new.counters = counters; |
a0132ac0 | 2525 | VM_BUG_ON(!new.frozen); |
213eeb9f CL |
2526 | |
2527 | new.inuse = page->objects; | |
2528 | new.frozen = freelist != NULL; | |
2529 | ||
d24ac77f | 2530 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2531 | freelist, counters, |
2532 | NULL, new.counters, | |
2533 | "get_freelist")); | |
2534 | ||
2535 | return freelist; | |
2536 | } | |
2537 | ||
81819f0f | 2538 | /* |
894b8788 CL |
2539 | * Slow path. The lockless freelist is empty or we need to perform |
2540 | * debugging duties. | |
2541 | * | |
894b8788 CL |
2542 | * Processing is still very fast if new objects have been freed to the |
2543 | * regular freelist. In that case we simply take over the regular freelist | |
2544 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2545 | * |
894b8788 CL |
2546 | * If that is not working then we fall back to the partial lists. We take the |
2547 | * first element of the freelist as the object to allocate now and move the | |
2548 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2549 | * |
894b8788 | 2550 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2551 | * we need to allocate a new slab. This is the slowest path since it involves |
2552 | * a call to the page allocator and the setup of a new slab. | |
a380a3c7 CL |
2553 | * |
2554 | * Version of __slab_alloc to use when we know that interrupts are | |
2555 | * already disabled (which is the case for bulk allocation). | |
81819f0f | 2556 | */ |
a380a3c7 | 2557 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
ce71e27c | 2558 | unsigned long addr, struct kmem_cache_cpu *c) |
81819f0f | 2559 | { |
6faa6833 | 2560 | void *freelist; |
f6e7def7 | 2561 | struct page *page; |
81819f0f | 2562 | |
f6e7def7 | 2563 | page = c->page; |
0715e6c5 VB |
2564 | if (!page) { |
2565 | /* | |
2566 | * if the node is not online or has no normal memory, just | |
2567 | * ignore the node constraint | |
2568 | */ | |
2569 | if (unlikely(node != NUMA_NO_NODE && | |
2570 | !node_state(node, N_NORMAL_MEMORY))) | |
2571 | node = NUMA_NO_NODE; | |
81819f0f | 2572 | goto new_slab; |
0715e6c5 | 2573 | } |
49e22585 | 2574 | redo: |
6faa6833 | 2575 | |
57d437d2 | 2576 | if (unlikely(!node_match(page, node))) { |
0715e6c5 VB |
2577 | /* |
2578 | * same as above but node_match() being false already | |
2579 | * implies node != NUMA_NO_NODE | |
2580 | */ | |
2581 | if (!node_state(node, N_NORMAL_MEMORY)) { | |
2582 | node = NUMA_NO_NODE; | |
2583 | goto redo; | |
2584 | } else { | |
a561ce00 | 2585 | stat(s, ALLOC_NODE_MISMATCH); |
d4ff6d35 | 2586 | deactivate_slab(s, page, c->freelist, c); |
a561ce00 JK |
2587 | goto new_slab; |
2588 | } | |
fc59c053 | 2589 | } |
6446faa2 | 2590 | |
072bb0aa MG |
2591 | /* |
2592 | * By rights, we should be searching for a slab page that was | |
2593 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2594 | * information when the page leaves the per-cpu allocator | |
2595 | */ | |
2596 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
d4ff6d35 | 2597 | deactivate_slab(s, page, c->freelist, c); |
072bb0aa MG |
2598 | goto new_slab; |
2599 | } | |
2600 | ||
73736e03 | 2601 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2602 | freelist = c->freelist; |
2603 | if (freelist) | |
73736e03 | 2604 | goto load_freelist; |
03e404af | 2605 | |
f6e7def7 | 2606 | freelist = get_freelist(s, page); |
6446faa2 | 2607 | |
6faa6833 | 2608 | if (!freelist) { |
03e404af CL |
2609 | c->page = NULL; |
2610 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2611 | goto new_slab; |
03e404af | 2612 | } |
6446faa2 | 2613 | |
84e554e6 | 2614 | stat(s, ALLOC_REFILL); |
6446faa2 | 2615 | |
894b8788 | 2616 | load_freelist: |
507effea CL |
2617 | /* |
2618 | * freelist is pointing to the list of objects to be used. | |
2619 | * page is pointing to the page from which the objects are obtained. | |
2620 | * That page must be frozen for per cpu allocations to work. | |
2621 | */ | |
a0132ac0 | 2622 | VM_BUG_ON(!c->page->frozen); |
6faa6833 | 2623 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba | 2624 | c->tid = next_tid(c->tid); |
6faa6833 | 2625 | return freelist; |
81819f0f | 2626 | |
81819f0f | 2627 | new_slab: |
2cfb7455 | 2628 | |
a93cf07b WY |
2629 | if (slub_percpu_partial(c)) { |
2630 | page = c->page = slub_percpu_partial(c); | |
2631 | slub_set_percpu_partial(c, page); | |
49e22585 | 2632 | stat(s, CPU_PARTIAL_ALLOC); |
49e22585 | 2633 | goto redo; |
81819f0f CL |
2634 | } |
2635 | ||
188fd063 | 2636 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2637 | |
f4697436 | 2638 | if (unlikely(!freelist)) { |
9a02d699 | 2639 | slab_out_of_memory(s, gfpflags, node); |
f4697436 | 2640 | return NULL; |
81819f0f | 2641 | } |
2cfb7455 | 2642 | |
f6e7def7 | 2643 | page = c->page; |
5091b74a | 2644 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2645 | goto load_freelist; |
2cfb7455 | 2646 | |
497b66f2 | 2647 | /* Only entered in the debug case */ |
d0e0ac97 CG |
2648 | if (kmem_cache_debug(s) && |
2649 | !alloc_debug_processing(s, page, freelist, addr)) | |
497b66f2 | 2650 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2651 | |
d4ff6d35 | 2652 | deactivate_slab(s, page, get_freepointer(s, freelist), c); |
6faa6833 | 2653 | return freelist; |
894b8788 CL |
2654 | } |
2655 | ||
a380a3c7 CL |
2656 | /* |
2657 | * Another one that disabled interrupt and compensates for possible | |
2658 | * cpu changes by refetching the per cpu area pointer. | |
2659 | */ | |
2660 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
2661 | unsigned long addr, struct kmem_cache_cpu *c) | |
2662 | { | |
2663 | void *p; | |
2664 | unsigned long flags; | |
2665 | ||
2666 | local_irq_save(flags); | |
923717cb | 2667 | #ifdef CONFIG_PREEMPTION |
a380a3c7 CL |
2668 | /* |
2669 | * We may have been preempted and rescheduled on a different | |
2670 | * cpu before disabling interrupts. Need to reload cpu area | |
2671 | * pointer. | |
2672 | */ | |
2673 | c = this_cpu_ptr(s->cpu_slab); | |
2674 | #endif | |
2675 | ||
2676 | p = ___slab_alloc(s, gfpflags, node, addr, c); | |
2677 | local_irq_restore(flags); | |
2678 | return p; | |
2679 | } | |
2680 | ||
0f181f9f AP |
2681 | /* |
2682 | * If the object has been wiped upon free, make sure it's fully initialized by | |
2683 | * zeroing out freelist pointer. | |
2684 | */ | |
2685 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
2686 | void *obj) | |
2687 | { | |
2688 | if (unlikely(slab_want_init_on_free(s)) && obj) | |
2689 | memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); | |
2690 | } | |
2691 | ||
894b8788 CL |
2692 | /* |
2693 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2694 | * have the fastpath folded into their functions. So no function call | |
2695 | * overhead for requests that can be satisfied on the fastpath. | |
2696 | * | |
2697 | * The fastpath works by first checking if the lockless freelist can be used. | |
2698 | * If not then __slab_alloc is called for slow processing. | |
2699 | * | |
2700 | * Otherwise we can simply pick the next object from the lockless free list. | |
2701 | */ | |
2b847c3c | 2702 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2703 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2704 | { |
03ec0ed5 | 2705 | void *object; |
dfb4f096 | 2706 | struct kmem_cache_cpu *c; |
57d437d2 | 2707 | struct page *page; |
8a5ec0ba | 2708 | unsigned long tid; |
1f84260c | 2709 | |
8135be5a VD |
2710 | s = slab_pre_alloc_hook(s, gfpflags); |
2711 | if (!s) | |
773ff60e | 2712 | return NULL; |
8a5ec0ba | 2713 | redo: |
8a5ec0ba CL |
2714 | /* |
2715 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2716 | * enabled. We may switch back and forth between cpus while | |
2717 | * reading from one cpu area. That does not matter as long | |
2718 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b | 2719 | * |
9aabf810 | 2720 | * We should guarantee that tid and kmem_cache are retrieved on |
923717cb | 2721 | * the same cpu. It could be different if CONFIG_PREEMPTION so we need |
9aabf810 | 2722 | * to check if it is matched or not. |
8a5ec0ba | 2723 | */ |
9aabf810 JK |
2724 | do { |
2725 | tid = this_cpu_read(s->cpu_slab->tid); | |
2726 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 2727 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 2728 | unlikely(tid != READ_ONCE(c->tid))); |
9aabf810 JK |
2729 | |
2730 | /* | |
2731 | * Irqless object alloc/free algorithm used here depends on sequence | |
2732 | * of fetching cpu_slab's data. tid should be fetched before anything | |
2733 | * on c to guarantee that object and page associated with previous tid | |
2734 | * won't be used with current tid. If we fetch tid first, object and | |
2735 | * page could be one associated with next tid and our alloc/free | |
2736 | * request will be failed. In this case, we will retry. So, no problem. | |
2737 | */ | |
2738 | barrier(); | |
8a5ec0ba | 2739 | |
8a5ec0ba CL |
2740 | /* |
2741 | * The transaction ids are globally unique per cpu and per operation on | |
2742 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2743 | * occurs on the right processor and that there was no operation on the | |
2744 | * linked list in between. | |
2745 | */ | |
8a5ec0ba | 2746 | |
9dfc6e68 | 2747 | object = c->freelist; |
57d437d2 | 2748 | page = c->page; |
8eae1492 | 2749 | if (unlikely(!object || !node_match(page, node))) { |
dfb4f096 | 2750 | object = __slab_alloc(s, gfpflags, node, addr, c); |
8eae1492 DH |
2751 | stat(s, ALLOC_SLOWPATH); |
2752 | } else { | |
0ad9500e ED |
2753 | void *next_object = get_freepointer_safe(s, object); |
2754 | ||
8a5ec0ba | 2755 | /* |
25985edc | 2756 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2757 | * operation and if we are on the right processor. |
2758 | * | |
d0e0ac97 CG |
2759 | * The cmpxchg does the following atomically (without lock |
2760 | * semantics!) | |
8a5ec0ba CL |
2761 | * 1. Relocate first pointer to the current per cpu area. |
2762 | * 2. Verify that tid and freelist have not been changed | |
2763 | * 3. If they were not changed replace tid and freelist | |
2764 | * | |
d0e0ac97 CG |
2765 | * Since this is without lock semantics the protection is only |
2766 | * against code executing on this cpu *not* from access by | |
2767 | * other cpus. | |
8a5ec0ba | 2768 | */ |
933393f5 | 2769 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2770 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2771 | object, tid, | |
0ad9500e | 2772 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2773 | |
2774 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2775 | goto redo; | |
2776 | } | |
0ad9500e | 2777 | prefetch_freepointer(s, next_object); |
84e554e6 | 2778 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2779 | } |
0f181f9f AP |
2780 | |
2781 | maybe_wipe_obj_freeptr(s, object); | |
8a5ec0ba | 2782 | |
6471384a | 2783 | if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) |
3b0efdfa | 2784 | memset(object, 0, s->object_size); |
d07dbea4 | 2785 | |
03ec0ed5 | 2786 | slab_post_alloc_hook(s, gfpflags, 1, &object); |
5a896d9e | 2787 | |
894b8788 | 2788 | return object; |
81819f0f CL |
2789 | } |
2790 | ||
2b847c3c EG |
2791 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2792 | gfp_t gfpflags, unsigned long addr) | |
2793 | { | |
2794 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2795 | } | |
2796 | ||
81819f0f CL |
2797 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2798 | { | |
2b847c3c | 2799 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2800 | |
d0e0ac97 CG |
2801 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
2802 | s->size, gfpflags); | |
5b882be4 EGM |
2803 | |
2804 | return ret; | |
81819f0f CL |
2805 | } |
2806 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2807 | ||
0f24f128 | 2808 | #ifdef CONFIG_TRACING |
4a92379b RK |
2809 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2810 | { | |
2b847c3c | 2811 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b | 2812 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
0116523c | 2813 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b RK |
2814 | return ret; |
2815 | } | |
2816 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
5b882be4 EGM |
2817 | #endif |
2818 | ||
81819f0f CL |
2819 | #ifdef CONFIG_NUMA |
2820 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2821 | { | |
2b847c3c | 2822 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2823 | |
ca2b84cb | 2824 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2825 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2826 | |
2827 | return ret; | |
81819f0f CL |
2828 | } |
2829 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2830 | |
0f24f128 | 2831 | #ifdef CONFIG_TRACING |
4a92379b | 2832 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2833 | gfp_t gfpflags, |
4a92379b | 2834 | int node, size_t size) |
5b882be4 | 2835 | { |
2b847c3c | 2836 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2837 | |
2838 | trace_kmalloc_node(_RET_IP_, ret, | |
2839 | size, s->size, gfpflags, node); | |
0316bec2 | 2840 | |
0116523c | 2841 | ret = kasan_kmalloc(s, ret, size, gfpflags); |
4a92379b | 2842 | return ret; |
5b882be4 | 2843 | } |
4a92379b | 2844 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2845 | #endif |
6dfd1b65 | 2846 | #endif /* CONFIG_NUMA */ |
5b882be4 | 2847 | |
81819f0f | 2848 | /* |
94e4d712 | 2849 | * Slow path handling. This may still be called frequently since objects |
894b8788 | 2850 | * have a longer lifetime than the cpu slabs in most processing loads. |
81819f0f | 2851 | * |
894b8788 CL |
2852 | * So we still attempt to reduce cache line usage. Just take the slab |
2853 | * lock and free the item. If there is no additional partial page | |
2854 | * handling required then we can return immediately. | |
81819f0f | 2855 | */ |
894b8788 | 2856 | static void __slab_free(struct kmem_cache *s, struct page *page, |
81084651 JDB |
2857 | void *head, void *tail, int cnt, |
2858 | unsigned long addr) | |
2859 | ||
81819f0f CL |
2860 | { |
2861 | void *prior; | |
2cfb7455 | 2862 | int was_frozen; |
2cfb7455 CL |
2863 | struct page new; |
2864 | unsigned long counters; | |
2865 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2866 | unsigned long uninitialized_var(flags); |
81819f0f | 2867 | |
8a5ec0ba | 2868 | stat(s, FREE_SLOWPATH); |
81819f0f | 2869 | |
19c7ff9e | 2870 | if (kmem_cache_debug(s) && |
282acb43 | 2871 | !free_debug_processing(s, page, head, tail, cnt, addr)) |
80f08c19 | 2872 | return; |
6446faa2 | 2873 | |
2cfb7455 | 2874 | do { |
837d678d JK |
2875 | if (unlikely(n)) { |
2876 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2877 | n = NULL; | |
2878 | } | |
2cfb7455 CL |
2879 | prior = page->freelist; |
2880 | counters = page->counters; | |
81084651 | 2881 | set_freepointer(s, tail, prior); |
2cfb7455 CL |
2882 | new.counters = counters; |
2883 | was_frozen = new.frozen; | |
81084651 | 2884 | new.inuse -= cnt; |
837d678d | 2885 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2886 | |
c65c1877 | 2887 | if (kmem_cache_has_cpu_partial(s) && !prior) { |
49e22585 CL |
2888 | |
2889 | /* | |
d0e0ac97 CG |
2890 | * Slab was on no list before and will be |
2891 | * partially empty | |
2892 | * We can defer the list move and instead | |
2893 | * freeze it. | |
49e22585 CL |
2894 | */ |
2895 | new.frozen = 1; | |
2896 | ||
c65c1877 | 2897 | } else { /* Needs to be taken off a list */ |
49e22585 | 2898 | |
b455def2 | 2899 | n = get_node(s, page_to_nid(page)); |
49e22585 CL |
2900 | /* |
2901 | * Speculatively acquire the list_lock. | |
2902 | * If the cmpxchg does not succeed then we may | |
2903 | * drop the list_lock without any processing. | |
2904 | * | |
2905 | * Otherwise the list_lock will synchronize with | |
2906 | * other processors updating the list of slabs. | |
2907 | */ | |
2908 | spin_lock_irqsave(&n->list_lock, flags); | |
2909 | ||
2910 | } | |
2cfb7455 | 2911 | } |
81819f0f | 2912 | |
2cfb7455 CL |
2913 | } while (!cmpxchg_double_slab(s, page, |
2914 | prior, counters, | |
81084651 | 2915 | head, new.counters, |
2cfb7455 | 2916 | "__slab_free")); |
81819f0f | 2917 | |
2cfb7455 | 2918 | if (likely(!n)) { |
49e22585 CL |
2919 | |
2920 | /* | |
2921 | * If we just froze the page then put it onto the | |
2922 | * per cpu partial list. | |
2923 | */ | |
8028dcea | 2924 | if (new.frozen && !was_frozen) { |
49e22585 | 2925 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2926 | stat(s, CPU_PARTIAL_FREE); |
2927 | } | |
49e22585 | 2928 | /* |
2cfb7455 CL |
2929 | * The list lock was not taken therefore no list |
2930 | * activity can be necessary. | |
2931 | */ | |
b455def2 L |
2932 | if (was_frozen) |
2933 | stat(s, FREE_FROZEN); | |
2934 | return; | |
2935 | } | |
81819f0f | 2936 | |
8a5b20ae | 2937 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
837d678d JK |
2938 | goto slab_empty; |
2939 | ||
81819f0f | 2940 | /* |
837d678d JK |
2941 | * Objects left in the slab. If it was not on the partial list before |
2942 | * then add it. | |
81819f0f | 2943 | */ |
345c905d | 2944 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
a4d3f891 | 2945 | remove_full(s, n, page); |
837d678d JK |
2946 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2947 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2948 | } |
80f08c19 | 2949 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2950 | return; |
2951 | ||
2952 | slab_empty: | |
a973e9dd | 2953 | if (prior) { |
81819f0f | 2954 | /* |
6fbabb20 | 2955 | * Slab on the partial list. |
81819f0f | 2956 | */ |
5cc6eee8 | 2957 | remove_partial(n, page); |
84e554e6 | 2958 | stat(s, FREE_REMOVE_PARTIAL); |
c65c1877 | 2959 | } else { |
6fbabb20 | 2960 | /* Slab must be on the full list */ |
c65c1877 PZ |
2961 | remove_full(s, n, page); |
2962 | } | |
2cfb7455 | 2963 | |
80f08c19 | 2964 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2965 | stat(s, FREE_SLAB); |
81819f0f | 2966 | discard_slab(s, page); |
81819f0f CL |
2967 | } |
2968 | ||
894b8788 CL |
2969 | /* |
2970 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2971 | * can perform fastpath freeing without additional function calls. | |
2972 | * | |
2973 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2974 | * of this processor. This typically the case if we have just allocated | |
2975 | * the item before. | |
2976 | * | |
2977 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2978 | * with all sorts of special processing. | |
81084651 JDB |
2979 | * |
2980 | * Bulk free of a freelist with several objects (all pointing to the | |
2981 | * same page) possible by specifying head and tail ptr, plus objects | |
2982 | * count (cnt). Bulk free indicated by tail pointer being set. | |
894b8788 | 2983 | */ |
80a9201a AP |
2984 | static __always_inline void do_slab_free(struct kmem_cache *s, |
2985 | struct page *page, void *head, void *tail, | |
2986 | int cnt, unsigned long addr) | |
894b8788 | 2987 | { |
81084651 | 2988 | void *tail_obj = tail ? : head; |
dfb4f096 | 2989 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2990 | unsigned long tid; |
8a5ec0ba CL |
2991 | redo: |
2992 | /* | |
2993 | * Determine the currently cpus per cpu slab. | |
2994 | * The cpu may change afterward. However that does not matter since | |
2995 | * data is retrieved via this pointer. If we are on the same cpu | |
2ae44005 | 2996 | * during the cmpxchg then the free will succeed. |
8a5ec0ba | 2997 | */ |
9aabf810 JK |
2998 | do { |
2999 | tid = this_cpu_read(s->cpu_slab->tid); | |
3000 | c = raw_cpu_ptr(s->cpu_slab); | |
923717cb | 3001 | } while (IS_ENABLED(CONFIG_PREEMPTION) && |
859b7a0e | 3002 | unlikely(tid != READ_ONCE(c->tid))); |
c016b0bd | 3003 | |
9aabf810 JK |
3004 | /* Same with comment on barrier() in slab_alloc_node() */ |
3005 | barrier(); | |
c016b0bd | 3006 | |
442b06bc | 3007 | if (likely(page == c->page)) { |
5076190d LT |
3008 | void **freelist = READ_ONCE(c->freelist); |
3009 | ||
3010 | set_freepointer(s, tail_obj, freelist); | |
8a5ec0ba | 3011 | |
933393f5 | 3012 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba | 3013 | s->cpu_slab->freelist, s->cpu_slab->tid, |
5076190d | 3014 | freelist, tid, |
81084651 | 3015 | head, next_tid(tid)))) { |
8a5ec0ba CL |
3016 | |
3017 | note_cmpxchg_failure("slab_free", s, tid); | |
3018 | goto redo; | |
3019 | } | |
84e554e6 | 3020 | stat(s, FREE_FASTPATH); |
894b8788 | 3021 | } else |
81084651 | 3022 | __slab_free(s, page, head, tail_obj, cnt, addr); |
894b8788 | 3023 | |
894b8788 CL |
3024 | } |
3025 | ||
80a9201a AP |
3026 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
3027 | void *head, void *tail, int cnt, | |
3028 | unsigned long addr) | |
3029 | { | |
80a9201a | 3030 | /* |
c3895391 AK |
3031 | * With KASAN enabled slab_free_freelist_hook modifies the freelist |
3032 | * to remove objects, whose reuse must be delayed. | |
80a9201a | 3033 | */ |
c3895391 AK |
3034 | if (slab_free_freelist_hook(s, &head, &tail)) |
3035 | do_slab_free(s, page, head, tail, cnt, addr); | |
80a9201a AP |
3036 | } |
3037 | ||
2bd926b4 | 3038 | #ifdef CONFIG_KASAN_GENERIC |
80a9201a AP |
3039 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
3040 | { | |
3041 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | |
3042 | } | |
3043 | #endif | |
3044 | ||
81819f0f CL |
3045 | void kmem_cache_free(struct kmem_cache *s, void *x) |
3046 | { | |
b9ce5ef4 GC |
3047 | s = cache_from_obj(s, x); |
3048 | if (!s) | |
79576102 | 3049 | return; |
81084651 | 3050 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
ca2b84cb | 3051 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
3052 | } |
3053 | EXPORT_SYMBOL(kmem_cache_free); | |
3054 | ||
d0ecd894 | 3055 | struct detached_freelist { |
fbd02630 | 3056 | struct page *page; |
d0ecd894 JDB |
3057 | void *tail; |
3058 | void *freelist; | |
3059 | int cnt; | |
376bf125 | 3060 | struct kmem_cache *s; |
d0ecd894 | 3061 | }; |
fbd02630 | 3062 | |
d0ecd894 JDB |
3063 | /* |
3064 | * This function progressively scans the array with free objects (with | |
3065 | * a limited look ahead) and extract objects belonging to the same | |
3066 | * page. It builds a detached freelist directly within the given | |
3067 | * page/objects. This can happen without any need for | |
3068 | * synchronization, because the objects are owned by running process. | |
3069 | * The freelist is build up as a single linked list in the objects. | |
3070 | * The idea is, that this detached freelist can then be bulk | |
3071 | * transferred to the real freelist(s), but only requiring a single | |
3072 | * synchronization primitive. Look ahead in the array is limited due | |
3073 | * to performance reasons. | |
3074 | */ | |
376bf125 JDB |
3075 | static inline |
3076 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
3077 | void **p, struct detached_freelist *df) | |
d0ecd894 JDB |
3078 | { |
3079 | size_t first_skipped_index = 0; | |
3080 | int lookahead = 3; | |
3081 | void *object; | |
ca257195 | 3082 | struct page *page; |
fbd02630 | 3083 | |
d0ecd894 JDB |
3084 | /* Always re-init detached_freelist */ |
3085 | df->page = NULL; | |
fbd02630 | 3086 | |
d0ecd894 JDB |
3087 | do { |
3088 | object = p[--size]; | |
ca257195 | 3089 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
d0ecd894 | 3090 | } while (!object && size); |
3eed034d | 3091 | |
d0ecd894 JDB |
3092 | if (!object) |
3093 | return 0; | |
fbd02630 | 3094 | |
ca257195 JDB |
3095 | page = virt_to_head_page(object); |
3096 | if (!s) { | |
3097 | /* Handle kalloc'ed objects */ | |
3098 | if (unlikely(!PageSlab(page))) { | |
3099 | BUG_ON(!PageCompound(page)); | |
3100 | kfree_hook(object); | |
4949148a | 3101 | __free_pages(page, compound_order(page)); |
ca257195 JDB |
3102 | p[size] = NULL; /* mark object processed */ |
3103 | return size; | |
3104 | } | |
3105 | /* Derive kmem_cache from object */ | |
3106 | df->s = page->slab_cache; | |
3107 | } else { | |
3108 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
3109 | } | |
376bf125 | 3110 | |
d0ecd894 | 3111 | /* Start new detached freelist */ |
ca257195 | 3112 | df->page = page; |
376bf125 | 3113 | set_freepointer(df->s, object, NULL); |
d0ecd894 JDB |
3114 | df->tail = object; |
3115 | df->freelist = object; | |
3116 | p[size] = NULL; /* mark object processed */ | |
3117 | df->cnt = 1; | |
3118 | ||
3119 | while (size) { | |
3120 | object = p[--size]; | |
3121 | if (!object) | |
3122 | continue; /* Skip processed objects */ | |
3123 | ||
3124 | /* df->page is always set at this point */ | |
3125 | if (df->page == virt_to_head_page(object)) { | |
3126 | /* Opportunity build freelist */ | |
376bf125 | 3127 | set_freepointer(df->s, object, df->freelist); |
d0ecd894 JDB |
3128 | df->freelist = object; |
3129 | df->cnt++; | |
3130 | p[size] = NULL; /* mark object processed */ | |
3131 | ||
3132 | continue; | |
fbd02630 | 3133 | } |
d0ecd894 JDB |
3134 | |
3135 | /* Limit look ahead search */ | |
3136 | if (!--lookahead) | |
3137 | break; | |
3138 | ||
3139 | if (!first_skipped_index) | |
3140 | first_skipped_index = size + 1; | |
fbd02630 | 3141 | } |
d0ecd894 JDB |
3142 | |
3143 | return first_skipped_index; | |
3144 | } | |
3145 | ||
d0ecd894 | 3146 | /* Note that interrupts must be enabled when calling this function. */ |
376bf125 | 3147 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
d0ecd894 JDB |
3148 | { |
3149 | if (WARN_ON(!size)) | |
3150 | return; | |
3151 | ||
3152 | do { | |
3153 | struct detached_freelist df; | |
3154 | ||
3155 | size = build_detached_freelist(s, size, p, &df); | |
84582c8a | 3156 | if (!df.page) |
d0ecd894 JDB |
3157 | continue; |
3158 | ||
376bf125 | 3159 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
d0ecd894 | 3160 | } while (likely(size)); |
484748f0 CL |
3161 | } |
3162 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3163 | ||
994eb764 | 3164 | /* Note that interrupts must be enabled when calling this function. */ |
865762a8 JDB |
3165 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
3166 | void **p) | |
484748f0 | 3167 | { |
994eb764 JDB |
3168 | struct kmem_cache_cpu *c; |
3169 | int i; | |
3170 | ||
03ec0ed5 JDB |
3171 | /* memcg and kmem_cache debug support */ |
3172 | s = slab_pre_alloc_hook(s, flags); | |
3173 | if (unlikely(!s)) | |
3174 | return false; | |
994eb764 JDB |
3175 | /* |
3176 | * Drain objects in the per cpu slab, while disabling local | |
3177 | * IRQs, which protects against PREEMPT and interrupts | |
3178 | * handlers invoking normal fastpath. | |
3179 | */ | |
3180 | local_irq_disable(); | |
3181 | c = this_cpu_ptr(s->cpu_slab); | |
3182 | ||
3183 | for (i = 0; i < size; i++) { | |
3184 | void *object = c->freelist; | |
3185 | ||
ebe909e0 | 3186 | if (unlikely(!object)) { |
fd4d9c7d JH |
3187 | /* |
3188 | * We may have removed an object from c->freelist using | |
3189 | * the fastpath in the previous iteration; in that case, | |
3190 | * c->tid has not been bumped yet. | |
3191 | * Since ___slab_alloc() may reenable interrupts while | |
3192 | * allocating memory, we should bump c->tid now. | |
3193 | */ | |
3194 | c->tid = next_tid(c->tid); | |
3195 | ||
ebe909e0 JDB |
3196 | /* |
3197 | * Invoking slow path likely have side-effect | |
3198 | * of re-populating per CPU c->freelist | |
3199 | */ | |
87098373 | 3200 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
ebe909e0 | 3201 | _RET_IP_, c); |
87098373 CL |
3202 | if (unlikely(!p[i])) |
3203 | goto error; | |
3204 | ||
ebe909e0 | 3205 | c = this_cpu_ptr(s->cpu_slab); |
0f181f9f AP |
3206 | maybe_wipe_obj_freeptr(s, p[i]); |
3207 | ||
ebe909e0 JDB |
3208 | continue; /* goto for-loop */ |
3209 | } | |
994eb764 JDB |
3210 | c->freelist = get_freepointer(s, object); |
3211 | p[i] = object; | |
0f181f9f | 3212 | maybe_wipe_obj_freeptr(s, p[i]); |
994eb764 JDB |
3213 | } |
3214 | c->tid = next_tid(c->tid); | |
3215 | local_irq_enable(); | |
3216 | ||
3217 | /* Clear memory outside IRQ disabled fastpath loop */ | |
6471384a | 3218 | if (unlikely(slab_want_init_on_alloc(flags, s))) { |
994eb764 JDB |
3219 | int j; |
3220 | ||
3221 | for (j = 0; j < i; j++) | |
3222 | memset(p[j], 0, s->object_size); | |
3223 | } | |
3224 | ||
03ec0ed5 JDB |
3225 | /* memcg and kmem_cache debug support */ |
3226 | slab_post_alloc_hook(s, flags, size, p); | |
865762a8 | 3227 | return i; |
87098373 | 3228 | error: |
87098373 | 3229 | local_irq_enable(); |
03ec0ed5 JDB |
3230 | slab_post_alloc_hook(s, flags, i, p); |
3231 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 3232 | return 0; |
484748f0 CL |
3233 | } |
3234 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3235 | ||
3236 | ||
81819f0f | 3237 | /* |
672bba3a CL |
3238 | * Object placement in a slab is made very easy because we always start at |
3239 | * offset 0. If we tune the size of the object to the alignment then we can | |
3240 | * get the required alignment by putting one properly sized object after | |
3241 | * another. | |
81819f0f CL |
3242 | * |
3243 | * Notice that the allocation order determines the sizes of the per cpu | |
3244 | * caches. Each processor has always one slab available for allocations. | |
3245 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 3246 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 3247 | * locking overhead. |
81819f0f CL |
3248 | */ |
3249 | ||
3250 | /* | |
3251 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
3252 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
3253 | * and increases the number of allocations possible without having to | |
3254 | * take the list_lock. | |
3255 | */ | |
19af27af AD |
3256 | static unsigned int slub_min_order; |
3257 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | |
3258 | static unsigned int slub_min_objects; | |
81819f0f | 3259 | |
81819f0f CL |
3260 | /* |
3261 | * Calculate the order of allocation given an slab object size. | |
3262 | * | |
672bba3a CL |
3263 | * The order of allocation has significant impact on performance and other |
3264 | * system components. Generally order 0 allocations should be preferred since | |
3265 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
3266 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 3267 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
3268 | * would be wasted. |
3269 | * | |
3270 | * In order to reach satisfactory performance we must ensure that a minimum | |
3271 | * number of objects is in one slab. Otherwise we may generate too much | |
3272 | * activity on the partial lists which requires taking the list_lock. This is | |
3273 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 3274 | * |
672bba3a CL |
3275 | * slub_max_order specifies the order where we begin to stop considering the |
3276 | * number of objects in a slab as critical. If we reach slub_max_order then | |
3277 | * we try to keep the page order as low as possible. So we accept more waste | |
3278 | * of space in favor of a small page order. | |
81819f0f | 3279 | * |
672bba3a CL |
3280 | * Higher order allocations also allow the placement of more objects in a |
3281 | * slab and thereby reduce object handling overhead. If the user has | |
3282 | * requested a higher mininum order then we start with that one instead of | |
3283 | * the smallest order which will fit the object. | |
81819f0f | 3284 | */ |
19af27af AD |
3285 | static inline unsigned int slab_order(unsigned int size, |
3286 | unsigned int min_objects, unsigned int max_order, | |
9736d2a9 | 3287 | unsigned int fract_leftover) |
81819f0f | 3288 | { |
19af27af AD |
3289 | unsigned int min_order = slub_min_order; |
3290 | unsigned int order; | |
81819f0f | 3291 | |
9736d2a9 | 3292 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) |
210b5c06 | 3293 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 3294 | |
9736d2a9 | 3295 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); |
5e6d444e | 3296 | order <= max_order; order++) { |
81819f0f | 3297 | |
19af27af AD |
3298 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; |
3299 | unsigned int rem; | |
81819f0f | 3300 | |
9736d2a9 | 3301 | rem = slab_size % size; |
81819f0f | 3302 | |
5e6d444e | 3303 | if (rem <= slab_size / fract_leftover) |
81819f0f | 3304 | break; |
81819f0f | 3305 | } |
672bba3a | 3306 | |
81819f0f CL |
3307 | return order; |
3308 | } | |
3309 | ||
9736d2a9 | 3310 | static inline int calculate_order(unsigned int size) |
5e6d444e | 3311 | { |
19af27af AD |
3312 | unsigned int order; |
3313 | unsigned int min_objects; | |
3314 | unsigned int max_objects; | |
5e6d444e CL |
3315 | |
3316 | /* | |
3317 | * Attempt to find best configuration for a slab. This | |
3318 | * works by first attempting to generate a layout with | |
3319 | * the best configuration and backing off gradually. | |
3320 | * | |
422ff4d7 | 3321 | * First we increase the acceptable waste in a slab. Then |
5e6d444e CL |
3322 | * we reduce the minimum objects required in a slab. |
3323 | */ | |
3324 | min_objects = slub_min_objects; | |
9b2cd506 CL |
3325 | if (!min_objects) |
3326 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
9736d2a9 | 3327 | max_objects = order_objects(slub_max_order, size); |
e8120ff1 ZY |
3328 | min_objects = min(min_objects, max_objects); |
3329 | ||
5e6d444e | 3330 | while (min_objects > 1) { |
19af27af AD |
3331 | unsigned int fraction; |
3332 | ||
c124f5b5 | 3333 | fraction = 16; |
5e6d444e CL |
3334 | while (fraction >= 4) { |
3335 | order = slab_order(size, min_objects, | |
9736d2a9 | 3336 | slub_max_order, fraction); |
5e6d444e CL |
3337 | if (order <= slub_max_order) |
3338 | return order; | |
3339 | fraction /= 2; | |
3340 | } | |
5086c389 | 3341 | min_objects--; |
5e6d444e CL |
3342 | } |
3343 | ||
3344 | /* | |
3345 | * We were unable to place multiple objects in a slab. Now | |
3346 | * lets see if we can place a single object there. | |
3347 | */ | |
9736d2a9 | 3348 | order = slab_order(size, 1, slub_max_order, 1); |
5e6d444e CL |
3349 | if (order <= slub_max_order) |
3350 | return order; | |
3351 | ||
3352 | /* | |
3353 | * Doh this slab cannot be placed using slub_max_order. | |
3354 | */ | |
9736d2a9 | 3355 | order = slab_order(size, 1, MAX_ORDER, 1); |
818cf590 | 3356 | if (order < MAX_ORDER) |
5e6d444e CL |
3357 | return order; |
3358 | return -ENOSYS; | |
3359 | } | |
3360 | ||
5595cffc | 3361 | static void |
4053497d | 3362 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
3363 | { |
3364 | n->nr_partial = 0; | |
81819f0f CL |
3365 | spin_lock_init(&n->list_lock); |
3366 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 3367 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 3368 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 3369 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 3370 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 3371 | #endif |
81819f0f CL |
3372 | } |
3373 | ||
55136592 | 3374 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 3375 | { |
6c182dc0 | 3376 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 3377 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 3378 | |
8a5ec0ba | 3379 | /* |
d4d84fef CM |
3380 | * Must align to double word boundary for the double cmpxchg |
3381 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 3382 | */ |
d4d84fef CM |
3383 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
3384 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
3385 | |
3386 | if (!s->cpu_slab) | |
3387 | return 0; | |
3388 | ||
3389 | init_kmem_cache_cpus(s); | |
4c93c355 | 3390 | |
8a5ec0ba | 3391 | return 1; |
4c93c355 | 3392 | } |
4c93c355 | 3393 | |
51df1142 CL |
3394 | static struct kmem_cache *kmem_cache_node; |
3395 | ||
81819f0f CL |
3396 | /* |
3397 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
3398 | * slab on the node for this slabcache. There are no concurrent accesses | |
3399 | * possible. | |
3400 | * | |
721ae22a ZYW |
3401 | * Note that this function only works on the kmem_cache_node |
3402 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
4c93c355 | 3403 | * memory on a fresh node that has no slab structures yet. |
81819f0f | 3404 | */ |
55136592 | 3405 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
3406 | { |
3407 | struct page *page; | |
3408 | struct kmem_cache_node *n; | |
3409 | ||
51df1142 | 3410 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 3411 | |
51df1142 | 3412 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
3413 | |
3414 | BUG_ON(!page); | |
a2f92ee7 | 3415 | if (page_to_nid(page) != node) { |
f9f58285 FF |
3416 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
3417 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
a2f92ee7 CL |
3418 | } |
3419 | ||
81819f0f CL |
3420 | n = page->freelist; |
3421 | BUG_ON(!n); | |
8ab1372f | 3422 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 3423 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 3424 | init_tracking(kmem_cache_node, n); |
8ab1372f | 3425 | #endif |
12b22386 | 3426 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
505f5dcb | 3427 | GFP_KERNEL); |
12b22386 AK |
3428 | page->freelist = get_freepointer(kmem_cache_node, n); |
3429 | page->inuse = 1; | |
3430 | page->frozen = 0; | |
3431 | kmem_cache_node->node[node] = n; | |
4053497d | 3432 | init_kmem_cache_node(n); |
51df1142 | 3433 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 3434 | |
67b6c900 | 3435 | /* |
1e4dd946 SR |
3436 | * No locks need to be taken here as it has just been |
3437 | * initialized and there is no concurrent access. | |
67b6c900 | 3438 | */ |
1e4dd946 | 3439 | __add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
3440 | } |
3441 | ||
3442 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
3443 | { | |
3444 | int node; | |
fa45dc25 | 3445 | struct kmem_cache_node *n; |
81819f0f | 3446 | |
fa45dc25 | 3447 | for_each_kmem_cache_node(s, node, n) { |
81819f0f | 3448 | s->node[node] = NULL; |
ea37df54 | 3449 | kmem_cache_free(kmem_cache_node, n); |
81819f0f CL |
3450 | } |
3451 | } | |
3452 | ||
52b4b950 DS |
3453 | void __kmem_cache_release(struct kmem_cache *s) |
3454 | { | |
210e7a43 | 3455 | cache_random_seq_destroy(s); |
52b4b950 DS |
3456 | free_percpu(s->cpu_slab); |
3457 | free_kmem_cache_nodes(s); | |
3458 | } | |
3459 | ||
55136592 | 3460 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
3461 | { |
3462 | int node; | |
81819f0f | 3463 | |
f64dc58c | 3464 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3465 | struct kmem_cache_node *n; |
3466 | ||
73367bd8 | 3467 | if (slab_state == DOWN) { |
55136592 | 3468 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
3469 | continue; |
3470 | } | |
51df1142 | 3471 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 3472 | GFP_KERNEL, node); |
81819f0f | 3473 | |
73367bd8 AD |
3474 | if (!n) { |
3475 | free_kmem_cache_nodes(s); | |
3476 | return 0; | |
81819f0f | 3477 | } |
73367bd8 | 3478 | |
4053497d | 3479 | init_kmem_cache_node(n); |
ea37df54 | 3480 | s->node[node] = n; |
81819f0f CL |
3481 | } |
3482 | return 1; | |
3483 | } | |
81819f0f | 3484 | |
c0bdb232 | 3485 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
3486 | { |
3487 | if (min < MIN_PARTIAL) | |
3488 | min = MIN_PARTIAL; | |
3489 | else if (min > MAX_PARTIAL) | |
3490 | min = MAX_PARTIAL; | |
3491 | s->min_partial = min; | |
3492 | } | |
3493 | ||
e6d0e1dc WY |
3494 | static void set_cpu_partial(struct kmem_cache *s) |
3495 | { | |
3496 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3497 | /* | |
3498 | * cpu_partial determined the maximum number of objects kept in the | |
3499 | * per cpu partial lists of a processor. | |
3500 | * | |
3501 | * Per cpu partial lists mainly contain slabs that just have one | |
3502 | * object freed. If they are used for allocation then they can be | |
3503 | * filled up again with minimal effort. The slab will never hit the | |
3504 | * per node partial lists and therefore no locking will be required. | |
3505 | * | |
3506 | * This setting also determines | |
3507 | * | |
3508 | * A) The number of objects from per cpu partial slabs dumped to the | |
3509 | * per node list when we reach the limit. | |
3510 | * B) The number of objects in cpu partial slabs to extract from the | |
3511 | * per node list when we run out of per cpu objects. We only fetch | |
3512 | * 50% to keep some capacity around for frees. | |
3513 | */ | |
3514 | if (!kmem_cache_has_cpu_partial(s)) | |
3515 | s->cpu_partial = 0; | |
3516 | else if (s->size >= PAGE_SIZE) | |
3517 | s->cpu_partial = 2; | |
3518 | else if (s->size >= 1024) | |
3519 | s->cpu_partial = 6; | |
3520 | else if (s->size >= 256) | |
3521 | s->cpu_partial = 13; | |
3522 | else | |
3523 | s->cpu_partial = 30; | |
3524 | #endif | |
3525 | } | |
3526 | ||
81819f0f CL |
3527 | /* |
3528 | * calculate_sizes() determines the order and the distribution of data within | |
3529 | * a slab object. | |
3530 | */ | |
06b285dc | 3531 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f | 3532 | { |
d50112ed | 3533 | slab_flags_t flags = s->flags; |
be4a7988 | 3534 | unsigned int size = s->object_size; |
19af27af | 3535 | unsigned int order; |
81819f0f | 3536 | |
d8b42bf5 CL |
3537 | /* |
3538 | * Round up object size to the next word boundary. We can only | |
3539 | * place the free pointer at word boundaries and this determines | |
3540 | * the possible location of the free pointer. | |
3541 | */ | |
3542 | size = ALIGN(size, sizeof(void *)); | |
3543 | ||
3544 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
3545 | /* |
3546 | * Determine if we can poison the object itself. If the user of | |
3547 | * the slab may touch the object after free or before allocation | |
3548 | * then we should never poison the object itself. | |
3549 | */ | |
5f0d5a3a | 3550 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
c59def9f | 3551 | !s->ctor) |
81819f0f CL |
3552 | s->flags |= __OBJECT_POISON; |
3553 | else | |
3554 | s->flags &= ~__OBJECT_POISON; | |
3555 | ||
81819f0f CL |
3556 | |
3557 | /* | |
672bba3a | 3558 | * If we are Redzoning then check if there is some space between the |
81819f0f | 3559 | * end of the object and the free pointer. If not then add an |
672bba3a | 3560 | * additional word to have some bytes to store Redzone information. |
81819f0f | 3561 | */ |
3b0efdfa | 3562 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 3563 | size += sizeof(void *); |
41ecc55b | 3564 | #endif |
81819f0f CL |
3565 | |
3566 | /* | |
672bba3a CL |
3567 | * With that we have determined the number of bytes in actual use |
3568 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
3569 | */ |
3570 | s->inuse = size; | |
3571 | ||
5f0d5a3a | 3572 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
c59def9f | 3573 | s->ctor)) { |
81819f0f CL |
3574 | /* |
3575 | * Relocate free pointer after the object if it is not | |
3576 | * permitted to overwrite the first word of the object on | |
3577 | * kmem_cache_free. | |
3578 | * | |
3579 | * This is the case if we do RCU, have a constructor or | |
3580 | * destructor or are poisoning the objects. | |
3581 | */ | |
3582 | s->offset = size; | |
3583 | size += sizeof(void *); | |
3584 | } | |
3585 | ||
c12b3c62 | 3586 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
3587 | if (flags & SLAB_STORE_USER) |
3588 | /* | |
3589 | * Need to store information about allocs and frees after | |
3590 | * the object. | |
3591 | */ | |
3592 | size += 2 * sizeof(struct track); | |
80a9201a | 3593 | #endif |
81819f0f | 3594 | |
80a9201a AP |
3595 | kasan_cache_create(s, &size, &s->flags); |
3596 | #ifdef CONFIG_SLUB_DEBUG | |
d86bd1be | 3597 | if (flags & SLAB_RED_ZONE) { |
81819f0f CL |
3598 | /* |
3599 | * Add some empty padding so that we can catch | |
3600 | * overwrites from earlier objects rather than let | |
3601 | * tracking information or the free pointer be | |
0211a9c8 | 3602 | * corrupted if a user writes before the start |
81819f0f CL |
3603 | * of the object. |
3604 | */ | |
3605 | size += sizeof(void *); | |
d86bd1be JK |
3606 | |
3607 | s->red_left_pad = sizeof(void *); | |
3608 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
3609 | size += s->red_left_pad; | |
3610 | } | |
41ecc55b | 3611 | #endif |
672bba3a | 3612 | |
81819f0f CL |
3613 | /* |
3614 | * SLUB stores one object immediately after another beginning from | |
3615 | * offset 0. In order to align the objects we have to simply size | |
3616 | * each object to conform to the alignment. | |
3617 | */ | |
45906855 | 3618 | size = ALIGN(size, s->align); |
81819f0f | 3619 | s->size = size; |
06b285dc CL |
3620 | if (forced_order >= 0) |
3621 | order = forced_order; | |
3622 | else | |
9736d2a9 | 3623 | order = calculate_order(size); |
81819f0f | 3624 | |
19af27af | 3625 | if ((int)order < 0) |
81819f0f CL |
3626 | return 0; |
3627 | ||
b7a49f0d | 3628 | s->allocflags = 0; |
834f3d11 | 3629 | if (order) |
b7a49f0d CL |
3630 | s->allocflags |= __GFP_COMP; |
3631 | ||
3632 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3633 | s->allocflags |= GFP_DMA; |
b7a49f0d | 3634 | |
6d6ea1e9 NB |
3635 | if (s->flags & SLAB_CACHE_DMA32) |
3636 | s->allocflags |= GFP_DMA32; | |
3637 | ||
b7a49f0d CL |
3638 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
3639 | s->allocflags |= __GFP_RECLAIMABLE; | |
3640 | ||
81819f0f CL |
3641 | /* |
3642 | * Determine the number of objects per slab | |
3643 | */ | |
9736d2a9 MW |
3644 | s->oo = oo_make(order, size); |
3645 | s->min = oo_make(get_order(size), size); | |
205ab99d CL |
3646 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3647 | s->max = s->oo; | |
81819f0f | 3648 | |
834f3d11 | 3649 | return !!oo_objects(s->oo); |
81819f0f CL |
3650 | } |
3651 | ||
d50112ed | 3652 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) |
81819f0f | 3653 | { |
8a13a4cc | 3654 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
2482ddec KC |
3655 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
3656 | s->random = get_random_long(); | |
3657 | #endif | |
81819f0f | 3658 | |
06b285dc | 3659 | if (!calculate_sizes(s, -1)) |
81819f0f | 3660 | goto error; |
3de47213 DR |
3661 | if (disable_higher_order_debug) { |
3662 | /* | |
3663 | * Disable debugging flags that store metadata if the min slab | |
3664 | * order increased. | |
3665 | */ | |
3b0efdfa | 3666 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3667 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3668 | s->offset = 0; | |
3669 | if (!calculate_sizes(s, -1)) | |
3670 | goto error; | |
3671 | } | |
3672 | } | |
81819f0f | 3673 | |
2565409f HC |
3674 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3675 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
149daaf3 | 3676 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
b789ef51 CL |
3677 | /* Enable fast mode */ |
3678 | s->flags |= __CMPXCHG_DOUBLE; | |
3679 | #endif | |
3680 | ||
3b89d7d8 DR |
3681 | /* |
3682 | * The larger the object size is, the more pages we want on the partial | |
3683 | * list to avoid pounding the page allocator excessively. | |
3684 | */ | |
49e22585 CL |
3685 | set_min_partial(s, ilog2(s->size) / 2); |
3686 | ||
e6d0e1dc | 3687 | set_cpu_partial(s); |
49e22585 | 3688 | |
81819f0f | 3689 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3690 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3691 | #endif |
210e7a43 TG |
3692 | |
3693 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
3694 | if (slab_state >= UP) { | |
3695 | if (init_cache_random_seq(s)) | |
3696 | goto error; | |
3697 | } | |
3698 | ||
55136592 | 3699 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3700 | goto error; |
81819f0f | 3701 | |
55136592 | 3702 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3703 | return 0; |
ff12059e | 3704 | |
4c93c355 | 3705 | free_kmem_cache_nodes(s); |
81819f0f | 3706 | error: |
278b1bb1 | 3707 | return -EINVAL; |
81819f0f | 3708 | } |
81819f0f | 3709 | |
33b12c38 CL |
3710 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3711 | const char *text) | |
3712 | { | |
3713 | #ifdef CONFIG_SLUB_DEBUG | |
3714 | void *addr = page_address(page); | |
3715 | void *p; | |
90e9f6a6 YZ |
3716 | unsigned long *map; |
3717 | ||
945cf2b6 | 3718 | slab_err(s, page, text, s->name); |
33b12c38 | 3719 | slab_lock(page); |
33b12c38 | 3720 | |
90e9f6a6 | 3721 | map = get_map(s, page); |
33b12c38 CL |
3722 | for_each_object(p, s, addr, page->objects) { |
3723 | ||
3724 | if (!test_bit(slab_index(p, s, addr), map)) { | |
f9f58285 | 3725 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
33b12c38 CL |
3726 | print_tracking(s, p); |
3727 | } | |
3728 | } | |
90e9f6a6 YZ |
3729 | put_map(map); |
3730 | ||
33b12c38 CL |
3731 | slab_unlock(page); |
3732 | #endif | |
3733 | } | |
3734 | ||
81819f0f | 3735 | /* |
599870b1 | 3736 | * Attempt to free all partial slabs on a node. |
52b4b950 DS |
3737 | * This is called from __kmem_cache_shutdown(). We must take list_lock |
3738 | * because sysfs file might still access partial list after the shutdowning. | |
81819f0f | 3739 | */ |
599870b1 | 3740 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3741 | { |
60398923 | 3742 | LIST_HEAD(discard); |
81819f0f CL |
3743 | struct page *page, *h; |
3744 | ||
52b4b950 DS |
3745 | BUG_ON(irqs_disabled()); |
3746 | spin_lock_irq(&n->list_lock); | |
916ac052 | 3747 | list_for_each_entry_safe(page, h, &n->partial, slab_list) { |
81819f0f | 3748 | if (!page->inuse) { |
52b4b950 | 3749 | remove_partial(n, page); |
916ac052 | 3750 | list_add(&page->slab_list, &discard); |
33b12c38 CL |
3751 | } else { |
3752 | list_slab_objects(s, page, | |
52b4b950 | 3753 | "Objects remaining in %s on __kmem_cache_shutdown()"); |
599870b1 | 3754 | } |
33b12c38 | 3755 | } |
52b4b950 | 3756 | spin_unlock_irq(&n->list_lock); |
60398923 | 3757 | |
916ac052 | 3758 | list_for_each_entry_safe(page, h, &discard, slab_list) |
60398923 | 3759 | discard_slab(s, page); |
81819f0f CL |
3760 | } |
3761 | ||
f9e13c0a SB |
3762 | bool __kmem_cache_empty(struct kmem_cache *s) |
3763 | { | |
3764 | int node; | |
3765 | struct kmem_cache_node *n; | |
3766 | ||
3767 | for_each_kmem_cache_node(s, node, n) | |
3768 | if (n->nr_partial || slabs_node(s, node)) | |
3769 | return false; | |
3770 | return true; | |
3771 | } | |
3772 | ||
81819f0f | 3773 | /* |
672bba3a | 3774 | * Release all resources used by a slab cache. |
81819f0f | 3775 | */ |
52b4b950 | 3776 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f CL |
3777 | { |
3778 | int node; | |
fa45dc25 | 3779 | struct kmem_cache_node *n; |
81819f0f CL |
3780 | |
3781 | flush_all(s); | |
81819f0f | 3782 | /* Attempt to free all objects */ |
fa45dc25 | 3783 | for_each_kmem_cache_node(s, node, n) { |
599870b1 CL |
3784 | free_partial(s, n); |
3785 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3786 | return 1; |
3787 | } | |
bf5eb3de | 3788 | sysfs_slab_remove(s); |
81819f0f CL |
3789 | return 0; |
3790 | } | |
3791 | ||
81819f0f CL |
3792 | /******************************************************************** |
3793 | * Kmalloc subsystem | |
3794 | *******************************************************************/ | |
3795 | ||
81819f0f CL |
3796 | static int __init setup_slub_min_order(char *str) |
3797 | { | |
19af27af | 3798 | get_option(&str, (int *)&slub_min_order); |
81819f0f CL |
3799 | |
3800 | return 1; | |
3801 | } | |
3802 | ||
3803 | __setup("slub_min_order=", setup_slub_min_order); | |
3804 | ||
3805 | static int __init setup_slub_max_order(char *str) | |
3806 | { | |
19af27af AD |
3807 | get_option(&str, (int *)&slub_max_order); |
3808 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | |
81819f0f CL |
3809 | |
3810 | return 1; | |
3811 | } | |
3812 | ||
3813 | __setup("slub_max_order=", setup_slub_max_order); | |
3814 | ||
3815 | static int __init setup_slub_min_objects(char *str) | |
3816 | { | |
19af27af | 3817 | get_option(&str, (int *)&slub_min_objects); |
81819f0f CL |
3818 | |
3819 | return 1; | |
3820 | } | |
3821 | ||
3822 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3823 | ||
81819f0f CL |
3824 | void *__kmalloc(size_t size, gfp_t flags) |
3825 | { | |
aadb4bc4 | 3826 | struct kmem_cache *s; |
5b882be4 | 3827 | void *ret; |
81819f0f | 3828 | |
95a05b42 | 3829 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3830 | return kmalloc_large(size, flags); |
aadb4bc4 | 3831 | |
2c59dd65 | 3832 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3833 | |
3834 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3835 | return s; |
3836 | ||
2b847c3c | 3837 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3838 | |
ca2b84cb | 3839 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 | 3840 | |
0116523c | 3841 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3842 | |
5b882be4 | 3843 | return ret; |
81819f0f CL |
3844 | } |
3845 | EXPORT_SYMBOL(__kmalloc); | |
3846 | ||
5d1f57e4 | 3847 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3848 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3849 | { | |
b1eeab67 | 3850 | struct page *page; |
e4f7c0b4 | 3851 | void *ptr = NULL; |
6a486c0a | 3852 | unsigned int order = get_order(size); |
f619cfe1 | 3853 | |
75f296d9 | 3854 | flags |= __GFP_COMP; |
6a486c0a VB |
3855 | page = alloc_pages_node(node, flags, order); |
3856 | if (page) { | |
e4f7c0b4 | 3857 | ptr = page_address(page); |
6a486c0a VB |
3858 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, |
3859 | 1 << order); | |
3860 | } | |
e4f7c0b4 | 3861 | |
0116523c | 3862 | return kmalloc_large_node_hook(ptr, size, flags); |
f619cfe1 CL |
3863 | } |
3864 | ||
81819f0f CL |
3865 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3866 | { | |
aadb4bc4 | 3867 | struct kmem_cache *s; |
5b882be4 | 3868 | void *ret; |
81819f0f | 3869 | |
95a05b42 | 3870 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3871 | ret = kmalloc_large_node(size, flags, node); |
3872 | ||
ca2b84cb EGM |
3873 | trace_kmalloc_node(_RET_IP_, ret, |
3874 | size, PAGE_SIZE << get_order(size), | |
3875 | flags, node); | |
5b882be4 EGM |
3876 | |
3877 | return ret; | |
3878 | } | |
aadb4bc4 | 3879 | |
2c59dd65 | 3880 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3881 | |
3882 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3883 | return s; |
3884 | ||
2b847c3c | 3885 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3886 | |
ca2b84cb | 3887 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 | 3888 | |
0116523c | 3889 | ret = kasan_kmalloc(s, ret, size, flags); |
0316bec2 | 3890 | |
5b882be4 | 3891 | return ret; |
81819f0f CL |
3892 | } |
3893 | EXPORT_SYMBOL(__kmalloc_node); | |
6dfd1b65 | 3894 | #endif /* CONFIG_NUMA */ |
81819f0f | 3895 | |
ed18adc1 KC |
3896 | #ifdef CONFIG_HARDENED_USERCOPY |
3897 | /* | |
afcc90f8 KC |
3898 | * Rejects incorrectly sized objects and objects that are to be copied |
3899 | * to/from userspace but do not fall entirely within the containing slab | |
3900 | * cache's usercopy region. | |
ed18adc1 KC |
3901 | * |
3902 | * Returns NULL if check passes, otherwise const char * to name of cache | |
3903 | * to indicate an error. | |
3904 | */ | |
f4e6e289 KC |
3905 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
3906 | bool to_user) | |
ed18adc1 KC |
3907 | { |
3908 | struct kmem_cache *s; | |
44065b2e | 3909 | unsigned int offset; |
ed18adc1 KC |
3910 | size_t object_size; |
3911 | ||
96fedce2 AK |
3912 | ptr = kasan_reset_tag(ptr); |
3913 | ||
ed18adc1 KC |
3914 | /* Find object and usable object size. */ |
3915 | s = page->slab_cache; | |
ed18adc1 KC |
3916 | |
3917 | /* Reject impossible pointers. */ | |
3918 | if (ptr < page_address(page)) | |
f4e6e289 KC |
3919 | usercopy_abort("SLUB object not in SLUB page?!", NULL, |
3920 | to_user, 0, n); | |
ed18adc1 KC |
3921 | |
3922 | /* Find offset within object. */ | |
3923 | offset = (ptr - page_address(page)) % s->size; | |
3924 | ||
3925 | /* Adjust for redzone and reject if within the redzone. */ | |
3926 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | |
3927 | if (offset < s->red_left_pad) | |
f4e6e289 KC |
3928 | usercopy_abort("SLUB object in left red zone", |
3929 | s->name, to_user, offset, n); | |
ed18adc1 KC |
3930 | offset -= s->red_left_pad; |
3931 | } | |
3932 | ||
afcc90f8 KC |
3933 | /* Allow address range falling entirely within usercopy region. */ |
3934 | if (offset >= s->useroffset && | |
3935 | offset - s->useroffset <= s->usersize && | |
3936 | n <= s->useroffset - offset + s->usersize) | |
f4e6e289 | 3937 | return; |
ed18adc1 | 3938 | |
afcc90f8 KC |
3939 | /* |
3940 | * If the copy is still within the allocated object, produce | |
3941 | * a warning instead of rejecting the copy. This is intended | |
3942 | * to be a temporary method to find any missing usercopy | |
3943 | * whitelists. | |
3944 | */ | |
3945 | object_size = slab_ksize(s); | |
2d891fbc KC |
3946 | if (usercopy_fallback && |
3947 | offset <= object_size && n <= object_size - offset) { | |
afcc90f8 KC |
3948 | usercopy_warn("SLUB object", s->name, to_user, offset, n); |
3949 | return; | |
3950 | } | |
ed18adc1 | 3951 | |
f4e6e289 | 3952 | usercopy_abort("SLUB object", s->name, to_user, offset, n); |
ed18adc1 KC |
3953 | } |
3954 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
3955 | ||
10d1f8cb | 3956 | size_t __ksize(const void *object) |
81819f0f | 3957 | { |
272c1d21 | 3958 | struct page *page; |
81819f0f | 3959 | |
ef8b4520 | 3960 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3961 | return 0; |
3962 | ||
294a80a8 | 3963 | page = virt_to_head_page(object); |
294a80a8 | 3964 | |
76994412 PE |
3965 | if (unlikely(!PageSlab(page))) { |
3966 | WARN_ON(!PageCompound(page)); | |
a50b854e | 3967 | return page_size(page); |
76994412 | 3968 | } |
81819f0f | 3969 | |
1b4f59e3 | 3970 | return slab_ksize(page->slab_cache); |
81819f0f | 3971 | } |
10d1f8cb | 3972 | EXPORT_SYMBOL(__ksize); |
81819f0f CL |
3973 | |
3974 | void kfree(const void *x) | |
3975 | { | |
81819f0f | 3976 | struct page *page; |
5bb983b0 | 3977 | void *object = (void *)x; |
81819f0f | 3978 | |
2121db74 PE |
3979 | trace_kfree(_RET_IP_, x); |
3980 | ||
2408c550 | 3981 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3982 | return; |
3983 | ||
b49af68f | 3984 | page = virt_to_head_page(x); |
aadb4bc4 | 3985 | if (unlikely(!PageSlab(page))) { |
6a486c0a VB |
3986 | unsigned int order = compound_order(page); |
3987 | ||
0937502a | 3988 | BUG_ON(!PageCompound(page)); |
47adccce | 3989 | kfree_hook(object); |
6a486c0a VB |
3990 | mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, |
3991 | -(1 << order)); | |
3992 | __free_pages(page, order); | |
aadb4bc4 CL |
3993 | return; |
3994 | } | |
81084651 | 3995 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
81819f0f CL |
3996 | } |
3997 | EXPORT_SYMBOL(kfree); | |
3998 | ||
832f37f5 VD |
3999 | #define SHRINK_PROMOTE_MAX 32 |
4000 | ||
2086d26a | 4001 | /* |
832f37f5 VD |
4002 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
4003 | * up most to the head of the partial lists. New allocations will then | |
4004 | * fill those up and thus they can be removed from the partial lists. | |
672bba3a CL |
4005 | * |
4006 | * The slabs with the least items are placed last. This results in them | |
4007 | * being allocated from last increasing the chance that the last objects | |
4008 | * are freed in them. | |
2086d26a | 4009 | */ |
c9fc5864 | 4010 | int __kmem_cache_shrink(struct kmem_cache *s) |
2086d26a CL |
4011 | { |
4012 | int node; | |
4013 | int i; | |
4014 | struct kmem_cache_node *n; | |
4015 | struct page *page; | |
4016 | struct page *t; | |
832f37f5 VD |
4017 | struct list_head discard; |
4018 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
2086d26a | 4019 | unsigned long flags; |
ce3712d7 | 4020 | int ret = 0; |
2086d26a | 4021 | |
2086d26a | 4022 | flush_all(s); |
fa45dc25 | 4023 | for_each_kmem_cache_node(s, node, n) { |
832f37f5 VD |
4024 | INIT_LIST_HEAD(&discard); |
4025 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
4026 | INIT_LIST_HEAD(promote + i); | |
2086d26a CL |
4027 | |
4028 | spin_lock_irqsave(&n->list_lock, flags); | |
4029 | ||
4030 | /* | |
832f37f5 | 4031 | * Build lists of slabs to discard or promote. |
2086d26a | 4032 | * |
672bba3a CL |
4033 | * Note that concurrent frees may occur while we hold the |
4034 | * list_lock. page->inuse here is the upper limit. | |
2086d26a | 4035 | */ |
916ac052 | 4036 | list_for_each_entry_safe(page, t, &n->partial, slab_list) { |
832f37f5 VD |
4037 | int free = page->objects - page->inuse; |
4038 | ||
4039 | /* Do not reread page->inuse */ | |
4040 | barrier(); | |
4041 | ||
4042 | /* We do not keep full slabs on the list */ | |
4043 | BUG_ON(free <= 0); | |
4044 | ||
4045 | if (free == page->objects) { | |
916ac052 | 4046 | list_move(&page->slab_list, &discard); |
69cb8e6b | 4047 | n->nr_partial--; |
832f37f5 | 4048 | } else if (free <= SHRINK_PROMOTE_MAX) |
916ac052 | 4049 | list_move(&page->slab_list, promote + free - 1); |
2086d26a CL |
4050 | } |
4051 | ||
2086d26a | 4052 | /* |
832f37f5 VD |
4053 | * Promote the slabs filled up most to the head of the |
4054 | * partial list. | |
2086d26a | 4055 | */ |
832f37f5 VD |
4056 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
4057 | list_splice(promote + i, &n->partial); | |
2086d26a | 4058 | |
2086d26a | 4059 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
4060 | |
4061 | /* Release empty slabs */ | |
916ac052 | 4062 | list_for_each_entry_safe(page, t, &discard, slab_list) |
69cb8e6b | 4063 | discard_slab(s, page); |
ce3712d7 VD |
4064 | |
4065 | if (slabs_node(s, node)) | |
4066 | ret = 1; | |
2086d26a CL |
4067 | } |
4068 | ||
ce3712d7 | 4069 | return ret; |
2086d26a | 4070 | } |
2086d26a | 4071 | |
c9fc5864 | 4072 | #ifdef CONFIG_MEMCG |
43486694 | 4073 | void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) |
01fb58bc | 4074 | { |
50862ce7 TH |
4075 | /* |
4076 | * Called with all the locks held after a sched RCU grace period. | |
4077 | * Even if @s becomes empty after shrinking, we can't know that @s | |
4078 | * doesn't have allocations already in-flight and thus can't | |
4079 | * destroy @s until the associated memcg is released. | |
4080 | * | |
4081 | * However, let's remove the sysfs files for empty caches here. | |
4082 | * Each cache has a lot of interface files which aren't | |
4083 | * particularly useful for empty draining caches; otherwise, we can | |
4084 | * easily end up with millions of unnecessary sysfs files on | |
4085 | * systems which have a lot of memory and transient cgroups. | |
4086 | */ | |
4087 | if (!__kmem_cache_shrink(s)) | |
4088 | sysfs_slab_remove(s); | |
01fb58bc TH |
4089 | } |
4090 | ||
c9fc5864 TH |
4091 | void __kmemcg_cache_deactivate(struct kmem_cache *s) |
4092 | { | |
4093 | /* | |
4094 | * Disable empty slabs caching. Used to avoid pinning offline | |
4095 | * memory cgroups by kmem pages that can be freed. | |
4096 | */ | |
e6d0e1dc | 4097 | slub_set_cpu_partial(s, 0); |
c9fc5864 | 4098 | s->min_partial = 0; |
c9fc5864 | 4099 | } |
6dfd1b65 | 4100 | #endif /* CONFIG_MEMCG */ |
c9fc5864 | 4101 | |
b9049e23 YG |
4102 | static int slab_mem_going_offline_callback(void *arg) |
4103 | { | |
4104 | struct kmem_cache *s; | |
4105 | ||
18004c5d | 4106 | mutex_lock(&slab_mutex); |
b9049e23 | 4107 | list_for_each_entry(s, &slab_caches, list) |
c9fc5864 | 4108 | __kmem_cache_shrink(s); |
18004c5d | 4109 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4110 | |
4111 | return 0; | |
4112 | } | |
4113 | ||
4114 | static void slab_mem_offline_callback(void *arg) | |
4115 | { | |
4116 | struct kmem_cache_node *n; | |
4117 | struct kmem_cache *s; | |
4118 | struct memory_notify *marg = arg; | |
4119 | int offline_node; | |
4120 | ||
b9d5ab25 | 4121 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
4122 | |
4123 | /* | |
4124 | * If the node still has available memory. we need kmem_cache_node | |
4125 | * for it yet. | |
4126 | */ | |
4127 | if (offline_node < 0) | |
4128 | return; | |
4129 | ||
18004c5d | 4130 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4131 | list_for_each_entry(s, &slab_caches, list) { |
4132 | n = get_node(s, offline_node); | |
4133 | if (n) { | |
4134 | /* | |
4135 | * if n->nr_slabs > 0, slabs still exist on the node | |
4136 | * that is going down. We were unable to free them, | |
c9404c9c | 4137 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
4138 | * callback. So, we must fail. |
4139 | */ | |
0f389ec6 | 4140 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
4141 | |
4142 | s->node[offline_node] = NULL; | |
8de66a0c | 4143 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
4144 | } |
4145 | } | |
18004c5d | 4146 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4147 | } |
4148 | ||
4149 | static int slab_mem_going_online_callback(void *arg) | |
4150 | { | |
4151 | struct kmem_cache_node *n; | |
4152 | struct kmem_cache *s; | |
4153 | struct memory_notify *marg = arg; | |
b9d5ab25 | 4154 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
4155 | int ret = 0; |
4156 | ||
4157 | /* | |
4158 | * If the node's memory is already available, then kmem_cache_node is | |
4159 | * already created. Nothing to do. | |
4160 | */ | |
4161 | if (nid < 0) | |
4162 | return 0; | |
4163 | ||
4164 | /* | |
0121c619 | 4165 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
4166 | * allocate a kmem_cache_node structure in order to bring the node |
4167 | * online. | |
4168 | */ | |
18004c5d | 4169 | mutex_lock(&slab_mutex); |
b9049e23 YG |
4170 | list_for_each_entry(s, &slab_caches, list) { |
4171 | /* | |
4172 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
4173 | * since memory is not yet available from the node that | |
4174 | * is brought up. | |
4175 | */ | |
8de66a0c | 4176 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
4177 | if (!n) { |
4178 | ret = -ENOMEM; | |
4179 | goto out; | |
4180 | } | |
4053497d | 4181 | init_kmem_cache_node(n); |
b9049e23 YG |
4182 | s->node[nid] = n; |
4183 | } | |
4184 | out: | |
18004c5d | 4185 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
4186 | return ret; |
4187 | } | |
4188 | ||
4189 | static int slab_memory_callback(struct notifier_block *self, | |
4190 | unsigned long action, void *arg) | |
4191 | { | |
4192 | int ret = 0; | |
4193 | ||
4194 | switch (action) { | |
4195 | case MEM_GOING_ONLINE: | |
4196 | ret = slab_mem_going_online_callback(arg); | |
4197 | break; | |
4198 | case MEM_GOING_OFFLINE: | |
4199 | ret = slab_mem_going_offline_callback(arg); | |
4200 | break; | |
4201 | case MEM_OFFLINE: | |
4202 | case MEM_CANCEL_ONLINE: | |
4203 | slab_mem_offline_callback(arg); | |
4204 | break; | |
4205 | case MEM_ONLINE: | |
4206 | case MEM_CANCEL_OFFLINE: | |
4207 | break; | |
4208 | } | |
dc19f9db KH |
4209 | if (ret) |
4210 | ret = notifier_from_errno(ret); | |
4211 | else | |
4212 | ret = NOTIFY_OK; | |
b9049e23 YG |
4213 | return ret; |
4214 | } | |
4215 | ||
3ac38faa AM |
4216 | static struct notifier_block slab_memory_callback_nb = { |
4217 | .notifier_call = slab_memory_callback, | |
4218 | .priority = SLAB_CALLBACK_PRI, | |
4219 | }; | |
b9049e23 | 4220 | |
81819f0f CL |
4221 | /******************************************************************** |
4222 | * Basic setup of slabs | |
4223 | *******************************************************************/ | |
4224 | ||
51df1142 CL |
4225 | /* |
4226 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
4227 | * the page allocator. Allocate them properly then fix up the pointers |
4228 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
4229 | */ |
4230 | ||
dffb4d60 | 4231 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
4232 | { |
4233 | int node; | |
dffb4d60 | 4234 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
fa45dc25 | 4235 | struct kmem_cache_node *n; |
51df1142 | 4236 | |
dffb4d60 | 4237 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 4238 | |
7d557b3c GC |
4239 | /* |
4240 | * This runs very early, and only the boot processor is supposed to be | |
4241 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
4242 | * IPIs around. | |
4243 | */ | |
4244 | __flush_cpu_slab(s, smp_processor_id()); | |
fa45dc25 | 4245 | for_each_kmem_cache_node(s, node, n) { |
51df1142 CL |
4246 | struct page *p; |
4247 | ||
916ac052 | 4248 | list_for_each_entry(p, &n->partial, slab_list) |
fa45dc25 | 4249 | p->slab_cache = s; |
51df1142 | 4250 | |
607bf324 | 4251 | #ifdef CONFIG_SLUB_DEBUG |
916ac052 | 4252 | list_for_each_entry(p, &n->full, slab_list) |
fa45dc25 | 4253 | p->slab_cache = s; |
51df1142 | 4254 | #endif |
51df1142 | 4255 | } |
f7ce3190 | 4256 | slab_init_memcg_params(s); |
dffb4d60 | 4257 | list_add(&s->list, &slab_caches); |
c03914b7 | 4258 | memcg_link_cache(s, NULL); |
dffb4d60 | 4259 | return s; |
51df1142 CL |
4260 | } |
4261 | ||
81819f0f CL |
4262 | void __init kmem_cache_init(void) |
4263 | { | |
dffb4d60 CL |
4264 | static __initdata struct kmem_cache boot_kmem_cache, |
4265 | boot_kmem_cache_node; | |
51df1142 | 4266 | |
fc8d8620 SG |
4267 | if (debug_guardpage_minorder()) |
4268 | slub_max_order = 0; | |
4269 | ||
dffb4d60 CL |
4270 | kmem_cache_node = &boot_kmem_cache_node; |
4271 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 4272 | |
dffb4d60 | 4273 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
8eb8284b | 4274 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); |
b9049e23 | 4275 | |
3ac38faa | 4276 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
4277 | |
4278 | /* Able to allocate the per node structures */ | |
4279 | slab_state = PARTIAL; | |
4280 | ||
dffb4d60 CL |
4281 | create_boot_cache(kmem_cache, "kmem_cache", |
4282 | offsetof(struct kmem_cache, node) + | |
4283 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
8eb8284b | 4284 | SLAB_HWCACHE_ALIGN, 0, 0); |
8a13a4cc | 4285 | |
dffb4d60 | 4286 | kmem_cache = bootstrap(&boot_kmem_cache); |
dffb4d60 | 4287 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
4288 | |
4289 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
34cc6990 | 4290 | setup_kmalloc_cache_index_table(); |
f97d5f63 | 4291 | create_kmalloc_caches(0); |
81819f0f | 4292 | |
210e7a43 TG |
4293 | /* Setup random freelists for each cache */ |
4294 | init_freelist_randomization(); | |
4295 | ||
a96a87bf SAS |
4296 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
4297 | slub_cpu_dead); | |
81819f0f | 4298 | |
b9726c26 | 4299 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", |
f97d5f63 | 4300 | cache_line_size(), |
81819f0f CL |
4301 | slub_min_order, slub_max_order, slub_min_objects, |
4302 | nr_cpu_ids, nr_node_ids); | |
4303 | } | |
4304 | ||
7e85ee0c PE |
4305 | void __init kmem_cache_init_late(void) |
4306 | { | |
7e85ee0c PE |
4307 | } |
4308 | ||
2633d7a0 | 4309 | struct kmem_cache * |
f4957d5b | 4310 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 4311 | slab_flags_t flags, void (*ctor)(void *)) |
81819f0f | 4312 | { |
426589f5 | 4313 | struct kmem_cache *s, *c; |
81819f0f | 4314 | |
a44cb944 | 4315 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f CL |
4316 | if (s) { |
4317 | s->refcount++; | |
84d0ddd6 | 4318 | |
81819f0f CL |
4319 | /* |
4320 | * Adjust the object sizes so that we clear | |
4321 | * the complete object on kzalloc. | |
4322 | */ | |
1b473f29 | 4323 | s->object_size = max(s->object_size, size); |
52ee6d74 | 4324 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 4325 | |
426589f5 | 4326 | for_each_memcg_cache(c, s) { |
84d0ddd6 | 4327 | c->object_size = s->object_size; |
52ee6d74 | 4328 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); |
84d0ddd6 VD |
4329 | } |
4330 | ||
7b8f3b66 | 4331 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 4332 | s->refcount--; |
cbb79694 | 4333 | s = NULL; |
7b8f3b66 | 4334 | } |
a0e1d1be | 4335 | } |
6446faa2 | 4336 | |
cbb79694 CL |
4337 | return s; |
4338 | } | |
84c1cf62 | 4339 | |
d50112ed | 4340 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) |
cbb79694 | 4341 | { |
aac3a166 PE |
4342 | int err; |
4343 | ||
4344 | err = kmem_cache_open(s, flags); | |
4345 | if (err) | |
4346 | return err; | |
20cea968 | 4347 | |
45530c44 CL |
4348 | /* Mutex is not taken during early boot */ |
4349 | if (slab_state <= UP) | |
4350 | return 0; | |
4351 | ||
107dab5c | 4352 | memcg_propagate_slab_attrs(s); |
aac3a166 | 4353 | err = sysfs_slab_add(s); |
aac3a166 | 4354 | if (err) |
52b4b950 | 4355 | __kmem_cache_release(s); |
20cea968 | 4356 | |
aac3a166 | 4357 | return err; |
81819f0f | 4358 | } |
81819f0f | 4359 | |
ce71e27c | 4360 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 4361 | { |
aadb4bc4 | 4362 | struct kmem_cache *s; |
94b528d0 | 4363 | void *ret; |
aadb4bc4 | 4364 | |
95a05b42 | 4365 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
4366 | return kmalloc_large(size, gfpflags); |
4367 | ||
2c59dd65 | 4368 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4369 | |
2408c550 | 4370 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4371 | return s; |
81819f0f | 4372 | |
2b847c3c | 4373 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 4374 | |
25985edc | 4375 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4376 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
4377 | |
4378 | return ret; | |
81819f0f CL |
4379 | } |
4380 | ||
5d1f57e4 | 4381 | #ifdef CONFIG_NUMA |
81819f0f | 4382 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 4383 | int node, unsigned long caller) |
81819f0f | 4384 | { |
aadb4bc4 | 4385 | struct kmem_cache *s; |
94b528d0 | 4386 | void *ret; |
aadb4bc4 | 4387 | |
95a05b42 | 4388 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
4389 | ret = kmalloc_large_node(size, gfpflags, node); |
4390 | ||
4391 | trace_kmalloc_node(caller, ret, | |
4392 | size, PAGE_SIZE << get_order(size), | |
4393 | gfpflags, node); | |
4394 | ||
4395 | return ret; | |
4396 | } | |
eada35ef | 4397 | |
2c59dd65 | 4398 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 4399 | |
2408c550 | 4400 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 4401 | return s; |
81819f0f | 4402 | |
2b847c3c | 4403 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 4404 | |
25985edc | 4405 | /* Honor the call site pointer we received. */ |
ca2b84cb | 4406 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
4407 | |
4408 | return ret; | |
81819f0f | 4409 | } |
5d1f57e4 | 4410 | #endif |
81819f0f | 4411 | |
ab4d5ed5 | 4412 | #ifdef CONFIG_SYSFS |
205ab99d CL |
4413 | static int count_inuse(struct page *page) |
4414 | { | |
4415 | return page->inuse; | |
4416 | } | |
4417 | ||
4418 | static int count_total(struct page *page) | |
4419 | { | |
4420 | return page->objects; | |
4421 | } | |
ab4d5ed5 | 4422 | #endif |
205ab99d | 4423 | |
ab4d5ed5 | 4424 | #ifdef CONFIG_SLUB_DEBUG |
90e9f6a6 | 4425 | static void validate_slab(struct kmem_cache *s, struct page *page) |
53e15af0 CL |
4426 | { |
4427 | void *p; | |
a973e9dd | 4428 | void *addr = page_address(page); |
90e9f6a6 YZ |
4429 | unsigned long *map; |
4430 | ||
4431 | slab_lock(page); | |
53e15af0 | 4432 | |
dd98afd4 | 4433 | if (!check_slab(s, page) || !on_freelist(s, page, NULL)) |
90e9f6a6 | 4434 | goto unlock; |
53e15af0 CL |
4435 | |
4436 | /* Now we know that a valid freelist exists */ | |
90e9f6a6 | 4437 | map = get_map(s, page); |
5f80b13a | 4438 | for_each_object(p, s, addr, page->objects) { |
dd98afd4 YZ |
4439 | u8 val = test_bit(slab_index(p, s, addr), map) ? |
4440 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; | |
53e15af0 | 4441 | |
dd98afd4 YZ |
4442 | if (!check_object(s, page, p, val)) |
4443 | break; | |
4444 | } | |
90e9f6a6 YZ |
4445 | put_map(map); |
4446 | unlock: | |
881db7fb | 4447 | slab_unlock(page); |
53e15af0 CL |
4448 | } |
4449 | ||
434e245d | 4450 | static int validate_slab_node(struct kmem_cache *s, |
90e9f6a6 | 4451 | struct kmem_cache_node *n) |
53e15af0 CL |
4452 | { |
4453 | unsigned long count = 0; | |
4454 | struct page *page; | |
4455 | unsigned long flags; | |
4456 | ||
4457 | spin_lock_irqsave(&n->list_lock, flags); | |
4458 | ||
916ac052 | 4459 | list_for_each_entry(page, &n->partial, slab_list) { |
90e9f6a6 | 4460 | validate_slab(s, page); |
53e15af0 CL |
4461 | count++; |
4462 | } | |
4463 | if (count != n->nr_partial) | |
f9f58285 FF |
4464 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
4465 | s->name, count, n->nr_partial); | |
53e15af0 CL |
4466 | |
4467 | if (!(s->flags & SLAB_STORE_USER)) | |
4468 | goto out; | |
4469 | ||
916ac052 | 4470 | list_for_each_entry(page, &n->full, slab_list) { |
90e9f6a6 | 4471 | validate_slab(s, page); |
53e15af0 CL |
4472 | count++; |
4473 | } | |
4474 | if (count != atomic_long_read(&n->nr_slabs)) | |
f9f58285 FF |
4475 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
4476 | s->name, count, atomic_long_read(&n->nr_slabs)); | |
53e15af0 CL |
4477 | |
4478 | out: | |
4479 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4480 | return count; | |
4481 | } | |
4482 | ||
434e245d | 4483 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
4484 | { |
4485 | int node; | |
4486 | unsigned long count = 0; | |
fa45dc25 | 4487 | struct kmem_cache_node *n; |
53e15af0 CL |
4488 | |
4489 | flush_all(s); | |
fa45dc25 | 4490 | for_each_kmem_cache_node(s, node, n) |
90e9f6a6 YZ |
4491 | count += validate_slab_node(s, n); |
4492 | ||
53e15af0 CL |
4493 | return count; |
4494 | } | |
88a420e4 | 4495 | /* |
672bba3a | 4496 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
4497 | * and freed. |
4498 | */ | |
4499 | ||
4500 | struct location { | |
4501 | unsigned long count; | |
ce71e27c | 4502 | unsigned long addr; |
45edfa58 CL |
4503 | long long sum_time; |
4504 | long min_time; | |
4505 | long max_time; | |
4506 | long min_pid; | |
4507 | long max_pid; | |
174596a0 | 4508 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 4509 | nodemask_t nodes; |
88a420e4 CL |
4510 | }; |
4511 | ||
4512 | struct loc_track { | |
4513 | unsigned long max; | |
4514 | unsigned long count; | |
4515 | struct location *loc; | |
4516 | }; | |
4517 | ||
4518 | static void free_loc_track(struct loc_track *t) | |
4519 | { | |
4520 | if (t->max) | |
4521 | free_pages((unsigned long)t->loc, | |
4522 | get_order(sizeof(struct location) * t->max)); | |
4523 | } | |
4524 | ||
68dff6a9 | 4525 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
4526 | { |
4527 | struct location *l; | |
4528 | int order; | |
4529 | ||
88a420e4 CL |
4530 | order = get_order(sizeof(struct location) * max); |
4531 | ||
68dff6a9 | 4532 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
4533 | if (!l) |
4534 | return 0; | |
4535 | ||
4536 | if (t->count) { | |
4537 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4538 | free_loc_track(t); | |
4539 | } | |
4540 | t->max = max; | |
4541 | t->loc = l; | |
4542 | return 1; | |
4543 | } | |
4544 | ||
4545 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4546 | const struct track *track) |
88a420e4 CL |
4547 | { |
4548 | long start, end, pos; | |
4549 | struct location *l; | |
ce71e27c | 4550 | unsigned long caddr; |
45edfa58 | 4551 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4552 | |
4553 | start = -1; | |
4554 | end = t->count; | |
4555 | ||
4556 | for ( ; ; ) { | |
4557 | pos = start + (end - start + 1) / 2; | |
4558 | ||
4559 | /* | |
4560 | * There is nothing at "end". If we end up there | |
4561 | * we need to add something to before end. | |
4562 | */ | |
4563 | if (pos == end) | |
4564 | break; | |
4565 | ||
4566 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4567 | if (track->addr == caddr) { |
4568 | ||
4569 | l = &t->loc[pos]; | |
4570 | l->count++; | |
4571 | if (track->when) { | |
4572 | l->sum_time += age; | |
4573 | if (age < l->min_time) | |
4574 | l->min_time = age; | |
4575 | if (age > l->max_time) | |
4576 | l->max_time = age; | |
4577 | ||
4578 | if (track->pid < l->min_pid) | |
4579 | l->min_pid = track->pid; | |
4580 | if (track->pid > l->max_pid) | |
4581 | l->max_pid = track->pid; | |
4582 | ||
174596a0 RR |
4583 | cpumask_set_cpu(track->cpu, |
4584 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4585 | } |
4586 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4587 | return 1; |
4588 | } | |
4589 | ||
45edfa58 | 4590 | if (track->addr < caddr) |
88a420e4 CL |
4591 | end = pos; |
4592 | else | |
4593 | start = pos; | |
4594 | } | |
4595 | ||
4596 | /* | |
672bba3a | 4597 | * Not found. Insert new tracking element. |
88a420e4 | 4598 | */ |
68dff6a9 | 4599 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4600 | return 0; |
4601 | ||
4602 | l = t->loc + pos; | |
4603 | if (pos < t->count) | |
4604 | memmove(l + 1, l, | |
4605 | (t->count - pos) * sizeof(struct location)); | |
4606 | t->count++; | |
4607 | l->count = 1; | |
45edfa58 CL |
4608 | l->addr = track->addr; |
4609 | l->sum_time = age; | |
4610 | l->min_time = age; | |
4611 | l->max_time = age; | |
4612 | l->min_pid = track->pid; | |
4613 | l->max_pid = track->pid; | |
174596a0 RR |
4614 | cpumask_clear(to_cpumask(l->cpus)); |
4615 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4616 | nodes_clear(l->nodes); |
4617 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4618 | return 1; |
4619 | } | |
4620 | ||
4621 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
90e9f6a6 | 4622 | struct page *page, enum track_item alloc) |
88a420e4 | 4623 | { |
a973e9dd | 4624 | void *addr = page_address(page); |
88a420e4 | 4625 | void *p; |
90e9f6a6 | 4626 | unsigned long *map; |
88a420e4 | 4627 | |
90e9f6a6 | 4628 | map = get_map(s, page); |
224a88be | 4629 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4630 | if (!test_bit(slab_index(p, s, addr), map)) |
4631 | add_location(t, s, get_track(s, p, alloc)); | |
90e9f6a6 | 4632 | put_map(map); |
88a420e4 CL |
4633 | } |
4634 | ||
4635 | static int list_locations(struct kmem_cache *s, char *buf, | |
4636 | enum track_item alloc) | |
4637 | { | |
e374d483 | 4638 | int len = 0; |
88a420e4 | 4639 | unsigned long i; |
68dff6a9 | 4640 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4641 | int node; |
fa45dc25 | 4642 | struct kmem_cache_node *n; |
88a420e4 | 4643 | |
90e9f6a6 YZ |
4644 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4645 | GFP_KERNEL)) { | |
68dff6a9 | 4646 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4647 | } |
88a420e4 CL |
4648 | /* Push back cpu slabs */ |
4649 | flush_all(s); | |
4650 | ||
fa45dc25 | 4651 | for_each_kmem_cache_node(s, node, n) { |
88a420e4 CL |
4652 | unsigned long flags; |
4653 | struct page *page; | |
4654 | ||
9e86943b | 4655 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4656 | continue; |
4657 | ||
4658 | spin_lock_irqsave(&n->list_lock, flags); | |
916ac052 | 4659 | list_for_each_entry(page, &n->partial, slab_list) |
90e9f6a6 | 4660 | process_slab(&t, s, page, alloc); |
916ac052 | 4661 | list_for_each_entry(page, &n->full, slab_list) |
90e9f6a6 | 4662 | process_slab(&t, s, page, alloc); |
88a420e4 CL |
4663 | spin_unlock_irqrestore(&n->list_lock, flags); |
4664 | } | |
4665 | ||
4666 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4667 | struct location *l = &t.loc[i]; |
88a420e4 | 4668 | |
9c246247 | 4669 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4670 | break; |
e374d483 | 4671 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4672 | |
4673 | if (l->addr) | |
62c70bce | 4674 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4675 | else |
e374d483 | 4676 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4677 | |
4678 | if (l->sum_time != l->min_time) { | |
e374d483 | 4679 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4680 | l->min_time, |
4681 | (long)div_u64(l->sum_time, l->count), | |
4682 | l->max_time); | |
45edfa58 | 4683 | } else |
e374d483 | 4684 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4685 | l->min_time); |
4686 | ||
4687 | if (l->min_pid != l->max_pid) | |
e374d483 | 4688 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4689 | l->min_pid, l->max_pid); |
4690 | else | |
e374d483 | 4691 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4692 | l->min_pid); |
4693 | ||
174596a0 RR |
4694 | if (num_online_cpus() > 1 && |
4695 | !cpumask_empty(to_cpumask(l->cpus)) && | |
5024c1d7 TH |
4696 | len < PAGE_SIZE - 60) |
4697 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4698 | " cpus=%*pbl", | |
4699 | cpumask_pr_args(to_cpumask(l->cpus))); | |
45edfa58 | 4700 | |
62bc62a8 | 4701 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
5024c1d7 TH |
4702 | len < PAGE_SIZE - 60) |
4703 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | |
4704 | " nodes=%*pbl", | |
4705 | nodemask_pr_args(&l->nodes)); | |
45edfa58 | 4706 | |
e374d483 | 4707 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4708 | } |
4709 | ||
4710 | free_loc_track(&t); | |
4711 | if (!t.count) | |
e374d483 HH |
4712 | len += sprintf(buf, "No data\n"); |
4713 | return len; | |
88a420e4 | 4714 | } |
6dfd1b65 | 4715 | #endif /* CONFIG_SLUB_DEBUG */ |
88a420e4 | 4716 | |
a5a84755 | 4717 | #ifdef SLUB_RESILIENCY_TEST |
c07b8183 | 4718 | static void __init resiliency_test(void) |
a5a84755 CL |
4719 | { |
4720 | u8 *p; | |
cc252eae | 4721 | int type = KMALLOC_NORMAL; |
a5a84755 | 4722 | |
95a05b42 | 4723 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 | 4724 | |
f9f58285 FF |
4725 | pr_err("SLUB resiliency testing\n"); |
4726 | pr_err("-----------------------\n"); | |
4727 | pr_err("A. Corruption after allocation\n"); | |
a5a84755 CL |
4728 | |
4729 | p = kzalloc(16, GFP_KERNEL); | |
4730 | p[16] = 0x12; | |
f9f58285 FF |
4731 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
4732 | p + 16); | |
a5a84755 | 4733 | |
cc252eae | 4734 | validate_slab_cache(kmalloc_caches[type][4]); |
a5a84755 CL |
4735 | |
4736 | /* Hmmm... The next two are dangerous */ | |
4737 | p = kzalloc(32, GFP_KERNEL); | |
4738 | p[32 + sizeof(void *)] = 0x34; | |
f9f58285 FF |
4739 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
4740 | p); | |
4741 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
a5a84755 | 4742 | |
cc252eae | 4743 | validate_slab_cache(kmalloc_caches[type][5]); |
a5a84755 CL |
4744 | p = kzalloc(64, GFP_KERNEL); |
4745 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4746 | *p = 0x56; | |
f9f58285 FF |
4747 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4748 | p); | |
4749 | pr_err("If allocated object is overwritten then not detectable\n\n"); | |
cc252eae | 4750 | validate_slab_cache(kmalloc_caches[type][6]); |
a5a84755 | 4751 | |
f9f58285 | 4752 | pr_err("\nB. Corruption after free\n"); |
a5a84755 CL |
4753 | p = kzalloc(128, GFP_KERNEL); |
4754 | kfree(p); | |
4755 | *p = 0x78; | |
f9f58285 | 4756 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
cc252eae | 4757 | validate_slab_cache(kmalloc_caches[type][7]); |
a5a84755 CL |
4758 | |
4759 | p = kzalloc(256, GFP_KERNEL); | |
4760 | kfree(p); | |
4761 | p[50] = 0x9a; | |
f9f58285 | 4762 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
cc252eae | 4763 | validate_slab_cache(kmalloc_caches[type][8]); |
a5a84755 CL |
4764 | |
4765 | p = kzalloc(512, GFP_KERNEL); | |
4766 | kfree(p); | |
4767 | p[512] = 0xab; | |
f9f58285 | 4768 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
cc252eae | 4769 | validate_slab_cache(kmalloc_caches[type][9]); |
a5a84755 CL |
4770 | } |
4771 | #else | |
4772 | #ifdef CONFIG_SYSFS | |
4773 | static void resiliency_test(void) {}; | |
4774 | #endif | |
6dfd1b65 | 4775 | #endif /* SLUB_RESILIENCY_TEST */ |
a5a84755 | 4776 | |
ab4d5ed5 | 4777 | #ifdef CONFIG_SYSFS |
81819f0f | 4778 | enum slab_stat_type { |
205ab99d CL |
4779 | SL_ALL, /* All slabs */ |
4780 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4781 | SL_CPU, /* Only slabs used for cpu caches */ | |
4782 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4783 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4784 | }; |
4785 | ||
205ab99d | 4786 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4787 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4788 | #define SO_CPU (1 << SL_CPU) | |
4789 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4790 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4791 | |
1663f26d TH |
4792 | #ifdef CONFIG_MEMCG |
4793 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | |
4794 | ||
4795 | static int __init setup_slub_memcg_sysfs(char *str) | |
4796 | { | |
4797 | int v; | |
4798 | ||
4799 | if (get_option(&str, &v) > 0) | |
4800 | memcg_sysfs_enabled = v; | |
4801 | ||
4802 | return 1; | |
4803 | } | |
4804 | ||
4805 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | |
4806 | #endif | |
4807 | ||
62e5c4b4 CG |
4808 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4809 | char *buf, unsigned long flags) | |
81819f0f CL |
4810 | { |
4811 | unsigned long total = 0; | |
81819f0f CL |
4812 | int node; |
4813 | int x; | |
4814 | unsigned long *nodes; | |
81819f0f | 4815 | |
6396bb22 | 4816 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); |
62e5c4b4 CG |
4817 | if (!nodes) |
4818 | return -ENOMEM; | |
81819f0f | 4819 | |
205ab99d CL |
4820 | if (flags & SO_CPU) { |
4821 | int cpu; | |
81819f0f | 4822 | |
205ab99d | 4823 | for_each_possible_cpu(cpu) { |
d0e0ac97 CG |
4824 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
4825 | cpu); | |
ec3ab083 | 4826 | int node; |
49e22585 | 4827 | struct page *page; |
dfb4f096 | 4828 | |
4db0c3c2 | 4829 | page = READ_ONCE(c->page); |
ec3ab083 CL |
4830 | if (!page) |
4831 | continue; | |
205ab99d | 4832 | |
ec3ab083 CL |
4833 | node = page_to_nid(page); |
4834 | if (flags & SO_TOTAL) | |
4835 | x = page->objects; | |
4836 | else if (flags & SO_OBJECTS) | |
4837 | x = page->inuse; | |
4838 | else | |
4839 | x = 1; | |
49e22585 | 4840 | |
ec3ab083 CL |
4841 | total += x; |
4842 | nodes[node] += x; | |
4843 | ||
a93cf07b | 4844 | page = slub_percpu_partial_read_once(c); |
49e22585 | 4845 | if (page) { |
8afb1474 LZ |
4846 | node = page_to_nid(page); |
4847 | if (flags & SO_TOTAL) | |
4848 | WARN_ON_ONCE(1); | |
4849 | else if (flags & SO_OBJECTS) | |
4850 | WARN_ON_ONCE(1); | |
4851 | else | |
4852 | x = page->pages; | |
bc6697d8 ED |
4853 | total += x; |
4854 | nodes[node] += x; | |
49e22585 | 4855 | } |
81819f0f CL |
4856 | } |
4857 | } | |
4858 | ||
e4f8e513 QC |
4859 | /* |
4860 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
4861 | * already held which will conflict with an existing lock order: | |
4862 | * | |
4863 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
4864 | * | |
4865 | * We don't really need mem_hotplug_lock (to hold off | |
4866 | * slab_mem_going_offline_callback) here because slab's memory hot | |
4867 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
4868 | */ | |
4869 | ||
ab4d5ed5 | 4870 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d | 4871 | if (flags & SO_ALL) { |
fa45dc25 CL |
4872 | struct kmem_cache_node *n; |
4873 | ||
4874 | for_each_kmem_cache_node(s, node, n) { | |
205ab99d | 4875 | |
d0e0ac97 CG |
4876 | if (flags & SO_TOTAL) |
4877 | x = atomic_long_read(&n->total_objects); | |
4878 | else if (flags & SO_OBJECTS) | |
4879 | x = atomic_long_read(&n->total_objects) - | |
4880 | count_partial(n, count_free); | |
81819f0f | 4881 | else |
205ab99d | 4882 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4883 | total += x; |
4884 | nodes[node] += x; | |
4885 | } | |
4886 | ||
ab4d5ed5 CL |
4887 | } else |
4888 | #endif | |
4889 | if (flags & SO_PARTIAL) { | |
fa45dc25 | 4890 | struct kmem_cache_node *n; |
81819f0f | 4891 | |
fa45dc25 | 4892 | for_each_kmem_cache_node(s, node, n) { |
205ab99d CL |
4893 | if (flags & SO_TOTAL) |
4894 | x = count_partial(n, count_total); | |
4895 | else if (flags & SO_OBJECTS) | |
4896 | x = count_partial(n, count_inuse); | |
81819f0f | 4897 | else |
205ab99d | 4898 | x = n->nr_partial; |
81819f0f CL |
4899 | total += x; |
4900 | nodes[node] += x; | |
4901 | } | |
4902 | } | |
81819f0f CL |
4903 | x = sprintf(buf, "%lu", total); |
4904 | #ifdef CONFIG_NUMA | |
fa45dc25 | 4905 | for (node = 0; node < nr_node_ids; node++) |
81819f0f CL |
4906 | if (nodes[node]) |
4907 | x += sprintf(buf + x, " N%d=%lu", | |
4908 | node, nodes[node]); | |
4909 | #endif | |
4910 | kfree(nodes); | |
4911 | return x + sprintf(buf + x, "\n"); | |
4912 | } | |
4913 | ||
ab4d5ed5 | 4914 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4915 | static int any_slab_objects(struct kmem_cache *s) |
4916 | { | |
4917 | int node; | |
fa45dc25 | 4918 | struct kmem_cache_node *n; |
81819f0f | 4919 | |
fa45dc25 | 4920 | for_each_kmem_cache_node(s, node, n) |
4ea33e2d | 4921 | if (atomic_long_read(&n->total_objects)) |
81819f0f | 4922 | return 1; |
fa45dc25 | 4923 | |
81819f0f CL |
4924 | return 0; |
4925 | } | |
ab4d5ed5 | 4926 | #endif |
81819f0f CL |
4927 | |
4928 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4929 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4930 | |
4931 | struct slab_attribute { | |
4932 | struct attribute attr; | |
4933 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4934 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4935 | }; | |
4936 | ||
4937 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4938 | static struct slab_attribute _name##_attr = \ |
4939 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4940 | |
4941 | #define SLAB_ATTR(_name) \ | |
4942 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4943 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4944 | |
81819f0f CL |
4945 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4946 | { | |
44065b2e | 4947 | return sprintf(buf, "%u\n", s->size); |
81819f0f CL |
4948 | } |
4949 | SLAB_ATTR_RO(slab_size); | |
4950 | ||
4951 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4952 | { | |
3a3791ec | 4953 | return sprintf(buf, "%u\n", s->align); |
81819f0f CL |
4954 | } |
4955 | SLAB_ATTR_RO(align); | |
4956 | ||
4957 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4958 | { | |
1b473f29 | 4959 | return sprintf(buf, "%u\n", s->object_size); |
81819f0f CL |
4960 | } |
4961 | SLAB_ATTR_RO(object_size); | |
4962 | ||
4963 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4964 | { | |
19af27af | 4965 | return sprintf(buf, "%u\n", oo_objects(s->oo)); |
81819f0f CL |
4966 | } |
4967 | SLAB_ATTR_RO(objs_per_slab); | |
4968 | ||
06b285dc CL |
4969 | static ssize_t order_store(struct kmem_cache *s, |
4970 | const char *buf, size_t length) | |
4971 | { | |
19af27af | 4972 | unsigned int order; |
0121c619 CL |
4973 | int err; |
4974 | ||
19af27af | 4975 | err = kstrtouint(buf, 10, &order); |
0121c619 CL |
4976 | if (err) |
4977 | return err; | |
06b285dc CL |
4978 | |
4979 | if (order > slub_max_order || order < slub_min_order) | |
4980 | return -EINVAL; | |
4981 | ||
4982 | calculate_sizes(s, order); | |
4983 | return length; | |
4984 | } | |
4985 | ||
81819f0f CL |
4986 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4987 | { | |
19af27af | 4988 | return sprintf(buf, "%u\n", oo_order(s->oo)); |
81819f0f | 4989 | } |
06b285dc | 4990 | SLAB_ATTR(order); |
81819f0f | 4991 | |
73d342b1 DR |
4992 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4993 | { | |
4994 | return sprintf(buf, "%lu\n", s->min_partial); | |
4995 | } | |
4996 | ||
4997 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4998 | size_t length) | |
4999 | { | |
5000 | unsigned long min; | |
5001 | int err; | |
5002 | ||
3dbb95f7 | 5003 | err = kstrtoul(buf, 10, &min); |
73d342b1 DR |
5004 | if (err) |
5005 | return err; | |
5006 | ||
c0bdb232 | 5007 | set_min_partial(s, min); |
73d342b1 DR |
5008 | return length; |
5009 | } | |
5010 | SLAB_ATTR(min_partial); | |
5011 | ||
49e22585 CL |
5012 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
5013 | { | |
e6d0e1dc | 5014 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
49e22585 CL |
5015 | } |
5016 | ||
5017 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
5018 | size_t length) | |
5019 | { | |
e5d9998f | 5020 | unsigned int objects; |
49e22585 CL |
5021 | int err; |
5022 | ||
e5d9998f | 5023 | err = kstrtouint(buf, 10, &objects); |
49e22585 CL |
5024 | if (err) |
5025 | return err; | |
345c905d | 5026 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 5027 | return -EINVAL; |
49e22585 | 5028 | |
e6d0e1dc | 5029 | slub_set_cpu_partial(s, objects); |
49e22585 CL |
5030 | flush_all(s); |
5031 | return length; | |
5032 | } | |
5033 | SLAB_ATTR(cpu_partial); | |
5034 | ||
81819f0f CL |
5035 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
5036 | { | |
62c70bce JP |
5037 | if (!s->ctor) |
5038 | return 0; | |
5039 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
5040 | } |
5041 | SLAB_ATTR_RO(ctor); | |
5042 | ||
81819f0f CL |
5043 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
5044 | { | |
4307c14f | 5045 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
81819f0f CL |
5046 | } |
5047 | SLAB_ATTR_RO(aliases); | |
5048 | ||
81819f0f CL |
5049 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
5050 | { | |
d9acf4b7 | 5051 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
5052 | } |
5053 | SLAB_ATTR_RO(partial); | |
5054 | ||
5055 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
5056 | { | |
d9acf4b7 | 5057 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
5058 | } |
5059 | SLAB_ATTR_RO(cpu_slabs); | |
5060 | ||
5061 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
5062 | { | |
205ab99d | 5063 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
5064 | } |
5065 | SLAB_ATTR_RO(objects); | |
5066 | ||
205ab99d CL |
5067 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
5068 | { | |
5069 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
5070 | } | |
5071 | SLAB_ATTR_RO(objects_partial); | |
5072 | ||
49e22585 CL |
5073 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
5074 | { | |
5075 | int objects = 0; | |
5076 | int pages = 0; | |
5077 | int cpu; | |
5078 | int len; | |
5079 | ||
5080 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5081 | struct page *page; |
5082 | ||
5083 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5084 | |
5085 | if (page) { | |
5086 | pages += page->pages; | |
5087 | objects += page->pobjects; | |
5088 | } | |
5089 | } | |
5090 | ||
5091 | len = sprintf(buf, "%d(%d)", objects, pages); | |
5092 | ||
5093 | #ifdef CONFIG_SMP | |
5094 | for_each_online_cpu(cpu) { | |
a93cf07b WY |
5095 | struct page *page; |
5096 | ||
5097 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
49e22585 CL |
5098 | |
5099 | if (page && len < PAGE_SIZE - 20) | |
5100 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
5101 | page->pobjects, page->pages); | |
5102 | } | |
5103 | #endif | |
5104 | return len + sprintf(buf + len, "\n"); | |
5105 | } | |
5106 | SLAB_ATTR_RO(slabs_cpu_partial); | |
5107 | ||
a5a84755 CL |
5108 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
5109 | { | |
5110 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
5111 | } | |
5112 | ||
5113 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
5114 | const char *buf, size_t length) | |
5115 | { | |
5116 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
5117 | if (buf[0] == '1') | |
5118 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
5119 | return length; | |
5120 | } | |
5121 | SLAB_ATTR(reclaim_account); | |
5122 | ||
5123 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
5124 | { | |
5125 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
5126 | } | |
5127 | SLAB_ATTR_RO(hwcache_align); | |
5128 | ||
5129 | #ifdef CONFIG_ZONE_DMA | |
5130 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
5131 | { | |
5132 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
5133 | } | |
5134 | SLAB_ATTR_RO(cache_dma); | |
5135 | #endif | |
5136 | ||
8eb8284b DW |
5137 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) |
5138 | { | |
7bbdb81e | 5139 | return sprintf(buf, "%u\n", s->usersize); |
8eb8284b DW |
5140 | } |
5141 | SLAB_ATTR_RO(usersize); | |
5142 | ||
a5a84755 CL |
5143 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
5144 | { | |
5f0d5a3a | 5145 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
a5a84755 CL |
5146 | } |
5147 | SLAB_ATTR_RO(destroy_by_rcu); | |
5148 | ||
ab4d5ed5 | 5149 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5150 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
5151 | { | |
5152 | return show_slab_objects(s, buf, SO_ALL); | |
5153 | } | |
5154 | SLAB_ATTR_RO(slabs); | |
5155 | ||
205ab99d CL |
5156 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
5157 | { | |
5158 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
5159 | } | |
5160 | SLAB_ATTR_RO(total_objects); | |
5161 | ||
81819f0f CL |
5162 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
5163 | { | |
becfda68 | 5164 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
81819f0f CL |
5165 | } |
5166 | ||
5167 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
5168 | const char *buf, size_t length) | |
5169 | { | |
becfda68 | 5170 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
b789ef51 CL |
5171 | if (buf[0] == '1') { |
5172 | s->flags &= ~__CMPXCHG_DOUBLE; | |
becfda68 | 5173 | s->flags |= SLAB_CONSISTENCY_CHECKS; |
b789ef51 | 5174 | } |
81819f0f CL |
5175 | return length; |
5176 | } | |
5177 | SLAB_ATTR(sanity_checks); | |
5178 | ||
5179 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
5180 | { | |
5181 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
5182 | } | |
5183 | ||
5184 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
5185 | size_t length) | |
5186 | { | |
c9e16131 CL |
5187 | /* |
5188 | * Tracing a merged cache is going to give confusing results | |
5189 | * as well as cause other issues like converting a mergeable | |
5190 | * cache into an umergeable one. | |
5191 | */ | |
5192 | if (s->refcount > 1) | |
5193 | return -EINVAL; | |
5194 | ||
81819f0f | 5195 | s->flags &= ~SLAB_TRACE; |
b789ef51 CL |
5196 | if (buf[0] == '1') { |
5197 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5198 | s->flags |= SLAB_TRACE; |
b789ef51 | 5199 | } |
81819f0f CL |
5200 | return length; |
5201 | } | |
5202 | SLAB_ATTR(trace); | |
5203 | ||
81819f0f CL |
5204 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
5205 | { | |
5206 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
5207 | } | |
5208 | ||
5209 | static ssize_t red_zone_store(struct kmem_cache *s, | |
5210 | const char *buf, size_t length) | |
5211 | { | |
5212 | if (any_slab_objects(s)) | |
5213 | return -EBUSY; | |
5214 | ||
5215 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 | 5216 | if (buf[0] == '1') { |
81819f0f | 5217 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 5218 | } |
06b285dc | 5219 | calculate_sizes(s, -1); |
81819f0f CL |
5220 | return length; |
5221 | } | |
5222 | SLAB_ATTR(red_zone); | |
5223 | ||
5224 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
5225 | { | |
5226 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
5227 | } | |
5228 | ||
5229 | static ssize_t poison_store(struct kmem_cache *s, | |
5230 | const char *buf, size_t length) | |
5231 | { | |
5232 | if (any_slab_objects(s)) | |
5233 | return -EBUSY; | |
5234 | ||
5235 | s->flags &= ~SLAB_POISON; | |
b789ef51 | 5236 | if (buf[0] == '1') { |
81819f0f | 5237 | s->flags |= SLAB_POISON; |
b789ef51 | 5238 | } |
06b285dc | 5239 | calculate_sizes(s, -1); |
81819f0f CL |
5240 | return length; |
5241 | } | |
5242 | SLAB_ATTR(poison); | |
5243 | ||
5244 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
5245 | { | |
5246 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
5247 | } | |
5248 | ||
5249 | static ssize_t store_user_store(struct kmem_cache *s, | |
5250 | const char *buf, size_t length) | |
5251 | { | |
5252 | if (any_slab_objects(s)) | |
5253 | return -EBUSY; | |
5254 | ||
5255 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
5256 | if (buf[0] == '1') { |
5257 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 5258 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 5259 | } |
06b285dc | 5260 | calculate_sizes(s, -1); |
81819f0f CL |
5261 | return length; |
5262 | } | |
5263 | SLAB_ATTR(store_user); | |
5264 | ||
53e15af0 CL |
5265 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
5266 | { | |
5267 | return 0; | |
5268 | } | |
5269 | ||
5270 | static ssize_t validate_store(struct kmem_cache *s, | |
5271 | const char *buf, size_t length) | |
5272 | { | |
434e245d CL |
5273 | int ret = -EINVAL; |
5274 | ||
5275 | if (buf[0] == '1') { | |
5276 | ret = validate_slab_cache(s); | |
5277 | if (ret >= 0) | |
5278 | ret = length; | |
5279 | } | |
5280 | return ret; | |
53e15af0 CL |
5281 | } |
5282 | SLAB_ATTR(validate); | |
a5a84755 CL |
5283 | |
5284 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
5285 | { | |
5286 | if (!(s->flags & SLAB_STORE_USER)) | |
5287 | return -ENOSYS; | |
5288 | return list_locations(s, buf, TRACK_ALLOC); | |
5289 | } | |
5290 | SLAB_ATTR_RO(alloc_calls); | |
5291 | ||
5292 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
5293 | { | |
5294 | if (!(s->flags & SLAB_STORE_USER)) | |
5295 | return -ENOSYS; | |
5296 | return list_locations(s, buf, TRACK_FREE); | |
5297 | } | |
5298 | SLAB_ATTR_RO(free_calls); | |
5299 | #endif /* CONFIG_SLUB_DEBUG */ | |
5300 | ||
5301 | #ifdef CONFIG_FAILSLAB | |
5302 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
5303 | { | |
5304 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
5305 | } | |
5306 | ||
5307 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
5308 | size_t length) | |
5309 | { | |
c9e16131 CL |
5310 | if (s->refcount > 1) |
5311 | return -EINVAL; | |
5312 | ||
a5a84755 CL |
5313 | s->flags &= ~SLAB_FAILSLAB; |
5314 | if (buf[0] == '1') | |
5315 | s->flags |= SLAB_FAILSLAB; | |
5316 | return length; | |
5317 | } | |
5318 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 5319 | #endif |
53e15af0 | 5320 | |
2086d26a CL |
5321 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
5322 | { | |
5323 | return 0; | |
5324 | } | |
5325 | ||
5326 | static ssize_t shrink_store(struct kmem_cache *s, | |
5327 | const char *buf, size_t length) | |
5328 | { | |
832f37f5 | 5329 | if (buf[0] == '1') |
04f768a3 | 5330 | kmem_cache_shrink_all(s); |
832f37f5 | 5331 | else |
2086d26a CL |
5332 | return -EINVAL; |
5333 | return length; | |
5334 | } | |
5335 | SLAB_ATTR(shrink); | |
5336 | ||
81819f0f | 5337 | #ifdef CONFIG_NUMA |
9824601e | 5338 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 5339 | { |
eb7235eb | 5340 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
5341 | } |
5342 | ||
9824601e | 5343 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
5344 | const char *buf, size_t length) |
5345 | { | |
eb7235eb | 5346 | unsigned int ratio; |
0121c619 CL |
5347 | int err; |
5348 | ||
eb7235eb | 5349 | err = kstrtouint(buf, 10, &ratio); |
0121c619 CL |
5350 | if (err) |
5351 | return err; | |
eb7235eb AD |
5352 | if (ratio > 100) |
5353 | return -ERANGE; | |
0121c619 | 5354 | |
eb7235eb | 5355 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 5356 | |
81819f0f CL |
5357 | return length; |
5358 | } | |
9824601e | 5359 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
5360 | #endif |
5361 | ||
8ff12cfc | 5362 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
5363 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
5364 | { | |
5365 | unsigned long sum = 0; | |
5366 | int cpu; | |
5367 | int len; | |
6da2ec56 | 5368 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); |
8ff12cfc CL |
5369 | |
5370 | if (!data) | |
5371 | return -ENOMEM; | |
5372 | ||
5373 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 5374 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
5375 | |
5376 | data[cpu] = x; | |
5377 | sum += x; | |
5378 | } | |
5379 | ||
5380 | len = sprintf(buf, "%lu", sum); | |
5381 | ||
50ef37b9 | 5382 | #ifdef CONFIG_SMP |
8ff12cfc CL |
5383 | for_each_online_cpu(cpu) { |
5384 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 5385 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 5386 | } |
50ef37b9 | 5387 | #endif |
8ff12cfc CL |
5388 | kfree(data); |
5389 | return len + sprintf(buf + len, "\n"); | |
5390 | } | |
5391 | ||
78eb00cc DR |
5392 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
5393 | { | |
5394 | int cpu; | |
5395 | ||
5396 | for_each_online_cpu(cpu) | |
9dfc6e68 | 5397 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
5398 | } |
5399 | ||
8ff12cfc CL |
5400 | #define STAT_ATTR(si, text) \ |
5401 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
5402 | { \ | |
5403 | return show_stat(s, buf, si); \ | |
5404 | } \ | |
78eb00cc DR |
5405 | static ssize_t text##_store(struct kmem_cache *s, \ |
5406 | const char *buf, size_t length) \ | |
5407 | { \ | |
5408 | if (buf[0] != '0') \ | |
5409 | return -EINVAL; \ | |
5410 | clear_stat(s, si); \ | |
5411 | return length; \ | |
5412 | } \ | |
5413 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
5414 | |
5415 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
5416 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
5417 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
5418 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
5419 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
5420 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
5421 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
5422 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
5423 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
5424 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 5425 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
5426 | STAT_ATTR(FREE_SLAB, free_slab); |
5427 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
5428 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
5429 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
5430 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
5431 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
5432 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 5433 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 5434 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
5435 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
5436 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
5437 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
5438 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
5439 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5440 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
6dfd1b65 | 5441 | #endif /* CONFIG_SLUB_STATS */ |
8ff12cfc | 5442 | |
06428780 | 5443 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
5444 | &slab_size_attr.attr, |
5445 | &object_size_attr.attr, | |
5446 | &objs_per_slab_attr.attr, | |
5447 | &order_attr.attr, | |
73d342b1 | 5448 | &min_partial_attr.attr, |
49e22585 | 5449 | &cpu_partial_attr.attr, |
81819f0f | 5450 | &objects_attr.attr, |
205ab99d | 5451 | &objects_partial_attr.attr, |
81819f0f CL |
5452 | &partial_attr.attr, |
5453 | &cpu_slabs_attr.attr, | |
5454 | &ctor_attr.attr, | |
81819f0f CL |
5455 | &aliases_attr.attr, |
5456 | &align_attr.attr, | |
81819f0f CL |
5457 | &hwcache_align_attr.attr, |
5458 | &reclaim_account_attr.attr, | |
5459 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 5460 | &shrink_attr.attr, |
49e22585 | 5461 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 5462 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
5463 | &total_objects_attr.attr, |
5464 | &slabs_attr.attr, | |
5465 | &sanity_checks_attr.attr, | |
5466 | &trace_attr.attr, | |
81819f0f CL |
5467 | &red_zone_attr.attr, |
5468 | &poison_attr.attr, | |
5469 | &store_user_attr.attr, | |
53e15af0 | 5470 | &validate_attr.attr, |
88a420e4 CL |
5471 | &alloc_calls_attr.attr, |
5472 | &free_calls_attr.attr, | |
ab4d5ed5 | 5473 | #endif |
81819f0f CL |
5474 | #ifdef CONFIG_ZONE_DMA |
5475 | &cache_dma_attr.attr, | |
5476 | #endif | |
5477 | #ifdef CONFIG_NUMA | |
9824601e | 5478 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
5479 | #endif |
5480 | #ifdef CONFIG_SLUB_STATS | |
5481 | &alloc_fastpath_attr.attr, | |
5482 | &alloc_slowpath_attr.attr, | |
5483 | &free_fastpath_attr.attr, | |
5484 | &free_slowpath_attr.attr, | |
5485 | &free_frozen_attr.attr, | |
5486 | &free_add_partial_attr.attr, | |
5487 | &free_remove_partial_attr.attr, | |
5488 | &alloc_from_partial_attr.attr, | |
5489 | &alloc_slab_attr.attr, | |
5490 | &alloc_refill_attr.attr, | |
e36a2652 | 5491 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
5492 | &free_slab_attr.attr, |
5493 | &cpuslab_flush_attr.attr, | |
5494 | &deactivate_full_attr.attr, | |
5495 | &deactivate_empty_attr.attr, | |
5496 | &deactivate_to_head_attr.attr, | |
5497 | &deactivate_to_tail_attr.attr, | |
5498 | &deactivate_remote_frees_attr.attr, | |
03e404af | 5499 | &deactivate_bypass_attr.attr, |
65c3376a | 5500 | &order_fallback_attr.attr, |
b789ef51 CL |
5501 | &cmpxchg_double_fail_attr.attr, |
5502 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
5503 | &cpu_partial_alloc_attr.attr, |
5504 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
5505 | &cpu_partial_node_attr.attr, |
5506 | &cpu_partial_drain_attr.attr, | |
81819f0f | 5507 | #endif |
4c13dd3b DM |
5508 | #ifdef CONFIG_FAILSLAB |
5509 | &failslab_attr.attr, | |
5510 | #endif | |
8eb8284b | 5511 | &usersize_attr.attr, |
4c13dd3b | 5512 | |
81819f0f CL |
5513 | NULL |
5514 | }; | |
5515 | ||
1fdaaa23 | 5516 | static const struct attribute_group slab_attr_group = { |
81819f0f CL |
5517 | .attrs = slab_attrs, |
5518 | }; | |
5519 | ||
5520 | static ssize_t slab_attr_show(struct kobject *kobj, | |
5521 | struct attribute *attr, | |
5522 | char *buf) | |
5523 | { | |
5524 | struct slab_attribute *attribute; | |
5525 | struct kmem_cache *s; | |
5526 | int err; | |
5527 | ||
5528 | attribute = to_slab_attr(attr); | |
5529 | s = to_slab(kobj); | |
5530 | ||
5531 | if (!attribute->show) | |
5532 | return -EIO; | |
5533 | ||
5534 | err = attribute->show(s, buf); | |
5535 | ||
5536 | return err; | |
5537 | } | |
5538 | ||
5539 | static ssize_t slab_attr_store(struct kobject *kobj, | |
5540 | struct attribute *attr, | |
5541 | const char *buf, size_t len) | |
5542 | { | |
5543 | struct slab_attribute *attribute; | |
5544 | struct kmem_cache *s; | |
5545 | int err; | |
5546 | ||
5547 | attribute = to_slab_attr(attr); | |
5548 | s = to_slab(kobj); | |
5549 | ||
5550 | if (!attribute->store) | |
5551 | return -EIO; | |
5552 | ||
5553 | err = attribute->store(s, buf, len); | |
127424c8 | 5554 | #ifdef CONFIG_MEMCG |
107dab5c | 5555 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
426589f5 | 5556 | struct kmem_cache *c; |
81819f0f | 5557 | |
107dab5c GC |
5558 | mutex_lock(&slab_mutex); |
5559 | if (s->max_attr_size < len) | |
5560 | s->max_attr_size = len; | |
5561 | ||
ebe945c2 GC |
5562 | /* |
5563 | * This is a best effort propagation, so this function's return | |
5564 | * value will be determined by the parent cache only. This is | |
5565 | * basically because not all attributes will have a well | |
5566 | * defined semantics for rollbacks - most of the actions will | |
5567 | * have permanent effects. | |
5568 | * | |
5569 | * Returning the error value of any of the children that fail | |
5570 | * is not 100 % defined, in the sense that users seeing the | |
5571 | * error code won't be able to know anything about the state of | |
5572 | * the cache. | |
5573 | * | |
5574 | * Only returning the error code for the parent cache at least | |
5575 | * has well defined semantics. The cache being written to | |
5576 | * directly either failed or succeeded, in which case we loop | |
5577 | * through the descendants with best-effort propagation. | |
5578 | */ | |
426589f5 VD |
5579 | for_each_memcg_cache(c, s) |
5580 | attribute->store(c, buf, len); | |
107dab5c GC |
5581 | mutex_unlock(&slab_mutex); |
5582 | } | |
5583 | #endif | |
81819f0f CL |
5584 | return err; |
5585 | } | |
5586 | ||
107dab5c GC |
5587 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5588 | { | |
127424c8 | 5589 | #ifdef CONFIG_MEMCG |
107dab5c GC |
5590 | int i; |
5591 | char *buffer = NULL; | |
93030d83 | 5592 | struct kmem_cache *root_cache; |
107dab5c | 5593 | |
93030d83 | 5594 | if (is_root_cache(s)) |
107dab5c GC |
5595 | return; |
5596 | ||
f7ce3190 | 5597 | root_cache = s->memcg_params.root_cache; |
93030d83 | 5598 | |
107dab5c GC |
5599 | /* |
5600 | * This mean this cache had no attribute written. Therefore, no point | |
5601 | * in copying default values around | |
5602 | */ | |
93030d83 | 5603 | if (!root_cache->max_attr_size) |
107dab5c GC |
5604 | return; |
5605 | ||
5606 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5607 | char mbuf[64]; | |
5608 | char *buf; | |
5609 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
478fe303 | 5610 | ssize_t len; |
107dab5c GC |
5611 | |
5612 | if (!attr || !attr->store || !attr->show) | |
5613 | continue; | |
5614 | ||
5615 | /* | |
5616 | * It is really bad that we have to allocate here, so we will | |
5617 | * do it only as a fallback. If we actually allocate, though, | |
5618 | * we can just use the allocated buffer until the end. | |
5619 | * | |
5620 | * Most of the slub attributes will tend to be very small in | |
5621 | * size, but sysfs allows buffers up to a page, so they can | |
5622 | * theoretically happen. | |
5623 | */ | |
5624 | if (buffer) | |
5625 | buf = buffer; | |
93030d83 | 5626 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
107dab5c GC |
5627 | buf = mbuf; |
5628 | else { | |
5629 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5630 | if (WARN_ON(!buffer)) | |
5631 | continue; | |
5632 | buf = buffer; | |
5633 | } | |
5634 | ||
478fe303 TG |
5635 | len = attr->show(root_cache, buf); |
5636 | if (len > 0) | |
5637 | attr->store(s, buf, len); | |
107dab5c GC |
5638 | } |
5639 | ||
5640 | if (buffer) | |
5641 | free_page((unsigned long)buffer); | |
6dfd1b65 | 5642 | #endif /* CONFIG_MEMCG */ |
107dab5c GC |
5643 | } |
5644 | ||
41a21285 CL |
5645 | static void kmem_cache_release(struct kobject *k) |
5646 | { | |
5647 | slab_kmem_cache_release(to_slab(k)); | |
5648 | } | |
5649 | ||
52cf25d0 | 5650 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5651 | .show = slab_attr_show, |
5652 | .store = slab_attr_store, | |
5653 | }; | |
5654 | ||
5655 | static struct kobj_type slab_ktype = { | |
5656 | .sysfs_ops = &slab_sysfs_ops, | |
41a21285 | 5657 | .release = kmem_cache_release, |
81819f0f CL |
5658 | }; |
5659 | ||
5660 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5661 | { | |
5662 | struct kobj_type *ktype = get_ktype(kobj); | |
5663 | ||
5664 | if (ktype == &slab_ktype) | |
5665 | return 1; | |
5666 | return 0; | |
5667 | } | |
5668 | ||
9cd43611 | 5669 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5670 | .filter = uevent_filter, |
5671 | }; | |
5672 | ||
27c3a314 | 5673 | static struct kset *slab_kset; |
81819f0f | 5674 | |
9a41707b VD |
5675 | static inline struct kset *cache_kset(struct kmem_cache *s) |
5676 | { | |
127424c8 | 5677 | #ifdef CONFIG_MEMCG |
9a41707b | 5678 | if (!is_root_cache(s)) |
f7ce3190 | 5679 | return s->memcg_params.root_cache->memcg_kset; |
9a41707b VD |
5680 | #endif |
5681 | return slab_kset; | |
5682 | } | |
5683 | ||
81819f0f CL |
5684 | #define ID_STR_LENGTH 64 |
5685 | ||
5686 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5687 | * |
5688 | * Format :[flags-]size | |
81819f0f CL |
5689 | */ |
5690 | static char *create_unique_id(struct kmem_cache *s) | |
5691 | { | |
5692 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5693 | char *p = name; | |
5694 | ||
5695 | BUG_ON(!name); | |
5696 | ||
5697 | *p++ = ':'; | |
5698 | /* | |
5699 | * First flags affecting slabcache operations. We will only | |
5700 | * get here for aliasable slabs so we do not need to support | |
5701 | * too many flags. The flags here must cover all flags that | |
5702 | * are matched during merging to guarantee that the id is | |
5703 | * unique. | |
5704 | */ | |
5705 | if (s->flags & SLAB_CACHE_DMA) | |
5706 | *p++ = 'd'; | |
6d6ea1e9 NB |
5707 | if (s->flags & SLAB_CACHE_DMA32) |
5708 | *p++ = 'D'; | |
81819f0f CL |
5709 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5710 | *p++ = 'a'; | |
becfda68 | 5711 | if (s->flags & SLAB_CONSISTENCY_CHECKS) |
81819f0f | 5712 | *p++ = 'F'; |
230e9fc2 VD |
5713 | if (s->flags & SLAB_ACCOUNT) |
5714 | *p++ = 'A'; | |
81819f0f CL |
5715 | if (p != name + 1) |
5716 | *p++ = '-'; | |
44065b2e | 5717 | p += sprintf(p, "%07u", s->size); |
2633d7a0 | 5718 | |
81819f0f CL |
5719 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5720 | return name; | |
5721 | } | |
5722 | ||
3b7b3140 TH |
5723 | static void sysfs_slab_remove_workfn(struct work_struct *work) |
5724 | { | |
5725 | struct kmem_cache *s = | |
5726 | container_of(work, struct kmem_cache, kobj_remove_work); | |
5727 | ||
5728 | if (!s->kobj.state_in_sysfs) | |
5729 | /* | |
5730 | * For a memcg cache, this may be called during | |
5731 | * deactivation and again on shutdown. Remove only once. | |
5732 | * A cache is never shut down before deactivation is | |
5733 | * complete, so no need to worry about synchronization. | |
5734 | */ | |
f6ba4880 | 5735 | goto out; |
3b7b3140 TH |
5736 | |
5737 | #ifdef CONFIG_MEMCG | |
5738 | kset_unregister(s->memcg_kset); | |
5739 | #endif | |
5740 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
f6ba4880 | 5741 | out: |
3b7b3140 TH |
5742 | kobject_put(&s->kobj); |
5743 | } | |
5744 | ||
81819f0f CL |
5745 | static int sysfs_slab_add(struct kmem_cache *s) |
5746 | { | |
5747 | int err; | |
5748 | const char *name; | |
1663f26d | 5749 | struct kset *kset = cache_kset(s); |
45530c44 | 5750 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5751 | |
3b7b3140 TH |
5752 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
5753 | ||
1663f26d TH |
5754 | if (!kset) { |
5755 | kobject_init(&s->kobj, &slab_ktype); | |
5756 | return 0; | |
5757 | } | |
5758 | ||
11066386 MC |
5759 | if (!unmergeable && disable_higher_order_debug && |
5760 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
5761 | unmergeable = 1; | |
5762 | ||
81819f0f CL |
5763 | if (unmergeable) { |
5764 | /* | |
5765 | * Slabcache can never be merged so we can use the name proper. | |
5766 | * This is typically the case for debug situations. In that | |
5767 | * case we can catch duplicate names easily. | |
5768 | */ | |
27c3a314 | 5769 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5770 | name = s->name; |
5771 | } else { | |
5772 | /* | |
5773 | * Create a unique name for the slab as a target | |
5774 | * for the symlinks. | |
5775 | */ | |
5776 | name = create_unique_id(s); | |
5777 | } | |
5778 | ||
1663f26d | 5779 | s->kobj.kset = kset; |
26e4f205 | 5780 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
54b6a731 | 5781 | if (err) |
80da026a | 5782 | goto out; |
81819f0f CL |
5783 | |
5784 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
54b6a731 DJ |
5785 | if (err) |
5786 | goto out_del_kobj; | |
9a41707b | 5787 | |
127424c8 | 5788 | #ifdef CONFIG_MEMCG |
1663f26d | 5789 | if (is_root_cache(s) && memcg_sysfs_enabled) { |
9a41707b VD |
5790 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
5791 | if (!s->memcg_kset) { | |
54b6a731 DJ |
5792 | err = -ENOMEM; |
5793 | goto out_del_kobj; | |
9a41707b VD |
5794 | } |
5795 | } | |
5796 | #endif | |
5797 | ||
81819f0f CL |
5798 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5799 | if (!unmergeable) { | |
5800 | /* Setup first alias */ | |
5801 | sysfs_slab_alias(s, s->name); | |
81819f0f | 5802 | } |
54b6a731 DJ |
5803 | out: |
5804 | if (!unmergeable) | |
5805 | kfree(name); | |
5806 | return err; | |
5807 | out_del_kobj: | |
5808 | kobject_del(&s->kobj); | |
54b6a731 | 5809 | goto out; |
81819f0f CL |
5810 | } |
5811 | ||
bf5eb3de | 5812 | static void sysfs_slab_remove(struct kmem_cache *s) |
81819f0f | 5813 | { |
97d06609 | 5814 | if (slab_state < FULL) |
2bce6485 CL |
5815 | /* |
5816 | * Sysfs has not been setup yet so no need to remove the | |
5817 | * cache from sysfs. | |
5818 | */ | |
5819 | return; | |
5820 | ||
3b7b3140 TH |
5821 | kobject_get(&s->kobj); |
5822 | schedule_work(&s->kobj_remove_work); | |
bf5eb3de TH |
5823 | } |
5824 | ||
d50d82fa MP |
5825 | void sysfs_slab_unlink(struct kmem_cache *s) |
5826 | { | |
5827 | if (slab_state >= FULL) | |
5828 | kobject_del(&s->kobj); | |
5829 | } | |
5830 | ||
bf5eb3de TH |
5831 | void sysfs_slab_release(struct kmem_cache *s) |
5832 | { | |
5833 | if (slab_state >= FULL) | |
5834 | kobject_put(&s->kobj); | |
81819f0f CL |
5835 | } |
5836 | ||
5837 | /* | |
5838 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5839 | * available lest we lose that information. |
81819f0f CL |
5840 | */ |
5841 | struct saved_alias { | |
5842 | struct kmem_cache *s; | |
5843 | const char *name; | |
5844 | struct saved_alias *next; | |
5845 | }; | |
5846 | ||
5af328a5 | 5847 | static struct saved_alias *alias_list; |
81819f0f CL |
5848 | |
5849 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5850 | { | |
5851 | struct saved_alias *al; | |
5852 | ||
97d06609 | 5853 | if (slab_state == FULL) { |
81819f0f CL |
5854 | /* |
5855 | * If we have a leftover link then remove it. | |
5856 | */ | |
27c3a314 GKH |
5857 | sysfs_remove_link(&slab_kset->kobj, name); |
5858 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5859 | } |
5860 | ||
5861 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5862 | if (!al) | |
5863 | return -ENOMEM; | |
5864 | ||
5865 | al->s = s; | |
5866 | al->name = name; | |
5867 | al->next = alias_list; | |
5868 | alias_list = al; | |
5869 | return 0; | |
5870 | } | |
5871 | ||
5872 | static int __init slab_sysfs_init(void) | |
5873 | { | |
5b95a4ac | 5874 | struct kmem_cache *s; |
81819f0f CL |
5875 | int err; |
5876 | ||
18004c5d | 5877 | mutex_lock(&slab_mutex); |
2bce6485 | 5878 | |
0ff21e46 | 5879 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5880 | if (!slab_kset) { |
18004c5d | 5881 | mutex_unlock(&slab_mutex); |
f9f58285 | 5882 | pr_err("Cannot register slab subsystem.\n"); |
81819f0f CL |
5883 | return -ENOSYS; |
5884 | } | |
5885 | ||
97d06609 | 5886 | slab_state = FULL; |
26a7bd03 | 5887 | |
5b95a4ac | 5888 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5889 | err = sysfs_slab_add(s); |
5d540fb7 | 5890 | if (err) |
f9f58285 FF |
5891 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
5892 | s->name); | |
26a7bd03 | 5893 | } |
81819f0f CL |
5894 | |
5895 | while (alias_list) { | |
5896 | struct saved_alias *al = alias_list; | |
5897 | ||
5898 | alias_list = alias_list->next; | |
5899 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 | 5900 | if (err) |
f9f58285 FF |
5901 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
5902 | al->name); | |
81819f0f CL |
5903 | kfree(al); |
5904 | } | |
5905 | ||
18004c5d | 5906 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5907 | resiliency_test(); |
5908 | return 0; | |
5909 | } | |
5910 | ||
5911 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5912 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5913 | |
5914 | /* | |
5915 | * The /proc/slabinfo ABI | |
5916 | */ | |
5b365771 | 5917 | #ifdef CONFIG_SLUB_DEBUG |
0d7561c6 | 5918 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5919 | { |
57ed3eda | 5920 | unsigned long nr_slabs = 0; |
205ab99d CL |
5921 | unsigned long nr_objs = 0; |
5922 | unsigned long nr_free = 0; | |
57ed3eda | 5923 | int node; |
fa45dc25 | 5924 | struct kmem_cache_node *n; |
57ed3eda | 5925 | |
fa45dc25 | 5926 | for_each_kmem_cache_node(s, node, n) { |
c17fd13e WL |
5927 | nr_slabs += node_nr_slabs(n); |
5928 | nr_objs += node_nr_objs(n); | |
205ab99d | 5929 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5930 | } |
5931 | ||
0d7561c6 GC |
5932 | sinfo->active_objs = nr_objs - nr_free; |
5933 | sinfo->num_objs = nr_objs; | |
5934 | sinfo->active_slabs = nr_slabs; | |
5935 | sinfo->num_slabs = nr_slabs; | |
5936 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5937 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5938 | } |
5939 | ||
0d7561c6 | 5940 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5941 | { |
7b3c3a50 AD |
5942 | } |
5943 | ||
b7454ad3 GC |
5944 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5945 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5946 | { |
b7454ad3 | 5947 | return -EIO; |
7b3c3a50 | 5948 | } |
5b365771 | 5949 | #endif /* CONFIG_SLUB_DEBUG */ |