]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
53a5351d | 2 | Copyright 1988-1999, Free Software Foundation, Inc. |
c906108c SS |
3 | Contributed by Alessandro Forin([email protected]) at CMU |
4 | and by Per Bothner([email protected]) at U.Wisconsin. | |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "gdb_string.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "value.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "language.h" | |
31 | #include "gdbcore.h" | |
32 | #include "symfile.h" | |
33 | #include "objfiles.h" | |
34 | #include "gdbtypes.h" | |
35 | #include "target.h" | |
36 | ||
37 | #include "opcode/mips.h" | |
38 | ||
cce74817 | 39 | struct frame_extra_info |
c5aa993b JM |
40 | { |
41 | mips_extra_func_info_t proc_desc; | |
42 | int num_args; | |
43 | }; | |
cce74817 | 44 | |
7a292a7a SS |
45 | /* Some MIPS boards don't support floating point while others only |
46 | support single-precision floating-point operations. See also | |
47 | FP_REGISTER_DOUBLE. */ | |
c906108c SS |
48 | |
49 | enum mips_fpu_type | |
c5aa993b JM |
50 | { |
51 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
52 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
53 | MIPS_FPU_NONE /* No floating point. */ | |
54 | }; | |
c906108c SS |
55 | |
56 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
57 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
58 | #endif | |
59 | static int mips_fpu_type_auto = 1; | |
60 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
61 | #define MIPS_FPU_TYPE mips_fpu_type | |
62 | ||
7a292a7a SS |
63 | #ifndef MIPS_SAVED_REGSIZE |
64 | #define MIPS_SAVED_REGSIZE MIPS_REGSIZE | |
65 | #endif | |
c906108c SS |
66 | |
67 | /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */ | |
7a292a7a | 68 | #ifndef FP_REGISTER_DOUBLE |
c906108c | 69 | #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8) |
7a292a7a SS |
70 | #endif |
71 | ||
72 | ||
73 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 | |
c906108c SS |
74 | |
75 | #if 0 | |
76 | static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); | |
77 | #endif | |
78 | ||
79 | int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); | |
80 | ||
81 | static void mips_print_register PARAMS ((int, int)); | |
82 | ||
83 | static mips_extra_func_info_t | |
c5aa993b | 84 | heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); |
c906108c SS |
85 | |
86 | static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); | |
87 | ||
88 | static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); | |
89 | ||
90 | void mips_set_processor_type_command PARAMS ((char *, int)); | |
91 | ||
92 | int mips_set_processor_type PARAMS ((char *)); | |
93 | ||
94 | static void mips_show_processor_type_command PARAMS ((char *, int)); | |
95 | ||
96 | static void reinit_frame_cache_sfunc PARAMS ((char *, int, | |
97 | struct cmd_list_element *)); | |
98 | ||
99 | static mips_extra_func_info_t | |
c5aa993b | 100 | find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info * next_frame)); |
c906108c SS |
101 | |
102 | static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, | |
103 | mips_extra_func_info_t proc_desc)); | |
104 | ||
105 | /* This value is the model of MIPS in use. It is derived from the value | |
106 | of the PrID register. */ | |
107 | ||
108 | char *mips_processor_type; | |
109 | ||
110 | char *tmp_mips_processor_type; | |
111 | ||
112 | /* A set of original names, to be used when restoring back to generic | |
113 | registers from a specific set. */ | |
114 | ||
cce74817 JM |
115 | char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES; |
116 | char **mips_processor_reg_names = mips_generic_reg_names; | |
117 | ||
118 | char * | |
119 | mips_register_name (i) | |
120 | int i; | |
121 | { | |
122 | return mips_processor_reg_names[i]; | |
123 | } | |
9846de1b | 124 | /* *INDENT-OFF* */ |
c906108c SS |
125 | /* Names of IDT R3041 registers. */ |
126 | ||
127 | char *mips_r3041_reg_names[] = { | |
128 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
129 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
130 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
131 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
132 | "sr", "lo", "hi", "bad", "cause","pc", | |
133 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
134 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
135 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
136 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
137 | "fsr", "fir", "fp", "", | |
138 | "", "", "bus", "ccfg", "", "", "", "", | |
139 | "", "", "port", "cmp", "", "", "epc", "prid", | |
140 | }; | |
141 | ||
142 | /* Names of IDT R3051 registers. */ | |
143 | ||
144 | char *mips_r3051_reg_names[] = { | |
145 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
146 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
147 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
148 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
149 | "sr", "lo", "hi", "bad", "cause","pc", | |
150 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
151 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
152 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
153 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
154 | "fsr", "fir", "fp", "", | |
155 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
156 | "", "", "ehi", "", "", "", "epc", "prid", | |
157 | }; | |
158 | ||
159 | /* Names of IDT R3081 registers. */ | |
160 | ||
161 | char *mips_r3081_reg_names[] = { | |
162 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
163 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
164 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
165 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
166 | "sr", "lo", "hi", "bad", "cause","pc", | |
167 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
168 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
169 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
170 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
171 | "fsr", "fir", "fp", "", | |
172 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
173 | "", "", "ehi", "", "", "", "epc", "prid", | |
174 | }; | |
175 | ||
176 | /* Names of LSI 33k registers. */ | |
177 | ||
178 | char *mips_lsi33k_reg_names[] = { | |
179 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
180 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
181 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
182 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
183 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
184 | "dcic", "bpc", "bda", "", "", "", "", "", | |
185 | "", "", "", "", "", "", "", "", | |
186 | "", "", "", "", "", "", "", "", | |
187 | "", "", "", "", "", "", "", "", | |
188 | "", "", "", "", | |
189 | "", "", "", "", "", "", "", "", | |
190 | "", "", "", "", "", "", "", "", | |
191 | }; | |
192 | ||
193 | struct { | |
194 | char *name; | |
195 | char **regnames; | |
196 | } mips_processor_type_table[] = { | |
197 | { "generic", mips_generic_reg_names }, | |
198 | { "r3041", mips_r3041_reg_names }, | |
199 | { "r3051", mips_r3051_reg_names }, | |
200 | { "r3071", mips_r3081_reg_names }, | |
201 | { "r3081", mips_r3081_reg_names }, | |
202 | { "lsi33k", mips_lsi33k_reg_names }, | |
203 | { NULL, NULL } | |
204 | }; | |
9846de1b | 205 | /* *INDENT-ON* */ |
c906108c | 206 | |
c5aa993b JM |
207 | |
208 | ||
209 | ||
c906108c | 210 | /* Table to translate MIPS16 register field to actual register number. */ |
c5aa993b JM |
211 | static int mips16_to_32_reg[8] = |
212 | {16, 17, 2, 3, 4, 5, 6, 7}; | |
c906108c SS |
213 | |
214 | /* Heuristic_proc_start may hunt through the text section for a long | |
215 | time across a 2400 baud serial line. Allows the user to limit this | |
216 | search. */ | |
217 | ||
218 | static unsigned int heuristic_fence_post = 0; | |
219 | ||
c5aa993b JM |
220 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
221 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
c906108c SS |
222 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
223 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
224 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
225 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
226 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
227 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
228 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
229 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
230 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
231 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
232 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) | |
233 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
234 | ||
235 | struct linked_proc_info | |
c5aa993b JM |
236 | { |
237 | struct mips_extra_func_info info; | |
238 | struct linked_proc_info *next; | |
239 | } | |
240 | *linked_proc_desc_table = NULL; | |
c906108c | 241 | |
cce74817 JM |
242 | void |
243 | mips_print_extra_frame_info (fi) | |
244 | struct frame_info *fi; | |
245 | { | |
246 | if (fi | |
247 | && fi->extra_info | |
248 | && fi->extra_info->proc_desc | |
249 | && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS) | |
250 | printf_filtered (" frame pointer is at %s+%d\n", | |
251 | REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg), | |
252 | fi->extra_info->proc_desc->pdr.frameoffset); | |
253 | } | |
c906108c | 254 | |
43e526b9 JM |
255 | /* Convert between RAW and VIRTUAL registers. The RAW register size |
256 | defines the remote-gdb packet. */ | |
257 | ||
258 | static int mips64_transfers_32bit_regs_p = 0; | |
259 | ||
260 | int | |
261 | mips_register_raw_size (reg_nr) | |
262 | int reg_nr; | |
263 | { | |
264 | if (mips64_transfers_32bit_regs_p) | |
265 | return REGISTER_VIRTUAL_SIZE (reg_nr); | |
266 | else | |
267 | return MIPS_REGSIZE; | |
268 | } | |
269 | ||
270 | int | |
271 | mips_register_convertible (reg_nr) | |
272 | int reg_nr; | |
273 | { | |
274 | if (mips64_transfers_32bit_regs_p) | |
275 | return 0; | |
276 | else | |
277 | return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr)); | |
278 | } | |
279 | ||
280 | void | |
281 | mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf) | |
282 | int n; | |
283 | struct type *virtual_type; | |
284 | char *raw_buf; | |
285 | char *virt_buf; | |
286 | { | |
287 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
288 | memcpy (virt_buf, | |
289 | raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
290 | TYPE_LENGTH (virtual_type)); | |
291 | else | |
292 | memcpy (virt_buf, | |
293 | raw_buf, | |
294 | TYPE_LENGTH (virtual_type)); | |
295 | } | |
296 | ||
297 | void | |
298 | mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf) | |
299 | struct type *virtual_type; | |
300 | int n; | |
301 | char *virt_buf; | |
302 | char *raw_buf; | |
303 | { | |
304 | memset (raw_buf, 0, REGISTER_RAW_SIZE (n)); | |
305 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
306 | memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
307 | virt_buf, | |
308 | TYPE_LENGTH (virtual_type)); | |
309 | else | |
310 | memcpy (raw_buf, | |
311 | virt_buf, | |
312 | TYPE_LENGTH (virtual_type)); | |
313 | } | |
314 | ||
c906108c SS |
315 | /* Should the upper word of 64-bit addresses be zeroed? */ |
316 | static int mask_address_p = 1; | |
317 | ||
318 | /* Should call_function allocate stack space for a struct return? */ | |
319 | int | |
320 | mips_use_struct_convention (gcc_p, type) | |
321 | int gcc_p; | |
322 | struct type *type; | |
323 | { | |
324 | if (MIPS_EABI) | |
7a292a7a | 325 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); |
c906108c | 326 | else |
c5aa993b | 327 | return 1; /* Structures are returned by ref in extra arg0 */ |
c906108c SS |
328 | } |
329 | ||
330 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ | |
331 | ||
332 | static int | |
333 | pc_is_mips16 (bfd_vma memaddr) | |
334 | { | |
335 | struct minimal_symbol *sym; | |
336 | ||
337 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
338 | if (IS_MIPS16_ADDR (memaddr)) | |
339 | return 1; | |
340 | ||
341 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
342 | the high bit of the info field. Use this to decide if the function is | |
343 | MIPS16 or normal MIPS. */ | |
344 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
345 | if (sym) | |
346 | return MSYMBOL_IS_SPECIAL (sym); | |
347 | else | |
348 | return 0; | |
349 | } | |
350 | ||
351 | ||
352 | /* This returns the PC of the first inst after the prologue. If we can't | |
353 | find the prologue, then return 0. */ | |
354 | ||
355 | static CORE_ADDR | |
356 | after_prologue (pc, proc_desc) | |
357 | CORE_ADDR pc; | |
358 | mips_extra_func_info_t proc_desc; | |
359 | { | |
360 | struct symtab_and_line sal; | |
361 | CORE_ADDR func_addr, func_end; | |
362 | ||
363 | if (!proc_desc) | |
364 | proc_desc = find_proc_desc (pc, NULL); | |
365 | ||
366 | if (proc_desc) | |
367 | { | |
368 | /* If function is frameless, then we need to do it the hard way. I | |
c5aa993b | 369 | strongly suspect that frameless always means prologueless... */ |
c906108c SS |
370 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM |
371 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
372 | return 0; | |
373 | } | |
374 | ||
375 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
376 | return 0; /* Unknown */ | |
377 | ||
378 | sal = find_pc_line (func_addr, 0); | |
379 | ||
380 | if (sal.end < func_end) | |
381 | return sal.end; | |
382 | ||
383 | /* The line after the prologue is after the end of the function. In this | |
384 | case, tell the caller to find the prologue the hard way. */ | |
385 | ||
386 | return 0; | |
387 | } | |
388 | ||
389 | /* Decode a MIPS32 instruction that saves a register in the stack, and | |
390 | set the appropriate bit in the general register mask or float register mask | |
391 | to indicate which register is saved. This is a helper function | |
392 | for mips_find_saved_regs. */ | |
393 | ||
394 | static void | |
395 | mips32_decode_reg_save (inst, gen_mask, float_mask) | |
396 | t_inst inst; | |
397 | unsigned long *gen_mask; | |
398 | unsigned long *float_mask; | |
399 | { | |
400 | int reg; | |
401 | ||
402 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
403 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
404 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
405 | { | |
406 | /* It might be possible to use the instruction to | |
c5aa993b JM |
407 | find the offset, rather than the code below which |
408 | is based on things being in a certain order in the | |
409 | frame, but figuring out what the instruction's offset | |
410 | is relative to might be a little tricky. */ | |
c906108c SS |
411 | reg = (inst & 0x001f0000) >> 16; |
412 | *gen_mask |= (1 << reg); | |
413 | } | |
414 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
c5aa993b JM |
415 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ |
416 | || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */ | |
c906108c SS |
417 | |
418 | { | |
419 | reg = ((inst & 0x001f0000) >> 16); | |
420 | *float_mask |= (1 << reg); | |
421 | } | |
422 | } | |
423 | ||
424 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
425 | set the appropriate bit in the general register or float register mask | |
426 | to indicate which register is saved. This is a helper function | |
427 | for mips_find_saved_regs. */ | |
428 | ||
429 | static void | |
430 | mips16_decode_reg_save (inst, gen_mask) | |
431 | t_inst inst; | |
432 | unsigned long *gen_mask; | |
433 | { | |
c5aa993b | 434 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
c906108c SS |
435 | { |
436 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
437 | *gen_mask |= (1 << reg); | |
438 | } | |
c5aa993b | 439 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ |
c906108c SS |
440 | { |
441 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
442 | *gen_mask |= (1 << reg); | |
443 | } | |
c5aa993b | 444 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ |
c906108c SS |
445 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
446 | *gen_mask |= (1 << RA_REGNUM); | |
447 | } | |
448 | ||
449 | ||
450 | /* Fetch and return instruction from the specified location. If the PC | |
451 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
452 | ||
453 | static t_inst | |
454 | mips_fetch_instruction (addr) | |
c5aa993b | 455 | CORE_ADDR addr; |
c906108c SS |
456 | { |
457 | char buf[MIPS_INSTLEN]; | |
458 | int instlen; | |
459 | int status; | |
460 | ||
461 | if (pc_is_mips16 (addr)) | |
462 | { | |
463 | instlen = MIPS16_INSTLEN; | |
464 | addr = UNMAKE_MIPS16_ADDR (addr); | |
465 | } | |
466 | else | |
c5aa993b | 467 | instlen = MIPS_INSTLEN; |
c906108c SS |
468 | status = read_memory_nobpt (addr, buf, instlen); |
469 | if (status) | |
470 | memory_error (status, addr); | |
471 | return extract_unsigned_integer (buf, instlen); | |
472 | } | |
473 | ||
474 | ||
475 | /* These the fields of 32 bit mips instructions */ | |
476 | #define mips32_op(x) (x >> 25) | |
477 | #define itype_op(x) (x >> 25) | |
478 | #define itype_rs(x) ((x >> 21)& 0x1f) | |
479 | #define itype_rt(x) ((x >> 16) & 0x1f) | |
480 | #define itype_immediate(x) ( x & 0xffff) | |
481 | ||
482 | #define jtype_op(x) (x >> 25) | |
483 | #define jtype_target(x) ( x & 0x03fffff) | |
484 | ||
485 | #define rtype_op(x) (x >>25) | |
486 | #define rtype_rs(x) ((x>>21) & 0x1f) | |
487 | #define rtype_rt(x) ((x>>16) & 0x1f) | |
c5aa993b | 488 | #define rtype_rd(x) ((x>>11) & 0x1f) |
c906108c SS |
489 | #define rtype_shamt(x) ((x>>6) & 0x1f) |
490 | #define rtype_funct(x) (x & 0x3f ) | |
491 | ||
492 | static CORE_ADDR | |
c5aa993b JM |
493 | mips32_relative_offset (unsigned long inst) |
494 | { | |
495 | long x; | |
496 | x = itype_immediate (inst); | |
497 | if (x & 0x8000) /* sign bit set */ | |
c906108c | 498 | { |
c5aa993b | 499 | x |= 0xffff0000; /* sign extension */ |
c906108c | 500 | } |
c5aa993b JM |
501 | x = x << 2; |
502 | return x; | |
c906108c SS |
503 | } |
504 | ||
505 | /* Determine whate to set a single step breakpoint while considering | |
506 | branch prediction */ | |
507 | CORE_ADDR | |
c5aa993b JM |
508 | mips32_next_pc (CORE_ADDR pc) |
509 | { | |
510 | unsigned long inst; | |
511 | int op; | |
512 | inst = mips_fetch_instruction (pc); | |
513 | if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ | |
514 | { | |
515 | if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ | |
516 | { | |
517 | op = ((inst >> 25) & 0x03); | |
c906108c SS |
518 | switch (op) |
519 | { | |
c5aa993b JM |
520 | case 0: |
521 | goto equal_branch; /* BEQL */ | |
522 | case 1: | |
523 | goto neq_branch; /* BNEZ */ | |
524 | case 2: | |
525 | goto less_branch; /* BLEZ */ | |
526 | case 3: | |
527 | goto greater_branch; /* BGTZ */ | |
528 | default: | |
529 | pc += 4; | |
c906108c SS |
530 | } |
531 | } | |
c5aa993b JM |
532 | else |
533 | pc += 4; /* Not a branch, next instruction is easy */ | |
c906108c SS |
534 | } |
535 | else | |
c5aa993b JM |
536 | { /* This gets way messy */ |
537 | ||
c906108c | 538 | /* Further subdivide into SPECIAL, REGIMM and other */ |
c5aa993b | 539 | switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ |
c906108c | 540 | { |
c5aa993b JM |
541 | case 0: /* SPECIAL */ |
542 | op = rtype_funct (inst); | |
543 | switch (op) | |
544 | { | |
545 | case 8: /* JR */ | |
546 | case 9: /* JALR */ | |
547 | pc = read_register (rtype_rs (inst)); /* Set PC to that address */ | |
548 | break; | |
549 | default: | |
550 | pc += 4; | |
551 | } | |
552 | ||
553 | break; /* end special */ | |
554 | case 1: /* REGIMM */ | |
c906108c | 555 | { |
c5aa993b JM |
556 | op = jtype_op (inst); /* branch condition */ |
557 | switch (jtype_op (inst)) | |
c906108c | 558 | { |
c5aa993b JM |
559 | case 0: /* BLTZ */ |
560 | case 2: /* BLTXL */ | |
561 | case 16: /* BLTZALL */ | |
562 | case 18: /* BLTZALL */ | |
c906108c | 563 | less_branch: |
c5aa993b JM |
564 | if (read_register (itype_rs (inst)) < 0) |
565 | pc += mips32_relative_offset (inst) + 4; | |
566 | else | |
567 | pc += 8; /* after the delay slot */ | |
568 | break; | |
569 | case 1: /* GEZ */ | |
570 | case 3: /* BGEZL */ | |
571 | case 17: /* BGEZAL */ | |
572 | case 19: /* BGEZALL */ | |
c906108c | 573 | greater_equal_branch: |
c5aa993b JM |
574 | if (read_register (itype_rs (inst)) >= 0) |
575 | pc += mips32_relative_offset (inst) + 4; | |
576 | else | |
577 | pc += 8; /* after the delay slot */ | |
578 | break; | |
579 | /* All of the other intructions in the REGIMM catagory */ | |
580 | default: | |
581 | pc += 4; | |
c906108c SS |
582 | } |
583 | } | |
c5aa993b JM |
584 | break; /* end REGIMM */ |
585 | case 2: /* J */ | |
586 | case 3: /* JAL */ | |
587 | { | |
588 | unsigned long reg; | |
589 | reg = jtype_target (inst) << 2; | |
590 | pc = reg + ((pc + 4) & 0xf0000000); | |
c906108c SS |
591 | /* Whats this mysterious 0xf000000 adjustment ??? */ |
592 | } | |
c5aa993b JM |
593 | break; |
594 | /* FIXME case JALX : */ | |
595 | { | |
596 | unsigned long reg; | |
597 | reg = jtype_target (inst) << 2; | |
598 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
c906108c SS |
599 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ |
600 | } | |
c5aa993b JM |
601 | break; /* The new PC will be alternate mode */ |
602 | case 4: /* BEQ , BEQL */ | |
603 | equal_branch: | |
604 | if (read_register (itype_rs (inst)) == | |
605 | read_register (itype_rt (inst))) | |
606 | pc += mips32_relative_offset (inst) + 4; | |
607 | else | |
608 | pc += 8; | |
609 | break; | |
610 | case 5: /* BNE , BNEL */ | |
611 | neq_branch: | |
612 | if (read_register (itype_rs (inst)) != | |
613 | read_register (itype_rs (inst))) | |
614 | pc += mips32_relative_offset (inst) + 4; | |
615 | else | |
616 | pc += 8; | |
617 | break; | |
618 | case 6: /* BLEZ , BLEZL */ | |
c906108c | 619 | less_zero_branch: |
c5aa993b JM |
620 | if (read_register (itype_rs (inst) <= 0)) |
621 | pc += mips32_relative_offset (inst) + 4; | |
622 | else | |
623 | pc += 8; | |
624 | break; | |
625 | case 7: | |
626 | greater_branch: /* BGTZ BGTZL */ | |
627 | if (read_register (itype_rs (inst) > 0)) | |
628 | pc += mips32_relative_offset (inst) + 4; | |
629 | else | |
630 | pc += 8; | |
631 | break; | |
632 | default: | |
633 | pc += 8; | |
634 | } /* switch */ | |
635 | } /* else */ | |
636 | return pc; | |
637 | } /* mips32_next_pc */ | |
c906108c SS |
638 | |
639 | /* Decoding the next place to set a breakpoint is irregular for the | |
640 | mips 16 variant, but fortunatly, there fewer instructions. We have to cope | |
641 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. | |
642 | We dont want to set a single step instruction on the extend instruction | |
643 | either. | |
c5aa993b | 644 | */ |
c906108c SS |
645 | |
646 | /* Lots of mips16 instruction formats */ | |
647 | /* Predicting jumps requires itype,ritype,i8type | |
648 | and their extensions extItype,extritype,extI8type | |
c5aa993b | 649 | */ |
c906108c SS |
650 | enum mips16_inst_fmts |
651 | { | |
c5aa993b JM |
652 | itype, /* 0 immediate 5,10 */ |
653 | ritype, /* 1 5,3,8 */ | |
654 | rrtype, /* 2 5,3,3,5 */ | |
655 | rritype, /* 3 5,3,3,5 */ | |
656 | rrrtype, /* 4 5,3,3,3,2 */ | |
657 | rriatype, /* 5 5,3,3,1,4 */ | |
658 | shifttype, /* 6 5,3,3,3,2 */ | |
659 | i8type, /* 7 5,3,8 */ | |
660 | i8movtype, /* 8 5,3,3,5 */ | |
661 | i8mov32rtype, /* 9 5,3,5,3 */ | |
662 | i64type, /* 10 5,3,8 */ | |
663 | ri64type, /* 11 5,3,3,5 */ | |
664 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
665 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
666 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
667 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
668 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
669 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
670 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
671 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
672 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
673 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
674 | }; | |
c906108c SS |
675 | /* I am heaping all the fields of the formats into one structure and then, |
676 | only the fields which are involved in instruction extension */ | |
677 | struct upk_mips16 | |
c5aa993b JM |
678 | { |
679 | unsigned short inst; | |
680 | enum mips16_inst_fmts fmt; | |
681 | unsigned long offset; | |
682 | unsigned int regx; /* Function in i8 type */ | |
683 | unsigned int regy; | |
684 | }; | |
c906108c SS |
685 | |
686 | ||
687 | ||
c5aa993b JM |
688 | static void |
689 | print_unpack (char *comment, | |
690 | struct upk_mips16 *u) | |
c906108c | 691 | { |
c5aa993b JM |
692 | printf ("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", |
693 | comment, u->inst, u->fmt, u->offset, u->regx, u->regy); | |
c906108c SS |
694 | } |
695 | ||
696 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same | |
697 | format for the bits which make up the immediatate extension. | |
c5aa993b | 698 | */ |
c906108c | 699 | static unsigned long |
c5aa993b | 700 | extended_offset (unsigned long extension) |
c906108c | 701 | { |
c5aa993b JM |
702 | unsigned long value; |
703 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ | |
704 | value = value << 6; | |
705 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
706 | value = value << 5; | |
707 | value |= extension & 0x01f; /* extract 4:0 */ | |
708 | return value; | |
c906108c SS |
709 | } |
710 | ||
711 | /* Only call this function if you know that this is an extendable | |
712 | instruction, It wont malfunction, but why make excess remote memory references? | |
713 | If the immediate operands get sign extended or somthing, do it after | |
714 | the extension is performed. | |
c5aa993b | 715 | */ |
c906108c SS |
716 | /* FIXME: Every one of these cases needs to worry about sign extension |
717 | when the offset is to be used in relative addressing */ | |
718 | ||
719 | ||
c5aa993b JM |
720 | static unsigned short |
721 | fetch_mips_16 (CORE_ADDR pc) | |
c906108c | 722 | { |
c5aa993b JM |
723 | char buf[8]; |
724 | pc &= 0xfffffffe; /* clear the low order bit */ | |
725 | target_read_memory (pc, buf, 2); | |
726 | return extract_unsigned_integer (buf, 2); | |
c906108c SS |
727 | } |
728 | ||
729 | static void | |
c5aa993b JM |
730 | unpack_mips16 (CORE_ADDR pc, |
731 | struct upk_mips16 *upk) | |
c906108c | 732 | { |
c5aa993b JM |
733 | CORE_ADDR extpc; |
734 | unsigned long extension; | |
735 | int extended; | |
736 | extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */ | |
c906108c SS |
737 | /* Decrement to previous address and loose the 16bit mode flag */ |
738 | /* return if the instruction was extendable, but not actually extended */ | |
c5aa993b JM |
739 | extended = ((mips32_op (extension) == 30) ? 1 : 0); |
740 | if (extended) | |
741 | { | |
742 | extension = mips_fetch_instruction (extpc); | |
743 | } | |
c906108c SS |
744 | switch (upk->fmt) |
745 | { | |
c5aa993b | 746 | case itype: |
c906108c | 747 | { |
c5aa993b | 748 | unsigned long value; |
c906108c | 749 | if (extended) |
c5aa993b JM |
750 | { |
751 | value = extended_offset (extension); | |
752 | value = value << 11; /* rom for the original value */ | |
753 | value |= upk->inst & 0x7ff; /* eleven bits from instruction */ | |
c906108c SS |
754 | } |
755 | else | |
c5aa993b JM |
756 | { |
757 | value = upk->inst & 0x7ff; | |
758 | /* FIXME : Consider sign extension */ | |
c906108c | 759 | } |
c5aa993b | 760 | upk->offset = value; |
c906108c | 761 | } |
c5aa993b JM |
762 | break; |
763 | case ritype: | |
764 | case i8type: | |
765 | { /* A register identifier and an offset */ | |
c906108c SS |
766 | /* Most of the fields are the same as I type but the |
767 | immediate value is of a different length */ | |
c5aa993b | 768 | unsigned long value; |
c906108c SS |
769 | if (extended) |
770 | { | |
c5aa993b JM |
771 | value = extended_offset (extension); |
772 | value = value << 8; /* from the original instruction */ | |
773 | value |= upk->inst & 0xff; /* eleven bits from instruction */ | |
774 | upk->regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
775 | if (value & 0x4000) /* test the sign bit , bit 26 */ | |
776 | { | |
777 | value &= ~0x3fff; /* remove the sign bit */ | |
778 | value = -value; | |
c906108c SS |
779 | } |
780 | } | |
c5aa993b JM |
781 | else |
782 | { | |
783 | value = upk->inst & 0xff; /* 8 bits */ | |
784 | upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */ | |
785 | /* FIXME: Do sign extension , this format needs it */ | |
786 | if (value & 0x80) /* THIS CONFUSES ME */ | |
787 | { | |
788 | value &= 0xef; /* remove the sign bit */ | |
789 | value = -value; | |
790 | } | |
791 | ||
792 | } | |
793 | upk->offset = value; | |
794 | break; | |
c906108c | 795 | } |
c5aa993b | 796 | case jalxtype: |
c906108c | 797 | { |
c5aa993b JM |
798 | unsigned long value; |
799 | unsigned short nexthalf; | |
800 | value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f); | |
801 | value = value << 16; | |
802 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
803 | value |= nexthalf; | |
804 | upk->offset = value; | |
805 | break; | |
c906108c SS |
806 | } |
807 | default: | |
c5aa993b JM |
808 | printf_filtered ("Decoding unimplemented instruction format type\n"); |
809 | break; | |
c906108c SS |
810 | } |
811 | /* print_unpack("UPK",upk) ; */ | |
812 | } | |
813 | ||
814 | ||
815 | #define mips16_op(x) (x >> 11) | |
816 | ||
817 | /* This is a map of the opcodes which ae known to perform branches */ | |
818 | static unsigned char map16[32] = | |
c5aa993b JM |
819 | {0, 0, 1, 1, 1, 1, 0, 0, |
820 | 0, 0, 0, 0, 1, 0, 0, 0, | |
821 | 0, 0, 0, 0, 0, 0, 0, 0, | |
822 | 0, 0, 0, 0, 0, 1, 1, 0 | |
823 | }; | |
c906108c | 824 | |
c5aa993b JM |
825 | static CORE_ADDR |
826 | add_offset_16 (CORE_ADDR pc, int offset) | |
c906108c | 827 | { |
c5aa993b JM |
828 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); |
829 | ||
c906108c SS |
830 | } |
831 | ||
832 | ||
833 | ||
c5aa993b | 834 | static struct upk_mips16 upk; |
c906108c | 835 | |
c5aa993b JM |
836 | CORE_ADDR |
837 | mips16_next_pc (CORE_ADDR pc) | |
c906108c | 838 | { |
c5aa993b JM |
839 | int op; |
840 | t_inst inst; | |
c906108c | 841 | /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ |
c5aa993b JM |
842 | inst = fetch_mips_16 (pc); |
843 | upk.inst = inst; | |
844 | op = mips16_op (upk.inst); | |
c906108c SS |
845 | if (map16[op]) |
846 | { | |
c5aa993b | 847 | int reg; |
c906108c SS |
848 | switch (op) |
849 | { | |
c5aa993b JM |
850 | case 2: /* Branch */ |
851 | upk.fmt = itype; | |
852 | unpack_mips16 (pc, &upk); | |
853 | { | |
854 | long offset; | |
855 | offset = upk.offset; | |
c906108c | 856 | if (offset & 0x800) |
c5aa993b JM |
857 | { |
858 | offset &= 0xeff; | |
859 | offset = -offset; | |
c906108c | 860 | } |
c5aa993b | 861 | pc += (offset << 1) + 2; |
c906108c | 862 | } |
c5aa993b JM |
863 | break; |
864 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ | |
865 | upk.fmt = jalxtype; | |
866 | unpack_mips16 (pc, &upk); | |
867 | pc = add_offset_16 (pc, upk.offset); | |
868 | if ((upk.inst >> 10) & 0x01) /* Exchange mode */ | |
869 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
870 | else | |
871 | pc |= 0x01; | |
872 | break; | |
873 | case 4: /* beqz */ | |
874 | upk.fmt = ritype; | |
875 | unpack_mips16 (pc, &upk); | |
876 | reg = read_register (upk.regx); | |
877 | if (reg == 0) | |
878 | pc += (upk.offset << 1) + 2; | |
879 | else | |
880 | pc += 2; | |
881 | break; | |
882 | case 5: /* bnez */ | |
883 | upk.fmt = ritype; | |
884 | unpack_mips16 (pc, &upk); | |
885 | reg = read_register (upk.regx); | |
886 | if (reg != 0) | |
887 | pc += (upk.offset << 1) + 2; | |
888 | else | |
889 | pc += 2; | |
890 | break; | |
891 | case 12: /* I8 Formats btez btnez */ | |
892 | upk.fmt = i8type; | |
893 | unpack_mips16 (pc, &upk); | |
894 | /* upk.regx contains the opcode */ | |
895 | reg = read_register (24); /* Test register is 24 */ | |
896 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
897 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
898 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
899 | pc += (upk.offset << 1) + 2; | |
900 | else | |
901 | pc += 2; | |
902 | break; | |
903 | case 29: /* RR Formats JR, JALR, JALR-RA */ | |
904 | upk.fmt = rrtype; | |
905 | op = upk.inst & 0x1f; | |
c906108c | 906 | if (op == 0) |
c5aa993b JM |
907 | { |
908 | upk.regx = (upk.inst >> 8) & 0x07; | |
909 | upk.regy = (upk.inst >> 5) & 0x07; | |
c906108c SS |
910 | switch (upk.regy) |
911 | { | |
c5aa993b JM |
912 | case 0: |
913 | reg = upk.regx; | |
914 | break; | |
915 | case 1: | |
916 | reg = 31; | |
917 | break; /* Function return instruction */ | |
918 | case 2: | |
919 | reg = upk.regx; | |
920 | break; | |
921 | default: | |
922 | reg = 31; | |
923 | break; /* BOGUS Guess */ | |
c906108c | 924 | } |
c5aa993b | 925 | pc = read_register (reg); |
c906108c | 926 | } |
c5aa993b JM |
927 | else |
928 | pc += 2; | |
929 | break; | |
930 | case 30: /* This is an extend instruction */ | |
931 | pc += 4; /* Dont be setting breakpints on the second half */ | |
932 | break; | |
933 | default: | |
934 | printf ("Filtered - next PC probably incorrrect due to jump inst\n"); | |
935 | pc += 2; | |
936 | break; | |
c906108c SS |
937 | } |
938 | } | |
c5aa993b JM |
939 | else |
940 | pc += 2; /* just a good old instruction */ | |
c906108c SS |
941 | /* See if we CAN actually break on the next instruction */ |
942 | /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ | |
c5aa993b JM |
943 | return pc; |
944 | } /* mips16_next_pc */ | |
c906108c SS |
945 | |
946 | /* The mips_next_pc function supports single_tep when the remote target monitor or | |
947 | stub is not developed enough to so a single_step. | |
948 | It works by decoding the current instruction and predicting where a branch | |
949 | will go. This isnt hard because all the data is available. | |
950 | The MIPS32 and MIPS16 variants are quite different | |
c5aa993b JM |
951 | */ |
952 | CORE_ADDR | |
953 | mips_next_pc (CORE_ADDR pc) | |
c906108c | 954 | { |
c5aa993b | 955 | t_inst inst; |
c906108c SS |
956 | /* inst = mips_fetch_instruction(pc) ; */ |
957 | /* if (pc_is_mips16) <----- This is failing */ | |
c5aa993b JM |
958 | if (pc & 0x01) |
959 | return mips16_next_pc (pc); | |
960 | else | |
961 | return mips32_next_pc (pc); | |
962 | } /* mips_next_pc */ | |
c906108c SS |
963 | |
964 | /* Guaranteed to set fci->saved_regs to some values (it never leaves it | |
965 | NULL). */ | |
966 | ||
967 | void | |
968 | mips_find_saved_regs (fci) | |
969 | struct frame_info *fci; | |
970 | { | |
971 | int ireg; | |
972 | CORE_ADDR reg_position; | |
973 | /* r0 bit means kernel trap */ | |
974 | int kernel_trap; | |
975 | /* What registers have been saved? Bitmasks. */ | |
976 | unsigned long gen_mask, float_mask; | |
977 | mips_extra_func_info_t proc_desc; | |
978 | t_inst inst; | |
979 | ||
980 | frame_saved_regs_zalloc (fci); | |
981 | ||
982 | /* If it is the frame for sigtramp, the saved registers are located | |
983 | in a sigcontext structure somewhere on the stack. | |
984 | If the stack layout for sigtramp changes we might have to change these | |
985 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
986 | #ifndef SIGFRAME_BASE | |
987 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
988 | above the sigtramp frame. */ | |
989 | #define SIGFRAME_BASE MIPS_REGSIZE | |
990 | /* FIXME! Are these correct?? */ | |
991 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
992 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
993 | #define SIGFRAME_FPREGSAVE_OFF \ | |
994 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
995 | #endif | |
996 | #ifndef SIGFRAME_REG_SIZE | |
997 | /* FIXME! Is this correct?? */ | |
998 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
999 | #endif | |
1000 | if (fci->signal_handler_caller) | |
1001 | { | |
1002 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1003 | { | |
c5aa993b JM |
1004 | reg_position = fci->frame + SIGFRAME_REGSAVE_OFF |
1005 | + ireg * SIGFRAME_REG_SIZE; | |
1006 | fci->saved_regs[ireg] = reg_position; | |
c906108c SS |
1007 | } |
1008 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1009 | { | |
c5aa993b JM |
1010 | reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF |
1011 | + ireg * SIGFRAME_REG_SIZE; | |
1012 | fci->saved_regs[FP0_REGNUM + ireg] = reg_position; | |
c906108c SS |
1013 | } |
1014 | fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; | |
1015 | return; | |
1016 | } | |
1017 | ||
cce74817 | 1018 | proc_desc = fci->extra_info->proc_desc; |
c906108c SS |
1019 | if (proc_desc == NULL) |
1020 | /* I'm not sure how/whether this can happen. Normally when we can't | |
1021 | find a proc_desc, we "synthesize" one using heuristic_proc_desc | |
1022 | and set the saved_regs right away. */ | |
1023 | return; | |
1024 | ||
c5aa993b JM |
1025 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; |
1026 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1027 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
c906108c | 1028 | |
c5aa993b JM |
1029 | if ( /* In any frame other than the innermost or a frame interrupted by |
1030 | a signal, we assume that all registers have been saved. | |
1031 | This assumes that all register saves in a function happen before | |
1032 | the first function call. */ | |
1033 | (fci->next == NULL || fci->next->signal_handler_caller) | |
c906108c | 1034 | |
c5aa993b JM |
1035 | /* In a dummy frame we know exactly where things are saved. */ |
1036 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
c906108c | 1037 | |
c5aa993b JM |
1038 | /* Don't bother unless we are inside a function prologue. Outside the |
1039 | prologue, we know where everything is. */ | |
c906108c | 1040 | |
c5aa993b | 1041 | && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) |
c906108c | 1042 | |
c5aa993b JM |
1043 | /* Not sure exactly what kernel_trap means, but if it means |
1044 | the kernel saves the registers without a prologue doing it, | |
1045 | we better not examine the prologue to see whether registers | |
1046 | have been saved yet. */ | |
1047 | && !kernel_trap) | |
c906108c SS |
1048 | { |
1049 | /* We need to figure out whether the registers that the proc_desc | |
c5aa993b | 1050 | claims are saved have been saved yet. */ |
c906108c SS |
1051 | |
1052 | CORE_ADDR addr; | |
1053 | ||
1054 | /* Bitmasks; set if we have found a save for the register. */ | |
1055 | unsigned long gen_save_found = 0; | |
1056 | unsigned long float_save_found = 0; | |
1057 | int instlen; | |
1058 | ||
1059 | /* If the address is odd, assume this is MIPS16 code. */ | |
1060 | addr = PROC_LOW_ADDR (proc_desc); | |
1061 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; | |
1062 | ||
1063 | /* Scan through this function's instructions preceding the current | |
1064 | PC, and look for those that save registers. */ | |
1065 | while (addr < fci->pc) | |
1066 | { | |
1067 | inst = mips_fetch_instruction (addr); | |
1068 | if (pc_is_mips16 (addr)) | |
1069 | mips16_decode_reg_save (inst, &gen_save_found); | |
1070 | else | |
1071 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
1072 | addr += instlen; | |
1073 | } | |
1074 | gen_mask = gen_save_found; | |
1075 | float_mask = float_save_found; | |
1076 | } | |
1077 | ||
1078 | /* Fill in the offsets for the registers which gen_mask says | |
1079 | were saved. */ | |
1080 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
c5aa993b | 1081 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) |
c906108c SS |
1082 | if (gen_mask & 0x80000000) |
1083 | { | |
1084 | fci->saved_regs[ireg] = reg_position; | |
7a292a7a | 1085 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1086 | } |
1087 | ||
1088 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order | |
1089 | of that normally used by gcc. Therefore, we have to fetch the first | |
1090 | instruction of the function, and if it's an entry instruction that | |
1091 | saves $s0 or $s1, correct their saved addresses. */ | |
1092 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
1093 | { | |
1094 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
c5aa993b | 1095 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
c906108c SS |
1096 | { |
1097 | int reg; | |
1098 | int sreg_count = (inst >> 6) & 3; | |
c5aa993b | 1099 | |
c906108c SS |
1100 | /* Check if the ra register was pushed on the stack. */ |
1101 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
1102 | if (inst & 0x20) | |
7a292a7a | 1103 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1104 | |
1105 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
c5aa993b | 1106 | for (reg = 16; reg < sreg_count + 16; reg++) |
c906108c SS |
1107 | { |
1108 | fci->saved_regs[reg] = reg_position; | |
7a292a7a | 1109 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1110 | } |
1111 | } | |
1112 | } | |
1113 | ||
1114 | /* Fill in the offsets for the registers which float_mask says | |
1115 | were saved. */ | |
1116 | reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); | |
1117 | ||
1118 | /* The freg_offset points to where the first *double* register | |
1119 | is saved. So skip to the high-order word. */ | |
c5aa993b | 1120 | if (!GDB_TARGET_IS_MIPS64) |
7a292a7a | 1121 | reg_position += MIPS_SAVED_REGSIZE; |
c906108c SS |
1122 | |
1123 | /* Fill in the offsets for the float registers which float_mask says | |
1124 | were saved. */ | |
c5aa993b | 1125 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) |
c906108c SS |
1126 | if (float_mask & 0x80000000) |
1127 | { | |
c5aa993b | 1128 | fci->saved_regs[FP0_REGNUM + ireg] = reg_position; |
7a292a7a | 1129 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1130 | } |
1131 | ||
1132 | fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM]; | |
1133 | } | |
1134 | ||
1135 | static CORE_ADDR | |
c5aa993b | 1136 | read_next_frame_reg (fi, regno) |
c906108c SS |
1137 | struct frame_info *fi; |
1138 | int regno; | |
1139 | { | |
1140 | for (; fi; fi = fi->next) | |
1141 | { | |
1142 | /* We have to get the saved sp from the sigcontext | |
c5aa993b | 1143 | if it is a signal handler frame. */ |
c906108c SS |
1144 | if (regno == SP_REGNUM && !fi->signal_handler_caller) |
1145 | return fi->frame; | |
1146 | else | |
1147 | { | |
1148 | if (fi->saved_regs == NULL) | |
1149 | mips_find_saved_regs (fi); | |
1150 | if (fi->saved_regs[regno]) | |
c5aa993b | 1151 | return read_memory_integer (fi->saved_regs[regno], MIPS_SAVED_REGSIZE); |
c906108c SS |
1152 | } |
1153 | } | |
1154 | return read_register (regno); | |
1155 | } | |
1156 | ||
1157 | /* mips_addr_bits_remove - remove useless address bits */ | |
1158 | ||
1159 | CORE_ADDR | |
1160 | mips_addr_bits_remove (addr) | |
c5aa993b | 1161 | CORE_ADDR addr; |
c906108c SS |
1162 | { |
1163 | #if GDB_TARGET_IS_MIPS64 | |
c5aa993b | 1164 | if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff)) |
c906108c SS |
1165 | { |
1166 | /* This hack is a work-around for existing boards using PMON, | |
c5aa993b JM |
1167 | the simulator, and any other 64-bit targets that doesn't have |
1168 | true 64-bit addressing. On these targets, the upper 32 bits | |
1169 | of addresses are ignored by the hardware. Thus, the PC or SP | |
1170 | are likely to have been sign extended to all 1s by instruction | |
1171 | sequences that load 32-bit addresses. For example, a typical | |
1172 | piece of code that loads an address is this: | |
1173 | lui $r2, <upper 16 bits> | |
1174 | ori $r2, <lower 16 bits> | |
1175 | But the lui sign-extends the value such that the upper 32 bits | |
1176 | may be all 1s. The workaround is simply to mask off these bits. | |
1177 | In the future, gcc may be changed to support true 64-bit | |
1178 | addressing, and this masking will have to be disabled. */ | |
1179 | addr &= (CORE_ADDR) 0xffffffff; | |
c906108c SS |
1180 | } |
1181 | #else | |
1182 | /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), | |
1183 | BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. | |
1184 | So we still have to mask off useless bits from addresses. */ | |
c5aa993b | 1185 | addr &= (CORE_ADDR) 0xffffffff; |
c906108c SS |
1186 | #endif |
1187 | ||
1188 | return addr; | |
1189 | } | |
1190 | ||
1191 | void | |
1192 | mips_init_frame_pc_first (fromleaf, prev) | |
1193 | int fromleaf; | |
1194 | struct frame_info *prev; | |
1195 | { | |
1196 | CORE_ADDR pc, tmp; | |
1197 | ||
1198 | pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : | |
c5aa993b | 1199 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); |
c906108c | 1200 | tmp = mips_skip_stub (pc); |
c5aa993b | 1201 | prev->pc = tmp ? tmp : pc; |
c906108c SS |
1202 | } |
1203 | ||
1204 | ||
1205 | CORE_ADDR | |
c5aa993b | 1206 | mips_frame_saved_pc (frame) |
c906108c SS |
1207 | struct frame_info *frame; |
1208 | { | |
1209 | CORE_ADDR saved_pc; | |
cce74817 | 1210 | mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc; |
c906108c SS |
1211 | /* We have to get the saved pc from the sigcontext |
1212 | if it is a signal handler frame. */ | |
1213 | int pcreg = frame->signal_handler_caller ? PC_REGNUM | |
c5aa993b | 1214 | : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM); |
c906108c | 1215 | |
c5aa993b | 1216 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) |
7a292a7a | 1217 | saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE); |
c906108c | 1218 | else |
7a292a7a | 1219 | saved_pc = read_next_frame_reg (frame, pcreg); |
c906108c SS |
1220 | |
1221 | return ADDR_BITS_REMOVE (saved_pc); | |
1222 | } | |
1223 | ||
1224 | static struct mips_extra_func_info temp_proc_desc; | |
cce74817 | 1225 | static CORE_ADDR temp_saved_regs[NUM_REGS]; |
c906108c SS |
1226 | |
1227 | /* Set a register's saved stack address in temp_saved_regs. If an address | |
1228 | has already been set for this register, do nothing; this way we will | |
1229 | only recognize the first save of a given register in a function prologue. | |
1230 | This is a helper function for mips{16,32}_heuristic_proc_desc. */ | |
1231 | ||
1232 | static void | |
1233 | set_reg_offset (regno, offset) | |
1234 | int regno; | |
1235 | CORE_ADDR offset; | |
1236 | { | |
cce74817 JM |
1237 | if (temp_saved_regs[regno] == 0) |
1238 | temp_saved_regs[regno] = offset; | |
c906108c SS |
1239 | } |
1240 | ||
1241 | ||
1242 | /* Test whether the PC points to the return instruction at the | |
1243 | end of a function. */ | |
1244 | ||
c5aa993b | 1245 | static int |
c906108c SS |
1246 | mips_about_to_return (pc) |
1247 | CORE_ADDR pc; | |
1248 | { | |
1249 | if (pc_is_mips16 (pc)) | |
1250 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
1251 | generates a "jr $ra"; other times it generates code to load | |
1252 | the return address from the stack to an accessible register (such | |
1253 | as $a3), then a "jr" using that register. This second case | |
1254 | is almost impossible to distinguish from an indirect jump | |
1255 | used for switch statements, so we don't even try. */ | |
1256 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
1257 | else | |
1258 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
1259 | } | |
1260 | ||
1261 | ||
1262 | /* This fencepost looks highly suspicious to me. Removing it also | |
1263 | seems suspicious as it could affect remote debugging across serial | |
1264 | lines. */ | |
1265 | ||
1266 | static CORE_ADDR | |
1267 | heuristic_proc_start (pc) | |
c5aa993b | 1268 | CORE_ADDR pc; |
c906108c | 1269 | { |
c5aa993b JM |
1270 | CORE_ADDR start_pc; |
1271 | CORE_ADDR fence; | |
1272 | int instlen; | |
1273 | int seen_adjsp = 0; | |
c906108c | 1274 | |
c5aa993b JM |
1275 | pc = ADDR_BITS_REMOVE (pc); |
1276 | start_pc = pc; | |
1277 | fence = start_pc - heuristic_fence_post; | |
1278 | if (start_pc == 0) | |
1279 | return 0; | |
c906108c | 1280 | |
c5aa993b JM |
1281 | if (heuristic_fence_post == UINT_MAX |
1282 | || fence < VM_MIN_ADDRESS) | |
1283 | fence = VM_MIN_ADDRESS; | |
c906108c | 1284 | |
c5aa993b | 1285 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
c906108c | 1286 | |
c5aa993b JM |
1287 | /* search back for previous return */ |
1288 | for (start_pc -= instlen;; start_pc -= instlen) | |
1289 | if (start_pc < fence) | |
1290 | { | |
1291 | /* It's not clear to me why we reach this point when | |
1292 | stop_soon_quietly, but with this test, at least we | |
1293 | don't print out warnings for every child forked (eg, on | |
1294 | decstation). 22apr93 [email protected]. */ | |
1295 | if (!stop_soon_quietly) | |
c906108c | 1296 | { |
c5aa993b JM |
1297 | static int blurb_printed = 0; |
1298 | ||
1299 | warning ("Warning: GDB can't find the start of the function at 0x%s.", | |
1300 | paddr_nz (pc)); | |
1301 | ||
1302 | if (!blurb_printed) | |
c906108c | 1303 | { |
c5aa993b JM |
1304 | /* This actually happens frequently in embedded |
1305 | development, when you first connect to a board | |
1306 | and your stack pointer and pc are nowhere in | |
1307 | particular. This message needs to give people | |
1308 | in that situation enough information to | |
1309 | determine that it's no big deal. */ | |
1310 | printf_filtered ("\n\ | |
cd0fc7c3 SS |
1311 | GDB is unable to find the start of the function at 0x%s\n\ |
1312 | and thus can't determine the size of that function's stack frame.\n\ | |
1313 | This means that GDB may be unable to access that stack frame, or\n\ | |
1314 | the frames below it.\n\ | |
1315 | This problem is most likely caused by an invalid program counter or\n\ | |
1316 | stack pointer.\n\ | |
1317 | However, if you think GDB should simply search farther back\n\ | |
1318 | from 0x%s for code which looks like the beginning of a\n\ | |
1319 | function, you can increase the range of the search using the `set\n\ | |
1320 | heuristic-fence-post' command.\n", | |
c5aa993b JM |
1321 | paddr_nz (pc), paddr_nz (pc)); |
1322 | blurb_printed = 1; | |
c906108c | 1323 | } |
c906108c SS |
1324 | } |
1325 | ||
c5aa993b JM |
1326 | return 0; |
1327 | } | |
1328 | else if (pc_is_mips16 (start_pc)) | |
1329 | { | |
1330 | unsigned short inst; | |
1331 | ||
1332 | /* On MIPS16, any one of the following is likely to be the | |
1333 | start of a function: | |
1334 | entry | |
1335 | addiu sp,-n | |
1336 | daddiu sp,-n | |
1337 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
1338 | inst = mips_fetch_instruction (start_pc); | |
1339 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
1340 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1341 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1342 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1343 | break; | |
1344 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1345 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1346 | seen_adjsp = 1; | |
1347 | else | |
1348 | seen_adjsp = 0; | |
1349 | } | |
1350 | else if (mips_about_to_return (start_pc)) | |
1351 | { | |
1352 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
1353 | break; | |
1354 | } | |
1355 | ||
c906108c | 1356 | #if 0 |
c5aa993b JM |
1357 | /* skip nops (usually 1) 0 - is this */ |
1358 | while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) | |
1359 | start_pc += MIPS_INSTLEN; | |
c906108c | 1360 | #endif |
c5aa993b | 1361 | return start_pc; |
c906108c SS |
1362 | } |
1363 | ||
1364 | /* Fetch the immediate value from a MIPS16 instruction. | |
1365 | If the previous instruction was an EXTEND, use it to extend | |
1366 | the upper bits of the immediate value. This is a helper function | |
1367 | for mips16_heuristic_proc_desc. */ | |
1368 | ||
1369 | static int | |
1370 | mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) | |
c5aa993b JM |
1371 | unsigned short prev_inst; /* previous instruction */ |
1372 | unsigned short inst; /* current instruction */ | |
1373 | int nbits; /* number of bits in imm field */ | |
1374 | int scale; /* scale factor to be applied to imm */ | |
1375 | int is_signed; /* is the imm field signed? */ | |
c906108c SS |
1376 | { |
1377 | int offset; | |
1378 | ||
1379 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1380 | { | |
1381 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
c5aa993b | 1382 | if (offset & 0x8000) /* check for negative extend */ |
c906108c SS |
1383 | offset = 0 - (0x10000 - (offset & 0xffff)); |
1384 | return offset | (inst & 0x1f); | |
1385 | } | |
1386 | else | |
1387 | { | |
1388 | int max_imm = 1 << nbits; | |
1389 | int mask = max_imm - 1; | |
1390 | int sign_bit = max_imm >> 1; | |
1391 | ||
1392 | offset = inst & mask; | |
1393 | if (is_signed && (offset & sign_bit)) | |
1394 | offset = 0 - (max_imm - offset); | |
1395 | return offset * scale; | |
1396 | } | |
1397 | } | |
1398 | ||
1399 | ||
1400 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
1401 | stream from start_pc to limit_pc. */ | |
1402 | ||
1403 | static void | |
c5aa993b JM |
1404 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp) |
1405 | CORE_ADDR start_pc, limit_pc; | |
1406 | struct frame_info *next_frame; | |
1407 | CORE_ADDR sp; | |
c906108c SS |
1408 | { |
1409 | CORE_ADDR cur_pc; | |
1410 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
1411 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
1412 | unsigned inst = 0; /* current instruction */ | |
1413 | unsigned entry_inst = 0; /* the entry instruction */ | |
1414 | int reg, offset; | |
1415 | ||
c5aa993b JM |
1416 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */ |
1417 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
c906108c SS |
1418 | |
1419 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) | |
1420 | { | |
1421 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
1422 | the immediate offset extension from it in mips16_get_imm. */ | |
1423 | prev_inst = inst; | |
1424 | ||
1425 | /* Fetch and decode the instruction. */ | |
1426 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
c5aa993b | 1427 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
c906108c SS |
1428 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ |
1429 | { | |
1430 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
c5aa993b JM |
1431 | if (offset < 0) /* negative stack adjustment? */ |
1432 | PROC_FRAME_OFFSET (&temp_proc_desc) -= offset; | |
c906108c SS |
1433 | else |
1434 | /* Exit loop if a positive stack adjustment is found, which | |
1435 | usually means that the stack cleanup code in the function | |
1436 | epilogue is reached. */ | |
1437 | break; | |
1438 | } | |
1439 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
1440 | { | |
1441 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1442 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
c5aa993b | 1443 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
c906108c SS |
1444 | set_reg_offset (reg, sp + offset); |
1445 | } | |
1446 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
1447 | { | |
1448 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1449 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1450 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
c906108c SS |
1451 | set_reg_offset (reg, sp + offset); |
1452 | } | |
1453 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
1454 | { | |
1455 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
c5aa993b | 1456 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
c906108c SS |
1457 | set_reg_offset (RA_REGNUM, sp + offset); |
1458 | } | |
1459 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
1460 | { | |
1461 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
c5aa993b | 1462 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
c906108c SS |
1463 | set_reg_offset (RA_REGNUM, sp + offset); |
1464 | } | |
c5aa993b | 1465 | else if (inst == 0x673d) /* move $s1, $sp */ |
c906108c SS |
1466 | { |
1467 | frame_addr = sp; | |
1468 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
1469 | } | |
1470 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
1471 | { | |
1472 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1473 | frame_addr = sp + offset; | |
1474 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
1475 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; | |
1476 | } | |
1477 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
1478 | { | |
1479 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
1480 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1481 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1482 | set_reg_offset (reg, frame_addr + offset); |
1483 | } | |
1484 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
1485 | { | |
1486 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1487 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1488 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1489 | set_reg_offset (reg, frame_addr + offset); |
1490 | } | |
c5aa993b JM |
1491 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
1492 | entry_inst = inst; /* save for later processing */ | |
c906108c | 1493 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
c5aa993b | 1494 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ |
c906108c SS |
1495 | } |
1496 | ||
c5aa993b JM |
1497 | /* The entry instruction is typically the first instruction in a function, |
1498 | and it stores registers at offsets relative to the value of the old SP | |
1499 | (before the prologue). But the value of the sp parameter to this | |
1500 | function is the new SP (after the prologue has been executed). So we | |
1501 | can't calculate those offsets until we've seen the entire prologue, | |
1502 | and can calculate what the old SP must have been. */ | |
1503 | if (entry_inst != 0) | |
1504 | { | |
1505 | int areg_count = (entry_inst >> 8) & 7; | |
1506 | int sreg_count = (entry_inst >> 6) & 3; | |
c906108c | 1507 | |
c5aa993b JM |
1508 | /* The entry instruction always subtracts 32 from the SP. */ |
1509 | PROC_FRAME_OFFSET (&temp_proc_desc) += 32; | |
c906108c | 1510 | |
c5aa993b JM |
1511 | /* Now we can calculate what the SP must have been at the |
1512 | start of the function prologue. */ | |
1513 | sp += PROC_FRAME_OFFSET (&temp_proc_desc); | |
c906108c | 1514 | |
c5aa993b JM |
1515 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
1516 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
1517 | { | |
1518 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
1519 | set_reg_offset (reg, sp + offset); | |
1520 | offset += MIPS_SAVED_REGSIZE; | |
1521 | } | |
c906108c | 1522 | |
c5aa993b JM |
1523 | /* Check if the ra register was pushed on the stack. */ |
1524 | offset = -4; | |
1525 | if (entry_inst & 0x20) | |
1526 | { | |
1527 | PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM; | |
1528 | set_reg_offset (RA_REGNUM, sp + offset); | |
1529 | offset -= MIPS_SAVED_REGSIZE; | |
1530 | } | |
c906108c | 1531 | |
c5aa993b JM |
1532 | /* Check if the s0 and s1 registers were pushed on the stack. */ |
1533 | for (reg = 16; reg < sreg_count + 16; reg++) | |
1534 | { | |
1535 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
1536 | set_reg_offset (reg, sp + offset); | |
1537 | offset -= MIPS_SAVED_REGSIZE; | |
1538 | } | |
1539 | } | |
c906108c SS |
1540 | } |
1541 | ||
1542 | static void | |
c5aa993b JM |
1543 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp) |
1544 | CORE_ADDR start_pc, limit_pc; | |
1545 | struct frame_info *next_frame; | |
1546 | CORE_ADDR sp; | |
c906108c SS |
1547 | { |
1548 | CORE_ADDR cur_pc; | |
c5aa993b | 1549 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ |
c906108c | 1550 | restart: |
cce74817 | 1551 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c5aa993b | 1552 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; |
c906108c SS |
1553 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
1554 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
1555 | { | |
1556 | unsigned long inst, high_word, low_word; | |
1557 | int reg; | |
1558 | ||
1559 | /* Fetch the instruction. */ | |
1560 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
1561 | ||
1562 | /* Save some code by pre-extracting some useful fields. */ | |
1563 | high_word = (inst >> 16) & 0xffff; | |
1564 | low_word = inst & 0xffff; | |
1565 | reg = high_word & 0x1f; | |
1566 | ||
c5aa993b | 1567 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ |
c906108c SS |
1568 | || high_word == 0x23bd /* addi $sp,$sp,-i */ |
1569 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
1570 | { | |
1571 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
c5aa993b | 1572 | PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word; |
c906108c SS |
1573 | else |
1574 | /* Exit loop if a positive stack adjustment is found, which | |
1575 | usually means that the stack cleanup code in the function | |
1576 | epilogue is reached. */ | |
1577 | break; | |
1578 | } | |
1579 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
1580 | { | |
c5aa993b | 1581 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1582 | set_reg_offset (reg, sp + low_word); |
1583 | } | |
1584 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
1585 | { | |
1586 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
1587 | but the register size used is only 32 bits. Make the address | |
1588 | for the saved register point to the lower 32 bits. */ | |
c5aa993b | 1589 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1590 | set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); |
1591 | } | |
c5aa993b | 1592 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
c906108c SS |
1593 | { |
1594 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
c5aa993b JM |
1595 | if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc)) |
1596 | frame_addr = sp + low_word; | |
c906108c SS |
1597 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) |
1598 | { | |
1599 | unsigned alloca_adjust; | |
1600 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
1601 | frame_addr = read_next_frame_reg (next_frame, 30); |
1602 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); | |
c906108c SS |
1603 | if (alloca_adjust > 0) |
1604 | { | |
1605 | /* FP > SP + frame_size. This may be because | |
1606 | * of an alloca or somethings similar. | |
1607 | * Fix sp to "pre-alloca" value, and try again. | |
1608 | */ | |
1609 | sp += alloca_adjust; | |
1610 | goto restart; | |
1611 | } | |
1612 | } | |
1613 | } | |
c5aa993b JM |
1614 | /* move $30,$sp. With different versions of gas this will be either |
1615 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
1616 | Accept any one of these. */ | |
c906108c SS |
1617 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) |
1618 | { | |
1619 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
1620 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1621 | { | |
1622 | unsigned alloca_adjust; | |
1623 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
1624 | frame_addr = read_next_frame_reg (next_frame, 30); |
1625 | alloca_adjust = (unsigned) (frame_addr - sp); | |
c906108c SS |
1626 | if (alloca_adjust > 0) |
1627 | { | |
1628 | /* FP > SP + frame_size. This may be because | |
1629 | * of an alloca or somethings similar. | |
1630 | * Fix sp to "pre-alloca" value, and try again. | |
1631 | */ | |
1632 | sp += alloca_adjust; | |
1633 | goto restart; | |
1634 | } | |
1635 | } | |
1636 | } | |
c5aa993b | 1637 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
c906108c | 1638 | { |
c5aa993b | 1639 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1640 | set_reg_offset (reg, frame_addr + low_word); |
1641 | } | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | static mips_extra_func_info_t | |
c5aa993b JM |
1646 | heuristic_proc_desc (start_pc, limit_pc, next_frame) |
1647 | CORE_ADDR start_pc, limit_pc; | |
1648 | struct frame_info *next_frame; | |
c906108c SS |
1649 | { |
1650 | CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
1651 | ||
c5aa993b JM |
1652 | if (start_pc == 0) |
1653 | return NULL; | |
1654 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); | |
cce74817 | 1655 | memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
1656 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; |
1657 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
1658 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
1659 | ||
1660 | if (start_pc + 200 < limit_pc) | |
1661 | limit_pc = start_pc + 200; | |
1662 | if (pc_is_mips16 (start_pc)) | |
1663 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1664 | else | |
1665 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1666 | return &temp_proc_desc; | |
1667 | } | |
1668 | ||
1669 | static mips_extra_func_info_t | |
1670 | non_heuristic_proc_desc (pc, addrptr) | |
1671 | CORE_ADDR pc; | |
1672 | CORE_ADDR *addrptr; | |
1673 | { | |
1674 | CORE_ADDR startaddr; | |
1675 | mips_extra_func_info_t proc_desc; | |
c5aa993b | 1676 | struct block *b = block_for_pc (pc); |
c906108c SS |
1677 | struct symbol *sym; |
1678 | ||
1679 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
1680 | if (addrptr) | |
1681 | *addrptr = startaddr; | |
1682 | if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) | |
1683 | sym = NULL; | |
1684 | else | |
1685 | { | |
1686 | if (startaddr > BLOCK_START (b)) | |
1687 | /* This is the "pathological" case referred to in a comment in | |
1688 | print_frame_info. It might be better to move this check into | |
1689 | symbol reading. */ | |
1690 | sym = NULL; | |
1691 | else | |
1692 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); | |
1693 | } | |
1694 | ||
1695 | /* If we never found a PDR for this function in symbol reading, then | |
1696 | examine prologues to find the information. */ | |
1697 | if (sym) | |
1698 | { | |
1699 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
1700 | if (PROC_FRAME_REG (proc_desc) == -1) | |
1701 | return NULL; | |
1702 | else | |
1703 | return proc_desc; | |
1704 | } | |
1705 | else | |
1706 | return NULL; | |
1707 | } | |
1708 | ||
1709 | ||
1710 | static mips_extra_func_info_t | |
1711 | find_proc_desc (pc, next_frame) | |
1712 | CORE_ADDR pc; | |
1713 | struct frame_info *next_frame; | |
1714 | { | |
1715 | mips_extra_func_info_t proc_desc; | |
1716 | CORE_ADDR startaddr; | |
1717 | ||
1718 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
1719 | ||
1720 | if (proc_desc) | |
1721 | { | |
1722 | /* IF this is the topmost frame AND | |
1723 | * (this proc does not have debugging information OR | |
1724 | * the PC is in the procedure prologue) | |
1725 | * THEN create a "heuristic" proc_desc (by analyzing | |
1726 | * the actual code) to replace the "official" proc_desc. | |
1727 | */ | |
1728 | if (next_frame == NULL) | |
1729 | { | |
1730 | struct symtab_and_line val; | |
1731 | struct symbol *proc_symbol = | |
c5aa993b | 1732 | PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc); |
c906108c SS |
1733 | |
1734 | if (proc_symbol) | |
1735 | { | |
1736 | val = find_pc_line (BLOCK_START | |
c5aa993b | 1737 | (SYMBOL_BLOCK_VALUE (proc_symbol)), |
c906108c SS |
1738 | 0); |
1739 | val.pc = val.end ? val.end : pc; | |
1740 | } | |
1741 | if (!proc_symbol || pc < val.pc) | |
1742 | { | |
1743 | mips_extra_func_info_t found_heuristic = | |
c5aa993b JM |
1744 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), |
1745 | pc, next_frame); | |
c906108c SS |
1746 | if (found_heuristic) |
1747 | proc_desc = found_heuristic; | |
1748 | } | |
1749 | } | |
1750 | } | |
1751 | else | |
1752 | { | |
1753 | /* Is linked_proc_desc_table really necessary? It only seems to be used | |
c5aa993b JM |
1754 | by procedure call dummys. However, the procedures being called ought |
1755 | to have their own proc_descs, and even if they don't, | |
1756 | heuristic_proc_desc knows how to create them! */ | |
c906108c SS |
1757 | |
1758 | register struct linked_proc_info *link; | |
1759 | ||
1760 | for (link = linked_proc_desc_table; link; link = link->next) | |
c5aa993b JM |
1761 | if (PROC_LOW_ADDR (&link->info) <= pc |
1762 | && PROC_HIGH_ADDR (&link->info) > pc) | |
c906108c SS |
1763 | return &link->info; |
1764 | ||
1765 | if (startaddr == 0) | |
1766 | startaddr = heuristic_proc_start (pc); | |
1767 | ||
1768 | proc_desc = | |
1769 | heuristic_proc_desc (startaddr, pc, next_frame); | |
1770 | } | |
1771 | return proc_desc; | |
1772 | } | |
1773 | ||
1774 | static CORE_ADDR | |
c5aa993b JM |
1775 | get_frame_pointer (frame, proc_desc) |
1776 | struct frame_info *frame; | |
1777 | mips_extra_func_info_t proc_desc; | |
c906108c SS |
1778 | { |
1779 | return ADDR_BITS_REMOVE ( | |
c5aa993b JM |
1780 | read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + |
1781 | PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
c906108c SS |
1782 | } |
1783 | ||
1784 | mips_extra_func_info_t cached_proc_desc; | |
1785 | ||
1786 | CORE_ADDR | |
c5aa993b JM |
1787 | mips_frame_chain (frame) |
1788 | struct frame_info *frame; | |
c906108c SS |
1789 | { |
1790 | mips_extra_func_info_t proc_desc; | |
1791 | CORE_ADDR tmp; | |
c5aa993b | 1792 | CORE_ADDR saved_pc = FRAME_SAVED_PC (frame); |
c906108c SS |
1793 | |
1794 | if (saved_pc == 0 || inside_entry_file (saved_pc)) | |
1795 | return 0; | |
1796 | ||
1797 | /* Check if the PC is inside a call stub. If it is, fetch the | |
1798 | PC of the caller of that stub. */ | |
1799 | if ((tmp = mips_skip_stub (saved_pc)) != 0) | |
1800 | saved_pc = tmp; | |
1801 | ||
1802 | /* Look up the procedure descriptor for this PC. */ | |
c5aa993b | 1803 | proc_desc = find_proc_desc (saved_pc, frame); |
c906108c SS |
1804 | if (!proc_desc) |
1805 | return 0; | |
1806 | ||
1807 | cached_proc_desc = proc_desc; | |
1808 | ||
1809 | /* If no frame pointer and frame size is zero, we must be at end | |
1810 | of stack (or otherwise hosed). If we don't check frame size, | |
1811 | we loop forever if we see a zero size frame. */ | |
1812 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
1813 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
c5aa993b JM |
1814 | /* The previous frame from a sigtramp frame might be frameless |
1815 | and have frame size zero. */ | |
c906108c SS |
1816 | && !frame->signal_handler_caller) |
1817 | return 0; | |
1818 | else | |
1819 | return get_frame_pointer (frame, proc_desc); | |
1820 | } | |
1821 | ||
1822 | void | |
c5aa993b | 1823 | mips_init_extra_frame_info (fromleaf, fci) |
cce74817 | 1824 | int fromleaf; |
c906108c SS |
1825 | struct frame_info *fci; |
1826 | { | |
1827 | int regnum; | |
1828 | ||
1829 | /* Use proc_desc calculated in frame_chain */ | |
1830 | mips_extra_func_info_t proc_desc = | |
c5aa993b | 1831 | fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next); |
c906108c | 1832 | |
cce74817 JM |
1833 | fci->extra_info = (struct frame_extra_info *) |
1834 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1835 | ||
c906108c | 1836 | fci->saved_regs = NULL; |
cce74817 | 1837 | fci->extra_info->proc_desc = |
c906108c SS |
1838 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
1839 | if (proc_desc) | |
1840 | { | |
1841 | /* Fixup frame-pointer - only needed for top frame */ | |
1842 | /* This may not be quite right, if proc has a real frame register. | |
c5aa993b JM |
1843 | Get the value of the frame relative sp, procedure might have been |
1844 | interrupted by a signal at it's very start. */ | |
c906108c SS |
1845 | if (fci->pc == PROC_LOW_ADDR (proc_desc) |
1846 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
1847 | fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); | |
1848 | else | |
1849 | fci->frame = get_frame_pointer (fci->next, proc_desc); | |
1850 | ||
1851 | if (proc_desc == &temp_proc_desc) | |
1852 | { | |
1853 | char *name; | |
1854 | ||
1855 | /* Do not set the saved registers for a sigtramp frame, | |
1856 | mips_find_saved_registers will do that for us. | |
1857 | We can't use fci->signal_handler_caller, it is not yet set. */ | |
1858 | find_pc_partial_function (fci->pc, &name, | |
c5aa993b | 1859 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
1860 | if (!IN_SIGTRAMP (fci->pc, name)) |
1861 | { | |
c5aa993b | 1862 | frame_saved_regs_zalloc (fci); |
cce74817 | 1863 | memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
1864 | fci->saved_regs[PC_REGNUM] |
1865 | = fci->saved_regs[RA_REGNUM]; | |
1866 | } | |
1867 | } | |
1868 | ||
1869 | /* hack: if argument regs are saved, guess these contain args */ | |
cce74817 JM |
1870 | /* assume we can't tell how many args for now */ |
1871 | fci->extra_info->num_args = -1; | |
c906108c SS |
1872 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) |
1873 | { | |
c5aa993b | 1874 | if (PROC_REG_MASK (proc_desc) & (1 << regnum)) |
c906108c | 1875 | { |
cce74817 | 1876 | fci->extra_info->num_args = regnum - A0_REGNUM + 1; |
c906108c SS |
1877 | break; |
1878 | } | |
c5aa993b | 1879 | } |
c906108c SS |
1880 | } |
1881 | } | |
1882 | ||
1883 | /* MIPS stack frames are almost impenetrable. When execution stops, | |
1884 | we basically have to look at symbol information for the function | |
1885 | that we stopped in, which tells us *which* register (if any) is | |
1886 | the base of the frame pointer, and what offset from that register | |
1887 | the frame itself is at. | |
1888 | ||
1889 | This presents a problem when trying to examine a stack in memory | |
1890 | (that isn't executing at the moment), using the "frame" command. We | |
1891 | don't have a PC, nor do we have any registers except SP. | |
1892 | ||
1893 | This routine takes two arguments, SP and PC, and tries to make the | |
1894 | cached frames look as if these two arguments defined a frame on the | |
1895 | cache. This allows the rest of info frame to extract the important | |
1896 | arguments without difficulty. */ | |
1897 | ||
1898 | struct frame_info * | |
1899 | setup_arbitrary_frame (argc, argv) | |
1900 | int argc; | |
1901 | CORE_ADDR *argv; | |
1902 | { | |
1903 | if (argc != 2) | |
1904 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
1905 | ||
1906 | return create_new_frame (argv[0], argv[1]); | |
1907 | } | |
1908 | ||
1909 | /* | |
1910 | * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack? | |
1911 | * | |
1912 | * For n32 ABI, eight. | |
1913 | * For all others, he same as the size of a general register. | |
1914 | */ | |
1915 | #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32 | |
1916 | #define MIPS_NABI32 1 | |
1917 | #define STACK_ARGSIZE 8 | |
1918 | #else | |
1919 | #define MIPS_NABI32 0 | |
7a292a7a | 1920 | #define STACK_ARGSIZE MIPS_SAVED_REGSIZE |
c906108c SS |
1921 | #endif |
1922 | ||
1923 | CORE_ADDR | |
c5aa993b | 1924 | mips_push_arguments (nargs, args, sp, struct_return, struct_addr) |
c906108c SS |
1925 | int nargs; |
1926 | value_ptr *args; | |
1927 | CORE_ADDR sp; | |
1928 | int struct_return; | |
1929 | CORE_ADDR struct_addr; | |
1930 | { | |
1931 | int argreg; | |
1932 | int float_argreg; | |
1933 | int argnum; | |
1934 | int len = 0; | |
1935 | int stack_offset = 0; | |
1936 | ||
1937 | /* Macros to round N up or down to the next A boundary; A must be | |
1938 | a power of two. */ | |
1939 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
1940 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
c5aa993b | 1941 | |
c906108c SS |
1942 | /* First ensure that the stack and structure return address (if any) |
1943 | are properly aligned. The stack has to be at least 64-bit aligned | |
1944 | even on 32-bit machines, because doubles must be 64-bit aligned. | |
1945 | On at least one MIPS variant, stack frames need to be 128-bit | |
1946 | aligned, so we round to this widest known alignment. */ | |
1947 | sp = ROUND_DOWN (sp, 16); | |
7a292a7a | 1948 | struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE); |
c5aa993b | 1949 | |
c906108c SS |
1950 | /* Now make space on the stack for the args. We allocate more |
1951 | than necessary for EABI, because the first few arguments are | |
1952 | passed in registers, but that's OK. */ | |
1953 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1954 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE); |
c906108c SS |
1955 | sp -= ROUND_UP (len, 16); |
1956 | ||
1957 | /* Initialize the integer and float register pointers. */ | |
1958 | argreg = A0_REGNUM; | |
1959 | float_argreg = FPA0_REGNUM; | |
1960 | ||
1961 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
1962 | if (struct_return) | |
c5aa993b | 1963 | write_register (argreg++, struct_addr); |
c906108c SS |
1964 | |
1965 | /* Now load as many as possible of the first arguments into | |
1966 | registers, and push the rest onto the stack. Loop thru args | |
1967 | from first to last. */ | |
1968 | for (argnum = 0; argnum < nargs; argnum++) | |
1969 | { | |
1970 | char *val; | |
1971 | char valbuf[MAX_REGISTER_RAW_SIZE]; | |
1972 | value_ptr arg = args[argnum]; | |
1973 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1974 | int len = TYPE_LENGTH (arg_type); | |
1975 | enum type_code typecode = TYPE_CODE (arg_type); | |
1976 | ||
1977 | /* The EABI passes structures that do not fit in a register by | |
c5aa993b | 1978 | reference. In all other cases, pass the structure by value. */ |
7a292a7a | 1979 | if (MIPS_EABI && len > MIPS_SAVED_REGSIZE && |
c906108c SS |
1980 | (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
1981 | { | |
7a292a7a | 1982 | store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg)); |
c906108c | 1983 | typecode = TYPE_CODE_PTR; |
7a292a7a | 1984 | len = MIPS_SAVED_REGSIZE; |
c906108c SS |
1985 | val = valbuf; |
1986 | } | |
1987 | else | |
c5aa993b | 1988 | val = (char *) VALUE_CONTENTS (arg); |
c906108c SS |
1989 | |
1990 | /* 32-bit ABIs always start floating point arguments in an | |
1991 | even-numbered floating point register. */ | |
1992 | if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT | |
c5aa993b | 1993 | && (float_argreg & 1)) |
c906108c SS |
1994 | float_argreg++; |
1995 | ||
1996 | /* Floating point arguments passed in registers have to be | |
1997 | treated specially. On 32-bit architectures, doubles | |
c5aa993b JM |
1998 | are passed in register pairs; the even register gets |
1999 | the low word, and the odd register gets the high word. | |
2000 | On non-EABI processors, the first two floating point arguments are | |
2001 | also copied to general registers, because MIPS16 functions | |
2002 | don't use float registers for arguments. This duplication of | |
2003 | arguments in general registers can't hurt non-MIPS16 functions | |
2004 | because those registers are normally skipped. */ | |
c906108c SS |
2005 | if (typecode == TYPE_CODE_FLT |
2006 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM | |
2007 | && MIPS_FPU_TYPE != MIPS_FPU_NONE) | |
2008 | { | |
2009 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2010 | { | |
2011 | int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; | |
2012 | unsigned long regval; | |
2013 | ||
2014 | /* Write the low word of the double to the even register(s). */ | |
c5aa993b | 2015 | regval = extract_unsigned_integer (val + low_offset, 4); |
c906108c SS |
2016 | write_register (float_argreg++, regval); |
2017 | if (!MIPS_EABI) | |
c5aa993b | 2018 | write_register (argreg + 1, regval); |
c906108c SS |
2019 | |
2020 | /* Write the high word of the double to the odd register(s). */ | |
c5aa993b | 2021 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); |
c906108c SS |
2022 | write_register (float_argreg++, regval); |
2023 | if (!MIPS_EABI) | |
c5aa993b | 2024 | { |
c906108c SS |
2025 | write_register (argreg, regval); |
2026 | argreg += 2; | |
2027 | } | |
2028 | ||
2029 | } | |
2030 | else | |
2031 | { | |
2032 | /* This is a floating point value that fits entirely | |
2033 | in a single register. */ | |
53a5351d JM |
2034 | /* On 32 bit ABI's the float_argreg is further adjusted |
2035 | above to ensure that it is even register aligned. */ | |
c906108c SS |
2036 | CORE_ADDR regval = extract_address (val, len); |
2037 | write_register (float_argreg++, regval); | |
2038 | if (!MIPS_EABI) | |
c5aa993b | 2039 | { |
53a5351d JM |
2040 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP |
2041 | registers for each argument. The below is (my | |
2042 | guess) to ensure that the corresponding integer | |
2043 | register has reserved the same space. */ | |
c906108c SS |
2044 | write_register (argreg, regval); |
2045 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
2046 | } | |
2047 | } | |
2048 | } | |
2049 | else | |
2050 | { | |
2051 | /* Copy the argument to general registers or the stack in | |
2052 | register-sized pieces. Large arguments are split between | |
2053 | registers and stack. */ | |
2054 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
2055 | are treated specially: Irix cc passes them in registers | |
2056 | where gcc sometimes puts them on the stack. For maximum | |
2057 | compatibility, we will put them in both places. */ | |
2058 | ||
c5aa993b | 2059 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && |
7a292a7a | 2060 | (len % MIPS_SAVED_REGSIZE != 0)); |
c906108c SS |
2061 | while (len > 0) |
2062 | { | |
7a292a7a | 2063 | int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; |
c906108c SS |
2064 | |
2065 | if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) | |
2066 | { | |
2067 | /* Write this portion of the argument to the stack. */ | |
2068 | /* Should shorter than int integer values be | |
2069 | promoted to int before being stored? */ | |
2070 | ||
2071 | int longword_offset = 0; | |
2072 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
7a292a7a SS |
2073 | { |
2074 | if (STACK_ARGSIZE == 8 && | |
2075 | (typecode == TYPE_CODE_INT || | |
2076 | typecode == TYPE_CODE_PTR || | |
2077 | typecode == TYPE_CODE_FLT) && len <= 4) | |
2078 | longword_offset = STACK_ARGSIZE - len; | |
2079 | else if ((typecode == TYPE_CODE_STRUCT || | |
2080 | typecode == TYPE_CODE_UNION) && | |
2081 | TYPE_LENGTH (arg_type) < STACK_ARGSIZE) | |
2082 | longword_offset = STACK_ARGSIZE - len; | |
2083 | } | |
c5aa993b JM |
2084 | |
2085 | write_memory (sp + stack_offset + longword_offset, | |
c906108c SS |
2086 | val, partial_len); |
2087 | } | |
2088 | ||
2089 | /* Note!!! This is NOT an else clause. | |
c5aa993b | 2090 | Odd sized structs may go thru BOTH paths. */ |
c906108c SS |
2091 | if (argreg <= MIPS_LAST_ARG_REGNUM) |
2092 | { | |
2093 | CORE_ADDR regval = extract_address (val, partial_len); | |
2094 | ||
2095 | /* A non-floating-point argument being passed in a | |
2096 | general register. If a struct or union, and if | |
2097 | the remaining length is smaller than the register | |
2098 | size, we have to adjust the register value on | |
2099 | big endian targets. | |
2100 | ||
2101 | It does not seem to be necessary to do the | |
2102 | same for integral types. | |
2103 | ||
2104 | Also don't do this adjustment on EABI and O64 | |
2105 | binaries. */ | |
2106 | ||
2107 | if (!MIPS_EABI | |
7a292a7a | 2108 | && MIPS_SAVED_REGSIZE < 8 |
c906108c | 2109 | && TARGET_BYTE_ORDER == BIG_ENDIAN |
7a292a7a | 2110 | && partial_len < MIPS_SAVED_REGSIZE |
c906108c SS |
2111 | && (typecode == TYPE_CODE_STRUCT || |
2112 | typecode == TYPE_CODE_UNION)) | |
c5aa993b | 2113 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * |
c906108c SS |
2114 | TARGET_CHAR_BIT); |
2115 | ||
2116 | write_register (argreg, regval); | |
2117 | argreg++; | |
c5aa993b | 2118 | |
c906108c SS |
2119 | /* If this is the old ABI, prevent subsequent floating |
2120 | point arguments from being passed in floating point | |
2121 | registers. */ | |
2122 | if (!MIPS_EABI) | |
2123 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
2124 | } | |
c5aa993b | 2125 | |
c906108c SS |
2126 | len -= partial_len; |
2127 | val += partial_len; | |
2128 | ||
2129 | /* The offset onto the stack at which we will start | |
c5aa993b JM |
2130 | copying parameters (after the registers are used up) |
2131 | begins at (4 * MIPS_REGSIZE) in the old ABI. This | |
2132 | leaves room for the "home" area for register parameters. | |
c906108c | 2133 | |
c5aa993b JM |
2134 | In the new EABI (and the NABI32), the 8 register parameters |
2135 | do not have "home" stack space reserved for them, so the | |
2136 | stack offset does not get incremented until after | |
2137 | we have used up the 8 parameter registers. */ | |
c906108c SS |
2138 | |
2139 | if (!(MIPS_EABI || MIPS_NABI32) || | |
2140 | argnum >= 8) | |
2141 | stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE); | |
2142 | } | |
2143 | } | |
2144 | } | |
2145 | ||
0f71a2f6 JM |
2146 | /* Return adjusted stack pointer. */ |
2147 | return sp; | |
2148 | } | |
2149 | ||
2150 | CORE_ADDR | |
2151 | mips_push_return_address (pc, sp) | |
2152 | CORE_ADDR pc; | |
2153 | CORE_ADDR sp; | |
2154 | { | |
c906108c SS |
2155 | /* Set the return address register to point to the entry |
2156 | point of the program, where a breakpoint lies in wait. */ | |
c5aa993b | 2157 | write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ()); |
c906108c SS |
2158 | return sp; |
2159 | } | |
2160 | ||
2161 | static void | |
c5aa993b | 2162 | mips_push_register (CORE_ADDR * sp, int regno) |
c906108c SS |
2163 | { |
2164 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
7a292a7a SS |
2165 | int regsize; |
2166 | int offset; | |
2167 | if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno)) | |
2168 | { | |
2169 | regsize = MIPS_SAVED_REGSIZE; | |
2170 | offset = (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2171 | ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE | |
2172 | : 0); | |
2173 | } | |
2174 | else | |
2175 | { | |
2176 | regsize = REGISTER_RAW_SIZE (regno); | |
2177 | offset = 0; | |
2178 | } | |
c906108c SS |
2179 | *sp -= regsize; |
2180 | read_register_gen (regno, buffer); | |
7a292a7a | 2181 | write_memory (*sp, buffer + offset, regsize); |
c906108c SS |
2182 | } |
2183 | ||
2184 | /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ | |
2185 | #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) | |
2186 | ||
2187 | void | |
7a292a7a | 2188 | mips_push_dummy_frame () |
c906108c SS |
2189 | { |
2190 | int ireg; | |
c5aa993b JM |
2191 | struct linked_proc_info *link = (struct linked_proc_info *) |
2192 | xmalloc (sizeof (struct linked_proc_info)); | |
c906108c SS |
2193 | mips_extra_func_info_t proc_desc = &link->info; |
2194 | CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); | |
2195 | CORE_ADDR old_sp = sp; | |
2196 | link->next = linked_proc_desc_table; | |
2197 | linked_proc_desc_table = link; | |
2198 | ||
2199 | /* FIXME! are these correct ? */ | |
c5aa993b | 2200 | #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ |
c906108c SS |
2201 | #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) |
2202 | #define FLOAT_REG_SAVE_MASK MASK(0,19) | |
2203 | #define FLOAT_SINGLE_REG_SAVE_MASK \ | |
2204 | ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) | |
2205 | /* | |
2206 | * The registers we must save are all those not preserved across | |
2207 | * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. | |
2208 | * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI | |
2209 | * and FP Control/Status registers. | |
2210 | * | |
2211 | * | |
2212 | * Dummy frame layout: | |
2213 | * (high memory) | |
c5aa993b JM |
2214 | * Saved PC |
2215 | * Saved MMHI, MMLO, FPC_CSR | |
2216 | * Saved R31 | |
2217 | * Saved R28 | |
2218 | * ... | |
2219 | * Saved R1 | |
c906108c SS |
2220 | * Saved D18 (i.e. F19, F18) |
2221 | * ... | |
2222 | * Saved D0 (i.e. F1, F0) | |
c5aa993b | 2223 | * Argument build area and stack arguments written via mips_push_arguments |
c906108c SS |
2224 | * (low memory) |
2225 | */ | |
2226 | ||
2227 | /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ | |
c5aa993b JM |
2228 | PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM; |
2229 | PROC_FRAME_OFFSET (proc_desc) = 0; | |
2230 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
c906108c SS |
2231 | mips_push_register (&sp, PC_REGNUM); |
2232 | mips_push_register (&sp, HI_REGNUM); | |
2233 | mips_push_register (&sp, LO_REGNUM); | |
2234 | mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); | |
2235 | ||
2236 | /* Save general CPU registers */ | |
c5aa993b | 2237 | PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK; |
c906108c | 2238 | /* PROC_REG_OFFSET is the offset of the first saved register from FP. */ |
c5aa993b JM |
2239 | PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE; |
2240 | for (ireg = 32; --ireg >= 0;) | |
2241 | if (PROC_REG_MASK (proc_desc) & (1 << ireg)) | |
c906108c SS |
2242 | mips_push_register (&sp, ireg); |
2243 | ||
2244 | /* Save floating point registers starting with high order word */ | |
c5aa993b | 2245 | PROC_FREG_MASK (proc_desc) = |
c906108c SS |
2246 | MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK |
2247 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; | |
2248 | /* PROC_FREG_OFFSET is the offset of the first saved *double* register | |
2249 | from FP. */ | |
c5aa993b JM |
2250 | PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8; |
2251 | for (ireg = 32; --ireg >= 0;) | |
2252 | if (PROC_FREG_MASK (proc_desc) & (1 << ireg)) | |
c906108c SS |
2253 | mips_push_register (&sp, ireg + FP0_REGNUM); |
2254 | ||
2255 | /* Update the frame pointer for the call dummy and the stack pointer. | |
2256 | Set the procedure's starting and ending addresses to point to the | |
2257 | call dummy address at the entry point. */ | |
2258 | write_register (PUSH_FP_REGNUM, old_sp); | |
2259 | write_register (SP_REGNUM, sp); | |
c5aa993b JM |
2260 | PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS (); |
2261 | PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4; | |
2262 | SET_PROC_DESC_IS_DUMMY (proc_desc); | |
2263 | PROC_PC_REG (proc_desc) = RA_REGNUM; | |
c906108c SS |
2264 | } |
2265 | ||
2266 | void | |
c5aa993b | 2267 | mips_pop_frame () |
c906108c SS |
2268 | { |
2269 | register int regnum; | |
2270 | struct frame_info *frame = get_current_frame (); | |
2271 | CORE_ADDR new_sp = FRAME_FP (frame); | |
2272 | ||
cce74817 | 2273 | mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc; |
c906108c | 2274 | |
c5aa993b | 2275 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); |
c906108c SS |
2276 | if (frame->saved_regs == NULL) |
2277 | mips_find_saved_regs (frame); | |
2278 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
2279 | { | |
2280 | if (regnum != SP_REGNUM && regnum != PC_REGNUM | |
2281 | && frame->saved_regs[regnum]) | |
2282 | write_register (regnum, | |
2283 | read_memory_integer (frame->saved_regs[regnum], | |
c5aa993b | 2284 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2285 | } |
2286 | write_register (SP_REGNUM, new_sp); | |
2287 | flush_cached_frames (); | |
2288 | ||
c5aa993b | 2289 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) |
c906108c SS |
2290 | { |
2291 | struct linked_proc_info *pi_ptr, *prev_ptr; | |
2292 | ||
2293 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
2294 | pi_ptr != NULL; | |
2295 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
2296 | { | |
2297 | if (&pi_ptr->info == proc_desc) | |
2298 | break; | |
2299 | } | |
2300 | ||
2301 | if (pi_ptr == NULL) | |
2302 | error ("Can't locate dummy extra frame info\n"); | |
2303 | ||
2304 | if (prev_ptr != NULL) | |
2305 | prev_ptr->next = pi_ptr->next; | |
2306 | else | |
2307 | linked_proc_desc_table = pi_ptr->next; | |
2308 | ||
2309 | free (pi_ptr); | |
2310 | ||
2311 | write_register (HI_REGNUM, | |
c5aa993b | 2312 | read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2313 | MIPS_SAVED_REGSIZE)); |
c906108c | 2314 | write_register (LO_REGNUM, |
c5aa993b | 2315 | read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2316 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2317 | if (MIPS_FPU_TYPE != MIPS_FPU_NONE) |
2318 | write_register (FCRCS_REGNUM, | |
c5aa993b | 2319 | read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2320 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2321 | } |
2322 | } | |
2323 | ||
2324 | static void | |
2325 | mips_print_register (regnum, all) | |
2326 | int regnum, all; | |
2327 | { | |
2328 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2329 | ||
2330 | /* Get the data in raw format. */ | |
2331 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2332 | { | |
2333 | printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum)); | |
2334 | return; | |
2335 | } | |
2336 | ||
2337 | /* If an even floating point register, also print as double. */ | |
2338 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT | |
c5aa993b JM |
2339 | && !((regnum - FP0_REGNUM) & 1)) |
2340 | if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */ | |
c906108c | 2341 | { |
c5aa993b | 2342 | char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; |
c906108c SS |
2343 | |
2344 | read_relative_register_raw_bytes (regnum, dbuffer); | |
c5aa993b | 2345 | read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE); |
c906108c SS |
2346 | REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); |
2347 | ||
c5aa993b | 2348 | printf_filtered ("(d%d: ", regnum - FP0_REGNUM); |
c906108c SS |
2349 | val_print (builtin_type_double, dbuffer, 0, 0, |
2350 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2351 | printf_filtered ("); "); | |
2352 | } | |
2353 | fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); | |
2354 | ||
2355 | /* The problem with printing numeric register names (r26, etc.) is that | |
2356 | the user can't use them on input. Probably the best solution is to | |
2357 | fix it so that either the numeric or the funky (a2, etc.) names | |
2358 | are accepted on input. */ | |
2359 | if (regnum < MIPS_NUMREGS) | |
2360 | printf_filtered ("(r%d): ", regnum); | |
2361 | else | |
2362 | printf_filtered (": "); | |
2363 | ||
2364 | /* If virtual format is floating, print it that way. */ | |
2365 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2366 | if (FP_REGISTER_DOUBLE) | |
c5aa993b | 2367 | { /* show 8-byte floats as float AND double: */ |
c906108c SS |
2368 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); |
2369 | ||
2370 | printf_filtered (" (float) "); | |
2371 | val_print (builtin_type_float, raw_buffer + offset, 0, 0, | |
2372 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2373 | printf_filtered (", (double) "); | |
2374 | val_print (builtin_type_double, raw_buffer, 0, 0, | |
2375 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2376 | } | |
2377 | else | |
2378 | val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, | |
2379 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2380 | /* Else print as integer in hex. */ | |
2381 | else | |
2382 | print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), | |
2383 | 'x', 0, gdb_stdout); | |
2384 | } | |
2385 | ||
2386 | /* Replacement for generic do_registers_info. | |
2387 | Print regs in pretty columns. */ | |
2388 | ||
2389 | static int | |
2390 | do_fp_register_row (regnum) | |
2391 | int regnum; | |
c5aa993b | 2392 | { /* do values for FP (float) regs */ |
c906108c SS |
2393 | char *raw_buffer[2]; |
2394 | char *dbl_buffer; | |
2395 | /* use HI and LO to control the order of combining two flt regs */ | |
2396 | int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2397 | int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); | |
2398 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ | |
2399 | int inv1, inv2, inv3; | |
c5aa993b | 2400 | |
c906108c SS |
2401 | raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); |
2402 | raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2403 | dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2404 | ||
2405 | /* Get the data in raw format. */ | |
2406 | if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) | |
2407 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); | |
c5aa993b | 2408 | if (REGISTER_RAW_SIZE (regnum) == 4) |
c906108c SS |
2409 | { |
2410 | /* 4-byte registers: we can fit two registers per row. */ | |
2411 | /* Also print every pair of 4-byte regs as an 8-byte double. */ | |
2412 | if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) | |
c5aa993b | 2413 | error ("can't read register %d (%s)", |
c906108c SS |
2414 | regnum + 1, REGISTER_NAME (regnum + 1)); |
2415 | ||
2416 | /* copy the two floats into one double, and unpack both */ | |
c5aa993b JM |
2417 | memcpy (dbl_buffer, raw_buffer, sizeof (dbl_buffer)); |
2418 | flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); | |
2419 | flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); | |
2420 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2421 | ||
2422 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2423 | " %-5s%-17.9g", REGISTER_NAME (regnum), flt1); | |
2424 | printf_filtered (inv2 ? " %-5s: <invalid float>" : | |
c906108c | 2425 | " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2); |
c5aa993b | 2426 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : |
c906108c SS |
2427 | " dbl: %-24.17g\n", doub); |
2428 | /* may want to do hex display here (future enhancement) */ | |
c5aa993b | 2429 | regnum += 2; |
c906108c SS |
2430 | } |
2431 | else | |
c5aa993b | 2432 | { /* eight byte registers: print each one as float AND as double. */ |
c906108c SS |
2433 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); |
2434 | ||
c5aa993b JM |
2435 | memcpy (dbl_buffer, raw_buffer[HI], sizeof (dbl_buffer)); |
2436 | flt1 = unpack_double (builtin_type_float, | |
c906108c | 2437 | &raw_buffer[HI][offset], &inv1); |
c5aa993b | 2438 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); |
c906108c | 2439 | |
c5aa993b | 2440 | printf_filtered (inv1 ? " %-5s: <invalid float>" : |
c906108c | 2441 | " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1); |
c5aa993b | 2442 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : |
c906108c SS |
2443 | " dbl: %-24.17g\n", doub); |
2444 | /* may want to do hex display here (future enhancement) */ | |
2445 | regnum++; | |
2446 | } | |
2447 | return regnum; | |
2448 | } | |
2449 | ||
2450 | /* Print a row's worth of GP (int) registers, with name labels above */ | |
2451 | ||
2452 | static int | |
2453 | do_gp_register_row (regnum) | |
2454 | int regnum; | |
2455 | { | |
2456 | /* do values for GP (int) regs */ | |
2457 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2458 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ | |
2459 | int col, byte; | |
2460 | int start_regnum = regnum; | |
2461 | int numregs = NUM_REGS; | |
2462 | ||
2463 | ||
2464 | /* For GP registers, we print a separate row of names above the vals */ | |
2465 | printf_filtered (" "); | |
2466 | for (col = 0; col < ncols && regnum < numregs; regnum++) | |
2467 | { | |
2468 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 2469 | continue; /* unused register */ |
c906108c | 2470 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b JM |
2471 | break; /* end the row: reached FP register */ |
2472 | printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", | |
c906108c SS |
2473 | REGISTER_NAME (regnum)); |
2474 | col++; | |
2475 | } | |
c5aa993b | 2476 | printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", |
c906108c SS |
2477 | start_regnum); /* print the R0 to R31 names */ |
2478 | ||
2479 | regnum = start_regnum; /* go back to start of row */ | |
2480 | /* now print the values in hex, 4 or 8 to the row */ | |
2481 | for (col = 0; col < ncols && regnum < numregs; regnum++) | |
2482 | { | |
2483 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 2484 | continue; /* unused register */ |
c906108c | 2485 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b | 2486 | break; /* end row: reached FP register */ |
c906108c SS |
2487 | /* OK: get the data in raw format. */ |
2488 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2489 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); | |
2490 | /* pad small registers */ | |
43e526b9 | 2491 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++) |
c906108c SS |
2492 | printf_filtered (" "); |
2493 | /* Now print the register value in hex, endian order. */ | |
2494 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
43e526b9 JM |
2495 | for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); |
2496 | byte < REGISTER_RAW_SIZE (regnum); | |
2497 | byte++) | |
c906108c SS |
2498 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); |
2499 | else | |
43e526b9 JM |
2500 | for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1; |
2501 | byte >= 0; | |
2502 | byte--) | |
c906108c SS |
2503 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); |
2504 | printf_filtered (" "); | |
2505 | col++; | |
2506 | } | |
c5aa993b | 2507 | if (col > 0) /* ie. if we actually printed anything... */ |
c906108c SS |
2508 | printf_filtered ("\n"); |
2509 | ||
2510 | return regnum; | |
2511 | } | |
2512 | ||
2513 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
2514 | ||
2515 | void | |
2516 | mips_do_registers_info (regnum, fpregs) | |
2517 | int regnum; | |
2518 | int fpregs; | |
2519 | { | |
c5aa993b | 2520 | if (regnum != -1) /* do one specified register */ |
c906108c SS |
2521 | { |
2522 | if (*(REGISTER_NAME (regnum)) == '\0') | |
2523 | error ("Not a valid register for the current processor type"); | |
2524 | ||
2525 | mips_print_register (regnum, 0); | |
2526 | printf_filtered ("\n"); | |
2527 | } | |
c5aa993b JM |
2528 | else |
2529 | /* do all (or most) registers */ | |
c906108c SS |
2530 | { |
2531 | regnum = 0; | |
2532 | while (regnum < NUM_REGS) | |
2533 | { | |
c5aa993b JM |
2534 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
2535 | if (fpregs) /* true for "INFO ALL-REGISTERS" command */ | |
c906108c SS |
2536 | regnum = do_fp_register_row (regnum); /* FP regs */ |
2537 | else | |
2538 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
2539 | else | |
2540 | regnum = do_gp_register_row (regnum); /* GP (int) regs */ | |
2541 | } | |
2542 | } | |
2543 | } | |
2544 | ||
2545 | /* Return number of args passed to a frame. described by FIP. | |
2546 | Can return -1, meaning no way to tell. */ | |
2547 | ||
2548 | int | |
2549 | mips_frame_num_args (frame) | |
c5aa993b | 2550 | struct frame_info *frame; |
c906108c | 2551 | { |
c5aa993b | 2552 | #if 0 /* FIXME Use or lose this! */ |
c906108c SS |
2553 | struct chain_info_t *p; |
2554 | ||
2555 | p = mips_find_cached_frame (FRAME_FP (frame)); | |
2556 | if (p->valid) | |
2557 | return p->the_info.numargs; | |
2558 | #endif | |
2559 | return -1; | |
2560 | } | |
2561 | ||
2562 | /* Is this a branch with a delay slot? */ | |
2563 | ||
2564 | static int is_delayed PARAMS ((unsigned long)); | |
2565 | ||
2566 | static int | |
2567 | is_delayed (insn) | |
2568 | unsigned long insn; | |
2569 | { | |
2570 | int i; | |
2571 | for (i = 0; i < NUMOPCODES; ++i) | |
2572 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
2573 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
2574 | break; | |
2575 | return (i < NUMOPCODES | |
2576 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
2577 | | INSN_COND_BRANCH_DELAY | |
2578 | | INSN_COND_BRANCH_LIKELY))); | |
2579 | } | |
2580 | ||
2581 | int | |
2582 | mips_step_skips_delay (pc) | |
2583 | CORE_ADDR pc; | |
2584 | { | |
2585 | char buf[MIPS_INSTLEN]; | |
2586 | ||
2587 | /* There is no branch delay slot on MIPS16. */ | |
2588 | if (pc_is_mips16 (pc)) | |
2589 | return 0; | |
2590 | ||
2591 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
2592 | /* If error reading memory, guess that it is not a delayed branch. */ | |
2593 | return 0; | |
c5aa993b | 2594 | return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN)); |
c906108c SS |
2595 | } |
2596 | ||
2597 | ||
2598 | /* Skip the PC past function prologue instructions (32-bit version). | |
2599 | This is a helper function for mips_skip_prologue. */ | |
2600 | ||
2601 | static CORE_ADDR | |
2602 | mips32_skip_prologue (pc, lenient) | |
c5aa993b | 2603 | CORE_ADDR pc; /* starting PC to search from */ |
c906108c SS |
2604 | int lenient; |
2605 | { | |
c5aa993b JM |
2606 | t_inst inst; |
2607 | CORE_ADDR end_pc; | |
2608 | int seen_sp_adjust = 0; | |
2609 | int load_immediate_bytes = 0; | |
2610 | ||
2611 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2612 | instruction and the instructions that save registers on the stack | |
2613 | or in the gcc frame. */ | |
2614 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) | |
2615 | { | |
2616 | unsigned long high_word; | |
c906108c | 2617 | |
c5aa993b JM |
2618 | inst = mips_fetch_instruction (pc); |
2619 | high_word = (inst >> 16) & 0xffff; | |
c906108c SS |
2620 | |
2621 | #if 0 | |
c5aa993b JM |
2622 | if (lenient && is_delayed (inst)) |
2623 | continue; | |
c906108c SS |
2624 | #endif |
2625 | ||
c5aa993b JM |
2626 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
2627 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
2628 | seen_sp_adjust = 1; | |
2629 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ | |
2630 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
2631 | seen_sp_adjust = 1; | |
2632 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ | |
2633 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
2634 | && (inst & 0x001F0000)) /* reg != $zero */ | |
2635 | continue; | |
2636 | ||
2637 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ | |
2638 | continue; | |
2639 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
2640 | /* sx reg,n($s8) */ | |
2641 | continue; /* reg != $zero */ | |
2642 | ||
2643 | /* move $s8,$sp. With different versions of gas this will be either | |
2644 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. | |
2645 | Accept any one of these. */ | |
2646 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
2647 | continue; | |
2648 | ||
2649 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ | |
2650 | continue; | |
2651 | else if (high_word == 0x3c1c) /* lui $gp,n */ | |
2652 | continue; | |
2653 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ | |
2654 | continue; | |
2655 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
2656 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
2657 | continue; | |
2658 | /* The following instructions load $at or $t0 with an immediate | |
2659 | value in preparation for a stack adjustment via | |
2660 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
2661 | a local variable, so we accept them only before a stack adjustment | |
2662 | instruction was seen. */ | |
2663 | else if (!seen_sp_adjust) | |
2664 | { | |
2665 | if (high_word == 0x3c01 || /* lui $at,n */ | |
2666 | high_word == 0x3c08) /* lui $t0,n */ | |
2667 | { | |
2668 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
2669 | continue; | |
2670 | } | |
2671 | else if (high_word == 0x3421 || /* ori $at,$at,n */ | |
2672 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
2673 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
2674 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
2675 | { | |
2676 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
2677 | continue; | |
2678 | } | |
2679 | else | |
2680 | break; | |
2681 | } | |
2682 | else | |
2683 | break; | |
c906108c SS |
2684 | } |
2685 | ||
c5aa993b JM |
2686 | /* In a frameless function, we might have incorrectly |
2687 | skipped some load immediate instructions. Undo the skipping | |
2688 | if the load immediate was not followed by a stack adjustment. */ | |
2689 | if (load_immediate_bytes && !seen_sp_adjust) | |
2690 | pc -= load_immediate_bytes; | |
2691 | return pc; | |
c906108c SS |
2692 | } |
2693 | ||
2694 | /* Skip the PC past function prologue instructions (16-bit version). | |
2695 | This is a helper function for mips_skip_prologue. */ | |
2696 | ||
2697 | static CORE_ADDR | |
2698 | mips16_skip_prologue (pc, lenient) | |
c5aa993b | 2699 | CORE_ADDR pc; /* starting PC to search from */ |
c906108c SS |
2700 | int lenient; |
2701 | { | |
c5aa993b JM |
2702 | CORE_ADDR end_pc; |
2703 | int extend_bytes = 0; | |
2704 | int prev_extend_bytes; | |
c906108c | 2705 | |
c5aa993b JM |
2706 | /* Table of instructions likely to be found in a function prologue. */ |
2707 | static struct | |
c906108c SS |
2708 | { |
2709 | unsigned short inst; | |
2710 | unsigned short mask; | |
c5aa993b JM |
2711 | } |
2712 | table[] = | |
2713 | { | |
c906108c | 2714 | { |
c5aa993b JM |
2715 | 0x6300, 0xff00 |
2716 | } | |
2717 | , /* addiu $sp,offset */ | |
2718 | { | |
2719 | 0xfb00, 0xff00 | |
2720 | } | |
2721 | , /* daddiu $sp,offset */ | |
2722 | { | |
2723 | 0xd000, 0xf800 | |
2724 | } | |
2725 | , /* sw reg,n($sp) */ | |
2726 | { | |
2727 | 0xf900, 0xff00 | |
2728 | } | |
2729 | , /* sd reg,n($sp) */ | |
2730 | { | |
2731 | 0x6200, 0xff00 | |
2732 | } | |
2733 | , /* sw $ra,n($sp) */ | |
2734 | { | |
2735 | 0xfa00, 0xff00 | |
2736 | } | |
2737 | , /* sd $ra,n($sp) */ | |
2738 | { | |
2739 | 0x673d, 0xffff | |
2740 | } | |
2741 | , /* move $s1,sp */ | |
2742 | { | |
2743 | 0xd980, 0xff80 | |
2744 | } | |
2745 | , /* sw $a0-$a3,n($s1) */ | |
2746 | { | |
2747 | 0x6704, 0xff1c | |
2748 | } | |
2749 | , /* move reg,$a0-$a3 */ | |
2750 | { | |
2751 | 0xe809, 0xf81f | |
2752 | } | |
2753 | , /* entry pseudo-op */ | |
2754 | { | |
2755 | 0x0100, 0xff00 | |
2756 | } | |
2757 | , /* addiu $s1,$sp,n */ | |
2758 | { | |
2759 | 0, 0 | |
2760 | } /* end of table marker */ | |
2761 | }; | |
2762 | ||
2763 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2764 | instruction and the instructions that save registers on the stack | |
2765 | or in the gcc frame. */ | |
2766 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
2767 | { | |
2768 | unsigned short inst; | |
2769 | int i; | |
c906108c | 2770 | |
c5aa993b | 2771 | inst = mips_fetch_instruction (pc); |
c906108c | 2772 | |
c5aa993b JM |
2773 | /* Normally we ignore an extend instruction. However, if it is |
2774 | not followed by a valid prologue instruction, we must adjust | |
2775 | the pc back over the extend so that it won't be considered | |
2776 | part of the prologue. */ | |
2777 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
2778 | { | |
2779 | extend_bytes = MIPS16_INSTLEN; | |
2780 | continue; | |
2781 | } | |
2782 | prev_extend_bytes = extend_bytes; | |
2783 | extend_bytes = 0; | |
c906108c | 2784 | |
c5aa993b JM |
2785 | /* Check for other valid prologue instructions besides extend. */ |
2786 | for (i = 0; table[i].mask != 0; i++) | |
2787 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
2788 | break; | |
2789 | if (table[i].mask != 0) /* it was in table? */ | |
2790 | continue; /* ignore it */ | |
2791 | else | |
2792 | /* non-prologue */ | |
2793 | { | |
2794 | /* Return the current pc, adjusted backwards by 2 if | |
2795 | the previous instruction was an extend. */ | |
2796 | return pc - prev_extend_bytes; | |
2797 | } | |
c906108c SS |
2798 | } |
2799 | return pc; | |
2800 | } | |
2801 | ||
2802 | /* To skip prologues, I use this predicate. Returns either PC itself | |
2803 | if the code at PC does not look like a function prologue; otherwise | |
2804 | returns an address that (if we're lucky) follows the prologue. If | |
2805 | LENIENT, then we must skip everything which is involved in setting | |
2806 | up the frame (it's OK to skip more, just so long as we don't skip | |
2807 | anything which might clobber the registers which are being saved. | |
2808 | We must skip more in the case where part of the prologue is in the | |
2809 | delay slot of a non-prologue instruction). */ | |
2810 | ||
2811 | CORE_ADDR | |
2812 | mips_skip_prologue (pc, lenient) | |
2813 | CORE_ADDR pc; | |
2814 | int lenient; | |
2815 | { | |
2816 | /* See if we can determine the end of the prologue via the symbol table. | |
2817 | If so, then return either PC, or the PC after the prologue, whichever | |
2818 | is greater. */ | |
2819 | ||
2820 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
2821 | ||
2822 | if (post_prologue_pc != 0) | |
2823 | return max (pc, post_prologue_pc); | |
2824 | ||
2825 | /* Can't determine prologue from the symbol table, need to examine | |
2826 | instructions. */ | |
2827 | ||
2828 | if (pc_is_mips16 (pc)) | |
2829 | return mips16_skip_prologue (pc, lenient); | |
2830 | else | |
2831 | return mips32_skip_prologue (pc, lenient); | |
2832 | } | |
2833 | ||
2834 | #if 0 | |
2835 | /* The lenient prologue stuff should be superseded by the code in | |
2836 | init_extra_frame_info which looks to see whether the stores mentioned | |
2837 | in the proc_desc have actually taken place. */ | |
2838 | ||
2839 | /* Is address PC in the prologue (loosely defined) for function at | |
2840 | STARTADDR? */ | |
2841 | ||
2842 | static int | |
2843 | mips_in_lenient_prologue (startaddr, pc) | |
2844 | CORE_ADDR startaddr; | |
2845 | CORE_ADDR pc; | |
2846 | { | |
2847 | CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); | |
2848 | return pc >= startaddr && pc < end_prologue; | |
2849 | } | |
2850 | #endif | |
2851 | ||
7a292a7a SS |
2852 | /* Determine how a return value is stored within the MIPS register |
2853 | file, given the return type `valtype'. */ | |
2854 | ||
2855 | struct return_value_word | |
2856 | { | |
2857 | int len; | |
2858 | int reg; | |
2859 | int reg_offset; | |
2860 | int buf_offset; | |
2861 | }; | |
2862 | ||
2863 | static void return_value_location PARAMS ((struct type *, struct return_value_word *, struct return_value_word *)); | |
2864 | ||
2865 | static void | |
2866 | return_value_location (valtype, hi, lo) | |
2867 | struct type *valtype; | |
2868 | struct return_value_word *hi; | |
2869 | struct return_value_word *lo; | |
2870 | { | |
2871 | int len = TYPE_LENGTH (valtype); | |
c5aa993b | 2872 | |
7a292a7a SS |
2873 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT |
2874 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
2875 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
2876 | { | |
2877 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2878 | { | |
2879 | /* We need to break a 64bit float in two 32 bit halves and | |
c5aa993b | 2880 | spread them across a floating-point register pair. */ |
7a292a7a SS |
2881 | lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; |
2882 | hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4; | |
2883 | lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN | |
2884 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8) | |
2885 | ? 4 : 0); | |
2886 | hi->reg_offset = lo->reg_offset; | |
2887 | lo->reg = FP0_REGNUM + 0; | |
2888 | hi->reg = FP0_REGNUM + 1; | |
2889 | lo->len = 4; | |
2890 | hi->len = 4; | |
2891 | } | |
2892 | else | |
2893 | { | |
2894 | /* The floating point value fits in a single floating-point | |
c5aa993b | 2895 | register. */ |
7a292a7a SS |
2896 | lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN |
2897 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8 | |
2898 | && len == 4) | |
2899 | ? 4 : 0); | |
2900 | lo->reg = FP0_REGNUM; | |
2901 | lo->len = len; | |
2902 | lo->buf_offset = 0; | |
2903 | hi->len = 0; | |
2904 | hi->reg_offset = 0; | |
2905 | hi->buf_offset = 0; | |
2906 | hi->reg = 0; | |
2907 | } | |
2908 | } | |
2909 | else | |
2910 | { | |
2911 | /* Locate a result possibly spread across two registers. */ | |
2912 | int regnum = 2; | |
2913 | lo->reg = regnum + 0; | |
2914 | hi->reg = regnum + 1; | |
2915 | if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2916 | && len < MIPS_SAVED_REGSIZE) | |
2917 | { | |
2918 | /* "un-left-justify" the value in the low register */ | |
2919 | lo->reg_offset = MIPS_SAVED_REGSIZE - len; | |
2920 | lo->len = len; | |
2921 | hi->reg_offset = 0; | |
2922 | hi->len = 0; | |
2923 | } | |
2924 | else if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2925 | && len > MIPS_SAVED_REGSIZE /* odd-size structs */ | |
2926 | && len < MIPS_SAVED_REGSIZE * 2 | |
2927 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2928 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2929 | { | |
2930 | /* "un-left-justify" the value spread across two registers. */ | |
2931 | lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len; | |
2932 | lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset; | |
2933 | hi->reg_offset = 0; | |
2934 | hi->len = len - lo->len; | |
2935 | } | |
2936 | else | |
2937 | { | |
2938 | /* Only perform a partial copy of the second register. */ | |
2939 | lo->reg_offset = 0; | |
2940 | hi->reg_offset = 0; | |
2941 | if (len > MIPS_SAVED_REGSIZE) | |
2942 | { | |
2943 | lo->len = MIPS_SAVED_REGSIZE; | |
2944 | hi->len = len - MIPS_SAVED_REGSIZE; | |
2945 | } | |
2946 | else | |
2947 | { | |
2948 | lo->len = len; | |
2949 | hi->len = 0; | |
2950 | } | |
2951 | } | |
2952 | if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2953 | && REGISTER_RAW_SIZE (regnum) == 8 | |
2954 | && MIPS_SAVED_REGSIZE == 4) | |
2955 | { | |
2956 | /* Account for the fact that only the least-signficant part | |
c5aa993b | 2957 | of the register is being used */ |
7a292a7a SS |
2958 | lo->reg_offset += 4; |
2959 | hi->reg_offset += 4; | |
2960 | } | |
2961 | lo->buf_offset = 0; | |
2962 | hi->buf_offset = lo->len; | |
2963 | } | |
2964 | } | |
2965 | ||
2966 | /* Given a return value in `regbuf' with a type `valtype', extract and | |
2967 | copy its value into `valbuf'. */ | |
2968 | ||
c906108c SS |
2969 | void |
2970 | mips_extract_return_value (valtype, regbuf, valbuf) | |
c5aa993b JM |
2971 | struct type *valtype; |
2972 | char regbuf[REGISTER_BYTES]; | |
2973 | char *valbuf; | |
c906108c | 2974 | { |
7a292a7a SS |
2975 | struct return_value_word lo; |
2976 | struct return_value_word hi; | |
2977 | return_value_location (valtype, &lo, &hi); | |
2978 | ||
2979 | memcpy (valbuf + lo.buf_offset, | |
2980 | regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
2981 | lo.len); | |
2982 | ||
2983 | if (hi.len > 0) | |
2984 | memcpy (valbuf + hi.buf_offset, | |
2985 | regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
2986 | hi.len); | |
2987 | ||
2988 | #if 0 | |
c906108c SS |
2989 | int regnum; |
2990 | int offset = 0; | |
2991 | int len = TYPE_LENGTH (valtype); | |
c5aa993b | 2992 | |
c906108c SS |
2993 | regnum = 2; |
2994 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
2995 | && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE | |
2996 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE | |
2997 | && len <= MIPS_FPU_SINGLE_REGSIZE))) | |
2998 | regnum = FP0_REGNUM; | |
2999 | ||
3000 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b | 3001 | { /* "un-left-justify" the value from the register */ |
c906108c SS |
3002 | if (len < REGISTER_RAW_SIZE (regnum)) |
3003 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
c5aa993b | 3004 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ |
c906108c SS |
3005 | len < REGISTER_RAW_SIZE (regnum) * 2 && |
3006 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
3007 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
3008 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
3009 | } | |
3010 | memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); | |
3011 | REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); | |
7a292a7a | 3012 | #endif |
c906108c SS |
3013 | } |
3014 | ||
7a292a7a SS |
3015 | /* Given a return value in `valbuf' with a type `valtype', write it's |
3016 | value into the appropriate register. */ | |
3017 | ||
c906108c SS |
3018 | void |
3019 | mips_store_return_value (valtype, valbuf) | |
c5aa993b JM |
3020 | struct type *valtype; |
3021 | char *valbuf; | |
c906108c | 3022 | { |
7a292a7a SS |
3023 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
3024 | struct return_value_word lo; | |
3025 | struct return_value_word hi; | |
3026 | return_value_location (valtype, &lo, &hi); | |
3027 | ||
3028 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3029 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
3030 | write_register_bytes (REGISTER_BYTE (lo.reg), | |
3031 | raw_buffer, | |
3032 | REGISTER_RAW_SIZE (lo.reg)); | |
c5aa993b | 3033 | |
7a292a7a SS |
3034 | if (hi.len > 0) |
3035 | { | |
3036 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3037 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
3038 | write_register_bytes (REGISTER_BYTE (hi.reg), | |
3039 | raw_buffer, | |
3040 | REGISTER_RAW_SIZE (hi.reg)); | |
3041 | } | |
3042 | ||
3043 | #if 0 | |
c906108c SS |
3044 | int regnum; |
3045 | int offset = 0; | |
3046 | int len = TYPE_LENGTH (valtype); | |
3047 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
c5aa993b | 3048 | |
c906108c SS |
3049 | regnum = 2; |
3050 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
3051 | && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE | |
3052 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE | |
3053 | && len <= MIPS_REGSIZE))) | |
3054 | regnum = FP0_REGNUM; | |
3055 | ||
3056 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b | 3057 | { /* "left-justify" the value in the register */ |
c906108c SS |
3058 | if (len < REGISTER_RAW_SIZE (regnum)) |
3059 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
c5aa993b | 3060 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ |
c906108c SS |
3061 | len < REGISTER_RAW_SIZE (regnum) * 2 && |
3062 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
3063 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
3064 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
3065 | } | |
c5aa993b JM |
3066 | memcpy (raw_buffer + offset, valbuf, len); |
3067 | REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer); | |
3068 | write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, | |
3069 | len > REGISTER_RAW_SIZE (regnum) ? | |
3070 | len : REGISTER_RAW_SIZE (regnum)); | |
7a292a7a | 3071 | #endif |
c906108c SS |
3072 | } |
3073 | ||
3074 | /* Exported procedure: Is PC in the signal trampoline code */ | |
3075 | ||
3076 | int | |
3077 | in_sigtramp (pc, ignore) | |
3078 | CORE_ADDR pc; | |
3079 | char *ignore; /* function name */ | |
3080 | { | |
3081 | if (sigtramp_address == 0) | |
3082 | fixup_sigtramp (); | |
3083 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
3084 | } | |
3085 | ||
3086 | /* Commands to show/set the MIPS FPU type. */ | |
3087 | ||
3088 | static void show_mipsfpu_command PARAMS ((char *, int)); | |
3089 | static void | |
3090 | show_mipsfpu_command (args, from_tty) | |
3091 | char *args; | |
3092 | int from_tty; | |
3093 | { | |
3094 | char *msg; | |
3095 | char *fpu; | |
3096 | switch (MIPS_FPU_TYPE) | |
3097 | { | |
3098 | case MIPS_FPU_SINGLE: | |
3099 | fpu = "single-precision"; | |
3100 | break; | |
3101 | case MIPS_FPU_DOUBLE: | |
3102 | fpu = "double-precision"; | |
3103 | break; | |
3104 | case MIPS_FPU_NONE: | |
3105 | fpu = "absent (none)"; | |
3106 | break; | |
3107 | } | |
3108 | if (mips_fpu_type_auto) | |
3109 | printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
3110 | fpu); | |
3111 | else | |
3112 | printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", | |
3113 | fpu); | |
3114 | } | |
3115 | ||
3116 | ||
3117 | static void set_mipsfpu_command PARAMS ((char *, int)); | |
3118 | static void | |
3119 | set_mipsfpu_command (args, from_tty) | |
3120 | char *args; | |
3121 | int from_tty; | |
3122 | { | |
3123 | printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
3124 | show_mipsfpu_command (args, from_tty); | |
3125 | } | |
3126 | ||
3127 | static void set_mipsfpu_single_command PARAMS ((char *, int)); | |
3128 | static void | |
3129 | set_mipsfpu_single_command (args, from_tty) | |
3130 | char *args; | |
3131 | int from_tty; | |
3132 | { | |
3133 | mips_fpu_type = MIPS_FPU_SINGLE; | |
3134 | mips_fpu_type_auto = 0; | |
3135 | } | |
3136 | ||
3137 | static void set_mipsfpu_double_command PARAMS ((char *, int)); | |
3138 | static void | |
3139 | set_mipsfpu_double_command (args, from_tty) | |
3140 | char *args; | |
3141 | int from_tty; | |
3142 | { | |
3143 | mips_fpu_type = MIPS_FPU_DOUBLE; | |
3144 | mips_fpu_type_auto = 0; | |
3145 | } | |
3146 | ||
3147 | static void set_mipsfpu_none_command PARAMS ((char *, int)); | |
3148 | static void | |
3149 | set_mipsfpu_none_command (args, from_tty) | |
3150 | char *args; | |
3151 | int from_tty; | |
3152 | { | |
3153 | mips_fpu_type = MIPS_FPU_NONE; | |
3154 | mips_fpu_type_auto = 0; | |
3155 | } | |
3156 | ||
3157 | static void set_mipsfpu_auto_command PARAMS ((char *, int)); | |
3158 | static void | |
3159 | set_mipsfpu_auto_command (args, from_tty) | |
3160 | char *args; | |
3161 | int from_tty; | |
3162 | { | |
3163 | mips_fpu_type_auto = 1; | |
3164 | } | |
3165 | ||
3166 | /* Command to set the processor type. */ | |
3167 | ||
3168 | void | |
3169 | mips_set_processor_type_command (args, from_tty) | |
3170 | char *args; | |
3171 | int from_tty; | |
3172 | { | |
3173 | int i; | |
3174 | ||
3175 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
3176 | { | |
3177 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
3178 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
3179 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
3180 | ||
3181 | /* Restore the value. */ | |
3182 | tmp_mips_processor_type = strsave (mips_processor_type); | |
3183 | ||
3184 | return; | |
3185 | } | |
c5aa993b | 3186 | |
c906108c SS |
3187 | if (!mips_set_processor_type (tmp_mips_processor_type)) |
3188 | { | |
3189 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
3190 | /* Restore its value. */ | |
3191 | tmp_mips_processor_type = strsave (mips_processor_type); | |
3192 | } | |
3193 | } | |
3194 | ||
3195 | static void | |
3196 | mips_show_processor_type_command (args, from_tty) | |
3197 | char *args; | |
3198 | int from_tty; | |
3199 | { | |
3200 | } | |
3201 | ||
3202 | /* Modify the actual processor type. */ | |
3203 | ||
3204 | int | |
3205 | mips_set_processor_type (str) | |
3206 | char *str; | |
3207 | { | |
3208 | int i, j; | |
3209 | ||
3210 | if (str == NULL) | |
3211 | return 0; | |
3212 | ||
3213 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
3214 | { | |
3215 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
3216 | { | |
3217 | mips_processor_type = str; | |
cce74817 | 3218 | mips_processor_reg_names = mips_processor_type_table[i].regnames; |
c906108c | 3219 | return 1; |
c906108c SS |
3220 | /* FIXME tweak fpu flag too */ |
3221 | } | |
3222 | } | |
3223 | ||
3224 | return 0; | |
3225 | } | |
3226 | ||
3227 | /* Attempt to identify the particular processor model by reading the | |
3228 | processor id. */ | |
3229 | ||
3230 | char * | |
3231 | mips_read_processor_type () | |
3232 | { | |
3233 | CORE_ADDR prid; | |
3234 | ||
3235 | prid = read_register (PRID_REGNUM); | |
3236 | ||
3237 | if ((prid & ~0xf) == 0x700) | |
c5aa993b | 3238 | return savestring ("r3041", strlen ("r3041")); |
c906108c SS |
3239 | |
3240 | return NULL; | |
3241 | } | |
3242 | ||
3243 | /* Just like reinit_frame_cache, but with the right arguments to be | |
3244 | callable as an sfunc. */ | |
3245 | ||
3246 | static void | |
3247 | reinit_frame_cache_sfunc (args, from_tty, c) | |
3248 | char *args; | |
3249 | int from_tty; | |
3250 | struct cmd_list_element *c; | |
3251 | { | |
3252 | reinit_frame_cache (); | |
3253 | } | |
3254 | ||
3255 | int | |
3256 | gdb_print_insn_mips (memaddr, info) | |
3257 | bfd_vma memaddr; | |
3258 | disassemble_info *info; | |
3259 | { | |
3260 | mips_extra_func_info_t proc_desc; | |
3261 | ||
3262 | /* Search for the function containing this address. Set the low bit | |
3263 | of the address when searching, in case we were given an even address | |
3264 | that is the start of a 16-bit function. If we didn't do this, | |
3265 | the search would fail because the symbol table says the function | |
3266 | starts at an odd address, i.e. 1 byte past the given address. */ | |
3267 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
3268 | proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); | |
3269 | ||
3270 | /* Make an attempt to determine if this is a 16-bit function. If | |
3271 | the procedure descriptor exists and the address therein is odd, | |
3272 | it's definitely a 16-bit function. Otherwise, we have to just | |
3273 | guess that if the address passed in is odd, it's 16-bits. */ | |
3274 | if (proc_desc) | |
3275 | info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; | |
3276 | else | |
3277 | info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; | |
3278 | ||
3279 | /* Round down the instruction address to the appropriate boundary. */ | |
3280 | memaddr &= (info->mach == 16 ? ~1 : ~3); | |
c5aa993b | 3281 | |
c906108c SS |
3282 | /* Call the appropriate disassembler based on the target endian-ness. */ |
3283 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
3284 | return print_insn_big_mips (memaddr, info); | |
3285 | else | |
3286 | return print_insn_little_mips (memaddr, info); | |
3287 | } | |
3288 | ||
3289 | /* Old-style breakpoint macros. | |
3290 | The IDT board uses an unusual breakpoint value, and sometimes gets | |
3291 | confused when it sees the usual MIPS breakpoint instruction. */ | |
3292 | ||
3293 | #define BIG_BREAKPOINT {0, 0x5, 0, 0xd} | |
3294 | #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0} | |
3295 | #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd} | |
3296 | #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0} | |
3297 | #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd} | |
3298 | #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0} | |
3299 | #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5} | |
3300 | #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8} | |
3301 | ||
3302 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program | |
3303 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
3304 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
3305 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
3306 | (if necessary) to point to the actual memory location where the | |
3307 | breakpoint should be inserted. */ | |
3308 | ||
c5aa993b JM |
3309 | unsigned char * |
3310 | mips_breakpoint_from_pc (pcptr, lenptr) | |
c906108c SS |
3311 | CORE_ADDR *pcptr; |
3312 | int *lenptr; | |
3313 | { | |
3314 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
3315 | { | |
3316 | if (pc_is_mips16 (*pcptr)) | |
3317 | { | |
3318 | static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; | |
3319 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); | |
c5aa993b | 3320 | *lenptr = sizeof (mips16_big_breakpoint); |
c906108c SS |
3321 | return mips16_big_breakpoint; |
3322 | } | |
3323 | else | |
3324 | { | |
3325 | static char big_breakpoint[] = BIG_BREAKPOINT; | |
3326 | static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; | |
3327 | static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; | |
3328 | ||
c5aa993b | 3329 | *lenptr = sizeof (big_breakpoint); |
c906108c SS |
3330 | |
3331 | if (strcmp (target_shortname, "mips") == 0) | |
3332 | return idt_big_breakpoint; | |
3333 | else if (strcmp (target_shortname, "ddb") == 0 | |
3334 | || strcmp (target_shortname, "pmon") == 0 | |
3335 | || strcmp (target_shortname, "lsi") == 0) | |
3336 | return pmon_big_breakpoint; | |
3337 | else | |
3338 | return big_breakpoint; | |
3339 | } | |
3340 | } | |
3341 | else | |
3342 | { | |
3343 | if (pc_is_mips16 (*pcptr)) | |
3344 | { | |
3345 | static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; | |
3346 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); | |
c5aa993b | 3347 | *lenptr = sizeof (mips16_little_breakpoint); |
c906108c SS |
3348 | return mips16_little_breakpoint; |
3349 | } | |
3350 | else | |
3351 | { | |
3352 | static char little_breakpoint[] = LITTLE_BREAKPOINT; | |
3353 | static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; | |
3354 | static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; | |
3355 | ||
c5aa993b | 3356 | *lenptr = sizeof (little_breakpoint); |
c906108c SS |
3357 | |
3358 | if (strcmp (target_shortname, "mips") == 0) | |
3359 | return idt_little_breakpoint; | |
3360 | else if (strcmp (target_shortname, "ddb") == 0 | |
3361 | || strcmp (target_shortname, "pmon") == 0 | |
3362 | || strcmp (target_shortname, "lsi") == 0) | |
3363 | return pmon_little_breakpoint; | |
3364 | else | |
3365 | return little_breakpoint; | |
3366 | } | |
3367 | } | |
3368 | } | |
3369 | ||
3370 | /* If PC is in a mips16 call or return stub, return the address of the target | |
3371 | PC, which is either the callee or the caller. There are several | |
3372 | cases which must be handled: | |
3373 | ||
3374 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
c5aa993b | 3375 | target PC is in $31 ($ra). |
c906108c | 3376 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub |
c5aa993b | 3377 | and the target PC is in $2. |
c906108c | 3378 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. |
c5aa993b JM |
3379 | before the jal instruction, this is effectively a call stub |
3380 | and the the target PC is in $2. Otherwise this is effectively | |
3381 | a return stub and the target PC is in $18. | |
c906108c SS |
3382 | |
3383 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
3384 | gory details. | |
3385 | ||
3386 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
c5aa993b | 3387 | */ |
c906108c SS |
3388 | |
3389 | CORE_ADDR | |
3390 | mips_skip_stub (pc) | |
3391 | CORE_ADDR pc; | |
3392 | { | |
3393 | char *name; | |
3394 | CORE_ADDR start_addr; | |
3395 | ||
3396 | /* Find the starting address and name of the function containing the PC. */ | |
3397 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
3398 | return 0; | |
3399 | ||
3400 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
3401 | target PC is in $31 ($ra). */ | |
3402 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3403 | || strcmp (name, "__mips16_ret_df") == 0) | |
3404 | return read_register (RA_REGNUM); | |
3405 | ||
3406 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3407 | { | |
3408 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
3409 | and the target PC is in $2. */ | |
3410 | if (name[19] >= '0' && name[19] <= '9') | |
3411 | return read_register (2); | |
3412 | ||
3413 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b JM |
3414 | before the jal instruction, this is effectively a call stub |
3415 | and the the target PC is in $2. Otherwise this is effectively | |
3416 | a return stub and the target PC is in $18. */ | |
c906108c SS |
3417 | else if (name[19] == 's' || name[19] == 'd') |
3418 | { | |
3419 | if (pc == start_addr) | |
3420 | { | |
3421 | /* Check if the target of the stub is a compiler-generated | |
c5aa993b JM |
3422 | stub. Such a stub for a function bar might have a name |
3423 | like __fn_stub_bar, and might look like this: | |
3424 | mfc1 $4,$f13 | |
3425 | mfc1 $5,$f12 | |
3426 | mfc1 $6,$f15 | |
3427 | mfc1 $7,$f14 | |
3428 | la $1,bar (becomes a lui/addiu pair) | |
3429 | jr $1 | |
3430 | So scan down to the lui/addi and extract the target | |
3431 | address from those two instructions. */ | |
c906108c SS |
3432 | |
3433 | CORE_ADDR target_pc = read_register (2); | |
3434 | t_inst inst; | |
3435 | int i; | |
3436 | ||
3437 | /* See if the name of the target function is __fn_stub_*. */ | |
3438 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
3439 | return target_pc; | |
3440 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
3441 | && strcmp (name, "etext") != 0 | |
3442 | && strcmp (name, "_etext") != 0) | |
3443 | return target_pc; | |
3444 | ||
3445 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
c5aa993b JM |
3446 | The limit on the search is arbitrarily set to 20 |
3447 | instructions. FIXME. */ | |
c906108c SS |
3448 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) |
3449 | { | |
c5aa993b JM |
3450 | inst = mips_fetch_instruction (target_pc); |
3451 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
3452 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
3453 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
3454 | return pc | (inst & 0xffff); /* low word */ | |
c906108c SS |
3455 | } |
3456 | ||
3457 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
3458 | return target_pc; | |
3459 | } | |
3460 | else | |
3461 | /* This is the 'return' part of a call stub. The return | |
3462 | address is in $r18. */ | |
3463 | return read_register (18); | |
3464 | } | |
3465 | } | |
c5aa993b | 3466 | return 0; /* not a stub */ |
c906108c SS |
3467 | } |
3468 | ||
3469 | ||
3470 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
3471 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
3472 | ||
3473 | int | |
3474 | mips_in_call_stub (pc, name) | |
3475 | CORE_ADDR pc; | |
3476 | char *name; | |
3477 | { | |
3478 | CORE_ADDR start_addr; | |
3479 | ||
3480 | /* Find the starting address of the function containing the PC. If the | |
3481 | caller didn't give us a name, look it up at the same time. */ | |
3482 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
3483 | return 0; | |
3484 | ||
3485 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3486 | { | |
3487 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
3488 | if (name[19] >= '0' && name[19] <= '9') | |
3489 | return 1; | |
3490 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b | 3491 | before the jal instruction, this is effectively a call stub. */ |
c906108c SS |
3492 | else if (name[19] == 's' || name[19] == 'd') |
3493 | return pc == start_addr; | |
3494 | } | |
3495 | ||
c5aa993b | 3496 | return 0; /* not a stub */ |
c906108c SS |
3497 | } |
3498 | ||
3499 | ||
3500 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
3501 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
3502 | ||
3503 | int | |
3504 | mips_in_return_stub (pc, name) | |
3505 | CORE_ADDR pc; | |
3506 | char *name; | |
3507 | { | |
3508 | CORE_ADDR start_addr; | |
3509 | ||
3510 | /* Find the starting address of the function containing the PC. */ | |
3511 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
3512 | return 0; | |
3513 | ||
3514 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
3515 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3516 | || strcmp (name, "__mips16_ret_df") == 0) | |
3517 | return 1; | |
3518 | ||
3519 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
c5aa993b | 3520 | i.e. after the jal instruction, this is effectively a return stub. */ |
c906108c SS |
3521 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 |
3522 | && (name[19] == 's' || name[19] == 'd') | |
3523 | && pc != start_addr) | |
3524 | return 1; | |
3525 | ||
c5aa993b | 3526 | return 0; /* not a stub */ |
c906108c SS |
3527 | } |
3528 | ||
3529 | ||
3530 | /* Return non-zero if the PC is in a library helper function that should | |
3531 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
3532 | ||
3533 | int | |
3534 | mips_ignore_helper (pc) | |
3535 | CORE_ADDR pc; | |
3536 | { | |
3537 | char *name; | |
3538 | ||
3539 | /* Find the starting address and name of the function containing the PC. */ | |
3540 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
3541 | return 0; | |
3542 | ||
3543 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
3544 | that we want to ignore. */ | |
3545 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
3546 | || strcmp (name, "__mips16_ret_df") == 0); | |
3547 | } | |
3548 | ||
3549 | ||
3550 | /* Return a location where we can set a breakpoint that will be hit | |
3551 | when an inferior function call returns. This is normally the | |
3552 | program's entry point. Executables that don't have an entry | |
3553 | point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS | |
3554 | whose address is the location where the breakpoint should be placed. */ | |
3555 | ||
3556 | CORE_ADDR | |
3557 | mips_call_dummy_address () | |
3558 | { | |
3559 | struct minimal_symbol *sym; | |
3560 | ||
3561 | sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL); | |
3562 | if (sym) | |
3563 | return SYMBOL_VALUE_ADDRESS (sym); | |
3564 | else | |
3565 | return entry_point_address (); | |
3566 | } | |
3567 | ||
3568 | ||
3569 | void | |
3570 | _initialize_mips_tdep () | |
3571 | { | |
3572 | static struct cmd_list_element *mipsfpulist = NULL; | |
3573 | struct cmd_list_element *c; | |
3574 | ||
c5aa993b | 3575 | if (!tm_print_insn) /* Someone may have already set it */ |
c906108c SS |
3576 | tm_print_insn = gdb_print_insn_mips; |
3577 | ||
3578 | /* Let the user turn off floating point and set the fence post for | |
3579 | heuristic_proc_start. */ | |
3580 | ||
3581 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
3582 | "Set use of MIPS floating-point coprocessor.", | |
3583 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
3584 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
3585 | "Select single-precision MIPS floating-point coprocessor.", | |
3586 | &mipsfpulist); | |
3587 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
3588 | "Select double-precision MIPS floating-point coprocessor .", | |
3589 | &mipsfpulist); | |
3590 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
3591 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
3592 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
3593 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
3594 | "Select no MIPS floating-point coprocessor.", | |
3595 | &mipsfpulist); | |
3596 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); | |
3597 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
3598 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
3599 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
3600 | "Select MIPS floating-point coprocessor automatically.", | |
3601 | &mipsfpulist); | |
3602 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
3603 | "Show current use of MIPS floating-point coprocessor target.", | |
3604 | &showlist); | |
3605 | ||
3606 | c = add_set_cmd ("processor", class_support, var_string_noescape, | |
3607 | (char *) &tmp_mips_processor_type, | |
3608 | "Set the type of MIPS processor in use.\n\ | |
3609 | Set this to be able to access processor-type-specific registers.\n\ | |
3610 | ", | |
3611 | &setlist); | |
3612 | c->function.cfunc = mips_set_processor_type_command; | |
3613 | c = add_show_from_set (c, &showlist); | |
3614 | c->function.cfunc = mips_show_processor_type_command; | |
3615 | ||
3616 | tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); | |
3617 | mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); | |
3618 | ||
3619 | /* We really would like to have both "0" and "unlimited" work, but | |
3620 | command.c doesn't deal with that. So make it a var_zinteger | |
3621 | because the user can always use "999999" or some such for unlimited. */ | |
3622 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
3623 | (char *) &heuristic_fence_post, | |
3624 | "\ | |
3625 | Set the distance searched for the start of a function.\n\ | |
3626 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
3627 | program for the start of a function. This command sets the distance of the\n\ | |
3628 | search. The only need to set it is when debugging a stripped executable.", | |
3629 | &setlist); | |
3630 | /* We need to throw away the frame cache when we set this, since it | |
3631 | might change our ability to get backtraces. */ | |
3632 | c->function.sfunc = reinit_frame_cache_sfunc; | |
3633 | add_show_from_set (c, &showlist); | |
3634 | ||
3635 | /* Allow the user to control whether the upper bits of 64-bit | |
3636 | addresses should be zeroed. */ | |
3637 | add_show_from_set | |
c5aa993b JM |
3638 | (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p, |
3639 | "Set zeroing of upper 32 bits of 64-bit addresses.\n\ | |
c906108c SS |
3640 | Use \"on\" to enable the masking, and \"off\" to disable it.\n\ |
3641 | Without an argument, zeroing of upper address bits is enabled.", &setlist), | |
3642 | &showlist); | |
43e526b9 JM |
3643 | |
3644 | /* Allow the user to control the size of 32 bit registers within the | |
3645 | raw remote packet. */ | |
3646 | add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs", | |
3647 | class_obscure, | |
3648 | var_boolean, | |
3649 | (char *)&mips64_transfers_32bit_regs_p, "\ | |
3650 | Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\ | |
3651 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ | |
3652 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
3653 | 64 bits for others. Use \"off\" to disable compatibility mode", | |
3654 | &setlist), | |
3655 | &showlist); | |
c906108c | 3656 | } |