]> Git Repo - binutils.git/blame - gdb/mips-tdep.c
2003-05-08 Andrew Cagney <[email protected]>
[binutils.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin([email protected]) at CMU
7 and by Per Bothner([email protected]) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
c906108c
SS
45
46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
c906108c 50
dd824b04
DJ
51/* A useful bit in the CP0 status register (PS_REGNUM). */
52/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
53#define ST0_FR (1 << 26)
54
b0069a17
AC
55/* The sizes of floating point registers. */
56
57enum
58{
59 MIPS_FPU_SINGLE_REGSIZE = 4,
60 MIPS_FPU_DOUBLE_REGSIZE = 8
61};
62
0dadbba0 63
2e4ebe70
DJ
64static const char *mips_abi_string;
65
66static const char *mips_abi_strings[] = {
67 "auto",
68 "n32",
69 "o32",
28d169de 70 "n64",
2e4ebe70
DJ
71 "o64",
72 "eabi32",
73 "eabi64",
74 NULL
75};
76
cce74817 77struct frame_extra_info
c5aa993b
JM
78 {
79 mips_extra_func_info_t proc_desc;
80 int num_args;
81 };
cce74817 82
d929b26f
AC
83/* Various MIPS ISA options (related to stack analysis) can be
84 overridden dynamically. Establish an enum/array for managing
85 them. */
86
53904c9e
AC
87static const char size_auto[] = "auto";
88static const char size_32[] = "32";
89static const char size_64[] = "64";
d929b26f 90
53904c9e 91static const char *size_enums[] = {
d929b26f
AC
92 size_auto,
93 size_32,
94 size_64,
a5ea2558
AC
95 0
96};
97
7a292a7a
SS
98/* Some MIPS boards don't support floating point while others only
99 support single-precision floating-point operations. See also
100 FP_REGISTER_DOUBLE. */
c906108c
SS
101
102enum mips_fpu_type
c5aa993b
JM
103 {
104 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
105 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
106 MIPS_FPU_NONE /* No floating point. */
107 };
c906108c
SS
108
109#ifndef MIPS_DEFAULT_FPU_TYPE
110#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
111#endif
112static int mips_fpu_type_auto = 1;
113static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 114
9ace0497 115static int mips_debug = 0;
7a292a7a 116
c2d11a7d
JM
117/* MIPS specific per-architecture information */
118struct gdbarch_tdep
119 {
120 /* from the elf header */
121 int elf_flags;
70f80edf 122
c2d11a7d 123 /* mips options */
0dadbba0 124 enum mips_abi mips_abi;
2e4ebe70 125 enum mips_abi found_abi;
c2d11a7d
JM
126 enum mips_fpu_type mips_fpu_type;
127 int mips_last_arg_regnum;
128 int mips_last_fp_arg_regnum;
a5ea2558 129 int mips_default_saved_regsize;
c2d11a7d 130 int mips_fp_register_double;
d929b26f 131 int mips_default_stack_argsize;
5213ab06 132 int gdb_target_is_mips64;
4014092b 133 int default_mask_address_p;
c2d11a7d
JM
134 };
135
0dadbba0 136#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 137 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 138
c2d11a7d 139#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 140
c2d11a7d 141#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 142
c2d11a7d 143#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 144
d929b26f
AC
145/* Return the currently configured (or set) saved register size. */
146
a5ea2558 147#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 148
53904c9e 149static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
150
151#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
152
22540ece
AC
153/* Return the contents of register REGNUM as a signed integer. */
154
155static LONGEST
156read_signed_register (int regnum)
157{
158 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
159 deprecated_read_register_gen (regnum, buf);
160 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
161}
162
163static LONGEST
164read_signed_register_pid (int regnum, ptid_t ptid)
165{
166 ptid_t save_ptid;
167 LONGEST retval;
168
169 if (ptid_equal (ptid, inferior_ptid))
170 return read_signed_register (regnum);
171
172 save_ptid = inferior_ptid;
173
174 inferior_ptid = ptid;
175
176 retval = read_signed_register (regnum);
177
178 inferior_ptid = save_ptid;
179
180 return retval;
181}
182
d1973055
KB
183/* Return the MIPS ABI associated with GDBARCH. */
184enum mips_abi
185mips_abi (struct gdbarch *gdbarch)
186{
187 return gdbarch_tdep (gdbarch)->mips_abi;
188}
189
d929b26f 190static unsigned int
acdb74a0 191mips_saved_regsize (void)
d929b26f
AC
192{
193 if (mips_saved_regsize_string == size_auto)
194 return MIPS_DEFAULT_SAVED_REGSIZE;
195 else if (mips_saved_regsize_string == size_64)
196 return 8;
197 else /* if (mips_saved_regsize_string == size_32) */
198 return 4;
199}
200
71b8ef93 201/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
202 marks it as 16-bit function. The MSB of the minimal symbol's
203 "info" field is used for this purpose. This field is already
204 being used to store the symbol size, so the assumption is
205 that the symbol size cannot exceed 2^31.
206
207 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
208 i.e. refers to a 16-bit function, and sets a "special" bit in a
209 minimal symbol to mark it as a 16-bit function
210
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
212 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
213 the "info" field with the "special" bit masked out */
214
5a89d8aa
MS
215static void
216mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
217{
218 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
219 {
220 MSYMBOL_INFO (msym) = (char *)
221 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
222 SYMBOL_VALUE_ADDRESS (msym) |= 1;
223 }
224}
225
71b8ef93
MS
226static int
227msymbol_is_special (struct minimal_symbol *msym)
228{
229 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
230}
231
232static long
233msymbol_size (struct minimal_symbol *msym)
234{
235 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
236}
237
88658117
AC
238/* XFER a value from the big/little/left end of the register.
239 Depending on the size of the value it might occupy the entire
240 register or just part of it. Make an allowance for this, aligning
241 things accordingly. */
242
243static void
244mips_xfer_register (struct regcache *regcache, int reg_num, int length,
245 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
246 int buf_offset)
247{
d9d9c31f 248 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 249 int reg_offset = 0;
cb1d2653
AC
250 /* Need to transfer the left or right part of the register, based on
251 the targets byte order. */
88658117
AC
252 switch (endian)
253 {
254 case BFD_ENDIAN_BIG:
255 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
256 break;
257 case BFD_ENDIAN_LITTLE:
258 reg_offset = 0;
259 break;
260 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
261 reg_offset = 0;
262 break;
263 default:
264 internal_error (__FILE__, __LINE__, "bad switch");
265 }
266 if (mips_debug)
cb1d2653
AC
267 fprintf_unfiltered (gdb_stderr,
268 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
269 reg_num, reg_offset, buf_offset, length);
88658117
AC
270 if (mips_debug && out != NULL)
271 {
272 int i;
cb1d2653 273 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 274 for (i = 0; i < length; i++)
cb1d2653 275 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
276 }
277 if (in != NULL)
278 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
279 if (out != NULL)
280 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
281 if (mips_debug && in != NULL)
282 {
283 int i;
cb1d2653 284 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 285 for (i = 0; i < length; i++)
cb1d2653 286 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
287 }
288 if (mips_debug)
289 fprintf_unfiltered (gdb_stdlog, "\n");
290}
291
dd824b04
DJ
292/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
293 compatiblity mode. A return value of 1 means that we have
294 physical 64-bit registers, but should treat them as 32-bit registers. */
295
296static int
297mips2_fp_compat (void)
298{
299 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
300 meaningful. */
301 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
302 return 0;
303
304#if 0
305 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
306 in all the places we deal with FP registers. PR gdb/413. */
307 /* Otherwise check the FR bit in the status register - it controls
308 the FP compatiblity mode. If it is clear we are in compatibility
309 mode. */
310 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
311 return 1;
312#endif
361d1df0 313
dd824b04
DJ
314 return 0;
315}
316
c2d11a7d
JM
317/* Indicate that the ABI makes use of double-precision registers
318 provided by the FPU (rather than combining pairs of registers to
319 form double-precision values). Do not use "TARGET_IS_MIPS64" to
320 determine if the ABI is using double-precision registers. See also
321 MIPS_FPU_TYPE. */
c2d11a7d 322#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 323
d929b26f
AC
324/* The amount of space reserved on the stack for registers. This is
325 different to MIPS_SAVED_REGSIZE as it determines the alignment of
326 data allocated after the registers have run out. */
327
0dadbba0 328#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
329
330#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
331
53904c9e 332static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
333
334static unsigned int
335mips_stack_argsize (void)
336{
337 if (mips_stack_argsize_string == size_auto)
338 return MIPS_DEFAULT_STACK_ARGSIZE;
339 else if (mips_stack_argsize_string == size_64)
340 return 8;
341 else /* if (mips_stack_argsize_string == size_32) */
342 return 4;
343}
344
5213ab06 345#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 346
92e1c15c 347#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 348
7a292a7a 349#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 350
a14ed312 351int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 352
a14ed312 353static void mips_print_register (int, int);
c906108c 354
570b8f7c
AC
355static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
356 struct frame_info *, int);
c906108c 357
a14ed312 358static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 359
a14ed312 360static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 361
5a89d8aa 362static int mips_set_processor_type (char *);
c906108c 363
a14ed312 364static void mips_show_processor_type_command (char *, int);
c906108c 365
a14ed312 366static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 367
570b8f7c
AC
368static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
369 struct frame_info *next_frame,
370 int cur_frame);
c906108c 371
a14ed312
KB
372static CORE_ADDR after_prologue (CORE_ADDR pc,
373 mips_extra_func_info_t proc_desc);
c906108c 374
dd824b04
DJ
375static void mips_read_fp_register_single (int regno, char *rare_buffer);
376static void mips_read_fp_register_double (int regno, char *rare_buffer);
377
67b2c998
DJ
378static struct type *mips_float_register_type (void);
379static struct type *mips_double_register_type (void);
380
c906108c
SS
381/* This value is the model of MIPS in use. It is derived from the value
382 of the PrID register. */
383
384char *mips_processor_type;
385
386char *tmp_mips_processor_type;
387
acdb74a0
AC
388/* The list of available "set mips " and "show mips " commands */
389
390static struct cmd_list_element *setmipscmdlist = NULL;
391static struct cmd_list_element *showmipscmdlist = NULL;
392
c906108c
SS
393/* A set of original names, to be used when restoring back to generic
394 registers from a specific set. */
5e2e9765 395static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 396
5e2e9765
KB
397/* Integer registers 0 thru 31 are handled explicitly by
398 mips_register_name(). Processor specific registers 32 and above
399 are listed in the sets of register names assigned to
400 mips_processor_reg_names. */
401static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 402
5e2e9765 403/* Return the name of the register corresponding to REGNO. */
5a89d8aa 404static const char *
5e2e9765 405mips_register_name (int regno)
cce74817 406{
5e2e9765
KB
407 /* GPR names for all ABIs other than n32/n64. */
408 static char *mips_gpr_names[] = {
409 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
410 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
411 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
412 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
413 };
414
415 /* GPR names for n32 and n64 ABIs. */
416 static char *mips_n32_n64_gpr_names[] = {
417 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
418 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
419 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
420 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
421 };
422
423 enum mips_abi abi = mips_abi (current_gdbarch);
424
425 /* The MIPS integer registers are always mapped from 0 to 31. The
426 names of the registers (which reflects the conventions regarding
427 register use) vary depending on the ABI. */
428 if (0 <= regno && regno < 32)
429 {
430 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
431 return mips_n32_n64_gpr_names[regno];
432 else
433 return mips_gpr_names[regno];
434 }
b006a9e9 435 else if (32 <= regno && regno < NUM_REGS)
5e2e9765
KB
436 return mips_processor_reg_names[regno - 32];
437 else
438 internal_error (__FILE__, __LINE__,
439 "mips_register_name: bad register number %d", regno);
cce74817 440}
5e2e9765 441
9846de1b 442/* *INDENT-OFF* */
c906108c
SS
443/* Names of IDT R3041 registers. */
444
445char *mips_r3041_reg_names[] = {
c906108c
SS
446 "sr", "lo", "hi", "bad", "cause","pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 451 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454};
455
456/* Names of IDT R3051 registers. */
457
458char *mips_r3051_reg_names[] = {
c906108c
SS
459 "sr", "lo", "hi", "bad", "cause","pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 464 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
465 "inx", "rand", "elo", "", "ctxt", "", "", "",
466 "", "", "ehi", "", "", "", "epc", "prid",
467};
468
469/* Names of IDT R3081 registers. */
470
471char *mips_r3081_reg_names[] = {
c906108c
SS
472 "sr", "lo", "hi", "bad", "cause","pc",
473 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
474 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
475 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
476 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 477 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
478 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
479 "", "", "ehi", "", "", "", "epc", "prid",
480};
481
482/* Names of LSI 33k registers. */
483
484char *mips_lsi33k_reg_names[] = {
c906108c
SS
485 "epc", "hi", "lo", "sr", "cause","badvaddr",
486 "dcic", "bpc", "bda", "", "", "", "", "",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "",
491 "", "", "", "", "", "", "", "",
492 "", "", "", "", "", "", "", "",
493};
494
495struct {
496 char *name;
497 char **regnames;
498} mips_processor_type_table[] = {
499 { "generic", mips_generic_reg_names },
500 { "r3041", mips_r3041_reg_names },
501 { "r3051", mips_r3051_reg_names },
502 { "r3071", mips_r3081_reg_names },
503 { "r3081", mips_r3081_reg_names },
504 { "lsi33k", mips_lsi33k_reg_names },
505 { NULL, NULL }
506};
9846de1b 507/* *INDENT-ON* */
c906108c 508
c5aa993b
JM
509
510
511
c906108c 512/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
513static int mips16_to_32_reg[8] =
514{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
515
516/* Heuristic_proc_start may hunt through the text section for a long
517 time across a 2400 baud serial line. Allows the user to limit this
518 search. */
519
520static unsigned int heuristic_fence_post = 0;
521
c5aa993b
JM
522#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
523#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
524#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
525#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
526#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
527#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
528#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
529#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
530#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
531#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
532/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
533 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
534#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
535#define _PROC_MAGIC_ 0x0F0F0F0F
536#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
537#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
538
539struct linked_proc_info
c5aa993b
JM
540 {
541 struct mips_extra_func_info info;
542 struct linked_proc_info *next;
543 }
544 *linked_proc_desc_table = NULL;
c906108c 545
cce74817 546void
acdb74a0 547mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
548{
549 if (fi
da50a4b7
AC
550 && get_frame_extra_info (fi)
551 && get_frame_extra_info (fi)->proc_desc
552 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 553 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
554 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
555 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 556}
c906108c 557
46cd78fb
AC
558/* Number of bytes of storage in the actual machine representation for
559 register N. NOTE: This indirectly defines the register size
560 transfered by the GDB protocol. */
43e526b9
JM
561
562static int mips64_transfers_32bit_regs_p = 0;
563
f7ab6ec6 564static int
acdb74a0 565mips_register_raw_size (int reg_nr)
43e526b9
JM
566{
567 if (mips64_transfers_32bit_regs_p)
568 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
569 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
570 && FP_REGISTER_DOUBLE)
571 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
572 registers. */
573 return 8;
43e526b9
JM
574 else
575 return MIPS_REGSIZE;
576}
577
46cd78fb
AC
578/* Convert between RAW and VIRTUAL registers. The RAW register size
579 defines the remote-gdb packet. */
580
d05285fa 581static int
acdb74a0 582mips_register_convertible (int reg_nr)
43e526b9
JM
583{
584 if (mips64_transfers_32bit_regs_p)
585 return 0;
586 else
587 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
588}
589
d05285fa 590static void
acdb74a0
AC
591mips_register_convert_to_virtual (int n, struct type *virtual_type,
592 char *raw_buf, char *virt_buf)
43e526b9 593{
d7449b42 594 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
595 memcpy (virt_buf,
596 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
597 TYPE_LENGTH (virtual_type));
598 else
599 memcpy (virt_buf,
600 raw_buf,
601 TYPE_LENGTH (virtual_type));
602}
603
d05285fa 604static void
acdb74a0
AC
605mips_register_convert_to_raw (struct type *virtual_type, int n,
606 char *virt_buf, char *raw_buf)
43e526b9
JM
607{
608 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 609 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
610 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
611 virt_buf,
612 TYPE_LENGTH (virtual_type));
613 else
614 memcpy (raw_buf,
615 virt_buf,
616 TYPE_LENGTH (virtual_type));
617}
618
102182a9
MS
619void
620mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
621{
622 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
623 && REGISTER_RAW_SIZE (regnum) == 4
624 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
625 && TYPE_CODE(type) == TYPE_CODE_FLT
626 && TYPE_LENGTH(type) == 8)
627 {
628 char temp[4];
629 memcpy (temp, ((char *)(buffer))+4, 4);
630 memcpy (((char *)(buffer))+4, (buffer), 4);
631 memcpy (((char *)(buffer)), temp, 4);
632 }
633}
634
635void
636mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
637{
638if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
639 && REGISTER_RAW_SIZE (regnum) == 4
640 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
641 && TYPE_CODE(type) == TYPE_CODE_FLT
642 && TYPE_LENGTH(type) == 8)
643 {
644 char temp[4];
645 memcpy (temp, ((char *)(buffer))+4, 4);
646 memcpy (((char *)(buffer))+4, (buffer), 4);
647 memcpy (((char *)(buffer)), temp, 4);
648 }
649}
650
78fde5f8
KB
651/* Return the GDB type object for the "standard" data type
652 of data in register REG.
653
654 Note: kevinb/2002-08-01: The definition below should faithfully
655 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
0ba6dca9
AC
656 definitions found in config/mips/tm-*.h. I'm concerned about the
657 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
658 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
78fde5f8
KB
659 that this code is correct for the 64-bit case. */
660
661static struct type *
662mips_register_virtual_type (int reg)
663{
664 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
665 {
666 /* Floating point registers... */
667 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
668 return builtin_type_ieee_double_big;
669 else
670 return builtin_type_ieee_double_little;
671 }
78fde5f8
KB
672 else if (reg == PS_REGNUM /* CR */)
673 return builtin_type_uint32;
674 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
675 return builtin_type_uint32;
676 else
677 {
a6425924
KB
678 /* Everything else...
679 Return type appropriate for width of register. */
680 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
681 return builtin_type_uint64;
78fde5f8 682 else
a6425924 683 return builtin_type_uint32;
78fde5f8
KB
684 }
685}
686
bcb0cc15
MS
687/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
688
689static CORE_ADDR
690mips_read_sp (void)
691{
e227b13c 692 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
693}
694
c906108c 695/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 696enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
697
698static int
699mips_mask_address_p (void)
700{
701 switch (mask_address_var)
702 {
7f19b9a2 703 case AUTO_BOOLEAN_TRUE:
4014092b 704 return 1;
7f19b9a2 705 case AUTO_BOOLEAN_FALSE:
4014092b
AC
706 return 0;
707 break;
7f19b9a2 708 case AUTO_BOOLEAN_AUTO:
92e1c15c 709 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 710 default:
8e65ff28
AC
711 internal_error (__FILE__, __LINE__,
712 "mips_mask_address_p: bad switch");
4014092b 713 return -1;
361d1df0 714 }
4014092b
AC
715}
716
717static void
e9e68a56 718show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
719{
720 switch (mask_address_var)
721 {
7f19b9a2 722 case AUTO_BOOLEAN_TRUE:
4014092b
AC
723 printf_filtered ("The 32 bit mips address mask is enabled\n");
724 break;
7f19b9a2 725 case AUTO_BOOLEAN_FALSE:
4014092b
AC
726 printf_filtered ("The 32 bit mips address mask is disabled\n");
727 break;
7f19b9a2 728 case AUTO_BOOLEAN_AUTO:
4014092b
AC
729 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
730 mips_mask_address_p () ? "enabled" : "disabled");
731 break;
732 default:
8e65ff28
AC
733 internal_error (__FILE__, __LINE__,
734 "show_mask_address: bad switch");
4014092b 735 break;
361d1df0 736 }
4014092b 737}
c906108c
SS
738
739/* Should call_function allocate stack space for a struct return? */
cb811fe7 740
f7ab6ec6 741static int
cb811fe7 742mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 743{
cb811fe7
MS
744 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
745}
746
f7ab6ec6 747static int
cb811fe7
MS
748mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
749{
b78bcb18 750 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
751}
752
f7ab6ec6 753static int
cb811fe7
MS
754mips_o32_use_struct_convention (int gcc_p, struct type *type)
755{
756 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
757}
758
8b389c40
MS
759/* Should call_function pass struct by reference?
760 For each architecture, structs are passed either by
761 value or by reference, depending on their size. */
762
763static int
764mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
765{
766 enum type_code typecode = TYPE_CODE (check_typedef (type));
767 int len = TYPE_LENGTH (check_typedef (type));
768
769 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
770 return (len > MIPS_SAVED_REGSIZE);
771
772 return 0;
773}
774
775static int
776mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
777{
778 return 0; /* Assumption: N32/N64 never passes struct by ref. */
779}
780
f7ab6ec6 781static int
8b389c40
MS
782mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
783{
784 return 0; /* Assumption: O32/O64 never passes struct by ref. */
785}
786
c906108c
SS
787/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
788
789static int
790pc_is_mips16 (bfd_vma memaddr)
791{
792 struct minimal_symbol *sym;
793
794 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
795 if (IS_MIPS16_ADDR (memaddr))
796 return 1;
797
798 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
799 the high bit of the info field. Use this to decide if the function is
800 MIPS16 or normal MIPS. */
801 sym = lookup_minimal_symbol_by_pc (memaddr);
802 if (sym)
71b8ef93 803 return msymbol_is_special (sym);
c906108c
SS
804 else
805 return 0;
806}
807
6c997a34
AC
808/* MIPS believes that the PC has a sign extended value. Perhaphs the
809 all registers should be sign extended for simplicity? */
810
811static CORE_ADDR
39f77062 812mips_read_pc (ptid_t ptid)
6c997a34 813{
39f77062 814 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 815}
c906108c
SS
816
817/* This returns the PC of the first inst after the prologue. If we can't
818 find the prologue, then return 0. */
819
820static CORE_ADDR
acdb74a0
AC
821after_prologue (CORE_ADDR pc,
822 mips_extra_func_info_t proc_desc)
c906108c
SS
823{
824 struct symtab_and_line sal;
825 CORE_ADDR func_addr, func_end;
826
479412cd
DJ
827 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
828 to read the stack pointer from the current machine state, because
829 the current machine state has nothing to do with the information
830 we need from the proc_desc; and the process may or may not exist
831 right now. */
c906108c 832 if (!proc_desc)
479412cd 833 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
834
835 if (proc_desc)
836 {
837 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 838 strongly suspect that frameless always means prologueless... */
c906108c
SS
839 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
840 && PROC_FRAME_OFFSET (proc_desc) == 0)
841 return 0;
842 }
843
844 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
845 return 0; /* Unknown */
846
847 sal = find_pc_line (func_addr, 0);
848
849 if (sal.end < func_end)
850 return sal.end;
851
852 /* The line after the prologue is after the end of the function. In this
853 case, tell the caller to find the prologue the hard way. */
854
855 return 0;
856}
857
858/* Decode a MIPS32 instruction that saves a register in the stack, and
859 set the appropriate bit in the general register mask or float register mask
860 to indicate which register is saved. This is a helper function
861 for mips_find_saved_regs. */
862
863static void
acdb74a0
AC
864mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
865 unsigned long *float_mask)
c906108c
SS
866{
867 int reg;
868
869 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
870 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
871 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
872 {
873 /* It might be possible to use the instruction to
c5aa993b
JM
874 find the offset, rather than the code below which
875 is based on things being in a certain order in the
876 frame, but figuring out what the instruction's offset
877 is relative to might be a little tricky. */
c906108c
SS
878 reg = (inst & 0x001f0000) >> 16;
879 *gen_mask |= (1 << reg);
880 }
881 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
882 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
883 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
884
885 {
886 reg = ((inst & 0x001f0000) >> 16);
887 *float_mask |= (1 << reg);
888 }
889}
890
891/* Decode a MIPS16 instruction that saves a register in the stack, and
892 set the appropriate bit in the general register or float register mask
893 to indicate which register is saved. This is a helper function
894 for mips_find_saved_regs. */
895
896static void
acdb74a0 897mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 898{
c5aa993b 899 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
900 {
901 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
902 *gen_mask |= (1 << reg);
903 }
c5aa993b 904 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
905 {
906 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
907 *gen_mask |= (1 << reg);
908 }
c5aa993b 909 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
910 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
911 *gen_mask |= (1 << RA_REGNUM);
912}
913
914
915/* Fetch and return instruction from the specified location. If the PC
916 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
917
918static t_inst
acdb74a0 919mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
920{
921 char buf[MIPS_INSTLEN];
922 int instlen;
923 int status;
924
925 if (pc_is_mips16 (addr))
926 {
927 instlen = MIPS16_INSTLEN;
928 addr = UNMAKE_MIPS16_ADDR (addr);
929 }
930 else
c5aa993b 931 instlen = MIPS_INSTLEN;
c906108c
SS
932 status = read_memory_nobpt (addr, buf, instlen);
933 if (status)
934 memory_error (status, addr);
935 return extract_unsigned_integer (buf, instlen);
936}
937
938
939/* These the fields of 32 bit mips instructions */
e135b889
DJ
940#define mips32_op(x) (x >> 26)
941#define itype_op(x) (x >> 26)
942#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 943#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 944#define itype_immediate(x) (x & 0xffff)
c906108c 945
e135b889
DJ
946#define jtype_op(x) (x >> 26)
947#define jtype_target(x) (x & 0x03ffffff)
c906108c 948
e135b889
DJ
949#define rtype_op(x) (x >> 26)
950#define rtype_rs(x) ((x >> 21) & 0x1f)
951#define rtype_rt(x) ((x >> 16) & 0x1f)
952#define rtype_rd(x) ((x >> 11) & 0x1f)
953#define rtype_shamt(x) ((x >> 6) & 0x1f)
954#define rtype_funct(x) (x & 0x3f)
c906108c
SS
955
956static CORE_ADDR
c5aa993b
JM
957mips32_relative_offset (unsigned long inst)
958{
959 long x;
960 x = itype_immediate (inst);
961 if (x & 0x8000) /* sign bit set */
c906108c 962 {
c5aa993b 963 x |= 0xffff0000; /* sign extension */
c906108c 964 }
c5aa993b
JM
965 x = x << 2;
966 return x;
c906108c
SS
967}
968
969/* Determine whate to set a single step breakpoint while considering
970 branch prediction */
5a89d8aa 971static CORE_ADDR
c5aa993b
JM
972mips32_next_pc (CORE_ADDR pc)
973{
974 unsigned long inst;
975 int op;
976 inst = mips_fetch_instruction (pc);
e135b889 977 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 978 {
e135b889
DJ
979 if (itype_op (inst) >> 2 == 5)
980 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 981 {
e135b889 982 op = (itype_op (inst) & 0x03);
c906108c
SS
983 switch (op)
984 {
e135b889
DJ
985 case 0: /* BEQL */
986 goto equal_branch;
987 case 1: /* BNEL */
988 goto neq_branch;
989 case 2: /* BLEZL */
990 goto less_branch;
991 case 3: /* BGTZ */
992 goto greater_branch;
c5aa993b
JM
993 default:
994 pc += 4;
c906108c
SS
995 }
996 }
e135b889
DJ
997 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
998 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
999 {
1000 int tf = itype_rt (inst) & 0x01;
1001 int cnum = itype_rt (inst) >> 2;
1002 int fcrcs = read_signed_register (FCRCS_REGNUM);
1003 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1004
1005 if (((cond >> cnum) & 0x01) == tf)
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8;
1009 }
c5aa993b
JM
1010 else
1011 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1012 }
1013 else
c5aa993b
JM
1014 { /* This gets way messy */
1015
c906108c 1016 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1017 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1018 {
c5aa993b
JM
1019 case 0: /* SPECIAL */
1020 op = rtype_funct (inst);
1021 switch (op)
1022 {
1023 case 8: /* JR */
1024 case 9: /* JALR */
6c997a34
AC
1025 /* Set PC to that address */
1026 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1027 break;
1028 default:
1029 pc += 4;
1030 }
1031
e135b889 1032 break; /* end SPECIAL */
c5aa993b 1033 case 1: /* REGIMM */
c906108c 1034 {
e135b889
DJ
1035 op = itype_rt (inst); /* branch condition */
1036 switch (op)
c906108c 1037 {
c5aa993b 1038 case 0: /* BLTZ */
e135b889
DJ
1039 case 2: /* BLTZL */
1040 case 16: /* BLTZAL */
c5aa993b 1041 case 18: /* BLTZALL */
c906108c 1042 less_branch:
6c997a34 1043 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8; /* after the delay slot */
1047 break;
e135b889 1048 case 1: /* BGEZ */
c5aa993b
JM
1049 case 3: /* BGEZL */
1050 case 17: /* BGEZAL */
1051 case 19: /* BGEZALL */
c906108c 1052 greater_equal_branch:
6c997a34 1053 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1054 pc += mips32_relative_offset (inst) + 4;
1055 else
1056 pc += 8; /* after the delay slot */
1057 break;
e135b889 1058 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1059 default:
1060 pc += 4;
c906108c
SS
1061 }
1062 }
e135b889 1063 break; /* end REGIMM */
c5aa993b
JM
1064 case 2: /* J */
1065 case 3: /* JAL */
1066 {
1067 unsigned long reg;
1068 reg = jtype_target (inst) << 2;
e135b889 1069 /* Upper four bits get never changed... */
c5aa993b 1070 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1071 }
c5aa993b
JM
1072 break;
1073 /* FIXME case JALX : */
1074 {
1075 unsigned long reg;
1076 reg = jtype_target (inst) << 2;
1077 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1078 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1079 }
c5aa993b 1080 break; /* The new PC will be alternate mode */
e135b889 1081 case 4: /* BEQ, BEQL */
c5aa993b 1082 equal_branch:
6c997a34
AC
1083 if (read_signed_register (itype_rs (inst)) ==
1084 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1085 pc += mips32_relative_offset (inst) + 4;
1086 else
1087 pc += 8;
1088 break;
e135b889 1089 case 5: /* BNE, BNEL */
c5aa993b 1090 neq_branch:
6c997a34 1091 if (read_signed_register (itype_rs (inst)) !=
e135b889 1092 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1093 pc += mips32_relative_offset (inst) + 4;
1094 else
1095 pc += 8;
1096 break;
e135b889 1097 case 6: /* BLEZ, BLEZL */
c906108c 1098 less_zero_branch:
6c997a34 1099 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1100 pc += mips32_relative_offset (inst) + 4;
1101 else
1102 pc += 8;
1103 break;
1104 case 7:
e135b889
DJ
1105 default:
1106 greater_branch: /* BGTZ, BGTZL */
6c997a34 1107 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
c5aa993b
JM
1112 } /* switch */
1113 } /* else */
1114 return pc;
1115} /* mips32_next_pc */
c906108c
SS
1116
1117/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1118 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1119 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1120 We dont want to set a single step instruction on the extend instruction
1121 either.
c5aa993b 1122 */
c906108c
SS
1123
1124/* Lots of mips16 instruction formats */
1125/* Predicting jumps requires itype,ritype,i8type
1126 and their extensions extItype,extritype,extI8type
c5aa993b 1127 */
c906108c
SS
1128enum mips16_inst_fmts
1129{
c5aa993b
JM
1130 itype, /* 0 immediate 5,10 */
1131 ritype, /* 1 5,3,8 */
1132 rrtype, /* 2 5,3,3,5 */
1133 rritype, /* 3 5,3,3,5 */
1134 rrrtype, /* 4 5,3,3,3,2 */
1135 rriatype, /* 5 5,3,3,1,4 */
1136 shifttype, /* 6 5,3,3,3,2 */
1137 i8type, /* 7 5,3,8 */
1138 i8movtype, /* 8 5,3,3,5 */
1139 i8mov32rtype, /* 9 5,3,5,3 */
1140 i64type, /* 10 5,3,8 */
1141 ri64type, /* 11 5,3,3,5 */
1142 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1143 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1144 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1145 extRRItype, /* 15 5,5,5,5,3,3,5 */
1146 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1147 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1148 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1149 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1150 extRi64type, /* 20 5,6,5,5,3,3,5 */
1151 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1152};
12f02c2a
AC
1153/* I am heaping all the fields of the formats into one structure and
1154 then, only the fields which are involved in instruction extension */
c906108c 1155struct upk_mips16
c5aa993b 1156 {
12f02c2a 1157 CORE_ADDR offset;
c5aa993b
JM
1158 unsigned int regx; /* Function in i8 type */
1159 unsigned int regy;
1160 };
c906108c
SS
1161
1162
12f02c2a
AC
1163/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1164 for the bits which make up the immediatate extension. */
c906108c 1165
12f02c2a
AC
1166static CORE_ADDR
1167extended_offset (unsigned int extension)
c906108c 1168{
12f02c2a 1169 CORE_ADDR value;
c5aa993b
JM
1170 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1171 value = value << 6;
1172 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1173 value = value << 5;
1174 value |= extension & 0x01f; /* extract 4:0 */
1175 return value;
c906108c
SS
1176}
1177
1178/* Only call this function if you know that this is an extendable
1179 instruction, It wont malfunction, but why make excess remote memory references?
1180 If the immediate operands get sign extended or somthing, do it after
1181 the extension is performed.
c5aa993b 1182 */
c906108c
SS
1183/* FIXME: Every one of these cases needs to worry about sign extension
1184 when the offset is to be used in relative addressing */
1185
1186
12f02c2a 1187static unsigned int
c5aa993b 1188fetch_mips_16 (CORE_ADDR pc)
c906108c 1189{
c5aa993b
JM
1190 char buf[8];
1191 pc &= 0xfffffffe; /* clear the low order bit */
1192 target_read_memory (pc, buf, 2);
1193 return extract_unsigned_integer (buf, 2);
c906108c
SS
1194}
1195
1196static void
c5aa993b 1197unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1198 unsigned int extension,
1199 unsigned int inst,
1200 enum mips16_inst_fmts insn_format,
c5aa993b 1201 struct upk_mips16 *upk)
c906108c 1202{
12f02c2a
AC
1203 CORE_ADDR offset;
1204 int regx;
1205 int regy;
1206 switch (insn_format)
c906108c 1207 {
c5aa993b 1208 case itype:
c906108c 1209 {
12f02c2a
AC
1210 CORE_ADDR value;
1211 if (extension)
c5aa993b
JM
1212 {
1213 value = extended_offset (extension);
1214 value = value << 11; /* rom for the original value */
12f02c2a 1215 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1216 }
1217 else
c5aa993b 1218 {
12f02c2a 1219 value = inst & 0x7ff;
c5aa993b 1220 /* FIXME : Consider sign extension */
c906108c 1221 }
12f02c2a
AC
1222 offset = value;
1223 regx = -1;
1224 regy = -1;
c906108c 1225 }
c5aa993b
JM
1226 break;
1227 case ritype:
1228 case i8type:
1229 { /* A register identifier and an offset */
c906108c
SS
1230 /* Most of the fields are the same as I type but the
1231 immediate value is of a different length */
12f02c2a
AC
1232 CORE_ADDR value;
1233 if (extension)
c906108c 1234 {
c5aa993b
JM
1235 value = extended_offset (extension);
1236 value = value << 8; /* from the original instruction */
12f02c2a
AC
1237 value |= inst & 0xff; /* eleven bits from instruction */
1238 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1239 if (value & 0x4000) /* test the sign bit , bit 26 */
1240 {
1241 value &= ~0x3fff; /* remove the sign bit */
1242 value = -value;
c906108c
SS
1243 }
1244 }
c5aa993b
JM
1245 else
1246 {
12f02c2a
AC
1247 value = inst & 0xff; /* 8 bits */
1248 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1249 /* FIXME: Do sign extension , this format needs it */
1250 if (value & 0x80) /* THIS CONFUSES ME */
1251 {
1252 value &= 0xef; /* remove the sign bit */
1253 value = -value;
1254 }
c5aa993b 1255 }
12f02c2a
AC
1256 offset = value;
1257 regy = -1;
c5aa993b 1258 break;
c906108c 1259 }
c5aa993b 1260 case jalxtype:
c906108c 1261 {
c5aa993b 1262 unsigned long value;
12f02c2a
AC
1263 unsigned int nexthalf;
1264 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1265 value = value << 16;
1266 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1267 value |= nexthalf;
12f02c2a
AC
1268 offset = value;
1269 regx = -1;
1270 regy = -1;
c5aa993b 1271 break;
c906108c
SS
1272 }
1273 default:
8e65ff28
AC
1274 internal_error (__FILE__, __LINE__,
1275 "bad switch");
c906108c 1276 }
12f02c2a
AC
1277 upk->offset = offset;
1278 upk->regx = regx;
1279 upk->regy = regy;
c906108c
SS
1280}
1281
1282
c5aa993b
JM
1283static CORE_ADDR
1284add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1285{
c5aa993b 1286 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1287}
1288
12f02c2a
AC
1289static CORE_ADDR
1290extended_mips16_next_pc (CORE_ADDR pc,
1291 unsigned int extension,
1292 unsigned int insn)
c906108c 1293{
12f02c2a
AC
1294 int op = (insn >> 11);
1295 switch (op)
c906108c 1296 {
12f02c2a
AC
1297 case 2: /* Branch */
1298 {
1299 CORE_ADDR offset;
1300 struct upk_mips16 upk;
1301 unpack_mips16 (pc, extension, insn, itype, &upk);
1302 offset = upk.offset;
1303 if (offset & 0x800)
1304 {
1305 offset &= 0xeff;
1306 offset = -offset;
1307 }
1308 pc += (offset << 1) + 2;
1309 break;
1310 }
1311 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1312 {
1313 struct upk_mips16 upk;
1314 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1315 pc = add_offset_16 (pc, upk.offset);
1316 if ((insn >> 10) & 0x01) /* Exchange mode */
1317 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1318 else
1319 pc |= 0x01;
1320 break;
1321 }
1322 case 4: /* beqz */
1323 {
1324 struct upk_mips16 upk;
1325 int reg;
1326 unpack_mips16 (pc, extension, insn, ritype, &upk);
1327 reg = read_signed_register (upk.regx);
1328 if (reg == 0)
1329 pc += (upk.offset << 1) + 2;
1330 else
1331 pc += 2;
1332 break;
1333 }
1334 case 5: /* bnez */
1335 {
1336 struct upk_mips16 upk;
1337 int reg;
1338 unpack_mips16 (pc, extension, insn, ritype, &upk);
1339 reg = read_signed_register (upk.regx);
1340 if (reg != 0)
1341 pc += (upk.offset << 1) + 2;
1342 else
1343 pc += 2;
1344 break;
1345 }
1346 case 12: /* I8 Formats btez btnez */
1347 {
1348 struct upk_mips16 upk;
1349 int reg;
1350 unpack_mips16 (pc, extension, insn, i8type, &upk);
1351 /* upk.regx contains the opcode */
1352 reg = read_signed_register (24); /* Test register is 24 */
1353 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1354 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1355 /* pc = add_offset_16(pc,upk.offset) ; */
1356 pc += (upk.offset << 1) + 2;
1357 else
1358 pc += 2;
1359 break;
1360 }
1361 case 29: /* RR Formats JR, JALR, JALR-RA */
1362 {
1363 struct upk_mips16 upk;
1364 /* upk.fmt = rrtype; */
1365 op = insn & 0x1f;
1366 if (op == 0)
c5aa993b 1367 {
12f02c2a
AC
1368 int reg;
1369 upk.regx = (insn >> 8) & 0x07;
1370 upk.regy = (insn >> 5) & 0x07;
1371 switch (upk.regy)
c5aa993b 1372 {
12f02c2a
AC
1373 case 0:
1374 reg = upk.regx;
1375 break;
1376 case 1:
1377 reg = 31;
1378 break; /* Function return instruction */
1379 case 2:
1380 reg = upk.regx;
1381 break;
1382 default:
1383 reg = 31;
1384 break; /* BOGUS Guess */
c906108c 1385 }
12f02c2a 1386 pc = read_signed_register (reg);
c906108c 1387 }
12f02c2a 1388 else
c5aa993b 1389 pc += 2;
12f02c2a
AC
1390 break;
1391 }
1392 case 30:
1393 /* This is an instruction extension. Fetch the real instruction
1394 (which follows the extension) and decode things based on
1395 that. */
1396 {
1397 pc += 2;
1398 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1399 break;
1400 }
1401 default:
1402 {
1403 pc += 2;
1404 break;
1405 }
c906108c 1406 }
c5aa993b 1407 return pc;
12f02c2a 1408}
c906108c 1409
5a89d8aa 1410static CORE_ADDR
12f02c2a
AC
1411mips16_next_pc (CORE_ADDR pc)
1412{
1413 unsigned int insn = fetch_mips_16 (pc);
1414 return extended_mips16_next_pc (pc, 0, insn);
1415}
1416
1417/* The mips_next_pc function supports single_step when the remote
7e73cedf 1418 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1419 It works by decoding the current instruction and predicting where a
1420 branch will go. This isnt hard because all the data is available.
1421 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1422CORE_ADDR
1423mips_next_pc (CORE_ADDR pc)
c906108c 1424{
c5aa993b
JM
1425 if (pc & 0x01)
1426 return mips16_next_pc (pc);
1427 else
1428 return mips32_next_pc (pc);
12f02c2a 1429}
c906108c
SS
1430
1431/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1432 NULL).
1433
1434 Note: kevinb/2002-08-09: The only caller of this function is (and
1435 should remain) mips_frame_init_saved_regs(). In fact,
1436 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1437 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1438 functions should really be combined and now that there is only one
1439 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1440 though.) */
c906108c 1441
d28e01f4 1442static void
acdb74a0 1443mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1444{
1445 int ireg;
1446 CORE_ADDR reg_position;
1447 /* r0 bit means kernel trap */
1448 int kernel_trap;
1449 /* What registers have been saved? Bitmasks. */
1450 unsigned long gen_mask, float_mask;
1451 mips_extra_func_info_t proc_desc;
1452 t_inst inst;
1453
1454 frame_saved_regs_zalloc (fci);
1455
1456 /* If it is the frame for sigtramp, the saved registers are located
1457 in a sigcontext structure somewhere on the stack.
1458 If the stack layout for sigtramp changes we might have to change these
1459 constants and the companion fixup_sigtramp in mdebugread.c */
1460#ifndef SIGFRAME_BASE
1461/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1462 above the sigtramp frame. */
1463#define SIGFRAME_BASE MIPS_REGSIZE
1464/* FIXME! Are these correct?? */
1465#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1466#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1467#define SIGFRAME_FPREGSAVE_OFF \
1468 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1469#endif
1470#ifndef SIGFRAME_REG_SIZE
1471/* FIXME! Is this correct?? */
1472#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1473#endif
5a203e44 1474 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1475 {
1476 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1477 {
1e2330ba 1478 reg_position = get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
c5aa993b 1479 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1480 get_frame_saved_regs (fci)[ireg] = reg_position;
c906108c
SS
1481 }
1482 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1483 {
1e2330ba 1484 reg_position = get_frame_base (fci) + SIGFRAME_FPREGSAVE_OFF
c5aa993b 1485 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1486 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
c906108c 1487 }
1e2330ba 1488 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_base (fci) + SIGFRAME_PC_OFF;
c906108c
SS
1489 return;
1490 }
1491
da50a4b7 1492 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c
SS
1493 if (proc_desc == NULL)
1494 /* I'm not sure how/whether this can happen. Normally when we can't
1495 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1496 and set the saved_regs right away. */
1497 return;
1498
c5aa993b
JM
1499 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1500 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1501 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1502
c5aa993b
JM
1503 if ( /* In any frame other than the innermost or a frame interrupted by
1504 a signal, we assume that all registers have been saved.
1505 This assumes that all register saves in a function happen before
1506 the first function call. */
11c02a10
AC
1507 (get_next_frame (fci) == NULL
1508 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1509
c5aa993b
JM
1510 /* In a dummy frame we know exactly where things are saved. */
1511 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1512
c5aa993b
JM
1513 /* Don't bother unless we are inside a function prologue. Outside the
1514 prologue, we know where everything is. */
c906108c 1515
50abf9e5 1516 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1517
c5aa993b
JM
1518 /* Not sure exactly what kernel_trap means, but if it means
1519 the kernel saves the registers without a prologue doing it,
1520 we better not examine the prologue to see whether registers
1521 have been saved yet. */
1522 && !kernel_trap)
c906108c
SS
1523 {
1524 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1525 claims are saved have been saved yet. */
c906108c
SS
1526
1527 CORE_ADDR addr;
1528
1529 /* Bitmasks; set if we have found a save for the register. */
1530 unsigned long gen_save_found = 0;
1531 unsigned long float_save_found = 0;
1532 int instlen;
1533
1534 /* If the address is odd, assume this is MIPS16 code. */
1535 addr = PROC_LOW_ADDR (proc_desc);
1536 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1537
1538 /* Scan through this function's instructions preceding the current
1539 PC, and look for those that save registers. */
50abf9e5 1540 while (addr < get_frame_pc (fci))
c906108c
SS
1541 {
1542 inst = mips_fetch_instruction (addr);
1543 if (pc_is_mips16 (addr))
1544 mips16_decode_reg_save (inst, &gen_save_found);
1545 else
1546 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1547 addr += instlen;
1548 }
1549 gen_mask = gen_save_found;
1550 float_mask = float_save_found;
1551 }
1552
1553 /* Fill in the offsets for the registers which gen_mask says
1554 were saved. */
1e2330ba 1555 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
c5aa993b 1556 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1557 if (gen_mask & 0x80000000)
1558 {
b2fb4676 1559 get_frame_saved_regs (fci)[ireg] = reg_position;
7a292a7a 1560 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1561 }
1562
1563 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1564 of that normally used by gcc. Therefore, we have to fetch the first
1565 instruction of the function, and if it's an entry instruction that
1566 saves $s0 or $s1, correct their saved addresses. */
1567 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1568 {
1569 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1570 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1571 {
1572 int reg;
1573 int sreg_count = (inst >> 6) & 3;
c5aa993b 1574
c906108c 1575 /* Check if the ra register was pushed on the stack. */
1e2330ba 1576 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
c906108c 1577 if (inst & 0x20)
7a292a7a 1578 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1579
1580 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1581 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1582 {
b2fb4676 1583 get_frame_saved_regs (fci)[reg] = reg_position;
7a292a7a 1584 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1585 }
1586 }
1587 }
1588
1589 /* Fill in the offsets for the registers which float_mask says
1590 were saved. */
1e2330ba 1591 reg_position = get_frame_base (fci) + PROC_FREG_OFFSET (proc_desc);
c906108c 1592
6acdf5c7
MS
1593 /* Apparently, the freg_offset gives the offset to the first 64 bit
1594 saved.
1595
1596 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1597 designates the first saved 64 bit register.
1598
1599 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1600 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1601 FREG_OFFSET, designates the address of the lower register of the
1602 register pair. Adjust the offset so that it designates the upper
1603 register of the pair -- i.e., the address of the first saved 32
1604 bit register. */
1605
1606 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1607 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1608
1609 /* Fill in the offsets for the float registers which float_mask says
1610 were saved. */
c5aa993b 1611 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1612 if (float_mask & 0x80000000)
1613 {
b2fb4676 1614 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1615 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1616 }
1617
b2fb4676 1618 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
c906108c
SS
1619}
1620
d28e01f4
KB
1621/* Set up the 'saved_regs' array. This is a data structure containing
1622 the addresses on the stack where each register has been saved, for
1623 each stack frame. Registers that have not been saved will have
1624 zero here. The stack pointer register is special: rather than the
1625 address where the stack register has been saved, saved_regs[SP_REGNUM]
1626 will have the actual value of the previous frame's stack register. */
1627
1628static void
1629mips_frame_init_saved_regs (struct frame_info *frame)
1630{
b2fb4676 1631 if (get_frame_saved_regs (frame) == NULL)
d28e01f4
KB
1632 {
1633 mips_find_saved_regs (frame);
1634 }
1e2330ba 1635 get_frame_saved_regs (frame)[SP_REGNUM] = get_frame_base (frame);
d28e01f4
KB
1636}
1637
c906108c 1638static CORE_ADDR
acdb74a0 1639read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1640{
64159455
AC
1641 int optimized;
1642 CORE_ADDR addr;
1643 int realnum;
1644 enum lval_type lval;
d9d9c31f 1645 char raw_buffer[MAX_REGISTER_SIZE];
f796e4be
KB
1646
1647 if (fi == NULL)
c906108c 1648 {
f796e4be
KB
1649 regcache_cooked_read (current_regcache, regno, raw_buffer);
1650 }
1651 else
1652 {
1653 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1654 raw_buffer);
1655 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1656 should have a pseudo register range that correspons to the ABI's,
1657 rather than the ISA's, view of registers. These registers would
1658 then implicitly describe their size and hence could be used
1659 without the below munging. */
1660 if (lval == lval_memory)
c906108c 1661 {
f796e4be
KB
1662 if (regno < 32)
1663 {
1664 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1665 saved. */
1666 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1667 }
c906108c
SS
1668 }
1669 }
64159455
AC
1670
1671 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1672}
1673
1674/* mips_addr_bits_remove - remove useless address bits */
1675
875e1767 1676static CORE_ADDR
acdb74a0 1677mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1678{
5213ab06
AC
1679 if (GDB_TARGET_IS_MIPS64)
1680 {
4014092b 1681 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1682 {
1683 /* This hack is a work-around for existing boards using
1684 PMON, the simulator, and any other 64-bit targets that
1685 doesn't have true 64-bit addressing. On these targets,
1686 the upper 32 bits of addresses are ignored by the
1687 hardware. Thus, the PC or SP are likely to have been
1688 sign extended to all 1s by instruction sequences that
1689 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1690 code that loads an address is this:
1691 lui $r2, <upper 16 bits>
1692 ori $r2, <lower 16 bits>
1693 But the lui sign-extends the value such that the upper 32
1694 bits may be all 1s. The workaround is simply to mask off
1695 these bits. In the future, gcc may be changed to support
1696 true 64-bit addressing, and this masking will have to be
1697 disabled. */
5213ab06
AC
1698 addr &= (CORE_ADDR) 0xffffffff;
1699 }
1700 }
4014092b 1701 else if (mips_mask_address_p ())
5213ab06 1702 {
4014092b
AC
1703 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1704 masking off bits, instead, the actual target should be asking
1705 for the address to be converted to a valid pointer. */
5213ab06
AC
1706 /* Even when GDB is configured for some 32-bit targets
1707 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1708 so CORE_ADDR is 64 bits. So we still have to mask off
1709 useless bits from addresses. */
c5aa993b 1710 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1711 }
c906108c
SS
1712 return addr;
1713}
1714
9022177c
DJ
1715/* mips_software_single_step() is called just before we want to resume
1716 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1717 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1718 the target of the coming instruction and breakpoint it.
1719
1720 single_step is also called just after the inferior stops. If we had
1721 set up a simulated single-step, we undo our damage. */
1722
1723void
1724mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1725{
1726 static CORE_ADDR next_pc;
1727 typedef char binsn_quantum[BREAKPOINT_MAX];
1728 static binsn_quantum break_mem;
1729 CORE_ADDR pc;
1730
1731 if (insert_breakpoints_p)
1732 {
1733 pc = read_register (PC_REGNUM);
1734 next_pc = mips_next_pc (pc);
1735
1736 target_insert_breakpoint (next_pc, break_mem);
1737 }
1738 else
1739 target_remove_breakpoint (next_pc, break_mem);
1740}
1741
97f46953 1742static CORE_ADDR
acdb74a0 1743mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1744{
1745 CORE_ADDR pc, tmp;
1746
11c02a10 1747 pc = ((fromleaf)
6913c89a 1748 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1749 : get_next_frame (prev)
8bedc050 1750 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1751 : read_pc ());
5a89d8aa 1752 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1753 return tmp ? tmp : pc;
c906108c
SS
1754}
1755
1756
f7ab6ec6 1757static CORE_ADDR
acdb74a0 1758mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1759{
1760 CORE_ADDR saved_pc;
da50a4b7 1761 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c
SS
1762 /* We have to get the saved pc from the sigcontext
1763 if it is a signal handler frame. */
5a203e44 1764 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1765 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1766
50abf9e5 1767 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1768 {
1769 LONGEST tmp;
1770 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1771 saved_pc = tmp;
1772 }
1773 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1e2330ba 1774 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1775 else
7a292a7a 1776 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1777
1778 return ADDR_BITS_REMOVE (saved_pc);
1779}
1780
1781static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1782
1783/* This hack will go away once the get_prev_frame() code has been
1784 modified to set the frame's type first. That is BEFORE init extra
1785 frame info et.al. is called. This is because it will become
1786 possible to skip the init extra info call for sigtramp and dummy
1787 frames. */
1788static CORE_ADDR *temp_saved_regs;
c906108c
SS
1789
1790/* Set a register's saved stack address in temp_saved_regs. If an address
1791 has already been set for this register, do nothing; this way we will
1792 only recognize the first save of a given register in a function prologue.
1793 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1794
1795static void
acdb74a0 1796set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1797{
cce74817
JM
1798 if (temp_saved_regs[regno] == 0)
1799 temp_saved_regs[regno] = offset;
c906108c
SS
1800}
1801
1802
1803/* Test whether the PC points to the return instruction at the
1804 end of a function. */
1805
c5aa993b 1806static int
acdb74a0 1807mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1808{
1809 if (pc_is_mips16 (pc))
1810 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1811 generates a "jr $ra"; other times it generates code to load
1812 the return address from the stack to an accessible register (such
1813 as $a3), then a "jr" using that register. This second case
1814 is almost impossible to distinguish from an indirect jump
1815 used for switch statements, so we don't even try. */
1816 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1817 else
1818 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1819}
1820
1821
1822/* This fencepost looks highly suspicious to me. Removing it also
1823 seems suspicious as it could affect remote debugging across serial
1824 lines. */
1825
1826static CORE_ADDR
acdb74a0 1827heuristic_proc_start (CORE_ADDR pc)
c906108c 1828{
c5aa993b
JM
1829 CORE_ADDR start_pc;
1830 CORE_ADDR fence;
1831 int instlen;
1832 int seen_adjsp = 0;
c906108c 1833
c5aa993b
JM
1834 pc = ADDR_BITS_REMOVE (pc);
1835 start_pc = pc;
1836 fence = start_pc - heuristic_fence_post;
1837 if (start_pc == 0)
1838 return 0;
c906108c 1839
c5aa993b
JM
1840 if (heuristic_fence_post == UINT_MAX
1841 || fence < VM_MIN_ADDRESS)
1842 fence = VM_MIN_ADDRESS;
c906108c 1843
c5aa993b 1844 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1845
c5aa993b
JM
1846 /* search back for previous return */
1847 for (start_pc -= instlen;; start_pc -= instlen)
1848 if (start_pc < fence)
1849 {
1850 /* It's not clear to me why we reach this point when
c0236d92 1851 stop_soon, but with this test, at least we
c5aa993b
JM
1852 don't print out warnings for every child forked (eg, on
1853 decstation). 22apr93 [email protected]. */
c0236d92 1854 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1855 {
c5aa993b
JM
1856 static int blurb_printed = 0;
1857
1858 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1859 paddr_nz (pc));
1860
1861 if (!blurb_printed)
c906108c 1862 {
c5aa993b
JM
1863 /* This actually happens frequently in embedded
1864 development, when you first connect to a board
1865 and your stack pointer and pc are nowhere in
1866 particular. This message needs to give people
1867 in that situation enough information to
1868 determine that it's no big deal. */
1869 printf_filtered ("\n\
cd0fc7c3
SS
1870 GDB is unable to find the start of the function at 0x%s\n\
1871and thus can't determine the size of that function's stack frame.\n\
1872This means that GDB may be unable to access that stack frame, or\n\
1873the frames below it.\n\
1874 This problem is most likely caused by an invalid program counter or\n\
1875stack pointer.\n\
1876 However, if you think GDB should simply search farther back\n\
1877from 0x%s for code which looks like the beginning of a\n\
1878function, you can increase the range of the search using the `set\n\
1879heuristic-fence-post' command.\n",
c5aa993b
JM
1880 paddr_nz (pc), paddr_nz (pc));
1881 blurb_printed = 1;
c906108c 1882 }
c906108c
SS
1883 }
1884
c5aa993b
JM
1885 return 0;
1886 }
1887 else if (pc_is_mips16 (start_pc))
1888 {
1889 unsigned short inst;
1890
1891 /* On MIPS16, any one of the following is likely to be the
1892 start of a function:
1893 entry
1894 addiu sp,-n
1895 daddiu sp,-n
1896 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1897 inst = mips_fetch_instruction (start_pc);
1898 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1899 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1900 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1901 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1902 break;
1903 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1904 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1905 seen_adjsp = 1;
1906 else
1907 seen_adjsp = 0;
1908 }
1909 else if (mips_about_to_return (start_pc))
1910 {
1911 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1912 break;
1913 }
1914
c5aa993b 1915 return start_pc;
c906108c
SS
1916}
1917
1918/* Fetch the immediate value from a MIPS16 instruction.
1919 If the previous instruction was an EXTEND, use it to extend
1920 the upper bits of the immediate value. This is a helper function
1921 for mips16_heuristic_proc_desc. */
1922
1923static int
acdb74a0
AC
1924mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1925 unsigned short inst, /* current instruction */
1926 int nbits, /* number of bits in imm field */
1927 int scale, /* scale factor to be applied to imm */
1928 int is_signed) /* is the imm field signed? */
c906108c
SS
1929{
1930 int offset;
1931
1932 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1933 {
1934 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1935 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1936 offset = 0 - (0x10000 - (offset & 0xffff));
1937 return offset | (inst & 0x1f);
1938 }
1939 else
1940 {
1941 int max_imm = 1 << nbits;
1942 int mask = max_imm - 1;
1943 int sign_bit = max_imm >> 1;
1944
1945 offset = inst & mask;
1946 if (is_signed && (offset & sign_bit))
1947 offset = 0 - (max_imm - offset);
1948 return offset * scale;
1949 }
1950}
1951
1952
1953/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1954 stream from start_pc to limit_pc. */
1955
1956static void
acdb74a0
AC
1957mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1958 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1959{
1960 CORE_ADDR cur_pc;
1961 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1962 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1963 unsigned inst = 0; /* current instruction */
1964 unsigned entry_inst = 0; /* the entry instruction */
1965 int reg, offset;
1966
c5aa993b
JM
1967 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1968 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1969
1970 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1971 {
1972 /* Save the previous instruction. If it's an EXTEND, we'll extract
1973 the immediate offset extension from it in mips16_get_imm. */
1974 prev_inst = inst;
1975
1976 /* Fetch and decode the instruction. */
1977 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1978 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1979 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1980 {
1981 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1982 if (offset < 0) /* negative stack adjustment? */
1983 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1984 else
1985 /* Exit loop if a positive stack adjustment is found, which
1986 usually means that the stack cleanup code in the function
1987 epilogue is reached. */
1988 break;
1989 }
1990 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1991 {
1992 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1993 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1994 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1995 set_reg_offset (reg, sp + offset);
1996 }
1997 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1998 {
1999 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2000 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2001 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
2002 set_reg_offset (reg, sp + offset);
2003 }
2004 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2005 {
2006 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2007 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
2008 set_reg_offset (RA_REGNUM, sp + offset);
2009 }
2010 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2011 {
2012 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2013 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
2014 set_reg_offset (RA_REGNUM, sp + offset);
2015 }
c5aa993b 2016 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2017 {
2018 frame_addr = sp;
2019 PROC_FRAME_REG (&temp_proc_desc) = 17;
2020 }
2021 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2022 {
2023 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2024 frame_addr = sp + offset;
2025 PROC_FRAME_REG (&temp_proc_desc) = 17;
2026 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2027 }
2028 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2029 {
2030 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2031 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2032 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2033 set_reg_offset (reg, frame_addr + offset);
2034 }
2035 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2036 {
2037 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2038 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2039 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2040 set_reg_offset (reg, frame_addr + offset);
2041 }
c5aa993b
JM
2042 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2043 entry_inst = inst; /* save for later processing */
c906108c 2044 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2045 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2046 }
2047
c5aa993b
JM
2048 /* The entry instruction is typically the first instruction in a function,
2049 and it stores registers at offsets relative to the value of the old SP
2050 (before the prologue). But the value of the sp parameter to this
2051 function is the new SP (after the prologue has been executed). So we
2052 can't calculate those offsets until we've seen the entire prologue,
2053 and can calculate what the old SP must have been. */
2054 if (entry_inst != 0)
2055 {
2056 int areg_count = (entry_inst >> 8) & 7;
2057 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2058
c5aa993b
JM
2059 /* The entry instruction always subtracts 32 from the SP. */
2060 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2061
c5aa993b
JM
2062 /* Now we can calculate what the SP must have been at the
2063 start of the function prologue. */
2064 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2065
c5aa993b
JM
2066 /* Check if a0-a3 were saved in the caller's argument save area. */
2067 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2068 {
2069 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2070 set_reg_offset (reg, sp + offset);
2071 offset += MIPS_SAVED_REGSIZE;
2072 }
c906108c 2073
c5aa993b
JM
2074 /* Check if the ra register was pushed on the stack. */
2075 offset = -4;
2076 if (entry_inst & 0x20)
2077 {
2078 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2079 set_reg_offset (RA_REGNUM, sp + offset);
2080 offset -= MIPS_SAVED_REGSIZE;
2081 }
c906108c 2082
c5aa993b
JM
2083 /* Check if the s0 and s1 registers were pushed on the stack. */
2084 for (reg = 16; reg < sreg_count + 16; reg++)
2085 {
2086 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2087 set_reg_offset (reg, sp + offset);
2088 offset -= MIPS_SAVED_REGSIZE;
2089 }
2090 }
c906108c
SS
2091}
2092
2093static void
fba45db2
KB
2094mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2095 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2096{
2097 CORE_ADDR cur_pc;
c5aa993b 2098 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2099restart:
fe29b929 2100 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2101 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2102 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2103 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2104 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2105 {
2106 unsigned long inst, high_word, low_word;
2107 int reg;
2108
2109 /* Fetch the instruction. */
2110 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2111
2112 /* Save some code by pre-extracting some useful fields. */
2113 high_word = (inst >> 16) & 0xffff;
2114 low_word = inst & 0xffff;
2115 reg = high_word & 0x1f;
2116
c5aa993b 2117 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2118 || high_word == 0x23bd /* addi $sp,$sp,-i */
2119 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2120 {
2121 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2122 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2123 else
2124 /* Exit loop if a positive stack adjustment is found, which
2125 usually means that the stack cleanup code in the function
2126 epilogue is reached. */
2127 break;
2128 }
2129 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2130 {
c5aa993b 2131 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2132 set_reg_offset (reg, sp + low_word);
2133 }
2134 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2135 {
2136 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2137 but the register size used is only 32 bits. Make the address
2138 for the saved register point to the lower 32 bits. */
c5aa993b 2139 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2140 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2141 }
c5aa993b 2142 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2143 {
2144 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2145 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2146 frame_addr = sp + low_word;
c906108c
SS
2147 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2148 {
2149 unsigned alloca_adjust;
2150 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2151 frame_addr = read_next_frame_reg (next_frame, 30);
2152 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2153 if (alloca_adjust > 0)
2154 {
2155 /* FP > SP + frame_size. This may be because
2156 * of an alloca or somethings similar.
2157 * Fix sp to "pre-alloca" value, and try again.
2158 */
2159 sp += alloca_adjust;
2160 goto restart;
2161 }
2162 }
2163 }
c5aa993b
JM
2164 /* move $30,$sp. With different versions of gas this will be either
2165 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2166 Accept any one of these. */
c906108c
SS
2167 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2168 {
2169 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2170 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2171 {
2172 unsigned alloca_adjust;
2173 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2174 frame_addr = read_next_frame_reg (next_frame, 30);
2175 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2176 if (alloca_adjust > 0)
2177 {
2178 /* FP > SP + frame_size. This may be because
2179 * of an alloca or somethings similar.
2180 * Fix sp to "pre-alloca" value, and try again.
2181 */
2182 sp += alloca_adjust;
2183 goto restart;
2184 }
2185 }
2186 }
c5aa993b 2187 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2188 {
c5aa993b 2189 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2190 set_reg_offset (reg, frame_addr + low_word);
2191 }
2192 }
2193}
2194
2195static mips_extra_func_info_t
acdb74a0 2196heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2197 struct frame_info *next_frame, int cur_frame)
c906108c 2198{
479412cd
DJ
2199 CORE_ADDR sp;
2200
2201 if (cur_frame)
2202 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2203 else
2204 sp = 0;
c906108c 2205
c5aa993b
JM
2206 if (start_pc == 0)
2207 return NULL;
2208 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2209 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2210 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2211 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2212 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2213 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2214
2215 if (start_pc + 200 < limit_pc)
2216 limit_pc = start_pc + 200;
2217 if (pc_is_mips16 (start_pc))
2218 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2219 else
2220 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2221 return &temp_proc_desc;
2222}
2223
6c0d6680
DJ
2224struct mips_objfile_private
2225{
2226 bfd_size_type size;
2227 char *contents;
2228};
2229
2230/* Global used to communicate between non_heuristic_proc_desc and
2231 compare_pdr_entries within qsort (). */
2232static bfd *the_bfd;
2233
2234static int
2235compare_pdr_entries (const void *a, const void *b)
2236{
2237 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2238 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2239
2240 if (lhs < rhs)
2241 return -1;
2242 else if (lhs == rhs)
2243 return 0;
2244 else
2245 return 1;
2246}
2247
c906108c 2248static mips_extra_func_info_t
acdb74a0 2249non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2250{
2251 CORE_ADDR startaddr;
2252 mips_extra_func_info_t proc_desc;
c5aa993b 2253 struct block *b = block_for_pc (pc);
c906108c 2254 struct symbol *sym;
6c0d6680
DJ
2255 struct obj_section *sec;
2256 struct mips_objfile_private *priv;
2257
ae45cd16 2258 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2259 return NULL;
c906108c
SS
2260
2261 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2262 if (addrptr)
2263 *addrptr = startaddr;
6c0d6680
DJ
2264
2265 priv = NULL;
2266
2267 sec = find_pc_section (pc);
2268 if (sec != NULL)
c906108c 2269 {
6c0d6680
DJ
2270 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2271
2272 /* Search the ".pdr" section generated by GAS. This includes most of
2273 the information normally found in ECOFF PDRs. */
2274
2275 the_bfd = sec->objfile->obfd;
2276 if (priv == NULL
2277 && (the_bfd->format == bfd_object
2278 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2279 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2280 {
2281 /* Right now GAS only outputs the address as a four-byte sequence.
2282 This means that we should not bother with this method on 64-bit
2283 targets (until that is fixed). */
2284
2285 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_objfile_private));
2287 priv->size = 0;
2288 sec->objfile->obj_private = priv;
2289 }
2290 else if (priv == NULL)
2291 {
2292 asection *bfdsec;
2293
2294 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2295 sizeof (struct mips_objfile_private));
2296
2297 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2298 if (bfdsec != NULL)
2299 {
2300 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2301 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2302 priv->size);
2303 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2304 priv->contents, 0, priv->size);
2305
2306 /* In general, the .pdr section is sorted. However, in the
2307 presence of multiple code sections (and other corner cases)
2308 it can become unsorted. Sort it so that we can use a faster
2309 binary search. */
2310 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2311 }
2312 else
2313 priv->size = 0;
2314
2315 sec->objfile->obj_private = priv;
2316 }
2317 the_bfd = NULL;
2318
2319 if (priv->size != 0)
2320 {
2321 int low, mid, high;
2322 char *ptr;
2323
2324 low = 0;
2325 high = priv->size / 32;
2326
2327 do
2328 {
2329 CORE_ADDR pdr_pc;
2330
2331 mid = (low + high) / 2;
2332
2333 ptr = priv->contents + mid * 32;
2334 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2335 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2336 SECT_OFF_TEXT (sec->objfile));
2337 if (pdr_pc == startaddr)
2338 break;
2339 if (pdr_pc > startaddr)
2340 high = mid;
2341 else
2342 low = mid + 1;
2343 }
2344 while (low != high);
2345
2346 if (low != high)
2347 {
2348 struct symbol *sym = find_pc_function (pc);
2349
2350 /* Fill in what we need of the proc_desc. */
2351 proc_desc = (mips_extra_func_info_t)
2352 obstack_alloc (&sec->objfile->psymbol_obstack,
2353 sizeof (struct mips_extra_func_info));
2354 PROC_LOW_ADDR (proc_desc) = startaddr;
2355
2356 /* Only used for dummy frames. */
2357 PROC_HIGH_ADDR (proc_desc) = 0;
2358
2359 PROC_FRAME_OFFSET (proc_desc)
2360 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2361 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2362 ptr + 24);
2363 PROC_FRAME_ADJUST (proc_desc) = 0;
2364 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2365 ptr + 4);
2366 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2367 ptr + 12);
2368 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2369 ptr + 8);
2370 PROC_FREG_OFFSET (proc_desc)
2371 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2372 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2373 ptr + 28);
2374 proc_desc->pdr.isym = (long) sym;
2375
2376 return proc_desc;
2377 }
2378 }
c906108c
SS
2379 }
2380
6c0d6680
DJ
2381 if (b == NULL)
2382 return NULL;
2383
2384 if (startaddr > BLOCK_START (b))
2385 {
2386 /* This is the "pathological" case referred to in a comment in
2387 print_frame_info. It might be better to move this check into
2388 symbol reading. */
2389 return NULL;
2390 }
2391
2392 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2393
c906108c
SS
2394 /* If we never found a PDR for this function in symbol reading, then
2395 examine prologues to find the information. */
2396 if (sym)
2397 {
2398 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2399 if (PROC_FRAME_REG (proc_desc) == -1)
2400 return NULL;
2401 else
2402 return proc_desc;
2403 }
2404 else
2405 return NULL;
2406}
2407
2408
2409static mips_extra_func_info_t
479412cd 2410find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2411{
2412 mips_extra_func_info_t proc_desc;
4e0df2df 2413 CORE_ADDR startaddr = 0;
c906108c
SS
2414
2415 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2416
2417 if (proc_desc)
2418 {
2419 /* IF this is the topmost frame AND
2420 * (this proc does not have debugging information OR
2421 * the PC is in the procedure prologue)
2422 * THEN create a "heuristic" proc_desc (by analyzing
2423 * the actual code) to replace the "official" proc_desc.
2424 */
2425 if (next_frame == NULL)
2426 {
2427 struct symtab_and_line val;
2428 struct symbol *proc_symbol =
c86b5b38 2429 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2430
2431 if (proc_symbol)
2432 {
2433 val = find_pc_line (BLOCK_START
c5aa993b 2434 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2435 0);
2436 val.pc = val.end ? val.end : pc;
2437 }
2438 if (!proc_symbol || pc < val.pc)
2439 {
2440 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2441 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2442 pc, next_frame, cur_frame);
c906108c
SS
2443 if (found_heuristic)
2444 proc_desc = found_heuristic;
2445 }
2446 }
2447 }
2448 else
2449 {
2450 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2451 by procedure call dummys. However, the procedures being called ought
2452 to have their own proc_descs, and even if they don't,
2453 heuristic_proc_desc knows how to create them! */
c906108c
SS
2454
2455 register struct linked_proc_info *link;
2456
2457 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2458 if (PROC_LOW_ADDR (&link->info) <= pc
2459 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2460 return &link->info;
2461
2462 if (startaddr == 0)
2463 startaddr = heuristic_proc_start (pc);
2464
2465 proc_desc =
479412cd 2466 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2467 }
2468 return proc_desc;
2469}
2470
2471static CORE_ADDR
acdb74a0
AC
2472get_frame_pointer (struct frame_info *frame,
2473 mips_extra_func_info_t proc_desc)
c906108c 2474{
e227b13c
AC
2475 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2476 + PROC_FRAME_OFFSET (proc_desc)
2477 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2478}
2479
5a89d8aa 2480static mips_extra_func_info_t cached_proc_desc;
c906108c 2481
f7ab6ec6 2482static CORE_ADDR
acdb74a0 2483mips_frame_chain (struct frame_info *frame)
c906108c
SS
2484{
2485 mips_extra_func_info_t proc_desc;
2486 CORE_ADDR tmp;
8bedc050 2487 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
2488
2489 if (saved_pc == 0 || inside_entry_file (saved_pc))
2490 return 0;
2491
2492 /* Check if the PC is inside a call stub. If it is, fetch the
2493 PC of the caller of that stub. */
5a89d8aa 2494 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2495 saved_pc = tmp;
2496
ae45cd16 2497 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2498 {
2499 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2500 is well, frame->frame the bottom of the current frame will
2501 contain that value. */
1e2330ba 2502 return get_frame_base (frame);
cedea778
AC
2503 }
2504
c906108c 2505 /* Look up the procedure descriptor for this PC. */
479412cd 2506 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2507 if (!proc_desc)
2508 return 0;
2509
2510 cached_proc_desc = proc_desc;
2511
2512 /* If no frame pointer and frame size is zero, we must be at end
2513 of stack (or otherwise hosed). If we don't check frame size,
2514 we loop forever if we see a zero size frame. */
2515 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2516 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2517 /* The previous frame from a sigtramp frame might be frameless
2518 and have frame size zero. */
5a203e44 2519 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2520 /* For a generic dummy frame, let get_frame_pointer() unwind a
2521 register value saved as part of the dummy frame call. */
50abf9e5 2522 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2523 return 0;
2524 else
2525 return get_frame_pointer (frame, proc_desc);
2526}
2527
f7ab6ec6 2528static void
acdb74a0 2529mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2530{
2531 int regnum;
f2c16bd6
KB
2532 mips_extra_func_info_t proc_desc;
2533
2534 if (get_frame_type (fci) == DUMMY_FRAME)
2535 return;
c906108c 2536
f796e4be
KB
2537 /* Use proc_desc calculated in frame_chain. When there is no
2538 next frame, i.e, get_next_frame (fci) == NULL, we call
2539 find_proc_desc () to calculate it, passing an explicit
2540 NULL as the frame parameter. */
f2c16bd6 2541 proc_desc =
11c02a10
AC
2542 get_next_frame (fci)
2543 ? cached_proc_desc
f796e4be
KB
2544 : find_proc_desc (get_frame_pc (fci),
2545 NULL /* i.e, get_next_frame (fci) */,
2546 1);
c906108c 2547
a00a19e9 2548 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2549
7b5849cc 2550 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2551 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2552 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2553 if (proc_desc)
2554 {
2555 /* Fixup frame-pointer - only needed for top frame */
2556 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2557 Get the value of the frame relative sp, procedure might have been
2558 interrupted by a signal at it's very start. */
50abf9e5 2559 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2560 && !PROC_DESC_IS_DUMMY (proc_desc))
11c02a10 2561 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
50abf9e5 2562 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2563 /* Do not ``fix'' fci->frame. It will have the value of the
2564 generic dummy frame's top-of-stack (since the draft
2565 fci->frame is obtained by returning the unwound stack
2566 pointer) and that is what we want. That way the fci->frame
2567 value will match the top-of-stack value that was saved as
2568 part of the dummy frames data. */
2569 /* Do nothing. */;
c906108c 2570 else
11c02a10 2571 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2572
2573 if (proc_desc == &temp_proc_desc)
2574 {
2575 char *name;
2576
2577 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2578 mips_find_saved_registers will do that for us. We can't
2579 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2580 yet set. */
2581 /* FIXME: cagney/2002-11-18: This problem will go away once
2582 frame.c:get_prev_frame() is modified to set the frame's
2583 type before calling functions like this. */
50abf9e5 2584 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2585 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2586 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2587 {
c5aa993b 2588 frame_saved_regs_zalloc (fci);
b2fb4676
AC
2589 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2590 get_frame_saved_regs (fci)[PC_REGNUM]
2591 = get_frame_saved_regs (fci)[RA_REGNUM];
ffabd70d
KB
2592 /* Set value of previous frame's stack pointer. Remember that
2593 saved_regs[SP_REGNUM] is special in that it contains the
2594 value of the stack pointer register. The other saved_regs
2595 values are addresses (in the inferior) at which a given
2596 register's value may be found. */
1e2330ba 2597 get_frame_saved_regs (fci)[SP_REGNUM] = get_frame_base (fci);
c906108c
SS
2598 }
2599 }
2600
2601 /* hack: if argument regs are saved, guess these contain args */
cce74817 2602 /* assume we can't tell how many args for now */
da50a4b7 2603 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2604 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2605 {
c5aa993b 2606 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2607 {
da50a4b7 2608 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2609 break;
2610 }
c5aa993b 2611 }
c906108c
SS
2612 }
2613}
2614
2615/* MIPS stack frames are almost impenetrable. When execution stops,
2616 we basically have to look at symbol information for the function
2617 that we stopped in, which tells us *which* register (if any) is
2618 the base of the frame pointer, and what offset from that register
361d1df0 2619 the frame itself is at.
c906108c
SS
2620
2621 This presents a problem when trying to examine a stack in memory
2622 (that isn't executing at the moment), using the "frame" command. We
2623 don't have a PC, nor do we have any registers except SP.
2624
2625 This routine takes two arguments, SP and PC, and tries to make the
2626 cached frames look as if these two arguments defined a frame on the
2627 cache. This allows the rest of info frame to extract the important
2628 arguments without difficulty. */
2629
2630struct frame_info *
acdb74a0 2631setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2632{
2633 if (argc != 2)
2634 error ("MIPS frame specifications require two arguments: sp and pc");
2635
2636 return create_new_frame (argv[0], argv[1]);
2637}
2638
f09ded24
AC
2639/* According to the current ABI, should the type be passed in a
2640 floating-point register (assuming that there is space)? When there
2641 is no FPU, FP are not even considered as possibile candidates for
2642 FP registers and, consequently this returns false - forces FP
2643 arguments into integer registers. */
2644
2645static int
2646fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2647{
2648 return ((typecode == TYPE_CODE_FLT
2649 || (MIPS_EABI
2650 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2651 && TYPE_NFIELDS (arg_type) == 1
2652 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2653 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2654}
2655
49e790b0
DJ
2656/* On o32, argument passing in GPRs depends on the alignment of the type being
2657 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2658
2659static int
2660mips_type_needs_double_align (struct type *type)
2661{
2662 enum type_code typecode = TYPE_CODE (type);
361d1df0 2663
49e790b0
DJ
2664 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2665 return 1;
2666 else if (typecode == TYPE_CODE_STRUCT)
2667 {
2668 if (TYPE_NFIELDS (type) < 1)
2669 return 0;
2670 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2671 }
2672 else if (typecode == TYPE_CODE_UNION)
2673 {
361d1df0 2674 int i, n;
49e790b0
DJ
2675
2676 n = TYPE_NFIELDS (type);
2677 for (i = 0; i < n; i++)
2678 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2679 return 1;
2680 return 0;
2681 }
2682 return 0;
2683}
2684
cb3d25d1
MS
2685/* Macros to round N up or down to the next A boundary;
2686 A must be a power of two. */
2687
2688#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2689#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2690
dc604539
AC
2691/* Adjust the address downward (direction of stack growth) so that it
2692 is correctly aligned for a new stack frame. */
2693static CORE_ADDR
2694mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2695{
2696 return ROUND_DOWN (addr, 16);
2697}
2698
f7ab6ec6 2699static CORE_ADDR
46e0f506
MS
2700mips_eabi_push_arguments (int nargs,
2701 struct value **args,
2702 CORE_ADDR sp,
2703 int struct_return,
2704 CORE_ADDR struct_addr)
c906108c
SS
2705{
2706 int argreg;
2707 int float_argreg;
2708 int argnum;
2709 int len = 0;
2710 int stack_offset = 0;
2711
c906108c 2712 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2713 are properly aligned. The stack has to be at least 64-bit
2714 aligned even on 32-bit machines, because doubles must be 64-bit
2715 aligned. For n32 and n64, stack frames need to be 128-bit
2716 aligned, so we round to this widest known alignment. */
2717
c906108c 2718 sp = ROUND_DOWN (sp, 16);
cce41527 2719 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2720
46e0f506 2721 /* Now make space on the stack for the args. We allocate more
c906108c 2722 than necessary for EABI, because the first few arguments are
46e0f506 2723 passed in registers, but that's OK. */
c906108c 2724 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2725 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2726 MIPS_STACK_ARGSIZE);
c906108c
SS
2727 sp -= ROUND_UP (len, 16);
2728
9ace0497 2729 if (mips_debug)
46e0f506
MS
2730 fprintf_unfiltered (gdb_stdlog,
2731 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2732 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2733
c906108c
SS
2734 /* Initialize the integer and float register pointers. */
2735 argreg = A0_REGNUM;
2736 float_argreg = FPA0_REGNUM;
2737
46e0f506 2738 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2739 if (struct_return)
9ace0497
AC
2740 {
2741 if (mips_debug)
2742 fprintf_unfiltered (gdb_stdlog,
46e0f506 2743 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2744 argreg, paddr_nz (struct_addr));
9ace0497
AC
2745 write_register (argreg++, struct_addr);
2746 }
c906108c
SS
2747
2748 /* Now load as many as possible of the first arguments into
2749 registers, and push the rest onto the stack. Loop thru args
2750 from first to last. */
2751 for (argnum = 0; argnum < nargs; argnum++)
2752 {
2753 char *val;
d9d9c31f 2754 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2755 struct value *arg = args[argnum];
c906108c
SS
2756 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2757 int len = TYPE_LENGTH (arg_type);
2758 enum type_code typecode = TYPE_CODE (arg_type);
2759
9ace0497
AC
2760 if (mips_debug)
2761 fprintf_unfiltered (gdb_stdlog,
46e0f506 2762 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2763 argnum + 1, len, (int) typecode);
9ace0497 2764
c906108c 2765 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2766 reference. */
2767 if (len > MIPS_SAVED_REGSIZE
9ace0497 2768 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2769 {
7a292a7a 2770 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2771 typecode = TYPE_CODE_PTR;
7a292a7a 2772 len = MIPS_SAVED_REGSIZE;
c906108c 2773 val = valbuf;
9ace0497
AC
2774 if (mips_debug)
2775 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2776 }
2777 else
c5aa993b 2778 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2779
2780 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2781 even-numbered floating point register. Round the FP register
2782 up before the check to see if there are any FP registers
46e0f506
MS
2783 left. Non MIPS_EABI targets also pass the FP in the integer
2784 registers so also round up normal registers. */
acdb74a0
AC
2785 if (!FP_REGISTER_DOUBLE
2786 && fp_register_arg_p (typecode, arg_type))
2787 {
2788 if ((float_argreg & 1))
2789 float_argreg++;
2790 }
c906108c
SS
2791
2792 /* Floating point arguments passed in registers have to be
2793 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2794 are passed in register pairs; the even register gets
2795 the low word, and the odd register gets the high word.
2796 On non-EABI processors, the first two floating point arguments are
2797 also copied to general registers, because MIPS16 functions
2798 don't use float registers for arguments. This duplication of
2799 arguments in general registers can't hurt non-MIPS16 functions
2800 because those registers are normally skipped. */
1012bd0e
EZ
2801 /* MIPS_EABI squeezes a struct that contains a single floating
2802 point value into an FP register instead of pushing it onto the
46e0f506 2803 stack. */
f09ded24
AC
2804 if (fp_register_arg_p (typecode, arg_type)
2805 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2806 {
2807 if (!FP_REGISTER_DOUBLE && len == 8)
2808 {
d7449b42 2809 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2810 unsigned long regval;
2811
2812 /* Write the low word of the double to the even register(s). */
c5aa993b 2813 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2814 if (mips_debug)
acdb74a0 2815 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2816 float_argreg, phex (regval, 4));
c906108c 2817 write_register (float_argreg++, regval);
c906108c
SS
2818
2819 /* Write the high word of the double to the odd register(s). */
c5aa993b 2820 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2821 if (mips_debug)
acdb74a0 2822 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2823 float_argreg, phex (regval, 4));
c906108c 2824 write_register (float_argreg++, regval);
c906108c
SS
2825 }
2826 else
2827 {
2828 /* This is a floating point value that fits entirely
2829 in a single register. */
53a5351d 2830 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2831 above to ensure that it is even register aligned. */
9ace0497
AC
2832 LONGEST regval = extract_unsigned_integer (val, len);
2833 if (mips_debug)
acdb74a0 2834 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2835 float_argreg, phex (regval, len));
c906108c 2836 write_register (float_argreg++, regval);
c906108c
SS
2837 }
2838 }
2839 else
2840 {
2841 /* Copy the argument to general registers or the stack in
2842 register-sized pieces. Large arguments are split between
2843 registers and stack. */
2844 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2845 are treated specially: Irix cc passes them in registers
2846 where gcc sometimes puts them on the stack. For maximum
2847 compatibility, we will put them in both places. */
c5aa993b 2848 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2849 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2850
f09ded24 2851 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2852 register are only written to memory. */
c906108c
SS
2853 while (len > 0)
2854 {
ebafbe83 2855 /* Remember if the argument was written to the stack. */
566f0f7a 2856 int stack_used_p = 0;
46e0f506
MS
2857 int partial_len =
2858 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2859
acdb74a0
AC
2860 if (mips_debug)
2861 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2862 partial_len);
2863
566f0f7a 2864 /* Write this portion of the argument to the stack. */
f09ded24
AC
2865 if (argreg > MIPS_LAST_ARG_REGNUM
2866 || odd_sized_struct
2867 || fp_register_arg_p (typecode, arg_type))
c906108c 2868 {
c906108c
SS
2869 /* Should shorter than int integer values be
2870 promoted to int before being stored? */
c906108c 2871 int longword_offset = 0;
9ace0497 2872 CORE_ADDR addr;
566f0f7a 2873 stack_used_p = 1;
d7449b42 2874 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2875 {
d929b26f 2876 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2877 (typecode == TYPE_CODE_INT ||
2878 typecode == TYPE_CODE_PTR ||
2879 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2880 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2881 else if ((typecode == TYPE_CODE_STRUCT ||
2882 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2883 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2884 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2885 }
c5aa993b 2886
9ace0497
AC
2887 if (mips_debug)
2888 {
cb3d25d1
MS
2889 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2890 paddr_nz (stack_offset));
2891 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2892 paddr_nz (longword_offset));
9ace0497 2893 }
361d1df0 2894
9ace0497
AC
2895 addr = sp + stack_offset + longword_offset;
2896
2897 if (mips_debug)
2898 {
2899 int i;
cb3d25d1
MS
2900 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2901 paddr_nz (addr));
9ace0497
AC
2902 for (i = 0; i < partial_len; i++)
2903 {
cb3d25d1
MS
2904 fprintf_unfiltered (gdb_stdlog, "%02x",
2905 val[i] & 0xff);
9ace0497
AC
2906 }
2907 }
2908 write_memory (addr, val, partial_len);
c906108c
SS
2909 }
2910
f09ded24
AC
2911 /* Note!!! This is NOT an else clause. Odd sized
2912 structs may go thru BOTH paths. Floating point
46e0f506 2913 arguments will not. */
566f0f7a 2914 /* Write this portion of the argument to a general
46e0f506 2915 purpose register. */
f09ded24
AC
2916 if (argreg <= MIPS_LAST_ARG_REGNUM
2917 && !fp_register_arg_p (typecode, arg_type))
c906108c 2918 {
9ace0497 2919 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2920
9ace0497 2921 if (mips_debug)
acdb74a0 2922 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2923 argreg,
2924 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2925 write_register (argreg, regval);
2926 argreg++;
c906108c 2927 }
c5aa993b 2928
c906108c
SS
2929 len -= partial_len;
2930 val += partial_len;
2931
566f0f7a
AC
2932 /* Compute the the offset into the stack at which we
2933 will copy the next parameter.
2934
566f0f7a 2935 In the new EABI (and the NABI32), the stack_offset
46e0f506 2936 only needs to be adjusted when it has been used. */
c906108c 2937
46e0f506 2938 if (stack_used_p)
d929b26f 2939 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2940 }
2941 }
9ace0497
AC
2942 if (mips_debug)
2943 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2944 }
2945
0f71a2f6
JM
2946 /* Return adjusted stack pointer. */
2947 return sp;
2948}
2949
ebafbe83
MS
2950/* N32/N64 version of push_arguments. */
2951
f7ab6ec6 2952static CORE_ADDR
cb3d25d1
MS
2953mips_n32n64_push_arguments (int nargs,
2954 struct value **args,
2955 CORE_ADDR sp,
2956 int struct_return,
2957 CORE_ADDR struct_addr)
2958{
2959 int argreg;
2960 int float_argreg;
2961 int argnum;
2962 int len = 0;
2963 int stack_offset = 0;
2964
2965 /* First ensure that the stack and structure return address (if any)
2966 are properly aligned. The stack has to be at least 64-bit
2967 aligned even on 32-bit machines, because doubles must be 64-bit
2968 aligned. For n32 and n64, stack frames need to be 128-bit
2969 aligned, so we round to this widest known alignment. */
2970
2971 sp = ROUND_DOWN (sp, 16);
2972 struct_addr = ROUND_DOWN (struct_addr, 16);
2973
2974 /* Now make space on the stack for the args. */
2975 for (argnum = 0; argnum < nargs; argnum++)
2976 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2977 MIPS_STACK_ARGSIZE);
2978 sp -= ROUND_UP (len, 16);
2979
2980 if (mips_debug)
2981 fprintf_unfiltered (gdb_stdlog,
2982 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2983 paddr_nz (sp), ROUND_UP (len, 16));
2984
2985 /* Initialize the integer and float register pointers. */
2986 argreg = A0_REGNUM;
2987 float_argreg = FPA0_REGNUM;
2988
46e0f506 2989 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2990 if (struct_return)
2991 {
2992 if (mips_debug)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2995 argreg, paddr_nz (struct_addr));
2996 write_register (argreg++, struct_addr);
2997 }
2998
2999 /* Now load as many as possible of the first arguments into
3000 registers, and push the rest onto the stack. Loop thru args
3001 from first to last. */
3002 for (argnum = 0; argnum < nargs; argnum++)
3003 {
3004 char *val;
d9d9c31f 3005 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3006 struct value *arg = args[argnum];
3007 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3008 int len = TYPE_LENGTH (arg_type);
3009 enum type_code typecode = TYPE_CODE (arg_type);
3010
3011 if (mips_debug)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "mips_n32n64_push_arguments: %d len=%d type=%d",
3014 argnum + 1, len, (int) typecode);
3015
3016 val = (char *) VALUE_CONTENTS (arg);
3017
3018 if (fp_register_arg_p (typecode, arg_type)
3019 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3020 {
3021 /* This is a floating point value that fits entirely
3022 in a single register. */
3023 /* On 32 bit ABI's the float_argreg is further adjusted
3024 above to ensure that it is even register aligned. */
3025 LONGEST regval = extract_unsigned_integer (val, len);
3026 if (mips_debug)
3027 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3028 float_argreg, phex (regval, len));
3029 write_register (float_argreg++, regval);
3030
3031 if (mips_debug)
3032 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3033 argreg, phex (regval, len));
3034 write_register (argreg, regval);
3035 argreg += 1;
3036 }
3037 else
3038 {
3039 /* Copy the argument to general registers or the stack in
3040 register-sized pieces. Large arguments are split between
3041 registers and stack. */
3042 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3043 are treated specially: Irix cc passes them in registers
3044 where gcc sometimes puts them on the stack. For maximum
3045 compatibility, we will put them in both places. */
3046 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3047 (len % MIPS_SAVED_REGSIZE != 0));
3048 /* Note: Floating-point values that didn't fit into an FP
3049 register are only written to memory. */
3050 while (len > 0)
3051 {
3052 /* Rememer if the argument was written to the stack. */
3053 int stack_used_p = 0;
3054 int partial_len = len < MIPS_SAVED_REGSIZE ?
3055 len : MIPS_SAVED_REGSIZE;
3056
3057 if (mips_debug)
3058 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3059 partial_len);
3060
3061 /* Write this portion of the argument to the stack. */
3062 if (argreg > MIPS_LAST_ARG_REGNUM
3063 || odd_sized_struct
3064 || fp_register_arg_p (typecode, arg_type))
3065 {
3066 /* Should shorter than int integer values be
3067 promoted to int before being stored? */
3068 int longword_offset = 0;
3069 CORE_ADDR addr;
3070 stack_used_p = 1;
3071 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3072 {
3073 if (MIPS_STACK_ARGSIZE == 8 &&
3074 (typecode == TYPE_CODE_INT ||
3075 typecode == TYPE_CODE_PTR ||
3076 typecode == TYPE_CODE_FLT) && len <= 4)
3077 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3078 }
3079
3080 if (mips_debug)
3081 {
3082 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3083 paddr_nz (stack_offset));
3084 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3085 paddr_nz (longword_offset));
3086 }
3087
3088 addr = sp + stack_offset + longword_offset;
3089
3090 if (mips_debug)
3091 {
3092 int i;
3093 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3094 paddr_nz (addr));
3095 for (i = 0; i < partial_len; i++)
3096 {
3097 fprintf_unfiltered (gdb_stdlog, "%02x",
3098 val[i] & 0xff);
3099 }
3100 }
3101 write_memory (addr, val, partial_len);
3102 }
3103
3104 /* Note!!! This is NOT an else clause. Odd sized
3105 structs may go thru BOTH paths. Floating point
3106 arguments will not. */
3107 /* Write this portion of the argument to a general
3108 purpose register. */
3109 if (argreg <= MIPS_LAST_ARG_REGNUM
3110 && !fp_register_arg_p (typecode, arg_type))
3111 {
3112 LONGEST regval = extract_unsigned_integer (val, partial_len);
3113
3114 /* A non-floating-point argument being passed in a
3115 general register. If a struct or union, and if
3116 the remaining length is smaller than the register
3117 size, we have to adjust the register value on
3118 big endian targets.
3119
3120 It does not seem to be necessary to do the
3121 same for integral types.
3122
3123 cagney/2001-07-23: gdb/179: Also, GCC, when
3124 outputting LE O32 with sizeof (struct) <
3125 MIPS_SAVED_REGSIZE, generates a left shift as
3126 part of storing the argument in a register a
3127 register (the left shift isn't generated when
3128 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3129 is quite possible that this is GCC contradicting
3130 the LE/O32 ABI, GDB has not been adjusted to
3131 accommodate this. Either someone needs to
3132 demonstrate that the LE/O32 ABI specifies such a
3133 left shift OR this new ABI gets identified as
3134 such and GDB gets tweaked accordingly. */
3135
3136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3137 && partial_len < MIPS_SAVED_REGSIZE
3138 && (typecode == TYPE_CODE_STRUCT ||
3139 typecode == TYPE_CODE_UNION))
3140 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3141 TARGET_CHAR_BIT);
3142
3143 if (mips_debug)
3144 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3145 argreg,
3146 phex (regval, MIPS_SAVED_REGSIZE));
3147 write_register (argreg, regval);
3148 argreg++;
3149 }
3150
3151 len -= partial_len;
3152 val += partial_len;
3153
3154 /* Compute the the offset into the stack at which we
3155 will copy the next parameter.
3156
3157 In N32 (N64?), the stack_offset only needs to be
3158 adjusted when it has been used. */
3159
3160 if (stack_used_p)
3161 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3162 }
3163 }
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, "\n");
3166 }
3167
3168 /* Return adjusted stack pointer. */
3169 return sp;
3170}
3171
46cac009 3172/* O32 version of push_arguments. */
ebafbe83 3173
46cac009
AC
3174static CORE_ADDR
3175mips_o32_push_arguments (int nargs,
3176 struct value **args,
3177 CORE_ADDR sp,
3178 int struct_return,
3179 CORE_ADDR struct_addr)
ebafbe83
MS
3180{
3181 int argreg;
3182 int float_argreg;
3183 int argnum;
3184 int len = 0;
3185 int stack_offset = 0;
ebafbe83
MS
3186
3187 /* First ensure that the stack and structure return address (if any)
3188 are properly aligned. The stack has to be at least 64-bit
3189 aligned even on 32-bit machines, because doubles must be 64-bit
3190 aligned. For n32 and n64, stack frames need to be 128-bit
3191 aligned, so we round to this widest known alignment. */
3192
3193 sp = ROUND_DOWN (sp, 16);
3194 struct_addr = ROUND_DOWN (struct_addr, 16);
3195
3196 /* Now make space on the stack for the args. */
3197 for (argnum = 0; argnum < nargs; argnum++)
3198 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3199 MIPS_STACK_ARGSIZE);
3200 sp -= ROUND_UP (len, 16);
3201
3202 if (mips_debug)
3203 fprintf_unfiltered (gdb_stdlog,
46cac009 3204 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3205 paddr_nz (sp), ROUND_UP (len, 16));
3206
3207 /* Initialize the integer and float register pointers. */
3208 argreg = A0_REGNUM;
3209 float_argreg = FPA0_REGNUM;
3210
bcb0cc15 3211 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3212 if (struct_return)
3213 {
3214 if (mips_debug)
3215 fprintf_unfiltered (gdb_stdlog,
46cac009 3216 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3217 argreg, paddr_nz (struct_addr));
3218 write_register (argreg++, struct_addr);
3219 stack_offset += MIPS_STACK_ARGSIZE;
3220 }
3221
3222 /* Now load as many as possible of the first arguments into
3223 registers, and push the rest onto the stack. Loop thru args
3224 from first to last. */
3225 for (argnum = 0; argnum < nargs; argnum++)
3226 {
3227 char *val;
d9d9c31f 3228 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3229 struct value *arg = args[argnum];
3230 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3231 int len = TYPE_LENGTH (arg_type);
3232 enum type_code typecode = TYPE_CODE (arg_type);
3233
3234 if (mips_debug)
3235 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3236 "mips_o32_push_arguments: %d len=%d type=%d",
3237 argnum + 1, len, (int) typecode);
3238
3239 val = (char *) VALUE_CONTENTS (arg);
3240
3241 /* 32-bit ABIs always start floating point arguments in an
3242 even-numbered floating point register. Round the FP register
3243 up before the check to see if there are any FP registers
3244 left. O32/O64 targets also pass the FP in the integer
3245 registers so also round up normal registers. */
3246 if (!FP_REGISTER_DOUBLE
3247 && fp_register_arg_p (typecode, arg_type))
3248 {
3249 if ((float_argreg & 1))
3250 float_argreg++;
3251 }
3252
3253 /* Floating point arguments passed in registers have to be
3254 treated specially. On 32-bit architectures, doubles
3255 are passed in register pairs; the even register gets
3256 the low word, and the odd register gets the high word.
3257 On O32/O64, the first two floating point arguments are
3258 also copied to general registers, because MIPS16 functions
3259 don't use float registers for arguments. This duplication of
3260 arguments in general registers can't hurt non-MIPS16 functions
3261 because those registers are normally skipped. */
3262
3263 if (fp_register_arg_p (typecode, arg_type)
3264 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3265 {
3266 if (!FP_REGISTER_DOUBLE && len == 8)
3267 {
3268 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3269 unsigned long regval;
3270
3271 /* Write the low word of the double to the even register(s). */
3272 regval = extract_unsigned_integer (val + low_offset, 4);
3273 if (mips_debug)
3274 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3275 float_argreg, phex (regval, 4));
3276 write_register (float_argreg++, regval);
3277 if (mips_debug)
3278 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3279 argreg, phex (regval, 4));
3280 write_register (argreg++, regval);
3281
3282 /* Write the high word of the double to the odd register(s). */
3283 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3284 if (mips_debug)
3285 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3286 float_argreg, phex (regval, 4));
3287 write_register (float_argreg++, regval);
3288
3289 if (mips_debug)
3290 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3291 argreg, phex (regval, 4));
3292 write_register (argreg++, regval);
3293 }
3294 else
3295 {
3296 /* This is a floating point value that fits entirely
3297 in a single register. */
3298 /* On 32 bit ABI's the float_argreg is further adjusted
3299 above to ensure that it is even register aligned. */
3300 LONGEST regval = extract_unsigned_integer (val, len);
3301 if (mips_debug)
3302 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3303 float_argreg, phex (regval, len));
3304 write_register (float_argreg++, regval);
3305 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3306 registers for each argument. The below is (my
3307 guess) to ensure that the corresponding integer
3308 register has reserved the same space. */
3309 if (mips_debug)
3310 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3311 argreg, phex (regval, len));
3312 write_register (argreg, regval);
3313 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3314 }
3315 /* Reserve space for the FP register. */
3316 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3317 }
3318 else
3319 {
3320 /* Copy the argument to general registers or the stack in
3321 register-sized pieces. Large arguments are split between
3322 registers and stack. */
3323 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3324 are treated specially: Irix cc passes them in registers
3325 where gcc sometimes puts them on the stack. For maximum
3326 compatibility, we will put them in both places. */
3327 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3328 (len % MIPS_SAVED_REGSIZE != 0));
3329 /* Structures should be aligned to eight bytes (even arg registers)
3330 on MIPS_ABI_O32, if their first member has double precision. */
3331 if (MIPS_SAVED_REGSIZE < 8
3332 && mips_type_needs_double_align (arg_type))
3333 {
3334 if ((argreg & 1))
3335 argreg++;
3336 }
3337 /* Note: Floating-point values that didn't fit into an FP
3338 register are only written to memory. */
3339 while (len > 0)
3340 {
3341 /* Remember if the argument was written to the stack. */
3342 int stack_used_p = 0;
3343 int partial_len =
3344 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3345
3346 if (mips_debug)
3347 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3348 partial_len);
3349
3350 /* Write this portion of the argument to the stack. */
3351 if (argreg > MIPS_LAST_ARG_REGNUM
3352 || odd_sized_struct
3353 || fp_register_arg_p (typecode, arg_type))
3354 {
3355 /* Should shorter than int integer values be
3356 promoted to int before being stored? */
3357 int longword_offset = 0;
3358 CORE_ADDR addr;
3359 stack_used_p = 1;
3360 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3361 {
3362 if (MIPS_STACK_ARGSIZE == 8 &&
3363 (typecode == TYPE_CODE_INT ||
3364 typecode == TYPE_CODE_PTR ||
3365 typecode == TYPE_CODE_FLT) && len <= 4)
3366 longword_offset = MIPS_STACK_ARGSIZE - len;
3367 }
3368
3369 if (mips_debug)
3370 {
3371 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3372 paddr_nz (stack_offset));
3373 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3374 paddr_nz (longword_offset));
3375 }
3376
3377 addr = sp + stack_offset + longword_offset;
3378
3379 if (mips_debug)
3380 {
3381 int i;
3382 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3383 paddr_nz (addr));
3384 for (i = 0; i < partial_len; i++)
3385 {
3386 fprintf_unfiltered (gdb_stdlog, "%02x",
3387 val[i] & 0xff);
3388 }
3389 }
3390 write_memory (addr, val, partial_len);
3391 }
3392
3393 /* Note!!! This is NOT an else clause. Odd sized
3394 structs may go thru BOTH paths. Floating point
3395 arguments will not. */
3396 /* Write this portion of the argument to a general
3397 purpose register. */
3398 if (argreg <= MIPS_LAST_ARG_REGNUM
3399 && !fp_register_arg_p (typecode, arg_type))
3400 {
3401 LONGEST regval = extract_signed_integer (val, partial_len);
3402 /* Value may need to be sign extended, because
3403 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3404
3405 /* A non-floating-point argument being passed in a
3406 general register. If a struct or union, and if
3407 the remaining length is smaller than the register
3408 size, we have to adjust the register value on
3409 big endian targets.
3410
3411 It does not seem to be necessary to do the
3412 same for integral types.
3413
3414 Also don't do this adjustment on O64 binaries.
3415
3416 cagney/2001-07-23: gdb/179: Also, GCC, when
3417 outputting LE O32 with sizeof (struct) <
3418 MIPS_SAVED_REGSIZE, generates a left shift as
3419 part of storing the argument in a register a
3420 register (the left shift isn't generated when
3421 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3422 is quite possible that this is GCC contradicting
3423 the LE/O32 ABI, GDB has not been adjusted to
3424 accommodate this. Either someone needs to
3425 demonstrate that the LE/O32 ABI specifies such a
3426 left shift OR this new ABI gets identified as
3427 such and GDB gets tweaked accordingly. */
3428
3429 if (MIPS_SAVED_REGSIZE < 8
3430 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3431 && partial_len < MIPS_SAVED_REGSIZE
3432 && (typecode == TYPE_CODE_STRUCT ||
3433 typecode == TYPE_CODE_UNION))
3434 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3435 TARGET_CHAR_BIT);
3436
3437 if (mips_debug)
3438 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3439 argreg,
3440 phex (regval, MIPS_SAVED_REGSIZE));
3441 write_register (argreg, regval);
3442 argreg++;
3443
3444 /* Prevent subsequent floating point arguments from
3445 being passed in floating point registers. */
3446 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3447 }
3448
3449 len -= partial_len;
3450 val += partial_len;
3451
3452 /* Compute the the offset into the stack at which we
3453 will copy the next parameter.
3454
3455 In older ABIs, the caller reserved space for
3456 registers that contained arguments. This was loosely
3457 refered to as their "home". Consequently, space is
3458 always allocated. */
3459
3460 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3461 }
3462 }
3463 if (mips_debug)
3464 fprintf_unfiltered (gdb_stdlog, "\n");
3465 }
3466
3467 /* Return adjusted stack pointer. */
3468 return sp;
3469}
3470
3471/* O64 version of push_arguments. */
3472
3473static CORE_ADDR
3474mips_o64_push_arguments (int nargs,
3475 struct value **args,
3476 CORE_ADDR sp,
3477 int struct_return,
3478 CORE_ADDR struct_addr)
3479{
3480 int argreg;
3481 int float_argreg;
3482 int argnum;
3483 int len = 0;
3484 int stack_offset = 0;
3485
3486 /* First ensure that the stack and structure return address (if any)
3487 are properly aligned. The stack has to be at least 64-bit
3488 aligned even on 32-bit machines, because doubles must be 64-bit
3489 aligned. For n32 and n64, stack frames need to be 128-bit
3490 aligned, so we round to this widest known alignment. */
3491
3492 sp = ROUND_DOWN (sp, 16);
3493 struct_addr = ROUND_DOWN (struct_addr, 16);
3494
3495 /* Now make space on the stack for the args. */
3496 for (argnum = 0; argnum < nargs; argnum++)
3497 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3498 MIPS_STACK_ARGSIZE);
3499 sp -= ROUND_UP (len, 16);
3500
3501 if (mips_debug)
3502 fprintf_unfiltered (gdb_stdlog,
3503 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3504 paddr_nz (sp), ROUND_UP (len, 16));
3505
3506 /* Initialize the integer and float register pointers. */
3507 argreg = A0_REGNUM;
3508 float_argreg = FPA0_REGNUM;
3509
3510 /* The struct_return pointer occupies the first parameter-passing reg. */
3511 if (struct_return)
3512 {
3513 if (mips_debug)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3516 argreg, paddr_nz (struct_addr));
3517 write_register (argreg++, struct_addr);
3518 stack_offset += MIPS_STACK_ARGSIZE;
3519 }
3520
3521 /* Now load as many as possible of the first arguments into
3522 registers, and push the rest onto the stack. Loop thru args
3523 from first to last. */
3524 for (argnum = 0; argnum < nargs; argnum++)
3525 {
3526 char *val;
d9d9c31f 3527 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3528 struct value *arg = args[argnum];
3529 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3530 int len = TYPE_LENGTH (arg_type);
3531 enum type_code typecode = TYPE_CODE (arg_type);
3532
3533 if (mips_debug)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3536 argnum + 1, len, (int) typecode);
3537
3538 val = (char *) VALUE_CONTENTS (arg);
3539
3540 /* 32-bit ABIs always start floating point arguments in an
3541 even-numbered floating point register. Round the FP register
3542 up before the check to see if there are any FP registers
3543 left. O32/O64 targets also pass the FP in the integer
3544 registers so also round up normal registers. */
3545 if (!FP_REGISTER_DOUBLE
3546 && fp_register_arg_p (typecode, arg_type))
3547 {
3548 if ((float_argreg & 1))
3549 float_argreg++;
3550 }
3551
3552 /* Floating point arguments passed in registers have to be
3553 treated specially. On 32-bit architectures, doubles
3554 are passed in register pairs; the even register gets
3555 the low word, and the odd register gets the high word.
3556 On O32/O64, the first two floating point arguments are
3557 also copied to general registers, because MIPS16 functions
3558 don't use float registers for arguments. This duplication of
3559 arguments in general registers can't hurt non-MIPS16 functions
3560 because those registers are normally skipped. */
3561
3562 if (fp_register_arg_p (typecode, arg_type)
3563 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3564 {
3565 if (!FP_REGISTER_DOUBLE && len == 8)
3566 {
3567 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3568 unsigned long regval;
3569
3570 /* Write the low word of the double to the even register(s). */
3571 regval = extract_unsigned_integer (val + low_offset, 4);
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3574 float_argreg, phex (regval, 4));
3575 write_register (float_argreg++, regval);
3576 if (mips_debug)
3577 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3578 argreg, phex (regval, 4));
3579 write_register (argreg++, regval);
3580
3581 /* Write the high word of the double to the odd register(s). */
3582 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3583 if (mips_debug)
3584 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3585 float_argreg, phex (regval, 4));
3586 write_register (float_argreg++, regval);
3587
3588 if (mips_debug)
3589 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3590 argreg, phex (regval, 4));
3591 write_register (argreg++, regval);
3592 }
3593 else
3594 {
3595 /* This is a floating point value that fits entirely
3596 in a single register. */
3597 /* On 32 bit ABI's the float_argreg is further adjusted
3598 above to ensure that it is even register aligned. */
3599 LONGEST regval = extract_unsigned_integer (val, len);
3600 if (mips_debug)
3601 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3602 float_argreg, phex (regval, len));
3603 write_register (float_argreg++, regval);
3604 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3605 registers for each argument. The below is (my
3606 guess) to ensure that the corresponding integer
3607 register has reserved the same space. */
3608 if (mips_debug)
3609 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3610 argreg, phex (regval, len));
3611 write_register (argreg, regval);
3612 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3613 }
3614 /* Reserve space for the FP register. */
3615 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3616 }
3617 else
3618 {
3619 /* Copy the argument to general registers or the stack in
3620 register-sized pieces. Large arguments are split between
3621 registers and stack. */
3622 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3623 are treated specially: Irix cc passes them in registers
3624 where gcc sometimes puts them on the stack. For maximum
3625 compatibility, we will put them in both places. */
3626 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3627 (len % MIPS_SAVED_REGSIZE != 0));
3628 /* Structures should be aligned to eight bytes (even arg registers)
3629 on MIPS_ABI_O32, if their first member has double precision. */
3630 if (MIPS_SAVED_REGSIZE < 8
3631 && mips_type_needs_double_align (arg_type))
3632 {
3633 if ((argreg & 1))
3634 argreg++;
3635 }
3636 /* Note: Floating-point values that didn't fit into an FP
3637 register are only written to memory. */
3638 while (len > 0)
3639 {
3640 /* Remember if the argument was written to the stack. */
3641 int stack_used_p = 0;
3642 int partial_len =
3643 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3644
3645 if (mips_debug)
3646 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3647 partial_len);
3648
3649 /* Write this portion of the argument to the stack. */
3650 if (argreg > MIPS_LAST_ARG_REGNUM
3651 || odd_sized_struct
3652 || fp_register_arg_p (typecode, arg_type))
3653 {
3654 /* Should shorter than int integer values be
3655 promoted to int before being stored? */
3656 int longword_offset = 0;
3657 CORE_ADDR addr;
3658 stack_used_p = 1;
3659 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3660 {
3661 if (MIPS_STACK_ARGSIZE == 8 &&
3662 (typecode == TYPE_CODE_INT ||
3663 typecode == TYPE_CODE_PTR ||
3664 typecode == TYPE_CODE_FLT) && len <= 4)
3665 longword_offset = MIPS_STACK_ARGSIZE - len;
3666 }
3667
3668 if (mips_debug)
3669 {
3670 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3671 paddr_nz (stack_offset));
3672 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3673 paddr_nz (longword_offset));
3674 }
3675
3676 addr = sp + stack_offset + longword_offset;
3677
3678 if (mips_debug)
3679 {
3680 int i;
3681 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3682 paddr_nz (addr));
3683 for (i = 0; i < partial_len; i++)
3684 {
3685 fprintf_unfiltered (gdb_stdlog, "%02x",
3686 val[i] & 0xff);
3687 }
3688 }
3689 write_memory (addr, val, partial_len);
3690 }
3691
3692 /* Note!!! This is NOT an else clause. Odd sized
3693 structs may go thru BOTH paths. Floating point
3694 arguments will not. */
3695 /* Write this portion of the argument to a general
3696 purpose register. */
3697 if (argreg <= MIPS_LAST_ARG_REGNUM
3698 && !fp_register_arg_p (typecode, arg_type))
3699 {
3700 LONGEST regval = extract_signed_integer (val, partial_len);
3701 /* Value may need to be sign extended, because
3702 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3703
3704 /* A non-floating-point argument being passed in a
3705 general register. If a struct or union, and if
3706 the remaining length is smaller than the register
3707 size, we have to adjust the register value on
3708 big endian targets.
3709
3710 It does not seem to be necessary to do the
3711 same for integral types.
3712
3713 Also don't do this adjustment on O64 binaries.
3714
3715 cagney/2001-07-23: gdb/179: Also, GCC, when
3716 outputting LE O32 with sizeof (struct) <
3717 MIPS_SAVED_REGSIZE, generates a left shift as
3718 part of storing the argument in a register a
3719 register (the left shift isn't generated when
3720 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3721 is quite possible that this is GCC contradicting
3722 the LE/O32 ABI, GDB has not been adjusted to
3723 accommodate this. Either someone needs to
3724 demonstrate that the LE/O32 ABI specifies such a
3725 left shift OR this new ABI gets identified as
3726 such and GDB gets tweaked accordingly. */
3727
3728 if (MIPS_SAVED_REGSIZE < 8
3729 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3730 && partial_len < MIPS_SAVED_REGSIZE
3731 && (typecode == TYPE_CODE_STRUCT ||
3732 typecode == TYPE_CODE_UNION))
3733 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3734 TARGET_CHAR_BIT);
3735
3736 if (mips_debug)
3737 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3738 argreg,
3739 phex (regval, MIPS_SAVED_REGSIZE));
3740 write_register (argreg, regval);
3741 argreg++;
3742
3743 /* Prevent subsequent floating point arguments from
3744 being passed in floating point registers. */
3745 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3746 }
3747
3748 len -= partial_len;
3749 val += partial_len;
3750
3751 /* Compute the the offset into the stack at which we
3752 will copy the next parameter.
3753
3754 In older ABIs, the caller reserved space for
3755 registers that contained arguments. This was loosely
3756 refered to as their "home". Consequently, space is
3757 always allocated. */
3758
3759 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3760 }
3761 }
3762 if (mips_debug)
3763 fprintf_unfiltered (gdb_stdlog, "\n");
3764 }
3765
3766 /* Return adjusted stack pointer. */
3767 return sp;
3768}
3769
f7ab6ec6 3770static CORE_ADDR
acdb74a0 3771mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3772{
c906108c
SS
3773 /* Set the return address register to point to the entry
3774 point of the program, where a breakpoint lies in wait. */
c5aa993b 3775 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3776 return sp;
3777}
3778
f7ab6ec6 3779static void
acdb74a0 3780mips_pop_frame (void)
c906108c
SS
3781{
3782 register int regnum;
3783 struct frame_info *frame = get_current_frame ();
c193f6ac 3784 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3785 mips_extra_func_info_t proc_desc;
c906108c 3786
50abf9e5 3787 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3788 {
3789 generic_pop_dummy_frame ();
3790 flush_cached_frames ();
3791 return;
3792 }
3793
e227b13c 3794 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3795 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
b2fb4676 3796 if (get_frame_saved_regs (frame) == NULL)
f30ee0bc 3797 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
c906108c 3798 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3799 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3800 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3801 {
3802 /* Floating point registers must not be sign extended,
3803 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3804
3805 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3806 write_register (regnum,
b2fb4676 3807 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3808 MIPS_SAVED_REGSIZE));
3809 else
3810 write_register (regnum,
b2fb4676 3811 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3812 MIPS_SAVED_REGSIZE));
3813 }
757a7cc6 3814
c906108c
SS
3815 write_register (SP_REGNUM, new_sp);
3816 flush_cached_frames ();
3817
c5aa993b 3818 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3819 {
3820 struct linked_proc_info *pi_ptr, *prev_ptr;
3821
3822 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3823 pi_ptr != NULL;
3824 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3825 {
3826 if (&pi_ptr->info == proc_desc)
3827 break;
3828 }
3829
3830 if (pi_ptr == NULL)
3831 error ("Can't locate dummy extra frame info\n");
3832
3833 if (prev_ptr != NULL)
3834 prev_ptr->next = pi_ptr->next;
3835 else
3836 linked_proc_desc_table = pi_ptr->next;
3837
b8c9b27d 3838 xfree (pi_ptr);
c906108c
SS
3839
3840 write_register (HI_REGNUM,
c5aa993b 3841 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3842 MIPS_SAVED_REGSIZE));
c906108c 3843 write_register (LO_REGNUM,
c5aa993b 3844 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3845 MIPS_SAVED_REGSIZE));
c906108c
SS
3846 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3847 write_register (FCRCS_REGNUM,
c5aa993b 3848 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3849 MIPS_SAVED_REGSIZE));
c906108c
SS
3850 }
3851}
3852
f7ab6ec6
MS
3853static void
3854mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3855 struct value **args, struct type *type, int gcc_p)
3856{
3857 write_register(T9_REGNUM, fun);
3858}
3859
dd824b04
DJ
3860/* Floating point register management.
3861
3862 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3863 64bit operations, these early MIPS cpus treat fp register pairs
3864 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3865 registers and offer a compatibility mode that emulates the MIPS2 fp
3866 model. When operating in MIPS2 fp compat mode, later cpu's split
3867 double precision floats into two 32-bit chunks and store them in
3868 consecutive fp regs. To display 64-bit floats stored in this
3869 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3870 Throw in user-configurable endianness and you have a real mess.
3871
3872 The way this works is:
3873 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3874 double-precision value will be split across two logical registers.
3875 The lower-numbered logical register will hold the low-order bits,
3876 regardless of the processor's endianness.
3877 - If we are on a 64-bit processor, and we are looking for a
3878 single-precision value, it will be in the low ordered bits
3879 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3880 save slot in memory.
3881 - If we are in 64-bit mode, everything is straightforward.
3882
3883 Note that this code only deals with "live" registers at the top of the
3884 stack. We will attempt to deal with saved registers later, when
3885 the raw/cooked register interface is in place. (We need a general
3886 interface that can deal with dynamic saved register sizes -- fp
3887 regs could be 32 bits wide in one frame and 64 on the frame above
3888 and below). */
3889
67b2c998
DJ
3890static struct type *
3891mips_float_register_type (void)
3892{
361d1df0 3893 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3894 return builtin_type_ieee_single_big;
3895 else
3896 return builtin_type_ieee_single_little;
3897}
3898
3899static struct type *
3900mips_double_register_type (void)
3901{
361d1df0 3902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3903 return builtin_type_ieee_double_big;
3904 else
3905 return builtin_type_ieee_double_little;
3906}
3907
dd824b04
DJ
3908/* Copy a 32-bit single-precision value from the current frame
3909 into rare_buffer. */
3910
3911static void
3912mips_read_fp_register_single (int regno, char *rare_buffer)
3913{
3914 int raw_size = REGISTER_RAW_SIZE (regno);
3915 char *raw_buffer = alloca (raw_size);
3916
6e7f8b9c 3917 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
dd824b04
DJ
3918 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3919 if (raw_size == 8)
3920 {
3921 /* We have a 64-bit value for this register. Find the low-order
3922 32 bits. */
3923 int offset;
3924
3925 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3926 offset = 4;
3927 else
3928 offset = 0;
3929
3930 memcpy (rare_buffer, raw_buffer + offset, 4);
3931 }
3932 else
3933 {
3934 memcpy (rare_buffer, raw_buffer, 4);
3935 }
3936}
3937
3938/* Copy a 64-bit double-precision value from the current frame into
3939 rare_buffer. This may include getting half of it from the next
3940 register. */
3941
3942static void
3943mips_read_fp_register_double (int regno, char *rare_buffer)
3944{
3945 int raw_size = REGISTER_RAW_SIZE (regno);
3946
3947 if (raw_size == 8 && !mips2_fp_compat ())
3948 {
3949 /* We have a 64-bit value for this register, and we should use
3950 all 64 bits. */
6e7f8b9c 3951 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
dd824b04
DJ
3952 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3953 }
3954 else
3955 {
3956 if ((regno - FP0_REGNUM) & 1)
3957 internal_error (__FILE__, __LINE__,
3958 "mips_read_fp_register_double: bad access to "
3959 "odd-numbered FP register");
3960
3961 /* mips_read_fp_register_single will find the correct 32 bits from
3962 each register. */
3963 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3964 {
3965 mips_read_fp_register_single (regno, rare_buffer + 4);
3966 mips_read_fp_register_single (regno + 1, rare_buffer);
3967 }
361d1df0 3968 else
dd824b04
DJ
3969 {
3970 mips_read_fp_register_single (regno, rare_buffer);
3971 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3972 }
3973 }
3974}
3975
c906108c 3976static void
f0ef6b29 3977mips_print_fp_register (int regnum)
c5aa993b 3978{ /* do values for FP (float) regs */
dd824b04 3979 char *raw_buffer;
c906108c 3980 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 3981 int inv1, inv2, namelen;
c5aa993b 3982
dd824b04 3983 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 3984
f0ef6b29
KB
3985 printf_filtered ("%s:", REGISTER_NAME (regnum));
3986 printf_filtered ("%*s", 4 - (int) strlen (REGISTER_NAME (regnum)), "");
3987
dd824b04 3988 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 3989 {
f0ef6b29
KB
3990 /* 4-byte registers: Print hex and floating. Also print even
3991 numbered registers as doubles. */
dd824b04 3992 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 3993 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3994
f0ef6b29
KB
3995 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3996 gdb_stdout);
dd824b04 3997
f0ef6b29 3998 printf_filtered (" flt: ");
1adad886 3999 if (inv1)
f0ef6b29 4000 printf_filtered (" <invalid float> ");
1adad886
AC
4001 else
4002 printf_filtered ("%-17.9g", flt1);
4003
f0ef6b29
KB
4004 if (regnum % 2 == 0)
4005 {
4006 mips_read_fp_register_double (regnum, raw_buffer);
4007 doub = unpack_double (mips_double_register_type (), raw_buffer,
4008 &inv2);
1adad886 4009
f0ef6b29
KB
4010 printf_filtered (" dbl: ");
4011 if (inv2)
4012 printf_filtered ("<invalid double>");
4013 else
4014 printf_filtered ("%-24.17g", doub);
4015 }
c906108c
SS
4016 }
4017 else
dd824b04 4018 {
f0ef6b29 4019 /* Eight byte registers: print each one as hex, float and double. */
dd824b04 4020 mips_read_fp_register_single (regnum, raw_buffer);
2f38ef89 4021 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4022
dd824b04 4023 mips_read_fp_register_double (regnum, raw_buffer);
f0ef6b29
KB
4024 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4025
361d1df0 4026
f0ef6b29
KB
4027 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4028 gdb_stdout);
4029
4030 printf_filtered (" flt: ");
1adad886
AC
4031 if (inv1)
4032 printf_filtered ("<invalid float>");
4033 else
f0ef6b29 4034 printf_filtered ("%-17.9g", flt1);
1adad886
AC
4035
4036 printf_filtered (" dbl: ");
f0ef6b29 4037 if (inv2)
1adad886
AC
4038 printf_filtered ("<invalid double>");
4039 else
4040 printf_filtered ("%-24.17g", doub);
f0ef6b29
KB
4041 }
4042}
4043
4044static void
4045mips_print_register (int regnum, int all)
4046{
d9d9c31f 4047 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4048 int offset;
1adad886 4049
f0ef6b29
KB
4050 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4051 {
4052 mips_print_fp_register (regnum);
4053 return;
4054 }
4055
4056 /* Get the data in raw format. */
4057 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4058 {
4059 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4060 return;
c906108c 4061 }
f0ef6b29
KB
4062
4063 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4064
4065 /* The problem with printing numeric register names (r26, etc.) is that
4066 the user can't use them on input. Probably the best solution is to
4067 fix it so that either the numeric or the funky (a2, etc.) names
4068 are accepted on input. */
4069 if (regnum < MIPS_NUMREGS)
4070 printf_filtered ("(r%d): ", regnum);
4071 else
4072 printf_filtered (": ");
4073
4074 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4075 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4076 else
4077 offset = 0;
4078
4079 print_scalar_formatted (raw_buffer + offset,
4080 REGISTER_VIRTUAL_TYPE (regnum),
4081 'x', 0, gdb_stdout);
c906108c
SS
4082}
4083
f0ef6b29
KB
4084/* Replacement for generic do_registers_info.
4085 Print regs in pretty columns. */
4086
4087static int
4088do_fp_register_row (int regnum)
4089{
4090 printf_filtered (" ");
4091 mips_print_fp_register (regnum);
4092 printf_filtered ("\n");
4093 return regnum + 1;
4094}
4095
4096
c906108c
SS
4097/* Print a row's worth of GP (int) registers, with name labels above */
4098
4099static int
acdb74a0 4100do_gp_register_row (int regnum)
c906108c
SS
4101{
4102 /* do values for GP (int) regs */
d9d9c31f 4103 char raw_buffer[MAX_REGISTER_SIZE];
c906108c
SS
4104 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4105 int col, byte;
4106 int start_regnum = regnum;
4107 int numregs = NUM_REGS;
4108
4109
4110 /* For GP registers, we print a separate row of names above the vals */
4111 printf_filtered (" ");
4112 for (col = 0; col < ncols && regnum < numregs; regnum++)
4113 {
4114 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4115 continue; /* unused register */
c906108c 4116 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4117 break; /* end the row: reached FP register */
4118 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4119 REGISTER_NAME (regnum));
4120 col++;
4121 }
c5aa993b 4122 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4123 start_regnum); /* print the R0 to R31 names */
4124
4125 regnum = start_regnum; /* go back to start of row */
4126 /* now print the values in hex, 4 or 8 to the row */
4127 for (col = 0; col < ncols && regnum < numregs; regnum++)
4128 {
4129 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4130 continue; /* unused register */
c906108c 4131 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4132 break; /* end row: reached FP register */
c906108c 4133 /* OK: get the data in raw format. */
6e7f8b9c 4134 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
c906108c
SS
4135 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4136 /* pad small registers */
43e526b9 4137 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4138 printf_filtered (" ");
4139 /* Now print the register value in hex, endian order. */
d7449b42 4140 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4141 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4142 byte < REGISTER_RAW_SIZE (regnum);
4143 byte++)
c906108c
SS
4144 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4145 else
43e526b9
JM
4146 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4147 byte >= 0;
4148 byte--)
c906108c
SS
4149 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4150 printf_filtered (" ");
4151 col++;
4152 }
c5aa993b 4153 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4154 printf_filtered ("\n");
4155
4156 return regnum;
4157}
4158
4159/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4160
bf1f5b4c 4161static void
acdb74a0 4162mips_do_registers_info (int regnum, int fpregs)
c906108c 4163{
c5aa993b 4164 if (regnum != -1) /* do one specified register */
c906108c
SS
4165 {
4166 if (*(REGISTER_NAME (regnum)) == '\0')
4167 error ("Not a valid register for the current processor type");
4168
4169 mips_print_register (regnum, 0);
4170 printf_filtered ("\n");
4171 }
c5aa993b
JM
4172 else
4173 /* do all (or most) registers */
c906108c
SS
4174 {
4175 regnum = 0;
4176 while (regnum < NUM_REGS)
4177 {
c5aa993b
JM
4178 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4179 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4180 regnum = do_fp_register_row (regnum); /* FP regs */
4181 else
4182 regnum += MIPS_NUMREGS; /* skip floating point regs */
4183 else
4184 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4185 }
4186 }
4187}
4188
c906108c
SS
4189/* Is this a branch with a delay slot? */
4190
a14ed312 4191static int is_delayed (unsigned long);
c906108c
SS
4192
4193static int
acdb74a0 4194is_delayed (unsigned long insn)
c906108c
SS
4195{
4196 int i;
4197 for (i = 0; i < NUMOPCODES; ++i)
4198 if (mips_opcodes[i].pinfo != INSN_MACRO
4199 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4200 break;
4201 return (i < NUMOPCODES
4202 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4203 | INSN_COND_BRANCH_DELAY
4204 | INSN_COND_BRANCH_LIKELY)));
4205}
4206
4207int
acdb74a0 4208mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4209{
4210 char buf[MIPS_INSTLEN];
4211
4212 /* There is no branch delay slot on MIPS16. */
4213 if (pc_is_mips16 (pc))
4214 return 0;
4215
4216 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4217 /* If error reading memory, guess that it is not a delayed branch. */
4218 return 0;
c5aa993b 4219 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4220}
4221
4222
4223/* Skip the PC past function prologue instructions (32-bit version).
4224 This is a helper function for mips_skip_prologue. */
4225
4226static CORE_ADDR
f7b9e9fc 4227mips32_skip_prologue (CORE_ADDR pc)
c906108c 4228{
c5aa993b
JM
4229 t_inst inst;
4230 CORE_ADDR end_pc;
4231 int seen_sp_adjust = 0;
4232 int load_immediate_bytes = 0;
4233
4234 /* Skip the typical prologue instructions. These are the stack adjustment
4235 instruction and the instructions that save registers on the stack
4236 or in the gcc frame. */
4237 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4238 {
4239 unsigned long high_word;
c906108c 4240
c5aa993b
JM
4241 inst = mips_fetch_instruction (pc);
4242 high_word = (inst >> 16) & 0xffff;
c906108c 4243
c5aa993b
JM
4244 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4245 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4246 seen_sp_adjust = 1;
4247 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4248 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4249 seen_sp_adjust = 1;
4250 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4251 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4252 && (inst & 0x001F0000)) /* reg != $zero */
4253 continue;
4254
4255 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4256 continue;
4257 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4258 /* sx reg,n($s8) */
4259 continue; /* reg != $zero */
4260
4261 /* move $s8,$sp. With different versions of gas this will be either
4262 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4263 Accept any one of these. */
4264 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4265 continue;
4266
4267 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4268 continue;
4269 else if (high_word == 0x3c1c) /* lui $gp,n */
4270 continue;
4271 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4272 continue;
4273 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4274 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4275 continue;
4276 /* The following instructions load $at or $t0 with an immediate
4277 value in preparation for a stack adjustment via
4278 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4279 a local variable, so we accept them only before a stack adjustment
4280 instruction was seen. */
4281 else if (!seen_sp_adjust)
4282 {
4283 if (high_word == 0x3c01 || /* lui $at,n */
4284 high_word == 0x3c08) /* lui $t0,n */
4285 {
4286 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4287 continue;
4288 }
4289 else if (high_word == 0x3421 || /* ori $at,$at,n */
4290 high_word == 0x3508 || /* ori $t0,$t0,n */
4291 high_word == 0x3401 || /* ori $at,$zero,n */
4292 high_word == 0x3408) /* ori $t0,$zero,n */
4293 {
4294 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4295 continue;
4296 }
4297 else
4298 break;
4299 }
4300 else
4301 break;
c906108c
SS
4302 }
4303
c5aa993b
JM
4304 /* In a frameless function, we might have incorrectly
4305 skipped some load immediate instructions. Undo the skipping
4306 if the load immediate was not followed by a stack adjustment. */
4307 if (load_immediate_bytes && !seen_sp_adjust)
4308 pc -= load_immediate_bytes;
4309 return pc;
c906108c
SS
4310}
4311
4312/* Skip the PC past function prologue instructions (16-bit version).
4313 This is a helper function for mips_skip_prologue. */
4314
4315static CORE_ADDR
f7b9e9fc 4316mips16_skip_prologue (CORE_ADDR pc)
c906108c 4317{
c5aa993b
JM
4318 CORE_ADDR end_pc;
4319 int extend_bytes = 0;
4320 int prev_extend_bytes;
c906108c 4321
c5aa993b
JM
4322 /* Table of instructions likely to be found in a function prologue. */
4323 static struct
c906108c
SS
4324 {
4325 unsigned short inst;
4326 unsigned short mask;
c5aa993b
JM
4327 }
4328 table[] =
4329 {
c906108c 4330 {
c5aa993b
JM
4331 0x6300, 0xff00
4332 }
4333 , /* addiu $sp,offset */
4334 {
4335 0xfb00, 0xff00
4336 }
4337 , /* daddiu $sp,offset */
4338 {
4339 0xd000, 0xf800
4340 }
4341 , /* sw reg,n($sp) */
4342 {
4343 0xf900, 0xff00
4344 }
4345 , /* sd reg,n($sp) */
4346 {
4347 0x6200, 0xff00
4348 }
4349 , /* sw $ra,n($sp) */
4350 {
4351 0xfa00, 0xff00
4352 }
4353 , /* sd $ra,n($sp) */
4354 {
4355 0x673d, 0xffff
4356 }
4357 , /* move $s1,sp */
4358 {
4359 0xd980, 0xff80
4360 }
4361 , /* sw $a0-$a3,n($s1) */
4362 {
4363 0x6704, 0xff1c
4364 }
4365 , /* move reg,$a0-$a3 */
4366 {
4367 0xe809, 0xf81f
4368 }
4369 , /* entry pseudo-op */
4370 {
4371 0x0100, 0xff00
4372 }
4373 , /* addiu $s1,$sp,n */
4374 {
4375 0, 0
4376 } /* end of table marker */
4377 };
4378
4379 /* Skip the typical prologue instructions. These are the stack adjustment
4380 instruction and the instructions that save registers on the stack
4381 or in the gcc frame. */
4382 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4383 {
4384 unsigned short inst;
4385 int i;
c906108c 4386
c5aa993b 4387 inst = mips_fetch_instruction (pc);
c906108c 4388
c5aa993b
JM
4389 /* Normally we ignore an extend instruction. However, if it is
4390 not followed by a valid prologue instruction, we must adjust
4391 the pc back over the extend so that it won't be considered
4392 part of the prologue. */
4393 if ((inst & 0xf800) == 0xf000) /* extend */
4394 {
4395 extend_bytes = MIPS16_INSTLEN;
4396 continue;
4397 }
4398 prev_extend_bytes = extend_bytes;
4399 extend_bytes = 0;
c906108c 4400
c5aa993b
JM
4401 /* Check for other valid prologue instructions besides extend. */
4402 for (i = 0; table[i].mask != 0; i++)
4403 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4404 break;
4405 if (table[i].mask != 0) /* it was in table? */
4406 continue; /* ignore it */
4407 else
4408 /* non-prologue */
4409 {
4410 /* Return the current pc, adjusted backwards by 2 if
4411 the previous instruction was an extend. */
4412 return pc - prev_extend_bytes;
4413 }
c906108c
SS
4414 }
4415 return pc;
4416}
4417
4418/* To skip prologues, I use this predicate. Returns either PC itself
4419 if the code at PC does not look like a function prologue; otherwise
4420 returns an address that (if we're lucky) follows the prologue. If
4421 LENIENT, then we must skip everything which is involved in setting
4422 up the frame (it's OK to skip more, just so long as we don't skip
4423 anything which might clobber the registers which are being saved.
4424 We must skip more in the case where part of the prologue is in the
4425 delay slot of a non-prologue instruction). */
4426
f7ab6ec6 4427static CORE_ADDR
f7b9e9fc 4428mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4429{
4430 /* See if we can determine the end of the prologue via the symbol table.
4431 If so, then return either PC, or the PC after the prologue, whichever
4432 is greater. */
4433
4434 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4435
4436 if (post_prologue_pc != 0)
4437 return max (pc, post_prologue_pc);
4438
4439 /* Can't determine prologue from the symbol table, need to examine
4440 instructions. */
4441
4442 if (pc_is_mips16 (pc))
f7b9e9fc 4443 return mips16_skip_prologue (pc);
c906108c 4444 else
f7b9e9fc 4445 return mips32_skip_prologue (pc);
c906108c 4446}
c906108c 4447
7a292a7a
SS
4448/* Determine how a return value is stored within the MIPS register
4449 file, given the return type `valtype'. */
4450
4451struct return_value_word
4452{
4453 int len;
4454 int reg;
4455 int reg_offset;
4456 int buf_offset;
4457};
4458
7a292a7a 4459static void
acdb74a0
AC
4460return_value_location (struct type *valtype,
4461 struct return_value_word *hi,
4462 struct return_value_word *lo)
7a292a7a
SS
4463{
4464 int len = TYPE_LENGTH (valtype);
c5aa993b 4465
7a292a7a
SS
4466 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4467 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4468 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4469 {
4470 if (!FP_REGISTER_DOUBLE && len == 8)
4471 {
4472 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4473 spread them across a floating-point register pair. */
d7449b42
AC
4474 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4475 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4476 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4477 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4478 ? 4 : 0);
4479 hi->reg_offset = lo->reg_offset;
4480 lo->reg = FP0_REGNUM + 0;
4481 hi->reg = FP0_REGNUM + 1;
4482 lo->len = 4;
4483 hi->len = 4;
4484 }
4485 else
4486 {
4487 /* The floating point value fits in a single floating-point
c5aa993b 4488 register. */
d7449b42 4489 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4490 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4491 && len == 4)
4492 ? 4 : 0);
4493 lo->reg = FP0_REGNUM;
4494 lo->len = len;
4495 lo->buf_offset = 0;
4496 hi->len = 0;
4497 hi->reg_offset = 0;
4498 hi->buf_offset = 0;
4499 hi->reg = 0;
4500 }
4501 }
4502 else
4503 {
4504 /* Locate a result possibly spread across two registers. */
4505 int regnum = 2;
4506 lo->reg = regnum + 0;
4507 hi->reg = regnum + 1;
d7449b42 4508 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4509 && len < MIPS_SAVED_REGSIZE)
4510 {
bf1f5b4c
MS
4511 /* "un-left-justify" the value in the low register */
4512 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4513 lo->len = len;
bf1f5b4c 4514 hi->reg_offset = 0;
7a292a7a
SS
4515 hi->len = 0;
4516 }
d7449b42 4517 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4518 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4519 && len < MIPS_SAVED_REGSIZE * 2
4520 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4521 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4522 {
4523 /* "un-left-justify" the value spread across two registers. */
4524 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4525 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4526 hi->reg_offset = 0;
4527 hi->len = len - lo->len;
4528 }
4529 else
4530 {
4531 /* Only perform a partial copy of the second register. */
4532 lo->reg_offset = 0;
4533 hi->reg_offset = 0;
4534 if (len > MIPS_SAVED_REGSIZE)
4535 {
4536 lo->len = MIPS_SAVED_REGSIZE;
4537 hi->len = len - MIPS_SAVED_REGSIZE;
4538 }
4539 else
4540 {
4541 lo->len = len;
4542 hi->len = 0;
4543 }
4544 }
d7449b42 4545 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4546 && REGISTER_RAW_SIZE (regnum) == 8
4547 && MIPS_SAVED_REGSIZE == 4)
4548 {
4549 /* Account for the fact that only the least-signficant part
c5aa993b 4550 of the register is being used */
7a292a7a
SS
4551 lo->reg_offset += 4;
4552 hi->reg_offset += 4;
4553 }
4554 lo->buf_offset = 0;
4555 hi->buf_offset = lo->len;
4556 }
4557}
4558
4559/* Given a return value in `regbuf' with a type `valtype', extract and
4560 copy its value into `valbuf'. */
4561
46cac009
AC
4562static void
4563mips_eabi_extract_return_value (struct type *valtype,
4564 char regbuf[REGISTER_BYTES],
4565 char *valbuf)
4566{
4567 struct return_value_word lo;
4568 struct return_value_word hi;
4569 return_value_location (valtype, &hi, &lo);
4570
4571 memcpy (valbuf + lo.buf_offset,
4572 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4573 lo.len);
4574
4575 if (hi.len > 0)
4576 memcpy (valbuf + hi.buf_offset,
4577 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4578 hi.len);
4579}
4580
46cac009
AC
4581static void
4582mips_o64_extract_return_value (struct type *valtype,
4583 char regbuf[REGISTER_BYTES],
4584 char *valbuf)
4585{
4586 struct return_value_word lo;
4587 struct return_value_word hi;
4588 return_value_location (valtype, &hi, &lo);
4589
4590 memcpy (valbuf + lo.buf_offset,
4591 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4592 lo.len);
4593
4594 if (hi.len > 0)
4595 memcpy (valbuf + hi.buf_offset,
4596 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4597 hi.len);
4598}
4599
7a292a7a
SS
4600/* Given a return value in `valbuf' with a type `valtype', write it's
4601 value into the appropriate register. */
4602
46cac009
AC
4603static void
4604mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4605{
d9d9c31f 4606 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4607 struct return_value_word lo;
4608 struct return_value_word hi;
4609 return_value_location (valtype, &hi, &lo);
4610
4611 memset (raw_buffer, 0, sizeof (raw_buffer));
4612 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4613 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4614 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4615
4616 if (hi.len > 0)
4617 {
4618 memset (raw_buffer, 0, sizeof (raw_buffer));
4619 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4620 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4621 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4622 }
4623}
4624
4625static void
cb1d2653 4626mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4627{
d9d9c31f 4628 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4629 struct return_value_word lo;
4630 struct return_value_word hi;
4631 return_value_location (valtype, &hi, &lo);
4632
4633 memset (raw_buffer, 0, sizeof (raw_buffer));
4634 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4635 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4636 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4637
4638 if (hi.len > 0)
4639 {
4640 memset (raw_buffer, 0, sizeof (raw_buffer));
4641 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4642 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4643 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4644 }
4645}
4646
cb1d2653
AC
4647/* O32 ABI stuff. */
4648
46cac009 4649static void
cb1d2653
AC
4650mips_o32_xfer_return_value (struct type *type,
4651 struct regcache *regcache,
4652 bfd_byte *in, const bfd_byte *out)
46cac009 4653{
cb1d2653
AC
4654 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4655 if (TYPE_CODE (type) == TYPE_CODE_FLT
4656 && TYPE_LENGTH (type) == 4
4657 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4658 {
cb1d2653
AC
4659 /* A single-precision floating-point value. It fits in the
4660 least significant part of FP0. */
4661 if (mips_debug)
4662 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4663 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4664 TARGET_BYTE_ORDER, in, out, 0);
4665 }
4666 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4667 && TYPE_LENGTH (type) == 8
4668 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4669 {
4670 /* A double-precision floating-point value. It fits in the
4671 least significant part of FP0/FP1 but with byte ordering
4672 based on the target (???). */
4673 if (mips_debug)
4674 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4675 switch (TARGET_BYTE_ORDER)
4676 {
4677 case BFD_ENDIAN_LITTLE:
4678 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4679 TARGET_BYTE_ORDER, in, out, 0);
4680 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4681 TARGET_BYTE_ORDER, in, out, 4);
4682 break;
4683 case BFD_ENDIAN_BIG:
4684 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4685 TARGET_BYTE_ORDER, in, out, 0);
4686 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4687 TARGET_BYTE_ORDER, in, out, 4);
4688 break;
4689 default:
4690 internal_error (__FILE__, __LINE__, "bad switch");
4691 }
4692 }
4693#if 0
4694 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4695 && TYPE_NFIELDS (type) <= 2
4696 && TYPE_NFIELDS (type) >= 1
4697 && ((TYPE_NFIELDS (type) == 1
4698 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4699 == TYPE_CODE_FLT))
4700 || (TYPE_NFIELDS (type) == 2
4701 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4702 == TYPE_CODE_FLT)
4703 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4704 == TYPE_CODE_FLT)))
4705 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4706 {
4707 /* A struct that contains one or two floats. Each value is part
4708 in the least significant part of their floating point
4709 register.. */
d9d9c31f 4710 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4711 int regnum;
4712 int field;
4713 for (field = 0, regnum = FP0_REGNUM;
4714 field < TYPE_NFIELDS (type);
4715 field++, regnum += 2)
4716 {
4717 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4718 / TARGET_CHAR_BIT);
4719 if (mips_debug)
4720 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4721 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4722 TARGET_BYTE_ORDER, in, out, offset);
4723 }
4724 }
4725#endif
4726#if 0
4727 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4728 || TYPE_CODE (type) == TYPE_CODE_UNION)
4729 {
4730 /* A structure or union. Extract the left justified value,
4731 regardless of the byte order. I.e. DO NOT USE
4732 mips_xfer_lower. */
4733 int offset;
4734 int regnum;
4735 for (offset = 0, regnum = V0_REGNUM;
4736 offset < TYPE_LENGTH (type);
4737 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4738 {
4739 int xfer = REGISTER_RAW_SIZE (regnum);
4740 if (offset + xfer > TYPE_LENGTH (type))
4741 xfer = TYPE_LENGTH (type) - offset;
4742 if (mips_debug)
4743 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4744 offset, xfer, regnum);
4745 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4746 in, out, offset);
4747 }
4748 }
4749#endif
4750 else
4751 {
4752 /* A scalar extract each part but least-significant-byte
4753 justified. o32 thinks registers are 4 byte, regardless of
4754 the ISA. mips_stack_argsize controls this. */
4755 int offset;
4756 int regnum;
4757 for (offset = 0, regnum = V0_REGNUM;
4758 offset < TYPE_LENGTH (type);
4759 offset += mips_stack_argsize (), regnum++)
4760 {
4761 int xfer = mips_stack_argsize ();
4762 int pos = 0;
4763 if (offset + xfer > TYPE_LENGTH (type))
4764 xfer = TYPE_LENGTH (type) - offset;
4765 if (mips_debug)
4766 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4767 offset, xfer, regnum);
4768 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4769 in, out, offset);
4770 }
46cac009
AC
4771 }
4772}
4773
cb1d2653
AC
4774static void
4775mips_o32_extract_return_value (struct type *type,
4776 struct regcache *regcache,
ebba8386 4777 void *valbuf)
cb1d2653
AC
4778{
4779 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4780}
4781
4782static void
4783mips_o32_store_return_value (struct type *type, char *valbuf)
4784{
4785 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4786}
4787
4788/* N32/N44 ABI stuff. */
4789
46cac009 4790static void
88658117
AC
4791mips_n32n64_xfer_return_value (struct type *type,
4792 struct regcache *regcache,
4793 bfd_byte *in, const bfd_byte *out)
c906108c 4794{
88658117
AC
4795 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4796 if (TYPE_CODE (type) == TYPE_CODE_FLT
4797 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4798 {
88658117
AC
4799 /* A floating-point value belongs in the least significant part
4800 of FP0. */
4801 if (mips_debug)
4802 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4803 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4804 TARGET_BYTE_ORDER, in, out, 0);
4805 }
4806 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4807 && TYPE_NFIELDS (type) <= 2
4808 && TYPE_NFIELDS (type) >= 1
4809 && ((TYPE_NFIELDS (type) == 1
4810 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4811 == TYPE_CODE_FLT))
4812 || (TYPE_NFIELDS (type) == 2
4813 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4814 == TYPE_CODE_FLT)
4815 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4816 == TYPE_CODE_FLT)))
4817 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4818 {
4819 /* A struct that contains one or two floats. Each value is part
4820 in the least significant part of their floating point
4821 register.. */
d9d9c31f 4822 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4823 int regnum;
4824 int field;
4825 for (field = 0, regnum = FP0_REGNUM;
4826 field < TYPE_NFIELDS (type);
4827 field++, regnum += 2)
4828 {
4829 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4830 / TARGET_CHAR_BIT);
4831 if (mips_debug)
4832 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4833 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4834 TARGET_BYTE_ORDER, in, out, offset);
4835 }
7a292a7a 4836 }
88658117
AC
4837 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4838 || TYPE_CODE (type) == TYPE_CODE_UNION)
4839 {
4840 /* A structure or union. Extract the left justified value,
4841 regardless of the byte order. I.e. DO NOT USE
4842 mips_xfer_lower. */
4843 int offset;
4844 int regnum;
4845 for (offset = 0, regnum = V0_REGNUM;
4846 offset < TYPE_LENGTH (type);
4847 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4848 {
4849 int xfer = REGISTER_RAW_SIZE (regnum);
4850 if (offset + xfer > TYPE_LENGTH (type))
4851 xfer = TYPE_LENGTH (type) - offset;
4852 if (mips_debug)
4853 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4854 offset, xfer, regnum);
4855 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4856 in, out, offset);
4857 }
4858 }
4859 else
4860 {
4861 /* A scalar extract each part but least-significant-byte
4862 justified. */
4863 int offset;
4864 int regnum;
4865 for (offset = 0, regnum = V0_REGNUM;
4866 offset < TYPE_LENGTH (type);
4867 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4868 {
4869 int xfer = REGISTER_RAW_SIZE (regnum);
4870 int pos = 0;
4871 if (offset + xfer > TYPE_LENGTH (type))
4872 xfer = TYPE_LENGTH (type) - offset;
4873 if (mips_debug)
4874 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4875 offset, xfer, regnum);
4876 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4877 in, out, offset);
4878 }
4879 }
4880}
4881
4882static void
4883mips_n32n64_extract_return_value (struct type *type,
4884 struct regcache *regcache,
ebba8386 4885 void *valbuf)
88658117
AC
4886{
4887 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4888}
4889
4890static void
4891mips_n32n64_store_return_value (struct type *type, char *valbuf)
4892{
4893 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4894}
4895
2f1488ce
MS
4896static void
4897mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4898{
4899 /* Nothing to do -- push_arguments does all the work. */
4900}
4901
4902static CORE_ADDR
6672060b 4903mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4904{
4905 /* FIXME: This will only work at random. The caller passes the
4906 struct_return address in V0, but it is not preserved. It may
4907 still be there, or this may be a random value. */
77d8f2b4
MS
4908 LONGEST val;
4909
4910 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4911 return val;
2f1488ce
MS
4912}
4913
c906108c
SS
4914/* Exported procedure: Is PC in the signal trampoline code */
4915
102182a9
MS
4916static int
4917mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4918{
4919 if (sigtramp_address == 0)
4920 fixup_sigtramp ();
4921 return (pc >= sigtramp_address && pc < sigtramp_end);
4922}
4923
a5ea2558
AC
4924/* Root of all "set mips "/"show mips " commands. This will eventually be
4925 used for all MIPS-specific commands. */
4926
a5ea2558 4927static void
acdb74a0 4928show_mips_command (char *args, int from_tty)
a5ea2558
AC
4929{
4930 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4931}
4932
a5ea2558 4933static void
acdb74a0 4934set_mips_command (char *args, int from_tty)
a5ea2558
AC
4935{
4936 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4937 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4938}
4939
c906108c
SS
4940/* Commands to show/set the MIPS FPU type. */
4941
c906108c 4942static void
acdb74a0 4943show_mipsfpu_command (char *args, int from_tty)
c906108c 4944{
c906108c
SS
4945 char *fpu;
4946 switch (MIPS_FPU_TYPE)
4947 {
4948 case MIPS_FPU_SINGLE:
4949 fpu = "single-precision";
4950 break;
4951 case MIPS_FPU_DOUBLE:
4952 fpu = "double-precision";
4953 break;
4954 case MIPS_FPU_NONE:
4955 fpu = "absent (none)";
4956 break;
93d56215
AC
4957 default:
4958 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4959 }
4960 if (mips_fpu_type_auto)
4961 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4962 fpu);
4963 else
4964 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4965 fpu);
4966}
4967
4968
c906108c 4969static void
acdb74a0 4970set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4971{
4972 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4973 show_mipsfpu_command (args, from_tty);
4974}
4975
c906108c 4976static void
acdb74a0 4977set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4978{
4979 mips_fpu_type = MIPS_FPU_SINGLE;
4980 mips_fpu_type_auto = 0;
9e364162 4981 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
4982}
4983
c906108c 4984static void
acdb74a0 4985set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
4986{
4987 mips_fpu_type = MIPS_FPU_DOUBLE;
4988 mips_fpu_type_auto = 0;
9e364162 4989 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
4990}
4991
c906108c 4992static void
acdb74a0 4993set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
4994{
4995 mips_fpu_type = MIPS_FPU_NONE;
4996 mips_fpu_type_auto = 0;
9e364162 4997 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
4998}
4999
c906108c 5000static void
acdb74a0 5001set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5002{
5003 mips_fpu_type_auto = 1;
5004}
5005
5006/* Command to set the processor type. */
5007
5008void
acdb74a0 5009mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5010{
5011 int i;
5012
5013 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5014 {
5015 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5016 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5017 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5018
5019 /* Restore the value. */
4fcf66da 5020 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5021
5022 return;
5023 }
c5aa993b 5024
c906108c
SS
5025 if (!mips_set_processor_type (tmp_mips_processor_type))
5026 {
5027 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5028 /* Restore its value. */
4fcf66da 5029 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5030 }
5031}
5032
5033static void
acdb74a0 5034mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5035{
5036}
5037
5038/* Modify the actual processor type. */
5039
5a89d8aa 5040static int
acdb74a0 5041mips_set_processor_type (char *str)
c906108c 5042{
1012bd0e 5043 int i;
c906108c
SS
5044
5045 if (str == NULL)
5046 return 0;
5047
5048 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5049 {
5050 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5051 {
5052 mips_processor_type = str;
cce74817 5053 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5054 return 1;
c906108c
SS
5055 /* FIXME tweak fpu flag too */
5056 }
5057 }
5058
5059 return 0;
5060}
5061
5062/* Attempt to identify the particular processor model by reading the
5063 processor id. */
5064
5065char *
acdb74a0 5066mips_read_processor_type (void)
c906108c
SS
5067{
5068 CORE_ADDR prid;
5069
5070 prid = read_register (PRID_REGNUM);
5071
5072 if ((prid & ~0xf) == 0x700)
c5aa993b 5073 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5074
5075 return NULL;
5076}
5077
5078/* Just like reinit_frame_cache, but with the right arguments to be
5079 callable as an sfunc. */
5080
5081static void
acdb74a0
AC
5082reinit_frame_cache_sfunc (char *args, int from_tty,
5083 struct cmd_list_element *c)
c906108c
SS
5084{
5085 reinit_frame_cache ();
5086}
5087
5088int
acdb74a0 5089gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5090{
5091 mips_extra_func_info_t proc_desc;
5092
5093 /* Search for the function containing this address. Set the low bit
5094 of the address when searching, in case we were given an even address
5095 that is the start of a 16-bit function. If we didn't do this,
5096 the search would fail because the symbol table says the function
5097 starts at an odd address, i.e. 1 byte past the given address. */
5098 memaddr = ADDR_BITS_REMOVE (memaddr);
5099 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5100
5101 /* Make an attempt to determine if this is a 16-bit function. If
5102 the procedure descriptor exists and the address therein is odd,
5103 it's definitely a 16-bit function. Otherwise, we have to just
5104 guess that if the address passed in is odd, it's 16-bits. */
5105 if (proc_desc)
361d1df0 5106 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5107 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5108 else
361d1df0 5109 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5110 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5111
5112 /* Round down the instruction address to the appropriate boundary. */
65c11066 5113 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5114
c906108c 5115 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5116 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5117 return print_insn_big_mips (memaddr, info);
5118 else
5119 return print_insn_little_mips (memaddr, info);
5120}
5121
5122/* Old-style breakpoint macros.
5123 The IDT board uses an unusual breakpoint value, and sometimes gets
5124 confused when it sees the usual MIPS breakpoint instruction. */
5125
5126#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5127#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5128#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5129#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5130#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5131#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5132#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5133#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5134
5135/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5136 counter value to determine whether a 16- or 32-bit breakpoint should be
5137 used. It returns a pointer to a string of bytes that encode a breakpoint
5138 instruction, stores the length of the string to *lenptr, and adjusts pc
5139 (if necessary) to point to the actual memory location where the
5140 breakpoint should be inserted. */
5141
f7ab6ec6 5142static const unsigned char *
acdb74a0 5143mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5144{
d7449b42 5145 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5146 {
5147 if (pc_is_mips16 (*pcptr))
5148 {
1012bd0e
EZ
5149 static unsigned char mips16_big_breakpoint[] =
5150 MIPS16_BIG_BREAKPOINT;
c906108c 5151 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5152 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5153 return mips16_big_breakpoint;
5154 }
5155 else
5156 {
1012bd0e
EZ
5157 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5158 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5159 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5160
c5aa993b 5161 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5162
5163 if (strcmp (target_shortname, "mips") == 0)
5164 return idt_big_breakpoint;
5165 else if (strcmp (target_shortname, "ddb") == 0
5166 || strcmp (target_shortname, "pmon") == 0
5167 || strcmp (target_shortname, "lsi") == 0)
5168 return pmon_big_breakpoint;
5169 else
5170 return big_breakpoint;
5171 }
5172 }
5173 else
5174 {
5175 if (pc_is_mips16 (*pcptr))
5176 {
1012bd0e
EZ
5177 static unsigned char mips16_little_breakpoint[] =
5178 MIPS16_LITTLE_BREAKPOINT;
c906108c 5179 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5180 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5181 return mips16_little_breakpoint;
5182 }
5183 else
5184 {
1012bd0e
EZ
5185 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5186 static unsigned char pmon_little_breakpoint[] =
5187 PMON_LITTLE_BREAKPOINT;
5188 static unsigned char idt_little_breakpoint[] =
5189 IDT_LITTLE_BREAKPOINT;
c906108c 5190
c5aa993b 5191 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5192
5193 if (strcmp (target_shortname, "mips") == 0)
5194 return idt_little_breakpoint;
5195 else if (strcmp (target_shortname, "ddb") == 0
5196 || strcmp (target_shortname, "pmon") == 0
5197 || strcmp (target_shortname, "lsi") == 0)
5198 return pmon_little_breakpoint;
5199 else
5200 return little_breakpoint;
5201 }
5202 }
5203}
5204
5205/* If PC is in a mips16 call or return stub, return the address of the target
5206 PC, which is either the callee or the caller. There are several
5207 cases which must be handled:
5208
5209 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5210 target PC is in $31 ($ra).
c906108c 5211 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5212 and the target PC is in $2.
c906108c 5213 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5214 before the jal instruction, this is effectively a call stub
5215 and the the target PC is in $2. Otherwise this is effectively
5216 a return stub and the target PC is in $18.
c906108c
SS
5217
5218 See the source code for the stubs in gcc/config/mips/mips16.S for
5219 gory details.
5220
5221 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5222 */
c906108c 5223
757a7cc6 5224static CORE_ADDR
acdb74a0 5225mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5226{
5227 char *name;
5228 CORE_ADDR start_addr;
5229
5230 /* Find the starting address and name of the function containing the PC. */
5231 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5232 return 0;
5233
5234 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5235 target PC is in $31 ($ra). */
5236 if (strcmp (name, "__mips16_ret_sf") == 0
5237 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5238 return read_signed_register (RA_REGNUM);
c906108c
SS
5239
5240 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5241 {
5242 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5243 and the target PC is in $2. */
5244 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5245 return read_signed_register (2);
c906108c
SS
5246
5247 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5248 before the jal instruction, this is effectively a call stub
5249 and the the target PC is in $2. Otherwise this is effectively
5250 a return stub and the target PC is in $18. */
c906108c
SS
5251 else if (name[19] == 's' || name[19] == 'd')
5252 {
5253 if (pc == start_addr)
5254 {
5255 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5256 stub. Such a stub for a function bar might have a name
5257 like __fn_stub_bar, and might look like this:
5258 mfc1 $4,$f13
5259 mfc1 $5,$f12
5260 mfc1 $6,$f15
5261 mfc1 $7,$f14
5262 la $1,bar (becomes a lui/addiu pair)
5263 jr $1
5264 So scan down to the lui/addi and extract the target
5265 address from those two instructions. */
c906108c 5266
6c997a34 5267 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5268 t_inst inst;
5269 int i;
5270
5271 /* See if the name of the target function is __fn_stub_*. */
5272 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5273 return target_pc;
5274 if (strncmp (name, "__fn_stub_", 10) != 0
5275 && strcmp (name, "etext") != 0
5276 && strcmp (name, "_etext") != 0)
5277 return target_pc;
5278
5279 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5280 The limit on the search is arbitrarily set to 20
5281 instructions. FIXME. */
c906108c
SS
5282 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5283 {
c5aa993b
JM
5284 inst = mips_fetch_instruction (target_pc);
5285 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5286 pc = (inst << 16) & 0xffff0000; /* high word */
5287 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5288 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5289 }
5290
5291 /* Couldn't find the lui/addui pair, so return stub address. */
5292 return target_pc;
5293 }
5294 else
5295 /* This is the 'return' part of a call stub. The return
5296 address is in $r18. */
6c997a34 5297 return read_signed_register (18);
c906108c
SS
5298 }
5299 }
c5aa993b 5300 return 0; /* not a stub */
c906108c
SS
5301}
5302
5303
5304/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5305 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5306
757a7cc6 5307static int
acdb74a0 5308mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5309{
5310 CORE_ADDR start_addr;
5311
5312 /* Find the starting address of the function containing the PC. If the
5313 caller didn't give us a name, look it up at the same time. */
5314 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5315 return 0;
5316
5317 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5318 {
5319 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5320 if (name[19] >= '0' && name[19] <= '9')
5321 return 1;
5322 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5323 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5324 else if (name[19] == 's' || name[19] == 'd')
5325 return pc == start_addr;
5326 }
5327
c5aa993b 5328 return 0; /* not a stub */
c906108c
SS
5329}
5330
5331
5332/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5333 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5334
e41b17f0 5335static int
acdb74a0 5336mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5337{
5338 CORE_ADDR start_addr;
5339
5340 /* Find the starting address of the function containing the PC. */
5341 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5342 return 0;
5343
5344 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5345 if (strcmp (name, "__mips16_ret_sf") == 0
5346 || strcmp (name, "__mips16_ret_df") == 0)
5347 return 1;
5348
5349 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5350 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5351 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5352 && (name[19] == 's' || name[19] == 'd')
5353 && pc != start_addr)
5354 return 1;
5355
c5aa993b 5356 return 0; /* not a stub */
c906108c
SS
5357}
5358
5359
5360/* Return non-zero if the PC is in a library helper function that should
5361 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5362
5363int
acdb74a0 5364mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5365{
5366 char *name;
5367
5368 /* Find the starting address and name of the function containing the PC. */
5369 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5370 return 0;
5371
5372 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5373 that we want to ignore. */
5374 return (strcmp (name, "__mips16_ret_sf") == 0
5375 || strcmp (name, "__mips16_ret_df") == 0);
5376}
5377
5378
5379/* Return a location where we can set a breakpoint that will be hit
5380 when an inferior function call returns. This is normally the
5381 program's entry point. Executables that don't have an entry
5382 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5383 whose address is the location where the breakpoint should be placed. */
5384
f7ab6ec6 5385static CORE_ADDR
acdb74a0 5386mips_call_dummy_address (void)
c906108c
SS
5387{
5388 struct minimal_symbol *sym;
5389
5390 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5391 if (sym)
5392 return SYMBOL_VALUE_ADDRESS (sym);
5393 else
5394 return entry_point_address ();
5395}
5396
5397
47a8d4ba
AC
5398/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5399 the register stored on the stack (32) is different to its real raw
5400 size (64). The below ensures that registers are fetched from the
5401 stack using their ABI size and then stored into the RAW_BUFFER
5402 using their raw size.
5403
5404 The alternative to adding this function would be to add an ABI
5405 macro - REGISTER_STACK_SIZE(). */
5406
5407static void
acdb74a0 5408mips_get_saved_register (char *raw_buffer,
795e1e11 5409 int *optimizedp,
acdb74a0
AC
5410 CORE_ADDR *addrp,
5411 struct frame_info *frame,
5412 int regnum,
795e1e11 5413 enum lval_type *lvalp)
47a8d4ba 5414{
795e1e11
AC
5415 CORE_ADDR addrx;
5416 enum lval_type lvalx;
5417 int optimizedx;
47a8d4ba
AC
5418
5419 if (!target_has_registers)
5420 error ("No registers.");
5421
795e1e11
AC
5422 /* Make certain that all needed parameters are present. */
5423 if (addrp == NULL)
5424 addrp = &addrx;
5425 if (lvalp == NULL)
5426 lvalp = &lvalx;
5427 if (optimizedp == NULL)
5428 optimizedp = &optimizedx;
f796e4be
KB
5429 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5430 regnum, lvalp);
795e1e11
AC
5431 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5432 have a pseudo register range that correspons to the ABI's, rather
5433 than the ISA's, view of registers. These registers would then
5434 implicitly describe their size and hence could be used without
5435 the below munging. */
5436 if ((*lvalp) == lval_memory)
47a8d4ba 5437 {
47a8d4ba
AC
5438 if (raw_buffer != NULL)
5439 {
47a8d4ba 5440 if (regnum < 32)
795e1e11
AC
5441 {
5442 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5443 saved. */
5444 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5445 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5446 }
47a8d4ba
AC
5447 }
5448 }
47a8d4ba 5449}
2acceee2 5450
f7b9e9fc
AC
5451/* Immediately after a function call, return the saved pc.
5452 Can't always go through the frames for this because on some machines
5453 the new frame is not set up until the new function executes
5454 some instructions. */
5455
5456static CORE_ADDR
5457mips_saved_pc_after_call (struct frame_info *frame)
5458{
6c997a34 5459 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5460}
5461
5462
88c72b7d
AC
5463/* Convert a dbx stab register number (from `r' declaration) to a gdb
5464 REGNUM */
5465
5466static int
5467mips_stab_reg_to_regnum (int num)
5468{
2f38ef89 5469 if (num >= 0 && num < 32)
88c72b7d 5470 return num;
2f38ef89 5471 else if (num >= 38 && num < 70)
88c72b7d 5472 return num + FP0_REGNUM - 38;
040b99fd
KB
5473 else if (num == 70)
5474 return HI_REGNUM;
5475 else if (num == 71)
5476 return LO_REGNUM;
2f38ef89
KB
5477 else
5478 {
5479 /* This will hopefully (eventually) provoke a warning. Should
5480 we be calling complaint() here? */
5481 return NUM_REGS + NUM_PSEUDO_REGS;
5482 }
88c72b7d
AC
5483}
5484
2f38ef89
KB
5485
5486/* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
88c72b7d
AC
5487
5488static int
2f38ef89 5489mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5490{
2f38ef89 5491 if (num >= 0 && num < 32)
88c72b7d 5492 return num;
2f38ef89 5493 else if (num >= 32 && num < 64)
88c72b7d 5494 return num + FP0_REGNUM - 32;
040b99fd
KB
5495 else if (num == 64)
5496 return HI_REGNUM;
5497 else if (num == 65)
5498 return LO_REGNUM;
2f38ef89
KB
5499 else
5500 {
5501 /* This will hopefully (eventually) provoke a warning. Should
5502 we be calling complaint() here? */
5503 return NUM_REGS + NUM_PSEUDO_REGS;
5504 }
88c72b7d
AC
5505}
5506
2f38ef89 5507
fc0c74b1
AC
5508/* Convert an integer into an address. By first converting the value
5509 into a pointer and then extracting it signed, the address is
5510 guarenteed to be correctly sign extended. */
5511
5512static CORE_ADDR
5513mips_integer_to_address (struct type *type, void *buf)
5514{
5515 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5516 LONGEST val = unpack_long (type, buf);
5517 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5518 return extract_signed_integer (tmp,
5519 TYPE_LENGTH (builtin_type_void_data_ptr));
5520}
5521
caaa3122
DJ
5522static void
5523mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5524{
5525 enum mips_abi *abip = (enum mips_abi *) obj;
5526 const char *name = bfd_get_section_name (abfd, sect);
5527
5528 if (*abip != MIPS_ABI_UNKNOWN)
5529 return;
5530
5531 if (strncmp (name, ".mdebug.", 8) != 0)
5532 return;
5533
5534 if (strcmp (name, ".mdebug.abi32") == 0)
5535 *abip = MIPS_ABI_O32;
5536 else if (strcmp (name, ".mdebug.abiN32") == 0)
5537 *abip = MIPS_ABI_N32;
62a49b2c 5538 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5539 *abip = MIPS_ABI_N64;
caaa3122
DJ
5540 else if (strcmp (name, ".mdebug.abiO64") == 0)
5541 *abip = MIPS_ABI_O64;
5542 else if (strcmp (name, ".mdebug.eabi32") == 0)
5543 *abip = MIPS_ABI_EABI32;
5544 else if (strcmp (name, ".mdebug.eabi64") == 0)
5545 *abip = MIPS_ABI_EABI64;
5546 else
5547 warning ("unsupported ABI %s.", name + 8);
5548}
5549
2e4ebe70
DJ
5550static enum mips_abi
5551global_mips_abi (void)
5552{
5553 int i;
5554
5555 for (i = 0; mips_abi_strings[i] != NULL; i++)
5556 if (mips_abi_strings[i] == mips_abi_string)
5557 return (enum mips_abi) i;
5558
5559 internal_error (__FILE__, __LINE__,
5560 "unknown ABI string");
5561}
5562
c2d11a7d 5563static struct gdbarch *
acdb74a0
AC
5564mips_gdbarch_init (struct gdbarch_info info,
5565 struct gdbarch_list *arches)
c2d11a7d
JM
5566{
5567 static LONGEST mips_call_dummy_words[] =
5568 {0};
5569 struct gdbarch *gdbarch;
5570 struct gdbarch_tdep *tdep;
5571 int elf_flags;
2e4ebe70 5572 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5573
1d06468c
EZ
5574 /* Reset the disassembly info, in case it was set to something
5575 non-default. */
810ecf9f
AC
5576 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5577 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5578 deprecated_tm_print_insn_info.mach = 0;
1d06468c 5579
70f80edf
JT
5580 elf_flags = 0;
5581
5582 if (info.abfd)
5583 {
5584 /* First of all, extract the elf_flags, if available. */
5585 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5586 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5587 }
c2d11a7d 5588
102182a9 5589 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5590 switch ((elf_flags & EF_MIPS_ABI))
5591 {
5592 case E_MIPS_ABI_O32:
5593 mips_abi = MIPS_ABI_O32;
5594 break;
5595 case E_MIPS_ABI_O64:
5596 mips_abi = MIPS_ABI_O64;
5597 break;
5598 case E_MIPS_ABI_EABI32:
5599 mips_abi = MIPS_ABI_EABI32;
5600 break;
5601 case E_MIPS_ABI_EABI64:
4a7f7ba8 5602 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5603 break;
5604 default:
acdb74a0
AC
5605 if ((elf_flags & EF_MIPS_ABI2))
5606 mips_abi = MIPS_ABI_N32;
5607 else
5608 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5609 break;
5610 }
acdb74a0 5611
caaa3122
DJ
5612 /* GCC creates a pseudo-section whose name describes the ABI. */
5613 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5614 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5615
2e4ebe70
DJ
5616 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5617 Use the ABI from the last architecture if there is one. */
5618 if (info.abfd == NULL && arches != NULL)
5619 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5620
32a6503c 5621 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5622 if (mips_abi == MIPS_ABI_UNKNOWN
5623 && info.bfd_arch_info != NULL
5624 && info.bfd_arch_info->arch == bfd_arch_mips)
5625 {
5626 switch (info.bfd_arch_info->mach)
5627 {
5628 case bfd_mach_mips3900:
5629 mips_abi = MIPS_ABI_EABI32;
5630 break;
5631 case bfd_mach_mips4100:
5632 case bfd_mach_mips5000:
5633 mips_abi = MIPS_ABI_EABI64;
5634 break;
1d06468c
EZ
5635 case bfd_mach_mips8000:
5636 case bfd_mach_mips10000:
32a6503c
KB
5637 /* On Irix, ELF64 executables use the N64 ABI. The
5638 pseudo-sections which describe the ABI aren't present
5639 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5640 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5641 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5642 mips_abi = MIPS_ABI_N64;
5643 else
5644 mips_abi = MIPS_ABI_N32;
1d06468c 5645 break;
bf64bfd6
AC
5646 }
5647 }
2e4ebe70 5648
2e4ebe70
DJ
5649 if (mips_abi == MIPS_ABI_UNKNOWN)
5650 mips_abi = MIPS_ABI_O32;
5651
5652 /* Now that we have found what the ABI for this binary would be,
5653 check whether the user is overriding it. */
5654 found_abi = mips_abi;
5655 wanted_abi = global_mips_abi ();
5656 if (wanted_abi != MIPS_ABI_UNKNOWN)
5657 mips_abi = wanted_abi;
5658
810ecf9f 5659 /* We have to set deprecated_tm_print_insn_info before looking for a
2252e863
AO
5660 pre-existing architecture, otherwise we may return before we get
5661 a chance to set it up. */
5662 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5663 {
5664 /* Set up the disassembler info, so that we get the right
5665 register names from libopcodes. */
5666 if (mips_abi == MIPS_ABI_N32)
810ecf9f 5667 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
2252e863 5668 else
810ecf9f
AC
5669 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5670 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5671 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
2252e863
AO
5672 if (info.bfd_arch_info != NULL
5673 && info.bfd_arch_info->arch == bfd_arch_mips
5674 && info.bfd_arch_info->mach)
810ecf9f 5675 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
2252e863 5676 else
810ecf9f 5677 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
2252e863
AO
5678 }
5679 else
5680 /* This string is not recognized explicitly by the disassembler,
5681 but it tells the disassembler to not try to guess the ABI from
5682 the bfd elf headers, such that, if the user overrides the ABI
5683 of a program linked as NewABI, the disassembly will follow the
5684 register naming conventions specified by the user. */
810ecf9f 5685 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
2252e863 5686
4b9b3959
AC
5687 if (gdbarch_debug)
5688 {
5689 fprintf_unfiltered (gdb_stdlog,
9ace0497 5690 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5691 elf_flags);
4b9b3959
AC
5692 fprintf_unfiltered (gdb_stdlog,
5693 "mips_gdbarch_init: mips_abi = %d\n",
5694 mips_abi);
2e4ebe70
DJ
5695 fprintf_unfiltered (gdb_stdlog,
5696 "mips_gdbarch_init: found_mips_abi = %d\n",
5697 found_abi);
4b9b3959 5698 }
0dadbba0 5699
c2d11a7d
JM
5700 /* try to find a pre-existing architecture */
5701 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5702 arches != NULL;
5703 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5704 {
5705 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5706 using. */
9103eae0 5707 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5708 continue;
9103eae0 5709 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5710 continue;
4be87837 5711 return arches->gdbarch;
c2d11a7d
JM
5712 }
5713
102182a9 5714 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5715 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5716 gdbarch = gdbarch_alloc (&info, tdep);
5717 tdep->elf_flags = elf_flags;
5718
102182a9 5719 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5720 set_gdbarch_short_bit (gdbarch, 16);
5721 set_gdbarch_int_bit (gdbarch, 32);
5722 set_gdbarch_float_bit (gdbarch, 32);
5723 set_gdbarch_double_bit (gdbarch, 64);
5724 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5725 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
a0ed5532
AC
5726 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
5727 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5728 tdep->found_abi = found_abi;
0dadbba0 5729 tdep->mips_abi = mips_abi;
1d06468c 5730
f7ab6ec6
MS
5731 set_gdbarch_elf_make_msymbol_special (gdbarch,
5732 mips_elf_make_msymbol_special);
5733
4be87837 5734 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5735 set_gdbarch_num_regs (gdbarch, 71);
5736 else
5737 set_gdbarch_num_regs (gdbarch, 90);
5738
0dadbba0 5739 switch (mips_abi)
c2d11a7d 5740 {
0dadbba0 5741 case MIPS_ABI_O32:
b81774d8 5742 set_gdbarch_deprecated_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5743 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5744 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5745 tdep->mips_default_saved_regsize = 4;
0dadbba0 5746 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5747 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5748 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5749 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5750 tdep->gdb_target_is_mips64 = 0;
4014092b 5751 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5752 set_gdbarch_long_bit (gdbarch, 32);
5753 set_gdbarch_ptr_bit (gdbarch, 32);
5754 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5755 set_gdbarch_reg_struct_has_addr (gdbarch,
5756 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5757 set_gdbarch_use_struct_convention (gdbarch,
5758 mips_o32_use_struct_convention);
c2d11a7d 5759 break;
0dadbba0 5760 case MIPS_ABI_O64:
b81774d8 5761 set_gdbarch_deprecated_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5762 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5763 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5764 tdep->mips_default_saved_regsize = 8;
0dadbba0 5765 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5766 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5767 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5768 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5769 tdep->gdb_target_is_mips64 = 1;
361d1df0 5770 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5771 set_gdbarch_long_bit (gdbarch, 32);
5772 set_gdbarch_ptr_bit (gdbarch, 32);
5773 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5774 set_gdbarch_reg_struct_has_addr (gdbarch,
5775 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5776 set_gdbarch_use_struct_convention (gdbarch,
5777 mips_o32_use_struct_convention);
c2d11a7d 5778 break;
0dadbba0 5779 case MIPS_ABI_EABI32:
b81774d8 5780 set_gdbarch_deprecated_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5781 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5782 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5783 tdep->mips_default_saved_regsize = 4;
0dadbba0 5784 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5785 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5786 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5787 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5788 tdep->gdb_target_is_mips64 = 0;
4014092b 5789 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5790 set_gdbarch_long_bit (gdbarch, 32);
5791 set_gdbarch_ptr_bit (gdbarch, 32);
5792 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5793 set_gdbarch_reg_struct_has_addr (gdbarch,
5794 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5795 set_gdbarch_use_struct_convention (gdbarch,
5796 mips_eabi_use_struct_convention);
c2d11a7d 5797 break;
0dadbba0 5798 case MIPS_ABI_EABI64:
b81774d8 5799 set_gdbarch_deprecated_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5800 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5801 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5802 tdep->mips_default_saved_regsize = 8;
0dadbba0 5803 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5804 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5805 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5806 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5807 tdep->gdb_target_is_mips64 = 1;
4014092b 5808 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5809 set_gdbarch_long_bit (gdbarch, 64);
5810 set_gdbarch_ptr_bit (gdbarch, 64);
5811 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5812 set_gdbarch_reg_struct_has_addr (gdbarch,
5813 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5814 set_gdbarch_use_struct_convention (gdbarch,
5815 mips_eabi_use_struct_convention);
c2d11a7d 5816 break;
0dadbba0 5817 case MIPS_ABI_N32:
b81774d8 5818 set_gdbarch_deprecated_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5819 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5820 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5821 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5822 tdep->mips_default_stack_argsize = 8;
5823 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5824 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5825 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5826 tdep->gdb_target_is_mips64 = 1;
4014092b 5827 tdep->default_mask_address_p = 0;
0dadbba0
AC
5828 set_gdbarch_long_bit (gdbarch, 32);
5829 set_gdbarch_ptr_bit (gdbarch, 32);
5830 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5831 set_gdbarch_use_struct_convention (gdbarch,
5832 mips_n32n64_use_struct_convention);
8b389c40
MS
5833 set_gdbarch_reg_struct_has_addr (gdbarch,
5834 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5835 break;
5836 case MIPS_ABI_N64:
b81774d8 5837 set_gdbarch_deprecated_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5838 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5839 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5840 tdep->mips_default_saved_regsize = 8;
5841 tdep->mips_default_stack_argsize = 8;
5842 tdep->mips_fp_register_double = 1;
5843 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5844 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5845 tdep->gdb_target_is_mips64 = 1;
5846 tdep->default_mask_address_p = 0;
5847 set_gdbarch_long_bit (gdbarch, 64);
5848 set_gdbarch_ptr_bit (gdbarch, 64);
5849 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5850 set_gdbarch_use_struct_convention (gdbarch,
5851 mips_n32n64_use_struct_convention);
8b389c40
MS
5852 set_gdbarch_reg_struct_has_addr (gdbarch,
5853 mips_n32n64_reg_struct_has_addr);
0dadbba0 5854 break;
c2d11a7d 5855 default:
2e4ebe70
DJ
5856 internal_error (__FILE__, __LINE__,
5857 "unknown ABI in switch");
c2d11a7d
JM
5858 }
5859
a5ea2558
AC
5860 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5861 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5862 comment:
5863
5864 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5865 flag in object files because to do so would make it impossible to
102182a9 5866 link with libraries compiled without "-gp32". This is
a5ea2558 5867 unnecessarily restrictive.
361d1df0 5868
a5ea2558
AC
5869 We could solve this problem by adding "-gp32" multilibs to gcc,
5870 but to set this flag before gcc is built with such multilibs will
5871 break too many systems.''
5872
5873 But even more unhelpfully, the default linker output target for
5874 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5875 for 64-bit programs - you need to change the ABI to change this,
102182a9 5876 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5877 this flag to detect 32-bit mode would do the wrong thing given
5878 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5879 as 32-bit programs by default. */
a5ea2558 5880
c2d11a7d
JM
5881 /* enable/disable the MIPS FPU */
5882 if (!mips_fpu_type_auto)
5883 tdep->mips_fpu_type = mips_fpu_type;
5884 else if (info.bfd_arch_info != NULL
5885 && info.bfd_arch_info->arch == bfd_arch_mips)
5886 switch (info.bfd_arch_info->mach)
5887 {
b0069a17 5888 case bfd_mach_mips3900:
c2d11a7d 5889 case bfd_mach_mips4100:
ed9a39eb 5890 case bfd_mach_mips4111:
c2d11a7d
JM
5891 tdep->mips_fpu_type = MIPS_FPU_NONE;
5892 break;
bf64bfd6
AC
5893 case bfd_mach_mips4650:
5894 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5895 break;
c2d11a7d
JM
5896 default:
5897 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5898 break;
5899 }
5900 else
5901 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5902
5903 /* MIPS version of register names. NOTE: At present the MIPS
5904 register name management is part way between the old -
5905 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5906 Further work on it is required. */
18f81521
MS
5907 /* NOTE: many targets (esp. embedded) do not go thru the
5908 gdbarch_register_name vector at all, instead bypassing it
5909 by defining REGISTER_NAMES. */
c2d11a7d 5910 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5911 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5912 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5913 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5914 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6c0e89ed 5915 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
c2d11a7d 5916
102182a9
MS
5917 /* Add/remove bits from an address. The MIPS needs be careful to
5918 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5919 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5920
10312cc4 5921 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5922 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5923 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 5924 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5925
102182a9 5926 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5927 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5928 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5929 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5930 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
88c72b7d 5931
c2d11a7d 5932 /* Initialize a frame */
f30ee0bc 5933 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
e9582e71 5934 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
5935
5936 /* MIPS version of CALL_DUMMY */
5937
c2d11a7d 5938 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
28f617b3 5939 set_gdbarch_deprecated_push_return_address (gdbarch, mips_push_return_address);
749b82f6 5940 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
b1e29e33
AC
5941 set_gdbarch_deprecated_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5942 set_gdbarch_deprecated_call_dummy_words (gdbarch, mips_call_dummy_words);
5943 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
28f617b3 5944 set_gdbarch_deprecated_push_return_address (gdbarch, mips_push_return_address);
dc604539 5945 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778 5946 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
bf1f5b4c 5947 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5948 set_gdbarch_register_convert_to_virtual (gdbarch,
5949 mips_register_convert_to_virtual);
5950 set_gdbarch_register_convert_to_raw (gdbarch,
5951 mips_register_convert_to_raw);
5952
618ce49f 5953 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5954 set_gdbarch_frameless_function_invocation (gdbarch,
5955 generic_frameless_function_invocation_not);
8bedc050 5956 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5957 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5958 set_gdbarch_frame_args_skip (gdbarch, 0);
5959
129c1cd6 5960 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5961
f7b9e9fc
AC
5962 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5963 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5964 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5965
5966 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 5967 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 5968
fc0c74b1
AC
5969 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5970 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5971 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5972
102182a9
MS
5973 set_gdbarch_function_start_offset (gdbarch, 0);
5974
32a6503c
KB
5975 /* There are MIPS targets which do not yet use this since they still
5976 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 5977 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 5978 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 5979
903ad3a6 5980 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 5981 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 5982
70f80edf 5983 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 5984 gdbarch_init_osabi (info, gdbarch);
70f80edf 5985
4183d812 5986 set_gdbarch_deprecated_store_struct_return (gdbarch, mips_store_struct_return);
2f1488ce
MS
5987 set_gdbarch_extract_struct_value_address (gdbarch,
5988 mips_extract_struct_value_address);
757a7cc6
MS
5989
5990 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5991
5992 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 5993 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 5994
4b9b3959
AC
5995 return gdbarch;
5996}
5997
2e4ebe70
DJ
5998static void
5999mips_abi_update (char *ignore_args, int from_tty,
6000 struct cmd_list_element *c)
6001{
6002 struct gdbarch_info info;
6003
6004 /* Force the architecture to update, and (if it's a MIPS architecture)
6005 mips_gdbarch_init will take care of the rest. */
6006 gdbarch_info_init (&info);
6007 gdbarch_update_p (info);
6008}
6009
ad188201
KB
6010/* Print out which MIPS ABI is in use. */
6011
6012static void
6013show_mips_abi (char *ignore_args, int from_tty)
6014{
6015 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6016 printf_filtered (
6017 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6018 else
6019 {
6020 enum mips_abi global_abi = global_mips_abi ();
6021 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6022 const char *actual_abi_str = mips_abi_strings[actual_abi];
6023
6024 if (global_abi == MIPS_ABI_UNKNOWN)
6025 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6026 actual_abi_str);
6027 else if (global_abi == actual_abi)
6028 printf_filtered (
6029 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6030 actual_abi_str);
6031 else
6032 {
6033 /* Probably shouldn't happen... */
6034 printf_filtered (
6035 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6036 actual_abi_str,
6037 mips_abi_strings[global_abi]);
6038 }
6039 }
6040}
6041
4b9b3959
AC
6042static void
6043mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6044{
6045 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6046 if (tdep != NULL)
c2d11a7d 6047 {
acdb74a0
AC
6048 int ef_mips_arch;
6049 int ef_mips_32bitmode;
6050 /* determine the ISA */
6051 switch (tdep->elf_flags & EF_MIPS_ARCH)
6052 {
6053 case E_MIPS_ARCH_1:
6054 ef_mips_arch = 1;
6055 break;
6056 case E_MIPS_ARCH_2:
6057 ef_mips_arch = 2;
6058 break;
6059 case E_MIPS_ARCH_3:
6060 ef_mips_arch = 3;
6061 break;
6062 case E_MIPS_ARCH_4:
93d56215 6063 ef_mips_arch = 4;
acdb74a0
AC
6064 break;
6065 default:
93d56215 6066 ef_mips_arch = 0;
acdb74a0
AC
6067 break;
6068 }
6069 /* determine the size of a pointer */
6070 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6073 tdep->elf_flags);
4b9b3959 6074 fprintf_unfiltered (file,
acdb74a0
AC
6075 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6076 ef_mips_32bitmode);
6077 fprintf_unfiltered (file,
6078 "mips_dump_tdep: ef_mips_arch = %d\n",
6079 ef_mips_arch);
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6082 tdep->mips_abi,
2e4ebe70 6083 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6084 fprintf_unfiltered (file,
6085 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6086 mips_mask_address_p (),
6087 tdep->default_mask_address_p);
c2d11a7d 6088 }
4b9b3959
AC
6089 fprintf_unfiltered (file,
6090 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6091 FP_REGISTER_DOUBLE);
6092 fprintf_unfiltered (file,
6093 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6094 MIPS_DEFAULT_FPU_TYPE,
6095 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6096 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6097 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6098 : "???"));
6099 fprintf_unfiltered (file,
6100 "mips_dump_tdep: MIPS_EABI = %d\n",
6101 MIPS_EABI);
6102 fprintf_unfiltered (file,
acdb74a0
AC
6103 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6104 MIPS_LAST_FP_ARG_REGNUM,
6105 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6108 MIPS_FPU_TYPE,
6109 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6110 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6111 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6112 : "???"));
6113 fprintf_unfiltered (file,
6114 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6115 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6116 fprintf_unfiltered (file,
6117 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6118 FP_REGISTER_DOUBLE);
4b9b3959
AC
6119 fprintf_unfiltered (file,
6120 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6121 MIPS_DEFAULT_STACK_ARGSIZE);
6122 fprintf_unfiltered (file,
6123 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6124 MIPS_STACK_ARGSIZE);
6125 fprintf_unfiltered (file,
6126 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6127 MIPS_REGSIZE);
2475bac3
AC
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: A0_REGNUM = %d\n",
6130 A0_REGNUM);
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6133 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6136 XSTRING (ATTACH_DETACH));
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6139 BADVADDR_REGNUM);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6144 CAUSE_REGNUM);
2475bac3
AC
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6147 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6150 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6153 FCRCS_REGNUM);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6156 FCRIR_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6159 FIRST_EMBED_REGNUM);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6162 FPA0_REGNUM);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6165 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6168 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: HI_REGNUM = %d\n",
6171 HI_REGNUM);
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6178 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6181 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6184 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6189 LAST_EMBED_REGNUM);
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: LO_REGNUM = %d\n",
6194 LO_REGNUM);
6195#ifdef MACHINE_CPROC_FP_OFFSET
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6198 MACHINE_CPROC_FP_OFFSET);
6199#endif
6200#ifdef MACHINE_CPROC_PC_OFFSET
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6203 MACHINE_CPROC_PC_OFFSET);
6204#endif
6205#ifdef MACHINE_CPROC_SP_OFFSET
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6208 MACHINE_CPROC_SP_OFFSET);
6209#endif
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6216 MIPS16_INSTLEN);
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6225 MIPS_INSTLEN);
6226 fprintf_unfiltered (file,
acdb74a0
AC
6227 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6228 MIPS_LAST_ARG_REGNUM,
6229 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6232 MIPS_NUMREGS);
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6237 MIPS_SAVED_REGSIZE);
2475bac3
AC
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: OP_LDFPR = used?\n");
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: OP_LDGPR = used?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PRID_REGNUM = %d\n",
6248 PRID_REGNUM);
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6251 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_PC_REG = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PS_REGNUM = %d\n",
6278 PS_REGNUM);
2475bac3
AC
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: RA_REGNUM = %d\n",
6281 RA_REGNUM);
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6284 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6287 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: ROUND_DOWN = function?\n");
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: ROUND_UP = function?\n");
6294#ifdef SAVED_BYTES
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: SAVED_BYTES = %d\n",
6297 SAVED_BYTES);
6298#endif
6299#ifdef SAVED_FP
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SAVED_FP = %d\n",
6302 SAVED_FP);
6303#endif
6304#ifdef SAVED_PC
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_PC = %d\n",
6307 SAVED_PC);
6308#endif
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6311 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6316 SIGFRAME_BASE);
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6319 SIGFRAME_FPREGSAVE_OFF);
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6322 SIGFRAME_PC_OFF);
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6325 SIGFRAME_REGSAVE_OFF);
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6328 SIGFRAME_REG_SIZE);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6331 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6334 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6335 fprintf_unfiltered (file,
b0ed3589
AC
6336 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6337 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6340 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6341#ifdef STACK_END_ADDR
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6344 STACK_END_ADDR);
6345#endif
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6348 XSTRING (STEP_SKIPS_DELAY (PC)));
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6351 STEP_SKIPS_DELAY_P);
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6354 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: T9_REGNUM = %d\n",
6357 T9_REGNUM);
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6362 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6365 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: TARGET_MIPS = used?\n");
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6370 XSTRING (TM_PRINT_INSN_MACH));
6371#ifdef TRACE_CLEAR
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6374 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6375#endif
6376#ifdef TRACE_FLAVOR
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6379 TRACE_FLAVOR);
6380#endif
6381#ifdef TRACE_FLAVOR_SIZE
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6384 TRACE_FLAVOR_SIZE);
6385#endif
6386#ifdef TRACE_SET
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_SET # %s\n",
6389 XSTRING (TRACE_SET (X,STATE)));
6390#endif
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6393#ifdef UNUSED_REGNUM
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6396 UNUSED_REGNUM);
6397#endif
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: V0_REGNUM = %d\n",
6400 V0_REGNUM);
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6403 (long) VM_MIN_ADDRESS);
6404#ifdef VX_NUM_REGS
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6407 VX_NUM_REGS);
6408#endif
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6411 ZERO_REGNUM);
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6414 _PROC_MAGIC_);
c2d11a7d
JM
6415}
6416
c906108c 6417void
acdb74a0 6418_initialize_mips_tdep (void)
c906108c
SS
6419{
6420 static struct cmd_list_element *mipsfpulist = NULL;
6421 struct cmd_list_element *c;
6422
2e4ebe70
DJ
6423 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6424 if (MIPS_ABI_LAST + 1
6425 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6426 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6427
4b9b3959 6428 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
d7a27068
AC
6429 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6430 deprecated_tm_print_insn = gdb_print_insn_mips;
c906108c 6431
a5ea2558
AC
6432 /* Add root prefix command for all "set mips"/"show mips" commands */
6433 add_prefix_cmd ("mips", no_class, set_mips_command,
6434 "Various MIPS specific commands.",
6435 &setmipscmdlist, "set mips ", 0, &setlist);
6436
6437 add_prefix_cmd ("mips", no_class, show_mips_command,
6438 "Various MIPS specific commands.",
6439 &showmipscmdlist, "show mips ", 0, &showlist);
6440
6441 /* Allow the user to override the saved register size. */
6442 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6443 class_obscure,
6444 size_enums,
6445 &mips_saved_regsize_string, "\
a5ea2558
AC
6446Set size of general purpose registers saved on the stack.\n\
6447This option can be set to one of:\n\
6448 32 - Force GDB to treat saved GP registers as 32-bit\n\
6449 64 - Force GDB to treat saved GP registers as 64-bit\n\
6450 auto - Allow GDB to use the target's default setting or autodetect the\n\
6451 saved GP register size from information contained in the executable.\n\
6452 (default: auto)",
1ed2a135 6453 &setmipscmdlist),
a5ea2558
AC
6454 &showmipscmdlist);
6455
d929b26f
AC
6456 /* Allow the user to override the argument stack size. */
6457 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6458 class_obscure,
6459 size_enums,
1ed2a135 6460 &mips_stack_argsize_string, "\
d929b26f
AC
6461Set the amount of stack space reserved for each argument.\n\
6462This option can be set to one of:\n\
6463 32 - Force GDB to allocate 32-bit chunks per argument\n\
6464 64 - Force GDB to allocate 64-bit chunks per argument\n\
6465 auto - Allow GDB to determine the correct setting from the current\n\
6466 target and executable (default)",
6467 &setmipscmdlist),
6468 &showmipscmdlist);
6469
2e4ebe70
DJ
6470 /* Allow the user to override the ABI. */
6471 c = add_set_enum_cmd
6472 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6473 "Set the ABI used by this program.\n"
6474 "This option can be set to one of:\n"
6475 " auto - the default ABI associated with the current binary\n"
6476 " o32\n"
6477 " o64\n"
6478 " n32\n"
f3a7b3a5 6479 " n64\n"
2e4ebe70
DJ
6480 " eabi32\n"
6481 " eabi64",
6482 &setmipscmdlist);
2e4ebe70 6483 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6484 add_cmd ("abi", class_obscure, show_mips_abi,
6485 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6486
c906108c
SS
6487 /* Let the user turn off floating point and set the fence post for
6488 heuristic_proc_start. */
6489
6490 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6491 "Set use of MIPS floating-point coprocessor.",
6492 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6493 add_cmd ("single", class_support, set_mipsfpu_single_command,
6494 "Select single-precision MIPS floating-point coprocessor.",
6495 &mipsfpulist);
6496 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6497 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6498 &mipsfpulist);
6499 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6500 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6501 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6502 add_cmd ("none", class_support, set_mipsfpu_none_command,
6503 "Select no MIPS floating-point coprocessor.",
6504 &mipsfpulist);
6505 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6506 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6507 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6508 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6509 "Select MIPS floating-point coprocessor automatically.",
6510 &mipsfpulist);
6511 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6512 "Show current use of MIPS floating-point coprocessor target.",
6513 &showlist);
6514
c906108c
SS
6515 /* We really would like to have both "0" and "unlimited" work, but
6516 command.c doesn't deal with that. So make it a var_zinteger
6517 because the user can always use "999999" or some such for unlimited. */
6518 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6519 (char *) &heuristic_fence_post,
6520 "\
6521Set the distance searched for the start of a function.\n\
6522If you are debugging a stripped executable, GDB needs to search through the\n\
6523program for the start of a function. This command sets the distance of the\n\
6524search. The only need to set it is when debugging a stripped executable.",
6525 &setlist);
6526 /* We need to throw away the frame cache when we set this, since it
6527 might change our ability to get backtraces. */
9f60d481 6528 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6529 add_show_from_set (c, &showlist);
6530
6531 /* Allow the user to control whether the upper bits of 64-bit
6532 addresses should be zeroed. */
e9e68a56
AC
6533 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6534Set zeroing of upper 32 bits of 64-bit addresses.\n\
6535Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6536allow GDB to determine the correct value.\n", "\
6537Show zeroing of upper 32 bits of 64-bit addresses.",
6538 NULL, show_mask_address,
6539 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6540
6541 /* Allow the user to control the size of 32 bit registers within the
6542 raw remote packet. */
6543 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6544 class_obscure,
6545 var_boolean,
6546 (char *)&mips64_transfers_32bit_regs_p, "\
6547Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6548Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6549that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
655064 bits for others. Use \"off\" to disable compatibility mode",
6551 &setlist),
6552 &showlist);
9ace0497
AC
6553
6554 /* Debug this files internals. */
6555 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6556 &mips_debug, "Set mips debugging.\n\
6557When non-zero, mips specific debugging is enabled.", &setdebuglist),
6558 &showdebuglist);
c906108c 6559}
This page took 1.622821 seconds and 4 git commands to generate.