]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
bf64bfd6 | 2 | |
cda5a58a | 3 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
16e109ca AC |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
bf64bfd6 | 6 | |
c906108c SS |
7 | Contributed by Alessandro Forin([email protected]) at CMU |
8 | and by Per Bothner([email protected]) at U.Wisconsin. | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
28 | #include "gdb_string.h" | |
5e2e9765 | 29 | #include "gdb_assert.h" |
c906108c SS |
30 | #include "frame.h" |
31 | #include "inferior.h" | |
32 | #include "symtab.h" | |
33 | #include "value.h" | |
34 | #include "gdbcmd.h" | |
35 | #include "language.h" | |
36 | #include "gdbcore.h" | |
37 | #include "symfile.h" | |
38 | #include "objfiles.h" | |
39 | #include "gdbtypes.h" | |
40 | #include "target.h" | |
28d069e6 | 41 | #include "arch-utils.h" |
4e052eda | 42 | #include "regcache.h" |
70f80edf | 43 | #include "osabi.h" |
d1973055 | 44 | #include "mips-tdep.h" |
fe898f56 | 45 | #include "block.h" |
a4b8ebc8 | 46 | #include "reggroups.h" |
c906108c | 47 | #include "opcode/mips.h" |
c2d11a7d JM |
48 | #include "elf/mips.h" |
49 | #include "elf-bfd.h" | |
2475bac3 | 50 | #include "symcat.h" |
a4b8ebc8 | 51 | #include "sim-regno.h" |
a89aa300 | 52 | #include "dis-asm.h" |
edfae063 AC |
53 | #include "frame-unwind.h" |
54 | #include "frame-base.h" | |
55 | #include "trad-frame.h" | |
7d9b040b | 56 | #include "infcall.h" |
fed7ba43 | 57 | #include "floatformat.h" |
c906108c | 58 | |
8d5f9dcb DJ |
59 | static const struct objfile_data *mips_pdr_data; |
60 | ||
5bbcb741 | 61 | static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum); |
e0f7ec59 | 62 | |
dd824b04 DJ |
63 | /* A useful bit in the CP0 status register (PS_REGNUM). */ |
64 | /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */ | |
65 | #define ST0_FR (1 << 26) | |
66 | ||
b0069a17 AC |
67 | /* The sizes of floating point registers. */ |
68 | ||
69 | enum | |
70 | { | |
71 | MIPS_FPU_SINGLE_REGSIZE = 4, | |
72 | MIPS_FPU_DOUBLE_REGSIZE = 8 | |
73 | }; | |
74 | ||
0dadbba0 | 75 | |
2e4ebe70 DJ |
76 | static const char *mips_abi_string; |
77 | ||
78 | static const char *mips_abi_strings[] = { | |
79 | "auto", | |
80 | "n32", | |
81 | "o32", | |
28d169de | 82 | "n64", |
2e4ebe70 DJ |
83 | "o64", |
84 | "eabi32", | |
85 | "eabi64", | |
86 | NULL | |
87 | }; | |
88 | ||
cce74817 | 89 | struct frame_extra_info |
6d82d43b AC |
90 | { |
91 | mips_extra_func_info_t proc_desc; | |
92 | int num_args; | |
93 | }; | |
cce74817 | 94 | |
d929b26f AC |
95 | /* Various MIPS ISA options (related to stack analysis) can be |
96 | overridden dynamically. Establish an enum/array for managing | |
97 | them. */ | |
98 | ||
53904c9e AC |
99 | static const char size_auto[] = "auto"; |
100 | static const char size_32[] = "32"; | |
101 | static const char size_64[] = "64"; | |
d929b26f | 102 | |
53904c9e | 103 | static const char *size_enums[] = { |
d929b26f AC |
104 | size_auto, |
105 | size_32, | |
106 | size_64, | |
a5ea2558 AC |
107 | 0 |
108 | }; | |
109 | ||
7a292a7a | 110 | /* Some MIPS boards don't support floating point while others only |
ceae6e75 | 111 | support single-precision floating-point operations. */ |
c906108c SS |
112 | |
113 | enum mips_fpu_type | |
6d82d43b AC |
114 | { |
115 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
116 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
117 | MIPS_FPU_NONE /* No floating point. */ | |
118 | }; | |
c906108c SS |
119 | |
120 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
121 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
122 | #endif | |
123 | static int mips_fpu_type_auto = 1; | |
124 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
7a292a7a | 125 | |
9ace0497 | 126 | static int mips_debug = 0; |
7a292a7a | 127 | |
c2d11a7d JM |
128 | /* MIPS specific per-architecture information */ |
129 | struct gdbarch_tdep | |
6d82d43b AC |
130 | { |
131 | /* from the elf header */ | |
132 | int elf_flags; | |
133 | ||
134 | /* mips options */ | |
135 | enum mips_abi mips_abi; | |
136 | enum mips_abi found_abi; | |
137 | enum mips_fpu_type mips_fpu_type; | |
138 | int mips_last_arg_regnum; | |
139 | int mips_last_fp_arg_regnum; | |
6d82d43b AC |
140 | int default_mask_address_p; |
141 | /* Is the target using 64-bit raw integer registers but only | |
142 | storing a left-aligned 32-bit value in each? */ | |
143 | int mips64_transfers_32bit_regs_p; | |
144 | /* Indexes for various registers. IRIX and embedded have | |
145 | different values. This contains the "public" fields. Don't | |
146 | add any that do not need to be public. */ | |
147 | const struct mips_regnum *regnum; | |
148 | /* Register names table for the current register set. */ | |
149 | const char **mips_processor_reg_names; | |
150 | }; | |
c2d11a7d | 151 | |
fed7ba43 JB |
152 | static int |
153 | n32n64_floatformat_always_valid (const struct floatformat *fmt, | |
154 | const char *from) | |
155 | { | |
156 | return 1; | |
157 | } | |
158 | ||
159 | /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long. | |
160 | They are implemented as a pair of 64bit doubles where the high | |
161 | part holds the result of the operation rounded to double, and | |
162 | the low double holds the difference between the exact result and | |
163 | the rounded result. So "high" + "low" contains the result with | |
164 | added precision. Unfortunately, the floatformat structure used | |
165 | by GDB is not powerful enough to describe this format. As a temporary | |
166 | measure, we define a 128bit floatformat that only uses the high part. | |
167 | We lose a bit of precision but that's probably the best we can do | |
168 | for now with the current infrastructure. */ | |
169 | ||
170 | static const struct floatformat floatformat_n32n64_long_double_big = | |
171 | { | |
172 | floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52, | |
173 | floatformat_intbit_no, | |
174 | "floatformat_ieee_double_big", | |
175 | n32n64_floatformat_always_valid | |
176 | }; | |
177 | ||
56cea623 AC |
178 | const struct mips_regnum * |
179 | mips_regnum (struct gdbarch *gdbarch) | |
180 | { | |
181 | return gdbarch_tdep (gdbarch)->regnum; | |
182 | } | |
183 | ||
184 | static int | |
185 | mips_fpa0_regnum (struct gdbarch *gdbarch) | |
186 | { | |
187 | return mips_regnum (gdbarch)->fp0 + 12; | |
188 | } | |
189 | ||
0dadbba0 | 190 | #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \ |
216a600b | 191 | || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64) |
c2d11a7d | 192 | |
c2d11a7d | 193 | #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum) |
c2d11a7d | 194 | |
c2d11a7d | 195 | #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum) |
c2d11a7d | 196 | |
c2d11a7d | 197 | #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type) |
c2d11a7d | 198 | |
95404a3e AC |
199 | /* MIPS16 function addresses are odd (bit 0 is set). Here are some |
200 | functions to test, set, or clear bit 0 of addresses. */ | |
201 | ||
202 | static CORE_ADDR | |
203 | is_mips16_addr (CORE_ADDR addr) | |
204 | { | |
205 | return ((addr) & 1); | |
206 | } | |
207 | ||
208 | static CORE_ADDR | |
209 | make_mips16_addr (CORE_ADDR addr) | |
210 | { | |
211 | return ((addr) | 1); | |
212 | } | |
213 | ||
214 | static CORE_ADDR | |
215 | unmake_mips16_addr (CORE_ADDR addr) | |
216 | { | |
217 | return ((addr) & ~1); | |
218 | } | |
219 | ||
22540ece AC |
220 | /* Return the contents of register REGNUM as a signed integer. */ |
221 | ||
222 | static LONGEST | |
223 | read_signed_register (int regnum) | |
224 | { | |
719ec221 | 225 | void *buf = alloca (register_size (current_gdbarch, regnum)); |
22540ece | 226 | deprecated_read_register_gen (regnum, buf); |
6d82d43b AC |
227 | return (extract_signed_integer |
228 | (buf, register_size (current_gdbarch, regnum))); | |
22540ece AC |
229 | } |
230 | ||
231 | static LONGEST | |
232 | read_signed_register_pid (int regnum, ptid_t ptid) | |
233 | { | |
234 | ptid_t save_ptid; | |
235 | LONGEST retval; | |
236 | ||
237 | if (ptid_equal (ptid, inferior_ptid)) | |
238 | return read_signed_register (regnum); | |
239 | ||
240 | save_ptid = inferior_ptid; | |
241 | ||
242 | inferior_ptid = ptid; | |
243 | ||
244 | retval = read_signed_register (regnum); | |
245 | ||
246 | inferior_ptid = save_ptid; | |
247 | ||
248 | return retval; | |
249 | } | |
250 | ||
d1973055 KB |
251 | /* Return the MIPS ABI associated with GDBARCH. */ |
252 | enum mips_abi | |
253 | mips_abi (struct gdbarch *gdbarch) | |
254 | { | |
255 | return gdbarch_tdep (gdbarch)->mips_abi; | |
256 | } | |
257 | ||
4246e332 | 258 | int |
1b13c4f6 | 259 | mips_isa_regsize (struct gdbarch *gdbarch) |
4246e332 AC |
260 | { |
261 | return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word | |
262 | / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte); | |
263 | } | |
264 | ||
480d3dd2 AC |
265 | /* Return the currently configured (or set) saved register size. */ |
266 | ||
1b13c4f6 | 267 | static const char *mips_abi_regsize_string = size_auto; |
480d3dd2 | 268 | |
d929b26f | 269 | static unsigned int |
13326b4e | 270 | mips_abi_regsize (struct gdbarch *gdbarch) |
d929b26f | 271 | { |
1b13c4f6 | 272 | if (mips_abi_regsize_string == size_auto) |
13326b4e AC |
273 | switch (mips_abi (gdbarch)) |
274 | { | |
275 | case MIPS_ABI_EABI32: | |
276 | case MIPS_ABI_O32: | |
277 | return 4; | |
278 | case MIPS_ABI_N32: | |
279 | case MIPS_ABI_N64: | |
280 | case MIPS_ABI_O64: | |
281 | case MIPS_ABI_EABI64: | |
282 | return 8; | |
283 | case MIPS_ABI_UNKNOWN: | |
284 | case MIPS_ABI_LAST: | |
285 | default: | |
286 | internal_error (__FILE__, __LINE__, "bad switch"); | |
287 | } | |
1b13c4f6 | 288 | else if (mips_abi_regsize_string == size_64) |
d929b26f | 289 | return 8; |
1b13c4f6 | 290 | else /* if (mips_abi_regsize_string == size_32) */ |
d929b26f AC |
291 | return 4; |
292 | } | |
293 | ||
71b8ef93 | 294 | /* Functions for setting and testing a bit in a minimal symbol that |
5a89d8aa | 295 | marks it as 16-bit function. The MSB of the minimal symbol's |
f594e5e9 | 296 | "info" field is used for this purpose. |
5a89d8aa MS |
297 | |
298 | ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special", | |
299 | i.e. refers to a 16-bit function, and sets a "special" bit in a | |
300 | minimal symbol to mark it as a 16-bit function | |
301 | ||
f594e5e9 | 302 | MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */ |
5a89d8aa | 303 | |
5a89d8aa | 304 | static void |
6d82d43b AC |
305 | mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym) |
306 | { | |
307 | if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16) | |
308 | { | |
309 | MSYMBOL_INFO (msym) = (char *) | |
310 | (((long) MSYMBOL_INFO (msym)) | 0x80000000); | |
311 | SYMBOL_VALUE_ADDRESS (msym) |= 1; | |
312 | } | |
5a89d8aa MS |
313 | } |
314 | ||
71b8ef93 MS |
315 | static int |
316 | msymbol_is_special (struct minimal_symbol *msym) | |
317 | { | |
318 | return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0); | |
319 | } | |
320 | ||
88658117 AC |
321 | /* XFER a value from the big/little/left end of the register. |
322 | Depending on the size of the value it might occupy the entire | |
323 | register or just part of it. Make an allowance for this, aligning | |
324 | things accordingly. */ | |
325 | ||
326 | static void | |
327 | mips_xfer_register (struct regcache *regcache, int reg_num, int length, | |
6d82d43b AC |
328 | enum bfd_endian endian, bfd_byte * in, |
329 | const bfd_byte * out, int buf_offset) | |
88658117 | 330 | { |
88658117 | 331 | int reg_offset = 0; |
a4b8ebc8 | 332 | gdb_assert (reg_num >= NUM_REGS); |
cb1d2653 AC |
333 | /* Need to transfer the left or right part of the register, based on |
334 | the targets byte order. */ | |
88658117 AC |
335 | switch (endian) |
336 | { | |
337 | case BFD_ENDIAN_BIG: | |
719ec221 | 338 | reg_offset = register_size (current_gdbarch, reg_num) - length; |
88658117 AC |
339 | break; |
340 | case BFD_ENDIAN_LITTLE: | |
341 | reg_offset = 0; | |
342 | break; | |
6d82d43b | 343 | case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */ |
88658117 AC |
344 | reg_offset = 0; |
345 | break; | |
346 | default: | |
347 | internal_error (__FILE__, __LINE__, "bad switch"); | |
348 | } | |
349 | if (mips_debug) | |
cb1d2653 AC |
350 | fprintf_unfiltered (gdb_stderr, |
351 | "xfer $%d, reg offset %d, buf offset %d, length %d, ", | |
352 | reg_num, reg_offset, buf_offset, length); | |
88658117 AC |
353 | if (mips_debug && out != NULL) |
354 | { | |
355 | int i; | |
cb1d2653 | 356 | fprintf_unfiltered (gdb_stdlog, "out "); |
88658117 | 357 | for (i = 0; i < length; i++) |
cb1d2653 | 358 | fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]); |
88658117 AC |
359 | } |
360 | if (in != NULL) | |
6d82d43b AC |
361 | regcache_cooked_read_part (regcache, reg_num, reg_offset, length, |
362 | in + buf_offset); | |
88658117 | 363 | if (out != NULL) |
6d82d43b AC |
364 | regcache_cooked_write_part (regcache, reg_num, reg_offset, length, |
365 | out + buf_offset); | |
88658117 AC |
366 | if (mips_debug && in != NULL) |
367 | { | |
368 | int i; | |
cb1d2653 | 369 | fprintf_unfiltered (gdb_stdlog, "in "); |
88658117 | 370 | for (i = 0; i < length; i++) |
cb1d2653 | 371 | fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]); |
88658117 AC |
372 | } |
373 | if (mips_debug) | |
374 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
375 | } | |
376 | ||
dd824b04 DJ |
377 | /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU |
378 | compatiblity mode. A return value of 1 means that we have | |
379 | physical 64-bit registers, but should treat them as 32-bit registers. */ | |
380 | ||
381 | static int | |
382 | mips2_fp_compat (void) | |
383 | { | |
384 | /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not | |
385 | meaningful. */ | |
6d82d43b AC |
386 | if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == |
387 | 4) | |
dd824b04 DJ |
388 | return 0; |
389 | ||
390 | #if 0 | |
391 | /* FIXME drow 2002-03-10: This is disabled until we can do it consistently, | |
392 | in all the places we deal with FP registers. PR gdb/413. */ | |
393 | /* Otherwise check the FR bit in the status register - it controls | |
394 | the FP compatiblity mode. If it is clear we are in compatibility | |
395 | mode. */ | |
396 | if ((read_register (PS_REGNUM) & ST0_FR) == 0) | |
397 | return 1; | |
398 | #endif | |
361d1df0 | 399 | |
dd824b04 DJ |
400 | return 0; |
401 | } | |
402 | ||
d929b26f | 403 | /* The amount of space reserved on the stack for registers. This is |
1b13c4f6 | 404 | different to MIPS_ABI_REGSIZE as it determines the alignment of |
d929b26f AC |
405 | data allocated after the registers have run out. */ |
406 | ||
53904c9e | 407 | static const char *mips_stack_argsize_string = size_auto; |
d929b26f AC |
408 | |
409 | static unsigned int | |
13326b4e | 410 | mips_stack_argsize (struct gdbarch *gdbarch) |
d929b26f AC |
411 | { |
412 | if (mips_stack_argsize_string == size_auto) | |
13326b4e | 413 | return mips_abi_regsize (gdbarch); |
d929b26f AC |
414 | else if (mips_stack_argsize_string == size_64) |
415 | return 8; | |
6d82d43b | 416 | else /* if (mips_stack_argsize_string == size_32) */ |
d929b26f AC |
417 | return 4; |
418 | } | |
419 | ||
7a292a7a | 420 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
c906108c | 421 | |
c9343fd1 | 422 | struct mips_frame_cache; |
570b8f7c | 423 | static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR, |
c9343fd1 AC |
424 | struct frame_info *, |
425 | struct mips_frame_cache *); | |
eec63939 AC |
426 | static mips_extra_func_info_t non_heuristic_proc_desc (CORE_ADDR pc, |
427 | CORE_ADDR *addrptr); | |
c906108c | 428 | |
a14ed312 | 429 | static CORE_ADDR heuristic_proc_start (CORE_ADDR); |
c906108c | 430 | |
a14ed312 | 431 | static CORE_ADDR read_next_frame_reg (struct frame_info *, int); |
c906108c | 432 | |
a14ed312 | 433 | static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *); |
c906108c | 434 | |
177f84a3 | 435 | static CORE_ADDR after_prologue (CORE_ADDR pc); |
c906108c | 436 | |
67b2c998 DJ |
437 | static struct type *mips_float_register_type (void); |
438 | static struct type *mips_double_register_type (void); | |
439 | ||
acdb74a0 AC |
440 | /* The list of available "set mips " and "show mips " commands */ |
441 | ||
442 | static struct cmd_list_element *setmipscmdlist = NULL; | |
443 | static struct cmd_list_element *showmipscmdlist = NULL; | |
444 | ||
a65bbe44 JB |
445 | /* FIXME: brobecker/2004-10-15: I suspect these two declarations can |
446 | be removed by a better ordering of the functions below. But I want | |
447 | to do that as a separate change later in order to separate real | |
448 | changes and changes that just move some code around. */ | |
449 | static CORE_ADDR mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
450 | struct frame_info *next_frame, | |
451 | struct mips_frame_cache *this_cache); | |
452 | static CORE_ADDR mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
453 | struct frame_info *next_frame, | |
454 | struct mips_frame_cache *this_cache); | |
455 | ||
5e2e9765 KB |
456 | /* Integer registers 0 thru 31 are handled explicitly by |
457 | mips_register_name(). Processor specific registers 32 and above | |
691c0433 AC |
458 | are listed in the followign tables. */ |
459 | ||
6d82d43b AC |
460 | enum |
461 | { NUM_MIPS_PROCESSOR_REGS = (90 - 32) }; | |
691c0433 AC |
462 | |
463 | /* Generic MIPS. */ | |
464 | ||
465 | static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
466 | "sr", "lo", "hi", "bad", "cause", "pc", |
467 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
468 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
469 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
470 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
471 | "fsr", "fir", "" /*"fp" */ , "", | |
472 | "", "", "", "", "", "", "", "", | |
473 | "", "", "", "", "", "", "", "", | |
691c0433 AC |
474 | }; |
475 | ||
476 | /* Names of IDT R3041 registers. */ | |
477 | ||
478 | static const char *mips_r3041_reg_names[] = { | |
6d82d43b AC |
479 | "sr", "lo", "hi", "bad", "cause", "pc", |
480 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
481 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
482 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
483 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
484 | "fsr", "fir", "", /*"fp" */ "", | |
485 | "", "", "bus", "ccfg", "", "", "", "", | |
486 | "", "", "port", "cmp", "", "", "epc", "prid", | |
691c0433 AC |
487 | }; |
488 | ||
489 | /* Names of tx39 registers. */ | |
490 | ||
491 | static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
492 | "sr", "lo", "hi", "bad", "cause", "pc", |
493 | "", "", "", "", "", "", "", "", | |
494 | "", "", "", "", "", "", "", "", | |
495 | "", "", "", "", "", "", "", "", | |
496 | "", "", "", "", "", "", "", "", | |
497 | "", "", "", "", | |
498 | "", "", "", "", "", "", "", "", | |
499 | "", "", "config", "cache", "debug", "depc", "epc", "" | |
691c0433 AC |
500 | }; |
501 | ||
502 | /* Names of IRIX registers. */ | |
503 | static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
504 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", |
505 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
506 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
507 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
508 | "pc", "cause", "bad", "hi", "lo", "fsr", "fir" | |
691c0433 AC |
509 | }; |
510 | ||
cce74817 | 511 | |
5e2e9765 | 512 | /* Return the name of the register corresponding to REGNO. */ |
5a89d8aa | 513 | static const char * |
5e2e9765 | 514 | mips_register_name (int regno) |
cce74817 | 515 | { |
691c0433 | 516 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
5e2e9765 KB |
517 | /* GPR names for all ABIs other than n32/n64. */ |
518 | static char *mips_gpr_names[] = { | |
6d82d43b AC |
519 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
520 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
521 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
522 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
5e2e9765 KB |
523 | }; |
524 | ||
525 | /* GPR names for n32 and n64 ABIs. */ | |
526 | static char *mips_n32_n64_gpr_names[] = { | |
6d82d43b AC |
527 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
528 | "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", | |
529 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
530 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" | |
5e2e9765 KB |
531 | }; |
532 | ||
533 | enum mips_abi abi = mips_abi (current_gdbarch); | |
534 | ||
a4b8ebc8 AC |
535 | /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then |
536 | don't make the raw register names visible. */ | |
537 | int rawnum = regno % NUM_REGS; | |
538 | if (regno < NUM_REGS) | |
539 | return ""; | |
540 | ||
5e2e9765 KB |
541 | /* The MIPS integer registers are always mapped from 0 to 31. The |
542 | names of the registers (which reflects the conventions regarding | |
543 | register use) vary depending on the ABI. */ | |
a4b8ebc8 | 544 | if (0 <= rawnum && rawnum < 32) |
5e2e9765 KB |
545 | { |
546 | if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64) | |
a4b8ebc8 | 547 | return mips_n32_n64_gpr_names[rawnum]; |
5e2e9765 | 548 | else |
a4b8ebc8 | 549 | return mips_gpr_names[rawnum]; |
5e2e9765 | 550 | } |
a4b8ebc8 | 551 | else if (32 <= rawnum && rawnum < NUM_REGS) |
691c0433 AC |
552 | { |
553 | gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS); | |
554 | return tdep->mips_processor_reg_names[rawnum - 32]; | |
555 | } | |
5e2e9765 KB |
556 | else |
557 | internal_error (__FILE__, __LINE__, | |
a4b8ebc8 | 558 | "mips_register_name: bad register number %d", rawnum); |
cce74817 | 559 | } |
5e2e9765 | 560 | |
a4b8ebc8 | 561 | /* Return the groups that a MIPS register can be categorised into. */ |
c5aa993b | 562 | |
a4b8ebc8 AC |
563 | static int |
564 | mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
565 | struct reggroup *reggroup) | |
566 | { | |
567 | int vector_p; | |
568 | int float_p; | |
569 | int raw_p; | |
570 | int rawnum = regnum % NUM_REGS; | |
571 | int pseudo = regnum / NUM_REGS; | |
572 | if (reggroup == all_reggroup) | |
573 | return pseudo; | |
574 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
575 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
576 | /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs | |
577 | (gdbarch), as not all architectures are multi-arch. */ | |
578 | raw_p = rawnum < NUM_REGS; | |
6d82d43b | 579 | if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0') |
a4b8ebc8 AC |
580 | return 0; |
581 | if (reggroup == float_reggroup) | |
582 | return float_p && pseudo; | |
583 | if (reggroup == vector_reggroup) | |
584 | return vector_p && pseudo; | |
585 | if (reggroup == general_reggroup) | |
586 | return (!vector_p && !float_p) && pseudo; | |
587 | /* Save the pseudo registers. Need to make certain that any code | |
588 | extracting register values from a saved register cache also uses | |
589 | pseudo registers. */ | |
590 | if (reggroup == save_reggroup) | |
591 | return raw_p && pseudo; | |
592 | /* Restore the same pseudo register. */ | |
593 | if (reggroup == restore_reggroup) | |
594 | return raw_p && pseudo; | |
6d82d43b | 595 | return 0; |
a4b8ebc8 AC |
596 | } |
597 | ||
598 | /* Map the symbol table registers which live in the range [1 * | |
599 | NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw | |
47ebcfbe | 600 | registers. Take care of alignment and size problems. */ |
c5aa993b | 601 | |
a4b8ebc8 AC |
602 | static void |
603 | mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
604 | int cookednum, void *buf) | |
605 | { | |
47ebcfbe | 606 | int rawnum = cookednum % NUM_REGS; |
a4b8ebc8 | 607 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); |
47ebcfbe | 608 | if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum)) |
de38af99 | 609 | regcache_raw_read (regcache, rawnum, buf); |
6d82d43b AC |
610 | else if (register_size (gdbarch, rawnum) > |
611 | register_size (gdbarch, cookednum)) | |
47ebcfbe AC |
612 | { |
613 | if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p | |
614 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) | |
615 | regcache_raw_read_part (regcache, rawnum, 0, 4, buf); | |
616 | else | |
617 | regcache_raw_read_part (regcache, rawnum, 4, 4, buf); | |
618 | } | |
619 | else | |
620 | internal_error (__FILE__, __LINE__, "bad register size"); | |
a4b8ebc8 AC |
621 | } |
622 | ||
623 | static void | |
6d82d43b AC |
624 | mips_pseudo_register_write (struct gdbarch *gdbarch, |
625 | struct regcache *regcache, int cookednum, | |
626 | const void *buf) | |
a4b8ebc8 | 627 | { |
47ebcfbe | 628 | int rawnum = cookednum % NUM_REGS; |
a4b8ebc8 | 629 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); |
47ebcfbe | 630 | if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum)) |
de38af99 | 631 | regcache_raw_write (regcache, rawnum, buf); |
6d82d43b AC |
632 | else if (register_size (gdbarch, rawnum) > |
633 | register_size (gdbarch, cookednum)) | |
47ebcfbe AC |
634 | { |
635 | if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p | |
636 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) | |
637 | regcache_raw_write_part (regcache, rawnum, 0, 4, buf); | |
638 | else | |
639 | regcache_raw_write_part (regcache, rawnum, 4, 4, buf); | |
640 | } | |
641 | else | |
642 | internal_error (__FILE__, __LINE__, "bad register size"); | |
a4b8ebc8 | 643 | } |
c5aa993b | 644 | |
c906108c | 645 | /* Table to translate MIPS16 register field to actual register number. */ |
6d82d43b | 646 | static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; |
c906108c SS |
647 | |
648 | /* Heuristic_proc_start may hunt through the text section for a long | |
649 | time across a 2400 baud serial line. Allows the user to limit this | |
650 | search. */ | |
651 | ||
652 | static unsigned int heuristic_fence_post = 0; | |
653 | ||
c5aa993b JM |
654 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
655 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
c906108c SS |
656 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
657 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
658 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
659 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
660 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
661 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
662 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
663 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
6c0d6680 DJ |
664 | /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long, |
665 | this will corrupt pdr.iline. Fortunately we don't use it. */ | |
c906108c SS |
666 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) |
667 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
c906108c | 668 | |
46cd78fb | 669 | /* Number of bytes of storage in the actual machine representation for |
719ec221 AC |
670 | register N. NOTE: This defines the pseudo register type so need to |
671 | rebuild the architecture vector. */ | |
43e526b9 JM |
672 | |
673 | static int mips64_transfers_32bit_regs_p = 0; | |
674 | ||
719ec221 AC |
675 | static void |
676 | set_mips64_transfers_32bit_regs (char *args, int from_tty, | |
677 | struct cmd_list_element *c) | |
43e526b9 | 678 | { |
719ec221 AC |
679 | struct gdbarch_info info; |
680 | gdbarch_info_init (&info); | |
681 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" | |
682 | instead of relying on globals. Doing that would let generic code | |
683 | handle the search for this specific architecture. */ | |
684 | if (!gdbarch_update_p (info)) | |
a4b8ebc8 | 685 | { |
719ec221 AC |
686 | mips64_transfers_32bit_regs_p = 0; |
687 | error ("32-bit compatibility mode not supported"); | |
a4b8ebc8 | 688 | } |
a4b8ebc8 AC |
689 | } |
690 | ||
47ebcfbe | 691 | /* Convert to/from a register and the corresponding memory value. */ |
43e526b9 | 692 | |
ff2e87ac AC |
693 | static int |
694 | mips_convert_register_p (int regnum, struct type *type) | |
695 | { | |
696 | return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
719ec221 | 697 | && register_size (current_gdbarch, regnum) == 4 |
87783b8b AC |
698 | && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0 |
699 | && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32 | |
6d82d43b | 700 | && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8); |
ff2e87ac AC |
701 | } |
702 | ||
42c466d7 | 703 | static void |
ff2e87ac AC |
704 | mips_register_to_value (struct frame_info *frame, int regnum, |
705 | struct type *type, void *to) | |
102182a9 | 706 | { |
7f5f525d AC |
707 | get_frame_register (frame, regnum + 0, (char *) to + 4); |
708 | get_frame_register (frame, regnum + 1, (char *) to + 0); | |
102182a9 MS |
709 | } |
710 | ||
42c466d7 | 711 | static void |
ff2e87ac AC |
712 | mips_value_to_register (struct frame_info *frame, int regnum, |
713 | struct type *type, const void *from) | |
102182a9 | 714 | { |
ff2e87ac AC |
715 | put_frame_register (frame, regnum + 0, (const char *) from + 4); |
716 | put_frame_register (frame, regnum + 1, (const char *) from + 0); | |
102182a9 MS |
717 | } |
718 | ||
a4b8ebc8 AC |
719 | /* Return the GDB type object for the "standard" data type of data in |
720 | register REG. */ | |
78fde5f8 KB |
721 | |
722 | static struct type * | |
a4b8ebc8 AC |
723 | mips_register_type (struct gdbarch *gdbarch, int regnum) |
724 | { | |
5ef80fb0 | 725 | gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS); |
56cea623 AC |
726 | if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0 |
727 | && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32) | |
a6425924 | 728 | { |
5ef80fb0 | 729 | /* The floating-point registers raw, or cooked, always match |
1b13c4f6 | 730 | mips_isa_regsize(), and also map 1:1, byte for byte. */ |
5ef80fb0 AC |
731 | switch (gdbarch_byte_order (gdbarch)) |
732 | { | |
733 | case BFD_ENDIAN_BIG: | |
1b13c4f6 | 734 | if (mips_isa_regsize (gdbarch) == 4) |
5ef80fb0 AC |
735 | return builtin_type_ieee_single_big; |
736 | else | |
737 | return builtin_type_ieee_double_big; | |
738 | case BFD_ENDIAN_LITTLE: | |
1b13c4f6 | 739 | if (mips_isa_regsize (gdbarch) == 4) |
5ef80fb0 AC |
740 | return builtin_type_ieee_single_little; |
741 | else | |
742 | return builtin_type_ieee_double_little; | |
743 | case BFD_ENDIAN_UNKNOWN: | |
744 | default: | |
745 | internal_error (__FILE__, __LINE__, "bad switch"); | |
746 | } | |
a6425924 | 747 | } |
d5ac5a39 AC |
748 | else if (regnum < NUM_REGS) |
749 | { | |
750 | /* The raw or ISA registers. These are all sized according to | |
751 | the ISA regsize. */ | |
752 | if (mips_isa_regsize (gdbarch) == 4) | |
753 | return builtin_type_int32; | |
754 | else | |
755 | return builtin_type_int64; | |
756 | } | |
78fde5f8 | 757 | else |
d5ac5a39 AC |
758 | { |
759 | /* The cooked or ABI registers. These are sized according to | |
760 | the ABI (with a few complications). */ | |
761 | if (regnum >= (NUM_REGS | |
762 | + mips_regnum (current_gdbarch)->fp_control_status) | |
763 | && regnum <= NUM_REGS + LAST_EMBED_REGNUM) | |
764 | /* The pseudo/cooked view of the embedded registers is always | |
765 | 32-bit. The raw view is handled below. */ | |
766 | return builtin_type_int32; | |
767 | else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p) | |
768 | /* The target, while possibly using a 64-bit register buffer, | |
769 | is only transfering 32-bits of each integer register. | |
770 | Reflect this in the cooked/pseudo (ABI) register value. */ | |
771 | return builtin_type_int32; | |
772 | else if (mips_abi_regsize (gdbarch) == 4) | |
773 | /* The ABI is restricted to 32-bit registers (the ISA could be | |
774 | 32- or 64-bit). */ | |
775 | return builtin_type_int32; | |
776 | else | |
777 | /* 64-bit ABI. */ | |
778 | return builtin_type_int64; | |
779 | } | |
78fde5f8 KB |
780 | } |
781 | ||
bcb0cc15 MS |
782 | /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */ |
783 | ||
784 | static CORE_ADDR | |
785 | mips_read_sp (void) | |
786 | { | |
f10683bb | 787 | return read_signed_register (MIPS_SP_REGNUM); |
bcb0cc15 MS |
788 | } |
789 | ||
c906108c | 790 | /* Should the upper word of 64-bit addresses be zeroed? */ |
7f19b9a2 | 791 | enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO; |
4014092b AC |
792 | |
793 | static int | |
480d3dd2 | 794 | mips_mask_address_p (struct gdbarch_tdep *tdep) |
4014092b AC |
795 | { |
796 | switch (mask_address_var) | |
797 | { | |
7f19b9a2 | 798 | case AUTO_BOOLEAN_TRUE: |
4014092b | 799 | return 1; |
7f19b9a2 | 800 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
801 | return 0; |
802 | break; | |
7f19b9a2 | 803 | case AUTO_BOOLEAN_AUTO: |
480d3dd2 | 804 | return tdep->default_mask_address_p; |
4014092b | 805 | default: |
6d82d43b | 806 | internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch"); |
4014092b | 807 | return -1; |
361d1df0 | 808 | } |
4014092b AC |
809 | } |
810 | ||
811 | static void | |
e9e68a56 | 812 | show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c) |
4014092b | 813 | { |
480d3dd2 | 814 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
4014092b AC |
815 | switch (mask_address_var) |
816 | { | |
7f19b9a2 | 817 | case AUTO_BOOLEAN_TRUE: |
4014092b AC |
818 | printf_filtered ("The 32 bit mips address mask is enabled\n"); |
819 | break; | |
7f19b9a2 | 820 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
821 | printf_filtered ("The 32 bit mips address mask is disabled\n"); |
822 | break; | |
7f19b9a2 | 823 | case AUTO_BOOLEAN_AUTO: |
6d82d43b AC |
824 | printf_filtered |
825 | ("The 32 bit address mask is set automatically. Currently %s\n", | |
826 | mips_mask_address_p (tdep) ? "enabled" : "disabled"); | |
4014092b AC |
827 | break; |
828 | default: | |
6d82d43b | 829 | internal_error (__FILE__, __LINE__, "show_mask_address: bad switch"); |
4014092b | 830 | break; |
361d1df0 | 831 | } |
4014092b | 832 | } |
c906108c | 833 | |
c906108c SS |
834 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ |
835 | ||
836 | static int | |
837 | pc_is_mips16 (bfd_vma memaddr) | |
838 | { | |
839 | struct minimal_symbol *sym; | |
840 | ||
841 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
95404a3e | 842 | if (is_mips16_addr (memaddr)) |
c906108c SS |
843 | return 1; |
844 | ||
845 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
846 | the high bit of the info field. Use this to decide if the function is | |
847 | MIPS16 or normal MIPS. */ | |
848 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
849 | if (sym) | |
71b8ef93 | 850 | return msymbol_is_special (sym); |
c906108c SS |
851 | else |
852 | return 0; | |
853 | } | |
854 | ||
b2fa5097 | 855 | /* MIPS believes that the PC has a sign extended value. Perhaps the |
6c997a34 AC |
856 | all registers should be sign extended for simplicity? */ |
857 | ||
858 | static CORE_ADDR | |
39f77062 | 859 | mips_read_pc (ptid_t ptid) |
6c997a34 | 860 | { |
b6cb9035 AC |
861 | return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid); |
862 | } | |
863 | ||
58dfe9ff AC |
864 | static CORE_ADDR |
865 | mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
866 | { | |
edfae063 AC |
867 | return frame_unwind_register_signed (next_frame, |
868 | NUM_REGS + mips_regnum (gdbarch)->pc); | |
869 | } | |
870 | ||
871 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
872 | dummy frame. The frame ID's base needs to match the TOS value | |
873 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
874 | breakpoint. */ | |
875 | ||
876 | static struct frame_id | |
877 | mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
878 | { | |
f10683bb | 879 | return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM), |
edfae063 | 880 | frame_pc_unwind (next_frame)); |
58dfe9ff AC |
881 | } |
882 | ||
b6cb9035 AC |
883 | static void |
884 | mips_write_pc (CORE_ADDR pc, ptid_t ptid) | |
885 | { | |
886 | write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid); | |
6c997a34 | 887 | } |
c906108c SS |
888 | |
889 | /* This returns the PC of the first inst after the prologue. If we can't | |
890 | find the prologue, then return 0. */ | |
891 | ||
892 | static CORE_ADDR | |
177f84a3 | 893 | after_prologue (CORE_ADDR pc) |
c906108c | 894 | { |
177f84a3 | 895 | mips_extra_func_info_t proc_desc; |
c906108c SS |
896 | struct symtab_and_line sal; |
897 | CORE_ADDR func_addr, func_end; | |
283be873 AC |
898 | CORE_ADDR startaddr = 0; |
899 | ||
900 | /* Pass a NULL next_frame to heuristic_proc_desc. We should not | |
901 | attempt to read the stack pointer from the current machine state, | |
902 | because the current machine state has nothing to do with the | |
903 | information we need from the proc_desc; and the process may or | |
904 | may not exist right now. */ | |
905 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
906 | if (proc_desc) | |
907 | { | |
908 | /* IF this is the topmost frame AND (this proc does not have | |
909 | debugging information OR the PC is in the procedure prologue) | |
910 | THEN create a "heuristic" proc_desc (by analyzing the actual | |
911 | code) to replace the "official" proc_desc. */ | |
912 | struct symtab_and_line val; | |
fb603883 | 913 | if (PROC_SYMBOL (proc_desc)) |
283be873 AC |
914 | { |
915 | val = find_pc_line (BLOCK_START | |
fb603883 AC |
916 | (SYMBOL_BLOCK_VALUE (PROC_SYMBOL (proc_desc))), |
917 | 0); | |
283be873 AC |
918 | val.pc = val.end ? val.end : pc; |
919 | } | |
fb603883 | 920 | if (!PROC_SYMBOL (proc_desc) || pc < val.pc) |
283be873 AC |
921 | { |
922 | mips_extra_func_info_t found_heuristic = | |
c9343fd1 | 923 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), pc, NULL, NULL); |
283be873 AC |
924 | if (found_heuristic) |
925 | proc_desc = found_heuristic; | |
926 | } | |
927 | } | |
928 | else | |
929 | { | |
930 | if (startaddr == 0) | |
931 | startaddr = heuristic_proc_start (pc); | |
c906108c | 932 | |
c9343fd1 | 933 | proc_desc = heuristic_proc_desc (startaddr, pc, NULL, NULL); |
283be873 | 934 | } |
c906108c SS |
935 | |
936 | if (proc_desc) | |
937 | { | |
938 | /* If function is frameless, then we need to do it the hard way. I | |
c5aa993b | 939 | strongly suspect that frameless always means prologueless... */ |
f10683bb | 940 | if (PROC_FRAME_REG (proc_desc) == MIPS_SP_REGNUM |
c906108c SS |
941 | && PROC_FRAME_OFFSET (proc_desc) == 0) |
942 | return 0; | |
943 | } | |
944 | ||
945 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
946 | return 0; /* Unknown */ | |
947 | ||
948 | sal = find_pc_line (func_addr, 0); | |
949 | ||
950 | if (sal.end < func_end) | |
951 | return sal.end; | |
952 | ||
953 | /* The line after the prologue is after the end of the function. In this | |
954 | case, tell the caller to find the prologue the hard way. */ | |
955 | ||
956 | return 0; | |
957 | } | |
958 | ||
c906108c SS |
959 | /* Fetch and return instruction from the specified location. If the PC |
960 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
961 | ||
962 | static t_inst | |
acdb74a0 | 963 | mips_fetch_instruction (CORE_ADDR addr) |
c906108c SS |
964 | { |
965 | char buf[MIPS_INSTLEN]; | |
966 | int instlen; | |
967 | int status; | |
968 | ||
969 | if (pc_is_mips16 (addr)) | |
970 | { | |
971 | instlen = MIPS16_INSTLEN; | |
95404a3e | 972 | addr = unmake_mips16_addr (addr); |
c906108c SS |
973 | } |
974 | else | |
c5aa993b | 975 | instlen = MIPS_INSTLEN; |
1f602b35 | 976 | status = deprecated_read_memory_nobpt (addr, buf, instlen); |
c906108c SS |
977 | if (status) |
978 | memory_error (status, addr); | |
979 | return extract_unsigned_integer (buf, instlen); | |
980 | } | |
981 | ||
edfae063 AC |
982 | static ULONGEST |
983 | mips16_fetch_instruction (CORE_ADDR addr) | |
984 | { | |
985 | char buf[MIPS_INSTLEN]; | |
986 | int instlen; | |
987 | int status; | |
988 | ||
989 | instlen = MIPS16_INSTLEN; | |
990 | addr = unmake_mips16_addr (addr); | |
1f602b35 | 991 | status = deprecated_read_memory_nobpt (addr, buf, instlen); |
edfae063 AC |
992 | if (status) |
993 | memory_error (status, addr); | |
994 | return extract_unsigned_integer (buf, instlen); | |
995 | } | |
996 | ||
c906108c | 997 | /* These the fields of 32 bit mips instructions */ |
e135b889 DJ |
998 | #define mips32_op(x) (x >> 26) |
999 | #define itype_op(x) (x >> 26) | |
1000 | #define itype_rs(x) ((x >> 21) & 0x1f) | |
c906108c | 1001 | #define itype_rt(x) ((x >> 16) & 0x1f) |
e135b889 | 1002 | #define itype_immediate(x) (x & 0xffff) |
c906108c | 1003 | |
e135b889 DJ |
1004 | #define jtype_op(x) (x >> 26) |
1005 | #define jtype_target(x) (x & 0x03ffffff) | |
c906108c | 1006 | |
e135b889 DJ |
1007 | #define rtype_op(x) (x >> 26) |
1008 | #define rtype_rs(x) ((x >> 21) & 0x1f) | |
1009 | #define rtype_rt(x) ((x >> 16) & 0x1f) | |
1010 | #define rtype_rd(x) ((x >> 11) & 0x1f) | |
1011 | #define rtype_shamt(x) ((x >> 6) & 0x1f) | |
1012 | #define rtype_funct(x) (x & 0x3f) | |
c906108c SS |
1013 | |
1014 | static CORE_ADDR | |
c5aa993b JM |
1015 | mips32_relative_offset (unsigned long inst) |
1016 | { | |
1017 | long x; | |
1018 | x = itype_immediate (inst); | |
1019 | if (x & 0x8000) /* sign bit set */ | |
c906108c | 1020 | { |
c5aa993b | 1021 | x |= 0xffff0000; /* sign extension */ |
c906108c | 1022 | } |
c5aa993b JM |
1023 | x = x << 2; |
1024 | return x; | |
c906108c SS |
1025 | } |
1026 | ||
1027 | /* Determine whate to set a single step breakpoint while considering | |
1028 | branch prediction */ | |
5a89d8aa | 1029 | static CORE_ADDR |
c5aa993b JM |
1030 | mips32_next_pc (CORE_ADDR pc) |
1031 | { | |
1032 | unsigned long inst; | |
1033 | int op; | |
1034 | inst = mips_fetch_instruction (pc); | |
e135b889 | 1035 | if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */ |
c5aa993b | 1036 | { |
e135b889 | 1037 | if (itype_op (inst) >> 2 == 5) |
6d82d43b | 1038 | /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */ |
c5aa993b | 1039 | { |
e135b889 | 1040 | op = (itype_op (inst) & 0x03); |
c906108c SS |
1041 | switch (op) |
1042 | { | |
e135b889 DJ |
1043 | case 0: /* BEQL */ |
1044 | goto equal_branch; | |
1045 | case 1: /* BNEL */ | |
1046 | goto neq_branch; | |
1047 | case 2: /* BLEZL */ | |
1048 | goto less_branch; | |
1049 | case 3: /* BGTZ */ | |
1050 | goto greater_branch; | |
c5aa993b JM |
1051 | default: |
1052 | pc += 4; | |
c906108c SS |
1053 | } |
1054 | } | |
e135b889 | 1055 | else if (itype_op (inst) == 17 && itype_rs (inst) == 8) |
6d82d43b | 1056 | /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */ |
e135b889 DJ |
1057 | { |
1058 | int tf = itype_rt (inst) & 0x01; | |
1059 | int cnum = itype_rt (inst) >> 2; | |
6d82d43b AC |
1060 | int fcrcs = |
1061 | read_signed_register (mips_regnum (current_gdbarch)-> | |
1062 | fp_control_status); | |
e135b889 DJ |
1063 | int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01); |
1064 | ||
1065 | if (((cond >> cnum) & 0x01) == tf) | |
1066 | pc += mips32_relative_offset (inst) + 4; | |
1067 | else | |
1068 | pc += 8; | |
1069 | } | |
c5aa993b JM |
1070 | else |
1071 | pc += 4; /* Not a branch, next instruction is easy */ | |
c906108c SS |
1072 | } |
1073 | else | |
c5aa993b JM |
1074 | { /* This gets way messy */ |
1075 | ||
c906108c | 1076 | /* Further subdivide into SPECIAL, REGIMM and other */ |
e135b889 | 1077 | switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */ |
c906108c | 1078 | { |
c5aa993b JM |
1079 | case 0: /* SPECIAL */ |
1080 | op = rtype_funct (inst); | |
1081 | switch (op) | |
1082 | { | |
1083 | case 8: /* JR */ | |
1084 | case 9: /* JALR */ | |
6c997a34 AC |
1085 | /* Set PC to that address */ |
1086 | pc = read_signed_register (rtype_rs (inst)); | |
c5aa993b JM |
1087 | break; |
1088 | default: | |
1089 | pc += 4; | |
1090 | } | |
1091 | ||
6d82d43b | 1092 | break; /* end SPECIAL */ |
c5aa993b | 1093 | case 1: /* REGIMM */ |
c906108c | 1094 | { |
e135b889 DJ |
1095 | op = itype_rt (inst); /* branch condition */ |
1096 | switch (op) | |
c906108c | 1097 | { |
c5aa993b | 1098 | case 0: /* BLTZ */ |
e135b889 DJ |
1099 | case 2: /* BLTZL */ |
1100 | case 16: /* BLTZAL */ | |
c5aa993b | 1101 | case 18: /* BLTZALL */ |
c906108c | 1102 | less_branch: |
6c997a34 | 1103 | if (read_signed_register (itype_rs (inst)) < 0) |
c5aa993b JM |
1104 | pc += mips32_relative_offset (inst) + 4; |
1105 | else | |
1106 | pc += 8; /* after the delay slot */ | |
1107 | break; | |
e135b889 | 1108 | case 1: /* BGEZ */ |
c5aa993b JM |
1109 | case 3: /* BGEZL */ |
1110 | case 17: /* BGEZAL */ | |
1111 | case 19: /* BGEZALL */ | |
6c997a34 | 1112 | if (read_signed_register (itype_rs (inst)) >= 0) |
c5aa993b JM |
1113 | pc += mips32_relative_offset (inst) + 4; |
1114 | else | |
1115 | pc += 8; /* after the delay slot */ | |
1116 | break; | |
e135b889 | 1117 | /* All of the other instructions in the REGIMM category */ |
c5aa993b JM |
1118 | default: |
1119 | pc += 4; | |
c906108c SS |
1120 | } |
1121 | } | |
6d82d43b | 1122 | break; /* end REGIMM */ |
c5aa993b JM |
1123 | case 2: /* J */ |
1124 | case 3: /* JAL */ | |
1125 | { | |
1126 | unsigned long reg; | |
1127 | reg = jtype_target (inst) << 2; | |
e135b889 | 1128 | /* Upper four bits get never changed... */ |
c5aa993b | 1129 | pc = reg + ((pc + 4) & 0xf0000000); |
c906108c | 1130 | } |
c5aa993b JM |
1131 | break; |
1132 | /* FIXME case JALX : */ | |
1133 | { | |
1134 | unsigned long reg; | |
1135 | reg = jtype_target (inst) << 2; | |
1136 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
c906108c SS |
1137 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ |
1138 | } | |
c5aa993b | 1139 | break; /* The new PC will be alternate mode */ |
e135b889 | 1140 | case 4: /* BEQ, BEQL */ |
c5aa993b | 1141 | equal_branch: |
6c997a34 AC |
1142 | if (read_signed_register (itype_rs (inst)) == |
1143 | read_signed_register (itype_rt (inst))) | |
c5aa993b JM |
1144 | pc += mips32_relative_offset (inst) + 4; |
1145 | else | |
1146 | pc += 8; | |
1147 | break; | |
e135b889 | 1148 | case 5: /* BNE, BNEL */ |
c5aa993b | 1149 | neq_branch: |
6c997a34 | 1150 | if (read_signed_register (itype_rs (inst)) != |
e135b889 | 1151 | read_signed_register (itype_rt (inst))) |
c5aa993b JM |
1152 | pc += mips32_relative_offset (inst) + 4; |
1153 | else | |
1154 | pc += 8; | |
1155 | break; | |
e135b889 | 1156 | case 6: /* BLEZ, BLEZL */ |
1fd8cd20 | 1157 | if (read_signed_register (itype_rs (inst)) <= 0) |
c5aa993b JM |
1158 | pc += mips32_relative_offset (inst) + 4; |
1159 | else | |
1160 | pc += 8; | |
1161 | break; | |
1162 | case 7: | |
e135b889 DJ |
1163 | default: |
1164 | greater_branch: /* BGTZ, BGTZL */ | |
1fd8cd20 | 1165 | if (read_signed_register (itype_rs (inst)) > 0) |
c5aa993b JM |
1166 | pc += mips32_relative_offset (inst) + 4; |
1167 | else | |
1168 | pc += 8; | |
1169 | break; | |
c5aa993b JM |
1170 | } /* switch */ |
1171 | } /* else */ | |
1172 | return pc; | |
1173 | } /* mips32_next_pc */ | |
c906108c SS |
1174 | |
1175 | /* Decoding the next place to set a breakpoint is irregular for the | |
e26cc349 | 1176 | mips 16 variant, but fortunately, there fewer instructions. We have to cope |
c906108c SS |
1177 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. |
1178 | We dont want to set a single step instruction on the extend instruction | |
1179 | either. | |
c5aa993b | 1180 | */ |
c906108c SS |
1181 | |
1182 | /* Lots of mips16 instruction formats */ | |
1183 | /* Predicting jumps requires itype,ritype,i8type | |
1184 | and their extensions extItype,extritype,extI8type | |
c5aa993b | 1185 | */ |
c906108c SS |
1186 | enum mips16_inst_fmts |
1187 | { | |
c5aa993b JM |
1188 | itype, /* 0 immediate 5,10 */ |
1189 | ritype, /* 1 5,3,8 */ | |
1190 | rrtype, /* 2 5,3,3,5 */ | |
1191 | rritype, /* 3 5,3,3,5 */ | |
1192 | rrrtype, /* 4 5,3,3,3,2 */ | |
1193 | rriatype, /* 5 5,3,3,1,4 */ | |
1194 | shifttype, /* 6 5,3,3,3,2 */ | |
1195 | i8type, /* 7 5,3,8 */ | |
1196 | i8movtype, /* 8 5,3,3,5 */ | |
1197 | i8mov32rtype, /* 9 5,3,5,3 */ | |
1198 | i64type, /* 10 5,3,8 */ | |
1199 | ri64type, /* 11 5,3,3,5 */ | |
1200 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
1201 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
1202 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
1203 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
1204 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
1205 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
1206 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
1207 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
1208 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
1209 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
1210 | }; | |
12f02c2a AC |
1211 | /* I am heaping all the fields of the formats into one structure and |
1212 | then, only the fields which are involved in instruction extension */ | |
c906108c | 1213 | struct upk_mips16 |
6d82d43b AC |
1214 | { |
1215 | CORE_ADDR offset; | |
1216 | unsigned int regx; /* Function in i8 type */ | |
1217 | unsigned int regy; | |
1218 | }; | |
c906108c SS |
1219 | |
1220 | ||
12f02c2a AC |
1221 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format |
1222 | for the bits which make up the immediatate extension. */ | |
c906108c | 1223 | |
12f02c2a AC |
1224 | static CORE_ADDR |
1225 | extended_offset (unsigned int extension) | |
c906108c | 1226 | { |
12f02c2a | 1227 | CORE_ADDR value; |
c5aa993b JM |
1228 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ |
1229 | value = value << 6; | |
1230 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
1231 | value = value << 5; | |
1232 | value |= extension & 0x01f; /* extract 4:0 */ | |
1233 | return value; | |
c906108c SS |
1234 | } |
1235 | ||
1236 | /* Only call this function if you know that this is an extendable | |
1237 | instruction, It wont malfunction, but why make excess remote memory references? | |
1238 | If the immediate operands get sign extended or somthing, do it after | |
1239 | the extension is performed. | |
c5aa993b | 1240 | */ |
c906108c SS |
1241 | /* FIXME: Every one of these cases needs to worry about sign extension |
1242 | when the offset is to be used in relative addressing */ | |
1243 | ||
1244 | ||
12f02c2a | 1245 | static unsigned int |
c5aa993b | 1246 | fetch_mips_16 (CORE_ADDR pc) |
c906108c | 1247 | { |
c5aa993b JM |
1248 | char buf[8]; |
1249 | pc &= 0xfffffffe; /* clear the low order bit */ | |
1250 | target_read_memory (pc, buf, 2); | |
1251 | return extract_unsigned_integer (buf, 2); | |
c906108c SS |
1252 | } |
1253 | ||
1254 | static void | |
c5aa993b | 1255 | unpack_mips16 (CORE_ADDR pc, |
12f02c2a AC |
1256 | unsigned int extension, |
1257 | unsigned int inst, | |
6d82d43b | 1258 | enum mips16_inst_fmts insn_format, struct upk_mips16 *upk) |
c906108c | 1259 | { |
12f02c2a AC |
1260 | CORE_ADDR offset; |
1261 | int regx; | |
1262 | int regy; | |
1263 | switch (insn_format) | |
c906108c | 1264 | { |
c5aa993b | 1265 | case itype: |
c906108c | 1266 | { |
12f02c2a AC |
1267 | CORE_ADDR value; |
1268 | if (extension) | |
c5aa993b JM |
1269 | { |
1270 | value = extended_offset (extension); | |
1271 | value = value << 11; /* rom for the original value */ | |
6d82d43b | 1272 | value |= inst & 0x7ff; /* eleven bits from instruction */ |
c906108c SS |
1273 | } |
1274 | else | |
c5aa993b | 1275 | { |
12f02c2a | 1276 | value = inst & 0x7ff; |
c5aa993b | 1277 | /* FIXME : Consider sign extension */ |
c906108c | 1278 | } |
12f02c2a AC |
1279 | offset = value; |
1280 | regx = -1; | |
1281 | regy = -1; | |
c906108c | 1282 | } |
c5aa993b JM |
1283 | break; |
1284 | case ritype: | |
1285 | case i8type: | |
1286 | { /* A register identifier and an offset */ | |
c906108c SS |
1287 | /* Most of the fields are the same as I type but the |
1288 | immediate value is of a different length */ | |
12f02c2a AC |
1289 | CORE_ADDR value; |
1290 | if (extension) | |
c906108c | 1291 | { |
c5aa993b JM |
1292 | value = extended_offset (extension); |
1293 | value = value << 8; /* from the original instruction */ | |
12f02c2a AC |
1294 | value |= inst & 0xff; /* eleven bits from instruction */ |
1295 | regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1296 | if (value & 0x4000) /* test the sign bit , bit 26 */ |
1297 | { | |
1298 | value &= ~0x3fff; /* remove the sign bit */ | |
1299 | value = -value; | |
c906108c SS |
1300 | } |
1301 | } | |
c5aa993b JM |
1302 | else |
1303 | { | |
12f02c2a AC |
1304 | value = inst & 0xff; /* 8 bits */ |
1305 | regx = (inst >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1306 | /* FIXME: Do sign extension , this format needs it */ |
1307 | if (value & 0x80) /* THIS CONFUSES ME */ | |
1308 | { | |
1309 | value &= 0xef; /* remove the sign bit */ | |
1310 | value = -value; | |
1311 | } | |
c5aa993b | 1312 | } |
12f02c2a AC |
1313 | offset = value; |
1314 | regy = -1; | |
c5aa993b | 1315 | break; |
c906108c | 1316 | } |
c5aa993b | 1317 | case jalxtype: |
c906108c | 1318 | { |
c5aa993b | 1319 | unsigned long value; |
12f02c2a AC |
1320 | unsigned int nexthalf; |
1321 | value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f); | |
c5aa993b JM |
1322 | value = value << 16; |
1323 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
1324 | value |= nexthalf; | |
12f02c2a AC |
1325 | offset = value; |
1326 | regx = -1; | |
1327 | regy = -1; | |
c5aa993b | 1328 | break; |
c906108c SS |
1329 | } |
1330 | default: | |
6d82d43b | 1331 | internal_error (__FILE__, __LINE__, "bad switch"); |
c906108c | 1332 | } |
12f02c2a AC |
1333 | upk->offset = offset; |
1334 | upk->regx = regx; | |
1335 | upk->regy = regy; | |
c906108c SS |
1336 | } |
1337 | ||
1338 | ||
c5aa993b JM |
1339 | static CORE_ADDR |
1340 | add_offset_16 (CORE_ADDR pc, int offset) | |
c906108c | 1341 | { |
c5aa993b | 1342 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); |
c906108c SS |
1343 | } |
1344 | ||
12f02c2a AC |
1345 | static CORE_ADDR |
1346 | extended_mips16_next_pc (CORE_ADDR pc, | |
6d82d43b | 1347 | unsigned int extension, unsigned int insn) |
c906108c | 1348 | { |
12f02c2a AC |
1349 | int op = (insn >> 11); |
1350 | switch (op) | |
c906108c | 1351 | { |
6d82d43b | 1352 | case 2: /* Branch */ |
12f02c2a AC |
1353 | { |
1354 | CORE_ADDR offset; | |
1355 | struct upk_mips16 upk; | |
1356 | unpack_mips16 (pc, extension, insn, itype, &upk); | |
1357 | offset = upk.offset; | |
1358 | if (offset & 0x800) | |
1359 | { | |
1360 | offset &= 0xeff; | |
1361 | offset = -offset; | |
1362 | } | |
1363 | pc += (offset << 1) + 2; | |
1364 | break; | |
1365 | } | |
6d82d43b | 1366 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ |
12f02c2a AC |
1367 | { |
1368 | struct upk_mips16 upk; | |
1369 | unpack_mips16 (pc, extension, insn, jalxtype, &upk); | |
1370 | pc = add_offset_16 (pc, upk.offset); | |
1371 | if ((insn >> 10) & 0x01) /* Exchange mode */ | |
1372 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
1373 | else | |
1374 | pc |= 0x01; | |
1375 | break; | |
1376 | } | |
6d82d43b | 1377 | case 4: /* beqz */ |
12f02c2a AC |
1378 | { |
1379 | struct upk_mips16 upk; | |
1380 | int reg; | |
1381 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1382 | reg = read_signed_register (upk.regx); | |
1383 | if (reg == 0) | |
1384 | pc += (upk.offset << 1) + 2; | |
1385 | else | |
1386 | pc += 2; | |
1387 | break; | |
1388 | } | |
6d82d43b | 1389 | case 5: /* bnez */ |
12f02c2a AC |
1390 | { |
1391 | struct upk_mips16 upk; | |
1392 | int reg; | |
1393 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1394 | reg = read_signed_register (upk.regx); | |
1395 | if (reg != 0) | |
1396 | pc += (upk.offset << 1) + 2; | |
1397 | else | |
1398 | pc += 2; | |
1399 | break; | |
1400 | } | |
6d82d43b | 1401 | case 12: /* I8 Formats btez btnez */ |
12f02c2a AC |
1402 | { |
1403 | struct upk_mips16 upk; | |
1404 | int reg; | |
1405 | unpack_mips16 (pc, extension, insn, i8type, &upk); | |
1406 | /* upk.regx contains the opcode */ | |
1407 | reg = read_signed_register (24); /* Test register is 24 */ | |
1408 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
1409 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
1410 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
1411 | pc += (upk.offset << 1) + 2; | |
1412 | else | |
1413 | pc += 2; | |
1414 | break; | |
1415 | } | |
6d82d43b | 1416 | case 29: /* RR Formats JR, JALR, JALR-RA */ |
12f02c2a AC |
1417 | { |
1418 | struct upk_mips16 upk; | |
1419 | /* upk.fmt = rrtype; */ | |
1420 | op = insn & 0x1f; | |
1421 | if (op == 0) | |
c5aa993b | 1422 | { |
12f02c2a AC |
1423 | int reg; |
1424 | upk.regx = (insn >> 8) & 0x07; | |
1425 | upk.regy = (insn >> 5) & 0x07; | |
1426 | switch (upk.regy) | |
c5aa993b | 1427 | { |
12f02c2a AC |
1428 | case 0: |
1429 | reg = upk.regx; | |
1430 | break; | |
1431 | case 1: | |
1432 | reg = 31; | |
6d82d43b | 1433 | break; /* Function return instruction */ |
12f02c2a AC |
1434 | case 2: |
1435 | reg = upk.regx; | |
1436 | break; | |
1437 | default: | |
1438 | reg = 31; | |
6d82d43b | 1439 | break; /* BOGUS Guess */ |
c906108c | 1440 | } |
12f02c2a | 1441 | pc = read_signed_register (reg); |
c906108c | 1442 | } |
12f02c2a | 1443 | else |
c5aa993b | 1444 | pc += 2; |
12f02c2a AC |
1445 | break; |
1446 | } | |
1447 | case 30: | |
1448 | /* This is an instruction extension. Fetch the real instruction | |
1449 | (which follows the extension) and decode things based on | |
1450 | that. */ | |
1451 | { | |
1452 | pc += 2; | |
1453 | pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc)); | |
1454 | break; | |
1455 | } | |
1456 | default: | |
1457 | { | |
1458 | pc += 2; | |
1459 | break; | |
1460 | } | |
c906108c | 1461 | } |
c5aa993b | 1462 | return pc; |
12f02c2a | 1463 | } |
c906108c | 1464 | |
5a89d8aa | 1465 | static CORE_ADDR |
12f02c2a AC |
1466 | mips16_next_pc (CORE_ADDR pc) |
1467 | { | |
1468 | unsigned int insn = fetch_mips_16 (pc); | |
1469 | return extended_mips16_next_pc (pc, 0, insn); | |
1470 | } | |
1471 | ||
1472 | /* The mips_next_pc function supports single_step when the remote | |
7e73cedf | 1473 | target monitor or stub is not developed enough to do a single_step. |
12f02c2a AC |
1474 | It works by decoding the current instruction and predicting where a |
1475 | branch will go. This isnt hard because all the data is available. | |
1476 | The MIPS32 and MIPS16 variants are quite different */ | |
c5aa993b JM |
1477 | CORE_ADDR |
1478 | mips_next_pc (CORE_ADDR pc) | |
c906108c | 1479 | { |
c5aa993b JM |
1480 | if (pc & 0x01) |
1481 | return mips16_next_pc (pc); | |
1482 | else | |
1483 | return mips32_next_pc (pc); | |
12f02c2a | 1484 | } |
c906108c | 1485 | |
edfae063 AC |
1486 | struct mips_frame_cache |
1487 | { | |
1488 | CORE_ADDR base; | |
1489 | struct trad_frame_saved_reg *saved_regs; | |
1490 | }; | |
1491 | ||
1492 | ||
1493 | static struct mips_frame_cache * | |
1494 | mips_mdebug_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1495 | { | |
0d5febcc | 1496 | CORE_ADDR startaddr = 0; |
edfae063 AC |
1497 | mips_extra_func_info_t proc_desc; |
1498 | struct mips_frame_cache *cache; | |
1499 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
1500 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1501 | /* r0 bit means kernel trap */ | |
1502 | int kernel_trap; | |
1503 | /* What registers have been saved? Bitmasks. */ | |
1504 | unsigned long gen_mask, float_mask; | |
1505 | ||
1506 | if ((*this_cache) != NULL) | |
1507 | return (*this_cache); | |
1508 | cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache); | |
1509 | (*this_cache) = cache; | |
1510 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1511 | ||
1512 | /* Get the mdebug proc descriptor. */ | |
0d5febcc AC |
1513 | proc_desc = non_heuristic_proc_desc (frame_pc_unwind (next_frame), |
1514 | &startaddr); | |
1515 | /* Must be true. This is only called when the sniffer detected a | |
1516 | proc descriptor. */ | |
1517 | gdb_assert (proc_desc != NULL); | |
edfae063 AC |
1518 | |
1519 | /* Extract the frame's base. */ | |
1520 | cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc)) | |
1521 | + PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
1522 | ||
1523 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; | |
1524 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1525 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
1526 | ||
9733cfe1 AC |
1527 | /* Must be true. The in_prologue case is left for the heuristic |
1528 | unwinder. This is always used on kernel traps. */ | |
1529 | gdb_assert (!in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc)) | |
1530 | || kernel_trap); | |
edfae063 AC |
1531 | |
1532 | /* Fill in the offsets for the registers which gen_mask says were | |
1533 | saved. */ | |
1534 | { | |
4fbbbd07 | 1535 | CORE_ADDR reg_position = (cache->base + PROC_REG_OFFSET (proc_desc)); |
edfae063 | 1536 | int ireg; |
4fbbbd07 | 1537 | |
edfae063 AC |
1538 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) |
1539 | if (gen_mask & 0x80000000) | |
1540 | { | |
1541 | cache->saved_regs[NUM_REGS + ireg].addr = reg_position; | |
13326b4e | 1542 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1543 | } |
1544 | } | |
1545 | ||
1546 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse | |
1547 | order of that normally used by gcc. Therefore, we have to fetch | |
1548 | the first instruction of the function, and if it's an entry | |
1549 | instruction that saves $s0 or $s1, correct their saved addresses. */ | |
1550 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
1551 | { | |
1552 | ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
1553 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) | |
1554 | /* entry */ | |
1555 | { | |
1556 | int reg; | |
1557 | int sreg_count = (inst >> 6) & 3; | |
1558 | ||
1559 | /* Check if the ra register was pushed on the stack. */ | |
1560 | CORE_ADDR reg_position = (cache->base | |
1561 | + PROC_REG_OFFSET (proc_desc)); | |
1562 | if (inst & 0x20) | |
13326b4e | 1563 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1564 | |
1565 | /* Check if the s0 and s1 registers were pushed on the | |
1566 | stack. */ | |
1567 | /* NOTE: cagney/2004-02-08: Huh? This is doing no such | |
1568 | check. */ | |
1569 | for (reg = 16; reg < sreg_count + 16; reg++) | |
1570 | { | |
1571 | cache->saved_regs[NUM_REGS + reg].addr = reg_position; | |
13326b4e | 1572 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1573 | } |
1574 | } | |
1575 | } | |
1576 | ||
1577 | /* Fill in the offsets for the registers which float_mask says were | |
1578 | saved. */ | |
1579 | { | |
1580 | CORE_ADDR reg_position = (cache->base | |
1581 | + PROC_FREG_OFFSET (proc_desc)); | |
1582 | int ireg; | |
1583 | /* Fill in the offsets for the float registers which float_mask | |
1584 | says were saved. */ | |
1585 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) | |
1586 | if (float_mask & 0x80000000) | |
1587 | { | |
13326b4e | 1588 | if (mips_abi_regsize (gdbarch) == 4 |
edfae063 AC |
1589 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
1590 | { | |
1591 | /* On a big endian 32 bit ABI, floating point registers | |
1592 | are paired to form doubles such that the most | |
1593 | significant part is in $f[N+1] and the least | |
1594 | significant in $f[N] vis: $f[N+1] ||| $f[N]. The | |
1595 | registers are also spilled as a pair and stored as a | |
1596 | double. | |
1597 | ||
1598 | When little-endian the least significant part is | |
1599 | stored first leading to the memory order $f[N] and | |
1600 | then $f[N+1]. | |
1601 | ||
1602 | Unfortunately, when big-endian the most significant | |
1603 | part of the double is stored first, and the least | |
1604 | significant is stored second. This leads to the | |
1605 | registers being ordered in memory as firt $f[N+1] and | |
1606 | then $f[N]. | |
1607 | ||
1608 | For the big-endian case make certain that the | |
1609 | addresses point at the correct (swapped) locations | |
1610 | $f[N] and $f[N+1] pair (keep in mind that | |
1611 | reg_position is decremented each time through the | |
1612 | loop). */ | |
1613 | if ((ireg & 1)) | |
1614 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
13326b4e | 1615 | .addr = reg_position - mips_abi_regsize (gdbarch); |
edfae063 AC |
1616 | else |
1617 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
13326b4e | 1618 | .addr = reg_position + mips_abi_regsize (gdbarch); |
edfae063 AC |
1619 | } |
1620 | else | |
1621 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
1622 | .addr = reg_position; | |
13326b4e | 1623 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1624 | } |
1625 | ||
1626 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc] | |
1627 | = cache->saved_regs[NUM_REGS + RA_REGNUM]; | |
1628 | } | |
1629 | ||
1630 | /* SP_REGNUM, contains the value and not the address. */ | |
f10683bb | 1631 | trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base); |
edfae063 AC |
1632 | |
1633 | return (*this_cache); | |
1634 | } | |
1635 | ||
1636 | static void | |
1637 | mips_mdebug_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
1638 | struct frame_id *this_id) | |
1639 | { | |
1640 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1641 | this_cache); | |
1642 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
1643 | } | |
1644 | ||
1645 | static void | |
1646 | mips_mdebug_frame_prev_register (struct frame_info *next_frame, | |
1647 | void **this_cache, | |
1648 | int regnum, int *optimizedp, | |
1649 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1650 | int *realnump, void *valuep) | |
1651 | { | |
1652 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1653 | this_cache); | |
1f67027d AC |
1654 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
1655 | optimizedp, lvalp, addrp, realnump, valuep); | |
edfae063 AC |
1656 | } |
1657 | ||
1658 | static const struct frame_unwind mips_mdebug_frame_unwind = | |
1659 | { | |
1660 | NORMAL_FRAME, | |
1661 | mips_mdebug_frame_this_id, | |
1662 | mips_mdebug_frame_prev_register | |
1663 | }; | |
1664 | ||
1665 | static const struct frame_unwind * | |
1666 | mips_mdebug_frame_sniffer (struct frame_info *next_frame) | |
1667 | { | |
eec63939 AC |
1668 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1669 | CORE_ADDR startaddr = 0; | |
1670 | mips_extra_func_info_t proc_desc; | |
1671 | int kernel_trap; | |
1672 | ||
1673 | /* Only use the mdebug frame unwinder on mdebug frames where all the | |
1674 | registers have been saved. Leave hard cases such as no mdebug or | |
1675 | in prologue for the heuristic unwinders. */ | |
1676 | ||
1677 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
1678 | if (proc_desc == NULL) | |
1679 | return NULL; | |
1680 | ||
1681 | /* Not sure exactly what kernel_trap means, but if it means the | |
1682 | kernel saves the registers without a prologue doing it, we better | |
1683 | not examine the prologue to see whether registers have been saved | |
1684 | yet. */ | |
1685 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; | |
1686 | if (kernel_trap) | |
1687 | return &mips_mdebug_frame_unwind; | |
1688 | ||
1689 | /* In any frame other than the innermost or a frame interrupted by a | |
1690 | signal, we assume that all registers have been saved. This | |
1691 | assumes that all register saves in a function happen before the | |
1692 | first function call. */ | |
1693 | if (!in_prologue (pc, PROC_LOW_ADDR (proc_desc))) | |
1694 | return &mips_mdebug_frame_unwind; | |
1695 | ||
1696 | return NULL; | |
edfae063 AC |
1697 | } |
1698 | ||
1699 | static CORE_ADDR | |
1700 | mips_mdebug_frame_base_address (struct frame_info *next_frame, | |
1701 | void **this_cache) | |
1702 | { | |
1703 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1704 | this_cache); | |
1705 | return info->base; | |
1706 | } | |
1707 | ||
1708 | static const struct frame_base mips_mdebug_frame_base = { | |
1709 | &mips_mdebug_frame_unwind, | |
1710 | mips_mdebug_frame_base_address, | |
1711 | mips_mdebug_frame_base_address, | |
1712 | mips_mdebug_frame_base_address | |
1713 | }; | |
1714 | ||
1715 | static const struct frame_base * | |
1716 | mips_mdebug_frame_base_sniffer (struct frame_info *next_frame) | |
1717 | { | |
eec63939 AC |
1718 | if (mips_mdebug_frame_sniffer (next_frame) != NULL) |
1719 | return &mips_mdebug_frame_base; | |
1720 | else | |
1721 | return NULL; | |
1722 | } | |
1723 | ||
45c9dd44 AC |
1724 | /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16). |
1725 | Procedures that use the 32-bit instruction set are handled by the | |
1726 | mips_insn32 unwinder. */ | |
1727 | ||
eec63939 | 1728 | static struct mips_frame_cache * |
45c9dd44 | 1729 | mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache) |
eec63939 | 1730 | { |
eec63939 | 1731 | struct mips_frame_cache *cache; |
eec63939 AC |
1732 | |
1733 | if ((*this_cache) != NULL) | |
1734 | return (*this_cache); | |
1735 | cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache); | |
1736 | (*this_cache) = cache; | |
1737 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1738 | ||
c68a4142 | 1739 | /* Analyze the function prologue. */ |
0d5febcc AC |
1740 | { |
1741 | const CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1742 | CORE_ADDR start_addr; | |
eec63939 | 1743 | |
0d5febcc AC |
1744 | find_pc_partial_function (pc, NULL, &start_addr, NULL); |
1745 | if (start_addr == 0) | |
1746 | start_addr = heuristic_proc_start (pc); | |
c68a4142 JB |
1747 | /* We can't analyze the prologue if we couldn't find the begining |
1748 | of the function. */ | |
1749 | if (start_addr == 0) | |
1750 | return cache; | |
0d5febcc | 1751 | |
a65bbe44 | 1752 | mips16_scan_prologue (start_addr, pc, next_frame, *this_cache); |
0d5febcc AC |
1753 | } |
1754 | ||
eec63939 AC |
1755 | /* SP_REGNUM, contains the value and not the address. */ |
1756 | trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base); | |
1757 | ||
1758 | return (*this_cache); | |
1759 | } | |
1760 | ||
1761 | static void | |
45c9dd44 | 1762 | mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache, |
eec63939 AC |
1763 | struct frame_id *this_id) |
1764 | { | |
45c9dd44 | 1765 | struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame, |
eec63939 AC |
1766 | this_cache); |
1767 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
1768 | } | |
1769 | ||
1770 | static void | |
45c9dd44 | 1771 | mips_insn16_frame_prev_register (struct frame_info *next_frame, |
eec63939 AC |
1772 | void **this_cache, |
1773 | int regnum, int *optimizedp, | |
1774 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1775 | int *realnump, void *valuep) | |
1776 | { | |
45c9dd44 | 1777 | struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame, |
eec63939 AC |
1778 | this_cache); |
1779 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, | |
1780 | optimizedp, lvalp, addrp, realnump, valuep); | |
1781 | } | |
1782 | ||
45c9dd44 | 1783 | static const struct frame_unwind mips_insn16_frame_unwind = |
eec63939 AC |
1784 | { |
1785 | NORMAL_FRAME, | |
45c9dd44 AC |
1786 | mips_insn16_frame_this_id, |
1787 | mips_insn16_frame_prev_register | |
eec63939 AC |
1788 | }; |
1789 | ||
1790 | static const struct frame_unwind * | |
45c9dd44 | 1791 | mips_insn16_frame_sniffer (struct frame_info *next_frame) |
eec63939 AC |
1792 | { |
1793 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1794 | if (pc_is_mips16 (pc)) | |
45c9dd44 | 1795 | return &mips_insn16_frame_unwind; |
eec63939 AC |
1796 | return NULL; |
1797 | } | |
1798 | ||
1799 | static CORE_ADDR | |
45c9dd44 | 1800 | mips_insn16_frame_base_address (struct frame_info *next_frame, |
eec63939 AC |
1801 | void **this_cache) |
1802 | { | |
45c9dd44 | 1803 | struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame, |
eec63939 AC |
1804 | this_cache); |
1805 | return info->base; | |
1806 | } | |
1807 | ||
45c9dd44 | 1808 | static const struct frame_base mips_insn16_frame_base = |
eec63939 | 1809 | { |
45c9dd44 AC |
1810 | &mips_insn16_frame_unwind, |
1811 | mips_insn16_frame_base_address, | |
1812 | mips_insn16_frame_base_address, | |
1813 | mips_insn16_frame_base_address | |
eec63939 AC |
1814 | }; |
1815 | ||
1816 | static const struct frame_base * | |
45c9dd44 | 1817 | mips_insn16_frame_base_sniffer (struct frame_info *next_frame) |
eec63939 | 1818 | { |
45c9dd44 AC |
1819 | if (mips_insn16_frame_sniffer (next_frame) != NULL) |
1820 | return &mips_insn16_frame_base; | |
eec63939 AC |
1821 | else |
1822 | return NULL; | |
1823 | } | |
1824 | ||
45c9dd44 AC |
1825 | /* Heuristic unwinder for procedures using 32-bit instructions (covers |
1826 | both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit | |
1827 | instructions (a.k.a. MIPS16) are handled by the mips_insn16 | |
1828 | unwinder. */ | |
1829 | ||
eec63939 | 1830 | static struct mips_frame_cache * |
45c9dd44 | 1831 | mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache) |
eec63939 | 1832 | { |
eec63939 | 1833 | struct mips_frame_cache *cache; |
eec63939 AC |
1834 | |
1835 | if ((*this_cache) != NULL) | |
1836 | return (*this_cache); | |
65596487 | 1837 | |
eec63939 AC |
1838 | cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache); |
1839 | (*this_cache) = cache; | |
1840 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1841 | ||
c68a4142 | 1842 | /* Analyze the function prologue. */ |
a343eb3c JB |
1843 | { |
1844 | const CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1845 | CORE_ADDR start_addr; | |
1846 | ||
1847 | find_pc_partial_function (pc, NULL, &start_addr, NULL); | |
1848 | if (start_addr == 0) | |
1849 | start_addr = heuristic_proc_start (pc); | |
c68a4142 JB |
1850 | /* We can't analyze the prologue if we couldn't find the begining |
1851 | of the function. */ | |
1852 | if (start_addr == 0) | |
1853 | return cache; | |
a343eb3c | 1854 | |
a65bbe44 | 1855 | mips32_scan_prologue (start_addr, pc, next_frame, *this_cache); |
a343eb3c JB |
1856 | } |
1857 | ||
eec63939 AC |
1858 | /* SP_REGNUM, contains the value and not the address. */ |
1859 | trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base); | |
1860 | ||
1861 | return (*this_cache); | |
1862 | } | |
1863 | ||
1864 | static void | |
45c9dd44 | 1865 | mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache, |
eec63939 AC |
1866 | struct frame_id *this_id) |
1867 | { | |
45c9dd44 | 1868 | struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame, |
eec63939 AC |
1869 | this_cache); |
1870 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
1871 | } | |
1872 | ||
1873 | static void | |
45c9dd44 | 1874 | mips_insn32_frame_prev_register (struct frame_info *next_frame, |
eec63939 AC |
1875 | void **this_cache, |
1876 | int regnum, int *optimizedp, | |
1877 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1878 | int *realnump, void *valuep) | |
1879 | { | |
45c9dd44 | 1880 | struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame, |
eec63939 AC |
1881 | this_cache); |
1882 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, | |
1883 | optimizedp, lvalp, addrp, realnump, valuep); | |
1884 | } | |
1885 | ||
45c9dd44 | 1886 | static const struct frame_unwind mips_insn32_frame_unwind = |
eec63939 AC |
1887 | { |
1888 | NORMAL_FRAME, | |
45c9dd44 AC |
1889 | mips_insn32_frame_this_id, |
1890 | mips_insn32_frame_prev_register | |
eec63939 AC |
1891 | }; |
1892 | ||
1893 | static const struct frame_unwind * | |
45c9dd44 | 1894 | mips_insn32_frame_sniffer (struct frame_info *next_frame) |
eec63939 AC |
1895 | { |
1896 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1897 | if (! pc_is_mips16 (pc)) | |
45c9dd44 | 1898 | return &mips_insn32_frame_unwind; |
eec63939 AC |
1899 | return NULL; |
1900 | } | |
1901 | ||
1902 | static CORE_ADDR | |
45c9dd44 | 1903 | mips_insn32_frame_base_address (struct frame_info *next_frame, |
eec63939 AC |
1904 | void **this_cache) |
1905 | { | |
45c9dd44 | 1906 | struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame, |
eec63939 AC |
1907 | this_cache); |
1908 | return info->base; | |
1909 | } | |
1910 | ||
45c9dd44 | 1911 | static const struct frame_base mips_insn32_frame_base = |
eec63939 | 1912 | { |
45c9dd44 AC |
1913 | &mips_insn32_frame_unwind, |
1914 | mips_insn32_frame_base_address, | |
1915 | mips_insn32_frame_base_address, | |
1916 | mips_insn32_frame_base_address | |
eec63939 AC |
1917 | }; |
1918 | ||
1919 | static const struct frame_base * | |
45c9dd44 | 1920 | mips_insn32_frame_base_sniffer (struct frame_info *next_frame) |
eec63939 | 1921 | { |
45c9dd44 AC |
1922 | if (mips_insn32_frame_sniffer (next_frame) != NULL) |
1923 | return &mips_insn32_frame_base; | |
eec63939 AC |
1924 | else |
1925 | return NULL; | |
1926 | } | |
1927 | ||
1928 | static struct trad_frame_cache * | |
1929 | mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1930 | { | |
1931 | CORE_ADDR pc; | |
1932 | CORE_ADDR start_addr; | |
1933 | CORE_ADDR stack_addr; | |
1934 | struct trad_frame_cache *this_trad_cache; | |
1935 | ||
1936 | if ((*this_cache) != NULL) | |
1937 | return (*this_cache); | |
1938 | this_trad_cache = trad_frame_cache_zalloc (next_frame); | |
1939 | (*this_cache) = this_trad_cache; | |
1940 | ||
1941 | /* The return address is in the link register. */ | |
1942 | trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, RA_REGNUM); | |
1943 | ||
1944 | /* Frame ID, since it's a frameless / stackless function, no stack | |
1945 | space is allocated and SP on entry is the current SP. */ | |
1946 | pc = frame_pc_unwind (next_frame); | |
1947 | find_pc_partial_function (pc, NULL, &start_addr, NULL); | |
1948 | stack_addr = frame_unwind_register_signed (next_frame, SP_REGNUM); | |
1949 | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); | |
1950 | ||
1951 | /* Assume that the frame's base is the same as the | |
1952 | stack-pointer. */ | |
1953 | trad_frame_set_this_base (this_trad_cache, stack_addr); | |
1954 | ||
1955 | return this_trad_cache; | |
1956 | } | |
1957 | ||
1958 | static void | |
1959 | mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
1960 | struct frame_id *this_id) | |
1961 | { | |
1962 | struct trad_frame_cache *this_trad_cache | |
1963 | = mips_stub_frame_cache (next_frame, this_cache); | |
1964 | trad_frame_get_id (this_trad_cache, this_id); | |
1965 | } | |
1966 | ||
1967 | static void | |
1968 | mips_stub_frame_prev_register (struct frame_info *next_frame, | |
1969 | void **this_cache, | |
1970 | int regnum, int *optimizedp, | |
1971 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1972 | int *realnump, void *valuep) | |
1973 | { | |
1974 | struct trad_frame_cache *this_trad_cache | |
1975 | = mips_stub_frame_cache (next_frame, this_cache); | |
1976 | trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp, | |
1977 | lvalp, addrp, realnump, valuep); | |
1978 | } | |
1979 | ||
1980 | static const struct frame_unwind mips_stub_frame_unwind = | |
1981 | { | |
1982 | NORMAL_FRAME, | |
1983 | mips_stub_frame_this_id, | |
1984 | mips_stub_frame_prev_register | |
1985 | }; | |
1986 | ||
1987 | static const struct frame_unwind * | |
1988 | mips_stub_frame_sniffer (struct frame_info *next_frame) | |
1989 | { | |
1990 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1991 | if (in_plt_section (pc, NULL)) | |
1992 | return &mips_stub_frame_unwind; | |
1993 | else | |
1994 | return NULL; | |
1995 | } | |
1996 | ||
1997 | static CORE_ADDR | |
1998 | mips_stub_frame_base_address (struct frame_info *next_frame, | |
1999 | void **this_cache) | |
2000 | { | |
2001 | struct trad_frame_cache *this_trad_cache | |
2002 | = mips_stub_frame_cache (next_frame, this_cache); | |
2003 | return trad_frame_get_this_base (this_trad_cache); | |
2004 | } | |
2005 | ||
2006 | static const struct frame_base mips_stub_frame_base = | |
2007 | { | |
2008 | &mips_stub_frame_unwind, | |
2009 | mips_stub_frame_base_address, | |
2010 | mips_stub_frame_base_address, | |
2011 | mips_stub_frame_base_address | |
2012 | }; | |
2013 | ||
2014 | static const struct frame_base * | |
2015 | mips_stub_frame_base_sniffer (struct frame_info *next_frame) | |
2016 | { | |
2017 | if (mips_stub_frame_sniffer (next_frame) != NULL) | |
2018 | return &mips_stub_frame_base; | |
2019 | else | |
2020 | return NULL; | |
edfae063 AC |
2021 | } |
2022 | ||
c906108c | 2023 | static CORE_ADDR |
acdb74a0 | 2024 | read_next_frame_reg (struct frame_info *fi, int regno) |
c906108c | 2025 | { |
a4b8ebc8 AC |
2026 | /* Always a pseudo. */ |
2027 | gdb_assert (regno >= NUM_REGS); | |
f796e4be | 2028 | if (fi == NULL) |
c906108c | 2029 | { |
a4b8ebc8 AC |
2030 | LONGEST val; |
2031 | regcache_cooked_read_signed (current_regcache, regno, &val); | |
2032 | return val; | |
f796e4be KB |
2033 | } |
2034 | else | |
a4b8ebc8 | 2035 | return frame_unwind_register_signed (fi, regno); |
64159455 | 2036 | |
c906108c SS |
2037 | } |
2038 | ||
2039 | /* mips_addr_bits_remove - remove useless address bits */ | |
2040 | ||
875e1767 | 2041 | static CORE_ADDR |
acdb74a0 | 2042 | mips_addr_bits_remove (CORE_ADDR addr) |
c906108c | 2043 | { |
480d3dd2 | 2044 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
6d82d43b | 2045 | if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL)) |
8fa9cfa1 AC |
2046 | /* This hack is a work-around for existing boards using PMON, the |
2047 | simulator, and any other 64-bit targets that doesn't have true | |
2048 | 64-bit addressing. On these targets, the upper 32 bits of | |
2049 | addresses are ignored by the hardware. Thus, the PC or SP are | |
2050 | likely to have been sign extended to all 1s by instruction | |
2051 | sequences that load 32-bit addresses. For example, a typical | |
2052 | piece of code that loads an address is this: | |
2053 | ||
2054 | lui $r2, <upper 16 bits> | |
2055 | ori $r2, <lower 16 bits> | |
2056 | ||
2057 | But the lui sign-extends the value such that the upper 32 bits | |
2058 | may be all 1s. The workaround is simply to mask off these | |
2059 | bits. In the future, gcc may be changed to support true 64-bit | |
2060 | addressing, and this masking will have to be disabled. */ | |
2061 | return addr &= 0xffffffffUL; | |
2062 | else | |
2063 | return addr; | |
c906108c SS |
2064 | } |
2065 | ||
9022177c DJ |
2066 | /* mips_software_single_step() is called just before we want to resume |
2067 | the inferior, if we want to single-step it but there is no hardware | |
75c9abc6 | 2068 | or kernel single-step support (MIPS on GNU/Linux for example). We find |
9022177c DJ |
2069 | the target of the coming instruction and breakpoint it. |
2070 | ||
2071 | single_step is also called just after the inferior stops. If we had | |
2072 | set up a simulated single-step, we undo our damage. */ | |
2073 | ||
2074 | void | |
2075 | mips_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
2076 | { | |
2077 | static CORE_ADDR next_pc; | |
2078 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
2079 | static binsn_quantum break_mem; | |
2080 | CORE_ADDR pc; | |
2081 | ||
2082 | if (insert_breakpoints_p) | |
2083 | { | |
b6cb9035 | 2084 | pc = read_register (mips_regnum (current_gdbarch)->pc); |
9022177c DJ |
2085 | next_pc = mips_next_pc (pc); |
2086 | ||
2087 | target_insert_breakpoint (next_pc, break_mem); | |
2088 | } | |
2089 | else | |
2090 | target_remove_breakpoint (next_pc, break_mem); | |
2091 | } | |
2092 | ||
c906108c | 2093 | static struct mips_extra_func_info temp_proc_desc; |
fe29b929 | 2094 | |
e0f7ec59 AC |
2095 | /* Set a register's saved stack address in temp_saved_regs. If an |
2096 | address has already been set for this register, do nothing; this | |
2097 | way we will only recognize the first save of a given register in a | |
a4b8ebc8 AC |
2098 | function prologue. |
2099 | ||
2100 | For simplicity, save the address in both [0 .. NUM_REGS) and | |
2101 | [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range | |
2102 | is used as it is only second range (the ABI instead of ISA | |
2103 | registers) that comes into play when finding saved registers in a | |
2104 | frame. */ | |
c906108c SS |
2105 | |
2106 | static void | |
c9343fd1 AC |
2107 | set_reg_offset (struct mips_frame_cache *this_cache, int regnum, |
2108 | CORE_ADDR offset) | |
c906108c | 2109 | { |
c9343fd1 | 2110 | if (this_cache != NULL |
65596487 | 2111 | && this_cache->saved_regs[regnum].addr == -1) |
a4b8ebc8 | 2112 | { |
c9343fd1 AC |
2113 | this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset; |
2114 | this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset; | |
a4b8ebc8 | 2115 | } |
c906108c SS |
2116 | } |
2117 | ||
2118 | ||
2119 | /* Test whether the PC points to the return instruction at the | |
2120 | end of a function. */ | |
2121 | ||
c5aa993b | 2122 | static int |
acdb74a0 | 2123 | mips_about_to_return (CORE_ADDR pc) |
c906108c SS |
2124 | { |
2125 | if (pc_is_mips16 (pc)) | |
2126 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
2127 | generates a "jr $ra"; other times it generates code to load | |
2128 | the return address from the stack to an accessible register (such | |
2129 | as $a3), then a "jr" using that register. This second case | |
2130 | is almost impossible to distinguish from an indirect jump | |
2131 | used for switch statements, so we don't even try. */ | |
2132 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
2133 | else | |
2134 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
2135 | } | |
2136 | ||
2137 | ||
2138 | /* This fencepost looks highly suspicious to me. Removing it also | |
2139 | seems suspicious as it could affect remote debugging across serial | |
2140 | lines. */ | |
2141 | ||
2142 | static CORE_ADDR | |
acdb74a0 | 2143 | heuristic_proc_start (CORE_ADDR pc) |
c906108c | 2144 | { |
c5aa993b JM |
2145 | CORE_ADDR start_pc; |
2146 | CORE_ADDR fence; | |
2147 | int instlen; | |
2148 | int seen_adjsp = 0; | |
c906108c | 2149 | |
c5aa993b JM |
2150 | pc = ADDR_BITS_REMOVE (pc); |
2151 | start_pc = pc; | |
2152 | fence = start_pc - heuristic_fence_post; | |
2153 | if (start_pc == 0) | |
2154 | return 0; | |
c906108c | 2155 | |
6d82d43b | 2156 | if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS) |
c5aa993b | 2157 | fence = VM_MIN_ADDRESS; |
c906108c | 2158 | |
c5aa993b | 2159 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
c906108c | 2160 | |
c5aa993b JM |
2161 | /* search back for previous return */ |
2162 | for (start_pc -= instlen;; start_pc -= instlen) | |
2163 | if (start_pc < fence) | |
2164 | { | |
2165 | /* It's not clear to me why we reach this point when | |
c0236d92 | 2166 | stop_soon, but with this test, at least we |
c5aa993b JM |
2167 | don't print out warnings for every child forked (eg, on |
2168 | decstation). 22apr93 [email protected]. */ | |
c0236d92 | 2169 | if (stop_soon == NO_STOP_QUIETLY) |
c906108c | 2170 | { |
c5aa993b JM |
2171 | static int blurb_printed = 0; |
2172 | ||
dc305454 MS |
2173 | warning ("GDB can't find the start of the function at 0x%s.", |
2174 | paddr_nz (pc)); | |
c5aa993b JM |
2175 | |
2176 | if (!blurb_printed) | |
c906108c | 2177 | { |
c5aa993b JM |
2178 | /* This actually happens frequently in embedded |
2179 | development, when you first connect to a board | |
2180 | and your stack pointer and pc are nowhere in | |
2181 | particular. This message needs to give people | |
2182 | in that situation enough information to | |
2183 | determine that it's no big deal. */ | |
2184 | printf_filtered ("\n\ | |
cd0fc7c3 SS |
2185 | GDB is unable to find the start of the function at 0x%s\n\ |
2186 | and thus can't determine the size of that function's stack frame.\n\ | |
2187 | This means that GDB may be unable to access that stack frame, or\n\ | |
2188 | the frames below it.\n\ | |
2189 | This problem is most likely caused by an invalid program counter or\n\ | |
2190 | stack pointer.\n\ | |
2191 | However, if you think GDB should simply search farther back\n\ | |
2192 | from 0x%s for code which looks like the beginning of a\n\ | |
2193 | function, you can increase the range of the search using the `set\n\ | |
6d82d43b | 2194 | heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc)); |
c5aa993b | 2195 | blurb_printed = 1; |
c906108c | 2196 | } |
c906108c SS |
2197 | } |
2198 | ||
c5aa993b JM |
2199 | return 0; |
2200 | } | |
2201 | else if (pc_is_mips16 (start_pc)) | |
2202 | { | |
2203 | unsigned short inst; | |
2204 | ||
2205 | /* On MIPS16, any one of the following is likely to be the | |
2206 | start of a function: | |
2207 | entry | |
2208 | addiu sp,-n | |
2209 | daddiu sp,-n | |
2210 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
2211 | inst = mips_fetch_instruction (start_pc); | |
2212 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
2213 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
2214 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
2215 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
2216 | break; | |
2217 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
2218 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
2219 | seen_adjsp = 1; | |
2220 | else | |
2221 | seen_adjsp = 0; | |
2222 | } | |
2223 | else if (mips_about_to_return (start_pc)) | |
2224 | { | |
2225 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
2226 | break; | |
2227 | } | |
2228 | ||
c5aa993b | 2229 | return start_pc; |
c906108c SS |
2230 | } |
2231 | ||
2232 | /* Fetch the immediate value from a MIPS16 instruction. | |
2233 | If the previous instruction was an EXTEND, use it to extend | |
2234 | the upper bits of the immediate value. This is a helper function | |
1e05a7bf | 2235 | for mips16_scan_prologue. */ |
c906108c SS |
2236 | |
2237 | static int | |
acdb74a0 AC |
2238 | mips16_get_imm (unsigned short prev_inst, /* previous instruction */ |
2239 | unsigned short inst, /* current instruction */ | |
6d82d43b AC |
2240 | int nbits, /* number of bits in imm field */ |
2241 | int scale, /* scale factor to be applied to imm */ | |
2242 | int is_signed) /* is the imm field signed? */ | |
c906108c SS |
2243 | { |
2244 | int offset; | |
2245 | ||
2246 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
2247 | { | |
2248 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
c5aa993b | 2249 | if (offset & 0x8000) /* check for negative extend */ |
c906108c SS |
2250 | offset = 0 - (0x10000 - (offset & 0xffff)); |
2251 | return offset | (inst & 0x1f); | |
2252 | } | |
2253 | else | |
2254 | { | |
2255 | int max_imm = 1 << nbits; | |
2256 | int mask = max_imm - 1; | |
2257 | int sign_bit = max_imm >> 1; | |
2258 | ||
2259 | offset = inst & mask; | |
2260 | if (is_signed && (offset & sign_bit)) | |
2261 | offset = 0 - (max_imm - offset); | |
2262 | return offset * scale; | |
2263 | } | |
2264 | } | |
2265 | ||
2266 | ||
1e05a7bf | 2267 | /* Analyze the function prologue from START_PC to LIMIT_PC. Builds |
1c645fec JB |
2268 | the associated FRAME_CACHE if not null. |
2269 | Return the address of the first instruction past the prologue. */ | |
c906108c | 2270 | |
1c645fec | 2271 | static CORE_ADDR |
a65bbe44 | 2272 | mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
1e05a7bf JB |
2273 | struct frame_info *next_frame, |
2274 | struct mips_frame_cache *this_cache) | |
c906108c SS |
2275 | { |
2276 | CORE_ADDR cur_pc; | |
2277 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
a65bbe44 | 2278 | CORE_ADDR sp; |
0fce0821 JB |
2279 | long frame_offset = 0; /* Size of stack frame. */ |
2280 | long frame_adjust = 0; /* Offset of FP from SP. */ | |
2281 | int frame_reg = MIPS_SP_REGNUM; | |
c906108c SS |
2282 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ |
2283 | unsigned inst = 0; /* current instruction */ | |
2284 | unsigned entry_inst = 0; /* the entry instruction */ | |
2285 | int reg, offset; | |
c906108c | 2286 | |
1c645fec JB |
2287 | int extend_bytes = 0; |
2288 | int prev_extend_bytes; | |
2289 | CORE_ADDR end_prologue_addr = 0; | |
2290 | ||
a65bbe44 JB |
2291 | /* Can be called when there's no process, and hence when there's no |
2292 | NEXT_FRAME. */ | |
2293 | if (next_frame != NULL) | |
2294 | sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM); | |
2295 | else | |
2296 | sp = 0; | |
2297 | ||
2298 | if (limit_pc > start_pc + 200) | |
2299 | limit_pc = start_pc + 200; | |
2300 | ||
c906108c SS |
2301 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) |
2302 | { | |
2303 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
2304 | the immediate offset extension from it in mips16_get_imm. */ | |
2305 | prev_inst = inst; | |
2306 | ||
2307 | /* Fetch and decode the instruction. */ | |
2308 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
1c645fec JB |
2309 | |
2310 | /* Normally we ignore extend instructions. However, if it is | |
2311 | not followed by a valid prologue instruction, then this | |
2312 | instruction is not part of the prologue either. We must | |
2313 | remember in this case to adjust the end_prologue_addr back | |
2314 | over the extend. */ | |
2315 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
2316 | { | |
2317 | extend_bytes = MIPS16_INSTLEN; | |
2318 | continue; | |
2319 | } | |
2320 | ||
2321 | prev_extend_bytes = extend_bytes; | |
2322 | extend_bytes = 0; | |
2323 | ||
c5aa993b | 2324 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
6d82d43b | 2325 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ |
c906108c SS |
2326 | { |
2327 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
c5aa993b | 2328 | if (offset < 0) /* negative stack adjustment? */ |
0fce0821 | 2329 | frame_offset -= offset; |
c906108c SS |
2330 | else |
2331 | /* Exit loop if a positive stack adjustment is found, which | |
2332 | usually means that the stack cleanup code in the function | |
2333 | epilogue is reached. */ | |
2334 | break; | |
2335 | } | |
2336 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
2337 | { | |
2338 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2339 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
c9343fd1 | 2340 | set_reg_offset (this_cache, reg, sp + offset); |
c906108c SS |
2341 | } |
2342 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
2343 | { | |
2344 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2345 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c9343fd1 | 2346 | set_reg_offset (this_cache, reg, sp + offset); |
c906108c SS |
2347 | } |
2348 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
2349 | { | |
2350 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
c9343fd1 | 2351 | set_reg_offset (this_cache, RA_REGNUM, sp + offset); |
c906108c SS |
2352 | } |
2353 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
2354 | { | |
2355 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
c9343fd1 | 2356 | set_reg_offset (this_cache, RA_REGNUM, sp + offset); |
c906108c | 2357 | } |
c5aa993b | 2358 | else if (inst == 0x673d) /* move $s1, $sp */ |
c906108c SS |
2359 | { |
2360 | frame_addr = sp; | |
0fce0821 | 2361 | frame_reg = 17; |
c906108c SS |
2362 | } |
2363 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
2364 | { | |
2365 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2366 | frame_addr = sp + offset; | |
0fce0821 JB |
2367 | frame_reg = 17; |
2368 | frame_adjust = offset; | |
c906108c SS |
2369 | } |
2370 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
2371 | { | |
2372 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
2373 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c9343fd1 | 2374 | set_reg_offset (this_cache, reg, frame_addr + offset); |
c906108c SS |
2375 | } |
2376 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
2377 | { | |
2378 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2379 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c9343fd1 | 2380 | set_reg_offset (this_cache, reg, frame_addr + offset); |
c906108c | 2381 | } |
0fce0821 JB |
2382 | else if ((inst & 0xf81f) == 0xe809 |
2383 | && (inst & 0x700) != 0x700) /* entry */ | |
c5aa993b | 2384 | entry_inst = inst; /* save for later processing */ |
c906108c | 2385 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
c5aa993b | 2386 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ |
1c645fec JB |
2387 | else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */ |
2388 | { | |
2389 | /* This instruction is part of the prologue, but we don't | |
2390 | need to do anything special to handle it. */ | |
2391 | } | |
2392 | else | |
2393 | { | |
2394 | /* This instruction is not an instruction typically found | |
2395 | in a prologue, so we must have reached the end of the | |
2396 | prologue. */ | |
2397 | if (end_prologue_addr == 0) | |
2398 | end_prologue_addr = cur_pc - prev_extend_bytes; | |
2399 | } | |
c906108c SS |
2400 | } |
2401 | ||
c5aa993b JM |
2402 | /* The entry instruction is typically the first instruction in a function, |
2403 | and it stores registers at offsets relative to the value of the old SP | |
2404 | (before the prologue). But the value of the sp parameter to this | |
2405 | function is the new SP (after the prologue has been executed). So we | |
2406 | can't calculate those offsets until we've seen the entire prologue, | |
2407 | and can calculate what the old SP must have been. */ | |
2408 | if (entry_inst != 0) | |
2409 | { | |
2410 | int areg_count = (entry_inst >> 8) & 7; | |
2411 | int sreg_count = (entry_inst >> 6) & 3; | |
c906108c | 2412 | |
c5aa993b | 2413 | /* The entry instruction always subtracts 32 from the SP. */ |
0fce0821 | 2414 | frame_offset += 32; |
c906108c | 2415 | |
c5aa993b JM |
2416 | /* Now we can calculate what the SP must have been at the |
2417 | start of the function prologue. */ | |
0fce0821 | 2418 | sp += frame_offset; |
c906108c | 2419 | |
c5aa993b JM |
2420 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
2421 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
2422 | { | |
c9343fd1 | 2423 | set_reg_offset (this_cache, reg, sp + offset); |
13326b4e | 2424 | offset += mips_abi_regsize (current_gdbarch); |
c5aa993b | 2425 | } |
c906108c | 2426 | |
c5aa993b JM |
2427 | /* Check if the ra register was pushed on the stack. */ |
2428 | offset = -4; | |
2429 | if (entry_inst & 0x20) | |
2430 | { | |
c9343fd1 | 2431 | set_reg_offset (this_cache, RA_REGNUM, sp + offset); |
13326b4e | 2432 | offset -= mips_abi_regsize (current_gdbarch); |
c5aa993b | 2433 | } |
c906108c | 2434 | |
c5aa993b JM |
2435 | /* Check if the s0 and s1 registers were pushed on the stack. */ |
2436 | for (reg = 16; reg < sreg_count + 16; reg++) | |
2437 | { | |
c9343fd1 | 2438 | set_reg_offset (this_cache, reg, sp + offset); |
13326b4e | 2439 | offset -= mips_abi_regsize (current_gdbarch); |
c5aa993b JM |
2440 | } |
2441 | } | |
0fce0821 JB |
2442 | |
2443 | if (this_cache != NULL) | |
2444 | { | |
2445 | this_cache->base = | |
2446 | (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg) | |
2447 | + frame_offset - frame_adjust); | |
2448 | /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should | |
2449 | be able to get rid of the assignment below, evetually. But it's | |
2450 | still needed for now. */ | |
2451 | this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc] | |
2452 | = this_cache->saved_regs[NUM_REGS + RA_REGNUM]; | |
2453 | } | |
1c645fec JB |
2454 | |
2455 | /* If we didn't reach the end of the prologue when scanning the function | |
2456 | instructions, then set end_prologue_addr to the address of the | |
2457 | instruction immediately after the last one we scanned. */ | |
2458 | if (end_prologue_addr == 0) | |
2459 | end_prologue_addr = cur_pc; | |
2460 | ||
2461 | return end_prologue_addr; | |
c906108c SS |
2462 | } |
2463 | ||
65596487 JB |
2464 | /* Mark all the registers as unset in the saved_regs array |
2465 | of THIS_CACHE. Do nothing if THIS_CACHE is null. */ | |
2466 | ||
2467 | void | |
2468 | reset_saved_regs (struct mips_frame_cache *this_cache) | |
2469 | { | |
2470 | if (this_cache == NULL || this_cache->saved_regs == NULL) | |
2471 | return; | |
2472 | ||
2473 | { | |
2474 | const int num_regs = NUM_REGS; | |
2475 | int i; | |
2476 | ||
2477 | for (i = 0; i < num_regs; i++) | |
2478 | { | |
2479 | this_cache->saved_regs[i].addr = -1; | |
2480 | } | |
2481 | } | |
2482 | } | |
2483 | ||
1e05a7bf | 2484 | /* Analyze the function prologue from START_PC to LIMIT_PC. Builds |
98b4dd94 JB |
2485 | the associated FRAME_CACHE if not null. |
2486 | Return the address of the first instruction past the prologue. */ | |
1e05a7bf | 2487 | |
98b4dd94 | 2488 | static CORE_ADDR |
a65bbe44 | 2489 | mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
1e05a7bf JB |
2490 | struct frame_info *next_frame, |
2491 | struct mips_frame_cache *this_cache) | |
c906108c SS |
2492 | { |
2493 | CORE_ADDR cur_pc; | |
1e05a7bf | 2494 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ |
a65bbe44 | 2495 | CORE_ADDR sp; |
65596487 JB |
2496 | long frame_offset; |
2497 | int frame_reg = MIPS_SP_REGNUM; | |
2498 | ||
98b4dd94 JB |
2499 | CORE_ADDR end_prologue_addr = 0; |
2500 | int seen_sp_adjust = 0; | |
2501 | int load_immediate_bytes = 0; | |
2502 | ||
a65bbe44 JB |
2503 | /* Can be called when there's no process, and hence when there's no |
2504 | NEXT_FRAME. */ | |
2505 | if (next_frame != NULL) | |
2506 | sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM); | |
2507 | else | |
2508 | sp = 0; | |
2509 | ||
2510 | if (limit_pc > start_pc + 200) | |
2511 | limit_pc = start_pc + 200; | |
2512 | ||
c906108c | 2513 | restart: |
65596487 JB |
2514 | |
2515 | frame_offset = 0; | |
c906108c SS |
2516 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) |
2517 | { | |
2518 | unsigned long inst, high_word, low_word; | |
2519 | int reg; | |
2520 | ||
2521 | /* Fetch the instruction. */ | |
2522 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
2523 | ||
2524 | /* Save some code by pre-extracting some useful fields. */ | |
2525 | high_word = (inst >> 16) & 0xffff; | |
2526 | low_word = inst & 0xffff; | |
2527 | reg = high_word & 0x1f; | |
2528 | ||
c5aa993b | 2529 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ |
c906108c SS |
2530 | || high_word == 0x23bd /* addi $sp,$sp,-i */ |
2531 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
2532 | { | |
2533 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
65596487 | 2534 | frame_offset += 0x10000 - low_word; |
c906108c SS |
2535 | else |
2536 | /* Exit loop if a positive stack adjustment is found, which | |
2537 | usually means that the stack cleanup code in the function | |
2538 | epilogue is reached. */ | |
2539 | break; | |
98b4dd94 | 2540 | seen_sp_adjust = 1; |
c906108c SS |
2541 | } |
2542 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
2543 | { | |
c9343fd1 | 2544 | set_reg_offset (this_cache, reg, sp + low_word); |
c906108c SS |
2545 | } |
2546 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
2547 | { | |
98b4dd94 | 2548 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */ |
c9343fd1 | 2549 | set_reg_offset (this_cache, reg, sp + low_word); |
c906108c | 2550 | } |
c5aa993b | 2551 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
c906108c SS |
2552 | { |
2553 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
65596487 | 2554 | if ((long) low_word != frame_offset) |
c5aa993b | 2555 | frame_addr = sp + low_word; |
65596487 | 2556 | else if (frame_reg == MIPS_SP_REGNUM) |
c906108c SS |
2557 | { |
2558 | unsigned alloca_adjust; | |
65596487 JB |
2559 | |
2560 | frame_reg = 30; | |
a4b8ebc8 | 2561 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); |
c5aa993b | 2562 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); |
c906108c SS |
2563 | if (alloca_adjust > 0) |
2564 | { | |
65596487 JB |
2565 | /* FP > SP + frame_size. This may be because of |
2566 | an alloca or somethings similar. Fix sp to | |
2567 | "pre-alloca" value, and try again. */ | |
c906108c | 2568 | sp += alloca_adjust; |
65596487 JB |
2569 | /* Need to reset the status of all registers. Otherwise, |
2570 | we will hit a guard that prevents the new address | |
2571 | for each register to be recomputed during the second | |
2572 | pass. */ | |
2573 | reset_saved_regs (this_cache); | |
c906108c SS |
2574 | goto restart; |
2575 | } | |
2576 | } | |
2577 | } | |
c5aa993b JM |
2578 | /* move $30,$sp. With different versions of gas this will be either |
2579 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
2580 | Accept any one of these. */ | |
c906108c SS |
2581 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) |
2582 | { | |
2583 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
65596487 | 2584 | if (frame_reg == MIPS_SP_REGNUM) |
c906108c SS |
2585 | { |
2586 | unsigned alloca_adjust; | |
65596487 JB |
2587 | |
2588 | frame_reg = 30; | |
a4b8ebc8 | 2589 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); |
c5aa993b | 2590 | alloca_adjust = (unsigned) (frame_addr - sp); |
c906108c | 2591 | if (alloca_adjust > 0) |
65596487 JB |
2592 | { |
2593 | /* FP > SP + frame_size. This may be because of | |
2594 | an alloca or somethings similar. Fix sp to | |
2595 | "pre-alloca" value, and try again. */ | |
2596 | sp = frame_addr; | |
2597 | /* Need to reset the status of all registers. Otherwise, | |
2598 | we will hit a guard that prevents the new address | |
2599 | for each register to be recomputed during the second | |
2600 | pass. */ | |
2601 | reset_saved_regs (this_cache); | |
2602 | goto restart; | |
2603 | } | |
c906108c SS |
2604 | } |
2605 | } | |
c5aa993b | 2606 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
c906108c | 2607 | { |
c9343fd1 | 2608 | set_reg_offset (this_cache, reg, frame_addr + low_word); |
c906108c | 2609 | } |
98b4dd94 JB |
2610 | else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */ |
2611 | || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */ | |
2612 | || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */ | |
2613 | || high_word == 0x3c1c /* lui $gp,n */ | |
2614 | || high_word == 0x279c /* addiu $gp,$gp,n */ | |
2615 | || inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
2616 | || inst == 0x033ce021 /* addu $gp,$t9,$gp */ | |
2617 | ) | |
2618 | { | |
2619 | /* These instructions are part of the prologue, but we don't | |
2620 | need to do anything special to handle them. */ | |
2621 | } | |
2622 | /* The instructions below load $at or $t0 with an immediate | |
2623 | value in preparation for a stack adjustment via | |
2624 | subu $sp,$sp,[$at,$t0]. These instructions could also | |
2625 | initialize a local variable, so we accept them only before | |
2626 | a stack adjustment instruction was seen. */ | |
2627 | else if (!seen_sp_adjust | |
2628 | && (high_word == 0x3c01 /* lui $at,n */ | |
2629 | || high_word == 0x3c08 /* lui $t0,n */ | |
2630 | || high_word == 0x3421 /* ori $at,$at,n */ | |
2631 | || high_word == 0x3508 /* ori $t0,$t0,n */ | |
2632 | || high_word == 0x3401 /* ori $at,$zero,n */ | |
2633 | || high_word == 0x3408 /* ori $t0,$zero,n */ | |
2634 | )) | |
2635 | { | |
2636 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
2637 | } | |
2638 | else | |
2639 | { | |
2640 | /* This instruction is not an instruction typically found | |
2641 | in a prologue, so we must have reached the end of the | |
2642 | prologue. */ | |
2643 | /* FIXME: brobecker/2004-10-10: Can't we just break out of this | |
2644 | loop now? Why would we need to continue scanning the function | |
2645 | instructions? */ | |
2646 | if (end_prologue_addr == 0) | |
2647 | end_prologue_addr = cur_pc; | |
2648 | } | |
c906108c | 2649 | } |
65596487 JB |
2650 | |
2651 | if (this_cache != NULL) | |
2652 | { | |
2653 | this_cache->base = | |
2654 | (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg) | |
2655 | + frame_offset); | |
2656 | /* FIXME: brobecker/2004-09-15: We should be able to get rid of | |
2657 | this assignment below, eventually. But it's still needed | |
2658 | for now. */ | |
2659 | this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc] | |
2660 | = this_cache->saved_regs[NUM_REGS + RA_REGNUM]; | |
2661 | } | |
98b4dd94 JB |
2662 | |
2663 | /* If we didn't reach the end of the prologue when scanning the function | |
2664 | instructions, then set end_prologue_addr to the address of the | |
2665 | instruction immediately after the last one we scanned. */ | |
2666 | /* brobecker/2004-10-10: I don't think this would ever happen, but | |
2667 | we may as well be careful and do our best if we have a null | |
2668 | end_prologue_addr. */ | |
2669 | if (end_prologue_addr == 0) | |
2670 | end_prologue_addr = cur_pc; | |
2671 | ||
2672 | /* In a frameless function, we might have incorrectly | |
2673 | skipped some load immediate instructions. Undo the skipping | |
2674 | if the load immediate was not followed by a stack adjustment. */ | |
2675 | if (load_immediate_bytes && !seen_sp_adjust) | |
2676 | end_prologue_addr -= load_immediate_bytes; | |
2677 | ||
2678 | return end_prologue_addr; | |
c906108c SS |
2679 | } |
2680 | ||
2681 | static mips_extra_func_info_t | |
acdb74a0 | 2682 | heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
c9343fd1 AC |
2683 | struct frame_info *next_frame, |
2684 | struct mips_frame_cache *this_cache) | |
c906108c | 2685 | { |
c5aa993b JM |
2686 | if (start_pc == 0) |
2687 | return NULL; | |
a65bbe44 | 2688 | |
c5aa993b | 2689 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); |
c906108c | 2690 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; |
f10683bb | 2691 | PROC_FRAME_REG (&temp_proc_desc) = MIPS_SP_REGNUM; |
c906108c SS |
2692 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; |
2693 | ||
c906108c | 2694 | if (pc_is_mips16 (start_pc)) |
a65bbe44 | 2695 | mips16_scan_prologue (start_pc, limit_pc, next_frame, this_cache); |
c906108c | 2696 | else |
a65bbe44 JB |
2697 | mips32_scan_prologue (start_pc, limit_pc, next_frame, this_cache); |
2698 | ||
c906108c SS |
2699 | return &temp_proc_desc; |
2700 | } | |
2701 | ||
6c0d6680 DJ |
2702 | struct mips_objfile_private |
2703 | { | |
2704 | bfd_size_type size; | |
2705 | char *contents; | |
2706 | }; | |
2707 | ||
2708 | /* Global used to communicate between non_heuristic_proc_desc and | |
2709 | compare_pdr_entries within qsort (). */ | |
2710 | static bfd *the_bfd; | |
2711 | ||
2712 | static int | |
2713 | compare_pdr_entries (const void *a, const void *b) | |
2714 | { | |
2715 | CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a); | |
2716 | CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b); | |
2717 | ||
2718 | if (lhs < rhs) | |
2719 | return -1; | |
2720 | else if (lhs == rhs) | |
2721 | return 0; | |
2722 | else | |
2723 | return 1; | |
2724 | } | |
2725 | ||
c906108c | 2726 | static mips_extra_func_info_t |
acdb74a0 | 2727 | non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr) |
c906108c SS |
2728 | { |
2729 | CORE_ADDR startaddr; | |
2730 | mips_extra_func_info_t proc_desc; | |
c5aa993b | 2731 | struct block *b = block_for_pc (pc); |
c906108c | 2732 | struct symbol *sym; |
6c0d6680 DJ |
2733 | struct obj_section *sec; |
2734 | struct mips_objfile_private *priv; | |
2735 | ||
c906108c SS |
2736 | find_pc_partial_function (pc, NULL, &startaddr, NULL); |
2737 | if (addrptr) | |
2738 | *addrptr = startaddr; | |
6c0d6680 DJ |
2739 | |
2740 | priv = NULL; | |
2741 | ||
2742 | sec = find_pc_section (pc); | |
2743 | if (sec != NULL) | |
c906108c | 2744 | { |
8d5f9dcb | 2745 | priv = (struct mips_objfile_private *) objfile_data (sec->objfile, mips_pdr_data); |
6c0d6680 DJ |
2746 | |
2747 | /* Search the ".pdr" section generated by GAS. This includes most of | |
6d82d43b | 2748 | the information normally found in ECOFF PDRs. */ |
6c0d6680 DJ |
2749 | |
2750 | the_bfd = sec->objfile->obfd; | |
2751 | if (priv == NULL | |
2752 | && (the_bfd->format == bfd_object | |
2753 | && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour | |
2754 | && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64)) | |
2755 | { | |
2756 | /* Right now GAS only outputs the address as a four-byte sequence. | |
2757 | This means that we should not bother with this method on 64-bit | |
2758 | targets (until that is fixed). */ | |
2759 | ||
8b92e4d5 | 2760 | priv = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2761 | sizeof (struct mips_objfile_private)); |
2762 | priv->size = 0; | |
8d5f9dcb | 2763 | set_objfile_data (sec->objfile, mips_pdr_data, priv); |
6c0d6680 DJ |
2764 | } |
2765 | else if (priv == NULL) | |
2766 | { | |
2767 | asection *bfdsec; | |
2768 | ||
8b92e4d5 | 2769 | priv = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2770 | sizeof (struct mips_objfile_private)); |
2771 | ||
2772 | bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr"); | |
2773 | if (bfdsec != NULL) | |
2774 | { | |
2775 | priv->size = bfd_section_size (sec->objfile->obfd, bfdsec); | |
8b92e4d5 | 2776 | priv->contents = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2777 | priv->size); |
2778 | bfd_get_section_contents (sec->objfile->obfd, bfdsec, | |
2779 | priv->contents, 0, priv->size); | |
2780 | ||
2781 | /* In general, the .pdr section is sorted. However, in the | |
6d82d43b AC |
2782 | presence of multiple code sections (and other corner cases) |
2783 | it can become unsorted. Sort it so that we can use a faster | |
2784 | binary search. */ | |
2785 | qsort (priv->contents, priv->size / 32, 32, | |
2786 | compare_pdr_entries); | |
6c0d6680 DJ |
2787 | } |
2788 | else | |
2789 | priv->size = 0; | |
2790 | ||
8d5f9dcb | 2791 | set_objfile_data (sec->objfile, mips_pdr_data, priv); |
6c0d6680 DJ |
2792 | } |
2793 | the_bfd = NULL; | |
2794 | ||
2795 | if (priv->size != 0) | |
2796 | { | |
2797 | int low, mid, high; | |
2798 | char *ptr; | |
34fcf120 | 2799 | CORE_ADDR pdr_pc; |
6c0d6680 DJ |
2800 | |
2801 | low = 0; | |
2802 | high = priv->size / 32; | |
2803 | ||
34fcf120 DJ |
2804 | /* We've found a .pdr section describing this objfile. We want to |
2805 | find the entry which describes this code address. The .pdr | |
2806 | information is not very descriptive; we have only a function | |
2807 | start address. We have to look for the closest entry, because | |
2808 | the local symbol at the beginning of this function may have | |
2809 | been stripped - so if we ask the symbol table for the start | |
2810 | address we may get a preceding global function. */ | |
2811 | ||
2812 | /* First, find the last .pdr entry starting at or before PC. */ | |
6c0d6680 DJ |
2813 | do |
2814 | { | |
6c0d6680 DJ |
2815 | mid = (low + high) / 2; |
2816 | ||
2817 | ptr = priv->contents + mid * 32; | |
2818 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2819 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2820 | SECT_OFF_TEXT (sec->objfile)); | |
34fcf120 DJ |
2821 | |
2822 | if (pdr_pc > pc) | |
6c0d6680 DJ |
2823 | high = mid; |
2824 | else | |
2825 | low = mid + 1; | |
2826 | } | |
2827 | while (low != high); | |
2828 | ||
34fcf120 DJ |
2829 | /* Both low and high point one past the PDR of interest. If |
2830 | both are zero, that means this PC is before any region | |
2831 | covered by a PDR, i.e. pdr_pc for the first PDR entry is | |
2832 | greater than PC. */ | |
2833 | if (low > 0) | |
2834 | { | |
2835 | ptr = priv->contents + (low - 1) * 32; | |
2836 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2837 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2838 | SECT_OFF_TEXT (sec->objfile)); | |
2839 | } | |
2840 | ||
2841 | /* We don't have a range, so we have no way to know for sure | |
2842 | whether we're in the correct PDR or a PDR for a preceding | |
2843 | function and the current function was a stripped local | |
2844 | symbol. But if the PDR's PC is at least as great as the | |
2845 | best guess from the symbol table, assume that it does cover | |
2846 | the right area; if a .pdr section is present at all then | |
2847 | nearly every function will have an entry. The biggest exception | |
2848 | will be the dynamic linker stubs; conveniently these are | |
2849 | placed before .text instead of after. */ | |
2850 | ||
2851 | if (pc >= pdr_pc && pdr_pc >= startaddr) | |
6c0d6680 DJ |
2852 | { |
2853 | struct symbol *sym = find_pc_function (pc); | |
2854 | ||
34fcf120 DJ |
2855 | if (addrptr) |
2856 | *addrptr = pdr_pc; | |
2857 | ||
6c0d6680 DJ |
2858 | /* Fill in what we need of the proc_desc. */ |
2859 | proc_desc = (mips_extra_func_info_t) | |
8b92e4d5 | 2860 | obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 | 2861 | sizeof (struct mips_extra_func_info)); |
34fcf120 | 2862 | PROC_LOW_ADDR (proc_desc) = pdr_pc; |
6c0d6680 DJ |
2863 | |
2864 | /* Only used for dummy frames. */ | |
2865 | PROC_HIGH_ADDR (proc_desc) = 0; | |
2866 | ||
2867 | PROC_FRAME_OFFSET (proc_desc) | |
2868 | = bfd_get_32 (sec->objfile->obfd, ptr + 20); | |
2869 | PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2870 | ptr + 24); | |
2871 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
2872 | PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2873 | ptr + 4); | |
2874 | PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2875 | ptr + 12); | |
2876 | PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2877 | ptr + 8); | |
2878 | PROC_FREG_OFFSET (proc_desc) | |
2879 | = bfd_get_32 (sec->objfile->obfd, ptr + 16); | |
2880 | PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2881 | ptr + 28); | |
2882 | proc_desc->pdr.isym = (long) sym; | |
2883 | ||
2884 | return proc_desc; | |
2885 | } | |
2886 | } | |
c906108c SS |
2887 | } |
2888 | ||
6c0d6680 DJ |
2889 | if (b == NULL) |
2890 | return NULL; | |
2891 | ||
2892 | if (startaddr > BLOCK_START (b)) | |
2893 | { | |
2894 | /* This is the "pathological" case referred to in a comment in | |
6d82d43b AC |
2895 | print_frame_info. It might be better to move this check into |
2896 | symbol reading. */ | |
6c0d6680 DJ |
2897 | return NULL; |
2898 | } | |
2899 | ||
176620f1 | 2900 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL); |
6c0d6680 | 2901 | |
c906108c SS |
2902 | /* If we never found a PDR for this function in symbol reading, then |
2903 | examine prologues to find the information. */ | |
2904 | if (sym) | |
2905 | { | |
2906 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
2907 | if (PROC_FRAME_REG (proc_desc) == -1) | |
2908 | return NULL; | |
2909 | else | |
2910 | return proc_desc; | |
2911 | } | |
2912 | else | |
2913 | return NULL; | |
2914 | } | |
2915 | ||
c906108c SS |
2916 | /* MIPS stack frames are almost impenetrable. When execution stops, |
2917 | we basically have to look at symbol information for the function | |
2918 | that we stopped in, which tells us *which* register (if any) is | |
2919 | the base of the frame pointer, and what offset from that register | |
361d1df0 | 2920 | the frame itself is at. |
c906108c SS |
2921 | |
2922 | This presents a problem when trying to examine a stack in memory | |
2923 | (that isn't executing at the moment), using the "frame" command. We | |
2924 | don't have a PC, nor do we have any registers except SP. | |
2925 | ||
2926 | This routine takes two arguments, SP and PC, and tries to make the | |
2927 | cached frames look as if these two arguments defined a frame on the | |
2928 | cache. This allows the rest of info frame to extract the important | |
2929 | arguments without difficulty. */ | |
2930 | ||
2931 | struct frame_info * | |
acdb74a0 | 2932 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
2933 | { |
2934 | if (argc != 2) | |
2935 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
2936 | ||
2937 | return create_new_frame (argv[0], argv[1]); | |
2938 | } | |
2939 | ||
f09ded24 AC |
2940 | /* According to the current ABI, should the type be passed in a |
2941 | floating-point register (assuming that there is space)? When there | |
2942 | is no FPU, FP are not even considered as possibile candidates for | |
2943 | FP registers and, consequently this returns false - forces FP | |
2944 | arguments into integer registers. */ | |
2945 | ||
2946 | static int | |
2947 | fp_register_arg_p (enum type_code typecode, struct type *arg_type) | |
2948 | { | |
2949 | return ((typecode == TYPE_CODE_FLT | |
2950 | || (MIPS_EABI | |
6d82d43b AC |
2951 | && (typecode == TYPE_CODE_STRUCT |
2952 | || typecode == TYPE_CODE_UNION) | |
f09ded24 AC |
2953 | && TYPE_NFIELDS (arg_type) == 1 |
2954 | && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT)) | |
c86b5b38 | 2955 | && MIPS_FPU_TYPE != MIPS_FPU_NONE); |
f09ded24 AC |
2956 | } |
2957 | ||
49e790b0 DJ |
2958 | /* On o32, argument passing in GPRs depends on the alignment of the type being |
2959 | passed. Return 1 if this type must be aligned to a doubleword boundary. */ | |
2960 | ||
2961 | static int | |
2962 | mips_type_needs_double_align (struct type *type) | |
2963 | { | |
2964 | enum type_code typecode = TYPE_CODE (type); | |
361d1df0 | 2965 | |
49e790b0 DJ |
2966 | if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8) |
2967 | return 1; | |
2968 | else if (typecode == TYPE_CODE_STRUCT) | |
2969 | { | |
2970 | if (TYPE_NFIELDS (type) < 1) | |
2971 | return 0; | |
2972 | return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0)); | |
2973 | } | |
2974 | else if (typecode == TYPE_CODE_UNION) | |
2975 | { | |
361d1df0 | 2976 | int i, n; |
49e790b0 DJ |
2977 | |
2978 | n = TYPE_NFIELDS (type); | |
2979 | for (i = 0; i < n; i++) | |
2980 | if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) | |
2981 | return 1; | |
2982 | return 0; | |
2983 | } | |
2984 | return 0; | |
2985 | } | |
2986 | ||
dc604539 AC |
2987 | /* Adjust the address downward (direction of stack growth) so that it |
2988 | is correctly aligned for a new stack frame. */ | |
2989 | static CORE_ADDR | |
2990 | mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2991 | { | |
5b03f266 | 2992 | return align_down (addr, 16); |
dc604539 AC |
2993 | } |
2994 | ||
6d82d43b AC |
2995 | /* Determine how a return value is stored within the MIPS register |
2996 | file, given the return type `valtype'. */ | |
2997 | ||
2998 | struct return_value_word | |
2999 | { | |
3000 | int len; | |
3001 | int reg; | |
3002 | int reg_offset; | |
3003 | int buf_offset; | |
3004 | }; | |
3005 | ||
3006 | static void | |
3007 | return_value_location (struct type *valtype, | |
3008 | struct return_value_word *hi, | |
3009 | struct return_value_word *lo) | |
3010 | { | |
3011 | int len = TYPE_LENGTH (valtype); | |
3012 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3013 | ||
3014 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
3015 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
3016 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
3017 | { | |
ceae6e75 | 3018 | if (mips_abi_regsize (current_gdbarch) < 8 && len == 8) |
6d82d43b AC |
3019 | { |
3020 | /* We need to break a 64bit float in two 32 bit halves and | |
ceae6e75 | 3021 | spread them across a floating-point register pair. */ |
6d82d43b AC |
3022 | lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
3023 | hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4; | |
3024 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3025 | && register_size (current_gdbarch, | |
3026 | mips_regnum (current_gdbarch)-> | |
3027 | fp0) == 8) ? 4 : 0); | |
3028 | hi->reg_offset = lo->reg_offset; | |
3029 | lo->reg = mips_regnum (current_gdbarch)->fp0 + 0; | |
3030 | hi->reg = mips_regnum (current_gdbarch)->fp0 + 1; | |
3031 | lo->len = 4; | |
3032 | hi->len = 4; | |
3033 | } | |
3034 | else | |
3035 | { | |
3036 | /* The floating point value fits in a single floating-point | |
3037 | register. */ | |
3038 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3039 | && register_size (current_gdbarch, | |
3040 | mips_regnum (current_gdbarch)-> | |
3041 | fp0) == 8 | |
3042 | && len == 4) ? 4 : 0); | |
3043 | lo->reg = mips_regnum (current_gdbarch)->fp0; | |
3044 | lo->len = len; | |
3045 | lo->buf_offset = 0; | |
3046 | hi->len = 0; | |
3047 | hi->reg_offset = 0; | |
3048 | hi->buf_offset = 0; | |
3049 | hi->reg = 0; | |
3050 | } | |
3051 | } | |
3052 | else | |
3053 | { | |
3054 | /* Locate a result possibly spread across two registers. */ | |
3055 | int regnum = 2; | |
3056 | lo->reg = regnum + 0; | |
3057 | hi->reg = regnum + 1; | |
3058 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
13326b4e | 3059 | && len < mips_abi_regsize (current_gdbarch)) |
6d82d43b AC |
3060 | { |
3061 | /* "un-left-justify" the value in the low register */ | |
13326b4e | 3062 | lo->reg_offset = mips_abi_regsize (current_gdbarch) - len; |
6d82d43b AC |
3063 | lo->len = len; |
3064 | hi->reg_offset = 0; | |
3065 | hi->len = 0; | |
3066 | } | |
13326b4e AC |
3067 | else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len > mips_abi_regsize (current_gdbarch) /* odd-size structs */ |
3068 | && len < mips_abi_regsize (current_gdbarch) * 2 | |
6d82d43b AC |
3069 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || |
3070 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
3071 | { | |
3072 | /* "un-left-justify" the value spread across two registers. */ | |
13326b4e AC |
3073 | lo->reg_offset = 2 * mips_abi_regsize (current_gdbarch) - len; |
3074 | lo->len = mips_abi_regsize (current_gdbarch) - lo->reg_offset; | |
6d82d43b AC |
3075 | hi->reg_offset = 0; |
3076 | hi->len = len - lo->len; | |
3077 | } | |
3078 | else | |
3079 | { | |
3080 | /* Only perform a partial copy of the second register. */ | |
3081 | lo->reg_offset = 0; | |
3082 | hi->reg_offset = 0; | |
13326b4e | 3083 | if (len > mips_abi_regsize (current_gdbarch)) |
6d82d43b | 3084 | { |
13326b4e AC |
3085 | lo->len = mips_abi_regsize (current_gdbarch); |
3086 | hi->len = len - mips_abi_regsize (current_gdbarch); | |
6d82d43b AC |
3087 | } |
3088 | else | |
3089 | { | |
3090 | lo->len = len; | |
3091 | hi->len = 0; | |
3092 | } | |
3093 | } | |
3094 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3095 | && register_size (current_gdbarch, regnum) == 8 | |
13326b4e | 3096 | && mips_abi_regsize (current_gdbarch) == 4) |
6d82d43b AC |
3097 | { |
3098 | /* Account for the fact that only the least-signficant part | |
3099 | of the register is being used */ | |
3100 | lo->reg_offset += 4; | |
3101 | hi->reg_offset += 4; | |
3102 | } | |
3103 | lo->buf_offset = 0; | |
3104 | hi->buf_offset = lo->len; | |
3105 | } | |
3106 | } | |
3107 | ||
3108 | /* Should call_function allocate stack space for a struct return? */ | |
3109 | ||
3110 | static int | |
3111 | mips_eabi_use_struct_convention (int gcc_p, struct type *type) | |
3112 | { | |
3113 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
13326b4e | 3114 | return (TYPE_LENGTH (type) > 2 * mips_abi_regsize (current_gdbarch)); |
6d82d43b AC |
3115 | } |
3116 | ||
3117 | /* Should call_function pass struct by reference? | |
3118 | For each architecture, structs are passed either by | |
3119 | value or by reference, depending on their size. */ | |
3120 | ||
3121 | static int | |
3122 | mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type) | |
3123 | { | |
3124 | enum type_code typecode = TYPE_CODE (check_typedef (type)); | |
3125 | int len = TYPE_LENGTH (check_typedef (type)); | |
3126 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3127 | ||
3128 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
13326b4e | 3129 | return (len > mips_abi_regsize (current_gdbarch)); |
6d82d43b AC |
3130 | |
3131 | return 0; | |
3132 | } | |
3133 | ||
f7ab6ec6 | 3134 | static CORE_ADDR |
7d9b040b | 3135 | mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3136 | struct regcache *regcache, CORE_ADDR bp_addr, |
3137 | int nargs, struct value **args, CORE_ADDR sp, | |
3138 | int struct_return, CORE_ADDR struct_addr) | |
c906108c SS |
3139 | { |
3140 | int argreg; | |
3141 | int float_argreg; | |
3142 | int argnum; | |
3143 | int len = 0; | |
3144 | int stack_offset = 0; | |
480d3dd2 | 3145 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 3146 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 3147 | |
25ab4790 AC |
3148 | /* For shared libraries, "t9" needs to point at the function |
3149 | address. */ | |
3150 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3151 | ||
3152 | /* Set the return address register to point to the entry point of | |
3153 | the program, where a breakpoint lies in wait. */ | |
3154 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3155 | ||
c906108c | 3156 | /* First ensure that the stack and structure return address (if any) |
cb3d25d1 MS |
3157 | are properly aligned. The stack has to be at least 64-bit |
3158 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3159 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3160 | aligned, so we round to this widest known alignment. */ | |
3161 | ||
5b03f266 AC |
3162 | sp = align_down (sp, 16); |
3163 | struct_addr = align_down (struct_addr, 16); | |
c5aa993b | 3164 | |
46e0f506 | 3165 | /* Now make space on the stack for the args. We allocate more |
c906108c | 3166 | than necessary for EABI, because the first few arguments are |
46e0f506 | 3167 | passed in registers, but that's OK. */ |
c906108c | 3168 | for (argnum = 0; argnum < nargs; argnum++) |
6d82d43b | 3169 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3170 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3171 | sp -= align_up (len, 16); |
c906108c | 3172 | |
9ace0497 | 3173 | if (mips_debug) |
6d82d43b | 3174 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3175 | "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n", |
3176 | paddr_nz (sp), (long) align_up (len, 16)); | |
9ace0497 | 3177 | |
c906108c SS |
3178 | /* Initialize the integer and float register pointers. */ |
3179 | argreg = A0_REGNUM; | |
56cea623 | 3180 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
c906108c | 3181 | |
46e0f506 | 3182 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
c906108c | 3183 | if (struct_return) |
9ace0497 AC |
3184 | { |
3185 | if (mips_debug) | |
3186 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3187 | "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 | 3188 | argreg, paddr_nz (struct_addr)); |
9ace0497 AC |
3189 | write_register (argreg++, struct_addr); |
3190 | } | |
c906108c SS |
3191 | |
3192 | /* Now load as many as possible of the first arguments into | |
3193 | registers, and push the rest onto the stack. Loop thru args | |
3194 | from first to last. */ | |
3195 | for (argnum = 0; argnum < nargs; argnum++) | |
3196 | { | |
3197 | char *val; | |
d9d9c31f | 3198 | char valbuf[MAX_REGISTER_SIZE]; |
ea7c478f | 3199 | struct value *arg = args[argnum]; |
c906108c SS |
3200 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
3201 | int len = TYPE_LENGTH (arg_type); | |
3202 | enum type_code typecode = TYPE_CODE (arg_type); | |
3203 | ||
9ace0497 AC |
3204 | if (mips_debug) |
3205 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3206 | "mips_eabi_push_dummy_call: %d len=%d type=%d", |
acdb74a0 | 3207 | argnum + 1, len, (int) typecode); |
9ace0497 | 3208 | |
c906108c | 3209 | /* The EABI passes structures that do not fit in a register by |
46e0f506 | 3210 | reference. */ |
13326b4e | 3211 | if (len > mips_abi_regsize (gdbarch) |
9ace0497 | 3212 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
c906108c | 3213 | { |
13326b4e | 3214 | store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch), |
480d3dd2 | 3215 | VALUE_ADDRESS (arg)); |
c906108c | 3216 | typecode = TYPE_CODE_PTR; |
13326b4e | 3217 | len = mips_abi_regsize (gdbarch); |
c906108c | 3218 | val = valbuf; |
9ace0497 AC |
3219 | if (mips_debug) |
3220 | fprintf_unfiltered (gdb_stdlog, " push"); | |
c906108c SS |
3221 | } |
3222 | else | |
c5aa993b | 3223 | val = (char *) VALUE_CONTENTS (arg); |
c906108c SS |
3224 | |
3225 | /* 32-bit ABIs always start floating point arguments in an | |
acdb74a0 AC |
3226 | even-numbered floating point register. Round the FP register |
3227 | up before the check to see if there are any FP registers | |
46e0f506 MS |
3228 | left. Non MIPS_EABI targets also pass the FP in the integer |
3229 | registers so also round up normal registers. */ | |
ceae6e75 AC |
3230 | if (mips_abi_regsize (gdbarch) < 8 |
3231 | && fp_register_arg_p (typecode, arg_type)) | |
acdb74a0 AC |
3232 | { |
3233 | if ((float_argreg & 1)) | |
3234 | float_argreg++; | |
3235 | } | |
c906108c SS |
3236 | |
3237 | /* Floating point arguments passed in registers have to be | |
3238 | treated specially. On 32-bit architectures, doubles | |
c5aa993b JM |
3239 | are passed in register pairs; the even register gets |
3240 | the low word, and the odd register gets the high word. | |
3241 | On non-EABI processors, the first two floating point arguments are | |
3242 | also copied to general registers, because MIPS16 functions | |
3243 | don't use float registers for arguments. This duplication of | |
3244 | arguments in general registers can't hurt non-MIPS16 functions | |
3245 | because those registers are normally skipped. */ | |
1012bd0e EZ |
3246 | /* MIPS_EABI squeezes a struct that contains a single floating |
3247 | point value into an FP register instead of pushing it onto the | |
46e0f506 | 3248 | stack. */ |
f09ded24 AC |
3249 | if (fp_register_arg_p (typecode, arg_type) |
3250 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
c906108c | 3251 | { |
ceae6e75 | 3252 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
c906108c | 3253 | { |
d7449b42 | 3254 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
c906108c SS |
3255 | unsigned long regval; |
3256 | ||
3257 | /* Write the low word of the double to the even register(s). */ | |
c5aa993b | 3258 | regval = extract_unsigned_integer (val + low_offset, 4); |
9ace0497 | 3259 | if (mips_debug) |
acdb74a0 | 3260 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 3261 | float_argreg, phex (regval, 4)); |
c906108c | 3262 | write_register (float_argreg++, regval); |
c906108c SS |
3263 | |
3264 | /* Write the high word of the double to the odd register(s). */ | |
c5aa993b | 3265 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); |
9ace0497 | 3266 | if (mips_debug) |
acdb74a0 | 3267 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 3268 | float_argreg, phex (regval, 4)); |
c906108c | 3269 | write_register (float_argreg++, regval); |
c906108c SS |
3270 | } |
3271 | else | |
3272 | { | |
3273 | /* This is a floating point value that fits entirely | |
3274 | in a single register. */ | |
53a5351d | 3275 | /* On 32 bit ABI's the float_argreg is further adjusted |
6d82d43b | 3276 | above to ensure that it is even register aligned. */ |
9ace0497 AC |
3277 | LONGEST regval = extract_unsigned_integer (val, len); |
3278 | if (mips_debug) | |
acdb74a0 | 3279 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 3280 | float_argreg, phex (regval, len)); |
c906108c | 3281 | write_register (float_argreg++, regval); |
c906108c SS |
3282 | } |
3283 | } | |
3284 | else | |
3285 | { | |
3286 | /* Copy the argument to general registers or the stack in | |
3287 | register-sized pieces. Large arguments are split between | |
3288 | registers and stack. */ | |
4246e332 | 3289 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
3290 | mips_abi_regsize() are treated specially: Irix cc passes |
3291 | them in registers where gcc sometimes puts them on the | |
3292 | stack. For maximum compatibility, we will put them in | |
3293 | both places. */ | |
13326b4e AC |
3294 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
3295 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
46e0f506 | 3296 | |
f09ded24 | 3297 | /* Note: Floating-point values that didn't fit into an FP |
6d82d43b | 3298 | register are only written to memory. */ |
c906108c SS |
3299 | while (len > 0) |
3300 | { | |
ebafbe83 | 3301 | /* Remember if the argument was written to the stack. */ |
566f0f7a | 3302 | int stack_used_p = 0; |
13326b4e AC |
3303 | int partial_len = (len < mips_abi_regsize (gdbarch) |
3304 | ? len : mips_abi_regsize (gdbarch)); | |
c906108c | 3305 | |
acdb74a0 AC |
3306 | if (mips_debug) |
3307 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3308 | partial_len); | |
3309 | ||
566f0f7a | 3310 | /* Write this portion of the argument to the stack. */ |
f09ded24 AC |
3311 | if (argreg > MIPS_LAST_ARG_REGNUM |
3312 | || odd_sized_struct | |
3313 | || fp_register_arg_p (typecode, arg_type)) | |
c906108c | 3314 | { |
c906108c SS |
3315 | /* Should shorter than int integer values be |
3316 | promoted to int before being stored? */ | |
c906108c | 3317 | int longword_offset = 0; |
9ace0497 | 3318 | CORE_ADDR addr; |
566f0f7a | 3319 | stack_used_p = 1; |
d7449b42 | 3320 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
7a292a7a | 3321 | { |
13326b4e | 3322 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
3323 | && (typecode == TYPE_CODE_INT |
3324 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 3325 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 3326 | longword_offset = mips_stack_argsize (gdbarch) - len; |
480d3dd2 AC |
3327 | else if ((typecode == TYPE_CODE_STRUCT |
3328 | || typecode == TYPE_CODE_UNION) | |
3329 | && (TYPE_LENGTH (arg_type) | |
13326b4e AC |
3330 | < mips_stack_argsize (gdbarch))) |
3331 | longword_offset = mips_stack_argsize (gdbarch) - len; | |
7a292a7a | 3332 | } |
c5aa993b | 3333 | |
9ace0497 AC |
3334 | if (mips_debug) |
3335 | { | |
cb3d25d1 MS |
3336 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", |
3337 | paddr_nz (stack_offset)); | |
3338 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3339 | paddr_nz (longword_offset)); | |
9ace0497 | 3340 | } |
361d1df0 | 3341 | |
9ace0497 AC |
3342 | addr = sp + stack_offset + longword_offset; |
3343 | ||
3344 | if (mips_debug) | |
3345 | { | |
3346 | int i; | |
6d82d43b | 3347 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
cb3d25d1 | 3348 | paddr_nz (addr)); |
9ace0497 AC |
3349 | for (i = 0; i < partial_len; i++) |
3350 | { | |
6d82d43b | 3351 | fprintf_unfiltered (gdb_stdlog, "%02x", |
cb3d25d1 | 3352 | val[i] & 0xff); |
9ace0497 AC |
3353 | } |
3354 | } | |
3355 | write_memory (addr, val, partial_len); | |
c906108c SS |
3356 | } |
3357 | ||
f09ded24 AC |
3358 | /* Note!!! This is NOT an else clause. Odd sized |
3359 | structs may go thru BOTH paths. Floating point | |
46e0f506 | 3360 | arguments will not. */ |
566f0f7a | 3361 | /* Write this portion of the argument to a general |
6d82d43b | 3362 | purpose register. */ |
f09ded24 AC |
3363 | if (argreg <= MIPS_LAST_ARG_REGNUM |
3364 | && !fp_register_arg_p (typecode, arg_type)) | |
c906108c | 3365 | { |
6d82d43b AC |
3366 | LONGEST regval = |
3367 | extract_unsigned_integer (val, partial_len); | |
c906108c | 3368 | |
9ace0497 | 3369 | if (mips_debug) |
acdb74a0 | 3370 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", |
9ace0497 | 3371 | argreg, |
6d82d43b | 3372 | phex (regval, |
13326b4e | 3373 | mips_abi_regsize (gdbarch))); |
c906108c SS |
3374 | write_register (argreg, regval); |
3375 | argreg++; | |
c906108c | 3376 | } |
c5aa993b | 3377 | |
c906108c SS |
3378 | len -= partial_len; |
3379 | val += partial_len; | |
3380 | ||
566f0f7a | 3381 | /* Compute the the offset into the stack at which we |
6d82d43b | 3382 | will copy the next parameter. |
566f0f7a | 3383 | |
566f0f7a | 3384 | In the new EABI (and the NABI32), the stack_offset |
46e0f506 | 3385 | only needs to be adjusted when it has been used. */ |
c906108c | 3386 | |
46e0f506 | 3387 | if (stack_used_p) |
480d3dd2 | 3388 | stack_offset += align_up (partial_len, |
13326b4e | 3389 | mips_stack_argsize (gdbarch)); |
c906108c SS |
3390 | } |
3391 | } | |
9ace0497 AC |
3392 | if (mips_debug) |
3393 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
c906108c SS |
3394 | } |
3395 | ||
f10683bb | 3396 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 3397 | |
0f71a2f6 JM |
3398 | /* Return adjusted stack pointer. */ |
3399 | return sp; | |
3400 | } | |
3401 | ||
6d82d43b AC |
3402 | /* Given a return value in `regbuf' with a type `valtype', extract and |
3403 | copy its value into `valbuf'. */ | |
3404 | ||
3405 | static void | |
3406 | mips_eabi_extract_return_value (struct type *valtype, | |
3407 | char regbuf[], char *valbuf) | |
3408 | { | |
3409 | struct return_value_word lo; | |
3410 | struct return_value_word hi; | |
3411 | return_value_location (valtype, &hi, &lo); | |
3412 | ||
3413 | memcpy (valbuf + lo.buf_offset, | |
3414 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + | |
3415 | lo.reg_offset, lo.len); | |
3416 | ||
3417 | if (hi.len > 0) | |
3418 | memcpy (valbuf + hi.buf_offset, | |
3419 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + | |
3420 | hi.reg_offset, hi.len); | |
3421 | } | |
3422 | ||
3423 | /* Given a return value in `valbuf' with a type `valtype', write it's | |
3424 | value into the appropriate register. */ | |
3425 | ||
3426 | static void | |
3427 | mips_eabi_store_return_value (struct type *valtype, char *valbuf) | |
3428 | { | |
3429 | char raw_buffer[MAX_REGISTER_SIZE]; | |
3430 | struct return_value_word lo; | |
3431 | struct return_value_word hi; | |
3432 | return_value_location (valtype, &hi, &lo); | |
3433 | ||
3434 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3435 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
3436 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), | |
3437 | raw_buffer, register_size (current_gdbarch, | |
3438 | lo.reg)); | |
3439 | ||
3440 | if (hi.len > 0) | |
3441 | { | |
3442 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3443 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
3444 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), | |
3445 | raw_buffer, | |
3446 | register_size (current_gdbarch, | |
3447 | hi.reg)); | |
3448 | } | |
3449 | } | |
3450 | ||
3451 | /* N32/N64 ABI stuff. */ | |
ebafbe83 | 3452 | |
f7ab6ec6 | 3453 | static CORE_ADDR |
7d9b040b | 3454 | mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3455 | struct regcache *regcache, CORE_ADDR bp_addr, |
3456 | int nargs, struct value **args, CORE_ADDR sp, | |
3457 | int struct_return, CORE_ADDR struct_addr) | |
cb3d25d1 MS |
3458 | { |
3459 | int argreg; | |
3460 | int float_argreg; | |
3461 | int argnum; | |
3462 | int len = 0; | |
3463 | int stack_offset = 0; | |
480d3dd2 | 3464 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 3465 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
cb3d25d1 | 3466 | |
25ab4790 AC |
3467 | /* For shared libraries, "t9" needs to point at the function |
3468 | address. */ | |
3469 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3470 | ||
3471 | /* Set the return address register to point to the entry point of | |
3472 | the program, where a breakpoint lies in wait. */ | |
3473 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3474 | ||
cb3d25d1 MS |
3475 | /* First ensure that the stack and structure return address (if any) |
3476 | are properly aligned. The stack has to be at least 64-bit | |
3477 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3478 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3479 | aligned, so we round to this widest known alignment. */ | |
3480 | ||
5b03f266 AC |
3481 | sp = align_down (sp, 16); |
3482 | struct_addr = align_down (struct_addr, 16); | |
cb3d25d1 MS |
3483 | |
3484 | /* Now make space on the stack for the args. */ | |
3485 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 3486 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3487 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3488 | sp -= align_up (len, 16); |
cb3d25d1 MS |
3489 | |
3490 | if (mips_debug) | |
6d82d43b | 3491 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3492 | "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n", |
3493 | paddr_nz (sp), (long) align_up (len, 16)); | |
cb3d25d1 MS |
3494 | |
3495 | /* Initialize the integer and float register pointers. */ | |
3496 | argreg = A0_REGNUM; | |
56cea623 | 3497 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
cb3d25d1 | 3498 | |
46e0f506 | 3499 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
cb3d25d1 MS |
3500 | if (struct_return) |
3501 | { | |
3502 | if (mips_debug) | |
3503 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3504 | "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 MS |
3505 | argreg, paddr_nz (struct_addr)); |
3506 | write_register (argreg++, struct_addr); | |
3507 | } | |
3508 | ||
3509 | /* Now load as many as possible of the first arguments into | |
3510 | registers, and push the rest onto the stack. Loop thru args | |
3511 | from first to last. */ | |
3512 | for (argnum = 0; argnum < nargs; argnum++) | |
3513 | { | |
3514 | char *val; | |
cb3d25d1 MS |
3515 | struct value *arg = args[argnum]; |
3516 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3517 | int len = TYPE_LENGTH (arg_type); | |
3518 | enum type_code typecode = TYPE_CODE (arg_type); | |
3519 | ||
3520 | if (mips_debug) | |
3521 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3522 | "mips_n32n64_push_dummy_call: %d len=%d type=%d", |
cb3d25d1 MS |
3523 | argnum + 1, len, (int) typecode); |
3524 | ||
3525 | val = (char *) VALUE_CONTENTS (arg); | |
3526 | ||
3527 | if (fp_register_arg_p (typecode, arg_type) | |
3528 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3529 | { | |
3530 | /* This is a floating point value that fits entirely | |
3531 | in a single register. */ | |
3532 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3533 | above to ensure that it is even register aligned. */ | |
3534 | LONGEST regval = extract_unsigned_integer (val, len); | |
3535 | if (mips_debug) | |
3536 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3537 | float_argreg, phex (regval, len)); | |
3538 | write_register (float_argreg++, regval); | |
3539 | ||
3540 | if (mips_debug) | |
3541 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3542 | argreg, phex (regval, len)); | |
3543 | write_register (argreg, regval); | |
3544 | argreg += 1; | |
3545 | } | |
3546 | else | |
3547 | { | |
3548 | /* Copy the argument to general registers or the stack in | |
3549 | register-sized pieces. Large arguments are split between | |
3550 | registers and stack. */ | |
4246e332 | 3551 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
3552 | mips_abi_regsize() are treated specially: Irix cc passes |
3553 | them in registers where gcc sometimes puts them on the | |
3554 | stack. For maximum compatibility, we will put them in | |
3555 | both places. */ | |
13326b4e AC |
3556 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
3557 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
cb3d25d1 | 3558 | /* Note: Floating-point values that didn't fit into an FP |
6d82d43b | 3559 | register are only written to memory. */ |
cb3d25d1 MS |
3560 | while (len > 0) |
3561 | { | |
3562 | /* Rememer if the argument was written to the stack. */ | |
3563 | int stack_used_p = 0; | |
13326b4e AC |
3564 | int partial_len = (len < mips_abi_regsize (gdbarch) |
3565 | ? len : mips_abi_regsize (gdbarch)); | |
cb3d25d1 MS |
3566 | |
3567 | if (mips_debug) | |
3568 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3569 | partial_len); | |
3570 | ||
3571 | /* Write this portion of the argument to the stack. */ | |
3572 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3573 | || odd_sized_struct | |
3574 | || fp_register_arg_p (typecode, arg_type)) | |
3575 | { | |
3576 | /* Should shorter than int integer values be | |
3577 | promoted to int before being stored? */ | |
3578 | int longword_offset = 0; | |
3579 | CORE_ADDR addr; | |
3580 | stack_used_p = 1; | |
3581 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3582 | { | |
13326b4e | 3583 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
3584 | && (typecode == TYPE_CODE_INT |
3585 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 3586 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 3587 | longword_offset = mips_stack_argsize (gdbarch) - len; |
cb3d25d1 MS |
3588 | } |
3589 | ||
3590 | if (mips_debug) | |
3591 | { | |
3592 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3593 | paddr_nz (stack_offset)); | |
3594 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3595 | paddr_nz (longword_offset)); | |
3596 | } | |
3597 | ||
3598 | addr = sp + stack_offset + longword_offset; | |
3599 | ||
3600 | if (mips_debug) | |
3601 | { | |
3602 | int i; | |
6d82d43b | 3603 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
cb3d25d1 MS |
3604 | paddr_nz (addr)); |
3605 | for (i = 0; i < partial_len; i++) | |
3606 | { | |
6d82d43b | 3607 | fprintf_unfiltered (gdb_stdlog, "%02x", |
cb3d25d1 MS |
3608 | val[i] & 0xff); |
3609 | } | |
3610 | } | |
3611 | write_memory (addr, val, partial_len); | |
3612 | } | |
3613 | ||
3614 | /* Note!!! This is NOT an else clause. Odd sized | |
3615 | structs may go thru BOTH paths. Floating point | |
3616 | arguments will not. */ | |
3617 | /* Write this portion of the argument to a general | |
6d82d43b | 3618 | purpose register. */ |
cb3d25d1 MS |
3619 | if (argreg <= MIPS_LAST_ARG_REGNUM |
3620 | && !fp_register_arg_p (typecode, arg_type)) | |
3621 | { | |
6d82d43b AC |
3622 | LONGEST regval = |
3623 | extract_unsigned_integer (val, partial_len); | |
cb3d25d1 MS |
3624 | |
3625 | /* A non-floating-point argument being passed in a | |
3626 | general register. If a struct or union, and if | |
3627 | the remaining length is smaller than the register | |
3628 | size, we have to adjust the register value on | |
3629 | big endian targets. | |
3630 | ||
3631 | It does not seem to be necessary to do the | |
3632 | same for integral types. | |
3633 | ||
3634 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3635 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 3636 | mips_abi_regsize(), generates a left shift as |
cb3d25d1 MS |
3637 | part of storing the argument in a register a |
3638 | register (the left shift isn't generated when | |
1b13c4f6 | 3639 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
3640 | it is quite possible that this is GCC |
3641 | contradicting the LE/O32 ABI, GDB has not been | |
3642 | adjusted to accommodate this. Either someone | |
3643 | needs to demonstrate that the LE/O32 ABI | |
3644 | specifies such a left shift OR this new ABI gets | |
3645 | identified as such and GDB gets tweaked | |
3646 | accordingly. */ | |
cb3d25d1 MS |
3647 | |
3648 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
13326b4e | 3649 | && partial_len < mips_abi_regsize (gdbarch) |
cb3d25d1 MS |
3650 | && (typecode == TYPE_CODE_STRUCT || |
3651 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 3652 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
cb3d25d1 MS |
3653 | TARGET_CHAR_BIT); |
3654 | ||
3655 | if (mips_debug) | |
3656 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3657 | argreg, | |
6d82d43b | 3658 | phex (regval, |
13326b4e | 3659 | mips_abi_regsize (gdbarch))); |
cb3d25d1 MS |
3660 | write_register (argreg, regval); |
3661 | argreg++; | |
3662 | } | |
3663 | ||
3664 | len -= partial_len; | |
3665 | val += partial_len; | |
3666 | ||
3667 | /* Compute the the offset into the stack at which we | |
6d82d43b | 3668 | will copy the next parameter. |
cb3d25d1 MS |
3669 | |
3670 | In N32 (N64?), the stack_offset only needs to be | |
3671 | adjusted when it has been used. */ | |
3672 | ||
3673 | if (stack_used_p) | |
480d3dd2 | 3674 | stack_offset += align_up (partial_len, |
13326b4e | 3675 | mips_stack_argsize (gdbarch)); |
cb3d25d1 MS |
3676 | } |
3677 | } | |
3678 | if (mips_debug) | |
3679 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3680 | } | |
3681 | ||
f10683bb | 3682 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 3683 | |
cb3d25d1 MS |
3684 | /* Return adjusted stack pointer. */ |
3685 | return sp; | |
3686 | } | |
3687 | ||
6d82d43b AC |
3688 | static enum return_value_convention |
3689 | mips_n32n64_return_value (struct gdbarch *gdbarch, | |
3690 | struct type *type, struct regcache *regcache, | |
3691 | void *readbuf, const void *writebuf) | |
ebafbe83 | 3692 | { |
6d82d43b AC |
3693 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
3694 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3695 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
3696 | || TYPE_CODE (type) == TYPE_CODE_ARRAY | |
13326b4e | 3697 | || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch)) |
6d82d43b AC |
3698 | return RETURN_VALUE_STRUCT_CONVENTION; |
3699 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
3700 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3701 | { | |
3702 | /* A floating-point value belongs in the least significant part | |
3703 | of FP0. */ | |
3704 | if (mips_debug) | |
3705 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
3706 | mips_xfer_register (regcache, | |
3707 | NUM_REGS + mips_regnum (current_gdbarch)->fp0, | |
3708 | TYPE_LENGTH (type), | |
3709 | TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
3710 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3711 | } | |
3712 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3713 | && TYPE_NFIELDS (type) <= 2 | |
3714 | && TYPE_NFIELDS (type) >= 1 | |
3715 | && ((TYPE_NFIELDS (type) == 1 | |
3716 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3717 | == TYPE_CODE_FLT)) | |
3718 | || (TYPE_NFIELDS (type) == 2 | |
3719 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3720 | == TYPE_CODE_FLT) | |
3721 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
3722 | == TYPE_CODE_FLT))) | |
3723 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3724 | { | |
3725 | /* A struct that contains one or two floats. Each value is part | |
3726 | in the least significant part of their floating point | |
3727 | register.. */ | |
6d82d43b AC |
3728 | int regnum; |
3729 | int field; | |
3730 | for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0; | |
3731 | field < TYPE_NFIELDS (type); field++, regnum += 2) | |
3732 | { | |
3733 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
3734 | / TARGET_CHAR_BIT); | |
3735 | if (mips_debug) | |
3736 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", | |
3737 | offset); | |
3738 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
3739 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
3740 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3741 | } | |
3742 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3743 | } | |
3744 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3745 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
3746 | { | |
3747 | /* A structure or union. Extract the left justified value, | |
3748 | regardless of the byte order. I.e. DO NOT USE | |
3749 | mips_xfer_lower. */ | |
3750 | int offset; | |
3751 | int regnum; | |
3752 | for (offset = 0, regnum = V0_REGNUM; | |
3753 | offset < TYPE_LENGTH (type); | |
3754 | offset += register_size (current_gdbarch, regnum), regnum++) | |
3755 | { | |
3756 | int xfer = register_size (current_gdbarch, regnum); | |
3757 | if (offset + xfer > TYPE_LENGTH (type)) | |
3758 | xfer = TYPE_LENGTH (type) - offset; | |
3759 | if (mips_debug) | |
3760 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
3761 | offset, xfer, regnum); | |
3762 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3763 | BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset); | |
3764 | } | |
3765 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3766 | } | |
3767 | else | |
3768 | { | |
3769 | /* A scalar extract each part but least-significant-byte | |
3770 | justified. */ | |
3771 | int offset; | |
3772 | int regnum; | |
3773 | for (offset = 0, regnum = V0_REGNUM; | |
3774 | offset < TYPE_LENGTH (type); | |
3775 | offset += register_size (current_gdbarch, regnum), regnum++) | |
3776 | { | |
3777 | int xfer = register_size (current_gdbarch, regnum); | |
6d82d43b AC |
3778 | if (offset + xfer > TYPE_LENGTH (type)) |
3779 | xfer = TYPE_LENGTH (type) - offset; | |
3780 | if (mips_debug) | |
3781 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
3782 | offset, xfer, regnum); | |
3783 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3784 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3785 | } | |
3786 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3787 | } | |
3788 | } | |
3789 | ||
3790 | /* O32 ABI stuff. */ | |
3791 | ||
3792 | static CORE_ADDR | |
7d9b040b | 3793 | mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3794 | struct regcache *regcache, CORE_ADDR bp_addr, |
3795 | int nargs, struct value **args, CORE_ADDR sp, | |
3796 | int struct_return, CORE_ADDR struct_addr) | |
3797 | { | |
3798 | int argreg; | |
3799 | int float_argreg; | |
3800 | int argnum; | |
3801 | int len = 0; | |
3802 | int stack_offset = 0; | |
3803 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7d9b040b | 3804 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
6d82d43b AC |
3805 | |
3806 | /* For shared libraries, "t9" needs to point at the function | |
3807 | address. */ | |
3808 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3809 | ||
3810 | /* Set the return address register to point to the entry point of | |
3811 | the program, where a breakpoint lies in wait. */ | |
3812 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3813 | ||
3814 | /* First ensure that the stack and structure return address (if any) | |
3815 | are properly aligned. The stack has to be at least 64-bit | |
3816 | aligned even on 32-bit machines, because doubles must be 64-bit | |
ebafbe83 MS |
3817 | aligned. For n32 and n64, stack frames need to be 128-bit |
3818 | aligned, so we round to this widest known alignment. */ | |
3819 | ||
5b03f266 AC |
3820 | sp = align_down (sp, 16); |
3821 | struct_addr = align_down (struct_addr, 16); | |
ebafbe83 MS |
3822 | |
3823 | /* Now make space on the stack for the args. */ | |
3824 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 3825 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3826 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3827 | sp -= align_up (len, 16); |
ebafbe83 MS |
3828 | |
3829 | if (mips_debug) | |
6d82d43b | 3830 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3831 | "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n", |
3832 | paddr_nz (sp), (long) align_up (len, 16)); | |
ebafbe83 MS |
3833 | |
3834 | /* Initialize the integer and float register pointers. */ | |
3835 | argreg = A0_REGNUM; | |
56cea623 | 3836 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
ebafbe83 | 3837 | |
bcb0cc15 | 3838 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
ebafbe83 MS |
3839 | if (struct_return) |
3840 | { | |
3841 | if (mips_debug) | |
3842 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3843 | "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n", |
ebafbe83 MS |
3844 | argreg, paddr_nz (struct_addr)); |
3845 | write_register (argreg++, struct_addr); | |
13326b4e | 3846 | stack_offset += mips_stack_argsize (gdbarch); |
ebafbe83 MS |
3847 | } |
3848 | ||
3849 | /* Now load as many as possible of the first arguments into | |
3850 | registers, and push the rest onto the stack. Loop thru args | |
3851 | from first to last. */ | |
3852 | for (argnum = 0; argnum < nargs; argnum++) | |
3853 | { | |
3854 | char *val; | |
ebafbe83 MS |
3855 | struct value *arg = args[argnum]; |
3856 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3857 | int len = TYPE_LENGTH (arg_type); | |
3858 | enum type_code typecode = TYPE_CODE (arg_type); | |
3859 | ||
3860 | if (mips_debug) | |
3861 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3862 | "mips_o32_push_dummy_call: %d len=%d type=%d", |
46cac009 AC |
3863 | argnum + 1, len, (int) typecode); |
3864 | ||
3865 | val = (char *) VALUE_CONTENTS (arg); | |
3866 | ||
3867 | /* 32-bit ABIs always start floating point arguments in an | |
3868 | even-numbered floating point register. Round the FP register | |
3869 | up before the check to see if there are any FP registers | |
3870 | left. O32/O64 targets also pass the FP in the integer | |
3871 | registers so also round up normal registers. */ | |
ceae6e75 AC |
3872 | if (mips_abi_regsize (gdbarch) < 8 |
3873 | && fp_register_arg_p (typecode, arg_type)) | |
46cac009 AC |
3874 | { |
3875 | if ((float_argreg & 1)) | |
3876 | float_argreg++; | |
3877 | } | |
3878 | ||
3879 | /* Floating point arguments passed in registers have to be | |
3880 | treated specially. On 32-bit architectures, doubles | |
3881 | are passed in register pairs; the even register gets | |
3882 | the low word, and the odd register gets the high word. | |
3883 | On O32/O64, the first two floating point arguments are | |
3884 | also copied to general registers, because MIPS16 functions | |
3885 | don't use float registers for arguments. This duplication of | |
3886 | arguments in general registers can't hurt non-MIPS16 functions | |
3887 | because those registers are normally skipped. */ | |
3888 | ||
3889 | if (fp_register_arg_p (typecode, arg_type) | |
3890 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3891 | { | |
ceae6e75 | 3892 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
46cac009 AC |
3893 | { |
3894 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3895 | unsigned long regval; | |
3896 | ||
3897 | /* Write the low word of the double to the even register(s). */ | |
3898 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3899 | if (mips_debug) | |
3900 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3901 | float_argreg, phex (regval, 4)); | |
3902 | write_register (float_argreg++, regval); | |
3903 | if (mips_debug) | |
3904 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3905 | argreg, phex (regval, 4)); | |
3906 | write_register (argreg++, regval); | |
3907 | ||
3908 | /* Write the high word of the double to the odd register(s). */ | |
3909 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3910 | if (mips_debug) | |
3911 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3912 | float_argreg, phex (regval, 4)); | |
3913 | write_register (float_argreg++, regval); | |
3914 | ||
3915 | if (mips_debug) | |
3916 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3917 | argreg, phex (regval, 4)); | |
3918 | write_register (argreg++, regval); | |
3919 | } | |
3920 | else | |
3921 | { | |
3922 | /* This is a floating point value that fits entirely | |
3923 | in a single register. */ | |
3924 | /* On 32 bit ABI's the float_argreg is further adjusted | |
6d82d43b | 3925 | above to ensure that it is even register aligned. */ |
46cac009 AC |
3926 | LONGEST regval = extract_unsigned_integer (val, len); |
3927 | if (mips_debug) | |
3928 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3929 | float_argreg, phex (regval, len)); | |
3930 | write_register (float_argreg++, regval); | |
3931 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
6d82d43b AC |
3932 | registers for each argument. The below is (my |
3933 | guess) to ensure that the corresponding integer | |
3934 | register has reserved the same space. */ | |
46cac009 AC |
3935 | if (mips_debug) |
3936 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3937 | argreg, phex (regval, len)); | |
3938 | write_register (argreg, regval); | |
ceae6e75 | 3939 | argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2; |
46cac009 AC |
3940 | } |
3941 | /* Reserve space for the FP register. */ | |
13326b4e | 3942 | stack_offset += align_up (len, mips_stack_argsize (gdbarch)); |
46cac009 AC |
3943 | } |
3944 | else | |
3945 | { | |
3946 | /* Copy the argument to general registers or the stack in | |
3947 | register-sized pieces. Large arguments are split between | |
3948 | registers and stack. */ | |
4246e332 | 3949 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
3950 | mips_abi_regsize() are treated specially: Irix cc passes |
3951 | them in registers where gcc sometimes puts them on the | |
3952 | stack. For maximum compatibility, we will put them in | |
3953 | both places. */ | |
13326b4e AC |
3954 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
3955 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
46cac009 AC |
3956 | /* Structures should be aligned to eight bytes (even arg registers) |
3957 | on MIPS_ABI_O32, if their first member has double precision. */ | |
13326b4e | 3958 | if (mips_abi_regsize (gdbarch) < 8 |
46cac009 AC |
3959 | && mips_type_needs_double_align (arg_type)) |
3960 | { | |
3961 | if ((argreg & 1)) | |
6d82d43b | 3962 | argreg++; |
46cac009 AC |
3963 | } |
3964 | /* Note: Floating-point values that didn't fit into an FP | |
6d82d43b | 3965 | register are only written to memory. */ |
46cac009 AC |
3966 | while (len > 0) |
3967 | { | |
3968 | /* Remember if the argument was written to the stack. */ | |
3969 | int stack_used_p = 0; | |
13326b4e AC |
3970 | int partial_len = (len < mips_abi_regsize (gdbarch) |
3971 | ? len : mips_abi_regsize (gdbarch)); | |
46cac009 AC |
3972 | |
3973 | if (mips_debug) | |
3974 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3975 | partial_len); | |
3976 | ||
3977 | /* Write this portion of the argument to the stack. */ | |
3978 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3979 | || odd_sized_struct | |
3980 | || fp_register_arg_p (typecode, arg_type)) | |
3981 | { | |
3982 | /* Should shorter than int integer values be | |
3983 | promoted to int before being stored? */ | |
3984 | int longword_offset = 0; | |
3985 | CORE_ADDR addr; | |
3986 | stack_used_p = 1; | |
3987 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3988 | { | |
13326b4e | 3989 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
3990 | && (typecode == TYPE_CODE_INT |
3991 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 3992 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 3993 | longword_offset = mips_stack_argsize (gdbarch) - len; |
46cac009 AC |
3994 | } |
3995 | ||
3996 | if (mips_debug) | |
3997 | { | |
3998 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3999 | paddr_nz (stack_offset)); | |
4000 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
4001 | paddr_nz (longword_offset)); | |
4002 | } | |
4003 | ||
4004 | addr = sp + stack_offset + longword_offset; | |
4005 | ||
4006 | if (mips_debug) | |
4007 | { | |
4008 | int i; | |
6d82d43b | 4009 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
46cac009 AC |
4010 | paddr_nz (addr)); |
4011 | for (i = 0; i < partial_len; i++) | |
4012 | { | |
6d82d43b | 4013 | fprintf_unfiltered (gdb_stdlog, "%02x", |
46cac009 AC |
4014 | val[i] & 0xff); |
4015 | } | |
4016 | } | |
4017 | write_memory (addr, val, partial_len); | |
4018 | } | |
4019 | ||
4020 | /* Note!!! This is NOT an else clause. Odd sized | |
4021 | structs may go thru BOTH paths. Floating point | |
4022 | arguments will not. */ | |
4023 | /* Write this portion of the argument to a general | |
6d82d43b | 4024 | purpose register. */ |
46cac009 AC |
4025 | if (argreg <= MIPS_LAST_ARG_REGNUM |
4026 | && !fp_register_arg_p (typecode, arg_type)) | |
4027 | { | |
4028 | LONGEST regval = extract_signed_integer (val, partial_len); | |
4246e332 | 4029 | /* Value may need to be sign extended, because |
1b13c4f6 | 4030 | mips_isa_regsize() != mips_abi_regsize(). */ |
46cac009 AC |
4031 | |
4032 | /* A non-floating-point argument being passed in a | |
4033 | general register. If a struct or union, and if | |
4034 | the remaining length is smaller than the register | |
4035 | size, we have to adjust the register value on | |
4036 | big endian targets. | |
4037 | ||
4038 | It does not seem to be necessary to do the | |
4039 | same for integral types. | |
4040 | ||
4041 | Also don't do this adjustment on O64 binaries. | |
4042 | ||
4043 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
4044 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 4045 | mips_abi_regsize(), generates a left shift as |
46cac009 AC |
4046 | part of storing the argument in a register a |
4047 | register (the left shift isn't generated when | |
1b13c4f6 | 4048 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
4049 | it is quite possible that this is GCC |
4050 | contradicting the LE/O32 ABI, GDB has not been | |
4051 | adjusted to accommodate this. Either someone | |
4052 | needs to demonstrate that the LE/O32 ABI | |
4053 | specifies such a left shift OR this new ABI gets | |
4054 | identified as such and GDB gets tweaked | |
4055 | accordingly. */ | |
4056 | ||
13326b4e | 4057 | if (mips_abi_regsize (gdbarch) < 8 |
46cac009 | 4058 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
13326b4e | 4059 | && partial_len < mips_abi_regsize (gdbarch) |
46cac009 AC |
4060 | && (typecode == TYPE_CODE_STRUCT || |
4061 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 4062 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
46cac009 AC |
4063 | TARGET_CHAR_BIT); |
4064 | ||
4065 | if (mips_debug) | |
4066 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
4067 | argreg, | |
6d82d43b | 4068 | phex (regval, |
13326b4e | 4069 | mips_abi_regsize (gdbarch))); |
46cac009 AC |
4070 | write_register (argreg, regval); |
4071 | argreg++; | |
4072 | ||
4073 | /* Prevent subsequent floating point arguments from | |
4074 | being passed in floating point registers. */ | |
4075 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
4076 | } | |
4077 | ||
4078 | len -= partial_len; | |
4079 | val += partial_len; | |
4080 | ||
4081 | /* Compute the the offset into the stack at which we | |
6d82d43b | 4082 | will copy the next parameter. |
46cac009 | 4083 | |
6d82d43b AC |
4084 | In older ABIs, the caller reserved space for |
4085 | registers that contained arguments. This was loosely | |
4086 | refered to as their "home". Consequently, space is | |
4087 | always allocated. */ | |
46cac009 | 4088 | |
480d3dd2 | 4089 | stack_offset += align_up (partial_len, |
13326b4e | 4090 | mips_stack_argsize (gdbarch)); |
46cac009 AC |
4091 | } |
4092 | } | |
4093 | if (mips_debug) | |
4094 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
4095 | } | |
4096 | ||
f10683bb | 4097 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 4098 | |
46cac009 AC |
4099 | /* Return adjusted stack pointer. */ |
4100 | return sp; | |
4101 | } | |
4102 | ||
6d82d43b AC |
4103 | static enum return_value_convention |
4104 | mips_o32_return_value (struct gdbarch *gdbarch, struct type *type, | |
4105 | struct regcache *regcache, | |
4106 | void *readbuf, const void *writebuf) | |
4107 | { | |
4108 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
4109 | ||
4110 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4111 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
4112 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4113 | return RETURN_VALUE_STRUCT_CONVENTION; | |
4114 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4115 | && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4116 | { | |
4117 | /* A single-precision floating-point value. It fits in the | |
4118 | least significant part of FP0. */ | |
4119 | if (mips_debug) | |
4120 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
4121 | mips_xfer_register (regcache, | |
4122 | NUM_REGS + mips_regnum (current_gdbarch)->fp0, | |
4123 | TYPE_LENGTH (type), | |
4124 | TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
4125 | return RETURN_VALUE_REGISTER_CONVENTION; | |
4126 | } | |
4127 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4128 | && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4129 | { | |
4130 | /* A double-precision floating-point value. The most | |
4131 | significant part goes in FP1, and the least significant in | |
4132 | FP0. */ | |
4133 | if (mips_debug) | |
4134 | fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n"); | |
4135 | switch (TARGET_BYTE_ORDER) | |
4136 | { | |
4137 | case BFD_ENDIAN_LITTLE: | |
4138 | mips_xfer_register (regcache, | |
4139 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
4140 | 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
4141 | mips_xfer_register (regcache, | |
4142 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
4143 | 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4); | |
4144 | break; | |
4145 | case BFD_ENDIAN_BIG: | |
4146 | mips_xfer_register (regcache, | |
4147 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
4148 | 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
4149 | mips_xfer_register (regcache, | |
4150 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
4151 | 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4); | |
4152 | break; | |
4153 | default: | |
4154 | internal_error (__FILE__, __LINE__, "bad switch"); | |
4155 | } | |
4156 | return RETURN_VALUE_REGISTER_CONVENTION; | |
4157 | } | |
4158 | #if 0 | |
4159 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4160 | && TYPE_NFIELDS (type) <= 2 | |
4161 | && TYPE_NFIELDS (type) >= 1 | |
4162 | && ((TYPE_NFIELDS (type) == 1 | |
4163 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4164 | == TYPE_CODE_FLT)) | |
4165 | || (TYPE_NFIELDS (type) == 2 | |
4166 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4167 | == TYPE_CODE_FLT) | |
4168 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
4169 | == TYPE_CODE_FLT))) | |
4170 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4171 | { | |
4172 | /* A struct that contains one or two floats. Each value is part | |
4173 | in the least significant part of their floating point | |
4174 | register.. */ | |
4175 | bfd_byte reg[MAX_REGISTER_SIZE]; | |
4176 | int regnum; | |
4177 | int field; | |
4178 | for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0; | |
4179 | field < TYPE_NFIELDS (type); field++, regnum += 2) | |
4180 | { | |
4181 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
4182 | / TARGET_CHAR_BIT); | |
4183 | if (mips_debug) | |
4184 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", | |
4185 | offset); | |
4186 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
4187 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
4188 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
4189 | } | |
4190 | return RETURN_VALUE_REGISTER_CONVENTION; | |
4191 | } | |
4192 | #endif | |
4193 | #if 0 | |
4194 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4195 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
4196 | { | |
4197 | /* A structure or union. Extract the left justified value, | |
4198 | regardless of the byte order. I.e. DO NOT USE | |
4199 | mips_xfer_lower. */ | |
4200 | int offset; | |
4201 | int regnum; | |
4202 | for (offset = 0, regnum = V0_REGNUM; | |
4203 | offset < TYPE_LENGTH (type); | |
4204 | offset += register_size (current_gdbarch, regnum), regnum++) | |
4205 | { | |
4206 | int xfer = register_size (current_gdbarch, regnum); | |
4207 | if (offset + xfer > TYPE_LENGTH (type)) | |
4208 | xfer = TYPE_LENGTH (type) - offset; | |
4209 | if (mips_debug) | |
4210 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
4211 | offset, xfer, regnum); | |
4212 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
4213 | BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset); | |
4214 | } | |
4215 | return RETURN_VALUE_REGISTER_CONVENTION; | |
4216 | } | |
4217 | #endif | |
4218 | else | |
4219 | { | |
4220 | /* A scalar extract each part but least-significant-byte | |
4221 | justified. o32 thinks registers are 4 byte, regardless of | |
4222 | the ISA. mips_stack_argsize controls this. */ | |
4223 | int offset; | |
4224 | int regnum; | |
4225 | for (offset = 0, regnum = V0_REGNUM; | |
4226 | offset < TYPE_LENGTH (type); | |
13326b4e | 4227 | offset += mips_stack_argsize (gdbarch), regnum++) |
6d82d43b | 4228 | { |
13326b4e | 4229 | int xfer = mips_stack_argsize (gdbarch); |
6d82d43b AC |
4230 | if (offset + xfer > TYPE_LENGTH (type)) |
4231 | xfer = TYPE_LENGTH (type) - offset; | |
4232 | if (mips_debug) | |
4233 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
4234 | offset, xfer, regnum); | |
4235 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
4236 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
4237 | } | |
4238 | return RETURN_VALUE_REGISTER_CONVENTION; | |
4239 | } | |
4240 | } | |
4241 | ||
4242 | /* O64 ABI. This is a hacked up kind of 64-bit version of the o32 | |
4243 | ABI. */ | |
46cac009 AC |
4244 | |
4245 | static CORE_ADDR | |
7d9b040b | 4246 | mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
4247 | struct regcache *regcache, CORE_ADDR bp_addr, |
4248 | int nargs, | |
4249 | struct value **args, CORE_ADDR sp, | |
4250 | int struct_return, CORE_ADDR struct_addr) | |
46cac009 AC |
4251 | { |
4252 | int argreg; | |
4253 | int float_argreg; | |
4254 | int argnum; | |
4255 | int len = 0; | |
4256 | int stack_offset = 0; | |
480d3dd2 | 4257 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 4258 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
46cac009 | 4259 | |
25ab4790 AC |
4260 | /* For shared libraries, "t9" needs to point at the function |
4261 | address. */ | |
4262 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
4263 | ||
4264 | /* Set the return address register to point to the entry point of | |
4265 | the program, where a breakpoint lies in wait. */ | |
4266 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
4267 | ||
46cac009 AC |
4268 | /* First ensure that the stack and structure return address (if any) |
4269 | are properly aligned. The stack has to be at least 64-bit | |
4270 | aligned even on 32-bit machines, because doubles must be 64-bit | |
4271 | aligned. For n32 and n64, stack frames need to be 128-bit | |
4272 | aligned, so we round to this widest known alignment. */ | |
4273 | ||
5b03f266 AC |
4274 | sp = align_down (sp, 16); |
4275 | struct_addr = align_down (struct_addr, 16); | |
46cac009 AC |
4276 | |
4277 | /* Now make space on the stack for the args. */ | |
4278 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 4279 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 4280 | mips_stack_argsize (gdbarch)); |
5b03f266 | 4281 | sp -= align_up (len, 16); |
46cac009 AC |
4282 | |
4283 | if (mips_debug) | |
6d82d43b | 4284 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
4285 | "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n", |
4286 | paddr_nz (sp), (long) align_up (len, 16)); | |
46cac009 AC |
4287 | |
4288 | /* Initialize the integer and float register pointers. */ | |
4289 | argreg = A0_REGNUM; | |
56cea623 | 4290 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
46cac009 AC |
4291 | |
4292 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
4293 | if (struct_return) | |
4294 | { | |
4295 | if (mips_debug) | |
4296 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 4297 | "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n", |
46cac009 AC |
4298 | argreg, paddr_nz (struct_addr)); |
4299 | write_register (argreg++, struct_addr); | |
13326b4e | 4300 | stack_offset += mips_stack_argsize (gdbarch); |
46cac009 AC |
4301 | } |
4302 | ||
4303 | /* Now load as many as possible of the first arguments into | |
4304 | registers, and push the rest onto the stack. Loop thru args | |
4305 | from first to last. */ | |
4306 | for (argnum = 0; argnum < nargs; argnum++) | |
4307 | { | |
4308 | char *val; | |
46cac009 AC |
4309 | struct value *arg = args[argnum]; |
4310 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
4311 | int len = TYPE_LENGTH (arg_type); | |
4312 | enum type_code typecode = TYPE_CODE (arg_type); | |
4313 | ||
4314 | if (mips_debug) | |
4315 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 4316 | "mips_o64_push_dummy_call: %d len=%d type=%d", |
ebafbe83 MS |
4317 | argnum + 1, len, (int) typecode); |
4318 | ||
4319 | val = (char *) VALUE_CONTENTS (arg); | |
4320 | ||
4321 | /* 32-bit ABIs always start floating point arguments in an | |
4322 | even-numbered floating point register. Round the FP register | |
4323 | up before the check to see if there are any FP registers | |
4324 | left. O32/O64 targets also pass the FP in the integer | |
4325 | registers so also round up normal registers. */ | |
ceae6e75 AC |
4326 | if (mips_abi_regsize (gdbarch) < 8 |
4327 | && fp_register_arg_p (typecode, arg_type)) | |
ebafbe83 MS |
4328 | { |
4329 | if ((float_argreg & 1)) | |
4330 | float_argreg++; | |
4331 | } | |
4332 | ||
4333 | /* Floating point arguments passed in registers have to be | |
4334 | treated specially. On 32-bit architectures, doubles | |
4335 | are passed in register pairs; the even register gets | |
4336 | the low word, and the odd register gets the high word. | |
4337 | On O32/O64, the first two floating point arguments are | |
4338 | also copied to general registers, because MIPS16 functions | |
4339 | don't use float registers for arguments. This duplication of | |
4340 | arguments in general registers can't hurt non-MIPS16 functions | |
4341 | because those registers are normally skipped. */ | |
4342 | ||
4343 | if (fp_register_arg_p (typecode, arg_type) | |
4344 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
4345 | { | |
ceae6e75 | 4346 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
ebafbe83 MS |
4347 | { |
4348 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
4349 | unsigned long regval; | |
4350 | ||
4351 | /* Write the low word of the double to the even register(s). */ | |
4352 | regval = extract_unsigned_integer (val + low_offset, 4); | |
4353 | if (mips_debug) | |
4354 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
4355 | float_argreg, phex (regval, 4)); | |
4356 | write_register (float_argreg++, regval); | |
4357 | if (mips_debug) | |
4358 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
4359 | argreg, phex (regval, 4)); | |
4360 | write_register (argreg++, regval); | |
4361 | ||
4362 | /* Write the high word of the double to the odd register(s). */ | |
4363 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
4364 | if (mips_debug) | |
4365 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
4366 | float_argreg, phex (regval, 4)); | |
4367 | write_register (float_argreg++, regval); | |
4368 | ||
4369 | if (mips_debug) | |
4370 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
4371 | argreg, phex (regval, 4)); | |
4372 | write_register (argreg++, regval); | |
4373 | } | |
4374 | else | |
4375 | { | |
4376 | /* This is a floating point value that fits entirely | |
4377 | in a single register. */ | |
4378 | /* On 32 bit ABI's the float_argreg is further adjusted | |
6d82d43b | 4379 | above to ensure that it is even register aligned. */ |
ebafbe83 MS |
4380 | LONGEST regval = extract_unsigned_integer (val, len); |
4381 | if (mips_debug) | |
4382 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
4383 | float_argreg, phex (regval, len)); | |
4384 | write_register (float_argreg++, regval); | |
4385 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
6d82d43b AC |
4386 | registers for each argument. The below is (my |
4387 | guess) to ensure that the corresponding integer | |
4388 | register has reserved the same space. */ | |
ebafbe83 MS |
4389 | if (mips_debug) |
4390 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
4391 | argreg, phex (regval, len)); | |
4392 | write_register (argreg, regval); | |
ceae6e75 | 4393 | argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2; |
ebafbe83 MS |
4394 | } |
4395 | /* Reserve space for the FP register. */ | |
13326b4e | 4396 | stack_offset += align_up (len, mips_stack_argsize (gdbarch)); |
ebafbe83 MS |
4397 | } |
4398 | else | |
4399 | { | |
4400 | /* Copy the argument to general registers or the stack in | |
4401 | register-sized pieces. Large arguments are split between | |
4402 | registers and stack. */ | |
4246e332 | 4403 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
4404 | mips_abi_regsize() are treated specially: Irix cc passes |
4405 | them in registers where gcc sometimes puts them on the | |
4406 | stack. For maximum compatibility, we will put them in | |
4407 | both places. */ | |
13326b4e AC |
4408 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
4409 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
ebafbe83 MS |
4410 | /* Structures should be aligned to eight bytes (even arg registers) |
4411 | on MIPS_ABI_O32, if their first member has double precision. */ | |
13326b4e | 4412 | if (mips_abi_regsize (gdbarch) < 8 |
ebafbe83 MS |
4413 | && mips_type_needs_double_align (arg_type)) |
4414 | { | |
4415 | if ((argreg & 1)) | |
6d82d43b | 4416 | argreg++; |
ebafbe83 MS |
4417 | } |
4418 | /* Note: Floating-point values that didn't fit into an FP | |
6d82d43b | 4419 | register are only written to memory. */ |
ebafbe83 MS |
4420 | while (len > 0) |
4421 | { | |
4422 | /* Remember if the argument was written to the stack. */ | |
4423 | int stack_used_p = 0; | |
13326b4e AC |
4424 | int partial_len = (len < mips_abi_regsize (gdbarch) |
4425 | ? len : mips_abi_regsize (gdbarch)); | |
ebafbe83 MS |
4426 | |
4427 | if (mips_debug) | |
4428 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
4429 | partial_len); | |
4430 | ||
4431 | /* Write this portion of the argument to the stack. */ | |
4432 | if (argreg > MIPS_LAST_ARG_REGNUM | |
4433 | || odd_sized_struct | |
4434 | || fp_register_arg_p (typecode, arg_type)) | |
4435 | { | |
4436 | /* Should shorter than int integer values be | |
4437 | promoted to int before being stored? */ | |
4438 | int longword_offset = 0; | |
4439 | CORE_ADDR addr; | |
4440 | stack_used_p = 1; | |
4441 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4442 | { | |
13326b4e | 4443 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
4444 | && (typecode == TYPE_CODE_INT |
4445 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 4446 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 4447 | longword_offset = mips_stack_argsize (gdbarch) - len; |
ebafbe83 MS |
4448 | } |
4449 | ||
4450 | if (mips_debug) | |
4451 | { | |
4452 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
4453 | paddr_nz (stack_offset)); | |
4454 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
4455 | paddr_nz (longword_offset)); | |
4456 | } | |
4457 | ||
4458 | addr = sp + stack_offset + longword_offset; | |
4459 | ||
4460 | if (mips_debug) | |
4461 | { | |
4462 | int i; | |
6d82d43b | 4463 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
ebafbe83 MS |
4464 | paddr_nz (addr)); |
4465 | for (i = 0; i < partial_len; i++) | |
4466 | { | |
6d82d43b | 4467 | fprintf_unfiltered (gdb_stdlog, "%02x", |
ebafbe83 MS |
4468 | val[i] & 0xff); |
4469 | } | |
4470 | } | |
4471 | write_memory (addr, val, partial_len); | |
4472 | } | |
4473 | ||
4474 | /* Note!!! This is NOT an else clause. Odd sized | |
4475 | structs may go thru BOTH paths. Floating point | |
4476 | arguments will not. */ | |
4477 | /* Write this portion of the argument to a general | |
6d82d43b | 4478 | purpose register. */ |
ebafbe83 MS |
4479 | if (argreg <= MIPS_LAST_ARG_REGNUM |
4480 | && !fp_register_arg_p (typecode, arg_type)) | |
4481 | { | |
4482 | LONGEST regval = extract_signed_integer (val, partial_len); | |
4246e332 | 4483 | /* Value may need to be sign extended, because |
1b13c4f6 | 4484 | mips_isa_regsize() != mips_abi_regsize(). */ |
ebafbe83 MS |
4485 | |
4486 | /* A non-floating-point argument being passed in a | |
4487 | general register. If a struct or union, and if | |
4488 | the remaining length is smaller than the register | |
4489 | size, we have to adjust the register value on | |
4490 | big endian targets. | |
4491 | ||
4492 | It does not seem to be necessary to do the | |
4493 | same for integral types. | |
4494 | ||
4495 | Also don't do this adjustment on O64 binaries. | |
4496 | ||
4497 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
4498 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 4499 | mips_abi_regsize(), generates a left shift as |
ebafbe83 MS |
4500 | part of storing the argument in a register a |
4501 | register (the left shift isn't generated when | |
1b13c4f6 | 4502 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
4503 | it is quite possible that this is GCC |
4504 | contradicting the LE/O32 ABI, GDB has not been | |
4505 | adjusted to accommodate this. Either someone | |
4506 | needs to demonstrate that the LE/O32 ABI | |
4507 | specifies such a left shift OR this new ABI gets | |
4508 | identified as such and GDB gets tweaked | |
4509 | accordingly. */ | |
4510 | ||
13326b4e | 4511 | if (mips_abi_regsize (gdbarch) < 8 |
ebafbe83 | 4512 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
13326b4e | 4513 | && partial_len < mips_abi_regsize (gdbarch) |
ebafbe83 MS |
4514 | && (typecode == TYPE_CODE_STRUCT || |
4515 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 4516 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
ebafbe83 MS |
4517 | TARGET_CHAR_BIT); |
4518 | ||
4519 | if (mips_debug) | |
4520 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
4521 | argreg, | |
6d82d43b | 4522 | phex (regval, |
13326b4e | 4523 | mips_abi_regsize (gdbarch))); |
ebafbe83 MS |
4524 | write_register (argreg, regval); |
4525 | argreg++; | |
4526 | ||
4527 | /* Prevent subsequent floating point arguments from | |
4528 | being passed in floating point registers. */ | |
4529 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
4530 | } | |
4531 | ||
4532 | len -= partial_len; | |
4533 | val += partial_len; | |
4534 | ||
4535 | /* Compute the the offset into the stack at which we | |
6d82d43b | 4536 | will copy the next parameter. |
ebafbe83 | 4537 | |
6d82d43b AC |
4538 | In older ABIs, the caller reserved space for |
4539 | registers that contained arguments. This was loosely | |
4540 | refered to as their "home". Consequently, space is | |
4541 | always allocated. */ | |
ebafbe83 | 4542 | |
480d3dd2 | 4543 | stack_offset += align_up (partial_len, |
13326b4e | 4544 | mips_stack_argsize (gdbarch)); |
ebafbe83 MS |
4545 | } |
4546 | } | |
4547 | if (mips_debug) | |
4548 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
4549 | } | |
4550 | ||
f10683bb | 4551 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 4552 | |
ebafbe83 MS |
4553 | /* Return adjusted stack pointer. */ |
4554 | return sp; | |
4555 | } | |
4556 | ||
f7ab6ec6 | 4557 | static void |
6d82d43b AC |
4558 | mips_o64_extract_return_value (struct type *valtype, |
4559 | char regbuf[], char *valbuf) | |
c906108c | 4560 | { |
6d82d43b AC |
4561 | struct return_value_word lo; |
4562 | struct return_value_word hi; | |
4563 | return_value_location (valtype, &hi, &lo); | |
c906108c | 4564 | |
6d82d43b AC |
4565 | memcpy (valbuf + lo.buf_offset, |
4566 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + | |
4567 | lo.reg_offset, lo.len); | |
4568 | ||
4569 | if (hi.len > 0) | |
4570 | memcpy (valbuf + hi.buf_offset, | |
4571 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + | |
4572 | hi.reg_offset, hi.len); | |
4573 | } | |
4574 | ||
4575 | static void | |
4576 | mips_o64_store_return_value (struct type *valtype, char *valbuf) | |
4577 | { | |
4578 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4579 | struct return_value_word lo; | |
4580 | struct return_value_word hi; | |
4581 | return_value_location (valtype, &hi, &lo); | |
4582 | ||
4583 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4584 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
4585 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), | |
4586 | raw_buffer, register_size (current_gdbarch, | |
4587 | lo.reg)); | |
4588 | ||
4589 | if (hi.len > 0) | |
4590 | { | |
4591 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4592 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
4593 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), | |
4594 | raw_buffer, | |
4595 | register_size (current_gdbarch, | |
4596 | hi.reg)); | |
4597 | } | |
4598 | } | |
4599 | ||
dd824b04 DJ |
4600 | /* Floating point register management. |
4601 | ||
4602 | Background: MIPS1 & 2 fp registers are 32 bits wide. To support | |
4603 | 64bit operations, these early MIPS cpus treat fp register pairs | |
4604 | (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp | |
4605 | registers and offer a compatibility mode that emulates the MIPS2 fp | |
4606 | model. When operating in MIPS2 fp compat mode, later cpu's split | |
4607 | double precision floats into two 32-bit chunks and store them in | |
4608 | consecutive fp regs. To display 64-bit floats stored in this | |
4609 | fashion, we have to combine 32 bits from f0 and 32 bits from f1. | |
4610 | Throw in user-configurable endianness and you have a real mess. | |
4611 | ||
4612 | The way this works is: | |
4613 | - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit | |
4614 | double-precision value will be split across two logical registers. | |
4615 | The lower-numbered logical register will hold the low-order bits, | |
4616 | regardless of the processor's endianness. | |
4617 | - If we are on a 64-bit processor, and we are looking for a | |
4618 | single-precision value, it will be in the low ordered bits | |
4619 | of a 64-bit GPR (after mfc1, for example) or a 64-bit register | |
4620 | save slot in memory. | |
4621 | - If we are in 64-bit mode, everything is straightforward. | |
4622 | ||
4623 | Note that this code only deals with "live" registers at the top of the | |
4624 | stack. We will attempt to deal with saved registers later, when | |
4625 | the raw/cooked register interface is in place. (We need a general | |
4626 | interface that can deal with dynamic saved register sizes -- fp | |
4627 | regs could be 32 bits wide in one frame and 64 on the frame above | |
4628 | and below). */ | |
4629 | ||
67b2c998 DJ |
4630 | static struct type * |
4631 | mips_float_register_type (void) | |
4632 | { | |
361d1df0 | 4633 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
4634 | return builtin_type_ieee_single_big; |
4635 | else | |
4636 | return builtin_type_ieee_single_little; | |
4637 | } | |
4638 | ||
4639 | static struct type * | |
4640 | mips_double_register_type (void) | |
4641 | { | |
361d1df0 | 4642 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
4643 | return builtin_type_ieee_double_big; |
4644 | else | |
4645 | return builtin_type_ieee_double_little; | |
4646 | } | |
4647 | ||
dd824b04 DJ |
4648 | /* Copy a 32-bit single-precision value from the current frame |
4649 | into rare_buffer. */ | |
4650 | ||
4651 | static void | |
e11c53d2 AC |
4652 | mips_read_fp_register_single (struct frame_info *frame, int regno, |
4653 | char *rare_buffer) | |
dd824b04 | 4654 | { |
719ec221 | 4655 | int raw_size = register_size (current_gdbarch, regno); |
dd824b04 DJ |
4656 | char *raw_buffer = alloca (raw_size); |
4657 | ||
e11c53d2 | 4658 | if (!frame_register_read (frame, regno, raw_buffer)) |
dd824b04 DJ |
4659 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
4660 | if (raw_size == 8) | |
4661 | { | |
4662 | /* We have a 64-bit value for this register. Find the low-order | |
6d82d43b | 4663 | 32 bits. */ |
dd824b04 DJ |
4664 | int offset; |
4665 | ||
4666 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4667 | offset = 4; | |
4668 | else | |
4669 | offset = 0; | |
4670 | ||
4671 | memcpy (rare_buffer, raw_buffer + offset, 4); | |
4672 | } | |
4673 | else | |
4674 | { | |
4675 | memcpy (rare_buffer, raw_buffer, 4); | |
4676 | } | |
4677 | } | |
4678 | ||
4679 | /* Copy a 64-bit double-precision value from the current frame into | |
4680 | rare_buffer. This may include getting half of it from the next | |
4681 | register. */ | |
4682 | ||
4683 | static void | |
e11c53d2 AC |
4684 | mips_read_fp_register_double (struct frame_info *frame, int regno, |
4685 | char *rare_buffer) | |
dd824b04 | 4686 | { |
719ec221 | 4687 | int raw_size = register_size (current_gdbarch, regno); |
dd824b04 DJ |
4688 | |
4689 | if (raw_size == 8 && !mips2_fp_compat ()) | |
4690 | { | |
4691 | /* We have a 64-bit value for this register, and we should use | |
6d82d43b | 4692 | all 64 bits. */ |
e11c53d2 | 4693 | if (!frame_register_read (frame, regno, rare_buffer)) |
dd824b04 DJ |
4694 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
4695 | } | |
4696 | else | |
4697 | { | |
56cea623 | 4698 | if ((regno - mips_regnum (current_gdbarch)->fp0) & 1) |
dd824b04 DJ |
4699 | internal_error (__FILE__, __LINE__, |
4700 | "mips_read_fp_register_double: bad access to " | |
4701 | "odd-numbered FP register"); | |
4702 | ||
4703 | /* mips_read_fp_register_single will find the correct 32 bits from | |
6d82d43b | 4704 | each register. */ |
dd824b04 DJ |
4705 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
4706 | { | |
e11c53d2 AC |
4707 | mips_read_fp_register_single (frame, regno, rare_buffer + 4); |
4708 | mips_read_fp_register_single (frame, regno + 1, rare_buffer); | |
dd824b04 | 4709 | } |
361d1df0 | 4710 | else |
dd824b04 | 4711 | { |
e11c53d2 AC |
4712 | mips_read_fp_register_single (frame, regno, rare_buffer); |
4713 | mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4); | |
dd824b04 DJ |
4714 | } |
4715 | } | |
4716 | } | |
4717 | ||
c906108c | 4718 | static void |
e11c53d2 AC |
4719 | mips_print_fp_register (struct ui_file *file, struct frame_info *frame, |
4720 | int regnum) | |
c5aa993b | 4721 | { /* do values for FP (float) regs */ |
dd824b04 | 4722 | char *raw_buffer; |
3903d437 AC |
4723 | double doub, flt1; /* doubles extracted from raw hex data */ |
4724 | int inv1, inv2; | |
c5aa993b | 4725 | |
6d82d43b AC |
4726 | raw_buffer = |
4727 | (char *) alloca (2 * | |
4728 | register_size (current_gdbarch, | |
4729 | mips_regnum (current_gdbarch)->fp0)); | |
c906108c | 4730 | |
e11c53d2 AC |
4731 | fprintf_filtered (file, "%s:", REGISTER_NAME (regnum)); |
4732 | fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)), | |
4733 | ""); | |
f0ef6b29 | 4734 | |
719ec221 | 4735 | if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ()) |
c906108c | 4736 | { |
f0ef6b29 KB |
4737 | /* 4-byte registers: Print hex and floating. Also print even |
4738 | numbered registers as doubles. */ | |
e11c53d2 | 4739 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
67b2c998 | 4740 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c5aa993b | 4741 | |
6d82d43b AC |
4742 | print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', |
4743 | file); | |
dd824b04 | 4744 | |
e11c53d2 | 4745 | fprintf_filtered (file, " flt: "); |
1adad886 | 4746 | if (inv1) |
e11c53d2 | 4747 | fprintf_filtered (file, " <invalid float> "); |
1adad886 | 4748 | else |
e11c53d2 | 4749 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4750 | |
f0ef6b29 KB |
4751 | if (regnum % 2 == 0) |
4752 | { | |
e11c53d2 | 4753 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 | 4754 | doub = unpack_double (mips_double_register_type (), raw_buffer, |
6d82d43b | 4755 | &inv2); |
1adad886 | 4756 | |
e11c53d2 | 4757 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4758 | if (inv2) |
e11c53d2 | 4759 | fprintf_filtered (file, "<invalid double>"); |
f0ef6b29 | 4760 | else |
e11c53d2 | 4761 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 | 4762 | } |
c906108c SS |
4763 | } |
4764 | else | |
dd824b04 | 4765 | { |
f0ef6b29 | 4766 | /* Eight byte registers: print each one as hex, float and double. */ |
e11c53d2 | 4767 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
2f38ef89 | 4768 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c906108c | 4769 | |
e11c53d2 | 4770 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 KB |
4771 | doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2); |
4772 | ||
361d1df0 | 4773 | |
6d82d43b AC |
4774 | print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', |
4775 | file); | |
f0ef6b29 | 4776 | |
e11c53d2 | 4777 | fprintf_filtered (file, " flt: "); |
1adad886 | 4778 | if (inv1) |
e11c53d2 | 4779 | fprintf_filtered (file, "<invalid float>"); |
1adad886 | 4780 | else |
e11c53d2 | 4781 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4782 | |
e11c53d2 | 4783 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4784 | if (inv2) |
e11c53d2 | 4785 | fprintf_filtered (file, "<invalid double>"); |
1adad886 | 4786 | else |
e11c53d2 | 4787 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 KB |
4788 | } |
4789 | } | |
4790 | ||
4791 | static void | |
e11c53d2 AC |
4792 | mips_print_register (struct ui_file *file, struct frame_info *frame, |
4793 | int regnum, int all) | |
f0ef6b29 | 4794 | { |
a4b8ebc8 | 4795 | struct gdbarch *gdbarch = get_frame_arch (frame); |
d9d9c31f | 4796 | char raw_buffer[MAX_REGISTER_SIZE]; |
f0ef6b29 | 4797 | int offset; |
1adad886 | 4798 | |
a4b8ebc8 | 4799 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) |
f0ef6b29 | 4800 | { |
e11c53d2 | 4801 | mips_print_fp_register (file, frame, regnum); |
f0ef6b29 KB |
4802 | return; |
4803 | } | |
4804 | ||
4805 | /* Get the data in raw format. */ | |
e11c53d2 | 4806 | if (!frame_register_read (frame, regnum, raw_buffer)) |
f0ef6b29 | 4807 | { |
e11c53d2 | 4808 | fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum)); |
f0ef6b29 | 4809 | return; |
c906108c | 4810 | } |
f0ef6b29 | 4811 | |
e11c53d2 | 4812 | fputs_filtered (REGISTER_NAME (regnum), file); |
f0ef6b29 KB |
4813 | |
4814 | /* The problem with printing numeric register names (r26, etc.) is that | |
4815 | the user can't use them on input. Probably the best solution is to | |
4816 | fix it so that either the numeric or the funky (a2, etc.) names | |
4817 | are accepted on input. */ | |
4818 | if (regnum < MIPS_NUMREGS) | |
e11c53d2 | 4819 | fprintf_filtered (file, "(r%d): ", regnum); |
f0ef6b29 | 4820 | else |
e11c53d2 | 4821 | fprintf_filtered (file, ": "); |
f0ef6b29 KB |
4822 | |
4823 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
6d82d43b AC |
4824 | offset = |
4825 | register_size (current_gdbarch, | |
4826 | regnum) - register_size (current_gdbarch, regnum); | |
f0ef6b29 KB |
4827 | else |
4828 | offset = 0; | |
4829 | ||
6d82d43b AC |
4830 | print_scalar_formatted (raw_buffer + offset, |
4831 | gdbarch_register_type (gdbarch, regnum), 'x', 0, | |
4832 | file); | |
c906108c SS |
4833 | } |
4834 | ||
f0ef6b29 KB |
4835 | /* Replacement for generic do_registers_info. |
4836 | Print regs in pretty columns. */ | |
4837 | ||
4838 | static int | |
e11c53d2 AC |
4839 | print_fp_register_row (struct ui_file *file, struct frame_info *frame, |
4840 | int regnum) | |
f0ef6b29 | 4841 | { |
e11c53d2 AC |
4842 | fprintf_filtered (file, " "); |
4843 | mips_print_fp_register (file, frame, regnum); | |
4844 | fprintf_filtered (file, "\n"); | |
f0ef6b29 KB |
4845 | return regnum + 1; |
4846 | } | |
4847 | ||
4848 | ||
c906108c SS |
4849 | /* Print a row's worth of GP (int) registers, with name labels above */ |
4850 | ||
4851 | static int | |
e11c53d2 | 4852 | print_gp_register_row (struct ui_file *file, struct frame_info *frame, |
a4b8ebc8 | 4853 | int start_regnum) |
c906108c | 4854 | { |
a4b8ebc8 | 4855 | struct gdbarch *gdbarch = get_frame_arch (frame); |
c906108c | 4856 | /* do values for GP (int) regs */ |
d9d9c31f | 4857 | char raw_buffer[MAX_REGISTER_SIZE]; |
d5ac5a39 | 4858 | int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */ |
c906108c | 4859 | int col, byte; |
a4b8ebc8 | 4860 | int regnum; |
c906108c SS |
4861 | |
4862 | /* For GP registers, we print a separate row of names above the vals */ | |
e11c53d2 | 4863 | fprintf_filtered (file, " "); |
a4b8ebc8 | 4864 | for (col = 0, regnum = start_regnum; |
6d82d43b | 4865 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
c906108c SS |
4866 | { |
4867 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4868 | continue; /* unused register */ |
6d82d43b AC |
4869 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4870 | TYPE_CODE_FLT) | |
c5aa993b | 4871 | break; /* end the row: reached FP register */ |
6d82d43b | 4872 | fprintf_filtered (file, |
d5ac5a39 | 4873 | mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s", |
e11c53d2 | 4874 | REGISTER_NAME (regnum)); |
c906108c SS |
4875 | col++; |
4876 | } | |
a4b8ebc8 | 4877 | /* print the R0 to R31 names */ |
20e6603c AC |
4878 | if ((start_regnum % NUM_REGS) < MIPS_NUMREGS) |
4879 | fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS); | |
4880 | else | |
4881 | fprintf_filtered (file, "\n "); | |
c906108c | 4882 | |
c906108c | 4883 | /* now print the values in hex, 4 or 8 to the row */ |
a4b8ebc8 | 4884 | for (col = 0, regnum = start_regnum; |
6d82d43b | 4885 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
c906108c SS |
4886 | { |
4887 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4888 | continue; /* unused register */ |
6d82d43b AC |
4889 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4890 | TYPE_CODE_FLT) | |
c5aa993b | 4891 | break; /* end row: reached FP register */ |
c906108c | 4892 | /* OK: get the data in raw format. */ |
e11c53d2 | 4893 | if (!frame_register_read (frame, regnum, raw_buffer)) |
c906108c SS |
4894 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); |
4895 | /* pad small registers */ | |
4246e332 | 4896 | for (byte = 0; |
d5ac5a39 | 4897 | byte < (mips_abi_regsize (current_gdbarch) |
6d82d43b | 4898 | - register_size (current_gdbarch, regnum)); byte++) |
c906108c SS |
4899 | printf_filtered (" "); |
4900 | /* Now print the register value in hex, endian order. */ | |
d7449b42 | 4901 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
6d82d43b AC |
4902 | for (byte = |
4903 | register_size (current_gdbarch, | |
4904 | regnum) - register_size (current_gdbarch, regnum); | |
4905 | byte < register_size (current_gdbarch, regnum); byte++) | |
e11c53d2 | 4906 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
c906108c | 4907 | else |
c73e8f27 | 4908 | for (byte = register_size (current_gdbarch, regnum) - 1; |
6d82d43b | 4909 | byte >= 0; byte--) |
e11c53d2 AC |
4910 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
4911 | fprintf_filtered (file, " "); | |
c906108c SS |
4912 | col++; |
4913 | } | |
c5aa993b | 4914 | if (col > 0) /* ie. if we actually printed anything... */ |
e11c53d2 | 4915 | fprintf_filtered (file, "\n"); |
c906108c SS |
4916 | |
4917 | return regnum; | |
4918 | } | |
4919 | ||
4920 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
4921 | ||
bf1f5b4c | 4922 | static void |
e11c53d2 AC |
4923 | mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
4924 | struct frame_info *frame, int regnum, int all) | |
c906108c | 4925 | { |
c5aa993b | 4926 | if (regnum != -1) /* do one specified register */ |
c906108c | 4927 | { |
a4b8ebc8 | 4928 | gdb_assert (regnum >= NUM_REGS); |
c906108c SS |
4929 | if (*(REGISTER_NAME (regnum)) == '\0') |
4930 | error ("Not a valid register for the current processor type"); | |
4931 | ||
e11c53d2 AC |
4932 | mips_print_register (file, frame, regnum, 0); |
4933 | fprintf_filtered (file, "\n"); | |
c906108c | 4934 | } |
c5aa993b JM |
4935 | else |
4936 | /* do all (or most) registers */ | |
c906108c | 4937 | { |
a4b8ebc8 AC |
4938 | regnum = NUM_REGS; |
4939 | while (regnum < NUM_REGS + NUM_PSEUDO_REGS) | |
c906108c | 4940 | { |
6d82d43b AC |
4941 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4942 | TYPE_CODE_FLT) | |
e11c53d2 AC |
4943 | { |
4944 | if (all) /* true for "INFO ALL-REGISTERS" command */ | |
4945 | regnum = print_fp_register_row (file, frame, regnum); | |
4946 | else | |
4947 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
4948 | } | |
c906108c | 4949 | else |
e11c53d2 | 4950 | regnum = print_gp_register_row (file, frame, regnum); |
c906108c SS |
4951 | } |
4952 | } | |
4953 | } | |
4954 | ||
c906108c SS |
4955 | /* Is this a branch with a delay slot? */ |
4956 | ||
a14ed312 | 4957 | static int is_delayed (unsigned long); |
c906108c SS |
4958 | |
4959 | static int | |
acdb74a0 | 4960 | is_delayed (unsigned long insn) |
c906108c SS |
4961 | { |
4962 | int i; | |
4963 | for (i = 0; i < NUMOPCODES; ++i) | |
4964 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
4965 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
4966 | break; | |
4967 | return (i < NUMOPCODES | |
4968 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
4969 | | INSN_COND_BRANCH_DELAY | |
4970 | | INSN_COND_BRANCH_LIKELY))); | |
4971 | } | |
4972 | ||
4973 | int | |
acdb74a0 | 4974 | mips_step_skips_delay (CORE_ADDR pc) |
c906108c SS |
4975 | { |
4976 | char buf[MIPS_INSTLEN]; | |
4977 | ||
4978 | /* There is no branch delay slot on MIPS16. */ | |
4979 | if (pc_is_mips16 (pc)) | |
4980 | return 0; | |
4981 | ||
4982 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
4983 | /* If error reading memory, guess that it is not a delayed branch. */ | |
4984 | return 0; | |
6d82d43b AC |
4985 | return is_delayed ((unsigned long) |
4986 | extract_unsigned_integer (buf, MIPS_INSTLEN)); | |
c906108c SS |
4987 | } |
4988 | ||
6d82d43b AC |
4989 | /* To skip prologues, I use this predicate. Returns either PC itself |
4990 | if the code at PC does not look like a function prologue; otherwise | |
4991 | returns an address that (if we're lucky) follows the prologue. If | |
4992 | LENIENT, then we must skip everything which is involved in setting | |
4993 | up the frame (it's OK to skip more, just so long as we don't skip | |
4994 | anything which might clobber the registers which are being saved. | |
4995 | We must skip more in the case where part of the prologue is in the | |
4996 | delay slot of a non-prologue instruction). */ | |
4997 | ||
4998 | static CORE_ADDR | |
4999 | mips_skip_prologue (CORE_ADDR pc) | |
5000 | { | |
5001 | /* See if we can determine the end of the prologue via the symbol table. | |
5002 | If so, then return either PC, or the PC after the prologue, whichever | |
5003 | is greater. */ | |
5004 | ||
177f84a3 | 5005 | CORE_ADDR post_prologue_pc = after_prologue (pc); |
98b4dd94 | 5006 | CORE_ADDR limit_pc; |
6d82d43b AC |
5007 | |
5008 | if (post_prologue_pc != 0) | |
5009 | return max (pc, post_prologue_pc); | |
5010 | ||
5011 | /* Can't determine prologue from the symbol table, need to examine | |
5012 | instructions. */ | |
5013 | ||
98b4dd94 JB |
5014 | /* Find an upper limit on the function prologue using the debug |
5015 | information. If the debug information could not be used to provide | |
5016 | that bound, then use an arbitrary large number as the upper bound. */ | |
5017 | limit_pc = skip_prologue_using_sal (pc); | |
5018 | if (limit_pc == 0) | |
5019 | limit_pc = pc + 100; /* Magic. */ | |
5020 | ||
6d82d43b | 5021 | if (pc_is_mips16 (pc)) |
a65bbe44 | 5022 | return mips16_scan_prologue (pc, limit_pc, NULL, NULL); |
6d82d43b | 5023 | else |
a65bbe44 | 5024 | return mips32_scan_prologue (pc, limit_pc, NULL, NULL); |
88658117 AC |
5025 | } |
5026 | ||
a5ea2558 AC |
5027 | /* Root of all "set mips "/"show mips " commands. This will eventually be |
5028 | used for all MIPS-specific commands. */ | |
5029 | ||
a5ea2558 | 5030 | static void |
acdb74a0 | 5031 | show_mips_command (char *args, int from_tty) |
a5ea2558 AC |
5032 | { |
5033 | help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout); | |
5034 | } | |
5035 | ||
a5ea2558 | 5036 | static void |
acdb74a0 | 5037 | set_mips_command (char *args, int from_tty) |
a5ea2558 | 5038 | { |
6d82d43b AC |
5039 | printf_unfiltered |
5040 | ("\"set mips\" must be followed by an appropriate subcommand.\n"); | |
a5ea2558 AC |
5041 | help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout); |
5042 | } | |
5043 | ||
c906108c SS |
5044 | /* Commands to show/set the MIPS FPU type. */ |
5045 | ||
c906108c | 5046 | static void |
acdb74a0 | 5047 | show_mipsfpu_command (char *args, int from_tty) |
c906108c | 5048 | { |
c906108c SS |
5049 | char *fpu; |
5050 | switch (MIPS_FPU_TYPE) | |
5051 | { | |
5052 | case MIPS_FPU_SINGLE: | |
5053 | fpu = "single-precision"; | |
5054 | break; | |
5055 | case MIPS_FPU_DOUBLE: | |
5056 | fpu = "double-precision"; | |
5057 | break; | |
5058 | case MIPS_FPU_NONE: | |
5059 | fpu = "absent (none)"; | |
5060 | break; | |
93d56215 AC |
5061 | default: |
5062 | internal_error (__FILE__, __LINE__, "bad switch"); | |
c906108c SS |
5063 | } |
5064 | if (mips_fpu_type_auto) | |
6d82d43b AC |
5065 | printf_unfiltered |
5066 | ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
5067 | fpu); | |
c906108c | 5068 | else |
6d82d43b AC |
5069 | printf_unfiltered |
5070 | ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu); | |
c906108c SS |
5071 | } |
5072 | ||
5073 | ||
c906108c | 5074 | static void |
acdb74a0 | 5075 | set_mipsfpu_command (char *args, int from_tty) |
c906108c | 5076 | { |
6d82d43b AC |
5077 | printf_unfiltered |
5078 | ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
c906108c SS |
5079 | show_mipsfpu_command (args, from_tty); |
5080 | } | |
5081 | ||
c906108c | 5082 | static void |
acdb74a0 | 5083 | set_mipsfpu_single_command (char *args, int from_tty) |
c906108c | 5084 | { |
8d5838b5 AC |
5085 | struct gdbarch_info info; |
5086 | gdbarch_info_init (&info); | |
c906108c SS |
5087 | mips_fpu_type = MIPS_FPU_SINGLE; |
5088 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
5089 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
5090 | instead of relying on globals. Doing that would let generic code | |
5091 | handle the search for this specific architecture. */ | |
5092 | if (!gdbarch_update_p (info)) | |
5093 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
5094 | } |
5095 | ||
c906108c | 5096 | static void |
acdb74a0 | 5097 | set_mipsfpu_double_command (char *args, int from_tty) |
c906108c | 5098 | { |
8d5838b5 AC |
5099 | struct gdbarch_info info; |
5100 | gdbarch_info_init (&info); | |
c906108c SS |
5101 | mips_fpu_type = MIPS_FPU_DOUBLE; |
5102 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
5103 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
5104 | instead of relying on globals. Doing that would let generic code | |
5105 | handle the search for this specific architecture. */ | |
5106 | if (!gdbarch_update_p (info)) | |
5107 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
5108 | } |
5109 | ||
c906108c | 5110 | static void |
acdb74a0 | 5111 | set_mipsfpu_none_command (char *args, int from_tty) |
c906108c | 5112 | { |
8d5838b5 AC |
5113 | struct gdbarch_info info; |
5114 | gdbarch_info_init (&info); | |
c906108c SS |
5115 | mips_fpu_type = MIPS_FPU_NONE; |
5116 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
5117 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
5118 | instead of relying on globals. Doing that would let generic code | |
5119 | handle the search for this specific architecture. */ | |
5120 | if (!gdbarch_update_p (info)) | |
5121 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
5122 | } |
5123 | ||
c906108c | 5124 | static void |
acdb74a0 | 5125 | set_mipsfpu_auto_command (char *args, int from_tty) |
c906108c SS |
5126 | { |
5127 | mips_fpu_type_auto = 1; | |
5128 | } | |
5129 | ||
c906108c | 5130 | /* Attempt to identify the particular processor model by reading the |
691c0433 AC |
5131 | processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that |
5132 | the relevant processor still exists (it dates back to '94) and | |
5133 | secondly this is not the way to do this. The processor type should | |
5134 | be set by forcing an architecture change. */ | |
c906108c | 5135 | |
691c0433 AC |
5136 | void |
5137 | deprecated_mips_set_processor_regs_hack (void) | |
c906108c | 5138 | { |
691c0433 | 5139 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
5140 | CORE_ADDR prid; |
5141 | ||
5142 | prid = read_register (PRID_REGNUM); | |
5143 | ||
5144 | if ((prid & ~0xf) == 0x700) | |
691c0433 | 5145 | tdep->mips_processor_reg_names = mips_r3041_reg_names; |
c906108c SS |
5146 | } |
5147 | ||
5148 | /* Just like reinit_frame_cache, but with the right arguments to be | |
5149 | callable as an sfunc. */ | |
5150 | ||
5151 | static void | |
acdb74a0 AC |
5152 | reinit_frame_cache_sfunc (char *args, int from_tty, |
5153 | struct cmd_list_element *c) | |
c906108c SS |
5154 | { |
5155 | reinit_frame_cache (); | |
5156 | } | |
5157 | ||
a89aa300 AC |
5158 | static int |
5159 | gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info) | |
c906108c | 5160 | { |
e5ab0dce | 5161 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
5162 | mips_extra_func_info_t proc_desc; |
5163 | ||
5164 | /* Search for the function containing this address. Set the low bit | |
5165 | of the address when searching, in case we were given an even address | |
5166 | that is the start of a 16-bit function. If we didn't do this, | |
5167 | the search would fail because the symbol table says the function | |
5168 | starts at an odd address, i.e. 1 byte past the given address. */ | |
5169 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
95404a3e | 5170 | proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL); |
c906108c SS |
5171 | |
5172 | /* Make an attempt to determine if this is a 16-bit function. If | |
5173 | the procedure descriptor exists and the address therein is odd, | |
5174 | it's definitely a 16-bit function. Otherwise, we have to just | |
5175 | guess that if the address passed in is odd, it's 16-bits. */ | |
d31431ed AC |
5176 | /* FIXME: cagney/2003-06-26: Is this even necessary? The |
5177 | disassembler needs to be able to locally determine the ISA, and | |
5178 | not rely on GDB. Otherwize the stand-alone 'objdump -d' will not | |
5179 | work. */ | |
c906108c | 5180 | if (proc_desc) |
d31431ed AC |
5181 | { |
5182 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
6d82d43b | 5183 | info->mach = bfd_mach_mips16; |
d31431ed | 5184 | } |
c906108c | 5185 | else |
d31431ed AC |
5186 | { |
5187 | if (pc_is_mips16 (memaddr)) | |
6d82d43b AC |
5188 | info->mach = bfd_mach_mips16; |
5189 | } | |
c906108c SS |
5190 | |
5191 | /* Round down the instruction address to the appropriate boundary. */ | |
65c11066 | 5192 | memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3); |
c5aa993b | 5193 | |
e5ab0dce | 5194 | /* Set the disassembler options. */ |
6d82d43b | 5195 | if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64) |
e5ab0dce AC |
5196 | { |
5197 | /* Set up the disassembler info, so that we get the right | |
6d82d43b | 5198 | register names from libopcodes. */ |
e5ab0dce AC |
5199 | if (tdep->mips_abi == MIPS_ABI_N32) |
5200 | info->disassembler_options = "gpr-names=n32"; | |
5201 | else | |
5202 | info->disassembler_options = "gpr-names=64"; | |
5203 | info->flavour = bfd_target_elf_flavour; | |
5204 | } | |
5205 | else | |
5206 | /* This string is not recognized explicitly by the disassembler, | |
5207 | but it tells the disassembler to not try to guess the ABI from | |
5208 | the bfd elf headers, such that, if the user overrides the ABI | |
5209 | of a program linked as NewABI, the disassembly will follow the | |
5210 | register naming conventions specified by the user. */ | |
5211 | info->disassembler_options = "gpr-names=32"; | |
5212 | ||
c906108c | 5213 | /* Call the appropriate disassembler based on the target endian-ness. */ |
d7449b42 | 5214 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5215 | return print_insn_big_mips (memaddr, info); |
5216 | else | |
5217 | return print_insn_little_mips (memaddr, info); | |
5218 | } | |
5219 | ||
c906108c SS |
5220 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
5221 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
5222 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
5223 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
5224 | (if necessary) to point to the actual memory location where the | |
5225 | breakpoint should be inserted. */ | |
5226 | ||
f7ab6ec6 | 5227 | static const unsigned char * |
6d82d43b | 5228 | mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c | 5229 | { |
d7449b42 | 5230 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5231 | { |
5232 | if (pc_is_mips16 (*pcptr)) | |
5233 | { | |
6d82d43b | 5234 | static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 }; |
95404a3e | 5235 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5236 | *lenptr = sizeof (mips16_big_breakpoint); |
c906108c SS |
5237 | return mips16_big_breakpoint; |
5238 | } | |
5239 | else | |
5240 | { | |
aaab4dba AC |
5241 | /* The IDT board uses an unusual breakpoint value, and |
5242 | sometimes gets confused when it sees the usual MIPS | |
5243 | breakpoint instruction. */ | |
6d82d43b AC |
5244 | static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd }; |
5245 | static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd }; | |
5246 | static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd }; | |
c906108c | 5247 | |
c5aa993b | 5248 | *lenptr = sizeof (big_breakpoint); |
c906108c SS |
5249 | |
5250 | if (strcmp (target_shortname, "mips") == 0) | |
5251 | return idt_big_breakpoint; | |
5252 | else if (strcmp (target_shortname, "ddb") == 0 | |
5253 | || strcmp (target_shortname, "pmon") == 0 | |
5254 | || strcmp (target_shortname, "lsi") == 0) | |
5255 | return pmon_big_breakpoint; | |
5256 | else | |
5257 | return big_breakpoint; | |
5258 | } | |
5259 | } | |
5260 | else | |
5261 | { | |
5262 | if (pc_is_mips16 (*pcptr)) | |
5263 | { | |
6d82d43b | 5264 | static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 }; |
95404a3e | 5265 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5266 | *lenptr = sizeof (mips16_little_breakpoint); |
c906108c SS |
5267 | return mips16_little_breakpoint; |
5268 | } | |
5269 | else | |
5270 | { | |
6d82d43b AC |
5271 | static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 }; |
5272 | static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 }; | |
5273 | static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 }; | |
c906108c | 5274 | |
c5aa993b | 5275 | *lenptr = sizeof (little_breakpoint); |
c906108c SS |
5276 | |
5277 | if (strcmp (target_shortname, "mips") == 0) | |
5278 | return idt_little_breakpoint; | |
5279 | else if (strcmp (target_shortname, "ddb") == 0 | |
5280 | || strcmp (target_shortname, "pmon") == 0 | |
5281 | || strcmp (target_shortname, "lsi") == 0) | |
5282 | return pmon_little_breakpoint; | |
5283 | else | |
5284 | return little_breakpoint; | |
5285 | } | |
5286 | } | |
5287 | } | |
5288 | ||
5289 | /* If PC is in a mips16 call or return stub, return the address of the target | |
5290 | PC, which is either the callee or the caller. There are several | |
5291 | cases which must be handled: | |
5292 | ||
5293 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
c5aa993b | 5294 | target PC is in $31 ($ra). |
c906108c | 5295 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub |
c5aa993b | 5296 | and the target PC is in $2. |
c906108c | 5297 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. |
c5aa993b JM |
5298 | before the jal instruction, this is effectively a call stub |
5299 | and the the target PC is in $2. Otherwise this is effectively | |
5300 | a return stub and the target PC is in $18. | |
c906108c SS |
5301 | |
5302 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
5303 | gory details. | |
5304 | ||
5305 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
c5aa993b | 5306 | */ |
c906108c | 5307 | |
757a7cc6 | 5308 | static CORE_ADDR |
acdb74a0 | 5309 | mips_skip_stub (CORE_ADDR pc) |
c906108c SS |
5310 | { |
5311 | char *name; | |
5312 | CORE_ADDR start_addr; | |
5313 | ||
5314 | /* Find the starting address and name of the function containing the PC. */ | |
5315 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
5316 | return 0; | |
5317 | ||
5318 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
5319 | target PC is in $31 ($ra). */ | |
5320 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5321 | || strcmp (name, "__mips16_ret_df") == 0) | |
6c997a34 | 5322 | return read_signed_register (RA_REGNUM); |
c906108c SS |
5323 | |
5324 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5325 | { | |
5326 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
5327 | and the target PC is in $2. */ | |
5328 | if (name[19] >= '0' && name[19] <= '9') | |
6c997a34 | 5329 | return read_signed_register (2); |
c906108c SS |
5330 | |
5331 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b JM |
5332 | before the jal instruction, this is effectively a call stub |
5333 | and the the target PC is in $2. Otherwise this is effectively | |
5334 | a return stub and the target PC is in $18. */ | |
c906108c SS |
5335 | else if (name[19] == 's' || name[19] == 'd') |
5336 | { | |
5337 | if (pc == start_addr) | |
5338 | { | |
5339 | /* Check if the target of the stub is a compiler-generated | |
c5aa993b JM |
5340 | stub. Such a stub for a function bar might have a name |
5341 | like __fn_stub_bar, and might look like this: | |
5342 | mfc1 $4,$f13 | |
5343 | mfc1 $5,$f12 | |
5344 | mfc1 $6,$f15 | |
5345 | mfc1 $7,$f14 | |
5346 | la $1,bar (becomes a lui/addiu pair) | |
5347 | jr $1 | |
5348 | So scan down to the lui/addi and extract the target | |
5349 | address from those two instructions. */ | |
c906108c | 5350 | |
6c997a34 | 5351 | CORE_ADDR target_pc = read_signed_register (2); |
c906108c SS |
5352 | t_inst inst; |
5353 | int i; | |
5354 | ||
5355 | /* See if the name of the target function is __fn_stub_*. */ | |
6d82d43b AC |
5356 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == |
5357 | 0) | |
c906108c SS |
5358 | return target_pc; |
5359 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
5360 | && strcmp (name, "etext") != 0 | |
5361 | && strcmp (name, "_etext") != 0) | |
5362 | return target_pc; | |
5363 | ||
5364 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
c5aa993b JM |
5365 | The limit on the search is arbitrarily set to 20 |
5366 | instructions. FIXME. */ | |
c906108c SS |
5367 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) |
5368 | { | |
c5aa993b JM |
5369 | inst = mips_fetch_instruction (target_pc); |
5370 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
5371 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
5372 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
5373 | return pc | (inst & 0xffff); /* low word */ | |
c906108c SS |
5374 | } |
5375 | ||
5376 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
5377 | return target_pc; | |
5378 | } | |
5379 | else | |
5380 | /* This is the 'return' part of a call stub. The return | |
5381 | address is in $r18. */ | |
6c997a34 | 5382 | return read_signed_register (18); |
c906108c SS |
5383 | } |
5384 | } | |
c5aa993b | 5385 | return 0; /* not a stub */ |
c906108c SS |
5386 | } |
5387 | ||
5388 | ||
5389 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
5390 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
5391 | ||
757a7cc6 | 5392 | static int |
acdb74a0 | 5393 | mips_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5394 | { |
5395 | CORE_ADDR start_addr; | |
5396 | ||
5397 | /* Find the starting address of the function containing the PC. If the | |
5398 | caller didn't give us a name, look it up at the same time. */ | |
6d82d43b AC |
5399 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == |
5400 | 0) | |
c906108c SS |
5401 | return 0; |
5402 | ||
5403 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5404 | { | |
5405 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
5406 | if (name[19] >= '0' && name[19] <= '9') | |
5407 | return 1; | |
5408 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b | 5409 | before the jal instruction, this is effectively a call stub. */ |
c906108c SS |
5410 | else if (name[19] == 's' || name[19] == 'd') |
5411 | return pc == start_addr; | |
5412 | } | |
5413 | ||
c5aa993b | 5414 | return 0; /* not a stub */ |
c906108c SS |
5415 | } |
5416 | ||
5417 | ||
5418 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
5419 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
5420 | ||
e41b17f0 | 5421 | static int |
acdb74a0 | 5422 | mips_in_return_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5423 | { |
5424 | CORE_ADDR start_addr; | |
5425 | ||
5426 | /* Find the starting address of the function containing the PC. */ | |
5427 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
5428 | return 0; | |
5429 | ||
5430 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
5431 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5432 | || strcmp (name, "__mips16_ret_df") == 0) | |
5433 | return 1; | |
5434 | ||
5435 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
c5aa993b | 5436 | i.e. after the jal instruction, this is effectively a return stub. */ |
c906108c | 5437 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 |
6d82d43b | 5438 | && (name[19] == 's' || name[19] == 'd') && pc != start_addr) |
c906108c SS |
5439 | return 1; |
5440 | ||
c5aa993b | 5441 | return 0; /* not a stub */ |
c906108c SS |
5442 | } |
5443 | ||
5444 | ||
a53c66de AC |
5445 | /* Return non-zero if the PC is in a library helper function that |
5446 | should be ignored. This implements the | |
5447 | DEPRECATED_IGNORE_HELPER_CALL macro. */ | |
c906108c SS |
5448 | |
5449 | int | |
acdb74a0 | 5450 | mips_ignore_helper (CORE_ADDR pc) |
c906108c SS |
5451 | { |
5452 | char *name; | |
5453 | ||
5454 | /* Find the starting address and name of the function containing the PC. */ | |
5455 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
5456 | return 0; | |
5457 | ||
5458 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
5459 | that we want to ignore. */ | |
5460 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
5461 | || strcmp (name, "__mips16_ret_df") == 0); | |
5462 | } | |
5463 | ||
5464 | ||
a4b8ebc8 AC |
5465 | /* Convert a dbx stab register number (from `r' declaration) to a GDB |
5466 | [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
88c72b7d AC |
5467 | |
5468 | static int | |
5469 | mips_stab_reg_to_regnum (int num) | |
5470 | { | |
a4b8ebc8 | 5471 | int regnum; |
2f38ef89 | 5472 | if (num >= 0 && num < 32) |
a4b8ebc8 | 5473 | regnum = num; |
2f38ef89 | 5474 | else if (num >= 38 && num < 70) |
56cea623 | 5475 | regnum = num + mips_regnum (current_gdbarch)->fp0 - 38; |
040b99fd | 5476 | else if (num == 70) |
56cea623 | 5477 | regnum = mips_regnum (current_gdbarch)->hi; |
040b99fd | 5478 | else if (num == 71) |
56cea623 | 5479 | regnum = mips_regnum (current_gdbarch)->lo; |
2f38ef89 | 5480 | else |
a4b8ebc8 AC |
5481 | /* This will hopefully (eventually) provoke a warning. Should |
5482 | we be calling complaint() here? */ | |
5483 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5484 | return NUM_REGS + regnum; | |
88c72b7d AC |
5485 | } |
5486 | ||
2f38ef89 | 5487 | |
a4b8ebc8 AC |
5488 | /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 * |
5489 | NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
88c72b7d AC |
5490 | |
5491 | static int | |
2f38ef89 | 5492 | mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num) |
88c72b7d | 5493 | { |
a4b8ebc8 | 5494 | int regnum; |
2f38ef89 | 5495 | if (num >= 0 && num < 32) |
a4b8ebc8 | 5496 | regnum = num; |
2f38ef89 | 5497 | else if (num >= 32 && num < 64) |
56cea623 | 5498 | regnum = num + mips_regnum (current_gdbarch)->fp0 - 32; |
040b99fd | 5499 | else if (num == 64) |
56cea623 | 5500 | regnum = mips_regnum (current_gdbarch)->hi; |
040b99fd | 5501 | else if (num == 65) |
56cea623 | 5502 | regnum = mips_regnum (current_gdbarch)->lo; |
2f38ef89 | 5503 | else |
a4b8ebc8 AC |
5504 | /* This will hopefully (eventually) provoke a warning. Should we |
5505 | be calling complaint() here? */ | |
5506 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5507 | return NUM_REGS + regnum; | |
5508 | } | |
5509 | ||
5510 | static int | |
5511 | mips_register_sim_regno (int regnum) | |
5512 | { | |
5513 | /* Only makes sense to supply raw registers. */ | |
5514 | gdb_assert (regnum >= 0 && regnum < NUM_REGS); | |
5515 | /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to | |
5516 | decide if it is valid. Should instead define a standard sim/gdb | |
5517 | register numbering scheme. */ | |
5518 | if (REGISTER_NAME (NUM_REGS + regnum) != NULL | |
5519 | && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0') | |
5520 | return regnum; | |
5521 | else | |
6d82d43b | 5522 | return LEGACY_SIM_REGNO_IGNORE; |
88c72b7d AC |
5523 | } |
5524 | ||
2f38ef89 | 5525 | |
fc0c74b1 AC |
5526 | /* Convert an integer into an address. By first converting the value |
5527 | into a pointer and then extracting it signed, the address is | |
5528 | guarenteed to be correctly sign extended. */ | |
5529 | ||
5530 | static CORE_ADDR | |
5531 | mips_integer_to_address (struct type *type, void *buf) | |
5532 | { | |
5533 | char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5534 | LONGEST val = unpack_long (type, buf); | |
5535 | store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val); | |
5536 | return extract_signed_integer (tmp, | |
5537 | TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5538 | } | |
5539 | ||
caaa3122 DJ |
5540 | static void |
5541 | mips_find_abi_section (bfd *abfd, asection *sect, void *obj) | |
5542 | { | |
5543 | enum mips_abi *abip = (enum mips_abi *) obj; | |
5544 | const char *name = bfd_get_section_name (abfd, sect); | |
5545 | ||
5546 | if (*abip != MIPS_ABI_UNKNOWN) | |
5547 | return; | |
5548 | ||
5549 | if (strncmp (name, ".mdebug.", 8) != 0) | |
5550 | return; | |
5551 | ||
5552 | if (strcmp (name, ".mdebug.abi32") == 0) | |
5553 | *abip = MIPS_ABI_O32; | |
5554 | else if (strcmp (name, ".mdebug.abiN32") == 0) | |
5555 | *abip = MIPS_ABI_N32; | |
62a49b2c | 5556 | else if (strcmp (name, ".mdebug.abi64") == 0) |
e3bddbfa | 5557 | *abip = MIPS_ABI_N64; |
caaa3122 DJ |
5558 | else if (strcmp (name, ".mdebug.abiO64") == 0) |
5559 | *abip = MIPS_ABI_O64; | |
5560 | else if (strcmp (name, ".mdebug.eabi32") == 0) | |
5561 | *abip = MIPS_ABI_EABI32; | |
5562 | else if (strcmp (name, ".mdebug.eabi64") == 0) | |
5563 | *abip = MIPS_ABI_EABI64; | |
5564 | else | |
5565 | warning ("unsupported ABI %s.", name + 8); | |
5566 | } | |
5567 | ||
2e4ebe70 DJ |
5568 | static enum mips_abi |
5569 | global_mips_abi (void) | |
5570 | { | |
5571 | int i; | |
5572 | ||
5573 | for (i = 0; mips_abi_strings[i] != NULL; i++) | |
5574 | if (mips_abi_strings[i] == mips_abi_string) | |
5575 | return (enum mips_abi) i; | |
5576 | ||
6d82d43b | 5577 | internal_error (__FILE__, __LINE__, "unknown ABI string"); |
2e4ebe70 DJ |
5578 | } |
5579 | ||
c2d11a7d | 5580 | static struct gdbarch * |
6d82d43b | 5581 | mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
c2d11a7d | 5582 | { |
c2d11a7d JM |
5583 | struct gdbarch *gdbarch; |
5584 | struct gdbarch_tdep *tdep; | |
5585 | int elf_flags; | |
2e4ebe70 | 5586 | enum mips_abi mips_abi, found_abi, wanted_abi; |
a4b8ebc8 | 5587 | int num_regs; |
8d5838b5 | 5588 | enum mips_fpu_type fpu_type; |
c2d11a7d | 5589 | |
ec03c1ac AC |
5590 | /* First of all, extract the elf_flags, if available. */ |
5591 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
5592 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
6214a8a1 AC |
5593 | else if (arches != NULL) |
5594 | elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags; | |
ec03c1ac AC |
5595 | else |
5596 | elf_flags = 0; | |
5597 | if (gdbarch_debug) | |
5598 | fprintf_unfiltered (gdb_stdlog, | |
6d82d43b | 5599 | "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags); |
c2d11a7d | 5600 | |
102182a9 | 5601 | /* Check ELF_FLAGS to see if it specifies the ABI being used. */ |
0dadbba0 AC |
5602 | switch ((elf_flags & EF_MIPS_ABI)) |
5603 | { | |
5604 | case E_MIPS_ABI_O32: | |
ec03c1ac | 5605 | found_abi = MIPS_ABI_O32; |
0dadbba0 AC |
5606 | break; |
5607 | case E_MIPS_ABI_O64: | |
ec03c1ac | 5608 | found_abi = MIPS_ABI_O64; |
0dadbba0 AC |
5609 | break; |
5610 | case E_MIPS_ABI_EABI32: | |
ec03c1ac | 5611 | found_abi = MIPS_ABI_EABI32; |
0dadbba0 AC |
5612 | break; |
5613 | case E_MIPS_ABI_EABI64: | |
ec03c1ac | 5614 | found_abi = MIPS_ABI_EABI64; |
0dadbba0 AC |
5615 | break; |
5616 | default: | |
acdb74a0 | 5617 | if ((elf_flags & EF_MIPS_ABI2)) |
ec03c1ac | 5618 | found_abi = MIPS_ABI_N32; |
acdb74a0 | 5619 | else |
ec03c1ac | 5620 | found_abi = MIPS_ABI_UNKNOWN; |
0dadbba0 AC |
5621 | break; |
5622 | } | |
acdb74a0 | 5623 | |
caaa3122 | 5624 | /* GCC creates a pseudo-section whose name describes the ABI. */ |
ec03c1ac AC |
5625 | if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL) |
5626 | bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi); | |
caaa3122 | 5627 | |
dc305454 | 5628 | /* If we have no useful BFD information, use the ABI from the last |
ec03c1ac AC |
5629 | MIPS architecture (if there is one). */ |
5630 | if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL) | |
5631 | found_abi = gdbarch_tdep (arches->gdbarch)->found_abi; | |
2e4ebe70 | 5632 | |
32a6503c | 5633 | /* Try the architecture for any hint of the correct ABI. */ |
ec03c1ac | 5634 | if (found_abi == MIPS_ABI_UNKNOWN |
bf64bfd6 AC |
5635 | && info.bfd_arch_info != NULL |
5636 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5637 | { | |
5638 | switch (info.bfd_arch_info->mach) | |
5639 | { | |
5640 | case bfd_mach_mips3900: | |
ec03c1ac | 5641 | found_abi = MIPS_ABI_EABI32; |
bf64bfd6 AC |
5642 | break; |
5643 | case bfd_mach_mips4100: | |
5644 | case bfd_mach_mips5000: | |
ec03c1ac | 5645 | found_abi = MIPS_ABI_EABI64; |
bf64bfd6 | 5646 | break; |
1d06468c EZ |
5647 | case bfd_mach_mips8000: |
5648 | case bfd_mach_mips10000: | |
32a6503c KB |
5649 | /* On Irix, ELF64 executables use the N64 ABI. The |
5650 | pseudo-sections which describe the ABI aren't present | |
5651 | on IRIX. (Even for executables created by gcc.) */ | |
28d169de KB |
5652 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour |
5653 | && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
ec03c1ac | 5654 | found_abi = MIPS_ABI_N64; |
28d169de | 5655 | else |
ec03c1ac | 5656 | found_abi = MIPS_ABI_N32; |
1d06468c | 5657 | break; |
bf64bfd6 AC |
5658 | } |
5659 | } | |
2e4ebe70 | 5660 | |
ec03c1ac AC |
5661 | if (gdbarch_debug) |
5662 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n", | |
5663 | found_abi); | |
5664 | ||
5665 | /* What has the user specified from the command line? */ | |
5666 | wanted_abi = global_mips_abi (); | |
5667 | if (gdbarch_debug) | |
5668 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n", | |
5669 | wanted_abi); | |
2e4ebe70 DJ |
5670 | |
5671 | /* Now that we have found what the ABI for this binary would be, | |
5672 | check whether the user is overriding it. */ | |
2e4ebe70 DJ |
5673 | if (wanted_abi != MIPS_ABI_UNKNOWN) |
5674 | mips_abi = wanted_abi; | |
ec03c1ac AC |
5675 | else if (found_abi != MIPS_ABI_UNKNOWN) |
5676 | mips_abi = found_abi; | |
5677 | else | |
5678 | mips_abi = MIPS_ABI_O32; | |
5679 | if (gdbarch_debug) | |
5680 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n", | |
5681 | mips_abi); | |
2e4ebe70 | 5682 | |
ec03c1ac | 5683 | /* Also used when doing an architecture lookup. */ |
4b9b3959 | 5684 | if (gdbarch_debug) |
ec03c1ac AC |
5685 | fprintf_unfiltered (gdb_stdlog, |
5686 | "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n", | |
5687 | mips64_transfers_32bit_regs_p); | |
0dadbba0 | 5688 | |
8d5838b5 AC |
5689 | /* Determine the MIPS FPU type. */ |
5690 | if (!mips_fpu_type_auto) | |
5691 | fpu_type = mips_fpu_type; | |
5692 | else if (info.bfd_arch_info != NULL | |
5693 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5694 | switch (info.bfd_arch_info->mach) | |
5695 | { | |
5696 | case bfd_mach_mips3900: | |
5697 | case bfd_mach_mips4100: | |
5698 | case bfd_mach_mips4111: | |
a9d61c86 | 5699 | case bfd_mach_mips4120: |
8d5838b5 AC |
5700 | fpu_type = MIPS_FPU_NONE; |
5701 | break; | |
5702 | case bfd_mach_mips4650: | |
5703 | fpu_type = MIPS_FPU_SINGLE; | |
5704 | break; | |
5705 | default: | |
5706 | fpu_type = MIPS_FPU_DOUBLE; | |
5707 | break; | |
5708 | } | |
5709 | else if (arches != NULL) | |
5710 | fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type; | |
5711 | else | |
5712 | fpu_type = MIPS_FPU_DOUBLE; | |
5713 | if (gdbarch_debug) | |
5714 | fprintf_unfiltered (gdb_stdlog, | |
6d82d43b | 5715 | "mips_gdbarch_init: fpu_type = %d\n", fpu_type); |
8d5838b5 | 5716 | |
c2d11a7d JM |
5717 | /* try to find a pre-existing architecture */ |
5718 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
5719 | arches != NULL; | |
5720 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
5721 | { | |
5722 | /* MIPS needs to be pedantic about which ABI the object is | |
102182a9 | 5723 | using. */ |
9103eae0 | 5724 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) |
c2d11a7d | 5725 | continue; |
9103eae0 | 5726 | if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi) |
0dadbba0 | 5727 | continue; |
719ec221 AC |
5728 | /* Need to be pedantic about which register virtual size is |
5729 | used. */ | |
5730 | if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p | |
5731 | != mips64_transfers_32bit_regs_p) | |
5732 | continue; | |
8d5838b5 AC |
5733 | /* Be pedantic about which FPU is selected. */ |
5734 | if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type) | |
5735 | continue; | |
4be87837 | 5736 | return arches->gdbarch; |
c2d11a7d JM |
5737 | } |
5738 | ||
102182a9 | 5739 | /* Need a new architecture. Fill in a target specific vector. */ |
c2d11a7d JM |
5740 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); |
5741 | gdbarch = gdbarch_alloc (&info, tdep); | |
5742 | tdep->elf_flags = elf_flags; | |
719ec221 | 5743 | tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p; |
ec03c1ac AC |
5744 | tdep->found_abi = found_abi; |
5745 | tdep->mips_abi = mips_abi; | |
8d5838b5 | 5746 | tdep->mips_fpu_type = fpu_type; |
c2d11a7d | 5747 | |
102182a9 | 5748 | /* Initially set everything according to the default ABI/ISA. */ |
c2d11a7d JM |
5749 | set_gdbarch_short_bit (gdbarch, 16); |
5750 | set_gdbarch_int_bit (gdbarch, 32); | |
5751 | set_gdbarch_float_bit (gdbarch, 32); | |
5752 | set_gdbarch_double_bit (gdbarch, 64); | |
5753 | set_gdbarch_long_double_bit (gdbarch, 64); | |
a4b8ebc8 AC |
5754 | set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p); |
5755 | set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read); | |
5756 | set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write); | |
1d06468c | 5757 | |
6d82d43b | 5758 | set_gdbarch_elf_make_msymbol_special (gdbarch, |
f7ab6ec6 MS |
5759 | mips_elf_make_msymbol_special); |
5760 | ||
16e109ca | 5761 | /* Fill in the OS dependant register numbers and names. */ |
56cea623 | 5762 | { |
16e109ca | 5763 | const char **reg_names; |
56cea623 AC |
5764 | struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, |
5765 | struct mips_regnum); | |
56cea623 AC |
5766 | if (info.osabi == GDB_OSABI_IRIX) |
5767 | { | |
5768 | regnum->fp0 = 32; | |
5769 | regnum->pc = 64; | |
5770 | regnum->cause = 65; | |
5771 | regnum->badvaddr = 66; | |
5772 | regnum->hi = 67; | |
5773 | regnum->lo = 68; | |
5774 | regnum->fp_control_status = 69; | |
5775 | regnum->fp_implementation_revision = 70; | |
5776 | num_regs = 71; | |
16e109ca | 5777 | reg_names = mips_irix_reg_names; |
56cea623 AC |
5778 | } |
5779 | else | |
5780 | { | |
5781 | regnum->lo = MIPS_EMBED_LO_REGNUM; | |
5782 | regnum->hi = MIPS_EMBED_HI_REGNUM; | |
5783 | regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM; | |
5784 | regnum->cause = MIPS_EMBED_CAUSE_REGNUM; | |
5785 | regnum->pc = MIPS_EMBED_PC_REGNUM; | |
5786 | regnum->fp0 = MIPS_EMBED_FP0_REGNUM; | |
5787 | regnum->fp_control_status = 70; | |
5788 | regnum->fp_implementation_revision = 71; | |
5789 | num_regs = 90; | |
16e109ca AC |
5790 | if (info.bfd_arch_info != NULL |
5791 | && info.bfd_arch_info->mach == bfd_mach_mips3900) | |
5792 | reg_names = mips_tx39_reg_names; | |
5793 | else | |
5794 | reg_names = mips_generic_reg_names; | |
56cea623 AC |
5795 | } |
5796 | /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been | |
5797 | replaced by read_pc? */ | |
f10683bb MH |
5798 | set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs); |
5799 | set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs); | |
56cea623 AC |
5800 | set_gdbarch_fp0_regnum (gdbarch, regnum->fp0); |
5801 | set_gdbarch_num_regs (gdbarch, num_regs); | |
5802 | set_gdbarch_num_pseudo_regs (gdbarch, num_regs); | |
16e109ca AC |
5803 | set_gdbarch_register_name (gdbarch, mips_register_name); |
5804 | tdep->mips_processor_reg_names = reg_names; | |
5805 | tdep->regnum = regnum; | |
56cea623 | 5806 | } |
fe29b929 | 5807 | |
0dadbba0 | 5808 | switch (mips_abi) |
c2d11a7d | 5809 | { |
0dadbba0 | 5810 | case MIPS_ABI_O32: |
25ab4790 | 5811 | set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call); |
29dfb2ac | 5812 | set_gdbarch_return_value (gdbarch, mips_o32_return_value); |
acdb74a0 | 5813 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
56cea623 | 5814 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1; |
4014092b | 5815 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5816 | set_gdbarch_long_bit (gdbarch, 32); |
5817 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5818 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5819 | break; | |
0dadbba0 | 5820 | case MIPS_ABI_O64: |
25ab4790 | 5821 | set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call); |
6d82d43b AC |
5822 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5823 | mips_o64_store_return_value); | |
5824 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5825 | mips_o64_extract_return_value); | |
acdb74a0 | 5826 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
56cea623 | 5827 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1; |
361d1df0 | 5828 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5829 | set_gdbarch_long_bit (gdbarch, 32); |
5830 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5831 | set_gdbarch_long_long_bit (gdbarch, 64); | |
b5622e8d | 5832 | set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention); |
c2d11a7d | 5833 | break; |
0dadbba0 | 5834 | case MIPS_ABI_EABI32: |
25ab4790 | 5835 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
6d82d43b AC |
5836 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5837 | mips_eabi_store_return_value); | |
5838 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5839 | mips_eabi_extract_return_value); | |
acdb74a0 | 5840 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5841 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5842 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5843 | set_gdbarch_long_bit (gdbarch, 32); |
5844 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5845 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2110b94f MK |
5846 | set_gdbarch_deprecated_reg_struct_has_addr |
5847 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
b5622e8d | 5848 | set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention); |
c2d11a7d | 5849 | break; |
0dadbba0 | 5850 | case MIPS_ABI_EABI64: |
25ab4790 | 5851 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
6d82d43b AC |
5852 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5853 | mips_eabi_store_return_value); | |
5854 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5855 | mips_eabi_extract_return_value); | |
acdb74a0 | 5856 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5857 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5858 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5859 | set_gdbarch_long_bit (gdbarch, 64); |
5860 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5861 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2110b94f MK |
5862 | set_gdbarch_deprecated_reg_struct_has_addr |
5863 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
b5622e8d | 5864 | set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention); |
c2d11a7d | 5865 | break; |
0dadbba0 | 5866 | case MIPS_ABI_N32: |
25ab4790 | 5867 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
29dfb2ac | 5868 | set_gdbarch_return_value (gdbarch, mips_n32n64_return_value); |
acdb74a0 | 5869 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5870 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5871 | tdep->default_mask_address_p = 0; |
0dadbba0 AC |
5872 | set_gdbarch_long_bit (gdbarch, 32); |
5873 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5874 | set_gdbarch_long_long_bit (gdbarch, 64); | |
fed7ba43 JB |
5875 | set_gdbarch_long_double_bit (gdbarch, 128); |
5876 | set_gdbarch_long_double_format (gdbarch, | |
5877 | &floatformat_n32n64_long_double_big); | |
28d169de KB |
5878 | break; |
5879 | case MIPS_ABI_N64: | |
25ab4790 | 5880 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
29dfb2ac | 5881 | set_gdbarch_return_value (gdbarch, mips_n32n64_return_value); |
28d169de | 5882 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5883 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
28d169de KB |
5884 | tdep->default_mask_address_p = 0; |
5885 | set_gdbarch_long_bit (gdbarch, 64); | |
5886 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5887 | set_gdbarch_long_long_bit (gdbarch, 64); | |
fed7ba43 JB |
5888 | set_gdbarch_long_double_bit (gdbarch, 128); |
5889 | set_gdbarch_long_double_format (gdbarch, | |
5890 | &floatformat_n32n64_long_double_big); | |
0dadbba0 | 5891 | break; |
c2d11a7d | 5892 | default: |
6d82d43b | 5893 | internal_error (__FILE__, __LINE__, "unknown ABI in switch"); |
c2d11a7d JM |
5894 | } |
5895 | ||
a5ea2558 AC |
5896 | /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE |
5897 | that could indicate -gp32 BUT gas/config/tc-mips.c contains the | |
5898 | comment: | |
5899 | ||
5900 | ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE | |
5901 | flag in object files because to do so would make it impossible to | |
102182a9 | 5902 | link with libraries compiled without "-gp32". This is |
a5ea2558 | 5903 | unnecessarily restrictive. |
361d1df0 | 5904 | |
a5ea2558 AC |
5905 | We could solve this problem by adding "-gp32" multilibs to gcc, |
5906 | but to set this flag before gcc is built with such multilibs will | |
5907 | break too many systems.'' | |
5908 | ||
5909 | But even more unhelpfully, the default linker output target for | |
5910 | mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even | |
5911 | for 64-bit programs - you need to change the ABI to change this, | |
102182a9 | 5912 | and not all gcc targets support that currently. Therefore using |
a5ea2558 AC |
5913 | this flag to detect 32-bit mode would do the wrong thing given |
5914 | the current gcc - it would make GDB treat these 64-bit programs | |
102182a9 | 5915 | as 32-bit programs by default. */ |
a5ea2558 | 5916 | |
6c997a34 | 5917 | set_gdbarch_read_pc (gdbarch, mips_read_pc); |
b6cb9035 | 5918 | set_gdbarch_write_pc (gdbarch, mips_write_pc); |
bcb0cc15 | 5919 | set_gdbarch_read_sp (gdbarch, mips_read_sp); |
c2d11a7d | 5920 | |
102182a9 MS |
5921 | /* Add/remove bits from an address. The MIPS needs be careful to |
5922 | ensure that all 32 bit addresses are sign extended to 64 bits. */ | |
875e1767 AC |
5923 | set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove); |
5924 | ||
58dfe9ff AC |
5925 | /* Unwind the frame. */ |
5926 | set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc); | |
edfae063 | 5927 | set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id); |
10312cc4 | 5928 | |
102182a9 | 5929 | /* Map debug register numbers onto internal register numbers. */ |
88c72b7d | 5930 | set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum); |
6d82d43b AC |
5931 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, |
5932 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
5933 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, | |
5934 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
5935 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, | |
5936 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
a4b8ebc8 | 5937 | set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno); |
88c72b7d | 5938 | |
c2d11a7d JM |
5939 | /* MIPS version of CALL_DUMMY */ |
5940 | ||
9710e734 AC |
5941 | /* NOTE: cagney/2003-08-05: Eventually call dummy location will be |
5942 | replaced by a command, and all targets will default to on stack | |
5943 | (regardless of the stack's execute status). */ | |
5944 | set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL); | |
dc604539 | 5945 | set_gdbarch_frame_align (gdbarch, mips_frame_align); |
d05285fa | 5946 | |
87783b8b AC |
5947 | set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p); |
5948 | set_gdbarch_register_to_value (gdbarch, mips_register_to_value); | |
5949 | set_gdbarch_value_to_register (gdbarch, mips_value_to_register); | |
5950 | ||
f7b9e9fc AC |
5951 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
5952 | set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc); | |
f7b9e9fc AC |
5953 | |
5954 | set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue); | |
f7b9e9fc | 5955 | |
fc0c74b1 AC |
5956 | set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address); |
5957 | set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer); | |
5958 | set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address); | |
70f80edf | 5959 | |
a4b8ebc8 | 5960 | set_gdbarch_register_type (gdbarch, mips_register_type); |
78fde5f8 | 5961 | |
e11c53d2 | 5962 | set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info); |
bf1f5b4c | 5963 | |
e5ab0dce AC |
5964 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips); |
5965 | ||
3a3bc038 AC |
5966 | /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT, |
5967 | HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT | |
5968 | need to all be folded into the target vector. Since they are | |
5969 | being used as guards for STOPPED_BY_WATCHPOINT, why not have | |
5970 | STOPPED_BY_WATCHPOINT return the type of watchpoint that the code | |
5971 | is sitting on? */ | |
5972 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
5973 | ||
757a7cc6 MS |
5974 | set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub); |
5975 | ||
6de918a6 DJ |
5976 | /* NOTE drow/2004-02-11: We overload the core solib trampoline code |
5977 | to support MIPS16. This is a bad thing. Make sure not to do it | |
5978 | if we have an OS ABI that actually supports shared libraries, since | |
5979 | shared library support is more important. If we have an OS someday | |
5980 | that supports both shared libraries and MIPS16, we'll have to find | |
5981 | a better place for these. */ | |
5982 | if (info.osabi == GDB_OSABI_UNKNOWN) | |
5983 | { | |
5984 | set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub); | |
5985 | set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub); | |
5986 | } | |
5987 | ||
5988 | /* Hook in OS ABI-specific overrides, if they have been registered. */ | |
5989 | gdbarch_init_osabi (info, gdbarch); | |
757a7cc6 | 5990 | |
5792a79b | 5991 | /* Unwind the frame. */ |
eec63939 | 5992 | frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer); |
5792a79b | 5993 | frame_unwind_append_sniffer (gdbarch, mips_mdebug_frame_sniffer); |
45c9dd44 AC |
5994 | frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer); |
5995 | frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer); | |
eec63939 | 5996 | frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer); |
5792a79b | 5997 | frame_base_append_sniffer (gdbarch, mips_mdebug_frame_base_sniffer); |
45c9dd44 AC |
5998 | frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer); |
5999 | frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer); | |
5792a79b | 6000 | |
4b9b3959 AC |
6001 | return gdbarch; |
6002 | } | |
6003 | ||
2e4ebe70 | 6004 | static void |
6d82d43b | 6005 | mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c) |
2e4ebe70 DJ |
6006 | { |
6007 | struct gdbarch_info info; | |
6008 | ||
6009 | /* Force the architecture to update, and (if it's a MIPS architecture) | |
6010 | mips_gdbarch_init will take care of the rest. */ | |
6011 | gdbarch_info_init (&info); | |
6012 | gdbarch_update_p (info); | |
6013 | } | |
6014 | ||
ad188201 KB |
6015 | /* Print out which MIPS ABI is in use. */ |
6016 | ||
6017 | static void | |
6018 | show_mips_abi (char *ignore_args, int from_tty) | |
6019 | { | |
6020 | if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips) | |
6d82d43b AC |
6021 | printf_filtered |
6022 | ("The MIPS ABI is unknown because the current architecture is not MIPS.\n"); | |
ad188201 KB |
6023 | else |
6024 | { | |
6025 | enum mips_abi global_abi = global_mips_abi (); | |
6026 | enum mips_abi actual_abi = mips_abi (current_gdbarch); | |
6027 | const char *actual_abi_str = mips_abi_strings[actual_abi]; | |
6028 | ||
6029 | if (global_abi == MIPS_ABI_UNKNOWN) | |
6d82d43b AC |
6030 | printf_filtered |
6031 | ("The MIPS ABI is set automatically (currently \"%s\").\n", | |
6032 | actual_abi_str); | |
ad188201 | 6033 | else if (global_abi == actual_abi) |
6d82d43b AC |
6034 | printf_filtered |
6035 | ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n", | |
6036 | actual_abi_str); | |
ad188201 KB |
6037 | else |
6038 | { | |
6039 | /* Probably shouldn't happen... */ | |
6d82d43b AC |
6040 | printf_filtered |
6041 | ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n", | |
6042 | actual_abi_str, mips_abi_strings[global_abi]); | |
ad188201 KB |
6043 | } |
6044 | } | |
6045 | } | |
6046 | ||
4b9b3959 AC |
6047 | static void |
6048 | mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
6049 | { | |
6050 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
6051 | if (tdep != NULL) | |
c2d11a7d | 6052 | { |
acdb74a0 AC |
6053 | int ef_mips_arch; |
6054 | int ef_mips_32bitmode; | |
6055 | /* determine the ISA */ | |
6056 | switch (tdep->elf_flags & EF_MIPS_ARCH) | |
6057 | { | |
6058 | case E_MIPS_ARCH_1: | |
6059 | ef_mips_arch = 1; | |
6060 | break; | |
6061 | case E_MIPS_ARCH_2: | |
6062 | ef_mips_arch = 2; | |
6063 | break; | |
6064 | case E_MIPS_ARCH_3: | |
6065 | ef_mips_arch = 3; | |
6066 | break; | |
6067 | case E_MIPS_ARCH_4: | |
93d56215 | 6068 | ef_mips_arch = 4; |
acdb74a0 AC |
6069 | break; |
6070 | default: | |
93d56215 | 6071 | ef_mips_arch = 0; |
acdb74a0 AC |
6072 | break; |
6073 | } | |
6074 | /* determine the size of a pointer */ | |
6075 | ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE); | |
4b9b3959 AC |
6076 | fprintf_unfiltered (file, |
6077 | "mips_dump_tdep: tdep->elf_flags = 0x%x\n", | |
0dadbba0 | 6078 | tdep->elf_flags); |
4b9b3959 | 6079 | fprintf_unfiltered (file, |
acdb74a0 AC |
6080 | "mips_dump_tdep: ef_mips_32bitmode = %d\n", |
6081 | ef_mips_32bitmode); | |
6082 | fprintf_unfiltered (file, | |
6083 | "mips_dump_tdep: ef_mips_arch = %d\n", | |
6084 | ef_mips_arch); | |
6085 | fprintf_unfiltered (file, | |
6086 | "mips_dump_tdep: tdep->mips_abi = %d (%s)\n", | |
6d82d43b | 6087 | tdep->mips_abi, mips_abi_strings[tdep->mips_abi]); |
4014092b AC |
6088 | fprintf_unfiltered (file, |
6089 | "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n", | |
480d3dd2 | 6090 | mips_mask_address_p (tdep), |
4014092b | 6091 | tdep->default_mask_address_p); |
c2d11a7d | 6092 | } |
4b9b3959 AC |
6093 | fprintf_unfiltered (file, |
6094 | "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n", | |
6095 | MIPS_DEFAULT_FPU_TYPE, | |
6096 | (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6097 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6098 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6099 | : "???")); | |
6d82d43b | 6100 | fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI); |
4b9b3959 AC |
6101 | fprintf_unfiltered (file, |
6102 | "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n", | |
6103 | MIPS_FPU_TYPE, | |
6104 | (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6105 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6106 | : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6107 | : "???")); | |
4b9b3959 | 6108 | fprintf_unfiltered (file, |
480d3dd2 | 6109 | "mips_dump_tdep: mips_stack_argsize() = %d\n", |
13326b4e | 6110 | mips_stack_argsize (current_gdbarch)); |
6d82d43b | 6111 | fprintf_unfiltered (file, "mips_dump_tdep: A0_REGNUM = %d\n", A0_REGNUM); |
2475bac3 AC |
6112 | fprintf_unfiltered (file, |
6113 | "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n", | |
6d82d43b | 6114 | XSTRING (ADDR_BITS_REMOVE (ADDR))); |
2475bac3 AC |
6115 | fprintf_unfiltered (file, |
6116 | "mips_dump_tdep: ATTACH_DETACH # %s\n", | |
6117 | XSTRING (ATTACH_DETACH)); | |
2475bac3 AC |
6118 | fprintf_unfiltered (file, |
6119 | "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n", | |
6120 | XSTRING (DWARF_REG_TO_REGNUM (REGNUM))); | |
6121 | fprintf_unfiltered (file, | |
6122 | "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n", | |
6123 | XSTRING (ECOFF_REG_TO_REGNUM (REGNUM))); | |
2475bac3 AC |
6124 | fprintf_unfiltered (file, |
6125 | "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n", | |
6126 | FIRST_EMBED_REGNUM); | |
2475bac3 | 6127 | fprintf_unfiltered (file, |
a53c66de AC |
6128 | "mips_dump_tdep: DEPRECATED_IGNORE_HELPER_CALL # %s\n", |
6129 | XSTRING (DEPRECATED_IGNORE_HELPER_CALL (PC))); | |
2475bac3 AC |
6130 | fprintf_unfiltered (file, |
6131 | "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n", | |
6132 | XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME))); | |
6133 | fprintf_unfiltered (file, | |
6134 | "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n", | |
6135 | XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME))); | |
2475bac3 AC |
6136 | fprintf_unfiltered (file, |
6137 | "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n", | |
6138 | LAST_EMBED_REGNUM); | |
2475bac3 AC |
6139 | #ifdef MACHINE_CPROC_FP_OFFSET |
6140 | fprintf_unfiltered (file, | |
6141 | "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n", | |
6142 | MACHINE_CPROC_FP_OFFSET); | |
6143 | #endif | |
6144 | #ifdef MACHINE_CPROC_PC_OFFSET | |
6145 | fprintf_unfiltered (file, | |
6146 | "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n", | |
6147 | MACHINE_CPROC_PC_OFFSET); | |
6148 | #endif | |
6149 | #ifdef MACHINE_CPROC_SP_OFFSET | |
6150 | fprintf_unfiltered (file, | |
6151 | "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n", | |
6152 | MACHINE_CPROC_SP_OFFSET); | |
6153 | #endif | |
2475bac3 AC |
6154 | fprintf_unfiltered (file, |
6155 | "mips_dump_tdep: MIPS16_INSTLEN = %d\n", | |
6156 | MIPS16_INSTLEN); | |
6d82d43b | 6157 | fprintf_unfiltered (file, "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n"); |
2475bac3 AC |
6158 | fprintf_unfiltered (file, |
6159 | "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n"); | |
6160 | fprintf_unfiltered (file, | |
6d82d43b | 6161 | "mips_dump_tdep: MIPS_INSTLEN = %d\n", MIPS_INSTLEN); |
2475bac3 | 6162 | fprintf_unfiltered (file, |
acdb74a0 AC |
6163 | "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n", |
6164 | MIPS_LAST_ARG_REGNUM, | |
6165 | MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1); | |
2475bac3 | 6166 | fprintf_unfiltered (file, |
6d82d43b | 6167 | "mips_dump_tdep: MIPS_NUMREGS = %d\n", MIPS_NUMREGS); |
2475bac3 | 6168 | fprintf_unfiltered (file, |
1b13c4f6 | 6169 | "mips_dump_tdep: mips_abi_regsize() = %d\n", |
13326b4e | 6170 | mips_abi_regsize (current_gdbarch)); |
2475bac3 | 6171 | fprintf_unfiltered (file, |
6d82d43b | 6172 | "mips_dump_tdep: PRID_REGNUM = %d\n", PRID_REGNUM); |
2475bac3 AC |
6173 | fprintf_unfiltered (file, |
6174 | "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n"); | |
6175 | fprintf_unfiltered (file, | |
6176 | "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n"); | |
6d82d43b AC |
6177 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FRAME_REG = function?\n"); |
6178 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_MASK = function?\n"); | |
6179 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_OFFSET = function?\n"); | |
6180 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_HIGH_ADDR = function?\n"); | |
6181 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_LOW_ADDR = function?\n"); | |
6182 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_PC_REG = function?\n"); | |
6183 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_MASK = function?\n"); | |
6184 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_OFFSET = function?\n"); | |
6185 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_SYMBOL = function?\n"); | |
6186 | fprintf_unfiltered (file, "mips_dump_tdep: PS_REGNUM = %d\n", PS_REGNUM); | |
6187 | fprintf_unfiltered (file, "mips_dump_tdep: RA_REGNUM = %d\n", RA_REGNUM); | |
2475bac3 AC |
6188 | #ifdef SAVED_BYTES |
6189 | fprintf_unfiltered (file, | |
6d82d43b | 6190 | "mips_dump_tdep: SAVED_BYTES = %d\n", SAVED_BYTES); |
2475bac3 AC |
6191 | #endif |
6192 | #ifdef SAVED_FP | |
6d82d43b | 6193 | fprintf_unfiltered (file, "mips_dump_tdep: SAVED_FP = %d\n", SAVED_FP); |
2475bac3 AC |
6194 | #endif |
6195 | #ifdef SAVED_PC | |
6d82d43b | 6196 | fprintf_unfiltered (file, "mips_dump_tdep: SAVED_PC = %d\n", SAVED_PC); |
2475bac3 AC |
6197 | #endif |
6198 | fprintf_unfiltered (file, | |
6199 | "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n", | |
6200 | XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS))); | |
2475bac3 AC |
6201 | fprintf_unfiltered (file, |
6202 | "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n", | |
6203 | XSTRING (SKIP_TRAMPOLINE_CODE (PC))); | |
6204 | fprintf_unfiltered (file, | |
6205 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n", | |
6206 | XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P))); | |
6207 | fprintf_unfiltered (file, | |
b0ed3589 AC |
6208 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n", |
6209 | SOFTWARE_SINGLE_STEP_P ()); | |
2475bac3 AC |
6210 | fprintf_unfiltered (file, |
6211 | "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n", | |
6212 | XSTRING (STAB_REG_TO_REGNUM (REGNUM))); | |
6213 | #ifdef STACK_END_ADDR | |
6214 | fprintf_unfiltered (file, | |
6215 | "mips_dump_tdep: STACK_END_ADDR = %d\n", | |
6216 | STACK_END_ADDR); | |
6217 | #endif | |
6218 | fprintf_unfiltered (file, | |
6219 | "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n", | |
6220 | XSTRING (STEP_SKIPS_DELAY (PC))); | |
6221 | fprintf_unfiltered (file, | |
6222 | "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n", | |
6223 | STEP_SKIPS_DELAY_P); | |
6224 | fprintf_unfiltered (file, | |
6225 | "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n", | |
6226 | XSTRING (STOPPED_BY_WATCHPOINT (WS))); | |
6d82d43b | 6227 | fprintf_unfiltered (file, "mips_dump_tdep: T9_REGNUM = %d\n", T9_REGNUM); |
2475bac3 AC |
6228 | fprintf_unfiltered (file, |
6229 | "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n"); | |
6230 | fprintf_unfiltered (file, | |
6231 | "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n", | |
6d82d43b AC |
6232 | XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT |
6233 | (TYPE, CNT, OTHERTYPE))); | |
2475bac3 AC |
6234 | #ifdef TRACE_CLEAR |
6235 | fprintf_unfiltered (file, | |
6236 | "mips_dump_tdep: TRACE_CLEAR # %s\n", | |
6237 | XSTRING (TRACE_CLEAR (THREAD, STATE))); | |
6238 | #endif | |
6239 | #ifdef TRACE_FLAVOR | |
6240 | fprintf_unfiltered (file, | |
6d82d43b | 6241 | "mips_dump_tdep: TRACE_FLAVOR = %d\n", TRACE_FLAVOR); |
2475bac3 AC |
6242 | #endif |
6243 | #ifdef TRACE_FLAVOR_SIZE | |
6244 | fprintf_unfiltered (file, | |
6245 | "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n", | |
6246 | TRACE_FLAVOR_SIZE); | |
6247 | #endif | |
6248 | #ifdef TRACE_SET | |
6249 | fprintf_unfiltered (file, | |
6250 | "mips_dump_tdep: TRACE_SET # %s\n", | |
6d82d43b | 6251 | XSTRING (TRACE_SET (X, STATE))); |
2475bac3 | 6252 | #endif |
2475bac3 AC |
6253 | #ifdef UNUSED_REGNUM |
6254 | fprintf_unfiltered (file, | |
6d82d43b | 6255 | "mips_dump_tdep: UNUSED_REGNUM = %d\n", UNUSED_REGNUM); |
2475bac3 | 6256 | #endif |
6d82d43b | 6257 | fprintf_unfiltered (file, "mips_dump_tdep: V0_REGNUM = %d\n", V0_REGNUM); |
2475bac3 AC |
6258 | fprintf_unfiltered (file, |
6259 | "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n", | |
6260 | (long) VM_MIN_ADDRESS); | |
2475bac3 | 6261 | fprintf_unfiltered (file, |
6d82d43b | 6262 | "mips_dump_tdep: ZERO_REGNUM = %d\n", ZERO_REGNUM); |
c2d11a7d JM |
6263 | } |
6264 | ||
6d82d43b | 6265 | extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */ |
a78f21af | 6266 | |
c906108c | 6267 | void |
acdb74a0 | 6268 | _initialize_mips_tdep (void) |
c906108c SS |
6269 | { |
6270 | static struct cmd_list_element *mipsfpulist = NULL; | |
6271 | struct cmd_list_element *c; | |
6272 | ||
6d82d43b | 6273 | mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN]; |
2e4ebe70 DJ |
6274 | if (MIPS_ABI_LAST + 1 |
6275 | != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0])) | |
6276 | internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync"); | |
6277 | ||
4b9b3959 | 6278 | gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep); |
c906108c | 6279 | |
8d5f9dcb DJ |
6280 | mips_pdr_data = register_objfile_data (); |
6281 | ||
a5ea2558 AC |
6282 | /* Add root prefix command for all "set mips"/"show mips" commands */ |
6283 | add_prefix_cmd ("mips", no_class, set_mips_command, | |
6284 | "Various MIPS specific commands.", | |
6285 | &setmipscmdlist, "set mips ", 0, &setlist); | |
6286 | ||
6287 | add_prefix_cmd ("mips", no_class, show_mips_command, | |
6288 | "Various MIPS specific commands.", | |
6289 | &showmipscmdlist, "show mips ", 0, &showlist); | |
6290 | ||
6291 | /* Allow the user to override the saved register size. */ | |
cb1a6d5f AC |
6292 | deprecated_add_show_from_set (add_set_enum_cmd ("saved-gpreg-size", |
6293 | class_obscure, | |
6294 | size_enums, | |
6295 | &mips_abi_regsize_string, "\ | |
a5ea2558 AC |
6296 | Set size of general purpose registers saved on the stack.\n\ |
6297 | This option can be set to one of:\n\ | |
6298 | 32 - Force GDB to treat saved GP registers as 32-bit\n\ | |
6299 | 64 - Force GDB to treat saved GP registers as 64-bit\n\ | |
6300 | auto - Allow GDB to use the target's default setting or autodetect the\n\ | |
6301 | saved GP register size from information contained in the executable.\n\ | |
6d82d43b | 6302 | (default: auto)", &setmipscmdlist), &showmipscmdlist); |
a5ea2558 | 6303 | |
d929b26f | 6304 | /* Allow the user to override the argument stack size. */ |
cb1a6d5f AC |
6305 | deprecated_add_show_from_set |
6306 | (add_set_enum_cmd ("stack-arg-size", | |
6307 | class_obscure, | |
6308 | size_enums, | |
6309 | &mips_stack_argsize_string, "\ | |
d929b26f AC |
6310 | Set the amount of stack space reserved for each argument.\n\ |
6311 | This option can be set to one of:\n\ | |
6312 | 32 - Force GDB to allocate 32-bit chunks per argument\n\ | |
6313 | 64 - Force GDB to allocate 64-bit chunks per argument\n\ | |
6314 | auto - Allow GDB to determine the correct setting from the current\n\ | |
cb1a6d5f AC |
6315 | target and executable (default)", &setmipscmdlist), |
6316 | &showmipscmdlist); | |
d929b26f | 6317 | |
2e4ebe70 DJ |
6318 | /* Allow the user to override the ABI. */ |
6319 | c = add_set_enum_cmd | |
6320 | ("abi", class_obscure, mips_abi_strings, &mips_abi_string, | |
6321 | "Set the ABI used by this program.\n" | |
6322 | "This option can be set to one of:\n" | |
6323 | " auto - the default ABI associated with the current binary\n" | |
6324 | " o32\n" | |
6d82d43b | 6325 | " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist); |
2e4ebe70 | 6326 | set_cmd_sfunc (c, mips_abi_update); |
ad188201 | 6327 | add_cmd ("abi", class_obscure, show_mips_abi, |
6d82d43b | 6328 | "Show ABI in use by MIPS target", &showmipscmdlist); |
2e4ebe70 | 6329 | |
c906108c SS |
6330 | /* Let the user turn off floating point and set the fence post for |
6331 | heuristic_proc_start. */ | |
6332 | ||
6333 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
6334 | "Set use of MIPS floating-point coprocessor.", | |
6335 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
6336 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
6337 | "Select single-precision MIPS floating-point coprocessor.", | |
6338 | &mipsfpulist); | |
6339 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
8e1a459b | 6340 | "Select double-precision MIPS floating-point coprocessor.", |
c906108c SS |
6341 | &mipsfpulist); |
6342 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
6343 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
6344 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
6345 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
6d82d43b | 6346 | "Select no MIPS floating-point coprocessor.", &mipsfpulist); |
c906108c SS |
6347 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); |
6348 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
6349 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
6350 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
6351 | "Select MIPS floating-point coprocessor automatically.", | |
6352 | &mipsfpulist); | |
6353 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
6354 | "Show current use of MIPS floating-point coprocessor target.", | |
6355 | &showlist); | |
6356 | ||
c906108c SS |
6357 | /* We really would like to have both "0" and "unlimited" work, but |
6358 | command.c doesn't deal with that. So make it a var_zinteger | |
6359 | because the user can always use "999999" or some such for unlimited. */ | |
6360 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
6d82d43b | 6361 | (char *) &heuristic_fence_post, "\ |
c906108c SS |
6362 | Set the distance searched for the start of a function.\n\ |
6363 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
6364 | program for the start of a function. This command sets the distance of the\n\ | |
6d82d43b | 6365 | search. The only need to set it is when debugging a stripped executable.", &setlist); |
c906108c SS |
6366 | /* We need to throw away the frame cache when we set this, since it |
6367 | might change our ability to get backtraces. */ | |
9f60d481 | 6368 | set_cmd_sfunc (c, reinit_frame_cache_sfunc); |
cb1a6d5f | 6369 | deprecated_add_show_from_set (c, &showlist); |
c906108c SS |
6370 | |
6371 | /* Allow the user to control whether the upper bits of 64-bit | |
6372 | addresses should be zeroed. */ | |
e9e68a56 | 6373 | add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\ |
3b64bf98 AC |
6374 | Set zeroing of upper 32 bits of 64-bit addresses.", "\ |
6375 | Show zeroing of upper 32 bits of 64-bit addresses.", "\ | |
e9e68a56 AC |
6376 | Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\ |
6377 | allow GDB to determine the correct value.\n", "\ | |
3b64bf98 | 6378 | Zerroing of upper 32 bits of 64-bit address is %s.", |
6d82d43b | 6379 | NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist); |
43e526b9 JM |
6380 | |
6381 | /* Allow the user to control the size of 32 bit registers within the | |
6382 | raw remote packet. */ | |
b3f42336 AC |
6383 | add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure, |
6384 | &mips64_transfers_32bit_regs_p, "\ | |
3b64bf98 AC |
6385 | Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\ |
6386 | Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\ | |
719ec221 AC |
6387 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ |
6388 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
6d82d43b | 6389 | 64 bits for others. Use \"off\" to disable compatibility mode", "\ |
3b64bf98 AC |
6390 | Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.", |
6391 | set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist); | |
9ace0497 AC |
6392 | |
6393 | /* Debug this files internals. */ | |
cb1a6d5f AC |
6394 | deprecated_add_show_from_set |
6395 | (add_set_cmd ("mips", class_maintenance, var_zinteger, | |
6396 | &mips_debug, "Set mips debugging.\n\ | |
6397 | When non-zero, mips specific debugging is enabled.", &setdebuglist), | |
6398 | &showdebuglist); | |
c906108c | 6399 | } |