]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
bf64bfd6 | 2 | |
cda5a58a | 3 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
16e109ca AC |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
bf64bfd6 | 6 | |
c906108c SS |
7 | Contributed by Alessandro Forin([email protected]) at CMU |
8 | and by Per Bothner([email protected]) at U.Wisconsin. | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
28 | #include "gdb_string.h" | |
5e2e9765 | 29 | #include "gdb_assert.h" |
c906108c SS |
30 | #include "frame.h" |
31 | #include "inferior.h" | |
32 | #include "symtab.h" | |
33 | #include "value.h" | |
34 | #include "gdbcmd.h" | |
35 | #include "language.h" | |
36 | #include "gdbcore.h" | |
37 | #include "symfile.h" | |
38 | #include "objfiles.h" | |
39 | #include "gdbtypes.h" | |
40 | #include "target.h" | |
28d069e6 | 41 | #include "arch-utils.h" |
4e052eda | 42 | #include "regcache.h" |
70f80edf | 43 | #include "osabi.h" |
d1973055 | 44 | #include "mips-tdep.h" |
fe898f56 | 45 | #include "block.h" |
a4b8ebc8 | 46 | #include "reggroups.h" |
c906108c | 47 | #include "opcode/mips.h" |
c2d11a7d JM |
48 | #include "elf/mips.h" |
49 | #include "elf-bfd.h" | |
2475bac3 | 50 | #include "symcat.h" |
a4b8ebc8 | 51 | #include "sim-regno.h" |
a89aa300 | 52 | #include "dis-asm.h" |
edfae063 AC |
53 | #include "frame-unwind.h" |
54 | #include "frame-base.h" | |
55 | #include "trad-frame.h" | |
7d9b040b | 56 | #include "infcall.h" |
c906108c | 57 | |
8d5f9dcb DJ |
58 | static const struct objfile_data *mips_pdr_data; |
59 | ||
e0f7ec59 | 60 | static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off); |
5bbcb741 | 61 | static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum); |
e0f7ec59 | 62 | |
dd824b04 DJ |
63 | /* A useful bit in the CP0 status register (PS_REGNUM). */ |
64 | /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */ | |
65 | #define ST0_FR (1 << 26) | |
66 | ||
b0069a17 AC |
67 | /* The sizes of floating point registers. */ |
68 | ||
69 | enum | |
70 | { | |
71 | MIPS_FPU_SINGLE_REGSIZE = 4, | |
72 | MIPS_FPU_DOUBLE_REGSIZE = 8 | |
73 | }; | |
74 | ||
0dadbba0 | 75 | |
2e4ebe70 DJ |
76 | static const char *mips_abi_string; |
77 | ||
78 | static const char *mips_abi_strings[] = { | |
79 | "auto", | |
80 | "n32", | |
81 | "o32", | |
28d169de | 82 | "n64", |
2e4ebe70 DJ |
83 | "o64", |
84 | "eabi32", | |
85 | "eabi64", | |
86 | NULL | |
87 | }; | |
88 | ||
cce74817 | 89 | struct frame_extra_info |
6d82d43b AC |
90 | { |
91 | mips_extra_func_info_t proc_desc; | |
92 | int num_args; | |
93 | }; | |
cce74817 | 94 | |
d929b26f AC |
95 | /* Various MIPS ISA options (related to stack analysis) can be |
96 | overridden dynamically. Establish an enum/array for managing | |
97 | them. */ | |
98 | ||
53904c9e AC |
99 | static const char size_auto[] = "auto"; |
100 | static const char size_32[] = "32"; | |
101 | static const char size_64[] = "64"; | |
d929b26f | 102 | |
53904c9e | 103 | static const char *size_enums[] = { |
d929b26f AC |
104 | size_auto, |
105 | size_32, | |
106 | size_64, | |
a5ea2558 AC |
107 | 0 |
108 | }; | |
109 | ||
7a292a7a | 110 | /* Some MIPS boards don't support floating point while others only |
ceae6e75 | 111 | support single-precision floating-point operations. */ |
c906108c SS |
112 | |
113 | enum mips_fpu_type | |
6d82d43b AC |
114 | { |
115 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
116 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
117 | MIPS_FPU_NONE /* No floating point. */ | |
118 | }; | |
c906108c SS |
119 | |
120 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
121 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
122 | #endif | |
123 | static int mips_fpu_type_auto = 1; | |
124 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
7a292a7a | 125 | |
9ace0497 | 126 | static int mips_debug = 0; |
7a292a7a | 127 | |
c2d11a7d JM |
128 | /* MIPS specific per-architecture information */ |
129 | struct gdbarch_tdep | |
6d82d43b AC |
130 | { |
131 | /* from the elf header */ | |
132 | int elf_flags; | |
133 | ||
134 | /* mips options */ | |
135 | enum mips_abi mips_abi; | |
136 | enum mips_abi found_abi; | |
137 | enum mips_fpu_type mips_fpu_type; | |
138 | int mips_last_arg_regnum; | |
139 | int mips_last_fp_arg_regnum; | |
6d82d43b AC |
140 | int default_mask_address_p; |
141 | /* Is the target using 64-bit raw integer registers but only | |
142 | storing a left-aligned 32-bit value in each? */ | |
143 | int mips64_transfers_32bit_regs_p; | |
144 | /* Indexes for various registers. IRIX and embedded have | |
145 | different values. This contains the "public" fields. Don't | |
146 | add any that do not need to be public. */ | |
147 | const struct mips_regnum *regnum; | |
148 | /* Register names table for the current register set. */ | |
149 | const char **mips_processor_reg_names; | |
150 | }; | |
c2d11a7d | 151 | |
56cea623 AC |
152 | const struct mips_regnum * |
153 | mips_regnum (struct gdbarch *gdbarch) | |
154 | { | |
155 | return gdbarch_tdep (gdbarch)->regnum; | |
156 | } | |
157 | ||
158 | static int | |
159 | mips_fpa0_regnum (struct gdbarch *gdbarch) | |
160 | { | |
161 | return mips_regnum (gdbarch)->fp0 + 12; | |
162 | } | |
163 | ||
0dadbba0 | 164 | #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \ |
216a600b | 165 | || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64) |
c2d11a7d | 166 | |
c2d11a7d | 167 | #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum) |
c2d11a7d | 168 | |
c2d11a7d | 169 | #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum) |
c2d11a7d | 170 | |
c2d11a7d | 171 | #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type) |
c2d11a7d | 172 | |
95404a3e AC |
173 | /* MIPS16 function addresses are odd (bit 0 is set). Here are some |
174 | functions to test, set, or clear bit 0 of addresses. */ | |
175 | ||
176 | static CORE_ADDR | |
177 | is_mips16_addr (CORE_ADDR addr) | |
178 | { | |
179 | return ((addr) & 1); | |
180 | } | |
181 | ||
182 | static CORE_ADDR | |
183 | make_mips16_addr (CORE_ADDR addr) | |
184 | { | |
185 | return ((addr) | 1); | |
186 | } | |
187 | ||
188 | static CORE_ADDR | |
189 | unmake_mips16_addr (CORE_ADDR addr) | |
190 | { | |
191 | return ((addr) & ~1); | |
192 | } | |
193 | ||
22540ece AC |
194 | /* Return the contents of register REGNUM as a signed integer. */ |
195 | ||
196 | static LONGEST | |
197 | read_signed_register (int regnum) | |
198 | { | |
719ec221 | 199 | void *buf = alloca (register_size (current_gdbarch, regnum)); |
22540ece | 200 | deprecated_read_register_gen (regnum, buf); |
6d82d43b AC |
201 | return (extract_signed_integer |
202 | (buf, register_size (current_gdbarch, regnum))); | |
22540ece AC |
203 | } |
204 | ||
205 | static LONGEST | |
206 | read_signed_register_pid (int regnum, ptid_t ptid) | |
207 | { | |
208 | ptid_t save_ptid; | |
209 | LONGEST retval; | |
210 | ||
211 | if (ptid_equal (ptid, inferior_ptid)) | |
212 | return read_signed_register (regnum); | |
213 | ||
214 | save_ptid = inferior_ptid; | |
215 | ||
216 | inferior_ptid = ptid; | |
217 | ||
218 | retval = read_signed_register (regnum); | |
219 | ||
220 | inferior_ptid = save_ptid; | |
221 | ||
222 | return retval; | |
223 | } | |
224 | ||
d1973055 KB |
225 | /* Return the MIPS ABI associated with GDBARCH. */ |
226 | enum mips_abi | |
227 | mips_abi (struct gdbarch *gdbarch) | |
228 | { | |
229 | return gdbarch_tdep (gdbarch)->mips_abi; | |
230 | } | |
231 | ||
4246e332 | 232 | int |
1b13c4f6 | 233 | mips_isa_regsize (struct gdbarch *gdbarch) |
4246e332 AC |
234 | { |
235 | return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word | |
236 | / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte); | |
237 | } | |
238 | ||
480d3dd2 AC |
239 | /* Return the currently configured (or set) saved register size. */ |
240 | ||
1b13c4f6 | 241 | static const char *mips_abi_regsize_string = size_auto; |
480d3dd2 | 242 | |
d929b26f | 243 | static unsigned int |
13326b4e | 244 | mips_abi_regsize (struct gdbarch *gdbarch) |
d929b26f | 245 | { |
1b13c4f6 | 246 | if (mips_abi_regsize_string == size_auto) |
13326b4e AC |
247 | switch (mips_abi (gdbarch)) |
248 | { | |
249 | case MIPS_ABI_EABI32: | |
250 | case MIPS_ABI_O32: | |
251 | return 4; | |
252 | case MIPS_ABI_N32: | |
253 | case MIPS_ABI_N64: | |
254 | case MIPS_ABI_O64: | |
255 | case MIPS_ABI_EABI64: | |
256 | return 8; | |
257 | case MIPS_ABI_UNKNOWN: | |
258 | case MIPS_ABI_LAST: | |
259 | default: | |
260 | internal_error (__FILE__, __LINE__, "bad switch"); | |
261 | } | |
1b13c4f6 | 262 | else if (mips_abi_regsize_string == size_64) |
d929b26f | 263 | return 8; |
1b13c4f6 | 264 | else /* if (mips_abi_regsize_string == size_32) */ |
d929b26f AC |
265 | return 4; |
266 | } | |
267 | ||
71b8ef93 | 268 | /* Functions for setting and testing a bit in a minimal symbol that |
5a89d8aa | 269 | marks it as 16-bit function. The MSB of the minimal symbol's |
f594e5e9 | 270 | "info" field is used for this purpose. |
5a89d8aa MS |
271 | |
272 | ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special", | |
273 | i.e. refers to a 16-bit function, and sets a "special" bit in a | |
274 | minimal symbol to mark it as a 16-bit function | |
275 | ||
f594e5e9 | 276 | MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */ |
5a89d8aa | 277 | |
5a89d8aa | 278 | static void |
6d82d43b AC |
279 | mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym) |
280 | { | |
281 | if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16) | |
282 | { | |
283 | MSYMBOL_INFO (msym) = (char *) | |
284 | (((long) MSYMBOL_INFO (msym)) | 0x80000000); | |
285 | SYMBOL_VALUE_ADDRESS (msym) |= 1; | |
286 | } | |
5a89d8aa MS |
287 | } |
288 | ||
71b8ef93 MS |
289 | static int |
290 | msymbol_is_special (struct minimal_symbol *msym) | |
291 | { | |
292 | return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0); | |
293 | } | |
294 | ||
88658117 AC |
295 | /* XFER a value from the big/little/left end of the register. |
296 | Depending on the size of the value it might occupy the entire | |
297 | register or just part of it. Make an allowance for this, aligning | |
298 | things accordingly. */ | |
299 | ||
300 | static void | |
301 | mips_xfer_register (struct regcache *regcache, int reg_num, int length, | |
6d82d43b AC |
302 | enum bfd_endian endian, bfd_byte * in, |
303 | const bfd_byte * out, int buf_offset) | |
88658117 | 304 | { |
88658117 | 305 | int reg_offset = 0; |
a4b8ebc8 | 306 | gdb_assert (reg_num >= NUM_REGS); |
cb1d2653 AC |
307 | /* Need to transfer the left or right part of the register, based on |
308 | the targets byte order. */ | |
88658117 AC |
309 | switch (endian) |
310 | { | |
311 | case BFD_ENDIAN_BIG: | |
719ec221 | 312 | reg_offset = register_size (current_gdbarch, reg_num) - length; |
88658117 AC |
313 | break; |
314 | case BFD_ENDIAN_LITTLE: | |
315 | reg_offset = 0; | |
316 | break; | |
6d82d43b | 317 | case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */ |
88658117 AC |
318 | reg_offset = 0; |
319 | break; | |
320 | default: | |
321 | internal_error (__FILE__, __LINE__, "bad switch"); | |
322 | } | |
323 | if (mips_debug) | |
cb1d2653 AC |
324 | fprintf_unfiltered (gdb_stderr, |
325 | "xfer $%d, reg offset %d, buf offset %d, length %d, ", | |
326 | reg_num, reg_offset, buf_offset, length); | |
88658117 AC |
327 | if (mips_debug && out != NULL) |
328 | { | |
329 | int i; | |
cb1d2653 | 330 | fprintf_unfiltered (gdb_stdlog, "out "); |
88658117 | 331 | for (i = 0; i < length; i++) |
cb1d2653 | 332 | fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]); |
88658117 AC |
333 | } |
334 | if (in != NULL) | |
6d82d43b AC |
335 | regcache_cooked_read_part (regcache, reg_num, reg_offset, length, |
336 | in + buf_offset); | |
88658117 | 337 | if (out != NULL) |
6d82d43b AC |
338 | regcache_cooked_write_part (regcache, reg_num, reg_offset, length, |
339 | out + buf_offset); | |
88658117 AC |
340 | if (mips_debug && in != NULL) |
341 | { | |
342 | int i; | |
cb1d2653 | 343 | fprintf_unfiltered (gdb_stdlog, "in "); |
88658117 | 344 | for (i = 0; i < length; i++) |
cb1d2653 | 345 | fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]); |
88658117 AC |
346 | } |
347 | if (mips_debug) | |
348 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
349 | } | |
350 | ||
dd824b04 DJ |
351 | /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU |
352 | compatiblity mode. A return value of 1 means that we have | |
353 | physical 64-bit registers, but should treat them as 32-bit registers. */ | |
354 | ||
355 | static int | |
356 | mips2_fp_compat (void) | |
357 | { | |
358 | /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not | |
359 | meaningful. */ | |
6d82d43b AC |
360 | if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == |
361 | 4) | |
dd824b04 DJ |
362 | return 0; |
363 | ||
364 | #if 0 | |
365 | /* FIXME drow 2002-03-10: This is disabled until we can do it consistently, | |
366 | in all the places we deal with FP registers. PR gdb/413. */ | |
367 | /* Otherwise check the FR bit in the status register - it controls | |
368 | the FP compatiblity mode. If it is clear we are in compatibility | |
369 | mode. */ | |
370 | if ((read_register (PS_REGNUM) & ST0_FR) == 0) | |
371 | return 1; | |
372 | #endif | |
361d1df0 | 373 | |
dd824b04 DJ |
374 | return 0; |
375 | } | |
376 | ||
d929b26f | 377 | /* The amount of space reserved on the stack for registers. This is |
1b13c4f6 | 378 | different to MIPS_ABI_REGSIZE as it determines the alignment of |
d929b26f AC |
379 | data allocated after the registers have run out. */ |
380 | ||
53904c9e | 381 | static const char *mips_stack_argsize_string = size_auto; |
d929b26f AC |
382 | |
383 | static unsigned int | |
13326b4e | 384 | mips_stack_argsize (struct gdbarch *gdbarch) |
d929b26f AC |
385 | { |
386 | if (mips_stack_argsize_string == size_auto) | |
13326b4e | 387 | return mips_abi_regsize (gdbarch); |
d929b26f AC |
388 | else if (mips_stack_argsize_string == size_64) |
389 | return 8; | |
6d82d43b | 390 | else /* if (mips_stack_argsize_string == size_32) */ |
d929b26f AC |
391 | return 4; |
392 | } | |
393 | ||
7a292a7a | 394 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
c906108c | 395 | |
570b8f7c AC |
396 | static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR, |
397 | struct frame_info *, int); | |
c906108c | 398 | |
a14ed312 | 399 | static CORE_ADDR heuristic_proc_start (CORE_ADDR); |
c906108c | 400 | |
a14ed312 | 401 | static CORE_ADDR read_next_frame_reg (struct frame_info *, int); |
c906108c | 402 | |
a14ed312 | 403 | static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *); |
c906108c | 404 | |
570b8f7c AC |
405 | static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc, |
406 | struct frame_info *next_frame, | |
407 | int cur_frame); | |
c906108c | 408 | |
a14ed312 KB |
409 | static CORE_ADDR after_prologue (CORE_ADDR pc, |
410 | mips_extra_func_info_t proc_desc); | |
c906108c | 411 | |
67b2c998 DJ |
412 | static struct type *mips_float_register_type (void); |
413 | static struct type *mips_double_register_type (void); | |
414 | ||
acdb74a0 AC |
415 | /* The list of available "set mips " and "show mips " commands */ |
416 | ||
417 | static struct cmd_list_element *setmipscmdlist = NULL; | |
418 | static struct cmd_list_element *showmipscmdlist = NULL; | |
419 | ||
5e2e9765 KB |
420 | /* Integer registers 0 thru 31 are handled explicitly by |
421 | mips_register_name(). Processor specific registers 32 and above | |
691c0433 AC |
422 | are listed in the followign tables. */ |
423 | ||
6d82d43b AC |
424 | enum |
425 | { NUM_MIPS_PROCESSOR_REGS = (90 - 32) }; | |
691c0433 AC |
426 | |
427 | /* Generic MIPS. */ | |
428 | ||
429 | static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
430 | "sr", "lo", "hi", "bad", "cause", "pc", |
431 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
432 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
433 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
434 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
435 | "fsr", "fir", "" /*"fp" */ , "", | |
436 | "", "", "", "", "", "", "", "", | |
437 | "", "", "", "", "", "", "", "", | |
691c0433 AC |
438 | }; |
439 | ||
440 | /* Names of IDT R3041 registers. */ | |
441 | ||
442 | static const char *mips_r3041_reg_names[] = { | |
6d82d43b AC |
443 | "sr", "lo", "hi", "bad", "cause", "pc", |
444 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
445 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
446 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
447 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
448 | "fsr", "fir", "", /*"fp" */ "", | |
449 | "", "", "bus", "ccfg", "", "", "", "", | |
450 | "", "", "port", "cmp", "", "", "epc", "prid", | |
691c0433 AC |
451 | }; |
452 | ||
453 | /* Names of tx39 registers. */ | |
454 | ||
455 | static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
456 | "sr", "lo", "hi", "bad", "cause", "pc", |
457 | "", "", "", "", "", "", "", "", | |
458 | "", "", "", "", "", "", "", "", | |
459 | "", "", "", "", "", "", "", "", | |
460 | "", "", "", "", "", "", "", "", | |
461 | "", "", "", "", | |
462 | "", "", "", "", "", "", "", "", | |
463 | "", "", "config", "cache", "debug", "depc", "epc", "" | |
691c0433 AC |
464 | }; |
465 | ||
466 | /* Names of IRIX registers. */ | |
467 | static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = { | |
6d82d43b AC |
468 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", |
469 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
470 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
471 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
472 | "pc", "cause", "bad", "hi", "lo", "fsr", "fir" | |
691c0433 AC |
473 | }; |
474 | ||
cce74817 | 475 | |
5e2e9765 | 476 | /* Return the name of the register corresponding to REGNO. */ |
5a89d8aa | 477 | static const char * |
5e2e9765 | 478 | mips_register_name (int regno) |
cce74817 | 479 | { |
691c0433 | 480 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
5e2e9765 KB |
481 | /* GPR names for all ABIs other than n32/n64. */ |
482 | static char *mips_gpr_names[] = { | |
6d82d43b AC |
483 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
484 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
485 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
486 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
5e2e9765 KB |
487 | }; |
488 | ||
489 | /* GPR names for n32 and n64 ABIs. */ | |
490 | static char *mips_n32_n64_gpr_names[] = { | |
6d82d43b AC |
491 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
492 | "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", | |
493 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
494 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" | |
5e2e9765 KB |
495 | }; |
496 | ||
497 | enum mips_abi abi = mips_abi (current_gdbarch); | |
498 | ||
a4b8ebc8 AC |
499 | /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then |
500 | don't make the raw register names visible. */ | |
501 | int rawnum = regno % NUM_REGS; | |
502 | if (regno < NUM_REGS) | |
503 | return ""; | |
504 | ||
5e2e9765 KB |
505 | /* The MIPS integer registers are always mapped from 0 to 31. The |
506 | names of the registers (which reflects the conventions regarding | |
507 | register use) vary depending on the ABI. */ | |
a4b8ebc8 | 508 | if (0 <= rawnum && rawnum < 32) |
5e2e9765 KB |
509 | { |
510 | if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64) | |
a4b8ebc8 | 511 | return mips_n32_n64_gpr_names[rawnum]; |
5e2e9765 | 512 | else |
a4b8ebc8 | 513 | return mips_gpr_names[rawnum]; |
5e2e9765 | 514 | } |
a4b8ebc8 | 515 | else if (32 <= rawnum && rawnum < NUM_REGS) |
691c0433 AC |
516 | { |
517 | gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS); | |
518 | return tdep->mips_processor_reg_names[rawnum - 32]; | |
519 | } | |
5e2e9765 KB |
520 | else |
521 | internal_error (__FILE__, __LINE__, | |
a4b8ebc8 | 522 | "mips_register_name: bad register number %d", rawnum); |
cce74817 | 523 | } |
5e2e9765 | 524 | |
a4b8ebc8 | 525 | /* Return the groups that a MIPS register can be categorised into. */ |
c5aa993b | 526 | |
a4b8ebc8 AC |
527 | static int |
528 | mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
529 | struct reggroup *reggroup) | |
530 | { | |
531 | int vector_p; | |
532 | int float_p; | |
533 | int raw_p; | |
534 | int rawnum = regnum % NUM_REGS; | |
535 | int pseudo = regnum / NUM_REGS; | |
536 | if (reggroup == all_reggroup) | |
537 | return pseudo; | |
538 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
539 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
540 | /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs | |
541 | (gdbarch), as not all architectures are multi-arch. */ | |
542 | raw_p = rawnum < NUM_REGS; | |
6d82d43b | 543 | if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0') |
a4b8ebc8 AC |
544 | return 0; |
545 | if (reggroup == float_reggroup) | |
546 | return float_p && pseudo; | |
547 | if (reggroup == vector_reggroup) | |
548 | return vector_p && pseudo; | |
549 | if (reggroup == general_reggroup) | |
550 | return (!vector_p && !float_p) && pseudo; | |
551 | /* Save the pseudo registers. Need to make certain that any code | |
552 | extracting register values from a saved register cache also uses | |
553 | pseudo registers. */ | |
554 | if (reggroup == save_reggroup) | |
555 | return raw_p && pseudo; | |
556 | /* Restore the same pseudo register. */ | |
557 | if (reggroup == restore_reggroup) | |
558 | return raw_p && pseudo; | |
6d82d43b | 559 | return 0; |
a4b8ebc8 AC |
560 | } |
561 | ||
562 | /* Map the symbol table registers which live in the range [1 * | |
563 | NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw | |
47ebcfbe | 564 | registers. Take care of alignment and size problems. */ |
c5aa993b | 565 | |
a4b8ebc8 AC |
566 | static void |
567 | mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
568 | int cookednum, void *buf) | |
569 | { | |
47ebcfbe | 570 | int rawnum = cookednum % NUM_REGS; |
a4b8ebc8 | 571 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); |
47ebcfbe | 572 | if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum)) |
de38af99 | 573 | regcache_raw_read (regcache, rawnum, buf); |
6d82d43b AC |
574 | else if (register_size (gdbarch, rawnum) > |
575 | register_size (gdbarch, cookednum)) | |
47ebcfbe AC |
576 | { |
577 | if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p | |
578 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) | |
579 | regcache_raw_read_part (regcache, rawnum, 0, 4, buf); | |
580 | else | |
581 | regcache_raw_read_part (regcache, rawnum, 4, 4, buf); | |
582 | } | |
583 | else | |
584 | internal_error (__FILE__, __LINE__, "bad register size"); | |
a4b8ebc8 AC |
585 | } |
586 | ||
587 | static void | |
6d82d43b AC |
588 | mips_pseudo_register_write (struct gdbarch *gdbarch, |
589 | struct regcache *regcache, int cookednum, | |
590 | const void *buf) | |
a4b8ebc8 | 591 | { |
47ebcfbe | 592 | int rawnum = cookednum % NUM_REGS; |
a4b8ebc8 | 593 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); |
47ebcfbe | 594 | if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum)) |
de38af99 | 595 | regcache_raw_write (regcache, rawnum, buf); |
6d82d43b AC |
596 | else if (register_size (gdbarch, rawnum) > |
597 | register_size (gdbarch, cookednum)) | |
47ebcfbe AC |
598 | { |
599 | if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p | |
600 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) | |
601 | regcache_raw_write_part (regcache, rawnum, 0, 4, buf); | |
602 | else | |
603 | regcache_raw_write_part (regcache, rawnum, 4, 4, buf); | |
604 | } | |
605 | else | |
606 | internal_error (__FILE__, __LINE__, "bad register size"); | |
a4b8ebc8 | 607 | } |
c5aa993b | 608 | |
c906108c | 609 | /* Table to translate MIPS16 register field to actual register number. */ |
6d82d43b | 610 | static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; |
c906108c SS |
611 | |
612 | /* Heuristic_proc_start may hunt through the text section for a long | |
613 | time across a 2400 baud serial line. Allows the user to limit this | |
614 | search. */ | |
615 | ||
616 | static unsigned int heuristic_fence_post = 0; | |
617 | ||
c5aa993b JM |
618 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
619 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
c906108c SS |
620 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
621 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
622 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
623 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
624 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
625 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
626 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
627 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
6c0d6680 DJ |
628 | /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long, |
629 | this will corrupt pdr.iline. Fortunately we don't use it. */ | |
c906108c SS |
630 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) |
631 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
632 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) | |
633 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
634 | ||
635 | struct linked_proc_info | |
6d82d43b AC |
636 | { |
637 | struct mips_extra_func_info info; | |
638 | struct linked_proc_info *next; | |
639 | } | |
c5aa993b | 640 | *linked_proc_desc_table = NULL; |
c906108c | 641 | |
46cd78fb | 642 | /* Number of bytes of storage in the actual machine representation for |
719ec221 AC |
643 | register N. NOTE: This defines the pseudo register type so need to |
644 | rebuild the architecture vector. */ | |
43e526b9 JM |
645 | |
646 | static int mips64_transfers_32bit_regs_p = 0; | |
647 | ||
719ec221 AC |
648 | static void |
649 | set_mips64_transfers_32bit_regs (char *args, int from_tty, | |
650 | struct cmd_list_element *c) | |
43e526b9 | 651 | { |
719ec221 AC |
652 | struct gdbarch_info info; |
653 | gdbarch_info_init (&info); | |
654 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" | |
655 | instead of relying on globals. Doing that would let generic code | |
656 | handle the search for this specific architecture. */ | |
657 | if (!gdbarch_update_p (info)) | |
a4b8ebc8 | 658 | { |
719ec221 AC |
659 | mips64_transfers_32bit_regs_p = 0; |
660 | error ("32-bit compatibility mode not supported"); | |
a4b8ebc8 | 661 | } |
a4b8ebc8 AC |
662 | } |
663 | ||
47ebcfbe | 664 | /* Convert to/from a register and the corresponding memory value. */ |
43e526b9 | 665 | |
ff2e87ac AC |
666 | static int |
667 | mips_convert_register_p (int regnum, struct type *type) | |
668 | { | |
669 | return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
719ec221 | 670 | && register_size (current_gdbarch, regnum) == 4 |
87783b8b AC |
671 | && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0 |
672 | && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32 | |
6d82d43b | 673 | && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8); |
ff2e87ac AC |
674 | } |
675 | ||
42c466d7 | 676 | static void |
ff2e87ac AC |
677 | mips_register_to_value (struct frame_info *frame, int regnum, |
678 | struct type *type, void *to) | |
102182a9 | 679 | { |
7f5f525d AC |
680 | get_frame_register (frame, regnum + 0, (char *) to + 4); |
681 | get_frame_register (frame, regnum + 1, (char *) to + 0); | |
102182a9 MS |
682 | } |
683 | ||
42c466d7 | 684 | static void |
ff2e87ac AC |
685 | mips_value_to_register (struct frame_info *frame, int regnum, |
686 | struct type *type, const void *from) | |
102182a9 | 687 | { |
ff2e87ac AC |
688 | put_frame_register (frame, regnum + 0, (const char *) from + 4); |
689 | put_frame_register (frame, regnum + 1, (const char *) from + 0); | |
102182a9 MS |
690 | } |
691 | ||
a4b8ebc8 AC |
692 | /* Return the GDB type object for the "standard" data type of data in |
693 | register REG. */ | |
78fde5f8 KB |
694 | |
695 | static struct type * | |
a4b8ebc8 AC |
696 | mips_register_type (struct gdbarch *gdbarch, int regnum) |
697 | { | |
5ef80fb0 | 698 | gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS); |
56cea623 AC |
699 | if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0 |
700 | && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32) | |
a6425924 | 701 | { |
5ef80fb0 | 702 | /* The floating-point registers raw, or cooked, always match |
1b13c4f6 | 703 | mips_isa_regsize(), and also map 1:1, byte for byte. */ |
5ef80fb0 AC |
704 | switch (gdbarch_byte_order (gdbarch)) |
705 | { | |
706 | case BFD_ENDIAN_BIG: | |
1b13c4f6 | 707 | if (mips_isa_regsize (gdbarch) == 4) |
5ef80fb0 AC |
708 | return builtin_type_ieee_single_big; |
709 | else | |
710 | return builtin_type_ieee_double_big; | |
711 | case BFD_ENDIAN_LITTLE: | |
1b13c4f6 | 712 | if (mips_isa_regsize (gdbarch) == 4) |
5ef80fb0 AC |
713 | return builtin_type_ieee_single_little; |
714 | else | |
715 | return builtin_type_ieee_double_little; | |
716 | case BFD_ENDIAN_UNKNOWN: | |
717 | default: | |
718 | internal_error (__FILE__, __LINE__, "bad switch"); | |
719 | } | |
a6425924 | 720 | } |
d5ac5a39 AC |
721 | else if (regnum < NUM_REGS) |
722 | { | |
723 | /* The raw or ISA registers. These are all sized according to | |
724 | the ISA regsize. */ | |
725 | if (mips_isa_regsize (gdbarch) == 4) | |
726 | return builtin_type_int32; | |
727 | else | |
728 | return builtin_type_int64; | |
729 | } | |
78fde5f8 | 730 | else |
d5ac5a39 AC |
731 | { |
732 | /* The cooked or ABI registers. These are sized according to | |
733 | the ABI (with a few complications). */ | |
734 | if (regnum >= (NUM_REGS | |
735 | + mips_regnum (current_gdbarch)->fp_control_status) | |
736 | && regnum <= NUM_REGS + LAST_EMBED_REGNUM) | |
737 | /* The pseudo/cooked view of the embedded registers is always | |
738 | 32-bit. The raw view is handled below. */ | |
739 | return builtin_type_int32; | |
740 | else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p) | |
741 | /* The target, while possibly using a 64-bit register buffer, | |
742 | is only transfering 32-bits of each integer register. | |
743 | Reflect this in the cooked/pseudo (ABI) register value. */ | |
744 | return builtin_type_int32; | |
745 | else if (mips_abi_regsize (gdbarch) == 4) | |
746 | /* The ABI is restricted to 32-bit registers (the ISA could be | |
747 | 32- or 64-bit). */ | |
748 | return builtin_type_int32; | |
749 | else | |
750 | /* 64-bit ABI. */ | |
751 | return builtin_type_int64; | |
752 | } | |
78fde5f8 KB |
753 | } |
754 | ||
bcb0cc15 MS |
755 | /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */ |
756 | ||
757 | static CORE_ADDR | |
758 | mips_read_sp (void) | |
759 | { | |
f10683bb | 760 | return read_signed_register (MIPS_SP_REGNUM); |
bcb0cc15 MS |
761 | } |
762 | ||
c906108c | 763 | /* Should the upper word of 64-bit addresses be zeroed? */ |
7f19b9a2 | 764 | enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO; |
4014092b AC |
765 | |
766 | static int | |
480d3dd2 | 767 | mips_mask_address_p (struct gdbarch_tdep *tdep) |
4014092b AC |
768 | { |
769 | switch (mask_address_var) | |
770 | { | |
7f19b9a2 | 771 | case AUTO_BOOLEAN_TRUE: |
4014092b | 772 | return 1; |
7f19b9a2 | 773 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
774 | return 0; |
775 | break; | |
7f19b9a2 | 776 | case AUTO_BOOLEAN_AUTO: |
480d3dd2 | 777 | return tdep->default_mask_address_p; |
4014092b | 778 | default: |
6d82d43b | 779 | internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch"); |
4014092b | 780 | return -1; |
361d1df0 | 781 | } |
4014092b AC |
782 | } |
783 | ||
784 | static void | |
e9e68a56 | 785 | show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c) |
4014092b | 786 | { |
480d3dd2 | 787 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
4014092b AC |
788 | switch (mask_address_var) |
789 | { | |
7f19b9a2 | 790 | case AUTO_BOOLEAN_TRUE: |
4014092b AC |
791 | printf_filtered ("The 32 bit mips address mask is enabled\n"); |
792 | break; | |
7f19b9a2 | 793 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
794 | printf_filtered ("The 32 bit mips address mask is disabled\n"); |
795 | break; | |
7f19b9a2 | 796 | case AUTO_BOOLEAN_AUTO: |
6d82d43b AC |
797 | printf_filtered |
798 | ("The 32 bit address mask is set automatically. Currently %s\n", | |
799 | mips_mask_address_p (tdep) ? "enabled" : "disabled"); | |
4014092b AC |
800 | break; |
801 | default: | |
6d82d43b | 802 | internal_error (__FILE__, __LINE__, "show_mask_address: bad switch"); |
4014092b | 803 | break; |
361d1df0 | 804 | } |
4014092b | 805 | } |
c906108c | 806 | |
c906108c SS |
807 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ |
808 | ||
809 | static int | |
810 | pc_is_mips16 (bfd_vma memaddr) | |
811 | { | |
812 | struct minimal_symbol *sym; | |
813 | ||
814 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
95404a3e | 815 | if (is_mips16_addr (memaddr)) |
c906108c SS |
816 | return 1; |
817 | ||
818 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
819 | the high bit of the info field. Use this to decide if the function is | |
820 | MIPS16 or normal MIPS. */ | |
821 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
822 | if (sym) | |
71b8ef93 | 823 | return msymbol_is_special (sym); |
c906108c SS |
824 | else |
825 | return 0; | |
826 | } | |
827 | ||
b2fa5097 | 828 | /* MIPS believes that the PC has a sign extended value. Perhaps the |
6c997a34 AC |
829 | all registers should be sign extended for simplicity? */ |
830 | ||
831 | static CORE_ADDR | |
39f77062 | 832 | mips_read_pc (ptid_t ptid) |
6c997a34 | 833 | { |
b6cb9035 AC |
834 | return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid); |
835 | } | |
836 | ||
58dfe9ff AC |
837 | static CORE_ADDR |
838 | mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
839 | { | |
edfae063 AC |
840 | return frame_unwind_register_signed (next_frame, |
841 | NUM_REGS + mips_regnum (gdbarch)->pc); | |
842 | } | |
843 | ||
844 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
845 | dummy frame. The frame ID's base needs to match the TOS value | |
846 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
847 | breakpoint. */ | |
848 | ||
849 | static struct frame_id | |
850 | mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
851 | { | |
f10683bb | 852 | return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM), |
edfae063 | 853 | frame_pc_unwind (next_frame)); |
58dfe9ff AC |
854 | } |
855 | ||
b6cb9035 AC |
856 | static void |
857 | mips_write_pc (CORE_ADDR pc, ptid_t ptid) | |
858 | { | |
859 | write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid); | |
6c997a34 | 860 | } |
c906108c SS |
861 | |
862 | /* This returns the PC of the first inst after the prologue. If we can't | |
863 | find the prologue, then return 0. */ | |
864 | ||
865 | static CORE_ADDR | |
6d82d43b | 866 | after_prologue (CORE_ADDR pc, mips_extra_func_info_t proc_desc) |
c906108c SS |
867 | { |
868 | struct symtab_and_line sal; | |
869 | CORE_ADDR func_addr, func_end; | |
870 | ||
479412cd DJ |
871 | /* Pass cur_frame == 0 to find_proc_desc. We should not attempt |
872 | to read the stack pointer from the current machine state, because | |
873 | the current machine state has nothing to do with the information | |
874 | we need from the proc_desc; and the process may or may not exist | |
875 | right now. */ | |
c906108c | 876 | if (!proc_desc) |
479412cd | 877 | proc_desc = find_proc_desc (pc, NULL, 0); |
c906108c SS |
878 | |
879 | if (proc_desc) | |
880 | { | |
881 | /* If function is frameless, then we need to do it the hard way. I | |
c5aa993b | 882 | strongly suspect that frameless always means prologueless... */ |
f10683bb | 883 | if (PROC_FRAME_REG (proc_desc) == MIPS_SP_REGNUM |
c906108c SS |
884 | && PROC_FRAME_OFFSET (proc_desc) == 0) |
885 | return 0; | |
886 | } | |
887 | ||
888 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
889 | return 0; /* Unknown */ | |
890 | ||
891 | sal = find_pc_line (func_addr, 0); | |
892 | ||
893 | if (sal.end < func_end) | |
894 | return sal.end; | |
895 | ||
896 | /* The line after the prologue is after the end of the function. In this | |
897 | case, tell the caller to find the prologue the hard way. */ | |
898 | ||
899 | return 0; | |
900 | } | |
901 | ||
902 | /* Decode a MIPS32 instruction that saves a register in the stack, and | |
903 | set the appropriate bit in the general register mask or float register mask | |
904 | to indicate which register is saved. This is a helper function | |
905 | for mips_find_saved_regs. */ | |
906 | ||
907 | static void | |
acdb74a0 AC |
908 | mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask, |
909 | unsigned long *float_mask) | |
c906108c SS |
910 | { |
911 | int reg; | |
912 | ||
6d82d43b | 913 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ |
c906108c SS |
914 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ |
915 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
916 | { | |
917 | /* It might be possible to use the instruction to | |
c5aa993b JM |
918 | find the offset, rather than the code below which |
919 | is based on things being in a certain order in the | |
920 | frame, but figuring out what the instruction's offset | |
921 | is relative to might be a little tricky. */ | |
c906108c SS |
922 | reg = (inst & 0x001f0000) >> 16; |
923 | *gen_mask |= (1 << reg); | |
924 | } | |
925 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
6d82d43b | 926 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ |
c5aa993b | 927 | || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */ |
c906108c SS |
928 | |
929 | { | |
930 | reg = ((inst & 0x001f0000) >> 16); | |
931 | *float_mask |= (1 << reg); | |
932 | } | |
933 | } | |
934 | ||
935 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
936 | set the appropriate bit in the general register or float register mask | |
937 | to indicate which register is saved. This is a helper function | |
938 | for mips_find_saved_regs. */ | |
939 | ||
940 | static void | |
acdb74a0 | 941 | mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask) |
c906108c | 942 | { |
c5aa993b | 943 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
c906108c SS |
944 | { |
945 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
946 | *gen_mask |= (1 << reg); | |
947 | } | |
c5aa993b | 948 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ |
c906108c SS |
949 | { |
950 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
951 | *gen_mask |= (1 << reg); | |
952 | } | |
c5aa993b | 953 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ |
c906108c SS |
954 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
955 | *gen_mask |= (1 << RA_REGNUM); | |
956 | } | |
957 | ||
958 | ||
959 | /* Fetch and return instruction from the specified location. If the PC | |
960 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
961 | ||
962 | static t_inst | |
acdb74a0 | 963 | mips_fetch_instruction (CORE_ADDR addr) |
c906108c SS |
964 | { |
965 | char buf[MIPS_INSTLEN]; | |
966 | int instlen; | |
967 | int status; | |
968 | ||
969 | if (pc_is_mips16 (addr)) | |
970 | { | |
971 | instlen = MIPS16_INSTLEN; | |
95404a3e | 972 | addr = unmake_mips16_addr (addr); |
c906108c SS |
973 | } |
974 | else | |
c5aa993b | 975 | instlen = MIPS_INSTLEN; |
1f602b35 | 976 | status = deprecated_read_memory_nobpt (addr, buf, instlen); |
c906108c SS |
977 | if (status) |
978 | memory_error (status, addr); | |
979 | return extract_unsigned_integer (buf, instlen); | |
980 | } | |
981 | ||
edfae063 AC |
982 | static ULONGEST |
983 | mips16_fetch_instruction (CORE_ADDR addr) | |
984 | { | |
985 | char buf[MIPS_INSTLEN]; | |
986 | int instlen; | |
987 | int status; | |
988 | ||
989 | instlen = MIPS16_INSTLEN; | |
990 | addr = unmake_mips16_addr (addr); | |
1f602b35 | 991 | status = deprecated_read_memory_nobpt (addr, buf, instlen); |
edfae063 AC |
992 | if (status) |
993 | memory_error (status, addr); | |
994 | return extract_unsigned_integer (buf, instlen); | |
995 | } | |
996 | ||
997 | static ULONGEST | |
998 | mips32_fetch_instruction (CORE_ADDR addr) | |
999 | { | |
1000 | char buf[MIPS_INSTLEN]; | |
1001 | int instlen; | |
1002 | int status; | |
1003 | instlen = MIPS_INSTLEN; | |
1f602b35 | 1004 | status = deprecated_read_memory_nobpt (addr, buf, instlen); |
edfae063 AC |
1005 | if (status) |
1006 | memory_error (status, addr); | |
1007 | return extract_unsigned_integer (buf, instlen); | |
1008 | } | |
1009 | ||
c906108c SS |
1010 | |
1011 | /* These the fields of 32 bit mips instructions */ | |
e135b889 DJ |
1012 | #define mips32_op(x) (x >> 26) |
1013 | #define itype_op(x) (x >> 26) | |
1014 | #define itype_rs(x) ((x >> 21) & 0x1f) | |
c906108c | 1015 | #define itype_rt(x) ((x >> 16) & 0x1f) |
e135b889 | 1016 | #define itype_immediate(x) (x & 0xffff) |
c906108c | 1017 | |
e135b889 DJ |
1018 | #define jtype_op(x) (x >> 26) |
1019 | #define jtype_target(x) (x & 0x03ffffff) | |
c906108c | 1020 | |
e135b889 DJ |
1021 | #define rtype_op(x) (x >> 26) |
1022 | #define rtype_rs(x) ((x >> 21) & 0x1f) | |
1023 | #define rtype_rt(x) ((x >> 16) & 0x1f) | |
1024 | #define rtype_rd(x) ((x >> 11) & 0x1f) | |
1025 | #define rtype_shamt(x) ((x >> 6) & 0x1f) | |
1026 | #define rtype_funct(x) (x & 0x3f) | |
c906108c SS |
1027 | |
1028 | static CORE_ADDR | |
c5aa993b JM |
1029 | mips32_relative_offset (unsigned long inst) |
1030 | { | |
1031 | long x; | |
1032 | x = itype_immediate (inst); | |
1033 | if (x & 0x8000) /* sign bit set */ | |
c906108c | 1034 | { |
c5aa993b | 1035 | x |= 0xffff0000; /* sign extension */ |
c906108c | 1036 | } |
c5aa993b JM |
1037 | x = x << 2; |
1038 | return x; | |
c906108c SS |
1039 | } |
1040 | ||
1041 | /* Determine whate to set a single step breakpoint while considering | |
1042 | branch prediction */ | |
5a89d8aa | 1043 | static CORE_ADDR |
c5aa993b JM |
1044 | mips32_next_pc (CORE_ADDR pc) |
1045 | { | |
1046 | unsigned long inst; | |
1047 | int op; | |
1048 | inst = mips_fetch_instruction (pc); | |
e135b889 | 1049 | if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */ |
c5aa993b | 1050 | { |
e135b889 | 1051 | if (itype_op (inst) >> 2 == 5) |
6d82d43b | 1052 | /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */ |
c5aa993b | 1053 | { |
e135b889 | 1054 | op = (itype_op (inst) & 0x03); |
c906108c SS |
1055 | switch (op) |
1056 | { | |
e135b889 DJ |
1057 | case 0: /* BEQL */ |
1058 | goto equal_branch; | |
1059 | case 1: /* BNEL */ | |
1060 | goto neq_branch; | |
1061 | case 2: /* BLEZL */ | |
1062 | goto less_branch; | |
1063 | case 3: /* BGTZ */ | |
1064 | goto greater_branch; | |
c5aa993b JM |
1065 | default: |
1066 | pc += 4; | |
c906108c SS |
1067 | } |
1068 | } | |
e135b889 | 1069 | else if (itype_op (inst) == 17 && itype_rs (inst) == 8) |
6d82d43b | 1070 | /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */ |
e135b889 DJ |
1071 | { |
1072 | int tf = itype_rt (inst) & 0x01; | |
1073 | int cnum = itype_rt (inst) >> 2; | |
6d82d43b AC |
1074 | int fcrcs = |
1075 | read_signed_register (mips_regnum (current_gdbarch)-> | |
1076 | fp_control_status); | |
e135b889 DJ |
1077 | int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01); |
1078 | ||
1079 | if (((cond >> cnum) & 0x01) == tf) | |
1080 | pc += mips32_relative_offset (inst) + 4; | |
1081 | else | |
1082 | pc += 8; | |
1083 | } | |
c5aa993b JM |
1084 | else |
1085 | pc += 4; /* Not a branch, next instruction is easy */ | |
c906108c SS |
1086 | } |
1087 | else | |
c5aa993b JM |
1088 | { /* This gets way messy */ |
1089 | ||
c906108c | 1090 | /* Further subdivide into SPECIAL, REGIMM and other */ |
e135b889 | 1091 | switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */ |
c906108c | 1092 | { |
c5aa993b JM |
1093 | case 0: /* SPECIAL */ |
1094 | op = rtype_funct (inst); | |
1095 | switch (op) | |
1096 | { | |
1097 | case 8: /* JR */ | |
1098 | case 9: /* JALR */ | |
6c997a34 AC |
1099 | /* Set PC to that address */ |
1100 | pc = read_signed_register (rtype_rs (inst)); | |
c5aa993b JM |
1101 | break; |
1102 | default: | |
1103 | pc += 4; | |
1104 | } | |
1105 | ||
6d82d43b | 1106 | break; /* end SPECIAL */ |
c5aa993b | 1107 | case 1: /* REGIMM */ |
c906108c | 1108 | { |
e135b889 DJ |
1109 | op = itype_rt (inst); /* branch condition */ |
1110 | switch (op) | |
c906108c | 1111 | { |
c5aa993b | 1112 | case 0: /* BLTZ */ |
e135b889 DJ |
1113 | case 2: /* BLTZL */ |
1114 | case 16: /* BLTZAL */ | |
c5aa993b | 1115 | case 18: /* BLTZALL */ |
c906108c | 1116 | less_branch: |
6c997a34 | 1117 | if (read_signed_register (itype_rs (inst)) < 0) |
c5aa993b JM |
1118 | pc += mips32_relative_offset (inst) + 4; |
1119 | else | |
1120 | pc += 8; /* after the delay slot */ | |
1121 | break; | |
e135b889 | 1122 | case 1: /* BGEZ */ |
c5aa993b JM |
1123 | case 3: /* BGEZL */ |
1124 | case 17: /* BGEZAL */ | |
1125 | case 19: /* BGEZALL */ | |
6c997a34 | 1126 | if (read_signed_register (itype_rs (inst)) >= 0) |
c5aa993b JM |
1127 | pc += mips32_relative_offset (inst) + 4; |
1128 | else | |
1129 | pc += 8; /* after the delay slot */ | |
1130 | break; | |
e135b889 | 1131 | /* All of the other instructions in the REGIMM category */ |
c5aa993b JM |
1132 | default: |
1133 | pc += 4; | |
c906108c SS |
1134 | } |
1135 | } | |
6d82d43b | 1136 | break; /* end REGIMM */ |
c5aa993b JM |
1137 | case 2: /* J */ |
1138 | case 3: /* JAL */ | |
1139 | { | |
1140 | unsigned long reg; | |
1141 | reg = jtype_target (inst) << 2; | |
e135b889 | 1142 | /* Upper four bits get never changed... */ |
c5aa993b | 1143 | pc = reg + ((pc + 4) & 0xf0000000); |
c906108c | 1144 | } |
c5aa993b JM |
1145 | break; |
1146 | /* FIXME case JALX : */ | |
1147 | { | |
1148 | unsigned long reg; | |
1149 | reg = jtype_target (inst) << 2; | |
1150 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
c906108c SS |
1151 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ |
1152 | } | |
c5aa993b | 1153 | break; /* The new PC will be alternate mode */ |
e135b889 | 1154 | case 4: /* BEQ, BEQL */ |
c5aa993b | 1155 | equal_branch: |
6c997a34 AC |
1156 | if (read_signed_register (itype_rs (inst)) == |
1157 | read_signed_register (itype_rt (inst))) | |
c5aa993b JM |
1158 | pc += mips32_relative_offset (inst) + 4; |
1159 | else | |
1160 | pc += 8; | |
1161 | break; | |
e135b889 | 1162 | case 5: /* BNE, BNEL */ |
c5aa993b | 1163 | neq_branch: |
6c997a34 | 1164 | if (read_signed_register (itype_rs (inst)) != |
e135b889 | 1165 | read_signed_register (itype_rt (inst))) |
c5aa993b JM |
1166 | pc += mips32_relative_offset (inst) + 4; |
1167 | else | |
1168 | pc += 8; | |
1169 | break; | |
e135b889 | 1170 | case 6: /* BLEZ, BLEZL */ |
6c997a34 | 1171 | if (read_signed_register (itype_rs (inst) <= 0)) |
c5aa993b JM |
1172 | pc += mips32_relative_offset (inst) + 4; |
1173 | else | |
1174 | pc += 8; | |
1175 | break; | |
1176 | case 7: | |
e135b889 DJ |
1177 | default: |
1178 | greater_branch: /* BGTZ, BGTZL */ | |
6c997a34 | 1179 | if (read_signed_register (itype_rs (inst) > 0)) |
c5aa993b JM |
1180 | pc += mips32_relative_offset (inst) + 4; |
1181 | else | |
1182 | pc += 8; | |
1183 | break; | |
c5aa993b JM |
1184 | } /* switch */ |
1185 | } /* else */ | |
1186 | return pc; | |
1187 | } /* mips32_next_pc */ | |
c906108c SS |
1188 | |
1189 | /* Decoding the next place to set a breakpoint is irregular for the | |
e26cc349 | 1190 | mips 16 variant, but fortunately, there fewer instructions. We have to cope |
c906108c SS |
1191 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. |
1192 | We dont want to set a single step instruction on the extend instruction | |
1193 | either. | |
c5aa993b | 1194 | */ |
c906108c SS |
1195 | |
1196 | /* Lots of mips16 instruction formats */ | |
1197 | /* Predicting jumps requires itype,ritype,i8type | |
1198 | and their extensions extItype,extritype,extI8type | |
c5aa993b | 1199 | */ |
c906108c SS |
1200 | enum mips16_inst_fmts |
1201 | { | |
c5aa993b JM |
1202 | itype, /* 0 immediate 5,10 */ |
1203 | ritype, /* 1 5,3,8 */ | |
1204 | rrtype, /* 2 5,3,3,5 */ | |
1205 | rritype, /* 3 5,3,3,5 */ | |
1206 | rrrtype, /* 4 5,3,3,3,2 */ | |
1207 | rriatype, /* 5 5,3,3,1,4 */ | |
1208 | shifttype, /* 6 5,3,3,3,2 */ | |
1209 | i8type, /* 7 5,3,8 */ | |
1210 | i8movtype, /* 8 5,3,3,5 */ | |
1211 | i8mov32rtype, /* 9 5,3,5,3 */ | |
1212 | i64type, /* 10 5,3,8 */ | |
1213 | ri64type, /* 11 5,3,3,5 */ | |
1214 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
1215 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
1216 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
1217 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
1218 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
1219 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
1220 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
1221 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
1222 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
1223 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
1224 | }; | |
12f02c2a AC |
1225 | /* I am heaping all the fields of the formats into one structure and |
1226 | then, only the fields which are involved in instruction extension */ | |
c906108c | 1227 | struct upk_mips16 |
6d82d43b AC |
1228 | { |
1229 | CORE_ADDR offset; | |
1230 | unsigned int regx; /* Function in i8 type */ | |
1231 | unsigned int regy; | |
1232 | }; | |
c906108c SS |
1233 | |
1234 | ||
12f02c2a AC |
1235 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format |
1236 | for the bits which make up the immediatate extension. */ | |
c906108c | 1237 | |
12f02c2a AC |
1238 | static CORE_ADDR |
1239 | extended_offset (unsigned int extension) | |
c906108c | 1240 | { |
12f02c2a | 1241 | CORE_ADDR value; |
c5aa993b JM |
1242 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ |
1243 | value = value << 6; | |
1244 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
1245 | value = value << 5; | |
1246 | value |= extension & 0x01f; /* extract 4:0 */ | |
1247 | return value; | |
c906108c SS |
1248 | } |
1249 | ||
1250 | /* Only call this function if you know that this is an extendable | |
1251 | instruction, It wont malfunction, but why make excess remote memory references? | |
1252 | If the immediate operands get sign extended or somthing, do it after | |
1253 | the extension is performed. | |
c5aa993b | 1254 | */ |
c906108c SS |
1255 | /* FIXME: Every one of these cases needs to worry about sign extension |
1256 | when the offset is to be used in relative addressing */ | |
1257 | ||
1258 | ||
12f02c2a | 1259 | static unsigned int |
c5aa993b | 1260 | fetch_mips_16 (CORE_ADDR pc) |
c906108c | 1261 | { |
c5aa993b JM |
1262 | char buf[8]; |
1263 | pc &= 0xfffffffe; /* clear the low order bit */ | |
1264 | target_read_memory (pc, buf, 2); | |
1265 | return extract_unsigned_integer (buf, 2); | |
c906108c SS |
1266 | } |
1267 | ||
1268 | static void | |
c5aa993b | 1269 | unpack_mips16 (CORE_ADDR pc, |
12f02c2a AC |
1270 | unsigned int extension, |
1271 | unsigned int inst, | |
6d82d43b | 1272 | enum mips16_inst_fmts insn_format, struct upk_mips16 *upk) |
c906108c | 1273 | { |
12f02c2a AC |
1274 | CORE_ADDR offset; |
1275 | int regx; | |
1276 | int regy; | |
1277 | switch (insn_format) | |
c906108c | 1278 | { |
c5aa993b | 1279 | case itype: |
c906108c | 1280 | { |
12f02c2a AC |
1281 | CORE_ADDR value; |
1282 | if (extension) | |
c5aa993b JM |
1283 | { |
1284 | value = extended_offset (extension); | |
1285 | value = value << 11; /* rom for the original value */ | |
6d82d43b | 1286 | value |= inst & 0x7ff; /* eleven bits from instruction */ |
c906108c SS |
1287 | } |
1288 | else | |
c5aa993b | 1289 | { |
12f02c2a | 1290 | value = inst & 0x7ff; |
c5aa993b | 1291 | /* FIXME : Consider sign extension */ |
c906108c | 1292 | } |
12f02c2a AC |
1293 | offset = value; |
1294 | regx = -1; | |
1295 | regy = -1; | |
c906108c | 1296 | } |
c5aa993b JM |
1297 | break; |
1298 | case ritype: | |
1299 | case i8type: | |
1300 | { /* A register identifier and an offset */ | |
c906108c SS |
1301 | /* Most of the fields are the same as I type but the |
1302 | immediate value is of a different length */ | |
12f02c2a AC |
1303 | CORE_ADDR value; |
1304 | if (extension) | |
c906108c | 1305 | { |
c5aa993b JM |
1306 | value = extended_offset (extension); |
1307 | value = value << 8; /* from the original instruction */ | |
12f02c2a AC |
1308 | value |= inst & 0xff; /* eleven bits from instruction */ |
1309 | regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1310 | if (value & 0x4000) /* test the sign bit , bit 26 */ |
1311 | { | |
1312 | value &= ~0x3fff; /* remove the sign bit */ | |
1313 | value = -value; | |
c906108c SS |
1314 | } |
1315 | } | |
c5aa993b JM |
1316 | else |
1317 | { | |
12f02c2a AC |
1318 | value = inst & 0xff; /* 8 bits */ |
1319 | regx = (inst >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1320 | /* FIXME: Do sign extension , this format needs it */ |
1321 | if (value & 0x80) /* THIS CONFUSES ME */ | |
1322 | { | |
1323 | value &= 0xef; /* remove the sign bit */ | |
1324 | value = -value; | |
1325 | } | |
c5aa993b | 1326 | } |
12f02c2a AC |
1327 | offset = value; |
1328 | regy = -1; | |
c5aa993b | 1329 | break; |
c906108c | 1330 | } |
c5aa993b | 1331 | case jalxtype: |
c906108c | 1332 | { |
c5aa993b | 1333 | unsigned long value; |
12f02c2a AC |
1334 | unsigned int nexthalf; |
1335 | value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f); | |
c5aa993b JM |
1336 | value = value << 16; |
1337 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
1338 | value |= nexthalf; | |
12f02c2a AC |
1339 | offset = value; |
1340 | regx = -1; | |
1341 | regy = -1; | |
c5aa993b | 1342 | break; |
c906108c SS |
1343 | } |
1344 | default: | |
6d82d43b | 1345 | internal_error (__FILE__, __LINE__, "bad switch"); |
c906108c | 1346 | } |
12f02c2a AC |
1347 | upk->offset = offset; |
1348 | upk->regx = regx; | |
1349 | upk->regy = regy; | |
c906108c SS |
1350 | } |
1351 | ||
1352 | ||
c5aa993b JM |
1353 | static CORE_ADDR |
1354 | add_offset_16 (CORE_ADDR pc, int offset) | |
c906108c | 1355 | { |
c5aa993b | 1356 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); |
c906108c SS |
1357 | } |
1358 | ||
12f02c2a AC |
1359 | static CORE_ADDR |
1360 | extended_mips16_next_pc (CORE_ADDR pc, | |
6d82d43b | 1361 | unsigned int extension, unsigned int insn) |
c906108c | 1362 | { |
12f02c2a AC |
1363 | int op = (insn >> 11); |
1364 | switch (op) | |
c906108c | 1365 | { |
6d82d43b | 1366 | case 2: /* Branch */ |
12f02c2a AC |
1367 | { |
1368 | CORE_ADDR offset; | |
1369 | struct upk_mips16 upk; | |
1370 | unpack_mips16 (pc, extension, insn, itype, &upk); | |
1371 | offset = upk.offset; | |
1372 | if (offset & 0x800) | |
1373 | { | |
1374 | offset &= 0xeff; | |
1375 | offset = -offset; | |
1376 | } | |
1377 | pc += (offset << 1) + 2; | |
1378 | break; | |
1379 | } | |
6d82d43b | 1380 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ |
12f02c2a AC |
1381 | { |
1382 | struct upk_mips16 upk; | |
1383 | unpack_mips16 (pc, extension, insn, jalxtype, &upk); | |
1384 | pc = add_offset_16 (pc, upk.offset); | |
1385 | if ((insn >> 10) & 0x01) /* Exchange mode */ | |
1386 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
1387 | else | |
1388 | pc |= 0x01; | |
1389 | break; | |
1390 | } | |
6d82d43b | 1391 | case 4: /* beqz */ |
12f02c2a AC |
1392 | { |
1393 | struct upk_mips16 upk; | |
1394 | int reg; | |
1395 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1396 | reg = read_signed_register (upk.regx); | |
1397 | if (reg == 0) | |
1398 | pc += (upk.offset << 1) + 2; | |
1399 | else | |
1400 | pc += 2; | |
1401 | break; | |
1402 | } | |
6d82d43b | 1403 | case 5: /* bnez */ |
12f02c2a AC |
1404 | { |
1405 | struct upk_mips16 upk; | |
1406 | int reg; | |
1407 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1408 | reg = read_signed_register (upk.regx); | |
1409 | if (reg != 0) | |
1410 | pc += (upk.offset << 1) + 2; | |
1411 | else | |
1412 | pc += 2; | |
1413 | break; | |
1414 | } | |
6d82d43b | 1415 | case 12: /* I8 Formats btez btnez */ |
12f02c2a AC |
1416 | { |
1417 | struct upk_mips16 upk; | |
1418 | int reg; | |
1419 | unpack_mips16 (pc, extension, insn, i8type, &upk); | |
1420 | /* upk.regx contains the opcode */ | |
1421 | reg = read_signed_register (24); /* Test register is 24 */ | |
1422 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
1423 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
1424 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
1425 | pc += (upk.offset << 1) + 2; | |
1426 | else | |
1427 | pc += 2; | |
1428 | break; | |
1429 | } | |
6d82d43b | 1430 | case 29: /* RR Formats JR, JALR, JALR-RA */ |
12f02c2a AC |
1431 | { |
1432 | struct upk_mips16 upk; | |
1433 | /* upk.fmt = rrtype; */ | |
1434 | op = insn & 0x1f; | |
1435 | if (op == 0) | |
c5aa993b | 1436 | { |
12f02c2a AC |
1437 | int reg; |
1438 | upk.regx = (insn >> 8) & 0x07; | |
1439 | upk.regy = (insn >> 5) & 0x07; | |
1440 | switch (upk.regy) | |
c5aa993b | 1441 | { |
12f02c2a AC |
1442 | case 0: |
1443 | reg = upk.regx; | |
1444 | break; | |
1445 | case 1: | |
1446 | reg = 31; | |
6d82d43b | 1447 | break; /* Function return instruction */ |
12f02c2a AC |
1448 | case 2: |
1449 | reg = upk.regx; | |
1450 | break; | |
1451 | default: | |
1452 | reg = 31; | |
6d82d43b | 1453 | break; /* BOGUS Guess */ |
c906108c | 1454 | } |
12f02c2a | 1455 | pc = read_signed_register (reg); |
c906108c | 1456 | } |
12f02c2a | 1457 | else |
c5aa993b | 1458 | pc += 2; |
12f02c2a AC |
1459 | break; |
1460 | } | |
1461 | case 30: | |
1462 | /* This is an instruction extension. Fetch the real instruction | |
1463 | (which follows the extension) and decode things based on | |
1464 | that. */ | |
1465 | { | |
1466 | pc += 2; | |
1467 | pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc)); | |
1468 | break; | |
1469 | } | |
1470 | default: | |
1471 | { | |
1472 | pc += 2; | |
1473 | break; | |
1474 | } | |
c906108c | 1475 | } |
c5aa993b | 1476 | return pc; |
12f02c2a | 1477 | } |
c906108c | 1478 | |
5a89d8aa | 1479 | static CORE_ADDR |
12f02c2a AC |
1480 | mips16_next_pc (CORE_ADDR pc) |
1481 | { | |
1482 | unsigned int insn = fetch_mips_16 (pc); | |
1483 | return extended_mips16_next_pc (pc, 0, insn); | |
1484 | } | |
1485 | ||
1486 | /* The mips_next_pc function supports single_step when the remote | |
7e73cedf | 1487 | target monitor or stub is not developed enough to do a single_step. |
12f02c2a AC |
1488 | It works by decoding the current instruction and predicting where a |
1489 | branch will go. This isnt hard because all the data is available. | |
1490 | The MIPS32 and MIPS16 variants are quite different */ | |
c5aa993b JM |
1491 | CORE_ADDR |
1492 | mips_next_pc (CORE_ADDR pc) | |
c906108c | 1493 | { |
c5aa993b JM |
1494 | if (pc & 0x01) |
1495 | return mips16_next_pc (pc); | |
1496 | else | |
1497 | return mips32_next_pc (pc); | |
12f02c2a | 1498 | } |
c906108c | 1499 | |
edfae063 AC |
1500 | struct mips_frame_cache |
1501 | { | |
1502 | CORE_ADDR base; | |
1503 | struct trad_frame_saved_reg *saved_regs; | |
1504 | }; | |
1505 | ||
1506 | ||
1507 | static struct mips_frame_cache * | |
1508 | mips_mdebug_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1509 | { | |
1510 | mips_extra_func_info_t proc_desc; | |
1511 | struct mips_frame_cache *cache; | |
1512 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
1513 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1514 | /* r0 bit means kernel trap */ | |
1515 | int kernel_trap; | |
1516 | /* What registers have been saved? Bitmasks. */ | |
1517 | unsigned long gen_mask, float_mask; | |
1518 | ||
1519 | if ((*this_cache) != NULL) | |
1520 | return (*this_cache); | |
1521 | cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache); | |
1522 | (*this_cache) = cache; | |
1523 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1524 | ||
1525 | /* Get the mdebug proc descriptor. */ | |
1526 | proc_desc = find_proc_desc (frame_pc_unwind (next_frame), next_frame, 1); | |
1527 | if (proc_desc == NULL) | |
1528 | /* I'm not sure how/whether this can happen. Normally when we | |
1529 | can't find a proc_desc, we "synthesize" one using | |
1530 | heuristic_proc_desc and set the saved_regs right away. */ | |
1531 | return cache; | |
1532 | ||
1533 | /* Extract the frame's base. */ | |
1534 | cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc)) | |
1535 | + PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
1536 | ||
1537 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; | |
1538 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1539 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
1540 | ||
1541 | /* In any frame other than the innermost or a frame interrupted by a | |
1542 | signal, we assume that all registers have been saved. This | |
1543 | assumes that all register saves in a function happen before the | |
1544 | first function call. */ | |
1545 | if (in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc)) | |
1546 | /* Not sure exactly what kernel_trap means, but if it means the | |
1547 | kernel saves the registers without a prologue doing it, we | |
1548 | better not examine the prologue to see whether registers | |
1549 | have been saved yet. */ | |
1550 | && !kernel_trap) | |
1551 | { | |
1552 | /* We need to figure out whether the registers that the | |
1553 | proc_desc claims are saved have been saved yet. */ | |
1554 | ||
1555 | CORE_ADDR addr; | |
1556 | ||
1557 | /* Bitmasks; set if we have found a save for the register. */ | |
1558 | unsigned long gen_save_found = 0; | |
1559 | unsigned long float_save_found = 0; | |
1560 | int mips16; | |
1561 | ||
1562 | /* If the address is odd, assume this is MIPS16 code. */ | |
1563 | addr = PROC_LOW_ADDR (proc_desc); | |
1564 | mips16 = pc_is_mips16 (addr); | |
1565 | ||
1566 | /* Scan through this function's instructions preceding the | |
1567 | current PC, and look for those that save registers. */ | |
1568 | while (addr < frame_pc_unwind (next_frame)) | |
1569 | { | |
1570 | if (mips16) | |
1571 | { | |
1572 | mips16_decode_reg_save (mips16_fetch_instruction (addr), | |
1573 | &gen_save_found); | |
1574 | addr += MIPS16_INSTLEN; | |
1575 | } | |
1576 | else | |
1577 | { | |
1578 | mips32_decode_reg_save (mips32_fetch_instruction (addr), | |
1579 | &gen_save_found, &float_save_found); | |
1580 | addr += MIPS_INSTLEN; | |
1581 | } | |
1582 | } | |
1583 | gen_mask = gen_save_found; | |
1584 | float_mask = float_save_found; | |
1585 | } | |
1586 | ||
1587 | /* Fill in the offsets for the registers which gen_mask says were | |
1588 | saved. */ | |
1589 | { | |
1590 | CORE_ADDR reg_position = (cache->base | |
1591 | + PROC_REG_OFFSET (proc_desc)); | |
1592 | int ireg; | |
1593 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) | |
1594 | if (gen_mask & 0x80000000) | |
1595 | { | |
1596 | cache->saved_regs[NUM_REGS + ireg].addr = reg_position; | |
13326b4e | 1597 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1598 | } |
1599 | } | |
1600 | ||
1601 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse | |
1602 | order of that normally used by gcc. Therefore, we have to fetch | |
1603 | the first instruction of the function, and if it's an entry | |
1604 | instruction that saves $s0 or $s1, correct their saved addresses. */ | |
1605 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
1606 | { | |
1607 | ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
1608 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) | |
1609 | /* entry */ | |
1610 | { | |
1611 | int reg; | |
1612 | int sreg_count = (inst >> 6) & 3; | |
1613 | ||
1614 | /* Check if the ra register was pushed on the stack. */ | |
1615 | CORE_ADDR reg_position = (cache->base | |
1616 | + PROC_REG_OFFSET (proc_desc)); | |
1617 | if (inst & 0x20) | |
13326b4e | 1618 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1619 | |
1620 | /* Check if the s0 and s1 registers were pushed on the | |
1621 | stack. */ | |
1622 | /* NOTE: cagney/2004-02-08: Huh? This is doing no such | |
1623 | check. */ | |
1624 | for (reg = 16; reg < sreg_count + 16; reg++) | |
1625 | { | |
1626 | cache->saved_regs[NUM_REGS + reg].addr = reg_position; | |
13326b4e | 1627 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1628 | } |
1629 | } | |
1630 | } | |
1631 | ||
1632 | /* Fill in the offsets for the registers which float_mask says were | |
1633 | saved. */ | |
1634 | { | |
1635 | CORE_ADDR reg_position = (cache->base | |
1636 | + PROC_FREG_OFFSET (proc_desc)); | |
1637 | int ireg; | |
1638 | /* Fill in the offsets for the float registers which float_mask | |
1639 | says were saved. */ | |
1640 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) | |
1641 | if (float_mask & 0x80000000) | |
1642 | { | |
13326b4e | 1643 | if (mips_abi_regsize (gdbarch) == 4 |
edfae063 AC |
1644 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
1645 | { | |
1646 | /* On a big endian 32 bit ABI, floating point registers | |
1647 | are paired to form doubles such that the most | |
1648 | significant part is in $f[N+1] and the least | |
1649 | significant in $f[N] vis: $f[N+1] ||| $f[N]. The | |
1650 | registers are also spilled as a pair and stored as a | |
1651 | double. | |
1652 | ||
1653 | When little-endian the least significant part is | |
1654 | stored first leading to the memory order $f[N] and | |
1655 | then $f[N+1]. | |
1656 | ||
1657 | Unfortunately, when big-endian the most significant | |
1658 | part of the double is stored first, and the least | |
1659 | significant is stored second. This leads to the | |
1660 | registers being ordered in memory as firt $f[N+1] and | |
1661 | then $f[N]. | |
1662 | ||
1663 | For the big-endian case make certain that the | |
1664 | addresses point at the correct (swapped) locations | |
1665 | $f[N] and $f[N+1] pair (keep in mind that | |
1666 | reg_position is decremented each time through the | |
1667 | loop). */ | |
1668 | if ((ireg & 1)) | |
1669 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
13326b4e | 1670 | .addr = reg_position - mips_abi_regsize (gdbarch); |
edfae063 AC |
1671 | else |
1672 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
13326b4e | 1673 | .addr = reg_position + mips_abi_regsize (gdbarch); |
edfae063 AC |
1674 | } |
1675 | else | |
1676 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg] | |
1677 | .addr = reg_position; | |
13326b4e | 1678 | reg_position -= mips_abi_regsize (gdbarch); |
edfae063 AC |
1679 | } |
1680 | ||
1681 | cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc] | |
1682 | = cache->saved_regs[NUM_REGS + RA_REGNUM]; | |
1683 | } | |
1684 | ||
1685 | /* SP_REGNUM, contains the value and not the address. */ | |
f10683bb | 1686 | trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base); |
edfae063 AC |
1687 | |
1688 | return (*this_cache); | |
1689 | } | |
1690 | ||
1691 | static void | |
1692 | mips_mdebug_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
1693 | struct frame_id *this_id) | |
1694 | { | |
1695 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1696 | this_cache); | |
1697 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
1698 | } | |
1699 | ||
1700 | static void | |
1701 | mips_mdebug_frame_prev_register (struct frame_info *next_frame, | |
1702 | void **this_cache, | |
1703 | int regnum, int *optimizedp, | |
1704 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1705 | int *realnump, void *valuep) | |
1706 | { | |
1707 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1708 | this_cache); | |
1709 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
1710 | optimizedp, lvalp, addrp, realnump, valuep); | |
1711 | } | |
1712 | ||
1713 | static const struct frame_unwind mips_mdebug_frame_unwind = | |
1714 | { | |
1715 | NORMAL_FRAME, | |
1716 | mips_mdebug_frame_this_id, | |
1717 | mips_mdebug_frame_prev_register | |
1718 | }; | |
1719 | ||
1720 | static const struct frame_unwind * | |
1721 | mips_mdebug_frame_sniffer (struct frame_info *next_frame) | |
1722 | { | |
1723 | return &mips_mdebug_frame_unwind; | |
1724 | } | |
1725 | ||
1726 | static CORE_ADDR | |
1727 | mips_mdebug_frame_base_address (struct frame_info *next_frame, | |
1728 | void **this_cache) | |
1729 | { | |
1730 | struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame, | |
1731 | this_cache); | |
1732 | return info->base; | |
1733 | } | |
1734 | ||
1735 | static const struct frame_base mips_mdebug_frame_base = { | |
1736 | &mips_mdebug_frame_unwind, | |
1737 | mips_mdebug_frame_base_address, | |
1738 | mips_mdebug_frame_base_address, | |
1739 | mips_mdebug_frame_base_address | |
1740 | }; | |
1741 | ||
1742 | static const struct frame_base * | |
1743 | mips_mdebug_frame_base_sniffer (struct frame_info *next_frame) | |
1744 | { | |
1745 | return &mips_mdebug_frame_base; | |
1746 | } | |
1747 | ||
c906108c | 1748 | static CORE_ADDR |
acdb74a0 | 1749 | read_next_frame_reg (struct frame_info *fi, int regno) |
c906108c | 1750 | { |
a4b8ebc8 AC |
1751 | /* Always a pseudo. */ |
1752 | gdb_assert (regno >= NUM_REGS); | |
f796e4be | 1753 | if (fi == NULL) |
c906108c | 1754 | { |
a4b8ebc8 AC |
1755 | LONGEST val; |
1756 | regcache_cooked_read_signed (current_regcache, regno, &val); | |
1757 | return val; | |
f796e4be | 1758 | } |
f10683bb MH |
1759 | else if ((regno % NUM_REGS) == MIPS_SP_REGNUM) |
1760 | /* MIPS_SP_REGNUM is special, its value is stored in saved_regs. | |
a4b8ebc8 AC |
1761 | In fact, it is so special that it can even only be fetched |
1762 | using a raw register number! Once this code as been converted | |
1763 | to frame-unwind the problem goes away. */ | |
1764 | return frame_unwind_register_signed (fi, regno % NUM_REGS); | |
f796e4be | 1765 | else |
a4b8ebc8 | 1766 | return frame_unwind_register_signed (fi, regno); |
64159455 | 1767 | |
c906108c SS |
1768 | } |
1769 | ||
1770 | /* mips_addr_bits_remove - remove useless address bits */ | |
1771 | ||
875e1767 | 1772 | static CORE_ADDR |
acdb74a0 | 1773 | mips_addr_bits_remove (CORE_ADDR addr) |
c906108c | 1774 | { |
480d3dd2 | 1775 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
6d82d43b | 1776 | if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL)) |
8fa9cfa1 AC |
1777 | /* This hack is a work-around for existing boards using PMON, the |
1778 | simulator, and any other 64-bit targets that doesn't have true | |
1779 | 64-bit addressing. On these targets, the upper 32 bits of | |
1780 | addresses are ignored by the hardware. Thus, the PC or SP are | |
1781 | likely to have been sign extended to all 1s by instruction | |
1782 | sequences that load 32-bit addresses. For example, a typical | |
1783 | piece of code that loads an address is this: | |
1784 | ||
1785 | lui $r2, <upper 16 bits> | |
1786 | ori $r2, <lower 16 bits> | |
1787 | ||
1788 | But the lui sign-extends the value such that the upper 32 bits | |
1789 | may be all 1s. The workaround is simply to mask off these | |
1790 | bits. In the future, gcc may be changed to support true 64-bit | |
1791 | addressing, and this masking will have to be disabled. */ | |
1792 | return addr &= 0xffffffffUL; | |
1793 | else | |
1794 | return addr; | |
c906108c SS |
1795 | } |
1796 | ||
9022177c DJ |
1797 | /* mips_software_single_step() is called just before we want to resume |
1798 | the inferior, if we want to single-step it but there is no hardware | |
75c9abc6 | 1799 | or kernel single-step support (MIPS on GNU/Linux for example). We find |
9022177c DJ |
1800 | the target of the coming instruction and breakpoint it. |
1801 | ||
1802 | single_step is also called just after the inferior stops. If we had | |
1803 | set up a simulated single-step, we undo our damage. */ | |
1804 | ||
1805 | void | |
1806 | mips_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1807 | { | |
1808 | static CORE_ADDR next_pc; | |
1809 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1810 | static binsn_quantum break_mem; | |
1811 | CORE_ADDR pc; | |
1812 | ||
1813 | if (insert_breakpoints_p) | |
1814 | { | |
b6cb9035 | 1815 | pc = read_register (mips_regnum (current_gdbarch)->pc); |
9022177c DJ |
1816 | next_pc = mips_next_pc (pc); |
1817 | ||
1818 | target_insert_breakpoint (next_pc, break_mem); | |
1819 | } | |
1820 | else | |
1821 | target_remove_breakpoint (next_pc, break_mem); | |
1822 | } | |
1823 | ||
c906108c | 1824 | static struct mips_extra_func_info temp_proc_desc; |
fe29b929 KB |
1825 | |
1826 | /* This hack will go away once the get_prev_frame() code has been | |
1827 | modified to set the frame's type first. That is BEFORE init extra | |
1828 | frame info et.al. is called. This is because it will become | |
1829 | possible to skip the init extra info call for sigtramp and dummy | |
1830 | frames. */ | |
1831 | static CORE_ADDR *temp_saved_regs; | |
c906108c | 1832 | |
e0f7ec59 AC |
1833 | /* Set a register's saved stack address in temp_saved_regs. If an |
1834 | address has already been set for this register, do nothing; this | |
1835 | way we will only recognize the first save of a given register in a | |
a4b8ebc8 AC |
1836 | function prologue. |
1837 | ||
1838 | For simplicity, save the address in both [0 .. NUM_REGS) and | |
1839 | [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range | |
1840 | is used as it is only second range (the ABI instead of ISA | |
1841 | registers) that comes into play when finding saved registers in a | |
1842 | frame. */ | |
c906108c SS |
1843 | |
1844 | static void | |
e0f7ec59 | 1845 | set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset) |
c906108c | 1846 | { |
e0f7ec59 | 1847 | if (saved_regs[regno] == 0) |
a4b8ebc8 AC |
1848 | { |
1849 | saved_regs[regno + 0 * NUM_REGS] = offset; | |
1850 | saved_regs[regno + 1 * NUM_REGS] = offset; | |
1851 | } | |
c906108c SS |
1852 | } |
1853 | ||
1854 | ||
1855 | /* Test whether the PC points to the return instruction at the | |
1856 | end of a function. */ | |
1857 | ||
c5aa993b | 1858 | static int |
acdb74a0 | 1859 | mips_about_to_return (CORE_ADDR pc) |
c906108c SS |
1860 | { |
1861 | if (pc_is_mips16 (pc)) | |
1862 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
1863 | generates a "jr $ra"; other times it generates code to load | |
1864 | the return address from the stack to an accessible register (such | |
1865 | as $a3), then a "jr" using that register. This second case | |
1866 | is almost impossible to distinguish from an indirect jump | |
1867 | used for switch statements, so we don't even try. */ | |
1868 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
1869 | else | |
1870 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
1871 | } | |
1872 | ||
1873 | ||
1874 | /* This fencepost looks highly suspicious to me. Removing it also | |
1875 | seems suspicious as it could affect remote debugging across serial | |
1876 | lines. */ | |
1877 | ||
1878 | static CORE_ADDR | |
acdb74a0 | 1879 | heuristic_proc_start (CORE_ADDR pc) |
c906108c | 1880 | { |
c5aa993b JM |
1881 | CORE_ADDR start_pc; |
1882 | CORE_ADDR fence; | |
1883 | int instlen; | |
1884 | int seen_adjsp = 0; | |
c906108c | 1885 | |
c5aa993b JM |
1886 | pc = ADDR_BITS_REMOVE (pc); |
1887 | start_pc = pc; | |
1888 | fence = start_pc - heuristic_fence_post; | |
1889 | if (start_pc == 0) | |
1890 | return 0; | |
c906108c | 1891 | |
6d82d43b | 1892 | if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS) |
c5aa993b | 1893 | fence = VM_MIN_ADDRESS; |
c906108c | 1894 | |
c5aa993b | 1895 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
c906108c | 1896 | |
c5aa993b JM |
1897 | /* search back for previous return */ |
1898 | for (start_pc -= instlen;; start_pc -= instlen) | |
1899 | if (start_pc < fence) | |
1900 | { | |
1901 | /* It's not clear to me why we reach this point when | |
c0236d92 | 1902 | stop_soon, but with this test, at least we |
c5aa993b JM |
1903 | don't print out warnings for every child forked (eg, on |
1904 | decstation). 22apr93 [email protected]. */ | |
c0236d92 | 1905 | if (stop_soon == NO_STOP_QUIETLY) |
c906108c | 1906 | { |
c5aa993b JM |
1907 | static int blurb_printed = 0; |
1908 | ||
dc305454 MS |
1909 | warning ("GDB can't find the start of the function at 0x%s.", |
1910 | paddr_nz (pc)); | |
c5aa993b JM |
1911 | |
1912 | if (!blurb_printed) | |
c906108c | 1913 | { |
c5aa993b JM |
1914 | /* This actually happens frequently in embedded |
1915 | development, when you first connect to a board | |
1916 | and your stack pointer and pc are nowhere in | |
1917 | particular. This message needs to give people | |
1918 | in that situation enough information to | |
1919 | determine that it's no big deal. */ | |
1920 | printf_filtered ("\n\ | |
cd0fc7c3 SS |
1921 | GDB is unable to find the start of the function at 0x%s\n\ |
1922 | and thus can't determine the size of that function's stack frame.\n\ | |
1923 | This means that GDB may be unable to access that stack frame, or\n\ | |
1924 | the frames below it.\n\ | |
1925 | This problem is most likely caused by an invalid program counter or\n\ | |
1926 | stack pointer.\n\ | |
1927 | However, if you think GDB should simply search farther back\n\ | |
1928 | from 0x%s for code which looks like the beginning of a\n\ | |
1929 | function, you can increase the range of the search using the `set\n\ | |
6d82d43b | 1930 | heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc)); |
c5aa993b | 1931 | blurb_printed = 1; |
c906108c | 1932 | } |
c906108c SS |
1933 | } |
1934 | ||
c5aa993b JM |
1935 | return 0; |
1936 | } | |
1937 | else if (pc_is_mips16 (start_pc)) | |
1938 | { | |
1939 | unsigned short inst; | |
1940 | ||
1941 | /* On MIPS16, any one of the following is likely to be the | |
1942 | start of a function: | |
1943 | entry | |
1944 | addiu sp,-n | |
1945 | daddiu sp,-n | |
1946 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
1947 | inst = mips_fetch_instruction (start_pc); | |
1948 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
1949 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1950 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1951 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1952 | break; | |
1953 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1954 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1955 | seen_adjsp = 1; | |
1956 | else | |
1957 | seen_adjsp = 0; | |
1958 | } | |
1959 | else if (mips_about_to_return (start_pc)) | |
1960 | { | |
1961 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
1962 | break; | |
1963 | } | |
1964 | ||
c5aa993b | 1965 | return start_pc; |
c906108c SS |
1966 | } |
1967 | ||
1968 | /* Fetch the immediate value from a MIPS16 instruction. | |
1969 | If the previous instruction was an EXTEND, use it to extend | |
1970 | the upper bits of the immediate value. This is a helper function | |
1971 | for mips16_heuristic_proc_desc. */ | |
1972 | ||
1973 | static int | |
acdb74a0 AC |
1974 | mips16_get_imm (unsigned short prev_inst, /* previous instruction */ |
1975 | unsigned short inst, /* current instruction */ | |
6d82d43b AC |
1976 | int nbits, /* number of bits in imm field */ |
1977 | int scale, /* scale factor to be applied to imm */ | |
1978 | int is_signed) /* is the imm field signed? */ | |
c906108c SS |
1979 | { |
1980 | int offset; | |
1981 | ||
1982 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1983 | { | |
1984 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
c5aa993b | 1985 | if (offset & 0x8000) /* check for negative extend */ |
c906108c SS |
1986 | offset = 0 - (0x10000 - (offset & 0xffff)); |
1987 | return offset | (inst & 0x1f); | |
1988 | } | |
1989 | else | |
1990 | { | |
1991 | int max_imm = 1 << nbits; | |
1992 | int mask = max_imm - 1; | |
1993 | int sign_bit = max_imm >> 1; | |
1994 | ||
1995 | offset = inst & mask; | |
1996 | if (is_signed && (offset & sign_bit)) | |
1997 | offset = 0 - (max_imm - offset); | |
1998 | return offset * scale; | |
1999 | } | |
2000 | } | |
2001 | ||
2002 | ||
2003 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
2004 | stream from start_pc to limit_pc. */ | |
2005 | ||
2006 | static void | |
acdb74a0 AC |
2007 | mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
2008 | struct frame_info *next_frame, CORE_ADDR sp) | |
c906108c SS |
2009 | { |
2010 | CORE_ADDR cur_pc; | |
2011 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
2012 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
2013 | unsigned inst = 0; /* current instruction */ | |
2014 | unsigned entry_inst = 0; /* the entry instruction */ | |
2015 | int reg, offset; | |
480d3dd2 | 2016 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 2017 | |
c5aa993b JM |
2018 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */ |
2019 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
c906108c SS |
2020 | |
2021 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) | |
2022 | { | |
2023 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
2024 | the immediate offset extension from it in mips16_get_imm. */ | |
2025 | prev_inst = inst; | |
2026 | ||
2027 | /* Fetch and decode the instruction. */ | |
2028 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
c5aa993b | 2029 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
6d82d43b | 2030 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ |
c906108c SS |
2031 | { |
2032 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
c5aa993b JM |
2033 | if (offset < 0) /* negative stack adjustment? */ |
2034 | PROC_FRAME_OFFSET (&temp_proc_desc) -= offset; | |
c906108c SS |
2035 | else |
2036 | /* Exit loop if a positive stack adjustment is found, which | |
2037 | usually means that the stack cleanup code in the function | |
2038 | epilogue is reached. */ | |
2039 | break; | |
2040 | } | |
2041 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
2042 | { | |
2043 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2044 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
c5aa993b | 2045 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
e0f7ec59 | 2046 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c906108c SS |
2047 | } |
2048 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
2049 | { | |
2050 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2051 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2052 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
e0f7ec59 | 2053 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c906108c SS |
2054 | } |
2055 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
2056 | { | |
2057 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
c5aa993b | 2058 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
e0f7ec59 | 2059 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
c906108c SS |
2060 | } |
2061 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
2062 | { | |
2063 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
c5aa993b | 2064 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
e0f7ec59 | 2065 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
c906108c | 2066 | } |
c5aa993b | 2067 | else if (inst == 0x673d) /* move $s1, $sp */ |
c906108c SS |
2068 | { |
2069 | frame_addr = sp; | |
2070 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2071 | } | |
2072 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
2073 | { | |
2074 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2075 | frame_addr = sp + offset; | |
2076 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2077 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; | |
2078 | } | |
2079 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
2080 | { | |
2081 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
2082 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2083 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2084 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); |
c906108c SS |
2085 | } |
2086 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
2087 | { | |
2088 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2089 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2090 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2091 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); |
c906108c | 2092 | } |
c5aa993b JM |
2093 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
2094 | entry_inst = inst; /* save for later processing */ | |
c906108c | 2095 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
c5aa993b | 2096 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ |
c906108c SS |
2097 | } |
2098 | ||
c5aa993b JM |
2099 | /* The entry instruction is typically the first instruction in a function, |
2100 | and it stores registers at offsets relative to the value of the old SP | |
2101 | (before the prologue). But the value of the sp parameter to this | |
2102 | function is the new SP (after the prologue has been executed). So we | |
2103 | can't calculate those offsets until we've seen the entire prologue, | |
2104 | and can calculate what the old SP must have been. */ | |
2105 | if (entry_inst != 0) | |
2106 | { | |
2107 | int areg_count = (entry_inst >> 8) & 7; | |
2108 | int sreg_count = (entry_inst >> 6) & 3; | |
c906108c | 2109 | |
c5aa993b JM |
2110 | /* The entry instruction always subtracts 32 from the SP. */ |
2111 | PROC_FRAME_OFFSET (&temp_proc_desc) += 32; | |
c906108c | 2112 | |
c5aa993b JM |
2113 | /* Now we can calculate what the SP must have been at the |
2114 | start of the function prologue. */ | |
2115 | sp += PROC_FRAME_OFFSET (&temp_proc_desc); | |
c906108c | 2116 | |
c5aa993b JM |
2117 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
2118 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
2119 | { | |
2120 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
e0f7ec59 | 2121 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
13326b4e | 2122 | offset += mips_abi_regsize (current_gdbarch); |
c5aa993b | 2123 | } |
c906108c | 2124 | |
c5aa993b JM |
2125 | /* Check if the ra register was pushed on the stack. */ |
2126 | offset = -4; | |
2127 | if (entry_inst & 0x20) | |
2128 | { | |
2129 | PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM; | |
e0f7ec59 | 2130 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
13326b4e | 2131 | offset -= mips_abi_regsize (current_gdbarch); |
c5aa993b | 2132 | } |
c906108c | 2133 | |
c5aa993b JM |
2134 | /* Check if the s0 and s1 registers were pushed on the stack. */ |
2135 | for (reg = 16; reg < sreg_count + 16; reg++) | |
2136 | { | |
2137 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
e0f7ec59 | 2138 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
13326b4e | 2139 | offset -= mips_abi_regsize (current_gdbarch); |
c5aa993b JM |
2140 | } |
2141 | } | |
c906108c SS |
2142 | } |
2143 | ||
2144 | static void | |
fba45db2 KB |
2145 | mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
2146 | struct frame_info *next_frame, CORE_ADDR sp) | |
c906108c SS |
2147 | { |
2148 | CORE_ADDR cur_pc; | |
c5aa993b | 2149 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ |
c906108c | 2150 | restart: |
fe29b929 | 2151 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
cce74817 | 2152 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c5aa993b | 2153 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; |
c906108c SS |
2154 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
2155 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
2156 | { | |
2157 | unsigned long inst, high_word, low_word; | |
2158 | int reg; | |
2159 | ||
2160 | /* Fetch the instruction. */ | |
2161 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
2162 | ||
2163 | /* Save some code by pre-extracting some useful fields. */ | |
2164 | high_word = (inst >> 16) & 0xffff; | |
2165 | low_word = inst & 0xffff; | |
2166 | reg = high_word & 0x1f; | |
2167 | ||
c5aa993b | 2168 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ |
c906108c SS |
2169 | || high_word == 0x23bd /* addi $sp,$sp,-i */ |
2170 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
2171 | { | |
2172 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
c5aa993b | 2173 | PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word; |
c906108c SS |
2174 | else |
2175 | /* Exit loop if a positive stack adjustment is found, which | |
2176 | usually means that the stack cleanup code in the function | |
2177 | epilogue is reached. */ | |
2178 | break; | |
2179 | } | |
2180 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
2181 | { | |
c5aa993b | 2182 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2183 | set_reg_offset (temp_saved_regs, reg, sp + low_word); |
c906108c SS |
2184 | } |
2185 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
2186 | { | |
d5ac5a39 AC |
2187 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and |
2188 | $ra. */ | |
c5aa993b | 2189 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
d5ac5a39 | 2190 | set_reg_offset (temp_saved_regs, reg, sp + low_word); |
c906108c | 2191 | } |
c5aa993b | 2192 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
c906108c SS |
2193 | { |
2194 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
c5aa993b JM |
2195 | if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc)) |
2196 | frame_addr = sp + low_word; | |
f10683bb | 2197 | else if (PROC_FRAME_REG (&temp_proc_desc) == MIPS_SP_REGNUM) |
c906108c SS |
2198 | { |
2199 | unsigned alloca_adjust; | |
2200 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
a4b8ebc8 | 2201 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); |
c5aa993b | 2202 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); |
c906108c SS |
2203 | if (alloca_adjust > 0) |
2204 | { | |
2205 | /* FP > SP + frame_size. This may be because | |
2206 | * of an alloca or somethings similar. | |
2207 | * Fix sp to "pre-alloca" value, and try again. | |
2208 | */ | |
2209 | sp += alloca_adjust; | |
2210 | goto restart; | |
2211 | } | |
2212 | } | |
2213 | } | |
c5aa993b JM |
2214 | /* move $30,$sp. With different versions of gas this will be either |
2215 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
2216 | Accept any one of these. */ | |
c906108c SS |
2217 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) |
2218 | { | |
2219 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
f10683bb | 2220 | if (PROC_FRAME_REG (&temp_proc_desc) == MIPS_SP_REGNUM) |
c906108c SS |
2221 | { |
2222 | unsigned alloca_adjust; | |
2223 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
a4b8ebc8 | 2224 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); |
c5aa993b | 2225 | alloca_adjust = (unsigned) (frame_addr - sp); |
c906108c SS |
2226 | if (alloca_adjust > 0) |
2227 | { | |
2228 | /* FP > SP + frame_size. This may be because | |
2229 | * of an alloca or somethings similar. | |
2230 | * Fix sp to "pre-alloca" value, and try again. | |
2231 | */ | |
2232 | sp += alloca_adjust; | |
2233 | goto restart; | |
2234 | } | |
2235 | } | |
2236 | } | |
c5aa993b | 2237 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
c906108c | 2238 | { |
c5aa993b | 2239 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2240 | set_reg_offset (temp_saved_regs, reg, frame_addr + low_word); |
c906108c SS |
2241 | } |
2242 | } | |
2243 | } | |
2244 | ||
2245 | static mips_extra_func_info_t | |
acdb74a0 | 2246 | heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
479412cd | 2247 | struct frame_info *next_frame, int cur_frame) |
c906108c | 2248 | { |
479412cd DJ |
2249 | CORE_ADDR sp; |
2250 | ||
2251 | if (cur_frame) | |
f10683bb | 2252 | sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM); |
479412cd DJ |
2253 | else |
2254 | sp = 0; | |
c906108c | 2255 | |
c5aa993b JM |
2256 | if (start_pc == 0) |
2257 | return NULL; | |
2258 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); | |
fe29b929 | 2259 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
3758ac48 | 2260 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c | 2261 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; |
f10683bb | 2262 | PROC_FRAME_REG (&temp_proc_desc) = MIPS_SP_REGNUM; |
c906108c SS |
2263 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; |
2264 | ||
2265 | if (start_pc + 200 < limit_pc) | |
2266 | limit_pc = start_pc + 200; | |
2267 | if (pc_is_mips16 (start_pc)) | |
2268 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2269 | else | |
2270 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2271 | return &temp_proc_desc; | |
2272 | } | |
2273 | ||
6c0d6680 DJ |
2274 | struct mips_objfile_private |
2275 | { | |
2276 | bfd_size_type size; | |
2277 | char *contents; | |
2278 | }; | |
2279 | ||
2280 | /* Global used to communicate between non_heuristic_proc_desc and | |
2281 | compare_pdr_entries within qsort (). */ | |
2282 | static bfd *the_bfd; | |
2283 | ||
2284 | static int | |
2285 | compare_pdr_entries (const void *a, const void *b) | |
2286 | { | |
2287 | CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a); | |
2288 | CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b); | |
2289 | ||
2290 | if (lhs < rhs) | |
2291 | return -1; | |
2292 | else if (lhs == rhs) | |
2293 | return 0; | |
2294 | else | |
2295 | return 1; | |
2296 | } | |
2297 | ||
c906108c | 2298 | static mips_extra_func_info_t |
acdb74a0 | 2299 | non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr) |
c906108c SS |
2300 | { |
2301 | CORE_ADDR startaddr; | |
2302 | mips_extra_func_info_t proc_desc; | |
c5aa993b | 2303 | struct block *b = block_for_pc (pc); |
c906108c | 2304 | struct symbol *sym; |
6c0d6680 DJ |
2305 | struct obj_section *sec; |
2306 | struct mips_objfile_private *priv; | |
2307 | ||
c906108c SS |
2308 | find_pc_partial_function (pc, NULL, &startaddr, NULL); |
2309 | if (addrptr) | |
2310 | *addrptr = startaddr; | |
6c0d6680 DJ |
2311 | |
2312 | priv = NULL; | |
2313 | ||
2314 | sec = find_pc_section (pc); | |
2315 | if (sec != NULL) | |
c906108c | 2316 | { |
8d5f9dcb | 2317 | priv = (struct mips_objfile_private *) objfile_data (sec->objfile, mips_pdr_data); |
6c0d6680 DJ |
2318 | |
2319 | /* Search the ".pdr" section generated by GAS. This includes most of | |
6d82d43b | 2320 | the information normally found in ECOFF PDRs. */ |
6c0d6680 DJ |
2321 | |
2322 | the_bfd = sec->objfile->obfd; | |
2323 | if (priv == NULL | |
2324 | && (the_bfd->format == bfd_object | |
2325 | && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour | |
2326 | && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64)) | |
2327 | { | |
2328 | /* Right now GAS only outputs the address as a four-byte sequence. | |
2329 | This means that we should not bother with this method on 64-bit | |
2330 | targets (until that is fixed). */ | |
2331 | ||
8b92e4d5 | 2332 | priv = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2333 | sizeof (struct mips_objfile_private)); |
2334 | priv->size = 0; | |
8d5f9dcb | 2335 | set_objfile_data (sec->objfile, mips_pdr_data, priv); |
6c0d6680 DJ |
2336 | } |
2337 | else if (priv == NULL) | |
2338 | { | |
2339 | asection *bfdsec; | |
2340 | ||
8b92e4d5 | 2341 | priv = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2342 | sizeof (struct mips_objfile_private)); |
2343 | ||
2344 | bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr"); | |
2345 | if (bfdsec != NULL) | |
2346 | { | |
2347 | priv->size = bfd_section_size (sec->objfile->obfd, bfdsec); | |
8b92e4d5 | 2348 | priv->contents = obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 DJ |
2349 | priv->size); |
2350 | bfd_get_section_contents (sec->objfile->obfd, bfdsec, | |
2351 | priv->contents, 0, priv->size); | |
2352 | ||
2353 | /* In general, the .pdr section is sorted. However, in the | |
6d82d43b AC |
2354 | presence of multiple code sections (and other corner cases) |
2355 | it can become unsorted. Sort it so that we can use a faster | |
2356 | binary search. */ | |
2357 | qsort (priv->contents, priv->size / 32, 32, | |
2358 | compare_pdr_entries); | |
6c0d6680 DJ |
2359 | } |
2360 | else | |
2361 | priv->size = 0; | |
2362 | ||
8d5f9dcb | 2363 | set_objfile_data (sec->objfile, mips_pdr_data, priv); |
6c0d6680 DJ |
2364 | } |
2365 | the_bfd = NULL; | |
2366 | ||
2367 | if (priv->size != 0) | |
2368 | { | |
2369 | int low, mid, high; | |
2370 | char *ptr; | |
34fcf120 | 2371 | CORE_ADDR pdr_pc; |
6c0d6680 DJ |
2372 | |
2373 | low = 0; | |
2374 | high = priv->size / 32; | |
2375 | ||
34fcf120 DJ |
2376 | /* We've found a .pdr section describing this objfile. We want to |
2377 | find the entry which describes this code address. The .pdr | |
2378 | information is not very descriptive; we have only a function | |
2379 | start address. We have to look for the closest entry, because | |
2380 | the local symbol at the beginning of this function may have | |
2381 | been stripped - so if we ask the symbol table for the start | |
2382 | address we may get a preceding global function. */ | |
2383 | ||
2384 | /* First, find the last .pdr entry starting at or before PC. */ | |
6c0d6680 DJ |
2385 | do |
2386 | { | |
6c0d6680 DJ |
2387 | mid = (low + high) / 2; |
2388 | ||
2389 | ptr = priv->contents + mid * 32; | |
2390 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2391 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2392 | SECT_OFF_TEXT (sec->objfile)); | |
34fcf120 DJ |
2393 | |
2394 | if (pdr_pc > pc) | |
6c0d6680 DJ |
2395 | high = mid; |
2396 | else | |
2397 | low = mid + 1; | |
2398 | } | |
2399 | while (low != high); | |
2400 | ||
34fcf120 DJ |
2401 | /* Both low and high point one past the PDR of interest. If |
2402 | both are zero, that means this PC is before any region | |
2403 | covered by a PDR, i.e. pdr_pc for the first PDR entry is | |
2404 | greater than PC. */ | |
2405 | if (low > 0) | |
2406 | { | |
2407 | ptr = priv->contents + (low - 1) * 32; | |
2408 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2409 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2410 | SECT_OFF_TEXT (sec->objfile)); | |
2411 | } | |
2412 | ||
2413 | /* We don't have a range, so we have no way to know for sure | |
2414 | whether we're in the correct PDR or a PDR for a preceding | |
2415 | function and the current function was a stripped local | |
2416 | symbol. But if the PDR's PC is at least as great as the | |
2417 | best guess from the symbol table, assume that it does cover | |
2418 | the right area; if a .pdr section is present at all then | |
2419 | nearly every function will have an entry. The biggest exception | |
2420 | will be the dynamic linker stubs; conveniently these are | |
2421 | placed before .text instead of after. */ | |
2422 | ||
2423 | if (pc >= pdr_pc && pdr_pc >= startaddr) | |
6c0d6680 DJ |
2424 | { |
2425 | struct symbol *sym = find_pc_function (pc); | |
2426 | ||
34fcf120 DJ |
2427 | if (addrptr) |
2428 | *addrptr = pdr_pc; | |
2429 | ||
6c0d6680 DJ |
2430 | /* Fill in what we need of the proc_desc. */ |
2431 | proc_desc = (mips_extra_func_info_t) | |
8b92e4d5 | 2432 | obstack_alloc (&sec->objfile->objfile_obstack, |
6c0d6680 | 2433 | sizeof (struct mips_extra_func_info)); |
34fcf120 | 2434 | PROC_LOW_ADDR (proc_desc) = pdr_pc; |
6c0d6680 DJ |
2435 | |
2436 | /* Only used for dummy frames. */ | |
2437 | PROC_HIGH_ADDR (proc_desc) = 0; | |
2438 | ||
2439 | PROC_FRAME_OFFSET (proc_desc) | |
2440 | = bfd_get_32 (sec->objfile->obfd, ptr + 20); | |
2441 | PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2442 | ptr + 24); | |
2443 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
2444 | PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2445 | ptr + 4); | |
2446 | PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2447 | ptr + 12); | |
2448 | PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2449 | ptr + 8); | |
2450 | PROC_FREG_OFFSET (proc_desc) | |
2451 | = bfd_get_32 (sec->objfile->obfd, ptr + 16); | |
2452 | PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2453 | ptr + 28); | |
2454 | proc_desc->pdr.isym = (long) sym; | |
2455 | ||
2456 | return proc_desc; | |
2457 | } | |
2458 | } | |
c906108c SS |
2459 | } |
2460 | ||
6c0d6680 DJ |
2461 | if (b == NULL) |
2462 | return NULL; | |
2463 | ||
2464 | if (startaddr > BLOCK_START (b)) | |
2465 | { | |
2466 | /* This is the "pathological" case referred to in a comment in | |
6d82d43b AC |
2467 | print_frame_info. It might be better to move this check into |
2468 | symbol reading. */ | |
6c0d6680 DJ |
2469 | return NULL; |
2470 | } | |
2471 | ||
176620f1 | 2472 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL); |
6c0d6680 | 2473 | |
c906108c SS |
2474 | /* If we never found a PDR for this function in symbol reading, then |
2475 | examine prologues to find the information. */ | |
2476 | if (sym) | |
2477 | { | |
2478 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
2479 | if (PROC_FRAME_REG (proc_desc) == -1) | |
2480 | return NULL; | |
2481 | else | |
2482 | return proc_desc; | |
2483 | } | |
2484 | else | |
2485 | return NULL; | |
2486 | } | |
2487 | ||
2488 | ||
2489 | static mips_extra_func_info_t | |
479412cd | 2490 | find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame) |
c906108c SS |
2491 | { |
2492 | mips_extra_func_info_t proc_desc; | |
4e0df2df | 2493 | CORE_ADDR startaddr = 0; |
c906108c SS |
2494 | |
2495 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
2496 | ||
2497 | if (proc_desc) | |
2498 | { | |
2499 | /* IF this is the topmost frame AND | |
2500 | * (this proc does not have debugging information OR | |
2501 | * the PC is in the procedure prologue) | |
2502 | * THEN create a "heuristic" proc_desc (by analyzing | |
2503 | * the actual code) to replace the "official" proc_desc. | |
2504 | */ | |
2505 | if (next_frame == NULL) | |
2506 | { | |
2507 | struct symtab_and_line val; | |
2508 | struct symbol *proc_symbol = | |
c86b5b38 | 2509 | PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc); |
c906108c SS |
2510 | |
2511 | if (proc_symbol) | |
2512 | { | |
2513 | val = find_pc_line (BLOCK_START | |
6d82d43b | 2514 | (SYMBOL_BLOCK_VALUE (proc_symbol)), 0); |
c906108c SS |
2515 | val.pc = val.end ? val.end : pc; |
2516 | } | |
2517 | if (!proc_symbol || pc < val.pc) | |
2518 | { | |
2519 | mips_extra_func_info_t found_heuristic = | |
c86b5b38 MS |
2520 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), |
2521 | pc, next_frame, cur_frame); | |
c906108c SS |
2522 | if (found_heuristic) |
2523 | proc_desc = found_heuristic; | |
2524 | } | |
2525 | } | |
2526 | } | |
2527 | else | |
2528 | { | |
2529 | /* Is linked_proc_desc_table really necessary? It only seems to be used | |
c5aa993b JM |
2530 | by procedure call dummys. However, the procedures being called ought |
2531 | to have their own proc_descs, and even if they don't, | |
2532 | heuristic_proc_desc knows how to create them! */ | |
c906108c | 2533 | |
aa1ee363 | 2534 | struct linked_proc_info *link; |
c906108c SS |
2535 | |
2536 | for (link = linked_proc_desc_table; link; link = link->next) | |
c5aa993b JM |
2537 | if (PROC_LOW_ADDR (&link->info) <= pc |
2538 | && PROC_HIGH_ADDR (&link->info) > pc) | |
c906108c SS |
2539 | return &link->info; |
2540 | ||
2541 | if (startaddr == 0) | |
2542 | startaddr = heuristic_proc_start (pc); | |
2543 | ||
6d82d43b | 2544 | proc_desc = heuristic_proc_desc (startaddr, pc, next_frame, cur_frame); |
c906108c SS |
2545 | } |
2546 | return proc_desc; | |
2547 | } | |
2548 | ||
c906108c SS |
2549 | /* MIPS stack frames are almost impenetrable. When execution stops, |
2550 | we basically have to look at symbol information for the function | |
2551 | that we stopped in, which tells us *which* register (if any) is | |
2552 | the base of the frame pointer, and what offset from that register | |
361d1df0 | 2553 | the frame itself is at. |
c906108c SS |
2554 | |
2555 | This presents a problem when trying to examine a stack in memory | |
2556 | (that isn't executing at the moment), using the "frame" command. We | |
2557 | don't have a PC, nor do we have any registers except SP. | |
2558 | ||
2559 | This routine takes two arguments, SP and PC, and tries to make the | |
2560 | cached frames look as if these two arguments defined a frame on the | |
2561 | cache. This allows the rest of info frame to extract the important | |
2562 | arguments without difficulty. */ | |
2563 | ||
2564 | struct frame_info * | |
acdb74a0 | 2565 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
2566 | { |
2567 | if (argc != 2) | |
2568 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
2569 | ||
2570 | return create_new_frame (argv[0], argv[1]); | |
2571 | } | |
2572 | ||
f09ded24 AC |
2573 | /* According to the current ABI, should the type be passed in a |
2574 | floating-point register (assuming that there is space)? When there | |
2575 | is no FPU, FP are not even considered as possibile candidates for | |
2576 | FP registers and, consequently this returns false - forces FP | |
2577 | arguments into integer registers. */ | |
2578 | ||
2579 | static int | |
2580 | fp_register_arg_p (enum type_code typecode, struct type *arg_type) | |
2581 | { | |
2582 | return ((typecode == TYPE_CODE_FLT | |
2583 | || (MIPS_EABI | |
6d82d43b AC |
2584 | && (typecode == TYPE_CODE_STRUCT |
2585 | || typecode == TYPE_CODE_UNION) | |
f09ded24 AC |
2586 | && TYPE_NFIELDS (arg_type) == 1 |
2587 | && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT)) | |
c86b5b38 | 2588 | && MIPS_FPU_TYPE != MIPS_FPU_NONE); |
f09ded24 AC |
2589 | } |
2590 | ||
49e790b0 DJ |
2591 | /* On o32, argument passing in GPRs depends on the alignment of the type being |
2592 | passed. Return 1 if this type must be aligned to a doubleword boundary. */ | |
2593 | ||
2594 | static int | |
2595 | mips_type_needs_double_align (struct type *type) | |
2596 | { | |
2597 | enum type_code typecode = TYPE_CODE (type); | |
361d1df0 | 2598 | |
49e790b0 DJ |
2599 | if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8) |
2600 | return 1; | |
2601 | else if (typecode == TYPE_CODE_STRUCT) | |
2602 | { | |
2603 | if (TYPE_NFIELDS (type) < 1) | |
2604 | return 0; | |
2605 | return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0)); | |
2606 | } | |
2607 | else if (typecode == TYPE_CODE_UNION) | |
2608 | { | |
361d1df0 | 2609 | int i, n; |
49e790b0 DJ |
2610 | |
2611 | n = TYPE_NFIELDS (type); | |
2612 | for (i = 0; i < n; i++) | |
2613 | if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) | |
2614 | return 1; | |
2615 | return 0; | |
2616 | } | |
2617 | return 0; | |
2618 | } | |
2619 | ||
dc604539 AC |
2620 | /* Adjust the address downward (direction of stack growth) so that it |
2621 | is correctly aligned for a new stack frame. */ | |
2622 | static CORE_ADDR | |
2623 | mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2624 | { | |
5b03f266 | 2625 | return align_down (addr, 16); |
dc604539 AC |
2626 | } |
2627 | ||
6d82d43b AC |
2628 | /* Determine how a return value is stored within the MIPS register |
2629 | file, given the return type `valtype'. */ | |
2630 | ||
2631 | struct return_value_word | |
2632 | { | |
2633 | int len; | |
2634 | int reg; | |
2635 | int reg_offset; | |
2636 | int buf_offset; | |
2637 | }; | |
2638 | ||
2639 | static void | |
2640 | return_value_location (struct type *valtype, | |
2641 | struct return_value_word *hi, | |
2642 | struct return_value_word *lo) | |
2643 | { | |
2644 | int len = TYPE_LENGTH (valtype); | |
2645 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2646 | ||
2647 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
2648 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
2649 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
2650 | { | |
ceae6e75 | 2651 | if (mips_abi_regsize (current_gdbarch) < 8 && len == 8) |
6d82d43b AC |
2652 | { |
2653 | /* We need to break a 64bit float in two 32 bit halves and | |
ceae6e75 | 2654 | spread them across a floating-point register pair. */ |
6d82d43b AC |
2655 | lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
2656 | hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4; | |
2657 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
2658 | && register_size (current_gdbarch, | |
2659 | mips_regnum (current_gdbarch)-> | |
2660 | fp0) == 8) ? 4 : 0); | |
2661 | hi->reg_offset = lo->reg_offset; | |
2662 | lo->reg = mips_regnum (current_gdbarch)->fp0 + 0; | |
2663 | hi->reg = mips_regnum (current_gdbarch)->fp0 + 1; | |
2664 | lo->len = 4; | |
2665 | hi->len = 4; | |
2666 | } | |
2667 | else | |
2668 | { | |
2669 | /* The floating point value fits in a single floating-point | |
2670 | register. */ | |
2671 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
2672 | && register_size (current_gdbarch, | |
2673 | mips_regnum (current_gdbarch)-> | |
2674 | fp0) == 8 | |
2675 | && len == 4) ? 4 : 0); | |
2676 | lo->reg = mips_regnum (current_gdbarch)->fp0; | |
2677 | lo->len = len; | |
2678 | lo->buf_offset = 0; | |
2679 | hi->len = 0; | |
2680 | hi->reg_offset = 0; | |
2681 | hi->buf_offset = 0; | |
2682 | hi->reg = 0; | |
2683 | } | |
2684 | } | |
2685 | else | |
2686 | { | |
2687 | /* Locate a result possibly spread across two registers. */ | |
2688 | int regnum = 2; | |
2689 | lo->reg = regnum + 0; | |
2690 | hi->reg = regnum + 1; | |
2691 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
13326b4e | 2692 | && len < mips_abi_regsize (current_gdbarch)) |
6d82d43b AC |
2693 | { |
2694 | /* "un-left-justify" the value in the low register */ | |
13326b4e | 2695 | lo->reg_offset = mips_abi_regsize (current_gdbarch) - len; |
6d82d43b AC |
2696 | lo->len = len; |
2697 | hi->reg_offset = 0; | |
2698 | hi->len = 0; | |
2699 | } | |
13326b4e AC |
2700 | else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len > mips_abi_regsize (current_gdbarch) /* odd-size structs */ |
2701 | && len < mips_abi_regsize (current_gdbarch) * 2 | |
6d82d43b AC |
2702 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || |
2703 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2704 | { | |
2705 | /* "un-left-justify" the value spread across two registers. */ | |
13326b4e AC |
2706 | lo->reg_offset = 2 * mips_abi_regsize (current_gdbarch) - len; |
2707 | lo->len = mips_abi_regsize (current_gdbarch) - lo->reg_offset; | |
6d82d43b AC |
2708 | hi->reg_offset = 0; |
2709 | hi->len = len - lo->len; | |
2710 | } | |
2711 | else | |
2712 | { | |
2713 | /* Only perform a partial copy of the second register. */ | |
2714 | lo->reg_offset = 0; | |
2715 | hi->reg_offset = 0; | |
13326b4e | 2716 | if (len > mips_abi_regsize (current_gdbarch)) |
6d82d43b | 2717 | { |
13326b4e AC |
2718 | lo->len = mips_abi_regsize (current_gdbarch); |
2719 | hi->len = len - mips_abi_regsize (current_gdbarch); | |
6d82d43b AC |
2720 | } |
2721 | else | |
2722 | { | |
2723 | lo->len = len; | |
2724 | hi->len = 0; | |
2725 | } | |
2726 | } | |
2727 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
2728 | && register_size (current_gdbarch, regnum) == 8 | |
13326b4e | 2729 | && mips_abi_regsize (current_gdbarch) == 4) |
6d82d43b AC |
2730 | { |
2731 | /* Account for the fact that only the least-signficant part | |
2732 | of the register is being used */ | |
2733 | lo->reg_offset += 4; | |
2734 | hi->reg_offset += 4; | |
2735 | } | |
2736 | lo->buf_offset = 0; | |
2737 | hi->buf_offset = lo->len; | |
2738 | } | |
2739 | } | |
2740 | ||
2741 | /* Should call_function allocate stack space for a struct return? */ | |
2742 | ||
2743 | static int | |
2744 | mips_eabi_use_struct_convention (int gcc_p, struct type *type) | |
2745 | { | |
2746 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
13326b4e | 2747 | return (TYPE_LENGTH (type) > 2 * mips_abi_regsize (current_gdbarch)); |
6d82d43b AC |
2748 | } |
2749 | ||
2750 | /* Should call_function pass struct by reference? | |
2751 | For each architecture, structs are passed either by | |
2752 | value or by reference, depending on their size. */ | |
2753 | ||
2754 | static int | |
2755 | mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type) | |
2756 | { | |
2757 | enum type_code typecode = TYPE_CODE (check_typedef (type)); | |
2758 | int len = TYPE_LENGTH (check_typedef (type)); | |
2759 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2760 | ||
2761 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
13326b4e | 2762 | return (len > mips_abi_regsize (current_gdbarch)); |
6d82d43b AC |
2763 | |
2764 | return 0; | |
2765 | } | |
2766 | ||
f7ab6ec6 | 2767 | static CORE_ADDR |
7d9b040b | 2768 | mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
2769 | struct regcache *regcache, CORE_ADDR bp_addr, |
2770 | int nargs, struct value **args, CORE_ADDR sp, | |
2771 | int struct_return, CORE_ADDR struct_addr) | |
c906108c SS |
2772 | { |
2773 | int argreg; | |
2774 | int float_argreg; | |
2775 | int argnum; | |
2776 | int len = 0; | |
2777 | int stack_offset = 0; | |
480d3dd2 | 2778 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 2779 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 2780 | |
25ab4790 AC |
2781 | /* For shared libraries, "t9" needs to point at the function |
2782 | address. */ | |
2783 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
2784 | ||
2785 | /* Set the return address register to point to the entry point of | |
2786 | the program, where a breakpoint lies in wait. */ | |
2787 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
2788 | ||
c906108c | 2789 | /* First ensure that the stack and structure return address (if any) |
cb3d25d1 MS |
2790 | are properly aligned. The stack has to be at least 64-bit |
2791 | aligned even on 32-bit machines, because doubles must be 64-bit | |
2792 | aligned. For n32 and n64, stack frames need to be 128-bit | |
2793 | aligned, so we round to this widest known alignment. */ | |
2794 | ||
5b03f266 AC |
2795 | sp = align_down (sp, 16); |
2796 | struct_addr = align_down (struct_addr, 16); | |
c5aa993b | 2797 | |
46e0f506 | 2798 | /* Now make space on the stack for the args. We allocate more |
c906108c | 2799 | than necessary for EABI, because the first few arguments are |
46e0f506 | 2800 | passed in registers, but that's OK. */ |
c906108c | 2801 | for (argnum = 0; argnum < nargs; argnum++) |
6d82d43b | 2802 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 2803 | mips_stack_argsize (gdbarch)); |
5b03f266 | 2804 | sp -= align_up (len, 16); |
c906108c | 2805 | |
9ace0497 | 2806 | if (mips_debug) |
6d82d43b | 2807 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
2808 | "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n", |
2809 | paddr_nz (sp), (long) align_up (len, 16)); | |
9ace0497 | 2810 | |
c906108c SS |
2811 | /* Initialize the integer and float register pointers. */ |
2812 | argreg = A0_REGNUM; | |
56cea623 | 2813 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
c906108c | 2814 | |
46e0f506 | 2815 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
c906108c | 2816 | if (struct_return) |
9ace0497 AC |
2817 | { |
2818 | if (mips_debug) | |
2819 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 2820 | "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 | 2821 | argreg, paddr_nz (struct_addr)); |
9ace0497 AC |
2822 | write_register (argreg++, struct_addr); |
2823 | } | |
c906108c SS |
2824 | |
2825 | /* Now load as many as possible of the first arguments into | |
2826 | registers, and push the rest onto the stack. Loop thru args | |
2827 | from first to last. */ | |
2828 | for (argnum = 0; argnum < nargs; argnum++) | |
2829 | { | |
2830 | char *val; | |
d9d9c31f | 2831 | char valbuf[MAX_REGISTER_SIZE]; |
ea7c478f | 2832 | struct value *arg = args[argnum]; |
c906108c SS |
2833 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
2834 | int len = TYPE_LENGTH (arg_type); | |
2835 | enum type_code typecode = TYPE_CODE (arg_type); | |
2836 | ||
9ace0497 AC |
2837 | if (mips_debug) |
2838 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 2839 | "mips_eabi_push_dummy_call: %d len=%d type=%d", |
acdb74a0 | 2840 | argnum + 1, len, (int) typecode); |
9ace0497 | 2841 | |
c906108c | 2842 | /* The EABI passes structures that do not fit in a register by |
46e0f506 | 2843 | reference. */ |
13326b4e | 2844 | if (len > mips_abi_regsize (gdbarch) |
9ace0497 | 2845 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
c906108c | 2846 | { |
13326b4e | 2847 | store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch), |
480d3dd2 | 2848 | VALUE_ADDRESS (arg)); |
c906108c | 2849 | typecode = TYPE_CODE_PTR; |
13326b4e | 2850 | len = mips_abi_regsize (gdbarch); |
c906108c | 2851 | val = valbuf; |
9ace0497 AC |
2852 | if (mips_debug) |
2853 | fprintf_unfiltered (gdb_stdlog, " push"); | |
c906108c SS |
2854 | } |
2855 | else | |
c5aa993b | 2856 | val = (char *) VALUE_CONTENTS (arg); |
c906108c SS |
2857 | |
2858 | /* 32-bit ABIs always start floating point arguments in an | |
acdb74a0 AC |
2859 | even-numbered floating point register. Round the FP register |
2860 | up before the check to see if there are any FP registers | |
46e0f506 MS |
2861 | left. Non MIPS_EABI targets also pass the FP in the integer |
2862 | registers so also round up normal registers. */ | |
ceae6e75 AC |
2863 | if (mips_abi_regsize (gdbarch) < 8 |
2864 | && fp_register_arg_p (typecode, arg_type)) | |
acdb74a0 AC |
2865 | { |
2866 | if ((float_argreg & 1)) | |
2867 | float_argreg++; | |
2868 | } | |
c906108c SS |
2869 | |
2870 | /* Floating point arguments passed in registers have to be | |
2871 | treated specially. On 32-bit architectures, doubles | |
c5aa993b JM |
2872 | are passed in register pairs; the even register gets |
2873 | the low word, and the odd register gets the high word. | |
2874 | On non-EABI processors, the first two floating point arguments are | |
2875 | also copied to general registers, because MIPS16 functions | |
2876 | don't use float registers for arguments. This duplication of | |
2877 | arguments in general registers can't hurt non-MIPS16 functions | |
2878 | because those registers are normally skipped. */ | |
1012bd0e EZ |
2879 | /* MIPS_EABI squeezes a struct that contains a single floating |
2880 | point value into an FP register instead of pushing it onto the | |
46e0f506 | 2881 | stack. */ |
f09ded24 AC |
2882 | if (fp_register_arg_p (typecode, arg_type) |
2883 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
c906108c | 2884 | { |
ceae6e75 | 2885 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
c906108c | 2886 | { |
d7449b42 | 2887 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
c906108c SS |
2888 | unsigned long regval; |
2889 | ||
2890 | /* Write the low word of the double to the even register(s). */ | |
c5aa993b | 2891 | regval = extract_unsigned_integer (val + low_offset, 4); |
9ace0497 | 2892 | if (mips_debug) |
acdb74a0 | 2893 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2894 | float_argreg, phex (regval, 4)); |
c906108c | 2895 | write_register (float_argreg++, regval); |
c906108c SS |
2896 | |
2897 | /* Write the high word of the double to the odd register(s). */ | |
c5aa993b | 2898 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); |
9ace0497 | 2899 | if (mips_debug) |
acdb74a0 | 2900 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2901 | float_argreg, phex (regval, 4)); |
c906108c | 2902 | write_register (float_argreg++, regval); |
c906108c SS |
2903 | } |
2904 | else | |
2905 | { | |
2906 | /* This is a floating point value that fits entirely | |
2907 | in a single register. */ | |
53a5351d | 2908 | /* On 32 bit ABI's the float_argreg is further adjusted |
6d82d43b | 2909 | above to ensure that it is even register aligned. */ |
9ace0497 AC |
2910 | LONGEST regval = extract_unsigned_integer (val, len); |
2911 | if (mips_debug) | |
acdb74a0 | 2912 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2913 | float_argreg, phex (regval, len)); |
c906108c | 2914 | write_register (float_argreg++, regval); |
c906108c SS |
2915 | } |
2916 | } | |
2917 | else | |
2918 | { | |
2919 | /* Copy the argument to general registers or the stack in | |
2920 | register-sized pieces. Large arguments are split between | |
2921 | registers and stack. */ | |
4246e332 | 2922 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
2923 | mips_abi_regsize() are treated specially: Irix cc passes |
2924 | them in registers where gcc sometimes puts them on the | |
2925 | stack. For maximum compatibility, we will put them in | |
2926 | both places. */ | |
13326b4e AC |
2927 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
2928 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
46e0f506 | 2929 | |
f09ded24 | 2930 | /* Note: Floating-point values that didn't fit into an FP |
6d82d43b | 2931 | register are only written to memory. */ |
c906108c SS |
2932 | while (len > 0) |
2933 | { | |
ebafbe83 | 2934 | /* Remember if the argument was written to the stack. */ |
566f0f7a | 2935 | int stack_used_p = 0; |
13326b4e AC |
2936 | int partial_len = (len < mips_abi_regsize (gdbarch) |
2937 | ? len : mips_abi_regsize (gdbarch)); | |
c906108c | 2938 | |
acdb74a0 AC |
2939 | if (mips_debug) |
2940 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
2941 | partial_len); | |
2942 | ||
566f0f7a | 2943 | /* Write this portion of the argument to the stack. */ |
f09ded24 AC |
2944 | if (argreg > MIPS_LAST_ARG_REGNUM |
2945 | || odd_sized_struct | |
2946 | || fp_register_arg_p (typecode, arg_type)) | |
c906108c | 2947 | { |
c906108c SS |
2948 | /* Should shorter than int integer values be |
2949 | promoted to int before being stored? */ | |
c906108c | 2950 | int longword_offset = 0; |
9ace0497 | 2951 | CORE_ADDR addr; |
566f0f7a | 2952 | stack_used_p = 1; |
d7449b42 | 2953 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
7a292a7a | 2954 | { |
13326b4e | 2955 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
2956 | && (typecode == TYPE_CODE_INT |
2957 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 2958 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 2959 | longword_offset = mips_stack_argsize (gdbarch) - len; |
480d3dd2 AC |
2960 | else if ((typecode == TYPE_CODE_STRUCT |
2961 | || typecode == TYPE_CODE_UNION) | |
2962 | && (TYPE_LENGTH (arg_type) | |
13326b4e AC |
2963 | < mips_stack_argsize (gdbarch))) |
2964 | longword_offset = mips_stack_argsize (gdbarch) - len; | |
7a292a7a | 2965 | } |
c5aa993b | 2966 | |
9ace0497 AC |
2967 | if (mips_debug) |
2968 | { | |
cb3d25d1 MS |
2969 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", |
2970 | paddr_nz (stack_offset)); | |
2971 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
2972 | paddr_nz (longword_offset)); | |
9ace0497 | 2973 | } |
361d1df0 | 2974 | |
9ace0497 AC |
2975 | addr = sp + stack_offset + longword_offset; |
2976 | ||
2977 | if (mips_debug) | |
2978 | { | |
2979 | int i; | |
6d82d43b | 2980 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
cb3d25d1 | 2981 | paddr_nz (addr)); |
9ace0497 AC |
2982 | for (i = 0; i < partial_len; i++) |
2983 | { | |
6d82d43b | 2984 | fprintf_unfiltered (gdb_stdlog, "%02x", |
cb3d25d1 | 2985 | val[i] & 0xff); |
9ace0497 AC |
2986 | } |
2987 | } | |
2988 | write_memory (addr, val, partial_len); | |
c906108c SS |
2989 | } |
2990 | ||
f09ded24 AC |
2991 | /* Note!!! This is NOT an else clause. Odd sized |
2992 | structs may go thru BOTH paths. Floating point | |
46e0f506 | 2993 | arguments will not. */ |
566f0f7a | 2994 | /* Write this portion of the argument to a general |
6d82d43b | 2995 | purpose register. */ |
f09ded24 AC |
2996 | if (argreg <= MIPS_LAST_ARG_REGNUM |
2997 | && !fp_register_arg_p (typecode, arg_type)) | |
c906108c | 2998 | { |
6d82d43b AC |
2999 | LONGEST regval = |
3000 | extract_unsigned_integer (val, partial_len); | |
c906108c | 3001 | |
9ace0497 | 3002 | if (mips_debug) |
acdb74a0 | 3003 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", |
9ace0497 | 3004 | argreg, |
6d82d43b | 3005 | phex (regval, |
13326b4e | 3006 | mips_abi_regsize (gdbarch))); |
c906108c SS |
3007 | write_register (argreg, regval); |
3008 | argreg++; | |
c906108c | 3009 | } |
c5aa993b | 3010 | |
c906108c SS |
3011 | len -= partial_len; |
3012 | val += partial_len; | |
3013 | ||
566f0f7a | 3014 | /* Compute the the offset into the stack at which we |
6d82d43b | 3015 | will copy the next parameter. |
566f0f7a | 3016 | |
566f0f7a | 3017 | In the new EABI (and the NABI32), the stack_offset |
46e0f506 | 3018 | only needs to be adjusted when it has been used. */ |
c906108c | 3019 | |
46e0f506 | 3020 | if (stack_used_p) |
480d3dd2 | 3021 | stack_offset += align_up (partial_len, |
13326b4e | 3022 | mips_stack_argsize (gdbarch)); |
c906108c SS |
3023 | } |
3024 | } | |
9ace0497 AC |
3025 | if (mips_debug) |
3026 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
c906108c SS |
3027 | } |
3028 | ||
f10683bb | 3029 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 3030 | |
0f71a2f6 JM |
3031 | /* Return adjusted stack pointer. */ |
3032 | return sp; | |
3033 | } | |
3034 | ||
6d82d43b AC |
3035 | /* Given a return value in `regbuf' with a type `valtype', extract and |
3036 | copy its value into `valbuf'. */ | |
3037 | ||
3038 | static void | |
3039 | mips_eabi_extract_return_value (struct type *valtype, | |
3040 | char regbuf[], char *valbuf) | |
3041 | { | |
3042 | struct return_value_word lo; | |
3043 | struct return_value_word hi; | |
3044 | return_value_location (valtype, &hi, &lo); | |
3045 | ||
3046 | memcpy (valbuf + lo.buf_offset, | |
3047 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + | |
3048 | lo.reg_offset, lo.len); | |
3049 | ||
3050 | if (hi.len > 0) | |
3051 | memcpy (valbuf + hi.buf_offset, | |
3052 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + | |
3053 | hi.reg_offset, hi.len); | |
3054 | } | |
3055 | ||
3056 | /* Given a return value in `valbuf' with a type `valtype', write it's | |
3057 | value into the appropriate register. */ | |
3058 | ||
3059 | static void | |
3060 | mips_eabi_store_return_value (struct type *valtype, char *valbuf) | |
3061 | { | |
3062 | char raw_buffer[MAX_REGISTER_SIZE]; | |
3063 | struct return_value_word lo; | |
3064 | struct return_value_word hi; | |
3065 | return_value_location (valtype, &hi, &lo); | |
3066 | ||
3067 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3068 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
3069 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), | |
3070 | raw_buffer, register_size (current_gdbarch, | |
3071 | lo.reg)); | |
3072 | ||
3073 | if (hi.len > 0) | |
3074 | { | |
3075 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
3076 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
3077 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), | |
3078 | raw_buffer, | |
3079 | register_size (current_gdbarch, | |
3080 | hi.reg)); | |
3081 | } | |
3082 | } | |
3083 | ||
3084 | /* N32/N64 ABI stuff. */ | |
ebafbe83 | 3085 | |
f7ab6ec6 | 3086 | static CORE_ADDR |
7d9b040b | 3087 | mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3088 | struct regcache *regcache, CORE_ADDR bp_addr, |
3089 | int nargs, struct value **args, CORE_ADDR sp, | |
3090 | int struct_return, CORE_ADDR struct_addr) | |
cb3d25d1 MS |
3091 | { |
3092 | int argreg; | |
3093 | int float_argreg; | |
3094 | int argnum; | |
3095 | int len = 0; | |
3096 | int stack_offset = 0; | |
480d3dd2 | 3097 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 3098 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
cb3d25d1 | 3099 | |
25ab4790 AC |
3100 | /* For shared libraries, "t9" needs to point at the function |
3101 | address. */ | |
3102 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3103 | ||
3104 | /* Set the return address register to point to the entry point of | |
3105 | the program, where a breakpoint lies in wait. */ | |
3106 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3107 | ||
cb3d25d1 MS |
3108 | /* First ensure that the stack and structure return address (if any) |
3109 | are properly aligned. The stack has to be at least 64-bit | |
3110 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3111 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3112 | aligned, so we round to this widest known alignment. */ | |
3113 | ||
5b03f266 AC |
3114 | sp = align_down (sp, 16); |
3115 | struct_addr = align_down (struct_addr, 16); | |
cb3d25d1 MS |
3116 | |
3117 | /* Now make space on the stack for the args. */ | |
3118 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 3119 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3120 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3121 | sp -= align_up (len, 16); |
cb3d25d1 MS |
3122 | |
3123 | if (mips_debug) | |
6d82d43b | 3124 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3125 | "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n", |
3126 | paddr_nz (sp), (long) align_up (len, 16)); | |
cb3d25d1 MS |
3127 | |
3128 | /* Initialize the integer and float register pointers. */ | |
3129 | argreg = A0_REGNUM; | |
56cea623 | 3130 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
cb3d25d1 | 3131 | |
46e0f506 | 3132 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
cb3d25d1 MS |
3133 | if (struct_return) |
3134 | { | |
3135 | if (mips_debug) | |
3136 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3137 | "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 MS |
3138 | argreg, paddr_nz (struct_addr)); |
3139 | write_register (argreg++, struct_addr); | |
3140 | } | |
3141 | ||
3142 | /* Now load as many as possible of the first arguments into | |
3143 | registers, and push the rest onto the stack. Loop thru args | |
3144 | from first to last. */ | |
3145 | for (argnum = 0; argnum < nargs; argnum++) | |
3146 | { | |
3147 | char *val; | |
cb3d25d1 MS |
3148 | struct value *arg = args[argnum]; |
3149 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3150 | int len = TYPE_LENGTH (arg_type); | |
3151 | enum type_code typecode = TYPE_CODE (arg_type); | |
3152 | ||
3153 | if (mips_debug) | |
3154 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3155 | "mips_n32n64_push_dummy_call: %d len=%d type=%d", |
cb3d25d1 MS |
3156 | argnum + 1, len, (int) typecode); |
3157 | ||
3158 | val = (char *) VALUE_CONTENTS (arg); | |
3159 | ||
3160 | if (fp_register_arg_p (typecode, arg_type) | |
3161 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3162 | { | |
3163 | /* This is a floating point value that fits entirely | |
3164 | in a single register. */ | |
3165 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3166 | above to ensure that it is even register aligned. */ | |
3167 | LONGEST regval = extract_unsigned_integer (val, len); | |
3168 | if (mips_debug) | |
3169 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3170 | float_argreg, phex (regval, len)); | |
3171 | write_register (float_argreg++, regval); | |
3172 | ||
3173 | if (mips_debug) | |
3174 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3175 | argreg, phex (regval, len)); | |
3176 | write_register (argreg, regval); | |
3177 | argreg += 1; | |
3178 | } | |
3179 | else | |
3180 | { | |
3181 | /* Copy the argument to general registers or the stack in | |
3182 | register-sized pieces. Large arguments are split between | |
3183 | registers and stack. */ | |
4246e332 | 3184 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
3185 | mips_abi_regsize() are treated specially: Irix cc passes |
3186 | them in registers where gcc sometimes puts them on the | |
3187 | stack. For maximum compatibility, we will put them in | |
3188 | both places. */ | |
13326b4e AC |
3189 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
3190 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
cb3d25d1 | 3191 | /* Note: Floating-point values that didn't fit into an FP |
6d82d43b | 3192 | register are only written to memory. */ |
cb3d25d1 MS |
3193 | while (len > 0) |
3194 | { | |
3195 | /* Rememer if the argument was written to the stack. */ | |
3196 | int stack_used_p = 0; | |
13326b4e AC |
3197 | int partial_len = (len < mips_abi_regsize (gdbarch) |
3198 | ? len : mips_abi_regsize (gdbarch)); | |
cb3d25d1 MS |
3199 | |
3200 | if (mips_debug) | |
3201 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3202 | partial_len); | |
3203 | ||
3204 | /* Write this portion of the argument to the stack. */ | |
3205 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3206 | || odd_sized_struct | |
3207 | || fp_register_arg_p (typecode, arg_type)) | |
3208 | { | |
3209 | /* Should shorter than int integer values be | |
3210 | promoted to int before being stored? */ | |
3211 | int longword_offset = 0; | |
3212 | CORE_ADDR addr; | |
3213 | stack_used_p = 1; | |
3214 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3215 | { | |
13326b4e | 3216 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
3217 | && (typecode == TYPE_CODE_INT |
3218 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 3219 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 3220 | longword_offset = mips_stack_argsize (gdbarch) - len; |
cb3d25d1 MS |
3221 | } |
3222 | ||
3223 | if (mips_debug) | |
3224 | { | |
3225 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3226 | paddr_nz (stack_offset)); | |
3227 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3228 | paddr_nz (longword_offset)); | |
3229 | } | |
3230 | ||
3231 | addr = sp + stack_offset + longword_offset; | |
3232 | ||
3233 | if (mips_debug) | |
3234 | { | |
3235 | int i; | |
6d82d43b | 3236 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
cb3d25d1 MS |
3237 | paddr_nz (addr)); |
3238 | for (i = 0; i < partial_len; i++) | |
3239 | { | |
6d82d43b | 3240 | fprintf_unfiltered (gdb_stdlog, "%02x", |
cb3d25d1 MS |
3241 | val[i] & 0xff); |
3242 | } | |
3243 | } | |
3244 | write_memory (addr, val, partial_len); | |
3245 | } | |
3246 | ||
3247 | /* Note!!! This is NOT an else clause. Odd sized | |
3248 | structs may go thru BOTH paths. Floating point | |
3249 | arguments will not. */ | |
3250 | /* Write this portion of the argument to a general | |
6d82d43b | 3251 | purpose register. */ |
cb3d25d1 MS |
3252 | if (argreg <= MIPS_LAST_ARG_REGNUM |
3253 | && !fp_register_arg_p (typecode, arg_type)) | |
3254 | { | |
6d82d43b AC |
3255 | LONGEST regval = |
3256 | extract_unsigned_integer (val, partial_len); | |
cb3d25d1 MS |
3257 | |
3258 | /* A non-floating-point argument being passed in a | |
3259 | general register. If a struct or union, and if | |
3260 | the remaining length is smaller than the register | |
3261 | size, we have to adjust the register value on | |
3262 | big endian targets. | |
3263 | ||
3264 | It does not seem to be necessary to do the | |
3265 | same for integral types. | |
3266 | ||
3267 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3268 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 3269 | mips_abi_regsize(), generates a left shift as |
cb3d25d1 MS |
3270 | part of storing the argument in a register a |
3271 | register (the left shift isn't generated when | |
1b13c4f6 | 3272 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
3273 | it is quite possible that this is GCC |
3274 | contradicting the LE/O32 ABI, GDB has not been | |
3275 | adjusted to accommodate this. Either someone | |
3276 | needs to demonstrate that the LE/O32 ABI | |
3277 | specifies such a left shift OR this new ABI gets | |
3278 | identified as such and GDB gets tweaked | |
3279 | accordingly. */ | |
cb3d25d1 MS |
3280 | |
3281 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
13326b4e | 3282 | && partial_len < mips_abi_regsize (gdbarch) |
cb3d25d1 MS |
3283 | && (typecode == TYPE_CODE_STRUCT || |
3284 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 3285 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
cb3d25d1 MS |
3286 | TARGET_CHAR_BIT); |
3287 | ||
3288 | if (mips_debug) | |
3289 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3290 | argreg, | |
6d82d43b | 3291 | phex (regval, |
13326b4e | 3292 | mips_abi_regsize (gdbarch))); |
cb3d25d1 MS |
3293 | write_register (argreg, regval); |
3294 | argreg++; | |
3295 | } | |
3296 | ||
3297 | len -= partial_len; | |
3298 | val += partial_len; | |
3299 | ||
3300 | /* Compute the the offset into the stack at which we | |
6d82d43b | 3301 | will copy the next parameter. |
cb3d25d1 MS |
3302 | |
3303 | In N32 (N64?), the stack_offset only needs to be | |
3304 | adjusted when it has been used. */ | |
3305 | ||
3306 | if (stack_used_p) | |
480d3dd2 | 3307 | stack_offset += align_up (partial_len, |
13326b4e | 3308 | mips_stack_argsize (gdbarch)); |
cb3d25d1 MS |
3309 | } |
3310 | } | |
3311 | if (mips_debug) | |
3312 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3313 | } | |
3314 | ||
f10683bb | 3315 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 3316 | |
cb3d25d1 MS |
3317 | /* Return adjusted stack pointer. */ |
3318 | return sp; | |
3319 | } | |
3320 | ||
6d82d43b AC |
3321 | static enum return_value_convention |
3322 | mips_n32n64_return_value (struct gdbarch *gdbarch, | |
3323 | struct type *type, struct regcache *regcache, | |
3324 | void *readbuf, const void *writebuf) | |
ebafbe83 | 3325 | { |
6d82d43b AC |
3326 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
3327 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3328 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
3329 | || TYPE_CODE (type) == TYPE_CODE_ARRAY | |
13326b4e | 3330 | || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch)) |
6d82d43b AC |
3331 | return RETURN_VALUE_STRUCT_CONVENTION; |
3332 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
3333 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3334 | { | |
3335 | /* A floating-point value belongs in the least significant part | |
3336 | of FP0. */ | |
3337 | if (mips_debug) | |
3338 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
3339 | mips_xfer_register (regcache, | |
3340 | NUM_REGS + mips_regnum (current_gdbarch)->fp0, | |
3341 | TYPE_LENGTH (type), | |
3342 | TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
3343 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3344 | } | |
3345 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3346 | && TYPE_NFIELDS (type) <= 2 | |
3347 | && TYPE_NFIELDS (type) >= 1 | |
3348 | && ((TYPE_NFIELDS (type) == 1 | |
3349 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3350 | == TYPE_CODE_FLT)) | |
3351 | || (TYPE_NFIELDS (type) == 2 | |
3352 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3353 | == TYPE_CODE_FLT) | |
3354 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
3355 | == TYPE_CODE_FLT))) | |
3356 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3357 | { | |
3358 | /* A struct that contains one or two floats. Each value is part | |
3359 | in the least significant part of their floating point | |
3360 | register.. */ | |
6d82d43b AC |
3361 | int regnum; |
3362 | int field; | |
3363 | for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0; | |
3364 | field < TYPE_NFIELDS (type); field++, regnum += 2) | |
3365 | { | |
3366 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
3367 | / TARGET_CHAR_BIT); | |
3368 | if (mips_debug) | |
3369 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", | |
3370 | offset); | |
3371 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
3372 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
3373 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3374 | } | |
3375 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3376 | } | |
3377 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3378 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
3379 | { | |
3380 | /* A structure or union. Extract the left justified value, | |
3381 | regardless of the byte order. I.e. DO NOT USE | |
3382 | mips_xfer_lower. */ | |
3383 | int offset; | |
3384 | int regnum; | |
3385 | for (offset = 0, regnum = V0_REGNUM; | |
3386 | offset < TYPE_LENGTH (type); | |
3387 | offset += register_size (current_gdbarch, regnum), regnum++) | |
3388 | { | |
3389 | int xfer = register_size (current_gdbarch, regnum); | |
3390 | if (offset + xfer > TYPE_LENGTH (type)) | |
3391 | xfer = TYPE_LENGTH (type) - offset; | |
3392 | if (mips_debug) | |
3393 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
3394 | offset, xfer, regnum); | |
3395 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3396 | BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset); | |
3397 | } | |
3398 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3399 | } | |
3400 | else | |
3401 | { | |
3402 | /* A scalar extract each part but least-significant-byte | |
3403 | justified. */ | |
3404 | int offset; | |
3405 | int regnum; | |
3406 | for (offset = 0, regnum = V0_REGNUM; | |
3407 | offset < TYPE_LENGTH (type); | |
3408 | offset += register_size (current_gdbarch, regnum), regnum++) | |
3409 | { | |
3410 | int xfer = register_size (current_gdbarch, regnum); | |
6d82d43b AC |
3411 | if (offset + xfer > TYPE_LENGTH (type)) |
3412 | xfer = TYPE_LENGTH (type) - offset; | |
3413 | if (mips_debug) | |
3414 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
3415 | offset, xfer, regnum); | |
3416 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3417 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3418 | } | |
3419 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3420 | } | |
3421 | } | |
3422 | ||
3423 | /* O32 ABI stuff. */ | |
3424 | ||
3425 | static CORE_ADDR | |
7d9b040b | 3426 | mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3427 | struct regcache *regcache, CORE_ADDR bp_addr, |
3428 | int nargs, struct value **args, CORE_ADDR sp, | |
3429 | int struct_return, CORE_ADDR struct_addr) | |
3430 | { | |
3431 | int argreg; | |
3432 | int float_argreg; | |
3433 | int argnum; | |
3434 | int len = 0; | |
3435 | int stack_offset = 0; | |
3436 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7d9b040b | 3437 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
6d82d43b AC |
3438 | |
3439 | /* For shared libraries, "t9" needs to point at the function | |
3440 | address. */ | |
3441 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3442 | ||
3443 | /* Set the return address register to point to the entry point of | |
3444 | the program, where a breakpoint lies in wait. */ | |
3445 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3446 | ||
3447 | /* First ensure that the stack and structure return address (if any) | |
3448 | are properly aligned. The stack has to be at least 64-bit | |
3449 | aligned even on 32-bit machines, because doubles must be 64-bit | |
ebafbe83 MS |
3450 | aligned. For n32 and n64, stack frames need to be 128-bit |
3451 | aligned, so we round to this widest known alignment. */ | |
3452 | ||
5b03f266 AC |
3453 | sp = align_down (sp, 16); |
3454 | struct_addr = align_down (struct_addr, 16); | |
ebafbe83 MS |
3455 | |
3456 | /* Now make space on the stack for the args. */ | |
3457 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 3458 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3459 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3460 | sp -= align_up (len, 16); |
ebafbe83 MS |
3461 | |
3462 | if (mips_debug) | |
6d82d43b | 3463 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3464 | "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n", |
3465 | paddr_nz (sp), (long) align_up (len, 16)); | |
ebafbe83 MS |
3466 | |
3467 | /* Initialize the integer and float register pointers. */ | |
3468 | argreg = A0_REGNUM; | |
56cea623 | 3469 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
ebafbe83 | 3470 | |
bcb0cc15 | 3471 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
ebafbe83 MS |
3472 | if (struct_return) |
3473 | { | |
3474 | if (mips_debug) | |
3475 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3476 | "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n", |
ebafbe83 MS |
3477 | argreg, paddr_nz (struct_addr)); |
3478 | write_register (argreg++, struct_addr); | |
13326b4e | 3479 | stack_offset += mips_stack_argsize (gdbarch); |
ebafbe83 MS |
3480 | } |
3481 | ||
3482 | /* Now load as many as possible of the first arguments into | |
3483 | registers, and push the rest onto the stack. Loop thru args | |
3484 | from first to last. */ | |
3485 | for (argnum = 0; argnum < nargs; argnum++) | |
3486 | { | |
3487 | char *val; | |
ebafbe83 MS |
3488 | struct value *arg = args[argnum]; |
3489 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3490 | int len = TYPE_LENGTH (arg_type); | |
3491 | enum type_code typecode = TYPE_CODE (arg_type); | |
3492 | ||
3493 | if (mips_debug) | |
3494 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3495 | "mips_o32_push_dummy_call: %d len=%d type=%d", |
46cac009 AC |
3496 | argnum + 1, len, (int) typecode); |
3497 | ||
3498 | val = (char *) VALUE_CONTENTS (arg); | |
3499 | ||
3500 | /* 32-bit ABIs always start floating point arguments in an | |
3501 | even-numbered floating point register. Round the FP register | |
3502 | up before the check to see if there are any FP registers | |
3503 | left. O32/O64 targets also pass the FP in the integer | |
3504 | registers so also round up normal registers. */ | |
ceae6e75 AC |
3505 | if (mips_abi_regsize (gdbarch) < 8 |
3506 | && fp_register_arg_p (typecode, arg_type)) | |
46cac009 AC |
3507 | { |
3508 | if ((float_argreg & 1)) | |
3509 | float_argreg++; | |
3510 | } | |
3511 | ||
3512 | /* Floating point arguments passed in registers have to be | |
3513 | treated specially. On 32-bit architectures, doubles | |
3514 | are passed in register pairs; the even register gets | |
3515 | the low word, and the odd register gets the high word. | |
3516 | On O32/O64, the first two floating point arguments are | |
3517 | also copied to general registers, because MIPS16 functions | |
3518 | don't use float registers for arguments. This duplication of | |
3519 | arguments in general registers can't hurt non-MIPS16 functions | |
3520 | because those registers are normally skipped. */ | |
3521 | ||
3522 | if (fp_register_arg_p (typecode, arg_type) | |
3523 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3524 | { | |
ceae6e75 | 3525 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
46cac009 AC |
3526 | { |
3527 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3528 | unsigned long regval; | |
3529 | ||
3530 | /* Write the low word of the double to the even register(s). */ | |
3531 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3532 | if (mips_debug) | |
3533 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3534 | float_argreg, phex (regval, 4)); | |
3535 | write_register (float_argreg++, regval); | |
3536 | if (mips_debug) | |
3537 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3538 | argreg, phex (regval, 4)); | |
3539 | write_register (argreg++, regval); | |
3540 | ||
3541 | /* Write the high word of the double to the odd register(s). */ | |
3542 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3543 | if (mips_debug) | |
3544 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3545 | float_argreg, phex (regval, 4)); | |
3546 | write_register (float_argreg++, regval); | |
3547 | ||
3548 | if (mips_debug) | |
3549 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3550 | argreg, phex (regval, 4)); | |
3551 | write_register (argreg++, regval); | |
3552 | } | |
3553 | else | |
3554 | { | |
3555 | /* This is a floating point value that fits entirely | |
3556 | in a single register. */ | |
3557 | /* On 32 bit ABI's the float_argreg is further adjusted | |
6d82d43b | 3558 | above to ensure that it is even register aligned. */ |
46cac009 AC |
3559 | LONGEST regval = extract_unsigned_integer (val, len); |
3560 | if (mips_debug) | |
3561 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3562 | float_argreg, phex (regval, len)); | |
3563 | write_register (float_argreg++, regval); | |
3564 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
6d82d43b AC |
3565 | registers for each argument. The below is (my |
3566 | guess) to ensure that the corresponding integer | |
3567 | register has reserved the same space. */ | |
46cac009 AC |
3568 | if (mips_debug) |
3569 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3570 | argreg, phex (regval, len)); | |
3571 | write_register (argreg, regval); | |
ceae6e75 | 3572 | argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2; |
46cac009 AC |
3573 | } |
3574 | /* Reserve space for the FP register. */ | |
13326b4e | 3575 | stack_offset += align_up (len, mips_stack_argsize (gdbarch)); |
46cac009 AC |
3576 | } |
3577 | else | |
3578 | { | |
3579 | /* Copy the argument to general registers or the stack in | |
3580 | register-sized pieces. Large arguments are split between | |
3581 | registers and stack. */ | |
4246e332 | 3582 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
3583 | mips_abi_regsize() are treated specially: Irix cc passes |
3584 | them in registers where gcc sometimes puts them on the | |
3585 | stack. For maximum compatibility, we will put them in | |
3586 | both places. */ | |
13326b4e AC |
3587 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
3588 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
46cac009 AC |
3589 | /* Structures should be aligned to eight bytes (even arg registers) |
3590 | on MIPS_ABI_O32, if their first member has double precision. */ | |
13326b4e | 3591 | if (mips_abi_regsize (gdbarch) < 8 |
46cac009 AC |
3592 | && mips_type_needs_double_align (arg_type)) |
3593 | { | |
3594 | if ((argreg & 1)) | |
6d82d43b | 3595 | argreg++; |
46cac009 AC |
3596 | } |
3597 | /* Note: Floating-point values that didn't fit into an FP | |
6d82d43b | 3598 | register are only written to memory. */ |
46cac009 AC |
3599 | while (len > 0) |
3600 | { | |
3601 | /* Remember if the argument was written to the stack. */ | |
3602 | int stack_used_p = 0; | |
13326b4e AC |
3603 | int partial_len = (len < mips_abi_regsize (gdbarch) |
3604 | ? len : mips_abi_regsize (gdbarch)); | |
46cac009 AC |
3605 | |
3606 | if (mips_debug) | |
3607 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3608 | partial_len); | |
3609 | ||
3610 | /* Write this portion of the argument to the stack. */ | |
3611 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3612 | || odd_sized_struct | |
3613 | || fp_register_arg_p (typecode, arg_type)) | |
3614 | { | |
3615 | /* Should shorter than int integer values be | |
3616 | promoted to int before being stored? */ | |
3617 | int longword_offset = 0; | |
3618 | CORE_ADDR addr; | |
3619 | stack_used_p = 1; | |
3620 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3621 | { | |
13326b4e | 3622 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
3623 | && (typecode == TYPE_CODE_INT |
3624 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 3625 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 3626 | longword_offset = mips_stack_argsize (gdbarch) - len; |
46cac009 AC |
3627 | } |
3628 | ||
3629 | if (mips_debug) | |
3630 | { | |
3631 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3632 | paddr_nz (stack_offset)); | |
3633 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3634 | paddr_nz (longword_offset)); | |
3635 | } | |
3636 | ||
3637 | addr = sp + stack_offset + longword_offset; | |
3638 | ||
3639 | if (mips_debug) | |
3640 | { | |
3641 | int i; | |
6d82d43b | 3642 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
46cac009 AC |
3643 | paddr_nz (addr)); |
3644 | for (i = 0; i < partial_len; i++) | |
3645 | { | |
6d82d43b | 3646 | fprintf_unfiltered (gdb_stdlog, "%02x", |
46cac009 AC |
3647 | val[i] & 0xff); |
3648 | } | |
3649 | } | |
3650 | write_memory (addr, val, partial_len); | |
3651 | } | |
3652 | ||
3653 | /* Note!!! This is NOT an else clause. Odd sized | |
3654 | structs may go thru BOTH paths. Floating point | |
3655 | arguments will not. */ | |
3656 | /* Write this portion of the argument to a general | |
6d82d43b | 3657 | purpose register. */ |
46cac009 AC |
3658 | if (argreg <= MIPS_LAST_ARG_REGNUM |
3659 | && !fp_register_arg_p (typecode, arg_type)) | |
3660 | { | |
3661 | LONGEST regval = extract_signed_integer (val, partial_len); | |
4246e332 | 3662 | /* Value may need to be sign extended, because |
1b13c4f6 | 3663 | mips_isa_regsize() != mips_abi_regsize(). */ |
46cac009 AC |
3664 | |
3665 | /* A non-floating-point argument being passed in a | |
3666 | general register. If a struct or union, and if | |
3667 | the remaining length is smaller than the register | |
3668 | size, we have to adjust the register value on | |
3669 | big endian targets. | |
3670 | ||
3671 | It does not seem to be necessary to do the | |
3672 | same for integral types. | |
3673 | ||
3674 | Also don't do this adjustment on O64 binaries. | |
3675 | ||
3676 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3677 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 3678 | mips_abi_regsize(), generates a left shift as |
46cac009 AC |
3679 | part of storing the argument in a register a |
3680 | register (the left shift isn't generated when | |
1b13c4f6 | 3681 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
3682 | it is quite possible that this is GCC |
3683 | contradicting the LE/O32 ABI, GDB has not been | |
3684 | adjusted to accommodate this. Either someone | |
3685 | needs to demonstrate that the LE/O32 ABI | |
3686 | specifies such a left shift OR this new ABI gets | |
3687 | identified as such and GDB gets tweaked | |
3688 | accordingly. */ | |
3689 | ||
13326b4e | 3690 | if (mips_abi_regsize (gdbarch) < 8 |
46cac009 | 3691 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
13326b4e | 3692 | && partial_len < mips_abi_regsize (gdbarch) |
46cac009 AC |
3693 | && (typecode == TYPE_CODE_STRUCT || |
3694 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 3695 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
46cac009 AC |
3696 | TARGET_CHAR_BIT); |
3697 | ||
3698 | if (mips_debug) | |
3699 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3700 | argreg, | |
6d82d43b | 3701 | phex (regval, |
13326b4e | 3702 | mips_abi_regsize (gdbarch))); |
46cac009 AC |
3703 | write_register (argreg, regval); |
3704 | argreg++; | |
3705 | ||
3706 | /* Prevent subsequent floating point arguments from | |
3707 | being passed in floating point registers. */ | |
3708 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
3709 | } | |
3710 | ||
3711 | len -= partial_len; | |
3712 | val += partial_len; | |
3713 | ||
3714 | /* Compute the the offset into the stack at which we | |
6d82d43b | 3715 | will copy the next parameter. |
46cac009 | 3716 | |
6d82d43b AC |
3717 | In older ABIs, the caller reserved space for |
3718 | registers that contained arguments. This was loosely | |
3719 | refered to as their "home". Consequently, space is | |
3720 | always allocated. */ | |
46cac009 | 3721 | |
480d3dd2 | 3722 | stack_offset += align_up (partial_len, |
13326b4e | 3723 | mips_stack_argsize (gdbarch)); |
46cac009 AC |
3724 | } |
3725 | } | |
3726 | if (mips_debug) | |
3727 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3728 | } | |
3729 | ||
f10683bb | 3730 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 3731 | |
46cac009 AC |
3732 | /* Return adjusted stack pointer. */ |
3733 | return sp; | |
3734 | } | |
3735 | ||
6d82d43b AC |
3736 | static enum return_value_convention |
3737 | mips_o32_return_value (struct gdbarch *gdbarch, struct type *type, | |
3738 | struct regcache *regcache, | |
3739 | void *readbuf, const void *writebuf) | |
3740 | { | |
3741 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3742 | ||
3743 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3744 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
3745 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3746 | return RETURN_VALUE_STRUCT_CONVENTION; | |
3747 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
3748 | && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3749 | { | |
3750 | /* A single-precision floating-point value. It fits in the | |
3751 | least significant part of FP0. */ | |
3752 | if (mips_debug) | |
3753 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
3754 | mips_xfer_register (regcache, | |
3755 | NUM_REGS + mips_regnum (current_gdbarch)->fp0, | |
3756 | TYPE_LENGTH (type), | |
3757 | TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
3758 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3759 | } | |
3760 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
3761 | && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3762 | { | |
3763 | /* A double-precision floating-point value. The most | |
3764 | significant part goes in FP1, and the least significant in | |
3765 | FP0. */ | |
3766 | if (mips_debug) | |
3767 | fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n"); | |
3768 | switch (TARGET_BYTE_ORDER) | |
3769 | { | |
3770 | case BFD_ENDIAN_LITTLE: | |
3771 | mips_xfer_register (regcache, | |
3772 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
3773 | 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
3774 | mips_xfer_register (regcache, | |
3775 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
3776 | 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4); | |
3777 | break; | |
3778 | case BFD_ENDIAN_BIG: | |
3779 | mips_xfer_register (regcache, | |
3780 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
3781 | 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0); | |
3782 | mips_xfer_register (regcache, | |
3783 | NUM_REGS + mips_regnum (current_gdbarch)->fp0 + | |
3784 | 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4); | |
3785 | break; | |
3786 | default: | |
3787 | internal_error (__FILE__, __LINE__, "bad switch"); | |
3788 | } | |
3789 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3790 | } | |
3791 | #if 0 | |
3792 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3793 | && TYPE_NFIELDS (type) <= 2 | |
3794 | && TYPE_NFIELDS (type) >= 1 | |
3795 | && ((TYPE_NFIELDS (type) == 1 | |
3796 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3797 | == TYPE_CODE_FLT)) | |
3798 | || (TYPE_NFIELDS (type) == 2 | |
3799 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
3800 | == TYPE_CODE_FLT) | |
3801 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
3802 | == TYPE_CODE_FLT))) | |
3803 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
3804 | { | |
3805 | /* A struct that contains one or two floats. Each value is part | |
3806 | in the least significant part of their floating point | |
3807 | register.. */ | |
3808 | bfd_byte reg[MAX_REGISTER_SIZE]; | |
3809 | int regnum; | |
3810 | int field; | |
3811 | for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0; | |
3812 | field < TYPE_NFIELDS (type); field++, regnum += 2) | |
3813 | { | |
3814 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
3815 | / TARGET_CHAR_BIT); | |
3816 | if (mips_debug) | |
3817 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", | |
3818 | offset); | |
3819 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
3820 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
3821 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3822 | } | |
3823 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3824 | } | |
3825 | #endif | |
3826 | #if 0 | |
3827 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3828 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
3829 | { | |
3830 | /* A structure or union. Extract the left justified value, | |
3831 | regardless of the byte order. I.e. DO NOT USE | |
3832 | mips_xfer_lower. */ | |
3833 | int offset; | |
3834 | int regnum; | |
3835 | for (offset = 0, regnum = V0_REGNUM; | |
3836 | offset < TYPE_LENGTH (type); | |
3837 | offset += register_size (current_gdbarch, regnum), regnum++) | |
3838 | { | |
3839 | int xfer = register_size (current_gdbarch, regnum); | |
3840 | if (offset + xfer > TYPE_LENGTH (type)) | |
3841 | xfer = TYPE_LENGTH (type) - offset; | |
3842 | if (mips_debug) | |
3843 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
3844 | offset, xfer, regnum); | |
3845 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3846 | BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset); | |
3847 | } | |
3848 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3849 | } | |
3850 | #endif | |
3851 | else | |
3852 | { | |
3853 | /* A scalar extract each part but least-significant-byte | |
3854 | justified. o32 thinks registers are 4 byte, regardless of | |
3855 | the ISA. mips_stack_argsize controls this. */ | |
3856 | int offset; | |
3857 | int regnum; | |
3858 | for (offset = 0, regnum = V0_REGNUM; | |
3859 | offset < TYPE_LENGTH (type); | |
13326b4e | 3860 | offset += mips_stack_argsize (gdbarch), regnum++) |
6d82d43b | 3861 | { |
13326b4e | 3862 | int xfer = mips_stack_argsize (gdbarch); |
6d82d43b AC |
3863 | if (offset + xfer > TYPE_LENGTH (type)) |
3864 | xfer = TYPE_LENGTH (type) - offset; | |
3865 | if (mips_debug) | |
3866 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
3867 | offset, xfer, regnum); | |
3868 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
3869 | TARGET_BYTE_ORDER, readbuf, writebuf, offset); | |
3870 | } | |
3871 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3872 | } | |
3873 | } | |
3874 | ||
3875 | /* O64 ABI. This is a hacked up kind of 64-bit version of the o32 | |
3876 | ABI. */ | |
46cac009 AC |
3877 | |
3878 | static CORE_ADDR | |
7d9b040b | 3879 | mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6d82d43b AC |
3880 | struct regcache *regcache, CORE_ADDR bp_addr, |
3881 | int nargs, | |
3882 | struct value **args, CORE_ADDR sp, | |
3883 | int struct_return, CORE_ADDR struct_addr) | |
46cac009 AC |
3884 | { |
3885 | int argreg; | |
3886 | int float_argreg; | |
3887 | int argnum; | |
3888 | int len = 0; | |
3889 | int stack_offset = 0; | |
480d3dd2 | 3890 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7d9b040b | 3891 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
46cac009 | 3892 | |
25ab4790 AC |
3893 | /* For shared libraries, "t9" needs to point at the function |
3894 | address. */ | |
3895 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3896 | ||
3897 | /* Set the return address register to point to the entry point of | |
3898 | the program, where a breakpoint lies in wait. */ | |
3899 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3900 | ||
46cac009 AC |
3901 | /* First ensure that the stack and structure return address (if any) |
3902 | are properly aligned. The stack has to be at least 64-bit | |
3903 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3904 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3905 | aligned, so we round to this widest known alignment. */ | |
3906 | ||
5b03f266 AC |
3907 | sp = align_down (sp, 16); |
3908 | struct_addr = align_down (struct_addr, 16); | |
46cac009 AC |
3909 | |
3910 | /* Now make space on the stack for the args. */ | |
3911 | for (argnum = 0; argnum < nargs; argnum++) | |
6d82d43b | 3912 | len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
13326b4e | 3913 | mips_stack_argsize (gdbarch)); |
5b03f266 | 3914 | sp -= align_up (len, 16); |
46cac009 AC |
3915 | |
3916 | if (mips_debug) | |
6d82d43b | 3917 | fprintf_unfiltered (gdb_stdlog, |
5b03f266 AC |
3918 | "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n", |
3919 | paddr_nz (sp), (long) align_up (len, 16)); | |
46cac009 AC |
3920 | |
3921 | /* Initialize the integer and float register pointers. */ | |
3922 | argreg = A0_REGNUM; | |
56cea623 | 3923 | float_argreg = mips_fpa0_regnum (current_gdbarch); |
46cac009 AC |
3924 | |
3925 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
3926 | if (struct_return) | |
3927 | { | |
3928 | if (mips_debug) | |
3929 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3930 | "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n", |
46cac009 AC |
3931 | argreg, paddr_nz (struct_addr)); |
3932 | write_register (argreg++, struct_addr); | |
13326b4e | 3933 | stack_offset += mips_stack_argsize (gdbarch); |
46cac009 AC |
3934 | } |
3935 | ||
3936 | /* Now load as many as possible of the first arguments into | |
3937 | registers, and push the rest onto the stack. Loop thru args | |
3938 | from first to last. */ | |
3939 | for (argnum = 0; argnum < nargs; argnum++) | |
3940 | { | |
3941 | char *val; | |
46cac009 AC |
3942 | struct value *arg = args[argnum]; |
3943 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3944 | int len = TYPE_LENGTH (arg_type); | |
3945 | enum type_code typecode = TYPE_CODE (arg_type); | |
3946 | ||
3947 | if (mips_debug) | |
3948 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3949 | "mips_o64_push_dummy_call: %d len=%d type=%d", |
ebafbe83 MS |
3950 | argnum + 1, len, (int) typecode); |
3951 | ||
3952 | val = (char *) VALUE_CONTENTS (arg); | |
3953 | ||
3954 | /* 32-bit ABIs always start floating point arguments in an | |
3955 | even-numbered floating point register. Round the FP register | |
3956 | up before the check to see if there are any FP registers | |
3957 | left. O32/O64 targets also pass the FP in the integer | |
3958 | registers so also round up normal registers. */ | |
ceae6e75 AC |
3959 | if (mips_abi_regsize (gdbarch) < 8 |
3960 | && fp_register_arg_p (typecode, arg_type)) | |
ebafbe83 MS |
3961 | { |
3962 | if ((float_argreg & 1)) | |
3963 | float_argreg++; | |
3964 | } | |
3965 | ||
3966 | /* Floating point arguments passed in registers have to be | |
3967 | treated specially. On 32-bit architectures, doubles | |
3968 | are passed in register pairs; the even register gets | |
3969 | the low word, and the odd register gets the high word. | |
3970 | On O32/O64, the first two floating point arguments are | |
3971 | also copied to general registers, because MIPS16 functions | |
3972 | don't use float registers for arguments. This duplication of | |
3973 | arguments in general registers can't hurt non-MIPS16 functions | |
3974 | because those registers are normally skipped. */ | |
3975 | ||
3976 | if (fp_register_arg_p (typecode, arg_type) | |
3977 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3978 | { | |
ceae6e75 | 3979 | if (mips_abi_regsize (gdbarch) < 8 && len == 8) |
ebafbe83 MS |
3980 | { |
3981 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3982 | unsigned long regval; | |
3983 | ||
3984 | /* Write the low word of the double to the even register(s). */ | |
3985 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3986 | if (mips_debug) | |
3987 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3988 | float_argreg, phex (regval, 4)); | |
3989 | write_register (float_argreg++, regval); | |
3990 | if (mips_debug) | |
3991 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3992 | argreg, phex (regval, 4)); | |
3993 | write_register (argreg++, regval); | |
3994 | ||
3995 | /* Write the high word of the double to the odd register(s). */ | |
3996 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3997 | if (mips_debug) | |
3998 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3999 | float_argreg, phex (regval, 4)); | |
4000 | write_register (float_argreg++, regval); | |
4001 | ||
4002 | if (mips_debug) | |
4003 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
4004 | argreg, phex (regval, 4)); | |
4005 | write_register (argreg++, regval); | |
4006 | } | |
4007 | else | |
4008 | { | |
4009 | /* This is a floating point value that fits entirely | |
4010 | in a single register. */ | |
4011 | /* On 32 bit ABI's the float_argreg is further adjusted | |
6d82d43b | 4012 | above to ensure that it is even register aligned. */ |
ebafbe83 MS |
4013 | LONGEST regval = extract_unsigned_integer (val, len); |
4014 | if (mips_debug) | |
4015 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
4016 | float_argreg, phex (regval, len)); | |
4017 | write_register (float_argreg++, regval); | |
4018 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
6d82d43b AC |
4019 | registers for each argument. The below is (my |
4020 | guess) to ensure that the corresponding integer | |
4021 | register has reserved the same space. */ | |
ebafbe83 MS |
4022 | if (mips_debug) |
4023 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
4024 | argreg, phex (regval, len)); | |
4025 | write_register (argreg, regval); | |
ceae6e75 | 4026 | argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2; |
ebafbe83 MS |
4027 | } |
4028 | /* Reserve space for the FP register. */ | |
13326b4e | 4029 | stack_offset += align_up (len, mips_stack_argsize (gdbarch)); |
ebafbe83 MS |
4030 | } |
4031 | else | |
4032 | { | |
4033 | /* Copy the argument to general registers or the stack in | |
4034 | register-sized pieces. Large arguments are split between | |
4035 | registers and stack. */ | |
4246e332 | 4036 | /* Note: structs whose size is not a multiple of |
d5ac5a39 AC |
4037 | mips_abi_regsize() are treated specially: Irix cc passes |
4038 | them in registers where gcc sometimes puts them on the | |
4039 | stack. For maximum compatibility, we will put them in | |
4040 | both places. */ | |
13326b4e AC |
4041 | int odd_sized_struct = ((len > mips_abi_regsize (gdbarch)) |
4042 | && (len % mips_abi_regsize (gdbarch) != 0)); | |
ebafbe83 MS |
4043 | /* Structures should be aligned to eight bytes (even arg registers) |
4044 | on MIPS_ABI_O32, if their first member has double precision. */ | |
13326b4e | 4045 | if (mips_abi_regsize (gdbarch) < 8 |
ebafbe83 MS |
4046 | && mips_type_needs_double_align (arg_type)) |
4047 | { | |
4048 | if ((argreg & 1)) | |
6d82d43b | 4049 | argreg++; |
ebafbe83 MS |
4050 | } |
4051 | /* Note: Floating-point values that didn't fit into an FP | |
6d82d43b | 4052 | register are only written to memory. */ |
ebafbe83 MS |
4053 | while (len > 0) |
4054 | { | |
4055 | /* Remember if the argument was written to the stack. */ | |
4056 | int stack_used_p = 0; | |
13326b4e AC |
4057 | int partial_len = (len < mips_abi_regsize (gdbarch) |
4058 | ? len : mips_abi_regsize (gdbarch)); | |
ebafbe83 MS |
4059 | |
4060 | if (mips_debug) | |
4061 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
4062 | partial_len); | |
4063 | ||
4064 | /* Write this portion of the argument to the stack. */ | |
4065 | if (argreg > MIPS_LAST_ARG_REGNUM | |
4066 | || odd_sized_struct | |
4067 | || fp_register_arg_p (typecode, arg_type)) | |
4068 | { | |
4069 | /* Should shorter than int integer values be | |
4070 | promoted to int before being stored? */ | |
4071 | int longword_offset = 0; | |
4072 | CORE_ADDR addr; | |
4073 | stack_used_p = 1; | |
4074 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4075 | { | |
13326b4e | 4076 | if (mips_stack_argsize (gdbarch) == 8 |
480d3dd2 AC |
4077 | && (typecode == TYPE_CODE_INT |
4078 | || typecode == TYPE_CODE_PTR | |
6d82d43b | 4079 | || typecode == TYPE_CODE_FLT) && len <= 4) |
13326b4e | 4080 | longword_offset = mips_stack_argsize (gdbarch) - len; |
ebafbe83 MS |
4081 | } |
4082 | ||
4083 | if (mips_debug) | |
4084 | { | |
4085 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
4086 | paddr_nz (stack_offset)); | |
4087 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
4088 | paddr_nz (longword_offset)); | |
4089 | } | |
4090 | ||
4091 | addr = sp + stack_offset + longword_offset; | |
4092 | ||
4093 | if (mips_debug) | |
4094 | { | |
4095 | int i; | |
6d82d43b | 4096 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
ebafbe83 MS |
4097 | paddr_nz (addr)); |
4098 | for (i = 0; i < partial_len; i++) | |
4099 | { | |
6d82d43b | 4100 | fprintf_unfiltered (gdb_stdlog, "%02x", |
ebafbe83 MS |
4101 | val[i] & 0xff); |
4102 | } | |
4103 | } | |
4104 | write_memory (addr, val, partial_len); | |
4105 | } | |
4106 | ||
4107 | /* Note!!! This is NOT an else clause. Odd sized | |
4108 | structs may go thru BOTH paths. Floating point | |
4109 | arguments will not. */ | |
4110 | /* Write this portion of the argument to a general | |
6d82d43b | 4111 | purpose register. */ |
ebafbe83 MS |
4112 | if (argreg <= MIPS_LAST_ARG_REGNUM |
4113 | && !fp_register_arg_p (typecode, arg_type)) | |
4114 | { | |
4115 | LONGEST regval = extract_signed_integer (val, partial_len); | |
4246e332 | 4116 | /* Value may need to be sign extended, because |
1b13c4f6 | 4117 | mips_isa_regsize() != mips_abi_regsize(). */ |
ebafbe83 MS |
4118 | |
4119 | /* A non-floating-point argument being passed in a | |
4120 | general register. If a struct or union, and if | |
4121 | the remaining length is smaller than the register | |
4122 | size, we have to adjust the register value on | |
4123 | big endian targets. | |
4124 | ||
4125 | It does not seem to be necessary to do the | |
4126 | same for integral types. | |
4127 | ||
4128 | Also don't do this adjustment on O64 binaries. | |
4129 | ||
4130 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
4131 | outputting LE O32 with sizeof (struct) < | |
1b13c4f6 | 4132 | mips_abi_regsize(), generates a left shift as |
ebafbe83 MS |
4133 | part of storing the argument in a register a |
4134 | register (the left shift isn't generated when | |
1b13c4f6 | 4135 | sizeof (struct) >= mips_abi_regsize()). Since |
480d3dd2 AC |
4136 | it is quite possible that this is GCC |
4137 | contradicting the LE/O32 ABI, GDB has not been | |
4138 | adjusted to accommodate this. Either someone | |
4139 | needs to demonstrate that the LE/O32 ABI | |
4140 | specifies such a left shift OR this new ABI gets | |
4141 | identified as such and GDB gets tweaked | |
4142 | accordingly. */ | |
4143 | ||
13326b4e | 4144 | if (mips_abi_regsize (gdbarch) < 8 |
ebafbe83 | 4145 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
13326b4e | 4146 | && partial_len < mips_abi_regsize (gdbarch) |
ebafbe83 MS |
4147 | && (typecode == TYPE_CODE_STRUCT || |
4148 | typecode == TYPE_CODE_UNION)) | |
13326b4e | 4149 | regval <<= ((mips_abi_regsize (gdbarch) - partial_len) * |
ebafbe83 MS |
4150 | TARGET_CHAR_BIT); |
4151 | ||
4152 | if (mips_debug) | |
4153 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
4154 | argreg, | |
6d82d43b | 4155 | phex (regval, |
13326b4e | 4156 | mips_abi_regsize (gdbarch))); |
ebafbe83 MS |
4157 | write_register (argreg, regval); |
4158 | argreg++; | |
4159 | ||
4160 | /* Prevent subsequent floating point arguments from | |
4161 | being passed in floating point registers. */ | |
4162 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
4163 | } | |
4164 | ||
4165 | len -= partial_len; | |
4166 | val += partial_len; | |
4167 | ||
4168 | /* Compute the the offset into the stack at which we | |
6d82d43b | 4169 | will copy the next parameter. |
ebafbe83 | 4170 | |
6d82d43b AC |
4171 | In older ABIs, the caller reserved space for |
4172 | registers that contained arguments. This was loosely | |
4173 | refered to as their "home". Consequently, space is | |
4174 | always allocated. */ | |
ebafbe83 | 4175 | |
480d3dd2 | 4176 | stack_offset += align_up (partial_len, |
13326b4e | 4177 | mips_stack_argsize (gdbarch)); |
ebafbe83 MS |
4178 | } |
4179 | } | |
4180 | if (mips_debug) | |
4181 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
4182 | } | |
4183 | ||
f10683bb | 4184 | regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp); |
310e9b6a | 4185 | |
ebafbe83 MS |
4186 | /* Return adjusted stack pointer. */ |
4187 | return sp; | |
4188 | } | |
4189 | ||
f7ab6ec6 | 4190 | static void |
6d82d43b AC |
4191 | mips_o64_extract_return_value (struct type *valtype, |
4192 | char regbuf[], char *valbuf) | |
c906108c | 4193 | { |
6d82d43b AC |
4194 | struct return_value_word lo; |
4195 | struct return_value_word hi; | |
4196 | return_value_location (valtype, &hi, &lo); | |
c906108c | 4197 | |
6d82d43b AC |
4198 | memcpy (valbuf + lo.buf_offset, |
4199 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + | |
4200 | lo.reg_offset, lo.len); | |
4201 | ||
4202 | if (hi.len > 0) | |
4203 | memcpy (valbuf + hi.buf_offset, | |
4204 | regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + | |
4205 | hi.reg_offset, hi.len); | |
4206 | } | |
4207 | ||
4208 | static void | |
4209 | mips_o64_store_return_value (struct type *valtype, char *valbuf) | |
4210 | { | |
4211 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4212 | struct return_value_word lo; | |
4213 | struct return_value_word hi; | |
4214 | return_value_location (valtype, &hi, &lo); | |
4215 | ||
4216 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4217 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
4218 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), | |
4219 | raw_buffer, register_size (current_gdbarch, | |
4220 | lo.reg)); | |
4221 | ||
4222 | if (hi.len > 0) | |
4223 | { | |
4224 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4225 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
4226 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), | |
4227 | raw_buffer, | |
4228 | register_size (current_gdbarch, | |
4229 | hi.reg)); | |
4230 | } | |
4231 | } | |
4232 | ||
dd824b04 DJ |
4233 | /* Floating point register management. |
4234 | ||
4235 | Background: MIPS1 & 2 fp registers are 32 bits wide. To support | |
4236 | 64bit operations, these early MIPS cpus treat fp register pairs | |
4237 | (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp | |
4238 | registers and offer a compatibility mode that emulates the MIPS2 fp | |
4239 | model. When operating in MIPS2 fp compat mode, later cpu's split | |
4240 | double precision floats into two 32-bit chunks and store them in | |
4241 | consecutive fp regs. To display 64-bit floats stored in this | |
4242 | fashion, we have to combine 32 bits from f0 and 32 bits from f1. | |
4243 | Throw in user-configurable endianness and you have a real mess. | |
4244 | ||
4245 | The way this works is: | |
4246 | - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit | |
4247 | double-precision value will be split across two logical registers. | |
4248 | The lower-numbered logical register will hold the low-order bits, | |
4249 | regardless of the processor's endianness. | |
4250 | - If we are on a 64-bit processor, and we are looking for a | |
4251 | single-precision value, it will be in the low ordered bits | |
4252 | of a 64-bit GPR (after mfc1, for example) or a 64-bit register | |
4253 | save slot in memory. | |
4254 | - If we are in 64-bit mode, everything is straightforward. | |
4255 | ||
4256 | Note that this code only deals with "live" registers at the top of the | |
4257 | stack. We will attempt to deal with saved registers later, when | |
4258 | the raw/cooked register interface is in place. (We need a general | |
4259 | interface that can deal with dynamic saved register sizes -- fp | |
4260 | regs could be 32 bits wide in one frame and 64 on the frame above | |
4261 | and below). */ | |
4262 | ||
67b2c998 DJ |
4263 | static struct type * |
4264 | mips_float_register_type (void) | |
4265 | { | |
361d1df0 | 4266 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
4267 | return builtin_type_ieee_single_big; |
4268 | else | |
4269 | return builtin_type_ieee_single_little; | |
4270 | } | |
4271 | ||
4272 | static struct type * | |
4273 | mips_double_register_type (void) | |
4274 | { | |
361d1df0 | 4275 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
4276 | return builtin_type_ieee_double_big; |
4277 | else | |
4278 | return builtin_type_ieee_double_little; | |
4279 | } | |
4280 | ||
dd824b04 DJ |
4281 | /* Copy a 32-bit single-precision value from the current frame |
4282 | into rare_buffer. */ | |
4283 | ||
4284 | static void | |
e11c53d2 AC |
4285 | mips_read_fp_register_single (struct frame_info *frame, int regno, |
4286 | char *rare_buffer) | |
dd824b04 | 4287 | { |
719ec221 | 4288 | int raw_size = register_size (current_gdbarch, regno); |
dd824b04 DJ |
4289 | char *raw_buffer = alloca (raw_size); |
4290 | ||
e11c53d2 | 4291 | if (!frame_register_read (frame, regno, raw_buffer)) |
dd824b04 DJ |
4292 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
4293 | if (raw_size == 8) | |
4294 | { | |
4295 | /* We have a 64-bit value for this register. Find the low-order | |
6d82d43b | 4296 | 32 bits. */ |
dd824b04 DJ |
4297 | int offset; |
4298 | ||
4299 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4300 | offset = 4; | |
4301 | else | |
4302 | offset = 0; | |
4303 | ||
4304 | memcpy (rare_buffer, raw_buffer + offset, 4); | |
4305 | } | |
4306 | else | |
4307 | { | |
4308 | memcpy (rare_buffer, raw_buffer, 4); | |
4309 | } | |
4310 | } | |
4311 | ||
4312 | /* Copy a 64-bit double-precision value from the current frame into | |
4313 | rare_buffer. This may include getting half of it from the next | |
4314 | register. */ | |
4315 | ||
4316 | static void | |
e11c53d2 AC |
4317 | mips_read_fp_register_double (struct frame_info *frame, int regno, |
4318 | char *rare_buffer) | |
dd824b04 | 4319 | { |
719ec221 | 4320 | int raw_size = register_size (current_gdbarch, regno); |
dd824b04 DJ |
4321 | |
4322 | if (raw_size == 8 && !mips2_fp_compat ()) | |
4323 | { | |
4324 | /* We have a 64-bit value for this register, and we should use | |
6d82d43b | 4325 | all 64 bits. */ |
e11c53d2 | 4326 | if (!frame_register_read (frame, regno, rare_buffer)) |
dd824b04 DJ |
4327 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
4328 | } | |
4329 | else | |
4330 | { | |
56cea623 | 4331 | if ((regno - mips_regnum (current_gdbarch)->fp0) & 1) |
dd824b04 DJ |
4332 | internal_error (__FILE__, __LINE__, |
4333 | "mips_read_fp_register_double: bad access to " | |
4334 | "odd-numbered FP register"); | |
4335 | ||
4336 | /* mips_read_fp_register_single will find the correct 32 bits from | |
6d82d43b | 4337 | each register. */ |
dd824b04 DJ |
4338 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
4339 | { | |
e11c53d2 AC |
4340 | mips_read_fp_register_single (frame, regno, rare_buffer + 4); |
4341 | mips_read_fp_register_single (frame, regno + 1, rare_buffer); | |
dd824b04 | 4342 | } |
361d1df0 | 4343 | else |
dd824b04 | 4344 | { |
e11c53d2 AC |
4345 | mips_read_fp_register_single (frame, regno, rare_buffer); |
4346 | mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4); | |
dd824b04 DJ |
4347 | } |
4348 | } | |
4349 | } | |
4350 | ||
c906108c | 4351 | static void |
e11c53d2 AC |
4352 | mips_print_fp_register (struct ui_file *file, struct frame_info *frame, |
4353 | int regnum) | |
c5aa993b | 4354 | { /* do values for FP (float) regs */ |
dd824b04 | 4355 | char *raw_buffer; |
3903d437 AC |
4356 | double doub, flt1; /* doubles extracted from raw hex data */ |
4357 | int inv1, inv2; | |
c5aa993b | 4358 | |
6d82d43b AC |
4359 | raw_buffer = |
4360 | (char *) alloca (2 * | |
4361 | register_size (current_gdbarch, | |
4362 | mips_regnum (current_gdbarch)->fp0)); | |
c906108c | 4363 | |
e11c53d2 AC |
4364 | fprintf_filtered (file, "%s:", REGISTER_NAME (regnum)); |
4365 | fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)), | |
4366 | ""); | |
f0ef6b29 | 4367 | |
719ec221 | 4368 | if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ()) |
c906108c | 4369 | { |
f0ef6b29 KB |
4370 | /* 4-byte registers: Print hex and floating. Also print even |
4371 | numbered registers as doubles. */ | |
e11c53d2 | 4372 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
67b2c998 | 4373 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c5aa993b | 4374 | |
6d82d43b AC |
4375 | print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', |
4376 | file); | |
dd824b04 | 4377 | |
e11c53d2 | 4378 | fprintf_filtered (file, " flt: "); |
1adad886 | 4379 | if (inv1) |
e11c53d2 | 4380 | fprintf_filtered (file, " <invalid float> "); |
1adad886 | 4381 | else |
e11c53d2 | 4382 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4383 | |
f0ef6b29 KB |
4384 | if (regnum % 2 == 0) |
4385 | { | |
e11c53d2 | 4386 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 | 4387 | doub = unpack_double (mips_double_register_type (), raw_buffer, |
6d82d43b | 4388 | &inv2); |
1adad886 | 4389 | |
e11c53d2 | 4390 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4391 | if (inv2) |
e11c53d2 | 4392 | fprintf_filtered (file, "<invalid double>"); |
f0ef6b29 | 4393 | else |
e11c53d2 | 4394 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 | 4395 | } |
c906108c SS |
4396 | } |
4397 | else | |
dd824b04 | 4398 | { |
f0ef6b29 | 4399 | /* Eight byte registers: print each one as hex, float and double. */ |
e11c53d2 | 4400 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
2f38ef89 | 4401 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c906108c | 4402 | |
e11c53d2 | 4403 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 KB |
4404 | doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2); |
4405 | ||
361d1df0 | 4406 | |
6d82d43b AC |
4407 | print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', |
4408 | file); | |
f0ef6b29 | 4409 | |
e11c53d2 | 4410 | fprintf_filtered (file, " flt: "); |
1adad886 | 4411 | if (inv1) |
e11c53d2 | 4412 | fprintf_filtered (file, "<invalid float>"); |
1adad886 | 4413 | else |
e11c53d2 | 4414 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4415 | |
e11c53d2 | 4416 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4417 | if (inv2) |
e11c53d2 | 4418 | fprintf_filtered (file, "<invalid double>"); |
1adad886 | 4419 | else |
e11c53d2 | 4420 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 KB |
4421 | } |
4422 | } | |
4423 | ||
4424 | static void | |
e11c53d2 AC |
4425 | mips_print_register (struct ui_file *file, struct frame_info *frame, |
4426 | int regnum, int all) | |
f0ef6b29 | 4427 | { |
a4b8ebc8 | 4428 | struct gdbarch *gdbarch = get_frame_arch (frame); |
d9d9c31f | 4429 | char raw_buffer[MAX_REGISTER_SIZE]; |
f0ef6b29 | 4430 | int offset; |
1adad886 | 4431 | |
a4b8ebc8 | 4432 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) |
f0ef6b29 | 4433 | { |
e11c53d2 | 4434 | mips_print_fp_register (file, frame, regnum); |
f0ef6b29 KB |
4435 | return; |
4436 | } | |
4437 | ||
4438 | /* Get the data in raw format. */ | |
e11c53d2 | 4439 | if (!frame_register_read (frame, regnum, raw_buffer)) |
f0ef6b29 | 4440 | { |
e11c53d2 | 4441 | fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum)); |
f0ef6b29 | 4442 | return; |
c906108c | 4443 | } |
f0ef6b29 | 4444 | |
e11c53d2 | 4445 | fputs_filtered (REGISTER_NAME (regnum), file); |
f0ef6b29 KB |
4446 | |
4447 | /* The problem with printing numeric register names (r26, etc.) is that | |
4448 | the user can't use them on input. Probably the best solution is to | |
4449 | fix it so that either the numeric or the funky (a2, etc.) names | |
4450 | are accepted on input. */ | |
4451 | if (regnum < MIPS_NUMREGS) | |
e11c53d2 | 4452 | fprintf_filtered (file, "(r%d): ", regnum); |
f0ef6b29 | 4453 | else |
e11c53d2 | 4454 | fprintf_filtered (file, ": "); |
f0ef6b29 KB |
4455 | |
4456 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
6d82d43b AC |
4457 | offset = |
4458 | register_size (current_gdbarch, | |
4459 | regnum) - register_size (current_gdbarch, regnum); | |
f0ef6b29 KB |
4460 | else |
4461 | offset = 0; | |
4462 | ||
6d82d43b AC |
4463 | print_scalar_formatted (raw_buffer + offset, |
4464 | gdbarch_register_type (gdbarch, regnum), 'x', 0, | |
4465 | file); | |
c906108c SS |
4466 | } |
4467 | ||
f0ef6b29 KB |
4468 | /* Replacement for generic do_registers_info. |
4469 | Print regs in pretty columns. */ | |
4470 | ||
4471 | static int | |
e11c53d2 AC |
4472 | print_fp_register_row (struct ui_file *file, struct frame_info *frame, |
4473 | int regnum) | |
f0ef6b29 | 4474 | { |
e11c53d2 AC |
4475 | fprintf_filtered (file, " "); |
4476 | mips_print_fp_register (file, frame, regnum); | |
4477 | fprintf_filtered (file, "\n"); | |
f0ef6b29 KB |
4478 | return regnum + 1; |
4479 | } | |
4480 | ||
4481 | ||
c906108c SS |
4482 | /* Print a row's worth of GP (int) registers, with name labels above */ |
4483 | ||
4484 | static int | |
e11c53d2 | 4485 | print_gp_register_row (struct ui_file *file, struct frame_info *frame, |
a4b8ebc8 | 4486 | int start_regnum) |
c906108c | 4487 | { |
a4b8ebc8 | 4488 | struct gdbarch *gdbarch = get_frame_arch (frame); |
c906108c | 4489 | /* do values for GP (int) regs */ |
d9d9c31f | 4490 | char raw_buffer[MAX_REGISTER_SIZE]; |
d5ac5a39 | 4491 | int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */ |
c906108c | 4492 | int col, byte; |
a4b8ebc8 | 4493 | int regnum; |
c906108c SS |
4494 | |
4495 | /* For GP registers, we print a separate row of names above the vals */ | |
e11c53d2 | 4496 | fprintf_filtered (file, " "); |
a4b8ebc8 | 4497 | for (col = 0, regnum = start_regnum; |
6d82d43b | 4498 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
c906108c SS |
4499 | { |
4500 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4501 | continue; /* unused register */ |
6d82d43b AC |
4502 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4503 | TYPE_CODE_FLT) | |
c5aa993b | 4504 | break; /* end the row: reached FP register */ |
6d82d43b | 4505 | fprintf_filtered (file, |
d5ac5a39 | 4506 | mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s", |
e11c53d2 | 4507 | REGISTER_NAME (regnum)); |
c906108c SS |
4508 | col++; |
4509 | } | |
a4b8ebc8 | 4510 | /* print the R0 to R31 names */ |
20e6603c AC |
4511 | if ((start_regnum % NUM_REGS) < MIPS_NUMREGS) |
4512 | fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS); | |
4513 | else | |
4514 | fprintf_filtered (file, "\n "); | |
c906108c | 4515 | |
c906108c | 4516 | /* now print the values in hex, 4 or 8 to the row */ |
a4b8ebc8 | 4517 | for (col = 0, regnum = start_regnum; |
6d82d43b | 4518 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
c906108c SS |
4519 | { |
4520 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4521 | continue; /* unused register */ |
6d82d43b AC |
4522 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4523 | TYPE_CODE_FLT) | |
c5aa993b | 4524 | break; /* end row: reached FP register */ |
c906108c | 4525 | /* OK: get the data in raw format. */ |
e11c53d2 | 4526 | if (!frame_register_read (frame, regnum, raw_buffer)) |
c906108c SS |
4527 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); |
4528 | /* pad small registers */ | |
4246e332 | 4529 | for (byte = 0; |
d5ac5a39 | 4530 | byte < (mips_abi_regsize (current_gdbarch) |
6d82d43b | 4531 | - register_size (current_gdbarch, regnum)); byte++) |
c906108c SS |
4532 | printf_filtered (" "); |
4533 | /* Now print the register value in hex, endian order. */ | |
d7449b42 | 4534 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
6d82d43b AC |
4535 | for (byte = |
4536 | register_size (current_gdbarch, | |
4537 | regnum) - register_size (current_gdbarch, regnum); | |
4538 | byte < register_size (current_gdbarch, regnum); byte++) | |
e11c53d2 | 4539 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
c906108c | 4540 | else |
c73e8f27 | 4541 | for (byte = register_size (current_gdbarch, regnum) - 1; |
6d82d43b | 4542 | byte >= 0; byte--) |
e11c53d2 AC |
4543 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
4544 | fprintf_filtered (file, " "); | |
c906108c SS |
4545 | col++; |
4546 | } | |
c5aa993b | 4547 | if (col > 0) /* ie. if we actually printed anything... */ |
e11c53d2 | 4548 | fprintf_filtered (file, "\n"); |
c906108c SS |
4549 | |
4550 | return regnum; | |
4551 | } | |
4552 | ||
4553 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
4554 | ||
bf1f5b4c | 4555 | static void |
e11c53d2 AC |
4556 | mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
4557 | struct frame_info *frame, int regnum, int all) | |
c906108c | 4558 | { |
c5aa993b | 4559 | if (regnum != -1) /* do one specified register */ |
c906108c | 4560 | { |
a4b8ebc8 | 4561 | gdb_assert (regnum >= NUM_REGS); |
c906108c SS |
4562 | if (*(REGISTER_NAME (regnum)) == '\0') |
4563 | error ("Not a valid register for the current processor type"); | |
4564 | ||
e11c53d2 AC |
4565 | mips_print_register (file, frame, regnum, 0); |
4566 | fprintf_filtered (file, "\n"); | |
c906108c | 4567 | } |
c5aa993b JM |
4568 | else |
4569 | /* do all (or most) registers */ | |
c906108c | 4570 | { |
a4b8ebc8 AC |
4571 | regnum = NUM_REGS; |
4572 | while (regnum < NUM_REGS + NUM_PSEUDO_REGS) | |
c906108c | 4573 | { |
6d82d43b AC |
4574 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == |
4575 | TYPE_CODE_FLT) | |
e11c53d2 AC |
4576 | { |
4577 | if (all) /* true for "INFO ALL-REGISTERS" command */ | |
4578 | regnum = print_fp_register_row (file, frame, regnum); | |
4579 | else | |
4580 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
4581 | } | |
c906108c | 4582 | else |
e11c53d2 | 4583 | regnum = print_gp_register_row (file, frame, regnum); |
c906108c SS |
4584 | } |
4585 | } | |
4586 | } | |
4587 | ||
c906108c SS |
4588 | /* Is this a branch with a delay slot? */ |
4589 | ||
a14ed312 | 4590 | static int is_delayed (unsigned long); |
c906108c SS |
4591 | |
4592 | static int | |
acdb74a0 | 4593 | is_delayed (unsigned long insn) |
c906108c SS |
4594 | { |
4595 | int i; | |
4596 | for (i = 0; i < NUMOPCODES; ++i) | |
4597 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
4598 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
4599 | break; | |
4600 | return (i < NUMOPCODES | |
4601 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
4602 | | INSN_COND_BRANCH_DELAY | |
4603 | | INSN_COND_BRANCH_LIKELY))); | |
4604 | } | |
4605 | ||
4606 | int | |
acdb74a0 | 4607 | mips_step_skips_delay (CORE_ADDR pc) |
c906108c SS |
4608 | { |
4609 | char buf[MIPS_INSTLEN]; | |
4610 | ||
4611 | /* There is no branch delay slot on MIPS16. */ | |
4612 | if (pc_is_mips16 (pc)) | |
4613 | return 0; | |
4614 | ||
4615 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
4616 | /* If error reading memory, guess that it is not a delayed branch. */ | |
4617 | return 0; | |
6d82d43b AC |
4618 | return is_delayed ((unsigned long) |
4619 | extract_unsigned_integer (buf, MIPS_INSTLEN)); | |
c906108c SS |
4620 | } |
4621 | ||
c906108c SS |
4622 | /* Skip the PC past function prologue instructions (32-bit version). |
4623 | This is a helper function for mips_skip_prologue. */ | |
4624 | ||
4625 | static CORE_ADDR | |
f7b9e9fc | 4626 | mips32_skip_prologue (CORE_ADDR pc) |
c906108c | 4627 | { |
c5aa993b JM |
4628 | t_inst inst; |
4629 | CORE_ADDR end_pc; | |
4630 | int seen_sp_adjust = 0; | |
4631 | int load_immediate_bytes = 0; | |
4632 | ||
74da7425 AC |
4633 | /* Find an upper bound on the prologue. */ |
4634 | end_pc = skip_prologue_using_sal (pc); | |
4635 | if (end_pc == 0) | |
6d82d43b | 4636 | end_pc = pc + 100; /* Magic. */ |
74da7425 | 4637 | |
c5aa993b JM |
4638 | /* Skip the typical prologue instructions. These are the stack adjustment |
4639 | instruction and the instructions that save registers on the stack | |
4640 | or in the gcc frame. */ | |
74da7425 | 4641 | for (; pc < end_pc; pc += MIPS_INSTLEN) |
c5aa993b JM |
4642 | { |
4643 | unsigned long high_word; | |
c906108c | 4644 | |
c5aa993b JM |
4645 | inst = mips_fetch_instruction (pc); |
4646 | high_word = (inst >> 16) & 0xffff; | |
c906108c | 4647 | |
c5aa993b JM |
4648 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
4649 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
4650 | seen_sp_adjust = 1; | |
4651 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ | |
4652 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
4653 | seen_sp_adjust = 1; | |
4654 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ | |
4655 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
4656 | && (inst & 0x001F0000)) /* reg != $zero */ | |
4657 | continue; | |
4658 | ||
4659 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ | |
4660 | continue; | |
4661 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
4662 | /* sx reg,n($s8) */ | |
4663 | continue; /* reg != $zero */ | |
4664 | ||
4665 | /* move $s8,$sp. With different versions of gas this will be either | |
4666 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. | |
4667 | Accept any one of these. */ | |
4668 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
4669 | continue; | |
4670 | ||
4671 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ | |
4672 | continue; | |
6d82d43b AC |
4673 | else if (high_word == 0x3c1c) /* lui $gp,n */ |
4674 | continue; | |
4675 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ | |
4676 | continue; | |
4677 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
4678 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
4679 | continue; | |
4680 | /* The following instructions load $at or $t0 with an immediate | |
4681 | value in preparation for a stack adjustment via | |
4682 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
4683 | a local variable, so we accept them only before a stack adjustment | |
4684 | instruction was seen. */ | |
4685 | else if (!seen_sp_adjust) | |
cb1d2653 | 4686 | { |
6d82d43b AC |
4687 | if (high_word == 0x3c01 || /* lui $at,n */ |
4688 | high_word == 0x3c08) /* lui $t0,n */ | |
4689 | { | |
4690 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4691 | continue; | |
4692 | } | |
4693 | else if (high_word == 0x3421 || /* ori $at,$at,n */ | |
4694 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
4695 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
4696 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
4697 | { | |
4698 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4699 | continue; | |
4700 | } | |
4701 | else | |
4702 | break; | |
cb1d2653 | 4703 | } |
6d82d43b AC |
4704 | else |
4705 | break; | |
46cac009 | 4706 | } |
6d82d43b AC |
4707 | |
4708 | /* In a frameless function, we might have incorrectly | |
4709 | skipped some load immediate instructions. Undo the skipping | |
4710 | if the load immediate was not followed by a stack adjustment. */ | |
4711 | if (load_immediate_bytes && !seen_sp_adjust) | |
4712 | pc -= load_immediate_bytes; | |
4713 | return pc; | |
46cac009 AC |
4714 | } |
4715 | ||
6d82d43b AC |
4716 | /* Skip the PC past function prologue instructions (16-bit version). |
4717 | This is a helper function for mips_skip_prologue. */ | |
cb1d2653 | 4718 | |
6d82d43b AC |
4719 | static CORE_ADDR |
4720 | mips16_skip_prologue (CORE_ADDR pc) | |
c906108c | 4721 | { |
6d82d43b AC |
4722 | CORE_ADDR end_pc; |
4723 | int extend_bytes = 0; | |
4724 | int prev_extend_bytes; | |
4725 | ||
4726 | /* Table of instructions likely to be found in a function prologue. */ | |
4727 | static struct | |
4728 | { | |
4729 | unsigned short inst; | |
4730 | unsigned short mask; | |
4731 | } | |
4732 | table[] = | |
4733 | { | |
7a292a7a | 4734 | { |
6d82d43b AC |
4735 | 0x6300, 0xff00} |
4736 | , /* addiu $sp,offset */ | |
88658117 | 4737 | { |
6d82d43b AC |
4738 | 0xfb00, 0xff00} |
4739 | , /* daddiu $sp,offset */ | |
88658117 | 4740 | { |
6d82d43b AC |
4741 | 0xd000, 0xf800} |
4742 | , /* sw reg,n($sp) */ | |
4743 | { | |
4744 | 0xf900, 0xff00} | |
4745 | , /* sd reg,n($sp) */ | |
4746 | { | |
4747 | 0x6200, 0xff00} | |
4748 | , /* sw $ra,n($sp) */ | |
4749 | { | |
4750 | 0xfa00, 0xff00} | |
4751 | , /* sd $ra,n($sp) */ | |
4752 | { | |
4753 | 0x673d, 0xffff} | |
4754 | , /* move $s1,sp */ | |
4755 | { | |
4756 | 0xd980, 0xff80} | |
4757 | , /* sw $a0-$a3,n($s1) */ | |
4758 | { | |
4759 | 0x6704, 0xff1c} | |
4760 | , /* move reg,$a0-$a3 */ | |
4761 | { | |
4762 | 0xe809, 0xf81f} | |
4763 | , /* entry pseudo-op */ | |
4764 | { | |
4765 | 0x0100, 0xff00} | |
4766 | , /* addiu $s1,$sp,n */ | |
4767 | { | |
4768 | 0, 0} /* end of table marker */ | |
4769 | }; | |
4770 | ||
4771 | /* Find an upper bound on the prologue. */ | |
4772 | end_pc = skip_prologue_using_sal (pc); | |
4773 | if (end_pc == 0) | |
4774 | end_pc = pc + 100; /* Magic. */ | |
4775 | ||
4776 | /* Skip the typical prologue instructions. These are the stack adjustment | |
4777 | instruction and the instructions that save registers on the stack | |
4778 | or in the gcc frame. */ | |
4779 | for (; pc < end_pc; pc += MIPS16_INSTLEN) | |
4780 | { | |
4781 | unsigned short inst; | |
4782 | int i; | |
4783 | ||
4784 | inst = mips_fetch_instruction (pc); | |
4785 | ||
4786 | /* Normally we ignore an extend instruction. However, if it is | |
4787 | not followed by a valid prologue instruction, we must adjust | |
4788 | the pc back over the extend so that it won't be considered | |
4789 | part of the prologue. */ | |
4790 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
88658117 | 4791 | { |
6d82d43b AC |
4792 | extend_bytes = MIPS16_INSTLEN; |
4793 | continue; | |
88658117 | 4794 | } |
6d82d43b AC |
4795 | prev_extend_bytes = extend_bytes; |
4796 | extend_bytes = 0; | |
4797 | ||
4798 | /* Check for other valid prologue instructions besides extend. */ | |
4799 | for (i = 0; table[i].mask != 0; i++) | |
4800 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
4801 | break; | |
4802 | if (table[i].mask != 0) /* it was in table? */ | |
4803 | continue; /* ignore it */ | |
4804 | else | |
4805 | /* non-prologue */ | |
88658117 | 4806 | { |
6d82d43b AC |
4807 | /* Return the current pc, adjusted backwards by 2 if |
4808 | the previous instruction was an extend. */ | |
4809 | return pc - prev_extend_bytes; | |
88658117 AC |
4810 | } |
4811 | } | |
6d82d43b AC |
4812 | return pc; |
4813 | } | |
4814 | ||
4815 | /* To skip prologues, I use this predicate. Returns either PC itself | |
4816 | if the code at PC does not look like a function prologue; otherwise | |
4817 | returns an address that (if we're lucky) follows the prologue. If | |
4818 | LENIENT, then we must skip everything which is involved in setting | |
4819 | up the frame (it's OK to skip more, just so long as we don't skip | |
4820 | anything which might clobber the registers which are being saved. | |
4821 | We must skip more in the case where part of the prologue is in the | |
4822 | delay slot of a non-prologue instruction). */ | |
4823 | ||
4824 | static CORE_ADDR | |
4825 | mips_skip_prologue (CORE_ADDR pc) | |
4826 | { | |
4827 | /* See if we can determine the end of the prologue via the symbol table. | |
4828 | If so, then return either PC, or the PC after the prologue, whichever | |
4829 | is greater. */ | |
4830 | ||
4831 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
4832 | ||
4833 | if (post_prologue_pc != 0) | |
4834 | return max (pc, post_prologue_pc); | |
4835 | ||
4836 | /* Can't determine prologue from the symbol table, need to examine | |
4837 | instructions. */ | |
4838 | ||
4839 | if (pc_is_mips16 (pc)) | |
4840 | return mips16_skip_prologue (pc); | |
4841 | else | |
4842 | return mips32_skip_prologue (pc); | |
88658117 AC |
4843 | } |
4844 | ||
a5ea2558 AC |
4845 | /* Root of all "set mips "/"show mips " commands. This will eventually be |
4846 | used for all MIPS-specific commands. */ | |
4847 | ||
a5ea2558 | 4848 | static void |
acdb74a0 | 4849 | show_mips_command (char *args, int from_tty) |
a5ea2558 AC |
4850 | { |
4851 | help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout); | |
4852 | } | |
4853 | ||
a5ea2558 | 4854 | static void |
acdb74a0 | 4855 | set_mips_command (char *args, int from_tty) |
a5ea2558 | 4856 | { |
6d82d43b AC |
4857 | printf_unfiltered |
4858 | ("\"set mips\" must be followed by an appropriate subcommand.\n"); | |
a5ea2558 AC |
4859 | help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout); |
4860 | } | |
4861 | ||
c906108c SS |
4862 | /* Commands to show/set the MIPS FPU type. */ |
4863 | ||
c906108c | 4864 | static void |
acdb74a0 | 4865 | show_mipsfpu_command (char *args, int from_tty) |
c906108c | 4866 | { |
c906108c SS |
4867 | char *fpu; |
4868 | switch (MIPS_FPU_TYPE) | |
4869 | { | |
4870 | case MIPS_FPU_SINGLE: | |
4871 | fpu = "single-precision"; | |
4872 | break; | |
4873 | case MIPS_FPU_DOUBLE: | |
4874 | fpu = "double-precision"; | |
4875 | break; | |
4876 | case MIPS_FPU_NONE: | |
4877 | fpu = "absent (none)"; | |
4878 | break; | |
93d56215 AC |
4879 | default: |
4880 | internal_error (__FILE__, __LINE__, "bad switch"); | |
c906108c SS |
4881 | } |
4882 | if (mips_fpu_type_auto) | |
6d82d43b AC |
4883 | printf_unfiltered |
4884 | ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
4885 | fpu); | |
c906108c | 4886 | else |
6d82d43b AC |
4887 | printf_unfiltered |
4888 | ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu); | |
c906108c SS |
4889 | } |
4890 | ||
4891 | ||
c906108c | 4892 | static void |
acdb74a0 | 4893 | set_mipsfpu_command (char *args, int from_tty) |
c906108c | 4894 | { |
6d82d43b AC |
4895 | printf_unfiltered |
4896 | ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
c906108c SS |
4897 | show_mipsfpu_command (args, from_tty); |
4898 | } | |
4899 | ||
c906108c | 4900 | static void |
acdb74a0 | 4901 | set_mipsfpu_single_command (char *args, int from_tty) |
c906108c | 4902 | { |
8d5838b5 AC |
4903 | struct gdbarch_info info; |
4904 | gdbarch_info_init (&info); | |
c906108c SS |
4905 | mips_fpu_type = MIPS_FPU_SINGLE; |
4906 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
4907 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
4908 | instead of relying on globals. Doing that would let generic code | |
4909 | handle the search for this specific architecture. */ | |
4910 | if (!gdbarch_update_p (info)) | |
4911 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
4912 | } |
4913 | ||
c906108c | 4914 | static void |
acdb74a0 | 4915 | set_mipsfpu_double_command (char *args, int from_tty) |
c906108c | 4916 | { |
8d5838b5 AC |
4917 | struct gdbarch_info info; |
4918 | gdbarch_info_init (&info); | |
c906108c SS |
4919 | mips_fpu_type = MIPS_FPU_DOUBLE; |
4920 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
4921 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
4922 | instead of relying on globals. Doing that would let generic code | |
4923 | handle the search for this specific architecture. */ | |
4924 | if (!gdbarch_update_p (info)) | |
4925 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
4926 | } |
4927 | ||
c906108c | 4928 | static void |
acdb74a0 | 4929 | set_mipsfpu_none_command (char *args, int from_tty) |
c906108c | 4930 | { |
8d5838b5 AC |
4931 | struct gdbarch_info info; |
4932 | gdbarch_info_init (&info); | |
c906108c SS |
4933 | mips_fpu_type = MIPS_FPU_NONE; |
4934 | mips_fpu_type_auto = 0; | |
8d5838b5 AC |
4935 | /* FIXME: cagney/2003-11-15: Should be setting a field in "info" |
4936 | instead of relying on globals. Doing that would let generic code | |
4937 | handle the search for this specific architecture. */ | |
4938 | if (!gdbarch_update_p (info)) | |
4939 | internal_error (__FILE__, __LINE__, "set mipsfpu failed"); | |
c906108c SS |
4940 | } |
4941 | ||
c906108c | 4942 | static void |
acdb74a0 | 4943 | set_mipsfpu_auto_command (char *args, int from_tty) |
c906108c SS |
4944 | { |
4945 | mips_fpu_type_auto = 1; | |
4946 | } | |
4947 | ||
c906108c | 4948 | /* Attempt to identify the particular processor model by reading the |
691c0433 AC |
4949 | processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that |
4950 | the relevant processor still exists (it dates back to '94) and | |
4951 | secondly this is not the way to do this. The processor type should | |
4952 | be set by forcing an architecture change. */ | |
c906108c | 4953 | |
691c0433 AC |
4954 | void |
4955 | deprecated_mips_set_processor_regs_hack (void) | |
c906108c | 4956 | { |
691c0433 | 4957 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
4958 | CORE_ADDR prid; |
4959 | ||
4960 | prid = read_register (PRID_REGNUM); | |
4961 | ||
4962 | if ((prid & ~0xf) == 0x700) | |
691c0433 | 4963 | tdep->mips_processor_reg_names = mips_r3041_reg_names; |
c906108c SS |
4964 | } |
4965 | ||
4966 | /* Just like reinit_frame_cache, but with the right arguments to be | |
4967 | callable as an sfunc. */ | |
4968 | ||
4969 | static void | |
acdb74a0 AC |
4970 | reinit_frame_cache_sfunc (char *args, int from_tty, |
4971 | struct cmd_list_element *c) | |
c906108c SS |
4972 | { |
4973 | reinit_frame_cache (); | |
4974 | } | |
4975 | ||
a89aa300 AC |
4976 | static int |
4977 | gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info) | |
c906108c | 4978 | { |
e5ab0dce | 4979 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
4980 | mips_extra_func_info_t proc_desc; |
4981 | ||
4982 | /* Search for the function containing this address. Set the low bit | |
4983 | of the address when searching, in case we were given an even address | |
4984 | that is the start of a 16-bit function. If we didn't do this, | |
4985 | the search would fail because the symbol table says the function | |
4986 | starts at an odd address, i.e. 1 byte past the given address. */ | |
4987 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
95404a3e | 4988 | proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL); |
c906108c SS |
4989 | |
4990 | /* Make an attempt to determine if this is a 16-bit function. If | |
4991 | the procedure descriptor exists and the address therein is odd, | |
4992 | it's definitely a 16-bit function. Otherwise, we have to just | |
4993 | guess that if the address passed in is odd, it's 16-bits. */ | |
d31431ed AC |
4994 | /* FIXME: cagney/2003-06-26: Is this even necessary? The |
4995 | disassembler needs to be able to locally determine the ISA, and | |
4996 | not rely on GDB. Otherwize the stand-alone 'objdump -d' will not | |
4997 | work. */ | |
c906108c | 4998 | if (proc_desc) |
d31431ed AC |
4999 | { |
5000 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
6d82d43b | 5001 | info->mach = bfd_mach_mips16; |
d31431ed | 5002 | } |
c906108c | 5003 | else |
d31431ed AC |
5004 | { |
5005 | if (pc_is_mips16 (memaddr)) | |
6d82d43b AC |
5006 | info->mach = bfd_mach_mips16; |
5007 | } | |
c906108c SS |
5008 | |
5009 | /* Round down the instruction address to the appropriate boundary. */ | |
65c11066 | 5010 | memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3); |
c5aa993b | 5011 | |
e5ab0dce | 5012 | /* Set the disassembler options. */ |
6d82d43b | 5013 | if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64) |
e5ab0dce AC |
5014 | { |
5015 | /* Set up the disassembler info, so that we get the right | |
6d82d43b | 5016 | register names from libopcodes. */ |
e5ab0dce AC |
5017 | if (tdep->mips_abi == MIPS_ABI_N32) |
5018 | info->disassembler_options = "gpr-names=n32"; | |
5019 | else | |
5020 | info->disassembler_options = "gpr-names=64"; | |
5021 | info->flavour = bfd_target_elf_flavour; | |
5022 | } | |
5023 | else | |
5024 | /* This string is not recognized explicitly by the disassembler, | |
5025 | but it tells the disassembler to not try to guess the ABI from | |
5026 | the bfd elf headers, such that, if the user overrides the ABI | |
5027 | of a program linked as NewABI, the disassembly will follow the | |
5028 | register naming conventions specified by the user. */ | |
5029 | info->disassembler_options = "gpr-names=32"; | |
5030 | ||
c906108c | 5031 | /* Call the appropriate disassembler based on the target endian-ness. */ |
d7449b42 | 5032 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5033 | return print_insn_big_mips (memaddr, info); |
5034 | else | |
5035 | return print_insn_little_mips (memaddr, info); | |
5036 | } | |
5037 | ||
c906108c SS |
5038 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
5039 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
5040 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
5041 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
5042 | (if necessary) to point to the actual memory location where the | |
5043 | breakpoint should be inserted. */ | |
5044 | ||
f7ab6ec6 | 5045 | static const unsigned char * |
6d82d43b | 5046 | mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c | 5047 | { |
d7449b42 | 5048 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5049 | { |
5050 | if (pc_is_mips16 (*pcptr)) | |
5051 | { | |
6d82d43b | 5052 | static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 }; |
95404a3e | 5053 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5054 | *lenptr = sizeof (mips16_big_breakpoint); |
c906108c SS |
5055 | return mips16_big_breakpoint; |
5056 | } | |
5057 | else | |
5058 | { | |
aaab4dba AC |
5059 | /* The IDT board uses an unusual breakpoint value, and |
5060 | sometimes gets confused when it sees the usual MIPS | |
5061 | breakpoint instruction. */ | |
6d82d43b AC |
5062 | static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd }; |
5063 | static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd }; | |
5064 | static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd }; | |
c906108c | 5065 | |
c5aa993b | 5066 | *lenptr = sizeof (big_breakpoint); |
c906108c SS |
5067 | |
5068 | if (strcmp (target_shortname, "mips") == 0) | |
5069 | return idt_big_breakpoint; | |
5070 | else if (strcmp (target_shortname, "ddb") == 0 | |
5071 | || strcmp (target_shortname, "pmon") == 0 | |
5072 | || strcmp (target_shortname, "lsi") == 0) | |
5073 | return pmon_big_breakpoint; | |
5074 | else | |
5075 | return big_breakpoint; | |
5076 | } | |
5077 | } | |
5078 | else | |
5079 | { | |
5080 | if (pc_is_mips16 (*pcptr)) | |
5081 | { | |
6d82d43b | 5082 | static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 }; |
95404a3e | 5083 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5084 | *lenptr = sizeof (mips16_little_breakpoint); |
c906108c SS |
5085 | return mips16_little_breakpoint; |
5086 | } | |
5087 | else | |
5088 | { | |
6d82d43b AC |
5089 | static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 }; |
5090 | static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 }; | |
5091 | static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 }; | |
c906108c | 5092 | |
c5aa993b | 5093 | *lenptr = sizeof (little_breakpoint); |
c906108c SS |
5094 | |
5095 | if (strcmp (target_shortname, "mips") == 0) | |
5096 | return idt_little_breakpoint; | |
5097 | else if (strcmp (target_shortname, "ddb") == 0 | |
5098 | || strcmp (target_shortname, "pmon") == 0 | |
5099 | || strcmp (target_shortname, "lsi") == 0) | |
5100 | return pmon_little_breakpoint; | |
5101 | else | |
5102 | return little_breakpoint; | |
5103 | } | |
5104 | } | |
5105 | } | |
5106 | ||
5107 | /* If PC is in a mips16 call or return stub, return the address of the target | |
5108 | PC, which is either the callee or the caller. There are several | |
5109 | cases which must be handled: | |
5110 | ||
5111 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
c5aa993b | 5112 | target PC is in $31 ($ra). |
c906108c | 5113 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub |
c5aa993b | 5114 | and the target PC is in $2. |
c906108c | 5115 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. |
c5aa993b JM |
5116 | before the jal instruction, this is effectively a call stub |
5117 | and the the target PC is in $2. Otherwise this is effectively | |
5118 | a return stub and the target PC is in $18. | |
c906108c SS |
5119 | |
5120 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
5121 | gory details. | |
5122 | ||
5123 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
c5aa993b | 5124 | */ |
c906108c | 5125 | |
757a7cc6 | 5126 | static CORE_ADDR |
acdb74a0 | 5127 | mips_skip_stub (CORE_ADDR pc) |
c906108c SS |
5128 | { |
5129 | char *name; | |
5130 | CORE_ADDR start_addr; | |
5131 | ||
5132 | /* Find the starting address and name of the function containing the PC. */ | |
5133 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
5134 | return 0; | |
5135 | ||
5136 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
5137 | target PC is in $31 ($ra). */ | |
5138 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5139 | || strcmp (name, "__mips16_ret_df") == 0) | |
6c997a34 | 5140 | return read_signed_register (RA_REGNUM); |
c906108c SS |
5141 | |
5142 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5143 | { | |
5144 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
5145 | and the target PC is in $2. */ | |
5146 | if (name[19] >= '0' && name[19] <= '9') | |
6c997a34 | 5147 | return read_signed_register (2); |
c906108c SS |
5148 | |
5149 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b JM |
5150 | before the jal instruction, this is effectively a call stub |
5151 | and the the target PC is in $2. Otherwise this is effectively | |
5152 | a return stub and the target PC is in $18. */ | |
c906108c SS |
5153 | else if (name[19] == 's' || name[19] == 'd') |
5154 | { | |
5155 | if (pc == start_addr) | |
5156 | { | |
5157 | /* Check if the target of the stub is a compiler-generated | |
c5aa993b JM |
5158 | stub. Such a stub for a function bar might have a name |
5159 | like __fn_stub_bar, and might look like this: | |
5160 | mfc1 $4,$f13 | |
5161 | mfc1 $5,$f12 | |
5162 | mfc1 $6,$f15 | |
5163 | mfc1 $7,$f14 | |
5164 | la $1,bar (becomes a lui/addiu pair) | |
5165 | jr $1 | |
5166 | So scan down to the lui/addi and extract the target | |
5167 | address from those two instructions. */ | |
c906108c | 5168 | |
6c997a34 | 5169 | CORE_ADDR target_pc = read_signed_register (2); |
c906108c SS |
5170 | t_inst inst; |
5171 | int i; | |
5172 | ||
5173 | /* See if the name of the target function is __fn_stub_*. */ | |
6d82d43b AC |
5174 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == |
5175 | 0) | |
c906108c SS |
5176 | return target_pc; |
5177 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
5178 | && strcmp (name, "etext") != 0 | |
5179 | && strcmp (name, "_etext") != 0) | |
5180 | return target_pc; | |
5181 | ||
5182 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
c5aa993b JM |
5183 | The limit on the search is arbitrarily set to 20 |
5184 | instructions. FIXME. */ | |
c906108c SS |
5185 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) |
5186 | { | |
c5aa993b JM |
5187 | inst = mips_fetch_instruction (target_pc); |
5188 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
5189 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
5190 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
5191 | return pc | (inst & 0xffff); /* low word */ | |
c906108c SS |
5192 | } |
5193 | ||
5194 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
5195 | return target_pc; | |
5196 | } | |
5197 | else | |
5198 | /* This is the 'return' part of a call stub. The return | |
5199 | address is in $r18. */ | |
6c997a34 | 5200 | return read_signed_register (18); |
c906108c SS |
5201 | } |
5202 | } | |
c5aa993b | 5203 | return 0; /* not a stub */ |
c906108c SS |
5204 | } |
5205 | ||
5206 | ||
5207 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
5208 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
5209 | ||
757a7cc6 | 5210 | static int |
acdb74a0 | 5211 | mips_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5212 | { |
5213 | CORE_ADDR start_addr; | |
5214 | ||
5215 | /* Find the starting address of the function containing the PC. If the | |
5216 | caller didn't give us a name, look it up at the same time. */ | |
6d82d43b AC |
5217 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == |
5218 | 0) | |
c906108c SS |
5219 | return 0; |
5220 | ||
5221 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5222 | { | |
5223 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
5224 | if (name[19] >= '0' && name[19] <= '9') | |
5225 | return 1; | |
5226 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b | 5227 | before the jal instruction, this is effectively a call stub. */ |
c906108c SS |
5228 | else if (name[19] == 's' || name[19] == 'd') |
5229 | return pc == start_addr; | |
5230 | } | |
5231 | ||
c5aa993b | 5232 | return 0; /* not a stub */ |
c906108c SS |
5233 | } |
5234 | ||
5235 | ||
5236 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
5237 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
5238 | ||
e41b17f0 | 5239 | static int |
acdb74a0 | 5240 | mips_in_return_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5241 | { |
5242 | CORE_ADDR start_addr; | |
5243 | ||
5244 | /* Find the starting address of the function containing the PC. */ | |
5245 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
5246 | return 0; | |
5247 | ||
5248 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
5249 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5250 | || strcmp (name, "__mips16_ret_df") == 0) | |
5251 | return 1; | |
5252 | ||
5253 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
c5aa993b | 5254 | i.e. after the jal instruction, this is effectively a return stub. */ |
c906108c | 5255 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 |
6d82d43b | 5256 | && (name[19] == 's' || name[19] == 'd') && pc != start_addr) |
c906108c SS |
5257 | return 1; |
5258 | ||
c5aa993b | 5259 | return 0; /* not a stub */ |
c906108c SS |
5260 | } |
5261 | ||
5262 | ||
a53c66de AC |
5263 | /* Return non-zero if the PC is in a library helper function that |
5264 | should be ignored. This implements the | |
5265 | DEPRECATED_IGNORE_HELPER_CALL macro. */ | |
c906108c SS |
5266 | |
5267 | int | |
acdb74a0 | 5268 | mips_ignore_helper (CORE_ADDR pc) |
c906108c SS |
5269 | { |
5270 | char *name; | |
5271 | ||
5272 | /* Find the starting address and name of the function containing the PC. */ | |
5273 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
5274 | return 0; | |
5275 | ||
5276 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
5277 | that we want to ignore. */ | |
5278 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
5279 | || strcmp (name, "__mips16_ret_df") == 0); | |
5280 | } | |
5281 | ||
5282 | ||
a4b8ebc8 AC |
5283 | /* Convert a dbx stab register number (from `r' declaration) to a GDB |
5284 | [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
88c72b7d AC |
5285 | |
5286 | static int | |
5287 | mips_stab_reg_to_regnum (int num) | |
5288 | { | |
a4b8ebc8 | 5289 | int regnum; |
2f38ef89 | 5290 | if (num >= 0 && num < 32) |
a4b8ebc8 | 5291 | regnum = num; |
2f38ef89 | 5292 | else if (num >= 38 && num < 70) |
56cea623 | 5293 | regnum = num + mips_regnum (current_gdbarch)->fp0 - 38; |
040b99fd | 5294 | else if (num == 70) |
56cea623 | 5295 | regnum = mips_regnum (current_gdbarch)->hi; |
040b99fd | 5296 | else if (num == 71) |
56cea623 | 5297 | regnum = mips_regnum (current_gdbarch)->lo; |
2f38ef89 | 5298 | else |
a4b8ebc8 AC |
5299 | /* This will hopefully (eventually) provoke a warning. Should |
5300 | we be calling complaint() here? */ | |
5301 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5302 | return NUM_REGS + regnum; | |
88c72b7d AC |
5303 | } |
5304 | ||
2f38ef89 | 5305 | |
a4b8ebc8 AC |
5306 | /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 * |
5307 | NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
88c72b7d AC |
5308 | |
5309 | static int | |
2f38ef89 | 5310 | mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num) |
88c72b7d | 5311 | { |
a4b8ebc8 | 5312 | int regnum; |
2f38ef89 | 5313 | if (num >= 0 && num < 32) |
a4b8ebc8 | 5314 | regnum = num; |
2f38ef89 | 5315 | else if (num >= 32 && num < 64) |
56cea623 | 5316 | regnum = num + mips_regnum (current_gdbarch)->fp0 - 32; |
040b99fd | 5317 | else if (num == 64) |
56cea623 | 5318 | regnum = mips_regnum (current_gdbarch)->hi; |
040b99fd | 5319 | else if (num == 65) |
56cea623 | 5320 | regnum = mips_regnum (current_gdbarch)->lo; |
2f38ef89 | 5321 | else |
a4b8ebc8 AC |
5322 | /* This will hopefully (eventually) provoke a warning. Should we |
5323 | be calling complaint() here? */ | |
5324 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5325 | return NUM_REGS + regnum; | |
5326 | } | |
5327 | ||
5328 | static int | |
5329 | mips_register_sim_regno (int regnum) | |
5330 | { | |
5331 | /* Only makes sense to supply raw registers. */ | |
5332 | gdb_assert (regnum >= 0 && regnum < NUM_REGS); | |
5333 | /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to | |
5334 | decide if it is valid. Should instead define a standard sim/gdb | |
5335 | register numbering scheme. */ | |
5336 | if (REGISTER_NAME (NUM_REGS + regnum) != NULL | |
5337 | && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0') | |
5338 | return regnum; | |
5339 | else | |
6d82d43b | 5340 | return LEGACY_SIM_REGNO_IGNORE; |
88c72b7d AC |
5341 | } |
5342 | ||
2f38ef89 | 5343 | |
fc0c74b1 AC |
5344 | /* Convert an integer into an address. By first converting the value |
5345 | into a pointer and then extracting it signed, the address is | |
5346 | guarenteed to be correctly sign extended. */ | |
5347 | ||
5348 | static CORE_ADDR | |
5349 | mips_integer_to_address (struct type *type, void *buf) | |
5350 | { | |
5351 | char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5352 | LONGEST val = unpack_long (type, buf); | |
5353 | store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val); | |
5354 | return extract_signed_integer (tmp, | |
5355 | TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5356 | } | |
5357 | ||
caaa3122 DJ |
5358 | static void |
5359 | mips_find_abi_section (bfd *abfd, asection *sect, void *obj) | |
5360 | { | |
5361 | enum mips_abi *abip = (enum mips_abi *) obj; | |
5362 | const char *name = bfd_get_section_name (abfd, sect); | |
5363 | ||
5364 | if (*abip != MIPS_ABI_UNKNOWN) | |
5365 | return; | |
5366 | ||
5367 | if (strncmp (name, ".mdebug.", 8) != 0) | |
5368 | return; | |
5369 | ||
5370 | if (strcmp (name, ".mdebug.abi32") == 0) | |
5371 | *abip = MIPS_ABI_O32; | |
5372 | else if (strcmp (name, ".mdebug.abiN32") == 0) | |
5373 | *abip = MIPS_ABI_N32; | |
62a49b2c | 5374 | else if (strcmp (name, ".mdebug.abi64") == 0) |
e3bddbfa | 5375 | *abip = MIPS_ABI_N64; |
caaa3122 DJ |
5376 | else if (strcmp (name, ".mdebug.abiO64") == 0) |
5377 | *abip = MIPS_ABI_O64; | |
5378 | else if (strcmp (name, ".mdebug.eabi32") == 0) | |
5379 | *abip = MIPS_ABI_EABI32; | |
5380 | else if (strcmp (name, ".mdebug.eabi64") == 0) | |
5381 | *abip = MIPS_ABI_EABI64; | |
5382 | else | |
5383 | warning ("unsupported ABI %s.", name + 8); | |
5384 | } | |
5385 | ||
2e4ebe70 DJ |
5386 | static enum mips_abi |
5387 | global_mips_abi (void) | |
5388 | { | |
5389 | int i; | |
5390 | ||
5391 | for (i = 0; mips_abi_strings[i] != NULL; i++) | |
5392 | if (mips_abi_strings[i] == mips_abi_string) | |
5393 | return (enum mips_abi) i; | |
5394 | ||
6d82d43b | 5395 | internal_error (__FILE__, __LINE__, "unknown ABI string"); |
2e4ebe70 DJ |
5396 | } |
5397 | ||
c2d11a7d | 5398 | static struct gdbarch * |
6d82d43b | 5399 | mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
c2d11a7d | 5400 | { |
c2d11a7d JM |
5401 | struct gdbarch *gdbarch; |
5402 | struct gdbarch_tdep *tdep; | |
5403 | int elf_flags; | |
2e4ebe70 | 5404 | enum mips_abi mips_abi, found_abi, wanted_abi; |
a4b8ebc8 | 5405 | int num_regs; |
8d5838b5 | 5406 | enum mips_fpu_type fpu_type; |
c2d11a7d | 5407 | |
ec03c1ac AC |
5408 | /* First of all, extract the elf_flags, if available. */ |
5409 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
5410 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
6214a8a1 AC |
5411 | else if (arches != NULL) |
5412 | elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags; | |
ec03c1ac AC |
5413 | else |
5414 | elf_flags = 0; | |
5415 | if (gdbarch_debug) | |
5416 | fprintf_unfiltered (gdb_stdlog, | |
6d82d43b | 5417 | "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags); |
c2d11a7d | 5418 | |
102182a9 | 5419 | /* Check ELF_FLAGS to see if it specifies the ABI being used. */ |
0dadbba0 AC |
5420 | switch ((elf_flags & EF_MIPS_ABI)) |
5421 | { | |
5422 | case E_MIPS_ABI_O32: | |
ec03c1ac | 5423 | found_abi = MIPS_ABI_O32; |
0dadbba0 AC |
5424 | break; |
5425 | case E_MIPS_ABI_O64: | |
ec03c1ac | 5426 | found_abi = MIPS_ABI_O64; |
0dadbba0 AC |
5427 | break; |
5428 | case E_MIPS_ABI_EABI32: | |
ec03c1ac | 5429 | found_abi = MIPS_ABI_EABI32; |
0dadbba0 AC |
5430 | break; |
5431 | case E_MIPS_ABI_EABI64: | |
ec03c1ac | 5432 | found_abi = MIPS_ABI_EABI64; |
0dadbba0 AC |
5433 | break; |
5434 | default: | |
acdb74a0 | 5435 | if ((elf_flags & EF_MIPS_ABI2)) |
ec03c1ac | 5436 | found_abi = MIPS_ABI_N32; |
acdb74a0 | 5437 | else |
ec03c1ac | 5438 | found_abi = MIPS_ABI_UNKNOWN; |
0dadbba0 AC |
5439 | break; |
5440 | } | |
acdb74a0 | 5441 | |
caaa3122 | 5442 | /* GCC creates a pseudo-section whose name describes the ABI. */ |
ec03c1ac AC |
5443 | if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL) |
5444 | bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi); | |
caaa3122 | 5445 | |
dc305454 | 5446 | /* If we have no useful BFD information, use the ABI from the last |
ec03c1ac AC |
5447 | MIPS architecture (if there is one). */ |
5448 | if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL) | |
5449 | found_abi = gdbarch_tdep (arches->gdbarch)->found_abi; | |
2e4ebe70 | 5450 | |
32a6503c | 5451 | /* Try the architecture for any hint of the correct ABI. */ |
ec03c1ac | 5452 | if (found_abi == MIPS_ABI_UNKNOWN |
bf64bfd6 AC |
5453 | && info.bfd_arch_info != NULL |
5454 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5455 | { | |
5456 | switch (info.bfd_arch_info->mach) | |
5457 | { | |
5458 | case bfd_mach_mips3900: | |
ec03c1ac | 5459 | found_abi = MIPS_ABI_EABI32; |
bf64bfd6 AC |
5460 | break; |
5461 | case bfd_mach_mips4100: | |
5462 | case bfd_mach_mips5000: | |
ec03c1ac | 5463 | found_abi = MIPS_ABI_EABI64; |
bf64bfd6 | 5464 | break; |
1d06468c EZ |
5465 | case bfd_mach_mips8000: |
5466 | case bfd_mach_mips10000: | |
32a6503c KB |
5467 | /* On Irix, ELF64 executables use the N64 ABI. The |
5468 | pseudo-sections which describe the ABI aren't present | |
5469 | on IRIX. (Even for executables created by gcc.) */ | |
28d169de KB |
5470 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour |
5471 | && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
ec03c1ac | 5472 | found_abi = MIPS_ABI_N64; |
28d169de | 5473 | else |
ec03c1ac | 5474 | found_abi = MIPS_ABI_N32; |
1d06468c | 5475 | break; |
bf64bfd6 AC |
5476 | } |
5477 | } | |
2e4ebe70 | 5478 | |
ec03c1ac AC |
5479 | if (gdbarch_debug) |
5480 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n", | |
5481 | found_abi); | |
5482 | ||
5483 | /* What has the user specified from the command line? */ | |
5484 | wanted_abi = global_mips_abi (); | |
5485 | if (gdbarch_debug) | |
5486 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n", | |
5487 | wanted_abi); | |
2e4ebe70 DJ |
5488 | |
5489 | /* Now that we have found what the ABI for this binary would be, | |
5490 | check whether the user is overriding it. */ | |
2e4ebe70 DJ |
5491 | if (wanted_abi != MIPS_ABI_UNKNOWN) |
5492 | mips_abi = wanted_abi; | |
ec03c1ac AC |
5493 | else if (found_abi != MIPS_ABI_UNKNOWN) |
5494 | mips_abi = found_abi; | |
5495 | else | |
5496 | mips_abi = MIPS_ABI_O32; | |
5497 | if (gdbarch_debug) | |
5498 | fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n", | |
5499 | mips_abi); | |
2e4ebe70 | 5500 | |
ec03c1ac | 5501 | /* Also used when doing an architecture lookup. */ |
4b9b3959 | 5502 | if (gdbarch_debug) |
ec03c1ac AC |
5503 | fprintf_unfiltered (gdb_stdlog, |
5504 | "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n", | |
5505 | mips64_transfers_32bit_regs_p); | |
0dadbba0 | 5506 | |
8d5838b5 AC |
5507 | /* Determine the MIPS FPU type. */ |
5508 | if (!mips_fpu_type_auto) | |
5509 | fpu_type = mips_fpu_type; | |
5510 | else if (info.bfd_arch_info != NULL | |
5511 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5512 | switch (info.bfd_arch_info->mach) | |
5513 | { | |
5514 | case bfd_mach_mips3900: | |
5515 | case bfd_mach_mips4100: | |
5516 | case bfd_mach_mips4111: | |
a9d61c86 | 5517 | case bfd_mach_mips4120: |
8d5838b5 AC |
5518 | fpu_type = MIPS_FPU_NONE; |
5519 | break; | |
5520 | case bfd_mach_mips4650: | |
5521 | fpu_type = MIPS_FPU_SINGLE; | |
5522 | break; | |
5523 | default: | |
5524 | fpu_type = MIPS_FPU_DOUBLE; | |
5525 | break; | |
5526 | } | |
5527 | else if (arches != NULL) | |
5528 | fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type; | |
5529 | else | |
5530 | fpu_type = MIPS_FPU_DOUBLE; | |
5531 | if (gdbarch_debug) | |
5532 | fprintf_unfiltered (gdb_stdlog, | |
6d82d43b | 5533 | "mips_gdbarch_init: fpu_type = %d\n", fpu_type); |
8d5838b5 | 5534 | |
c2d11a7d JM |
5535 | /* try to find a pre-existing architecture */ |
5536 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
5537 | arches != NULL; | |
5538 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
5539 | { | |
5540 | /* MIPS needs to be pedantic about which ABI the object is | |
102182a9 | 5541 | using. */ |
9103eae0 | 5542 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) |
c2d11a7d | 5543 | continue; |
9103eae0 | 5544 | if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi) |
0dadbba0 | 5545 | continue; |
719ec221 AC |
5546 | /* Need to be pedantic about which register virtual size is |
5547 | used. */ | |
5548 | if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p | |
5549 | != mips64_transfers_32bit_regs_p) | |
5550 | continue; | |
8d5838b5 AC |
5551 | /* Be pedantic about which FPU is selected. */ |
5552 | if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type) | |
5553 | continue; | |
4be87837 | 5554 | return arches->gdbarch; |
c2d11a7d JM |
5555 | } |
5556 | ||
102182a9 | 5557 | /* Need a new architecture. Fill in a target specific vector. */ |
c2d11a7d JM |
5558 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); |
5559 | gdbarch = gdbarch_alloc (&info, tdep); | |
5560 | tdep->elf_flags = elf_flags; | |
719ec221 | 5561 | tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p; |
ec03c1ac AC |
5562 | tdep->found_abi = found_abi; |
5563 | tdep->mips_abi = mips_abi; | |
8d5838b5 | 5564 | tdep->mips_fpu_type = fpu_type; |
c2d11a7d | 5565 | |
102182a9 | 5566 | /* Initially set everything according to the default ABI/ISA. */ |
c2d11a7d JM |
5567 | set_gdbarch_short_bit (gdbarch, 16); |
5568 | set_gdbarch_int_bit (gdbarch, 32); | |
5569 | set_gdbarch_float_bit (gdbarch, 32); | |
5570 | set_gdbarch_double_bit (gdbarch, 64); | |
5571 | set_gdbarch_long_double_bit (gdbarch, 64); | |
a4b8ebc8 AC |
5572 | set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p); |
5573 | set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read); | |
5574 | set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write); | |
1d06468c | 5575 | |
6d82d43b | 5576 | set_gdbarch_elf_make_msymbol_special (gdbarch, |
f7ab6ec6 MS |
5577 | mips_elf_make_msymbol_special); |
5578 | ||
16e109ca | 5579 | /* Fill in the OS dependant register numbers and names. */ |
56cea623 | 5580 | { |
16e109ca | 5581 | const char **reg_names; |
56cea623 AC |
5582 | struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, |
5583 | struct mips_regnum); | |
56cea623 AC |
5584 | if (info.osabi == GDB_OSABI_IRIX) |
5585 | { | |
5586 | regnum->fp0 = 32; | |
5587 | regnum->pc = 64; | |
5588 | regnum->cause = 65; | |
5589 | regnum->badvaddr = 66; | |
5590 | regnum->hi = 67; | |
5591 | regnum->lo = 68; | |
5592 | regnum->fp_control_status = 69; | |
5593 | regnum->fp_implementation_revision = 70; | |
5594 | num_regs = 71; | |
16e109ca | 5595 | reg_names = mips_irix_reg_names; |
56cea623 AC |
5596 | } |
5597 | else | |
5598 | { | |
5599 | regnum->lo = MIPS_EMBED_LO_REGNUM; | |
5600 | regnum->hi = MIPS_EMBED_HI_REGNUM; | |
5601 | regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM; | |
5602 | regnum->cause = MIPS_EMBED_CAUSE_REGNUM; | |
5603 | regnum->pc = MIPS_EMBED_PC_REGNUM; | |
5604 | regnum->fp0 = MIPS_EMBED_FP0_REGNUM; | |
5605 | regnum->fp_control_status = 70; | |
5606 | regnum->fp_implementation_revision = 71; | |
5607 | num_regs = 90; | |
16e109ca AC |
5608 | if (info.bfd_arch_info != NULL |
5609 | && info.bfd_arch_info->mach == bfd_mach_mips3900) | |
5610 | reg_names = mips_tx39_reg_names; | |
5611 | else | |
5612 | reg_names = mips_generic_reg_names; | |
56cea623 AC |
5613 | } |
5614 | /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been | |
5615 | replaced by read_pc? */ | |
f10683bb MH |
5616 | set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs); |
5617 | set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs); | |
56cea623 AC |
5618 | set_gdbarch_fp0_regnum (gdbarch, regnum->fp0); |
5619 | set_gdbarch_num_regs (gdbarch, num_regs); | |
5620 | set_gdbarch_num_pseudo_regs (gdbarch, num_regs); | |
16e109ca AC |
5621 | set_gdbarch_register_name (gdbarch, mips_register_name); |
5622 | tdep->mips_processor_reg_names = reg_names; | |
5623 | tdep->regnum = regnum; | |
56cea623 | 5624 | } |
fe29b929 | 5625 | |
0dadbba0 | 5626 | switch (mips_abi) |
c2d11a7d | 5627 | { |
0dadbba0 | 5628 | case MIPS_ABI_O32: |
25ab4790 | 5629 | set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call); |
29dfb2ac | 5630 | set_gdbarch_return_value (gdbarch, mips_o32_return_value); |
acdb74a0 | 5631 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
56cea623 | 5632 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1; |
4014092b | 5633 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5634 | set_gdbarch_long_bit (gdbarch, 32); |
5635 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5636 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5637 | break; | |
0dadbba0 | 5638 | case MIPS_ABI_O64: |
25ab4790 | 5639 | set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call); |
6d82d43b AC |
5640 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5641 | mips_o64_store_return_value); | |
5642 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5643 | mips_o64_extract_return_value); | |
acdb74a0 | 5644 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
56cea623 | 5645 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1; |
361d1df0 | 5646 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5647 | set_gdbarch_long_bit (gdbarch, 32); |
5648 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5649 | set_gdbarch_long_long_bit (gdbarch, 64); | |
b5622e8d | 5650 | set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention); |
c2d11a7d | 5651 | break; |
0dadbba0 | 5652 | case MIPS_ABI_EABI32: |
25ab4790 | 5653 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
6d82d43b AC |
5654 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5655 | mips_eabi_store_return_value); | |
5656 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5657 | mips_eabi_extract_return_value); | |
acdb74a0 | 5658 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5659 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5660 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5661 | set_gdbarch_long_bit (gdbarch, 32); |
5662 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5663 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2110b94f MK |
5664 | set_gdbarch_deprecated_reg_struct_has_addr |
5665 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
b5622e8d | 5666 | set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention); |
c2d11a7d | 5667 | break; |
0dadbba0 | 5668 | case MIPS_ABI_EABI64: |
25ab4790 | 5669 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
6d82d43b AC |
5670 | set_gdbarch_deprecated_store_return_value (gdbarch, |
5671 | mips_eabi_store_return_value); | |
5672 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5673 | mips_eabi_extract_return_value); | |
acdb74a0 | 5674 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5675 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5676 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5677 | set_gdbarch_long_bit (gdbarch, 64); |
5678 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5679 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2110b94f MK |
5680 | set_gdbarch_deprecated_reg_struct_has_addr |
5681 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
b5622e8d | 5682 | set_gdbarch_deprecated_use_struct_convention (gdbarch, mips_eabi_use_struct_convention); |
c2d11a7d | 5683 | break; |
0dadbba0 | 5684 | case MIPS_ABI_N32: |
25ab4790 | 5685 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
29dfb2ac | 5686 | set_gdbarch_return_value (gdbarch, mips_n32n64_return_value); |
acdb74a0 | 5687 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5688 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
4014092b | 5689 | tdep->default_mask_address_p = 0; |
0dadbba0 AC |
5690 | set_gdbarch_long_bit (gdbarch, 32); |
5691 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5692 | set_gdbarch_long_long_bit (gdbarch, 64); | |
28d169de KB |
5693 | break; |
5694 | case MIPS_ABI_N64: | |
25ab4790 | 5695 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
29dfb2ac | 5696 | set_gdbarch_return_value (gdbarch, mips_n32n64_return_value); |
28d169de | 5697 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
56cea623 | 5698 | tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1; |
28d169de KB |
5699 | tdep->default_mask_address_p = 0; |
5700 | set_gdbarch_long_bit (gdbarch, 64); | |
5701 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5702 | set_gdbarch_long_long_bit (gdbarch, 64); | |
0dadbba0 | 5703 | break; |
c2d11a7d | 5704 | default: |
6d82d43b | 5705 | internal_error (__FILE__, __LINE__, "unknown ABI in switch"); |
c2d11a7d JM |
5706 | } |
5707 | ||
a5ea2558 AC |
5708 | /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE |
5709 | that could indicate -gp32 BUT gas/config/tc-mips.c contains the | |
5710 | comment: | |
5711 | ||
5712 | ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE | |
5713 | flag in object files because to do so would make it impossible to | |
102182a9 | 5714 | link with libraries compiled without "-gp32". This is |
a5ea2558 | 5715 | unnecessarily restrictive. |
361d1df0 | 5716 | |
a5ea2558 AC |
5717 | We could solve this problem by adding "-gp32" multilibs to gcc, |
5718 | but to set this flag before gcc is built with such multilibs will | |
5719 | break too many systems.'' | |
5720 | ||
5721 | But even more unhelpfully, the default linker output target for | |
5722 | mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even | |
5723 | for 64-bit programs - you need to change the ABI to change this, | |
102182a9 | 5724 | and not all gcc targets support that currently. Therefore using |
a5ea2558 AC |
5725 | this flag to detect 32-bit mode would do the wrong thing given |
5726 | the current gcc - it would make GDB treat these 64-bit programs | |
102182a9 | 5727 | as 32-bit programs by default. */ |
a5ea2558 | 5728 | |
6c997a34 | 5729 | set_gdbarch_read_pc (gdbarch, mips_read_pc); |
b6cb9035 | 5730 | set_gdbarch_write_pc (gdbarch, mips_write_pc); |
bcb0cc15 | 5731 | set_gdbarch_read_sp (gdbarch, mips_read_sp); |
c2d11a7d | 5732 | |
102182a9 MS |
5733 | /* Add/remove bits from an address. The MIPS needs be careful to |
5734 | ensure that all 32 bit addresses are sign extended to 64 bits. */ | |
875e1767 AC |
5735 | set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove); |
5736 | ||
58dfe9ff AC |
5737 | /* Unwind the frame. */ |
5738 | set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc); | |
edfae063 | 5739 | set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id); |
10312cc4 | 5740 | |
102182a9 | 5741 | /* Map debug register numbers onto internal register numbers. */ |
88c72b7d | 5742 | set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum); |
6d82d43b AC |
5743 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, |
5744 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
5745 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, | |
5746 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
5747 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, | |
5748 | mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
a4b8ebc8 | 5749 | set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno); |
88c72b7d | 5750 | |
c2d11a7d JM |
5751 | /* MIPS version of CALL_DUMMY */ |
5752 | ||
9710e734 AC |
5753 | /* NOTE: cagney/2003-08-05: Eventually call dummy location will be |
5754 | replaced by a command, and all targets will default to on stack | |
5755 | (regardless of the stack's execute status). */ | |
5756 | set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL); | |
dc604539 | 5757 | set_gdbarch_frame_align (gdbarch, mips_frame_align); |
d05285fa | 5758 | |
87783b8b AC |
5759 | set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p); |
5760 | set_gdbarch_register_to_value (gdbarch, mips_register_to_value); | |
5761 | set_gdbarch_value_to_register (gdbarch, mips_value_to_register); | |
5762 | ||
f7b9e9fc AC |
5763 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
5764 | set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc); | |
f7b9e9fc AC |
5765 | |
5766 | set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue); | |
f7b9e9fc | 5767 | |
fc0c74b1 AC |
5768 | set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address); |
5769 | set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer); | |
5770 | set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address); | |
70f80edf | 5771 | |
a4b8ebc8 | 5772 | set_gdbarch_register_type (gdbarch, mips_register_type); |
78fde5f8 | 5773 | |
e11c53d2 | 5774 | set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info); |
bf1f5b4c | 5775 | |
e5ab0dce AC |
5776 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips); |
5777 | ||
3a3bc038 AC |
5778 | /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT, |
5779 | HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT | |
5780 | need to all be folded into the target vector. Since they are | |
5781 | being used as guards for STOPPED_BY_WATCHPOINT, why not have | |
5782 | STOPPED_BY_WATCHPOINT return the type of watchpoint that the code | |
5783 | is sitting on? */ | |
5784 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
5785 | ||
757a7cc6 MS |
5786 | set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub); |
5787 | ||
6de918a6 DJ |
5788 | /* NOTE drow/2004-02-11: We overload the core solib trampoline code |
5789 | to support MIPS16. This is a bad thing. Make sure not to do it | |
5790 | if we have an OS ABI that actually supports shared libraries, since | |
5791 | shared library support is more important. If we have an OS someday | |
5792 | that supports both shared libraries and MIPS16, we'll have to find | |
5793 | a better place for these. */ | |
5794 | if (info.osabi == GDB_OSABI_UNKNOWN) | |
5795 | { | |
5796 | set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub); | |
5797 | set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub); | |
5798 | } | |
5799 | ||
5800 | /* Hook in OS ABI-specific overrides, if they have been registered. */ | |
5801 | gdbarch_init_osabi (info, gdbarch); | |
757a7cc6 | 5802 | |
5792a79b DJ |
5803 | /* Unwind the frame. */ |
5804 | frame_unwind_append_sniffer (gdbarch, mips_mdebug_frame_sniffer); | |
5805 | frame_base_append_sniffer (gdbarch, mips_mdebug_frame_base_sniffer); | |
5806 | ||
4b9b3959 AC |
5807 | return gdbarch; |
5808 | } | |
5809 | ||
2e4ebe70 | 5810 | static void |
6d82d43b | 5811 | mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c) |
2e4ebe70 DJ |
5812 | { |
5813 | struct gdbarch_info info; | |
5814 | ||
5815 | /* Force the architecture to update, and (if it's a MIPS architecture) | |
5816 | mips_gdbarch_init will take care of the rest. */ | |
5817 | gdbarch_info_init (&info); | |
5818 | gdbarch_update_p (info); | |
5819 | } | |
5820 | ||
ad188201 KB |
5821 | /* Print out which MIPS ABI is in use. */ |
5822 | ||
5823 | static void | |
5824 | show_mips_abi (char *ignore_args, int from_tty) | |
5825 | { | |
5826 | if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips) | |
6d82d43b AC |
5827 | printf_filtered |
5828 | ("The MIPS ABI is unknown because the current architecture is not MIPS.\n"); | |
ad188201 KB |
5829 | else |
5830 | { | |
5831 | enum mips_abi global_abi = global_mips_abi (); | |
5832 | enum mips_abi actual_abi = mips_abi (current_gdbarch); | |
5833 | const char *actual_abi_str = mips_abi_strings[actual_abi]; | |
5834 | ||
5835 | if (global_abi == MIPS_ABI_UNKNOWN) | |
6d82d43b AC |
5836 | printf_filtered |
5837 | ("The MIPS ABI is set automatically (currently \"%s\").\n", | |
5838 | actual_abi_str); | |
ad188201 | 5839 | else if (global_abi == actual_abi) |
6d82d43b AC |
5840 | printf_filtered |
5841 | ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n", | |
5842 | actual_abi_str); | |
ad188201 KB |
5843 | else |
5844 | { | |
5845 | /* Probably shouldn't happen... */ | |
6d82d43b AC |
5846 | printf_filtered |
5847 | ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n", | |
5848 | actual_abi_str, mips_abi_strings[global_abi]); | |
ad188201 KB |
5849 | } |
5850 | } | |
5851 | } | |
5852 | ||
4b9b3959 AC |
5853 | static void |
5854 | mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5855 | { | |
5856 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
5857 | if (tdep != NULL) | |
c2d11a7d | 5858 | { |
acdb74a0 AC |
5859 | int ef_mips_arch; |
5860 | int ef_mips_32bitmode; | |
5861 | /* determine the ISA */ | |
5862 | switch (tdep->elf_flags & EF_MIPS_ARCH) | |
5863 | { | |
5864 | case E_MIPS_ARCH_1: | |
5865 | ef_mips_arch = 1; | |
5866 | break; | |
5867 | case E_MIPS_ARCH_2: | |
5868 | ef_mips_arch = 2; | |
5869 | break; | |
5870 | case E_MIPS_ARCH_3: | |
5871 | ef_mips_arch = 3; | |
5872 | break; | |
5873 | case E_MIPS_ARCH_4: | |
93d56215 | 5874 | ef_mips_arch = 4; |
acdb74a0 AC |
5875 | break; |
5876 | default: | |
93d56215 | 5877 | ef_mips_arch = 0; |
acdb74a0 AC |
5878 | break; |
5879 | } | |
5880 | /* determine the size of a pointer */ | |
5881 | ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE); | |
4b9b3959 AC |
5882 | fprintf_unfiltered (file, |
5883 | "mips_dump_tdep: tdep->elf_flags = 0x%x\n", | |
0dadbba0 | 5884 | tdep->elf_flags); |
4b9b3959 | 5885 | fprintf_unfiltered (file, |
acdb74a0 AC |
5886 | "mips_dump_tdep: ef_mips_32bitmode = %d\n", |
5887 | ef_mips_32bitmode); | |
5888 | fprintf_unfiltered (file, | |
5889 | "mips_dump_tdep: ef_mips_arch = %d\n", | |
5890 | ef_mips_arch); | |
5891 | fprintf_unfiltered (file, | |
5892 | "mips_dump_tdep: tdep->mips_abi = %d (%s)\n", | |
6d82d43b | 5893 | tdep->mips_abi, mips_abi_strings[tdep->mips_abi]); |
4014092b AC |
5894 | fprintf_unfiltered (file, |
5895 | "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n", | |
480d3dd2 | 5896 | mips_mask_address_p (tdep), |
4014092b | 5897 | tdep->default_mask_address_p); |
c2d11a7d | 5898 | } |
4b9b3959 AC |
5899 | fprintf_unfiltered (file, |
5900 | "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n", | |
5901 | MIPS_DEFAULT_FPU_TYPE, | |
5902 | (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
5903 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
5904 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
5905 | : "???")); | |
6d82d43b | 5906 | fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI); |
4b9b3959 AC |
5907 | fprintf_unfiltered (file, |
5908 | "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n", | |
5909 | MIPS_FPU_TYPE, | |
5910 | (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
5911 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
5912 | : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
5913 | : "???")); | |
4b9b3959 | 5914 | fprintf_unfiltered (file, |
480d3dd2 | 5915 | "mips_dump_tdep: mips_stack_argsize() = %d\n", |
13326b4e | 5916 | mips_stack_argsize (current_gdbarch)); |
6d82d43b | 5917 | fprintf_unfiltered (file, "mips_dump_tdep: A0_REGNUM = %d\n", A0_REGNUM); |
2475bac3 AC |
5918 | fprintf_unfiltered (file, |
5919 | "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n", | |
6d82d43b | 5920 | XSTRING (ADDR_BITS_REMOVE (ADDR))); |
2475bac3 AC |
5921 | fprintf_unfiltered (file, |
5922 | "mips_dump_tdep: ATTACH_DETACH # %s\n", | |
5923 | XSTRING (ATTACH_DETACH)); | |
2475bac3 AC |
5924 | fprintf_unfiltered (file, |
5925 | "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n", | |
5926 | XSTRING (DWARF_REG_TO_REGNUM (REGNUM))); | |
5927 | fprintf_unfiltered (file, | |
5928 | "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n", | |
5929 | XSTRING (ECOFF_REG_TO_REGNUM (REGNUM))); | |
2475bac3 AC |
5930 | fprintf_unfiltered (file, |
5931 | "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n", | |
5932 | FIRST_EMBED_REGNUM); | |
2475bac3 | 5933 | fprintf_unfiltered (file, |
a53c66de AC |
5934 | "mips_dump_tdep: DEPRECATED_IGNORE_HELPER_CALL # %s\n", |
5935 | XSTRING (DEPRECATED_IGNORE_HELPER_CALL (PC))); | |
2475bac3 AC |
5936 | fprintf_unfiltered (file, |
5937 | "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n", | |
5938 | XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME))); | |
5939 | fprintf_unfiltered (file, | |
5940 | "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n", | |
5941 | XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME))); | |
2475bac3 AC |
5942 | fprintf_unfiltered (file, |
5943 | "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n", | |
5944 | LAST_EMBED_REGNUM); | |
2475bac3 AC |
5945 | #ifdef MACHINE_CPROC_FP_OFFSET |
5946 | fprintf_unfiltered (file, | |
5947 | "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n", | |
5948 | MACHINE_CPROC_FP_OFFSET); | |
5949 | #endif | |
5950 | #ifdef MACHINE_CPROC_PC_OFFSET | |
5951 | fprintf_unfiltered (file, | |
5952 | "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n", | |
5953 | MACHINE_CPROC_PC_OFFSET); | |
5954 | #endif | |
5955 | #ifdef MACHINE_CPROC_SP_OFFSET | |
5956 | fprintf_unfiltered (file, | |
5957 | "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n", | |
5958 | MACHINE_CPROC_SP_OFFSET); | |
5959 | #endif | |
2475bac3 AC |
5960 | fprintf_unfiltered (file, |
5961 | "mips_dump_tdep: MIPS16_INSTLEN = %d\n", | |
5962 | MIPS16_INSTLEN); | |
6d82d43b | 5963 | fprintf_unfiltered (file, "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n"); |
2475bac3 AC |
5964 | fprintf_unfiltered (file, |
5965 | "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n"); | |
5966 | fprintf_unfiltered (file, | |
6d82d43b | 5967 | "mips_dump_tdep: MIPS_INSTLEN = %d\n", MIPS_INSTLEN); |
2475bac3 | 5968 | fprintf_unfiltered (file, |
acdb74a0 AC |
5969 | "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n", |
5970 | MIPS_LAST_ARG_REGNUM, | |
5971 | MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1); | |
2475bac3 | 5972 | fprintf_unfiltered (file, |
6d82d43b | 5973 | "mips_dump_tdep: MIPS_NUMREGS = %d\n", MIPS_NUMREGS); |
2475bac3 | 5974 | fprintf_unfiltered (file, |
1b13c4f6 | 5975 | "mips_dump_tdep: mips_abi_regsize() = %d\n", |
13326b4e | 5976 | mips_abi_regsize (current_gdbarch)); |
2475bac3 | 5977 | fprintf_unfiltered (file, |
6d82d43b | 5978 | "mips_dump_tdep: PRID_REGNUM = %d\n", PRID_REGNUM); |
2475bac3 AC |
5979 | fprintf_unfiltered (file, |
5980 | "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n"); | |
5981 | fprintf_unfiltered (file, | |
5982 | "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n"); | |
5983 | fprintf_unfiltered (file, | |
5984 | "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n"); | |
6d82d43b AC |
5985 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FRAME_REG = function?\n"); |
5986 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_MASK = function?\n"); | |
5987 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_OFFSET = function?\n"); | |
5988 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_HIGH_ADDR = function?\n"); | |
5989 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_LOW_ADDR = function?\n"); | |
5990 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_PC_REG = function?\n"); | |
5991 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_MASK = function?\n"); | |
5992 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_OFFSET = function?\n"); | |
5993 | fprintf_unfiltered (file, "mips_dump_tdep: PROC_SYMBOL = function?\n"); | |
5994 | fprintf_unfiltered (file, "mips_dump_tdep: PS_REGNUM = %d\n", PS_REGNUM); | |
5995 | fprintf_unfiltered (file, "mips_dump_tdep: RA_REGNUM = %d\n", RA_REGNUM); | |
2475bac3 AC |
5996 | #ifdef SAVED_BYTES |
5997 | fprintf_unfiltered (file, | |
6d82d43b | 5998 | "mips_dump_tdep: SAVED_BYTES = %d\n", SAVED_BYTES); |
2475bac3 AC |
5999 | #endif |
6000 | #ifdef SAVED_FP | |
6d82d43b | 6001 | fprintf_unfiltered (file, "mips_dump_tdep: SAVED_FP = %d\n", SAVED_FP); |
2475bac3 AC |
6002 | #endif |
6003 | #ifdef SAVED_PC | |
6d82d43b | 6004 | fprintf_unfiltered (file, "mips_dump_tdep: SAVED_PC = %d\n", SAVED_PC); |
2475bac3 AC |
6005 | #endif |
6006 | fprintf_unfiltered (file, | |
6007 | "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n", | |
6008 | XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS))); | |
6009 | fprintf_unfiltered (file, | |
6010 | "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n"); | |
2475bac3 AC |
6011 | fprintf_unfiltered (file, |
6012 | "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n", | |
6013 | XSTRING (SKIP_TRAMPOLINE_CODE (PC))); | |
6014 | fprintf_unfiltered (file, | |
6015 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n", | |
6016 | XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P))); | |
6017 | fprintf_unfiltered (file, | |
b0ed3589 AC |
6018 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n", |
6019 | SOFTWARE_SINGLE_STEP_P ()); | |
2475bac3 AC |
6020 | fprintf_unfiltered (file, |
6021 | "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n", | |
6022 | XSTRING (STAB_REG_TO_REGNUM (REGNUM))); | |
6023 | #ifdef STACK_END_ADDR | |
6024 | fprintf_unfiltered (file, | |
6025 | "mips_dump_tdep: STACK_END_ADDR = %d\n", | |
6026 | STACK_END_ADDR); | |
6027 | #endif | |
6028 | fprintf_unfiltered (file, | |
6029 | "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n", | |
6030 | XSTRING (STEP_SKIPS_DELAY (PC))); | |
6031 | fprintf_unfiltered (file, | |
6032 | "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n", | |
6033 | STEP_SKIPS_DELAY_P); | |
6034 | fprintf_unfiltered (file, | |
6035 | "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n", | |
6036 | XSTRING (STOPPED_BY_WATCHPOINT (WS))); | |
6d82d43b | 6037 | fprintf_unfiltered (file, "mips_dump_tdep: T9_REGNUM = %d\n", T9_REGNUM); |
2475bac3 AC |
6038 | fprintf_unfiltered (file, |
6039 | "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n"); | |
6040 | fprintf_unfiltered (file, | |
6041 | "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n", | |
6d82d43b AC |
6042 | XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT |
6043 | (TYPE, CNT, OTHERTYPE))); | |
2475bac3 AC |
6044 | fprintf_unfiltered (file, |
6045 | "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n", | |
6046 | XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS)); | |
2475bac3 AC |
6047 | #ifdef TRACE_CLEAR |
6048 | fprintf_unfiltered (file, | |
6049 | "mips_dump_tdep: TRACE_CLEAR # %s\n", | |
6050 | XSTRING (TRACE_CLEAR (THREAD, STATE))); | |
6051 | #endif | |
6052 | #ifdef TRACE_FLAVOR | |
6053 | fprintf_unfiltered (file, | |
6d82d43b | 6054 | "mips_dump_tdep: TRACE_FLAVOR = %d\n", TRACE_FLAVOR); |
2475bac3 AC |
6055 | #endif |
6056 | #ifdef TRACE_FLAVOR_SIZE | |
6057 | fprintf_unfiltered (file, | |
6058 | "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n", | |
6059 | TRACE_FLAVOR_SIZE); | |
6060 | #endif | |
6061 | #ifdef TRACE_SET | |
6062 | fprintf_unfiltered (file, | |
6063 | "mips_dump_tdep: TRACE_SET # %s\n", | |
6d82d43b | 6064 | XSTRING (TRACE_SET (X, STATE))); |
2475bac3 | 6065 | #endif |
2475bac3 AC |
6066 | #ifdef UNUSED_REGNUM |
6067 | fprintf_unfiltered (file, | |
6d82d43b | 6068 | "mips_dump_tdep: UNUSED_REGNUM = %d\n", UNUSED_REGNUM); |
2475bac3 | 6069 | #endif |
6d82d43b | 6070 | fprintf_unfiltered (file, "mips_dump_tdep: V0_REGNUM = %d\n", V0_REGNUM); |
2475bac3 AC |
6071 | fprintf_unfiltered (file, |
6072 | "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n", | |
6073 | (long) VM_MIN_ADDRESS); | |
2475bac3 | 6074 | fprintf_unfiltered (file, |
6d82d43b | 6075 | "mips_dump_tdep: ZERO_REGNUM = %d\n", ZERO_REGNUM); |
2475bac3 | 6076 | fprintf_unfiltered (file, |
6d82d43b | 6077 | "mips_dump_tdep: _PROC_MAGIC_ = %d\n", _PROC_MAGIC_); |
c2d11a7d JM |
6078 | } |
6079 | ||
6d82d43b | 6080 | extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */ |
a78f21af | 6081 | |
c906108c | 6082 | void |
acdb74a0 | 6083 | _initialize_mips_tdep (void) |
c906108c SS |
6084 | { |
6085 | static struct cmd_list_element *mipsfpulist = NULL; | |
6086 | struct cmd_list_element *c; | |
6087 | ||
6d82d43b | 6088 | mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN]; |
2e4ebe70 DJ |
6089 | if (MIPS_ABI_LAST + 1 |
6090 | != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0])) | |
6091 | internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync"); | |
6092 | ||
4b9b3959 | 6093 | gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep); |
c906108c | 6094 | |
8d5f9dcb DJ |
6095 | mips_pdr_data = register_objfile_data (); |
6096 | ||
a5ea2558 AC |
6097 | /* Add root prefix command for all "set mips"/"show mips" commands */ |
6098 | add_prefix_cmd ("mips", no_class, set_mips_command, | |
6099 | "Various MIPS specific commands.", | |
6100 | &setmipscmdlist, "set mips ", 0, &setlist); | |
6101 | ||
6102 | add_prefix_cmd ("mips", no_class, show_mips_command, | |
6103 | "Various MIPS specific commands.", | |
6104 | &showmipscmdlist, "show mips ", 0, &showlist); | |
6105 | ||
6106 | /* Allow the user to override the saved register size. */ | |
cb1a6d5f AC |
6107 | deprecated_add_show_from_set (add_set_enum_cmd ("saved-gpreg-size", |
6108 | class_obscure, | |
6109 | size_enums, | |
6110 | &mips_abi_regsize_string, "\ | |
a5ea2558 AC |
6111 | Set size of general purpose registers saved on the stack.\n\ |
6112 | This option can be set to one of:\n\ | |
6113 | 32 - Force GDB to treat saved GP registers as 32-bit\n\ | |
6114 | 64 - Force GDB to treat saved GP registers as 64-bit\n\ | |
6115 | auto - Allow GDB to use the target's default setting or autodetect the\n\ | |
6116 | saved GP register size from information contained in the executable.\n\ | |
6d82d43b | 6117 | (default: auto)", &setmipscmdlist), &showmipscmdlist); |
a5ea2558 | 6118 | |
d929b26f | 6119 | /* Allow the user to override the argument stack size. */ |
cb1a6d5f AC |
6120 | deprecated_add_show_from_set |
6121 | (add_set_enum_cmd ("stack-arg-size", | |
6122 | class_obscure, | |
6123 | size_enums, | |
6124 | &mips_stack_argsize_string, "\ | |
d929b26f AC |
6125 | Set the amount of stack space reserved for each argument.\n\ |
6126 | This option can be set to one of:\n\ | |
6127 | 32 - Force GDB to allocate 32-bit chunks per argument\n\ | |
6128 | 64 - Force GDB to allocate 64-bit chunks per argument\n\ | |
6129 | auto - Allow GDB to determine the correct setting from the current\n\ | |
cb1a6d5f AC |
6130 | target and executable (default)", &setmipscmdlist), |
6131 | &showmipscmdlist); | |
d929b26f | 6132 | |
2e4ebe70 DJ |
6133 | /* Allow the user to override the ABI. */ |
6134 | c = add_set_enum_cmd | |
6135 | ("abi", class_obscure, mips_abi_strings, &mips_abi_string, | |
6136 | "Set the ABI used by this program.\n" | |
6137 | "This option can be set to one of:\n" | |
6138 | " auto - the default ABI associated with the current binary\n" | |
6139 | " o32\n" | |
6d82d43b | 6140 | " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist); |
2e4ebe70 | 6141 | set_cmd_sfunc (c, mips_abi_update); |
ad188201 | 6142 | add_cmd ("abi", class_obscure, show_mips_abi, |
6d82d43b | 6143 | "Show ABI in use by MIPS target", &showmipscmdlist); |
2e4ebe70 | 6144 | |
c906108c SS |
6145 | /* Let the user turn off floating point and set the fence post for |
6146 | heuristic_proc_start. */ | |
6147 | ||
6148 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
6149 | "Set use of MIPS floating-point coprocessor.", | |
6150 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
6151 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
6152 | "Select single-precision MIPS floating-point coprocessor.", | |
6153 | &mipsfpulist); | |
6154 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
8e1a459b | 6155 | "Select double-precision MIPS floating-point coprocessor.", |
c906108c SS |
6156 | &mipsfpulist); |
6157 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
6158 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
6159 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
6160 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
6d82d43b | 6161 | "Select no MIPS floating-point coprocessor.", &mipsfpulist); |
c906108c SS |
6162 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); |
6163 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
6164 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
6165 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
6166 | "Select MIPS floating-point coprocessor automatically.", | |
6167 | &mipsfpulist); | |
6168 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
6169 | "Show current use of MIPS floating-point coprocessor target.", | |
6170 | &showlist); | |
6171 | ||
c906108c SS |
6172 | /* We really would like to have both "0" and "unlimited" work, but |
6173 | command.c doesn't deal with that. So make it a var_zinteger | |
6174 | because the user can always use "999999" or some such for unlimited. */ | |
6175 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
6d82d43b | 6176 | (char *) &heuristic_fence_post, "\ |
c906108c SS |
6177 | Set the distance searched for the start of a function.\n\ |
6178 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
6179 | program for the start of a function. This command sets the distance of the\n\ | |
6d82d43b | 6180 | search. The only need to set it is when debugging a stripped executable.", &setlist); |
c906108c SS |
6181 | /* We need to throw away the frame cache when we set this, since it |
6182 | might change our ability to get backtraces. */ | |
9f60d481 | 6183 | set_cmd_sfunc (c, reinit_frame_cache_sfunc); |
cb1a6d5f | 6184 | deprecated_add_show_from_set (c, &showlist); |
c906108c SS |
6185 | |
6186 | /* Allow the user to control whether the upper bits of 64-bit | |
6187 | addresses should be zeroed. */ | |
e9e68a56 | 6188 | add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\ |
3b64bf98 AC |
6189 | Set zeroing of upper 32 bits of 64-bit addresses.", "\ |
6190 | Show zeroing of upper 32 bits of 64-bit addresses.", "\ | |
e9e68a56 AC |
6191 | Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\ |
6192 | allow GDB to determine the correct value.\n", "\ | |
3b64bf98 | 6193 | Zerroing of upper 32 bits of 64-bit address is %s.", |
6d82d43b | 6194 | NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist); |
43e526b9 JM |
6195 | |
6196 | /* Allow the user to control the size of 32 bit registers within the | |
6197 | raw remote packet. */ | |
719ec221 AC |
6198 | add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure, |
6199 | var_boolean, &mips64_transfers_32bit_regs_p, "\ | |
3b64bf98 AC |
6200 | Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\ |
6201 | Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\ | |
719ec221 AC |
6202 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ |
6203 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
6d82d43b | 6204 | 64 bits for others. Use \"off\" to disable compatibility mode", "\ |
3b64bf98 AC |
6205 | Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.", |
6206 | set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist); | |
9ace0497 AC |
6207 | |
6208 | /* Debug this files internals. */ | |
cb1a6d5f AC |
6209 | deprecated_add_show_from_set |
6210 | (add_set_cmd ("mips", class_maintenance, var_zinteger, | |
6211 | &mips_debug, "Set mips debugging.\n\ | |
6212 | When non-zero, mips specific debugging is enabled.", &setdebuglist), | |
6213 | &showdebuglist); | |
c906108c | 6214 | } |