]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
2 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Contributed by Alessandro Forin([email protected]) at CMU | |
5 | and by Per Bothner([email protected]) at U.Wisconsin. | |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "gdb_string.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "symtab.h" | |
29 | #include "value.h" | |
30 | #include "gdbcmd.h" | |
31 | #include "language.h" | |
32 | #include "gdbcore.h" | |
33 | #include "symfile.h" | |
34 | #include "objfiles.h" | |
35 | #include "gdbtypes.h" | |
36 | #include "target.h" | |
37 | ||
38 | #include "opcode/mips.h" | |
39 | ||
cce74817 | 40 | struct frame_extra_info |
c5aa993b JM |
41 | { |
42 | mips_extra_func_info_t proc_desc; | |
43 | int num_args; | |
44 | }; | |
cce74817 | 45 | |
7a292a7a SS |
46 | /* Some MIPS boards don't support floating point while others only |
47 | support single-precision floating-point operations. See also | |
48 | FP_REGISTER_DOUBLE. */ | |
c906108c SS |
49 | |
50 | enum mips_fpu_type | |
c5aa993b JM |
51 | { |
52 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
53 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
54 | MIPS_FPU_NONE /* No floating point. */ | |
55 | }; | |
c906108c SS |
56 | |
57 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
58 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
59 | #endif | |
60 | static int mips_fpu_type_auto = 1; | |
61 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
62 | #define MIPS_FPU_TYPE mips_fpu_type | |
63 | ||
7a292a7a SS |
64 | #ifndef MIPS_SAVED_REGSIZE |
65 | #define MIPS_SAVED_REGSIZE MIPS_REGSIZE | |
66 | #endif | |
c906108c SS |
67 | |
68 | /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */ | |
7a292a7a | 69 | #ifndef FP_REGISTER_DOUBLE |
c906108c | 70 | #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8) |
7a292a7a SS |
71 | #endif |
72 | ||
73 | ||
74 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 | |
c906108c SS |
75 | |
76 | #if 0 | |
77 | static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); | |
78 | #endif | |
79 | ||
80 | int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); | |
81 | ||
82 | static void mips_print_register PARAMS ((int, int)); | |
83 | ||
84 | static mips_extra_func_info_t | |
c5aa993b | 85 | heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); |
c906108c SS |
86 | |
87 | static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); | |
88 | ||
89 | static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); | |
90 | ||
91 | void mips_set_processor_type_command PARAMS ((char *, int)); | |
92 | ||
93 | int mips_set_processor_type PARAMS ((char *)); | |
94 | ||
95 | static void mips_show_processor_type_command PARAMS ((char *, int)); | |
96 | ||
97 | static void reinit_frame_cache_sfunc PARAMS ((char *, int, | |
98 | struct cmd_list_element *)); | |
99 | ||
100 | static mips_extra_func_info_t | |
c5aa993b | 101 | find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info * next_frame)); |
c906108c SS |
102 | |
103 | static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, | |
104 | mips_extra_func_info_t proc_desc)); | |
105 | ||
106 | /* This value is the model of MIPS in use. It is derived from the value | |
107 | of the PrID register. */ | |
108 | ||
109 | char *mips_processor_type; | |
110 | ||
111 | char *tmp_mips_processor_type; | |
112 | ||
113 | /* A set of original names, to be used when restoring back to generic | |
114 | registers from a specific set. */ | |
115 | ||
cce74817 JM |
116 | char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES; |
117 | char **mips_processor_reg_names = mips_generic_reg_names; | |
118 | ||
119 | char * | |
120 | mips_register_name (i) | |
121 | int i; | |
122 | { | |
123 | return mips_processor_reg_names[i]; | |
124 | } | |
9846de1b | 125 | /* *INDENT-OFF* */ |
c906108c SS |
126 | /* Names of IDT R3041 registers. */ |
127 | ||
128 | char *mips_r3041_reg_names[] = { | |
129 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
130 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
131 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
132 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
133 | "sr", "lo", "hi", "bad", "cause","pc", | |
134 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
135 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
136 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
137 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
138 | "fsr", "fir", "fp", "", | |
139 | "", "", "bus", "ccfg", "", "", "", "", | |
140 | "", "", "port", "cmp", "", "", "epc", "prid", | |
141 | }; | |
142 | ||
143 | /* Names of IDT R3051 registers. */ | |
144 | ||
145 | char *mips_r3051_reg_names[] = { | |
146 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
147 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
148 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
149 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
150 | "sr", "lo", "hi", "bad", "cause","pc", | |
151 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
152 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
153 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
154 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
155 | "fsr", "fir", "fp", "", | |
156 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
157 | "", "", "ehi", "", "", "", "epc", "prid", | |
158 | }; | |
159 | ||
160 | /* Names of IDT R3081 registers. */ | |
161 | ||
162 | char *mips_r3081_reg_names[] = { | |
163 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
164 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
165 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
166 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
167 | "sr", "lo", "hi", "bad", "cause","pc", | |
168 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
169 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
170 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
171 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
172 | "fsr", "fir", "fp", "", | |
173 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
174 | "", "", "ehi", "", "", "", "epc", "prid", | |
175 | }; | |
176 | ||
177 | /* Names of LSI 33k registers. */ | |
178 | ||
179 | char *mips_lsi33k_reg_names[] = { | |
180 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
181 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
182 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
183 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
184 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
185 | "dcic", "bpc", "bda", "", "", "", "", "", | |
186 | "", "", "", "", "", "", "", "", | |
187 | "", "", "", "", "", "", "", "", | |
188 | "", "", "", "", "", "", "", "", | |
189 | "", "", "", "", | |
190 | "", "", "", "", "", "", "", "", | |
191 | "", "", "", "", "", "", "", "", | |
192 | }; | |
193 | ||
194 | struct { | |
195 | char *name; | |
196 | char **regnames; | |
197 | } mips_processor_type_table[] = { | |
198 | { "generic", mips_generic_reg_names }, | |
199 | { "r3041", mips_r3041_reg_names }, | |
200 | { "r3051", mips_r3051_reg_names }, | |
201 | { "r3071", mips_r3081_reg_names }, | |
202 | { "r3081", mips_r3081_reg_names }, | |
203 | { "lsi33k", mips_lsi33k_reg_names }, | |
204 | { NULL, NULL } | |
205 | }; | |
9846de1b | 206 | /* *INDENT-ON* */ |
c906108c | 207 | |
c5aa993b JM |
208 | |
209 | ||
210 | ||
c906108c | 211 | /* Table to translate MIPS16 register field to actual register number. */ |
c5aa993b JM |
212 | static int mips16_to_32_reg[8] = |
213 | {16, 17, 2, 3, 4, 5, 6, 7}; | |
c906108c SS |
214 | |
215 | /* Heuristic_proc_start may hunt through the text section for a long | |
216 | time across a 2400 baud serial line. Allows the user to limit this | |
217 | search. */ | |
218 | ||
219 | static unsigned int heuristic_fence_post = 0; | |
220 | ||
c5aa993b JM |
221 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
222 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
c906108c SS |
223 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
224 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
225 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
226 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
227 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
228 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
229 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
230 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
231 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
232 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
233 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) | |
234 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
235 | ||
236 | struct linked_proc_info | |
c5aa993b JM |
237 | { |
238 | struct mips_extra_func_info info; | |
239 | struct linked_proc_info *next; | |
240 | } | |
241 | *linked_proc_desc_table = NULL; | |
c906108c | 242 | |
cce74817 JM |
243 | void |
244 | mips_print_extra_frame_info (fi) | |
245 | struct frame_info *fi; | |
246 | { | |
247 | if (fi | |
248 | && fi->extra_info | |
249 | && fi->extra_info->proc_desc | |
250 | && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS) | |
251 | printf_filtered (" frame pointer is at %s+%d\n", | |
252 | REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg), | |
253 | fi->extra_info->proc_desc->pdr.frameoffset); | |
254 | } | |
c906108c | 255 | |
43e526b9 JM |
256 | /* Convert between RAW and VIRTUAL registers. The RAW register size |
257 | defines the remote-gdb packet. */ | |
258 | ||
259 | static int mips64_transfers_32bit_regs_p = 0; | |
260 | ||
261 | int | |
262 | mips_register_raw_size (reg_nr) | |
263 | int reg_nr; | |
264 | { | |
265 | if (mips64_transfers_32bit_regs_p) | |
266 | return REGISTER_VIRTUAL_SIZE (reg_nr); | |
267 | else | |
268 | return MIPS_REGSIZE; | |
269 | } | |
270 | ||
271 | int | |
272 | mips_register_convertible (reg_nr) | |
273 | int reg_nr; | |
274 | { | |
275 | if (mips64_transfers_32bit_regs_p) | |
276 | return 0; | |
277 | else | |
278 | return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr)); | |
279 | } | |
280 | ||
281 | void | |
282 | mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf) | |
283 | int n; | |
284 | struct type *virtual_type; | |
285 | char *raw_buf; | |
286 | char *virt_buf; | |
287 | { | |
288 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
289 | memcpy (virt_buf, | |
290 | raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
291 | TYPE_LENGTH (virtual_type)); | |
292 | else | |
293 | memcpy (virt_buf, | |
294 | raw_buf, | |
295 | TYPE_LENGTH (virtual_type)); | |
296 | } | |
297 | ||
298 | void | |
299 | mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf) | |
300 | struct type *virtual_type; | |
301 | int n; | |
302 | char *virt_buf; | |
303 | char *raw_buf; | |
304 | { | |
305 | memset (raw_buf, 0, REGISTER_RAW_SIZE (n)); | |
306 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
307 | memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
308 | virt_buf, | |
309 | TYPE_LENGTH (virtual_type)); | |
310 | else | |
311 | memcpy (raw_buf, | |
312 | virt_buf, | |
313 | TYPE_LENGTH (virtual_type)); | |
314 | } | |
315 | ||
c906108c SS |
316 | /* Should the upper word of 64-bit addresses be zeroed? */ |
317 | static int mask_address_p = 1; | |
318 | ||
319 | /* Should call_function allocate stack space for a struct return? */ | |
320 | int | |
321 | mips_use_struct_convention (gcc_p, type) | |
322 | int gcc_p; | |
323 | struct type *type; | |
324 | { | |
325 | if (MIPS_EABI) | |
7a292a7a | 326 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); |
c906108c | 327 | else |
c5aa993b | 328 | return 1; /* Structures are returned by ref in extra arg0 */ |
c906108c SS |
329 | } |
330 | ||
331 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ | |
332 | ||
333 | static int | |
334 | pc_is_mips16 (bfd_vma memaddr) | |
335 | { | |
336 | struct minimal_symbol *sym; | |
337 | ||
338 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
339 | if (IS_MIPS16_ADDR (memaddr)) | |
340 | return 1; | |
341 | ||
342 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
343 | the high bit of the info field. Use this to decide if the function is | |
344 | MIPS16 or normal MIPS. */ | |
345 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
346 | if (sym) | |
347 | return MSYMBOL_IS_SPECIAL (sym); | |
348 | else | |
349 | return 0; | |
350 | } | |
351 | ||
352 | ||
353 | /* This returns the PC of the first inst after the prologue. If we can't | |
354 | find the prologue, then return 0. */ | |
355 | ||
356 | static CORE_ADDR | |
357 | after_prologue (pc, proc_desc) | |
358 | CORE_ADDR pc; | |
359 | mips_extra_func_info_t proc_desc; | |
360 | { | |
361 | struct symtab_and_line sal; | |
362 | CORE_ADDR func_addr, func_end; | |
363 | ||
364 | if (!proc_desc) | |
365 | proc_desc = find_proc_desc (pc, NULL); | |
366 | ||
367 | if (proc_desc) | |
368 | { | |
369 | /* If function is frameless, then we need to do it the hard way. I | |
c5aa993b | 370 | strongly suspect that frameless always means prologueless... */ |
c906108c SS |
371 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM |
372 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
373 | return 0; | |
374 | } | |
375 | ||
376 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
377 | return 0; /* Unknown */ | |
378 | ||
379 | sal = find_pc_line (func_addr, 0); | |
380 | ||
381 | if (sal.end < func_end) | |
382 | return sal.end; | |
383 | ||
384 | /* The line after the prologue is after the end of the function. In this | |
385 | case, tell the caller to find the prologue the hard way. */ | |
386 | ||
387 | return 0; | |
388 | } | |
389 | ||
390 | /* Decode a MIPS32 instruction that saves a register in the stack, and | |
391 | set the appropriate bit in the general register mask or float register mask | |
392 | to indicate which register is saved. This is a helper function | |
393 | for mips_find_saved_regs. */ | |
394 | ||
395 | static void | |
396 | mips32_decode_reg_save (inst, gen_mask, float_mask) | |
397 | t_inst inst; | |
398 | unsigned long *gen_mask; | |
399 | unsigned long *float_mask; | |
400 | { | |
401 | int reg; | |
402 | ||
403 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
404 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
405 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
406 | { | |
407 | /* It might be possible to use the instruction to | |
c5aa993b JM |
408 | find the offset, rather than the code below which |
409 | is based on things being in a certain order in the | |
410 | frame, but figuring out what the instruction's offset | |
411 | is relative to might be a little tricky. */ | |
c906108c SS |
412 | reg = (inst & 0x001f0000) >> 16; |
413 | *gen_mask |= (1 << reg); | |
414 | } | |
415 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
c5aa993b JM |
416 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ |
417 | || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */ | |
c906108c SS |
418 | |
419 | { | |
420 | reg = ((inst & 0x001f0000) >> 16); | |
421 | *float_mask |= (1 << reg); | |
422 | } | |
423 | } | |
424 | ||
425 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
426 | set the appropriate bit in the general register or float register mask | |
427 | to indicate which register is saved. This is a helper function | |
428 | for mips_find_saved_regs. */ | |
429 | ||
430 | static void | |
431 | mips16_decode_reg_save (inst, gen_mask) | |
432 | t_inst inst; | |
433 | unsigned long *gen_mask; | |
434 | { | |
c5aa993b | 435 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
c906108c SS |
436 | { |
437 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
438 | *gen_mask |= (1 << reg); | |
439 | } | |
c5aa993b | 440 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ |
c906108c SS |
441 | { |
442 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
443 | *gen_mask |= (1 << reg); | |
444 | } | |
c5aa993b | 445 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ |
c906108c SS |
446 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
447 | *gen_mask |= (1 << RA_REGNUM); | |
448 | } | |
449 | ||
450 | ||
451 | /* Fetch and return instruction from the specified location. If the PC | |
452 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
453 | ||
454 | static t_inst | |
455 | mips_fetch_instruction (addr) | |
c5aa993b | 456 | CORE_ADDR addr; |
c906108c SS |
457 | { |
458 | char buf[MIPS_INSTLEN]; | |
459 | int instlen; | |
460 | int status; | |
461 | ||
462 | if (pc_is_mips16 (addr)) | |
463 | { | |
464 | instlen = MIPS16_INSTLEN; | |
465 | addr = UNMAKE_MIPS16_ADDR (addr); | |
466 | } | |
467 | else | |
c5aa993b | 468 | instlen = MIPS_INSTLEN; |
c906108c SS |
469 | status = read_memory_nobpt (addr, buf, instlen); |
470 | if (status) | |
471 | memory_error (status, addr); | |
472 | return extract_unsigned_integer (buf, instlen); | |
473 | } | |
474 | ||
475 | ||
476 | /* These the fields of 32 bit mips instructions */ | |
477 | #define mips32_op(x) (x >> 25) | |
478 | #define itype_op(x) (x >> 25) | |
479 | #define itype_rs(x) ((x >> 21)& 0x1f) | |
480 | #define itype_rt(x) ((x >> 16) & 0x1f) | |
481 | #define itype_immediate(x) ( x & 0xffff) | |
482 | ||
483 | #define jtype_op(x) (x >> 25) | |
484 | #define jtype_target(x) ( x & 0x03fffff) | |
485 | ||
486 | #define rtype_op(x) (x >>25) | |
487 | #define rtype_rs(x) ((x>>21) & 0x1f) | |
488 | #define rtype_rt(x) ((x>>16) & 0x1f) | |
c5aa993b | 489 | #define rtype_rd(x) ((x>>11) & 0x1f) |
c906108c SS |
490 | #define rtype_shamt(x) ((x>>6) & 0x1f) |
491 | #define rtype_funct(x) (x & 0x3f ) | |
492 | ||
493 | static CORE_ADDR | |
c5aa993b JM |
494 | mips32_relative_offset (unsigned long inst) |
495 | { | |
496 | long x; | |
497 | x = itype_immediate (inst); | |
498 | if (x & 0x8000) /* sign bit set */ | |
c906108c | 499 | { |
c5aa993b | 500 | x |= 0xffff0000; /* sign extension */ |
c906108c | 501 | } |
c5aa993b JM |
502 | x = x << 2; |
503 | return x; | |
c906108c SS |
504 | } |
505 | ||
506 | /* Determine whate to set a single step breakpoint while considering | |
507 | branch prediction */ | |
508 | CORE_ADDR | |
c5aa993b JM |
509 | mips32_next_pc (CORE_ADDR pc) |
510 | { | |
511 | unsigned long inst; | |
512 | int op; | |
513 | inst = mips_fetch_instruction (pc); | |
514 | if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ | |
515 | { | |
516 | if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ | |
517 | { | |
518 | op = ((inst >> 25) & 0x03); | |
c906108c SS |
519 | switch (op) |
520 | { | |
c5aa993b JM |
521 | case 0: |
522 | goto equal_branch; /* BEQL */ | |
523 | case 1: | |
524 | goto neq_branch; /* BNEZ */ | |
525 | case 2: | |
526 | goto less_branch; /* BLEZ */ | |
527 | case 3: | |
528 | goto greater_branch; /* BGTZ */ | |
529 | default: | |
530 | pc += 4; | |
c906108c SS |
531 | } |
532 | } | |
c5aa993b JM |
533 | else |
534 | pc += 4; /* Not a branch, next instruction is easy */ | |
c906108c SS |
535 | } |
536 | else | |
c5aa993b JM |
537 | { /* This gets way messy */ |
538 | ||
c906108c | 539 | /* Further subdivide into SPECIAL, REGIMM and other */ |
c5aa993b | 540 | switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ |
c906108c | 541 | { |
c5aa993b JM |
542 | case 0: /* SPECIAL */ |
543 | op = rtype_funct (inst); | |
544 | switch (op) | |
545 | { | |
546 | case 8: /* JR */ | |
547 | case 9: /* JALR */ | |
548 | pc = read_register (rtype_rs (inst)); /* Set PC to that address */ | |
549 | break; | |
550 | default: | |
551 | pc += 4; | |
552 | } | |
553 | ||
554 | break; /* end special */ | |
555 | case 1: /* REGIMM */ | |
c906108c | 556 | { |
c5aa993b JM |
557 | op = jtype_op (inst); /* branch condition */ |
558 | switch (jtype_op (inst)) | |
c906108c | 559 | { |
c5aa993b JM |
560 | case 0: /* BLTZ */ |
561 | case 2: /* BLTXL */ | |
562 | case 16: /* BLTZALL */ | |
563 | case 18: /* BLTZALL */ | |
c906108c | 564 | less_branch: |
c5aa993b JM |
565 | if (read_register (itype_rs (inst)) < 0) |
566 | pc += mips32_relative_offset (inst) + 4; | |
567 | else | |
568 | pc += 8; /* after the delay slot */ | |
569 | break; | |
570 | case 1: /* GEZ */ | |
571 | case 3: /* BGEZL */ | |
572 | case 17: /* BGEZAL */ | |
573 | case 19: /* BGEZALL */ | |
c906108c | 574 | greater_equal_branch: |
c5aa993b JM |
575 | if (read_register (itype_rs (inst)) >= 0) |
576 | pc += mips32_relative_offset (inst) + 4; | |
577 | else | |
578 | pc += 8; /* after the delay slot */ | |
579 | break; | |
580 | /* All of the other intructions in the REGIMM catagory */ | |
581 | default: | |
582 | pc += 4; | |
c906108c SS |
583 | } |
584 | } | |
c5aa993b JM |
585 | break; /* end REGIMM */ |
586 | case 2: /* J */ | |
587 | case 3: /* JAL */ | |
588 | { | |
589 | unsigned long reg; | |
590 | reg = jtype_target (inst) << 2; | |
591 | pc = reg + ((pc + 4) & 0xf0000000); | |
c906108c SS |
592 | /* Whats this mysterious 0xf000000 adjustment ??? */ |
593 | } | |
c5aa993b JM |
594 | break; |
595 | /* FIXME case JALX : */ | |
596 | { | |
597 | unsigned long reg; | |
598 | reg = jtype_target (inst) << 2; | |
599 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
c906108c SS |
600 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ |
601 | } | |
c5aa993b JM |
602 | break; /* The new PC will be alternate mode */ |
603 | case 4: /* BEQ , BEQL */ | |
604 | equal_branch: | |
605 | if (read_register (itype_rs (inst)) == | |
606 | read_register (itype_rt (inst))) | |
607 | pc += mips32_relative_offset (inst) + 4; | |
608 | else | |
609 | pc += 8; | |
610 | break; | |
611 | case 5: /* BNE , BNEL */ | |
612 | neq_branch: | |
613 | if (read_register (itype_rs (inst)) != | |
614 | read_register (itype_rs (inst))) | |
615 | pc += mips32_relative_offset (inst) + 4; | |
616 | else | |
617 | pc += 8; | |
618 | break; | |
619 | case 6: /* BLEZ , BLEZL */ | |
c906108c | 620 | less_zero_branch: |
c5aa993b JM |
621 | if (read_register (itype_rs (inst) <= 0)) |
622 | pc += mips32_relative_offset (inst) + 4; | |
623 | else | |
624 | pc += 8; | |
625 | break; | |
626 | case 7: | |
627 | greater_branch: /* BGTZ BGTZL */ | |
628 | if (read_register (itype_rs (inst) > 0)) | |
629 | pc += mips32_relative_offset (inst) + 4; | |
630 | else | |
631 | pc += 8; | |
632 | break; | |
633 | default: | |
634 | pc += 8; | |
635 | } /* switch */ | |
636 | } /* else */ | |
637 | return pc; | |
638 | } /* mips32_next_pc */ | |
c906108c SS |
639 | |
640 | /* Decoding the next place to set a breakpoint is irregular for the | |
641 | mips 16 variant, but fortunatly, there fewer instructions. We have to cope | |
642 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. | |
643 | We dont want to set a single step instruction on the extend instruction | |
644 | either. | |
c5aa993b | 645 | */ |
c906108c SS |
646 | |
647 | /* Lots of mips16 instruction formats */ | |
648 | /* Predicting jumps requires itype,ritype,i8type | |
649 | and their extensions extItype,extritype,extI8type | |
c5aa993b | 650 | */ |
c906108c SS |
651 | enum mips16_inst_fmts |
652 | { | |
c5aa993b JM |
653 | itype, /* 0 immediate 5,10 */ |
654 | ritype, /* 1 5,3,8 */ | |
655 | rrtype, /* 2 5,3,3,5 */ | |
656 | rritype, /* 3 5,3,3,5 */ | |
657 | rrrtype, /* 4 5,3,3,3,2 */ | |
658 | rriatype, /* 5 5,3,3,1,4 */ | |
659 | shifttype, /* 6 5,3,3,3,2 */ | |
660 | i8type, /* 7 5,3,8 */ | |
661 | i8movtype, /* 8 5,3,3,5 */ | |
662 | i8mov32rtype, /* 9 5,3,5,3 */ | |
663 | i64type, /* 10 5,3,8 */ | |
664 | ri64type, /* 11 5,3,3,5 */ | |
665 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
666 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
667 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
668 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
669 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
670 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
671 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
672 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
673 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
674 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
675 | }; | |
c906108c SS |
676 | /* I am heaping all the fields of the formats into one structure and then, |
677 | only the fields which are involved in instruction extension */ | |
678 | struct upk_mips16 | |
c5aa993b JM |
679 | { |
680 | unsigned short inst; | |
681 | enum mips16_inst_fmts fmt; | |
682 | unsigned long offset; | |
683 | unsigned int regx; /* Function in i8 type */ | |
684 | unsigned int regy; | |
685 | }; | |
c906108c SS |
686 | |
687 | ||
688 | ||
c5aa993b JM |
689 | static void |
690 | print_unpack (char *comment, | |
691 | struct upk_mips16 *u) | |
c906108c | 692 | { |
c5aa993b JM |
693 | printf ("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", |
694 | comment, u->inst, u->fmt, u->offset, u->regx, u->regy); | |
c906108c SS |
695 | } |
696 | ||
697 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same | |
698 | format for the bits which make up the immediatate extension. | |
c5aa993b | 699 | */ |
c906108c | 700 | static unsigned long |
c5aa993b | 701 | extended_offset (unsigned long extension) |
c906108c | 702 | { |
c5aa993b JM |
703 | unsigned long value; |
704 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ | |
705 | value = value << 6; | |
706 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
707 | value = value << 5; | |
708 | value |= extension & 0x01f; /* extract 4:0 */ | |
709 | return value; | |
c906108c SS |
710 | } |
711 | ||
712 | /* Only call this function if you know that this is an extendable | |
713 | instruction, It wont malfunction, but why make excess remote memory references? | |
714 | If the immediate operands get sign extended or somthing, do it after | |
715 | the extension is performed. | |
c5aa993b | 716 | */ |
c906108c SS |
717 | /* FIXME: Every one of these cases needs to worry about sign extension |
718 | when the offset is to be used in relative addressing */ | |
719 | ||
720 | ||
c5aa993b JM |
721 | static unsigned short |
722 | fetch_mips_16 (CORE_ADDR pc) | |
c906108c | 723 | { |
c5aa993b JM |
724 | char buf[8]; |
725 | pc &= 0xfffffffe; /* clear the low order bit */ | |
726 | target_read_memory (pc, buf, 2); | |
727 | return extract_unsigned_integer (buf, 2); | |
c906108c SS |
728 | } |
729 | ||
730 | static void | |
c5aa993b JM |
731 | unpack_mips16 (CORE_ADDR pc, |
732 | struct upk_mips16 *upk) | |
c906108c | 733 | { |
c5aa993b JM |
734 | CORE_ADDR extpc; |
735 | unsigned long extension; | |
736 | int extended; | |
737 | extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */ | |
c906108c SS |
738 | /* Decrement to previous address and loose the 16bit mode flag */ |
739 | /* return if the instruction was extendable, but not actually extended */ | |
c5aa993b JM |
740 | extended = ((mips32_op (extension) == 30) ? 1 : 0); |
741 | if (extended) | |
742 | { | |
743 | extension = mips_fetch_instruction (extpc); | |
744 | } | |
c906108c SS |
745 | switch (upk->fmt) |
746 | { | |
c5aa993b | 747 | case itype: |
c906108c | 748 | { |
c5aa993b | 749 | unsigned long value; |
c906108c | 750 | if (extended) |
c5aa993b JM |
751 | { |
752 | value = extended_offset (extension); | |
753 | value = value << 11; /* rom for the original value */ | |
754 | value |= upk->inst & 0x7ff; /* eleven bits from instruction */ | |
c906108c SS |
755 | } |
756 | else | |
c5aa993b JM |
757 | { |
758 | value = upk->inst & 0x7ff; | |
759 | /* FIXME : Consider sign extension */ | |
c906108c | 760 | } |
c5aa993b | 761 | upk->offset = value; |
c906108c | 762 | } |
c5aa993b JM |
763 | break; |
764 | case ritype: | |
765 | case i8type: | |
766 | { /* A register identifier and an offset */ | |
c906108c SS |
767 | /* Most of the fields are the same as I type but the |
768 | immediate value is of a different length */ | |
c5aa993b | 769 | unsigned long value; |
c906108c SS |
770 | if (extended) |
771 | { | |
c5aa993b JM |
772 | value = extended_offset (extension); |
773 | value = value << 8; /* from the original instruction */ | |
774 | value |= upk->inst & 0xff; /* eleven bits from instruction */ | |
775 | upk->regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
776 | if (value & 0x4000) /* test the sign bit , bit 26 */ | |
777 | { | |
778 | value &= ~0x3fff; /* remove the sign bit */ | |
779 | value = -value; | |
c906108c SS |
780 | } |
781 | } | |
c5aa993b JM |
782 | else |
783 | { | |
784 | value = upk->inst & 0xff; /* 8 bits */ | |
785 | upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */ | |
786 | /* FIXME: Do sign extension , this format needs it */ | |
787 | if (value & 0x80) /* THIS CONFUSES ME */ | |
788 | { | |
789 | value &= 0xef; /* remove the sign bit */ | |
790 | value = -value; | |
791 | } | |
792 | ||
793 | } | |
794 | upk->offset = value; | |
795 | break; | |
c906108c | 796 | } |
c5aa993b | 797 | case jalxtype: |
c906108c | 798 | { |
c5aa993b JM |
799 | unsigned long value; |
800 | unsigned short nexthalf; | |
801 | value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f); | |
802 | value = value << 16; | |
803 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
804 | value |= nexthalf; | |
805 | upk->offset = value; | |
806 | break; | |
c906108c SS |
807 | } |
808 | default: | |
c5aa993b JM |
809 | printf_filtered ("Decoding unimplemented instruction format type\n"); |
810 | break; | |
c906108c SS |
811 | } |
812 | /* print_unpack("UPK",upk) ; */ | |
813 | } | |
814 | ||
815 | ||
816 | #define mips16_op(x) (x >> 11) | |
817 | ||
818 | /* This is a map of the opcodes which ae known to perform branches */ | |
819 | static unsigned char map16[32] = | |
c5aa993b JM |
820 | {0, 0, 1, 1, 1, 1, 0, 0, |
821 | 0, 0, 0, 0, 1, 0, 0, 0, | |
822 | 0, 0, 0, 0, 0, 0, 0, 0, | |
823 | 0, 0, 0, 0, 0, 1, 1, 0 | |
824 | }; | |
c906108c | 825 | |
c5aa993b JM |
826 | static CORE_ADDR |
827 | add_offset_16 (CORE_ADDR pc, int offset) | |
c906108c | 828 | { |
c5aa993b JM |
829 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); |
830 | ||
c906108c SS |
831 | } |
832 | ||
833 | ||
834 | ||
c5aa993b | 835 | static struct upk_mips16 upk; |
c906108c | 836 | |
c5aa993b JM |
837 | CORE_ADDR |
838 | mips16_next_pc (CORE_ADDR pc) | |
c906108c | 839 | { |
c5aa993b JM |
840 | int op; |
841 | t_inst inst; | |
c906108c | 842 | /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ |
c5aa993b JM |
843 | inst = fetch_mips_16 (pc); |
844 | upk.inst = inst; | |
845 | op = mips16_op (upk.inst); | |
c906108c SS |
846 | if (map16[op]) |
847 | { | |
c5aa993b | 848 | int reg; |
c906108c SS |
849 | switch (op) |
850 | { | |
c5aa993b JM |
851 | case 2: /* Branch */ |
852 | upk.fmt = itype; | |
853 | unpack_mips16 (pc, &upk); | |
854 | { | |
855 | long offset; | |
856 | offset = upk.offset; | |
c906108c | 857 | if (offset & 0x800) |
c5aa993b JM |
858 | { |
859 | offset &= 0xeff; | |
860 | offset = -offset; | |
c906108c | 861 | } |
c5aa993b | 862 | pc += (offset << 1) + 2; |
c906108c | 863 | } |
c5aa993b JM |
864 | break; |
865 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ | |
866 | upk.fmt = jalxtype; | |
867 | unpack_mips16 (pc, &upk); | |
868 | pc = add_offset_16 (pc, upk.offset); | |
869 | if ((upk.inst >> 10) & 0x01) /* Exchange mode */ | |
870 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
871 | else | |
872 | pc |= 0x01; | |
873 | break; | |
874 | case 4: /* beqz */ | |
875 | upk.fmt = ritype; | |
876 | unpack_mips16 (pc, &upk); | |
877 | reg = read_register (upk.regx); | |
878 | if (reg == 0) | |
879 | pc += (upk.offset << 1) + 2; | |
880 | else | |
881 | pc += 2; | |
882 | break; | |
883 | case 5: /* bnez */ | |
884 | upk.fmt = ritype; | |
885 | unpack_mips16 (pc, &upk); | |
886 | reg = read_register (upk.regx); | |
887 | if (reg != 0) | |
888 | pc += (upk.offset << 1) + 2; | |
889 | else | |
890 | pc += 2; | |
891 | break; | |
892 | case 12: /* I8 Formats btez btnez */ | |
893 | upk.fmt = i8type; | |
894 | unpack_mips16 (pc, &upk); | |
895 | /* upk.regx contains the opcode */ | |
896 | reg = read_register (24); /* Test register is 24 */ | |
897 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
898 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
899 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
900 | pc += (upk.offset << 1) + 2; | |
901 | else | |
902 | pc += 2; | |
903 | break; | |
904 | case 29: /* RR Formats JR, JALR, JALR-RA */ | |
905 | upk.fmt = rrtype; | |
906 | op = upk.inst & 0x1f; | |
c906108c | 907 | if (op == 0) |
c5aa993b JM |
908 | { |
909 | upk.regx = (upk.inst >> 8) & 0x07; | |
910 | upk.regy = (upk.inst >> 5) & 0x07; | |
c906108c SS |
911 | switch (upk.regy) |
912 | { | |
c5aa993b JM |
913 | case 0: |
914 | reg = upk.regx; | |
915 | break; | |
916 | case 1: | |
917 | reg = 31; | |
918 | break; /* Function return instruction */ | |
919 | case 2: | |
920 | reg = upk.regx; | |
921 | break; | |
922 | default: | |
923 | reg = 31; | |
924 | break; /* BOGUS Guess */ | |
c906108c | 925 | } |
c5aa993b | 926 | pc = read_register (reg); |
c906108c | 927 | } |
c5aa993b JM |
928 | else |
929 | pc += 2; | |
930 | break; | |
931 | case 30: /* This is an extend instruction */ | |
932 | pc += 4; /* Dont be setting breakpints on the second half */ | |
933 | break; | |
934 | default: | |
935 | printf ("Filtered - next PC probably incorrrect due to jump inst\n"); | |
936 | pc += 2; | |
937 | break; | |
c906108c SS |
938 | } |
939 | } | |
c5aa993b JM |
940 | else |
941 | pc += 2; /* just a good old instruction */ | |
c906108c SS |
942 | /* See if we CAN actually break on the next instruction */ |
943 | /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ | |
c5aa993b JM |
944 | return pc; |
945 | } /* mips16_next_pc */ | |
c906108c SS |
946 | |
947 | /* The mips_next_pc function supports single_tep when the remote target monitor or | |
948 | stub is not developed enough to so a single_step. | |
949 | It works by decoding the current instruction and predicting where a branch | |
950 | will go. This isnt hard because all the data is available. | |
951 | The MIPS32 and MIPS16 variants are quite different | |
c5aa993b JM |
952 | */ |
953 | CORE_ADDR | |
954 | mips_next_pc (CORE_ADDR pc) | |
c906108c | 955 | { |
c5aa993b | 956 | t_inst inst; |
c906108c SS |
957 | /* inst = mips_fetch_instruction(pc) ; */ |
958 | /* if (pc_is_mips16) <----- This is failing */ | |
c5aa993b JM |
959 | if (pc & 0x01) |
960 | return mips16_next_pc (pc); | |
961 | else | |
962 | return mips32_next_pc (pc); | |
963 | } /* mips_next_pc */ | |
c906108c SS |
964 | |
965 | /* Guaranteed to set fci->saved_regs to some values (it never leaves it | |
966 | NULL). */ | |
967 | ||
968 | void | |
969 | mips_find_saved_regs (fci) | |
970 | struct frame_info *fci; | |
971 | { | |
972 | int ireg; | |
973 | CORE_ADDR reg_position; | |
974 | /* r0 bit means kernel trap */ | |
975 | int kernel_trap; | |
976 | /* What registers have been saved? Bitmasks. */ | |
977 | unsigned long gen_mask, float_mask; | |
978 | mips_extra_func_info_t proc_desc; | |
979 | t_inst inst; | |
980 | ||
981 | frame_saved_regs_zalloc (fci); | |
982 | ||
983 | /* If it is the frame for sigtramp, the saved registers are located | |
984 | in a sigcontext structure somewhere on the stack. | |
985 | If the stack layout for sigtramp changes we might have to change these | |
986 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
987 | #ifndef SIGFRAME_BASE | |
988 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
989 | above the sigtramp frame. */ | |
990 | #define SIGFRAME_BASE MIPS_REGSIZE | |
991 | /* FIXME! Are these correct?? */ | |
992 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
993 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
994 | #define SIGFRAME_FPREGSAVE_OFF \ | |
995 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
996 | #endif | |
997 | #ifndef SIGFRAME_REG_SIZE | |
998 | /* FIXME! Is this correct?? */ | |
999 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
1000 | #endif | |
1001 | if (fci->signal_handler_caller) | |
1002 | { | |
1003 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1004 | { | |
c5aa993b JM |
1005 | reg_position = fci->frame + SIGFRAME_REGSAVE_OFF |
1006 | + ireg * SIGFRAME_REG_SIZE; | |
1007 | fci->saved_regs[ireg] = reg_position; | |
c906108c SS |
1008 | } |
1009 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1010 | { | |
c5aa993b JM |
1011 | reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF |
1012 | + ireg * SIGFRAME_REG_SIZE; | |
1013 | fci->saved_regs[FP0_REGNUM + ireg] = reg_position; | |
c906108c SS |
1014 | } |
1015 | fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; | |
1016 | return; | |
1017 | } | |
1018 | ||
cce74817 | 1019 | proc_desc = fci->extra_info->proc_desc; |
c906108c SS |
1020 | if (proc_desc == NULL) |
1021 | /* I'm not sure how/whether this can happen. Normally when we can't | |
1022 | find a proc_desc, we "synthesize" one using heuristic_proc_desc | |
1023 | and set the saved_regs right away. */ | |
1024 | return; | |
1025 | ||
c5aa993b JM |
1026 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; |
1027 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1028 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
c906108c | 1029 | |
c5aa993b JM |
1030 | if ( /* In any frame other than the innermost or a frame interrupted by |
1031 | a signal, we assume that all registers have been saved. | |
1032 | This assumes that all register saves in a function happen before | |
1033 | the first function call. */ | |
1034 | (fci->next == NULL || fci->next->signal_handler_caller) | |
c906108c | 1035 | |
c5aa993b JM |
1036 | /* In a dummy frame we know exactly where things are saved. */ |
1037 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
c906108c | 1038 | |
c5aa993b JM |
1039 | /* Don't bother unless we are inside a function prologue. Outside the |
1040 | prologue, we know where everything is. */ | |
c906108c | 1041 | |
c5aa993b | 1042 | && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) |
c906108c | 1043 | |
c5aa993b JM |
1044 | /* Not sure exactly what kernel_trap means, but if it means |
1045 | the kernel saves the registers without a prologue doing it, | |
1046 | we better not examine the prologue to see whether registers | |
1047 | have been saved yet. */ | |
1048 | && !kernel_trap) | |
c906108c SS |
1049 | { |
1050 | /* We need to figure out whether the registers that the proc_desc | |
c5aa993b | 1051 | claims are saved have been saved yet. */ |
c906108c SS |
1052 | |
1053 | CORE_ADDR addr; | |
1054 | ||
1055 | /* Bitmasks; set if we have found a save for the register. */ | |
1056 | unsigned long gen_save_found = 0; | |
1057 | unsigned long float_save_found = 0; | |
1058 | int instlen; | |
1059 | ||
1060 | /* If the address is odd, assume this is MIPS16 code. */ | |
1061 | addr = PROC_LOW_ADDR (proc_desc); | |
1062 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; | |
1063 | ||
1064 | /* Scan through this function's instructions preceding the current | |
1065 | PC, and look for those that save registers. */ | |
1066 | while (addr < fci->pc) | |
1067 | { | |
1068 | inst = mips_fetch_instruction (addr); | |
1069 | if (pc_is_mips16 (addr)) | |
1070 | mips16_decode_reg_save (inst, &gen_save_found); | |
1071 | else | |
1072 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
1073 | addr += instlen; | |
1074 | } | |
1075 | gen_mask = gen_save_found; | |
1076 | float_mask = float_save_found; | |
1077 | } | |
1078 | ||
1079 | /* Fill in the offsets for the registers which gen_mask says | |
1080 | were saved. */ | |
1081 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
c5aa993b | 1082 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) |
c906108c SS |
1083 | if (gen_mask & 0x80000000) |
1084 | { | |
1085 | fci->saved_regs[ireg] = reg_position; | |
7a292a7a | 1086 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1087 | } |
1088 | ||
1089 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order | |
1090 | of that normally used by gcc. Therefore, we have to fetch the first | |
1091 | instruction of the function, and if it's an entry instruction that | |
1092 | saves $s0 or $s1, correct their saved addresses. */ | |
1093 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
1094 | { | |
1095 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
c5aa993b | 1096 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
c906108c SS |
1097 | { |
1098 | int reg; | |
1099 | int sreg_count = (inst >> 6) & 3; | |
c5aa993b | 1100 | |
c906108c SS |
1101 | /* Check if the ra register was pushed on the stack. */ |
1102 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
1103 | if (inst & 0x20) | |
7a292a7a | 1104 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1105 | |
1106 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
c5aa993b | 1107 | for (reg = 16; reg < sreg_count + 16; reg++) |
c906108c SS |
1108 | { |
1109 | fci->saved_regs[reg] = reg_position; | |
7a292a7a | 1110 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1111 | } |
1112 | } | |
1113 | } | |
1114 | ||
1115 | /* Fill in the offsets for the registers which float_mask says | |
1116 | were saved. */ | |
1117 | reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); | |
1118 | ||
1119 | /* The freg_offset points to where the first *double* register | |
1120 | is saved. So skip to the high-order word. */ | |
c5aa993b | 1121 | if (!GDB_TARGET_IS_MIPS64) |
7a292a7a | 1122 | reg_position += MIPS_SAVED_REGSIZE; |
c906108c SS |
1123 | |
1124 | /* Fill in the offsets for the float registers which float_mask says | |
1125 | were saved. */ | |
c5aa993b | 1126 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) |
c906108c SS |
1127 | if (float_mask & 0x80000000) |
1128 | { | |
c5aa993b | 1129 | fci->saved_regs[FP0_REGNUM + ireg] = reg_position; |
7a292a7a | 1130 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1131 | } |
1132 | ||
1133 | fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM]; | |
1134 | } | |
1135 | ||
1136 | static CORE_ADDR | |
c5aa993b | 1137 | read_next_frame_reg (fi, regno) |
c906108c SS |
1138 | struct frame_info *fi; |
1139 | int regno; | |
1140 | { | |
1141 | for (; fi; fi = fi->next) | |
1142 | { | |
1143 | /* We have to get the saved sp from the sigcontext | |
c5aa993b | 1144 | if it is a signal handler frame. */ |
c906108c SS |
1145 | if (regno == SP_REGNUM && !fi->signal_handler_caller) |
1146 | return fi->frame; | |
1147 | else | |
1148 | { | |
1149 | if (fi->saved_regs == NULL) | |
1150 | mips_find_saved_regs (fi); | |
1151 | if (fi->saved_regs[regno]) | |
c5aa993b | 1152 | return read_memory_integer (fi->saved_regs[regno], MIPS_SAVED_REGSIZE); |
c906108c SS |
1153 | } |
1154 | } | |
1155 | return read_register (regno); | |
1156 | } | |
1157 | ||
1158 | /* mips_addr_bits_remove - remove useless address bits */ | |
1159 | ||
1160 | CORE_ADDR | |
1161 | mips_addr_bits_remove (addr) | |
c5aa993b | 1162 | CORE_ADDR addr; |
c906108c SS |
1163 | { |
1164 | #if GDB_TARGET_IS_MIPS64 | |
c5aa993b | 1165 | if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff)) |
c906108c SS |
1166 | { |
1167 | /* This hack is a work-around for existing boards using PMON, | |
c5aa993b JM |
1168 | the simulator, and any other 64-bit targets that doesn't have |
1169 | true 64-bit addressing. On these targets, the upper 32 bits | |
1170 | of addresses are ignored by the hardware. Thus, the PC or SP | |
1171 | are likely to have been sign extended to all 1s by instruction | |
1172 | sequences that load 32-bit addresses. For example, a typical | |
1173 | piece of code that loads an address is this: | |
1174 | lui $r2, <upper 16 bits> | |
1175 | ori $r2, <lower 16 bits> | |
1176 | But the lui sign-extends the value such that the upper 32 bits | |
1177 | may be all 1s. The workaround is simply to mask off these bits. | |
1178 | In the future, gcc may be changed to support true 64-bit | |
1179 | addressing, and this masking will have to be disabled. */ | |
1180 | addr &= (CORE_ADDR) 0xffffffff; | |
c906108c SS |
1181 | } |
1182 | #else | |
1183 | /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), | |
1184 | BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. | |
1185 | So we still have to mask off useless bits from addresses. */ | |
c5aa993b | 1186 | addr &= (CORE_ADDR) 0xffffffff; |
c906108c SS |
1187 | #endif |
1188 | ||
1189 | return addr; | |
1190 | } | |
1191 | ||
1192 | void | |
1193 | mips_init_frame_pc_first (fromleaf, prev) | |
1194 | int fromleaf; | |
1195 | struct frame_info *prev; | |
1196 | { | |
1197 | CORE_ADDR pc, tmp; | |
1198 | ||
1199 | pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : | |
c5aa993b | 1200 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); |
c906108c | 1201 | tmp = mips_skip_stub (pc); |
c5aa993b | 1202 | prev->pc = tmp ? tmp : pc; |
c906108c SS |
1203 | } |
1204 | ||
1205 | ||
1206 | CORE_ADDR | |
c5aa993b | 1207 | mips_frame_saved_pc (frame) |
c906108c SS |
1208 | struct frame_info *frame; |
1209 | { | |
1210 | CORE_ADDR saved_pc; | |
cce74817 | 1211 | mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc; |
c906108c SS |
1212 | /* We have to get the saved pc from the sigcontext |
1213 | if it is a signal handler frame. */ | |
1214 | int pcreg = frame->signal_handler_caller ? PC_REGNUM | |
c5aa993b | 1215 | : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM); |
c906108c | 1216 | |
c5aa993b | 1217 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) |
7a292a7a | 1218 | saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE); |
c906108c | 1219 | else |
7a292a7a | 1220 | saved_pc = read_next_frame_reg (frame, pcreg); |
c906108c SS |
1221 | |
1222 | return ADDR_BITS_REMOVE (saved_pc); | |
1223 | } | |
1224 | ||
1225 | static struct mips_extra_func_info temp_proc_desc; | |
cce74817 | 1226 | static CORE_ADDR temp_saved_regs[NUM_REGS]; |
c906108c SS |
1227 | |
1228 | /* Set a register's saved stack address in temp_saved_regs. If an address | |
1229 | has already been set for this register, do nothing; this way we will | |
1230 | only recognize the first save of a given register in a function prologue. | |
1231 | This is a helper function for mips{16,32}_heuristic_proc_desc. */ | |
1232 | ||
1233 | static void | |
1234 | set_reg_offset (regno, offset) | |
1235 | int regno; | |
1236 | CORE_ADDR offset; | |
1237 | { | |
cce74817 JM |
1238 | if (temp_saved_regs[regno] == 0) |
1239 | temp_saved_regs[regno] = offset; | |
c906108c SS |
1240 | } |
1241 | ||
1242 | ||
1243 | /* Test whether the PC points to the return instruction at the | |
1244 | end of a function. */ | |
1245 | ||
c5aa993b | 1246 | static int |
c906108c SS |
1247 | mips_about_to_return (pc) |
1248 | CORE_ADDR pc; | |
1249 | { | |
1250 | if (pc_is_mips16 (pc)) | |
1251 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
1252 | generates a "jr $ra"; other times it generates code to load | |
1253 | the return address from the stack to an accessible register (such | |
1254 | as $a3), then a "jr" using that register. This second case | |
1255 | is almost impossible to distinguish from an indirect jump | |
1256 | used for switch statements, so we don't even try. */ | |
1257 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
1258 | else | |
1259 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
1260 | } | |
1261 | ||
1262 | ||
1263 | /* This fencepost looks highly suspicious to me. Removing it also | |
1264 | seems suspicious as it could affect remote debugging across serial | |
1265 | lines. */ | |
1266 | ||
1267 | static CORE_ADDR | |
1268 | heuristic_proc_start (pc) | |
c5aa993b | 1269 | CORE_ADDR pc; |
c906108c | 1270 | { |
c5aa993b JM |
1271 | CORE_ADDR start_pc; |
1272 | CORE_ADDR fence; | |
1273 | int instlen; | |
1274 | int seen_adjsp = 0; | |
c906108c | 1275 | |
c5aa993b JM |
1276 | pc = ADDR_BITS_REMOVE (pc); |
1277 | start_pc = pc; | |
1278 | fence = start_pc - heuristic_fence_post; | |
1279 | if (start_pc == 0) | |
1280 | return 0; | |
c906108c | 1281 | |
c5aa993b JM |
1282 | if (heuristic_fence_post == UINT_MAX |
1283 | || fence < VM_MIN_ADDRESS) | |
1284 | fence = VM_MIN_ADDRESS; | |
c906108c | 1285 | |
c5aa993b | 1286 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
c906108c | 1287 | |
c5aa993b JM |
1288 | /* search back for previous return */ |
1289 | for (start_pc -= instlen;; start_pc -= instlen) | |
1290 | if (start_pc < fence) | |
1291 | { | |
1292 | /* It's not clear to me why we reach this point when | |
1293 | stop_soon_quietly, but with this test, at least we | |
1294 | don't print out warnings for every child forked (eg, on | |
1295 | decstation). 22apr93 [email protected]. */ | |
1296 | if (!stop_soon_quietly) | |
c906108c | 1297 | { |
c5aa993b JM |
1298 | static int blurb_printed = 0; |
1299 | ||
1300 | warning ("Warning: GDB can't find the start of the function at 0x%s.", | |
1301 | paddr_nz (pc)); | |
1302 | ||
1303 | if (!blurb_printed) | |
c906108c | 1304 | { |
c5aa993b JM |
1305 | /* This actually happens frequently in embedded |
1306 | development, when you first connect to a board | |
1307 | and your stack pointer and pc are nowhere in | |
1308 | particular. This message needs to give people | |
1309 | in that situation enough information to | |
1310 | determine that it's no big deal. */ | |
1311 | printf_filtered ("\n\ | |
cd0fc7c3 SS |
1312 | GDB is unable to find the start of the function at 0x%s\n\ |
1313 | and thus can't determine the size of that function's stack frame.\n\ | |
1314 | This means that GDB may be unable to access that stack frame, or\n\ | |
1315 | the frames below it.\n\ | |
1316 | This problem is most likely caused by an invalid program counter or\n\ | |
1317 | stack pointer.\n\ | |
1318 | However, if you think GDB should simply search farther back\n\ | |
1319 | from 0x%s for code which looks like the beginning of a\n\ | |
1320 | function, you can increase the range of the search using the `set\n\ | |
1321 | heuristic-fence-post' command.\n", | |
c5aa993b JM |
1322 | paddr_nz (pc), paddr_nz (pc)); |
1323 | blurb_printed = 1; | |
c906108c | 1324 | } |
c906108c SS |
1325 | } |
1326 | ||
c5aa993b JM |
1327 | return 0; |
1328 | } | |
1329 | else if (pc_is_mips16 (start_pc)) | |
1330 | { | |
1331 | unsigned short inst; | |
1332 | ||
1333 | /* On MIPS16, any one of the following is likely to be the | |
1334 | start of a function: | |
1335 | entry | |
1336 | addiu sp,-n | |
1337 | daddiu sp,-n | |
1338 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
1339 | inst = mips_fetch_instruction (start_pc); | |
1340 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
1341 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1342 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1343 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1344 | break; | |
1345 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1346 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1347 | seen_adjsp = 1; | |
1348 | else | |
1349 | seen_adjsp = 0; | |
1350 | } | |
1351 | else if (mips_about_to_return (start_pc)) | |
1352 | { | |
1353 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
1354 | break; | |
1355 | } | |
1356 | ||
c906108c | 1357 | #if 0 |
c5aa993b JM |
1358 | /* skip nops (usually 1) 0 - is this */ |
1359 | while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) | |
1360 | start_pc += MIPS_INSTLEN; | |
c906108c | 1361 | #endif |
c5aa993b | 1362 | return start_pc; |
c906108c SS |
1363 | } |
1364 | ||
1365 | /* Fetch the immediate value from a MIPS16 instruction. | |
1366 | If the previous instruction was an EXTEND, use it to extend | |
1367 | the upper bits of the immediate value. This is a helper function | |
1368 | for mips16_heuristic_proc_desc. */ | |
1369 | ||
1370 | static int | |
1371 | mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) | |
c5aa993b JM |
1372 | unsigned short prev_inst; /* previous instruction */ |
1373 | unsigned short inst; /* current instruction */ | |
1374 | int nbits; /* number of bits in imm field */ | |
1375 | int scale; /* scale factor to be applied to imm */ | |
1376 | int is_signed; /* is the imm field signed? */ | |
c906108c SS |
1377 | { |
1378 | int offset; | |
1379 | ||
1380 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1381 | { | |
1382 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
c5aa993b | 1383 | if (offset & 0x8000) /* check for negative extend */ |
c906108c SS |
1384 | offset = 0 - (0x10000 - (offset & 0xffff)); |
1385 | return offset | (inst & 0x1f); | |
1386 | } | |
1387 | else | |
1388 | { | |
1389 | int max_imm = 1 << nbits; | |
1390 | int mask = max_imm - 1; | |
1391 | int sign_bit = max_imm >> 1; | |
1392 | ||
1393 | offset = inst & mask; | |
1394 | if (is_signed && (offset & sign_bit)) | |
1395 | offset = 0 - (max_imm - offset); | |
1396 | return offset * scale; | |
1397 | } | |
1398 | } | |
1399 | ||
1400 | ||
1401 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
1402 | stream from start_pc to limit_pc. */ | |
1403 | ||
1404 | static void | |
c5aa993b JM |
1405 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp) |
1406 | CORE_ADDR start_pc, limit_pc; | |
1407 | struct frame_info *next_frame; | |
1408 | CORE_ADDR sp; | |
c906108c SS |
1409 | { |
1410 | CORE_ADDR cur_pc; | |
1411 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
1412 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
1413 | unsigned inst = 0; /* current instruction */ | |
1414 | unsigned entry_inst = 0; /* the entry instruction */ | |
1415 | int reg, offset; | |
1416 | ||
c5aa993b JM |
1417 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */ |
1418 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
c906108c SS |
1419 | |
1420 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) | |
1421 | { | |
1422 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
1423 | the immediate offset extension from it in mips16_get_imm. */ | |
1424 | prev_inst = inst; | |
1425 | ||
1426 | /* Fetch and decode the instruction. */ | |
1427 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
c5aa993b | 1428 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
c906108c SS |
1429 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ |
1430 | { | |
1431 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
c5aa993b JM |
1432 | if (offset < 0) /* negative stack adjustment? */ |
1433 | PROC_FRAME_OFFSET (&temp_proc_desc) -= offset; | |
c906108c SS |
1434 | else |
1435 | /* Exit loop if a positive stack adjustment is found, which | |
1436 | usually means that the stack cleanup code in the function | |
1437 | epilogue is reached. */ | |
1438 | break; | |
1439 | } | |
1440 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
1441 | { | |
1442 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1443 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
c5aa993b | 1444 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
c906108c SS |
1445 | set_reg_offset (reg, sp + offset); |
1446 | } | |
1447 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
1448 | { | |
1449 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1450 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1451 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
c906108c SS |
1452 | set_reg_offset (reg, sp + offset); |
1453 | } | |
1454 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
1455 | { | |
1456 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
c5aa993b | 1457 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
c906108c SS |
1458 | set_reg_offset (RA_REGNUM, sp + offset); |
1459 | } | |
1460 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
1461 | { | |
1462 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
c5aa993b | 1463 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
c906108c SS |
1464 | set_reg_offset (RA_REGNUM, sp + offset); |
1465 | } | |
c5aa993b | 1466 | else if (inst == 0x673d) /* move $s1, $sp */ |
c906108c SS |
1467 | { |
1468 | frame_addr = sp; | |
1469 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
1470 | } | |
1471 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
1472 | { | |
1473 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1474 | frame_addr = sp + offset; | |
1475 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
1476 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; | |
1477 | } | |
1478 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
1479 | { | |
1480 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
1481 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1482 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1483 | set_reg_offset (reg, frame_addr + offset); |
1484 | } | |
1485 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
1486 | { | |
1487 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1488 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 1489 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1490 | set_reg_offset (reg, frame_addr + offset); |
1491 | } | |
c5aa993b JM |
1492 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
1493 | entry_inst = inst; /* save for later processing */ | |
c906108c | 1494 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
c5aa993b | 1495 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ |
c906108c SS |
1496 | } |
1497 | ||
c5aa993b JM |
1498 | /* The entry instruction is typically the first instruction in a function, |
1499 | and it stores registers at offsets relative to the value of the old SP | |
1500 | (before the prologue). But the value of the sp parameter to this | |
1501 | function is the new SP (after the prologue has been executed). So we | |
1502 | can't calculate those offsets until we've seen the entire prologue, | |
1503 | and can calculate what the old SP must have been. */ | |
1504 | if (entry_inst != 0) | |
1505 | { | |
1506 | int areg_count = (entry_inst >> 8) & 7; | |
1507 | int sreg_count = (entry_inst >> 6) & 3; | |
c906108c | 1508 | |
c5aa993b JM |
1509 | /* The entry instruction always subtracts 32 from the SP. */ |
1510 | PROC_FRAME_OFFSET (&temp_proc_desc) += 32; | |
c906108c | 1511 | |
c5aa993b JM |
1512 | /* Now we can calculate what the SP must have been at the |
1513 | start of the function prologue. */ | |
1514 | sp += PROC_FRAME_OFFSET (&temp_proc_desc); | |
c906108c | 1515 | |
c5aa993b JM |
1516 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
1517 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
1518 | { | |
1519 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
1520 | set_reg_offset (reg, sp + offset); | |
1521 | offset += MIPS_SAVED_REGSIZE; | |
1522 | } | |
c906108c | 1523 | |
c5aa993b JM |
1524 | /* Check if the ra register was pushed on the stack. */ |
1525 | offset = -4; | |
1526 | if (entry_inst & 0x20) | |
1527 | { | |
1528 | PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM; | |
1529 | set_reg_offset (RA_REGNUM, sp + offset); | |
1530 | offset -= MIPS_SAVED_REGSIZE; | |
1531 | } | |
c906108c | 1532 | |
c5aa993b JM |
1533 | /* Check if the s0 and s1 registers were pushed on the stack. */ |
1534 | for (reg = 16; reg < sreg_count + 16; reg++) | |
1535 | { | |
1536 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
1537 | set_reg_offset (reg, sp + offset); | |
1538 | offset -= MIPS_SAVED_REGSIZE; | |
1539 | } | |
1540 | } | |
c906108c SS |
1541 | } |
1542 | ||
1543 | static void | |
c5aa993b JM |
1544 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp) |
1545 | CORE_ADDR start_pc, limit_pc; | |
1546 | struct frame_info *next_frame; | |
1547 | CORE_ADDR sp; | |
c906108c SS |
1548 | { |
1549 | CORE_ADDR cur_pc; | |
c5aa993b | 1550 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ |
c906108c | 1551 | restart: |
cce74817 | 1552 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c5aa993b | 1553 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; |
c906108c SS |
1554 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
1555 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
1556 | { | |
1557 | unsigned long inst, high_word, low_word; | |
1558 | int reg; | |
1559 | ||
1560 | /* Fetch the instruction. */ | |
1561 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
1562 | ||
1563 | /* Save some code by pre-extracting some useful fields. */ | |
1564 | high_word = (inst >> 16) & 0xffff; | |
1565 | low_word = inst & 0xffff; | |
1566 | reg = high_word & 0x1f; | |
1567 | ||
c5aa993b | 1568 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ |
c906108c SS |
1569 | || high_word == 0x23bd /* addi $sp,$sp,-i */ |
1570 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
1571 | { | |
1572 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
c5aa993b | 1573 | PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word; |
c906108c SS |
1574 | else |
1575 | /* Exit loop if a positive stack adjustment is found, which | |
1576 | usually means that the stack cleanup code in the function | |
1577 | epilogue is reached. */ | |
1578 | break; | |
1579 | } | |
1580 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
1581 | { | |
c5aa993b | 1582 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1583 | set_reg_offset (reg, sp + low_word); |
1584 | } | |
1585 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
1586 | { | |
1587 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
1588 | but the register size used is only 32 bits. Make the address | |
1589 | for the saved register point to the lower 32 bits. */ | |
c5aa993b | 1590 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1591 | set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); |
1592 | } | |
c5aa993b | 1593 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
c906108c SS |
1594 | { |
1595 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
c5aa993b JM |
1596 | if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc)) |
1597 | frame_addr = sp + low_word; | |
c906108c SS |
1598 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) |
1599 | { | |
1600 | unsigned alloca_adjust; | |
1601 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
1602 | frame_addr = read_next_frame_reg (next_frame, 30); |
1603 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); | |
c906108c SS |
1604 | if (alloca_adjust > 0) |
1605 | { | |
1606 | /* FP > SP + frame_size. This may be because | |
1607 | * of an alloca or somethings similar. | |
1608 | * Fix sp to "pre-alloca" value, and try again. | |
1609 | */ | |
1610 | sp += alloca_adjust; | |
1611 | goto restart; | |
1612 | } | |
1613 | } | |
1614 | } | |
c5aa993b JM |
1615 | /* move $30,$sp. With different versions of gas this will be either |
1616 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
1617 | Accept any one of these. */ | |
c906108c SS |
1618 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) |
1619 | { | |
1620 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
1621 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1622 | { | |
1623 | unsigned alloca_adjust; | |
1624 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
1625 | frame_addr = read_next_frame_reg (next_frame, 30); |
1626 | alloca_adjust = (unsigned) (frame_addr - sp); | |
c906108c SS |
1627 | if (alloca_adjust > 0) |
1628 | { | |
1629 | /* FP > SP + frame_size. This may be because | |
1630 | * of an alloca or somethings similar. | |
1631 | * Fix sp to "pre-alloca" value, and try again. | |
1632 | */ | |
1633 | sp += alloca_adjust; | |
1634 | goto restart; | |
1635 | } | |
1636 | } | |
1637 | } | |
c5aa993b | 1638 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
c906108c | 1639 | { |
c5aa993b | 1640 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
c906108c SS |
1641 | set_reg_offset (reg, frame_addr + low_word); |
1642 | } | |
1643 | } | |
1644 | } | |
1645 | ||
1646 | static mips_extra_func_info_t | |
c5aa993b JM |
1647 | heuristic_proc_desc (start_pc, limit_pc, next_frame) |
1648 | CORE_ADDR start_pc, limit_pc; | |
1649 | struct frame_info *next_frame; | |
c906108c SS |
1650 | { |
1651 | CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
1652 | ||
c5aa993b JM |
1653 | if (start_pc == 0) |
1654 | return NULL; | |
1655 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); | |
cce74817 | 1656 | memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
1657 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; |
1658 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
1659 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
1660 | ||
1661 | if (start_pc + 200 < limit_pc) | |
1662 | limit_pc = start_pc + 200; | |
1663 | if (pc_is_mips16 (start_pc)) | |
1664 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1665 | else | |
1666 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1667 | return &temp_proc_desc; | |
1668 | } | |
1669 | ||
1670 | static mips_extra_func_info_t | |
1671 | non_heuristic_proc_desc (pc, addrptr) | |
1672 | CORE_ADDR pc; | |
1673 | CORE_ADDR *addrptr; | |
1674 | { | |
1675 | CORE_ADDR startaddr; | |
1676 | mips_extra_func_info_t proc_desc; | |
c5aa993b | 1677 | struct block *b = block_for_pc (pc); |
c906108c SS |
1678 | struct symbol *sym; |
1679 | ||
1680 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
1681 | if (addrptr) | |
1682 | *addrptr = startaddr; | |
1683 | if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) | |
1684 | sym = NULL; | |
1685 | else | |
1686 | { | |
1687 | if (startaddr > BLOCK_START (b)) | |
1688 | /* This is the "pathological" case referred to in a comment in | |
1689 | print_frame_info. It might be better to move this check into | |
1690 | symbol reading. */ | |
1691 | sym = NULL; | |
1692 | else | |
1693 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); | |
1694 | } | |
1695 | ||
1696 | /* If we never found a PDR for this function in symbol reading, then | |
1697 | examine prologues to find the information. */ | |
1698 | if (sym) | |
1699 | { | |
1700 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
1701 | if (PROC_FRAME_REG (proc_desc) == -1) | |
1702 | return NULL; | |
1703 | else | |
1704 | return proc_desc; | |
1705 | } | |
1706 | else | |
1707 | return NULL; | |
1708 | } | |
1709 | ||
1710 | ||
1711 | static mips_extra_func_info_t | |
1712 | find_proc_desc (pc, next_frame) | |
1713 | CORE_ADDR pc; | |
1714 | struct frame_info *next_frame; | |
1715 | { | |
1716 | mips_extra_func_info_t proc_desc; | |
1717 | CORE_ADDR startaddr; | |
1718 | ||
1719 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
1720 | ||
1721 | if (proc_desc) | |
1722 | { | |
1723 | /* IF this is the topmost frame AND | |
1724 | * (this proc does not have debugging information OR | |
1725 | * the PC is in the procedure prologue) | |
1726 | * THEN create a "heuristic" proc_desc (by analyzing | |
1727 | * the actual code) to replace the "official" proc_desc. | |
1728 | */ | |
1729 | if (next_frame == NULL) | |
1730 | { | |
1731 | struct symtab_and_line val; | |
1732 | struct symbol *proc_symbol = | |
c5aa993b | 1733 | PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc); |
c906108c SS |
1734 | |
1735 | if (proc_symbol) | |
1736 | { | |
1737 | val = find_pc_line (BLOCK_START | |
c5aa993b | 1738 | (SYMBOL_BLOCK_VALUE (proc_symbol)), |
c906108c SS |
1739 | 0); |
1740 | val.pc = val.end ? val.end : pc; | |
1741 | } | |
1742 | if (!proc_symbol || pc < val.pc) | |
1743 | { | |
1744 | mips_extra_func_info_t found_heuristic = | |
c5aa993b JM |
1745 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), |
1746 | pc, next_frame); | |
c906108c SS |
1747 | if (found_heuristic) |
1748 | proc_desc = found_heuristic; | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | else | |
1753 | { | |
1754 | /* Is linked_proc_desc_table really necessary? It only seems to be used | |
c5aa993b JM |
1755 | by procedure call dummys. However, the procedures being called ought |
1756 | to have their own proc_descs, and even if they don't, | |
1757 | heuristic_proc_desc knows how to create them! */ | |
c906108c SS |
1758 | |
1759 | register struct linked_proc_info *link; | |
1760 | ||
1761 | for (link = linked_proc_desc_table; link; link = link->next) | |
c5aa993b JM |
1762 | if (PROC_LOW_ADDR (&link->info) <= pc |
1763 | && PROC_HIGH_ADDR (&link->info) > pc) | |
c906108c SS |
1764 | return &link->info; |
1765 | ||
1766 | if (startaddr == 0) | |
1767 | startaddr = heuristic_proc_start (pc); | |
1768 | ||
1769 | proc_desc = | |
1770 | heuristic_proc_desc (startaddr, pc, next_frame); | |
1771 | } | |
1772 | return proc_desc; | |
1773 | } | |
1774 | ||
1775 | static CORE_ADDR | |
c5aa993b JM |
1776 | get_frame_pointer (frame, proc_desc) |
1777 | struct frame_info *frame; | |
1778 | mips_extra_func_info_t proc_desc; | |
c906108c SS |
1779 | { |
1780 | return ADDR_BITS_REMOVE ( | |
c5aa993b JM |
1781 | read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + |
1782 | PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
c906108c SS |
1783 | } |
1784 | ||
1785 | mips_extra_func_info_t cached_proc_desc; | |
1786 | ||
1787 | CORE_ADDR | |
c5aa993b JM |
1788 | mips_frame_chain (frame) |
1789 | struct frame_info *frame; | |
c906108c SS |
1790 | { |
1791 | mips_extra_func_info_t proc_desc; | |
1792 | CORE_ADDR tmp; | |
c5aa993b | 1793 | CORE_ADDR saved_pc = FRAME_SAVED_PC (frame); |
c906108c SS |
1794 | |
1795 | if (saved_pc == 0 || inside_entry_file (saved_pc)) | |
1796 | return 0; | |
1797 | ||
1798 | /* Check if the PC is inside a call stub. If it is, fetch the | |
1799 | PC of the caller of that stub. */ | |
1800 | if ((tmp = mips_skip_stub (saved_pc)) != 0) | |
1801 | saved_pc = tmp; | |
1802 | ||
1803 | /* Look up the procedure descriptor for this PC. */ | |
c5aa993b | 1804 | proc_desc = find_proc_desc (saved_pc, frame); |
c906108c SS |
1805 | if (!proc_desc) |
1806 | return 0; | |
1807 | ||
1808 | cached_proc_desc = proc_desc; | |
1809 | ||
1810 | /* If no frame pointer and frame size is zero, we must be at end | |
1811 | of stack (or otherwise hosed). If we don't check frame size, | |
1812 | we loop forever if we see a zero size frame. */ | |
1813 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
1814 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
c5aa993b JM |
1815 | /* The previous frame from a sigtramp frame might be frameless |
1816 | and have frame size zero. */ | |
c906108c SS |
1817 | && !frame->signal_handler_caller) |
1818 | return 0; | |
1819 | else | |
1820 | return get_frame_pointer (frame, proc_desc); | |
1821 | } | |
1822 | ||
1823 | void | |
c5aa993b | 1824 | mips_init_extra_frame_info (fromleaf, fci) |
cce74817 | 1825 | int fromleaf; |
c906108c SS |
1826 | struct frame_info *fci; |
1827 | { | |
1828 | int regnum; | |
1829 | ||
1830 | /* Use proc_desc calculated in frame_chain */ | |
1831 | mips_extra_func_info_t proc_desc = | |
c5aa993b | 1832 | fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next); |
c906108c | 1833 | |
cce74817 JM |
1834 | fci->extra_info = (struct frame_extra_info *) |
1835 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1836 | ||
c906108c | 1837 | fci->saved_regs = NULL; |
cce74817 | 1838 | fci->extra_info->proc_desc = |
c906108c SS |
1839 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
1840 | if (proc_desc) | |
1841 | { | |
1842 | /* Fixup frame-pointer - only needed for top frame */ | |
1843 | /* This may not be quite right, if proc has a real frame register. | |
c5aa993b JM |
1844 | Get the value of the frame relative sp, procedure might have been |
1845 | interrupted by a signal at it's very start. */ | |
c906108c SS |
1846 | if (fci->pc == PROC_LOW_ADDR (proc_desc) |
1847 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
1848 | fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); | |
1849 | else | |
1850 | fci->frame = get_frame_pointer (fci->next, proc_desc); | |
1851 | ||
1852 | if (proc_desc == &temp_proc_desc) | |
1853 | { | |
1854 | char *name; | |
1855 | ||
1856 | /* Do not set the saved registers for a sigtramp frame, | |
1857 | mips_find_saved_registers will do that for us. | |
1858 | We can't use fci->signal_handler_caller, it is not yet set. */ | |
1859 | find_pc_partial_function (fci->pc, &name, | |
c5aa993b | 1860 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
1861 | if (!IN_SIGTRAMP (fci->pc, name)) |
1862 | { | |
c5aa993b | 1863 | frame_saved_regs_zalloc (fci); |
cce74817 | 1864 | memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
1865 | fci->saved_regs[PC_REGNUM] |
1866 | = fci->saved_regs[RA_REGNUM]; | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | /* hack: if argument regs are saved, guess these contain args */ | |
cce74817 JM |
1871 | /* assume we can't tell how many args for now */ |
1872 | fci->extra_info->num_args = -1; | |
c906108c SS |
1873 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) |
1874 | { | |
c5aa993b | 1875 | if (PROC_REG_MASK (proc_desc) & (1 << regnum)) |
c906108c | 1876 | { |
cce74817 | 1877 | fci->extra_info->num_args = regnum - A0_REGNUM + 1; |
c906108c SS |
1878 | break; |
1879 | } | |
c5aa993b | 1880 | } |
c906108c SS |
1881 | } |
1882 | } | |
1883 | ||
1884 | /* MIPS stack frames are almost impenetrable. When execution stops, | |
1885 | we basically have to look at symbol information for the function | |
1886 | that we stopped in, which tells us *which* register (if any) is | |
1887 | the base of the frame pointer, and what offset from that register | |
1888 | the frame itself is at. | |
1889 | ||
1890 | This presents a problem when trying to examine a stack in memory | |
1891 | (that isn't executing at the moment), using the "frame" command. We | |
1892 | don't have a PC, nor do we have any registers except SP. | |
1893 | ||
1894 | This routine takes two arguments, SP and PC, and tries to make the | |
1895 | cached frames look as if these two arguments defined a frame on the | |
1896 | cache. This allows the rest of info frame to extract the important | |
1897 | arguments without difficulty. */ | |
1898 | ||
1899 | struct frame_info * | |
1900 | setup_arbitrary_frame (argc, argv) | |
1901 | int argc; | |
1902 | CORE_ADDR *argv; | |
1903 | { | |
1904 | if (argc != 2) | |
1905 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
1906 | ||
1907 | return create_new_frame (argv[0], argv[1]); | |
1908 | } | |
1909 | ||
1910 | /* | |
1911 | * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack? | |
1912 | * | |
1913 | * For n32 ABI, eight. | |
1914 | * For all others, he same as the size of a general register. | |
1915 | */ | |
1916 | #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32 | |
1917 | #define MIPS_NABI32 1 | |
1918 | #define STACK_ARGSIZE 8 | |
1919 | #else | |
1920 | #define MIPS_NABI32 0 | |
7a292a7a | 1921 | #define STACK_ARGSIZE MIPS_SAVED_REGSIZE |
c906108c SS |
1922 | #endif |
1923 | ||
1924 | CORE_ADDR | |
c5aa993b | 1925 | mips_push_arguments (nargs, args, sp, struct_return, struct_addr) |
c906108c SS |
1926 | int nargs; |
1927 | value_ptr *args; | |
1928 | CORE_ADDR sp; | |
1929 | int struct_return; | |
1930 | CORE_ADDR struct_addr; | |
1931 | { | |
1932 | int argreg; | |
1933 | int float_argreg; | |
1934 | int argnum; | |
1935 | int len = 0; | |
1936 | int stack_offset = 0; | |
1937 | ||
1938 | /* Macros to round N up or down to the next A boundary; A must be | |
1939 | a power of two. */ | |
1940 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
1941 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
c5aa993b | 1942 | |
c906108c SS |
1943 | /* First ensure that the stack and structure return address (if any) |
1944 | are properly aligned. The stack has to be at least 64-bit aligned | |
1945 | even on 32-bit machines, because doubles must be 64-bit aligned. | |
1946 | On at least one MIPS variant, stack frames need to be 128-bit | |
1947 | aligned, so we round to this widest known alignment. */ | |
1948 | sp = ROUND_DOWN (sp, 16); | |
7a292a7a | 1949 | struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE); |
c5aa993b | 1950 | |
c906108c SS |
1951 | /* Now make space on the stack for the args. We allocate more |
1952 | than necessary for EABI, because the first few arguments are | |
1953 | passed in registers, but that's OK. */ | |
1954 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1955 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE); |
c906108c SS |
1956 | sp -= ROUND_UP (len, 16); |
1957 | ||
1958 | /* Initialize the integer and float register pointers. */ | |
1959 | argreg = A0_REGNUM; | |
1960 | float_argreg = FPA0_REGNUM; | |
1961 | ||
1962 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
1963 | if (struct_return) | |
c5aa993b | 1964 | write_register (argreg++, struct_addr); |
c906108c SS |
1965 | |
1966 | /* Now load as many as possible of the first arguments into | |
1967 | registers, and push the rest onto the stack. Loop thru args | |
1968 | from first to last. */ | |
1969 | for (argnum = 0; argnum < nargs; argnum++) | |
1970 | { | |
1971 | char *val; | |
1972 | char valbuf[MAX_REGISTER_RAW_SIZE]; | |
1973 | value_ptr arg = args[argnum]; | |
1974 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1975 | int len = TYPE_LENGTH (arg_type); | |
1976 | enum type_code typecode = TYPE_CODE (arg_type); | |
1977 | ||
1978 | /* The EABI passes structures that do not fit in a register by | |
c5aa993b | 1979 | reference. In all other cases, pass the structure by value. */ |
7a292a7a | 1980 | if (MIPS_EABI && len > MIPS_SAVED_REGSIZE && |
c906108c SS |
1981 | (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
1982 | { | |
7a292a7a | 1983 | store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg)); |
c906108c | 1984 | typecode = TYPE_CODE_PTR; |
7a292a7a | 1985 | len = MIPS_SAVED_REGSIZE; |
c906108c SS |
1986 | val = valbuf; |
1987 | } | |
1988 | else | |
c5aa993b | 1989 | val = (char *) VALUE_CONTENTS (arg); |
c906108c SS |
1990 | |
1991 | /* 32-bit ABIs always start floating point arguments in an | |
1992 | even-numbered floating point register. */ | |
1993 | if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT | |
c5aa993b | 1994 | && (float_argreg & 1)) |
c906108c SS |
1995 | float_argreg++; |
1996 | ||
1997 | /* Floating point arguments passed in registers have to be | |
1998 | treated specially. On 32-bit architectures, doubles | |
c5aa993b JM |
1999 | are passed in register pairs; the even register gets |
2000 | the low word, and the odd register gets the high word. | |
2001 | On non-EABI processors, the first two floating point arguments are | |
2002 | also copied to general registers, because MIPS16 functions | |
2003 | don't use float registers for arguments. This duplication of | |
2004 | arguments in general registers can't hurt non-MIPS16 functions | |
2005 | because those registers are normally skipped. */ | |
c906108c SS |
2006 | if (typecode == TYPE_CODE_FLT |
2007 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM | |
2008 | && MIPS_FPU_TYPE != MIPS_FPU_NONE) | |
2009 | { | |
2010 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2011 | { | |
2012 | int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; | |
2013 | unsigned long regval; | |
2014 | ||
2015 | /* Write the low word of the double to the even register(s). */ | |
c5aa993b | 2016 | regval = extract_unsigned_integer (val + low_offset, 4); |
c906108c SS |
2017 | write_register (float_argreg++, regval); |
2018 | if (!MIPS_EABI) | |
c5aa993b | 2019 | write_register (argreg + 1, regval); |
c906108c SS |
2020 | |
2021 | /* Write the high word of the double to the odd register(s). */ | |
c5aa993b | 2022 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); |
c906108c SS |
2023 | write_register (float_argreg++, regval); |
2024 | if (!MIPS_EABI) | |
c5aa993b | 2025 | { |
c906108c SS |
2026 | write_register (argreg, regval); |
2027 | argreg += 2; | |
2028 | } | |
2029 | ||
2030 | } | |
2031 | else | |
2032 | { | |
2033 | /* This is a floating point value that fits entirely | |
2034 | in a single register. */ | |
2035 | CORE_ADDR regval = extract_address (val, len); | |
2036 | write_register (float_argreg++, regval); | |
2037 | if (!MIPS_EABI) | |
c5aa993b | 2038 | { |
c906108c SS |
2039 | write_register (argreg, regval); |
2040 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
2041 | } | |
2042 | } | |
2043 | } | |
2044 | else | |
2045 | { | |
2046 | /* Copy the argument to general registers or the stack in | |
2047 | register-sized pieces. Large arguments are split between | |
2048 | registers and stack. */ | |
2049 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
2050 | are treated specially: Irix cc passes them in registers | |
2051 | where gcc sometimes puts them on the stack. For maximum | |
2052 | compatibility, we will put them in both places. */ | |
2053 | ||
c5aa993b | 2054 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && |
7a292a7a | 2055 | (len % MIPS_SAVED_REGSIZE != 0)); |
c906108c SS |
2056 | while (len > 0) |
2057 | { | |
7a292a7a | 2058 | int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; |
c906108c SS |
2059 | |
2060 | if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) | |
2061 | { | |
2062 | /* Write this portion of the argument to the stack. */ | |
2063 | /* Should shorter than int integer values be | |
2064 | promoted to int before being stored? */ | |
2065 | ||
2066 | int longword_offset = 0; | |
2067 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
7a292a7a SS |
2068 | { |
2069 | if (STACK_ARGSIZE == 8 && | |
2070 | (typecode == TYPE_CODE_INT || | |
2071 | typecode == TYPE_CODE_PTR || | |
2072 | typecode == TYPE_CODE_FLT) && len <= 4) | |
2073 | longword_offset = STACK_ARGSIZE - len; | |
2074 | else if ((typecode == TYPE_CODE_STRUCT || | |
2075 | typecode == TYPE_CODE_UNION) && | |
2076 | TYPE_LENGTH (arg_type) < STACK_ARGSIZE) | |
2077 | longword_offset = STACK_ARGSIZE - len; | |
2078 | } | |
c5aa993b JM |
2079 | |
2080 | write_memory (sp + stack_offset + longword_offset, | |
c906108c SS |
2081 | val, partial_len); |
2082 | } | |
2083 | ||
2084 | /* Note!!! This is NOT an else clause. | |
c5aa993b | 2085 | Odd sized structs may go thru BOTH paths. */ |
c906108c SS |
2086 | if (argreg <= MIPS_LAST_ARG_REGNUM) |
2087 | { | |
2088 | CORE_ADDR regval = extract_address (val, partial_len); | |
2089 | ||
2090 | /* A non-floating-point argument being passed in a | |
2091 | general register. If a struct or union, and if | |
2092 | the remaining length is smaller than the register | |
2093 | size, we have to adjust the register value on | |
2094 | big endian targets. | |
2095 | ||
2096 | It does not seem to be necessary to do the | |
2097 | same for integral types. | |
2098 | ||
2099 | Also don't do this adjustment on EABI and O64 | |
2100 | binaries. */ | |
2101 | ||
2102 | if (!MIPS_EABI | |
7a292a7a | 2103 | && MIPS_SAVED_REGSIZE < 8 |
c906108c | 2104 | && TARGET_BYTE_ORDER == BIG_ENDIAN |
7a292a7a | 2105 | && partial_len < MIPS_SAVED_REGSIZE |
c906108c SS |
2106 | && (typecode == TYPE_CODE_STRUCT || |
2107 | typecode == TYPE_CODE_UNION)) | |
c5aa993b | 2108 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * |
c906108c SS |
2109 | TARGET_CHAR_BIT); |
2110 | ||
2111 | write_register (argreg, regval); | |
2112 | argreg++; | |
c5aa993b | 2113 | |
c906108c SS |
2114 | /* If this is the old ABI, prevent subsequent floating |
2115 | point arguments from being passed in floating point | |
2116 | registers. */ | |
2117 | if (!MIPS_EABI) | |
2118 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
2119 | } | |
c5aa993b | 2120 | |
c906108c SS |
2121 | len -= partial_len; |
2122 | val += partial_len; | |
2123 | ||
2124 | /* The offset onto the stack at which we will start | |
c5aa993b JM |
2125 | copying parameters (after the registers are used up) |
2126 | begins at (4 * MIPS_REGSIZE) in the old ABI. This | |
2127 | leaves room for the "home" area for register parameters. | |
c906108c | 2128 | |
c5aa993b JM |
2129 | In the new EABI (and the NABI32), the 8 register parameters |
2130 | do not have "home" stack space reserved for them, so the | |
2131 | stack offset does not get incremented until after | |
2132 | we have used up the 8 parameter registers. */ | |
c906108c SS |
2133 | |
2134 | if (!(MIPS_EABI || MIPS_NABI32) || | |
2135 | argnum >= 8) | |
2136 | stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE); | |
2137 | } | |
2138 | } | |
2139 | } | |
2140 | ||
0f71a2f6 JM |
2141 | /* Return adjusted stack pointer. */ |
2142 | return sp; | |
2143 | } | |
2144 | ||
2145 | CORE_ADDR | |
2146 | mips_push_return_address (pc, sp) | |
2147 | CORE_ADDR pc; | |
2148 | CORE_ADDR sp; | |
2149 | { | |
c906108c SS |
2150 | /* Set the return address register to point to the entry |
2151 | point of the program, where a breakpoint lies in wait. */ | |
c5aa993b | 2152 | write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ()); |
c906108c SS |
2153 | return sp; |
2154 | } | |
2155 | ||
2156 | static void | |
c5aa993b | 2157 | mips_push_register (CORE_ADDR * sp, int regno) |
c906108c SS |
2158 | { |
2159 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
7a292a7a SS |
2160 | int regsize; |
2161 | int offset; | |
2162 | if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno)) | |
2163 | { | |
2164 | regsize = MIPS_SAVED_REGSIZE; | |
2165 | offset = (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2166 | ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE | |
2167 | : 0); | |
2168 | } | |
2169 | else | |
2170 | { | |
2171 | regsize = REGISTER_RAW_SIZE (regno); | |
2172 | offset = 0; | |
2173 | } | |
c906108c SS |
2174 | *sp -= regsize; |
2175 | read_register_gen (regno, buffer); | |
7a292a7a | 2176 | write_memory (*sp, buffer + offset, regsize); |
c906108c SS |
2177 | } |
2178 | ||
2179 | /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ | |
2180 | #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) | |
2181 | ||
2182 | void | |
7a292a7a | 2183 | mips_push_dummy_frame () |
c906108c SS |
2184 | { |
2185 | int ireg; | |
c5aa993b JM |
2186 | struct linked_proc_info *link = (struct linked_proc_info *) |
2187 | xmalloc (sizeof (struct linked_proc_info)); | |
c906108c SS |
2188 | mips_extra_func_info_t proc_desc = &link->info; |
2189 | CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); | |
2190 | CORE_ADDR old_sp = sp; | |
2191 | link->next = linked_proc_desc_table; | |
2192 | linked_proc_desc_table = link; | |
2193 | ||
2194 | /* FIXME! are these correct ? */ | |
c5aa993b | 2195 | #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ |
c906108c SS |
2196 | #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) |
2197 | #define FLOAT_REG_SAVE_MASK MASK(0,19) | |
2198 | #define FLOAT_SINGLE_REG_SAVE_MASK \ | |
2199 | ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) | |
2200 | /* | |
2201 | * The registers we must save are all those not preserved across | |
2202 | * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. | |
2203 | * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI | |
2204 | * and FP Control/Status registers. | |
2205 | * | |
2206 | * | |
2207 | * Dummy frame layout: | |
2208 | * (high memory) | |
c5aa993b JM |
2209 | * Saved PC |
2210 | * Saved MMHI, MMLO, FPC_CSR | |
2211 | * Saved R31 | |
2212 | * Saved R28 | |
2213 | * ... | |
2214 | * Saved R1 | |
c906108c SS |
2215 | * Saved D18 (i.e. F19, F18) |
2216 | * ... | |
2217 | * Saved D0 (i.e. F1, F0) | |
c5aa993b | 2218 | * Argument build area and stack arguments written via mips_push_arguments |
c906108c SS |
2219 | * (low memory) |
2220 | */ | |
2221 | ||
2222 | /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ | |
c5aa993b JM |
2223 | PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM; |
2224 | PROC_FRAME_OFFSET (proc_desc) = 0; | |
2225 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
c906108c SS |
2226 | mips_push_register (&sp, PC_REGNUM); |
2227 | mips_push_register (&sp, HI_REGNUM); | |
2228 | mips_push_register (&sp, LO_REGNUM); | |
2229 | mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); | |
2230 | ||
2231 | /* Save general CPU registers */ | |
c5aa993b | 2232 | PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK; |
c906108c | 2233 | /* PROC_REG_OFFSET is the offset of the first saved register from FP. */ |
c5aa993b JM |
2234 | PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE; |
2235 | for (ireg = 32; --ireg >= 0;) | |
2236 | if (PROC_REG_MASK (proc_desc) & (1 << ireg)) | |
c906108c SS |
2237 | mips_push_register (&sp, ireg); |
2238 | ||
2239 | /* Save floating point registers starting with high order word */ | |
c5aa993b | 2240 | PROC_FREG_MASK (proc_desc) = |
c906108c SS |
2241 | MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK |
2242 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; | |
2243 | /* PROC_FREG_OFFSET is the offset of the first saved *double* register | |
2244 | from FP. */ | |
c5aa993b JM |
2245 | PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8; |
2246 | for (ireg = 32; --ireg >= 0;) | |
2247 | if (PROC_FREG_MASK (proc_desc) & (1 << ireg)) | |
c906108c SS |
2248 | mips_push_register (&sp, ireg + FP0_REGNUM); |
2249 | ||
2250 | /* Update the frame pointer for the call dummy and the stack pointer. | |
2251 | Set the procedure's starting and ending addresses to point to the | |
2252 | call dummy address at the entry point. */ | |
2253 | write_register (PUSH_FP_REGNUM, old_sp); | |
2254 | write_register (SP_REGNUM, sp); | |
c5aa993b JM |
2255 | PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS (); |
2256 | PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4; | |
2257 | SET_PROC_DESC_IS_DUMMY (proc_desc); | |
2258 | PROC_PC_REG (proc_desc) = RA_REGNUM; | |
c906108c SS |
2259 | } |
2260 | ||
2261 | void | |
c5aa993b | 2262 | mips_pop_frame () |
c906108c SS |
2263 | { |
2264 | register int regnum; | |
2265 | struct frame_info *frame = get_current_frame (); | |
2266 | CORE_ADDR new_sp = FRAME_FP (frame); | |
2267 | ||
cce74817 | 2268 | mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc; |
c906108c | 2269 | |
c5aa993b | 2270 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); |
c906108c SS |
2271 | if (frame->saved_regs == NULL) |
2272 | mips_find_saved_regs (frame); | |
2273 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
2274 | { | |
2275 | if (regnum != SP_REGNUM && regnum != PC_REGNUM | |
2276 | && frame->saved_regs[regnum]) | |
2277 | write_register (regnum, | |
2278 | read_memory_integer (frame->saved_regs[regnum], | |
c5aa993b | 2279 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2280 | } |
2281 | write_register (SP_REGNUM, new_sp); | |
2282 | flush_cached_frames (); | |
2283 | ||
c5aa993b | 2284 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) |
c906108c SS |
2285 | { |
2286 | struct linked_proc_info *pi_ptr, *prev_ptr; | |
2287 | ||
2288 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
2289 | pi_ptr != NULL; | |
2290 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
2291 | { | |
2292 | if (&pi_ptr->info == proc_desc) | |
2293 | break; | |
2294 | } | |
2295 | ||
2296 | if (pi_ptr == NULL) | |
2297 | error ("Can't locate dummy extra frame info\n"); | |
2298 | ||
2299 | if (prev_ptr != NULL) | |
2300 | prev_ptr->next = pi_ptr->next; | |
2301 | else | |
2302 | linked_proc_desc_table = pi_ptr->next; | |
2303 | ||
2304 | free (pi_ptr); | |
2305 | ||
2306 | write_register (HI_REGNUM, | |
c5aa993b | 2307 | read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2308 | MIPS_SAVED_REGSIZE)); |
c906108c | 2309 | write_register (LO_REGNUM, |
c5aa993b | 2310 | read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2311 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2312 | if (MIPS_FPU_TYPE != MIPS_FPU_NONE) |
2313 | write_register (FCRCS_REGNUM, | |
c5aa993b | 2314 | read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE, |
7a292a7a | 2315 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
2316 | } |
2317 | } | |
2318 | ||
2319 | static void | |
2320 | mips_print_register (regnum, all) | |
2321 | int regnum, all; | |
2322 | { | |
2323 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2324 | ||
2325 | /* Get the data in raw format. */ | |
2326 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2327 | { | |
2328 | printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum)); | |
2329 | return; | |
2330 | } | |
2331 | ||
2332 | /* If an even floating point register, also print as double. */ | |
2333 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT | |
c5aa993b JM |
2334 | && !((regnum - FP0_REGNUM) & 1)) |
2335 | if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */ | |
c906108c | 2336 | { |
c5aa993b | 2337 | char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; |
c906108c SS |
2338 | |
2339 | read_relative_register_raw_bytes (regnum, dbuffer); | |
c5aa993b | 2340 | read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE); |
c906108c SS |
2341 | REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); |
2342 | ||
c5aa993b | 2343 | printf_filtered ("(d%d: ", regnum - FP0_REGNUM); |
c906108c SS |
2344 | val_print (builtin_type_double, dbuffer, 0, 0, |
2345 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2346 | printf_filtered ("); "); | |
2347 | } | |
2348 | fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); | |
2349 | ||
2350 | /* The problem with printing numeric register names (r26, etc.) is that | |
2351 | the user can't use them on input. Probably the best solution is to | |
2352 | fix it so that either the numeric or the funky (a2, etc.) names | |
2353 | are accepted on input. */ | |
2354 | if (regnum < MIPS_NUMREGS) | |
2355 | printf_filtered ("(r%d): ", regnum); | |
2356 | else | |
2357 | printf_filtered (": "); | |
2358 | ||
2359 | /* If virtual format is floating, print it that way. */ | |
2360 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2361 | if (FP_REGISTER_DOUBLE) | |
c5aa993b | 2362 | { /* show 8-byte floats as float AND double: */ |
c906108c SS |
2363 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); |
2364 | ||
2365 | printf_filtered (" (float) "); | |
2366 | val_print (builtin_type_float, raw_buffer + offset, 0, 0, | |
2367 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2368 | printf_filtered (", (double) "); | |
2369 | val_print (builtin_type_double, raw_buffer, 0, 0, | |
2370 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2371 | } | |
2372 | else | |
2373 | val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, | |
2374 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2375 | /* Else print as integer in hex. */ | |
2376 | else | |
2377 | print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), | |
2378 | 'x', 0, gdb_stdout); | |
2379 | } | |
2380 | ||
2381 | /* Replacement for generic do_registers_info. | |
2382 | Print regs in pretty columns. */ | |
2383 | ||
2384 | static int | |
2385 | do_fp_register_row (regnum) | |
2386 | int regnum; | |
c5aa993b | 2387 | { /* do values for FP (float) regs */ |
c906108c SS |
2388 | char *raw_buffer[2]; |
2389 | char *dbl_buffer; | |
2390 | /* use HI and LO to control the order of combining two flt regs */ | |
2391 | int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2392 | int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); | |
2393 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ | |
2394 | int inv1, inv2, inv3; | |
c5aa993b | 2395 | |
c906108c SS |
2396 | raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); |
2397 | raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2398 | dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2399 | ||
2400 | /* Get the data in raw format. */ | |
2401 | if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) | |
2402 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); | |
c5aa993b | 2403 | if (REGISTER_RAW_SIZE (regnum) == 4) |
c906108c SS |
2404 | { |
2405 | /* 4-byte registers: we can fit two registers per row. */ | |
2406 | /* Also print every pair of 4-byte regs as an 8-byte double. */ | |
2407 | if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) | |
c5aa993b | 2408 | error ("can't read register %d (%s)", |
c906108c SS |
2409 | regnum + 1, REGISTER_NAME (regnum + 1)); |
2410 | ||
2411 | /* copy the two floats into one double, and unpack both */ | |
c5aa993b JM |
2412 | memcpy (dbl_buffer, raw_buffer, sizeof (dbl_buffer)); |
2413 | flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); | |
2414 | flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); | |
2415 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2416 | ||
2417 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2418 | " %-5s%-17.9g", REGISTER_NAME (regnum), flt1); | |
2419 | printf_filtered (inv2 ? " %-5s: <invalid float>" : | |
c906108c | 2420 | " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2); |
c5aa993b | 2421 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : |
c906108c SS |
2422 | " dbl: %-24.17g\n", doub); |
2423 | /* may want to do hex display here (future enhancement) */ | |
c5aa993b | 2424 | regnum += 2; |
c906108c SS |
2425 | } |
2426 | else | |
c5aa993b | 2427 | { /* eight byte registers: print each one as float AND as double. */ |
c906108c SS |
2428 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); |
2429 | ||
c5aa993b JM |
2430 | memcpy (dbl_buffer, raw_buffer[HI], sizeof (dbl_buffer)); |
2431 | flt1 = unpack_double (builtin_type_float, | |
c906108c | 2432 | &raw_buffer[HI][offset], &inv1); |
c5aa993b | 2433 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); |
c906108c | 2434 | |
c5aa993b | 2435 | printf_filtered (inv1 ? " %-5s: <invalid float>" : |
c906108c | 2436 | " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1); |
c5aa993b | 2437 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : |
c906108c SS |
2438 | " dbl: %-24.17g\n", doub); |
2439 | /* may want to do hex display here (future enhancement) */ | |
2440 | regnum++; | |
2441 | } | |
2442 | return regnum; | |
2443 | } | |
2444 | ||
2445 | /* Print a row's worth of GP (int) registers, with name labels above */ | |
2446 | ||
2447 | static int | |
2448 | do_gp_register_row (regnum) | |
2449 | int regnum; | |
2450 | { | |
2451 | /* do values for GP (int) regs */ | |
2452 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2453 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ | |
2454 | int col, byte; | |
2455 | int start_regnum = regnum; | |
2456 | int numregs = NUM_REGS; | |
2457 | ||
2458 | ||
2459 | /* For GP registers, we print a separate row of names above the vals */ | |
2460 | printf_filtered (" "); | |
2461 | for (col = 0; col < ncols && regnum < numregs; regnum++) | |
2462 | { | |
2463 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 2464 | continue; /* unused register */ |
c906108c | 2465 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b JM |
2466 | break; /* end the row: reached FP register */ |
2467 | printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", | |
c906108c SS |
2468 | REGISTER_NAME (regnum)); |
2469 | col++; | |
2470 | } | |
c5aa993b | 2471 | printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", |
c906108c SS |
2472 | start_regnum); /* print the R0 to R31 names */ |
2473 | ||
2474 | regnum = start_regnum; /* go back to start of row */ | |
2475 | /* now print the values in hex, 4 or 8 to the row */ | |
2476 | for (col = 0; col < ncols && regnum < numregs; regnum++) | |
2477 | { | |
2478 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 2479 | continue; /* unused register */ |
c906108c | 2480 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b | 2481 | break; /* end row: reached FP register */ |
c906108c SS |
2482 | /* OK: get the data in raw format. */ |
2483 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2484 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); | |
2485 | /* pad small registers */ | |
43e526b9 | 2486 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++) |
c906108c SS |
2487 | printf_filtered (" "); |
2488 | /* Now print the register value in hex, endian order. */ | |
2489 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
43e526b9 JM |
2490 | for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); |
2491 | byte < REGISTER_RAW_SIZE (regnum); | |
2492 | byte++) | |
c906108c SS |
2493 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); |
2494 | else | |
43e526b9 JM |
2495 | for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1; |
2496 | byte >= 0; | |
2497 | byte--) | |
c906108c SS |
2498 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); |
2499 | printf_filtered (" "); | |
2500 | col++; | |
2501 | } | |
c5aa993b | 2502 | if (col > 0) /* ie. if we actually printed anything... */ |
c906108c SS |
2503 | printf_filtered ("\n"); |
2504 | ||
2505 | return regnum; | |
2506 | } | |
2507 | ||
2508 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
2509 | ||
2510 | void | |
2511 | mips_do_registers_info (regnum, fpregs) | |
2512 | int regnum; | |
2513 | int fpregs; | |
2514 | { | |
c5aa993b | 2515 | if (regnum != -1) /* do one specified register */ |
c906108c SS |
2516 | { |
2517 | if (*(REGISTER_NAME (regnum)) == '\0') | |
2518 | error ("Not a valid register for the current processor type"); | |
2519 | ||
2520 | mips_print_register (regnum, 0); | |
2521 | printf_filtered ("\n"); | |
2522 | } | |
c5aa993b JM |
2523 | else |
2524 | /* do all (or most) registers */ | |
c906108c SS |
2525 | { |
2526 | regnum = 0; | |
2527 | while (regnum < NUM_REGS) | |
2528 | { | |
c5aa993b JM |
2529 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
2530 | if (fpregs) /* true for "INFO ALL-REGISTERS" command */ | |
c906108c SS |
2531 | regnum = do_fp_register_row (regnum); /* FP regs */ |
2532 | else | |
2533 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
2534 | else | |
2535 | regnum = do_gp_register_row (regnum); /* GP (int) regs */ | |
2536 | } | |
2537 | } | |
2538 | } | |
2539 | ||
2540 | /* Return number of args passed to a frame. described by FIP. | |
2541 | Can return -1, meaning no way to tell. */ | |
2542 | ||
2543 | int | |
2544 | mips_frame_num_args (frame) | |
c5aa993b | 2545 | struct frame_info *frame; |
c906108c | 2546 | { |
c5aa993b | 2547 | #if 0 /* FIXME Use or lose this! */ |
c906108c SS |
2548 | struct chain_info_t *p; |
2549 | ||
2550 | p = mips_find_cached_frame (FRAME_FP (frame)); | |
2551 | if (p->valid) | |
2552 | return p->the_info.numargs; | |
2553 | #endif | |
2554 | return -1; | |
2555 | } | |
2556 | ||
2557 | /* Is this a branch with a delay slot? */ | |
2558 | ||
2559 | static int is_delayed PARAMS ((unsigned long)); | |
2560 | ||
2561 | static int | |
2562 | is_delayed (insn) | |
2563 | unsigned long insn; | |
2564 | { | |
2565 | int i; | |
2566 | for (i = 0; i < NUMOPCODES; ++i) | |
2567 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
2568 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
2569 | break; | |
2570 | return (i < NUMOPCODES | |
2571 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
2572 | | INSN_COND_BRANCH_DELAY | |
2573 | | INSN_COND_BRANCH_LIKELY))); | |
2574 | } | |
2575 | ||
2576 | int | |
2577 | mips_step_skips_delay (pc) | |
2578 | CORE_ADDR pc; | |
2579 | { | |
2580 | char buf[MIPS_INSTLEN]; | |
2581 | ||
2582 | /* There is no branch delay slot on MIPS16. */ | |
2583 | if (pc_is_mips16 (pc)) | |
2584 | return 0; | |
2585 | ||
2586 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
2587 | /* If error reading memory, guess that it is not a delayed branch. */ | |
2588 | return 0; | |
c5aa993b | 2589 | return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN)); |
c906108c SS |
2590 | } |
2591 | ||
2592 | ||
2593 | /* Skip the PC past function prologue instructions (32-bit version). | |
2594 | This is a helper function for mips_skip_prologue. */ | |
2595 | ||
2596 | static CORE_ADDR | |
2597 | mips32_skip_prologue (pc, lenient) | |
c5aa993b | 2598 | CORE_ADDR pc; /* starting PC to search from */ |
c906108c SS |
2599 | int lenient; |
2600 | { | |
c5aa993b JM |
2601 | t_inst inst; |
2602 | CORE_ADDR end_pc; | |
2603 | int seen_sp_adjust = 0; | |
2604 | int load_immediate_bytes = 0; | |
2605 | ||
2606 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2607 | instruction and the instructions that save registers on the stack | |
2608 | or in the gcc frame. */ | |
2609 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) | |
2610 | { | |
2611 | unsigned long high_word; | |
c906108c | 2612 | |
c5aa993b JM |
2613 | inst = mips_fetch_instruction (pc); |
2614 | high_word = (inst >> 16) & 0xffff; | |
c906108c SS |
2615 | |
2616 | #if 0 | |
c5aa993b JM |
2617 | if (lenient && is_delayed (inst)) |
2618 | continue; | |
c906108c SS |
2619 | #endif |
2620 | ||
c5aa993b JM |
2621 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
2622 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
2623 | seen_sp_adjust = 1; | |
2624 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ | |
2625 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
2626 | seen_sp_adjust = 1; | |
2627 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ | |
2628 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
2629 | && (inst & 0x001F0000)) /* reg != $zero */ | |
2630 | continue; | |
2631 | ||
2632 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ | |
2633 | continue; | |
2634 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
2635 | /* sx reg,n($s8) */ | |
2636 | continue; /* reg != $zero */ | |
2637 | ||
2638 | /* move $s8,$sp. With different versions of gas this will be either | |
2639 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. | |
2640 | Accept any one of these. */ | |
2641 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
2642 | continue; | |
2643 | ||
2644 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ | |
2645 | continue; | |
2646 | else if (high_word == 0x3c1c) /* lui $gp,n */ | |
2647 | continue; | |
2648 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ | |
2649 | continue; | |
2650 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
2651 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
2652 | continue; | |
2653 | /* The following instructions load $at or $t0 with an immediate | |
2654 | value in preparation for a stack adjustment via | |
2655 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
2656 | a local variable, so we accept them only before a stack adjustment | |
2657 | instruction was seen. */ | |
2658 | else if (!seen_sp_adjust) | |
2659 | { | |
2660 | if (high_word == 0x3c01 || /* lui $at,n */ | |
2661 | high_word == 0x3c08) /* lui $t0,n */ | |
2662 | { | |
2663 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
2664 | continue; | |
2665 | } | |
2666 | else if (high_word == 0x3421 || /* ori $at,$at,n */ | |
2667 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
2668 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
2669 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
2670 | { | |
2671 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
2672 | continue; | |
2673 | } | |
2674 | else | |
2675 | break; | |
2676 | } | |
2677 | else | |
2678 | break; | |
c906108c SS |
2679 | } |
2680 | ||
c5aa993b JM |
2681 | /* In a frameless function, we might have incorrectly |
2682 | skipped some load immediate instructions. Undo the skipping | |
2683 | if the load immediate was not followed by a stack adjustment. */ | |
2684 | if (load_immediate_bytes && !seen_sp_adjust) | |
2685 | pc -= load_immediate_bytes; | |
2686 | return pc; | |
c906108c SS |
2687 | } |
2688 | ||
2689 | /* Skip the PC past function prologue instructions (16-bit version). | |
2690 | This is a helper function for mips_skip_prologue. */ | |
2691 | ||
2692 | static CORE_ADDR | |
2693 | mips16_skip_prologue (pc, lenient) | |
c5aa993b | 2694 | CORE_ADDR pc; /* starting PC to search from */ |
c906108c SS |
2695 | int lenient; |
2696 | { | |
c5aa993b JM |
2697 | CORE_ADDR end_pc; |
2698 | int extend_bytes = 0; | |
2699 | int prev_extend_bytes; | |
c906108c | 2700 | |
c5aa993b JM |
2701 | /* Table of instructions likely to be found in a function prologue. */ |
2702 | static struct | |
c906108c SS |
2703 | { |
2704 | unsigned short inst; | |
2705 | unsigned short mask; | |
c5aa993b JM |
2706 | } |
2707 | table[] = | |
2708 | { | |
c906108c | 2709 | { |
c5aa993b JM |
2710 | 0x6300, 0xff00 |
2711 | } | |
2712 | , /* addiu $sp,offset */ | |
2713 | { | |
2714 | 0xfb00, 0xff00 | |
2715 | } | |
2716 | , /* daddiu $sp,offset */ | |
2717 | { | |
2718 | 0xd000, 0xf800 | |
2719 | } | |
2720 | , /* sw reg,n($sp) */ | |
2721 | { | |
2722 | 0xf900, 0xff00 | |
2723 | } | |
2724 | , /* sd reg,n($sp) */ | |
2725 | { | |
2726 | 0x6200, 0xff00 | |
2727 | } | |
2728 | , /* sw $ra,n($sp) */ | |
2729 | { | |
2730 | 0xfa00, 0xff00 | |
2731 | } | |
2732 | , /* sd $ra,n($sp) */ | |
2733 | { | |
2734 | 0x673d, 0xffff | |
2735 | } | |
2736 | , /* move $s1,sp */ | |
2737 | { | |
2738 | 0xd980, 0xff80 | |
2739 | } | |
2740 | , /* sw $a0-$a3,n($s1) */ | |
2741 | { | |
2742 | 0x6704, 0xff1c | |
2743 | } | |
2744 | , /* move reg,$a0-$a3 */ | |
2745 | { | |
2746 | 0xe809, 0xf81f | |
2747 | } | |
2748 | , /* entry pseudo-op */ | |
2749 | { | |
2750 | 0x0100, 0xff00 | |
2751 | } | |
2752 | , /* addiu $s1,$sp,n */ | |
2753 | { | |
2754 | 0, 0 | |
2755 | } /* end of table marker */ | |
2756 | }; | |
2757 | ||
2758 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2759 | instruction and the instructions that save registers on the stack | |
2760 | or in the gcc frame. */ | |
2761 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
2762 | { | |
2763 | unsigned short inst; | |
2764 | int i; | |
c906108c | 2765 | |
c5aa993b | 2766 | inst = mips_fetch_instruction (pc); |
c906108c | 2767 | |
c5aa993b JM |
2768 | /* Normally we ignore an extend instruction. However, if it is |
2769 | not followed by a valid prologue instruction, we must adjust | |
2770 | the pc back over the extend so that it won't be considered | |
2771 | part of the prologue. */ | |
2772 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
2773 | { | |
2774 | extend_bytes = MIPS16_INSTLEN; | |
2775 | continue; | |
2776 | } | |
2777 | prev_extend_bytes = extend_bytes; | |
2778 | extend_bytes = 0; | |
c906108c | 2779 | |
c5aa993b JM |
2780 | /* Check for other valid prologue instructions besides extend. */ |
2781 | for (i = 0; table[i].mask != 0; i++) | |
2782 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
2783 | break; | |
2784 | if (table[i].mask != 0) /* it was in table? */ | |
2785 | continue; /* ignore it */ | |
2786 | else | |
2787 | /* non-prologue */ | |
2788 | { | |
2789 | /* Return the current pc, adjusted backwards by 2 if | |
2790 | the previous instruction was an extend. */ | |
2791 | return pc - prev_extend_bytes; | |
2792 | } | |
c906108c SS |
2793 | } |
2794 | return pc; | |
2795 | } | |
2796 | ||
2797 | /* To skip prologues, I use this predicate. Returns either PC itself | |
2798 | if the code at PC does not look like a function prologue; otherwise | |
2799 | returns an address that (if we're lucky) follows the prologue. If | |
2800 | LENIENT, then we must skip everything which is involved in setting | |
2801 | up the frame (it's OK to skip more, just so long as we don't skip | |
2802 | anything which might clobber the registers which are being saved. | |
2803 | We must skip more in the case where part of the prologue is in the | |
2804 | delay slot of a non-prologue instruction). */ | |
2805 | ||
2806 | CORE_ADDR | |
2807 | mips_skip_prologue (pc, lenient) | |
2808 | CORE_ADDR pc; | |
2809 | int lenient; | |
2810 | { | |
2811 | /* See if we can determine the end of the prologue via the symbol table. | |
2812 | If so, then return either PC, or the PC after the prologue, whichever | |
2813 | is greater. */ | |
2814 | ||
2815 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
2816 | ||
2817 | if (post_prologue_pc != 0) | |
2818 | return max (pc, post_prologue_pc); | |
2819 | ||
2820 | /* Can't determine prologue from the symbol table, need to examine | |
2821 | instructions. */ | |
2822 | ||
2823 | if (pc_is_mips16 (pc)) | |
2824 | return mips16_skip_prologue (pc, lenient); | |
2825 | else | |
2826 | return mips32_skip_prologue (pc, lenient); | |
2827 | } | |
2828 | ||
2829 | #if 0 | |
2830 | /* The lenient prologue stuff should be superseded by the code in | |
2831 | init_extra_frame_info which looks to see whether the stores mentioned | |
2832 | in the proc_desc have actually taken place. */ | |
2833 | ||
2834 | /* Is address PC in the prologue (loosely defined) for function at | |
2835 | STARTADDR? */ | |
2836 | ||
2837 | static int | |
2838 | mips_in_lenient_prologue (startaddr, pc) | |
2839 | CORE_ADDR startaddr; | |
2840 | CORE_ADDR pc; | |
2841 | { | |
2842 | CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); | |
2843 | return pc >= startaddr && pc < end_prologue; | |
2844 | } | |
2845 | #endif | |
2846 | ||
7a292a7a SS |
2847 | /* Determine how a return value is stored within the MIPS register |
2848 | file, given the return type `valtype'. */ | |
2849 | ||
2850 | struct return_value_word | |
2851 | { | |
2852 | int len; | |
2853 | int reg; | |
2854 | int reg_offset; | |
2855 | int buf_offset; | |
2856 | }; | |
2857 | ||
2858 | static void return_value_location PARAMS ((struct type *, struct return_value_word *, struct return_value_word *)); | |
2859 | ||
2860 | static void | |
2861 | return_value_location (valtype, hi, lo) | |
2862 | struct type *valtype; | |
2863 | struct return_value_word *hi; | |
2864 | struct return_value_word *lo; | |
2865 | { | |
2866 | int len = TYPE_LENGTH (valtype); | |
c5aa993b | 2867 | |
7a292a7a SS |
2868 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT |
2869 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
2870 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
2871 | { | |
2872 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2873 | { | |
2874 | /* We need to break a 64bit float in two 32 bit halves and | |
c5aa993b | 2875 | spread them across a floating-point register pair. */ |
7a292a7a SS |
2876 | lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; |
2877 | hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4; | |
2878 | lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN | |
2879 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8) | |
2880 | ? 4 : 0); | |
2881 | hi->reg_offset = lo->reg_offset; | |
2882 | lo->reg = FP0_REGNUM + 0; | |
2883 | hi->reg = FP0_REGNUM + 1; | |
2884 | lo->len = 4; | |
2885 | hi->len = 4; | |
2886 | } | |
2887 | else | |
2888 | { | |
2889 | /* The floating point value fits in a single floating-point | |
c5aa993b | 2890 | register. */ |
7a292a7a SS |
2891 | lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN |
2892 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8 | |
2893 | && len == 4) | |
2894 | ? 4 : 0); | |
2895 | lo->reg = FP0_REGNUM; | |
2896 | lo->len = len; | |
2897 | lo->buf_offset = 0; | |
2898 | hi->len = 0; | |
2899 | hi->reg_offset = 0; | |
2900 | hi->buf_offset = 0; | |
2901 | hi->reg = 0; | |
2902 | } | |
2903 | } | |
2904 | else | |
2905 | { | |
2906 | /* Locate a result possibly spread across two registers. */ | |
2907 | int regnum = 2; | |
2908 | lo->reg = regnum + 0; | |
2909 | hi->reg = regnum + 1; | |
2910 | if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2911 | && len < MIPS_SAVED_REGSIZE) | |
2912 | { | |
2913 | /* "un-left-justify" the value in the low register */ | |
2914 | lo->reg_offset = MIPS_SAVED_REGSIZE - len; | |
2915 | lo->len = len; | |
2916 | hi->reg_offset = 0; | |
2917 | hi->len = 0; | |
2918 | } | |
2919 | else if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2920 | && len > MIPS_SAVED_REGSIZE /* odd-size structs */ | |
2921 | && len < MIPS_SAVED_REGSIZE * 2 | |
2922 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2923 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2924 | { | |
2925 | /* "un-left-justify" the value spread across two registers. */ | |
2926 | lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len; | |
2927 | lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset; | |
2928 | hi->reg_offset = 0; | |
2929 | hi->len = len - lo->len; | |
2930 | } | |
2931 | else | |
2932 | { | |
2933 | /* Only perform a partial copy of the second register. */ | |
2934 | lo->reg_offset = 0; | |
2935 | hi->reg_offset = 0; | |
2936 | if (len > MIPS_SAVED_REGSIZE) | |
2937 | { | |
2938 | lo->len = MIPS_SAVED_REGSIZE; | |
2939 | hi->len = len - MIPS_SAVED_REGSIZE; | |
2940 | } | |
2941 | else | |
2942 | { | |
2943 | lo->len = len; | |
2944 | hi->len = 0; | |
2945 | } | |
2946 | } | |
2947 | if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
2948 | && REGISTER_RAW_SIZE (regnum) == 8 | |
2949 | && MIPS_SAVED_REGSIZE == 4) | |
2950 | { | |
2951 | /* Account for the fact that only the least-signficant part | |
c5aa993b | 2952 | of the register is being used */ |
7a292a7a SS |
2953 | lo->reg_offset += 4; |
2954 | hi->reg_offset += 4; | |
2955 | } | |
2956 | lo->buf_offset = 0; | |
2957 | hi->buf_offset = lo->len; | |
2958 | } | |
2959 | } | |
2960 | ||
2961 | /* Given a return value in `regbuf' with a type `valtype', extract and | |
2962 | copy its value into `valbuf'. */ | |
2963 | ||
c906108c SS |
2964 | void |
2965 | mips_extract_return_value (valtype, regbuf, valbuf) | |
c5aa993b JM |
2966 | struct type *valtype; |
2967 | char regbuf[REGISTER_BYTES]; | |
2968 | char *valbuf; | |
c906108c | 2969 | { |
7a292a7a SS |
2970 | struct return_value_word lo; |
2971 | struct return_value_word hi; | |
2972 | return_value_location (valtype, &lo, &hi); | |
2973 | ||
2974 | memcpy (valbuf + lo.buf_offset, | |
2975 | regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
2976 | lo.len); | |
2977 | ||
2978 | if (hi.len > 0) | |
2979 | memcpy (valbuf + hi.buf_offset, | |
2980 | regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
2981 | hi.len); | |
2982 | ||
2983 | #if 0 | |
c906108c SS |
2984 | int regnum; |
2985 | int offset = 0; | |
2986 | int len = TYPE_LENGTH (valtype); | |
c5aa993b | 2987 | |
c906108c SS |
2988 | regnum = 2; |
2989 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
2990 | && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE | |
2991 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE | |
2992 | && len <= MIPS_FPU_SINGLE_REGSIZE))) | |
2993 | regnum = FP0_REGNUM; | |
2994 | ||
2995 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b | 2996 | { /* "un-left-justify" the value from the register */ |
c906108c SS |
2997 | if (len < REGISTER_RAW_SIZE (regnum)) |
2998 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
c5aa993b | 2999 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ |
c906108c SS |
3000 | len < REGISTER_RAW_SIZE (regnum) * 2 && |
3001 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
3002 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
3003 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
3004 | } | |
3005 | memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); | |
3006 | REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); | |
7a292a7a | 3007 | #endif |
c906108c SS |
3008 | } |
3009 | ||
7a292a7a SS |
3010 | /* Given a return value in `valbuf' with a type `valtype', write it's |
3011 | value into the appropriate register. */ | |
3012 | ||
c906108c SS |
3013 | void |
3014 | mips_store_return_value (valtype, valbuf) | |
c5aa993b JM |
3015 | struct type *valtype; |
3016 | char *valbuf; | |
c906108c | 3017 | { |
7a292a7a SS |
3018 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
3019 | struct return_value_word lo; | |
3020 | struct return_value_word hi; | |
3021 | return_value_location (valtype, &lo, &hi); | |
3022 | ||
3023 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3024 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
3025 | write_register_bytes (REGISTER_BYTE (lo.reg), | |
3026 | raw_buffer, | |
3027 | REGISTER_RAW_SIZE (lo.reg)); | |
c5aa993b | 3028 | |
7a292a7a SS |
3029 | if (hi.len > 0) |
3030 | { | |
3031 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3032 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
3033 | write_register_bytes (REGISTER_BYTE (hi.reg), | |
3034 | raw_buffer, | |
3035 | REGISTER_RAW_SIZE (hi.reg)); | |
3036 | } | |
3037 | ||
3038 | #if 0 | |
c906108c SS |
3039 | int regnum; |
3040 | int offset = 0; | |
3041 | int len = TYPE_LENGTH (valtype); | |
3042 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
c5aa993b | 3043 | |
c906108c SS |
3044 | regnum = 2; |
3045 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
3046 | && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE | |
3047 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE | |
3048 | && len <= MIPS_REGSIZE))) | |
3049 | regnum = FP0_REGNUM; | |
3050 | ||
3051 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b | 3052 | { /* "left-justify" the value in the register */ |
c906108c SS |
3053 | if (len < REGISTER_RAW_SIZE (regnum)) |
3054 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
c5aa993b | 3055 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ |
c906108c SS |
3056 | len < REGISTER_RAW_SIZE (regnum) * 2 && |
3057 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
3058 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
3059 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
3060 | } | |
c5aa993b JM |
3061 | memcpy (raw_buffer + offset, valbuf, len); |
3062 | REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer); | |
3063 | write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, | |
3064 | len > REGISTER_RAW_SIZE (regnum) ? | |
3065 | len : REGISTER_RAW_SIZE (regnum)); | |
7a292a7a | 3066 | #endif |
c906108c SS |
3067 | } |
3068 | ||
3069 | /* Exported procedure: Is PC in the signal trampoline code */ | |
3070 | ||
3071 | int | |
3072 | in_sigtramp (pc, ignore) | |
3073 | CORE_ADDR pc; | |
3074 | char *ignore; /* function name */ | |
3075 | { | |
3076 | if (sigtramp_address == 0) | |
3077 | fixup_sigtramp (); | |
3078 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
3079 | } | |
3080 | ||
3081 | /* Commands to show/set the MIPS FPU type. */ | |
3082 | ||
3083 | static void show_mipsfpu_command PARAMS ((char *, int)); | |
3084 | static void | |
3085 | show_mipsfpu_command (args, from_tty) | |
3086 | char *args; | |
3087 | int from_tty; | |
3088 | { | |
3089 | char *msg; | |
3090 | char *fpu; | |
3091 | switch (MIPS_FPU_TYPE) | |
3092 | { | |
3093 | case MIPS_FPU_SINGLE: | |
3094 | fpu = "single-precision"; | |
3095 | break; | |
3096 | case MIPS_FPU_DOUBLE: | |
3097 | fpu = "double-precision"; | |
3098 | break; | |
3099 | case MIPS_FPU_NONE: | |
3100 | fpu = "absent (none)"; | |
3101 | break; | |
3102 | } | |
3103 | if (mips_fpu_type_auto) | |
3104 | printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
3105 | fpu); | |
3106 | else | |
3107 | printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", | |
3108 | fpu); | |
3109 | } | |
3110 | ||
3111 | ||
3112 | static void set_mipsfpu_command PARAMS ((char *, int)); | |
3113 | static void | |
3114 | set_mipsfpu_command (args, from_tty) | |
3115 | char *args; | |
3116 | int from_tty; | |
3117 | { | |
3118 | printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
3119 | show_mipsfpu_command (args, from_tty); | |
3120 | } | |
3121 | ||
3122 | static void set_mipsfpu_single_command PARAMS ((char *, int)); | |
3123 | static void | |
3124 | set_mipsfpu_single_command (args, from_tty) | |
3125 | char *args; | |
3126 | int from_tty; | |
3127 | { | |
3128 | mips_fpu_type = MIPS_FPU_SINGLE; | |
3129 | mips_fpu_type_auto = 0; | |
3130 | } | |
3131 | ||
3132 | static void set_mipsfpu_double_command PARAMS ((char *, int)); | |
3133 | static void | |
3134 | set_mipsfpu_double_command (args, from_tty) | |
3135 | char *args; | |
3136 | int from_tty; | |
3137 | { | |
3138 | mips_fpu_type = MIPS_FPU_DOUBLE; | |
3139 | mips_fpu_type_auto = 0; | |
3140 | } | |
3141 | ||
3142 | static void set_mipsfpu_none_command PARAMS ((char *, int)); | |
3143 | static void | |
3144 | set_mipsfpu_none_command (args, from_tty) | |
3145 | char *args; | |
3146 | int from_tty; | |
3147 | { | |
3148 | mips_fpu_type = MIPS_FPU_NONE; | |
3149 | mips_fpu_type_auto = 0; | |
3150 | } | |
3151 | ||
3152 | static void set_mipsfpu_auto_command PARAMS ((char *, int)); | |
3153 | static void | |
3154 | set_mipsfpu_auto_command (args, from_tty) | |
3155 | char *args; | |
3156 | int from_tty; | |
3157 | { | |
3158 | mips_fpu_type_auto = 1; | |
3159 | } | |
3160 | ||
3161 | /* Command to set the processor type. */ | |
3162 | ||
3163 | void | |
3164 | mips_set_processor_type_command (args, from_tty) | |
3165 | char *args; | |
3166 | int from_tty; | |
3167 | { | |
3168 | int i; | |
3169 | ||
3170 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
3171 | { | |
3172 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
3173 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
3174 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
3175 | ||
3176 | /* Restore the value. */ | |
3177 | tmp_mips_processor_type = strsave (mips_processor_type); | |
3178 | ||
3179 | return; | |
3180 | } | |
c5aa993b | 3181 | |
c906108c SS |
3182 | if (!mips_set_processor_type (tmp_mips_processor_type)) |
3183 | { | |
3184 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
3185 | /* Restore its value. */ | |
3186 | tmp_mips_processor_type = strsave (mips_processor_type); | |
3187 | } | |
3188 | } | |
3189 | ||
3190 | static void | |
3191 | mips_show_processor_type_command (args, from_tty) | |
3192 | char *args; | |
3193 | int from_tty; | |
3194 | { | |
3195 | } | |
3196 | ||
3197 | /* Modify the actual processor type. */ | |
3198 | ||
3199 | int | |
3200 | mips_set_processor_type (str) | |
3201 | char *str; | |
3202 | { | |
3203 | int i, j; | |
3204 | ||
3205 | if (str == NULL) | |
3206 | return 0; | |
3207 | ||
3208 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
3209 | { | |
3210 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
3211 | { | |
3212 | mips_processor_type = str; | |
cce74817 | 3213 | mips_processor_reg_names = mips_processor_type_table[i].regnames; |
c906108c | 3214 | return 1; |
c906108c SS |
3215 | /* FIXME tweak fpu flag too */ |
3216 | } | |
3217 | } | |
3218 | ||
3219 | return 0; | |
3220 | } | |
3221 | ||
3222 | /* Attempt to identify the particular processor model by reading the | |
3223 | processor id. */ | |
3224 | ||
3225 | char * | |
3226 | mips_read_processor_type () | |
3227 | { | |
3228 | CORE_ADDR prid; | |
3229 | ||
3230 | prid = read_register (PRID_REGNUM); | |
3231 | ||
3232 | if ((prid & ~0xf) == 0x700) | |
c5aa993b | 3233 | return savestring ("r3041", strlen ("r3041")); |
c906108c SS |
3234 | |
3235 | return NULL; | |
3236 | } | |
3237 | ||
3238 | /* Just like reinit_frame_cache, but with the right arguments to be | |
3239 | callable as an sfunc. */ | |
3240 | ||
3241 | static void | |
3242 | reinit_frame_cache_sfunc (args, from_tty, c) | |
3243 | char *args; | |
3244 | int from_tty; | |
3245 | struct cmd_list_element *c; | |
3246 | { | |
3247 | reinit_frame_cache (); | |
3248 | } | |
3249 | ||
3250 | int | |
3251 | gdb_print_insn_mips (memaddr, info) | |
3252 | bfd_vma memaddr; | |
3253 | disassemble_info *info; | |
3254 | { | |
3255 | mips_extra_func_info_t proc_desc; | |
3256 | ||
3257 | /* Search for the function containing this address. Set the low bit | |
3258 | of the address when searching, in case we were given an even address | |
3259 | that is the start of a 16-bit function. If we didn't do this, | |
3260 | the search would fail because the symbol table says the function | |
3261 | starts at an odd address, i.e. 1 byte past the given address. */ | |
3262 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
3263 | proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); | |
3264 | ||
3265 | /* Make an attempt to determine if this is a 16-bit function. If | |
3266 | the procedure descriptor exists and the address therein is odd, | |
3267 | it's definitely a 16-bit function. Otherwise, we have to just | |
3268 | guess that if the address passed in is odd, it's 16-bits. */ | |
3269 | if (proc_desc) | |
3270 | info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; | |
3271 | else | |
3272 | info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; | |
3273 | ||
3274 | /* Round down the instruction address to the appropriate boundary. */ | |
3275 | memaddr &= (info->mach == 16 ? ~1 : ~3); | |
c5aa993b | 3276 | |
c906108c SS |
3277 | /* Call the appropriate disassembler based on the target endian-ness. */ |
3278 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
3279 | return print_insn_big_mips (memaddr, info); | |
3280 | else | |
3281 | return print_insn_little_mips (memaddr, info); | |
3282 | } | |
3283 | ||
3284 | /* Old-style breakpoint macros. | |
3285 | The IDT board uses an unusual breakpoint value, and sometimes gets | |
3286 | confused when it sees the usual MIPS breakpoint instruction. */ | |
3287 | ||
3288 | #define BIG_BREAKPOINT {0, 0x5, 0, 0xd} | |
3289 | #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0} | |
3290 | #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd} | |
3291 | #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0} | |
3292 | #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd} | |
3293 | #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0} | |
3294 | #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5} | |
3295 | #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8} | |
3296 | ||
3297 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program | |
3298 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
3299 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
3300 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
3301 | (if necessary) to point to the actual memory location where the | |
3302 | breakpoint should be inserted. */ | |
3303 | ||
c5aa993b JM |
3304 | unsigned char * |
3305 | mips_breakpoint_from_pc (pcptr, lenptr) | |
c906108c SS |
3306 | CORE_ADDR *pcptr; |
3307 | int *lenptr; | |
3308 | { | |
3309 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
3310 | { | |
3311 | if (pc_is_mips16 (*pcptr)) | |
3312 | { | |
3313 | static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; | |
3314 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); | |
c5aa993b | 3315 | *lenptr = sizeof (mips16_big_breakpoint); |
c906108c SS |
3316 | return mips16_big_breakpoint; |
3317 | } | |
3318 | else | |
3319 | { | |
3320 | static char big_breakpoint[] = BIG_BREAKPOINT; | |
3321 | static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; | |
3322 | static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; | |
3323 | ||
c5aa993b | 3324 | *lenptr = sizeof (big_breakpoint); |
c906108c SS |
3325 | |
3326 | if (strcmp (target_shortname, "mips") == 0) | |
3327 | return idt_big_breakpoint; | |
3328 | else if (strcmp (target_shortname, "ddb") == 0 | |
3329 | || strcmp (target_shortname, "pmon") == 0 | |
3330 | || strcmp (target_shortname, "lsi") == 0) | |
3331 | return pmon_big_breakpoint; | |
3332 | else | |
3333 | return big_breakpoint; | |
3334 | } | |
3335 | } | |
3336 | else | |
3337 | { | |
3338 | if (pc_is_mips16 (*pcptr)) | |
3339 | { | |
3340 | static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; | |
3341 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); | |
c5aa993b | 3342 | *lenptr = sizeof (mips16_little_breakpoint); |
c906108c SS |
3343 | return mips16_little_breakpoint; |
3344 | } | |
3345 | else | |
3346 | { | |
3347 | static char little_breakpoint[] = LITTLE_BREAKPOINT; | |
3348 | static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; | |
3349 | static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; | |
3350 | ||
c5aa993b | 3351 | *lenptr = sizeof (little_breakpoint); |
c906108c SS |
3352 | |
3353 | if (strcmp (target_shortname, "mips") == 0) | |
3354 | return idt_little_breakpoint; | |
3355 | else if (strcmp (target_shortname, "ddb") == 0 | |
3356 | || strcmp (target_shortname, "pmon") == 0 | |
3357 | || strcmp (target_shortname, "lsi") == 0) | |
3358 | return pmon_little_breakpoint; | |
3359 | else | |
3360 | return little_breakpoint; | |
3361 | } | |
3362 | } | |
3363 | } | |
3364 | ||
3365 | /* If PC is in a mips16 call or return stub, return the address of the target | |
3366 | PC, which is either the callee or the caller. There are several | |
3367 | cases which must be handled: | |
3368 | ||
3369 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
c5aa993b | 3370 | target PC is in $31 ($ra). |
c906108c | 3371 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub |
c5aa993b | 3372 | and the target PC is in $2. |
c906108c | 3373 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. |
c5aa993b JM |
3374 | before the jal instruction, this is effectively a call stub |
3375 | and the the target PC is in $2. Otherwise this is effectively | |
3376 | a return stub and the target PC is in $18. | |
c906108c SS |
3377 | |
3378 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
3379 | gory details. | |
3380 | ||
3381 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
c5aa993b | 3382 | */ |
c906108c SS |
3383 | |
3384 | CORE_ADDR | |
3385 | mips_skip_stub (pc) | |
3386 | CORE_ADDR pc; | |
3387 | { | |
3388 | char *name; | |
3389 | CORE_ADDR start_addr; | |
3390 | ||
3391 | /* Find the starting address and name of the function containing the PC. */ | |
3392 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
3393 | return 0; | |
3394 | ||
3395 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
3396 | target PC is in $31 ($ra). */ | |
3397 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3398 | || strcmp (name, "__mips16_ret_df") == 0) | |
3399 | return read_register (RA_REGNUM); | |
3400 | ||
3401 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3402 | { | |
3403 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
3404 | and the target PC is in $2. */ | |
3405 | if (name[19] >= '0' && name[19] <= '9') | |
3406 | return read_register (2); | |
3407 | ||
3408 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b JM |
3409 | before the jal instruction, this is effectively a call stub |
3410 | and the the target PC is in $2. Otherwise this is effectively | |
3411 | a return stub and the target PC is in $18. */ | |
c906108c SS |
3412 | else if (name[19] == 's' || name[19] == 'd') |
3413 | { | |
3414 | if (pc == start_addr) | |
3415 | { | |
3416 | /* Check if the target of the stub is a compiler-generated | |
c5aa993b JM |
3417 | stub. Such a stub for a function bar might have a name |
3418 | like __fn_stub_bar, and might look like this: | |
3419 | mfc1 $4,$f13 | |
3420 | mfc1 $5,$f12 | |
3421 | mfc1 $6,$f15 | |
3422 | mfc1 $7,$f14 | |
3423 | la $1,bar (becomes a lui/addiu pair) | |
3424 | jr $1 | |
3425 | So scan down to the lui/addi and extract the target | |
3426 | address from those two instructions. */ | |
c906108c SS |
3427 | |
3428 | CORE_ADDR target_pc = read_register (2); | |
3429 | t_inst inst; | |
3430 | int i; | |
3431 | ||
3432 | /* See if the name of the target function is __fn_stub_*. */ | |
3433 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
3434 | return target_pc; | |
3435 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
3436 | && strcmp (name, "etext") != 0 | |
3437 | && strcmp (name, "_etext") != 0) | |
3438 | return target_pc; | |
3439 | ||
3440 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
c5aa993b JM |
3441 | The limit on the search is arbitrarily set to 20 |
3442 | instructions. FIXME. */ | |
c906108c SS |
3443 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) |
3444 | { | |
c5aa993b JM |
3445 | inst = mips_fetch_instruction (target_pc); |
3446 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
3447 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
3448 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
3449 | return pc | (inst & 0xffff); /* low word */ | |
c906108c SS |
3450 | } |
3451 | ||
3452 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
3453 | return target_pc; | |
3454 | } | |
3455 | else | |
3456 | /* This is the 'return' part of a call stub. The return | |
3457 | address is in $r18. */ | |
3458 | return read_register (18); | |
3459 | } | |
3460 | } | |
c5aa993b | 3461 | return 0; /* not a stub */ |
c906108c SS |
3462 | } |
3463 | ||
3464 | ||
3465 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
3466 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
3467 | ||
3468 | int | |
3469 | mips_in_call_stub (pc, name) | |
3470 | CORE_ADDR pc; | |
3471 | char *name; | |
3472 | { | |
3473 | CORE_ADDR start_addr; | |
3474 | ||
3475 | /* Find the starting address of the function containing the PC. If the | |
3476 | caller didn't give us a name, look it up at the same time. */ | |
3477 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
3478 | return 0; | |
3479 | ||
3480 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3481 | { | |
3482 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
3483 | if (name[19] >= '0' && name[19] <= '9') | |
3484 | return 1; | |
3485 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b | 3486 | before the jal instruction, this is effectively a call stub. */ |
c906108c SS |
3487 | else if (name[19] == 's' || name[19] == 'd') |
3488 | return pc == start_addr; | |
3489 | } | |
3490 | ||
c5aa993b | 3491 | return 0; /* not a stub */ |
c906108c SS |
3492 | } |
3493 | ||
3494 | ||
3495 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
3496 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
3497 | ||
3498 | int | |
3499 | mips_in_return_stub (pc, name) | |
3500 | CORE_ADDR pc; | |
3501 | char *name; | |
3502 | { | |
3503 | CORE_ADDR start_addr; | |
3504 | ||
3505 | /* Find the starting address of the function containing the PC. */ | |
3506 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
3507 | return 0; | |
3508 | ||
3509 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
3510 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3511 | || strcmp (name, "__mips16_ret_df") == 0) | |
3512 | return 1; | |
3513 | ||
3514 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
c5aa993b | 3515 | i.e. after the jal instruction, this is effectively a return stub. */ |
c906108c SS |
3516 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 |
3517 | && (name[19] == 's' || name[19] == 'd') | |
3518 | && pc != start_addr) | |
3519 | return 1; | |
3520 | ||
c5aa993b | 3521 | return 0; /* not a stub */ |
c906108c SS |
3522 | } |
3523 | ||
3524 | ||
3525 | /* Return non-zero if the PC is in a library helper function that should | |
3526 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
3527 | ||
3528 | int | |
3529 | mips_ignore_helper (pc) | |
3530 | CORE_ADDR pc; | |
3531 | { | |
3532 | char *name; | |
3533 | ||
3534 | /* Find the starting address and name of the function containing the PC. */ | |
3535 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
3536 | return 0; | |
3537 | ||
3538 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
3539 | that we want to ignore. */ | |
3540 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
3541 | || strcmp (name, "__mips16_ret_df") == 0); | |
3542 | } | |
3543 | ||
3544 | ||
3545 | /* Return a location where we can set a breakpoint that will be hit | |
3546 | when an inferior function call returns. This is normally the | |
3547 | program's entry point. Executables that don't have an entry | |
3548 | point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS | |
3549 | whose address is the location where the breakpoint should be placed. */ | |
3550 | ||
3551 | CORE_ADDR | |
3552 | mips_call_dummy_address () | |
3553 | { | |
3554 | struct minimal_symbol *sym; | |
3555 | ||
3556 | sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL); | |
3557 | if (sym) | |
3558 | return SYMBOL_VALUE_ADDRESS (sym); | |
3559 | else | |
3560 | return entry_point_address (); | |
3561 | } | |
3562 | ||
3563 | ||
3564 | void | |
3565 | _initialize_mips_tdep () | |
3566 | { | |
3567 | static struct cmd_list_element *mipsfpulist = NULL; | |
3568 | struct cmd_list_element *c; | |
3569 | ||
c5aa993b | 3570 | if (!tm_print_insn) /* Someone may have already set it */ |
c906108c SS |
3571 | tm_print_insn = gdb_print_insn_mips; |
3572 | ||
3573 | /* Let the user turn off floating point and set the fence post for | |
3574 | heuristic_proc_start. */ | |
3575 | ||
3576 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
3577 | "Set use of MIPS floating-point coprocessor.", | |
3578 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
3579 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
3580 | "Select single-precision MIPS floating-point coprocessor.", | |
3581 | &mipsfpulist); | |
3582 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
3583 | "Select double-precision MIPS floating-point coprocessor .", | |
3584 | &mipsfpulist); | |
3585 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
3586 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
3587 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
3588 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
3589 | "Select no MIPS floating-point coprocessor.", | |
3590 | &mipsfpulist); | |
3591 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); | |
3592 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
3593 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
3594 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
3595 | "Select MIPS floating-point coprocessor automatically.", | |
3596 | &mipsfpulist); | |
3597 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
3598 | "Show current use of MIPS floating-point coprocessor target.", | |
3599 | &showlist); | |
3600 | ||
3601 | c = add_set_cmd ("processor", class_support, var_string_noescape, | |
3602 | (char *) &tmp_mips_processor_type, | |
3603 | "Set the type of MIPS processor in use.\n\ | |
3604 | Set this to be able to access processor-type-specific registers.\n\ | |
3605 | ", | |
3606 | &setlist); | |
3607 | c->function.cfunc = mips_set_processor_type_command; | |
3608 | c = add_show_from_set (c, &showlist); | |
3609 | c->function.cfunc = mips_show_processor_type_command; | |
3610 | ||
3611 | tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); | |
3612 | mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); | |
3613 | ||
3614 | /* We really would like to have both "0" and "unlimited" work, but | |
3615 | command.c doesn't deal with that. So make it a var_zinteger | |
3616 | because the user can always use "999999" or some such for unlimited. */ | |
3617 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
3618 | (char *) &heuristic_fence_post, | |
3619 | "\ | |
3620 | Set the distance searched for the start of a function.\n\ | |
3621 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
3622 | program for the start of a function. This command sets the distance of the\n\ | |
3623 | search. The only need to set it is when debugging a stripped executable.", | |
3624 | &setlist); | |
3625 | /* We need to throw away the frame cache when we set this, since it | |
3626 | might change our ability to get backtraces. */ | |
3627 | c->function.sfunc = reinit_frame_cache_sfunc; | |
3628 | add_show_from_set (c, &showlist); | |
3629 | ||
3630 | /* Allow the user to control whether the upper bits of 64-bit | |
3631 | addresses should be zeroed. */ | |
3632 | add_show_from_set | |
c5aa993b JM |
3633 | (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p, |
3634 | "Set zeroing of upper 32 bits of 64-bit addresses.\n\ | |
c906108c SS |
3635 | Use \"on\" to enable the masking, and \"off\" to disable it.\n\ |
3636 | Without an argument, zeroing of upper address bits is enabled.", &setlist), | |
3637 | &showlist); | |
43e526b9 JM |
3638 | |
3639 | /* Allow the user to control the size of 32 bit registers within the | |
3640 | raw remote packet. */ | |
3641 | add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs", | |
3642 | class_obscure, | |
3643 | var_boolean, | |
3644 | (char *)&mips64_transfers_32bit_regs_p, "\ | |
3645 | Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\ | |
3646 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ | |
3647 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
3648 | 64 bits for others. Use \"off\" to disable compatibility mode", | |
3649 | &setlist), | |
3650 | &showlist); | |
c906108c | 3651 | } |