]> Git Repo - binutils.git/blame - gdb/mips-tdep.c
* ser-e7kpc.c (e7000pc_setstopbits): New function.
[binutils.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, Free Software Foundation, Inc.
5
c906108c
SS
6 Contributed by Alessandro Forin([email protected]) at CMU
7 and by Per Bothner([email protected]) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
c906108c
SS
40
41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
c906108c 45
b0069a17
AC
46/* The sizes of floating point registers. */
47
48enum
49{
50 MIPS_FPU_SINGLE_REGSIZE = 4,
51 MIPS_FPU_DOUBLE_REGSIZE = 8
52};
53
0dadbba0
AC
54/* All the possible MIPS ABIs. */
55
56enum mips_abi
57 {
58 MIPS_ABI_UNKNOWN,
59 MIPS_ABI_N32,
60 MIPS_ABI_O32,
61 MIPS_ABI_O64,
62 MIPS_ABI_EABI32,
63 MIPS_ABI_EABI64
64 };
65
cce74817 66struct frame_extra_info
c5aa993b
JM
67 {
68 mips_extra_func_info_t proc_desc;
69 int num_args;
70 };
cce74817 71
d929b26f
AC
72/* Various MIPS ISA options (related to stack analysis) can be
73 overridden dynamically. Establish an enum/array for managing
74 them. */
75
53904c9e
AC
76static const char size_auto[] = "auto";
77static const char size_32[] = "32";
78static const char size_64[] = "64";
d929b26f 79
53904c9e 80static const char *size_enums[] = {
d929b26f
AC
81 size_auto,
82 size_32,
83 size_64,
a5ea2558
AC
84 0
85};
86
7a292a7a
SS
87/* Some MIPS boards don't support floating point while others only
88 support single-precision floating-point operations. See also
89 FP_REGISTER_DOUBLE. */
c906108c
SS
90
91enum mips_fpu_type
c5aa993b
JM
92 {
93 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
94 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
95 MIPS_FPU_NONE /* No floating point. */
96 };
c906108c
SS
97
98#ifndef MIPS_DEFAULT_FPU_TYPE
99#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
100#endif
101static int mips_fpu_type_auto = 1;
102static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
103#define MIPS_FPU_TYPE mips_fpu_type
104
c906108c 105/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
7a292a7a 106#ifndef FP_REGISTER_DOUBLE
c906108c 107#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
7a292a7a
SS
108#endif
109
9ace0497 110static int mips_debug = 0;
7a292a7a 111
c2d11a7d
JM
112/* MIPS specific per-architecture information */
113struct gdbarch_tdep
114 {
115 /* from the elf header */
116 int elf_flags;
117 /* mips options */
0dadbba0 118 enum mips_abi mips_abi;
acdb74a0 119 const char *mips_abi_string;
c2d11a7d
JM
120 enum mips_fpu_type mips_fpu_type;
121 int mips_last_arg_regnum;
122 int mips_last_fp_arg_regnum;
a5ea2558 123 int mips_default_saved_regsize;
c2d11a7d 124 int mips_fp_register_double;
d929b26f
AC
125 int mips_regs_have_home_p;
126 int mips_default_stack_argsize;
5213ab06 127 int gdb_target_is_mips64;
4014092b 128 int default_mask_address_p;
c2d11a7d
JM
129 };
130
131#if GDB_MULTI_ARCH
132#undef MIPS_EABI
0dadbba0 133#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 134 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d
JM
135#endif
136
137#if GDB_MULTI_ARCH
138#undef MIPS_LAST_FP_ARG_REGNUM
139#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140#endif
141
142#if GDB_MULTI_ARCH
143#undef MIPS_LAST_ARG_REGNUM
144#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
145#endif
146
147#if GDB_MULTI_ARCH
148#undef MIPS_FPU_TYPE
149#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150#endif
151
d929b26f
AC
152/* Return the currently configured (or set) saved register size. */
153
c2d11a7d 154#if GDB_MULTI_ARCH
a5ea2558
AC
155#undef MIPS_DEFAULT_SAVED_REGSIZE
156#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
d929b26f
AC
157#elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
158#define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
c2d11a7d
JM
159#endif
160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
c2d11a7d
JM
176/* Indicate that the ABI makes use of double-precision registers
177 provided by the FPU (rather than combining pairs of registers to
178 form double-precision values). Do not use "TARGET_IS_MIPS64" to
179 determine if the ABI is using double-precision registers. See also
180 MIPS_FPU_TYPE. */
181#if GDB_MULTI_ARCH
182#undef FP_REGISTER_DOUBLE
183#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
184#endif
185
d929b26f
AC
186/* Does the caller allocate a ``home'' for each register used in the
187 function call? The N32 ABI and MIPS_EABI do not, the others do. */
188
189#if GDB_MULTI_ARCH
190#undef MIPS_REGS_HAVE_HOME_P
191#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
192#elif !defined (MIPS_REGS_HAVE_HOME_P)
193#define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
194#endif
195
196/* The amount of space reserved on the stack for registers. This is
197 different to MIPS_SAVED_REGSIZE as it determines the alignment of
198 data allocated after the registers have run out. */
199
200#if GDB_MULTI_ARCH
201#undef MIPS_DEFAULT_STACK_ARGSIZE
0dadbba0 202#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
203#elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
204#define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
205#endif
206
207#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
208
53904c9e 209static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
210
211static unsigned int
212mips_stack_argsize (void)
213{
214 if (mips_stack_argsize_string == size_auto)
215 return MIPS_DEFAULT_STACK_ARGSIZE;
216 else if (mips_stack_argsize_string == size_64)
217 return 8;
218 else /* if (mips_stack_argsize_string == size_32) */
219 return 4;
220}
221
5213ab06
AC
222#if GDB_MULTI_ARCH
223#undef GDB_TARGET_IS_MIPS64
224#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
225#endif
c2d11a7d 226
92e1c15c
FF
227#if GDB_MULTI_ARCH
228#undef MIPS_DEFAULT_MASK_ADDRESS_P
229#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
230#elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
231#define MIPS_DEFAULT_MASK_ADDRESS_P (0)
232#endif
233
7a292a7a 234#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 235
a14ed312 236int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 237
a14ed312 238static void mips_print_register (int, int);
c906108c
SS
239
240static mips_extra_func_info_t
a14ed312 241heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
c906108c 242
a14ed312 243static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 244
a14ed312 245static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 246
a14ed312 247int mips_set_processor_type (char *);
c906108c 248
a14ed312 249static void mips_show_processor_type_command (char *, int);
c906108c 250
a14ed312 251static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
252
253static mips_extra_func_info_t
a14ed312 254find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
c906108c 255
a14ed312
KB
256static CORE_ADDR after_prologue (CORE_ADDR pc,
257 mips_extra_func_info_t proc_desc);
c906108c
SS
258
259/* This value is the model of MIPS in use. It is derived from the value
260 of the PrID register. */
261
262char *mips_processor_type;
263
264char *tmp_mips_processor_type;
265
acdb74a0
AC
266/* The list of available "set mips " and "show mips " commands */
267
268static struct cmd_list_element *setmipscmdlist = NULL;
269static struct cmd_list_element *showmipscmdlist = NULL;
270
c906108c
SS
271/* A set of original names, to be used when restoring back to generic
272 registers from a specific set. */
273
cce74817
JM
274char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
275char **mips_processor_reg_names = mips_generic_reg_names;
276
277char *
fba45db2 278mips_register_name (int i)
cce74817
JM
279{
280 return mips_processor_reg_names[i];
281}
9846de1b 282/* *INDENT-OFF* */
c906108c
SS
283/* Names of IDT R3041 registers. */
284
285char *mips_r3041_reg_names[] = {
286 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
287 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
288 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
289 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
290 "sr", "lo", "hi", "bad", "cause","pc",
291 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
292 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
293 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
294 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
295 "fsr", "fir", "fp", "",
296 "", "", "bus", "ccfg", "", "", "", "",
297 "", "", "port", "cmp", "", "", "epc", "prid",
298};
299
300/* Names of IDT R3051 registers. */
301
302char *mips_r3051_reg_names[] = {
303 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
304 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
305 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
306 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
307 "sr", "lo", "hi", "bad", "cause","pc",
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
312 "fsr", "fir", "fp", "",
313 "inx", "rand", "elo", "", "ctxt", "", "", "",
314 "", "", "ehi", "", "", "", "epc", "prid",
315};
316
317/* Names of IDT R3081 registers. */
318
319char *mips_r3081_reg_names[] = {
320 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
321 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
322 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
323 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
324 "sr", "lo", "hi", "bad", "cause","pc",
325 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
326 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
327 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
328 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
329 "fsr", "fir", "fp", "",
330 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
331 "", "", "ehi", "", "", "", "epc", "prid",
332};
333
334/* Names of LSI 33k registers. */
335
336char *mips_lsi33k_reg_names[] = {
337 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
338 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
339 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
340 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
341 "epc", "hi", "lo", "sr", "cause","badvaddr",
342 "dcic", "bpc", "bda", "", "", "", "", "",
343 "", "", "", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "",
347 "", "", "", "", "", "", "", "",
348 "", "", "", "", "", "", "", "",
349};
350
351struct {
352 char *name;
353 char **regnames;
354} mips_processor_type_table[] = {
355 { "generic", mips_generic_reg_names },
356 { "r3041", mips_r3041_reg_names },
357 { "r3051", mips_r3051_reg_names },
358 { "r3071", mips_r3081_reg_names },
359 { "r3081", mips_r3081_reg_names },
360 { "lsi33k", mips_lsi33k_reg_names },
361 { NULL, NULL }
362};
9846de1b 363/* *INDENT-ON* */
c906108c 364
c5aa993b
JM
365
366
367
c906108c 368/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
369static int mips16_to_32_reg[8] =
370{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
371
372/* Heuristic_proc_start may hunt through the text section for a long
373 time across a 2400 baud serial line. Allows the user to limit this
374 search. */
375
376static unsigned int heuristic_fence_post = 0;
377
c5aa993b
JM
378#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
379#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
380#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
381#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
382#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
383#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
384#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
385#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
386#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
387#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
388#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
389#define _PROC_MAGIC_ 0x0F0F0F0F
390#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
391#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
392
393struct linked_proc_info
c5aa993b
JM
394 {
395 struct mips_extra_func_info info;
396 struct linked_proc_info *next;
397 }
398 *linked_proc_desc_table = NULL;
c906108c 399
cce74817 400void
acdb74a0 401mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
402{
403 if (fi
404 && fi->extra_info
405 && fi->extra_info->proc_desc
406 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 407 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 408 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 409 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 410}
c906108c 411
43e526b9
JM
412/* Convert between RAW and VIRTUAL registers. The RAW register size
413 defines the remote-gdb packet. */
414
415static int mips64_transfers_32bit_regs_p = 0;
416
417int
acdb74a0 418mips_register_raw_size (int reg_nr)
43e526b9
JM
419{
420 if (mips64_transfers_32bit_regs_p)
421 return REGISTER_VIRTUAL_SIZE (reg_nr);
422 else
423 return MIPS_REGSIZE;
424}
425
426int
acdb74a0 427mips_register_convertible (int reg_nr)
43e526b9
JM
428{
429 if (mips64_transfers_32bit_regs_p)
430 return 0;
431 else
432 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
433}
434
435void
acdb74a0
AC
436mips_register_convert_to_virtual (int n, struct type *virtual_type,
437 char *raw_buf, char *virt_buf)
43e526b9
JM
438{
439 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
440 memcpy (virt_buf,
441 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
442 TYPE_LENGTH (virtual_type));
443 else
444 memcpy (virt_buf,
445 raw_buf,
446 TYPE_LENGTH (virtual_type));
447}
448
449void
acdb74a0
AC
450mips_register_convert_to_raw (struct type *virtual_type, int n,
451 char *virt_buf, char *raw_buf)
43e526b9
JM
452{
453 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
454 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
455 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
456 virt_buf,
457 TYPE_LENGTH (virtual_type));
458 else
459 memcpy (raw_buf,
460 virt_buf,
461 TYPE_LENGTH (virtual_type));
462}
463
c906108c 464/* Should the upper word of 64-bit addresses be zeroed? */
4014092b
AC
465enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
466
467static int
468mips_mask_address_p (void)
469{
470 switch (mask_address_var)
471 {
472 case CMD_AUTO_BOOLEAN_TRUE:
473 return 1;
474 case CMD_AUTO_BOOLEAN_FALSE:
475 return 0;
476 break;
477 case CMD_AUTO_BOOLEAN_AUTO:
92e1c15c 478 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b
AC
479 default:
480 internal_error ("mips_mask_address_p: bad switch");
481 return -1;
482 }
483}
484
485static void
486show_mask_address (char *cmd, int from_tty)
487{
488 switch (mask_address_var)
489 {
490 case CMD_AUTO_BOOLEAN_TRUE:
491 printf_filtered ("The 32 bit mips address mask is enabled\n");
492 break;
493 case CMD_AUTO_BOOLEAN_FALSE:
494 printf_filtered ("The 32 bit mips address mask is disabled\n");
495 break;
496 case CMD_AUTO_BOOLEAN_AUTO:
497 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
498 mips_mask_address_p () ? "enabled" : "disabled");
499 break;
500 default:
501 internal_error ("show_mask_address: bad switch");
502 break;
503 }
504}
c906108c
SS
505
506/* Should call_function allocate stack space for a struct return? */
507int
fba45db2 508mips_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
509{
510 if (MIPS_EABI)
7a292a7a 511 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 512 else
c5aa993b 513 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
514}
515
516/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
517
518static int
519pc_is_mips16 (bfd_vma memaddr)
520{
521 struct minimal_symbol *sym;
522
523 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
524 if (IS_MIPS16_ADDR (memaddr))
525 return 1;
526
527 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
528 the high bit of the info field. Use this to decide if the function is
529 MIPS16 or normal MIPS. */
530 sym = lookup_minimal_symbol_by_pc (memaddr);
531 if (sym)
532 return MSYMBOL_IS_SPECIAL (sym);
533 else
534 return 0;
535}
536
6c997a34
AC
537/* MIPS believes that the PC has a sign extended value. Perhaphs the
538 all registers should be sign extended for simplicity? */
539
540static CORE_ADDR
541mips_read_pc (int pid)
542{
543 return read_signed_register_pid (PC_REGNUM, pid);
544}
c906108c
SS
545
546/* This returns the PC of the first inst after the prologue. If we can't
547 find the prologue, then return 0. */
548
549static CORE_ADDR
acdb74a0
AC
550after_prologue (CORE_ADDR pc,
551 mips_extra_func_info_t proc_desc)
c906108c
SS
552{
553 struct symtab_and_line sal;
554 CORE_ADDR func_addr, func_end;
555
556 if (!proc_desc)
557 proc_desc = find_proc_desc (pc, NULL);
558
559 if (proc_desc)
560 {
561 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 562 strongly suspect that frameless always means prologueless... */
c906108c
SS
563 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
564 && PROC_FRAME_OFFSET (proc_desc) == 0)
565 return 0;
566 }
567
568 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
569 return 0; /* Unknown */
570
571 sal = find_pc_line (func_addr, 0);
572
573 if (sal.end < func_end)
574 return sal.end;
575
576 /* The line after the prologue is after the end of the function. In this
577 case, tell the caller to find the prologue the hard way. */
578
579 return 0;
580}
581
582/* Decode a MIPS32 instruction that saves a register in the stack, and
583 set the appropriate bit in the general register mask or float register mask
584 to indicate which register is saved. This is a helper function
585 for mips_find_saved_regs. */
586
587static void
acdb74a0
AC
588mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
589 unsigned long *float_mask)
c906108c
SS
590{
591 int reg;
592
593 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
594 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
595 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
596 {
597 /* It might be possible to use the instruction to
c5aa993b
JM
598 find the offset, rather than the code below which
599 is based on things being in a certain order in the
600 frame, but figuring out what the instruction's offset
601 is relative to might be a little tricky. */
c906108c
SS
602 reg = (inst & 0x001f0000) >> 16;
603 *gen_mask |= (1 << reg);
604 }
605 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
606 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
607 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
608
609 {
610 reg = ((inst & 0x001f0000) >> 16);
611 *float_mask |= (1 << reg);
612 }
613}
614
615/* Decode a MIPS16 instruction that saves a register in the stack, and
616 set the appropriate bit in the general register or float register mask
617 to indicate which register is saved. This is a helper function
618 for mips_find_saved_regs. */
619
620static void
acdb74a0 621mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 622{
c5aa993b 623 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
624 {
625 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
626 *gen_mask |= (1 << reg);
627 }
c5aa993b 628 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
629 {
630 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
631 *gen_mask |= (1 << reg);
632 }
c5aa993b 633 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
634 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
635 *gen_mask |= (1 << RA_REGNUM);
636}
637
638
639/* Fetch and return instruction from the specified location. If the PC
640 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
641
642static t_inst
acdb74a0 643mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
644{
645 char buf[MIPS_INSTLEN];
646 int instlen;
647 int status;
648
649 if (pc_is_mips16 (addr))
650 {
651 instlen = MIPS16_INSTLEN;
652 addr = UNMAKE_MIPS16_ADDR (addr);
653 }
654 else
c5aa993b 655 instlen = MIPS_INSTLEN;
c906108c
SS
656 status = read_memory_nobpt (addr, buf, instlen);
657 if (status)
658 memory_error (status, addr);
659 return extract_unsigned_integer (buf, instlen);
660}
661
662
663/* These the fields of 32 bit mips instructions */
664#define mips32_op(x) (x >> 25)
665#define itype_op(x) (x >> 25)
666#define itype_rs(x) ((x >> 21)& 0x1f)
667#define itype_rt(x) ((x >> 16) & 0x1f)
668#define itype_immediate(x) ( x & 0xffff)
669
670#define jtype_op(x) (x >> 25)
671#define jtype_target(x) ( x & 0x03fffff)
672
673#define rtype_op(x) (x >>25)
674#define rtype_rs(x) ((x>>21) & 0x1f)
675#define rtype_rt(x) ((x>>16) & 0x1f)
c5aa993b 676#define rtype_rd(x) ((x>>11) & 0x1f)
c906108c
SS
677#define rtype_shamt(x) ((x>>6) & 0x1f)
678#define rtype_funct(x) (x & 0x3f )
679
680static CORE_ADDR
c5aa993b
JM
681mips32_relative_offset (unsigned long inst)
682{
683 long x;
684 x = itype_immediate (inst);
685 if (x & 0x8000) /* sign bit set */
c906108c 686 {
c5aa993b 687 x |= 0xffff0000; /* sign extension */
c906108c 688 }
c5aa993b
JM
689 x = x << 2;
690 return x;
c906108c
SS
691}
692
693/* Determine whate to set a single step breakpoint while considering
694 branch prediction */
695CORE_ADDR
c5aa993b
JM
696mips32_next_pc (CORE_ADDR pc)
697{
698 unsigned long inst;
699 int op;
700 inst = mips_fetch_instruction (pc);
701 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
702 {
703 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
704 {
705 op = ((inst >> 25) & 0x03);
c906108c
SS
706 switch (op)
707 {
c5aa993b
JM
708 case 0:
709 goto equal_branch; /* BEQL */
710 case 1:
711 goto neq_branch; /* BNEZ */
712 case 2:
713 goto less_branch; /* BLEZ */
714 case 3:
715 goto greater_branch; /* BGTZ */
716 default:
717 pc += 4;
c906108c
SS
718 }
719 }
c5aa993b
JM
720 else
721 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
722 }
723 else
c5aa993b
JM
724 { /* This gets way messy */
725
c906108c 726 /* Further subdivide into SPECIAL, REGIMM and other */
c5aa993b 727 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
c906108c 728 {
c5aa993b
JM
729 case 0: /* SPECIAL */
730 op = rtype_funct (inst);
731 switch (op)
732 {
733 case 8: /* JR */
734 case 9: /* JALR */
6c997a34
AC
735 /* Set PC to that address */
736 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
737 break;
738 default:
739 pc += 4;
740 }
741
742 break; /* end special */
743 case 1: /* REGIMM */
c906108c 744 {
c5aa993b
JM
745 op = jtype_op (inst); /* branch condition */
746 switch (jtype_op (inst))
c906108c 747 {
c5aa993b
JM
748 case 0: /* BLTZ */
749 case 2: /* BLTXL */
750 case 16: /* BLTZALL */
751 case 18: /* BLTZALL */
c906108c 752 less_branch:
6c997a34 753 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
754 pc += mips32_relative_offset (inst) + 4;
755 else
756 pc += 8; /* after the delay slot */
757 break;
758 case 1: /* GEZ */
759 case 3: /* BGEZL */
760 case 17: /* BGEZAL */
761 case 19: /* BGEZALL */
c906108c 762 greater_equal_branch:
6c997a34 763 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
764 pc += mips32_relative_offset (inst) + 4;
765 else
766 pc += 8; /* after the delay slot */
767 break;
768 /* All of the other intructions in the REGIMM catagory */
769 default:
770 pc += 4;
c906108c
SS
771 }
772 }
c5aa993b
JM
773 break; /* end REGIMM */
774 case 2: /* J */
775 case 3: /* JAL */
776 {
777 unsigned long reg;
778 reg = jtype_target (inst) << 2;
779 pc = reg + ((pc + 4) & 0xf0000000);
c906108c
SS
780 /* Whats this mysterious 0xf000000 adjustment ??? */
781 }
c5aa993b
JM
782 break;
783 /* FIXME case JALX : */
784 {
785 unsigned long reg;
786 reg = jtype_target (inst) << 2;
787 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
788 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
789 }
c5aa993b
JM
790 break; /* The new PC will be alternate mode */
791 case 4: /* BEQ , BEQL */
792 equal_branch:
6c997a34
AC
793 if (read_signed_register (itype_rs (inst)) ==
794 read_signed_register (itype_rt (inst)))
c5aa993b
JM
795 pc += mips32_relative_offset (inst) + 4;
796 else
797 pc += 8;
798 break;
799 case 5: /* BNE , BNEL */
800 neq_branch:
6c997a34
AC
801 if (read_signed_register (itype_rs (inst)) !=
802 read_signed_register (itype_rs (inst)))
c5aa993b
JM
803 pc += mips32_relative_offset (inst) + 4;
804 else
805 pc += 8;
806 break;
807 case 6: /* BLEZ , BLEZL */
c906108c 808 less_zero_branch:
6c997a34 809 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
810 pc += mips32_relative_offset (inst) + 4;
811 else
812 pc += 8;
813 break;
814 case 7:
815 greater_branch: /* BGTZ BGTZL */
6c997a34 816 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
821 default:
822 pc += 8;
823 } /* switch */
824 } /* else */
825 return pc;
826} /* mips32_next_pc */
c906108c
SS
827
828/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 829 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
830 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
831 We dont want to set a single step instruction on the extend instruction
832 either.
c5aa993b 833 */
c906108c
SS
834
835/* Lots of mips16 instruction formats */
836/* Predicting jumps requires itype,ritype,i8type
837 and their extensions extItype,extritype,extI8type
c5aa993b 838 */
c906108c
SS
839enum mips16_inst_fmts
840{
c5aa993b
JM
841 itype, /* 0 immediate 5,10 */
842 ritype, /* 1 5,3,8 */
843 rrtype, /* 2 5,3,3,5 */
844 rritype, /* 3 5,3,3,5 */
845 rrrtype, /* 4 5,3,3,3,2 */
846 rriatype, /* 5 5,3,3,1,4 */
847 shifttype, /* 6 5,3,3,3,2 */
848 i8type, /* 7 5,3,8 */
849 i8movtype, /* 8 5,3,3,5 */
850 i8mov32rtype, /* 9 5,3,5,3 */
851 i64type, /* 10 5,3,8 */
852 ri64type, /* 11 5,3,3,5 */
853 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
854 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
855 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
856 extRRItype, /* 15 5,5,5,5,3,3,5 */
857 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
858 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
859 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
860 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
861 extRi64type, /* 20 5,6,5,5,3,3,5 */
862 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
863};
c906108c
SS
864/* I am heaping all the fields of the formats into one structure and then,
865 only the fields which are involved in instruction extension */
866struct upk_mips16
c5aa993b
JM
867 {
868 unsigned short inst;
869 enum mips16_inst_fmts fmt;
870 unsigned long offset;
871 unsigned int regx; /* Function in i8 type */
872 unsigned int regy;
873 };
c906108c
SS
874
875
876
c5aa993b
JM
877static void
878print_unpack (char *comment,
879 struct upk_mips16 *u)
c906108c 880{
d4f3574e
SS
881 printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
882 comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
c906108c
SS
883}
884
885/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
886 format for the bits which make up the immediatate extension.
c5aa993b 887 */
c906108c 888static unsigned long
c5aa993b 889extended_offset (unsigned long extension)
c906108c 890{
c5aa993b
JM
891 unsigned long value;
892 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
893 value = value << 6;
894 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
895 value = value << 5;
896 value |= extension & 0x01f; /* extract 4:0 */
897 return value;
c906108c
SS
898}
899
900/* Only call this function if you know that this is an extendable
901 instruction, It wont malfunction, but why make excess remote memory references?
902 If the immediate operands get sign extended or somthing, do it after
903 the extension is performed.
c5aa993b 904 */
c906108c
SS
905/* FIXME: Every one of these cases needs to worry about sign extension
906 when the offset is to be used in relative addressing */
907
908
c5aa993b
JM
909static unsigned short
910fetch_mips_16 (CORE_ADDR pc)
c906108c 911{
c5aa993b
JM
912 char buf[8];
913 pc &= 0xfffffffe; /* clear the low order bit */
914 target_read_memory (pc, buf, 2);
915 return extract_unsigned_integer (buf, 2);
c906108c
SS
916}
917
918static void
c5aa993b
JM
919unpack_mips16 (CORE_ADDR pc,
920 struct upk_mips16 *upk)
c906108c 921{
c5aa993b
JM
922 CORE_ADDR extpc;
923 unsigned long extension;
924 int extended;
925 extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
c906108c
SS
926 /* Decrement to previous address and loose the 16bit mode flag */
927 /* return if the instruction was extendable, but not actually extended */
c5aa993b
JM
928 extended = ((mips32_op (extension) == 30) ? 1 : 0);
929 if (extended)
930 {
931 extension = mips_fetch_instruction (extpc);
932 }
c906108c
SS
933 switch (upk->fmt)
934 {
c5aa993b 935 case itype:
c906108c 936 {
c5aa993b 937 unsigned long value;
c906108c 938 if (extended)
c5aa993b
JM
939 {
940 value = extended_offset (extension);
941 value = value << 11; /* rom for the original value */
942 value |= upk->inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
943 }
944 else
c5aa993b
JM
945 {
946 value = upk->inst & 0x7ff;
947 /* FIXME : Consider sign extension */
c906108c 948 }
c5aa993b 949 upk->offset = value;
c906108c 950 }
c5aa993b
JM
951 break;
952 case ritype:
953 case i8type:
954 { /* A register identifier and an offset */
c906108c
SS
955 /* Most of the fields are the same as I type but the
956 immediate value is of a different length */
c5aa993b 957 unsigned long value;
c906108c
SS
958 if (extended)
959 {
c5aa993b
JM
960 value = extended_offset (extension);
961 value = value << 8; /* from the original instruction */
962 value |= upk->inst & 0xff; /* eleven bits from instruction */
963 upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
964 if (value & 0x4000) /* test the sign bit , bit 26 */
965 {
966 value &= ~0x3fff; /* remove the sign bit */
967 value = -value;
c906108c
SS
968 }
969 }
c5aa993b
JM
970 else
971 {
972 value = upk->inst & 0xff; /* 8 bits */
973 upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
974 /* FIXME: Do sign extension , this format needs it */
975 if (value & 0x80) /* THIS CONFUSES ME */
976 {
977 value &= 0xef; /* remove the sign bit */
978 value = -value;
979 }
980
981 }
982 upk->offset = value;
983 break;
c906108c 984 }
c5aa993b 985 case jalxtype:
c906108c 986 {
c5aa993b
JM
987 unsigned long value;
988 unsigned short nexthalf;
989 value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
990 value = value << 16;
991 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
992 value |= nexthalf;
993 upk->offset = value;
994 break;
c906108c
SS
995 }
996 default:
c5aa993b
JM
997 printf_filtered ("Decoding unimplemented instruction format type\n");
998 break;
c906108c
SS
999 }
1000 /* print_unpack("UPK",upk) ; */
1001}
1002
1003
1004#define mips16_op(x) (x >> 11)
1005
1006/* This is a map of the opcodes which ae known to perform branches */
1007static unsigned char map16[32] =
c5aa993b
JM
1008{0, 0, 1, 1, 1, 1, 0, 0,
1009 0, 0, 0, 0, 1, 0, 0, 0,
1010 0, 0, 0, 0, 0, 0, 0, 0,
1011 0, 0, 0, 0, 0, 1, 1, 0
1012};
c906108c 1013
c5aa993b
JM
1014static CORE_ADDR
1015add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1016{
c5aa993b
JM
1017 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1018
c906108c
SS
1019}
1020
1021
1022
c5aa993b 1023static struct upk_mips16 upk;
c906108c 1024
c5aa993b
JM
1025CORE_ADDR
1026mips16_next_pc (CORE_ADDR pc)
c906108c 1027{
c5aa993b
JM
1028 int op;
1029 t_inst inst;
c906108c 1030 /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
c5aa993b
JM
1031 inst = fetch_mips_16 (pc);
1032 upk.inst = inst;
1033 op = mips16_op (upk.inst);
c906108c
SS
1034 if (map16[op])
1035 {
c5aa993b 1036 int reg;
c906108c
SS
1037 switch (op)
1038 {
c5aa993b
JM
1039 case 2: /* Branch */
1040 upk.fmt = itype;
1041 unpack_mips16 (pc, &upk);
1042 {
1043 long offset;
1044 offset = upk.offset;
c906108c 1045 if (offset & 0x800)
c5aa993b
JM
1046 {
1047 offset &= 0xeff;
1048 offset = -offset;
c906108c 1049 }
c5aa993b 1050 pc += (offset << 1) + 2;
c906108c 1051 }
c5aa993b
JM
1052 break;
1053 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1054 upk.fmt = jalxtype;
1055 unpack_mips16 (pc, &upk);
1056 pc = add_offset_16 (pc, upk.offset);
1057 if ((upk.inst >> 10) & 0x01) /* Exchange mode */
1058 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1059 else
1060 pc |= 0x01;
1061 break;
1062 case 4: /* beqz */
1063 upk.fmt = ritype;
1064 unpack_mips16 (pc, &upk);
6c997a34 1065 reg = read_signed_register (upk.regx);
c5aa993b
JM
1066 if (reg == 0)
1067 pc += (upk.offset << 1) + 2;
1068 else
1069 pc += 2;
1070 break;
1071 case 5: /* bnez */
1072 upk.fmt = ritype;
1073 unpack_mips16 (pc, &upk);
6c997a34 1074 reg = read_signed_register (upk.regx);
c5aa993b
JM
1075 if (reg != 0)
1076 pc += (upk.offset << 1) + 2;
1077 else
1078 pc += 2;
1079 break;
1080 case 12: /* I8 Formats btez btnez */
1081 upk.fmt = i8type;
1082 unpack_mips16 (pc, &upk);
1083 /* upk.regx contains the opcode */
6c997a34 1084 reg = read_signed_register (24); /* Test register is 24 */
c5aa993b
JM
1085 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1086 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1087 /* pc = add_offset_16(pc,upk.offset) ; */
1088 pc += (upk.offset << 1) + 2;
1089 else
1090 pc += 2;
1091 break;
1092 case 29: /* RR Formats JR, JALR, JALR-RA */
1093 upk.fmt = rrtype;
1094 op = upk.inst & 0x1f;
c906108c 1095 if (op == 0)
c5aa993b
JM
1096 {
1097 upk.regx = (upk.inst >> 8) & 0x07;
1098 upk.regy = (upk.inst >> 5) & 0x07;
c906108c
SS
1099 switch (upk.regy)
1100 {
c5aa993b
JM
1101 case 0:
1102 reg = upk.regx;
1103 break;
1104 case 1:
1105 reg = 31;
1106 break; /* Function return instruction */
1107 case 2:
1108 reg = upk.regx;
1109 break;
1110 default:
1111 reg = 31;
1112 break; /* BOGUS Guess */
c906108c 1113 }
6c997a34 1114 pc = read_signed_register (reg);
c906108c 1115 }
c5aa993b
JM
1116 else
1117 pc += 2;
1118 break;
1119 case 30: /* This is an extend instruction */
8e1a459b 1120 pc += 4; /* Dont be setting breakpoints on the second half */
c5aa993b
JM
1121 break;
1122 default:
8e1a459b 1123 printf ("Filtered - next PC probably incorrect due to jump inst\n");
c5aa993b
JM
1124 pc += 2;
1125 break;
c906108c
SS
1126 }
1127 }
c5aa993b
JM
1128 else
1129 pc += 2; /* just a good old instruction */
c906108c
SS
1130 /* See if we CAN actually break on the next instruction */
1131 /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
c5aa993b
JM
1132 return pc;
1133} /* mips16_next_pc */
c906108c 1134
7e73cedf
DA
1135/* The mips_next_pc function supports single_step when the remote
1136 target monitor or stub is not developed enough to do a single_step.
c906108c
SS
1137 It works by decoding the current instruction and predicting where a branch
1138 will go. This isnt hard because all the data is available.
1139 The MIPS32 and MIPS16 variants are quite different
c5aa993b
JM
1140 */
1141CORE_ADDR
1142mips_next_pc (CORE_ADDR pc)
c906108c 1143{
c5aa993b 1144 t_inst inst;
c906108c
SS
1145 /* inst = mips_fetch_instruction(pc) ; */
1146 /* if (pc_is_mips16) <----- This is failing */
c5aa993b
JM
1147 if (pc & 0x01)
1148 return mips16_next_pc (pc);
1149 else
1150 return mips32_next_pc (pc);
1151} /* mips_next_pc */
c906108c
SS
1152
1153/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1154 NULL). */
1155
1156void
acdb74a0 1157mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1158{
1159 int ireg;
1160 CORE_ADDR reg_position;
1161 /* r0 bit means kernel trap */
1162 int kernel_trap;
1163 /* What registers have been saved? Bitmasks. */
1164 unsigned long gen_mask, float_mask;
1165 mips_extra_func_info_t proc_desc;
1166 t_inst inst;
1167
1168 frame_saved_regs_zalloc (fci);
1169
1170 /* If it is the frame for sigtramp, the saved registers are located
1171 in a sigcontext structure somewhere on the stack.
1172 If the stack layout for sigtramp changes we might have to change these
1173 constants and the companion fixup_sigtramp in mdebugread.c */
1174#ifndef SIGFRAME_BASE
1175/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1176 above the sigtramp frame. */
1177#define SIGFRAME_BASE MIPS_REGSIZE
1178/* FIXME! Are these correct?? */
1179#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1180#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1181#define SIGFRAME_FPREGSAVE_OFF \
1182 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1183#endif
1184#ifndef SIGFRAME_REG_SIZE
1185/* FIXME! Is this correct?? */
1186#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1187#endif
1188 if (fci->signal_handler_caller)
1189 {
1190 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1191 {
c5aa993b
JM
1192 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1193 + ireg * SIGFRAME_REG_SIZE;
1194 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1195 }
1196 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1197 {
c5aa993b
JM
1198 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1199 + ireg * SIGFRAME_REG_SIZE;
1200 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1201 }
1202 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1203 return;
1204 }
1205
cce74817 1206 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1207 if (proc_desc == NULL)
1208 /* I'm not sure how/whether this can happen. Normally when we can't
1209 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1210 and set the saved_regs right away. */
1211 return;
1212
c5aa993b
JM
1213 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1214 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1215 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1216
c5aa993b
JM
1217 if ( /* In any frame other than the innermost or a frame interrupted by
1218 a signal, we assume that all registers have been saved.
1219 This assumes that all register saves in a function happen before
1220 the first function call. */
1221 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1222
c5aa993b
JM
1223 /* In a dummy frame we know exactly where things are saved. */
1224 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1225
c5aa993b
JM
1226 /* Don't bother unless we are inside a function prologue. Outside the
1227 prologue, we know where everything is. */
c906108c 1228
c5aa993b 1229 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1230
c5aa993b
JM
1231 /* Not sure exactly what kernel_trap means, but if it means
1232 the kernel saves the registers without a prologue doing it,
1233 we better not examine the prologue to see whether registers
1234 have been saved yet. */
1235 && !kernel_trap)
c906108c
SS
1236 {
1237 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1238 claims are saved have been saved yet. */
c906108c
SS
1239
1240 CORE_ADDR addr;
1241
1242 /* Bitmasks; set if we have found a save for the register. */
1243 unsigned long gen_save_found = 0;
1244 unsigned long float_save_found = 0;
1245 int instlen;
1246
1247 /* If the address is odd, assume this is MIPS16 code. */
1248 addr = PROC_LOW_ADDR (proc_desc);
1249 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1250
1251 /* Scan through this function's instructions preceding the current
1252 PC, and look for those that save registers. */
1253 while (addr < fci->pc)
1254 {
1255 inst = mips_fetch_instruction (addr);
1256 if (pc_is_mips16 (addr))
1257 mips16_decode_reg_save (inst, &gen_save_found);
1258 else
1259 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1260 addr += instlen;
1261 }
1262 gen_mask = gen_save_found;
1263 float_mask = float_save_found;
1264 }
1265
1266 /* Fill in the offsets for the registers which gen_mask says
1267 were saved. */
1268 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1269 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1270 if (gen_mask & 0x80000000)
1271 {
1272 fci->saved_regs[ireg] = reg_position;
7a292a7a 1273 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1274 }
1275
1276 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1277 of that normally used by gcc. Therefore, we have to fetch the first
1278 instruction of the function, and if it's an entry instruction that
1279 saves $s0 or $s1, correct their saved addresses. */
1280 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1281 {
1282 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1283 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1284 {
1285 int reg;
1286 int sreg_count = (inst >> 6) & 3;
c5aa993b 1287
c906108c
SS
1288 /* Check if the ra register was pushed on the stack. */
1289 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1290 if (inst & 0x20)
7a292a7a 1291 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1292
1293 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1294 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1295 {
1296 fci->saved_regs[reg] = reg_position;
7a292a7a 1297 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1298 }
1299 }
1300 }
1301
1302 /* Fill in the offsets for the registers which float_mask says
1303 were saved. */
1304 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1305
1306 /* The freg_offset points to where the first *double* register
1307 is saved. So skip to the high-order word. */
c5aa993b 1308 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1309 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1310
1311 /* Fill in the offsets for the float registers which float_mask says
1312 were saved. */
c5aa993b 1313 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1314 if (float_mask & 0x80000000)
1315 {
c5aa993b 1316 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1317 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1318 }
1319
1320 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1321}
1322
1323static CORE_ADDR
acdb74a0 1324read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1325{
1326 for (; fi; fi = fi->next)
1327 {
1328 /* We have to get the saved sp from the sigcontext
c5aa993b 1329 if it is a signal handler frame. */
c906108c
SS
1330 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1331 return fi->frame;
1332 else
1333 {
1334 if (fi->saved_regs == NULL)
1335 mips_find_saved_regs (fi);
1336 if (fi->saved_regs[regno])
2acceee2 1337 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1338 }
1339 }
6c997a34 1340 return read_signed_register (regno);
c906108c
SS
1341}
1342
1343/* mips_addr_bits_remove - remove useless address bits */
1344
1345CORE_ADDR
acdb74a0 1346mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1347{
5213ab06
AC
1348 if (GDB_TARGET_IS_MIPS64)
1349 {
4014092b 1350 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1351 {
1352 /* This hack is a work-around for existing boards using
1353 PMON, the simulator, and any other 64-bit targets that
1354 doesn't have true 64-bit addressing. On these targets,
1355 the upper 32 bits of addresses are ignored by the
1356 hardware. Thus, the PC or SP are likely to have been
1357 sign extended to all 1s by instruction sequences that
1358 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1359 code that loads an address is this:
1360 lui $r2, <upper 16 bits>
1361 ori $r2, <lower 16 bits>
1362 But the lui sign-extends the value such that the upper 32
1363 bits may be all 1s. The workaround is simply to mask off
1364 these bits. In the future, gcc may be changed to support
1365 true 64-bit addressing, and this masking will have to be
1366 disabled. */
5213ab06
AC
1367 addr &= (CORE_ADDR) 0xffffffff;
1368 }
1369 }
4014092b 1370 else if (mips_mask_address_p ())
5213ab06 1371 {
4014092b
AC
1372 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1373 masking off bits, instead, the actual target should be asking
1374 for the address to be converted to a valid pointer. */
5213ab06
AC
1375 /* Even when GDB is configured for some 32-bit targets
1376 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1377 so CORE_ADDR is 64 bits. So we still have to mask off
1378 useless bits from addresses. */
c5aa993b 1379 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1380 }
c906108c
SS
1381 return addr;
1382}
1383
1384void
acdb74a0 1385mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1386{
1387 CORE_ADDR pc, tmp;
1388
1389 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1390 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1391 tmp = mips_skip_stub (pc);
c5aa993b 1392 prev->pc = tmp ? tmp : pc;
c906108c
SS
1393}
1394
1395
1396CORE_ADDR
acdb74a0 1397mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1398{
1399 CORE_ADDR saved_pc;
cce74817 1400 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1401 /* We have to get the saved pc from the sigcontext
1402 if it is a signal handler frame. */
1403 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1404 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1405
c5aa993b 1406 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1407 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1408 else
7a292a7a 1409 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1410
1411 return ADDR_BITS_REMOVE (saved_pc);
1412}
1413
1414static struct mips_extra_func_info temp_proc_desc;
cce74817 1415static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1416
1417/* Set a register's saved stack address in temp_saved_regs. If an address
1418 has already been set for this register, do nothing; this way we will
1419 only recognize the first save of a given register in a function prologue.
1420 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1421
1422static void
acdb74a0 1423set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1424{
cce74817
JM
1425 if (temp_saved_regs[regno] == 0)
1426 temp_saved_regs[regno] = offset;
c906108c
SS
1427}
1428
1429
1430/* Test whether the PC points to the return instruction at the
1431 end of a function. */
1432
c5aa993b 1433static int
acdb74a0 1434mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1435{
1436 if (pc_is_mips16 (pc))
1437 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1438 generates a "jr $ra"; other times it generates code to load
1439 the return address from the stack to an accessible register (such
1440 as $a3), then a "jr" using that register. This second case
1441 is almost impossible to distinguish from an indirect jump
1442 used for switch statements, so we don't even try. */
1443 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1444 else
1445 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1446}
1447
1448
1449/* This fencepost looks highly suspicious to me. Removing it also
1450 seems suspicious as it could affect remote debugging across serial
1451 lines. */
1452
1453static CORE_ADDR
acdb74a0 1454heuristic_proc_start (CORE_ADDR pc)
c906108c 1455{
c5aa993b
JM
1456 CORE_ADDR start_pc;
1457 CORE_ADDR fence;
1458 int instlen;
1459 int seen_adjsp = 0;
c906108c 1460
c5aa993b
JM
1461 pc = ADDR_BITS_REMOVE (pc);
1462 start_pc = pc;
1463 fence = start_pc - heuristic_fence_post;
1464 if (start_pc == 0)
1465 return 0;
c906108c 1466
c5aa993b
JM
1467 if (heuristic_fence_post == UINT_MAX
1468 || fence < VM_MIN_ADDRESS)
1469 fence = VM_MIN_ADDRESS;
c906108c 1470
c5aa993b 1471 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1472
c5aa993b
JM
1473 /* search back for previous return */
1474 for (start_pc -= instlen;; start_pc -= instlen)
1475 if (start_pc < fence)
1476 {
1477 /* It's not clear to me why we reach this point when
1478 stop_soon_quietly, but with this test, at least we
1479 don't print out warnings for every child forked (eg, on
1480 decstation). 22apr93 [email protected]. */
1481 if (!stop_soon_quietly)
c906108c 1482 {
c5aa993b
JM
1483 static int blurb_printed = 0;
1484
1485 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1486 paddr_nz (pc));
1487
1488 if (!blurb_printed)
c906108c 1489 {
c5aa993b
JM
1490 /* This actually happens frequently in embedded
1491 development, when you first connect to a board
1492 and your stack pointer and pc are nowhere in
1493 particular. This message needs to give people
1494 in that situation enough information to
1495 determine that it's no big deal. */
1496 printf_filtered ("\n\
cd0fc7c3
SS
1497 GDB is unable to find the start of the function at 0x%s\n\
1498and thus can't determine the size of that function's stack frame.\n\
1499This means that GDB may be unable to access that stack frame, or\n\
1500the frames below it.\n\
1501 This problem is most likely caused by an invalid program counter or\n\
1502stack pointer.\n\
1503 However, if you think GDB should simply search farther back\n\
1504from 0x%s for code which looks like the beginning of a\n\
1505function, you can increase the range of the search using the `set\n\
1506heuristic-fence-post' command.\n",
c5aa993b
JM
1507 paddr_nz (pc), paddr_nz (pc));
1508 blurb_printed = 1;
c906108c 1509 }
c906108c
SS
1510 }
1511
c5aa993b
JM
1512 return 0;
1513 }
1514 else if (pc_is_mips16 (start_pc))
1515 {
1516 unsigned short inst;
1517
1518 /* On MIPS16, any one of the following is likely to be the
1519 start of a function:
1520 entry
1521 addiu sp,-n
1522 daddiu sp,-n
1523 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1524 inst = mips_fetch_instruction (start_pc);
1525 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1526 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1527 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1528 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1529 break;
1530 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1531 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1532 seen_adjsp = 1;
1533 else
1534 seen_adjsp = 0;
1535 }
1536 else if (mips_about_to_return (start_pc))
1537 {
1538 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1539 break;
1540 }
1541
c5aa993b 1542 return start_pc;
c906108c
SS
1543}
1544
1545/* Fetch the immediate value from a MIPS16 instruction.
1546 If the previous instruction was an EXTEND, use it to extend
1547 the upper bits of the immediate value. This is a helper function
1548 for mips16_heuristic_proc_desc. */
1549
1550static int
acdb74a0
AC
1551mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1552 unsigned short inst, /* current instruction */
1553 int nbits, /* number of bits in imm field */
1554 int scale, /* scale factor to be applied to imm */
1555 int is_signed) /* is the imm field signed? */
c906108c
SS
1556{
1557 int offset;
1558
1559 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1560 {
1561 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1562 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1563 offset = 0 - (0x10000 - (offset & 0xffff));
1564 return offset | (inst & 0x1f);
1565 }
1566 else
1567 {
1568 int max_imm = 1 << nbits;
1569 int mask = max_imm - 1;
1570 int sign_bit = max_imm >> 1;
1571
1572 offset = inst & mask;
1573 if (is_signed && (offset & sign_bit))
1574 offset = 0 - (max_imm - offset);
1575 return offset * scale;
1576 }
1577}
1578
1579
1580/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1581 stream from start_pc to limit_pc. */
1582
1583static void
acdb74a0
AC
1584mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1585 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1586{
1587 CORE_ADDR cur_pc;
1588 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1589 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1590 unsigned inst = 0; /* current instruction */
1591 unsigned entry_inst = 0; /* the entry instruction */
1592 int reg, offset;
1593
c5aa993b
JM
1594 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1595 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1596
1597 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1598 {
1599 /* Save the previous instruction. If it's an EXTEND, we'll extract
1600 the immediate offset extension from it in mips16_get_imm. */
1601 prev_inst = inst;
1602
1603 /* Fetch and decode the instruction. */
1604 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1605 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1606 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1609 if (offset < 0) /* negative stack adjustment? */
1610 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1611 else
1612 /* Exit loop if a positive stack adjustment is found, which
1613 usually means that the stack cleanup code in the function
1614 epilogue is reached. */
1615 break;
1616 }
1617 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1618 {
1619 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1620 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1621 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1622 set_reg_offset (reg, sp + offset);
1623 }
1624 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1625 {
1626 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1627 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1628 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1629 set_reg_offset (reg, sp + offset);
1630 }
1631 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1632 {
1633 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1634 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1635 set_reg_offset (RA_REGNUM, sp + offset);
1636 }
1637 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1638 {
1639 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1640 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1641 set_reg_offset (RA_REGNUM, sp + offset);
1642 }
c5aa993b 1643 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1644 {
1645 frame_addr = sp;
1646 PROC_FRAME_REG (&temp_proc_desc) = 17;
1647 }
1648 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1649 {
1650 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1651 frame_addr = sp + offset;
1652 PROC_FRAME_REG (&temp_proc_desc) = 17;
1653 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1654 }
1655 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1656 {
1657 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1658 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1659 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1660 set_reg_offset (reg, frame_addr + offset);
1661 }
1662 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1663 {
1664 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1665 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1666 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1667 set_reg_offset (reg, frame_addr + offset);
1668 }
c5aa993b
JM
1669 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1670 entry_inst = inst; /* save for later processing */
c906108c 1671 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1672 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1673 }
1674
c5aa993b
JM
1675 /* The entry instruction is typically the first instruction in a function,
1676 and it stores registers at offsets relative to the value of the old SP
1677 (before the prologue). But the value of the sp parameter to this
1678 function is the new SP (after the prologue has been executed). So we
1679 can't calculate those offsets until we've seen the entire prologue,
1680 and can calculate what the old SP must have been. */
1681 if (entry_inst != 0)
1682 {
1683 int areg_count = (entry_inst >> 8) & 7;
1684 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1685
c5aa993b
JM
1686 /* The entry instruction always subtracts 32 from the SP. */
1687 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1688
c5aa993b
JM
1689 /* Now we can calculate what the SP must have been at the
1690 start of the function prologue. */
1691 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1692
c5aa993b
JM
1693 /* Check if a0-a3 were saved in the caller's argument save area. */
1694 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1695 {
1696 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1697 set_reg_offset (reg, sp + offset);
1698 offset += MIPS_SAVED_REGSIZE;
1699 }
c906108c 1700
c5aa993b
JM
1701 /* Check if the ra register was pushed on the stack. */
1702 offset = -4;
1703 if (entry_inst & 0x20)
1704 {
1705 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1706 set_reg_offset (RA_REGNUM, sp + offset);
1707 offset -= MIPS_SAVED_REGSIZE;
1708 }
c906108c 1709
c5aa993b
JM
1710 /* Check if the s0 and s1 registers were pushed on the stack. */
1711 for (reg = 16; reg < sreg_count + 16; reg++)
1712 {
1713 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1714 set_reg_offset (reg, sp + offset);
1715 offset -= MIPS_SAVED_REGSIZE;
1716 }
1717 }
c906108c
SS
1718}
1719
1720static void
fba45db2
KB
1721mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1722 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1723{
1724 CORE_ADDR cur_pc;
c5aa993b 1725 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1726restart:
cce74817 1727 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1728 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1729 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1730 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1731 {
1732 unsigned long inst, high_word, low_word;
1733 int reg;
1734
1735 /* Fetch the instruction. */
1736 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1737
1738 /* Save some code by pre-extracting some useful fields. */
1739 high_word = (inst >> 16) & 0xffff;
1740 low_word = inst & 0xffff;
1741 reg = high_word & 0x1f;
1742
c5aa993b 1743 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1744 || high_word == 0x23bd /* addi $sp,$sp,-i */
1745 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1746 {
1747 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1748 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1749 else
1750 /* Exit loop if a positive stack adjustment is found, which
1751 usually means that the stack cleanup code in the function
1752 epilogue is reached. */
1753 break;
1754 }
1755 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1756 {
c5aa993b 1757 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1758 set_reg_offset (reg, sp + low_word);
1759 }
1760 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1761 {
1762 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1763 but the register size used is only 32 bits. Make the address
1764 for the saved register point to the lower 32 bits. */
c5aa993b 1765 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1766 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1767 }
c5aa993b 1768 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1769 {
1770 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1771 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1772 frame_addr = sp + low_word;
c906108c
SS
1773 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1774 {
1775 unsigned alloca_adjust;
1776 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1777 frame_addr = read_next_frame_reg (next_frame, 30);
1778 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1779 if (alloca_adjust > 0)
1780 {
1781 /* FP > SP + frame_size. This may be because
1782 * of an alloca or somethings similar.
1783 * Fix sp to "pre-alloca" value, and try again.
1784 */
1785 sp += alloca_adjust;
1786 goto restart;
1787 }
1788 }
1789 }
c5aa993b
JM
1790 /* move $30,$sp. With different versions of gas this will be either
1791 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1792 Accept any one of these. */
c906108c
SS
1793 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1794 {
1795 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1796 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1797 {
1798 unsigned alloca_adjust;
1799 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1800 frame_addr = read_next_frame_reg (next_frame, 30);
1801 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1802 if (alloca_adjust > 0)
1803 {
1804 /* FP > SP + frame_size. This may be because
1805 * of an alloca or somethings similar.
1806 * Fix sp to "pre-alloca" value, and try again.
1807 */
1808 sp += alloca_adjust;
1809 goto restart;
1810 }
1811 }
1812 }
c5aa993b 1813 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1814 {
c5aa993b 1815 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1816 set_reg_offset (reg, frame_addr + low_word);
1817 }
1818 }
1819}
1820
1821static mips_extra_func_info_t
acdb74a0
AC
1822heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1823 struct frame_info *next_frame)
c906108c
SS
1824{
1825 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1826
c5aa993b
JM
1827 if (start_pc == 0)
1828 return NULL;
1829 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1830 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1831 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1832 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1833 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1834
1835 if (start_pc + 200 < limit_pc)
1836 limit_pc = start_pc + 200;
1837 if (pc_is_mips16 (start_pc))
1838 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1839 else
1840 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1841 return &temp_proc_desc;
1842}
1843
1844static mips_extra_func_info_t
acdb74a0 1845non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
1846{
1847 CORE_ADDR startaddr;
1848 mips_extra_func_info_t proc_desc;
c5aa993b 1849 struct block *b = block_for_pc (pc);
c906108c
SS
1850 struct symbol *sym;
1851
1852 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1853 if (addrptr)
1854 *addrptr = startaddr;
1855 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1856 sym = NULL;
1857 else
1858 {
1859 if (startaddr > BLOCK_START (b))
1860 /* This is the "pathological" case referred to in a comment in
1861 print_frame_info. It might be better to move this check into
1862 symbol reading. */
1863 sym = NULL;
1864 else
1865 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1866 }
1867
1868 /* If we never found a PDR for this function in symbol reading, then
1869 examine prologues to find the information. */
1870 if (sym)
1871 {
1872 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1873 if (PROC_FRAME_REG (proc_desc) == -1)
1874 return NULL;
1875 else
1876 return proc_desc;
1877 }
1878 else
1879 return NULL;
1880}
1881
1882
1883static mips_extra_func_info_t
acdb74a0 1884find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
c906108c
SS
1885{
1886 mips_extra_func_info_t proc_desc;
1887 CORE_ADDR startaddr;
1888
1889 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1890
1891 if (proc_desc)
1892 {
1893 /* IF this is the topmost frame AND
1894 * (this proc does not have debugging information OR
1895 * the PC is in the procedure prologue)
1896 * THEN create a "heuristic" proc_desc (by analyzing
1897 * the actual code) to replace the "official" proc_desc.
1898 */
1899 if (next_frame == NULL)
1900 {
1901 struct symtab_and_line val;
1902 struct symbol *proc_symbol =
c5aa993b 1903 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1904
1905 if (proc_symbol)
1906 {
1907 val = find_pc_line (BLOCK_START
c5aa993b 1908 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1909 0);
1910 val.pc = val.end ? val.end : pc;
1911 }
1912 if (!proc_symbol || pc < val.pc)
1913 {
1914 mips_extra_func_info_t found_heuristic =
c5aa993b
JM
1915 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1916 pc, next_frame);
c906108c
SS
1917 if (found_heuristic)
1918 proc_desc = found_heuristic;
1919 }
1920 }
1921 }
1922 else
1923 {
1924 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1925 by procedure call dummys. However, the procedures being called ought
1926 to have their own proc_descs, and even if they don't,
1927 heuristic_proc_desc knows how to create them! */
c906108c
SS
1928
1929 register struct linked_proc_info *link;
1930
1931 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1932 if (PROC_LOW_ADDR (&link->info) <= pc
1933 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1934 return &link->info;
1935
1936 if (startaddr == 0)
1937 startaddr = heuristic_proc_start (pc);
1938
1939 proc_desc =
1940 heuristic_proc_desc (startaddr, pc, next_frame);
1941 }
1942 return proc_desc;
1943}
1944
1945static CORE_ADDR
acdb74a0
AC
1946get_frame_pointer (struct frame_info *frame,
1947 mips_extra_func_info_t proc_desc)
c906108c
SS
1948{
1949 return ADDR_BITS_REMOVE (
c5aa993b
JM
1950 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1951 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1952}
1953
1954mips_extra_func_info_t cached_proc_desc;
1955
1956CORE_ADDR
acdb74a0 1957mips_frame_chain (struct frame_info *frame)
c906108c
SS
1958{
1959 mips_extra_func_info_t proc_desc;
1960 CORE_ADDR tmp;
c5aa993b 1961 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1962
1963 if (saved_pc == 0 || inside_entry_file (saved_pc))
1964 return 0;
1965
1966 /* Check if the PC is inside a call stub. If it is, fetch the
1967 PC of the caller of that stub. */
1968 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1969 saved_pc = tmp;
1970
1971 /* Look up the procedure descriptor for this PC. */
c5aa993b 1972 proc_desc = find_proc_desc (saved_pc, frame);
c906108c
SS
1973 if (!proc_desc)
1974 return 0;
1975
1976 cached_proc_desc = proc_desc;
1977
1978 /* If no frame pointer and frame size is zero, we must be at end
1979 of stack (or otherwise hosed). If we don't check frame size,
1980 we loop forever if we see a zero size frame. */
1981 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1982 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
1983 /* The previous frame from a sigtramp frame might be frameless
1984 and have frame size zero. */
c906108c
SS
1985 && !frame->signal_handler_caller)
1986 return 0;
1987 else
1988 return get_frame_pointer (frame, proc_desc);
1989}
1990
1991void
acdb74a0 1992mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
1993{
1994 int regnum;
1995
1996 /* Use proc_desc calculated in frame_chain */
1997 mips_extra_func_info_t proc_desc =
c5aa993b 1998 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
c906108c 1999
cce74817
JM
2000 fci->extra_info = (struct frame_extra_info *)
2001 frame_obstack_alloc (sizeof (struct frame_extra_info));
2002
c906108c 2003 fci->saved_regs = NULL;
cce74817 2004 fci->extra_info->proc_desc =
c906108c
SS
2005 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2006 if (proc_desc)
2007 {
2008 /* Fixup frame-pointer - only needed for top frame */
2009 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2010 Get the value of the frame relative sp, procedure might have been
2011 interrupted by a signal at it's very start. */
c906108c
SS
2012 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2013 && !PROC_DESC_IS_DUMMY (proc_desc))
2014 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2015 else
2016 fci->frame = get_frame_pointer (fci->next, proc_desc);
2017
2018 if (proc_desc == &temp_proc_desc)
2019 {
2020 char *name;
2021
2022 /* Do not set the saved registers for a sigtramp frame,
2023 mips_find_saved_registers will do that for us.
2024 We can't use fci->signal_handler_caller, it is not yet set. */
2025 find_pc_partial_function (fci->pc, &name,
c5aa993b 2026 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
2027 if (!IN_SIGTRAMP (fci->pc, name))
2028 {
c5aa993b 2029 frame_saved_regs_zalloc (fci);
cce74817 2030 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2031 fci->saved_regs[PC_REGNUM]
2032 = fci->saved_regs[RA_REGNUM];
2033 }
2034 }
2035
2036 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2037 /* assume we can't tell how many args for now */
2038 fci->extra_info->num_args = -1;
c906108c
SS
2039 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2040 {
c5aa993b 2041 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2042 {
cce74817 2043 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2044 break;
2045 }
c5aa993b 2046 }
c906108c
SS
2047 }
2048}
2049
2050/* MIPS stack frames are almost impenetrable. When execution stops,
2051 we basically have to look at symbol information for the function
2052 that we stopped in, which tells us *which* register (if any) is
2053 the base of the frame pointer, and what offset from that register
2054 the frame itself is at.
2055
2056 This presents a problem when trying to examine a stack in memory
2057 (that isn't executing at the moment), using the "frame" command. We
2058 don't have a PC, nor do we have any registers except SP.
2059
2060 This routine takes two arguments, SP and PC, and tries to make the
2061 cached frames look as if these two arguments defined a frame on the
2062 cache. This allows the rest of info frame to extract the important
2063 arguments without difficulty. */
2064
2065struct frame_info *
acdb74a0 2066setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2067{
2068 if (argc != 2)
2069 error ("MIPS frame specifications require two arguments: sp and pc");
2070
2071 return create_new_frame (argv[0], argv[1]);
2072}
2073
f09ded24
AC
2074/* According to the current ABI, should the type be passed in a
2075 floating-point register (assuming that there is space)? When there
2076 is no FPU, FP are not even considered as possibile candidates for
2077 FP registers and, consequently this returns false - forces FP
2078 arguments into integer registers. */
2079
2080static int
2081fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2082{
2083 return ((typecode == TYPE_CODE_FLT
2084 || (MIPS_EABI
2085 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2086 && TYPE_NFIELDS (arg_type) == 1
2087 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2088 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2089}
2090
c906108c 2091CORE_ADDR
acdb74a0
AC
2092mips_push_arguments (int nargs,
2093 value_ptr *args,
2094 CORE_ADDR sp,
2095 int struct_return,
2096 CORE_ADDR struct_addr)
c906108c
SS
2097{
2098 int argreg;
2099 int float_argreg;
2100 int argnum;
2101 int len = 0;
2102 int stack_offset = 0;
2103
2104 /* Macros to round N up or down to the next A boundary; A must be
2105 a power of two. */
2106#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2107#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2108
c906108c
SS
2109 /* First ensure that the stack and structure return address (if any)
2110 are properly aligned. The stack has to be at least 64-bit aligned
2111 even on 32-bit machines, because doubles must be 64-bit aligned.
2112 On at least one MIPS variant, stack frames need to be 128-bit
2113 aligned, so we round to this widest known alignment. */
2114 sp = ROUND_DOWN (sp, 16);
cce41527 2115 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2116
c906108c
SS
2117 /* Now make space on the stack for the args. We allocate more
2118 than necessary for EABI, because the first few arguments are
2119 passed in registers, but that's OK. */
2120 for (argnum = 0; argnum < nargs; argnum++)
cce41527 2121 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
c906108c
SS
2122 sp -= ROUND_UP (len, 16);
2123
9ace0497
AC
2124 if (mips_debug)
2125 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2126 (long) sp, ROUND_UP (len, 16));
2127
c906108c
SS
2128 /* Initialize the integer and float register pointers. */
2129 argreg = A0_REGNUM;
2130 float_argreg = FPA0_REGNUM;
2131
2132 /* the struct_return pointer occupies the first parameter-passing reg */
2133 if (struct_return)
9ace0497
AC
2134 {
2135 if (mips_debug)
2136 fprintf_unfiltered (gdb_stdlog,
cce41527 2137 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
9ace0497
AC
2138 argreg, (long) struct_addr);
2139 write_register (argreg++, struct_addr);
cce41527
AC
2140 if (MIPS_REGS_HAVE_HOME_P)
2141 stack_offset += MIPS_STACK_ARGSIZE;
9ace0497 2142 }
c906108c
SS
2143
2144 /* Now load as many as possible of the first arguments into
2145 registers, and push the rest onto the stack. Loop thru args
2146 from first to last. */
2147 for (argnum = 0; argnum < nargs; argnum++)
2148 {
2149 char *val;
2150 char valbuf[MAX_REGISTER_RAW_SIZE];
2151 value_ptr arg = args[argnum];
2152 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2153 int len = TYPE_LENGTH (arg_type);
2154 enum type_code typecode = TYPE_CODE (arg_type);
2155
9ace0497
AC
2156 if (mips_debug)
2157 fprintf_unfiltered (gdb_stdlog,
2158 "mips_push_arguments: %d len=%d type=%d",
acdb74a0 2159 argnum + 1, len, (int) typecode);
9ace0497 2160
c906108c 2161 /* The EABI passes structures that do not fit in a register by
c5aa993b 2162 reference. In all other cases, pass the structure by value. */
9ace0497
AC
2163 if (MIPS_EABI
2164 && len > MIPS_SAVED_REGSIZE
2165 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2166 {
7a292a7a 2167 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2168 typecode = TYPE_CODE_PTR;
7a292a7a 2169 len = MIPS_SAVED_REGSIZE;
c906108c 2170 val = valbuf;
9ace0497
AC
2171 if (mips_debug)
2172 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2173 }
2174 else
c5aa993b 2175 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2176
2177 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2178 even-numbered floating point register. Round the FP register
2179 up before the check to see if there are any FP registers
2180 left. Non MIPS_EABI targets also pass the FP in the integer
2181 registers so also round up normal registers. */
2182 if (!FP_REGISTER_DOUBLE
2183 && fp_register_arg_p (typecode, arg_type))
2184 {
2185 if ((float_argreg & 1))
2186 float_argreg++;
2187 }
c906108c
SS
2188
2189 /* Floating point arguments passed in registers have to be
2190 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2191 are passed in register pairs; the even register gets
2192 the low word, and the odd register gets the high word.
2193 On non-EABI processors, the first two floating point arguments are
2194 also copied to general registers, because MIPS16 functions
2195 don't use float registers for arguments. This duplication of
2196 arguments in general registers can't hurt non-MIPS16 functions
2197 because those registers are normally skipped. */
9a0149c6
AC
2198 /* MIPS_EABI squeeses a struct that contains a single floating
2199 point value into an FP register instead of pusing it onto the
2200 stack. */
f09ded24
AC
2201 if (fp_register_arg_p (typecode, arg_type)
2202 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2203 {
2204 if (!FP_REGISTER_DOUBLE && len == 8)
2205 {
2206 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2207 unsigned long regval;
2208
2209 /* Write the low word of the double to the even register(s). */
c5aa993b 2210 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2211 if (mips_debug)
acdb74a0 2212 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2213 float_argreg, phex (regval, 4));
c906108c
SS
2214 write_register (float_argreg++, regval);
2215 if (!MIPS_EABI)
9ace0497
AC
2216 {
2217 if (mips_debug)
acdb74a0 2218 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2219 argreg, phex (regval, 4));
2220 write_register (argreg++, regval);
2221 }
c906108c
SS
2222
2223 /* Write the high word of the double to the odd register(s). */
c5aa993b 2224 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2225 if (mips_debug)
acdb74a0 2226 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2227 float_argreg, phex (regval, 4));
c906108c
SS
2228 write_register (float_argreg++, regval);
2229 if (!MIPS_EABI)
c5aa993b 2230 {
9ace0497 2231 if (mips_debug)
acdb74a0 2232 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2233 argreg, phex (regval, 4));
2234 write_register (argreg++, regval);
c906108c
SS
2235 }
2236
2237 }
2238 else
2239 {
2240 /* This is a floating point value that fits entirely
2241 in a single register. */
53a5351d
JM
2242 /* On 32 bit ABI's the float_argreg is further adjusted
2243 above to ensure that it is even register aligned. */
9ace0497
AC
2244 LONGEST regval = extract_unsigned_integer (val, len);
2245 if (mips_debug)
acdb74a0 2246 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2247 float_argreg, phex (regval, len));
c906108c
SS
2248 write_register (float_argreg++, regval);
2249 if (!MIPS_EABI)
c5aa993b 2250 {
53a5351d
JM
2251 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2252 registers for each argument. The below is (my
2253 guess) to ensure that the corresponding integer
2254 register has reserved the same space. */
9ace0497 2255 if (mips_debug)
acdb74a0 2256 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2257 argreg, phex (regval, len));
c906108c
SS
2258 write_register (argreg, regval);
2259 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2260 }
2261 }
cce41527
AC
2262 /* Reserve space for the FP register. */
2263 if (MIPS_REGS_HAVE_HOME_P)
2264 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
c906108c
SS
2265 }
2266 else
2267 {
2268 /* Copy the argument to general registers or the stack in
2269 register-sized pieces. Large arguments are split between
2270 registers and stack. */
2271 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2272 are treated specially: Irix cc passes them in registers
2273 where gcc sometimes puts them on the stack. For maximum
2274 compatibility, we will put them in both places. */
c5aa993b 2275 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2276 (len % MIPS_SAVED_REGSIZE != 0));
f09ded24
AC
2277 /* Note: Floating-point values that didn't fit into an FP
2278 register are only written to memory. */
c906108c
SS
2279 while (len > 0)
2280 {
566f0f7a
AC
2281 /* Rememer if the argument was written to the stack. */
2282 int stack_used_p = 0;
7a292a7a 2283 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2284
acdb74a0
AC
2285 if (mips_debug)
2286 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2287 partial_len);
2288
566f0f7a 2289 /* Write this portion of the argument to the stack. */
f09ded24
AC
2290 if (argreg > MIPS_LAST_ARG_REGNUM
2291 || odd_sized_struct
2292 || fp_register_arg_p (typecode, arg_type))
c906108c 2293 {
c906108c
SS
2294 /* Should shorter than int integer values be
2295 promoted to int before being stored? */
c906108c 2296 int longword_offset = 0;
9ace0497 2297 CORE_ADDR addr;
566f0f7a 2298 stack_used_p = 1;
c906108c 2299 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
7a292a7a 2300 {
d929b26f 2301 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2302 (typecode == TYPE_CODE_INT ||
2303 typecode == TYPE_CODE_PTR ||
2304 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2305 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2306 else if ((typecode == TYPE_CODE_STRUCT ||
2307 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2308 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2309 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2310 }
c5aa993b 2311
9ace0497
AC
2312 if (mips_debug)
2313 {
acdb74a0 2314 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
9ace0497
AC
2315 (long) stack_offset);
2316 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2317 (long) longword_offset);
2318 }
2319
2320 addr = sp + stack_offset + longword_offset;
2321
2322 if (mips_debug)
2323 {
2324 int i;
2325 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2326 for (i = 0; i < partial_len; i++)
2327 {
2328 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2329 }
2330 }
2331 write_memory (addr, val, partial_len);
c906108c
SS
2332 }
2333
f09ded24
AC
2334 /* Note!!! This is NOT an else clause. Odd sized
2335 structs may go thru BOTH paths. Floating point
2336 arguments will not. */
566f0f7a
AC
2337 /* Write this portion of the argument to a general
2338 purpose register. */
f09ded24
AC
2339 if (argreg <= MIPS_LAST_ARG_REGNUM
2340 && !fp_register_arg_p (typecode, arg_type))
c906108c 2341 {
9ace0497 2342 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c
SS
2343
2344 /* A non-floating-point argument being passed in a
2345 general register. If a struct or union, and if
2346 the remaining length is smaller than the register
2347 size, we have to adjust the register value on
2348 big endian targets.
2349
2350 It does not seem to be necessary to do the
2351 same for integral types.
2352
2353 Also don't do this adjustment on EABI and O64
2354 binaries. */
2355
2356 if (!MIPS_EABI
7a292a7a 2357 && MIPS_SAVED_REGSIZE < 8
c906108c 2358 && TARGET_BYTE_ORDER == BIG_ENDIAN
7a292a7a 2359 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2360 && (typecode == TYPE_CODE_STRUCT ||
2361 typecode == TYPE_CODE_UNION))
c5aa993b 2362 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2363 TARGET_CHAR_BIT);
2364
9ace0497 2365 if (mips_debug)
acdb74a0 2366 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2367 argreg,
2368 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2369 write_register (argreg, regval);
2370 argreg++;
c5aa993b 2371
c906108c
SS
2372 /* If this is the old ABI, prevent subsequent floating
2373 point arguments from being passed in floating point
2374 registers. */
2375 if (!MIPS_EABI)
2376 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2377 }
c5aa993b 2378
c906108c
SS
2379 len -= partial_len;
2380 val += partial_len;
2381
566f0f7a
AC
2382 /* Compute the the offset into the stack at which we
2383 will copy the next parameter.
2384
2385 In older ABIs, the caller reserved space for
2386 registers that contained arguments. This was loosely
2387 refered to as their "home". Consequently, space is
2388 always allocated.
c906108c 2389
566f0f7a
AC
2390 In the new EABI (and the NABI32), the stack_offset
2391 only needs to be adjusted when it has been used.. */
c906108c 2392
566f0f7a 2393 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
d929b26f 2394 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2395 }
2396 }
9ace0497
AC
2397 if (mips_debug)
2398 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2399 }
2400
0f71a2f6
JM
2401 /* Return adjusted stack pointer. */
2402 return sp;
2403}
2404
2405CORE_ADDR
acdb74a0 2406mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 2407{
c906108c
SS
2408 /* Set the return address register to point to the entry
2409 point of the program, where a breakpoint lies in wait. */
c5aa993b 2410 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2411 return sp;
2412}
2413
2414static void
c5aa993b 2415mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2416{
2417 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2418 int regsize;
2419 int offset;
2420 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2421 {
2422 regsize = MIPS_SAVED_REGSIZE;
2423 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2424 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2425 : 0);
2426 }
2427 else
2428 {
2429 regsize = REGISTER_RAW_SIZE (regno);
2430 offset = 0;
2431 }
c906108c
SS
2432 *sp -= regsize;
2433 read_register_gen (regno, buffer);
7a292a7a 2434 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2435}
2436
2437/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2438#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2439
2440void
acdb74a0 2441mips_push_dummy_frame (void)
c906108c
SS
2442{
2443 int ireg;
c5aa993b
JM
2444 struct linked_proc_info *link = (struct linked_proc_info *)
2445 xmalloc (sizeof (struct linked_proc_info));
c906108c 2446 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 2447 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
2448 CORE_ADDR old_sp = sp;
2449 link->next = linked_proc_desc_table;
2450 linked_proc_desc_table = link;
2451
2452/* FIXME! are these correct ? */
c5aa993b 2453#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2454#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2455#define FLOAT_REG_SAVE_MASK MASK(0,19)
2456#define FLOAT_SINGLE_REG_SAVE_MASK \
2457 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2458 /*
2459 * The registers we must save are all those not preserved across
2460 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2461 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2462 * and FP Control/Status registers.
2463 *
2464 *
2465 * Dummy frame layout:
2466 * (high memory)
c5aa993b
JM
2467 * Saved PC
2468 * Saved MMHI, MMLO, FPC_CSR
2469 * Saved R31
2470 * Saved R28
2471 * ...
2472 * Saved R1
c906108c
SS
2473 * Saved D18 (i.e. F19, F18)
2474 * ...
2475 * Saved D0 (i.e. F1, F0)
c5aa993b 2476 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2477 * (low memory)
2478 */
2479
2480 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2481 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2482 PROC_FRAME_OFFSET (proc_desc) = 0;
2483 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2484 mips_push_register (&sp, PC_REGNUM);
2485 mips_push_register (&sp, HI_REGNUM);
2486 mips_push_register (&sp, LO_REGNUM);
2487 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2488
2489 /* Save general CPU registers */
c5aa993b 2490 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2491 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2492 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2493 for (ireg = 32; --ireg >= 0;)
2494 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2495 mips_push_register (&sp, ireg);
2496
2497 /* Save floating point registers starting with high order word */
c5aa993b 2498 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2499 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2500 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2501 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2502 from FP. */
c5aa993b
JM
2503 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2504 for (ireg = 32; --ireg >= 0;)
2505 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2506 mips_push_register (&sp, ireg + FP0_REGNUM);
2507
2508 /* Update the frame pointer for the call dummy and the stack pointer.
2509 Set the procedure's starting and ending addresses to point to the
2510 call dummy address at the entry point. */
2511 write_register (PUSH_FP_REGNUM, old_sp);
2512 write_register (SP_REGNUM, sp);
c5aa993b
JM
2513 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2514 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2515 SET_PROC_DESC_IS_DUMMY (proc_desc);
2516 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2517}
2518
2519void
acdb74a0 2520mips_pop_frame (void)
c906108c
SS
2521{
2522 register int regnum;
2523 struct frame_info *frame = get_current_frame ();
2524 CORE_ADDR new_sp = FRAME_FP (frame);
2525
cce74817 2526 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2527
c5aa993b 2528 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2529 if (frame->saved_regs == NULL)
2530 mips_find_saved_regs (frame);
2531 for (regnum = 0; regnum < NUM_REGS; regnum++)
2532 {
2533 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2534 && frame->saved_regs[regnum])
2535 write_register (regnum,
2536 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2537 MIPS_SAVED_REGSIZE));
c906108c
SS
2538 }
2539 write_register (SP_REGNUM, new_sp);
2540 flush_cached_frames ();
2541
c5aa993b 2542 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2543 {
2544 struct linked_proc_info *pi_ptr, *prev_ptr;
2545
2546 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2547 pi_ptr != NULL;
2548 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2549 {
2550 if (&pi_ptr->info == proc_desc)
2551 break;
2552 }
2553
2554 if (pi_ptr == NULL)
2555 error ("Can't locate dummy extra frame info\n");
2556
2557 if (prev_ptr != NULL)
2558 prev_ptr->next = pi_ptr->next;
2559 else
2560 linked_proc_desc_table = pi_ptr->next;
2561
2562 free (pi_ptr);
2563
2564 write_register (HI_REGNUM,
c5aa993b 2565 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2566 MIPS_SAVED_REGSIZE));
c906108c 2567 write_register (LO_REGNUM,
c5aa993b 2568 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2569 MIPS_SAVED_REGSIZE));
c906108c
SS
2570 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2571 write_register (FCRCS_REGNUM,
c5aa993b 2572 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2573 MIPS_SAVED_REGSIZE));
c906108c
SS
2574 }
2575}
2576
2577static void
acdb74a0 2578mips_print_register (int regnum, int all)
c906108c
SS
2579{
2580 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2581
2582 /* Get the data in raw format. */
2583 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2584 {
2585 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2586 return;
2587 }
2588
2589 /* If an even floating point register, also print as double. */
2590 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
c5aa993b
JM
2591 && !((regnum - FP0_REGNUM) & 1))
2592 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
c906108c 2593 {
c5aa993b 2594 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c
SS
2595
2596 read_relative_register_raw_bytes (regnum, dbuffer);
c5aa993b 2597 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
c906108c
SS
2598 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2599
c5aa993b 2600 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
c906108c
SS
2601 val_print (builtin_type_double, dbuffer, 0, 0,
2602 gdb_stdout, 0, 1, 0, Val_pretty_default);
2603 printf_filtered ("); ");
2604 }
2605 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2606
2607 /* The problem with printing numeric register names (r26, etc.) is that
2608 the user can't use them on input. Probably the best solution is to
2609 fix it so that either the numeric or the funky (a2, etc.) names
2610 are accepted on input. */
2611 if (regnum < MIPS_NUMREGS)
2612 printf_filtered ("(r%d): ", regnum);
2613 else
2614 printf_filtered (": ");
2615
2616 /* If virtual format is floating, print it that way. */
2617 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2618 if (FP_REGISTER_DOUBLE)
c5aa993b 2619 { /* show 8-byte floats as float AND double: */
c906108c
SS
2620 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2621
2622 printf_filtered (" (float) ");
2623 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2624 gdb_stdout, 0, 1, 0, Val_pretty_default);
2625 printf_filtered (", (double) ");
2626 val_print (builtin_type_double, raw_buffer, 0, 0,
2627 gdb_stdout, 0, 1, 0, Val_pretty_default);
2628 }
2629 else
2630 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2631 gdb_stdout, 0, 1, 0, Val_pretty_default);
2632 /* Else print as integer in hex. */
2633 else
ed9a39eb
JM
2634 {
2635 int offset;
2636
2637 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2638 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2639 else
2640 offset = 0;
2641
2642 print_scalar_formatted (raw_buffer + offset,
2643 REGISTER_VIRTUAL_TYPE (regnum),
2644 'x', 0, gdb_stdout);
2645 }
c906108c
SS
2646}
2647
2648/* Replacement for generic do_registers_info.
2649 Print regs in pretty columns. */
2650
2651static int
acdb74a0 2652do_fp_register_row (int regnum)
c5aa993b 2653{ /* do values for FP (float) regs */
c906108c
SS
2654 char *raw_buffer[2];
2655 char *dbl_buffer;
2656 /* use HI and LO to control the order of combining two flt regs */
2657 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2658 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2659 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2660 int inv1, inv2, inv3;
c5aa993b 2661
c906108c
SS
2662 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2663 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2664 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2665
2666 /* Get the data in raw format. */
2667 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2668 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
c5aa993b 2669 if (REGISTER_RAW_SIZE (regnum) == 4)
c906108c
SS
2670 {
2671 /* 4-byte registers: we can fit two registers per row. */
2672 /* Also print every pair of 4-byte regs as an 8-byte double. */
2673 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
c5aa993b 2674 error ("can't read register %d (%s)",
c906108c
SS
2675 regnum + 1, REGISTER_NAME (regnum + 1));
2676
2677 /* copy the two floats into one double, and unpack both */
65edb64b 2678 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b
JM
2679 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2680 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2681 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2682
2683 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2684 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2685 printf_filtered (inv2 ? " %-5s: <invalid float>" :
c906108c 2686 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
c5aa993b 2687 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2688 " dbl: %-24.17g\n", doub);
2689 /* may want to do hex display here (future enhancement) */
c5aa993b 2690 regnum += 2;
c906108c
SS
2691 }
2692 else
c5aa993b 2693 { /* eight byte registers: print each one as float AND as double. */
c906108c
SS
2694 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2695
65edb64b 2696 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b 2697 flt1 = unpack_double (builtin_type_float,
c906108c 2698 &raw_buffer[HI][offset], &inv1);
c5aa993b 2699 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
c906108c 2700
c5aa993b 2701 printf_filtered (inv1 ? " %-5s: <invalid float>" :
c906108c 2702 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
c5aa993b 2703 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2704 " dbl: %-24.17g\n", doub);
2705 /* may want to do hex display here (future enhancement) */
2706 regnum++;
2707 }
2708 return regnum;
2709}
2710
2711/* Print a row's worth of GP (int) registers, with name labels above */
2712
2713static int
acdb74a0 2714do_gp_register_row (int regnum)
c906108c
SS
2715{
2716 /* do values for GP (int) regs */
2717 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2718 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2719 int col, byte;
2720 int start_regnum = regnum;
2721 int numregs = NUM_REGS;
2722
2723
2724 /* For GP registers, we print a separate row of names above the vals */
2725 printf_filtered (" ");
2726 for (col = 0; col < ncols && regnum < numregs; regnum++)
2727 {
2728 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2729 continue; /* unused register */
c906108c 2730 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2731 break; /* end the row: reached FP register */
2732 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2733 REGISTER_NAME (regnum));
2734 col++;
2735 }
c5aa993b 2736 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2737 start_regnum); /* print the R0 to R31 names */
2738
2739 regnum = start_regnum; /* go back to start of row */
2740 /* now print the values in hex, 4 or 8 to the row */
2741 for (col = 0; col < ncols && regnum < numregs; regnum++)
2742 {
2743 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2744 continue; /* unused register */
c906108c 2745 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2746 break; /* end row: reached FP register */
c906108c
SS
2747 /* OK: get the data in raw format. */
2748 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2749 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2750 /* pad small registers */
43e526b9 2751 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2752 printf_filtered (" ");
2753 /* Now print the register value in hex, endian order. */
2754 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
43e526b9
JM
2755 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2756 byte < REGISTER_RAW_SIZE (regnum);
2757 byte++)
c906108c
SS
2758 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2759 else
43e526b9
JM
2760 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2761 byte >= 0;
2762 byte--)
c906108c
SS
2763 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2764 printf_filtered (" ");
2765 col++;
2766 }
c5aa993b 2767 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2768 printf_filtered ("\n");
2769
2770 return regnum;
2771}
2772
2773/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2774
2775void
acdb74a0 2776mips_do_registers_info (int regnum, int fpregs)
c906108c 2777{
c5aa993b 2778 if (regnum != -1) /* do one specified register */
c906108c
SS
2779 {
2780 if (*(REGISTER_NAME (regnum)) == '\0')
2781 error ("Not a valid register for the current processor type");
2782
2783 mips_print_register (regnum, 0);
2784 printf_filtered ("\n");
2785 }
c5aa993b
JM
2786 else
2787 /* do all (or most) registers */
c906108c
SS
2788 {
2789 regnum = 0;
2790 while (regnum < NUM_REGS)
2791 {
c5aa993b
JM
2792 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2793 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
2794 regnum = do_fp_register_row (regnum); /* FP regs */
2795 else
2796 regnum += MIPS_NUMREGS; /* skip floating point regs */
2797 else
2798 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2799 }
2800 }
2801}
2802
2803/* Return number of args passed to a frame. described by FIP.
2804 Can return -1, meaning no way to tell. */
2805
2806int
acdb74a0 2807mips_frame_num_args (struct frame_info *frame)
c906108c 2808{
c906108c
SS
2809 return -1;
2810}
2811
2812/* Is this a branch with a delay slot? */
2813
a14ed312 2814static int is_delayed (unsigned long);
c906108c
SS
2815
2816static int
acdb74a0 2817is_delayed (unsigned long insn)
c906108c
SS
2818{
2819 int i;
2820 for (i = 0; i < NUMOPCODES; ++i)
2821 if (mips_opcodes[i].pinfo != INSN_MACRO
2822 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2823 break;
2824 return (i < NUMOPCODES
2825 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2826 | INSN_COND_BRANCH_DELAY
2827 | INSN_COND_BRANCH_LIKELY)));
2828}
2829
2830int
acdb74a0 2831mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
2832{
2833 char buf[MIPS_INSTLEN];
2834
2835 /* There is no branch delay slot on MIPS16. */
2836 if (pc_is_mips16 (pc))
2837 return 0;
2838
2839 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2840 /* If error reading memory, guess that it is not a delayed branch. */
2841 return 0;
c5aa993b 2842 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
2843}
2844
2845
2846/* Skip the PC past function prologue instructions (32-bit version).
2847 This is a helper function for mips_skip_prologue. */
2848
2849static CORE_ADDR
f7b9e9fc 2850mips32_skip_prologue (CORE_ADDR pc)
c906108c 2851{
c5aa993b
JM
2852 t_inst inst;
2853 CORE_ADDR end_pc;
2854 int seen_sp_adjust = 0;
2855 int load_immediate_bytes = 0;
2856
2857 /* Skip the typical prologue instructions. These are the stack adjustment
2858 instruction and the instructions that save registers on the stack
2859 or in the gcc frame. */
2860 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2861 {
2862 unsigned long high_word;
c906108c 2863
c5aa993b
JM
2864 inst = mips_fetch_instruction (pc);
2865 high_word = (inst >> 16) & 0xffff;
c906108c 2866
c5aa993b
JM
2867 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2868 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2869 seen_sp_adjust = 1;
2870 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2871 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2872 seen_sp_adjust = 1;
2873 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2874 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2875 && (inst & 0x001F0000)) /* reg != $zero */
2876 continue;
2877
2878 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2879 continue;
2880 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2881 /* sx reg,n($s8) */
2882 continue; /* reg != $zero */
2883
2884 /* move $s8,$sp. With different versions of gas this will be either
2885 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2886 Accept any one of these. */
2887 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2888 continue;
2889
2890 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2891 continue;
2892 else if (high_word == 0x3c1c) /* lui $gp,n */
2893 continue;
2894 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2895 continue;
2896 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2897 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2898 continue;
2899 /* The following instructions load $at or $t0 with an immediate
2900 value in preparation for a stack adjustment via
2901 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2902 a local variable, so we accept them only before a stack adjustment
2903 instruction was seen. */
2904 else if (!seen_sp_adjust)
2905 {
2906 if (high_word == 0x3c01 || /* lui $at,n */
2907 high_word == 0x3c08) /* lui $t0,n */
2908 {
2909 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2910 continue;
2911 }
2912 else if (high_word == 0x3421 || /* ori $at,$at,n */
2913 high_word == 0x3508 || /* ori $t0,$t0,n */
2914 high_word == 0x3401 || /* ori $at,$zero,n */
2915 high_word == 0x3408) /* ori $t0,$zero,n */
2916 {
2917 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2918 continue;
2919 }
2920 else
2921 break;
2922 }
2923 else
2924 break;
c906108c
SS
2925 }
2926
c5aa993b
JM
2927 /* In a frameless function, we might have incorrectly
2928 skipped some load immediate instructions. Undo the skipping
2929 if the load immediate was not followed by a stack adjustment. */
2930 if (load_immediate_bytes && !seen_sp_adjust)
2931 pc -= load_immediate_bytes;
2932 return pc;
c906108c
SS
2933}
2934
2935/* Skip the PC past function prologue instructions (16-bit version).
2936 This is a helper function for mips_skip_prologue. */
2937
2938static CORE_ADDR
f7b9e9fc 2939mips16_skip_prologue (CORE_ADDR pc)
c906108c 2940{
c5aa993b
JM
2941 CORE_ADDR end_pc;
2942 int extend_bytes = 0;
2943 int prev_extend_bytes;
c906108c 2944
c5aa993b
JM
2945 /* Table of instructions likely to be found in a function prologue. */
2946 static struct
c906108c
SS
2947 {
2948 unsigned short inst;
2949 unsigned short mask;
c5aa993b
JM
2950 }
2951 table[] =
2952 {
c906108c 2953 {
c5aa993b
JM
2954 0x6300, 0xff00
2955 }
2956 , /* addiu $sp,offset */
2957 {
2958 0xfb00, 0xff00
2959 }
2960 , /* daddiu $sp,offset */
2961 {
2962 0xd000, 0xf800
2963 }
2964 , /* sw reg,n($sp) */
2965 {
2966 0xf900, 0xff00
2967 }
2968 , /* sd reg,n($sp) */
2969 {
2970 0x6200, 0xff00
2971 }
2972 , /* sw $ra,n($sp) */
2973 {
2974 0xfa00, 0xff00
2975 }
2976 , /* sd $ra,n($sp) */
2977 {
2978 0x673d, 0xffff
2979 }
2980 , /* move $s1,sp */
2981 {
2982 0xd980, 0xff80
2983 }
2984 , /* sw $a0-$a3,n($s1) */
2985 {
2986 0x6704, 0xff1c
2987 }
2988 , /* move reg,$a0-$a3 */
2989 {
2990 0xe809, 0xf81f
2991 }
2992 , /* entry pseudo-op */
2993 {
2994 0x0100, 0xff00
2995 }
2996 , /* addiu $s1,$sp,n */
2997 {
2998 0, 0
2999 } /* end of table marker */
3000 };
3001
3002 /* Skip the typical prologue instructions. These are the stack adjustment
3003 instruction and the instructions that save registers on the stack
3004 or in the gcc frame. */
3005 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3006 {
3007 unsigned short inst;
3008 int i;
c906108c 3009
c5aa993b 3010 inst = mips_fetch_instruction (pc);
c906108c 3011
c5aa993b
JM
3012 /* Normally we ignore an extend instruction. However, if it is
3013 not followed by a valid prologue instruction, we must adjust
3014 the pc back over the extend so that it won't be considered
3015 part of the prologue. */
3016 if ((inst & 0xf800) == 0xf000) /* extend */
3017 {
3018 extend_bytes = MIPS16_INSTLEN;
3019 continue;
3020 }
3021 prev_extend_bytes = extend_bytes;
3022 extend_bytes = 0;
c906108c 3023
c5aa993b
JM
3024 /* Check for other valid prologue instructions besides extend. */
3025 for (i = 0; table[i].mask != 0; i++)
3026 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3027 break;
3028 if (table[i].mask != 0) /* it was in table? */
3029 continue; /* ignore it */
3030 else
3031 /* non-prologue */
3032 {
3033 /* Return the current pc, adjusted backwards by 2 if
3034 the previous instruction was an extend. */
3035 return pc - prev_extend_bytes;
3036 }
c906108c
SS
3037 }
3038 return pc;
3039}
3040
3041/* To skip prologues, I use this predicate. Returns either PC itself
3042 if the code at PC does not look like a function prologue; otherwise
3043 returns an address that (if we're lucky) follows the prologue. If
3044 LENIENT, then we must skip everything which is involved in setting
3045 up the frame (it's OK to skip more, just so long as we don't skip
3046 anything which might clobber the registers which are being saved.
3047 We must skip more in the case where part of the prologue is in the
3048 delay slot of a non-prologue instruction). */
3049
3050CORE_ADDR
f7b9e9fc 3051mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
3052{
3053 /* See if we can determine the end of the prologue via the symbol table.
3054 If so, then return either PC, or the PC after the prologue, whichever
3055 is greater. */
3056
3057 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3058
3059 if (post_prologue_pc != 0)
3060 return max (pc, post_prologue_pc);
3061
3062 /* Can't determine prologue from the symbol table, need to examine
3063 instructions. */
3064
3065 if (pc_is_mips16 (pc))
f7b9e9fc 3066 return mips16_skip_prologue (pc);
c906108c 3067 else
f7b9e9fc 3068 return mips32_skip_prologue (pc);
c906108c 3069}
c906108c 3070
7a292a7a
SS
3071/* Determine how a return value is stored within the MIPS register
3072 file, given the return type `valtype'. */
3073
3074struct return_value_word
3075{
3076 int len;
3077 int reg;
3078 int reg_offset;
3079 int buf_offset;
3080};
3081
7a292a7a 3082static void
acdb74a0
AC
3083return_value_location (struct type *valtype,
3084 struct return_value_word *hi,
3085 struct return_value_word *lo)
7a292a7a
SS
3086{
3087 int len = TYPE_LENGTH (valtype);
c5aa993b 3088
7a292a7a
SS
3089 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3090 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3091 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3092 {
3093 if (!FP_REGISTER_DOUBLE && len == 8)
3094 {
3095 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3096 spread them across a floating-point register pair. */
7a292a7a
SS
3097 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3098 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3099 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3100 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3101 ? 4 : 0);
3102 hi->reg_offset = lo->reg_offset;
3103 lo->reg = FP0_REGNUM + 0;
3104 hi->reg = FP0_REGNUM + 1;
3105 lo->len = 4;
3106 hi->len = 4;
3107 }
3108 else
3109 {
3110 /* The floating point value fits in a single floating-point
c5aa993b 3111 register. */
7a292a7a
SS
3112 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3113 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3114 && len == 4)
3115 ? 4 : 0);
3116 lo->reg = FP0_REGNUM;
3117 lo->len = len;
3118 lo->buf_offset = 0;
3119 hi->len = 0;
3120 hi->reg_offset = 0;
3121 hi->buf_offset = 0;
3122 hi->reg = 0;
3123 }
3124 }
3125 else
3126 {
3127 /* Locate a result possibly spread across two registers. */
3128 int regnum = 2;
3129 lo->reg = regnum + 0;
3130 hi->reg = regnum + 1;
3131 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3132 && len < MIPS_SAVED_REGSIZE)
3133 {
3134 /* "un-left-justify" the value in the low register */
3135 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3136 lo->len = len;
3137 hi->reg_offset = 0;
3138 hi->len = 0;
3139 }
3140 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3141 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3142 && len < MIPS_SAVED_REGSIZE * 2
3143 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3144 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3145 {
3146 /* "un-left-justify" the value spread across two registers. */
3147 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3148 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3149 hi->reg_offset = 0;
3150 hi->len = len - lo->len;
3151 }
3152 else
3153 {
3154 /* Only perform a partial copy of the second register. */
3155 lo->reg_offset = 0;
3156 hi->reg_offset = 0;
3157 if (len > MIPS_SAVED_REGSIZE)
3158 {
3159 lo->len = MIPS_SAVED_REGSIZE;
3160 hi->len = len - MIPS_SAVED_REGSIZE;
3161 }
3162 else
3163 {
3164 lo->len = len;
3165 hi->len = 0;
3166 }
3167 }
3168 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3169 && REGISTER_RAW_SIZE (regnum) == 8
3170 && MIPS_SAVED_REGSIZE == 4)
3171 {
3172 /* Account for the fact that only the least-signficant part
c5aa993b 3173 of the register is being used */
7a292a7a
SS
3174 lo->reg_offset += 4;
3175 hi->reg_offset += 4;
3176 }
3177 lo->buf_offset = 0;
3178 hi->buf_offset = lo->len;
3179 }
3180}
3181
3182/* Given a return value in `regbuf' with a type `valtype', extract and
3183 copy its value into `valbuf'. */
3184
c906108c 3185void
acdb74a0
AC
3186mips_extract_return_value (struct type *valtype,
3187 char regbuf[REGISTER_BYTES],
3188 char *valbuf)
c906108c 3189{
7a292a7a
SS
3190 struct return_value_word lo;
3191 struct return_value_word hi;
3192 return_value_location (valtype, &lo, &hi);
3193
3194 memcpy (valbuf + lo.buf_offset,
3195 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3196 lo.len);
3197
3198 if (hi.len > 0)
3199 memcpy (valbuf + hi.buf_offset,
3200 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3201 hi.len);
c906108c
SS
3202}
3203
7a292a7a
SS
3204/* Given a return value in `valbuf' with a type `valtype', write it's
3205 value into the appropriate register. */
3206
c906108c 3207void
acdb74a0 3208mips_store_return_value (struct type *valtype, char *valbuf)
c906108c 3209{
7a292a7a
SS
3210 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3211 struct return_value_word lo;
3212 struct return_value_word hi;
3213 return_value_location (valtype, &lo, &hi);
3214
3215 memset (raw_buffer, 0, sizeof (raw_buffer));
3216 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3217 write_register_bytes (REGISTER_BYTE (lo.reg),
3218 raw_buffer,
3219 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3220
7a292a7a
SS
3221 if (hi.len > 0)
3222 {
3223 memset (raw_buffer, 0, sizeof (raw_buffer));
3224 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3225 write_register_bytes (REGISTER_BYTE (hi.reg),
3226 raw_buffer,
3227 REGISTER_RAW_SIZE (hi.reg));
3228 }
c906108c
SS
3229}
3230
3231/* Exported procedure: Is PC in the signal trampoline code */
3232
3233int
acdb74a0 3234in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
3235{
3236 if (sigtramp_address == 0)
3237 fixup_sigtramp ();
3238 return (pc >= sigtramp_address && pc < sigtramp_end);
3239}
3240
a5ea2558
AC
3241/* Root of all "set mips "/"show mips " commands. This will eventually be
3242 used for all MIPS-specific commands. */
3243
a5ea2558 3244static void
acdb74a0 3245show_mips_command (char *args, int from_tty)
a5ea2558
AC
3246{
3247 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3248}
3249
a5ea2558 3250static void
acdb74a0 3251set_mips_command (char *args, int from_tty)
a5ea2558
AC
3252{
3253 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3254 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3255}
3256
c906108c
SS
3257/* Commands to show/set the MIPS FPU type. */
3258
c906108c 3259static void
acdb74a0 3260show_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3261{
3262 char *msg;
3263 char *fpu;
3264 switch (MIPS_FPU_TYPE)
3265 {
3266 case MIPS_FPU_SINGLE:
3267 fpu = "single-precision";
3268 break;
3269 case MIPS_FPU_DOUBLE:
3270 fpu = "double-precision";
3271 break;
3272 case MIPS_FPU_NONE:
3273 fpu = "absent (none)";
3274 break;
3275 }
3276 if (mips_fpu_type_auto)
3277 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3278 fpu);
3279 else
3280 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3281 fpu);
3282}
3283
3284
c906108c 3285static void
acdb74a0 3286set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3287{
3288 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3289 show_mipsfpu_command (args, from_tty);
3290}
3291
c906108c 3292static void
acdb74a0 3293set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
3294{
3295 mips_fpu_type = MIPS_FPU_SINGLE;
3296 mips_fpu_type_auto = 0;
c2d11a7d
JM
3297 if (GDB_MULTI_ARCH)
3298 {
3299 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3300 }
c906108c
SS
3301}
3302
c906108c 3303static void
acdb74a0 3304set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
3305{
3306 mips_fpu_type = MIPS_FPU_DOUBLE;
3307 mips_fpu_type_auto = 0;
c2d11a7d
JM
3308 if (GDB_MULTI_ARCH)
3309 {
3310 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3311 }
c906108c
SS
3312}
3313
c906108c 3314static void
acdb74a0 3315set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
3316{
3317 mips_fpu_type = MIPS_FPU_NONE;
3318 mips_fpu_type_auto = 0;
c2d11a7d
JM
3319 if (GDB_MULTI_ARCH)
3320 {
3321 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3322 }
c906108c
SS
3323}
3324
c906108c 3325static void
acdb74a0 3326set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
3327{
3328 mips_fpu_type_auto = 1;
3329}
3330
3331/* Command to set the processor type. */
3332
3333void
acdb74a0 3334mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
3335{
3336 int i;
3337
3338 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3339 {
3340 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3341 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3342 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3343
3344 /* Restore the value. */
3345 tmp_mips_processor_type = strsave (mips_processor_type);
3346
3347 return;
3348 }
c5aa993b 3349
c906108c
SS
3350 if (!mips_set_processor_type (tmp_mips_processor_type))
3351 {
3352 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3353 /* Restore its value. */
3354 tmp_mips_processor_type = strsave (mips_processor_type);
3355 }
3356}
3357
3358static void
acdb74a0 3359mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
3360{
3361}
3362
3363/* Modify the actual processor type. */
3364
3365int
acdb74a0 3366mips_set_processor_type (char *str)
c906108c
SS
3367{
3368 int i, j;
3369
3370 if (str == NULL)
3371 return 0;
3372
3373 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3374 {
3375 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3376 {
3377 mips_processor_type = str;
cce74817 3378 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3379 return 1;
c906108c
SS
3380 /* FIXME tweak fpu flag too */
3381 }
3382 }
3383
3384 return 0;
3385}
3386
3387/* Attempt to identify the particular processor model by reading the
3388 processor id. */
3389
3390char *
acdb74a0 3391mips_read_processor_type (void)
c906108c
SS
3392{
3393 CORE_ADDR prid;
3394
3395 prid = read_register (PRID_REGNUM);
3396
3397 if ((prid & ~0xf) == 0x700)
c5aa993b 3398 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3399
3400 return NULL;
3401}
3402
3403/* Just like reinit_frame_cache, but with the right arguments to be
3404 callable as an sfunc. */
3405
3406static void
acdb74a0
AC
3407reinit_frame_cache_sfunc (char *args, int from_tty,
3408 struct cmd_list_element *c)
c906108c
SS
3409{
3410 reinit_frame_cache ();
3411}
3412
3413int
acdb74a0 3414gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
3415{
3416 mips_extra_func_info_t proc_desc;
3417
3418 /* Search for the function containing this address. Set the low bit
3419 of the address when searching, in case we were given an even address
3420 that is the start of a 16-bit function. If we didn't do this,
3421 the search would fail because the symbol table says the function
3422 starts at an odd address, i.e. 1 byte past the given address. */
3423 memaddr = ADDR_BITS_REMOVE (memaddr);
3424 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3425
3426 /* Make an attempt to determine if this is a 16-bit function. If
3427 the procedure descriptor exists and the address therein is odd,
3428 it's definitely a 16-bit function. Otherwise, we have to just
3429 guess that if the address passed in is odd, it's 16-bits. */
3430 if (proc_desc)
65c11066
MS
3431 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3432 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 3433 else
65c11066
MS
3434 info->mach = pc_is_mips16 (memaddr) ?
3435 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
3436
3437 /* Round down the instruction address to the appropriate boundary. */
65c11066 3438 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 3439
c906108c
SS
3440 /* Call the appropriate disassembler based on the target endian-ness. */
3441 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3442 return print_insn_big_mips (memaddr, info);
3443 else
3444 return print_insn_little_mips (memaddr, info);
3445}
3446
3447/* Old-style breakpoint macros.
3448 The IDT board uses an unusual breakpoint value, and sometimes gets
3449 confused when it sees the usual MIPS breakpoint instruction. */
3450
3451#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3452#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3453#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3454#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3455#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3456#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3457#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3458#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3459
3460/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3461 counter value to determine whether a 16- or 32-bit breakpoint should be
3462 used. It returns a pointer to a string of bytes that encode a breakpoint
3463 instruction, stores the length of the string to *lenptr, and adjusts pc
3464 (if necessary) to point to the actual memory location where the
3465 breakpoint should be inserted. */
3466
c5aa993b 3467unsigned char *
acdb74a0 3468mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c
SS
3469{
3470 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3471 {
3472 if (pc_is_mips16 (*pcptr))
3473 {
3474 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3475 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3476 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3477 return mips16_big_breakpoint;
3478 }
3479 else
3480 {
3481 static char big_breakpoint[] = BIG_BREAKPOINT;
3482 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3483 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3484
c5aa993b 3485 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3486
3487 if (strcmp (target_shortname, "mips") == 0)
3488 return idt_big_breakpoint;
3489 else if (strcmp (target_shortname, "ddb") == 0
3490 || strcmp (target_shortname, "pmon") == 0
3491 || strcmp (target_shortname, "lsi") == 0)
3492 return pmon_big_breakpoint;
3493 else
3494 return big_breakpoint;
3495 }
3496 }
3497 else
3498 {
3499 if (pc_is_mips16 (*pcptr))
3500 {
3501 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3502 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3503 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3504 return mips16_little_breakpoint;
3505 }
3506 else
3507 {
3508 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3509 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3510 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3511
c5aa993b 3512 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3513
3514 if (strcmp (target_shortname, "mips") == 0)
3515 return idt_little_breakpoint;
3516 else if (strcmp (target_shortname, "ddb") == 0
3517 || strcmp (target_shortname, "pmon") == 0
3518 || strcmp (target_shortname, "lsi") == 0)
3519 return pmon_little_breakpoint;
3520 else
3521 return little_breakpoint;
3522 }
3523 }
3524}
3525
3526/* If PC is in a mips16 call or return stub, return the address of the target
3527 PC, which is either the callee or the caller. There are several
3528 cases which must be handled:
3529
3530 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3531 target PC is in $31 ($ra).
c906108c 3532 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3533 and the target PC is in $2.
c906108c 3534 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3535 before the jal instruction, this is effectively a call stub
3536 and the the target PC is in $2. Otherwise this is effectively
3537 a return stub and the target PC is in $18.
c906108c
SS
3538
3539 See the source code for the stubs in gcc/config/mips/mips16.S for
3540 gory details.
3541
3542 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3543 */
c906108c
SS
3544
3545CORE_ADDR
acdb74a0 3546mips_skip_stub (CORE_ADDR pc)
c906108c
SS
3547{
3548 char *name;
3549 CORE_ADDR start_addr;
3550
3551 /* Find the starting address and name of the function containing the PC. */
3552 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3553 return 0;
3554
3555 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3556 target PC is in $31 ($ra). */
3557 if (strcmp (name, "__mips16_ret_sf") == 0
3558 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 3559 return read_signed_register (RA_REGNUM);
c906108c
SS
3560
3561 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3562 {
3563 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3564 and the target PC is in $2. */
3565 if (name[19] >= '0' && name[19] <= '9')
6c997a34 3566 return read_signed_register (2);
c906108c
SS
3567
3568 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3569 before the jal instruction, this is effectively a call stub
3570 and the the target PC is in $2. Otherwise this is effectively
3571 a return stub and the target PC is in $18. */
c906108c
SS
3572 else if (name[19] == 's' || name[19] == 'd')
3573 {
3574 if (pc == start_addr)
3575 {
3576 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3577 stub. Such a stub for a function bar might have a name
3578 like __fn_stub_bar, and might look like this:
3579 mfc1 $4,$f13
3580 mfc1 $5,$f12
3581 mfc1 $6,$f15
3582 mfc1 $7,$f14
3583 la $1,bar (becomes a lui/addiu pair)
3584 jr $1
3585 So scan down to the lui/addi and extract the target
3586 address from those two instructions. */
c906108c 3587
6c997a34 3588 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
3589 t_inst inst;
3590 int i;
3591
3592 /* See if the name of the target function is __fn_stub_*. */
3593 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3594 return target_pc;
3595 if (strncmp (name, "__fn_stub_", 10) != 0
3596 && strcmp (name, "etext") != 0
3597 && strcmp (name, "_etext") != 0)
3598 return target_pc;
3599
3600 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3601 The limit on the search is arbitrarily set to 20
3602 instructions. FIXME. */
c906108c
SS
3603 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3604 {
c5aa993b
JM
3605 inst = mips_fetch_instruction (target_pc);
3606 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3607 pc = (inst << 16) & 0xffff0000; /* high word */
3608 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3609 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3610 }
3611
3612 /* Couldn't find the lui/addui pair, so return stub address. */
3613 return target_pc;
3614 }
3615 else
3616 /* This is the 'return' part of a call stub. The return
3617 address is in $r18. */
6c997a34 3618 return read_signed_register (18);
c906108c
SS
3619 }
3620 }
c5aa993b 3621 return 0; /* not a stub */
c906108c
SS
3622}
3623
3624
3625/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3626 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3627
3628int
acdb74a0 3629mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
3630{
3631 CORE_ADDR start_addr;
3632
3633 /* Find the starting address of the function containing the PC. If the
3634 caller didn't give us a name, look it up at the same time. */
3635 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3636 return 0;
3637
3638 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3639 {
3640 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3641 if (name[19] >= '0' && name[19] <= '9')
3642 return 1;
3643 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3644 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3645 else if (name[19] == 's' || name[19] == 'd')
3646 return pc == start_addr;
3647 }
3648
c5aa993b 3649 return 0; /* not a stub */
c906108c
SS
3650}
3651
3652
3653/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3654 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3655
3656int
acdb74a0 3657mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
3658{
3659 CORE_ADDR start_addr;
3660
3661 /* Find the starting address of the function containing the PC. */
3662 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3663 return 0;
3664
3665 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3666 if (strcmp (name, "__mips16_ret_sf") == 0
3667 || strcmp (name, "__mips16_ret_df") == 0)
3668 return 1;
3669
3670 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3671 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3672 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3673 && (name[19] == 's' || name[19] == 'd')
3674 && pc != start_addr)
3675 return 1;
3676
c5aa993b 3677 return 0; /* not a stub */
c906108c
SS
3678}
3679
3680
3681/* Return non-zero if the PC is in a library helper function that should
3682 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3683
3684int
acdb74a0 3685mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
3686{
3687 char *name;
3688
3689 /* Find the starting address and name of the function containing the PC. */
3690 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3691 return 0;
3692
3693 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3694 that we want to ignore. */
3695 return (strcmp (name, "__mips16_ret_sf") == 0
3696 || strcmp (name, "__mips16_ret_df") == 0);
3697}
3698
3699
3700/* Return a location where we can set a breakpoint that will be hit
3701 when an inferior function call returns. This is normally the
3702 program's entry point. Executables that don't have an entry
3703 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3704 whose address is the location where the breakpoint should be placed. */
3705
3706CORE_ADDR
acdb74a0 3707mips_call_dummy_address (void)
c906108c
SS
3708{
3709 struct minimal_symbol *sym;
3710
3711 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3712 if (sym)
3713 return SYMBOL_VALUE_ADDRESS (sym);
3714 else
3715 return entry_point_address ();
3716}
3717
3718
b9a8e3bf
JB
3719/* If the current gcc for for this target does not produce correct debugging
3720 information for float parameters, both prototyped and unprototyped, then
3721 define this macro. This forces gdb to always assume that floats are
3722 passed as doubles and then converted in the callee.
3723
3724 For the mips chip, it appears that the debug info marks the parameters as
3725 floats regardless of whether the function is prototyped, but the actual
3726 values are passed as doubles for the non-prototyped case and floats for
3727 the prototyped case. Thus we choose to make the non-prototyped case work
3728 for C and break the prototyped case, since the non-prototyped case is
3729 probably much more common. (FIXME). */
3730
3731static int
3732mips_coerce_float_to_double (struct type *formal, struct type *actual)
3733{
3734 return current_language->la_language == language_c;
3735}
3736
47a8d4ba
AC
3737/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3738 the register stored on the stack (32) is different to its real raw
3739 size (64). The below ensures that registers are fetched from the
3740 stack using their ABI size and then stored into the RAW_BUFFER
3741 using their raw size.
3742
3743 The alternative to adding this function would be to add an ABI
3744 macro - REGISTER_STACK_SIZE(). */
3745
3746static void
acdb74a0
AC
3747mips_get_saved_register (char *raw_buffer,
3748 int *optimized,
3749 CORE_ADDR *addrp,
3750 struct frame_info *frame,
3751 int regnum,
3752 enum lval_type *lval)
47a8d4ba
AC
3753{
3754 CORE_ADDR addr;
3755
3756 if (!target_has_registers)
3757 error ("No registers.");
3758
3759 /* Normal systems don't optimize out things with register numbers. */
3760 if (optimized != NULL)
3761 *optimized = 0;
3762 addr = find_saved_register (frame, regnum);
3763 if (addr != 0)
3764 {
3765 if (lval != NULL)
3766 *lval = lval_memory;
3767 if (regnum == SP_REGNUM)
3768 {
3769 if (raw_buffer != NULL)
3770 {
3771 /* Put it back in target format. */
3772 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3773 (LONGEST) addr);
3774 }
3775 if (addrp != NULL)
3776 *addrp = 0;
3777 return;
3778 }
3779 if (raw_buffer != NULL)
3780 {
3781 LONGEST val;
3782 if (regnum < 32)
3783 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3784 saved. */
3785 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3786 else
3787 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3788 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3789 }
3790 }
3791 else
3792 {
3793 if (lval != NULL)
3794 *lval = lval_register;
3795 addr = REGISTER_BYTE (regnum);
3796 if (raw_buffer != NULL)
3797 read_register_gen (regnum, raw_buffer);
3798 }
3799 if (addrp != NULL)
3800 *addrp = addr;
3801}
2acceee2 3802
f7b9e9fc
AC
3803/* Immediately after a function call, return the saved pc.
3804 Can't always go through the frames for this because on some machines
3805 the new frame is not set up until the new function executes
3806 some instructions. */
3807
3808static CORE_ADDR
3809mips_saved_pc_after_call (struct frame_info *frame)
3810{
6c997a34 3811 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
3812}
3813
3814
c2d11a7d 3815static struct gdbarch *
acdb74a0
AC
3816mips_gdbarch_init (struct gdbarch_info info,
3817 struct gdbarch_list *arches)
c2d11a7d
JM
3818{
3819 static LONGEST mips_call_dummy_words[] =
3820 {0};
3821 struct gdbarch *gdbarch;
3822 struct gdbarch_tdep *tdep;
3823 int elf_flags;
0dadbba0 3824 enum mips_abi mips_abi;
c2d11a7d
JM
3825
3826 /* Extract the elf_flags if available */
3827 if (info.abfd != NULL
3828 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3829 elf_flags = elf_elfheader (info.abfd)->e_flags;
3830 else
3831 elf_flags = 0;
3832
0dadbba0
AC
3833 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3834 switch ((elf_flags & EF_MIPS_ABI))
3835 {
3836 case E_MIPS_ABI_O32:
3837 mips_abi = MIPS_ABI_O32;
3838 break;
3839 case E_MIPS_ABI_O64:
3840 mips_abi = MIPS_ABI_O64;
3841 break;
3842 case E_MIPS_ABI_EABI32:
3843 mips_abi = MIPS_ABI_EABI32;
3844 break;
3845 case E_MIPS_ABI_EABI64:
4a7f7ba8 3846 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
3847 break;
3848 default:
acdb74a0
AC
3849 if ((elf_flags & EF_MIPS_ABI2))
3850 mips_abi = MIPS_ABI_N32;
3851 else
3852 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
3853 break;
3854 }
acdb74a0 3855
bf64bfd6
AC
3856 /* Try the architecture for any hint of the corect ABI */
3857 if (mips_abi == MIPS_ABI_UNKNOWN
3858 && info.bfd_arch_info != NULL
3859 && info.bfd_arch_info->arch == bfd_arch_mips)
3860 {
3861 switch (info.bfd_arch_info->mach)
3862 {
3863 case bfd_mach_mips3900:
3864 mips_abi = MIPS_ABI_EABI32;
3865 break;
3866 case bfd_mach_mips4100:
3867 case bfd_mach_mips5000:
3868 mips_abi = MIPS_ABI_EABI64;
3869 break;
3870 }
3871 }
0dadbba0
AC
3872#ifdef MIPS_DEFAULT_ABI
3873 if (mips_abi == MIPS_ABI_UNKNOWN)
3874 mips_abi = MIPS_DEFAULT_ABI;
3875#endif
4b9b3959
AC
3876
3877 if (gdbarch_debug)
3878 {
3879 fprintf_unfiltered (gdb_stdlog,
9ace0497 3880 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 3881 elf_flags);
4b9b3959
AC
3882 fprintf_unfiltered (gdb_stdlog,
3883 "mips_gdbarch_init: mips_abi = %d\n",
3884 mips_abi);
3885 }
0dadbba0 3886
c2d11a7d
JM
3887 /* try to find a pre-existing architecture */
3888 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3889 arches != NULL;
3890 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3891 {
3892 /* MIPS needs to be pedantic about which ABI the object is
3893 using. */
9103eae0 3894 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 3895 continue;
9103eae0 3896 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 3897 continue;
c2d11a7d
JM
3898 return arches->gdbarch;
3899 }
3900
3901 /* Need a new architecture. Fill in a target specific vector. */
3902 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3903 gdbarch = gdbarch_alloc (&info, tdep);
3904 tdep->elf_flags = elf_flags;
3905
3906 /* Initially set everything according to the ABI. */
3907 set_gdbarch_short_bit (gdbarch, 16);
3908 set_gdbarch_int_bit (gdbarch, 32);
3909 set_gdbarch_float_bit (gdbarch, 32);
3910 set_gdbarch_double_bit (gdbarch, 64);
3911 set_gdbarch_long_double_bit (gdbarch, 64);
0dadbba0
AC
3912 tdep->mips_abi = mips_abi;
3913 switch (mips_abi)
c2d11a7d 3914 {
0dadbba0 3915 case MIPS_ABI_O32:
acdb74a0 3916 tdep->mips_abi_string = "o32";
a5ea2558 3917 tdep->mips_default_saved_regsize = 4;
0dadbba0 3918 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3919 tdep->mips_fp_register_double = 0;
acdb74a0
AC
3920 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3921 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 3922 tdep->mips_regs_have_home_p = 1;
5213ab06 3923 tdep->gdb_target_is_mips64 = 0;
4014092b 3924 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3925 set_gdbarch_long_bit (gdbarch, 32);
3926 set_gdbarch_ptr_bit (gdbarch, 32);
3927 set_gdbarch_long_long_bit (gdbarch, 64);
3928 break;
0dadbba0 3929 case MIPS_ABI_O64:
acdb74a0 3930 tdep->mips_abi_string = "o64";
a5ea2558 3931 tdep->mips_default_saved_regsize = 8;
0dadbba0 3932 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3933 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3934 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3935 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 3936 tdep->mips_regs_have_home_p = 1;
5213ab06 3937 tdep->gdb_target_is_mips64 = 1;
4014092b 3938 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3939 set_gdbarch_long_bit (gdbarch, 32);
3940 set_gdbarch_ptr_bit (gdbarch, 32);
3941 set_gdbarch_long_long_bit (gdbarch, 64);
3942 break;
0dadbba0 3943 case MIPS_ABI_EABI32:
acdb74a0 3944 tdep->mips_abi_string = "eabi32";
a5ea2558 3945 tdep->mips_default_saved_regsize = 4;
0dadbba0 3946 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3947 tdep->mips_fp_register_double = 0;
acdb74a0
AC
3948 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3949 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3950 tdep->mips_regs_have_home_p = 0;
5213ab06 3951 tdep->gdb_target_is_mips64 = 0;
4014092b 3952 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3953 set_gdbarch_long_bit (gdbarch, 32);
3954 set_gdbarch_ptr_bit (gdbarch, 32);
3955 set_gdbarch_long_long_bit (gdbarch, 64);
3956 break;
0dadbba0 3957 case MIPS_ABI_EABI64:
acdb74a0 3958 tdep->mips_abi_string = "eabi64";
a5ea2558 3959 tdep->mips_default_saved_regsize = 8;
0dadbba0 3960 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3961 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3962 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3963 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3964 tdep->mips_regs_have_home_p = 0;
5213ab06 3965 tdep->gdb_target_is_mips64 = 1;
4014092b 3966 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3967 set_gdbarch_long_bit (gdbarch, 64);
3968 set_gdbarch_ptr_bit (gdbarch, 64);
3969 set_gdbarch_long_long_bit (gdbarch, 64);
3970 break;
0dadbba0 3971 case MIPS_ABI_N32:
acdb74a0 3972 tdep->mips_abi_string = "n32";
0dadbba0
AC
3973 tdep->mips_default_saved_regsize = 4;
3974 tdep->mips_default_stack_argsize = 8;
3975 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3976 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3977 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3978 tdep->mips_regs_have_home_p = 0;
5213ab06 3979 tdep->gdb_target_is_mips64 = 0;
4014092b 3980 tdep->default_mask_address_p = 0;
0dadbba0
AC
3981 set_gdbarch_long_bit (gdbarch, 32);
3982 set_gdbarch_ptr_bit (gdbarch, 32);
3983 set_gdbarch_long_long_bit (gdbarch, 64);
3984 break;
c2d11a7d 3985 default:
acdb74a0 3986 tdep->mips_abi_string = "default";
a5ea2558 3987 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
0dadbba0 3988 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
c2d11a7d 3989 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
acdb74a0
AC
3990 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3991 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3992 tdep->mips_regs_have_home_p = 1;
5213ab06 3993 tdep->gdb_target_is_mips64 = 0;
4014092b 3994 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3995 set_gdbarch_long_bit (gdbarch, 32);
3996 set_gdbarch_ptr_bit (gdbarch, 32);
3997 set_gdbarch_long_long_bit (gdbarch, 64);
3998 break;
3999 }
4000
a5ea2558
AC
4001 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4002 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4003 comment:
4004
4005 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4006 flag in object files because to do so would make it impossible to
4007 link with libraries compiled without "-gp32". This is
4008 unnecessarily restrictive.
4009
4010 We could solve this problem by adding "-gp32" multilibs to gcc,
4011 but to set this flag before gcc is built with such multilibs will
4012 break too many systems.''
4013
4014 But even more unhelpfully, the default linker output target for
4015 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4016 for 64-bit programs - you need to change the ABI to change this,
4017 and not all gcc targets support that currently. Therefore using
4018 this flag to detect 32-bit mode would do the wrong thing given
4019 the current gcc - it would make GDB treat these 64-bit programs
4020 as 32-bit programs by default. */
4021
c2d11a7d
JM
4022 /* enable/disable the MIPS FPU */
4023 if (!mips_fpu_type_auto)
4024 tdep->mips_fpu_type = mips_fpu_type;
4025 else if (info.bfd_arch_info != NULL
4026 && info.bfd_arch_info->arch == bfd_arch_mips)
4027 switch (info.bfd_arch_info->mach)
4028 {
b0069a17 4029 case bfd_mach_mips3900:
c2d11a7d 4030 case bfd_mach_mips4100:
ed9a39eb 4031 case bfd_mach_mips4111:
c2d11a7d
JM
4032 tdep->mips_fpu_type = MIPS_FPU_NONE;
4033 break;
bf64bfd6
AC
4034 case bfd_mach_mips4650:
4035 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4036 break;
c2d11a7d
JM
4037 default:
4038 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4039 break;
4040 }
4041 else
4042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4043
4044 /* MIPS version of register names. NOTE: At present the MIPS
4045 register name management is part way between the old -
4046 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4047 Further work on it is required. */
4048 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 4049 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
4050 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4051 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4052 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4053 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4054 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4055
4056 /* Initialize a frame */
4057 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4058
4059 /* MIPS version of CALL_DUMMY */
4060
4061 set_gdbarch_call_dummy_p (gdbarch, 1);
4062 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4063 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4064 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4065 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4066 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4067 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4068 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4069 set_gdbarch_call_dummy_length (gdbarch, 0);
4070 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4071 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4072 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4073 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4074 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4075 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4076 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4077
c4093a6a 4078 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4079 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 4080
f7b9e9fc
AC
4081 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4082 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4083 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4084 set_gdbarch_ieee_float (gdbarch, 1);
4085
4086 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4087 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4088
4b9b3959
AC
4089 return gdbarch;
4090}
4091
4092static void
4093mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4094{
4095 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4096 if (tdep != NULL)
c2d11a7d 4097 {
acdb74a0
AC
4098 int ef_mips_arch;
4099 int ef_mips_32bitmode;
4100 /* determine the ISA */
4101 switch (tdep->elf_flags & EF_MIPS_ARCH)
4102 {
4103 case E_MIPS_ARCH_1:
4104 ef_mips_arch = 1;
4105 break;
4106 case E_MIPS_ARCH_2:
4107 ef_mips_arch = 2;
4108 break;
4109 case E_MIPS_ARCH_3:
4110 ef_mips_arch = 3;
4111 break;
4112 case E_MIPS_ARCH_4:
4113 ef_mips_arch = 0;
4114 break;
4115 default:
4116 break;
4117 }
4118 /* determine the size of a pointer */
4119 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
4120 fprintf_unfiltered (file,
4121 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 4122 tdep->elf_flags);
4b9b3959 4123 fprintf_unfiltered (file,
acdb74a0
AC
4124 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4125 ef_mips_32bitmode);
4126 fprintf_unfiltered (file,
4127 "mips_dump_tdep: ef_mips_arch = %d\n",
4128 ef_mips_arch);
4129 fprintf_unfiltered (file,
4130 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4131 tdep->mips_abi,
4132 tdep->mips_abi_string);
4014092b
AC
4133 fprintf_unfiltered (file,
4134 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4135 mips_mask_address_p (),
4136 tdep->default_mask_address_p);
c2d11a7d 4137 }
4b9b3959
AC
4138 fprintf_unfiltered (file,
4139 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4140 FP_REGISTER_DOUBLE);
4141 fprintf_unfiltered (file,
4142 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4143 MIPS_DEFAULT_FPU_TYPE,
4144 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4145 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4146 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4147 : "???"));
4148 fprintf_unfiltered (file,
4149 "mips_dump_tdep: MIPS_EABI = %d\n",
4150 MIPS_EABI);
4151 fprintf_unfiltered (file,
acdb74a0
AC
4152 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4153 MIPS_LAST_FP_ARG_REGNUM,
4154 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
4155 fprintf_unfiltered (file,
4156 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4157 MIPS_FPU_TYPE,
4158 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4159 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4160 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4161 : "???"));
4162 fprintf_unfiltered (file,
4163 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4164 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
4165 fprintf_unfiltered (file,
4166 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4167 FP_REGISTER_DOUBLE);
4168 fprintf_unfiltered (file,
4169 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4170 MIPS_REGS_HAVE_HOME_P);
4171 fprintf_unfiltered (file,
4172 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4173 MIPS_DEFAULT_STACK_ARGSIZE);
4174 fprintf_unfiltered (file,
4175 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4176 MIPS_STACK_ARGSIZE);
4177 fprintf_unfiltered (file,
4178 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4179 MIPS_REGSIZE);
2475bac3
AC
4180 fprintf_unfiltered (file,
4181 "mips_dump_tdep: A0_REGNUM = %d\n",
4182 A0_REGNUM);
4183 fprintf_unfiltered (file,
4184 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4185 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4186 fprintf_unfiltered (file,
4187 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4188 XSTRING (ATTACH_DETACH));
4189 fprintf_unfiltered (file,
4190 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4191 BADVADDR_REGNUM);
4192 fprintf_unfiltered (file,
4193 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4194 fprintf_unfiltered (file,
4195 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4196 CAUSE_REGNUM);
4197 fprintf_unfiltered (file,
4198 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4199 CPLUS_MARKER);
4200 fprintf_unfiltered (file,
4201 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4202 DEFAULT_MIPS_TYPE);
4203 fprintf_unfiltered (file,
4204 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4205 XSTRING (DO_REGISTERS_INFO));
4206 fprintf_unfiltered (file,
4207 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4208 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4209 fprintf_unfiltered (file,
4210 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4211 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4212 fprintf_unfiltered (file,
4213 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4214 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4215 fprintf_unfiltered (file,
4216 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4217 FCRCS_REGNUM);
4218 fprintf_unfiltered (file,
4219 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4220 FCRIR_REGNUM);
4221 fprintf_unfiltered (file,
4222 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4223 FIRST_EMBED_REGNUM);
4224 fprintf_unfiltered (file,
4225 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4226 FPA0_REGNUM);
4227 fprintf_unfiltered (file,
4228 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4229 GDB_TARGET_IS_MIPS64);
4230 fprintf_unfiltered (file,
4231 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4232 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4233 fprintf_unfiltered (file,
4234 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4235 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4236 fprintf_unfiltered (file,
4237 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4238 GEN_REG_SAVE_MASK);
4239 fprintf_unfiltered (file,
4240 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4241 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4242 fprintf_unfiltered (file,
4243 "mips_dump_tdep: HI_REGNUM = %d\n",
4244 HI_REGNUM);
4245 fprintf_unfiltered (file,
4246 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4247 fprintf_unfiltered (file,
4248 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4249 fprintf_unfiltered (file,
4250 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4251 XSTRING (IGNORE_HELPER_CALL (PC)));
4252 fprintf_unfiltered (file,
4253 "mips_dump_tdep: INIT_FRAME_PC # %s\n",
4254 XSTRING (INIT_FRAME_PC (FROMLEAF, PREV)));
4255 fprintf_unfiltered (file,
4256 "mips_dump_tdep: INIT_FRAME_PC_FIRST # %s\n",
4257 XSTRING (INIT_FRAME_PC_FIRST (FROMLEAF, PREV)));
4258 fprintf_unfiltered (file,
4259 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4260 XSTRING (IN_SIGTRAMP (PC, NAME)));
4261 fprintf_unfiltered (file,
4262 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4263 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4264 fprintf_unfiltered (file,
4265 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4266 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4267 fprintf_unfiltered (file,
4268 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4269 fprintf_unfiltered (file,
4270 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4271 LAST_EMBED_REGNUM);
4272 fprintf_unfiltered (file,
4273 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4274 fprintf_unfiltered (file,
4275 "mips_dump_tdep: LO_REGNUM = %d\n",
4276 LO_REGNUM);
4277#ifdef MACHINE_CPROC_FP_OFFSET
4278 fprintf_unfiltered (file,
4279 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4280 MACHINE_CPROC_FP_OFFSET);
4281#endif
4282#ifdef MACHINE_CPROC_PC_OFFSET
4283 fprintf_unfiltered (file,
4284 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4285 MACHINE_CPROC_PC_OFFSET);
4286#endif
4287#ifdef MACHINE_CPROC_SP_OFFSET
4288 fprintf_unfiltered (file,
4289 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4290 MACHINE_CPROC_SP_OFFSET);
4291#endif
4292 fprintf_unfiltered (file,
4293 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4294 fprintf_unfiltered (file,
4295 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4296 fprintf_unfiltered (file,
4297 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4298 MIPS16_INSTLEN);
4299 fprintf_unfiltered (file,
4300 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4301 fprintf_unfiltered (file,
4302 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4303 fprintf_unfiltered (file,
4304 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4305 fprintf_unfiltered (file,
4306 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4307 MIPS_INSTLEN);
4308 fprintf_unfiltered (file,
acdb74a0
AC
4309 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4310 MIPS_LAST_ARG_REGNUM,
4311 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
4312 fprintf_unfiltered (file,
4313 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4314 MIPS_NUMREGS);
4315 fprintf_unfiltered (file,
4316 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4317 fprintf_unfiltered (file,
4318 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4319 MIPS_SAVED_REGSIZE);
4320 fprintf_unfiltered (file,
4321 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4322 fprintf_unfiltered (file,
4323 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4324 XSTRING (MSYMBOL_SIZE (MSYM)));
4325 fprintf_unfiltered (file,
4326 "mips_dump_tdep: OP_LDFPR = used?\n");
4327 fprintf_unfiltered (file,
4328 "mips_dump_tdep: OP_LDGPR = used?\n");
4329 fprintf_unfiltered (file,
4330 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4331 fprintf_unfiltered (file,
4332 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4333 fprintf_unfiltered (file,
4334 "mips_dump_tdep: PRID_REGNUM = %d\n",
4335 PRID_REGNUM);
4336 fprintf_unfiltered (file,
4337 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4338 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4343 fprintf_unfiltered (file,
4344 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4345 fprintf_unfiltered (file,
4346 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4347 fprintf_unfiltered (file,
4348 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4349 fprintf_unfiltered (file,
4350 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4351 fprintf_unfiltered (file,
4352 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4353 fprintf_unfiltered (file,
4354 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: PROC_PC_REG = function?\n");
4357 fprintf_unfiltered (file,
4358 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4359 fprintf_unfiltered (file,
4360 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4361 fprintf_unfiltered (file,
4362 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: PS_REGNUM = %d\n",
4365 PS_REGNUM);
4366 fprintf_unfiltered (file,
4367 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4368 PUSH_FP_REGNUM);
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: RA_REGNUM = %d\n",
4371 RA_REGNUM);
4372 fprintf_unfiltered (file,
4373 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4374 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4375 fprintf_unfiltered (file,
4376 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4377 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4378 fprintf_unfiltered (file,
4379 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4380 fprintf_unfiltered (file,
4381 "mips_dump_tdep: ROUND_DOWN = function?\n");
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: ROUND_UP = function?\n");
4384#ifdef SAVED_BYTES
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: SAVED_BYTES = %d\n",
4387 SAVED_BYTES);
4388#endif
4389#ifdef SAVED_FP
4390 fprintf_unfiltered (file,
4391 "mips_dump_tdep: SAVED_FP = %d\n",
4392 SAVED_FP);
4393#endif
4394#ifdef SAVED_PC
4395 fprintf_unfiltered (file,
4396 "mips_dump_tdep: SAVED_PC = %d\n",
4397 SAVED_PC);
4398#endif
4399 fprintf_unfiltered (file,
4400 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4401 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4402 fprintf_unfiltered (file,
4403 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4404 fprintf_unfiltered (file,
4405 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4406 SIGFRAME_BASE);
4407 fprintf_unfiltered (file,
4408 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4409 SIGFRAME_FPREGSAVE_OFF);
4410 fprintf_unfiltered (file,
4411 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4412 SIGFRAME_PC_OFF);
4413 fprintf_unfiltered (file,
4414 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4415 SIGFRAME_REGSAVE_OFF);
4416 fprintf_unfiltered (file,
4417 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4418 SIGFRAME_REG_SIZE);
4419 fprintf_unfiltered (file,
4420 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4421 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4422 fprintf_unfiltered (file,
4423 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4424 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4425 fprintf_unfiltered (file,
4426 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4427 SOFTWARE_SINGLE_STEP_P);
4428 fprintf_unfiltered (file,
4429 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4430 SOFTWARE_SINGLE_STEP_P);
4431 fprintf_unfiltered (file,
4432 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4433 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4434#ifdef STACK_END_ADDR
4435 fprintf_unfiltered (file,
4436 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4437 STACK_END_ADDR);
4438#endif
4439 fprintf_unfiltered (file,
4440 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4441 XSTRING (STEP_SKIPS_DELAY (PC)));
4442 fprintf_unfiltered (file,
4443 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4444 STEP_SKIPS_DELAY_P);
4445 fprintf_unfiltered (file,
4446 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4447 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4448 fprintf_unfiltered (file,
4449 "mips_dump_tdep: T9_REGNUM = %d\n",
4450 T9_REGNUM);
4451 fprintf_unfiltered (file,
4452 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4453 fprintf_unfiltered (file,
4454 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4455 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4456 fprintf_unfiltered (file,
4457 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4458 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4459 fprintf_unfiltered (file,
4460 "mips_dump_tdep: TARGET_MIPS = used?\n");
4461 fprintf_unfiltered (file,
4462 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4463 XSTRING (TM_PRINT_INSN_MACH));
4464#ifdef TRACE_CLEAR
4465 fprintf_unfiltered (file,
4466 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4467 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4468#endif
4469#ifdef TRACE_FLAVOR
4470 fprintf_unfiltered (file,
4471 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4472 TRACE_FLAVOR);
4473#endif
4474#ifdef TRACE_FLAVOR_SIZE
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4477 TRACE_FLAVOR_SIZE);
4478#endif
4479#ifdef TRACE_SET
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: TRACE_SET # %s\n",
4482 XSTRING (TRACE_SET (X,STATE)));
4483#endif
4484 fprintf_unfiltered (file,
4485 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4486#ifdef UNUSED_REGNUM
4487 fprintf_unfiltered (file,
4488 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4489 UNUSED_REGNUM);
4490#endif
4491 fprintf_unfiltered (file,
4492 "mips_dump_tdep: V0_REGNUM = %d\n",
4493 V0_REGNUM);
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4496 (long) VM_MIN_ADDRESS);
4497#ifdef VX_NUM_REGS
4498 fprintf_unfiltered (file,
4499 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4500 VX_NUM_REGS);
4501#endif
4502 fprintf_unfiltered (file,
4503 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4504 ZERO_REGNUM);
4505 fprintf_unfiltered (file,
4506 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4507 _PROC_MAGIC_);
c2d11a7d
JM
4508}
4509
c906108c 4510void
acdb74a0 4511_initialize_mips_tdep (void)
c906108c
SS
4512{
4513 static struct cmd_list_element *mipsfpulist = NULL;
4514 struct cmd_list_element *c;
4515
4b9b3959 4516 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 4517 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
4518 tm_print_insn = gdb_print_insn_mips;
4519
a5ea2558
AC
4520 /* Add root prefix command for all "set mips"/"show mips" commands */
4521 add_prefix_cmd ("mips", no_class, set_mips_command,
4522 "Various MIPS specific commands.",
4523 &setmipscmdlist, "set mips ", 0, &setlist);
4524
4525 add_prefix_cmd ("mips", no_class, show_mips_command,
4526 "Various MIPS specific commands.",
4527 &showmipscmdlist, "show mips ", 0, &showlist);
4528
4529 /* Allow the user to override the saved register size. */
4530 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
4531 class_obscure,
4532 size_enums,
4533 &mips_saved_regsize_string, "\
a5ea2558
AC
4534Set size of general purpose registers saved on the stack.\n\
4535This option can be set to one of:\n\
4536 32 - Force GDB to treat saved GP registers as 32-bit\n\
4537 64 - Force GDB to treat saved GP registers as 64-bit\n\
4538 auto - Allow GDB to use the target's default setting or autodetect the\n\
4539 saved GP register size from information contained in the executable.\n\
4540 (default: auto)",
1ed2a135 4541 &setmipscmdlist),
a5ea2558
AC
4542 &showmipscmdlist);
4543
d929b26f
AC
4544 /* Allow the user to override the argument stack size. */
4545 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4546 class_obscure,
4547 size_enums,
1ed2a135 4548 &mips_stack_argsize_string, "\
d929b26f
AC
4549Set the amount of stack space reserved for each argument.\n\
4550This option can be set to one of:\n\
4551 32 - Force GDB to allocate 32-bit chunks per argument\n\
4552 64 - Force GDB to allocate 64-bit chunks per argument\n\
4553 auto - Allow GDB to determine the correct setting from the current\n\
4554 target and executable (default)",
4555 &setmipscmdlist),
4556 &showmipscmdlist);
4557
c906108c
SS
4558 /* Let the user turn off floating point and set the fence post for
4559 heuristic_proc_start. */
4560
4561 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4562 "Set use of MIPS floating-point coprocessor.",
4563 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4564 add_cmd ("single", class_support, set_mipsfpu_single_command,
4565 "Select single-precision MIPS floating-point coprocessor.",
4566 &mipsfpulist);
4567 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 4568 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
4569 &mipsfpulist);
4570 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4571 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4572 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4573 add_cmd ("none", class_support, set_mipsfpu_none_command,
4574 "Select no MIPS floating-point coprocessor.",
4575 &mipsfpulist);
4576 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4577 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4578 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4579 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4580 "Select MIPS floating-point coprocessor automatically.",
4581 &mipsfpulist);
4582 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4583 "Show current use of MIPS floating-point coprocessor target.",
4584 &showlist);
4585
c2d11a7d 4586#if !GDB_MULTI_ARCH
c906108c
SS
4587 c = add_set_cmd ("processor", class_support, var_string_noescape,
4588 (char *) &tmp_mips_processor_type,
4589 "Set the type of MIPS processor in use.\n\
4590Set this to be able to access processor-type-specific registers.\n\
4591",
4592 &setlist);
4593 c->function.cfunc = mips_set_processor_type_command;
4594 c = add_show_from_set (c, &showlist);
4595 c->function.cfunc = mips_show_processor_type_command;
4596
4597 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4598 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
c2d11a7d 4599#endif
c906108c
SS
4600
4601 /* We really would like to have both "0" and "unlimited" work, but
4602 command.c doesn't deal with that. So make it a var_zinteger
4603 because the user can always use "999999" or some such for unlimited. */
4604 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4605 (char *) &heuristic_fence_post,
4606 "\
4607Set the distance searched for the start of a function.\n\
4608If you are debugging a stripped executable, GDB needs to search through the\n\
4609program for the start of a function. This command sets the distance of the\n\
4610search. The only need to set it is when debugging a stripped executable.",
4611 &setlist);
4612 /* We need to throw away the frame cache when we set this, since it
4613 might change our ability to get backtraces. */
4614 c->function.sfunc = reinit_frame_cache_sfunc;
4615 add_show_from_set (c, &showlist);
4616
4617 /* Allow the user to control whether the upper bits of 64-bit
4618 addresses should be zeroed. */
4014092b
AC
4619 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4620 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4621Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4622the correct value.\n",
4623 &setmipscmdlist);
4624 add_cmd ("mask-address", no_class, show_mask_address,
4625 "Show current mask-address value", &showmipscmdlist);
43e526b9
JM
4626
4627 /* Allow the user to control the size of 32 bit registers within the
4628 raw remote packet. */
4629 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4630 class_obscure,
4631 var_boolean,
4632 (char *)&mips64_transfers_32bit_regs_p, "\
4633Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4634Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4635that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
463664 bits for others. Use \"off\" to disable compatibility mode",
4637 &setlist),
4638 &showlist);
9ace0497
AC
4639
4640 /* Debug this files internals. */
4641 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4642 &mips_debug, "Set mips debugging.\n\
4643When non-zero, mips specific debugging is enabled.", &setdebuglist),
4644 &showdebuglist);
c906108c 4645}
9ace0497 4646
This page took 0.804868 seconds and 4 git commands to generate.