]> Git Repo - binutils.git/blame - gdb/mips-tdep.c
* mips-tdep.c (mips_push_arguments): Fetch gdbarch_tdep struct
[binutils.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin([email protected]) at CMU
7 and by Per Bothner([email protected]) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f
AC
141 int mips_regs_have_home_p;
142 int mips_default_stack_argsize;
5213ab06 143 int gdb_target_is_mips64;
4014092b 144 int default_mask_address_p;
70f80edf
JT
145
146 enum gdb_osabi osabi;
c2d11a7d
JM
147 };
148
0dadbba0 149#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 150 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 151
c2d11a7d 152#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 153
c2d11a7d 154#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 155
c2d11a7d 156#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 157
d929b26f
AC
158/* Return the currently configured (or set) saved register size. */
159
a5ea2558 160#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 161
53904c9e 162static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
163
164#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166static unsigned int
acdb74a0 167mips_saved_regsize (void)
d929b26f
AC
168{
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175}
176
dd824b04
DJ
177/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
178 compatiblity mode. A return value of 1 means that we have
179 physical 64-bit registers, but should treat them as 32-bit registers. */
180
181static int
182mips2_fp_compat (void)
183{
184 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
185 meaningful. */
186 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
187 return 0;
188
189#if 0
190 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
191 in all the places we deal with FP registers. PR gdb/413. */
192 /* Otherwise check the FR bit in the status register - it controls
193 the FP compatiblity mode. If it is clear we are in compatibility
194 mode. */
195 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
196 return 1;
197#endif
361d1df0 198
dd824b04
DJ
199 return 0;
200}
201
c2d11a7d
JM
202/* Indicate that the ABI makes use of double-precision registers
203 provided by the FPU (rather than combining pairs of registers to
204 form double-precision values). Do not use "TARGET_IS_MIPS64" to
205 determine if the ABI is using double-precision registers. See also
206 MIPS_FPU_TYPE. */
c2d11a7d 207#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 208
d929b26f
AC
209/* Does the caller allocate a ``home'' for each register used in the
210 function call? The N32 ABI and MIPS_EABI do not, the others do. */
211
d929b26f 212#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
d929b26f
AC
213
214/* The amount of space reserved on the stack for registers. This is
215 different to MIPS_SAVED_REGSIZE as it determines the alignment of
216 data allocated after the registers have run out. */
217
0dadbba0 218#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
219
220#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
221
53904c9e 222static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
223
224static unsigned int
225mips_stack_argsize (void)
226{
227 if (mips_stack_argsize_string == size_auto)
228 return MIPS_DEFAULT_STACK_ARGSIZE;
229 else if (mips_stack_argsize_string == size_64)
230 return 8;
231 else /* if (mips_stack_argsize_string == size_32) */
232 return 4;
233}
234
5213ab06 235#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 236
92e1c15c 237#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 238
7a292a7a 239#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 240
a14ed312 241int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 242
a14ed312 243static void mips_print_register (int, int);
c906108c
SS
244
245static mips_extra_func_info_t
479412cd 246heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 247
a14ed312 248static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 249
a14ed312 250static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 251
a14ed312 252int mips_set_processor_type (char *);
c906108c 253
a14ed312 254static void mips_show_processor_type_command (char *, int);
c906108c 255
a14ed312 256static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
257
258static mips_extra_func_info_t
479412cd 259find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 260
a14ed312
KB
261static CORE_ADDR after_prologue (CORE_ADDR pc,
262 mips_extra_func_info_t proc_desc);
c906108c 263
dd824b04
DJ
264static void mips_read_fp_register_single (int regno, char *rare_buffer);
265static void mips_read_fp_register_double (int regno, char *rare_buffer);
266
67b2c998
DJ
267static struct type *mips_float_register_type (void);
268static struct type *mips_double_register_type (void);
269
c906108c
SS
270/* This value is the model of MIPS in use. It is derived from the value
271 of the PrID register. */
272
273char *mips_processor_type;
274
275char *tmp_mips_processor_type;
276
acdb74a0
AC
277/* The list of available "set mips " and "show mips " commands */
278
279static struct cmd_list_element *setmipscmdlist = NULL;
280static struct cmd_list_element *showmipscmdlist = NULL;
281
c906108c
SS
282/* A set of original names, to be used when restoring back to generic
283 registers from a specific set. */
284
cce74817
JM
285char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
286char **mips_processor_reg_names = mips_generic_reg_names;
287
fa88f677 288const char *
fba45db2 289mips_register_name (int i)
cce74817
JM
290{
291 return mips_processor_reg_names[i];
292}
9846de1b 293/* *INDENT-OFF* */
c906108c
SS
294/* Names of IDT R3041 registers. */
295
296char *mips_r3041_reg_names[] = {
297 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
298 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
299 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
300 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
301 "sr", "lo", "hi", "bad", "cause","pc",
302 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
303 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
304 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
305 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
306 "fsr", "fir", "fp", "",
307 "", "", "bus", "ccfg", "", "", "", "",
308 "", "", "port", "cmp", "", "", "epc", "prid",
309};
310
311/* Names of IDT R3051 registers. */
312
313char *mips_r3051_reg_names[] = {
314 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
315 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
316 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
317 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
318 "sr", "lo", "hi", "bad", "cause","pc",
319 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
320 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
321 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
322 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
323 "fsr", "fir", "fp", "",
324 "inx", "rand", "elo", "", "ctxt", "", "", "",
325 "", "", "ehi", "", "", "", "epc", "prid",
326};
327
328/* Names of IDT R3081 registers. */
329
330char *mips_r3081_reg_names[] = {
331 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
332 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
333 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
334 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
335 "sr", "lo", "hi", "bad", "cause","pc",
336 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
337 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
338 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
339 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
340 "fsr", "fir", "fp", "",
341 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
342 "", "", "ehi", "", "", "", "epc", "prid",
343};
344
345/* Names of LSI 33k registers. */
346
347char *mips_lsi33k_reg_names[] = {
348 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
349 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
350 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
351 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
352 "epc", "hi", "lo", "sr", "cause","badvaddr",
353 "dcic", "bpc", "bda", "", "", "", "", "",
354 "", "", "", "", "", "", "", "",
355 "", "", "", "", "", "", "", "",
356 "", "", "", "", "", "", "", "",
357 "", "", "", "",
358 "", "", "", "", "", "", "", "",
359 "", "", "", "", "", "", "", "",
360};
361
362struct {
363 char *name;
364 char **regnames;
365} mips_processor_type_table[] = {
366 { "generic", mips_generic_reg_names },
367 { "r3041", mips_r3041_reg_names },
368 { "r3051", mips_r3051_reg_names },
369 { "r3071", mips_r3081_reg_names },
370 { "r3081", mips_r3081_reg_names },
371 { "lsi33k", mips_lsi33k_reg_names },
372 { NULL, NULL }
373};
9846de1b 374/* *INDENT-ON* */
c906108c 375
c5aa993b
JM
376
377
378
c906108c 379/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
380static int mips16_to_32_reg[8] =
381{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
382
383/* Heuristic_proc_start may hunt through the text section for a long
384 time across a 2400 baud serial line. Allows the user to limit this
385 search. */
386
387static unsigned int heuristic_fence_post = 0;
388
c5aa993b
JM
389#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
390#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
391#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
392#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
393#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
394#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
395#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
396#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
397#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
398#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
399/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
400 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
401#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
402#define _PROC_MAGIC_ 0x0F0F0F0F
403#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
404#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
405
406struct linked_proc_info
c5aa993b
JM
407 {
408 struct mips_extra_func_info info;
409 struct linked_proc_info *next;
410 }
411 *linked_proc_desc_table = NULL;
c906108c 412
cce74817 413void
acdb74a0 414mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
415{
416 if (fi
417 && fi->extra_info
418 && fi->extra_info->proc_desc
419 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 420 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 421 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 422 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 423}
c906108c 424
46cd78fb
AC
425/* Number of bytes of storage in the actual machine representation for
426 register N. NOTE: This indirectly defines the register size
427 transfered by the GDB protocol. */
43e526b9
JM
428
429static int mips64_transfers_32bit_regs_p = 0;
430
431int
acdb74a0 432mips_register_raw_size (int reg_nr)
43e526b9
JM
433{
434 if (mips64_transfers_32bit_regs_p)
435 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
436 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
437 && FP_REGISTER_DOUBLE)
438 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
439 registers. */
440 return 8;
43e526b9
JM
441 else
442 return MIPS_REGSIZE;
443}
444
46cd78fb
AC
445/* Convert between RAW and VIRTUAL registers. The RAW register size
446 defines the remote-gdb packet. */
447
43e526b9 448int
acdb74a0 449mips_register_convertible (int reg_nr)
43e526b9
JM
450{
451 if (mips64_transfers_32bit_regs_p)
452 return 0;
453 else
454 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
455}
456
457void
acdb74a0
AC
458mips_register_convert_to_virtual (int n, struct type *virtual_type,
459 char *raw_buf, char *virt_buf)
43e526b9 460{
d7449b42 461 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
462 memcpy (virt_buf,
463 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
464 TYPE_LENGTH (virtual_type));
465 else
466 memcpy (virt_buf,
467 raw_buf,
468 TYPE_LENGTH (virtual_type));
469}
470
471void
acdb74a0
AC
472mips_register_convert_to_raw (struct type *virtual_type, int n,
473 char *virt_buf, char *raw_buf)
43e526b9
JM
474{
475 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 476 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
477 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
478 virt_buf,
479 TYPE_LENGTH (virtual_type));
480 else
481 memcpy (raw_buf,
482 virt_buf,
483 TYPE_LENGTH (virtual_type));
484}
485
c906108c 486/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 487enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
488
489static int
490mips_mask_address_p (void)
491{
492 switch (mask_address_var)
493 {
7f19b9a2 494 case AUTO_BOOLEAN_TRUE:
4014092b 495 return 1;
7f19b9a2 496 case AUTO_BOOLEAN_FALSE:
4014092b
AC
497 return 0;
498 break;
7f19b9a2 499 case AUTO_BOOLEAN_AUTO:
92e1c15c 500 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 501 default:
8e65ff28
AC
502 internal_error (__FILE__, __LINE__,
503 "mips_mask_address_p: bad switch");
4014092b 504 return -1;
361d1df0 505 }
4014092b
AC
506}
507
508static void
e9e68a56 509show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
510{
511 switch (mask_address_var)
512 {
7f19b9a2 513 case AUTO_BOOLEAN_TRUE:
4014092b
AC
514 printf_filtered ("The 32 bit mips address mask is enabled\n");
515 break;
7f19b9a2 516 case AUTO_BOOLEAN_FALSE:
4014092b
AC
517 printf_filtered ("The 32 bit mips address mask is disabled\n");
518 break;
7f19b9a2 519 case AUTO_BOOLEAN_AUTO:
4014092b
AC
520 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
521 mips_mask_address_p () ? "enabled" : "disabled");
522 break;
523 default:
8e65ff28
AC
524 internal_error (__FILE__, __LINE__,
525 "show_mask_address: bad switch");
4014092b 526 break;
361d1df0 527 }
4014092b 528}
c906108c
SS
529
530/* Should call_function allocate stack space for a struct return? */
531int
fba45db2 532mips_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
533{
534 if (MIPS_EABI)
7a292a7a 535 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 536 else
c5aa993b 537 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
538}
539
540/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
541
542static int
543pc_is_mips16 (bfd_vma memaddr)
544{
545 struct minimal_symbol *sym;
546
547 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
548 if (IS_MIPS16_ADDR (memaddr))
549 return 1;
550
551 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
552 the high bit of the info field. Use this to decide if the function is
553 MIPS16 or normal MIPS. */
554 sym = lookup_minimal_symbol_by_pc (memaddr);
555 if (sym)
556 return MSYMBOL_IS_SPECIAL (sym);
557 else
558 return 0;
559}
560
6c997a34
AC
561/* MIPS believes that the PC has a sign extended value. Perhaphs the
562 all registers should be sign extended for simplicity? */
563
564static CORE_ADDR
39f77062 565mips_read_pc (ptid_t ptid)
6c997a34 566{
39f77062 567 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 568}
c906108c
SS
569
570/* This returns the PC of the first inst after the prologue. If we can't
571 find the prologue, then return 0. */
572
573static CORE_ADDR
acdb74a0
AC
574after_prologue (CORE_ADDR pc,
575 mips_extra_func_info_t proc_desc)
c906108c
SS
576{
577 struct symtab_and_line sal;
578 CORE_ADDR func_addr, func_end;
579
479412cd
DJ
580 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
581 to read the stack pointer from the current machine state, because
582 the current machine state has nothing to do with the information
583 we need from the proc_desc; and the process may or may not exist
584 right now. */
c906108c 585 if (!proc_desc)
479412cd 586 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
587
588 if (proc_desc)
589 {
590 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 591 strongly suspect that frameless always means prologueless... */
c906108c
SS
592 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
593 && PROC_FRAME_OFFSET (proc_desc) == 0)
594 return 0;
595 }
596
597 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
598 return 0; /* Unknown */
599
600 sal = find_pc_line (func_addr, 0);
601
602 if (sal.end < func_end)
603 return sal.end;
604
605 /* The line after the prologue is after the end of the function. In this
606 case, tell the caller to find the prologue the hard way. */
607
608 return 0;
609}
610
611/* Decode a MIPS32 instruction that saves a register in the stack, and
612 set the appropriate bit in the general register mask or float register mask
613 to indicate which register is saved. This is a helper function
614 for mips_find_saved_regs. */
615
616static void
acdb74a0
AC
617mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
618 unsigned long *float_mask)
c906108c
SS
619{
620 int reg;
621
622 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
623 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
624 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
625 {
626 /* It might be possible to use the instruction to
c5aa993b
JM
627 find the offset, rather than the code below which
628 is based on things being in a certain order in the
629 frame, but figuring out what the instruction's offset
630 is relative to might be a little tricky. */
c906108c
SS
631 reg = (inst & 0x001f0000) >> 16;
632 *gen_mask |= (1 << reg);
633 }
634 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
635 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
636 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
637
638 {
639 reg = ((inst & 0x001f0000) >> 16);
640 *float_mask |= (1 << reg);
641 }
642}
643
644/* Decode a MIPS16 instruction that saves a register in the stack, and
645 set the appropriate bit in the general register or float register mask
646 to indicate which register is saved. This is a helper function
647 for mips_find_saved_regs. */
648
649static void
acdb74a0 650mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 651{
c5aa993b 652 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
653 {
654 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
655 *gen_mask |= (1 << reg);
656 }
c5aa993b 657 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
658 {
659 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
660 *gen_mask |= (1 << reg);
661 }
c5aa993b 662 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
663 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
664 *gen_mask |= (1 << RA_REGNUM);
665}
666
667
668/* Fetch and return instruction from the specified location. If the PC
669 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
670
671static t_inst
acdb74a0 672mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
673{
674 char buf[MIPS_INSTLEN];
675 int instlen;
676 int status;
677
678 if (pc_is_mips16 (addr))
679 {
680 instlen = MIPS16_INSTLEN;
681 addr = UNMAKE_MIPS16_ADDR (addr);
682 }
683 else
c5aa993b 684 instlen = MIPS_INSTLEN;
c906108c
SS
685 status = read_memory_nobpt (addr, buf, instlen);
686 if (status)
687 memory_error (status, addr);
688 return extract_unsigned_integer (buf, instlen);
689}
690
691
692/* These the fields of 32 bit mips instructions */
e135b889
DJ
693#define mips32_op(x) (x >> 26)
694#define itype_op(x) (x >> 26)
695#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 696#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 697#define itype_immediate(x) (x & 0xffff)
c906108c 698
e135b889
DJ
699#define jtype_op(x) (x >> 26)
700#define jtype_target(x) (x & 0x03ffffff)
c906108c 701
e135b889
DJ
702#define rtype_op(x) (x >> 26)
703#define rtype_rs(x) ((x >> 21) & 0x1f)
704#define rtype_rt(x) ((x >> 16) & 0x1f)
705#define rtype_rd(x) ((x >> 11) & 0x1f)
706#define rtype_shamt(x) ((x >> 6) & 0x1f)
707#define rtype_funct(x) (x & 0x3f)
c906108c
SS
708
709static CORE_ADDR
c5aa993b
JM
710mips32_relative_offset (unsigned long inst)
711{
712 long x;
713 x = itype_immediate (inst);
714 if (x & 0x8000) /* sign bit set */
c906108c 715 {
c5aa993b 716 x |= 0xffff0000; /* sign extension */
c906108c 717 }
c5aa993b
JM
718 x = x << 2;
719 return x;
c906108c
SS
720}
721
722/* Determine whate to set a single step breakpoint while considering
723 branch prediction */
724CORE_ADDR
c5aa993b
JM
725mips32_next_pc (CORE_ADDR pc)
726{
727 unsigned long inst;
728 int op;
729 inst = mips_fetch_instruction (pc);
e135b889 730 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 731 {
e135b889
DJ
732 if (itype_op (inst) >> 2 == 5)
733 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 734 {
e135b889 735 op = (itype_op (inst) & 0x03);
c906108c
SS
736 switch (op)
737 {
e135b889
DJ
738 case 0: /* BEQL */
739 goto equal_branch;
740 case 1: /* BNEL */
741 goto neq_branch;
742 case 2: /* BLEZL */
743 goto less_branch;
744 case 3: /* BGTZ */
745 goto greater_branch;
c5aa993b
JM
746 default:
747 pc += 4;
c906108c
SS
748 }
749 }
e135b889
DJ
750 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
751 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
752 {
753 int tf = itype_rt (inst) & 0x01;
754 int cnum = itype_rt (inst) >> 2;
755 int fcrcs = read_signed_register (FCRCS_REGNUM);
756 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
757
758 if (((cond >> cnum) & 0x01) == tf)
759 pc += mips32_relative_offset (inst) + 4;
760 else
761 pc += 8;
762 }
c5aa993b
JM
763 else
764 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
765 }
766 else
c5aa993b
JM
767 { /* This gets way messy */
768
c906108c 769 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 770 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 771 {
c5aa993b
JM
772 case 0: /* SPECIAL */
773 op = rtype_funct (inst);
774 switch (op)
775 {
776 case 8: /* JR */
777 case 9: /* JALR */
6c997a34
AC
778 /* Set PC to that address */
779 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
780 break;
781 default:
782 pc += 4;
783 }
784
e135b889 785 break; /* end SPECIAL */
c5aa993b 786 case 1: /* REGIMM */
c906108c 787 {
e135b889
DJ
788 op = itype_rt (inst); /* branch condition */
789 switch (op)
c906108c 790 {
c5aa993b 791 case 0: /* BLTZ */
e135b889
DJ
792 case 2: /* BLTZL */
793 case 16: /* BLTZAL */
c5aa993b 794 case 18: /* BLTZALL */
c906108c 795 less_branch:
6c997a34 796 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
797 pc += mips32_relative_offset (inst) + 4;
798 else
799 pc += 8; /* after the delay slot */
800 break;
e135b889 801 case 1: /* BGEZ */
c5aa993b
JM
802 case 3: /* BGEZL */
803 case 17: /* BGEZAL */
804 case 19: /* BGEZALL */
c906108c 805 greater_equal_branch:
6c997a34 806 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
807 pc += mips32_relative_offset (inst) + 4;
808 else
809 pc += 8; /* after the delay slot */
810 break;
e135b889 811 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
812 default:
813 pc += 4;
c906108c
SS
814 }
815 }
e135b889 816 break; /* end REGIMM */
c5aa993b
JM
817 case 2: /* J */
818 case 3: /* JAL */
819 {
820 unsigned long reg;
821 reg = jtype_target (inst) << 2;
e135b889 822 /* Upper four bits get never changed... */
c5aa993b 823 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 824 }
c5aa993b
JM
825 break;
826 /* FIXME case JALX : */
827 {
828 unsigned long reg;
829 reg = jtype_target (inst) << 2;
830 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
831 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
832 }
c5aa993b 833 break; /* The new PC will be alternate mode */
e135b889 834 case 4: /* BEQ, BEQL */
c5aa993b 835 equal_branch:
6c997a34
AC
836 if (read_signed_register (itype_rs (inst)) ==
837 read_signed_register (itype_rt (inst)))
c5aa993b
JM
838 pc += mips32_relative_offset (inst) + 4;
839 else
840 pc += 8;
841 break;
e135b889 842 case 5: /* BNE, BNEL */
c5aa993b 843 neq_branch:
6c997a34 844 if (read_signed_register (itype_rs (inst)) !=
e135b889 845 read_signed_register (itype_rt (inst)))
c5aa993b
JM
846 pc += mips32_relative_offset (inst) + 4;
847 else
848 pc += 8;
849 break;
e135b889 850 case 6: /* BLEZ, BLEZL */
c906108c 851 less_zero_branch:
6c997a34 852 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
853 pc += mips32_relative_offset (inst) + 4;
854 else
855 pc += 8;
856 break;
857 case 7:
e135b889
DJ
858 default:
859 greater_branch: /* BGTZ, BGTZL */
6c997a34 860 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
861 pc += mips32_relative_offset (inst) + 4;
862 else
863 pc += 8;
864 break;
c5aa993b
JM
865 } /* switch */
866 } /* else */
867 return pc;
868} /* mips32_next_pc */
c906108c
SS
869
870/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 871 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
872 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
873 We dont want to set a single step instruction on the extend instruction
874 either.
c5aa993b 875 */
c906108c
SS
876
877/* Lots of mips16 instruction formats */
878/* Predicting jumps requires itype,ritype,i8type
879 and their extensions extItype,extritype,extI8type
c5aa993b 880 */
c906108c
SS
881enum mips16_inst_fmts
882{
c5aa993b
JM
883 itype, /* 0 immediate 5,10 */
884 ritype, /* 1 5,3,8 */
885 rrtype, /* 2 5,3,3,5 */
886 rritype, /* 3 5,3,3,5 */
887 rrrtype, /* 4 5,3,3,3,2 */
888 rriatype, /* 5 5,3,3,1,4 */
889 shifttype, /* 6 5,3,3,3,2 */
890 i8type, /* 7 5,3,8 */
891 i8movtype, /* 8 5,3,3,5 */
892 i8mov32rtype, /* 9 5,3,5,3 */
893 i64type, /* 10 5,3,8 */
894 ri64type, /* 11 5,3,3,5 */
895 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
896 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
897 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
898 extRRItype, /* 15 5,5,5,5,3,3,5 */
899 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
900 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
901 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
902 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
903 extRi64type, /* 20 5,6,5,5,3,3,5 */
904 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
905};
12f02c2a
AC
906/* I am heaping all the fields of the formats into one structure and
907 then, only the fields which are involved in instruction extension */
c906108c 908struct upk_mips16
c5aa993b 909 {
12f02c2a 910 CORE_ADDR offset;
c5aa993b
JM
911 unsigned int regx; /* Function in i8 type */
912 unsigned int regy;
913 };
c906108c
SS
914
915
12f02c2a
AC
916/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
917 for the bits which make up the immediatate extension. */
c906108c 918
12f02c2a
AC
919static CORE_ADDR
920extended_offset (unsigned int extension)
c906108c 921{
12f02c2a 922 CORE_ADDR value;
c5aa993b
JM
923 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
924 value = value << 6;
925 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
926 value = value << 5;
927 value |= extension & 0x01f; /* extract 4:0 */
928 return value;
c906108c
SS
929}
930
931/* Only call this function if you know that this is an extendable
932 instruction, It wont malfunction, but why make excess remote memory references?
933 If the immediate operands get sign extended or somthing, do it after
934 the extension is performed.
c5aa993b 935 */
c906108c
SS
936/* FIXME: Every one of these cases needs to worry about sign extension
937 when the offset is to be used in relative addressing */
938
939
12f02c2a 940static unsigned int
c5aa993b 941fetch_mips_16 (CORE_ADDR pc)
c906108c 942{
c5aa993b
JM
943 char buf[8];
944 pc &= 0xfffffffe; /* clear the low order bit */
945 target_read_memory (pc, buf, 2);
946 return extract_unsigned_integer (buf, 2);
c906108c
SS
947}
948
949static void
c5aa993b 950unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
951 unsigned int extension,
952 unsigned int inst,
953 enum mips16_inst_fmts insn_format,
c5aa993b 954 struct upk_mips16 *upk)
c906108c 955{
12f02c2a
AC
956 CORE_ADDR offset;
957 int regx;
958 int regy;
959 switch (insn_format)
c906108c 960 {
c5aa993b 961 case itype:
c906108c 962 {
12f02c2a
AC
963 CORE_ADDR value;
964 if (extension)
c5aa993b
JM
965 {
966 value = extended_offset (extension);
967 value = value << 11; /* rom for the original value */
12f02c2a 968 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
969 }
970 else
c5aa993b 971 {
12f02c2a 972 value = inst & 0x7ff;
c5aa993b 973 /* FIXME : Consider sign extension */
c906108c 974 }
12f02c2a
AC
975 offset = value;
976 regx = -1;
977 regy = -1;
c906108c 978 }
c5aa993b
JM
979 break;
980 case ritype:
981 case i8type:
982 { /* A register identifier and an offset */
c906108c
SS
983 /* Most of the fields are the same as I type but the
984 immediate value is of a different length */
12f02c2a
AC
985 CORE_ADDR value;
986 if (extension)
c906108c 987 {
c5aa993b
JM
988 value = extended_offset (extension);
989 value = value << 8; /* from the original instruction */
12f02c2a
AC
990 value |= inst & 0xff; /* eleven bits from instruction */
991 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
992 if (value & 0x4000) /* test the sign bit , bit 26 */
993 {
994 value &= ~0x3fff; /* remove the sign bit */
995 value = -value;
c906108c
SS
996 }
997 }
c5aa993b
JM
998 else
999 {
12f02c2a
AC
1000 value = inst & 0xff; /* 8 bits */
1001 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1002 /* FIXME: Do sign extension , this format needs it */
1003 if (value & 0x80) /* THIS CONFUSES ME */
1004 {
1005 value &= 0xef; /* remove the sign bit */
1006 value = -value;
1007 }
c5aa993b 1008 }
12f02c2a
AC
1009 offset = value;
1010 regy = -1;
c5aa993b 1011 break;
c906108c 1012 }
c5aa993b 1013 case jalxtype:
c906108c 1014 {
c5aa993b 1015 unsigned long value;
12f02c2a
AC
1016 unsigned int nexthalf;
1017 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1018 value = value << 16;
1019 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1020 value |= nexthalf;
12f02c2a
AC
1021 offset = value;
1022 regx = -1;
1023 regy = -1;
c5aa993b 1024 break;
c906108c
SS
1025 }
1026 default:
8e65ff28
AC
1027 internal_error (__FILE__, __LINE__,
1028 "bad switch");
c906108c 1029 }
12f02c2a
AC
1030 upk->offset = offset;
1031 upk->regx = regx;
1032 upk->regy = regy;
c906108c
SS
1033}
1034
1035
c5aa993b
JM
1036static CORE_ADDR
1037add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1038{
c5aa993b
JM
1039 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1040
c906108c
SS
1041}
1042
12f02c2a
AC
1043static CORE_ADDR
1044extended_mips16_next_pc (CORE_ADDR pc,
1045 unsigned int extension,
1046 unsigned int insn)
c906108c 1047{
12f02c2a
AC
1048 int op = (insn >> 11);
1049 switch (op)
c906108c 1050 {
12f02c2a
AC
1051 case 2: /* Branch */
1052 {
1053 CORE_ADDR offset;
1054 struct upk_mips16 upk;
1055 unpack_mips16 (pc, extension, insn, itype, &upk);
1056 offset = upk.offset;
1057 if (offset & 0x800)
1058 {
1059 offset &= 0xeff;
1060 offset = -offset;
1061 }
1062 pc += (offset << 1) + 2;
1063 break;
1064 }
1065 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1066 {
1067 struct upk_mips16 upk;
1068 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1069 pc = add_offset_16 (pc, upk.offset);
1070 if ((insn >> 10) & 0x01) /* Exchange mode */
1071 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1072 else
1073 pc |= 0x01;
1074 break;
1075 }
1076 case 4: /* beqz */
1077 {
1078 struct upk_mips16 upk;
1079 int reg;
1080 unpack_mips16 (pc, extension, insn, ritype, &upk);
1081 reg = read_signed_register (upk.regx);
1082 if (reg == 0)
1083 pc += (upk.offset << 1) + 2;
1084 else
1085 pc += 2;
1086 break;
1087 }
1088 case 5: /* bnez */
1089 {
1090 struct upk_mips16 upk;
1091 int reg;
1092 unpack_mips16 (pc, extension, insn, ritype, &upk);
1093 reg = read_signed_register (upk.regx);
1094 if (reg != 0)
1095 pc += (upk.offset << 1) + 2;
1096 else
1097 pc += 2;
1098 break;
1099 }
1100 case 12: /* I8 Formats btez btnez */
1101 {
1102 struct upk_mips16 upk;
1103 int reg;
1104 unpack_mips16 (pc, extension, insn, i8type, &upk);
1105 /* upk.regx contains the opcode */
1106 reg = read_signed_register (24); /* Test register is 24 */
1107 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1108 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1109 /* pc = add_offset_16(pc,upk.offset) ; */
1110 pc += (upk.offset << 1) + 2;
1111 else
1112 pc += 2;
1113 break;
1114 }
1115 case 29: /* RR Formats JR, JALR, JALR-RA */
1116 {
1117 struct upk_mips16 upk;
1118 /* upk.fmt = rrtype; */
1119 op = insn & 0x1f;
1120 if (op == 0)
c5aa993b 1121 {
12f02c2a
AC
1122 int reg;
1123 upk.regx = (insn >> 8) & 0x07;
1124 upk.regy = (insn >> 5) & 0x07;
1125 switch (upk.regy)
c5aa993b 1126 {
12f02c2a
AC
1127 case 0:
1128 reg = upk.regx;
1129 break;
1130 case 1:
1131 reg = 31;
1132 break; /* Function return instruction */
1133 case 2:
1134 reg = upk.regx;
1135 break;
1136 default:
1137 reg = 31;
1138 break; /* BOGUS Guess */
c906108c 1139 }
12f02c2a 1140 pc = read_signed_register (reg);
c906108c 1141 }
12f02c2a 1142 else
c5aa993b 1143 pc += 2;
12f02c2a
AC
1144 break;
1145 }
1146 case 30:
1147 /* This is an instruction extension. Fetch the real instruction
1148 (which follows the extension) and decode things based on
1149 that. */
1150 {
1151 pc += 2;
1152 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1153 break;
1154 }
1155 default:
1156 {
1157 pc += 2;
1158 break;
1159 }
c906108c 1160 }
c5aa993b 1161 return pc;
12f02c2a 1162}
c906108c 1163
12f02c2a
AC
1164CORE_ADDR
1165mips16_next_pc (CORE_ADDR pc)
1166{
1167 unsigned int insn = fetch_mips_16 (pc);
1168 return extended_mips16_next_pc (pc, 0, insn);
1169}
1170
1171/* The mips_next_pc function supports single_step when the remote
7e73cedf 1172 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1173 It works by decoding the current instruction and predicting where a
1174 branch will go. This isnt hard because all the data is available.
1175 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1176CORE_ADDR
1177mips_next_pc (CORE_ADDR pc)
c906108c 1178{
c5aa993b
JM
1179 if (pc & 0x01)
1180 return mips16_next_pc (pc);
1181 else
1182 return mips32_next_pc (pc);
12f02c2a 1183}
c906108c
SS
1184
1185/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1186 NULL). */
1187
1188void
acdb74a0 1189mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1190{
1191 int ireg;
1192 CORE_ADDR reg_position;
1193 /* r0 bit means kernel trap */
1194 int kernel_trap;
1195 /* What registers have been saved? Bitmasks. */
1196 unsigned long gen_mask, float_mask;
1197 mips_extra_func_info_t proc_desc;
1198 t_inst inst;
1199
1200 frame_saved_regs_zalloc (fci);
1201
1202 /* If it is the frame for sigtramp, the saved registers are located
1203 in a sigcontext structure somewhere on the stack.
1204 If the stack layout for sigtramp changes we might have to change these
1205 constants and the companion fixup_sigtramp in mdebugread.c */
1206#ifndef SIGFRAME_BASE
1207/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1208 above the sigtramp frame. */
1209#define SIGFRAME_BASE MIPS_REGSIZE
1210/* FIXME! Are these correct?? */
1211#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1212#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1213#define SIGFRAME_FPREGSAVE_OFF \
1214 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1215#endif
1216#ifndef SIGFRAME_REG_SIZE
1217/* FIXME! Is this correct?? */
1218#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1219#endif
1220 if (fci->signal_handler_caller)
1221 {
1222 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1223 {
c5aa993b
JM
1224 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1225 + ireg * SIGFRAME_REG_SIZE;
1226 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1227 }
1228 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1229 {
c5aa993b
JM
1230 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1231 + ireg * SIGFRAME_REG_SIZE;
1232 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1233 }
1234 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1235 return;
1236 }
1237
cce74817 1238 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1239 if (proc_desc == NULL)
1240 /* I'm not sure how/whether this can happen. Normally when we can't
1241 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1242 and set the saved_regs right away. */
1243 return;
1244
c5aa993b
JM
1245 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1246 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1247 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1248
c5aa993b
JM
1249 if ( /* In any frame other than the innermost or a frame interrupted by
1250 a signal, we assume that all registers have been saved.
1251 This assumes that all register saves in a function happen before
1252 the first function call. */
1253 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1254
c5aa993b
JM
1255 /* In a dummy frame we know exactly where things are saved. */
1256 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1257
c5aa993b
JM
1258 /* Don't bother unless we are inside a function prologue. Outside the
1259 prologue, we know where everything is. */
c906108c 1260
c5aa993b 1261 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1262
c5aa993b
JM
1263 /* Not sure exactly what kernel_trap means, but if it means
1264 the kernel saves the registers without a prologue doing it,
1265 we better not examine the prologue to see whether registers
1266 have been saved yet. */
1267 && !kernel_trap)
c906108c
SS
1268 {
1269 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1270 claims are saved have been saved yet. */
c906108c
SS
1271
1272 CORE_ADDR addr;
1273
1274 /* Bitmasks; set if we have found a save for the register. */
1275 unsigned long gen_save_found = 0;
1276 unsigned long float_save_found = 0;
1277 int instlen;
1278
1279 /* If the address is odd, assume this is MIPS16 code. */
1280 addr = PROC_LOW_ADDR (proc_desc);
1281 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1282
1283 /* Scan through this function's instructions preceding the current
1284 PC, and look for those that save registers. */
1285 while (addr < fci->pc)
1286 {
1287 inst = mips_fetch_instruction (addr);
1288 if (pc_is_mips16 (addr))
1289 mips16_decode_reg_save (inst, &gen_save_found);
1290 else
1291 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1292 addr += instlen;
1293 }
1294 gen_mask = gen_save_found;
1295 float_mask = float_save_found;
1296 }
1297
1298 /* Fill in the offsets for the registers which gen_mask says
1299 were saved. */
1300 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1301 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1302 if (gen_mask & 0x80000000)
1303 {
1304 fci->saved_regs[ireg] = reg_position;
7a292a7a 1305 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1306 }
1307
1308 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1309 of that normally used by gcc. Therefore, we have to fetch the first
1310 instruction of the function, and if it's an entry instruction that
1311 saves $s0 or $s1, correct their saved addresses. */
1312 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1313 {
1314 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1315 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1316 {
1317 int reg;
1318 int sreg_count = (inst >> 6) & 3;
c5aa993b 1319
c906108c
SS
1320 /* Check if the ra register was pushed on the stack. */
1321 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1322 if (inst & 0x20)
7a292a7a 1323 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1324
1325 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1326 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1327 {
1328 fci->saved_regs[reg] = reg_position;
7a292a7a 1329 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1330 }
1331 }
1332 }
1333
1334 /* Fill in the offsets for the registers which float_mask says
1335 were saved. */
1336 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1337
1338 /* The freg_offset points to where the first *double* register
1339 is saved. So skip to the high-order word. */
c5aa993b 1340 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1341 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1342
1343 /* Fill in the offsets for the float registers which float_mask says
1344 were saved. */
c5aa993b 1345 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1346 if (float_mask & 0x80000000)
1347 {
c5aa993b 1348 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1349 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1350 }
1351
1352 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1353}
1354
1355static CORE_ADDR
acdb74a0 1356read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1357{
1358 for (; fi; fi = fi->next)
1359 {
1360 /* We have to get the saved sp from the sigcontext
c5aa993b 1361 if it is a signal handler frame. */
c906108c
SS
1362 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1363 return fi->frame;
1364 else
1365 {
1366 if (fi->saved_regs == NULL)
1367 mips_find_saved_regs (fi);
1368 if (fi->saved_regs[regno])
2acceee2 1369 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1370 }
1371 }
6c997a34 1372 return read_signed_register (regno);
c906108c
SS
1373}
1374
1375/* mips_addr_bits_remove - remove useless address bits */
1376
875e1767 1377static CORE_ADDR
acdb74a0 1378mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1379{
5213ab06
AC
1380 if (GDB_TARGET_IS_MIPS64)
1381 {
4014092b 1382 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1383 {
1384 /* This hack is a work-around for existing boards using
1385 PMON, the simulator, and any other 64-bit targets that
1386 doesn't have true 64-bit addressing. On these targets,
1387 the upper 32 bits of addresses are ignored by the
1388 hardware. Thus, the PC or SP are likely to have been
1389 sign extended to all 1s by instruction sequences that
1390 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1391 code that loads an address is this:
1392 lui $r2, <upper 16 bits>
1393 ori $r2, <lower 16 bits>
1394 But the lui sign-extends the value such that the upper 32
1395 bits may be all 1s. The workaround is simply to mask off
1396 these bits. In the future, gcc may be changed to support
1397 true 64-bit addressing, and this masking will have to be
1398 disabled. */
5213ab06
AC
1399 addr &= (CORE_ADDR) 0xffffffff;
1400 }
1401 }
4014092b 1402 else if (mips_mask_address_p ())
5213ab06 1403 {
4014092b
AC
1404 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1405 masking off bits, instead, the actual target should be asking
1406 for the address to be converted to a valid pointer. */
5213ab06
AC
1407 /* Even when GDB is configured for some 32-bit targets
1408 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1409 so CORE_ADDR is 64 bits. So we still have to mask off
1410 useless bits from addresses. */
c5aa993b 1411 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1412 }
c906108c
SS
1413 return addr;
1414}
1415
9022177c
DJ
1416/* mips_software_single_step() is called just before we want to resume
1417 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1418 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1419 the target of the coming instruction and breakpoint it.
1420
1421 single_step is also called just after the inferior stops. If we had
1422 set up a simulated single-step, we undo our damage. */
1423
1424void
1425mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1426{
1427 static CORE_ADDR next_pc;
1428 typedef char binsn_quantum[BREAKPOINT_MAX];
1429 static binsn_quantum break_mem;
1430 CORE_ADDR pc;
1431
1432 if (insert_breakpoints_p)
1433 {
1434 pc = read_register (PC_REGNUM);
1435 next_pc = mips_next_pc (pc);
1436
1437 target_insert_breakpoint (next_pc, break_mem);
1438 }
1439 else
1440 target_remove_breakpoint (next_pc, break_mem);
1441}
1442
10312cc4 1443static void
acdb74a0 1444mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1445{
1446 CORE_ADDR pc, tmp;
1447
1448 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1449 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1450 tmp = mips_skip_stub (pc);
c5aa993b 1451 prev->pc = tmp ? tmp : pc;
c906108c
SS
1452}
1453
1454
1455CORE_ADDR
acdb74a0 1456mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1457{
1458 CORE_ADDR saved_pc;
cce74817 1459 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1460 /* We have to get the saved pc from the sigcontext
1461 if it is a signal handler frame. */
1462 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1463 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1464
c5aa993b 1465 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1466 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1467 else
7a292a7a 1468 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1469
1470 return ADDR_BITS_REMOVE (saved_pc);
1471}
1472
1473static struct mips_extra_func_info temp_proc_desc;
cce74817 1474static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1475
1476/* Set a register's saved stack address in temp_saved_regs. If an address
1477 has already been set for this register, do nothing; this way we will
1478 only recognize the first save of a given register in a function prologue.
1479 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1480
1481static void
acdb74a0 1482set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1483{
cce74817
JM
1484 if (temp_saved_regs[regno] == 0)
1485 temp_saved_regs[regno] = offset;
c906108c
SS
1486}
1487
1488
1489/* Test whether the PC points to the return instruction at the
1490 end of a function. */
1491
c5aa993b 1492static int
acdb74a0 1493mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1494{
1495 if (pc_is_mips16 (pc))
1496 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1497 generates a "jr $ra"; other times it generates code to load
1498 the return address from the stack to an accessible register (such
1499 as $a3), then a "jr" using that register. This second case
1500 is almost impossible to distinguish from an indirect jump
1501 used for switch statements, so we don't even try. */
1502 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1503 else
1504 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1505}
1506
1507
1508/* This fencepost looks highly suspicious to me. Removing it also
1509 seems suspicious as it could affect remote debugging across serial
1510 lines. */
1511
1512static CORE_ADDR
acdb74a0 1513heuristic_proc_start (CORE_ADDR pc)
c906108c 1514{
c5aa993b
JM
1515 CORE_ADDR start_pc;
1516 CORE_ADDR fence;
1517 int instlen;
1518 int seen_adjsp = 0;
c906108c 1519
c5aa993b
JM
1520 pc = ADDR_BITS_REMOVE (pc);
1521 start_pc = pc;
1522 fence = start_pc - heuristic_fence_post;
1523 if (start_pc == 0)
1524 return 0;
c906108c 1525
c5aa993b
JM
1526 if (heuristic_fence_post == UINT_MAX
1527 || fence < VM_MIN_ADDRESS)
1528 fence = VM_MIN_ADDRESS;
c906108c 1529
c5aa993b 1530 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1531
c5aa993b
JM
1532 /* search back for previous return */
1533 for (start_pc -= instlen;; start_pc -= instlen)
1534 if (start_pc < fence)
1535 {
1536 /* It's not clear to me why we reach this point when
1537 stop_soon_quietly, but with this test, at least we
1538 don't print out warnings for every child forked (eg, on
1539 decstation). 22apr93 [email protected]. */
1540 if (!stop_soon_quietly)
c906108c 1541 {
c5aa993b
JM
1542 static int blurb_printed = 0;
1543
1544 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1545 paddr_nz (pc));
1546
1547 if (!blurb_printed)
c906108c 1548 {
c5aa993b
JM
1549 /* This actually happens frequently in embedded
1550 development, when you first connect to a board
1551 and your stack pointer and pc are nowhere in
1552 particular. This message needs to give people
1553 in that situation enough information to
1554 determine that it's no big deal. */
1555 printf_filtered ("\n\
cd0fc7c3
SS
1556 GDB is unable to find the start of the function at 0x%s\n\
1557and thus can't determine the size of that function's stack frame.\n\
1558This means that GDB may be unable to access that stack frame, or\n\
1559the frames below it.\n\
1560 This problem is most likely caused by an invalid program counter or\n\
1561stack pointer.\n\
1562 However, if you think GDB should simply search farther back\n\
1563from 0x%s for code which looks like the beginning of a\n\
1564function, you can increase the range of the search using the `set\n\
1565heuristic-fence-post' command.\n",
c5aa993b
JM
1566 paddr_nz (pc), paddr_nz (pc));
1567 blurb_printed = 1;
c906108c 1568 }
c906108c
SS
1569 }
1570
c5aa993b
JM
1571 return 0;
1572 }
1573 else if (pc_is_mips16 (start_pc))
1574 {
1575 unsigned short inst;
1576
1577 /* On MIPS16, any one of the following is likely to be the
1578 start of a function:
1579 entry
1580 addiu sp,-n
1581 daddiu sp,-n
1582 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1583 inst = mips_fetch_instruction (start_pc);
1584 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1585 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1586 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1587 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1588 break;
1589 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1590 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1591 seen_adjsp = 1;
1592 else
1593 seen_adjsp = 0;
1594 }
1595 else if (mips_about_to_return (start_pc))
1596 {
1597 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1598 break;
1599 }
1600
c5aa993b 1601 return start_pc;
c906108c
SS
1602}
1603
1604/* Fetch the immediate value from a MIPS16 instruction.
1605 If the previous instruction was an EXTEND, use it to extend
1606 the upper bits of the immediate value. This is a helper function
1607 for mips16_heuristic_proc_desc. */
1608
1609static int
acdb74a0
AC
1610mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1611 unsigned short inst, /* current instruction */
1612 int nbits, /* number of bits in imm field */
1613 int scale, /* scale factor to be applied to imm */
1614 int is_signed) /* is the imm field signed? */
c906108c
SS
1615{
1616 int offset;
1617
1618 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1619 {
1620 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1621 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1622 offset = 0 - (0x10000 - (offset & 0xffff));
1623 return offset | (inst & 0x1f);
1624 }
1625 else
1626 {
1627 int max_imm = 1 << nbits;
1628 int mask = max_imm - 1;
1629 int sign_bit = max_imm >> 1;
1630
1631 offset = inst & mask;
1632 if (is_signed && (offset & sign_bit))
1633 offset = 0 - (max_imm - offset);
1634 return offset * scale;
1635 }
1636}
1637
1638
1639/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1640 stream from start_pc to limit_pc. */
1641
1642static void
acdb74a0
AC
1643mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1644 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1645{
1646 CORE_ADDR cur_pc;
1647 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1648 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1649 unsigned inst = 0; /* current instruction */
1650 unsigned entry_inst = 0; /* the entry instruction */
1651 int reg, offset;
1652
c5aa993b
JM
1653 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1654 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1655
1656 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1657 {
1658 /* Save the previous instruction. If it's an EXTEND, we'll extract
1659 the immediate offset extension from it in mips16_get_imm. */
1660 prev_inst = inst;
1661
1662 /* Fetch and decode the instruction. */
1663 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1664 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1665 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1666 {
1667 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1668 if (offset < 0) /* negative stack adjustment? */
1669 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1670 else
1671 /* Exit loop if a positive stack adjustment is found, which
1672 usually means that the stack cleanup code in the function
1673 epilogue is reached. */
1674 break;
1675 }
1676 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1677 {
1678 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1679 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1680 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1681 set_reg_offset (reg, sp + offset);
1682 }
1683 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1684 {
1685 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1686 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1687 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1688 set_reg_offset (reg, sp + offset);
1689 }
1690 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1691 {
1692 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1693 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1694 set_reg_offset (RA_REGNUM, sp + offset);
1695 }
1696 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1697 {
1698 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1699 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1700 set_reg_offset (RA_REGNUM, sp + offset);
1701 }
c5aa993b 1702 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1703 {
1704 frame_addr = sp;
1705 PROC_FRAME_REG (&temp_proc_desc) = 17;
1706 }
1707 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1708 {
1709 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1710 frame_addr = sp + offset;
1711 PROC_FRAME_REG (&temp_proc_desc) = 17;
1712 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1713 }
1714 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1715 {
1716 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1717 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1718 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1719 set_reg_offset (reg, frame_addr + offset);
1720 }
1721 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1722 {
1723 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1724 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1725 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1726 set_reg_offset (reg, frame_addr + offset);
1727 }
c5aa993b
JM
1728 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1729 entry_inst = inst; /* save for later processing */
c906108c 1730 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1731 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1732 }
1733
c5aa993b
JM
1734 /* The entry instruction is typically the first instruction in a function,
1735 and it stores registers at offsets relative to the value of the old SP
1736 (before the prologue). But the value of the sp parameter to this
1737 function is the new SP (after the prologue has been executed). So we
1738 can't calculate those offsets until we've seen the entire prologue,
1739 and can calculate what the old SP must have been. */
1740 if (entry_inst != 0)
1741 {
1742 int areg_count = (entry_inst >> 8) & 7;
1743 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1744
c5aa993b
JM
1745 /* The entry instruction always subtracts 32 from the SP. */
1746 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1747
c5aa993b
JM
1748 /* Now we can calculate what the SP must have been at the
1749 start of the function prologue. */
1750 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1751
c5aa993b
JM
1752 /* Check if a0-a3 were saved in the caller's argument save area. */
1753 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1754 {
1755 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1756 set_reg_offset (reg, sp + offset);
1757 offset += MIPS_SAVED_REGSIZE;
1758 }
c906108c 1759
c5aa993b
JM
1760 /* Check if the ra register was pushed on the stack. */
1761 offset = -4;
1762 if (entry_inst & 0x20)
1763 {
1764 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1765 set_reg_offset (RA_REGNUM, sp + offset);
1766 offset -= MIPS_SAVED_REGSIZE;
1767 }
c906108c 1768
c5aa993b
JM
1769 /* Check if the s0 and s1 registers were pushed on the stack. */
1770 for (reg = 16; reg < sreg_count + 16; reg++)
1771 {
1772 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1773 set_reg_offset (reg, sp + offset);
1774 offset -= MIPS_SAVED_REGSIZE;
1775 }
1776 }
c906108c
SS
1777}
1778
1779static void
fba45db2
KB
1780mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1781 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1782{
1783 CORE_ADDR cur_pc;
c5aa993b 1784 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1785restart:
cce74817 1786 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1787 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1788 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1789 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1790 {
1791 unsigned long inst, high_word, low_word;
1792 int reg;
1793
1794 /* Fetch the instruction. */
1795 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1796
1797 /* Save some code by pre-extracting some useful fields. */
1798 high_word = (inst >> 16) & 0xffff;
1799 low_word = inst & 0xffff;
1800 reg = high_word & 0x1f;
1801
c5aa993b 1802 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1803 || high_word == 0x23bd /* addi $sp,$sp,-i */
1804 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1805 {
1806 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1807 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1808 else
1809 /* Exit loop if a positive stack adjustment is found, which
1810 usually means that the stack cleanup code in the function
1811 epilogue is reached. */
1812 break;
1813 }
1814 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1815 {
c5aa993b 1816 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1817 set_reg_offset (reg, sp + low_word);
1818 }
1819 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1820 {
1821 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1822 but the register size used is only 32 bits. Make the address
1823 for the saved register point to the lower 32 bits. */
c5aa993b 1824 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1825 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1826 }
c5aa993b 1827 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1828 {
1829 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1830 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1831 frame_addr = sp + low_word;
c906108c
SS
1832 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1836 frame_addr = read_next_frame_reg (next_frame, 30);
1837 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1838 if (alloca_adjust > 0)
1839 {
1840 /* FP > SP + frame_size. This may be because
1841 * of an alloca or somethings similar.
1842 * Fix sp to "pre-alloca" value, and try again.
1843 */
1844 sp += alloca_adjust;
1845 goto restart;
1846 }
1847 }
1848 }
c5aa993b
JM
1849 /* move $30,$sp. With different versions of gas this will be either
1850 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1851 Accept any one of these. */
c906108c
SS
1852 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1853 {
1854 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1855 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1856 {
1857 unsigned alloca_adjust;
1858 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1859 frame_addr = read_next_frame_reg (next_frame, 30);
1860 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1861 if (alloca_adjust > 0)
1862 {
1863 /* FP > SP + frame_size. This may be because
1864 * of an alloca or somethings similar.
1865 * Fix sp to "pre-alloca" value, and try again.
1866 */
1867 sp += alloca_adjust;
1868 goto restart;
1869 }
1870 }
1871 }
c5aa993b 1872 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1873 {
c5aa993b 1874 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1875 set_reg_offset (reg, frame_addr + low_word);
1876 }
1877 }
1878}
1879
1880static mips_extra_func_info_t
acdb74a0 1881heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 1882 struct frame_info *next_frame, int cur_frame)
c906108c 1883{
479412cd
DJ
1884 CORE_ADDR sp;
1885
1886 if (cur_frame)
1887 sp = read_next_frame_reg (next_frame, SP_REGNUM);
1888 else
1889 sp = 0;
c906108c 1890
c5aa993b
JM
1891 if (start_pc == 0)
1892 return NULL;
1893 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1894 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1895 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1896 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1897 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1898
1899 if (start_pc + 200 < limit_pc)
1900 limit_pc = start_pc + 200;
1901 if (pc_is_mips16 (start_pc))
1902 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1903 else
1904 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1905 return &temp_proc_desc;
1906}
1907
6c0d6680
DJ
1908struct mips_objfile_private
1909{
1910 bfd_size_type size;
1911 char *contents;
1912};
1913
1914/* Global used to communicate between non_heuristic_proc_desc and
1915 compare_pdr_entries within qsort (). */
1916static bfd *the_bfd;
1917
1918static int
1919compare_pdr_entries (const void *a, const void *b)
1920{
1921 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
1922 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
1923
1924 if (lhs < rhs)
1925 return -1;
1926 else if (lhs == rhs)
1927 return 0;
1928 else
1929 return 1;
1930}
1931
c906108c 1932static mips_extra_func_info_t
acdb74a0 1933non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
1934{
1935 CORE_ADDR startaddr;
1936 mips_extra_func_info_t proc_desc;
c5aa993b 1937 struct block *b = block_for_pc (pc);
c906108c 1938 struct symbol *sym;
6c0d6680
DJ
1939 struct obj_section *sec;
1940 struct mips_objfile_private *priv;
1941
1942 if (PC_IN_CALL_DUMMY (pc, 0, 0))
1943 return NULL;
c906108c
SS
1944
1945 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1946 if (addrptr)
1947 *addrptr = startaddr;
6c0d6680
DJ
1948
1949 priv = NULL;
1950
1951 sec = find_pc_section (pc);
1952 if (sec != NULL)
c906108c 1953 {
6c0d6680
DJ
1954 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
1955
1956 /* Search the ".pdr" section generated by GAS. This includes most of
1957 the information normally found in ECOFF PDRs. */
1958
1959 the_bfd = sec->objfile->obfd;
1960 if (priv == NULL
1961 && (the_bfd->format == bfd_object
1962 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
1963 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
1964 {
1965 /* Right now GAS only outputs the address as a four-byte sequence.
1966 This means that we should not bother with this method on 64-bit
1967 targets (until that is fixed). */
1968
1969 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
1970 sizeof (struct mips_objfile_private));
1971 priv->size = 0;
1972 sec->objfile->obj_private = priv;
1973 }
1974 else if (priv == NULL)
1975 {
1976 asection *bfdsec;
1977
1978 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
1979 sizeof (struct mips_objfile_private));
1980
1981 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
1982 if (bfdsec != NULL)
1983 {
1984 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
1985 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
1986 priv->size);
1987 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
1988 priv->contents, 0, priv->size);
1989
1990 /* In general, the .pdr section is sorted. However, in the
1991 presence of multiple code sections (and other corner cases)
1992 it can become unsorted. Sort it so that we can use a faster
1993 binary search. */
1994 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
1995 }
1996 else
1997 priv->size = 0;
1998
1999 sec->objfile->obj_private = priv;
2000 }
2001 the_bfd = NULL;
2002
2003 if (priv->size != 0)
2004 {
2005 int low, mid, high;
2006 char *ptr;
2007
2008 low = 0;
2009 high = priv->size / 32;
2010
2011 do
2012 {
2013 CORE_ADDR pdr_pc;
2014
2015 mid = (low + high) / 2;
2016
2017 ptr = priv->contents + mid * 32;
2018 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2019 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2020 SECT_OFF_TEXT (sec->objfile));
2021 if (pdr_pc == startaddr)
2022 break;
2023 if (pdr_pc > startaddr)
2024 high = mid;
2025 else
2026 low = mid + 1;
2027 }
2028 while (low != high);
2029
2030 if (low != high)
2031 {
2032 struct symbol *sym = find_pc_function (pc);
2033
2034 /* Fill in what we need of the proc_desc. */
2035 proc_desc = (mips_extra_func_info_t)
2036 obstack_alloc (&sec->objfile->psymbol_obstack,
2037 sizeof (struct mips_extra_func_info));
2038 PROC_LOW_ADDR (proc_desc) = startaddr;
2039
2040 /* Only used for dummy frames. */
2041 PROC_HIGH_ADDR (proc_desc) = 0;
2042
2043 PROC_FRAME_OFFSET (proc_desc)
2044 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2045 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2046 ptr + 24);
2047 PROC_FRAME_ADJUST (proc_desc) = 0;
2048 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2049 ptr + 4);
2050 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2051 ptr + 12);
2052 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2053 ptr + 8);
2054 PROC_FREG_OFFSET (proc_desc)
2055 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2056 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2057 ptr + 28);
2058 proc_desc->pdr.isym = (long) sym;
2059
2060 return proc_desc;
2061 }
2062 }
c906108c
SS
2063 }
2064
6c0d6680
DJ
2065 if (b == NULL)
2066 return NULL;
2067
2068 if (startaddr > BLOCK_START (b))
2069 {
2070 /* This is the "pathological" case referred to in a comment in
2071 print_frame_info. It might be better to move this check into
2072 symbol reading. */
2073 return NULL;
2074 }
2075
2076 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2077
c906108c
SS
2078 /* If we never found a PDR for this function in symbol reading, then
2079 examine prologues to find the information. */
2080 if (sym)
2081 {
2082 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2083 if (PROC_FRAME_REG (proc_desc) == -1)
2084 return NULL;
2085 else
2086 return proc_desc;
2087 }
2088 else
2089 return NULL;
2090}
2091
2092
2093static mips_extra_func_info_t
479412cd 2094find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2095{
2096 mips_extra_func_info_t proc_desc;
2097 CORE_ADDR startaddr;
2098
2099 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2100
2101 if (proc_desc)
2102 {
2103 /* IF this is the topmost frame AND
2104 * (this proc does not have debugging information OR
2105 * the PC is in the procedure prologue)
2106 * THEN create a "heuristic" proc_desc (by analyzing
2107 * the actual code) to replace the "official" proc_desc.
2108 */
2109 if (next_frame == NULL)
2110 {
2111 struct symtab_and_line val;
2112 struct symbol *proc_symbol =
c5aa993b 2113 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2114
2115 if (proc_symbol)
2116 {
2117 val = find_pc_line (BLOCK_START
c5aa993b 2118 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2119 0);
2120 val.pc = val.end ? val.end : pc;
2121 }
2122 if (!proc_symbol || pc < val.pc)
2123 {
2124 mips_extra_func_info_t found_heuristic =
c5aa993b 2125 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
479412cd 2126 pc, next_frame, cur_frame);
c906108c
SS
2127 if (found_heuristic)
2128 proc_desc = found_heuristic;
2129 }
2130 }
2131 }
2132 else
2133 {
2134 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2135 by procedure call dummys. However, the procedures being called ought
2136 to have their own proc_descs, and even if they don't,
2137 heuristic_proc_desc knows how to create them! */
c906108c
SS
2138
2139 register struct linked_proc_info *link;
2140
2141 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2142 if (PROC_LOW_ADDR (&link->info) <= pc
2143 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2144 return &link->info;
2145
2146 if (startaddr == 0)
2147 startaddr = heuristic_proc_start (pc);
2148
2149 proc_desc =
479412cd 2150 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2151 }
2152 return proc_desc;
2153}
2154
2155static CORE_ADDR
acdb74a0
AC
2156get_frame_pointer (struct frame_info *frame,
2157 mips_extra_func_info_t proc_desc)
c906108c
SS
2158{
2159 return ADDR_BITS_REMOVE (
c5aa993b
JM
2160 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
2161 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2162}
2163
2164mips_extra_func_info_t cached_proc_desc;
2165
2166CORE_ADDR
acdb74a0 2167mips_frame_chain (struct frame_info *frame)
c906108c
SS
2168{
2169 mips_extra_func_info_t proc_desc;
2170 CORE_ADDR tmp;
c5aa993b 2171 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2172
2173 if (saved_pc == 0 || inside_entry_file (saved_pc))
2174 return 0;
2175
2176 /* Check if the PC is inside a call stub. If it is, fetch the
2177 PC of the caller of that stub. */
2178 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2179 saved_pc = tmp;
2180
2181 /* Look up the procedure descriptor for this PC. */
479412cd 2182 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2183 if (!proc_desc)
2184 return 0;
2185
2186 cached_proc_desc = proc_desc;
2187
2188 /* If no frame pointer and frame size is zero, we must be at end
2189 of stack (or otherwise hosed). If we don't check frame size,
2190 we loop forever if we see a zero size frame. */
2191 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2192 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
2193 /* The previous frame from a sigtramp frame might be frameless
2194 and have frame size zero. */
c906108c
SS
2195 && !frame->signal_handler_caller)
2196 return 0;
2197 else
2198 return get_frame_pointer (frame, proc_desc);
2199}
2200
2201void
acdb74a0 2202mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2203{
2204 int regnum;
2205
2206 /* Use proc_desc calculated in frame_chain */
2207 mips_extra_func_info_t proc_desc =
479412cd 2208 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2209
cce74817
JM
2210 fci->extra_info = (struct frame_extra_info *)
2211 frame_obstack_alloc (sizeof (struct frame_extra_info));
2212
c906108c 2213 fci->saved_regs = NULL;
cce74817 2214 fci->extra_info->proc_desc =
c906108c
SS
2215 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2216 if (proc_desc)
2217 {
2218 /* Fixup frame-pointer - only needed for top frame */
2219 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2220 Get the value of the frame relative sp, procedure might have been
2221 interrupted by a signal at it's very start. */
c906108c
SS
2222 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2223 && !PROC_DESC_IS_DUMMY (proc_desc))
2224 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2225 else
2226 fci->frame = get_frame_pointer (fci->next, proc_desc);
2227
2228 if (proc_desc == &temp_proc_desc)
2229 {
2230 char *name;
2231
2232 /* Do not set the saved registers for a sigtramp frame,
2233 mips_find_saved_registers will do that for us.
2234 We can't use fci->signal_handler_caller, it is not yet set. */
2235 find_pc_partial_function (fci->pc, &name,
c5aa993b 2236 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2237 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2238 {
c5aa993b 2239 frame_saved_regs_zalloc (fci);
cce74817 2240 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2241 fci->saved_regs[PC_REGNUM]
2242 = fci->saved_regs[RA_REGNUM];
2243 }
2244 }
2245
2246 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2247 /* assume we can't tell how many args for now */
2248 fci->extra_info->num_args = -1;
c906108c
SS
2249 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2250 {
c5aa993b 2251 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2252 {
cce74817 2253 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2254 break;
2255 }
c5aa993b 2256 }
c906108c
SS
2257 }
2258}
2259
2260/* MIPS stack frames are almost impenetrable. When execution stops,
2261 we basically have to look at symbol information for the function
2262 that we stopped in, which tells us *which* register (if any) is
2263 the base of the frame pointer, and what offset from that register
361d1df0 2264 the frame itself is at.
c906108c
SS
2265
2266 This presents a problem when trying to examine a stack in memory
2267 (that isn't executing at the moment), using the "frame" command. We
2268 don't have a PC, nor do we have any registers except SP.
2269
2270 This routine takes two arguments, SP and PC, and tries to make the
2271 cached frames look as if these two arguments defined a frame on the
2272 cache. This allows the rest of info frame to extract the important
2273 arguments without difficulty. */
2274
2275struct frame_info *
acdb74a0 2276setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2277{
2278 if (argc != 2)
2279 error ("MIPS frame specifications require two arguments: sp and pc");
2280
2281 return create_new_frame (argv[0], argv[1]);
2282}
2283
f09ded24
AC
2284/* According to the current ABI, should the type be passed in a
2285 floating-point register (assuming that there is space)? When there
2286 is no FPU, FP are not even considered as possibile candidates for
2287 FP registers and, consequently this returns false - forces FP
2288 arguments into integer registers. */
2289
2290static int
2291fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2292{
2293 return ((typecode == TYPE_CODE_FLT
2294 || (MIPS_EABI
2295 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2296 && TYPE_NFIELDS (arg_type) == 1
2297 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2298 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2299}
2300
49e790b0
DJ
2301/* On o32, argument passing in GPRs depends on the alignment of the type being
2302 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2303
2304static int
2305mips_type_needs_double_align (struct type *type)
2306{
2307 enum type_code typecode = TYPE_CODE (type);
361d1df0 2308
49e790b0
DJ
2309 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2310 return 1;
2311 else if (typecode == TYPE_CODE_STRUCT)
2312 {
2313 if (TYPE_NFIELDS (type) < 1)
2314 return 0;
2315 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2316 }
2317 else if (typecode == TYPE_CODE_UNION)
2318 {
361d1df0 2319 int i, n;
49e790b0
DJ
2320
2321 n = TYPE_NFIELDS (type);
2322 for (i = 0; i < n; i++)
2323 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2324 return 1;
2325 return 0;
2326 }
2327 return 0;
2328}
2329
c906108c 2330CORE_ADDR
acdb74a0 2331mips_push_arguments (int nargs,
ea7c478f 2332 struct value **args,
acdb74a0
AC
2333 CORE_ADDR sp,
2334 int struct_return,
2335 CORE_ADDR struct_addr)
c906108c
SS
2336{
2337 int argreg;
2338 int float_argreg;
2339 int argnum;
2340 int len = 0;
2341 int stack_offset = 0;
fb850278 2342 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
2343
2344 /* Macros to round N up or down to the next A boundary; A must be
2345 a power of two. */
2346#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2347#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2348
c906108c
SS
2349 /* First ensure that the stack and structure return address (if any)
2350 are properly aligned. The stack has to be at least 64-bit aligned
2351 even on 32-bit machines, because doubles must be 64-bit aligned.
2352 On at least one MIPS variant, stack frames need to be 128-bit
2353 aligned, so we round to this widest known alignment. */
2354 sp = ROUND_DOWN (sp, 16);
cce41527 2355 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2356
c906108c
SS
2357 /* Now make space on the stack for the args. We allocate more
2358 than necessary for EABI, because the first few arguments are
2359 passed in registers, but that's OK. */
2360 for (argnum = 0; argnum < nargs; argnum++)
cce41527 2361 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
c906108c
SS
2362 sp -= ROUND_UP (len, 16);
2363
9ace0497
AC
2364 if (mips_debug)
2365 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2366 (long) sp, ROUND_UP (len, 16));
2367
c906108c
SS
2368 /* Initialize the integer and float register pointers. */
2369 argreg = A0_REGNUM;
2370 float_argreg = FPA0_REGNUM;
2371
2372 /* the struct_return pointer occupies the first parameter-passing reg */
2373 if (struct_return)
9ace0497
AC
2374 {
2375 if (mips_debug)
2376 fprintf_unfiltered (gdb_stdlog,
cce41527 2377 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
9ace0497
AC
2378 argreg, (long) struct_addr);
2379 write_register (argreg++, struct_addr);
cce41527
AC
2380 if (MIPS_REGS_HAVE_HOME_P)
2381 stack_offset += MIPS_STACK_ARGSIZE;
9ace0497 2382 }
c906108c
SS
2383
2384 /* Now load as many as possible of the first arguments into
2385 registers, and push the rest onto the stack. Loop thru args
2386 from first to last. */
2387 for (argnum = 0; argnum < nargs; argnum++)
2388 {
2389 char *val;
2390 char valbuf[MAX_REGISTER_RAW_SIZE];
ea7c478f 2391 struct value *arg = args[argnum];
c906108c
SS
2392 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2393 int len = TYPE_LENGTH (arg_type);
2394 enum type_code typecode = TYPE_CODE (arg_type);
2395
9ace0497
AC
2396 if (mips_debug)
2397 fprintf_unfiltered (gdb_stdlog,
2398 "mips_push_arguments: %d len=%d type=%d",
acdb74a0 2399 argnum + 1, len, (int) typecode);
9ace0497 2400
c906108c 2401 /* The EABI passes structures that do not fit in a register by
c5aa993b 2402 reference. In all other cases, pass the structure by value. */
9ace0497
AC
2403 if (MIPS_EABI
2404 && len > MIPS_SAVED_REGSIZE
2405 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2406 {
7a292a7a 2407 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2408 typecode = TYPE_CODE_PTR;
7a292a7a 2409 len = MIPS_SAVED_REGSIZE;
c906108c 2410 val = valbuf;
9ace0497
AC
2411 if (mips_debug)
2412 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2413 }
2414 else
c5aa993b 2415 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2416
2417 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2418 even-numbered floating point register. Round the FP register
2419 up before the check to see if there are any FP registers
2420 left. Non MIPS_EABI targets also pass the FP in the integer
2421 registers so also round up normal registers. */
2422 if (!FP_REGISTER_DOUBLE
2423 && fp_register_arg_p (typecode, arg_type))
2424 {
2425 if ((float_argreg & 1))
2426 float_argreg++;
2427 }
c906108c
SS
2428
2429 /* Floating point arguments passed in registers have to be
2430 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2431 are passed in register pairs; the even register gets
2432 the low word, and the odd register gets the high word.
2433 On non-EABI processors, the first two floating point arguments are
2434 also copied to general registers, because MIPS16 functions
2435 don't use float registers for arguments. This duplication of
2436 arguments in general registers can't hurt non-MIPS16 functions
2437 because those registers are normally skipped. */
1012bd0e
EZ
2438 /* MIPS_EABI squeezes a struct that contains a single floating
2439 point value into an FP register instead of pushing it onto the
9a0149c6 2440 stack. */
f09ded24
AC
2441 if (fp_register_arg_p (typecode, arg_type)
2442 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2443 {
2444 if (!FP_REGISTER_DOUBLE && len == 8)
2445 {
d7449b42 2446 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2447 unsigned long regval;
2448
2449 /* Write the low word of the double to the even register(s). */
c5aa993b 2450 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2451 if (mips_debug)
acdb74a0 2452 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2453 float_argreg, phex (regval, 4));
c906108c
SS
2454 write_register (float_argreg++, regval);
2455 if (!MIPS_EABI)
9ace0497
AC
2456 {
2457 if (mips_debug)
acdb74a0 2458 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2459 argreg, phex (regval, 4));
2460 write_register (argreg++, regval);
2461 }
c906108c
SS
2462
2463 /* Write the high word of the double to the odd register(s). */
c5aa993b 2464 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2465 if (mips_debug)
acdb74a0 2466 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2467 float_argreg, phex (regval, 4));
c906108c
SS
2468 write_register (float_argreg++, regval);
2469 if (!MIPS_EABI)
c5aa993b 2470 {
9ace0497 2471 if (mips_debug)
acdb74a0 2472 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2473 argreg, phex (regval, 4));
2474 write_register (argreg++, regval);
c906108c
SS
2475 }
2476
2477 }
2478 else
2479 {
2480 /* This is a floating point value that fits entirely
2481 in a single register. */
53a5351d
JM
2482 /* On 32 bit ABI's the float_argreg is further adjusted
2483 above to ensure that it is even register aligned. */
9ace0497
AC
2484 LONGEST regval = extract_unsigned_integer (val, len);
2485 if (mips_debug)
acdb74a0 2486 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2487 float_argreg, phex (regval, len));
c906108c
SS
2488 write_register (float_argreg++, regval);
2489 if (!MIPS_EABI)
c5aa993b 2490 {
53a5351d
JM
2491 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2492 registers for each argument. The below is (my
2493 guess) to ensure that the corresponding integer
2494 register has reserved the same space. */
9ace0497 2495 if (mips_debug)
acdb74a0 2496 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2497 argreg, phex (regval, len));
c906108c
SS
2498 write_register (argreg, regval);
2499 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2500 }
2501 }
cce41527
AC
2502 /* Reserve space for the FP register. */
2503 if (MIPS_REGS_HAVE_HOME_P)
2504 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
c906108c
SS
2505 }
2506 else
2507 {
2508 /* Copy the argument to general registers or the stack in
2509 register-sized pieces. Large arguments are split between
2510 registers and stack. */
2511 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2512 are treated specially: Irix cc passes them in registers
2513 where gcc sometimes puts them on the stack. For maximum
2514 compatibility, we will put them in both places. */
c5aa993b 2515 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2516 (len % MIPS_SAVED_REGSIZE != 0));
49e790b0
DJ
2517 /* Structures should be aligned to eight bytes (even arg registers)
2518 on MIPS_ABI_O32 if their first member has double precision. */
fb850278 2519 if (tdep->mips_abi == MIPS_ABI_O32
49e790b0
DJ
2520 && mips_type_needs_double_align (arg_type))
2521 {
2522 if ((argreg & 1))
2523 argreg++;
2524 }
f09ded24
AC
2525 /* Note: Floating-point values that didn't fit into an FP
2526 register are only written to memory. */
c906108c
SS
2527 while (len > 0)
2528 {
566f0f7a
AC
2529 /* Rememer if the argument was written to the stack. */
2530 int stack_used_p = 0;
7a292a7a 2531 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2532
acdb74a0
AC
2533 if (mips_debug)
2534 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2535 partial_len);
2536
566f0f7a 2537 /* Write this portion of the argument to the stack. */
f09ded24
AC
2538 if (argreg > MIPS_LAST_ARG_REGNUM
2539 || odd_sized_struct
2540 || fp_register_arg_p (typecode, arg_type))
c906108c 2541 {
c906108c
SS
2542 /* Should shorter than int integer values be
2543 promoted to int before being stored? */
c906108c 2544 int longword_offset = 0;
9ace0497 2545 CORE_ADDR addr;
566f0f7a 2546 stack_used_p = 1;
d7449b42 2547 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2548 {
d929b26f 2549 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2550 (typecode == TYPE_CODE_INT ||
2551 typecode == TYPE_CODE_PTR ||
2552 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2553 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2554 else if ((typecode == TYPE_CODE_STRUCT ||
2555 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2556 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2557 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2558 }
c5aa993b 2559
9ace0497
AC
2560 if (mips_debug)
2561 {
acdb74a0 2562 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
9ace0497
AC
2563 (long) stack_offset);
2564 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2565 (long) longword_offset);
2566 }
361d1df0 2567
9ace0497
AC
2568 addr = sp + stack_offset + longword_offset;
2569
2570 if (mips_debug)
2571 {
2572 int i;
2573 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2574 for (i = 0; i < partial_len; i++)
2575 {
2576 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2577 }
2578 }
2579 write_memory (addr, val, partial_len);
c906108c
SS
2580 }
2581
f09ded24
AC
2582 /* Note!!! This is NOT an else clause. Odd sized
2583 structs may go thru BOTH paths. Floating point
2584 arguments will not. */
566f0f7a
AC
2585 /* Write this portion of the argument to a general
2586 purpose register. */
f09ded24
AC
2587 if (argreg <= MIPS_LAST_ARG_REGNUM
2588 && !fp_register_arg_p (typecode, arg_type))
c906108c 2589 {
9ace0497 2590 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2591
361d1df0 2592 /* A non-floating-point argument being passed in a
c906108c
SS
2593 general register. If a struct or union, and if
2594 the remaining length is smaller than the register
2595 size, we have to adjust the register value on
2596 big endian targets.
2597
2598 It does not seem to be necessary to do the
2599 same for integral types.
2600
2601 Also don't do this adjustment on EABI and O64
675fb869
AC
2602 binaries.
2603
2604 cagney/2001-07-23: gdb/179: Also, GCC, when
2605 outputting LE O32 with sizeof (struct) <
2606 MIPS_SAVED_REGSIZE, generates a left shift as
2607 part of storing the argument in a register a
2608 register (the left shift isn't generated when
2609 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2610 is quite possible that this is GCC contradicting
2611 the LE/O32 ABI, GDB has not been adjusted to
2612 accommodate this. Either someone needs to
2613 demonstrate that the LE/O32 ABI specifies such a
2614 left shift OR this new ABI gets identified as
2615 such and GDB gets tweaked accordingly. */
c906108c
SS
2616
2617 if (!MIPS_EABI
7a292a7a 2618 && MIPS_SAVED_REGSIZE < 8
d7449b42 2619 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a 2620 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2621 && (typecode == TYPE_CODE_STRUCT ||
2622 typecode == TYPE_CODE_UNION))
c5aa993b 2623 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2624 TARGET_CHAR_BIT);
2625
9ace0497 2626 if (mips_debug)
acdb74a0 2627 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2628 argreg,
2629 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2630 write_register (argreg, regval);
2631 argreg++;
c5aa993b 2632
c906108c
SS
2633 /* If this is the old ABI, prevent subsequent floating
2634 point arguments from being passed in floating point
2635 registers. */
2636 if (!MIPS_EABI)
2637 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2638 }
c5aa993b 2639
c906108c
SS
2640 len -= partial_len;
2641 val += partial_len;
2642
566f0f7a
AC
2643 /* Compute the the offset into the stack at which we
2644 will copy the next parameter.
2645
2646 In older ABIs, the caller reserved space for
2647 registers that contained arguments. This was loosely
2648 refered to as their "home". Consequently, space is
2649 always allocated.
c906108c 2650
566f0f7a
AC
2651 In the new EABI (and the NABI32), the stack_offset
2652 only needs to be adjusted when it has been used.. */
c906108c 2653
566f0f7a 2654 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
d929b26f 2655 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2656 }
2657 }
9ace0497
AC
2658 if (mips_debug)
2659 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2660 }
2661
0f71a2f6
JM
2662 /* Return adjusted stack pointer. */
2663 return sp;
2664}
2665
2666CORE_ADDR
acdb74a0 2667mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 2668{
c906108c
SS
2669 /* Set the return address register to point to the entry
2670 point of the program, where a breakpoint lies in wait. */
c5aa993b 2671 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2672 return sp;
2673}
2674
2675static void
c5aa993b 2676mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2677{
2678 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2679 int regsize;
2680 int offset;
2681 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2682 {
2683 regsize = MIPS_SAVED_REGSIZE;
d7449b42 2684 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
2685 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2686 : 0);
2687 }
2688 else
2689 {
2690 regsize = REGISTER_RAW_SIZE (regno);
2691 offset = 0;
2692 }
c906108c
SS
2693 *sp -= regsize;
2694 read_register_gen (regno, buffer);
7a292a7a 2695 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2696}
2697
2698/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2699#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2700
2701void
acdb74a0 2702mips_push_dummy_frame (void)
c906108c
SS
2703{
2704 int ireg;
c5aa993b
JM
2705 struct linked_proc_info *link = (struct linked_proc_info *)
2706 xmalloc (sizeof (struct linked_proc_info));
c906108c 2707 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 2708 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
2709 CORE_ADDR old_sp = sp;
2710 link->next = linked_proc_desc_table;
2711 linked_proc_desc_table = link;
2712
2713/* FIXME! are these correct ? */
c5aa993b 2714#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2715#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2716#define FLOAT_REG_SAVE_MASK MASK(0,19)
2717#define FLOAT_SINGLE_REG_SAVE_MASK \
2718 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2719 /*
2720 * The registers we must save are all those not preserved across
2721 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2722 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2723 * and FP Control/Status registers.
361d1df0 2724 *
c906108c
SS
2725 *
2726 * Dummy frame layout:
2727 * (high memory)
c5aa993b
JM
2728 * Saved PC
2729 * Saved MMHI, MMLO, FPC_CSR
2730 * Saved R31
2731 * Saved R28
2732 * ...
2733 * Saved R1
c906108c
SS
2734 * Saved D18 (i.e. F19, F18)
2735 * ...
2736 * Saved D0 (i.e. F1, F0)
c5aa993b 2737 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2738 * (low memory)
2739 */
2740
2741 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2742 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2743 PROC_FRAME_OFFSET (proc_desc) = 0;
2744 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2745 mips_push_register (&sp, PC_REGNUM);
2746 mips_push_register (&sp, HI_REGNUM);
2747 mips_push_register (&sp, LO_REGNUM);
2748 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2749
2750 /* Save general CPU registers */
c5aa993b 2751 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2752 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2753 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2754 for (ireg = 32; --ireg >= 0;)
2755 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2756 mips_push_register (&sp, ireg);
2757
2758 /* Save floating point registers starting with high order word */
c5aa993b 2759 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2760 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2761 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2762 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2763 from FP. */
c5aa993b
JM
2764 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2765 for (ireg = 32; --ireg >= 0;)
2766 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2767 mips_push_register (&sp, ireg + FP0_REGNUM);
2768
2769 /* Update the frame pointer for the call dummy and the stack pointer.
2770 Set the procedure's starting and ending addresses to point to the
2771 call dummy address at the entry point. */
2772 write_register (PUSH_FP_REGNUM, old_sp);
2773 write_register (SP_REGNUM, sp);
c5aa993b
JM
2774 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2775 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2776 SET_PROC_DESC_IS_DUMMY (proc_desc);
2777 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2778}
2779
2780void
acdb74a0 2781mips_pop_frame (void)
c906108c
SS
2782{
2783 register int regnum;
2784 struct frame_info *frame = get_current_frame ();
2785 CORE_ADDR new_sp = FRAME_FP (frame);
2786
cce74817 2787 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2788
c5aa993b 2789 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2790 if (frame->saved_regs == NULL)
2791 mips_find_saved_regs (frame);
2792 for (regnum = 0; regnum < NUM_REGS; regnum++)
2793 {
2794 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2795 && frame->saved_regs[regnum])
2796 write_register (regnum,
2797 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2798 MIPS_SAVED_REGSIZE));
c906108c
SS
2799 }
2800 write_register (SP_REGNUM, new_sp);
2801 flush_cached_frames ();
2802
c5aa993b 2803 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2804 {
2805 struct linked_proc_info *pi_ptr, *prev_ptr;
2806
2807 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2808 pi_ptr != NULL;
2809 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2810 {
2811 if (&pi_ptr->info == proc_desc)
2812 break;
2813 }
2814
2815 if (pi_ptr == NULL)
2816 error ("Can't locate dummy extra frame info\n");
2817
2818 if (prev_ptr != NULL)
2819 prev_ptr->next = pi_ptr->next;
2820 else
2821 linked_proc_desc_table = pi_ptr->next;
2822
b8c9b27d 2823 xfree (pi_ptr);
c906108c
SS
2824
2825 write_register (HI_REGNUM,
c5aa993b 2826 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2827 MIPS_SAVED_REGSIZE));
c906108c 2828 write_register (LO_REGNUM,
c5aa993b 2829 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2830 MIPS_SAVED_REGSIZE));
c906108c
SS
2831 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2832 write_register (FCRCS_REGNUM,
c5aa993b 2833 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2834 MIPS_SAVED_REGSIZE));
c906108c
SS
2835 }
2836}
2837
dd824b04
DJ
2838/* Floating point register management.
2839
2840 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
2841 64bit operations, these early MIPS cpus treat fp register pairs
2842 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
2843 registers and offer a compatibility mode that emulates the MIPS2 fp
2844 model. When operating in MIPS2 fp compat mode, later cpu's split
2845 double precision floats into two 32-bit chunks and store them in
2846 consecutive fp regs. To display 64-bit floats stored in this
2847 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
2848 Throw in user-configurable endianness and you have a real mess.
2849
2850 The way this works is:
2851 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
2852 double-precision value will be split across two logical registers.
2853 The lower-numbered logical register will hold the low-order bits,
2854 regardless of the processor's endianness.
2855 - If we are on a 64-bit processor, and we are looking for a
2856 single-precision value, it will be in the low ordered bits
2857 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
2858 save slot in memory.
2859 - If we are in 64-bit mode, everything is straightforward.
2860
2861 Note that this code only deals with "live" registers at the top of the
2862 stack. We will attempt to deal with saved registers later, when
2863 the raw/cooked register interface is in place. (We need a general
2864 interface that can deal with dynamic saved register sizes -- fp
2865 regs could be 32 bits wide in one frame and 64 on the frame above
2866 and below). */
2867
67b2c998
DJ
2868static struct type *
2869mips_float_register_type (void)
2870{
361d1df0 2871 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
2872 return builtin_type_ieee_single_big;
2873 else
2874 return builtin_type_ieee_single_little;
2875}
2876
2877static struct type *
2878mips_double_register_type (void)
2879{
361d1df0 2880 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
2881 return builtin_type_ieee_double_big;
2882 else
2883 return builtin_type_ieee_double_little;
2884}
2885
dd824b04
DJ
2886/* Copy a 32-bit single-precision value from the current frame
2887 into rare_buffer. */
2888
2889static void
2890mips_read_fp_register_single (int regno, char *rare_buffer)
2891{
2892 int raw_size = REGISTER_RAW_SIZE (regno);
2893 char *raw_buffer = alloca (raw_size);
2894
cda5a58a 2895 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
2896 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2897 if (raw_size == 8)
2898 {
2899 /* We have a 64-bit value for this register. Find the low-order
2900 32 bits. */
2901 int offset;
2902
2903 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2904 offset = 4;
2905 else
2906 offset = 0;
2907
2908 memcpy (rare_buffer, raw_buffer + offset, 4);
2909 }
2910 else
2911 {
2912 memcpy (rare_buffer, raw_buffer, 4);
2913 }
2914}
2915
2916/* Copy a 64-bit double-precision value from the current frame into
2917 rare_buffer. This may include getting half of it from the next
2918 register. */
2919
2920static void
2921mips_read_fp_register_double (int regno, char *rare_buffer)
2922{
2923 int raw_size = REGISTER_RAW_SIZE (regno);
2924
2925 if (raw_size == 8 && !mips2_fp_compat ())
2926 {
2927 /* We have a 64-bit value for this register, and we should use
2928 all 64 bits. */
cda5a58a 2929 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
2930 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2931 }
2932 else
2933 {
2934 if ((regno - FP0_REGNUM) & 1)
2935 internal_error (__FILE__, __LINE__,
2936 "mips_read_fp_register_double: bad access to "
2937 "odd-numbered FP register");
2938
2939 /* mips_read_fp_register_single will find the correct 32 bits from
2940 each register. */
2941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2942 {
2943 mips_read_fp_register_single (regno, rare_buffer + 4);
2944 mips_read_fp_register_single (regno + 1, rare_buffer);
2945 }
361d1df0 2946 else
dd824b04
DJ
2947 {
2948 mips_read_fp_register_single (regno, rare_buffer);
2949 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
2950 }
2951 }
2952}
2953
c906108c 2954static void
acdb74a0 2955mips_print_register (int regnum, int all)
c906108c
SS
2956{
2957 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2958
2959 /* Get the data in raw format. */
cda5a58a 2960 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
2961 {
2962 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2963 return;
2964 }
2965
dd824b04
DJ
2966 /* If we have a actual 32-bit floating point register (or we are in
2967 32-bit compatibility mode), and the register is even-numbered,
2968 also print it as a double (spanning two registers). */
c906108c 2969 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
2970 && (REGISTER_RAW_SIZE (regnum) == 4
2971 || mips2_fp_compat ())
c5aa993b 2972 && !((regnum - FP0_REGNUM) & 1))
dd824b04
DJ
2973 {
2974 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c 2975
dd824b04 2976 mips_read_fp_register_double (regnum, dbuffer);
c906108c 2977
dd824b04 2978 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 2979 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
2980 gdb_stdout, 0, 1, 0, Val_pretty_default);
2981 printf_filtered ("); ");
2982 }
c906108c
SS
2983 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2984
2985 /* The problem with printing numeric register names (r26, etc.) is that
2986 the user can't use them on input. Probably the best solution is to
2987 fix it so that either the numeric or the funky (a2, etc.) names
2988 are accepted on input. */
2989 if (regnum < MIPS_NUMREGS)
2990 printf_filtered ("(r%d): ", regnum);
2991 else
2992 printf_filtered (": ");
2993
2994 /* If virtual format is floating, print it that way. */
2995 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
2996 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
2997 {
2998 /* We have a meaningful 64-bit value in this register. Show
2999 it as a 32-bit float and a 64-bit double. */
d7449b42 3000 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
3001
3002 printf_filtered (" (float) ");
67b2c998 3003 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
3004 gdb_stdout, 0, 1, 0, Val_pretty_default);
3005 printf_filtered (", (double) ");
67b2c998 3006 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
3007 gdb_stdout, 0, 1, 0, Val_pretty_default);
3008 }
3009 else
3010 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
3011 gdb_stdout, 0, 1, 0, Val_pretty_default);
3012 /* Else print as integer in hex. */
3013 else
ed9a39eb
JM
3014 {
3015 int offset;
3016
d7449b42 3017 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
3018 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
3019 else
3020 offset = 0;
361d1df0 3021
ed9a39eb
JM
3022 print_scalar_formatted (raw_buffer + offset,
3023 REGISTER_VIRTUAL_TYPE (regnum),
3024 'x', 0, gdb_stdout);
3025 }
c906108c
SS
3026}
3027
361d1df0 3028/* Replacement for generic do_registers_info.
c906108c
SS
3029 Print regs in pretty columns. */
3030
3031static int
acdb74a0 3032do_fp_register_row (int regnum)
c5aa993b 3033{ /* do values for FP (float) regs */
dd824b04 3034 char *raw_buffer;
c906108c
SS
3035 double doub, flt1, flt2; /* doubles extracted from raw hex data */
3036 int inv1, inv2, inv3;
c5aa993b 3037
dd824b04 3038 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 3039
dd824b04 3040 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 3041 {
dd824b04
DJ
3042 /* 4-byte registers: we can fit two registers per row. */
3043 /* Also print every pair of 4-byte regs as an 8-byte double. */
3044 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 3045 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3046
dd824b04 3047 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 3048 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
3049
3050 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 3051 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 3052
1adad886
AC
3053 printf_filtered (" %-5s", REGISTER_NAME (regnum));
3054 if (inv1)
3055 printf_filtered (": <invalid float>");
3056 else
3057 printf_filtered ("%-17.9g", flt1);
3058
3059 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
3060 if (inv2)
3061 printf_filtered (": <invalid float>");
3062 else
3063 printf_filtered ("%-17.9g", flt2);
3064
3065 printf_filtered (" dbl: ");
3066 if (inv3)
3067 printf_filtered ("<invalid double>");
3068 else
3069 printf_filtered ("%-24.17g", doub);
3070 printf_filtered ("\n");
3071
c906108c 3072 /* may want to do hex display here (future enhancement) */
c5aa993b 3073 regnum += 2;
c906108c
SS
3074 }
3075 else
dd824b04
DJ
3076 {
3077 /* Eight byte registers: print each one as float AND as double. */
3078 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 3079 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 3080
dd824b04 3081 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 3082 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 3083
1adad886
AC
3084 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
3085 if (inv1)
3086 printf_filtered ("<invalid float>");
3087 else
3088 printf_filtered ("flt: %-17.9g", flt1);
3089
3090 printf_filtered (" dbl: ");
3091 if (inv3)
3092 printf_filtered ("<invalid double>");
3093 else
3094 printf_filtered ("%-24.17g", doub);
3095
3096 printf_filtered ("\n");
c906108c
SS
3097 /* may want to do hex display here (future enhancement) */
3098 regnum++;
3099 }
3100 return regnum;
3101}
3102
3103/* Print a row's worth of GP (int) registers, with name labels above */
3104
3105static int
acdb74a0 3106do_gp_register_row (int regnum)
c906108c
SS
3107{
3108 /* do values for GP (int) regs */
3109 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3110 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
3111 int col, byte;
3112 int start_regnum = regnum;
3113 int numregs = NUM_REGS;
3114
3115
3116 /* For GP registers, we print a separate row of names above the vals */
3117 printf_filtered (" ");
3118 for (col = 0; col < ncols && regnum < numregs; regnum++)
3119 {
3120 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 3121 continue; /* unused register */
c906108c 3122 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
3123 break; /* end the row: reached FP register */
3124 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
3125 REGISTER_NAME (regnum));
3126 col++;
3127 }
c5aa993b 3128 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
3129 start_regnum); /* print the R0 to R31 names */
3130
3131 regnum = start_regnum; /* go back to start of row */
3132 /* now print the values in hex, 4 or 8 to the row */
3133 for (col = 0; col < ncols && regnum < numregs; regnum++)
3134 {
3135 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 3136 continue; /* unused register */
c906108c 3137 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 3138 break; /* end row: reached FP register */
c906108c 3139 /* OK: get the data in raw format. */
cda5a58a 3140 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
3141 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
3142 /* pad small registers */
43e526b9 3143 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
3144 printf_filtered (" ");
3145 /* Now print the register value in hex, endian order. */
d7449b42 3146 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
3147 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
3148 byte < REGISTER_RAW_SIZE (regnum);
3149 byte++)
c906108c
SS
3150 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
3151 else
43e526b9
JM
3152 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
3153 byte >= 0;
3154 byte--)
c906108c
SS
3155 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
3156 printf_filtered (" ");
3157 col++;
3158 }
c5aa993b 3159 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
3160 printf_filtered ("\n");
3161
3162 return regnum;
3163}
3164
3165/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
3166
3167void
acdb74a0 3168mips_do_registers_info (int regnum, int fpregs)
c906108c 3169{
c5aa993b 3170 if (regnum != -1) /* do one specified register */
c906108c
SS
3171 {
3172 if (*(REGISTER_NAME (regnum)) == '\0')
3173 error ("Not a valid register for the current processor type");
3174
3175 mips_print_register (regnum, 0);
3176 printf_filtered ("\n");
3177 }
c5aa993b
JM
3178 else
3179 /* do all (or most) registers */
c906108c
SS
3180 {
3181 regnum = 0;
3182 while (regnum < NUM_REGS)
3183 {
c5aa993b
JM
3184 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3185 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
3186 regnum = do_fp_register_row (regnum); /* FP regs */
3187 else
3188 regnum += MIPS_NUMREGS; /* skip floating point regs */
3189 else
3190 regnum = do_gp_register_row (regnum); /* GP (int) regs */
3191 }
3192 }
3193}
3194
3195/* Return number of args passed to a frame. described by FIP.
3196 Can return -1, meaning no way to tell. */
3197
3198int
acdb74a0 3199mips_frame_num_args (struct frame_info *frame)
c906108c 3200{
c906108c
SS
3201 return -1;
3202}
3203
3204/* Is this a branch with a delay slot? */
3205
a14ed312 3206static int is_delayed (unsigned long);
c906108c
SS
3207
3208static int
acdb74a0 3209is_delayed (unsigned long insn)
c906108c
SS
3210{
3211 int i;
3212 for (i = 0; i < NUMOPCODES; ++i)
3213 if (mips_opcodes[i].pinfo != INSN_MACRO
3214 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
3215 break;
3216 return (i < NUMOPCODES
3217 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
3218 | INSN_COND_BRANCH_DELAY
3219 | INSN_COND_BRANCH_LIKELY)));
3220}
3221
3222int
acdb74a0 3223mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
3224{
3225 char buf[MIPS_INSTLEN];
3226
3227 /* There is no branch delay slot on MIPS16. */
3228 if (pc_is_mips16 (pc))
3229 return 0;
3230
3231 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
3232 /* If error reading memory, guess that it is not a delayed branch. */
3233 return 0;
c5aa993b 3234 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
3235}
3236
3237
3238/* Skip the PC past function prologue instructions (32-bit version).
3239 This is a helper function for mips_skip_prologue. */
3240
3241static CORE_ADDR
f7b9e9fc 3242mips32_skip_prologue (CORE_ADDR pc)
c906108c 3243{
c5aa993b
JM
3244 t_inst inst;
3245 CORE_ADDR end_pc;
3246 int seen_sp_adjust = 0;
3247 int load_immediate_bytes = 0;
3248
3249 /* Skip the typical prologue instructions. These are the stack adjustment
3250 instruction and the instructions that save registers on the stack
3251 or in the gcc frame. */
3252 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
3253 {
3254 unsigned long high_word;
c906108c 3255
c5aa993b
JM
3256 inst = mips_fetch_instruction (pc);
3257 high_word = (inst >> 16) & 0xffff;
c906108c 3258
c5aa993b
JM
3259 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
3260 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
3261 seen_sp_adjust = 1;
3262 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
3263 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
3264 seen_sp_adjust = 1;
3265 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
3266 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
3267 && (inst & 0x001F0000)) /* reg != $zero */
3268 continue;
3269
3270 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
3271 continue;
3272 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
3273 /* sx reg,n($s8) */
3274 continue; /* reg != $zero */
3275
3276 /* move $s8,$sp. With different versions of gas this will be either
3277 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
3278 Accept any one of these. */
3279 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3280 continue;
3281
3282 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
3283 continue;
3284 else if (high_word == 0x3c1c) /* lui $gp,n */
3285 continue;
3286 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
3287 continue;
3288 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3289 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
3290 continue;
3291 /* The following instructions load $at or $t0 with an immediate
3292 value in preparation for a stack adjustment via
3293 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
3294 a local variable, so we accept them only before a stack adjustment
3295 instruction was seen. */
3296 else if (!seen_sp_adjust)
3297 {
3298 if (high_word == 0x3c01 || /* lui $at,n */
3299 high_word == 0x3c08) /* lui $t0,n */
3300 {
3301 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3302 continue;
3303 }
3304 else if (high_word == 0x3421 || /* ori $at,$at,n */
3305 high_word == 0x3508 || /* ori $t0,$t0,n */
3306 high_word == 0x3401 || /* ori $at,$zero,n */
3307 high_word == 0x3408) /* ori $t0,$zero,n */
3308 {
3309 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3310 continue;
3311 }
3312 else
3313 break;
3314 }
3315 else
3316 break;
c906108c
SS
3317 }
3318
c5aa993b
JM
3319 /* In a frameless function, we might have incorrectly
3320 skipped some load immediate instructions. Undo the skipping
3321 if the load immediate was not followed by a stack adjustment. */
3322 if (load_immediate_bytes && !seen_sp_adjust)
3323 pc -= load_immediate_bytes;
3324 return pc;
c906108c
SS
3325}
3326
3327/* Skip the PC past function prologue instructions (16-bit version).
3328 This is a helper function for mips_skip_prologue. */
3329
3330static CORE_ADDR
f7b9e9fc 3331mips16_skip_prologue (CORE_ADDR pc)
c906108c 3332{
c5aa993b
JM
3333 CORE_ADDR end_pc;
3334 int extend_bytes = 0;
3335 int prev_extend_bytes;
c906108c 3336
c5aa993b
JM
3337 /* Table of instructions likely to be found in a function prologue. */
3338 static struct
c906108c
SS
3339 {
3340 unsigned short inst;
3341 unsigned short mask;
c5aa993b
JM
3342 }
3343 table[] =
3344 {
c906108c 3345 {
c5aa993b
JM
3346 0x6300, 0xff00
3347 }
3348 , /* addiu $sp,offset */
3349 {
3350 0xfb00, 0xff00
3351 }
3352 , /* daddiu $sp,offset */
3353 {
3354 0xd000, 0xf800
3355 }
3356 , /* sw reg,n($sp) */
3357 {
3358 0xf900, 0xff00
3359 }
3360 , /* sd reg,n($sp) */
3361 {
3362 0x6200, 0xff00
3363 }
3364 , /* sw $ra,n($sp) */
3365 {
3366 0xfa00, 0xff00
3367 }
3368 , /* sd $ra,n($sp) */
3369 {
3370 0x673d, 0xffff
3371 }
3372 , /* move $s1,sp */
3373 {
3374 0xd980, 0xff80
3375 }
3376 , /* sw $a0-$a3,n($s1) */
3377 {
3378 0x6704, 0xff1c
3379 }
3380 , /* move reg,$a0-$a3 */
3381 {
3382 0xe809, 0xf81f
3383 }
3384 , /* entry pseudo-op */
3385 {
3386 0x0100, 0xff00
3387 }
3388 , /* addiu $s1,$sp,n */
3389 {
3390 0, 0
3391 } /* end of table marker */
3392 };
3393
3394 /* Skip the typical prologue instructions. These are the stack adjustment
3395 instruction and the instructions that save registers on the stack
3396 or in the gcc frame. */
3397 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3398 {
3399 unsigned short inst;
3400 int i;
c906108c 3401
c5aa993b 3402 inst = mips_fetch_instruction (pc);
c906108c 3403
c5aa993b
JM
3404 /* Normally we ignore an extend instruction. However, if it is
3405 not followed by a valid prologue instruction, we must adjust
3406 the pc back over the extend so that it won't be considered
3407 part of the prologue. */
3408 if ((inst & 0xf800) == 0xf000) /* extend */
3409 {
3410 extend_bytes = MIPS16_INSTLEN;
3411 continue;
3412 }
3413 prev_extend_bytes = extend_bytes;
3414 extend_bytes = 0;
c906108c 3415
c5aa993b
JM
3416 /* Check for other valid prologue instructions besides extend. */
3417 for (i = 0; table[i].mask != 0; i++)
3418 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3419 break;
3420 if (table[i].mask != 0) /* it was in table? */
3421 continue; /* ignore it */
3422 else
3423 /* non-prologue */
3424 {
3425 /* Return the current pc, adjusted backwards by 2 if
3426 the previous instruction was an extend. */
3427 return pc - prev_extend_bytes;
3428 }
c906108c
SS
3429 }
3430 return pc;
3431}
3432
3433/* To skip prologues, I use this predicate. Returns either PC itself
3434 if the code at PC does not look like a function prologue; otherwise
3435 returns an address that (if we're lucky) follows the prologue. If
3436 LENIENT, then we must skip everything which is involved in setting
3437 up the frame (it's OK to skip more, just so long as we don't skip
3438 anything which might clobber the registers which are being saved.
3439 We must skip more in the case where part of the prologue is in the
3440 delay slot of a non-prologue instruction). */
3441
3442CORE_ADDR
f7b9e9fc 3443mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
3444{
3445 /* See if we can determine the end of the prologue via the symbol table.
3446 If so, then return either PC, or the PC after the prologue, whichever
3447 is greater. */
3448
3449 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3450
3451 if (post_prologue_pc != 0)
3452 return max (pc, post_prologue_pc);
3453
3454 /* Can't determine prologue from the symbol table, need to examine
3455 instructions. */
3456
3457 if (pc_is_mips16 (pc))
f7b9e9fc 3458 return mips16_skip_prologue (pc);
c906108c 3459 else
f7b9e9fc 3460 return mips32_skip_prologue (pc);
c906108c 3461}
c906108c 3462
7a292a7a
SS
3463/* Determine how a return value is stored within the MIPS register
3464 file, given the return type `valtype'. */
3465
3466struct return_value_word
3467{
3468 int len;
3469 int reg;
3470 int reg_offset;
3471 int buf_offset;
3472};
3473
7a292a7a 3474static void
acdb74a0
AC
3475return_value_location (struct type *valtype,
3476 struct return_value_word *hi,
3477 struct return_value_word *lo)
7a292a7a
SS
3478{
3479 int len = TYPE_LENGTH (valtype);
c5aa993b 3480
7a292a7a
SS
3481 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3482 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3483 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3484 {
3485 if (!FP_REGISTER_DOUBLE && len == 8)
3486 {
3487 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3488 spread them across a floating-point register pair. */
d7449b42
AC
3489 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3490 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
3491 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3492 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3493 ? 4 : 0);
3494 hi->reg_offset = lo->reg_offset;
3495 lo->reg = FP0_REGNUM + 0;
3496 hi->reg = FP0_REGNUM + 1;
3497 lo->len = 4;
3498 hi->len = 4;
3499 }
3500 else
3501 {
3502 /* The floating point value fits in a single floating-point
c5aa993b 3503 register. */
d7449b42 3504 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3505 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3506 && len == 4)
3507 ? 4 : 0);
3508 lo->reg = FP0_REGNUM;
3509 lo->len = len;
3510 lo->buf_offset = 0;
3511 hi->len = 0;
3512 hi->reg_offset = 0;
3513 hi->buf_offset = 0;
3514 hi->reg = 0;
3515 }
3516 }
3517 else
3518 {
3519 /* Locate a result possibly spread across two registers. */
3520 int regnum = 2;
3521 lo->reg = regnum + 0;
3522 hi->reg = regnum + 1;
d7449b42 3523 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3524 && len < MIPS_SAVED_REGSIZE)
3525 {
3526 /* "un-left-justify" the value in the low register */
3527 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3528 lo->len = len;
3529 hi->reg_offset = 0;
3530 hi->len = 0;
3531 }
d7449b42 3532 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3533 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3534 && len < MIPS_SAVED_REGSIZE * 2
3535 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3536 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3537 {
3538 /* "un-left-justify" the value spread across two registers. */
3539 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3540 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3541 hi->reg_offset = 0;
3542 hi->len = len - lo->len;
3543 }
3544 else
3545 {
3546 /* Only perform a partial copy of the second register. */
3547 lo->reg_offset = 0;
3548 hi->reg_offset = 0;
3549 if (len > MIPS_SAVED_REGSIZE)
3550 {
3551 lo->len = MIPS_SAVED_REGSIZE;
3552 hi->len = len - MIPS_SAVED_REGSIZE;
3553 }
3554 else
3555 {
3556 lo->len = len;
3557 hi->len = 0;
3558 }
3559 }
d7449b42 3560 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3561 && REGISTER_RAW_SIZE (regnum) == 8
3562 && MIPS_SAVED_REGSIZE == 4)
3563 {
3564 /* Account for the fact that only the least-signficant part
c5aa993b 3565 of the register is being used */
7a292a7a
SS
3566 lo->reg_offset += 4;
3567 hi->reg_offset += 4;
3568 }
3569 lo->buf_offset = 0;
3570 hi->buf_offset = lo->len;
3571 }
3572}
3573
3574/* Given a return value in `regbuf' with a type `valtype', extract and
3575 copy its value into `valbuf'. */
3576
c906108c 3577void
acdb74a0
AC
3578mips_extract_return_value (struct type *valtype,
3579 char regbuf[REGISTER_BYTES],
3580 char *valbuf)
c906108c 3581{
7a292a7a
SS
3582 struct return_value_word lo;
3583 struct return_value_word hi;
99567b1b 3584 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3585
3586 memcpy (valbuf + lo.buf_offset,
3587 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3588 lo.len);
3589
3590 if (hi.len > 0)
3591 memcpy (valbuf + hi.buf_offset,
3592 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3593 hi.len);
c906108c
SS
3594}
3595
7a292a7a
SS
3596/* Given a return value in `valbuf' with a type `valtype', write it's
3597 value into the appropriate register. */
3598
c906108c 3599void
acdb74a0 3600mips_store_return_value (struct type *valtype, char *valbuf)
c906108c 3601{
7a292a7a
SS
3602 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3603 struct return_value_word lo;
3604 struct return_value_word hi;
99567b1b 3605 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3606
3607 memset (raw_buffer, 0, sizeof (raw_buffer));
3608 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3609 write_register_bytes (REGISTER_BYTE (lo.reg),
3610 raw_buffer,
3611 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3612
7a292a7a
SS
3613 if (hi.len > 0)
3614 {
3615 memset (raw_buffer, 0, sizeof (raw_buffer));
3616 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3617 write_register_bytes (REGISTER_BYTE (hi.reg),
3618 raw_buffer,
3619 REGISTER_RAW_SIZE (hi.reg));
3620 }
c906108c
SS
3621}
3622
3623/* Exported procedure: Is PC in the signal trampoline code */
3624
3625int
acdb74a0 3626in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
3627{
3628 if (sigtramp_address == 0)
3629 fixup_sigtramp ();
3630 return (pc >= sigtramp_address && pc < sigtramp_end);
3631}
3632
a5ea2558
AC
3633/* Root of all "set mips "/"show mips " commands. This will eventually be
3634 used for all MIPS-specific commands. */
3635
a5ea2558 3636static void
acdb74a0 3637show_mips_command (char *args, int from_tty)
a5ea2558
AC
3638{
3639 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3640}
3641
a5ea2558 3642static void
acdb74a0 3643set_mips_command (char *args, int from_tty)
a5ea2558
AC
3644{
3645 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3646 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3647}
3648
c906108c
SS
3649/* Commands to show/set the MIPS FPU type. */
3650
c906108c 3651static void
acdb74a0 3652show_mipsfpu_command (char *args, int from_tty)
c906108c 3653{
c906108c
SS
3654 char *fpu;
3655 switch (MIPS_FPU_TYPE)
3656 {
3657 case MIPS_FPU_SINGLE:
3658 fpu = "single-precision";
3659 break;
3660 case MIPS_FPU_DOUBLE:
3661 fpu = "double-precision";
3662 break;
3663 case MIPS_FPU_NONE:
3664 fpu = "absent (none)";
3665 break;
93d56215
AC
3666 default:
3667 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
3668 }
3669 if (mips_fpu_type_auto)
3670 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3671 fpu);
3672 else
3673 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3674 fpu);
3675}
3676
3677
c906108c 3678static void
acdb74a0 3679set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3680{
3681 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3682 show_mipsfpu_command (args, from_tty);
3683}
3684
c906108c 3685static void
acdb74a0 3686set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
3687{
3688 mips_fpu_type = MIPS_FPU_SINGLE;
3689 mips_fpu_type_auto = 0;
9e364162 3690 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
3691}
3692
c906108c 3693static void
acdb74a0 3694set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
3695{
3696 mips_fpu_type = MIPS_FPU_DOUBLE;
3697 mips_fpu_type_auto = 0;
9e364162 3698 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
3699}
3700
c906108c 3701static void
acdb74a0 3702set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
3703{
3704 mips_fpu_type = MIPS_FPU_NONE;
3705 mips_fpu_type_auto = 0;
9e364162 3706 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
3707}
3708
c906108c 3709static void
acdb74a0 3710set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
3711{
3712 mips_fpu_type_auto = 1;
3713}
3714
3715/* Command to set the processor type. */
3716
3717void
acdb74a0 3718mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
3719{
3720 int i;
3721
3722 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3723 {
3724 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3725 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3726 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3727
3728 /* Restore the value. */
4fcf66da 3729 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3730
3731 return;
3732 }
c5aa993b 3733
c906108c
SS
3734 if (!mips_set_processor_type (tmp_mips_processor_type))
3735 {
3736 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3737 /* Restore its value. */
4fcf66da 3738 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3739 }
3740}
3741
3742static void
acdb74a0 3743mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
3744{
3745}
3746
3747/* Modify the actual processor type. */
3748
3749int
acdb74a0 3750mips_set_processor_type (char *str)
c906108c 3751{
1012bd0e 3752 int i;
c906108c
SS
3753
3754 if (str == NULL)
3755 return 0;
3756
3757 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3758 {
3759 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3760 {
3761 mips_processor_type = str;
cce74817 3762 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3763 return 1;
c906108c
SS
3764 /* FIXME tweak fpu flag too */
3765 }
3766 }
3767
3768 return 0;
3769}
3770
3771/* Attempt to identify the particular processor model by reading the
3772 processor id. */
3773
3774char *
acdb74a0 3775mips_read_processor_type (void)
c906108c
SS
3776{
3777 CORE_ADDR prid;
3778
3779 prid = read_register (PRID_REGNUM);
3780
3781 if ((prid & ~0xf) == 0x700)
c5aa993b 3782 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3783
3784 return NULL;
3785}
3786
3787/* Just like reinit_frame_cache, but with the right arguments to be
3788 callable as an sfunc. */
3789
3790static void
acdb74a0
AC
3791reinit_frame_cache_sfunc (char *args, int from_tty,
3792 struct cmd_list_element *c)
c906108c
SS
3793{
3794 reinit_frame_cache ();
3795}
3796
3797int
acdb74a0 3798gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
3799{
3800 mips_extra_func_info_t proc_desc;
3801
3802 /* Search for the function containing this address. Set the low bit
3803 of the address when searching, in case we were given an even address
3804 that is the start of a 16-bit function. If we didn't do this,
3805 the search would fail because the symbol table says the function
3806 starts at an odd address, i.e. 1 byte past the given address. */
3807 memaddr = ADDR_BITS_REMOVE (memaddr);
3808 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3809
3810 /* Make an attempt to determine if this is a 16-bit function. If
3811 the procedure descriptor exists and the address therein is odd,
3812 it's definitely a 16-bit function. Otherwise, we have to just
3813 guess that if the address passed in is odd, it's 16-bits. */
3814 if (proc_desc)
361d1df0 3815 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 3816 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 3817 else
361d1df0 3818 info->mach = pc_is_mips16 (memaddr) ?
65c11066 3819 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
3820
3821 /* Round down the instruction address to the appropriate boundary. */
65c11066 3822 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 3823
c906108c 3824 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 3825 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
3826 return print_insn_big_mips (memaddr, info);
3827 else
3828 return print_insn_little_mips (memaddr, info);
3829}
3830
3831/* Old-style breakpoint macros.
3832 The IDT board uses an unusual breakpoint value, and sometimes gets
3833 confused when it sees the usual MIPS breakpoint instruction. */
3834
3835#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3836#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3837#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3838#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3839#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3840#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3841#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3842#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3843
3844/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3845 counter value to determine whether a 16- or 32-bit breakpoint should be
3846 used. It returns a pointer to a string of bytes that encode a breakpoint
3847 instruction, stores the length of the string to *lenptr, and adjusts pc
3848 (if necessary) to point to the actual memory location where the
3849 breakpoint should be inserted. */
3850
f4f9705a 3851const unsigned char *
acdb74a0 3852mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 3853{
d7449b42 3854 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
3855 {
3856 if (pc_is_mips16 (*pcptr))
3857 {
1012bd0e
EZ
3858 static unsigned char mips16_big_breakpoint[] =
3859 MIPS16_BIG_BREAKPOINT;
c906108c 3860 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3861 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3862 return mips16_big_breakpoint;
3863 }
3864 else
3865 {
1012bd0e
EZ
3866 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3867 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3868 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 3869
c5aa993b 3870 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3871
3872 if (strcmp (target_shortname, "mips") == 0)
3873 return idt_big_breakpoint;
3874 else if (strcmp (target_shortname, "ddb") == 0
3875 || strcmp (target_shortname, "pmon") == 0
3876 || strcmp (target_shortname, "lsi") == 0)
3877 return pmon_big_breakpoint;
3878 else
3879 return big_breakpoint;
3880 }
3881 }
3882 else
3883 {
3884 if (pc_is_mips16 (*pcptr))
3885 {
1012bd0e
EZ
3886 static unsigned char mips16_little_breakpoint[] =
3887 MIPS16_LITTLE_BREAKPOINT;
c906108c 3888 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3889 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3890 return mips16_little_breakpoint;
3891 }
3892 else
3893 {
1012bd0e
EZ
3894 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3895 static unsigned char pmon_little_breakpoint[] =
3896 PMON_LITTLE_BREAKPOINT;
3897 static unsigned char idt_little_breakpoint[] =
3898 IDT_LITTLE_BREAKPOINT;
c906108c 3899
c5aa993b 3900 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3901
3902 if (strcmp (target_shortname, "mips") == 0)
3903 return idt_little_breakpoint;
3904 else if (strcmp (target_shortname, "ddb") == 0
3905 || strcmp (target_shortname, "pmon") == 0
3906 || strcmp (target_shortname, "lsi") == 0)
3907 return pmon_little_breakpoint;
3908 else
3909 return little_breakpoint;
3910 }
3911 }
3912}
3913
3914/* If PC is in a mips16 call or return stub, return the address of the target
3915 PC, which is either the callee or the caller. There are several
3916 cases which must be handled:
3917
3918 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3919 target PC is in $31 ($ra).
c906108c 3920 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3921 and the target PC is in $2.
c906108c 3922 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3923 before the jal instruction, this is effectively a call stub
3924 and the the target PC is in $2. Otherwise this is effectively
3925 a return stub and the target PC is in $18.
c906108c
SS
3926
3927 See the source code for the stubs in gcc/config/mips/mips16.S for
3928 gory details.
3929
3930 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3931 */
c906108c
SS
3932
3933CORE_ADDR
acdb74a0 3934mips_skip_stub (CORE_ADDR pc)
c906108c
SS
3935{
3936 char *name;
3937 CORE_ADDR start_addr;
3938
3939 /* Find the starting address and name of the function containing the PC. */
3940 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3941 return 0;
3942
3943 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3944 target PC is in $31 ($ra). */
3945 if (strcmp (name, "__mips16_ret_sf") == 0
3946 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 3947 return read_signed_register (RA_REGNUM);
c906108c
SS
3948
3949 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3950 {
3951 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3952 and the target PC is in $2. */
3953 if (name[19] >= '0' && name[19] <= '9')
6c997a34 3954 return read_signed_register (2);
c906108c
SS
3955
3956 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3957 before the jal instruction, this is effectively a call stub
3958 and the the target PC is in $2. Otherwise this is effectively
3959 a return stub and the target PC is in $18. */
c906108c
SS
3960 else if (name[19] == 's' || name[19] == 'd')
3961 {
3962 if (pc == start_addr)
3963 {
3964 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3965 stub. Such a stub for a function bar might have a name
3966 like __fn_stub_bar, and might look like this:
3967 mfc1 $4,$f13
3968 mfc1 $5,$f12
3969 mfc1 $6,$f15
3970 mfc1 $7,$f14
3971 la $1,bar (becomes a lui/addiu pair)
3972 jr $1
3973 So scan down to the lui/addi and extract the target
3974 address from those two instructions. */
c906108c 3975
6c997a34 3976 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
3977 t_inst inst;
3978 int i;
3979
3980 /* See if the name of the target function is __fn_stub_*. */
3981 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3982 return target_pc;
3983 if (strncmp (name, "__fn_stub_", 10) != 0
3984 && strcmp (name, "etext") != 0
3985 && strcmp (name, "_etext") != 0)
3986 return target_pc;
3987
3988 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3989 The limit on the search is arbitrarily set to 20
3990 instructions. FIXME. */
c906108c
SS
3991 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3992 {
c5aa993b
JM
3993 inst = mips_fetch_instruction (target_pc);
3994 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3995 pc = (inst << 16) & 0xffff0000; /* high word */
3996 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3997 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3998 }
3999
4000 /* Couldn't find the lui/addui pair, so return stub address. */
4001 return target_pc;
4002 }
4003 else
4004 /* This is the 'return' part of a call stub. The return
4005 address is in $r18. */
6c997a34 4006 return read_signed_register (18);
c906108c
SS
4007 }
4008 }
c5aa993b 4009 return 0; /* not a stub */
c906108c
SS
4010}
4011
4012
4013/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
4014 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
4015
4016int
acdb74a0 4017mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
4018{
4019 CORE_ADDR start_addr;
4020
4021 /* Find the starting address of the function containing the PC. If the
4022 caller didn't give us a name, look it up at the same time. */
4023 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
4024 return 0;
4025
4026 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4027 {
4028 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
4029 if (name[19] >= '0' && name[19] <= '9')
4030 return 1;
4031 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 4032 before the jal instruction, this is effectively a call stub. */
c906108c
SS
4033 else if (name[19] == 's' || name[19] == 'd')
4034 return pc == start_addr;
4035 }
4036
c5aa993b 4037 return 0; /* not a stub */
c906108c
SS
4038}
4039
4040
4041/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
4042 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
4043
4044int
acdb74a0 4045mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
4046{
4047 CORE_ADDR start_addr;
4048
4049 /* Find the starting address of the function containing the PC. */
4050 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
4051 return 0;
4052
4053 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
4054 if (strcmp (name, "__mips16_ret_sf") == 0
4055 || strcmp (name, "__mips16_ret_df") == 0)
4056 return 1;
4057
4058 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 4059 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
4060 if (strncmp (name, "__mips16_call_stub_", 19) == 0
4061 && (name[19] == 's' || name[19] == 'd')
4062 && pc != start_addr)
4063 return 1;
4064
c5aa993b 4065 return 0; /* not a stub */
c906108c
SS
4066}
4067
4068
4069/* Return non-zero if the PC is in a library helper function that should
4070 be ignored. This implements the IGNORE_HELPER_CALL macro. */
4071
4072int
acdb74a0 4073mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
4074{
4075 char *name;
4076
4077 /* Find the starting address and name of the function containing the PC. */
4078 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
4079 return 0;
4080
4081 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
4082 that we want to ignore. */
4083 return (strcmp (name, "__mips16_ret_sf") == 0
4084 || strcmp (name, "__mips16_ret_df") == 0);
4085}
4086
4087
4088/* Return a location where we can set a breakpoint that will be hit
4089 when an inferior function call returns. This is normally the
4090 program's entry point. Executables that don't have an entry
4091 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
4092 whose address is the location where the breakpoint should be placed. */
4093
4094CORE_ADDR
acdb74a0 4095mips_call_dummy_address (void)
c906108c
SS
4096{
4097 struct minimal_symbol *sym;
4098
4099 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
4100 if (sym)
4101 return SYMBOL_VALUE_ADDRESS (sym);
4102 else
4103 return entry_point_address ();
4104}
4105
4106
9dcb560c 4107/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
4108 information for float parameters, both prototyped and unprototyped, then
4109 define this macro. This forces gdb to always assume that floats are
4110 passed as doubles and then converted in the callee.
4111
4112 For the mips chip, it appears that the debug info marks the parameters as
4113 floats regardless of whether the function is prototyped, but the actual
4114 values are passed as doubles for the non-prototyped case and floats for
4115 the prototyped case. Thus we choose to make the non-prototyped case work
4116 for C and break the prototyped case, since the non-prototyped case is
4117 probably much more common. (FIXME). */
4118
4119static int
4120mips_coerce_float_to_double (struct type *formal, struct type *actual)
4121{
4122 return current_language->la_language == language_c;
4123}
4124
47a8d4ba
AC
4125/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
4126 the register stored on the stack (32) is different to its real raw
4127 size (64). The below ensures that registers are fetched from the
4128 stack using their ABI size and then stored into the RAW_BUFFER
4129 using their raw size.
4130
4131 The alternative to adding this function would be to add an ABI
4132 macro - REGISTER_STACK_SIZE(). */
4133
4134static void
acdb74a0
AC
4135mips_get_saved_register (char *raw_buffer,
4136 int *optimized,
4137 CORE_ADDR *addrp,
4138 struct frame_info *frame,
4139 int regnum,
4140 enum lval_type *lval)
47a8d4ba
AC
4141{
4142 CORE_ADDR addr;
4143
4144 if (!target_has_registers)
4145 error ("No registers.");
4146
4147 /* Normal systems don't optimize out things with register numbers. */
4148 if (optimized != NULL)
4149 *optimized = 0;
4150 addr = find_saved_register (frame, regnum);
4151 if (addr != 0)
4152 {
4153 if (lval != NULL)
4154 *lval = lval_memory;
4155 if (regnum == SP_REGNUM)
4156 {
4157 if (raw_buffer != NULL)
4158 {
4159 /* Put it back in target format. */
4160 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
4161 (LONGEST) addr);
4162 }
4163 if (addrp != NULL)
4164 *addrp = 0;
4165 return;
4166 }
4167 if (raw_buffer != NULL)
4168 {
4169 LONGEST val;
4170 if (regnum < 32)
4171 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
4172 saved. */
4173 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
4174 else
4175 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
4176 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
4177 }
4178 }
4179 else
4180 {
4181 if (lval != NULL)
4182 *lval = lval_register;
4183 addr = REGISTER_BYTE (regnum);
4184 if (raw_buffer != NULL)
4185 read_register_gen (regnum, raw_buffer);
4186 }
4187 if (addrp != NULL)
4188 *addrp = addr;
4189}
2acceee2 4190
f7b9e9fc
AC
4191/* Immediately after a function call, return the saved pc.
4192 Can't always go through the frames for this because on some machines
4193 the new frame is not set up until the new function executes
4194 some instructions. */
4195
4196static CORE_ADDR
4197mips_saved_pc_after_call (struct frame_info *frame)
4198{
6c997a34 4199 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
4200}
4201
4202
88c72b7d
AC
4203/* Convert a dbx stab register number (from `r' declaration) to a gdb
4204 REGNUM */
4205
4206static int
4207mips_stab_reg_to_regnum (int num)
4208{
4209 if (num < 32)
4210 return num;
361d1df0 4211 else
88c72b7d
AC
4212 return num + FP0_REGNUM - 38;
4213}
4214
4215/* Convert a ecoff register number to a gdb REGNUM */
4216
4217static int
4218mips_ecoff_reg_to_regnum (int num)
4219{
4220 if (num < 32)
4221 return num;
4222 else
4223 return num + FP0_REGNUM - 32;
4224}
4225
fc0c74b1
AC
4226/* Convert an integer into an address. By first converting the value
4227 into a pointer and then extracting it signed, the address is
4228 guarenteed to be correctly sign extended. */
4229
4230static CORE_ADDR
4231mips_integer_to_address (struct type *type, void *buf)
4232{
4233 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4234 LONGEST val = unpack_long (type, buf);
4235 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4236 return extract_signed_integer (tmp,
4237 TYPE_LENGTH (builtin_type_void_data_ptr));
4238}
4239
caaa3122
DJ
4240static void
4241mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4242{
4243 enum mips_abi *abip = (enum mips_abi *) obj;
4244 const char *name = bfd_get_section_name (abfd, sect);
4245
4246 if (*abip != MIPS_ABI_UNKNOWN)
4247 return;
4248
4249 if (strncmp (name, ".mdebug.", 8) != 0)
4250 return;
4251
4252 if (strcmp (name, ".mdebug.abi32") == 0)
4253 *abip = MIPS_ABI_O32;
4254 else if (strcmp (name, ".mdebug.abiN32") == 0)
4255 *abip = MIPS_ABI_N32;
e3bddbfa
KB
4256 else if (strcmp (name, ".mdebug.abiN64") == 0)
4257 *abip = MIPS_ABI_N64;
caaa3122
DJ
4258 else if (strcmp (name, ".mdebug.abiO64") == 0)
4259 *abip = MIPS_ABI_O64;
4260 else if (strcmp (name, ".mdebug.eabi32") == 0)
4261 *abip = MIPS_ABI_EABI32;
4262 else if (strcmp (name, ".mdebug.eabi64") == 0)
4263 *abip = MIPS_ABI_EABI64;
4264 else
4265 warning ("unsupported ABI %s.", name + 8);
4266}
4267
2e4ebe70
DJ
4268static enum mips_abi
4269global_mips_abi (void)
4270{
4271 int i;
4272
4273 for (i = 0; mips_abi_strings[i] != NULL; i++)
4274 if (mips_abi_strings[i] == mips_abi_string)
4275 return (enum mips_abi) i;
4276
4277 internal_error (__FILE__, __LINE__,
4278 "unknown ABI string");
4279}
4280
c2d11a7d 4281static struct gdbarch *
acdb74a0
AC
4282mips_gdbarch_init (struct gdbarch_info info,
4283 struct gdbarch_list *arches)
c2d11a7d
JM
4284{
4285 static LONGEST mips_call_dummy_words[] =
4286 {0};
4287 struct gdbarch *gdbarch;
4288 struct gdbarch_tdep *tdep;
4289 int elf_flags;
2e4ebe70 4290 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 4291 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 4292
1d06468c
EZ
4293 /* Reset the disassembly info, in case it was set to something
4294 non-default. */
4295 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
4296 tm_print_insn_info.arch = bfd_arch_unknown;
4297 tm_print_insn_info.mach = 0;
4298
70f80edf
JT
4299 elf_flags = 0;
4300
4301 if (info.abfd)
4302 {
4303 /* First of all, extract the elf_flags, if available. */
4304 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4305 elf_flags = elf_elfheader (info.abfd)->e_flags;
4306
4307 /* Try to determine the OS ABI of the object we are loading. If
4308 we end up with `unknown', just leave it that way. */
4309 osabi = gdbarch_lookup_osabi (info.abfd);
4310 }
c2d11a7d 4311
0dadbba0
AC
4312 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4313 switch ((elf_flags & EF_MIPS_ABI))
4314 {
4315 case E_MIPS_ABI_O32:
4316 mips_abi = MIPS_ABI_O32;
4317 break;
4318 case E_MIPS_ABI_O64:
4319 mips_abi = MIPS_ABI_O64;
4320 break;
4321 case E_MIPS_ABI_EABI32:
4322 mips_abi = MIPS_ABI_EABI32;
4323 break;
4324 case E_MIPS_ABI_EABI64:
4a7f7ba8 4325 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4326 break;
4327 default:
acdb74a0
AC
4328 if ((elf_flags & EF_MIPS_ABI2))
4329 mips_abi = MIPS_ABI_N32;
4330 else
4331 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4332 break;
4333 }
acdb74a0 4334
caaa3122
DJ
4335 /* GCC creates a pseudo-section whose name describes the ABI. */
4336 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4337 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
4338
2e4ebe70
DJ
4339 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
4340 Use the ABI from the last architecture if there is one. */
4341 if (info.abfd == NULL && arches != NULL)
4342 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4343
bf64bfd6
AC
4344 /* Try the architecture for any hint of the corect ABI */
4345 if (mips_abi == MIPS_ABI_UNKNOWN
4346 && info.bfd_arch_info != NULL
4347 && info.bfd_arch_info->arch == bfd_arch_mips)
4348 {
4349 switch (info.bfd_arch_info->mach)
4350 {
4351 case bfd_mach_mips3900:
4352 mips_abi = MIPS_ABI_EABI32;
4353 break;
4354 case bfd_mach_mips4100:
4355 case bfd_mach_mips5000:
4356 mips_abi = MIPS_ABI_EABI64;
4357 break;
1d06468c
EZ
4358 case bfd_mach_mips8000:
4359 case bfd_mach_mips10000:
28d169de
KB
4360 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4361 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4362 mips_abi = MIPS_ABI_N64;
4363 else
4364 mips_abi = MIPS_ABI_N32;
1d06468c 4365 break;
bf64bfd6
AC
4366 }
4367 }
2e4ebe70 4368
0dadbba0
AC
4369#ifdef MIPS_DEFAULT_ABI
4370 if (mips_abi == MIPS_ABI_UNKNOWN)
4371 mips_abi = MIPS_DEFAULT_ABI;
4372#endif
4b9b3959 4373
2e4ebe70
DJ
4374 if (mips_abi == MIPS_ABI_UNKNOWN)
4375 mips_abi = MIPS_ABI_O32;
4376
4377 /* Now that we have found what the ABI for this binary would be,
4378 check whether the user is overriding it. */
4379 found_abi = mips_abi;
4380 wanted_abi = global_mips_abi ();
4381 if (wanted_abi != MIPS_ABI_UNKNOWN)
4382 mips_abi = wanted_abi;
4383
4b9b3959
AC
4384 if (gdbarch_debug)
4385 {
4386 fprintf_unfiltered (gdb_stdlog,
9ace0497 4387 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 4388 elf_flags);
4b9b3959
AC
4389 fprintf_unfiltered (gdb_stdlog,
4390 "mips_gdbarch_init: mips_abi = %d\n",
4391 mips_abi);
2e4ebe70
DJ
4392 fprintf_unfiltered (gdb_stdlog,
4393 "mips_gdbarch_init: found_mips_abi = %d\n",
4394 found_abi);
4b9b3959 4395 }
0dadbba0 4396
c2d11a7d
JM
4397 /* try to find a pre-existing architecture */
4398 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4399 arches != NULL;
4400 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4401 {
4402 /* MIPS needs to be pedantic about which ABI the object is
4403 using. */
9103eae0 4404 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4405 continue;
9103eae0 4406 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4407 continue;
70f80edf
JT
4408 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
4409 return arches->gdbarch;
c2d11a7d
JM
4410 }
4411
4412 /* Need a new architecture. Fill in a target specific vector. */
4413 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4414 gdbarch = gdbarch_alloc (&info, tdep);
4415 tdep->elf_flags = elf_flags;
70f80edf 4416 tdep->osabi = osabi;
c2d11a7d 4417
46cd78fb 4418 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4419 set_gdbarch_short_bit (gdbarch, 16);
4420 set_gdbarch_int_bit (gdbarch, 32);
4421 set_gdbarch_float_bit (gdbarch, 32);
4422 set_gdbarch_double_bit (gdbarch, 64);
4423 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 4424 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
2e4ebe70 4425 tdep->found_abi = found_abi;
0dadbba0 4426 tdep->mips_abi = mips_abi;
1d06468c 4427
0dadbba0 4428 switch (mips_abi)
c2d11a7d 4429 {
0dadbba0 4430 case MIPS_ABI_O32:
a5ea2558 4431 tdep->mips_default_saved_regsize = 4;
0dadbba0 4432 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4433 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4434 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4435 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4436 tdep->mips_regs_have_home_p = 1;
5213ab06 4437 tdep->gdb_target_is_mips64 = 0;
4014092b 4438 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4439 set_gdbarch_long_bit (gdbarch, 32);
4440 set_gdbarch_ptr_bit (gdbarch, 32);
4441 set_gdbarch_long_long_bit (gdbarch, 64);
4442 break;
0dadbba0 4443 case MIPS_ABI_O64:
a5ea2558 4444 tdep->mips_default_saved_regsize = 8;
0dadbba0 4445 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4446 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4447 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4448 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4449 tdep->mips_regs_have_home_p = 1;
5213ab06 4450 tdep->gdb_target_is_mips64 = 1;
361d1df0 4451 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4452 set_gdbarch_long_bit (gdbarch, 32);
4453 set_gdbarch_ptr_bit (gdbarch, 32);
4454 set_gdbarch_long_long_bit (gdbarch, 64);
4455 break;
0dadbba0 4456 case MIPS_ABI_EABI32:
a5ea2558 4457 tdep->mips_default_saved_regsize = 4;
0dadbba0 4458 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4459 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4460 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4461 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4462 tdep->mips_regs_have_home_p = 0;
5213ab06 4463 tdep->gdb_target_is_mips64 = 0;
4014092b 4464 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4465 set_gdbarch_long_bit (gdbarch, 32);
4466 set_gdbarch_ptr_bit (gdbarch, 32);
4467 set_gdbarch_long_long_bit (gdbarch, 64);
4468 break;
0dadbba0 4469 case MIPS_ABI_EABI64:
a5ea2558 4470 tdep->mips_default_saved_regsize = 8;
0dadbba0 4471 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4472 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4473 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4474 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4475 tdep->mips_regs_have_home_p = 0;
5213ab06 4476 tdep->gdb_target_is_mips64 = 1;
4014092b 4477 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4478 set_gdbarch_long_bit (gdbarch, 64);
4479 set_gdbarch_ptr_bit (gdbarch, 64);
4480 set_gdbarch_long_long_bit (gdbarch, 64);
4481 break;
0dadbba0 4482 case MIPS_ABI_N32:
0dadbba0
AC
4483 tdep->mips_default_saved_regsize = 4;
4484 tdep->mips_default_stack_argsize = 8;
4485 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4486 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4487 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4488 tdep->mips_regs_have_home_p = 0;
5213ab06 4489 tdep->gdb_target_is_mips64 = 0;
4014092b 4490 tdep->default_mask_address_p = 0;
0dadbba0
AC
4491 set_gdbarch_long_bit (gdbarch, 32);
4492 set_gdbarch_ptr_bit (gdbarch, 32);
4493 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
4494
4495 /* Set up the disassembler info, so that we get the right
28d169de
KB
4496 register names from libopcodes. */
4497 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4498 tm_print_insn_info.arch = bfd_arch_mips;
4499 if (info.bfd_arch_info != NULL
4500 && info.bfd_arch_info->arch == bfd_arch_mips
4501 && info.bfd_arch_info->mach)
4502 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4503 else
4504 tm_print_insn_info.mach = bfd_mach_mips8000;
4505 break;
4506 case MIPS_ABI_N64:
4507 tdep->mips_default_saved_regsize = 8;
4508 tdep->mips_default_stack_argsize = 8;
4509 tdep->mips_fp_register_double = 1;
4510 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4511 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4512 tdep->mips_regs_have_home_p = 0;
4513 tdep->gdb_target_is_mips64 = 1;
4514 tdep->default_mask_address_p = 0;
4515 set_gdbarch_long_bit (gdbarch, 64);
4516 set_gdbarch_ptr_bit (gdbarch, 64);
4517 set_gdbarch_long_long_bit (gdbarch, 64);
4518
4519 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
4520 register names from libopcodes. */
4521 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4522 tm_print_insn_info.arch = bfd_arch_mips;
4523 if (info.bfd_arch_info != NULL
4524 && info.bfd_arch_info->arch == bfd_arch_mips
4525 && info.bfd_arch_info->mach)
4526 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4527 else
4528 tm_print_insn_info.mach = bfd_mach_mips8000;
0dadbba0 4529 break;
c2d11a7d 4530 default:
2e4ebe70
DJ
4531 internal_error (__FILE__, __LINE__,
4532 "unknown ABI in switch");
c2d11a7d
JM
4533 }
4534
a5ea2558
AC
4535 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4536 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4537 comment:
4538
4539 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4540 flag in object files because to do so would make it impossible to
4541 link with libraries compiled without "-gp32". This is
4542 unnecessarily restrictive.
361d1df0 4543
a5ea2558
AC
4544 We could solve this problem by adding "-gp32" multilibs to gcc,
4545 but to set this flag before gcc is built with such multilibs will
4546 break too many systems.''
4547
4548 But even more unhelpfully, the default linker output target for
4549 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4550 for 64-bit programs - you need to change the ABI to change this,
4551 and not all gcc targets support that currently. Therefore using
4552 this flag to detect 32-bit mode would do the wrong thing given
4553 the current gcc - it would make GDB treat these 64-bit programs
4554 as 32-bit programs by default. */
4555
c2d11a7d
JM
4556 /* enable/disable the MIPS FPU */
4557 if (!mips_fpu_type_auto)
4558 tdep->mips_fpu_type = mips_fpu_type;
4559 else if (info.bfd_arch_info != NULL
4560 && info.bfd_arch_info->arch == bfd_arch_mips)
4561 switch (info.bfd_arch_info->mach)
4562 {
b0069a17 4563 case bfd_mach_mips3900:
c2d11a7d 4564 case bfd_mach_mips4100:
ed9a39eb 4565 case bfd_mach_mips4111:
c2d11a7d
JM
4566 tdep->mips_fpu_type = MIPS_FPU_NONE;
4567 break;
bf64bfd6
AC
4568 case bfd_mach_mips4650:
4569 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4570 break;
c2d11a7d
JM
4571 default:
4572 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4573 break;
4574 }
4575 else
4576 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4577
4578 /* MIPS version of register names. NOTE: At present the MIPS
4579 register name management is part way between the old -
4580 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4581 Further work on it is required. */
4582 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 4583 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
4584 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4585 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
c2d11a7d
JM
4586 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4587 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4588
875e1767
AC
4589 /* Add/remove bits from an address. The MIPS needs be careful to
4590 ensure that all 32 bit addresses are sign extended to 64 bits. */
4591 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4592
10312cc4
AC
4593 /* There's a mess in stack frame creation. See comments in
4594 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4595 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 4596 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 4597
88c72b7d
AC
4598 /* Map debug register numbers onto internal register numbers. */
4599 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4600 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4601
c2d11a7d
JM
4602 /* Initialize a frame */
4603 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4604
4605 /* MIPS version of CALL_DUMMY */
4606
4607 set_gdbarch_call_dummy_p (gdbarch, 1);
4608 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4609 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4610 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4611 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4612 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4613 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4614 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4615 set_gdbarch_call_dummy_length (gdbarch, 0);
4616 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4617 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4618 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4619 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4620 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4621 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4622 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4623
c4093a6a 4624 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4625 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 4626
f7b9e9fc
AC
4627 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4628 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4629 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
4630
4631 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4632 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4633
fc0c74b1
AC
4634 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
4635 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
4636 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf
JT
4637
4638 /* Hook in OS ABI-specific overrides, if they have been registered. */
4639 gdbarch_init_osabi (info, gdbarch, osabi);
4640
4b9b3959
AC
4641 return gdbarch;
4642}
4643
2e4ebe70
DJ
4644static void
4645mips_abi_update (char *ignore_args, int from_tty,
4646 struct cmd_list_element *c)
4647{
4648 struct gdbarch_info info;
4649
4650 /* Force the architecture to update, and (if it's a MIPS architecture)
4651 mips_gdbarch_init will take care of the rest. */
4652 gdbarch_info_init (&info);
4653 gdbarch_update_p (info);
4654}
4655
4b9b3959
AC
4656static void
4657mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4658{
4659 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4660 if (tdep != NULL)
c2d11a7d 4661 {
acdb74a0
AC
4662 int ef_mips_arch;
4663 int ef_mips_32bitmode;
4664 /* determine the ISA */
4665 switch (tdep->elf_flags & EF_MIPS_ARCH)
4666 {
4667 case E_MIPS_ARCH_1:
4668 ef_mips_arch = 1;
4669 break;
4670 case E_MIPS_ARCH_2:
4671 ef_mips_arch = 2;
4672 break;
4673 case E_MIPS_ARCH_3:
4674 ef_mips_arch = 3;
4675 break;
4676 case E_MIPS_ARCH_4:
93d56215 4677 ef_mips_arch = 4;
acdb74a0
AC
4678 break;
4679 default:
93d56215 4680 ef_mips_arch = 0;
acdb74a0
AC
4681 break;
4682 }
4683 /* determine the size of a pointer */
4684 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
4685 fprintf_unfiltered (file,
4686 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 4687 tdep->elf_flags);
4b9b3959 4688 fprintf_unfiltered (file,
acdb74a0
AC
4689 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4690 ef_mips_32bitmode);
4691 fprintf_unfiltered (file,
4692 "mips_dump_tdep: ef_mips_arch = %d\n",
4693 ef_mips_arch);
4694 fprintf_unfiltered (file,
4695 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4696 tdep->mips_abi,
2e4ebe70 4697 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
4698 fprintf_unfiltered (file,
4699 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4700 mips_mask_address_p (),
4701 tdep->default_mask_address_p);
c2d11a7d 4702 }
4b9b3959
AC
4703 fprintf_unfiltered (file,
4704 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4705 FP_REGISTER_DOUBLE);
4706 fprintf_unfiltered (file,
4707 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4708 MIPS_DEFAULT_FPU_TYPE,
4709 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4710 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4711 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4712 : "???"));
4713 fprintf_unfiltered (file,
4714 "mips_dump_tdep: MIPS_EABI = %d\n",
4715 MIPS_EABI);
4716 fprintf_unfiltered (file,
acdb74a0
AC
4717 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4718 MIPS_LAST_FP_ARG_REGNUM,
4719 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
4720 fprintf_unfiltered (file,
4721 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4722 MIPS_FPU_TYPE,
4723 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4724 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4725 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4726 : "???"));
4727 fprintf_unfiltered (file,
4728 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4729 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
4730 fprintf_unfiltered (file,
4731 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4732 FP_REGISTER_DOUBLE);
4733 fprintf_unfiltered (file,
4734 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4735 MIPS_REGS_HAVE_HOME_P);
4736 fprintf_unfiltered (file,
4737 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4738 MIPS_DEFAULT_STACK_ARGSIZE);
4739 fprintf_unfiltered (file,
4740 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4741 MIPS_STACK_ARGSIZE);
4742 fprintf_unfiltered (file,
4743 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4744 MIPS_REGSIZE);
2475bac3
AC
4745 fprintf_unfiltered (file,
4746 "mips_dump_tdep: A0_REGNUM = %d\n",
4747 A0_REGNUM);
4748 fprintf_unfiltered (file,
4749 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4750 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4751 fprintf_unfiltered (file,
4752 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4753 XSTRING (ATTACH_DETACH));
4754 fprintf_unfiltered (file,
4755 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4756 BADVADDR_REGNUM);
4757 fprintf_unfiltered (file,
4758 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4759 fprintf_unfiltered (file,
4760 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4761 CAUSE_REGNUM);
4762 fprintf_unfiltered (file,
4763 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4764 CPLUS_MARKER);
4765 fprintf_unfiltered (file,
4766 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4767 DEFAULT_MIPS_TYPE);
4768 fprintf_unfiltered (file,
4769 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4770 XSTRING (DO_REGISTERS_INFO));
4771 fprintf_unfiltered (file,
4772 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4773 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4774 fprintf_unfiltered (file,
4775 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4776 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4777 fprintf_unfiltered (file,
4778 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4779 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4780 fprintf_unfiltered (file,
4781 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4782 FCRCS_REGNUM);
4783 fprintf_unfiltered (file,
4784 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4785 FCRIR_REGNUM);
4786 fprintf_unfiltered (file,
4787 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4788 FIRST_EMBED_REGNUM);
4789 fprintf_unfiltered (file,
4790 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4791 FPA0_REGNUM);
4792 fprintf_unfiltered (file,
4793 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4794 GDB_TARGET_IS_MIPS64);
4795 fprintf_unfiltered (file,
4796 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4797 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4798 fprintf_unfiltered (file,
4799 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4800 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4801 fprintf_unfiltered (file,
4802 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4803 GEN_REG_SAVE_MASK);
4804 fprintf_unfiltered (file,
4805 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4806 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4807 fprintf_unfiltered (file,
4808 "mips_dump_tdep: HI_REGNUM = %d\n",
4809 HI_REGNUM);
4810 fprintf_unfiltered (file,
4811 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4812 fprintf_unfiltered (file,
4813 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4814 fprintf_unfiltered (file,
4815 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4816 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
4817 fprintf_unfiltered (file,
4818 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4819 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4820 fprintf_unfiltered (file,
4821 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4822 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4823 fprintf_unfiltered (file,
4824 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4825 fprintf_unfiltered (file,
4826 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4827 LAST_EMBED_REGNUM);
4828 fprintf_unfiltered (file,
4829 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4830 fprintf_unfiltered (file,
4831 "mips_dump_tdep: LO_REGNUM = %d\n",
4832 LO_REGNUM);
4833#ifdef MACHINE_CPROC_FP_OFFSET
4834 fprintf_unfiltered (file,
4835 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4836 MACHINE_CPROC_FP_OFFSET);
4837#endif
4838#ifdef MACHINE_CPROC_PC_OFFSET
4839 fprintf_unfiltered (file,
4840 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4841 MACHINE_CPROC_PC_OFFSET);
4842#endif
4843#ifdef MACHINE_CPROC_SP_OFFSET
4844 fprintf_unfiltered (file,
4845 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4846 MACHINE_CPROC_SP_OFFSET);
4847#endif
4848 fprintf_unfiltered (file,
4849 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4850 fprintf_unfiltered (file,
4851 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4852 fprintf_unfiltered (file,
4853 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4854 MIPS16_INSTLEN);
4855 fprintf_unfiltered (file,
4856 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4857 fprintf_unfiltered (file,
4858 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4859 fprintf_unfiltered (file,
4860 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4861 fprintf_unfiltered (file,
4862 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4863 MIPS_INSTLEN);
4864 fprintf_unfiltered (file,
acdb74a0
AC
4865 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4866 MIPS_LAST_ARG_REGNUM,
4867 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
4868 fprintf_unfiltered (file,
4869 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4870 MIPS_NUMREGS);
4871 fprintf_unfiltered (file,
4872 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4873 fprintf_unfiltered (file,
4874 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4875 MIPS_SAVED_REGSIZE);
4876 fprintf_unfiltered (file,
4877 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4878 fprintf_unfiltered (file,
4879 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4880 XSTRING (MSYMBOL_SIZE (MSYM)));
4881 fprintf_unfiltered (file,
4882 "mips_dump_tdep: OP_LDFPR = used?\n");
4883 fprintf_unfiltered (file,
4884 "mips_dump_tdep: OP_LDGPR = used?\n");
4885 fprintf_unfiltered (file,
4886 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4887 fprintf_unfiltered (file,
4888 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4889 fprintf_unfiltered (file,
4890 "mips_dump_tdep: PRID_REGNUM = %d\n",
4891 PRID_REGNUM);
4892 fprintf_unfiltered (file,
4893 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4894 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4895 fprintf_unfiltered (file,
4896 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4897 fprintf_unfiltered (file,
4898 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4899 fprintf_unfiltered (file,
4900 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4901 fprintf_unfiltered (file,
4902 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4903 fprintf_unfiltered (file,
4904 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4905 fprintf_unfiltered (file,
4906 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4907 fprintf_unfiltered (file,
4908 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4909 fprintf_unfiltered (file,
4910 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4911 fprintf_unfiltered (file,
4912 "mips_dump_tdep: PROC_PC_REG = function?\n");
4913 fprintf_unfiltered (file,
4914 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4915 fprintf_unfiltered (file,
4916 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4917 fprintf_unfiltered (file,
4918 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4919 fprintf_unfiltered (file,
4920 "mips_dump_tdep: PS_REGNUM = %d\n",
4921 PS_REGNUM);
4922 fprintf_unfiltered (file,
4923 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4924 PUSH_FP_REGNUM);
4925 fprintf_unfiltered (file,
4926 "mips_dump_tdep: RA_REGNUM = %d\n",
4927 RA_REGNUM);
4928 fprintf_unfiltered (file,
4929 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4930 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4931 fprintf_unfiltered (file,
4932 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4933 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4934 fprintf_unfiltered (file,
4935 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4936 fprintf_unfiltered (file,
4937 "mips_dump_tdep: ROUND_DOWN = function?\n");
4938 fprintf_unfiltered (file,
4939 "mips_dump_tdep: ROUND_UP = function?\n");
4940#ifdef SAVED_BYTES
4941 fprintf_unfiltered (file,
4942 "mips_dump_tdep: SAVED_BYTES = %d\n",
4943 SAVED_BYTES);
4944#endif
4945#ifdef SAVED_FP
4946 fprintf_unfiltered (file,
4947 "mips_dump_tdep: SAVED_FP = %d\n",
4948 SAVED_FP);
4949#endif
4950#ifdef SAVED_PC
4951 fprintf_unfiltered (file,
4952 "mips_dump_tdep: SAVED_PC = %d\n",
4953 SAVED_PC);
4954#endif
4955 fprintf_unfiltered (file,
4956 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4957 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4958 fprintf_unfiltered (file,
4959 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4960 fprintf_unfiltered (file,
4961 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4962 SIGFRAME_BASE);
4963 fprintf_unfiltered (file,
4964 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4965 SIGFRAME_FPREGSAVE_OFF);
4966 fprintf_unfiltered (file,
4967 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4968 SIGFRAME_PC_OFF);
4969 fprintf_unfiltered (file,
4970 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4971 SIGFRAME_REGSAVE_OFF);
4972 fprintf_unfiltered (file,
4973 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4974 SIGFRAME_REG_SIZE);
4975 fprintf_unfiltered (file,
4976 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4977 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4978 fprintf_unfiltered (file,
4979 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4980 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4981 fprintf_unfiltered (file,
b0ed3589
AC
4982 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4983 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
4984 fprintf_unfiltered (file,
4985 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4986 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4987#ifdef STACK_END_ADDR
4988 fprintf_unfiltered (file,
4989 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4990 STACK_END_ADDR);
4991#endif
4992 fprintf_unfiltered (file,
4993 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4994 XSTRING (STEP_SKIPS_DELAY (PC)));
4995 fprintf_unfiltered (file,
4996 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4997 STEP_SKIPS_DELAY_P);
4998 fprintf_unfiltered (file,
4999 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
5000 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
5001 fprintf_unfiltered (file,
5002 "mips_dump_tdep: T9_REGNUM = %d\n",
5003 T9_REGNUM);
5004 fprintf_unfiltered (file,
5005 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
5006 fprintf_unfiltered (file,
5007 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
5008 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
5009 fprintf_unfiltered (file,
5010 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
5011 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
5012 fprintf_unfiltered (file,
5013 "mips_dump_tdep: TARGET_MIPS = used?\n");
5014 fprintf_unfiltered (file,
5015 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
5016 XSTRING (TM_PRINT_INSN_MACH));
5017#ifdef TRACE_CLEAR
5018 fprintf_unfiltered (file,
5019 "mips_dump_tdep: TRACE_CLEAR # %s\n",
5020 XSTRING (TRACE_CLEAR (THREAD, STATE)));
5021#endif
5022#ifdef TRACE_FLAVOR
5023 fprintf_unfiltered (file,
5024 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
5025 TRACE_FLAVOR);
5026#endif
5027#ifdef TRACE_FLAVOR_SIZE
5028 fprintf_unfiltered (file,
5029 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
5030 TRACE_FLAVOR_SIZE);
5031#endif
5032#ifdef TRACE_SET
5033 fprintf_unfiltered (file,
5034 "mips_dump_tdep: TRACE_SET # %s\n",
5035 XSTRING (TRACE_SET (X,STATE)));
5036#endif
5037 fprintf_unfiltered (file,
5038 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
5039#ifdef UNUSED_REGNUM
5040 fprintf_unfiltered (file,
5041 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
5042 UNUSED_REGNUM);
5043#endif
5044 fprintf_unfiltered (file,
5045 "mips_dump_tdep: V0_REGNUM = %d\n",
5046 V0_REGNUM);
5047 fprintf_unfiltered (file,
5048 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
5049 (long) VM_MIN_ADDRESS);
5050#ifdef VX_NUM_REGS
5051 fprintf_unfiltered (file,
5052 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
5053 VX_NUM_REGS);
5054#endif
5055 fprintf_unfiltered (file,
5056 "mips_dump_tdep: ZERO_REGNUM = %d\n",
5057 ZERO_REGNUM);
5058 fprintf_unfiltered (file,
5059 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
5060 _PROC_MAGIC_);
70f80edf
JT
5061
5062 fprintf_unfiltered (file,
5063 "mips_dump_tdep: OS ABI = %s\n",
5064 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
5065}
5066
c906108c 5067void
acdb74a0 5068_initialize_mips_tdep (void)
c906108c
SS
5069{
5070 static struct cmd_list_element *mipsfpulist = NULL;
5071 struct cmd_list_element *c;
5072
2e4ebe70
DJ
5073 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
5074 if (MIPS_ABI_LAST + 1
5075 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5076 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5077
4b9b3959 5078 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 5079 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
5080 tm_print_insn = gdb_print_insn_mips;
5081
a5ea2558
AC
5082 /* Add root prefix command for all "set mips"/"show mips" commands */
5083 add_prefix_cmd ("mips", no_class, set_mips_command,
5084 "Various MIPS specific commands.",
5085 &setmipscmdlist, "set mips ", 0, &setlist);
5086
5087 add_prefix_cmd ("mips", no_class, show_mips_command,
5088 "Various MIPS specific commands.",
5089 &showmipscmdlist, "show mips ", 0, &showlist);
5090
5091 /* Allow the user to override the saved register size. */
5092 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
5093 class_obscure,
5094 size_enums,
5095 &mips_saved_regsize_string, "\
a5ea2558
AC
5096Set size of general purpose registers saved on the stack.\n\
5097This option can be set to one of:\n\
5098 32 - Force GDB to treat saved GP registers as 32-bit\n\
5099 64 - Force GDB to treat saved GP registers as 64-bit\n\
5100 auto - Allow GDB to use the target's default setting or autodetect the\n\
5101 saved GP register size from information contained in the executable.\n\
5102 (default: auto)",
1ed2a135 5103 &setmipscmdlist),
a5ea2558
AC
5104 &showmipscmdlist);
5105
d929b26f
AC
5106 /* Allow the user to override the argument stack size. */
5107 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
5108 class_obscure,
5109 size_enums,
1ed2a135 5110 &mips_stack_argsize_string, "\
d929b26f
AC
5111Set the amount of stack space reserved for each argument.\n\
5112This option can be set to one of:\n\
5113 32 - Force GDB to allocate 32-bit chunks per argument\n\
5114 64 - Force GDB to allocate 64-bit chunks per argument\n\
5115 auto - Allow GDB to determine the correct setting from the current\n\
5116 target and executable (default)",
5117 &setmipscmdlist),
5118 &showmipscmdlist);
5119
2e4ebe70
DJ
5120 /* Allow the user to override the ABI. */
5121 c = add_set_enum_cmd
5122 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5123 "Set the ABI used by this program.\n"
5124 "This option can be set to one of:\n"
5125 " auto - the default ABI associated with the current binary\n"
5126 " o32\n"
5127 " o64\n"
5128 " n32\n"
5129 " eabi32\n"
5130 " eabi64",
5131 &setmipscmdlist);
5132 add_show_from_set (c, &showmipscmdlist);
5133 set_cmd_sfunc (c, mips_abi_update);
5134
c906108c
SS
5135 /* Let the user turn off floating point and set the fence post for
5136 heuristic_proc_start. */
5137
5138 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5139 "Set use of MIPS floating-point coprocessor.",
5140 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5141 add_cmd ("single", class_support, set_mipsfpu_single_command,
5142 "Select single-precision MIPS floating-point coprocessor.",
5143 &mipsfpulist);
5144 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 5145 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
5146 &mipsfpulist);
5147 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5148 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5149 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5150 add_cmd ("none", class_support, set_mipsfpu_none_command,
5151 "Select no MIPS floating-point coprocessor.",
5152 &mipsfpulist);
5153 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5154 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5155 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5156 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5157 "Select MIPS floating-point coprocessor automatically.",
5158 &mipsfpulist);
5159 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5160 "Show current use of MIPS floating-point coprocessor target.",
5161 &showlist);
5162
c906108c
SS
5163 /* We really would like to have both "0" and "unlimited" work, but
5164 command.c doesn't deal with that. So make it a var_zinteger
5165 because the user can always use "999999" or some such for unlimited. */
5166 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
5167 (char *) &heuristic_fence_post,
5168 "\
5169Set the distance searched for the start of a function.\n\
5170If you are debugging a stripped executable, GDB needs to search through the\n\
5171program for the start of a function. This command sets the distance of the\n\
5172search. The only need to set it is when debugging a stripped executable.",
5173 &setlist);
5174 /* We need to throw away the frame cache when we set this, since it
5175 might change our ability to get backtraces. */
9f60d481 5176 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
5177 add_show_from_set (c, &showlist);
5178
5179 /* Allow the user to control whether the upper bits of 64-bit
5180 addresses should be zeroed. */
e9e68a56
AC
5181 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
5182Set zeroing of upper 32 bits of 64-bit addresses.\n\
5183Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5184allow GDB to determine the correct value.\n", "\
5185Show zeroing of upper 32 bits of 64-bit addresses.",
5186 NULL, show_mask_address,
5187 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5188
5189 /* Allow the user to control the size of 32 bit registers within the
5190 raw remote packet. */
5191 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
5192 class_obscure,
5193 var_boolean,
5194 (char *)&mips64_transfers_32bit_regs_p, "\
5195Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
5196Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5197that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
519864 bits for others. Use \"off\" to disable compatibility mode",
5199 &setlist),
5200 &showlist);
9ace0497
AC
5201
5202 /* Debug this files internals. */
5203 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
5204 &mips_debug, "Set mips debugging.\n\
5205When non-zero, mips specific debugging is enabled.", &setdebuglist),
5206 &showdebuglist);
c906108c 5207}
This page took 1.203615 seconds and 4 git commands to generate.