]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
bf64bfd6 | 2 | |
cda5a58a | 3 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
1e698235 | 4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
bf64bfd6 | 5 | |
c906108c SS |
6 | Contributed by Alessandro Forin([email protected]) at CMU |
7 | and by Per Bothner([email protected]) at U.Wisconsin. | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "gdb_string.h" | |
5e2e9765 | 28 | #include "gdb_assert.h" |
c906108c SS |
29 | #include "frame.h" |
30 | #include "inferior.h" | |
31 | #include "symtab.h" | |
32 | #include "value.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "language.h" | |
35 | #include "gdbcore.h" | |
36 | #include "symfile.h" | |
37 | #include "objfiles.h" | |
38 | #include "gdbtypes.h" | |
39 | #include "target.h" | |
28d069e6 | 40 | #include "arch-utils.h" |
4e052eda | 41 | #include "regcache.h" |
70f80edf | 42 | #include "osabi.h" |
d1973055 | 43 | #include "mips-tdep.h" |
fe898f56 | 44 | #include "block.h" |
c906108c SS |
45 | |
46 | #include "opcode/mips.h" | |
c2d11a7d JM |
47 | #include "elf/mips.h" |
48 | #include "elf-bfd.h" | |
2475bac3 | 49 | #include "symcat.h" |
c906108c | 50 | |
e0f7ec59 AC |
51 | static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off); |
52 | ||
dd824b04 DJ |
53 | /* A useful bit in the CP0 status register (PS_REGNUM). */ |
54 | /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */ | |
55 | #define ST0_FR (1 << 26) | |
56 | ||
b0069a17 AC |
57 | /* The sizes of floating point registers. */ |
58 | ||
59 | enum | |
60 | { | |
61 | MIPS_FPU_SINGLE_REGSIZE = 4, | |
62 | MIPS_FPU_DOUBLE_REGSIZE = 8 | |
63 | }; | |
64 | ||
0dadbba0 | 65 | |
2e4ebe70 DJ |
66 | static const char *mips_abi_string; |
67 | ||
68 | static const char *mips_abi_strings[] = { | |
69 | "auto", | |
70 | "n32", | |
71 | "o32", | |
28d169de | 72 | "n64", |
2e4ebe70 DJ |
73 | "o64", |
74 | "eabi32", | |
75 | "eabi64", | |
76 | NULL | |
77 | }; | |
78 | ||
cce74817 | 79 | struct frame_extra_info |
c5aa993b JM |
80 | { |
81 | mips_extra_func_info_t proc_desc; | |
82 | int num_args; | |
83 | }; | |
cce74817 | 84 | |
d929b26f AC |
85 | /* Various MIPS ISA options (related to stack analysis) can be |
86 | overridden dynamically. Establish an enum/array for managing | |
87 | them. */ | |
88 | ||
53904c9e AC |
89 | static const char size_auto[] = "auto"; |
90 | static const char size_32[] = "32"; | |
91 | static const char size_64[] = "64"; | |
d929b26f | 92 | |
53904c9e | 93 | static const char *size_enums[] = { |
d929b26f AC |
94 | size_auto, |
95 | size_32, | |
96 | size_64, | |
a5ea2558 AC |
97 | 0 |
98 | }; | |
99 | ||
7a292a7a SS |
100 | /* Some MIPS boards don't support floating point while others only |
101 | support single-precision floating-point operations. See also | |
102 | FP_REGISTER_DOUBLE. */ | |
c906108c SS |
103 | |
104 | enum mips_fpu_type | |
c5aa993b JM |
105 | { |
106 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
107 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
108 | MIPS_FPU_NONE /* No floating point. */ | |
109 | }; | |
c906108c SS |
110 | |
111 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
112 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
113 | #endif | |
114 | static int mips_fpu_type_auto = 1; | |
115 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
7a292a7a | 116 | |
9ace0497 | 117 | static int mips_debug = 0; |
7a292a7a | 118 | |
c2d11a7d JM |
119 | /* MIPS specific per-architecture information */ |
120 | struct gdbarch_tdep | |
121 | { | |
122 | /* from the elf header */ | |
123 | int elf_flags; | |
70f80edf | 124 | |
c2d11a7d | 125 | /* mips options */ |
0dadbba0 | 126 | enum mips_abi mips_abi; |
2e4ebe70 | 127 | enum mips_abi found_abi; |
c2d11a7d JM |
128 | enum mips_fpu_type mips_fpu_type; |
129 | int mips_last_arg_regnum; | |
130 | int mips_last_fp_arg_regnum; | |
a5ea2558 | 131 | int mips_default_saved_regsize; |
c2d11a7d | 132 | int mips_fp_register_double; |
d929b26f | 133 | int mips_default_stack_argsize; |
5213ab06 | 134 | int gdb_target_is_mips64; |
4014092b | 135 | int default_mask_address_p; |
c2d11a7d JM |
136 | }; |
137 | ||
0dadbba0 | 138 | #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \ |
216a600b | 139 | || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64) |
c2d11a7d | 140 | |
c2d11a7d | 141 | #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum) |
c2d11a7d | 142 | |
c2d11a7d | 143 | #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum) |
c2d11a7d | 144 | |
c2d11a7d | 145 | #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type) |
c2d11a7d | 146 | |
d929b26f AC |
147 | /* Return the currently configured (or set) saved register size. */ |
148 | ||
a5ea2558 | 149 | #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize) |
c2d11a7d | 150 | |
53904c9e | 151 | static const char *mips_saved_regsize_string = size_auto; |
d929b26f AC |
152 | |
153 | #define MIPS_SAVED_REGSIZE (mips_saved_regsize()) | |
154 | ||
95404a3e AC |
155 | /* MIPS16 function addresses are odd (bit 0 is set). Here are some |
156 | functions to test, set, or clear bit 0 of addresses. */ | |
157 | ||
158 | static CORE_ADDR | |
159 | is_mips16_addr (CORE_ADDR addr) | |
160 | { | |
161 | return ((addr) & 1); | |
162 | } | |
163 | ||
164 | static CORE_ADDR | |
165 | make_mips16_addr (CORE_ADDR addr) | |
166 | { | |
167 | return ((addr) | 1); | |
168 | } | |
169 | ||
170 | static CORE_ADDR | |
171 | unmake_mips16_addr (CORE_ADDR addr) | |
172 | { | |
173 | return ((addr) & ~1); | |
174 | } | |
175 | ||
22540ece AC |
176 | /* Return the contents of register REGNUM as a signed integer. */ |
177 | ||
178 | static LONGEST | |
179 | read_signed_register (int regnum) | |
180 | { | |
181 | void *buf = alloca (REGISTER_RAW_SIZE (regnum)); | |
182 | deprecated_read_register_gen (regnum, buf); | |
183 | return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum))); | |
184 | } | |
185 | ||
186 | static LONGEST | |
187 | read_signed_register_pid (int regnum, ptid_t ptid) | |
188 | { | |
189 | ptid_t save_ptid; | |
190 | LONGEST retval; | |
191 | ||
192 | if (ptid_equal (ptid, inferior_ptid)) | |
193 | return read_signed_register (regnum); | |
194 | ||
195 | save_ptid = inferior_ptid; | |
196 | ||
197 | inferior_ptid = ptid; | |
198 | ||
199 | retval = read_signed_register (regnum); | |
200 | ||
201 | inferior_ptid = save_ptid; | |
202 | ||
203 | return retval; | |
204 | } | |
205 | ||
d1973055 KB |
206 | /* Return the MIPS ABI associated with GDBARCH. */ |
207 | enum mips_abi | |
208 | mips_abi (struct gdbarch *gdbarch) | |
209 | { | |
210 | return gdbarch_tdep (gdbarch)->mips_abi; | |
211 | } | |
212 | ||
d929b26f | 213 | static unsigned int |
acdb74a0 | 214 | mips_saved_regsize (void) |
d929b26f AC |
215 | { |
216 | if (mips_saved_regsize_string == size_auto) | |
217 | return MIPS_DEFAULT_SAVED_REGSIZE; | |
218 | else if (mips_saved_regsize_string == size_64) | |
219 | return 8; | |
220 | else /* if (mips_saved_regsize_string == size_32) */ | |
221 | return 4; | |
222 | } | |
223 | ||
71b8ef93 | 224 | /* Functions for setting and testing a bit in a minimal symbol that |
5a89d8aa MS |
225 | marks it as 16-bit function. The MSB of the minimal symbol's |
226 | "info" field is used for this purpose. This field is already | |
227 | being used to store the symbol size, so the assumption is | |
228 | that the symbol size cannot exceed 2^31. | |
229 | ||
230 | ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special", | |
231 | i.e. refers to a 16-bit function, and sets a "special" bit in a | |
232 | minimal symbol to mark it as a 16-bit function | |
233 | ||
234 | MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol | |
235 | MSYMBOL_SIZE returns the size of the minimal symbol, i.e. | |
236 | the "info" field with the "special" bit masked out */ | |
237 | ||
5a89d8aa MS |
238 | static void |
239 | mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) | |
240 | { | |
241 | if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16) | |
242 | { | |
243 | MSYMBOL_INFO (msym) = (char *) | |
244 | (((long) MSYMBOL_INFO (msym)) | 0x80000000); | |
245 | SYMBOL_VALUE_ADDRESS (msym) |= 1; | |
246 | } | |
247 | } | |
248 | ||
71b8ef93 MS |
249 | static int |
250 | msymbol_is_special (struct minimal_symbol *msym) | |
251 | { | |
252 | return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0); | |
253 | } | |
254 | ||
255 | static long | |
256 | msymbol_size (struct minimal_symbol *msym) | |
257 | { | |
258 | return ((long) MSYMBOL_INFO (msym) & 0x7fffffff); | |
259 | } | |
260 | ||
88658117 AC |
261 | /* XFER a value from the big/little/left end of the register. |
262 | Depending on the size of the value it might occupy the entire | |
263 | register or just part of it. Make an allowance for this, aligning | |
264 | things accordingly. */ | |
265 | ||
266 | static void | |
267 | mips_xfer_register (struct regcache *regcache, int reg_num, int length, | |
268 | enum bfd_endian endian, bfd_byte *in, const bfd_byte *out, | |
269 | int buf_offset) | |
270 | { | |
d9d9c31f | 271 | bfd_byte reg[MAX_REGISTER_SIZE]; |
88658117 | 272 | int reg_offset = 0; |
cb1d2653 AC |
273 | /* Need to transfer the left or right part of the register, based on |
274 | the targets byte order. */ | |
88658117 AC |
275 | switch (endian) |
276 | { | |
277 | case BFD_ENDIAN_BIG: | |
278 | reg_offset = REGISTER_RAW_SIZE (reg_num) - length; | |
279 | break; | |
280 | case BFD_ENDIAN_LITTLE: | |
281 | reg_offset = 0; | |
282 | break; | |
283 | case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */ | |
284 | reg_offset = 0; | |
285 | break; | |
286 | default: | |
287 | internal_error (__FILE__, __LINE__, "bad switch"); | |
288 | } | |
289 | if (mips_debug) | |
cb1d2653 AC |
290 | fprintf_unfiltered (gdb_stderr, |
291 | "xfer $%d, reg offset %d, buf offset %d, length %d, ", | |
292 | reg_num, reg_offset, buf_offset, length); | |
88658117 AC |
293 | if (mips_debug && out != NULL) |
294 | { | |
295 | int i; | |
cb1d2653 | 296 | fprintf_unfiltered (gdb_stdlog, "out "); |
88658117 | 297 | for (i = 0; i < length; i++) |
cb1d2653 | 298 | fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]); |
88658117 AC |
299 | } |
300 | if (in != NULL) | |
301 | regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset); | |
302 | if (out != NULL) | |
303 | regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset); | |
304 | if (mips_debug && in != NULL) | |
305 | { | |
306 | int i; | |
cb1d2653 | 307 | fprintf_unfiltered (gdb_stdlog, "in "); |
88658117 | 308 | for (i = 0; i < length; i++) |
cb1d2653 | 309 | fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]); |
88658117 AC |
310 | } |
311 | if (mips_debug) | |
312 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
313 | } | |
314 | ||
dd824b04 DJ |
315 | /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU |
316 | compatiblity mode. A return value of 1 means that we have | |
317 | physical 64-bit registers, but should treat them as 32-bit registers. */ | |
318 | ||
319 | static int | |
320 | mips2_fp_compat (void) | |
321 | { | |
322 | /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not | |
323 | meaningful. */ | |
324 | if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4) | |
325 | return 0; | |
326 | ||
327 | #if 0 | |
328 | /* FIXME drow 2002-03-10: This is disabled until we can do it consistently, | |
329 | in all the places we deal with FP registers. PR gdb/413. */ | |
330 | /* Otherwise check the FR bit in the status register - it controls | |
331 | the FP compatiblity mode. If it is clear we are in compatibility | |
332 | mode. */ | |
333 | if ((read_register (PS_REGNUM) & ST0_FR) == 0) | |
334 | return 1; | |
335 | #endif | |
361d1df0 | 336 | |
dd824b04 DJ |
337 | return 0; |
338 | } | |
339 | ||
c2d11a7d JM |
340 | /* Indicate that the ABI makes use of double-precision registers |
341 | provided by the FPU (rather than combining pairs of registers to | |
342 | form double-precision values). Do not use "TARGET_IS_MIPS64" to | |
343 | determine if the ABI is using double-precision registers. See also | |
344 | MIPS_FPU_TYPE. */ | |
c2d11a7d | 345 | #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double) |
c2d11a7d | 346 | |
d929b26f AC |
347 | /* The amount of space reserved on the stack for registers. This is |
348 | different to MIPS_SAVED_REGSIZE as it determines the alignment of | |
349 | data allocated after the registers have run out. */ | |
350 | ||
0dadbba0 | 351 | #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize) |
d929b26f AC |
352 | |
353 | #define MIPS_STACK_ARGSIZE (mips_stack_argsize ()) | |
354 | ||
53904c9e | 355 | static const char *mips_stack_argsize_string = size_auto; |
d929b26f AC |
356 | |
357 | static unsigned int | |
358 | mips_stack_argsize (void) | |
359 | { | |
360 | if (mips_stack_argsize_string == size_auto) | |
361 | return MIPS_DEFAULT_STACK_ARGSIZE; | |
362 | else if (mips_stack_argsize_string == size_64) | |
363 | return 8; | |
364 | else /* if (mips_stack_argsize_string == size_32) */ | |
365 | return 4; | |
366 | } | |
367 | ||
5213ab06 | 368 | #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0) |
c2d11a7d | 369 | |
92e1c15c | 370 | #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p) |
92e1c15c | 371 | |
7a292a7a | 372 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
c906108c | 373 | |
a14ed312 | 374 | int gdb_print_insn_mips (bfd_vma, disassemble_info *); |
c906108c | 375 | |
570b8f7c AC |
376 | static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR, |
377 | struct frame_info *, int); | |
c906108c | 378 | |
a14ed312 | 379 | static CORE_ADDR heuristic_proc_start (CORE_ADDR); |
c906108c | 380 | |
a14ed312 | 381 | static CORE_ADDR read_next_frame_reg (struct frame_info *, int); |
c906108c | 382 | |
5a89d8aa | 383 | static int mips_set_processor_type (char *); |
c906108c | 384 | |
a14ed312 | 385 | static void mips_show_processor_type_command (char *, int); |
c906108c | 386 | |
a14ed312 | 387 | static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *); |
c906108c | 388 | |
570b8f7c AC |
389 | static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc, |
390 | struct frame_info *next_frame, | |
391 | int cur_frame); | |
c906108c | 392 | |
a14ed312 KB |
393 | static CORE_ADDR after_prologue (CORE_ADDR pc, |
394 | mips_extra_func_info_t proc_desc); | |
c906108c | 395 | |
67b2c998 DJ |
396 | static struct type *mips_float_register_type (void); |
397 | static struct type *mips_double_register_type (void); | |
398 | ||
c906108c SS |
399 | /* This value is the model of MIPS in use. It is derived from the value |
400 | of the PrID register. */ | |
401 | ||
402 | char *mips_processor_type; | |
403 | ||
404 | char *tmp_mips_processor_type; | |
405 | ||
acdb74a0 AC |
406 | /* The list of available "set mips " and "show mips " commands */ |
407 | ||
408 | static struct cmd_list_element *setmipscmdlist = NULL; | |
409 | static struct cmd_list_element *showmipscmdlist = NULL; | |
410 | ||
c906108c SS |
411 | /* A set of original names, to be used when restoring back to generic |
412 | registers from a specific set. */ | |
5e2e9765 | 413 | static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES; |
c906108c | 414 | |
5e2e9765 KB |
415 | /* Integer registers 0 thru 31 are handled explicitly by |
416 | mips_register_name(). Processor specific registers 32 and above | |
417 | are listed in the sets of register names assigned to | |
418 | mips_processor_reg_names. */ | |
419 | static char **mips_processor_reg_names = mips_generic_reg_names; | |
cce74817 | 420 | |
5e2e9765 | 421 | /* Return the name of the register corresponding to REGNO. */ |
5a89d8aa | 422 | static const char * |
5e2e9765 | 423 | mips_register_name (int regno) |
cce74817 | 424 | { |
5e2e9765 KB |
425 | /* GPR names for all ABIs other than n32/n64. */ |
426 | static char *mips_gpr_names[] = { | |
427 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
428 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
429 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
430 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
431 | }; | |
432 | ||
433 | /* GPR names for n32 and n64 ABIs. */ | |
434 | static char *mips_n32_n64_gpr_names[] = { | |
435 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
436 | "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", | |
437 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
438 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" | |
439 | }; | |
440 | ||
441 | enum mips_abi abi = mips_abi (current_gdbarch); | |
442 | ||
443 | /* The MIPS integer registers are always mapped from 0 to 31. The | |
444 | names of the registers (which reflects the conventions regarding | |
445 | register use) vary depending on the ABI. */ | |
446 | if (0 <= regno && regno < 32) | |
447 | { | |
448 | if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64) | |
449 | return mips_n32_n64_gpr_names[regno]; | |
450 | else | |
451 | return mips_gpr_names[regno]; | |
452 | } | |
b006a9e9 | 453 | else if (32 <= regno && regno < NUM_REGS) |
5e2e9765 KB |
454 | return mips_processor_reg_names[regno - 32]; |
455 | else | |
456 | internal_error (__FILE__, __LINE__, | |
457 | "mips_register_name: bad register number %d", regno); | |
cce74817 | 458 | } |
5e2e9765 | 459 | |
9846de1b | 460 | /* *INDENT-OFF* */ |
c906108c SS |
461 | /* Names of IDT R3041 registers. */ |
462 | ||
463 | char *mips_r3041_reg_names[] = { | |
c906108c SS |
464 | "sr", "lo", "hi", "bad", "cause","pc", |
465 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
466 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
467 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
468 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
a094c6fb | 469 | "fsr", "fir", "",/*"fp"*/ "", |
c906108c SS |
470 | "", "", "bus", "ccfg", "", "", "", "", |
471 | "", "", "port", "cmp", "", "", "epc", "prid", | |
472 | }; | |
473 | ||
474 | /* Names of IDT R3051 registers. */ | |
475 | ||
476 | char *mips_r3051_reg_names[] = { | |
c906108c SS |
477 | "sr", "lo", "hi", "bad", "cause","pc", |
478 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
479 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
480 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
481 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
a094c6fb | 482 | "fsr", "fir", ""/*"fp"*/, "", |
c906108c SS |
483 | "inx", "rand", "elo", "", "ctxt", "", "", "", |
484 | "", "", "ehi", "", "", "", "epc", "prid", | |
485 | }; | |
486 | ||
487 | /* Names of IDT R3081 registers. */ | |
488 | ||
489 | char *mips_r3081_reg_names[] = { | |
c906108c SS |
490 | "sr", "lo", "hi", "bad", "cause","pc", |
491 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
492 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
493 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
494 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
a094c6fb | 495 | "fsr", "fir", ""/*"fp"*/, "", |
c906108c SS |
496 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", |
497 | "", "", "ehi", "", "", "", "epc", "prid", | |
498 | }; | |
499 | ||
500 | /* Names of LSI 33k registers. */ | |
501 | ||
502 | char *mips_lsi33k_reg_names[] = { | |
c906108c SS |
503 | "epc", "hi", "lo", "sr", "cause","badvaddr", |
504 | "dcic", "bpc", "bda", "", "", "", "", "", | |
505 | "", "", "", "", "", "", "", "", | |
506 | "", "", "", "", "", "", "", "", | |
507 | "", "", "", "", "", "", "", "", | |
508 | "", "", "", "", | |
509 | "", "", "", "", "", "", "", "", | |
510 | "", "", "", "", "", "", "", "", | |
511 | }; | |
512 | ||
513 | struct { | |
514 | char *name; | |
515 | char **regnames; | |
516 | } mips_processor_type_table[] = { | |
517 | { "generic", mips_generic_reg_names }, | |
518 | { "r3041", mips_r3041_reg_names }, | |
519 | { "r3051", mips_r3051_reg_names }, | |
520 | { "r3071", mips_r3081_reg_names }, | |
521 | { "r3081", mips_r3081_reg_names }, | |
522 | { "lsi33k", mips_lsi33k_reg_names }, | |
523 | { NULL, NULL } | |
524 | }; | |
9846de1b | 525 | /* *INDENT-ON* */ |
c906108c | 526 | |
c5aa993b JM |
527 | |
528 | ||
529 | ||
c906108c | 530 | /* Table to translate MIPS16 register field to actual register number. */ |
c5aa993b JM |
531 | static int mips16_to_32_reg[8] = |
532 | {16, 17, 2, 3, 4, 5, 6, 7}; | |
c906108c SS |
533 | |
534 | /* Heuristic_proc_start may hunt through the text section for a long | |
535 | time across a 2400 baud serial line. Allows the user to limit this | |
536 | search. */ | |
537 | ||
538 | static unsigned int heuristic_fence_post = 0; | |
539 | ||
c5aa993b JM |
540 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
541 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
c906108c SS |
542 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
543 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
544 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
545 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
546 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
547 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
548 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
549 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
6c0d6680 DJ |
550 | /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long, |
551 | this will corrupt pdr.iline. Fortunately we don't use it. */ | |
c906108c SS |
552 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) |
553 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
554 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) | |
555 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
556 | ||
557 | struct linked_proc_info | |
c5aa993b JM |
558 | { |
559 | struct mips_extra_func_info info; | |
560 | struct linked_proc_info *next; | |
561 | } | |
562 | *linked_proc_desc_table = NULL; | |
c906108c | 563 | |
cce74817 | 564 | void |
acdb74a0 | 565 | mips_print_extra_frame_info (struct frame_info *fi) |
cce74817 JM |
566 | { |
567 | if (fi | |
da50a4b7 AC |
568 | && get_frame_extra_info (fi) |
569 | && get_frame_extra_info (fi)->proc_desc | |
570 | && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS) | |
d4f3574e | 571 | printf_filtered (" frame pointer is at %s+%s\n", |
da50a4b7 AC |
572 | REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg), |
573 | paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset)); | |
cce74817 | 574 | } |
c906108c | 575 | |
46cd78fb AC |
576 | /* Number of bytes of storage in the actual machine representation for |
577 | register N. NOTE: This indirectly defines the register size | |
578 | transfered by the GDB protocol. */ | |
43e526b9 JM |
579 | |
580 | static int mips64_transfers_32bit_regs_p = 0; | |
581 | ||
f7ab6ec6 | 582 | static int |
acdb74a0 | 583 | mips_register_raw_size (int reg_nr) |
43e526b9 JM |
584 | { |
585 | if (mips64_transfers_32bit_regs_p) | |
586 | return REGISTER_VIRTUAL_SIZE (reg_nr); | |
d02ee681 AC |
587 | else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32 |
588 | && FP_REGISTER_DOUBLE) | |
589 | /* For MIPS_ABI_N32 (for example) we need 8 byte floating point | |
590 | registers. */ | |
591 | return 8; | |
43e526b9 JM |
592 | else |
593 | return MIPS_REGSIZE; | |
594 | } | |
595 | ||
46cd78fb AC |
596 | /* Convert between RAW and VIRTUAL registers. The RAW register size |
597 | defines the remote-gdb packet. */ | |
598 | ||
d05285fa | 599 | static int |
acdb74a0 | 600 | mips_register_convertible (int reg_nr) |
43e526b9 JM |
601 | { |
602 | if (mips64_transfers_32bit_regs_p) | |
603 | return 0; | |
604 | else | |
605 | return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr)); | |
606 | } | |
607 | ||
d05285fa | 608 | static void |
acdb74a0 AC |
609 | mips_register_convert_to_virtual (int n, struct type *virtual_type, |
610 | char *raw_buf, char *virt_buf) | |
43e526b9 | 611 | { |
d7449b42 | 612 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
43e526b9 JM |
613 | memcpy (virt_buf, |
614 | raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
615 | TYPE_LENGTH (virtual_type)); | |
616 | else | |
617 | memcpy (virt_buf, | |
618 | raw_buf, | |
619 | TYPE_LENGTH (virtual_type)); | |
620 | } | |
621 | ||
d05285fa | 622 | static void |
acdb74a0 | 623 | mips_register_convert_to_raw (struct type *virtual_type, int n, |
781a750d | 624 | const char *virt_buf, char *raw_buf) |
43e526b9 JM |
625 | { |
626 | memset (raw_buf, 0, REGISTER_RAW_SIZE (n)); | |
d7449b42 | 627 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
43e526b9 JM |
628 | memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), |
629 | virt_buf, | |
630 | TYPE_LENGTH (virtual_type)); | |
631 | else | |
632 | memcpy (raw_buf, | |
633 | virt_buf, | |
634 | TYPE_LENGTH (virtual_type)); | |
635 | } | |
636 | ||
102182a9 MS |
637 | void |
638 | mips_register_convert_to_type (int regnum, struct type *type, char *buffer) | |
639 | { | |
640 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
641 | && REGISTER_RAW_SIZE (regnum) == 4 | |
642 | && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32 | |
643 | && TYPE_CODE(type) == TYPE_CODE_FLT | |
644 | && TYPE_LENGTH(type) == 8) | |
645 | { | |
646 | char temp[4]; | |
647 | memcpy (temp, ((char *)(buffer))+4, 4); | |
648 | memcpy (((char *)(buffer))+4, (buffer), 4); | |
649 | memcpy (((char *)(buffer)), temp, 4); | |
650 | } | |
651 | } | |
652 | ||
653 | void | |
654 | mips_register_convert_from_type (int regnum, struct type *type, char *buffer) | |
655 | { | |
656 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
657 | && REGISTER_RAW_SIZE (regnum) == 4 | |
658 | && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32 | |
659 | && TYPE_CODE(type) == TYPE_CODE_FLT | |
660 | && TYPE_LENGTH(type) == 8) | |
661 | { | |
662 | char temp[4]; | |
663 | memcpy (temp, ((char *)(buffer))+4, 4); | |
664 | memcpy (((char *)(buffer))+4, (buffer), 4); | |
665 | memcpy (((char *)(buffer)), temp, 4); | |
666 | } | |
667 | } | |
668 | ||
78fde5f8 KB |
669 | /* Return the GDB type object for the "standard" data type |
670 | of data in register REG. | |
671 | ||
672 | Note: kevinb/2002-08-01: The definition below should faithfully | |
673 | reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE | |
0ba6dca9 AC |
674 | definitions found in config/mips/tm-*.h. I'm concerned about the |
675 | ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though. | |
676 | In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt | |
78fde5f8 KB |
677 | that this code is correct for the 64-bit case. */ |
678 | ||
679 | static struct type * | |
680 | mips_register_virtual_type (int reg) | |
681 | { | |
682 | if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32) | |
a6425924 KB |
683 | { |
684 | /* Floating point registers... */ | |
685 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
686 | return builtin_type_ieee_double_big; | |
687 | else | |
688 | return builtin_type_ieee_double_little; | |
689 | } | |
78fde5f8 KB |
690 | else if (reg == PS_REGNUM /* CR */) |
691 | return builtin_type_uint32; | |
692 | else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM) | |
693 | return builtin_type_uint32; | |
694 | else | |
695 | { | |
a6425924 KB |
696 | /* Everything else... |
697 | Return type appropriate for width of register. */ | |
698 | if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64)) | |
699 | return builtin_type_uint64; | |
78fde5f8 | 700 | else |
a6425924 | 701 | return builtin_type_uint32; |
78fde5f8 KB |
702 | } |
703 | } | |
704 | ||
bcb0cc15 MS |
705 | /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */ |
706 | ||
707 | static CORE_ADDR | |
708 | mips_read_sp (void) | |
709 | { | |
e227b13c | 710 | return read_signed_register (SP_REGNUM); |
bcb0cc15 MS |
711 | } |
712 | ||
c906108c | 713 | /* Should the upper word of 64-bit addresses be zeroed? */ |
7f19b9a2 | 714 | enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO; |
4014092b AC |
715 | |
716 | static int | |
717 | mips_mask_address_p (void) | |
718 | { | |
719 | switch (mask_address_var) | |
720 | { | |
7f19b9a2 | 721 | case AUTO_BOOLEAN_TRUE: |
4014092b | 722 | return 1; |
7f19b9a2 | 723 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
724 | return 0; |
725 | break; | |
7f19b9a2 | 726 | case AUTO_BOOLEAN_AUTO: |
92e1c15c | 727 | return MIPS_DEFAULT_MASK_ADDRESS_P; |
4014092b | 728 | default: |
8e65ff28 AC |
729 | internal_error (__FILE__, __LINE__, |
730 | "mips_mask_address_p: bad switch"); | |
4014092b | 731 | return -1; |
361d1df0 | 732 | } |
4014092b AC |
733 | } |
734 | ||
735 | static void | |
e9e68a56 | 736 | show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c) |
4014092b AC |
737 | { |
738 | switch (mask_address_var) | |
739 | { | |
7f19b9a2 | 740 | case AUTO_BOOLEAN_TRUE: |
4014092b AC |
741 | printf_filtered ("The 32 bit mips address mask is enabled\n"); |
742 | break; | |
7f19b9a2 | 743 | case AUTO_BOOLEAN_FALSE: |
4014092b AC |
744 | printf_filtered ("The 32 bit mips address mask is disabled\n"); |
745 | break; | |
7f19b9a2 | 746 | case AUTO_BOOLEAN_AUTO: |
4014092b AC |
747 | printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n", |
748 | mips_mask_address_p () ? "enabled" : "disabled"); | |
749 | break; | |
750 | default: | |
8e65ff28 AC |
751 | internal_error (__FILE__, __LINE__, |
752 | "show_mask_address: bad switch"); | |
4014092b | 753 | break; |
361d1df0 | 754 | } |
4014092b | 755 | } |
c906108c SS |
756 | |
757 | /* Should call_function allocate stack space for a struct return? */ | |
cb811fe7 | 758 | |
f7ab6ec6 | 759 | static int |
cb811fe7 | 760 | mips_eabi_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 761 | { |
cb811fe7 MS |
762 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); |
763 | } | |
764 | ||
f7ab6ec6 | 765 | static int |
cb811fe7 MS |
766 | mips_n32n64_use_struct_convention (int gcc_p, struct type *type) |
767 | { | |
b78bcb18 | 768 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); |
cb811fe7 MS |
769 | } |
770 | ||
8b389c40 MS |
771 | /* Should call_function pass struct by reference? |
772 | For each architecture, structs are passed either by | |
773 | value or by reference, depending on their size. */ | |
774 | ||
775 | static int | |
776 | mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type) | |
777 | { | |
778 | enum type_code typecode = TYPE_CODE (check_typedef (type)); | |
779 | int len = TYPE_LENGTH (check_typedef (type)); | |
780 | ||
781 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
782 | return (len > MIPS_SAVED_REGSIZE); | |
783 | ||
784 | return 0; | |
785 | } | |
786 | ||
787 | static int | |
788 | mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type) | |
789 | { | |
790 | return 0; /* Assumption: N32/N64 never passes struct by ref. */ | |
791 | } | |
792 | ||
f7ab6ec6 | 793 | static int |
8b389c40 MS |
794 | mips_o32_reg_struct_has_addr (int gcc_p, struct type *type) |
795 | { | |
796 | return 0; /* Assumption: O32/O64 never passes struct by ref. */ | |
797 | } | |
798 | ||
c906108c SS |
799 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ |
800 | ||
801 | static int | |
802 | pc_is_mips16 (bfd_vma memaddr) | |
803 | { | |
804 | struct minimal_symbol *sym; | |
805 | ||
806 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
95404a3e | 807 | if (is_mips16_addr (memaddr)) |
c906108c SS |
808 | return 1; |
809 | ||
810 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
811 | the high bit of the info field. Use this to decide if the function is | |
812 | MIPS16 or normal MIPS. */ | |
813 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
814 | if (sym) | |
71b8ef93 | 815 | return msymbol_is_special (sym); |
c906108c SS |
816 | else |
817 | return 0; | |
818 | } | |
819 | ||
6c997a34 AC |
820 | /* MIPS believes that the PC has a sign extended value. Perhaphs the |
821 | all registers should be sign extended for simplicity? */ | |
822 | ||
823 | static CORE_ADDR | |
39f77062 | 824 | mips_read_pc (ptid_t ptid) |
6c997a34 | 825 | { |
39f77062 | 826 | return read_signed_register_pid (PC_REGNUM, ptid); |
6c997a34 | 827 | } |
c906108c SS |
828 | |
829 | /* This returns the PC of the first inst after the prologue. If we can't | |
830 | find the prologue, then return 0. */ | |
831 | ||
832 | static CORE_ADDR | |
acdb74a0 AC |
833 | after_prologue (CORE_ADDR pc, |
834 | mips_extra_func_info_t proc_desc) | |
c906108c SS |
835 | { |
836 | struct symtab_and_line sal; | |
837 | CORE_ADDR func_addr, func_end; | |
838 | ||
479412cd DJ |
839 | /* Pass cur_frame == 0 to find_proc_desc. We should not attempt |
840 | to read the stack pointer from the current machine state, because | |
841 | the current machine state has nothing to do with the information | |
842 | we need from the proc_desc; and the process may or may not exist | |
843 | right now. */ | |
c906108c | 844 | if (!proc_desc) |
479412cd | 845 | proc_desc = find_proc_desc (pc, NULL, 0); |
c906108c SS |
846 | |
847 | if (proc_desc) | |
848 | { | |
849 | /* If function is frameless, then we need to do it the hard way. I | |
c5aa993b | 850 | strongly suspect that frameless always means prologueless... */ |
c906108c SS |
851 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM |
852 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
853 | return 0; | |
854 | } | |
855 | ||
856 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
857 | return 0; /* Unknown */ | |
858 | ||
859 | sal = find_pc_line (func_addr, 0); | |
860 | ||
861 | if (sal.end < func_end) | |
862 | return sal.end; | |
863 | ||
864 | /* The line after the prologue is after the end of the function. In this | |
865 | case, tell the caller to find the prologue the hard way. */ | |
866 | ||
867 | return 0; | |
868 | } | |
869 | ||
870 | /* Decode a MIPS32 instruction that saves a register in the stack, and | |
871 | set the appropriate bit in the general register mask or float register mask | |
872 | to indicate which register is saved. This is a helper function | |
873 | for mips_find_saved_regs. */ | |
874 | ||
875 | static void | |
acdb74a0 AC |
876 | mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask, |
877 | unsigned long *float_mask) | |
c906108c SS |
878 | { |
879 | int reg; | |
880 | ||
881 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
882 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
883 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
884 | { | |
885 | /* It might be possible to use the instruction to | |
c5aa993b JM |
886 | find the offset, rather than the code below which |
887 | is based on things being in a certain order in the | |
888 | frame, but figuring out what the instruction's offset | |
889 | is relative to might be a little tricky. */ | |
c906108c SS |
890 | reg = (inst & 0x001f0000) >> 16; |
891 | *gen_mask |= (1 << reg); | |
892 | } | |
893 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
c5aa993b JM |
894 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ |
895 | || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */ | |
c906108c SS |
896 | |
897 | { | |
898 | reg = ((inst & 0x001f0000) >> 16); | |
899 | *float_mask |= (1 << reg); | |
900 | } | |
901 | } | |
902 | ||
903 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
904 | set the appropriate bit in the general register or float register mask | |
905 | to indicate which register is saved. This is a helper function | |
906 | for mips_find_saved_regs. */ | |
907 | ||
908 | static void | |
acdb74a0 | 909 | mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask) |
c906108c | 910 | { |
c5aa993b | 911 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
c906108c SS |
912 | { |
913 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
914 | *gen_mask |= (1 << reg); | |
915 | } | |
c5aa993b | 916 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ |
c906108c SS |
917 | { |
918 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
919 | *gen_mask |= (1 << reg); | |
920 | } | |
c5aa993b | 921 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ |
c906108c SS |
922 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
923 | *gen_mask |= (1 << RA_REGNUM); | |
924 | } | |
925 | ||
926 | ||
927 | /* Fetch and return instruction from the specified location. If the PC | |
928 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
929 | ||
930 | static t_inst | |
acdb74a0 | 931 | mips_fetch_instruction (CORE_ADDR addr) |
c906108c SS |
932 | { |
933 | char buf[MIPS_INSTLEN]; | |
934 | int instlen; | |
935 | int status; | |
936 | ||
937 | if (pc_is_mips16 (addr)) | |
938 | { | |
939 | instlen = MIPS16_INSTLEN; | |
95404a3e | 940 | addr = unmake_mips16_addr (addr); |
c906108c SS |
941 | } |
942 | else | |
c5aa993b | 943 | instlen = MIPS_INSTLEN; |
c906108c SS |
944 | status = read_memory_nobpt (addr, buf, instlen); |
945 | if (status) | |
946 | memory_error (status, addr); | |
947 | return extract_unsigned_integer (buf, instlen); | |
948 | } | |
949 | ||
950 | ||
951 | /* These the fields of 32 bit mips instructions */ | |
e135b889 DJ |
952 | #define mips32_op(x) (x >> 26) |
953 | #define itype_op(x) (x >> 26) | |
954 | #define itype_rs(x) ((x >> 21) & 0x1f) | |
c906108c | 955 | #define itype_rt(x) ((x >> 16) & 0x1f) |
e135b889 | 956 | #define itype_immediate(x) (x & 0xffff) |
c906108c | 957 | |
e135b889 DJ |
958 | #define jtype_op(x) (x >> 26) |
959 | #define jtype_target(x) (x & 0x03ffffff) | |
c906108c | 960 | |
e135b889 DJ |
961 | #define rtype_op(x) (x >> 26) |
962 | #define rtype_rs(x) ((x >> 21) & 0x1f) | |
963 | #define rtype_rt(x) ((x >> 16) & 0x1f) | |
964 | #define rtype_rd(x) ((x >> 11) & 0x1f) | |
965 | #define rtype_shamt(x) ((x >> 6) & 0x1f) | |
966 | #define rtype_funct(x) (x & 0x3f) | |
c906108c SS |
967 | |
968 | static CORE_ADDR | |
c5aa993b JM |
969 | mips32_relative_offset (unsigned long inst) |
970 | { | |
971 | long x; | |
972 | x = itype_immediate (inst); | |
973 | if (x & 0x8000) /* sign bit set */ | |
c906108c | 974 | { |
c5aa993b | 975 | x |= 0xffff0000; /* sign extension */ |
c906108c | 976 | } |
c5aa993b JM |
977 | x = x << 2; |
978 | return x; | |
c906108c SS |
979 | } |
980 | ||
981 | /* Determine whate to set a single step breakpoint while considering | |
982 | branch prediction */ | |
5a89d8aa | 983 | static CORE_ADDR |
c5aa993b JM |
984 | mips32_next_pc (CORE_ADDR pc) |
985 | { | |
986 | unsigned long inst; | |
987 | int op; | |
988 | inst = mips_fetch_instruction (pc); | |
e135b889 | 989 | if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */ |
c5aa993b | 990 | { |
e135b889 DJ |
991 | if (itype_op (inst) >> 2 == 5) |
992 | /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */ | |
c5aa993b | 993 | { |
e135b889 | 994 | op = (itype_op (inst) & 0x03); |
c906108c SS |
995 | switch (op) |
996 | { | |
e135b889 DJ |
997 | case 0: /* BEQL */ |
998 | goto equal_branch; | |
999 | case 1: /* BNEL */ | |
1000 | goto neq_branch; | |
1001 | case 2: /* BLEZL */ | |
1002 | goto less_branch; | |
1003 | case 3: /* BGTZ */ | |
1004 | goto greater_branch; | |
c5aa993b JM |
1005 | default: |
1006 | pc += 4; | |
c906108c SS |
1007 | } |
1008 | } | |
e135b889 DJ |
1009 | else if (itype_op (inst) == 17 && itype_rs (inst) == 8) |
1010 | /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */ | |
1011 | { | |
1012 | int tf = itype_rt (inst) & 0x01; | |
1013 | int cnum = itype_rt (inst) >> 2; | |
1014 | int fcrcs = read_signed_register (FCRCS_REGNUM); | |
1015 | int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01); | |
1016 | ||
1017 | if (((cond >> cnum) & 0x01) == tf) | |
1018 | pc += mips32_relative_offset (inst) + 4; | |
1019 | else | |
1020 | pc += 8; | |
1021 | } | |
c5aa993b JM |
1022 | else |
1023 | pc += 4; /* Not a branch, next instruction is easy */ | |
c906108c SS |
1024 | } |
1025 | else | |
c5aa993b JM |
1026 | { /* This gets way messy */ |
1027 | ||
c906108c | 1028 | /* Further subdivide into SPECIAL, REGIMM and other */ |
e135b889 | 1029 | switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */ |
c906108c | 1030 | { |
c5aa993b JM |
1031 | case 0: /* SPECIAL */ |
1032 | op = rtype_funct (inst); | |
1033 | switch (op) | |
1034 | { | |
1035 | case 8: /* JR */ | |
1036 | case 9: /* JALR */ | |
6c997a34 AC |
1037 | /* Set PC to that address */ |
1038 | pc = read_signed_register (rtype_rs (inst)); | |
c5aa993b JM |
1039 | break; |
1040 | default: | |
1041 | pc += 4; | |
1042 | } | |
1043 | ||
e135b889 | 1044 | break; /* end SPECIAL */ |
c5aa993b | 1045 | case 1: /* REGIMM */ |
c906108c | 1046 | { |
e135b889 DJ |
1047 | op = itype_rt (inst); /* branch condition */ |
1048 | switch (op) | |
c906108c | 1049 | { |
c5aa993b | 1050 | case 0: /* BLTZ */ |
e135b889 DJ |
1051 | case 2: /* BLTZL */ |
1052 | case 16: /* BLTZAL */ | |
c5aa993b | 1053 | case 18: /* BLTZALL */ |
c906108c | 1054 | less_branch: |
6c997a34 | 1055 | if (read_signed_register (itype_rs (inst)) < 0) |
c5aa993b JM |
1056 | pc += mips32_relative_offset (inst) + 4; |
1057 | else | |
1058 | pc += 8; /* after the delay slot */ | |
1059 | break; | |
e135b889 | 1060 | case 1: /* BGEZ */ |
c5aa993b JM |
1061 | case 3: /* BGEZL */ |
1062 | case 17: /* BGEZAL */ | |
1063 | case 19: /* BGEZALL */ | |
c906108c | 1064 | greater_equal_branch: |
6c997a34 | 1065 | if (read_signed_register (itype_rs (inst)) >= 0) |
c5aa993b JM |
1066 | pc += mips32_relative_offset (inst) + 4; |
1067 | else | |
1068 | pc += 8; /* after the delay slot */ | |
1069 | break; | |
e135b889 | 1070 | /* All of the other instructions in the REGIMM category */ |
c5aa993b JM |
1071 | default: |
1072 | pc += 4; | |
c906108c SS |
1073 | } |
1074 | } | |
e135b889 | 1075 | break; /* end REGIMM */ |
c5aa993b JM |
1076 | case 2: /* J */ |
1077 | case 3: /* JAL */ | |
1078 | { | |
1079 | unsigned long reg; | |
1080 | reg = jtype_target (inst) << 2; | |
e135b889 | 1081 | /* Upper four bits get never changed... */ |
c5aa993b | 1082 | pc = reg + ((pc + 4) & 0xf0000000); |
c906108c | 1083 | } |
c5aa993b JM |
1084 | break; |
1085 | /* FIXME case JALX : */ | |
1086 | { | |
1087 | unsigned long reg; | |
1088 | reg = jtype_target (inst) << 2; | |
1089 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
c906108c SS |
1090 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ |
1091 | } | |
c5aa993b | 1092 | break; /* The new PC will be alternate mode */ |
e135b889 | 1093 | case 4: /* BEQ, BEQL */ |
c5aa993b | 1094 | equal_branch: |
6c997a34 AC |
1095 | if (read_signed_register (itype_rs (inst)) == |
1096 | read_signed_register (itype_rt (inst))) | |
c5aa993b JM |
1097 | pc += mips32_relative_offset (inst) + 4; |
1098 | else | |
1099 | pc += 8; | |
1100 | break; | |
e135b889 | 1101 | case 5: /* BNE, BNEL */ |
c5aa993b | 1102 | neq_branch: |
6c997a34 | 1103 | if (read_signed_register (itype_rs (inst)) != |
e135b889 | 1104 | read_signed_register (itype_rt (inst))) |
c5aa993b JM |
1105 | pc += mips32_relative_offset (inst) + 4; |
1106 | else | |
1107 | pc += 8; | |
1108 | break; | |
e135b889 | 1109 | case 6: /* BLEZ, BLEZL */ |
c906108c | 1110 | less_zero_branch: |
6c997a34 | 1111 | if (read_signed_register (itype_rs (inst) <= 0)) |
c5aa993b JM |
1112 | pc += mips32_relative_offset (inst) + 4; |
1113 | else | |
1114 | pc += 8; | |
1115 | break; | |
1116 | case 7: | |
e135b889 DJ |
1117 | default: |
1118 | greater_branch: /* BGTZ, BGTZL */ | |
6c997a34 | 1119 | if (read_signed_register (itype_rs (inst) > 0)) |
c5aa993b JM |
1120 | pc += mips32_relative_offset (inst) + 4; |
1121 | else | |
1122 | pc += 8; | |
1123 | break; | |
c5aa993b JM |
1124 | } /* switch */ |
1125 | } /* else */ | |
1126 | return pc; | |
1127 | } /* mips32_next_pc */ | |
c906108c SS |
1128 | |
1129 | /* Decoding the next place to set a breakpoint is irregular for the | |
e26cc349 | 1130 | mips 16 variant, but fortunately, there fewer instructions. We have to cope |
c906108c SS |
1131 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. |
1132 | We dont want to set a single step instruction on the extend instruction | |
1133 | either. | |
c5aa993b | 1134 | */ |
c906108c SS |
1135 | |
1136 | /* Lots of mips16 instruction formats */ | |
1137 | /* Predicting jumps requires itype,ritype,i8type | |
1138 | and their extensions extItype,extritype,extI8type | |
c5aa993b | 1139 | */ |
c906108c SS |
1140 | enum mips16_inst_fmts |
1141 | { | |
c5aa993b JM |
1142 | itype, /* 0 immediate 5,10 */ |
1143 | ritype, /* 1 5,3,8 */ | |
1144 | rrtype, /* 2 5,3,3,5 */ | |
1145 | rritype, /* 3 5,3,3,5 */ | |
1146 | rrrtype, /* 4 5,3,3,3,2 */ | |
1147 | rriatype, /* 5 5,3,3,1,4 */ | |
1148 | shifttype, /* 6 5,3,3,3,2 */ | |
1149 | i8type, /* 7 5,3,8 */ | |
1150 | i8movtype, /* 8 5,3,3,5 */ | |
1151 | i8mov32rtype, /* 9 5,3,5,3 */ | |
1152 | i64type, /* 10 5,3,8 */ | |
1153 | ri64type, /* 11 5,3,3,5 */ | |
1154 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
1155 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
1156 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
1157 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
1158 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
1159 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
1160 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
1161 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
1162 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
1163 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
1164 | }; | |
12f02c2a AC |
1165 | /* I am heaping all the fields of the formats into one structure and |
1166 | then, only the fields which are involved in instruction extension */ | |
c906108c | 1167 | struct upk_mips16 |
c5aa993b | 1168 | { |
12f02c2a | 1169 | CORE_ADDR offset; |
c5aa993b JM |
1170 | unsigned int regx; /* Function in i8 type */ |
1171 | unsigned int regy; | |
1172 | }; | |
c906108c SS |
1173 | |
1174 | ||
12f02c2a AC |
1175 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format |
1176 | for the bits which make up the immediatate extension. */ | |
c906108c | 1177 | |
12f02c2a AC |
1178 | static CORE_ADDR |
1179 | extended_offset (unsigned int extension) | |
c906108c | 1180 | { |
12f02c2a | 1181 | CORE_ADDR value; |
c5aa993b JM |
1182 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ |
1183 | value = value << 6; | |
1184 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
1185 | value = value << 5; | |
1186 | value |= extension & 0x01f; /* extract 4:0 */ | |
1187 | return value; | |
c906108c SS |
1188 | } |
1189 | ||
1190 | /* Only call this function if you know that this is an extendable | |
1191 | instruction, It wont malfunction, but why make excess remote memory references? | |
1192 | If the immediate operands get sign extended or somthing, do it after | |
1193 | the extension is performed. | |
c5aa993b | 1194 | */ |
c906108c SS |
1195 | /* FIXME: Every one of these cases needs to worry about sign extension |
1196 | when the offset is to be used in relative addressing */ | |
1197 | ||
1198 | ||
12f02c2a | 1199 | static unsigned int |
c5aa993b | 1200 | fetch_mips_16 (CORE_ADDR pc) |
c906108c | 1201 | { |
c5aa993b JM |
1202 | char buf[8]; |
1203 | pc &= 0xfffffffe; /* clear the low order bit */ | |
1204 | target_read_memory (pc, buf, 2); | |
1205 | return extract_unsigned_integer (buf, 2); | |
c906108c SS |
1206 | } |
1207 | ||
1208 | static void | |
c5aa993b | 1209 | unpack_mips16 (CORE_ADDR pc, |
12f02c2a AC |
1210 | unsigned int extension, |
1211 | unsigned int inst, | |
1212 | enum mips16_inst_fmts insn_format, | |
c5aa993b | 1213 | struct upk_mips16 *upk) |
c906108c | 1214 | { |
12f02c2a AC |
1215 | CORE_ADDR offset; |
1216 | int regx; | |
1217 | int regy; | |
1218 | switch (insn_format) | |
c906108c | 1219 | { |
c5aa993b | 1220 | case itype: |
c906108c | 1221 | { |
12f02c2a AC |
1222 | CORE_ADDR value; |
1223 | if (extension) | |
c5aa993b JM |
1224 | { |
1225 | value = extended_offset (extension); | |
1226 | value = value << 11; /* rom for the original value */ | |
12f02c2a | 1227 | value |= inst & 0x7ff; /* eleven bits from instruction */ |
c906108c SS |
1228 | } |
1229 | else | |
c5aa993b | 1230 | { |
12f02c2a | 1231 | value = inst & 0x7ff; |
c5aa993b | 1232 | /* FIXME : Consider sign extension */ |
c906108c | 1233 | } |
12f02c2a AC |
1234 | offset = value; |
1235 | regx = -1; | |
1236 | regy = -1; | |
c906108c | 1237 | } |
c5aa993b JM |
1238 | break; |
1239 | case ritype: | |
1240 | case i8type: | |
1241 | { /* A register identifier and an offset */ | |
c906108c SS |
1242 | /* Most of the fields are the same as I type but the |
1243 | immediate value is of a different length */ | |
12f02c2a AC |
1244 | CORE_ADDR value; |
1245 | if (extension) | |
c906108c | 1246 | { |
c5aa993b JM |
1247 | value = extended_offset (extension); |
1248 | value = value << 8; /* from the original instruction */ | |
12f02c2a AC |
1249 | value |= inst & 0xff; /* eleven bits from instruction */ |
1250 | regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1251 | if (value & 0x4000) /* test the sign bit , bit 26 */ |
1252 | { | |
1253 | value &= ~0x3fff; /* remove the sign bit */ | |
1254 | value = -value; | |
c906108c SS |
1255 | } |
1256 | } | |
c5aa993b JM |
1257 | else |
1258 | { | |
12f02c2a AC |
1259 | value = inst & 0xff; /* 8 bits */ |
1260 | regx = (inst >> 8) & 0x07; /* or i8 funct */ | |
c5aa993b JM |
1261 | /* FIXME: Do sign extension , this format needs it */ |
1262 | if (value & 0x80) /* THIS CONFUSES ME */ | |
1263 | { | |
1264 | value &= 0xef; /* remove the sign bit */ | |
1265 | value = -value; | |
1266 | } | |
c5aa993b | 1267 | } |
12f02c2a AC |
1268 | offset = value; |
1269 | regy = -1; | |
c5aa993b | 1270 | break; |
c906108c | 1271 | } |
c5aa993b | 1272 | case jalxtype: |
c906108c | 1273 | { |
c5aa993b | 1274 | unsigned long value; |
12f02c2a AC |
1275 | unsigned int nexthalf; |
1276 | value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f); | |
c5aa993b JM |
1277 | value = value << 16; |
1278 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
1279 | value |= nexthalf; | |
12f02c2a AC |
1280 | offset = value; |
1281 | regx = -1; | |
1282 | regy = -1; | |
c5aa993b | 1283 | break; |
c906108c SS |
1284 | } |
1285 | default: | |
8e65ff28 AC |
1286 | internal_error (__FILE__, __LINE__, |
1287 | "bad switch"); | |
c906108c | 1288 | } |
12f02c2a AC |
1289 | upk->offset = offset; |
1290 | upk->regx = regx; | |
1291 | upk->regy = regy; | |
c906108c SS |
1292 | } |
1293 | ||
1294 | ||
c5aa993b JM |
1295 | static CORE_ADDR |
1296 | add_offset_16 (CORE_ADDR pc, int offset) | |
c906108c | 1297 | { |
c5aa993b | 1298 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); |
c906108c SS |
1299 | } |
1300 | ||
12f02c2a AC |
1301 | static CORE_ADDR |
1302 | extended_mips16_next_pc (CORE_ADDR pc, | |
1303 | unsigned int extension, | |
1304 | unsigned int insn) | |
c906108c | 1305 | { |
12f02c2a AC |
1306 | int op = (insn >> 11); |
1307 | switch (op) | |
c906108c | 1308 | { |
12f02c2a AC |
1309 | case 2: /* Branch */ |
1310 | { | |
1311 | CORE_ADDR offset; | |
1312 | struct upk_mips16 upk; | |
1313 | unpack_mips16 (pc, extension, insn, itype, &upk); | |
1314 | offset = upk.offset; | |
1315 | if (offset & 0x800) | |
1316 | { | |
1317 | offset &= 0xeff; | |
1318 | offset = -offset; | |
1319 | } | |
1320 | pc += (offset << 1) + 2; | |
1321 | break; | |
1322 | } | |
1323 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ | |
1324 | { | |
1325 | struct upk_mips16 upk; | |
1326 | unpack_mips16 (pc, extension, insn, jalxtype, &upk); | |
1327 | pc = add_offset_16 (pc, upk.offset); | |
1328 | if ((insn >> 10) & 0x01) /* Exchange mode */ | |
1329 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
1330 | else | |
1331 | pc |= 0x01; | |
1332 | break; | |
1333 | } | |
1334 | case 4: /* beqz */ | |
1335 | { | |
1336 | struct upk_mips16 upk; | |
1337 | int reg; | |
1338 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1339 | reg = read_signed_register (upk.regx); | |
1340 | if (reg == 0) | |
1341 | pc += (upk.offset << 1) + 2; | |
1342 | else | |
1343 | pc += 2; | |
1344 | break; | |
1345 | } | |
1346 | case 5: /* bnez */ | |
1347 | { | |
1348 | struct upk_mips16 upk; | |
1349 | int reg; | |
1350 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1351 | reg = read_signed_register (upk.regx); | |
1352 | if (reg != 0) | |
1353 | pc += (upk.offset << 1) + 2; | |
1354 | else | |
1355 | pc += 2; | |
1356 | break; | |
1357 | } | |
1358 | case 12: /* I8 Formats btez btnez */ | |
1359 | { | |
1360 | struct upk_mips16 upk; | |
1361 | int reg; | |
1362 | unpack_mips16 (pc, extension, insn, i8type, &upk); | |
1363 | /* upk.regx contains the opcode */ | |
1364 | reg = read_signed_register (24); /* Test register is 24 */ | |
1365 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
1366 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
1367 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
1368 | pc += (upk.offset << 1) + 2; | |
1369 | else | |
1370 | pc += 2; | |
1371 | break; | |
1372 | } | |
1373 | case 29: /* RR Formats JR, JALR, JALR-RA */ | |
1374 | { | |
1375 | struct upk_mips16 upk; | |
1376 | /* upk.fmt = rrtype; */ | |
1377 | op = insn & 0x1f; | |
1378 | if (op == 0) | |
c5aa993b | 1379 | { |
12f02c2a AC |
1380 | int reg; |
1381 | upk.regx = (insn >> 8) & 0x07; | |
1382 | upk.regy = (insn >> 5) & 0x07; | |
1383 | switch (upk.regy) | |
c5aa993b | 1384 | { |
12f02c2a AC |
1385 | case 0: |
1386 | reg = upk.regx; | |
1387 | break; | |
1388 | case 1: | |
1389 | reg = 31; | |
1390 | break; /* Function return instruction */ | |
1391 | case 2: | |
1392 | reg = upk.regx; | |
1393 | break; | |
1394 | default: | |
1395 | reg = 31; | |
1396 | break; /* BOGUS Guess */ | |
c906108c | 1397 | } |
12f02c2a | 1398 | pc = read_signed_register (reg); |
c906108c | 1399 | } |
12f02c2a | 1400 | else |
c5aa993b | 1401 | pc += 2; |
12f02c2a AC |
1402 | break; |
1403 | } | |
1404 | case 30: | |
1405 | /* This is an instruction extension. Fetch the real instruction | |
1406 | (which follows the extension) and decode things based on | |
1407 | that. */ | |
1408 | { | |
1409 | pc += 2; | |
1410 | pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc)); | |
1411 | break; | |
1412 | } | |
1413 | default: | |
1414 | { | |
1415 | pc += 2; | |
1416 | break; | |
1417 | } | |
c906108c | 1418 | } |
c5aa993b | 1419 | return pc; |
12f02c2a | 1420 | } |
c906108c | 1421 | |
5a89d8aa | 1422 | static CORE_ADDR |
12f02c2a AC |
1423 | mips16_next_pc (CORE_ADDR pc) |
1424 | { | |
1425 | unsigned int insn = fetch_mips_16 (pc); | |
1426 | return extended_mips16_next_pc (pc, 0, insn); | |
1427 | } | |
1428 | ||
1429 | /* The mips_next_pc function supports single_step when the remote | |
7e73cedf | 1430 | target monitor or stub is not developed enough to do a single_step. |
12f02c2a AC |
1431 | It works by decoding the current instruction and predicting where a |
1432 | branch will go. This isnt hard because all the data is available. | |
1433 | The MIPS32 and MIPS16 variants are quite different */ | |
c5aa993b JM |
1434 | CORE_ADDR |
1435 | mips_next_pc (CORE_ADDR pc) | |
c906108c | 1436 | { |
c5aa993b JM |
1437 | if (pc & 0x01) |
1438 | return mips16_next_pc (pc); | |
1439 | else | |
1440 | return mips32_next_pc (pc); | |
12f02c2a | 1441 | } |
c906108c | 1442 | |
e0f7ec59 AC |
1443 | /* Set up the 'saved_regs' array. This is a data structure containing |
1444 | the addresses on the stack where each register has been saved, for | |
1445 | each stack frame. Registers that have not been saved will have | |
1446 | zero here. The stack pointer register is special: rather than the | |
1447 | address where the stack register has been saved, | |
1448 | saved_regs[SP_REGNUM] will have the actual value of the previous | |
1449 | frame's stack register. */ | |
c906108c | 1450 | |
d28e01f4 | 1451 | static void |
acdb74a0 | 1452 | mips_find_saved_regs (struct frame_info *fci) |
c906108c SS |
1453 | { |
1454 | int ireg; | |
c906108c SS |
1455 | /* r0 bit means kernel trap */ |
1456 | int kernel_trap; | |
1457 | /* What registers have been saved? Bitmasks. */ | |
1458 | unsigned long gen_mask, float_mask; | |
1459 | mips_extra_func_info_t proc_desc; | |
1460 | t_inst inst; | |
e0f7ec59 | 1461 | CORE_ADDR *saved_regs; |
c906108c | 1462 | |
e0f7ec59 AC |
1463 | if (get_frame_saved_regs (fci) != NULL) |
1464 | return; | |
1465 | saved_regs = frame_saved_regs_zalloc (fci); | |
c906108c SS |
1466 | |
1467 | /* If it is the frame for sigtramp, the saved registers are located | |
e0f7ec59 AC |
1468 | in a sigcontext structure somewhere on the stack. If the stack |
1469 | layout for sigtramp changes we might have to change these | |
1470 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
c906108c | 1471 | #ifndef SIGFRAME_BASE |
e0f7ec59 AC |
1472 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes |
1473 | above the sigtramp frame. */ | |
c906108c SS |
1474 | #define SIGFRAME_BASE MIPS_REGSIZE |
1475 | /* FIXME! Are these correct?? */ | |
1476 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
1477 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
1478 | #define SIGFRAME_FPREGSAVE_OFF \ | |
1479 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
1480 | #endif | |
1481 | #ifndef SIGFRAME_REG_SIZE | |
e0f7ec59 | 1482 | /* FIXME! Is this correct?? */ |
c906108c SS |
1483 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE |
1484 | #endif | |
5a203e44 | 1485 | if ((get_frame_type (fci) == SIGTRAMP_FRAME)) |
c906108c SS |
1486 | { |
1487 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1488 | { | |
e0f7ec59 AC |
1489 | CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF |
1490 | + ireg * SIGFRAME_REG_SIZE); | |
1491 | set_reg_offset (saved_regs, ireg, reg_position); | |
c906108c SS |
1492 | } |
1493 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1494 | { | |
e0f7ec59 AC |
1495 | CORE_ADDR reg_position = (get_frame_base (fci) |
1496 | + SIGFRAME_FPREGSAVE_OFF | |
1497 | + ireg * SIGFRAME_REG_SIZE); | |
1498 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position); | |
c906108c | 1499 | } |
e0f7ec59 AC |
1500 | |
1501 | set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF); | |
1502 | /* SP_REGNUM, contains the value and not the address. */ | |
1503 | set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci)); | |
c906108c SS |
1504 | return; |
1505 | } | |
1506 | ||
da50a4b7 | 1507 | proc_desc = get_frame_extra_info (fci)->proc_desc; |
c906108c | 1508 | if (proc_desc == NULL) |
e0f7ec59 AC |
1509 | /* I'm not sure how/whether this can happen. Normally when we |
1510 | can't find a proc_desc, we "synthesize" one using | |
1511 | heuristic_proc_desc and set the saved_regs right away. */ | |
c906108c SS |
1512 | return; |
1513 | ||
c5aa993b JM |
1514 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; |
1515 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1516 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
c906108c | 1517 | |
e0f7ec59 AC |
1518 | if (/* In any frame other than the innermost or a frame interrupted |
1519 | by a signal, we assume that all registers have been saved. | |
1520 | This assumes that all register saves in a function happen | |
1521 | before the first function call. */ | |
11c02a10 AC |
1522 | (get_next_frame (fci) == NULL |
1523 | || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME)) | |
c906108c | 1524 | |
e0f7ec59 | 1525 | /* In a dummy frame we know exactly where things are saved. */ |
c5aa993b | 1526 | && !PROC_DESC_IS_DUMMY (proc_desc) |
c906108c | 1527 | |
e0f7ec59 AC |
1528 | /* Don't bother unless we are inside a function prologue. |
1529 | Outside the prologue, we know where everything is. */ | |
c906108c | 1530 | |
50abf9e5 | 1531 | && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc)) |
c906108c | 1532 | |
e0f7ec59 AC |
1533 | /* Not sure exactly what kernel_trap means, but if it means the |
1534 | kernel saves the registers without a prologue doing it, we | |
1535 | better not examine the prologue to see whether registers | |
1536 | have been saved yet. */ | |
c5aa993b | 1537 | && !kernel_trap) |
c906108c | 1538 | { |
e0f7ec59 AC |
1539 | /* We need to figure out whether the registers that the |
1540 | proc_desc claims are saved have been saved yet. */ | |
c906108c SS |
1541 | |
1542 | CORE_ADDR addr; | |
1543 | ||
1544 | /* Bitmasks; set if we have found a save for the register. */ | |
1545 | unsigned long gen_save_found = 0; | |
1546 | unsigned long float_save_found = 0; | |
1547 | int instlen; | |
1548 | ||
1549 | /* If the address is odd, assume this is MIPS16 code. */ | |
1550 | addr = PROC_LOW_ADDR (proc_desc); | |
1551 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; | |
1552 | ||
e0f7ec59 AC |
1553 | /* Scan through this function's instructions preceding the |
1554 | current PC, and look for those that save registers. */ | |
50abf9e5 | 1555 | while (addr < get_frame_pc (fci)) |
c906108c SS |
1556 | { |
1557 | inst = mips_fetch_instruction (addr); | |
1558 | if (pc_is_mips16 (addr)) | |
1559 | mips16_decode_reg_save (inst, &gen_save_found); | |
1560 | else | |
1561 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
1562 | addr += instlen; | |
1563 | } | |
1564 | gen_mask = gen_save_found; | |
1565 | float_mask = float_save_found; | |
1566 | } | |
1567 | ||
e0f7ec59 AC |
1568 | /* Fill in the offsets for the registers which gen_mask says were |
1569 | saved. */ | |
1570 | { | |
1571 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1572 | + PROC_REG_OFFSET (proc_desc)); | |
1573 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) | |
1574 | if (gen_mask & 0x80000000) | |
1575 | { | |
1576 | set_reg_offset (saved_regs, ireg, reg_position); | |
1577 | reg_position -= MIPS_SAVED_REGSIZE; | |
1578 | } | |
1579 | } | |
c906108c | 1580 | |
e0f7ec59 AC |
1581 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse |
1582 | order of that normally used by gcc. Therefore, we have to fetch | |
1583 | the first instruction of the function, and if it's an entry | |
1584 | instruction that saves $s0 or $s1, correct their saved addresses. */ | |
c906108c SS |
1585 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) |
1586 | { | |
1587 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
e0f7ec59 AC |
1588 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) |
1589 | /* entry */ | |
c906108c SS |
1590 | { |
1591 | int reg; | |
1592 | int sreg_count = (inst >> 6) & 3; | |
c5aa993b | 1593 | |
c906108c | 1594 | /* Check if the ra register was pushed on the stack. */ |
e0f7ec59 AC |
1595 | CORE_ADDR reg_position = (get_frame_base (fci) |
1596 | + PROC_REG_OFFSET (proc_desc)); | |
c906108c | 1597 | if (inst & 0x20) |
7a292a7a | 1598 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c | 1599 | |
e0f7ec59 AC |
1600 | /* Check if the s0 and s1 registers were pushed on the |
1601 | stack. */ | |
c5aa993b | 1602 | for (reg = 16; reg < sreg_count + 16; reg++) |
c906108c | 1603 | { |
e0f7ec59 | 1604 | set_reg_offset (saved_regs, reg, reg_position); |
7a292a7a | 1605 | reg_position -= MIPS_SAVED_REGSIZE; |
c906108c SS |
1606 | } |
1607 | } | |
1608 | } | |
1609 | ||
e0f7ec59 AC |
1610 | /* Fill in the offsets for the registers which float_mask says were |
1611 | saved. */ | |
1612 | { | |
1613 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1614 | + PROC_FREG_OFFSET (proc_desc)); | |
6acdf5c7 | 1615 | |
e0f7ec59 AC |
1616 | /* Apparently, the freg_offset gives the offset to the first 64 |
1617 | bit saved. | |
6acdf5c7 | 1618 | |
e0f7ec59 AC |
1619 | When the ABI specifies 64 bit saved registers, the FREG_OFFSET |
1620 | designates the first saved 64 bit register. | |
6acdf5c7 | 1621 | |
e0f7ec59 AC |
1622 | When the ABI specifies 32 bit saved registers, the ``64 bit |
1623 | saved DOUBLE'' consists of two adjacent 32 bit registers, Hence | |
1624 | FREG_OFFSET, designates the address of the lower register of | |
1625 | the register pair. Adjust the offset so that it designates the | |
1626 | upper register of the pair -- i.e., the address of the first | |
1627 | saved 32 bit register. */ | |
c906108c | 1628 | |
e0f7ec59 AC |
1629 | if (MIPS_SAVED_REGSIZE == 4) |
1630 | reg_position += MIPS_SAVED_REGSIZE; | |
c906108c | 1631 | |
e0f7ec59 AC |
1632 | /* Fill in the offsets for the float registers which float_mask |
1633 | says were saved. */ | |
1634 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) | |
1635 | if (float_mask & 0x80000000) | |
1636 | { | |
1637 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position); | |
1638 | reg_position -= MIPS_SAVED_REGSIZE; | |
1639 | } | |
c906108c | 1640 | |
e0f7ec59 AC |
1641 | set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]); |
1642 | } | |
d28e01f4 | 1643 | |
e0f7ec59 AC |
1644 | /* SP_REGNUM, contains the value and not the address. */ |
1645 | set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci)); | |
d28e01f4 KB |
1646 | } |
1647 | ||
c906108c | 1648 | static CORE_ADDR |
acdb74a0 | 1649 | read_next_frame_reg (struct frame_info *fi, int regno) |
c906108c | 1650 | { |
64159455 AC |
1651 | int optimized; |
1652 | CORE_ADDR addr; | |
1653 | int realnum; | |
1654 | enum lval_type lval; | |
d9d9c31f | 1655 | char raw_buffer[MAX_REGISTER_SIZE]; |
f796e4be KB |
1656 | |
1657 | if (fi == NULL) | |
c906108c | 1658 | { |
f796e4be KB |
1659 | regcache_cooked_read (current_regcache, regno, raw_buffer); |
1660 | } | |
1661 | else | |
1662 | { | |
1663 | frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum, | |
1664 | raw_buffer); | |
1665 | /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS | |
1666 | should have a pseudo register range that correspons to the ABI's, | |
1667 | rather than the ISA's, view of registers. These registers would | |
1668 | then implicitly describe their size and hence could be used | |
1669 | without the below munging. */ | |
1670 | if (lval == lval_memory) | |
c906108c | 1671 | { |
f796e4be KB |
1672 | if (regno < 32) |
1673 | { | |
1674 | /* Only MIPS_SAVED_REGSIZE bytes of GP registers are | |
1675 | saved. */ | |
1676 | return read_memory_integer (addr, MIPS_SAVED_REGSIZE); | |
1677 | } | |
c906108c SS |
1678 | } |
1679 | } | |
64159455 AC |
1680 | |
1681 | return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno)); | |
c906108c SS |
1682 | } |
1683 | ||
1684 | /* mips_addr_bits_remove - remove useless address bits */ | |
1685 | ||
875e1767 | 1686 | static CORE_ADDR |
acdb74a0 | 1687 | mips_addr_bits_remove (CORE_ADDR addr) |
c906108c | 1688 | { |
5213ab06 AC |
1689 | if (GDB_TARGET_IS_MIPS64) |
1690 | { | |
4014092b | 1691 | if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff)) |
5213ab06 AC |
1692 | { |
1693 | /* This hack is a work-around for existing boards using | |
1694 | PMON, the simulator, and any other 64-bit targets that | |
1695 | doesn't have true 64-bit addressing. On these targets, | |
1696 | the upper 32 bits of addresses are ignored by the | |
1697 | hardware. Thus, the PC or SP are likely to have been | |
1698 | sign extended to all 1s by instruction sequences that | |
1699 | load 32-bit addresses. For example, a typical piece of | |
4014092b AC |
1700 | code that loads an address is this: |
1701 | lui $r2, <upper 16 bits> | |
1702 | ori $r2, <lower 16 bits> | |
1703 | But the lui sign-extends the value such that the upper 32 | |
1704 | bits may be all 1s. The workaround is simply to mask off | |
1705 | these bits. In the future, gcc may be changed to support | |
1706 | true 64-bit addressing, and this masking will have to be | |
1707 | disabled. */ | |
5213ab06 AC |
1708 | addr &= (CORE_ADDR) 0xffffffff; |
1709 | } | |
1710 | } | |
4014092b | 1711 | else if (mips_mask_address_p ()) |
5213ab06 | 1712 | { |
4014092b AC |
1713 | /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be |
1714 | masking off bits, instead, the actual target should be asking | |
1715 | for the address to be converted to a valid pointer. */ | |
5213ab06 AC |
1716 | /* Even when GDB is configured for some 32-bit targets |
1717 | (e.g. mips-elf), BFD is configured to handle 64-bit targets, | |
1718 | so CORE_ADDR is 64 bits. So we still have to mask off | |
1719 | useless bits from addresses. */ | |
c5aa993b | 1720 | addr &= (CORE_ADDR) 0xffffffff; |
c906108c | 1721 | } |
c906108c SS |
1722 | return addr; |
1723 | } | |
1724 | ||
9022177c DJ |
1725 | /* mips_software_single_step() is called just before we want to resume |
1726 | the inferior, if we want to single-step it but there is no hardware | |
75c9abc6 | 1727 | or kernel single-step support (MIPS on GNU/Linux for example). We find |
9022177c DJ |
1728 | the target of the coming instruction and breakpoint it. |
1729 | ||
1730 | single_step is also called just after the inferior stops. If we had | |
1731 | set up a simulated single-step, we undo our damage. */ | |
1732 | ||
1733 | void | |
1734 | mips_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1735 | { | |
1736 | static CORE_ADDR next_pc; | |
1737 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1738 | static binsn_quantum break_mem; | |
1739 | CORE_ADDR pc; | |
1740 | ||
1741 | if (insert_breakpoints_p) | |
1742 | { | |
1743 | pc = read_register (PC_REGNUM); | |
1744 | next_pc = mips_next_pc (pc); | |
1745 | ||
1746 | target_insert_breakpoint (next_pc, break_mem); | |
1747 | } | |
1748 | else | |
1749 | target_remove_breakpoint (next_pc, break_mem); | |
1750 | } | |
1751 | ||
97f46953 | 1752 | static CORE_ADDR |
acdb74a0 | 1753 | mips_init_frame_pc_first (int fromleaf, struct frame_info *prev) |
c906108c SS |
1754 | { |
1755 | CORE_ADDR pc, tmp; | |
1756 | ||
11c02a10 | 1757 | pc = ((fromleaf) |
6913c89a | 1758 | ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev)) |
11c02a10 | 1759 | : get_next_frame (prev) |
8bedc050 | 1760 | ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev)) |
11c02a10 | 1761 | : read_pc ()); |
5a89d8aa | 1762 | tmp = SKIP_TRAMPOLINE_CODE (pc); |
97f46953 | 1763 | return tmp ? tmp : pc; |
c906108c SS |
1764 | } |
1765 | ||
1766 | ||
f7ab6ec6 | 1767 | static CORE_ADDR |
acdb74a0 | 1768 | mips_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
1769 | { |
1770 | CORE_ADDR saved_pc; | |
da50a4b7 | 1771 | mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc; |
c906108c SS |
1772 | /* We have to get the saved pc from the sigcontext |
1773 | if it is a signal handler frame. */ | |
5a203e44 | 1774 | int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM |
c5aa993b | 1775 | : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM); |
c906108c | 1776 | |
50abf9e5 | 1777 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)) |
cedea778 AC |
1778 | { |
1779 | LONGEST tmp; | |
1780 | frame_unwind_signed_register (frame, PC_REGNUM, &tmp); | |
1781 | saved_pc = tmp; | |
1782 | } | |
1783 | else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) | |
1e2330ba | 1784 | saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE); |
c906108c | 1785 | else |
7a292a7a | 1786 | saved_pc = read_next_frame_reg (frame, pcreg); |
c906108c SS |
1787 | |
1788 | return ADDR_BITS_REMOVE (saved_pc); | |
1789 | } | |
1790 | ||
1791 | static struct mips_extra_func_info temp_proc_desc; | |
fe29b929 KB |
1792 | |
1793 | /* This hack will go away once the get_prev_frame() code has been | |
1794 | modified to set the frame's type first. That is BEFORE init extra | |
1795 | frame info et.al. is called. This is because it will become | |
1796 | possible to skip the init extra info call for sigtramp and dummy | |
1797 | frames. */ | |
1798 | static CORE_ADDR *temp_saved_regs; | |
c906108c | 1799 | |
e0f7ec59 AC |
1800 | /* Set a register's saved stack address in temp_saved_regs. If an |
1801 | address has already been set for this register, do nothing; this | |
1802 | way we will only recognize the first save of a given register in a | |
1803 | function prologue. */ | |
c906108c SS |
1804 | |
1805 | static void | |
e0f7ec59 | 1806 | set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset) |
c906108c | 1807 | { |
e0f7ec59 AC |
1808 | if (saved_regs[regno] == 0) |
1809 | saved_regs[regno] = offset; | |
c906108c SS |
1810 | } |
1811 | ||
1812 | ||
1813 | /* Test whether the PC points to the return instruction at the | |
1814 | end of a function. */ | |
1815 | ||
c5aa993b | 1816 | static int |
acdb74a0 | 1817 | mips_about_to_return (CORE_ADDR pc) |
c906108c SS |
1818 | { |
1819 | if (pc_is_mips16 (pc)) | |
1820 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
1821 | generates a "jr $ra"; other times it generates code to load | |
1822 | the return address from the stack to an accessible register (such | |
1823 | as $a3), then a "jr" using that register. This second case | |
1824 | is almost impossible to distinguish from an indirect jump | |
1825 | used for switch statements, so we don't even try. */ | |
1826 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
1827 | else | |
1828 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
1829 | } | |
1830 | ||
1831 | ||
1832 | /* This fencepost looks highly suspicious to me. Removing it also | |
1833 | seems suspicious as it could affect remote debugging across serial | |
1834 | lines. */ | |
1835 | ||
1836 | static CORE_ADDR | |
acdb74a0 | 1837 | heuristic_proc_start (CORE_ADDR pc) |
c906108c | 1838 | { |
c5aa993b JM |
1839 | CORE_ADDR start_pc; |
1840 | CORE_ADDR fence; | |
1841 | int instlen; | |
1842 | int seen_adjsp = 0; | |
c906108c | 1843 | |
c5aa993b JM |
1844 | pc = ADDR_BITS_REMOVE (pc); |
1845 | start_pc = pc; | |
1846 | fence = start_pc - heuristic_fence_post; | |
1847 | if (start_pc == 0) | |
1848 | return 0; | |
c906108c | 1849 | |
c5aa993b JM |
1850 | if (heuristic_fence_post == UINT_MAX |
1851 | || fence < VM_MIN_ADDRESS) | |
1852 | fence = VM_MIN_ADDRESS; | |
c906108c | 1853 | |
c5aa993b | 1854 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
c906108c | 1855 | |
c5aa993b JM |
1856 | /* search back for previous return */ |
1857 | for (start_pc -= instlen;; start_pc -= instlen) | |
1858 | if (start_pc < fence) | |
1859 | { | |
1860 | /* It's not clear to me why we reach this point when | |
c0236d92 | 1861 | stop_soon, but with this test, at least we |
c5aa993b JM |
1862 | don't print out warnings for every child forked (eg, on |
1863 | decstation). 22apr93 [email protected]. */ | |
c0236d92 | 1864 | if (stop_soon == NO_STOP_QUIETLY) |
c906108c | 1865 | { |
c5aa993b JM |
1866 | static int blurb_printed = 0; |
1867 | ||
1868 | warning ("Warning: GDB can't find the start of the function at 0x%s.", | |
1869 | paddr_nz (pc)); | |
1870 | ||
1871 | if (!blurb_printed) | |
c906108c | 1872 | { |
c5aa993b JM |
1873 | /* This actually happens frequently in embedded |
1874 | development, when you first connect to a board | |
1875 | and your stack pointer and pc are nowhere in | |
1876 | particular. This message needs to give people | |
1877 | in that situation enough information to | |
1878 | determine that it's no big deal. */ | |
1879 | printf_filtered ("\n\ | |
cd0fc7c3 SS |
1880 | GDB is unable to find the start of the function at 0x%s\n\ |
1881 | and thus can't determine the size of that function's stack frame.\n\ | |
1882 | This means that GDB may be unable to access that stack frame, or\n\ | |
1883 | the frames below it.\n\ | |
1884 | This problem is most likely caused by an invalid program counter or\n\ | |
1885 | stack pointer.\n\ | |
1886 | However, if you think GDB should simply search farther back\n\ | |
1887 | from 0x%s for code which looks like the beginning of a\n\ | |
1888 | function, you can increase the range of the search using the `set\n\ | |
1889 | heuristic-fence-post' command.\n", | |
c5aa993b JM |
1890 | paddr_nz (pc), paddr_nz (pc)); |
1891 | blurb_printed = 1; | |
c906108c | 1892 | } |
c906108c SS |
1893 | } |
1894 | ||
c5aa993b JM |
1895 | return 0; |
1896 | } | |
1897 | else if (pc_is_mips16 (start_pc)) | |
1898 | { | |
1899 | unsigned short inst; | |
1900 | ||
1901 | /* On MIPS16, any one of the following is likely to be the | |
1902 | start of a function: | |
1903 | entry | |
1904 | addiu sp,-n | |
1905 | daddiu sp,-n | |
1906 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
1907 | inst = mips_fetch_instruction (start_pc); | |
1908 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
1909 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1910 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1911 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1912 | break; | |
1913 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1914 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1915 | seen_adjsp = 1; | |
1916 | else | |
1917 | seen_adjsp = 0; | |
1918 | } | |
1919 | else if (mips_about_to_return (start_pc)) | |
1920 | { | |
1921 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
1922 | break; | |
1923 | } | |
1924 | ||
c5aa993b | 1925 | return start_pc; |
c906108c SS |
1926 | } |
1927 | ||
1928 | /* Fetch the immediate value from a MIPS16 instruction. | |
1929 | If the previous instruction was an EXTEND, use it to extend | |
1930 | the upper bits of the immediate value. This is a helper function | |
1931 | for mips16_heuristic_proc_desc. */ | |
1932 | ||
1933 | static int | |
acdb74a0 AC |
1934 | mips16_get_imm (unsigned short prev_inst, /* previous instruction */ |
1935 | unsigned short inst, /* current instruction */ | |
1936 | int nbits, /* number of bits in imm field */ | |
1937 | int scale, /* scale factor to be applied to imm */ | |
1938 | int is_signed) /* is the imm field signed? */ | |
c906108c SS |
1939 | { |
1940 | int offset; | |
1941 | ||
1942 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1943 | { | |
1944 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
c5aa993b | 1945 | if (offset & 0x8000) /* check for negative extend */ |
c906108c SS |
1946 | offset = 0 - (0x10000 - (offset & 0xffff)); |
1947 | return offset | (inst & 0x1f); | |
1948 | } | |
1949 | else | |
1950 | { | |
1951 | int max_imm = 1 << nbits; | |
1952 | int mask = max_imm - 1; | |
1953 | int sign_bit = max_imm >> 1; | |
1954 | ||
1955 | offset = inst & mask; | |
1956 | if (is_signed && (offset & sign_bit)) | |
1957 | offset = 0 - (max_imm - offset); | |
1958 | return offset * scale; | |
1959 | } | |
1960 | } | |
1961 | ||
1962 | ||
1963 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
1964 | stream from start_pc to limit_pc. */ | |
1965 | ||
1966 | static void | |
acdb74a0 AC |
1967 | mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
1968 | struct frame_info *next_frame, CORE_ADDR sp) | |
c906108c SS |
1969 | { |
1970 | CORE_ADDR cur_pc; | |
1971 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
1972 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
1973 | unsigned inst = 0; /* current instruction */ | |
1974 | unsigned entry_inst = 0; /* the entry instruction */ | |
1975 | int reg, offset; | |
1976 | ||
c5aa993b JM |
1977 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */ |
1978 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
c906108c SS |
1979 | |
1980 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) | |
1981 | { | |
1982 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
1983 | the immediate offset extension from it in mips16_get_imm. */ | |
1984 | prev_inst = inst; | |
1985 | ||
1986 | /* Fetch and decode the instruction. */ | |
1987 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
c5aa993b | 1988 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
c906108c SS |
1989 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ |
1990 | { | |
1991 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
c5aa993b JM |
1992 | if (offset < 0) /* negative stack adjustment? */ |
1993 | PROC_FRAME_OFFSET (&temp_proc_desc) -= offset; | |
c906108c SS |
1994 | else |
1995 | /* Exit loop if a positive stack adjustment is found, which | |
1996 | usually means that the stack cleanup code in the function | |
1997 | epilogue is reached. */ | |
1998 | break; | |
1999 | } | |
2000 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
2001 | { | |
2002 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2003 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
c5aa993b | 2004 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
e0f7ec59 | 2005 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c906108c SS |
2006 | } |
2007 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
2008 | { | |
2009 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2010 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2011 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); |
e0f7ec59 | 2012 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c906108c SS |
2013 | } |
2014 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
2015 | { | |
2016 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
c5aa993b | 2017 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
e0f7ec59 | 2018 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
c906108c SS |
2019 | } |
2020 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
2021 | { | |
2022 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
c5aa993b | 2023 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); |
e0f7ec59 | 2024 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
c906108c | 2025 | } |
c5aa993b | 2026 | else if (inst == 0x673d) /* move $s1, $sp */ |
c906108c SS |
2027 | { |
2028 | frame_addr = sp; | |
2029 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2030 | } | |
2031 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
2032 | { | |
2033 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2034 | frame_addr = sp + offset; | |
2035 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2036 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; | |
2037 | } | |
2038 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
2039 | { | |
2040 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
2041 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2042 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2043 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); |
c906108c SS |
2044 | } |
2045 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
2046 | { | |
2047 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2048 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
c5aa993b | 2049 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2050 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); |
c906108c | 2051 | } |
c5aa993b JM |
2052 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
2053 | entry_inst = inst; /* save for later processing */ | |
c906108c | 2054 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
c5aa993b | 2055 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ |
c906108c SS |
2056 | } |
2057 | ||
c5aa993b JM |
2058 | /* The entry instruction is typically the first instruction in a function, |
2059 | and it stores registers at offsets relative to the value of the old SP | |
2060 | (before the prologue). But the value of the sp parameter to this | |
2061 | function is the new SP (after the prologue has been executed). So we | |
2062 | can't calculate those offsets until we've seen the entire prologue, | |
2063 | and can calculate what the old SP must have been. */ | |
2064 | if (entry_inst != 0) | |
2065 | { | |
2066 | int areg_count = (entry_inst >> 8) & 7; | |
2067 | int sreg_count = (entry_inst >> 6) & 3; | |
c906108c | 2068 | |
c5aa993b JM |
2069 | /* The entry instruction always subtracts 32 from the SP. */ |
2070 | PROC_FRAME_OFFSET (&temp_proc_desc) += 32; | |
c906108c | 2071 | |
c5aa993b JM |
2072 | /* Now we can calculate what the SP must have been at the |
2073 | start of the function prologue. */ | |
2074 | sp += PROC_FRAME_OFFSET (&temp_proc_desc); | |
c906108c | 2075 | |
c5aa993b JM |
2076 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
2077 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
2078 | { | |
2079 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
e0f7ec59 | 2080 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c5aa993b JM |
2081 | offset += MIPS_SAVED_REGSIZE; |
2082 | } | |
c906108c | 2083 | |
c5aa993b JM |
2084 | /* Check if the ra register was pushed on the stack. */ |
2085 | offset = -4; | |
2086 | if (entry_inst & 0x20) | |
2087 | { | |
2088 | PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM; | |
e0f7ec59 | 2089 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); |
c5aa993b JM |
2090 | offset -= MIPS_SAVED_REGSIZE; |
2091 | } | |
c906108c | 2092 | |
c5aa993b JM |
2093 | /* Check if the s0 and s1 registers were pushed on the stack. */ |
2094 | for (reg = 16; reg < sreg_count + 16; reg++) | |
2095 | { | |
2096 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
e0f7ec59 | 2097 | set_reg_offset (temp_saved_regs, reg, sp + offset); |
c5aa993b JM |
2098 | offset -= MIPS_SAVED_REGSIZE; |
2099 | } | |
2100 | } | |
c906108c SS |
2101 | } |
2102 | ||
2103 | static void | |
fba45db2 KB |
2104 | mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
2105 | struct frame_info *next_frame, CORE_ADDR sp) | |
c906108c SS |
2106 | { |
2107 | CORE_ADDR cur_pc; | |
c5aa993b | 2108 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ |
c906108c | 2109 | restart: |
fe29b929 | 2110 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
cce74817 | 2111 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c5aa993b | 2112 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; |
c906108c SS |
2113 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
2114 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
2115 | { | |
2116 | unsigned long inst, high_word, low_word; | |
2117 | int reg; | |
2118 | ||
2119 | /* Fetch the instruction. */ | |
2120 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
2121 | ||
2122 | /* Save some code by pre-extracting some useful fields. */ | |
2123 | high_word = (inst >> 16) & 0xffff; | |
2124 | low_word = inst & 0xffff; | |
2125 | reg = high_word & 0x1f; | |
2126 | ||
c5aa993b | 2127 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ |
c906108c SS |
2128 | || high_word == 0x23bd /* addi $sp,$sp,-i */ |
2129 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
2130 | { | |
2131 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
c5aa993b | 2132 | PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word; |
c906108c SS |
2133 | else |
2134 | /* Exit loop if a positive stack adjustment is found, which | |
2135 | usually means that the stack cleanup code in the function | |
2136 | epilogue is reached. */ | |
2137 | break; | |
2138 | } | |
2139 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
2140 | { | |
c5aa993b | 2141 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2142 | set_reg_offset (temp_saved_regs, reg, sp + low_word); |
c906108c SS |
2143 | } |
2144 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
2145 | { | |
2146 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
2147 | but the register size used is only 32 bits. Make the address | |
2148 | for the saved register point to the lower 32 bits. */ | |
c5aa993b | 2149 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2150 | set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE); |
c906108c | 2151 | } |
c5aa993b | 2152 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
c906108c SS |
2153 | { |
2154 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
c5aa993b JM |
2155 | if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc)) |
2156 | frame_addr = sp + low_word; | |
c906108c SS |
2157 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) |
2158 | { | |
2159 | unsigned alloca_adjust; | |
2160 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
2161 | frame_addr = read_next_frame_reg (next_frame, 30); |
2162 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); | |
c906108c SS |
2163 | if (alloca_adjust > 0) |
2164 | { | |
2165 | /* FP > SP + frame_size. This may be because | |
2166 | * of an alloca or somethings similar. | |
2167 | * Fix sp to "pre-alloca" value, and try again. | |
2168 | */ | |
2169 | sp += alloca_adjust; | |
2170 | goto restart; | |
2171 | } | |
2172 | } | |
2173 | } | |
c5aa993b JM |
2174 | /* move $30,$sp. With different versions of gas this will be either |
2175 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
2176 | Accept any one of these. */ | |
c906108c SS |
2177 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) |
2178 | { | |
2179 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
2180 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
2181 | { | |
2182 | unsigned alloca_adjust; | |
2183 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
c5aa993b JM |
2184 | frame_addr = read_next_frame_reg (next_frame, 30); |
2185 | alloca_adjust = (unsigned) (frame_addr - sp); | |
c906108c SS |
2186 | if (alloca_adjust > 0) |
2187 | { | |
2188 | /* FP > SP + frame_size. This may be because | |
2189 | * of an alloca or somethings similar. | |
2190 | * Fix sp to "pre-alloca" value, and try again. | |
2191 | */ | |
2192 | sp += alloca_adjust; | |
2193 | goto restart; | |
2194 | } | |
2195 | } | |
2196 | } | |
c5aa993b | 2197 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
c906108c | 2198 | { |
c5aa993b | 2199 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; |
e0f7ec59 | 2200 | set_reg_offset (temp_saved_regs, reg, frame_addr + low_word); |
c906108c SS |
2201 | } |
2202 | } | |
2203 | } | |
2204 | ||
2205 | static mips_extra_func_info_t | |
acdb74a0 | 2206 | heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
479412cd | 2207 | struct frame_info *next_frame, int cur_frame) |
c906108c | 2208 | { |
479412cd DJ |
2209 | CORE_ADDR sp; |
2210 | ||
2211 | if (cur_frame) | |
2212 | sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
2213 | else | |
2214 | sp = 0; | |
c906108c | 2215 | |
c5aa993b JM |
2216 | if (start_pc == 0) |
2217 | return NULL; | |
2218 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); | |
fe29b929 | 2219 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); |
3758ac48 | 2220 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
2221 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; |
2222 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
2223 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
2224 | ||
2225 | if (start_pc + 200 < limit_pc) | |
2226 | limit_pc = start_pc + 200; | |
2227 | if (pc_is_mips16 (start_pc)) | |
2228 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2229 | else | |
2230 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2231 | return &temp_proc_desc; | |
2232 | } | |
2233 | ||
6c0d6680 DJ |
2234 | struct mips_objfile_private |
2235 | { | |
2236 | bfd_size_type size; | |
2237 | char *contents; | |
2238 | }; | |
2239 | ||
2240 | /* Global used to communicate between non_heuristic_proc_desc and | |
2241 | compare_pdr_entries within qsort (). */ | |
2242 | static bfd *the_bfd; | |
2243 | ||
2244 | static int | |
2245 | compare_pdr_entries (const void *a, const void *b) | |
2246 | { | |
2247 | CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a); | |
2248 | CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b); | |
2249 | ||
2250 | if (lhs < rhs) | |
2251 | return -1; | |
2252 | else if (lhs == rhs) | |
2253 | return 0; | |
2254 | else | |
2255 | return 1; | |
2256 | } | |
2257 | ||
c906108c | 2258 | static mips_extra_func_info_t |
acdb74a0 | 2259 | non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr) |
c906108c SS |
2260 | { |
2261 | CORE_ADDR startaddr; | |
2262 | mips_extra_func_info_t proc_desc; | |
c5aa993b | 2263 | struct block *b = block_for_pc (pc); |
c906108c | 2264 | struct symbol *sym; |
6c0d6680 DJ |
2265 | struct obj_section *sec; |
2266 | struct mips_objfile_private *priv; | |
2267 | ||
ae45cd16 | 2268 | if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0)) |
6c0d6680 | 2269 | return NULL; |
c906108c SS |
2270 | |
2271 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
2272 | if (addrptr) | |
2273 | *addrptr = startaddr; | |
6c0d6680 DJ |
2274 | |
2275 | priv = NULL; | |
2276 | ||
2277 | sec = find_pc_section (pc); | |
2278 | if (sec != NULL) | |
c906108c | 2279 | { |
6c0d6680 DJ |
2280 | priv = (struct mips_objfile_private *) sec->objfile->obj_private; |
2281 | ||
2282 | /* Search the ".pdr" section generated by GAS. This includes most of | |
2283 | the information normally found in ECOFF PDRs. */ | |
2284 | ||
2285 | the_bfd = sec->objfile->obfd; | |
2286 | if (priv == NULL | |
2287 | && (the_bfd->format == bfd_object | |
2288 | && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour | |
2289 | && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64)) | |
2290 | { | |
2291 | /* Right now GAS only outputs the address as a four-byte sequence. | |
2292 | This means that we should not bother with this method on 64-bit | |
2293 | targets (until that is fixed). */ | |
2294 | ||
2295 | priv = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2296 | sizeof (struct mips_objfile_private)); | |
2297 | priv->size = 0; | |
2298 | sec->objfile->obj_private = priv; | |
2299 | } | |
2300 | else if (priv == NULL) | |
2301 | { | |
2302 | asection *bfdsec; | |
2303 | ||
2304 | priv = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2305 | sizeof (struct mips_objfile_private)); | |
2306 | ||
2307 | bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr"); | |
2308 | if (bfdsec != NULL) | |
2309 | { | |
2310 | priv->size = bfd_section_size (sec->objfile->obfd, bfdsec); | |
2311 | priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2312 | priv->size); | |
2313 | bfd_get_section_contents (sec->objfile->obfd, bfdsec, | |
2314 | priv->contents, 0, priv->size); | |
2315 | ||
2316 | /* In general, the .pdr section is sorted. However, in the | |
2317 | presence of multiple code sections (and other corner cases) | |
2318 | it can become unsorted. Sort it so that we can use a faster | |
2319 | binary search. */ | |
2320 | qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries); | |
2321 | } | |
2322 | else | |
2323 | priv->size = 0; | |
2324 | ||
2325 | sec->objfile->obj_private = priv; | |
2326 | } | |
2327 | the_bfd = NULL; | |
2328 | ||
2329 | if (priv->size != 0) | |
2330 | { | |
2331 | int low, mid, high; | |
2332 | char *ptr; | |
2333 | ||
2334 | low = 0; | |
2335 | high = priv->size / 32; | |
2336 | ||
2337 | do | |
2338 | { | |
2339 | CORE_ADDR pdr_pc; | |
2340 | ||
2341 | mid = (low + high) / 2; | |
2342 | ||
2343 | ptr = priv->contents + mid * 32; | |
2344 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2345 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2346 | SECT_OFF_TEXT (sec->objfile)); | |
2347 | if (pdr_pc == startaddr) | |
2348 | break; | |
2349 | if (pdr_pc > startaddr) | |
2350 | high = mid; | |
2351 | else | |
2352 | low = mid + 1; | |
2353 | } | |
2354 | while (low != high); | |
2355 | ||
2356 | if (low != high) | |
2357 | { | |
2358 | struct symbol *sym = find_pc_function (pc); | |
2359 | ||
2360 | /* Fill in what we need of the proc_desc. */ | |
2361 | proc_desc = (mips_extra_func_info_t) | |
2362 | obstack_alloc (&sec->objfile->psymbol_obstack, | |
2363 | sizeof (struct mips_extra_func_info)); | |
2364 | PROC_LOW_ADDR (proc_desc) = startaddr; | |
2365 | ||
2366 | /* Only used for dummy frames. */ | |
2367 | PROC_HIGH_ADDR (proc_desc) = 0; | |
2368 | ||
2369 | PROC_FRAME_OFFSET (proc_desc) | |
2370 | = bfd_get_32 (sec->objfile->obfd, ptr + 20); | |
2371 | PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2372 | ptr + 24); | |
2373 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
2374 | PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2375 | ptr + 4); | |
2376 | PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2377 | ptr + 12); | |
2378 | PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2379 | ptr + 8); | |
2380 | PROC_FREG_OFFSET (proc_desc) | |
2381 | = bfd_get_32 (sec->objfile->obfd, ptr + 16); | |
2382 | PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2383 | ptr + 28); | |
2384 | proc_desc->pdr.isym = (long) sym; | |
2385 | ||
2386 | return proc_desc; | |
2387 | } | |
2388 | } | |
c906108c SS |
2389 | } |
2390 | ||
6c0d6680 DJ |
2391 | if (b == NULL) |
2392 | return NULL; | |
2393 | ||
2394 | if (startaddr > BLOCK_START (b)) | |
2395 | { | |
2396 | /* This is the "pathological" case referred to in a comment in | |
2397 | print_frame_info. It might be better to move this check into | |
2398 | symbol reading. */ | |
2399 | return NULL; | |
2400 | } | |
2401 | ||
176620f1 | 2402 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL); |
6c0d6680 | 2403 | |
c906108c SS |
2404 | /* If we never found a PDR for this function in symbol reading, then |
2405 | examine prologues to find the information. */ | |
2406 | if (sym) | |
2407 | { | |
2408 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
2409 | if (PROC_FRAME_REG (proc_desc) == -1) | |
2410 | return NULL; | |
2411 | else | |
2412 | return proc_desc; | |
2413 | } | |
2414 | else | |
2415 | return NULL; | |
2416 | } | |
2417 | ||
2418 | ||
2419 | static mips_extra_func_info_t | |
479412cd | 2420 | find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame) |
c906108c SS |
2421 | { |
2422 | mips_extra_func_info_t proc_desc; | |
4e0df2df | 2423 | CORE_ADDR startaddr = 0; |
c906108c SS |
2424 | |
2425 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
2426 | ||
2427 | if (proc_desc) | |
2428 | { | |
2429 | /* IF this is the topmost frame AND | |
2430 | * (this proc does not have debugging information OR | |
2431 | * the PC is in the procedure prologue) | |
2432 | * THEN create a "heuristic" proc_desc (by analyzing | |
2433 | * the actual code) to replace the "official" proc_desc. | |
2434 | */ | |
2435 | if (next_frame == NULL) | |
2436 | { | |
2437 | struct symtab_and_line val; | |
2438 | struct symbol *proc_symbol = | |
c86b5b38 | 2439 | PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc); |
c906108c SS |
2440 | |
2441 | if (proc_symbol) | |
2442 | { | |
2443 | val = find_pc_line (BLOCK_START | |
c5aa993b | 2444 | (SYMBOL_BLOCK_VALUE (proc_symbol)), |
c906108c SS |
2445 | 0); |
2446 | val.pc = val.end ? val.end : pc; | |
2447 | } | |
2448 | if (!proc_symbol || pc < val.pc) | |
2449 | { | |
2450 | mips_extra_func_info_t found_heuristic = | |
c86b5b38 MS |
2451 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), |
2452 | pc, next_frame, cur_frame); | |
c906108c SS |
2453 | if (found_heuristic) |
2454 | proc_desc = found_heuristic; | |
2455 | } | |
2456 | } | |
2457 | } | |
2458 | else | |
2459 | { | |
2460 | /* Is linked_proc_desc_table really necessary? It only seems to be used | |
c5aa993b JM |
2461 | by procedure call dummys. However, the procedures being called ought |
2462 | to have their own proc_descs, and even if they don't, | |
2463 | heuristic_proc_desc knows how to create them! */ | |
c906108c SS |
2464 | |
2465 | register struct linked_proc_info *link; | |
2466 | ||
2467 | for (link = linked_proc_desc_table; link; link = link->next) | |
c5aa993b JM |
2468 | if (PROC_LOW_ADDR (&link->info) <= pc |
2469 | && PROC_HIGH_ADDR (&link->info) > pc) | |
c906108c SS |
2470 | return &link->info; |
2471 | ||
2472 | if (startaddr == 0) | |
2473 | startaddr = heuristic_proc_start (pc); | |
2474 | ||
2475 | proc_desc = | |
479412cd | 2476 | heuristic_proc_desc (startaddr, pc, next_frame, cur_frame); |
c906108c SS |
2477 | } |
2478 | return proc_desc; | |
2479 | } | |
2480 | ||
2481 | static CORE_ADDR | |
acdb74a0 AC |
2482 | get_frame_pointer (struct frame_info *frame, |
2483 | mips_extra_func_info_t proc_desc) | |
c906108c | 2484 | { |
e227b13c AC |
2485 | return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) |
2486 | + PROC_FRAME_OFFSET (proc_desc) | |
2487 | - PROC_FRAME_ADJUST (proc_desc)); | |
c906108c SS |
2488 | } |
2489 | ||
5a89d8aa | 2490 | static mips_extra_func_info_t cached_proc_desc; |
c906108c | 2491 | |
f7ab6ec6 | 2492 | static CORE_ADDR |
acdb74a0 | 2493 | mips_frame_chain (struct frame_info *frame) |
c906108c SS |
2494 | { |
2495 | mips_extra_func_info_t proc_desc; | |
2496 | CORE_ADDR tmp; | |
8bedc050 | 2497 | CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
2498 | |
2499 | if (saved_pc == 0 || inside_entry_file (saved_pc)) | |
2500 | return 0; | |
2501 | ||
2502 | /* Check if the PC is inside a call stub. If it is, fetch the | |
2503 | PC of the caller of that stub. */ | |
5a89d8aa | 2504 | if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0) |
c906108c SS |
2505 | saved_pc = tmp; |
2506 | ||
ae45cd16 | 2507 | if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0)) |
cedea778 AC |
2508 | { |
2509 | /* A dummy frame, uses SP not FP. Get the old SP value. If all | |
2510 | is well, frame->frame the bottom of the current frame will | |
2511 | contain that value. */ | |
1e2330ba | 2512 | return get_frame_base (frame); |
cedea778 AC |
2513 | } |
2514 | ||
c906108c | 2515 | /* Look up the procedure descriptor for this PC. */ |
479412cd | 2516 | proc_desc = find_proc_desc (saved_pc, frame, 1); |
c906108c SS |
2517 | if (!proc_desc) |
2518 | return 0; | |
2519 | ||
2520 | cached_proc_desc = proc_desc; | |
2521 | ||
2522 | /* If no frame pointer and frame size is zero, we must be at end | |
2523 | of stack (or otherwise hosed). If we don't check frame size, | |
2524 | we loop forever if we see a zero size frame. */ | |
2525 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
2526 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
7807aa61 MS |
2527 | /* The previous frame from a sigtramp frame might be frameless |
2528 | and have frame size zero. */ | |
5a203e44 | 2529 | && !(get_frame_type (frame) == SIGTRAMP_FRAME) |
cedea778 AC |
2530 | /* For a generic dummy frame, let get_frame_pointer() unwind a |
2531 | register value saved as part of the dummy frame call. */ | |
50abf9e5 | 2532 | && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))) |
c906108c SS |
2533 | return 0; |
2534 | else | |
2535 | return get_frame_pointer (frame, proc_desc); | |
2536 | } | |
2537 | ||
f7ab6ec6 | 2538 | static void |
acdb74a0 | 2539 | mips_init_extra_frame_info (int fromleaf, struct frame_info *fci) |
c906108c SS |
2540 | { |
2541 | int regnum; | |
f2c16bd6 KB |
2542 | mips_extra_func_info_t proc_desc; |
2543 | ||
2544 | if (get_frame_type (fci) == DUMMY_FRAME) | |
2545 | return; | |
c906108c | 2546 | |
f796e4be KB |
2547 | /* Use proc_desc calculated in frame_chain. When there is no |
2548 | next frame, i.e, get_next_frame (fci) == NULL, we call | |
2549 | find_proc_desc () to calculate it, passing an explicit | |
2550 | NULL as the frame parameter. */ | |
f2c16bd6 | 2551 | proc_desc = |
11c02a10 AC |
2552 | get_next_frame (fci) |
2553 | ? cached_proc_desc | |
f796e4be KB |
2554 | : find_proc_desc (get_frame_pc (fci), |
2555 | NULL /* i.e, get_next_frame (fci) */, | |
2556 | 1); | |
c906108c | 2557 | |
a00a19e9 | 2558 | frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info)); |
cce74817 | 2559 | |
7b5849cc | 2560 | deprecated_set_frame_saved_regs_hack (fci, NULL); |
da50a4b7 | 2561 | get_frame_extra_info (fci)->proc_desc = |
c906108c SS |
2562 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
2563 | if (proc_desc) | |
2564 | { | |
2565 | /* Fixup frame-pointer - only needed for top frame */ | |
2566 | /* This may not be quite right, if proc has a real frame register. | |
c5aa993b JM |
2567 | Get the value of the frame relative sp, procedure might have been |
2568 | interrupted by a signal at it's very start. */ | |
50abf9e5 | 2569 | if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc) |
c906108c | 2570 | && !PROC_DESC_IS_DUMMY (proc_desc)) |
11c02a10 | 2571 | deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM)); |
50abf9e5 | 2572 | else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0)) |
cedea778 AC |
2573 | /* Do not ``fix'' fci->frame. It will have the value of the |
2574 | generic dummy frame's top-of-stack (since the draft | |
2575 | fci->frame is obtained by returning the unwound stack | |
2576 | pointer) and that is what we want. That way the fci->frame | |
2577 | value will match the top-of-stack value that was saved as | |
2578 | part of the dummy frames data. */ | |
2579 | /* Do nothing. */; | |
c906108c | 2580 | else |
11c02a10 | 2581 | deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc)); |
c906108c SS |
2582 | |
2583 | if (proc_desc == &temp_proc_desc) | |
2584 | { | |
2585 | char *name; | |
2586 | ||
2587 | /* Do not set the saved registers for a sigtramp frame, | |
5a203e44 AC |
2588 | mips_find_saved_registers will do that for us. We can't |
2589 | use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not | |
2590 | yet set. */ | |
2591 | /* FIXME: cagney/2002-11-18: This problem will go away once | |
2592 | frame.c:get_prev_frame() is modified to set the frame's | |
2593 | type before calling functions like this. */ | |
50abf9e5 | 2594 | find_pc_partial_function (get_frame_pc (fci), &name, |
c5aa993b | 2595 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
50abf9e5 | 2596 | if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name)) |
c906108c | 2597 | { |
c5aa993b | 2598 | frame_saved_regs_zalloc (fci); |
e0f7ec59 AC |
2599 | /* Set value of previous frame's stack pointer. |
2600 | Remember that saved_regs[SP_REGNUM] is special in | |
2601 | that it contains the value of the stack pointer | |
2602 | register. The other saved_regs values are addresses | |
2603 | (in the inferior) at which a given register's value | |
2604 | may be found. */ | |
2605 | set_reg_offset (temp_saved_regs, SP_REGNUM, | |
2606 | get_frame_base (fci)); | |
2607 | set_reg_offset (temp_saved_regs, PC_REGNUM, | |
2608 | temp_saved_regs[RA_REGNUM]); | |
2609 | memcpy (get_frame_saved_regs (fci), temp_saved_regs, | |
2610 | SIZEOF_FRAME_SAVED_REGS); | |
c906108c SS |
2611 | } |
2612 | } | |
2613 | ||
2614 | /* hack: if argument regs are saved, guess these contain args */ | |
cce74817 | 2615 | /* assume we can't tell how many args for now */ |
da50a4b7 | 2616 | get_frame_extra_info (fci)->num_args = -1; |
c906108c SS |
2617 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) |
2618 | { | |
c5aa993b | 2619 | if (PROC_REG_MASK (proc_desc) & (1 << regnum)) |
c906108c | 2620 | { |
da50a4b7 | 2621 | get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1; |
c906108c SS |
2622 | break; |
2623 | } | |
c5aa993b | 2624 | } |
c906108c SS |
2625 | } |
2626 | } | |
2627 | ||
2628 | /* MIPS stack frames are almost impenetrable. When execution stops, | |
2629 | we basically have to look at symbol information for the function | |
2630 | that we stopped in, which tells us *which* register (if any) is | |
2631 | the base of the frame pointer, and what offset from that register | |
361d1df0 | 2632 | the frame itself is at. |
c906108c SS |
2633 | |
2634 | This presents a problem when trying to examine a stack in memory | |
2635 | (that isn't executing at the moment), using the "frame" command. We | |
2636 | don't have a PC, nor do we have any registers except SP. | |
2637 | ||
2638 | This routine takes two arguments, SP and PC, and tries to make the | |
2639 | cached frames look as if these two arguments defined a frame on the | |
2640 | cache. This allows the rest of info frame to extract the important | |
2641 | arguments without difficulty. */ | |
2642 | ||
2643 | struct frame_info * | |
acdb74a0 | 2644 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
2645 | { |
2646 | if (argc != 2) | |
2647 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
2648 | ||
2649 | return create_new_frame (argv[0], argv[1]); | |
2650 | } | |
2651 | ||
f09ded24 AC |
2652 | /* According to the current ABI, should the type be passed in a |
2653 | floating-point register (assuming that there is space)? When there | |
2654 | is no FPU, FP are not even considered as possibile candidates for | |
2655 | FP registers and, consequently this returns false - forces FP | |
2656 | arguments into integer registers. */ | |
2657 | ||
2658 | static int | |
2659 | fp_register_arg_p (enum type_code typecode, struct type *arg_type) | |
2660 | { | |
2661 | return ((typecode == TYPE_CODE_FLT | |
2662 | || (MIPS_EABI | |
2663 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
2664 | && TYPE_NFIELDS (arg_type) == 1 | |
2665 | && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT)) | |
c86b5b38 | 2666 | && MIPS_FPU_TYPE != MIPS_FPU_NONE); |
f09ded24 AC |
2667 | } |
2668 | ||
49e790b0 DJ |
2669 | /* On o32, argument passing in GPRs depends on the alignment of the type being |
2670 | passed. Return 1 if this type must be aligned to a doubleword boundary. */ | |
2671 | ||
2672 | static int | |
2673 | mips_type_needs_double_align (struct type *type) | |
2674 | { | |
2675 | enum type_code typecode = TYPE_CODE (type); | |
361d1df0 | 2676 | |
49e790b0 DJ |
2677 | if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8) |
2678 | return 1; | |
2679 | else if (typecode == TYPE_CODE_STRUCT) | |
2680 | { | |
2681 | if (TYPE_NFIELDS (type) < 1) | |
2682 | return 0; | |
2683 | return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0)); | |
2684 | } | |
2685 | else if (typecode == TYPE_CODE_UNION) | |
2686 | { | |
361d1df0 | 2687 | int i, n; |
49e790b0 DJ |
2688 | |
2689 | n = TYPE_NFIELDS (type); | |
2690 | for (i = 0; i < n; i++) | |
2691 | if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) | |
2692 | return 1; | |
2693 | return 0; | |
2694 | } | |
2695 | return 0; | |
2696 | } | |
2697 | ||
cb3d25d1 MS |
2698 | /* Macros to round N up or down to the next A boundary; |
2699 | A must be a power of two. */ | |
2700 | ||
2701 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
2702 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
2703 | ||
dc604539 AC |
2704 | /* Adjust the address downward (direction of stack growth) so that it |
2705 | is correctly aligned for a new stack frame. */ | |
2706 | static CORE_ADDR | |
2707 | mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2708 | { | |
2709 | return ROUND_DOWN (addr, 16); | |
2710 | } | |
2711 | ||
f7ab6ec6 | 2712 | static CORE_ADDR |
25ab4790 AC |
2713 | mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
2714 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
2715 | struct value **args, CORE_ADDR sp, int struct_return, | |
2716 | CORE_ADDR struct_addr) | |
c906108c SS |
2717 | { |
2718 | int argreg; | |
2719 | int float_argreg; | |
2720 | int argnum; | |
2721 | int len = 0; | |
2722 | int stack_offset = 0; | |
2723 | ||
25ab4790 AC |
2724 | /* For shared libraries, "t9" needs to point at the function |
2725 | address. */ | |
2726 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
2727 | ||
2728 | /* Set the return address register to point to the entry point of | |
2729 | the program, where a breakpoint lies in wait. */ | |
2730 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
2731 | ||
c906108c | 2732 | /* First ensure that the stack and structure return address (if any) |
cb3d25d1 MS |
2733 | are properly aligned. The stack has to be at least 64-bit |
2734 | aligned even on 32-bit machines, because doubles must be 64-bit | |
2735 | aligned. For n32 and n64, stack frames need to be 128-bit | |
2736 | aligned, so we round to this widest known alignment. */ | |
2737 | ||
c906108c | 2738 | sp = ROUND_DOWN (sp, 16); |
cce41527 | 2739 | struct_addr = ROUND_DOWN (struct_addr, 16); |
c5aa993b | 2740 | |
46e0f506 | 2741 | /* Now make space on the stack for the args. We allocate more |
c906108c | 2742 | than necessary for EABI, because the first few arguments are |
46e0f506 | 2743 | passed in registers, but that's OK. */ |
c906108c | 2744 | for (argnum = 0; argnum < nargs; argnum++) |
46e0f506 MS |
2745 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), |
2746 | MIPS_STACK_ARGSIZE); | |
c906108c SS |
2747 | sp -= ROUND_UP (len, 16); |
2748 | ||
9ace0497 | 2749 | if (mips_debug) |
46e0f506 | 2750 | fprintf_unfiltered (gdb_stdlog, |
25ab4790 | 2751 | "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n", |
cb3d25d1 | 2752 | paddr_nz (sp), ROUND_UP (len, 16)); |
9ace0497 | 2753 | |
c906108c SS |
2754 | /* Initialize the integer and float register pointers. */ |
2755 | argreg = A0_REGNUM; | |
2756 | float_argreg = FPA0_REGNUM; | |
2757 | ||
46e0f506 | 2758 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
c906108c | 2759 | if (struct_return) |
9ace0497 AC |
2760 | { |
2761 | if (mips_debug) | |
2762 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 2763 | "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 | 2764 | argreg, paddr_nz (struct_addr)); |
9ace0497 AC |
2765 | write_register (argreg++, struct_addr); |
2766 | } | |
c906108c SS |
2767 | |
2768 | /* Now load as many as possible of the first arguments into | |
2769 | registers, and push the rest onto the stack. Loop thru args | |
2770 | from first to last. */ | |
2771 | for (argnum = 0; argnum < nargs; argnum++) | |
2772 | { | |
2773 | char *val; | |
d9d9c31f | 2774 | char valbuf[MAX_REGISTER_SIZE]; |
ea7c478f | 2775 | struct value *arg = args[argnum]; |
c906108c SS |
2776 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
2777 | int len = TYPE_LENGTH (arg_type); | |
2778 | enum type_code typecode = TYPE_CODE (arg_type); | |
2779 | ||
9ace0497 AC |
2780 | if (mips_debug) |
2781 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 2782 | "mips_eabi_push_dummy_call: %d len=%d type=%d", |
acdb74a0 | 2783 | argnum + 1, len, (int) typecode); |
9ace0497 | 2784 | |
c906108c | 2785 | /* The EABI passes structures that do not fit in a register by |
46e0f506 MS |
2786 | reference. */ |
2787 | if (len > MIPS_SAVED_REGSIZE | |
9ace0497 | 2788 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
c906108c | 2789 | { |
fbd9dcd3 | 2790 | store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg)); |
c906108c | 2791 | typecode = TYPE_CODE_PTR; |
7a292a7a | 2792 | len = MIPS_SAVED_REGSIZE; |
c906108c | 2793 | val = valbuf; |
9ace0497 AC |
2794 | if (mips_debug) |
2795 | fprintf_unfiltered (gdb_stdlog, " push"); | |
c906108c SS |
2796 | } |
2797 | else | |
c5aa993b | 2798 | val = (char *) VALUE_CONTENTS (arg); |
c906108c SS |
2799 | |
2800 | /* 32-bit ABIs always start floating point arguments in an | |
acdb74a0 AC |
2801 | even-numbered floating point register. Round the FP register |
2802 | up before the check to see if there are any FP registers | |
46e0f506 MS |
2803 | left. Non MIPS_EABI targets also pass the FP in the integer |
2804 | registers so also round up normal registers. */ | |
acdb74a0 AC |
2805 | if (!FP_REGISTER_DOUBLE |
2806 | && fp_register_arg_p (typecode, arg_type)) | |
2807 | { | |
2808 | if ((float_argreg & 1)) | |
2809 | float_argreg++; | |
2810 | } | |
c906108c SS |
2811 | |
2812 | /* Floating point arguments passed in registers have to be | |
2813 | treated specially. On 32-bit architectures, doubles | |
c5aa993b JM |
2814 | are passed in register pairs; the even register gets |
2815 | the low word, and the odd register gets the high word. | |
2816 | On non-EABI processors, the first two floating point arguments are | |
2817 | also copied to general registers, because MIPS16 functions | |
2818 | don't use float registers for arguments. This duplication of | |
2819 | arguments in general registers can't hurt non-MIPS16 functions | |
2820 | because those registers are normally skipped. */ | |
1012bd0e EZ |
2821 | /* MIPS_EABI squeezes a struct that contains a single floating |
2822 | point value into an FP register instead of pushing it onto the | |
46e0f506 | 2823 | stack. */ |
f09ded24 AC |
2824 | if (fp_register_arg_p (typecode, arg_type) |
2825 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
c906108c SS |
2826 | { |
2827 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2828 | { | |
d7449b42 | 2829 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
c906108c SS |
2830 | unsigned long regval; |
2831 | ||
2832 | /* Write the low word of the double to the even register(s). */ | |
c5aa993b | 2833 | regval = extract_unsigned_integer (val + low_offset, 4); |
9ace0497 | 2834 | if (mips_debug) |
acdb74a0 | 2835 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2836 | float_argreg, phex (regval, 4)); |
c906108c | 2837 | write_register (float_argreg++, regval); |
c906108c SS |
2838 | |
2839 | /* Write the high word of the double to the odd register(s). */ | |
c5aa993b | 2840 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); |
9ace0497 | 2841 | if (mips_debug) |
acdb74a0 | 2842 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2843 | float_argreg, phex (regval, 4)); |
c906108c | 2844 | write_register (float_argreg++, regval); |
c906108c SS |
2845 | } |
2846 | else | |
2847 | { | |
2848 | /* This is a floating point value that fits entirely | |
2849 | in a single register. */ | |
53a5351d | 2850 | /* On 32 bit ABI's the float_argreg is further adjusted |
46e0f506 | 2851 | above to ensure that it is even register aligned. */ |
9ace0497 AC |
2852 | LONGEST regval = extract_unsigned_integer (val, len); |
2853 | if (mips_debug) | |
acdb74a0 | 2854 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", |
9ace0497 | 2855 | float_argreg, phex (regval, len)); |
c906108c | 2856 | write_register (float_argreg++, regval); |
c906108c SS |
2857 | } |
2858 | } | |
2859 | else | |
2860 | { | |
2861 | /* Copy the argument to general registers or the stack in | |
2862 | register-sized pieces. Large arguments are split between | |
2863 | registers and stack. */ | |
2864 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
2865 | are treated specially: Irix cc passes them in registers | |
2866 | where gcc sometimes puts them on the stack. For maximum | |
2867 | compatibility, we will put them in both places. */ | |
c5aa993b | 2868 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && |
7a292a7a | 2869 | (len % MIPS_SAVED_REGSIZE != 0)); |
46e0f506 | 2870 | |
f09ded24 | 2871 | /* Note: Floating-point values that didn't fit into an FP |
46e0f506 | 2872 | register are only written to memory. */ |
c906108c SS |
2873 | while (len > 0) |
2874 | { | |
ebafbe83 | 2875 | /* Remember if the argument was written to the stack. */ |
566f0f7a | 2876 | int stack_used_p = 0; |
46e0f506 MS |
2877 | int partial_len = |
2878 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
c906108c | 2879 | |
acdb74a0 AC |
2880 | if (mips_debug) |
2881 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
2882 | partial_len); | |
2883 | ||
566f0f7a | 2884 | /* Write this portion of the argument to the stack. */ |
f09ded24 AC |
2885 | if (argreg > MIPS_LAST_ARG_REGNUM |
2886 | || odd_sized_struct | |
2887 | || fp_register_arg_p (typecode, arg_type)) | |
c906108c | 2888 | { |
c906108c SS |
2889 | /* Should shorter than int integer values be |
2890 | promoted to int before being stored? */ | |
c906108c | 2891 | int longword_offset = 0; |
9ace0497 | 2892 | CORE_ADDR addr; |
566f0f7a | 2893 | stack_used_p = 1; |
d7449b42 | 2894 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
7a292a7a | 2895 | { |
d929b26f | 2896 | if (MIPS_STACK_ARGSIZE == 8 && |
7a292a7a SS |
2897 | (typecode == TYPE_CODE_INT || |
2898 | typecode == TYPE_CODE_PTR || | |
2899 | typecode == TYPE_CODE_FLT) && len <= 4) | |
d929b26f | 2900 | longword_offset = MIPS_STACK_ARGSIZE - len; |
7a292a7a SS |
2901 | else if ((typecode == TYPE_CODE_STRUCT || |
2902 | typecode == TYPE_CODE_UNION) && | |
d929b26f AC |
2903 | TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE) |
2904 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
7a292a7a | 2905 | } |
c5aa993b | 2906 | |
9ace0497 AC |
2907 | if (mips_debug) |
2908 | { | |
cb3d25d1 MS |
2909 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", |
2910 | paddr_nz (stack_offset)); | |
2911 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
2912 | paddr_nz (longword_offset)); | |
9ace0497 | 2913 | } |
361d1df0 | 2914 | |
9ace0497 AC |
2915 | addr = sp + stack_offset + longword_offset; |
2916 | ||
2917 | if (mips_debug) | |
2918 | { | |
2919 | int i; | |
cb3d25d1 MS |
2920 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", |
2921 | paddr_nz (addr)); | |
9ace0497 AC |
2922 | for (i = 0; i < partial_len; i++) |
2923 | { | |
cb3d25d1 MS |
2924 | fprintf_unfiltered (gdb_stdlog, "%02x", |
2925 | val[i] & 0xff); | |
9ace0497 AC |
2926 | } |
2927 | } | |
2928 | write_memory (addr, val, partial_len); | |
c906108c SS |
2929 | } |
2930 | ||
f09ded24 AC |
2931 | /* Note!!! This is NOT an else clause. Odd sized |
2932 | structs may go thru BOTH paths. Floating point | |
46e0f506 | 2933 | arguments will not. */ |
566f0f7a | 2934 | /* Write this portion of the argument to a general |
46e0f506 | 2935 | purpose register. */ |
f09ded24 AC |
2936 | if (argreg <= MIPS_LAST_ARG_REGNUM |
2937 | && !fp_register_arg_p (typecode, arg_type)) | |
c906108c | 2938 | { |
9ace0497 | 2939 | LONGEST regval = extract_unsigned_integer (val, partial_len); |
c906108c | 2940 | |
9ace0497 | 2941 | if (mips_debug) |
acdb74a0 | 2942 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", |
9ace0497 AC |
2943 | argreg, |
2944 | phex (regval, MIPS_SAVED_REGSIZE)); | |
c906108c SS |
2945 | write_register (argreg, regval); |
2946 | argreg++; | |
c906108c | 2947 | } |
c5aa993b | 2948 | |
c906108c SS |
2949 | len -= partial_len; |
2950 | val += partial_len; | |
2951 | ||
566f0f7a AC |
2952 | /* Compute the the offset into the stack at which we |
2953 | will copy the next parameter. | |
2954 | ||
566f0f7a | 2955 | In the new EABI (and the NABI32), the stack_offset |
46e0f506 | 2956 | only needs to be adjusted when it has been used. */ |
c906108c | 2957 | |
46e0f506 | 2958 | if (stack_used_p) |
d929b26f | 2959 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); |
c906108c SS |
2960 | } |
2961 | } | |
9ace0497 AC |
2962 | if (mips_debug) |
2963 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
c906108c SS |
2964 | } |
2965 | ||
310e9b6a AC |
2966 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); |
2967 | ||
0f71a2f6 JM |
2968 | /* Return adjusted stack pointer. */ |
2969 | return sp; | |
2970 | } | |
2971 | ||
25ab4790 | 2972 | /* N32/N64 version of push_dummy_call. */ |
ebafbe83 | 2973 | |
f7ab6ec6 | 2974 | static CORE_ADDR |
25ab4790 AC |
2975 | mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
2976 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
2977 | struct value **args, CORE_ADDR sp, int struct_return, | |
2978 | CORE_ADDR struct_addr) | |
cb3d25d1 MS |
2979 | { |
2980 | int argreg; | |
2981 | int float_argreg; | |
2982 | int argnum; | |
2983 | int len = 0; | |
2984 | int stack_offset = 0; | |
2985 | ||
25ab4790 AC |
2986 | /* For shared libraries, "t9" needs to point at the function |
2987 | address. */ | |
2988 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
2989 | ||
2990 | /* Set the return address register to point to the entry point of | |
2991 | the program, where a breakpoint lies in wait. */ | |
2992 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
2993 | ||
cb3d25d1 MS |
2994 | /* First ensure that the stack and structure return address (if any) |
2995 | are properly aligned. The stack has to be at least 64-bit | |
2996 | aligned even on 32-bit machines, because doubles must be 64-bit | |
2997 | aligned. For n32 and n64, stack frames need to be 128-bit | |
2998 | aligned, so we round to this widest known alignment. */ | |
2999 | ||
3000 | sp = ROUND_DOWN (sp, 16); | |
3001 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3002 | ||
3003 | /* Now make space on the stack for the args. */ | |
3004 | for (argnum = 0; argnum < nargs; argnum++) | |
3005 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3006 | MIPS_STACK_ARGSIZE); | |
3007 | sp -= ROUND_UP (len, 16); | |
3008 | ||
3009 | if (mips_debug) | |
3010 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3011 | "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n", |
cb3d25d1 MS |
3012 | paddr_nz (sp), ROUND_UP (len, 16)); |
3013 | ||
3014 | /* Initialize the integer and float register pointers. */ | |
3015 | argreg = A0_REGNUM; | |
3016 | float_argreg = FPA0_REGNUM; | |
3017 | ||
46e0f506 | 3018 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
cb3d25d1 MS |
3019 | if (struct_return) |
3020 | { | |
3021 | if (mips_debug) | |
3022 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3023 | "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n", |
cb3d25d1 MS |
3024 | argreg, paddr_nz (struct_addr)); |
3025 | write_register (argreg++, struct_addr); | |
3026 | } | |
3027 | ||
3028 | /* Now load as many as possible of the first arguments into | |
3029 | registers, and push the rest onto the stack. Loop thru args | |
3030 | from first to last. */ | |
3031 | for (argnum = 0; argnum < nargs; argnum++) | |
3032 | { | |
3033 | char *val; | |
d9d9c31f | 3034 | char valbuf[MAX_REGISTER_SIZE]; |
cb3d25d1 MS |
3035 | struct value *arg = args[argnum]; |
3036 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3037 | int len = TYPE_LENGTH (arg_type); | |
3038 | enum type_code typecode = TYPE_CODE (arg_type); | |
3039 | ||
3040 | if (mips_debug) | |
3041 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3042 | "mips_n32n64_push_dummy_call: %d len=%d type=%d", |
cb3d25d1 MS |
3043 | argnum + 1, len, (int) typecode); |
3044 | ||
3045 | val = (char *) VALUE_CONTENTS (arg); | |
3046 | ||
3047 | if (fp_register_arg_p (typecode, arg_type) | |
3048 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3049 | { | |
3050 | /* This is a floating point value that fits entirely | |
3051 | in a single register. */ | |
3052 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3053 | above to ensure that it is even register aligned. */ | |
3054 | LONGEST regval = extract_unsigned_integer (val, len); | |
3055 | if (mips_debug) | |
3056 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3057 | float_argreg, phex (regval, len)); | |
3058 | write_register (float_argreg++, regval); | |
3059 | ||
3060 | if (mips_debug) | |
3061 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3062 | argreg, phex (regval, len)); | |
3063 | write_register (argreg, regval); | |
3064 | argreg += 1; | |
3065 | } | |
3066 | else | |
3067 | { | |
3068 | /* Copy the argument to general registers or the stack in | |
3069 | register-sized pieces. Large arguments are split between | |
3070 | registers and stack. */ | |
3071 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3072 | are treated specially: Irix cc passes them in registers | |
3073 | where gcc sometimes puts them on the stack. For maximum | |
3074 | compatibility, we will put them in both places. */ | |
3075 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3076 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3077 | /* Note: Floating-point values that didn't fit into an FP | |
3078 | register are only written to memory. */ | |
3079 | while (len > 0) | |
3080 | { | |
3081 | /* Rememer if the argument was written to the stack. */ | |
3082 | int stack_used_p = 0; | |
3083 | int partial_len = len < MIPS_SAVED_REGSIZE ? | |
3084 | len : MIPS_SAVED_REGSIZE; | |
3085 | ||
3086 | if (mips_debug) | |
3087 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3088 | partial_len); | |
3089 | ||
3090 | /* Write this portion of the argument to the stack. */ | |
3091 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3092 | || odd_sized_struct | |
3093 | || fp_register_arg_p (typecode, arg_type)) | |
3094 | { | |
3095 | /* Should shorter than int integer values be | |
3096 | promoted to int before being stored? */ | |
3097 | int longword_offset = 0; | |
3098 | CORE_ADDR addr; | |
3099 | stack_used_p = 1; | |
3100 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3101 | { | |
3102 | if (MIPS_STACK_ARGSIZE == 8 && | |
3103 | (typecode == TYPE_CODE_INT || | |
3104 | typecode == TYPE_CODE_PTR || | |
3105 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3106 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
cb3d25d1 MS |
3107 | } |
3108 | ||
3109 | if (mips_debug) | |
3110 | { | |
3111 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3112 | paddr_nz (stack_offset)); | |
3113 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3114 | paddr_nz (longword_offset)); | |
3115 | } | |
3116 | ||
3117 | addr = sp + stack_offset + longword_offset; | |
3118 | ||
3119 | if (mips_debug) | |
3120 | { | |
3121 | int i; | |
3122 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3123 | paddr_nz (addr)); | |
3124 | for (i = 0; i < partial_len; i++) | |
3125 | { | |
3126 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3127 | val[i] & 0xff); | |
3128 | } | |
3129 | } | |
3130 | write_memory (addr, val, partial_len); | |
3131 | } | |
3132 | ||
3133 | /* Note!!! This is NOT an else clause. Odd sized | |
3134 | structs may go thru BOTH paths. Floating point | |
3135 | arguments will not. */ | |
3136 | /* Write this portion of the argument to a general | |
3137 | purpose register. */ | |
3138 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3139 | && !fp_register_arg_p (typecode, arg_type)) | |
3140 | { | |
3141 | LONGEST regval = extract_unsigned_integer (val, partial_len); | |
3142 | ||
3143 | /* A non-floating-point argument being passed in a | |
3144 | general register. If a struct or union, and if | |
3145 | the remaining length is smaller than the register | |
3146 | size, we have to adjust the register value on | |
3147 | big endian targets. | |
3148 | ||
3149 | It does not seem to be necessary to do the | |
3150 | same for integral types. | |
3151 | ||
3152 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3153 | outputting LE O32 with sizeof (struct) < | |
3154 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3155 | part of storing the argument in a register a | |
3156 | register (the left shift isn't generated when | |
3157 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3158 | is quite possible that this is GCC contradicting | |
3159 | the LE/O32 ABI, GDB has not been adjusted to | |
3160 | accommodate this. Either someone needs to | |
3161 | demonstrate that the LE/O32 ABI specifies such a | |
3162 | left shift OR this new ABI gets identified as | |
3163 | such and GDB gets tweaked accordingly. */ | |
3164 | ||
3165 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3166 | && partial_len < MIPS_SAVED_REGSIZE | |
3167 | && (typecode == TYPE_CODE_STRUCT || | |
3168 | typecode == TYPE_CODE_UNION)) | |
3169 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3170 | TARGET_CHAR_BIT); | |
3171 | ||
3172 | if (mips_debug) | |
3173 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3174 | argreg, | |
3175 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3176 | write_register (argreg, regval); | |
3177 | argreg++; | |
3178 | } | |
3179 | ||
3180 | len -= partial_len; | |
3181 | val += partial_len; | |
3182 | ||
3183 | /* Compute the the offset into the stack at which we | |
3184 | will copy the next parameter. | |
3185 | ||
3186 | In N32 (N64?), the stack_offset only needs to be | |
3187 | adjusted when it has been used. */ | |
3188 | ||
3189 | if (stack_used_p) | |
3190 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3191 | } | |
3192 | } | |
3193 | if (mips_debug) | |
3194 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3195 | } | |
3196 | ||
310e9b6a AC |
3197 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); |
3198 | ||
cb3d25d1 MS |
3199 | /* Return adjusted stack pointer. */ |
3200 | return sp; | |
3201 | } | |
3202 | ||
25ab4790 | 3203 | /* O32 version of push_dummy_call. */ |
ebafbe83 | 3204 | |
46cac009 | 3205 | static CORE_ADDR |
25ab4790 AC |
3206 | mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
3207 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
3208 | struct value **args, CORE_ADDR sp, int struct_return, | |
3209 | CORE_ADDR struct_addr) | |
ebafbe83 MS |
3210 | { |
3211 | int argreg; | |
3212 | int float_argreg; | |
3213 | int argnum; | |
3214 | int len = 0; | |
3215 | int stack_offset = 0; | |
ebafbe83 | 3216 | |
25ab4790 AC |
3217 | /* For shared libraries, "t9" needs to point at the function |
3218 | address. */ | |
3219 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3220 | ||
3221 | /* Set the return address register to point to the entry point of | |
3222 | the program, where a breakpoint lies in wait. */ | |
3223 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3224 | ||
ebafbe83 MS |
3225 | /* First ensure that the stack and structure return address (if any) |
3226 | are properly aligned. The stack has to be at least 64-bit | |
3227 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3228 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3229 | aligned, so we round to this widest known alignment. */ | |
3230 | ||
3231 | sp = ROUND_DOWN (sp, 16); | |
3232 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3233 | ||
3234 | /* Now make space on the stack for the args. */ | |
3235 | for (argnum = 0; argnum < nargs; argnum++) | |
3236 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3237 | MIPS_STACK_ARGSIZE); | |
3238 | sp -= ROUND_UP (len, 16); | |
3239 | ||
3240 | if (mips_debug) | |
3241 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3242 | "mips_o32_push_dummy_call: sp=0x%s allocated %d\n", |
ebafbe83 MS |
3243 | paddr_nz (sp), ROUND_UP (len, 16)); |
3244 | ||
3245 | /* Initialize the integer and float register pointers. */ | |
3246 | argreg = A0_REGNUM; | |
3247 | float_argreg = FPA0_REGNUM; | |
3248 | ||
bcb0cc15 | 3249 | /* The struct_return pointer occupies the first parameter-passing reg. */ |
ebafbe83 MS |
3250 | if (struct_return) |
3251 | { | |
3252 | if (mips_debug) | |
3253 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3254 | "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n", |
ebafbe83 MS |
3255 | argreg, paddr_nz (struct_addr)); |
3256 | write_register (argreg++, struct_addr); | |
3257 | stack_offset += MIPS_STACK_ARGSIZE; | |
3258 | } | |
3259 | ||
3260 | /* Now load as many as possible of the first arguments into | |
3261 | registers, and push the rest onto the stack. Loop thru args | |
3262 | from first to last. */ | |
3263 | for (argnum = 0; argnum < nargs; argnum++) | |
3264 | { | |
3265 | char *val; | |
d9d9c31f | 3266 | char valbuf[MAX_REGISTER_SIZE]; |
ebafbe83 MS |
3267 | struct value *arg = args[argnum]; |
3268 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3269 | int len = TYPE_LENGTH (arg_type); | |
3270 | enum type_code typecode = TYPE_CODE (arg_type); | |
3271 | ||
3272 | if (mips_debug) | |
3273 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3274 | "mips_o32_push_dummy_call: %d len=%d type=%d", |
46cac009 AC |
3275 | argnum + 1, len, (int) typecode); |
3276 | ||
3277 | val = (char *) VALUE_CONTENTS (arg); | |
3278 | ||
3279 | /* 32-bit ABIs always start floating point arguments in an | |
3280 | even-numbered floating point register. Round the FP register | |
3281 | up before the check to see if there are any FP registers | |
3282 | left. O32/O64 targets also pass the FP in the integer | |
3283 | registers so also round up normal registers. */ | |
3284 | if (!FP_REGISTER_DOUBLE | |
3285 | && fp_register_arg_p (typecode, arg_type)) | |
3286 | { | |
3287 | if ((float_argreg & 1)) | |
3288 | float_argreg++; | |
3289 | } | |
3290 | ||
3291 | /* Floating point arguments passed in registers have to be | |
3292 | treated specially. On 32-bit architectures, doubles | |
3293 | are passed in register pairs; the even register gets | |
3294 | the low word, and the odd register gets the high word. | |
3295 | On O32/O64, the first two floating point arguments are | |
3296 | also copied to general registers, because MIPS16 functions | |
3297 | don't use float registers for arguments. This duplication of | |
3298 | arguments in general registers can't hurt non-MIPS16 functions | |
3299 | because those registers are normally skipped. */ | |
3300 | ||
3301 | if (fp_register_arg_p (typecode, arg_type) | |
3302 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3303 | { | |
3304 | if (!FP_REGISTER_DOUBLE && len == 8) | |
3305 | { | |
3306 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3307 | unsigned long regval; | |
3308 | ||
3309 | /* Write the low word of the double to the even register(s). */ | |
3310 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3311 | if (mips_debug) | |
3312 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3313 | float_argreg, phex (regval, 4)); | |
3314 | write_register (float_argreg++, regval); | |
3315 | if (mips_debug) | |
3316 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3317 | argreg, phex (regval, 4)); | |
3318 | write_register (argreg++, regval); | |
3319 | ||
3320 | /* Write the high word of the double to the odd register(s). */ | |
3321 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3322 | if (mips_debug) | |
3323 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3324 | float_argreg, phex (regval, 4)); | |
3325 | write_register (float_argreg++, regval); | |
3326 | ||
3327 | if (mips_debug) | |
3328 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3329 | argreg, phex (regval, 4)); | |
3330 | write_register (argreg++, regval); | |
3331 | } | |
3332 | else | |
3333 | { | |
3334 | /* This is a floating point value that fits entirely | |
3335 | in a single register. */ | |
3336 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3337 | above to ensure that it is even register aligned. */ | |
3338 | LONGEST regval = extract_unsigned_integer (val, len); | |
3339 | if (mips_debug) | |
3340 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3341 | float_argreg, phex (regval, len)); | |
3342 | write_register (float_argreg++, regval); | |
3343 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
3344 | registers for each argument. The below is (my | |
3345 | guess) to ensure that the corresponding integer | |
3346 | register has reserved the same space. */ | |
3347 | if (mips_debug) | |
3348 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3349 | argreg, phex (regval, len)); | |
3350 | write_register (argreg, regval); | |
3351 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
3352 | } | |
3353 | /* Reserve space for the FP register. */ | |
3354 | stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE); | |
3355 | } | |
3356 | else | |
3357 | { | |
3358 | /* Copy the argument to general registers or the stack in | |
3359 | register-sized pieces. Large arguments are split between | |
3360 | registers and stack. */ | |
3361 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3362 | are treated specially: Irix cc passes them in registers | |
3363 | where gcc sometimes puts them on the stack. For maximum | |
3364 | compatibility, we will put them in both places. */ | |
3365 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3366 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3367 | /* Structures should be aligned to eight bytes (even arg registers) | |
3368 | on MIPS_ABI_O32, if their first member has double precision. */ | |
3369 | if (MIPS_SAVED_REGSIZE < 8 | |
3370 | && mips_type_needs_double_align (arg_type)) | |
3371 | { | |
3372 | if ((argreg & 1)) | |
3373 | argreg++; | |
3374 | } | |
3375 | /* Note: Floating-point values that didn't fit into an FP | |
3376 | register are only written to memory. */ | |
3377 | while (len > 0) | |
3378 | { | |
3379 | /* Remember if the argument was written to the stack. */ | |
3380 | int stack_used_p = 0; | |
3381 | int partial_len = | |
3382 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
3383 | ||
3384 | if (mips_debug) | |
3385 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3386 | partial_len); | |
3387 | ||
3388 | /* Write this portion of the argument to the stack. */ | |
3389 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3390 | || odd_sized_struct | |
3391 | || fp_register_arg_p (typecode, arg_type)) | |
3392 | { | |
3393 | /* Should shorter than int integer values be | |
3394 | promoted to int before being stored? */ | |
3395 | int longword_offset = 0; | |
3396 | CORE_ADDR addr; | |
3397 | stack_used_p = 1; | |
3398 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3399 | { | |
3400 | if (MIPS_STACK_ARGSIZE == 8 && | |
3401 | (typecode == TYPE_CODE_INT || | |
3402 | typecode == TYPE_CODE_PTR || | |
3403 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3404 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3405 | } | |
3406 | ||
3407 | if (mips_debug) | |
3408 | { | |
3409 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3410 | paddr_nz (stack_offset)); | |
3411 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3412 | paddr_nz (longword_offset)); | |
3413 | } | |
3414 | ||
3415 | addr = sp + stack_offset + longword_offset; | |
3416 | ||
3417 | if (mips_debug) | |
3418 | { | |
3419 | int i; | |
3420 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3421 | paddr_nz (addr)); | |
3422 | for (i = 0; i < partial_len; i++) | |
3423 | { | |
3424 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3425 | val[i] & 0xff); | |
3426 | } | |
3427 | } | |
3428 | write_memory (addr, val, partial_len); | |
3429 | } | |
3430 | ||
3431 | /* Note!!! This is NOT an else clause. Odd sized | |
3432 | structs may go thru BOTH paths. Floating point | |
3433 | arguments will not. */ | |
3434 | /* Write this portion of the argument to a general | |
3435 | purpose register. */ | |
3436 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3437 | && !fp_register_arg_p (typecode, arg_type)) | |
3438 | { | |
3439 | LONGEST regval = extract_signed_integer (val, partial_len); | |
3440 | /* Value may need to be sign extended, because | |
3441 | MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */ | |
3442 | ||
3443 | /* A non-floating-point argument being passed in a | |
3444 | general register. If a struct or union, and if | |
3445 | the remaining length is smaller than the register | |
3446 | size, we have to adjust the register value on | |
3447 | big endian targets. | |
3448 | ||
3449 | It does not seem to be necessary to do the | |
3450 | same for integral types. | |
3451 | ||
3452 | Also don't do this adjustment on O64 binaries. | |
3453 | ||
3454 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3455 | outputting LE O32 with sizeof (struct) < | |
3456 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3457 | part of storing the argument in a register a | |
3458 | register (the left shift isn't generated when | |
3459 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3460 | is quite possible that this is GCC contradicting | |
3461 | the LE/O32 ABI, GDB has not been adjusted to | |
3462 | accommodate this. Either someone needs to | |
3463 | demonstrate that the LE/O32 ABI specifies such a | |
3464 | left shift OR this new ABI gets identified as | |
3465 | such and GDB gets tweaked accordingly. */ | |
3466 | ||
3467 | if (MIPS_SAVED_REGSIZE < 8 | |
3468 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3469 | && partial_len < MIPS_SAVED_REGSIZE | |
3470 | && (typecode == TYPE_CODE_STRUCT || | |
3471 | typecode == TYPE_CODE_UNION)) | |
3472 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3473 | TARGET_CHAR_BIT); | |
3474 | ||
3475 | if (mips_debug) | |
3476 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3477 | argreg, | |
3478 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3479 | write_register (argreg, regval); | |
3480 | argreg++; | |
3481 | ||
3482 | /* Prevent subsequent floating point arguments from | |
3483 | being passed in floating point registers. */ | |
3484 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
3485 | } | |
3486 | ||
3487 | len -= partial_len; | |
3488 | val += partial_len; | |
3489 | ||
3490 | /* Compute the the offset into the stack at which we | |
3491 | will copy the next parameter. | |
3492 | ||
3493 | In older ABIs, the caller reserved space for | |
3494 | registers that contained arguments. This was loosely | |
3495 | refered to as their "home". Consequently, space is | |
3496 | always allocated. */ | |
3497 | ||
3498 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3499 | } | |
3500 | } | |
3501 | if (mips_debug) | |
3502 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3503 | } | |
3504 | ||
310e9b6a AC |
3505 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); |
3506 | ||
46cac009 AC |
3507 | /* Return adjusted stack pointer. */ |
3508 | return sp; | |
3509 | } | |
3510 | ||
25ab4790 | 3511 | /* O64 version of push_dummy_call. */ |
46cac009 AC |
3512 | |
3513 | static CORE_ADDR | |
25ab4790 AC |
3514 | mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
3515 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
3516 | struct value **args, CORE_ADDR sp, int struct_return, | |
3517 | CORE_ADDR struct_addr) | |
46cac009 AC |
3518 | { |
3519 | int argreg; | |
3520 | int float_argreg; | |
3521 | int argnum; | |
3522 | int len = 0; | |
3523 | int stack_offset = 0; | |
3524 | ||
25ab4790 AC |
3525 | /* For shared libraries, "t9" needs to point at the function |
3526 | address. */ | |
3527 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3528 | ||
3529 | /* Set the return address register to point to the entry point of | |
3530 | the program, where a breakpoint lies in wait. */ | |
3531 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3532 | ||
46cac009 AC |
3533 | /* First ensure that the stack and structure return address (if any) |
3534 | are properly aligned. The stack has to be at least 64-bit | |
3535 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3536 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3537 | aligned, so we round to this widest known alignment. */ | |
3538 | ||
3539 | sp = ROUND_DOWN (sp, 16); | |
3540 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3541 | ||
3542 | /* Now make space on the stack for the args. */ | |
3543 | for (argnum = 0; argnum < nargs; argnum++) | |
3544 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3545 | MIPS_STACK_ARGSIZE); | |
3546 | sp -= ROUND_UP (len, 16); | |
3547 | ||
3548 | if (mips_debug) | |
3549 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3550 | "mips_o64_push_dummy_call: sp=0x%s allocated %d\n", |
46cac009 AC |
3551 | paddr_nz (sp), ROUND_UP (len, 16)); |
3552 | ||
3553 | /* Initialize the integer and float register pointers. */ | |
3554 | argreg = A0_REGNUM; | |
3555 | float_argreg = FPA0_REGNUM; | |
3556 | ||
3557 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
3558 | if (struct_return) | |
3559 | { | |
3560 | if (mips_debug) | |
3561 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3562 | "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n", |
46cac009 AC |
3563 | argreg, paddr_nz (struct_addr)); |
3564 | write_register (argreg++, struct_addr); | |
3565 | stack_offset += MIPS_STACK_ARGSIZE; | |
3566 | } | |
3567 | ||
3568 | /* Now load as many as possible of the first arguments into | |
3569 | registers, and push the rest onto the stack. Loop thru args | |
3570 | from first to last. */ | |
3571 | for (argnum = 0; argnum < nargs; argnum++) | |
3572 | { | |
3573 | char *val; | |
d9d9c31f | 3574 | char valbuf[MAX_REGISTER_SIZE]; |
46cac009 AC |
3575 | struct value *arg = args[argnum]; |
3576 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3577 | int len = TYPE_LENGTH (arg_type); | |
3578 | enum type_code typecode = TYPE_CODE (arg_type); | |
3579 | ||
3580 | if (mips_debug) | |
3581 | fprintf_unfiltered (gdb_stdlog, | |
25ab4790 | 3582 | "mips_o64_push_dummy_call: %d len=%d type=%d", |
ebafbe83 MS |
3583 | argnum + 1, len, (int) typecode); |
3584 | ||
3585 | val = (char *) VALUE_CONTENTS (arg); | |
3586 | ||
3587 | /* 32-bit ABIs always start floating point arguments in an | |
3588 | even-numbered floating point register. Round the FP register | |
3589 | up before the check to see if there are any FP registers | |
3590 | left. O32/O64 targets also pass the FP in the integer | |
3591 | registers so also round up normal registers. */ | |
3592 | if (!FP_REGISTER_DOUBLE | |
3593 | && fp_register_arg_p (typecode, arg_type)) | |
3594 | { | |
3595 | if ((float_argreg & 1)) | |
3596 | float_argreg++; | |
3597 | } | |
3598 | ||
3599 | /* Floating point arguments passed in registers have to be | |
3600 | treated specially. On 32-bit architectures, doubles | |
3601 | are passed in register pairs; the even register gets | |
3602 | the low word, and the odd register gets the high word. | |
3603 | On O32/O64, the first two floating point arguments are | |
3604 | also copied to general registers, because MIPS16 functions | |
3605 | don't use float registers for arguments. This duplication of | |
3606 | arguments in general registers can't hurt non-MIPS16 functions | |
3607 | because those registers are normally skipped. */ | |
3608 | ||
3609 | if (fp_register_arg_p (typecode, arg_type) | |
3610 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3611 | { | |
3612 | if (!FP_REGISTER_DOUBLE && len == 8) | |
3613 | { | |
3614 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3615 | unsigned long regval; | |
3616 | ||
3617 | /* Write the low word of the double to the even register(s). */ | |
3618 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3619 | if (mips_debug) | |
3620 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3621 | float_argreg, phex (regval, 4)); | |
3622 | write_register (float_argreg++, regval); | |
3623 | if (mips_debug) | |
3624 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3625 | argreg, phex (regval, 4)); | |
3626 | write_register (argreg++, regval); | |
3627 | ||
3628 | /* Write the high word of the double to the odd register(s). */ | |
3629 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3630 | if (mips_debug) | |
3631 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3632 | float_argreg, phex (regval, 4)); | |
3633 | write_register (float_argreg++, regval); | |
3634 | ||
3635 | if (mips_debug) | |
3636 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3637 | argreg, phex (regval, 4)); | |
3638 | write_register (argreg++, regval); | |
3639 | } | |
3640 | else | |
3641 | { | |
3642 | /* This is a floating point value that fits entirely | |
3643 | in a single register. */ | |
3644 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3645 | above to ensure that it is even register aligned. */ | |
3646 | LONGEST regval = extract_unsigned_integer (val, len); | |
3647 | if (mips_debug) | |
3648 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3649 | float_argreg, phex (regval, len)); | |
3650 | write_register (float_argreg++, regval); | |
3651 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
3652 | registers for each argument. The below is (my | |
3653 | guess) to ensure that the corresponding integer | |
3654 | register has reserved the same space. */ | |
3655 | if (mips_debug) | |
3656 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3657 | argreg, phex (regval, len)); | |
3658 | write_register (argreg, regval); | |
3659 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
3660 | } | |
3661 | /* Reserve space for the FP register. */ | |
3662 | stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE); | |
3663 | } | |
3664 | else | |
3665 | { | |
3666 | /* Copy the argument to general registers or the stack in | |
3667 | register-sized pieces. Large arguments are split between | |
3668 | registers and stack. */ | |
3669 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3670 | are treated specially: Irix cc passes them in registers | |
3671 | where gcc sometimes puts them on the stack. For maximum | |
3672 | compatibility, we will put them in both places. */ | |
3673 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3674 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3675 | /* Structures should be aligned to eight bytes (even arg registers) | |
3676 | on MIPS_ABI_O32, if their first member has double precision. */ | |
3677 | if (MIPS_SAVED_REGSIZE < 8 | |
3678 | && mips_type_needs_double_align (arg_type)) | |
3679 | { | |
3680 | if ((argreg & 1)) | |
3681 | argreg++; | |
3682 | } | |
3683 | /* Note: Floating-point values that didn't fit into an FP | |
3684 | register are only written to memory. */ | |
3685 | while (len > 0) | |
3686 | { | |
3687 | /* Remember if the argument was written to the stack. */ | |
3688 | int stack_used_p = 0; | |
3689 | int partial_len = | |
3690 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
3691 | ||
3692 | if (mips_debug) | |
3693 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3694 | partial_len); | |
3695 | ||
3696 | /* Write this portion of the argument to the stack. */ | |
3697 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3698 | || odd_sized_struct | |
3699 | || fp_register_arg_p (typecode, arg_type)) | |
3700 | { | |
3701 | /* Should shorter than int integer values be | |
3702 | promoted to int before being stored? */ | |
3703 | int longword_offset = 0; | |
3704 | CORE_ADDR addr; | |
3705 | stack_used_p = 1; | |
3706 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3707 | { | |
3708 | if (MIPS_STACK_ARGSIZE == 8 && | |
3709 | (typecode == TYPE_CODE_INT || | |
3710 | typecode == TYPE_CODE_PTR || | |
3711 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3712 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3713 | } | |
3714 | ||
3715 | if (mips_debug) | |
3716 | { | |
3717 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3718 | paddr_nz (stack_offset)); | |
3719 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3720 | paddr_nz (longword_offset)); | |
3721 | } | |
3722 | ||
3723 | addr = sp + stack_offset + longword_offset; | |
3724 | ||
3725 | if (mips_debug) | |
3726 | { | |
3727 | int i; | |
3728 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3729 | paddr_nz (addr)); | |
3730 | for (i = 0; i < partial_len; i++) | |
3731 | { | |
3732 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3733 | val[i] & 0xff); | |
3734 | } | |
3735 | } | |
3736 | write_memory (addr, val, partial_len); | |
3737 | } | |
3738 | ||
3739 | /* Note!!! This is NOT an else clause. Odd sized | |
3740 | structs may go thru BOTH paths. Floating point | |
3741 | arguments will not. */ | |
3742 | /* Write this portion of the argument to a general | |
3743 | purpose register. */ | |
3744 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3745 | && !fp_register_arg_p (typecode, arg_type)) | |
3746 | { | |
3747 | LONGEST regval = extract_signed_integer (val, partial_len); | |
3748 | /* Value may need to be sign extended, because | |
3749 | MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */ | |
3750 | ||
3751 | /* A non-floating-point argument being passed in a | |
3752 | general register. If a struct or union, and if | |
3753 | the remaining length is smaller than the register | |
3754 | size, we have to adjust the register value on | |
3755 | big endian targets. | |
3756 | ||
3757 | It does not seem to be necessary to do the | |
3758 | same for integral types. | |
3759 | ||
3760 | Also don't do this adjustment on O64 binaries. | |
3761 | ||
3762 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3763 | outputting LE O32 with sizeof (struct) < | |
3764 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3765 | part of storing the argument in a register a | |
3766 | register (the left shift isn't generated when | |
3767 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3768 | is quite possible that this is GCC contradicting | |
3769 | the LE/O32 ABI, GDB has not been adjusted to | |
3770 | accommodate this. Either someone needs to | |
3771 | demonstrate that the LE/O32 ABI specifies such a | |
3772 | left shift OR this new ABI gets identified as | |
3773 | such and GDB gets tweaked accordingly. */ | |
3774 | ||
3775 | if (MIPS_SAVED_REGSIZE < 8 | |
3776 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3777 | && partial_len < MIPS_SAVED_REGSIZE | |
3778 | && (typecode == TYPE_CODE_STRUCT || | |
3779 | typecode == TYPE_CODE_UNION)) | |
3780 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3781 | TARGET_CHAR_BIT); | |
3782 | ||
3783 | if (mips_debug) | |
3784 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3785 | argreg, | |
3786 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3787 | write_register (argreg, regval); | |
3788 | argreg++; | |
3789 | ||
3790 | /* Prevent subsequent floating point arguments from | |
3791 | being passed in floating point registers. */ | |
3792 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
3793 | } | |
3794 | ||
3795 | len -= partial_len; | |
3796 | val += partial_len; | |
3797 | ||
3798 | /* Compute the the offset into the stack at which we | |
3799 | will copy the next parameter. | |
3800 | ||
3801 | In older ABIs, the caller reserved space for | |
3802 | registers that contained arguments. This was loosely | |
3803 | refered to as their "home". Consequently, space is | |
3804 | always allocated. */ | |
3805 | ||
3806 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3807 | } | |
3808 | } | |
3809 | if (mips_debug) | |
3810 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3811 | } | |
3812 | ||
310e9b6a AC |
3813 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); |
3814 | ||
ebafbe83 MS |
3815 | /* Return adjusted stack pointer. */ |
3816 | return sp; | |
3817 | } | |
3818 | ||
f7ab6ec6 | 3819 | static void |
acdb74a0 | 3820 | mips_pop_frame (void) |
c906108c SS |
3821 | { |
3822 | register int regnum; | |
3823 | struct frame_info *frame = get_current_frame (); | |
c193f6ac | 3824 | CORE_ADDR new_sp = get_frame_base (frame); |
e227b13c | 3825 | mips_extra_func_info_t proc_desc; |
c906108c | 3826 | |
50abf9e5 | 3827 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)) |
cedea778 AC |
3828 | { |
3829 | generic_pop_dummy_frame (); | |
3830 | flush_cached_frames (); | |
3831 | return; | |
3832 | } | |
3833 | ||
e227b13c | 3834 | proc_desc = get_frame_extra_info (frame)->proc_desc; |
8bedc050 | 3835 | write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame)); |
e0f7ec59 | 3836 | mips_find_saved_regs (frame); |
c906108c | 3837 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
21f87145 | 3838 | if (regnum != SP_REGNUM && regnum != PC_REGNUM |
b2fb4676 | 3839 | && get_frame_saved_regs (frame)[regnum]) |
21f87145 MS |
3840 | { |
3841 | /* Floating point registers must not be sign extended, | |
3842 | in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */ | |
3843 | ||
3844 | if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32) | |
3845 | write_register (regnum, | |
b2fb4676 | 3846 | read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum], |
21f87145 MS |
3847 | MIPS_SAVED_REGSIZE)); |
3848 | else | |
3849 | write_register (regnum, | |
b2fb4676 | 3850 | read_memory_integer (get_frame_saved_regs (frame)[regnum], |
21f87145 MS |
3851 | MIPS_SAVED_REGSIZE)); |
3852 | } | |
757a7cc6 | 3853 | |
c906108c SS |
3854 | write_register (SP_REGNUM, new_sp); |
3855 | flush_cached_frames (); | |
3856 | ||
c5aa993b | 3857 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) |
c906108c SS |
3858 | { |
3859 | struct linked_proc_info *pi_ptr, *prev_ptr; | |
3860 | ||
3861 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
3862 | pi_ptr != NULL; | |
3863 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
3864 | { | |
3865 | if (&pi_ptr->info == proc_desc) | |
3866 | break; | |
3867 | } | |
3868 | ||
3869 | if (pi_ptr == NULL) | |
3870 | error ("Can't locate dummy extra frame info\n"); | |
3871 | ||
3872 | if (prev_ptr != NULL) | |
3873 | prev_ptr->next = pi_ptr->next; | |
3874 | else | |
3875 | linked_proc_desc_table = pi_ptr->next; | |
3876 | ||
b8c9b27d | 3877 | xfree (pi_ptr); |
c906108c SS |
3878 | |
3879 | write_register (HI_REGNUM, | |
c5aa993b | 3880 | read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE, |
7a292a7a | 3881 | MIPS_SAVED_REGSIZE)); |
c906108c | 3882 | write_register (LO_REGNUM, |
c5aa993b | 3883 | read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE, |
7a292a7a | 3884 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
3885 | if (MIPS_FPU_TYPE != MIPS_FPU_NONE) |
3886 | write_register (FCRCS_REGNUM, | |
c5aa993b | 3887 | read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE, |
7a292a7a | 3888 | MIPS_SAVED_REGSIZE)); |
c906108c SS |
3889 | } |
3890 | } | |
3891 | ||
dd824b04 DJ |
3892 | /* Floating point register management. |
3893 | ||
3894 | Background: MIPS1 & 2 fp registers are 32 bits wide. To support | |
3895 | 64bit operations, these early MIPS cpus treat fp register pairs | |
3896 | (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp | |
3897 | registers and offer a compatibility mode that emulates the MIPS2 fp | |
3898 | model. When operating in MIPS2 fp compat mode, later cpu's split | |
3899 | double precision floats into two 32-bit chunks and store them in | |
3900 | consecutive fp regs. To display 64-bit floats stored in this | |
3901 | fashion, we have to combine 32 bits from f0 and 32 bits from f1. | |
3902 | Throw in user-configurable endianness and you have a real mess. | |
3903 | ||
3904 | The way this works is: | |
3905 | - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit | |
3906 | double-precision value will be split across two logical registers. | |
3907 | The lower-numbered logical register will hold the low-order bits, | |
3908 | regardless of the processor's endianness. | |
3909 | - If we are on a 64-bit processor, and we are looking for a | |
3910 | single-precision value, it will be in the low ordered bits | |
3911 | of a 64-bit GPR (after mfc1, for example) or a 64-bit register | |
3912 | save slot in memory. | |
3913 | - If we are in 64-bit mode, everything is straightforward. | |
3914 | ||
3915 | Note that this code only deals with "live" registers at the top of the | |
3916 | stack. We will attempt to deal with saved registers later, when | |
3917 | the raw/cooked register interface is in place. (We need a general | |
3918 | interface that can deal with dynamic saved register sizes -- fp | |
3919 | regs could be 32 bits wide in one frame and 64 on the frame above | |
3920 | and below). */ | |
3921 | ||
67b2c998 DJ |
3922 | static struct type * |
3923 | mips_float_register_type (void) | |
3924 | { | |
361d1df0 | 3925 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
3926 | return builtin_type_ieee_single_big; |
3927 | else | |
3928 | return builtin_type_ieee_single_little; | |
3929 | } | |
3930 | ||
3931 | static struct type * | |
3932 | mips_double_register_type (void) | |
3933 | { | |
361d1df0 | 3934 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
67b2c998 DJ |
3935 | return builtin_type_ieee_double_big; |
3936 | else | |
3937 | return builtin_type_ieee_double_little; | |
3938 | } | |
3939 | ||
dd824b04 DJ |
3940 | /* Copy a 32-bit single-precision value from the current frame |
3941 | into rare_buffer. */ | |
3942 | ||
3943 | static void | |
e11c53d2 AC |
3944 | mips_read_fp_register_single (struct frame_info *frame, int regno, |
3945 | char *rare_buffer) | |
dd824b04 DJ |
3946 | { |
3947 | int raw_size = REGISTER_RAW_SIZE (regno); | |
3948 | char *raw_buffer = alloca (raw_size); | |
3949 | ||
e11c53d2 | 3950 | if (!frame_register_read (frame, regno, raw_buffer)) |
dd824b04 DJ |
3951 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
3952 | if (raw_size == 8) | |
3953 | { | |
3954 | /* We have a 64-bit value for this register. Find the low-order | |
3955 | 32 bits. */ | |
3956 | int offset; | |
3957 | ||
3958 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3959 | offset = 4; | |
3960 | else | |
3961 | offset = 0; | |
3962 | ||
3963 | memcpy (rare_buffer, raw_buffer + offset, 4); | |
3964 | } | |
3965 | else | |
3966 | { | |
3967 | memcpy (rare_buffer, raw_buffer, 4); | |
3968 | } | |
3969 | } | |
3970 | ||
3971 | /* Copy a 64-bit double-precision value from the current frame into | |
3972 | rare_buffer. This may include getting half of it from the next | |
3973 | register. */ | |
3974 | ||
3975 | static void | |
e11c53d2 AC |
3976 | mips_read_fp_register_double (struct frame_info *frame, int regno, |
3977 | char *rare_buffer) | |
dd824b04 DJ |
3978 | { |
3979 | int raw_size = REGISTER_RAW_SIZE (regno); | |
3980 | ||
3981 | if (raw_size == 8 && !mips2_fp_compat ()) | |
3982 | { | |
3983 | /* We have a 64-bit value for this register, and we should use | |
3984 | all 64 bits. */ | |
e11c53d2 | 3985 | if (!frame_register_read (frame, regno, rare_buffer)) |
dd824b04 DJ |
3986 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); |
3987 | } | |
3988 | else | |
3989 | { | |
3990 | if ((regno - FP0_REGNUM) & 1) | |
3991 | internal_error (__FILE__, __LINE__, | |
3992 | "mips_read_fp_register_double: bad access to " | |
3993 | "odd-numbered FP register"); | |
3994 | ||
3995 | /* mips_read_fp_register_single will find the correct 32 bits from | |
3996 | each register. */ | |
3997 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3998 | { | |
e11c53d2 AC |
3999 | mips_read_fp_register_single (frame, regno, rare_buffer + 4); |
4000 | mips_read_fp_register_single (frame, regno + 1, rare_buffer); | |
dd824b04 | 4001 | } |
361d1df0 | 4002 | else |
dd824b04 | 4003 | { |
e11c53d2 AC |
4004 | mips_read_fp_register_single (frame, regno, rare_buffer); |
4005 | mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4); | |
dd824b04 DJ |
4006 | } |
4007 | } | |
4008 | } | |
4009 | ||
c906108c | 4010 | static void |
e11c53d2 AC |
4011 | mips_print_fp_register (struct ui_file *file, struct frame_info *frame, |
4012 | int regnum) | |
c5aa993b | 4013 | { /* do values for FP (float) regs */ |
dd824b04 | 4014 | char *raw_buffer; |
c906108c | 4015 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ |
f0ef6b29 | 4016 | int inv1, inv2, namelen; |
c5aa993b | 4017 | |
dd824b04 | 4018 | raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); |
c906108c | 4019 | |
e11c53d2 AC |
4020 | fprintf_filtered (file, "%s:", REGISTER_NAME (regnum)); |
4021 | fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)), | |
4022 | ""); | |
f0ef6b29 | 4023 | |
dd824b04 | 4024 | if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ()) |
c906108c | 4025 | { |
f0ef6b29 KB |
4026 | /* 4-byte registers: Print hex and floating. Also print even |
4027 | numbered registers as doubles. */ | |
e11c53d2 | 4028 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
67b2c998 | 4029 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c5aa993b | 4030 | |
e11c53d2 | 4031 | print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file); |
dd824b04 | 4032 | |
e11c53d2 | 4033 | fprintf_filtered (file, " flt: "); |
1adad886 | 4034 | if (inv1) |
e11c53d2 | 4035 | fprintf_filtered (file, " <invalid float> "); |
1adad886 | 4036 | else |
e11c53d2 | 4037 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4038 | |
f0ef6b29 KB |
4039 | if (regnum % 2 == 0) |
4040 | { | |
e11c53d2 | 4041 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 KB |
4042 | doub = unpack_double (mips_double_register_type (), raw_buffer, |
4043 | &inv2); | |
1adad886 | 4044 | |
e11c53d2 | 4045 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4046 | if (inv2) |
e11c53d2 | 4047 | fprintf_filtered (file, "<invalid double>"); |
f0ef6b29 | 4048 | else |
e11c53d2 | 4049 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 | 4050 | } |
c906108c SS |
4051 | } |
4052 | else | |
dd824b04 | 4053 | { |
f0ef6b29 | 4054 | /* Eight byte registers: print each one as hex, float and double. */ |
e11c53d2 | 4055 | mips_read_fp_register_single (frame, regnum, raw_buffer); |
2f38ef89 | 4056 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); |
c906108c | 4057 | |
e11c53d2 | 4058 | mips_read_fp_register_double (frame, regnum, raw_buffer); |
f0ef6b29 KB |
4059 | doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2); |
4060 | ||
361d1df0 | 4061 | |
e11c53d2 | 4062 | print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file); |
f0ef6b29 | 4063 | |
e11c53d2 | 4064 | fprintf_filtered (file, " flt: "); |
1adad886 | 4065 | if (inv1) |
e11c53d2 | 4066 | fprintf_filtered (file, "<invalid float>"); |
1adad886 | 4067 | else |
e11c53d2 | 4068 | fprintf_filtered (file, "%-17.9g", flt1); |
1adad886 | 4069 | |
e11c53d2 | 4070 | fprintf_filtered (file, " dbl: "); |
f0ef6b29 | 4071 | if (inv2) |
e11c53d2 | 4072 | fprintf_filtered (file, "<invalid double>"); |
1adad886 | 4073 | else |
e11c53d2 | 4074 | fprintf_filtered (file, "%-24.17g", doub); |
f0ef6b29 KB |
4075 | } |
4076 | } | |
4077 | ||
4078 | static void | |
e11c53d2 AC |
4079 | mips_print_register (struct ui_file *file, struct frame_info *frame, |
4080 | int regnum, int all) | |
f0ef6b29 | 4081 | { |
d9d9c31f | 4082 | char raw_buffer[MAX_REGISTER_SIZE]; |
f0ef6b29 | 4083 | int offset; |
1adad886 | 4084 | |
f0ef6b29 KB |
4085 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
4086 | { | |
e11c53d2 | 4087 | mips_print_fp_register (file, frame, regnum); |
f0ef6b29 KB |
4088 | return; |
4089 | } | |
4090 | ||
4091 | /* Get the data in raw format. */ | |
e11c53d2 | 4092 | if (!frame_register_read (frame, regnum, raw_buffer)) |
f0ef6b29 | 4093 | { |
e11c53d2 | 4094 | fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum)); |
f0ef6b29 | 4095 | return; |
c906108c | 4096 | } |
f0ef6b29 | 4097 | |
e11c53d2 | 4098 | fputs_filtered (REGISTER_NAME (regnum), file); |
f0ef6b29 KB |
4099 | |
4100 | /* The problem with printing numeric register names (r26, etc.) is that | |
4101 | the user can't use them on input. Probably the best solution is to | |
4102 | fix it so that either the numeric or the funky (a2, etc.) names | |
4103 | are accepted on input. */ | |
4104 | if (regnum < MIPS_NUMREGS) | |
e11c53d2 | 4105 | fprintf_filtered (file, "(r%d): ", regnum); |
f0ef6b29 | 4106 | else |
e11c53d2 | 4107 | fprintf_filtered (file, ": "); |
f0ef6b29 KB |
4108 | |
4109 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4110 | offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); | |
4111 | else | |
4112 | offset = 0; | |
4113 | ||
4114 | print_scalar_formatted (raw_buffer + offset, | |
4115 | REGISTER_VIRTUAL_TYPE (regnum), | |
e11c53d2 | 4116 | 'x', 0, file); |
c906108c SS |
4117 | } |
4118 | ||
f0ef6b29 KB |
4119 | /* Replacement for generic do_registers_info. |
4120 | Print regs in pretty columns. */ | |
4121 | ||
4122 | static int | |
e11c53d2 AC |
4123 | print_fp_register_row (struct ui_file *file, struct frame_info *frame, |
4124 | int regnum) | |
f0ef6b29 | 4125 | { |
e11c53d2 AC |
4126 | fprintf_filtered (file, " "); |
4127 | mips_print_fp_register (file, frame, regnum); | |
4128 | fprintf_filtered (file, "\n"); | |
f0ef6b29 KB |
4129 | return regnum + 1; |
4130 | } | |
4131 | ||
4132 | ||
c906108c SS |
4133 | /* Print a row's worth of GP (int) registers, with name labels above */ |
4134 | ||
4135 | static int | |
e11c53d2 AC |
4136 | print_gp_register_row (struct ui_file *file, struct frame_info *frame, |
4137 | int regnum) | |
c906108c SS |
4138 | { |
4139 | /* do values for GP (int) regs */ | |
d9d9c31f | 4140 | char raw_buffer[MAX_REGISTER_SIZE]; |
c906108c SS |
4141 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ |
4142 | int col, byte; | |
4143 | int start_regnum = regnum; | |
4144 | int numregs = NUM_REGS; | |
4145 | ||
4146 | ||
4147 | /* For GP registers, we print a separate row of names above the vals */ | |
e11c53d2 | 4148 | fprintf_filtered (file, " "); |
c906108c SS |
4149 | for (col = 0; col < ncols && regnum < numregs; regnum++) |
4150 | { | |
4151 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4152 | continue; /* unused register */ |
c906108c | 4153 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b | 4154 | break; /* end the row: reached FP register */ |
e11c53d2 AC |
4155 | fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s", |
4156 | REGISTER_NAME (regnum)); | |
c906108c SS |
4157 | col++; |
4158 | } | |
e11c53d2 AC |
4159 | fprintf_filtered (file, |
4160 | start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", | |
4161 | start_regnum); /* print the R0 to R31 names */ | |
c906108c SS |
4162 | |
4163 | regnum = start_regnum; /* go back to start of row */ | |
4164 | /* now print the values in hex, 4 or 8 to the row */ | |
4165 | for (col = 0; col < ncols && regnum < numregs; regnum++) | |
4166 | { | |
4167 | if (*REGISTER_NAME (regnum) == '\0') | |
c5aa993b | 4168 | continue; /* unused register */ |
c906108c | 4169 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
c5aa993b | 4170 | break; /* end row: reached FP register */ |
c906108c | 4171 | /* OK: get the data in raw format. */ |
e11c53d2 | 4172 | if (!frame_register_read (frame, regnum, raw_buffer)) |
c906108c SS |
4173 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); |
4174 | /* pad small registers */ | |
43e526b9 | 4175 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++) |
c906108c SS |
4176 | printf_filtered (" "); |
4177 | /* Now print the register value in hex, endian order. */ | |
d7449b42 | 4178 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
43e526b9 JM |
4179 | for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); |
4180 | byte < REGISTER_RAW_SIZE (regnum); | |
4181 | byte++) | |
e11c53d2 | 4182 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
c906108c | 4183 | else |
43e526b9 JM |
4184 | for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1; |
4185 | byte >= 0; | |
4186 | byte--) | |
e11c53d2 AC |
4187 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); |
4188 | fprintf_filtered (file, " "); | |
c906108c SS |
4189 | col++; |
4190 | } | |
c5aa993b | 4191 | if (col > 0) /* ie. if we actually printed anything... */ |
e11c53d2 | 4192 | fprintf_filtered (file, "\n"); |
c906108c SS |
4193 | |
4194 | return regnum; | |
4195 | } | |
4196 | ||
4197 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
4198 | ||
bf1f5b4c | 4199 | static void |
e11c53d2 AC |
4200 | mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
4201 | struct frame_info *frame, int regnum, int all) | |
c906108c | 4202 | { |
c5aa993b | 4203 | if (regnum != -1) /* do one specified register */ |
c906108c SS |
4204 | { |
4205 | if (*(REGISTER_NAME (regnum)) == '\0') | |
4206 | error ("Not a valid register for the current processor type"); | |
4207 | ||
e11c53d2 AC |
4208 | mips_print_register (file, frame, regnum, 0); |
4209 | fprintf_filtered (file, "\n"); | |
c906108c | 4210 | } |
c5aa993b JM |
4211 | else |
4212 | /* do all (or most) registers */ | |
c906108c SS |
4213 | { |
4214 | regnum = 0; | |
4215 | while (regnum < NUM_REGS) | |
4216 | { | |
c5aa993b | 4217 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
e11c53d2 AC |
4218 | { |
4219 | if (all) /* true for "INFO ALL-REGISTERS" command */ | |
4220 | regnum = print_fp_register_row (file, frame, regnum); | |
4221 | else | |
4222 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
4223 | } | |
c906108c | 4224 | else |
e11c53d2 | 4225 | regnum = print_gp_register_row (file, frame, regnum); |
c906108c SS |
4226 | } |
4227 | } | |
4228 | } | |
4229 | ||
c906108c SS |
4230 | /* Is this a branch with a delay slot? */ |
4231 | ||
a14ed312 | 4232 | static int is_delayed (unsigned long); |
c906108c SS |
4233 | |
4234 | static int | |
acdb74a0 | 4235 | is_delayed (unsigned long insn) |
c906108c SS |
4236 | { |
4237 | int i; | |
4238 | for (i = 0; i < NUMOPCODES; ++i) | |
4239 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
4240 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
4241 | break; | |
4242 | return (i < NUMOPCODES | |
4243 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
4244 | | INSN_COND_BRANCH_DELAY | |
4245 | | INSN_COND_BRANCH_LIKELY))); | |
4246 | } | |
4247 | ||
4248 | int | |
acdb74a0 | 4249 | mips_step_skips_delay (CORE_ADDR pc) |
c906108c SS |
4250 | { |
4251 | char buf[MIPS_INSTLEN]; | |
4252 | ||
4253 | /* There is no branch delay slot on MIPS16. */ | |
4254 | if (pc_is_mips16 (pc)) | |
4255 | return 0; | |
4256 | ||
4257 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
4258 | /* If error reading memory, guess that it is not a delayed branch. */ | |
4259 | return 0; | |
c5aa993b | 4260 | return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN)); |
c906108c SS |
4261 | } |
4262 | ||
4263 | ||
4264 | /* Skip the PC past function prologue instructions (32-bit version). | |
4265 | This is a helper function for mips_skip_prologue. */ | |
4266 | ||
4267 | static CORE_ADDR | |
f7b9e9fc | 4268 | mips32_skip_prologue (CORE_ADDR pc) |
c906108c | 4269 | { |
c5aa993b JM |
4270 | t_inst inst; |
4271 | CORE_ADDR end_pc; | |
4272 | int seen_sp_adjust = 0; | |
4273 | int load_immediate_bytes = 0; | |
4274 | ||
4275 | /* Skip the typical prologue instructions. These are the stack adjustment | |
4276 | instruction and the instructions that save registers on the stack | |
4277 | or in the gcc frame. */ | |
4278 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) | |
4279 | { | |
4280 | unsigned long high_word; | |
c906108c | 4281 | |
c5aa993b JM |
4282 | inst = mips_fetch_instruction (pc); |
4283 | high_word = (inst >> 16) & 0xffff; | |
c906108c | 4284 | |
c5aa993b JM |
4285 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
4286 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
4287 | seen_sp_adjust = 1; | |
4288 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ | |
4289 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
4290 | seen_sp_adjust = 1; | |
4291 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ | |
4292 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
4293 | && (inst & 0x001F0000)) /* reg != $zero */ | |
4294 | continue; | |
4295 | ||
4296 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ | |
4297 | continue; | |
4298 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
4299 | /* sx reg,n($s8) */ | |
4300 | continue; /* reg != $zero */ | |
4301 | ||
4302 | /* move $s8,$sp. With different versions of gas this will be either | |
4303 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. | |
4304 | Accept any one of these. */ | |
4305 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
4306 | continue; | |
4307 | ||
4308 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ | |
4309 | continue; | |
4310 | else if (high_word == 0x3c1c) /* lui $gp,n */ | |
4311 | continue; | |
4312 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ | |
4313 | continue; | |
4314 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
4315 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
4316 | continue; | |
4317 | /* The following instructions load $at or $t0 with an immediate | |
4318 | value in preparation for a stack adjustment via | |
4319 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
4320 | a local variable, so we accept them only before a stack adjustment | |
4321 | instruction was seen. */ | |
4322 | else if (!seen_sp_adjust) | |
4323 | { | |
4324 | if (high_word == 0x3c01 || /* lui $at,n */ | |
4325 | high_word == 0x3c08) /* lui $t0,n */ | |
4326 | { | |
4327 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4328 | continue; | |
4329 | } | |
4330 | else if (high_word == 0x3421 || /* ori $at,$at,n */ | |
4331 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
4332 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
4333 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
4334 | { | |
4335 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4336 | continue; | |
4337 | } | |
4338 | else | |
4339 | break; | |
4340 | } | |
4341 | else | |
4342 | break; | |
c906108c SS |
4343 | } |
4344 | ||
c5aa993b JM |
4345 | /* In a frameless function, we might have incorrectly |
4346 | skipped some load immediate instructions. Undo the skipping | |
4347 | if the load immediate was not followed by a stack adjustment. */ | |
4348 | if (load_immediate_bytes && !seen_sp_adjust) | |
4349 | pc -= load_immediate_bytes; | |
4350 | return pc; | |
c906108c SS |
4351 | } |
4352 | ||
4353 | /* Skip the PC past function prologue instructions (16-bit version). | |
4354 | This is a helper function for mips_skip_prologue. */ | |
4355 | ||
4356 | static CORE_ADDR | |
f7b9e9fc | 4357 | mips16_skip_prologue (CORE_ADDR pc) |
c906108c | 4358 | { |
c5aa993b JM |
4359 | CORE_ADDR end_pc; |
4360 | int extend_bytes = 0; | |
4361 | int prev_extend_bytes; | |
c906108c | 4362 | |
c5aa993b JM |
4363 | /* Table of instructions likely to be found in a function prologue. */ |
4364 | static struct | |
c906108c SS |
4365 | { |
4366 | unsigned short inst; | |
4367 | unsigned short mask; | |
c5aa993b JM |
4368 | } |
4369 | table[] = | |
4370 | { | |
c906108c | 4371 | { |
c5aa993b JM |
4372 | 0x6300, 0xff00 |
4373 | } | |
4374 | , /* addiu $sp,offset */ | |
4375 | { | |
4376 | 0xfb00, 0xff00 | |
4377 | } | |
4378 | , /* daddiu $sp,offset */ | |
4379 | { | |
4380 | 0xd000, 0xf800 | |
4381 | } | |
4382 | , /* sw reg,n($sp) */ | |
4383 | { | |
4384 | 0xf900, 0xff00 | |
4385 | } | |
4386 | , /* sd reg,n($sp) */ | |
4387 | { | |
4388 | 0x6200, 0xff00 | |
4389 | } | |
4390 | , /* sw $ra,n($sp) */ | |
4391 | { | |
4392 | 0xfa00, 0xff00 | |
4393 | } | |
4394 | , /* sd $ra,n($sp) */ | |
4395 | { | |
4396 | 0x673d, 0xffff | |
4397 | } | |
4398 | , /* move $s1,sp */ | |
4399 | { | |
4400 | 0xd980, 0xff80 | |
4401 | } | |
4402 | , /* sw $a0-$a3,n($s1) */ | |
4403 | { | |
4404 | 0x6704, 0xff1c | |
4405 | } | |
4406 | , /* move reg,$a0-$a3 */ | |
4407 | { | |
4408 | 0xe809, 0xf81f | |
4409 | } | |
4410 | , /* entry pseudo-op */ | |
4411 | { | |
4412 | 0x0100, 0xff00 | |
4413 | } | |
4414 | , /* addiu $s1,$sp,n */ | |
4415 | { | |
4416 | 0, 0 | |
4417 | } /* end of table marker */ | |
4418 | }; | |
4419 | ||
4420 | /* Skip the typical prologue instructions. These are the stack adjustment | |
4421 | instruction and the instructions that save registers on the stack | |
4422 | or in the gcc frame. */ | |
4423 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
4424 | { | |
4425 | unsigned short inst; | |
4426 | int i; | |
c906108c | 4427 | |
c5aa993b | 4428 | inst = mips_fetch_instruction (pc); |
c906108c | 4429 | |
c5aa993b JM |
4430 | /* Normally we ignore an extend instruction. However, if it is |
4431 | not followed by a valid prologue instruction, we must adjust | |
4432 | the pc back over the extend so that it won't be considered | |
4433 | part of the prologue. */ | |
4434 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
4435 | { | |
4436 | extend_bytes = MIPS16_INSTLEN; | |
4437 | continue; | |
4438 | } | |
4439 | prev_extend_bytes = extend_bytes; | |
4440 | extend_bytes = 0; | |
c906108c | 4441 | |
c5aa993b JM |
4442 | /* Check for other valid prologue instructions besides extend. */ |
4443 | for (i = 0; table[i].mask != 0; i++) | |
4444 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
4445 | break; | |
4446 | if (table[i].mask != 0) /* it was in table? */ | |
4447 | continue; /* ignore it */ | |
4448 | else | |
4449 | /* non-prologue */ | |
4450 | { | |
4451 | /* Return the current pc, adjusted backwards by 2 if | |
4452 | the previous instruction was an extend. */ | |
4453 | return pc - prev_extend_bytes; | |
4454 | } | |
c906108c SS |
4455 | } |
4456 | return pc; | |
4457 | } | |
4458 | ||
4459 | /* To skip prologues, I use this predicate. Returns either PC itself | |
4460 | if the code at PC does not look like a function prologue; otherwise | |
4461 | returns an address that (if we're lucky) follows the prologue. If | |
4462 | LENIENT, then we must skip everything which is involved in setting | |
4463 | up the frame (it's OK to skip more, just so long as we don't skip | |
4464 | anything which might clobber the registers which are being saved. | |
4465 | We must skip more in the case where part of the prologue is in the | |
4466 | delay slot of a non-prologue instruction). */ | |
4467 | ||
f7ab6ec6 | 4468 | static CORE_ADDR |
f7b9e9fc | 4469 | mips_skip_prologue (CORE_ADDR pc) |
c906108c SS |
4470 | { |
4471 | /* See if we can determine the end of the prologue via the symbol table. | |
4472 | If so, then return either PC, or the PC after the prologue, whichever | |
4473 | is greater. */ | |
4474 | ||
4475 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
4476 | ||
4477 | if (post_prologue_pc != 0) | |
4478 | return max (pc, post_prologue_pc); | |
4479 | ||
4480 | /* Can't determine prologue from the symbol table, need to examine | |
4481 | instructions. */ | |
4482 | ||
4483 | if (pc_is_mips16 (pc)) | |
f7b9e9fc | 4484 | return mips16_skip_prologue (pc); |
c906108c | 4485 | else |
f7b9e9fc | 4486 | return mips32_skip_prologue (pc); |
c906108c | 4487 | } |
c906108c | 4488 | |
7a292a7a SS |
4489 | /* Determine how a return value is stored within the MIPS register |
4490 | file, given the return type `valtype'. */ | |
4491 | ||
4492 | struct return_value_word | |
4493 | { | |
4494 | int len; | |
4495 | int reg; | |
4496 | int reg_offset; | |
4497 | int buf_offset; | |
4498 | }; | |
4499 | ||
7a292a7a | 4500 | static void |
acdb74a0 AC |
4501 | return_value_location (struct type *valtype, |
4502 | struct return_value_word *hi, | |
4503 | struct return_value_word *lo) | |
7a292a7a SS |
4504 | { |
4505 | int len = TYPE_LENGTH (valtype); | |
c5aa993b | 4506 | |
7a292a7a SS |
4507 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT |
4508 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
4509 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
4510 | { | |
4511 | if (!FP_REGISTER_DOUBLE && len == 8) | |
4512 | { | |
4513 | /* We need to break a 64bit float in two 32 bit halves and | |
c5aa993b | 4514 | spread them across a floating-point register pair. */ |
d7449b42 AC |
4515 | lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; |
4516 | hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4; | |
4517 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
7a292a7a SS |
4518 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8) |
4519 | ? 4 : 0); | |
4520 | hi->reg_offset = lo->reg_offset; | |
4521 | lo->reg = FP0_REGNUM + 0; | |
4522 | hi->reg = FP0_REGNUM + 1; | |
4523 | lo->len = 4; | |
4524 | hi->len = 4; | |
4525 | } | |
4526 | else | |
4527 | { | |
4528 | /* The floating point value fits in a single floating-point | |
c5aa993b | 4529 | register. */ |
d7449b42 | 4530 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
7a292a7a SS |
4531 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8 |
4532 | && len == 4) | |
4533 | ? 4 : 0); | |
4534 | lo->reg = FP0_REGNUM; | |
4535 | lo->len = len; | |
4536 | lo->buf_offset = 0; | |
4537 | hi->len = 0; | |
4538 | hi->reg_offset = 0; | |
4539 | hi->buf_offset = 0; | |
4540 | hi->reg = 0; | |
4541 | } | |
4542 | } | |
4543 | else | |
4544 | { | |
4545 | /* Locate a result possibly spread across two registers. */ | |
4546 | int regnum = 2; | |
4547 | lo->reg = regnum + 0; | |
4548 | hi->reg = regnum + 1; | |
d7449b42 | 4549 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
7a292a7a SS |
4550 | && len < MIPS_SAVED_REGSIZE) |
4551 | { | |
bf1f5b4c MS |
4552 | /* "un-left-justify" the value in the low register */ |
4553 | lo->reg_offset = MIPS_SAVED_REGSIZE - len; | |
bcb0cc15 | 4554 | lo->len = len; |
bf1f5b4c | 4555 | hi->reg_offset = 0; |
7a292a7a SS |
4556 | hi->len = 0; |
4557 | } | |
d7449b42 | 4558 | else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
7a292a7a SS |
4559 | && len > MIPS_SAVED_REGSIZE /* odd-size structs */ |
4560 | && len < MIPS_SAVED_REGSIZE * 2 | |
4561 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
4562 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
4563 | { | |
4564 | /* "un-left-justify" the value spread across two registers. */ | |
4565 | lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len; | |
4566 | lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset; | |
4567 | hi->reg_offset = 0; | |
4568 | hi->len = len - lo->len; | |
4569 | } | |
4570 | else | |
4571 | { | |
4572 | /* Only perform a partial copy of the second register. */ | |
4573 | lo->reg_offset = 0; | |
4574 | hi->reg_offset = 0; | |
4575 | if (len > MIPS_SAVED_REGSIZE) | |
4576 | { | |
4577 | lo->len = MIPS_SAVED_REGSIZE; | |
4578 | hi->len = len - MIPS_SAVED_REGSIZE; | |
4579 | } | |
4580 | else | |
4581 | { | |
4582 | lo->len = len; | |
4583 | hi->len = 0; | |
4584 | } | |
4585 | } | |
d7449b42 | 4586 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
7a292a7a SS |
4587 | && REGISTER_RAW_SIZE (regnum) == 8 |
4588 | && MIPS_SAVED_REGSIZE == 4) | |
4589 | { | |
4590 | /* Account for the fact that only the least-signficant part | |
c5aa993b | 4591 | of the register is being used */ |
7a292a7a SS |
4592 | lo->reg_offset += 4; |
4593 | hi->reg_offset += 4; | |
4594 | } | |
4595 | lo->buf_offset = 0; | |
4596 | hi->buf_offset = lo->len; | |
4597 | } | |
4598 | } | |
4599 | ||
4600 | /* Given a return value in `regbuf' with a type `valtype', extract and | |
4601 | copy its value into `valbuf'. */ | |
4602 | ||
46cac009 AC |
4603 | static void |
4604 | mips_eabi_extract_return_value (struct type *valtype, | |
b8b527c5 | 4605 | char regbuf[], |
46cac009 AC |
4606 | char *valbuf) |
4607 | { | |
4608 | struct return_value_word lo; | |
4609 | struct return_value_word hi; | |
4610 | return_value_location (valtype, &hi, &lo); | |
4611 | ||
4612 | memcpy (valbuf + lo.buf_offset, | |
4613 | regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
4614 | lo.len); | |
4615 | ||
4616 | if (hi.len > 0) | |
4617 | memcpy (valbuf + hi.buf_offset, | |
4618 | regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
4619 | hi.len); | |
4620 | } | |
4621 | ||
46cac009 AC |
4622 | static void |
4623 | mips_o64_extract_return_value (struct type *valtype, | |
b8b527c5 | 4624 | char regbuf[], |
46cac009 AC |
4625 | char *valbuf) |
4626 | { | |
4627 | struct return_value_word lo; | |
4628 | struct return_value_word hi; | |
4629 | return_value_location (valtype, &hi, &lo); | |
4630 | ||
4631 | memcpy (valbuf + lo.buf_offset, | |
4632 | regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
4633 | lo.len); | |
4634 | ||
4635 | if (hi.len > 0) | |
4636 | memcpy (valbuf + hi.buf_offset, | |
4637 | regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
4638 | hi.len); | |
4639 | } | |
4640 | ||
7a292a7a SS |
4641 | /* Given a return value in `valbuf' with a type `valtype', write it's |
4642 | value into the appropriate register. */ | |
4643 | ||
46cac009 AC |
4644 | static void |
4645 | mips_eabi_store_return_value (struct type *valtype, char *valbuf) | |
4646 | { | |
d9d9c31f | 4647 | char raw_buffer[MAX_REGISTER_SIZE]; |
46cac009 AC |
4648 | struct return_value_word lo; |
4649 | struct return_value_word hi; | |
4650 | return_value_location (valtype, &hi, &lo); | |
4651 | ||
4652 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4653 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
73937e03 AC |
4654 | deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer, |
4655 | REGISTER_RAW_SIZE (lo.reg)); | |
46cac009 AC |
4656 | |
4657 | if (hi.len > 0) | |
4658 | { | |
4659 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4660 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
73937e03 AC |
4661 | deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer, |
4662 | REGISTER_RAW_SIZE (hi.reg)); | |
46cac009 AC |
4663 | } |
4664 | } | |
4665 | ||
4666 | static void | |
cb1d2653 | 4667 | mips_o64_store_return_value (struct type *valtype, char *valbuf) |
46cac009 | 4668 | { |
d9d9c31f | 4669 | char raw_buffer[MAX_REGISTER_SIZE]; |
46cac009 AC |
4670 | struct return_value_word lo; |
4671 | struct return_value_word hi; | |
4672 | return_value_location (valtype, &hi, &lo); | |
4673 | ||
4674 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4675 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
73937e03 AC |
4676 | deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer, |
4677 | REGISTER_RAW_SIZE (lo.reg)); | |
46cac009 AC |
4678 | |
4679 | if (hi.len > 0) | |
4680 | { | |
4681 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4682 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
73937e03 AC |
4683 | deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer, |
4684 | REGISTER_RAW_SIZE (hi.reg)); | |
46cac009 AC |
4685 | } |
4686 | } | |
4687 | ||
cb1d2653 AC |
4688 | /* O32 ABI stuff. */ |
4689 | ||
46cac009 | 4690 | static void |
cb1d2653 AC |
4691 | mips_o32_xfer_return_value (struct type *type, |
4692 | struct regcache *regcache, | |
4693 | bfd_byte *in, const bfd_byte *out) | |
46cac009 | 4694 | { |
cb1d2653 AC |
4695 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
4696 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4697 | && TYPE_LENGTH (type) == 4 | |
4698 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
46cac009 | 4699 | { |
cb1d2653 AC |
4700 | /* A single-precision floating-point value. It fits in the |
4701 | least significant part of FP0. */ | |
4702 | if (mips_debug) | |
4703 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
4704 | mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type), | |
4705 | TARGET_BYTE_ORDER, in, out, 0); | |
4706 | } | |
4707 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4708 | && TYPE_LENGTH (type) == 8 | |
4709 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4710 | { | |
4711 | /* A double-precision floating-point value. It fits in the | |
4712 | least significant part of FP0/FP1 but with byte ordering | |
4713 | based on the target (???). */ | |
4714 | if (mips_debug) | |
4715 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n"); | |
4716 | switch (TARGET_BYTE_ORDER) | |
4717 | { | |
4718 | case BFD_ENDIAN_LITTLE: | |
4719 | mips_xfer_register (regcache, FP0_REGNUM + 0, 4, | |
4720 | TARGET_BYTE_ORDER, in, out, 0); | |
4721 | mips_xfer_register (regcache, FP0_REGNUM + 1, 4, | |
4722 | TARGET_BYTE_ORDER, in, out, 4); | |
4723 | break; | |
4724 | case BFD_ENDIAN_BIG: | |
4725 | mips_xfer_register (regcache, FP0_REGNUM + 1, 4, | |
4726 | TARGET_BYTE_ORDER, in, out, 0); | |
4727 | mips_xfer_register (regcache, FP0_REGNUM + 0, 4, | |
4728 | TARGET_BYTE_ORDER, in, out, 4); | |
4729 | break; | |
4730 | default: | |
4731 | internal_error (__FILE__, __LINE__, "bad switch"); | |
4732 | } | |
4733 | } | |
4734 | #if 0 | |
4735 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4736 | && TYPE_NFIELDS (type) <= 2 | |
4737 | && TYPE_NFIELDS (type) >= 1 | |
4738 | && ((TYPE_NFIELDS (type) == 1 | |
4739 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4740 | == TYPE_CODE_FLT)) | |
4741 | || (TYPE_NFIELDS (type) == 2 | |
4742 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4743 | == TYPE_CODE_FLT) | |
4744 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
4745 | == TYPE_CODE_FLT))) | |
4746 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4747 | { | |
4748 | /* A struct that contains one or two floats. Each value is part | |
4749 | in the least significant part of their floating point | |
4750 | register.. */ | |
d9d9c31f | 4751 | bfd_byte reg[MAX_REGISTER_SIZE]; |
cb1d2653 AC |
4752 | int regnum; |
4753 | int field; | |
4754 | for (field = 0, regnum = FP0_REGNUM; | |
4755 | field < TYPE_NFIELDS (type); | |
4756 | field++, regnum += 2) | |
4757 | { | |
4758 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
4759 | / TARGET_CHAR_BIT); | |
4760 | if (mips_debug) | |
4761 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset); | |
4762 | mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
4763 | TARGET_BYTE_ORDER, in, out, offset); | |
4764 | } | |
4765 | } | |
4766 | #endif | |
4767 | #if 0 | |
4768 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4769 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
4770 | { | |
4771 | /* A structure or union. Extract the left justified value, | |
4772 | regardless of the byte order. I.e. DO NOT USE | |
4773 | mips_xfer_lower. */ | |
4774 | int offset; | |
4775 | int regnum; | |
4776 | for (offset = 0, regnum = V0_REGNUM; | |
4777 | offset < TYPE_LENGTH (type); | |
4778 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
4779 | { | |
4780 | int xfer = REGISTER_RAW_SIZE (regnum); | |
4781 | if (offset + xfer > TYPE_LENGTH (type)) | |
4782 | xfer = TYPE_LENGTH (type) - offset; | |
4783 | if (mips_debug) | |
4784 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
4785 | offset, xfer, regnum); | |
4786 | mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN, | |
4787 | in, out, offset); | |
4788 | } | |
4789 | } | |
4790 | #endif | |
4791 | else | |
4792 | { | |
4793 | /* A scalar extract each part but least-significant-byte | |
4794 | justified. o32 thinks registers are 4 byte, regardless of | |
4795 | the ISA. mips_stack_argsize controls this. */ | |
4796 | int offset; | |
4797 | int regnum; | |
4798 | for (offset = 0, regnum = V0_REGNUM; | |
4799 | offset < TYPE_LENGTH (type); | |
4800 | offset += mips_stack_argsize (), regnum++) | |
4801 | { | |
4802 | int xfer = mips_stack_argsize (); | |
4803 | int pos = 0; | |
4804 | if (offset + xfer > TYPE_LENGTH (type)) | |
4805 | xfer = TYPE_LENGTH (type) - offset; | |
4806 | if (mips_debug) | |
4807 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
4808 | offset, xfer, regnum); | |
4809 | mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER, | |
4810 | in, out, offset); | |
4811 | } | |
46cac009 AC |
4812 | } |
4813 | } | |
4814 | ||
cb1d2653 AC |
4815 | static void |
4816 | mips_o32_extract_return_value (struct type *type, | |
4817 | struct regcache *regcache, | |
ebba8386 | 4818 | void *valbuf) |
cb1d2653 AC |
4819 | { |
4820 | mips_o32_xfer_return_value (type, regcache, valbuf, NULL); | |
4821 | } | |
4822 | ||
4823 | static void | |
4824 | mips_o32_store_return_value (struct type *type, char *valbuf) | |
4825 | { | |
4826 | mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf); | |
4827 | } | |
4828 | ||
4829 | /* N32/N44 ABI stuff. */ | |
4830 | ||
46cac009 | 4831 | static void |
88658117 AC |
4832 | mips_n32n64_xfer_return_value (struct type *type, |
4833 | struct regcache *regcache, | |
4834 | bfd_byte *in, const bfd_byte *out) | |
c906108c | 4835 | { |
88658117 AC |
4836 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
4837 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4838 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
7a292a7a | 4839 | { |
88658117 AC |
4840 | /* A floating-point value belongs in the least significant part |
4841 | of FP0. */ | |
4842 | if (mips_debug) | |
4843 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
4844 | mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type), | |
4845 | TARGET_BYTE_ORDER, in, out, 0); | |
4846 | } | |
4847 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4848 | && TYPE_NFIELDS (type) <= 2 | |
4849 | && TYPE_NFIELDS (type) >= 1 | |
4850 | && ((TYPE_NFIELDS (type) == 1 | |
4851 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4852 | == TYPE_CODE_FLT)) | |
4853 | || (TYPE_NFIELDS (type) == 2 | |
4854 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4855 | == TYPE_CODE_FLT) | |
4856 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
4857 | == TYPE_CODE_FLT))) | |
4858 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4859 | { | |
4860 | /* A struct that contains one or two floats. Each value is part | |
4861 | in the least significant part of their floating point | |
4862 | register.. */ | |
d9d9c31f | 4863 | bfd_byte reg[MAX_REGISTER_SIZE]; |
88658117 AC |
4864 | int regnum; |
4865 | int field; | |
4866 | for (field = 0, regnum = FP0_REGNUM; | |
4867 | field < TYPE_NFIELDS (type); | |
4868 | field++, regnum += 2) | |
4869 | { | |
4870 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
4871 | / TARGET_CHAR_BIT); | |
4872 | if (mips_debug) | |
4873 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset); | |
4874 | mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
4875 | TARGET_BYTE_ORDER, in, out, offset); | |
4876 | } | |
7a292a7a | 4877 | } |
88658117 AC |
4878 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4879 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
4880 | { | |
4881 | /* A structure or union. Extract the left justified value, | |
4882 | regardless of the byte order. I.e. DO NOT USE | |
4883 | mips_xfer_lower. */ | |
4884 | int offset; | |
4885 | int regnum; | |
4886 | for (offset = 0, regnum = V0_REGNUM; | |
4887 | offset < TYPE_LENGTH (type); | |
4888 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
4889 | { | |
4890 | int xfer = REGISTER_RAW_SIZE (regnum); | |
4891 | if (offset + xfer > TYPE_LENGTH (type)) | |
4892 | xfer = TYPE_LENGTH (type) - offset; | |
4893 | if (mips_debug) | |
4894 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
4895 | offset, xfer, regnum); | |
4896 | mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN, | |
4897 | in, out, offset); | |
4898 | } | |
4899 | } | |
4900 | else | |
4901 | { | |
4902 | /* A scalar extract each part but least-significant-byte | |
4903 | justified. */ | |
4904 | int offset; | |
4905 | int regnum; | |
4906 | for (offset = 0, regnum = V0_REGNUM; | |
4907 | offset < TYPE_LENGTH (type); | |
4908 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
4909 | { | |
4910 | int xfer = REGISTER_RAW_SIZE (regnum); | |
4911 | int pos = 0; | |
4912 | if (offset + xfer > TYPE_LENGTH (type)) | |
4913 | xfer = TYPE_LENGTH (type) - offset; | |
4914 | if (mips_debug) | |
4915 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
4916 | offset, xfer, regnum); | |
4917 | mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER, | |
4918 | in, out, offset); | |
4919 | } | |
4920 | } | |
4921 | } | |
4922 | ||
4923 | static void | |
4924 | mips_n32n64_extract_return_value (struct type *type, | |
4925 | struct regcache *regcache, | |
ebba8386 | 4926 | void *valbuf) |
88658117 AC |
4927 | { |
4928 | mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL); | |
4929 | } | |
4930 | ||
4931 | static void | |
4932 | mips_n32n64_store_return_value (struct type *type, char *valbuf) | |
4933 | { | |
4934 | mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf); | |
c906108c SS |
4935 | } |
4936 | ||
2f1488ce | 4937 | static CORE_ADDR |
6672060b | 4938 | mips_extract_struct_value_address (struct regcache *regcache) |
2f1488ce MS |
4939 | { |
4940 | /* FIXME: This will only work at random. The caller passes the | |
4941 | struct_return address in V0, but it is not preserved. It may | |
4942 | still be there, or this may be a random value. */ | |
77d8f2b4 MS |
4943 | LONGEST val; |
4944 | ||
4945 | regcache_cooked_read_signed (regcache, V0_REGNUM, &val); | |
6672060b | 4946 | return val; |
2f1488ce MS |
4947 | } |
4948 | ||
c906108c SS |
4949 | /* Exported procedure: Is PC in the signal trampoline code */ |
4950 | ||
102182a9 MS |
4951 | static int |
4952 | mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore) | |
c906108c SS |
4953 | { |
4954 | if (sigtramp_address == 0) | |
4955 | fixup_sigtramp (); | |
4956 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
4957 | } | |
4958 | ||
a5ea2558 AC |
4959 | /* Root of all "set mips "/"show mips " commands. This will eventually be |
4960 | used for all MIPS-specific commands. */ | |
4961 | ||
a5ea2558 | 4962 | static void |
acdb74a0 | 4963 | show_mips_command (char *args, int from_tty) |
a5ea2558 AC |
4964 | { |
4965 | help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout); | |
4966 | } | |
4967 | ||
a5ea2558 | 4968 | static void |
acdb74a0 | 4969 | set_mips_command (char *args, int from_tty) |
a5ea2558 AC |
4970 | { |
4971 | printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n"); | |
4972 | help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout); | |
4973 | } | |
4974 | ||
c906108c SS |
4975 | /* Commands to show/set the MIPS FPU type. */ |
4976 | ||
c906108c | 4977 | static void |
acdb74a0 | 4978 | show_mipsfpu_command (char *args, int from_tty) |
c906108c | 4979 | { |
c906108c SS |
4980 | char *fpu; |
4981 | switch (MIPS_FPU_TYPE) | |
4982 | { | |
4983 | case MIPS_FPU_SINGLE: | |
4984 | fpu = "single-precision"; | |
4985 | break; | |
4986 | case MIPS_FPU_DOUBLE: | |
4987 | fpu = "double-precision"; | |
4988 | break; | |
4989 | case MIPS_FPU_NONE: | |
4990 | fpu = "absent (none)"; | |
4991 | break; | |
93d56215 AC |
4992 | default: |
4993 | internal_error (__FILE__, __LINE__, "bad switch"); | |
c906108c SS |
4994 | } |
4995 | if (mips_fpu_type_auto) | |
4996 | printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
4997 | fpu); | |
4998 | else | |
4999 | printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", | |
5000 | fpu); | |
5001 | } | |
5002 | ||
5003 | ||
c906108c | 5004 | static void |
acdb74a0 | 5005 | set_mipsfpu_command (char *args, int from_tty) |
c906108c SS |
5006 | { |
5007 | printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
5008 | show_mipsfpu_command (args, from_tty); | |
5009 | } | |
5010 | ||
c906108c | 5011 | static void |
acdb74a0 | 5012 | set_mipsfpu_single_command (char *args, int from_tty) |
c906108c SS |
5013 | { |
5014 | mips_fpu_type = MIPS_FPU_SINGLE; | |
5015 | mips_fpu_type_auto = 0; | |
9e364162 | 5016 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE; |
c906108c SS |
5017 | } |
5018 | ||
c906108c | 5019 | static void |
acdb74a0 | 5020 | set_mipsfpu_double_command (char *args, int from_tty) |
c906108c SS |
5021 | { |
5022 | mips_fpu_type = MIPS_FPU_DOUBLE; | |
5023 | mips_fpu_type_auto = 0; | |
9e364162 | 5024 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE; |
c906108c SS |
5025 | } |
5026 | ||
c906108c | 5027 | static void |
acdb74a0 | 5028 | set_mipsfpu_none_command (char *args, int from_tty) |
c906108c SS |
5029 | { |
5030 | mips_fpu_type = MIPS_FPU_NONE; | |
5031 | mips_fpu_type_auto = 0; | |
9e364162 | 5032 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE; |
c906108c SS |
5033 | } |
5034 | ||
c906108c | 5035 | static void |
acdb74a0 | 5036 | set_mipsfpu_auto_command (char *args, int from_tty) |
c906108c SS |
5037 | { |
5038 | mips_fpu_type_auto = 1; | |
5039 | } | |
5040 | ||
5041 | /* Command to set the processor type. */ | |
5042 | ||
5043 | void | |
acdb74a0 | 5044 | mips_set_processor_type_command (char *args, int from_tty) |
c906108c SS |
5045 | { |
5046 | int i; | |
5047 | ||
5048 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
5049 | { | |
5050 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
5051 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
5052 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
5053 | ||
5054 | /* Restore the value. */ | |
4fcf66da | 5055 | tmp_mips_processor_type = xstrdup (mips_processor_type); |
c906108c SS |
5056 | |
5057 | return; | |
5058 | } | |
c5aa993b | 5059 | |
c906108c SS |
5060 | if (!mips_set_processor_type (tmp_mips_processor_type)) |
5061 | { | |
5062 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
5063 | /* Restore its value. */ | |
4fcf66da | 5064 | tmp_mips_processor_type = xstrdup (mips_processor_type); |
c906108c SS |
5065 | } |
5066 | } | |
5067 | ||
5068 | static void | |
acdb74a0 | 5069 | mips_show_processor_type_command (char *args, int from_tty) |
c906108c SS |
5070 | { |
5071 | } | |
5072 | ||
5073 | /* Modify the actual processor type. */ | |
5074 | ||
5a89d8aa | 5075 | static int |
acdb74a0 | 5076 | mips_set_processor_type (char *str) |
c906108c | 5077 | { |
1012bd0e | 5078 | int i; |
c906108c SS |
5079 | |
5080 | if (str == NULL) | |
5081 | return 0; | |
5082 | ||
5083 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
5084 | { | |
5085 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
5086 | { | |
5087 | mips_processor_type = str; | |
cce74817 | 5088 | mips_processor_reg_names = mips_processor_type_table[i].regnames; |
c906108c | 5089 | return 1; |
c906108c SS |
5090 | /* FIXME tweak fpu flag too */ |
5091 | } | |
5092 | } | |
5093 | ||
5094 | return 0; | |
5095 | } | |
5096 | ||
5097 | /* Attempt to identify the particular processor model by reading the | |
5098 | processor id. */ | |
5099 | ||
5100 | char * | |
acdb74a0 | 5101 | mips_read_processor_type (void) |
c906108c SS |
5102 | { |
5103 | CORE_ADDR prid; | |
5104 | ||
5105 | prid = read_register (PRID_REGNUM); | |
5106 | ||
5107 | if ((prid & ~0xf) == 0x700) | |
c5aa993b | 5108 | return savestring ("r3041", strlen ("r3041")); |
c906108c SS |
5109 | |
5110 | return NULL; | |
5111 | } | |
5112 | ||
5113 | /* Just like reinit_frame_cache, but with the right arguments to be | |
5114 | callable as an sfunc. */ | |
5115 | ||
5116 | static void | |
acdb74a0 AC |
5117 | reinit_frame_cache_sfunc (char *args, int from_tty, |
5118 | struct cmd_list_element *c) | |
c906108c SS |
5119 | { |
5120 | reinit_frame_cache (); | |
5121 | } | |
5122 | ||
5123 | int | |
acdb74a0 | 5124 | gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
5125 | { |
5126 | mips_extra_func_info_t proc_desc; | |
5127 | ||
5128 | /* Search for the function containing this address. Set the low bit | |
5129 | of the address when searching, in case we were given an even address | |
5130 | that is the start of a 16-bit function. If we didn't do this, | |
5131 | the search would fail because the symbol table says the function | |
5132 | starts at an odd address, i.e. 1 byte past the given address. */ | |
5133 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
95404a3e | 5134 | proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL); |
c906108c SS |
5135 | |
5136 | /* Make an attempt to determine if this is a 16-bit function. If | |
5137 | the procedure descriptor exists and the address therein is odd, | |
5138 | it's definitely a 16-bit function. Otherwise, we have to just | |
5139 | guess that if the address passed in is odd, it's 16-bits. */ | |
5140 | if (proc_desc) | |
361d1df0 | 5141 | info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? |
95404a3e | 5142 | bfd_mach_mips16 : 0; |
c906108c | 5143 | else |
361d1df0 | 5144 | info->mach = pc_is_mips16 (memaddr) ? |
95404a3e | 5145 | bfd_mach_mips16 : 0; |
c906108c SS |
5146 | |
5147 | /* Round down the instruction address to the appropriate boundary. */ | |
65c11066 | 5148 | memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3); |
c5aa993b | 5149 | |
c906108c | 5150 | /* Call the appropriate disassembler based on the target endian-ness. */ |
d7449b42 | 5151 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5152 | return print_insn_big_mips (memaddr, info); |
5153 | else | |
5154 | return print_insn_little_mips (memaddr, info); | |
5155 | } | |
5156 | ||
c906108c SS |
5157 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
5158 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
5159 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
5160 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
5161 | (if necessary) to point to the actual memory location where the | |
5162 | breakpoint should be inserted. */ | |
5163 | ||
f7ab6ec6 | 5164 | static const unsigned char * |
acdb74a0 | 5165 | mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) |
c906108c | 5166 | { |
d7449b42 | 5167 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
5168 | { |
5169 | if (pc_is_mips16 (*pcptr)) | |
5170 | { | |
aaab4dba | 5171 | static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5}; |
95404a3e | 5172 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5173 | *lenptr = sizeof (mips16_big_breakpoint); |
c906108c SS |
5174 | return mips16_big_breakpoint; |
5175 | } | |
5176 | else | |
5177 | { | |
aaab4dba AC |
5178 | /* The IDT board uses an unusual breakpoint value, and |
5179 | sometimes gets confused when it sees the usual MIPS | |
5180 | breakpoint instruction. */ | |
5181 | static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd}; | |
5182 | static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd}; | |
5183 | static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd}; | |
c906108c | 5184 | |
c5aa993b | 5185 | *lenptr = sizeof (big_breakpoint); |
c906108c SS |
5186 | |
5187 | if (strcmp (target_shortname, "mips") == 0) | |
5188 | return idt_big_breakpoint; | |
5189 | else if (strcmp (target_shortname, "ddb") == 0 | |
5190 | || strcmp (target_shortname, "pmon") == 0 | |
5191 | || strcmp (target_shortname, "lsi") == 0) | |
5192 | return pmon_big_breakpoint; | |
5193 | else | |
5194 | return big_breakpoint; | |
5195 | } | |
5196 | } | |
5197 | else | |
5198 | { | |
5199 | if (pc_is_mips16 (*pcptr)) | |
5200 | { | |
aaab4dba | 5201 | static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8}; |
95404a3e | 5202 | *pcptr = unmake_mips16_addr (*pcptr); |
c5aa993b | 5203 | *lenptr = sizeof (mips16_little_breakpoint); |
c906108c SS |
5204 | return mips16_little_breakpoint; |
5205 | } | |
5206 | else | |
5207 | { | |
aaab4dba AC |
5208 | static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0}; |
5209 | static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0}; | |
5210 | static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0}; | |
c906108c | 5211 | |
c5aa993b | 5212 | *lenptr = sizeof (little_breakpoint); |
c906108c SS |
5213 | |
5214 | if (strcmp (target_shortname, "mips") == 0) | |
5215 | return idt_little_breakpoint; | |
5216 | else if (strcmp (target_shortname, "ddb") == 0 | |
5217 | || strcmp (target_shortname, "pmon") == 0 | |
5218 | || strcmp (target_shortname, "lsi") == 0) | |
5219 | return pmon_little_breakpoint; | |
5220 | else | |
5221 | return little_breakpoint; | |
5222 | } | |
5223 | } | |
5224 | } | |
5225 | ||
5226 | /* If PC is in a mips16 call or return stub, return the address of the target | |
5227 | PC, which is either the callee or the caller. There are several | |
5228 | cases which must be handled: | |
5229 | ||
5230 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
c5aa993b | 5231 | target PC is in $31 ($ra). |
c906108c | 5232 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub |
c5aa993b | 5233 | and the target PC is in $2. |
c906108c | 5234 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. |
c5aa993b JM |
5235 | before the jal instruction, this is effectively a call stub |
5236 | and the the target PC is in $2. Otherwise this is effectively | |
5237 | a return stub and the target PC is in $18. | |
c906108c SS |
5238 | |
5239 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
5240 | gory details. | |
5241 | ||
5242 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
c5aa993b | 5243 | */ |
c906108c | 5244 | |
757a7cc6 | 5245 | static CORE_ADDR |
acdb74a0 | 5246 | mips_skip_stub (CORE_ADDR pc) |
c906108c SS |
5247 | { |
5248 | char *name; | |
5249 | CORE_ADDR start_addr; | |
5250 | ||
5251 | /* Find the starting address and name of the function containing the PC. */ | |
5252 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
5253 | return 0; | |
5254 | ||
5255 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
5256 | target PC is in $31 ($ra). */ | |
5257 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5258 | || strcmp (name, "__mips16_ret_df") == 0) | |
6c997a34 | 5259 | return read_signed_register (RA_REGNUM); |
c906108c SS |
5260 | |
5261 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5262 | { | |
5263 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
5264 | and the target PC is in $2. */ | |
5265 | if (name[19] >= '0' && name[19] <= '9') | |
6c997a34 | 5266 | return read_signed_register (2); |
c906108c SS |
5267 | |
5268 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b JM |
5269 | before the jal instruction, this is effectively a call stub |
5270 | and the the target PC is in $2. Otherwise this is effectively | |
5271 | a return stub and the target PC is in $18. */ | |
c906108c SS |
5272 | else if (name[19] == 's' || name[19] == 'd') |
5273 | { | |
5274 | if (pc == start_addr) | |
5275 | { | |
5276 | /* Check if the target of the stub is a compiler-generated | |
c5aa993b JM |
5277 | stub. Such a stub for a function bar might have a name |
5278 | like __fn_stub_bar, and might look like this: | |
5279 | mfc1 $4,$f13 | |
5280 | mfc1 $5,$f12 | |
5281 | mfc1 $6,$f15 | |
5282 | mfc1 $7,$f14 | |
5283 | la $1,bar (becomes a lui/addiu pair) | |
5284 | jr $1 | |
5285 | So scan down to the lui/addi and extract the target | |
5286 | address from those two instructions. */ | |
c906108c | 5287 | |
6c997a34 | 5288 | CORE_ADDR target_pc = read_signed_register (2); |
c906108c SS |
5289 | t_inst inst; |
5290 | int i; | |
5291 | ||
5292 | /* See if the name of the target function is __fn_stub_*. */ | |
5293 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
5294 | return target_pc; | |
5295 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
5296 | && strcmp (name, "etext") != 0 | |
5297 | && strcmp (name, "_etext") != 0) | |
5298 | return target_pc; | |
5299 | ||
5300 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
c5aa993b JM |
5301 | The limit on the search is arbitrarily set to 20 |
5302 | instructions. FIXME. */ | |
c906108c SS |
5303 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) |
5304 | { | |
c5aa993b JM |
5305 | inst = mips_fetch_instruction (target_pc); |
5306 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
5307 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
5308 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
5309 | return pc | (inst & 0xffff); /* low word */ | |
c906108c SS |
5310 | } |
5311 | ||
5312 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
5313 | return target_pc; | |
5314 | } | |
5315 | else | |
5316 | /* This is the 'return' part of a call stub. The return | |
5317 | address is in $r18. */ | |
6c997a34 | 5318 | return read_signed_register (18); |
c906108c SS |
5319 | } |
5320 | } | |
c5aa993b | 5321 | return 0; /* not a stub */ |
c906108c SS |
5322 | } |
5323 | ||
5324 | ||
5325 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
5326 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
5327 | ||
757a7cc6 | 5328 | static int |
acdb74a0 | 5329 | mips_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5330 | { |
5331 | CORE_ADDR start_addr; | |
5332 | ||
5333 | /* Find the starting address of the function containing the PC. If the | |
5334 | caller didn't give us a name, look it up at the same time. */ | |
5335 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
5336 | return 0; | |
5337 | ||
5338 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5339 | { | |
5340 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
5341 | if (name[19] >= '0' && name[19] <= '9') | |
5342 | return 1; | |
5343 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
c5aa993b | 5344 | before the jal instruction, this is effectively a call stub. */ |
c906108c SS |
5345 | else if (name[19] == 's' || name[19] == 'd') |
5346 | return pc == start_addr; | |
5347 | } | |
5348 | ||
c5aa993b | 5349 | return 0; /* not a stub */ |
c906108c SS |
5350 | } |
5351 | ||
5352 | ||
5353 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
5354 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
5355 | ||
e41b17f0 | 5356 | static int |
acdb74a0 | 5357 | mips_in_return_stub (CORE_ADDR pc, char *name) |
c906108c SS |
5358 | { |
5359 | CORE_ADDR start_addr; | |
5360 | ||
5361 | /* Find the starting address of the function containing the PC. */ | |
5362 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
5363 | return 0; | |
5364 | ||
5365 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
5366 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5367 | || strcmp (name, "__mips16_ret_df") == 0) | |
5368 | return 1; | |
5369 | ||
5370 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
c5aa993b | 5371 | i.e. after the jal instruction, this is effectively a return stub. */ |
c906108c SS |
5372 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 |
5373 | && (name[19] == 's' || name[19] == 'd') | |
5374 | && pc != start_addr) | |
5375 | return 1; | |
5376 | ||
c5aa993b | 5377 | return 0; /* not a stub */ |
c906108c SS |
5378 | } |
5379 | ||
5380 | ||
5381 | /* Return non-zero if the PC is in a library helper function that should | |
5382 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
5383 | ||
5384 | int | |
acdb74a0 | 5385 | mips_ignore_helper (CORE_ADDR pc) |
c906108c SS |
5386 | { |
5387 | char *name; | |
5388 | ||
5389 | /* Find the starting address and name of the function containing the PC. */ | |
5390 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
5391 | return 0; | |
5392 | ||
5393 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
5394 | that we want to ignore. */ | |
5395 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
5396 | || strcmp (name, "__mips16_ret_df") == 0); | |
5397 | } | |
5398 | ||
5399 | ||
5400 | /* Return a location where we can set a breakpoint that will be hit | |
5401 | when an inferior function call returns. This is normally the | |
5402 | program's entry point. Executables that don't have an entry | |
5403 | point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS | |
5404 | whose address is the location where the breakpoint should be placed. */ | |
5405 | ||
f7ab6ec6 | 5406 | static CORE_ADDR |
acdb74a0 | 5407 | mips_call_dummy_address (void) |
c906108c SS |
5408 | { |
5409 | struct minimal_symbol *sym; | |
5410 | ||
5411 | sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL); | |
5412 | if (sym) | |
5413 | return SYMBOL_VALUE_ADDRESS (sym); | |
5414 | else | |
5415 | return entry_point_address (); | |
5416 | } | |
5417 | ||
5418 | ||
47a8d4ba AC |
5419 | /* When debugging a 64 MIPS target running a 32 bit ABI, the size of |
5420 | the register stored on the stack (32) is different to its real raw | |
5421 | size (64). The below ensures that registers are fetched from the | |
5422 | stack using their ABI size and then stored into the RAW_BUFFER | |
5423 | using their raw size. | |
5424 | ||
5425 | The alternative to adding this function would be to add an ABI | |
5426 | macro - REGISTER_STACK_SIZE(). */ | |
5427 | ||
5428 | static void | |
acdb74a0 | 5429 | mips_get_saved_register (char *raw_buffer, |
795e1e11 | 5430 | int *optimizedp, |
acdb74a0 AC |
5431 | CORE_ADDR *addrp, |
5432 | struct frame_info *frame, | |
5433 | int regnum, | |
795e1e11 | 5434 | enum lval_type *lvalp) |
47a8d4ba | 5435 | { |
795e1e11 AC |
5436 | CORE_ADDR addrx; |
5437 | enum lval_type lvalx; | |
5438 | int optimizedx; | |
47a8d4ba AC |
5439 | |
5440 | if (!target_has_registers) | |
5441 | error ("No registers."); | |
5442 | ||
795e1e11 AC |
5443 | /* Make certain that all needed parameters are present. */ |
5444 | if (addrp == NULL) | |
5445 | addrp = &addrx; | |
5446 | if (lvalp == NULL) | |
5447 | lvalp = &lvalx; | |
5448 | if (optimizedp == NULL) | |
5449 | optimizedp = &optimizedx; | |
248de703 AC |
5450 | deprecated_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame, |
5451 | regnum, lvalp); | |
795e1e11 AC |
5452 | /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should |
5453 | have a pseudo register range that correspons to the ABI's, rather | |
5454 | than the ISA's, view of registers. These registers would then | |
5455 | implicitly describe their size and hence could be used without | |
5456 | the below munging. */ | |
5457 | if ((*lvalp) == lval_memory) | |
47a8d4ba | 5458 | { |
47a8d4ba AC |
5459 | if (raw_buffer != NULL) |
5460 | { | |
47a8d4ba | 5461 | if (regnum < 32) |
795e1e11 AC |
5462 | { |
5463 | /* Only MIPS_SAVED_REGSIZE bytes of GP registers are | |
5464 | saved. */ | |
5465 | LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE); | |
fbd9dcd3 | 5466 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val); |
795e1e11 | 5467 | } |
47a8d4ba AC |
5468 | } |
5469 | } | |
47a8d4ba | 5470 | } |
2acceee2 | 5471 | |
f7b9e9fc AC |
5472 | /* Immediately after a function call, return the saved pc. |
5473 | Can't always go through the frames for this because on some machines | |
5474 | the new frame is not set up until the new function executes | |
5475 | some instructions. */ | |
5476 | ||
5477 | static CORE_ADDR | |
5478 | mips_saved_pc_after_call (struct frame_info *frame) | |
5479 | { | |
6c997a34 | 5480 | return read_signed_register (RA_REGNUM); |
f7b9e9fc AC |
5481 | } |
5482 | ||
5483 | ||
88c72b7d AC |
5484 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
5485 | REGNUM */ | |
5486 | ||
5487 | static int | |
5488 | mips_stab_reg_to_regnum (int num) | |
5489 | { | |
2f38ef89 | 5490 | if (num >= 0 && num < 32) |
88c72b7d | 5491 | return num; |
2f38ef89 | 5492 | else if (num >= 38 && num < 70) |
88c72b7d | 5493 | return num + FP0_REGNUM - 38; |
040b99fd KB |
5494 | else if (num == 70) |
5495 | return HI_REGNUM; | |
5496 | else if (num == 71) | |
5497 | return LO_REGNUM; | |
2f38ef89 KB |
5498 | else |
5499 | { | |
5500 | /* This will hopefully (eventually) provoke a warning. Should | |
5501 | we be calling complaint() here? */ | |
5502 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5503 | } | |
88c72b7d AC |
5504 | } |
5505 | ||
2f38ef89 KB |
5506 | |
5507 | /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */ | |
88c72b7d AC |
5508 | |
5509 | static int | |
2f38ef89 | 5510 | mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num) |
88c72b7d | 5511 | { |
2f38ef89 | 5512 | if (num >= 0 && num < 32) |
88c72b7d | 5513 | return num; |
2f38ef89 | 5514 | else if (num >= 32 && num < 64) |
88c72b7d | 5515 | return num + FP0_REGNUM - 32; |
040b99fd KB |
5516 | else if (num == 64) |
5517 | return HI_REGNUM; | |
5518 | else if (num == 65) | |
5519 | return LO_REGNUM; | |
2f38ef89 KB |
5520 | else |
5521 | { | |
5522 | /* This will hopefully (eventually) provoke a warning. Should | |
5523 | we be calling complaint() here? */ | |
5524 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5525 | } | |
88c72b7d AC |
5526 | } |
5527 | ||
2f38ef89 | 5528 | |
fc0c74b1 AC |
5529 | /* Convert an integer into an address. By first converting the value |
5530 | into a pointer and then extracting it signed, the address is | |
5531 | guarenteed to be correctly sign extended. */ | |
5532 | ||
5533 | static CORE_ADDR | |
5534 | mips_integer_to_address (struct type *type, void *buf) | |
5535 | { | |
5536 | char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5537 | LONGEST val = unpack_long (type, buf); | |
5538 | store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val); | |
5539 | return extract_signed_integer (tmp, | |
5540 | TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5541 | } | |
5542 | ||
caaa3122 DJ |
5543 | static void |
5544 | mips_find_abi_section (bfd *abfd, asection *sect, void *obj) | |
5545 | { | |
5546 | enum mips_abi *abip = (enum mips_abi *) obj; | |
5547 | const char *name = bfd_get_section_name (abfd, sect); | |
5548 | ||
5549 | if (*abip != MIPS_ABI_UNKNOWN) | |
5550 | return; | |
5551 | ||
5552 | if (strncmp (name, ".mdebug.", 8) != 0) | |
5553 | return; | |
5554 | ||
5555 | if (strcmp (name, ".mdebug.abi32") == 0) | |
5556 | *abip = MIPS_ABI_O32; | |
5557 | else if (strcmp (name, ".mdebug.abiN32") == 0) | |
5558 | *abip = MIPS_ABI_N32; | |
62a49b2c | 5559 | else if (strcmp (name, ".mdebug.abi64") == 0) |
e3bddbfa | 5560 | *abip = MIPS_ABI_N64; |
caaa3122 DJ |
5561 | else if (strcmp (name, ".mdebug.abiO64") == 0) |
5562 | *abip = MIPS_ABI_O64; | |
5563 | else if (strcmp (name, ".mdebug.eabi32") == 0) | |
5564 | *abip = MIPS_ABI_EABI32; | |
5565 | else if (strcmp (name, ".mdebug.eabi64") == 0) | |
5566 | *abip = MIPS_ABI_EABI64; | |
5567 | else | |
5568 | warning ("unsupported ABI %s.", name + 8); | |
5569 | } | |
5570 | ||
2e4ebe70 DJ |
5571 | static enum mips_abi |
5572 | global_mips_abi (void) | |
5573 | { | |
5574 | int i; | |
5575 | ||
5576 | for (i = 0; mips_abi_strings[i] != NULL; i++) | |
5577 | if (mips_abi_strings[i] == mips_abi_string) | |
5578 | return (enum mips_abi) i; | |
5579 | ||
5580 | internal_error (__FILE__, __LINE__, | |
5581 | "unknown ABI string"); | |
5582 | } | |
5583 | ||
c2d11a7d | 5584 | static struct gdbarch * |
acdb74a0 AC |
5585 | mips_gdbarch_init (struct gdbarch_info info, |
5586 | struct gdbarch_list *arches) | |
c2d11a7d | 5587 | { |
c2d11a7d JM |
5588 | struct gdbarch *gdbarch; |
5589 | struct gdbarch_tdep *tdep; | |
5590 | int elf_flags; | |
2e4ebe70 | 5591 | enum mips_abi mips_abi, found_abi, wanted_abi; |
c2d11a7d | 5592 | |
1d06468c EZ |
5593 | /* Reset the disassembly info, in case it was set to something |
5594 | non-default. */ | |
810ecf9f AC |
5595 | deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour; |
5596 | deprecated_tm_print_insn_info.arch = bfd_arch_unknown; | |
5597 | deprecated_tm_print_insn_info.mach = 0; | |
1d06468c | 5598 | |
70f80edf JT |
5599 | elf_flags = 0; |
5600 | ||
5601 | if (info.abfd) | |
5602 | { | |
5603 | /* First of all, extract the elf_flags, if available. */ | |
5604 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
5605 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
70f80edf | 5606 | } |
c2d11a7d | 5607 | |
102182a9 | 5608 | /* Check ELF_FLAGS to see if it specifies the ABI being used. */ |
0dadbba0 AC |
5609 | switch ((elf_flags & EF_MIPS_ABI)) |
5610 | { | |
5611 | case E_MIPS_ABI_O32: | |
5612 | mips_abi = MIPS_ABI_O32; | |
5613 | break; | |
5614 | case E_MIPS_ABI_O64: | |
5615 | mips_abi = MIPS_ABI_O64; | |
5616 | break; | |
5617 | case E_MIPS_ABI_EABI32: | |
5618 | mips_abi = MIPS_ABI_EABI32; | |
5619 | break; | |
5620 | case E_MIPS_ABI_EABI64: | |
4a7f7ba8 | 5621 | mips_abi = MIPS_ABI_EABI64; |
0dadbba0 AC |
5622 | break; |
5623 | default: | |
acdb74a0 AC |
5624 | if ((elf_flags & EF_MIPS_ABI2)) |
5625 | mips_abi = MIPS_ABI_N32; | |
5626 | else | |
5627 | mips_abi = MIPS_ABI_UNKNOWN; | |
0dadbba0 AC |
5628 | break; |
5629 | } | |
acdb74a0 | 5630 | |
caaa3122 DJ |
5631 | /* GCC creates a pseudo-section whose name describes the ABI. */ |
5632 | if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL) | |
5633 | bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi); | |
5634 | ||
2e4ebe70 DJ |
5635 | /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN. |
5636 | Use the ABI from the last architecture if there is one. */ | |
5637 | if (info.abfd == NULL && arches != NULL) | |
5638 | mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi; | |
5639 | ||
32a6503c | 5640 | /* Try the architecture for any hint of the correct ABI. */ |
bf64bfd6 AC |
5641 | if (mips_abi == MIPS_ABI_UNKNOWN |
5642 | && info.bfd_arch_info != NULL | |
5643 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5644 | { | |
5645 | switch (info.bfd_arch_info->mach) | |
5646 | { | |
5647 | case bfd_mach_mips3900: | |
5648 | mips_abi = MIPS_ABI_EABI32; | |
5649 | break; | |
5650 | case bfd_mach_mips4100: | |
5651 | case bfd_mach_mips5000: | |
5652 | mips_abi = MIPS_ABI_EABI64; | |
5653 | break; | |
1d06468c EZ |
5654 | case bfd_mach_mips8000: |
5655 | case bfd_mach_mips10000: | |
32a6503c KB |
5656 | /* On Irix, ELF64 executables use the N64 ABI. The |
5657 | pseudo-sections which describe the ABI aren't present | |
5658 | on IRIX. (Even for executables created by gcc.) */ | |
28d169de KB |
5659 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour |
5660 | && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
5661 | mips_abi = MIPS_ABI_N64; | |
5662 | else | |
5663 | mips_abi = MIPS_ABI_N32; | |
1d06468c | 5664 | break; |
bf64bfd6 AC |
5665 | } |
5666 | } | |
2e4ebe70 | 5667 | |
2e4ebe70 DJ |
5668 | if (mips_abi == MIPS_ABI_UNKNOWN) |
5669 | mips_abi = MIPS_ABI_O32; | |
5670 | ||
5671 | /* Now that we have found what the ABI for this binary would be, | |
5672 | check whether the user is overriding it. */ | |
5673 | found_abi = mips_abi; | |
5674 | wanted_abi = global_mips_abi (); | |
5675 | if (wanted_abi != MIPS_ABI_UNKNOWN) | |
5676 | mips_abi = wanted_abi; | |
5677 | ||
810ecf9f | 5678 | /* We have to set deprecated_tm_print_insn_info before looking for a |
2252e863 AO |
5679 | pre-existing architecture, otherwise we may return before we get |
5680 | a chance to set it up. */ | |
5681 | if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64) | |
5682 | { | |
5683 | /* Set up the disassembler info, so that we get the right | |
5684 | register names from libopcodes. */ | |
5685 | if (mips_abi == MIPS_ABI_N32) | |
810ecf9f | 5686 | deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32"; |
2252e863 | 5687 | else |
810ecf9f AC |
5688 | deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64"; |
5689 | deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour; | |
5690 | deprecated_tm_print_insn_info.arch = bfd_arch_mips; | |
2252e863 AO |
5691 | if (info.bfd_arch_info != NULL |
5692 | && info.bfd_arch_info->arch == bfd_arch_mips | |
5693 | && info.bfd_arch_info->mach) | |
810ecf9f | 5694 | deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach; |
2252e863 | 5695 | else |
810ecf9f | 5696 | deprecated_tm_print_insn_info.mach = bfd_mach_mips8000; |
2252e863 AO |
5697 | } |
5698 | else | |
5699 | /* This string is not recognized explicitly by the disassembler, | |
5700 | but it tells the disassembler to not try to guess the ABI from | |
5701 | the bfd elf headers, such that, if the user overrides the ABI | |
5702 | of a program linked as NewABI, the disassembly will follow the | |
5703 | register naming conventions specified by the user. */ | |
810ecf9f | 5704 | deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32"; |
2252e863 | 5705 | |
4b9b3959 AC |
5706 | if (gdbarch_debug) |
5707 | { | |
5708 | fprintf_unfiltered (gdb_stdlog, | |
9ace0497 | 5709 | "mips_gdbarch_init: elf_flags = 0x%08x\n", |
4b9b3959 | 5710 | elf_flags); |
4b9b3959 AC |
5711 | fprintf_unfiltered (gdb_stdlog, |
5712 | "mips_gdbarch_init: mips_abi = %d\n", | |
5713 | mips_abi); | |
2e4ebe70 DJ |
5714 | fprintf_unfiltered (gdb_stdlog, |
5715 | "mips_gdbarch_init: found_mips_abi = %d\n", | |
5716 | found_abi); | |
4b9b3959 | 5717 | } |
0dadbba0 | 5718 | |
c2d11a7d JM |
5719 | /* try to find a pre-existing architecture */ |
5720 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
5721 | arches != NULL; | |
5722 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
5723 | { | |
5724 | /* MIPS needs to be pedantic about which ABI the object is | |
102182a9 | 5725 | using. */ |
9103eae0 | 5726 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) |
c2d11a7d | 5727 | continue; |
9103eae0 | 5728 | if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi) |
0dadbba0 | 5729 | continue; |
4be87837 | 5730 | return arches->gdbarch; |
c2d11a7d JM |
5731 | } |
5732 | ||
102182a9 | 5733 | /* Need a new architecture. Fill in a target specific vector. */ |
c2d11a7d JM |
5734 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); |
5735 | gdbarch = gdbarch_alloc (&info, tdep); | |
5736 | tdep->elf_flags = elf_flags; | |
5737 | ||
102182a9 | 5738 | /* Initially set everything according to the default ABI/ISA. */ |
c2d11a7d JM |
5739 | set_gdbarch_short_bit (gdbarch, 16); |
5740 | set_gdbarch_int_bit (gdbarch, 32); | |
5741 | set_gdbarch_float_bit (gdbarch, 32); | |
5742 | set_gdbarch_double_bit (gdbarch, 64); | |
5743 | set_gdbarch_long_double_bit (gdbarch, 64); | |
9c04cab7 | 5744 | set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size); |
2e4ebe70 | 5745 | tdep->found_abi = found_abi; |
0dadbba0 | 5746 | tdep->mips_abi = mips_abi; |
1d06468c | 5747 | |
f7ab6ec6 MS |
5748 | set_gdbarch_elf_make_msymbol_special (gdbarch, |
5749 | mips_elf_make_msymbol_special); | |
5750 | ||
4be87837 | 5751 | if (info.osabi == GDB_OSABI_IRIX) |
fe29b929 KB |
5752 | set_gdbarch_num_regs (gdbarch, 71); |
5753 | else | |
5754 | set_gdbarch_num_regs (gdbarch, 90); | |
5755 | ||
0dadbba0 | 5756 | switch (mips_abi) |
c2d11a7d | 5757 | { |
0dadbba0 | 5758 | case MIPS_ABI_O32: |
25ab4790 | 5759 | set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call); |
ebba8386 | 5760 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value); |
cb1d2653 | 5761 | set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value); |
a5ea2558 | 5762 | tdep->mips_default_saved_regsize = 4; |
0dadbba0 | 5763 | tdep->mips_default_stack_argsize = 4; |
c2d11a7d | 5764 | tdep->mips_fp_register_double = 0; |
acdb74a0 AC |
5765 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
5766 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1; | |
5213ab06 | 5767 | tdep->gdb_target_is_mips64 = 0; |
4014092b | 5768 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5769 | set_gdbarch_long_bit (gdbarch, 32); |
5770 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5771 | set_gdbarch_long_long_bit (gdbarch, 64); | |
8b389c40 MS |
5772 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5773 | mips_o32_reg_struct_has_addr); | |
cb811fe7 | 5774 | set_gdbarch_use_struct_convention (gdbarch, |
1fd35568 | 5775 | always_use_struct_convention); |
c2d11a7d | 5776 | break; |
0dadbba0 | 5777 | case MIPS_ABI_O64: |
25ab4790 | 5778 | set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call); |
ebba8386 | 5779 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value); |
46cac009 | 5780 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value); |
a5ea2558 | 5781 | tdep->mips_default_saved_regsize = 8; |
0dadbba0 | 5782 | tdep->mips_default_stack_argsize = 8; |
c2d11a7d | 5783 | tdep->mips_fp_register_double = 1; |
acdb74a0 AC |
5784 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; |
5785 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1; | |
5213ab06 | 5786 | tdep->gdb_target_is_mips64 = 1; |
361d1df0 | 5787 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5788 | set_gdbarch_long_bit (gdbarch, 32); |
5789 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5790 | set_gdbarch_long_long_bit (gdbarch, 64); | |
8b389c40 MS |
5791 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5792 | mips_o32_reg_struct_has_addr); | |
b060cbea | 5793 | set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention); |
c2d11a7d | 5794 | break; |
0dadbba0 | 5795 | case MIPS_ABI_EABI32: |
25ab4790 | 5796 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
ebba8386 | 5797 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value); |
46cac009 | 5798 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value); |
a5ea2558 | 5799 | tdep->mips_default_saved_regsize = 4; |
0dadbba0 | 5800 | tdep->mips_default_stack_argsize = 4; |
c2d11a7d | 5801 | tdep->mips_fp_register_double = 0; |
acdb74a0 AC |
5802 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
5803 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5213ab06 | 5804 | tdep->gdb_target_is_mips64 = 0; |
4014092b | 5805 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5806 | set_gdbarch_long_bit (gdbarch, 32); |
5807 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5808 | set_gdbarch_long_long_bit (gdbarch, 64); | |
8b389c40 MS |
5809 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5810 | mips_eabi_reg_struct_has_addr); | |
cb811fe7 MS |
5811 | set_gdbarch_use_struct_convention (gdbarch, |
5812 | mips_eabi_use_struct_convention); | |
c2d11a7d | 5813 | break; |
0dadbba0 | 5814 | case MIPS_ABI_EABI64: |
25ab4790 | 5815 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); |
ebba8386 | 5816 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value); |
46cac009 | 5817 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value); |
a5ea2558 | 5818 | tdep->mips_default_saved_regsize = 8; |
0dadbba0 | 5819 | tdep->mips_default_stack_argsize = 8; |
c2d11a7d | 5820 | tdep->mips_fp_register_double = 1; |
acdb74a0 AC |
5821 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
5822 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5213ab06 | 5823 | tdep->gdb_target_is_mips64 = 1; |
4014092b | 5824 | tdep->default_mask_address_p = 0; |
c2d11a7d JM |
5825 | set_gdbarch_long_bit (gdbarch, 64); |
5826 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5827 | set_gdbarch_long_long_bit (gdbarch, 64); | |
8b389c40 MS |
5828 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5829 | mips_eabi_reg_struct_has_addr); | |
cb811fe7 MS |
5830 | set_gdbarch_use_struct_convention (gdbarch, |
5831 | mips_eabi_use_struct_convention); | |
c2d11a7d | 5832 | break; |
0dadbba0 | 5833 | case MIPS_ABI_N32: |
25ab4790 | 5834 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
ebba8386 | 5835 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value); |
88658117 | 5836 | set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value); |
63db5580 | 5837 | tdep->mips_default_saved_regsize = 8; |
0dadbba0 AC |
5838 | tdep->mips_default_stack_argsize = 8; |
5839 | tdep->mips_fp_register_double = 1; | |
acdb74a0 AC |
5840 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; |
5841 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
6acdf5c7 | 5842 | tdep->gdb_target_is_mips64 = 1; |
4014092b | 5843 | tdep->default_mask_address_p = 0; |
0dadbba0 AC |
5844 | set_gdbarch_long_bit (gdbarch, 32); |
5845 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5846 | set_gdbarch_long_long_bit (gdbarch, 64); | |
cb811fe7 MS |
5847 | set_gdbarch_use_struct_convention (gdbarch, |
5848 | mips_n32n64_use_struct_convention); | |
8b389c40 MS |
5849 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5850 | mips_n32n64_reg_struct_has_addr); | |
28d169de KB |
5851 | break; |
5852 | case MIPS_ABI_N64: | |
25ab4790 | 5853 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); |
ebba8386 | 5854 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value); |
88658117 | 5855 | set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value); |
28d169de KB |
5856 | tdep->mips_default_saved_regsize = 8; |
5857 | tdep->mips_default_stack_argsize = 8; | |
5858 | tdep->mips_fp_register_double = 1; | |
5859 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; | |
5860 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
28d169de KB |
5861 | tdep->gdb_target_is_mips64 = 1; |
5862 | tdep->default_mask_address_p = 0; | |
5863 | set_gdbarch_long_bit (gdbarch, 64); | |
5864 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5865 | set_gdbarch_long_long_bit (gdbarch, 64); | |
cb811fe7 MS |
5866 | set_gdbarch_use_struct_convention (gdbarch, |
5867 | mips_n32n64_use_struct_convention); | |
8b389c40 MS |
5868 | set_gdbarch_reg_struct_has_addr (gdbarch, |
5869 | mips_n32n64_reg_struct_has_addr); | |
0dadbba0 | 5870 | break; |
c2d11a7d | 5871 | default: |
2e4ebe70 DJ |
5872 | internal_error (__FILE__, __LINE__, |
5873 | "unknown ABI in switch"); | |
c2d11a7d JM |
5874 | } |
5875 | ||
a5ea2558 AC |
5876 | /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE |
5877 | that could indicate -gp32 BUT gas/config/tc-mips.c contains the | |
5878 | comment: | |
5879 | ||
5880 | ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE | |
5881 | flag in object files because to do so would make it impossible to | |
102182a9 | 5882 | link with libraries compiled without "-gp32". This is |
a5ea2558 | 5883 | unnecessarily restrictive. |
361d1df0 | 5884 | |
a5ea2558 AC |
5885 | We could solve this problem by adding "-gp32" multilibs to gcc, |
5886 | but to set this flag before gcc is built with such multilibs will | |
5887 | break too many systems.'' | |
5888 | ||
5889 | But even more unhelpfully, the default linker output target for | |
5890 | mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even | |
5891 | for 64-bit programs - you need to change the ABI to change this, | |
102182a9 | 5892 | and not all gcc targets support that currently. Therefore using |
a5ea2558 AC |
5893 | this flag to detect 32-bit mode would do the wrong thing given |
5894 | the current gcc - it would make GDB treat these 64-bit programs | |
102182a9 | 5895 | as 32-bit programs by default. */ |
a5ea2558 | 5896 | |
c2d11a7d JM |
5897 | /* enable/disable the MIPS FPU */ |
5898 | if (!mips_fpu_type_auto) | |
5899 | tdep->mips_fpu_type = mips_fpu_type; | |
5900 | else if (info.bfd_arch_info != NULL | |
5901 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5902 | switch (info.bfd_arch_info->mach) | |
5903 | { | |
b0069a17 | 5904 | case bfd_mach_mips3900: |
c2d11a7d | 5905 | case bfd_mach_mips4100: |
ed9a39eb | 5906 | case bfd_mach_mips4111: |
c2d11a7d JM |
5907 | tdep->mips_fpu_type = MIPS_FPU_NONE; |
5908 | break; | |
bf64bfd6 AC |
5909 | case bfd_mach_mips4650: |
5910 | tdep->mips_fpu_type = MIPS_FPU_SINGLE; | |
5911 | break; | |
c2d11a7d JM |
5912 | default: |
5913 | tdep->mips_fpu_type = MIPS_FPU_DOUBLE; | |
5914 | break; | |
5915 | } | |
5916 | else | |
5917 | tdep->mips_fpu_type = MIPS_FPU_DOUBLE; | |
5918 | ||
5919 | /* MIPS version of register names. NOTE: At present the MIPS | |
5920 | register name management is part way between the old - | |
5921 | #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr). | |
102182a9 | 5922 | Further work on it is required. */ |
18f81521 MS |
5923 | /* NOTE: many targets (esp. embedded) do not go thru the |
5924 | gdbarch_register_name vector at all, instead bypassing it | |
5925 | by defining REGISTER_NAMES. */ | |
c2d11a7d | 5926 | set_gdbarch_register_name (gdbarch, mips_register_name); |
6c997a34 | 5927 | set_gdbarch_read_pc (gdbarch, mips_read_pc); |
c2d11a7d | 5928 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
0ba6dca9 | 5929 | set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */ |
bcb0cc15 | 5930 | set_gdbarch_read_sp (gdbarch, mips_read_sp); |
c2d11a7d | 5931 | |
102182a9 MS |
5932 | /* Add/remove bits from an address. The MIPS needs be careful to |
5933 | ensure that all 32 bit addresses are sign extended to 64 bits. */ | |
875e1767 AC |
5934 | set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove); |
5935 | ||
10312cc4 | 5936 | /* There's a mess in stack frame creation. See comments in |
2ca6c561 AC |
5937 | blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */ |
5938 | set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first); | |
a5afb99f | 5939 | set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop); |
10312cc4 | 5940 | |
102182a9 | 5941 | /* Map debug register numbers onto internal register numbers. */ |
88c72b7d | 5942 | set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum); |
2f38ef89 KB |
5943 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); |
5944 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
5945 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
88c72b7d | 5946 | |
c2d11a7d | 5947 | /* Initialize a frame */ |
e0f7ec59 | 5948 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs); |
e9582e71 | 5949 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info); |
c2d11a7d JM |
5950 | |
5951 | /* MIPS version of CALL_DUMMY */ | |
5952 | ||
c2d11a7d | 5953 | set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address); |
749b82f6 | 5954 | set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame); |
dc604539 | 5955 | set_gdbarch_frame_align (gdbarch, mips_frame_align); |
cedea778 | 5956 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
781a750d AC |
5957 | set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible); |
5958 | set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual); | |
5959 | set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw); | |
d05285fa | 5960 | |
618ce49f | 5961 | set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain); |
b5d1566e MS |
5962 | set_gdbarch_frameless_function_invocation (gdbarch, |
5963 | generic_frameless_function_invocation_not); | |
8bedc050 | 5964 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc); |
b5d1566e MS |
5965 | set_gdbarch_frame_args_skip (gdbarch, 0); |
5966 | ||
129c1cd6 | 5967 | set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register); |
c2d11a7d | 5968 | |
f7b9e9fc AC |
5969 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
5970 | set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc); | |
5971 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
f7b9e9fc AC |
5972 | |
5973 | set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue); | |
6913c89a | 5974 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call); |
f7b9e9fc | 5975 | |
fc0c74b1 AC |
5976 | set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address); |
5977 | set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer); | |
5978 | set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address); | |
70f80edf | 5979 | |
102182a9 MS |
5980 | set_gdbarch_function_start_offset (gdbarch, 0); |
5981 | ||
32a6503c KB |
5982 | /* There are MIPS targets which do not yet use this since they still |
5983 | define REGISTER_VIRTUAL_TYPE. */ | |
9c04cab7 | 5984 | set_gdbarch_deprecated_register_virtual_type (gdbarch, mips_register_virtual_type); |
78fde5f8 | 5985 | |
e11c53d2 | 5986 | set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info); |
102182a9 | 5987 | set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp); |
bf1f5b4c | 5988 | |
70f80edf | 5989 | /* Hook in OS ABI-specific overrides, if they have been registered. */ |
4be87837 | 5990 | gdbarch_init_osabi (info, gdbarch); |
70f80edf | 5991 | |
2f1488ce MS |
5992 | set_gdbarch_extract_struct_value_address (gdbarch, |
5993 | mips_extract_struct_value_address); | |
757a7cc6 MS |
5994 | |
5995 | set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub); | |
5996 | ||
5997 | set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub); | |
e41b17f0 | 5998 | set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub); |
757a7cc6 | 5999 | |
4b9b3959 AC |
6000 | return gdbarch; |
6001 | } | |
6002 | ||
2e4ebe70 DJ |
6003 | static void |
6004 | mips_abi_update (char *ignore_args, int from_tty, | |
6005 | struct cmd_list_element *c) | |
6006 | { | |
6007 | struct gdbarch_info info; | |
6008 | ||
6009 | /* Force the architecture to update, and (if it's a MIPS architecture) | |
6010 | mips_gdbarch_init will take care of the rest. */ | |
6011 | gdbarch_info_init (&info); | |
6012 | gdbarch_update_p (info); | |
6013 | } | |
6014 | ||
ad188201 KB |
6015 | /* Print out which MIPS ABI is in use. */ |
6016 | ||
6017 | static void | |
6018 | show_mips_abi (char *ignore_args, int from_tty) | |
6019 | { | |
6020 | if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips) | |
6021 | printf_filtered ( | |
6022 | "The MIPS ABI is unknown because the current architecture is not MIPS.\n"); | |
6023 | else | |
6024 | { | |
6025 | enum mips_abi global_abi = global_mips_abi (); | |
6026 | enum mips_abi actual_abi = mips_abi (current_gdbarch); | |
6027 | const char *actual_abi_str = mips_abi_strings[actual_abi]; | |
6028 | ||
6029 | if (global_abi == MIPS_ABI_UNKNOWN) | |
6030 | printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n", | |
6031 | actual_abi_str); | |
6032 | else if (global_abi == actual_abi) | |
6033 | printf_filtered ( | |
6034 | "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n", | |
6035 | actual_abi_str); | |
6036 | else | |
6037 | { | |
6038 | /* Probably shouldn't happen... */ | |
6039 | printf_filtered ( | |
6040 | "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n", | |
6041 | actual_abi_str, | |
6042 | mips_abi_strings[global_abi]); | |
6043 | } | |
6044 | } | |
6045 | } | |
6046 | ||
4b9b3959 AC |
6047 | static void |
6048 | mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
6049 | { | |
6050 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
6051 | if (tdep != NULL) | |
c2d11a7d | 6052 | { |
acdb74a0 AC |
6053 | int ef_mips_arch; |
6054 | int ef_mips_32bitmode; | |
6055 | /* determine the ISA */ | |
6056 | switch (tdep->elf_flags & EF_MIPS_ARCH) | |
6057 | { | |
6058 | case E_MIPS_ARCH_1: | |
6059 | ef_mips_arch = 1; | |
6060 | break; | |
6061 | case E_MIPS_ARCH_2: | |
6062 | ef_mips_arch = 2; | |
6063 | break; | |
6064 | case E_MIPS_ARCH_3: | |
6065 | ef_mips_arch = 3; | |
6066 | break; | |
6067 | case E_MIPS_ARCH_4: | |
93d56215 | 6068 | ef_mips_arch = 4; |
acdb74a0 AC |
6069 | break; |
6070 | default: | |
93d56215 | 6071 | ef_mips_arch = 0; |
acdb74a0 AC |
6072 | break; |
6073 | } | |
6074 | /* determine the size of a pointer */ | |
6075 | ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE); | |
4b9b3959 AC |
6076 | fprintf_unfiltered (file, |
6077 | "mips_dump_tdep: tdep->elf_flags = 0x%x\n", | |
0dadbba0 | 6078 | tdep->elf_flags); |
4b9b3959 | 6079 | fprintf_unfiltered (file, |
acdb74a0 AC |
6080 | "mips_dump_tdep: ef_mips_32bitmode = %d\n", |
6081 | ef_mips_32bitmode); | |
6082 | fprintf_unfiltered (file, | |
6083 | "mips_dump_tdep: ef_mips_arch = %d\n", | |
6084 | ef_mips_arch); | |
6085 | fprintf_unfiltered (file, | |
6086 | "mips_dump_tdep: tdep->mips_abi = %d (%s)\n", | |
6087 | tdep->mips_abi, | |
2e4ebe70 | 6088 | mips_abi_strings[tdep->mips_abi]); |
4014092b AC |
6089 | fprintf_unfiltered (file, |
6090 | "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n", | |
6091 | mips_mask_address_p (), | |
6092 | tdep->default_mask_address_p); | |
c2d11a7d | 6093 | } |
4b9b3959 AC |
6094 | fprintf_unfiltered (file, |
6095 | "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n", | |
6096 | FP_REGISTER_DOUBLE); | |
6097 | fprintf_unfiltered (file, | |
6098 | "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n", | |
6099 | MIPS_DEFAULT_FPU_TYPE, | |
6100 | (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6101 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6102 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6103 | : "???")); | |
6104 | fprintf_unfiltered (file, | |
6105 | "mips_dump_tdep: MIPS_EABI = %d\n", | |
6106 | MIPS_EABI); | |
6107 | fprintf_unfiltered (file, | |
acdb74a0 AC |
6108 | "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n", |
6109 | MIPS_LAST_FP_ARG_REGNUM, | |
6110 | MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1); | |
4b9b3959 AC |
6111 | fprintf_unfiltered (file, |
6112 | "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n", | |
6113 | MIPS_FPU_TYPE, | |
6114 | (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6115 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6116 | : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6117 | : "???")); | |
6118 | fprintf_unfiltered (file, | |
6119 | "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n", | |
6120 | MIPS_DEFAULT_SAVED_REGSIZE); | |
4b9b3959 AC |
6121 | fprintf_unfiltered (file, |
6122 | "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n", | |
6123 | FP_REGISTER_DOUBLE); | |
4b9b3959 AC |
6124 | fprintf_unfiltered (file, |
6125 | "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n", | |
6126 | MIPS_DEFAULT_STACK_ARGSIZE); | |
6127 | fprintf_unfiltered (file, | |
6128 | "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n", | |
6129 | MIPS_STACK_ARGSIZE); | |
6130 | fprintf_unfiltered (file, | |
6131 | "mips_dump_tdep: MIPS_REGSIZE = %d\n", | |
6132 | MIPS_REGSIZE); | |
2475bac3 AC |
6133 | fprintf_unfiltered (file, |
6134 | "mips_dump_tdep: A0_REGNUM = %d\n", | |
6135 | A0_REGNUM); | |
6136 | fprintf_unfiltered (file, | |
6137 | "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n", | |
6138 | XSTRING (ADDR_BITS_REMOVE(ADDR))); | |
6139 | fprintf_unfiltered (file, | |
6140 | "mips_dump_tdep: ATTACH_DETACH # %s\n", | |
6141 | XSTRING (ATTACH_DETACH)); | |
6142 | fprintf_unfiltered (file, | |
6143 | "mips_dump_tdep: BADVADDR_REGNUM = %d\n", | |
6144 | BADVADDR_REGNUM); | |
2475bac3 AC |
6145 | fprintf_unfiltered (file, |
6146 | "mips_dump_tdep: CAUSE_REGNUM = %d\n", | |
6147 | CAUSE_REGNUM); | |
2475bac3 AC |
6148 | fprintf_unfiltered (file, |
6149 | "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n", | |
6150 | XSTRING (DWARF_REG_TO_REGNUM (REGNUM))); | |
6151 | fprintf_unfiltered (file, | |
6152 | "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n", | |
6153 | XSTRING (ECOFF_REG_TO_REGNUM (REGNUM))); | |
2475bac3 AC |
6154 | fprintf_unfiltered (file, |
6155 | "mips_dump_tdep: FCRCS_REGNUM = %d\n", | |
6156 | FCRCS_REGNUM); | |
6157 | fprintf_unfiltered (file, | |
6158 | "mips_dump_tdep: FCRIR_REGNUM = %d\n", | |
6159 | FCRIR_REGNUM); | |
6160 | fprintf_unfiltered (file, | |
6161 | "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n", | |
6162 | FIRST_EMBED_REGNUM); | |
6163 | fprintf_unfiltered (file, | |
6164 | "mips_dump_tdep: FPA0_REGNUM = %d\n", | |
6165 | FPA0_REGNUM); | |
6166 | fprintf_unfiltered (file, | |
6167 | "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n", | |
6168 | GDB_TARGET_IS_MIPS64); | |
2475bac3 AC |
6169 | fprintf_unfiltered (file, |
6170 | "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n", | |
6171 | XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT)); | |
6172 | fprintf_unfiltered (file, | |
6173 | "mips_dump_tdep: HI_REGNUM = %d\n", | |
6174 | HI_REGNUM); | |
2475bac3 AC |
6175 | fprintf_unfiltered (file, |
6176 | "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n", | |
6177 | XSTRING (IGNORE_HELPER_CALL (PC))); | |
2475bac3 AC |
6178 | fprintf_unfiltered (file, |
6179 | "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n", | |
6180 | XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME))); | |
6181 | fprintf_unfiltered (file, | |
6182 | "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n", | |
6183 | XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME))); | |
2475bac3 AC |
6184 | fprintf_unfiltered (file, |
6185 | "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n", | |
6186 | LAST_EMBED_REGNUM); | |
2475bac3 AC |
6187 | fprintf_unfiltered (file, |
6188 | "mips_dump_tdep: LO_REGNUM = %d\n", | |
6189 | LO_REGNUM); | |
6190 | #ifdef MACHINE_CPROC_FP_OFFSET | |
6191 | fprintf_unfiltered (file, | |
6192 | "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n", | |
6193 | MACHINE_CPROC_FP_OFFSET); | |
6194 | #endif | |
6195 | #ifdef MACHINE_CPROC_PC_OFFSET | |
6196 | fprintf_unfiltered (file, | |
6197 | "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n", | |
6198 | MACHINE_CPROC_PC_OFFSET); | |
6199 | #endif | |
6200 | #ifdef MACHINE_CPROC_SP_OFFSET | |
6201 | fprintf_unfiltered (file, | |
6202 | "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n", | |
6203 | MACHINE_CPROC_SP_OFFSET); | |
6204 | #endif | |
2475bac3 AC |
6205 | fprintf_unfiltered (file, |
6206 | "mips_dump_tdep: MIPS16_INSTLEN = %d\n", | |
6207 | MIPS16_INSTLEN); | |
2475bac3 AC |
6208 | fprintf_unfiltered (file, |
6209 | "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n"); | |
6210 | fprintf_unfiltered (file, | |
6211 | "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n"); | |
6212 | fprintf_unfiltered (file, | |
6213 | "mips_dump_tdep: MIPS_INSTLEN = %d\n", | |
6214 | MIPS_INSTLEN); | |
6215 | fprintf_unfiltered (file, | |
acdb74a0 AC |
6216 | "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n", |
6217 | MIPS_LAST_ARG_REGNUM, | |
6218 | MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1); | |
2475bac3 AC |
6219 | fprintf_unfiltered (file, |
6220 | "mips_dump_tdep: MIPS_NUMREGS = %d\n", | |
6221 | MIPS_NUMREGS); | |
6222 | fprintf_unfiltered (file, | |
6223 | "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n"); | |
6224 | fprintf_unfiltered (file, | |
6225 | "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n", | |
6226 | MIPS_SAVED_REGSIZE); | |
2475bac3 AC |
6227 | fprintf_unfiltered (file, |
6228 | "mips_dump_tdep: OP_LDFPR = used?\n"); | |
6229 | fprintf_unfiltered (file, | |
6230 | "mips_dump_tdep: OP_LDGPR = used?\n"); | |
2475bac3 AC |
6231 | fprintf_unfiltered (file, |
6232 | "mips_dump_tdep: PRID_REGNUM = %d\n", | |
6233 | PRID_REGNUM); | |
6234 | fprintf_unfiltered (file, | |
6235 | "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n", | |
6236 | XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME))); | |
6237 | fprintf_unfiltered (file, | |
6238 | "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n"); | |
6239 | fprintf_unfiltered (file, | |
6240 | "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n"); | |
6241 | fprintf_unfiltered (file, | |
6242 | "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n"); | |
6243 | fprintf_unfiltered (file, | |
6244 | "mips_dump_tdep: PROC_FRAME_REG = function?\n"); | |
6245 | fprintf_unfiltered (file, | |
6246 | "mips_dump_tdep: PROC_FREG_MASK = function?\n"); | |
6247 | fprintf_unfiltered (file, | |
6248 | "mips_dump_tdep: PROC_FREG_OFFSET = function?\n"); | |
6249 | fprintf_unfiltered (file, | |
6250 | "mips_dump_tdep: PROC_HIGH_ADDR = function?\n"); | |
6251 | fprintf_unfiltered (file, | |
6252 | "mips_dump_tdep: PROC_LOW_ADDR = function?\n"); | |
6253 | fprintf_unfiltered (file, | |
6254 | "mips_dump_tdep: PROC_PC_REG = function?\n"); | |
6255 | fprintf_unfiltered (file, | |
6256 | "mips_dump_tdep: PROC_REG_MASK = function?\n"); | |
6257 | fprintf_unfiltered (file, | |
6258 | "mips_dump_tdep: PROC_REG_OFFSET = function?\n"); | |
6259 | fprintf_unfiltered (file, | |
6260 | "mips_dump_tdep: PROC_SYMBOL = function?\n"); | |
6261 | fprintf_unfiltered (file, | |
6262 | "mips_dump_tdep: PS_REGNUM = %d\n", | |
6263 | PS_REGNUM); | |
2475bac3 AC |
6264 | fprintf_unfiltered (file, |
6265 | "mips_dump_tdep: RA_REGNUM = %d\n", | |
6266 | RA_REGNUM); | |
6267 | fprintf_unfiltered (file, | |
6268 | "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n", | |
6269 | XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER))); | |
6270 | fprintf_unfiltered (file, | |
6271 | "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n", | |
6272 | XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER))); | |
6273 | fprintf_unfiltered (file, | |
6274 | "mips_dump_tdep: REGISTER_NAMES = delete?\n"); | |
6275 | fprintf_unfiltered (file, | |
6276 | "mips_dump_tdep: ROUND_DOWN = function?\n"); | |
6277 | fprintf_unfiltered (file, | |
6278 | "mips_dump_tdep: ROUND_UP = function?\n"); | |
6279 | #ifdef SAVED_BYTES | |
6280 | fprintf_unfiltered (file, | |
6281 | "mips_dump_tdep: SAVED_BYTES = %d\n", | |
6282 | SAVED_BYTES); | |
6283 | #endif | |
6284 | #ifdef SAVED_FP | |
6285 | fprintf_unfiltered (file, | |
6286 | "mips_dump_tdep: SAVED_FP = %d\n", | |
6287 | SAVED_FP); | |
6288 | #endif | |
6289 | #ifdef SAVED_PC | |
6290 | fprintf_unfiltered (file, | |
6291 | "mips_dump_tdep: SAVED_PC = %d\n", | |
6292 | SAVED_PC); | |
6293 | #endif | |
6294 | fprintf_unfiltered (file, | |
6295 | "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n", | |
6296 | XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS))); | |
6297 | fprintf_unfiltered (file, | |
6298 | "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n"); | |
6299 | fprintf_unfiltered (file, | |
6300 | "mips_dump_tdep: SIGFRAME_BASE = %d\n", | |
6301 | SIGFRAME_BASE); | |
6302 | fprintf_unfiltered (file, | |
6303 | "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n", | |
6304 | SIGFRAME_FPREGSAVE_OFF); | |
6305 | fprintf_unfiltered (file, | |
6306 | "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n", | |
6307 | SIGFRAME_PC_OFF); | |
6308 | fprintf_unfiltered (file, | |
6309 | "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n", | |
6310 | SIGFRAME_REGSAVE_OFF); | |
6311 | fprintf_unfiltered (file, | |
6312 | "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n", | |
6313 | SIGFRAME_REG_SIZE); | |
6314 | fprintf_unfiltered (file, | |
6315 | "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n", | |
6316 | XSTRING (SKIP_TRAMPOLINE_CODE (PC))); | |
6317 | fprintf_unfiltered (file, | |
6318 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n", | |
6319 | XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P))); | |
6320 | fprintf_unfiltered (file, | |
b0ed3589 AC |
6321 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n", |
6322 | SOFTWARE_SINGLE_STEP_P ()); | |
2475bac3 AC |
6323 | fprintf_unfiltered (file, |
6324 | "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n", | |
6325 | XSTRING (STAB_REG_TO_REGNUM (REGNUM))); | |
6326 | #ifdef STACK_END_ADDR | |
6327 | fprintf_unfiltered (file, | |
6328 | "mips_dump_tdep: STACK_END_ADDR = %d\n", | |
6329 | STACK_END_ADDR); | |
6330 | #endif | |
6331 | fprintf_unfiltered (file, | |
6332 | "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n", | |
6333 | XSTRING (STEP_SKIPS_DELAY (PC))); | |
6334 | fprintf_unfiltered (file, | |
6335 | "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n", | |
6336 | STEP_SKIPS_DELAY_P); | |
6337 | fprintf_unfiltered (file, | |
6338 | "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n", | |
6339 | XSTRING (STOPPED_BY_WATCHPOINT (WS))); | |
6340 | fprintf_unfiltered (file, | |
6341 | "mips_dump_tdep: T9_REGNUM = %d\n", | |
6342 | T9_REGNUM); | |
6343 | fprintf_unfiltered (file, | |
6344 | "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n"); | |
6345 | fprintf_unfiltered (file, | |
6346 | "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n", | |
6347 | XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE))); | |
6348 | fprintf_unfiltered (file, | |
6349 | "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n", | |
6350 | XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS)); | |
2475bac3 AC |
6351 | #ifdef TRACE_CLEAR |
6352 | fprintf_unfiltered (file, | |
6353 | "mips_dump_tdep: TRACE_CLEAR # %s\n", | |
6354 | XSTRING (TRACE_CLEAR (THREAD, STATE))); | |
6355 | #endif | |
6356 | #ifdef TRACE_FLAVOR | |
6357 | fprintf_unfiltered (file, | |
6358 | "mips_dump_tdep: TRACE_FLAVOR = %d\n", | |
6359 | TRACE_FLAVOR); | |
6360 | #endif | |
6361 | #ifdef TRACE_FLAVOR_SIZE | |
6362 | fprintf_unfiltered (file, | |
6363 | "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n", | |
6364 | TRACE_FLAVOR_SIZE); | |
6365 | #endif | |
6366 | #ifdef TRACE_SET | |
6367 | fprintf_unfiltered (file, | |
6368 | "mips_dump_tdep: TRACE_SET # %s\n", | |
6369 | XSTRING (TRACE_SET (X,STATE))); | |
6370 | #endif | |
2475bac3 AC |
6371 | #ifdef UNUSED_REGNUM |
6372 | fprintf_unfiltered (file, | |
6373 | "mips_dump_tdep: UNUSED_REGNUM = %d\n", | |
6374 | UNUSED_REGNUM); | |
6375 | #endif | |
6376 | fprintf_unfiltered (file, | |
6377 | "mips_dump_tdep: V0_REGNUM = %d\n", | |
6378 | V0_REGNUM); | |
6379 | fprintf_unfiltered (file, | |
6380 | "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n", | |
6381 | (long) VM_MIN_ADDRESS); | |
6382 | #ifdef VX_NUM_REGS | |
6383 | fprintf_unfiltered (file, | |
6384 | "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n", | |
6385 | VX_NUM_REGS); | |
6386 | #endif | |
6387 | fprintf_unfiltered (file, | |
6388 | "mips_dump_tdep: ZERO_REGNUM = %d\n", | |
6389 | ZERO_REGNUM); | |
6390 | fprintf_unfiltered (file, | |
6391 | "mips_dump_tdep: _PROC_MAGIC_ = %d\n", | |
6392 | _PROC_MAGIC_); | |
c2d11a7d JM |
6393 | } |
6394 | ||
a78f21af AC |
6395 | extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */ |
6396 | ||
c906108c | 6397 | void |
acdb74a0 | 6398 | _initialize_mips_tdep (void) |
c906108c SS |
6399 | { |
6400 | static struct cmd_list_element *mipsfpulist = NULL; | |
6401 | struct cmd_list_element *c; | |
6402 | ||
2e4ebe70 DJ |
6403 | mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN]; |
6404 | if (MIPS_ABI_LAST + 1 | |
6405 | != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0])) | |
6406 | internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync"); | |
6407 | ||
4b9b3959 | 6408 | gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep); |
d7a27068 AC |
6409 | if (!deprecated_tm_print_insn) /* Someone may have already set it */ |
6410 | deprecated_tm_print_insn = gdb_print_insn_mips; | |
c906108c | 6411 | |
a5ea2558 AC |
6412 | /* Add root prefix command for all "set mips"/"show mips" commands */ |
6413 | add_prefix_cmd ("mips", no_class, set_mips_command, | |
6414 | "Various MIPS specific commands.", | |
6415 | &setmipscmdlist, "set mips ", 0, &setlist); | |
6416 | ||
6417 | add_prefix_cmd ("mips", no_class, show_mips_command, | |
6418 | "Various MIPS specific commands.", | |
6419 | &showmipscmdlist, "show mips ", 0, &showlist); | |
6420 | ||
6421 | /* Allow the user to override the saved register size. */ | |
6422 | add_show_from_set (add_set_enum_cmd ("saved-gpreg-size", | |
1ed2a135 AC |
6423 | class_obscure, |
6424 | size_enums, | |
6425 | &mips_saved_regsize_string, "\ | |
a5ea2558 AC |
6426 | Set size of general purpose registers saved on the stack.\n\ |
6427 | This option can be set to one of:\n\ | |
6428 | 32 - Force GDB to treat saved GP registers as 32-bit\n\ | |
6429 | 64 - Force GDB to treat saved GP registers as 64-bit\n\ | |
6430 | auto - Allow GDB to use the target's default setting or autodetect the\n\ | |
6431 | saved GP register size from information contained in the executable.\n\ | |
6432 | (default: auto)", | |
1ed2a135 | 6433 | &setmipscmdlist), |
a5ea2558 AC |
6434 | &showmipscmdlist); |
6435 | ||
d929b26f AC |
6436 | /* Allow the user to override the argument stack size. */ |
6437 | add_show_from_set (add_set_enum_cmd ("stack-arg-size", | |
6438 | class_obscure, | |
6439 | size_enums, | |
1ed2a135 | 6440 | &mips_stack_argsize_string, "\ |
d929b26f AC |
6441 | Set the amount of stack space reserved for each argument.\n\ |
6442 | This option can be set to one of:\n\ | |
6443 | 32 - Force GDB to allocate 32-bit chunks per argument\n\ | |
6444 | 64 - Force GDB to allocate 64-bit chunks per argument\n\ | |
6445 | auto - Allow GDB to determine the correct setting from the current\n\ | |
6446 | target and executable (default)", | |
6447 | &setmipscmdlist), | |
6448 | &showmipscmdlist); | |
6449 | ||
2e4ebe70 DJ |
6450 | /* Allow the user to override the ABI. */ |
6451 | c = add_set_enum_cmd | |
6452 | ("abi", class_obscure, mips_abi_strings, &mips_abi_string, | |
6453 | "Set the ABI used by this program.\n" | |
6454 | "This option can be set to one of:\n" | |
6455 | " auto - the default ABI associated with the current binary\n" | |
6456 | " o32\n" | |
6457 | " o64\n" | |
6458 | " n32\n" | |
f3a7b3a5 | 6459 | " n64\n" |
2e4ebe70 DJ |
6460 | " eabi32\n" |
6461 | " eabi64", | |
6462 | &setmipscmdlist); | |
2e4ebe70 | 6463 | set_cmd_sfunc (c, mips_abi_update); |
ad188201 KB |
6464 | add_cmd ("abi", class_obscure, show_mips_abi, |
6465 | "Show ABI in use by MIPS target", &showmipscmdlist); | |
2e4ebe70 | 6466 | |
c906108c SS |
6467 | /* Let the user turn off floating point and set the fence post for |
6468 | heuristic_proc_start. */ | |
6469 | ||
6470 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
6471 | "Set use of MIPS floating-point coprocessor.", | |
6472 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
6473 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
6474 | "Select single-precision MIPS floating-point coprocessor.", | |
6475 | &mipsfpulist); | |
6476 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
8e1a459b | 6477 | "Select double-precision MIPS floating-point coprocessor.", |
c906108c SS |
6478 | &mipsfpulist); |
6479 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
6480 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
6481 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
6482 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
6483 | "Select no MIPS floating-point coprocessor.", | |
6484 | &mipsfpulist); | |
6485 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); | |
6486 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
6487 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
6488 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
6489 | "Select MIPS floating-point coprocessor automatically.", | |
6490 | &mipsfpulist); | |
6491 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
6492 | "Show current use of MIPS floating-point coprocessor target.", | |
6493 | &showlist); | |
6494 | ||
c906108c SS |
6495 | /* We really would like to have both "0" and "unlimited" work, but |
6496 | command.c doesn't deal with that. So make it a var_zinteger | |
6497 | because the user can always use "999999" or some such for unlimited. */ | |
6498 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
6499 | (char *) &heuristic_fence_post, | |
6500 | "\ | |
6501 | Set the distance searched for the start of a function.\n\ | |
6502 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
6503 | program for the start of a function. This command sets the distance of the\n\ | |
6504 | search. The only need to set it is when debugging a stripped executable.", | |
6505 | &setlist); | |
6506 | /* We need to throw away the frame cache when we set this, since it | |
6507 | might change our ability to get backtraces. */ | |
9f60d481 | 6508 | set_cmd_sfunc (c, reinit_frame_cache_sfunc); |
c906108c SS |
6509 | add_show_from_set (c, &showlist); |
6510 | ||
6511 | /* Allow the user to control whether the upper bits of 64-bit | |
6512 | addresses should be zeroed. */ | |
e9e68a56 AC |
6513 | add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\ |
6514 | Set zeroing of upper 32 bits of 64-bit addresses.\n\ | |
6515 | Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\ | |
6516 | allow GDB to determine the correct value.\n", "\ | |
6517 | Show zeroing of upper 32 bits of 64-bit addresses.", | |
6518 | NULL, show_mask_address, | |
6519 | &setmipscmdlist, &showmipscmdlist); | |
43e526b9 JM |
6520 | |
6521 | /* Allow the user to control the size of 32 bit registers within the | |
6522 | raw remote packet. */ | |
6523 | add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs", | |
6524 | class_obscure, | |
6525 | var_boolean, | |
6526 | (char *)&mips64_transfers_32bit_regs_p, "\ | |
6527 | Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\ | |
6528 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ | |
6529 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
6530 | 64 bits for others. Use \"off\" to disable compatibility mode", | |
6531 | &setlist), | |
6532 | &showlist); | |
9ace0497 AC |
6533 | |
6534 | /* Debug this files internals. */ | |
6535 | add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger, | |
6536 | &mips_debug, "Set mips debugging.\n\ | |
6537 | When non-zero, mips specific debugging is enabled.", &setdebuglist), | |
6538 | &showdebuglist); | |
c906108c | 6539 | } |