]> Git Repo - binutils.git/blame - gdb/mips-tdep.c
Display the symbol's size and use it for sorting.
[binutils.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin([email protected]) at CMU
7 and by Per Bothner([email protected]) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
64 MIPS_ABI_UNKNOWN,
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
67 MIPS_ABI_O64,
68 MIPS_ABI_EABI32,
69 MIPS_ABI_EABI64
70 };
71
cce74817 72struct frame_extra_info
c5aa993b
JM
73 {
74 mips_extra_func_info_t proc_desc;
75 int num_args;
76 };
cce74817 77
d929b26f
AC
78/* Various MIPS ISA options (related to stack analysis) can be
79 overridden dynamically. Establish an enum/array for managing
80 them. */
81
53904c9e
AC
82static const char size_auto[] = "auto";
83static const char size_32[] = "32";
84static const char size_64[] = "64";
d929b26f 85
53904c9e 86static const char *size_enums[] = {
d929b26f
AC
87 size_auto,
88 size_32,
89 size_64,
a5ea2558
AC
90 0
91};
92
7a292a7a
SS
93/* Some MIPS boards don't support floating point while others only
94 support single-precision floating-point operations. See also
95 FP_REGISTER_DOUBLE. */
c906108c
SS
96
97enum mips_fpu_type
c5aa993b
JM
98 {
99 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
100 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
101 MIPS_FPU_NONE /* No floating point. */
102 };
c906108c
SS
103
104#ifndef MIPS_DEFAULT_FPU_TYPE
105#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
106#endif
107static int mips_fpu_type_auto = 1;
108static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 109
9ace0497 110static int mips_debug = 0;
7a292a7a 111
c2d11a7d
JM
112/* MIPS specific per-architecture information */
113struct gdbarch_tdep
114 {
115 /* from the elf header */
116 int elf_flags;
70f80edf 117
c2d11a7d 118 /* mips options */
0dadbba0 119 enum mips_abi mips_abi;
acdb74a0 120 const char *mips_abi_string;
c2d11a7d
JM
121 enum mips_fpu_type mips_fpu_type;
122 int mips_last_arg_regnum;
123 int mips_last_fp_arg_regnum;
a5ea2558 124 int mips_default_saved_regsize;
c2d11a7d 125 int mips_fp_register_double;
d929b26f
AC
126 int mips_regs_have_home_p;
127 int mips_default_stack_argsize;
5213ab06 128 int gdb_target_is_mips64;
4014092b 129 int default_mask_address_p;
70f80edf
JT
130
131 enum gdb_osabi osabi;
c2d11a7d
JM
132 };
133
0dadbba0 134#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 136
c2d11a7d 137#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 138
c2d11a7d 139#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 140
c2d11a7d 141#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 142
d929b26f
AC
143/* Return the currently configured (or set) saved register size. */
144
a5ea2558 145#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 146
53904c9e 147static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
148
149#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
150
151static unsigned int
acdb74a0 152mips_saved_regsize (void)
d929b26f
AC
153{
154 if (mips_saved_regsize_string == size_auto)
155 return MIPS_DEFAULT_SAVED_REGSIZE;
156 else if (mips_saved_regsize_string == size_64)
157 return 8;
158 else /* if (mips_saved_regsize_string == size_32) */
159 return 4;
160}
161
dd824b04
DJ
162/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
163 compatiblity mode. A return value of 1 means that we have
164 physical 64-bit registers, but should treat them as 32-bit registers. */
165
166static int
167mips2_fp_compat (void)
168{
169 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
170 meaningful. */
171 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
172 return 0;
173
174#if 0
175 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
176 in all the places we deal with FP registers. PR gdb/413. */
177 /* Otherwise check the FR bit in the status register - it controls
178 the FP compatiblity mode. If it is clear we are in compatibility
179 mode. */
180 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
181 return 1;
182#endif
361d1df0 183
dd824b04
DJ
184 return 0;
185}
186
c2d11a7d
JM
187/* Indicate that the ABI makes use of double-precision registers
188 provided by the FPU (rather than combining pairs of registers to
189 form double-precision values). Do not use "TARGET_IS_MIPS64" to
190 determine if the ABI is using double-precision registers. See also
191 MIPS_FPU_TYPE. */
c2d11a7d 192#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 193
d929b26f
AC
194/* Does the caller allocate a ``home'' for each register used in the
195 function call? The N32 ABI and MIPS_EABI do not, the others do. */
196
d929b26f 197#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
d929b26f
AC
198
199/* The amount of space reserved on the stack for registers. This is
200 different to MIPS_SAVED_REGSIZE as it determines the alignment of
201 data allocated after the registers have run out. */
202
0dadbba0 203#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
204
205#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
206
53904c9e 207static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
208
209static unsigned int
210mips_stack_argsize (void)
211{
212 if (mips_stack_argsize_string == size_auto)
213 return MIPS_DEFAULT_STACK_ARGSIZE;
214 else if (mips_stack_argsize_string == size_64)
215 return 8;
216 else /* if (mips_stack_argsize_string == size_32) */
217 return 4;
218}
219
5213ab06 220#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 221
92e1c15c 222#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 223
7a292a7a 224#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 225
a14ed312 226int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 227
a14ed312 228static void mips_print_register (int, int);
c906108c
SS
229
230static mips_extra_func_info_t
479412cd 231heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 232
a14ed312 233static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 234
a14ed312 235static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 236
a14ed312 237int mips_set_processor_type (char *);
c906108c 238
a14ed312 239static void mips_show_processor_type_command (char *, int);
c906108c 240
a14ed312 241static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
242
243static mips_extra_func_info_t
479412cd 244find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 245
a14ed312
KB
246static CORE_ADDR after_prologue (CORE_ADDR pc,
247 mips_extra_func_info_t proc_desc);
c906108c 248
dd824b04
DJ
249static void mips_read_fp_register_single (int regno, char *rare_buffer);
250static void mips_read_fp_register_double (int regno, char *rare_buffer);
251
67b2c998
DJ
252static struct type *mips_float_register_type (void);
253static struct type *mips_double_register_type (void);
254
c906108c
SS
255/* This value is the model of MIPS in use. It is derived from the value
256 of the PrID register. */
257
258char *mips_processor_type;
259
260char *tmp_mips_processor_type;
261
acdb74a0
AC
262/* The list of available "set mips " and "show mips " commands */
263
264static struct cmd_list_element *setmipscmdlist = NULL;
265static struct cmd_list_element *showmipscmdlist = NULL;
266
c906108c
SS
267/* A set of original names, to be used when restoring back to generic
268 registers from a specific set. */
269
cce74817
JM
270char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
271char **mips_processor_reg_names = mips_generic_reg_names;
272
273char *
fba45db2 274mips_register_name (int i)
cce74817
JM
275{
276 return mips_processor_reg_names[i];
277}
9846de1b 278/* *INDENT-OFF* */
c906108c
SS
279/* Names of IDT R3041 registers. */
280
281char *mips_r3041_reg_names[] = {
282 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
283 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
284 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
285 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
286 "sr", "lo", "hi", "bad", "cause","pc",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
291 "fsr", "fir", "fp", "",
292 "", "", "bus", "ccfg", "", "", "", "",
293 "", "", "port", "cmp", "", "", "epc", "prid",
294};
295
296/* Names of IDT R3051 registers. */
297
298char *mips_r3051_reg_names[] = {
299 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
301 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
303 "sr", "lo", "hi", "bad", "cause","pc",
304 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
305 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
306 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
307 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
308 "fsr", "fir", "fp", "",
309 "inx", "rand", "elo", "", "ctxt", "", "", "",
310 "", "", "ehi", "", "", "", "epc", "prid",
311};
312
313/* Names of IDT R3081 registers. */
314
315char *mips_r3081_reg_names[] = {
316 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
317 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
318 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
319 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
320 "sr", "lo", "hi", "bad", "cause","pc",
321 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
322 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
323 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
324 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
325 "fsr", "fir", "fp", "",
326 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
327 "", "", "ehi", "", "", "", "epc", "prid",
328};
329
330/* Names of LSI 33k registers. */
331
332char *mips_lsi33k_reg_names[] = {
333 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
334 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
335 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
336 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
337 "epc", "hi", "lo", "sr", "cause","badvaddr",
338 "dcic", "bpc", "bda", "", "", "", "", "",
339 "", "", "", "", "", "", "", "",
340 "", "", "", "", "", "", "", "",
341 "", "", "", "", "", "", "", "",
342 "", "", "", "",
343 "", "", "", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345};
346
347struct {
348 char *name;
349 char **regnames;
350} mips_processor_type_table[] = {
351 { "generic", mips_generic_reg_names },
352 { "r3041", mips_r3041_reg_names },
353 { "r3051", mips_r3051_reg_names },
354 { "r3071", mips_r3081_reg_names },
355 { "r3081", mips_r3081_reg_names },
356 { "lsi33k", mips_lsi33k_reg_names },
357 { NULL, NULL }
358};
9846de1b 359/* *INDENT-ON* */
c906108c 360
c5aa993b
JM
361
362
363
c906108c 364/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
365static int mips16_to_32_reg[8] =
366{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
367
368/* Heuristic_proc_start may hunt through the text section for a long
369 time across a 2400 baud serial line. Allows the user to limit this
370 search. */
371
372static unsigned int heuristic_fence_post = 0;
373
c5aa993b
JM
374#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
375#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
376#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
377#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
378#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
379#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
380#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
381#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
382#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
383#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
384#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
385#define _PROC_MAGIC_ 0x0F0F0F0F
386#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
387#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
388
389struct linked_proc_info
c5aa993b
JM
390 {
391 struct mips_extra_func_info info;
392 struct linked_proc_info *next;
393 }
394 *linked_proc_desc_table = NULL;
c906108c 395
cce74817 396void
acdb74a0 397mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
398{
399 if (fi
400 && fi->extra_info
401 && fi->extra_info->proc_desc
402 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 403 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 404 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 405 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 406}
c906108c 407
46cd78fb
AC
408/* Number of bytes of storage in the actual machine representation for
409 register N. NOTE: This indirectly defines the register size
410 transfered by the GDB protocol. */
43e526b9
JM
411
412static int mips64_transfers_32bit_regs_p = 0;
413
414int
acdb74a0 415mips_register_raw_size (int reg_nr)
43e526b9
JM
416{
417 if (mips64_transfers_32bit_regs_p)
418 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
419 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
420 && FP_REGISTER_DOUBLE)
421 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
422 registers. */
423 return 8;
43e526b9
JM
424 else
425 return MIPS_REGSIZE;
426}
427
46cd78fb
AC
428/* Convert between RAW and VIRTUAL registers. The RAW register size
429 defines the remote-gdb packet. */
430
43e526b9 431int
acdb74a0 432mips_register_convertible (int reg_nr)
43e526b9
JM
433{
434 if (mips64_transfers_32bit_regs_p)
435 return 0;
436 else
437 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
438}
439
440void
acdb74a0
AC
441mips_register_convert_to_virtual (int n, struct type *virtual_type,
442 char *raw_buf, char *virt_buf)
43e526b9 443{
d7449b42 444 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
445 memcpy (virt_buf,
446 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
447 TYPE_LENGTH (virtual_type));
448 else
449 memcpy (virt_buf,
450 raw_buf,
451 TYPE_LENGTH (virtual_type));
452}
453
454void
acdb74a0
AC
455mips_register_convert_to_raw (struct type *virtual_type, int n,
456 char *virt_buf, char *raw_buf)
43e526b9
JM
457{
458 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 459 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
460 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
461 virt_buf,
462 TYPE_LENGTH (virtual_type));
463 else
464 memcpy (raw_buf,
465 virt_buf,
466 TYPE_LENGTH (virtual_type));
467}
468
c906108c 469/* Should the upper word of 64-bit addresses be zeroed? */
4014092b
AC
470enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
471
472static int
473mips_mask_address_p (void)
474{
475 switch (mask_address_var)
476 {
477 case CMD_AUTO_BOOLEAN_TRUE:
478 return 1;
479 case CMD_AUTO_BOOLEAN_FALSE:
480 return 0;
481 break;
482 case CMD_AUTO_BOOLEAN_AUTO:
92e1c15c 483 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 484 default:
8e65ff28
AC
485 internal_error (__FILE__, __LINE__,
486 "mips_mask_address_p: bad switch");
4014092b 487 return -1;
361d1df0 488 }
4014092b
AC
489}
490
491static void
492show_mask_address (char *cmd, int from_tty)
493{
494 switch (mask_address_var)
495 {
496 case CMD_AUTO_BOOLEAN_TRUE:
497 printf_filtered ("The 32 bit mips address mask is enabled\n");
498 break;
499 case CMD_AUTO_BOOLEAN_FALSE:
500 printf_filtered ("The 32 bit mips address mask is disabled\n");
501 break;
502 case CMD_AUTO_BOOLEAN_AUTO:
503 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
504 mips_mask_address_p () ? "enabled" : "disabled");
505 break;
506 default:
8e65ff28
AC
507 internal_error (__FILE__, __LINE__,
508 "show_mask_address: bad switch");
4014092b 509 break;
361d1df0 510 }
4014092b 511}
c906108c
SS
512
513/* Should call_function allocate stack space for a struct return? */
514int
fba45db2 515mips_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
516{
517 if (MIPS_EABI)
7a292a7a 518 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 519 else
c5aa993b 520 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
521}
522
523/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
524
525static int
526pc_is_mips16 (bfd_vma memaddr)
527{
528 struct minimal_symbol *sym;
529
530 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
531 if (IS_MIPS16_ADDR (memaddr))
532 return 1;
533
534 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
535 the high bit of the info field. Use this to decide if the function is
536 MIPS16 or normal MIPS. */
537 sym = lookup_minimal_symbol_by_pc (memaddr);
538 if (sym)
539 return MSYMBOL_IS_SPECIAL (sym);
540 else
541 return 0;
542}
543
6c997a34
AC
544/* MIPS believes that the PC has a sign extended value. Perhaphs the
545 all registers should be sign extended for simplicity? */
546
547static CORE_ADDR
39f77062 548mips_read_pc (ptid_t ptid)
6c997a34 549{
39f77062 550 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 551}
c906108c
SS
552
553/* This returns the PC of the first inst after the prologue. If we can't
554 find the prologue, then return 0. */
555
556static CORE_ADDR
acdb74a0
AC
557after_prologue (CORE_ADDR pc,
558 mips_extra_func_info_t proc_desc)
c906108c
SS
559{
560 struct symtab_and_line sal;
561 CORE_ADDR func_addr, func_end;
562
479412cd
DJ
563 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
564 to read the stack pointer from the current machine state, because
565 the current machine state has nothing to do with the information
566 we need from the proc_desc; and the process may or may not exist
567 right now. */
c906108c 568 if (!proc_desc)
479412cd 569 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
570
571 if (proc_desc)
572 {
573 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 574 strongly suspect that frameless always means prologueless... */
c906108c
SS
575 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
576 && PROC_FRAME_OFFSET (proc_desc) == 0)
577 return 0;
578 }
579
580 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
581 return 0; /* Unknown */
582
583 sal = find_pc_line (func_addr, 0);
584
585 if (sal.end < func_end)
586 return sal.end;
587
588 /* The line after the prologue is after the end of the function. In this
589 case, tell the caller to find the prologue the hard way. */
590
591 return 0;
592}
593
594/* Decode a MIPS32 instruction that saves a register in the stack, and
595 set the appropriate bit in the general register mask or float register mask
596 to indicate which register is saved. This is a helper function
597 for mips_find_saved_regs. */
598
599static void
acdb74a0
AC
600mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
601 unsigned long *float_mask)
c906108c
SS
602{
603 int reg;
604
605 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
606 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
607 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
608 {
609 /* It might be possible to use the instruction to
c5aa993b
JM
610 find the offset, rather than the code below which
611 is based on things being in a certain order in the
612 frame, but figuring out what the instruction's offset
613 is relative to might be a little tricky. */
c906108c
SS
614 reg = (inst & 0x001f0000) >> 16;
615 *gen_mask |= (1 << reg);
616 }
617 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
618 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
619 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
620
621 {
622 reg = ((inst & 0x001f0000) >> 16);
623 *float_mask |= (1 << reg);
624 }
625}
626
627/* Decode a MIPS16 instruction that saves a register in the stack, and
628 set the appropriate bit in the general register or float register mask
629 to indicate which register is saved. This is a helper function
630 for mips_find_saved_regs. */
631
632static void
acdb74a0 633mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 634{
c5aa993b 635 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
636 {
637 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
638 *gen_mask |= (1 << reg);
639 }
c5aa993b 640 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
641 {
642 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
643 *gen_mask |= (1 << reg);
644 }
c5aa993b 645 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
646 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
647 *gen_mask |= (1 << RA_REGNUM);
648}
649
650
651/* Fetch and return instruction from the specified location. If the PC
652 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
653
654static t_inst
acdb74a0 655mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
656{
657 char buf[MIPS_INSTLEN];
658 int instlen;
659 int status;
660
661 if (pc_is_mips16 (addr))
662 {
663 instlen = MIPS16_INSTLEN;
664 addr = UNMAKE_MIPS16_ADDR (addr);
665 }
666 else
c5aa993b 667 instlen = MIPS_INSTLEN;
c906108c
SS
668 status = read_memory_nobpt (addr, buf, instlen);
669 if (status)
670 memory_error (status, addr);
671 return extract_unsigned_integer (buf, instlen);
672}
673
674
675/* These the fields of 32 bit mips instructions */
e135b889
DJ
676#define mips32_op(x) (x >> 26)
677#define itype_op(x) (x >> 26)
678#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 679#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 680#define itype_immediate(x) (x & 0xffff)
c906108c 681
e135b889
DJ
682#define jtype_op(x) (x >> 26)
683#define jtype_target(x) (x & 0x03ffffff)
c906108c 684
e135b889
DJ
685#define rtype_op(x) (x >> 26)
686#define rtype_rs(x) ((x >> 21) & 0x1f)
687#define rtype_rt(x) ((x >> 16) & 0x1f)
688#define rtype_rd(x) ((x >> 11) & 0x1f)
689#define rtype_shamt(x) ((x >> 6) & 0x1f)
690#define rtype_funct(x) (x & 0x3f)
c906108c
SS
691
692static CORE_ADDR
c5aa993b
JM
693mips32_relative_offset (unsigned long inst)
694{
695 long x;
696 x = itype_immediate (inst);
697 if (x & 0x8000) /* sign bit set */
c906108c 698 {
c5aa993b 699 x |= 0xffff0000; /* sign extension */
c906108c 700 }
c5aa993b
JM
701 x = x << 2;
702 return x;
c906108c
SS
703}
704
705/* Determine whate to set a single step breakpoint while considering
706 branch prediction */
707CORE_ADDR
c5aa993b
JM
708mips32_next_pc (CORE_ADDR pc)
709{
710 unsigned long inst;
711 int op;
712 inst = mips_fetch_instruction (pc);
e135b889 713 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 714 {
e135b889
DJ
715 if (itype_op (inst) >> 2 == 5)
716 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 717 {
e135b889 718 op = (itype_op (inst) & 0x03);
c906108c
SS
719 switch (op)
720 {
e135b889
DJ
721 case 0: /* BEQL */
722 goto equal_branch;
723 case 1: /* BNEL */
724 goto neq_branch;
725 case 2: /* BLEZL */
726 goto less_branch;
727 case 3: /* BGTZ */
728 goto greater_branch;
c5aa993b
JM
729 default:
730 pc += 4;
c906108c
SS
731 }
732 }
e135b889
DJ
733 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
734 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
735 {
736 int tf = itype_rt (inst) & 0x01;
737 int cnum = itype_rt (inst) >> 2;
738 int fcrcs = read_signed_register (FCRCS_REGNUM);
739 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
740
741 if (((cond >> cnum) & 0x01) == tf)
742 pc += mips32_relative_offset (inst) + 4;
743 else
744 pc += 8;
745 }
c5aa993b
JM
746 else
747 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
748 }
749 else
c5aa993b
JM
750 { /* This gets way messy */
751
c906108c 752 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 753 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 754 {
c5aa993b
JM
755 case 0: /* SPECIAL */
756 op = rtype_funct (inst);
757 switch (op)
758 {
759 case 8: /* JR */
760 case 9: /* JALR */
6c997a34
AC
761 /* Set PC to that address */
762 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
763 break;
764 default:
765 pc += 4;
766 }
767
e135b889 768 break; /* end SPECIAL */
c5aa993b 769 case 1: /* REGIMM */
c906108c 770 {
e135b889
DJ
771 op = itype_rt (inst); /* branch condition */
772 switch (op)
c906108c 773 {
c5aa993b 774 case 0: /* BLTZ */
e135b889
DJ
775 case 2: /* BLTZL */
776 case 16: /* BLTZAL */
c5aa993b 777 case 18: /* BLTZALL */
c906108c 778 less_branch:
6c997a34 779 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
780 pc += mips32_relative_offset (inst) + 4;
781 else
782 pc += 8; /* after the delay slot */
783 break;
e135b889 784 case 1: /* BGEZ */
c5aa993b
JM
785 case 3: /* BGEZL */
786 case 17: /* BGEZAL */
787 case 19: /* BGEZALL */
c906108c 788 greater_equal_branch:
6c997a34 789 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
790 pc += mips32_relative_offset (inst) + 4;
791 else
792 pc += 8; /* after the delay slot */
793 break;
e135b889 794 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
795 default:
796 pc += 4;
c906108c
SS
797 }
798 }
e135b889 799 break; /* end REGIMM */
c5aa993b
JM
800 case 2: /* J */
801 case 3: /* JAL */
802 {
803 unsigned long reg;
804 reg = jtype_target (inst) << 2;
e135b889 805 /* Upper four bits get never changed... */
c5aa993b 806 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 807 }
c5aa993b
JM
808 break;
809 /* FIXME case JALX : */
810 {
811 unsigned long reg;
812 reg = jtype_target (inst) << 2;
813 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
814 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
815 }
c5aa993b 816 break; /* The new PC will be alternate mode */
e135b889 817 case 4: /* BEQ, BEQL */
c5aa993b 818 equal_branch:
6c997a34
AC
819 if (read_signed_register (itype_rs (inst)) ==
820 read_signed_register (itype_rt (inst)))
c5aa993b
JM
821 pc += mips32_relative_offset (inst) + 4;
822 else
823 pc += 8;
824 break;
e135b889 825 case 5: /* BNE, BNEL */
c5aa993b 826 neq_branch:
6c997a34 827 if (read_signed_register (itype_rs (inst)) !=
e135b889 828 read_signed_register (itype_rt (inst)))
c5aa993b
JM
829 pc += mips32_relative_offset (inst) + 4;
830 else
831 pc += 8;
832 break;
e135b889 833 case 6: /* BLEZ, BLEZL */
c906108c 834 less_zero_branch:
6c997a34 835 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
836 pc += mips32_relative_offset (inst) + 4;
837 else
838 pc += 8;
839 break;
840 case 7:
e135b889
DJ
841 default:
842 greater_branch: /* BGTZ, BGTZL */
6c997a34 843 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
844 pc += mips32_relative_offset (inst) + 4;
845 else
846 pc += 8;
847 break;
c5aa993b
JM
848 } /* switch */
849 } /* else */
850 return pc;
851} /* mips32_next_pc */
c906108c
SS
852
853/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 854 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
855 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
856 We dont want to set a single step instruction on the extend instruction
857 either.
c5aa993b 858 */
c906108c
SS
859
860/* Lots of mips16 instruction formats */
861/* Predicting jumps requires itype,ritype,i8type
862 and their extensions extItype,extritype,extI8type
c5aa993b 863 */
c906108c
SS
864enum mips16_inst_fmts
865{
c5aa993b
JM
866 itype, /* 0 immediate 5,10 */
867 ritype, /* 1 5,3,8 */
868 rrtype, /* 2 5,3,3,5 */
869 rritype, /* 3 5,3,3,5 */
870 rrrtype, /* 4 5,3,3,3,2 */
871 rriatype, /* 5 5,3,3,1,4 */
872 shifttype, /* 6 5,3,3,3,2 */
873 i8type, /* 7 5,3,8 */
874 i8movtype, /* 8 5,3,3,5 */
875 i8mov32rtype, /* 9 5,3,5,3 */
876 i64type, /* 10 5,3,8 */
877 ri64type, /* 11 5,3,3,5 */
878 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
879 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
880 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
881 extRRItype, /* 15 5,5,5,5,3,3,5 */
882 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
883 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
884 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
885 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
886 extRi64type, /* 20 5,6,5,5,3,3,5 */
887 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
888};
12f02c2a
AC
889/* I am heaping all the fields of the formats into one structure and
890 then, only the fields which are involved in instruction extension */
c906108c 891struct upk_mips16
c5aa993b 892 {
12f02c2a 893 CORE_ADDR offset;
c5aa993b
JM
894 unsigned int regx; /* Function in i8 type */
895 unsigned int regy;
896 };
c906108c
SS
897
898
12f02c2a
AC
899/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
900 for the bits which make up the immediatate extension. */
c906108c 901
12f02c2a
AC
902static CORE_ADDR
903extended_offset (unsigned int extension)
c906108c 904{
12f02c2a 905 CORE_ADDR value;
c5aa993b
JM
906 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
907 value = value << 6;
908 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
909 value = value << 5;
910 value |= extension & 0x01f; /* extract 4:0 */
911 return value;
c906108c
SS
912}
913
914/* Only call this function if you know that this is an extendable
915 instruction, It wont malfunction, but why make excess remote memory references?
916 If the immediate operands get sign extended or somthing, do it after
917 the extension is performed.
c5aa993b 918 */
c906108c
SS
919/* FIXME: Every one of these cases needs to worry about sign extension
920 when the offset is to be used in relative addressing */
921
922
12f02c2a 923static unsigned int
c5aa993b 924fetch_mips_16 (CORE_ADDR pc)
c906108c 925{
c5aa993b
JM
926 char buf[8];
927 pc &= 0xfffffffe; /* clear the low order bit */
928 target_read_memory (pc, buf, 2);
929 return extract_unsigned_integer (buf, 2);
c906108c
SS
930}
931
932static void
c5aa993b 933unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
934 unsigned int extension,
935 unsigned int inst,
936 enum mips16_inst_fmts insn_format,
c5aa993b 937 struct upk_mips16 *upk)
c906108c 938{
12f02c2a
AC
939 CORE_ADDR offset;
940 int regx;
941 int regy;
942 switch (insn_format)
c906108c 943 {
c5aa993b 944 case itype:
c906108c 945 {
12f02c2a
AC
946 CORE_ADDR value;
947 if (extension)
c5aa993b
JM
948 {
949 value = extended_offset (extension);
950 value = value << 11; /* rom for the original value */
12f02c2a 951 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
952 }
953 else
c5aa993b 954 {
12f02c2a 955 value = inst & 0x7ff;
c5aa993b 956 /* FIXME : Consider sign extension */
c906108c 957 }
12f02c2a
AC
958 offset = value;
959 regx = -1;
960 regy = -1;
c906108c 961 }
c5aa993b
JM
962 break;
963 case ritype:
964 case i8type:
965 { /* A register identifier and an offset */
c906108c
SS
966 /* Most of the fields are the same as I type but the
967 immediate value is of a different length */
12f02c2a
AC
968 CORE_ADDR value;
969 if (extension)
c906108c 970 {
c5aa993b
JM
971 value = extended_offset (extension);
972 value = value << 8; /* from the original instruction */
12f02c2a
AC
973 value |= inst & 0xff; /* eleven bits from instruction */
974 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
975 if (value & 0x4000) /* test the sign bit , bit 26 */
976 {
977 value &= ~0x3fff; /* remove the sign bit */
978 value = -value;
c906108c
SS
979 }
980 }
c5aa993b
JM
981 else
982 {
12f02c2a
AC
983 value = inst & 0xff; /* 8 bits */
984 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
985 /* FIXME: Do sign extension , this format needs it */
986 if (value & 0x80) /* THIS CONFUSES ME */
987 {
988 value &= 0xef; /* remove the sign bit */
989 value = -value;
990 }
c5aa993b 991 }
12f02c2a
AC
992 offset = value;
993 regy = -1;
c5aa993b 994 break;
c906108c 995 }
c5aa993b 996 case jalxtype:
c906108c 997 {
c5aa993b 998 unsigned long value;
12f02c2a
AC
999 unsigned int nexthalf;
1000 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1001 value = value << 16;
1002 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1003 value |= nexthalf;
12f02c2a
AC
1004 offset = value;
1005 regx = -1;
1006 regy = -1;
c5aa993b 1007 break;
c906108c
SS
1008 }
1009 default:
8e65ff28
AC
1010 internal_error (__FILE__, __LINE__,
1011 "bad switch");
c906108c 1012 }
12f02c2a
AC
1013 upk->offset = offset;
1014 upk->regx = regx;
1015 upk->regy = regy;
c906108c
SS
1016}
1017
1018
c5aa993b
JM
1019static CORE_ADDR
1020add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1021{
c5aa993b
JM
1022 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1023
c906108c
SS
1024}
1025
12f02c2a
AC
1026static CORE_ADDR
1027extended_mips16_next_pc (CORE_ADDR pc,
1028 unsigned int extension,
1029 unsigned int insn)
c906108c 1030{
12f02c2a
AC
1031 int op = (insn >> 11);
1032 switch (op)
c906108c 1033 {
12f02c2a
AC
1034 case 2: /* Branch */
1035 {
1036 CORE_ADDR offset;
1037 struct upk_mips16 upk;
1038 unpack_mips16 (pc, extension, insn, itype, &upk);
1039 offset = upk.offset;
1040 if (offset & 0x800)
1041 {
1042 offset &= 0xeff;
1043 offset = -offset;
1044 }
1045 pc += (offset << 1) + 2;
1046 break;
1047 }
1048 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1049 {
1050 struct upk_mips16 upk;
1051 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1052 pc = add_offset_16 (pc, upk.offset);
1053 if ((insn >> 10) & 0x01) /* Exchange mode */
1054 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1055 else
1056 pc |= 0x01;
1057 break;
1058 }
1059 case 4: /* beqz */
1060 {
1061 struct upk_mips16 upk;
1062 int reg;
1063 unpack_mips16 (pc, extension, insn, ritype, &upk);
1064 reg = read_signed_register (upk.regx);
1065 if (reg == 0)
1066 pc += (upk.offset << 1) + 2;
1067 else
1068 pc += 2;
1069 break;
1070 }
1071 case 5: /* bnez */
1072 {
1073 struct upk_mips16 upk;
1074 int reg;
1075 unpack_mips16 (pc, extension, insn, ritype, &upk);
1076 reg = read_signed_register (upk.regx);
1077 if (reg != 0)
1078 pc += (upk.offset << 1) + 2;
1079 else
1080 pc += 2;
1081 break;
1082 }
1083 case 12: /* I8 Formats btez btnez */
1084 {
1085 struct upk_mips16 upk;
1086 int reg;
1087 unpack_mips16 (pc, extension, insn, i8type, &upk);
1088 /* upk.regx contains the opcode */
1089 reg = read_signed_register (24); /* Test register is 24 */
1090 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1091 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1092 /* pc = add_offset_16(pc,upk.offset) ; */
1093 pc += (upk.offset << 1) + 2;
1094 else
1095 pc += 2;
1096 break;
1097 }
1098 case 29: /* RR Formats JR, JALR, JALR-RA */
1099 {
1100 struct upk_mips16 upk;
1101 /* upk.fmt = rrtype; */
1102 op = insn & 0x1f;
1103 if (op == 0)
c5aa993b 1104 {
12f02c2a
AC
1105 int reg;
1106 upk.regx = (insn >> 8) & 0x07;
1107 upk.regy = (insn >> 5) & 0x07;
1108 switch (upk.regy)
c5aa993b 1109 {
12f02c2a
AC
1110 case 0:
1111 reg = upk.regx;
1112 break;
1113 case 1:
1114 reg = 31;
1115 break; /* Function return instruction */
1116 case 2:
1117 reg = upk.regx;
1118 break;
1119 default:
1120 reg = 31;
1121 break; /* BOGUS Guess */
c906108c 1122 }
12f02c2a 1123 pc = read_signed_register (reg);
c906108c 1124 }
12f02c2a 1125 else
c5aa993b 1126 pc += 2;
12f02c2a
AC
1127 break;
1128 }
1129 case 30:
1130 /* This is an instruction extension. Fetch the real instruction
1131 (which follows the extension) and decode things based on
1132 that. */
1133 {
1134 pc += 2;
1135 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1136 break;
1137 }
1138 default:
1139 {
1140 pc += 2;
1141 break;
1142 }
c906108c 1143 }
c5aa993b 1144 return pc;
12f02c2a 1145}
c906108c 1146
12f02c2a
AC
1147CORE_ADDR
1148mips16_next_pc (CORE_ADDR pc)
1149{
1150 unsigned int insn = fetch_mips_16 (pc);
1151 return extended_mips16_next_pc (pc, 0, insn);
1152}
1153
1154/* The mips_next_pc function supports single_step when the remote
7e73cedf 1155 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1156 It works by decoding the current instruction and predicting where a
1157 branch will go. This isnt hard because all the data is available.
1158 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1159CORE_ADDR
1160mips_next_pc (CORE_ADDR pc)
c906108c 1161{
c5aa993b
JM
1162 if (pc & 0x01)
1163 return mips16_next_pc (pc);
1164 else
1165 return mips32_next_pc (pc);
12f02c2a 1166}
c906108c
SS
1167
1168/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1169 NULL). */
1170
1171void
acdb74a0 1172mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1173{
1174 int ireg;
1175 CORE_ADDR reg_position;
1176 /* r0 bit means kernel trap */
1177 int kernel_trap;
1178 /* What registers have been saved? Bitmasks. */
1179 unsigned long gen_mask, float_mask;
1180 mips_extra_func_info_t proc_desc;
1181 t_inst inst;
1182
1183 frame_saved_regs_zalloc (fci);
1184
1185 /* If it is the frame for sigtramp, the saved registers are located
1186 in a sigcontext structure somewhere on the stack.
1187 If the stack layout for sigtramp changes we might have to change these
1188 constants and the companion fixup_sigtramp in mdebugread.c */
1189#ifndef SIGFRAME_BASE
1190/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1191 above the sigtramp frame. */
1192#define SIGFRAME_BASE MIPS_REGSIZE
1193/* FIXME! Are these correct?? */
1194#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1195#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1196#define SIGFRAME_FPREGSAVE_OFF \
1197 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1198#endif
1199#ifndef SIGFRAME_REG_SIZE
1200/* FIXME! Is this correct?? */
1201#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1202#endif
1203 if (fci->signal_handler_caller)
1204 {
1205 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1206 {
c5aa993b
JM
1207 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1208 + ireg * SIGFRAME_REG_SIZE;
1209 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1210 }
1211 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1212 {
c5aa993b
JM
1213 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1214 + ireg * SIGFRAME_REG_SIZE;
1215 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1216 }
1217 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1218 return;
1219 }
1220
cce74817 1221 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1222 if (proc_desc == NULL)
1223 /* I'm not sure how/whether this can happen. Normally when we can't
1224 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1225 and set the saved_regs right away. */
1226 return;
1227
c5aa993b
JM
1228 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1229 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1230 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1231
c5aa993b
JM
1232 if ( /* In any frame other than the innermost or a frame interrupted by
1233 a signal, we assume that all registers have been saved.
1234 This assumes that all register saves in a function happen before
1235 the first function call. */
1236 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1237
c5aa993b
JM
1238 /* In a dummy frame we know exactly where things are saved. */
1239 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1240
c5aa993b
JM
1241 /* Don't bother unless we are inside a function prologue. Outside the
1242 prologue, we know where everything is. */
c906108c 1243
c5aa993b 1244 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1245
c5aa993b
JM
1246 /* Not sure exactly what kernel_trap means, but if it means
1247 the kernel saves the registers without a prologue doing it,
1248 we better not examine the prologue to see whether registers
1249 have been saved yet. */
1250 && !kernel_trap)
c906108c
SS
1251 {
1252 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1253 claims are saved have been saved yet. */
c906108c
SS
1254
1255 CORE_ADDR addr;
1256
1257 /* Bitmasks; set if we have found a save for the register. */
1258 unsigned long gen_save_found = 0;
1259 unsigned long float_save_found = 0;
1260 int instlen;
1261
1262 /* If the address is odd, assume this is MIPS16 code. */
1263 addr = PROC_LOW_ADDR (proc_desc);
1264 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1265
1266 /* Scan through this function's instructions preceding the current
1267 PC, and look for those that save registers. */
1268 while (addr < fci->pc)
1269 {
1270 inst = mips_fetch_instruction (addr);
1271 if (pc_is_mips16 (addr))
1272 mips16_decode_reg_save (inst, &gen_save_found);
1273 else
1274 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1275 addr += instlen;
1276 }
1277 gen_mask = gen_save_found;
1278 float_mask = float_save_found;
1279 }
1280
1281 /* Fill in the offsets for the registers which gen_mask says
1282 were saved. */
1283 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1284 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1285 if (gen_mask & 0x80000000)
1286 {
1287 fci->saved_regs[ireg] = reg_position;
7a292a7a 1288 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1289 }
1290
1291 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1292 of that normally used by gcc. Therefore, we have to fetch the first
1293 instruction of the function, and if it's an entry instruction that
1294 saves $s0 or $s1, correct their saved addresses. */
1295 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1296 {
1297 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1298 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1299 {
1300 int reg;
1301 int sreg_count = (inst >> 6) & 3;
c5aa993b 1302
c906108c
SS
1303 /* Check if the ra register was pushed on the stack. */
1304 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1305 if (inst & 0x20)
7a292a7a 1306 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1307
1308 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1309 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1310 {
1311 fci->saved_regs[reg] = reg_position;
7a292a7a 1312 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1313 }
1314 }
1315 }
1316
1317 /* Fill in the offsets for the registers which float_mask says
1318 were saved. */
1319 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1320
1321 /* The freg_offset points to where the first *double* register
1322 is saved. So skip to the high-order word. */
c5aa993b 1323 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1324 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1325
1326 /* Fill in the offsets for the float registers which float_mask says
1327 were saved. */
c5aa993b 1328 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1329 if (float_mask & 0x80000000)
1330 {
c5aa993b 1331 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1332 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1333 }
1334
1335 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1336}
1337
1338static CORE_ADDR
acdb74a0 1339read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1340{
1341 for (; fi; fi = fi->next)
1342 {
1343 /* We have to get the saved sp from the sigcontext
c5aa993b 1344 if it is a signal handler frame. */
c906108c
SS
1345 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1346 return fi->frame;
1347 else
1348 {
1349 if (fi->saved_regs == NULL)
1350 mips_find_saved_regs (fi);
1351 if (fi->saved_regs[regno])
2acceee2 1352 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1353 }
1354 }
6c997a34 1355 return read_signed_register (regno);
c906108c
SS
1356}
1357
1358/* mips_addr_bits_remove - remove useless address bits */
1359
875e1767 1360static CORE_ADDR
acdb74a0 1361mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1362{
5213ab06
AC
1363 if (GDB_TARGET_IS_MIPS64)
1364 {
4014092b 1365 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1366 {
1367 /* This hack is a work-around for existing boards using
1368 PMON, the simulator, and any other 64-bit targets that
1369 doesn't have true 64-bit addressing. On these targets,
1370 the upper 32 bits of addresses are ignored by the
1371 hardware. Thus, the PC or SP are likely to have been
1372 sign extended to all 1s by instruction sequences that
1373 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1374 code that loads an address is this:
1375 lui $r2, <upper 16 bits>
1376 ori $r2, <lower 16 bits>
1377 But the lui sign-extends the value such that the upper 32
1378 bits may be all 1s. The workaround is simply to mask off
1379 these bits. In the future, gcc may be changed to support
1380 true 64-bit addressing, and this masking will have to be
1381 disabled. */
5213ab06
AC
1382 addr &= (CORE_ADDR) 0xffffffff;
1383 }
1384 }
4014092b 1385 else if (mips_mask_address_p ())
5213ab06 1386 {
4014092b
AC
1387 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1388 masking off bits, instead, the actual target should be asking
1389 for the address to be converted to a valid pointer. */
5213ab06
AC
1390 /* Even when GDB is configured for some 32-bit targets
1391 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1392 so CORE_ADDR is 64 bits. So we still have to mask off
1393 useless bits from addresses. */
c5aa993b 1394 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1395 }
c906108c
SS
1396 return addr;
1397}
1398
9022177c
DJ
1399/* mips_software_single_step() is called just before we want to resume
1400 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1401 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1402 the target of the coming instruction and breakpoint it.
1403
1404 single_step is also called just after the inferior stops. If we had
1405 set up a simulated single-step, we undo our damage. */
1406
1407void
1408mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1409{
1410 static CORE_ADDR next_pc;
1411 typedef char binsn_quantum[BREAKPOINT_MAX];
1412 static binsn_quantum break_mem;
1413 CORE_ADDR pc;
1414
1415 if (insert_breakpoints_p)
1416 {
1417 pc = read_register (PC_REGNUM);
1418 next_pc = mips_next_pc (pc);
1419
1420 target_insert_breakpoint (next_pc, break_mem);
1421 }
1422 else
1423 target_remove_breakpoint (next_pc, break_mem);
1424}
1425
10312cc4 1426static void
acdb74a0 1427mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1428{
1429 CORE_ADDR pc, tmp;
1430
1431 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1432 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1433 tmp = mips_skip_stub (pc);
c5aa993b 1434 prev->pc = tmp ? tmp : pc;
c906108c
SS
1435}
1436
1437
1438CORE_ADDR
acdb74a0 1439mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1440{
1441 CORE_ADDR saved_pc;
cce74817 1442 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1443 /* We have to get the saved pc from the sigcontext
1444 if it is a signal handler frame. */
1445 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1446 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1447
c5aa993b 1448 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1449 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1450 else
7a292a7a 1451 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1452
1453 return ADDR_BITS_REMOVE (saved_pc);
1454}
1455
1456static struct mips_extra_func_info temp_proc_desc;
cce74817 1457static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1458
1459/* Set a register's saved stack address in temp_saved_regs. If an address
1460 has already been set for this register, do nothing; this way we will
1461 only recognize the first save of a given register in a function prologue.
1462 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1463
1464static void
acdb74a0 1465set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1466{
cce74817
JM
1467 if (temp_saved_regs[regno] == 0)
1468 temp_saved_regs[regno] = offset;
c906108c
SS
1469}
1470
1471
1472/* Test whether the PC points to the return instruction at the
1473 end of a function. */
1474
c5aa993b 1475static int
acdb74a0 1476mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1477{
1478 if (pc_is_mips16 (pc))
1479 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1480 generates a "jr $ra"; other times it generates code to load
1481 the return address from the stack to an accessible register (such
1482 as $a3), then a "jr" using that register. This second case
1483 is almost impossible to distinguish from an indirect jump
1484 used for switch statements, so we don't even try. */
1485 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1486 else
1487 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1488}
1489
1490
1491/* This fencepost looks highly suspicious to me. Removing it also
1492 seems suspicious as it could affect remote debugging across serial
1493 lines. */
1494
1495static CORE_ADDR
acdb74a0 1496heuristic_proc_start (CORE_ADDR pc)
c906108c 1497{
c5aa993b
JM
1498 CORE_ADDR start_pc;
1499 CORE_ADDR fence;
1500 int instlen;
1501 int seen_adjsp = 0;
c906108c 1502
c5aa993b
JM
1503 pc = ADDR_BITS_REMOVE (pc);
1504 start_pc = pc;
1505 fence = start_pc - heuristic_fence_post;
1506 if (start_pc == 0)
1507 return 0;
c906108c 1508
c5aa993b
JM
1509 if (heuristic_fence_post == UINT_MAX
1510 || fence < VM_MIN_ADDRESS)
1511 fence = VM_MIN_ADDRESS;
c906108c 1512
c5aa993b 1513 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1514
c5aa993b
JM
1515 /* search back for previous return */
1516 for (start_pc -= instlen;; start_pc -= instlen)
1517 if (start_pc < fence)
1518 {
1519 /* It's not clear to me why we reach this point when
1520 stop_soon_quietly, but with this test, at least we
1521 don't print out warnings for every child forked (eg, on
1522 decstation). 22apr93 [email protected]. */
1523 if (!stop_soon_quietly)
c906108c 1524 {
c5aa993b
JM
1525 static int blurb_printed = 0;
1526
1527 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1528 paddr_nz (pc));
1529
1530 if (!blurb_printed)
c906108c 1531 {
c5aa993b
JM
1532 /* This actually happens frequently in embedded
1533 development, when you first connect to a board
1534 and your stack pointer and pc are nowhere in
1535 particular. This message needs to give people
1536 in that situation enough information to
1537 determine that it's no big deal. */
1538 printf_filtered ("\n\
cd0fc7c3
SS
1539 GDB is unable to find the start of the function at 0x%s\n\
1540and thus can't determine the size of that function's stack frame.\n\
1541This means that GDB may be unable to access that stack frame, or\n\
1542the frames below it.\n\
1543 This problem is most likely caused by an invalid program counter or\n\
1544stack pointer.\n\
1545 However, if you think GDB should simply search farther back\n\
1546from 0x%s for code which looks like the beginning of a\n\
1547function, you can increase the range of the search using the `set\n\
1548heuristic-fence-post' command.\n",
c5aa993b
JM
1549 paddr_nz (pc), paddr_nz (pc));
1550 blurb_printed = 1;
c906108c 1551 }
c906108c
SS
1552 }
1553
c5aa993b
JM
1554 return 0;
1555 }
1556 else if (pc_is_mips16 (start_pc))
1557 {
1558 unsigned short inst;
1559
1560 /* On MIPS16, any one of the following is likely to be the
1561 start of a function:
1562 entry
1563 addiu sp,-n
1564 daddiu sp,-n
1565 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1566 inst = mips_fetch_instruction (start_pc);
1567 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1568 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1569 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1570 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1571 break;
1572 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1573 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1574 seen_adjsp = 1;
1575 else
1576 seen_adjsp = 0;
1577 }
1578 else if (mips_about_to_return (start_pc))
1579 {
1580 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1581 break;
1582 }
1583
c5aa993b 1584 return start_pc;
c906108c
SS
1585}
1586
1587/* Fetch the immediate value from a MIPS16 instruction.
1588 If the previous instruction was an EXTEND, use it to extend
1589 the upper bits of the immediate value. This is a helper function
1590 for mips16_heuristic_proc_desc. */
1591
1592static int
acdb74a0
AC
1593mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1594 unsigned short inst, /* current instruction */
1595 int nbits, /* number of bits in imm field */
1596 int scale, /* scale factor to be applied to imm */
1597 int is_signed) /* is the imm field signed? */
c906108c
SS
1598{
1599 int offset;
1600
1601 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1602 {
1603 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1604 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1605 offset = 0 - (0x10000 - (offset & 0xffff));
1606 return offset | (inst & 0x1f);
1607 }
1608 else
1609 {
1610 int max_imm = 1 << nbits;
1611 int mask = max_imm - 1;
1612 int sign_bit = max_imm >> 1;
1613
1614 offset = inst & mask;
1615 if (is_signed && (offset & sign_bit))
1616 offset = 0 - (max_imm - offset);
1617 return offset * scale;
1618 }
1619}
1620
1621
1622/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1623 stream from start_pc to limit_pc. */
1624
1625static void
acdb74a0
AC
1626mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1627 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1628{
1629 CORE_ADDR cur_pc;
1630 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1631 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1632 unsigned inst = 0; /* current instruction */
1633 unsigned entry_inst = 0; /* the entry instruction */
1634 int reg, offset;
1635
c5aa993b
JM
1636 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1637 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1638
1639 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1640 {
1641 /* Save the previous instruction. If it's an EXTEND, we'll extract
1642 the immediate offset extension from it in mips16_get_imm. */
1643 prev_inst = inst;
1644
1645 /* Fetch and decode the instruction. */
1646 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1647 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1648 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1649 {
1650 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1651 if (offset < 0) /* negative stack adjustment? */
1652 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1653 else
1654 /* Exit loop if a positive stack adjustment is found, which
1655 usually means that the stack cleanup code in the function
1656 epilogue is reached. */
1657 break;
1658 }
1659 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1660 {
1661 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1662 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1663 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1664 set_reg_offset (reg, sp + offset);
1665 }
1666 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1667 {
1668 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1669 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1670 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1671 set_reg_offset (reg, sp + offset);
1672 }
1673 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1674 {
1675 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1676 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1677 set_reg_offset (RA_REGNUM, sp + offset);
1678 }
1679 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1680 {
1681 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1682 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1683 set_reg_offset (RA_REGNUM, sp + offset);
1684 }
c5aa993b 1685 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1686 {
1687 frame_addr = sp;
1688 PROC_FRAME_REG (&temp_proc_desc) = 17;
1689 }
1690 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1691 {
1692 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1693 frame_addr = sp + offset;
1694 PROC_FRAME_REG (&temp_proc_desc) = 17;
1695 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1696 }
1697 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1698 {
1699 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1700 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1701 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1702 set_reg_offset (reg, frame_addr + offset);
1703 }
1704 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1705 {
1706 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1707 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1708 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1709 set_reg_offset (reg, frame_addr + offset);
1710 }
c5aa993b
JM
1711 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1712 entry_inst = inst; /* save for later processing */
c906108c 1713 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1714 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1715 }
1716
c5aa993b
JM
1717 /* The entry instruction is typically the first instruction in a function,
1718 and it stores registers at offsets relative to the value of the old SP
1719 (before the prologue). But the value of the sp parameter to this
1720 function is the new SP (after the prologue has been executed). So we
1721 can't calculate those offsets until we've seen the entire prologue,
1722 and can calculate what the old SP must have been. */
1723 if (entry_inst != 0)
1724 {
1725 int areg_count = (entry_inst >> 8) & 7;
1726 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1727
c5aa993b
JM
1728 /* The entry instruction always subtracts 32 from the SP. */
1729 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1730
c5aa993b
JM
1731 /* Now we can calculate what the SP must have been at the
1732 start of the function prologue. */
1733 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1734
c5aa993b
JM
1735 /* Check if a0-a3 were saved in the caller's argument save area. */
1736 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1737 {
1738 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1739 set_reg_offset (reg, sp + offset);
1740 offset += MIPS_SAVED_REGSIZE;
1741 }
c906108c 1742
c5aa993b
JM
1743 /* Check if the ra register was pushed on the stack. */
1744 offset = -4;
1745 if (entry_inst & 0x20)
1746 {
1747 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1748 set_reg_offset (RA_REGNUM, sp + offset);
1749 offset -= MIPS_SAVED_REGSIZE;
1750 }
c906108c 1751
c5aa993b
JM
1752 /* Check if the s0 and s1 registers were pushed on the stack. */
1753 for (reg = 16; reg < sreg_count + 16; reg++)
1754 {
1755 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1756 set_reg_offset (reg, sp + offset);
1757 offset -= MIPS_SAVED_REGSIZE;
1758 }
1759 }
c906108c
SS
1760}
1761
1762static void
fba45db2
KB
1763mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1764 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1765{
1766 CORE_ADDR cur_pc;
c5aa993b 1767 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1768restart:
cce74817 1769 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1770 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1771 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1772 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1773 {
1774 unsigned long inst, high_word, low_word;
1775 int reg;
1776
1777 /* Fetch the instruction. */
1778 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1779
1780 /* Save some code by pre-extracting some useful fields. */
1781 high_word = (inst >> 16) & 0xffff;
1782 low_word = inst & 0xffff;
1783 reg = high_word & 0x1f;
1784
c5aa993b 1785 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1786 || high_word == 0x23bd /* addi $sp,$sp,-i */
1787 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1788 {
1789 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1790 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1791 else
1792 /* Exit loop if a positive stack adjustment is found, which
1793 usually means that the stack cleanup code in the function
1794 epilogue is reached. */
1795 break;
1796 }
1797 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1798 {
c5aa993b 1799 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1800 set_reg_offset (reg, sp + low_word);
1801 }
1802 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1803 {
1804 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1805 but the register size used is only 32 bits. Make the address
1806 for the saved register point to the lower 32 bits. */
c5aa993b 1807 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1808 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1809 }
c5aa993b 1810 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1811 {
1812 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1813 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1814 frame_addr = sp + low_word;
c906108c
SS
1815 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1816 {
1817 unsigned alloca_adjust;
1818 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1819 frame_addr = read_next_frame_reg (next_frame, 30);
1820 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1821 if (alloca_adjust > 0)
1822 {
1823 /* FP > SP + frame_size. This may be because
1824 * of an alloca or somethings similar.
1825 * Fix sp to "pre-alloca" value, and try again.
1826 */
1827 sp += alloca_adjust;
1828 goto restart;
1829 }
1830 }
1831 }
c5aa993b
JM
1832 /* move $30,$sp. With different versions of gas this will be either
1833 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1834 Accept any one of these. */
c906108c
SS
1835 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1836 {
1837 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1838 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1839 {
1840 unsigned alloca_adjust;
1841 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1842 frame_addr = read_next_frame_reg (next_frame, 30);
1843 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1844 if (alloca_adjust > 0)
1845 {
1846 /* FP > SP + frame_size. This may be because
1847 * of an alloca or somethings similar.
1848 * Fix sp to "pre-alloca" value, and try again.
1849 */
1850 sp += alloca_adjust;
1851 goto restart;
1852 }
1853 }
1854 }
c5aa993b 1855 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1856 {
c5aa993b 1857 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1858 set_reg_offset (reg, frame_addr + low_word);
1859 }
1860 }
1861}
1862
1863static mips_extra_func_info_t
acdb74a0 1864heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 1865 struct frame_info *next_frame, int cur_frame)
c906108c 1866{
479412cd
DJ
1867 CORE_ADDR sp;
1868
1869 if (cur_frame)
1870 sp = read_next_frame_reg (next_frame, SP_REGNUM);
1871 else
1872 sp = 0;
c906108c 1873
c5aa993b
JM
1874 if (start_pc == 0)
1875 return NULL;
1876 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1877 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1878 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1879 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1880 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1881
1882 if (start_pc + 200 < limit_pc)
1883 limit_pc = start_pc + 200;
1884 if (pc_is_mips16 (start_pc))
1885 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1886 else
1887 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1888 return &temp_proc_desc;
1889}
1890
1891static mips_extra_func_info_t
acdb74a0 1892non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
1893{
1894 CORE_ADDR startaddr;
1895 mips_extra_func_info_t proc_desc;
c5aa993b 1896 struct block *b = block_for_pc (pc);
c906108c
SS
1897 struct symbol *sym;
1898
1899 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1900 if (addrptr)
1901 *addrptr = startaddr;
1902 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1903 sym = NULL;
1904 else
1905 {
1906 if (startaddr > BLOCK_START (b))
1907 /* This is the "pathological" case referred to in a comment in
1908 print_frame_info. It might be better to move this check into
1909 symbol reading. */
1910 sym = NULL;
1911 else
1912 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1913 }
1914
1915 /* If we never found a PDR for this function in symbol reading, then
1916 examine prologues to find the information. */
1917 if (sym)
1918 {
1919 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1920 if (PROC_FRAME_REG (proc_desc) == -1)
1921 return NULL;
1922 else
1923 return proc_desc;
1924 }
1925 else
1926 return NULL;
1927}
1928
1929
1930static mips_extra_func_info_t
479412cd 1931find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
1932{
1933 mips_extra_func_info_t proc_desc;
1934 CORE_ADDR startaddr;
1935
1936 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1937
1938 if (proc_desc)
1939 {
1940 /* IF this is the topmost frame AND
1941 * (this proc does not have debugging information OR
1942 * the PC is in the procedure prologue)
1943 * THEN create a "heuristic" proc_desc (by analyzing
1944 * the actual code) to replace the "official" proc_desc.
1945 */
1946 if (next_frame == NULL)
1947 {
1948 struct symtab_and_line val;
1949 struct symbol *proc_symbol =
c5aa993b 1950 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1951
1952 if (proc_symbol)
1953 {
1954 val = find_pc_line (BLOCK_START
c5aa993b 1955 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1956 0);
1957 val.pc = val.end ? val.end : pc;
1958 }
1959 if (!proc_symbol || pc < val.pc)
1960 {
1961 mips_extra_func_info_t found_heuristic =
c5aa993b 1962 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
479412cd 1963 pc, next_frame, cur_frame);
c906108c
SS
1964 if (found_heuristic)
1965 proc_desc = found_heuristic;
1966 }
1967 }
1968 }
1969 else
1970 {
1971 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1972 by procedure call dummys. However, the procedures being called ought
1973 to have their own proc_descs, and even if they don't,
1974 heuristic_proc_desc knows how to create them! */
c906108c
SS
1975
1976 register struct linked_proc_info *link;
1977
1978 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1979 if (PROC_LOW_ADDR (&link->info) <= pc
1980 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1981 return &link->info;
1982
1983 if (startaddr == 0)
1984 startaddr = heuristic_proc_start (pc);
1985
1986 proc_desc =
479412cd 1987 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
1988 }
1989 return proc_desc;
1990}
1991
1992static CORE_ADDR
acdb74a0
AC
1993get_frame_pointer (struct frame_info *frame,
1994 mips_extra_func_info_t proc_desc)
c906108c
SS
1995{
1996 return ADDR_BITS_REMOVE (
c5aa993b
JM
1997 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1998 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1999}
2000
2001mips_extra_func_info_t cached_proc_desc;
2002
2003CORE_ADDR
acdb74a0 2004mips_frame_chain (struct frame_info *frame)
c906108c
SS
2005{
2006 mips_extra_func_info_t proc_desc;
2007 CORE_ADDR tmp;
c5aa993b 2008 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2009
2010 if (saved_pc == 0 || inside_entry_file (saved_pc))
2011 return 0;
2012
2013 /* Check if the PC is inside a call stub. If it is, fetch the
2014 PC of the caller of that stub. */
2015 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2016 saved_pc = tmp;
2017
2018 /* Look up the procedure descriptor for this PC. */
479412cd 2019 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2020 if (!proc_desc)
2021 return 0;
2022
2023 cached_proc_desc = proc_desc;
2024
2025 /* If no frame pointer and frame size is zero, we must be at end
2026 of stack (or otherwise hosed). If we don't check frame size,
2027 we loop forever if we see a zero size frame. */
2028 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2029 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
2030 /* The previous frame from a sigtramp frame might be frameless
2031 and have frame size zero. */
c906108c
SS
2032 && !frame->signal_handler_caller)
2033 return 0;
2034 else
2035 return get_frame_pointer (frame, proc_desc);
2036}
2037
2038void
acdb74a0 2039mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2040{
2041 int regnum;
2042
2043 /* Use proc_desc calculated in frame_chain */
2044 mips_extra_func_info_t proc_desc =
479412cd 2045 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2046
cce74817
JM
2047 fci->extra_info = (struct frame_extra_info *)
2048 frame_obstack_alloc (sizeof (struct frame_extra_info));
2049
c906108c 2050 fci->saved_regs = NULL;
cce74817 2051 fci->extra_info->proc_desc =
c906108c
SS
2052 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2053 if (proc_desc)
2054 {
2055 /* Fixup frame-pointer - only needed for top frame */
2056 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2057 Get the value of the frame relative sp, procedure might have been
2058 interrupted by a signal at it's very start. */
c906108c
SS
2059 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2060 && !PROC_DESC_IS_DUMMY (proc_desc))
2061 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2062 else
2063 fci->frame = get_frame_pointer (fci->next, proc_desc);
2064
2065 if (proc_desc == &temp_proc_desc)
2066 {
2067 char *name;
2068
2069 /* Do not set the saved registers for a sigtramp frame,
2070 mips_find_saved_registers will do that for us.
2071 We can't use fci->signal_handler_caller, it is not yet set. */
2072 find_pc_partial_function (fci->pc, &name,
c5aa993b 2073 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2074 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2075 {
c5aa993b 2076 frame_saved_regs_zalloc (fci);
cce74817 2077 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2078 fci->saved_regs[PC_REGNUM]
2079 = fci->saved_regs[RA_REGNUM];
2080 }
2081 }
2082
2083 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2084 /* assume we can't tell how many args for now */
2085 fci->extra_info->num_args = -1;
c906108c
SS
2086 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2087 {
c5aa993b 2088 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2089 {
cce74817 2090 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2091 break;
2092 }
c5aa993b 2093 }
c906108c
SS
2094 }
2095}
2096
2097/* MIPS stack frames are almost impenetrable. When execution stops,
2098 we basically have to look at symbol information for the function
2099 that we stopped in, which tells us *which* register (if any) is
2100 the base of the frame pointer, and what offset from that register
361d1df0 2101 the frame itself is at.
c906108c
SS
2102
2103 This presents a problem when trying to examine a stack in memory
2104 (that isn't executing at the moment), using the "frame" command. We
2105 don't have a PC, nor do we have any registers except SP.
2106
2107 This routine takes two arguments, SP and PC, and tries to make the
2108 cached frames look as if these two arguments defined a frame on the
2109 cache. This allows the rest of info frame to extract the important
2110 arguments without difficulty. */
2111
2112struct frame_info *
acdb74a0 2113setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2114{
2115 if (argc != 2)
2116 error ("MIPS frame specifications require two arguments: sp and pc");
2117
2118 return create_new_frame (argv[0], argv[1]);
2119}
2120
f09ded24
AC
2121/* According to the current ABI, should the type be passed in a
2122 floating-point register (assuming that there is space)? When there
2123 is no FPU, FP are not even considered as possibile candidates for
2124 FP registers and, consequently this returns false - forces FP
2125 arguments into integer registers. */
2126
2127static int
2128fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2129{
2130 return ((typecode == TYPE_CODE_FLT
2131 || (MIPS_EABI
2132 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2133 && TYPE_NFIELDS (arg_type) == 1
2134 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2135 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2136}
2137
49e790b0
DJ
2138/* On o32, argument passing in GPRs depends on the alignment of the type being
2139 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2140
2141static int
2142mips_type_needs_double_align (struct type *type)
2143{
2144 enum type_code typecode = TYPE_CODE (type);
361d1df0 2145
49e790b0
DJ
2146 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2147 return 1;
2148 else if (typecode == TYPE_CODE_STRUCT)
2149 {
2150 if (TYPE_NFIELDS (type) < 1)
2151 return 0;
2152 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2153 }
2154 else if (typecode == TYPE_CODE_UNION)
2155 {
361d1df0 2156 int i, n;
49e790b0
DJ
2157
2158 n = TYPE_NFIELDS (type);
2159 for (i = 0; i < n; i++)
2160 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2161 return 1;
2162 return 0;
2163 }
2164 return 0;
2165}
2166
c906108c 2167CORE_ADDR
acdb74a0 2168mips_push_arguments (int nargs,
ea7c478f 2169 struct value **args,
acdb74a0
AC
2170 CORE_ADDR sp,
2171 int struct_return,
2172 CORE_ADDR struct_addr)
c906108c
SS
2173{
2174 int argreg;
2175 int float_argreg;
2176 int argnum;
2177 int len = 0;
2178 int stack_offset = 0;
2179
2180 /* Macros to round N up or down to the next A boundary; A must be
2181 a power of two. */
2182#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2183#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2184
c906108c
SS
2185 /* First ensure that the stack and structure return address (if any)
2186 are properly aligned. The stack has to be at least 64-bit aligned
2187 even on 32-bit machines, because doubles must be 64-bit aligned.
2188 On at least one MIPS variant, stack frames need to be 128-bit
2189 aligned, so we round to this widest known alignment. */
2190 sp = ROUND_DOWN (sp, 16);
cce41527 2191 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2192
c906108c
SS
2193 /* Now make space on the stack for the args. We allocate more
2194 than necessary for EABI, because the first few arguments are
2195 passed in registers, but that's OK. */
2196 for (argnum = 0; argnum < nargs; argnum++)
cce41527 2197 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
c906108c
SS
2198 sp -= ROUND_UP (len, 16);
2199
9ace0497
AC
2200 if (mips_debug)
2201 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2202 (long) sp, ROUND_UP (len, 16));
2203
c906108c
SS
2204 /* Initialize the integer and float register pointers. */
2205 argreg = A0_REGNUM;
2206 float_argreg = FPA0_REGNUM;
2207
2208 /* the struct_return pointer occupies the first parameter-passing reg */
2209 if (struct_return)
9ace0497
AC
2210 {
2211 if (mips_debug)
2212 fprintf_unfiltered (gdb_stdlog,
cce41527 2213 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
9ace0497
AC
2214 argreg, (long) struct_addr);
2215 write_register (argreg++, struct_addr);
cce41527
AC
2216 if (MIPS_REGS_HAVE_HOME_P)
2217 stack_offset += MIPS_STACK_ARGSIZE;
9ace0497 2218 }
c906108c
SS
2219
2220 /* Now load as many as possible of the first arguments into
2221 registers, and push the rest onto the stack. Loop thru args
2222 from first to last. */
2223 for (argnum = 0; argnum < nargs; argnum++)
2224 {
2225 char *val;
2226 char valbuf[MAX_REGISTER_RAW_SIZE];
ea7c478f 2227 struct value *arg = args[argnum];
c906108c
SS
2228 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2229 int len = TYPE_LENGTH (arg_type);
2230 enum type_code typecode = TYPE_CODE (arg_type);
2231
9ace0497
AC
2232 if (mips_debug)
2233 fprintf_unfiltered (gdb_stdlog,
2234 "mips_push_arguments: %d len=%d type=%d",
acdb74a0 2235 argnum + 1, len, (int) typecode);
9ace0497 2236
c906108c 2237 /* The EABI passes structures that do not fit in a register by
c5aa993b 2238 reference. In all other cases, pass the structure by value. */
9ace0497
AC
2239 if (MIPS_EABI
2240 && len > MIPS_SAVED_REGSIZE
2241 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2242 {
7a292a7a 2243 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2244 typecode = TYPE_CODE_PTR;
7a292a7a 2245 len = MIPS_SAVED_REGSIZE;
c906108c 2246 val = valbuf;
9ace0497
AC
2247 if (mips_debug)
2248 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2249 }
2250 else
c5aa993b 2251 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2252
2253 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2254 even-numbered floating point register. Round the FP register
2255 up before the check to see if there are any FP registers
2256 left. Non MIPS_EABI targets also pass the FP in the integer
2257 registers so also round up normal registers. */
2258 if (!FP_REGISTER_DOUBLE
2259 && fp_register_arg_p (typecode, arg_type))
2260 {
2261 if ((float_argreg & 1))
2262 float_argreg++;
2263 }
c906108c
SS
2264
2265 /* Floating point arguments passed in registers have to be
2266 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2267 are passed in register pairs; the even register gets
2268 the low word, and the odd register gets the high word.
2269 On non-EABI processors, the first two floating point arguments are
2270 also copied to general registers, because MIPS16 functions
2271 don't use float registers for arguments. This duplication of
2272 arguments in general registers can't hurt non-MIPS16 functions
2273 because those registers are normally skipped. */
1012bd0e
EZ
2274 /* MIPS_EABI squeezes a struct that contains a single floating
2275 point value into an FP register instead of pushing it onto the
9a0149c6 2276 stack. */
f09ded24
AC
2277 if (fp_register_arg_p (typecode, arg_type)
2278 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2279 {
2280 if (!FP_REGISTER_DOUBLE && len == 8)
2281 {
d7449b42 2282 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2283 unsigned long regval;
2284
2285 /* Write the low word of the double to the even register(s). */
c5aa993b 2286 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2287 if (mips_debug)
acdb74a0 2288 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2289 float_argreg, phex (regval, 4));
c906108c
SS
2290 write_register (float_argreg++, regval);
2291 if (!MIPS_EABI)
9ace0497
AC
2292 {
2293 if (mips_debug)
acdb74a0 2294 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2295 argreg, phex (regval, 4));
2296 write_register (argreg++, regval);
2297 }
c906108c
SS
2298
2299 /* Write the high word of the double to the odd register(s). */
c5aa993b 2300 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2301 if (mips_debug)
acdb74a0 2302 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2303 float_argreg, phex (regval, 4));
c906108c
SS
2304 write_register (float_argreg++, regval);
2305 if (!MIPS_EABI)
c5aa993b 2306 {
9ace0497 2307 if (mips_debug)
acdb74a0 2308 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2309 argreg, phex (regval, 4));
2310 write_register (argreg++, regval);
c906108c
SS
2311 }
2312
2313 }
2314 else
2315 {
2316 /* This is a floating point value that fits entirely
2317 in a single register. */
53a5351d
JM
2318 /* On 32 bit ABI's the float_argreg is further adjusted
2319 above to ensure that it is even register aligned. */
9ace0497
AC
2320 LONGEST regval = extract_unsigned_integer (val, len);
2321 if (mips_debug)
acdb74a0 2322 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2323 float_argreg, phex (regval, len));
c906108c
SS
2324 write_register (float_argreg++, regval);
2325 if (!MIPS_EABI)
c5aa993b 2326 {
53a5351d
JM
2327 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2328 registers for each argument. The below is (my
2329 guess) to ensure that the corresponding integer
2330 register has reserved the same space. */
9ace0497 2331 if (mips_debug)
acdb74a0 2332 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2333 argreg, phex (regval, len));
c906108c
SS
2334 write_register (argreg, regval);
2335 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2336 }
2337 }
cce41527
AC
2338 /* Reserve space for the FP register. */
2339 if (MIPS_REGS_HAVE_HOME_P)
2340 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
c906108c
SS
2341 }
2342 else
2343 {
2344 /* Copy the argument to general registers or the stack in
2345 register-sized pieces. Large arguments are split between
2346 registers and stack. */
2347 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2348 are treated specially: Irix cc passes them in registers
2349 where gcc sometimes puts them on the stack. For maximum
2350 compatibility, we will put them in both places. */
c5aa993b 2351 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2352 (len % MIPS_SAVED_REGSIZE != 0));
49e790b0
DJ
2353 /* Structures should be aligned to eight bytes (even arg registers)
2354 on MIPS_ABI_O32 if their first member has double precision. */
2355 if (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_O32
2356 && mips_type_needs_double_align (arg_type))
2357 {
2358 if ((argreg & 1))
2359 argreg++;
2360 }
f09ded24
AC
2361 /* Note: Floating-point values that didn't fit into an FP
2362 register are only written to memory. */
c906108c
SS
2363 while (len > 0)
2364 {
566f0f7a
AC
2365 /* Rememer if the argument was written to the stack. */
2366 int stack_used_p = 0;
7a292a7a 2367 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2368
acdb74a0
AC
2369 if (mips_debug)
2370 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2371 partial_len);
2372
566f0f7a 2373 /* Write this portion of the argument to the stack. */
f09ded24
AC
2374 if (argreg > MIPS_LAST_ARG_REGNUM
2375 || odd_sized_struct
2376 || fp_register_arg_p (typecode, arg_type))
c906108c 2377 {
c906108c
SS
2378 /* Should shorter than int integer values be
2379 promoted to int before being stored? */
c906108c 2380 int longword_offset = 0;
9ace0497 2381 CORE_ADDR addr;
566f0f7a 2382 stack_used_p = 1;
d7449b42 2383 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2384 {
d929b26f 2385 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2386 (typecode == TYPE_CODE_INT ||
2387 typecode == TYPE_CODE_PTR ||
2388 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2389 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2390 else if ((typecode == TYPE_CODE_STRUCT ||
2391 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2392 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2393 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2394 }
c5aa993b 2395
9ace0497
AC
2396 if (mips_debug)
2397 {
acdb74a0 2398 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
9ace0497
AC
2399 (long) stack_offset);
2400 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2401 (long) longword_offset);
2402 }
361d1df0 2403
9ace0497
AC
2404 addr = sp + stack_offset + longword_offset;
2405
2406 if (mips_debug)
2407 {
2408 int i;
2409 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2410 for (i = 0; i < partial_len; i++)
2411 {
2412 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2413 }
2414 }
2415 write_memory (addr, val, partial_len);
c906108c
SS
2416 }
2417
f09ded24
AC
2418 /* Note!!! This is NOT an else clause. Odd sized
2419 structs may go thru BOTH paths. Floating point
2420 arguments will not. */
566f0f7a
AC
2421 /* Write this portion of the argument to a general
2422 purpose register. */
f09ded24
AC
2423 if (argreg <= MIPS_LAST_ARG_REGNUM
2424 && !fp_register_arg_p (typecode, arg_type))
c906108c 2425 {
9ace0497 2426 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2427
361d1df0 2428 /* A non-floating-point argument being passed in a
c906108c
SS
2429 general register. If a struct or union, and if
2430 the remaining length is smaller than the register
2431 size, we have to adjust the register value on
2432 big endian targets.
2433
2434 It does not seem to be necessary to do the
2435 same for integral types.
2436
2437 Also don't do this adjustment on EABI and O64
675fb869
AC
2438 binaries.
2439
2440 cagney/2001-07-23: gdb/179: Also, GCC, when
2441 outputting LE O32 with sizeof (struct) <
2442 MIPS_SAVED_REGSIZE, generates a left shift as
2443 part of storing the argument in a register a
2444 register (the left shift isn't generated when
2445 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2446 is quite possible that this is GCC contradicting
2447 the LE/O32 ABI, GDB has not been adjusted to
2448 accommodate this. Either someone needs to
2449 demonstrate that the LE/O32 ABI specifies such a
2450 left shift OR this new ABI gets identified as
2451 such and GDB gets tweaked accordingly. */
c906108c
SS
2452
2453 if (!MIPS_EABI
7a292a7a 2454 && MIPS_SAVED_REGSIZE < 8
d7449b42 2455 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a 2456 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2457 && (typecode == TYPE_CODE_STRUCT ||
2458 typecode == TYPE_CODE_UNION))
c5aa993b 2459 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2460 TARGET_CHAR_BIT);
2461
9ace0497 2462 if (mips_debug)
acdb74a0 2463 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2464 argreg,
2465 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2466 write_register (argreg, regval);
2467 argreg++;
c5aa993b 2468
c906108c
SS
2469 /* If this is the old ABI, prevent subsequent floating
2470 point arguments from being passed in floating point
2471 registers. */
2472 if (!MIPS_EABI)
2473 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2474 }
c5aa993b 2475
c906108c
SS
2476 len -= partial_len;
2477 val += partial_len;
2478
566f0f7a
AC
2479 /* Compute the the offset into the stack at which we
2480 will copy the next parameter.
2481
2482 In older ABIs, the caller reserved space for
2483 registers that contained arguments. This was loosely
2484 refered to as their "home". Consequently, space is
2485 always allocated.
c906108c 2486
566f0f7a
AC
2487 In the new EABI (and the NABI32), the stack_offset
2488 only needs to be adjusted when it has been used.. */
c906108c 2489
566f0f7a 2490 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
d929b26f 2491 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2492 }
2493 }
9ace0497
AC
2494 if (mips_debug)
2495 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2496 }
2497
0f71a2f6
JM
2498 /* Return adjusted stack pointer. */
2499 return sp;
2500}
2501
2502CORE_ADDR
acdb74a0 2503mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 2504{
c906108c
SS
2505 /* Set the return address register to point to the entry
2506 point of the program, where a breakpoint lies in wait. */
c5aa993b 2507 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2508 return sp;
2509}
2510
2511static void
c5aa993b 2512mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2513{
2514 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2515 int regsize;
2516 int offset;
2517 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2518 {
2519 regsize = MIPS_SAVED_REGSIZE;
d7449b42 2520 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
2521 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2522 : 0);
2523 }
2524 else
2525 {
2526 regsize = REGISTER_RAW_SIZE (regno);
2527 offset = 0;
2528 }
c906108c
SS
2529 *sp -= regsize;
2530 read_register_gen (regno, buffer);
7a292a7a 2531 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2532}
2533
2534/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2535#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2536
2537void
acdb74a0 2538mips_push_dummy_frame (void)
c906108c
SS
2539{
2540 int ireg;
c5aa993b
JM
2541 struct linked_proc_info *link = (struct linked_proc_info *)
2542 xmalloc (sizeof (struct linked_proc_info));
c906108c 2543 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 2544 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
2545 CORE_ADDR old_sp = sp;
2546 link->next = linked_proc_desc_table;
2547 linked_proc_desc_table = link;
2548
2549/* FIXME! are these correct ? */
c5aa993b 2550#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2551#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2552#define FLOAT_REG_SAVE_MASK MASK(0,19)
2553#define FLOAT_SINGLE_REG_SAVE_MASK \
2554 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2555 /*
2556 * The registers we must save are all those not preserved across
2557 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2558 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2559 * and FP Control/Status registers.
361d1df0 2560 *
c906108c
SS
2561 *
2562 * Dummy frame layout:
2563 * (high memory)
c5aa993b
JM
2564 * Saved PC
2565 * Saved MMHI, MMLO, FPC_CSR
2566 * Saved R31
2567 * Saved R28
2568 * ...
2569 * Saved R1
c906108c
SS
2570 * Saved D18 (i.e. F19, F18)
2571 * ...
2572 * Saved D0 (i.e. F1, F0)
c5aa993b 2573 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2574 * (low memory)
2575 */
2576
2577 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2578 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2579 PROC_FRAME_OFFSET (proc_desc) = 0;
2580 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2581 mips_push_register (&sp, PC_REGNUM);
2582 mips_push_register (&sp, HI_REGNUM);
2583 mips_push_register (&sp, LO_REGNUM);
2584 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2585
2586 /* Save general CPU registers */
c5aa993b 2587 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2588 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2589 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2590 for (ireg = 32; --ireg >= 0;)
2591 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2592 mips_push_register (&sp, ireg);
2593
2594 /* Save floating point registers starting with high order word */
c5aa993b 2595 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2596 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2597 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2598 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2599 from FP. */
c5aa993b
JM
2600 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2601 for (ireg = 32; --ireg >= 0;)
2602 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2603 mips_push_register (&sp, ireg + FP0_REGNUM);
2604
2605 /* Update the frame pointer for the call dummy and the stack pointer.
2606 Set the procedure's starting and ending addresses to point to the
2607 call dummy address at the entry point. */
2608 write_register (PUSH_FP_REGNUM, old_sp);
2609 write_register (SP_REGNUM, sp);
c5aa993b
JM
2610 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2611 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2612 SET_PROC_DESC_IS_DUMMY (proc_desc);
2613 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2614}
2615
2616void
acdb74a0 2617mips_pop_frame (void)
c906108c
SS
2618{
2619 register int regnum;
2620 struct frame_info *frame = get_current_frame ();
2621 CORE_ADDR new_sp = FRAME_FP (frame);
2622
cce74817 2623 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2624
c5aa993b 2625 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2626 if (frame->saved_regs == NULL)
2627 mips_find_saved_regs (frame);
2628 for (regnum = 0; regnum < NUM_REGS; regnum++)
2629 {
2630 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2631 && frame->saved_regs[regnum])
2632 write_register (regnum,
2633 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2634 MIPS_SAVED_REGSIZE));
c906108c
SS
2635 }
2636 write_register (SP_REGNUM, new_sp);
2637 flush_cached_frames ();
2638
c5aa993b 2639 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2640 {
2641 struct linked_proc_info *pi_ptr, *prev_ptr;
2642
2643 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2644 pi_ptr != NULL;
2645 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2646 {
2647 if (&pi_ptr->info == proc_desc)
2648 break;
2649 }
2650
2651 if (pi_ptr == NULL)
2652 error ("Can't locate dummy extra frame info\n");
2653
2654 if (prev_ptr != NULL)
2655 prev_ptr->next = pi_ptr->next;
2656 else
2657 linked_proc_desc_table = pi_ptr->next;
2658
b8c9b27d 2659 xfree (pi_ptr);
c906108c
SS
2660
2661 write_register (HI_REGNUM,
c5aa993b 2662 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2663 MIPS_SAVED_REGSIZE));
c906108c 2664 write_register (LO_REGNUM,
c5aa993b 2665 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2666 MIPS_SAVED_REGSIZE));
c906108c
SS
2667 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2668 write_register (FCRCS_REGNUM,
c5aa993b 2669 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2670 MIPS_SAVED_REGSIZE));
c906108c
SS
2671 }
2672}
2673
dd824b04
DJ
2674/* Floating point register management.
2675
2676 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
2677 64bit operations, these early MIPS cpus treat fp register pairs
2678 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
2679 registers and offer a compatibility mode that emulates the MIPS2 fp
2680 model. When operating in MIPS2 fp compat mode, later cpu's split
2681 double precision floats into two 32-bit chunks and store them in
2682 consecutive fp regs. To display 64-bit floats stored in this
2683 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
2684 Throw in user-configurable endianness and you have a real mess.
2685
2686 The way this works is:
2687 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
2688 double-precision value will be split across two logical registers.
2689 The lower-numbered logical register will hold the low-order bits,
2690 regardless of the processor's endianness.
2691 - If we are on a 64-bit processor, and we are looking for a
2692 single-precision value, it will be in the low ordered bits
2693 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
2694 save slot in memory.
2695 - If we are in 64-bit mode, everything is straightforward.
2696
2697 Note that this code only deals with "live" registers at the top of the
2698 stack. We will attempt to deal with saved registers later, when
2699 the raw/cooked register interface is in place. (We need a general
2700 interface that can deal with dynamic saved register sizes -- fp
2701 regs could be 32 bits wide in one frame and 64 on the frame above
2702 and below). */
2703
67b2c998
DJ
2704static struct type *
2705mips_float_register_type (void)
2706{
361d1df0 2707 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
2708 return builtin_type_ieee_single_big;
2709 else
2710 return builtin_type_ieee_single_little;
2711}
2712
2713static struct type *
2714mips_double_register_type (void)
2715{
361d1df0 2716 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
2717 return builtin_type_ieee_double_big;
2718 else
2719 return builtin_type_ieee_double_little;
2720}
2721
dd824b04
DJ
2722/* Copy a 32-bit single-precision value from the current frame
2723 into rare_buffer. */
2724
2725static void
2726mips_read_fp_register_single (int regno, char *rare_buffer)
2727{
2728 int raw_size = REGISTER_RAW_SIZE (regno);
2729 char *raw_buffer = alloca (raw_size);
2730
cda5a58a 2731 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
2732 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2733 if (raw_size == 8)
2734 {
2735 /* We have a 64-bit value for this register. Find the low-order
2736 32 bits. */
2737 int offset;
2738
2739 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2740 offset = 4;
2741 else
2742 offset = 0;
2743
2744 memcpy (rare_buffer, raw_buffer + offset, 4);
2745 }
2746 else
2747 {
2748 memcpy (rare_buffer, raw_buffer, 4);
2749 }
2750}
2751
2752/* Copy a 64-bit double-precision value from the current frame into
2753 rare_buffer. This may include getting half of it from the next
2754 register. */
2755
2756static void
2757mips_read_fp_register_double (int regno, char *rare_buffer)
2758{
2759 int raw_size = REGISTER_RAW_SIZE (regno);
2760
2761 if (raw_size == 8 && !mips2_fp_compat ())
2762 {
2763 /* We have a 64-bit value for this register, and we should use
2764 all 64 bits. */
cda5a58a 2765 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
2766 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
2767 }
2768 else
2769 {
2770 if ((regno - FP0_REGNUM) & 1)
2771 internal_error (__FILE__, __LINE__,
2772 "mips_read_fp_register_double: bad access to "
2773 "odd-numbered FP register");
2774
2775 /* mips_read_fp_register_single will find the correct 32 bits from
2776 each register. */
2777 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2778 {
2779 mips_read_fp_register_single (regno, rare_buffer + 4);
2780 mips_read_fp_register_single (regno + 1, rare_buffer);
2781 }
361d1df0 2782 else
dd824b04
DJ
2783 {
2784 mips_read_fp_register_single (regno, rare_buffer);
2785 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
2786 }
2787 }
2788}
2789
c906108c 2790static void
acdb74a0 2791mips_print_register (int regnum, int all)
c906108c
SS
2792{
2793 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2794
2795 /* Get the data in raw format. */
cda5a58a 2796 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
2797 {
2798 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2799 return;
2800 }
2801
dd824b04
DJ
2802 /* If we have a actual 32-bit floating point register (or we are in
2803 32-bit compatibility mode), and the register is even-numbered,
2804 also print it as a double (spanning two registers). */
c906108c 2805 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
2806 && (REGISTER_RAW_SIZE (regnum) == 4
2807 || mips2_fp_compat ())
c5aa993b 2808 && !((regnum - FP0_REGNUM) & 1))
dd824b04
DJ
2809 {
2810 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c 2811
dd824b04 2812 mips_read_fp_register_double (regnum, dbuffer);
c906108c 2813
dd824b04 2814 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 2815 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
2816 gdb_stdout, 0, 1, 0, Val_pretty_default);
2817 printf_filtered ("); ");
2818 }
c906108c
SS
2819 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2820
2821 /* The problem with printing numeric register names (r26, etc.) is that
2822 the user can't use them on input. Probably the best solution is to
2823 fix it so that either the numeric or the funky (a2, etc.) names
2824 are accepted on input. */
2825 if (regnum < MIPS_NUMREGS)
2826 printf_filtered ("(r%d): ", regnum);
2827 else
2828 printf_filtered (": ");
2829
2830 /* If virtual format is floating, print it that way. */
2831 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
2832 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
2833 {
2834 /* We have a meaningful 64-bit value in this register. Show
2835 it as a 32-bit float and a 64-bit double. */
d7449b42 2836 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
2837
2838 printf_filtered (" (float) ");
67b2c998 2839 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
2840 gdb_stdout, 0, 1, 0, Val_pretty_default);
2841 printf_filtered (", (double) ");
67b2c998 2842 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
2843 gdb_stdout, 0, 1, 0, Val_pretty_default);
2844 }
2845 else
2846 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2847 gdb_stdout, 0, 1, 0, Val_pretty_default);
2848 /* Else print as integer in hex. */
2849 else
ed9a39eb
JM
2850 {
2851 int offset;
2852
d7449b42 2853 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
2854 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2855 else
2856 offset = 0;
361d1df0 2857
ed9a39eb
JM
2858 print_scalar_formatted (raw_buffer + offset,
2859 REGISTER_VIRTUAL_TYPE (regnum),
2860 'x', 0, gdb_stdout);
2861 }
c906108c
SS
2862}
2863
361d1df0 2864/* Replacement for generic do_registers_info.
c906108c
SS
2865 Print regs in pretty columns. */
2866
2867static int
acdb74a0 2868do_fp_register_row (int regnum)
c5aa993b 2869{ /* do values for FP (float) regs */
dd824b04 2870 char *raw_buffer;
c906108c
SS
2871 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2872 int inv1, inv2, inv3;
c5aa993b 2873
dd824b04 2874 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 2875
dd824b04 2876 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 2877 {
dd824b04
DJ
2878 /* 4-byte registers: we can fit two registers per row. */
2879 /* Also print every pair of 4-byte regs as an 8-byte double. */
2880 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 2881 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 2882
dd824b04 2883 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 2884 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
2885
2886 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 2887 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 2888
1adad886
AC
2889 printf_filtered (" %-5s", REGISTER_NAME (regnum));
2890 if (inv1)
2891 printf_filtered (": <invalid float>");
2892 else
2893 printf_filtered ("%-17.9g", flt1);
2894
2895 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
2896 if (inv2)
2897 printf_filtered (": <invalid float>");
2898 else
2899 printf_filtered ("%-17.9g", flt2);
2900
2901 printf_filtered (" dbl: ");
2902 if (inv3)
2903 printf_filtered ("<invalid double>");
2904 else
2905 printf_filtered ("%-24.17g", doub);
2906 printf_filtered ("\n");
2907
c906108c 2908 /* may want to do hex display here (future enhancement) */
c5aa993b 2909 regnum += 2;
c906108c
SS
2910 }
2911 else
dd824b04
DJ
2912 {
2913 /* Eight byte registers: print each one as float AND as double. */
2914 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 2915 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 2916
dd824b04 2917 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 2918 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 2919
1adad886
AC
2920 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
2921 if (inv1)
2922 printf_filtered ("<invalid float>");
2923 else
2924 printf_filtered ("flt: %-17.9g", flt1);
2925
2926 printf_filtered (" dbl: ");
2927 if (inv3)
2928 printf_filtered ("<invalid double>");
2929 else
2930 printf_filtered ("%-24.17g", doub);
2931
2932 printf_filtered ("\n");
c906108c
SS
2933 /* may want to do hex display here (future enhancement) */
2934 regnum++;
2935 }
2936 return regnum;
2937}
2938
2939/* Print a row's worth of GP (int) registers, with name labels above */
2940
2941static int
acdb74a0 2942do_gp_register_row (int regnum)
c906108c
SS
2943{
2944 /* do values for GP (int) regs */
2945 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2946 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2947 int col, byte;
2948 int start_regnum = regnum;
2949 int numregs = NUM_REGS;
2950
2951
2952 /* For GP registers, we print a separate row of names above the vals */
2953 printf_filtered (" ");
2954 for (col = 0; col < ncols && regnum < numregs; regnum++)
2955 {
2956 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2957 continue; /* unused register */
c906108c 2958 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2959 break; /* end the row: reached FP register */
2960 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2961 REGISTER_NAME (regnum));
2962 col++;
2963 }
c5aa993b 2964 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2965 start_regnum); /* print the R0 to R31 names */
2966
2967 regnum = start_regnum; /* go back to start of row */
2968 /* now print the values in hex, 4 or 8 to the row */
2969 for (col = 0; col < ncols && regnum < numregs; regnum++)
2970 {
2971 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2972 continue; /* unused register */
c906108c 2973 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2974 break; /* end row: reached FP register */
c906108c 2975 /* OK: get the data in raw format. */
cda5a58a 2976 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
2977 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2978 /* pad small registers */
43e526b9 2979 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2980 printf_filtered (" ");
2981 /* Now print the register value in hex, endian order. */
d7449b42 2982 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
2983 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2984 byte < REGISTER_RAW_SIZE (regnum);
2985 byte++)
c906108c
SS
2986 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2987 else
43e526b9
JM
2988 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2989 byte >= 0;
2990 byte--)
c906108c
SS
2991 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2992 printf_filtered (" ");
2993 col++;
2994 }
c5aa993b 2995 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2996 printf_filtered ("\n");
2997
2998 return regnum;
2999}
3000
3001/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
3002
3003void
acdb74a0 3004mips_do_registers_info (int regnum, int fpregs)
c906108c 3005{
c5aa993b 3006 if (regnum != -1) /* do one specified register */
c906108c
SS
3007 {
3008 if (*(REGISTER_NAME (regnum)) == '\0')
3009 error ("Not a valid register for the current processor type");
3010
3011 mips_print_register (regnum, 0);
3012 printf_filtered ("\n");
3013 }
c5aa993b
JM
3014 else
3015 /* do all (or most) registers */
c906108c
SS
3016 {
3017 regnum = 0;
3018 while (regnum < NUM_REGS)
3019 {
c5aa993b
JM
3020 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3021 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
3022 regnum = do_fp_register_row (regnum); /* FP regs */
3023 else
3024 regnum += MIPS_NUMREGS; /* skip floating point regs */
3025 else
3026 regnum = do_gp_register_row (regnum); /* GP (int) regs */
3027 }
3028 }
3029}
3030
3031/* Return number of args passed to a frame. described by FIP.
3032 Can return -1, meaning no way to tell. */
3033
3034int
acdb74a0 3035mips_frame_num_args (struct frame_info *frame)
c906108c 3036{
c906108c
SS
3037 return -1;
3038}
3039
3040/* Is this a branch with a delay slot? */
3041
a14ed312 3042static int is_delayed (unsigned long);
c906108c
SS
3043
3044static int
acdb74a0 3045is_delayed (unsigned long insn)
c906108c
SS
3046{
3047 int i;
3048 for (i = 0; i < NUMOPCODES; ++i)
3049 if (mips_opcodes[i].pinfo != INSN_MACRO
3050 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
3051 break;
3052 return (i < NUMOPCODES
3053 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
3054 | INSN_COND_BRANCH_DELAY
3055 | INSN_COND_BRANCH_LIKELY)));
3056}
3057
3058int
acdb74a0 3059mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
3060{
3061 char buf[MIPS_INSTLEN];
3062
3063 /* There is no branch delay slot on MIPS16. */
3064 if (pc_is_mips16 (pc))
3065 return 0;
3066
3067 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
3068 /* If error reading memory, guess that it is not a delayed branch. */
3069 return 0;
c5aa993b 3070 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
3071}
3072
3073
3074/* Skip the PC past function prologue instructions (32-bit version).
3075 This is a helper function for mips_skip_prologue. */
3076
3077static CORE_ADDR
f7b9e9fc 3078mips32_skip_prologue (CORE_ADDR pc)
c906108c 3079{
c5aa993b
JM
3080 t_inst inst;
3081 CORE_ADDR end_pc;
3082 int seen_sp_adjust = 0;
3083 int load_immediate_bytes = 0;
3084
3085 /* Skip the typical prologue instructions. These are the stack adjustment
3086 instruction and the instructions that save registers on the stack
3087 or in the gcc frame. */
3088 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
3089 {
3090 unsigned long high_word;
c906108c 3091
c5aa993b
JM
3092 inst = mips_fetch_instruction (pc);
3093 high_word = (inst >> 16) & 0xffff;
c906108c 3094
c5aa993b
JM
3095 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
3096 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
3097 seen_sp_adjust = 1;
3098 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
3099 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
3100 seen_sp_adjust = 1;
3101 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
3102 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
3103 && (inst & 0x001F0000)) /* reg != $zero */
3104 continue;
3105
3106 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
3107 continue;
3108 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
3109 /* sx reg,n($s8) */
3110 continue; /* reg != $zero */
3111
3112 /* move $s8,$sp. With different versions of gas this will be either
3113 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
3114 Accept any one of these. */
3115 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3116 continue;
3117
3118 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
3119 continue;
3120 else if (high_word == 0x3c1c) /* lui $gp,n */
3121 continue;
3122 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
3123 continue;
3124 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3125 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
3126 continue;
3127 /* The following instructions load $at or $t0 with an immediate
3128 value in preparation for a stack adjustment via
3129 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
3130 a local variable, so we accept them only before a stack adjustment
3131 instruction was seen. */
3132 else if (!seen_sp_adjust)
3133 {
3134 if (high_word == 0x3c01 || /* lui $at,n */
3135 high_word == 0x3c08) /* lui $t0,n */
3136 {
3137 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3138 continue;
3139 }
3140 else if (high_word == 0x3421 || /* ori $at,$at,n */
3141 high_word == 0x3508 || /* ori $t0,$t0,n */
3142 high_word == 0x3401 || /* ori $at,$zero,n */
3143 high_word == 0x3408) /* ori $t0,$zero,n */
3144 {
3145 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3146 continue;
3147 }
3148 else
3149 break;
3150 }
3151 else
3152 break;
c906108c
SS
3153 }
3154
c5aa993b
JM
3155 /* In a frameless function, we might have incorrectly
3156 skipped some load immediate instructions. Undo the skipping
3157 if the load immediate was not followed by a stack adjustment. */
3158 if (load_immediate_bytes && !seen_sp_adjust)
3159 pc -= load_immediate_bytes;
3160 return pc;
c906108c
SS
3161}
3162
3163/* Skip the PC past function prologue instructions (16-bit version).
3164 This is a helper function for mips_skip_prologue. */
3165
3166static CORE_ADDR
f7b9e9fc 3167mips16_skip_prologue (CORE_ADDR pc)
c906108c 3168{
c5aa993b
JM
3169 CORE_ADDR end_pc;
3170 int extend_bytes = 0;
3171 int prev_extend_bytes;
c906108c 3172
c5aa993b
JM
3173 /* Table of instructions likely to be found in a function prologue. */
3174 static struct
c906108c
SS
3175 {
3176 unsigned short inst;
3177 unsigned short mask;
c5aa993b
JM
3178 }
3179 table[] =
3180 {
c906108c 3181 {
c5aa993b
JM
3182 0x6300, 0xff00
3183 }
3184 , /* addiu $sp,offset */
3185 {
3186 0xfb00, 0xff00
3187 }
3188 , /* daddiu $sp,offset */
3189 {
3190 0xd000, 0xf800
3191 }
3192 , /* sw reg,n($sp) */
3193 {
3194 0xf900, 0xff00
3195 }
3196 , /* sd reg,n($sp) */
3197 {
3198 0x6200, 0xff00
3199 }
3200 , /* sw $ra,n($sp) */
3201 {
3202 0xfa00, 0xff00
3203 }
3204 , /* sd $ra,n($sp) */
3205 {
3206 0x673d, 0xffff
3207 }
3208 , /* move $s1,sp */
3209 {
3210 0xd980, 0xff80
3211 }
3212 , /* sw $a0-$a3,n($s1) */
3213 {
3214 0x6704, 0xff1c
3215 }
3216 , /* move reg,$a0-$a3 */
3217 {
3218 0xe809, 0xf81f
3219 }
3220 , /* entry pseudo-op */
3221 {
3222 0x0100, 0xff00
3223 }
3224 , /* addiu $s1,$sp,n */
3225 {
3226 0, 0
3227 } /* end of table marker */
3228 };
3229
3230 /* Skip the typical prologue instructions. These are the stack adjustment
3231 instruction and the instructions that save registers on the stack
3232 or in the gcc frame. */
3233 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3234 {
3235 unsigned short inst;
3236 int i;
c906108c 3237
c5aa993b 3238 inst = mips_fetch_instruction (pc);
c906108c 3239
c5aa993b
JM
3240 /* Normally we ignore an extend instruction. However, if it is
3241 not followed by a valid prologue instruction, we must adjust
3242 the pc back over the extend so that it won't be considered
3243 part of the prologue. */
3244 if ((inst & 0xf800) == 0xf000) /* extend */
3245 {
3246 extend_bytes = MIPS16_INSTLEN;
3247 continue;
3248 }
3249 prev_extend_bytes = extend_bytes;
3250 extend_bytes = 0;
c906108c 3251
c5aa993b
JM
3252 /* Check for other valid prologue instructions besides extend. */
3253 for (i = 0; table[i].mask != 0; i++)
3254 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3255 break;
3256 if (table[i].mask != 0) /* it was in table? */
3257 continue; /* ignore it */
3258 else
3259 /* non-prologue */
3260 {
3261 /* Return the current pc, adjusted backwards by 2 if
3262 the previous instruction was an extend. */
3263 return pc - prev_extend_bytes;
3264 }
c906108c
SS
3265 }
3266 return pc;
3267}
3268
3269/* To skip prologues, I use this predicate. Returns either PC itself
3270 if the code at PC does not look like a function prologue; otherwise
3271 returns an address that (if we're lucky) follows the prologue. If
3272 LENIENT, then we must skip everything which is involved in setting
3273 up the frame (it's OK to skip more, just so long as we don't skip
3274 anything which might clobber the registers which are being saved.
3275 We must skip more in the case where part of the prologue is in the
3276 delay slot of a non-prologue instruction). */
3277
3278CORE_ADDR
f7b9e9fc 3279mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
3280{
3281 /* See if we can determine the end of the prologue via the symbol table.
3282 If so, then return either PC, or the PC after the prologue, whichever
3283 is greater. */
3284
3285 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3286
3287 if (post_prologue_pc != 0)
3288 return max (pc, post_prologue_pc);
3289
3290 /* Can't determine prologue from the symbol table, need to examine
3291 instructions. */
3292
3293 if (pc_is_mips16 (pc))
f7b9e9fc 3294 return mips16_skip_prologue (pc);
c906108c 3295 else
f7b9e9fc 3296 return mips32_skip_prologue (pc);
c906108c 3297}
c906108c 3298
7a292a7a
SS
3299/* Determine how a return value is stored within the MIPS register
3300 file, given the return type `valtype'. */
3301
3302struct return_value_word
3303{
3304 int len;
3305 int reg;
3306 int reg_offset;
3307 int buf_offset;
3308};
3309
7a292a7a 3310static void
acdb74a0
AC
3311return_value_location (struct type *valtype,
3312 struct return_value_word *hi,
3313 struct return_value_word *lo)
7a292a7a
SS
3314{
3315 int len = TYPE_LENGTH (valtype);
c5aa993b 3316
7a292a7a
SS
3317 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3318 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3319 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3320 {
3321 if (!FP_REGISTER_DOUBLE && len == 8)
3322 {
3323 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3324 spread them across a floating-point register pair. */
d7449b42
AC
3325 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3326 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
3327 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3328 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3329 ? 4 : 0);
3330 hi->reg_offset = lo->reg_offset;
3331 lo->reg = FP0_REGNUM + 0;
3332 hi->reg = FP0_REGNUM + 1;
3333 lo->len = 4;
3334 hi->len = 4;
3335 }
3336 else
3337 {
3338 /* The floating point value fits in a single floating-point
c5aa993b 3339 register. */
d7449b42 3340 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3341 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3342 && len == 4)
3343 ? 4 : 0);
3344 lo->reg = FP0_REGNUM;
3345 lo->len = len;
3346 lo->buf_offset = 0;
3347 hi->len = 0;
3348 hi->reg_offset = 0;
3349 hi->buf_offset = 0;
3350 hi->reg = 0;
3351 }
3352 }
3353 else
3354 {
3355 /* Locate a result possibly spread across two registers. */
3356 int regnum = 2;
3357 lo->reg = regnum + 0;
3358 hi->reg = regnum + 1;
d7449b42 3359 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3360 && len < MIPS_SAVED_REGSIZE)
3361 {
3362 /* "un-left-justify" the value in the low register */
3363 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3364 lo->len = len;
3365 hi->reg_offset = 0;
3366 hi->len = 0;
3367 }
d7449b42 3368 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3369 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3370 && len < MIPS_SAVED_REGSIZE * 2
3371 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3372 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3373 {
3374 /* "un-left-justify" the value spread across two registers. */
3375 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3376 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3377 hi->reg_offset = 0;
3378 hi->len = len - lo->len;
3379 }
3380 else
3381 {
3382 /* Only perform a partial copy of the second register. */
3383 lo->reg_offset = 0;
3384 hi->reg_offset = 0;
3385 if (len > MIPS_SAVED_REGSIZE)
3386 {
3387 lo->len = MIPS_SAVED_REGSIZE;
3388 hi->len = len - MIPS_SAVED_REGSIZE;
3389 }
3390 else
3391 {
3392 lo->len = len;
3393 hi->len = 0;
3394 }
3395 }
d7449b42 3396 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3397 && REGISTER_RAW_SIZE (regnum) == 8
3398 && MIPS_SAVED_REGSIZE == 4)
3399 {
3400 /* Account for the fact that only the least-signficant part
c5aa993b 3401 of the register is being used */
7a292a7a
SS
3402 lo->reg_offset += 4;
3403 hi->reg_offset += 4;
3404 }
3405 lo->buf_offset = 0;
3406 hi->buf_offset = lo->len;
3407 }
3408}
3409
3410/* Given a return value in `regbuf' with a type `valtype', extract and
3411 copy its value into `valbuf'. */
3412
c906108c 3413void
acdb74a0
AC
3414mips_extract_return_value (struct type *valtype,
3415 char regbuf[REGISTER_BYTES],
3416 char *valbuf)
c906108c 3417{
7a292a7a
SS
3418 struct return_value_word lo;
3419 struct return_value_word hi;
99567b1b 3420 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3421
3422 memcpy (valbuf + lo.buf_offset,
3423 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3424 lo.len);
3425
3426 if (hi.len > 0)
3427 memcpy (valbuf + hi.buf_offset,
3428 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3429 hi.len);
c906108c
SS
3430}
3431
7a292a7a
SS
3432/* Given a return value in `valbuf' with a type `valtype', write it's
3433 value into the appropriate register. */
3434
c906108c 3435void
acdb74a0 3436mips_store_return_value (struct type *valtype, char *valbuf)
c906108c 3437{
7a292a7a
SS
3438 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3439 struct return_value_word lo;
3440 struct return_value_word hi;
99567b1b 3441 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3442
3443 memset (raw_buffer, 0, sizeof (raw_buffer));
3444 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3445 write_register_bytes (REGISTER_BYTE (lo.reg),
3446 raw_buffer,
3447 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3448
7a292a7a
SS
3449 if (hi.len > 0)
3450 {
3451 memset (raw_buffer, 0, sizeof (raw_buffer));
3452 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3453 write_register_bytes (REGISTER_BYTE (hi.reg),
3454 raw_buffer,
3455 REGISTER_RAW_SIZE (hi.reg));
3456 }
c906108c
SS
3457}
3458
3459/* Exported procedure: Is PC in the signal trampoline code */
3460
3461int
acdb74a0 3462in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
3463{
3464 if (sigtramp_address == 0)
3465 fixup_sigtramp ();
3466 return (pc >= sigtramp_address && pc < sigtramp_end);
3467}
3468
a5ea2558
AC
3469/* Root of all "set mips "/"show mips " commands. This will eventually be
3470 used for all MIPS-specific commands. */
3471
a5ea2558 3472static void
acdb74a0 3473show_mips_command (char *args, int from_tty)
a5ea2558
AC
3474{
3475 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3476}
3477
a5ea2558 3478static void
acdb74a0 3479set_mips_command (char *args, int from_tty)
a5ea2558
AC
3480{
3481 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3482 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3483}
3484
c906108c
SS
3485/* Commands to show/set the MIPS FPU type. */
3486
c906108c 3487static void
acdb74a0 3488show_mipsfpu_command (char *args, int from_tty)
c906108c 3489{
c906108c
SS
3490 char *fpu;
3491 switch (MIPS_FPU_TYPE)
3492 {
3493 case MIPS_FPU_SINGLE:
3494 fpu = "single-precision";
3495 break;
3496 case MIPS_FPU_DOUBLE:
3497 fpu = "double-precision";
3498 break;
3499 case MIPS_FPU_NONE:
3500 fpu = "absent (none)";
3501 break;
93d56215
AC
3502 default:
3503 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
3504 }
3505 if (mips_fpu_type_auto)
3506 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3507 fpu);
3508 else
3509 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3510 fpu);
3511}
3512
3513
c906108c 3514static void
acdb74a0 3515set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3516{
3517 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3518 show_mipsfpu_command (args, from_tty);
3519}
3520
c906108c 3521static void
acdb74a0 3522set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
3523{
3524 mips_fpu_type = MIPS_FPU_SINGLE;
3525 mips_fpu_type_auto = 0;
9e364162 3526 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
3527}
3528
c906108c 3529static void
acdb74a0 3530set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
3531{
3532 mips_fpu_type = MIPS_FPU_DOUBLE;
3533 mips_fpu_type_auto = 0;
9e364162 3534 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
3535}
3536
c906108c 3537static void
acdb74a0 3538set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
3539{
3540 mips_fpu_type = MIPS_FPU_NONE;
3541 mips_fpu_type_auto = 0;
9e364162 3542 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
3543}
3544
c906108c 3545static void
acdb74a0 3546set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
3547{
3548 mips_fpu_type_auto = 1;
3549}
3550
3551/* Command to set the processor type. */
3552
3553void
acdb74a0 3554mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
3555{
3556 int i;
3557
3558 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3559 {
3560 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3561 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3562 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3563
3564 /* Restore the value. */
4fcf66da 3565 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3566
3567 return;
3568 }
c5aa993b 3569
c906108c
SS
3570 if (!mips_set_processor_type (tmp_mips_processor_type))
3571 {
3572 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3573 /* Restore its value. */
4fcf66da 3574 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3575 }
3576}
3577
3578static void
acdb74a0 3579mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
3580{
3581}
3582
3583/* Modify the actual processor type. */
3584
3585int
acdb74a0 3586mips_set_processor_type (char *str)
c906108c 3587{
1012bd0e 3588 int i;
c906108c
SS
3589
3590 if (str == NULL)
3591 return 0;
3592
3593 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3594 {
3595 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3596 {
3597 mips_processor_type = str;
cce74817 3598 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3599 return 1;
c906108c
SS
3600 /* FIXME tweak fpu flag too */
3601 }
3602 }
3603
3604 return 0;
3605}
3606
3607/* Attempt to identify the particular processor model by reading the
3608 processor id. */
3609
3610char *
acdb74a0 3611mips_read_processor_type (void)
c906108c
SS
3612{
3613 CORE_ADDR prid;
3614
3615 prid = read_register (PRID_REGNUM);
3616
3617 if ((prid & ~0xf) == 0x700)
c5aa993b 3618 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3619
3620 return NULL;
3621}
3622
3623/* Just like reinit_frame_cache, but with the right arguments to be
3624 callable as an sfunc. */
3625
3626static void
acdb74a0
AC
3627reinit_frame_cache_sfunc (char *args, int from_tty,
3628 struct cmd_list_element *c)
c906108c
SS
3629{
3630 reinit_frame_cache ();
3631}
3632
3633int
acdb74a0 3634gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
3635{
3636 mips_extra_func_info_t proc_desc;
3637
3638 /* Search for the function containing this address. Set the low bit
3639 of the address when searching, in case we were given an even address
3640 that is the start of a 16-bit function. If we didn't do this,
3641 the search would fail because the symbol table says the function
3642 starts at an odd address, i.e. 1 byte past the given address. */
3643 memaddr = ADDR_BITS_REMOVE (memaddr);
3644 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3645
3646 /* Make an attempt to determine if this is a 16-bit function. If
3647 the procedure descriptor exists and the address therein is odd,
3648 it's definitely a 16-bit function. Otherwise, we have to just
3649 guess that if the address passed in is odd, it's 16-bits. */
3650 if (proc_desc)
361d1df0 3651 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 3652 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 3653 else
361d1df0 3654 info->mach = pc_is_mips16 (memaddr) ?
65c11066 3655 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
3656
3657 /* Round down the instruction address to the appropriate boundary. */
65c11066 3658 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 3659
c906108c 3660 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 3661 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
3662 return print_insn_big_mips (memaddr, info);
3663 else
3664 return print_insn_little_mips (memaddr, info);
3665}
3666
3667/* Old-style breakpoint macros.
3668 The IDT board uses an unusual breakpoint value, and sometimes gets
3669 confused when it sees the usual MIPS breakpoint instruction. */
3670
3671#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3672#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3673#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3674#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3675#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3676#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3677#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3678#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3679
3680/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3681 counter value to determine whether a 16- or 32-bit breakpoint should be
3682 used. It returns a pointer to a string of bytes that encode a breakpoint
3683 instruction, stores the length of the string to *lenptr, and adjusts pc
3684 (if necessary) to point to the actual memory location where the
3685 breakpoint should be inserted. */
3686
f4f9705a 3687const unsigned char *
acdb74a0 3688mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 3689{
d7449b42 3690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
3691 {
3692 if (pc_is_mips16 (*pcptr))
3693 {
1012bd0e
EZ
3694 static unsigned char mips16_big_breakpoint[] =
3695 MIPS16_BIG_BREAKPOINT;
c906108c 3696 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3697 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3698 return mips16_big_breakpoint;
3699 }
3700 else
3701 {
1012bd0e
EZ
3702 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3703 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3704 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 3705
c5aa993b 3706 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3707
3708 if (strcmp (target_shortname, "mips") == 0)
3709 return idt_big_breakpoint;
3710 else if (strcmp (target_shortname, "ddb") == 0
3711 || strcmp (target_shortname, "pmon") == 0
3712 || strcmp (target_shortname, "lsi") == 0)
3713 return pmon_big_breakpoint;
3714 else
3715 return big_breakpoint;
3716 }
3717 }
3718 else
3719 {
3720 if (pc_is_mips16 (*pcptr))
3721 {
1012bd0e
EZ
3722 static unsigned char mips16_little_breakpoint[] =
3723 MIPS16_LITTLE_BREAKPOINT;
c906108c 3724 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3725 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3726 return mips16_little_breakpoint;
3727 }
3728 else
3729 {
1012bd0e
EZ
3730 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3731 static unsigned char pmon_little_breakpoint[] =
3732 PMON_LITTLE_BREAKPOINT;
3733 static unsigned char idt_little_breakpoint[] =
3734 IDT_LITTLE_BREAKPOINT;
c906108c 3735
c5aa993b 3736 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3737
3738 if (strcmp (target_shortname, "mips") == 0)
3739 return idt_little_breakpoint;
3740 else if (strcmp (target_shortname, "ddb") == 0
3741 || strcmp (target_shortname, "pmon") == 0
3742 || strcmp (target_shortname, "lsi") == 0)
3743 return pmon_little_breakpoint;
3744 else
3745 return little_breakpoint;
3746 }
3747 }
3748}
3749
3750/* If PC is in a mips16 call or return stub, return the address of the target
3751 PC, which is either the callee or the caller. There are several
3752 cases which must be handled:
3753
3754 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3755 target PC is in $31 ($ra).
c906108c 3756 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3757 and the target PC is in $2.
c906108c 3758 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3759 before the jal instruction, this is effectively a call stub
3760 and the the target PC is in $2. Otherwise this is effectively
3761 a return stub and the target PC is in $18.
c906108c
SS
3762
3763 See the source code for the stubs in gcc/config/mips/mips16.S for
3764 gory details.
3765
3766 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3767 */
c906108c
SS
3768
3769CORE_ADDR
acdb74a0 3770mips_skip_stub (CORE_ADDR pc)
c906108c
SS
3771{
3772 char *name;
3773 CORE_ADDR start_addr;
3774
3775 /* Find the starting address and name of the function containing the PC. */
3776 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3777 return 0;
3778
3779 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3780 target PC is in $31 ($ra). */
3781 if (strcmp (name, "__mips16_ret_sf") == 0
3782 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 3783 return read_signed_register (RA_REGNUM);
c906108c
SS
3784
3785 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3786 {
3787 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3788 and the target PC is in $2. */
3789 if (name[19] >= '0' && name[19] <= '9')
6c997a34 3790 return read_signed_register (2);
c906108c
SS
3791
3792 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3793 before the jal instruction, this is effectively a call stub
3794 and the the target PC is in $2. Otherwise this is effectively
3795 a return stub and the target PC is in $18. */
c906108c
SS
3796 else if (name[19] == 's' || name[19] == 'd')
3797 {
3798 if (pc == start_addr)
3799 {
3800 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3801 stub. Such a stub for a function bar might have a name
3802 like __fn_stub_bar, and might look like this:
3803 mfc1 $4,$f13
3804 mfc1 $5,$f12
3805 mfc1 $6,$f15
3806 mfc1 $7,$f14
3807 la $1,bar (becomes a lui/addiu pair)
3808 jr $1
3809 So scan down to the lui/addi and extract the target
3810 address from those two instructions. */
c906108c 3811
6c997a34 3812 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
3813 t_inst inst;
3814 int i;
3815
3816 /* See if the name of the target function is __fn_stub_*. */
3817 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3818 return target_pc;
3819 if (strncmp (name, "__fn_stub_", 10) != 0
3820 && strcmp (name, "etext") != 0
3821 && strcmp (name, "_etext") != 0)
3822 return target_pc;
3823
3824 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3825 The limit on the search is arbitrarily set to 20
3826 instructions. FIXME. */
c906108c
SS
3827 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3828 {
c5aa993b
JM
3829 inst = mips_fetch_instruction (target_pc);
3830 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3831 pc = (inst << 16) & 0xffff0000; /* high word */
3832 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3833 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3834 }
3835
3836 /* Couldn't find the lui/addui pair, so return stub address. */
3837 return target_pc;
3838 }
3839 else
3840 /* This is the 'return' part of a call stub. The return
3841 address is in $r18. */
6c997a34 3842 return read_signed_register (18);
c906108c
SS
3843 }
3844 }
c5aa993b 3845 return 0; /* not a stub */
c906108c
SS
3846}
3847
3848
3849/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3850 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3851
3852int
acdb74a0 3853mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
3854{
3855 CORE_ADDR start_addr;
3856
3857 /* Find the starting address of the function containing the PC. If the
3858 caller didn't give us a name, look it up at the same time. */
3859 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3860 return 0;
3861
3862 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3863 {
3864 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3865 if (name[19] >= '0' && name[19] <= '9')
3866 return 1;
3867 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3868 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3869 else if (name[19] == 's' || name[19] == 'd')
3870 return pc == start_addr;
3871 }
3872
c5aa993b 3873 return 0; /* not a stub */
c906108c
SS
3874}
3875
3876
3877/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3878 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3879
3880int
acdb74a0 3881mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
3882{
3883 CORE_ADDR start_addr;
3884
3885 /* Find the starting address of the function containing the PC. */
3886 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3887 return 0;
3888
3889 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3890 if (strcmp (name, "__mips16_ret_sf") == 0
3891 || strcmp (name, "__mips16_ret_df") == 0)
3892 return 1;
3893
3894 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3895 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3896 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3897 && (name[19] == 's' || name[19] == 'd')
3898 && pc != start_addr)
3899 return 1;
3900
c5aa993b 3901 return 0; /* not a stub */
c906108c
SS
3902}
3903
3904
3905/* Return non-zero if the PC is in a library helper function that should
3906 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3907
3908int
acdb74a0 3909mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
3910{
3911 char *name;
3912
3913 /* Find the starting address and name of the function containing the PC. */
3914 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3915 return 0;
3916
3917 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3918 that we want to ignore. */
3919 return (strcmp (name, "__mips16_ret_sf") == 0
3920 || strcmp (name, "__mips16_ret_df") == 0);
3921}
3922
3923
3924/* Return a location where we can set a breakpoint that will be hit
3925 when an inferior function call returns. This is normally the
3926 program's entry point. Executables that don't have an entry
3927 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3928 whose address is the location where the breakpoint should be placed. */
3929
3930CORE_ADDR
acdb74a0 3931mips_call_dummy_address (void)
c906108c
SS
3932{
3933 struct minimal_symbol *sym;
3934
3935 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3936 if (sym)
3937 return SYMBOL_VALUE_ADDRESS (sym);
3938 else
3939 return entry_point_address ();
3940}
3941
3942
9dcb560c 3943/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
3944 information for float parameters, both prototyped and unprototyped, then
3945 define this macro. This forces gdb to always assume that floats are
3946 passed as doubles and then converted in the callee.
3947
3948 For the mips chip, it appears that the debug info marks the parameters as
3949 floats regardless of whether the function is prototyped, but the actual
3950 values are passed as doubles for the non-prototyped case and floats for
3951 the prototyped case. Thus we choose to make the non-prototyped case work
3952 for C and break the prototyped case, since the non-prototyped case is
3953 probably much more common. (FIXME). */
3954
3955static int
3956mips_coerce_float_to_double (struct type *formal, struct type *actual)
3957{
3958 return current_language->la_language == language_c;
3959}
3960
47a8d4ba
AC
3961/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3962 the register stored on the stack (32) is different to its real raw
3963 size (64). The below ensures that registers are fetched from the
3964 stack using their ABI size and then stored into the RAW_BUFFER
3965 using their raw size.
3966
3967 The alternative to adding this function would be to add an ABI
3968 macro - REGISTER_STACK_SIZE(). */
3969
3970static void
acdb74a0
AC
3971mips_get_saved_register (char *raw_buffer,
3972 int *optimized,
3973 CORE_ADDR *addrp,
3974 struct frame_info *frame,
3975 int regnum,
3976 enum lval_type *lval)
47a8d4ba
AC
3977{
3978 CORE_ADDR addr;
3979
3980 if (!target_has_registers)
3981 error ("No registers.");
3982
3983 /* Normal systems don't optimize out things with register numbers. */
3984 if (optimized != NULL)
3985 *optimized = 0;
3986 addr = find_saved_register (frame, regnum);
3987 if (addr != 0)
3988 {
3989 if (lval != NULL)
3990 *lval = lval_memory;
3991 if (regnum == SP_REGNUM)
3992 {
3993 if (raw_buffer != NULL)
3994 {
3995 /* Put it back in target format. */
3996 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3997 (LONGEST) addr);
3998 }
3999 if (addrp != NULL)
4000 *addrp = 0;
4001 return;
4002 }
4003 if (raw_buffer != NULL)
4004 {
4005 LONGEST val;
4006 if (regnum < 32)
4007 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
4008 saved. */
4009 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
4010 else
4011 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
4012 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
4013 }
4014 }
4015 else
4016 {
4017 if (lval != NULL)
4018 *lval = lval_register;
4019 addr = REGISTER_BYTE (regnum);
4020 if (raw_buffer != NULL)
4021 read_register_gen (regnum, raw_buffer);
4022 }
4023 if (addrp != NULL)
4024 *addrp = addr;
4025}
2acceee2 4026
f7b9e9fc
AC
4027/* Immediately after a function call, return the saved pc.
4028 Can't always go through the frames for this because on some machines
4029 the new frame is not set up until the new function executes
4030 some instructions. */
4031
4032static CORE_ADDR
4033mips_saved_pc_after_call (struct frame_info *frame)
4034{
6c997a34 4035 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
4036}
4037
4038
88c72b7d
AC
4039/* Convert a dbx stab register number (from `r' declaration) to a gdb
4040 REGNUM */
4041
4042static int
4043mips_stab_reg_to_regnum (int num)
4044{
4045 if (num < 32)
4046 return num;
361d1df0 4047 else
88c72b7d
AC
4048 return num + FP0_REGNUM - 38;
4049}
4050
4051/* Convert a ecoff register number to a gdb REGNUM */
4052
4053static int
4054mips_ecoff_reg_to_regnum (int num)
4055{
4056 if (num < 32)
4057 return num;
4058 else
4059 return num + FP0_REGNUM - 32;
4060}
4061
fc0c74b1
AC
4062/* Convert an integer into an address. By first converting the value
4063 into a pointer and then extracting it signed, the address is
4064 guarenteed to be correctly sign extended. */
4065
4066static CORE_ADDR
4067mips_integer_to_address (struct type *type, void *buf)
4068{
4069 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4070 LONGEST val = unpack_long (type, buf);
4071 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4072 return extract_signed_integer (tmp,
4073 TYPE_LENGTH (builtin_type_void_data_ptr));
4074}
4075
caaa3122
DJ
4076static void
4077mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4078{
4079 enum mips_abi *abip = (enum mips_abi *) obj;
4080 const char *name = bfd_get_section_name (abfd, sect);
4081
4082 if (*abip != MIPS_ABI_UNKNOWN)
4083 return;
4084
4085 if (strncmp (name, ".mdebug.", 8) != 0)
4086 return;
4087
4088 if (strcmp (name, ".mdebug.abi32") == 0)
4089 *abip = MIPS_ABI_O32;
4090 else if (strcmp (name, ".mdebug.abiN32") == 0)
4091 *abip = MIPS_ABI_N32;
4092 else if (strcmp (name, ".mdebug.abiO64") == 0)
4093 *abip = MIPS_ABI_O64;
4094 else if (strcmp (name, ".mdebug.eabi32") == 0)
4095 *abip = MIPS_ABI_EABI32;
4096 else if (strcmp (name, ".mdebug.eabi64") == 0)
4097 *abip = MIPS_ABI_EABI64;
4098 else
4099 warning ("unsupported ABI %s.", name + 8);
4100}
4101
c2d11a7d 4102static struct gdbarch *
acdb74a0
AC
4103mips_gdbarch_init (struct gdbarch_info info,
4104 struct gdbarch_list *arches)
c2d11a7d
JM
4105{
4106 static LONGEST mips_call_dummy_words[] =
4107 {0};
4108 struct gdbarch *gdbarch;
4109 struct gdbarch_tdep *tdep;
4110 int elf_flags;
0dadbba0 4111 enum mips_abi mips_abi;
70f80edf 4112 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 4113
1d06468c
EZ
4114 /* Reset the disassembly info, in case it was set to something
4115 non-default. */
4116 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
4117 tm_print_insn_info.arch = bfd_arch_unknown;
4118 tm_print_insn_info.mach = 0;
4119
70f80edf
JT
4120 elf_flags = 0;
4121
4122 if (info.abfd)
4123 {
4124 /* First of all, extract the elf_flags, if available. */
4125 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4126 elf_flags = elf_elfheader (info.abfd)->e_flags;
4127
4128 /* Try to determine the OS ABI of the object we are loading. If
4129 we end up with `unknown', just leave it that way. */
4130 osabi = gdbarch_lookup_osabi (info.abfd);
4131 }
c2d11a7d 4132
0dadbba0
AC
4133 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4134 switch ((elf_flags & EF_MIPS_ABI))
4135 {
4136 case E_MIPS_ABI_O32:
4137 mips_abi = MIPS_ABI_O32;
4138 break;
4139 case E_MIPS_ABI_O64:
4140 mips_abi = MIPS_ABI_O64;
4141 break;
4142 case E_MIPS_ABI_EABI32:
4143 mips_abi = MIPS_ABI_EABI32;
4144 break;
4145 case E_MIPS_ABI_EABI64:
4a7f7ba8 4146 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4147 break;
4148 default:
acdb74a0
AC
4149 if ((elf_flags & EF_MIPS_ABI2))
4150 mips_abi = MIPS_ABI_N32;
4151 else
4152 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4153 break;
4154 }
acdb74a0 4155
caaa3122
DJ
4156 /* GCC creates a pseudo-section whose name describes the ABI. */
4157 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4158 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
4159
bf64bfd6
AC
4160 /* Try the architecture for any hint of the corect ABI */
4161 if (mips_abi == MIPS_ABI_UNKNOWN
4162 && info.bfd_arch_info != NULL
4163 && info.bfd_arch_info->arch == bfd_arch_mips)
4164 {
4165 switch (info.bfd_arch_info->mach)
4166 {
4167 case bfd_mach_mips3900:
4168 mips_abi = MIPS_ABI_EABI32;
4169 break;
4170 case bfd_mach_mips4100:
4171 case bfd_mach_mips5000:
4172 mips_abi = MIPS_ABI_EABI64;
4173 break;
1d06468c
EZ
4174 case bfd_mach_mips8000:
4175 case bfd_mach_mips10000:
4176 mips_abi = MIPS_ABI_N32;
4177 break;
bf64bfd6
AC
4178 }
4179 }
0dadbba0
AC
4180#ifdef MIPS_DEFAULT_ABI
4181 if (mips_abi == MIPS_ABI_UNKNOWN)
4182 mips_abi = MIPS_DEFAULT_ABI;
4183#endif
4b9b3959
AC
4184
4185 if (gdbarch_debug)
4186 {
4187 fprintf_unfiltered (gdb_stdlog,
9ace0497 4188 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 4189 elf_flags);
4b9b3959
AC
4190 fprintf_unfiltered (gdb_stdlog,
4191 "mips_gdbarch_init: mips_abi = %d\n",
4192 mips_abi);
4193 }
0dadbba0 4194
c2d11a7d
JM
4195 /* try to find a pre-existing architecture */
4196 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4197 arches != NULL;
4198 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4199 {
4200 /* MIPS needs to be pedantic about which ABI the object is
4201 using. */
9103eae0 4202 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4203 continue;
9103eae0 4204 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4205 continue;
70f80edf
JT
4206 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
4207 return arches->gdbarch;
c2d11a7d
JM
4208 }
4209
4210 /* Need a new architecture. Fill in a target specific vector. */
4211 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4212 gdbarch = gdbarch_alloc (&info, tdep);
4213 tdep->elf_flags = elf_flags;
70f80edf 4214 tdep->osabi = osabi;
c2d11a7d 4215
46cd78fb 4216 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4217 set_gdbarch_short_bit (gdbarch, 16);
4218 set_gdbarch_int_bit (gdbarch, 32);
4219 set_gdbarch_float_bit (gdbarch, 32);
4220 set_gdbarch_double_bit (gdbarch, 64);
4221 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 4222 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
0dadbba0 4223 tdep->mips_abi = mips_abi;
1d06468c 4224
0dadbba0 4225 switch (mips_abi)
c2d11a7d 4226 {
0dadbba0 4227 case MIPS_ABI_O32:
acdb74a0 4228 tdep->mips_abi_string = "o32";
a5ea2558 4229 tdep->mips_default_saved_regsize = 4;
0dadbba0 4230 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4231 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4232 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4233 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4234 tdep->mips_regs_have_home_p = 1;
5213ab06 4235 tdep->gdb_target_is_mips64 = 0;
4014092b 4236 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4237 set_gdbarch_long_bit (gdbarch, 32);
4238 set_gdbarch_ptr_bit (gdbarch, 32);
4239 set_gdbarch_long_long_bit (gdbarch, 64);
4240 break;
0dadbba0 4241 case MIPS_ABI_O64:
acdb74a0 4242 tdep->mips_abi_string = "o64";
a5ea2558 4243 tdep->mips_default_saved_regsize = 8;
0dadbba0 4244 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4245 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4246 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4247 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4248 tdep->mips_regs_have_home_p = 1;
5213ab06 4249 tdep->gdb_target_is_mips64 = 1;
361d1df0 4250 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4251 set_gdbarch_long_bit (gdbarch, 32);
4252 set_gdbarch_ptr_bit (gdbarch, 32);
4253 set_gdbarch_long_long_bit (gdbarch, 64);
4254 break;
0dadbba0 4255 case MIPS_ABI_EABI32:
acdb74a0 4256 tdep->mips_abi_string = "eabi32";
a5ea2558 4257 tdep->mips_default_saved_regsize = 4;
0dadbba0 4258 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4259 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4260 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4261 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4262 tdep->mips_regs_have_home_p = 0;
5213ab06 4263 tdep->gdb_target_is_mips64 = 0;
4014092b 4264 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4265 set_gdbarch_long_bit (gdbarch, 32);
4266 set_gdbarch_ptr_bit (gdbarch, 32);
4267 set_gdbarch_long_long_bit (gdbarch, 64);
4268 break;
0dadbba0 4269 case MIPS_ABI_EABI64:
3259a172 4270 tdep->mips_abi_string = "eabi64";
a5ea2558 4271 tdep->mips_default_saved_regsize = 8;
0dadbba0 4272 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4273 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4274 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4275 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4276 tdep->mips_regs_have_home_p = 0;
5213ab06 4277 tdep->gdb_target_is_mips64 = 1;
4014092b 4278 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4279 set_gdbarch_long_bit (gdbarch, 64);
4280 set_gdbarch_ptr_bit (gdbarch, 64);
4281 set_gdbarch_long_long_bit (gdbarch, 64);
4282 break;
0dadbba0 4283 case MIPS_ABI_N32:
acdb74a0 4284 tdep->mips_abi_string = "n32";
0dadbba0
AC
4285 tdep->mips_default_saved_regsize = 4;
4286 tdep->mips_default_stack_argsize = 8;
4287 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4288 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4289 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4290 tdep->mips_regs_have_home_p = 0;
5213ab06 4291 tdep->gdb_target_is_mips64 = 0;
4014092b 4292 tdep->default_mask_address_p = 0;
0dadbba0
AC
4293 set_gdbarch_long_bit (gdbarch, 32);
4294 set_gdbarch_ptr_bit (gdbarch, 32);
4295 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
4296
4297 /* Set up the disassembler info, so that we get the right
4298 register names from libopcodes. */
4299 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4300 tm_print_insn_info.arch = bfd_arch_mips;
4301 if (info.bfd_arch_info != NULL
4302 && info.bfd_arch_info->arch == bfd_arch_mips
4303 && info.bfd_arch_info->mach)
4304 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4305 else
4306 tm_print_insn_info.mach = bfd_mach_mips8000;
0dadbba0 4307 break;
c2d11a7d 4308 default:
acdb74a0 4309 tdep->mips_abi_string = "default";
a5ea2558 4310 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
0dadbba0 4311 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
c2d11a7d 4312 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
acdb74a0
AC
4313 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4314 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4315 tdep->mips_regs_have_home_p = 1;
5213ab06 4316 tdep->gdb_target_is_mips64 = 0;
4014092b 4317 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4318 set_gdbarch_long_bit (gdbarch, 32);
4319 set_gdbarch_ptr_bit (gdbarch, 32);
4320 set_gdbarch_long_long_bit (gdbarch, 64);
4321 break;
4322 }
4323
a5ea2558
AC
4324 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4325 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4326 comment:
4327
4328 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4329 flag in object files because to do so would make it impossible to
4330 link with libraries compiled without "-gp32". This is
4331 unnecessarily restrictive.
361d1df0 4332
a5ea2558
AC
4333 We could solve this problem by adding "-gp32" multilibs to gcc,
4334 but to set this flag before gcc is built with such multilibs will
4335 break too many systems.''
4336
4337 But even more unhelpfully, the default linker output target for
4338 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4339 for 64-bit programs - you need to change the ABI to change this,
4340 and not all gcc targets support that currently. Therefore using
4341 this flag to detect 32-bit mode would do the wrong thing given
4342 the current gcc - it would make GDB treat these 64-bit programs
4343 as 32-bit programs by default. */
4344
c2d11a7d
JM
4345 /* enable/disable the MIPS FPU */
4346 if (!mips_fpu_type_auto)
4347 tdep->mips_fpu_type = mips_fpu_type;
4348 else if (info.bfd_arch_info != NULL
4349 && info.bfd_arch_info->arch == bfd_arch_mips)
4350 switch (info.bfd_arch_info->mach)
4351 {
b0069a17 4352 case bfd_mach_mips3900:
c2d11a7d 4353 case bfd_mach_mips4100:
ed9a39eb 4354 case bfd_mach_mips4111:
c2d11a7d
JM
4355 tdep->mips_fpu_type = MIPS_FPU_NONE;
4356 break;
bf64bfd6
AC
4357 case bfd_mach_mips4650:
4358 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4359 break;
c2d11a7d
JM
4360 default:
4361 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4362 break;
4363 }
4364 else
4365 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4366
4367 /* MIPS version of register names. NOTE: At present the MIPS
4368 register name management is part way between the old -
4369 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4370 Further work on it is required. */
4371 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 4372 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
4373 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4374 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
c2d11a7d
JM
4375 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4376 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4377
875e1767
AC
4378 /* Add/remove bits from an address. The MIPS needs be careful to
4379 ensure that all 32 bit addresses are sign extended to 64 bits. */
4380 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4381
10312cc4
AC
4382 /* There's a mess in stack frame creation. See comments in
4383 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4384 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 4385 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 4386
88c72b7d
AC
4387 /* Map debug register numbers onto internal register numbers. */
4388 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4389 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4390
c2d11a7d
JM
4391 /* Initialize a frame */
4392 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4393
4394 /* MIPS version of CALL_DUMMY */
4395
4396 set_gdbarch_call_dummy_p (gdbarch, 1);
4397 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4398 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4399 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4400 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4401 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4402 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4403 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4404 set_gdbarch_call_dummy_length (gdbarch, 0);
4405 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4406 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4407 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4408 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4409 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4410 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4411 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4412
c4093a6a 4413 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4414 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 4415
f7b9e9fc
AC
4416 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4417 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4418 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
4419
4420 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4421 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4422
fc0c74b1
AC
4423 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
4424 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
4425 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf
JT
4426
4427 /* Hook in OS ABI-specific overrides, if they have been registered. */
4428 gdbarch_init_osabi (info, gdbarch, osabi);
4429
4b9b3959
AC
4430 return gdbarch;
4431}
4432
4433static void
4434mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4435{
4436 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4437 if (tdep != NULL)
c2d11a7d 4438 {
acdb74a0
AC
4439 int ef_mips_arch;
4440 int ef_mips_32bitmode;
4441 /* determine the ISA */
4442 switch (tdep->elf_flags & EF_MIPS_ARCH)
4443 {
4444 case E_MIPS_ARCH_1:
4445 ef_mips_arch = 1;
4446 break;
4447 case E_MIPS_ARCH_2:
4448 ef_mips_arch = 2;
4449 break;
4450 case E_MIPS_ARCH_3:
4451 ef_mips_arch = 3;
4452 break;
4453 case E_MIPS_ARCH_4:
93d56215 4454 ef_mips_arch = 4;
acdb74a0
AC
4455 break;
4456 default:
93d56215 4457 ef_mips_arch = 0;
acdb74a0
AC
4458 break;
4459 }
4460 /* determine the size of a pointer */
4461 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
4462 fprintf_unfiltered (file,
4463 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 4464 tdep->elf_flags);
4b9b3959 4465 fprintf_unfiltered (file,
acdb74a0
AC
4466 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4467 ef_mips_32bitmode);
4468 fprintf_unfiltered (file,
4469 "mips_dump_tdep: ef_mips_arch = %d\n",
4470 ef_mips_arch);
4471 fprintf_unfiltered (file,
4472 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4473 tdep->mips_abi,
4474 tdep->mips_abi_string);
4014092b
AC
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4477 mips_mask_address_p (),
4478 tdep->default_mask_address_p);
c2d11a7d 4479 }
4b9b3959
AC
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4482 FP_REGISTER_DOUBLE);
4483 fprintf_unfiltered (file,
4484 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4485 MIPS_DEFAULT_FPU_TYPE,
4486 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4487 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4488 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4489 : "???"));
4490 fprintf_unfiltered (file,
4491 "mips_dump_tdep: MIPS_EABI = %d\n",
4492 MIPS_EABI);
4493 fprintf_unfiltered (file,
acdb74a0
AC
4494 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4495 MIPS_LAST_FP_ARG_REGNUM,
4496 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
4497 fprintf_unfiltered (file,
4498 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4499 MIPS_FPU_TYPE,
4500 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4501 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4502 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4503 : "???"));
4504 fprintf_unfiltered (file,
4505 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4506 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
4507 fprintf_unfiltered (file,
4508 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4509 FP_REGISTER_DOUBLE);
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4512 MIPS_REGS_HAVE_HOME_P);
4513 fprintf_unfiltered (file,
4514 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4515 MIPS_DEFAULT_STACK_ARGSIZE);
4516 fprintf_unfiltered (file,
4517 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4518 MIPS_STACK_ARGSIZE);
4519 fprintf_unfiltered (file,
4520 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4521 MIPS_REGSIZE);
2475bac3
AC
4522 fprintf_unfiltered (file,
4523 "mips_dump_tdep: A0_REGNUM = %d\n",
4524 A0_REGNUM);
4525 fprintf_unfiltered (file,
4526 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4527 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4528 fprintf_unfiltered (file,
4529 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4530 XSTRING (ATTACH_DETACH));
4531 fprintf_unfiltered (file,
4532 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4533 BADVADDR_REGNUM);
4534 fprintf_unfiltered (file,
4535 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4536 fprintf_unfiltered (file,
4537 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4538 CAUSE_REGNUM);
4539 fprintf_unfiltered (file,
4540 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4541 CPLUS_MARKER);
4542 fprintf_unfiltered (file,
4543 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4544 DEFAULT_MIPS_TYPE);
4545 fprintf_unfiltered (file,
4546 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4547 XSTRING (DO_REGISTERS_INFO));
4548 fprintf_unfiltered (file,
4549 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4550 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4551 fprintf_unfiltered (file,
4552 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4553 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4554 fprintf_unfiltered (file,
4555 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4556 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4557 fprintf_unfiltered (file,
4558 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4559 FCRCS_REGNUM);
4560 fprintf_unfiltered (file,
4561 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4562 FCRIR_REGNUM);
4563 fprintf_unfiltered (file,
4564 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4565 FIRST_EMBED_REGNUM);
4566 fprintf_unfiltered (file,
4567 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4568 FPA0_REGNUM);
4569 fprintf_unfiltered (file,
4570 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4571 GDB_TARGET_IS_MIPS64);
4572 fprintf_unfiltered (file,
4573 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4574 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4575 fprintf_unfiltered (file,
4576 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4577 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4578 fprintf_unfiltered (file,
4579 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4580 GEN_REG_SAVE_MASK);
4581 fprintf_unfiltered (file,
4582 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4583 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4584 fprintf_unfiltered (file,
4585 "mips_dump_tdep: HI_REGNUM = %d\n",
4586 HI_REGNUM);
4587 fprintf_unfiltered (file,
4588 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4589 fprintf_unfiltered (file,
4590 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4591 fprintf_unfiltered (file,
4592 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4593 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
4594 fprintf_unfiltered (file,
4595 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4596 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4597 fprintf_unfiltered (file,
4598 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4599 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4600 fprintf_unfiltered (file,
4601 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4602 fprintf_unfiltered (file,
4603 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4604 LAST_EMBED_REGNUM);
4605 fprintf_unfiltered (file,
4606 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4607 fprintf_unfiltered (file,
4608 "mips_dump_tdep: LO_REGNUM = %d\n",
4609 LO_REGNUM);
4610#ifdef MACHINE_CPROC_FP_OFFSET
4611 fprintf_unfiltered (file,
4612 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4613 MACHINE_CPROC_FP_OFFSET);
4614#endif
4615#ifdef MACHINE_CPROC_PC_OFFSET
4616 fprintf_unfiltered (file,
4617 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4618 MACHINE_CPROC_PC_OFFSET);
4619#endif
4620#ifdef MACHINE_CPROC_SP_OFFSET
4621 fprintf_unfiltered (file,
4622 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4623 MACHINE_CPROC_SP_OFFSET);
4624#endif
4625 fprintf_unfiltered (file,
4626 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4627 fprintf_unfiltered (file,
4628 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4629 fprintf_unfiltered (file,
4630 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4631 MIPS16_INSTLEN);
4632 fprintf_unfiltered (file,
4633 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4634 fprintf_unfiltered (file,
4635 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4636 fprintf_unfiltered (file,
4637 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4638 fprintf_unfiltered (file,
4639 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4640 MIPS_INSTLEN);
4641 fprintf_unfiltered (file,
acdb74a0
AC
4642 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4643 MIPS_LAST_ARG_REGNUM,
4644 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
4645 fprintf_unfiltered (file,
4646 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4647 MIPS_NUMREGS);
4648 fprintf_unfiltered (file,
4649 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4650 fprintf_unfiltered (file,
4651 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4652 MIPS_SAVED_REGSIZE);
4653 fprintf_unfiltered (file,
4654 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4655 fprintf_unfiltered (file,
4656 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4657 XSTRING (MSYMBOL_SIZE (MSYM)));
4658 fprintf_unfiltered (file,
4659 "mips_dump_tdep: OP_LDFPR = used?\n");
4660 fprintf_unfiltered (file,
4661 "mips_dump_tdep: OP_LDGPR = used?\n");
4662 fprintf_unfiltered (file,
4663 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4664 fprintf_unfiltered (file,
4665 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4666 fprintf_unfiltered (file,
4667 "mips_dump_tdep: PRID_REGNUM = %d\n",
4668 PRID_REGNUM);
4669 fprintf_unfiltered (file,
4670 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4671 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4672 fprintf_unfiltered (file,
4673 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4674 fprintf_unfiltered (file,
4675 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4676 fprintf_unfiltered (file,
4677 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4678 fprintf_unfiltered (file,
4679 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4680 fprintf_unfiltered (file,
4681 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4682 fprintf_unfiltered (file,
4683 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4684 fprintf_unfiltered (file,
4685 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4686 fprintf_unfiltered (file,
4687 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4688 fprintf_unfiltered (file,
4689 "mips_dump_tdep: PROC_PC_REG = function?\n");
4690 fprintf_unfiltered (file,
4691 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4692 fprintf_unfiltered (file,
4693 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4694 fprintf_unfiltered (file,
4695 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4696 fprintf_unfiltered (file,
4697 "mips_dump_tdep: PS_REGNUM = %d\n",
4698 PS_REGNUM);
4699 fprintf_unfiltered (file,
4700 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4701 PUSH_FP_REGNUM);
4702 fprintf_unfiltered (file,
4703 "mips_dump_tdep: RA_REGNUM = %d\n",
4704 RA_REGNUM);
4705 fprintf_unfiltered (file,
4706 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4707 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4708 fprintf_unfiltered (file,
4709 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4710 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4711 fprintf_unfiltered (file,
4712 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4713 fprintf_unfiltered (file,
4714 "mips_dump_tdep: ROUND_DOWN = function?\n");
4715 fprintf_unfiltered (file,
4716 "mips_dump_tdep: ROUND_UP = function?\n");
4717#ifdef SAVED_BYTES
4718 fprintf_unfiltered (file,
4719 "mips_dump_tdep: SAVED_BYTES = %d\n",
4720 SAVED_BYTES);
4721#endif
4722#ifdef SAVED_FP
4723 fprintf_unfiltered (file,
4724 "mips_dump_tdep: SAVED_FP = %d\n",
4725 SAVED_FP);
4726#endif
4727#ifdef SAVED_PC
4728 fprintf_unfiltered (file,
4729 "mips_dump_tdep: SAVED_PC = %d\n",
4730 SAVED_PC);
4731#endif
4732 fprintf_unfiltered (file,
4733 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4734 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4735 fprintf_unfiltered (file,
4736 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4737 fprintf_unfiltered (file,
4738 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4739 SIGFRAME_BASE);
4740 fprintf_unfiltered (file,
4741 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4742 SIGFRAME_FPREGSAVE_OFF);
4743 fprintf_unfiltered (file,
4744 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4745 SIGFRAME_PC_OFF);
4746 fprintf_unfiltered (file,
4747 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4748 SIGFRAME_REGSAVE_OFF);
4749 fprintf_unfiltered (file,
4750 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4751 SIGFRAME_REG_SIZE);
4752 fprintf_unfiltered (file,
4753 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4754 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4755 fprintf_unfiltered (file,
4756 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4757 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4758 fprintf_unfiltered (file,
b0ed3589
AC
4759 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4760 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
4761 fprintf_unfiltered (file,
4762 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4763 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4764#ifdef STACK_END_ADDR
4765 fprintf_unfiltered (file,
4766 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4767 STACK_END_ADDR);
4768#endif
4769 fprintf_unfiltered (file,
4770 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4771 XSTRING (STEP_SKIPS_DELAY (PC)));
4772 fprintf_unfiltered (file,
4773 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4774 STEP_SKIPS_DELAY_P);
4775 fprintf_unfiltered (file,
4776 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4777 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4778 fprintf_unfiltered (file,
4779 "mips_dump_tdep: T9_REGNUM = %d\n",
4780 T9_REGNUM);
4781 fprintf_unfiltered (file,
4782 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4783 fprintf_unfiltered (file,
4784 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4785 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4786 fprintf_unfiltered (file,
4787 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4788 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4789 fprintf_unfiltered (file,
4790 "mips_dump_tdep: TARGET_MIPS = used?\n");
4791 fprintf_unfiltered (file,
4792 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4793 XSTRING (TM_PRINT_INSN_MACH));
4794#ifdef TRACE_CLEAR
4795 fprintf_unfiltered (file,
4796 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4797 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4798#endif
4799#ifdef TRACE_FLAVOR
4800 fprintf_unfiltered (file,
4801 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4802 TRACE_FLAVOR);
4803#endif
4804#ifdef TRACE_FLAVOR_SIZE
4805 fprintf_unfiltered (file,
4806 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4807 TRACE_FLAVOR_SIZE);
4808#endif
4809#ifdef TRACE_SET
4810 fprintf_unfiltered (file,
4811 "mips_dump_tdep: TRACE_SET # %s\n",
4812 XSTRING (TRACE_SET (X,STATE)));
4813#endif
4814 fprintf_unfiltered (file,
4815 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4816#ifdef UNUSED_REGNUM
4817 fprintf_unfiltered (file,
4818 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4819 UNUSED_REGNUM);
4820#endif
4821 fprintf_unfiltered (file,
4822 "mips_dump_tdep: V0_REGNUM = %d\n",
4823 V0_REGNUM);
4824 fprintf_unfiltered (file,
4825 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4826 (long) VM_MIN_ADDRESS);
4827#ifdef VX_NUM_REGS
4828 fprintf_unfiltered (file,
4829 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4830 VX_NUM_REGS);
4831#endif
4832 fprintf_unfiltered (file,
4833 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4834 ZERO_REGNUM);
4835 fprintf_unfiltered (file,
4836 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4837 _PROC_MAGIC_);
70f80edf
JT
4838
4839 fprintf_unfiltered (file,
4840 "mips_dump_tdep: OS ABI = %s\n",
4841 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
4842}
4843
c906108c 4844void
acdb74a0 4845_initialize_mips_tdep (void)
c906108c
SS
4846{
4847 static struct cmd_list_element *mipsfpulist = NULL;
4848 struct cmd_list_element *c;
4849
4b9b3959 4850 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 4851 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
4852 tm_print_insn = gdb_print_insn_mips;
4853
a5ea2558
AC
4854 /* Add root prefix command for all "set mips"/"show mips" commands */
4855 add_prefix_cmd ("mips", no_class, set_mips_command,
4856 "Various MIPS specific commands.",
4857 &setmipscmdlist, "set mips ", 0, &setlist);
4858
4859 add_prefix_cmd ("mips", no_class, show_mips_command,
4860 "Various MIPS specific commands.",
4861 &showmipscmdlist, "show mips ", 0, &showlist);
4862
4863 /* Allow the user to override the saved register size. */
4864 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
4865 class_obscure,
4866 size_enums,
4867 &mips_saved_regsize_string, "\
a5ea2558
AC
4868Set size of general purpose registers saved on the stack.\n\
4869This option can be set to one of:\n\
4870 32 - Force GDB to treat saved GP registers as 32-bit\n\
4871 64 - Force GDB to treat saved GP registers as 64-bit\n\
4872 auto - Allow GDB to use the target's default setting or autodetect the\n\
4873 saved GP register size from information contained in the executable.\n\
4874 (default: auto)",
1ed2a135 4875 &setmipscmdlist),
a5ea2558
AC
4876 &showmipscmdlist);
4877
d929b26f
AC
4878 /* Allow the user to override the argument stack size. */
4879 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4880 class_obscure,
4881 size_enums,
1ed2a135 4882 &mips_stack_argsize_string, "\
d929b26f
AC
4883Set the amount of stack space reserved for each argument.\n\
4884This option can be set to one of:\n\
4885 32 - Force GDB to allocate 32-bit chunks per argument\n\
4886 64 - Force GDB to allocate 64-bit chunks per argument\n\
4887 auto - Allow GDB to determine the correct setting from the current\n\
4888 target and executable (default)",
4889 &setmipscmdlist),
4890 &showmipscmdlist);
4891
c906108c
SS
4892 /* Let the user turn off floating point and set the fence post for
4893 heuristic_proc_start. */
4894
4895 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4896 "Set use of MIPS floating-point coprocessor.",
4897 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4898 add_cmd ("single", class_support, set_mipsfpu_single_command,
4899 "Select single-precision MIPS floating-point coprocessor.",
4900 &mipsfpulist);
4901 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 4902 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
4903 &mipsfpulist);
4904 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4905 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4906 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4907 add_cmd ("none", class_support, set_mipsfpu_none_command,
4908 "Select no MIPS floating-point coprocessor.",
4909 &mipsfpulist);
4910 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4911 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4912 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4913 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4914 "Select MIPS floating-point coprocessor automatically.",
4915 &mipsfpulist);
4916 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4917 "Show current use of MIPS floating-point coprocessor target.",
4918 &showlist);
4919
c906108c
SS
4920 /* We really would like to have both "0" and "unlimited" work, but
4921 command.c doesn't deal with that. So make it a var_zinteger
4922 because the user can always use "999999" or some such for unlimited. */
4923 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4924 (char *) &heuristic_fence_post,
4925 "\
4926Set the distance searched for the start of a function.\n\
4927If you are debugging a stripped executable, GDB needs to search through the\n\
4928program for the start of a function. This command sets the distance of the\n\
4929search. The only need to set it is when debugging a stripped executable.",
4930 &setlist);
4931 /* We need to throw away the frame cache when we set this, since it
4932 might change our ability to get backtraces. */
9f60d481 4933 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
4934 add_show_from_set (c, &showlist);
4935
4936 /* Allow the user to control whether the upper bits of 64-bit
4937 addresses should be zeroed. */
4014092b
AC
4938 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4939 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4940Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4941the correct value.\n",
4942 &setmipscmdlist);
4943 add_cmd ("mask-address", no_class, show_mask_address,
4944 "Show current mask-address value", &showmipscmdlist);
43e526b9
JM
4945
4946 /* Allow the user to control the size of 32 bit registers within the
4947 raw remote packet. */
4948 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4949 class_obscure,
4950 var_boolean,
4951 (char *)&mips64_transfers_32bit_regs_p, "\
4952Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4953Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4954that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
495564 bits for others. Use \"off\" to disable compatibility mode",
4956 &setlist),
4957 &showlist);
9ace0497
AC
4958
4959 /* Debug this files internals. */
4960 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4961 &mips_debug, "Set mips debugging.\n\
4962When non-zero, mips specific debugging is enabled.", &setdebuglist),
4963 &showdebuglist);
c906108c 4964}
This page took 1.127821 seconds and 4 git commands to generate.